
Tool Kit
User's Guide

Order No. AA-N617E-TK

November 1985

New Tool Kit users should read this manual first. It
describes how to write applications for the Professional
computer using the Tool Kit.

REQUIRED SOFTWARE: Host Tool Kit V3.0
or PRO/Tool Kit V3.0

OPERATING SYSTEM: P/OS V3.0

DIGITAL EQUIPMENT CORPORATION
Maynard, Massachusetts 01754-2571

First Printing, December 1982
Revised, May 1983

Revised, September 1983
Revised, April 1984

Revised, November 1985

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a
license and may only be used or copied in accordance with the
terms of such license.

No responsibility is assumed
software on equipment that
affiliated companies.

for the use or reliability of
is not supplied by DIGITAL or its

The specifications and drawings, herein, are the property
Digital Equipment Corporation and shall not be reproduced
copied or used in whole or in part as the basis for
manufacture or sale of items without written permission.

Copyright © 1985 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTI BUS MASSBUS Rainbow
DEC PDP RSTS
DECmate P/OS RSX
DECsystem-10 PRO/BASIC Tool Kit
DECSYSTEM-20 PRO/Communications UNIBUS
DECUS Professional VAX
DECwriter PRO/FMS VMS
DIBOL PRO/RMS VT

~DmDDmDTM PROSE Work Processor
PROSE PLUS

of
or

the

CHAPTER

CHAPTER

1

1.1
1.2
1. 2.1
1. 2.2
1.3
1. 3.1
1. 3.2
1. 3.3
1. 3.4
1. 3.5
1. 3.6
1.4
1. 4.1
1. 4.2
1. 4.3
1. 4.4
1. 4.5
1. 4.6
1. 4.7
1. 4.8
1. 4.9
1.4.10

1. 4 .11
1. 4.12
1.4.13
1.4.14
1. 4 .15
1. 4 .16
1.4.17
1. 4 .18
1.5

2

2.1
2.2
2.3
2.4
2.4.1
2.4.1.1
2.4.2

CONTENTS

PREFACE · i x

GETTING STARTED

TWO TOOL KITS · · · · · ·
TARGET SYSTEM CONFIGURATIONS

Hardware · · · · · ·
P/OS Server · · · · ·

DEVELOPMENT LANGUAGES
BASIC-PLUS-2
COBOL-81 · ·
DIBOL · · · ·
FORTRAN-77
MACRO-ll ·
PASCAL . · ·

DEVELOPMENT TOOLS
Professional Application Builder (PAB)
Application Diskette Builder (ADB)
Fast Install · · · · · · · · · ·
Frame Development Tool (FDT) · · · ·
On-Line Debugging Tool (ODT)
Forms Management System (PRO/FMS-ll)
Communication Services · · ·
CORE Graphics Library (CGL) · · · ·
PRO/DECnet · · · · · · · · · · · · ·
General Image Display Instruction Set
(GIDIS) · · · · · · · · · · · ·
File Control Services (FCS-ll) · · · ·
Print Services · · · · · · · · · · · ·
POSRES User Interface Services Library
POSSUM System Services Library ·
System Library Routines · · · ·
PROSE Callable Editor Task (CET) · · ·
Record Management Services (PRO/RMS-ll)
SORT utili ty (PRO/SORT)

STEPS FOR CREATING APPLICATIONS

DESIGNING THE APPLICATION

SHARED APPLICATIONS
VIRTUAL ADDRESS SPACE
PHYSICAL MEMORY

· · ·

USING P/OS FILES AND FILE SPECIFICATIONS
Node Specification

Foreign Files
Devices

iii

· ·

·
·

· ·
·

· ·
·

·

1-1
1-2
1-3
1-4
1-5
1-5
1-5
1-5
1-6
1-6
1-6
1-7
1-7
1-7
1-7
1-7
1-8
1-8
1-8
1-9

1-10

1-10
1-11
1-11
1-11
1-12
1-12
1-12
1-12
1-12
1-13

2-1
2-1
2-2
2-2
2-4
2-5
2-6

2.4.3

2.4.3.1
2.4.3.2
2.4.3.3
2.4.3.4
2.4.4
2.4.4.1
2.4.4.2
2.4.5
2.4.5.1
2.4.6
2.4.6.1
2.4.7
2.4.7.1
2.4.8
2.4.9
2.5
2.5.1
2.6
2.6.1

CHAPTER 3

3.1
3.2
3.3
3.4
3.5
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.7
3.7.1
3.7.1.1
3.7.1.2
3.7.1.3
3.7.1.4
3.7.1.5
3.7.1.6
3.7.2
3.7.2.1

3.7.2.2
3.7.2.3

Format of Physical and Concealed Device
Names

Default Device Names
Referring to Hard Disks
Referring to the User Account Area
Obtaining Long Forms of Device Names

Directories
Default Directory Name
System Directories

Filenames
Default Filenames

File Types
Default File Types

Version Numbers
Default Version Numbers

Wildcards in File Specifications
File Protection and Volume Protection

LOGICAL NAMES
System-Defined Logical Names . .

ACCES3ING APPLICATION FILES
Menu, Help, and Message Files

IMPLEMENTING THE APPLICATION

CREATING THE APPLICATION DIRECTORY
CREATING THE FRAME AND FORM FILES
CREATING THE APPLICATION BUILDER FILES
CREATING THE INSTALLATION COMMAND FILE
CREATING THE SOURCE CODE . .
HOW TO CALL PIOS SERVICES

BASIC-PLUS-2
COBOL-81 . .
DIBOL
FORTRAN-77
PASCAL ..
MACRO-11 .

USING POSRES SERVICES
Designing a Menu Structure .

Format of a Menu . . .
Single-Choice Menus
Multiple-Choice Menus
Key Processing in Menus
Action Strings
Option Keywords

Implementing a Menu Structure
Displaying Menus . . .

Static Single-Choice Menus .
Dynamic Menus

Programming with Menus
File Specification Routines

iv

2-7
2-8
2-9

· 2-10
2-10
2-11

· 2-11
2-12
2-13
2-13

· 2-13
2-13
2-15
2-15

· 2-15
· 2-16
· 2-18
· 2-19

2-23
2-24

3-1
3-2
3-2
3-2
3-2
3-2
3-3
3-4
3-4
3-5
3-5
3-6
3-6

3-10
3-10
3-11
3-11
3-12
3-13
3-14
3-14
3-15
3-15
3-16
3-17
3-17

3.7.3
3.7.3.1
3.7.3.2
3.7.3.3
3.7.3.4
3.7.3.5
3.7. 4
3.7.4.1
3.7.4.2
3.7.4.3
3.7. 5
3.7.6
3.7.6.1
3.7.6.2
3.7. 7
3.7.7.1
3.7.7.2
3.7.7.3
3.7.7.4
3.7.7.5

CHAPTER 4

4.1
4.2
4.3
4.4
4.5
4.5.1
4.5.2
4.5.3
4.6

CHAPTER 5

5.1
5.2

CHAPTER 6

6.1
6.2
6.3
6.3.1
6.3.2
6.3.3

New Filename (NEWFIL)
Old Filename (OLDFIL)

Designing a Help structure
Help Menus
Key Processing in Help Menus
Help Text Frames
Key Processing in Help Text Frames
A Sample Help Structure

Implementing a Help Structure
Opening Help Files
Setting the Default Help Frame
Activating the Help structure

Message Files and Services
Function Keys

Using Function Keys
Using Function Keys

POSRES Task Image Requirements
The UNITS Option .
The GBLDEF Option
The ASG Option . .
The EXTSCT Option
Placing Buffers in Overlay Branches

BUILDING THE APPLICATION TASKS

INVOKING PAB ON THE PRO/TOOL KIT
INVOKING PAB ON VAX/VMS
INVOKING PAB ON RSX-11M/M-PLUS (DCL) .
BUILDING APPLICATIONS
THE COMMAND (.CMD) FILE

The Command Line
The CLSTR Option
NULLIB

THE OVERLAY DESCRIPTOR LANGUAGE FILE

TESTING THE APPLICATION

DEBUGGING WITH A SECOND TERMINAL
DEBUGGING THE DISTRIBUTION KIT .

TUNING THE APPLICATION

EXTTSK OPTION VERSUS EXTK$ DIRECTIVE
DIRECTIVES VERSUS SERVERS
FILE HANDLING

When to Open Files
Use of File IDs
File Preallocation

v

3-17
3-19
3-19
3-20
3-20
3-21
3-22
3-23
3-24
3-24
3-24
3-25
3-26
3-27
3-28
3-30
3-31
3-31
3-32
3-32
3-34
3-36

4-1
4-1
4-2
4-2
4-3
4-4
4-4
4-5
4-5

5-2
5-3

6-1
6-1
6-2
6-2
6-3
6-3

6.3.4
6.3.5
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.5
6.6
6.6.1
6.6.2
6.6.3
6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6
6.8

Preextending . .
Multiblock I/O .

VIDEO PERFORMANCE
Size of Buffer ..
Buffering
Turning the Cursor Off
Common Video Techniques

MEMORY MANAGEMENT CONSIDERATIONS
MULTITASK APPLICATIONS . .

Significant Event Impact
NULLIB
Contention

POOL CONSIDERATIONS
Offspring Control Blocks
Lock Blocks
Open Files
Attachment Descriptor Blocks
Send Data Packets
I/O Packets

BUFFERED INPUT AND ASTS WITH NOTIFICATION

6-3
6-4
6-4
6-4
6-4
6-5
6-7
6-8
6-9
6-9

6-10
· 6-10
· 6-11

6-11
6-11

. . 6-12
6-12

· 6-12
6-12
6-12

APPENDIX A DOCUMENTATION DIRECTORY

APPENDIX B GLOSSARY

INDEX

FIGURES

1-1 The Two Tool Kits 1-3
1-2 Professional Keyboard (U.S./Canada) 1-4
1-3 PRO/Tool Kit Development Cycle. . 1-14
1-4 Host Tool Kit Development Cycle 1-15
3-1 User Interface Tools 3-9
3-2 Single-Choice Menu . . 3-10
3-3 Multiple-Choice Menu . 3-12
3-4 Name a File Form 3-18
3-5 Help Menu 3-20
3-6 Help Text Frame 3-22
3-7 P/OS Main Menu Help Structure (Partial) . 3-23
3-8 Message Frame 3-26
3-9 PAB Command File with POSRES Options.. . 3-31
3-10 Suggested Maximum POSRES Buffer Sizes 3-35
3-11 Sample .ODL File Showing Overlaid Buffers 3-37
4-1 Sample PAB Command File 4-3
6-1 Intermediate Buffering 6-6

vi

TABLES

2-1
2-2
3-1
3-2

File Types
P/OS System Logical Names
POSRES Global Symbols
Buffers Accessed by POSRES Routines

vii

2-14
2-19
3-33
3-34

PREFACE

Manual Objectives

The Tool Kit User's Guide is your primary source of general
information about the Tool Kit. After reading this manual, you
will be able to begin writing applications for the Professional
computer using Tool Kit software.

Appendix A contains information about other manuals in the
document set.

Intended Audience

We assume that you are an experienced programmer, although you
may not necessarily be familiar with the Professional computer or
other DIGITAL products. If you are not familiar with the Tool
Kit, you should read this manual first.

Also, you should be familiar with the end user documentation for
the Professional and P/OS. If you are using the Host Tool Kit,
you should be familiar with the host system environment.

Structure of This Document

The Tool Kit User's Guide contains the following chapters and
appendices:

• Chapter 1, Getting Started, explains what the Tool Kit is all
about. It provides an overview of the Tool Kit
configurations, the target system, the development cycle, and
describes how to invoke the Tool Kit.

• Chapter 2, Designing the Application, describes some of the
factors to be considered during the design phase.

• Chapter 3, Implementing the Application, describes the source
files that you must produce and the process that you follow
to create the files. P/OS file specifications and logical
names are described. An overview of the steps involved in
creating a menu-driven user interface is provided.

ix

• Chapter 4, Building the Application, provides a brief
explanation of how to use the Professional Application
Builder, the utility that creates task images.

• Chapter 5, Testing the Application, provides an explanation
of the steps that you take to test your application on the
Professional.

• Chapter 6, Tuning the Application, explains some factors that
affect an application's performance.

• Appendix A, Documentation Directory, provides an abstract of
each of the manuals in the Tool Kit documentation set.

• The Glossary describes terms used in this manual.

Associated Documents

This book makes frequent references to other books in the Tool
Kit documentation set. Appendix A provides an abstract of each
Tool Kit book.

You should be familiar with other documentation:

• Professional 300 Series End User Documentation

Read this documentation to understand the user's view of the
system on which your applications will run. We assume that
you are familiar with the primary end-user documents.

• Host System Documentation

Complete documentation for RSX-llM/M-PLUS and VAX/VMS host
systems can be obtained under separate license. We assume
that you are familiar with the manuals for your host system.

• High-Level Language Documentation

Five optional high-level languages are supported: Tool Kit
BASIC-PLUS-2, Tool Kit COBOL-Bl, Tool Kit DIBOL, Tool Kit
FORTRAN-77, and Tool Kit PASCAL. See your Tool Kit Software
Product Description (SPD) for information on optional
software products and documentation.

x

Conventions Used in This Document

Convention/Term

[optional]

UPPERCASE

lowercase

Tool Kit

Host Tool Kit

PRO/Tool Kit

Meaning

In a command line, square brackets indicate
that the enclosed item is optional. In a file
specification, square brackets are part of
the required syntax.

Uppercase words and letters indicate that you
should type the word or letter exactly as
shown.

Lowercase words and letters indicate that you
should substitute a word or value of your
own. Usually the lowercase word identifies
the type of substitution required.

A horizontal ellipsis indicates that you can
repeat the preceding item one or more times.
For example:

parameter [,parameter ...]

A vertical ellipsis means that not all of the
statements are shown.

Interactive input appears in red.

This general term refers to the software you
use to develop applications to run on a
Professional computer.

The Host Tool Kit is Tool Kit software that
runs on a host computer, rather than on the
Professional itself.

The PRO/Tool Kit is the Tool Kit software
that runs on the Professional computer.

xi

CHAPTER 1

GETTING STARTED

The Tool Kit is a collection of software
applications for the Professional
developed using the Tool Kit can run on
Operating System.

that you use to develop
computer. Applications
P/OS, the Professional

P/OS, as well as many of the .Tool Kit components, is derived from
software that runs on other members of the PDP-11 minicomputer
family, including much larger systems like the PDP-11/44. For
example, P/OS is based on the RSX-11M-PLUS operating system.
Most of the Tool Kit software consists of layered RSX-11M-PLUS
components that run on P/OS.

If you have had experience with PDP-11 minicomputers and
RSX-11M-PLUS, you will find the Tool Kit very similar to tools
that you have already used. However, if your background has been
primarily with personal computers, you may find that the Tool Kit
and PIOS are more powerful and complex than what you have been
using.

This manual is your primary source of general information about
the Tool Kit. First read this manual to learn about the Tool
Kit, then refer to Appendix A for information about other manuals
in the document set.

1.1 TWO TOOL KITS

There are two available Tool Kits:

• PROjTool Kit

The PRO/Tool Kit runs as an installed application on the
Professional computer and uses the DIGITAL Command Language
(DCL) as its interface. It allows you to use the
Professional as a development system and as a target system
at the same time.

1-1

TWO TOOL KITS

All the tools you need for program development are included
in the PRO/Tool Kit.

To use the PRO/Tool Kit, start up your system and select the
PRO/Tool Kit option from the appropriate menu. The dollar
sign ($) prompt indicates that DCL is ready to accept
commands. For complete information on DCL, refer to the
PRO/Tool Kit Command Language and utilities Manual.

• Host Tool Kit

The Host Tool Kit runs on a VAX/VMS system as a layered
product under VAX-11 RSXi it also runs on a PDP-11 system
under RSX-11M/M-PLUS. You can, take advantage of the
performance, mass storage, and communications provided by a
larger host system while using the Professional as a terminal
and a target system.

For host system work, you can use whatever terminal you
prefer. We recommend that you use a VT200-type terminal or
your Professional system running Terminal Emulator software.
with such a terminal, you can work interactively with 8-bit
characters. If you use a VT100-type terminal, you are
limited in your ability to create and view the full 8-bit
character set.

Both VAX/VMS and RSX-11M/M-PLUS re,qui re that you enter some
terminal commands to enable transmission or reception of
8-bit characters. See the PRO/Communications Manual for
details on terminal commands.

Figure 1-1 illustrates the two Tool Kits.

1.2 TARGET SYSTEM CONFIGURATIONS

The Professional currently has three models: 325, 350 and 380.
Each model provides a different level of flexibilty.

The three models, in combination with different varieties of
P/OS, provide the following target Professional configurations:

• Workstation

Any Professional can be a workstation running in a P/OS
Server environment. Workstations do not require any storage
media. (Howeve r, a floppy di sk drive is recommended.) See
Section 1.2.2 for information on P/OS Server.

1-2

TARGET SYSTEM CONFIGURATIONS

• Stand-alone with Hard Disk or Server

The 350 and 380 models can run PIOS stand-alone or
Server, since these models have the required hard
Additionally, for PIOS Server systems, these models can
as the server for one or more workstations.

PRO/Tool Kit Host Tool Kit

PIOS
disk.

act

1_lIImlllllll
11IIIIIIIIIIIII1I1II11U111

Tool Kit Host

Professional with Hard Disk

Figure 1-1: The Two Tool Kits

1.2.1 Hardware

For all models, the basic system consists of a system unit, video
monitor, and keyboard. Storage media are optional.

The system unit houses a i6-bit PDP-1i CPU, located on the main
system board. The base Professional provides 5i2KB of random
access memory. Additional memory can be added in 256KB
increments.

The standard video monitor (VR201) has a
low-reflection screen, with tilt adjustment in

12-inch diagonal,
the back.

The keyboard has four distinct regions: top row function keys,
editing keypad, auxiliary keypad, and main array (traditional
keyboard) . See Figure 1-2.

1-3

TARGET SYSTEM CONFIGURATIONS

The Professional has two kinds of storage media: diskettes and
hard disk. The standard dual diskette drive provides over BOOKE
of storage capacity on two 5-1/4" diskettes. The available
Winchester hard disks provide a wide range of storage capacities.

ooooonooooonoooonBI Inoooo
[JO[][](] [D[[J[](][[][][][]E]
D[]EJ[J~[]CJEJD[][][][OD­

Du~[][]D[]~[][]DDDD
''''' 1[][][]O[][][]l:JDD[]I- I
II~= II I

Figure 1-2: Professional Keyboard (U.S./Canada)

1.2.2 P/OS Server

P/OS Server is a component of P/OS that provides the following
features:

• Ability to share resources, such as printers and storage
media, among several Professionals.

• Access to all P/OS Hard Disk features without the need for a
local hard disk.

In a P/OS Server system, one Professional is the server; it
contains the hard disk from which the operating system image is
loaded. Workstations are connected to the server via DECnet.
Each workstation has a DECNA board in an option slot, which
supplies the communication capability required by PIOS Server. A
typical configuration can consist of one server and four to eight
workstations.

The Tool Kit document set uses "P/OS Server ft to refer
specifically to a P/OS configuration that uses a server, and uses
"P/OS stand-alone" to refer specifically to a PjOS configuration
without a server. For further information on PIOS Server, see
the PIOS Server User's Guide.

1-4

DEVELOPMENT LANGUAGES

1.3 DEVELOPMENT LANGUAGES

A MACRO-11 assembler is included with the Tool Kit.
order other high-level languages separately.

You can

All the high-level languages described in the following sections
consist of a compiler and an Object Time System (OTS) Library.
The compiler is included with the high-level language product,
which is ordered separately. The OTS, however, is supplied with
P/OS.

1.3.1 BASIC-PLUS-2

BASIC-PLUS-2 is an extended BASIC compiler. It takes full
advantage of the floating point and integer instructions, as well
as capabilities of P/OS.

In addition to elementary BASIC language features,
provides compile-time directives, structured
constructs, EXTERNAL statements, language subsets
flaggers, exception handling, and many more useful
application development.

1.3.2 COBOL-81

BASIC-PLUS-2
programming
and subset

features for

COBOL-81 is a high-level language for business data processing.
Compatible with COBOL-81/RSX, it also shares many features with
VAX-11 COBOLi code developed using Professional Tool Kit COBOL-81
can be migrated to VAX-11 COBOL.

COBOL-81 uses an interactive symbolic debugger
DIGITAL extensions to the COBOL language,
screen handling, and file sharing features to
one task to access data simultaneously.

1.3.3 DIBOL

and includes many
including advanced
enable more than

DIBOL is the Tool Kit version of DIGITAL's Business Oriented
Language. Similar to COBOL in its use of DATA DIVISION and
English-like procedural statements, DIBOL takes extensive
advantage of the Professional's architecture.

1-5

DEVELOPMENT LANGUAGES

DIBOL features RMS file support and a resident DIBOL library; it
also allows use of system services while maintaining many of the
standard DIBOL features. It enables data manipulation,
arithmetic expression evaluation, subroutines, structured
constructs, table subscripting, record redefinition, external and
internal calls to other programs, intertask communication, and
random, sequential, and indexed access to files. In addition,
DIBOL includes a comprehensive on-line debugging utility, DDT,
with which you can quickly isolate and correct programming
errors.

1.3.4 FORTRAN-77

FORTRAN-77 is an extended implementation of the ANSI subset
FORTRAN-77 standard. Switch-selectable support is provided for
user programs based on the previous ANSI FORTRAN standard.

Features include CHARACTER data types, Block IF constructs for
the conditional execution of blocks of statements, double
precision and complex data types, intrinsic functions,
exponentiation forms, format edit descriptors, generic function
selection, and virtual array support. FORTRAN-77 also provides
access to sequential, relative, and indexed organization files.

The compiler produces direct PDP-11 machine code optimized for
execution-time efficiency on a Professional with a floating point
adapter.

1.3.5 MACRO-11

The Tool Kit contains the MACRO-11 assembly language processor.
Tool Kit MACRO-11 (PMA) is the standard PDP-11 relocatable
assembly language processor. MACRO-11 comes with every Tool Kit.

