
P/OS System
Reference Manual

Order No. AA-N620B-TK

November 1985

This manual describes the Professional Operating System,
and provides detailed reference information.

REQUIRED SOFTWARE: P/OS V3.0

DIGITAL EQUIPMENT CORPORATION
Maynard, Massachusetts 01754-2571

First Printing, December 1982
Updated, September 1983

Updated, December 1983
Revised, November 1985

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a
license and may only be used or copied in accordance with the
terms of such license.

No responsibility is assumed
software on equipment that
affiliated companies.

for the use or reliability of
is not supplied by DIGITAL or its

The specifications
Digital Equipment
copied or used in
manufacture or sale

and drawings, herein, are the property of
Corporation and shall not be reproduced or
whole or in part as the basis for the
of items without written permission.

Copyright © 1985 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTI BUS MASSBUS Rainbow
DEC PDP RSTS
DECmate P/OS RSX
DECsystem-10 PRO/BASIC Tool Kit
DECSYSTEM-20 PRO/Communications UNIBUS
DECUS Professional VAX
DECwriter PRO/FMS VMS
DIBOL PRO/RMS VT
~omoomoTM PROSE Work Processor

PROSE PLUS

ii

CONTENTS

PREFACE xvii

PART I -- SYSTEM OVERVIEW

CHAPTER 1

1.1
1.2
1. 2 .1
1. 2. 2
1. 2. 3
1.2. 4
1. 2. 5
1. 2. 6

1. 3
1. 3 .1
1. 3. 2
1. 3. 3
1. 3. 4
1. 4
1. 4 .1
1. 4. 2
1. 4. 3
1. 4. 4
1. 4. 5
1. 4. 6
1. 5

CHAPTER 2

2.1
2.2
2.2.1
2. 3
2.4
2. 4 .1
2.5
2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5

INTRODUCTION TO P/OS

P/OS HARDWARE ENVIRONMENT
P/OS SYSTEM COMPONENTS

The Executive
I/O Drivers
Terminal Subsystem .
FILES-11 Ancillary Control Processor
Record Management and File Control Services
P/OS System Utility Modules and Executive
Servers

1-1
1-2
1-4
1-4
1-5
1-5
1-5

1-6
1-6
1-6
1-7
1-9
1-9

P/OS BASIC CONCEPTS
Tasks
Memory .
Checkpointing
System Pool

APPLICATION DESIGN SUGGESTIONS
Use Cooperating Tasks
Use Shared Regions
Use Disk-Resident Overlays .
Use Memory-Resident Overlays
Use Clustered Resident Libraries
Use Fast Remapping Feature . .

COMPARING RSX-llM-PLUS AND P/OS

LOGICAL NAMES

LOGICAL NAME STORAGE
LOGICAL NAME MODIFIERS

Modifiers in Duplicate Logical Names
LOGICAL NAME TRANSLATION
LOGICAL NAMES FOR FILES-11 VOLUMES . .

Removable Versus Nonremovable Volumes
LOGICAL NAME DEFAULT DIRECTORY STRING
LOGICAL NAME OPERATIONS

Creating a Logical Name
Deleting a Logical Name
Translating a Logical Name
Setting a Default Directory String
Retrieving a Default Directory String

iii

1-10
1-10
1-11

. 1-12
. . 1-12

1-13
1-13

. 1-13

2-1
2-3
2-4
2-5
2-5
2-6
2-7
2-8
2-8
2-8
2-9
2-9

2-10

CHAPTER 3

3.1
3.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.4

CHAPTER 4

4.1
4 .1.1
4.2
4.2.1
4.2.2
4.3

CHAPTER 5

5.1
5 .1.1

5.2
5.3
5.3.1
5.3.2
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9
5.4.10
5.4.11
5.5
5.5.1
5.5.1.1
5.5.1.2

5.5.2
5.5.2.1

USING EVENT, TRAP, AND SYNCHRONIZATION SERVICES

SIGNIFICANT EVENTS
EVENT FLAGS
SYSTEM TRAPS . . .

Synchronous System Traps (SSTs)
SST Service Routines
Asynchronous System Traps (ASTs)
AST Service Routines .

STOP-BIT SYNCHRONIZATION

USING PARENT/OFFSPRING TASKING SERVICES

TASK STATES
Task State Transitions .

DIRECTIVE SUMMARY
Parent/Offspring Tasking Directives
Task Communication Directives

CONNECTING AND PASSING STATUS

USING MEMORY MANAGEMENT SERVICES

ADDRESS MAPPING
Physical, Logical, and Virtual Address

3-1
3-2
3-5
3-5
3-6
3-8
3-9

3-12

4-1
4-2
4-4
4-5
4-6
4-7

5-1

Space 5-1
WINDOWS 5-2
REGIONS 5-4

Attaching to Regions 5-8
Region Protection 5-8

DIRECTIVE SUMMARY 5-9
Create Region Directive (CRRG$) 5-9
Attach Region Directive (ATRG$) 5-9
Detach Region Directive (DTRG$) 5-10
Create Address Window Directive (CRAW$) 5-10
Eliminate Address Window Directive (ELAW$) 5-10
Map Address Window Directive (MAP$) .. 5-10
Unmap Address Window Directive (UMAP$) 5-10
Send By Reference Directive (SREF$) 5-10
Receive By Reference Directive (RREF$) 5-11
Get Mapping Context Directive (GMCX$) 5-11
Get Region Parameters Directive (GREG$) - 5-11

USER DATA STRUCTURES 5-11
Region Definition Block (ROB) 5-12

Using Macros to Generate an RDB 5-14
Using High-Level Languages to Generate
an ROB

Window Definition Block (WDB)
Using Macros to Generate a WDB

iv

5-17
5-17
5-18

5.5.2.2

5.5.3
5.6
5.7
5.7.1
5.7.2
5. 7. 3

Using High-Level Language to Generate a
WDB • • • • • . • • • •

Assigned Values or Settings
PRIVILEGED TASKS . .
FAST REMAP OPERATIONS

Performing a Fast Remap
Requirements for Using Fast Remap
Status Codes for Fast Remap

5-21
5-22
5-22
5-23
5-23
5-25

. 5-25

PART II -- THE SYSTEM SERVICES

CHAPTER 6

6.1
6 .1.1
6.2
6.2.1
6.2.2
6. 2. 3
6.3
6.4
6. 4. 1
6.5
6.5.1
6.5.2
6.6
6.6.1
6.6.2
6.7
6.7.1
6.7.2
6. 7. 3
6.7.4
6.8
6.8.1
6.8.2
6. 8. 3
6.8.4
6.8.5
6.8.6
6.9
6.9.1
6.9.2
6. 9. 3
6.9.4
6.9.5
6.9.6
6.9.7
6.9.8

SYSTEM UTILITY MODULES (POSSUM)

LINKING PROGRAMS WITH POSSUM . .
Impact of POSSUM on Your Task Image

CONVENTIONS FOR CALLABLE SYSTEM ROUTINES
PDP-11 R5 Calling Convention . . .
Other Conventions for POSSUM Routines
Status Control Block Format . . .

FORMAT OF POSSUM ROUTINE DESCRIPTIONS
PROATR .

Status Codes Returned by PROATR
PRODIR

Status Codes Returned by PRODIR
PRODIR Example

PROFBI .
Status Codes Returned by PROFBI
PROFBI Example

PROLOG

6-2
6-2
6-2
6-3
6-4
6-4
6-6
6-7
6-8

. . 6-10
. 6-12

6-12
6-13
6-15
6-18
6-19
6-19 Create

Delete
Status
PRO LOG

PROTSK

or Translate a Logical Name
a Logical Name and Set/Show
Codes Returned by PROLOG
Examples

Install a Task or Static Region
Remove a Task or Static Region .

Default 6-21
6-23
6-23
6-26
6-27
6-28
6-29 Fix a Task or Region in Memory

Install/Run/Remove an Offspring Task
Status Codes Returned by PROTSK
PROTSK Example .

PROVOL
Mount/Dismount . .
Bootstrap a Volume
Plug Bootblack/Plug Bootblack and Boot
Unplug a Bootblack
Get Free Space
Get Free Space and File Header Usage
Establish Secondary Boot Device
Note For PROVOL

v

6-29
6-32
6-35
6-36
6-36
6-38
6-38
6-39
6-39
6-40
6-42
6-43

6.9.9
6.9.10

CHAPTER 7

7.1
7.2
7.3
7.3.1
7.3.1.1
7.3.1.2
7.3.1.3
7.3.2
7.3.3
7.3.4
7. 3. 5
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7. 4. 5
7.4.6
7.4.7
7.5
7.6
7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6

7.6.7
7.6.8
7.7

CHAPTER 8

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

Status Codes Returned by PROVOL
PROVOL Example

. . . . 6-4 3
. 6-44

USING THE SYSTEM DIRECTIVES

HOW THE SYSTEM PROCESSES DIRECTIVES 7-2
ERROR RETURNS 7-4
USING DIRECTIVE MACROS . 7-4

Macro Name Conventions . 7-6
$ Form . 7-6
$C Form 7-7
$S Form 7-8

DIR$ Macro . 7-8
Optional Error Routine Address . 7-9
Symbolic Offsets 7-9
Examples of Macro Calls . 7-10

USING HIGH-LEVEL LANGUAGE SUBROUTINES . 7-11
Calling the Subroutines 7-15
Specifying Task Names 7-17
Specifying Integer Arguments 7-18
GETADR Subroutine 7-18
The Subroutine Calls . . . 7-19
Error Conditions 7-20
AST Support for High-Level Languages . . 7-20

RESTRICTIONS ON NONPRIVILEGED TASKS 7-22
DIRECTIVE CATEGORIES 7-23

Task Execution Control Directives 7-23
Task Status Control Directives 7-24
Informational Directives 7-24
Event-Associated Directives . 7-24
Trap-Associated Directives . . . 7-25
I/0- and Intertask Communication Related
Di rec ti ves
Memory Management Directives ..
Parent/Offspring Tasking Directives

DIRECTIVE CONVENTIONS

DIRECTIVE DESCRIPTIONS

FORMAT OF SYSTEM DIRECTIVE DESCRIPTIONS
ABRT$ - ABORT TASK . .
ACHN$ - ASSIGN CHANNEL
ALTP$ - ALTER PRIORITY
ALUN$ - ASSIGN LUN . .
ASTX$S - AST SERVICE EXIT
ATRG$ - ATTACH REGION
CINT$ - CONNECT TO INTERRUPT VECTOR
CLEF$ - CLEAR EVENT FLAG . .
CLOG$ - CREATE LOGICAL NAME STRING .

vi

7-25
7-26
7-26

. 7-27

8-1
8-4
8-6
8-8

8-10
8-12
8-15
8-18
8-26
8-27

8.11
8.12
8.13
8.14
8.15
8.16

8.17
8.18
8.19

8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28
8.29
8.30
8.31
8.32
8.33
8.34
8.35
8.36
8.37
8.38
8.39
8.40
8.41
8.42
8.43
8.44
8.45
8.46
8.47
8.48
8.49
8.50
8.51
8.52
8.53

8.54
8.55
8.56
8.57
8.58

CMKT$ - CANCEL MARK TIME REQUESTS
CNCT$ - CONNECT
CRAW$ - CREATE ADDRESS WINDOW
CRRG$ - CREATE REGION . . .
CRVT$ - CREATE VIRTUAL TERMINAL
CSRQ$ - CANCEL TIME-BASED INITIATION
REQUESTS
DECL$S - DECLARE SIGNIFICANT EVENT
DLOG$ - DELETE LOGICAL NAME
DSAR$S/IHAR$S - DISABLE/INHIBIT AST
RECOGNITION
DSCP$S - DISABLE CHECKPOINTING
DTRG$ - DETACH REGION . . .
ELAW$ - ELIMINATE ADDRESS WINDOW
ELVT$ - ELIMINATE VIRTUAL TERMINAL
EMST$ - EMIT STATUS
ENAR$S - ENABLE AST RECOGNITION
ENCP$S - ENABLE CHECKPOINTING
EXIF$ - EXIT IF . . .
EXIT$S - TASK EXIT
EXST$ - EXIT WITH STATUS
EXTK$ - EXTEND TASK
FEAT$ - TEST FOR SPECIFIED SYSTEM FEATURE
FSS$ - FILE SPECIFICATION SCAN
GDIR$ - GET DEFAULT DIRECTORY
GLUN$ - GET LUN INFORMATION
GMCR$ - GET COMMAND LINE . . .
GMCX$ - GET MAPPING CONTEXT
GPRT$ - GET PARTITION PARAMETERS
GREG$ - GET REGION PARAMETERS
GTIM$ - GET TIME PARAMETERS
GTSK$ - GET TASK PARAMETERS
MAP$ - MAP ADDRESS WINDOW
MRKT$ - MARK TIME
PFCS$ - PARSE FCS SPECIFICATION
PRMS$ - PARSE RMS SPECIFICATION
QIO$ - QUEUE I/O REQUEST . . .
QIOW$ - QUEUE I/O REQUEST AND WAIT
RCST$ - RECEIVE DATA OR STOP
RCVD$ - RECEIVE DATA
RCVX$ - RECEIVE DATA OR EXIT
RDAF$ - READ ALL EVENT FLAGS
RDEF$ - READ EVENT FLAG
RDXF$ - READ EXTENDED EVENT FLAGS
RPOI$ - REQUEST AND PASS OFFSPRING
INFORMATION
RQST$ - REQUEST TASK . . .
RREF$ - RECEIVE BY REFERENCE
RRST$ - RECEIVE BY REFERENCE OR STOP
RSUM$ - RESUME TASK
HUN$ - RUN TASK • . .

vii

8-30
8-32
8-36
8-41
8-46

8-54
. 8-56

8-57

8-59
8-61
8-63
8-66
8-68
8-70
8-72
8-73
8-75
8-77
8-79
8-81
8-84
8-88
8-95
8-98

8-101
8-103
8-107
8-109
8-111
8-113
8-116
8-120
8-124
8-128
8-132
8-136
8-138
8-140
8-142
8-146
8-148
8-149

8-151
8-155
8-158
8-162
8-164
8-165

8.59
8.60
8.61
8.62
8.63
8.64
8.65

8.66
8.67
8.68
8.69
8.70

8.71
8.72
8.73
8.74
8.75
8.76

8.77
8.78
8.79
8.80
8.81
8.82
8.83
8.84
8.85
8.86
8.87
8.88
8.89
8.90
8.91

SCAA$ - SPECIFY COMMAND ARRIVAL AST
SDAT$ - SEND DATA
SDIR$ - SET-UP DEFAULT DIRECTORY STRING
SDRC$ - SEND, REQUEST AND CONNECT
SDRP$ - SEND DATA REQUEST AND PASS OCB .
SETF$ - SET EVENT FLAG
SFPA$ - SPECIFY FLOATING POINT PROCESSOR
EXCEPTION AST
SPND$S - SUSPEND
SPWN$ - SPAWN
SRDA$ - SPECIFY RECEIVE DATA AST
SREF$ - SEND BY REFERENCE
SREX$ - SPECIFY REQUESTED EXIT AST
DIRECTIVE
SRRA$ - SPECIFY RECEIVE-BY-REFERENCE AST
STIM$ - SET SYSTEM TIME
STLO$ - STOP FOR LOGICAL OR OF EVENT FLAGS
STOP$S - STOP
STSE$ - STOP FOR SINGLE EVENT FLAG . .
SVDB$ - SPECIFY SST VECTOR TABLE FOR
DEBUGGING AID
SVTK$ - SPECIFY SST VECTOR TABLE FOR TASK
SWST$ - SWITCH STATE . . .
TFEA$ - TEST TASK FEATURE
TLOG$ - TRANSLATE LOGICAL NAME
UMAP$ - UNMAP ADDRESS WINDOW .
USTP$ - UNSTOP TASK
VRCD$ - VARIABLE RECEIVE DATA
VRCS$ - VARIABLE RECEIVE DATA OR STOP
VRCX$ - VARIABLE RECEIVE DATA OR EXIT
VSDA$ - VARIABLE SEND DATA . . .
VSRC$ - VARIABLE SEND, REQUEST AND CONNECT
WIMP$ - WHAT'S IN MY PROFESSIONAL
WSIG$S - WAIT FOR SIGNIFICANT EVENT
WTLO$ - WAIT FOR LOGICAL OR OF EVENT FLAGS
WTSE$ - WAIT FOR SINGLE EVENT FLAG .

PART Ill -- THE 1/0 DRIVERS

CHAPTER 9 SYSTEM INPUT/OUTPUT CONVENTIONS

9.1 PHYSICAL, LOGICAL, AND VIRTUAL I/O
9.2 LOGICAL UNITS
9.2.1 Logical Unit Number
9.2.2 Logical Unit Table .
9.2.3 Changing LUN Assignments
9.3 ISSUING AN I/O REQUEST
9.3.1 QIO Macro Format
9.3.2 I/0-RELATED ASTs

viii

8-170
8-172
8-174
8-176
8-180
8-184

8-185
8-187
8-189
8-195
8-197

8-201
8-204
8-206
8-209
8-212
8-213

8-214
8-216
8-218
8-221
8-224
8-227
8-229
8-231
8-233
8-236
8-238
8-240
8-244
8-256
8-258
8-261

9-2
9-2
9-2
9-3
9-3
9-4
9-6
9-9

9.4
9.5
9.5.1
9.5.2
9.5.3
9.5.4
9.5.5
9.5.6
9.6
9.6.1
9.6.2
9.6.3
9. 6. 4
9.6.5
9.6.6
9.6.7
9.7
9.8
9.8.1
9.8.2

CHAPTER 10

10.1
10.2
10.3
10.4
10.4.1
10.4.2
10.4.3
10.5
10.6

CHAPTER 11

11.1

11. 2
11.2.1
11.2.2
11.2.2.1
11.2.2.2
11.2.2.3
11.2.2.4
11.2.2.5
11.2.2.6
11.2.2.7
11.2.2.8
11.2.2.9

DIRECTIVE PARAMETER BLOCKS
I/0-RELATED MACROS

The QIO$ Macro .
The QIOW$ Macro
The ALUN$ Macro
The GLUN$ Macro
The ASTX$S Macro
The WTSE$ Macro

STANDARD I/O FUNCTIONS
IO.ATT: Attaching to an I/O Device .
IO.DET: Detaching from an I/O Device .
IO.KIL: Canceling I/O Requests .
IO.RLB: Reading a Logical Block
IO.RVB: Reading a Virtual Block
IO.WLB: Writing a Logical Block
IO.WVB: Writing a Virtual Block

I/O COMPLETION
RETURN CODES

Directive Conditions .
I/O Status Conditions

DISK DRIVERS

RX50 DESCRIPTION
RD-SERIES DESCRIPTION
GET LUN INFORMATION FOR DISK DRIVERS
OVERVIEW OF I/O OPERATIONS

Physical I/0 Operations
Logical I/O Operations .
Virtual I/0 Operations .

QIO MACRO FUNCTIONS FOR DISK DRIVERS
STATUS RETURNS FOR DISK DRIVERS

THE TERMINAL DRIVER

GET LUN INFORMATION MACRO FOR TERMINAL
DRIVER
QIO MACRO FOR TERMINAL DRIVER

Using Subfunction Bits ...
Driver-Specific QIO Functions

IO.ATA and IO.ATT!TF.AST
IO.ATT!TF.ESQ
IO.CCO and IO.WLB!TF.CCO
IO.DET
IO.GTS
IO.RAL and IO.RLB!TF.RAL
IO.RNE and IO.RLB!TF.RNE
IO.RPR
IO.RPR!TF.BIN

ix

9-10
9-11
9-11
9-12
9-12
9-13

. 9-14
9-14
9-15
9-16
9-17
9-17
9-18

. 9-19
9-20
9-20
9-21
9-22
9-23

. 9-24

10-1
10-2
10-2
10-4
10-4
10-5
10-5
10-5
10-8

11-2
11-3
11-6
11-8
11-9

11-11
11-11
11-11
11-11
11-13
11-13
11-13
11-14

11.2.2.10 IO.RST and IO.RLB!TF.RST .
11.2.2.11 IO.RTT
11.2.2.12 IO.WAL and IO.WLB!TF.WAL .
11.2.2.13 IO.WBT
11.2.2.14 IO.WSD .
11.2.2.15 IO.RSD
11.2.2.16 SF.GMC .
11.2.2.17 SF.SMC
11.3 STATUS RETURNS FOR TERMINAL DRIVER
11.4 CONTROL CHARACTERS AND SPECIAL KEYS
11.4.1 Control Characters
11.4.2 INTERRUPT/DO AST Information
11.4.3 Special Keys
11.5 ESCAPE SEQUENCES
11.5.1 Format of Escape Sequences
11.5.2 Receiving Escape Sequences
11.5.3 Characteristics of Escape Sequences
11.5.4 Escape Sequence Format Violations
11.5.4.1 Delete Character--DEL (177)
11.5.4.2 Control Characters
11.5.4.3 Full Buffer
11.6 VERTICAL FORMAT CONTROL
11.7 TYPE-AHEAD BUFFERING .
11.8 FULL-DUPLEX OPERATION
11.9 INTERMEDIATE INPUT AND OUTPUT BUFFERING
11.10 TERMINAL-INDEPENDENT CURSOR CONTROL
11.11 PROGRAMMING SUGGESTIONS
11.11.1 Using IO.WVB Instead of IO.WLB ..

CHAPTER 12

12.1

12.2
12.2.1
12.2.1.1
12.2.1.2
12.2.1.3
12.2.1.4
12.2.2
12.2.2.1
12.2.2.2
12.2.2.3
12.2.2.4
12.2.2.5
12.3
12.4
12.5
12.6

VIRTUAL TERMINAL DRIVER

GET LUN INFORMATION MACRO FOR VIRTUAL
TERMINAL DRIVER
QIO MACRO FOR VIRTUAL TERMINAL

Standard QIO Functions
IO.ATT
IO.DET
IO.KIL

DRIVER

IO.RLB, IO.RVB, IO.WLB, IO.WVB
Device-Specific QIO Functions

IO.STC
SF.GMC
IO.GTS
IO.RPR
SF.SMC

STATUS RETURNS FOR VIRTUAL TERMINAL DRIVER
TASK STACK FORMATS, AST ROUTINES
LOGIN FOR VIRTUAL TERMINALS
NULL VIRTUAL TERMINALS

x

11-14
11-14
11-15
11-15
11-16
11-16
11-17
11-17
11-25
11-28
11-28
11-29
11-31
11-33
11-33
11-34
11-34
11-35
11-35
11-35
11-35
11-35
11-37
11-38
11-38
11-39
11-40
11-40

12-1
12-3
12-5
12-5
12-5
12-6
12-6
12-6
12-6
12-8
12-8
12-9
12-9

12-10
12-12
12-12
12-13

PART II

THE SYSTEM SERVICES

CHAPTER 13 THE COMMUNICATION DRIVER

13.1 GET LUN INFORMATION FOR COMMUNICATION DRIVER 13-1
13-3
13-5
13-7
13-7
13-8
13-9

13.2 QIO MACRO FOR COMMUNICATION DRIVER
13.2.1 Using Subfunction Bits
13.2.2 Device-Specific QIO Functions
13.2.2.1 IO.ANS
13.2.2.2 IO.ATA and IO.ATT!TF.AST
13.2.2.3 IO.ERK
13.2.2.4 IO.CON .
13.2.2.5 IO.HNG
13.2.2.6 IO.LT!
13.2.2.7 IO.ORG
13.2.2.8 IO.RAL and IO.RLB!TF.RAL
13.2.2.9 IO.RNE and IO.RLB!TF.RNE
13 . 2 . 2 . 10 I 0. TRM
1 3 . 2 • 2 . 11 I 0 . UT I
13.2.2.12 IO.WAL and IO.WLB!TF.WAL
13.2.2.13 SF.GMC
13.2.2.14 SF.SMC
13.3 STATUS RETURNS FOR COMMUNICATION DRIVER
13.4 FULL-DUPLEX OPERATION
13.5 UNSOLICITED EVENT PROCESSING ..
13.5.1 XTU.UI Event Type Processing
13.6 EFFECT OF TIMEOUT ON QIO REQUEST
13.6.1 Timeout on Read Requests (IO.RLB!TF.TMO)
13.6.2 Timeout on IO.CON Request (IO.CON!TF.TMO)
13.6.3 Timeout on IO.ORG Request (IO.OAGiTF.TMO)
13.7 XON/XOFF SUPPORT

APPENDIXES

. 13-9
13-9

. 13-9
13-10
13-10
13-10
13-11
13-11
13-11
13-12
13-17
13-18
13-20
13-21
13-21
13-21
13-22
13-22
13-22
13-23

APPENDIX A SUMMARY OF I/O FUNCTION AND SUBFUNCTION CODES

A.1
A. 2

APPENDIX B

B.1

B.2
B.3

APPENDIX C

C.1

I/O FUNCTION CODE VALUES . .
I/O SUBFUNCTION CODE VALUES

SUMMARY OF DSW AND IO STATUS CODES

STATUS CODES RETURNED IN DIRECTIVE STATUS
WORD (DSW)
I/O STATUS CODES (STANDARD)
I/0 STATUS CODES (DEVICE SPECIFIC)

CONFIGURATION TABLE VALUES

CONFIGURATION TABLE

xi

A-1
A-4

B-1
B-3
B-6

C-1

C.2
C.3

APPENDIX D

INDEX

FIGURES

TABLES

1-1
1-2
5-1
5-2
5-3
5-4
5-5
7-1

7-2
7-3
7-4
7-5
7-6
8-1
8-2
9-1
9-2
10-1

1-1
2-1
2-2

2-3
2-4
3-1
4-1
4-2
5-1
5-2
5-3
5-4
5-5
6-1

DEVICE ID AND ERROR NUMBERS
CONFIGURATION TABLE ERRORS RETURNED DURING
BOOT

DIRECTIVE IDENTIFICATION CODES

Main Components of P/OS
Task States
Virtual Address Windows
Region Definition Block
Mapping Windows to Regions
Region Definition Block
Window Definition Block

C-8

C-24

1-3
1-8
5-3
5-6
5-7

5-12
5-17

Directive Parameter Block (DPB) Pointer on
the Stack
Directive Parameter Block (DPB) on
Sample FORTRAN Program
Sample PASCAL Program
Sample PASCAL Program Using DIR$
Sample BASIC-PLUS-2 Program

7-5
the Stack 7-5

. 7-12
7-13

Function . 7-14
7-15

Device Entry in GI.MSD Return Buffer
Flags Word in GI.MSD Return Buffer
Format of I/O Status Block
QIO Directive Parameter Block
Get LUN Information Return Buffer

Summary of Differences Between RSX and P/OS
Logical Name Tables
Operations on Logicals With Different
Modifiers
Sample F11ACP-Created Logicals for Diskette
Sample F11ACP-Created Logicals for Hard Disk
Trap Vector Table
Offspring Task Status
Intertask Synchronization Examples
Region Status Word (R.GSTS) Bit Definitions
RDB Array Format
Window Status Word (W.NSTS) Bit Definitions
WDB Array Format .
ID Values for APRs
POSSUM Routines

xii

8-248
8-249

9-8
9-11
10-2

1-14
2-2

2-4
2-6
2-7
3-7
4-7
4-9

5-13
5-16
5-19
5-22
5-24
6-1

6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9

7-1

7-2

8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8

8-9
8-10

8-11

8-12
8-13

8-14

8-15
9-1
9-2
9-3
10-1
10-2
10-3
10-4
11-1
11-2
11-3

11-4

11-5
11-6
11-7

11-8

Accessible File Attributes
PROFBI Status Codes (Server Specific)
PROLOG Status Codes (Server Specific)
PROTSK Status Codes (Server Specific)

6-9
. 6-16

6-23
6-33
6-40

Block 6-41
. 6-43

Get Free Space Status Block
Get Free Space and File Headers Status
PROVOL Status Codes (Server Specific)
IE.ABO Subcodes for PROVOL Mount/Dismount
Failure
Directives Without High-Level Language
Subroutines
Restricted Directives Issued by
Nonprivileged Tasks
Region Definition Block Parameters
Window Definition Block Parameters
Region Definition Block Parameters
Region Definition Block Parameters
Window Definition Block Parameters
System Feature Symbols
Format of the FSS$ Parse Block . .
Window Definition Block Parameters

for
for
for
for
for

for

6-44

7-20

7-22
ATRG$ 8-16
CRAW$ 8-37
CRRG$ 8-42
DTRG$ 8-64
ELAW$ 8-67

8-85
8-89

GMCX$ 8-104
Window Definition Block Parameters for MAP$ 8-118
Window Definition Block Parameters, RREF$
and RRST$ 8-160
Window Definition Block Parameters for
SREF$
Task Feature Symbols
Window Definition Block Parameters for
UMAP$
Return Buffer for Get System Version
Numbers
Configuration Table Output Buffer Format
Meaning of Status Code Binary Values
Directive Conditions ..
I/0 Status Conditions
Standard Disk Devices
Get LUN Characteristic Flags for Disks
QIO Functions for Disks
Disk Status Returns
Get LUN Information for Terminal Driver
QIO Functions for Terminals
Subfunction Bit Symbolic Names and
Description
Subfunction Bits Available for Driver
Requests
Task Stack Format
Information Returned by IO.GTS
Driver-Terminal Characteristics,
SF.SMC
Stack Upon Entry to AST Routine

xiii

SF.GMC and

8-199
8-222

8-228

8-247
8-251

9-23
9-23
9-26
10-1
10-3
10-6
10-8
11-2
11-3

11-6

11-7
11-10
11-12

11-18
11-21

11-9

11-10
11-11
11-12
11-13
11-14

11-15
11-16
12-1

12-2
12-3
12-4

12-5

13-1
13-2
13-3
13-4
13-5
13-6

13-7
13-8
13-9
13-10
13-11
A-1

A-2

A-3
A-4
A-5

A-6
A-7

B-1
B-2
B-3
B-4
B-5

B-6

Terminal Type Values (TC.TTP) for SF.SMC
and SF.GMC
Receiver/Transmitter Speed Values
Terminal Status Returns
Terminal Control Characters
Response with IO.ATA (Omitting TF.XCC)
Response Without IO.ATA or with
IO.ATA!TF.XCC
Special Terminal Keys
Vertical Format Control Characters
Get LUN Information for Virtual Terminal

11-23
11-24
11-25
11-28
11-30

11-30
11-32
11-36

Driver
QIO Functions for Virtual Terminals
Virtual Terminal Characteristics .

. . 12-2
12-3
12-9

Virtual Terminal Status, Offspring Task
Requests
Virtual Terminal Status, Parent Task
Requests
Get LUN Information for Communication Driver
QIO Functions for Communication Driver . . .
Subfunction Bit Symbols
Subfunction Bits Allowed for Driver Requests
Task Stack Format
Driver Characteristics for SF.GMC and
SF. SMC
TC.FSZ and TC.PAR Relationship
Receiver and Transmitter Speed Values
Modem Type Values (XT.MTP} ..
Communication Driver Status Returns
Unsolicited Event Types
Function Code Values, Communication Driver
(XKDRV)

12-10

12-11
13-2
13-3
13-6
13-6
13-8

13-13
13-14
13-15
13-17
13-18
13-21

A-1
Function Code Values, Disk Drivers (DZDRV and
DWDRV)
Function Code Values, Terminal Driver (TTDRV)
Function Code Values, TMS Driver (XTDRV)
Subfunction Code (Bit) values, XKDRV and
XTDRV
Subfunction Code (Bit) Values, TTDRV
Subfunction Code (Bit) Values, DZDRV and
DWDRV
DSW Success Codes
DSW Error Codes
I/O Success Codes, Standard
I/O Error Codes, Standard
I/O Status Codes for the Terminal Driver,
TTDRV
Full-Word Subcodes for IS.SUC Return in TTDRV

A-2
A-2
A-3

A-4
A-5

A-6
B-2
B-2
B-3
B-4

B-7

B-7
B-7 High-Byte Subcodes for IE.ABO Return in TTDRV

B-8

xiv

B-8
B-9

B-10
B-11

B-12

C-1
C-2
C-3
D-1

I/O Status for TMS Driver, XTDRV B-8
High-Byte Subcodes for IE.ABO Return in XTDRV

I/O Status for Communication Driver, XKDRV
High-Byte Subcodes for IE.ABO Return in XKDRV

B-9
B-9

B-9
I/O Status for Disk Drivers, DZDRV and DWDRV

Configuration Table Values
Summary of Device Codes
Error Values for Devices
Directive Identification Codes

xv

. B-10
C-1
C-8

C-10
D-2

PREFACE

Manual Objectives

The P/OS System Reference Manual describes the base system
software supporting the Professional 300 Series computer.

Intended Audience

You should be a programmer who is creating or modifying an
application to run on P/OS (the Professional Operating System).
Experience with RSX-11M-PLUS systems is especially helpful.

Structure of This Document

This manual contains three parts:

• PART I is a broad system overview that describes how to use
the various components of the system.

• PART II provides details on the two forms of system services,
callable routines and directives.

• PART III describes the system I/0 capabilities and the
bundled I/O drivers.

A chapter summary follows.

• Chapter 1 introduces the P/OS system. It describes the
hardware environment, the operating system components, and
basic concepts. Also, it contrasts P/OS features with
RSX-llM-PLUS features (on which P/OS is based) and provides
application design suggestions.

• Chapter 2 describes how the system
which aid program development
independence.

handles logical
by providing

names,
device

• Chapter 3 presents general information on the system's
trapping and synchronization mechanisms.

xvii

• Chapter 4 details the parent/offspring task support available
under P/OS.

• Chapter 5 describes the memory management services that P/OS
provides.

• Chapter 6 provides details on the POSSUM library that allows
programmers to . l

easi~y perform often-used functions.

• Chapter 1 shows you how to use the system directives.

11 Chapter 8 describes each P/OS system directive.

II Chapter 9 details the system I/O conventions.

II Chapter 10 describes the P/OS disk drivers (device handlers).

1111 Chapter 11 describes the P/OS terminal driver.

fl Chapter 12 describes the virtual terminal driver.

• Chapter 13 describes the P/OS communication driver.

The appendixes cover system error messages, I/O function codes
and status codes, and provide a complete description of
hardware-related values stored in the system configuration table.

Associated Documents

e PDP-11 Architecture Handbook

This handbook describes the two processors used in the
Professional computers, the F-11 (Professional 325, 350} and
the J-11 (Professional 380). Topics covered are data
representation, addressing modes, processor instruction set,
floating point features, trap and interrupt handling, memory
mapping, and bus structures. The handbook also contains a
useful summary of differences among the PDP-11 family
processors.

e Professional 300 Series Technical Manual

This manual details the hardware components of the
Professional computer, including system boards, controllers,
drives, monitors, bit map modules, keyboard, and controls and
indicators.

xviii

• Professional 325/350 Pocket Service Guide

This guide contains detailed troubleshooting methods for
software and hardware problems. It explains many of the
software errors that the system returns.

• Other Tool Kit manuals

If you are unfamiliar with P/OS and the Tool Kit, please read
the Tool Kit User's Guide. For descriptions of advanced
programming features not covered in this manual, see the
Guide to Writing a P/OS I/0 Driver and Advanced Programmer's
Notes.

Conventions Used in This Document

Convention/Term

[optional]

UPPERCASE

lowercase

red

Tool Kit

Meaning

In a command line, square brackets indicate
that the enclosed item is optional. In a file
specification, square brackets are part of
the required syntax.

Uppercase words and letters indicate that you
should type the word or letter exactly as
shown.

Lowercase words and letters indicate that you
should substitute a word or value of your
own. Usually the lowercase word identifies
the type of substitution required.

A horizontal ellipsis indicates that you can
repeat the preceding item one or more times.
For example:

parameter (,parameter ...]

A vertical ellipsis means that not all of the
statements are shown.

Interactive input appears in red.

This general term refers to the software you
use to develop applications to run on a
Professional computer.

xix

Convention/Term

Host Tool Kit

PRO/Tool Kit

10.

Meaning

The Host Tool Kit is Tool Kit software that
runs on a host computer, rather than on the
Professional itself.

The PRO/Tool Kit is the Tool Kit software
that runs on the Professional computer.

All numbers are decimal unless indicated
otherwise. A decimal point emphasizes that a
number is decimal.

xx

PART I

SYSTEM OVERVIEW

CHAPTER 1

INTRODUCTION TO P/OS

P/OS is the Professional Operating System. Based on DIGITAL's
RSX-11M-PLUS ("RSX") operating system for PDP-11, P/OS has many
features found on operating systems designed for larger
minicomputers. Like RSX, P/OS provides a resource-sharing
environment that is ideal for multiple real-time activities. It
supports multitasking and dynamic memory management, and has
extensive I/O and file management services.

This chapter describes the hardware environment for P/OS, the
structure of the operating system, and important system concepts.
Also, it contrasts P/OS with RSX-11M-PLUS, and presents several
application design suggestions.

1.1 P/OS HARDWARE ENVIRONMENT

P/OS runs on either of the two central processing units provided
with the Professional 300 Series: the F-11 in the 325 and 350
series, and the J-11 in the 380 series. These processors are
full-fledged members of the PDP-11 family. The J-11 is a more
recent, higher-performance processor. The two processors share
the same instruction set, which is documented in the PDP-11 ..
Architecture Handbook.

The Professional includes diagnostic and bootstrap read-only
memory in a component called the Base System ROM (BSR). Besides
containing bootstrap and self-test instructions, the BSR
initializes an area of main memory called the configuration
table. This table contains information about other system
hardware. Programs can access this information via an operating
system directive (WIMP$).

1-1

P/OS HARDWARE ENVIRONMENT

Other components of the hardware environment are:

• Memory Management Unit (MMU) -- An integral part of both of
the Professional's CPUs, the MMU translates virtual addresses
into actual physical addresses.

• Serial Number ROM -- This read-only memory contains a 6-byte
identification number that is unique for each Professional.
The serial number is available to programs via the WIMP$
system directive.

• Floating Point Processor (FPP) -- The FPP includes microcoded
instructions that provide high-speed arithmetic operations
for floating-point data.

• CTI Bus -- An interconnect path for system option cards, the
Computing Terminal Interconnect (CTI) Bus is a six-slot
backplane mounted on the system module.

• I/O Ports The Professional has ports for the
video/keyboard device, a serial printer, a communication
line, and an Ethernet line. (To use an Ethernet line, you
must install the Ethernet controller option.)

• Peripheral Mass Storage Devices -- Both the RX50 Diskette
Subsystem and the RD series Hard Disk Subsystem are
available. There are several Winchester hard disks from
which to choose.

• Time of Day Clock -- Backed up by a built-in battery, the
time of day clock maintains the system time and date.

• Controllers Interrupt controllers handle interrupt
arbitration for peripheral devices. The bit map video
controllers provide an interface between the CPU and the
video display. The RX50 and RD controllers provide an
interface between the CPU and their respective devices.

1.2 P/OS SYSTEM COMPONENTS

Figure 1-1 shows the main components of P/OS. The figure
illustrates the paths of communication between the components.
User tasks, the top layer in the figure, are normally not part of
the operating system but are managed by it. Professional
hardware, the bottom layer, is also not a part of the operating
system, but instead constitutes the hardware environment.

Sections following the figure describe each component.

1-2

POSSUM/
Servers

P/OS SYSTEM COMPONENTS

User Task

y

RMS/FCS

,

Executive

I/0 Drivers

Terminal Subsystem

Professional Hardware

KEY

B
l

F11ACP FILES-11 Ancillary Control Processor
RMS Record Management System
FCS File Control Services
POSSUM P/OS System Utility Modules

Figure 1-1: Main Components of P/OS

1-3

P/OS SYSTEM COMPONENTS

1.2.1 The Executive

The Executive is the foundation of P/OS. It coordinates and
controls all activities and resources of the system by performing
the following functions:

• Task scheduling and processing control -- Tasks are system or
user entities that perform functions needed to achieve a
desired result.

• Main memory resource management and control -- Main memory is
the processor storage medium.

• Interrupt processing -- The Executive handles synchronous and
asynchronous events that occur as a result of task execution.

• Coordination of I/0 and File Management facilities These
facilities perform data transfer and data processing
operations requested by executing tasks.

1.2.2 110 Drivers

I/O drivers are system components that interface hardware I/O
controllers and their attached devices with the Executive. A
device driver provides basic services for a particular type of
device, thus removing device-dependent responsibiltity from the
Executive. As shown in Figure 1-1, drivers are actually an
integral part of the Executive.

The I/O drivers perform the following functions:

• Receive and service interrupts from I/O devices

• Initiate I/O operations as requested by the Executive

• Cancel in-progress I/0 operations

• Perform other device-specific functions during system boot

Chapters 10, 11, and 13 describe the system's disk drivers,
terminal driver, and communication driver in detail. Chapter 12
describes a special kind of driver that handles a virtual device.

The Guide to Writing a P/OS I/O Driver and Advanced Programmer's
Notes, provided with the Tool Kit, describes driver concepts.

1-4

P/OS SYSTEM COMPONENTS

1.2.3 Terminal Subsystem

The Terminal Subsystem is software that provides an interface
between the video/keyboard hardware and the terminal driver. It
performs such video functions as character generation, blinking,
scrolling, polygon fill, and vector generation. The graphics
capability of the Terminal Subsystem is provided by GIDIS, the
General Image Display Instruction Set.

For information on the functions performed by the Terminal
Subsystem, see the Terminal Subsystem Manual and the PRO/GIDIS
Manual, both supplied with the Tool Kit.

1.2.4 FILES-11 Ancillary Control Processor

The FILES-11 Ancillary Control Processor (F11ACP) is the P/OS
file control processor. It catalogues and maintains files on
disks and issues I/O requests to the disk drivers. Also, it
controls the virtual and logical structures applied to data and
performs translation of one to the other.

FILES-11 is the name of a DIGITAL-standard volume structure that
the F11ACP imposes upon disks and diskettes.

1.2.5 Record Management and File Control Services

Record Management Services (RMS) and File Control Services (FCS)
serve as translators between user tasks and other I/O facilities
of the operating system, such as the F11ACP and device drivers.
A user task can incorporate either RMS or FCS routines to enable
it to perform record I/O and file I/O functions.

NOTE

Although P/OS provides a full implementation of
FCS, you are urged to always use RMS in new
applications. use FCS to port applications
designed to run on RSX systems when such
applications already use FCS.

Whereas the FllACP handles stored data in units of files, RMS and
FCS handle stored data in units of records, or file-relative
blocks. RMS and FCS allow user tasks to define the internal
structure of files--the size and arrangement of records within
files--and provide operations that allow user tasks to read and
write records in files.

1-5

P/OS SYSTEM COMPONENTS

The document PRO/RMS-11: An Introduction, provided with the Tool
Kit, contains a complete overview of RMS. For further
information on FCS, see your RSX-11M/M-PLUS documentation.

1.2.6 P/OS System Utility Modules and Executive Servers

P/OS System Utility Modules (POSSUM) are a set of callable
routines that P/OS provides in a resident library called POSSUM.
These routines allow user tasks to conveniently perform such
functions as mounting volumes, translating logical names, and
formatting hard disks. Most of the routines invoke Executive
servers to perform their operations, rather than performing the
operations themselves.

Chapter 6 describes the POSSUM routines and their servers.

1.3 P/OS BASIC CONCEPTS

The following sections describe important features of the
operating system.

1.3.1 Tasks

A task is the basic unit of executable code on a P/OS system. An
application usually consists of several tasks that work together.
Tasks, which reside in files that have the .TSK extension, are
sometimes referred to as executable images.

Tasks that are part of P/OS are called system tasks. Examples
are system servers such as CREDEL and INSREM, and the F11ACP.
Tasks that you create are called user tasks. An application
program consists of one or more user tasks.

Whether on disk or in memory, a task is always contiguous.

Before a task can run, it must be
Installing a task makes it known to
as well as the PROTSK system service
allow you to install a task.

installed into the system.
P/OS. Several DCL commands,

(in the POSSUM library),

The Executive uses the following system data structures to store
information about a task:

1-6

P/OS BASIC CONCEPTS

• Task Control Block (TCB)

The TCB contains information that the system derives from a
task's header, as well as from the directive used to activate
the task. The TCB contains information that the Executive
needs in order to run the task, such as the address of the
task on disk, the priority of the task, and the memory
partition in which the task will run.

• System Task Directory (STD)

The STD is simply a linked list of TCBs, organized by
priority, that the Executive holds in its working storage
area called the Dynamic Storage Region (DSR), or primary
pool. A task whose TCB is in the System Task Directory is
known to the system.

• Active Task List (ATL)

When a task becomes active, the Executive inserts the TCB in
another linked list, the ATL, which contains the TCBs of all
active tasks. A task whose TCB is in the Active Task List is
eligible to be loaded into memory and executed.

A task can exist in one of several possible states.
illustrates and describes the task states.

1.3.2 Memory

Figure 1-2

The primary units of memory used in P/OS are determined by the
16-bit data path of the Professional's hardware design. The
units are:

e Bit Binary digit, either 1 or 0.

e Byte Eight bits, the smallest addressable unit of memory.

• Word Two bytes (16 bits); always begins on an even address

Since the Professional's primary addressing mechanism is the
16-bit word, the maximum physical memory that a task can access
at a single moment is 32K words. However, the presence of
hardware memory management enables a task to access more than 32K
words by using the P/OS memory management directives.

1-7

P/OS BASIC CONCEPTS

R:Howwt trtiU(NO»lN
• Installed • Not installed

e No TCB • Has TCB

1€111¥$ IPR~
• Requested to run • Not requested

I
RIAIItHOOOffilmi

I u I
$WS2Blti>

• Has resources • Missing resources • Not contending for
CPU or memory • CPU contending • Not contending

for CPU

QUl'.(21$.N'W
• Has CPU

Now·•·enaslm••
• Still contending for CPU

Figure 1-2: Task States

Physical addresses are locations in memory. Virtual addresses
are the addresses within a task. Logical addresses are the
actual physical memory addresses that the task can access.
Virtual to physical address space mapping need not be contiguous.

Using P/OS system features to manipulate logical address space
allows you to make use of more than 32K words of physical address
space. Furthermore, the multitasking capabilities of P/OS allow
you to design applications that can consist of multiple,
cooperating, concurrent tasks.

Both Chapter 5 and the RSX-11M/M-PLUS and Micro/RSX Task Builder
Manual contain greater detail on addressing concepts.

1-8

P/OS BASIC CONCEPTS

1.3.3 Checkpointing

Checkpointing is the process of writing a task or shared common
to a file on a disk to make room for a higher priority task or
common competing for memory. Given that a task or common is
capable of being checkpointed, tasks and commons compete for
memory based on their respective priorities. (The priority value
of a common region is equal to one greater than the highest
priority task mapped to that common region.)

Section 1.4.2 describes shared commons.

The following task states prohibit a checkpoint from occuring:

• A task region is specified at task-build time to be
noncheckpointable.

• A task region has checkpointing disabled (DSCP$).

• A task is exiting.

• A region has resident, mapped tasks--that is, all currently
mapped tasks must be checkpointed before the region itself is
eligible for checkpointing.

• A region has outstanding I/O.

The following task states promote checkpointing:

• A stopped task has an effective memory priority of zero.

• A checkpointable task doing synchronous terminal I/0 (since
the task's terminal I/O is buffered and the task is stopped
until the I/O completes).

• A task which previously had checkpointing disabled can issue
the Enable Checkpointing directive (ENCP$).

1.3.4 System Pool

Throughout this manual we discuss the system's use of pool.
System pool is a portion of memory that the Executive uses for
working storage. For example, as mentioned in a previous
section, the Executive uses pool to store task control blocks.

1-9

P/OS BASIC CONCEPTS

There are two types of pool:

• Primary Pool or DSR

Primary pool is also known as the system Dynamic Storage
Region. It contains such data structures as Task Control
Blocks (TCBs), Offspring Control Blocks (OCBs), I/O packets,
and File Control Blocks. The size of primary pool is limited
by the size of the Executive's virtual address space.

• Secondary Pool

Secondary pool contains large data structures such as command
lines, Send Data packets, file window blocks, and logical
name tables. The size of secondary pool is limited only by
the physical memory present on a system.

1.4 APPLICATION DESIGN SUGGESTIONS

The following sec~1ons list suggestions for designing
applications that make the most efficient use of the P/OS
multitasking, resource-sharing capabilities. In particular,
these suggestions can help you to design programs that might
otherwise exceed the 32K word virtual address space limitation of
a task.

The Tool Kit User's Guide contains additional suggestions for
fine-tuning your application.

1.4.1 Use Cooperating Tasks

An application is a task or set of tasks that perform a needed
function or set of functions. The application can consist of
multiple, cooperating tasks that pass context (variables) between
tasks by using data packets, command lines, and shared memory. A
task can be requested using the following system directives:

• SPWN$ -- Useful when passing a command line and there is a
need to receive status from or synchronize with the
cooperating task.

• RPOI$ -- Useful when passing a command line and there is no
need to receive status from or synchronize with the
cooperating task.

1-10

APPLICATION DESIGN SUGGESTIONS

• SDRC$ and VSRC$ -- Useful when passing data packets and there
is a need to receive status from or synchronize with the
cooperating task.

• RQST$ -- Useful when simply requesting a task and there is no
need to receive status from or synchronize with the
cooperating task.

You can pass additional context by using the SDAT$, VSDA$, and
SREF$ directives. See Chapters 4 and 8 for details on using
these directives.

1.4.2 Use Shared Regions

A shared region is a block of data or code that any number of
tasks can use. Shared regions are useful because they make
efficient use of physical memory. There are two kinds of shared
regions:

• Shared Common

A shared common contains only data. It is a read-write area
that provides a way for two or more tasks to share data.
When a shared common is not being accessed, the Executive can
checkpoint the common by removing it from memory and writing
it to the system checkpoint file.* Note that the Executive
does that for any read-write area.

• Shared Library

A shared library contains only code. It is a read-only area
that provides a way for two or more tasks to share a single
copy of commonly used subroutines. When a shared library is
not being accessed, the Executive can checkpoint the library
by removing it from memory (but not by writing it to a
checkpoint file). Note that the Executive does that for any
read-only area.

* This is a change from previous versions of the operating
system. When checkpointing or removing a shared common on
P/OS V2.0A systems and earlier, the Executive wrote the
common to the file containing the initial copy of the
common, rather than to the system checkpoint file. See
Section 6.8.1 for information on how to change this
behavior.

1-11

APPLICATION DESIGN SUGGESTIONS

You can create a shared region by building it with the Task
Builder and installing it into the system separately from the
task that links to it. This type of region is called a static
shared region. The RSX-11M/M-PLUS and Micro/RSX Task Builder
Manual describes static shared regions in detail, and shows how
to build them.

Alternatively, your task can create a shared region during
execution, using the Executive's memory management directives.
(Memory management is sometimes referred to as PLAS--Programmable
Logical Address Space). This type of region is called a dynamic
shared region, and is described in Section 5.3 later in this
manual.

1.4.3 Use Disk-Resident Overlays

You can divide an application task into pieces called segments.
Several segments of a task share a given section of the task's
virtual address space, but only one segment can be in memory at
one time. Segments are individually read from the disk into a
section of the task's address space as needed, overwriting a
previously read segment.

Disk-resident overlays reduce the memory and virtual address
space needed by a task. The RSX-11M/M-PLUS and Micro/RSX 'I'ask
Builder Manual describes segments and disk-resident overlays in
detail.

1.4.4 Use Memory-Resident Overlays

Memory-resident overlays are different from disk-resident
overlays, in that all of the task's segments are present in
physical memory at the same time. By using the memory management
directives, the overlay runtime system maps segments into a
section of the task's virtual address space as needed. Virtual
to physical address mapping changes as the new segments are
mapped.

Memory-resident overlays reduce the virtual address space needed
by a task, but do not reduce the physical memory requirements.
However, tasks constructed of memory-resident overlays are faster
since they do not involve disk I/O. The RSX-llM/M-PLUS and
Micro/RSX Task Builder Manual describes memory-resident overlays
in detail.

1-12

APPLICATION DESIGN SUGGESTIONS

1.4.5 Use Clustered Resident Libraries

Clustered resident libraries (sometimes called cluster libraries)
allow tasks to dynamically map memory-resident, shared libraries
at run time. The advantage of using clustered resident libraries
is that they save task virtual address space by using the same
section of task virtual address space to map independent
memory-resident, shared libraries. The RSX-11M/M-PLUS and
Micro/RSX Task Builder Manual describes clustered resident
libraries at length.

1.4.6 Use Fast Remapping Feature

Fast remapping is a high-performance method for a task to change
the offset and length mapping of a currently mapped region. If
your task is normally mapped to a given region and frequently
remaps a window to that region, this feature can significantly
increase the performance of your task.

Generally speaking, the system performs fast remap operations in
one tenth the execution time of a remap using the MAP$ directive,
while still providing the same level of region access control and
protection present in the operating system.

See Section 5.7 later in this manual for details on fast
remapping.

1.5 COMPARING RSX-11 M-PLUS AND P/OS

The principal difference between P/OS and RSX is that the default
user interface on P/OS is the Menu System, rather than the RSX
Monitor Console Routine (MCR). Some RSX software features remain
the same on P/OS, some have been removed, some have changed, and
some new software features have been added. Some RSX utilities
carried over to P/OS are now program-callable routines.

1-13

COMPARING RSX-llM-PLUS AND P/OS

Table 1-1: Summary of Differences Between RSX and P/OS

RSX Features
Not on P/OS

Group global event
flags

Batch processing

Alternative CLI
support

Virtual Monitor
Routines (VMR)

Console Logging

Error logging

System accounting

Shadow recording

System generation

Checkpoint Common
Region directive
(CPCR$)

RSX Features
Modified for P/OS

Terminal driver

System utilities
(FMT, BAD, INI,
INSTALL, FIX,
REMOVE, UFD)

GET TIME

Print queue
management

Account server

LOAD,UNLOAD

1-14

P/OS Features
Not on RSX

Automatic volume
mounting and
dismounting

Enhanced high-level
language interface
to the system and
the utilities
(POSSUM library)

CHAPTER 2

LOGICAL NAMES

A logical name is a combination of a name (defined by you
P/OS) and an equivalence value (any part of
specification).* You can use a logical name to refer to
part of a file specification.

or by
a file
all or

Logical names provide programs with device and file independence.
For example, from within a program you can refer to an input or
output file using logical names rather than physical filenames.
Then, between invocations of the program, you can change the
input and output files simply by associating the logical names
with new physical filenames.

This chapter describes how the system stores and
logical names, and how you can perform operations
names from within your program by using several
directives and a callable system service.

2. 1 LOGICAL NAME STORAGE

translates
on logical
Executive

The system stores logical names as name-equivalence pairs. For
every logical name stored by the system, an equivalence value
must exist. The name and equivalence each consist of a string
whose maximum length is 255 bytes.

Three tables, located in secondary pool, contain all logical name
definitions. The purpose of the different tables is to enable
programmers to define the scope of logical names. That is, you
define a logical in a particular table in order to provide the
desired level of access to that logical by other users or
application tasks. Table 2-1 describes the tables.

* See the Tool Kit User's Guide for a list of system-defined
logical names.

2-1

LOGICAL NAME STORAGE

Table 2-1: Logical Name Tables

Name Number

LT.SYS 0

LT.SES 4

LT.USR 2

Description

System Table. Any logical name that must be
accessible to all users and applications on a
system belongs in the system table. The scope
of a logical defined in LT.SYS is any logged
in user and any currently executing
application.

There can be only one system table on any
system.

Session Table. A session table contains
logical names that are part of the context
associated with a user's login-logout period.
The scope of logical names defined in LT.SES
consists of the user who owns that table plus
all applications currently executing for that
user.

The number of session tables on a system is
equal to the number of users logged in to the
system.

User Table. For each application running on
the system, one user table is allocated. The
scope of logical names defined in an LT.USR
table consists only of the application
associated with that particular table. Tasks
that are not part of an executing application
cannot access that application's LT.USR
logical names.

The number of user tables on a system is equal
to the number of currently executing
applications.

2-2

LOGICAL NAME MODIFIERS

2.2 LOGICAL NAME MODIFIERS

Every equivalence value contains a modifier.
means of distinguishing among equivalence
associated with the same logical name and that
table.

A modifier is a
values that are

reside in the same

P/OS currently defines three values for a modifier:

e Mod 2

Equivalence values that have a modifier value of 2 are
to be permanent. A permanent equivalence value is one
the system login process creates when a user logs into
system.

e Mod 1

said
that

the

Equivalence values that have a modifier value of 1 are said
to be temporary. A temporary equivalence is one that a user
task creates to supersede a particular permanent equivalence.
It differs from the permanent equivalence only in the mod
value, which is 1 instead of 2.

e Mod 0

The system does not store the modifier value 0 in an
equivalence value. Instead, it maps mod 0 to the other
modifier values during operations on logical names. Table
2-2 shows the mapping. In general, you should specify mod 0
when performing operations on logical names.

Table 2-2 describes the system's actions for all operations when
you specify different modifier values.

2-3

LOGICAL NAME MODIFIERS

Table 2-2: Operations on Logicals With Different Modifiers

Mod Operation
Create Delete Translate

Mod 0 Create mod 1 Delete mod 1 Return mod 1
logical. logical. equivalence if

found; if not
found, return mod 2
equivalence (if
present).

Mod 1 Create mod 1 Delete mod 1 Return mod 1
logical. logical. equivalence.

Mod 2 Create mod 2 Delete mod 2 Return mod 2
logical. logical. equivalence.

2.2.1 Modifiers in Duplicate Logical Names

A duplicate logical name is a logical name that is associated
with more than one equivalence value. If duplicate logical names
are in different tables, you might be able to distinguish them
simply by indicating which table they are in. In this case, the
mod values for the duplicates can be the same.

However, if the duplicates are in the same table, then each
equivalence value must have a unique modifier to distinquish it
from other duplicates. You can specify modifier values 128
through 255 (decimal) to create duplicates. Note that modifier
values 0 through 127 are used by the system.

NOTE

Duplicate logical names are possible only when
the user tasks handle the logical name
translations. Within the context of the system
software (such as RMS and volume mounting
procedures), the only recognized value for the
mod argument is 0.

2-4

LOGICAL NAME MODIFIERS

If you create a logical name that duplicates an existing logical
name with the same modifier value, the system supersedes the old
equivalence value with the new one. This is true for any mod
value.

The maximum number of equivalence values that can be associated
with a single logical name in any table is 255 (decimal).
However, the current size of available secondary pool, where the
tables reside, sets a practical upper limit.

2.3 LOGICAL NAME TRANSLATION

As part of I/O processing in programs that use RMS, RMS
translates logical names and returns their equivalence values.
The following conventions govern RMS translation of logical
names:

• RMS translates all logical names that occur within the
context of a valid file specification.

• RMS continues to do translations of logical name strings
until it encounters an equivalence name string beginning with
an underscore (_), until it fails to translate a string, or
until it reaches the maximum number of translations allowed.

• RMS performs a maximum of eight translations for a given
logical name. If the number of logical name translations
exceeds the maximum, RMS issues an error.

2.4 LOGICAL NAMES FOR FILES-11 VOLUMES

The FILES-11 ACP creates two logical names when it mounts a
file-structured volume, such as a disk or diskette:

• FllACP creates a logical whose name is the volume label that
was previously given the volume when it was initialized. Its
equivalence value is the physical device name of the device
on which the volume is mounted.

• FllACP creates a logical whose name is the physical device
name and whose equivalence value is the volume label. This
is the reverse of the first logical.

2-5

LOGICAL NAMES FOR FILES-11 VOLUMES

For example, suppose you mount in drive 1 a diskette having the
volume name FINANCE. The ACP creates the two logicals shown in
Table 2-3.

Table 2-3: Sample F11 ACP-Created Logicals for Diskette

Logical Name Equivalence Value

FINANCE: _DZ001:

DZ001: FINANCE:

An application program can refer to the diskette with the volume
label FINANCE by using the logical name FINANCE:. RMS translates
the logical name to determine the actual physical device.
Similarly, an application programmer can use the logical name
DZ001: to determine the volume label of the volume that is
currently mounted.

2.4.1 Removable Versus Nonremovable Volumes

There are two classes
Professional computer:

of volumes that you can mount on
removable and nonremovable.

a

Removable volumes are those that are easily taken out of the
system unit and transported to another system. Floppy disks are
an example. Nonremovable volumes are those that are not easily
transported. Hard disks are an example. (Hard disks can be
transported, but they are not designed to be transportable.)

F11ACP creates logicals for removable media exactly as shown in
Table 2-3. The general format for a logical representing a
removable media volume label is:

vlabel:

where

vlabel Is the volume label of the removable media.

2-6

LOGICAL NAMES FOR FILES-11 VOLUMES

The format of the volume label logical for nonremovable media is
different:

node$$vlabel[_n]:

where

node

vlabel

n

Is the name of the node or system on which the
hard disk resides.

Is the volume label of the nonremovable media.

Is a number FllACP assigns to the volume when
there is more than 1 volume with the same volume
label on a system. The duplicate volumes are
numbered starting from 1.

Table 2-4 illustrates the two logical names that FllACP creates
when you mount a second hard disk whose volume label is DATAVOL
on the node NODNAM.

Table 2-4: Sample F11 ACP-Created Logicals for Hard Disk

Logical Name Equivalence Value

NODNAM$$DATAVOL_l: _DW003:

DW003: NODNAM$$DATAVOL_l:

2.5 LOGICAL NAME DEFAULT DIRECTORY STRING

The system provides a special set of logical names known as the
default directory. The default directory is a character string
stored in secondary pool. You can get and set its equivalence
value by using the GDIR$ and SDIR$ Executive directives.

If RMS encounters an input string with no specified directory, or
if the input string contains a pair of closed empty brackets--an
explicit request for the default directory--RMS returns the
default directory string.

2-7

LOGICAL NAME OPERATIONS

2.6 LOGICAL NAME OPERATIONS

The system provides several Executive directives, as well as a
callable routine called PROLOG, to perform create, delete, and
translate operations on logical names. General descriptions of
the different operations follow.

For detailed information on any directives, refer to Chapter 8.
For details on PROLOG, see Section 6.7.

2.6.1 Creating a Logical Name

Use the CLOG$ directive to create a logical name string and the
associated equivalence name string. The length of each logical
name string can be a maximum of 255(10) characters (bytes).
Creation of the logical name string requires the use of the
secondary pool, which is of limited size.

The following example shows how to create a logical name with the
CLOG$ directive.

LNAME:
LNAMSZ=
ENAME:
ENAMSZ=

NAMVOL:
START:

.MCALL

.ASCII

.-LNAME

.ASCII

.-ENAME

.EVEN
CLOG$
DIR$

CLOG$,DIR$
/EXPENSES:/

/FINANCE:/

;LOGICAL NAME STRING
;SIZE OF LOGICAL NAME STRING
;EQUIVALENCE NAME STRING
;DEFINE SIZE OF EQUIVALENCE
;NAME STRING

,LT.USR,LNAME,LNAMSZ,ENAME,ENAMSZ
#NAMVOL ;CREATE LOGICAL NAME

2.6.2 Deleting a Logical Name

Use the DLOG$ directive to delete entries from a logical name
table. When you code a call to the DLOG$ directive, you can
delete a single logical name from the table, or you can delete
all the logical names in the table.

The example below deletes all the mod 1 logical name entries from
the user logical name table:

DELALL:
START:

.MCALL
DLOG$
DIR$

DLOG$,DIR$
,LT.USR
#DELALL

2-8

;DELETE LOGICAL NAME

LOGICAL NAME OPERATIONS

The next example deletes a single logical name entry from the
user logical name table:

.MCALL DLOG$,DIR$
NAME: .ASCII /TMONK/
NAMESZ= .-NAME

.EVEN
NAMDEL: DLOG$,LT.USR,NAME,NAMESZ
START: DIR$ #NAMDEL ;DELETE LOGICAL NAME

2.6.3 Translating a Logical Name

Use the TLOG$ directive to translate a logical name string into
its equivalence string. RMS issues the TLOG$ directive for each
logical name translation necessary in a program.

The following example shows a call from a user program to the
TLOG$ directive to translate the logical name EXPENSES:

SIZE:

ENAME:

ENAMSZ=
LNAME:

LNAMSZ=

GETNAM:
START:

.MCALL TLOG$,DIR$

.WORD 0

.BLKB 20.

.-ENAME

.ASCII

.-LNAME

.EVEN
TLOG$
DIR$

/EXPENSES:/

;SIZE OF EQUIVALENCE NAME
;IN BYTES
;BUFFER TO CONTAIN
;EQUIVALENCE NAME

;BUFFER CONTAINING
;LOGICAL NAME

,LT.USR,LNAM,LNAMSZ,ENAME,ENAMSZ,SIZE
#GETNAM ;TRANSLATE LOGICAL NAME

2.6.4 Setting a Default Directory String

Use the SDIR$ macro to establish a default directory. Be aware
that the default directory belongs to and should be controlled by
the user, not by an application. Thus, we recommend that you
prompt the user for the default directory before you set the
string.

2-9

LOGICAL NAME OPERATIONS

The following example shows how to use the SDIR$ macro to set up
a default directory string:

DDSNAM:
DDSSZ=

SETNAM:
START:

.MCALL

.ASCII

.-DDSNAM

.EVEN
SDIR$
DIR$

SDIR$,DIR$
/[SOLOS]/

,DDSNAM,DDSSZ
#SETNAM ;SET DEFAULT DIRECTORY

NOTE

The PROLOG callable system routine is the
preferred method of setting a default directory.

2.6.5 Retrieving a Default Directory String

Use the GDIR$ directive to retrieve a default directory string.
The system returns the default directory string to the specified
user buffer, along with the length of the string.

The following example shows how to use the GDIR$ macro to
retrieve the default directory string:

.MCALL GDIR$,DIR$
DDSNAM: .BLKB 100. ;DEFINE BUFFER FOR DEFAULT

;DIRECTORY STRING
DDSSZ= .-DDSNAM ;CALCULATE BUFFER SIZE

.EVEN
GETNAM: GDIR$,DDSNAM,DDSSZ
START: DIR$ #GETNAM ;GET DEFAULT DIRECTORY

;STRING

2-10

CHAPTER 3

USING EVENT, TRAP, AND SYNCHRONIZATION SERVICES

This chapter introduces the concept of significant events and
describes the ways in which your code can make use of event
flags, synchronous and asynchronous system traps, and stop-bit
synchronization.

3.1 SIGNIFICANT EVENTS

A significant event is a change in system status that causes the
Executive to reevaluate the eligibility of all active tasks to
run. A significant event is usually caused (either directly or
indirectly) by a system directive issued from within a task.
(All of the system directives named in this chapter are described
in detail in Chapter 8.)

Significant events include the following:

• I/O completion

• Task exit

• Execution of a Send Data directive (SDAT$)

• Execution of a Send Data, Request and Pass OCB directive
(SDRP$)

• Execution of a Send, Request, and Connect directive (SDRC$)

• Execution of a Send By Reference or a Receive By Reference
directive (SREF$ or RREF$)

• Execution of an Alter Priority directive (ALTP$)

3-1

SIGNIFICANT EVENTS

• Removal of an entry from the clock queue (for example,
resulting from a Mark Time directive previously executed or
the issuance of a rescheduling request)

• Execution of a Declare Significant Event directive (DECL$S)

• Execution of the round-robin scheduling algorithm at the end
of a round-robin scheduling interval

• Execution of an Exit, an Exit With Status, or an Emit Status
directive (EXIT$S, EXST$, or EMST$)

3.2 EVENT FLAGS

Event flags are a means by which tasks recognize specific events.
(Tasks also use Asynchronous System Traps, ASTs, to recognize
specific events. See Section 3.3.3.)

In requesting a system operation (such as an I/O transfer), a
task can associate an event flag with the completion of the
operation. When the event occurs, the Executive sets the
specified flag. Several examples later in this section describe
how tasks can use event flags to coordinate task execution.

To enable tasks to distinguish one event from another, 64
(decimal) event flags are available. Each event flag has a
corresponding unique Event Flag Number, or EFN (all numbers are
decimal):

• Numbers 1 through 32 form a group of local flags that are
unique to each task and are set or cleared as a result of
that task's operation.

• Numbers 33 through 64 form a second group of flags that are
common to all tasks, hence their name common flags. Common
flags can be set or cleared as a result of any task's
operation.

• The last 8 flags in each group, local flags (25 through 32)
and common flags (57 through 64) are reserved for use by
DIGITAL software components.

Tasks can use the common flags for intertask communication, or
they can use their own local event flags internally. They can
set, clear, and test event flags by using Set Event Flag (SETF$),
Clear Event Flag (CLEF$), and Read All Event Flags (RDAF$)
directives.

3-2

EVENT FLAGS

CAUTION

Erroneous or multiple setting and clearing of
event flags can result in software faults that
are difficult to trace. We suggest that you
avoid using common event flags.

Examples 1 and 2 illustrate the use of common event flags (33
through 64) to synchronize task execution. Examples 3 and 4
illustrate the use of local flags (1 through 32).

• Example 1

Task B clears common event flag 35 and then blocks itself by
issuing a Wait For directive that specifies common event flag
35.

Subsequently another task, Task A, specifies event flag 35 in
a Set Event Flag directive to inform Task B that it can
proceed. Task A then issues a Declare Significant Event
directive to ensure that the Executive will schedule Task B.

• Example 2

To synchronize the transmission of data between Tasks A and
B, Task A specifies Task B and common event flag 42 in a Send
Data directive.

Task B has specified flag 42 in a Wait For directive. When
Task A's Send Data directive has caused the Executive to set
flag 42 and to cause a significant event, Task B proceeds and
issues a Receive Data directive because its Wait For
condition has been satisfied.

• Example 3

A task contains a Queue I/O Request directive and an
associated Wait For directive; both directives specify the
same local event flag. When the task queues its I/O request,
the Executive clears the local flag. If the requested I/O is
incomplete when the task issues the Wait For directive, the
Executive blocks the task.

When the requested I/O is completed, the Executive sets the
local flag and causes a significant event. The task then
resumes its execution at the instruction that follows the
Wait For directive. Using the local event flag in this
manner ensures that the task does not manipulate incoming
data until the transfer is complete.

3-3

EVENT FLAGS

• Example 4

A task specifies the same local event flag in a Mark Time and
an associated Wait For directive. When the Mark Time
directive is issued, the Executive first clears the local
flag and subsequently sets it when the indicated time
interval has elapsed.

If the task issues the Wait For directive before the local
flag is set, the Executive blocks the task, which resumes
when the flag is set at the end of the proper time interval.
If the flag has been set first, the directive is a no-op and
the task is not blocked.

Specifying an event flag does not mean that a Wait For directive
must be issued. Event flag testing can be performed at any time.
The purpose of a Wait For directive is to stop task execution
until an indicated event occurs. Hence, it is not necessary to
issue a Wait For directive immediately following a Queue I/O
Request directive or a Mark Time directive.

If a task issues a Wait For directive that specifies an event
flag that is already set, the blocking condition is immediately
satisfied and the Executive immediately returns control to the
task.

Tasks can issue Stop For directives instead of Wait For
directives. When this is done, an event flag condition not
satisfied will result in the task's being stopped (instead of
being blocked) until the event flag is set. A task that is
blocked still competes for memory resources at its running
priority. A task that is stopped competes for memory resources
at priority 0.

The simplest way to test a single event flag is to issue the
directive CLEF$ or SETF$. Both these directives can cause the
following return codes:

IS.CLR - Flag was previously clear

IS.SET - Flag was previously set

For example, if a set common event flag indicates the completion
of an operation, a task can issue the CLEF$ directive both to
read the event flag and simultaneously to reset it for the next
operation. If the event flag was previously clear (the current
operation was incomplete), the flag remains clear.

3-4

SYSTEM TRAPS

3.3 SYSTEM TRAPS

System traps are transfers of control (also called software
interrupts) that provide tasks with a means of monitoring and
reacting to events. The Executive initiates system traps when
certain events occur. The trap transfers control to the task
associated with the event and gives the task the opportunity to
service the event by entering a user-written routine.

There are two kinds of system traps:

• Synchronous System Traps (SSTs)

SSTs detect events directly associated with execution of
program instructions. They are synchronous because they
always recur at the same point in the program when
trap-causing instructions occur. For example, an illegal
instruction causes an SST.

• Asynchronous System Traps (ASTs)

ASTs detect events that occur asynchronously to the task's
execution. That is, the task has no direct control over the
precise time that the event--and therefore the trap--can
occur. For example, the completion of an I/O transfer can
cause an AST to occur if you specify the AST argument in the
QIO directive.

A task that uses the system trap facility issues system
directives to establish entry points for user-written service
routines. Entry points for SSTs are specified in a single table.
AST entry points are set by individual directives for each kind
of AST. When a trap condition occurs, the task automatically
enters the appropriate routine if its entry point has been
specified.

3.3.1 Synchronous System Traps (SSTs)

SSTs can detect the execution of invalid instructions,
instructions with invalid addresses, and trap instructions (TRAP,
EMT, IOT, BPT).*

* See the PDP-11 Architecture Handbook for a description of
processor instructions referred to in this chapter.

3-5

SYSTEM TRAPS

NOTE

If you use the Fast Remap feature, which operates
via IOT instructions, the IOT entry point in your
SST vector table is ignored. See Section 5.7 for
details on the Fast Remap feature.

The user can set up an SST vector table, containing one entry per
SST type. Each entry is the address of an SST routine that
services a particular type of SST (a routine that services
illegal instructions, for example). When an SST occurs, the
Executive transfers control to the routine for that type of SST.
If a corresponding routine is not specified in the table, the
task is aborted.

The SST routine enables the user to process the failure and then
return to the interrupted code. Note that if a debugging aid and
the user's task both have an SST vector enabled for a given
condition, the debugging aid vector is referenced first to
determine the service routine address.

SST routines must always be reentrant if there is a possibility
that an SST can occur within the SST routine itself. Although
the Executive initiates SSTs, the execution of the related
service routines is indistinguishable from the task's normal
execution. An AST or another SST can therefore interrupt an SST
routine.

3.3.2 SST Service Routines

The Executive initiates SST service routines by pushing the
task's Processor Status (PS), Program Counter (PC), and
trap-specific parameters onto the task's stack. After removing
the trap-specific parameters, the service routine returns control
to the task by issuing an RTI or RTT processor instruction. Note
that the task's general purpose registers RO through RS and SP
are not saved. If the SST routine makes use of them, it must
save and restore them itself.

To the Executive, SST routine execution is indistinguishable from
normal task execution, so that all directive services are
available to an SST routine. An SST routine can remove the
interrupted PS and PC from the stack and transfer control
anywhere in the task; the routine does not have to return control
to the point of interruption. Note that any operations performed
by the routine (such as the modification of registers or the
setting or clearing of event flags) remain in effect when the
routine eventually returns control to the task.

3-6

SYSTEM TRAPS

A trap vector table within the task contains all the service
routine entry points. You can specify the SST vector table by
means of the Specify SST Vector Table For Task directive or the
Specify SST Vector For Debugging Aid directive. The trap vector
table has the format shown in Table 3-1.

Table 3-1: Trap Vector Table

Word Offset vector Trap

0 S.COAD 4 Odd address trap (PC380 only)
or nonexistent memory error

1 S.CSGF 250 Memory protect violation

2 S.CBPT 14 T-bit trap or execution of a
BPT instruction

3 S.CIOT 20 Execution of an IOT instruction
(except when using Fast Remap
feature)

4 S.CILI 10 Execution of a reserved
instruction

5 S.CEMT 30 Execution of a non-RSX EMT
instruction

6 S.CTRP 34 Execution of a TRAP instruction

Depending on the reason for the SST, the task's stack can also
contain additional information, as follows:

TRAP instruction or EMT other than 377 (and 376 in the case
of unmapped tasks and mapped privileged tasks) (complete
stack)

SP+04
SP+02
SP+OO

PS
PC
Instruction operand (low-order byte) multiplied by
2, non-sign-extended

3-7

SYSTEM TRAPS

Memory protect violation (complete stack)

SP+10
SP+06
SP+04
SP+02
SP+OO

PS
PC
Memory protect status register (SRO)*
Virtual PC of the faulting instruction (SR2)*
Instruction backup register (SR1)*

All items except the PS and PC must be removed from the stack
before the SST service routine exits.

3.3.3 Asynchronous System Traps (ASTs)

The primary purpose of an AST is to inform the task that a
certain event has occurred (for example, the completion of an I/O
operation). As soon as the task has serviced the event, it can
return to the interrupted code.

Some directives can specify both an event flag and an AST; with
these directives, ASTs can be used as an alternative to event
flags or the two can be used together. Therefore, you can
specify the same AST routine for several directives, each with a
different event flag. Thus, when the Executive passes control to
the AST routine, the event flag can determine the action
required.

AST service routines must save and restore all registers used.
If the registers are not restored after an AST has occurred, the
task's subsequent execution may be unpredictable.

Although it cannot distinguish between execution of an SST
routine and task execution, the Executive is aware that a task is
executing an AST routine. An AST routine can be interrupted by
an SST routine, but not by another AST routine.

The following notes describe general characteristics and uses of
ASTs:

*

• If an AST occurs while the related task is executing, the
task is interrupted so that the AST service routine can be
executed.

For details on SRO, SR1, and SR2, see the section on memory
management in the PDP-21 Architecture Handbook.

3-8

SYSTEM TRAPS

• If an AST occurs while another AST is being processed, the
Executive queues the latest AST (First-In-First-Out, or
FIFO). The task then processes the next AST in the queue
when the current AST service is complete (unless AST
recognition was disabled by the AST service routine).

• If an AST suspends a task, the task remains stopped or
suspended after the AST routine is executed, unless the task
is explicitly resumed or unstopped either by the AST service
routine itself, or by another task.

• If an AST occurs while the related task is waiting (or
stopped) for an event flag to be set (a Wait For or Stop For
directive), the task continues to wait after execution of the
AST service routine unless the event flag is set upon AST
exit.

• If an AST occurs for a checkpointed task, the Executive
queues the AST (FIFO), brings the task into memory, and then
activates the AST.

• The Executive allocates the necessary dynamic memory when an
AST is specified. Thus, no AST condition lacks dynamic
memory for data storage when it actually occurs. The AST
reuses the storage allocated for I/O and Mark Time
directives. Therefore, no additional dynamic storage is
required.

• Two directives, Disable AST Recognition and Enable AST
Recognition, allow a program to queue ASTs for subsequent
execution during critical sections of code. (A critical
section might be one that accesses data bases also accessed
by AST service routines, for example.) If ASTs occur while
AST recognition is disabled, they are queued (FIFO) and then
processed when AST recognition is enabled.

3.3.4 AST Service Routines

When an AST occurs, the Executive pushes the task's Wait For mask
word, the PS, the PC, and the DSW onto the task's stack. This
information saves the state of the task so that the AST service
routine has access to all the available Executive services.

The preserved Wait For mask word allows the AST routines to
establish the conditions necessary to unblock the waiting task.
Depending on the reason for the AST, the stack can also contain
additional parameters.

3-9

SYSTEM TRAPS

Note that the task's general purpose registers RO through R5 and
SP are not saved. If the AST service routine makes use of them,
it must save and restore them itself.

The Wait For mask word comes from the offset T.EFLM in the task's
Task Control Block (TCB). The value of the Wait For mask word
and the event flag range to which it corresponds depend on the
last Wait For or Stop For directive issued by the task.

For example, if the last such directive issued was Wait For
Single Event Flag 42 (event flags are decimal), the mask word has
a value of 1000 (octal) and the event flag range is from 33
through 48. Bit 0 of the mask word represents flag 33, bit 1
represents flag 34, and so on.

The Wait For mask word is meaningless if the task has not issued
any type of Wait For or Stop For directive.

Your code should not attempt to modify the Wait For mask while in
the AST routine. For example, putting a zero in the Wait For
mask results in an unclearable Wait For state.

After processing an AST, the task must remove the trap-dependent
parameters from its stack--that is, everything from the top of
the stack down to, but not including, the task's Directive Status
Word. It must then issue an AST Service Exit directive with the
stack set as indicated in the description of that directive.
When the AST service routine exits, it returns control to one of
two places: another AST or the original task.

There are several variations on the format of the task's stack;
these variations occur as follows:

• FPU Exception Trap Occurs

If a task needs to be notified when a Floating Point
Specify Floating

When the task
Processor exception trap occurs,
Point Processor Exception AST
specifies this directive, an AST
Processor exception trap occurs.
following values:

it issues a
directive.
occurs when a

SP+12
SP+lO
SP+06
SP+04
SP+02
SP+OO

The stack

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task's DSW
Floating exception code*
Floating exception address

3-10

Floating Point
contains the

SYSTEM TRAPS

• Data or Common Reference Received

•

If a task needs to be notified when it receives either a data
packet or a reference to a common area, it issues either a
Specify Receive Data AST or a Specify Receive By Reference
AST directive. An AST occurs when the data packet or common
reference is sent to the task. The stack contains the
following values:

SP+06 Event flag mask word
SP+04 PS of task prior to AST
SP+02 PC of task prior to AST
SP+OO Task's DSW

1/0 Request Completes

When a task queues an I/O ·request and specifies an
appropriate AST service entry point, an AST occurs upon
completion of the I/O request. The task's stack contains the
following values:

SP+lO
SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task's DSW
Address of I/O status block for I/O request
(or zero if none was specified)

• Mark Time Interval Elapsed

When a task issues a Mark Time directive and specifies an
appropriate AST service entry point, an AST occurs when the
indicated time interval has elapsed. The task's stack
contains the following values:

SP+lO
SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task's DSW
Event flag number (or zero if none was
specified)

* Refer to the PDP-11 Architecture Handbook for a description
of the FPU exception code values.

3-11

SYSTEM TRAPS

• Offspring Returns Status with Exit AST

An offspring task, connected by a Spawn, Connect, or Send,
Request and Connect directive, returns status to the
connected (parent) task(s) upon exiting by the Exit AST. The
parent task's stack contains the following values:

SP+10 Event flag mask word
SP+06 PS of task prior to AST
SP+04 PC of task prior to AST
SP+02 Task's DSW
SP+OO Address of exit status block

• Task Aborted with SREA$-Specified AST Present

If a directive aborts a task when the Specify Requested
AST (SREA$) is in effect, the abort AST is entered.
task's stack contains the following values:

SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC of task prior to AST
Task's DSW

• Task Aborted with SREX$-Specified AST Present

Exit
The

If a directive aborts a task when the Extended Specify
Requested Exit AST (SREX$) is in effect, the abort AST is
entered. The task's stack contains the following values:

SP+12
SP+10
SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of task prior to AST
PC of task prior to AST
DSW of task prior to AST
Trap dependent parameter
Number of bytes to add to SP to clean stack

3.4 STOP-BIT SYNCHRONIZATION

Stop-bit synchronization allows tasks to be checkpointed during
terminal (buffered) I/O or while waiting for an event to occur
(for example, an event flag to be set or an Unstop directive to
be issued). You can control synchronization between tasks by
setting the task's Task Control Block (TCB) stop bit.

When the task's stop bit is set, the task is blocked from further
execution, its priority for memory allocation effectively drops
to zero, and it can be checkpointed by any other task in the
system, regardless of priority.

3-12

STOP-BIT SYNCHRONIZATION

If checkpointed, the task remains out of memory until its stop
bit is cleared, at which time the task becomes unstopped, its
normal priority for memory allocation becomes restored, and it is
considered for memory allocation based on the restored priority.

If the stopped task receives an AST, the task becomes unstopped
until it exits the AST routine. Memory allocation for the task
during the AST routine is based on the task's priority before the
stopped state. Note that a task cannot be stopped when an AST is
in progress, but the AST routine can issue either an Unstop or
Set Event Flag directive to reference the task. This causes the
task to remain unstopped after it issues the AST Service Exit
directive.

There are three ways in which a nonprivileged task can be stopped
and three corresponding ways it can become unstopped. Only one
method for stopping a task can be applied at a time.

• A task is stopped whenever it is in a Wait For state and has
outstanding buffered I/0. A task is unstopped when the
buffered I/0 is completed or when the Wait For condition is
satisfied.

• You can stop a task for event flag by
Stop For Single Event Flag or Stop
Flags. In this case, the task can
setting the specified event flag.

issuing the directive
For Logical OR Of Event
only be unstopped by

• You can stop a task by issuing the Stop or the Receive Data
Or Stop directive. In this case, the task can only be
unstopped by issuing the Unstop directive.

You cannot stop a task when an AST is in progress (AST state).
Any directives that can cause a task to become stopped are
illegal at the AST state.

When a task is stopped for any reason at the task state, the task
can still receive ASTs. If the task is checkpointed, it becomes
eligible for entrance back into memory when an AST is queued for
it. The task retains its normal priority in memory while it is
at the AST state or has ASTs queued. Once the task has exited
the AST routine with no other ASTs queued, the task is again
stopped and effectively has zero priority for memory allocation.

3-13

STOP-BIT SYNCHRONIZATION

You can use the
synchronization:

• Stop

following directives for stop-bit

This directive stops the issuing task and cannot be issued at
the AST state.

• Receive Data Or Stop and Variable Receive Data Or Stop

These directives attempt to dequeue send data packets from
the specified task (or any task if none is specified). If
there is no such packet to be dequeued, the issuing task is
stopped. These directives cannot be issued at the AST state.

• Stop For Logical OR Of Event Flags

This directive stops the issuing task until at least one of
the specified flags in the specified group of event flags
become set. If any of the specified event flags are already
set, the task does not become stopped. This directive cannot
be issued at the AST state.

• Stop For Single Event Flag

This directive stops the issuing task until the indicated
event flag becomes set. If the specified event flag is
already set, the task does not become stopped. This
directive cannot be issued at the AST state.

• Unstop

This directive unstops a task that has become stopped by the
Stop or Receive Data Or Stop directive.

3-14

CHAPTER 4

USING PARENT/OFFSPRING TASKING SERVICES

Parent/offspring tasking allows you to establish and control the
relationships between a governing (parent) task and any
subordinate (offspring) tasks. A parent task starts or connects
to an offspring task.

One application for the parent-offspring task relationship is a
multitask application. In such an application, the main task
controlling the application requires other tasks to perform
subfunctions for the application. With parent/offspring tasking,
you can set up the necessary relationships between the parent
task and its offspring to control processing.

Starting (or activating) offspring tasks is called spawning.
Spawning also includes the ability to establish task
communications; a parent task can be notified when an offspring
task exits and can receive status information from the offspring
task.

Status returned from an offspring task to a parent task indicates
successful completion of the offspring task or identifies
specific error conditions.

This chapter first describes the task states and the directives
that affect those states, and then describes how you can perform
parent/offspring tasking operations.

4.1 TASK STATES

The Executive recognizes the existence of a task only after it
has been successfully installed.

Once a task is known to the system, it exists in one of two
states: dormant or active. Some system directives cause a task
to change from one state to another.

4-1

TASK STATES

A task is active from the time it is requested until the time it
exits. Requesting a task means issuing the RQST$, RUN$, SPWN$,
SDRC$, VSRC$, RPOI$, or SDRP$ directive. An active task is
eligible for scheduling, whereas a dormant task is not.

The three substates of an active task are as follows:

• Ready-to-run - A ready-to-run task competes with other tasks
for CPU time on the basis of priority. The highest priority
ready-to-run task obtains CPU time and thus becomes the
current task.

Blocked - A blocked task is unable to compete for
because a needed resource is not available. Task
effectively remains unchanged, allowing the task to
for memory space.

CPU time
priority

compete

• Stopped - A stopped task is unable to compete for CPU time
because of pending I/O completion, event flag(s) not set, or
because the task stopped itself. When stopped, a task's
priority effectively drops to zero and the task can be
checkpointed by any other task, regardless of that task's
priority. If an AST occurs for the stopped task, its normal
task priority is restored only for the duration of the AST
routine execution; once the AST is completed, task priority
returns to zero.

4.1.1 Task State Transitions

This section describes task state transitions.

• Dormant to Active

The following directives cause the Executive to activate a
dormant task:

A RUN$ directive

An RQST$ directive

A SPWN$ directive

An SDRC$ directive

A VSRC$ directive

4-2

TASK STATES

An RPOI$ directive

An SDRP$ directive

• Ready-to-Run to Blocked

The following events cause an active, ready-to-run task to
become blocked:

An SPND$ directive

An unsatisfied Wait For condition

Checkpointing of a task out of memory by the Executive

• Ready-to-Run to Stopped

The following events cause an active, ready-to-run task to
become stopped:

A STOP$S directive is executed, or an RCST$,
VRCS$ directive is issued when no data
available

An unsatisfied Stop For condition

RRST$,
packet

or
is

An unsatisfied Wait For condition while the task has
outstanding buffered I/0

• Blocked to Ready-to-Run

The following events return a
ready-to-run state:

blocked task to the

An RSUM$ directive issued by another task

A Wait For condition is satisfied

The Executive reads a checkpointed task into memory

• Stopped to Ready-to-Run

The following events return
ready-to-run state, depending
stopped:

4-3

a stopped
upon how

task to the
the task became

TASK STATES

A task stopped by the STOP$, RCST$, or VRCS$ directive
becomes unstopped by USTP$ directive execution

A Wait For condition is satisfied for a task with
outstanding buffered I/O

A task stopped for an event flag becomes unstopped when
the specified event flag becomes set

• Active to Dormant

The following events cause an active task
potentially dormant:

to become

An EXIT$S, EXIF$, RCVX$, or VRCX$ directive, or an SDRP$
or RPOI$ directive that specifies the exit option

An ABRT$ directive

A Synchronous System Trap (SST) for which a task has not
specified a service routine

• Blocked to Stopped

The following event causes a task that is blocked due to an
unsatisfied Wait For condition to become stopped:

The task initiates buffered I/O at AST state and then
exits from AST state

• Stopped to Blocked

The following event causes a task that is stopped due to an
unsatisfied Wait For condition and outstanding buffered I/O
to return to a blocked state:

Completion of all outstanding buffered I/O

4.2 DIRECTIVE SUMMARY

This section summarizes the directives for parent/offspring
tasking and intertask communication.

4-4

DIRECTIVE SUMMARY

4.2.1 Parent/Offspring Tasking Directives

There are two classes of parent/offspring tasking directives:

• Spawning - Directives that create a connection between tasks

• Chaining - Directives that transfer a connection

Three directives can connect a parent task to an offspring task:

• Spawn

This directive requests activation of, and connects to, a
specific offspring task.

An offspring task spawned by a parent task can return current
status information or exit status information to a connected
parent task.

Spawn directive options include:

Queuing a command line for the offspring task

Establishing the offspring task's TI: (terminal)

For privileged tasks, designating any terminal as the
offspring TI:

• Connect

This directive establishes task communications for
synchronizing with the exit status or emit status issued by a
task that is already active.

• Send, Request, and Connect

This directive sends data to the
activation of the task if it
connects to the task.

Two directives support task chaining:

specified task, requests
is not already active, and

• Request and Pass Off spring Information

This directive allows an offspring task to pass its parent
connection to another task, thus making the new task the
offspring of the original parent. The RPO!$ directive offers
all the options of the Spawn directive.

4-5

DIRECTIVE SUMMARY

e Send Data, Request and Pass Offspring Control Block

This directive sends a data packet for a specified task,
passes its parent connection to that task, and requests the
task if it is not already active.

A parent task can use the Spawn and Connect directives to connect
to more than one offspring task. In addition, the parent task
can use the directives in any combination to multiply connect to
offspring tasks.

An offspring task can be connected to multiple parent tasks. An
appropriate data structure, the Offspring Control Block (OCB), is
produced (in addition to those already present) each time a
parent task connects to the offspring task.

