
PRO/GIDIS Manual

Order No. AA-HJ45A-TK

November 1985

This document describes PRO/GIDIS, DIGITAL'S General
Image Display Instruction Set. as implemented for the
PRO/Tool Kit. It is a user guide and reference manual
for programmers developing graphics applications for the
Professional.

REQUIRED SOFTWARE:

OPERATING SYSTEM:

Professional Host Tool Kit V3.0
or PRO/Tool Kit V3.0

P/OS V3.0
or RT-11 V5.2

DIGITAL EQUIPMENT CORPORATION
Maynard, Massachusetts 01754-2571

First Printing, December 1983
Updated, April 1984

Revised, November 1985

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a
license and may only be used or copied in accordance with the
terms of such license.

No responsibility is assumed
software on equipment that
affiliated companies.

for the use or reliability o~

is not supplied by DIGITAL or its

The specifications
Digital Equipment
copied or used in
manufacture or sale

and drawings, herein, are the property of
Corporation and shall not be reproduced or
whole or in part as the basis for the
of items without written permission.

Copyright © 1985 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTI BUS MASSBUS Rainbow
DEC PDP RSTS
DECmate P/OS RSX
DECsystem-10 PRO/BASIC Tool Kit
DECSYSTEM-20 PRO/Communications UNIBUS
DECUS Professional VAX
DECwriter PRO/FMS VMS
DIBOL PRO/RMS VT
~DmDDmDTM PROSE Work Processor

PROSE PLUS

CHAPTER 1

CHAPTER

CHAPTER

1.1
1. 2
1. 2 .1
1. 2. 2

2

2.1
2 .1.1
2 .1. 2
2 .1. 3
2 .1. 4
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5

2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2.2.11
2.2.12
2.2.13
2.2.14

3

3.1
3. 2
3.3

CHAPTER 4

4.1
4 .1.1
4 .1. 2

CONTENTS

PREFACE ix

INTRODUCTION TO PRO/GIDIS

USES OF PRO/GIDIS
RELATIONSHIP TO OTHER P/OS

When to Use PRO/GIDIS
When Not to Use PRO/GIDIS

GRAPHICS TOOLS
1-1
1-2
1-4
1-4

UNDERSTANDING PRO/GIDIS

INTRODUCTION TO GRAPHIC PROGRAMMING
Viewing Transformation Instructions
Interactive Control Instructions
Drawing Instructions
Attribute Instructions

INTRODUCTION TO GIDIS INSTRUCTIONS
Picture Management Instructions
Interactive Control Instructions .
Drawing Instructions
The Current Position

2-1
2-2
2-3

. . . . 2- 5
2-5

. . . . 2 -5
2-6
2-9

. 2-12
2-12

Drawing Lines, Arcs, Filled Figures,
Characters, Images 2-12
Drawing Attributes 2-14
Writing Attributes . . 2-14
Line and Curve Attributes . 2-16
Filled Figure Attributes 2-16
Text Attributes .. 2-17
Alphabets and Fonts . 2-22
Font Files 2-22
Dynamically Created Fonts . . 2-23
Reports 2-25

PRO/GIDIS INSTRUCTION SYNTAX

OPCODE BYTE
LENGTH BYTE AND THE ARGUMENT LIST
SYNTAX ERRORS

USING PRO/GIDIS WITH P/OS

THE GIDIS CALL INTERFACE (GIDCAL)
GI OPEN
GIWRIT . . .

iii

3-1
3-2
3-3

4-1
4-3
4-4

4 .1. 3
4 .1. 4
4 .1. 5
4 .1. 6
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4. 3
4.3.1
4.3.2
4.4
4.5
4.5.1
4.5.2

CHAPTER 5

5.1
5 .1.1
5 .1. 2
5 .1. 3
5 .1. 4
5 .1. 5
5 .1. 6
5.2
5.2.1
5.2.2
5.2.3
5.3
5.4

CHAPTER 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

GIREAD
GICLOS .
GI FONT
GI PLAY

DEVICES ACCESSED BY GIDCAL .
Disk File
LAS 0
LQP02
LA100/LA210
LVP16, HP7475, HP7470 Plotters .
Other Device
Professional Video
LN03
Polaroid Palette
LQPO 3

BUILDING A TASK WITH GIDCAL
Video GIDIS
Other GIDIS Drivers

ERROR REPORTING
SAMPLE P/OS PROGRAMS

Sample MACR0-11 Program
Sample FORTRAN Program . .

USING PRO/GIDIS WITH RT-11

4-4
4-5
4-6
4-6
4-7
4-7
4-8
4-8
4-8
4-8
4-9
4-9
4-9
4-9

4-10
4-11

. 4-11
4-11
4-12
4-14

. 4-14
4-15

THE GIDIS CALL INTERFACE (GIDCAL) 5-2
GIOPEN 5-3
GIWRIT 5-4
GIREAD . 5-4
GICLOS 5-5
GIDCAL Error Reporting . 5-5
Sample Program Using GIDIS Call Interface 5-8

THE MACR0-11 PRO/GIDIS INTERFACE . . . 5-10
.SPFUN 371 5-11
.SPFUN 370 5-11
SAMPLE MACR0-11 PROGRAM 5-12

THE FORTRAN PRO/GIDIS INTERFACE 5-13
RESTRICTIONS 5-16

PRO/GIDIS INSTRUCTIONS

BEGIN_DEFINE_CHARACTER .
BEGIN_FILLED_FIGURE
CREATE_ALPHABET
DRAW_ARCS
DRAW_CHARACTERS
DRAW_LINES
DRAW_PACKED_CHARACTERS
DRAW_REL_ARCS

iv

6-2
6-7

6-11
.. 6-14

. 6-17

. 6-19
6-21
6-23

6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56

DRAW_REL_LINES
END _DEF' I NE_CHARACTER
END_FILLED_FIGURE
END_LIST
END_PICTURE
ERASE_CLIPPING_REGION
FLUSH_BUFFER . .
INITIALIZE
LOAD_BY_NAME(l)
LOAD_BY_NAME(2)
LOAD_CHARACTER_CELL
NEW_PICTURE
NOP • • • • • • • •
PRINT_SCREEN
REQUEST_CELL_STANDARD
REQUEST_CURRENT_POSITION
REQUEST_OUTPUT_SIZE
REQUEST_STATUS . . .
REQUEST_VERSION_NUMBER .
SCROLL_CLIPPING_REGION
SET_ALPHABET . . .
SET_AREA_CELL_SIZE ..
SET_AREA_TEXTURE . . .
SET_AREA_TEXTURE_SIZE
SET_CELL_DISPLAY_SIZE
SET_CELL_EXPLICIT_MOVEMENT
SET_CELL_MOVEMENT_MODE
SET_CELL_OBLIQUE . .
SET_CELL_RENDITION
SET_CELL_ROTATION
SET_CELL_UNIT_SIZE
SET_COLOR_MAP_ENTRY
SET_GIDIS_OUTPUT_SPACE
SET_LINE_TEXTURE . .
SET_OUTPUT_BITMAP
SET_OUTPUT_CLIPPING_REGION .
SET_OUTPUT_CURSOR
SET_OUTPUT_CURSOR_RENDITION
SET_OUTPUT IDS . . .
SET_OUTPUT_RUBBER_BAND
SET_OUTPUT_VIEWPORT
SET_PIXEL SIZE
SET_PLANE_MASK . .
SET_POSITION . . .
SET_PRIMARY_COLOR
SET_REL_POSITION
SET_SECONDARY_COLOR
SET_WRITING_MODE

v

6-25
6-28
6-29
6-30
6-31
6-33
6-34
6-35
6-40
6-42
6-43
6-45
6-46
6-47
6-49
6-51
6-52
6-54
6-55
6-56
6-58
6-59
6-61

. 6-63
6-64
6-67
6-69
6-71

. 6-73
6-75
6-76
6-78
6-81
6-86
6-88
6-89
6-91
6-94
6-95

. 6-98
6-100
6-102
6-104
6-106
6-107
6-108
6-109
6-111

APPENDIX A

APPENDIX B

APPENDIX C

C.l
C.2
C.3

APPENDIX D

D.l
D.2
D.3
D.3.1
D.3.2
D.3.3
D.4

APPENDIX E

E.1
E.2

APPENDIX F

F.l
F .1.1
F .1. 2
F.2
F.3
F.4

APPENDIX G

INDEX

PRO/GIDIS INSTRUCTION SUMMARIES

DEC MULTINATIONAL CHARACTER SET

FONT FILE FORMAT

HEADER
POINTER TABLE
GLYPHS

MANAGING FONTS

C-1
C-2
C-3

MAKING A FONT AVAILABLE TO GIDIS . D-1
FONT NAMING CONVENTIONS D-3
FONTS SUPPLIED WITH GIDIS D-4

Default GIDIS Fonts Loaded Automatically . D-5
Rest of DGIDIS Monospaced Font Files . D-5
Proportionally Spaced Fonts D-5

EDITING .FDF FILES D-7

AREA TEXTURE AND COLOR ON THE PLOTTER

AREA TEXTURE
COLORS . . .

QUEUE I/0 INTERFACE TO PRO/GIDIS FOR P/OS

THE PRO/GIDIS INTERFACE
Write Special Data (IO.WSD)
Read Special Data (IO.RSD)

PRO/GIDIS INSTRUCTION SYNTAX
SAMPLE MACR0-11 PROGRAM
SAMPLE FORTRAN PROGRAM

GLOSSARY

vi

E-1
E-3

F-1
F-3
F-4
F-6
F-6
F-7

FIGURES

1-1
1-2
2-1
2-2
2-3
2-4
2-5
6-1
6-2
6-3
6-4
6-5
6-6
6-7

6-8
6-9
D-1
D-2
D-3
D-4
D-5
D-6
E-1
F-1

TABLES

2-1
2-2
2-3
2-4
2-5
2-6
4-1
4-2
4-3
5-1
5-2
5-3
6-1

6-2
6-3
6-4

6-5
6-6

PRO/GIDIS Sample Output
PRO/GIDIS Interface
Window to Viewport Mapping Options
IDS Mapped onto a View Surface
Various Logical Pixel Sizes
Implicit and Explicit Movement
Character Cell Rotation
Sample Character
Sample Filled Figure Square
Sample Filled Figure Bow Tie
Sample Arc
Character Unit Cell and Display Cell
Italic and Back-Slanted Display Cells
Mapping of GOS to a Different Shaped

1-1
1-3
2-4
2-8

. 2-16
. . 2-18

2-19
6-6
6-9

6-10
6-15
6-65
6-72

Viewport 6-82
Mapping a Portion of a Picture to a Viewport 6-83
Writing Modes Shown with Line Texture 6-113
Default GIDIS Monospaced Fonts D-5
Hershey Sans Serif Font D-5
Hershey Serif Font . . . D-6
Hershey Italicized Serif Font D-6
Hershey Script Font D-6
Hershey Gothic Font D-7
Hatch Patterns 1 through 12 E-3
PRO/GIDIS Data Path F-2

Picture Management Instructions
Interactive Control Instructions
Drawing Instructions
GIDIS Drawing Attributes
Alphabet and Font Instructions
Report Instructions
GIDCAL Palette Errors
GIDCAL Errors Listed by Class - P/OS
GIDCAL Interface Errors - P/OS . . .
GIDCAL Errors Listed by Class - RT-11
GIDCAL Interface Errors - RT-11
RT-11 Operating System Errors
Attributes Initialized by
BEGIN_DEFINE_CHARACTER
CREATE_ALPHABET Flags
Initialization of Subsystems
Values of GIDIS Attributes After an
INITIALIZE
SET_CELL_MOVEMENT_MODE Flag Values
SET_CELL_RENDITION Flags

vii

2-9
2-11
2-13
2-20
2-24

.. 2-25
. 4-10
. 4-12
. 4-13

5-5
5-6
5-6

6-4
6-11
6-35

. 6-37
6-69

. 6-73

6-7 Sample Color Map Values . 6-79
6-8 GIDIS Attributes Affected by

SET _GIDIS - OUTPUT - SPACE . . . 6-84
6-9 GIDIS Attributes Affected by SET _OUTPU'l' IDS 6-96
6-10 Types of Rubber Bands 6-98
6-11 Writing Mode Options 6-·111
A-1 GIDIS Instructions in Opcode Order A-1
A-2 GIDIS Instructions in Alphabetical Order A-5
A-3 Report Tags A-8
C-1 Header Format C-1
C-2 Pointer Table Format C-3
E-1 Hatch Patterns for Char-Index 1 to 48 E-2

viii

/

PREFACE

Manual Objectives

PRO/GIDIS is one of the tools you can use to develop graphics
applications for the Professsional. This manual is both a user's
guide and a reference manual for PRO/GIDIS, the General Image
Display Instruction Set. It explains how to use PRO/GIDIS and
describes each instruction in detail. It provides information
about device-independent text and graphics programming with
PRO/GIDIS.

Intended Audience

You should read this manual if you
application for the Professional
PRO/GIDIS.

are developing a graphics
and need information about

This document is intended for programmers who have had experience
with systems programming and graphics applications software. You
should also have experience with either MACR0-11 or FORTRAN.

This document explains how to use PRO/GIDIS on both the P/OS and
RT-11 operating systems. All chapters except 4 and 5 apply to
both operating systems. If you are using P/OS, read Chapter 4;
if you are using RT-11, read Chapter 5.

Structure of This Document

This document has six chapters and eight appendixes.

Chapter 1,
places it
guidelines
some other

Introduction to PRO/GIDIS, describes PRO/GIDIS and
in the context of other graphic tools. It provides

so that you can determine whether to use PRO/GIDIS or
graphics software.

Chapter 2, Understanding PRO/GIDIS, provides a
framework for PRO/GIDIS. It explains key terms and
GIDIS instructions. Together with Chapter 4 (for
Chapter 5 (for RT-11), this chapter serves as a user's

conceptual
introduces
P/OS), or
guide.

Chapter 3, PRO/GIDIS Syntax, describes the GIDIS instruction
syntax, which is the same for P/OS and RT-11.

Chapter 4, Using PRO/GIDIS with P/05, explains how to use

ix

PRO/GIDIS with P/OS, the Professional Operating System. The
chapter describes the GIDIS Call Interface (GIDCAL), the devices
accessed by GIDCAL, and error handling.

Chapter 5, Using PRO/GIDIS with RT-11, describes how to use
PRO/GIDIS with the RT-11 operating system. The chapter describes
three interfaces (including GIDCAL) and error handling.

Chapter 6, PRO/GIDIS Instructions, lists each GIDIS instruction
in alphabetical order for quick reference. Information includes:
format, arguments, notes explaining how the instruction works,
and examples.

Appendix A, PRO/GIDIS Instruction Summaries, lists each PRO/GIDIS
instruction, its operation code (opcode), argument length, opcode
word, and associated arguments. Instructions are grouped two
ways: by opcode and in alphabetical order.

Appendix B, DEC Multinational Character Set, shows the code table
for the Professional's alphabet 0, the DEC Multinational
Character Set.

Appendix C, Font File Format, describes the font file format
required by the LOAD_BY_NAME instruction.

Appendix D, Managing Fonts, describes how to tell the font server
about your font files.

Appendix E, Area Texture and Color on the Plotter, describes how
Plotter GIDIS processes instructions that affect area texture and
color.

Appendix F, Alternate Access to Video GIDIS, explains the Queue
I/O Request (QIO$) and Queue I/0 Request and Wait (QIOW$) system
directives for P/OS. This access method is documented for
backward compatibility with earlier versions.

Appendix G, Glossary, defines key terms used in this manual.

Associated Documents - P/OS

• CORE Graphics Library Manual

• P/OS System Reference Manual

• RMS-11 Macro Programmers Guide

x

• PRO/Document VDM Manual

• Tool Kit Language Manuals

Associated Documents - RT-11

• RT-11 Programmer's Reference Manual

Conventions Used in This Document

Convention/Term

[optional]

UPPERCASE

lowercase

Tool Kit

Host Tool Kit

PRO/Tool Kit

Meaning

In a command line, square brackets indicate
that the enclosed item is optional. In a file
specification, square brackets are part of
the required syntax.

Uppercase words and letters indicate that you
should type the word or letter exactly as
shown.

Lowercase words and letters indicate that you
should substitute a word or value of your
own. Usually the lowercase word identifies
the type of substitution required.

A horizontal ellipsis indicates that you can
repeat the preceding item one or more times.
For example:

parameter [,parameter ...]

A vertical ellipsis means that not all of the
statements are shown.

Interactive input appears in red.

This general term refers to the software you
use to develop applications to run on a
Professional computer.

The Host Tool Kit is Tool Kit software that
runs on a host computer, rather than on the
Professional itself.

The PRO/Tool Kit is the Tool Kit software
that runs on the Professional computer.

xi

CHAPTER 1

INTRODUCTION TO PRO/GIDIS

PRO/GIDIS, the General Image Display Instruction Set, is
several tools used to develop graphics applications
Professional 300 Series computer. It consists of a
instructions that provide the lowest-level, virtual
interface to the Professional's graphics hardware.

1.1 USES OF PRO/GIDIS

one of
for the
set of
device

PRO/GIDIS is aimed at applications creating compass and ruler
graphics, those in which images can be described using
geometrical entities such as lines, arcs, and shaded areas. You
can also use PRO/GIDIS to display mixed text and graphics.
Figure 1-1 shows typical PRO/GIDIS output, a graphical
representation of some sample statistical data.

~IT\.RES

BILLI(N) Cf IXllMS
100

ffll!t IC ff!tl/!lltl{(LS

~ Errol l1n11nt, total }
D Pl.blic Errollment Right Scale
• Private Errollment

- Total ~iU.res]-
- - - Pl.bl ic E;.pendiU.res Left Scale

Private E:iq:>end i U.res

1960 1%2 1%4 1968 1970 19?2

Figure 1-1: PRO/GIDIS Sample Output

1-1

~a..Ll'£NT
MILLI en>

100

1974

I

J 5)
!
!
I
!
I
I

-1 25

\

USES OF PRO/GIDIS

PRO/GIDIS is the lowest layer of software that receives and
interprets graphics instructions in a device-independent way.
When the current output device cannot fully support an
instruction, GIDIS provides an appropriate fallback.

With GIDIS under P/OS, you can write on a number of devices.
Among them are the Professional video monitor, the LVP16 plotter,
and various printers (the LN03, LASO and LA100). You can also
store GIDIS instructions in a file and later print the stored
picture, either by itself or as part of a document. Under RT-11,
you can write only on the video monitor.

The GIDIS Call Interface (GIDCAL) provides uniform access to each
device supported by GIDIS. It also simplifies access to GIDIS
from high-level languages.

1.2 RELATIONSHIP TO OTHER P/OS GRAPHICS TOOLS

PRO/GIDIS provides the foundation for several other graphics
tools on the Professional. Because these tools are implemented
as layers above PRO/GIDIS, each tool sets GIDIS attributes and
expects to be in full control of them. As a result, use of more
than one graphics protocol within an application is not
supported.

Other graphics tools include:

• The PRO/Tool Kit CORE Graphics Library (CGL), a library of
high-level graphics subroutines based on the ACM SIGGRAPH
CORE Standard.

• ReGIS (Remote Graphics Instruction Set), a DIGITAL-developed,
ASCII-based protocol, is used to transmit graphics
instructions from a host computer to a remote Professional,
VT125, VT240 or GIGI graphics terminal. A ReGIS to GIDIS
converter (RTOG) translates ReGIS data files to GIDIS files
that can be displayed (or printed) on the Professional.
ReGIS currently cannot be used by applications that reside on
the Professional itself; it can only be used in terminal
emulation mode.

• NAPLPS, North American Presentation Level Protocol Syntax, is
an ASCII-based protocol developed for Videotex/Teletext.
NAPLPS currently cannot be used by applications that reside
on the Professional itself; it can only be used in terminal
emulation mode.

1-2

RELATIONSHIP TO OTHER P/OS GRAPHICS TOOLS

• TEK 4014 is an industry-standard Tektronix-based software
protocol adapted from storage tube technology. TEK 4014 is
available as a third party application that runs on the
Professional only in terminal emulation mode.

• PRO/Document VDM, not a graphics tool itself, is the layer of
P/OS that enables you to integrate graphics into documents.

Figure 1-2 shows the relationship between PRO/GIDIS and other
graphic tools.

PRO GRAPHICS ARCHITECTURE

TEK
4014

REMOTE HOST
APPLICATION

ReGIS

PRO
APPLICATION

CORE
LIBRARY

PRINT
SERVICES

VOM
INTERPFETER

GENERAL IMAGE DISPLAY INSTRUCTION SET
VIIEO IJ\IVER FILE DRIVER 1-PGL DRIVER

BIT
MAP

LVP16
l-P7475
l-P7470

SIXEL DRIVER

LASO
LA100
LN03

35tml DRIVER

PCUROID
PAl.ETTE

UTILITIES
INTEflF AIL

VIRllJAI..
IEVIII
INIBf AII

mt'SI!'.AL
IEVIII
INTEJFAII

fffPA/ElJ KITH fflJ/SIGHT

Figure 1-2: PRO/GIDIS Interface

1-3

RELATIONSHIP TO OTHER P/OS GRAPHICS TOOLS

1.2.1 When to Use PRO/GIDIS

Sometimes your choice of a graphics tool is a matter of taste,
but there are some guidelines to go by.

e Use PRO/GIDIS if you want uniform access to the
Professional's graphic devices.

• Use PRO/GIDIS if execution speed is most important.

e Use PRO/GIDIS to implement graphics utility layers, like
CORE, or tools rather than applications.

1.2.2 When Not to Use PRO/GiDIS

Do not use PRO/GIDIS under the following conditions:

e If your program requires support for real (floating point)
coordinates, curves, markers, and so forth, use the CORE
Graphics Library.

e If you are concerned with portability of programs and
industry-standard program interfaces to graphics routines,
use the CORE Graphics Library.

e If you require VT100 or VT200 compatibility, use ReGIS with
the Professional Terminal Emulator.

1-4

CHAPTER 2

UNDERSTANDING PRO/GIDIS

This chapter begins by briefly describing concepts in graphic
programming. It then relates these concepts to GIDIS. Finally,
it summarizes the types of instructions available in GIDIS.

2.1 INTRODUCTION TO GRAPHIC PROGRAMMING

Graphic systems typically provide the following functions:

• Viewing Transformation Instructions. These enable you to
define your drawing area in coordinate units that are
convenient for your application, then map the units to a
device-independent coordinate system for displaying the
image.

• Interactive Control Instructions. These enable you to
interactively control how an image displays on a view
surface. You can modify how a picture is mapped to a view
surface, define cursors, scroll data, and output an image.

• Drawing Instructions. These enable you to draw figures
within a picture.

• Attribute Instructions. These enable you to specify how the
image appears when it displays.

The following sections describe the main functions and introduce
terms commonly used in graphic programming.

2-1

INTRODUCTION TO GRAPHIC PROGRAMMING

2.1.1 Viewing Transformation Instructions

Two-dimensional graphic programming packages allow you to draw
pictures in a Cartesian coordinate system, similar to drawing on
graph paper. Most graphics systems allow you to define
coordinate units that suit your particular application. Think of
it as choosing graph paper with different scales, for example ten
squares per inch versus fifteen squares per inch. These units
are purely logical coordinates whose range is limited only by the
arithmetic limits of the processor. Some systems allow floating
point coordinates; others allow only integers. You draw pictures
in user coordinate units that you define. All drawing
instructions are stored in a database in user coordinates units.
This user coordinate system is sometimes called the World
Coordinate System.

Besides allowing you to create and store graphic data, a graphics
system must have a way of displaying the contents of the
database. (Display is used in a generic sense to include output
to any device, not just screen display.) Because graphic output
is displayed on a variety of output devices, a graphics system
must have a way of mapping the user coordinates to a view
surface. While a video monitor may be the most common view
surface, printer and plotter output can also be consioered a view
surface.

The variety of output devices, both their shape and resolution,
makes it desirable to have a device-independent way of describing
the view surface. Hence, most graphics systems have a display
coordinate system to describe the view surface. These coordinate
system is sometimes called Normalized Coordinate Space. The
exact way of defining the coordinate units within normalized
space differs among graphic systems, but most allow you to choose
coordinate units appropriate for any output device.

NOTE

To avoid confusion, this manual refers to
operations performed in user coordinates as
drawing a picture. It refers to operations
performed in display coordinates as displaying an
image.

Each graphic system performs the computations necessary to map
the contents of the user coordinate system to the display
coordinate system. This process of mapping from the user
coordinate system to the display coordinate system is called the
viewing transformation. However, the way the mapping proceeds
differs from system to system. For example, when some graphic
systems map the picture to the displayed image, distortion

2-2

INTRODUCTION TO GRAPHIC PROGRAMMING

results. Other systems preserve the shape of the picture. Some
systems supply device drivers to complete the mapping in a way
that preserves the image and suits the hardware requirements of
the displaying device.

2.1.2 Interactive Control Instructions

Besides the standard viewing transformation operation, most
systems provide interactive control instructions for modifying
the mapping and manipulating the display.

Graphics systems differ in how much control they give you over
the mapping process, for example controlling the size and shape
of the displayed image. An explanation of how a graphics system
gives you control over mapping requires the introduction of
several more terms.

We refer to the entire contents of graphic data in the user
coordinate space as a picture. You can map the entire picture to
the view surface, or you can map only a portion of the picture to
the view surface. You choose which portion to map by defining a
window, a rectangular extent within the user coordinate space.
By defining a window the same size as the picture, you map the
entire picture to the view surface. By defining a window smaller
than the picture, you map only a portion of the picture to the
view surface. Only data within the defined window maps to the
view surface. Anything outside the window is clipped. It
remains in the picture, but is not displayed in the image on the
view surface.

On the view surface, the image displays in a rectangular area
called the viewport. The viewport is defined in display
coordinates. Graphics systems allow you to define the viewport
in a number of ways. For example, you can fill an entire view
surface, providing you define your viewport as having the same
shape as the output device. Or you can change the size and
placement of a viewport. In some graphics systems, you can
display more than one viewport simultaneously.

Because of all the options available both in defining the window
and the viewport, mapping from user coordinates to display
coordinates allows for many possibilities. You can, for example,
define user and display coordinates to be identical and map an
entire picture (the window encompasses the entire picture) to the
entire viewport (which may or may not fill the display surface,
depending on the shape of the viewport in relation to the shape
of the display surface). Or you can define a window that
includes only part of the picture, and map it to a larger
viewport. This results in enlarging the image. Conversely, if

2-3

INTRODUCTION TO GRAPHIC PROGRAMMING

you define the window as larger
smaller viewport, you reduce
size, enlarging or reducing
granularity of the image.

than the picture and map it to a
the image. Besides affecting the
the image also affects the

Figure 2-1 shows several mapping possibilities. Each case
assumes a viewport that covers the entire view surface.