1.3.6 PASCAL

PASCAL is a structured, high-level language that
modular, systematic approach to problem solving.
extended implementation of PASCAL.

provides a
It is an

Language features include user-defined and sub range scalar data
types, structured variables and constants, loop control
statements, functions and procedures, and attributes to
facilitate access to P/OS resources. A set of I/O routines
support sequential, relative, and indexed files.

1-6

Tool Kit PASCAL is an
instructions in the
source code.

DEVELOPMENT LANGUAGES

optimizing compiler, generating PDP-11
form of binary object modules or MACRO-11

1.4 DEVELOPMENT TOOLS

1.4.1 Professional Application Builder (PAB)

The Professional Application Builder is the Tool Kit version of
the RSX-11M/M-PLUS Task Builder. It is the utility that links
your object modules with system software to produce task image
files that can be executed on the Professional. PAB is an
extremely powerful tool that provides sophisticated programmers
with virtually unlimited control over the characteristics of a
task image. It is documented briefly in this manual and in
detail in the RSX-IIM/M-PLUS and Micro/RSX Task Builder Manual.

1.4.2 Application Diskette Builder (ADB)

The Application Diskette Builder allows you to easily create a
copy of your application on one or more diskettes. The diskettes
can then be used to install your application.

ADB is documented in the Tool Kit Reference Manual.

1.4.3 Fast Install

Fast Install is a tool that runs on the Professional and allows
you to install your application from a hard disk. It is
documented in the Tool Kit Reference Manual.

1.4.4 Frame Development Tool (FDT)

The Frame Development Tool is used to create frames through which
an end user interacts with your application. A frame includes
all the information needed to display a menu, or a screen of help
or message text. Through a series of forms, you specify the
actual text to be displayed in the frame and the information
relating to the manner and timing of the frame displays. The
Frame Development Tool is documented in the Tool Kit Reference
Manual.

1-7

DEVELOPMENT TOOLS

The Frame Development Tool is used to prepare the frames and to
store them in frame files. You must also embed special calls to
POSRES services at the proper points in your application code to
display the frames. (See Chapter 3.)

1.4.5 On-Line Debugging Tool (ODT)

The On-Line Debugging Tool is special code that you link into
your application's task image during the debugging phase. You
can use it to control program execution, display and alter the
contents of memory locations and registers, search and fill
memory, and perform calculations. aDT is provided for debugging
MACRO programs, and programs written in high level languages that
do not provide their own debuggers. It is documented in the
IAS/RSX-l1 ODT Reference Manual and supplement.

1.4.6 Forms Management System (PRO/FMS-11)

PRO/FMS-li is the Tool Kit version of FMS-i1 for PDP-i1 systems.
FMS-l1 contains tools for constructing forms and callable
services for displaying forms during application execution.
PRO/FMS-li is made up of three software components:

• The Form Editor (PROFED) is an editor for creating and
modifying video forms.

• The Form utility (PROFUT) is a utility for creating and
maintaining binary form library files.

• The Form Driver (FDV), available as either an object module
or resident library, consists of a set of callable
subroutines that display forms, perform input and output
operations, respond to requests for help, and so forth.

The Tool Kit documentation set includes several manuals devoted
to PRO/FMS-ll.

1.4.7 Communication Services

Communication
operations on
categories:

Services allow you
the Professional.

1-8

to perform communication
They fall into the following

DEVELOPMENT TOOLS

• Base System Services are part of the operating system. They
include an asynchronous driver (XKDRV) for the communication
port, as well as a communication service library (COMLIB).
The Base System Services allow you to set up and control a
telephone connection for data communication and to handle
voice communication if you install the optional Telephone
Management System (TMS). These services are documented in
the Tool Kit Reference Manual and the P/OS System Reference
Manual.

• PRO/Communications Services consists of a set of routines
that allow your application to access phone book,
communications set-up, and file transfer utilities as well as
the Terminal Emulator. These services require that the end
user has installed the PRO/Communcations application on the
target system. These services are documented in the Tool Kit
Reference Manual and the PRO/Communications Manual.

• Telephone Management System (TMS) Services consist of a set
of routines that allow your application to control the TMS
hardware. These services require that the end user has
installed the TMS application and hardware on the target
system. These routines are documented in the Tool Kit
Reference Manual and the Telephone Management System (TMS)
Programmer's Manual.

1.4.8 CORE Graphics Library (CGL)

The CORE Graphics Library is a general-purpose graphics
subroutine package based on the ACM SIGGRAPH CORE Standard, with
additional instructions that provide high-level access to the
Professional series video bitmap. Features include:

• Automatic mapping of user-defined coordinates to graphics
devices

• Lines, curves, polygons, rectangles, solid objects, and
graphics text

• Control of styles, textures, and colors

• Multiple user-defined fonts

• Support for graphics plotters

1-9

DEVELOPMENT TOOLS

• Easy access from high-level languages

• Device independence and transportability

The CORE Graphics Library is documented in the CORE Graphics
Library Manual.

1.4.9 PRO/DECnet

PROjDECnet software allows Professional computers to communicate
with other DECnet systems. PROjDECnet is an end-node-only
implementation of the phase IV Digital Network Architecture. It
is compatible with other phase III and phase IV DECnet products.
The PROjDECnet software supports:

• Multiple, simultaneous logical links between a Professional
and any other phase III or phase IV DECnet system

• Task-to-task communication between a Professional and any
other phase III or Phase IV DECnet system

• Resource sharing within a wide-area network

• Various network management and maintenance functions

• Transport facilities that permit programs using RMS-ll V2.0
to access remote files

The Tool Kit documentation set includes a volume devoted to
PROjDECnet.

1.4.10 General Image Display Instruction Set (GIDIS)

GIDIS is a general-purpose graphics subroutine package that
provides low-level virtual device access to the Professional
video bitmap. Use PROjGIDIS when speed and compactness are of
primary importance, such as with the following software:

• Interactive drawing packages

• Graphics terminal emulators

• Scientific or engineering data displays

1-10

DEVELOPMENT TOOLS

• Rapid picture display programs

The preferred application interface for PRO/GIOIS
Call Interface (GIOCAL), which you can use with
or high-level languages. Also, with MACRO-ll you
QIO call.

is the GIOIS
either MACRO-ll
can use the RSX

PRO/GIOIS is documented in the PRO/GIDIS Manual. See that manual
for a more detailed comparison of CGL and PRO/GIOIS.

1.4.11 File Control Services (FCS-11)

File Control Services is a set of file management routines for
use on the RSX-ll family of operating systems. Although P/OS
provides a full implementation of FCS, you are urged to always
use RMS in new applications. Use FCS only to port applications
designed to run on RSX systems when such applications already use
FCS.

FCS is described in the IAS/RSX-l1 I/O Operations Reference
Manual, which is included in the RSX-l1M or RSX-llM-PLUS
documentation set (but not included with the Tool Kit).

1.4.12 Print Services

Print Services consists of a routine that allows your application
to print a file, stop, continue, abandon or restart a print job,
or obtain printer status. Print Services is documented in the
Tool Kit Reference Manual.

1.4.13 POSRES User Interface Services Library

POSRES consists of a set of routines that allow your task to have
a menu-based user interface consistent with that used by the
operating system. These routines open and close frame files;
pack, unpack, read, and display menus, help frames, and message
frames; invoke the New File and Old File frames; and process
function keys.

See Chapter 3 for a description of how to design and implement a
menu-based user interface. The POSRES routines themselves are
documented in the Tool Kit Reference Manual.

1-11

DEVELOPMENT TOOLS

1.4.14 POSSUM System Services Library

POSSUM consists of a set of routines that allow your task to
manipulate file attributes, directories, volumes, logical names,
tasks, regions, and commons. POSSUM is documented in the PIOS
System Reference Manual.

1.4.15 System Library Routines

System Library Routines provide commonly-used functions for use
in your application. The task builder automatically searches the
system library file for any referenced routines. See the PIOS
System Reference Manual and the IASIRSX-ll System Library
Routines Reference Manual for details.

1.4.16 PROSE Callable Editor Task (CET)

The PROSE Callable Editor Task allows your application to call
PROSE, the text editor supplied with P/OS. PROSE offers
facilities for entering and editing text. The end user
documentation describes PROSE; the Tool Kit Reference Manual
documents the callable editor task.

1.4.17 Record Management Services (PRO/RMS-11)

Record Management Services provides an interface between the
Professional's file system and your application. All of the Tool
Kit high-level languages include support for PRO/RMS-l1.

PRO/RMS-11 includes a set of run-time service routines that
enable direct, sequential, and multikeyed access to data files.
The routines also let your program define, populate, update, and
maintain files on direct access devices.

The symbol tables, object module libraries, and overlay
descriptor files for task building P/OS applications against the
PRO/RMS-11 resident library are included with the Tool Kit, as
well as a PRO/RMS-11 Macro library. The Tool Kit documentation
set includes several manuals devoted to PRO/RMS-11.

1.4.18 SORT Utility (PRO/SORT)

The SORT Utility is a general-purpose sorting utility that is

1-12

DEVELOPMENT TOOLS

callable from your applications. PRO/SORT is documented in the
Tool Kit Reference Manual.

1.5 STEPS FOR CREATING APPLICATIONS

The application development cycle consists of several steps:

• In the Design Phase you make several decisions that will
affect all of the other phases. The decisions you make can
include you~ target system configurations, as well as how you
will use virtual and physical memory. You also plan the
algorithms you will use to implement your application.

• In the Implementation phase you use an editor to create a set
of files that specifies the data and code used in your
application. These files are normally source code files,
command files, form description files, frame files, data
files, and so forth.

• In the Build phase you use some of the tools provided to
convert your source files into other files that represent an
actual working version of your application. These files
include executable images, form libraries, converted frame
files, and so forth.

• In the Test Phase you debug your application tasks, and test
an installed version of your application on a Professional.
Special debugging tools are provided with the Tool Kit (such
as ODT), as well as some of the Tool Kit programming
languages.

• In the Tuning Phase you can make adjustments to optimize
performance and use of resources.

• In the Distribution phase you create a master distribution
kit for duplication.

The following two figures illustrate sample development cycles
for a typical application. Figure 1-3 shows development on the
PRO/Tool Kit; Figure 1-4 shows development on the Host Tool Kit.

1-13

PRO/FMS-ll

CREATE/EDIT
FORMS

CREATE FORM
LIBRARY

OPTIONAL TERMINAL
ATTACHED FOR
DEBUGGING

YES

STEPS FOR CREATING APPLICATIONS

FROM PIOS
MAIN MENU,
ENTER
PRO/TOOL KIT

I
I

SELECT DESIRED
TOOL

I
FAST INSTALL

RUN
AND DEBUG

TASKS

ERROR?

USE EDT TO
WRITEIEDIT
SOURCE CODE

COMPILE OR
ASSEMBLE SOURCE
PROGRAM

TASK BUILD
PROGRAM WITH
LINK COMMAND

APPLICATION
TASK IMAGE(S)

RUN APPLICATION
DISKETTE BUILDER

DISKETTE

NO

MA-1173-85

Figure 1-3: PRO/Tool Kit Development Cycle

1-14

STEPS FOR CREATING APPLICATIONS

HOST SYSTEM PROFESSIONAL

HOST
0) LOGON TO HOST TERMINAL EMULATION

MODE

USE EDT TO
PRO/FMS-ll WRITE/EDIT

SOURCE CODE

COMPILE OR
CREATE/EDIT ASSEMBLE
FORMS SOURCE PROGRAM

TASK BUILD
PROGRAM WITH
LINK COMMAND

CREATE FORM APPLICATION
LIBRARY TASK IMAGE(S)

I I ~ I APPLICATION
FILES

I

I WRITE APPLICATION I) INSTALLATION FILE

FILE TRANSFER TO PROFESSIONAL

OPTIONAL TERMINAL
ATTACHED FOR
DEBUGGING

Figure 1-4: Host Tool Kit Development Cycle

1-15

LOCAL MODE

DISKETTE

MA-1 1 74-85

CHAPTER 2

DESIGNING THE APPLICATION

This chapter describes several considerations that apply to the
design of an application.

2.1 SHARED APPLICATIONS

A shared application is an application containing disk-resident
components that can be concurrently shared among workstations in
a PIOS Server environment. A shared application normally uses
less disk space than the equivalent standalone application.

Applications containing shared components
requirements for installation and removal.
Reference Manual describes these requirements in
the installation command language.

have
The

the

special
Tool Kit

section on

other considerations for writing shared applications are:

• File sharing (see the RSX-I1MIM-PLUS RMS-ll User's Guide)

• Use of read-write commons (see the PIOS System Reference
Manual)

2.2 VIRTUAL ADDRESS SPACE

User tasks on the Professional are limited to a virtual address
space of 64KB. Tasks can map to other regions in memory, but at
any given instant only 64KB of memory can be addressed. This
places a constraint on the amounts and locations of code and data
that a task can contain.

2-1

VIRTUAL ADDRESS SPACE

There are several options that you can use, should your task
become so large that 64KB is no longer sufficient. These options
are:

• Memory-resident overlays

• Clustered resident libraries

• Fast remapping feature

• Disk-resident overlays

• Cooperating tasks

• Shared regions

See the PIGS System Reference Manual for details on these
options.

2.3 PHYSICAL MEMORY

You must consider not only the amount of virtual address space
available to your application, but also the physical memory
constraints of the system. It is possible to create an
application that runs slowly (or not at all) due to memory
contention or deadlocks. These can result from either ignoring
the issue of physical memory or overestimating its size.

A base Professional has 512KB of memory. Slightly less than
one-half--approximately 240KB--is available for use by the
application. Into this memory must fit all tasks, data regions,
libraries, and drivers required concurrently by the application.
If the application exceeds this amount, checkpointing results.

See the PIGS
checkpointing.

System Reference Manual

2.4 USING PIOS FILES AND FILE SPECIFICATIONS

for details on

A file is a collection of data stored on a volume. A volume is
essentially a physical device containing a storage medium, such
as a hard Winchester disk or a diskette.

2-2

USING PIOS FILES AND FILE SPECIFICATIONS

within every volume, user files are grouped together in
directories, called User File Directories (UFDS). The system
maintains a list of UFDs for each volume in a single Master File
Directory (MFD), named [O,OjOOOOOO.DIR. For example, the UFD
[USERFILESj is a file listed in the MFDi it is named
[O,OjUSERFILES.DIR.

A directory file, such as [O,OjUSERFILES.DIR in the preceding
example, contains a list of files in the directory ([USERFILESj
in this case). This manual uses the term directory to indicate
the group of files, and directory file to indicate the file that
points to the group.

To refer to a unique file, directory, or device, you use a file
specification. A file specification is a character string that
consists of one or more fields, separated by punctuation marks,
in the following format:

nodespec::device:[directoryjfilename.typeiversion

where:

node spec

device

directory

filename

type

version

A node specification that indicates the name of a
node on your network. See section 2.4.1.

An alphanumeric string that specifies the name of
a peripheral device. See Section 2.4.2.

An alphanumeric string that specifies the name of
a directory. The maximum length of a directory
name is 9 characters. A directory name can be
enclosed in either square brackets (as shown
above) or within angle brackets «directory».
See Section 2.4.4.

An alphanumeric string that specifies the name of
a file. The maximum length of a filename is 9
characters. See Section 2.4.5.

An alphanumeric string that specifies the type of
a file. The maximum length of a file type is 3
characters.

A numeric string that specifies the version number
of a file. See Section 2.4.7.

2-3

USING P/OS FILES AND FILE SPECIFICATIONS

Note the following:

• File specifications are not case-sensitive. For example, the
following specifications are identical:

DW2:[USERFILES]TEST. DAT i7 dw2:[userfiles)test.dati 7

• You can omit fields from a file specification and let the
system or your application provide default values.

• You can substitute logical names for one or more components
of a file specification. See Section 2.5 for details.

Examples of various file specifications follow:

DW1:
DW1:[USERFILESJ
DW1:[USERFILESjTEST
DW1:[USERFILES]TEST.DAT

DW1:[USERFILES]TEST. DAT i 7

[USERFILES]TEST.DAT;7

TEST.DATi7

(device)
(device and directory)
(device, directory, and name)
(device, directory, name,
and type)

(device, directory, name,
type, and version)

(directory, name, type,
and version)

(name, type, and version)

The following sections describe
specification.

each field in a

2.4.1 Node Specification

file

If your target Professional is one on which PRO/DECnet is
installed, you can operate on files at other nodes on the network
by using a node specification. From DCL, note that you can use a
node specification only on certain commands; see the PRO/Tool Kit
Command Language and utilities Manual for details.

A node specification consists of the name of the node and
optional access control information for that node, followed by
two colons. The format follows:

nodename"access-control"::

where:

2-4

USING P/OS FILES AND FILE SPECIFICATIONS

node name

access-control

Is a 1- to 6-alphanumeric-character name that
includes at least 1 alphabetic character. If
a node name is an alias that includes
associated access control information (a
logical node name), you can omit all access
control fields, as they will default to the
information associated with the alias. For
more information on aliases, see the
PROIDECnet User's Guide.

Is information consisting of three
position-dependent fields appended to a node
name. Specify access control information in
the following format:

"userid passwd accnt"::

use rid is a string identifying the user at
the remote system. For most systems, the
userid is the same as the login id.

passwd is an optional string used to specify
a password needed to gain access to the
remote file system. For most systems, the
password is the same as that for logging in.

accnt is an optional string
a billing account number
system. This field is mainly
and TOPS-20 systems.

used to specify
at the remote
used by TOPS-10

Both the interpretation of the access
access control mechanism depend on
used.

control fields and the
the type of remote system

Examples of valid node specifications follow. Fields can be
omitted from the right. For example, the node specification
QUEBEC"[310,2]" spcifies only a username and not a password or
account.

YUKON"5,10 LEFT"::
NODE1"RMES"::
NODE4"[7,7] SECRET ACCNT"

2.4.1.1 Foreign Files - Files that reside on nodes running
operating systems other than RSX or P/OS are referred to as
foreign files. Foreign files must use syntax compatible with the
systems on which they are located.

2-5

USING P/OS FILES AND FILE SPECIFICATIONS

When using a foreign format, enclose the portion of the file
specification after the node and access control string in
quotation marks (""). This directs the system to transmit the
file specification to the foreign node without checking its
syntax or applying defaults for missing fields. File
specifications within quotation marks are not used in determining
default values for output files. See the foreign system's
documentation for for information on the its format.

The use of wildcards in foreign file specifications is subject to
the restrictions of the foreign operating system. See Section
2.4.8 for information on wildcards.

2.4.2 Devices

Each mounted,
logical name
description of
logical device

FILES-ll mass storage device known to P/OS has a
supplied by the system. (See Section 2.5 for a
logical names.) The equivalence value for any
name can be one of the following:

• Another logical device name

• Concealed device name

• Physical device name

The following example illustrates how the system translates all
three types of logical device names.

Suppose your application opens a file on the device DW001:. On
P/OS the following logical name-equivalence pairs exist:

DW001: = BIGVOLUME:.
BIGVOLUME: = _DW001:

When your application opens the file on DW001:, the system
translates DW001: into another logical device name--BIGVOLUME:.
The system then translates BIGVOLUME: into _DW001:.

Upon reaching a logical device name that begins with an under­
score, the system stops performing logical name translations.

Once having performed the final logical name translation, the
system strips the underscore and attempts to perform one more
translation. In this translation, the system searches for a
concealed device name. Note that not all logical device names
translate into a concealed device name.

2-6

USING PIOS FILES AND FILE SPECIFICATIONS

In our example, the concealed device name translates into an
equivalence value as follows:

DW001: _DW002:[username.]

where:

username Is the root directory associated with the current
user's home. The user's home is that user account
area containing the user's menus, setup and default
information, and user-specific application
components.

Upon completion of the concealed device name translation (if
any), the system searches for a physical device name. A valid
logical device name always ultimately resolves to a physical
device name.

In our example, the system uses the DW002: portion of the
concealed device name equivalence as the actual physical device
name.

2.4.3 Format of Physical and Concealed Device Names

The general format of a physical or concealed device name is as
follows:

ddnnn:

where:

dd

nnn

Is a two-character alphabetic string that specifies
device type.

Is an optional 1- to 3-digit numeric string
specifies one device of a particular device type.
is also called the unit number. If you omit the
number, the system by default uses the unit number

the

that
This
unit

O.

When referring
device name,
application to
as well as the

to a device, you should always use a logical
not the physical name. This enables your

be independent of the target system configuration
operating system version.

Many logical device names mimic the ddnnn: form of their
equivalent physical names. For example, the logical name DW002:
resolves to the physical name Dw002:. Some logical device names,
such as BIGVOLUME: and SYSDISK:, do not follow the ddnnn:
format. You can use either kind in a file specification.

2-7

USING P/OS FILES AND FILE SPECIFICATIONS

Logical device names provide you with device independence. For
example, the logical device name SYOOO: allows you to refer to
the currently active (default) device without regard to the
actual physical device name. P/OS handles the assignment and
translation of the logical names.

Table 2-2 on page 2-19 lists and describes all the logical device
names along with other system-defined logical names.

2.4.3.1 Default Device Names - When a file specification is
used, if it contains no device name, P/OS supplies the logical
device name SYOOO: by default.

The end user or the application code can change the default
device. When the default device is changed, P/OS reassigns the
device name SYOOO: to the new device.

Note that the end user owns and controls the SYOOO: logical name
assignment. Your application should only reassign SYOOO: in
response to a user query. SYOOO: need not point to a valid
device. Your application should be prepared to handle any errors
resulting from attempted accesses to SYOOO:.

In the absence of any user-supplied device specification, access
user data files via SYOOO:.

To set the default device, do the following:

• Use the P/OS menu system to specify the default device, as
described in the P/OS Hard Disk User's Guide.

• Use the SET DEFAULT command in DCL. See the PRO/Tool Kit
Command Language and utilities Manual for details.

• Call the PROLOG system library routine from an application.
The system library (POSSUM) routines are documented in the
P/OS System Reference Manual.

NOTE

Use PROLOG to change the default directory
only under explicit direction from the end
user, since the end user owns the right to
specify the default device.

2-8

USING P/OS FILES AND FILE SPECIFICATIONS

2.4.3.2 Referring to Hard Disks - Hard disks that are local to
the CPU on which your application is running have the physical
device names DW002:, DW003:, and so on. However, you should not
normally refer to a physical device name.