4.2.2 Task Communication Directives

Two directives provide a mechanism for an offspring task to
return status to connected parent tasks:

e Exit With Status

This directive in an offspring task causes the offspring task
to exit, passing status words to all connected parent tasks
connected by a Spawn, Connect, or Send, Request, and Connect
directive.

• Emit Status

This directive causes the offspring task to pass status words
either to the specified connected task, or to all connected
parent tasks if no task is explicitly specified.

When status is passed to tasks in this manner, the parent task no
longer remains connected.

Table 4-1 lists the standard offspring task status values
can be returned to parent tasks. Symbols shown in the table
defined in DIRSYM.MAC. They become locally defined when
EXST$ macro is invoked. However, the exit status can be
16-bit value.

4-6

that
are
the
any

DIRECTIVE SUMMARY

Table 4-1: Offspring Task Status

Symbolic Value

EX$WAR 0

EX$SUC 1

EX$ERR 2

Severity

Warning

Success

Error

Description

Task succeeded, but
irregularities are
possible

Results should be as
expected

Results are unlikely to
be as expected

EX$SEV 4 Severe Error One or more fatal errors
detected, or task aborted

4.3 CONNECTING AND PASSING STATUS

Off spring
(parent)
Off spring
tasks at
that only

task exit status can be returned to a connected
task by issuing the Exit With Status directive.

tasks can return status to one or more connected parent
any time by issuing the Emit Status Directive. Note

connected parent-offspring tasks can pass status.

The means by which a task connects to another task
indistinguishable once the connect process is complete.
example, Task A can become connected to Task B in one of
following ways:

• Task A spawned Task B when Task B was inactive.

• Task A connected to Task B when Task B was active.

are
For
the

• Task A issued a Send, Request, And Connect directive to Task
B when Task B was either active or inactive.

• Task A either spawned or connected to Task C, which then
chained to Task B by means of either an RPO!$ directive, an
SDRP$ directive, or the PROTSK install/run/remove chain
option.

4-7

CONNECTING AND PASSING STATUS

Regardless of how Task A became connected to Task B, Task B can
pass status information back to Task A, set the event flag
specified by Task A, or cause the AST specified by Task A to
occur by any means listed below. (Note that once offspring task
status is returned to one or more parent tasks, the parent tasks
become disconnected unless there are multiple connections; see
Section 8.24 for details.)

• Task B issues a successful exit directive. Task A receives a
status of EX$SUC.

• Task B is aborted. Task A receives severe error status
EX$SEV.

e Task B issues an Exit With Status directive and return status
to Task A upon completion of Task B.

e Task B issues an Emit Status directive specifying Task A. If
Task A is multiply connected to Task B, the OCBs that contain
information about these multiple connections are stored in a
FIFO queue. The first OCB is used to determine which event
flag, AST address, and exit status block to use.

e Task B issues an Emit Status directive to all connected tasks
(no task name specified}.

If a task specifies another task in a Spawn or Connect directive,
or in a Send, Request, and Connect directive, and then exits, and
if status is not yet returned, then this connection's OCB remains
queued.

NOTE

This point is important. OCBs are not removed
when the parent exits, but only when the
offspring exits or emits status. OCBs can
quickly exhaust primary pool. To avoid this,
remove an offspring's OCBs when the parent exits
by forcing the offspring to Emit Status or Exit.

Although the OCB is not removed, l~ is marked to indicate that
the parent task has exited. When this OCB is subsequently
dequeued by an Emit Status directive, or any type of exit, no
action is taken because the parent task has exited.

This procedure helps a multiply-connected task remain
synchronized with the requests, regardless of whether or not the
parent has exited.

4-8

CONNECTING AND PASSING STATUS

Note that when you invoke the Emit Status directive and the
specified task is multiply connected to the issuing task, P/OS
uses the first (oldest) OCB in the queue to return status.

Table 4-2 shows examples of using directives for intertask
synchronization. (Macro call form for directives are shown.)
Task A is the parent task and Task B is the offspring task.

Table 4-2: Intertask Synchronization Examples

Task A

SPWN$

CNCT$

SDRC$

SDRC$
USTP$

SDAT$
USTP$

SPWN$

Task B

EXST$

EXST$

RCVX$
EMST$

RCST$
EMST$

RCST$

RPOI$
SDRP$

Action

Task A spawns Task B. When Task B completes,
it returns status to Task A.

Task A connects to active Task B. When Task B
completes, it returns status to Task A.

Task A sends data to Task B, requests Task B
if it is not active, and connects to Task B.
Task B receives the data, does some
processing based on the data, returns status
to Task A (possibly setting an event flag or
declaring an AST), and becomes disconnected
from Task A.

Task A sends data to Task B, requests Task B
if it is not active, connects to Task B, and
unstops Task B (if Task B previously could
not dequeue the data packet). Task B receives
the data, does some processing based on the
data, and returns status to Task A (possibly
setting an event flag or declaring an AST).

Task A queues a data packet for Task B and
unstops Task B; Task B receives the data.

Task A spawns Task B. Task B chains to Task C
by issuing an RPOI$ or an SDRP$ directive.
Task A is now Task C's parent. Task A is no
longer connected to Task B.

4-9

CHAPTER 5

USING MEMORY MANAGEMENT SERVICES

The Professional's word size, 16 bits, limits the total virtual
address space of a task to 32K words. That is, the highest
address that a task can refer to is 177777 (octal).

P/OS provides mechanisms that allow a user task to overcome this
limitation. Task overlays and cluster libraries are two such
mechanisms. (Both are fully described in the RSX-11M/M-PLUS and
Micro/RSX Task Builder Manual and the Guide to Writing a P/OS I/0
Driver and Advanced Programmer's Notes.)

Another mechanism is the extended addressing capability provided
by P/OS memory management directives. These directives overcome
the 32K-word addressing restriction by allowing the task to
dynamically change the physical locations that are referred to by
a given range of addresses.

This chapter describes concepts with which you must be familiar
in order to use the memory management directives.

5.1 ADDRESS MAPPING

Mapping is the process of associating task virtual addresses with
physical memory locations. On the Professional, built-in
hardware called the memory management unit transparently performs
this virtual to physical mapping. Since the memory management
unit performs the mapping, you cannot know where a task resides
in physical memory.

5.1.1 Physical, Logical, and Virtual Address Space

The following concepts provide a basis for understanding the
functions performed by the memory management directives:

5-1

ADDRESS MAPPING

• Physical Address Space

A task's physical address space is the entire set of physical
memory addresses.

• Logical Address Space

A task's logical address space is the total amount of
physical memory to which the task has access rights. This
includes various areas called regions (see Section 5.3).
Each region occupies a contiguous block of memory.

• Virtual Address Space

A task's virtual address space corresponds
address range imposed by the 16-bit word
can divide its virtual address space into
virtual address windows (see Section 5.2).

to the
length.

segments

32K-word
The task

called

If the capabilities supplied by the memory management directives
were not available, a task's virtual address space and logical
address space would directly correspond; a single virtual address
would always point to the same logical location. Both types of
address space would have a maximum size of 32K words.

However, the ability of the memory management directives to
assign or map a range of virtual addresses (a window) to
different logical areas (regions) enables you to extend a task's
logical address space beyond 32K words.

5.2 WINDOWS

To manipulate the mapping of virtual addresses to various logical
areas, you must first divide a task's 32K words of virtual
address space into virtual address windows.

Each window encompasses a contiguous range of virtual addresses,
which must begin on a 4K-word boundary; that is, the first
address must be a multiple of 4K. The number of windows defined
by a task can range from 1 through 8. For all tasks, window 0 is
not available to the task for remapping. The size of each window
can range from a minimum of 32 words through a maximum of 32K
words.

A task that includes directives to manipulate address windows
dynamically must have window blocks set up in its task header.
The Executive uses window blocks to identify and describe each
currently existing window.

5-2

WINDOWS

You can specify the required number of additional window
blocks--the number of windows created by the memory management
directives--to be set up by the Task Builder. (See the
RSX-11M/M-PLUS and Micro/RSX Task Builder Reference Manual.) The
number of blocks that you specify should equal the maximum number
of windows that will exist at a time during task execution

A window's identification is a number from 0 through 7 (decimal)
for user windows; it is an index to the window's corresponding
window block. The address window identified by 0 is the window
that maps the task's header and root segment. The Task Builder
automatically creates window 0, which is mapped by the Executive
and cannot be specified in any directive.

Figure 5-1 shows the virtual address space of a task divided into
four address windows--0, 1, 2, and 3. The shaded areas indicate
portions of the address space not included in any window (9K
through 12K and 23K through 24K). Addresses within the ranges
corresponding to the shaded areas cannot be used.

VIRTUAL
ADDRESS

SPACE

32K

WINDOW3 3 (BK) 28K

ilil.ITIIll][Il[I 24K

20K

WINDOW 2 2 (11 Kl

16K

~~mrnm1
12K

BK

WINDOW 1 1 (5Kl

4K

WINDOWO 0 (4K)

OK

D =virtual address
window

• = unused virtual
address space ZK-307-81

Figure 5-1: Virtual Address Windows

5-3

WINDOWS

When a task uses memory management directives, the Executive
views the relationship between the task's virtual and logical
address space in terms of windows and regions. Unless a virtual
address is _part of an existing address window, reference to that
address generates an illegal address trap. Similarly, a window
can be mapped only to an area that is all or part of an existing
region within the task's logical address space (see Section 5.3).

Once a task has defined windows and regions, it can issue memory
management directives to perform operations such as:

• Map a window to all or part of a region

• Unmap a window from one region to map it to another region

• Unmap a window from one part of a region in order to map it
to another part of the same region

5.3 REGIONS

A region is a portion of physical memory to which a task has, or
may potentially have, access. The current window-to-region
mapping context determines that part of a task's logical address
space that the task can access at one time.

Regions fall into several categories:

*

• Reqion Creation: Static and Dynamic

A static region is a region that you create separately from
tasks that accesses it. To create a static region, you use
the task builder. Before a task can access a static region,
you must install the region into the system. Note that the
Executive dynamically loads static regions whenever tasks
request to map them. The RSX-11M/M-PLUS and Micro/RSX Task
Builder Manual describes static regions in detail.*

A dynamic region is a region that your task creates during
execution, using the memory management directive CRRG$. When
you build a task that creates a dynamic region, you specify
how many additional window blocks the Task Builder places in
the task header. See the description of CRRG$ in Chapter 8
for details on creating dynamic regions.

The Task Builder Manual uses different terminology.
refers to a static region as a resident region.

5-4

It

REGIONS

• Region Access: Shared and Unshared

A shared region is a region that more than one task
to at a time. Shared regions are useful because
more efficient use of physical memory than unshared

can map
they make
regions.

An unshared region can only be mapped by one task. The
method you use to build the region, and the protection mask
you specify for the region, determine whether or not it can
be shared. See Section 5.3.2 for a description of region
protection masks. Note that unshared dynamic regions are
typically unnamed.

• Region Contents: Common, Library, and Task

A common is a region that contains read-write data.* A
library is a region that contains read-only code. Commons
and libraries are almost always shared, although this is not
a requirement.

A task region is a special region. It is a contiguous block
of memory in which a task executes. In other words, the task
region is that portion of a task's logical address space that
contains the actual executable portion of a task.

Tasks refer to a region by means of a region ID returned to the
task by the Executive. A region ID from 0 through 23 refers to a
task's static attachment. Region ID 0 always refers to a task's
task region. Region ID 1 always refers to the read-only (pure
code) portion of multiuser tasks. All other region IDs are
actually addresses of the attachment descriptor maintained by the
Executive in the system dynamic storage area.

Figure 5-2 shows a sample collection of regions that could make
up a task's logical address space at some given time. The header
and root segment are always part of the task region. Since a
region occupies a contiguous area of memory, each region is shown
as a separate block.

Figure 5-3 illustrates a possible mapping relationship between
the windows and regions shown in Figures 7-1 and 7-2.

* Never use the Extend Task task builder option when building
a static common.

5-5

LOGICAL
ADDRESS

SPACE

REGIONS

ZK-308-81

Figure 5-2: Region Definition Block

5-6

VIRTUAL
ADDRESS

SPACE

.-----~32K

WINDOW 3 3 (SKI 28K

l]ffiffil]ffi[D 24K

WINDOW 2 2 (11 Kl

lliilll
BK

WINDOW1 1 (5KI

------- 4K

WINDOW)J' Jl(4KI

'----41K

Legend:

D = virtual address

window

lTTTTTTTT1 = unused virtual
Uill.W.lJ address space

_... = pointer to area
mapped by a window

REGIONS

LOGICAL
ADDRESS

SPACE

STATIC COMMON

REGION

TASK

~ = mapped areas of
~ logical address space

D = unmapped portions of

logical address space

Figure 5-3: Mapping Windows to Regions

5-7

ZK-309-81

REGIONS

5.3.1 Attaching to Regions

Attaching is the process by which a region becomes part of a
task's logical address space. A task can only map a region that
is part of the task's logical address space. There are three
ways to attach a task to a region:

• All tasks are automatically attached to regions that are
linked to them at task-build time.

• A task can issue a directive to attach itself to a named
static common region or a named dynamic region.

• A task can request the Executive to attach another specified
task to any region within the logical address space of the
requesting task.

Attaching identifies a task as a user of a region and prevents
the system from deleting a region until all user tasks have been
detached from it. (Note that fixed tasks do not automatically
become detached from regions upon exiting.)

NOTE

Each Send By Reference directive issued by a
sending task creates a new attachment descriptor
for the receiving task. However, multiple Send
By Reference directives that refer to the same
region require only one attachment descriptor.
After the receiving task issues a series of
Receive By Reference directives and receives all
pending data requests, the task should detach the
region to return the attachment descriptors to
pool.

You can avoid multiple attachment descriptors
when sending and receiving data by reference.
Setting the WS.NAT bit in the Window Definition
Block (see Section 5.5.2) causes the Executive to
create a new attachment descriptor for that
region only if necessary (that is, if the task is
currently not attached to the region).

5.3.2 Region Protection

A task cannot indiscriminately attach to any region. Each region
has a protection mask to prevent unauthorized access. The mask
indicates the types of access (read, write, extend, delete)
allowed for each category of user (system, owner, group, world).

5-8

REGIONS

The Executive checks that the requesting task's User
Identification Code (UIC) allows it to make the attempted access.
The attempt fails if the protection mask denies that task the
access it wants.

To determine when tasks can add to their logical
attaching regions, the following points must be
that all considerations presume there is
violation):

address space by
considered (note

no protection

• Any task can attach to a named dynamic region, provided the
task knows the name. The only way to map to an unnamed
region created by another task is to have that other task
issue to your task a Send by Reference (SREF$) directive for
the unnamed region.

• Any task can issue a Send By Reference directive to attach
another task to any region, including the sender's task
region. The reference sent includes the access rights with
which the receiving task attaches to the region. The sending
task can only grant access rights that it has itself.

• Any task can map to a named static common region.

5.4 DIRECTIVE SUMMARY

This section briefly
management directive.
detail.

describes
Chapter

the function of each memory
8 defines all the directives in

5.4.1 Create Region Directive (CRAG$)

The Create Region directive creates a dynamic region in a
designated system-controlled partition (for example, GEN), and
optionally attaches the issuing task to it.

5.4.2 Attach Region Directive (ATRG$)

The Attach Region directive attaches the issuing task to a static
common region or to a named dynamic region.

5-9

DIRECTIVE SUMMARY

5.4.3 Detach Region Directive (DTRG$)

The Detach Region directive detaches the issuing task from a
specified region. Any of the task's address windows that are
mapped to the region are automatically unmapped.

5.4.4 Create Address Window Directive (CRAW$)

The Create Address Window directive creates an address window,
establishes its virtual address base and size, and optionally
maps the window. Any other windows that overlap with the range
of addresses for the new window are first unmapped and then
eliminated.

5.4.5 Eliminate Address Window Directive (ELAW$)

The Eliminate Address Window directive eliminates an existing
address window, unmapping it first if necessary.

5.4.6 Map Address Window Directive (MAP$)

The Map Address Window directive maps an existing window to an
attached region. The mapping begins at a specified offset from
the start of the region and goes to a specified length. If the
window is already mapped elsewhere, the Executive unmaps it
before carrying out the map assignment described in the
directive.

5.4.7 Unmap Address Window Directive (UMAP$)

The Unmap Address Window directive unmaps a specified window.
After the window is unmapped, its virtual address range cannot be
referenced until the task issues another mapping directive.

5.4.8 Send By Reference Directive (SREF$)

The Send By Reference directive inserts a packet containing a
reference to a region into the receive queue of a specified task.
The receiver task is automatically attached to the region
referred to.

5-10

DIRECTIVE SUMMARY

5.4.9 Receive By Reference Directive (RAEF$)

The Receive By Reference directive requests the Executive first
to select the next packet from the receive-by-reference queue of
the issuing task, and then to make the information in the packet
available to the task. Optionally the directive can map a window
to the referenced region or cause the task to exit if the queue
does not contain a receive-by-reference packet.

5.4.10 Get Mapping Context Directive (GMCX$}

The Get Mapping Context directive causes the Executive to return
to the issuing task a description of the current window-to-region
mapping assignments. The description is in a form that enables
the user to restore the mapping context through a series of
Create Address Window directives.

5.4.11 Get Region Parameters Directive (GREG$)

The Get Region Parameters directive causes the Executive to
supply the issuing task with information about either its task
region (if no region ID is given) or an explicitly specified
region.

5.5 USER DATA STRUCTURES

Most memory management directives are individually capable of
performing a number of separate actions. For example, a single
Create Address Window directive can unmap and eliminate as many
as seven conflicting address windows, create a new window, and
map the new window to a specified region. The complexity of the
directives requires a special means of communication between the
user task and the Executive. The communication is achieved
through data structures that:

• Allow the task to specify which directive options it wants
the Executive to perform

e Permit the Executive to provide the task with details about
the outcome of requested actions

There are two types of user data structures that correspond to
the two key elements (regions and address windows) manipulated by
the directives. The structures are called:

5-11

USER DATA STRUCTURES

• The Region Definition Block (ROB}

• The Window Definition Block (WDB}

Every memory management directive, except Get Region Parameters,
uses one of these structures as its communications area between
the task and the Executive. Each directive issued includes in
the DPB a pointer to the appropriate definition block.

The task assigns symbolic address offset values that point to
locations within an RDB or a WDB. The task can change the
contents of these locations to define or modify the directive
operation. After the Executive has carried out the specified
operation, it assigns values to various locations within the
block to describe the actions taken and to provide the task with
information useful for subsequent operations.

5.5.1 Region Definition Block (ROB)

Figure 5-4 illustrates the format of an RDB.

Array Symbolic
Element Offset Block Format

irdb (1) R.GID REGION ID

irdb (2) R.GSIZ SIZE OF REGION (32W BLOCKS)

irdb (3)

R.GNAM NAME OF REGION (RAD50)

irdb (4)

irdb (5)

R.GPAR REGION'S MAIN PARTITION NAME (RAD50)

irdb (6)

irdb (7) R.GSTS REGION STATUS WORD

irdb (Bl R.GPRO REGION PROTECTION WORD

Figure 5-4: Region Definition Block

5-12

---1

___,

Byte

Offset

0

2

4

6

10

12

14

16

ZK-310-81

USER DATA STRUCTURES

In addition to the symbolic offsets shown in Figure 5-4, the
region status word R.GSTS contains defined bits that can be set
or cleared by the Executive or the task. Table 5-1 shows the
bits and their definitions. The symbols shown in the table are
defined by the RDBDF$ macro, as described in Section 5.5.1.1.

Table 5-1: Region Status Word (R.GSTS) Bit Definitions

Bit n Definition

RS.CRR=100000

RS.UNM=40000

RS.MDL=200

RS.NDL=100

RS.ATT=40

RS.NEX=20

RS.DEL=10

RS.EXT=4

RS.WRT=2

RS.RED=l

Region was successfully created.

At least one window was unmapped on a
detach.

Mark region for deletion on last detach.
When a region is created by a CRRG$
directive, the region is normally marked
for deletion on last detach. However,
if RS.NOL is set when the CRRG$
directive is executed, the region is not
marked for deletion. Subsequent
execution of a DTRG$ directive with
RS.MDL set marks the region for
deletion.

Created region is not to be marked for
deletion on last detach. (Unnamed
regions are always deleted on the last
detach.)

Attach to created region.

Created region is not extendable.

Delete access desired on attach.

Extend access desired on attach.

Write access desired on attach.

Read access desired on attach.

5-13

USER DATA STRUCTURES

The three memory management directives that require a pointer to
an ROB are:

Create Region (CRRG$)
Attach Region (ATRG$)
Detach Region (DTRG$)

When a task issues one of these directives, the Executive clears
the four high-order bits in the region status word of the
appropriate ROB. After completing the directive operation, the
Executive sets the RS.CRR or RS.UNM bit to indicate to the task
what actions were taken. The Executive never modifies the other
bits in the region status word.

5.5.1.1 Using Macros to Generate an
two macros, RDBDF$ and RDBBK$, to
RDBDF$ defines the offsets and status
definition block; RDBBK$ then
definition block.

The format of RDBDF$ is:

RDBDF$

RDB - The system provides
generate and define an RDB.

word bits for a region
creates the actual region

Since RDBBK$ automatically invokes RDBDF$, you need specify only
RDBBK$ in a module that creates an ROB. The format of the call
to RDBBK$ is:

siz

nam

par

sts

pro

RDBBK$ siz,nam,par,sts,pro

The region size in 32-word blocks.

The region name (RAD50).

The name of the partition in which to create the region
(RAD50).

Bit definitions of the region status word.

The region's default protection word.

5-14

USER DATA STRUCTURES

The sts argument sets specified bits in the status word R.GSTS.
The argument normally has the following format:

<bitl[! ... !bitn]>

bit
A defined bit to be set.

The argument pro is an octal number. The 16-bit binary
equivalent specifies the region's default protection as follows:

Bits 15 12 11 8 7 4 3 0

I WORLD I GROUP l OWNER SYSTEM

Each of these four categories has four bits, with each bit
representing a type of access:

Bit 3 2 1 0

DELETE EXTEND WRITE READ

A bit value of 0 indicates that the specified type of access is
to be allowed; a bit value of 1 indicates that the specified type
of access is to be denied.

The macro call

RDBBK$

expands to:

.WORD

. WORD

.RAD50

.RAD50

.WORD

.WORD

.WORD

102.,ALPHA,GEN,<RS.NDL!RS.ATT!RS.WRT!RS.RED>,167000

0
102 .
/ALPHA/
/GEN/
0
RS.NDL!RS.ATT!RS.WRT!RS.RED
167000

If a Create Region directive pointed to the RDB defined by this
expanded macro call, the Executive would create a region 102
(decimal) 32-word blocks in length, named ALPHA, in a partition
named GEN. The defined bits specified in the sts argument tell
the Executive:

5-15

USER DATA STRUCTURES

• Not to mark the region for deletion on the last detach

• To attach region ALPHA to the task issuing the directive
macro call

• To grant read and write access to the attached task

The protection word specified as 167000 (octal) assigns a default
protection mask to the region. The octal number, which has a
binary equivalent of 1110 1110 0000 0000, grants access as
follows:

World
Group
Owner
System

(1110)
(1110)
(0000)
(0000)

- Read access only
- Read access only
- All access
- All access

If the Create Region directive is successful, the Executive will
first return to the issuing task a region ID value in the
location accessed by symbolic offset R.GID, and then will set the
defined bit RS.CRR in the status word R.GSTS.

Table 5-2: ROB Array Format

Word Contents

irdb(l) Region ID

irdb(2)

irdb(3)
irdb(4)

irdb(5)
irdb(6)

irdb(7)

irdb(8)

Size of the region in 32-word blocks

Region name (2 words in Radix-50 format)

Name of the partition that contains the region
(2 words in Radix-50 format)

Region status word

Region protection code

5-16

USER DATA STRUCTURES

5.5.1.2 Using High-Level Languages to Generate
programming in high-level languages, you
eight-word, single-precision integer array as
supplied in the subroutine calls:

CALL ATRG
CALL CRRG
CALL DTRG

(Attach Region directive)
(Create Region directive)
(Detach Region directive)

an
must
the

RDB - When
create an

RDB to be

An RDB array has the format shown in Table 5-2. You can modify
the region status word irdb(7) by setting or clearing the
appropriate bits. See the list in Section 5.5.l that describes
the defined bits. The bit values are listed beside the symbolic
offsets.

5.5.2 Window Definition Block (WDB)

Figure 5-5 illustrates the format of a WDB.

Array Symbolic Byte
Element Offset Block Format Offset

0

W.NID
iwdb (1) W.NAPR BASE APR WINDOW ID

iwdb (2) W.NBAS VIRTUAL BASE ADDRESS (BYTES)

4

iwdb (3) W.NSIZ WINDOW SIZE (32W BLOCKS)

6

iwdb (4) W.NRID REGION ID

10

iwdb (5) W.NOFF OFFSET IN REGION (32W BLOCKS)

12

iwdb (6) W.NLEN LENGTH TO MAP (32W BLOCKS)

14

iwdb (7) W.NSTS WINDOW STATUS WORD

16

iwdb (8) W.NSRB SEND/RECEIVE BUFFER ADDRESS (BYTES)

ZK-311"81

Figure 5-5: Window Definition Block

5-17

USER DATA STRUCTURES

The WDB consists of a number of symbolic address offsets to WDB
locations. One location is the window status word W.NSTS, which
contains defined bits that can be set or cleared by the Executive
or the task. Table 5-3 lists the bits and their definitions.
The symbols shown in the table are defined by the WDBDF$ macro,
as described in Section 5.5.2.1.

The following directives require a pointer to a WDB:

Create Address Window {CRAW$)
Eliminate Address Window {ELAW$)
Map Address Window (MAP$)
Unmap Address Window (UMAP$)
Send By Reference (SREF$)
Receive By Reference (RREF$)

When a task issues one of these directives, the Executive clears
the four high-order bits in the window status word of the
appropriate WDB. After completing the directive operation, the
Executive can then set any of these bits to tell the task what
actions were taken. The Executive never modifies the other bits.

5.5.2.1 Using Macros to Generate a WDB - The system provides two
macros, WDBDF$ and WDBBK$, to generate and define a WDB. WDBDF$
defines the offsets and status word bits for a window definition
block; WDBBK$ then creates the actual window definition block.

The format of WDBDF$ is:

WDBDF$

Since WDBBK$ automatically invokes WDBDF$, you need specify only
WDBBK$ in a module that generates a WDB. The format of the call
to WDBBK$ is:

apr

siz

rid

WDBBK$ apr,siz,rid,off,len,sts,srb

A number from 0 through 7 that specifies the window's base
Active Page Register {APR). The APR determines the 4K
boundary on which the window is to begin. APR 0 corresponds
to virtual address 0, APR 1 to 4K, APR 2 to 8K, and so on.

The size of the window in 32-word blocks.

A region ID.

5-18

USER DATA STRUCTURES

Table 5-3: Window Status Word (W.NSTS) Bit Definitions

Bit Definition

WS.CRW=lOOOOO

WS.UNM=40000

WS.ELW=20000

WS.RRF=lOOOO

WS.NBP=4000

WS.BPS=4000

WS.RES=2000

WS.NAT=1000

WS.64B=400

WS.MAP=200

WS.RCX=100

WS.DEL=10

WS.EXT=4

WS.WRT=2

WS.RED=l

Address window was successfully created.

At least one window was unmapped by a Create
Address Window, Map Address Window, or Unmap
Address Window directive.

At least one window was eliminated in a Create
Address Window or Eliminate Address Window
directive.

Reference was successfully received.

Do not bypass cache for CRAW$ directives.

Always bypass cache for MAP$ directives.

Map only if resident.

Create attachment descriptor only if necessary
(for Send By Reference directives).

Defines the task's permitted alignment
boundaries--0 for 256-word (512-byte)
alignment, 1 for 32-word (64-byte) alignment.

Window is to be mapped in a Create Address
Window or Receive By Reference directive.

Exit if no references to receive.

Send with delete access.

Send with extend access.

Send or map with write access.

Send with read access.

5-19

off

len

sts

srb

USER DATA STRUCTURES

The offset (in 32-word blocks) within the region to be
mapped.

The length (in 32-word blocks) within the region to be
mapped (defaults to the value of siz).

The bit definitions of the window status word.

A send/receive buffer virtual address.

The argument sts sets specified bits in the status word W.NSTS.
The argument normally has the following format:

<bitl[! ... !bitn]>

bit
A defined bit to be set.

The macro call

WDBBK$

expands to:

.BYTE

.WORD

. WORD

.WORD

. WORD

.WORD

.WORD

.WORD

5,76.,0,50.,,<WS.64B!WS.MAP!WS.WRT>

0,5
0
76 .
0
50 .

(Window ID returned in low-order byte)
(Base virtual address returned here)

0
WS.64B!WS.MAP!WS.WRT
0

If a Create Address Window directive pointed to the WDB defined
by the expanded macro call, the Executive would:

• Create a window 76 (decimal) blocks long beginning at
APR 5--virtual address 20K or 120000 (octal).

• Map the window with write access (<WS.MAP!WS.WRT>) to the
issuing task's task region (because the macro call specified
0 for the region ID).

5-20

USER DATA STRUCTURES

e Start the map 50 (decimal) blocks from the base of the
region, and map an area either equal to the length of the
window--76 (decimal)--or to the length remaining in the
region, whichever is smaller (because the macro call
defaulted the len argument) and align the window on a 64-byte
boundary.

e Return values to the symbolic W.NID (the window's ID) and
W.NBAS (the window's virtual base address).

5.5.2.2 Using High-Level Language to Generate a WDB - You must
create an eight-word, single precision array as the WDB to be
supplied in the subroutine calls:

CALL CRAW (Create Address Window directive)
CALL ELAW (Eliminate Address Window directive)
CALL MAP (Map Address Window directive)
CALL UN MAP (Unmap Address Window directive)
CALL SREF (Send By Reference directive)
CALL RREF (Receive By Reference directive)

A WDB array has the format
the window status word
appropriate bits. See the
the defined bits. The
symbolic offsets.

shown in Table 5-4. You can modify
iwdb(7) by setting or clearing the
list in Section 5.5.2 that describes
bit values are listed alongside the

Notes:

e The contents of bits 8 through 15 of iwdb(l) must normally be
set without destroying the value in bits 0 through 7 for any
directive other than the Create Address Window.

• A call to GETADR (see Section 7.4.4) can be used to set up
the address of the send/receive buffer. For example:

CALL GETADR(IWDB,,,,,,,,IRCVB)

This call places the address of buffer IRCVB in array element
8. The remaining elements are unchanged. The subroutines
SREF and RREF also set this value. If you use the SREF and
RREF routines, you do not need to use GETADR.

5-21

USER DATA STRUCTURES

Table 5-4: WDB Array Format

Word Contents

iwdb(l) Bits 0 through 7 contain the window ID; bits 8
through 15 contain the window's base APR.

iwdb(2) Base virtual address of the window.

iwdb(3) Size of the window in 32-word blocks.

iwdb(4) Region ID.

iwdb(5) Offset length (in 32-word blocks) within the
region at which map begins.

iwdb(6) Length (in 32-word blocks) mapped within the
region.

iwdb(7) Window status word.

iwdb(8) Address of send/receive buffer.

5.5.3 Assigned Values or Settings

The exact values or settings assigned to individual fields within
the RDB or the WDB vary according to each directive. Fields that
are not required as input can have any value when the directive
is issued. Chapter 4 describes which offsets and settings are
relevant for each memory management directive. The values
assigned by the task are called input parameters, whereas those
assigned by the Executive are called output parameters.

5.6 PRIVILEGED TASKS

A privileged task can be mapped to the Executive and the I/0
page; the system normally dedicates six APRs to this mapping
(five for the Executive and primary pool and one for the I/O
page). Use the taskbuilder switch /PR to build a privileged task
mapped to the Executive.

5-22

FAST REMAP OPERATIONS

5. 7 FAST REMAP OPERATIONS

Fast remap operations provide a high-performance method for a
task to change the offset and length mapping of a currently
mapped region. It can increase the performance of your task if
you are normally mapped to a given region and are remapping a
task's window to that region frequently.

For example, you can normally perform a fast remap operation in
approximately one tenth the execution time of a remap using the
MAP$ directive.

Fast remap provides the the same level of region access control
and protection afforded by the MAP$ directive.

5.7.1 Performing a Fast Remap

To perform fast remap operations, you must task build with either
the /FAST_MAP qualifier (on the LINK command), or the /FM
qualifier (on your TKB command line). The qualifier is available
beginning with Version 3.0 Tool Kits.

To actually perform the fast remap, issue an IOT instruction
within your code. The Executive interprets all IOT instructions
as fast remap requests when your task has been built with the
/FAST_MAP or /FM qualifier.

The system returns status values in RO.

Input Parameters

You specify input parameters in user registers RO, Rl, and R2:

RO

RO contains two types of information:

• High bit--This bit, 100000 (octal) is a flag that, if
set, indicates that you have specified a length change
request. If clear, then the flag indicates that you
have not specified a length change request--the
operation uses the existing window length.

• Remaining bits--The remaining bits of RO constitute the
ID of the first APR corresponding to the base of the the
already mapped window to be remapped. See Table 5-5 for
a list of ID values for APRs. Also, see Section 5.7.2
for requirements concerning the window to be mapped.

5-23

Rl

R2

FAST REMAP OPERATIONS

The following sample octal value for RO indicates that you
are making a length change request, and that APR 2
corresponds to the base APR of the window to be remapped.

100020

Rl contains the offset within the region in units of 32
(decimal) word blocks.

R2 is optional; it contains the length of the region segment
to be remapped, also in ~nits of 32. word blocks.

The system preserves R4 and RS, but destroys the initial contents
of RO, Rl, R2, and R3 during the fast remap operation.

Table 5-5: ID Values for APRs

APR ID Value User Mapping
(Octal) Register

0 APR 0 not
allowed

1 10 UISARl

2 20 UISAR2

3 30 UISAR3

4 40 UISAR4

5 50 UISARS

6 60 UISAR6

7 70 UISAR7

5-24

FAST REMAP OPERATIONS

5.7.2 Requirements for Using Fast Remap

Note the following requirements:

• The window to be remapped must already be mapped, either via
the MAP$ directive, or via the CRAW$ directive with WS.MAP=l
in the WDB.

• You cannot change the region access of the original MAP$
request. For example,if you did not map the region for write
access, you cannot write to the region after the fast remap
operation.

• If you specify the length of the region segment to be mapped
as an input parameter, the length cannot be larger than
either of the following:

The window size

The length remaining between the specified offset within
the region and the end of the region

• If the length of the region segment to be remapped is zero
and you specify a length change in a fast remap operation,
the length defaults to the smaller of:

The window size

The length remaining between the specified offset within
the region and the end of the region

• Your task cannot use !OT intructions for purposes other than
fast remap operations if you task build it with the /FAST_MAP
or /FM qualifiers.

5. 7 .3 Status Codes for Fast Remap

The system returns the following status information in RO after a
fast remap operation:

5-25

rs.sue

IE.ALG

IE.NVW

FAST REMAP OPERATIONS

Success.

Your task specified an invalid region offset and
length combination.

Your task specified an invalid ID, which did not
correspond to the base of a previously-mapped
window.

5-26

CHAPTER 6

SYSTEM UTILITY MODULES (POSSUM)

P/OS provides a set of callable routines that perform various
library
of the

-useful functions. The routines reside in a resident
called POSSUM (P/OS System Utility Modules). Some
routines use system tasks called servers to perform
functions.

their

Table 6-1 shows each POSSUM routine, the server it uses (if any),
and the function it performs.

Table 6-1: POSSUM Routines

Routine Server

PROATR None

PROD IR CREDEL

PRO FBI SUMFBI

PRO LOG None

PROTSK INS REM

PROVOL SUMPBB

Description

Gets or sets a file's attributes.

Creates or deletes a directory.

Initializes and checks for bad blocks on
a disk or diskette, and formats hard
disks.

Translates, creates, and deletes a
logical name.

Installs, removes, or fixes a task or
common.

Performs operations related to volume
mount/dismount, bootstrapping, and free
disk space and file headers.

6-1

Another callable system routine, PROLOD, allows you to load a
user-written driver into P/OS. Although its entry point is in
the POSSUM library, we describe PROLOD in the Guide to Writing a
P/OS I/O Driver and Advanced Programmer's Notes.

6.1 LINKING PROGRAMS WITH POSSUM

To use the routines, you must link your program with the POSSUM
resident library.* You can include POSSUM as part of a cluster of
libraries with RMSRES and other libraries. See Chapter 1 and the
RSX-11M/M-PLUS and Micro/RSX Task Builder Manual for details on
cluster libraries.

You can specify either of the options LIBR or CLSTR in your task
build command (.CMD) file to include the POSSUM library in your
task:

• Use the LIBR option to link a task to the POSSUM resident
library:

LIBR=POSSUM:RO

• Use the CLSTR option to link a task to a cluster library,
which includes the POSSUM resident library:

CLSTR=POSSUM,OTHER:RO

The cluster library is null rooted, and thus it does not have
to be a default member of a cluster.

6.1.1 Impact of POSSUM on Your Task Image

Note the following regarding POSSUM'S impact on your task image:

• POSSUM is a position-independent, vectored library.

• The library uses only one APR.

• The impure area associated with POSSUM, which is allocated
from your task's root, is 336 (decimal) bytes.

* When you link programs to run on the Professional, invoke
the Task Builder using the name PAB (Professional
Application Builder) rather than TKB.

6-2

CONVENTIONS FOR CALLABLE SYSTEM ROUTINES

6.2 CONVENTIONS FOR CALLABLE SYSTEM ROUTINES

This section defines the general mechanism used for calling all
the defined system routines in the POSSUM resident library.

6.2.1 PDP-11 RS Calling Convention

The RS calling convention applies not only to the POSSUM
routines, but to the high-level language routines described in
Chapter 8 as well.

NOTE

In addition to using the RS calling convention,
POSSUM preserves all registers, unlike the
high-level language routines described in Chapter
8.

Your program must use register S (RS) to pass the address of
argument list that resides in your task's
argument list itself is of variable length, so
necessary arguments are passed.

data space.
that only

The general MACR0-11 coding sequence of the call follows.

Instruction space coding sequence:

an
The
the

MOV
JSR

#ARGLST,RS
PC,SUB

argument list address to pass
call the subroutine

Data space coding sequence:

ARGLST: .BYTE NUMBER,0

.WORD ADDRl

.WORD ADD Rn

For high-level languages
(such as BASIC-PLUS-2 or
manual or user guide for
examples in this chapter

NUMBER is number of arguments
following in list
address of 1st argument
other arguments
the nth argument

that support the RS calling
FORTRAN-77), see your language
correct syntax. High-level

are written in BASIC-PLUS-2.

sequence
reference
language

In BASIC-PLUS-2, you can invoke the previous MACR0-11 call as
follows:

120 CALL SUB BY REF (ADDR1%, ... ,ADDRn%)

6-3

CONVENTIONS FOR CALLABLE SYSTEM ROUTINES

BASIC-PLUS-2 internally formats an RS calling block and issues
the call to the system routine for you.

Note that all arguments passed to the system routines are by
reference. This means that you are passing the address of the
value in your program to the routine in POSSUM (not the actual
value).

6.2.2 Other Conventions for POSSUM Routines

You must follow certain conventions when calling the POSSUM
routines:

• Every routine shares a common format in that the first
argument (status) is the address of an eight-word Status
Control Block to which the routines return completion status.
The Status Control Block is always 8 words in length, so be
sure to allocate the proper amount of space in your program.

• Every routine requires a request parameter. All of the
routines are multipurpose, and this one-word request
parameter is the method for specifying which options to
execute.

• When specifying either a device or filename string as a
required element in an argument list, always specify the
accompanying size field in bytes. (A byte corresponds to one
ASCII character.)

• A task cannot call a POSSUM routine
some exceptions in the PROTSK
routines are synchronous.

from AST state. With
routine, all of the POSSUM

• POSSUM disables ASTs for the duration of a call. On return
from the call, POSSUM reenables ASTs if the ASTs were enabled
on entry.

6.2.3 Status Control Block Format

The eight-word Status Control Block has the following format:

word 0 Status parameter count. This is the count of the
number of status parameters passed back to the
Status Control Block upon completion of the
routine.

6-4

CONVENTIONS FOR CALLABLE SYSTEM ROUTINES

word 1

word 2 - 7

overall call status.
defined as follows:

This is a one-word value

+1 Success

-1 Directive Status Error. The actual $DSW error
is in word 2.

-2 QIO error. The contents of the two-word QIO
status block are in words 2 and 3.

-3 = RMS-11 error. The RMS-11 STS and STV fields
are returned in words 2 and 3.

-4 Server-specific error. The contents of words
2 through 7 are defined for each routine in
Sections 6.4 through 6.9.

-5 Interface error. An error occured when trying
to interpret the argument block. Currently,
one of the following values would be in word
2:

-1 Feature not supported.

-2 Impure area is invalid, or missing.
Usually indicates that you have not
correctly taskbuilt your program.

-3 Invalid number of parameters (too few or
too many).

-4 Server not installed.

-5 Illegal device specification.

-6 user buffer too small for returned data.

-7 Incompatibility between
and task. Relink task
incompatibility.

As defined above.

NOTE

POSSUM library
to resolve the

words 2 through 7, depending on their use, can
represent integers (such as error codes) or ASCII
strings (such as volume labels in the case of the
PROFBI and PROVOL routines).

6-5

FORMAT OF POSSUM ROUTINE DESCRIPTIONS

6.3 FORMAT OF POSSUM ROUTINE DESCRIPTIONS

Each routine description includes most or all of the following
elements:

Format

The call for each routine shows the name of the subroutine
and the definitions for each of its parameters, given in a
FORTRAN-like CALL statement. Note, however, that not all
high-level languages use the CALL statement to execute
external routines.

Status Codes

Notes

If a routine returns server-specific errors, this section
lists those status codes the server can return.

The notes section contains additional important information.

Example

Each description includes a BASIC-PLUS-2 example of the
routine.

The following sections describe each callable routine in detail.

6-6

PROATR

6.4 PROATR

The PROATR routine provides two forms of
attributes. You can use PROATR to:

accessing file

• Get attributes of a file

• Set attributes of a file

Given a file ID and an attribute list, the GET function uses the
attribute list to determine which attributes to read and where to
store the associated information. Conversely, the SET function
writes the attribute information specified in the attribute list
to the file header.

The PROATR routine does not require a server to execute.

Format

To get or set attributes, call PROATR with the following format:

CALL PROATR(status,request,att_list,file_id,lun)

status

request

att_list

The address of the eight-word Status Control
Block.

The address of a word that contains the
decimal value of the operation to be
performed. The values are:

0 Get file attributes

1 Set file attributes

The address of the attribute list. The
attribute list, terminated by a byte that
contains the value 0, contains a variable
number of two-word entries. Each entry is
associated with an accessible file attribute
as defined in Table 6-2. The maximum number
of entries in the attribute list is 6.

An entry in the attribute list has the
following format:

6-7

file id -

lun

PROATR

.BYTE

.BYTE

.WORD

Attribute code
Size of attribute buffer
Address of attribute buffer

The attribute code and the size of
attribute buffer (derived from Table 6-2)
in the low and high bytes, respectively,
the first word of each entry. For GET,
attribute buffer is initially empty
receives attribute information from the
header. For SET, the contents of
attribute buffer are transferred to the
header.

the
are
of

the
and

file
the

file

The address of a buffer that contains a
FILES-11 File ID (FID). The
identification block is a three-word
that contains the file number, the
sequence number, and a reserved word.

FID: File number
+2: File sequence number
+4: Reserved

file
block
file

The values in the file identification block
can be obtained from the FID field in the NAM
block used by RMS-11.

The address of a word that contains the LUN
number used to obtain the file ID. The LUN
number can be obtained from the LCH field in
the FAB block used by RMS-11.

6.4.1 Status Codes Returned by PROATR

PROATR does not use a server and, therefore, does not return any
server-specific status codes. For other status codes, refer to
Section 6.2.3 (Status Control Block Format).

6-8

PROATR

Table 6-2: Accessible File Attributes

Code
(Octal)

1

2

3

4

5

6

7

11

16

Attribute Buff er
(Octal

File owner 6

Protection 4

File characteristics 2

Record I/0 area 40

File name, type, version number 12

File type 4

Version number 2

Statistics block 12

Placement control 16

NOTE

The file name contained in the header is not
associated with the name in a directory entry
except by convention. Therefore, you cannot use
the file ID to get the file name as specified in
the directory; the name that the ACF returns is
the name contained in the header.

6-9

Size
Bytes)

PROD IR

6.5 PRODIR

The PRODIR routine provides two forms of directory manipulation.
You can use PRODIR to:

• Create a directory on a device

• Delete a directory on a device

The name of the server used to execute PRODIR is CREDEL. This
server must be installed in your system to perform any of
indicated services. Otherwise, PRODIR returns a directive error
in the Status Control Block (see Section 6.2.3).

Format

To create or delete a directory, invoke the PRODIR routine as
follows:

CALL PRODIR(status,request,dir_name,dir_size
[,[dir_owner][,dir_prot]])

status

request

di r _name

dir_size

dir_owner

The address of the eight-word Status Control
Block.

The address of a word that contains the
decimal value indicating the operation to be
performed. The values are:

1 Create directory

2 Delete directory

The address of a buffer that
ASCII device and directory
See the Notes for details.

contains an
specification.

The address of a byte value that contains the
number of characters in file_name.

The
UIC
the
low
and

address of a word that contains the owner
of the directory. The default value is

protection UIC of the calling task. The
byte of the owner UIC word is the member

the high byte is the group.

6-10

dir_prot

Notes

PROD IR

Note that all parameters are positional.
That is, to omit this parameter and specify a
value for the next parameter, you must leave
a placeholder. Specify a comma.

The address of a word that contains the file
protection mask applied to the directory
being created. The protection mask has the
following form:

SYSTEM
OWNER
GROUP
WORLD

Bits
Bits
Bits
Bits

0-3
4-7
8. -11.
12.-15.

A set bit denies access, whereas a cleared
bit allows access. (Note that this is the
opposite of the bit polarity for the GI.PRO
subfunction of the WIMP$ directive.) See the
description of the protection mask in Section
8.88 later in this manual for further
details.

If you omit the dir_prot parameter, the
directory protection is:

SY:R,OW:RWE,GR:R~WO:R

1. In the dir_name argument, the device specification takes the
form of a normal valid device specification.

The device specification DZl: is an example.

2. In the dir_name argument, the directory specification takes
one of the following forms:

UIC Format: [ggg,mmm] such as [301,3]

or

Alphabetic Format: [name] such as [WILEY]

or

Numeric Format: [gggmmm] such as [301003]

where:

6-11

PROD IR

ggg Group

mmm Member

name Any alphabetic type directory name

You cannot mix UIC format with either alphabetic or numeric
format.

6.5.1 Status Codes Returned by PRODIR

PRODIR does not return any server-specific status codes. For
other status codes, refer to Section 6.2.3 (Status Control Block
Format).

6.5.2 PRODIR Example

The following BASIC-PLUS-2 example shows the use of PRODIR to
create and delete directories.

10 ! Program to Create/Delete directories
DIM Status%(7) ! eight-word status array
DIM Text$(2)

20 Text$(1) = "Create"
Text$(2) = "Delete"
PRINT "Create or Delete (C/D) : ";
LINPUT #0,Choice$ get choice
Request% = 1 ! default to create
IF LEFT$(Choice$,1) "C" THEN GOTO 100
ELSE IF LEFT$(Choice$,1) <> "D" THEN GOTO 20

ELSE Request% = 2

100 PRINT "Name of Directory to"; &
Text$(Request%); " (ddn: [dirspec]) : ";

LINPUT #0,Dfile$! get directory name
CALL Prodir BY REF (Status%(), Request%, Dfile$, LEN(Dfile$))
FOR K = 0 TO 7 ! print status array after call
PRINT "Status"; K, Status%(K)
NEXT K

999 END

6-12

PRO FBI

6.6 PROFBI

The PROFBI routine provides the mechanism for preparing media for
use on the system. The PROFBI routine allows you to:

• Format a volume

e Check a volume for bad blocks

e Initialize a volume

Any call to the PROFBI routine destroys data on the specified
disk.

Format

To format or initialize a volume, or to check it for bad blocks,
invoke the PROFBI routine with the following arguments:

CALL PROFBI(status,request,dev_spec,dev_size[,att_list,att_size])

status

request

The address of the eight-word Status Control
Block. When a volume is successfully
initialized (STATUS= +1), the last six words
of the Status Control Block contain the
volume label expressed as an ASCII string.

The address of a word that contains the
decimal value indicating the operation to be
performed. The values are:

1 Format a volume (hard disk only)

2 Check a volume for bad blocks

4 Initialize a volume

NOTE

A bad block request also formats the
hard disk.

6-13

dev_spec

dev_size

att_list

att_size

Notes

PRO FBI

The address of a buffer
character string which
specification of the volume
initialized, or checked for

that contains a
is the device

to be formatted,
bad blocks.

The address of a word that contains the
number of characters in dev_spec.

The address of the
attribute list is
attributes (see Notes).
PROFBI are:

1 Volume label

2 ACS buffer
space)

attribute list. The
a buffer of legal

Legal attributes in

(allocate checkpoint

The address of a word that contains the total
size of the attribute list.

1. The minimum length of dev_spec is three characters--a
two-character device mnemonic followed by a colon.

If you are initializing a volume, part of the device
specification can be the volume label, which can be up to 12
characters (in the form DWl:SPECTROSCOPY). You can specify
the volume label in the attribute list instead. If you
specify the volume label in both the dev_spec argument and
the att_list argument, the dev_spec argument overrides the
att_list argument.

2. If you omit the volume label when initializing a volume,
PROFBI creates a default volume label using the date and time
the volume was initialized. The default volume label format
is:

DDMMMYYHHMMS

3. The argument dev_spec can also be a logical name string. The
logical name string must end with a colon. The number of
logical name translations cannot exceed eight.

4. The att_list argument is the means of specifying optional
parameters. The attribute list for PROFBI is simply a buffer
of legal attributes. The high byte in the first word of the
attribute list specifies the attribute type. The low byte
specifies the size of the attribute list buffer in bytes.

6-14

PRO FBI

You can use the attribute list as an alternative means of
specifying a volume label. That is, you can omit the volume
label in the dev_spec argument and specify it in the
att_list. However, if you specify the volume label in both
arguments, PROFBI overrides the att_list specification with
the label specified in dev_spec.

5. The attribute list for PROFBI also contains two additional,
contiguous words as the Allocate Checkpoint Space (ACS)
buffer. The high byte in the first word of the ACS buffer
(2) identifies it as the ACS buffer. The low byte in the
buffer specifies the number of bytes in that buffer. The
second word in the ACS block identifies the number of blocks
in the checkpoint file.

6. Each attribute list argument must begin on a word boundary.

7. You must check a volume for bad blocks, if you have not
already done so, before you can initialize it.

6.6.1 Status Codes Returned by PROFBI

The server-specific status codes returned by PROFBI are listed in
Table 6-3.

• A success status code (+1) is returned in word 1 (second
word) of the Status Control Block. In that case, for PROFBI,
words 2 through 7 of the Status Control Block contain the
volume label expressed as an ASCII string.

• A server-specific error is indicated with the value -4 being
returned in word 1 of the Status Control block. In addition,
the particular error code value (see Table 6-3) is returned
in word 2.

• The location of status codes from other sources is specified
in Section 6.2.3.

6-15

PRO FBI

Table 6-3: PROFBI Status Codes (Server Specific)

Status Code Description
(Decimal)

+1 Success

-1 Illegal device

-2 Device not in system

-3 Failed to attach device

-4 Block zero bad--disk unusable

-5 At least one LBN (0 through 25) is bad (cannot
initialize)--disk unusable

-6 Bad block file overflow

-7 Unrecoverable error

-8 Device write-locked

-9 Device not ready

-10 Failed to write bad block file

-11 Privilege violation

-12 Device is an alignment cartridge

-13 Fatal hardware error

-14 Allocation failure

-15 I/O error sizing device

-16 Allocation for sys file exceeds volume limit

-17 Homeblock allocate write error

-18 Bootblack write error--disk unusable

-19 Index file bitmap I/O error

-20 Bad block header I/O error

6-16

Status Code
(Decimal)

-21

-22

-23

-24

-25

-26

-27

-28

-29

-30

-31

-32

-33

-34

-35

-36

-37

-38

-39

-40

-41

-42

PRO FBI

Description

MFD file header I/O error

Null file header I/O error

Checkpoint file header I/O error

MFD write error

Storage bitmap file header I/0 error

Failed to read bad block descriptor file

Volume name too long

Unrecognized disk type

Preallocation insufficient to fill first index
file header

Preallocated too many headers for single header
index file

Preallocation insufficient to fill first and
second index file headers

Bad block limit exceeded for device

Driver not resident

Bitmap too large--increase cluster factor

Storage bitmap I/0 error

Homeblock I/O error

Index file header I/O error

Dismount of device failed

Cannot mount device foreign

Cannot mount device FILES-11

Cannot format DZ--no driver support

Cannot detach device

6-17

Status Code
(Decimal)

Description

PRO FBI

-43 Checkpoint file header overflow--specify smaller
checkpoint file

-44

-45

Nonalphanumeric character(s) in volume
name--invalid

Cannot format DZ--no hardware support

6.6.2 PROFBI Example

The following BASIC-PLUS-2 example shows the use of PROFBI to
check a volume for bad blocks and then initialize the volume.

10 ! Sample program: PROFBI bad blocking and initialization
MAP (Sarray) INTEGER Stat(7) ! 8 word status block
MAP (Sarray) BYTE Volname(15) ! BYTE mapping of Status
PRINT "Load floppy into DZ1:. Press RESUME to continue."
CALL Wtres BY REF()

CALL Profbi BY REF(Stat(),
GOSUB 20

CALL Profbi BY REF(Stat(),
GOSUB 20

2%, "DZl:", 4%, "", 0%)
print status returned

4%, "DZl:APPLDATA", 12%, "",
! print status returned

! Translate and print volume label
Volumelabel$ = ""
FOR I% = 4% TO 15%

Volumelabel$ = Volumelabel$ + CHR$(Volname(I%))
NEXT I%
PRINT Volumelabel$
GOTO 99

20 Subroutine to print status returned from PROFBI
FOR I% = 0% TO 7%

PRINT "Status"; I%; Stat(I%)
NEXT I%

RETURN

99 END

6-18

0%)

PRO LOG

6.7 PROLOG

The PROLOG routine provides five forms of
manipulation. You can use PROLOG as follows:

logical

• Create a logical name for a device specification

e Delete a logical name for a device specification

e Translate a logical name to a device specification

• Set the default directory and/or device

e Show the default directory and device

CAUTION

Do not use this routine to create or delete
logical or directory names that are used by the
P/OS system, such as DW001: and BIGVOLUME:.
(See the section on system logical names in the
Tool Kit User's Guide.)

6. 7.1 Create or Translate a Logical Name

Format

name

To create or translate a logical name, invoke the PROLOG routine
with the following arguments:

CALL PROLOG(status,request,logname,logname_size,eguiv,equiv_size)

status

request

The address of the eight-word Status Control
Block.

The address of a word that contains the
decimal value indicating the operation to be
performed. The values are:

3 Create logical

4 Translate logical

6-19

logname

logname_size

equiv

equiv_size

PRO LOG

The address of a buffer that contains an
ASCII string (which can contain alphanumeric
characters only, 1 byte/character). Refer to
the Tool Kit User's Guide for P/OS
conventions regarding logical names, device
names, and reserved names.

The address of a byte value that contains the
number of characters in logname.

The address of a buffer that contains an
equivalence string. It can be any string up
to 255 characters in length.

For CREATE: The address of a byte value that
contains the number of characters in equiv.
For TRANSLATE: The address of a byte value
that contains the maximum number of
characters in the equiv buffer.

For the TRANSLATE function, the equiv argument is an output
argument returned by PROLOG. The length of the string returned
in the equiv buffer is returned in word 2 of the status block.

N~e

PROLOG does the following by default:

• It changes any lowercase logical name value you specify to
uppercase. This is because RMS and the FllACP expect logical
names to be uppercase.

• It specifies a default modifier value of 0. See Section 2.2
for details.

• For a translate operation, PROLOG specifies a default inhibit
mask of 0. That is, the system searches all tables for the
equivalence value.

• For a create or delete operation, PROLOG specifies that the
operation be performed on the LT.USR table only.

6-20

PRO LOG

6. 7 .. 2 Delete a Logical Name and Set/Show Default

Format

To delete a logical name or to set or show the default device
and/or directory, invoke the PROLOG routine with the following
arguments:

CALL PROLOG(status,request,logname,logname_size)

status

request

logname

logname_size

Notes

The address of the eight-word Status Control
Block.

The address of a word that contains the
decimal value indicating the operation to be
performed. The values are:

1 Set default

2 Show default

5 Delete logical

The address of a buffer that contains an
ASCII string (1 byte/character) which can
contain alphanumeric characters only. The
user must have already created the logname.

For SET and DELETE, the address of a byte
value that contains the number of characters
in logname. For SHOW, the address of a byte
value that contains the maximum number of
characters in the logname buffer.

1. When used to set the default device or directory, PROLOG does
not check whether or not the device or directory does in fact
exist. No error or status code is returned if the device or
directory does not exist.

2. For the SET DEFAULT function, the logname string can contain
a directory specification of the form:

USERDISK:[DIRECTORY]

This is a logical
appended to it. A
following forms:

name with a directory specification
directory specification has one of the

6-21

PRO LOG

UIC Format: [ggg,mmm] such as [301,3]

or

Alphabetic Format: [name] such as [WILEY]

or

Numeric Format: [gggmmm] such as [301003]

where:

ggg Group

mmm Member

name Any alphabetic type directory name

You cannot mix UIC format with either the alphabetic or
numeric format.

3. When issuing a call for the SET DEFAULT function, you can
specify a device, a directory, or both. If you specify both,
then both the default device and directory are changed. If
you specify only one, the other does not change.

CAUTION

The default directory and device belong to
the user, not to your application. We
strongly suggest that you prompt the user for
the new default values, and that you change
the values back to their original state
before exiting.

4. For both the DELETE and SET DEFAULT functions, there is no
output argument; PROLOG returns the call status in the Status
Control Block. For SET DEFAULT, PROLOG does not check
whether the device or directory does in fact exist. No error
status code is returned if the device or directory does not
exist. PROLOG uses the SDIR$ directive, which also does not
check whether the directory exists.

5. For the SHOW DEFAULT function, logname is an output argument
that contains the default directory string. The length of
the string returned in logname is returned in word 2 of the
status block.

6-22

PRO LOG

6. 7 .3 Status Codes Returned by PRO LOG

Most error returns from PROLOG are Directive Status
CLOG$, DLOG$, and TLOG$ logical name directives
The numerical equivalents of the status codes
appendixes).

errors (see
in Chapter 8.
are in the

The server-specific status codes returned by PROLOG are listed in
Table 6-4.

• A success status code (+1) is returned in word 1 (second
word) of the Status Control Block.

• A server-specific error is indicated with the value -4 being
returned in word 1 of the Status Control block. In addition,
the particular error code value {see Table 6-4) is returned
in word 2.

• The location of status codes from other sources is as
specified in Section 6.2.3.

Table 6-4: PROLOG Status Codes (Server Specific)

Status Description
Code

+1 Success

-1 Error in parsing the set default string. Either a
badly formed specification was passed or something
other than a device or directory was found in string.

-2 Cannot determine type of service requested.

6.7.4 PROLOG Examples

The following BASIC-PLUS-2 example shows the use of PROLOG to
create and then translate a logical name.

10 Sample program to create and then translate a logical

6-23

DIM Stat%(7%)
Req% = 3%
Logname$
Logsize%

'DISKETTE1'
LEN(Logname$)
'DZ 1 : '
LEN(Eqv$)

Eqv$
Eqvsize%

PRO LOG

set up status array
request is CREATE
logical name to create
logical name length
equivalence to create
equivalence length

CALL Prolog BY REF(Stat%(),Req%,Logname$,Logsize%,Eqv$,Eqvsize%)
GOSUB 20 ! print returned status

PRINT 'New logical name
Req% 4%
Eqv$ = SPACE$(40%)

'; Logname$
set request to translate

l clear buffer to receive equivalence

CALL Prolog BY REF(Stat%(),Req%,Logname$,Logsize%,Eqv$,LEN(Eqv$))
GOSUB 20 ! print returned status
PRINT 'Equivalence name = '; Eqv$

GOTO 99

20 ! Subroutine to print status returned from PROLOG calls
FOR I% = 0% TO 7%

PRINT 'status'; I%; , '; Stat%(I%)
NEXT I%
RETURN

99 END

The next BASIC-PLUS-2 example shows the use of PROLOG to delete a
logical, show the default directory, and set a current directory.

10 Sample program to delete a logical, show default directory, set
directory, and set the current directory.

DIM Stat%(7%)
Logname$ = 'DISKETTE1'
Req% = 5%

set up status array
delete an existing logical
request = delete

CALL Prolog BY REF(Stat%(), Req%, Logname$, LEN(Lognarne$))
GOSUB 20 ! print returned status

PRINT 'Logical deleted
Req% = 2%
Showdir$ = SPACE$(40%)
Length% = LEN(Showdir$)

'; Logname$
request = show default
buffer for default directory
length of buffer

CALL Prolog BY REF(Stat%(), Req%, Showdir$, Length%)
GOSUB 20 ! print returned status

PRINT 'Current default directory = ';TRM$(Showdir$)

6-24

PRO LOG

Req% = 1% ! request = set default
Dirname$ = 'USERDISK:[USERFILES]' ! new default directory

CALL Prolog BY REF(Stat%(), Req%, Dirname$, LEN(Dirname$))
GOSUB 20 ! print status returned

PRINT 'New default directory = ';Dirname$
GOTO 99

20 ! Subroutine to print status returned from PROLOG
FOR I% = 0% TO 7%

PRINT 'Status'; I%; , , i Stat%(I%)
NEXT I%
RETURN

99 END

6-25

PROTSK

6.8 PROTSK

The PROTSK routine provides four forms of task manipulation. You
can use PROTSK to:

• Install a task or static region

• Remove a task or static region

• Fix an installed task or region in memory

• Install, run, and remove an offspring task through a parent
task

In addition, you can specify that an installed task not be
aborted or removed if the application exits or if the user
presses INTERRUPT/DO at the terminal. This feature, called
NOREMOVE, can be used, for example, to ensure that a
noninteractive background task, such as a file transfer, is not
aborted inadvertently.

CAUTION

Use care with the NOREMOVE option. If the name
of the task is the same as that used by another
application which is to be run subsequently, the
second task by that name will not be installed
unless the first is removed.

Also, unless you specify the install/run/remove
option, the only means of removing a task
installed with the NOREMOVE option is either by
powering down the system or by running an
application that, knowing the task's name, can
remove it. For example, you can remove the task
with the DCL REMOVE command.

See the descriptions of the REQUEST argument for
Install a Task and for Install/Run/Remove a Task.

The name of the server used to execute PROTSK is INSREM. This
server must be installed in your system to perform any of
indicated services. Otherwise, PROTSK returns a directive error
in the Status Control Block. (See Section 6.2.3.)

6-26

PROTSK

6.8.1 Install a Task or Static Region

Format

To install a task or static region, call the routine PROTSK with
all the following arguments:

CALL PROTSK(status,request,task_name,file_name,file_size)

status

request

The address of the eight-word Status Control
Block.

The address of a word that
decimal value indicating the
manipulation to be performed:

contains the
type of task

1 Install a task or region.

4 = Fix a task or region.

8 = Region is read only.

32. Install task or region with name
supplied in the task_name argument.

64. = NOREMOVE. The task will not be
aborted or removed if the application
exits or if the user presses
INTERRUPT/DO. In addition the task
will not be removed upon exit. (see
CAUTION at beginning of PROTSK
section).

128. WRITEBACK. This option forces the
system to checkpoint a read-write
common back to its own task image
rather than to the system checkpoint
file. By default, if you do not
specify WRITEBACK, the system
checkpoints a read-write common only
to the system checkpoint file.
(Applies only to P/OS V3.0 systems or
later.)

The WRITEBACK option additionally
forces the read-write common to be
written back when removed.

6-27

task_name

file_name

file size

PROTSK

If you require more than one task
manipulation function, add the decimal values
of each function together to produce a single
decimal value.

For example, to install a task and fix it in
memory with your Radix-50 task name, specify
the request value as 37. Obtain the request
value by adding the values for install (1),
fix (4), and name supplied in the task_name
argument (32).

The address of a two-word Radix-50 task name.
Upon completion, PROTSK returns the two-word
Radix-50 installed task name at this
location.

If you selected
option (install
task_narne), then
name in the two
calling PROTSK.

value 32 as the request
task with name supplied in
supply the Radix-50 task
words at the address before

The address of the buffer that contains an
ASCII file specification of the task image or
static region to be installed.

The address of a value describing the number
of characters in file_name.

6.8.2 Remove a Task or Static Region

Format

To remove a task or static region, call the routine PROTSK with
all of the following arguments:

CALL PROTSK(status,request,task_name)

status

request

The address of the eight-word Status Control
Block.

The address of a word that contains the
decimal value indicating the operation to be
performed:

2 = Remove

6-28

task_name

PROTSK

16. Entity to be removed is a static
region

If you are removing a static region, specify
the sum of the two options (18) as the value
of the request.

The address of a two-word Radix-50 task name
that identifies the task or static region to
be removed.

6.8.3 Fix a Task or Region in Memory

Format

To fix an installed task or region in memory, call the routine
PROTSK with the following arguments:

CALL PROTSK(status,request,task_name)

status

request

task_name

The address of the eight-word Status Control
Block.

The address of a word that
decimal value indicating the
manipulation to be performed:

4 = Fix a task or region

contains the
type of task

16 Entity to be fixed is a region

If you are fixing a region, specify the sum
of the two options (20.) as the value of the
request.

The address of a two-word Radix-50 task name
that identifies the task or region to be
fixed in memory.

6.8.4 Install/Run/Remove an Offspring Task

By requesting install/run/remove, a parent task can install an
offspring task, have it run immediately, and have it removed upon
exit. Install/run/remove can be executed in two ways, which can
be compared to either calling the offspring task or chaining to
the offspring task. The distinction between CALL and CHAIN
install/run/remove is as follows:

6-29

PROTSK

• With CALL the parent task initiates execution of the
offspring task and still continues its own execution. While
the offspring is being installed and started, the parent is
stopped. After the install/run/remove request has been
completed, the parent can continue its own execution.

• With CHAIN the parent task initiates execution of the
offspring task, passes offspring information, and then exits.
If the offspring has been installed and initiated
successfully, the parent exits. Otherwise, an error
condition is returned to the parent, and the parent does not
exit. The parent must perform any necessary cleanups, such
as closing files, before chaining to the offspring.

Format

To use install/run/remove, call the routine PROTSK with the
following arguments:

CALL PROTSK(status,request,task_name,file_name,file_size
[,cmd_line,cmd_size] [,event_flag]
[,exit_status])

The arguments are defined below. Use all of the arguments that
are not enclosed in brackets. The arguments enclosed in brackets
are optional, with the following provisions:

• If none of the optional arguments are used, they can all be
omitted.

• Use the arguments event_flag and exit_status only with the
CALL install/run/remove option.

• The optional arguments are positional. If you use event_flag
and/or exit_status but do not use cmd_line, then the word in
cmd_size must have the value 0.

The arguments are defined as follows:

status

request

The address of the eight-word Status Control
Block.

The address of a word that
decimal value indicating the
manipulation to be performed:

contains the
type of task

3 = Install/run/remove a task

6-30

task_name

PROTSK

32. Install task with name supplied in
the task_name argument.

64. NOREMOVE. The task will not be
aborted or removed if the
application exits or the user
presses INTERRUPT/DO. However, the
task will be removed upon exit.
(See CAUTION at beginning of PROTSK
section.)

128. = To select the CALL install/run/
remove option, add 128 to the
decimal value in the request word.
To select CHAIN, disregard this
value. (CHAIN is the default
option.)

If you require more than one task
manipulation function, add the decimal values
of each function together to produce a single
decimal value.

For example, to select install/run/remove
with the CALL option and your Radix-50 task
name, specify the request value as 163.
Obtain the request value by adding the values
for install/run/remove (3), name supplied in
the task_name argument (32), and the CALL
option (128).

When specifying install/run/remove, it is
illegal to also specify "Fix a task in
memory" or "Install a common or library".

The address of a two-word Radix-50
(offspring) task name. Upon completion,
PROTSK returns the two-word Radix-50
installed task name at this location.

If you selected
option (install
task_name), then
name in the two
calling PROTSK.

6-31

value 32 as the request
task with name supplied in
supply the Radix-50 task
words at the address before

file_name

file_si ze

cmd_line

cmd_size

event_flag

exit_status

PROTSK

The address of the buffer that contains an
ASCII file specification of the (offspring)
task image to be installed.

The address of value describing the number of
characters in file_name.

(Optional.) The address of a buffer that
contains a command line to be queued to the
offspring task.

The address of a value describing the number
of characters in cmd_line. The maximum
number of characters is 255 (decimal). If
cmd_line is not specified, then the word in
cmd_size must have the value 0.

(For CALL option only.) The event flag to be
cleared on issuance and set when the
offspring task exits or emits status.

(For CALL option only.) The address of an
eight-word status block to be written when
the offspring task exits or emits status.

Word 0 Offspring task exit status

Word 1 System abort code

Word 2-7 Reserved

NOTE

The exit status block defaults to one
word. To use the eight-word exit
status block, you must specify the
logical OR of the symbol SP.WX8 and
the event flag number in the
EVENT_FLAG parameter above.

6.8.5 Status Codes Returned by PROTSK

The server-specific status codes returned by PROTSK are listed in
Table 6-5.

6-32

PROTSK

• A success status code (+1) is returned in word 1 (second
word) of the Status Control Block.

• A server-specific error is indicated with the value -4 being
returned in word 1 of the Status Control block. In addition,
the particular error code value (see Table 6-5) is returned
in word 2.

• The location of status codes from other sources is as
specified in Section 6.2.3.

Table 6-5: PROTSK Status Codes (Server Specific)

Status Description
Code

+ 1 Success.

1 Task name in use.

- 2 File not found.

- 3 Specified partition too small.

- 4 Task and partition base mismatch.

- 7 Common block length mismatch.

- 8 Common block base mismatch.

- 9 Too many common block requests.

-11 Checkpoint area too small.

-13 Not enough APRs for task image.

-14 File not a task image.

-15 Base address must be on 4k boundary.

-16 Illegal first APR.

-18 Common block parameter mismatch.

6-33

Status
Code

-20

-22

-23

-24

-29

-30

-31

-32

-33

-34

-35

-36

-37

-39

-40

-41

-43

-44

-45

-46

-47

-48

-49

-50

PROTSK

Description

Common block not loaded.

Task image virtual address overlaps common block.

Task image already installed.

Address extensions not supported.

Illegal UIC.

No pool space.

Illegal use of partition or region.

Access to common block denied.

Task image I/0 error.

Too many LUNs.

Illegal device.

Task may not be run.

Task active.

Task fixed.

Task being fixed.

Region attached or referenced by an installed task.

Common/task not in system.

Region or common fixed.

Cannot do receive from requester.

Cannot attach to requester.

Invalid request.

Cannot return status.

Error encountered on file open operation.

Error encountered on file close operation.

6-34

PROTSK

Status
Code

Description

-51

-53

-54

Cannot get file LBN to process label blocks.

Unable to create or map to region (indicates resource
allocation problem).

Versions of P/OS later than 2.0A do not support
resident headers. All tasks are installed with
external headers. You must not build your task using
the /-XH task builder qualifier for versions of P/OS
after 2.0A.

-55 Cannot install a common that has been built with the
EXT'I'SK task builder option. IMPORTANT: .r:.. common using
the EXTTSK ion is likely to corrupt the disk from
which it is installed.

-56 Cannot fix a prototype task.

6.8.6 PROTSK Example

The following BASIC-PLUS-2
install a task.

e shows the use of PROTSK to

10 ! Sample program to install a task using PROTSK.

DIM status%(7),taskn%(1)
type% = 1
tfile$="dz1:[sks]payrolll.tsk"

CALL protsk BY REF (status%(), &
type%, &

taskn%(), &

tfile$, &

LEN(tfile$))

!Status block
!Request = install
!file to install

GOTO 99 IF status%(1) = 1 !Proper install?
PRINT "Error--task did not install properly" \ STOP

99 END

6-35

PROVOL

6.9 PROVOL

The PROVOL routine provides several volume-related functions.
You can use PROVOL to:

• Mount or dismount a volume

• Plug the bootblack, or plug the bootblack and bootstrap a
volume

• Unplug the bootblack

• Bootstrap a volume

• Get the free space

e Get the free space and file header usage

• Establish a secondary boot device

6.9.1 Mount/Dismount

Format

To mount or dismount a volume, invoke the PROVOL routine with the
following arguments:

CALL PROVOL(status,request,dev_spec,dev_size,[att_list,att_size])

status

request

The address of the eight-word Status Control
Block. When mounting a nonforeign volume,
the last six words of the Status Control
Block contain the volume label expressed as
an ASCII string, provided that the operation
is successful (status= +1).

The address of a word that contains the
decimal value indicating the operation to be
performed. The values are:

0 Mount a volume

1 Mount a foreign volume

2 Dismount a volume

6-36

dev_spec

dev_size

att_list

att_size

PROVOL

The address of a buffer that contains a
character string that is the device
specification of the volume to be mounted or
dismounted. All letters in the string must
be uppercase.

Part of the device specification can be the
volume label, which can be up to 12
characters. If you omit the volume label
from dev_spec, PROVOL by default gets the
label from the specified disk. If you
specify a volume label in a dev_spec
argument, the specified label must match the
label on the volume; otherwise the operation
fails.

The address of a word that contains the
number of characters in dev_spec.

The address of the attribute list. The
att_list is the means of specifying optional
parameters. The attribute list for
mount/dismount is simply a buffer of valid
attributes. The high byte in the first word
of the attribute list specifies the attribute
type. The low byte specifies the size of the
buffer in bytes.

You can use the attribute list as an
alternative means of specifying a volume
label. That is, you can omit the volume
label in the dev_spec argument and supply it
in the att_list argument. However, if you
specify the volume label in both arguments,
PROVOL overrides the att_list specification
with the label specified in dev_spec.

The valid attribute for mount/dismount is:

1 = Volume label

The address of a word that contains the size
of the attribute list.

6-37

PROVOL

6.9.2 Bootstrap a Volume

Format

To bootstrap a volume, call PROVOL with the following arguments:

CALL PROVOL(status,request,dev_spec,dev_size)

status

request

dev_spec

dev_size

The address of the eight-word Status Control
Block.

The address of a word that contains the
decimal value indicating the operation to be
performed. The value is:

8 = Bootstrap a Volume

The address of a
character string
specification.

buffer
that

that contains a
is the device

The address of a word that contains the
number of characters in dev_spec.

6.9.3 Plug Bootblock/Plug Bootblock and Boot

Format

To plug the bootblack, or plug the bootblack and boot the volume,
call PROVOL with the following arguments:

CALL PROVOL(status,request,dev_spec,dev_size)

status

request

dev_spec

The address of the eight-word Status Control
Block.

The address of a word that contains the
decimal value indicating the operation to be
performed. The values are:

9 Plug a bootblack on a volume

10. Plug a bootblack on a volume
and bootstrap the volume

The address of a buffer that contains a
character string that is the device,
directory and filename of the system image to

6-38

dev_size

PROVOL

be used to plug the bootblack. You must
supply the device; the directory and filename
are optional. The default file specification
is [ZZSYS]POS.SYS.

The address of a word that contains the
number of characters in dev_spec.

6.9.4 Unplug a Bootblock

Format

To unplug the bootblack on a volume, call PROVOL with the
following arguments:

CALL PROVOL(status,request,dev_spec,dev_size)

status

request

dev_spec

dev_.size

The address of the eight-word Status Control
Block.

The address of a word that contains the
decimal value indicating the operation to be
performed. The value is:

13. = Unplug a bootblack from a volume

The address of a
character string
specification.

buffer
that

that
is the

contains
device

The address of a word that contains the
number of characters in dev_spec.

6.9.5 Get Free Space

Format

To determine the free space available on a volume, call PROVOL
with the following arguments:

CALL PROVOL(status,request,dev_spec,dev_size)

status The address of the eight-word Status Control
Block.

6-39

request

dev_spec

dev_size

PROVOL

The address of a word that contains the
decimal value indicating the operation to be
performed. The value is:

14. =Get free space on a volume

The address of a
character string
specification.

buffer
that

that contains a
is the device

The address of a word that contains the
number of characters in dev_spec.

When you request free space, PROVOL returns the number of free
blocks in words 2 and 3 of the Status Control Block.

As shown in Table 6-6, the number of free blocks is contained in
three bytes. The low byte of word 2 of the Status Control Block
contains the high-order word of the value, and word 3 contains
the low-order word of the value.

Table 6-6: Get Free Space Status Block

Status Word Contents

2 Total free disk blocks, high-order byte

3 Total free disk blocks, low-order word

6.9.6 Get Free Space and File Header Usage

Format

To determine the free space and file header usage on a volume,
call PROVOL with the following arguments:

CALL PROVOL(status,request,dev_spec,dev_size)

status The address of the eight-word Status Control
Block.

6-40

request

dev_spec

dev_size

PROVOL

The address of a word that contains the
decimal value indicating the operation to be
performed. The value is:

15. = Get free space and file header
usage

The address of a
character string
specification.

buffer that
that

contains a
is device

The address of a word that contains the
number of characters in dev_spec.

When you request free space and file header usage, PROVOL returns
the number of free blocks, the largest number of contiguous free
blocks, the maximum number of file headers, and the total free
file headers in words 2 through 7 of the Status Control Block.
Table 6-7 illustrates the Status Control Block.

Table 6-7: Get Free Space and File Headers Status Block

Status Word Contents

2 Total free disk blocks, high-order byte

3 Total free disk blocks, low-order word

4 Total contiguous blocks, high-order byte

5 Total contiguous blocks, low-order word

6 Maximum number of file headers

7 Total free file headers

The number of free blocks and the largest number of contiguous
blocks are three bytes each, the low byte of the first word being
the high-order byte of the value, the second word being the
low-order word of the value.

Note that this call requires many disk accesses and takes a
time to complete. If you only want to get the number of
blocks, we recommend that you use the get free space PROVOL
described in the previous section.

6-41

long
free
call

PROVOL

6.9. 7 Establish Secondary Boot Device

Format

The system always attempts to
device--the floppy drives--before
device, normally the hard disk.
secondary boot device, call PROVOL

boot from the primary boot
searching for a secondary boot
To establish an alternative
with the following arguments:

CALL PROVOL(status,request,device_id,unit_num,slot_num)

status

request

device_id

unit_num

slot_num

The address of the eight-word Status Control
Block.

The address of a word that contains the
decimal value indicating the operation to be
performed. The value for establishing a
secondary boot device is:

16. = Establish a secondary boot device

The address of a buffer that contains a
one-word integer value representing the
device identification number of the device
you are establishing as the secondary boot
device. Table C-2 in Appendix C contains a
list of device ID numbers.

The address of a one-word integer value
representing the physical unit number of the
device you are establishing as the secondary
boot device. Although the system ignores
this value on a Professional 350 system (it
is significant on a Professional 380), you
must always supply it.

The address of a 1-byte integer representing
the physical slot number of the secondary
boot device. The slots are numbered from 0
through 7. Although the system ignores this
value on a Professional 350 system, (it is
significant on a Professional 380), you must
always supply it.

6-42

PROVOL

6.9.8 Note For PROVOL

The argument dev_spec can be a logical name string. In this
case, the logical name string must end with a colon. The number
of logical name translations cannot exceed eight.

6.9.9 Status Codes Returned by PROVOL

The server-specific status codes returned by PROVOL are listed in
Table 6-8.

• A success status code (+1) is returned in word 1 (the second
word) of the Status Control Block. In that case, for
mount/dismount operations only, words 2 through 7 of the
Status Control Block contain the volume label expressed as an
ASCII string.

e A server-specific error is indicated by the value -4 returned
in word 1 of the Status Control Block. In addition, the
particular error code value (see Table 6-8) is returned in
word 2.

e A QIO error is indicated by the value -2 returned in word 1
of the Status Control Block. As usual, the actual QIO error
is returned in word 2 of the Status Control Block. However,
if the QIO error is IE.ABO, then word 3 of the Status Control
Block contains one of the subcodes listed in Table 6-9.
These subcodes provide further information on the mount or
dismount failure.

• The location of status codes from other sources is as
specified in Section 6.2.3.

Table 6-8: PROVOL Status Codes (Server Specific)

Status Code Description

+1 Success

-1 File is not a system image

-2 Invalid boot device

6-43

PROVOL

Table 6-9: IE.ABO Subcodes for PROVOL Mount/Dismount Failure

Decimal Octal Description

+07. 000007 Syntax error

+10. 000012 Home block not found

+11. 000013 Wrong volume

+12. 000014 Checkpoint file still active

+14. 000016 Volume already marked for dismount

+15. 000017 Volume not mounted

+16. 000020 Volume already mounted FILES-11

+17. 000021 Volume already mounted foreign

6.9.10 PROVOL Example

The following BASIC-PLUS-2 example shows the use of PROVOL to
mount and dismount a volume.

10 Sample program to test PROVOL requests.
MAP (Sarray) INTEGER Stat(7)
MAP (Sarray) BYTE Volname(15)

Device$= 'DZ1:' device specification
Devlen% = LEN(Device$) specification size
PRINT 'Insert floppy into DZ1:.'
PRINT 'Press RESUME to DISMOUNT.'
CALL Wtres BY REF() POSRES Wait for Resume

Req% = 2% dismount request
must first dismount
because closing door
causes automatic mount

CALL Provol BY REF(Stat(), Req%, Device$, Devlen%, '' ,0%)

GOSUB 20 ! print returned status

6-44

PROVOL

Req% = 0% mount request
PRINT 'Press RESUME to MOUNT.'
CALL Wtres BY REF() POSRES Wait for Resume

CALL Provol BY REF(Stat(), Req%, Device$, Devlen%, '' ,0%)

GOSUB 20
Volumelabel$ ""

print returned status

FOR I% = 4% TO 15% translate ASCII volume label
Volumelabel$ = Volumelabel$ + CHR$(Volname(I%))

NEXT I%
PRINT 'Label of mounted volume: ',Volumelabel$

Req% = 9%
Device$ =

! plug bootblock request
"DZl:[ZZSYS]BOOT.SYS"

Devlen% = LEN(Device$)
PRINT 'Press RESUME to PLUG
CALL Wtres BY REF()

device specification
! this file must already exist.
! size of device specification

BOOTBLOCK. '
! POSRES Wait for Resume

CALL Provol BY REF(Stat(), Req%, Device$, Devlen%, '', 0%)

GOSUB 20 print returned status
IF Stat(l) <> 1%

THEN GOTO 99 ! plug bootblock unsuccessful
END IF
Req% = 8%
Device$ = "DZ1:"
Devlen% = LEN(Device$)
PRINT 'Press RESUME to
CALL Wtres BY REF()

bootstrap device request
device specification
device specification size

BOOTSTRAP.'
! POSRES Wait for Resume

CALL Provol BY REF(Stat(), Req%, Device$, Devlen%, '', 0%)

GOSUB 20
GOTO 99

! print returned status

20 Subroutine for printing status returned from PROVOL calls
FOR I% = 0% TO 7%

PRINT 'Status'; I%; , , ; Stat(I%)
NEXT I%
RETURN

99 END

6-45

CHAPTER 7

SYSTEM DI

When your task requires the Executive to perform an operation, it
can issue a system directive to make the request. Directives
provide control over task execution and interaction.

If you are a MACR0-11 programmer, you usual issue directives in
the form of macros defined in the system macro library,
LB:[l,5]RSXMAC.SML. You should use the directive macros rather
than hand-coding calls to directives.

If you are a hi -level language programmer and your language
supports the PDP-11 RS calling convention, you can call
system-supplied subroutines to make directive requests. These
subroutines reside in the system ect module library,
LB:[1,5]SYSLIB.OLB.

System directives enable tasks to:

e Obtain task and system information

e Measure time intervals

e Perform functions

other tasks

11 Communicate and ronize with other tasks

o Mani ate a task's logical and virtual address space

e Su and resume execution

ii Exit

e Manipulate logical names

7-1

Directives are implemented by the Emulator
processor instruction. EMT 0 through EMT 376
be non-P/OS EMT synchronous system traps.
Executive to abort the task unless the task has
wants to receive control when such traps occur.

Trap (EMT) 377
are considered to

They cause the
specified that it

See the PDP-11 Architecture Handbook for a description of the EMT
instruction.

Sections 7.1 and 7.2 are intended for all users. Section 7.3
specifically describes the use of macros, while Section 7.4
describes the use of high-level language subroutine calls.

7.1 HOW THE SYSTEM PROCESSES DIRECTIVES

P/OS processes a system directive in four steps:

1. A user task issues
Executive uses.
task supplies to
Parameter Block

a directive with parameters that the
The directive code and parameters that the

the system are known as the Directive
(DPB). The DPB can be either on the user

task's stack or in a user task's data section.

2. The Executive receives an EMT 377 generated by the directive
macro (or a DIR$ macro), or high-level language subroutine.

3. The Executive processes the directive.

4. The Executive returns directive status information to the
task's Directive Status Word (DSW).

Note that the Executive preserves all task registers when a task
issues a directive.

The user task issues an EMT 377 (generated by the directive)
together with the address of a DPB or a DPB itself, on the top of
the user task's stack. When the stack contains a DPB address,
the Executive removes the address after processing the directive,
and the DPB itself remains unchanged. When the stack contains
the actual DPB rather than a DPB address, the Executive removes
the DPB from the stack after processing the directive.

The first word of each DPB contains a Directive Identification
Code (DIC) byte and a DPB size byte. The DIC indicates which
directive is to be performed; the size byte indicates the DPB
length in words. The DIC is in the low-order byte of the word,
and the size is in the high-order byte.

The DIC is always an odd-numbered value. This allows the

7-2

HOW THE SYSTEM PROCESSES DIRECTIVES

Executive to determine whether the word on the top of the stack
(before EMT 377 was issued) was the address of the DPB
(even-numbered value) or the first word of the DPB (odd-numbered
value).

The Executive normally returns control to the instruction
following the EMT. Exceptions to this are directives that result
in an exit from the task that issued them and an Asynchronous
System Trap (AST) exit, if at AST state.

The Executive also clears or sets the Carry bit in the Processor
Status Word (PSW) to indicate acceptance or rejection,
respectively, of the directive. The DSW, addressed symbolically
as $DSW, is set to indicate a more specific cause for acceptance
or rejection of the directive.*

The DSW usually has a value of +1 for acceptance, and a range of
negative values for rejection. Exceptions to this rule are as
follows:

e Directives such as CLEF$, SETF$, GMCR$, GPRT$, and any of the
receive data directives, have multiple success return codes.

e The Instrument Society of America (ISA) subroutines START and
WAIT, provided for FORTRAN programs, have positive numeric
error codes, as required by ISA. See Sections 8.42 and 8.58
for details.

The Executive associates DSW values with symbols, using mnemonics
that report either successful completion or the cause of an error
(see Section 7.2). In the case of successful Exit directives,
the Executive does not return control to the task. If an Exit
directive fails, however, control returns to the task with an
error status in the DSW.

On Exit, the Executive frees task resources as follows:

e Detaches all attached devices

e Flushes the AST queue and despecifies all specified ASTs

o Flushes the receive and receive-by-reference queues

e Flushes the clock queue for outstanding Mark Time requests
for the task

* The task builder resolves the address of $DSW.

7-3

HOW THE SYSTEM PROCESSES DIRECTIVES

e Closes all open files (files open for write access are
locked)

• Detaches all attached regions except in the case of a fixed
task, where no detaching occurs

e Runs down the task's I/O

• Disconnects from interrupts

e Breaks the connection with any offspring tasks

e Frees the task's memory if the task was not fixed

If the Executive rejects a directive, it usually does not clear
or set any specified event flag. Thus, the task can wait
indefinitely if it executes a Wait For directive corresponding to
a previously issued Mark Time directive that the Executive has
rejected. You should always ensure that a directive has been
completed successfully.

7.2 ERROR RETURNS

As stated earlier, the Executive associates the error codes with
mnemonics that report the cause of the error. In the text of
this manual, the mnemonics are used exclusively.

High-level language programmers do not
mnemonics, and must refer to Appendix
interpretations of the DSW error codes.

have
B in

access to the
this manual for

Each directive description in Chapter 8 contains specific,
directive-related interpretation of the error codes.

7 .3 USING DIRECTIVE MACROS

If you are programming in MACR0-11, you must decide how to create
the DPB before you issue a directive. The DPB can either be
created on the stack at run time (see Section 7.3.1.3, which
describes the $S form of directive) or created in a data section
at assembly time (see Sections 7.3.1.1 and 7.3.1.2, which
describe the$ form and $C form, respectively). If the code must
be reentrant and the parameters vary, you must create the DPB on
the stack.

Figures 7-1 and 7-2 illustrate the alternative directives and
also show the relationship between the stack pointer and the DPB.

7-4

MOV
EMT

SP----

USING DIRECTIVE MACROS

ADDR,-(SP)
377

ADDRESS OF DPB

STACK
GROWTH

1

OPB
ITEMS

SIZE 1 DIC

DPB

INCREASING
MEMORY
ADDRESSES

ZK-305-81

Figure 7-1: Directive Parameter Block (DPB) Pointer on the Stack

MOV XX,-(SP)
PUSH REQUIRED
DPB ITEMS ON THE
STACK IN
REVERSE ORDER

MOV (PC)+,-(SP)
.BYTE DIC,SIZE
EMT 377

SP----

DPB
ITEMS

SIZE l
STACK

GROWTH

1

DIC
INCREASING
MEMORY
ADDRESSES

ZK-306-81

Figure 7-2: Directive Parameter Block (DPB) on the Stack

7-5

USING DIRECTIVE MACROS

7.3.1 Macro Name Conventions

When you are programming in MACR0-11, you use system directives
by including directive macro calls in your programs. The .MCALL
assembler directive makes these macros available to a program.
The .MCALL arguments are the names of all the macros used in the
program. For example:

CALLING DIRECTIVES FROM THE SYSTEM MACRO LIBRARY
AND ISSUING THEM .

. MCALL MRKT$S,WTSE$S

Additional .MCALLs or code

MRKT$S
WTSE$S

#1,#1,#2,,ERR
#1

;MARK TIME FOR 1 SECOND
;WAIT FOR MARK TIME TO COMPLETE

Macro names consist of as many as four
dollar sign ($) and, optionally, a
letter, or its absence, specifies which
expansions the programmer wants to use.

letters,
c or an

of three

followed by a
s. The optional
possible macro

7.3.1.1 $ Form - The $ form is useful for a directive operation
that is issued several times from different locations in a
non-reentrant program segment. The $ form is most useful when
the directive is issued several times with varying parameters
(one or more but not all parameters change), or in a reentrant
program section when a directive is issued several times even
though the DPB is not modified.

The $ form produces only the directive's DPB and must be issued
from a data section of the program. The code for actually
executing a directive that is in the $ form is produced by a
special macro, DIR$ (described in Section 7.3.2.