WINDOW

WINDOW, CLIPPING RECTANGLE. AND VIEWPORT SAME SIZE

NO CLIPPING OF PICTUf1 E

VIEWPORT

/
r-----/ /
,~// i I// /
I 1//
I I
L-- _ _i,/

WINDOW

WINDOW SMALLER THAN VIEWPORT. IMAGE ENLARGED. PICTURE CLIPPED

VIEW PORT

WINDOW

WINDOW LARGER THAN VIEWPORT. IMAGE REDUCED. NO CLIPPING OF PICTURE.

MA-1148-85

Figure 2-1: Window to Viewport Mapping Options

2-4

INTRODUCTION TO GRAPHIC PROGRAMMING

Besides controlling mapping, graphics systems may also
instructions for using cursors or rubber bands to
current location. Other interactive control instructions
you to erase, scroll, display, or print an image.

2.1.3 Drawing Instructions

include
mark the

enable

Graphics systems provide you with building blocks to create a
picture. These building blocks are called output primitives.
Most systems have instructions for drawing points, lines arcs,
circles and text. Some also have instructions for filling
figures, both closed and open figures. You build pictures by
selecting appropriate drawing instructions.

2.1.4 Attribute instructions

Graphics systems have attribute instructions that enable you to
control how graphic output appears. Some attributes, like
foreground and background color, affect all graphic output. Such
attributes are called global attributes. Others affect only
certain types of instructions, for example drawing lines or
drawing text. These are typically called line attributes and
text attributes, respectively. In most graphics systems,
attributes are modal, that is they remain in effect until you
explicitly change them.

2.2 INTRODUCTION TO GIDIS INSTRUCTIONS

GIDIS has the types of instructions common
systems, plus additional instructions for
This chapter describes GIDIS instructions
functional groupings:

to most graphics
fonts and reports.
in the following

e Picture Management Instructions. These provide the framework
for creating and storing pictures, and for mapping them to an
output device.

e Interactive Control Instructions. These include instructions
for modifying the mapping process and manipulating the
display.

e Drawing Instructions. These enable you to draw figures.

2-5

INTRODUCTION TO GIDIS INSTRUCTIONS

• Attribute Instructions. These enable you to specify how the
figure appears when it displays.

• Alphabet and Font Instructions. These allow you to create
alphabets and fonts.

• Report Instructions. These enable you to check the state of
GIDIS.

2.2.1 Picture Management Instructions

Picture Management instructions provide a framework for defining
pictures and set up the viewing transformation.

Because GIDIS attributes remain in effect until changed, you must
include your specifications for the viewing transformation and
all attributes in any picture you draw. The recommended way to
do this is to frame all instructions for a given picture between
a BEGIN_PICTURE and an END_PICTURE instruction.

In general, you use the Picture Management instructions as
follows:

1. Use BEGIN_PICTURE to initiate definition of a picture.

2. You can use an INITIALIZE -1 next. This initializes GIDIS to
its default values (see INITIALIZE in Chapter 6). Although
it is more work, it is better practice to explicitly
initialize each GIDIS attribute to a value of your own
choice.

3. Set up an appropriate address space with SET_OUTPUT_IDS.
Define coordinate values that are convenient for your
application.

4. To control the appearance of your output, you should also set
up the color map with SET_COLOR_MAP_ENTRY.

5. At this point you can use GIDIS attribute instructions and
drawing instructions in any order you choose.

6. When you have finished, terminate the picture definition with
an END_PICTURE.

The following paragraphs describe the GIDIS user and display
coordinate spaces and how pictures are mapped to a view surface.

2-6

INTRODUCTION TO GIDIS INSTRUCTIONS

In GIDIS the user coordinate space is called GIDIS Output Space
(GOS). GOS units are limited to integers. The origin of GOS is
the upper left-hand corner of the coordinate space. The pixel
aspect ratio of X coordinate units to Y coordinate units is 1:1.
All GIDIS instructions except SET_OUTPUT IDS and
SET_OUTPUT_VIEWPORT refer to GOS coordinates. You draw pictures
and store them in GOS units. However, unless you use the
Interactive Control instructions to alter the mapping process,
you do not directly define a window in GOS coordinates.
SET_OUTPUT IDS defines the window and controls the mapping.

In GIDIS the display coordinate space is called Imposed Device
Space (IDS). Like GOS, the units are limited to integers, the
origin is the upper left-hand corner of the coordinate space, and
the pixel aspect ratio is 1:1. The left edge of the display
surface is called the Y axis, and the top edge of the surface is
called the X axis. You determine the extent of IDS by the
coordinates you choose for the lower right-hand corner. You
assign values to the bottom right-hand corner of the view surface
with SET_OUTPUT IDS.

Yo~ must always use a SET_OUTPUT IDS instruction to set up a
device- independent address space for displaying your image.
SET_OUTPUT_IDS implicitly performs several other functions.

e It sets GIDIS Output Space (GOS) such that IDS and ~OS units
are identical. This means that the picture in GOS maps to
the image in IDS identically.

e It sets your viewport to the entire view surface as defined
by IDS. Your viewport is the rectangle (defined in IDS)
within which the image is displayed on the view surface.

@ It sets the clipping rectangle to the entire view surface as
defined by IDS. The clipping rectangle is the window
(defined in GOS) that contains the picture you want to map to
the viewport. Thus, the window and viewport are identical.

The ability to define IDS in any coordinate units you choose
allows you to control how your image displays in a
device-independent way. Each output device has a certain shape
(picture aspect ratio), resolution (number of physical pixels
horizontally and vertically), and pixel aspect ratio (shape of
physical pixel). These are hardware dependent. We call this
hardware-dependent view Hardware Address Space (HAS). For
example, the Professional 350 video has a shape of 8 x 5 inches,
a resolution of 960 horizontal by 240 vertical hardware pixels,
and a pixel aspect ratio of 1:2.5. Because each X unit is not
equal to each Y unit, the HAS is anisotropic. This means that
you cannot map a coordinate system using a 1:1 ratio to the

2-7

INTRODUCTION TO GIDIS INSTRUCTIONS

Professional video without performing calculations to compensate
for the distortion that would otherwise occur. The driver
supplied for each of th9 supported output devices performs these
adjustments.

You can choose, if you like, to tailor IDS for a particular
output device. For example, if you want your image to fill the
view surface, assign coordinate values that reflect the shape of
the view surface. For example, if the view surface were 8 units
wide by 5 units high, you might set [X,Y] of the bottom right
corner to [79,49] or [799,499] or [959,599]. All these
coordinates would fill the view surface and maintain the same
shape. The only difference would be in the resolution. The more
logical pixels (expressed in higher X and Y values), the finer
the resolution of your drawing. In many cases, you will want to
use the entire display surface.

If the shape you give IDS does not match the shape of the
device's view surface, GIDIS starts at the upper left corner and
maps as much as it can, leaving space on the bottom or to the
right as necessary to maintain the proportions of your picture.
This is why IDS is called device independent.

Figure 2-2 shows
coordinates of
an 8 by a 5-inch

an example of a square IDS shape (with arbitrary
(500,500) that does not fill the view surface of
video display.

HAS 8 in

IDS 500

HAS
5 in

MA-1147-85

Figure 2-2: IDS Mapped onto a View Surface

2-8

INTRODUCTION TO GIDIS INSTRUCTIONS

You can use all picture management instructions
interactively or store them in a .GID file.

either

Table 2-1 lists the Picture Management instructions.

Table 2-1: Picture Management Instructions

Instruction Action

NEW_PICTURE Indicates the beginning of a new
picture.

END_PICTURE

INITIALIZE

SET_OUTPUT IDS

SET_COLOR_MAP_ENTRY

Indicates the end of a picture.
Action depends on device.

Returns GIDIS to its power-up
state. Aborts character, filled
figure and picture definition
blocks.

Specifies the coordinate units
and shape of the image that
displays on the view surface.
Implicitly sets GOS, the clipping
rectangle, and the viewport to be
identical with IDS.

Sets red, green, blue mixture for
the sperified color map entry.

2.2.2 Interactive Control Instructions

These instructions control drawing operations within an
interactive environment. Consequently, these instructions are
inappropriate in a .GID file, a stored picture. Most interactive
environments presume a video display.

2-9

INTRODUCTION TO GIDIS INSTRUCTIONS

Interactive applications should allow you to modify the display
quickly and easily. GIDIS has interactive control instructions
for modifying how an existing picture displays on the view
surface and for drawing new pictures. When drawing new pictures,
you need to be able to mark the current position, erase, scroll,
output the picture to a view surface, and make a hard copy of the
displayed image.

Several instructions control how an existing picture maps to a
view surface. GIDIS allows you to display only part of a picture
or change the size and location of your viewport.

If you want to display only a part of picture, use
SET_GIDIS_OUTPUT SPACE to define a coordinate extent smaller than
the picture. This is useful to blow up a portion of a picture.
For complete details, see SET_GIDIS_OUTPUT_SPACE in Chapter 6.

If you want to draw on only part of the view surface, use
SET_OUTPUT_VIEWPORT to specify the size and location of your
viewport. You can also specify multiple viewports and map a
separate picture into each. For details, see Chapter 6.

Normally, your clipping rectangle equals your viewport.
(SET_OUTPUT_IDS, SET_GIDIS_OUTPUT_SPACE, and SET_OUTPUT_VIEWPORT
all set the clipping rectangle to match your viewport.) However,
you can use SET_OUTPUT_CLIPPING_REGION to make your clipping
rectangle smaller than your viewport. You might do this if you
want to display a picture (or part of a picture) within a
rectangle smaller than your viewport.

If you want to clear a rectangle within your viewport, set the
clipping rectangle to the desired size and use
ERASE_CLIPPING_REGION.

When using Video GIDIS, you may want to scroll (vertically or
horizontally) whatever has been drawn within your clipping
rectangle. Use SCROLL_CLIPPING_REGION to do this. The cleared
space reverts to the current secondary color. Data scrolled out
may not be scrolled back in; it must be redrawn.

While drawing a new picture with Video GIDIS, you may want to
mark the current position. GIDIS gives you the option of using a
cursor or rubber band to mark the current position. See
SET_OUTPUT_CURSOR and SET_OUTPUT_RUBBER_BAND in Chapter 6. You
select whether the cursor or rubber band blinks or is continuous
with SET_OUTPUT_CURSOR_RENDITION.

When you want your application to
instructions and prompt a
FLUSH_BUFFER.

2-10

execute
user for

all pending drawing
further input, use

INTRODUCTION TO GIDIS INSTRUCTIONS

With the Professional 380 video, you can work with several
pictures at a time. SET_OUTPUT_BITMAP enables you to draw up to
four pictures (two in high resolution mode) in separate pages of
the video bitmap. You can quickly move among them.

While drawing,
video bitmap.
portion of the
printer port.

you may want to print all or some portion of the
PRINT_SCREEN allows you to send a specified

video bitmap to a sixel printer connected to the

Table 2-2 summarizes the GIDIS Interactive Control Instructions.

Table 2-2: Interactive Control Instructions

Instruction Action

SET_GIDIS_OUTPUT_SPACE

SET_OUTPUT_VIEWPORT

SET_OUTPUT_CLIPPING_REGION

ERASE_CLIPPING_REGION

SCROLL_CLIPPING_REGION

SET_OUTPUT_CURSOR

SET_OUTPUT_RUBBER_BAND

SET_OUTPUT_CURSOR_RENDITION

Specifies the coordinate units
and shape of a window you define
in GOS. Sets the clipping
rectangle to coincide with the
window.

Specifies the size and location
of your viewport.

Specifies the rectangle on the
view surface where GIDIS can
draw.

Clears clipping rectangle.

In Video GIDIS, scrolls data
within clipping rectangle.

Specifies the type of cursor used
to mark the current position.

Specifies the type of rubber band
used to mark the current
position.

Selects whether the cursor or
rubber band blinks or is
continuous.

2-11

INTRODUCTION TO GIDIS INSTRUCTIONS

Instruction

FLUSH_BUFFER

SET_OUTPUT_BITMAP

PRINT_SCREEN

2.2.3 Drawing Instructions

Action

Executes any pending GIDIS
instructions.

Selects bitmap on which to draw
or display. (Professional 380
video only)

Sends a specified portion of the
video bitmap to a sixel printer
connected to the printer port.

GIDIS supplies the graphic primitives to draw lines, arcs, filled
figures and text. You draw all pictures in GOS coordinates.

GIDIS drawing instructions can specify coordinates in either
absolute or relative terms. Absolute terms are simply the X and
Y coordinates you designate. Relative terms are in relation to
the current position.

2.2.4 The Current Position

All GIDIS drawing instructions begin at the current position and
end by setting a new current position. When you do not want the
next drawing instruction to start where the last drawing
instruction finished, use SET_POSITION or SET_REL_POSITION to
move the current position to any point within GIDIS Output Space.

2.2.5 Drawing Lines, Arcs, Filled Figures, Characters, Images

You can draw one or a series of lines. DRAW LINES and -
DRAW_REL LINES draw from the current position to the specified -
position. When you use either instruction in a series, each
endpoint becomes the current position for the next line.

You can draw arcs in much the same way with DRAW_ARCS or
DRAW_REL_ARCS. All drawing begins at the current position and
continues around a center point that you specify. As with
drawing lines, you can draw arcs in a series, with each endpoint
becoming the current position for the next arc. You determine

2-12

INTRODUCTION TO GIDIS INSTRUCTIONS

the direction and length of the arc by the angle. See Chapter 6
for details.

To draw a filled figure, you issue a BEGIN_FILLED_FIGURE
instruction. You then use the instructions for drawing lines and
arcs to designate the vertices of the figure. GIDIS stores the
coordinate pairs for the vertices in the filled figure table.
The order of the coordinates determines how the drawing proceeds.
When GIDIS receives an END_FILLED_FIGURE instruction, it draws
the filled figure. See Chapter 6 for limitations on the filled
figure table.

To draw characters you must first have selected the current
alphabet with a SET_ALPHABET instruction. Section 2.2.11
describes how to do this. Once you have a current alphabet, you
indicate which character you want to draw by an index. GIDIS has
two instructions for drawing characters. You can use
DRAW_CHARACTERS for any alphabet, whether a standard one or one
you design. You can use DRAW_PACKED_CHARACTERS for ASCII strings
or any alphabet with fewer than 256 characters. With either
instruction you can draw several characters in succession. The
rendition of the characters is governed by the Text Attributes,
described in Section 2.2.10.

Table 2-3 summarizes the GIDIS Drawing Instructions.

Table 2-3: Drawing Instructions

Instruction Action

SET_POSITION

SET_REL_POSITION

DRAW_LINES

DRAW_REL_LINES

Moves the current position to an
absolute point you specify.

Moves the current position to a
point you specify relative to the
current position.

Draws a line from the current
position to an absolute point you
specify.

Draws a line from the current
position to a point you specify
relative to the current position.

2-13

INTRODUCTION TO GIDIS INSTRUCTIONS

Instruction

DRAW_ARCS

DRAW_REL_ARCS

BEGIN_FILLED FIGURE

END FILLED_FIGURE

DRAW __ CHARACTERS

DRAW_PACKED_CHARACTERS

2.2.6 Drawing Attributes

Action

Draws an arc from the current
position around an absolute
center point you speci

Draws an arc from the current
position around a center point
you specify relative to the
current position.

Begins definition of a filled
figure.

Completes definition of a filled
figure and draws the figure.

Draws the character you specify.

Draws two characters you specify
in one word.

Several classes of attributes affect how your drawing looks.
Some, namely the Writing Attributes, affect everything you draw.
(The GIDIS Writing Attributes can be called global attributes.)
Others, for example Line, Filled Figure, and Text Attributes,
affect only certain drawing instructions. See Table 2-4 for a
summary of the Drawing Attributes instructions.

When you power-up GIDIS, there are default values for GIDIS
attributes. These default values make it possible to use the
virtual device immediately. Table 6-4 lists the default values
for GIDIS attributes. You can restore these default values at
any time by using an INITIALIZE instruction.

However, you can specify your own values for these attributes by
using the instructions explained in the following sections.

2.2. 7 Writing Attributes

A drawing instruction operates on a pattern of ON and OFF bits (1
and 0 respectively). When you draw a line or arc, GIDIS derives
the pattern from the line texture you specify. When you fill a

2-14

INTRODUCTION TO GIDIS INSTRUCTIONS

figure, GIDIS derives the pattern from the area texture you
specify. When you draw a character, GIDIS derives the pattern
from the raster image of the character. For example, the
character "L" would be a horizontal and vertical line of l's on a
field of O's.

0000000000
0100000000
0100000000
0100000000
0100000000
0100000000
0100000000
0111111100
0000000000

When you specify a pattern, you also specify its size in GOS
units. The size controls how many times each bit in the pattern
is repeated. For example, each 0 and 1 in the sample ''L" may be
repeated several times, depending on the size specified. When
the pattern is displayed on a view surface, each bit in the
pattern may be applied to multiple hardware pixels.

The writing attributes control how each drawing instruction
interprets the pattern. There are four writing attributes:
writing mode, primary color, secondary color, and plane mask.

Writing mode controls the Boolean operation performed on each bit
of the pattern. For example, the default writing mode, overlay,
works as follows. For each 1 in the pattern, GIDIS sets the
current pixel to the primary color. For each 0 in the patt~rn,
GIDIS leaves the current pixel unchanged. Your choice of writing
mode affects how the image displays. See SET_WRITING_MODE in
Chapter 6 for a full description of the writing modes provided by
GIDIS.

SET_PRIMARY_COLOR specifies the color map index to use for all
l's in the bit pattern.

SET_SECONDARY_COLOR specifies the color map index to use for all
O's in the bit pattern.

SET_PLANE_MASK determines which planes are enabled for writing.
Usually, you enable writing to all planes. This instruction ANDS
(Boolean) the current color index and the plane mask (a
representation of the planes you select). For the effect of a
plane mask that is not set to all planes, see SET_PLANE_MASK in
Chapter 6.

2-15

INTRODUCTION TO GIDIS INSTRUCTIONS

2.2.8 Line and Curve Attributes

You can choose to draw lines and curves with a solid or patterned
line. With SET LINE_TEXTURE you select the bit pattern that
determines the appearance of the lines you draw.

You can also select the thickness of your drawing line with
SET PIXEL_SIZE. SET PIXEL SIZE sets the size of the logical
pixel used as a paintbrush in subsequent drawing. The pixel is
always a rectangle orthagonal to the x and y axes. Because of
this, diagonal lines appear thicker than horizontal and vertical
lines, except on a stroke device.

Figure 2-3 shows different pixel sizes used to draw a line.

Figure 2-3: Various Logical Pixel Sizes

2.2.9 Filled Figure Attributes

GIDIS allows you to select the two-dimensional pattern to be used
in filling polygons. The pattern you choose is called the area
texture cell. With the SET_AREA_TEXTURE instruction, you can
choose either a character from an alphabet, or the current line
texture as your area texture cell. Whatever pattern you choose
remains the current area texture cell until you change it with
another SET_AREA_TEXTURE.

You can choose a character from any alphabet, for example the
default DEC Multinational Character Set, or an alphabet you
create. Note, there is a 16 by 16 bit size restriction for a
character used as a texture cell. However, with
SET_AREA_TEXTURE_SIZE, you can enlarge the character used in
filling a figure. GIDIS does this by multiplying the pattern in
the texture cell. You can also clip unwanted white space from a
text cell with SET_AREA_CELL SIZE.

2-16

INTRODUCTION TO GIDIS INSTRUCTIONS

If you want a solid fill, specify a solid line with
SET_LINE_TEXTURE and choose the current line texture as your area
texture cell.

2.2.10 Text Attributes

With GIDIS Text Attribute instructions you control the size,
spacing, orientation, and rendition (such as bold or italics) of
text.

The GIDIS text model is based on the notion of character cell. A
character cell is a rectangular field of ON and OFF bits. ON
bits form a character pattern; OFF bits form the background. The
character cell that stores the bit patterns can be up to 64 bits
high and 64 bits wide.

You determine how the character cell is
the unit cell size and display cell
specifies the size of the character you
can scale the stored character cell to
characters. Scaling up is restricted to
pattern in the character cell.

displayed by specifying
size. SET_CELL_UNIT_SIZE
want displayed. GIDIS
create larger or smaller
multiples of the bit

SET_CELL_DISPLAY_SIZE gives you a way of extending the background
field if you want. Having a display cell larger than the unit
cell is an easy way to create white space between characters.
You must always set both unit and display cell size, even if they
are identical.

Besides setting a display cell width larger than a unit cell
width to create white space, you can control spacing between
character cells by specifying how to update the current position
after a character is displayed. You have three choices:

e Implicit movement only. Specify implicit movement with
SET_CELL_MOVEMENT_MODE and set explicit movement to (0,0)
with SET_CELL_EXPLICIT_MOVEMENT. This causes the current
position to move a display cell width along the current angle
of cell rotation. If the current angle is 0, normal left to
right text results.

e Explicit movement only. Specify no implicit movement with
SET_CELL_MOVEMENT_MODE and set explicit movement to whatever
you want with SET_CELL_EXPLICIT_MOVEMENT. For example, if
you want upright characters drawn diagonally up to the right,
set explicit movement to (n,-n). Note, however, that unless
your explicit movement is greater than the display cell size,
your characters overwrite each other.

2-17

INTRODUCTION TO GIDIS INSTRUCTIONS

• Implicit and explicit movement. Specify implicit movement
with SET_CELL_MOVEMENT_MODE and explicit movement with
SET_CELL_EXPLICIT_MOVEMENT. If you use both implicit and
explicit movement, your characters move a display cell width
plus whatever explicit movement you specify.

Figure 2-4 shows the three possibilities.

A c
Implicit Movement Only

A B
Explicit Movement Only

A B c
Implicit and Explicit Movement

Figure 2-4: Implicit and Explicit Movement

2-18

INTRODUCTION TO GIDIS INSTRUCTIONS

GIDIS allows you to control how accurately the current position
is updated. For device-independence and complete accuracy at the
level of GOS, specify global symmetry. For best performance and
constant intercharacter spacing, specify local symmetry. You
specify symmetry with SET_CELL_MOVEMENT_MODE.

Accuracy and constant spacing are contradictory goals, because
unit cell width may not be an integral number of hardware pixels.
For example, suppose you specified a spacing of 25 GOS units, and
the current output device had one hardware pixel for every two
GOS units. With local symmetry, each character would move 24 GOS
units. With global symmetry, each move would be 25 GOS units
conceptually, but actually 12 pixels, then 13, 12, 13 and so on.

A character's orientation (the direction the character faces)
depends on the angle of rotation as specified by
SET_CELL_ROTATION. A character's angle of rotation is with
respect to its top left corner. A positive angle rotates the
left edge of the cell counter-clockwise; a negative angle rotates
the left edge of the cell clockwise. The entire character cell
rotates, without changing the shape of the cell. Figure 2-5
shows character cell rotation.

Figure 2-5: Character Cell Rotation

2-19

INTRODUCTION TO GIDIS INSTRUCTIONS

You can change the shape of the cell by using SET_CELL_OBLIQUE.
When you specify a nonzero angle, the character cell becomes a
parallelogram. A positive angle results in a back-slanted
character; a negative angle in a front-slanted character.

You select various cell renditions by setting the appropriate
flag with the SET_CELL_RENDITION instruction. If possible, GIDIS
selects a font with the specified rendition. Otherwise, GIDIS
algorithmically creates the specified rendition. You can specify
the following rendition attributes: back-slant, italics, bold
and proportional text.

Table 2-4 summarizes the GIDIS Drawing Attributes.

Table 2-4: GIDIS Drawing Attributes

Instruction Action

Writing Attributes

SET_PRIMARY_COLOR

SET_SECONDARY_COLOR

SET_PLANE_MASK

SET_WRITING_MODE

Line and Curve Attributes

SET_LINE_TEXTURE

SET PIXEL_SIZE

2-20

Identifies the color map entry
to use when drawing subsequent
ON bits.

Identifies the color map entry
to use when drawing subsequent
OFF bits.

Specifies which planes are
accessible.

Selects writing mode to use in
subsequent drawing.

Specifies the pattern used in
drawing lines.

Specifies the thickness of the
drawing line.

INTRODUCTION TO GIDIS INSTRUCTIONS

Instruction

Filled Figure Attributes

SET_AREA_TEXTURE

SET_AREA_TEXTURE SIZE

SET_AREA_CELL SIZE

Text Attributes

SET_CELL_UNIT_SIZE

SET_CELL_DISPLAY_SIZE

SET_CELL_EXPLICIT_MOVEMENT

SET_CELL_MOVEMENT_MODE

SET_CELL_OBLIQUE

SET_CELL_ROTATION

SET_CELL_RENDITION

Action

Selects the character to use as
the texture cell in filling
subsequent figures.

Specifies the size to draw
subsequent texture cells.

Clips or pads the last selected
texture cell.

Specifies the size to draw
subsequent character cells.

Specifies the size of a
character's background field.

Specifies the distance to move
the current position after a
character is drawn.

Specifies how the current
position moves after a
character is drawn, and how
accurately the current position
is updated.

Specifies how much to slant the
character display cell.

Defines the angle of rotation
at which subsequent characters
are drawn.

Selects character renditions
such as backslant, italics,
bold, and proportional spacing.

2-21

INTRODUCTION TO GIDIS INSTRUCTIONS

2.2.11 ph and Fonts

GIDIS uses the current alphabet in all text operations. To
select an alphabet, use SET_ALPHABET. The selected alphabet
remains current until you do another SET_ALPHABET.

A GIDIS alphabet is like an ASCII character set. When you
specify an index within an alphabet, you know which particular
character should be displayed. For example, the default alphabet
(alphabet 0) is the DEC Multinational Character Set. When you
specify index 101 (octal), you know that an uppercase "A" will be
displayed.

A font, on the other hand, controls what the "A" looks like. A
font's general appearance is denoted by typeface, for example
Courier. A font has a rendition, for example roman, italic,
bold, or bold italic. Fonts may be monospaced (each character
cell has the same width) or proportionally spaced (character cell
width varies with the character, for example the cell containing
the character "m" is wider that the cell containing the character
"i") .

You create more than one font for an alphabet for improved
quality. As Section 2.5 explained, GIDIS enables you to vary the
appearance of text in a number of ways. GIDIS achieves these
variations by either selecting a new font or algorithmically
transforming the current font. Because there are limits to what
can be effectively done by algorithmic transformation, you can
ensure better quality by supplying a variety of fonts.