In cases in which
you should use
physical name)
Context-sensitive
user, the current
configuration.

references to hard disks are context-sensitive,
a P/OS system logical device name (not the

to uniquely identify a hard disk.
references are those that depend on the current
workstation, or the local device hardware

For example, a reference to SYSDISK: is context sensitive
because it depends on the user running your application--it
refers to that particular user's home. Likewise, a reference to
LB001: is workstation dependent, and thus context sensitive,
because each workstation has a single, unique LB001:.

There are times, however, when your application cannot rely on a
context-sensitive reference to a hard disk. To provide the
capability of making context-insensitive references, P/OS also
recognizes a long form for hard disk devices:

node$$volumelabel:

where:

node Is the DECnet node name of the system (work­
station or server) that controls the disk.

volumelabel Is the disk's volume label.

The long form is a means of uniquely identifying a particular
disk on a P/OS Server system, regardless of the context of your
reference. You can access any hard disk on a P/OS Server system
using the long form.

We recommend that you use the long form whenever your references
to hard disks must be context-insensitive. This ensures
compatibility with the widest range of target systems.

Note that the long form remains the same, regardless of whether
the access is performed from a workstation or directly on the
Server. However, it will change if the system's node name
changes. You can maintain a database associating resource names
with node names to avoid problems with changing node names.

You can translate device names of the form ddnnn:
equivalent node$$volumelabel: form. See Section
details.

2-9

to obtain
2.4.3.4

the
for

USING P/OS FILES AND FILE SPECIFICATIONS

2.4.3.3 Referring to the User Account Area - SYSDISK: refers to
the User Account Area; it is the place where user-specific
application components reside. The User Account Area has a
structure that is similar to that of a complete hard disk--you
refer to SYSDISK: as you would refer to any valid device name.
The device logical name DW001: also refers to the User Account
Area.

Note that the User Account Area can be located either on a hard
disk that is local to the CPU on which your application is
running, or it can be located on a hard disk connected to the
server in a P/OS Server system.

To distinguish a particular User Account Area on a P/OS Server
system, you can use the long form:

node$$volumelabel$account:

where:

node

volumelabel

account

Is the DECnet node name of the system (work­
station or server) that controls the disk.

Is the associated hard disk.

Is the name derived from the user name when
the system manager adds an account. This is
the name of the User Account Area.

You can translate the special logical name USER$HOME: to obtain
the long form of the specification for the current User Account
Area.

2.4.3.4 Obtaining Long Forms of Device
a file specification that contains
explicitly or as the result of logical
obtain the long form of that device name
the following:

Names - Suppose you have
a device name (either
name translation). To
(node$$volumelabel:), do

1. Open the file, or invoke the system directive ACHN$, to
assign a logical unit number (LUN) to the device.

2. Using the LUN specified in the previous step, invoke the
GLUN$ directive to obtain the device name and unit number.

3. Convert the unit number from binary to octal, and use it to
form a three-character ASCII string. Construct the logical
device name in the form DDnnn:.

2-10

USING PIOS FILES AND FILE SPECIFICATIONS

4. Invoke the TLOG$ directive to translate the logical name
DDnnn:. The result is the long form of the device name.

2.4.4 Directories

A directory is a named set of files on a disk or diskette.
within a directory, a filename, type, and version number uniquely
identify a file. Different files with the same name, type, and
version number can exist in other directories.

In a file specification, square brackets ([]) or angle brackets
«» indicate that the contents are a directory name. Directory
names can have the following formats:

• A one- through nine-character alphanumeric string. For
example:

•

[PROGRAMS] <INVENTORY> [RECIPES]

A two-part octal number in the format of a user
identification code (UIC). Separate the group number from
the member number with a comma. For example:

[0,0] [1,5] [150,13] [240,222]

• A six-character numeric string in UIC format.
and specify right-justified (zero-filled)
example:

Omit the comma
numbers. For

[000000] [001005] [150013] [240222]

Your application can use the POSSUM library routine PRODIR to
create and delete directories. (See the PIOS System Reference
Manual.)

2.4.4.1 Default Directory Name - If a file specification
contains no directory name, PIOS provides one by default. A pair
of empty square brackets ([]) is an explicit request for the
default directory.

2-11

USING PjOS FILES AND FILE SPECIFICATIONS

The end user owns and controls the default directory name. Your
application should change the default directory name only in
response to a user query. Note that the default directory name
can refer to a nonexistent directory; your application should be
prepared to handle any errors resulting from attempted accesses
to a nonexistent directory.

In the absence of
application should
directory name.

any user-supplied
allow the system

directory
to provide

To set the default directory, do the following:

name, your
the default

• Use the PjOS menu system to specify the default, as described
in the PjOS Hard Disk User's Guide.

• Use the SET DEFAULT command in DCL. See the PROjTool Kit
Command Language and utilities Manual for details.

• Call the PROLOG system library routine from an application.
The system library (POSSUM) routines are documented in the
PjOS System Reference Manual.

NOTE

Use PROLOG to change the default directory
name only under explicit direction from the
end user, since the end user owns the right
to specify the default directory name.

2.4.4.2 System
directories that
system software.

Directories - Numbered
begin with the letters

directories and
zz are reserved for

Also, User Account Areas are implemented in PjOS as concealed
devices.

As an example of the use of a
system logical name USER$HOME:

MYNODE$$PROVOLUME$MYACCT:

concealed device, suppose the
is equivalent to the following:

An access to the directory USER$HOME:[USERFILESj in this case is
equivalent to an access to:

MYNODE$$PROVOLUME:[MYACCT.USERFILESj

2-12

USING P/OS FILES AND FILE SPECIFICATIONS

2.4.5 Filenames

A filename is a one- to nine-character alphanumeric string that
is generally used as a mnemonic name to identify a particular
file within a directory. Some valid filenames are:

ACCOUNTS 001005 INDEX3 MAIL

In a file specification, use a period (.) to separate the
filename from the file type.

2.4.5.1 Default Filenames - If a file specification contains no
filename, P/OS does not supply one by default. Note, however,
that your application can supply one.

2.4.6 File Types

A file type is a three-character alphanumeric string that
categorizes a file. P/OS uses a set of standard file types to
provide useful defaults. For example, the file type TSK
indicates that the file is an executable task image.

A semicolon (i) always separates the file type from the version
number by P/OS.

Table 2-1 lists the file types used on P/OS.

2.4.6.1 Default File Types - If a file specification contains no
file type, P/OS does not supply one by default. However, your
application can supply one.

2-13

Table 2-1:

Type

BAS
B2S
CBL
CMD
COR
DAT
DBL
DMP
DOC
FTN
FLB
GID
HLP
INB
INS
LST
MAC
MAP
MLB
MNU
MSG
OBJ
ODL

OLB
PAS
PAT

POB
SML
STB

SYS
TMP
TSK
TXT
ULB

USING P/OS FILES AND FILE SPECIFICATIONS

File Types

Purpose

BASIC-11 source program
BASIC-PLUS-2 source program
Cobol source program
Indirect command file
SLP file used to correct a source file
File containing data, as opposed to code
DIBOL source file
Dump file create by the File Dump Utility
Document file
FORTRAN source program
Forms library
GIDIS file
Converted help file
Installation command file
Installation command file
Listing file
MACRO-11 source program
Task Builder map file
Macro library
Converted menu file
Converted message file
Object module output from assembler or compiler
File containing Overlay Descriptor Language to
be used by the Task Builder
Object module library
Pascal source file
Correction file used by assembler to create
patched object module
Patched object module input for PAT utility
File containing system macro library
Symbol definition file created by the Task
Builder
A system file
A temporary file
Task image file
Text file
Universal library

2-14

USING PIOS FILES AND FILE SPECIFICATIONS

2.4.7 Version Numbers

A version number is a number that uniquely identifies files that
have the same filename and file type. On PIOS, as well as
VAX/VMS and Micro/RSX, version numbers are decimal. On
RSX-11M/M-PLUS systems, version numbers are octal.

If you specify version number 0 when referring to a ·file, the
system searches for the highest version of the file that exists.
(If you create a file and specify 0 as the version number, the
system assigns the highest version number.)

If you specify version number -1 when referring to a file, the
system searches for the lowest version of the file that exists.
(You cannot create a file with version number -1.)

2.4.7.1 Default Version Numbers - When you create a file that
does not already exist, it is assigned version number 1 by
default. When you create a file that already exists, it is
assigned the next highest version number by default.

2.4.8 Wildcards in File SpeCifications

In addition to the regular defaults for the current device, the
current directory, and the most recent version, you can use
wildcards in any file specification to set up temporary defaults
for every part of the specification except the device name and
node information.

Simple wildcarding use the asterisk (*) to replace all or any
field in the file specification.

For instance, the following example refers to the most recent
versions of all files on any top-level directory (on the default
volume) named TEXT.TXT.

[*]TEXT.TXT

The next example refers to the most recent versions of all files
in any subdirectory of any top-level directory (on the default
volume) named TEXT.TXT.

[*.*]TEXT.TXT

2-15

USING P/OS FILES AND FILE SPECIFICATIONS

Likewise, the * in place of the version number means "all
versions." The following example refers to all versions of the
file WOM.BAT on the default volume and in the default directory:

WOM.BAT;*

You can also use * to replace an entire filename or file type.
The following example refers to the most recent versions of all
files with the type .BAT and any name on the default volume and
in the default directory:

*.BAT

The next example refers to the most recent versions of all files
with the name COMMON and any type on the default volume and in
the default directory.

COMMON. *

Several of the utilities provided with the PRO/Tool Kit allow
additional forms of wildcarding. See the PRO/Tool Kit Command
Language and utilities Manual for details.

2.4.9 File Protection and Volume Protection

Each user has a unique User Identification Code (UIC) that is
assigned while setting up an account. A UIC identifies a user to
the system.

UICs look like this:

[303,005J

The format of a UIC is:

[ggg,mmmJ

The ggg indicates the group number, and the mmm is called the
member number. Group and member numbers are octal and range from
1 through 376 (octal).

The UIC group value indicates whether or not the user has system
file access. (Users with this access are called privileged
users.) Users having system file access have group numbers from 1
through 10 (octal). Other users have group numbers from 11
through 376 (octal).

2-16

USING P/OS FILES AND FILE SPECIFICATIONS

When you create a file, you usually own it. A UIC is an
attribute of the file, identifying the owner. Each file also has
a protection code. A protection code controls who can access a
file and in what ways. The file's owner controls this protection
code.

The file protection code specifies four categories of users, as
well as four kinds of file access that each category of user can
have. When you attempt to access a file, the operating system
checks your UIC to determine which of the four user categories
you belong to. Your ability to access the file is limited to the
types of access that the file's protection code grants to those
categories.

There are four kinds of users:

SYSTEM

OWNER

GROUP

WORLD

Those having group numbers of 10 or less are SYSTEM
users.

The user having the same UIC as the file's owner
UIC is the OWNER.

All users having the same group number as as the
file's owner UIC are GROUP users.

All other users.

There are also four kinds of access to files:

READ

WRITE

EXTEND

DELETE

The user can read, copy, print, or type the file,
or if it is a task, run it.

The user can
it. Also,
attributes,
protection.

add new data to the file by writing to
the user can change the file's

including the owner UIC and file

The user can change the amount of disk space
allocated to the file.

The user can delete the file.

access are
protection
otherwise

in SET
Default

In a protection code, the four types of file
designated by their first letters. The default
applied to all files on the system that have not been
protected is equivalent to the protection given
PROTECTION/DEFAULT command in DCL, or from the P/OS Set
File Protection set-up option on the menu system.

2-17

USING P/OS FILES AND FILE SPECIFICATIONS

If you have not set the default protection, the system uses the
following protection for all files created:

SYSTEM:RWED,OWNER:RWED,GROUP:RWED,WORLD:RWED

To gain access to a file, you must satisfy the protection code of
both the file to be accessed and the directory in which the file
is listed. For example, to write to an existing file, you need
at least read access to the UFD and write access to the file
itself. To create a new file, you need both write and extend
access to the UFD.

References to files located on LBOOO: or LB001: use the special
protection UIC of [377,nnn].

2.5 LOGICAL NAMES

A logical name is a combination of a name (defined either
or P/OS) and an equivalence value (any part of
specification). You can use a logical name to refer to
part of a file specification.

by you
a file
all or

Logical names provide programs with device and file independence.
For example, from within a program you can refer to an input or
output file using logical names rather than physical filenames.
Then, between invocations of the program, you can change the
input and output files simply by associating the logical names
with new physical filenames.

You can perform operations on logical names in several ways:

• In PRO/Tool Kit DCL, ASSIGN, DEFINE, DEASSIGN, SHOW LOGICALS,
and SHOW ASSIGNMENTS commands allow you to create, delete,
and translate logical names. Many other commands accept
logical names as arguments.

• From application programs, you can call
system-supplied routine. See the section
library in the P/OS System Reference Manual.

the PROLOG
on the POSSUM

• Also from application programs, you can directly call the
system directives CLOGS, TLOG$, and DLOG$ to respectively
create, translate, and delete logical names. See the section
on system directives in the P/OS System Reference Manual.

2-18

LOGICAL NAMES

within the strict context of the logical name facility, a logical
name and its equivalence name are simply character (byte)
strings. The only restriction to logical name strings and
equivalence name strings is that neither can exceed 255 decimal
bytes.

2.5.1 System-Defined Logical Names

Several logical names are defined and used by P/OS. Your
application can refer to P/OS-defined logical names, but it but
must not reassign them. P/OS can run unpredictably or stop
processing if these names are reassigned.

Table 2-2 shows the system-defined logical names and equivalence
values. In the table, an underscore (_) indicates that the
system performs no further translation. The description shows in
boldface how you use the logical--as a file specification, a
device/directory combination, or simply a device.

NOTE

Logical names that end in a colon can be placed
directly in a file specification. On the other
hand, a logical name that does not end in a colon
must first be translated before using it in a
file specification. You can use the TLOG$
directive or the PROLOG callable routine to
perform the translation.

For further details on
tables and operations
Reference Manual.

logical names, including logical name
you can perform, see the P/OS System

Table 2-2: P/OS System Logical Names

Logical Name Equivalence Value Comments

APPL$DIR

APPL$DST

SYSDISK:[ZZAPnnnnnj Device and directory--See
APPL$USER: .

(varies)

2-19

Device and directory--See
APPL$DST:

LOGICAL NAMES

Logical Name Equivalence Value Comments

APPL$DST: (varies) Device and directory that is
the destination for
application files during the
current phase of installation.
The logical exists only during
processing of the installation
file during application
installation. See the Tool Kit
Reference Manual for details.

APPL$NETWORK: (varies) Device containing network
components of an application.
These components have the
/NETWORK qualifier specified
in the installation file. See
the Tool Kit Reference Manual
for details.

APPL$HELP

APPL$MENU

APPL$MSG

APPL$USER:

APPL$SRC:

(varies) File specification of your
applications's help (.HLP)
file.

(varies) File specification of your
applications's menu (.MNU)
file.

(varies) File specification of your
applications's message (.MSG)
file.

SYSDISK:[ZZAPnnnnnj Device and directory
containing user components of
an application. These
components have the /USER
qualifier specified in the
installation file. See the
Tool Kit Reference Manual for
details.

(varies)

2-20

Device and directory that is
the source of the most
recently copied file during
application installation. The
logical exists only during
processing of the installation
file. See the Tool Kit
Reference Manual for details.

LOGICAL NAMES

Logical Name Equivalence Value comments

BIGDISK: _DW001:

BIGVOLUME: _DW001:

CLOOO: TIOOO:

DISKETTE1: _DZ001:

DISKETTE2: _DZ002:

DW001: BIGVOLUME:

DZ001: (varies)

DZ002: (varies)

LBOOO: (varies)

LB001: (varies)

LDW001: (varies)

2-21

Device--see SYSDISK:. Use
BIGDISK: for display only.

Device--see SYSDISK:.

Device used for debugger input
and output, called the console
listing device.

Device--diskette drive 1. Use
only for display.

Device--diskette drive 2. Use
only for display.

Device--see SYSDISK:.

Device whose equivalence is
the volume label of the volume
currently mounted in diskette
drive 1. It is assigned when
the volume is mounted.

Device whose equivalence is
the volume label of the volume
currently mounted in diskette
drive 2. It is assigned when
the volume is mounted.

Device from which your system
is booted. It is also the
system library device, which
contains all system libraries.

Device representing the system
library area containing
components specific to a
particular CPU, such as the
system account file.

Device name that translates
into BIGDISK: for English
language systems. The
equivalence is language
dependent.

LOGICAL NAMES

Logical Name Equivalence Value comments

LDZ001: (varies)

LDZ002: (varies)

LPOOO: (varies)

SYOOO: (varies)

SYSDISK: _DW001:

TIOOO: (varies)

USERDISK: SYSDISK:

(varies) _DZ001:

(varies) _DZ002:

2-22

Device name that translates
into DISKETTE1: for English
language systems. The
equivalence ·is language
dependent.

Device name that translates
into DISKETTE2: for English
language systems. The
equivalence is language
dependent.

Device name of the default
printer local to the CPU.
Screen dumps from the PRINT
SCREEN key are sent to LPOOO:.

Device which is the user's
current default device. Never
change this logical name
without consent of the user.

Device representing the user's
home. The user's home is where
the user-specific application
components reside.

Device name of the terminal
from which your application is
running.

Device--see SYSDISK:.

Device whose logical name is
the volume label of the
currently mounted volume. It
is assigned when the volume is
mounted.

Device whose logical name is
the volume label of the
currently mounted volume. It
is assigned when the volume is
mounted.

ACCESSING APPLICATION FILES

2.6 ACCESSING APPLICATION FILES

Most applications consist of several files: task images, data
files, menu files, help files, and so forth. Unless explicitly
placed elsewhere, these files exist in an application directory.

On P/OS versions 2.0A and earlier ("older systems"), there is
only one application directory: SYSDISK:[ZZAPnnnnnj. The nnnnn
is an integer value that the system defines, based on the number
of applications currently installed.

On P/OS V3.0 systems and later ("newer systems"), the default
application directory is still SYSDISK:[ZZAPnnnnnj. However,
there are several additional locations for application
components.

The following sections describe how to access
components for all systems.

• To refer to files supplied by the user:

application

Use the logical device name SYOOO:. This is valid for all
systems.

• To refer to user-specific files (/USER files) in known
directories:

Use the logical device name SYSDISK:. Examples are
SYSDISK:[ZZSYSJEDTINI.EDT and SYSDISK:[ZZSYS1PROSE.UDK. On
older systems, all application files are user-specific, and
all application directories are contained on the device whose
logical name is SYSDISK:. This logical is valid for all
systems. See the Tool Kit Reference Manual section on
installation command language for details on IUSER files.

• To refer to user-specific files (/USER files) in unknown
directories:

Use one of the logical names APPL$USER: or APPL$DIR. Both
translate to SYSDISK:[ZZAPnnnnnj. On older systems, you must
use APPL$DIR (no colon), translating it first. APPL$USER:
is valid only on newer systems. An example reference to a
user-specific file is APPL$USER:PARAM.DAT. Both logical
names are valid on newer systems. See the Tool Kit Reference
Manual section on installation command language for details
on IUSER files.

2-23

ACCESSING APPLICATION FILES

• To refer to shared components of your application (/NETWORK
files) :

Use the logical name APPL$NETWORK:, available only on newer
systems. An example reference to a shared component is
APPL$NETWORK:LIBRARY.TSK. See the Tool Kit Reference Manual
section on installation command language for details on
/NETWORK files.

• To refer to cluster (/CLUSTER files) and system components in
known directories:

Use the device logical LBOOO:. You must know the directory
containing the file. Do not attempt to refer to a cluster or
system file if you do not know the directory that contains
it. LBOOO: is available on all systems. See the Tool Kit
Reference Manual section on installation command language for
details on /CLUSTER files.

• To obtain the long form specification of the User Account
Area:

Use the logical name USER$HOME:. This logical resolves to
the node$$volumelabel$account: form. It is available only
on newer systems. Section 2.4.3.4 describes how to find the
long form of a device name for any particular file.

2.6.1 Menu, Help, and Message Files

The installation command file provides an easy way for an
application to access menu, help, and message files. If you
provide an ASSIGN MENU, ASSIGN HELP, and ASSIGN MESSAGE line in
your installation command file, the system will automatically
open the specified file whenever you call a User Interface
Library (POSRES) routine that uses it. If your program uses
additional menu and/or help files, it must explicitly open them.

2-24

CHAPTER 3

IMPLEMENTING THE APPLICATION

You implement the application by creating a number of source
files. These files include:

• The source language files for the application code

• The frame files for the menus and help that your application
uses to interface with the user, as well as any message files

• The command and overlay descriptor files that direct the
application build step

• The installation command file that tells P/OS how to install
and execute the application

This chapter describes the steps involved in preparing these
files.

3.1 CREATING THE APPLICATION DIRECTORY

To test your application on P/OS Hard Disk,
directory to contain the executable files
command file. To create the directory,
CREATE/DIRECTORY command.

NOTE

you will need a
and installation

use the DCL

The application directory must have the same name
as the installation file. For example, if the
installation file is PROGRAM.INB, the directory
must be named PROGRAM.

If you are working with the PRO/Tool Kit, you can use this
directory to contain all of your application files.

3-1

CREATING THE FRAME AND FORM FILES

3.2 CREATING THE FRAME AND FORM FILES

Use the Frame Development Tool (FDT), described in the Tool Kit
Reference Manual, or the Forms Editor (FED), described in the
FMS-ll/RSX Software Reference Manual, to create the frame and
form files associated with your application. Sketch out your
frames and forms before creating them and keep hard-copy
descriptions on hand while working on your source code.

3.3 CREATING THE APPLICATION BUILDER FILES

Use any text editor to create the PAB command files and .ODL
files for building a task image, as described in Chapter 4. Most
of the Tool Kit programming languages have a facility for
generating PAB files that you can tailor to your application.
Some of the tools, (CGL, POSRES, PRO/FMS-l1, for example) require
that you make some changes to the PAB files.

3.4 CREATING THE INSTALLATION COMMAND LE

One application installation command file is required for each
Professional target configuration that your application supports.
The format and contents are described in the Tool Kit Reference
Manual.