The following consequences result from the fact that execution of
a directive is separate from the creation of the directive's DPB:

7-6

USING DIRECTIVE MACROS

1. A $ form of a given directive needs to be used only once (to
produce its DPB).

2. A DIR$ macro associated with a given directive can be issued
several times without incurring the cost of generating a DPB
each time it is issued.

3. The directive's parameters can be easily accessed and changed
by labeling the start of the DPB and using the offsets
defined by the directive.

When a program issues the $ form of macro call, the parameters
required for DPB construction must be valid expressions for
MACR0-11 data storage instructions (such as .BYTE, .WORD, and
.RAD50). You can alter individual parameters in the DPB. You
might do this if you want to use the directive many times with
varying parameters.

7.3.1.2 $C Form - Use the $C form when a directive is to be
issued only once. The $C form eliminates the need to push the
DPB (created at assembly time) onto the stack at run time. Other
parts of the program, however, cannot access the DPB because the
DPB address is unknown.

Note, in the $C form of the macro expansion, that the new value
of the assembler's location counter redefines the DPB address $$$
each time an additional $C directive is issued.

The $C form generates a DPB in a separate p-section called
DPB.*

The DPB is followed first by a return to the user-specified
p-section, then by an instruction to push the DPB address onto
the stack, and finally by an EMT 377. To ensure that the program
reenters the correct p-section, you must specify the p-section
name in the argument list immediately following the DPB
parameters. If the argument is not specified, the program
reenters the blank (unnamed) p-section.

The $C form also accepts an optional final argument that
specifies the address of a routine to be called (by a JSR
instruction) if an error occurs during the execution of the
directive (see Section 7.3.2).

* See the PDP-11 MACR0-11 Language Reference Manual for a
description of p-sections (program sections).

7-7

USING DIRECTIVE MACROS

When a program issues the $C form of a macro call, the parameters
required for DPB construction must be valid expressions for
MACR0-11 data storage instructions (such as .BYTE, .WORD, and
.RAD50). (This is not true for the p-section argument and the
error routine argument, which are not part of the DPB.)

7e3e1.3 $S Form - Program segments that need to be reentrant and
use DPBs with dynamic parameters should use the $S form. Only
the $S form produces the DPB at run time. The other two forms
produce the DPB at assembly time.

In this form, the macro produces code to push a DPB onto the
stack, followed by an EMT 377. In this case, the parameters must
be valid source operands for MOV-type instructions. For a
two-word Radix-SO name parameter, the argument must be the
address of a two-word block of memory that contains the name.

Note that if your task refers to stack
from the stack pointer, you must take
code generated by the $S form pushes
stack.

locations using an offset
into account the fact that
DPB parameters onto the

The $S form of a macro processes arguments from right to left.

DIR$ Macro

The DIR$ macro allows you to execute a directive with a DPB
previously defined by the $ form of a directive macro. This
macro s the DPB address onto the stack and issues an EMT 377
instruction.

The DIR$ macro generates an Executive trap using a previously
defined DPB:

Macro Call: DIR$ adr,err

Note: adr and err are ional.

adr

err

The address of the DPB. If specified, adr must be a valid
source address for a MOV instruction. If adr is not
specified, the DPB or its address must be on the stack.

The error return address (see Section 7.3.3). If an error
return is not specified, an error sets the PSW Carry bit.

7-8

USING DIRECTIVE MACROS

NOTE

DIR$ is not an Executive
behave as one. There
spelling of this macro.

directive and does not
are no variations in the

7.3.3 Optional Error Routine Address

The $C and $S forms of macro calls and the DIR$ macro can accept
an optional final argument. The argument must be a valid
assembler destination operand that specifies the address of a
user error routine. For example, the DIR$ macro

DIR$ #DPB,ERROR

generates the following code:

MOV
EMT
BCC
JSR

#DPB,-(SP)
377
.+6
PC,ERROR

Since the $ form of a
executable code, it
argument.

7.3.4 Symbolic Offsets

directive
does not

macro does not generate any
accept an error routine address

Most system directive macro calls generate local symbolic offsets
describing the format of the DPB. The symbols are unique to each
directive, and each is assigned an index value corresponding to
the offset of a given DPB element.

Because
modify
off sets
release

the offsets are defined symbolically, you can refer to or
DPB elements without knowing the offset values. Symbolic
also eliminate the need to rewrite programs if a future
of the system changes a DPB specification.

All $ and $C forms of macros that generate DBPs longer than one
word generate local offsets. All informational directives
including the $S form, generate local symbolic offsets for the
parameter block returned as well.

If the program uses either the $ or $C form and has defined the
symbol $$$GLB (for example $$$GLB=0), the macro generates the
symbolic offsets as global symbols and does not generate the DPB
itself. The purpose of this facility is to enable the use of a

7-9

USING DIRECTIVE MACROS

DPB defined in a different module. The symbol $$$GLB has no
effect on the expansion of $S macros.

When using symbolic offsets, you should use the $ form of
directives.

7.3.5 Examples of Macro Calls

The following examples show the expansions of the different macro
call forms:

• The $ form generates a DPB only, in the current p-section.

MRKT$ 1,5,2,MTRAP

generates the following code:

.BYTE 2 3. , 5 "MARK-TIME" DIC & DPB SIZE

.WORD 1 EVENT FLAG NUMBER

.WORD 5 TIME INTERVAL MAGNITUDE

.WORD 2 TIME INTERVAL UNIT (SECONDS)

.WORD MT RAP AST ENTRY POINT ADDRESS

• The $C form generates a DPB in p-section DPB and generates
the code to issue the directive in the specified section.

MRKT$C 1,5,2,MTRAP,PROGl,ERR

generates the following code:

. PSECT DPB .
$$$=. DEFINE TEMPORARY SYMBOL
.BYTE 2 3. , 5 "MARK-TIME" DIC & DPB SIZE
.WORD 1 EVENT FLAG NUMBER
.WORD 5 TIME INTERVAL MAGNITUDE
.WORD 2 TIME INTERVAL UNIT (SECS)
.WORD MT RAP AST ENTRY POINT ADDRESS
.PSECT PROGl RETURN TO THE ORIGINAL PSECT
MOV #$$$,-(SP) ; PUSH DPB ADDRESS ON STACK
EMT 377 TRAP TO THE EXECUTIVE
BCC .+6 BRANCH ON DIRECTIVE ACCEPTANCE
JSR PC,ERR ELSE, CALL ERROR SERVICE ROUTINE

• The $S form generates code to push the DPB onto the stack and
to issue the directive.

MRKT$S #1,#30,#2,R2,ERR

generates the following code:

7-10

MOV
MOV
MOV
MOV
MOV
SIZE
.BYTE
EMT
BCC
JSR

USING DIRECTIVE MACROS

R2 I - {SP) ; PUSH
#2,-(SP) ; TIME
#30,-(SP)
#1,-(SP) ; EVENT
{PC)+,-{SP)

AST ENTRY POINT
INTERVAL UNIT {SECONDS)

; TIME INTERVAL MAGNITUDE
FLAG NUMBER

; AND "MARK-TIME" DIC & DPB

23 • I 5
377
.+6
PC,ERR

ON THE STACK
TRAP TO THE EXECUTIVE
BRANCH ON DIRECTIVE ACCEPTANCE
ELSE, CALL ERROR SERVICE ROUTINE

• The DIR$ macro issues a directive that has a predefined DPB.

DIR$ R1,(R3) ; DPB ALREADY DEFINED.

; DPB ADDRESS IN Rl.

generates the following code:

MOV
EMT
BCC
JSR

Rl,-{SP)
377
.+4
PC I { R3)

PUSH DPB ADDRESS ON STACK
TRAP TO THE EXECUTIVE
BRANCH ON DIRECTIVE ACCEPTANCE
ELSE, CALL ERROR SERVICE ROUTINE

7.4 USING HIGH-LEVEL LANGUAGE SUBROUTINES

The system provides a set of high-level language subroutines to
perform system directive operations. In general, one subroutine
is available for each directive.

You can call the subroutines described in this manual from any
Tool Kit high-level language that supports the PDP-11 RS calling
convention {described in Section 6.2.1). You can also call the
subroutines from MACR0-11 assembly language.

All the subroutines described in this manual are in the system
object module library, LB:[1,5]SYSLIB.OLB. When you link your
program to form a task, the Task Builder first checks to see
whether each specified subroutine is user defined. If a
subroutine is not user defined, the Task Builder automatically
searches for it in SYSLIB.OLB. Upon locating the subroutine in
SYSLIB.OLB, the Task Builder includes it in the task image.

For details about a particular high-level language subroutine,
see the directive description in Chapter 8.

7-11

USING HIGH-LEVEL LANGUAGE SUBROUTINES

Figures 7-3, 7-4, 7-5, and 7-6 show sample programs written in
three high-level languages: FORTRAN, PASCAL, and BASIC-PLUS-2.

Sections following the figures provide general usage information
about the subroutine calls, using the examples.

program rqst

c ------------------------<Comments>---------------------------
c This sample FORTRAN program calls the REQUES subroutine to
c request a task named gtim. The program illustrates use of
c the call statement to invoke the subroutine, the radSO
c predeclared function to convert the task name to radSO format,
c omission of optional arguments, and declaration of the
c Directive Status Word (dsw) as a one-word integer.

c Notice that the task name passed to the radSO function must
c appear in uppercase. Also, the gtim task must be installed
c before it is requested.

c In order to run this or any FORTRAN program on the Professional,
c you must first install the run-time library, [ZZSYSJPROF77.
c ---

INTEGER*2 IDS

TYPE *,'->Now calling reques:'

CALL REQUES(RAD50('GTIM'),,IDS)

TYPE *,'->Reques has been called.'
TYPE *,'->DSW=' ,ids

END

Figure 7-3: Sample FORTRAN Program

7-12

USING HIGH-LEVEL LANGUAGE SUBROUTINES

program rqst;

{ ------------------------<Comments>------------------------
This sample PASCAL program calls the REQUES subroutine to
request a task named gtim. The program illustrates the
declaraiion of REQUES with the external and seqll
attributes, invocation of the subroutine, use of the %r
radix specifier to convert the task name to rad50 format,
and the omission of optional arguments.

Notice that you must blank-fill the task name to a length
of six. Also, the gtim task must be installed before it is
requested.
---}

type

var

four_array

tsk
opt
ids

=array (1 .. 4] of integer;

:long_integer;
:four_array;
:integer;

[external(reques)] procedure request_task
var tsk:[readonly] long_integer;
var opt: four _array;
var ids: integer); seqll;

begin

writeln('->Now calling reques:');

request_task(%r'gtim ',,ids);

writeln('->Reques has been called.');
writeln('->DSW=' ,ids);

end.

Figure 7-4: Sample PASCAL Program

7-13

USING HIGH-LEVEL LANGUAGE SUBROUTINES

program rqstdir;

------------------<comment>----------------------
This PASCAL program uses the DIR$ predeclared
function to call the RQST$ system directive.

You must construct the Directive Parameter Block
(DPB) in a variable or structured constant, and
then pass it as a parameter to DIR$.
---}

var

{Directive Parameter
rqst_dpb

Block:}

begin

{Insert info
rqst_dpb.dic
rqst_dpb.dpb
rqst_dpb.tsk

into DPB:}
.- 11;
.- 7;
:= %r'gtim

packed
die:
dpb:
tsk:
prt:
pri:
ugc:
umc:

end;

, . ,

writeln ('Now invoking RQST$:');

record
[pos(O)J
[pos(8)]
[pos(16)J
[pos(48) J
[pos (64)]
[pos(80))
[pos(88)J

{Invoke DIR$ and pass it the DPB:}
dir$(rqst_dpb);

writeln ('RQST$ invoked.');

end. {rqst}

o .. 255;
0 .. 255;
long_integer;
integer;
integer;
o .. 255;
0 .. 255;

Figure 7-5: Sample PASCAL Program Using DIR$ Function

7-14

USING HIGH-LEVEL LANGUAGE SUBROUTINES

10 !------------------------<Comments>------------------------
This sample BASIC-PLUS-2 program calls the REQUES subroutine
to request a task named gtim. The program illustrates use of

1 the call by ref statement to invoke the subroutine, use of
the FSS$ function to obtain the task name in radSO format,
omission of optional arguments, and declaration of the
Directive Status Word (ids) as one-word integer.

Note that you must install the gtim task before requesting it.

ids declare
map (a)
map (a)

integer
string
string

fss_output = 30
fill = 6, word tsk_r50(3)

!-----------------convert task name to radSO----------------

fss_output = FSS$("GTIM.TSK",1%) !output in MAP

!----------tsk_rSO now contains radSO version of GTIM-------

print "->Now calling reques:"

call reques by ref (tsk_r50(),,ids)

print "->Reques has been called."
print "->DSW=",ids

end

Figure 7-6: Sample BASIC-PLUS-2 Program

7.4.1 Calling the Subroutines

-------------•

For FORTRAN, PASCAL, and BASIC-PLUS-2, you can simply omit any
optional arguments in a call, as long as you retain the comma
that immediately follows the argument. If an optional argument
is the last argument in an invocation, then you can also omit the
comma.

Note that some subroutines use a default value for unspecified
optional arguments. Such default values are noted in each
subroutine description in Chapter 8.

Language-specific information on calling methods follows.

7-15

USING HIGH-LEVEL LANGUAGE SUBROUTINES

• FORTRAN Calling Method

You use the CALL statement in FORTRAN to invoke a high-level
language subroutine. Figure 7-3 illustrates a FORTRAN call
to the REQUES subroutine.

• PASCAL Calling Method

In PASCAL you must declare each high-level language
subroutine that you call in your program. The declaration
must begin with the EXTERNAL attribute specifying the actual
name of the subroutine, and must end with the SEQ11 attribute
to ensure that the compiler generates the RS calling
sequence.

Figure 7-4 illustrates an
subroutine.

invocation of the reques

To improve performance, PASCAL provides a DIR$ predeclared
function that allows you to pass a Directive Parameter Block
directly to the Executive. You can construct the DPB as a
packed record, assign required values to the record items,
and then pass the record as an argument to the DIR$ function.
The DPB contains the Directive Identification Code indicating
which directive you are calling.

When you are building a DPB for use with DIR$, refer to the
section in the directive description called Macro Expansion
for a description of the DPB.

Figure 7-5 illustrates a call to DIR$ that specifies the
Request Task (RQST) directive.

• BASIC-PLUS-2 Calling Method

You must use the CALL BY REF statement in BASIC-PLUS-2 to
invoke a high-level language subroutine. Do not omit the
pass mechanism BY REF. Figure 7-6 illustrates a BASIC-PLUS-2
call to the subroutine reques.

7-16

USING HIGH-LEVEL LANGUAGE SUBROUTINES

7 .4.2 Specifying Task Names

P/OS imposes the following requirements on task names:

• The maximum length of a task name is six characters.

• The only characters permitted are the letters A through Z,
the numerals 0 through 9, and the special characters dollar
sign and period.

• The system recognizes a task name only if it is stored in
Radix-50 format. (This permits as many as three characters
to be encoded in one word.)

• Task names containing the dollar sign character are reserved
for DIGITAL use.

The high-level language subroutines require that you define a
task name as a two-word variable or array that contains the task
name in Radix-50 format.

Language-specific information follows.

• FORTRAN Task Names

In FORTRAN, you can define a task name variable as INTEGER*4
or as an INTEGER*2 array.

You can define a task name variable at program compilation
time by using a DATA statement, which gives a REAL variable
an initial value (a Radix-50 constant). For example, if you
use a 5-character task name such as CCMFl in a system
directive call, you could define the task name and use it as
a parameter as follows:

DATA CCMF1/5RCCMF1/

CALL REQUES (CCMFl)

Similarly, a four-character task name definition could be:

DATA CCMF1/4RTNAM/

Instead of using a data statment to define a static task
name, a FORTRAN program can define task names during
execution by using the IRAD50 subroutine or the RAD50
function. Figure 7-3 illustrates the use of the RAD50
function.

7-17

USING HIGH-LEVEL LANGUAGE SUBROUTINES

• PASCAL Task Names

To specify a task name in PASCAL, use the %R radix specifier
before the string constant containing your task name. Note
that you must pad your task name with spaces up to six
characters to ensure that PASCAL generates the required
two-word value.

Figure 7-4 illustrates the use of the %R radix specifier.

• BASIC-PLUS-TWO Task Names

BASIC-PLUS-TWO provides the FSS$ function for parsing a file
specification. Output from FSS$ includes a two-word area
containing the filename in RAD50 format. You can use MAP
storage to hold the output from FSS$ and to refer to filename
portion of the output. Figure 7-6 illustrates the use of
FSS$.

An alternative to using FSS$, which should also provide
better performance, is to code your own routine in MACRO to
perform the conversion.

7.4.3 Specifying Integer Arguments

All integer arguments in the subroutines are one-word values. In
FORTRAN, declare integer arguments as INTEGER*2. In PASCAL, you
declare one-word integers as INTEGER values. In BASIC-PLUS-2,
integer arguments have the WORD data type.

7.4.4 GETADR Subroutine

Some subroutine calls include
array. The integer array
addresses of other variables
such as FORTRAN, do not
address as a value, you must
example:

Calling Sequence:

an argument described as an integer
contains some values that are the

or arrays. Since some languages,
provide a means of assigning such an

use the GETADR subroutine. For

CALL GETADR(ipm,[arg1],[arg2], ... [argn])

ipm
An array of dimension n.

7-18

USING HIGH-LEVEL LANGUAGE SUBROUTINES

argl, ... argn

Arguments whose addresses are to be inserted in
Arguments are inserted in the order specified. If a
argument is specified, then the corresponding entry in
is left unchanged. When the argument is an array name,
address of the first array element is inserted into ipm.

FORTRAN Example:

DIMENSION IBUF(80),IOSB(2),IPARAM(6)
INTEGER*2 IDSW,IREAD,IEFLAG,LUN
IREAD = 512
IEFLAG = 1
IPARAM(2)=80

CALL GETADR (IPARAM(l),IBUF(l))
CALL WTQIO (IREAD,LUN,IEFLAG,,IOSB,IPARAM,IDSW)

ipm.
null

ipm
the

In this example, CALL GETADR enables you to specify a buffer
address in the CALL QIO directive (see Section 8.46).

7.4.5 The Subroutine Calls

Chapter 8 describes the available high-level language calls for
each directive.

For some directives, notably Mark Time (CALL MARK), both the
standard high-level language subroutine call and the FORTRAN ISA
standard call are provided. Other directives, however, are not
available to high-level language tasks. Examples are Specify
Floating Point Exception AST (SFPA$) and Specify SST Vector Table
For Task (SVTK$).

Table 7-1 shows directives that are not available as high-level
language subroutines:

7-19

USING HIGH-LEVEL LANGUAGE SUBROUTINES

Table 7-1: Directives Without High-Level Language Subroutines

Directive Macro Call

AST Service Exit

Connect To Interrupt Vector

Specify Floating Point
Exception AST

Specify Receive By Reference AST

Specify Receive Data AST

Specify SST Vector Table For
Debugging Aid

Specify SST vector Table
For Tasks

7.4.6 Error Conditions

ASTX$S

CINT$

SFPA$

SRRA$

SRDA$

SVDB$

SVTK$

Each subroutine call includes an optional argument that specifies
the integer to receive the Directive Status Word (ids). When you
specify this argument, the subroutine returns a value that
indicates whether the directive operation succeeded or failed.

If the directive failed, the value indicates the reason for the
failure. The possible values are the same as those returned to
the Directive Status Word (DSW) in MACR0-11 programs--except for
the two ISA calls, CALL WAIT and CALL START. The ISA calls have
positive numeric error codes.

7.4.7 AST Support for High-Level Languages

Each high-level language has restrictions on handling ASTs.
Consult the documentation for your particular high-level language
for details. Typical restrictions (FORTRAN) are described later
in this section.

7-20

USING HIGH-LEVEL LANGUAGE SUBROUTINES

The following routines provide support for ASTs in high-level
languages:

CALL CNCT

CALL SDRC

CALL SPAWN

CALL SREX

Whenever you specify a high-level language AST routine to one of
the system library routines listed above, the AST routine is
replaced by an internal routine that saves the general purpose
registers and calls the specified routine using a coroutine call
when the AST occurs.

After the high-level language routine completes, by way of a
RETURN statement (or equivalent), the internal routine restores
the general purpose registers and issues an ASTX$ directive.

Use extreme caution when coding an AST
high-level language. For instance, you
following operations while at AST state:

e I/0 of any kind

service routine
cannot perform

in
the

This includes FORTRAN ENCODE and DECODE statements and
internal file I/O. Fortran I/O is not reentrant; therefore,
the information in the impure data area can be destroyed.

e Floating-point operations

The floating-point processor's context is not saved while in
AST state. Since the scientific subroutines use
floating-point operations, they can not be called at AST
state.

a Traceback information in the generated code

Use of traceback information corrupts the error recovery in
the FORTRAN run time library. Any FORTRAN modules that will
be called at AST state must be compiled without traceback.
See your FORTRAN user's guide for more information.

• Virtual array operations

Use of virtual arrays at AST state remaps the current array
such that any operations at non-AST state will not be
executed correctly.

7-21

USING HIGH-LEVEL LANGUAGE SUBROUTINES

• Subprograms can not be shared between AST processing and
normal task processing.

• Do not invoke EXIT or STOP statements with files open.

FORTRAN flushes the task's buffers, which could be in an
intermediate state. Therefore, data might be lost if any
output files are open when the EXIT or STOP is executed.

You can EXIT or STOP at AST state if no output files are
open.

Since the message put out by STOP uses a different mechanism
from the normal FORTRAN I/O routines, the act of putting out
this message does not corrupt impure data in the run-time
system. Therefore, you can issue a STOP statement at AST
state unless there are output files open.

Note also the following:

• Any execution time error at AST state will corrupt the
program.

• Use extreme care if your task contains overlays. Both the
interface routine and the actual code of the FORTRAN AST
routine must be located in the root segment. Any routines
that are called at AST state must also be in the root
segment.

7.5 RESTRICTIONS ON NONPRIVILEGED TASKS

When issued by a nonprivileged task, several Executive directives
are limited in their uses. Table 7-2 lists these directives and
explains the restrictions.

Table 7-2: Restricted Directives Issued by Nonprivileged Tasks

Directive Macro Call

Abort Task ABRT$

Restrictions

A nonprivileged task can only abort
tasks with the same TI: as the task
issuing the directive.

7-22

RESTRICTIONS ON NONPRIVILEGED TASKS

Directive

Alter Priority

Cancel Time
Based
Initiation
Requests

Switch State

Macro Call

ALTP$

CSRQ$

SWST$

7.6 DIRECTIVE CATEGORIES

Restrictions

A nonprivileged task can only alter
its own priority to values less
than or equal to the task's
installed priority.

A nonprivileged task can issue this
directive only if the TI: of the
specified task is the same that of
the issuing task.

This directive cannot oe issued by
a nonprivileged task under any
circumstances.

This section groups the directives by function into the following
ten categories:

• Task execution control directives

• Task status control directives

• Informational directives

• Event-associated directives

• Trap-associated directives

• I/0- and intertask communications-related directives

• Memory management directives

7.6.1 Task Execution Control Directives

The task execution control directives deal principally with
starting and stopping tasks. Each of these directives (except
Extend Task) changes the task's state (unless the task is already
in the state being requested). These directives include:

7-23

Macro

ABRT$
CSRQ$
EXIT$S
EXTK$
RQST$
SPND$S
SWST$

DIRECTIVE CATEGORIES

Directive Name

Abort Task
Cancel Time Based Initiation Requests
Task Exit ($S form recommended)
Extend Task
Request Task
Suspend ($S form recommended)
Switch State

7.6.2 Task Status Control Directives

Two task status control directives alter the checkpointable
attribute of a task. A third directive changes the running
priority of an active task. These directives include:

Macro

ALTP$
DSCP$S
ENCP$S

Directive Name

Alter Priority
Disable Checkpointing ($S form recommended)
Enable Checkpointing ($S form recommended)

7.6.3 Informational Directives

Several directives provide the issuing task with system
information and parameters such as the time of day, the task
parameters, the console switch settings, and partition or region
parameters. These directives include:

Macro

GPRT$
GREG$
GTIM$
GTSK$

Directive Name

Get Partition Parameters
Get Region Parameters
Get Time Parameters
Get Task Parameters

7.6.4 Event-Associated Directives

The event and event flag directives provide inter- and intratask
synchronization and signaling, and the means to set the system
time. Use these directives carefully since software faults
resulting from erroneous signaling and synchronization are often
difficult to isolate. The directives include:

7-24

Macro

CLEF$
CMKT$
DECL$S
EXIF$
MRKT$
RDEF$
SETF$
STIM$
STLO$
STOP$S
STSE$
USTP$
WSIG$S
WTLO$
WTSE$

DIRECTIVE CATEGORIES

Directive Name

Clear Event Flag
Cancel Mark Time Requests
Declare Significant Event ($S form recommended)
Exit If
Mark Time
Read Single Event Flag
Set Event Flag
Set System Time
Stop For Logical 'OR' of Event Flags
Stop ($S form recommended)
Stop For Single Event Flag
Unstop
Wait For Significant Event ($S form recommended)
Wait For Logical OR Of Event Flags
Wait For Single Event Flag

7 .6.5 Trap-Associated Directives

The trap-associated directives provide trap facilities that allow
transfer of control (software interrupts) to the executing tasks.
These directives include:

Macro

ASTX$S
DSAR$S
ENAR$S
IHAR$S
SFPA$
SRDA$
SREA$
SREX$
SRRA$
SVDB$
SVTK$

Directive Name

AST Service Exit ($S form recommended)
Disable AST Recognition ($S form recommended)
Enable AST Recognition ($S form recommended)
Inhibit AST Recognition ($S form recommended)
Specify Floating Point Processor Exception AST
Specify Receive Data AST
Specify Requested Exit AST
Specify Requested Exit AST (extended)
Specify Receive-By-Reference AST
Specify SST Vector Table For Debugging Aid
Specify SST Vector Table For Task

7.6.6 1/0- and Intertask Communication Related Directives

The I/0- and intertask communication related directives allow
tasks to access I/O devices at the driver interface level or
interrupt level, to communicate with other tasks in the system,
and to retrieve the MCR command line used to start the task.
These directives include:

7-25

Macro

ALUN$
CINT$
CLOG$
DLOG$
GDIR$
GLUN$
GMCR$
QIO$
QIOW$
RCVD$
RCVX$
SDAT$
SDIR$
TLOG$
VRCD$
VRCS$
VRCX$
VSDA$

DIRECTIVE CATEGORIES

Directive Name

Assign LUN
Connect To Interrupt Vector
Create Logical Name String
Delete Logical Name String
Get Default Directory String
Get LUN Information
Get MCR Command Line
Queue I/O Request
Queue I/O Request And Wait
Receive Data
Receive Data Or Exit
Send Data
Set Default Directory String
Translate Logical Name String
Variable Receive Data
Variable Receive Data Or Stop
Variable Receive Data Or Exit
variable Send Data

7.6.7 Memory Management Directives

The memory management directives allow a task to manipulate its
virtual and logical address space, and to set up and control
dynamically the window-to-region mapping assignments. The
directives also provide the means by which tasks can share and
pass references to data and routines. These directives include:

Macro

ATRG$
CRAW$
CRRG$
DTRG$
ELAW$
GMCX$
MAP$
RREF$
SREF$
UMAP$

Directive Name

Attach Region
Create Address Window
Create Region
Detach Region
Eliminate Address Window
Get Mapping Context
Map Address Window
Receive By Reference
Send By Reference
Unmap Address Window

7.6.8 Parent/Offspring Tasking Directives

Parent/offspring tasking directives permit tasks to start other
tasks, and to connect to other tasks in order to receive status
information. These directives include:

7-26

Macro

CNCT$
EMST$
EXST$
RPOI$
SDRC$
SDRP$
SPWN$
VSRC$

DIRECTIVE CATEGORIES

Directive Name

Connect
Emit Status
Exit With Status
Request and Pass Offspring Information
Send, Request, And Connect
Send Data, Request and Pass OCB
Spawn
Variable Send, Request, and Connect

The scheme used for task naming in Executive-level dispatching
works as follows:

A single copy of the multiuser task must be installed with a name
of the form ... mmm. When a task issues a directive specifying a
task name of the form ... mmm, the Executive first forms the task
name mmmtnn, where t is the first character of the device name of
the TI: of the issuing task, and nn is the unit number.

The Executive then attempts to perform the directive as if the
task name mmmtnn had been specified. If the directive i& one
that could activate the task (Request, Spawn, or Send, Request
And Connect), a TCB can be dynamically created and filled in from
the ... mmm TCB. If the directive is a send user-type directive,
and the TCB mmmtnn does not exist, the send packet is queued to
the ... mmm TCB until mmmtnn is activated. At that time any send
packets for mmmtnn that are queued to the ... mmm TCB are moved to
the rnmmtnn TCB.

This allows for the
multiuser task in a
of the issuing task.
the task's name can
directive.

specification of a specific copy of a
directive whose TI: is different from that
If the TI: of the target task is known,
be calculated and explicitly specified in a

7. 7 DIRECTIVE CONVENTIONS

The following are conventions for using system directives:

e In MACR0-11 programs, unless a number is followed by a
decimal point, the assembler assumes the number to be octal.

In high-level language programs, use a one-word integer
unless the directive description states otherwise.

7-27

DIRECTIVE CONVENTIONS

~ In MACR0-11 programs, task and partition names can be from
one to six characters long and must be represented as two
words in Radix-50 form.

For high-level
information on
Radix-50 format.

language programs,
representing task

~ Device names are two characters
one word of ASCII code.

see
and

Section 7.4.2 for
partition names in

and are represented by

~ Some directive descri ions state that a certain parameter
must be provided even the system ignores it. Such
parameters are included either for future extension to the
system or for compatibili with programs written to run on
other operating systems.

e In the directive descriptions, square brackets ([]) enclose
optional parameters or arguments. To omit optional items,
either use an empty (null) field in the parameter list or
omit a trailing optional parameter.

~ Logical Unit Numbers (LUNs) can range from 1 through 255
(decimal).

Event flag numbers
however, numbers 25
reserved.

range from 1 thr
through 32 and 57

64 (decimal);
through 64 are

Event flag numbers from 1 th 32 denote local flags.
Numbers from 33 through 64 denote common flags.

Note that the Executive preserves all task registers when a task
issues a directive.

7-28

CHAPTER 8

DIRECTIVE DESCRIPTIONS

This chapter describes the system directives, giving each
directive's function and use. For each directive, we show the
names of the high-level language and macro calls, the associated
parameters, and possible return values of the Directive Status
Word (DSW).

The descriptions generally describe the $ form of the macro call,
although the $C and $S forms are also valid forms. (For the QIO
directive, we show the QIO$ form, although the QIO$S and QIO$C
forms are also valid.) However, where the $S form of a macro
requires less space and performs as fast as a DIR$ (due to a
smaller Directive Parameter Block), we show the $S form of the
macro expansion.

In addition to the directive macros themselves, you can use the
DIR$ macro to execute a directive if the directive has a
predefined Directive Parameter Block (DPB). See Sections 7.3.1.1
and 7.3.2 for further details.

8.1 FORMAT OF SYSTEM DIRECTIVE DESCRIPTIONS

Each directive description includes most or all of the following
elements:

High-Level Language Call

The high-level language call for each directive shows the
name of the subroutine and the definitions for each of its
parameters, given in a FORTRAN-like CALL statement. Note,
however, that not all high-level languages use the CALL
statement to execute external routines.

8-1

FORMAT OF SYSTEM DIRECTIVE DESCRIPTIONS

See Section 7.4 for information on using the high-level
language subroutines.

Macro Call

The macro call for each directive shows the actual name of
each parameter, and gives the defaults for optional
parameters in parentheses following the parameter's
description. Since zero is supplied as the default for most
parameters, only nonzero default values are shown.

See Section 7.3 for information on using the directive
macros.

Macro Expansion

Most of the directive descriptions expand the $ form of the
macro, except where the $S form is recommended instead.
Section 7.3.5 illustrates expansions for all three forms and
for the DIR$ macro.

Definition Block Parameters

Only the memory management directives include these
parameters. For such directives, a table describes all the
relevant input and output parameters in the Region or Window
Definition Block. (See Section 5.5.)

Local Symbol Definitions

Macro expansions usually generate local symbol definitions
with an assigned value equal to the byte offset from the
start of the DPB to the corresponding DPB element. This
section lists those symbols. The length in bytes of the
element pointed to by the symbol appears in parentheses
following the symbol's description:

A.BTTN Task name (4)

defines A.BTTN as pointing to a task name in the Abort Task
DPB; the task name has a length of four bytes.

DSW Return Codes

This section lists all valid return codes.

8-2

FORMAT OF SYSTEM DIRECTIVE DESCRIPTIONS

Implemented Subfunctions

Some directives, notably WIMP$, perform slightly different
operations depending on the subfunction you select. The
section on implemented subfunctions shows you how to specify
the subfunction in your system call, and what parameters are
defined for each subfunction.

Notes

The notes presented with some directive descriptions expand
on the function, use, and consequences of using the
directive. Always read the notes carefully.

8-3

ABRT$ - ABORT TASK

8.2 ABRT$ - ABORT TASK

The Abort Task directive instructs the system to terminate
execution of the indicated task. ABRT$ is intended for use as an
emergency or fault exit.

A task must be privileged to issue the Abort Task directive
(unless it is aborting a task with the same TI:).

High-Level Language Call

CALL ABORT (tsk[,ids])

tsk Name of the task to be aborted (RAD50)

ids Directive status

Macro Call

ABRT$ tsk

tsk Name of the task to be aborted (RADSO)

Macro Expansion

ABRT$ ALPHA
.BYTE 83.,3
.RADSO /ALPHA/

;ABRT$ MACRO DIC, DPB SIZE=3 WORDS
;TASK "ALPHA"

Local Symbol Definitions

A.BTTN Task name (4)

DSW Return Codes

rs.sue

IE. INS

IE.ACT

IE.FRI

IE.ADP

IE.SOP

Successful completion.

Task not installed.

Task not active.

Issuing task is not privileged
protection systems only).

(multiuser

Part of the DPB is out of the issuing task's
address space.

Directive Identification Code (DIC) or DPB size
is invalid.

8-4

ABRT$ - ABORT TASK

Notes

1. When a task is aborted, the Executive frees all the task's
resources. In particular, the Executive:

• Detaches all attached devices.

• Flushes the AST queue and despecifies all specified ASTs.

• Flushes the receive and receive-by-reference queue.

• Flushes the clock queue for outstanding Mark
requests for the task.

Time

• Closes all open files (files open for write access are
locked) .

• Detaches all attached regions except in the case of a
fixed task, where no detaching occurs.

• Runs down the task's I/O.

• Disconnects from interrupt vectors.

• Breaks the connection with any offspring tasks.

• Returns a severe error status (EX$SEV) to the parent task
when a connected task is aborted.

• Frees the task's memory if the aborted task was not
fixed.

2. If the aborted task had a requested exit AST specified, the
task will receive that AST instead of being aborted. No
indication that this has occurred is returned to the task
that issued the abort request.

3. When the aborted task actually exits, the Executive declares
a significant event.

8-5

ACHN$ - ASSIGN CHANNEL

8.3 ACHN$ - ASSIGN CHANNEL

Assign channel and Assign Lun (ALUN$) are similar in that both
assign a logical unit number to a device. For ACHN$, however,
instead of supplying the device name as with ALUN$, you can
supply a file specification or logical name. The ACHN$ directive
expands the file specification or logical and then assigns the
LUN you specify to the device resulting from that expansion.

High-Level Language Call

CALL ACHN ([mod], [tbmsk], lun, fsbuf, fssz, [idsw])

mod

tbmsk

fsbuf

f ssz

idsw

Macro Call

Modifier for logical name table entries

Inhibit mask to prevent a logical table from being
searched

Array containing file specification

Size of fsbuf in bytes

Integer to receive directive status word

ACHN$ [mod],tbmsk,lun,fsbuf,fssz

mod

tbmsk

lun

fsbuf

fssz

Optional modifier for logical
entries

name table

A byte whose low 4 bits constitute an inhibit
mask to prevent the system from searching a
particular logical table. For each of the
following bits, if the bit is set, the system
does not search the corresponding table:

Logical Name Table Bit of tbmsk Octal

System table (LT.SYS) 0 1
User table (LT.USR) 2 4
Session table (LT.SES) 4 20

The LUN to be assigned

Address of file specification buffer

Size of the file specification buffer in bytes

8-6

ACHN$ - ASSIGN CHANNEL

Macro Expansion

.MACRO ACHN$

.BYTE 207.,5

.BYTE 6

.BYTE MOD

.BYTE LUN

.BYTE TBMSK

.WORD FSBUF

.WORD FSSZ

MOD,TBMSK,LUN,FSBUF,FSSZ
;ACHN$ MACRO DIC, DPB SIZE = 5 WORDS
;SUBFUNCTION
;MODIFIER
;LOGICAL UNIT NUMBER
;TABLE MASK
;FILE SPECIFICATION BUFFER ADDRESS
;SIZE OF FILE SPECIFICATION BUFFER

Local Symbol Definitions

A.LFUN Subfunction code (1)

A.LMOD Logical name modifier (1)

A.LLUN LUN number (1)

A.LTBL Table inhibit mask (1)

A.LSBF Address of file specification buffer (2)

A.LSSZ File specification buffer size in bytes (2)

DSW Return Codes

rs.sue

IE.ADP

IE.SOP

IE. IOU

IE. ILU

IE.LNL

Successful completion.

Part of the DPB or user buffer is out of the
issuing task's address space, or the user does
not have proper access to that region.

DIC or DPB size is invalid.

Invalid device or unit.

Invalid LUN.

LUN usage is interlocked.

8-7

ALTP$ - ALTER PRIORITY

8.4 ALTP$ - ALTER PRIORITY

The Alter Priority directive instructs the system to change the
running priority of a specified active task to either a new
priority indicated in the directive call, or to the task's
default (installed) priority if the call does not specify a new
priority.

The specified task must be installed and active. The Executive
resets the task's priority to its installed priority when the
task exits.

If the directive call omits a task name, the Executive defaults
to the issuing task.

The Executive reorders any outstanding I/O requests for the
in the I/O queue and reallocates the task's partition.
partition reallocation can cause the task to be checkpointed.

task
The

A nonprivileged task can issue ALTP$ only for itself, and only
for a priority equal to or lower than its installed priority. A
privileged task can change the priority of any task to any value
less than 250.

High-Level Language Call

CALL ALTPRI ([tsk],[ipri][,ids])

tsk

ipri

ids

Macro Call

Active task name

A one-word integer value equal to the new
priority, a number from 1 through 250 (decimal)

Directive status

ALTP$ [name][,pri]

name Active task name

pri New priority number, 1 through 250 (decimal)

Macro Expansion

ALTP$
.BYTE
.RAD50
. WORD

ALPHA, 75.
9. '4
/ALPHA/
75 .

;ALTP$ MACRO DIC, DPB SIZE=4 WORDS
;TASK ALPHA
;NEW PRIORITY

8-8

ALTP$ - ALTER PRIORITY

Local Symbol Definitions

A.LTTN Task name (4)

A.LTPR Priority (2)

DSW Return Codes

IS.SUC

IE.INS

IE.ACT

IE.FRI

IE.IPR

IE.ADP

IE.SDP

Successful completion.

Task not installed.

Task not active.

Issuing task is not privileged.

Invalid priority.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

8-9

ALUN$ - ASSIGN LUN

8.5 ALUN$ - ASSIGN LUN

The Assign LUN directive instructs the system to assign a
physical device unit to a logical unit number (LUN). It does not
indicate that the task has attached itself to the device.

The actual physical device assigned to the logical unit is
dependent on the logical assignment table. The Executive first
searches the logical assignment table for a device name match.
If it finds a match, the Executive assigns the physical device
unit associated with the matching entry to the logical unit.
Otherwise, the Executive searches the physical device tables and
assigns the actual physical device unit named to the logical
unit. The Executive does not search the logical assignment table
for slaved tasks.

When a task reassigns a LUN from one device to another, the
Executive cancels all I/O requests for the issuing task in the
previous device queue.

High-Level Language Call

CALL ASNLUN (lun,dev,unt[,ids])

lun Logical unit number

dev Device name (format: 1A2)

unt Device unit number

ids Directive status

Macro Call

ALUN$ lun,da,du

lun Logical unit number

da Device name (two characters)

du Device unit number

Macro Expansion

ALUN$ 7,TT,0 ;ASSIGN LOGICAL UNIT NUMBER
.BYTE 7,4 ;ALUN$ MACRO DIC, DPB SIZE=4 WORDS
.WORD 7 ;LOGICAL UNIT NUMBER 7
.ASCII /TT/ ;DEVICE NAME IS TT (TERMINAL)
.WORD 0 ;DEVICE UNIT NUMBER=O

8-10

ALUN$ - ASSIGN LUN

Local Symbol Definitions

A.LULU Logical unit number (2)

A.LUNA Physical device name (2)

A.LUNU Physical device unit number (2)

DSW Return Codes

rs.sue

IE.LNL

IE. !DU

IE. !LU

IE.ADP

IE.SOP

Note

Successful completion.

LUN usage is interlocked. (See Note 1 below.)

Invalid device and/or unit.

Invalid logical unit number.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

A return code of IE.LNL indicates that the specified LUN cannot
be assigned as directed. Either the LUN is already assigned to a
device with a file open for that LUN, or the LUN is currently
assigned to a device attached to the task, and the directive
attempted to change the LUN assignment. If a task has a LUN
assigned to a device and the task has attached the device, the
LUN can be reassigned, provided that the task has another LUN
assigned to the same device.

8-11

ASTX$S - AST SERVICE EXIT

8.6 ASTX$S - AST SERVICE EXIT

The AST Service Exit directive instructs the system to terminate
execution of an AST service routine.

If another AST is queued and ASTs are not disabled, then the
Executive immediately effects the next AST. Otherwise, the
Executive restores the task's pre-AST state. See Notes.

High-Level Language Cail

Neither the FORTRAN language nor the ISA standard permits
direct linking to system trapping mechanisms. (Refer to
Section 7.4.7 for more information on this subject.)
Therefore, this directive is not available to high-level
language programmers.

Macro Call

ASTX$S [err]

err Error routine address

Macro Expansion

ASTX$S
MOV
.BYTE
EMT
JSR

ERR
(PC)+,-(SP)
115. ,1
377
PC,ERR

;PUSH DPB ONTO THE STACK
;ASTX$S MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE
;CALL "ERR" IF UNSUCCESSFUL

Local Symbol Definitions

None

DSW Return Codes

rs.sue

IE.AST

IE.ADP

IE.SOP

Successful completion.

Directive not issued from an AST service routine.

Part of the DPB or stack is out of the issuing
task's address space.

DIC or DPB size is invalid.

8-12

ASTX$S - AST SERVICE EXIT

Notes

1. A return to the AST service routine occurs if, and only if,
the directive is rejected. Therefore, no Branch On Carry
Clear instruction is generated if an error routine address is
given. (The return occurs only when the Carry bit is set.)

2. When an AST occurs, the Executive pushes, at minimum, the
following information onto the task's stack:

SP+06 Event flag mask word

SP+04 PS of task prior to AST

SP+02 PC of task prior to AST

SP+OO DSW of task prior to AST

The task stack must be in this state when the AST Service
Exit directive is executed.

In addition to the data parameters, the Executive pushes
supplemental information onto the task stack for certain
ASTs. For I/0 completion, the stack contains the address of
the I/O status block; for Mark Time, the stack contains the
Event Flag Number; for a floating-point processor exception,
the stack contains the exception code and address.

These AST parameters must be removed from the task's stack
prior to issuing an AST exit directive. The following
example shows how to remove AST parameters when a task uses
an AST routine on I/O completion:

EXAMPLE PROGRAM

LOCAL DATA

IOSB:
BUFFER:

.BLKW

.BLKW

START OF MAIN PROGRAM

2 ;I/0 STATUS DOUBLEWORD
30. ; I/0 BUFFER

START: ;PROCESS DATA

QIOW$C IO.WVB,2,1,,IOSB,ASTSER,<BUFFER,60.,40>

8-13

ASTX$S - AST SERVICE EXIT

EXIT$S

AST SERVICE ROUTINE

ASTSER:

TST (SP)+
ASTX$S

;PROCESS & WAIT

;EXIT TO EXECUTIVE

;PROCESS AST

;REMOVE IOSB ADDRESS
;AST EXIT

3. The task can alter its return address by manipulating the
information on its stack prior to executing an AST exit
directive. For example, to return to task state at an
address other than the pre-AST address indicated on the
stack, the task can simply replace the PC word on the stack.
This procedure can be useful in those cases in which error
conditions are discovered in the AST routine; but you should
use extreme caution when doing this alteration since AST
service routine bugs are difficult to isolate.

4. Because this directive requires only a one-word DPB, the $S
form of the macro is recommended. It requires less space and
executes with the same speed as the DIR$ macro.

8-14

ATRG$ - ATTACH REGION

8.7 ATRG$ - ATTACH REGION

The Attach Region directive attaches the issuing task to a static
common region or to a named dynamic region. (No other type of
region can be attached to the task by means of this directive.)
The Executive checks the desired access specified in the region
status word against the owner UIC and the protection word of the
region. If there is no protection violation, the Executive
grants the desired access. If the region is successfully
attached to the task, the Executive returns a 16-bit region ID
(in R.GID), which the task uses in subsequent mapping directives.

You can also use the directive to determine the ID of a region
already attached to the task. In this case, the task specifies
the name of the attached region in R.GNAM and clears all four
bits described below in the region status word R.GSTS. When the
Executive processes the directive, it checks that the named
region is attached. If the region is attached to the issuing
task, the Executive returns the region ID, as well as the region
size, for the task's first attachment to the region. You might
want to use the Attach Region directive in this way to determine
the region ID of a common block attached to the task at
task-build time.

High-level Language Call

CALL ATRG (irdb[,ids])

irdb

ids

Macro Call

ATRG$

rdb

rdb

An eight-word integer array containing a Region
Definition Block (see Section 5.5.1.2)

Directive status

Region Definition Block (RDB) address

Macro Expansion

ATRG$
.BYTE
.WORD

RDBADR
5 7. '2
RDBADR

;ATRG$ MACRO DIC, DPB SIZE=2 WORDS
;RDB ADDRESS

8-15

ATRG$ - ATTACH REGION

Definition Block Parameters

Table 8-1 shows the Region Definition Block parameters for this
directive.

Table 8-1: Region Definition Block Parameters for ATRG$

Array
Element

Offset

Input Parameters

i rdb (3) (4) R.GNA.M

irdb(7) R.GSTS

Output Parameters

irdb(l) R.GID

irdb(2) R.GSIZ

Description

Name of the region to be attached

Bit settings* in the region status word
(specifying desired access to the
region):

Bit Definition

RS.RED 1 if read access desired

RS.WRT 1 if write access desired

RS.EXT 1 if extend access desired

RS.DEL 1 if delete access desired

Clear all four bits to request the
region ID and region size of the named
region if it is already attached to the
issuing task.

ID assigned to the region

Size in 32-word blocks of the attached
region

* If you are a high-level language programmer, see
5.5.1 to determine the bit values represented
symbolic names described.

Section
by the

8-16

ATRG$ - ATTACH REGION

Local Symbol Definition

A.TRBA Region Definition Block address (2)

DSW Return Codes

rs.sue

IE.UPN

IE.FRI

IE.NVR

IE.PNS

IE.HWR

IE.ADP

IE.SDP

Successful completion.

An attachment descriptor cannot be allocated.

Privilege violation.

Invalid region ID.

Specified region name does not exist.

Region had parity error or load failure.

Part of the DPB or RDB is out of the issuing
task's address space.

DIC or DPB size is invalid.

8-17

CINT$ - CONNECT TO INTERRUPT VECTOR

8.8 CINT$ - CONNECT TO INTERRUPT VECTOR

The Connect to Interrupt Vector directive enables
process hardware interrupts through a specified
Interrupt Service Routine is included in the task's
The issuing task must be privileged.

a task to
vector. The

own space.

System overhead entails execution of approximately ten
instructions before entry into the ISR, and ten instructions
after exit from the ISR. The Executive provides a mechanism for
transfer of control from the ISR to task-level code, using either
an AST or a local event flag.

After a task has connected to an interrupt vector, it can process
interrupts on three different levels: interrupt, fork, and task.

• Interrupt Level

When an interrupt occurs, control is transferred, with the
Interrupt Transfer Block (ITB) that has been allocated by the
CINT$ directive, to the Executive subroutine $INTSC. From
there, control goes to the ISR specified in the directive.

The ISR processes the interrupt and either dismisses the
interrupt directly or enters fork level through a call to the
Executive routine $FORK2.

• Fork Level

The fork-level routine executes at priority 0, the lowest
processor priority. This allows interrupts and more
time-dependent tasks to be serviced promptly. If required,
the fork routine sets a local event flag for the task and/or
queues an AST to an AST routine specified in the directive.

• Task Level

At task level, entered as the result of a local event flag or
an AST, the task does final interrupt processing and has
access to Executive directives. The task level can be
subdivided into AST level and non-AST level.

Typically, the ISR does the minimal processing required for an
interrupt and stores information for the fork routine or
task-level routine in a ring buffer. The fork routine is entered
after a number of interrupts have occurred, as deemed necessary
by the ISR, and further condenses the information.

8-18

CINT$ - CONNECT TO INTERRUPT VECTOR

Finally, the fork routine wakes up the
ultimate processing, which requires
directives. The fork level can, however,
from ISR to task-level code without doing

task-level code for
access to Executive

be a transient stage
any processing.

A task must be built privileged in order to use the CINT$
directive. However, it is valid to use the /PR:O switch to the
Task Builder to have "unprivileged mapping," that is, up to 32K
words of virtual address space available. This precludes use of
the Executive subroutines from task-level code; however, the ISR
and fork-level routines are always mapped to the Executive when
they are executed. You should always include the Executive
symbol table file (on P/OS floppy PRODCL2:[ZZPRIVDEV]POS.STB) as
input to the Task Builder.

As described in the notes section, special considerations apply
to the mapping of the ISR, fork routine, and enable/disable
routine, as well as all task data buffers accessed by these
routines.

High-Level Language Call

Not supported

Macro Ca.II

CINT$ vec,base,isr,dsi,psw,ast

vec Interrupt vector address--must be in the range
60 (octal) to 376 (octal) inclusive, and must
be a multiple of 4.

base Virtual base address for kernel APR 5 mapping
of the ISR and enable/disable interrupt
routines. This address is automatically
truncated to a 32 (decimal) word boundary. The
"base" argument is ignored in an unmapped
system.

isr Virtual address of the ISR, or 0 to disconnect
from the interrupt vector.

dsi Virtual address of the enable/disable interrupt
routine.

psw Initial priority at which the ISR is to
execute. This is normally equal to the
hardwired interrupt priority, and is expressed
in the form n*40, where n is a number in the
range 0-7. This form puts the value in bits
5-7 of psw.

8-19

CINT$ - CONNECT TO INTERRUPT VECTOR

We recommend that you make use of the symbols
PR4, PR5, PR6, and PR7 for this purpose. These
are implemented via the macro HWDDF$ found on
the P/OS floppy PRODCL2: in
[ZZPRIVDEV]EXEMC.MLB. Also, you should be sure
to specify the correct value for this
parameter. An incorrect initial priority (for
example, specifying PR4 for a device that
interrupts at PR5) can cause a system crash.

ast Virtual address of an AST routine to be entered
after the fork-level routine queues an AST.

To disconnect form interrupts on a vector, the argument isr
is set to 0 and the arguments base, dsi, psw, and ast are
ignored.

Macro Expansion

CINT$
.BYTE
.WORD
.WORD
.WORD

.WORD

.BYTE

.WORD

420,BADR,TADR,EDADR,PR5,ASTADR
129.,7 ;CINT$ MACRO DIC, DPB SIZE=7 WORDS
420. ;INTERRUPT VECTOR ADDRESS = 420
BADR ;VIRTUAL BASE ADDRESS FOR KERNEL APR
IADR ;VIRTUAL ADDRESS OF THE INTERRUPT

;SERVICE ROUTINE
EDADR ;VIRTUAL ADDRESS OF THE INTERRUPT

;ENABLE/DISABLE ROUTINE
PR5,0 ;INITIAL INTERRUPT SERVICE ROUTINE

;PRIORITY (LOW BYTE). HIGH BYTE= 0.
ASTADR ;VIRTUAL ADDRESS OF AST ROUTINE

local Symbol Definitions

C. INVE Vector address (2)

C. INBA Base address (2)

C.INIS ISR address (2)

C. INDI Enable/disable interrupt routine address (2)

C. INPS Priority (2)

C. INAS AST address (2)

DSW Return Codes

IE.UPN

IE.ITS

An ITB could not be allocated (no pool space).

The function requested is "disconnect" and the
task is not the owner of the vector.

8-20

IE.FRI

IE.RSU

IE. ILV

IE.MAP

IE.ADP

IE.SOP

Notes

CINT$ - CONNECT TO INTERRUPT VECTOR

Issuing task is not privileged.

The specified vector is already in use.

The specified vector is invalid (lower than 60
octal or higher than 376 octal, or not a multiple
of 4).

ISR or enable/disable interrupt routine is not
within 4K words from the value (base address
& 177700).

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

1. Checkpointable Tasks

Note the following points regarding checkpointable tasks:

• When a task connects to an interrupt vector,
checkpointing of the task is automatically disabled.

• When a task disconnects from a vector and is not
connected to any other vector, checkpointing of the task
is automatically enabled, regardless of its state before
the first connect or any change in state while the task
was connected.

2. Mapping Considerations

The argument "base," after being truncated to a 32-word
boundary, is the start of a 4K word area mapped in kernel APR
5. All code and data in the task that the routines use must
fall within that area, or a fatal error will occur--probably
resulting in a system crash.

Furthermore, the code and data must be either position
independent or coded in such a way that the code can execute
in APR 5 mapping. (See the PDP-11 MACR0-11 Language
Reference Manual for more information on position-independent
code.) When the routines execute, the processor is in kernel
mode, and the virtual address space includes all of the
Executive, the pool, and the I/O page.

8-21

CINT$ - CONNECT TO INTERRUPT VECTOR

References within the task image must be PC-relative or use a
special offset defined below. References outside the task
image must be absolute.

3. ISR

When the ISR is entered, RS points to the fork block in the
Interrupt Transfer Block (ITB), and R4 is saved and free to
be used. If you use registers RO through R3, you must save
them. If one ISR services mulitple vectors, the interrupting
vector can be identified by the vector address, which is
stored at offset X.VEC in the ITB. The following example
loads the vector address into R4:

MOV X.VEC-X.FORK(R5),R4

The ISR either dismisses the interrupt directly by an RTS PC
instruction, or calls $FORK2 if the fork routine is to be
entered. When calling $FORK2, R5 must point to the fork
block in the ITB, and the stack must be in the same state as
it was upon entry to the ISR. The call must use absolute
addressing, as follows:

CALL @#$FORK2

NOTE

Do not put the ISR in a common. Commons can
be checkpointed or shuffled independently
from the task; the Executive disables
checkpointing and shuffling only for the task
region.

4. Fork-Level Routine

The fork-level routine starts immediately after the call to
$FORK2. On entry, R4 and RS are the same as when $FORK2 was
called. All registers are free to be used. The first
instruction of the fork routine must be CLR @R3, which
declares the fork block to be free.

The fork-level routine should be entered if servicing the
interrupt takes more than 500 microseconds. It must be
entered if an AST is to be queued or an event flag is to be
set. (Fork level is described in greater detail in the Guide
to Writing a P/OS I/O Driver and Advanced Programmer's
Notes.)

8-22

CINT$ - CONNECT TO INTERRUPT VECTOR

You can queue an AST by calling the subroutine $QASTC:

Input: RS pointer to fork block in the ITB.

Output: if AST successfully queued, carry bit = O
if AST was not specified by CINT$, carry bit 1

Registers
Altered: RO, Rl, R2, and R3

You can set an event flag by calling the subroutine $SETF:

Input: RO Event flag number

RS Task Control Block (TCB) address of task for
which flag is to be set. This is usually, but
not necessarily, the task that has connected to
the vector. This task's TCB address is at offset
X.TCB in the ITB.

Output: Specified event flag set

Registers
Altered: Rl and R2

Note that absolute addressing must be used when calling these
routines (and any other Executive subroutines) from fork
level:

CALL @#$QASTC

CALL @#$SETF

S. Enable/Disable Interrupt Routine

The purpose of the enable/disable interrupt routine, whose
address is included in the directive call, is to allow the
user to have a routine automatically called in the following
three cases:

• When the directive is successfully executed to connect to
an interrupt vecotr (argument isr is nonzero), the
routine is called immediately before return to the task.

• When the directive is successfully executed to disconnect
from an interupt vector (argument isr=O).

8-23

CINT$ - CONNECT TO INTERRUPT VECTOR

• When the task is aborted or exits with interrupt vectors
still connected.

In the first case, the routine is called with the Carry bit
cleared; in the other cases, it is called with the Carry bit
set. In all three cases, R1 is a pointer to the Interrupt
Transfer Block (ITB). Registers RO, R2, and R3 are free to
be used; other registers must be returned unmodified. Return
is accomplished by means of an RTC PC instruction.

Typically, the routine dispatches to
depending on whether the Carry bit
routine sets interrupt enable and
necessary initialization; the other
and cleans up.

one of two routines,
is cleared or set. One
performs any other

clears interrupt enable

Note that the ITB contains the vector address, in the event
that common code is used for multiple vectors.

6. AST Routine

The fork routine can queue an AST for the task through a call
to the Executive routine $QASTC. When the AST routine is
entered (at task level), the top work of the stack contains
the vector address and must be popped off the stack before
AST exit (ASTX$S).

7. ITB Structure

The following offsets are defined relative to the start of
the ITB:

X.LNK Link word

X.JSR Subroutine call to $intsc

X.PSW PSW for ISR (low-order byte)

X.ISR ISR address (relocated)

X.FORK Start of fork block

X.REL APR 5 relocation

X.DSI Address of enable/disable
(relocated)

8-24

interrupt routine

CINT$ - CONNECT TO INTERRUPT VECTOR

X.TCB TCB address of owning task

X.AST Start of AST block

X.VEC Vector address

X.VPC Saved PC from vector

X.LEN Length in bytes of ITB

The symbols X.LNK through X.TCB are defined locally by the
macro ITBDF$, which is included on the P/OS floppy PRODCL2:
in [ZZPRIVDEV]EXEMC.MLB. All symbols are defined globally by
PRODCL2:[ZZPRIVDEV]EXELIB.OLB.

8-25

CLEF$ - CLEAR EVENT FLAG

8.9 CLEF$ - CLEAR EVENT FLAG

The Clear Event Flag directive instructs the system to report an
indicated event flag's polarity and then clear it.

High-Level Language Call

CALL CLREF (efn[,ids])

efn Event flag number

ids Directive status

Macro Call

CLEF$ efn

efn Event flag number

Macro Expansion

CLEF$ 52.
.BYTE
. WORD

31. '2
52 .

;CLEF$ MACRO DIC, DPB SIZE=2 WORDS
;EVENT FLAG NUMBER 52.

Local Symbol Definitions

C.LEEF Event flag number (2)

DSW Return Codes

IS.CLR

IS.SET

IE.IEF

IE.ADP

IE.SOP

Successful completion; flag was already clear.

Successful completion; flag was set.

Invalid event flag number (EFN<l or EFN>64).

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

8-26

CLOG$ - CREATE LOGICAL NAME STRING

8.10 CLOG$ - CREATE LOGICAL NAME STRING

The Create Logical Name String directive establishes the
relationship between a logical name string and an equivalence
value string. The maximum length for each string is 255
(decimal} characters. If you create a logical name string with
the same name, modifier, and table as an existing logical name
string, the new definition supersedes the old one.

High-level Language Call

CALL CRELOG (mod,itbnum,lns,lnssz,iens,ienssz,idsw)

mod

itbnum

lns

lnssz

iens

ienssz

idsw

Macro Call

The modifier of the logical name within a table
See Section 2.2 for details.

The logical name table number:

system (LT.SYS) = 0
session (LT.SES) = 4
user (LT.USR) = 2

Character array containing the logical name
string

Size (in bytes) of the logical name string

Character array containing the equivalence name
string

Size (in bytes) of the equivalence name string

Integer to receive the Directive Status Word

CLOG$ mod,tbnum,lns,lnssz,ens,enssz

mod

tbnum

lns

The modifier of the logical name within a
table. See Section 2.2 for details.

The logical name table number:

system (LT.SYS) = 0
session (LT.SES) = 4
user (LT.USR) = 2

Character array containing the logical name
string

8-27

lnssz

iens

ienssz

CLOG$ - CREATE LOGICAL NAME STRING

Size (in bytes) of the logical name string

Character array containing the equivalence name
string

Size (in bytes) of the equivalence name string

Macro Expansion

CLOG$ MOD,TBNUM,LNS,LNSSZ,ENS,ENSSZ
.BYTE 207. '7 ;CLOG$ MACRO DIC, DPB SIZE 7 WORDS
.BYTE 0 ;SUBFUNCTION
.BYTE MOD ;LOGICAL NAME MODIFIER
.BYTE TBNUM ;LOGICAL NAME TABLE NUMBER
.BYTE 0 ;RESERVED FOR FUTURE USE
.WORD LNS ;ADDRESS OF LOGICAL NAME BUFFER
.WORD LNSSZ ;BYTE COUNT OF LOGICAL NAME STRING
.WORD ENS ;ADDRESS OF EQUIVALENCE BUFFER
.WORD ENSSZ ;BYTE COUNT OF EQUIVALENCE STRING

Local Symbol Definitions

C.LENS Address of Equivalence name string (2)

C.LESZ Byte count of equivalence name string (2)

C.LFUN Subfunction (1)

C.LLNS Address of logical name string (2)

C.LLSZ Byte count of logical name string (2)

C.LMOD Logical name modifier (1)

C.LTBL Logical table number (1)

DSW Return Codes

Is.sue

IS.SUP

IE.UPN

IE.IBS

Successful completion of service.

Successful completion of service. A new
equivalence name string superseded a previously
specified name string.

Insufficient dynamic storage is available to
create the logical name.

The length of the logical or equivalence string
is invalid. Each string length must be greater
than 0 but not greater than 255 (decimal)
characters.

8-28

IE.ITN

IE.ADP

IE.SOP

CLOG$ - CREATE LOGICAL NAME STRING

Invalid table number specified.

Part of the DPB or user buffer is out of the
issuing task's address space, or the user does
not have proper access to that region.

DIC or DPB size is invalid.

8-29

CMKT$ - CANCEL MARK TIME REQUESTS

8.11 CMKT$ - CANCEL REQUESTS

The Cancel Mark Time Requests directive instructs the system to
cancel a specific Mark Time Request or all Mark Time requests
that have been made by the issuing task.

High-Level language

CALL CANMT ([efn j ['ids l)

efn Event flag number

ids Directive status

Macro Call

CMKT$ [efn,ast,err]

efn Event flag number

ast Mark time AST address

err Error routine address

Macro Expansion

CMKT$
.BYTE
. WORD
.WORD

5 2. , MRKAS'J7, ERR
2 7. , 3
52.
MRKAST

;TWO ARGUMENTS ARE IGNORED
;CMKT$ MACRO DIC, DPB SIZE=3 WORDS
;EVENT FLAG NUMBER 52 .
;ADDRESS OF MRKT$ REQUEST AST ROUTINE

NOTE

The above example will cancel only the Mark Time
requests that were specified with efn 52 or the
AST address MRKAST. If no ast or efn parameters
are specified, all Mark Time requests issued by
the task are canceled and the DPB size will equal
1.

Local Symbol Definitions

C.MKEF Event flag number (2)

C.MKAE Mark Time Request AST routine address (2)

8-30

CMKT$ - CANCEL MARK TIME REQUESTS

DSW Return Codes

rs.sue

IE.ADP

IE.SDP

Successful completion.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

Notes

1. If neither the efn nor ast parameters
Time requests issued by the task are
the DPB size will be one word. (When
ast parameters are specified, the
words.)

are specified, all Mark
canceled. In addition,
either the efn and/or

DPB size will be three

2. If both efn and ast parameters are specified (and nonzero),
only Mark Time Requests issued by the task specifying either
that event flag or AST address are canceled.

3. If only one efn or ast parameter is specified (and nonzero),
only Mark Time Requests issued by the task specifying the
event flag or AST address are canceled.

8-31

CNCT$ - CONNECT

8.12 CNCT$ - CONNECT

The Connect directive synchronizes the task issuing the directive
with the exit or emit status of another task (offspring) that is
already active. Execution of this directive queues an Offspring
Control Block (OCB) to the offspring task, and increments the
issuing task's rundown count (contained in the issuing task's
Task Control Block). The rundown count is maintained to indicate
the combined total number of tasks presently connected as
offspring tasks and the total number of virtual terminals the
task has created.

Except when using the high-level language call CNCTN, the exit
AST routine is called when the offspring exits or emits status
with the address of the associated exit status block on the
stack.

For high-level languages, call CNCTN instead of CNCT when you do
not use ASTs. Using CNCTN stops the system from bringing an
additional impure area into your task root, thus saving virtual
address space. The interface routines would normally use the
additional impure area to save context during an AST.

High-Level Language Call

CALL CNCT (rtname,[iefn],[iast],[iesb],[iparm][,ids])

CALL CNCTN (rtname,[iefn],[iast],[iesb),[iparm][,ids])

rtname

iefn

iast

A single-precision, floating-point variable
containing the offspring task name in Radix-50
format.

Event flag to be set when the off spring task
exits or emits status.

Name of an AST routine to be called when the
offspring task exits or emits status. This
parameter is ignored when calling CNCTN.

NOTE

Refer to Section 7.4.7 for important
guidelines on using high-level language
AST service routines.

8-32

iesb

iparm

ids

Macro Call

CNCT$

tname

efn

east

esb

CNCT$ - CONNECT

Name of
written
status.

an eight-word status block to be
when the offspring task exits or emits

Word 0 - Offspring task exit status

Word 1 - System abort code

Word 2-7 - Reserved

NOTE

The exit status block defaults to one
word. To use the eight-word exit
status block, you must specify the
logical OR of the symbol SP.WX8 and the
event flag number in the iefn parameter
above.

Name of a word to receive the status block
address when an AST occurs.

Integer to receive the Directive Status Word.

tname,[efn],[east],[esb]

Name (RAD50) of the offspring task to be
connected

The event flag to be cleared on
set when the offspring task
status

issuance and
exits or emits

Address of an AST routine to be called when the
offspring task exits or emits status

Address of an eight-word status block to be
written when the offspring task exits or emit
status

Word 0 - Offspring task exit status

Word 1 - System abort code

Word 2-7 - Reserved

8-33

CNCT$ - CONNECT

NOTE

The exit status block defaults to one
word. To use the eight-word exit
status block, you must specify the
logical OR of the symbol SP.WX8 and the
event flag number in the efn parameter
above.

Macro Expansion

CNCT$
.BYTE
.RAD50
.BYTE
.BYTE
.WORD
.WORD

ALPHA,1,CONAST,STBUF
143.,6 ;CNCT$ MACRO DIC, DPB SIZE=6 WORDS
ALPHA ;OFFSPRING TASK NAME
1 ; EVENT FLAG NO = 1
16. ;EXIT STATUS BLOCK CONSTANT
CONAST ;AST ROUTINE ADDRESS
STBUF ;EXIT STATUS BLOCK ADDRESS

Local Symbol Definitions

C.NCTN Task name (4)

C.NCEF Event flag (2)

C.NCEA AST routine address (2)

C.NCES Exit status block address (2)

DSW Return Codes

rs.sue

IE.UPN

IE. INS

IE.ACT

IE.IEF

IE.ADP

IE.SOP

Successful completion.

Insufficient dynamic memory to
offspring control block.

The specified
interpreter.

task was a

The specified task was not active.

allocate

command

Invalid event flag number (EFN<O or EFN>64).

an

line

Part of the DPB or exit status block is not in
the issuing task's address space.

DIC or DPB size is invalid.

8-34

CNCT$ - CONNECT

Note

Do not change the virtual mapping of the exit status block while
the connection is in effect. Doing so can cause obscure errors
since the exit status block is always returned to the virtual
address specified, regardless of the physical address to which it
is mapped.

8-35

CRAW$ - CREATE ADDRESS WINDOW

8.13 CRAW$ - CREATE ADDRESS WINDOW

The Create Address Window directive creates a new virtual address
window by allocating a window block from the header of the
issuing task and establishing its virtual address base and size.
(Space for the window block has to be reserved at task-build time
by means of the WNDWS keyword.) Execution of this directive
unmaps and then eliminates any existing windows that overlap the
specified range of virtual addresses. If the window is
successfully created, the Executive returns an 8-bit window ID to
the task.

The 8-bit window ID returned to the task is a number between 1
and 23, which is an index to the window block in the task's
header. The window block describes the created address window.

If WS.MAP in the window status word is set, the Executive
proceeds to map the window according to the Window Definition
Block (WDB) input parameters.

A task can specify any length for the mapping assignment that is
less than or equal to both the window size specified when the
window was created, and the length remaining between the
specified offset within the region and the end of the region.

If W.NLEN is set to 0, the length defaults to either the window
size or the length remaining in the region, whichever is smaller.
(Because the Executive returns the actual length mapped as an
output parameter, the task must clear that offset before issuing
the directive each time it wants to default the length of the
map.)

The values that can be assigned to W.NOFF depend on the setting
of bit WS.64B in the window status word (W.NSTS):

e If WS.64B = 0, the offset specified in W.NOFF must represent
a multiple of 256 words (512 bytes). Because the value of
W.NOFF is expressed in units of 32-word blocks, the value
must be a multiple of 8.

e If WS.64B 1, the task can align on 32-word boundaries. The
programmer can therefore specify any offset within the
region.

High-Level language Call

CALL CRAW (iwdb[,ids])

iwdb An eight-word integer array containing a Window
Definition Block. (See Section 5.5.2.2.)

8-36

CRAW$ - CREATE ADDRESS WINDOW

ids Directive status

Macro Call

CRAW$ wdb

wdb Window Definition Block address

Macro Expansion

CRAW$
.BYTE
.WORD

WDBADR
117.,2
WDBADR

;CRAW$ MACRO DIC, DPB SIZE=2 WORDS
;WDB ADDRESS

Definition Block Parameters

Table 8-2 shows the Window Definition Block parameters for this
directive.

Table 8-2: Window Definition Block Parameters for CRAW$

Array
Element

Off set

Input Parameters

iwdb(l)
bits 8-15

iwdb(3)

iwdb(4)

iwdb(5)

W.NAPR

W.NSIZ

W.NRID

W.NOFF

Description

Base APR of the address window to be
created.

Desired size, in 32-word blocks, of the
address window.

ID of the region to which the new window
is to be mapped, or 0 for task region
(to be specified only if WS.MAP=l).

Offset in 32-word blocks from the start
of the region at which the window is to
start mapping (to be specified only if
WS .MAP=l).

NOTE

If WS.64B in the window status word
equals 0, the value specified must
be a multiple of 8.

8-37

CRAW$ - CREATE ADDRESS WINDOW

Array
Element

iwdb(6)

iwdb(7)

Off set

W.NLEN

W.NSTS

Output Parameters

iwdb(l)
bits 0-7

iwdb(2)

iwdb(6)

iwdb{7)

W.NID

W.NBAS

W.NLEN

W. NS'l'S

Description

Length in 32-word blocks to be mapped,
or 0 if the length is to default to
either the size of the window or the
space remaining in the region, whichever
is smaller (to be specified only if
WS. MAP=l) •

Bit settings* in the window status word:

Bit

WS.MAP

WS.WRT

WS.64B

Definition

1 if the new window
is to be mapped

1 if the mapping assignment
is to occur
with write access

0 for 256-word (512-byte)
alignment, or 1
for 32-word (64-byte)
alignment

ID as~igned to the window.

Virtual address base of the new window.

Length, in 32-word blocks, actually
mapped by the window.

Bit settings* in the window status word:

* If you are a high-level language programmer, see
5.5.2 to determine the bit values represented
symbolic names described.

Section
by the

8-38

Array
Element

CRAW$ - CREATE ADDRESS WINDOW

Offset Description

Bit

WS.CRW

WS.UNM

WS.ELW

WS.RRF

WS.RES

WS.NAT

Bit

WS.64B

WS.MAP

WS.RCX

WS.DEL

WS.EXT

WS.WRT

WS.RED

Definition (if bit=l)

Address window
successfully created

At least one window was
unmapped

At least one window was
eliminated

Reference was successfully
received

Map only if resident

Create attachment descriptor
only if necessary (for
Send By Reference
directives)

Definition (if bit=l)

Define the task's permitted
alignment boundaries:
- 0 for 256-word (512-byte)
alignment, 1 for
32-word (64-byte)
alignment

Window is to be mapped

Exit if no references to
receive

Send with delete access

Send with extend access

Send with write access or map
with write access

Send with read access

8-39

CRAW$ - CREATE ADDRESS WINDOW

local Symbol Definitions

C.RABA Window Definition Block address (2)

DSW Return Codes

rs.sue

IE.PRI

IE.NVR

IE.ALG

IE.WOV

IE.ADP

IE.SOP

Successful completion.

Requested access denied at mapping stage.

Invalid region ID.

Task specified either an irivalid base APR and
window size combination, or an invalid region
offset and length combination in the mapping
assignment; or WS.64B = 0 and the value of W.NOFF
is not a multiple of 8.

No window blocks available in task's header.

Part of the DPB or WDB is out of the issuing
task's address space.

DIC or DPB size is invalid.

8-40

CRRG$ - CREATE REGION

8.14 CRRG$ - CREATE REGION

The Create Region
system-controlled
issuing task.

directive
partition

creates a dynamic region in a
and optionally attaches it to the

If RS.ATT is set in the region status word, the Executive
attempts to attach the task to the newly created region. If no
region name has been specified, the user's program must set
RS.ATT. (See the description of the Attach Region directive.)

By default, the Executive marks a dynamically created region for
deletion when the last task detaches from it. To override this
default condition, set RS.NDL in the region status word as an
input parameter. Be careful in deciding to override the
delete-on-last-detach option. An error within a program can
cause the system to lock by leaving no free space in a
system-controlled partition.

If the region is not given a name, the Executive ignores the
state of RS.NOL. All unnamed regions are deleted when the last
task detaches from them.

Named regions are put in the Common Block Directory (CBD).
However, memory is not allocated until the Executive maps a task
to the region.

The Executive returns an error if there is not enough space to
accommodate the region in the specified partition. {See Notes.)

High-Level Language Call

CALL CRRG (irdb[,ids])

irdb

ids

Macro Cali

CRRG$

rdb

rdb

An eight-word integer array containing a Region
Definition Block (see Section 7.5.1.2)

Directive status

Region Definition Block address

8-41

Macro Expansion

CRRG$
.BYTE
.WORD

RDBADR
55., 2
RDBADR

CRRG$ - CREATE REGION

;CRRG$ MACRO DIC, DPB SIZE
;RDB ADDRESS

2 WORDS

Definition Block Parameters

Table 8-3 shows the Region Definition Block parameters for this
directive.

Table 8-3: Region Definition Block Parameters for CRRG$

Array
Element

Off set

Input Parameters

irdb(2) R.GSIZ

i rdb (3) (4) R.GNAM

i rdb (5) (6) R.GPAR

irdb(7) R.GSTS

Description

Size, in 32-word blocks, of the region
to be created.

Name of the region to be created, or 0
for no name.

Name of the system-controlled partition
in which the region is to be allocated,
or 0 for the partition in which the task
is running.

Bit settings* in the region status word:

* If you are a high-level language programmer, see
5.5.1 to determine the bit values represented
symbolic names described.

Section
by the

8-42

Array
Element

irdb(8)

Offset

R.GPRO

Output Parameters

irdb(l) R.GID

irdb(2) R.GSIZ

irdb(7) R.GSTS

CRRG$ - CREATE REGION

Description

Bit

RS.CRR

RS.UNM

RS.MDL

RS.NOL

Bit

RS.ATT

RS.NEX

RS.RED

RS.WRT

RS.EXT

RS.DEL

Definition (if bit=1)

Region was successfully
created.

At least one window was
unmapped on a detach.

Mark region for deletion
on last detach.

The region should not
be deleted on last detach.

Definition (if bit=1)

Created region should
be attached.

Created region cannot
be extended.

Read access is
desired on attach.

Write access is
desired on attach.

Extend access is
desired on attach.

Delete access is
desired on attach.

Protection word for the region
(DEWR,DEWR,DEWR,DEWR).

ID assigned to the created region
(returned if RS.ATT=l).

Size in 32-word blocks of the attached
region (returned if RS.ATT=l).

Bit settings in the region status word:

8-43

Array
Element

Off set

CRRG$ - CREATE REGION

Description

Bit

RS.CRR

Definition

1 if the region was
successfully created.

Local Symbol Definitions

C.RRBA Region Definition Block address (2)

DSW Return Codes

IS.SOC

IE.UPN

IE.HWR

IE.PR!

IE.PNS

IE.ADP

IE.SOP

Notes

Successful completion.

A Partition Control Block (PCB) or an attachment
descriptor could not be allocated, or the
partition was not large enough to accommodate the
region, or there is currently not enough
contiguous space in the partition to accommodate
the region.

The directive failed in the attachment stage
because a region parity error was detected.

Attach failed because desired access was not
allowed.

Specified partition in which the region was to be
allocated does not exist; or no region name was
specified and RS.ATT = 0.

Part of the DPB or RDB is out of issuing task's
address space.

DIC or RDB size is invalid.

1. The Executive does not return an error if the named region
already exists. In this case, the Executive clears the
RS.CRR bit in the status word R.GSTS. If RS.ATT has been
set, the Executive attempts to attach the already existing
named region to the issuing task.

8-44

CRRG$ - CREATE REGION

2. The protection word (see R.GPRO above) has the same format as
that of the file system protection word. There are four
categories, and the access for each category is coded into
four bits. From low order to high order, the categories
follow this order: system, owner, group, world. The access
code bits within each category are arranged (from low order
to high order) as follows: read, write, extend, delete. A
bit that is set indicates that the corresponding access is
denied.

The issuing task's UIC is the created region's owner UIC.

In order to prevent creation of common blocks that are not
easily deleted, the system and owner categories are always
forced to have delete access, regardless of the value
actually specified in the protection word.

8-45

CRVT$ - CREATE VIRTUAL TERMINAL

8.15 CRVT$ - CREATE VIRTUAL TERMINAL

The Create Virtual Terminal directive creates a virtual terminal
for use by a parent task in communicating with its offspring
tasks. When the offspring task issues a read or write to its TI:
terminal, the request is sent to the parent task through the
virtual terminal.

This directive creates a Device Control Block (DCB) and a Unit
Control Block (UCB) for each virtual terminal unit, and links the
unit to the device list. Each newly created virtual terminal
unit is assigned the lowest available virtual terminal unit
number.

Only one copy of the Status Control Block (SCB) is required. The
data structure for Virtual Terminal Unit 0 (VTO:) is used as a
template for these dynamically created data structures. Thus,
VTO: is never assigned as a virtual terminal unit number.

On successful completion of this directive, the assigned VT:
unit number is returned in the DSW with the Carry bit clear. The
task must save this number if this virtual terminal is referred
to in another directive.

A rundown count is maintained in the issuing task's TCB to
indicate the total (current) number of virtual terminals the task
has created and the number of connected offspring tasks. This
count is reduced when an Eliminate Virtual Terminal directive is
issued specifying this VT: unit.

The input and output AST routines for the virtual terminal unit
are entered with the following three words on the stack:

SP+04
SP+02
SP+OO

Third parameter word (VFC) of offspring request
Byte count of offspring request
Virtual terminal unit number (low byte); I/O
subfunction code of offspring request (high byte)

The attach and detach AST routine is entered with the following
three words on the stack:

SP+04

SP+02
SP+OO

Second word of offspring task name (0 if detach
AST)
First word of offspring task name (0 if detach AST)
Virtual terminal unit number (low byte); I/O
subfunction code of offspring request (high byte)

8-46

CRVT$ - CREATE VIRTUAL TERMINAL

Note that the detach AST routine is entered with 0 in both task
name words on the stack. The AST routine must remove the three
words from the stack before it issues an AST Service Exit
directive.

Parent tasks can service each offspring input or output request
with a corresponding output or input request to the correct
virtual device unit. For example, where MACR0-11 has been
activated as an offspring task with a TI: of VT3:, the following
apply:

• MACR0-11 issues an IO.RVS or IO.RLB to 'I'I: for its first
input line. The virtual terminal driver queues the read
request internally and effects an AST in the parent at the
virtual address "iast'' with the unit number 3 and the byte
count from MACR0-11's I/0 request on the stack.

e In its AST routine, the parent answers the offspring's read
request in a QIO directive to a LUN assigned to VT3: with an
IO.WVB or IO.WLB function, a byte count of the line, and the
status to be returned (such as IS.CR).

• The virtual terminal driver reads the line from the
buffer, writes the line to MACRO-ll's buffer,
signals I/O completion for both I/0 requests.

parent's
and then

e Similarly, if MACR0-11 needs to print an error message, it
does so with an IO.WVB or IO.WLB to TI:. The virtual
terminal driver queues the write request internally and
effects an AST in the parent at the virtual address "cast"
with the unit number 3, the byte count, and the VFC from
MACR0-11's I/O request on the stack.

e In its output AST routine, the parent issues an IO.RVB or
IO.RLB to retrieve the line by means of the virtual terminal
driver. The parent may then output this line to a log file,
for example. The third word on the AST stack in the parent's
output AST routine is the vertical format character, telling
the parent what type of carriage control is expected for the
output line. This word would be ignored in the input AST
routine.

The virtual terminal driver does not interpret or modify
transferred bytes, I/O subfunction codes, or vertical format
characters. However, this driver does automatically truncate
offspring I/O requests to the maximum byte count specified in the
"mlen" parameter, without notifying either the parent or
offspring task. The actual number of bytes transferred on each
request is equal to the smaller of the byte counts specified in
the offspring and parent I/O requests.

8-47

CRVT$ - CREATE VIRTUAL TERMINAL

The total number of bytes transferred is returned in the
corresponding I/O status blocks. Note that offspring tasks can
receive "mlen" in the fourth characteristics word when a Get LUN
Information directive is issued.

Intermediate buffering in secondary pool, when enabled by the
parent task, is performed on offspring input and output requests
when the offspring task is checkpointable. Offspring tasks,
therefore, can be stopped and checkpointed.

If the parent task is stopped and checkpointed when the offspring
task issues an I/O request, the resulting AST brings the parent
task to an unstopped state from which it can return to memory to
service the I/0 request. Upon exit from the AST routine, the
parent task is again stopped. This mode of operation allows the
parent and offspring tasks to share the same physical memory,
even while the parent task services the terminal I/O requests for
the offspring task.

Whenever the virtual terminal driver determines that it should
not use intermediate buffering, offspring tasks are locked in
memory when I/O requests are issued, and transfers occur directly
between parent and offspring buffers.

The intermediate buffering of offspring I/O requests can normally
be enabled and disabled by the parent task with the IO.STC
function, as described below. An exception exists for virtual
terminals created with a "mlen" parameter greater than the
system-wide maximum.

If a Create Virtual Terminal directive is specified with a "mlen''
parameter greater than the system-wide maximum, the parameter is
accepted, but intermediate buffering for the created virtual
terminal unit is automatically disabled. Furthermore,
intermediate buffering for that unit cannot be enabled by the
parent task with the IO.STC function.

Parent tasks specify the first word of the I/O completion status
for the offspring request in the third word of the QIO DPB
parameter list. For example, consider an offspring input request
for 10 characters or more that is honored with a write logical of
10 characters and IS.CR in the third parameter word. The second
word of the I/O status would be set to 10, and 10 characters
would be transferred.

Another example is when a parent task issues a read request to
satisfy a write request issued by the offspring task. To notify
the offspring task that its write request was satisfied, the
parent task would specify rs.sue in the third parameter word.

8-48

CRVT$ - CREATE VIRTUAL TERMINAL

A special I/0 function, IO.STC, returns status to an offspring
task without a data transfer. The parameter word format for the
IO.STC function is as follows:

• Word 0 with bit 0 set indicates that status is being
returned.

• Word 0 with bit 1 clear, if the virtual terminal is
full-duplex mode, indicates that status is being returned
an offspring read request.

• Word 0 with bit 1 set, if the virtual terminal is
full-duplex mode, indicates that status is being returned
an offspring write request.

• Word 1 is the second word of I/0 return status.

• Word 2 is the first word of I/O return status.

NOTE

If the virtual terminal is in half-duplex mode,
bit 1 of word 0 is ignored.

in
for

in
for

The status words are reversed in order to be similar to the
format in which status must be passed back in a parent read or
write function to an offspring task. The IO.STC function must be
used to return status when no transfer is desired, because a byte
count of 0 is not allowed in an IO.RLB or IO.WLB (read logical
block and write logical block operations, respectively). For
example, IE.EOF (write end-of-file tape mark) is normally
returned with IO.STC.

Note that it is important to specify an I/O completion status for
all parent read and write requests that satisfy corresponding
requests from the offspring task. If a return status is not
specified, it defaults to zero. A zero indicates that the I/O is
still pending (IS.PND). This causes the offspring task to hang
if it examines the I/O status block to determine whether the I/O
is completed.

In addition to returning status, the IO.STC function has an
additional purpose. It can enable or disable intermediate
buffering of I/0 requests. (Note that a task cannot perform both
IO.STC functions in the same I/O request.) If bit 0 of the first
parameter word in IO.STC is clear, bit 1 in this word is
interpreted as a disable buffering flag:

8-49

CRVT$ - CREATE VIRTUAL TERMINAL

• If bit 0 is clear and bit 1 is set, intermediate buffering of
offspring I/O is disabled.

• If bit 0 is clear and bit 1 is clear, buffering is enabled.

Buffering cannot be enabled on a virtual terminal unit
been created with an "mlen" parameter greater
system-wide maximum. An attempt to do both results in
return of IE.IFC.

that has
than the
an error

The only tasks that can assign LUNs to a virtual terminal unit
are:

• The task that created the virtual terminal unit

• That task's offspring task, whose TI:
terminal unit

is the virtual

Attachment of a virtual terminal unit by an offspring task
prevents the dequeuing of I/O requests to that unit from other
offspring tasks. Parent I/O requests are always serviced.

Both parent and offspring tasks can specify the I/O functions
IO.GTS, SF.GMC, and SF.SMC. However, SF.GMC and SF.SMC support
only a limited number of terminal characteristics for virtual
terminals. Please refer to Chapter 12 for a list of valid
characteristics.

Note that the parent task is not notified when the offspring
issues any of the above directives.

When an offspring task issues a read-with-prompt request
(IO.RPR), the virtual terminal driver separates the request into
an IO.WLB request and an IO.RLB request. The parent task cannot
issue an IO.RPR.

When a virtual terminal is in half-duplex mode, the virtual
terminal driver handles only one offspring request at a time.
For example, if the offspring task issues a read request and then
issues a write request without waiting for the read to be
completed, the driver queues the write request to be processed
when the read is completed.

The parent task can issue an SF.SMC function to set the virtual
terminal to full-duplex mode. In full-duplex mode, the write
request in the previous example would be processed even if the
previous read was not yet completed. If the parent task is at
AST state, it will not receive notification of the I/O request.

8-50

CRVT$ - CREATE VIRTUAL TERMINAL

Both parent and offspring tasks can issue an SF.GMC request to
determine the mode of the virtual terminal. However, only the
parent task can change the mode (using SF.SMC).

High-Level Language Call

CALL CRVT ([iiast],[ioast],[iaast],[imlen],iparm[,ids])

ii a st

ioast

iaast

imlen

iparm

ids

Macro Call

CRVT$

iast

oast

AST address where input requests from offspring
tasks are serviced

AST address where output requests from offspring
tasks are serviced

AST address where
notified of the
offspring attach and
virtual terminal unit

the parent task can be
completion of successful
detach requests to the

NOTE

At least one of the above optional
parameters should be specified.
Otherwise, the virtual terminal created
is treated as the null device.

Maximum buffer length allowed for offspring I/0
requests

Address of three-word buffer to receive
information from the stack when an AST occurs

Integer to receive the Directive Status Word
containing the virtual terminal number

[iast],[oast],[aast],[mlen]

AST address at
offspring tasks
off spring input
IE.IFC returned.

AST address at
off spring tasks
offspring output
IE.IFC returned.

8-51

which input requests from
are serviced. If iast=O,

requests are rejected with

which output requests from
are serviced. If oast=O,

requests are rejected with

aast

. mlen

CRVT$ - CREATE VIRTUAL TERMINAL

AST address at which the parent task can be
notified of the completion of successful
offspring attach and detach requests to the
virtual terminal unit. If aast=O, no
notification of offspring attach/detach is
returned to the parent task.

At least
parameters
Otherwise,
is treated

NOTE

one of the above optional
should be specified.

the virtual terminal created
as the null device .

Maximum buffer length (in bytes) allowed for
offspring I/O requests.

NOTE

If the value of the mlen parameter is
-1, the system creates a special kind of
null virtual terminal. See Section 12.6
for details.

Macro Expansion

CRVT$
.BYTE
.WORD
.WORD
.WORD

.WORD

IASTRU,OASTRU,PAST,20.
149.,5 ;CRVT$ MACRO DIC, DPB SIZE= 5 WORDS
IASTRU ;INPUT REQUEST AST ROUTINE ADDRESS
OASTRU ;OUTPUT REQUEST AST ROUTINE ADDRESS
PAST ;SUCCESSFUL VT ATTACH NOTIFICATION

;AST ROUTINE ADDRESS
20. ;MAXIMUM BUFFER LENGTH= 20 (DECIMAL)

;BYTES

Local Symbol Definitions

C.RVIA Input request AST routine address (2)

C.RVOA Output request AST routine address (2)

C.RVAA VT attach notification AST routine address (2)

C.RVML Maximum buffer length (2)

8-52

CRVT$ - CREATE VIRTUAL TERMINAL

DSW Return Codes

unit

IE.UPN

IE.HWR

IE.ADP

IE.SOP

Successful completion results in the return of
the unit number of the created virtual terminal
unit with the C bit clear.

Insufficient dynamic memory to allocate the
virtual terminal device unit data structures.

Virtual terminal device driver not resident.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

8-53

- CANCEL TIME-BASED INITIATION REQUESTS

8.16 CSRQ$ - TIME-BASED INITIATI REQUESTS

The Cancel Time-Based Initiation Requests directive instructs the
system to cancel all time-synchronized initiation requests for a
specified task regardless of the source of each request. These
requests result from a Run directive.

High-Level uage

CALL CANALL (tsk[,ids])

tsk Task name

ids Directive status

Macro Call

CSRQ$ tt

tt Scheduled (target) task name

Macro Expansion

CSRQ$
.BYTE
• Rl'.>.D50

local Symbol

C.SRTN

ALPHA
25. '3
/ALPHA/

ons

;CSRQ$ MACRO DIC, DPB SIZE=3 WORDS
;TASK "ALPHA"

Target task name (4)

DSW Return Codes

Is.sue

IE.INS

IE.PRI

IE.ADP

IE.SDP

Successful completion.

Task is not installed.