With GIDIS, you are not limited to standard alphabets and
character sets. You can build your own alphabets and design your
own glyphs, the graphic representations of each member of the
alphabet. Section 2.2.13 explains how to do both. You may have
up to 16 alphabets available at any time and an unlimited number
of fonts. When you first select an alphabet from 1-15, it
contains no characters. You fill the alphabet in one of two
ways: you load a font file with LOAD_BY_NAME, or you dynamically
create a font with CREATE_ALPHABET.

2.2.12 Font Files

A font file is simply a font that has been stored i~ a file.
Appendix D explains how to name and store a font file so that the
font server can use it.

2-22

(

/

INTRODUCTION TO GIDIS INSTRUCTIONS

You load a font file with the LOAD_BY_NAME instruction.
LOAD_BY_NAME has two formats. Format 1 selects a specific font
file. This format is primarily provided for compatibility with
earlier versions of GIDIS. (See Chapter 6 for details.)

Format 2 (also called a family LOAD_BY_NAME) selects a typeface,
known in GIDIS as a font family and identified by a family ID.
When you do a Family LOAD_BY_NAME, you have really selected a
pool of fonts. As you vary text attributes (such as unit cell
size) and rendition attributes (such as bold), GIDIS
automatically switches to the font file of the current family
that best satisfies the attributes you have selected. (See
Chapter 6 for details.)

2.2.13 Dynamically Created Fonts

You can build a font with CREATE ALPHABET. This instruction
establishes a storage cell size for each glyph in the font and
the number of glyphs it contains. When you build a font with
CREATE_ALPHABET you have two options for designing each glyph.
With LOAD_CHARACTER_CELL you define a glyph by rows of bit
patterns within a character cell. This method of defining glyphs
is well-suited to raster devices.

With BEGIN_DEFINE_CHARACTER and END_DEFINE_CHARACTER, you create
a glyph by drawing into the character cell with any of the GIDIS
drawing instructions. All instructions between
BEGIN_DEFINE_CHARACTER and END_DEFINE_CHARACTER draw into the
character cell. This method of defining glyphs is well-suited to
any device.

A font created dynamically with CREATE_ALPHABET has certain
disadvantages.

• It takes time to build the font each time your application
runs.

• The font remains defined only until you put another font into
its alphabet.

• The font is stored in Read/Write memory. As a result, it is
expensive to swap it to disk.

Thus, CREATE_ALPHABET should be used primarily for small, special
alphabets like a set of patterns for filling figures.

2-23

INTRODUCTION TO GIDIS INSTRUCTIONS

If you are using P/OS, you can store a dynamically created font
in a font file, by using the GIFONT routine of the GIDIS Call
Interface. See Chapter 4 and Appendix D for details.

Table 2-5 summarizes GIDIS instructions for alphabets and fonts.

Table 2-5: Alphabet and Font Instructions

Instruction Action

SET_ALPHABET

LOAD_BY_NAME(l)

LOAD_BY_NAME(2)

CREATE_ALPHABET

LOAD_CHARACTER CELL

BEGIN_DEFINE_CHARACTER

END_DEFINE_CHARACTER

Selects the current alphabet.

Loads the specified font file
into the current alphabet.

Associates the current alphabet
with the specified font family.

Reserves storage space for a new
alphabet font. Specifies the
number of glyphs in the alphabet
and the size of glyphs in the
font.

Defines a glyph in terms of bit
patterns within a character cell.

Starts a character definition
block. All subsequent
instructions draw into the
chaPacter cell.

Completes a character' definition
block and draws the glyph.

2-24

INTRODUCTION TO GIDIS INSTRUCTIONS

2.2.14 Reports

You can ask GIDIS to generate various reports. You do this by
issuing the appropriate request instruction. You read the report
using GIREAD, as described in Chapter 4 (for P/OS) or Chapter 5
(for RT-11).

You can use reports to control program flow. For example, the
position after a DRAW_ARCS or DRAW_CHARACTERS (local symmetry)
may be different than what your program computes. You can check
the actual current position with REQUEST_CURRENT_POSITION.

You can also use reports during debugging. In particular, every
GIDIS instruction sets current status to SUCCESS or FAILURE. You
may want to check current status after each GIDIS instruction
when debugging. However, the cost of REQUEST_STATUS is too high
for such use in a running application.

Table 2-6 summarizes
instructions.

all

Table 2-6: Report Instructions

the GI DIS report generating

Instruction Action

REQUEST_CELL_STANDARD

REQUEST_CURRENT_POSITION

REQUEST_OUTPUT_SIZE

REQUEST_STATUS

REQUEST_VERSION_NUMBER

Reports in current GOS units the
cell width and height to specify
to generate standard size
characters.

Reports the current position.

Reports the attributes of the
current device's view surface.

Reports the success or failure of
the last instruction.

Reports characteristics of the
current driver.

2-25

(

CHAPTER 3

PRO/GIDIS INSTRUCTION SYNTAX

The PRO/GIDIS interpreter accepts a stream
instructions. An instruction consists of an
(opcode) word, and some number of argument words.

The format of an opcode word is:

high byte low byte

opcode length

of PRO/GI DIS
operation code

Most GIDIS instructions require a fixed number of arguments. For
example, SET_POSITION needs exactly two arguments.

Some GIDIS instructions accept a variable number of arguments,
depending on whether optional arguments are included.
Instructions in this category include: LOAD_BY_NAME and
CREATE_ALPHABET. When an optional argument is omitted, GIDIS
supplies a default as described in Chapter 6.

Some fixed length instructions are repeatable. You can repeat
some of the arguments without repeating the opcode. For example,
DRAW_REL_LINES X1, Y1, X2, Y2, X3, Y3 is equivalent to
DRAW_REL_LINES X1, Y1 DRAW_REL_LINES X2, Y2, DRAW_REL_LINES X3,
Y3. The instructions in this class include: DRAW_LINES,
DRAW_REL_LINES, DRAW_ARCS, DRAW_REL_ARCS, DRAW_CHARACTERS, and
DRAW_PACKED_CHARACTERS.

3.1 OPCODE BYTE

Each GIDIS instruction has a corresponding numeric code. For
example, the INITIALIZE instruction has an opcode of 1, while the
SET_PRIMARY_COLOR instruction opcode is 21. {Appendix A provides
a list of PRO/GIDIS instructions and their corresponding
opcodes.)

3-1

OPCODE BYTE

Your program can define PRO/GIDIS instruction names as numeric
constants. For example, in MACR0-11, this could be:

G$INIT 1.
G$PRIM 21.

In FORTRAN, this could be:

INTEGER*2 GINIT,GPRIM
PARAMETER (GINIT = 1, GPRIM 21)

In PASCAL, this could be:

CONST
INITIALIZE = 1;
SET_PRIMARY_COLOR 21;

3.2 LENGTH BYTE AND THE ARGUMENT LIST

The length byte dictates the format of the instruction's argument
list: counted or uncounted. Generally, you use a counted list
for instructions with a fixed number of arguments, and an
uncounted list for instructions with a variable number of
arguments. However, you can use either a counted or uncounted
argument list with any instruction.

A length value in the range 0 to 254 indicates a counted argument
list. For example, if you specify a length value of two,
PRO/GIDIS expects two argument words as shown below:

. BYTE

. WORD

. WORD

2. '29 .

100 .
350 .

;Instruction data block length = 2
;Opcode for SET_POSITION instruction 29
;x coordinate for current position
;y coordinate for current position
;Following execution of this instruction,
;the current position is 100,350.

A length value of 255 indicates an uncounted argument list.
Uncounted argument lists are terminated by an END_LIST
instruction word (-32768), as shown below. Thus an argument word
in an uncounted argument list cannot contain the value -32768.

.BYTE 255.,26.;introduces an uncounted argument list
;opcode for DRAW_REL - LINES

. WORD 10 . ;dxl

. WORD -30 . ;dyl

. WORD 20 . ;dx2

. WORD +60 . ;dy2

.WORD -32768. ;END_LIST instruction opcode word

3-2

SYNTAX ERRORS

3.3 SYNTAX ERRORS

If GIDIS does not recognize an instruction opcode, it ignores
that instruction and accompanying arguments. It also sets the
status flag to FAILURE. If GIDIS encounters an instruction with
insufficient arguments, it does not execute the instruction and
sets the status flag to FAILURE. If GIDIS encounters an
instruction with extra arguments, it executes the instruction as
though the extra arguments did not exist.

For example, a SET_POSITION instruction with only one argument is
ignored, while a SET POSITION with three arguments is executed
using only the first two arguments.

There are only two ways to confuse the GIDIS interpreter:

• Use END_LIST as an argument word in an uncounted argument
list.

e Specify an argument count that differs from the actual number
of arguments passed.

If you do either, you must reinitialize GIDIS.
INITIALIZE instruction in Chapter 6.

3-3

See the

CHAPTER 4

USING PRO/GIDIS WITH P/OS

This chapter describes how to use the GIDIS Call Interface
(GIDCAL) with P/OS. It assumes you understand the conceptual
framework of PRO/GIDIS (described in Chapter 2) and the PRO/GIDIS
instruction syntax (described in Chapter 3).

• Section 3.1 describes the GI DIS Call Interface (GIDCAL) .

• Section 3.2 describes the various devices accessed by GIDCAL .

• Section 3. 3 explains how to build a task with GIDCAL.

• Section 3 . 4 documents GIDCAL error reporting.

• Section 3. 5 lists sample programs for P/OS.

4.1 THE GIDIS CALL INTERFACE (GIDCAL)

The GIDIS call interface (GIDCAL) allows you to access each of
the various GIDIS devices in the same way. GIDCAL consists of
six routines:

e GIOPEN

e GIWRIT

e GIREAD

e GICLOS

e GIFONT

4-1

THE GIDIS CALL INTERFACE (GIDCAL)

• GIPLAY

You access each routine by using the FORTRAN-compatible calling
sequence (sometimes called the RS calling convention). This
means arguments are passed by reference, RS is set to point to
the argument list, and Rl through RS are preserved by the called
routine.

These standard routines make it easy
applications in high-level languages.
MACR0-11 or any Tool Kit high-level
FORTRAN-style calls.

Normally you use GIDCAL as follows:

for you to develop
You can use GIDCAL from

language that supports

1. Select the GIDIS driver you want to use with GIOPEN.

2. Pass GIDIS instructions with one or more calls to GIWRIT.

3. Read reports from REQUEST-type instructions, if any, with
GIREAD.

4. Terminate the GIDIS connection with GICLOS.

Each GIDCAL routine returns a status code that indicates the
results of the requested operation. If the operation is
successful, a code of 1 is returned. If the operation is
unsuccessful, a two-word error code block is returned. Section
4.4 explains how to interpret the codes.

You may have more than one GIDIS connection open at a time. This
is useful if you want to print a GIDIS graphic while maintaining
a connection to video GIDIS. GIDIS knows which driver to send
instructions to by the Logical Unit Number (LUN) you specify with
the GIOPEN call.

NOTE

Some high-level languages may reserve certain
LUNs for their own use. If this is the case, you
cannot access the same LUN. Check language
documentation prior to assigning LUNs.

The following sections describe each GIDCAL routine and its
arguments. The actual syntax for passing these arguments is
specific to the high-level language you are using. See language
documentation for details.

4-2

(
THE GIDIS CALL INTERFACE (GIDCAL)

4.1.1 GIOPEN

GIOPEN initiates contact with the GIDIS driver of your choice.
You choose a driver by specifying device type (Devtype} in the
list of arguments. If you try to GIOPEN an active driver, Status
is set to (-1,-7).

A GIOPEN does not affect the state of GIDIS.
currently selected remain in force.

All attributes

The list of arguments for GIOPEN follows.

GIOPEN (Status, LUN, Message, Msglen, Devtype, Driver}

Status

LUN

Message

Msglen

Dev type

Driver

A two-word integer array used to return a code
indicating the results of the requested
operation.

Unit-number associated with this GIOPEN. It
should be an integer from 0 to 15. If not,
Status is set to (-5,-1). If this LUN is
already assigned to a GIDIS driver, Status is
set to (-5,-4).

Data to send to the driver when contact is
initiated. Except as noted in Section 4.2,
Message should be a word containing a 0.

The number of words in Message. Except where
noted, it should be 1. If Msglen is less than 0
or greater than 128, Status is set to (-5,-3).

An integer that identifies the desired output
device. If Devtype is invalid, Status is set to
(-5,-2). If you try to GIOPEN a device for
which there is no driver, Status is set to
(-1,-2). The device types are:

0 - Disk File
1 - LA50
2 - LQP02
3 - LA100/LA210
4 - LVP16
5 - Other
6 - Video
7 - LN03
8 - Palette
9 - LQP03

Normally a O. It should be nonzero only if you
need to override the driver designated for the

4-3

THE GIDIS CALL INTERFACE (GIDCAL)

device. (See Section 4.2 for driver names.) If
you supply your own driver, identify it by the
task name, in Radix-50.

Normally, the argument list for GIOPEN is (Status, LUN, 0, 1,
Devtype, 0).

4.1.2 GIWRIT

GIWRIT outputs a buffer of GIDIS command data to the specified
GIDIS driver. The data in a buffer does not have to start or end
on a command boundary.

The list of arguments for GIWRIT follows.

GIWRIT (Status, LUN, Message, Msglen)

Status

LUN

Message

Ms glen

4.1.3 GIREAD

A two-word integer array used to return a code
indicating the results of the requested
operation.

Identifies the GIDIS driver to talk to. If no
GIOPEN has been done for the specified value,
Status is set to (-5,-1).

The command data to send to the specified
driver.

The number of words in Message. If it is less
than 0 or greater than 4095, Status is set to
(-5, -3).

GIREAD waits for GIDIS to return the report and places it in the
specified buffer. If the report is longer than the specified
buffer, the end of the report is truncated. If the report is
shorter than the specified buffer, the trailing words of the
buffer are left unchanged.

The list of arguments for GIREAD follows.

GIREAD (Status, LUN, Buffer, Buflen)

Status A two-word integer array used to return a code
indicating the results of the requested
operation.

4-4

LUN

Buffer

Bu fl en

4.1.4 GICLOS

THE GIDIS CALL INTERFACE (GIDCAL)

Identifies the GIDIS driver sending the report.
If no GIOPEN has been done for the specified
device driver, Status is set to (-5,-1).

Room for the report returned by GIDIS. Recall
that the first word of a report contains a
header specifying the type of report and the
number of words in the buffer.

The number of words in the report buffer.

GICLOS tells the specified GIDIS to end the connection. GICLOS
does not return to its caller until the specified GIDIS has told
it that all picture data has been output to the device.

A GIDIS driver processes a GICLOS by simulating an END PICTURE
instruction. (See Chapter 6 for details.) If the driver is not
Video GIDIS, it exits when it has finished processing the
picture.

If the driver is the type that buffers a picture before writing
it, (for example, G$BITM) GICLOS causes picture output to
commence if either:

o The user task has not done any END PICTURE commands.

• The user task has done drawing commands since its last
END_PICTURE.

The list of arguments for GICLOS follows.

GICLOS (Status, LUN)

Status

LUN

A two-word integer array used to return a code
indicating the results of the requested
operation.

Identifies the GIDIS driver to terminate. If no
GIOPEN has been done for the specified value,
Status is set to (-5,-1).

4-5

THE GIDIS CALL INTERFACE (GIDCAL)

4.1.5 GIFONT

GIFONT is independent of the other routines in GIDCAL. You use
it to create a font file from the font loaded into alphabet 15.
See CREATE_ALPHABET, SET_ALPHABET, BEGIN_DEFINE_CHARACTER, and
LOAD_CHARACTER_CELL in Chapter 6 for information on how to create
a GIDIS font.

The list of arguments for GIFONT follows.

GIFONT (Status, File spec, Len, Region name, Buffer, APR, LUN)

Status

File spec

Len

Region name

Buffer

APR

LUN

A two-word integer array used to return a code
indicating the results of the requested
operation.

Name of the font file you want created in ASCII.
For example, "MYFONT.TSK."

Number of characters in File spec.

Name (in Radix-50) to use for the font region
when the font file is later used by GIDIS. See
Appendixes c and D for details.

256 word buffer that GIFONT uses as a temporary
work area.

APR that GIFONT maps alphabet fifteen's font
into (8KB at a time).

Driver GIFONT should use when writing a font
File spec

If you want to create a stroke font file (as opposed to a raster
font file), you must run Plotter GIDIS. This ensures that the
font is properly stored. To indicate a stroke font in the .FDF
file (see Appendix D), specify a cell width and height of 1.

4.1.6 GIPLAV

Like GIFONT, GIPLAY is independent from the other GIDCAL
routines. GIPLAY plays back the specified .GID file to the
current output device, such as the video monitor. The file you
want to play back must be on the local node. Only one task at a
time can be doing a playback.

4-6

THE GIDIS CALL INTERFACE (GIDCAL)

To use GIPLAY, you must first install the following file:

INSTALL [ZZSYS]CGLGRT.TSK

The list of arguments for GIPLAY follows:

GIPLAY (Status, LUN, File Spec, Len)

Status

LUN

File spec

Len

A two-word integer array used to return a code
indicating the results of the requested
operation.

Identifies the GIDIS driver writing the picture.
If no GIOPEN has been done for the specified
value, Status is set to (-5,-1).

Name of the file you want played back.

Number of characters in File spec. A File spec
can contain 1 to 59 characters. A length
outside these bounds returns a Status of
(-5,-5).

4.2 DEVICES ACCESSED BY GIDCAL

The Devtype value defined in a GIOPEN tells GIDIS which driver to
access. Information about each device and its associated driver
follows.

4.2.1 Disk File

The Message argument to GIOPEN should be the file specification
that is the output device. There should be a null byte following
the characters in the file spec. The Msglen argument to GIOPEN
is the number of words in the file spec. Thus, whether the file
specification is "A.GID" or "AB.GID", Msglen contains 3.

Calling GICLOS closes the file.

The driver is the task G$FILE.

4-7

DEVICES ACCESSED BY GIDCAL

4.2.2 LA50

The device area is assumed to be 8 inches wide by 10 and 2/3
inches high. The picture is automatical drawn to best fill the
available area, so a landscape picture is drawn sideways.

Picture drawing starts when an END PICTURE instruction is issued
(or GICLOS simulates one).

The driver is the task G$BITM.

4.2.3 LQP02

No GIDIS driver is supplied for the LQP02. However, GIOPEN tries
to access a task named G$LQP. If G$LQP does not exist, GIOPEN
fails with Status set to (-1,-2).

4.2.4 LA 1OO/LA210

The device area is assumed to be 8 inches wide by 10 and 2/3
inches high. The picture is automatically drawn to best fill the
available area, so a landscape picture is drawn sideways.

Picture drawing starts when an END_PICTURE instruction is issued
(or GICLOS simulates one).

The driver is the task G$BITM.

4.2.5 LVP16, HP7475, HP7470 Plotters

The user controls the device area by setting a dip switch. If
set to A3, the area is about 17 inches wide by 11 inches high.
If set to A4, the area is about 10 inches wide by 7.5 inches
high. The picture is automatically drawn to best fill the
available area, so a portrait picture is drawn sideways.

NOTE

The large paper size and portrait output do not
apply to the HP7470.

The driver is the task G$HPGL.

4-8

DEVICES ACCESSED BY GIDCAL

4.2.6 Other Device

This device type is for accessing a private GIDIS. This allows
third-party suppliers to develop alternative GIDIS devices. The
format and content of the initialization message depend on the
device supplier. However, we do suggest that suppliers allow a
one-word message containing a zero.

No device driver is supplied for device type Other. However,
GIOPEN tries to access a task named G$0TH. If the device
supplier gives his GIDIS driver a different name than G$0TH, he
must specify that name in the Driver argument to GIOPEN.
Remember, the driver name should be the task name in Radix-SO.

4.2.7 Professional Video

The device area is the entire screen. The screen is 8 units wide
by 5 units high.

Picture drawing occurs as GIDIS instructions are received.

The driver is part of the Terminal Subsystem.

4.2.8 LN03

The device area is assumed to be 8 inches wide by 10 and 2/3
inches high. The picture is automatically drawn to best fill the
available area, so a landscape picture is drawn sideways.

Picture drawing starts when an END_PICTURE instruction is issued
(or GICLOS simulates one).

The driver is the task G$BITM.

4.2.9 Polaroid Palette

The device area is the entire print or slide. It is nominally 4
units wide by 3 units high.

Picture drawing starts when an END_PICTURE instruction is issued
(or when GICLOS simulates one). During picture drawing, the
Palette driver uses the video screen as a work area. When a
slide camera is being used, GIOPEN opens the camera's shutter;
GICLOS closes it and advances the film.

4-9

DEVICES ACCESSED BY GIDCAL

The driver is the task G$PAL. If it sets Status to (-6, any), it
means a Palette I/O error has occurred. The second word of
Status is the code returned by the Palette system. Table 4-1
lists the error codes, their meanings, and user actions.

Table 4-1: GIDCAL Palette Errors

Palette
Code

"0"

"1"

112 II

"3"

"4"

4.2.10 LQP03

Decimal
Value

48

49

50

51

52

Error

Invalid Palette
command

Invalid argument to
Palette command

Filter wheel error

Communications
error

No vertical sync

User Action

Report to Polaroid
if the error
recurs.

Report to Polaroid
if the error
recurs.

Report to Polaroid
if the error
recurs.

Try readjusting
RS-232 cable. If
the error recurs,
report to Polaroid.

Try readjusting
video cables and
turning Palette off
and on. If the
error recurs,
report to Polaroid.

No GIDIS driver is supplied for the LQP03. However, GIOPEN tries
to access a task named G$LQP. If G$LQP does not exist, GIOPEN
fails with Status set to (-1,-2).

4-10

BUILDING A TASK WITH GIDCAL

4.3 BUILDING A TASK WITH GIDCAL

GIDCAL
task,
file.
about

is part of the PRO/Tool Kit. To link GIDCAL with your
specify GIDCAL/LB just as you would for any other .OLB
GIDCAL.OLB is on LB:[l,5]. GIDCAL, without GIFONT, uses

800 words of your address space.

When you use GIFONT, you must include RMS in your task, plus room
for the data area you pass to it.

Note the driver-specific instructions in Sections 4.4.1 and
4.4.2.

4.3. 1 Video GIDIS

• When accessing Video GIDIS, GIDCAL uses one event flag (EFN).
The default EFN is 29. If you want to give the EFN a
different value, specify GBLDEF=GI$EFN:value in the task
build command file.

• GIOPEN assigns the LUN you specified, if Devtype is Video.

4.3.2 Other GIDIS Drivers

• The GIDIS tasks G$BITM, G$HPGL, and G$PAL were built with an
assigned ASG of the form ASG=LP:l. When one of these tasks
starts up, it attaches the device associated with LUN 1;
consequently, you cannot attach this device.

e Do not use the RSUM$ and SPND$ system directives with GIDCAL.

e GICLOS sends a one-word message that contains a -1.
Therefore, you should not send such a buffer using GIWRIT.

• If you plan to access an LASO, LA100, or LN03, put INSTALL
[ZZSYS]GIBITM in your installation file. If you plan to
access Palette, put INSTALL [ZZSYS]GIPAL in your installation
file. If you plan to access a private GIDIS, add the
appropriate INSTALL command to your installation file.

4-11

ERROR REPORTING

4.4 ERROR REPORTING

All GIDCAL routines return a two-word status value. If the value
of the first word is less than 0, an error was detected. The
first word identifies the class of error; the second word
identifies which error of the class has occurred. Table 4-2
lists the error classes and user actions to deal with the
problem.

Table 4-2: GIDCAL Errors listed by Class - P/OS

Code

-1

-2

-3

-4

-5

-6

Meaning

Directive error

I/O Error

RMS Error

Internal error in GIDIS
driver

Interface error

Palette driver error

User Action

Refer to RSX-llM/M-Plus
Executive Reference
Manual for specific
error.

Refer to IAS/RSX-11
Operations Reference
Manual for specific
error.

Refer to RMS-11 Macro
Programmer's Guide for
specific error.

Report error to
DIGITAL.

Refer to Table 4-3 for
specific errors.

Refer to Table 4-1 for
specific error.

An error is driver-related if the first
anything but -5. This usually indicates a
example, the device is offline), but it could
passed a bad File spec to File GIDIS. Table
of errors for the value -5.

word of Status is
device problem (for
also mean that you
4-3 lists the types

4-12

ERROR REPORTING

Table 4-3: GIDCAL Interface Errors - P/OS

Code

-1

-2

-3

-4

Error

Invalid or unassigned
LUN

Invalid device type

Improper message length

LUN already attached to
a GIDIS driver

4-13

User Action

Assign LUN with GIOPEN.

See Section 4.3.

Assign Msglen within
range.

Select a new LUN.

SAMPLE P/OS PROGRAMS

4.5 SAMPLE P/OS PROGRAMS

4.5.1 Sample MACR0-11 Program

OBUF:
RBUF:

ERROR:

OARG:

WARG:

.BLKW 2.

.BYTE

. BLKW
0.,55. ;Length=O REQUEST_CURRENT_POSITION
3 .

MOV #OARG, RS
JSR PC,GIOPEN
TST STAT
BLE ERROR

MOV #WARG, R5
JSR PC,GIWRIT
TST STAT
BLE ERROR

MOV #RARG, R5
JSR PC, GI READ
TST STAT
BLE ERROR

MOV #CARG, RS
JSR PC, GICLOS
TST
BLE

.BYTE

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

. BYTE

.WORD

.WORD

.WORD

.WORD

STAT
ERROR

6. '0
STAT
LUN
OPMSGL
OPMLEN
DEVTYP
DRIVER

4 . ' 0 .
STAT
LUN
OBUF
MS GLEN

;SEND INSTRUCTION TO PRO/GIDIS

;BRANCH IF GIOPEN FAILED

;SEND INSTRUCTION TO PRO/GIDIS

;BRANCH IF GIWRIT FAILED
;READ THE REPORT

;READ THE REPORT

;BRANCH IF GIREAD FAILED

NEW CONTENTS OF RBUF:
BYTE AT RBUF 2. (LENGTH)
BYTE AT RBUF+1 1.

(CURRENT POSITION REPORT HDR)
RBUF+2: CURRENT X POSITION
RBUF+4: CURRENT Y POSITION

;BRANCH IF GICLOS FAILED

; Error handling routine

4-14

SAMPLE P/OS PROGRAMS

RARG: .BYTE 4. , 0.
.WORD STAT
.WORD LUN
.WORD RBUF
.WORD BUFLEN

CARG: .BYTE 2. , 0.
.WORD STAT
.WORD LUN

STAT: . WORD 0. '0 .
LUN: . WORD 5 .
OPMSGL: .WORD 1.
OPMLEN: .WORD 0.
DEVTYP: .WORD 6.
DRIVER: .WORD 0.
MSGLEN: .WORD 1.
BUFLEN: . WORD 3 .