3.5 CREATING THE SOURCE CODE

Use any text editor to create your source code. If you are using
the PRO/Tool Kit, you can use the EDIT command to invoke EDT (the
default) or PROSE. If you use PROSE, do not save word
wrap/margin settings.

The following sections describe how to call the P/OS services
from your source language code and how to design and implement
the menu and help interface.

3.6 HOW TO CALL PIOS SERVICES

P/OS routines use the standard PDP-11 R5 calling sequence
convention (sometimes called the FORTRAN Calling Sequence
Convention). This section provides some general information
about the R5 convention. The subsequent sections describe how to
call P/OS routines from each high-level language.

3-2

HOW TO CALL P/OS SERVICES

This manual and the Tool Kit Reference Manual provide a "Format"
description for each P/OS routine; this description shows the
external routine name followed by a parameter block. The R5
calling sequence convention requires that you pass all parameters
by reference. In other words, the parameter block contains only
addresses of parameters, not actual data.

The data type and relative position of each parameter must match
that expected by the P/OS routine. If a routine doesn't work
correctly, check the parameter data types. One of the most
common bugs is the specification of a real (floating point)
parameter where an integer is required.

Some languages allow you to pass an expression as a reference
parameter. The language's run-time library evaluates the
expression, stores it in a temporary location, and passes the
address of the location. If your language does not support this,
read "expression" as "constant or variable."

You can use arrays for multiword parameters. For example, you
can use a 2-word integer array for the POSRES status block. You
must, however, know how your language numbers arrays. For
example, BASIC-PLUS-2 numbers all arrays from zero, while PASCAL
allows you to specify your own numbering scheme.

3.6.1 BASIC-PLUS-2

In BASIC-PLUS-2, external subprogram calls do not have to be
declared. A call has the format:

CALL name BY REF (pi, p2, ... , pn)

where:

name

BY REF

Is the name of the external subprogram.

Specifies that the parameters are to be passed by
reference.

pl,p2, ... Are actual parameters as described.

Refer to your BASIC-PLUS-2 documentation for detailed information
on calling external routines from BASIC-PLUS-2.

3-3

HOW TO CALL PIOS SERVICES

Notes:

• To pass an array, include the empty parentheses () in the
BASIC-PLUS-2 call.

• BASIC-PLUS-2 does not allow you to pass array elements by
reference.

• You can pass a dynamic string
function to determine its length.

variable, using
For example:

CALL name BY REF (... , S$, LEN(S$), ...)

3.6.2 COBOL-81

the LEN

In COBOL-Bl, external routine calls do not have to be declared.
A call has the format:

CALL "name" USING pi p2 ... pn.

where:

name Is the name of the external routine.

pi p2 Are actual parameters as described.

Refer to the Tool Kit COBOL-81 Documentation Supplement for
detailed information on calling P/OS routines from COBOL-81.

3.6.3 DIBOL

In OIBOL, external subroutine calls do not have to be declared.
A call has the format:

XCALL name (pi, p2, ... , pn)

where:

name Is the name of the external subroutine.

pl,p2, ... Are actual parameters as described.

Refer to the Tool Kit DIBOL User's Guide for detailed information
on calling PIOS routines from OIBOL.

3-4

HOW TO CALL PIOS SERVICES

3.6.4 FORTRAN-77

In FORTRAN-77, external subroutine calls do not have to be
declared. A call has the format:

CALL name (pi, p2, ... , pn)

where:

name Is the name of the external subroutine.

pl,p2, ... Are actual parameters as described.

Refer to the Tool Kit FORTRAN-77 Documentation Supplement for
detailed information on calling PIOS routines from FORTRAN.

3.6.5 PASCAL

In PASCAL, an external procedure declaration has the format:

PROCEDURE name (VAR pi; VAR p2; ... VAR pn); SEQll;

where:

name Is the name of the external routine.

VAR Specifies pass by reference.

pl;p2; ... Are formal parameters as described.

SEQll Specifies the PDP-ll R5 calling sequence.

A procedure call has the format:

name (pi, p2, ... , pn);

where:

name Is the name of the external routine.

pl,p2, ... Are actual parameters that match the
parameters in the procedure declaration.

Refer to the Tool Kit PASCAL User's Guide for
information on calling PIOS routines from PASCAL.

3-5

formal

detailed

HOW TO CALL P/OS SERVICES

Notes:

• You can declare formal parameters with the READONLY attribute
so that you can pass constants as actual parameters .

• You can declare formal string (ARRAY [l .. n] OF CHAR)
parameters with the UNSAFE attribute so that you can pass
strings of different lengths as actual parameters.

3.6.6 MACRO-11

To transfer control to a P/OS routine, use the format:

JSR PC, name

where:

name Is the name (global entry point) of the routine.

General purpose register S (RS) contains the address of the
parameter block, which has the following format:

high byte low byte

0 I number of parameters

address of parameter 1

address of parameter 2

address of parameter n

When the P/OS routine returns, the contents of registers RO
through RS are undefined. The stack pointer (SP) is restored to
its state at routine entry.

3.7 USING POSRES SERVICES

The P/OS user interface services provide the means by which users
can interact with your application in exactly the same manner

3-6

USING POSRES SERVICES

that they interact with P/OS. From the user's point of view, the
transition from PIOS to application can be just another menu.

The user interface services also allow you to remove all text
from your source code, making a single application usable in any
number of languages. For example, you can package the same task
images with menu, help, and message files in English, French,
German, Italian, and so forth.

This section describes how to design and implement a menu-based
user interface. To accomplish that, you must be familiar with
how a menu interface works from a user's point of view. This
chapter assumes that you are familiar with the PIOS user
interface. If not, spend some time working with the PIOS menus
and help structure before proceeding.

A menu-based
application
finite list,
the user, it

user interface allows the user to interact with your
by repeatedly selecting one or more options* from a
called a menu. Because all options are visible to
is not necessary to memorize a command language.

In practice, the structure that best matches the user's
perception of a menu interface is the multiway tree (hierarchy),
where each option on a menu represents a decision and points to
another menu. The end points of the tree represent states in
which your application has gathered enough information to perform
an operation. When the operation is complete, the user repeats
the decision-making process, beginning at the main menu or at
some other menu in the tree.

Because the menu interface is entirely under program control, the
user need not be restricted to downward movement in the menu
tree. You can allow movement forward or backward to any other
menu in the tree. Backward movement can provide the user with a
way to cancel a wrong decision and start over; forward movement
can provide an abbreviated or concise way to make decisions.

While a menu is active, some function keys are trapped and used
as part of the option selection process. Other function keys
return control to your application with information about the key
that was pressed. This chapter contains some recommendations on
how to assign semantic meanings to keys and how to process them.

A menu-based user interface also includes context-sensitive help
in the form of help menus, which are similar to control menus,
and help text frames, which are simply informative displays.

* PIOS end user documentation uses the term item rather than
option.

3-7

USING POSRES SERVICES

Help structures can be multiway trees or complex networks of
interlocking menus and text frames.

You can associate help structures with menus or with individual
options on menus. While a menu is active, the menu interface
automatically activates the appropriate help structure whenever
the user presses the HELP key. If no menu is active, your
application can detect and process requests for help by
explicitly activating a help structure. You can even monitor the
user's progress through the menu tree and offer help if the user
makes repeated errors or seems to be stalled at some point.

A menu-based user interface also provides a way for your
application to display context-sensitive messages that announce
error conditions, confirm completion of operations, and so forth.
Each time it displays a menu, your application can specify up to
two lines of messages to appear with the menu at a predefined
location. Your application can also send a message to the View
Message/Status service on the P/OS Main Menu.

The user interface services consist of:

• The Frame Development Tool

The Frame Development Tool (FDT) is a utility program (you
may prefer to think of it as an editor) that allows you to
create menu, help, and message frames, to store frames in
files, and to convert the files into a format that can be
read by POSRES User Interface Services. FDT is described in
detail in the Tool Kit Reference Manual.

• The POSRES User Interface Library

POSRES is a P/OS clustered resident library containing a set
of callable routines that manage menus and help structures
(including frames stored in files) and process function keys.
This chapter provides a general description of how to use the
POSRES routines. A detailed description of each routine can
be found in the Tool Kit Reference Manual.

Figure 3-1 shows the relationship between FDT and POSRES. FDT
allows you to create a frame (in this case, a single-choice menu)
by filling in forms. The frame description is then stored in a
file and installed with other application files. At run-time,
your application uses POSRES routines to open the frame file,
retrieve the frame, and activate it.

3-8

USING POSRES SERVICES

FORMS
,.,.tlLe ,.,. 11aiIle o.t" MIl

'r.. DMc:rl,U ..
["''' _ tar _ _u_ ... " ... "",.

c-· ...

GlL ... l"~[_1

o.r.u '-'to. [' I
(<lOlNl lnl .. Strlftl

Thl. _UUUCMI orr.f'I el_urJ Hvc:atlC1f1 l.n 'IV", n.ldl or Itlld)'. Sel.et

one or tftl COUr"H' 1l.tM MrI.

r
I
L

'lib.., c....., , ... _ -.. -....... _,
141'''''\1
I.lt ,..
"'-',--llc.

i) .. erlphon: CIOClJ,I'to!Y

'!'etlan ,)e.c:r~~~ior.

[T1Io1. l.a thI 4HerlpUOB or 1M ~ ottUoe..

[GIDOOOlD

FDT

-.
II

o,tLon k.),vord (~[O

OptiQfl;te:pF'r_ (H[:.IeW]

o,tlon Actl.:ul ~tri.r.1

N ...
w w

I I
- '" w

! I

Figure 3-1: User Interface Tools

CD
w

~ ...

3-9

MENU DEFINITION FILE

po. ... '" S! ::
w w w w w
:::IE :::IE :::IE :::IE

~ ~ C C ~ a:: a::

MENU

,------- EI..El£)(fARY EDUCATlIll Af'l'lICATlIll -------.,

This 1PP1ic:a.til7! off,," ele.n~ NJ::iltlC1"1 in :seven
,i,ldl ~ s~. S.llCt of u. ctu'WS listed ~e:

USING POSRES SERVICES

3.7.1 Designing a Menu Structure

The primary goals in designing a menu tree are consistency and
friendliness. The user should never feel lost or trapped. You
should always provide a way to back out of a wrong decision.

Convenience is also very important. On any menu, include options
that are related by function (rather than program logic) so that
common operations can be completed with minimal switching of
menus. If necessary, put the same option on more than one menu.

3.7.1.1 Format of a Menu - From the user's point of view, there
are three types of menus: single-choice menus, multiple-choice
menus, and help menus. They all have roughly the same fields.
Figure 3-2 shows a single-choice menu with the fields pointed
out.

tor Selee
or

Point

Optio

Prom
Line

er

ns

pt

I I

I •
ru

a:o~~
Curso
Line

Error
Inform
Lines

Title

/
~

ELEMENTARY EDUCATION APPLICATION
/

/

Explanatory
Text

/
::\

This application offers elementary education in seven fields of study, Select
one of the courses listed here:

Bi olc'9~1
) Cornp u tel' Science

• -> Geo'3r ",ph\!
Go 1 • .1ernrn-=-n t

) Hi ~·tc'r',!
Li terature
r"la the-rna tics

Additional Options available

Make a selection and press the DO key: \
"\

Keyword Additional
Options Flag

Figure 3-2: Single-Choice Menu

Rest
Position

On a single-choice menu, part of each option appears in boldface
to indicate which characters form an unambiguous choice. The
boldface characters are called the keyword for the option.

3-10

USING POSRES SERVICES

3.7.1.2 Single-Choice Menus - There are actually two kinds of
single-choice menu: static and dynamic (described in Section
3.7.2). The difference is relevant only to programmers; from the
user's point of view, there is only one kind.

When the menu is displayed, the selector begins at the default
option or, if none was specified, at the rest position. The user
selects an option from a list of up to 12 options. There are two
ways to select an option:

• The user positions the selector at the desired option by
pressing UP ARROW and DOWN ARROW keys, then presses the DO
key.

• The user positions the selector at the desired option by
typing keyword characters, then presses the DO key. The
selector moves only when the characters identify a unique
choice.

Single-choice menus are normally used to allow the user to choose
a single function.

3.7.1.3 Multiple-Choice Menus - On a multiple-choice menu, the
user selects one or more options from a list. The list can be
any length, possibly covering several screens. Figure 3-3 shows
a multiple-choice menu.

The user selects options by repeatedly positioning the selector
(with UP ARROW and DOWN ARROW) and pressing the SELECT key. An
arrow remains next to each selected option. The user can cancel
a selection by pressing the SELECT key again, or can cancel all
selections (start over) by pressing the CANCEL key.

If the option list covers more than one screen, the user can move
forward or backward in the option list by pressing the PREV
SCREEN and NEXT SCREEN keys. The DO key signals that the
selection process is complete.

Multiple-choice menus are
rather than commands. A
directories.

normally used for objects (data),
common example is a list of files or

3-11

USING POSRES SERVICES

..... -------- COURSE: GEOGRAPHY OF NORTH AMERICA ---------..,

This course covers rivers, lakes, and mountains. The first topic is mountains.

The mountains listed below are located in different parts of the world. Select

all the mountains located in North America:

->
MT. RUSHMORE
MT. \I ASHINGTON

MT. HOOD
GRAND TETON
'IT. RAINIER
MT. FUJI
KILIMANJARO
MT. ST. HELENS
MT. MCKINLEY

Choose one or more options with the SELECT key and press the DO key:

Select up to 9 items
(0 chosen)

Figure 3-3: Multiple-Choice Menu

3.7.1.4 Key Processing in Menus - This section describes key
processing in menu option selection. (All key codes and labels
are supplied in the Tool Kit Reference Manual.)

• Keyboard keys are accepted if they match an option keyword.
Otherwise, the keyboard bell rings and selection continues.
The DELETE key deletes the previously typed character.

• The ADDTNL OPTIONS key returns control to your application if
your menu display call specified Additional Options.
Otherwise, the keyboard bell rings and option selection
continues.

• The EXIT key returns control to your application. Whenever
your application receives the EXIT key code, you should
return to the next highest menu in your menu tree hierarchy.

UP ARROW and DOWN ARROW move the selector up
the user tries to move the selector out
keyboard bell rings and selection continues.

3-12

and down. If
of range, the

USING POSRES SERVICES

• The CANCEL key moves the selector to the rest position. On a
multiple-choice menu, it cancels all selections.

• The DO key chooses any selected options. That is, on a
single-choice menu, the DO key selects one option and returns
it to your application. On a multiple-choice menu, the DO
key selects the current option, and returns it and all
selected options to your application. If no option has been
selected and the pointer is at the rest position, the DO key
rings the keyboard bell.

• The HELP key activates a help structure as described in
Section 3.7.4.3.

• The HOLD SCREEN key functions normally.

• The INTERRUPT key does not by
application. If followed by
to abort your application.
continues as usual.

itself return control to your
the DO key, the system attempts

Otherwise, option selection

Note that your application can specify the SREX$ directive to
trap abort attempts. See the P/OS System Reference Manual
for details.

• The PRINT SCREEN key functions normally.

• The SELECT key selects an option or cancels a selection on a
multiple-choice menu, without returning control to your
application. However, on a single-choice menu, the SELECT
key only returns control to your application.

• Other function keys either ring the keyboard bell or
terminate the menu display and return control to the
executing task with a numeric code to identify which key was
pressed. In general, you should handle invalid keystrokes by
redisplaying the same menu with a message such as "You
pressed an invalid key; try again."

3.7.1.5 Action Strings - Action strings are character strings
that are stored in a menu definition but not displayed; POSRES
returns them to your program with specific calls. Their purpose
is to associate menus and options with data usable by your task.
For example, you can associate menu and options with other menus,
tasks, subroutines, or callable services.

There are two types of action strings:

3-13

USING POSRES SERVICES

• Global action strings

A global action string associates data with a single-choice
menu. Your application can obtain and use the global action
string each time it reads a new menu from the menu file.

• Option action strings

option action strings associate data with options on a
single-choice menu. A successful option selection returns an
option action string to your application.

3.7.1.6 Option Keywords - On a single-choice menu, you should
designate part of each option as the keyword. The user can
select the option by typing keyword characters, rather than by
pressing ARROW keys.

The keyword must be at least one character. It can be any
contiguous substring of an option or the entire option. For
example, you could use any of the following:

Enter Accounts Payable

Enter Accounts Payable

Enter Accounts Payable

A keyword should be unique within the menu. No keyword can be a
substring of another keyword. For example, the string "1" is a
substring of the string "10".

Verbs are usually the most appropriate keyword. If no keyword is
suitable, use numbers. (This is not recommended.) Examples
follow:

1 Sales Report: Area One
2 Sales Report: Area Two
3 Sales Report: Area Three

3.7.2 Implementing a Menu Structure

From a developer's point of view, there are two kinds of menus:

3-14

USING POSRES SERVICES

• Static menus

Static menus are created with FDT and stored in frame files.
The system can generally display a static menu more quickly
that it can display an equivalent dynamic menu.

• Dynamic menus

Dynamic menus are created by your application at run-time.
In general, dynamic menus are intended for manipulating data.

NOTE

Only single-choice menus can be
dynamic. Multiple-choice menus
dynamic.

static or
are always

POSRES uses three buffers for temporary storage of menu
frames--one each for static single-choice menus, dynamic
single-Choice menus, and multiple-choice menus. You allocate
memory for these buffers when you build your program (see Section
3.7.7). Because there is only one buffer of each type, you can
have only one menu of each type in memory at one time.

3.7.2.1 Displaying Menus - All of the routines for displaying
menus accept a parameter that specifies whether to display the
Additional Options message and return control if the user presses
the ADDTNL OPTIONS key. PIOS generally uses Additional Options
menus for services beyond those offered on the current menu.

Static Single-Choice Menus - Static single-choice menus are
created with FDT and stored in menu frame files. There are two
ways to open a menu frame file:

• The ASSIGN MENU command in your
(see the Tool Kit Reference
run-time.

installation command file
Manual) opens a menu file at

• The Open Menu File (MFILE) routine explicitly opens menu
files. To use it, however, you should provide a complete
file specification for the menu frame file. Use one of the
PIOS system logical names described in Section 2.6 to fully
qualify the file specification.

To display static single-choice menus, use the following POSRES
routines:

3-15

USING POSRES SERVICES

• Read Menu Frame (MFRAME)

MFRAME reads a specified menu from the menu file into the
static buffer.

• Display Single-Choice Menu (MENU)

MENU displays the menu in the static buffer and processes
user keystrokes (as described in Section 3.7.1.4). You can
specify up to two message lines to appear on the menu.

Dynamic Menus - Dynamic menus are created by your application at
run-time. To create a dynamic menu, you must first clear the
appropriate buffer (dynamic single-choice or multiple-choice) and
then pack it. The POSRES menu packing routines are:

• Pack Dynamic Single-Choice Menu (DPACK)

DPACK packs the dynamic single-choice buffer with a new menu.

• Pack Multiple-Choice Menu (MPACK)

MPACK packs the dynamic multiple-choice buffer with a new
menu.

Both routines
also accept
specifies the
you can pack
calls.

accept a parameter that clears the buffer. They
any number of field parameter groups, each of which
contents of a menu field (see Figure 3-2). Thus,
a menu buffer with a single routine call or several

You also can use the contents of the static buffer to create a
dynamic menu. The POSRES menu unpacking routine is:

• Unpack Menu Buffer (MUNPK)

MUNPK unpacks the menu in the static buffer so that its
contents can be modified and reused as a dynamic
single-choice or multiple-choice menu.

Once you have packed the dynamic buffer, display the menu by
calling one of the display routines:

• Display Dynamic Menu (DMENU)

• Display Multiple-Choice Menu (MMENU)

3-16

USING POSRES SERVICES

These routines display the menu in the appropriate buffer and
process user keystrokes (as described in Section 3.7.1.4). You
can specify up to two message lines to appear on the menu. The
MMENU routine includes parameters for setting the maximum number
of options the user can select and for receiving the responses.

3.7.2.2 Programming with Menus - When control returns to your
application from a menu display routine, the menu remains visible
on the screen. Examine the first word of the status block to see
what happened.

If it contains +1, option selection was successful. Either the
second word of the status block, or the response array, contains
the ordinal number of the selected option. You can branch on
that value, or use the option action string (if defined).

If the first status word contains -14, the user pressed a
function key other than DOi the second word contains a function
key code. (All key codes are supplied in the Tool Kit Reference
Manual.) If your menu display call specified Additional Options,
be sure to check for 14 in the second status block word.

Your application must determine which function keys are valid and
which are not in the context of the current menu. Section
3.7.1.4 provides some suggestions on how to process function
keys. If the user pressed an invalid key, redisplay the same
menu with a helpful message.

Any other value indicates
possible status values
Manual.)

that an error has occurred. (All
are supplied in the Tool Kit Reference

When processing is complete, use the Close Menu File
routine to close the menu frame file (if open)
Otherwise, the file remains open until your task exits.

(MCLOSE)
and exit.

3.7.2.3 File Specification Routines - POSRES provides two
special user interface routines for working with files.

New Filename (NEWFIL) - The New Filename routine activates the
PIOS New File Specification form shown in Figure 3-4 and returns
a full file specification in the form:

dev:[directorylfilename.tYPiversion

3-17

The user
OPTIONS.
menu tha
different

I f your'
HELP
NEWFIL

1. the

2. Re e t.be

3. n

4. Rese

Figure

I

r an press ADDTNL
Additional Options

file specify a
f Ie specification.

1 after
menu and

IGN MENU or ASSIGN
r t 01 returns from

:Eil s. If not, do the

E: •

1 able

USING POSRES SERVICES

Old Filename (OLDFIL) - The Old Filename routine activates the
PIOS File Selection Menu and returns the full specifications of
one or more selected files. You can supply a wildcard string to
specify a subset of the files in the user's current directory and
can specify the maximum number of selections. For example, you
can use the default wildcard specification (*.*) by supplying a
zero-length string. That displays the latest versions of all
files in the user's current directory.

Refer to Section 2.4.8, or your host system documentation, for
wildcard syntax.

An Additional Options menu allows the user to choose a different
directory or volume, enter an extended filename, show all
versions of the files, or show only the latest versions of files.
The last two options, however, work only when the application
uses the default wildcard specification or when the application
passes a wildcard specification that specifies an asterisk (*)
for the version number. Otherwise, when the user selects "Show
all versions" or "Show latest version," the same file selection
menu will redisplay.