The issuing
attempting to
task.

task is
cancel

not privileged and is
requests made by another

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

8-54

CSRQ$ - CANCEL TIME-BASED INITIATION REQUESTS

Note

If you specify an error routine address when using the $C or $S
macro form, you must include a null argument. For example:

CSRQ$S #TNAME,,ERR ;CANCEL REQUESTS FOR "ALPHA"

TNAME: .RAD50 /ALPHA/

8-55

DECL$S - DECLARE SIGNIFICANT EVENT

8.17 DECL$S - DECLARE SIGNIFICANT EVENT

The Declare Significant Event directive instructs the system to
declare a significant event.

Declaration of a significant event causes the Executive to scan
the Active Task List from the beginning, searching for the
highest priority task that is ready to run. Use this directive
with discretion to avoid excessive scanning overhead.

The $S form of the macro is recommended because this directive
requires only a one-word DPB.

High-level Language Call

CALL DECLAR ([,ids])

ids Directive status

Macro Call

DECL$S [,err]

err Error routine address

Macro Expansion

DECL$S
MOV
.BYTE
EMT
BCC
JSR

,ERR
(PC)+,-(SP)
3 5. '1
377
.+6
PC,ERR

;ONE ARGUMENT IGNORED
;PUSH DPB ONTO THE STACK
;DECL$S MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE "ERR"

local Symbol Definitions

None

DSW Return Codes

rs.sue

IE.ADP

IE.SDP

Successful completion.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

8-56

DLOG$ - DELETE LOGICAL NAME

8.18 DLOG$ - DELETE LOGICAL NAME

The Delete Logical Name directive deletes a logical name from the
logical name table and returns to the system the resources used
by that logical name. You should delete logical names when they
are no longer needed. If you do not specify the the logical name
string buffer address, DLOG$ deletes all of the logical names
with the specified modifier in the specified logical name table.

High-Level Language Call

CALL DELLOG (mod,itbnum,lns,lnssz,idsw)

mod

itbnum

lns

lnssz

idsw

Macro Call

The modifier of the logical name within a
table. See Section 2.2 for details.

The logical name table number:

system (LT.SYS) = 0
session (LT.SES) = 4
user (LT.USR) = 2

Character array containing the logical name
string

Size (in bytes) of the logical name
lnssz equals 0, then the operation
logicals in the specified table
specified modifier.

string. If
deletes all
with the

Integer to receive the Directive Status Word

DLOG$ mod,tbnum,lns,lnssz

mod

tbnum

lns

lnssz

The modifier of the logical name within a
table. See Section 2.2 for details.

The logical name table number:

system (LT.SYS) = 0
session (LT.SES) = 4
user (LT.USR) = 2

Character array containing the logical name
string

Size (in bytes) of the logical name string. If
lnssz equals 0, then the operation deletes all

8-57

DLOG$ - DELETE LOGICAL NAME

logicals in the specified table with the
specified modifier.

Macro Expansion

DLOG$
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.WORD
.WORD

mod,tbnum,lns,lnssz
207.,5 ;DLOG$ MACRO DIC, DPB SIZE= 5 WORDS
2 ;SUBFUNCTION CODE FOR DELETION
MOD ;LOGICAL NAME MODIFIER
TBNUM ;LOGICAL NAME TABLE NUMBER
0 ;RESERVED FOR FUTURE USE
LNS ;ADDRESS OF THE LOGICAL NAME BUFFER
LNSSZ ;BYTE COUNT, LOGICAL NAME STRING

Local Symbol Definitions

D.LFUN

D.LLNS

D.LLSZ

D.LMOD

D.LTBL

DSW Return

Is.sue

IE.LNF

IE.IBS

IE.ITN

IE.ADP

IE.SDP

Subfunction (1)

Address of logical name string (2)

Byte count of logical name string (2)

Logical name modifier (1)

Logical table number (1)

Codes

Successful completion.

The specified logical name string was not found.

The length of the logical or equivalence string
is invalid. Each string length must be greater
than 0 but not greater than 255 (decimal)
characters.

Invalid table number specified.

Part of the DPB or user buffer is out of the
issuing task's address space, or the user does
not have proper access to that region.

DIC or DPB size is invalid.

8-58

DSAR$S/IHAR$S - DISABLE/INHIBIT AST RECOGNITION

8.19 DSAR$S/IHAR$S - DISABLE/INHIBIT AST RECOGNITION

The Disable (or Inhibit) AST Recognition directive instructs the
system to disable recognition of ASTs for the issuing task. The
ASTs are queued as they occur and are effected when the task
reenables AST recognition. There is an implied disable AST
recognition directive whenever an AST service routine is
executing. When a task's execution is started, AST recognition
is enabled. (See Notes.)

High-Level Language Call

CALL DSASTR [(ids)]
or

CALL INASTR [(ids)]

ids Directive status

Macro Call

DSAR$S [err]

err Error routine address

Macro Expansion

DSAR$S
MOV
.BYTE
EM'i'
BCC
JSR

ERR
(PC)+,-(SP)
99. '1
377
.+6
PC,ERR

;PUSH DPB ONTO THE STACK
;DSAR$S MACRO DIC, DPB SIZE=l WORD
1TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions

None

DSW Return Codes

rs.sue

IE.ITS

IE.ADP

IE.SDP

Successful completion.

AST recognition is already disabled.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

8-59

DSAR$S/IHAR$S - DISABLE/INHIBIT AST RECOGNITION

Notes

1. This directive disables only the recognition of ASTs; the
Executive still queues the ASTs. They are queued FIFO and
will occur in that order when the task reenables AST
recognition.

2. Because this directive requires only a one-word DPB, the $S
form of the macro is recommended. It requires less space
than, and executes with the same speed as, the DIR$ macro.

8-60

DSCP$S - DISABLE CHECKPOINTING

8.20 DSCP$S - DISABLE CHECKPOINTING

The Disable Checkpointing directive instructs the system to
disable checkpointing for a task that has been installed as a
checkpointable task. Only the affected task can issue this
directive. A task cannot disable the ability of another task to
be checkpointed.

High-level Language Call

CALL DISCKP [(ids)]

ids Directive status

Macro Call

DSCP$S [err]

err Error routine address

Macro Expansion

DSCP$S
MOV
.BYTE
EMT
BCC
JSR

ERR
(PC)+,-(SP)
95•I1
377
.+6
PC,ERR

;PUSH DPB ONTO THE STACK
;DSCP$S MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions

None

DSW Return Codes

rs.sue

IE.ITS

IE.CKP

IE.ADP

IE.SDP

Successful completion.

Task checkpointing is already disabled.

Issuing task is not checkpointable.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

8-61

DSCP$S - DISABLE CHECKPOINTING

Notes

1. When a checkpointable task's execution
checkpointing is enabled (that is, the
checkpointed).

is
task

started,
can be

2. Because this directive requires only a one-word DPB, the $S
form of the macro is recommended. It requires less space
than, and executes with the same speed as, the DIR$ macro.

8-62

DTRG$ - DETACH REGION

8.21 DTRG$ - DETACH REGION

The Detach Region directive detaches the issuing task from a
specified, previously attached region. Any of the task's windows
that are currently mapped to the region are automatically
unmapped.

If RS.MDL is set in the region status word when the directive is
issued, the task marks the region for deletion on the last
detach. A task must be attached with delete access to mark a
region for deletion.

High-Level Language Call

CALL DTRG (irdb[,ids])

irdb An eight-word integer array containing a Region
Definition Block (see Section 5.5.1.2)

ids Directive status

Macro Call

DTRG$ rdb

rdb Region Definition Block address

Macro Expansion

DTRG$
.BYTE
.WORD

RDBADR
59. '2
RDBADR

;DTRG$ MACRO DIC, DPB SIZE=2 WORDS
;RDB ADDRESS

Definition Block Parameters

Table 8-4 shows the Region Definition Block parameters for this
directive.

Local Symbol Definitions

D.TRBA Region Definition Block address (2)

8-63

DTRG$ - DETACH REGION

Table 8-4: Region Definition Block Parameters for DTRG$

Array
Element

Offset Description

Input Parameters

irdb(l) R.GID

irdb(7) R.GSTS

ID of the region to be detached

Bit settings* in the region status word:

Bit

RS.MDL

Definition

1 if the region should be
marked for deletion when the
last task detaches from it

Output Parameters

irdb(7) R.GSTS Bit settings* in the region status word:

Bit

RS.UNM

Definition

1 if any windows were
unmapped

DSW Return Codes

*

rs.sue

IE.PRI

IE.NVR

Successful completion.

The task, which is not attached with delete
access, has attempted to mark the region for
deletion on the last detach, or the task has
outstanding I/O.

The task
attempted
region).

specified
to detach

an invalid
region 0

region
(its own

ID or
task

If you are a high-level language programmer, see
5.5.1 to determine the bit values represented
symbolic names described.

Section
by the

8-64

IE.ADP

IE.SDP

DTRG$ - DETACH REGION

Part of the DPD or RDB is out of the issuing
task's address space.

DIC or DPB size is invalid.

8-65

ELAW$ - ELIMINATE ADDRESS WINDOW

8.22 ELAW$ - ELIMINATE ADDRESS WINDOW

The Eliminate Address Window directive deletes
address window, unmapping it first if necessary.
of the eliminated window's ID is invalid.

High-Level Language Call

CALL ELAW (iwdb[,ids])

an existing
Subsequent use

iwdb An eight-word integer array containing a Window
Definition Block (see Section 5.5.2.2)

ids Directive status

Macro Call

ELAW$ wdb

wdb Window Definition Block address

Macro Expansion

ELAW$
.BYTE
.WORD

WDBADR
119. ,2
WDBADR

;ELAW$ MACRO DIC, DPB SIZE=2 WORDS
;WDB ADDRESS

Definition Block Parameters

Table 8-5 shows the Window Definition Block parameters for this
directive.

Local Symbol Definitions

E.LABA Window Definition Block address (2)

DSW Return Codes

rs.sue

IE.NVW

IE.ADP

IE.SDP

Successful completion.

Invalid address window ID.

Part of the DPB or WDB is out of the issuing
task's address space.

DIC or DPB size is invalid.

8-66

ELAW$ - ELIMINATE ADDRESS WINDOW

Table 8-5: Window Definition Block Parameters for ELAW$

Array
Element

Off set

Input Parameters

iwdb(1)
bits 0-7

W.NID

Output Parameters

iwdb(7) W.NSTS

Description

ID of the address window to be
eliminated

Bit settings* in the window status word:

Bit

WS.ELW

WS.UNM

Definition

1 if the address window was
successfully eliminated

1 if the address window was
unmapped

* If you are a high-level language programmer, see
5.5.2 to determine the bit values represented
symbolic names described.

Section
by the

8-67

ELVT$ - ELIMINATE VIRTUAL TERMINAL

8.23 ELVT$ - ELIMINATE VIRTUAL TERMINAL

The Eliminate Virtual Terminal directive causes the specified
virtual terminal unit data structures to be marked for
deallocation, and eventually, to be unlinked from the device list
and deallocated. This directive can only be issued by the task
that created the virtual terminal device unit. All active
nonprivileged tasks are aborted whose TI: device units are the
virtual terminal being deallocated. TKTN messages reporting the
abortion of these tasks in this instance are directed to CO:.
All LUNs assigned by the issuing task, or by any offspring task
being aborted, are deassigned.

A rundown count is maintained in the TCB of each parent task.
This count reflects the total number of outstanding virtual
terminal units the task has created, plus the number of connected
(offspring) tasks. A series of ELVT$ directives are issued when
a parent task, which has not eliminated virtual terminals it has
created, exits. The virtual terminal data structures continue to
exist until the last task whose TI: is the virtual terminal unit
exits and until all CLI commands for that unit have been
processed.

High-Level Language Call

CALL ELVT (iunum[,ids])

iunum Virtual terminal unit number

ids Integer to receive the Directive Status Word

Macro Call

ELVT$ unum

unum Unit number of the virtual terminal to be
eliminated. The task must provide this
parameter after the virtual terminal is created.
(See Note.)

Macro Expansion

ELVT$
.BYTE
WORDS
.WORD

0
151.,2

0

;ELVT$ MACRO DIC, DPB SIZE = 2

;VIRTUAL TERMINAL UNIT NUMBER

8-68

ELVT$ - ELIMINATE VIRTUAL TERMINAL

Local Symbol Definitions

E.LVNM VT unit number (2)

DSW Return Codes

rs.sue

IE. IOU

IE.ADP

IE.SOP

Note

Successful completion.

The specified virtual terminal unit does not
exist or it was not created by the issuing task.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

The actual virtual terminal unit number is not known until after
the virtual terminal is actually created (that is, until after
successful completion of a Create Virtual Terminal directive).
The Create Virtual Terminal directive DSW contains the actual
virtual terminal unit number for use in the Eliminate Virtual
Terminal directive. Thus, the task must save DSWs for all
virtual terminals it creates, and later eliminate them using the
Eliminate Virtual Terminal directive.

8-69

EMST$ - EMIT STATUS

8.24 EMST$ ~ EMIT STATUS

The Emit Status directive returns the specified 16-bit quantity
to the specified connected task. It possi sets an event flag
or declares an AST if previously specified by the connected task
in a Send, st And Connect, a Spawn, or a Connect directive.
If the specified task is multiply connected to the task issuing
this directive, the first (oldest) Of ring Control Block (OCB)
in the queue is used to return status. If no task name is
specified, this action is taken for all tasks that are connected
to the issuing task at that time. In any case, whenever status
is emitted to one or more tasks, those tasks no longer remain
connected to the task issuing the Emit Status directive.

High-level Language Call

CALL EMST ([rtname],status[,ids])

rtname

status

ids

Macro Call

Name of a task connected to the issuing task to
which the status is emitted

A 16-bit quantity returned to the connected
task

Integer to receive the Directive Status Word

EMST$ [tname],status

tname Name of a task connected to the issuing task to
which the status is emitted

status 16-bit quantity returned to the connected task

Macro Expansion

EMST$
.BYTE
.RAD50
STATUS
.WORD

Local Symbol

E.MSTN

E.MSST

ALPHA, STWD
147.,4
ALPHA

STWD

n ons

;EMST$ MACRO DIC, DPB SIZE=4 WORDS
;NAME OF CONNECTED TASK TO RECEIVE

;VALUE OF STATUS TO BE RETURNED

Task name (4)

Status to be returned (2)

8-70

EMST$ - EMIT STATUS

DSW Return Codes

Is.sue

IE. ITS

IE.ADP

IE.SOP

Successful completion.

The specified task is not connected to the
issuing task.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

8-71

ENAR$S - ENABLE AST RECOGNITION

8.25 ENAR$S - ENABLE AST RECOGNITION

The Enable AST Recognition directive instructs the system to
recognize ASTs for the issuing task; that is, the directive
nullifies a Disable AST Recognition directive. ASTs that were
queued while recognition was disabled are effected at issuance.
When a task's execution is started, AST recognition is enabled.

High-Level Language Call

CALL ENASTR [(ids)]

ids Directive status

Macro Call

ENAR$S [err]

err Error routine address

Macro Expansion

ENAR$S
MOV
.BYTE
EMT
BCC
JSR

ERR
(PC)+,-(SP)
101. ,1
377
.+6
PC,ERR

;PUSH DPB ONTO THE STACK
;ENAR$S MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions

None

DSW Return Codes

rs.sue

IE.ITS

IE.ADP

IE.SOP

Note

Successful completion.

AST recognition is not disabled.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

Because this directive requires only a one-word DPB, the $S form
of the macro is recommended. It requires less space and executes
with the same speed as that of the DIR$ macro.

8-72

ENCP$S - ENABLE CHECKPOINTING

8.26 ENCP$S - ENABLE CHECKPOINTING

The Enable Checkpointing directive instructs the system to make
the issuing task checkpointable after its checkpointing has been
disabled for that task; that is, the directive nullifies a DSCP$S
directive. This directive cannot be used to enable checkpointing
of a task that was built with checkpointing disabled.

High-Level Language Call

CALL ENACKP [(ids)]

ids Directive status

Macro Call

ENCP$S [err]

err Error routine address

Macro Expansion

;PUSH DPB ONTO THE STACK
ENCP$S
MOV
.BYTE
EMT
BCC
JSR

ERR
(PC)+,-(SP)
97•I1
377

;ENCP$S MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE

.+6
PC,ERR

;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions

None

DSW Return Codes

rs.sue

IE.ITS

Successful completion.

Checkpointing is not disabled or
connected to an interrupt vector.

task is

IE.ADP Part of the DPB is out of the issuing task's
address space.

IE.SDP DIC or DPB size is invalid.

8-73

ENCP$S - ENABLE CHECKPOINTING

Note

Because this directive requires only a one-word DPB, the $S form
of the macro is recommended. It requires less space than, and
executes with the same speed as, the DIR$ macro.

8-74

EXIF$ - EXIT IF

8.27 EXIF$ - EXIT IF

The Exit If directive instructs the system to terminate the
execution of the issuing task if, and only if, an indicated event
flag is not set. The Executive returns control to the issuing
task if the specified event flag is set. See Notes.

High-Level Language Call

CALL EXITIF (efn[,ids])

efn Event flag number

ids Directive status

Macro Call

EXIF$ efn

efn Event flag number

Macro Expansion

EXIF$
.BYTE
. WORD

52.
5 3 • t 2
52.

;EXIF$ MACRO DIC, DPB SIZE=2 WORDS
;EVENT FLAG NUMBER 52 .

Local Symbol Definitions

E.XFEF Event flag number (2)

DSW Return Codes

IS.SET

IE.IEF

IE.ADP

IE.SDP

Notes

Indicated EFN set; task did not exit.

Invalid event flag number (EFN<l or EFN>64).

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

1. The Exit If directive is useful to avoid a possible race
condition that can occur between two tasks communicating by
means of the Send and Receive directives. The race condition
occurs when one task executes a Receive directive and finds
its receive queue empty; but before the task can exit, the
other task sends it a message. The message is lost because

8-75

EXIF$ - EXIT IF

the Executive flushed the receiver task's receive queue when
it decided to exit. This condition can be avoided if the
sending task specifies a common event flag in the Send
directive and the receiving task executes an Exit If
specifying the same common event flag. If the event flag is
set, the Exit If directive returns control to the issuing
task, signaling that something has been sent.

2. A high-level language program that issues the Exit If call
must first close all files by issuing Close calls. To avoid
the time overhead involved in closing and reopening files,
the task should first issue the appropriate test or Clear
Event Flag directive. If the Directive Status Word indicates
that the flag was not set, then the task can close all files
and issue the call to Exit If.

3. On Exit, the Executive frees task resources. In particular,
the Executive does the following:

e Detaches all attached devices

e Flushes the AST queue and despecifies all specified ASTs

• Flushes the receive and receive-by-reference queues

e Flushes the clock queue for any outstanding Mark Time
requests for the task

e Closes all open files (files open for write access are
locked)

• Detaches all attached regions, except in the case of a
fixed task

e Runs down the task's I/O

e Disconnects from interrupt vectors

• Breaks the connection with any offspring tasks

e Returns a success status (EX$SUC) to any parent tasks

e Frees the task's memory if the exiting task was not fixed

4. If the task exits, the Executive declares a significant
event.

8-76

EXIT$S - TASK EXIT

8.28 EXIT$S - TASK EXIT

The Task Exit directive instructs the system to terminate the
execution of the issuing task.

High-Level Language Call

See Note 5 below.

Macro Call

EXIT$S [err]

err Error routine address

Macro Expansion

EXIT$S
.MOV
.BYTE
EMT
JSR

ERR
(PC)+,-(SP)
51. '1
377
PC,ERR

;PUSH DPB ONTO THE STACK
;EXIT$S MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE
;CALL ROUTINE "ERR"

Local Symbol Definitions

None

DSW Return Codes

IE.ADP

IE.SDP

Notes

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

1. A return to the task occurs if, and only if, the directive is
rejected. Therefore, no Branch on Carry Clear instruction is
generated if an error routine address is given, since the
return will only occur with carry set.

2. Exit causes a significant event to be declared.

3. On Exit, the Executive frees task resources. In particular,
the Executive:

e Detaches all attached devices

8-77

EXIT$S - TASK EXIT

• Flushes the AST queue and despecifies all specified ASTs

• Flushes the receive and receive-by-reference queues

• Flushes the clock queue for all outstanding Mark Time
requests for the task

• Closes all open files (files open for write access are
locked)

• Detaches all attached regions, except in the case of a
fixed task, where no detaching occurs

• Runs down the task's I/O

• Disconnects from interrupt vectors

• Breaks the connection with any offspring tasks

• Returns a success code (EX$SUC) to any parent task

• Frees the task's memory if the exiting task was not fixed

4. Because this directive requires only a one-word DPB, the $S
form of the macro is recommended. It requires less space
than, and executes with the same speed as, the DIR$ macro.

5. You can terminate FORTRAN tasks with the STOP statement or
with CALL EXIT. CALL EXIT is a FORTRAN OTS routine that
closes open files and performs other cleanup before it issues
an EXIT$S directive (or an EXST$ directive in FORTRAN-77).
FORTRAN tasks that terminate with the STOP statement result
in a message being displayed on the task's TI:. This message
includes task name (as it appears in the Active Task List),
the statement causing the task to stop, and an optional
character string specified in the STOP statement. Tasks that
terminate with CALL EXIT do not display a termination
message.

For example, a FORTRAN task containing
statement:

20 STOP 'THIS FORTRAN TASK'

the following

exits with the following message displayed on the task's TI:
(TTO in this example):

TTO STOP THIS FORTRAN TASK

8-78

EXST$ - EXIT WITH STATUS

8.29 EXST$ - EXIT WITH STATUS

The Exit With Status directive causes the issuing task to exit,
passing a 16-bit status back to all tasks connected (by the
Spawn, Connect, or Send, Request And Connect directive). If the
issuing task has no connected tasks, then the directive simply
performs a Task Exit.

No format of the status word is enforced by the Executive; format
conventions are a function of the cooperation between parent and
offspring tasks. However, if an offspring task aborts for any
reason, a status of EX$SEV is returned to the parent task. This
value is interpreted as a "severe error" by batch processors.
Furthermore, ir a task performs a normal exit with other tasks
connected to it, a status of EX$SUC (successful completion) is
returned to all connected tasks.

High-Level Language Call

CALL EXST (istat)

is tat A 16-bit status value to be returned to parent
task

Macro Call

EXST$ sts

sts A 16-bit status value to be returned to parent
task

Macro Expansion

EXST$
.BYTE
.WORD

STWD
29 • I 2
STWD

Local Symbol Definitions

;EXST$ MACRO DIC, DPB SIZE=2 WORDS
;VALUE OF STATUS TO BE RETURNED

E.XSTS value of status to be returned (2)

DSW Return Codes

No status is
completed,
exit.

returned
since the

if the directive is successfully
directive causes the issuing task to

IE.ADP Part of the DPB is out of the issuing task's
address space.

8-79

EXST$ - EXIT WITH STATUS

IE.SOP DIC or DPB size is invalid.

Notes

1. The Executive does the following to free a task's resources
on Exit:

• Detaches all attached devices

• Flushes the AST queue and despecifies all specified ASTs

• Flushes the Receive and Receive-by-reference queues

• Flushes the clock queue for any outstanding Mark Time
requests for the task

• Closes all open files.
locked.)

(Files open for write access are

• Detaches all attached regions except in the case of a
fixed task

• Runs down the task's I/0

• Disconnects from interrupt vectors

• Breaks the connection with any offspring tasks

• Returns the specified exit status to any parent tasks

• Frees the task's memory if the exiting task was not fixed

2. If the task exits, the Executive declares a significant
event.

8-80

EXTK$ - EXTEND TASK

8.30 EXTK$ - EXTEND TASK

The Extend Task directive instructs the system to modify the size
of the issuing task by a positive or negative increment of
32-word blocks. If the directive does not specify an increment
value or specifies an increment value of zero, the Executive
makes the issuing task's size equal to its installed size. The
issuing task cannot have any outstanding I/0 when it issues the
directive. The task also must be checkpointable to increase its
size; if necessary, the Executive checkpoints the task, and then
returns the task to memory with its size modified as directed.

The Executive does not change any current mapping assignments if
the task has memory-resident overlays. However, if the task does
not have memory-resident overlays, the Executive attempts to
modify, by the specified number of 32-word blocks, the mapping of
the task to its task region.

If the issuing task is checkpointable but has no preallocated
checkpoint space available, a positive increment can require
dynamic memory and extra space in a checkpoint file sufficient to
contain the task.

There are several constraints on the size to which a task can
extend itself using the Extend directive:

e A task that does not have memory-resident overlays cannot
extend itself beyond 32K minus 32 words.

e A task that has preallocated checkpoint space in its task
image file cannot extend itself beyond its installed size.

a A task that has memory-resident overlays cannot reduce its
size below the highest window in the task partition.

High-Level Language Cali

CALL EXTTSK ([inc][,ids])

inc A positive or negative number equal to the number
of 32-word blocks by which the task size is
extended or reduced

ids Directive status

8-81

Macro Call

EXTK$

inc

EXTK$ - EXTEND TASK

[inc]

A positive or negative number equal to the number
of 32-word blocks by which the task size is to be
extended or reduced

Macro Expansion

EXTK$ 40
.BYTE
.WORD
(1K

;WORDS)
.WORD

89. '3
40

0

;EXTK$ MACRO DIC, DPB SIZE=3 WORDS
;EXTEND INCREMENT, 40 (OCTAL) BLOCKS

;RESERVED WORD

Local Symbol Definitions

E.XTIN Extend increment (2)

DSW Return Codes

rs.sue

IE.UPN

IE.ITS

IE.ALG

IE.RSU

IE.IOP

IE.CKP

IE.NSW

Successful completion.

Insufficient dynamic memory, or
space in a checkpoint file.

insufficient

The issuing task is not running in a system
controlled partition.

The issuing task attempted to reduce its size to
less than the size of its task header; or the
task tried to increase its size beyond 32K words;
or the task tried to increase its size to the
extent that one virtual address window would
overlap another; or the task has memory-resident
overlays and it attempted to reduce its size
below the highest window mapped to the task
partition.

Other tasks are attached to this task partition.

I/O is in progress for this task partition.

The issuing task is not checkpointable
specified a positive integer.

and

Attempt to extend task size beyond installed size
when checkpoint space is allocated in the task.

8-82

IE.ADP

IE.SOP

EXTK$ - EXTEND TASK

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

8-83

FEAT$ - TEST FOR SPECIFIED SYSTEM FEATURE

8.31 FEAT$ - TEST FOR SPECIFIED SYSTEM FEATURE

The Features directive tests for the presence of a specific
system software or hardware option (such as floating point
support, or the presence of the Commercial Instruction Set).

High-level Language Call

CALL FEAT (isym,ids)

isym

ids

Symbol for the specified system feature. See
Table 8-6 for a list of system feature symbols.

Directive status

Macro Call

FEAT$ feat

feat Symbol for the specified system feature. See
Table 8-6 for a list of system feature symbols.

Macro Expansion

FEAT$
.BYTE
.WORD

FE$POS
177.,2
FE$POS

;FEAT$ MACRO DIC, DPB SIZE=2 WORDS
;FEATURE IDENTIFIER

local Symbol Definitions

F.EAF Feature identifier (2)

DSW Return Codes

IS.CLR

IS.SET

IE.ADP

IE.SOP

Note

Successful completion; feature not present.

Successful completion; feature present.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

If neither of the feature symbols HF$WS or HF$FS is set, then the
system is stand-alone.

8 --84

FEAT$ - TEST FOR SPECIFIED SYSTEM FEATURE

Table 8-6: System Feature Symbols

Symbol Meaning

FE$ACN System supports CPU accounting.

FE$AHR Alternate header refresh area support.

FE$AST System has AST support.

FE$CAL Dynamic checkpoint space allocation.

FE$CEX COM executive is loaded.

FE$CLI Multiple CLI support.

FE$CRA System spontaneously crashed; l=yes (bit 33
decimal).

FE$CXD Comm exec is deallocated, non-I/D only (bit 49
decimal).

FE$DAS Kernel data space supported (bit 17 decimal).

FE$DPR System has a separate directive partition.

FE$DRV Loadable driver support.

FE$DYM Dynamic memory allocation supported.

FE$EIS System requires extended instruction set.

FE$EVT System supports event trace feature.

FE$EXP Extend task directive support.

FE$EXT 22-bit extended memory support (bit 1).

FE$EXV Executive is supported to 20K.

FE$FDT Full-duplex terminal driver support.

FE$GGF Group global event flag support.

FE$IRR INSTALL, RUN, and REMOVE support.

FE$LIB Supervisor mode libraries support.

8-85

Symbol

FE$LSI

FE$MP

FE$MUP

FE$MXT

FE$NLG

FE$0FF

FE$PKT

FE$PLA

FE$PMN

FE$POL

FE$POS

FE$PRO

FE$RAS

FE$RBN

FE$RLK

FE$SDW

FE$SHF

FE$STM

FE$STP

FE$SWP

FE$TCM

FE$UDS

FE$WAT

FE$WND

FEAT$ - TEST FOR SPECIFIED SYSTEM FEATURE

Meaning

Processor is an LSI-11.

System supports multiprocessing.

Multiuser protection support.

MCR exit after each command mode.

Logins disabled--multiuser support.

Parent/offspring tasking support.

Preallocation of I/O packets.

PLAS support.

System supports pool monitoring.

System supports secondary pools.

System is a P/OS system; 1=yes
(equivalent to FE$XT).

System supports secondary pool prototype TCBs.

Receive/send data packet support.

Round robin scheduling support.

System supports RMS record locking.

System supports shadow recording.

System supports shuffler task.

System has set system time directive.

Event flag mask is in the TCB; 1=yes.

Executive level disk swapping support.

System has separate terminal driver pool.

System supports user data space.

System has watchdog timer support.

System supports secondary pool file windows.

8-86

Symbol

FE$X25

FE$XCR

FE$XHR

FE$XT

FE$11S

HF$BRG

HF$CIS

HF$CLK

HF$EIS

HF$FPP

HF$FS

HF$INV

HF$ITF

HF$NVR

HF$UBM

HF$WS

FEAT$ - TEST FOR SPECIFIED SYSTEM FEATURE

Meaning

X.25 CEX is loaded.

System crashed from XDT; 1=yes.

System supports external task headers.

System is a P/OS system; 1=yes
(equivalent to FE$POS).

RSX-11S system.

P/OS bridge module present.

Processor supports commercial instruction set.

P/OS clock is present.

Processor has extended instruction set.

Processor has no floating point unit; l=yes.

System is a file server on a P/OS Server system.

Nonvolatile RAM present; l=yes.

Invalid time format in nonvolatile RAM.

XT nonvolatile RAM present; l=yes (bit 17
decimal).

Processor has unibus map; l=yes (bit 1 decimal).

System is a workstation on a P/OS Server system.

8-87

FSS$ - FILE SPECIFICATION SCAN

8.32 FSS$ - FILE SPECIFICATION SCAN

The File Specification Scan directive returns
length of the parts of a file specification.
parts of a file specification are present and
which parts contain wildcards.

the location and
It indicates which

absent, as well as

The directive accepts as input parameters the address and length
of the file specification (a string) and of a parse block. A
parse block is the block of memory into which the FSS$ directive
places a series of one-word values that describe the file
specification. FSS$ first clears the parse block, then enters a
descriptor for each of the fields in the file specification.

Table 8-7 shows the format of the FSS$ Parse Block.

High-Level Language Call

CALL FSS (fsbuf,fssz,prsblk,prssz,[reserv],[idsw])

fsbuf Array containing file specification

fssz Size of fsbuf in bytes

prsblk Array to contain the parse block

prssz Size of the parse block in bytes

reserv Reserved parameter, must not be specified

idsw Integer to receive directive status word

Macro Call

FSS$ fsbuf,fssz,prsblk,prssz,reserv

fsbuf Address of file specification buffer

fssz Size of the file specification buffer in bytes

prsblk Address of the parse block

prssz Size of the parse block in bytes

reserv Reserved parameter - must be blank

8-88

FSS$ - FILE SPECIFICATION SCAN

Macro Expansion

.MACRO

.BYTE

.BYTE

.BYTE

.WORD

.WORD

.WORD

.WORD

.WORD

FSS$
207., 7
5
0
0
FSBUF
FSSZ
PRSBLK
PRSSZ

FSBUF,FSSZ,PRSBLK,PRSSZ,RESERV
;FSS$ MACRO DIC, DPB SIZE = 7 WORDS

;SUBFUNCTION

;FILE SPECIFICATION BUFFER ADDRESS
;FILE SPECIFICATION BUFFER SIZE
;PARSE BLOCK ADDRESS
;PARSE BLOCK SIZE

Local Symbol Definitions

L.LFUN Subfunction code (1)

F.LSBF Address of file specification buffer (2)

F.LSSZ File specification buffer size in bytes (2)

F.LPBK Address of the parse block (2)

F.LPBZ Size of the parse block in bytes (2)

DSW Return Codes

IS.sue Successful completion.

IE.ADP Part of the DPB or user buffer is out of the
issuing task's address space, or the user does
not have the proper access to that region.

IE.SOP DIC or DPB size is invalid.

Table 8-7: Format of the FSS$ Parse Block

Off set
(Decimal
Byte)

0

Symbolic

0$STAT

Description

Status of the operation. This field can
contain the following values:

8-89

Off set
(Decimal
Byte)

2

FSS$ - FILE SPECIFICATION SCAN

Symbolic

0$FLAG

Description

SU$SUC - Success

ER$NOD - Error in node name (or imbalanced
nodes for $RENAME)

ER$DEV - Bad device, or inappropriate
device type

ER$DIR - Error in directory name

ER$FNM - Error in filename

ER$TYP - Error in file type extension

ER$VER - Error in version number

ER$ESS - Expanded string area too short

ER$XTR - Extraneous field detected during
parse

A series of flags indicating what FSS$
found in the file specification. For each
component present in the file
specification, FSS$ sets the appropriate
bit:

FS$NOD - Node present

FS$DEV - Device present

FS$DIR - Directory

FS$QUO - Quoted filename present

FS$NAM - Filename present

8-90

Off set
(Decimal
Byte)

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

FSS$ - FILE SPECIFICATION SCAN

Symbolic

0$NODS

0$NODA

O$DEVS

0$DEVA

0$DIRS

O$DIRA

0$NAMS

0$NAMA

0$TYPS

0$TYPA

0$VERS

0$VERA

O$TRLS

0$TRLA

O$ACCS

Description

FS$TYP - File type present

FS$VER - File version present

FS$WCH - Wildcard character present

FS$WDI Wildcard in directory

FS$WNA Wildcard in filename

FS$WTY Wildcard in file type

FS$WVE Wildcard in file version

Length of the node specification

Address of the node specification

Length of the device specification

Address of the device specification

Length of the directory specification

Address of the directory specification

Length of the filename specification

Address of the filename specification

Length of the type specification

Address of the type specification

Length of the version specification

Address of the version specification

Length of the trailing string

Address of the trailing string. Note that
this field is always filled, even when the
length is zero.

Length of the access control specification

8-91

FSS$ - FILE SPECIFICATION SCAN

Off set
(Decimal
Byte)

Symbolic Description

34 0$ACCA

36 0$LTYP

N/A N/A

38 O$PLEN

Address of the access control
specification. Note that this field is
always filled, even when the length is
zero.

This byte indicates the logical types that
the file specification might contain.
0$LTYP contains the following flags:

P.LNON - No logical name present

P.LNAM - The filename might be a logical
name

P.LDEV - The device name might be a logical
name

P.LNOD - The node specification might be a
logical name

Reserved

Length of the parse block

Definitions of each of the fields in the file specification
follow.

• Node

The node field contains all nodes specified, including those
obtained through forced routing. The value in the 0$NODS
field includes the access control string size. If a node is
present, then FSS$ sets the FS$NOD bit in the parse block's
O$FLAG word.

e Access Control

The access control string consists of the beginning quote,
username and password, the ending quote, and the double
colon. FSS$ returns the access control string address as the
terminator of the initial node name in the O$ACCA field.
However, if the initial node name does not contain an access
control string, FSS$ sets the fields O$ACCS and 0$ACCA to
zero.

8-92

FSS$ - FILE SPECIFICATION SCAN

• Device

The device string consists of the name of the device
terminated by a single colon. If a device is present, then
FSS$ sets the FS$DEV bit in the parse block's 0$FLAG word.

• Directory

The directory is the string bounded either by square brackets
([]) or by angle brackets (<>). The directory string
includes any characters that are valid in a directory
specification, including wildcards and directory hierarchies.
Note that FSS$ does not check the syntax of the directory for
its validity within the context of the operation, such as
would be required in network access operations.

If a directory is present, then FSS$ sets the FS$DIR bit in
the parse block's O$FLAG word. In addition, if wildcards are
present, FSS$ sets the FS$WDI bit. (Wildcards are% and*.)

• Filename

The filename is the string terminated by a period, a
semicolon, or the end of the file specification.

If a filename is present, then FSS$ sets the FS$NAM bit in
the parse block's 0$FLAG word. In addition, if wildcards are
present, FSS$ sets the FS$WNA bit. (Wildcards are% and*.)

If the file specification is a quoted string, FSS$ sets the
FS$QUO bit in the O$FLAG word. In this case, the file
specification represents either a foreign file (if being
passed to another system) or an ANSI file. In the case of a
foreign file, FSS$ allows a version field, but does not
supply a default value. In the the case of an ANSI file,
FSS$ allows a version field but not a type field.

e Type

The type is the string terminated by a period or semicolon,
or the end of the file specification. The type string always
includes a leading period. Note that if the filename is a
quoted string, then the type field must be null.

If a type is present, then FSS$ sets the FS$TYP bit in the
parse block's O$FLAG word. In addition, if wildcards are
present, FSS$ sets the FS$WTY bit. (Wildcards are% and*.)

8-93

FSS$ - FILE SPECIFICATION SCAN

e Version

The version is the string introduced by a period or the
semicolon and terminated by the end of the string. The
version string must contain the digits between zero and nine
(optionally preceded by a minus sign) , or a * wildcard.

If a version is present, then FSS$ sets the FS$VER bit in the
parse block's O$FLAG word. In addition, if wildcards are
present, FSS$ sets the FS$WVE bit. (Wildcards are% and*.)

• Trailing

The trailing string is that part of the input string that
FSS$ could not successfully and completely parse. If FSS$
detects an error in the directory specification, for example,
the trailing string includes the erroneous directory
specification.

This feature allows you to use FSS$ in command line parsing.
Any character not part of a file specification terminates the
scan and causes FSS$ to return all information obtained up to
the point at which the unusual character occurred.

8-94

GDIR$ - GET DEFAULT DIRECTORY

8.33 GDIR$ - GET DEFAULT DIRECTORY

The Get Default Directory
directory string, returning
user-specified buffer.

directive
it and

retrieves
the string

the default
length to a

High-Level Language Call

CALL GETDDS (mod,iens,ienssz,[irsize],[idsw])

mod

iens

ienssz

irsize

idsw

Macro Call

The modifier of the logical name within a
table. See Section 2.2 for details.

Character array containing the equivalence name
string

Size (in bytes) of the equivalence name string

Buffer address of the returned equivalence
string size

Integer to receive the Directive Status Word

GDIR$ mod,ens,enssz,rsize

mod

ens

enssz

rsize

The modifier of the logical name within a
table. See Section 2.2 for details.

Buffer address of the equivalence name string

Size (in bytes) of the equivalence name string

Buffer address to which the size of
equivalence name string is returned

the

Macro Expansion

GDIR$
.BYTE
.BYTE

.BYTE

.WORD

.WORD

.WORD

.WORD

mod,ens,enssz,rsize
207.,6 ;GDIR$ MACRO DIC AND DPB SIZE
4 ;SUBFUNCTION CODE FOR GET DEFAULT

MOD
0
ENS
ENSSZ
RSIZE

;DIRECTORY
;LOGICAL NAME MODIFIER
;RESERVED
;BUFFER ADDRESS OF EQUIVALENCE NAME
;BYTES COUNT OF EQUIVALENCE STRING
;BUFFER ADDRRESS FOR RETURNED EQUIVALENCE
;STRING

8-95

GDIR$ - GET DEFAULT DIRECTORY

Local Symbol Definitions

G.DENS

G.DESZ

G.DFUN

G.DMOD

G.DRSZ

Address of equivalence name buffer (2)

Byte count of equivalence string (2)

Subfunction code (1)

Logical name modifier (1)

Buffer address for returned equivalence string
(2)

DSW Return Codes

Is.sue

IE.RBS

IE.LNF

IE.IBS

IE.ADP

IE.SDP

Successful completion of service.

The resulting equivalence name string is too
large for the buffer to receive it.

The specified logical name string was not found.

The length of the logical or equivalence string
is invalid. Each string length must be greater
than 0 but not greater than 255 (decimal)
characters.

Part of the DPB or user buffer is out of the
issuing task's address space, or the user does
not have proper access to that region.

DIC or DPB size is invalid.

High-Level Language Example

The following PASCAL program illustrates a call to the getdds
subroutine.

program gdir(input,output);

(* this sample program makes a call to the system
directive GDIR to return the default directory. *)

type
dirarray packed array [1 .. 32] of char;
(* hold for return dir name *)

var

p32
imod

dirarray;
integer;

(* directory name string *)
(* imod is an integer that we will set to 0 *)

8-96

siz
bu fad
dsw

integer;
integer;
integer;

GDIR$ - GET DEFAULT DIRECTORY

(* size of the array that we are passing *)
(* size of returned string *)
(* directive status word *)

[external (getdds)]
procedure getdir

begin

imod .- 0;
siz .- 32;
bu fad .- -1;
dsw . - 0 .

'

(var int integer;
var str dirarray;
var strsze integer;
var bufadd integer;
var drswd integer); seqll;

(* MAIN *)

(* set the value = 0 *)
(* ini stringsize to 32 *)

(* this return contains the size of the string *)
(* ini dsw to 0 *)

getdir(imod,p32,siz,bufad,dsw); (*make the call*)

writeln('Default directory name
writeln('Directory name size
writeln('DSW
end.

8-97

',p32);
' , bu fad : 2) ;
',dsw:2);

(* directory name *)
(* size of string *)
(* dsw status *)

GLUN$ - GET LUN INFORMATION

8.34 GLUN$ - GET LUN INFORMATION

The Get LUN Information directive instructs the system to fill a
six-word buffer with information about a physical device unit to
which a LUN is assigned. If requests to the physical device unit
have been redirected to another unit, the information returned
will describe the effective assignment.

High-level Language Cail

CALL GETLUN (lun,dat[,ids])

lun Logical unit number

dat A six-word
information

integer array to receive LUN

ids Directive status

Macro Call

GLUN$

lun

bu fa

Buffer Format

Word 0

Word 1

Word 2

lun,bufa

Logical unit number

Address of six-word buffer that will receive the
LUN information

Name of assigned device

Unit number of assigned device and flags byte
(flags byte equals 200 if the device driver is
resident, or 0 if the driver is not loaded)

First device characteristics word:

Bit 0

Bit 1

Record-oriented device
(DV.REC,l=yes)[FD.REC]*

Carriage-control device
(DV.CCL,l=yes)[FD.CCL]

* Bits with associated symbols have the symbols shown in
square brackets. These symbols can be defined for use by a
task by means of the FCSBT$ macro.

8-98

Word 3

Word 4

Word 5

GLUN$ - GET LUN INFORMATION

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bit 11

Bit 12

Bit 13

Bit 14

Bit 15

Terminal device
(DV.TTY,1=yes)[FD.TTY]

Directory (file-structured) device
(DV.DIR,1=yes)[FD.DIR]

Reserved

Sequential device
(DV.SQD,l=yes)[FD.SQDJ

Mass storage device (DV.MSD,l=yes)

Reserved for future use.

Reserved for future use.

Unit software write-locked
(DV.SWL,l=yes)

Reserved for future use.

Reserved for future use.

Pseudo device (DV.PSE,l=yes)

Device mountable as a communications
channel (DV.COM,l=yes)

Device mountable as a FILES-11 device
(DV.F11,1=yes)

Device mountable (DV.MNT,l=yes)

Second device characteristics word

Third device characteristics word (words 3 and 4
are device driver specific)

Fourth device characteristics word (normally
buffer-size)

Macro Expansion

GLUN$
.BYTE
.WORD
.WORD

7,LUNBUF
5 I 3
7
LUNBUF

;GLUN$ MACRO DIC, DPB SIZE=3 WORDS
;LOGICAL UNIT NUMBER 7
;ADDRESS OF SIX-WORD BUFFER

8-99

GLUN$ - GET LUN INFORMATION

local Symbol Definitions

G.LULU Logical unit number (2)

G.LUBA Buffer address (2)

The following offsets are assigned relative to the start of
the LUN information buffer:

G.LUNA Device name (2)

G.LUNU Device unit number (1)

G.LUFB Flags byte (1)

G.LUCW Four device characteristics words (8)

DSW Return Codes

rs.sue

IE.ULN

IE. ILU

IE.ADP

IE.SOP

Successful completion.

Unassigned LUN.

Invalid logical unit number.

Part of the DPB or buffer is out of the issuing
task's address space.

DIC or DPB size is invalid.

8-100

GMCR$ - GET COMMAND LINE

8.35 GMCR$ - GET COMMAND LINE

The Get Command Line directive instructs the system to transfer
an 80-byte command line to the issuing task.

High-Level Language Call

CALL GETMCR (buf[,ids])

buf An 80-byte array to receive command line

ids Directive status

Macro Call

GMCR$

Macro Expansion

GMCR$
.BYTE
. BLKW

127.,41.
40 .

;GMCR$ MACRO DIC, DPB SIZE=41.
;80. BYTE MCR COMMAND LINE BUFFER

Local Symbol Definitions

G.MCRB Command line buffer (80)

DSW Return Codes

+n

IE.AST

IE.ADP

IE.SDP

Notes

Successful completion; n is the
bytes transferred (excluding
character). The termination
however, in the buffer.

number of data
the termination
character is,

No command lin~ exists for the issuing task,
the task has already issued one or more
Command Line directives and has retrieved
entire command line.

or
Get
the

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

1. The GMCR$S form of the macro is not supplied, since the DPB
receives the actual command line.

8-101

2.

GMCR$ - GET COMMAND LINE

The system processes all lines to:

0 Convert tabs to a single space

0 Convert multiple spaces to a single space

0 Convert lowercase to uppercase

0 Remove all trailing blanks

The terminator (<RETURN> or <ESC>) is the last character in
the line.

3. If the character before the terminator is a hyphen, there is
at least one continuation line present. Therefore, you must
issue another GMCR$ directive to obtain the rest of the
command line.

8-102

GMCX$ - GET MAPPING CONTEXT

8.36 GMCX$ - GET MAPPING

The Get Mapping Context directive causes the Executive to return
a description of the current window-to-region mapping
assignments. The returned description is in a form that enables
the user to restore the mapping context th a series of
Create Address Window directives. The macro ar specifies
the address of a vector that contains one Window Definition Block
(WDB) for each window block allocated in the task's header, plus
a terminator word.

For each window block in the task's header, the Executive sets up
a WDB in the vector as follows:

1. If the window block is unused (that is,
correspond to an existing address window),
not record any information about that
Instead, the Executive uses the WDB to
about the first block encountered that
existing window. In this way, unused
ignored in the mapping context descri ion
Executive.

if it does not
the Executive does
block in a WDB.
record information

corre s to an
window blocks are
returned by the

2. If a window block describes an existing address

3.

window, the Executive fills in the offsets W.NID, W.NAPR,
W.NBAS, and W.NSIZ with information sufficient to re-create
the window. The window status word W.NSTS is cleared.

If a window block describes an existing mapped window, the
Executive fills in the off sets W.NAPR, W.NBAS, W.NSIZ,
W.NRID, W.NOFF, W.NLEN, and W.NSTS with information
sufficient to create and map the address window. WS.MAP is
set in the status word (W.NSTS) and, if the window is mapped
with write access, the bit WS.WR'I' is set as well.,

Note that in no case does the Executive modify W.NSRB.

The terminator word, which follows the last WDB filled in, is a
word equal to the negative of the total number of window blocks
in the task's header. It is thereby possible to issue a TST or
TSTB instruction to detect the last WDB used in the vector. The
terminating word can also be used to determine the number of
window blocks built into the task's header.

When Create Address Window directives are used to restore the
mapping context, there is no guarantee that the same address
window IDs will be used. The user must therefore be careful to
use the latest window IDs returned from the Create Address Window
directives.

8-103

GMCX$ - GET MAPPING CONTEXT

High-Level Language Call

CALL GMCX (imcx[,ids])

imcx An integer array to receive the mapping
The size of the array is (8*n)+l where
number of window blocks in the task's
The maximum size is (8*24)+1=193 words.

ids Directive status.

Macro Call

GMCX$ wvec

context.
n is the
header.

wvec The address of a vector of n Window Definition
Blocks, followed by a terminator word; n is the
number of window blocks in the task's header.

Macro Expansion

GMCX$
.BYTE
.WORD

VECADR
113.,2
VECADR

;GMCX$ MACRO DIC, DPB SIZE=2 WORDS
;WDB VECTOR ADDRESS

Definition Block Parameters

Table 8-8 shows the Window Definition Block parameters for this
directive.

Table 8-8: Window Definition Block Parameters for GMCX$

Array
Element

Off set

Input Parameters

None

Output Parameters

iwdb(l)
bits 0-7

iwdb(l)
bits 8-15

W.NID

W.NAPR

Description

ID of address window

Base APR of the window

8-104

Array
Element

iwdb(2)

iwdb(3)

iwdb(4)

iwdb(5)

iwdb(6)

iwdb(7)

Off set

W.NBAS

W.NSIZ

W.NRID

W.NOFF

W.NLEN

W.NSTS

GMCX$ - GET MAPPING CONTEXT

Description

Base virtual address of the window

Size, in 32-word blocks, of the window

ID of the mapped region, or no change if
the window is unmapped

Offset, in 32-word blocks, from the
start of the region at which mapping
begins, or no change if the window is
unmapped

Length, in 32-word blocks, of the area
currently mapped within the region, or
no change if the window is unmapped

Bit settings* in the window status word
(all 0 if the window is not mapped):

Bit

WS.MAP

WS.WRT

Definition

1 if the window is mapped

1 if the window is mapped
with write access

NOTE

The length mapped (W.NLEN) can be less than the
size of the window (W.NSIZ) if the area from
W.NOFF to the end of the partition is smaller
than the window size.

Local Symbol Definitions

*

G.MCVA Address of the vector (wvec) containing the
window definition blocks and terminator word (2)

If you are a high-level language programmer, see
5.5.2 to determine the bit values represented
symbolic names described.

8-105

Section
by the

GMCX$ - GET MAPPING CONTEXT

DSW Return Codes

Is.sue

IE.ADP

IE.SOP

Successful completion.

Address check of the DPB or the vector (wvec)
failed.

DIC or DPB size is invalid.

8-106

GPRT$ - GET PARTITION PARAMETERS

8.37 GPRT$ - GET PARTITION PARAMETERS

The Get Partition Parameters directive instructs the system to
fill an indicated three-word buffer with partition parameters.
If a partition is not specified, the partition of the issuing
task is assumed.

High-Level Language Call

CALL GETPAR ([prt],buf[,ids])

prt

buf

ids

Macro Call

GPRT$

prt

buf

Buffer Format

Word 0

Word 1

Word 2

Partition name

A three-word integer array to receive partition
parameters

Directive status

[prt] ,buf

Partition name

Address of a three-word buffer

Partition physical base address expressed as a
multiple of 32 words (partitions are always
aligned on 32-word boundaries). Therefore, a
partition starting at 40000 (octal) will have
400 (octal) returned in this word.

Partition size expressed as a multiple of 32
words.

Partition flags word. This
equal to 0 to indicate a
partition, or equal to 1
user-controlled partition.

word is returned
system-controlled
to indicate a

Macro Expansion

GPRT$
.BYTE
.RAD50
.WORD

ALPHA,DATBUF
6 5. '4
/ALPHA/
DATBUF

;GPRT$ DIC, DPB SIZE=4 WORDS
;PARTITION "ALPHA"
;ADDRESS OF THREE-WORD BUFFER

8-107

GPRT$ - GET PARTITION PARAMETERS

Local Symbol Definitions

G.PRPN Partition name (4)

G.PRBA Buffer address (2)

The following offsets are assigned relative to the start of the
partition parameters buffer:

G.PRPB

G.PRPS

G.PRFW

Partition physical base address expressed as an
absolute 32-word block number (2)

Partition size expressed as a multiple of 32-word
blocks (2)

Partition flags word (2)

DSW Return Codes

Notes

Successful completion is indicated by a cleared Carry bit,
and the starting address of the partition is returned in the
DSW. The returned address is virtual and is always zero if
it is not the task partition. Unsuccessful completion is
indicated by a set Carry bit and one of the following codes
in the DSW:

IE.INS

IE.ADP

IE.SOP

Specified partition not in system.

Part of the DPB or buffer is out of the
issuing task's address space.

DIC or DPB size is invalid.

1. A variation of this directive exists called Get Region
Parameters. When the first word of the two-word partition
name is 0, the Executive interprets the second word of the
partition name as a region ID. If the two-word name is 0,0,
it refers to the task region of the issuing task.

2. Omission of the partition-name argument returns parameters
for the issuing task's unnamed subpartition, not for the
system-controlled partition.

8-108

GREG$ - GET REGION PARAMETERS

8.38 GREG$ - GET REGION PARAMETERS

The Get Region Parameters directive instructs the Executive to
fill an indicated three-word buffer with region parameters. If a
region is not specified, the task region of the issuing task is
assumed.

This directive is a variation of the Get Partition Parameters
directive.

High-Level Language Call

CALL GETREG ([rid],buf[,ids])

rid

buf

ids

Macro Call

GREG$

rid

buf

Buffer Format

Word 0

Word 1

Word 2

Region id

A three-word integer array to receive region
parameters

Directive status

[rid],buf

Region ID

Address of a three-word buffer

Region base address expressed as a multiple of
32 words. (Regions are always aligned on
32-word boundaries.) Thus, a region starting at
1000 (octal) will have 10 (octal) returned in
this word.

Region size expressed as a multiple of 32 words.

Region flags word. This word is returned equal
to 0 if the region resides in a
system-controlled partition, or equal to 1 if
the region resides in a user-controlled
partition.

8-109

GREG$ - GET REGION PARAMETERS

Macro Expansion

GREG$
.BYTE
.WORD

RID,DATBUF
65 • t 4
0

;GREG$ MACRO DIC, DPB SIZE=4 WORDS
;WORD THAT DISTINGUISHES GREG$

;FROM GPRT$
.WORD RID ;REGION ID
.WORD DATBUF ;ADDRESS OF THREE-WORD BUFFER

Local Symbol Definitions

G.RGID Region ID (2)

G.RGBA Buffer address

The following offsets are assigned relative to the start of the
region parameters buffer:

G.RGRB Region base address expressed as an
32-word block number (2)

G.RGRS Region size expressed as a multiple of
blocks (2)

G.RGFW Region flags word (2)

DSW Return Codes

Successful completion is indicated by carry clear,
starting address of the region is returned in the
returned address is virtual and is always zero if it is
task region. Unsuccessful completion is indicated by
and one of the following codes in the DSW:

IE.NVR Invalid region ID.

absolute

32-word

and the
DSW. The
not the

carry set

IE.ADP Part of the DPB or buffer is out of the
issuing task's address space.

IE.SDP DIC or DPB size is invalid.

8-110

GTIM$ - GET TIME PARAMETERS

8.39 GTIM$ - GET TIME PARAMETERS

The Get Time Parameters directive instructs the system to fill an
indicated eight-word buffer with the current time parameters.
All time parameters are delivered as binary numbers. The value
ranges (in decimal) are shown below in the buffer format.

High-level language Call

CALL GETTIM (ibfp[,ids])

ibfp An eight-word integer array

Macro Call

G'I'IM$ bu fa

bu fa Address of eight-word buffer

Buffer Format

Word 0 Year (since 1900)

Word 1 Month (1-12)

Word 2 Day (1-31)

Word 3 Hour (0-23)

Word 4 Minute (0-59)

Word 5 Second (0-59)

Word 6 Tick of second (fixed rate of 64 decimal)

Word 7 Ticks per second (fixed rate of 64 decimal)

Macro Expansion

GTIM$
.BYTE
.WORD

DATBUF
61.,2
DATBUF

Local Symbol Definitions

;GTIM$ DIC, DPB SIZE=2 WORDS
;ADDRESS OF 8.-WORD BUFFER

G.TIBA Buffer address (2)

The following offsets are assigned relative to the start of
the time parameters buffer:

8-111

DSW

Note

GTIM$ - GET TIME PARAMETERS

G.TIYR Year (2)

G.TIMO Month (2)

G.TIDA Day (2)

G.TIHR Hour (2)

G.TIMI Minute (2)

G.TISC Second (2)

G.TICT Clock tick of second (2)

G.TICP Clock ticks per second (2)

Return Codes

rs.sue

IE.ADP

IE.SDP

Successful completion.

Part of the DPB or buffer is out of the issuing
task's address space.

DIC or DPB size is invalid.

The format of the time buffer is compatible with that of the
buffers used with the Set System Time directive.

8-112

GTSK$ - GET TASK PARAMETERS

8.40 GTSK$ - GET TASK PARAMETERS

The Get Task Parameters directive instructs the system to fill an
indicated 16-word buffer with parameters relating to the issuing
task.

High-Level Language Call

CALL GETTSK (buf[,ids])

buf A 16-word integer array to receive the task
parameters

ids Directive status

Macro Call

GTSK$ bufa

buf a

Buffer Format

Word 0

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

Word 10

Word 11

Word 12

Address of a 16-word buffer

Issuing task's name in Radix-SO (first half)

Issuing task's name in Radix-50 (second half)

Partition name in Radix-SO (first half)

Partition name in Radix-SO (second half)

Undefined by the system

Undefined by the system

Run priority

User Identification Code (UIC) of issuing task
(the task's default UIC)*

Number of logical I/O units (LUNs)

Undefined by the system

Undefined by the system

* See note in RQST$ description on contents of words 7 and 17.

8-113

Word 13

Word 14

Word 15

Word 16

Word 17

GTSK$ - GET TASK PARAMETERS

(Address of task SST vector tables)*

(Size of task SST vector table in words)*

Size (in bytes) either of task's address window
0 in mapped systems, or of task's partition in
unmapped system (equivalent to partition size)

System on which task is running:

11 The system always returns this code

Protection UIC**

Macro Expansion

GTSK$
.BYTE
.WORD

DATBUF
6 3. '2
DATBUF

Local Symbol Definitions

;GTSK$ MACRO DIC, DPB SIZE
;ADDRESS OF 16-WORD BUFFER

G.TSBA Buffer address (2)

The following off sets are assigned relative to
parameter buffer:

G.TSTN Task name (4)

G.TSPN Partition name (4)

G.TSPR Priority (2)

G.TSGC UIC group code (1)

G.TSPC UIC member code (1)

G.TSNL Number of logical units (2)

G.TSVA Task's SST vector address (2)

G.TSVL Task's SST vector length in words (2)

2 WORDS

the task

* Words 13 and 14 will contain valid data if word 14 is not
zero. If word 14 is zero, the contents of word 13 are
meaningless.

** See note in RQST$ description on contents of words 7 and 17.

8-114

GTSK$ - GET TASK PARAMETERS

G.TSTS Task size (2)

G.TSSY System on which task is running (2)

G.TSDU Protection UIC (2)

DSW Return Codes

rs.sue

IE.ADP

IE.SDP

Successful completion.

Part of the DPB or buffer is out of the issuing
task's address space.

DIC or DPB is invalid.

8-115

MAP$ - MAP ADDRESS WINDOW

8.41 MAP$ - MAP ADDRESS WINDOW

The Map Address Window directive maps an existing window to an
attached region. The mapping begins at a specified offset from
the start of the region. If the window is already mapped
elsewhere, the Executive unmaps it before carrying out the
mapping assignment described in the directive.

For the mapping assignment, a task can specify any length that is
less than or equal to both:

• The window size specified when the window was created

• The length remaining between the specified offset within the
region and the end of the region

A task must be attached with write access to a region in order to
map to it with write access. To map to a region with read-only
access, the task must be attached with either read or write
access.

If W.NLEN is set to 0, the length defaults to either the window
size or the length remaining in the region, whichever is smaller.
(Since the Executive returns the actual length mapped as an
output parameter, the task must clear that parameter in the WDB
before issuing the directive each time it wants to default the
length of the map.)

The values that can be assigned to W.NOFF depend on the setting
of bit WS.64B in the window status word (W.NSTS):

• If WS.64B = 0, the offset specified in W.NOFF must represent
a multiple of 256 words (512 bytes). Because the value of
W.NOFF is expressed in units of 32-word blocks, the value
must be a multiple of 8.

• If WS.64B 1, the task can align on 32-word boundaries; the
programmer can therefore specify any offset within the
region.

High-Level Language Call

CALL MAP (iwdb[,ids])

iwdb An eight-word integer array containing a Window
Definition Block (see Section 5.5.2.2)

ids Directive status

8-116

MAP$ - MAP ADDRESS WINDOW

Macro Call

MAP$ wdb

wdb Window Definition Block address

Macro Expansion

MAP$
.BYTE
.WORD

WDBADR
121.,2
WDBADR

;MAP$ MACRO DIC, DPB SIZE=2 WORDS
;WDB ADDRESS

Definition Block Parameters

Table 8-9 shows the Window Definition Block parameters for this
directive.

Local Symbol Definitions

M.APBA Window Definition Block address (2)

DSW Return Codes

Is.sue

IE.PRI

IE.NVR

IE.NVW

IE.ALG

IE.HWR

IE.ITS

IE.ADP

IE.SOP

Successful completion.

Privilege violation.

Invalid region ID.

Invalid address window ID.

Task specified an invalid region offset and
length combination in the Window Definition Block
parameters; or WS.64B = 0 and the value of W.NOFF
is not a multiple of 8.

Region had a parity error or a load failure.

WS.RES was set, and region is not resident.

Part of the DPB or WDB is out of the issuing
task's address space.

DIC or DPB size is invalid.

8-117

MAP$ - MAP ADDRESS WINDOW

Table 8-9: Window Definition Block Parameters MAP$

Array
Element

Off set

Input Parameters

iwdb(l)
bits 0-7

iwdb(4)

iwdb(5}

iwdb(6)

iwdb(7)

W.NID

W.NRID

W.NOFF

W.NLEN

W.NSTS

Output Parameters

iwdb(6) W.NLEN

Des er ion

ID of the window to be mapped

ID of the region to which the window is
to be mapped, or 0 if the task region is
to be mapped

Offset, in 32-word blocks, within the
region at which mapping is to begin.
Note that if WS.64B in the window status
word equals 0, the value specified must
be a multiple of 8

Length, in 32-word blocks, within the
region to be mapped, or 0 if the length
is to default to either the size of the
window or the space remaining in the
region from the specified offset,
whichever is smaller

Bit settings* in the window status word:

Bit Definition

WS.WRT

WS.64B

1 if write access is desired

0 for 256-word (512-byte)
alignment, or 1 for 32-word
(64-byte) alignment

Length of the area within the region
actually mapped by the window

* If you are a high-level language programmer, see
5.5.2 to determine the bit values represented
symbolic names described.

Section
by the

8-118

Array
Element

iwdb(7)

Notes

Off set

W.NSTS

MAP$ -· MAP ADDRESS WINDOW

Description

Bit settings* in the window status word:

Bit

WS.UNM

Definition

1 if the window was unmapped
first

1. When the Map Address Window directive is issued, the task can
be blocked until the region is loaded.

2. Bit WS.RES in word W.NSTS of the Window Definition Block,
when set, specifies that the region should be mapped only if
the region is resident.

3. See Chapter 5 for complete information on using the memory
management features of the Professional.

4. A fast remapping feature is available for frequently mapped
regions; see Section 5.7 for details.

* If you are a high-level language programmer, see
5.5.2 to determine the bit values represented
symbolic names described.

8-119

Section
by the

MRKT$ - MARK TIME

8.42 MRKT$ - MARK TIME

The Mark Time directive instructs the system to declare a
significant event after an indicated time interval. The interval
begins when the task issues the directive; however, task
execution continues during the interval.

If an event flag is specified, the flag is cleared when the
directive is issued, and set when the significant event occurs.

If an AST entry point address is specified, an AST occurs at the
time of the significant event. When the AST occurs, the task's
PS, PC, directive status, Wait For mask words, and the event flag
number specified in the directive, are pushed onto the issuing
task's stack.

If neither an event flag number nor an AST service entry point is
specified, the significant event still occurs after the indicated
time interval. (See Notes.)

High-Level Language Call

CALL MARK (efn,tmg,tnt[,ids])

efn Event flag number

tmg Time interval magnitude (see Note 5)

tnt Time interval unit (see Note 5)

ids Directive status

The ISA standard call for delaying a task for a specified
time interval is also provided:

CALL WAIT (tmg,tnt[,ids])

tmg Time interval magnitude (see Note 5)

tnt Time interval unit (see Note 5)

ids Directive status

Macro Call

MRKT$ [efn] ,tm,tu[,ast]

efn Event flag number

tm Time interval magnitude (see Note 6)

8-120

MRKT$ - MARK TIME

tu Time interval unit (see Note 6)

ast AST entry point address

Macro Expansion

MRKT$
.BYTE
. WORD
. WORD
.WORD
.WORD

52.,30.,2,MRKAST
23.,5 ;MRKT$ MACRO DIC, DPB SIZE=5 WORDS
52. ;EVENT FLAG NUMBER 52 .
30. ;TIME MAGNITUDE=30 .
2 ;TIME UNIT=SECONDS
MRKAST ;ADDRESS OF MARK TIME AST ROUTINE

Local Symbol Definitions

M.KTEF Event flag (2)

M.KTMG Time magnitude (2)

M.KTUN Time unit (2)

M.KTAE AST entry point address (2)

DSW Return Codes

For CALL MARK and MRKT$:

rs.sue

IE.UPN

IE.ITI

IE.IEF

IE.ADP

IE.SDP

Successful completion.

Insufficient dynamic memory.

Invalid time parameter.

Invalid event flag number (EFN<O or EFN>64).

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

For CALL WAIT:

The system provides the following positive error codes to be
returned for ISA calls:

1 Successful completion

2 Insufficient dynamic storage

3 Specified task not installed

8-121

MRKT$ - MARK TIME

94 Invalid time parameters

98 Invalid event flag number

99 Part of DPB out of task's range

100 DIC or DPB size invalid

Notes

1. Mark Time requires dynamic memory for the clock queue entry.

2. If an AST entry point address is specified, the AST service
routine is entered with the task's stack in the following
state:

SP+lO
SP+06
SP+04
SP+02
SP+OO

Event flag mask word*
PS of task prior to AST
PC of task prior to AST
DSW of task prior to AST
Event flag number or zero (if none was
specified in the Mark Time directive)

The event flag number must be removed from the task's
stack before an AST Service Exit directive is executed.

3. If the directive is rejected, the specified event flag
is not guaranteed to be cleared or set. Consequently,
if the task indiscriminately executes a Wait For
directive and the Mark Time directive is rejected, the
task can wait indefinitely. Care should always be taken
to ensure that the directive was successfully completed.

4. If a task issues a Mark Time directive that specifies a
common event flag and then exits before the indicated
time has elapsed, the event flag is not set.

5. The Executive returns the code IE.IT! (or 94) in the
Directive Status Word if the directive specifies an
invalid time parameter. The time parameter consists of

* The event flag mask word preserves the Wait For conditions
of a task prior to AST entry. A task can, after an AST,
return to a Wait For state. Because these flags and the
other stack data are in the user task, they can be modified.
Such modification is strongly discouraged, however, since
the task can easily fault on obscure conditions. For
example, clearing the mask word results in a permanent Wait
For state.

8-122

MRKT$ - MARK TIME

two components: the time interval magnitude and the
time interval unit, represented by the arguments tm and
tu, respectively.

A legal magnitude value (tm) is related
assigned to the time interval unit
values are encoded as follows:

For an ISA FORTRAN call (CALL WAIT):

to the value
(tu). The unit

0 Ticks. A tick occurs for each clock interrupt
at a rate of 64 (decimal) ticks per second.

1 Milliseconds. The subroutine converts the
specified magnitude to the equivalent number of
system clock ticks. On systems with line
frequency clocks, millisecond Mark Time
requests can only be approximations.

For all other high-level language and macro calls:

1 Ticks. A tick occurs for each clock interrupt
at a rate of 64 (decimal) ticks per second.

For all calls:

2 Seconds

3 Minutes

4 Hours

The magnitude (tm) is the number of units to be clocked.
The following list describes the magnitude values that
are valid for each type of unit. In no case can the
value of tm exceed 24 hours. The list applies to both
high-level language and macro calls.

If tu = 0, 1, or 2, tm can be any positive value with
a maximum of 15 bits.

If tu = 3, tm can have a maximum value of 1440
(decimal).

If tu = 4, tm can have a maximum value of 24
(decimal).

6. The minimum time interval is one tick. If you specify a
time interval of zero, it will be converted to one tick.

8-123

PFCS$ - PARSE FCS SPECIFICATION

8.43 PFCS$ - PARSE FCS SPECIFICATION

The Parse FCS Specification separates the parts of an FCS file
specification, expands any logical name references, and merges
default name block information into the specification. The
result is a fully expanded FCS file specification.

NOTE

The result cannot contain a node specification.

This directive provides the full capabilites of the ACHN$ and
FSS$ directives, in that it allows you to perform a LUN
assignment (like ACHN$) and it returns a parse block (like FSS$).
See the descriptions of those directives for full information.

For information on parsing an RMS file specification, see Section
8.44.

High-Level Language Call

CALL PRSFCS([mod],[tbmsk],[lun],prbuf,prsz,rsbuf,rssz,
[rslen],[prsblk,prssz],[dfnbk,dfnsz],[rsmsk],[idsw])

mod

tbmsk

Modifier for logical name table entries

Inhibit mask to prevent a logical table from being
searched

prbuf Array containing the primary file specification

prsz Length of prbuf in bytes

rsbuf Array to receive resultant file specification

rssz Length of rsbuf in bytes

rslen Integer to receive length of resultant string

prsblk Parse block

prssz

dfnbk

dfnsz

rsmsk

Length of prsblk in bytes

Array containing default name block

Length of dfnbk in bytes

A mask of the fields to suppress in the resultant
string

8-124

PFCS$ - PARSE FCS SPECIFICATION

idsw Integer to receive directive status word

All commas are required, unless followed by a right parenthesis.

Macro Call

PFCS$ [mod],tbmsk,lun,prbuf,prsz,rsbuf,rssz,rslen,
prsblk,prssz,dfnbk,dfnsz,rsmsk

mod

tbmsk

lun

prbuf

prsz

rsbuf

Optional modifier for duplicate logical name
table entries

A byte whose low 4 bits donstitute an inhibit
mask to prevent the system from searching a
particular logical table. For each of the
following bits, if the bit is set, the system
does not search the corresponding table:

Logical Name Table Bit of tbmsk Octal

System table (LT.SYS)
User table (LT.USR)
Session table (LT.SES)

The LUN to be assigned

0
2
4

Address of the primary file
buffer

1
4

20

specification

Size of the primary file specification buffer
in bytes

Address of the resultant file specification
buffer

rssz Size of the resultant file specification buffer
in bytes

rslen

prsblk

prssz

dfnbk

dfnsz

Address of a word to receive the resultant
string size

Address of the parse block; see Section 8.32
for a description of the parse block

Size of the parse block in bytes

Address of the default name block

Size of the default name block

8-125

rsmsk

PFCS$ - PARSE FCS SPECIFICATION

Mask that allows you to suppress fields in the
resultant string.

Macro Expansion

.MACRO PFCS$ MOD,TBMSK,LUN,PRBUF,PRSZ,RSBUF,RSSZ,

. BYTE 207.,13 .

. BYTE 8 .

.BYTE MOD

.BYTE LUN

.BYTE TBMSK

.WORD PRBUF

.WORD PRSZ

.WORD RSBUF

.WORD RSSZ

.WORD RS LEN

.WORD PRSBLK

.WORD PRSSZ

.WORD DFNBK

.WORD DFNSZ

.WORD RSMSK

RSLEN,PRSBLK,PRSSZ,DFNBK,DFNSZ,RSMSK
;PFCS$ MACRO DIC, DPB SIZE = 13. WORDS
;SUBFUNCTION
;MODIFIER
;LOGICAL UNIT NUMBER
;TABLE MASK
;FILE SPECIFICATION BUFFER ADDRESS
;FILE SPECIFICATION BUFFER SIZE
;RESULTANT STRING BUFFER (RSB) ADDRESS
;RESULTANT STRING BUFFER SIZE
;ADDRESS OF WORD TO RECEIVE RSB LENGTH
;PARSE BLOCK ADDRESS
;PARSE BLOCK SIZE
;DEFAULT NAME BLOCK ADDRESS
;DEFAULT NAME BLOCK SIZE
;INHIBIT MASK

Local Symbol Definitions

F.LFUN

F.LMOD

F.LLUN

F.LTBL

F.LPBF

F.LPSZ

F.LRBF

F.LRSZ

F.LRLN

F.LPRS

F.LPRZ

Subfunction code (1)

Logical name modifier (1)

LUN number (1)

Table inhibit mask (1)

Address of the primary file specification buffer
(2)

Size of the primary file specification buffer in
bytes (2)

Address of the resultant file specification buffer
(2)

Size of the resultant file specification buffer in
bytes (2)

Length of the resultant file specification (2)

Parse block address (2)

Size of the parse block in bytes (2)

8-126

PFCS$ - PARSE FCS SPECIFICATION

F.LDBF Address of the default name block (2)

F.LDSZ Size of the default name block (2)

F.LMSK Inhibit mask (2)

DSW Return Codes

rs.sue

IE.ADP

IE.SDP

IE.IOU

IE.ILU

IE.LNL

Successful completion.

Part of the DPB or user buffer is out of the
issuing task's address space, or the user does
not have the proper access to that region.

DIC or DPB size is invalid.

Invalid device or unit.

Invalid LUN.

LUN usage is interlocked.

8-127

PRMS$ - PARSE RMS SPECIFICATION

8.44 PRMS$ - PARSE RMS SPECIFICATION

Parse RMS Specification separates the parts of an RMS primary
file specification and expands any logical name references, then
performs a merge operation. Then, PRMS$ processes the default
file specification and merges this information with the previous
result, including the current device, default directory, and node
name if necessary. The result is a fully expanded RMS file
specification.

This directive provides the full
FSS$ directives, in that it
assignment (like ACHN$), and it
FSS$). See the descriptions
information.

capabilites
allows you

returns a
of those

of the ACHN$ and
to perform a LUN
parse block (like

directives for full

For information on parsing an FCS file specification, see Section
8.43.

High-Level Language Call

CALL PRSRMS([mod],[tbmsk],[lun],prbuf,prsz,rsbuf,rssz,
[rslen],[prsblk,prssz],[dfbuf,dfsz],[rsmsk],[idsw])

mod

tbmsk

prbuf

prsz

rsbuf

rssz

rslen

prsblk

prssz

dfbuf

dfsz

rsmsk

Modifier for logical name table entries.

Inhibit mask to prevent a logical table from
being searched.

Array containing the primary file specification.

Length of prbuf in bytes.

Array to receive resultant file specification.

Length of rsbuf in bytes.

Integer to receive length of resultant string.

Parse block.

Length of prsblk in bytes.

Array containing default file specification.

Length of dfbuf in bytes.

A mask of the fields to suppress in the resultant
string.

8-128

PRMS$ - PARSE RMS SPECIFICATION

idsw Integer to receive directive status word.

All commas are required, unless they are followed by a right
parenthesis.

Macro Call

PRMS$ [mod],tbmsk,lun,prbuf,prsz,rsbuf,rssz,rslen,
prsblk,prssz,dfbuf,dfsz,rsmsk

mod

tbmsk

lun

prbuf

prsz

rsbuf

rssz

rslen

prsblk

prssz

dfbuf

Optional modifier for duplicate logical name
table entries

A byte whose low 4 bits constitute an inhibit
mask to prevent the system from searching a
particular logical table. For each of the
following bits, if the bit is set, the system
does not search the corresponding table:

Logical Name Table Bit of tbmsk Octal

System table (LT.SYS)
User table (LT.USR)
Session table (LT.SES)

The LUN to be assigned

0
2
4

Address of the primary file
buffer

1
4

20

specification

Size of the primary file specification buffer
in bytes

Address of the resultant file specification
buffer

Size of the resultant file specification buffer
in bytes

Address of a word to receive the resultant
string size

Address of the parse block. (See Section 8. 32
for a description of the parse block.)

Size of the parse block in bytes

Address of the default file
buffer

8-129

specification

df sz

rsmsk

PRMS$ - PARSE RMS SPECIFICATION

Size of the default file specification buffer
in bytes

Mask that allows you to suppress fields in the
resultant string

Local Symbol Definitions

R.LFUN

R.LMOD

R.LLUN

R.LTBL

R.LPBF

R.LPSZ

R.LRBF

R.LRSZ

R.LRLN

R.LPRS

R.LPRZ

R.LDBF

R.LDSZ

R.LMSK

Macro Expansion

Subfunction code (1)

Logical name modifier (1)

LUN number (1)

Table inhibit mask (1)

Address of the primary file specification buffer
(2)

Size of the primary file specification buffer in
bytes (2)

Address of the resultant file
buffer (2)

specification

Resultant file specification buffer size in bytes
(2)

Length of the resultant file specification (2)

Parse block address (2)

Parse block size (2)

Address of the default file specification buffer
(2)

Size of the default file specification buffer in
bytes (2)

Inhibit mask (2)

.MACRO PRMS$ MOD,TBMSK,LUN,PRBUF,PRSZ,RSBUF,RSSZ,

.BYTE 207.,13 .

. BYTE 7

.BYTE MOD

.BYTE LUN

.BYTE TBMSK

RSLEN,PRSBLK,PRSSZ,DFBUF,DFSZ,RSMSK
;PRMS$ MACRO DIC, DPS SIZE = 13. WORDS
;SUBFUNCTION
;MODIFIER
;LOGICAL UNIT NUMBER
;TABLE MASK

8-130

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

DSW Return

rs.sue

IE.ADP

IE.SOP

IE. IOU

IE. ILU

IE.LNL

PRMS$ - PARSE RMS SPECIFICATION

PRBUF ;PRIMARY STRING
PRSZ ;PRIMARY STRING SIZE
RSBUF ;RESULTANT STRING BUFFER (RSB) ADDRESS
RSSZ ;RESULTANT STRING BUFFER SIZE
RS LEN ;ADDRESS OF WORD TO RECEIVE RSB SIZE
PRSBLK ;PARSE BLOCK ADDRESS
PRSSZ ;PARSE BLOCK SIZE
DFBUF ;DEFAULT FILE SPECIFICATION ADDRESS
DFSZ ;DEFAULT FILE SPECIFICATION SIZE
RSMSK ;INHIBIT MASK

Codes

Successful completion.

Part of the DPB or user buffer is out of the
issuing task's address space, or the user does
not have the proper access to that region.

DIC or DPB size is invalid.

Invalid device or unit.

Invalid LUN.

LUN usage is interlocked.

8-131

QIO$ - QUEUE I/O REQUEST

8.45 010$ - QUEUE 1/0 REQUEST

The Queue I/O Request directive instructs the system to place an
I/O request for an indicated physical device unit into a queue of
priority-ordered requests for that device unit. The physical
device unit is specified as a logical unit number (LUN) assigned
to the device.

The Executive declares a significant event when the I/0 transfer
completes. If the directive call specifies an event flag, the
Executive clears the flag when the request is queued and sets the
flag when the significant event occurs.

The I/0 status block is also cleared when the request is queued
and is set to the final I/O status when the I/O request is
complete. If an AST service routine entry point address is
specified, the AST occurs upon I/O completion, and the task's
Wait For mask word, PS, PC, DSW, and the address of the I/O
status block, are pushed onto the task's stack.

The description below deals solely with the Executive directive.
(See Notes.)

High-Level Language Call

CALL QIO (fnc,lun, [efn], [pri], [isb], [prl) [,ids])

fnc I/O function code (see Appendix A)

lun Logical unit number

efn Event flag number

pri Priority; ignored, but must be present

isb A two-word integer array to receive final I/O
status

prl A six-word integer array containing
device-dependent parameters to be placed in
parameter words 1 through 6 of the DPB. Fill in
this array by using the GETADR routine (see
Section 7.4.4).

ids Directive status

8-132

QIO$ - QUEUE I/O REQUEST

Macro Call

QIO$ fnc,lun,[efn],[pri],[iost],[ast],[prmlst]

fnc I/O function code (see Appendix A)

lun Logical unit number

efn Event flag number

pri Priority; ignored, but must be present

iost Address of I/O status block

ast Address of entry point of AST service routine

prmlst Parameter list of the form <P1, ... P6>

Macro Expansion

QIO$
.BYTE
.WORD
.WORD
.BYTE
.WORD
.WORD
.WORD
. WORD
. WORD
. WORD
. WORD
.WORD

IO.RVB,7,52.,,IOSTAT,IOAST,<IOBUFR,512.>
1,12. ;QIO$ MACRO DIC, DPB SIZE=12
IO.RVB ;FUNCTION=READ VIRTUAL BLOCK
7 ;LOGICAL UNIT NUMBER 7
52.,0 ;EFN 52., PRIORITY IGNORED
IOSTAT ;ADDRESS OF TWO-WORD I/O STATUS BLOCK
IOAST ;ADDRESS OF I/O AST ROUTINE
IOBUFR ;ADDRESS OF DATA BUFFER
512. ;BYTE COUNT=512 .
0 ;ADDITIONAL PARAMETERS ...
0 ; ... NOT USED IN ...
0 ; ... THIS PARTICULAR ...
0 ; ... INVOCATION OF QUEUE I/O

Local Symbol Definitions

Q. IOFN I/O function code (2)

Q. IOLU Logical unit number (2)

Q. IOEF Event flag number (1)

Q. IOPR Priority (1)

Q. IOSB Address of I/O status block (2)

Q. IOAE Address of I/O done AST entry point (2)

Q. IOPL Parameter list (6 words) (12)

8-133

QIO$ - QUEUE I/O REQUEST

DSW Return Codes

Is.sue

IE.UPN

IE.ULN

IE.HWR

IE.FRI

IE.ILU

IE.IEF

IE.ADP

IE.SDP

Notes

Successful completion.

Insufficient dynamic memory.

Unassigned LUN.

Device driver not loaded.

Task other than despooler attempted a write
logical block operation.

Invalid LUN.

Invalid event flag number (EFN<O or EFN>64).

Part of the DPB or I/O status block is out of the
issuing task's address space.

DIC or DPB size is invalid.

1. If the directive call specifies an AST entry point address,
the task enters the AST service routine with its stack in the
following state:

SP+10

SP+06

SP+04

SP+02

SP+OO

Event flag mask word

PS of task prior to AST

PC of task prior to AST

DSW of task prior to AST

Address of I/O status block, or zero if none
was specified in the QIO directive

The address of the I/O
trap-dependent parameter,
task's stack before an AST
executed.

status block, which is a
must be removed from the
Service Exit directive is

2. If the directive is rejected, the specified event flag
is not guaranteed to be cleared or set. Consequently,
if the task indiscriminately executes a Wait For or Stop
For directive and the QIO directive is rejected, the
task can wait indefinitely. Care should always be taken
to ensure that the directive was successfully completed.

8-134

QIO$ - QUEUE I/O REQUEST

3. Tasks or regions cannot normally be checkpointed with
I/O outstanding for two reasons:

• If the QIO directive results in a data transfer, the
data transfers directly to or from the
user-specified buffer.

• If an I/0 status block address
directive status is returned
status block.

is specified, the
directly to the I/O

The Executive waits until a task has no outstanding I/O
before initiating checkpointing in all cases except the
one described below.

Drivers that buffer I/O check for
conditions for a task:

• That the task is checkpointable

• That checkpointing is enabled

the following

If those two conditions are met, the driver or the
Executive buffers the I/O request internally, and the
task is checkpointable with this outstanding I/O. If
the task also entered a Wait For state when the I/O was
issued (see the QIOW$ directive) or subsequently enters
a Wait For state, the task is stopped. Any competing
task waiting to be loaded into the partition can
checkpoint the stopped task, regardless of priority. If
the stopped task is checkpointed, the executive does not
bring it back into memory until the stopped state is
terminated by completion of buffered I/O or satisfaction
of the Wait For condition.

Not all drivers buffer I/0 requests.
driver is an example of one that does.

The terminal

4. Any task that is linked to a common (read-only) area can
issue QIO write requests from that area.

8-135

QIOW$ - QUEUE I/O REQUEST AND WAIT

8.46 QIOW$ - QUEUE 1/0 REQUEST AND WAIT

The Queue I/0 Request And Wait directive is identical to the
Queue I/O Request in all respects but one. If the Wait variation
of the directive specifies an event flag, the Executive
automatically effects a Wait For Single Event Flag directive. If
an event flag is not specified, however, the Executive treats the
directive as if it were a simple Queue I/O Request.

The following description lists the high-level language and macro
calls with associated parameters, as well as the macro expansion.
Consult the description of Queue I/O Request for a definition of
the parameters, the local symbol definitions, the DSW return
codes, and explanatory notes.

High-level language Call

CALL WTQIO (fnc,lun,[efn],[pri],[isb],[prl][,ids])

fnc I/O function code (see Appendix A)

lun Logical unit number

efn Event flag number

pri Priority; ignored, but must be present

isb A two-word integer array to receive final I/O
status

prl A six-word integer array
device-dependent parameters to be
parameter words 1 through 6 of the DPB

ids Directive status

Macro Call

QIOW$ fnc,lun,[efn],[pri],[iost],[ast][,prmlst]

fnc I/O function code (see Appendix A)

lun Logical unit number

efn Event flag number

pri Priority; ignored, but must be present

iost Address of I/O status block

8-136

containing
placed in

QIOW$ - QUEUE I/O REQUEST AND WAIT

ast Address of entry point of AST service routine

prmlst Parameter list of the form <P1, ... P6>

Macro Expansion

QIOW$ IO.RVB,7,52.,,IOSTAT,IOAST,<IOBUFR,512.>
.BYTE 3,12. ;QIO$ MACRO DIC, DPB SIZE=12 .
. WORD IO.RVB ;FUNCTION=READ VIRTUAL BLOCK
.WORD 7 ;LOGICAL UNIT NUMBER 7
.BYTE 52.,0 ;EFN 52., PRIORITY IGNORED
.WORD IOSTAT ;ADDRESS OF TWO-WORD I/O STATUS BLOCK
.WORD IOAST ;ADDRESS OF I/O AST ROUTINE
.WORD IOBUFR ;ADDRESS OF DATA BUFFER
.WORD 512. ;BYTE COUNT=512 .
. WORD 0 ;ADDITIONAL PARAMETERS ...
. WORD 0 ; ... NOT USED IN ...
. WORD 0 ; ... THIS PARTICULAR ...
. WORD 0 ; ... INVOCATION OF QUEUE I/O

8-137

RCST$ - RECEIVE DATA OR STOP

8.47 RCST$ - RECEIVE DATA OR STOP

The Receive Data Or Stop directive instructs the
dequeue a 13-word data block for the issuing task; the
was queued for the task with a Send Data Directive or
Request And Connect directive.

system to
data block

a Send,

A 2-word task name of the sender (in Radix-50 format) and the
13-word data block are returned in an indicated 15-word buffer.
The task name is contained in the first two words of the buffer.

If no data has been sent, the issuing task is stopped. In this
case, the sender task is expected to issue an Unstop directive
after sending data. A success status code of rs.sue indicates
that a packet has been received. A success status code of IS.SET
indicates that the task was stopped and has been unstopped. The
directive must then be reissued to retrieve the packet.

When a slave task issues the Receive Data or Stop directive, it
assumes the UIC and TI: terminal of the task that sent the data.

High-Level Language Call

CALL RCST ([rtname],ibuf[,ids])

rtname

i.buf

ids

Macro Call

Sender task name (if not specified, data can be
received from any task)

Address of 15-word buffer to receive the sender
task name and data

Integer to receive the Directive Status Word

RCST$ [tname],buf

tname Sender task name (if not specified, data can be
received from any task)

buf Address of 15-word buffer to receive the sender
task name and data

Macro Expansion

RCST$
.BYTE
.RAD50
.WORD

ALPHA,TSKBUF
139. ,4
ALPHA
TSKBUF

;RCST$ MACRO DIC, DPB SIZE=4 WORDS
;DATA SENDER TASK NAME
;BUFFER ADDRESS

8-138

RCST$ - RECEIVE DATA OR STOP

Local Symbol Definitions

R.CSTN Task name (4)

R.CSBF Buffer address (2)

DSW Return Codes

Is.sue

IS.SET

IE.AST

IE.ADP

IE.SOP

Note

Successful completion.

No data was received and task was stopped. (Note
that the task must be Unstopped before it can see
this status.)

The issuing task is at AST state.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

The Receive Data Or Stop directive is treated as a 13 (decimal)
word Variable Receive Data Or Stop directive.

8-139

RCVD$ - RECEIVE DATA

8.48 RCVD$ - RECEIVE DATA

The Receive Data directive instructs the system to dequeue a
13-word data block for the issuing task. The data block has been
queued (FIFO) for the task by a Send Data Directive.

A 2-word sender task name (in Radix-50 form) and the 13-word data
block are returned in an indicated 15-word buffer, with the task
name in the first two words.

When a slave task issues the Receive Data directive, 1L assumes
the UIC and TI: terminal of the task that sent the data.

High-Level Language Call

CALL RECEIV ([tsk],buf[,,ids])

tsk Sender task name. (If not specified, data can be
received from any task.)

buf A 15-word integer array for received data

ids Directive status

Macro Call

RCVD$ [tn], ba

tn Sender task name. (If not specified, data can be
received from any task.)

ba Address of 15-word buffer

Macro Expansion

RCVD$
.BYTE
.RAD50
.WORD

ALPHA,DATBUF
75. '4
/ALPHA/
DATBUF

Local Symbol Definitions

;TASK NAME AND BUFFER ADDRESS
;RCVD$ MACRO DIC, DPB SIZE=4 WORDS
;SENDER TASK NAME
;ADDRESS OF 15.-WORD BUFFER

R.VDTN Sender task name (4)

R.VDBA Buffer address (2)

8-140

RCVD$ - RECEIVE DATA

DSW Return Codes

rs.sue

IE. ITS

IE.ADP

IE.SDP

Notes

Successful completion.

No data currently queued.

Part of the DPB or buffer is out of the issuing
task's address space.

DIC or DPB size is invalid.

1. The Receive Data directive is treated as a 13 (decimal) word
Variable Receive Data directive.

2. If the sending task specifies a common event flag in the Send
Data directive, the receiving task can use that event flag
for synchronization. However, between the time that the
receiver issues this directive and the time the receiver
issues its next instruction, the sender can send data and set
the event flag. If the next instruction is an Exit
directive, any data sent during this time will be lost
because the Executive flushes the task's receive list as part
of exit processing. Therefore, use the Exit If directive or
the Receive Data or Exit directive in order to avoid the race
condition.

8-141

- RECEIVE DATA OR EXIT

8.49 R

The Receive Data Or Exit directive instructs the system to
dequeue a 13-word data block for the issuing task; the data block
has been queued (FIFO) for the task a Send Data directive.

A two-word sender task name (in Radix-50 form) and the 13-word
data block are returned in an indicated 15-word buffer, with the
task name in the first two words.

If no data has been sent, a task exit occurs. To prevent the
possible loss of Send packets, the user should not rely on I/O
rundown to take care of any outstanding I/O or open files; the
task should assume this responsibili

When a slave task issues the Receive Data Or Exit directive, it
assumes the UIC and TI: of the task that sent the data. (See
Notes.)