4.5.2 Sample FORTRAN Program

INTEGER*2 OBUF
INTEGER*2 RBUF(3),STAT(2)

OBUF = 55*256+0 !OPCODE 55=REQUEST_CURRENT_POSITION
!LENGTH=O

CALL GIWRIT (STAT, 5, OBUF, 1)
IF (STAT.LE.0) GO TO 999 !BRANCH IF GIWRIT FAILED

CALL GIREAD (STAT, 5, RBUF, 3)
IF (STAT.LE.0) GO TO 999 !BRANCH IF GIREAD FAILED

999

NEW CONTENTS OF RBUF:
RBUF(l): 258 (i.e., 1*256+2 BECAUSE
1 = THE REPORT HDR AND 2 = LENGTH OF DATA FOLLOWING)
RBUF(2): CURRENT X POSITION IN GIDIS OUTPUT SPACE
RBUF(3): CURRENT Y POSITION IN GIDIS OUTPUT SPACE

ERROR FOUND

4-15

CHAPTER 5

USING PRO/GIDIS WITH RT-11

This chapter describes how to pass instructions to the
interpreter under RT-11. It assumes you understand
conceptual framework of PRO/GIDIS (described in Chapter 2)
the PRO/GIDIS instruction syntax (described in Chapter 3).

GIDIS
the
and

RT-11 requires that the FPU (floating point unit) hardware be
installed on the Professional running PRO/GIDIS. RT-11 VS.2 runs
PRO/GIDIS only as the foreground job under the XM monitor.
Information in Chapter 6 about other devices does not apply to
PRO/GIDIS under RT-11.

PRO/GIDIS requires two files: GIDIS.SAV and ALPHOO.FNT.
GIDIS.SAV is the utility save image. ALPHOO.FNT is the default
GIDIS font file. Both files must be on the system (SY:) device.

Issue the following command to start PRO/GIDIS and make it
available to application programs:

.FRUN GIDIS.SAV

RT-11 provides software access to
interfaces.

PRO/GIDIS

• The GIDCAL interface (GIDIS call routines)

using

• The MACR0-11 interface (.SPFUN programmed request)

• The FORTRAN interface (ISPFN/ISPFNC/ISPFNF/ISPFNW)

three

The Professional Interface (PI) handler controls the operation of
PRO/GIDIS and is transparent to the user. PRO/GIDIS instructions
from application programs are sent to and received from PI using
any of the above interfaces.

5-1

THE GIDIS CALL INTERFACE (GIDCAL)

5.1 THE GIDIS CALL INTERFACE (GIDCAL)

Under RT-11, the GIDCAL routines consist of four FORTRAN system
subroutines:

e GIOPEN

e GIWRIT

e GIREAD

e GICLOS

The subroutines are located in the system subroutine library
SYSLIB.OBJ.

With the following exceptions, the GIDCAL routines work the same
under RT-11 as they do under P/OS .

• GIFONT and GIPLAY, two GIDCAL routines available under P/OS,
are not currently supported.

• For RT-11 V5.2, GIDCAL addresses only the PRO Video (Devtype
6) •

• In GIWRIT the maximum message length (msglen) is 2048 decimal
words.

Normally you would use GIDCAL as follows:

1. Initiate the GIDIS operation with GIOPEN.

2. Pass GIDIS instructions with one or more calls to GIWRIT.

3. Read reports from REQUEST-type instructions, if any, with
GIREAD.

4. Terminate the GIDIS connection with GICLOS.

Each GIDCAL routine returns a status code that indicates the
results of the requested operation. If the operation is
successful, a code of 1 is returned. If the operation is
unsuccessful, a two-word error code block is returned. Section
5.1.5 explains how to interpret the codes.

NOTE

Some high-level languages may reserve certain
LUNs for their own use. If this is the case, you
cannot access the same LUN. Check language
documentation prior to assigning LUNs.

5-2

THE GIDIS CALL INTERFACE (GIDCAL)

The following sections describe each GIDCAL routine and its
arguments. The actual syntax for passing these arguments is
specific to the high-level language you are using. See language
documentation for details.

5.1.1 GIOPEN

GIOPEN initiates contact with the Professional interface (PI)
handler and assigns a logical unit number (LUN) for this GIDIS
operation. A GIOPEN does not affect the state of GIDIS. All
attributes currently selected remain in force.

To initialize the Professional video screen, execute the
INITIALIZE -1 (complete initialization) instruction, followed by
the NEW_PICTURE instruction.

The list of arguments for GIOPEN follows.

GIOPEN (Status, LUN, Message, Msglen, Devtype, Driver)

Status

LUN

Message

Msglen

Dev type

Driver

A two-word integer array used to return a code
indicating the results of the requested
operation.

Unit-number associated with this GIOPEN. It
should be an integer from 0 to 15. If not,
Status is set to (-5,-1). If this LUN is
already connected to a GIDIS operation, Status
is set to (-5,-4).

Data to send to Video GIDIS. Message should be
a word containing a 0.

The number of words in Message. Except where
noted, it should be 1. If Msglen is less than 0
or greater than 128, Status is set to (-5,-3).

An integer that identifies the desired output
device. For RT-11 V5.2 only Devtype 6 is valid.
Integer values 0 through 5, 7 and 8 are
reserved. If Devtype is invalid, Status is set
to (-5,-2).

0, as RT-11 accesses only video GIDIS

Normally, the argument list for GIOPEN is (Status, LUN, 0, 1,
Devtype, 0) •

5-3

THE GIDIS CALL INTERFACE (GIDCAL)

5.1.2 GIWRIT

GIWRIT outputs a buffer of GIDIS command data to the specified
GIDIS driver. The data in a buffer does not have to start or end
on a command boundary. The list of arguments for GIWRIT follows.

GIWRIT (Status, LUN, Message, Ms en)

Status

LUN

Message

Ms glen

5.1.3 GIREAD

A two-word integer array used to return a code
indicating the results of the requested
operation.

Identifies the unit number assigned by GIOPEN.
If no GIOPEN has been done for the specified
value, Status is set to (-5,-1).

The command data to send to Video GIDIS

The number of words in Message. If it is less
than 0 or greater than 2048 (decimal words),
Status is set to (-5,-3).

GIREAD waits for GIDIS to return the report and places it in the
specified buffer. If the report is longer than the specified
buffer, the end of the report is truncated. If the report is
shorter than the specified buffer, the trailing words of the
buffer are left unchanged.

The list of arguments for GIREAD is as follows.

GIREAD (Status, LUN, Buffer, Buflen)

Status

LUN

Buffer

Buf len

A two-word integer array used to return a code
indicating the results of the requested
operation.

The unit number assigned by GIOPEN. If no
GIOPEN has been done for the specified device
driver, Status is set to (-5,-1).

Room for the report returned by GIDIS. Recall
that the first word of a report contains a
header specifying the type of report and the
number of words in the buffer.

The number of words in the report buffer.

5-4

THE GIDIS CALL INTERFACE (GIDCAL)

5.1.4 GICLOS

GICLOS ends the GIDIS connection to the Professional interface
handler. The output device treats a GICLOS subroutine as an
END_PICTURE instruction. Control is returned to the calling
program once all data specified by the GIWRIT subroutine has been
sent to the output device. (See Chapter 6 for details.)

The list of arguments for GICLOS is as follows.

GICLOS (Status, LUN)

Status A two-word integer array used to return a code
indicating the results of the requested
operation.

LUN The unit number to terminate. If no GIOPEN has
been done for the specified value, Status is set
to (-5,-1).

5.1.5 GIDCAL Error Reporting

GIDCAL subroutines can return the following error. codes and
subcodes in the two-word status array. The first word specifies
the class of the error; the second word specifies the type of
error within the class.

GIDCA running under RT-11 returns three classes of errors listed
in Table 5-1.

Table 5-1: G!DCAL Errors Listed by Class - RT-11

Code Meaning

-1 Directive error

-5 Interface error

-7 Operating System Error

5-5

THE GIDIS CALL INTERFACE (GIDCAL)

The directive error code (-1) can return the following subcode:

-1 No handler. The output device handler is not loaded.

The interface error code (-5) returns the subcodes listed in
Table 5-2.

Table 5-2: GIDCAL Interface Errors - RT-11

Code Error

-1 Invalid or unassigned LUN

-2 Invalid device type

-3 Improper message length

-4 LUN already attached to a GIDIS driver

In addition to the directive and interface errors, RT-11 also
reports operating system errors (-7). Table 5-3 describes the
specific errors within this class.

Table 5-3: RT-11 Operating System Errors

Code Error

Codes returned during a GIDIS operation

-1

-2

-3

Required argument missing. A required
argument in a GIDCAL subroutine is not
specified.

Handler not found. The indicated file was not
found on the device.

File not found. The indicated file was not
found on the device.

5-6

/
I

Code

-4

-5

-6

THE GIDIS CALL INTERFACE (GIDCAL)

Error

File open on nonsharable or
non-file-structured device.

An attempt was made to read or write past the
end-of-file (EOF) mark.

Hard error. The GIDIS operation experienced a
hard error on the output device.

Codes returned when the .SERR programmed request is in effect.

-129

-130

-131

-132

-133

-134

-135

-136

-137

-138

-139

-140

-141

-142

-143

-144

-145

Called USR from completion routine.

No device handler; this operation needs one.

Error doing directory I/O.

.FETCH error. An I/O error occurred while the
handler was being used, or an attempt was
made to load the handler over USR or RMON.

Error reading an overlay.

No more room for files in the directory.

Reserved.

Invalid channel number; number is greater
than actual number of channels that exist.

Invalid EMT, and invalid function code has
been decoded.

Reserved.

Reserved.

Invalid directory.

Unloaded XM handler.

Reserved.

Reserved.

Reserved.

Reserved.

5-7

THE GIDIS CALL INTERFACE (GIDCAL)

Code Error

-146 Reserved.

5.1.6 Sample Program Using GIDIS Cali Interface

The following FORTRAN program fragment uses the
subroutines to request the current cursor position.

c
c Declare storage.
c

GIDCAL

INTEGER*2
INTEGER*2

BUFLEN , LUN , MSGLEN , OCLEN , OPCODE
BUFFER(3) , MESSAG(1) , STATUS(2)

c
C User program begins here ...
c

c
C Assign Logical Unit Number.
c

LUN 5
c
c Assign opcode (REQUEST_CURRENT_POSITION) and opcode
C length (0).
c

c

OPCODE
OCLEN

55*256
0

C Insert opcode and opcode length into message buffer
C (one word) .
c

c

MESSAG(1)
MS GLEN

OPCODE + OCLEN
1

c Send the message to GIDIS
c

CALL GIWRIT(STATUS , LUN , MESSAG , MSGLEN)
c
C Check for errors.
c

IF STATUS(1) .LE. 0) GOTO 999
c
C Assign buffer length for report.

5-8

THE GIDIS CALL INTERFACE (GIDCAL)

c
BUFLEN 3

c
C Get a report from GIDIS.
c

CALL GIREAD(STATUS , LUN , BUFFER , BUFLEN)
c
C Check for errors.
c

IF STATUS(1) .LE. 0) GOTO 999
c
C Contents of BUFFER after successful return:
c
c
c
c
c
c
c
c

BUFFER(

BUFFER(
BUFFER(

1)

2 =
3

258 (1*256) + 2)

1 = Report header,
2 = Number of data

Current "X" position
Current "Y" position

C User program continues from here ...
c

c
c Handle errors.
c

999
c
c End of GIDCAL example.
c

END

5-9

elements
in GIDIS
in GIDIS

in buffer
output space
output space

THE MACR0-11 PRO/GIDIS INTERFACE

5.2 THE MACR0-11 PRO/GIDIS INTERFACE

With the MACR0-11 interface, PRO/GIDIS
application programs are sent to and
Professional interface handler using the
request. The .SPFUN programmed request
distributed RT-11 MACRO library SYSMAC.SML.

instructions from
received from the
.SPFUN programmed

is located in the

RT-11 supports PRO/GIDIS from MACR0-11 or any supported
high-level language that uses external MACR0-11 routines. The
recommended method is to write callable MACR0-11 routines that
issue the .SPFUN programmed request. For information on calling
the .SPFUN programmed request from a supported high~level
language, refer to the documentation for that language.

When programming for GIDIS using the .SPFUN request of ISPFN
subroutines, you should initialize GIDIS before sending it your
GIDIS instructions. Perform the following operations each time
you begin a new program:

1. Establish a channel to PI with the .LOOKUP request.

2. Issue an .SPFUN 371 request and specify -1 for the went
argument.

3. Issue an .SPFUN 371 with the INITIALIZE instruction.

4. Issue the .SPFUN 371 that writes your data buffer to GIDIS.

RT-11 requires PRO/GIDIS to be the highest priority job.
The following is a simplified illustration of the RT-11 PRO/GIDIS
data path:

APPLICATION
PROGRAM

.SPFUN 371

.SPFUN 370

5-10

) PROFESSIONAL
INTERFACE

HANDLER

GIDIS
UTILITY

VIDEO
TERMINAL
DISPLAY

(THE MACR0-11 PRO/GIDIS INTERFACE

5.2.1 .SPFUN 371

The .SPFUN 371 writes (sends) one or more PRO/GIDIS instructions
and their associated parameter values to the Professional
interface handler in a buffer. The buffer must begin at an even
address. The Professional interface handler passes the buffer to
the GIDIS utility for processing. You can pass a maximum of 2048
(decimal) words to the PI handler in one .SPFUN 371 request.

The following is the structure of the .SPFUN 371 programmed
request when used with the Professional interface handler.

Macro Call: .SPFUN area,chan,func,buf,wcnt,blk

area

chan

func

buf

bent

blk

Is the address of a six-word EMT argument block

Is the channel number in the range 0 to 376 (octal)

Is 371

Is the address of the buffer containing the input to
the GIDIS utility. Buf must start on a word
boundary

Is the number of bytes of information being sent

Is zero

The .SPFUN 371 request can return error codes; see the RT-11
Programmer's.Reference Manual for complete information.

Issuing a REQUEST_STATUS instruction returns a report on the
success or failure of an instruction sent by .SPFUN 371. Check
the carry bit on return from .SPFUN 371 to determine whether the
instruction was successfully sent to PRO/GIDIS.

5.2.2 .SPFUN 370

The .SPFUN 370 reads (returns) a buffer of information generated
from a PRO/GIDIS REQUEST-type instruction (sent using .SPFUN
371). The buffer must begin at an even address. The
Professional interface handler passes the buffer address to
PRO/GIDIS, and PRO/GIDIS loads the information into the buffer.

The following is the structure of the .SPFUN 370 programmed
request when used with the Professional interface handler.

5-11

THE MACR0-11 PRO/GIDIS INTERFACE

Macro Call: .SPFUN area,chan,func,buf,bcnt,blk

area

ch an

func

buf

went

blk

Is the address of a six-word EMT argument block

Is the channel number in the range 0 to 376 {octal)

Is 370

Is the address of the buffer containing the input to
the GIDIS utility. Buf must start on a word
boundary

Is the maximum number of words the GIDIS utility can
place in the buffer

Is zero

The .SPFUN 370 request can return error codes; see the RT-11
Programmer's Reference Manual for complete information.

5.2.3 SAMPLE MACR0-11 PROGRAM

The following example returns the current position of the cursor.

G$RCP=:55.
G$INT=: 1.

.LOOKUP #IOAREA,#0,#PIBLK
BCS ERROR

Specify instruction
codes

Open PI on channel 0
Check for success

.SPFUN #IOAREA,#0,#371,,#-1,#0
Initialize GIDIS

BCS ERROR Check for success

.SPFUN #IOAREA,#0,#371,#REQPOS,#3,#0

BCS ERROR

Send the instructions
to initialize GIDIS
internal symbols and
REQUEST_CURRENT_POSITION.

Check for success

.SPFUN #IOAREA,#0,#370,#REPBUF,#3,#0
Read the current
position.

BCS ERROR Check for success

5-12

IOAREA: .BLKW
PIBLK: .RAD50

.WORD
REQPOS: .BYTE

.WORD

.BYTE

REPBUF: . BLKB
ERROR:

THE MACR0-11 PRO/GIDIS INTERFACE

.SPFUN 370 causes the following report to be
placed in REPBUF:

BYTE 2.
BYTE 1.

WORD x
WORD y

(number of data words following).
(CURRENT_POSITION_REPORT
identifier).

(PRO/GIDIS coordinates
for current position).

The current position of the cursor will be in
the second and third words of REPBUF.

6
/PI I
0,0,0
1,G$INT
-1
0,G$RCP

6

.SPFUN EMT argument block
File name in Radix-50 characters

Length=l, opcode = INITIALIZE
Initialize operand
Length=O,
opcode = REQUEST_CURRENT_POSITION.
Buffer for info returned from GIDIS .
Error handling routine.

5.3 THE FORTRAN PRO/GIDIS INTERFACE

FORTRAN provides its own system subroutines
(ISPFN/ISPFNC/ISPFNF/ISPFNW) that are used in the same manner as
the MACR0-11 .SPFUN programmed requests. These subroutines are
described in Chapter 3 of the RT-11 Programmer's Reference
Manual. The four subroutines are located in the distributed
RT-11 system subroutine library SYSLIB.OBJ.

Follow the order of operations described in Section 5.2.

A sample FORTRAN program using the ISPFNW system subroutine
follows.

SAMPLE FORTRAN PROGRAM

The following example returns the current position of the cursor.

c
c Sample FORTRAN program for PRO/GIDIS.
c
C Declare storage.
c

INTEGER*2 RDCPOS , RQCPOS

5--13

c

INTEGER*2
INTEGER*2

BYTE

DATA

THE FORTRAN PRO/GIDIS INTERFACE

BLOCK I CHAN I STATUS I WCNT
FILSPC (4)

REPBUF(6 I REQBUF(2)

FILSPC/ 3RPI I 0 I 0 I 0 I

C Assign SPFUN function codes (Read, Request).
c

c

RDCPOS
RQCPOS

"370
"371

C Initialize default values.
c

BLOCK 0
c
C Get an RT-11 channel.
c

c

STATUS
IF
CHAN

IGETC ()
(STATUS .EQ. -1) GOTO 900
STATUS

C Open the PI handler.
c

c

STATUS
IF

LOOKUP(CHAN , FILSPC)
(STATUS .NE. 0) GOTO 910

C Send the instruction to request from PI the current

c

c

position.

CODE
WCNT
STATUS

RQCPOS
1

ISPFNW(CODE I CHAN I WCNT I REQBUF I BLOCK
IF (STATUS .NE. 0) GOTO 920

C Read the current position.
c

c

CODE
WCNT
STATUS

RDCPOS
3

ISPFNW(CODE , CHAN , WCNT , REPBUF , BLOCK
IF (STATUS .NE. 0) GOTO 930

C User program continues from here ...
c

c
C Close the channel.

5-14

c

c
c
c

c
c
c

c
c
c

900
1

c
910

2

c
920

3

c
930

4

c
940

5

c
950

6
1

c
c
c

1000
c
c
c

THE FORTRAN PRO/GIDIS INTERFACE

STATUS ICLOSE(CHAN)
IF (STATUS .NE. 0) GOTO 940

Return the channel to RT-11.

STATUS IFREEC(CHAN)
IF (STATUS .NE. 0) GOTO 950

Go to common exit.

GOTO 1000

Error messages begin.

TYPE
FORMAT
GOTO

TYPE
FORMAT
GOTO

TYPE
FORMAT

GOTO

TYPE
FORMAT

GOTO

TYPE
FORMAT
GOTO

TYPE
FORMAT

1
(1X, 'No channels available.')
1000

2
(lX, 'Lookup error on PI:.')
1000

3
(1X , 'Error requesting current
position.')

1000

4
(1X , 'Error reading current
position.')

1000

5
(1X, 'FATAL - SYSTEM ERROR.')
1000

6 , CHAN
(lX , ' Channe 1 ' I 2 ,

' is not currently allocated.')

Common Exit point.

CALL EXIT

End of sample FORTRAN program for PRO/GIDIS.

END

5-15

RESTRICTIONS

5.4 RESTRICTIONS

Observe the following restrictions when running PRO/GIDIS under
RT-11:

• Run PRO/GIDIS only under the XM monitor.

• Run PRO/GIDIS only as the foreground job using the FRUN
command.

• The area operation instruction PRINT_SCREEN is not supported.

• VT102 emulation is not supported.

5-16

/
I

This chapter contains
GIDIS instructions,
convenience.

CHAPTER 6

PRO/GIDIS INSTRUCTIONS

detailed reference information for all
which are listed in alphabetical order for

The entry for each GIDIS instruction includes the following
information:

• A brief description of the instruction.

• Opcode - used by GIDIS to identify the instruction.

• Length - specifies the number of arguments for the
instruction.

• Format - lists and describes each argument.

• Status - indicates conditions for success or failure of the
instruction.

• Notes - explain in detail how to use the instruction.

• Device Notes - describe behavior specific to particular GIDIS
drivers.

• Example - lists excerpts from a sample MACR0-11 program that
uses the instruction.

Unless specified otherwise, all units are in GIDIS Output Space
(GOS).

6-1

BEGIN_DEFINE_CHARACTER

6.1 BEGIN DEFINE CHARACTER

BEGIN_DEFINE_CHARACTER starts a character definition block. This
causes subsequent instructions to draw into the space associated
with the given character, rather than drawing into the entire
view surface. This instruction is paired with the
END_DEFINE_CHARACTER instruction.

Opcode: 33 Length: 4 or 5

Format: BEGIN DEFINE_CHARACTER char-index, width, nom-width,
nom-height, [left-offset]

char-index

width

nom-width

nom-height

left-offset

The index of the character cell to be loaded.
This value must be within the extent of the
alphabet (See CREATE_ALPHABET), or -1.

This field is used only if the font is defined
as variable-width. It then specifies (in GOS
units) the implicit movement that should be used
for the character being defined. For example,
if nom-width were 60, width for i would be about
20 and width for m would be about 60.

Nominal width. The number of GOS units to
assign to alphabet width.

Nominal height. The number of GOS units to
assign to alphabet height.

Identifies where the character is placed
relative to the current position when it is
drawn. Zero, the default, places the left edge
of the character at the current position.
Values greater than 0 move the cell left; values
less than 0 move it right. Units of movement
are the same as those for width. Left-offset is
specified in GOS units.

Status: SUCCESS if the current alphabet is not equal to 0 and is
not a loaded font, char-index is within the extent of
the current alphabet, and there are sufficient resources
to define this character; otherwise, FAILURE.

6-2

BEGIN_DEFINE_CHARACTER

Notes:

• Norn-width and nom-height select the natural shape of the
character. If the character definition contains a circle,
th~~ drawing that character will yield a circle only when
unit cell width and height are proportional to nom-width and
nom-height.

• Besides affecting shape, nom-width and nom-height control
resolution. For example, although 10 x 20 is the same shape
as 100 x 200, the latter values give you finer drawing
control.

• To define the error character and any undefined character
within a font, specify a char-index of -1.

• A character created by a character definition block can be
manipulated (for example, scaled and rotated) like any other
GIDIS character.

• You cannot use the following instructions in$ide a character
definition block:

BEGIN_DEFINE CHARACTER
LOAD_CHARACTER_CELL
CREATE_ALPHABET
LOAD_BY_NAME

• If BEGIN_DEFINE CHARACTER fails, GIDIS skips all subsequent
instructions until it encounters an END_DEFINE_CHARACTER or
INITIALIZE. This includes report handling instructions. For
example, the following sequence will hang your program:

BEGIN_DEFINE_CHARACTER that fails
request report
END_DEFINE_CHARACTER
read report

e If left-offset is nonzero, the character should not be drawn
in replace, complement negate, or overlay negate modes.

• To abort a character definition, send the INITIALIZE
instruction with any argument (including 0). An INITIALIZE 0
instruction aborts a character definition without affecting
anything else.

6-3

BEGIN_DEFINE_CHARACTER

• This instruction implicitly saves all GIDIS attributes for
the duration of the BEGIN_DEFINE_CHARACTER process. The
END_DEFINE_CHARACTER instruction restores the saved GIDIS
attributes. Table 6-1 lists the values in effect during the
BEGIN_DEFINE_CHARACTER process.

Table 6-1: Attributes Initialized by BEGIN_DEFINE_CHARACTER

Attribute Value

output IDS width
output IDS height

output viewport x origin
output viewport y origin
output viewport width
output viewport height

GIDIS output space x origin
GIDIS output space y origin
GIDIS output space width
GIDIS output space height

output clipping x origin
output clipping y origin
output clipping width
output clipping height

current position x
current position y

area texture

line texture

logical pixel x offset
logical pixel y offset
logical pixel width
logical pixel height

cell unit size width
cell unit size height
cell display size width
cell display size height

cell movement mode flag

6-4

nominal width
nominal height

0
0
nominal width
nominal height

0
0
nominal width
nominal height

0
0
nominal width
nominal height

0
0

solid

solid

0
0
1 hardware pixel
1 hardware pixel

nominal width
nominal height
nominal width
nominal height

2 (implicit)

BEGIN_DEFINE_CHARACTER

Attribute Value

cell movement mode flag
cell explicit movement dx
cell explicit movement dy

2 (implicit)
0
0

primary color
secondary color

character cell

plane mask

writing mode

Device Notes:

1
0

all O's

1

overlay

• Plotter GIDIS does not store a character definition as a
raster, but rather as a sequence of strokes.

• Except for Plotter GIDIS, a successful CREATE_ALPHABET
instruction ensures sufficient resources to store the
definition of the character.

• In Video GIDIS, do not allow the terminal subsystem to do a
full screen scroll while defining a character.

Example: This illustrates an entire character definitiion.

. BYTE

. BYTE

.WORD

.WORD

.WORD

. BYTE

. WORD

. WORD

. BYTE

. WORD

4. ,33 .

3 .
9.
90.
225.

.2,29 .
0 .
100 .

.255. ,25 .

40 .

;assume current alphabet is 1, storage
;size of alphabet 1 is 9 by 9.
;length = 4,
;opcode for BEGIN_DEFINE_CHARACTER
;defining character 3
;width
;nom-width
;nom-height
;now ready to draw into the 9 x 9
;storage area using GOS of
;90 x 225.
;length = 2, opcode for SET_POSITION
;[0,100] is middle of left hand side.

;introduces uncounted argument list
;opcode for DRAW_LINES
;[40,200]

6-5

BEGIN_DEFINE_CHARACTER

. WORD 200 .

.WORD 80. ;[80,100]

. WORD 100 .

.WORD 4 0. ;[40,0]

. WORD 0 .

.WORD 0. ;[0,100]

. WORD 100 . ;

.WORD -32768. ;end list
;the four lines draw a diamond

.BYTE 0. ,36. ;END_DEFINE_CHARACTER

Figure 6-1 illustrates the character defined by this example.