NOTE

When control returns to your application, you
should reset menu and help contexts.

If your installation command file contains ASSIGN MENU or ASSIGN
HELP commands, the next POSRES call after control returns from
OLDFIL automatically reopens those files. If not, do the
following:

1. Open the menu file explicitly with MFILE.

2. Reset the menu frame with MFRAME.

3. Open the help file explicitly with HFILE.

4. Reset the help frame with HFRAME.

3.7.3 Designing a Help Structure

The primary goal in designing a help structure is to guide the
user smoothly through the menu tree. There should be no point in
the menu tree where the HELP key does not display help for the
user.

3-19

USING POSRES SERVICES

Help structures consist of help menus and help frames. Help
menus do not provide information; they simply guide the user to
the appropriate help text frame or another help menu. Help text
frames provide information about your application.

Although you can assume that the user is familiar enough with the
menu system to select an option from a menu, you should always
state which keys are expected, for example: "Make a selection
and press DO," or "Press NEXT SCREEN to continue."

3.7.3.1 Help Menus - On a help menu, the end user chooses one
from a list of up to 12 options. Figure 3-5 shows a help menu.
The format and option selection process are similar to a
single-choice menu.

HELP ON ELEMENTARY EDUCATION APPLICATION --------,

You can display helpful information about the subjects listed below. Select an
option then press the DO key. Press the RESUME key to return to the Main Menu.

->
COMPLETING TESTS AND QUIZZES
READING THE REPORT CARD
SELECTING COURSES
USING THE MAP

Make a selection and press the DO key:

Figure 3-5: Help Menu

3.7.3.2 Key Processing in Help Menus - This section describes
key processing in help menus. (All key codes and labels are
supplied in the Tool Kit Reference Manual.)

3-20

USING POSRES SERVICES

On a help menu, option selection keys are processed as follows:

• Main keyboard keys are accepted if they match an option
keyword. Otherwise, the keyboard bell rings and selection
continues. The DELETE key deletes the previously-typed
character.

• UP ARROW and DOWN ARROW move the selector up
the user tries to move the selector out
keyboard bell rings and selection continues.

and down. If
of range, the

• The CANCEL key moves the selector to the default option if
defined, otherwise to the rest position.

• The DO key displays the frame associated with the selected
option if option selection was successful. Otherwise, it
rings the keyboard bell.

• The HELP key rings the keyboard bell. In order to continue
through the help structure, the user must select an option.

• The HOLD SCREEN key functions normally.

• The INTERRUPT key does not by
application. If followed by
to abort your application.
continues as usual.

itself return control to your
the DO key, the system attempts

Otherwise, option selection

Note that your application can specify the SREX$ directive to
trap abort attempts. See the PIOS System Reference Manual
for details.

• The PREV SCREEN key displays the previous help frame, if
defined. Otherwise it rings the keyboard bell.

• The PRINT SCREEN key functions normally.

• The RESUME key returns control to the menu from which the
user entered the help structure or, if the help menu was
activated directly by your task, returns control to it.

• Invalid keys ring the keyboard bell but do not return control
to your application.

3.7.3.3 Help Text Frames - Help text frames can consist of a
full frame (16 lines of text), the top half of the screen (eight
lines), or the bottom half of the screen (eight lines). Figure
3-6 shows a help text frame in the bottom half of the screen.

3-21

USING POSRES SERVICES

When the user pressed the HELP key, the selector was positioned
on the option "Reading the Report Card" in Figure 3-5.

When displayed implicitly by POSRES, half-screen frames do not
alter the remainder of the screen. For example, in Figure 3-6,
part of the menu remains visible. If, however, your task calls
HELP directly to display a half-screen frame, POSRES clears the
entire screen.

You should use half-screen frames for menu frame pointers
whenever the size of the help text permits. Choose top or bottom
in order to allow relevant areas of the previous frame to remain
visible. You can design the help structure so that top and
bottom frames alternate, allowing the user to see two help frames
at a time.

HELP ON ELEMENTARY EDUCATION APPLICATION

You can display helpful information about the subjects listed below. Select an
option then press the DO key. Press the RESUME key to return to the Main Menu.

COMPLETING TESTS AND QUIZZES
-> READING THE REPORT CARD

SELECTING COURSES
USING THE MAP

HELP ON READING THE REPORT CARD -----------,

The Report Card presents an objective evaluation of your work in courses offered
by the Elementary Education Application. The Report Card lists all the courses
you have taken. For each course, it indicates the number of correct and
incorrect answers given on tests and quizzes, the number of times the course
was taken, the date of the last quiz and test taken, and, if the course was
completed, the passing or failing grade.

Figure 3-6: Help Text Frame

3.7.3.4 Key Processing in Help Text Frames - While a help text
frame is active, only the following keys are processed:

• The HELP key and the NEXT SCREEN key
frame, if one was defined when
Otherwise, the keyboard bell rings.

3-22

display the next help
the frame was created.

USING POSRES SERVICES

• The PREV SCREEN key returns to the previous help frame, if
the frame is defined. Otherwise, the keyboard bell rings.

• The NEXT SCREEN key displays the next help frame, if the
frame is defined. Otherwise, the keyboard bell rings.

• The RESUME key returns control to the menu from which the
user entered the help structure or, if the help menu was
activated directly by your task, returns control to the task.

3.7.3.5 A Sample Help Structure - Figure 3-7 shows part of the
system's Main Menu help structure in diagram form.

PREY

OPTION
SELECTION _---....

RESUME

:Il
m
Ch
C
!:
m

Figure 3-7: P/OS Main Menu Help Structure (Partial)

3-23

USING POSRES SERVICES

3.7.4 Implementing a Help Structure

Help structures are made up of frames and frame pointers. A
frame pointer is data that specifies a help menu or help frame by
name. For static menus, you specify the frame pointers on the
FDT Profile and Action forms. For dynamic menus, you specify
frame pointers in the parameters passed to the POSRES routines
that create the menu.

All menus contain a global frame pointer. When the user presses
the HELP key with the pointer in the rest position, POSRES
activates the help structure and displays the frame specified by
the global frame pointer.

Single-choice menus (static or dynamic) contain a frame pointer
for each option on the menu. When the user presses the HELP key
with the pointer on an option, POSRES activates the help
structure and displays the frame specified by the option frame
pointe r.

POSRES also maintains a default help frame pointer for use when
no menu is active or when the current menu does not define a help
frame. Your application can explicitly activate a help structure
and specify a new default help frame pointer.

3.7.4.1 Opening Help Files - There are two ways to open a help
frame file:

• The ASSIGN HELP command in your installation command file
opens a help file at run-time. (See the Tool Kit Reference
Manual for details on the installation command file.)

• The Open Help File (HFILE) routine explicitly opens a help
file. To use it, however, you should provide a complete file
specification for the help frame file. Use one of the P/OS
system logical names described in Section 2.6 to fully
qualify the file specification.

POSRES assumes that all frames used by the current help structure
are in the most recently opened help file.

3.7.4.2 Setting the Default Help Frame - There are several ways
to set the default help frame:

3-24

USING POSRES SERVICES

• The ASSIGN HELP command in your installation command file
specifies the default help frame. (See the Tool Kit
Reference Manual for details on the installation command
file.)

• The Open Help File (HFILE) routine specifies a default help
frame. This takes precedence over a default help frame
specified in your installation command file.

• The Specify Help Frame (HFRAME) routine specifies the default
help frame. This takes precedence over a default help frame
specified in your installation command file.

• Each time the user presses the DO key to select a menu
option, that option's frame pointer, if defined, becomes the
default. This automatically maintains the help context.

3.7.4.3 Activating the Help structure - While a menu is active,
POSRES automatically activates the help structure (using the
current menu's frame pointers) whenever the user presses the HELP
key. This help processing is entirely transparent to your
application. POSRES uses the current menu's frame pointers in
the following order of precedence:

• The option help frame (single-choice menus only).

• The global help frame.

• The default help frame.

• If there is no default help frame, POSRES simply refreshes
the current frame and continues.

While no menu is active, you can activate the help structure by
calling the Display Help Frame (HELP) routine. POSRES uses frame
pointers in the following order of precedence:

• The help frame specified in the HELP call.

• The default help frame.

• If there is no default help frame, an error occurs.

3-25

USING POSRES SERVICES

3.7.5 Message Files and Services

.Like help frame files, message frame files are created with FDT.
Message frames can contain up to 21 lines of text. By removing
the string constants from your task and placing them into a
message frame file, you can reclaim a significant amount of
virtual memory.

Unlike help frame files, POSRES provides no routines to
explicitly display message frames. It does, however, provide a
way to extract message frames so that you can use them as
parameters to other routines, such as the optional text lines on
menus and on special message-service routines.

For example, the Installation Verification Program used by the
Tool Kit languages uses that technique for its geography test
answers. Figure 3-8 shows the same multiple-choice menu as
Figure 3-3, with a message informing the user of an incorrect
selection. This was accomplished by extracting message frames
and using them to specify the optional text lines in the POSRES
calls that created the menu.

r---------- COURSE: GEOGRAPHY OF NORTH AMERICA ---------.,

This course covers rivers, lakes, and mountains. The first topic is mountains.

The mountains listed below are located in different parts of the world. Select
all the mountains located in North America:

-> MT. RUSHMORE

-> MT. WASHINGTON
-> MT. HOOD
-> GRAND TETON
-> MT. RAINIER

MT. FUJI

-> KILIMANJARO

-> MT. ST. HELENS
->-> MT. MCKINLEY

Choose one or more options with the SELECT key and press the DO key:

Kilimanjaro is not in North America. It is in Tanzania, Africa.
At 19,340 feet, it is the highest point in Africa.

Figure 3-8: Message Frame

3-26

USING POSRES SERVICES

POSRES includes the following message service routines (all are
fully described in the Tool Kit Reference Manual):

• Assign Message File

The ASSIGN MESSAGE command in your installation command file
opens a message file at run-time.

• Fatal Error (FATLER)

This routine provides a consistent way to inform the user of
a fatal error condition. It blanks line 22; displays the
message "Application error. Press RESUME to return to Main
Menu." on line 23; and displays user-supplied text on line
24. That text can be a message about why the application
failed and where to look for recovery information.

• Read Message (RDMSG)

This routine reads a message from a specified message file
into a buffer. You do not have to explicitly open the
message file; POSRES opens it for you each time you call
RDMSG. If either the file or the frame identifier specified
in the RDMSG call cannot not be opened or located, POSRES
fills the buffer parameter with the message "Can't access
<filename> or can't find frame <frameid>."

• Send Message to Message/Status Display (MSGBRD)

This routine sends a message to the P/OS Message/Status
Display, which can be viewed by selecting the "View
Message/Status" option on the P/OS Main Menu. The Main Menu
shows how many unread messages have been queued. When the
user selects "View Message/Status," P/OS displays the
messages in the order in which they arrived.

NOTE

The MSGBRD routine is not actually in POSRES;
it is in the system library (SYSLIB). If you
use the MSGBRD routine, you must also edit
your Application Builder command file as
described in Section 3.7.7.

3.7.6 Function Keys

The Professional keyboard contains three types of function key:
reserved, prelabeled, and generic.

3-27

USING POSRES SERVICES

The reserved function keys, F1 and F2 (also known as HOLD SCREEN
and PRINT SCREEN), are not available to applications. The other
function keys are accessible to applications. All of the
function key codes and labels are supplied in the Tool Kit
Reference Manual.

3.7.6.1 Using Function Keys - The basic Professional keyboard
comes with 12 prelabeled function keys and 16 generic function
keys (F3 to 14, and F17 to F20). The prelabeled keys are:

ARROWs (4)
DO
FIND
HELP
INSERT HERE
NEXT SCREEN
PREV SCREEN
REMOVE
SELECT

PIOS provides a keyboard label strip that assigns semantic
meanings to 11 of the generic keys:

ADDTNL OPTIONS
BREAK
BS
CANCEL
ESC
EXIT
INTERRUPT
LF
MAIN SCREEN
RESUME
SET-UP

If your application provides its own keyboard label
can assign your own semantic meanings to the keys.
use the meanings defined by the PIOS label strip, as
below.

strip, you
Otherwise,
described

• Use ADDTNL OPTIONS to accept auxiliary commands, and to offer
services beyond those offered in the current context.

• Use the ARROW keys to move the cursor (or pointer) around the
screen in order to select or place objects. For example, a
spreadsheet could use the ARROW keys to move to an adjacent
cell. In a menu tree, UP ARROW and DOWN ARROW are used in
option selection.

3-28

USING POSRES SERVICES

• Use BREAK only in commmunications applications to transmit a
break character.

• Use DO and CANCEL to confirm and reject input, respectively.
Use DO to indicate that a choice has been made or a value
entered and that the user is ready to proceed. Use CANCEL to
indicate that the choice or value is incorrect and must be
reentered. In a menu tree, these keys are used in option
selection.

• Use EXIT in a menu tree to back up one menu. If at the top
level, use EXIT to terminate the application.

• Use the INTERRUPT/DO sequence to request immediate
termination of your application. If the end user presses the
INTERRUPT key followed by the DO key, the system aborts all
tasks of the running application and, after a specific period
of time, removes all application tasks and commons.

You can process INTERRUPT/DO yourself, or you can allow P/OS
to process it for you.

NOTE

INTERRUPT/DO is equivalent to CTRL/C. To
prevent application termination after the
INTERRUPT/DO sequence, the task can field the
sequence by attaching the terminal for CTRL/C
ASTs. See the high-level language
documentation for information about how to
attach the terminal for CTRL/C ASTs. In
MACRO-ll, read-pass-all or attaching to the
terminal for CTRL/C ASTs can be used to trap
CTRL/C. See the P/OS System Reference Manual
for more information.

• Use MAIN SCREEN to exit your application.

• Use NEXT SCREEN and PREV SCREEN to move through a series of
displays. For example, PROSE uses them to move through a
document. In a help structure, they activate frame pointers.

• Use RESUME to indicate that the user is ready to continue an
interrupted activity. In a help structure, RESUME returns
control to the menu or task that activated the structure.

• Use SELECT to record the current position of the cursor (or
pointer) for some subsequent action. In a multiple-choice
menu, SELECT is used in option selection.

3-29

USING POSRES SERVICES

3.7.6.2 Using Function Keys - When a function key (other than
DO) terminates a menu, control returns to your application with
the following values in the status block:

first word second word

-14 key code

POSRES also provides several routines to help
function keys independently from the menu interface.

• Get Keystroke (GETKEY)

you process
They are:

This routine inputs a single keystroke from the terminal
without echo. The first word of the status block contains
one of the following values:

+1 Indicates that the user pressed a main keyboard key. The
second word contains the DEC Multinational decimal code
of the key.

+2 Indicates that the user pressed a function key. The
second word contains one of the function key codes.

-n Indicates that an error has occurred.
contains one of the error codes.

• Parse String (PRSCSI)

The second word

This routine parses a string for a control sequence (CSI).
It scans the string from the left for a CSI character,
returns its position in the string, and translates the
subsequent characters into a code representing one of the
function keys. (See the Tool Kit Reference Manual.)

• wait for Resume Key (WTRES)

This routine echoes all keystrokes except the RESUME key by
ringing the keyboard bell. When the user presses the RESUME
key, control returns to your application. You can use this
routine to allow the user to read something on the screen or
change a diskette, for example, before proceeding. Before
calling WTRES, display a message such as "Press RESUME to
continue" on the screen.

3-30

USING POSRES SERVICES

3.7.7 POSRES Task Image Requirements

To use POSRES, you must edit your PAB command file. To determine
which edits are required, make a list of the POSRES routines used
by your task. Subsequent sections will describe how to edit the
.CMD file.

NOTE

Be sure to include any POSRES routines that are
used by your high-level language run-time support
library. (See your language documentation and
Chapter 4.)

Figure 3-9 shows a sample .CMD file, written for a PASCAL program
that uses all of the POSRES routines. The contents of this file
are explained in detail in the following sections. It is assumed
that you are familiar with the general contents and purpose of a
.CMD file. If not, please turn to Chapter 4.

PASDEM/CP/FP,PASDEM/MA/-SP=PASDEM/MP
CLSTR=PASRES,POSRES,RMSRES:RO
STACK 30 Start-up stack size
UNITS 46 Number of units available
GBLDEF
GBLDEF
GBLDEF
GBLDEF
GBLDEF
ASG
GBLDEF
ASG
GBLDEF
EXTSCT
EXTSCT
EXTSCT
EXTSCT
EXTSCT
//

TT$EFN:7
MS$LUN:41
MN$LUN:42
MB$LUN:43
HL$LUN:44
SY:37
v-/C$LUN: 45
TI:38
TT$LUN:46
MN$BUF:4540
DM$BUF:4540
MM$BUF:1000
HL$BUF:3410
FL$BUF:4310

Terminal I/O event flag number
Message frame file
Menu Frame file
Message/status display
Help frame file
P/OS current device
OLDFIL/NEWFIL device
User terminal
Terminal I/O
Static single-choice buffer
Dynamic single-choice buffer
Multiple-choice buffer
Help frame buffer
OLDFIL/NEWFIL buffer

Figure 3-9: PAS Command File with POSRES Options

3.7.7.1 The UNITS Option - The UNITS option specifies in decimal
how many logical units (LUNs) your application requires. LUNs
refer to simultaneously open files or devices.

3-31

USING POSRES SERVICES

3.7.7.2 The GBLDEF Option - The global symbol definition
(GBLDEF) option equates a symbolic name to an octal number.
POSRES requires a GBLDEF option for each symbol shown in Table
3-1.

Compare the list of POSRES routines used by your task to Table
3-1. Equate a logical unit number (LUN) or an event flag number
(EFN) to each symbol associated with each POSRES routine on your
list.

For example,
the symbols
are not used
file:

GBLDEF
GBLDEF
GBLDEF
GBLDEF

if you want to use LUNs 33 through 36 (decimal) for
MSLUN, MNLUN, MB$LUN, and HL$LUN, and these LUNs

elsewhere, insert the following in your PAB command

MS$LUN:41
MN$LUN:42
MB$LUN:43
HL$LUN:44

Most POSRES routines require an event flag (EFN) to perform
terminal I/O. Select an event flag number in the range 1 to 24
decimal, convert it to octal, and use the GBLDEF option to equate
the symbol TT$EFN to the octal number, as follows:

GBLDEF = TT$EFN:7

This assignment must not conflict with any other event flag
assignments (language run-time systems use DIGITAL-reserved event
flags 25-32).

3.7.7.3 The ASG Option - The ASG option associates a physical
device with one or more logical unit numbers (LUNs). These
assignments tell POSRES which devices to use.

The ASG option accepts decimal numbers, but the GBLDEF option
accepts octal numbers. To avoid confusion, use this procedure to
assign LUNs:

1. Use the ASG option to associate a device with a decimal LUN.

2. Convert the LUN from decimal to octal.

3. Use the GBLDEF option to equate a symbol to the octal LUN.

Available LUNs are in the range from 1 to 128.

3-32

USING POSRES SERVICES

NOTE

Your assignments must not conflict with any other
ASG assignments in your .CMD file.

Table 3-1: POSRES Global Symbols

Routine HL$LUN MS$LUN MN$LUN MS$LUN TT$EFN TT$LUN

DMENU X X X
FATLER X X
GET KEY X X
HCLOSE X
HELP X X X
HFILE X
HFRAME X
MCLOSE X
MENU X X X X
MFILE X
MFRAME X
MMENU X X X
MSGBRD X
NEWFIL X X X
OLDFIL X X X
PRSCSI
RDMSG X
WTRES X X

X symbol used
symbol not used

WC$LUN

X
X

POSRES requires that, in your .CMD file, you assign a LUN to TI:,
the Professional keyboard/video monitor. Using the ASG option,
equate TI: to a LUN number, and then use the GBLDEF option to
equate the LUN number with TT$LUN. An example using LUN number
38 (decimal) follows:

ASG = TI:38
GBLDEF = TT$LUN:46

Addi tionally,
NEWFIL, you
and equate it
(decimal) and

if you are using the POSRES routines OLDFIL or
must assign a LUN to SY:, the P/OS current device,
to WC$LUN. For example, if you want to use LUN 37
it is not used elsewhere, insert the following:

3-33

USING POSRES SERVICES

ASG = SY:37
GBLDEF = WC$LUN:45

3.7.7.4
names
and so
extend
bytes.

The EXTSCT Option - POSRES uses the program section
shown in Table 3-2 as buffers to store menus, help frames,
forth. Insert an EXTSCT option for each buffer shown, to
its program section by a specified (octal) number of

Compare your list of used POSRES routines to Table 3-2 and assign
each accessed buffer sufficient size, as described below. If a
routine does not appear in the table, it does not access any
buffer. If your task does not use any of the routines that
access a particular buffer, assign that buffer a size of zero.
Do not omit any buffer names.

Table 3-2: Buffers Accessed by POSRES Routines

Routine DM$BUF FL$BUF HL$BUF MM$BUF MN$BUF

DMENU X X
DPACK X
HCLOSE X
HELP X
HFILE X
HFRAME X
MCLOSE X
MENU X X
MFILE X
MFRAME X
MMENU X X
MPACK X
MUNPK X
NEWFIL X X
OLDFIL X X X X

X buffer accessed
buffer not accessed

3-34

USING POSRES SERVICES

Figure 3-10 shows an example of the EXTSCT options with values
calculated for the largest possible frame of each type. In other
words, if every field on a menu, help, and message frame were
filled in with the suggested maximum amount of data, the
respective buffers would have to be allocated the sizes shown.

EXTSCT
EXTSCT
EXTSCT
EXTSCT
EXTSCT

DM$BUF:4540
FL$BUF:4310
HL$BUF:3410
MM$BUF:1000
MN$BUF:4540

Dynamic single-choice buffer
OLDFIL/NEWFIL buffer
Help frame buffer
Multiple-choice buffer
Static single-choice buffer

Figure 3-10: Suggested Maximum POSRES Buffer Sizes

NOTE

There is no maximum size for FL$BUF or MM$BUF.
If you use extraordinarily large menus, you might
have to expand these buffers.

You should begin with the maximum size for each accessed buffer.
If your task exceeds the bounds of virtual memory, you can reduce
the size of one or more buffers as described below.