High-Level Lang

CALL RECOEX ([tsk],buf[,,ids])

tsk Sender task name (If not specified, data can be
received from any task.)

buf A 15-word integer array for received data

ids Directive status

Macro Call

RCVX$ [tn] ,ba

tn Sender task name (If not specified, data can be
received from any task.)

ba Address of 15-word buffer

Macro Expansion

RCVX$
.BYTE
.RAD50
.WORD

ALPHA,DATBUF
77. '4
/ALPHA/
DATBUF

;TASK NAME AND BUFFER ADDRESS
;RCVX$ MACRO DIC, DPB SIZE=4 WORDS
;SENDER TASK NAME
;ADDRESS OF 15.-WORD BUFFER

8-142

RCVX$ - RECEIVE DATA OR EXIT

Local Symbol Definitions

R.VXTN Sender task name (4)

R.VXBA Buffer address (2)

DSW Return Codes

rs.sue

IE.ADP

IE.SOP

Notes

Successful completion.

Part of the DPB or buffer is out of the issuing
task's address space.

DIC or DPB size is invalid.

1. A high-level language program that issues the RECOEX call
must first close all files (for example, by issuing CLOSE
calls in FORTRAN).

To avoid the time overhead involved in the closing and
reopening of files, the task should first issue the RECEIV
call. If the directive status indicates that no data were
received, then the task can close all files and issue the
call to RECOEX. The following example illustrates the same
overhead saving in MACRO:

RCVBUF: . BLKW

START: RCVX$C
CALL

PROC:

Process

RCVD$C

BCC
CALL

JM.P

15 .

,RCVBUF
OPEN

packet

,RCVBUF

PROC
CLOSE

START

of data

8-143

Receive buffer

Attempt to receive message
call user subroutine to
open files.

Attempt to receive another
message
If CC successful receive
call user subroutine to
close files
and prepare for possible
task exit
Make one last attempt
at receiving

RCVX$ - RECEIVE DATA OR EXIT

2. If no data have been sent, that is, if no Send Data directive
has been issued, the task exits. Send packets can be lost if
a task exits with outstanding I/O or open files. (See third
paragraph of this section.)

3. The Receive Data Or Exit directive is useful for avoiding a
possible race condition that can occur between two tasks
communicating by the Send and Receive directives. The race
condition occurs when one task executes a Receive directive
and finds its receive queue empty; but before the task can
exit, the other task sends it a message. The message is lost
because the Executive flushes the receiving task's receive
queue when it exits. This condition can be avoided by the
receiving task's executing a Receive Data Or Exit directive.
If the receive queue is found to be empty, a task exit occurs
before the other task can send any data; thus, no loss of
data can occur.

4. On Exit, the Executive frees task resources. In particular,
the Executive:

• Detaches all attached devices.

• Flushes the AST queue and despecifies all specified ASTs.

• Flushes the receive and receive-by-reference queues.

• Flushes the clock queue for outstanding Mark
requests for the task.

Time

• Closes all open files.
locked.)

(Files open for write access are

• Detaches all attached regions except in the case of a
fixed task, where no detaching occurs.

• Runs down the task's I/O.

• Disconnects from interrupt vectors.

• Returns a success status (EX$SUC) to any parent tasks.

• Breaks the connection with any offspring tasks.

• Frees the task's memory if the exiting task was not
fixed.

5. If the task exits, the Executive declares a significant
event.

8-144

RCVX$ - RECEIVE DATA OR EXIT

6. The Receive Data Or Exit directive is treated as a 13-word
Variable Receive Data Or Exit directive.

8-145

ROAF$ - READ ALL EVENT FLAGS

8.50 ROAF$ - READ ALL EVENT FLAGS

The Read All Event Flags directive instructs the system to read
all 64 event flags for the issuing task and record their polarity
in a 64-bit (4-word) buffer.

High-Level Language Call

A high-level language task can read only one event flag.
The call is:

CALL READEF (efn[,ids])

efn Event flag number

ids Directive status

The Executive returns the status codes IS.SET (+02) and
IS.CLR (00) for high-level language calls in order to report
event flag polarity.

Macro Call

ROAF$ ba

ba The address of a four-word buffer with
following format:

Word 0 Task local flags 1-16

Word 1 Task local flags 17-32

Word 2 Task common flags 33-48

Word 3 Task common flags 49-64

Macro Expansion

ROAF$ FLGBUF
.BYTE 39., 2 ;ROAF$ MACRO DIC, DPB SIZE=2
.WORD FLGBUF ;ADDRESS OF FOUR-WORD BUFFER

Local Symbol Definitions

R.DABA Buffer address (2)

8-146

the

WORDS

RDAF$ - READ ALL EVENT FLAGS

DSW Return Codes

rs.sue

IE.ADP

IE.SDP

Successful completion.

Part of the DPB or buffer is out of the issuing
task's address space.

DIC or DPB size is invalid.

8-147

RDEF$ - READ EVENT FLAG

8.51 RDEF$ - READ EVENT FLAG

The Read Event Flag directive tests an indicated event flag and
reports its polarity in the DSW.

High-Level Language Call

CALL READEF (iefn[,ids])

iefn Integer containing an Event Flag Number

ids Integer variable to receive the Directive Status
Word

Macro Call

RDEF$ efn

efn Event flag number

Macro Expansion

RDEF$ 6
.BYTE 37.,2
.WORD 6

Local Symbol Definitions

The following symbol is locally defined with its assigned
value equal to the byte offset from the start of the DPB to
the DPB element:

R.DEEF - Event flag number (length of 2 bytes)

DSW Return Codes

IS.CLR

IS.SET

IE.IEF

IE.ADP

IE.SDP

Flag was clear.

Flag was set.

Invalid event flag number (event flag number <1
or >64).

Part of DPB is out of issuing task's address
space.

DIC or DPB size is invalid.

8-148

RDXF$ - READ EXTENDED EVENT FLAGS

8.52 RDXF$ - READ EXTENDED EVENT FLAGS

The Read Extended Event Flags directive instructs the system to
read all local and common event flags for the issuing task and
record their polarity in a 96-bit (6-word) buffer.

High-Level Language Call

A high-level language task can read only one event flag.
The call is:

CALL READEF (efn[,ids])

efn Event flag number

ids Directive status

The Executive returns the status codes IS.SET (+02) and
IS.CLR (00) for high-level language calls to report event
flag polarity.

Macro Call

RDXF$ ba

ba Address of a six-word buffer with the following
format:

Word 0

Word 1

Word 2

Word 3

Word 4

Word 5

Macro Expansion

RDXF$ FLGBUF
.BYTE 39. '3
.WORD FLGBUF

Task local flags 1-16

Task local flags 17-32

Task common flags 33-48

Task common flags 49-64

Reserved

Reserved

;RDXF$ MACRO DIC, DPB SIZE=3 WORDS
;ADDRESS OF SIX-WORD BUFFER

8-149

RDXF$ - READ EXTENDED EVENT FLAGS

Local Symbol Definitions

R.DABA Buffer address (2)

DSW Return Codes

rs.sue

IS.CLR

IE.ADP

IE.SOP

Successful completion.

Group global event flags do not exist.
and 5 of the buffer contain 0.

Words 4

Part of the DPB or buffer is out of the issuing
task's address space.

DIC or DPB size is invalid.

8-150

RPOI$ - REQUEST AND PASS OFFSPRING INFORMATION

8.53 RP01$ - REQUEST AND PASS OFFSPRING INFORMATION

The Request and Pass Offspring Information directive instructs
the system to request the specified task, and to chain to it by
passing any or all of the parent connections from the issuing
task to the requested task. Optionally, the directive can pass a
command line to the requested task. Only a privileged task can
specify the UIC and TI: of the requested task.

High-level Language Call

CALL RPOI (tname,[iugc],[iumc],[iparen],(ibufJ,[ibfl],[isc],
[idnarn], [iunit], [itask], [ocbad] [,ids])

tname

iugc

iumc

iparen

ibuf

ibfl

isc

Name of an array containing the actual name
Radix-50) of the task to be requested
optionally chained to.

(in
and

Name of an integer containing the group code
number for the UIC of the requested target chain
task.

Name of the integer containing the member code
number for the UIC of the requested target chain
task.

Name of an array (or I*4 integer) containing the
Radix-50 name of the parent task. This name is
returned in the information buffer of the GTCMCI
subroutine.

Name of an array that contains the command line
text for the chained task.

Name of an integer that contains the number of
bytes in the command in the ibuf array.

Flag byte controlling the actions of this
directive request when executed. The bit
definitions of this byte are as follows (only
the low order byte of the integer specified in
the call is ever used):

RP.OEX = 128.

RP.OAL 1

8-151

Force this task to
successful execution
RPOI directive.

exit
of

on
the

Pass all of this task's
connections to the requested
task. (The default is none.)

RPO!$ - REQUEST AND PASS OFFSPRING INFORMATION

idnam

iunit

itask

ocbad

ids

Macro Call

RP.ONX 2 Pass the first connection in
the queue if there is one.

Name of an integer that contains the ASCII
device name of the requested task's TI:

Name of an integer that contains the unit number
of the requested task's TI: device.

Name of an array which contains the Radix-SO
name the requested task is to run under.

Any task can specify a new name for
requested task. However, the requested
{specified in the tname parameter) must
installed with the ... tsk format.

Reserved for future use.

the
task

be

Name of an integer to receive the Directive
Status Word.

RPO!$ tname,pn,pr,[ugc],[umc],[parent],[bufadr],[buflen]
,[sc],[dnam],[unit],[task],[ocbad]

tname Name of task to be chained to

pn Partition name--ignored, but must be present

pr Priority--ignored, but must be present

ugc Group code for UIC of the requested task

umc Member code for UIC of the requested task

parent

bufadr

buflen

SC

Name of issuing task's
connection is passed.
connections are passed.

parent task whose
If not specified, all

Address of buffer to be given to the requested
task

Length of buffer to be given to requested task

Flags byte:

RP.OEX (200) Force issuing task to exit.

8-152

RPO!$ - REQUEST AND PASS OFFSPRING INFORMATION

RP.CAL (1) Pass all connections.
default is none.)

(The

RP.ONX (2) Pass the first connection in
the queue, if there is one.

dnam ASCII device name for TI:.

unit Unit number of task TI:.

task Radix-50 name under which the requested task is
to run.

ocbad

Any task can specify a new name for
requested task. However, the requested
(specified in the tname parameter) must
installed with the ... tsk format.

Reserved for future use.

Local Symbol Definitions

the
task

be

R.POTK Radix-50 name of installed task to be chained to
(2)

(reserved) Six unused words (6)

R.POUM UIC member code (1)

R.POUG UIC group code

R.POPT Name of parent whose OCB should be passed (4)

R.POOA Reserved for future use (2)

R.POBF Address of command buffer (2)

R.POBL Length of command (2)

R.POUN Unit number of task TI: (1)

R.POSC Flags byte (1)

R.PODV ASCII device name for TI: (2)

R.POTN Radix-50 name of task to be started (4)

8-153

RPOI$ - REQUEST AND PASS OFFSPRING INFORMATION

Macro Expansion

RPOI$ tname,,,ugc,umc,ptsk,buf,buflen,sc,dev,unit,task,ocbad
.BYTE 11,16 ;DIC 11 DPB SIZE = 16. words
.RAD50 /tname/ ;NAME OF TASK TO CHAIN TO
.BLKW 3 ;RESERVED
.BYTE umc ;UIC MEMBER CODE
.BYTE ugc ;UIC GROUP CODE
.RAD50 ptsk :NAME OF TASK WHOSE OCB SHOULD BE PASSED
.WORD ocbad ;ADDRESS OF OCB
.WORD buf ;ADDRESS OF BUFFER TO SEND
.WORD buflen ;LENGTH OF BUFFER
.ASCII /dev/ ;ASCII NAME OF TI: OF REQUESTED TASK
.BYTE unit ;UNIT NUMBER OF TI: DEVICE
.BYTE sc ;PASS BUFFER AS SEND PACKET OR COMMAND CODE
.RAD50 /task/ ;NEW NAME OF TASK TO START

DSW Return Codes

IE.UPN

IE. INS

IE.ACT

IE. IDU

IE.NVR

IE.ALG

IE.PNS

IE.ADP

IE.SDP

There is insufficient dynamic memory to allocate
an Offspring Control Block, command line buffer,
Task Control Block, or Partition Control Block.

The specified task was not installed, or it was
a CLI but no command line was specified.

The specified task was already active and it was
not a command line interpreter.

The specified virtual terminal unit does not
exist, or was not created by the issuing task.

There is no Offspring Control Block from the
specified parent task.

Either a parent name
block address was
connections flag or
flag was set.

or an off spring control
specified, and the pass all
the pass next connection

The Task Control Block cannot be created in the
same partition as its prototype.

Part of the DPB, exit status block, or command
line is out of the issuing task's address space.

DIC or DPB size is invalid.

8-154

RQST$ - REQUEST TASK

8.54 ROST$ - REQUEST TASK

The Request Task directive instructs the system to activate a
task. The task is activated and runs contingent upon priority
and memory availability. The Request Task directive is the basic
mechanism used by running tasks to initiate other installed
(dormant) tasks. The Request Task directive is a frequently used
subset of the Run directive. See Notes.

High-Level Language Call

CALL REQUES (tsk,[opt][,ids])

tsk Task name

opt A four-word integer array

opt(l)

opt(2)

opt(3)

opt(4)

First half of partition name; ignored,
but must be present

Second half of partition name; ignored,
but must be present

Priority; ignored, but must be present

User Identification Code

ids Directive status

Macro Call

RQST$ tn, [pn] , [pr] [, gc, p J

tn Task name

pn Partition name; ignored, but must be present

pr Priority; ignored, but must be present

gc UIC group code

p UIC member code

Macro Expansion

RQST$
.BYTE
.RAD50
.WORD
.WORD

ALPHA, I I 20'10
11. '7
/ALPHA/
0,0
0

;RQST$ MACRO DIC, DPB SIZE=7 WORDS
;TASK "ALPHA"
;PARTITION IGNORED
;PRIORITY IGNORED

8-155

RQST$ - REQUEST TASK

.BYTE 10,20 ;UIC UNDER WHICH TO RUN TASK

Local Symbol Definitions

R.QSTN Task name (4)

R.QSPN Partition name (4)

R.QSPR Priority (2)

R.QSPC UIC member (1)

R.QSGC UIC group (1)

DSW Return Codes

rs.sue

IE.UPN

IE.INS

IE.ACT

IE.ADP

IE.SDP

Notes

Successful completion.

Insufficient dynamic memory.

Task is not installed.

Task is already active.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

1. The requested task must be installed in the system.

2. If the partition in which a requested task is to run is
already occupied, the Executive places the task in a queue of
tasks waiting for that partition. The requested task then
runs, depending on priority and resource availability when
the partition is free.

If the current occupant of the partition is checkpointable,
has checkpointing enabled, and is of lower priority than the
requested task, it is written to disk when its current
outstanding I/0 completes; the requested task is then read
into the partition.

3. Successful completion means that the task has been declared
active, not that the task is actually running.

8-156

RQST$ - REQUEST TASK

4. The requested task acquires the same TI: assignment as that
of the requesting task.

5. The requested task always runs at the priority specified in
its task header.

6. A task that executes in a system-controlled partition
requires dynamic memory for the Partition Control Block used
to describe its memory requirements.

7. Each active task has two UICs: a protection UIC and a
default UIC. These are both returned when a task issues a
Get Task Parameters directive (GTSK$). The UICs are used in
the following ways:

• The protection UIC determines the task's access rights
for opening files and attaching to regions. When a task
attempts to open a file, the system compares the task's
protection UIC against the protection mask of the
specified UFD. The comparison determines whether the
task is to be considered for system, owner, group, or
world access.

• The default UIC is used by the Record Management Services
(RMS) to determine the default UFD when a file-open
operation does not specify a UIC. (The default UIC has
no significance when a task attaches to a region.)

8-157

RREF$ - RECEIVE BY REFERENCE

8.55 RREF$ - RECEIVE BY REFERENCE

The Receive By Reference
dequeue the next packet
issuing (receiver) task.
significant event.

directive requests the Executive to
in the receive-by-reference queue of the
If successful, the directive declares a

Optionally, the task exits if there are no packets in the queue.
The directive can also specify that the Executive proceed to map
the referred region.

Each reference in the task's receive-by-reference queue
represents a separate attachment to a region. If a task has
multiple references to a given region, it is attached to that
region the corresponding number of times. Because region
attachment requires system dynamic memory, the receiver task
should detach from any region that it was already attached to in
order to prevent depletion of the memory pool. That is, the task
needs to be attached to a given region only once.

If the Executive does not find a packet in the queue, and the
task has set WS.RCX in the window status word (W.NSTS), the task
exits. If WS.RCX is not set, the Executive returns the DSW code
IE.ITS.

If the Executive finds a packet, it writes the information
provided to the corresponding words in the Window Definition
Block. This information provides sufficient information to map
the reference to a previously created address window, according
to the sender task's specifications.

If the address of a ten-word receive buffer has been specified
(W.NSRB in the Window Definition Block), then the sender task
name and the eight additional words passed by the sender task (if
any) are placed in the specified buffer. If the sender task did
not pass any additional information, the Executive writes the
sender task name and eight words of zero.

If the WS.MAP bit in the window status word has been set
the Executive transfers control to the Map Address
directive to attempt to map the reference.

to 1,
Window

When a task that has
receive-by-reference queue
removes the packets from the
flags are not set.

unreceived packets in its
exits or is removed, the Executive
queue and deallocates them. Related

8-158

RREF$ - RECEIVE BY REFERENCE

High-Level Language Call

CALL RREF (iwdb,[isrb][,ids])

iwdb

isrb

ids

Macro Call

RREF$

wdb

wdb

An eight-word integer array that contains a
Window Definition Block (see Section 5.5.2.2)

A ten-word integer array to be used as the
receive buffer. If the call omits this
parameter, the contents of iwdb(B) are unchanged.

Directive status

Window Definition Block address

Macro Expansion

RREF$
.BYTE
.WORD

WDBADR
81. '2
WDBADR

;RREF$ MACRO DIC, DPB SIZE=2 WORDS
;WDB ADDRESS

Definition Block Parameters

Table 8-10 describes the Window Definition Block parameters for
this directive.

Local Symbol Definitions

R.REBA Window Definition Block address (2)

DSW Return Codes

rs.sue

IS.HWR

IE.ITS

IE.ADP

IE.SDP

Successful completion.

Region has incurred a parity error.

No packet found in the
queue.

receive-by-reference

Address check of the DPB, WDB, or the receive
buffer (W.NSRB) failed.

DIC or DPB size is invalid.

8-159

RREF$ - RECEIVE BY REFERENCE

Table 8-10: Window Definition Block Parameters, RREF$ and RRST$

Array
Element

Off set

Input Parameters

iwdb(l)
bits 0-7

iwdb(7)

iwdb(8)

W.NID

W.NSTS

W.NSRB

Output Parameters

iwbd(4) W.NRID

iwdb(5) W.NOFF

iwdb(6) W.NLEN

Description

ID of an existing window if region is to
be mapped

Bit settings* in the window status word:

Bit

WS.MAP

WS.RCX

Definition

1 if received reference
is to be mapped

1 if task exit desired when
no packet is found in
the queue

Optional address of a 10-word buffer to
contain the sender task name and
additional information

Region ID (pointer to attachment
description)

Offset word specified by sender task

Length word specified by sender task

* If you are a high-level language programmer, see
5.5.2 to determine the bit values represented
symbolic names described.

Section
by the

8-160

Array
Element

iwdb(7)

RREF$ - RECEIVE BY REFERENCE

Off set Description

W.NSTS Bit settings* in the window status word:

Bit Definition

WS.RED 1 if attached with read
access

WS.WRT 1 if attached with write
access

WS.EXT 1 if attached with extend
access

WS.DEL 1 if attached with delete
access

WS.RRF 1 if receive was
successful

The Executive clears the remaining bits.

8-161

RRST$ - RECEIVE BY REFERENCE OR STOP

8.56 RAST$ - RECEIVE REFERENCE STOP

The Receive By Reference or Stop directive requests the Executive
to dequeue the next packet in the receive -reference queue of
the issuing (receiver) task. The task stops if there are no
packets in the queue. The directive can also speci that the
Executive proceed to map the referenced region.

If successful, the directive declares a significant event.

Each reference in the task's receive-by-reference queue
represents a separate attachment to a region. If a task has
multiple references to a given region, it is attached to that
region the corresponding number of times. Because region
attachment requires system dynamic memory, the receiver task
should detach from any region that it was already attached to in
order to prevent depletion of the memory pool. That is, the task
needs to be attached to a given region only once.

If the Executive finds a packet, ic writes the information
provided to the corresponding words in the Window Definition
Block. This information provides sufficient information to map
the reference, according to the sender task's specifications, to
a previously created address window.

If the address of a ten-word receive buffer has been specified
(W.NSRB in the Window Definition Block), then the sender task
name and the eight additional words passed by the sender task (if
any) are placed in the specified buffer. If the sender task did
not pass any additional information, the Executive writes the
sender task name and eight words of zero.

If the WS.MAP bit in the window status word has been set
the Executive transfers control to the Map Address
directive to attempt to map the referenceo

to 1,
Window

When a task that has
receive-by-reference queue
removes the packets from the
related flags are not set.

unreceived packets in its
exits or is removed. the Executive
queue and deallocates them. Any

High-Level Language Call

CALL RRST (iwdb,[isrb][,ids])

iwdb An eight-word integer array that contains a
Window Definition Block (see Section 5.5.2.2)

8-162

isrb

ids

Macro Call

RRST$ - RECEIVE BY REFERENCE OR STOP

A ten-word integer array to be used as the
receive buffer. If the call omits this
parameter, the contents of iwdb(B) are unchanged.

Directive status

RRST$ wdb

wdb Window Definition Block address

Macro Expansion

RRST$
.BYTE
.WORD

WDBADR
213. '2
WDBADR

;RRST$ MACRO DIC, DPB SIZE=2 WORDS
;WDB ADDRESS

Definition Block Parameters

Table 8-10 describes the Window Definition Block parameters for
this directive.

Local Symbol Defin ns

R.REBA Window Definition Block address (2)

DSW Return Codes

rs .. sue

IS.HWR

IE.ITS

IE.ADP

IE.SDP

Successful completion.

Region has incurred a parity error.

No packet found in the
queue.

receive-by-reference

Address check of the DPB, WDB, or the receive
buffer (W.NSRB) failed.

DIC or DPB size is invalid.

8-163

RSUM$ - RESUME TASK

8.57 RSUM$ - RESUME TASK

The Resume Task directive instructs the system to resume the
execution of a task that has issued a Suspend directive.

High-Level Language Call

CALL RESUME (tsk[,ids])

tsk Task name

ids Directive status

Macro Call

RSUM$ tn

tn Task name

Macro Expansion

ALPHA RSUM$
.BYTE
.RAD50

4 7. , 3
/ALPHA/

;RSUM$ MACRO DIC, DPB SIZE=3 WORDS
;TASK "ALPHA"

Local Symbol Definitions

R. SUTN Task name (4)

DSW Return Codes

rs.sue Successful completion.

IE.INS Task is not installed.

IE.ACT Task is not active.

IE.ITS Task is not suspended.

IE.ADP Part of the DPB is out of the issuing task's
address space.

IE.SDP DIC or DPB size is invalid.

8-164

RUN$ - RUN TASK

8.58 RUN$ - RUN TASK

The Run Task directive causes a task to be requested at a
specified time, and optionally to be requested periodically. The
scheduled time is specified in terms of delta time from issuance.
If the sm, rm, and ru parameters are omitted, Run is the same as
Request Task, except that:

1. Run causes the task to become active one clock tick after the
directive is issued.

2. The system always sets the TI: device for the requested task
to co:.

See Notes.

High-Level Language Call

CALL RUN (tsk,[opt],[sm],su,[rm],[ru)[,ids])

tsk Task name

opt A four-word integer array

opt(l)

opt(2)

opt(3)

opt(4)

First half of partition name; ignored,
but must be present

Second half of partition name; ignored,
but must be present

Priority; ignored, but must be present

User Identification Code

sm Schedule delta magnitude

su Schedule delta unit (either 1, 2, 3, or 4)

rm Reschedule interval magnitude

ru Reschedule interval unit

ids Directive status

The ISA standard call for initiating a task is also provided:

CALL START (tsk,sm,su[,ids])

tsk Task name

8-165

- RUN TASK

sm Schedule delta magnitude

su Schedule delta unit (either 0, 1, 2, 3, or 4)

ids Directive status

Macro Call

tn, [pn], [pr], [gc], [p], [sm] ,su[,rm,ru]

tn Task name

pn Partition name; ignored, but must be present

pr Priority; ignored, but must be present

gc UIC group code

p UIC member code

sm Schedule delta magnitude

su Schedule delta unit (either 1, 2, 3, or 4)

rm

ru

Macro

RUN$
BYTE
.RAD50
.WORD
.WORD
.BYTE
.WORD
.WORD
. WORD
.WORD

R.UNTN

R.UNPN

R.UNPR

R.UNGC

Reschedule interval magnitude

Reschedule interval unit

on

ALPHA , , 2 0, 10, 2 0. , 3, 10. , 3
17.,11. ;RUN$ MACRO DIC, DPB SIZE=ll. WORDS
/ALPHA/ ;TASK "ALPHA"
0,0 ;PARTITION IGNORED
0 ;PRIORITY IGNORED
10,20 ;UIC TO RUN TASK UNDER
20. ;SCHEDULE MAGNITUDE=20
3 ;SCH. DELTA TIME UNIT=MINUTE (=3)
10. ;RESCH. INTERVAL MAGNITUDE=10 .
3 ;RESCH. INTERVAL UNIT=MINUTE (=3)

n ons

Task name (4)

Partition name (4)

Priority (2)

UIC group code (1)

8-166

RUN$ - RUN TASK

R.UNPC UIC member code (1)

R.UNSM Schedule magnitude (2)

R.UNSU Schedule unit (2)

R.UNRM Reschedule magnitude (2)

R.UNRU Reschedule unit (2)

DSW Return Codes

For CALL RUN and RUN$:

rs.sue

IE.UPN

IE.ACT

IE.INS

IE.PR!

IE.IT!

IE.ADP

IE.SOP

Successful completion.

Insufficient dynamic memory.

Multiuser task name specified.

Task is not installed.

Nonprivileged task specified a UIC other than
its own.

Invalid time parameter.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

For CALL START:

The system provides the following positive error codes to
be returned for ISA calls:

2 Insufficient dynamic storage.

3 Specified task not installed.

94 Invalid time parameter.

98 Invalid event flag number.

99 Part of DPB is out of task's address space.

100 DIC or DPB size is invalid.

8-167

RUN$ - RUN TASK

Notes

1. A nonprivileged task cannot specify a UIC that is not equal
to its own protection UIC. A privileged task can specify any
UIC.

2. The target task must be installed in the system.

3. If there is not enough room in the partition in which a
requested task is to run, the Executive places the task in a
queue of tasks waiting for that partition. The requested
task then runs, depending on priority and resource
availability, when the partition is free. Another
possibility is that checkpointing can occur. If the current
occupant of the partition is checkpointable, has
checkpointing enabled, is of lower priority than the
requested task, or is stopped for terminal input, it is
written to disk when its current outstanding I/O completes.
The requested task is then read into the partition.

4. Successful completion means the task has been made active; it
does not mean that the task is actually running.

5. The Executive returns
directive specifies
parameter consists of
time interval unit.

the code IE.ITI
an invalid time
the time interval

in the DSW if
parameter. A
magnitude, and

the
time
the

A legal magnitude value (sm or rm) is related to the value
assigned to the time interval unit su or ru.

The unit values are encoded as follows:

For an ISA FORTRAN call (CALL START):

0 Ticks - A tick occurs for each clock interrupt
tick rate of 64 (decimal) ticks per second.

1 Milliseconds The subroutine converts the
specified magnitude to the equivalent number of
system clock ticks.

For all other high-level language and all macro calls:

1 Ticks - A tick occurs for each clock interrupt
tick rate of 64 (decimal) ticks per second.

For all calls:

2 Seconds

8-168

RUN$ - RUN TASK

3 Minutes

4 Hours

8-169

SCAA$ - SPECIFY COMMAND ARRIVAL AST

8.59 SCAA$ - SPECIFY COMMAND ARRIVAL AST

The Specify Command Arrival AST directive instructs the system to
enable or disable command arrival ASTs for the issuing CLI task.
If command arrival ASTs are enabled, the Executive transfers
control to a specified address when commands are queued to the
CLI.

Only CLI tasks can use this AST.

When the AST routine is entered, the format of the stack is as
follows:

SP+10 - Zero since no event flags are involved
SP+06 - PS of task prior to AST
SP+04 - PC of task prior to AST
SP+02 - DSW of task prior to AST
SP+OO - Address of command buffer just queued

The AST routine must remove the command buffer address from the
stack before issuing an ASTX$ directive.

The command buffer address can be used when issuing a GCCI$
directive.

High-Level Language Call

Not supported

Macro Call

SCAA$ [ast l

ast AST service-routine entry point. Omitting this
parameter disables command arrival ASTs for the
issuing task until the directive is respecified.

Macro Expansion

SCAA$
.BYTE
.WORD

ast
173. '2
ast

Local Symbol Definitions

;DIC= 173 (DECIMAL), DPB SIZE
;ADDRESS OF AST ROUTINE

S.CAAE Address of AST routine

8-170

2 WORDS

SCAA$ - SPECIFY COMMAND ARRIVAL AST

DSW Return Codes

IE. ITS

IE.AST

IE.PRV

IE.UPN

IE.ADP

IE.SOP

ASTs are already not desired.

Directive issued from AST state.

Issuing task is not a CL!.

Insufficient dynamic memory.

Part of the DPB was out of the issuing task's
address space.

DIC or DPB size is invalid.

8-171

SDAT$ - SEND DATA

8.60 SDAT$ - SEND DATA

The Send Data directive instructs the system to declare a
significant event and to queue (FIFO) a 13-word block of data for
a task to receive.

NOTE

When a local event flag is specified, the
indicated event flag is set for the sending task.
A significant event is always declared.

High-Level Language Call

CALL SEND (tsk,buf,[efn][,ids])

tsk Task name

buf 13-word integer array of data to be sent

efn Event flag number

ids Directive status

Macro Call

SDAT$ tn,ba[,efn]

tn Task name

ba Address of 13-word data buffer

efn Event flag number

Macro Expansion

SDAT$
.BYTE
.RAD50
.WORD
. WORD

ALPHA,DATBUF,52.
71.,5 ;SDAT$ MACRO DIC, DPB SIZE=5 WORDS
/ALPHA/ ;RECEIVER TASK NAME
DATBUF ;ADDRESS OF 13.-WORD BUFFER
52. ;EVENT FLAG NUMBER 52 .

Local Symbol Definitions

S.DATN Task name (4)

S.DABA Buffer address (2)

S.DAEF Event flag number (2)

8-172

SDAT$ - SEND DATA

DSW Return Codes

rs.sue

IE. INS

IE.UPN

IE.IEF

IE.ADP

IE.SOP

Notes

Successful completion.

Receiver task is not installed.

Insufficient dynamic memory.

Invalid event flag number (EFN<O or EFN>64).

Part of the DPB or data block is out of the
issuing task's address space.

DIC or DPB size is invalid.

1. Send Data requires dynamic memory.

2. If the directive specifies a local event flag, the flag is
local to the sender (issuing) task.

Normally, the event flag is used to trigger the receiver task
into some action. For this purpose, the event flag must be
common (33 through 64) rather than local. (Refer to the
descriptions of the Receive Data directive and the Exit IF
directive.)

3. The Send Data directive is treated as a 13-word Variable Send
Data directive.

8-173

SDIR$ - SET-UP DEFAULT DIRECTORY STRING

8.61 SDIR$ - SET-UP DEFAULT DIRECTORY STRING

The Set-Up Default Directory String directive establishes a
default directory string for the user whose task calls the
directive. (See the Get Default Directory directive.)

High-Level Language Call

CALL SETDDS (mod,iens,ienssz,[idsw])

mod The modifier of the logical name within a
table. See Section 2.2 for details.

iens Character array that contains the equivalence
name string

ienssz Size (in bytes) of the equivalence name string

idsw Integer to receive the Directive Status Word

Macro Call

SDIR$ mod,ens,enssz

mod

ens

enssz

The modifier of the logical name within a
table. See Section 2.2 for details.

Buffer address of the equivalence name string

Size in bytes of the equivalence name string

Macro Expansion

SDIR$
.BYTE
.BYTE

.BYTE

.WORD

.WORD

.WORD

mod,ens,enssz
207.,5
3

MOD
0
ENS
ENSSZ

;SDIR$ MACRO DIC, DPB SIZE = 5 WORDS
;SUBFUNCTION CODE FOR SET DEFAULT
;DIRECTORY
;LOGICAL NAME MODIFIER
;RESERVED
;BUFFER ADDRESS OF EQUIVALENCE NAME
;BYTES COUNT OF EQUIVALENCE STRING

Local Symbol Definitions

S.DENS Address of equivalence name buffer (2)

S.DESZ Byte count of equivalence name string (2)

S.DFUN Subfunction code (1)

8-174

SDIR$ - SET-UP DEFAULT DIRECTORY STRING

S.DMOD Logical name modifer (1)

DSW Return Codes

rs.sue

IS.SUP

IE.UPN

IE.IBS

IE.ADP

IE.SOP

Notes

Successful completion of service.

Successful completion of service. A new
equivalence name string superseded a previously
specified name string.

Insufficient dynamic storage is available to
create the logical name.

The length of the logical or equivalence string
is invalid. Each string length must be greater
than 0 but not greater than 255 (decimal)
characters.

Part of the DPB or user buffer is out of the
issuing task's address space, or the user does
not have proper access to that region.

DIC or DPB size is invalid.

1. If you specify 0 for argument iens or ens, the system deletes
the default directory string for the user who spawned the
task that called the SDIR$ directive. The system deletes the
equivalence that has the specified mod value.

2. SDIR$ does not check whether or not the directory you specify
does in fact exist. No error status code is returned if the
directory does not exist.

8-175

SDRC$ - SEND, REQUEST AND CONNECT

8.62 SDRC$ - SEND, REQUEST AND CONNECT

The Send, Request And Connect directive performs a Send Data to
the specified receiver task. This action causes the Executive to
declare a significant event and to queue (FIFO) a 13-word block
of data for the receiver task. The SDRC$ directive then requests
the receiver task for execution if the task is not already
active. It then connects to the receiver task (making it an
offspring of the sender) by queuing an Offspring Control Block
(OCB) to the receiver task's Task Control Block (TCB) and
incrementing the rundown count in the sending (parent) task's
TCB.

The rundown count is used to inform the Executive that the parent
task has one or more offspring tasks; clean-up is necessary if
the parent task exits while offspring tasks are still active.
The rundown count is decremented when the offspring task exits.
The OCB contains the TCB address as well as sufficient
information to effect all of the specified exit events when the
offspring task exits.

For high-level languages, call SDRCN instead of SDRC when you do
not use ASTs. Using SDRCN stops the system from bringing an
additional impure area into your task root, thus saving virtual
address space. The interface routines would normally use the
additional impure area to save context during an AST.

If an AST address is specified and you do not use SDRCN to invoke
the directive, an exit AST routine is effected when the offspring
task exits with the address of the task's exit status block on
the stack. The AST routine must remove this word from the stack
before issuing the AST Service Exit directive.

High-Level Language Call

CALL SDRC (rtname, ibuf,[iefn],[iast],[iesb],[iparm][,ids])

CALL SDRCN (rtname, ibuf,[iefn],[iast],[iesb],[iparm][,ids])

rtname

ibuf

iefn

iast

Target task name of the offspring task to be
connected

Name of 13-word send buffer

Event flag to be set when the off spring task
exits or emits status

Name of an AST routine called when the
offspring task exits or emits status. This
parameter is ignored when you call SDRCN.

8-176

iesb

iparm

ids

Macro Call

SDRC$

tname

buf

efn

east

SDRC$ - SEND, REQUEST AND CONNECT

Name

NOTE

Refer to Section 7.4.7 for important
guidelines on using high-level language
AST service routines.

of an eight-word status block to be
written when the offspring task exits or emits
status

Word

Word

Word

0 Offspring task exit status

1 System abort code

2-7 Reserved

NOTE

The exit status block defaults to one
word. To use the eight-word exit
status block, you must specify the
logical OR of the symbol SP.WXB and the
event flag number in the iefn parameter
above.

Name of a word to receive the status block
address when an AST occurs

Integer to receive the Directive Status word

tname,buf,[efn],[east],[esb]

Target task name of the offspring task to be
connected

Address of 13-word send buffer

The event flag to be cleared on
set when the off spring task
status

issuance a•1d
exits or emits

Address of an AST routine to be called when the
offspring task exits or emits status

8-177

esb

SDRC$ - SEND, REQUEST AND CONNECT

Address of an eight-word status block to be
written when the offspring task exits or emits
status

Word 0 Offspring task exit status

Word

Word

1 System abort code

2-7 Reserved

NOTE

The exit status block defaults to one
word. To use the eight-word exit
status block, you must specify the
logical OR of the symbol SP.WXB and the
event flag number in the efn parameter
above.

Macro Expansion

SDRC$
.BYTE
.RAD50
.WORD
.BYTE
.BYTE
.WORD
.WORD

ALPHA,BUFFR,2,SDRCTR,STBLK
141.,7 ;SDRC$ MACRO DIC, DPB SIZE=7 WORDS
ALPHA ;TARGET TASK NAME
BUFFR ;SEND BUFFER ADDRESS
2 ;EVENT FLAG NUMBER = 2
16. ;EXIT STATUS BLOCK CONSTANT
SDRCTR ;ADDRESS OF AST ROUTINE
STBLK ;ADDRESS OF STATUS BLOCK

Local Symbol Definitions

S.DRTN Task name (4)

S.DRBF Buffer address (2)

S.DREF Event flag (2)

S.DREA AST routine address (2)

S.DRES Status block address (2)

DSW Return Codes

Is.sue

IE.UPN

Successful completion.

Insufficient dynamic memory to allocate a send
packet, Offspring Control Block, Task Control

8-178

IE. INS

IE.IEF

IE.ADP

IE.SDP

Notes

SDRC$ - SEND, REQUEST AND CONNECT

Block, or Partition Control Block.

The specified task is an ACP or has the no-send
attribute.

An invalid event flag number was specified (EFN<O
or EFN>64).

Part of the DPB or exit status block is not in
the issuing task's address space.

DIC or DPB size is invalid.

1. The virtual mapping of the exit status block should not be
changed while the connection is in effect. Doing so can
result in errors.

2. If the directive is rejected, the state of the specified
event flag is indeterminate.

8-179

SDRP$ - SEND DATA REQUEST AND PASS OCB

8.63 SDRP$ - SEND DATA REQUEST AND PASS OCB

This directive instructs the system to send a send data packet
for the specified task, chain to the requested task, and request
it if it is not already active.

High-Level Language Cail

CALL SDRP (task,ibuf,[ibfl],[iefn],[iflag],[iparen],[iocbad]
[,ids])

task

ibuf

ibfl

iefn

iflag

iparen

Name of an array (REAL,INTEGER,I*4) that
contains the Radix-50 name of the target task

Name of an integer array that contains the data
to be sent

Name of an integer that contains the number of
words (integers) in the array to be sent. This
argument can be in the range of 1 through 256
(decimal). If this argument is not specified, a
default value of 13 (decimal) is assumed.

Name of an integer that contains the number of
the event flag that is to be set when this
directive is executed successfully.

Name of an integer that contains the flag
controlling execution of this directive.
are defined as follows:

bits
They

SD.REX = 128.

SD.RAL 1

SD.RNX 2

Force this task to exit upon
successful execution of this
directive.

Pass all connections to the
requested task. (Default is
pass none.) If you specify
this flag, do not specify the
parent task name.

Pass the first connection in
the queue, if there is one,
to the requested task. If
you specify this flag, do not
specify the parent task name.

Name of an array that contains the Radix-50 name
of the parent task whose connection should be

8-180

SDRP$ - SEND DATA REQUEST AND PASS OCB

iocbad

passed to the target task. The name of the
parent task was returned in the information
buffer of the GTCMCI subroutine.

Reserved for future use.

ids Name of an integer to receive the contents of
the Directive Status Word.

Macro Call

SDRP$ task,bufadr,[buflen],[efn],[flag],[parent],[ocbad]

task

buf adr

bu fl en

efn

flag

parent

ocbad

Name of task to be chained to

Address of buffer to be given to the requested
task

Length of buffer to be given to requested task

Event flag

Flags byte
directive.
follows:

controlling
The flag

execution
bits are

of this
defined as

SD.REX 128. Force this task to exit upon
successful completion of this
directive.

SD.RAL = 1 Pass all connections to the
requested task. (Default is
pass none.) If you specify
this flag, do not specify the
parent task name.

SD.RNX = 2 Pass the first connection in
the queue, if there is one,
to the requested task. If
you specify this flag, do not
specify the parent task name.

Name of issuing task's parent task whose
connection is passed. If not specified, all
connections or no connections are passed
depending on the flag byte.

Reserved for future use.

8-181

SDRP$ - SEND DATA REQUEST AND PASS OCB

Macro Expansion

SDRP$ task,bufadr,[buflen],[efn],[flag],[parent],[ocbad]

.BYTE

.RAD50

.WORD

.BYTE

.WORD

.RAD50

.WORD

141. ,9.
/task/
BUFADR
EFN,FLAG
BUFLEN
/PARENT/
OCBAD

;DIC = 141, DPB LENGTH =9 WORDS
;TASK NAME IN RADIX-50
;BUFFER ADDRESS
;EVENT FLAG, FLAGS BYTE
;BUFFER LENGTH
;PARENT TASK NAME
;ADDRESS OF OCB

local Symbol Definitions

S.DRTK Radix-50 name of task to be chained to

S.DRAD Send data buffer address

S.DREF Event flag

S.DRFL Flags byte:

SD.REX - (200) Force task
directive).

to exit (task issuing

SD.RAL - (1) Pass all connections to the requested
task (default is pass none). If you
specify this flag, do not specify the
parent task name.

SD.RNX - (2) Pass the first connection in the queue,
if there is one, to the requested task.
If you specify this flag, do not specify
the parent task name.

S.DRBL

S.DRPT

S.DROA

Length of send data packet (256 decimal words
maximum)

Name of parent whose OCB should be passed

Reserved for future use

DSW Return Codes

IE.NVR

IE.ALG

No Offspring Control Block from specified parent.

Either a parent name or an OCB address was
specified, and the pass all connections flag was
set.

8-182

IE. !BS

IE.UPN

IE. INS

IE.IEF

IE.ADP

IE.SOP

Note

SDRP$ - SEND DATA REQUEST AND PASS OCB

Length of
packet can
long.

send
be

packet is illegal. The send
a maximum of 256 (decimal) bytes

Insufficient dynamic memory to allocate a send
packet, Offspring Control Block, Task Control
Block, or partition control block.

The specified task is an ACP or has the no-send
attribute.

An invalid event flag number was specified (EFN
<0 or EFN >64).

Part of the DPB or exit status block is out of
the issuing task's address space.

DIC or DPB size is invalid.

If the directive is rejected, the state of the specified event
flag is indeterminate.

8-183

SETF$ - SET EVENT FLAG

8.64 SETF$ - SET EVENT FLAG

The Set Event Flag directive
indicated event flag that
setting.

instructs the system to set an
reports the flag's polarity before

High-Level Language Call

CALL SETEF {efn[,ids])

efn Event flag number

ids Directive status

Macro Call

SETF$ efn

efn Event flag number

Macro Expansion

SETF$
.BYTE
. WORD

52.
33. '2
52 .

;SETF$ MACRO DIC, DPB SIZE=2 WORDS
;EVENT FLAG NUMBER 52.

Local Symbol Definitions

S.ETEF Event flag number (2)

DSW Return Codes

IS.CLR Flag was clear.

IS.SET Flag was already set.

IE. IEF Invalid event flag number (EFN<l or EFN>64).

IE.ADP

IE.SOP

Note

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

Set Event Flag does not declare a significant event.
sets the specified flag.

It merely

8-184

SFPA$ - SPECIFY FLOATING POINT PROCESSOR EXCEPTION AST

8.65 SFPA$ - SPECIFY FLOATING POINT PROCESSOR EXCEPTION AST

The Specify Floating Point Processor Exception AST directive
instructs the system to record one of the two following cases:

• Floating Point Processor exception ASTs for the issuing task
are desired, and the Executive is to transfer control to a
specified address when such an AST occurs for the task.

• Floating Point Processor exception ASTs for the issuing task
are no longer desired.

When an AST service routine entry point address is specified,
subsequent Floating Point Processor exception ASTs occur for the
issuing task, and control will be transferred to the indicated
location at the time of the AST's occurrence. When an AST
service entry point address is not specified, subsequent Floating
Point Processor exception ASTs do not occur until the task issues
a directive that specifies an AST entry point. See Notes.

High-Level Language Call

Not supported

Macro Call

SFPA$ [ast]

ast AST service routine entry point address

Macro Expansion

SFPA$
.BYTE
.WORD

FLT AST
111.,2
FLT AST

;SFPA$ MACRO DIC, DPB SIZE=2 WORDS
;ADDRESS OF FLOATING POINT AST

Local Symbol Definitions

S.FPAE AST entry address (2)

DSW Return Codes

rs.sue

IE.UPN

IE.ITS

Successful completion.

Insufficient dynamic memory.

AST entry point address is already unspecified or
task was built without floating-point support (FP
switch not specified in Task Builder .TSK file
specification).

8-185

Notes

SFPA$ - SPECIFY FLOATING POINT PROCESSOR EXCEPTION AST

IE.AST

IE.ADP

IE.SDP

Directive was issued from an AST service routine,
or ASTs are disabled.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

1. A Specify Floating Point Processor Exception AST requires
dynamic memory.

2. The Executive queues Floating Point Processor exception ASTs
when a Floating Point Processor exception trap occurs for the
task. No subsequent ASTs of this kind can be queued for the
task until the first one queued has actually been effected.

3. The Floating Point Processor exception AST service routine is
entered with the task stack in the following state:

SP+12 - Event flag mask word
SP+10 - PS of task prior to AST
SP+06 - PC of task prior to AST
SP+04 - DSW of task prior to AST
SP+02 - Floating exception code
SP+OO - Floating exception address

The task must remove the floating exception code and address
from the task's stack before an AST Service Exit directive is
executed.

4. This directive cannot be issued either from an AST service
routine or when ASTs are disabled.

5. This directive applies only to the Floating Point Processor.

8-186

SPND$S - SUSPEND

8.66 SPND$S - SUSPEND

The Suspend directive instructs the system to suspend execution
of the issuing task. A task can suspend only itself, not another
task. The task can be restarted by a Resume directive.

High-Level Language Call

CALL SUSPND [(ids)]

ids Directive status

Macro Call

SPND$S [err]

err Error routine address

Macro Expansion

SPND$S
MOV
.BYTE
EMT
BCC
JSR

ERR
(PC)+,-(SP)
4 5. '1
377
.+6
PC,ERR

;PUSH DPB ONTO THE STACK
;SPND$S MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions

None

DSW Return Codes

IS.SPD

IE.ADP

IE.SDP

Successful completion (task was suspended).

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

Notes

1. A suspended task retains control of the system resources
allocated to it. The Executive makes no attempt to free
these resources until a task exits.

2. A suspended task is eligible for checkpointing unless it is
fixed or declared to be noncheckpointable.

8-187

SPND$S - SUSPEND

3. Because this directive requires only a one-word DPB, the $S
form of the macro is recommended. It requires less space and
executes with the same speed as that of the DIR$ macro.

8-188

SPWN$ - SPAWN

8.67 SPWN$ - SPAWN

The Spawn directive requests a specified task for execution,
optionally queuing a command line and establishing the task's TI:
as a physical terminal.

When this directive is issued, an Offspring Control Block (OCB)
is queued to the offspring TCB, and a rundown count is
incremented in the parent task's TCB. The rundown count is used
to inform the Executive that the task is a parent task and has
one or more offspring tasks; cleanup is necessary if a parent
task exits with active offspring tasks. The rundown count is
decremented when the spawned task exits. The OCB contains the
TCB address as well as sufficient information to effect all of
the specified exit events when the offspring task exits.

If a command line is specified, it is buffered in the Executive
pool and queued for the offspring task for subsequent retrieval
by the offspring task with the Get Command Line directive. The
maximum command line length is 255 (decimal) characters.

For high-level languages, call SPAWNN instead of SPAWN when you
do not use ASTs. Using SPAWN stops the system from bringing an
additional impure area into your task root, thus saving virtual
address space. The interface routines would normally use the
additional impure area to save context during an AST.

to invoke the
the spawned task
of the task's
identify which

If you specify an AST and do not use SPAWNN
directive, an exit AST routine is effected when
exits. The iparm parameter contains the address
exit status block. You can use the address to
spawned task has either exited or emitted status.

High-Level Language Call

CALL SPAWN (rtname,[iugc],[iumc],[iefn],[iast],[iesb]
, [i pa rm] , [i cml in] , [i cml en] , [i unit] , [dnam] [, ids])

CALL SPAWNN (rtname,[iugc],[iumc],[iefn],[iast],[iesb]
, [iparm], [icmlin], [icmlen], [iunit], [dnam] [,ids])

rt name

iugc

iumc

Name (RAD50) of the offspring task to be
spawned.

Group code number for the UIC of the offspring
task.

Member code number for the UIC of the offspring
task.

8-189

iefn

iast

iesb

iparm

icmlin.

icmlen

SPWN$ - SPAWN

Event flag to be set when the offspring task
exits or emits status.

Name of an AST routine to be called when
offspring task exits or emits status.
system ignores this parameter when you
SPAWNN.

NOTE

Refer to Section 7.4.7 for important
guidelines on using high-level language
AST service routines.

the
The

call

Name of
written
status.

an eight-word status block to be
when the offspring task exits or emits

Word

Word

Word

0 Offspring task exit status

1 System abort code

2-7 Reserved

NOTE

The exit status block defaults to one
word. To use the eight-word exit
status block, you must specify the
logical OR of the symbol SP.WX8 and the
event flag number in the iefn parameter
above.

Name of a word to receive the status block
address when the AST occurs.

Name of a command line to be queued for the
offspring task.

Length of the command line (255 characters
maximum) .

8-190

iunit

dnarn

ids

Macro Call

SPWN$

pn

pr

tname

ugc

urnc

efn

east

esb

SPWN$ - SPAWN

Unit number of terminal to be used as the TI:
for the offspring task. If a value of O is
specified, the TI: of the issuing task is
propagated. A task must be privileged in order
to specify a TI: other than the parent task's
TI : .

Device name mnemonic.

Integer to receive the Directive Status Word.

tname,pn,pr,[ugc],[umc],[efn],[east],[esb]
,[cmdlin],[cmdlen],[unit],[dnam]

Partition name--ignored, but must be present

Priority--ignored, but must be present

Name (RAD50) of the offspring task to be
spawned.

Group code number for the UIC of the offspring
task.

Member code number for the UIC of the offspring
task.

The event flag to be cleared on issuance and
set when the offspring task exits or emits
status.

Address of an AST routine to be called when the
offspring task exits or emits status.

Address of an eight-word status block to be
written when the offspring task exits or emits
status.

word 0 Offspring task exit status

Word 1 System abort code

Word 2-7 Reserved

8-191

SPWN$ - SPAWN

NOTE

The exit status block defaults to one
word. To use the eight-word exit
status block, you must specify the
logical OR of the symbol SP.WX8 and the
event flag number in the efn parameter
above.

cmdlin Address of a command line to be queued for the
offspring task.

cmd1en Length of the command line (maximum length is
255 decimal).

unit

dnam

Unit number of terminal to be used as the TI:
for the offspring task. If a value of 0 is
specified, the TI: of the issuing task is
propagated. A task must be privileged in order
to specify a TI: other than the parent task's
TI : .

Device name mnemonic. If not specified, the
default is TI:.

Macro Expansion

SPWN$
.BYTE
.RAD50
.BLKW
.BYTE
.BYTE
.BYTE
.WORD
.WORD
.WORD
.WORD
.WORD

ALPHA,,,3,7,1,ASTRUT,STBLK,CMDLIN,72.,0
11.,13. ;SPWN$ MACRO DIC, DPB SIZE=13 WORDS
ALPHA ;NAME OF TASK TO BE SPAWNED
3 ;RESERVED
7,3 ;UMC = 7 UGC = 3
1 ;EVENT FLAG NUMBER = 1
16. ;EXIT STATUS BLOCK CONSTANT
ASTRUT ;AST ROUTINE ADDRESS
STBLK ;EXIT STATUS BLOCK ADDRESS
CMDLIN ;ADDRESS OF COMMAND LINE
72. ;COMMAND LINE LENGTH (CHARACTERS)
0 ;TERMINAL UNIT NUMBER =0

NOTE

One additional parameter (device name) can be
added for a hardware terminal name. For example,
TTO: would have the same macro expansion shown
above, plus the following:

.ASCII /TT/ ;ASCII DEVICE NAME

The DPB size will then be 14 words.

8-192

SPWN$ - SPAWN

Local Symbol Definitions

S.PWTN

S.PWXX

S.PWUM

S.PWUG

S.PWEF

S.PWEA

S.PWES

S.PWCA

S.PWCL

S.PWVT

S.PWDN

DSW Return

rs.sue

IE.UPN

IE. INS

IE.ACT

IE.PRI

IE. IDU

IE. IEF

IE.ADP

IE.SOP

Task name (4)

Reserved (6)

User member code (1)

User group code (1)

Event flag number (2)

Exit AST routine address (2)

Exit status block address (2)

Command line address (2)

Command line length (2)

Terminal unit number (2)

Device name (2)

Codes

Successful completion.

Insufficient dynamic memory to allocate an
Offspring Control Block, command line buffer,
Task Control Block, or Partition Control Block.

The specified task was not installed.

The specified task was already active.

Nonprivileged task attempted to specify an
offspring task's TI: to be different from its
own.

The specified terminal unit does not exist or the
specified TI: device is not a terminal.

Invalid event flag number (EFN<O or EFN>64).

Part of the DPB, exit status block, or command
line is out of the issuing task's address space.

DIC or DPB size is invalid.

8-193

SPWN$ - SPAWN

Notes

1. If the UIC is defaulted, that task is requested to run under
the UIC of the parent task. See the notes for the Request
Task (RQST$) directive for more information about task UICs.

2. The virtual mapping of the exit status block should not be
changed while the connection is in effect. Doing so can
cause obscure errors.

3. The types of operations that a high-level language AST
routine can perform are extremely limited. See Chapter 7 for
a list of restrictions.

8-194

SRDA$ - SPECIFY RECEIVE DATA AST

8.68 SADA$ - SPECIFY RECEIVE DATA AST

The Specify Receive Data AST directive instructs the system to
record one of the following two cases:

• Receive data ASTs for the issuing task are desired, and the
Executive transfers control to a specified address when data
has been placed in the task's receive queue.

• Receive data ASTs for the issuing task are no longer desired.

When the directive specifies an AST service routine entry point,
receive data ASTs for the task subsequently occur whenever data
has been placed in the task's receive queue; the Executive
transfers control to the specified address.

When tne directive omits an entry point address, the Executive
disables receive data ASTs for the issuing task. Receive data
ASTs do not occur until the task issues another Specify Receive
Data AST directive that specifies an entry point address. (See
Notes.)

High-Level Language Call

Neither the FORTRAN
direct linking to
this directive is
tasks.

Macro Call

SRDA$ [ast]

language nor the ISA standard permits
system trapping mechanisms; therefore,

not available to high-level language

ast AST service routine entry point address

Macro Expansion

SRDA$
.BYTE
.WORD

RECAST
107. '2
RECAST

Local Symbol Definitions

;SRDA$ MACRO DIC, DPB SIZE=2 WORDS
;ADDRESS OF RECEIVE AST

S.RDAE AST entry address (2)

8-195

SRDA$ - SPECIFY RECEIVE DATA AST

OSW Return Codes

Is.sue

IE.UPN

IE.ITS

IE.AST

IE.ADP

IE.SOP

Notes

Successful completion.

Insufficient dynamic memory.

AST entry point address is already unspecified.

Directive was issued from an AST service routine,
or ASTs are disabled.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

1. A Specify Receive Data AST requires dynamic memory.

2. The Executive queues receive data ASTs when a message is sent
to the task. No future receive data ASTs will be queued for
the task until the first one queued has been effected.

3. The task enters the receive data AST service routine with the
task stack in the following state:

SP+06 - Event flag mask word
SP+04 - PS of task prior to AST
SP+02 - PC of task prior to AST
SP+OO - DSW of task prior to AST

No trap-dependent parameters accompany a receive data AST;
therefore, the AST Service Exit directive must be executed
with the stack in the same state as when the AST was
effected.

4. This directive cannot be issued either from an AST service
routine or when ASTs are disabled.

8-196

SREF$ - SEND BY REFERENCE

8.69 SREF$ - SEND BY REFERENCE

The Send By Reference directive inserts a packet that contains a
reference to a region into the receive-by-reference queue of a
specified (receiver) task. The Executive automatically attaches
the receiver task for each Send By Reference directive issued by
the task to the specified region (the region identified in W.NRID
of the Window Definition Block).

The attachment occurs even if the receiver task is already
attached to the region, unless bit WS.NAT in W.NSTS of the Window
Definition Block is set. The successful execution of this
directive causes a significant event to occur.

The send packet contains:

• A pointer to the created attachment descriptor, which becomes
the region ID to be used by the receiver task.

• The offset and length words specified in W.NOFF and W.NLEN of
the Window Definition Block (which the Executive passes
without checking).

• The receiver task's permitted access to the region, contained
in the window status word W.NSTS.

• The sender task name.

• Optionally, the address of an eight-word buffer that contains
additional information. (If the packet does not include a
buffer address, the Executive sends eight words of 0.)

The receiver task automatically has access to the entire region
as specified in W.NSTS. The sender task must be attached to the
region with at least the same types of access. By setting all
the bits in W.NSTS to 0, the receiver task can default the
permitted access to that of the sender task.

If the directive specifies an event flag, the Executive sets the
flag in the sender task (when the receiver task acknowledges the
reference) by issuing the Receive By Reference directive. When
the sender task exits, the system searches for unreceived
references that specify event flags, and prevents invalid
attempts to set the flags. The references themselves remain in
the receiver task's receive-by-reference queues.

8-197

SREF$ - SEND BY REFERENCE

High-Level Language Call

CALL SREF (tsk,[efn],iwdb,[isrb][,ids])

tsk A single-precision, floating-point variable that
contains the name of the receiving task in
Radix-50 format

efn Event flag number

iwdb

isrb

ids

Macro Call

An eight-word integer array that contains a
Window Definition Block (see Section 5.5.2.2)

An eight-word integer array that contains
additional information. (If specified, the
address of isrb is placed in iwdb(8). If
omitted, the contents of iwdb(8) remain
unchanged.)

Directive status

SREF$ task,wdb[,efn]

task Name of the receiver task

wdb Window Definition Block address

efn Event flag number

Macro Expansion

SREF$
.BYTE
.RAD50
.WORD
.WORD

ALPHA,WDBADR,48.
69.,5 ;SREF$ MACRO DIC, DPB SIZE=5 WORDS
/ALPHA/ ;RECEIVER TASK NAME
48. ;EVENT FLAG NUMBER
WDBADR ;WDB ADDRESS

Definition Block Parameters

Table 8-11 describes the Window Definition Block parameters for
this directive.

8-198

SREF$ - SEND BY REFERENCE

Table 8-11: Window Definition Block Parameters for SREF$

Array
Element

Off set

Input Parameters

iwdb(4 W.NRID

iwdb(5) W.NOFF

iwdb(6 W.NLEN

iwdb(7) W.NSTS

iwdb(8) W.NSRB

Output Parameters

None

Local Symbol Definitions

Description

ID of the region to be sent by reference

Offset word, passed without checking

Length word, passed without checking

Bit settings* in window status word (the
receiver task's permitted access):

Bit Definition

WS.RED 1 if read access permitted

WS.WRT 1 if write access permitted

WS.EXT 1 if extend access permitted

WS.DEL 1 if delete access permitted

Optional address of an eight-word buffer
containing additional information

S.RETN Receiver task name (4)

S.REBA Window Definition Block base address (2)

S.REEF Event flag number (2)

* If you are a high-level language programmer, refer to
Section 5.5.2 to determine the bit values represented by the
symbolic names described.

8-199

SREF$ - SEND BY REFERENCE

DSW Return Codes

Is.sue

IE.UPN

IE.INS

IE.FRI

IE.NVR

IE.IEF

IE.HWR

IE.ADP

IE.SOP

Successful completion.

A send packet or an attachment descriptor .could
not be allocated.

The sender task attempted to send a reference to
an Ancillary Control Processor (ACP) task, or
task not installed.

Specified access not allowed to sender task
itself.

Invalid region ID.

Invalid event flag number (EFN<O or EFN>64).

Region had load failure or parity error.

The address check of the DPB, the WDB, or the
send buffer failed.

DIC or DPB size is invalid.

Notes

1. For the user's convenience, the order of the SREF$ macro
arguments does not directly correspond to the format of the
DPB. The arguments are arranged so that the optional
argument (efn) is at the end of the macro call. This
arrangement is also compatible with the SDAT$ macro.

2. Because region attachment requires system dynamic memory, the
receiver task should detach from any region to which it was
already attached, in order to prevent depletion of the memory
pool; that is, the task needs to be attached to a given
region only once.

8-200

SREX$ - SPECIFY REQUESTED EXIT AST DIRECTIVE

8.70 SREX$ - SPECIFY REQUESTED EXIT AST DIRECTIVE

The Specify Requested Exit AST directive allows the task issuing
the directive to specify the AST service routine to be entered if
a directive attempts to abort the task. This directive allows a
task to enter a routine for clean-up instead of abruptly
aborting.

If an AST address is not specified, any previously specified exit
AST is canceled.

Privileged ta~ks enter the specified AST routine each time an
abort is issued. Nonprivileged tasks enter the specified AST
routine only once. Subsequent attempts to abort the task will
actually abort the task.

High-level Language Call

CALL SREX (ast,ipblk,ipblkl,[dummy][,ids])

ast

ipblk

ipblkl

dummy

ids

Macro Call

Name of the externally declared AST subroutine

NOTE

Refer to Section 7.4.7 for important
guidelines on using high-level language
AST service routines.

Name of an integer array to receive
trap-dependent parameters

the

Number of parameters to be returned into the
ipblk array.

Reserved for future use

Name of an optional integer to receive the
Directive Status Word

SREX$ [ast][,dummy]

ast AST service routine entry point address

dummy Reserved for future expansion

8-201

SREX$ - SPECIFY REQUESTED EXIT AST DIRECTIVE

Macro Expansion

SREX$
.BYTE
.WORD
.WORD

REQAST
167., 3
REQAST
0

;SREX$ MACRO DIC, DPB SIZE=3 WORDS
;EXIT AST ROUTINE ADDRESS
;RESERVED FOR FUTURE EXPANSION

NOTE

The DPB length for the SREX$ form of the
directive is three words.

Local Symbol Definitions

S.REAE Exit AST routine address (2)

DSW Return Codes

rs.sue

IE.UPN

IE.AST

IE.ITS

IE.ADP

IE.SOP

Notes

Successful completion.

Insufficient dynamic storage.

Directive was issued from an AST service routine,
or ASTs are disabled.

ASTs already not desired,
attempted to respecify
one had already occurred.

or nonprivileged task
or cancel the AST after

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

1. The issuing task can use the information returned on the
stack for this directive to decide how to handle the abort
attempt.

After specifying a requested exit AST using the SREX$ form of
the directive, the issuing task will enter the AST service
routine if any attempt is made to abort the task.
Nonprivileged abort attempts must originate from the same TI:
as that of the issuing task.

When the AST service routine is entered and the AST has been
specified using the SREX$ directive, the task's stack is in
the following state:

8-202

SREX$ - SPECIFY REQUESTED EXIT AST DIRECTIVE

SP+12 - Event flag mask word
SP+10 - PS of task prior to AST
SP+06 - PC of task prior to AST
SP+04 - DSW of task prior to AST
SP+02 - Trap-dependent parameter
SP+OO - Number of bytes to add to SP to clean stack

(4)

The trap-dependent parameter is formatted as follows:

Bit 0 0 if the abort attempt was privileged
1 if the abort attempt was nonprivileged

Bit 1 0 if the ABRT$ directive was issued

Bits 2 through 15 are reserved for future use

The task must remove the trap-dependent parameters from
the stack before an AST Service Exit directive is
executed. The recommended method is to add the value
stored in SP+OO to SP. This is also the only
recommended way to access the non-trap-dependent
parameters on the stack.

2. The event flag mask word at the bottom of the stack
preserves the Wait For conditions of a task prior to AST
entry. After an AST, a task can return to a Wait For
state. Because these flags and other stack data are in
the user task, they can be modified. However, modifying
the stack data can cause unpredictable results.
Therefore, such modification is not recommended.

3. Please see Chapter 7
operations that can
language AST routine.

for
be

8-203

a list of
performed

restrictions on
in a high-level

SRRA$ - SPECIFY RECEIVE-BY-REFERENCE AST

8. 71 SARA$ - SPECIFY RECEIVE-BY-REFERENCE AST

The Specify Receive-By-Reference AST directive instructs the
system to record one of the following two cases:

• Receive-by-reference ASTs for the issuing task are desired,
and the Executive transfers control to a specified address
when such an AST occurs.

• Receive-by-reference ASTs for the issuing task are no longer
desired.

When the directive specifies an AST service routine entry point,
receive-by-reference ASTs for the task will occur. The Executive
will transfer control to the specified address.

When the directive omits an entry point address, the Executive
prevents the occurrence of receive-by-reference ASTs for the
issuing task. Receive-by-reference ASTs will not occur until the
task issues another Specify Receive-By-Reference AST directive
that specifies an entry point address. See Notes.

High-Level Language Call

Neither the FORTRAN language nor the ISA standard permits
direct linking to system trapping mechanisms; therefore,
this directive is not available to high-level language
tasks.

Macro Call

SRRA$ [ast]

ast AST service routine entry point address (0)

Macro Expansion

SRRA$
.BYTE
.WORD

RECAST
21. , 2
RECAST

Local Symbol Definitions

;SRRA$ MACRO DIC, DPB SIZE=2 WORDS
;ADDRESS OF RECEIVE AST

S.RRAE AST entry address (2)

8-204

SRRA$ - SPECIFY RECEIVE-BY-REFERENCE AST

DSW Return Codes

rs.sue

IE.UPN

IE. ITS

IE.AST

IE.ADP

IE.SOP

Notes

Successful completion.

Insufficient dynamic memory.

AST entry point address is already unspecified.

Directive was issued from an AST service routine,
or ASTs are disabled.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

1. Specify Receive-By-Reference AST requires dynamic memory.

2. The Executive queues receive-by-reference ASTs when a message
is sent to the task. Future receive-by-reference ASTs will
not be queued for the task until the first one queued has
been effected.

3. The task enters the receive-by-reference AST service routine
with the task stack in the following state:

SP+06 - Event flag mask word
SP+04 - PS of task prior to AST
SP+02 - PC of task prior to AST
SP+OO - DSW of task prior to AST

No trap-dependent
AST; therefore,
executed with the
effected.

parameters accompany a receive-by-reference
the AST Service Exit directive must be
stack in the same state as when the AST was

4. This directive cannot be issued either from an AST service
routine or when ASTs are disabled.

•

8-205

STIM$ - SET SYSTEM TIME

8. 72 STIM$ - SET SYSTEM TIME

The Set System Time directive instructs the system to set the
system's internal time to the specified time parameters.
Optionally, the Set System Time directive returns the system's
current internal time to the issuing task before setting the
system time to the specified values.

All time parameters must be specified as binary numbers.

A task must be privileged to issue this directive.

When this directive changes the system time by a specified
amount, it also effectively changes the time of anything resident
on the clock queue by the same amount. Thus, the synchronization
of events is maintained.

High-Level Language Call

CALL SETTIM (ibufn[,ibufp[,ids]])

ibufn

ibufp

ids

Macro Call

An eight-word integer
specification buffer)

array (new

An eight-word integer array (previous
buffer)

Directive status

time

time

STIM$ nbuf,[obuf]

nbuf

obuf

Buffer Format

Word 0

word 1

Word 2

Word 3

Address of eight-word new time specification
buffer

Address of eight-word buffer to receive the old
(previous) system time parameters

Year (since 1900).

Month (1-12).

Day (1-n, where n is the highest day possible for
the given month and year).

Hour (0-23).

8-206

Word 4

Word 5

Word 6

Word 7

STIM$ - SET SYSTEM TIME

Minute (0-59).

Second (0-59).

Tick of second (0-n, where n is the frequency of
the system clock minus one). If the next
parameter (ticks per second) is defaulted, this
parameter is ignored.

Ticks per second (must be defaulted or must match
the frequency of the system clock at 64 decimal
ticks per second). This parameter is used to
~erify the intended precision of the "tick of
second" parameter.

NOTE

If any of the specified new time parameters are
defaulted (equal to -1), the corresponding
previous system time parameters will remain
unchanged and will be substituted for the
defaulted parameters during argument validation.

Macro Expansion

STIM$
.BYTE
.WORD
.WORD

NEWTIM,OLDTIM
61., 3
NEWT IM
OLDTIM

Local Symbol Definitions

;STIM$ DIC, DPB SIZE=3 WORDS
;ADDRESS OF 8.-WORD INPUT BUFFER
;ADDRESS OF 8.-WORD OUTPUT BUFFER

S.TIBA Input buffer address (2)

S.TIBO Output buffer address (2)

The following offsets are assigned relative to the start of
each time parameters buffer:

S.TIYR Year (2)

S.TIMO Month (2)

S.TIDA Day (2)

S.TIHR Hour (2)

S.TIMI Minute (2)

S.TICS Second (2)

8-207

STIM$ - SET SYSTEM TIME

S.TICT Clock tick of second (2)

S.TICP Clock ticks per second (2)

DSW Return Codes

rs.sue

IE.PRI

IE.ITI

IE.ADP

IE.SDP

Notes

Successful completion.

The issuing task is not privileged.

One of the specified time parameters is out of
range, or both the tick-of-second parameter and
the ticks-per-second parameter were specified and
the ticks-per-second parameter does not match the
system's clock frequency. The system time at the
moment the directive is issued (returned in the
second buffer) can be useful in determining the
cause of the fault if any of the specified time
parameters were defaulted.

Part of the DPB or one of the buffers is out of
the issuing task's address space.

DIC or DPB size is invalid.

1. The buffers used in this directive are compatible with those
of the Get Time Parameters (GTIM$) directive.

2. The second buffer (previous time) is only filled in if the
directive was successfully executed or if it was rejected
with an error code of IE.IT!.

8-208

STLO$ - STOP FOR LOGICAL OR OF EVENT FLAGS

8. 73 STLO$ - STOP FOR LOGICAL OR OF EVENT FLAGS

The Stop For Logical OR Of Event Flags directive instructs the
system to stop the issuing task until the Executive sets one or
more of the indicated event flags from one of the following
groups:

GR 0 Local flags 1-16

GR 1 Local flags 17-32

GR 2 Common flags 33-48

GR 3 Common flags 49-64

The task does not stop itself if any of the indicated flags are
already set when the task issues the directive. This directive
cannot be issued at AST state.

A task that is stopped for one or more event flags can only be
unstopped by setting the specified event flag; it cannot be
unstopped with the Unstop directive.

For high-level language calls, you can use the STLORS routine to
receive the Directive Status Word.

High-Level Language Call

CALL STLOR (iefl,ief2,ief3, ief(n))

CALL STLORS (ids,iefl,ief2,ief3, ief(n))

ids Integer to receive the Directive Status Word
(STLORS only)

~efl ief(n) List of event flag numbers

Macro Call

STLO$ grp, msk

grp Desired group of event flags

msk A 16-bit mask word

Macro Expansion

STLO$
.BYTE
.WORD
.WORD

1,47
137.,3
1
47

;STLO$ MACRO DIC, DPB SIZE=3 WORDS
;GROUP 1 FLAGS (FLAGS 17-32)
;MASK WORD= 47 (FLAGS 17,18,19,22)

8-209

STLO$ - STOP FOR LOGICAL OR OF EVENT FLAGS

Local Symbol Definitions

S.TLGR Group flags (2)

S.TLMS Mask word (2)

DSW Return Codes

rs.sue

IE.AST

IE.IEF

IE.ADP

IE.SOP

Successful completion.

The issuing task is at AST state.

An event flag group other than 0 through 3 was
specified, or the event flag mask word is zero.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

Notes

1. There is a one-to-one correspondence between bits in the mask
word and the event flags in the specified group; that is, if
group 1 were specified (as in the above macro expansion
example), bit 0 in the mask word would correspond to event
flag 17, bit 1 to event flag 18, and so forth.

2. The Executive does not arbitrarily clear event flags
Stop For Logical OR Of Event Flags conditions are met.
directives (Queue I/O Request, for example) implicitly
a flag; otherwise, they must be explicitly cleared by a
Event Flag directive.

when
Some

clear
Clear

3. The argument list specified in the high-level language call
must contain only event flag numbers that lie within one
event flag group. If event flag numbers are specified that
lie in more than one group, or if an invalid event flag
number is specified, a fatal high-level language error is
generated.

4. Tasks stopped for event flag conditions cannot be unstopped
by issuing the Unstop directive; tasks stopped in this manner
can only be unstopped by meeting event flag conditions.

5. The grp operand must always be of the form n regardless of
the macro form used. In all other macro calls, numeric or
address values for $S form macros have the form:

#n

8-210

STLO$ - STOP FOR LOGICAL OR OF EVENT FLAGS

For STLO$S this form of the grp argument would be:

n

8-211

STOP$S - STOP

8.74 STOP$S - STOP

The Stop directive stops the issuing task. This directive cannot
be issued at AST state. A task stopped in this manner can only
be unstopped by another task that issues an Unstop directive
directed to the task or the task issuing an Unstop directive at
AST state.

High-Level Language Call

CALL STOP ([ids])

ids Integer to receive the Directive Status Word

Macro Call

STOP$S [err]

err Error routine address

Macro Expansion

STOP$S
MOV
.BYTE
EMT

(PC)+,-(SP)
131.,1
377

;PUSH DPB ONTO THE STACK
;STOP$ MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE

Local Symbol Definitions

None

DSW Return Codes

IS.SET

IE.AST

IE.ADP

IE.SDP

Successful completion.

The issuing task is at AST state.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

8-212

STSE$ - STOP FOR SINGLE EVENT FLAG

8. 75 STSE$ - STOP FOR SINGLE EVENT FLAG

The Stop For Single Event Flag directive instructs the system to
stop the issuing task until the specified event flag is set. If
the flag is set at issuance, the task is not stopped. This
directive cannot be issued at the AST state.

A task that is stopped for one or more event flags
become unstopped by setting the specified event flag.
directive cannot be used to unstop the task.

High-Level language Call

CALL STOPFR (iefn[,ids])

iefn Event flag number

can only
The Unstop

ids Integer to receive Directive Status Word

Macro Call

STSE$ efn

efn Event flag number

Macro Expansion

STSE$
.BYTE
.WORD

7
135.,2
7

;STSE$ MACRO DIC, DPB SIZE=2 WORDS
;LOCAL EVENT FLAG NUMBER = 7

local Symbol Definitions

S.TSEF Event flag number (2)

DSW Return Codes

rs.sue

IE.AST

IE. IEF

IE.ADP

IE.SDP

Successful completion.

The issuing task is at AST state.

Invalid event flag number (EFN<l or EFN>64).

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

8-213

SVDB$ - SPECIFY SST VECTOR TABLE FOR DEBUGGING AID

8.76 SVOB$ - SPECIFY SST VECTOR TABLE FOR DEBUGGING AID

Table For Debugging Aid directive
record the address of a table of SST
for use by an intratask debugging

The Specify SST Vector
instructs the system to
service routine entry points
aid (ODT, for example).

To deassign the vector table, omit the parameters a and 1 from
the macro call.

Whenever an SST service routine entry is specified in both the
table used by the task and the table used by a debugging aid, the
trap occurs for the debugging aid, not for the task.

High-Level Language Call

Neither the FORTRAN
direct linking to
this directive is
tasks.

language nor the ISA standard permits
system trapping mechanisms; therefore,

not available to high-level language

Macro Call

SVDB$

a

1

[a] [,l]

Address of SST vector table

Length of (number of entries in) the table in
words

The vector table has the following format:

Word 0 Odd address of nonexistent memory error

word 1 Memory protect violation

word 2 T-bit trap or execution of a BPT instruction

Word 3 Execution of an IOT instruction

Word 4 Execution of a reserved instruction

Word 5 Execution of a non-RSX EMT instruction (see Note)

word 6 Execution of a TRAP instruction

Word 7 Reserved for future use

A 0 entry in the table indicates that the task will not process
the corresponding SST.

8-214

SVOB$ - SPECIFY SST VECTOR TABLE FOR DEBUGGING AID

Macro Expansion

SVOB$
.BYTE
.WORD
.WORD

SSTTBL,4
103. ,3
SSTTBL
4

;SVOB$ MACRO DIC, DPB SIZE=3 WORDS
;ADDRESS OF SST TABLE
;SST TABLE LENGTH=4 WORDS

Local Symbol Definitions

S.VDTA Table address (2)

S.VDTL Table length (2)

DSW Return Codes

rs.sue

IE.ADP

IE.SOP

Note

Successful completion.

Part of the DPB or table is out of the issuing
task's address space.

DIC or DPB size is invalid.

A non-RSX EMT instruction is any EMT instruction not normally
used by the system (EMT 1 through 375).

8-215

SVTK$ - SPECIFY SST VECTOR TABLE FOR TASK

8.77 SVTK$ - SPECIFY SST VECTOR TABLE FOR TASK

The Specify SST Vector Table For Task directive instructs the
system to record the address of a table of SST service routine
entry points for use by the issuing task.

To deassign the vector table, omit the parameters ta and tl from
the macro call.

Whenever an SST service routine entry is specified in both the
table used by the task and the table used by a debugging aid, the
trap occurs for the debugging aid, not for the task.

High-Level Language Call

Neither the FORTRAN language nor the ISA standard permits
direct linking to system trapping mechanism; therefore, this
directive is not available to high-level language tasks.

Macro Call

SVTK$ [ta][,tl]

ta Address of SST vector table

tl Length of (that is, the number of entries in) the
table, in words

The vector table has the following format:

Word 0 Odd address of nonexistent memory error

Word 1 Memory protect violation

Word 2 T-bit trap or execution of a BPT instruction

Word 3 Execution of an IOT instruction

Word 4 Execution of a reserved instruction

Word 5 Execution of a non-RSX EMT instruction (See Note)

Word 6 Execution of a TRAP instruction

Word 7 Reserved for future use

A 0 entry in the table indicates that the task does not want
to process the corresponding SST.

8-216

SVTK$ - SPECIFY SST VECTOR TABLE FOR TASK

Macro Expansion

SVTK$
.BYTE
.WORD
.WORD

SSTTBL,4
105. ,3
SSTTBL
4

;SVTK$ MACRO DIC, DPB SIZE=3 WORDS
;ADDRESS OF SST TABLE
;SET TABLE LENGTH=4 WORDS

Local Symbol Definitions

S.VTTA Table address (2)

S.VTTL Table length (2)

DSW Return Codes

rs.sue

IE.ADP

IE.SOP

Note

Successful completion.

Part of the DPB or table is out of the issuing
task's address space.

DIC or DPB size is invalid.

A non-RSX EMT instruction is any EMT instruction not normally
used by the system (EMT 1 through 375).

8-217

SWST$ - SWITCH STATE

8. 78 SWST$ - SWITCH STATE

The SWST$ directive makes it possible for a privileged task that
is not itself mapped to the Executive to map subroutines that
require access to the Executive. The subroutines must be written
in position-independent code (PIC). Address references must use
absolute mode or PC-relative mode. (See the PDP-11 Macro-11
Reference Manual.)

The SWST$ directive maps the subroutine through APR5 (that is, it
uses virtual addresses 120000 through 137777 octal). Therefore,
the subroutine must fall within the limits of 4K words of the
base virtual address specified in the directive. The subroutine
itself is executed as part of the SWST$ directive and is,
therefore, in system state during its execution. Local data
references must also be within the 4K word limit.

High-Level Language Call

Not supported

Macro Call

SWST$

base

addr

base,addr

The base virtual address within the task for
mapping the subroutine through APR5.

Virtual address of the subroutine to be executed
in system state by the directive.

Macro Expansion

SWST$
.BYTE
.WORD

.WORD

BASE,ADDR
175.,3
BASE

ADDR

;SWST$ MACRO DIC, DPB SIZE = 3 WORDS
;BASE VIRTUAL ADDRESS FOR MAPPING
;THE SUBROUTINE THROUGH APR5
;VIRTUAL ADDRESS OF THE SUBROUTINE
;EXECUTED AT SYSTEM STATE

Local Symbol Definitions

S.WBAS

S.WADD

Base virtual address for mapping the subroutine
through APR5

Virtual address of the subroutine executed at
system state

8-218

SWST$ - SWITCH STATE

DSW Return Codes

rs.sue

IE.PR!

IE.MAP

IE.ADP

IE.SOP

Successful completion.

The issuing task is not privileged.

The specified system state routine is greater
than 4K words from the specified base.

Part of the DPB is out of the issuing task's
address space.

DIC of DPB size is invalid.

Notes

1. User mode register contents are preserved across execution of
the kernel mode subroutine. Contents of the user mode
registers are passed into the kernel mode registers.
Contents of the kernel mode registers are discarded when the
subroutine has completed execution.

2. User mode registers appear at the following octal stack
off sets when executing the specified subroutine in kernel
mode:

User mode RO at S.WSRO Offset on kernel stack
User mode Rl at S.WSRl Offset on kernel stack
User mode R2 at S.WSR2 Offset on kernel stack
User mode R3 at S.WSR3 Offset on kernel stack
User mode R4 at S.WSR4 Offset on kernel stack
User mode RS at S.WSRS Offset on kernel stack

If you want to return any register values to the user mode
registers, you must store the desired values on the stack
using the above offsets.

3. Virtual address values passed to system state in a register
must be realigned through kernel APRS. For example, if RS
contains address n, and the base virtual address in the DPB
is 1000 (octal), the value in RS must be aligned using the
formula:

n+120000+base virtual address

Therefore, the resultant value is n+121000.

4. The system state subroutine should exit by issuing an RTS PC
instruction. This causes a successful directive status to be
returned when the directive is terminated.

8-219

SWST$ - SWITCH STATE

Keep in mind that
rounds the base
boundary.

NOTE

the memory management unit
address to the nearest 32-word

8-220

TFEA$ - TEST TASK FEATURE

8.79 TFEA$ - TEST TASK FEATURE

The Test Task Feature directive tests for a specified task
characteristic, such as use of fast remapping feature,

High-Level language Call

CALL TFEA (isym,idsw)

isym Symbol for the specified task feature.
Table 8-12 for a list of task features.

See

idsw Integer to receive the Directive Status Word.

Macro Call

TFEA$ feat

feat Symbol for the specified task feature.
Table 8-12 for a list of task features.

See

Macro Expansion

TFEA$
.BYTE
.WORD

T4$FMP
209. ,2
T4$FMP

;TFEA$ MACRO DIC, DPB SIZE=2 WORDS
;FEATURE BEING TESTED (FAST REMAP HERE)

Local Symbol Definition

F.TEAF Feature word (2)

DSW Return Codes

IS.CLR

IS.SET

IE.ADP

IE.SOP

Successful completion; feature not present

Successful completion; feature present

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

8-221

TFEA$ - TEST TASK FEATURE

Table 8-12: Task Feature Symbols

Symbol Meaning

T2$WFR

T2$WFA

T2$SPN

T2$SPA

T2$STP

T2$STA

T2$ABO

T2$AFF

T2$SIO

T2$SEF

T2$REX

T2$CHK

T2$DST

T2$AST

T3$GFL

T3$SWS

T3$CMD

T3$MPC

T3$NET

T3$ROV

T3$CAL

T3$NSD

Task in Wait For state (l=yes)

Saved T2$WFR on AST in progress

Task suspended (l=yes)

Saved T2$SPN on AST in progress

Task stopped (l=yes)

Saved T2$SPN on AST in progress

Task marked for abort (1=yes)

Task is installed with affinity

Task stopped for buffered i/o

Task stopped for event flag(s) (l=yes)

Requested exit AST specified

Task not checkpointable (l=yes)

AST recognition disabled (1=yes)

AST in progress (l=yes)

Reserved

Reserved

Task is executing a CLI command

Mapping change with outstanding I/O

Network protocol level

Task has resident overlays

Task has checkpoint space in image

Task does not allow send data

8-222

Symbol

T3$RST

T3$CLI

T3$SLV

T3$MCR

T3$PRV.

T3$REM

T3$PMD

T3$ACP

T4$SNC

T4$DSP

T4$PRV

T4$PRO

T4$LDD

T4$MUT

T4$CTC

T4$FMP

TFEA$ - TEST TASK FEATURE

Meaning

Task is restricted (l=yes)

Task is a command line interpreter

Task is a slave task (l=yes)

Task requested as external MCR function

Task is privileged (l=yes)

Remove task on exit (l=yes)

Dump task on synchronous abort (O=yes)

Task is Ancillary Control Processor (l=yes)

Task uses commons for synchronization

Task was built for user I/D space

Task was privileged, but has cleared T3.PRV
with WIMP$S (may reset with WIMP$S if T4$PRV
set)

TCB is (or should be) a prototype

Task's load device has been dismounted

Task is a multiuser task

Task has been processed by CTRL/C abort

Task has fast remap header extension

8-223

TLOG$ - TRANSLATE LOGICAL NAME

8.80 TLOG$ - TRANSLATE LOGICAL NAME

The Translate Logical Name directive translates a logical name to
its equivalence value, returning the equivalence value string to
a specified buffer.

High-Level Language Call

CALL TRALOG (mod,[itbmsk],[dummy],lns,lnssz,iens,ienssz,
[irsize], [irtbmo], [idsw])

mod

itbmsk

dummy

lns

lnssz

iens

ienssz

irsize

irtbmo

idsw

Macro Call

The modifier of the logical name within a
table. See Section 2.2 for details.

Table mask indicating which tables should not
be searched during the translation. See Notes.

Reserved.

Character array that contains the logical name
string.

Size (in bytes) of the logical name string.

Character array that contains the equivalence
name string.

Size (in bytes) of the equivalence name string.

Address of the word to which the size of the
resulting equivalence name string is returned .

Address of the word to which the table number
(low byte) and mode (high byte) of the
resulting equivalence string is returned.

Integer to receive the Directive Status Word.

TLOG$ mod,tbmsk,O,lns,lnssz,ens,enssz,rsize,rtbmod

mod

tbmsk

lns

The modifier of the logical name within a
table. See Section 2.2 for details.

Table mask indicating which tables should not
be searched during the translation. See Notes.

Character array containing the logical name
string.

8-224

lnssz

iens

ienssz

rsize

rtbmod

TLOG$ - TRANSLATE LOGICAL NAME

Size (in bytes) of the logical name string.

Character array containing the equivalence name
string.

Size (in bytes) of the equivalence name string.

Address of the word to which the size of the
resulting equivalence name string is returned.

Address of the word to which the table number
(low byte) and mode (high byte) of the
resulting equivalence string is returned.

Macro Expansion

TLOG$
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.WORD
.WORD
.WORD
.WORD

.WORD

.WORD

MOD,TBMASK,0,LNS,LNSSZ,ENS,ENSSZ,RSIZE,RTBMOD
207.,9 ;TLOG$ MACRO DIC, DPB SIZE= 9 WORDS
1 ;SUBFUNCTION CODE FOR TRANSLATION
MOD ;LOGICAL NAME MODIFIER
TBMASK ;TABLE MASK
0 ;RESERVED FOR FUTURE USE
LNS ;ADDRESS OF LOGICAL NAME BUFFER
LNSSZ ;BYTE COUNT OF LOGICAL NAME STRING
ENS ;ADDRESS OF EQUIVALENCE NAME BUFFER
ENSSZ ;BYTE COUNT OF EQUIVALENCE NAME

;STRING
RSIZE ;ADDRESS OF BUFFER INTO WHICH

;EQUIVALENCE NAME STRING IS TO BE
;RETURNED

RTBMOD ;ADDRESS OF BUFFER INTO WHICH TABLE
;NUMBER AND MODIFIER ARE TO BE
;RETURNED

Local Symbol Definitions

T.LFUN Subfunction (1)

T.LMOD Logical name modifier (1)

T.LTBL Logical table number (1)

T.LLNS Address of logical name string (2)

T.LLSZ Byte count of logical name string (2)

T.LENS Address of equivalence name string (2)

T.LESZ Byte count of equivalence name string (2)

8-225

T.LRSZ

T.LRTM

TLOG$ - TRANSLATE LOGICAL NAME

Buffer address for returned equivalence string
(2)

Buffer address for returned table number and
modifier (2)

DSW Return Codes

rs.sue

IE.RBS

IE.LNF

IE.IBS

IE.ADP

IE.SOP

Note

Successful completion.

The resulting equivalence name string is too
large for the buffer to receive it.

The specified logical name string was not found.

The length of the logical or equivalence string
is invalid. Each string length must be greater
than 0 but not greater than 255 (decimal)
characters.

Part of the DPB or user buffer is out of the
issuing task's address space, or the user does
not have proper access to that region.

DIC or DPB size is invalid.

The table mask is a bit field that indicates which tables the
system will not search when translating a logical. To search all
tables, do not set any of the bits. Set the bits by specifying
the following values to inhibit particular tables:

Table

LT.SYS
LT.SES
LT.USR

Mask Value (Decimal)

1
16

4

8-226

UMAP$ - UNMAP ADDRESS WINDOW

8.81 UMAP$ - UNMAP ADDRESS WINDOW

The Unmap Address Window directive unmaps a specified window.
After the window has been unmapped, references to the
corresponding virtual addresses are invalid and cause a processor
trap to occur.

High-Level Language Call

CALL UNMAP (iwdb[,ids])

iwdb An eight-word integer array containing a Window
Definition Block (see Section 5.5.2.2)

ids Directive status

Macro Call

UM.AP$ wdb

wdb Window Definition Block address

Macro Expansion

UMAP$
.BYTE
.WORD

WDBADR
123. ,2
WDBADR

Definition Block Parameters

;UMAP$ MACRO DIC, DPB SIZE=2 WORDS
;WDB ADDRESS

Table 8-13 describes the Window Definition Block parameters for
this directive.

Local Symbol Definitions

U.MABA Window Definition Block address (2)

8-227

UMAP$ - UNMAP ADDRESS WINDOW

Table 8-13: Window Definition Block Parameters for UMAP$

Array
Element

Offset

Input parameters

iwdb(l)
bits 0-7

W.NID

Output parameters

Description

ID of the window to be unmapped

iwdb(7) W.NSTS Bit settings* in the window status word:

Bit

WS.UNM

Definition

1 if the window was
successfully unmapped

DSW Return Codes

rs.sue Successful completion.

IE.ITS The specified address window is not mapped

IE.NVW Invalid address window ID.

IE.ADP DPB or WDB out of range.

IE.SOP DIC or DPB size is invalid.