Figure 6-1: Sample Character

6-6

BEGIN_FILLED_FIGURE

6.2 BEGIN FILLED FIGURE

BEGIN_FILLED_FIGURE starts the definition of a filled figure.
Use DRAW_LINES, DRAW_REL_LINES, DRAW_ARCS, and DRAW REL_ARCS to
enter positions in the filled figure table. Positions are stored
in the order given. A corresponding END_FILLED_FIGURE
instruction is required to actually fill the figure.

Opcode: 31 Length: 0

Format: BEGIN_FILLED_FIGURE

Status: SUCCESS

Notes:

• BEGIN_FILLED_FIGURE sets the filled figure flag to TRUE.

• You should not use the following PRO/GIDIS instructions
between a BEGIN_FILLED_FIGURE instruction and its
corresponding END_FILLED_FIGURE. (However, this is an
unenforced restriction.)

BEGIN_FILLED_FIGURE
DRAW_CHARACTERS
DRAW_PACKED_CHARACTERS
SET_GIDIS_OUTPUT_SPACE
SET_OUTPUT IDS
SET_OUTPUT_VIEWPORT
SET_POSITION
SET_REL_POSITION

• The filled figure table must contain at least 1 user-provided
point for any drawing to occur. You can enter up to 255
points in the filled figure table. When GIDIS receives the
END_FILLED_FIGURE instruction, it adds the original current
position twice, as the first and last points of the figure.
Thus, GIDIS automatically closes figures for you.

• If you specify too many points, GIDIS uses only the first 255
points. GIDIS ignores points that exceed the capacity of the
filled figure table.

• An edge of the filled area is not guaranteed to be identical
to a line drawn through the same points, due to differences
in drawing direction and round-off errors.

6-7

BEGIN_FILLED_FIGURE

• You may draw lines that cross earlier lines in the filled
figure table. Only the enclosed areas will fill. Contrast
the examples below. The first creates a square; the second,
a bow tie.

• GIDIS attributes used in doing the fill are: primary color,
secondary color, writing mode, plane mask, area texture cell,
area cell size, and area texture size.

• Complement and complement-negate writing modes can give
unexpected results when filled figure areas overlap or abut.

• To abort a filled figure definition, send the INITIALIZE
instruction with any argument (including 0). An INITIALIZE 0
instruction aborts a filled figure definition without
affecting anything else.

• No drawing is done by the BEGIN_FILLED_FIGURE instruction.

Example:

.BYTE

. WORD

.WORD

. BYTE

. BYTE

. WORD

.WORD

. WORD

. WORD

. WORD

.WORD

.BYTE

2.,29.
100 .
100.
0.,31 .

6.,26 .
+100 .
+O.
+O .
+100 .
-100 .
+O.

;Length=2,opcode for SET_POSITION
;Current position
; now [100,100]
;Length=O,opcode for BEGIN FILLED_FIGURE
;filled figure table now has [100,100]
;Length=4,opcode for DRAW_REL_LINES
;dxl
;dyl
;dx2
;dy2
;dx3
;dy3
;Adds points [200,100], [200,200],

and [100,200] to
the filled figure table

0.,32. ;Length=O,opcode for END_FILLED_FIGURE
;Adds point [100,100] to table
;The area defined by [100,100],

[200,100], [200,200], [100,200], and
[100,100]--a square--is filled with
the current area texture governed by
the following writing attributes:
writing mode, color map entry,
plane mask, primary color,
secondary color.

6-8

BEGIN_FILLED FIGURE

Figure 6-2 illustrates the filled figure created by this example.

Figure 6-2: Sample Filled Figure Square

Example:

.BYTE 2. '29.

.WORD 100.

.WORD 100.

.BYTE 0.,31.

.BYTE 6.,26.

.WORD +100.

. WORD +100 .

. WORD +O .

.WORD -100.

.WORD -100.

. WORD +100 .

. BYTE 0.,32 .

;Length=2,opcode for SET_POSITION
;Current position

now [100,100]
;Length=O,opcode for BEGIN_FILLED_FIGURE
;filled figure table now has [100,100]
;Length=4,opcode for DRAW_REL_LINES
;dxl
;dyl
;dx2
;dy2
;dx3
;dy3
;Adds points [200,200], [200,100],

and [100,200] to
the filled figure table

;Length=O,opcode for END_FILLED FIGURE
;Adds point [100,100] to table
;The area defined by [100,100],

[200,200], [200,100], (100,200], and
[100,100]--a bow tie--is filled with
the current area texture governed by
the following writing attributes:
writing mode, color map entry,
plane mask, primary color,
secondary color.

6-9

BEGIN_FILLED_FIGURE

Figure 6-3 illustrates the filled figure created by this example.

Figure 6-3: Sample Filled Figure Bow Tie

6-10

CREATE_ALPHABET

6.3 CREATE ALPHABET

CREATE_ALPHABET reclaims resources used for the
alphabet's font and reserves resources for a new font
indicated storage size. Storage size in bytes is: 30 +
* 2) + (width/8 rounded up) * height * (extent +
Appendix C.

current
with the

(extent
1) . See

Opcode: 46 Length: 4, 5, or 6

Format: CREATE_ALPHABET width, height, extent, flags,
[initialize], [ave-width]

width

height

extent

flags

Is an integer in the
specifies the number
character pattern.

Is an integer in the
specifies the number
character pattern.

range (0 to 64) that
of horizontal bits in a

range (0 to
of vertical

64)
bits

that
in a

Is an integer that specifies the number of
characters in the alphabet. Character indices
can range from 0 to extent-1, (or 32 to extent
+31, if bit 8 of flags is set).

Is a word that specifies one or more
character renditions and font attributes.
6-2 lists the supported renditions.

of the
Table

Table 6-2: CREATE ALPHABET Flags

Cell Rendition Bit value

Italics 1 2

Bold 3 8

Proportionally spaced 4 16

ASCII 8 256

6-11

initialize

ave-width

CREATE_ALPHABET

If ASCII (bit 8) is set, you do not have to
include indices 0 through 31 in the font, and
the error character is automatically associated
with those indices.

W to initializes all
created font. If
not 0, initialize to
initialize to solid.

characters in the newly
0, initialize to blank. If
solid. If not present,

Is the average width in pixels of glyphs in this
font. It is not a true average, but an
indication of how many characters fit on an
average line of text when this font is used. If
not specified, width is used.

Status: SUCCESS if width is 0 to 64, height is 0 to 64, current
alphabet number is 1 to 15, extent is greater than or
equal to 0, storage size is less than 64 KB, and there
are sufficient resources to create the alphabet;
otherwise, FAILURE.

Notes:

• To only reclaim the memory used for an alphabet's current
font, execute a CREATE_ALPHABET instruction with width,
height or extent set to 0.

e If alphabet 15 is current, CREATE_ALPHABET creates a region
CRE$AL. See the description of the GIFONT routine in Chapter
4.

• The largest allowable storage size on the Professional is
64KB. If you create a font whose total size is greater than
8KB, the total extent must be less than or equal to 512.

e Specify ave-width for proportionally spaced fonts; width for
monospaced fonts.

~ When describing a font in an .FDF file (see Appendix D), use
ave-width for proportionally spaced fonts and width for
rnonospaced fonts.

• The true limits for font width and height are: (width in
bytes) * (height) may not be greater than 512; height may not
be greater than 80.

• SET_CELL_UNIT SIZE uses ave-width, when trying to select the
best font.

6-12

I

I
CREATE_ALPHABET

Device Notes:

• For Plotter GIDIS, no storage is reserved when a
CREATE_ALPHABET is done. Space is reserved per character as
character definition blocks are processed.

Example:

.BYTE 4 •I 46 •

. WORD 10 .

.WORD 16.

. WORD 32 .

.WORD 8.

;Current alphabet is alphabet number 2
;Length=4, opcode for CREATE_ALPHABET
;width
;height
;extent
;rend-type bold
;Reclaims space occupied by alphabet 2's

current font, allocates space for a
new font, and initializes each
character in the font to a solid
block (because the initialize argument
is omitted).

6-13

6.4 DRAW ARCS

The DRAW_ARCS
starting from
center(s).

DRAW_ARCS

instruction draws one or more
the current position around

circular arcs
the specified

Opcode: 23 Length: 3N

Format: DRAW_ARCS x, y, angle

x

y

angle

Specifies the x coordinate of the arc's center
point

Specifies the y coordinate of the arc's center
point

The angle for the arc is given in degrees, with
a positive value meaning counter-clockwise with
respect to the view surface. For example, an
angle of zero means no drawing is done; +360 or
-360 means a full circle is drawn.

Status: SUCCESS if angle is from -360 to +360 and there is no
filled figure table overflow; otherwise, FAILURE.

Notes:

• DRAW_ARCS is a repeatable instruction. You can, for example,
draw three connected arcs by specifying: xl, yl, anglel, x2,
y2, angle2, x3, y3, angle3. The coordinates can be specified
either in a counted argument list (with the count supplied in
the opcode word), or in an uncounted argument list (with 255
in the opcode word and an END_LIST instruction after the last
argument). See END_LIST.

• GIDIS draws an arc as a series of straight lines. The
PRO/GIDIS interpreter calculates one line endpoint per 10
degrees of arc (or portion thereof), regardless of the size
of the circle.

e If the filled figure flag is TRUE then, instead of drawing
the arc, all internally calculated line endpoints are added
to the filled figure table.

• The current position is left at the end of the arc, whether
the instruction returns SUCCESS or FAILURE.

6-14

DRAW_ARCS

• Full quadrant arcs (1/4 circle) always end at the exact point
expected. Fractional quadrant arcs end at the closest
available point. Multiple fractional quadrant arcs are not
guaranteed to end at the exact point predicted by your
program. For example, a full circle drawn as a 103 degree
arc and a 257 degree arc is not guaranteed to leave the
current position exactly where it started.

• DRAW_ARCS is affected by the following GIDIS attributes:
writing mode, primary color, plane mask, secondary color,
pixel size, line texture, and filled figure flag.

• DRAW_ARCS modifies the view surface only inside the clipping
rectangle.

Example:

• BYTE

.WORD

. WORD

. WORD

3. ,23 .

400.
300 .
180 .

;Not in a filled figure definition
;(filled figure flag is FALSE)
;Current position is [500,300]

;Length=3, opcode for DRAW_ARCS

:x coordinate of center
;y coordinate of center
;180 degrees is one-half a circle
; (counter-clockwise)
;Draws the top half of the circle
;centered at (400,300] with radius 100
;Middle of the arc is [400,200]
;New current position is [300,300]

Figure 6-4 shows the arc created by this sample program.

I~
I I

I \

Figure 6-4: Sample Arc

6-15

Example:

Example:

. BYTE

.WORD

.WORD

.WORD

. BYTE

. WORD

. WORD

. WORD

3. ,23 .

100.
300.
-90.

3.,23 .

400 .
300 .
-90 .

DRAW_ARCS

;Not in a filled figure definition
;(filled figure flag is FALSE)
;Current position is [500,300]

;Length=3, opcode for DRAW_ARCS

:x coordinate of center
;y coordinate of center
;90 degrees is one-fourth of a circle

(clockwise)
;Draws a quadrant
;centered at [100,300] with radius 400
;Middle of the arc is [300,400)
;New current position is [100,700]

;Inside a filled figure definition
(filled figure flag is TRUE)

;Current position is [500,300]

;Length=3, opcode for DRAW_ARCS

;Center is [400,300]

;90 degrees = 1 quadrant
;Adds eight line endpoints
;(internally calculated)
;plus [400,400] to filled
;figure table
;New current position is [400,400]

6-16

DRAW_CHARACTERS

6.5 DRAW CHARACTERS

The DRAW_CHARACTERS instruction draws the character identified by
the specified character index. The character is taken from the
currently selected alphabet.

Opcode: 35 Length: N

Format: DRAW_CHARACTERS char-index

char-index Is an unsigned 16-bit word

Status: SUCCESS

Notes:

• DRAW_CHARACTERS is a repeatable instruction. You can, for
example, draw several characters in succession by specifying:
char-indexl, char-index2, char-index3, char-indexn.
You can specify characters in either a counted argument list
(with the count supplied in the opcode word) or in an
uncounted argument list (with 255 in the opcode word and an
END_LIST after the last argument.) See END LIST.

• DRAW_CHARACTERS is affected by several attributes: unit and
display cell size, cell slant, cell rotation, rendition mask,
current alphabet, writing mode, primary and secondary color,
and plane mask.

• If the specified character index is outside the extent of the
current alphabet, the error character is drawn. Unless
otherwise specified in the font itself, the error character
is a checkerboard.

• The current position is updated after a character is drawn
according to the cell movement controls. (See the
descriptions of the SET_CELL_MOVEMENT_MODE and
SET_CELL EXPLICIT_MOVEMENT instructions.)

• To delete a proportionally spaced character, specify erase
writing mode, specify mirrored text by negating the display
cell width, and then redraw the character.

e When using local symmetry, the current position after a
DRAW_CHARACTERS instruction could be different from that
calculated by your program. It is suggested that any series
of DRAW_CHARACTERS instructions be followed by a SET_POSITION
instruction or a REQUEST_POSITION instruction, unless you do
not care exactly where the string ends.

6-17

DRAW_CHARACTERS

• DRAW_CHARACTERS modifies the view surface only inside the
clipping rectangle.

• See also DRAW PACKED_CHARACTERS.

Example:

Example:

. BYTE

. WORD

. WORD

. WORD

.BYTE

. WORD

. WORD

. WORD

. WORD

.WORD

3. ,35 .
65 .
66 .
6 7 •

;Current alphabet = 0 (DEC Multinational)
;Length=3, opcode for DRAW_CHARACTERS

I A,
, B,
, c,
Draws A, B, C from current font for
alphabet 0

;Current alphabet = 1 (user-defined)
255.,35. ;introduces uncounted argument list

; opcode for DRAW_CHARACTERS
0 .
13 .
7 .
45 .
-32768. ;END_LIST

;Draws 4 characters from alphabet 1,
which are user-defined characters

6-18

/
DRAW_LINES

6.6 DRAW LINES

The DRAW_LINES instruction draws a straight line from the current
position to the specified endpoint. The endpoint is specified as
an absolute coordinate pair.

Opcode: 25 Lenqth: 2N

Format: DRAW_LINES xend, yend

end Specifies the x coordinate of the line's
endpoint

yend Specifies the y coordinate of the line's
endpoint

Status: SUCCESS, provided no filled figure table
occurs; on overflow, FAILURE.

overflow

Notes:

• The DRAW_LINES instruction is repeatable. You could, for
example, draw 3 connected lines by specifying: xend1, yend1,
xend2, yend2, xend3, yend3. The coordinates can be specified
either in a counted argument list (with the count supplied in
the opcode word), or in an uncounted argument list (with 255
in the opcode word and an END_LIST instruction after the last
argument). See END_LIST.

• The DRAW_LINES instruction is affected by the following
drawing attributes: writing mode, primary color, plane mask,
secondary color, pixel size, line texture, and filled figure
flag.

• When the filled figure flag is TRUE, this instruction does
not draw a line from the current position to the specified
point. Instead, it tries to insert [xend, yend] into the
filled figure table.

• The current position is updated whether the instruction
returns SUCCESS or FAILURE.

• In complement and complement negate modes, the first pixel of
a line is skipped and the last pixel is drawn. But if [xend,
yend] is itself the current position, the 1 pixel is drawn.

• DRAW_LINES modifies the view surface only inside the clipping
rectangle.

6-19

Example:

Example:

Example:

Example:

. BYTE

. WORD

. WORD

. BYTE

. WORD

. WORD

. WORD

. WORD

.BYTE

. WORD

. WORD

. WORD

. BYTE

. WORD

. WORD

. WORD

. WORD

2.,25 .
150 .
200 .

4. ,25 .
600 .
-10 .
300 .
+10 .

DRAW_LINES

;Not in a filled figure definition
;(filled figure flag is FALSE)
;Current position is [200,300]
; Length=2' opcode ·for DRAW_LINES
;Draw a line from [200,300]
;to [150,200]
;New current position is [150,200]

;current position is (150,200]
;not in a filled figure definition
;Length=4, opcode for DRAW_LINES
;xendl
;yendl
;xend2
;yend2
;Draw lines from [150,200] to [600,-10]
;then from [600,-10] to [300,10]
;New current position is [300,10]
;Note that both the -10 and the +10 are
;absolute coordinates.

;current position is [300,10]
;not in a filled figure definition

255.,25.;introduces uncounted argument list

400 .
40 .
-32768 .

4. '25 .
300 .
200 .
300 .
300 .

;opcode for DRAW_LINES
;xendl
;yendl
;ENDLIST terminator value
;Draws a line from [300,10] to [400,40]
;New current position is [400,40]

;Inside a filled figure definition
; (filled figure flag is TRUE)
;Length=4, opcode for DRAW_LINES
;xendl
;yendl
;xend2
;yend2
;The points [300,200] and (300,300] are
;added to the filled figure table
;new current position is [300,300]

6-20

/ DRAW_PACKED_CHARACTERS

6.7 DRAW_PACKED CHARACTERS

DRAW_PACKED_CHARACTERS makes drawing of ASCII strings more
efficient, because it enables you to pack two ASCII characters
into one word. You can use DRAW_PACKED_CHARACTERS for non-ASCII
alphabets, if the indices are less than 255. It uses the low
order byte before the high order byte. Otherwise,
DRAW_PACKED_CHARACTERS is equivalent to DRAW_CHARACTERS.

Opcode: 74 Length: N

Format: DRAW_PACKED_CHARACTERS 2charindex

2charindex is two 8-bit character indices

Status: SUCCESS

Notes:

• DRAW_PACKED_CHARACTERS is appropriate for any alphabet whose
extent is less than 255.

• A character index of 255 explicitly performs no operation.
Thus, if you want to draw 1 character, place 255 in the high
order byte of the argument.

• Using a DRAW_PACKED_CHARACTERS instruction with repeated
arguments is the fastest way to draw a long string with
GIDIS.

• DRAW PACKED_CHARACTERS is a repeatable instruction.
Characters can be specified either in a counted argument list
(with the count supplied in the opcode word) or in an
uncounted argument list (with 255 in the opcode word and an
END_LIST after the last argument).

• The current position is updated after a character is drawn,
acco~ding to the cell movement controls. (See
SET_CELL_MOVEMENT_MODE and SET_CELL_EXPLICIT_MOVEMENT.)

• To delete a proportionally spaced character, specify erase
writing mode, specify mirrored text by negating display cell
width, and then redraw the character.

• When using local symmetry, the current position after a
DRAW_PACKED_CHARACTERS instruction could be different from
that calculated by your program. It is suggested that any
series of DRAW_PACKED_CHARACTERS instructions be followed by

6-21

DRAW_PACKED_CHARACTERS

a SET_POSITION instruction or a REQUEST_POSITION instruction,
unless you do not care exactly where the string ends.

• The DRAW_PACKED_CHARACTERS instruction is affected by several
attributes: unit and display size, cell slant, cell
rotation, rendition mask, current alphabet, writing mode,
primary and secondary color, and plane mask.

• If the specified character index is outside the extent of the
current alphabet, the error character is drawn. Unless
otherwise specified in the font itself, the error character
is a checkerboard.

• DRAW_CHARACTERS modifies the view surface only inside the
clipping rectangle.

Example:

Example:

. BYTE

.BYTE

.BYTE

. BYTE

. BYTE

.WORD

. BYTE

.BYTE

. WORD

3.,74 .

116., 101.
115. ,116.
49. ,255 .

1. ,38 .
1.
255.,74 .

0., 1.
-32768 .

;assume current alphabet is 0
;length=3 words,opcode for
;DRAW_PACKED_CHARACTERS
;'t', 'e'
;'s', 't'
; '1', "no character"
;draws the string "testl"

;length=l, opcode for SET_ALPHABET
;alphabet 1
;introduces uncounted argument list
;opcode for DRAW - PACKED - CHARACTERS
;draw characters 0,1
;draws characters that you defined
;index 0 and 1 of alphabet 1

6-22

in

DRAW_REL_ARCS

6.8 DRAW REL ARCS

DRAW_REL_ARCS draws a circular arc from the current position
around the specified center.

Opcode: 27 Length: 3N

Format: DRAW_REL_ARCS dx, dy, angle

Specifies the x coordinate of the arc's
point as: x of current position + dx

dy center Specifies the y coordinate of the arc's
point as: y of current position + dy

angle The angle for the arc is given in degrees, with
a positive value meaning counter-clockwise with
respect to the view surface. An angle of zero
means no drawing is done; +360 or -360 means a
full circle is drawn.

Status: SUCCESS, if angle is within a range of -360 to +360 and
there is no filled figure table overflow or arithmetic
overflow; otherwise, FAILURE.

Notes:

• An arc is drawn as a series of straight lines. The PRO/GIDIS
interpreter calculates one line endpoint per 10 degrees of
arc (or portion thereof), regardless of the size of the
circle.

• If the filled figure flag is TRUE, instead of drawing the
arc, all internally calculated line endpoints are added to
the filled figure table.

• DRAW_REL_ARCS is a repeatable instruction. You can, for
example, draw three connected arcs by specifying: dxl, dyl,
anglel, dx2, dy2, angle2, dx3, dy3, angle3. The coordinates
can be specified either in a counted argument list (with the
count supplied in the opcode word), or in an uncounted
argument list (with 255 in the opcode word and an END_LIST
instruction after the last argument). See END_LIST.

• The current position is left at the end of the last arc.

6-23

DRAW_REL __ ARCS

• Full quadrant arcs (1/4 circle) a end at the exact point
expected. Fractional quadrant arcs end at the closest
available point. Multiple fractional quadrant arcs are not
guaranteed to end at the exact point predicted by your
program. For example, a full circle drawn as a 103 degree
arc and a 257 degree arc is not guaranteed to leave the
current position exactly where it started .

• DRAW_REL_ARCS is affected by the following GIDIS attributes:
writing mode, primary color, ane mask, secondary color,
pixel size, line texture, and filled figure flag.

e DRAW_REL_ARCS modifies the view surface
clipping rectangle.

inside the

Example:

Example:

• BYTE
. WORD
. WORD
. WORD

• BYTE
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD

3.,27 .
-100 .
+30 .
-90 .

6.,27 .
+35 .
-50 .

90 .
-35 .
+50 .

90 .

;Current position is [400,300]
;filled figure flag is FALSE
;Length=3,opcode for DRAW_REL_ARCS
;Center is (-100,+30]
;Relative to current position
;90 degrees = one quadrant (clockwise)
;Draws one quadrant from [400,300] to
;[330,430j centered at [300,330]
;New current position is [330,430]

;Current position is [330,430]
;filled figure flag is FALSE
;Length==3, opcode for DRAW_REL_ARCS

;Center is [+35,-50]
;[365,380], 90 degree arc
;Current position is now [415,415)
;Center is 380,465]
;90 degrees
;draws a lens shaped ect with two
;circular arcs.

6-24

DRAW_REL_LINES

6.9 DRAW REL LINES

The DRAW_REL_LINES instruction draws a straight line from the
current position to the specified endpoint. The endpoint
coordinates are specified relative to the current position.

Opcode: 26 Length: 2N

Format: DRAW_REL_LINES dxend, dyend

dxend

dyend

Specifies the x coordinate of the
endpoint as: current position + dxend

Specifies the y coordinate of the
endpoint as: current position + dyend

line's

line's

Status: SUCCESS, if no last pair arithmetic overflow or filled
figure table overflow occurs; on overflow, FAILURE. On
success, the current position is set to [x of current
position + dxend, y of current position+ dyend]. On
failure, the current position is not changed.

Notes:

s The DRAW_REL_LINES instruction is repeatable. You can,for
example, draw 3 connected lines by specifying: dxendl,
dyendl, dxend2, dyend2, dxend3, dyend3. The coordinates can
be specified either in a counted argument list (with the
count supplied in the opcode word), or in an uncounted
argument list (with 255 in the opcode word and an END_LIST
instruction after the last argument). See END_LIST.

• The DRAW_REL_LINES instruction is affected by the following
drawing attributes: writing mode, primary color, plane mask,
secondary color, pixel size, line texture, and filled figure
flag.

6-25

DRAW_REL_LINES

• When the filled figure flag is TRUE, this instruction does
not draw a straight line from the current position to the
specified point. Instead, it tries to insert [x of current
position + dxend, y of current position + dyend] into the
filled figure table. No drawing occurs until the
END_FILLED_FIGURE instruction is processed.

• In complement and complement negate mode, the first pixel of
a line is skipped and the last pixel is drawn. But if [x of
current position + dyend, y of current position + dyend] is
itself the current position, the one pixel is drawn.

• DRAW_REL_LINES modifies the view surface only inside the
clipping rectangle.

Example:

Example:

. BYTE

.WORD

. WORD

. WORD

.WORD

.BYTE

. WORD

. WORD

. WORD

.WORD

.WORD

4. ,26 .
+10.
-10 .
+30 .
+15

;Not in a filled figure definition
;(filled figure flag is FALSE)
;Current position is (100,100]
;Length=4, opcode for DRAW_REL_LINES
:dxendl
;dyendl
;dxend2
;dyend2
;Draw lines from [100,100] to [110,90]
;and from [110,90] to (140,105]
;New current position is [140,105]

;Current position is [140,105]
;not in a filled figure definition

255.,26. ;introduces uncounted argument list

10 .
-30 .
20 .

;opcode for DRAW_REL_LINES
;dxendl
;dyendl
;dxend2

+60. ;dyend2
-32768. ;END_LIST

;Draw line from [140,105] to (150,75]
;and then to [170,135]
;New current position is [170,135]

6-26

(

Example:

. BYTE

. WORD

. WORD

. WORD

. WORD

5. , 26 •
100 .
0 •
o .
100 .

DRAW_REL_LINES

;Inside a filled figure definition
; (filled figure flag is TRUE)
;Current position is [100,100]
;Length=S, opcode for DRAW_REL_LINES
;dxendl
;dyendl
;dxend2
;dyend2
;Adds the points [200,100] and [200,200]
;to the filled figure table
;New current position is [200,200]

6-27

END_DEFINE_CHARACTER

6.10 END DEFINE CHARACTER

END_DEFINE_CHARACTER terminates a character definition block and
restores the GIDIS attributes saved by the BEGIN_DEFINE_CHARACTER
instruction.

Opcode: 36 Length: 0

Format: END_DEFINE_CHARACTER

Status: SUCCESS if character definition flag is TRUE; otherwise,
FAILURE.

Notes::

e The defined character can now be used like any other
character in DRAW_CHARACTERS and DRAW_PACKED_CHARACTERS.