Some care should be exercised when shrinking POSRES buffers. If
you change a frame file, you might find that a frame has become
too large for its buffer, requiring you to enlarge the buffer and
task build again. For example, translating frames into another
language can cause them to expand. Therefore, allocate some
extra space to any buffer for which the maximum frame size is not
completely stable.

To compute the minimum buffer for a static display (a static
single-choice menu, help menu, and so forth), do the following:

1. Take the size of the largest frame (provided by FDT in
decimal when you use the CONVERT command). If the source
data file is unavailable, you can use a system utility to
analyze the frame file. On a VAX/yMS system, type the
following:

$ ANALYZEjRMS file.typ

The longest record in the file appears in the "RMS FILE
ATTRIBUTES" section of the output. On either RSX-11M/M-PLUS
or the PRO/Tool Kit, type the following:

3-35

$ RUN
DMP>

USING POSRES SERVICES

The length of the longest record will appear in the F.RSIZ
field in the "HEADER AREA" of the output.

2. Add 200 bytes to this number.

3. Convert the result to octal.

4. Use this number with the EXTSCT option.

You can approximate the minimum buffer size for a dynamic
single-choice menu by using FDT to build a similar static
single-choice menu and using its converted size. Choose a frame
that represents your worst (largest) case situation and allow a
large margin for error (approximately 200 bytes). Otherwise, use
this procedure:

1. Total the sizes of all the fields in the largest frame.

2. Add an overhead of eight bytes per field.

3. Add 200 bytes to the total.

4. Convert the result to octal.

5. Use this number with the EXTSCT option.

The minimum buffer size for a multiple-choice menu is difficult
to determine because it depends on factors present at run-time.
If you find it necessary to reduce this buffer, the recommended
procedure is to change the buffer size by the desired amount,
task build, and test your application thoroughly using the
largest possible multiple-choice menu.

NOTE

The following section assumes that you are
familiar with Overlay Descriptor Language. If
not, it is recommended that you refer to the
RSX-IIM/M-PLUS and Micro/RSX Task Builder Manual
before continuing.

3.1.1.5 Placing Buffers in Overlay Branches - Another way to
reclaim virtual memory is to place all code that refers to POSRES
routines and buffers into overlay segments. Unless you specify
otherwise, PAB allocates POSRES buffers in the root.

3-36

USING POSRES SERVICES

If you put a POSRES buffer in an overlay segment:

• The buffer's contents will be
segment is loaded into memory.
replacing its contents.

reinitialized whenever that
Thus, you are responsible for

• You cannot call the POSRES routine that uses that buffer from
another overlay segment (except from another co-tree). Thus,
you must subdivide your task into segments that use POSRES
and those that do not.

Figure 3-11 shows an example of how to place the buffers into an
overlay branch .

. ROOT RCODE-RMSROT-(*MENU,*CODE)
~ENU: .FCTR MCODE-BUFFA-BUFFB
CODE: .FCTR ARTN-BRTN-CRTN
@LB:[1,5]RMSRLX

BUFFA:
BUFFB:

.PSECT DM$BUF,RW,D,GBL,REL,CON

.PSECT DM$BUG,RW,D,GBL,REL,CON

.PSECT FL$BUF,RW,D,GBL,REL,CON

.PSECT FL$BUG,RW,D,GBL,REL,CON

.PSECT FL$FAB,RW,D,GBL,REL,CON

.PSECT HL$BUF,RW,D,GBL,REL,CON

.PSECT HL$BUG,RW,D,GBL,REL,CON

.PSECT MM$BUF,RW,D,GBL,REL,CON

.PSECT MM$BUG,RW,D,GBL,REL,CON

.PSECT MN$BUF,RW,D,GBL,REL,CON

.PSECT MN$BUG,RW,D,GBL,REL,CON

.FCTR DM$BUF-DM$BUG-FL$BUF-FL$BUG-FL$FAB-HL$BUF

.FCTR HL$BUG-BM$BUF-MM$BUG-MN$BUF-MN$BUG

.END

Figure 3-11: Sample .ODL File Showing Overlaid Buffers

In Figure 3-11, the modules RCODE, MCODE, ARTN, BRTN and CRTN all
refer to user-supplied portions of the task. Use the .PSECT
directives exactly as shown. (If they do not match the actual
attributes of the PSECTs that they refer to, you will get errors
when task building.)

The POSRES buffers that you can overlay are shown below:

3-37

Buffer

DMBUF, DMBUG
FLBUF, FLBUG
FL$FAB
HLBUF, HLBUG
MMBUF, MMBUG
MNBUF, MNBUG

USING POSRES SERVICES

Use

Dynamic menu
OLDFIL, NEWFIL
OLDFIL, NEWFIL
Help frames
Multiple-choice menu
Static, single choice menu

The xxBUF/xxBUG pairs must be in the same overlay. These pairs
of PSECTS are used by POSRES to determine buffer sizes. If they
are not in the same overlay, unpredictable behavior will result.

3-38

CHAPTER 4

BUILDING THE APPLICATION TASKS

The Professional Application Builder (PAB) is a utility that
links your object modules (.OBJ files) with system software,
producing task image files that can be executed on P/OS.

This chapter provides enough practical information about PAB to
task build simple applications. Your documentation set includes
the RSX-IIM/M-PLUS and Micro/RSX Task Builder Manual, which
describes PAB in detail.

If you are developing large or sophisticated applications, you
should read the manual and become proficient in the PAB
languages. PAB has features that allow you to optimize task
images in many different ways.

4.1 INVOKING PAB ON THE PRO/TOOL KIT

If you are using the PRO/Tool Kit, invoke PAB with the LINK
command, which is described in the PRO/Tool Kit Command Language
and utilities Manual.

A sample LINK command in DCL follows:

$ LINK @file

The default file type is .CMD. Alternatively, you can let the
system prompt you for the filename:

$ LINK
File(s)? @file

4.2 INVOKING PAB ON VAXIVMS

On VAX/VMS, the PAB executable image is called PROTKB.EXE. It

4-1

INVOKING PAS ON VAX/VMS

runs under VAX-ll RSX, and it supports named as well as numbered
directories. Insert the following symbol in your LOGIN.COM file:

$ PAS :== $PROTKS

Once the symbol is defined, you can use a single command to
invoke PAS:

$ PAB @file

The default file type is .CMD. Alternatively, you can type:

$ PAB
PAS> @file

4.3 INVOKING PAB ON RSX-11 M/M-PlUS (DCl)

On RSX-llM/M-PLUS, the PAS executable image is called PROTKS.TSK.
If PAS is installed on your system as " ... PAS", you can invoke it
with the following command:

$ PAB @file

If PAS is not an installed task on your system, invoke it with
the following command:

$ RUN $PROTKB
PAS> @file

The same commands also work for MCR.

4.4 BUilDING APPLICATIONS

You must create two PAS files--a .CMD file and an .ODL file--for
each task image in your application. Each file contains commands
in a different language that tell PAS exactly how to build the
desired task image.

Some of the Tool Kit languages include software for creating PAS
files that automatically contain language-specific information as
well as information for PRO/RMS-l1. Others simply describe the
required files and expect you to create them yourself with an
editor. In either case, create the required files and examine
their contents and format.

4-2

BUILDING APPLICATIONS

Because no language can anticipate all of your task's
requirements, you will almost certainly have to edit those files
before task building. The following services require specific
information in your PAB files:

• CORE Graphics Library

• PRO/FMS-11

• PRO/RMS-11

• POSRES User Interface Library

• POSSUM System Services

If your task uses any of those services, refer
documentation for each and make the appropriate edits.

NOTE

Most of the high-level languages use POSRES User
Interface Library routines (particularly RDMSG
and WTRES) for run-time support and thus require
some POSRES support in your .CMD file. POSRES is
described in detail in Chapter 3.

4.5 THE COMMAND (.CMD) FILE

to the

The PAB command (.CMD) file specifies input and output files and
contains option lines that specify cluster libraries, buffer
sizes, logical unit number assignments, and so forth.

Figure 4-1 shows a sample .CMD file, written for a MACRO program,
that uses POSSUM and PRO/RMS-11.

SAMPLE=SAMPLE/MP
CLSTR=POSSUM,RMSRES:RO
II

Figure 4-1: Sample PAS Command File

The double slash (II) indicates the end of the file. The rest of
the file is explained in the following sections. Refer to Figure
4-1 in each of the next sections.

4-3

THE COMMAND (.CMD) FILE

4.5.1 The Command Line

The first line in a command file is a command that specifies
input and output files and switches. Input files are on the
right side of the equal sign and output files are on the left:

SAMPLE=SAMPLE/MP

This command specifies one input file and one output file, both
named SAMPLE. The /MP switch specifies that the input file is an
overlay descriptor language (.ODL) file, as described in Section
4.6. The output file isa task image (default file type .TSK).

The use of an .ODL file does not imply that your task must be
overlaid to run on P/OS. It simply describes your task image in
more detail than is possible in the .CMD file.

If you would like a map that shows exactly how your task loads
into memory, specify a second output file, such as:

SAMPLE,SAMPLE/MA/-SP=SAMPLE/MP

This command specifies a task image and a load map (.MAP) file.
The /MA switch specifies that the load map contain the names of
the system library routines your task uses. The /-SP switch
prohibits automatic printing of the load map on Host Tool Kit
systems.

4.5.2 The CLSTR Option

The CLSTR option specifies the clustered resident libraries used
by your task. If your task refers to a non-null-rooted clustered
resident library, it must be the first (default) library in the
CLSTR option. This applies to high-level language run-time
libraries, such as PASRES and PBFSML. If all are null-rooted,
the first library called by your task becomes the default.

For example, if a PASCAL program uses PRO/RMS-ll and POSRES
services, the CLSTR option would be:

CLSTR=PASRES,POSRES,RMSRES:RO

NOTE

Do not embed any spaces in the CLSTR option.
Also, do not include a comment on the CLSTR
option. It causes PAS to return a fatal option
syntax error.

4-4

THE COMMAND (.CMD) FILE

The :RO switch specifies read-only access. The overlay run-time
system allows read-write access to nondefault (in addition to
default) clustered libraries that have not been installed
read-only. Such libraries can be useful for:

• passing information between cooperating application tasks.
(The tasks should provide their own access synchronization.)

• Extending the effective available read-write virtual memory
usable for a task's impure data.

In both cases, the tasks must ensure that the library is mapped
by calling a routine in the library that does not return to the
caller until access to the read-write data is completed. This is
not normally necessary for a non-null-rooted default cluster
member, since it is usually already mapped as desired.

4.5.3 NULLIB

The special non-null-rooted default cluster member NULLIB is
provided for two purposes:

• It can guard against potential memory fragmentation problems
that can cause task deadlock.

• It can provide better performance in cases when a null-rooted
cluster member would otherwise become the effective default
member of the cluster and would be unnecessarily remapped
(and potentially reloaded from disk). Assuming that the
application would access cluster members other than the first
one accessed, remapping that first member after every access
to some other member could prove costly.

AS a general rule, when all members of a library cluster have
null roots, your application should attempt to ensure that the
first library accessed (which will become the effective default
cluster member) is the one that the application will refer to
most frequently. This will minimize the likelihood of
unnecessary mapping.

4.6 THE OVERLAY DESCRIPTOR LANGUAGE FILE

The overlay descriptor language (.ODL) file specifies the object
modules used by your task (some of which are automatically
extracted from libraries) and describes how your task image will
use its 64KB of virtual memory.

4-5

THE OVERLAY DESCRIPTOR LANGUAGE FILE

Each high-level language and development tool specifies which
object modules and libraries to include in your .ODL file, along
with your own object modules.

NOTE

Some tools might say to use files in LB:[l,l],
the RSX system library directory. The Host Tool
Kit system library directory is LB:[l,5], not
LB:[l,l]. Thus, PAB automatically replaces all
references (including defaults) to LB:[l,l] with
LB:[l,5].

Normally, PAB allocates memory for each object module in linear
fashion (while automatically extracting object modules from
SYSLIB.OLB as needed). In order to reduce the size of a task,
you can create a structure where one or more modules are overlaid
(share the same memory). That subject is discussed in detail in
the RSX-IIM/M-PLUS and Micro/RSX Task Builder Manual.

The following is an example of an .ODL file, written for a
MACRO-ll program that uses PRO/RMS-ll:

. ROOT USER-RMSROT
USER: .FCTR FIRST-USERSUB
@LB:[l,5]RMSRLX

.END

The first line is a .ROOT directive, which defines the structure
and contents of the task image. Although it can contain object
modules, .ROOT usually contains references to symbols defined
elsewhere in the .ODL file, as is the case here: USER and RMSROT
are symbols.

The second line is a .FCTR directive, which defines the symbol
USER as two object modules: FIRST and USERSUB. To specify
additional object modules, you could add them to this .FCTR
directive or include additional .FCTR directives as needed.

The hyphen specifies that FIRST and USERSUB are to be
concatenated (each is to have its own area of memory). A comma
would specify that the modules are to be overlaid. In that case,
PAB would allocate a single area of memory, usable by both
modules, but only one at a time.

The third line includes the PRO/RMS-l1 overlay descriptor
language file RMSRLX.ODL, which defines the symbol RMSROT. The
at-sign character (@) allows you to nest .ODL files in the same
way that you can nest program source code.

4-6

CHAPTER 5

TESTING THE APPLICATION

Follow these steps to test your application:

1. Create application directory

Create a directory to contain the executable files and
installation command file. See Section 3.1 for details.

2. Transfer files to target system (Host Tool Kit Only)

Omit this step if you develop your application using the
PRO/Tool Kit.

To transfer files from the host system, invoke the Terminal
Emulator, use the Professional File Transfer (PFT) utility to
copy your application files to the application directory on
your Professional, and exit from the Terminal Emulator. (See
the PRO/Communications Manual for details.)

NOTE

For the second and subsequent test runs, you
need transfer only files that have changed
since the last test. PIGS uses the latest
versions of files by default if you do not
supply a version number for the file.

3. Install the application

Use the Fast Install utility described in the Tool Kit
Reference Manual.

NOTE

Once you have installed your application, it
is unnecessary to reinstall it when you copy
new files to your application directory.

5-1

4. Run the application

Select the application from the menu on which you installed
it. If it won't start up or aborts, check the P/OS error
codes listed in the Tool Kit Reference Manual. Also, make
sure that the installation command file installs all
necessary tasks.

5.1 DEBUGGING WITH A SECOND TERMINAL

Some high-level languages provide interactive debugging software
that allows you to control program execution, manipulate
variables, and so forth. Refer to your language documentation
for more information.

Included with the Tool Kit is ODT, a debugger that you can use
with any progamming language, although it is intended mainly for
use with MACRO-ll programs.

The Tool Kit allows you to connect a separate terminal to your
Professional in order to redirect ODT output. You can redirect
debugger I/O to the debugging terminal, while your application
has undisturbed use of the Professional screen and keyboard.
This is especially useful when debugging programs that use the
Professional video screen for menu interfaces, graphics, and so
forth.

To debug with a second terminal, do the following:

1. Use a BCC08 console cable or BCC05 printer cable to attach
your choice of debugging terminal to the printer port on the
back of the Professional system unit.

NOTE

The console cable is for debugging only. If
you want to use an LA50, LQP02, or LA100
printer for normal printing purposes, use a
printe r cable.

2. Set the second terminal to run at 9600 baud if using a
console cable; for the printer cable, use 4800 baud.

3. Enter the following DCL command from the first terminal:

$ ASSIGN TT002: CLOOO:

5-2

DEBUGGING THE DISTRIBUTION KIT

5.2 DEBUGGING THE DISTRIBUTION

When your application is ready to distribute, you should create a
distribution kit using the Application Diskette Builder
(described in the Tool Kit Reference Manual). This places all
the files of the application onto one or more diskettes.

You should then debug the distribution kit itself. Remove all
traces of the installed application from your Professional and
then reinstall the application from your distribution kit. Test
the application to ensure that all the necessary files have been
installed from the distribution diskette.

Always completely remove the application files and the directory
in which you developed the application (if developed on PRO/Tool
Kit) before testing the distribution kit. There can be
references to the development directory name hidden in your code.
You might have placed files in system directories and failed to
include these files in the distribution kit.

If you do not remove these files and the development directory
before installing the application from the distribution kit, your
testing can appear to be successful, yet when the kit is
installed on a user's system, it will fail.

You might want to test the distribution kit on another
Professional to guarantee that your application does not depend
on a file or directory that exists only on your development
system.

5-3

CHAPTER 6

TUNING THE APPLICATION

Application tuning is the process of increasing the efficiency of
your code, by reducing unnecessary operations or by making better
use of system features. This chapter provides ideas that you can
use to help tune your application.

6.1 EXTTSK OPTION VERSUS EXTK$ DIRECTIVE

The EXTK$ directive requires a great deal of overhead when the
system checkpoints task regions to disk and reallocates memory in
the system controlled GEN partition.

Use the PAB option EXTTSK in your task build command file instead
of using the EXTK$ directive in your task whenever possible.

If you must use the EXTK$ directive, you should extend your task
in large increments to reduce the overhead in the checkpointing
activity.

6.2 DIRECTIVES VERSUS SERVERS

There is a small area of overlap between callable system routines
and several system directives. The logical name support
directives and the default directory directives can both be
manipulated, by a callable system routine or directly by system
directives. If you are programming in a language that allows you
to issue system directives, then you should consider issuing the
directives rather then calling the system routine.

Let's examine the specific cases. The system routine PROLOG
performs logical name operations; to perform the operations, the
routine translates the logical name strings to uppercase and
issues one of the system directive CLOGS, DLOG$, or TLOG$ to
perform the operation.

6-1

DIRECTIVES VERSUS SERVERS

However, your task could simply issue the directive itself and
save time.

If your task issues the directive itself, it must specify LT.USR
and a modifier of 0 and ensure that the logical is translated to
uppercase if used RMS-l1 or another task or system service.

ical strings are binary and hence case-sensitive. That is why
the server always translates to uppercase first.

If you use the callable routine, the task that services the
request must be loaded into memory and started; it must receive
and process the request using a system directive; and then it
must return the results to the calling task. For logical name
support, the additional services provided by the callable routine
ensure that the string is in uppercase and specify LT.USR and
modifier O.

Default directory operations, on the other hand, should be
accomplished using the PROLOG routine in POSSUM. PROLOG performs
RMS parsing operations on the input string to determine that the
string contains a valid device and directory specification. The
RMS parser verifies that the device syntax is legitimate.

If your task issues the directives itself, there is a possibili
that it could speci an invalid directory string--the directive
accepts any string as the default directory string. This could
cause problems when attempting to find or create files.

6.3 LE o NG

Several file-handling techniques can increase application
performance. Almost all of these methods involve some
trade-offs, either in terms of some additional logic in the task
or in the use of disk space.

3.1 Files

One of the simplest techniques to use when handling files is to
defer opening a file until necessary. It might seem simpler to
open all files at application start-up, but the primary tuning
goal at application start-up is to begin interacting with the
user as soon as possible. Opening files takes time, and if
possible should be done when data is actually needed from the
file.

6-2

FILE HANDLING

6.3.2 Use of File IDs

The use of file IDs for operations on files reduces overhead. If
possible, preserve the file ID of a file that is opened several
times. This incurs less overhead than finding the file by name
each time. The cost to your application is merely to remember
the file 10. It would be even more time efficient to simply keep
the file open.

6.3.3 File Preallocation

Preallocating sufficient media space for a file saves time and
cuts overhead. If a file does not contain sufficient room to
append records, then the system must allocate the necessary disk
space to the file. By preallocating the amount of space that the
file will require when the file is created, your task spares the
overhead of extending the file later.

The technique of preallocating sufficient media space only works
when you can forecast the size of the file to be written.
However, if you know even the minimum amount of space the file
will require, then preallocating that minimum amount saves time
later.

6.3.4 Preextending

An additional method that improves file performance is to specify
a reasonable default extend quantity to RMS. This means that
whenever RMS needs to extend your file to add an additional
record, it extends the file by the number of blocks specified in
the default extend quantity.

If the extend quantity is reasonably large, fewer extensions to
your file occur. This results in improved performance for your
application.

Note that RMS truncates the file to its logical EOF if the last
extend is implicit. That is, if no extensions occurred, or if
the last extend was caused by the task asking RMS for an explicit
extension, then the file will not be automatically truncated on
close.

6-3

FILE HANDLING

6.3.5 Multiblock 1/0

As with most I/O operations, the more data transferred per
operation, the more efficient the operation becomes. This rule
applies to disk I/O, whether it consists of direct reads and
writes to the disk, or of reads and writes through an
intermediate record processor such as RMS.

Increasing the size of the reads and writes always reduces the
time per block spent reading or writing buffers to the disk.
Note, however, that this technique can increase the size of your
task's virtual address space.

6.4 VIDEO PERFORMANCE

Video performance is one of the most sensitive areas for
application tuning. Regardless of an application's timed speed,
if the video throughput appears slow, then that application will
be thought of as slow.

There are a number of simple rules and techniques that help tune
for the best possible throughput.

6.4.1 Size of Buffer

The size of the output buffers is one of the more important
factors governing throughput rate. Very simply, the larger the
buffers, the less time spent in overhead and the greater the
thoughput rate. Above 64 characters per buffer the output rate
approaches the maximum throughput rate of the video.

6.4.2 Buffering

You can achieve significant improvements in terminal output by
using large buffers. Intermediate buffering is one technique
that you can use to increase the size of the output buffers for
the terminal.

Intermediate buffering uses a routine that accepts text for
output to the screen. The routine places this text into an
intermediate buffer. When the intermediate buffer is full, its
contents are written to the terminal.

6-4

VIDEO PERFORMANCE

You also provide a routine to force output to the terminal, thus
allowing the forced flushing of the intermediate buffer.

Let's take a look at a specific example of intermediate
buffering. Assume a task generates output of varying lengths and
at varying times. Not all output strings generated by the task
are terminated by a carriage-return and line-feed (a prompting
string, for example).

Figure 6-1 shows a listing of sample routines that handle
intermediate buffering. The code shown in Figure 6-1 holds all
text in the buffer until the buffer is full, or until the routine
to force output is called.

Circumstances under which the force output routine might be
called are:

• At the end of any escape sequence, to prevent it from being
broken into two separate QIOs.