Notes

1. See Chapter 5 for complete information on using the memory
management features of the Professional.

2. A fast remapping feature is available for frequently mapped
regions. See Section 5.7 for details.

* If you are a high-level language programmer, see
5.5.2 to determine the bit values represented
symbolic names described.

8-228

Section
by the

USTP$ - UNSTOP TASK

8.82 USTP$ - UNSTOP TASK

The Unstop Task directive unstops the specified task that has
stopped itself by either the Stop, or the Receive Data Or Stop
directive. It does not unstop tasks stopped for an event flag or
for tasks stopped for buffered I/O. If the Unstop directive is
issued to a task previously stopped by means of the Stop, or
Receive Or Stop directive, while at task state, and the task is
presently at AST state, the task only becomes unstopped when it
returns to task state.

It is the responsibility of the unstopped task to determine
whether or not it has been validly unstopped.

The Unstop directive does not cause a significant event.

High-Level language Call

CALL USTP (rtname[,ids])

rtname Name of task to be unstopped

ids Integer to receive directive status information

Macro Call

USTP$ tname

tname Name of task to be unstopped

Macro Expansion

USTP$
.BYTE
.RAD50

ALPHA
133.,3
/ALPHA/

;USTP$ MACRO DIC, DPB SIZE=3 WORDS
;NAME OF TASK TO BE UNSTOPPED

Local Symbol Definitions

U.STTN Task name (4)

DSW Return Codes

rs.sue

IE.INS

IE.ACT

IE.ITS

Successful completion.

The specified task is not installed in the system

The specified task is not active.

The specified task is not stopped, or it is
stopped for event flag or buffered I/O.

8-229

IE.ADP

IE.SDP

USTP$ - UNSTOP TASK

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

8-230

VRCD$ - VARIABLE RECEIVE DATA

8.83 VRCD$ - VARIABLE RECEIVE DATA

The Variable Receive Data directive instructs the system to
dequeue a variable-length data block for the issuing task; the
data block has been queued (FIFO) for the task by a variable Send
Data directive. When a sender task is specified, only data sent
by the specified task is received.

The buffer size can be 256 (decimal) words maximum. If no buffer
size is specified, the buffer size is 13 (decimal) words. If a
buffer size greater than 256 (decimal) is specified, an IE.IBS
error is returned.

A two-word sender task name (in Radix-50 form) and the data block
are returned in the specified buffer, with the task name in the
first two words. For this reason, the storage you allocate
within the buffer should be two words greater than the size of
the data portion of the message specified in the directive.

Variable-length data blocks are transferred from the sending task
to the receiving task by means of buffers in the secondary pool.

If the directive was successful, it returns the number of words
transferred into the user buffer. If the directive encounters an
error during execution, it returns the error code in the ids
parameter.

Any error return of the form IE.XXX is a negative word value. If
the status is positive, the value of the status word is the
number of words transferred including the task name. For
example, if you specify a buffer size of 13 in the VRCD$ call,
the value returned in the Directive Status Word is 15 (13 words
of data plus the two words needed to return the task name).

High-Level Language Call

CALL VRCD ([task],bufadr,[buflen][,ids])

task

buf

buflen

ids

Sender task name

Address of buffer to receive the sender task
name and data

Length of buffer

Integer to receive the Directive Status Word.

8-231

Macro Call

VRCD$

tn

ba

bl

ti

VRCD$ - VARIABLE RECEIVE DATA

[tn] ,ba[,bl], [ti]

Sender task name

Buffer address

Buffer size in words

Reserved for future use. When using the $S or
$C forms, specify a null argument for ti.

Macro Expansion

VRCD$
. BYTE
.RAD50
.WORD
.WORD
.WORD

TN, BA, , TI
75. ,6 .
/TN/
BA
13.
TI

;VRCD$ MACRO DIC, DPB SIZE=6 WORDS
;SENDER TASK NAME
;ADDRESS OF DATA BUFFER
;LENGTH OF DATA BUFFER (DEFAULT}
;RESERVED

Local Symbol Definitions

R.VDTN Sender task name (4)

R.VDBA Buffer address (2)

R.VDBL Buffer length (2)

DSW Return Codes

rs.sue

IE.INS

IE.ITS

IE.RBS

IE.IBS

IE.ADP

IE.SOP

Successful completion.

Specified task not installed.

No data in task's receive queue.

Receive buffer is too small.

Invalid buffer size specified (greater than 256
decimal)

Part of the DPB or buffer is out of the issuing
task's address space

DIC or DPB size is invalid.

8-232

VRCS$ - VARIABLE RECEIVE DATA OR STOP

8.84 VRCS$ - VARIABLE RECEIVE DATA OR STOP

The Variable Receive Data Or Stop directive instructs the system
to dequeue a variable-length data block for the issuing task; the
data block has been queued (FIFO) for the task by a Variable Send
Data directive.

If there is no such packet to be dequeued, the issuing task is
stopped. In this case, another task (the sender task) is
expected to issue an Unstop directive after sending the data.
When stopped in this manner, the directive status returned is
IS.SET, indicating that the task was stopped and that no data has
been received; however, since the task must be unstopped in order
to see this status, the task can now reissue the Variable Receive
Data Or Stop directive to actually receive the data packet.

When a sender task is specified, only data sent by the specified
task is received.

Buffer size can be 256 (decimal) words
size is specified, the default is
buffer size greater than 256 (decimal)
error is returned.

maximum. If no buffer
13 (decimal) words. If a

is specified, an IE.IBS

A two-word sender task name (in Radix-50 form) and the data block
are returned in the specified buffer, with the task name in the
first two words. For this reason, the storage you allocate
within the buffer should be two words greater than the size of
the data portion of the message specified in the directive.

Variable-length data blocks are transferred from the sending task
to the receiving task by means of buffers in the secondary pool.

High-Level Language Call

CALL VRCS ([task],bufadr,[buflen][,ids])

task

buf

bu fl en

ids

Sender task name

Address of buffer to receive the sender task
name and data

Length of buffer

Integer to receive the directive status word

If the directive was successful, it returns the number of
words transferred into the user buffer. If the directive
execution encountered an error, it returns the error code in
the ids parameter.

8-233

VRCS$ - VARIABLE RECEIVE DATA OR STOP

Any error return of the form IE XXX is a negative word
value. If the status is positive, the value of the status
word is the number of words transferred including the
taskname. For example, if you speci a buffer size of 13
in the VRCS$ call, the value returned in the directive
status word is 15 (13 words of data plus the two words
needed to return the taskname).

Macro Call

VRCS$

tn

ba

bl

ti

[tn],ba[,bl][,ti]

Sender task name

Buffer address

Buffer size in words

Reserved for future use. When using the $S or
$C forms, you must specify a null argument for
ti.

Macro Expansion

VRCS$
. BYTE
.RAD50
.WORD
. WORD
.WORD

TN, BA,, TI
139.,6 .
/TN/
BA
13 .
TI

;VRCS$ MACRO DIC, DPB SIZE=6 WORDS
;SENDER TASK NAME
;ADDRESS OF DATA BUFFER
;LENGTH OF DATA BUFFER (DEFAULT)
;RESERVED

Local Symbol Definitions

R.VSTN Sender task name (4)

R.VSBA Buffer address (2)

R.VSBL Buffer length (2)

R.VSTI Reserved (2)

DSW Return Codes

rs.sue Successful completion.

IS.SET Task was stopped and no data was received.

IE.INS Specified task not installed.

IE.RBS Receive buffer is too small.

8-234

IE.IBS

IE.ADP

IE.SOP

VRCS$ - VARIABLE RECEIVE DATA OR STOP

Invalid buffer size specified (greater than 256
decimal).

Part of the DPB or buffer is out of the issuing
task's address space.

DIC or DPB size is invalid.

8-235

VRCX$ - VARIABLE RECEIVE DATA OR EXIT

8.85 VRCX$ - VARIABLE RECEIVE DATA OR EXIT

The Variable Receive Data Or Exit directive instructs the system
to dequeue a variable-length data block for the issuing task; the
data block has been queued (FIFO) for the task by a Variable Send
Data directive. When a sender task is specified, only data sent
by the specified task is received.

A two-word sender task name (in Radix-50 form) and the data block
are returned in the specified buffer, with the task name in the
first two words. For this reason, the storage you allocate
within the buffer should be two words greater than the size of
the data portion of the message specified in the directive.

If no data has been sent, a task exit occurs. To prevent the
possible loss of send data packets, the user should not rely on
I/O rundown to take care of any outstanding I/O or open files;
the task should assume this responsibility.

Buffer size can be 256 (decimal) words maximum. If no buffer
size is specified, the buffer size is 13 (decimal) words. If you
specify a buffer size greater than 256, error IE.IBS is returned.

Variable-length data blocks are transferred from the sending task
to the receiving task by means of buffers in the secondary pool.

High-Level Language Call

CALL VRCX ([task],bufadr,[buflen][,ids])

task Sender task name

buf Address of buffer to receive the sender task
name and data

bu fl en Length of buffer

ids Integer to receive the directive status word

If the directive is successful, it returns the number of words
transferred into the user buffer. If the directive execution
encounters an error, it returns the error code in the ids
parameter.

If
the

Any error return of the form IE.XXX is a negative word value.
the status is positive, the value of the status word is
number of words transferred, including the taskname.
example, if you specify a buffer size of 13 in the VRCX$
the value returned in the directive status word is 15 (13

For
call,
words

of data plus the two words needed to return the taskname).

8-236

Macro Call

VRCX$

tn

ba

bl

ti

VRCX$ - VARIABLE RECEIVE DATA OR EXIT

[tn],ba[,bl][,ti]

Sender task name

Buffer address

Buffer size in words

Reserved for future use. When using the $S or
$C forms, you must specify a null argument for
ti.

Macro Expansion

VRCX$
.BYTE
.RAD50
.WORD
. WORD
.WORD

TN,BA, ,TI
77., 6.
/TN/
BA
13 .
TI

;VRCX$ MACRO DIC, DPB SIZE=6 WORDS
;SENDER TASK NAME
;ADDRESS OF DATA BUFFER
;LENGTH OF DATA BUFFER (DEFAULT)
;RESERVED

Local Symbol Definitions

R.VXTN Sender task name (4)

R.VXBA Buffer address (2)

R.VXBL Buffer length (2)

R.VXTI Reserved (2)

DSW Return Codes

rs.sue

IE. INS

IE.RBS

IE. !BS

IE.ADP

IE.SOP

Successful completion.

Specified task not installed.

Receive buffer is too small.

Invalid buffer size specified (greater than 256
decimal).

Part of the DPB or buffer is out of the issuing
task's address space.

DIC or DPB size is invalid.

8-237

VSDA$ - VARIABLE SEND DATA

8.86 VSDA$ - VARIABLE SEND DATA

The Variable Send Data directive instructs the system to queue a
variable-length data block for the specified task to receive.

Buffer size can be 256 (decimal) words maximum. If no buffer
size is specified, the buffer size is 13 (decimal) words. If a
buffer size greater than 256 (decimal) is specified, an IE.IBS
error is returned.

When an event flag is specified, a significant event is declared
if the directive is succe~sfully executed, and the indicated
event flag is set for the sending task.

Variable-length data blocks are transferred from the sending task
to the receiving task by buffers in the secondary pool.

High-level Language Call

CALL VSDA (task,bufadr,[buflen],[efn][,ids])

task

buf

buf len

efn

ids

Macro Call

VSDA$

tn

ba

bl

spri

ti

Receiver task name

Address of buffer to receive the receiver task
name and data

Length of buffer

Event flag number

Integer to receive the directive status word

tn,ba[,bl] [,efn] [, spri] [,ti]

Receiver task name

Buffer address

Buffer size in words

Reserved for future use. When using the $S
$C forms, you must specify a null argument
spri.

or
for

Reserved for future use. When using the $S or
$C forms, you must specify a null argument for
ti.

8-238

VSDA$ - VARIABLE SEND DATA

Macro Expansion

VSDA$
.BYTE
.RAD50
.WORD
.WORD
.WORD
.WORD
.WORD

TN,BA,,4,SPRI,TI
71.,8. ;VSDA$ MACRO DIC, DPB SIZE=8 WORDS
/TN/ ;RECEIVER TASK NAME
BA ;ADDRESS OF DATA BUFFER
4 ;EVENT FLAG 4
13. ;LENGTH OF DATA BUFFER (DEFAULT)
SPRI ;RESERVED
TI ;RESERVED

Local Symbol Definitions

S.DATN Sender task name (4)

S.DABA Buffer address (2)

S.DAEF Event flag number (2)

S.DABL Buffer length (2)

S.DATI Reserved (2)

DSW Return Codes

rs.sue

IE.UPN

IE. INS

IE.IBS

IE.IEF

IE.ADP

IE.SDP

Successful completion.

Insufficient dynamic storage.

Specified task not installed.

Invalid buffer size specified (greater than 256
decimal).

Invalid event flag number (EFN<O or EFN>64).

Part of the DPB or buffer is out of the issuing
task's address space.

DIC or DPB size is invalid.

8-239

VSRC$ - VARIABLE SEND, REQUEST AND CONNECT

8.87 VSRC$ - VARIABLE SEND, REQUEST AND CONNECT

The Variable Send, Request and Connect directive performs a
Variable Send Data to the specified task, requests the task if it
is not already active, and then connects to the task. The
receiver task normally returns status by the Emit Status or the
Exit With Status directive.

Buffer size can be 256 (decimal) words
size is specified, the default is
buffer size greater than 256 (decimal)
error is returned.

maximum. If no buffer
13 (decimal) words. If a

is specified, an IE.IBS

For high-level languages, call VSRCN instead of VSRC when you do
not use ASTs. Using VSRCN stops the system from bringing an
additional impure area into your task root, thus saving virtual
address space. The interface routines would normally use the
additional impure area to save context during an AST.

High-Level Language Call

CALL VSRC (rtname,ibuf,[ibuflen],[iefn],[iast],[iesbJ,
[iparm] [,ids])

CALL VSRCN (rtname,ibuf,[ibuflen],[iefn],[iast],[iesb],
[iparm] [,ids])

rtname

ibuf

ibuf len

iefn

iast

iesb

Target task name of the offspring task to be
connected

Name of send buffer

Length of the buffer

Event flag to be set when the offspring task
exits or emits status

Name of an AST routine to be called when the
offspring task exits or emits status. The
system ignores this parameter when you call
VSRCN.

Name of
written
status

an eight-word status block to be
when the offspring task exits or emits

8-240

VSRC$ - VARIABLE SEND, REQUEST AND CONNECT

iparm

ids

Macro Call

VSRC$

tname

buf

bu fl en

efn

east

esb

Word

Word

Words

0 Offspring task exit status

1 System abort code

2-7 Reserved

NOTE

The exit status block defaults to
one word. To use the eight-word
exit status block, you must specify
the logical OR of the symbol SP.WX8
and the event flag number in the
iefn parameter above.

Name of a word to receive the status block
address when an AST occurs

Integer to receive the Directive Status Word

tname,buf[,buflen],[efn],[east],esb]

Target task name of the offspring task to be
connected

Address of send buffer

Length of buffer

The event flag to be cleared on
set when the offspring task
status

issuance and
exits or emits

Address of an AST routine to be called when the
offspring task exits or emits status

Address of an eight-word status block to be
written when the offspring task exits or emits
status

Word 0 Offspring task exit status

8-241

VSRC$ - VARIABLE SEND, REQUEST AND CONNECT

Word 1 System abort code

Word 2-7 Reserved

NOTE

The exit status block defaults to one
word. To use the eight-word exit
status block, you must specify the
logical OR of the symbol SP.WX8 and the
event flag number in the efn parameter
above.

Macro Expansion

VSRC$
.BYTE
.RAD50
.WORD
.BYTE
.BYTE
.WORD
.WORD
.WORD

ALPHA,BUFFR,BUFSIZE,2,SDRCTR,STBLK
141.,8 ;VSRC$ MACRO DIC, DPB SIZE=8 WORDS
/ALPHA/ ;TARGET TASK NAME
BUFFR ;SEND BUFFER ADDRESS
2 ;EVENT FLAG NUMBER = 2
16. ;EXIT STATUS BLOCK CONSTANT
BUFSIZE ;LENGTH OF BUFFER IN WORDS
SDRCTR ;ADDRESS OF AST ROUTINE
STBLK ;ADDRESS OF STATUS BLOCK

Local Symbol Definitions

V. SRTN

V.SRBF

V. SREF

V. SRBL

V.SREA

V.SRES

DSW Return

rs.sue

IE.UPN

IE.INS

Task name (4)

Buffer address (2)

Event flag (2)

Length of buffer (2)

AST routine address (2)

Status block address (2)

Codes

Successful completion.

Insufficient dynamic memory to allocate a send
packet, Offspring Control Block, Task Control
Block, or Partition Control Block.

The specified task is an ACP or has the no-send
attribute.

8-242

IE. IEF

IE.ADP

IE.SOP

Note

VSRC$ - VARIABLE SEND, REQUEST AND CONNECT

An invalid event flag number was specified (EFN<O
or EFN>64).

Part of the DPB or exit status block is not in
the issuing task's address space.

DIC or DPB size is invalid.

Changing the virtual mapping of the exit status block while the
connection is in effect can result in errors that are difficult
to diagnose.

8-243

WIMP$ - WHAT'S IN MY PROFESSIONAL

8.88 WIMP$ - WHAT'S IN MY PROFESSIONAL

The What's In My Professional directive is a general purpose
system information retrieval mechanism. The directive allows a
nonprivileged task to retrieve specific information stored by the
system without requiring the task to be mapped to the Executive.
In all forms, the WIMP$ directive requires three parameters: a
subfunction code, a return buffer, and the return buffer size.

The subfunction code specifies the type of information to be
returned. The return buffer is space allocated within your task
and must be large enough to contain the information returned.
Refer to the descriptions of the implemented subfunctions for the
specific size of the return buffer, as well as any additional
parameters required.

High-Level Language Call

CALL WIMP (sfcn,pl,p2,p3,p4,p5,p6,ids)

Macro Call

WIMP$ sfcn,p1,p2,p3,p4,p5,p6

sfcn subfunction code

pl parameter 1

p2 parameter 2

p3 parameter 3

p4 parameter 4

p5 parameter 5

p6 parameter 6

ids Directive status

NOTE

All parameters are required in high-level
language calls. You can use null parameters as
placeholders if necessary.

8-244

WIMP$ - WHAT'S IN MY PROFESSIONAL

Macro Expansion

WIMP$ SFCN,P1,P2,P3,P4,P5,P6

.BYTE 169.,variable

.WORD SFCN ;SUBFUNCTION CODE

.WORD Pl ;PARAMETER 1

.WORD P2 ;PARAMETER 2

.WORD Pn ;PARAMETER n

Local Symbol Definitions

G. INSF Subfunction code (2)

G.IP01 Parameter 1 (2)

G.IP02 Parameter 2 (2)

G.IP03 Parameter 3 (2)

G.IP04 Parameter 4 (2)

G. IP05 Parameter 5 (2)

G.IP06 Parameter 6 (2)

DSW Return Codes

rs.sue Successful completion.

IE. IOU Invalid hardware for requested operation.

IE.SOP DIC, DPB size, or subfunction is invalid

IE.ADP Return buffer fails address checks.

IE.RBS Return buffer too small
information (GI.MSD only).

Implemented Subfunctions

GI.CFG -- Get Configuration Table

to

The value of the GI.CFG symbol is 12 (decimal).

receive full

This subfunction allows you to obtain
current hardware configuration of
information is stored in a configuration
the Professional's base system ROM.

information about the
a Professional. This

table that is present in

8-245

WIMP$ - WHAT'S IN MY PROFESSIONAL

The format is:

WIMP$ GI.CFG,buf,siz

buf Return buffer address.

siz Size in words of return buffer. (The size is variable.
See Table 8-15 at the end of this section.)

The configuration table consists of several sections: header,
device section, boot section, and additional information section.
(Note that the additional information section applies only to the
PC380.) Table 8-15 at the end of the WIMP$ description shows each
section and lists the byte offsets for each item in the return
buffer.

For a description of each item in the configuration table return
buffer, see Appendix C.

Changes you make to the information in the return buffer are not
reflected in the system configuration table. You cannot change
~ny values in the configuration table.

NOTE

After a successful call to Get Configuration
Table, the Directive Status Word contains the
size in words of the returned configuration
table, rather than a DSW success code.

GI.FMK -- Get System Feature Masks and Version Numbers

The value of the GI.FMK symbol is 3 (decimal).

This subfunction allows you to obtain the P/OS base level number
and system version number stored by the Executive.

NOTE

Use the FEAT$ directive to obtain feature masks.
Never obtain the system feature masks using this
WIMP$ subfunction.

8-246

WIMP$ - WHAT'S IN MY PROFESSIONAL

The format is:

WIMP$ GI.FMK,buf,siz

buf Return buffer address.

siz Size in words of return buffer. (The size is variable.
See Table 8-14)

Table 8-14 shows the return buffer for the GI.FMK subfunction.

Table 8-14: Return Buffer for Get System Version Numbers

Buffer Contents
Word

0 Reserved

1 Reserved

2 Reserved

3 Reserved

4 Reserved

5 P/OS current baselevel number in ASCII, first word

6 P/OS current baselevel number in ASCII, second
word

7 P/OS current version number in ASCII, first word

8 P/OS current version number in ASCII, second word

GiaMSD -- Get Mass Storage Device Information

The value of the GI.MSD symbol is 16 (decimal).

This subfunction returns either only those devices that are
accessible to the issuing task, or it returns all mass storage
devices, whether or not they are accessible to the issuer.

8-247

WIMP$ - WHAT'S IN MY PROFESSIONAL

The format is:

WIMP$ GI.MSD,buf,siz,flag

buf Return buffer address

siz Size in words of return buffer (greater than 1)

flag Indicates which set of devices to report:
0 accessible mass storage devices only
1 all mass storage devices

The return buffer must be at least- 1 word in length in order to
receive a count of the devices found, or else the system returns
a DSW code of IE.SOP. The buffer must begin and end on a word
boundary.

The first word of the return buffer contains the number of
devices (low byte) and the size in words of the device entries
(high byte). Following the first word are the device entries for
the devices found.

Each returned device entry consists of 4 words in the return
buffer. Figure 8-1 shows the format of a device entry. Note
that the word values shown in the figure are offsets from the
beginning of the device entry.

high byte low byte

word 0 ASCII Device Name

word 1 Table Number l Binary Unit Number

word 2 Flags Word

word 3 Device Type in RAD50

Figure 8-1: Device Entry in Gl.MSD Return Buffer

Word 2 of a device entry, the flags word, currently defines four
flags. Figure 8-2 shows the format of the flags word.

8-248

WIMP$ - WHAT'S IN MY PROFESSIONAL

Bit Number
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I I I I I I I I I I I I I I I I I
PHYSICAL/CONCEALED DEVICE
set if device is concealed,
clear if the device is physical

ROOTED/NON-ROOTED
set if device is rooted,
clear if non-rooted

A. A A

MOUNTED/NOT MOUNTED ~~~~~~~~~~~~.....,.j
set if device is mounted,
clear if not mounted

REMOTE/LOCAL FLAG
set if device is remote,
clear if device is local

Figure 8-2: Flags Word in Gl.MSD Return Buffer

Word 3 of a device entry, the device type, is the generic device
code (RX or RD, for example). The system returns the device type
only if the device is on-line.

The system returns as much device information as possible in the
return buffer. If the system cannot return all the device
information requested, it returns a DSW error of IE.RBS. In this
case, word 0 of the return buffer contains the total count of
devices. Note that the system returns no partial entries.

GI.PRO -- Get or Set Default File Protection

The value of GI.PRO is 18 (decimal).

This subfunction allows you to either get or set the current
default file protection.

The format is:

WIMP$ GI.PRO,prot,flag

prot For Get Protection, address of a word to receive the
protection mask For Set Protection, address of a word
containing the protection mask

flag Flag that indicates set or get the protection:

8-249

WIMP$ - WHAT'S IN MY PROFESSIONAL

0 Get
1 Set

The protection mask format for the prot parameter is:

BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACCESS I D E w R I D E w R D E w R I D E w R

USERS World Group Owner System

R READ
W WRITE
E EXTEND
D DELETE

For each type of user, set bits (1) indicate the type of access
allowed; clear bits (0) indicate the type of access denied. If
all bits are clear for all types of users, there is no user
default file protection.

When a file is created, the user can specify an explicit file
protection. If the user does not specify this value, the
FILES-11 ACF applies the user default file protection, which you
can set using the GI.PRO subfunction. If the user default file
protection has a value of 0, the ACF uses the default file
protection specified when the volume was initialized.

GI.SSN -- Get System Serial Number

The value of the GI.SSN symbol is 13 (decimal).

This subfunction obtains the system serial number.
is:

WIMP$ GI.SSN,buf,siz

buf Return buffer address.

The format

siz Size in words of return buffer. (The size must be 3.)

The format of the return buffer is:

word 0 low word of system serial number
word 1 middle word
word 2 high word

8-250

WIMP$ - WHAT'S IN MY PROFESSIONAL

Table 8-15: Configuration Table Output Buffer Format

Contents Byte Off set
(decimal)

Header Section

Table length in bytes 0

Serial number ROM ID 2

High word of serial number 4

Middle word of serial number 6

Low word of serial number 8

Number of option slots 10

Device Section

Device section length in bytes 12

Slot 0 ID 14

Error/status of slot 0 16

Slot 1 ID 18

Error/status of slot 1 20

Slot 2 ID 22

Error/status of slot 2 24

Slot 3 ID 26

Error/status of slot 3 28

Slot 4 ID 30

Error/status of slot 4 32

Slot 5 ID 34

Error/status of slot 5 36

8-251

WIMP$ - WHAT'S IN MY PROFESSIONAL

Contents

Slot 6 ID

Error/status of slot 6

Slot 7 ID (not used)

Error/status of slot 7 (not used)

Keyboard ID (supplied by the keyboard, this
could be some other input device)

Keyboard error/status

Base processor ID

Base processor error

Primary memory ID

Primary memory error (low byte) and size
(high byte) in 32-kilobyte units

Base system ROM ID

Base system ROM error

Video monitor ID

Video monitor error/status

Audio device ID (unused)

Audio device error/status (unused)

Keyboard interface ID (2661)

Keyboard interface error/status

Printer port interface ID (2661)

Printer port interface error/status

Console maintenance port ID

Console maintenance port status

Communication port interface ID

8-252

Byte Offset
(decimal)

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

WIMP$ - WHAT'S IN MY PROFESSIONAL

Contents

Communication port interface error/status

Time of day clock ID

Time of day clock error/status

Nonvolatile RAM ID

Nonvolatile RAM error/status

Floating point unit ID

Floating point unit error/status

Interrupt controller ID

Interrupt controller error/status

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

Reserved locations

8-253

Byte Off set
{decimal)

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

130

WIMP$ - WHAT'S IN MY PROFESSIONAL

Contents

Reserved locations

Boot Section

Byte Offset
(decimal)

132

Soft restart address 134

Offset value into boot code 136

Booted device ID number 138

Booted device unit number, slot, and type 140

Current boot search return address 142

Error flag for ROM diagnostics 144

Additional Information Section--PC380 Only

Additional information section length in 146
bytes

Screen display information for boot failure, 148
word 3

Screen display information for boot failure, 150
word 4

Screen display information for boot failure, 152
word 5

Screen display information for boot failure, 154
word 6

Screen display information for boot failure, 156
word 7

Screen display information for boot failure, 158
word 8

Scratch memory starting address 160

Return PC for regaining control after 162
software crash

8-254

WIMP$ - WHAT'S IN MY PROFESSIONAL

Sample High-Level Language Call

The following Basic-Plus-2 program fragment calls the Get
Configuration Table subfunction.

10 !------------------ Variables
declare word configtbl(81)
declare word dsw

!configuration table buffer
!directive status word

!---------------- Named Constants ----------------------
declare word constant tblsize = 81 !configtbl
declare word constant gi.cfg = 12 !wimp subfunction

!---------------- External Entry -----------------------
external sub wimp by ref(word,word dim(),word,,,,,word)

CALL WIMP(gi.cfg,configtbl(),tblsize,,,,,dsw)

8-255

WSIG$S - WAIT FOR SIGNIFICANT EVENT

8.89 WSIG$S - WAIT FOR SIGNIFICANT EVENT

The Wait For Significant Event directive is used to suspend the
execution of the issuing task until the next significant event
occurs. It is an especially effective way to block a task that
cannot continue because of insufficient dynamic memory, since
significant events occurring throughout the system often result
in the release of dynamic memory. Execution of a Wait For
Significant Event directive does not itself constitute a
significant event.

High-Level Language Call

CALL WFSNE

Macro Call

WSIG$S [err]

err Error routine address

Macro Expansion

WSIG$S
MOV
.BYTE
EMT
BCC
JSR

ERR
(PC)+,-(SP)
49., 1
377
.+6
PC,ERR

;PUSH DPB ONTO THE STACK
;WSIG$S MACRO DIC, DPB SIZE=l WORD
;TRAP TO THE EXECUTIVE
;BRANCH IF DIRECTIVE SUCCESSFUL
;OTHERWISE, CALL ROUTINE "ERR"

Local Symbol Definitions

None

DSW Return Codes

Notes

rs.sue

IE.ADP

IE.SDP

Successful completion.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

1. If a directive is rejected for lack of dynamic memory,
this directive is the only technique available for
blocking task execution until dynamic memory can again
be available.

8-256

WSIG$S - WAIT FOR SIGNIFICANT EVENT

2. The wait state induced by this directive is satisfied by
the first significant event to occur after the directive
has been issued. The significant event that occurs
might or might not be related to the issuing task.

3. Because this directive requires only a one-word DPB, the
$S form of the macro is recommended. It requires less
space and executes with the same speed as that of the
DIR$ macro.

4. Significant events include the following:

• I/O completion.

• Task exit.

e Execution of a Send Data directive.

e Execution of a Send Data, Request and Pass OCB
directive.

• Execution of a Send, Request and Connect directive.

e Execution of a Send By Reference directive or a
Receive by Reference directive.

e Execution of an Alter Priority directive.

Removal of an entry
instance, resulting
Time directive or the
request).

from the
from the
issuance

clock queue (for
execution of a Mark
of a rescheduling

e Execution of a Declare Significant Event directive.

e Execution of the round-robin scheduling algorithm at
the end of a round-robin scheduling interval.

e Execution of an Exit, an Exit with Status, or Emit
Status directive.

8-257

WTLO$ - WAIT FOR LOGICAL OR OF EVENT FLAGS

8.90 WTLO$ - WAIT FOR LOGICAL OR OF EVENT FLAGS

The Wait For Logical OR Of Event Flags
system to block the execution of
Executive sets the indicated event
following groups:

GR 0 Flags 1-16

GR 1 Flags 17-32

GR 2 Flags 33-48

GR 3 Flags 49-64

directive instructs the
the issuing task until the
flags from one of the

The task does not block itself if any of the indicated flags are
already set when the task issues the directive. See Notes below.

For high-level language calls, you can use the WFLORS routine to
receive the Directive Status Word.

High-Level Language Call

CALL WFLOR (efnl,efn2, ... efnn)

CALL WFLORS (ids,efnl,efn2, ... efnn)

ids Integer to receive the Directive Status Word
(WFLORS only)

efn List of event flag numbers taken as the set of
flags to be specified in the directive

Macro Call

WTLO$ set,mask

set Desired group of event flags

mask A 16-bit flag mask word

Macro Expansion

WTLO$
.BYTE
.WORD
. WORD

2,160003
43.,3
2
160003

;WTLO$ MACRO DIC, DPB SIZE=3 WORDS
;FLAGS GROUP NUMBER 2 (FLAGS 33:48.)
;EVENT FLAGS 33,34,46,47 AND 48 .

8-258

WTLO$ - WAIT FOR LOGICAL OR OF EVENT FLAGS

Local Symbol Definitions

None

DSW Return Codes

Notes

rs.sue

IE.IEF

IE.ADP

IE.SDP

Successful completion.

No event flag specified in the mask word or flag
group indicator other than 0, 1, 2, 3, 4, or 5.

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

1. There is a one-to-one correspondence between bits in the
mask word and the event flags in the specified group.
That is, if group 1 were specified, then bit 0 in the
mask word would correspond to event flag 17, bit 1 to
event flag 18, and so forth.

2. The Executive does not arbitrarily clear event flags
when Wait For conditions are met. Some directives
{Queue I/0 Request, for example) implicitly clear a
flag; otherwise, they must be explicitly cleared by a
Clear Event Flag directive.

3. The set operand must always be of the form n regardless
of the macro form used. In all other macro calls,
numeric or address values for $S form macros have the
form:

#n

For WTLO$S this form of the set argument would be:

n

4. The argument list specified in the high-level language
call must contain only event flag numbers that lie
within one event flag group. If event flag numbers are
specified that are in more than one group, or if an
invalid event flag number is specified, a fatal
high-level language error is generated.

8-259

WTLO$ - WAIT FOR LOGICAL OR OF EVENT FLAGS

5. If the issuing task has outstanding buffered I/O when it
enters the Wait For state, it will be stopped. When the
task is in a stopped state, it can be checkpointed by
any other task regardless of priority. The task is
unstopped when:

• The outstanding buffered I/O completes.

o The Wait For condition is satisfied.

a The issuing task exits before the Wait For condition
is satisfied.

8-260

WTSE$ - WAIT FOR SINGLE EVENT FLAG

8.91 WTSE$ - WAIT FOR SINGLE EVENT FLAG

The Wait For Single Event Flag directive instructs the system to
block the execution of the issuing task until the indicated event
flag is set. If the flag is set at issuance, task execution is
not blocked.

High-Level Language Call

CALL WAITFR (efn[,ids])

efn Event flag number

ids Directive status

Macro Call

WTSE$ efn

efn Event flag number

Macro Expansion

WTSE$ 52.
.BYTE
. WORD

41. '2
52 .

;WTSE$ MACRO DIC, DPB SIZE=2 WORDS
;EVENT FLAG NUMBER 52.

Local Symbol Definitions

W.TSEF Event flag number (2)

DSW Return Codes

rs.sue

IE. IEF

IE.ADP

IE.SDP

Note

Successful completion.

Invalid event flag number (EFN<l, or EFN>64).

Part of the DPB is out of the issuing task's
address space.

DIC or DPB size is invalid.

If the issuing task has outstanding buffered I/O when it enters
the Wait For state, it will be stopped. When the task is in a
stopped state, it can be checkpointed by any other task
regardless of priority. The task is unstopped when:

8-261

WTSE$ - WAIT FOR SINGLE EVENT FLAG

• The outstanding buffered I/O completes.

• The Wait For condition is satisfied.

• The issuing task exits before the Wait For condition is
satisfied.

8-262

PART Ill

THE 1/0 DRIVERS

CHAPTER 9

SYSTEM INPUT/OUTPUT CONVENTIONS

This chapter describes the characteristics, functions, error
conditions, and programming suggestions associated with the
device drivers supported by the system. If P/OS does not support
a particular device, you can develop and maintain your own device
driver. (See the Guide to Writing a P/OS I/O Driver and Advanced
Programmer's Notes.)

Input/output (I/0) operations provide a degree of device
independence, while at the same time allowing device-specific
operations when required. Programs issue I/O requests to logical
units that have been previously associated with particular
physical device units.

Each program or task is able to establish its own correspondence
between physical device units and logical unit numbers (LUNs).
I/O requests are queued as issued; they are subsequently
processed according to the issuing task's relative priority.

Tasks can issue I/O requests for appropriate devices by means of
the Record Management Services (RMS), or they can interface
directly to an I/O driver by means of the Queue I/O (QIO) system
directive.

A function code included in the QIO directive indicates the
particular input or output operation to be performed. You can
use these I/O functions to request such operations as:

• Attaching or detaching a physical device unit for a task's
exclusive use

• Reading or writing a logical or virtual block of data

• Cancelling a task's I/O requests

You can specify a wide variety of device-specific I/O operations
with QIO directives (for example, reading from a terminal without
echoing characters).

9-1

PHYSICAL, LOGICAL, AND VIRTUAL I/0

9.1 PHYSICAL, LOGICAL, AND VIRTUAL 1/0

There are three possible modes in which an I/O transfer can take
place: physical, logical, and virtual.

Physical I/O involves reading and writing data in the actual
physical units used by the hardware (for example, sectors or
tracks).

Logical I/O involves reading and writing data in units
that are device-independent, such as blocks. That is,
need not have knowledge of the physical device geometry
to perform I/O.

of data
your task
in order

When you issue a QIO to a device driver, the driver translates
the logical block numbers to physical block numbers. Logical
blocks are numbered beginning at 0, and are always 512 (decimal)
bytes in length.

Virtual I/O pertains to reading and writing data in open files.
When reading and writing data in file-structured devices such as
disks, virtual blocks are the same size as logical blocks, and
are numbered starting at 1 instead of 0. Virtual blocks provide
independence from needing to know where the logical blocks are
allocated on the disk for that file.

When you issue a QIO to read or write a virtual block in an open
file, the system translates virtual blocks into logical blocks.
When you issue a QIO to read or write a virtual block to a
non-file-structured device such as a terminal, the Executive
changes the QIO from a read-write virtual block to a read-write
logical block.

9.2 LOGICAL UNITS

This section describes the construction of the logical unit table
and the use of logical unit numbers.

9.2.1 Logical Unit Number

A logical unit number, or LUN, is a number associated
physical device unit during system I/O operations.
represents an association between a logical unit and a
device unit.

9-2

with a
A LUN

physical

LOGICAL UNITS

For example, LUN 1 might be associated with the terminal, LUN 2
with the printer port, LUNs 3 and 4 with the RX50. Once the
association has been made, the LUN provides a direct, efficient
mapping to the physical device unit, and eliminates the need to
search the device tables whenever the system encounters a
reference to a physical device unit.

The association is dynamic. Each task running in the system can
establish its own correspondence between LUNs and physical device
units, and can change any LUN/physical-device-unit association.
The flexibility of this association contributes heavily to system
device independence.

Keep in mind that reassignment of a LUN at run time causes
pending I/O requests for the previous LUN assignment to be
cancelled. It is your responsibility to verify that all
outstanding I/O requests for a LUN have been serviced before that
LUN is associated with another physical device unit. You cannot
reassign a LUN if there is an open file associated that LUN.

9.2.2 Logical Unit Table

There is one Logical Unit Table (LUT} for each task running in a
system. This table is a variable-length block contained in the
task header. Each LUT contains sufficient two-word entries for
the number of logical units specified at task-build time by the
"UNITS=" option.

Each entry or slot contains a pointer to the physical device unit
currently associated with that LUN. Whenever you issue an I/O
request, the system matches the appropriate physical device unit
to the LUN specified in the call by indexing into the LUT by the
number supplied as the LUN.

For example, if the call specifies 6 as the LUN, the system
accesses the sixth two-word entry in the LUT and associates the
I/O request with the physical device unit to which the entry
points. The number of LUN assignments valid for a task ranges
from 0 to 255 (decimal), but cannot be greater than the number of
LUNs specified at task-build time.

9.2.3 Changing LUN Assignments

Logical unit numbers have
associated with a physical
methods described below:

no significance until they are
device unit by means of one of the

9-3

LOGICAL UNITS

1. At task-build time, you can speci an ASG= keyword option,
which associates a physical device unit with a LUN referenced
in the task being built.

2. At run time, a task can cal a LUN assignment
by issuing the Assign LUN system directive, which changes the
LUN association LUN with a ical device unit during task
execution.

If you do not assign any LUNs, the Task
by default assigns LUNs 1 through 6.
RSX-llM/M-PLUS and Micro/RSX Task Builder
for details.

9.3 ISSUING AN 1/0 REQUEST

Builder
See the

ManuaI

User tasks perform I/O in the system by submitting requests for
I/O service in the form of QIO or QIO And Wait system directives.

In this system, and in most multiprogramming systems, tasks
normally do not directly access physical device units. Instead,
they use input/output services provided by the Executive, since
the Executive can effective share the use of physical device
units among many users.

The Executive routes I/O requests to the appropriate
driver and queues them according to the priori
requesting task. I/O operations proceed concurrently with
activities in the system.

device
of the

other

Before a request is queued, it must pass acceptance tests
administered by the Executive. If the request fails, the
Executive sets the C-bit. You should check for directive
rejection by following the QIO directive with a BCS instruction.
An I/O operation can also fail even the directive request
succeeded. You should also check the status block associated
with the QIO request.

After an I/O request has been queued, the system does not wait
for the operation to complete. If at any time the user task that
issued the QIO request cannot proceed until the I/O operation has
completed, it should specify an event flag (see Chapter 3) in the
QIOW$ request. The task then waits for completion of I/O, which
is signaled when the event flag is set and the Wait For condition
is satisfied.

9-4

ISSUING AN I/O REQUEST

A QIO directive must supply sufficient
and queue the I/O request. You should
receive error/status codes. You can
address of an asynchronous system trap
types of I/O operations require
device-dependent information as well.

information to identify
also include locations to
optionally specify the

service routine. Certain
the specification of

Typical QIO parameters are the following:

• I/0 function to be performed.

e Logical unit number associated with the physical device unit
to be accessed.

• Optional event flag number for synchronizing I/O completion
processing (required for QIOW).

e Optional address of the I/O status block to which information
indicating successful or unsuccessful completion is returned.

o Optional address of an
routine to be entered on

system trap service
the I/O request.

• Optional device- and function-dependent parameters specifying
such items as the starting address of a data buffer, the size
of the buffer, and a block number.

A set of system macros that facilitates issuing QIO directives is
supplied with the system. These macros, which reside in the
System Library Account in (RSXMAC.SML), must be made available to
the source program by means of the MACR0-11 Assembler directive
.MCALL.

During expansion of a O macro, a value of 0 is defaulted for
all null (omitted) parameters. Inclusion of the device- and
function-dependent parameters depends on the physical device unit
and function specified. If you want to specify only an I/O
function code, a LUN, and an address for an asynchronous system
trap service routine, the following might be issued:

QIO$C IO.ATT,6,,,,ASTOX

The I/O function code for attach: IO.ATT

The LUN: 6

The AST address: ASTOX

9-5

ISSUING AN I/O REQUEST

Null arguments for the event flag number, the
and the address of the I/O status block
consecutive commas.

request priority,
are indicated by

No additional device- or function-dependent parameters are
required for an attach function. The C form of the QIO$ macro is
used here.

For convenience, any comma can be omitted if no parameters appear
to the right of it. Therefore, the command above could be issued
as follows, if the asynchronous system trap is not desired:

QIO$C IO.ATT,6

All extra commas have been dropped. However, if a parameter
appears to the right of any place-holding comma, that comma must
be retained.

9.3.1 010 Macro Format

The arguments for a specific QIO macro call can be different for
each I/O device accessed and for each I/O function requested.
The general format of the call is common to all devices and is as
follows:

QIO$C fnc,lun,[efn],[pri],[isb],[ast][,<pl,p2, ... ,p6>]

If function-dependent parameters <pl, ... ,p6> are required, these
parameters must be enclosed within angle brackets (<>). The
following paragraphs summarize the use of each QIO parameter.

The fnc parameter is a
function to be performed.

IO.xxx

xxx

symbolic name representing
This name is of the form

Identifies the particular I/O operation

the I/O

For example, a QIO request to attach the physical device unit
associated with a LUN specifies the function code IO.ATT.

A QIO request to cancel (or kill) all I/O requests for a
specified LUN begins in the following way:

QIO$C IO.KIL, ...

9-6

ISSUING AN I/O REQUEST

The fnc parameter specified in the QIO request is stored
internally as a function code in the high-order byte and modifier
bits in the low-order byte of a single word. The function code
is in the range 0 through 31 and is a binary value supplied by
the system to match the symbolic name specified in the QIO
request.

The correspondence between global symbolic names and function
codes is defined in the system object module library, which is
automatically searched by the Task Builder. Local symbolic
definitions can also be obtained by the FILIO$ and SPCIO$ macros,
which reside in the System Macro Library and are summarized in
Appendix A.

Several similar functions can have identical function codes, and
can be distinguished only by their modifier bits. Only the
modifier bits for these two operations are stored differently.

The lun parameter represents the logical unit number (LUN) of the
associated physical device unit to be accessed by the I/O
request. The association between the physical device unit and
the LUN is specific to the task that issues the I/O request, and
the LUN reference is usually device-independent. An attach
request to the physical device unit associated with LUN 14
(decimal) begins in the following way:

QIO$C IO.ATT,14., ...

Because each task has its own LUT in which the physical device
unit-LUN correspondences are established, the validity of a LUN
parameter is specific to the task that includes this parameter in
a QIO request. In general, the LUN must be in the following
range:

0 < LUN < length of task's LUT (if nonzero)

The number of LUNs specified in the LUT of a particular task
cannot exceed 255.

The efn parameter is a number representing the event flag to be
associated with the I/O operation. It can optionally be included
in a QIO, and is required for a QIO And Wait request.

The specified event flag is cleared when the I/O request is
queued; it is set when the I/O operation is completed. If the
task has issued the QIO And Wait directive, execution is
automatically suspended until the I/O completes. If a QIO
directive has been issued (with no Wait For directive), then task
execution proceeds in parallel with the I/O.

9-7

ISSUING AN I/O REQUEST

When the task continues to execute, it can test the event flag
whenever it chooses by using the Read All Event Flags system
directive or the Read Extended Flags system directive (for all
event flags). The optional event flag number must be in the
range 1 through 64 (decimal). If an event flag specification is
not desired, efn can be omitted or can be supplied with a value
of 0.

See Chapter 3 for details on event flags and significant events.

NOTE

If an event flag is not specified in a QIOW
request, the Executive treats the directive as if
it were a simple QIO request.

An I/0 request automatically assumes the priority of the
requesting task.

The optional isb parameter identifies the address of the I/0
status block (I/O status double-word) associated with the I/0
request. Figure 9-1 shows the format of an I/O status block
(IOSB) .

Driver and function~~--j-~-+>
specific byte

~c~+-~-I/O status byte

~<~~~--~~conventionally used
as number of bytes
transferred.

Figure 9-1: Format of 1/0 Status Block

The IOSB is a two-word array in which an I/O status is returned
on completion of the operation.

corresponds
returns) or
the status

The low byte of the first IOSB word, is a status code
to a symbolic name of the form IS.xxx (for successful
IE.xxx (for error returns). You can use one of
symbols to -test for a particular error. For
symbolic status IE.BAD is returned if a bad
encountered.

example, the
parameter is

Appendix B lists the status codes.

9-8

ISSUING AN I/O REQUEST

The following illustrates the examination of the I/0 status
block, IOSB, to determine if a bad parameter has been detected:

QIO$C
BCS
WTSE$C

CMPB
BNE

IO.ATT,14.,2,,IOSB
DIRERR
2

#IS.SUC,IOSB
ERROR

The correspondence between global symbolic names and I/O
completion codes is defined in the system object module library,
which is automatically searched by TKB.

Certain device-dependent information is returned to the
high-order byte of the first word of isb on completion of the I/O
operation. If a read or write operation is successful, the
second word is also significant. For example, in the case of a
read function on a terminal, the number of bytes transferred are
contained in the second word of the IOSB.

The status block can be omitted from a QIO request if you do not
intend to test for successful completion of the request.

The optional ast parameter specifies the
asynchronous system trap service routine.
entered when when the the I/O request completes.

Chapter 3 describes traps in detail.

address of
This routine

an
is

The additional QIO parameters, <pl,p2, ... ,p6>, depend on the
particular function and device specified in the I/0 request.
Typical parameters can include I/0 buffer address, I/O buffer
length, and so forth. Between zero and six parameters can be
included, depending on the particular I/0 function.

9.3.2 1/0-RELATED ASTs

Using the AST routine to service I/0-related events provides a
response time that is much better than a polling mechanism, and
provides for better overlap processing than the simple QIO and
Wait for sequence. Asynchronous system traps also provide an
ideal mechanism for use in multiple buffering of I/O operations.

All ASTs are inserted in a FIFO queue on a per-task basis as they
occur; that is, the event that they are to signal has expired.
They are effected one at a time whenever the task does not have

9-9

ISSUING AN I/O REQUEST

ASTs disabled and is not already in the process of executing an
AST service routine.

The process of effecting an AST involves storing certain
information on the task's stack, including the task's Wait For
mask word and address, the Directive Status Word (DSW), the PS,
the PC and any trap-dependent parameters. The task's
general-purpose registers R0-R5 are not saved, and thus it is the
responsibility of the AST service routine to save and restore the
registers it uses.

After an AST is processed, the trap-dependent parameters (if any)
must be removed from the task's stack and an AST Service Exit
directive executed. The ASTX$S directive macro is used to issue
the AST Service Exit directive.

9.4 DIRECTIVE PARAMETER BLOCKS

The DPB for a QIO directive has a length of 12 words. It is
generated as the result of expanding a QIO macro call. The first
byte of the DPB contains the directive identification code
(DIC)--always 1 for QIO. The second byte contains the size of
the DPB in words--always 12.

At run time, the Executive uses the arguments stored in each DPB
to create, for each request, an I/O packet in system dynamic
storage. The packet is entered by priority into a queue of I/O
requests for the specified physical device unit. This queue is
created and maintained by the Executive and is ordered by the
priority of the tasks that issued the requests. The I/O drivers
examine their respective queues for the I/O request with the
highest priority capable of being executed. This request is
dequeued (removed from the queue) and the I/0 operation is
performed. The process is then repeated until the queue is
emptied of all requests.

After the I/O request has been completed, the Executive declares
a significant event and may set an event flag, transfer execution
to an AST routine, return the I/O status, depending on the
arguments specified in the original QIO macro call. Figure 9-2
illustrates the layout of a sample DPB.

9-10

DIRECTIVE PARAMETER BLOCKS

WORD 0 SIZE OF DPB --

2

3 PRIORITY --
4

5

6

•

•

•

0 .
12 1

FNC MODIFIERS

~~ ~ LUN

PAI EFN

ISB

AST

DEVICE-

DEPENDENT

PARAMETERS

BYTE

DIC FOR 010
DIRECTIVE

--- 1/0 FUNCTION

--- LOGICAL UNIT NUMBER

--- EVENT FLAG NUMBER

___ ADDRESS OF 1/0
STATUS BLOCK

___ ADDRESS OF

ASYNCHRONOUS TRAP
SERVICE ROUTINE

11 ZK-005-81

Figure 9-2: 010 Directive Parameter Block

9.5 1/0-RELATED MACROS

Several system macros issue I/O requests and return information
about I/O requests. These macros reside in the System Macro
Library, and are made available to your program during assembly
by the MACR0-11 assembler directive .MCALL.

9.5.1 The 010$ Macro

You use QIO$ to request an I/O operation and supply parameters
for that request Section 8.45 describes the QIO$ directive macro.
Also, Section 7.3.1 describes the three forms of this directive
macro.

9-11

I/0-RELATED MACROS

The following example uses the DIR$ macro to actually generate
the code to execute the QIO$ directive. DIR$ provides no QIO
parameters of its own, but references the QIO directive parameter
block at address QIOREF by supplying this label as an argument.

QIOREF: QIO$ IO.RLB,6,2,,,ASTOl,<BUFFER,80.>

;CREATE QIO DPB

READl: DIR$ #QIOREF ;ISSUE I/O REQUEST

READ2: DIR$ #QIOREF ;ISSUE I/O REQUEST

9.5.2 The QIOW$ Macro

The QIOW$ macro is equivalent to a QIO$ followed by a WTSE$. It
is more economical to issue a QIO And Wait request than to use
the two separate macros. An event flag (efn parameter) must be
specified with QIOW$ if you actually want to wait.

9.5.3 The ALUN$ Macro

The Assign LUN macro associates a logical unit number with a
physical device unit at run time.

Assign LUN does not request I/O for the physical device unit, nor
does it attach the unit for exclusive use by the issuing task.
It simply establishes a LUN-physical device unit relationship, so
that when the task requests I/O for a particular LUN, the
associated physical device unit is referenced.

The Tool Kit User's Guide describes the device names that you can
specify in a call to ALUN$.

The following example associates LUN 10 with terminal unit 1:

ALUN$C 10.,TT,1

9-12

I/0-RELATED MACROS

The next example illustrates the use of the three forms of the
ALUN$ macro.

DATA DEFINITIONS

ASSIGN: ALUN$ 10., TT, 2

EXECUTABLE SECTION

DIR$ #ASSIGN

ALUN$C 10.,TT,2

ALUN$S #10.,#"TI,#0

9.5.4 The GLUN$ Macro

GENERATE DPB

EXECUTE DIRECTIVE

GENERATE DPB IN SEPARATE
P-SECTION, THEN GENERATE
CODE TO EXECUTE
THE DIRECTIVE
GENERATE DPB ON STACK, THEN
EXECUTE DIRECTIVE

The Get LUN Information macro requests that information about a
LUN-physical device unit association be returned in a six-word
buffer specified by the issuing task.

The following example to requests information about the disk unit
associated with LUN 8,:

GLUN$C 8. ,IOBUF

The next example illustrates use of the three forms of the GLUN$
macro.

9-13

I/0-RELATED MACROS

DATA DEFINITIONS

GETLUN: GLUN$ 6,DSKBUF GENERATE DPB

EXECUTABLE SECTION

DIR$ #GETLUN EXECUTE DIRECTIVE

GLUN$C 6,DSKBUF GENERATE DPB IN SEPARATE
P-SECTION, THEN GENERATE
CODE TO EXECUTE
THE DIRECTIVE

GLUN$S #6,#DSKBUF GENERATE DPB ON STACK, THEN
EXECUTE DIRECTIVE

9.5.5 The ASTX$S Macro

The AST Service Exit macro terminates execution of an AST service
routine. Use the S-form.

9.5.6 The WTSE$ Macro

The Wait For Single Event Flag macro instructs the system to
suspend execution of the issuing task until the event flag
specified in the macro call is set. This macro is useful in
synchronizing activity on completion of an I/O operation.

WTSE$ causes the task to be blocked from execution until the
specified event flag is set. Frequently, an efn parameter is
also included in a QIO$ macro call, and the event flag is set on
completion of the I/O operation specified in that call.

The following example illustrates task blocking until the setting
of the specified event flag occurs. This example also
illustrates the use of the three forms of the macro call.

9-14

I/0-RELATED MACROS

DATA DEFINITIONS

WAIT:
IOSB:

WTSE$
.BLKW

5
2

EXECUTABLE SECTION

ALUN$S
QIO$C
DIR$

14 . , # II DW, # 1
IO.ATT,14.,5
#WAIT

GENERATE DPB
I/O STATUS BLOCK

ASSIGN LUN 14 TO DWl:
ATTACH DEVICE
EXECUTE WAIT FOR DIRECTIVE

QIO$S #IO.RLB,#14.,#2,,#IOSB,,<#BUF,#80.>
; READ RECORD, USE EFN2

WTSE$S #2 WAIT FOR READ TO COMPLETE

QIO$C IO.WLB,14.,3,,IOSB,,<BUF,80.>
; WRITE RECORD, USE EFN3

WTSE$C 3 WAIT FOR WRITE TO COMPLETE

QIO$C IO.DET,14. DETACH DEVICE

9.6 STANDARD 1/0 FUNCTIONS

The number of I/O operations that can be specified by means of
the QIO directive is large. A particular operation can be
requested by including the appropriate function code as the first
parameter of a QIO macro call.

9-15

STANDARD I/O FUNCTIONS

Certain functions are standard. These functions are almost
totally device independent and can thus be requested for nearly
every device described in this manual. Others are device
dependent and are specific to the operation of only one or two
I/O devices. This section summarizes the function codes and
characteristics of the following device-independent I/O
operations:

• Attaching to an I/O device

• Detaching from an I/O device

• Cancelling I/0 requests

• Reading a logical block

• Reading a virtual block

• Writing a logical block

• Writing a virtual block

NOTE

In the following descriptions, the five QIO
directive parameters lun, efn, pri, isb, and ast
are represented by an ellipsis (...).

9.6.1 10.ATT: Attaching to an 1/0 Device

The function code IO.ATT is specified by a user task when that
task requires exclusive use of an I/O device. This function code
is included as the first parameter of a QIO macro call in the
following way:

QIO$C IO.ATT, ...

Successful completion of an IO.ATT request causes the specified
physical device unit to be dedicated for exclusive use by the
issuing task. This enables the task to process input or output
in an unbroken stream and is especially useful on sequential,
non-file-oriented devices such as terminals.

An attached physical device unit remains under control of the
issuing task until it is explicitly detached by that task, or
when the task exits.

9-16

size

pn

STANDARD I/O FUNCTIONS

The data buffer size in bytes.

One to four optional parameters, used to specify such
additional information as block numbers for certain devices.

9.6.5 10.RVB: Reading a Virtual Block

The function code IO.RVB is used to read a virtual block of data
from a file on a file-structured device. For a file on a on
sequential, record-oriented, non-file-structured device, IO.RVB
is converted to IO.RLB before being issued.

NOTE

Any subfunction bits specified in the IO.RVB
request are stripped off in this conversion.

We recommend that all tasks use virtual, rather than logical
reads when a subfunction is unnecessary. However, if a virtual
read is issued for a file-structured device (disk), your task
must ensure that a file is open on the specified physical device
unit.

This function code is included as the first parameter of a QIO
macro call in the following way:

stadd

size

pn

QIO$C IO.RVB, ... ,<stadd,size,pn>

The starting address of the data buffer.

The data buffer size in bytes.

One to four optional parameters, used to specify such
additional information as block numbers for certain devices.

9-19

STANDARD I/O FUNCTIONS

9.6.6 10.WLB: Writing a Logical Block

The function code IO.WLB is specified by a task to wr1~e a block
of data to the physical device unit specified in the macro call.

NOTE

On P/OS Server systems, a privileged task running
on a workstation cannot perform Write Logical
Block operations to remote server disks.

Include IO.WLB as the first parameter of a QIO macro call as
follows:

stadd

size

pn

QIO$C IO.WLB, ... ,<stadd,size,pn>

The starting address of the data buffer.

The data buffer in bytes.

One to four
additional

optional
information

parameters, used to specify such
as block numbers or format control

characters for certain devices.

9.6.7 10.WVB: Writing a Virtual Block

The function code IO.WVB is used to write a virtual block of data
to a file on a file-structured device.

For sequential, record-oriented, non-file-structured devices such
as terminals and line printers, the function IO.WVB is converted
to IO.WLB.

N

Any subfunction bits specified in the IO.WVB
request are stripped off in this conversion.

9-20

STANDARD I/O FUNCTIONS

We recommend that all tasks
writes. However, if a
file-structured device (disk),
open on the specified physical

use virtual rather than logical
virtual write is issued for a
you must ensure that a file is
device unit.

This function code is included as the first parameter of a QIO
macro call in the following way:

QIO$C IO.WVB, ... ,<stadd,size,pn>

stadd

size

pn

The starting address of the data buffer.

The data buffer size in bytes.

One to four optional parameters, used to specify such
additional information as block numbers or format control
characters for certain devices.

9. 7 1/0 COMPLETION

When an I/O request has been completed, either successfully or
unsuccessfully, one or more actions can be taken by the
Executive. Selection of return conditions depends on the
parameters included in the QIO macro call. There are three major
returns:

1. A significant event is declared on completion of
operation. If an efn parameter was included in
request, the corresponding event flag is set.

an I/O
the I/O

2. If an isb parameter was specified in the QIO macro call, the
I/O status is returned. A carry clear return from the
directive itself simply means that the directive was accepted
and the I/O request was queued, not that the actual
input/output operation was successfully performed.

3. If an ast parameter was specified in the QIO macro call,
execution transfers to the AST service routine that begins at
the location identified by ast occurs on completion of the
I/O operation. See Chapter 3 for a detailed description of
AST service routines.

9-21

RETURN CODES

9.8 RETURN CODES

There are two kinds of status conditions recognized and handled
by the system when they occur in I/O requests:

• Directive conditions, which indicate the acceptance or
rejection of the QIO directive itself

~ I/O status conditions, which indicate the success or failure
of the I/O operation

Directive conditions relevant to I/O operations can indicate any
of the following:

fl Directive acceptance

• Invalid buffer specification

fill Invalid efn parameter

• Invalid lun parameter

• Invalid DIC number or DPB size

e Unassigned LUN

e Insufficient memory

A code indicating the acceptance or rejection of a directive is
returned to the Directive Status Word at symbolic location $DSW.
This location can be tested to determine the type of directive
condition.

I/O conditions indicate the success or failure of the I/O
operation specified in the QIO directive. I/O driver errors
include such conditions as device not ready, privilege violation,
file already open, or write-locked device.

If an isb parameter is included in the QIO directive, identifying
the address of a two-word I/O status block, an I/O status code is
returned in the low-order byte of the first word of this block on
completion of the I/O operation. This code is a binary value
corresponding to a symbolic name of the form IS.xxx or IE.xxx.

The low-order byte of the word can be tested symbolically, by
name, to determine the type of status return. The correspondence
between global symbolic names and directive and I/O completion
status codes is defined in the system object module library.
Local symbolic definitions can also be obtained by the DRERR$ and
IOERR$ macros.

9-22

RETURN CODES

Binary values of status codes always have the meanings shown in
Table 9-1.

Table 9-1: Meaning of Status Code Binary Values

Code Meaning

Positive (greater than 0) Successful completion

0 Operation still pending

Negative Unsuccessful completion

A pending operation means that the I/O request is still in the
queue of requests for the respective driver, or the driver has
not yet completely serviced the request.

9.8.1 Directive Conditions

Table 9-2 summarizes the directive conditions
encountered in QIO directives. The acceptance
first, followed by error codes indicating various
rejection, in alphabetical order. (See Appendix B
of error codes.)

Table 9-2: Directive Conditions

Symbolic Description

that can be
condition is
reasons for

for a summary

rs.sue Directive accepted. The first six parameters of the
QIO directive were valid, and sufficient dynamic
memory was available to allocate an I/0 packet. The
directive is accepted.

IE.ADP Invalid address. The I/O status block or the QIO DPB
was outside of the issuing task's address space or
was not aligned on a word boundary.

9-23

Symbolic

IE.HWR

IE.IEF

IE. ILU

IE.PRI

IE.SDP

RETURN CODES

Description

Device handler not resident. The driver for the
requested device was not loaded in memory.

Invalid event flag number. The efn specification in
a QIO directive was less than 0 or greater than 96.

Invalid logical unit number. The lun specification
in a QIO directive was invalid for the issuing task.
For example, there were only five logical unit
numbers associated with the task, and the value
specified for lun was greater than 5.

Privilege violation. The user does not have the
required privilege for the requested operation.

Invalid DIC number or DPB size. The directive
identification code (DIC) or the size of the
Directive Parameter Block (DPB) was incorrect; the
legal range for a DIC is from 1 through 127, and all
DIC values must be odd. Each individual directive
requires a DPB of a certain size. If the size is not
correct for the particular directive, this code is
returned. The size of the QIO DPB is always 12
words.

IE.ULN Unassigned LUN. The logical unit number in the QIO
directive was not associated with a physical device
unit. The user may recover from this error by
issuing a valid Assign LUN directive and then
reissuing the rejected directive.

IE.UPN Insufficient dynamic memory. There was not enough
dynamic memory to allocate an I/O packet for the I/O
request. The user can try again later by blocking
the task with a Wait for Significant Event
directive. Note that Wait For Significant Event is
the only effective way for the issuing task to block
its execution, since other directives that could be
used for this purpose themselves require dynamic
memory for their execution (for example, Mark Time).

9.8.2 1/0 Status Conditions

The following list summarizes status codes that can be returned
in the I/O status block specified in the QIO directive on

9-24

RETURN CODES

completion of the I/O request. The I/O status block is a
two-word block with the following format:

The low-order byte of the first word receives a status code
of the form IS.xxx or IE.xxx on completion of the I/0
operation.

• The high-order byte of the first word is usually device
dependent. In cases where you might find information in this
byte helpful, this manual identifies that information.

• The second word contains the number of bytes transferred or
processed if the operation is successful and involves reading
or writing.

If the isb parameter of the QIO directive is omitted, this
information is not returned.

The following illustrates a sample two-word I/O status block on
completion of a terminal read operation:

Byte 1 Byte 0
~~~~-+-- -~~~-

Word 0 0 -10 

Word 1 Number of bytes read 

where -10 is the status code for IE.EOF (end of file). If this 
code is returned, it indicates that input was terminated by 
typing CTRL/Z, which is the end-of-file termination sequence on a 
terminal. 

To test for a particular error condition, you generally compare 
the low-order byte of the first word of the I/O status block with 
a symbolic value, as in the following: 

CMPB #IE.DNR,IOSB 

However, to test for certain types of successful completion of 
the I/O operation, the entire word value must be compared. For 
example, if a carriage return terminates a line of input from the 
terminal, a successful completion code of IS.CR is returned in 
the I/O status block. If an Escape character is the terminator, 
a code of IS.ESC is returned. To check for these codes, you 
should first test the low-order byte of the first word of the 
block for rs.sue and then test the full word for IS.CC, IS.CR, 
IS.ESC, or IS.ESQ. 

9-25 



RETURN CODES 

Note that both of the following comparisons will test as equal 
since the low-order byte in both cases is +1. 

CMP #IS.CR,IOSB 

CMPB #IS.SUC,IOSB 

In the case of a successful completion where the carriage return 
is the terminal indicator (IS.CR), the following illustrates the 
status block: 

Word 0 

Word 1 

Byte 1 Byte 0 

15 +1 

Number of bytes read 
(excluding the CR) 

where 15 is the octal code for carriage return and +1 is the 
status code for successful completion. 

The codes described in Table 9-3 are general status codes that 
apply to the majority of devices described in subsequent 
chapters. Error codes specific to only one or two drivers are 
described only in relation to the devices for which they are 
returned. The list below describes successful and pending codes 
first, then error codes in alphabetical order. 

Table 9-3: 1/0 Status Conditions 

Symbol Description 

rs.sue Successful completion. The I/O operation specified 
in the QIO directive was completed successfully. The 
second word of the I/O status block can be examined 
to determine the number of bytes processed, if the 
operation involved reading or writing. 

IS.PND I/O request pending. The I/O operation specified in 
the QIO directive has not yet been executed. The I/O 
status block is filled with zeros. 

IE.ABO Operation aborted. The specified I/O operation was 
cancelled with IO.KIL while in progress or while 
still in the I/O queue. 

9-26 



Symbol 

IE.ALN 

IE.BAD 

IE.BEE 

IE.ELK 

IE. BY'I' 

IE.DAA 

IE.DNA 

IE.DNR 

IE.EOF 

RETURN CODES 

Description 

File already open. The task attempted to open a file 
on the physical device unit associated with the 
specified LUN, but a file has already been opened by 
the issuing task on that LUN. 

Bad parameter. An illegal specification was supplied 
for one or more of the device-dependent QIO 
parameters (words 6-11). For example, a bad channel 
number or gain code was specified in an 
analog-to-digital converter I/O operation. 

Bad block on devicee One or more bad blocks were 
found by executing the BAD utility. Data cannot be 
written on bad blocks. 

Illegal block numbers An illegal block number was 
specified for a file-structured physical device 
unit. 

Byte-aligned buffer specified. Byte alignment was 
specified for a buffer, but only word (or 
double-word) alignment is legal for the physical 
device unit. For example, a disk function requiring 
word alignment was requested, but the buffer was 
aligned on a byte boundary. 

Device already attached. The physical device unit 
specified in an IO.ATT function was already attached 
to the issuing task. This code indicates that the 
issuing task has already attached the desired 
physical device unit, not that the unit was attached 
by another task. 

Device not attached. The physical device unit 
specified in an IO.DET function was not attached to 
the issuing task. This code has no bearing on the 
attachment status with respect to other tasks. 

Device not ready. The physical device unit specified 
in the QIO directive was not ready to perform the 
desired I/O operation. This code is often returned 
as the result of an interrupt time-out; that is, a 
"reasonable" amount of time has passed, and the 
physical device unit has not responded. 

End-of-file encountered. An end-of-file mark, 
record, or control character was recognized on the 
input device. 

9-27 



Symbol 

IE.FHE 

IE.IFC 

IE.NLN 

IE.NOD 

IE.OFL 

IE.OVR 

IE.PRI 

IE.SPC 

RETURN CODES 

Description 

Fatal hardware error. Controller is physically 
unable to reach the location where input/output is 
to be performed on the device. The operation cannot 
be completed. 

Illegal function. A function code was specified in 
an I/O request that was illegal for the specified 
physical device unit. This code is returned if the 
task attempts to execute an illegal function or if, 
for example, a read function is requested on an 
output-only device, such as the line printer. 

File not open. The task attempted to close a file on 
the physical device unit associated with the 
specified LUN, but no file was currently open on 
that LUN. 

Insufficient buffer space. Dynamic storage space has 
been depleted, and there was insufficient buffer 
space available to allocate a secondary control 
block. For example, if a task attempts to open a 
file, buffer space for the window and file control 
block must be supplied by the Executive. This code 
is returned when there is not enough space for such 
an operation. 

Device off line. The physical device unit associated 
with the LUN specified in the QIO directive was not 
on line. When the system was booted, a device check 
indicated that this physical device unit was not in 
the configuration. 

Illegal read overlay request. A read overlay was 
requested and the physical device unit specified in 
the QIO directive was not the physical device unit 
from which the task was installed. The read overlay 
function can only be executed on the physical device 
unit from which the task image containing the 
overlays was installed. 

Privilege violation. The task that issued a request 
was not privileged to execute that request. 

Illegal address space. The buffer requested for a 
read or write request was partially or totally 
outside the address space of the issuing task. 
Alternately, a byte count of 0 was specified. 

9-28 



Symbol 

IE.VER 

IE.WCK 

IE.WLK 

RETURN CODES 

Description 

Unrecoverable error. After the system's standard 
number of retries have been attempted upon 
encountering an error, the operation still could not 
be completed. 

Write check error. An error was detected during the 
check (read) following a write operation. 

Write-locked device. The task attempted to write on 
a write-locked physical device unit. 

9-29 





CHAPTER 10 

DISK DRIVERS 

The system's disk drivers support the disks summarized in Table 
10-1. Subsequent sections describe the devices in detail. 

Table 10-1: Standard Disk Devices 

Drive RPM Sectors Heads Cylinders Bytes Blocks 
per per 
Drive Drive 

RX50 300 10 2 80 per 819,200 801 
diskette 

RD50 3600 16 4 153 per 5 Mb 9728 
surface 

RD51 3600 16 4 306 per 10 Mb 19520 
surface 

RD52 3600 16 8 511 per 33 Mb 65408 
surface 

RD31 3600 16 4 614 per 20 Mb 39295 
surface 

10.1 RX50 DESCRIPTION 

The RX50 subsystem consists of a 5.25-inch dual floppy diskette 
drive and a separate single-board controller module. The module 
enables a data processing system to store or retrieve information 
from any location on one side of each front-loadable diskette. 

10-1 



RD-SERIES DESCRIPTION 

10.2 RD-SERIES DESCRIPTION 

The RD31, ROSO, RD51, and RD52 ("RD-Series") are Winchester hard 
disk, multiplatter, random-access devices. They store data in 
fixed-length blocks on 130mm rigid disk media. Winchester 
technology uses moving head, noncontact recording. Unlike the 
RX50, RD-Series storage media cannot be removed from the drive. 

10.3 GET LUN INFORMATION FOR DISK DRIVERS 

You can invoke the Get LUN Information system directive to obtain 
device characteristics of a disk device. The directive returns 
the device characterstics in the last four words of a six-word 
buffer you supply. Figure 10-1 shows the contents of the buffer 
after a call to the directive. 

Figure 10-1: Get LUN Information Return Buffer 

Device Name Word 0 

Unit Number Word 1 

Characteristic Flags Word 2 

///ll/ll/l/ll//l Maximum 
-

Word 3 

Logical Block Number Word 4 

Default Buffer Size ( 512) Word 5 

Word 2 of the buffer (the first device 
contains 16 flags indicating the 
characteristics. Table 10-2 describes 
characteristics. (A bit setting of 1 
described characteristic is true for disks.) 

characteristic word) 
state of various 

each of these 
indicates that the 

Words 3 and 4 contain the maximum logical block number (LEN) for 
the disk. 

NOTE 

As the figure shows, the system uses only the low 
byte of word 3 and all of word 4, thus leaving 
the high byte of word 3 undefined. Consequently, 
you must always clear the high byte of word 3 
before using the returned maximum LBN. 

10-2 



GET LUN INFORMATION FOR DISK DRIVERS 

Word 5 contains the default buffer size, which is 512 bytes for 
all disks. 

Table 10-2: Get LUN Characteristic Flags for Disks 

Bit Setting 

0 0 

1 0 

2 0 

3 1 

4 0 

5 0 

6 1 

7 1 or 0 

8 1 

9 0 

10 0 

11 0 

12 0 

13 0 

14 1 

15 1 

Meaning 

Record-oriented device 

Carriage-control device 

Terminal device 

File-structured device 

Single-directory device 

Sequential device 

Mass storage device 

User-mode diagnostics supported (device 
dependent) 

Device supports 22-bit direct addressing 

Unit software write-locked 

Input spooled device 

Output spooled device 

Pseudo-device 

Device mountable as a communications 
channel 

Device mountable as a Files-11 volume 

Device mountable 

10-3 



OVERVIEW OF I/O OPERATIONS 

10.4 OVERVIEW OF 1/0 OPERATIONS 

The RX50 and RD-series disks used on the Professional are 
FILES-11 structured and, therefore, compatible with RMS-11. 
RMS-11 lets you transfer data between your task and FILES-11 
structured volumes without having to be concerned with the 
physical organization of the data on the volume. When 
transferring data to and from FILES-11 volumes, always use the 
RMS-11 MACRO or high-level language facilities. 

The information in this chapter is intended primarily for those 
cases where you may not want to be restricted to a FILES-11 data 
format and thus cannot use RMS-11. Examples of such cases are: 

• Performing I/O with CP/M-structured RX50 diskettes 

• Creating a special utility, such as for data backup 

The QIOs documented in this chapter let you bypass RMS-11 to 
handle such cases. Be aware that using QIOs instead of RMS-11 
makes program development more complex and increases the chances 
of error. 

With some exceptions, all the disks supported on the Professional 
can be accessed in the same manner. Differences are pointed out 
in the discussion. 

Disks are divided into a series of 256-word blocks, and data is 
transferred in blocks to and from disks. These transfers can be 
performed in three possible modes: physical, logical, or 
virtual. The difference between theses modes is the manner in 
which the disk is addressed. 

(See PRO/RMS-11: An Introduction for definitions of physical, 
logical, and virtual blocks, as well as a generic description of 
disk geometry.) 

10.4.1 Physical 1/0 Operations 

Physical I/O operations are allowed with all the disk devices. 

In physical I/O operations, data is read or written to the actual 
sectors (physical blocks) of the disk. No consideration is given 
to factors such as the interleave of blocks or the track skew, 
which can be introduced to compensate for any lag of the 
read-write head. Consequently, physical blocks are numbered 
consecutively on any one track. Physical blocks are numbered 
starting with zero. 

10-4 



OVERVIEW OF I/O OPERATIONS 

The RX50 is a single head device. On the RX50, the address of a 
physical block is expressed as a track and sector address. The 
first physical block is on track 0, sector 1. 

The RD-Series disks are multiplatter devices. On these, the 
address of a physical block is derived by first obtaining the 
sector number within a track, then the track number within a 
cylinder, and then the cylinder number. The first physical block 
is on track 0, sector 0. 

10.4.2 Logical 1/0 Operations 

Logical I/0 operations transfer data to or from the logically 
addressable blocks of the disk. Unlike physical blocks, logical 
blocks are not necessarily contiguous. 

For the RX50 disk, the sector interleave and track skew are 
automatically taken into account when a logical READ or WRITE is 
performed. 

Logical blocks are numbered starting with 0. Note the following: 

• On the RX50, the first logical block is at track 1, sector 1. 
The highest-numbered logical block is at track 0, at the 
highest sector for that track. 

• On the RD-Series disks, the first logical block is at track 
0, sector 1. 

10.4.3 Virtual 1/0 Operations 

Virtual I/O operations have meaning only within the context of a 
file. The virtual blocks of a file are numbered consecutively, 
starting with virtual block 1, which is the start of the file. 
The consecutively numbered virtual blocks of a file map to 
logical blocks, which might or might not be contiguous. Virtual 
I/O operations are converted by the file processor into logical 
READS and WRITES. 

10.5 QIO MACRO FUNCTIONS FOR DISK DRIVERS 

Table 10-3 lists the functions of the QIO macro that are valid 
for disks. These are all standard QIO functions. 

10-5 



QIO MACRO FUNCTIONS FOR DISK DRIVERS 

NOTE 

If your task is transferring data to a FILES-11 
structured volume, use RMS-11 to perform I/O 
operations. 

Table 10-3: QIO Functions for Disks 

Format Function 

QIO$C IO.ATT, ... Attach device [ 1 ] 

QIO$C IO. DET, ... Detach device 

QIO$C IO.KIL, ... Kill I/O [ 2 J 

QIO$C IO.RLB, ... ,<stadd,size,,blkh,blkl> READ logical block 

QIO$C IO.RPB, ... ,<stadd,size,,blkh,blkl> READ physical block 

QIO$C IO.RVS, ... ,<stadd,size,,blkh,blkl> READ virtual block 

QIO$C IO.WLB, ... ,<stadd,size,,blkh,blkl> WRITE logical block 

QIO$C IO.WPB, ... ,<stadd,size,,blkh,blkl> WRITE physical block 

QIO$C IO.WVB, ... ,<stadd,size,,blkh,blkl> WRITE virtual block 

Parameters Shown in Table 10-3 

stadd 

size 

blkh/blkl 

The starting address of the data buffer (must be 
on a word boundary). 

The data buffer size in bytes (must be even and 
greater than 0). 

Block high and block low, combining to form a 
double-precision number that indicates the actual 
logical/virtual block address on the disk where 
the transfer starts; blkh represents the high 8 
bits of the address, and blkl the low 16 bits. 

10-6 



QIO MACRO FUNCTIONS FOR DISK DRIVERS 

Notes to Table 10-3 

1. Only volumes mounted foreign may be attached. Any other 
attempt to attach a mounted volume will result in an IE.PR! 
status being returned in the I/O status doubleword. You 
should not attach any volumes, because this prevents the 
mount/dismount mechanisms from working and can possibly lead 
to a program hang or a system hang.) 

2. In-progress disk operations are allowed to complete when 
IO.KIL is received, because they take such a short time. I/O 
requests that are queued when IO.KIL is received are killed 
immediately. An IE.ABO status is returned in the I/0 status 
doubleword.) 

To perform physical or logical I/O operations with QIOs, your 
task must be privileged. 

IO.RVB and IO.WVB are associated with file operations. For these 
functions to be executed, a file must be open on the specified 
LUN if the volume associated with the LUN is mounted. Otherwise, 
the virtual I/0 request is converted to a logical I/0 request 
using the specified block numbers. 

Use of the QIO virtual I/O operations requires caution as it is 
possible to quickly exhaust system resources. Simply writing and 
reading files with QIOs is not sufficient. The file must be 
extended with $EXTEND calls to RMS-11, or the end-of-file pointer 
will not be moved. Reading and writing a file via QIOs without 
properly setting the FB$SHR field in the RMS-11 FAB block can 
cause system hangs when system free space is exhausted. 

Observe the following if you are using FCS instead of RMS-11: 

• When writing a new file using QIOs, the task must explicitly 
issue .EXTND File Control System library routine calls as 
necessary to reserve enough blocks for the file, or the file 
must be initially created with enough blocks allocated for 
the file. 

• The task must put an appropriate value in the FDB for the 
end-of-file block number (F.EFBK) before closing the file. 

Each disk driver supports the subfunction bit IQ.X: inhibit 
retry attempts for error recovery. The subfunction bit is used 
by ORing it into the desired QIO; for example: 

QIO$C IO.WLB!IQ.X, ... ,<stadd,size,,blkh,blkl> 

10-7 



QIO MACRO FUNCTIONS FOR DISK DRIVERS 

The IQ.X subfunction permits user-specified retry algorithms for 
applications in which data reliability must be high. 

10.6 STATUS RETURNS FOR DISK DRIVERS 

The error and status conditions listed in Table 10-4 are returned 
by the disk drivers described in this chapter. 

When a disk I/O error condition is detected, an error is usually 
not returned immediately. Instead, the system attempts to 
recover from most errors by retrying the function as many as 
eight times. Unrecoverable errors are generally parity, timing, 
or other errors caused by a hardware malfunction. 

Table 10=4: Disk Status Returns 

Symbol Description 

rs.sue Successful completione The operation specified in 
the QIO directive was completed successfully. The 
second word of the I/O status block can be examined 
to determine the number of bytes processed, if the 
operation involved reading or writing. 

IS.PND I/O request pending. The operation specified in the 
QIO directive has not yet been executed. The I/O 
status block is filled with zeros. 

IE.ABO Request aborted. An I/O request was queued (not yet 
acted upon by the driver) when an IO.KIL was issued. 

IE.ALN File already open. The task attempted to open a file 
on the physical device unit associated with the 
specified LUN, but a file has already been opened by 
the issuing task on that LUN. 

IE.ELK Illegal block number. An illegal logical block 
number was specified. 

IE.EBE Bad block error. The disk sector (block) being read 
was marked as a bad block in the header word. 

10-8 



Symbol 

IE.BYT 

IE.DNR 

IE.FHE 

IE.IFC 

IE.MII 

IE.NLN 

IE.NOD 

IE.OFL 

IE.OVR 

STATUS RETURNS FOR DISK DRIVERS 

Description 

Byte-aligned buffer specified. Byte alignment was 
specified for a buffer, but only word alignment is 
legal for disk. Alternatively, the length of a 
buffer is not an appropriate number of bytes. 

Device not ready. The physical device unit specified 
in the QIO directive was not ready to perform the 
desired I/O operation. 

Fatal hardware error. The controller is physically 
unable to reach the location where input/output 
operation is to be performed. The operation cannot 
be completed. 

Illegal function. A function code was specified in 
an I/O request that is illegal for disks. 

Media inserted incorrectly. The controller has 
detected that the media (such as a floppy diskette) 
were not inserted correctly. To correct the problem, 
reinsert the media properly. 

File not open. The task attempted to close a file on 
the physical device unit associated with the 
specified LUN, but no file is currently open on that 
LUN. 

Insufficient buffer spacee Dynamic storage space was 
depleted, and there is insufficient buffer space 
available to allocate a secondary control block. For 
example, if a task attempts to open a file, buffer 
space for the window and file control block must be 
supplied by the Executive. This code is returned 
when there is not enough space for this operation. 

Device off line. The physical device unit associated 
with the LUN specified in the QIO directive was not 
on-line. When the system was booted, a device check 
indicated that this physical device unit was not in 
the configuration. 

Illegal read overlay request. A read overlay was 
requested, but the physical device unit specified in 
the QIO directive was not the physical device unit 
from which the task was installed. The read overlay 
function can only be executed on the physical device 
unit from which the task image containing the 
overlays was installed. 

10-9 



Symbol 

IE.FRI 

IE.SPC 

IE.VER 

IE.WCK 

IE.WLK 

STATUS RETURNS FOR DISK DRIVERS 

Description 

Privilege violation. The task that issued the 
request was not privileged to execute that request. 
For disk, this code is returned if a nonprivileged 
task attempts to read or write a mounted volume 
directly (that is, using IO.RLB or IO.WLB). Also, 
this code is returned if any task attempts to attach 
a mounted volume. 

Illegal address space. The buffer specified for a 
read or write request was partially or totally 
outside the address space of the issuing task. 
Alternately, a byte count of zero was specified. 

Unrecoverable error. After the system's standard 
number of retries has been attempted upon 
encountering an error, the operation still could not 
be completed. For disk, unrecoverable errors are 
usually parity errors. 

Write check error. An error was detected during the 
write check portion of an operation. 

Write-locked device. The task attempted to write on 
a disk that was write-locked. 

10-10 



CHAPTER 11 

THE TERMINAL DRIVER 

The Professional terminal driver, called TTDRV, includes the 
following features: 

• Full-duplex operation 

• Type-ahead buffering 

• Eight-bit characters 

• Transparent read and write 

• Formatted read and write 

• Read after prompt 

• Read with no echo 

• Read with special terminator 

• Optional timeout on solicited input 

• Device-independent cursor control 

In addition to these features, the terminal driver supports the 
following hardware components: 

11-1 



• Bitmap Display 

The bitmap display is the primary terminal device for the 
Professional. 

• Printer Port 

The printer port is an asynchronous port to which a printer 
or terminal can be connected. 

• Quad Serial Line Unit 

The Quad Serial 
provides four 
the ports to 
Professional. 

Line Unit (SLU) is a hardware option that 
full-duplex, asynchronous ports. You can use 
connect additional serial devices to a 

11.1 GET LUN INFORMATION MACRO FOR TERMINAL DRIVER 

Word 2 (the first characteristic word) of the buffer filled by 
the Get LUN Information system directive contains the information 
shown in Table 11-1. A setting of 1 indicates that the described 
characteristic is true for terminals. 

Table 11-1: Get LUN Information for Terminal Driver 

Bit Setting Meaning 

0 1 Record-oriented device 

1 1 Carriage-control device 

2 1 Terminal device 

3 0 File-structured device 

4 0 Single-directory device 

5 0 Sequential device 

6 0 Mass storage device 

7 0 User-mode diagnostics supported 

11-2 



GET LUN INFORMATION MACRO FOR TERMINAL DRIVER 

Bit Setting Meaning 

8 N/A Reserved 

9 0 Unit software write-locked 

10 0 Input spooled device 

11 0 Output spooled device 

12 0 Pseudo device 

13 0 Device mountable as a communication 
channel 

14 0 Device mountable as a FILES-11 volume 

15 0 Device mountable 

Words 3 and 4 of the buffer are undefined. Word 5 indicates the 
default buffer size (the width of the terminal carriage or 
display screen). 

11.2 QIO MACRO FOR TERMINAL DRIVER 

Table 11-2 lists the standard and driver-specific functions of 
the QIO macro that are valid for terminals. 

Table 11-2: QIO Functions for Terminals 

Format Function 

Standard Functions 

QIO$C IO.ATT, ... 

QIO$C IO.DET, ... 

QIO$C IO.KIL, ... 

QIO$C IO.RLB, ... ,<stadd,size[,tmo]> 

11-3 

ATTACH device 

DETACH device 

CANCEL I/0 requests 

READ logical block 
(read typed input into 
buffer) 



QIO MACRO FOR TERMINAL DRIVER 

Format 

QIO$C IO.RVB, ... ,<stadd,size[,tmo]> 

QIO$C IO.WLB, ... ,<stadd,size,vfc> 

QIO$C IO.WVB, ... ,<stadd,size,vfc> 

Device-Specific Functions 

QIO$C IO.ATA, ... ,<ast,[param2][,ast2J> 

QI0$C IO.CCO, ... ,<stadd,size,vfc> 

QIO$C IO.GTS, ... ,<stadd,size> 

QIO$C IO.RAL, ... ,<stadd,size[,tmo]> 

QIO$C IO.RNE, ... ,<stadd,size[,tmo]> 

QIO$C IO.RPR, ... , 
<stadd,size,[tmo],pradd,prsize,vfc> 

QIO$C IO.RSD, ... ,<stadd,size,tmo,type> 

QIO$C IO.RST, ... ,<stadd,size[,tmo]> 

QIO$C IO.RTT, ... ,<stadd,size,[tmo],table> 

QIO$C IO.WAL, ... ,<stadd,size,vfc> 

QI0$C IO.WBT, ... ,<stadd,size,vfc> 

11-4 

Function 

READ virtual block 
(read typed input into 
buffer) 

WRITE logical block 
(print buffer 
contents) 

WRITE virtual block 
(print buffer 
contents) 

ATTACH device, specify 
unsolicited-input
character AST 

CANCEL CTRL/O (if in 
effect), then write 
logical block 

GET terminal support 

READ logical block, 
pass all bits 

READ logical block, do 
not echo 

READ logical block 
after prompt 

READ special data 

READ logical block 
ended by special 
terminators 

READ logical block 
ended by specified 
special terminator 

WRITE logical block, 
pass all bits 

WRITE logical block, 
break through most I/O 
conditions at terminal 



QIO MACRO FOR TERMINAL DRIVER 

Format Function 

QIO$C IO.WSD, ... ,<stadd,size,,type> WRITE special data 

QIO$C SF.GMC, ... ,<stadd,size> GET multiple 
characteristics 

QIO$C SF.SMC, ... ,<stadd,size> SET multiple 
characteristics 

Parameters Shown in Table 11-2 

ast The entry point for an unsolicited input character AST. 

param2 A number you can use to identify the terminal that is the 
input source upon entry to an unsolicited character AST 
routine. 

ast2 

pr add 

prsize 

size 

stadd 

table 

tmo 

The entry point for an INTERRUPT/DO sequence AST. 
Section 11.4.2.) 

(See 

The starting address of the byte buffer where the prompt 
is stored. 

The size of the 
specified size 
equal to 8128. 
address space. 

pradd prompt buffer in bytes. The 
must be greater than 0 and less than or 

The buffer must be within your task's 

The size of the stadd data buffer in bytes. The 
specified size must be greater than 0 and less than or 
equal to 8128. The buffer must be within your task's 
address space. For SF.GMC, 
size must be an even value. 

The starting address of the 
must be word aligned for 
IO.RSD, IO.WSD; otherwise, 
boundary. 

IO.GTS, and SF.SMC functions, 

data buffer. The address 
SF.GMC, IO.GTS, and SF.SMC, 
stadd can be on a byte 

The address of the 16-word special terminator table. 

An optional timeout count in 10-second intervals. 
timeout is the maximum time allowed between two input 
characters before the driver terminates the read 
operation. A timeout occurs when the type-ahead buffer 
is empty and the driver receives no input termination 
after the specified length of time. 

11-5 



QIO MACRO FOR TERMINAL DRIVER 

If you specify 0 for the tmo parameter, the read times 
out immediately after reading any data that can be in the 
type-ahead buffer. 

type The data type of the buffer contents. 

vfc A character for vertical format control from Table 11-16. 

11.2. 1 Using Subfunction Bits 

You can use subfunction bits to qualify QIO functions. To select 
one or more subfunctions, you perform a logical OR operation with 
one or more subfunctions and a QIO function. 

For example, the following QIO request IO.RPR uses two 
subfunction bits to perform a read after prompt that is not 
echoed (TF.RNE) and terminated by a special terminator character 
(TF.RST). 

QIO$C IO.RPR!TF.RNE!TF.RST, ... ,<stadd,size,,pradd,prsize,vfc> 

Table 11-3 lists the subfunction bit symbolic names and their 
corresponding subfunctions. 

Table 11~3: Subfunction Bit Symbolic Names and Description 

Symbol Subfunction 

TF.AST Unsolicited-input-character AST. 

TF.BIN Binary prompt. 

TF.CCO Cancel CTRL/O. 

TF.ESQ Recognize escape sequences. 

TF.NOT Unsolicited input AST notification; unsolicited 
characters are stored in the type-ahead buffer 
until they are read by the task. 

TF.RAL Read all bits. 

TF.RCU Restore cursor position. 

TF.RNE Read with no echo. 

11-6 



Symbol 

TF.RST 

TF.TMO 

TF.WBT 

TF.WAL 

TF.XCC 

QIO MACRO FOR TERMINAL DRIVER 

Subfunction 

Read with special terminators. 

Read with time-out. 

Break through write. 

Write all bits. 

Send an INTERRUPT/DO sequence to the P/OS 
Dispatcher when the terminal is attached with 
AST notification. 

Table 11-4 shows which subfunction bits are available for each 
QIO function. 

Table 11-4: Subfunction Bits Available for Driver Requests 

Function Equivalent 
Subfunction 

Standard Functions 

IO.ATT None 

IO.DET None 

IO.KIL None 

IO.RLB None 

IO.RVB None 

IO.WLB None 

IO.WVB None 

Driver-Specific Functions 

IO.ATA IO.ATT!TF.AST 

IO.CCO IO.WLB!TF.CCO 

Allowed 
Subfunction Bits 

TF.AST, TF.ESQ, TF.NOT, TF.XCC 

None 

None 

TF.RAL[l], TF.RNE[l], TF.RST, 
TF.TMO 

None 

TF.CCO, TF.RCU, TF.WBT, TF.WAL 

None 

TF.ESQ, TF.NOT, TF.XCC 

TF.WAL[2], TF.WBT 

11-7 



QIO MACRO FOR TERMINAL DRIVER 

Function 

IO.GTS 

IO.RAL 

IO.RNE 

IO.RPR 

IO.RSD 

IO.RST 

IO.RTT 

IO.WAL 

IO.WBT 

IO.WSD 

SF.GMC 

SF.SMC 

Equivalent 
Subfunction 

None 

IO.RLB!TF.RAL 

IO.RLB!TF.RNE 

None 

None 

IO.RLB!TF.RST 

None 

IO.WLB!TF.WAL 

IO.WLB!TF.WBT 

None 

None 

None 

Notes to Table 11-4 

Allowed 
Subfunction Bits 

None 

TF.RNE, TF.RST[l], TF.TMO 

TF.RAL[l], TF.RST[l], TF.TMO 

TF.BIN, TF.RAL[l], TF.RNE, 
TF.RST[l), TF.TMO 

None 

TF.RAL[l], TF.RNE, TF.TMO 

TF.RAL, TF.RNE, TF.RST, TF.TMO 

TF.CC0[2], TF.RCU[2], TF.WBT 

TF.CCO, TF.RCU, TF.WAL[2] 

None 

None 

None 

1. Avoid using Read All (TF.RAL) and Read 
Terminators (TF.RST) in the same request. 

with Special 

2. During a write-pass-all operation (IO.WAL or IO.WLB!TF.WAL) 
the driver writes characters without interpretation; it does 
not keep track of cursor position. 

If a task invokes a subfunction bit 
support, the driver accepts the 
subfunction bit. 

11.2.2 Driver-Specific 010 Functions 

that 
QIO 

the system does not 
request but ignores the 

This section describes each of the driver-specific QIO functions. 

11-8 



QIO MACRO FOR TERMINAL DRIVER 

11.2.2.1 IO.ATA and IO.ATT!TF.AST - IO.ATA is a variation of the 
Attach function, and is equivalent to IO.ATT logically ORed with 
the subfunction bit TF.AST. 

You use IO.ATA to specify asynchronous system trap (AST) routines 
to process unsolicited input characters. Use the following 
request format to attach the terminal and identify entry points 
(ast and ast2) for an unsolicited-input-character AST: 

QIO$C IO.ATA, ... ,<[ast],[param2][,ast2J> 

Control passes to ast whenever the driver receives an unsolicited 
character other than CTRL/Q, CTRL/S, CTRL/X, or CTRL/O. 

You must supply a minimum of one AST parameter (ast or ast2) in 
the QIO request. If you specify the ast2 parameter, an 
INTERRUPT/DO sequence or CTRL/C character results in the ast2 
routine being entered. If you do not specify ast2, an 
INTERRUPT/DO sequence results in the specified AST being entered 
in the ast parameter. 

Unless you specify the TF.XCC subfunction, your task traps the 
INTERRUPT/DO or CTRL/C sequence; the sequence does not reach the 
P/OS Dispatcher. Thus, if your task uses IO.ATA without the 
TF.XCC subfunction, it should recognize some input sequence as a 
request to terminate since the P/OS Dispatcher cannot abort your 
task in case of difficulty. 

Note that you can use either ast2 or TF.XCC, but not both in the 
same QIO request. If you specify both in a QIO request, the 
system returns an IE.SPC error. 

Upon entry to the AST routines, the unsolicited character and 
param2 are in the top word on the stack, as shown in Table 11-5. 
Your task must remove the top word from the stack before exiting 
the AST. 

11-9 



QIO MACRO FOR TERMINAL DRIVER 

Table 11-5: Task Stack Format 

Current Stack 
Pointer 

SP+lO 

SP+06 

SP+04 

SP+02 

SP+OO 

Contents 

Event flag mask word 

PS of task prior to AST 

PC of task prior to AST 

Task's directive status word 

The low byte contains the unsolicited character. 
The high byte contains the param2 argument that 
you optionally specified in the QIO request. 
This argument is useful if you want to identify 
an individual terminal in a common AST routine. 

When you include TF.NOT in the IO.ATA function and the terminal 
driver receives unsolicited terminal input (except INTERRUPT/DO 
or CTRL/C), the resulting AST serves only as notification of 
unsolicited terminal input. Note the following in this case: 

• The terminal driver does not pass the character to your task. 
Upon entry to the AST service routine, the high byte of the 
first word on the stack identifies the terminal causing the 
AST (param2). See Table 11-5. 

e After the AST has occurred, the AST becomes disabled until 
your task issues a Read request. If the driver receives 
multiple characters before your task issues the Read request, 
then the driver stores those characters in the type-ahead 
buffer. 

• Upon receiving the Read request, the driver returns the 
contents of the type-ahead buffer, including the character 
causing the AST, to your task. The driver then enables the 
AST for new unsolicited input characters. Thus, using the 
TF.NOT subfunction allows a task to read multiple characters 
per AST, thereby resulting in a significant system 
performance increase. 

See Chapter 3 for further details on ASTs. 

11-10 



QIO MACRO FOR TERMINAL DRIVER 

11.2.2.2 IO.ATT!TF.ESQ - The task issuing this function attaches 
a terminal and notifies the driver that it recognizes escape 
sequences received from that terminal. The driver recognizes 
escape sequences only for solicited input. (See Section 11.5 for 
a description of escape sequences.) 

If your task has not declared the terminal capable of generating 
escape sequences, IO.ATT!TF.ESQ has no effect other than 
attaching the terminal. The driver does not return a full escape 
sequence to the task as a terminator. 

You must also use the SF.SMC function to declare the terminal 
capable of generating escape sequences. (See Table 11-7 for a 
description of the driver-terminal characteristics for the SF.GMC 
and SF.SMC functions.) 

11.2.2.3 IO.CCO and IO.WLB!TF.CCO - IO.CCO is equivalent to 
IO.WLB logically ORed with the subfunction bit TF.CCO. 

This Write function directs the driver to write to the terminal 
regardless of any CTRL/O condition. If CTRL/0 is in effect, the 
driver cancels it before performing the Write operation. 

11.2.2.4 IO.DET - This function detaches the terminal and, in 
doing so, cancels any CTRL/O condition in effect. It cancels any 
AST specified when the terminal was attached. 

11.2.2.5 IO.GTS - This function is a Get Terminal Support 
request that returns information to a four-word buffer specifying 
which features are part of the terminal driver. Only two of 
these words (words 0 and 1) are currently defined. A system 
module, TTSYM, defines the various symbols that the IO.GTS, 
SF.GMC, and SF.SMC functions use. These symbols include: 

• Fl.xxx and F2.xxx (Table 11-6) 

• TC.xxx (Table 11-7) 

• T.xxxx (Table 11-9) 

• The SE.xxx error returns described in Table 11-11. 

The Task Builder automatically defines these symbols. 

11-11 



QIO MACRO FOR TERMINAL DRIVER 

Table 11-6: Information Returned by 10.GTS 

Symbol 

Word 0 of Buffer 

Fl.ACR 

Fl.BUF 

Fl.UIA 

Fl.CCO 

Fl.ESQ 

Fl.LWC 

Fl.RNE 

Fl.RPR 

Fl.RST 

Fl. RUB 

Fl.TRW 

Fl. UTB 

Fl.VBF 

Word 1 of Buffer 

F2.SCH 

F2.GCH 

F2.SFF 

F2.CUP 

F2.FDX 

Meaning When Set to 1 

Automatic CR/LF on long lines 

Checkpointing during terminal input 

Unsolicited-input-character AST 

Cancel CTRL/O before writing 

Recognize escape sequences in solicited input 

Lower- to uppercase conversion 

Read with no echo 

Read after prompting 

Read with special terminators 

CRT rubout 

Read all and write all 

Input characters buffered in task's address 
space 

Variable-length terminal buffers 

Set characteristics QIO (SF.SMC) 

Get characteristics QIO (SF.GMC) 

Formfeed can be simulated 

Cursor positioning 

Full Duplex Terminal Driver 

11-12 



QIO MACRO FOR TERMINAL DRIVER 

11.2.2.6 IO.RAL and IO.RLB!TF.RAL - IO.RAL is equivalent to 
IO.RLB logically ORed with the subfunction bit TF.RAL. 

The Read All function causes the driver to pass all bits to the 
requesting task. The driver does not intercept control 
characters or mask out the high-order bit. For example, the 
driver passes the sequences CTRL/Q, CTRL/S, CTRL/O, CTRL/Z and 
CTRL/C (which is the same as INTERRUPT/DO) to your task without 
interpretation. 

Note that IO.RAL echoes the characters that are read. 
all bits without echoing, use IO.RAL!TF.RNE. 

To read 

The IO.RAL function terminates either when a full character count 
(input buffer full) or a timeout occurs. 

11.2.2. 7 
equivalent 
TF.RNE. 

IO.RNE and 
to IO.RLB 

IO.RLB!TF.RNE - The IO.RNE function is 
logically ORed with the subfunction bit 

This function reads terminal input characters without echoing the 
characters back to the terminal for immediate display. Use this 
feature to read sensitive information, such as a password or 
combination. 

{Note that you can select the no-echo mode with the SF.SMC 
function. See Table 11-7, bit TC.NEC.) 

11.2.2.8 IO.RPR - The IO.RPR Read After Prompt functions as an 
IO.WLB (to write a prompt to the terminal) followed by IO.RLB. 
However, IO.RPR differs from this combination of functions as 
follows: 

• Performance is better with the IO.RPR because the system 
processes only one QIO. 

• The terminal driver cancels any CTRL/O that is in effect 
prior to issuing the IO.RPR. 

You can logically OR subfunction bits with IO.RPR to write the 
prompt as a Write All (TF.BIN). In addition, you can use the 
Read subfunction bits TF.RAL, TF.RNE, and TF.RST with IO.RPR. 

11-13 



QIO MACRO FOR TERMINAL DRIVER 

11.2.2.9 IO.RPR!TF.BIN - This function 
binary prompt; that is, the driver 
character interpretation (as if it were 
TF.BIN exists because TF.WAL and TF.RAL 

results in a Read after a 
writes a prompt with no 
issued as an IO.WAL). 

are the same bit. 

11.2.2.10 IO.RST and IO.RLB!TF.RST - IO.RST is equivalent to 
IO.RLB logically ORed with the TF.RST subfunction bit. 

This function is similar to an IO.RLB, except that certain 
special characters terminate the Read. These characters are in 
the ranges 0-037 and 175-177. The driver does not interpret the 
terminating character, with certain exceptions. For example, the 
driver does not expand a horizontal TAB (011), and a RUBOUT (or 
DEL, 177) does not erase. 

NOTE 

If upper- to lowercase conversion is disabled, 
characters 175 and 176 do not act as terminators, 
and CTRL/O, CTRL/Q, and CTRL/S (017, 021, and 
023, respectively) are not special terminators. 
The driver interprets them as output control 
characters in a normal manner. 

Upon successful completion of an IO.RST request that was not 
terminated by filling the input buffer, the first word of the I/0 
status block contains the terminating character in the high byte 
and the rs.sue status code in the low byte. The second word 
contains the number of bytes contained in a buffer. The driver 
does not put the terminating character in the buffer. 

11.2.2.11 IO.RTT - This QIO function reads characters in a 
manner like the IO.RLB function, except a user-specified 
character terminates the read operation. The specified 
character's code can range from 0 through 377 octal. To specify 
the terminator, set the appropriate bit in a 16-word table that 
corresponds to the desired character. To specify multiple 
characters, set their corresponding bits. 

The 16-word table starts at the address specified by the table 
parameter. The first word contains bits that represent the first 
16 ASC~I character codes (0 through 17 octal); similarly, the 
second word contains bits that represent the next 16 character 
codes (20-37 octal), and so forth, through the sixteenth word, 
bit 15, which represents character code 377 octal. For example, 
to specify the % symbol (code 045 octal) as a read terminator 

11-14 



QIO MACRO FOR TERMINAL DRIVER 

character, set bit 05 in the third word, since the third word of 
the table contains bits representing character codes 40 through 
57 octal. 

If you desire CTRL/S (023), CTRL/Q (021), or any characters whose 
codes are greater than 177 octal as the terminator character(s), 
the terminal must be set to Read-Pass-All operation {TC.BIN=l), 
or to read-pass 8-bits {TC.SBC), as listed in Table 11-7. 

You can include the optional timeout count parameter. 

11.2.2.12 IO.WAL and IO.WLB!TF.WAL - IO.WAL is equivalent to 
IO.WLB logically ORed with the subfunction bit TF.WAL. 

The Write All function causes the driver to pass all output from 
the buffer without interpretation. The driver does not intercept 
control characters, nor does it wrap long lines if you have 
selected input/output wrap-around. 

11.2.2.13 IO.WBT - The IO.WBT function instructs the driver to 
write the buffer regardless of the I/O status of the receiving 
terminal. If you issue an IO.WBT function on a system that does 
not support IO.WBT, the driver treats it as an IO.WLB function. 

Note the following: 

• If another Write operation is currently in progress, the 
driver finishes the current request and issues IO.WBT as the 
next Write request. The effect of this is that a CTRL/S can 
stop IO.WBT functions. Therefore, it can be desirable for 
tasks to time out on IO.WBT operations. 

• If a read is currently posted, the IO.WBT proceeds and the 
driver automatically performs a CTRL/R to redisplay any input 
that it received before the breakthrough Write occurred. 

• The driver cancels CTRL/0 if it is in effect. 

• The driver rubs out any escape sequence that was interrupted. 

An IO.WBT function cannot break through another IO.WBT that is in 
progress. Only a privileged task can issue a breakthrough Write. 

11-15 



QIO MACRO FOR TERMINAL DRIVER 

11.2.2.14 IO.WSD - Use the Write Special Data function to 
communicate nontext information to the terminal task. The buffer 
address and length are the same as for IO.WLB. The data type 
parameter indicates to the terminal task the type of data that 
the buffer contains. The data type is: 

SD.GOS PRO/GIDIS output 

Note that this QIO implements a data path to the terminal 
subsystem that is also used by the CORE Graphics Library and by 
the VT125 (ReGIS) terminal emulator within the PRO/Communications 
application. 

11.2.2.15 IO.RSD - The Read Special Data function is also used 
in communicating nontext information to the terminal subsystem. 
The buffer addiess, length, and timeout are the same as for 
IO.RLB. The data type parameter indicates to the terminal what 
type of data is to be read. 

The following restrictions apply to the use of IO.RSD: 

• In some ways, IO.RSD is the same as a normal Read operation. 
One result of this is that if there is a Read request 
currently outstanding to the keyboard, the IO.RSD does not 
take effect until the Read to the keyboard is complete. 

• While an IO.RSD is pending, no input processing occurs until 
the IO.RSD request completes. Consequently, any characters 
that originate from the keyboard go directly to the 
type-ahead buffer. Also, no ASTs occur and no characters are 
echoed. 

• When the driver receives special data from the terminal task 
(for example, a PRO/GIDIS report) and no IO.RSD request is 
outstanding, the special data enters a- type-ahead buffer. 
The type-ahead buffer is capable of holding a maximum of 36 
bytes. If more characters are input than the buffer can 
hold, the driver discards those characters, but does not 
return an error message. 

If there is an IO.RSD pending when the driver receives 
special data from the terminal task, the data directly enters 
a read buffer. However, the length of one report cannot 
exceed 36 bytes. 

As a result of these restrictions, the recommended means of 
obtaining a special data report is to first issue the IO.WSD to 
cause the report to occur, and then to issue an IO.RSD to receive 
the exact length of the request. This causes the IO.RSD to 

11-16 



QIO MACRO FOR TERMINAL DRIVER 

complete immediately, preventing it from blocking the keyboard 
input. 

Note that this QIO implements a data path to the terminal 
subsystem that is also used by the CORE Graphics Library and by 
the VT125 (ReGIS) terminal emulator within the PRO/Communications 
application. 

11.2.2.16 SF.GMC - The Get Multiple Characteristics function 
returns terminal characteristic information. This function is 
the complementary function for SF.SMC. 

The format is: 

QIO$C SF.GMC, ... ,<stadd,size> 

stadd 

charname 

11.2.2.17 
enables a 
terminal~ 
SF.GMC. 

The starting address of a buffer whose length in 
bytes is specified in the size parameter. Each 
buffer word has the form: 

.BYTE 

.BYTE 
charname 
0 

One of the characteristic bit names listed in 
Table 11-7 (except TC.CLC, which is valid only 
with the SF.SMC function). In the high byte of 
each byte pair, the driver returns 1 if the 
characteristic is true for the terminal, and 0 if 
it is not true. 

SF.SMC - The Set Multiple Characteristics function 
task to set and reset the characteristics of a 
This function is the complementary function for 

The format is: 

stadd 

QIO$C SF.SMC, ... ,<stadd,size> 

The starting address of a buffer whose length in 
bytes is specified in the size parameter. Each 
word in the buffer has the form 

.BYTE charname 

.BYTE value 

11-17 



charname 

value 

QIO MACRO FOR TERMINAL DRIVEE 

One of the symbolic bit names listed in Table 
11-7. 

Either 0 (to clear a given characteristic) or 1 
(to set a characteristic). 

If charname is TC.TTP (terminal type), the parameter value can 
have any of the values listed in Table 11-9. 

Specifying any value for TC.TBF flushes (clears) the type-ahead 
buffer; that is, it forces the type-ahead buffer count to 0. 

Table 11-7: Driver-Terminal Characteristics, SF.GMC and SF.SMC 

Symbol Note 

TC.ACR 

TC.ANI 

TC.AVG 

TC.BIN 

TC.CLC [ 2 l 

TC.CTS [ 3 J 

TC.EDT 

TC.EPA [ 1 J 

TC.ESQ 

TC.FOX 

Octal 
Value 

24 

122 

123 

65 

151 

72 

125 

40 

35 

64 

Meaning, If Asserted 

Wrap-around mode. 

ANSI CRT terminal. 

VT100-family terminal display with 
advanced video. 

Binary input mode (read-pass-all). 
No characters are interpreted as 
control characters. 

CTRL/C notification without terminal 
attached (SF.SMC only). 

Suspend output to terminal: 
0 resume 
1 = suspend 

Terminal performs editing functions. 

Parity sense, valid only when TC.PAR 
is enabled: 

0 odd parity 
1 = even parity 

Input escape sequence recognition. 

Full-duplex mode. 

11-18 



Symbol Note 

TC.HFF 

TC.HFL 

TC.HHT 

TC.LPP 

TC.NEC 

TC.PAR [ 1 ] 

TC.RGS 

TC.RSP [ 1 J 

TC.SCP 

TC.SXL 

TC.SFC 

TC.SMR 

TC.TBF [ 6] 

TC.TTP [ 4 J 

TC.VFL 

TC.WID [ 5] 

QIO MACRO FOR TERMINAL DRIVER 

Octal 
Value 

17 

13 

21 

2 

47 

37 

126 

3 

12 

150 

131 

25 

71 

10 

14 

1 

Meaning, If Asserted 

Hardware form-feed capability (if 0, 
form-feeds are simulated using 
TC. LPP). 

Number of fill characters to insert 
after a RETURN (0 through 7 equals 
x) • 

Horizontal tab capability (if 0, 
horizontal tabs are simulated using 
spaces). 

Page length (1 through 255 decimal 
equals x). 

Echo suppressed. 

Enable and disable parity: 
1 enabled 
0 disabled 

Terminal supports ReGIS 
instructions. 

Receiver speed, bits per second. See 
Table 11-10. 

Terminal is a scope (CRT). 

Printer supports sixel graphics. 

Terminal supports soft character 
set. 

Uppercase conversion disabled. 

Type-ahead buffer count (read), or 
flush (write). 

Terminal type (0 through 255 
decimal) See Table 
11-9. 

Send four fill characters after line 
feed. 

Page width (1 through 255 decimal). 

11-19 



Symbol Note 

TC.XSP [ 1] 

TC.SBC 

QIO MACRO FOR TERMINAL DRIVER 

Octal 
Value 

4 

67 

Meaning, If Asserted 

Transmitter speed, bits per second. 
See Table 11-10. 

Pass eight bits on input, even if 
not binary input mode (TC.BIN). 

Notes to Table 11-7 

1. The characteristic is device dependent. Both the printer 
port (TT2:) and quad SLU terminals have the characteristic. 

2. TC.CLC 

The TC.CLC characteristic consists of two words instead of 
one word. The format is: 

where 

. BYTE TC. CLC 

.BYTE 3 

.WORD ast_add 

ast_add is the address of a CTRL/C 
value is zero, then the 
disables the last CTRL/C 
previously set by the task. 

AST routine. If this 
terminal driver simply 
AST request that was 

You need not re-enable CTRL/C trapping after setting the 
TC.CLC characteristic; the system will recognize CTRL/C ASTs 
until you explicitly disable them, or when the task exits. 

Multiple tasks can handle CTRL/C ASTs. The terminal driver 
services these ASTs on a last in-first-out (LIFO) basis. 

Upon entry to the AST routine, the top word on the 
contains the value 3. Your task must remove the top 
from the stack before exiting the AST. Table 
illustrates the stack upon entry to the AST routine. 

11-20 

stack 
word 
11-8 



QIO MACRO FOR TERMINAL DRIVER 

Table 11-8: Stack Upon Entry to AST Routine 

Current Contents 
Stack 
Pointer 

SP+10 Event flag mask word 

SP+06 PS of task prior to AST 

SP+04 PC of task prior to AST 

SP+02 Task's directive status word 

SP+OO 3 

3. TC.CTS 

The TC.CTS characteristic returns the present suspend 
(CTRL/S), resume (CTRL/Q), or suppress (CTRL/O) state set via 
the SF.SMC function. The driver returns the following 
values: 

Value 
Returned State 

0 
1 
2 
3 

Resume (CTRL/Q) 
Suspend (CTRL/S) 
Suppress (CTRL/O) 
Both suppress and suspend 

Using a value of 0 with the SF.SMC function clears the 
suspend state; a value of 1 selects the suspend state. 

NOTE 

If you stop output to the terminal screen by 
pressing the HOLD SCREEN key on a 
Professional, TC.CTS does not indicate that 
output has stopped. Also, if you stop output 
to the terminal screen by pressing NO SCROLL 
on a VT100-series or HOLD SCREEN on a 
Professional, you cannot resume output with 
TC.CTS. 

11-21 



QIO MACRO FOR TERMINAL DRIVER 

4. TC.TTP 

For the TC.TTP characteristic (terminal type), the driver 
returns a value listed in Table 11-9 in the high byte. 

The TC.TTP characteristic, when read by the terminal driver, 
sets implicit values for several of the other terminal 
characteristics. Table 11-9 shows the characteristics that 
the driver sets. You can change implicit values by issuing 
subsequent Set Multiple Characteristics requests. 
(Characteristics not listed in the table are not implicitly 
set by the driver.) 

The terminal driver also uses TC.TTP to determine cursor 
positioning commands, as appropriate. 

5. TC.WID 

Unsolicited input that fills 
receives a terminator is 
happens, the driver discards 
and echoing AU. 

6. TC.TBF 

the buffer before the driver 
probably invalid. When this 

the input by simulating a CTRL/U 

The TC.TBF characteristic returns the number of unprocessed 
characters in the type-ahead buffer for the specified 
terminal. This allows tasks to determine if any characters 
were typed that did not require AST processing. In addition, 
the value returned can be used to read the exact number of 
characters typed, rather than a typical value of 80 (decimal) 
or 132 (decimal) characters for the terminal. 

Note the following: 

• The capacity of the type-ahead buffer is 36 (decimal) 
characters. 

• Using TC.TBF in an SF.SMC function flushes the type-ahead 
buffer. 

11-22 



...... 

...... 
I 

N 
w 

Table 11-9: Terminal Type Values {TC.TTP) for SF.SMC and SF.GMC 

Symbol/Terminal Type Implicit Characteristics* 

TC. TC. TC. TC. TC. TC. TC. TC. TC. TC. TC. TC. 
ANI AVO CUP DEC EDT HFF HFL HHT LPP RGS SCP SFC 

T.BMP1/PC3xx** 1 1 3 1 1 1 - 1 24 - 1 1 

T.LA12/LA12 - - - - - 1 - 1 66 - - -

T.LA50/LA50 - - - - - 1 - 1 66 - - -

T.L100/LA100 - - - - - 1 - 1 66 - - -

T.L120/LA120 - - - - - 1 - - 66 - - -
T.L210/LA210 - - - - - 1 - 1 66 - - -
T.LN03/LN03 - - - - - 1 - 1 66 - - -

T.LQP2/LPQ02 - - - - - 1 - 1 66 - - -

T.LQP3/LQP03 - - - - - 1 - 1 66 - - -

T.UNKO/Unknown - - - - - - - - - - - -
T.V100/VT100 1 1 3 1 - - - 1 24 - 1 -

T.V101/VT101 1 - 3 1 - - - 1 24 - 1 -
T.V102/VT102 1 1 3 1 1 - - 1 24 - 1 -

T.V105/VT105 1 - 3 1 - - - 1 24 - 1 -

T.V125/VT125 1 1 3 1 - - - 1 24 1 1 -

T.V2XX/VT2xx 1 1 3 1 1 1 - 1 24 - 1 1 

NOTES 

* Implicit characteristics are shown as supported by the driver. Values not shown are not 
automatically set by the driver. An unknown terminal type has no implicit characteristics. 

** The PC3xx Series Bitmap Display is the default terminal for the Professional. Note that the 
only difference between T.BMP1 and T.V2XX is the Terminal Subsystem's response to a device 
attributes request. See the Terminal Subsystem Manual for details. 

TC. TC. TC. 
SXL VFL WID 

- - 80 

- - 132 

1 - 80 I() 
H 

1 - 132 0 

- - 132 ~ 
1 - 132 

n 
~ 
0 

1 - 132 
"'l 

- - 132 0 
~ 

- - 132 >-:3 
til 

- - - ~ :;;:: 
H - - 80 z 
!I:' 

- - 80 t"' 

- - 80 0 
~ 
H - - 80 <: 
til 

- - 80 ~ 

- - 80 



Table 11-10 lists the values for terminal receiver and 
transmitter speeds for TC.ASP, TC.RSP, and TC.XSP. 

Table 11-10: Receiver/Transmitter Speed Values 

TC.ASP, 
TC.RSP, 
TC.XSP 
Symbol 

S.50 

S.75 

S.110 

S.134 

S.150 

S.300 

S.600 

S.1200 

S.1800 

S.2000 

S.2400 

S.3600 

S.4800 

S.7200 

S.9600 

S.19.2 

Decimal 
Value 

2 

3 

5 

6 

7 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

21 

Actual 
Baud Rate 
(Bits per 
Second) 

50 

75 

110 

134 

150 

300 

600 

1200 

1800 

2000 

2400 

3600 

4800 

7200 

9600 

19200 

11-24 

Available 
for 
Printer 
Port? 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

Available 
for Quad 
SLU? 

no 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

no 

yes 

yes 

no 

yes 

yes 

yes 

yes 



STATUS RETURNS FOR TERMINAL DRIVER 

11.3 STATUS RETURNS FOR TERMINAL DRIVER 

Table 11-11 describes error and status conditions that the 
terminal driver returns in the I/O status block. 

Most error and status codes returned are byte values. For 
example, the value for rs.sue is 1. However, rs.cc, IS.CR, 
IS.ESC, and IS.ESQ are word values. When the driver returns any 
of these codes, the low byte indicates successful completion, and 
the high byte shows what type of completion occurred. 

To test for one of these word-value return codes, first test the 
low byte o-f the first word of the I/O status block for the value 
rs.sue. Then, test the full word for rs.cc, IS.CR, IS.ESC, or 
IS.ESQ. (If the full word tests equal to rs.sue, then its high 
byte is 0, indicating byte-count termination of the read.) 

You can consider the return IE.EOF to be a successful read, since 
characters returned to the task's buffer can be terminated by a 
CTRL/Z character. 

The driver returns the SE.xxx codes after a request to either the 
SF.GMC or SF.SMC functions, described in Sections 11.2.2.16 and 
11.2.2.17. When the driver returns any of these codes, the low 
byte in the first word of the I/O status block contains IE.ABO. 
The second word of the IOSB contains an offset (starting from 0) 
to the byte in error in the QIO's stadd buffer. 

Table 11-11: Terminal Status Returns 

Symbol Description 

IE.EOF Successful completion on a read with end-of-file. 
The line of input read from the terminal terminated 
with the end-of-file character CTRL/Z. The second 
word of the I/O status block contains the number of 
bytes read before the driver received the CTRL/Z. 
The input buffer contains those bytes. 

rs.sue Successful completion. The operation specified in 
the QIO directive completed successfully. If the 
operation involved reading or writing, you .can 
examine the second word of the I/O status block to 
determine the number of bytes processed. The input 
buffer contains those bytes. 

11-25 



Symbol 

IS.CC 

IS.CR 

IS.ESC 

IS.ESQ 

IS.PND 

IS.TMO 

IE.ABO 

IE.BAD 

IE.DAA 

IE.DNA 

STATUS RETURNS FOR TERMINAL DRIVER 

Description 

Successful completion on a read. The line of input 
read from the terminal terminated with an 
INTERRUPT/DO or CTRL/C sequence. The input buffer 
contains the bytes read. 

Successful completion on a read. The line of input 
read from the terminal terminated with a RETURN. The 
input buffer contains the bytes read. 

Successful completion on a read. The line of input 
read from the terminal terminated with an escape 
character (CSI or SS3). The input buffer contains 
the bytes read. 

Successful completion on a read. The line of input 
read from the terminal terminated with an escape 
sequence. The input buffer contains the bytes read 
and the escape sequence. 

I/O request pending. The operation specified in the 
QIO directive has not yet been executed. The I/O 
status block is filled with zeroes. 

Successful read with time-out. The line of input 
read from the terminal was terminated by a time-out. 
(TF.TMO was set and the specified time interval was 
exceeded.) The input buffer contains the bytes read. 

Operation aborted. IO.KIL canceled the specified I/O 
operation while in progress or while in the I/O 
queue. The second word of the I/0 status block 
indicates the number of bytes the driver read or 
wrote before the kill occurred. 

Bad parameter. The size of the data buffer in the 
QIO request exceeds 8128 bytes. 

Device already attached. The issuing task already 
attached the physical device unit specified in an 
IO.ATT request. This code does not indicate that the 
unit was attached by another task. The subfunction 
bits TF.AST or TF.ESQ specified in the attach have 
no effect. 

Device not attached. The issuing task did not attach 
the physical device unit specified in an IO.DET 
function. This code has no bearing on the attachment 
status of other tasks. 

11-26 



Symbol 

IE.DNR 

IE.IES 

IE.IFC 

IE.NOD 

IE.PES 

IE.PRI 

SE.NIH 

SE.FIX 

STATUS RETURNS FOR TERMINAL DRIVER 

Description 

Device not ready. The physical device unit specified 
in the QIO directive was not ready to perform the 
desired I/O operation. The driver returns this code 
to indicate that a time-out occurred on the physical 
device unit (that is, an interrupt was lost). 

Invalid escape sequence. An escape sequence was 
started, but escape-sequence syntax was violated 
before the sequence was completed. The character 
causing the violation is the last character in the 
buffer. 

For details, see Section 11.5.4. 

Invalid function. A function code specified in an 
I/O request is invalid for terminals. 

Buffer allocation failure. System dynamic storage 
has been depleted, resulting in insufficient space 
available to allocate an intermediate buffer for an 
input request or an AST block for an attach request. 

Partial escape sequence. An escape sequence was 
started, but read-buffer space was exhausted before 
the sequence was completed. The buffer specified for 
a Read or Write request was partially or totally 
outside the address space of the issuing task, a 
byte count of 0 was specified, or an odd or 0 AST 
address was specified. 

For details, see Section 11.5.4.3. 

Privilege violation. A nonprivileged task issued an 
IO.WBT, directed an SF.SMC to a terminal other than 
TI:, or attempted to set its privilege bit. 

Not in handler. An SF.GMC or SF.SMC request named an 
invalid terminal characteristic, or a task attempted 
to assert TC.PRI. For a list of valid terminal 
characteristics, see Table 11-7. 

Fixed Characteristic. An attempt was made to change 
a fixed characteristic in a SF.SMC subfunction 
request (for example, an attempt was made to change 
the unit number). 

11-27 



Symbol 

SE.VAL 

STATUS RETURNS FOR TERMINAL DRIVER 

Description 

Invalid value. The new value specified in an SF.SMC 
request for the TC.TTP terminal characteristic is 
invalid. For a list of the valid values, see Table 
11-9. 

11.4 CONTROL CHARACTERS AND SPECIAL KEYS 

This section describes the system's special 
characters and keys. Note that the driver 
control characters and special keys during a 
(IO.RAL), and recognizes only some of them 
Special Terminators (IO.RST). 

11.4.1 Control Characters 

terminal control 
does not recognize 
Read All request 
during a Read with 

A control character is input from a 
control key (CTRL) down while typing 
echoes three of the control characters 
CTRL/R, CTRL/U, and CTRL/Z, as AR, Au, 

terminal by holding the 
one other key. The driver 
described in Table 11-12, 
and AZ, respectively. 

Table 11-12: Terminal Control Characters 

Character Meaning 

CTRL/0 CTRL/O suppresses terminal output. For attached 
terminals, CTRL/O remains in effect (output is 
suppressed) until one of the following occurs: 

• The terminal is detached. 
• Another CTRL/O character is typed. 
• An IO.CCO or IO.WBT function is issued. 
• Input is entered. 

For unattached terminals, CTRL/0 suppresses output 
for only the current output buffer (typically one 
1 ine) . 

11-28 



CONTROL CHARACTERS AND SPECIAL KEYS 

Character Meaning 

CTRL/Q 

CTRL/R 

CTRL/Q resumes terminal output previously 
suspended by means of either the HOLD SCREEN key 
or CTRL/S. 

Typing CTRL/R results in a RETURN and line feed 
being echoed, followed by the incomplete 
(unprocessed) input line. Any tabs that were input 
are expanded and the effect of any rubouts is 
shown. On hardcopy terminals, CTRL/R verifies the 
effect of tabs or rubouts in an input line. 

CTRL/R is also useful for CRT terminals for the 
CRT rubout. For example, after rubbing out the 
leftmost character on the second displayed line of 
a wrapped input line, the cursor does not move to 
the right of the first displayed line. In this 
case, CTRL/R brings the input line and the cursor 
together again. 

CTRL/S CTRL/S suspends terminal output. (Output can be 
resumed by pressing the HOLD SCREEN key or typing 
CTRL/Q. See the description of CTRL/Q.) 

CTRL/U Typing CTRL/U before typing a line terminator 
deletes previously-typed characters back to the 
beginning of the line. The system echoes this 
character as Au followed by a RETURN and a line 
feed. 

CTRL/X CTRL/X clears the type-ahead buffer. 

CTRL/Z CTRL/Z indicates an end-of-file for the current 
terminal input. 

11.4.2 INTERRUPT/DO AST Information 

Table 11-13 describes the driver's response when your application 
requests the IO.ATA QIO without specifying the TF.XCC 
subfunction. 

NOTE 

The driver does not recognize INTERRUPT/DO from 
terminals attached through the Quad SLU or 
printer port. It does recognize CTRL/C, however. 

11-29 



CONTROL CHARACTERS AND SPECIAL KEYS 

Table 11-13: Response with 10.ATA (Omitting TF.XCC) 

Key One 

Other than 
INTERRUPT 

INTERRUPT 

INTERRUPT 

CTRL/C 

Key Two 

DO 

Other than 
DO 

DO 

Driver Response 

The driver handles the first 
key as usual and sends your 
task the escape sequence for 
the DO key. 

The driver discards the 
INTERRUPT key and handles the 
second key as if INTERRUPT had 
not been pressed. 

The driver activates your 
task's AST routine just as if 
a CTRL/C had been typed. 

The driver activates your 
task's AST routine as for 
RSX-11M-PLUS. 

Table 11-14 describes the driver's response when your application 
does not request IO.ATA, or if it has requested IO.ATA!TF.XCC. 

Table 11-14: Response Without 10.ATA or with 10.ATA!TF.XCC 

Key One 

Other than 
INTERRUPT 

INTERRUPT 

Key Two 

DO 

Other than 
DO 

11-30 

Driver Response 

The driver handles the first 
key as usual and sends your 
task the escape sequence for 
the DO key. 

The drver discards the 
INTERRUPT key and handles the 
second key as if INTERRUPT had 
not been pressed. 



CONTROL CHARACTERS AND SPECIAL KEYS 

Key One Key Two 

INTERRUPT DO 

CTRL/C 

Driver Response 

The driver notifies the 
PRO/Dispatcher, which aborts 
all application tasks. Your 
application receives no 
indication that anything 
happened. 

The driver notifies the 
PRO/Dispatcher, which aborts 
aborts all application tasks. 
Your application receives no 
indication that anything 
happened. 

If your application puts the terminal in Read Pass All mode or if 
it specifies TF.RAL on a read, all keys, except for HOLD SCREEN 
and PRINT SCREEN, enter into the type-ahead buffer unprocessed. 
The INTERRUPT and DO keys enter as the escape sequences that they 
represent. 

The driver places any characters for which there is no read or 
AST request outstanding into the 36-byte type-ahead buffer. If 
the buffer is full, and if a character is typed that would go 
into the type-ahead buffer, the driver echoes a bell and discards 
the additional character. When either CTRL/C or the INTERRUPT/DO 
sequence is entered, the driver flushes the type-ahead buffer. 

11.4.3 Special Keys 

The RETURN, and DELETE keys have special significance for 
terminal input, as described in Table 11-15. 

A line can be terminated by a RETURN or CTRL/Z characters, or by 
completely filling the input buffer. You can determine the 
standard buffer size for a terminal by issuing the Get LUN 
Information system directive and examining word 5 of the buffer. 

11-31 



CONTROL CHARACTERS AND SPECIAL KEYS 

Table 11-15: Special Terminal Keys 

Key Meaninq 

RETURN Pressing RETURN terminates the current line and 
causes the carriage or cursor to return to the 
first column on the line. 

DELETE Pressing DELETE deletes the last character 
typed on an input line. The operator can delete 
only characters typed since the last line 
terminator and can delete several characters in 
sequence by pressing successive DELETES. 

DELETE causes the driver to remove the last 
typed character (if any) from the incomplete 
input line and to echo the following character 
sequence for that terminal: 

backspace-space-backspace 

If the last typed character was a tab, the 
driver issues enough backspaces to move the 
cursor to the character position before the 
tab. 

If a long input line was split or wrapped by 
the automatic-return option, and a DELETE 
erases the last character of a previous line, 
the driver does not move the cursor to the 
previous line. 

11-32 



ESCAPE SEQUENCES 

11.5 ESCAPE SEQUENCES 

Escape sequences are strings 
with an ESC (033 octal) 
only--with either the CSI 
characters. 

of two or more characters beginning 
character, or--in 8-bit environments 

(233 octal) or SS3 (217 octal) 

Escape sequences provide a way to pass input to a task without 
interpretation by the operating system. You can do this with a 
number of one-character Read All function requests, but escape 
sequences allow you to use IO.RLB requests. 

11.5.1 Format of Escape Sequences 

The format of an escape sequence that begins with the ESC 
character is: 

ESC [ i ] . . . t ... 

ESC 

[ i ] ... 

t ... 

The escape character, 33 octal. 

Optional intermediate character 
which can consist only of the 
(octal) to 57 (octal), inclusive. 

combinations, 
characters 40 

Terminating character combinations, which can 
consist only of the characters 60 (octal) to 176 
(octal) inclusive. 

The format of an escape sequence that begins with the CS! 
character is: 

CS! [i] ... t. .. 

CS! 

[ i l ... 

t ... 

The 8-bit control sequence introducer character, 
233 octal, or the seven-bit combination ESC [ (33 
+ 133 octal). 

Optional intermediate character 
which can consist only of the 
(octal) to 77 (octal), inclusive. 

combinations, 
characters 40 

Terminating character combinations, which can 
consist only of the characters 100 (octal) to 176 
(octal) inclusive. 

The format of an escape sequence that begins with the SS3 
character is: 

11-33 



ESCAPE SEQUENCES 

SS3 i 

SS3 The 8-bit single shift character, 217 octal, or 
the 7-bit combination ESCO (33 + 117 octal). 

i A single character in the range 40 (octal) to 176 
(octal), inclusive. 

11.5.2 Receiving Escape Sequences 

Two prerequisites must be satisfied before your task can receive 
escape sequences: 

• The task must request the escape sequences by issuing an 
IO.ATT function and invoking the subfunction bit TF.ESQ. 

• You must have made the terminal capable of generating escape 
sequences. Do this by issuing the Set Multiple 
Characteristics request. 

If you have not satisfied these prerequisites, the driver treats 
the ESC character as a line terminator. 

11.5.3 Characteristics of Escape Sequences 

Escape sequences always act as line terminators. That is, an 
input buffer can contain other characters that are not part of an 
escape sequence, but the last characters in the buffer are always 
part of an escape sequence. 

The driver does not echo escape sequences. However, if a DELETE 
sequence (not from the terminal) is in progress, the driver 
closes the sequence with a backslash when an escape sequence is 
begun. 

The driver does not recognize escape sequences in unsolicited 
input streams. Also, the driver does not recognize them in a 
Read with Special Terminators (subfunction bit TF.RST) or in a 
Read All (subfunction bit TF.RAL). 

11-34 



ESCAPE SEQUENCES 

11.5.4 Escape Sequence Format Violations 

A violation of the format defined in Section 11.5.1 causes the 
terminal driver to abandon the sequence and to return the error 
IE.IES. 

11.5.4.1 Delete Character--DEL (177) - The DELETE character is 
not valid within an escape sequence. If it occurs at any point 
within an escape sequence, the driver abandons the entire 
sequence and deletes it from the input buffer. 

11.5.4.2 Control Characters - The reception of any character in 
the range 0 through 37 or 200 through 237 (with four exceptions) 
is a syntax violation that terminates the read with an error 
(IE.IES). The four exceptions are the control characters CTRL/Q, 
CTRL/S, CTRL/X, and CTRL/O. The Executive handles these 
characters normally even when an escape sequence is in progress. 

11.5.4.3 Full Buffer - A syntax error results when an escape 
sequence is terminated by running out of read buffer space, 
rather than by receipt of a final character. The driver returns 
the error IE.PES. 

For example, suppose a task 
buffer length of 2, and 
following characters: 

issues an IO.RLB request with a 
the terminal operator enters the 

ESC ! A 

The buffer contains "ESC !", word 1 of the I/O Status Block 
contains IE.PES, and word 2 of the IOSB contains the value 2. 

The driver treats the A as unsolicited input. 

11.6 VERTICAL FORMAT CONTROL 

Table 11-16 summarizes all characters used for 
control on the terminal. You can specify 
characters as the value of the vfc parameter 
IO.WVB, IO.WBT, IO.CCO, or IO.RPR functions. 

11-35 

vertical format 
any one of these 
in the IO.WLB, 



VERTICAL FORMAT CONTROL 

Table 11-16: Vertical Format Control Characters 

Octal 
Value 

040 

060 

061 

053 

044 

000 

Character 

blank 

0 

1 

+ 

$ 

null 

Meaning 

Single space. Write one line feed, 
print the contents of the buffer, and 
write a RETURN. Normally, printing 
immediately follows the last line 
printed. 

Double space. Write two line feeds, 
print the contents of the buffer, and 
write a RETURN. Normally, the driver 
prints the buffer contents two lines 
below the last line printed. 

Page eject. If the terminal supports 
FORM FEEDs, write a form feed, print 
the contents of the buffer, and write a 
RETURN. If the terminal does not 
support FORM FEEDs, the driver 
simulates the FORM FEED character 
either by writing four line feeds to a 
CRT terminal, or by writing enough line 
feeds to advance the paper to the top 
of the next page on a printing 
terminal. 

overprint. Write the contents of the 
buffer and write a RETURN, normally 
overprinting the previous line. 

Prompting output. Write one line feed 
and print the contents of the buffer. 
This mode of output is intended for use 
with a terminal to which a prompting 
message is written and input is read on 
the same line. 

Internal Vertical Format. Write the 
buffer contents without adding vertical 
format control characters. 

11-36 



VERTICAL FORMAT CONTROL 

The driver interprets all other vertical format control 
characters as blanks (040). Your task can determine the buffer 
width by issuing a Get LUN Information directive and examining 
word 5 returned in the buffer. 

It is possible to lose track of where you are in the input buffer 
if wrap-around is enabled for the terminal. For example, while 
deleting text on a wrapped line, the cursor does not back up to 
the previous line. 

11.7 TYPE-AHEAD BUFFERING 

The terminal driver either immediately processes characters that 
it receives, or it stores the characters in the type-ahead 
buffer. The type-ahead buffer allows characters to be 
temporarily stored and retrieved in a first-in, first-out (FIFO) 
manner. 

The driver uses the type-ahead buffer as follows: 

Store in buffer: 

The driver stores an input character in the type-ahead buffer if 
one or more of the following conditions is true: 

• There is at least one character presently in the type-ahead 
buffer. 

• The character input requires echo, and the output line to the 
terminal is presently busy writing a character. 

e No Read operation is in progress, no unsolicited input AST is 
specified, and the terminal is attached. The driver does not 
echo a character when storing it in the buffer. Instead, the 
driver defers echoing a character until retrieving it from 
the buffer, since the driver is unaware of the read mode (for 
example, read-without-echo) until that time. 

NOTE 

Depending on the terminal mode and the presence 
of a Read function, Read subfunctions, and an 
unsolicited input AST, the driver might process 
CTRL/C, INTERRUPT/DO, CTRL/O, CTRL/Q, CTRL/S, and 
CTRL/X characters immediately, without storing 
them in the type-ahead buffer. 

11-37 



TYPE-AHEAD BUFFERING 

Retrieve from buffer: 

When the driver becomes ready to process input, or when a task 
issues a read request, the driver attempts to retrieve a 
character from the buffer. If this attempt is successful, the 
driver processes and echoes the character if required. 

The driver then continues to retrieve and process characters 
until one of the following conditions is true: 

• The buffer is empty. 

e The driver becomes unable to process another character. 

• A read request terminates, leaving the terminal either 
attached or slaved. 

Flush the buffer: 

The driver flushes (clears) the buffer upon receiving CTRL/X OR 
INTERRUPT/DO. 

An exception is that CTRL/X does not flush the buffer if 
read-pass-all or read-with-special-terminators is in effect. 

If the buffer becomes full, each character that cannot be entered 
causes a BELL character to be echoed to the terminal. 

If a character is input and echo is required, but the transmitter 
section is busy with an output request, the driver holds the 
input character in the type-ahead buffer until output 
(transmitter) completion occurs. 

11.8 FULL-DUPLEX OPERATION 

While in full-duplex mode, the driver attempts to simultaneously 
service one Read request and one Write request. The driver 
performs Attach, Detach and Set Multiple Characteristics 
functions with the line in an idle state (not executing a Read or 
a Write request). 

11.9 INTERMEDIATE INPUT AND OUTPUT BUFFERING 

Input buffering for checkpointable tasks exists in the terminal 
driver private pool. As each buffer becomes full, the driver 
automatically allocates a new buffer and links it to the previous 

11-38 



INTERMEDIATE INPUT AND OUTPUT BUFFERING 

buffer. The Executive then transfers characters from these 
buffers to the task buffer. The driver deallocates the buffers 
once the transfer has been completed. 

If the driver fails to allocate the first input buffer, it 
transfers the characters directly into the task buffer. If the 
driver successfully allocates the first buffer, but a subsequent 
buffer allocation fails, the input request terminates with the 
error code IE.NOD. In this case, the I/O Status Block contains 
the number of characters actually transferred to the task buffer. 

Your task can then update the buffer pointer and byte count and 
reissue a Read request to receive the rest of the data. The 
type-ahead buffer ensures that no input data is lost as long as 
the type-ahead buffer is not full. 

All terminal output is buffered. The driver allocates and links 
to a list as many buffers as required. If the driver cannot 
obtain enough buffers for all output data, it performs the 
transfer as a number of partial transfers, using available 
buffers for each partial transfer. This is transparent to the 
requesting task. If the driver cannot allocate any buffers, the 
request terminates with the error code IE.NOD. 

The unconditional output buffering serves the following purposes: 

e It reduces time spent at system state. 

e It enables task checkpointing during the transfer to the 
terminal (if all output fits in one buffer list). 

11.10 TERMINAL-INDEPENDENT CURSOR CONTROL 

The terminal driver responds to task I/O requests for cursor 
positioning without the task requiring information about the type 
of terminal in use. 

You specify cursor position in the vfc parameter of the IO.WLB or 
IO.RPR function. To use the vfc parameter to define cursor 
position, the high byte must be nonzero. The driver in this case 
interprets the low byte as column number (x coordinate) and the 
high byte as line number (y coordinate). 

If the high byte of the vfc parameter is 0, the driver intreprets 
the parameter simply as a vertical format control (vfc) 
character. 

11-39 



TERMINAL-INDEPENDENT CURSOR CONTROL 

The driver defines the home position, the upper-left corner of 
the display, as 1,1. Depending upon the terminal type, the 
driver writes cursor-positioning commands appropriate for the 
terminal in use to move the cursor to the specified position. If 
the most significant bit of the line number is set, the driver 
clears the display before positioning the cursor. 

When defining cursor position in an IO.WLB function, you can use 
the TF.RCU subfunction to save the current cursor position. When 
included in this manner, TF.RCU causes the driver to: 

1. Save the current cursor position. 

2. Position the cursor and write the specified buffer. 

3. Restore the cursor to the original (saved) position once the 
output transfer has been completed. 

11.11 PROGRAMMING SUGGESTIONS 

The following suggestion can help you code particular operations 
for the terminal driver. 

11.11.1 Using 10.WVB Instead of 10.WLB 

Use IO.WVB instead of IO.WLB when writing to a terminal. If the 
write actually goes to a terminal, the Executive converts the 
IO.WVB request to IO.WLB. However, if the LUN has been 
redirected to an appropriate device--a disk, for example--the 
driver will reject the IO.WVB function because a file is not open 
on the LUN. This prevents privileged tasks from overwriting 
block zero of the disk. 

Note that the Executive strips any subfunction bits specified in 
an IO.WVB request (such as TF.CCO, TF.WAL, TF.WBT) when 
converting the IO.WVB to IO.WLB. 

11-40 



CHAPTER 12 

VIRTUAL TERMINAL DRIVER 

Virtual terminals are software constructs that can provide 
noninteractive terminal I/O support for offspring tasks. 

Offspring tasks spawned by or connected to the parent task that 
created a virtual terminal can perform terminal I/O operations 
with the virtual terminal in the same manner as with physical 
terminals. Virtual terminals differ from physical terminals in 
that read and write operations directed to TI: are mediated by 
the parent task instead of a physical device. 

The Executive creates a virtual terminal when requested by parent 
tasks with the Create Virtual Terminal (CRVT$) directive. 
Virtual terminals are eliminated either when the parent issues 
the ELVT$ directive or when the parent exits. All offspring 
tasks whose TI: point to the virtual terminal being eliminated 
are aborted by the Executive. See Sections 8.15 and 8.23 for 
details on CRVT$ and ELVT$. 

Your task must establish user context by calling the login task 
for each virtual terminal it creates. Section 12.5 describes how 
to call the login task. 

A special case of the virtual terminal is the null virtual 
terminal, described in Section 12.6. 

12.1 GET LUN INFORMATION MACRO FOR VIRTUAL TERMINAL DRIVER 

Word 2 of the buffer filled by the Get LUN Information system 
directive (the first characteristics word) contains the following 
information for virtual terminals. A setting of 1 indicates that 
the described characteristic is true for virtual terminals. 

12-1 



GET LUN INFORMATION MACRO FOR VIRTUAL TERMINAL DRIVER 

Table 12-1: Get LUN Information for Virtual Terminal Driver 

Bit Setting 

0 1 

1 1 

2 1 

3 0 

4 0 

5 0 

6 0 

7 0 

8 0 

9 0 

10 0 

11 0 

12 0 

13 0 

14 0 

15 0 

Meaning 

Record-oriented device 

Carriage-control device 

Terminal device 

File-structured device 

Single-directory device 

Sequential device 

Reserved 

User-mode diagnostics supported 

Reserved 

Unit software write-locked 

Input spooled device 

Output spooled device 

Pseudo device 

Device mountable as a communications 
channel 

Device mountable as a FILES-11 volume 

Device mountable 

Words 3 and 4 are undefined. Word 5 specifies the maximum byte 
count (that is, maximum buffer size) to which offspring requests 
will be truncated; this value is specified by the parent task in 
the Create Virtual Terminal system directive, as described in 
Section 8.15. 

12-2 



QIO MACRO FOR VIRTUAL TERMINAL DRIVER 

12.2 010 MACRO FOR VIRTUAL TERMINAL DRIVER 

Table 12-2 lists the standard and device-specific functions of 
the QIO macro that are valid for virtual terminals. 

NOTE 

The length of a buffer in a QIO request to a 
virtual terminal cannot exceed 20000-100 (octal), 
or 8128 (decimal) bytes. 

Table 12-2: 010 Functions for Virtual Terminals 

Format Function 

Standard Functions 

QIO$C IO.ATT, ... 

QIO$C IO.DET, ... 

QIO$C IO.KIL, ... 

QIO$C IO.RLB, ... ,<stadd,size> 

QIO$C IO.RVB, ... ,<stadd,size> 

QIO$C IO.WLB, ... ,<stadd,size,stat> 

QIO$C IO.WVB, ... ,<stadd,size,stat> 

Device-Specific Functions 

QIO$C IO.STC, ... ,<cb,sw2,sw1> 

QIO$C SF.GMC, ... ,<stadd,size> 

12-3 

Attach device 

Detach device 

Cancel I/0 request 

Read logical block 

Read virtual block 
(effects IO.RLB) 

Write logical block 

Write virtual block 
(effects IO.WLB) 

Set terminal 
characteristics 
(enable/disable 
intermediate I/0 
buffering), or return I/0 
completion status to 
offspring task 

Get multiple 
characteristics 



QIO MACRO FOR VIRTUAL TERMINAL DRIVER 

Format Function 

QIO$C IO.GTS, ... ,<stadd,size> Get terminal support 

QIO$C IO.RPR, ... ,<stadd,size, 
[tmo],pradd,prsize,vfc> 

Read logical block after 
prompt 

QIO$C SF.SMC, ... ,<stadd,size> Set multiple 
characteristics 

Parameters Shown in Table 12-2 

size 

stadd 

stat 

cb 

The size of the data buffer in bytes (must be greater than 
0, and less than or equal to 17700 octal). The buffer must 
be located within the address space of the parent or 
offspring task issuing the I/O request. 

The starting address of the data buffer. The address must 
be word aligned for SF.GMC, IO.GTS, and SF.SMC; otherwise, 
it may be aligned on a byte boundary. 

The I/O completion successful status code, specified by the 
parent task, issued by the virtual terminal driver in 
response to an offspring task's read request. 

Characteristic bits to be set, selecting the following 
virtual terminal functions: 

cb Value Bits Set 

0 none 

1 0 

2 1 

3 0 and 1 

Function 

Enable intermediate buffering in 
Executive pool 

Return specified virtual terminal I/O 
completion status to requesting 
off spring task 

Disable intermediate buffering 

Return status for offspring write 
request 

12-4 



swl 

tmo 

vf c 

pr add 

QIO MACRO FOR VIRTUAL TERMINAL DRIVER 

The code for I/O completion status. 

NOTE 

The sw2 and swl parameters are valid in the 
IO.STC function only when cb=l or cb=3. 

An optional timeout count. 

A character for vertical format control. See Table 11-16. 
This argument is supplied for compatibility with QIOs to 
physical terminals. 

The starting address of the prompt buffer. 

prsize 

The size of the prompt buffer 
located within the address 
issuing the I/0 request. 

12.2.1 Standard 010 Functions 

in bytes. The buffer must be 
space of the offspring task 

12.2.1.1 IO.ATT - This I/O function can be issued by offspring 
tasks to attach the virtual terminal. (It is invalid for parent 
tasks to issue IO.ATT.) Attaching a virtual terminal prevents 
other offspring tasks from executing I/0 operations with the 
virtual terminal. However, parent task I/O requests are always 
serviced when issued. 

This function is invalid for null virtual terminals. 

12.2.1.2 IO.DET - This I/O function can be issued by offspring 
tasks to detach the virtual terminal, making it available for use 
by other offspring tasks connected to the same parent task. (It 
is invalid for parent tasks to issue IO.DET.) 

12-5 



QIO MACRO FOR VIRTUAL TERMINAL DRIVER 

This function is invalid for null virtual terminals. 

12.2.1.3 IO.KIL - Parent and offspring tasks can issue IO.KIL to 
cancel I/O requests. An offspring task issuing IO.KIL can result 
in IE.ABO being returned to the parent task. 

This function is invalid for null virtual terminals. 

12.2.1.4 IO.RLB, IO.RVB, IO.WLB, IO.WVB - These read and write 
functions execute requested I/O operations with virtual terminals 
in the same manner as with terminals described in Chapter 2, 
except as follows: 

• The virtual terminal driver returns the tmo parameter of an 
offspring task's IO.RLB or IO.RVB request, or the vfc 
parameter of an offspring task's IO.WLB or IO.WVB request as 
a stack parameter on entry to the appropriate AST for the 
parent task. 

• The virtual terminal driver returns I/0 completion status to 
the offspring task in response to successful completion of 
the offspring task's IO.RLB or IO.RVB request. However, the 
actual I/0 completion status values returned are specified 
for data transfers in the third parameter word of the parent 
task's IO.WLB or IO.WVB response, or in the second and third 
parameters of the parent task's IO.STC function response when 
no data transfer is desired. 

12.2.2 Device-Specific QIO Functions 

12.2.2.1 IO.STC - The IO.STC function can be issued by parent 
tasks to enable/disable offspring task I/O buffering in secondary 
pool, or to force an appropriate I/O completion status for an 
offspring task read I/O request when no data transfer is desired. 
Both of these applications for the IO.STC function are described 
as follows. 

Parent tasks can use IO.STC to enable (or disable) intermediate 
buffering in secondary pool. Intermediate buffering, when 
enabled, is performed on offspring task virtual terminal read and 
write requests when the offspring task is checkpointable. 

Thus, offspring tasks can be stopped for virtual terminal I/O and 
checkpointed in a manner similar to that when you use physical 
terminals. Whenever the virtual terminal driver determines that 

12-6 



QIO MACRO FOR VIRTUAL TERMINAL DRIVER 

it should not use intermediate buffering, offspring tasks that 
issue terminal requests become locked in memory until I/O 
completion; transfers occur directly between parent task and 
offspring task buffers without intermediate buffering in 
secondary pool. 

In addition to the conditions that permit intermediate buffering 
(when specified), one condition can disable intermediate 
buffering of the parent task. If the buffer size specified in 
the Create Virtual Terminal directive exceeds the system maximum 
size of 512 (decimal) bytes, then intermediate buffering is 
disabled. 

The second application for IO.STC is to allow the virtual 
terminal driver to return an appropriate I/O completion status in 
response to an offspring task read request. I/O status returned 
in this manner allows successful completion of the offspring 
task's request when the parent task determines that no data 
transfer is desired; this condition can occur, for example, when 
no data is available for input to the offspring task by the 
virtual terminal driver. When you use the IO.STC function in 
this manner, you must include the three parameters, <cb,sw2,sw1>, 
as follows: 

cb 

sw2 

A value of 1 is specified to indicate that the I/O 
completion status return to the offspring task is desired. 

If the virtual terminal 
mode, a cb value of 
offspring read request, 
status for an offspring 

NOTE 

is operating in full 
1 returns status 

and a cb value of 3 
write request. 

duplex 
for an 
returns 

This parameter is the second word returned in the I/O 
completion status indicating the number of bytes read upon 
successful completion of an offspring task's read request. 
However, because no data transfer actually occurs, the value 
specified is O; the byte count of 0 specified in this 
function is legal (and desired), whereas a byte count of 0 
in write operations is invalid (and results in an error 
being returned to the parent task). 

12-7 



sw2 

QIO MACRO FOR VIRTUAL TERMINAL DRIVER 

This parameter specifies the status code to be returned to 
the offspring task by the virtual terminal driver in the 
first word of the I/0 completion status. This value is 
returned in the high byte and a value of +1 is returned in 
the low byte of the status word. Typical values, and the 
status that each represents, are: 

Code Value Completion Status Indicated 

rs.sue + 1 Successful completion 

IS.CR 15 Read terminated by a carriage 
return 

IS.ESC 33 Read terminated by an 
escape character 

IS.ESQ 233 Read terminated by an escape 
sequence 

12.2.2.2 SF.GMC - The Get Multiple Characteristics function 
returns information on terminal characteristics. This function 
can be issued by both the parent and the offspring tasks. The 
virtual terminal driver returns the characteristics that were set 
by the previous corresponding SF.SMC request. However, only the 
full duplex mode (TC.FOX) characteristic affects the operation of 
the virtual terminal driver. The SF.GMC function is provided 
only to maintain transparency to the offspring task. Valid 
virtual terminal characteristics are listed in Table 12-3. 

This function is invalid for null virtual terminals. 

12.2.2.3 IO.GTS - The Get Terminal Support function returns a 
four-word buffer of information specifying which features are a 
part of the virtual terminal driver. The virtual terminal driver 
provides the IO.GTS function only to maintain transparency to the 
offspring task. 

Table 11-6 lists the options returned by the full duplex terminal 
driver. Of those listed, the virtual terminal driver returns: 

Word 1 Fl.BUF, Fl.RPR, Fl.OTB, and Fl.VBF 

Word 2 F2.SCH and F2.GCH 

12-8 



QIO MACRO FOR VIRTUAL TERMINAL DRIVER 

This function is invalid for null virtual terminals. 

12.2.2.4 IO.RPR - The Read After Prompt (IO.RPR) function can be 
issued only by the offspring task. When the offspring task 
issues this function, the function appears to the parent task as 
a separate write request followed by a read request. 

See Section 11.2.2.8 for details. 

12.2.2.5 SF.SMC - The SF.SMC function allows a task to set and 
reset the characteristics of a terminal. Both the parent and the 
offspring tasks may issue this function. The parent task may set 
virtual terminals to full duplex operation by using the SF.SMC 
function with the characteristics bit TC.FOX. 

When in full duplex mode, the virtual terminal driver attempts to 
process the offspring task's read and write requests 
simultaneously. To ensure that these operations are overlapped, 
the parent task should minimize the amount of time it spends in 
AST state. 

The virtual terminal driver defaults to half duplex mode. 

This function is invalid for null virtual terminals. 

Table 12-3 lists the characteristics that either the parent or 
the offspring task may set. Note that the default value for all 
the virtual terminal characteristics is 0. 

Table 12-3: Virtual Terminal Characteristics 

Symbolic Octal Meaning, If Asserted 
Value 

TC.FOX 64 Full duplex mode 

TC.SCP 12 Terminal is a scope 

TC.SMR 25 Uppercase conversion disabled 

TC.TTP 10 Terminal type 

12-9 



STATUS RETURNS FOR VIRTUAL TERMINAL DRIVER 

12.3 STATUS RETURNS FOR VIRTUAL TERMINAL DRIVER 

The error and status conditions listed in Tables 12-4 and 12-5 
are returned by the virtual terminal driver described in this 
chapter. The SE.NIH error is returned by the SF.GMC and SF.SMC 
functions. For this error, the low byte of the first word in the 
I/O status block contains IE.ABO. The second word in the I/O 
status block contains an offset (starting at 0) pointing to the 
erroneous byte in the stadd buffer. 

Table 12-4: Virtual Terminal Status, Offspring Task Requests 

Symbol Description 

Is.sue 

IE. I FC 

IE.ABO 

IE.SPC 

IE.UPN 

Successful completion of an offspring task read 
request results in an I/O completion status 
specified in a parent task QIO parameter being 
returned. Typically, the status information returned 
simulates a subset of I/O returns normally produced 
by the terminal driver. 

Successful completion. The operation specified in 
the QIO directive was completed successfully. The 
second word of the I/O status block indicates the 
number of bytes transferred on a write operation. 

Invalid function code. The offspring task attempted 
a read or a write function and the parent task did 
not specify an AST address in its response to the 
requested I/O function, or the offspring task issued 
an IO.STC or other invalid function. 

Request terminated. The offspring task issued IO.KIL 
or the parent task eliminated the virtual terminal 
unit. 

Invalid address space. Part or all of the buffer 
specified for a read or write request was outside of 
the task's address space, or a byte count greater 
than 17700 (octal), or equal to 0, was specified. 

Insufficient dynamic storage. The driver could not 
allocate an AST block to notify the parent task of 
an offspring task request, or the driver could not 
allocate an intermediate buffer in the Executive 
pool. 

12-10 



Symbol 

SE.NIH 

STATUS RETURNS FOR VIRTUAL TERMINAL DRIVER 

Description 

Not in handler. An offspring task attempted to 
assert TC.FDX, or a terminal characteristic other 
than one of those in Table 12-3 was 
specified. 

Table 12-5: Virtual Terminal Status, Parent Task Requests 

Symbol Description 

rs.sue Successful completion. The operation specified in 
the QIO directive was completed successfully. The 
second word of the I/O status block indicates the 
number of bytes transferred on a read or write 
operation. 

IE.EOF End of file encountered. The IO.STC function was 
completed successfully. 

IE.BAD Bad parameters. The parent task specified a buffer 
size that exceeded the system maximum of 512 
(decimal) bytes 

IE.DUN Device not attachable. An IO.ATT or IO.DET function 
was issued by the parent task. 

IE.IFC Invalid function code. A read, write, or IO.STC 
function was issued without a pending offspring task 
request. This status can occur if the offspring task 
cancels a pending read or write request. This 
function code is also returned when IO.STC is issued 
to enable intermediate buffering on a virtual 
terminal unit whose buffer size, specified in the 
Create Virtual Terminal directive, exceeds the 
system maximum of 512 (decimal) bytes. 

SE.NIH Not in handler. A terminal characteristic other than 
one of those in Table 12-3 was 
specified in an SF.GMC or SF.SMC request. 

12-11 



TASK STACK FORMATS, AST ROUTINES 

12.4 TASK STACK FORMATS, AST ROUTINES 

For tasks that use virtual terminals, the stack format can appear 
as follows during entrance to an AST service routine: 

• Offspring Read/Write QIO Occurs 

As a result of virtual terminal offspring read or write 
operations, a parent AST routine may be entered with the 
following values on the task stack: 

SP+14 
SP+12 
SP+lO 
SP+06 
SP+04 

SP+02 
SP+OO 

Event flag mask word 
PS of task prior to AST 
PC of task prior to AST 
Task's DSW 
Third parameter word (Vertical Format Control, 
VFC) of the offspring task 
Byte count of offspring request 
Virtual terminal unit number (low byte); I/O 
subfunction code of offspring request 
(high byte) 

• Offspring Attach/Detach QIO Occurs 

If the Attach/Detach AST routine is entered for a virtual 
terminal attach, the task's stack contains the following 
values: 

SP+14 
SP+12 
SP+lO 
SP+06 
SP+04 
SP+02 
SP+OO 

Event flag mask word 
PS of task prior to AST 
PC of task prior to AST 
Task's DSW 
Second word of offspring task name 
First word of offspring task name 
Virtual terminal unit number (low byte); I/O 
subfunction code of off spring request 
(high byte) 

12.5 LOGIN FOR VIRTUAL TERMINALS 

In order to establish user context for a virtual terminal, the 
parent task must spawn (SPWN$) the login task, whose installed 
name is ... $LO. You must specify the unit number of the virtual 
terminal in the unit parameter of the SPWN$ directive. 
Additionally, you must supply the following command line to the 
login task: 

12-12 



LOGIN FOR VIRTUAL TERMINALS 

LOGIN/QUIET username password 

The username can be a maximum of 14 characters, and the password 
can be up to 6 characters in length. 

12.6 NULL VIRTUAL TERMINALS 

A null virtual terminal is a special case of the standard virtual 
terminal. Its purpose is to allow a task to establish a TI: 
with a known user environment for background operations. 

You use a null virtual terminal in situations where a parent task 
does not require access to an offspring's terminal I/O stream. 
When such access is required, use a standard virtual terminal 
instead. 

The system treats a null virtual terminal as a null device. 

Allowable I/O functions on LUNs assigned to a null virtual 
terminal are IO.WLB, IO.WVB, IO.RLB, IO.RVB, and IO.RPR. Write 
operations always return success (IS.SUC) and read operations 
(including IO.RPR) return end-of-file (IE.EOF) in the I/0 Status 

'Block. Other normal virtual terminal functions are invalid, and 
thus return IE.IFC. 

To create a null virtual terminal, invoke the CRVT$ system 
directive with the following arguments: 

CRVT$ 

iast 

oast 

aast 

ml en 

[iast],[oast],[aast],mlen 

This parameter (input ast address), is ignored, but a 
placeholder is required. You can specify a null value. 

This parameter (output ast address), is ignored, but a 
placeholder is required. You can specify a null value. 

This parameter (attach ast address), is ignored, but a 
placeholder is required. You can specify a null value. 

This parameter specifies the buffer length. It must be 
-1 to indicate that you want to create a null virtual 
terminal. 

Three pathways lead to elimination of the null virtual terminal: 

12-13 



NULL VIRTUAL TERMINALS 

1. Parent task issues ELVT$ directive. 

2. Parent task exits (ELVT$ functionality issued on behalf of 
parent). 

3. Offspring count of virtual terminal goes to 0. 

Note that the last case applies only to null virtual terminals. 
For normal virtual terminals, only the first or second case leads 
to elimination of the virtual terminal. 

When the system eliminates a virtual terminal, the system logout 
task automatically logs out the virtual terminal, if necessary. 
No intervention by either parent or offspring to effect logout is 
required. 

12-14 



CHAPTER 13 

THE COMMUNICATION DRIVER 

The Professional communication driver, called XKDRV, 
to use the communication port in asynchronous mode. 
provides the following features: 

• Full duplex operation 

• Input buffering 

• Unsolicited event ASTs 

• Transfer length of up to 8128 bytes 

• Optional timeout on solicited input 

• Optional XON/XOFF support 

• Modem support 

• Mini-Exchange support 

• Parity, framing, and overrun error reporting 

allows you 
The driver 

Note that DIGITAL supplies a separate driver, XTDRV, to handle 