Device Notes:

• In Video GIDIS, while you are defining a large character, all
but its bottom 16 lines (32 in high resolution mqde on the
Professional 380) are visible at the bottom of the screen.
When END_DEFINE_CHARACTER is processed, the area occupied by
the character is set to current secondary color.

Example: See BEGIN_DEFINE_CHARACTER.

6-28

/

END_FILLED_FIGURE

6.11 END FILLED FIGURE

END_FILLED_FIGURE terminates the definition of a closed figure,
and fills the figure. This instruction is used in conjunction
with the BEGIN_FILLED_FIGURE instruction.

Opcode: 32 Length: 0

Format: END_FILLED_FIGURE

Status: SUCCESS if there is at least one point in the filled
figure table; otherwise, FAILURE.

Notes:

• The filled figure table must contain at least 1 user-provided
point for any drawing to occur. GIDIS provides the initial
current position twice, at the beginning and end, thereby
automatically closing the figure.

• If you specify too many points, GIDIS uses only the first 255
points, and draws a straight line connecting the 255th point
with the initial current position. (255 is the maximum
number of user-provided points in the filled figure table.)

• The current position is unchanged by END_FILLED_FIGURE. The
current position remains wherever the last drawing
instruction in the figure block set it.

e END_FILLED_FIGURE turns off the filled figure flag.

• This instruction modifies the view surface only inside the
clipping rectangle.

Example: See BEGIN_FILLED_FIGURE

6-29

END_LIST

6.12 END UST

END_LIST indicates the end of an uncounted argument list. This
instruction follows the last argument in the list. The PRO/GIDIS
instructions often used with an uncounted argument list are:
DRAW_LINES, DRAW_REL_LINES, DRAW_ARCS, DRAW_REL_ARCS,
DRAW_CHARACTERS, DRAW_PACKED_CHARACTERS.

Opcode: 128 Length: must be 0

Format: END_LIST

Status: SUCCESS

Notes:

• You specify an uncounted argument list by placing a length of
255 in an instruction's opcode word.

e 128 * 256 + 0 equals -32768. Thus, -32768 may not be the
value of an argument word in an uncounted argument list.
However, -32768 is valid as an argument in a counted argument
list. For example, the point [-32768,0] could not be sent in
a DRAW_LINES instruction terminated by an END_LIST
instruction, but could be sent in a DRAW_LINES instruction
with counted arguments.

Example:

.BYTE

. WORD

. WORD

.WORD

255.,25. ;length=255 is a special value that
does not indicate 255 data words
following, but that there are an
unknown number of words
following, to be terminated

100 .
110 .
-32768.

with the END_LIST instruction.
;opcode for DRAW_LINES
;DRAW_LINES data
;DRAW_LINES data
;END_LIST

6-30

END_PICTURE

6.13 END PICTURE

END_PICTURE logically terminates the current picture. The action
performed by END_PICTURE depends on the current device.

Opcode: 24 Length: 0

Format: END_PICTURE

Status: SUCCESS

Notes:

• It is recommended that you use NEW_PICTURE and END_PICTURE to
enclose the instructions used in drawing a picture.

• END_PICTURE simulates a FLUSH_BUFFER instruction.

Device Notes:

• For a GIDIS that builds a virtual bitmap (for example,
Palette GIDIS), END_PICTURE causes the bitmap to be output to
the device.

• For Sixel GIDIS, an END_PICTURE does a formfeed. However if
you are using the VDM interpreter to print the picture as
part of a document, the formfeed is suppressed.

• For Palette GIDIS, an END_PICTURE advances the film, provided
you are not passing the picture through the VDM interpreter.

• For Plotter GIDIS, an END_PICTURE advances the paper (or
ejects the paper in the case of single sheet feed), provided
you are not passing the picture through the VDM interpreter.

6-31

Example:

.BYTE 0. , 6.

.BYTE 0.,24.

. BYTE 0. '6 .

END_PICTURE

;length=O,opcode for NEW_PICTURE

' ;drawing instructions

;length=O,opcode for END_PICTURE

;wait for operator response
;perhaps
;length=O,opcode for NEW_PICTURE

;more drawing instructions

6-32

,[

ERASE_CLIPPING_REGION

6.14 ERASE CLIPPING REGION

current
This

the

ERASE_CLIPPING_REGION sets every pixel inside the
clipping rectangle to the current secondary color.
instruction provides a way to clear an area without implying
beginning of a new picture.

Opcode: 48 Length: 0

Format: ERASE_CLIPPING_REGION

Status: SUCCESS

Notes:

• Do not use this instruction as a substitute for NEW_PICTURE
and END_PICTURE.

• You should use ERASE_CLIPPING_REGION, rather than
BEGIN_FILLED_FIGURE and END_FILLED_FIGURE to clear a
rectangular area of the view surface.

• The current writing mode, current area texture, and primary
color do not affect this instruction. However, plane mask
does.

Device Notes:

• Plotter GIDIS ignores ERASE_CLIPPING_REGION.

Example:

.BYTE 0 •I 48 • ;Length=O,
;opcode for ERASE_CLIPPING_REGION

6-33

FLUSH_BUFFER

6.15 FLUSH BUFFER

FLUSH_BUFFER forces execution of any pending GIDIS processing.

Opcode: 28 Lenqth: 0

Format: FLUSH_BUFFER

Status: SUCCESS

Notes:

• FLUSH_BUFFER enables you to ensure that all previous drawing
instructions have been executed prior to requesting operator
response or the like.

Example:

.BYTE 0.,28. ;length=O,opcode for FLUSH_BUFFER

6-34

INITIALIZE

6.16 INITIALIZE

INITIALIZE restores PRO/GIDIS subsystems to their default states.
Also, if a character definition block or filled figure block is
active, INITIALIZE aborts it.

Opcode: 1 Length: 1

Format: INITIALIZE sub-mask

sub-mask

Status: SUCCESS

Is a word that specifies zero or more of
PRO/GIDIS's subsystems. The subsystems defined
at this time are listed in Table 6-3. A
subsystem is represented in the mask value as a
bit, as shown in the table. For example, a
value of 6 (bit 2 + bit 1) resets text and
writing attributes.

Table 6-3: Initialization of Subsystems

Subsystem

Addressing

Writing
Attributes

Description

Sets IDS, Viewport, GOS
and clipping region to 960
x 600. Also sets all
attributes that specify
distances or coordinates
(for example, unit cell
size).

Reinitializes writing
mode, primary color,
secondary color, line and
area texture, planes
selected, and pixel size.

6-35

Bit Value

0 1

1 2

INITIALIZE

Subsystem Description Bit Value

Text Resets the current 2 4
alphabet, unit size,
display size, cell
rotation, cell rendition,
implicit cell movement
flag, and explicit cell
movement.

Color Map Reinitializes the color 4 16
map.

Alphabet Clears all user-defined 5 32
alphabets and sets family
ID of alphabet 0 to
"DGIDIS".

Cursor Resets the output cursor 8 256
and output rubber band.

Notes:

• INITIALIZE 0 is useful, as it aborts any blocks begun with
BEGIN_FILLED FIGURE and BEGIN_DEFINE_CHARACTER without
affecting any GIDIS subsystems.

o You can combine mask bits to initialize multiple subsystems
in one instruction.

• A mask of -1 decimal (177777 octal) initializes all
subsystems.

e The order of initialization is: (1) addressing, (2) writing
attributes, (3) text, (4) color map, (5) alphabet storage,
and (6) cursor.

e .GID files that use default text attributes may not come out
as expected, because some defaults are appropriate only for
Video GIDIS.

a Table 6-4 lists all of the GIDIS attributes affected and
their values after initialization. Note that some attributes
are included in more than one subsystem. All coordinates and
distances are in GOS, unless otherwise noted.

6-36

INITIALIZE

Table 6-4: Values of GIDIS Attributes After an INITIALIZE

Attribute Value

Addressing Subsystem

output IDS width
output IDS height
output viewport x origin
output viewport y origin
output viewport width
output viewport height

960
600
0 in IDS
0 in IDS
960 in IDS
600 in IDS

GIDIS output space x origin 0
GIDIS output space y origin 0
GIDIS output space width 960
GIDIS output space height 600

output clipping x origin
output clipping y origin
output clipping width
output clipping height

current position x
current position y

line texture size

area texture width
area texture height

logical pixel width
logical pixel height
logical pixel x offset
logical pixel y offset

cell movement mode flag
cell explicit movement dx
cell explicit movement dy

cell display size width
cell display size height
cell unit size width
cell unit size height

0
0
960
600

0
0

N/A

12
25

0 (1 hardware pixel)
0 (1 hardware pixel)
0
0

2 (implicit)
0
0

12
25
12
25

6-37

INITIALIZE

Attribute Value

Writing Attributes Subsystem

primary color
secondary color
plane mask
writing mode

logical pixel width
logical pixel height
logical pixel x off set
logical pixel y offset

line texture pattern
line texture length
line texture size

area texture alphabet
area texture character
area texture width
area texture height

Text Subsystem

current alphabet
cell display size width
cell display size height

cell unit size width
cell unit size height

cell rotation
cell oblique
cell rendition

cell movement mode flag
cell explicit movement dx
cell explicit movement dy

7
0
all available planes
overlay

0
0
0
0

solid (all ones)
N/A
N/A

-1
0 (solid)
12
25

0
12
25

12
25

0
0
0

2 (implicit)
0
0

6-38

INITIALIZE

Attribute Value

Color Map Subsystem (values associated)

color map [0]
color map [1]
color map [2 l
color map [3 l
color map [4 J
color map [5]
color map [6 l
color map [7 l

Alphabet Storage Subsystem

family name of alphabet

Cursor Subsystem

output cursor alphabet
output cursor character
output cursor width
output cursor height
output cursor x offset
output cursor y off set
output cursor rendition
output rubber band type

Example:

.BYTE

. WORD
1., 1.
1. !2. !4 .

0

index

R G

. 0 . 0

. 2 . 2

. 7 . 2

. 2 . 7

.6 . 6

. 6 . 6

. 6 . 6

. 6 . 6

"DGIDIS"

-1
N/A
N/A
N/A
N/A
N/A
blinking
none

B

. 0

. 6

. 2
• 2
.6
. 6
. 6
.6

M Color Mono

. 0 black (dark)

. 2 blue (dk . gray)
• 3 red (1 t. gray)
• 4 green (light)
. 7 white (light)
. 7 white (light)
• 7 white (light)
. 7 white (light)

;length=l,opcode for INITIALIZE
;addressing, writing attributes,
;and text subsystems mask bits
;are set

6-39

LOAD_BY_NAME(1)

6.17 LOAD_BY_NAME(1)

LOAD_BY_NAME(l) loads a pre-built font into the current alphabet.
The argument list is a pair of words which contain a region name
in Radix-50.

Opcode: 37 Length: 2

Format: LOAD_BY_NAME(l) narne-0, narne-1

name-0 3 radix-50 characters

name-1 3 radix-50 characters

Status: SUCCESS if the region named identifies a valid region,
the region has the proper format, the current alphabet
number is not 0, and there are sufficient resources to
load the font region; otherwise, FAILURE.

Notes:

e Subsequent SET_ALPHABET instructions do not affect previous
LOAD_BY_NAME INSTRUCTIONS. For example, if you loaded font
MYALPH into alphabet 1, it would remain alphabet l's font
until INITIALIZE 32' another LOAD_BY __ NAME' 0 r a
CREATE_ALPHABET was processed for alphabet 1.

a If no such region can be found or installed, GIDIS simulates
a LOAD_BY_NAME(2) and loads "DGIDIS", the default family ID
for alphabet 0.

e A GIDIS font file is an RSX Common Library. In other words,
installing a GIDIS font file creates a font region.

e A font region must conform to the format shown in Appendix C.

a A font region can be accessed in one of 3 ways:

1. Prior to doing the LOAD_BY_NAME(l), you can create and
load the region in your application.

2. Prior to doing the LOAD_BY_NAME(l), you can install a
font file with the DCL INSTALL command, PROTSK or your
application installation file (.INS).

3. You can rely on GIDIS to install the region's font file
when the LOAD_BY_NAME(l) is done. You enable GIDIS to
install the file in either of two ways:

6-40

Example:

Example:

LOAD_BY_NAME(l)

1. Place the font file on LB:[ZZFONT] and name it
region-name.TSK. (Note: $'sand .'sin a region
name become Z's in the filename).

2. Describe the font in an .FDF file. See Appendix D.

.BYTE 2.,37. ;length=2, opcode for LOAD_BY_NAME

.Radix-50 "BOLD";let MACR0-11 compute the Radix-50 for
BOLD

.BYTE

.WORD

.WORD

2.,37.
050500+001750+000001
045400+001200+000010

6-41

;Radix-50 for MYALPH
;MYA
;LPH

..

LOAD_BY_NAME(2)

6.18 LOAD_BY_NAME(2)

LOAD_BY_NAME(2) associates the current alphabet with the
specified font family. When a subsequent DRAW_CHARACTERS or
DRAW_PACKED_CHARACTERS is done, GIDIS finds the font file in the
family that best matches the current GIDIS text attributes. See
Appendix D.

Opcode: 37 Length: 3 to 7

Format: LOAD_BY_NAME(2) Chl, Ch2, Ch3, ... Chn

Chl - Chn

Status: SUCCESS

Notes:

Is a font family ID, encoded as 1 character per
word

• Subsequent SET_AL·PHABET instructions do not affect previous
LOAD_BY_NAME instructions. For example, if you loaded family
ID MYALPH into alphabet 1, it would remain alphabet l's
family ID until INITIALIZE 32, another LOAD_BY_NAME, or a
CREATE_ALPHABET was processed for alphabet 1.

• The default family ID for alphabet 0 is DGIDIS.

• Family IDs are mapped to uppercase. For example, specifying
"dgidis" is equivalent to specifying "DGIDIS".

• A font must be described in an .FDF file on LB:[ZZFONT] to be
accessible via a LOAD_BY_NAME(2) (see Appendix D}.

• If the specified family has no members, GIDIS simulates a
LOAD_BY_NAME(2) "DGIDIS."

Example:

. BYTE

.WORD

. BYTE

. WORD

.WORD

. WORD

. WORD

. WORD

.WORD

1. ,38 .
1.
6.,37 .
68 .
71.
73 .
68 .
73 .
83.

;Length=l,opcode for SET_ALPHABET
;Selects alphabet 1 as current alphabet
;Length=6,opcode for LOAD_BY_NAME
;D
;G
; I
;D
; I
;S,associates alphabet 1 with family
;ID "DGIDIS"

6-42

LOAD_CHARACTER_CELL

6.19 LOAD CHARACTER CELL

LOAD_CHARACTER_CELL defines a character cell from the specified
data. This instruction acts on the current alphabet.

Opcode: 34 Length: 2 + N

Format: LOAD_CHARACTER_CELL char-index, width, dO, dl, ... ,dn

char-index

width

dO, dl, ... dn

The index of the character cell to be loaded.
This value must be in the range 0 to extent-1,
where extent is the total character count for
the current alphabet.

The width value must be in the range 0 to the
width value given with the CREATE ALPHABET
instruction that established the alphabet.

Zero or more words of data to be loaded into the
character cell. The top character cell row is
loaded from the first data word(s), .the second
row from the next data words, and so forth.
Excess data words are ignored, and missing data
words are assumed to be O's. Each row of the
cell is (alphabet width + 15)/16 data words.
For example, an 8-bit wide alphabet has 1 word
per row, and a 20-bit wide alphabet has 2 words
per row.

Status: SUCCESS if not within a character definition block (See
BEGIN_DEFINE_CHARACTER), character index is in range
(see CREATE_ALPHABET), width is in the range 0 to
alphabet width, and a CREATE_ALPHABET has been done for
the current alphabet; otherwise, FAILURE.

Notes:

• The defined character can now be used like any other
character in SET_AREA_TEXTURE, SET_OUTPUT_CURSOR,
DRAW_CHARACTER and DRAW_PACKED_CHARACTER instructions.

• The leftmost pixel in a row comes from the low-order bit in
the appropriate data word.

6-43

Example:

.BYTE

. WORD

. WORD

.WORD

.WORD

.WORD

.WORD

.WORD

LOAD_CHARACTER_CELL

;Alphabet 2 has width of 5, height of 6,
and extent of 10

7.,34. ;Length=?, opcode for LOAD_CHARACTER_CELL

9 .
5 •
A 800001
A 800011
A 800101
A 801001
AB11111

;Character index (last cell in
;Width
;Pattern: ON

ON ON
(Note the ON ON
bit reve'rsal) ON

ON ON ON

;Last row not given; set to O's
;automatically.
;Character is a triangle

6-44

alphabet)

ON
ON ON

NEW_PICTURE

6.20 NEW PICTURE

NEW_PICTURE indicates the beginning of a new picture.

Opcode: 6 Length: 0

Format: NEW_PICTURE

Status: SUCCESS

Notes:

• It is recommended that you use NEW_PICTURE and END PICTURE to
enclose the instructions used in drawing a picture.

• Secondary color is written to the view surface subject to the
plane mask in effect at the time NEW_PICTURE executes. (See
SET_PLANE_MASK.)

• A NEW_PICTURE clears all of hardware address space,
regardless of the current clipping region. In particular, it
clears the 32-pixel bands on both sides of the screen not
normally used in Video GIDIS.

Device Notes:

o NEW_PICTURE does not affect picture background in Plotter
GIDIS.

Example:

. BYTE 0. '6 . ;length=O,opcode for NEW_PICTURE

6-45

NOP

6.21 NOP

NOP performs no operation. Execution of a NOP has no effect on
the current state of PRO/GIDIS, other than to set the status flag
to SUCCESS.

Opcode: 0 Length: 0

Format: NOP

Status: SUCCESS

Note:

• This instruction is useful for transparently inserting
information from a higher level protocol into a stream of
GIDIS instructions. Use a nonzero length, when you want to
insert information.

Example:

Example:

.BYTE

.BYTE

. WORD

.WORD

0 • f 0 •

2 • I 0 •
1540 .
71.

;length=O,opcode for NOP

;length=2,opcode for NOP
;private data (ignored by PRO/GIDIS)
;private data (ignored by PRO/GIDIS)

6-46

PRINT_SCREEN

6.22 PRINT SCREEN

PRINT_SCREEN sends the specified portion of the video bitmap to a
sixel printer connected to the printer port.

Opcode: 141 Length: 6 or 7

Format: PRINT_SCREEN x, y, width, height, hxly, dxly, [mask]

x

y

Specifies the leftmost horizontal coordinate of
the GOS data to be printed

Specifies the uppermost vertical coordinate of
the GOS data to be printed

width Width of the area to be printed

height Height of the area to be printed

hxly Specifies the horizontal offset from the current
printhead location to where you want to begin
printing the screen data.

dxly Specifies the vertical offset from the current
printhead location to where you want to begin
printing the screen data.

mask Specifies the color indexes that cause printing
a dot on the paper. The low order bit is color
0, the next bit color 1, and so on. If mask is
omitted, it is generated as follows. In a
single plane system (no EBO), a pixel value of 0
is mapped to a skip (leaves paper white) and a 1
is mapped to a strike (prints on the paper). On
multi-plane systems, the value of the color map
is tested as follows. If the entry (color index
of point) equals 0, the point is skipped
(white). If not 0, the point prints.

Status: SUCCESS

Notes:

• Applies to Video GIDIS only.

• If the printer port does not have a sixel printer connected,
nothing occurs.

6-47

Example:

.BYTE

.WORD

. WORD

.WORD

.WORD

. WORD

. WORD

6. ,141.
100.
100 .
400.
200.
0 .
0 .

PRINT_SCREEN

;Length=6, opcode for PRINT_SCREEN
;Upper left bitmap corner

is [100,100]
;Data to be printed is 400 units wide

by 200 units high
;Begin printing at current printhead

location

6-48

REQUEST_CELL_STANDARD

6.23 REQUEST CELL STANDARD

REQUEST_CELL_STANDARD reports the GOS dimensions you would have
to specify to generate a standard size character. A standard
size character has dimensions such that when its width/height
8/5, 80 characters fit across the device and 24 lines fit
vertically.

Opcode: 54 Length: 0

Format: REQUEST_CELL_STANDARD

Status: SUCCESS

The report consists of 5 words:

Report Header, unit-wd, unit-ht, display-wd, display-ht

where

unit-wd

unit-ht

display-wd

display-ht

Notes:

Is the unit cell width of the standard size
character.

Is the unit cell height of the standard size
character.

Is normally the same as unit-wd. However if the
current alphabet is 0, this value is 11/12 of
the current cell width.

Is normally the same as unit-ht. However if the
current alphabet is 0, this value is 11/12 of
the current cell height.

• This instruction takes into account the storage size of the
current alphabet and the character rotation currently in
effect. As a result, the standard size for alphabet 0 (DEC
Multinational) is not necessarily the same as the standard
size for a user alphabet.

• Rounding could take place converting from device coordinates
to GIDIS space. If your program later sets unit cell size to
'n' times the size of the standard, the characters actually
formed might not be precisely 'n' times the standard.

6-49

Example:

. BYTE 0. , 54 .

REQUEST_CELL_STANDARD

;Length=O,
;opcode for

Byte 4.
Byte 5.
Word 9.
Word 20.
Word 8.
Word 20.

6-50

REQUEST_CELL_STANDARD
(Data words following)
(Cell Standard Rpt. Tag)
(Unit-wd)
(Unit-ht)
(Display-wd)
(Display-ht)

REQUEST_CURRENT_POSITION

6.24 REQUEST CURRENT POSITION

REQUEST_CURRENT_POSITION reports the absolute location of the
current position in GIDIS Output Space. The current position is
the display location at which the next character, line, or arc
would be drawn.

Opcode: 55 Length: 0

Format: REQUEST_CURRENT_POSITION

Status: SUCCESS

The report consists of 3 words:

Report header, current x, current y

Notes:

• The current position is not necessarily the same as the last
position given to SET_POSITION or DRAW_LINES; DRAW_CHARACTERS
and DRAW_ARCS instructions also move the current position.

• REQUEST_CURRENT_POSITION is most useful following a DRAW_ARCS
or a DRAW_CHARACTERS (local symmetry), since your program
cannot determine precisely where PRO/GIDIS leaves the current
position after these instructions.

Example:

. BYTE 0.,55 . ;Length=O,
;opcode for REQUEST_CURRENT_POSITION
;This instruction causes the following

report to be placed in the report
queue if there is sufficient room.

Byte
Byte
Word
Word

2. Data words following
1. Current Position Report Tag
x PRO/GIDIS coordinates
y for the current position

6-51

REQUEST_OUTPUT_SIZE

6.25 REQUEST OUTPUT SIZE

REQUEST_OUTPUT_SIZE reports the attributes of
device's view surface.

the current

Opcode: 57 Length: 0

Format: REQUEST_OUTPUT_SIZE

Status: SUCCESS

The report consists of 10 words:
Report header, ulx, uly, screen_width,

resolution_x,
screen_height,

resolution_y, total_width, total_height,
Total_plane_rnask

where

[ulx, uly]

Screen_width

Screen_height

Total_width

Total_height

Resolution_x

Resolution_y

Total_plane_rnask

Are the coordinates of the upper left
corner of the device's view surface in IDS
units

Is device width in IDS units

Is device height in IDS units

Is device width in IDS units

Is device height in IDS units

Is device width in HAS x units

Is device height in HAS y units

Is the plane mask that contains a 1 for
every plane accessible. See device notes
of SET_PLANE_MASK.

6-52

Example:

.BYTE

REQUEST_OUTPUT_SIZE

;Assume PRO 350 Video with EBO
;Assume IDS is 960 by 600

0.,57. ;length=O,opcode for REQUEST_OUTPUT_SIZE

;BYTE 9.

;BYTE 2.
;WORD -32.
;WORD 0.
;WORD 1024.
;WORD 600.
;WORD 1024.

;WORD 600.
;1024.

9 words following output size
report tag
OUTPUT_SIZE_REPORT tag
IDS coordinate of device's
upper left corner is [-32,0]
IDS width and height of
entire view surface
IDS width and height of
entire view surface

number of pixels in total
device width

;WORD 240. number of pixels in total
device height

;WORD 7. total plane mask

6-53

6.26 REQUEST STATUS

REQUEST_STATUS reports
PRO/GIDIS instruction.
variable.

Opcode: 58 Length: 0

Format: REQUEST_STATUS

Status: SUCCESS

REQUEST_STATUS

the success or failure of the last
All PRO/GIDIS instructions set the status

The report consists of 2 words:

Report header, status

where the low-order bit of the status word is either

1 - indicating SUCCESS

0 - indicating FAILURE.

Notes:

• No other codes are defined. (Codes other than 0 or 1 are
reserved for future use.)

• FAILURE status is not saved. I~ your program needs
information about the success or failure of every
instruction, you must place a REQUEST_STATUS instruction
after each PRO/GIDIS instruction.

• Testing is recommended only following major PRO/GIDIS
instructions, such as CREATE_ALPHABET.

Example:

.BYTE
;assumes previous instruction failed

0.,58. ;Length=O,
;opcode for REQUEST_STATUS

Byte 1. (Data words following)
Byte 4. (Current Status Report Tag)
Word 0 (FAILURE status)

6-54

REQUEST_VERSION_NUMBER

6.27 REQUEST VERSION NUMBER

The REQUEST_VERSION_NUMBER instruction reports the version number
and driver of PRO/GIDIS.

Opcode: 71 Length: 0

Format: REQUEST_VERSION_NUMBER

Status: SUCCESS

The report consists of 3 words:

Report header, driver, version

where

driver Is 21 for Video GIDIS,

22 for Plotter GIDIS,

23 for Sixel GIDIS,

24 for File GIDIS,

25 for Palette GIDIS.

version Is the version number of GIDIS.

Notes:

• For P/OS V2.0, the version number of GIDIS is 21.

• For P/OS V2.0A, the version number of GIDIS is 29.

• For P/OS V3.0, the version numer of GIDIS is 32.

Example:

.BYTE 0.,71. ;Length=O,
;opcode for REQUEST_VERSION_NUMBER
;byte 2. data words following
;byte 7. VERSION_NUMBER_REPORT tag
;word 21. device code
;word 25. version number

6-55

SCROLL_CLIPPING_REGION

6.28 SCROLL CLIPPING REGION

The SCROLL_CLIPPING_REGION instruction moves data within the
clipping region. The vacated display area is set to the current
secondary color.

Opcode: 52 Length: 2

Format: SCROLL_CLIPPING_REGION dx, dy

dx The distance to move the data horizontally. If
dx is positive, the data is shifted right to
left; if negative, the data is shifted left to
right.

dy The distance to move the data vertically. If dy
is positive, the data is shifted toward the top
of the screen; if negative, the data is shifted
toward the bottom of the screen.

Status: SUCCESS

Notes:

• The instruction applies to Video GIDIS only.