• In the OUTCHR routine, whenever a carriage-return or
line-feed character is detected. This might seem to violate
the rule of buffering, but forcing out buffers on line
terminator characters can make the output appear smoother to
the user.

• In an AST routine specified in a MRKT$ directive, which is
called a few times a second to dump the buffer. If text data
appears at random intervals, and without line terminators to
rely on, this can be the only way to output a sequence that
does not end with a line terminator (such as a prompting
sequence).

The rate at which the you should call the AST routine depends
on the rate at which data appears, as well as the amount of
overhead caused by the AST routine.

6.4.3 Turning the Cursor Off

Another way to save system overhead and increase the amount of
CPU time available to your task is to turn the cursor off. You
turn off the cursor by using the appropriate escape sequence. As
a result, the terminal task no longer needs to blink the cursor.

6-5

VIDEO PERFORMANCE

OUTCHR - This routine sends a character to the terminal. All
output is temporarily stored in an intermediate
buffer before queuing to the terminal. The routine
assumes explicit carriage control in text strings.

Input: RO - Character

TTYCTR
OUTCHO
RO,@TTYPTR
TTYPTR

Decrement the count
No room left, make some
Store the byte
Increment pointer

OUTCHR: DEC
BLT
MOVB
INC
RETURN

OUTCHO: QIOW$C
MOV
MOV

; Then return to caller
IO.WVB,TTLUN,TTEFN",,(TTYBUF,.LNTTY,O>
#.LNTTY,TTYCTR Reset the counter
#TTYBUF,TTYPTR and the pointer

BR OUTCHR Try again to output char

STRING - Prints an ASCIZ string on the terminal.
Input: RO - Pointer to string

STRING: CALL $SAVAL Save registers
MOV RO,RS Save up pointer

STRINO: MOVB (RS)+,RO Get next byte
BEQ STRINl Done
CALL OUTCHR Output the character
BR STRINO Loop

STRIN1: RETURN Return to caller

; FRCOUT - This routine forces out the TTY buffer

FRCOUT: MOV #.LNTTY,RO Get buffer length
SUB TTYCTR,RO Compute amount filled
BEQ FRCOUO None, just exit
QIOW$S #IO.WVB,#TT$LUN,#TT$EFN",,(#TTYBUF,RO,#O>
MOV #TTYBUF,TTYPTR
MOV #.LNTTY,TTYCTR

FRCOUO: RETURN

; Terminal buffer
. EVEN

TTYCTR: .BLKW 1
TTYPTR: .BLKW 1
TTYBUF: .BLKB 80.

.LNTTY = .-TTYBUF

Figure 6-1: Intermediate Buffering

6-6

Reset pointer
and counter
Return to caller

Buffer byte count
Byte pointer
TTY buffer
Length of buffer

VIDEO PERFORMANCE

Note that you should not turn the cursor off in every possible
instance. Consider how the screen appears without a cursor. For
some applications, such as a spreadsheet, the absence of a
blinking cursor mi t not be a problem. For other applications,
turning off the cursor can startle the user and possibly even
make it appear that system is not operating.

6.4.4 Common Video hniques

There are several fair common techniques that
effectively when dealing with video output.
performance and overhead can be large.

• Write necessary data

can be used
The savings in

The first technique is simply a matter of not writing more
data than is necessary. For instance, your task can manage
the entire screen and provide updates only to certain
portions of the screen. An inefficient method of updating
the screen is to rewrite the entire screen on every update.
That is rather slow, since the amount of data could be large.

A variation is to only
change dynamically. That
a large amount of output.

te any regions that are known to
is faster, but could still produce

What is needed are two copies of the dynamic sections of the
screen image in your task. One copy reflects the current
state of the screen, and the other copy reflects the desired
state. Your task compares these memory-resident copies and
determines which character positions must change and only
updates those positions.

This technique reduces the amount of I/O that must be
performed to an absolute minimum, which in turn will increase
application performance and terminal throughput.

The cost of this technique is in the virtual memory space
required to contain two copies of any dynamic regions on the
screen. Two copies of an aO-column, 24-line screen require
3840 bytes. For some tasks, this can be too much. For
others, the performance improvement is well worth the added
task size.

6-7

VIDEO PERFORMANCE

• Use cursor motion escape sequences

Use cursor motion escape sequences when the cursor position
is changing rapidly within a row or column. Here the cursor
motion escape sequences (such as UP, DOWN, LEFT, RIGHT) are
more efficient than the cursor positioning sequence.

Using the cursor motion sequences works well in conjunction
with the multiple-screen technique. Combined, they can
result in tremendous savings in the amount of data that must
be output, and a corresponding increase in terminal
throughput.

A corollary method is to take advantage of the editing
functions provided as part of the VT200 interface of the
video. These include line insert, line delete, character
insert, character delete.

• Clear screen and set cursor to home

The third technique also applies only to applications that
manage the entire screen as well as producing large amounts
of output.

It is known that output that causes the screen to scroll
appears on the screen at a slower rate than output that does
not cause the screen to scroll. You can use this to
advantage when writing output to the screen. If the
application produces logically distinct, single screens of
output, then improve performance by clearing the screen and
homing the cursor before writing to the screen.

This technique has no penalty in
virtual address space, but you
application appears when screens
without scrolling.

the form of increased
should consider how your

of output are presented

6.5 MEMORY MANAGEMENT CONSIDERATIONS

An application can benefit from the use of the memory management,
or programmammable logical address space (PLAS) directives. You
can use these directives to modify virtual address space or to
create or map additional regions that contain data.

The most common problem is misuse (or over-use) of the PLAS
directives. A single large data region could cause problems when
your program attempts to bring the region in and out of memory.

6-8

MEMORY MANAGEMENT CONSIDERATIONS

Another problem can result from sending task regions by
reference, using the SREF$ directive. The sender, receiver, and
all regions mapped by both, must be in memory. This can cause
severe memory contention and perhaps even a deadlock situation.

Another problem to consider is the use
that can waste system resources. Use
for a RREF$ directive to save system
performance.

of some PLAS directives
WS.NAT in the window block

pool space and improve

Also, use the fast remap capability, described in the P/OS System
Reference Manual, to improve performance.

6.6 MULTITASK APPLICATIONS

Multitask applications have special problems. These difficulties
result from intertask communication, and memory or CPU
contention.

6.6.1 Significant Event Impact

If two cooperating tasks within an application are using global
event flags to synchronize themselves to events, then the proper
method of setting a flag for the other task to react to is to
declare a significant event after setting the flag.

The following simple representation shows two cooperating tasks
setting flags without the significant event mechanism.

Task Tl

SETF$S #34
WTSE$S #33
CLEF$S #33

Task T2

WTSE$S #34
CLEF$S #34
(code here)
SETF$S #33

The next simple representation shows two cooperating tasks
setting flags using the significant event mechanism.

6-9

MULTITASK APPLICATIONS

Note that the only difference is the declaration of a significant
event after a flag has been set. This simple change provides
significant performance improvement.

Task Tl

SETF$S #34
DECL$S
WTSE$S #33
CLEF$S #33

6.6.2 NULLIB

Task T2

WTSE$S #34
CLEF$S #34
(code here)
SETF$S #33
DECL$S

NULLIB can provide improved performance in cases when a
null-rooted cluster member might become the effective default
cluster member, and would be unnecessarily remapped. See Section
4.5.3 for details.

6.6.3 Contention

If an application has multiple active tasks, you should avoid
both memory and CPU contention problems. If it is not necessary
for a task to run concurrently with other tasks, and when one of
the application tasks must be available to perform some
processing, you should stop the task instead putting it into a
wait state.

with directives that initiate a wait state, the task remains in
competition for memory resources and could possibly create
contention problems. Directives that cause the task to be
stopped remove the task from contention for memory and allow
easier access for the other tasks that must still perform
processing.

In addition, tasks that stop can be checkpointed and remain in
the checkpoint file until the stop bit is cleared. They will not
compete with other tasks to be brought back into memory. To
avoid possible memory fragmentation, the task should not be
mapped to any commons while stopped.

Specifically, assume that you have a server task that is notified
of an operation by an event flag. Rather than using WTSE$, use
STSE$. When the event occurs, your task will become unstopped
and will start executing and competing for memory again. If it
has been checkpointed, it will be brought back into memory.

6-10

MULTITASK APPLICATIONS

Once the task has completed its function it can stop itself once
again by using the STSE$ directive.

6.7 POOL CONSIDERATIONS

The system's dynamic storage region, or pool, can be a source of
performance problems. You should be aware of functions that can
result in pool depletion.

An application can cause the system to exhaust all available free
space in pool. The following sections describe circumstances
that can lead to pool exhaustion.

6.7.1 Offspring Control Blocks

Offspring control blocks are packets that build
pool. When a parent task exits, the OCBs of
not deallocated. The OCBs are deallocated
offspring exits or emits status (EMST$).

up and exhaust
its offspring are
only when the

If you request a task (using RQST$ or RPOI$ without RP.OAL),
rather then spawning it, no OCB is created.

6.7.2 Lock Blocks

If your application uses QIOs rather than RMS for file access,
then you should exercise great care.

For example, suppose your application uses RMS to open a file,
but uses QIOs to read and write blocks in that file. A possible
side effect is that the improper setting of the SHR field in the
RMS FAB block can cause many record lock blocks to be generated.

This eventually depletes system pool, causing the system to
generate confusing messages. You must use caution when selecting
the values to be placed in the SHR field.

If you use RMS for all file accesses, then RMS manages all the
record lock blocks and system pool will not be unnecessarily
depleted.

6-11

POOL CONSIDERATIONS

6.7.3 Open Files

Any open file requires that the system use some amount of pool
space. If you have many files open, you might be using a lot of
pool.

To reduce pool requirements, try to reduce the number of files
open at anyone time. Any files open for write operations could
be made unusable if your task aborts.

6.7.4 Attachment Descriptor Blocks

Attachment descriptor blocks can build up in pool, unless you
specify that the blocks should be created only when necessary.

For instance, use WS.NAT in the window block for a RREF$
directive. This tells the directive that the attachment
descriptor block should be created only when necessary.

6.7.5 Send Data Packets

Packets from the send data directive accumulate in secondary pool
if the receiver is not receiving the packets. Make sure the
receiver is at least receiving the packets, and if so, that it is
receiving them at the same rate at which the packets are being
sent.

6.7.6 1/0 Packets

It is easy to fill up pool with I/O packets. If you generate a
large number of QIO$s to a relatively slow device, such as the
line printer port (TT2:), you can quickly fill up pool.

To avoid the problem, make sure you provide code to check for the
completion of any QIO$ directive that your program calls.

6.8 BUFFERED INPUT AND ASTS WITH NOTIFICATION

You can optimize terminal input by requesting the terminal driver
to return all currently available data, rather than reading input
on a character-by-character basis. To request that the terminal
driver return all available data, specify an input QIO with a
TF.TMO option whose timeout value is O.

6 -12

BUFFERED INPUT AND ASTS WITH NOTIFICATION

Even if your task processes input on a character-by-character
basis, you can still obtain all available characters by
establishing the following buffering scheme: one subroutine
fills an intermediate buffer from terminal input, and another
subroutine empties the buffer as the characters are processed.

The following is a simple example that uses a ring buffer to hold
the characters .

. TITLE SAMPLE PROGRAM
;+

This sample program demonstrates the use of notification ASTs
; and terminal driver input with timeout=O. It is for
i demonstration only and is not a fully working program.
; -

.MCALL

.MCALL

.MCALL

BUFEFN = 1
QIOEFN = 2
TTLUN = 5

START:
CALL
BCS

CALL

EXIT$S
DIR$, CLEF$, SETF$, WTSE$, DSAR$S, ENAR$S
QIOW$, ALUN$, ASTX$S

INIT
20$

PROGRM

initialize miscellaneous
initialization error-­
can't continue
do any preprocessing

The next routine will read a character. If there are no
characters currently available, it will wait for one.

5$:
CALL GETCHR read character

10$:
CALL PROCESS process the character
BCC 5$ if CC, we want more

20$:
EXIT$S else exit

;+
INIT

One-time initialization:
1. There are two pointers into the ring buffer

RDHERE - the address of the next available byte
in the buffer for terminal input

TAKENX - the address of the last input byte
processed by the task

when (RDHERE) = (TAKENX)+l there is no data for

6-13

i -

BUFFERED INPUT AND ASTS WITH NOTIFICATION

task to process.
2. The event flag, BUFEFN, is set if there is any data in

the buffer for the task to process.
3. The AST will just be for notification. The AST routine

will ignore the top of the stack parameter.
4. WRAPFL will indicate whether data is coming in faster

than it can be processed.

INIT:
MOV #RINGBF+1,RDHERE i first QIO data goes here
MOV #RINGBF,TAKENX mark the fact that there

is no data to be processed
CLR WRAPFL hasn't wrapped yet

The event flag will be set by the AST routine to alert the
task that there is data in the buffer

DIR$
BCS

#CLEF
20$

clear buffer data event flag
can't clear event flag

Attach for input ASTs, notification only. Do not process
CTRL-C if doing a read all.

20$:

i+
GETCHR

DIR$
BCS
DIR$
BCS
TSTB
BGT
SEC

RETURN

#ALUN
20$
#QIOATT
20$
IOSB
20$

assign the LUN
error
attach
error in directive
error in I/O?
no, carry is clear
indicate I/O error

This routine is entered when the application is
ready to process a character. The event flag
BUFEFN is set by the input routine if there is
any data in the buffer. If this event flag is
not set, the routine will wait until it is set.

Input:

Output:

RDHERE contains the address of the next location
into which to read a character

TAKENX contains the address of the last
character processed by this routine

RO (low byte) contains the character
If no characters are left in the buffer,
Then (RDHERE) = (TAKENX)+l

BUFEFN will be cleared

6-14

BUFFERED INPUT AND ASTS WITH NOTIFICATION

i -
GETCHR:

The AST routine will set BUFEFN when there are
characters in buffer.

DIR$

Now we know we

DSAR$S

INC
CMP
BLO
MOV

10$:
MOV
MOVB
CMP
BLO
MOV

#WAIT

have some input

TAKENX
TAKENX,#RINGEND
10$
#RINGBF,TAKENX

TAKENX,RO
(RO) + , - (SP)
RO,#RINGEND
20$
#RINGBF,RO

wait for buffer to be filled

disable ASTs until we can
extract a character
update pointer
at end of ring buffer?
if LO, no
point to beginning of buffer

get address of next character
hold character and point to next
at end of buffer now?
if LO, no
yes, wrap pointer

At this point RO -) the next character to
be processed. If this address is the same
as the next available byte in the ring
buffer for input, then we have processed
all the characters. Signal by clearing
the event flag.

20$:

30$:

CMP
BNE
DIR$

RO,RDHERE
30$
#CLEF

all characters out?
no
yes, signal buffer empty

MOVB (SP)+,RO retrieve character
allow ASTs again

i+
ASTADR

ENAR$S
RETURN

Input notification AST handling routine

Read with a timeout of 0, which will return all the
characters in the typeahead buffer up to the size of our
buffer. Move these characters to the ring buffer and set the
event flag which indicates that there is data in the buffer.

output: If read succeeds, ring buffer is filled
and RDHERE points to next available byte.

All registers preserved.

6-15

BUFFERED INPUT AND ASTS WITH NOTIFICATION

; -
ASTADR:

10$:

MOV

MOV
MOV
MOV

DIR$
BCS
TSTB
BLE
MOV
BEQ

DIR$

RO, (SP)

Rl,-(SP)
#TMPBUF,RO
#IOSB,Rl

#QIORNE
30$
(Rl)
30$
2(Rl),Rl
30$

#SETF

replace unused AST parameter on
stack with a working
register to save
save another
I/O buffer
I/O status block

read with timeout of 0
read didn't work
success?
no
get number of characters
just in case

indicate buffer has characters

At this point we must check to make sure that we
don't wrap around to data which has been read in
but not processed. Because the character at the
next address after TAKENX has not been processed,
we cannot read another character if it would mean
that RDHERE would pass TAKENX.

CMP RDHERE,TAKENX prevent wrap
BEQ 20$ if equal, no room in ring
MOVB (RO)+,@RDHERE copy from temp buffer to ring buffer
INC RDHERE point to the next location
CMP RDHERE,#RINGEND do we need to wrap the buffer?
BLO 15$ if La, no
MOV #RINGBF,RDHERE else, next character

goes to beginning
15$:

SOB Rl,10$ loop till all characters read
BR 30$ done

20$:
INC WRAPFL indicate that the task code is not

processing the data as fast as it's
coming in

30$:
MOV (SP)+,Rl restore Rl
MOV (SP)+,RO restore RO
ASTX$S exit AST

6-16

BUFFERED INPUT AND ASTS WITH NOTIFICATION

i+
PROCESS

Input:

Output:
i -
PROCESS:

RO (low byte) contains character
WRAPFL is set if data lost because coming in

faster than going out
?

Here's where the program deals with the input characters.

Note that something must be done if WRAPFL is set. If
that is the case, it means data has been lost
because the

CLC
RETURN

i+
i Static DPBs . -,
WAIT: WTSE$
CLEF: CLEF$
SETF: SETF$

ALUN: ALUN$
QIOATT: QIOW$
QIORNE: QIOW$

i+
i Data area . -,
RINGBF: .BLKB
RINGEND

RDHERE: . WORD
TAKENX: .WORD

IOSB: .BLKW

TMPSIZ = 100
TMPBUF: . BLKB

WRAPFL: .WORD

.END

input is winning the race with this routine.

BUFEFN
BUFEFN
BUFEFN

i get another character

indicate buffer has characters

TTLUN,TT,l assign LUN
IO.ATA!TF.NOT!TF.XCC,TTLUN,QIOEFN"IOSB,,<ASTADR>
IO.RNE!TF.TMO,TTLUN,QIOEFN"IOSB,,<TMPBUF,TMPSIZ,O>

200

o
o

2

TMPSIZ

o

START

6-17

ring buffer
end of it

next available location for input
start of current input

I/O status block

temporary buffer for read QIOs

wraparound flag

APPENDIX A

DOCUMENTATION DIRECTORY

This appendix lists the manuals in the Tool Kit documentation set
in alphabetical order, and provides an abstract of each. Note
that the documentation set is organized so that related manuals
are in the same volume (binder).

Software derived with little change from RSX-l1M-PLUS layered
products is documented in two manuals; the original
RSX-llM/M-PLUS manual is included in the document set along with
a supplement containing information specific to the Tool Kit
version.

Note that the PRO/Tool Kit volume is provided only with the
PRO/Tool Kit. You do not need this volume if you are using the
Host Tool Kit.

• CORE Graphics Library Manual describes a general-purpose
graphics subroutine library based on the ACM SIGGRAPH CORE
Graphics Standard. The CORE Graphics Library provides a
higher-level graphics programming interface than PRO/GIDIS.

• FMS-ll/RSX Software Reference Manual describes how to develop
FMS-ll applications on RSX-llM and RSX-llM-PLUS systems. Use
it along with the PRO/FMS-ll Documentation Supplement and the
FMS-ll/RSX Release Notes.

• Guide to Writing a P/OS I/O Device Driver and Advanced
programmer's Notes defines Executive and I/O driver interface
protocols, describes system I/O data structures, and suggests
I/O driver routine coding procedures. It is written for the
senior-level system programmer who is familiar with the
hardware characteristics of both the Professional and the
device that the user-written software supports. Unless
explicitly noted otherwise, all information in this manual is
subject to change without notice.

A-l

• Host Tool Kit Installation Guide and Release Notes contains
instructions for installing the Tool Kit software on a host
development system. It also provides information specific to
the current release of the Host Tool Kit. You should
disregard this manual if you are using the PRO/Tool Kit.

• IAS/RSX-11 ODT Reference Manual describes how to use the
On-line Debugging Tool (ODT) to debug user task images. It
is intended for all application developers. Use it along
with the IAS/RSX-11 ODT Supplement. (Note that some
high-level languages provide their own debugging facilities.)

• IAS/RSX-11 ODT Supplement describes the differences between
IAS/RSX-ll ODT and ODT on the Professional, and should be
used with the IAS/RSX-11 ODT Reference Manual.

• IAS/RSX-11 System Library Routines Reference Manual describes
routines that were orignally written to provide
commonly-needed capabilities for DIGITAL-supplied utilities.
The routines are general enough to be used by most MACRO-ll
programmers.

• Introduction to DECnet is an overview of the concepts and
capabilities of DECnet networks. It describes the major
network concepts behind all implementations of DECnet,
defines specific network functions, and identifies the DECnet
implementations that support each function.

• PDP-11 MACRO-11 Language Reference Manual describes how to
use the MACRO-ll relocatable assembler to develop assembly
language programs.

• P/OS System Reference Manual describes the P/OS Executive,
the nucleus of the Professional Operating System.

• positional Device Interface
software that allows you
positional devices, such
screens.

programmer's Manual describes
to write applications that use

as mice, bit pads, and touch

• PRO/DECnet Programmer's Reference Manual discusses software
requirements for creating PRO/DECnet applications. It
reviews software design conventions that are critical to the
early stages of program development and details network
programming calls used in the creation of PRO/DECnet
applications. It assumes that you have a working knowledge
of networking concepts.

A-2

• PRO/DECnet Tool Kit Installation Guide details procedures for
installing the PRO/DECnet Tool Kit either on an
RSX-iiM/M-PLUS or a VAX/VMS host system, or on a Professional
computer. It also provides information on how to customize
Professional systems as PRO/DECnet nodes.

• PRO/DECnet Tool Kit Release Notes provides information
specific to the current release of the PRO/DECnet Tool Kit.

• PRO/Document VDM Manual describes the PRO/Document virtual
Device Metafile (VDM) interpreter. This interpreter provides
a syntax for document control and text formatting. The
manual provides a conceptual overview and reference
information. It is intended for experienced programmers who
are developing text editor and document display applications
for the Professional.

• PRO/FMS-ll Documentation Supplement describes the differences
between FMS/RSX and PRO/FMS, and should be used with the Tool
Kit FMS-ii/RSX documentation. It is intended for the
application developer experienced with FMS-ii.

• PRO/GIDIS Manual describes the General Image Display
Instruction Set, a device-independent graphics interface
specific to DIGITAL. PRO/GIDIS provides a low-level virtual
device interface to the Profesional's graphics hardware. The
GIDIS Call Interface (GIDCAL) allows you to uniformly access
all supported output devices from high-level languages. The
manual functions as a user's guide and reference manual. It
is intended for developers with systems programming and
graphics software experience. The sample programs are
written in MACRO-ii.