communication lines provided by the Telephone Management System. 
See the Telephone Management System Prograrruner's Manual for 
details. 

13.1 GET LUN INFORMATION FOR COMMUNICATION DRIVER 

Word 2 of the buffer filled by the Get LUN Information system 
directive (the first characteristic word) contains the 
information noted in Table 13-1 for the driver. A setting of 1 
indicates that the described characteristic is true. 

13-1 



GET LUN INFORMATION FOR COMMUNICATION DRIVER 

Table 13-1: Get LUN Information for Communication Driver 

Bit Setting 

0 1 

1 1 

2 0 

3 0 

4 0 

5 0 

6 0 

7 0 

8 0 

9 0 

10 0 

11 0 

12 0 

13 0 

14 0 

15 0 

Meaning 

Record-oriented device 

Carriage-control device 

Terminal device 

File structured device 

Single-directory device 

Sequential device 

Mass storage device 

User-mode diagnostics supported, device 
dependent 

Device supports 22-bit direct 
addressing 

Unit software write-locked 

Input spooled device 

Output spooled device 

Pseudo device 

Device mountable as communications 
channel 

Device mountable as a FILES-11 volume 

Device mountable 

Words 3 and 4 of the buffer are undefined. Word 5 indicates the 
size of the internal input ring buffer. 

13-2 



QIO MACRO FOR COMMUNICATION DRIVER 

13.2 QIO MACRO FOR COMMUNICATION DRIVER 

Table 13-2 lists the standard and device-specific functions of 
the QIO macro that are valid for the communication driver. 

Table 13-2: QIO Functions for Communication Driver 

Format Function 

Standard Functions 

QIO$C IO.ATT, ... 

QIO$C IO.DET, ... 

QIO$C IO.KIL, ... 

QIO$C IO.RLB, ... ,<stadd,size[,tmo]> 

QIO$C IO.RVB, ... ,<stadd,size[,tmo]> 

QIO$C IO.WLB, ... ,<stadd,size,vfc> 

QIO$C IO.WVB, ... ,<stadd,size,vfc> 

Device-Specific Functions 

QIO$C IO.ANS, ... ,<stadd,size> 

QIO$C IO.ATA, ... ,<ast[,param2]> 

QIO$C IO.BRK, ... ,<type> 

QIO$C IO.CON, ... ,<stadd,size[,tmo]> 

QIO$C IO.HNG, ... 

13-3 

Attach device 

Detach device 

Cancel I/O requests 

Read logical block (read 
input into buffer) 

Read virtual block (read 
input into buffer) 

Write logical block 
(send contents of 
buffer) 

Write virtual block 
(send contents of 
buffer) 

Initiate a connection in 
answer mode, either in 
response to a ringing 
line, or if a connection 
already exists 

Attach device, specify 
unsolicited event AST 

Send a BREAK 

Dial and connect 

Hang up a line 



QIO MACRO FOR COMMUNICATION DRIVER 

Format 

QIO$C IO.LTI, ... ,<stadd,size[,param3]> 

QIO$C IO.ORG, ... ,<stadd,size[,tmo]> 

QIO$C IO.RAL, ... ,<stadd,size[,tmo]> 

QIO$C IO.RNE, ... ,<stadd,size[,tmo]> 

QIO$C IO.TRM, ... ,<stadd,1> 

QIO$C IO.UTI, ... 

. QIO$C IO.WAL, ... ,<stadd,size> 

QIO$C SF.GMC, ... ,<stadd,size> 

QIO$C SF.SMC, ... ,<stadd,size> 

Parameters Shown in Table 13-2 

Function 

Connect for unsolicited 
event ASTs while 
detached 

Initiate a connection in 
originate mode, assuming 
the line has already 
been connected 

Read logical block, pass 
all bits 

Read logical block, do 
not echo 

Unload driver* 

Disable unsolicited 
event ASTs while 
detached 

Write logical block, 
pass all bits 

Get multiple 
characteristics 

Set multiple 
characteristics 

ast The entry.point for an unsolicited event AST. 

param2 An optional user-specified AST parameter (1 byte). 

param3 An optional user-specified AST parameter (1 byte). 

size The size of the stadd data buffer, in bytes. The 
specified size must be greater than 0 and less than or 
equal to 8128. The buffer must be within the task's 
address space. 

* Use of IO.TRM is restricted. See Section 13.2.2.10. 

13-4 



stadd 

type 

QIO MACRO FOR COMMUNICATION DRIVER 

The starting address of the data buffer. The address can 
be byte aligned. 

Either 0 to indicate a break or 1 to indicate a long 
space. 

tmo An optional timeout count you can use in conjunction with 
TF.TMO on any Read request, or on a Connect (IO.CON) or 
Originate (IO.ORG) request. 

Specify a timeout as follows: 

.BYTE x,y 

where x is the number of ten-second intervals, up to 255 
(decimal), and y is the number of one-second intervals, 
also up to 255. The longest possible timeout interval 
that you can specify is 255 seconds. If the timeout 
value is larger than 255 seconds, the driver uses 255 
seconds. Section 13.6 describes the effect of the 
timeout parameters on specific requests. 

vfc A character for vertical format control. See Table 11-16 
in the chapter describing the terminal driver for a list 
of the characters. 

13.2.1 Using Subfunction Bits 

You can select many device-specific functions supported by the 
communication driver by using subfunction bits. To select one or 
more subfunctions, you logically OR the subfunction(s) together 
with a QIO function. 

For example, the following QIO request IO.RLB uses two 
subfunction bits to perform a Read All Bits operation (TF.RAL) 
with a timeout period (TF.TMO). 

QIO$C IO.RLB!TF.RAL!TF.TMO, ... ,<stadd,size,tmo> 

Table 13-3 describes the subfunction bit symbols. 

13-5 



QIO MACRO FOR COMMUNICATION DRIVER 

Table 13-3: Subfunction Bit Symbols 

Symbolic Subfunction 

TF.AST Unsolicited-input-character AST 

TF.RAL Read all bits 

TF.RNE Read with no echo [1] 

TF.TMO Operation will time out 

TF.WAL Write all bits 

Note to Table 13-3 

1. The communication driver ignores the TF.RNE subfunction bit, 
since it handles a Read Logical Block (IO.RLB) identically to 
a Read with No Echo (IO.RNE or IO.RLB!TF.RNE). The driver 
does not echo input characters. 

Table 13-4 shows which subfunction bits you can logically OR with 
the QIO functions. 

Table 13-4: Subfunction Bits Allowed for Driver Requests 

Function Equivalent Allowed 
Subfunction Subfunction Bits 

Standard Functions 

IO.ATT None TF.AST 

IO.DET None None 

IO.KIL None None 

IO.RLB None TF.RAL 

IO.RVB None TF.RAL 

13-6 



QIO MACRO FOR COMMUNICATION DRIVER 

Function Equivalent Allowed 
Subf unction Subfunction Bits 

IO.WLB None TF.WAL 

IO.WVB None TF.WAL 

Device-Specific Functions 

IO.ANS None None 

IO.ATA IO.ATT!TF.AST None 

IO.BRK None None 

IO.CON None TF.TMO 

IO.HNG None None 

IO.LTI None None 

IO.ORG None TF.TMO 

IO.RAL IO.RLB!TF.RAL TF.TMO 

IO.RNE IO.RLB!TF.RNE TF.TMO 

IO.TRM None None 

IO.WAL IO.WLB!TF.WAL None 

SF.GMC None None 

SF.SMC None None 

13.2.2 Device-Specific 010 Functions 

This section describes each of the device-specific QIO functions. 

13.2.2.1 IO.ANS - The Answer function establishes a connection 
in answer mode, either in response to a ringing line, or if a 
connection already exists. If a connection is not completed 
within 30 seconds, the driver returns an IE.DNR error. The 
buffer address is required, but the driver does not use it. 

13-7 



QIO MACRO FOR COMMUNICATION DRIVER 

The format is: 

QIO$C IO.ANS, ... ,<stadd,size> 

13.2.2.2 IO.ATA and IO.ATT!TF.AST - IO.ATA is a variation of the 
Attach function, and is equivalent to IO.ATT logically ORed with 
the subfunction bit TF.AST. The function specifies an 
asynchronous system trap (AST) to process unsolicited events. 

When an unsolicited event occurs, the resulting AST serves as 
notification of the unsolicited event. Upon entry to the AST, 
the top word of the task stack contains the event type (low byte) 
and, if specified, param2 (high byte), as shown in Table 13-5. 
Your task must remove the top word from the stack before exiting 
the AST. 

Table 13-5: Task Stack Format 

Current Stack 
Pointer 

SP+lO 

SP+06 

SP+04 

SP+02 

SP+OO 

Contents 

Event flag mask word 

PS of task prior to AST 

PC of task prior to AST 

Task's directive status word 

The low byte contains the event type. The high 
byte contains param2 (IO.ATA) or param3 
(IO.LTI), if you specified that optional 
parameter in the QIO request. 

See Section 13.5 for more information on unsolicited events. 

The format of IO.ATA is: 

QIO$C IO.ATA, ... ,<ast[,param2]> 

13-8 



QIO MACRO FOR COMMUNICATION DRIVER 

13.2.2.3 IO.BRK - The IO.BRK function causes the driver to send 
either a break or a long space. If parameter 1 is zero, the 
driver sends a break. If parameter 1 is one, the driver sends a 
long space. 

On the communication port, the duration of a break is 
approximately 235 milliseconds, and the duration of a long space 
is approximately 3.5 seconds. 

The format is: 

QIO$C IO.BRK, ... ,<type> 

13.2.2.4 IO.CON - The IO.CON function causes the driver to dial 
and connect a line in originate mode. 

If you do not specify TF.TMO, the request completes either when a 
connection is established or after 60 seconds. 

The format is: 

QIO$C IO.CON, ... ,<stadd,size[,tmo]> 

where stadd is the address of the telephone number to dial. 

13.2.2.S IO.HNG - The IO.HNG function causes the driver to hang 
up a phone line. 

The format is: 

QIO$C IO.HNG, ... 

13.2.2.6 IO.LT! - The IO.LTI function causes the driver to 
deliver unsolicited event notification ASTs to a specified task, 
if another task has not attached the driver. 

The format is: 

QIO$C IO.LTI, ... ,<stadd,size[,param3]> 

where stadd is the address of a three-word buffer of the form: 

.WORD 

.RAD50 

.RAD50 

AST_address 
/first_half_of_task_name/ 
/second_half_of_task_name/ 

13-9 



QIO MACRO FOR COMMUNICATION DRIVER 

When an unsolicited event occurs, the resulting AST serves as 
notification of the unsolicited event. Upon entry to the AST, 
the top word of the task stack contains the event type (low byte) 
and, if specified, param3 (high byte). Your task must remove the 
top word from the stack before exiting the AST. Table 13-5 
earlier in this chapter describes the task stack format. Also, 
see Section 13.5 for more information on unsolicited events. 

13.2.2.7 IO.ORG - The IO.ORG function initiates a connection in 
originate mode, assuming the line has already been connected. 
The buffer address is required, but the driver does not use it. 

The format is: 

QIO$C IO.ORG, ... ,<stadd,size[,tmo]> 

13.2.2.8 IO.RAL and IO.RLB!TF.RAL - IO.RAL is equivalent to 
IO.RLB logically ORed with the subfunction bit TF.RAL. 

The Read All function causes the driver to pass all bits to the 
requesting task when the value of TC.FSZ is 8 or 9. The driver 
does not mask out the high-order bit. Use this function to 
temporarily bypass the setting of the TC.SBC characteristic. 

Note that, unlike the terminal driver, this function does not 
cause the communication driver to pass CTRL/Q or CTRL/S to the 
requesting task. You must set the characteristic TC.BIN to 
enable the the driver to return CTRL/Q and CTRL/S to your task. 

The format is: 

QIO$C IO.RAL, ... ,<stadd,size[,tmo]> 

13.2.2.9 IO.RNE and IO.RLB!TF.RNE - IO.RNE is equivalent to 
IO.RLB logically ORed with the subfunction bit TF.RNE. 

Note that the communication 
and IO.RLB exactly alike. 
subfunction bit TF.RNE when 
echo input characters. 

The format is: 

driver treats the functions IO.RNE 
Consequently, the driver ignores the 

processing IO.RLB!TF.RNE; it does not 

QIO$C IO.RNE, ... ,<stadd,size[,tmo]> 

13-10 



QIO MACRO FOR COMMUNICATION DRIVER 

13.2.2.10 IO.TRM - The IO.TRM function causes the system to 
unload the communication driver. 

NOTE 

This function is provided only for compatibility 
with programs written to run on P/OS V2.0A and 
earlier systems. For new programs, we strongly 
suggest that you use the PROLOD utility to unload 
a driver. 

PROLOD is described in the Guide to Writing a 
P/OS I/O Driver and Advanced Programmer's Notes. 

If you use IO.TRM, note the following: 

• Your task must be attached in order to issue this function. 
The system does unload the communication driver when your 
task detaches the device. 

• This function requires a buffer address and count; however, 
the system does not modify the buffer. 

The format is: 

QIO$C IO.TRM, ... ,<stadd,1> 

13.2.2.11 IO.UT! - The IO.UTI function disables 
event notification while the driver is not attached. 

The format is: 

QIO$C IO.UTI, ... 

unsolicited 

13.2.2.12 IO.WAL and IO.WLB!TF.WAL - IO.WAL is equivalent to 
IO.WLB logically ORed with the subfunction bit TF.WAL. 

Note that the communication driver treats the functions IO.WAL 
and IO.WLB exactly the same. Consequently, the driver ignores 
the subfunction bit TF.WAL when processing IO.WLB!TF.WAL. 

13-11 



QIO MACRO FOR COMMUNICATION DRIVER 

The format is: 

QIO$C IO.WAL, ... ,<stadd,size> 

13.2.2.13 SF.GMC - The Get Multiple Characteristics function 
returns driver characteristics information. It complements the 
SF.SMC function. 

The format is: 

QIO$C SF.GMC, ... ,<stadd,size> 

where stadd is the starting address of a data buffer whose length 
in bytes is the value given in the size parameter. Each word in 
the buffer has the form: 

.BYTE 

.BYTE 
charname 
0 

where charname is one of the characteristic bit names given in 
Table 13-6. The value returned in the high byte of each 
byte-pair is the value of that characteristic. 

13-12 



QIO MACRO FOR COMMUNICATION DRIVER 

Table 13-6: Driver Characteristics for SF.GMC and SF.SMC 

Valid 
Values 

0-9. TC.ARC Auto-answer ring count (0 means don't 

TC.BIN 0,1 

TC.CTS 0,1 

TC.EPA 0,1 

TC.FSZ Note 1 

TC.PAR 0,1 
Note 1 

TC.RSP Note 2 

TC.STB 1,2 

TC.TBF Note 3 

TC.TRN Note 4 

TC.XMM 0,1 

TC.XSP Note 2 

TC.BBC 0,1 
Note 1 

XT.MTP Note 5 

Note 1 to Table 13-6 

answer). 

Enable or disable XON/XOFF support. 

Resume or suspend output. 

Odd or even parity (if TC.PAR is 
specified). 

Character width including parity (if 
any). 

Enable parity checking and generation. 

Receiver speed (bits-per-second). 

Number of stop bits. 

Input ring buffer count or flush. 

Set translate table. 

Disable or enable maintenance mode. 

Transmitter speed (bits-per-second). 

Pass 8-bit characters on input and 
output. 

Modem type. 

TC.FSZ is the frame size of a character. It is the number of 
data bits per character, plus 1 if parity is enabled. 

TC.FSZ and TC.PAR interact with each other to determine the 
number of data bits returned to the task. Table 13-7 shows 
the relationship of these characteristics. 

13-13 



QIO MACRO FOR COMMUNICATION DRIVER 

Table 13-7: TC.FSZ and TC.PAR Relationship 

TC.FSZ TC.PAR Number of Data Bits 
Returned to Task 

9 1 s 

s 0 s 

s 1 7 

7 0 7 

7 1 6 

6 0 6 

6 1 5 

5 0 5 

Two combinations do not appear in Table 13-7: TC.FSZ=9 with 
TC.PAR=O, and TC.FSZ=5 with TC.PAR=1. These two combinations 
are invalid, and the driver returns an error if you use 
either combination. To avoid this problem, always set the 
value of TC.FSZ first. The driver automatically enables or 
disables parity if the value of TC.FSZ is 9 or 5. 

If the value of TC.FSZ is 8 or 9, the driver further modifies 
the number of data bits it returns to the task by the value 
of TC.SBC. If TC.SBC is set to 1, the driver returns all 8 
data bits to the task. If TC.SBC is set to 0, the driver 
returns only 7 data bits to the task. Setting TC.BIN to a 
value of 1 or using the IO.RAL function overrides the value 
of TC.BBC. 

Note 2 to Table 13-6 

Table 13-8 shows TC.RSP and TC.XSP values 
corresponding baud rates. 

13-14 

and their 



QIO MACRO FOR COMMUNICATION DRIVER 

Table 13-8: Receiver and Transmitter Speed Values 

TC.RSP or TC.XSP Decimal Value of Actual baud rate 
Symbolic Symbolic (bits per second) 

S.50 2 50 

S.75 3 75 

s .110 5 110 

S.134 6 134.5 

S.150 7 150 

S.300 9 300 

S.600 10 600 

S.1200 11 1200 

S.1800 12 1800 

S.2000 13 2000 

S.2400 14 2400 

S.3600 15 3600 

S.4800 16 4800 

S.7200 17 7200 

S.9600 18 9600 

S.EXTA 19 External clocking 

S.19.2 21 19200 

Note 3 to Table 13-6 

When you use the TC.TBF characteristic with SF.GMC, the 
driver returns the number of unprocessed characters in the 
input buffer. If there are more than 255 characters in the 
buffer, the driver returns the value 255. When you use 
TC.TBF with SF.SMC, the driver flushes the input buffer. 

13-15 



QIO MACRO FOR COMMUNICATION DRIVER 

Note 4 to Table 13-6 

The TC.TRN characteristic allows you to specify a 
table. The translate table is collection of 
consists of the following: 

translate 
data that 

• A list of translations to perform on particular phone 
number characters, typically to remove format characters 
such as parentheses, hyphens, and blank spaces. 

e The start sequence of the modem in use. 

e The end sequence of the modem in use. 

The format of the translate table follows . 

. BYTE TC.TRN,count1,count2,count3 

.BYTE chr1,rep_chr1 
;Translation section. 
;First character is character 
;to translate. Second character 
;is the replacement character . 

. BYTE chrn,rep_chrn 
;End of translate section . 

. BYTE ss1,ss2, ... 
;ss1,ss2 ... are the 
;start characters . 

. BYTE es1,es2, ... 

. EVEN 

;es1,es2 ... are the 
;end characters . 

In the above format, countl is the length of the translation 
section, count2 is the length of the start sequence, and 
count3 is the length of the end sequence. 

If a character in the telephone number matches a character in 
the translation section, the driver converts the telephone 
number character into the corresponding replacement 
character. If the corresponding replacement character is 0 
(binary), the driver ignores the character from the telephone 
number. 

If you specify the start sequence string, the driver sends 
that string to the autodialer before the phone number. If 
you specify the end sequence string, the driver sends that 
string to the autodialer after the phone number. 

13-16 



QIO MACRO FOR COMMUNICATION DRIVER 

Note the following regarding the translate table and use of 
TC.TRN: 

• The maximum size of the start and end sequences is 16 
(decimal) bytes. 

• The maximum size of the translate table is 80 (decimal) 
bytes. 

• Any or all sections of the translate table can be empty. 

• Start and end sequences are not translated using the 
translate table. 

• TC.TRN is a write-only parameter; the driver returns an 
SE.NIH error if you attempt to use TC.TRN with the SF.GMC 
function. 

• The characteristic in the SF.SMC function following 
TC.TRN must begin on a word boundary. 

Note 5 to Table 13-6 

Table 13-9 shows the possible values for 
characteristic. 

Table 13-9: Modem Type Values (XT.MTP) 

XT.MTP Symbol Decimal Modem Type 
Value 

XTM.NO -1 No modem, hardwired 

the XT.MTP 

line 

XTM.FS 0 USFSK 0 .. 300 baud Bell 103J (TMS) 

XTM.PS 1 DPSK 1200 baud Bell 212 (TMS) 

XTM.US 10 Mini-Exchange 

13.2.2.14 SF.SMC - This function enables a task to set and reset 
the characteristics of the driver. Set Multiple Characteristics 
is the complementary function to SF.GMC. The format is: 

13-17 



QIO MACRO FOR COMMUNICATION DRIVER 

QIO$C SF.SMC, ... ,<stadd,size> 

where stadd is the starting address of a data buffer whose length 
in bytes is given in the size parameter. Each word in the buffer 
has the form: 

.BYTE charname 

.BYTE value 

where charname is one the bit names given in Table 13-6 and 
"value" is a value in the range given in Table 13-6. 

13.3 STATUS RETURNS FOR COMMUNICATION DRIVER 

Table 13-10 lists error and status conditions that the 
communication driver returns to the low byte of the first word of 
the I/O Status Block. 

The SF.GMC and SF.SMC functions return the SE.xxx codes as 
described in Sections 13.2.2.13 and 13.2.2.14. When the driver 
returns any of these codes, the low byte in the first word of the 
I/O Status Block contains IE.ABO. The high byte contains the 
SE.xxx error code. 

The second IOSB word contains an offset (starting from 0) to the 
byte in error in the QIO's stadd buffer. 

Table 13-10: Communication Driver Status Returns 

Symbol Description 

rs.sue Successful completion. The operation specified in 
the QIO directive completed successfully. If the 
operation involved reading or writing, you can 
examine the second word of the I/O Status Block to 
determine the number of bytes processed. The input 
buffer contains those bytes. 

IS.PND I/O request pending. The driver has not yet executed 
the operations specified in the QIO directive. The 
I/O Status Block contains all zeros. 

13-18 



Symbol 

IS.TMO 

IE.ABO 

IE.ALC 

IE.BAD 

IE.BCC 

IE.CNR 

IE.DAA 

IE.DAO 

IE.DNA 

STATUS RETURNS FOR COMMUNICATION DRIVER 

Description 

Successful Read with time-out. A time-out terminated 
the input from the communication port when the tmo 
parameter is a nonzero value. The input buffer 
contains the bytes read. 

Operation aborted. An IO.KIL request cancelled the 
specified I/O operation while in progress or while 
in the I/O queue. The second word of the I/O Status 
Block indic2tes the number of bytes placed in the 
buffer before the kill occurred. 

Allocation failure. The total size of the phone 
number specified by an IO.CON request, plus the 
start and end sequences, is larger than the driver's 
internal buffer. 

Bad parameters. The size of the data buffer in the 
QIO request exceeds 8128 bytes. 

Framing error. The read I/O request was terminated 
because of a framing error. The buffer returned does 
not include the character on which the error 
occurred. It is returned in the high byte of the 
first word of the I/O status block. 

Connection rejected. A connection already exists, or 
the connection attempt was rejected by a 
Mini-Exchange. 

Device already attached. The issuing task already 
attached the physical device unit specified in the 
IO.ATT function. This code indicates that the 
issuing task has already attached the desired 
physical device unit, not that another task attached 
the unit. If the attach specified TF.AST, the 
subfunction bit has no effect. 

Data overrun. The read I/0 request was terminated 
due to a data overrun condition. Data has been lost. 

Device not attached. The issuing task did not attach 
the physical device unit specified in an IO.DET or 
IO.TRM function. This code has no bearing on the 
attachment status of other tasks. 

13-19 



Symbol 

IE.DNR 

IE. IFC 

IE.OFL 

IE.VER 

SE.NIH 

SE.VAL 

STATUS RETURNS FOR COMMUNICATION DRIVER 

Description 

Device not ready. The physical device specified in 
the QIO directive was not ready to perform the 
desired I/O operation. The driver returns this code 
to indicate that an attempt was made to perform a 
function on a line connected to a modem without 
carrier present, or to indicate that a connection 
was not established within the time-out period 
specified by an IO.CON, IO.ANS, or IO.ORG request. 

Invalid function. An I/O request specified a 
function code that is invalid for the communication 
port. 

Device off-line. The physical device-unit associated 
with the LUN specified in the QIO directive was not 
online. 

Parity error. The read I/O request has been 
terminated due to a character parity error. The 
character with the error is returned in the high 
byte of the first word in the I/O status block. 

Not in handler. In an SF.GMC or SF.SMC request, you 
specified a characteristic that is not implemented 
in the communication driver. For a list of 
implemented characteristics, see Table 
13-6. 

Invalid characteristic value. You specified an 
invalid characteristic in an SF.SMC request. For a 
list of valid characteristics, see Table 
13-6. 

13.4 FULL-DUPLEX OPERATION 

The communication driver attempts to simultaneously service one 
Read request and one Write request. Note that, unlike the 
terminal driver, the SF.SMC function is not blocked until the 
line is idle. Resetting characteristics during I/O operations 
can cause unpredictable results. 

13-20 



UNSOLICITED EVENT PROCESSING 

13.5 UNSOLICITED EVENT PROCESSING 

If a task attaches 
driver dispatches 
Table 13-11 occurs. 

for 
an 

unsolicited event ASTs (IO.ATA), the 
AST whenever any of the events listed in 

Table 13-11: Unsolicited Event Types 

Symbol Decimal Value Event Type 

XTU.CD 2 Carrier detect 

XTU.CL 4 Carrier loss 

XTU.OF 8 XOFF received 

XTU.ON 10 XON received 

XTU.RI 12 Ring 

XTU.UI 0 Unsolicited input 

Upon entering an AST, the driver places the event type in the low 
byte of the top word of the stack, and param2 (for IO.ATA) or 
param3 (for IO.LT!) in the high byte. Note that the driver 
processes an XTU.UI event differently from the others. 

13.5.1 XTU.UI Event Type Processing 

If the event type is XTU.UI (unsolicited input), the AST becomes 
disabled until the task issues a Read request. Once the Read 
request has completed, the AST is re-enabled for new unsolicited 
events. 

13.6 EFFECT OF TIMEOUT ON QIO REQUEST 

The optional timeout parameter on Read, IO.CON, and IO.ORG 
requests affects the action of the request. The following 
sections describe each request when you issue it with a timeout 
value. 

13-21 



. EFFECT OF TIMEOUT ON QIO REQUEST 

13.6.1 Timeout on Read Requests (10.RLB!TF.TMO) 

tmo 0 

The request completes immediately after the driver has 
transferred as many characters as are available, less than 
or equal to the size parameter. The driver returns the 
number of bytes transferred in the second I/O status word. 

tmo <> 0 

The request completes after the timeout period or when the 
driver has transferred the requested number of bytes. The 
driver returns the number of bytes transferred in the second 
word of the I/O Status Block. 

13.6.2 Timeout on IQ.CON Request (10.CON!TF.TMO) 

tmo 0 

The request completes immediately. If carrier is not 
present after 60 seconds, the driver drops DTR and RTS. 

tmo <> 0 

The request completes after the timeout period, or after a 
connection is established. If the timeout period expires, 
the driver drops DTR and RTS and returns an IE.DNR error in 
the first word of the I/O Status Block. If carrier comes up 
before the timeout period expires, the driver returns rs.sue 
in the first word of the I/O Status Block. 

13.6.3 Timeout on 10.0RG Request (10.0AG!TF.TMO) 

tmo 0 

The request completes immediately. If carrier is down, the 
driver drops DTR and RTS and returns an IE.DNR error in the 
I/O Status Block. If carrier is up, the driver returns 
rs.sue in the I/O Status Block. 

tmo <> 0 

The request completes after the timeout period, or after a 
connection is established. If the timeout period expires, 
the driver drops DTR and RTS and returns an IE.DNR error in 
the I/O Status Block. If carrier is up, or if carrier comes 

13-22 



EFFECT OF TIMEOUT ON QIO REQUEST 

up before the timeout period expires, the driver returns 
rs.sue in the I/O Status Block. 

13.7 XON/XOFF SUPPORT 

If your task requests XON/XOFF support {TC.BIN= 0), the driver 
transmits an XOFF whenever the ring buffer is three-quarters 
filled, and transmits an XON whenever the buffer empties below 
the one-quarter point. Because of this, your task should not 
pass XON/XOFF control characters to the driver for transmission. 

If the driver receives an XOFF, it blocks transmission. If your 
task is attached for unsolicited event ASTs, the driver 
dispatches an XTU.OF event. In any case, the TC.CTS parameter 
reflects the XON/XOFF state of the line. 

If your task does not request XON/XOFF support (TC.BIN= 1), and 
the value of XT.MTP is XTM.NO (no modem), the driver uses the 
Clear to Send and Request to Send lines in place of XON/XOFF 
control characters. Consequently, state changes of this line 
cause unsolicited event ASTs and modify the value of TC.CTS. 

The driver responds to state changes on the Clear to Send line to 
control the transmission of data. The driver uses the Request to 
Send line to signal the remote transmitter either to transmit 
(RTS high) or not to transmit (RTS low). 

13-23 





APPENDIXES 





APPENDIX A 

SUMMARY OF 1/0 FUNCTION AND SUBFUNCTION CODES 

This appendix summarizes the I/O function and subfunction codes 
and their values for all bundled P/OS device drivers. Section 
A.1 describes the I/O function codes. Section A.2 describes the 
I/O subfunction codes. 

A.1 1/0 FUNCTION CODE VALUES 

A table for each device lists the available function codes, the 
word value in octal, and the high and low bytes in octal. Each 
table presents the codes in alphabetical order. 

You can refer to the functions symbolically by invoking the 
system macros FILIO$ (standard I/O functions) and SPCIO$ (special 
I/0 functions), or by allowing them to be defined at task-build 
time from the system object library. 

Table A-1: Function Code Values, Communication Driver (XKDRV) 

Code Word Byte 1 Byte 0 Description 

IO.ANS 015420 033 020 Initiate connection in answer mode 
IO.ATA 001410 003 010 Attach with ASTs 
IO.ATT 001400 003 000 Attach a device to a task 
IO.BRK 003200 006 200 Send short or long b'reak 
IO.CON 015400 033 000 Dial telephone and originate 
IO.DET 002000 004 000 Detach a device from a task 
IO.HNG 003000 006 000 Hangup dial-up line 
IO.KIL 000012 000 012 Kill current request 
IO.LTI 007400 017 000 Connect for unsolicited event ASTs 

while detached 
IO.ORG 015410 033 010 Initiate connection in originate mod 

A-1 



I/0 FUNCTION CODE VALUES 

Code Word Byte 1 Byte 0 Description 

IO.RAL 001010 002 010 Read passing all data bits 
IO.RLB 001000 002 000 Read logical block 
IO.RNE 001020 002 020 Read without echo 
IO.RVB 010400 021 000 Read virtual block 
IO.TRM 002410 005 010 Termination function 
IO.UTI 011420 023 020 Disable unsolicited event AS Ts 

while detached 
IO.WAL 000410 001 010 Write passing all characters 
IO.WLB 000400 001 000 Write logical block 
IO.WVB 011000 022 000 Write virtual block 
SF.GMC 002560 005 160 Get multiple characteristics 
SF.SMC 002440 005 040 Set multiple characteristics 

Table A-2: Function Code Values, Disk Drivers (DZDRV and DWDRV) 

Code word Byte 1 Byte 0 Description 

IO.ATT 001400 003 000 Attach a device to a task 
IO.DET 002000 004 000 Detach a device from a task 
IO.KIL 000012 000 012 Kill current request 
IO.RLB 001000 002 000 Read logical block 
IO.RPB 001040 002 040 Read physical block 
IO.RVB 010400 021 000 Read virtual block 
IO.WLB 000400 001 000 Write logical block 
IO.WPB 000440 001 040 Write physical block 
IO.WVB 011000 022 000 Write virtual block 

Table A-3: Function Code Values, Terminal Driver (TTDRV) 

Code word Byte 1 Byte 0 Description 

IO.ATA 001410 003 010 Attach with ASTs 
IO.ATT 001400 003 000 Attach a device to a task 
IO.CCO 000440 001 040 Write with cancel CTRL/O 

A-2 



I/0 FUNCTION CODE VALUES 

Code Word Byte 1 Byte 0 Description 

IO.DET 002000 004 000 Detach a device from a task 
IO.GTS 002400 005 000 Get terminal support 
IO.KIL 000012 000 012 Kill current request 
IO.RAL 001010 002 010 Read passing all data bits 
IO.RLB 001000 002 000 Read logical block 
IO.RNE 001020 002 020 Read without echo 
IO.RPR 004400 011 000 Read with prompt 
IO.RSD 006030 014 030 Read special data 
IO.RST 001001 002 001 Read with special terminator 
IO.RTT 005001 012 001 Read with terminator table 
IO.RVB 010400 021 000 Read virtual block 
IO.WAL 000410 001 010 Write passing all characters 
IO.WBT 000500 001 100 Write with breakthrough 
IO.WLB 000400 001 000 Write logical block 
IO.WSD 005410 013 010 Write special data 
IO.WVB 011000 022 000 Write virtual block 
SF.GMC 002560 005 160 Get multiple characteristics 
SF.SMC 002440 005 040 Set multiple characteristics 

Table A-4: Function Code Values, TMS Driver (XTDRV) 

Code Word Byte 1 

IO.ANS 015420 033 
IO.ATA 001410 003 
IO.ATT 001400 003 
IO.BRK 003200 006 
IO.CON 015400 033 
IO.DET 002000 004 
IO.HLD 003100 006 
IO.HNG 003000 006 
IO.KIL 000012 000 
IO.LTI 007400 017 

IO.ORG 015410 033 
IO.RAL 001010 002 
IO.RLB 001000 002 
IO.RNE 001020 002 
IO.RVB 010400 021 

Byte 0 Description 

020 Initiate connection in answer mode 
010 Attach with ASTs 
000 Attach a device to a task 
200 Send short or long break 
000 Dial telephone and originate 
000 Detach a device from a task 
100 Hang up but leave line on hold 
000 Hang up dial-up line 
012 Kill current request 
000 Connect for unsolicited event ASTs 

while detached 
010 
010 
000 
020 
000 

Initiate connection in originate mode 
Read passing all characters 
Read logical block 
Read without echo 
Read virtual block 

A-3 



I/O FUNCTION CODE VALUES 

Code Word Byte 1 Byte 0 Description 

IO.UT! 011420 023 020 Disable unsolicited event ASTs 
while detached 

IO.WAL 000410 001 010 Write passing all characters 
IO.WLB 000400 001 000 Write logical block 
IO.WVB 011000 022 000 Write virtual block 
IO.WSD 005410 013 010 Write special data to modify 

voice unit indicators 
SF.GMC 002560 005 160 Get multiple characteristics 
SF.SMC 002440 005 040 Set multiple characteristics 

A.2 1/0 SUBFUNCTION CODE VALUES 

I/O subfunction codes are bit values with which you can logically 
OR particular function codes to obtain specific results (usually 
to create a function synonym). 

A table for each device groups the available subfunction codes 
according to the I/O functions that you can use them with. 
Within each group, the subfunctions are ordered alphabetically. 
The bit value for each subfunction is shown in octal. 

Table A-5: Subfunction Code (Bit) Values, XKDRV and XTDRV 

Code Value Description 

Use with IO.ATT: 

TF.AST 010 Specify ASTs in attach 

Use with IO.RLB: 

TF.RAL 010 Read pass all 
TF .RNE 020 Read with no echo 

Use with IO.COM, IO.ORG, any READ: 

TF.TMO 200 Read with timeout 

A-4 



I/O SUBFUNCTION CODE VALUES 

Code Value Description 

Use with IO.WLB 

TF.WAL 010 Write pass all 

Table A-6: Subfunction Code (Bit) Values, TIDRV 

Code Value Description 

Use with IO.RLB: 

TF.RTT 040 Read with terminator table 
TF.RAL 010 Read pass all 
TF.RNE 020 Read with no echo 
TF.RST 001 Read with special terminators 
TF.TMO 200 Read with timeout 

Use with IO.RPR: 

TF.BIN 002 Send prompt as "pass all" 
TF.RTT 040 Read with terminator table 
TF.RAL 010 Read pass all 
TF.RNE 020 Read with no echo 
TF.RST 001 Read with special terminators 
TF.TMO 200 Read with timeout 
TF.XOF 100 Send XOF after prompt 

Use with IO.WLB: 

TF.CCO 040 Cancel CTRL/0 
TF.RCU 001 Restore cursor position 
TF. WAL 010 Write pass all 
TF.WBT 100 Break through read 
TF. WMS 020 Write suppressible message 

A-5 



I/O SUBFUNCTION CODE VALUES 

Code 

use with IO.ATT: 

TF.AST 
TF.ESQ 
TF.NOT 
TF.XCC 

Value 

010 
020 
002 
001 

Description 

Specify ASTs in attach 
Recognize escape sequences 
Notification only for type-ahead 
Do not trap CTRL/C 

Table A-7: Subfunction Code (Bit} Values, DZDRV and DWDRV 

Code Value 

Use with IO.RLBv IO.WLB: 

IQ.X 001 

Description 

Inhibit retry attempts for error 
recovery (use on all I/O functions) 

A-6 



APPENDIX B 

SUMMARY OF DSW AND 10 STATUS CODES 

This appendix summarizes the P/OS status codes: 

• Section B.1 summarizes DSW codes that the system returns in 
the Directive Status Word (DSW). 

• Section B.2 summarizes the standard I/O status codes that the 
system returns in the I/O Status Block (IOSB). 

• Section B.3 groups all I/0 status codes according to which 
device generates them. 

8.1 STATUS CODES RETURNED IN DIRECTIVE STATUS WORD (DSW) 

The symbols listed in the following tables are associated with 
the directive status codes returned by the Executive. They are 
determined (by default) at task-build time. To include these in 
a MACR0-11 program, use the following two lines of code: 

.MCALL DRERR$ 
DRE RR$ 

Table B-1 lists the success codes; Table B-2 lists the error 
codes. The tables list both the decimal value and the octal word 
value for each code. 

B-1 



STATUS CODES RETURNED IN DIRECTIVE STATUS WORD (DSW) 

Table B-1: DSW Success Codes 

Symbol Decimal Octal Description 

IS.CLR +00 000000 Event flag was clear 
(from clear event flag di rec ti ve) 

rs.sue +01 000001 Operation complete - - success 
IS.SET +02 000002 Event flag was set 

(from set event flag directive) 
IS.SPD +02 000002 Task was suspended 
IS.SUP +03 000003 Logical name superseded 

Table B-2: DSW Error Codes 

Symbol Decimal Octal 

IE.UPN -01 
IE.INS -02 
IE.PTS -03 
IE.UNS -04 
IE.ULN -05 
IE.HWR -06 
IE.ACT -07 
IE.ITS -08 
IE.FIX -09 
IE.CKP -10 
IE.TCH -11 
IE.RBS -15 
IE.FRI -16 
IE.RSU -17 
IE.NSW -18 
IE.ILV -19 
IE.ITN -20 
IE.LNF -21 
IE.AST -80 
IE.MAP -81 
IE.IOP -83 
IE.ALG -84 
IE.WOV -85 
IE.NVR -86 
IE.NVW -87 
IE.ITP -88 

177777 
177776 
177775 
177774 
177773 
177772 
177771 
177770 
177767 
177766 
177765 
177761 
177760 
177757 
177756 
177755 
177754 
177753 
177660 
177657 
177655 
177654 
177653 
177652 
177651 
177650 

Description 

Insufficient dynamic storage; see IE.NDR 
Specified task not installed 
Partition too small for task 
Insufficient dynamic storage for send 
Unassigned LUN 
Device handler not resident 
Task not active 
Directive inconsistent with task state 
Task already fixed/unfixed 
Issuing task not checkpointable 
Task is checkpointable 
Receive buffer is too small 
Privilege violation 
Resource in use 
No swap space available 
Invalid vector specified 
Invalid table number 
Logical name not found 
Directive issued/not issued from AST 
Invalid mapping specified 
Window has I/O in progress 
Alignment error 
Address window allocation overflow 
Invalid region ID 
Invalid address window ID 
Invalid TI parameter 

B-2 



STATUS CODES RETURNED IN DIRECTIVE STATUS WORD (DSW) 

Symbol Decimal Octal 

IE.IBS -89 
IE.LNL -90 
IE.IUI -91 
IE.IOU -92 
IE.ITI -93 
IE.PNS -94 
IE.IPR -95 
IE.ILU -96 
IE.IEF -97 
IE.ADP -98 
IE.SOP -99 

177647 
177646 
177645 
177644 
177643 
177642 
177641 
177640 
177637 
177636 
177635 

Description 

Invalid send buffer size (greater than 255.) 
LUN locked in use 
Invalid UIC 
Invalid device or unit 
Invalid time parameters 
Partition/region not in system 
Invalid priority (greater than 250.) 
Invalid LUN 
Invalid event flag (greater than 64.) 
Part of DPB out of user's space 
DIC, DPB size, or subfunction invalid 

B.2 1/0 STATUS CODES (STANDARD) 

I/O status codes are the low-byte values returned in the first 
word of the I/0 status block on completion of an I/O function. 
This section summarizes all the standard codes available under 
P/OS. (See Section B.3 for a summary of the device-specific 
codes returned by the drivers bundled with P/OS.) 

In your MACR0-11 program, you can refer to the codes symbolically 
by invoking the system macro IOERR$. 

Table B-3 lists the success codes. Table 
codes. Octal values listed in both 
low-order.byte of the complete word value 
the decimal number). 

Table B-3: 1/0 Success Codes, Standard 

Symbol Decimal Octal Description 

Operation pending 

B-4 lists the error 
tables consist of the 

(two's complement of 

IS.PND 00 
rs.sue +01 
IS.RDD +02 

000 
001 
002 

Operation complete, success 
Floppy disk successful completion 
of a read physical, and deleted 
data mark was seen in sector header 

B-3 



I/O STATUS CODES (STANDARD) 

Symbol Decimal Octal 

IS.DAO +02 002 

IS.TMO +02 002 

IS.TNC +02 002 

IS.CHW +04 004 

IS.BV +05 005 

Description 

Successful but with data overrun 
(not to be confused with IE.DAO) 
Successful completion on read terminated 
by timeout 
(PCL) successful transfer but message 
truncated (receive buffer too small) 
(IBM COMM) Data read was result of 
IBM host chained write operation 
(A/D READ) At least one bad value 
was read (remainder may be good); 
bad channel is indicated by a 
negative value in the buffer 

Table 8-4: 1/0 Error Codes, Standard 

Symbol Decimal Octal Description 

IE.BAD -01 377 Bad parameters 
IE. IFC -02 376 Invalid function code 
IE.DNR -03 37 5 Device not ready 
IE.VER -04 374 Parity error on device 
IE.ONP -05 373 Hardware option not present 
IE.SPC -06 372 Invalid user buffer 
IE.DNA -07 371 Device not attached 
IE.DAA -08 370 Device already attached 
IE.DUN -09 367 Device not attachable 
IE.EOF -10 366 End of file detected 
IE.EOV -11 365 End of volume detected 
IE.WLK -12 364 Write attempted to locked unit 
IE.DAO -13 363 Data overrun 
IE.SRE -14 362 Send/receive failure 
IE.ABO -15 361 Request terminated 
IE.PRI -16 360 Privilege violation 
IE.RSU -17 357 Sharable resource in use 
IE.OVR -18 356 Invalid overlay request 
IE.BYT -19 355 Odd byte count (or virtual address) 
IE.BLK -20 354 Logical block number too large 
IE.MOD -21 353 Invalid UDC module number 
IE.CON -22 352 UDC connect error 

B-4 



I/O STATUS CODES (STANDARD) 

Symbol Decimal Octal 

IE.NOD 
IE.DFU 
IE.IFU 
IE.NSF 
IE.LCK 
IE.HFU 
IE.WAC 
IE.CKS 
IE.WAT 
IE.RER 
IE.WER 
IE.ALN 
IE.SNC 
IE.SQC 
IE.NLN 
IE.CLO 
IE.NBF 
IE.RBG 
IE.NBK 
IE.ILL 
IE.BTP 
IE.RAC 
IE.RAT 
IE.RCN 
IE.2DV 
IE.FEX 
IE.BDR 
IE.RNM 
IE.BDI 
IE.FOP 
IE.BNM 
IE.BDV 
IE.BBE 
IE.DUP 
IE.STK 
IE.FHE 
IE.NFI 
IE.ISQ 
IE.EQT 
IE.BVR 
IE.BHD 
IE.OFL 
IE.BCC 
IE.NNN 
IE.NFW 

-23 
-24 
-25 
-26 
-27 
-28 
-29 
-30 
-31 
-32 
-33 
-34 
-35 
-36 
-37 
-38 
-39 
-40 
-41 
-42 
-43 
-44 
-45 
-46 
-48 
-49 
-50 
-51 
-52 
-53 
-54 
-55 
-56 
-57 
-58 
-59 
-60 
-61 
-62 
-63 
-64 
-65 
-66 
-68 
-69 

351 
350 
347 
346 
345 
344 
343 
342 
341 
340 
337 
336 
335 
334 
333 
332 
331 
330 
327 
326 
325 
324 
323 
322 
320 
317 
316 
315 
314 
313 
312 
311 
310 
307 
306 
305 
304 
303 
302 
301 
300 
277 
276 
274 
273 

Description 

Caller's nodes exhausted 
Device full 
Index file full 
No such file 
Locked from read/write access 
File header full 
Accessed for write 
File header checksum failure 
Attribute control list format error 
File processor device read error 
File processor device write error 
File already accessed on LUN 
File ID, file number check 
File ID, sequence number check 
No file accessed on LUN 
File was not properly closed 
OPEN--no buffer space available for file 
Invalid record size 
File exceeds space allocated, no blocks 
Invalid operation on file descriptor block 
Bad record type 
Invalid record access bits set 
Invalid record attributes bits set 
Invalid record number--too large 
Rename--two different devices 
Rename--new file name already in use 
Bad directory file 
Can't rename old file system 
Bad directory syntax 
File already open 
Bad file name 
Bad device name 
Bad block on device 
ENTER--duplicate entry in directory 
Not enough stack space (FCS or FCP) 
Fatal hardware error on device 
File ID was not specified 
Invalid sequential operation 
End of tape detected 
Bad version number 
Bad file header 
Device off line 
Block check, CRC, or framing error 
No such node 
Path lost to partner 

B-5 



I/O STATUS CODES (STANDARD) 

Symbol Decimal Octal Description 

IE.DIS 
IE.BLB 
IE.NOR 
IE.URJ 
IE.NRJ 
IE.EXP 
IE.BTF 
IE.NNC 
IE.NDA 
IE.IES 
IE.PES 
IE.ALC 
IE.ULK 
IE.WCK 
IE.DSQ 
IE. IQU 
IE.RES 
IE.TML 
IE.NNT 
IE.TMO 
IE.CNR 
IE.UKN 
IE.MII 
IE.SPI 

-69 
-70 
-72 
-73 
-74 
-75 
-76 
-77 
-78 
-82 
-83 
-84 
-85 
-86 
-90 
-91 
-92 
-9 3 
-94 
-95 
-96 
-97 
-99 
-100 

273 
272 
270 
267 
266 
265 
264 
263 
262 
256 
255 
254 
253 
252 
246 
245 
244 
243 
242 
241 
240 
237 
235 
234 

Path lost to partner (same as IE.NFW) 
Bad logical buffer 
No dynamic space available; see also IE.UPN 
Connection rejected by user 
Connection rejected by network 
File expiration date not reached 
Bad tape format 
Not ANSI "D" format byte count 
No data available 
Invalid escape sequence 
Partial escape sequence 
Allocation failure 
Unlock error 
Write check failure 
Disk quota exceeded 
Inconsistent qualifier usage 
Circuit reset during operation 
Too many links to task 
Not a network task 
Timeout on request; see also IS.TMO 
Connection rejected 
Unknown name 
Media inserted incorrectly 
Spindown ignored 

8.3 1/0 STATUS CODES (DEVICE SPECIFIC) 

Each driver that is bundled with P/OS returns a subset of the 
standard I/O status codes. This section lists the status codes 
returned by each driver. Also listed are subcodes for any 
additional status information a driver returns in the high byte 
of the status word. (For example, the terminal driver returns 
input terminator information in the high byte of an rs.sue 
return.) 

NOTE 

Subcodes returned with rs.sue are word values. 
Subcodes returned with IE.ABO, and all I/O status 
codes, are byte values. 

B-6 



I/O STATUS CODES (DEVICE SPECIFIC) 

Table B-5: 110 Status Codes for the Terminal Driver, TTDRV 

Symbol Decimal Octal Description 

rs.sue +01 001 Successful termination 
IS.TMO +02 002 Successful read terminated by timeout 
IE.BAD -01 377 Bad parameter 
IE.IFC -02 376 Invalid function 
IE.DNR -03 375 Device not ready 
IE.SPC -06 372 Invalid user buffer 
IE.DNA -07 371 Device not attached 
IE.DAA -08 370 Device already attached 
IE.EOF -10 366 End of file detected 
IE.ABO -15 361 Request terminated 
IE.NOD -23 351 Buffer allocation failure 
IE. IES -82 256 Invalid escape sequence 
IE.PES -83 255 Partial escape sequence 

Table B-6: Full-Word Subcodes for IS.SUC Return in TTDRV 

Octal Octal Octal 
Symbol Byte 0 Byte 1 Word Description 

IS.CR 001 015 006401 Carriage return was terminator 
IS.ESC 001 033 015401 Escape {ALTMODE) was terminator 
IS.CC 001 003 001401 CTRL/C (INTERRUPT/DO) terminator 
IS.ESQ 001 233 115401 Escape sequence was terminator 
IS.PES 001 200 100001 Partial escape sequence terminator 
IS.EQT 001 004 002001 EOT was terminator, block mode input 
IS.TAB 001 011 004401 Tab was terminator, forms mode input 

B-7 



I/O STATUS CODES (DEVICE SPECIFIC) 

Table B-7: High-Byte Subcodes for IE.ABO Return in TTDRV 

Symbol Decimal Octal 

SE. ICN 01 
SE.FIX 02 
SE.BIN 03 
SE.VAL 04 
SE.TER 05 
SE.SPD 06 
SE.SPL 07 
SE.PAR 08 
SE.LPR 09 
SE.NSC 10 
SE.UPN 11 
SE.NIH 12 
SE.ATA 13 
SE.NAT 14 
SE.IAA 15 

001 
002 
003 
004 
005 
006 
007 
010 
011 
012 
013 
014 
015 
016 
017 

Description 

Invalid characteristic name 
Attempt to change fixed characteristic 
Invalid value for binary characteristic 
Invalid value for nonbinary characteristic 
Invalid terminal type 
Invalid speed for interface 
Invalid split speed for interface 
Invalid parity type for interface 
Other invalid line parameters 
Interface has no settable characteristics 
No space to save default characteristics 
Characteristic not assembled in handler 
Terminal attached with ast notification 
Terminal not attached 
Invalid AST address specified 

Table B-8: 1/0 Status for TMS Driver, XTDRV 

Symbol Decimal Octal 

IS.PND +00 
rs.sue +01 
IS.TMO +02 
IE.BAD -01 
IE.DNR -03 
IE.DNA -07 
IE.DAA -08 
IE. DAO -13 
IE.ABO -15 
IE.RSU -17 
IE.FHE -59 
IE.OFL -65 
IE.ALC -84 
IE.TMO -95 
IE. CNR -96 

000 
001 
002 
377 
375 
371 
370 
363 
361 
357 
305 
277 
254 
241 
240 

Description 

Success, I/0 request pending 
Successful completion 
Success, request timed out 
Invalid digit or call issued for line 3 
Device not ready 
Device not attached 
Device already attached to calling task 
Data overrun 
Operation aborted 
Shared resource in use 
Fatal hardware error on device 
Device off line 
Allocation failure 
Could not connect within timeout period 
Connection rejected 

B-8 



I/0 STATUS CODES (DEVICE SPECIFIC) 

Table B-9: High-Byte Subcodes for IE.ABO Return in XTDRV 

Symbol Decimal Octal 

SE.VAL +04 
SE.NIH +12 

004 
010 

Description 

Invalid value for nonbinary characteristic 
Characteristic not assembled in handler 

Table B-10: 1/0 Status for Communication Driver, XKDRV 

Symbol Decimal Octal Description 

IS.PND +00 000 Success, I/O request pending 
Is.sue +01 001 Successful completion 
IS.TMO +02 002 Success, request timed out 
IE.BAD -01 377 Bad parameters 
IE. IFC -02 376 Invalid function 
IE.DNR -03 375 Device not ready 
IE.DNA -07 371 Device not attached 
IE.DAA -08 370 Device already attached to calling task 
IE.ABO -15 361 Operation aborted 
IE.OFL -65 277 Device off line 
IE.ALC -84 254 Allocation failure 
IS. TMO -95 241 Successful completion on a read 
IE.CNR -96 240 Connection rejected 

Table 8-11: High-Byte Subcodes for IE.ABO Return in XKDRV 

Symbol Decimal Octal 

SE.VAL +04 
SE.NIH +12 

004 
010 

Description 

Invalid value for nonbinary characteristic 
Characteristic not assembled in handler 

B-9 



I/O STATUS CODES (DEVICE SPECIFIC) 

Table B-12: 1/0 Status for Disk Drivers, DZDRV and DWDRV 

Symbol Decimal Octal 

IS.PND +00 
rs.sue +01 
IE.IFC -02 
IE.DNR -03 
IE.VER -04 
IE.SPC -06 
IE.WLK -12 
IE.ABO -15 
IE.PRI -16 
IE.OVR -18 
IE.BYT -19 
IE.BLK -20 
IE.NOD -23 
IE.ALN -34 
IE.NLN -37 
IE.BBE -56 
IE.FHE -59 
IE.OFL -65 
IE.WCK -86 
IE. MII -99 

000 
001 
376 
375 
374 
372 
364 
361 
360 
356 
355 
354 
351 
336 
333 
310 
305 
277 
252 
235 

Description 

Operation pending 
Operation complete, success 
Invalid function 
Device not ready 
Parity error on device 
Invalid user buffer 
Write attempted to locked unit 
Operation aborted 
Privilege violation 
Invalid overlay request 
Odd byte count (or virtual address) 
Logical block number too large 
Caller's nodes exhausted 
File already accessed on LUN 
No file accessed on LUN 
Bad block on device 
Fatal hardware error on device 
Device off line 
Write check failure 
Media inserted incorrectly 

B-10 



APPENDIX C 

CONFIGURATION TABLE VALUES 

This appendix describes the values contained in the configuration 
table return buffer after a call to the P/OS system directive 
WIMP$. For a complete description of the WIMP$ system directive, 
see Section 8.88. 

In this appendix, references to PC350 apply to the PC325. Also, 
unless specified otherwise, all values shown apply to both the 
PC325/350 and the PC380. 

C.1 CONFIGURATION TABLE 

Table C-1: Configuration Table Values 

Byte Description 
Off set 
(Decimal) 

0 Table length in bytes. This word indicates the 
number of bytes in the table. 

2 Serial number ROM ID. This value is the 
identification number of the serial number ROM part 
itself; it is not the contents of the serial number 
ROM. Normally this value is 31 (octal). 

4 High word of serial number. If the checksum of the 
serial number ROM ID is correct, then this word 
contains the high 16-bits of the 48-bit 
identification number. Otherwise, this word contains 
the value zero. 

C-1 



Byte 
Off set 
(Decimal) 

6 

8 

10 

12 

14-44 

46-48 

CONFIGURATION TABLE 

Description 

Middle word of serial number. If the checksum of the 
serial number ROM ID is correct, then this word 
contains the middle 16-bits of the 48-bit 
identification number. Otherwise, this word contains 
the value zero. 

Low word of serial number. If the checksum of the 
serial number ROM ID is correct, then this word 
contains the low 16-bits ·of the 48-bit 
identification number. Otherwise, this word contains 
the value zero. 

Number of option slots. This word value represents 
the maximum number of option slots. 

Device section length in bytes. This value is the 
byte length of the device section of the 
configuration table, excluding the device section 
length itself. Normally, this value is 170 (octal). 

Slot ID numbers and error/status values. These 
items indicate what options are present in the 
Professional's option slots. For each slot, there is 
a 2 word entry. The first word contains the 
identification number of an option in the slot. The 
second word contains an error value in the low byte 
and a status value in the high byte. 

For a description of various ID numbers and error 
values that apply to the slot options, see Table 
C-3. 

Keyboard ID and error/status. These word values 
apply to either the keyboard or another input device 
connected to the Professional's keyboard port. The 
first word contains the identification number of the 
input device. In the second word, the low byte 
contains the error value for the device; the high 
byte contains the status value. For a list of error 
codes, see Table C-3. 

C-2 



Byte 
Off set 
(Decimal) 

50-52 

54-56 

58-60 

CONFIGURATION TABLE 

Description 

Base processor ID and error/speed multiplier. The 
first word contains the base processor 
identification number. For the J-11 processor 
(PC380), the ID is 35 (octal); for the F-11 
processor (PC350), the ID is 11 (octal). 

In the second word, the low byte contains the error 
number for the CPU. The high byte contains a speed 
multiplier s, where: 

s = (J-11 time/F-11 time) - 1 

The value s is a rounded integer whose value cannot 
be used for accurate timing. The value of the speed 
multiplier for the PC380 is 1; for the PC350 it is 
0. 

Primary memory ID and error/size. The first word 
contains the identification number for primary 
memory. Primary memory is the memory resident in the 
system module. It does not include memory connected 
through an option slot. This value is normally 33 
(octal) . 

In the second word, the low byte contains an error 
number for the primary memory; the high byte 
contains the total primary memory size in 
32-kilobyte units. 

Base system ROM ID and error/operation mode. The 
first word contains the identification number for 
the base system ROM. For the PC380, the ID of the 
base system ROM is 37 (octal); for the PC350, the ID 
is 26 or 27 (octal). 

In the second word, the low byte word contains an 
error number for the base system ROM, and the first 
bit of the high byte contains operation mode 
information: 

Mode Bit 

Customer 0 
Console 1 

The remaining bits in the high byte are reserved. 

C-3 



Byte 
Off set 
(Decimal) 

62-64 

66-68 

70-72 

74-76 

CONFIGURATION TABLE 

Description 

Customer mode is the default. In customer mode, the 
system sets the printer port to 4800 baud for use by 
a printer. In console mode, the system sets the 
printer port to 9600 baud for debugging with a BCC08 
console cable and a second terminal. The 
Professional enters console mode automatically if 
the BCC08 cable is connected to the printer port at 
boot time. 

Video monitor ID and error/status. The first word 
contains the video monitor identification number, if 
a video monitor is present. Normally this value is 
32 (octal). If a monitor is not present, then the 
value of the first word is 0. 

The low byte of the second word contains the error 
value for the video monitor; the high byte contains 
the status value. 

Audio device ID and error/status. These words are 
reserved for an audio device. The first word will 
contain the identification number of the audio 
device. The low byte of the second word will contain 
the error value for the audio device; the high byte 
will contain the status value. 

Keyboard interface ID and error/status. The first 
word contains the identification number of the 
keyboard interface or other input device interface. 
This value is normally 14 (octal). 

The low byte of the second word contains the error 
value for the interface. The high byte contains the 
status value. 

Printer interface ID and error/status. The first 
word contains the identification number of the 
printer interface. This value is normally 17 
(octal). 

The low byte of the second word contains the error 
value for the interface; the high byte contains the 
status value. For a list of error codes, see Table 
C-3. 

C-4 



Byte 
Off set 
(Decimal) 

78-80 

82-84 

86-88 

90-92 

CONFIGURATION TABLE 

Description 

Console interface ID and error/status. The first 
word contains the identification number of the 
console interface, if it is present. If the console 
interface is not present, this value is O. The 
console interface ID is normally 27 (octal). Note 
that both the console interface ID and the base 
system ROM ID can be 27 without any conflict. 

The low byte of the second word contains the error 
value for the interface; the high byte contains the 
status value. 

Communication interface ID and error/status. The 
first word contains the identification number of the 
communication interface. This value is normally 21 
(octal). 

The low byte of the second word contains the error 
value for the interface; the high byte contains the 
status value. For a list of error codes, see Table 
C-3. 

Time of day clock ID and error/status. The first 
word contains the identification number of the 
clock. This value is normally 23 (octal). 

The low byte of the second word contains the error 
value for the clock. For the high byte, when the 
first bit is clear, the system correctly updated the 
time and date since the last power-up. When the 
first bit of the high byte is set, power to the 
clock was inconsistent, and the time and date may be 
invalid. 

For a list of error codes, see Table 
C-3. 

Nonvolatile RAM ID and error/status. The first word 
contains the identification number of the 
nonvolatile RAM (NVR). This value is normally 24 
(octal). 

C-5 



Byte 
Offset 
(Decimal) 

94-96 

98-100 

102-132 

134 

136 

CONFIGURATION TABLE 

Description 

The low byte of the second word contains the error 
value for the NVR. For the high byte, when the first 
bit is clear, the data in the NVR is valid since the 
last power-up. When the first bit of the high byte 
is set, the power to the NVR was inconsistent and 
its data may be invalid. 

For a list of error codes, see Table 
C-3. 

Floating point unit ID and error/status. The first 
word contains the identification number of the 
floating point unit. For the PC380, this value is 
10012 (octal); for the PC350, the value is 00012 
(octal). 

The low byte of the second word contains the error 
value for the floating point unit; the high byte 
contains the status value. For a list of error 
codes, see Table C-3. 

Interrupt controller ID and error/status. The first 
word contains the identification number of the 
interrupt controller. For the PC380, this value is 
36 (octal); for the PC350, the value is 25 (octal). 

The low byte of the second word contains the error 
value for the floating point unit; the high byte 
contains the status value. For a list of error 
codes, see Table C-3. 

Reserved. 

Soft restart address. This value is an address in 
the I/O page to which software can transfer 
execution reboot the system without powering the 
system off and on, and without running the power-up 
self test. The device specified at offset 140 
(decimal) of the configuration table is the boot 
device. 

Offset value into boot block. This value is an 
offset value into the boot block that executes 
during system boot. This offset is useful in 
avoiding unwanted instructions, such as RESET, at 
the beginning of a bootblack. The system initializes 
this value to 0. 

C-6 



Byte 
Offset 
(Decimal) 

138 

140 

142 

144 

146 

148-158 

CONFIGURATION TABLE 

Description 

Booted device ID. This word is the identification 
number of the device that booted the system. 

Booted device unit number, slot, and type. The low 
byte of this word contains the physical unit number 
of the device that booted the sytem. For the high 
byte, bits 0 through 4 contain the physical slot 
number of the boot device, and bits 5 through 7 
contain device type information, as follows: 

Device Type Bits 
7 6 5 

Removable media 0 0 0 
User specified 0 0 1 (PC380 only) 
Local 0 1 0 (PC380 only) 
Remote 0 1 1 (PC380 only) 
Any 1 0 0 
Reserved 1 0 1 
Reserved 1 1 0 
Reserved 1 1 1 

Current boot search return address. This address in 
the I/0 page allows software to return to the 
system's boot search state, in which the system 
searches for a boot device. This is useful in the 
event of a boot failure, or as a means of booting 
more than one operating system. 

Error flag for ROM diagnostics. This flag indicates 
the result of the power-up self test. If the word 
value is 0, self test did not detect faults in the 
system. A nonzero value indicates that at least one 
fault was detected during self test. 

Additional information section length. This value is 
the byte length of the additional information 
section of the configuration table, excluding the 
additional information length itself. The length of 
the additional information section in the PC380 is 
14 (octal) bytes; in the PC350 it is 0. 

Display numbers 2 through 7. The system displays 
the values contained in these words in the event of 
a software crash. 

C-7 



Byte 
Off set 
(Decimal) 

160 

162 

CONFIGURATION TABLE 

Description 

Scratch memory startinq address. In the event of a 
software crash, this entry contains the starting 
64-byte boundary of 32 kilobytes of scratch memory, 
for use by the base system ROM. 

Return PC. This entry contains a virtual return 
address following a software crash. In the event of 
a software crash, the operating system can use the 
return PC- to regain control. 

C.2 DEVICE ID AND ERROR NUMBERS 

Table c-2 summarizes the device codes for the Professional. 
Unused numbers are omitted. 

Table C-2: Summary of Device Codes 

ID (Octal) Device 

000001 LK200 keyboard 

000011 PC350 base processor (F-11) 

000012 PC350 floating point processor (FPP) 

000013 Reserved 

000014 LK200 keyboard interface 

000015 Reserved 

000016 Reserved 

000017 Printer port 

000020 Reserved 

000021 Communication port 

C-8 



ID (Octal) 

000023 

000024 

000025 

000026 

000027 

000030 

000031 

000032 

000033 

000034 

000035 

000036 

000037 

000041 

000042 

000043 

000045 

000046 

000047 

000050 

000060 

000061 

000064 

000075 

DEVICE ID AND ERROR NUMBERS 

Device 

Time of day clock 

Nonvolatile RAM 

PC350 interrupt controller 

PC350 base system ROM Vl.O (first release) 

Maintenance console port or base system ROM V2.0 
( IVIS) 

Option present register 

Serial number ROM 

Monitor attachment 

Primary memory 

Option RAM (256KB extended memory, MSCll-CK) 

PC380 base processor (J-11) 

PC380 interrupt controller 

PC380 base system ROM Vl.O (first release) 

Telephone Management System (TMS) 

Ethernet controller 

Z80/CPM softcard 

PC350 IVIS base module set 

IDLDR IEEE option (real-time interface) 

KANJI font module 

PC380 bitmap video base module 

DECtouch module (DTM) 

MS-DOS board 

Quad Serial Line Unit (SLU) 

PC350 IVIS controller 

C-9 



DEVICE ID AND ERROR NUMBERS 

ID (Octal) Device 

000401 RD-Series 5 1/4" Winchester disk controller 

001002 PC350 bitmap video base module 

001403 PC350 bitmap video extension 

002004 RX50 5 1/4" floppy disk controller 

003006 PC350 IVIS system module (no ROM) 

010012 PC380 floating point processor (FPP) 

010050 PC380 bitmap video extension 

011002 PC350 IVIS bitmap base module 

011403 PC350 IVIS bitmap video extension 

040001 Tempest shielded keyboard 

Table C-3 describes various device ID and error values that can 
appear in the configuration table. Errors are listed in order of 
ascending device ID code. 

Note that an error value of 0 for any device indicates that the 
device is functioning properly. 

Table C-3: Error Values for Devices 

ID 
(Octal 
Word) 

Any 

Error Code 
(Octal 
Byte) 

-2 

Description 

The system located a device in the 
option slot but determined (by reading 
the device's ROM) that it is not 
functioning properly. The system error 
display will contain the three-digit 
octal error 376. 

C-10 



ID 
(Octal 
Word) 

Any 
except 0 

Any 
except 
0' -2 

-2 

-2 

0 

1 

DEVICE ID AND ERROR NUMBERS 

Error Code 
(Octal 
Byte) 

-4 

-1 (word 
value) 

-3 

-1 

-1 (word 
value) 

60 

Description 

The system located a device in the 
option slot but determined that it is 
not functioning properly. This error 
indicates that, although the device is 
present, it is not registered in the 
option present register. The system 
error display for this error will 
contain the three digit octal error 
374. 

The system located a device in the 
option slot but determined that it is 
an untested device. 

The system located a device in the 
option slot but determined that it is 
not functioning properly. This error 
indicates that the device ID remained 
at zero for too long a period of time. 
You should replace the board. The 
system error display for this error 
will contain the three digit octal 
error 375. 

The system located a device in the 
option slot but determined that it is 
not functioning properly. This error 
indicates that a timeout trap occurred 
while the system attempted to read the 
ID. If tightening the cables does not 
eliminate the error, replace the 
board. The system error display for 
this error will contain the three 
digit octal error 377. 

No device is present in the option 
slot. (Not an error.) 

The keyboard is not functioning 
properly. You should replace it. 

C-11 



ID 
(Octal 
Word) 

1 

12 (PC350) 

14 

14 

14 

14 

17 

DEVICE ID AND ERROR NUMBERS 

Brror Code 
(Octal 
Byte) 

75 

27 
through 
50 

4 

6 

10 

26 

3 

Description 

The keyboard is not functioning 
properly--a key is stuck. The 
configuration status byte for the 
keyboard contains the code for the key 
that is stuck. Note that the 
maintenance services keyboard test 
also reports the code for the stuck 
key. If you cannot loosen the key, you 
must replace the keyboard. 

The PC350 floating point unit is not 
functioning properly. The system 
detected errors in certain 
floating-point instructions. You 
should replace the floating point 
unit. Refer to ID 10012 for the PC380 
floating point unit. 

The keyboard interface is not 
functioning properly. The UART chip 
(2661) did not respond within the 
allotted time. You should replace the 
system module. 

The keyboard interface is not 
functioning properly. A status error 
occurred. You should replace the 
system module. 

The keyboard interface is not 
functioning properly. A data compare 
error occurred. You should replace the 
system module. 

The keyboard interface is not 
functioning properly. The system could 
not locate the UART chip (2661), a 
nonexistent memory trap occurred. You 
should replace the system module. 

The printer interface is not 
functioning properly. The system could 
not locate the UART chip (2661), a 
nonexistent memory trap occurred. You 
should replace the system module. 

C-12 



ID 
(Octal 
Word) 

17 

17 

17 

21 

21 

23 

23 

23 

DEVICE ID AND ERROR NUMBERS 

Error Code 
(Octal 
Byte) 

5 

7 

11 

12 

13 

20 

21 

25 

Description 

The printer interface is not 
functioning properly. The UART chip 
(2661) did not respond within the 
allotted time. You should replace the 
system module. 

The printer interface is not 
functioning properly. A status error 
occurred. You should replace the 
system module. 

The printer interface is not 
functioning properly. A data compare 
error occurred. You should replace the 
system module. 

The serial communication interface is 
not functioning properly. A data 
response error occurred. You should 
replace the system module. 

The serial communication interface is 
not functioning properly. The USART 
chip (7201) did not respond. You 
should replace the system module. 

The time-of-day device is not 
functioning properly. It did not 
interrupt. You should replace the 
system module. 

The time-of-day device is not 
functioning properly. It did not 
interrupt within the proper time 
frame. You should replace the system 
module. 

The time-of-day device is not 
functioning properly. It did not 
respond; a nonexistent memory trap 
occurred. You should replace the 
system module. 

C-13 



ID 
(Octal 
Word) 

24 

24 

25 

25 

34 

41 

42 

43 

46 

DEVICE ID AND ERROR NUMBERS 

Error Code 
(Octal 
Byte) 

22 

23 

1 

2 

Any 

Any 

112 or 
less 

Any 

1 

Description 

The Nonvolatile RAM is not functioning 
properly. It did not respond. You 
should replace the system module. 

NOTE 

ID 24, error 22 can in unusual 
cases result from a floating point 
error as well. 

The Nonvolatile RAM is not functioning 
properly. A data compare error 
occurred. You should replace the 
system module. 

The interrupt controller is not 
functioning properly. Either all of 
the channels did not interrupt, or 
there was a nonexistent memory (NXM) 
trap when addressing the controllers. 
You should replace the system module. 

The interrupt controller is not 
functioning properly. The system 
detected multiple interrupts when only 
one was allowed. You should replace 
the system module. 

There is a problem with one or more 
memory modules. 

There is a problem with the TMS 
controller. 

There is a problem with the DECNA 
module. 

There is a problem with the CP/M 
module. 

There is a problem with the Real-Time 
Interface (RTI) module, serial line 
unit 1. 

C-14 



ID 
(Octal 
Word} 

46 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

DEVICE ID AND ERROR NUMBERS 

Error Code 
(Octal 
Byte) 

2 

1 

2 

3 

4 

5 

6 

7 

10 

103 

106 

Description 

There is a problem with the Real-Time 
Interface (RTI) module, serial line 
unit 2. 

The PC380 bit-map video controller is 
not functioning properly. The 
"transfer done" bit in the CSR failed. 

The PC380 bit-map video controller is 
not functioning properly. A register 
initialization failure occurred. 

The PC380 bit-map video controller is 
not functioning properly. A plane 1 
memory failure occurred. 

The PC380 bit-map video controller is 
not functioning properly. A vertical 
retrace failure occurred. 

The PC380 bit-map video controller is 
not functioning properly. A counter 
register failure occurred. 

The PC380 bit-map video controller is 
not functioning properly. An X, Y 
pattern, and/or plane 1 control 
register failure occurred. 

The PC380 bit-map video controller is 
not functioning properly. A scroll 
register failure occurred. 

The PC380 EBO is not functioning 
properly. The bit-map video detected 
the presence of the EBO board, but the 
system could not find the board in the 
slot. 

The PC380 EBO is not functioning 
properly. A plane 2 memory failure 
occurred. 

The PC380 EBO is not functioning 
properly. A plane 2 control failure 
occurred. 

C-15 



ID 
(Octal 
word) 

50 

50 

50 

50 

401 

401 

401 

40'1 

401 

401 

401 

401 

DEVICE ID AND ERROR NUMBERS 

Brror Code 
(Octal 
Byte) 

107 

203 

206 

207 

1 

2 

3 

4 

5 

6 

7 

10 

Description 

The PC380 EBO is not functioning 
properly. A plane 2 scroll register 
failure occurred. 

The PC380 EBO is not functioning 
properly. A plane 3 memory failure 
occurred. 

The PC380 EBO is not functioning 
properly. A plane 3 control failure 
occurred. 

The PC380 EBO is not functioning 
properly. A plane 3 scroll register 
failure occurred. 

The hard disk drive is not functioning 
properly. The system could not locate 
the "operation ended" bit. 

The hard disk drive is not functioning 
properly. An internal power-up error 
occurred. 

The hard disk drive is not functioning 
properly. A sector, cylinder, or head 
select register failed. 

The hard disk drive is not functioning 
properly. The busy bit did not go 
away. 

The hard disk drive is not functioning 
properly. Either the drive is not 
ready or a seek is not yet complete. 

The hard disk drive is not functioning 
properly. The RESTORE command did not 
cause an "A" interrupt. 

The hard disk drive is not functioning 
properly. The RESTORE command did not 
cause the operation to be ended. 

The hard disk drive is not functioning 
properly. The RESTORE command caused 
the error bit to be set. 

C-16 





ID 
(Octal 
Word) 

401 

401 

401 

401 

401 

401 

401 

401 

1002 

1002 

1002 

1002 

DEVICE ID AND ERROR NUMBERS 

Error Code 
(Octal 
Byte) 

30 

31 

32 

33 

34 

35 

36 

37 

1 

2 

3 

4 

Description 

The hard disk drive is not functioning 
properly. The ID was not found. 

The hard disk drive is not functioning 
properly. An ID field CRC error 
occurred. 

The hard disk drive is not functioning 
properly. A data field CRC error 
occurred. 

The hard disk drive is not functioning 
properly. An unexpected operation end 
interrupt occurred. 

The hard disk drive is not functioning 
properly. An invalid operation end 
interrupt occurred. 

The hard disk drive is not functioning 
properly. An unexpected DRQ interrupt 
occurred. 

The hard disk drive is not functioning 
properly. An invalid DRQ interrupt 
occurred. 

The hard disk drive is not functioning 
properly. A restore command time out 
occurred. 

The PC350 bit-map video controller is 
not functioning properly The "transfer 
done" bit in the CSR failed. 

The PC350 bit-map video controller is 
not functioning properly. A register 
initialization failure occurred. 

The PC350 bit-map video controller is 
not functioning properly. A plane 1 
memory failure occurred. 

The PC350 bit-map video controller is 
not functioning properly. A vertical 
retrace failure occurred. 

C-18 



ID 
(Octal 
Word) 

1002 

1002 

1002 

1002 

1403 

1403 

1403 

1403 

1403 

DEVICE ID AND ERROR NUMBERS 

Error Code 
(Octal 
Byte) 

5 

6 

7 

10 

1 

2 

3 

4 

5 

Description 

The PC350 bit-map video controller is 
not functioning properly. A counter 
register failure occurred. 

The PC350 bit-map video controller is 
not functioning properly. An X, Y 
pattern, and/or plane 1 control 
register failure occurred. 

The PC350 bit-map video controller is 
not functioning properly. A plane 1 
scroll register failure occurred. 

The PC350 EBO is not functioning 
properly. The bit-map video detected 
the presence of the EBO board, but the 
system could not find the board in the 
slot. 

The PC350 extended bit-map video 
controller is not functioning 
properly. There is a failure in the 
cable connection. 

The PC350 extended bit-map video 
controller is not functioning 
properly. Improper register 
initialization occurred. 

The PC350 extended bit-map video 
controller is not functioning 
properly. A plane 2 memory failure 
occurred. 

The PC350 extended bit-map video 
controller is not functioning 
properly. A plane 2 control register 
failure occurred. 

The PC350 extended bit-map video 
controller is not functioning 
properly. A plane 3 memory failure 
occurred. 

C-19 







ID 
(Octal 
Word) 

2004 

2004 

2004 

2004 

2004 

2004 

2004 

2004 

2004 

2004 

2004 

2004 

DEVICE ID AND ERROR NUMBERS 

Error Code 
{Octal 
Byte) 

270 

300 

310 

320 

330 

340 

350 

354 

360 

364 

370 

210 

Description 

The RX50 module is not functioning 
properly. The system attempted to 
access a nonspecified sector number. 

The RX50 module is not functioning 
properly. The lower nibble of RAM 
failed to pass the memory test. 

The RX50 module is not functioning 
properly. The higher nibble of RAM 
failed to pass the memory test. 

The RX50 module is not functioning 
properly. No index pulse was detected. 

The RX50 module is not functioning 
properly. The drive speed is not 
within the limit. 

The RX50 module is not functioning 
properly. The system detected a bad 
format or a blank diskette. 

The RX50 module is not functioning 
properly. A stepping error occurred. 

The RX50 module is not functioning 
properly. An attempt was made to set 
unsupported disk parameters. 

The RX50 module is not functioning 
properly. The Phase Lock Loop (PLL) 
frequency is not within the limits. 

The RX50 module is not functioning 
properly. An attempt was made to read 
a sector containing a deleted data 
mark. 

The RXSO module is not functioning 
properly. A data buffer is bad. 

The RX50 module is not functioning 
properly. An attempt was made to write 
to a nonRX50 formatted diskette. 

C-22 



ID 
(Octal 
Word) 

10012 
(PC380) 

10050 

10050 

10050 

10050 

10050 

10050 

10050 

10050 

DEVICE ID AND ERROR NUMBERS 

Error Code 
(Octal 
Byte) 

27 
through 
50 

1 

2 

3 

4 

5 

6 

7 

103 

Description 

The PC380 floating point unit is not 
functioning properly. The system 
detected errors in certain 
floating-point instructions. You 
should replace the floating point 
unit. Refer to ID 12 for the PC350 
floating point unit. 

The PC380 extended bit-map video 
controller is not functioning 
properly. There is a failure in the 
cable connection. 

The PC380 extended bit-map video 
controller is not functioning 
properly. Improper register 
initialization occurred. 

The PC380 extended bit-map video 
controller is not functioning 
properly. A plane 2 memory failure 
occurred. 

The PC380 extended bit-map video 
controller is not functioning 
properly. A plane 2 control register 
failure occurred. 

The PC380 extended bit-map video 
controller is not functioning 
properly. A plane 3 memory failure 
occurred. 

The PC380 extended bit-map video 
controller is not functioning 
properly. A plane 3 control register 
failure occurred. 

The PC380 EBO is not functioning 
properly. A plane 1 scroll register 
failure occurred. 

The PC380 EBO is not functioning 
properly. A plane 2 memory failure 
occurred. 

C-23 









APPENDIX D 

DIRECTIVE IDENTIFICATION CODES 

Directive Identification Codes (DICs) are used to identify each 
directive. The DIC appears in the low byte of the first (or 
only) word in the Directive Parameter Block (DPB). The DPB 
length (in words) appears in the high byte of the first DPB word. 
Thus, both bytes make up the word format shown below: 

First Word 
In DPB DPB Length 

(High byte) 

DIC J 
(Low byte) 

Table D-1 contains a listing of directives arranged in 
sequence, according to the octal value for the first 
In addition, the DIC and DPB lengths are included as 
values as they appear in Chapter 8. 

numerical 
DPB word. 

decimal 

This list can be used as a software debugging aid to quickly 
identify directives based on the octal value of the first word in 
a DPB. An example for the SDAT$ directive is provided below, to 
illustrate how the octal value is obtained: 

First Word 
In DPB 

Octal Byte 
Values 

Binary Word 
Value 

Octal Word 
Value 

[ 5 (10) 

i 
5 (8) 

~ 
101 

71(10) 

t 
107 (8) 

t 
01 000 111 

2507 (=SDAT$) 

D-1 







DIRECTIVE IDENTIFICATION CODES 

Octal Value for Directive DIC Values for 
DPB First Word {Macro Call} (Decimal) DPB Length (Decimal) 

1457 RSUM$ 47 3 

1475 STIM$ 61 3 

1523 ABRT$ 83 3 

1531 EXTK$ 89 3 

1547 SVOB$ 103 3 

1551 SVTK$ 105 3 

1605 USTP$ 133 3 

1611 STLO$ 137 3 

1617 CNCT$ 143 3 

1647 SREX$ 167 3 

1657 SWST$ 175 3 

1715 CPCR$ 205 3 

2007 ALUN$ 7 4 

2011 ALTP$ 9 4 

2101 GPRT$/GREG$ 65 4 

2113 RCVD$ 75 4 

2115 RCVX$ 77 4 

2213 RCST$ 139 4 

2223 EMST$ 147 4 

2427 MRKT$ 23 5 

2505 SREF$ 69 5 

2507 SDAT$ 71 5 

D-4 



DIRECTIVE IDENTIFICATION CODES 

Octal Value for Directive DIC Values for 
DPB First Word (Macro Call) (Decimal) DPB Length (Decimal) 

2625 CRVT$ 149 5 

2717 DLOG$ 207 5 

2717 ACHN$ 207 5 

2717 SDIR$ 207 5 

3113 VRCD$ 75 6 

3115 VRCX$ 77 6 

3213 VRCS$ 139 6 

3317 GDIR$ 207 6 

3413 RQST$ 11 7 

3601 CINT$ 129 7 

3615 SDRC$ 141 7 

3717 CLOG$ 207 7 

3717 FSS$ 207 7 

4107 VSDA$ 71 8 

4215 VSRC$ 141 8 

4615 SDRP$ 141 9 

4717 TLOG$ 207 9 

5421 RUN$ 17 11 

6001 QIO$ 1 12 

6003 QIOW$ 3 12 

6413 SPWN$ 11 13 

6717 PFCS$ 207 13 

D-5 





ABRT$ (Abort Task), 8-4 
ACS 

buffer, 6-14, 6-15 
Active Page Register 

See APR 
Active task state 

blocked, 4-2 
ready-to-run, 4-2 
stopped, 4-2 

Address mapping, 5-1 
Address space 

logical, 1-8, 5-1 
physical, 1-8, 5-1 
virtual, 1-8, 5-1 

Address window 
creating, 8-36 

Addressing 
primary mechanism, 1-7 
virtual, 5-1 

Allocate Checkpoint Space 
See ACS 

ALTP$ (Alter Priority), 8-8 
ALUN$ (Assign LUN), 8-10, 9-12 
Ancillary Control Processor 

FILES-11, 1-5 
Application program 

design suggestions, 1-10 
APR, 5-18 
Assign Channel (ACHN$), 8-6 
Assign LUN 

See ALUN$ 
AST, 3-8, 7-3 

characteristics, 3-8 
definition, 3-5 
disable or inhibit, 8-59 
service routines, 3-9, 7-20 
stack format, 3-10 

AST state 
calling POSSUM routine from, 

6-4 
ASTOX, 9-5 
ASTX$S (AST Service Exit), 8-12, 

9-14 
Asynchronous System Trap 

See AST 
ATL 

definition, 1-7 

INDEX 

ATRG$ (Attach Region), 8-15 
definition, 5-9 

Attachment descriptor 
and Send by Reference, 5-8 

Attribute list 
PROATR, 6-7 

Bad block checking, 6-13 
BASIC-PLUS-2 

optional arguments, 7-15 
sample program, 7-15 
task names, 7-18 

BAXIC-PLUS-2 
calling method, 7-16 

BCS instruction, 9-4 
Bit 

definition, 1-7 
Bootblack, 6-38 
Bootstrap, 6-38 

ROM (BSR), 1-1 
Byte 

definition, 1-7 

$C Macro form, 7-7 
C-bit, 9-4 
CALL, 8-128 
Call 

high-level language, 7-1 
CALL ABORT, 8-4 
CALL ACHN, 8-6 
CALL ALTPRI, 8-8 
CALL ASNLUN, 8-10 
CALL ATRG, 8-15 
CALL CANALL, 8-54 
CALL CANMT, 8-30 
CALL CLREF, 8-26 
CALL CNCT, 8-32 
CALL CNCTN, 8-32 
CALL CRAW, 8-36 
CALL CRELOG, 8-27 
CALL CRRG, 8-41 
CALL DECLAR, 8-56 
CALL DELLOG, 8-57 
CALL DISCKP, 8-61 
CALL DSASTR, 8-59 
CALL DTRG, 8-63 
CALL ELAW, 8-66 

Index-1 



CALL EMST, 8-70 
CALL ENACKP, 8-73 
CALL ENASTR, 8-72 
CALL EXITIF, 8-75 
CALL EXST, 8-79 
CALL EXTTSK, 8-81 
CALL FEAT, 8-84 
CALL FSS, 8-88 
CALL GETDDS, 8-95 
CALL GETLUN, 8-98 
CALL GETMCR, 8-101 
CALL GETPAR, 8-107 
CALL GETREG, 8-109 
CALL GETTIM, 8-111 
CALL GETTSK, 8-113 
CALL GMCX, 8-104 
CALL INASTR, 8-59 
CALL MAP, 8-116 
CALL MARK, 8-120 
CALL PFCS, 8-124 
CALL QIO, 8-132 
CALL RCST, 8-138 
CALL READEF, 8-146 
CALL RECEIV, 8-140 
CALL RECOEX, 8-142 
CALL REQUES, 8-155 
CALL RESUME, 8-164 
CALL RPOI, 8-151 
CALL RREF, 8-159 
CALL RRST, 8-162 
CALL RUN, 8-165 
CALL SDRC, 8-176 
CALL SDRCN, 8-176 
CALL SDRP, 8-180 
CALL SEND, 8-172 
CALL SETDDS, 8-174 
CALL SETEF, 8-184 
CALL SETTIM, 8-206 
CALL SPAWN, 8-189 
CALL SPAWNN, 8-189 
CALL SREF, 8-198 
CALL SREX, 8-201 
CALL STLOR, 8-209 
CALL STLORS, 8-209 
CALL STOP, 8-212 
CALL STOPFR, 8-213 
CALL SUSPND, 8-187 
CALL TFEA, 8-221 
CALL TRALOG, 8-224 
CALL UNMAP, 8-227 
CALL USTP, 8-229 

INDEX 

CALL VRCD, 8-231 
CALL VRCS, 8-233 
CALL VRCX, 8-236 
CALL VSDA, 8-238 
CALL VSRC, 8-240 
CALL VSRCN, 8-240 
CALL WAITFR, 8-261 
CALL WFLOR, 8-258 
CALL WFLORS, 8-258 
CALL WFSNE, 8-256 
CALL WIMP, 8-244 
CALL WTQIO, 8-136 
Callable system routines, 6-1 

general conventions, 6-4 
Cancel Mark Time 

See CMKT$ 
Cancel Time-Based Requests 

See CSRQ$ 
CBD, 8-41 
Chaining, 6-29 
Changing LUN assignment, 9-3 
Checkpointing 

affected task states, 1-9 
definition, 1-9 
disabled, 8-61 
enable, 8-73 
prohibition of, 1-9 
promotion of, 1-9 

CINT$ (Connect to Interrupt 
Vector), 8-18 

CLEF$ (Clear Event Flag), 8-26 
Clock, 1-2 
CLOG$ (Create Logical Name 

String), 2-8, 8-27 
example, 2-8 

CMKT$ (Cancel Mark Time), 8-30 
CNCT$ (Connect), 8-32 
Command line 

passing, 8-151 
Common 

see Memory common 
installation of 

See Static region 
Common Block Directory 

See CBD 
Common event flag, 3-3 

definition, 3-2 
examples, 3-3 

Common reference, 3-11 
Common region, 5-5 
Communication Driver 

Index-2 



IO.ANS, 13-7 
IO.ATA, 13-8 
IO.BRK, 13-9 
IO.CON, 13-9 
IO.HNG, 13-9 
IO.LT!, 13-9 
IO.ORG, 13-10 
IO.RAL, 13-10 
IO.RNE, 13-10 
IO.TRM, 13-11 
IO.UTI, 13-11 
IO.WAL, 13-11 
SF.GMC, 13-12 
SF.SMC, 13-17 

Communication driver, 13-1 
full-duplex operation, 13-20 
passing XON/XOFF, 13-23 
QIO macro functions for, 13-3 

Components of P/OS 
See P/OS components 

Configuration table, 8-250 
Connect, 4-5 

See CNCT$ 
Controllers, 1-2 
CRAW$ (Create Address Window), 

5-10, 8-36 
Create 

logical, 6-19 
Create Address Window 

See CRAW$ 
Create Logical Name 

See CLOG$, PROLOG 
Create Region 

See CRRG$ 
CREDEL 

server task, 6-10 
CRRG$ (Create Region), 8-41 

definition, 5-9 
CRVT$ (Create Virtual Terminal), 

8-46 
CSRQ$ (Cancel Time-Based 

Requests), 8-54 
CTI bus, 1-2 

Data reference, 3-11 
Data structures 

user, 5-11 
DECL$S (Declare Significant 

Event), 8-56 
Default 

LUN assignments, 9-4 

INDEX 

Default directories, 2-7 
Default directory string 

retrieving, 2-10 
setting up, 2-9 

Delete Logical Name 
See DLOG$, PROLOG 

Design 
suggestions, 1-10 

Detach Region 
See DTRG$ 

Device 
privilege violation, 9-22 
secondary boot, 6-36 
standard devices, 10-1 
write-locked, 9-22 

Device independence, 9-1 
definition, 2-1 

Device-specific functions, 9-1 
Diagnostic 

ROM, see Bootstrap 
DIC, 7-2 
DIR$ macro 

definition, 7-8 
Directive 

conventions, 7-27 
description format, 8-1 
event-associated, 7-24 
informational, 7-24 
memory management, 7-26 
parent/offspring tasking, 7-26 
status conditions, 9-25 
task status control directives, 

7-24 
trap-associated, 7-25 

Directive Identification Code 
See DIC 

Directive macros, 7-4 
Directive Parameter Block 

See DPB 
Directive Status Word 

See DSW 
Directory 

creating a, 6-10 
deleting a, 6-10 
setting up default, 8-174 

Directory manipulation 
See PRODIR 

Disable AST Recognition 
See DHAR$ 

Disk driver 
QIO macro functions for, 10-6 

Index-3 



INDEX 

Disk drivers, 10-1 
DLOG$ (Delete Logical Name), 2-8, 

8-57 
example, 2-9 

DPB, 7-2 
created at assembly time, 7-7, 

7-8 
created at run time, 7-6 
creation, 7-4 
sample layout, 9-10 

Driver 
communication, 13-1 
disk, 10-1 
loading, 6-2 
queues, 9-10 
terminal, 11-1 

Drivers 
description, 9-1 

DSAR$S (Disable AST Recognition), 
8-59 

DSCP$S (Disable Checkpointing), 
8-61 

DSR 
See Dynamic Storage Region 

DSW, 7-2 
DTRG$ (Detach Region), 5-10, 8-63 
Duplicate 

logical name, 2-4 
Dynamic region, 5-4 
Dynamic Storage Region, 1-10 

EFN, 3-2 
1 through 32, 3-2 
33 through 64, 3-2 
57 through 64, 3-2 

ELAW$ (Eliminate Address Window), 
5-10, 8-66 

ELVT$ (Eliminate Virtual 
Terminal), 8-68 

EMST$ (Emit Status), 4-6, 8-70 
EMT 377 instruction, 7-1 
Emulator trap instruction 

see EMT 377 instruction 
ENAR$S (Enable AST Recognition), 

8-72 
ENCP$S (Enable Checkpointing), 

8-73 
Equivalence value, 2-1 
Equivalence values 

maximum per logical, 2-5 
Error returns, 7-4 

Error routine address, 7-9 
Event flag 

definition, 3-2 
setting, 8-184 
testing for, 3-4 

Event Flag Number 
See EFN 

Exception trap, 3-10 
Executive, 1-4 

I/O coordination, 1-4 
interrupt processing, 1-4 
resource control, 1-4 
servers, 1-6 
Task scheduling, 1-4 

EXIF$ (Exit If), 8-75 
Exit AST 

offspring status, 3-12 
Exit With Status directive 

See EXST$ 
EXIT$S (Task Exit), 8-77 
EXST$ (Exit With Status), 8-79 
Extend Task 

Task Builder option, 5-5 
EXTK$ (Extend Task), 8-81 

FllACP, 1-3 
Fast Remap 

requirements, 5-25 
Fast remap, 3-6 

status codes, 5-25 
Fast remapping, 1-13 

description, 5-23 
FCS, 1-3, 1-5, 10-7 
FEAT$ (Test Extended Feature), 

8-84 
FID 

field in NAM block, 6-8 
File 

accessing file attributes, 6-7 
directory manipulation, 6-10 
identification block, 6-8 
list of accessible attributes, 

6-9 
File attribute 

PROATR, 6-7 
File Control Services 

see FCS 
File independence 

definition, 2-1 
FILES-11 

Index-4 



INDEX 

Ancillary Control Processor 
(ACF), 1-5 

FILES-11 ACF (FCP) 
logical name use, 2-5 

Fix 
task or region, 6-27 

Floating Point Processor, 1-2 
exception ASTs, 8-185 

Format 
a volume, 6-13 

FORTRAN 
AST service routines, 7-21 
calling method, 7-16 
optional arguments, 7-15 
sample program, 7-12 
task names, 7-17 

FPU exception trap, 3-10 
FSS$ (File Specification Scan), 

8-88 

GDIR$ (Get Default Directory), 
2-10, 8-95 

example, 2-10 
GET file attributes 

function of PROATR, 6-7 
Get LUN 

return buffer, disks, 10-2 
Get Mapping Context 

See GMCX$ 
Get Partition Parameters 

See GPRT$ 
Get Region Parameters 

See GREG$ 
Get Task Parameters 

See GTSK$ 
Get Time Parameters 

See GTIM$ 
GETADR subroutine, 7-18 
GI. PRO 

WIMP$ subfunction, 6-11 
Global symbols, 7-9 
GLUN$ (Get LUN Info), 8-98, 9-13 
GMCR$ (Get Command Line), 8-101 
GMCX$ (Get Mapping Context), 5-11, 

8-103 
GPRT$ (Get Partition Parameters), 

8-107 
GREG$ (Get Region Parameters), 

5-11, 8-109 
GTIM$ (Get Time), 8-111 

GTSK$ (Get Task Parameters), 
8-113 

Hardware 
environment, P/OS, 1-1 

High-level language, 7-1 
High-level language subroutines 

calls, 7-19 
error conditions, 7-20 
GETADR subroutine, 7-18 
integer arguments, 7-18 
system directive operations, 

T-11 

I/O 
attaching devices 

See IO.ATT 
canceling requests 

See IO.KIL 
detaching devices 

See IO.DET 
general functions, 9-1 
logical, 9-2 
macros for, 9-11 
physical, 9-2 
request completion, 3-11 
return codes, 9-22 
standard functions, 9-15 
virtual, 9-2 

I/O completion 
Executive actions, 9-21 

I/0 drivers, 1-4 
I/O ports, 1-2 
I/O request 

acceptance, 9-4 
issuing, 9-4 
rejection of, 9-4 

IHAR$S (Inhibit AST Recognition), 
8-59 

Independence 
device, 2-1 
file, 2-1 

Initialize 
volume, 6-13 

INS REM 
server task, 6-26 

Install 
task or region, 6-27 

Install/run/remove a task, 6-29 
Instruction 

BCS, 9-4 

Index-5 



IOT, 3-6 
Instrument Society of America 

See ISA 
Integer array, 7-18 
Intertask synchronization 

examples, 4-9 
IO.ATT, 9-5, 9-16 
IO.DET, 9-17 
IO.KIL, 9-17 
IO.RVB, 9-19 
IO.WVB, 9-20 
IOT instruction, 3-6 

fast remap, 5-23 
ISA 

and AST service routines, 8-12 
FORTRAN calls, 7-3 

LB:[1,5]RSXMAC.SML 
See System macro library 

Library 
cluster, 6-2 
clustered resident, 1-13 
POSSUM, 6-1 
shared, 1-11 

Library region 5-5 
Linking 

with POSSUM, 6-2 
Local event flag 

definition, 3-2 
examples, 3-3 

Local symbolic offset, 7-9 
Logical address space, 5-2 
Logical name 

create, 2-8, 6-19 
default directory, 2-7 
definition, 2-1 
delete, 2-8, 6-21, 8-57 
duplicate, 2-4 
FILES-11 use, 2-5 
logical name tables, 2-1 
modifier, 2-3 
operations, 2-8 
RMS conventions, 2-5 
RMS translation, 2-5 
storage, 2-1 
translate, 2-9, 6-19, 8-224 

Logical Unit Table 
see LUT 

LUN, 9-1 
assignments, default, 9-4 
changing the assignment, 9-3 

INDEX 

definition, 9-2 
reassignment, 9-3 

LUT (Logical Unit Table), 9-3 

Macro call 
examples, 7-10 

Macro expansion 
$C form, 7-7 
$ form, 7-6 
$S form, 7-8 

$ Macro form, 7-6 
Macro name conventions, 7-6 
MACR0-11, 7-1 

use of system directives, 7-2 
MAP$ (Map Address Window), 5-10, 

8-116 
Mapping, 5-1 

context, 5-4 
Mark Time 

See MRKT$ 
interval, 3-11 

.MCALL assembler directive 
arguments, 7-6 

Memory 
reducing requirements, 1-12 
units of, 1-7 

Memory common 
fixing in memory, 6-29 
removal of, 6-28 

Memory management 
directives, 1-7 

Memory Management directives, 5-1 
Memory Management Unit (MMU), 1-2 
Mini-Exchange 

connection rejection, 13-19 
Mod 

0' 2-3 
1, 2-3 
2' 2-3 

Modifier 
in RMS, 2-4 
in system software, 2-4 
logical name, 2-3 
logical name operations, 2-3 
superseding, 2-5 

MRKT$ (Mark Time), 8-120 

Nonremovable volume, 2-6 
NO REMOVE 

option, 6-26, 6-27 

Index-6 



OCB (Offspring Control Block), 
4-6, 8-32 

Offspring task, 4-1 
exit status, 4-7 

Operations 
logical name, 2-8 

Overlay 
disk-resident, 1-12 
memory-resident, 1-12 

P/OS 
System Utility Modules, see 

POSSUM 
compared to RSX-11M-PLUS, 1-13 
components, 1-2 
Executive, 1-4 
hardware environment, 1-1 

Parent task, 4-1 
Parent/offspring tasking 

chaining, 4-4 
definition, 4-1 
install/run/remove, 6-29 
spawning, 4-4 
use of, 4-1 

Parse FCS Specification (PFCS$), 
8-124 

Parse RMS Specification (PRMS$), 
8-128 

Partition Control Block 
See PCB 

PASCAL 
calling method, 7-16 
optional arguments, 7-15 
sample program, 7-13, 7-14 
task names, 7-18 

PC, 3-6 
PCB, 8-44 
PDP-11 RS Calling Convention 

for high-level languages, 6-3 
Peripheral mass storage, 1-2 
Physical Address Space, 5-1 
Placeholder 

PRODIR, 6-11 
Pool 

see System pool 
POSSUM, 1-3, 1-6 

call status, 6-5 
linking with, 6-2 
status parameter count, 6-4 

POSSUM library, 6-1 
cluster, 6-2 

INDEX 

impact on task image, 6-2 
included in a task, 6-2 
linking a task to POSSUM 6-2 
resident, 6-2 

POSSUM routines 
format, 6-6 

Primary pool 
see System pool 

Privileged tasks 
remapping APRs to regions, 5-22 

PROATR, 6-7 
Processor Status 

·see PS 
Processor Status Word 

See PSW 
PRODIR, 6-10 
PROFBI, 6-13 
Program Counter 

See PC 
PROLOD, 6-2 
PROLOG, 6-19 
Protection 

region, 5-9 
PROTSK, 6-26 
PROVOL, 6-36 
PS, 3-6 
PSW, 7-3 

QIO 
macro expansion, 9-5 
macro format, 9-6 
macro functions for 

communication driver, 13-3 
macro functions for disk 

drivers, 10-6 
macro functions for terminal 

driver, 11-3 
typical parameters, 9-5 

QIO$ (Queue I/O Request), 8-132, 
9-11 

QIOW$, 8-136, 9-12 

R5 calling convention, 6-3 
RCST$ (Receive Data Or Stop), 

8-138 
RCVD$ (Receive Data), 8-140 
RCVX$ (Receive Data Or Exit), 

8-142 
RD-Series, 10-2 
RD50, RD51, RD52, RD31, 10-2 

Index-7 



INDEX 

RDAF$ (Read All Event Flags), 
8-146 

RDB, 5-11 
array format, 5-16 
definition, 5-12 
field values, 5-22 
generating with high-level 

languages, 5-17 
generating with macros, 5-14 
symbolic offsets, 5-12 

RDB array format, 5-17 
RDBBK$, 5-14 
RDBDF$, 5-14 
RDEF$ (Read Event Flag), 8-148 
RDXF$ (Read Extended Event Flags), 

8-149 
Read All Event Flags 

See RDAF$ 
Read Event Flag 

See RDEF$ 
Read Extended Event Flags 

See RDXF$ 
Receive By Reference 

See RREF$ 
Receive by Reference 

See RREF$ 
Receive By Reference or Stop 

See RRST$ 
Receive Data 

See RCVD$ 
Receive Data Or Exit 

See RCVX$ 
Receive Data Or Stop 

See RCST$ 
Record Management Services 

see RMS 
Region, 8-15 

access, 5-5 
attaching to, 5-8 
common, 5-5 
contents, 5-5 
creation, 5-4, 8-41 
definition, 5-4 
dynamic, 5-4 
fixing in memory, 6-29 
ID, 5-5 
library, 5-5 
protecting, 5-8 
read only, 6-27 
removal of, 6-28 
shared, 1-11, 5-5 

static, 5-4 
Task, 5-5 
unshared, 5-5 

Region Definition Block 
See RDB 

Register 5, 6-3 
Remapping 

fast, 1-13 
Removable volume, 2-6 
Request 

issuing, 8-156 
Request Task 

See RQST$ 
Requirements 

Fast remap, 5-25 
Restrictions, fast remap 

see Requirements 
Resume Task 

See RSUM$ 
Return codes 

I/O, 9-22 
RMS I 1- 3 ' 1- 5 

and default directories, 2-7 
and disk I/O, 10-4 
and PROATR, 6-8 
errors, status control block, 

6-5 
logical name translation, 2-5 

RPOI$, 8-151 
and Spawn directive, 4-5 
when to use, 1-10 

RQST$ 
when to use, 1-11 

RQST$ (Request Task), 8-155 
RREF$ 

definition, 5-11 
RREF$ (Receive By Reference), 

8-158 
RRST$ (Receive By Reference or 

Stop), 8-162 
RSUM$ (Resume Task), 8-164 
RSX-11M-PLUS 

compared to P/OS, 1-13 
RSXMAC.SML 

See System macro library 
RUN$ (Run Task), 8-165 
RX50, 10-1 

$S Macro form, 7-8 
SCAA$ (Specify Command Arrival 

AST), 8-170 

Index-8 



SDAT$ (Send Data), 8-172 
SDIR$ (Setup Default Directory), 

2-9, 8-174 
example, 2-10 

INDEX 

SRDA$ (Specify Receive Data AST), 
8-195 

SREA$-specified AST 

SDRC$ (Send, Request and Connect), 
8-176 

task aborted with, 3-12 
SREF$ 

definition, 5-10 
when to use, 1-10 

SDRP$, 8-180 
Secondary pool 

see System pool 
Send By Reference 

See SREF$ 
Send Data 

See SDAT$ 
Send, Request and Connect, 4-5 

See SDRC$ 
Serial number ROM, 1-2 
Servers 

Executive, 1-6 
Set Event Flag 

See SETF$ 
SET file attributes 

function of PROATR, 6-7 
Set System Time 

See STIM$ 
SETF$ (Set Event Flag), 8-184 
Setup Default Directory String 

See SDIR$ 
SFPA$, 8-185 
Shared 

common, definition, 1-11 
library, definition, 1-11 
region, creating, 1-12 

Shared region, 5-5 
Significant event, 8-158, 8-162 

declaration, 8-56 
definition, 3-1 
examples, 3-1 
wait for, 8-256 

Spawn 
See SPWN$ 

Spawning, 4-1 
Specify Command Arrival AST 

See SCAA$ 
Specify Receive Data AST 

See SRDA$ 
Specify Requested Exit AST 

See SREX$ 
SPND$S (Suspend), 8-187 
SPWN$ (Spawn), 8-189 

when to use, 1-10 

SREF$ (Send By Reference), 8-197 
SREX$ (Specify Requested Exit 

AST), 8-201 
SREX$-specified AST 

task aborted with, 3-12 
SRRA$, 8-204 
SST, 3-5, 4-4 

definition, 3-5 
service routines, 3-6 
vector table, 3-6 
vector table format, 3-7 

Stack format 
AST, 3-10 

Stack Poi~ter, 7-8 
Static region, 5-4 

installation of, 6-27 
Status control block 

format, 6-4 
STD 

definition, 1-7 
STIM$ (Set System Time), 8-206 
STLO$, 8-209 
Stop 

See STOP$S 
Stop bit 

set, 3-12 
Stop For Single Event Flag 

See STSE$ 
STOP$S, 8-212 
Stop-bit synchronization 

definition, 3-12 
Stopping a task, 3-13 
Storage 

logical names, 2-1 
STSE$, 8-213 
Subsystem 

terminal, 1-5 
Suspend 

See SPND$S 
SVDB$, 8-214 
SVTK$, 8-216 
SWST$ (Switch State), 8-218 
Synchronous System Trap 

See SST 
SYSLIB.OLB, 7-1, 7-11 

Index-9 



INDEX 

System directive, 7-1 
definition, 7-1 
nonprivileged tasks, 7-22 
processing,. 7-2 

System library account 
system macros, 9-5 

System Macro Library, 7-1 
LB:[1,5]RSXMAC.SML, 7-6 

System object module library, 7-1 
System pool, 1-9 

primary, 1-10 
secondary, 1-10 

System routines 
conventions for, 6-3 

System trap 
definition, 3-5 
kinds of, 3-5 

Table 
dial translate, 13-16 

Task 
addressing capability, 5-1 
changing priority, 8-8 
contiguous, 1-6 
cooperating tasks, 1-10 
definition, 1-6 
extending size of, 8-81 
fixing in memory, 6-29 
header, 5-3 
install/run/remove, 6-29 
installation of, 1-6, 6-27 
nonprivileged, 3-13 
norernove attribute, 6-26 
offspring task, 4-1 
overlaying, 5-1 
parent task, 4-1 
priority, 9-1 
removal of, 6-28 
resuming suspended, 8-164 
root segment, 5-3 
server task, 6-1 
spawning, 4-1, 8-189 
states, 1-7 
stopping, 3-12, 8-212 
suspension of, 8-187 
system, definition, 1-6 
unstopping, 3-13, 8-229 
user, definition, 1-6 

Task Communication, 4-6 
Task Control Block 

See TCB 

Task names 
defining, 7-17 
length, 7-17 

Task naming 
in Executive-level dispatching, 

7-27 
Task region, 5-5 
Task state, 4-1 

dormant, 4-1 
Task state transitions 

active to dormant, 4-4 
blocked to ready-to-run, 4-3 
blocked to stopped, 4-4 
dormant to active, 4-2 
ready-to-run to blocked, 4-3 
ready-to-run to stopped, 4-3 
stopped to blocked, 4-4 
stopped to ready-to-run, 4-3 

TCB, 3-10, 3-12 
definition, l-7 

Terminal driver 
features, 11-1 
QIO macro functions for, 11-3 

Terminal subsystem, 1-5 
Test Extended Feature 

See FEAT$ 
Test Task Feature 

see TFEA$ 
TFEA$ (Test Task Feature), 8-221 
Tick, 8-123 
TLOG$ (Translate Logical Name), 

2-9, 8-224 
example, 2-9 

Translate 
logical, 6-19 

Translate Logical Name 
See TLOG$, PROLOG 

UIC, 8-113 
UMAP$ (Unmap Address Window), 

5-10, 8-227 
Underscore 

in RMS translation, 2-5 
Unshared region, 5-5 
Unstopping a task, 3-13 
User data structures, 5-11 
User Identification Code 

See UIC 
USTP$ (Unstop Task), 8-229 

Variable Receive Data 

Index-10 



See VRCD$ 
Variable Receive Data Or Exit 

See VRCX$ 
Variable Receive Data Or Stop 

See VRCS$ 
Variable Send Data 

See VSDA$ 
Variable Send, Request and 

Connect 
See VSRC$ 

Virtual address space, 5-2 
limit, 5-1 
reducing requirements, 1-12 

Virtual address window 
definition, 5-2 

Virtual block 
reading, 9-19 
writing, 9-20 

Virtual device, 1-4 
Volume 

bad block checking, 6-13 
boot block, 6-36 
bootstrap, 6-38 
dismounting, 6-36 
foreign, 6-36 
formatting, 6-13 
free blocks, 6-36 
free file headers, 6-36 
initialization, 6-13 
label, 6-14 
mounting, 6-36 
nonrernovable, 2-6 
plug bootblack, 6-38 
removable, 2-6 

INDEX 

VRCD$ (Variable Receive Data), 
8-231 

VRCS$, 8-233 
VRCX$, 8-236 
VSDA$ (Variable Send Data), 8-238 
VSRC$, 8-240 

when to use, 1-10 

Wait For condition, 9-4 
Wait For Significant Event 

See WSIG$ 
WDB, 5-12, 5-17 

array format, 5-21 
field values, 5-22 
generating with high-level 

language, 5-21 
generating with macros, 5-18 
symbolic offsets, 5-12 

WDBBK$, 5-18 
WDBDF$, 5-18 
WIMP$, 8-244 
Window 

identification number, 5-3 
Window Definition Block 

See WDB 
Window status word 

bit definitions, 5-19 
Windows, 5-2 
Word 

definition, 1-7 
WRITEBACK 

option, 6-27 
WSIG$, 8-256 
WTL0$, 8-258 
WTSE$, 9-14 

Index-11 





Q) 

.§ 
Ill 

£ 
Cl c: 
0 
i'il 
:5 
<.> 
Q) 
Ill 

"' Q) 

a: 

READER'S COMMENTS 

P/OS System Reference Manual 
AA-N620B-TK 

NOTE: This form is for document comments only. DIGITAL 
will use comments submitted on this form at the com
pany's discretion. If you require a written reply and 
are eligible to receive one under Software Perfor
mance Report (SPA) service, submit your comments 
on an SPA form. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of reader that you most nearly represent. 
D Assembly language programmer 
D Higher-level language programmer 
D Occasional programmer (experienced) 
D User with little programming experience 
D Student programmer 
D Other (please specify)--------------------------

Name ______________________ Date-----------

Organization----------------------------------
Street ____________________________________ _ 

City _______________ State ________ Zip Code _______ _ 

or 

Country 



I 
Do Not Tear - Fold Here and Tape ------------------------------------------1 

I 

D 
BUSINESS REPLY MAIL 

FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

Professional Workstations Publications 
DIGITAL EQUIPMENT CORPORATION 
146 Main Street, ML021-2/T76 
Maynard, Massachusetts 01754-2571 

I ll No Postage 

Necessary I 
if Mailed in the I 

United States I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

--- Do Not Tear - Fold Here-----------------------------------------------1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I ~ 
I :.J 
I -o 
I ~ 

18 
I oo 
I g 
I< 
I "' lu 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 