• SCROLL_CLIPPING_REGION is affected by the current plane mask.
Planes not selected are not scrolled or otherwise changed.

• For speed, hardware assist is used when possible. When the
clipping rectangle is all of IDS, a vertical scroll scrolls
the entire width of the screen.

• When a software scroll is done, screen images appear to move
around rather than scroll.

• The data scrolled out is not saved. You cannot scroll out a
portion of an image and then scroll it back in. Solid
secondary color always scrolls in.

• After this instruction, shaded areas within the clipping
region will not necessarily be aligned with shaded areas
outside the clipping region.

6-56

Example:

Example:

Example:

.BYTE

. WORD

. WORD

. BYTE

. WORD

. WORD

. BYTE

.WORD

.WORD

SCROLL_CLIPPING_REGION

2. , 52.

-100 .
0 .

2. , 52 .
0 •
-15 .

2. , 52 .
-30
+30

;Length=O,
;opcode for SCROLL_CLIPPING_REGION
;dx
;dy
;Slides data to the right 100 units

;Scroll data down
;15 units

;Scrolls data in the clipping region
;30 units left and 30 units up.

6-57

SET_ALPHABET

6.29 SET ALPHABET

SET_ALPHABET sets the current alphabet to the specified alphabet.
Except as noted below, all alphabet-related operations act on the
currently selected apphabet.

Opcode: 38 Length: 1

Format: SET_ALPHABET alphabet

alphabet Is an integer value in the range 0 to 15.
identifies the alphabet to make current.

It

Status: SUCCESS if the alphabet number is valid (from 0 to 15);
otherwise, FAILURE.

Notes:

• A GIDIS alphabet number is somewhat like a character set.
Alphabet 0 is the DEC Multinational Character Set. Alphabets
1 through 15 are user alphabets.

• The first time you select a nonzero alphabet number,, there is
no font for the alphabet. You get a font in one of two ways:
the LOAD_BY_NAME instruction or the CREATE_ALPHABET
instruction.

• SET_OUTPUT_CURSOR and SET_AREA_TEXTURE are the only alphabet
related operations that do not act on the current alphabet.

• No drawing is done by the SET_ALPHABET instruction.

Example:

.BYTE 1. I 38 •

. WORD 2 .

;Length=l, opcode for
;SET_ALPHABET
;Selects alphabet #2 as current
;alphabet

6-58

SET_AREA_CELL_SIZE

6.30 SET AREA CELL SIZE

SET_AREA_CELL_SIZE clips the current area texture cell.

Opcode: 69 Length: 2

SET _AREA_CELL - SIZE width, height Format:

width The width of the area cell in hardware pixels.
The width value must be in the range 1 to 16.

height The height of the area cell in hardware pixels.
The height value must be in the range 1 to 16.

Status: SUCCESS if both width and height are in the range 1 to
16; otherwise, FAILURE.

Notes:

• If the area cell width is greater than the specified width,
GIDIS removes columns from the right side of the area texture
cell.

• If the area cell height is greater than the specified height,
GIDIS removes columns from the bottom of the area texture
cell.

• The SET_AREA_TEXTURE and SET_AREA_TEXTURE_SIZE instructions
set the area cell size from that of the character cell,
overriding any previous SET_AREA_CELL_SIZE specification.

• No drawing is done by the SET_AREA_CELL_SIZE instruction.

Device Note:

• Plotter GIDIS ignores this instruction.

6-59

Example:

. BYTE

. WORD

. WORD

. BYTE

. WORD

. WORD

2.,14 .
2 •
23

2. ,69 .
9 •
9 •

iLength=2, opcode for SET_AREA_TEXTURE
iUse character 23 from alphabet 2,
iwhich is 8 x 10
iArea Cell Size is now 8 by 10
iLength=2, opcodefor SET_AREA_CELL_SIZE
iarea cell width = 9 hardware pixels
iarea cell heighth = 9 hardware pixels
iArea cell size is now 9 by 9, padded on
ithe right, with one column of OFF's, and
iwith the bottom row of the character
icell removed

6-60

6.31 SET AREA TEXTURE

SET_AREA_TEXTURE specifies the rectangular bit pattern used to
fill subsequent filled figures. Area texture is specified as a
character in an alphabet.

Opcode: 14 Length: 2

Format: SET_AREA TEXTURE alphabet, char-index

alphabet

char-index

The number of the alphabet containing the
It can be the DEC

set (alphabet 0), a
or the special texture

texture character.
Multinational character
user-defined alphabet,
alphabet -1.

The index of the character to use.

status: SUCCESS if the specified alphabet number is valid;
otherwise, FAILURE.

Notes

• The character identified by SET_AREA_TEXTURE is copied to an
internal GIDIS storage area. Deleting or changing the font
does not affect the current area texture. Only another
SET_AREA_TEXTURE or SET_AREA_TEXTURE_SIZE can change the
current area texture.

• Alphabet -1 char-index 0 asks GIDIS to derive the area
texture cell from the current line texture. The pattern is
drawn vertically and replicated horizontally. The area
texture height is taken from the line texture size, not from
the area texture width and height.

• Solid fill is more efficient than patterned fill. To
generate solid fill most efficiently, select alphabet -1,
character 0 while line texture is set to solid.

• Filling is most efficient when area texture width is 8 or 16.

• If the selected alphabet is associated with a family ID (See
LOAD_BY_NAME(2)), SET_AREA_TEXTURE chooses a font for you
using the current area texture size. This option gives you a
way of making GIDIS generate more consistent patterns across
devices of differing resolutions.

6-61

SET_AREA_TEXTURE

• The current font of the specified alphabet should not have
width or height greater than 16 pixels. If width is greater
than 16, only the leftmost 8 bits of the selected glyph are
used. If height is greater than 16, only the topmost 16
lines of the glyph are used. If the alphabet is associated
with a family ID, the selected font is guaranteed to be less
than or equal to 16 x 16, if the current family contains such
a font.

• The bit pattern specified by this instruction always appears
upright; there is no way to rotate the pattern.

• Area textures are self-aligning. When two adjacent or
overlapping areas are filled, no seams show.

• Complement and complement-negate writing modes can give
unexpected results when filled figure areas overlap or abut.

• Pixel size js not used when filling areas.

• No drawing is done by the SET_AREA~TEXTURE instruction.

Device Note:

e Plotter GIDIS processes SET_AREA_TEXTURE differently. See
Appendix E for a description of how Plotter GIDIS handles
this instruction.

Example:

Example:

.BYTE

. WORD

. WORD

.BYTE

.WORD

.WORD

.WORD

.BYTE

.WORD

.WORD

2. , 14
8 .
23 .

3. , 1 7
any
-1
any
2. '14
-1
0

;length=2., opcode for SET_AREA_TEXTURE
;User-defined alphabet 2
;23rd character

;length=3.,opcode for SET_LINE_TEXTURE
;length of pattern
;solid
;size of one repetition of pattern
;length=2.,opcode for SET_AREA_TEXTURE
;alphabet -1 is derived from line texture
;character 0
;sets up solid area fill

6-62

SET_AREA_TEXTURE_SIZE

6.32 SET AREA TEXTURE SIZE

SET_AREA_TEXTURE_SIZE specifies the desired size of the area
texture cell.

Opcode: 3 Length: 2

Format: SET_AREA TEXTURE_SIZE width, height

width

height

Specifies the width of one repetition of the
area texture cell.

Specifies the height of one repetition of the
area texture cell.

Status: SUCCESS if width and height are greater than zero;
otherwise, FAILURE.

Notes:

• If the glyph you select (perhaps with GIDIS's hel~ as
described in the next note) for the area texture cell is
smaller than the specified width and height, GIDIS scales the
selected glyph to the size you specified. However, scaling
is restricted to an integral multiple of the texture cell.
GIDIS uses the largest multiple that is not larger than the
size specified. If the glyph you select is larger than the
specified width and height, GIDIS uses the selected glyph as
is.

• If the selected alphabet is associated with a family ID (see
LOAD_BY_NAME(2)), SET_AREA_TEXTURE_SIZE chooses a font for
you using the current area texture. This option gives you a
way of making GIDIS generate more consistent patterns across
devices of differing resolutions.

• No drawing is done by the SET AREA_TEXTURE_SIZE instruction.

Device Note:

• Plotter GIDIS ignores this instruction.

Example:

.BYTE

. WORD

. WORD

2 •I 3

12 .
8 .

;length=2,
;opcode for SET_AREA_TEXTURE_SIZE
;Area texture width = 12 units
;Area texture height = 8 units

6-63

SET_CELL_DISPLAY_SIZE

6.33 SET CELL DISPLAY SIZE

SET_CELL_DISPLAY_SIZE defines the size of a character's display
cell, the rectangular area of the view surface modified when a
character is drawn.

Opcode: 40 Length: 2

Format: SET_CELL_DISPLAY_SIZE width, height

width Is the width of the display cell.

height Is the height of the display cell.

Status: SUCCESS

Notes:

• The origin of the display cell is always the upper left
corner of the cell and is aligned with the unit cell at that
corner.

e Normally display cell size and unit cell size are set the
same. One reason to make display cell width wider than unit
cell size is to space characters further apart. (See
implicit movement in SET_CELL_MOVEMENT_MODE.) In Replace
Writing mode this approach can be preferable to using
SET_CELL_EXPLICIT_MOVEMENT, because there will not be gaps
between the cells.

e If the unit cell is smaller than the display cell, all of the
character is drawn and the right and bottom portions of the
display cell are treated as if the character pattern
specified OFF.

e If the unit cell is larger than the display cell, the bottom
and right portions of the character are clipped to the
display cell size. In other words, the character is
truncated.

Figure 6-5 shows what happens when the unit cell and display
cell are not the same size.

6-64

SET_CELL_DISPLAY_SIZE

I

I
~-----------'

Dlspla1;:1 Slze

LARGER THAN

Unlt Slze

Displa1;:1 Slze

SMALLER THA"I

Unlt Slze

Dlspla1;:1
Size

Figure 6-5: Character Unit Cell and Display Cell

• Negative values in width or height produce a mirroring in X
and Y, respectively. This mirroring always occurs about the
origin (the upper-left corner of the cell). Implicit
movement always goes across the display cell; consequently,
implicit movement for a display cell mirrored in X is in the
opposite direction from the rotation angle.

6-65

SET_CELL_DISPLAY_SIZE

• The smallest actual width or height is 1 hardware pixel.

• Display cell size, except for mirroring, is ignored for
proportionally spaced fonts.

• No drawing is done by the SET_CELL DISPLAY SIZE instruction.

Example:

.BYTE

.WORD

.WORD

2.,40. ;Length=2,
;opcode for SET_CELL_DISPLAY_SIZE

12. ;Width
28. ; Height

6-66

SET_CELL_EXPLICIT_MOVEMENT

6.34 SET CELL EXPLICIT MOVEMENT - -

SET_CELL_EXPLICIT_MOVEMENT specifies a distance to move the
current position after a character is drawn.

Opcode: 41 Length: ·2

Format: SET_CELL EXPLICIT_MOVEMENT dx, dy

dx

dy

Specifies the horizontal distance to move the
current position.

Specifies the vertical distance to move the
current position.

Status: SUCCESS

Notes:

• Dx and dy define the total movement when implicit movement is
OFF (see SET_CELL_MOVEMENT_MODE.)

• Explicit cell movement is not affected by SET_CELL_ROTATION
or SET_CELL_OBLIQUE instructions.

• For left-to-right text, you normally use either implicit
movement or explicit movement as follows:

Implicit Movement

.BYTE 1. I 42

.WORD 2

.BYTE 2 • I 41

.WORD 0

.WORD 0

Explicit Movement

.BYTE 1. I 42

.WORD O(or

.BYTE 2 • I 41

.WORD width

.WORD 0

1)

;Length=l,opcode for
;SET_CELL_MOVEMENT_MODE
;flag for implicit movement
;length=2,opcode for
;SET_CELL_EXPLICIT_MOVEMENT
;dx
;dy

;length=l,opcode for
;SET_CELL_MOVEMENT_MODE
;turns off implicit cell movement
;length=2,opcode for
;SET_CELL_EXPLICIT_MOVEMENT

;as set by SET_CELL_DISPLAY_SIZE

6-67

SET_CELL_EXPLICIT_MOVEMENT

• No drawing is done by the SET_CELL_EXPLICIT_MOVEMENT
instruction.

Example:

.BYTE

.WORD

.WORD

2.,41. ;Length=2,opcode for
;SET_CELL_EXPLICIT_MOVEMENT

12. ;dx
0. ;dy

6-68

SET_CELL_MOVEMENT_MODE

6.35 SET CELL MOVEMENT MODE - -

SET_CELL_MOVEMENT_MODE specifies the manner in which the current
position moves after a character is drawn.

Opcode: 42 Length: 1

Format: SET_CELL_MOVEMENT_MODE flag

flag Specifies one of the following movement modes as
shown in Table 6-5 below.

Table 6-5: SET_CELL_MOVEMENT MODE Flag Values

Movement Mode

Explicit cell movement,
local symmetry

Explicit cell movement,
global symmetry

Explicit and implicit movement,
local symmetry

Explicit and implicit movement,
global symmetry

Reserved

Value

0

1

2

3

4-15

Status: SUCCESS if Flag is 0 to 3; otherwise, FAILURE.

Notes:

• Explicit cell movement is set by SET_CELL_EXPLICIT_MOVEMENT.

• Implicit movement means that the current position moves a
distance equal to the display cell width. Movement is along
the baseline of the angle of rotation. Thus, left-to-right
text (aligned along a 0 degree angle) has implicit movement
of dx = display cell width and dy = 0. Each successive

6-69

SET_CELL_MOVEMENT_MODE

character is one display cell width to the right. Upwards
perpendicular text (text aligned along a 90 degree angle),
has implicit movement of dx = 0 and dy -display cell width.
Each successive character is one display cell width towards
the top of the view surface.

• When using local symmetry, the current position after a
DRAW_CHARACTERS instruction could be different from that
calculated by your program. It is suggested that any series
of DRAW_CHARACTERS instructions be followed by a SET_POSITION
instruction or a REQUEST_POSITION instruction, unless you do
not care exactly where the string ends.

• When using global symmetry, the final current position is
exactly the value that would be calculated by your program.
However, character spacing may not always be even due to
round-off errors.

• For proportionally spaced fonts, you should normally specify
implicit motion.

• If the current font is proportionally spaced, global symmetry
is ignored.

• No drawing is done by the SET_CELL_MOVEMENT_MODE instruction.

Example:

. BYTE 1. , 42 .

. WORD 0 .

;Length=l,
;opcode for SET_CELL_MOVEMENT_MODE
;Set explicit movement, local symmetry

6-70

SET_CELL_OBLIQUE

6.36 SET_CELL OBLIQUE

Normally a character cell is a rectangle. An oblique character
cell is a parallelogram. SET_CELL_OBLIQUE specifies how much to
slant the rectangle. The top line of the display cell remains
stationary, while the bottom of the cell is moved either forward
or backward.

Opcode: 65 Lenqth: 1

Format: SET_CELL_OBLIQUE angle

angle The requested angle in degrees. A positive
angle value indicates a backward slant (move
bottom of cell forwards); a negative angle
indicates a forward slant (move bottom of cell
backwards)

Status: SUCCESS

Notes:

• If the specified angle is greater than 60 (or less than -60),
GIDIS uses 60.

• The shape of the parallelogram is not affected by cell
rotation.

• If x of the current position is at the left edge of the
clipping rectangle, the bottom left of a forward-slanted
character will be clipped. This is because a forward slant
is achieved by moving the bottom of the cell backwards,
rather than by moving the top of the cell forwards.

• No drawing is done by the SET_CELL_OBLIQUE instruction.

Example:

Example:

. BYTE

. WORD

. BYTE

. WORD

1. ,65 .
-23 .

1., 65 .
23 .

;Length=l, opcode for SET_CELL_OBLIQUE
;Approximate italics (slant right
;23 degrees)

;Length=l, opcode for SET_CELL_OBLIQUE
;Approximate back-slant (slant left
;23 degrees

6-71

SET_CELL_OBLIQUE

Figure 6-6 shows the two display cells that result from the above
examples.

Figure 6-6: Italic and Back-Slanted Display Cells

6-72

SET_CELL_RENDITION

6.37 SET CELL RENDITION

SET_CELL_RENDITION controls character rendition. The rendition
options defined for the Professional are: back-slant, italics,
bold, and proportionally spaced text.

Opcode: 43 Length: 1

Format: SET_CELL_RENDITION flags

flags A word that specifies zero or more of the cell
rendition options. A rendition is represented
by the value of set bits as shown in Table 6-6.
A 0 value establishes normal rendition: no
slant, not bold, not proportional.

Table 6-6: SET CELL RENDITION Flags

Cell Rendition Bit Value

Back Slant 0 1

Italics 1 2

Bold 3 8

Proportionally spaced 4 16

Reserved 2, 5-15

Status: SUCCESS

6-73

SET_CELL_RENDITION

Notes:

• SET_CELL_RENDITION is not cumulative. A SET_CELL_RENDITION
with an argument of 2 followed by another SET_CELL_RENDITION
with an argument of 8 causes the character to be bold not
slanted, rather than bold and slanted.

• SET_CELL_RENDITION with an argument of 3 (mask value B00011)
selects italics.

• SET_CELL_RENDITION simulates a SET_CELL_OBLIQUE with an
argument of 0, before processing the mask-value. This
cancels the effect of earlier SET_CELL_OBLIQUE instructions.

• If possible, GIDIS satisfies a request for bold or italics by
using a font with that attribute. Otherwise, it
algorithmically creates the desired rendition.

• If font width size is less than or equal to 8 pixels,
algorithmic bolding has no visible effect.

• Algorithmic italics is equivalent to SET_CELL_OBLIQUE -23.

• Algorithmic backslant is equivalent to SET_CELL_OBLIQUE 23.

• There is no algorithmic fallback for proportionally spaced
text. The proportional bit is used only to request a
proportional font from a font family. If no appropriate font
is found, the argument is ignored. See LOAD_BY_NAME(2).

• For proportionally spaced fonts, you should normally specify
implicit motion.

• If the current font is proportionally spaced, global symmetry
is ignored.

Example:

. BYTE

. WORD
1.,43 .
2 •

;Length=l, opcode for SET_CELL_RENDITION
;Requests italics rendition

6-74

SET_CELL_ROTATION

6.38 SET CELL ROTATION - -

SET_CELL_ROTATION defines the angle of rotation with which
subsequent characters are drawn. The character is rotated about
the current position (upper left corner of the display cell) to
the angle specified.

Opcode: 44 Length: 1

Format: SET_CELL ROTATION angle

angle The requested angle in degrees. A positive
angle value indicates counter-clockwise from
normal text. For example, 90 degree text is
sideways, facing up. A negative angle indicates
clockwise from normal text.

Status: SUCCESS

Notes:

• The simplest way to make a string of rotated characters
follow a baseline is to use SET_CELL_EXPLICIT_MOVEMENT with
arguments of [0,0] and set the implicit movement flag with
the SET_CELL_MOVEMENT_MODE instruction.

• An angle of N-360 is equivalent to an angle of N.

• No drawing takes place when the SET_CELL_ROTATION instruction
executes.

Example:

. BYTE

. WORD
1. ,44 •
-90 .

;Length=l, opcode for SET_CELL_ROTATION
;Text to face down the screen

6-75

SET_CELL_UNIT_SIZE

6.39 SET CELL UNIT SIZE

SET_CELL_UNIT_SIZE specifies the size
character cells.

Opcode: 45 Length: 2

Format: SET_CELL_UNIT_SIZE width, height

to draw subsequent

width Is the desired cell width. The width must be
greater than zero.

height Is the desired cell height. The height must be
greater than zero.

Status: SUCCESS if width and height are greater than zero;
otherwise, FAILURE.

Notes:

• If the current alphabet is associated with a font family ID
(See LOAD_BY_NAME(2)), GIDIS tries to find a font in the
family whose size matches the specified size. If the size
request is between two available fonts, GIDIS generally
selects the smaller of the two.

• If the current alphabet has a CREATE_ALPHABET font or a
LOAD_BY_NAME(l) font, GIDIS must use that font.

• If the available (or chosen) font does not match the
specified size, GIDIS scales it. Width and height are scaled
independently.

• GIDIS may not be able to scale the font exactly to the
specified size. However, unit cell size will not be exceeded
unless the specified size is less than half the size of the
font being scaled.

• The width of a proportionally spaced font can only be scaled
to an integral multiple of itself.

• The requested unit size does not change when the current
alphabet changes, but the the font and/or scaling is
recalculated in order to obtain the best match.

• The unit cell and the display cell are always aligned at
their upper-left corners.

6-76

SET_CELL_UNIT_SIZE

e Normally when you change unit cell size, you would also make
an analogous change to display cell size.

• No drawing is done by the SET_CELL_UNIT_SIZE instruction.

Device Notes:

e Plotter GIDIS always sets unit cell size to display cell
size.

• Plotter GIDIS always sets unit cell size exactly.

Example:

. BYTE

. WORD

. WORD

1. ,45 .
10 .
30 .

;Length=l, opcode for SET_CELL_UNIT_SIZE
;Width
;Height

6-77

SET_COLOR_MAP_ENTRY

6.40 SET COLOR MAP ENTRY

The SET_COLOR_MAP_ENTRY instruction sets the specified color map
entry. All pixels that were previously drawn using that color
map entry are immediately affected.

Opcode: 16 Length: 6

Format: SET_COLOR_MAP_ENTRY map, index, red, green, blue, mono

map

index

red

green

blue

mono

Status: SUCCESS
FAILURE.

Notes:

an integer representing a specific color map.
For the Professional, this value must be 0.

an integer from 0 to (color map size -1), to
identify the color map entry.

an integer in the range of 0 to 65535,
representing the intensity of red.

an integer in the range of 0 to 65535,
representing the intensity of green.

an integer in the range of 0 to 65535,
representing the intensity of blue.

an integer in the range of 0 to 65535,
representing the intensity of monochrome.

if map = 0 and index is in range; otherwise,

• Table 6-7 shows color intensities in various formats: octal
fraction, octal integer, unsigned decimal integer and signed
decimal integer. Making an intensity value larger linearly
increases intensity. For example, specifying 32768 sets a
color to half its maximum intensity, while specifying 65535
sets a color to its maximum intensity.

6-78

SET_COLOR_MAP_ENTRY

Table 6-7: Sample Color Map Values

Octal
Fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Max

Device Notes:

Octal
Integer

0

20000

40000

60000

100000

120000

140000

160000

177777

Unsigned
Decimal
Integer

0

8192

16384

24576

32768

40960

49152

57344

65535

Signed
Decimal
Integer

0

8192

16384

24576

-32768

-24576

-16384

-8192

-1

• Video GIDIS ignores this instruction unless the system has an
Extended Bitmap Option (EBO).

• On a Video with an EBO, there are 8 color map entries. On
Palette, there are 16 color map entries.

• On Professional 350 Video, there are 8 intensity levels
available for mono, red, and green; and 4 for blue.

• On Professional 380 Video and Palette, there are 16 intensity
levels available for mono, red, green, and blue.

6-79

SET_COLOR_MAP_ENTRY

• If any in-between value is specified, the next lower value is
used. However, how "in between" values are treated is device
specific. For example, the PRO 380 treats 0.16 (octal) for
red as 0.15, while the PRO 350 treats 0.16 (octal) as 0.1.

• Sixel GIDIS and Plotter GIDIS ignore this instruction.

Example:

.BYTE 6. ,16. ;length=6,opcode for SET - COLOR_MAP - ENTRY

.WORD 0. ;PRO'S bitmap (value must be 0)

.WORD 1. ;Color index 1

.WORD 49152 ;Red is three-quarters

.WORD 40960. ;Green is five-eighths

.WORD 0 ;Blue is zero

. WORD 32768 . ;Monochrome is one-half
;This makes dark yellow on a color
;system.

6-80

SET_GIDIS_OUTPUT_SPACE

6.41 SET_GIDIS_OUTPUT SPACE

SET_GIDIS_OUTPUT_SPACE specifies the coordinate units and shape
of a window you define in GOS. Simultaneously, it sets the
output clipping rectangle to coincide with the window. This
instruction also resets GIDIS attributes as shown in Table 6-8.

Opcode: 9 Length: 4

Format: SET_GIDIS_OUTPUT_SPACE ulx, uly, width, height

ulx

uly

width

height

Is the x value to assign to the leftmost point
in your window.

Is the y value to assign to the topmost point in
your window. In other words, [ulx, uly] is the
origin of the window.

Specifies the number of x units in your window
(See second note below.)

Specifies the number of y units in your window
(See second note below.)

Status: SUCCESS if width and height are greater than zero;
otherwise, FAILURE.

Notes:

• When drawing a picture with GIDIS, you normally just use a
SET_OUTPUT_IDS instruction. This sets your viewport and
clipping rectangle to the entire view surface, and makes GOS
units and IDS units the same. For example, if the view
surface width in IDS is 960, then the view surface width in
GOS is also 960. You only need to use SET_GIDIS_OUTPUT_SPACE
if you do not want to draw on the entire view surface or if
you want to draw only a portion of a picture on the view
surface. (See the third note.)

• If the window shape is not the same as the viewport shape,
then space is left unused to the right or bottom of the
picture. Figure 6-7 shows how a window with an extent of
1000 x 1000 maps to a viewport with an extent of 1500 x 1000.
Note how GIDIS begins at the upper left-hand corner and fills
as much of the viewport as possible. In this case the
vertical extents match, so the picture extends to the bottom
of the viewport. Since the horizontal extents do not match,
GIDIS leaves space on the right.

6-81

GOS
1000

SET_GIDIS_OUTPUT_SPACE

IDS 1500

IDS
1000

MA-1147-85

Figure 6-7: Mapping of GOS to a Different Shaped Viewport

e The SET_GIDIS_OUTPUT_SPACE instruction makes it easy to
display a selected rectangle from a larger picture. Choose
the portion of the picture you want. Use its origin, width,
and height as arguments to SET_GIDIS_OUTPUT_SPACE, and then
draw the whole picture. GIDIS will fill your viewport with
the desired picture section and clip away the rest. The
effect is that of enlarging a portion of your picture, while
maintaining all existing proportions. (However, if the GIDIS
instructions that comprise the whole picture include a
SET_OUTPUT_GOS or SET_OUTPUT_IDS, you will not achieve the
desired result.) Figure 6-8 shows how a selected portion of a
GIDIS picture maps to a viewport with an extent in IDS of 500
x 500. The area to be drawn is identified by the following
arguments:

ulx = 300
uly = 100
width = 100
height = 100

6-82

,----------

I
I
I
I
I
I
I

L------------J

SET_GIDIS_OUTPUT_SPACE

500

VIEWPORT

500

MA-1146-8!5

Figure 6-8: Mapping a Portion of a Picture to a Viewport

• It is recommended that ulx, uly, (ulx +width), and
(uly + height) never be set larger than 16384 (2 to the 14th
power). This will allow sufficient off-screen address space
for accurate clipping.