• PRO/ReGIS Manual
Instruction Set.
PRO/Communications;
You do not need
PRO/ReGIS.

describes DIGITAL's Remote Graphics
PRO/ReGIS runs under the control of

it runs only in terminal emulation mode.
graphic programming experience to use

• PRO/RMS-ll: An Introduction introduces the concepts of
RMS-ii record formats, file organizations, and record access
modes. It does not provide reference or usage information,
but should be read before the other RMS-ii documents.

• PRO/RMS-ll Documentation Supplement updates information
contained in the three other RMS-ii manuals. The manual
documents any differences between RMS-ii on the Professional
and on RSX-iiM/M-PLUS systems. It is intended for
application developers who are familiar with RMS-ii
facilities.

A-3

• PRO/RMS-ll Macro Programmer's Guide provides reference
material about the macros and symbols that make up the
interface between a MACRO-i1 program and the RMS-li operation
routines. It is intended for application developers who are
already familiar with RMS-l1 facilities.

• PRO/Tool Kit Command Language and utilities Manual describes
the Digital Command Language (DCL) and program development
utilities available on the PRO/Tool Kit.

PRO/Tool Kit Installation Guide and Release
instructions for installing the PRO/Tool
Professional. It also provides information
current release of the PRO/Tool Kit.

Notes contains
Kit software on a
specific to the

RSX-I1M/M-PLUS and Micro/RSX Task Builder Manual
the RSX-iiM/M-PLUS Task Builder (TKB) upon
Professional Appplication Builder (PAB) is based.

describes
which the

N

The Tool Kit User's Guide (which you are
reading) includes a chapter about task
building. Use the RSX-·llM/M-PLUS and
Micro/RSX Task Builder Manual if you need
more detailed information.

• RSX-I1M/M-PLUS RMS-ll User's Guide is a guide to using RMS-i1
in application programs written in either MACRO-l1 or a
high-level language. It is intended for application
developers who are already familiar with RMS-i1 facilities.

• RSX-IIM/M-PLUS RMS-ll utilities Manual describes the RMS-l1
utilities available to users of RMS-l1 on an RSX-iiM/M-PLUS
host system. The PRO/Tool Kit implementation is a subset of
those utilities and is described in the PRO/Tool l<it Command
Language and utilities Manual. This manual is intended for
application developers who are using high-level languages and
do not require or do not have access to the full set of
RMS-i1 capabilities.

• Terminal Subsystem Manual describes the hardware and software
that control the Professional keyboard and video monitor (the
functions typically performed by a video terminal). It
documents how the Professional processes text in both native
and terminal emulation modes.

A-4

• Tool Kit Reference Manual provides reference information
about the following tools: Application Diskette Builder,
PRO/Communications, Fast Install, File Control Services
(FCS), Frame Development Tool (FDT), Installation Command
Languages, MACRO-ii Assembler (PMA), POSRES User Interface
Library, Print Services, PROSE Text Editor, and PRO/SORT.

• Tool Kit User's Guide is the manual you are reading. It
describes each step of the program development cycle on the
Professional computer using the Tool Kit. This manual is
your primary source of general information about the Tool
Kit.

A-5

APPENDIX B

GLOSSARY

application developer
The person who uses the Tool Kit to develop application
programs for the Professional.

Application Diskette Builder (ADS)
The Tool Kit software component that builds a distribution
diskette for an application by copying the appropriate files
from disk. The program runs on the Professional.

application
The end result of the Tool Kit development cycle: a
computer program that performs some useful service. In this
manual, the term "application" often denotes a program and
its related files.

checkpointing
The process by which the Executive makes physical memory
available to higher-priority tasks by temporarily removing
lower-priority tasks from memory and storing them on disk.

end user
The person who
application.

Executive
See P/OS Executive.

ultimately

Frame Development Tool (FDT)

installs and runs your

A utility that creates menus, on-line help, and messages
through an interactive session using forms. The displays
are called frames, and frames are stored in frame files.

B-1

host
Another computer whose resources are available
Professional via communication software, such as
the communications functions provided in P/OS.

to your
DECnet or
The term

Host Tool Kit refers to the Tool Kit software running on a
VAX/VMS or RSX-llM/M-PLUS operating system.

interactive program
A P/OS application that requires user interaction. On P/OS,
only one interactive program can run at one time. An
interactive program, however, can run at the same time as
one or more noninteractive programs.

logical unit number (LUN)
There are two uses for this term:

• A logical unit number is number that indicates a
particular unit of a device type. It is the nnn portion
of the ddnnn: format of a physical device name.

• A task LUN appears in the ALUN$ and QIO$ directives; it
is a number uniquely identifying an association between
a physical device and your task.

noninteractive program
A program that runs primarily without user interaction, such
as Print Services and File Transfer. On P/OS, multiple
noninteractive programs can run concurrently with an
interactive program.

object module

P/OS

A file containing unrelocated binary instructions and data.

The Professional operating system. P/OS is a single-user,
real-time, multitasking system based on RSX-llM-PLUS.

P/OS Executive
The main component of the operating system. The Executive
coordinates all activities and resources of the
Professional. It provides task scheduling, interrupt
processing, management of main memory, and coordination of
I/O and file management facilities.

PRO/FMS-ll (FOrms Management System)
A tool that performs screen management and data input using
predefined forms.

B-2

P/OS Server
A component of P/OS that provides the following features:

• Ability to share resources, such as printers and storage
media, among several Professionals.

• Access to all P/OS Hard Disk features without the need
for a local hard disk.

P/OS stand-alone
A P/OS configuration that does not use a server.

PRO/RMS-l1 (Record Management System)
A tool that provides an interface to the P/OS file system.

PRO/SORT
A tool that reorders data files according to control fields
or key fields within the input data records.

RSX-I1M-PLUS

task

A real-time, multitasking, operating system that makes use
of the enhanced hardware features and memory of PDP-ll
processors.

The fundamental executable program unit.

task builder
A tool (sometimes called a linker) that converts an object
module into a task image by relocating code and data and
resolving external references.

task image
A file that contains a loadable task in the form of absolute
binary instructions and data.

terminal emulator
An application that allows the Professional to function as a
terminal for the purpose of working on host systems.

Tool Kit
A set of software tools used to develop applications for the
Professional computer.

user interface
The means by which an end
application. The P/OS user
on-line help, a message system,
keys.

8-3

user interacts with an
interface consists of menus,
and standard use of function

workstation
A Professional computer connected to a server in a P/OS
Server environment.

8-4

INDEX

Access control, 2-5
Action string

description, 3-13
global, 3-14
option, 3-14

ADB
see Application Diskette

Builder
Additional Options, 3-12, 3-15,

3-18, 3-19
Advanced Programmer's Notes

manual, A-l
Alias, 2-5
APPL$DIR, 2-23, 3-15, 3-24
Application

designing, 2-1
implementing, 3-1
shared, 2-1

Application directories
P/OS, 2-23

Application directory, 3-32, 5-1
description, 3-1

Application Diskette Builder, B-1
description, 1-7

Application files
accessing, 2-23

Applications
creating, 1-13

ASTs
with notification, 6-12

Asynchronous System Trap, 3-29,
6-5

Attachment Descriptor Block, 6-12

BASIC-PLUS-2
array parameter, 3-4
description, 1-5
external subprogram call, 3-3
string parameter, 3-4

Build phase
development cycle, 1-13

Callable Editor Task, 1-12
Callable Sort Task, 1-12
Calling Sequence Convention,

PDP-ll R5, 3-2
CET

see Callable Editor Task
CGL

see CORE Graphics Library
Character set

documentation, A-4
CLOGS system directive, 6-1
Cluster library

default, 4-4
COBOL-81

description, 1-5
external routine call, 3-4

COMLIB, 1-9
Communication Services

description, 1-8
Concealed device

example, 2-12
name, 2-6

Configurations
target system, 1-2

Console cable
BCC08, 5-2
use of in debugging, 5-2

Context sensitive
definition, 2-9
reference to hard disk, 2-9

Convention, PDP-ll R5 Calling
Sequence, 3-2

CORE Graphics Library, 1-9, 3-2,
4-3

manual, A-l
CPU

system unit, 1-3
CSI sequence

parsing, 3-30
Cursor

turning off, 6-5

Data files
access, 2-8

DCL
see DIGITAL Command Language

Debugging
distribution kit, 5-3

DEC Multinational Character Set
documentation, A-4

DECnet
description, 1-10

Index-l

INDEX

in P/OS Server, 1-4
DECnet Introduction

manual, A-2
Default device

setting, 2-8
Design phase

development cycle, 1-13
Designing

applications, 2-1
Development cycle

applications, 1-13
build phase, 1-13
design phase, 1-13
distribution phase, 1-13
implementation phase, 1-13
test phase, 1-13
tuning phase, 1-13

Device
concealed, 2-12
default, setting, 2-8

Device Driver
documentation, A-1

Device independence, 2-8, 2-18
Device name

BIGVOLUME:, 2-6
concealed, 2-6
default, 2-8
description, 2-6
device independence, 2-8
DW001:, 2-6
equivalence value for, 2-6
format, concealed, 2-7
format, physical, 2-7
logical name, 2-6
long form, 2-9, 2-10
physical, 2-6
translation, 2-6
translation, underscore in, 2-6

DIBOL
description, 1-5
external subroutine call, 3-4

DIGITAL Command Language, 1-2
manual, A-4

Digital Command Language
CREATE command, 3-1
EDIT command, 3-2
LINK command, 4-1

[O,O]OOOOOO.DIR, 2-2
Directory

application, 5-1
definition, 2-3

system, 2-12
Directory name

default, 2-12, 6-2
description, 2-11

Disk/Diskette Services, 1-7, 3-1,
3-10

Distribution kit
debugging, 5-3

Distribution phase
development cycle, 1-13

DLOG$ system directive, 6-1
Dynamic menu

description, 3-15, 3-16
displaying, 3-16
frame pointer, 3-24
from static menu, 3-16

EDT, 3-2
Eight-bit characters

using, 1-2
EMST$ system directive, 6-11
Equivalence value, 2-18
Exi t, 3 -12
EXTK$ system directive, 6-1

Fast Install, 5-1
description, 1-7

Fatal error
handling, 3-27

FCS-ll
see File Control Services

FDT
see Frame Development Tool

File
preallocation, 6-3
preextension, 6-3
use of identifier, 6-3
when to open, 6-2

File Control Services
description, 1-11

File independence, 2-18
File protection

see Protection
File Selection Menu, 3-19
File Services, 3-10, 3-11
File specification

case sensitivity, 2-4
defaults, 2-4
description, 2-2, 2-3
device, 2-3
devices, 2-6

Index-2

INDEX

directory, 2-3
examples, 2-4
file type, 2-3
filename, 2-3
for network operations, 2-4
foreign files, 2-5
logical names, 2-4
nodespec, 2-3, 2-4
wildcards, 2-6

File Transfer utility, 5-1
File type

default, 2-13
description, 2-13

Filename
description, 2-13

Files
cluster and system, 2-24
shared, 2-24
supplied by user, 2-23
user specific, 2-23

FMS-ll
see Forms Management System

Foreign files
directory formats, 2-5

Forms Management System, 3-2, 4-3
description, 1-8

FORTRAN-77
description, 1-6
external subroutine call, 3-5

Frame Development Tool, 3-2, 3-8,
3-15, 3-24, 3-26, 3-35

description, 1-7
Frame pointer

description, 3-24
use of, 3-25

Function key, 3-7
description, 3-27
menu option selection, 3-12
menu programming, 3-17
programming, 3-30
use of, 3-28

GIDIS
see PRO/GIDIS

Hard disk
local, 1-4
referring to, 2-9

Hardware
target system, 1-3

Help

programming
see POSRES

Help file
opening, 3-24

Help frame
default

specifying, 3-24
Help menu

description, 3-20
key processing, 3-20

Help structure, 3-8
activating, 3-25
designing, 3-19
implementing, 3-24

Help text frame
description, 3-21
half-screen, 3-22
key processing, 3-22

Host Tool Kit
description, 1-2
documentation, A-l
Installation Guide and Release

Notes, A-2
using, 1-2
VAX-ll RSX, 1-2

I/O driver
manual, A-l

Implementation
phase, 3-1

Implementation phase
development cycle, 1-13

Installation
ASSIGN HELP command, 2-24, 3-18,

3-19, 3-24, 3-25
ASSIGN MENU command, 2-24, 3-15,

3-18, 3-19
ASSIGN MESSAGE command, 2-24
command file, 1-7, 2-24, 3-1,

3-2, 5-2
Interrupt, 3-13, 3-21

Keyboard, 3-33
description, 1-3
documentation, A-4
label strip, 3-28

Keyboard input
buffering, 6 -12

Keystroke
input routine, 3-30

Keyword, 3-10, 3-14

Index-3

INDEX

Languages
development, 1-5

Lock block, 6-11
Logical device name

see Device name
Logical name

definition, 2-18
Logical names

description, 2-18
device independence, 2-18
file independence, 2-18
system defined, 2-19

Logical unit number
see LUN

Long form
User Account Area, 2-24

LUN
use of, 3-31

MACRO-ll
see Professional Macro

Assembler
manual, A-2

Master File Directory
definition of, 2-2

Memory
base Professional, 2-2
physical, 2-2
virtual, 2-1

Menu
key processing, 3-12
programming

see POSRES
user perception, 3-7

Message
ASSIGN, 3-27
use of, 3-8

Message file
description, 3-26

Message frame
reading, 3-27

Message/Status Display, 3-8, 3-27
Multiple-choice menu, 3-10, 3-11

displaying, 3-16
option selection, 3-11
unpacking, 3-16
use of, 3-11

New File Specification form, 3-17
Newer systems, 2-23
Node name

changes, 2-9
Node Specification, 2-4
Node specification

access control, 2-5
examples, 2-5
foreign files, 2-5

Nodename, 2-5
NULLIB, 4-5, 6-10

ODT
see On-Line Debugging Tool
Manual, A-2
Supplement, A-2

Offspring Control Block, 6-11
Older systems, 2-23
On-Line Debugging Tool

description, 1-8
manual, A-2

Overlay Descriptor Language, 4-4,
4-5 to 4-6

.FCTR directive, 4-6

.ROOT directive, 4-6

P/OS file specifications
overview of, 2-2

P/OS Server
application directories, 2-23
DECnet, 1-4
description, 1-4
features, 1-4
server, 1-4
stand-alone, 1-3
workstation, 1-2

P/OS System
Reference Manual, A-2

PAB
see Professional Application

Builder
Parameter

data type checking, 3-3
position of, 3-3

PASCAL
description, 1-6
external procedure call, 3-5
external procedure declaration,

3-5
READONLY attribute, 3-6
UNSAFE attribute, 3-6

PDP-ll
description, 1-1

Index-4

INDEX

PDP-ll R5 Calling Sequence
Convention, 3-2

personal computers
background in, 1-1

Physical
Device name, 2-6

Physical memory, 2-2
PLAS directive, 6-8
PMA

see Professional Macro
Assembler

P/OS
access from high-level

languages, 3-2
current device, 3-33
description, 1-1
Executive

manual, A-2
file specification, 2-3

positional Device Interface
manual, A-2

POSRES, 2-24, 3-2, 3-6 to 3-38,
4-3

and FDT, 1-7, 3-8
ASSIGN MESSAGE routine, 3-27
buffer names, 3-34
clearing buffers, 3-16
description, 1-11, 3-8
DMENU routine, 3-16, 3-33, 3-34
DPACK routine, 3-16, 3-34
FATLER routine, 3-27, 3-33
GETKEY routine, 3-30, 3-33
global symbols, 3-32
HCLOSE routine, 3-33, 3-34
HELP routine, 3-25, 3-33, 3-34
HFILE routine, 3-18, 3-19, 3-24,

3-25, 3-33, 3-34
HFRAME routine, 3-18, 3-19,

3-25, 3-33, 3-34
MCLOSE routine, 3-17, 3-33,

3-34
menu programming, 3-17
MENU routine, 3-16, 3-33, 3-34
MFILE routine, 3-15, 3-18, 3-19,

3-33, 3-34
MFRAME routine, 3-16, 3-18,

3-19, 3-33, 3-34
MMENU routine, 3-16, 3-33, 3-34
MPACK routine, 3-16, 3-34
MSGBRD routine, 3-27, 3-33
MUNPK routine, 3-16, 3-34

NEWFIL routine, 3-17, 3-33,
3-34

OLDFIL routine, 3-19, 3-33,
3-34

overlaying buffers, 3-36
PRSCSI routine, 3-30, 3-33
RDMSG routine, 3-27, 3-33, 4-3
reducing buffer sizes, 3-35
status block, 3-17, 3-30
suggested maximum buffer sizes,

3-35
task image requirements, 3-31
use of buffers, 3-15
use of by languages, 3-31
WTRES routine, 3-30, 3-33, 4-3

POSSUM, 4-3, 4-5
description, 1-12
PRODIR routine, 2-11
PROLOG routine, 2-8, 2-12, 6-1,

6-2
Print Services

description, 1-11
Printer

use of in debugging, 5-2
Printer cable

BCC05, 5-2
use of in debugging, 5-2

PRO/Communications, 1-9
PRO/DECnet

see DECnet
PRO/DECnet Programmer

manual, A-2
PRO/DECnet Tool Kit

installation manual, A-3
release notes, A-3

PRO/Document VDM
manual, A-3

PRO/FMS-ll
see Forms Management System
manual supplement, A-3

PRO/GIDIS
description, 1-10
manual, A-3

PRO/ReGIS
manual, A-3

PRO/RMS Introduction
manual, A-3

PRO/RMS-ll
see Record Managment Services
Macro Programmer's Guide, A-4
manual supplement, A-3

Index-5

INDEX

PRO/SORT
description, 1-12

PRO/Tool Kit
description, 1-1
documentation, A-l
Installation Guide, A-4
Release Notes, A-4
using, 1-1

Professional Application Builder,
3-2, 3-27, 3-31, 4-1 to 4-6

CLSTR option, 4-4
command file, 4-3
description, 1-7
EXTSCT option, 3-34, 3-35
GBLDEF option, 3-32
LUN allocation, 3-32
MA switch, 4-4
manual, A-4
PRO/Tool Kit, 4-1
RSX-llM/M-PLUS, 4-2
SP switch, 4-4
UNITS option, 3-31
VAX/VMS, 4-1

Professional Macro Assembler, 1-7,
1-8, 1-11, 1-12

description, 1-6
manual, A-2
P/OS routine call, 3-6

PROSE, 3-2
description, 1-12

Protection
default, 2-18
file, 2-16, 2-17
User Identification Code, 2-16
volume, 2-16, 2-17

Protection classes
definition of, 2-17
types of, 2-17

QIO system directive, 6-5
QIO$ system directive, 6-12

R5 Calling Sequence Convention,
PDP-ll, 3-2

Record Management Service
documentation supplement, A-3

Record Management Services, 1-11,
4-3, 6-11

description, 1-12
input parsing, 6-2
logical name translation, 6-2

utilities
manual, A-4

RMS-ll
see Record Managment Services
User's Guide, A-4
utilities Manual, A-4

RMSRES, 4-5
Routines

System Library, 1-12
RPOI$ system directive, 6-11
RQST$ system directive, 6-11
RREF$ system directive, 6-9, 6-12
RSX-llM/M-PLUS

description, 1-1
Host Tool Kit, 1-2
layered components, 1-1

Second
terminal, debugging with, 5-2

Sequence Convention, PDP-ll R5
Calling, 3-2

Server
P/OS Server system, 1-4

Shared applications
description, 2-1
file sharing in, 2-1
requirements, 2-1
using read-write commons in,

2-1
Sharing

resources, 1-4
Single-choice menu, 3-10, 3-11

option selection, 3-11
packing, 3-16
static, 3-15
use of, 3-11

SREF$ system directive, 6-9
Stand-alone

target system, 1-3
Static menu

description, 3-15
frame pointer, 3-24

Steps
creating applications, 1-13

Storage media
description, 1-4

STSE$ system directive, 6-10
SYSDISK, 2-23
System Library Routines, 1-12

Reference Manual, A-2
System Services

Index-6

INDEX

see POSSUM
System unit

CPU, 1·,-3
description, 1-3

Systems
older versus newer, 2-23

Target system
325, 1-2
350, 1-2
380, 1-2
basic system, 1-3
configurations, 1-2
hardware, 1-3
stand-alone, 1-3
workstation, 1-2

Task Builder
see Professional Application

Builder
manual, A-4

Telephone Management System, 1-9
Terminal

debugging with second, 5-2
use of in debugging, 5-2
with Host Tool Kit, 1-2

Terminal Emulator, 1-9, 5-1
documentation, A-4

Terminal subsystem
manual, A-4

Test phase
development cycle, 1-13

TLOG$ system directive, 6-1
TMS

see Telephone Management System,
1-9

Tool Kit
introduction, 1-1
two kinds, 1-1

Tool Kit Reference
manual, A-5

Tool Kit User's Guide
primary source, 1-1

Tuning phase
development cycle, 1-13

UFD, 2-2
see User File Directory

UIC, 2-2
see User Identification Code

underscore
in device name, 2-6

Index-7

User Account Area
definition, 2-10
location, 2-10
long form, 2-10, 2-24
stucture, 2-10

User File Directory
definition, 2-3
definition of, 2-2

User Identification Code
protection code, 2-16
value of, 2-17

User Interface Services
see POSRES

[O,O]USERFILES.DIR, 2-2
Users

types of
see Protection classes

defini tion of

VAX-ll RSX
Host Tool Kit, 1-2

Version number
-1, 2-15
0, 2-15
description, 2-15

Video monitor, 3-33
description, 1-3
documentation, A-4
in debugging, 5-2

virtual Address Space, 2-1
volume

definition, 2-2
volume protection

see Protection
VT200

with Host Tool Kit, 1-2

Wildcard
specification, 3-19

Wildcards
definition of, 2-15
description, 2-15
in file specifications

use of, 2-15
in foreign file specification,

2-6
Workstation

target system, 1-2
WTSE$ system directive, 6-10

XKDRV, 1-9