• No drawing is done by the SET_GIDIS_OUTPUT_SPACE instruction.

• Table 6-8 lists all of the GIDIS attributes modified by the
SET_GIDIS_OUTPUT_SPACE instruction. Standard text size is
the number of GOS units needed to match hardware character
size to the size set by INITIALIZE -1.

6-83

SET_GIDIS_OUTPUT SPACE

Table 6-8: GIDIS Attributes Affected by SET GIDIS OUTPUT SPACE

Attribute Value

GIDIS output space

clipping region

current position x
current position y

line texture size

area texture width
area texture height

logical pixel x offset
logical pixel y offset
logical pixel width
logical pixel height

as specified

same as GOS

0
0

N/A

12
25

0
0
0
0

cell movement mode flag
cell explicit movement dx
cell explicit movement dy

2, (implicit)
0
0

cell display size width
cell display size height
cell unit size width
cell unit size height

Example:

. BYTE

. WORD

. WORD

. BYTE

. WORD

.WORD

.WORD

. WORD

2.,12 .
960 .
600 .

4.,13 .
0 .
0.
480.
600 .

12
25
12
25

;assume Video GIDIS
;length=2,opcode for SET_OUTPUT IDS
;width
;height (upper left corner is [0,0] and

lower right corner is [959,599])

;length=4,opcode for SET_OUTPUT_VIEWPORT

;Sets the viewport to the left half
of the screen

6-84

.BYTE 4. , 9.

.WORD 0.

.WORD 0

. WORD 2400.

.WORD 3000.

SET_GIDIS_OUTPUT_SPACE

;length=4,opcode SET_GIDIS_OUTPUT_SPACE
;Sets GOS to 0 to 2399 in X

and 0 to 2999 in Y (all within the
left half of the screen) .

;Because 480/600 = 2400/3000, there is
no wasted space at the bottom or
right of the viewport.

6-85

SET_LINE_TEXTURE

6.42 SET LINE TEXTURE

SET_LINE_TEXTURE defines the line texture, a bit pattern that is
scaled and repeated in drawing straight lines and arcs.

Opcode: 17 Lenqth: 3

Format: SET_LINE TEXTURE patlen, pattern, size

patlen Is the length (in bits) of the specified
pattern. It must be in the range 1 to 16.

pattern

size

Is the bit pattern to use. PRO/GIDIS begins the
pattern by using the low-order (rightmost) bit
(bit 0) first.

Specifies the length of pattern repetition in
GOS units. It must be greater than zero.

Status: SUCCESS if patlen is in the range 1 to 16, and if size
is greater than O; otherwise, FAILURE.

Notes:

• The size argument in this instruction is handled much like
size in the SET_CELL_UNIT_SIZE instruction. However, scaling
is limited to integral multiples of the pattern.

• Drawing with a solid pattern (that is, pattern = -1) is quite
a bit more efficient than drawing with a nonsolid pattern.

• When specifying a nonsolid pattern, a highly multiplied
pattern is best. For example, patlen = 2 and pattern = 1 are
more efficient than patlen = 16 and pattern = 255 for drawing
a dashed line. ,·

• Pixel size does not change how often the pattern repeats,
although the appearance of the line does change somewhat.

• The pattern is rotated as lines are drawn, so that the
pattern is preserved around corners and bends.

• Conversely, the only way to force the pattern to bit 0 is to
issue another SET_LINE_TEXTURE instruction.

• Except for Plotter GIDIS, the size given is used only for
horizontal and vertical lines. Diagonal lines have a size
that is larger by as much as a factor of the square root of 2
(1.414 •.•).

6-86

SET_LINE_TEXTURE

• No drawing is done by the SET_LINE_TEXTURE instruction.

Device Notes:

• For Plotter GIDIS, the specified pattern is mapped to the
closest pattern provided by the plotter hardware. The
patterns provided are solid, dashes, long dashes, long dash
short dash, long short short, and dots. The size of the line
pattern is set to the value specified in the command, with a
minimum of about .125 inches. The pattern is rotated rather
than projected when a diagonal line is drawn.

• Plotter GIDIS maintains-the correct size regardless of the
direction of the lines.

Example:

.BYTE

.WORD

.WORD

.WORD

3.,17 ;length=3., opcode for SET_LINE_TEXTURE
8. ;patlen
AB10001111 ;ON, ON, ON, ON, OFF, OFF, OFF, ON

;Bits are used in order low to high
100. ;Size of one repetition of pattern in

;GIDIS output space
;makes subsequent lines dashed

6-87

SET_OUTPUT_BITMAP

6.43 SET OUTPUT BITMAP

SET_OUTPUT_BITMAP tells GIDIS which page of the 380 video bitmap
to make current. All drawing executes on the current bitmap.

Opcode: 145 Length: 2

Format: SET_OUTPUT_BITMAP bitmap-no, dis-flag

bitmap-no

dis-flag

Status: SUCCESS

Notes:

Specifies which bitmap to make current. In low
resolutibn mode, the value can be 1 to 4. In
high resolution mode, the value can be 1 to 2.

Controls whether the current bitmap is to be
displayed. If flag is set, the current bitmap
is displayed. If flag is not set, the current
bitmap is not displayed.

• Each bitmap is a complete environment with its own color map.

• SET_OUTPUT_BITMAP does not alter any other GIDIS attributes.
It only affects the current bitmap.

• Do a SET_OUTPUT_BITMAP with a dis-flag of 0, if you want to
continue looking at the current picture on the screen while
GIDIS draws the next picture. This is a useful feature in a
slide show application, for instance.

• SET_OUTPUT_BITMAP is available on the Professional 380 only.

Device Notes:

e You may scroll the displayed bitmap, provided you do not
write to that bitmap while it is not the displayed bitmap.

e Always go back to bitmap 1 before using text mode. You can
do this in several ways:

4111 Use SET_OUTPUT_BITMAP with a bitmap-no argument of 1

o Use the DCL command CLEAR

e Use a RIS escape sequence

6-88

SET __ OUTPUT_CLIPPING_REGION

6.44 SET OUTPUT NG REGION

SET_OUTPUT_CLIPPING_REGION specifies
rectangle. The clipping rectangle
surface where PRO/GIDIS can draw.

the output clipping
is the area on the view

Opcode: 4 Length: 4

Format: SET_OUTPUT __ CLIPPING_REGION ulx, uly, dx, dy

ulx

uly

dx

dy

Specifies the x coordinate of the left edge of
the clipping region.

cifies the y coordinate of the top edge of
the clipping region.

Sets the rightmost x of the clipping rectangle
to ulx + dx.

Specifies the bottommost y of the clipping
rectangle to uly + dy.

Status: SUCCESS if width and height are not negative; otherwise,
FAILURE.

Notes:

• You cannot set the clipping region to an area larger than the
device's Hardware Address Space (HAS). An attempt to do so
reduces the clipping region to the available space.

• Clipping does not affect the setting of the current position.
For example, if you draw a line that ends outside the
clipping rectangle, the current position is set to the x and
y you specified, even though only part of the line was drawn.

e Clipping applies to all drawing. For example, any part of a
character outside of the clipping region is not drawn.

a Clipping does not affect drawing accuracy. In particular, if
only par of an arc is inside the clipping region, that part
is drawn correctly.

6-89

SET_OUTPUT_CLIPPING_REGION

• Because the clipping rectangle includes the right and bottom
borders,

SET_POSITION 100, 150
DRAW_LINES 500, 150

draws pixels from [100,150] to [400,150] inclusive. Note
that the current position is now [500,150].

• No drawing is done by the SET_OUTPUT_CLIPPING_REGION
instruction.

Example:

.BYTE 4 • I 4 •

. WORD 100 .

.WORD 100.

. WORD 400 .

. WORD 100 .

;length=4,
;opcode for SET_OUTPUT_CLIPPING_REGION
;Sets output clipping region to rectangle
;with the upper left corner at 100,100
;and the lower right corner at 500,200.

6-90

SET_OUTPUT_CURSOR

6.45 SET OUTPUT CURSOR

SET_OUTPUT_CURSOR selects the symbol to be used as the cursor and
aligns it relative to the current position. The cursor is a
visible indication of the current position.

Opcode: 5 Length: 6

Format: SET OUTPUT CURSOR alphabet, index, width, height,
offset-x, offset-y

alphabet Specifies the alphabet containing the character
or the special cursor alphabet (-1).

index

width

height

Specifies the character or special cursor.

Specifies the width of the cursor. The width
must be greater than or equal to zero.

Specifies the height of the cursor. The height
must be greater than or equal to zero.

off set-x Specifies distance from the left edge of the
cursor to the current position (range is 0 to
width) .

off set-y Specifies distance from the top edge
cursor to the current position (range
height).

of the
is 0 to

Status:

Notes:

SUCCESS if alphabet is -1 to 15, alphabet width is less
than or equal to 16, alphabet height is less than or
equal to 16, and the offsets are in range; otherwise,
FAILURE.

• Applies to Video GIDIS only.

• If the alphabet is not -1, the width and height are treated
as a unit cell size; there is no equivalent of a display
cell. When the specified character is scaled to width and
height (using the rules described under
SET_AREA_TEXTURE_SIZE, the x and y offsets are scaled by the
same ratios.

6-91

SET_OUTPUT_CURSOR

• An alphabet code of -1 specifies that one of the following
special built-in cursors should be used:

-1 No cursor
0 Implementation default (same as 1)
1 Tracking cross (small cross)
2 Crosshairs (full clipping rectangle width and height)
3 Block (solid rectangle)

All other values are reserved.

Width, height, and the offsets are ignored when the tracking
cross or crosshairs are used.

• If the chosen cursor is neither a special cursor nor a
character in alphabet 0, your program must define the
character before executing SET_OUTPUT_CURSOR. Redefining the
selected character after a SET_OUTPUT_CURSOR does not change
the cursor's appearance. You must use another
SET_OUTPUT_CURSOR to change the appearance of the cursor.

• When the SET_OUTPUT_CURSOR instruction executes, the
appearance of the cursor changes immediately.

Device Note:

• SET_OUTPUT_CURSOR changes only the GIDIS cursor. However,
turning the Terminal Subsystem's text cursor ON or OFF has
the side effect of turning the Video GIDIS cursor ON or OFF.

Example:

.BYTE

.WORD

. WORD

. WORD

. WORD

. WORD

. WORD

6 • t 5 •
1.
2 •

30 .
30 .
15 .
0 .

;length=6,opcode for SET_OUTPUT_CURSOR
;Alphabet 1 (user-defined alphabet)
;Character index value
;(Assume that Alphabet 1, character-index
;2, is defined as an arrow pointing
;straight upward
;Width of 30
;Height of 30
;offset-x
;offset-y
;Makes the arrow the new cursor and
;aligns it such that its tip is at the
;current position.

6-92

Example:

.BYTE

.WORD

.WORD

. WORD

. WORD

. WORD

. WORD

6 • I 5 •
-1.
-1.
0 .
0 .
3 .
4 .

SET_OUTPUT_CURSOR

;length=6,opcode for SET_OUTPUT_CURSOR
;PRO/GIDIS Cursor Alphabet
;No cursor
;Width value of zero (ignored)
;Height value of zero (ignored)
;offset-x (ignored)
;offset-y (ignored)
;turns the GIDIS cursor off

6-93

SET_OUTPUT_CURSOR_RENDITION

6.46 SET OUTPUT CURSOR RENDITION

SET_OUTPUT_CURSOR_RENDITION controls cursor and rubber band
rendition. The rendition options are blinking and continuous.

Opcode: 72 Length: 1

Format: SET_OUTPUT CURSOR_RENDITION mask

mask Is a word that specifies the rendition. The
rendition is represented in the mask as a bit.
If the 0 bit is set, the cursor or rubber band
blinks; if not, it is continuous.

Status: SUCCESS

Notes:

• Applies to Video GIDIS only.

• Bits 1-15 of mask are reserved.

• Using a continuous cursor during picture drawing is very
expensive.

Example:

.BYTE

.WORD

1.,72. ;length=!, opcode for
;SET_OUTPUT_CURSOR_RENDITION

0. ;set to continuous mode

6-94

SET_OUTPUT_IDS

6.47 SET OUTPUT IDS - -

SET_OUTPUT_IDS specifies the width and height of Imposed Device
Space (IDS). It also sets GIDIS Output Space, the clipping
rectangle, and the viewport to be identical with IDS, and sets
all GIDIS attributes as shown in Table 6-9.

Opcode: 12 Length: 2

Format: SET_OUTPUT IDS width, height

width Specifies the number of x units on your device

height Specifies the number of y units on your device

Status: SUCCESS if width and height are greater than O;
otherwise, FAILURE.

Notes:

• The upper left corner of IDS is always [0,0]. The
coordinates of the lower-right corner are [width -1, height
-1] .

• When the shape of IDS is not equal to the shape of the
hardware address space, only the top left portion of the view
surface is used. This mapping mirrors the mapping of GOS to
a different shaped viewport. See note 2 under
SET_GIDIS_OUTPUT_SPACE.

• It is recommended that width and height never be set larger
than 16384 (2 to the 14th power). This will allow sufficient
off-screen address space for accurate clipping.

• No drawing is done by the SET_OUTPUT_IDS instruction.

• Table 6-9 lists all of the GIDIS attributes affected by the
SET_OUTPUT_IDS instruction.

6-95

SET_OUTPUT IDS

Table 6-9: GIDIS Attributes Affected

Attribute

IDS width
IDS height

viewport

GIDrS output space
clipping region

current position x
current position y

line texture size

area texture width
area texture height

logical pixel x off set
logical pixel y offset
logical pixel width
logical pixel height

cell movement mode flag
cell explicit movement dx
cell explicit movement dy

cell display size width
cell display size height
cell unit size width
cell unit size height

6-96

Value

as specified
as specified

same as IDS

same as IDS
same as IDS

0
0

N/A

12
25

0
0
0
0

2 (implicit)
0
0

12
25
12
25

IDS

Example:

.BYTE 2.,12.

.WORD 960.

.WORD 600.

.BYTE 4•I13 •

. WORD 0 .

.WORD 0.

.WORD 480.

. WORD 600 .

.BYTE 4., 9.

. WORD 0 .

.WORD 0.

.WORD 2400.

.WORD 3000.

SET_OUTPUT_IDS

;assume Video GIDIS
;length=2,opcode for SET_OUTPUT_IDS
;width
;height (upper left corner is [0,0] and

lower right corner is [959,599])

;length=4,opcode for SET_OUTPUT_VIEWPORT

;Sets the viewport to the left half
of the screen

;length=4,opcode SET_GIDIS_OUTPUT_SPACE

;Sets GOS to O-to-2399 in x
and 0-to-2999 in Y (all within the

left half of the screen)
;Because 480/600 = 2400/3000, there is
;no wasted space at the bottom and
;right of the viewport.

6-97

SET_OUTPUT_RUBBER_BAND

6.48 SET OUTPUT RUBBER BAND

SET_OUTPUT_RUBBER_BAND specifies if a rubber band is to be
generated. It also gives the origin of the rubber band.

Opcode: 53 Length: 3

Format: SET_OUTPUT_RUBBER_BAND type, origin-x, origin-y

type Is the type of rubber band to use.
6-10.)

(See table

origin-x Is the x coordinate of the desired rubber band's
origin.

origin-y Is the y coordinate of the desired rubber band's
origin.

Status: SUCCESS if the type is legal; otherwise, FAILURE.

Table 6-10: Types of Rubber Bands

Type Code Rubber Band

-1 No rubber band

0 Default (same as -1)

1 Rubber band line

2 Rubber band rectangle

Notes:

e Applies to Video GIDIS only.

e The SET_OUTPUT_CURSOR_RENDITION instruction applies to rubber
bands as well as cursors.

6-98

SET_OUTPUT_RUBBER_BAND

• The rubber band line is drawn from its origin to the current
position.

• The rubber band rectangle is a rectangle with one corner at
the rubber band origin and the opposite corner at the current
position. The rectangle will degenerate to a line (or point)
if one or both of the coordinates of the current position and
rubber band origin are the same.

• Since both the cursor and the rubber band are drawn in
complement mode, it may be preferable to turn the cursor OFF
when a rubber band is ON.

Example:

. BYTE

.WORD

. WORD

. WORD

. BYTE

. WORD

. WORD

3., 53 .

1.
50 .
60 .

2. ,29 .
100 .
300 .

;length=3., opcode for
;SET_OUTPUT_RUBBER_BAND
;rubber band line
;its origin is [50,60]

;length=l., opcode for SET_POSITION
;new current position
;is [100,300]

;there will be a rubber band line from
;[50,60] to [100,300].

6-99

SET_OUTPUT_VIEWPORT

6.49 SET OUTPUT VIEWPORT

SET_OUTPUT_VIEWPORT specifies the size and
viewport. Your viewport is the rectangle on
which your picture is mapped for display.
also sets the clipping rectangle to match the

location of your
the view surf ace to
SET_OUTPUT_VIEWPORT
viewport.

Opcode: 13 Length: 4

SET - OUTPUT_VIEWPORT ulx, uly, width, height Format:

ulx specifies the x coordinate of the left edge of
the viewport, in IDS units

uly specifies the y coordinate of the top edge of
the viewport, in IDS units

width specifies the width of the viewport,
units

in IDS

height specifies the height of the viewport,
units

in IDS

Status: SUCCESS if width and height are greater than O;
otherwise, FAILURE.

Notes:

• Use this instruction when you want the drawing area to be
smaller than the view surface.

• To copy a picture to another part of the view surface and/or
change its size, you need only do a SET_OUTPUT_VIEWPORT and
then redraw the picture. You need to do a
SET_GIDIS_OUTPUT SPACE as well only if you want to draw a
different portion of the picture.

• Unlike SET_OUTPUT_IDS and SET_GIDIS_OUTPUT_SPACE, this
instruction does not initialize any of the GIDIS attributes.
However, it does alter them. For example, suppose cell unit
width in GOS is 36 and you make your viewport half as wide.
This makes every GOS unit half as wide. Thus if cell unit
width had been 18 pixels, it is now 9 pixels. Cell unit
width in GOS is still 36, but 36 GOS units is half as wide as
before.

6-100

SET_OUTPUT_VIEWPORT

• A SET_OUTPUT_IDS simulates a SET_OUTPUT_VIEWPORT with
arguments as follows:

ulx 0
0 uly

width
height =

= width of IDS
height of IDS

• No drawing is done by the SET_OUTPUT_VIEWPORT instruction.

Example: See SET_GIDIS_OUTPUT_SPACE description.

6-101

SET_PIXEL_SIZE

6.50 SET PIXEL SIZE

SET_PIXEL_SIZE permits you to set the size of the logical pixel
used for drawing straight lines and arcs. For large pixels, you
also control where the pixel is aligned relative to the current
position.

Opcode: 19 Length: 4

Format: SET - PIXEL - SIZE width, height, offset-x, off set-y

width Specifies the width of the logical drawing
pixel.

height Specifies the height of the logical drawing
pixel.

off set-x Specifies distance from the left edge of the
pixel to the current position.

off set-y Specifies distance from the top edge of the
pixel to the current position.

Status: SUCCESS if width and height are greater than or equal to
zero, offset-x is greater than or equal to zero and not
greater than width, and offset-y is greater than or
equal to zero and not greater than height; otherwise,
FAILURE.

Notes:

• The drawing pixel is always a rectangle orthogonal to the X
and Y axes.

• Changing pixel size does not change the size of GOS units.
It just tell GIDIS the size and alignment of the rectangle to
draw at each point along the line. Thus patterned lines have
less "off space" when pixel size is large.

• Default pixel size is device dependent. It is between 1/50
and 1/100 of an inch. If possible, one hardware pixel is
used.

• A size value that maps to a size smaller than a hardware
pixel is set to the hardware pixel size. However, width = 0
and height = 0 sets the logical drawing pixel to the default
pixel size.

6-102

SET_PIXEL_SIZE

• Because the pixel is a rectangle, a diagonal line is thicker
than a horizontal or vertical line.

• When pixel size is not 1 x 1, complement writing mode can
produce unexpected results.

• No drawing is done when the SET_PIXEL_SIZE function executes.

Device Notes:

• On Plotter GIDIS, SET_PIXEL_SIZE sets line width to (width +
height)/2.

• On Plotter GIDIS, one hardware pixel is the size of the pen.

• For purposes of drawing thick lines on a plotter, a hardware
pixel is treated as 1/75 of an inch. However a double line
is not drawn until line width is greater than 1/30 of an
inch. This is to accommodate the fact that a .7mm pen is
almost this thick.

Example:

. BYTE

. WORD

. WORD

. WORD

. WORD

4. '19 .
6 .
6 .
3 •

3 •

;length=4,opcode for SET_PIXEL_SIZE
;width in GIDIS output space units
;Height in GIDIS output space units
;Centers the current position
;horizontally
;Centers the current position vertically

6-103

SET_PLANE_MASK

6.51 SET E MASK

SET_PLANE_MASK performs a Boolean AND operation on the plane-mask
and the current color index and sets pixels using the resultant
index. For e, if the current color index is 5 and the
plane-mask is 3, a color index 1 (=3 AND 5) is actually used.

Opcode: 20 1

Format: SET PLANE_.MASK plane-mask

plane-mask

Status: SUCCESS

Notes:

Is a bit
planes.
plane.

mask representing a
A set bit indicates

combination of
an accessible

a Use a mask of -1 to ensure that all planes are accessible.

111 No drawing is done by the SET_PLANE_MASK instruction.

Device Notes:

• When used with an EBO, the text portion of the Terminal
Subsystem uses plane 3 for text: When not used with an EBO,
it uses plane 1 for text.

e The various GIDIS devices have different numbers of planes:

Professional Video with the EBO has 3 planes.

Palette has 4 planes.

Plotter GIDIS has 3 planes.

All other devices have 1 plane.

e In Video GIDIS the color map can be used in combination with
the plane mask to prepare separate images in separate planes
for switching back and forth quickly. For example:

.BYTE 1~,20.,

;Set all color map entries to dark
;and clear bitmap

;length=l,opcode for SET_PLANE_MASK

6-104

.WORD

.BYTE

. WORD

1.

1. I 20 •
2 .

SET_PLANE_MASK

;plane 1

;draw image A in plane 1

;Set color map entry 1 to desired color
;Image A appears

;length=l,opcode for SET_PLANE_MASK
;plane 2

;draw image B in plane 2

;Set color map entry 1 to dark
;Image A disappears

;Set color map entry 2 to desired color
;Image B appears

However long it took to draw Image B, it will appear all at
once. You can continue flipping images A and B very quickly.
In other words, you can draw B while A is being viewed and so
forth.

Example:

. BYTE

.WORD
1.,20 .
A BOll

;length=l,opcode for SET_PLANE_MASK
;Enables GIDIS access to planes 1 and 2
;Plane 3 is write-protected

6-105

SET_POSITION

6.52 SET POSITION

SET_POSITION sets the new current position to the specified
coordinates.

Opcode: 29 Length: 2

Format: SET_POSITION x, y

x

y

Status: SUCCESS

Notes:

Specifies the new x coordinate of the current
position.

Specifies the new y coordinate of the current
position.

• Current position may be set outside the clipping region.
However, x and y should never be set larger than 16384 (2 to
the 14th power). This will allow sufficient off-screen
address space for accurate clipping.

• No drawing is done by the SET_POSITION instruction.

Example:

. BYTE

. WORD

. WORD

2., 29 .
100 .
350 .

;Length=2, opcode for SET_POSITION
;New current position
;is [100,350]

6-106

SET_PRIMARY_COLOR

6.53 SET PRIMARY COLOR

SET_PRIMARY_COLOR sets the primary color index to use in drawing
subsequent objects. Primary color is the color used for ON bits
in current line texture, current area texture, and character
glyphs.

Opcode: 21 Length: 1

Format: SET_PRIMARY_COLOR color-value

color-value

Status: SUCCESS

Notes:

Specifies primary color as an index. On a
multi-plane system, color-value functions as an
index into the color map. On a single-plane
system it specifies ON (color-value not 0) or
OFF (color-value 0).

• Refer to the INITIALIZE instruction for a list of the
power-on default colors.

• If color-value is greater than color map size, color-value
modulus map size is used.

• This instruction is affected by the SET_PLANE_MASK
instruction.

• No drawing is done by the SET_PRIMARY_COLOR instruction.

Device Notes

• See Appendix E for the relationship between color and pens in
Plotter GIDIS.

Example:

.BYTE

. WORD
1., 21.
4 •

;length=l,opcode for SET_PRIMARY_COLOR
;defines primary color as color number 4

6-107

SET_REL_POSITION

6.54 SET REL POSITION

SET_REL_POSITION sets a new current position as an offset from
the old current position.

Opcode: 30 Length: 2

Format: SET_REL_POSITION dx, dy

dx Specifies the x coordinate of the new current
position as: x of current position + dx.

dy Specifies the y coordinate of the new current
position as: y of current position + dy.

Status: SUCCESS.

Notes:

• SET_REL_POSITION [dx,dy] is always the same as SET_POSITION
[Current x + dx, Current y + dy].

• Current position may be set outside the clipping region.
However, x and y should never be set larger than 16384 (2 to
the 14th power). This will allow sufficient off-screen
address space for accurate clipping.

• No drawing is done by the SET_POSITION instruction.

Example:

. BYTE

. WORD

. WORD

2. ,30 .
100 .
-50 .

;Current position is [100,350]
;Length=2, opcode for SET_REL_POSITION
;Relative position is
;[+100,-50]
;New current position is [200,300]

6-108

SET_SECONDARY_COLOR

6.55 SET_SECONDARY COLOR

SET_SECONDARY_COLOR sets the secondary color, for use in drawing
subsequent objects. Secondary color is the color used for OFF
bits in the current line texture, current area texture, and
glyphs. It is also the color generated by NEW_PICTURE and
ERASE_CLIPPING_REGION, and scrolled in by SCROLL_CLIPPING_REGION.

Opcode: 15 Length: 1

Format: SET_SECONDARY COLOR color-value

color-value

Status: SUCCESS

Notes:

Specifies secondary color as an index. On a
multi-plane system, color-value functions as an
index into the color map. On a single-plane
system, it specifies ON (color-value not 0) or
OFF (color-value 0).

• Refer to the SET_COLOR_MAP_ENTRY description for a list of
the power-on default colors.

• If color-value is greater than color map size, color-value
modulus map size is used.

• SET_SECONDARY_COLOR is affected by the SET_PLANE_MASK
instruction.

• This instruction does not draw anything or affect the view
surface.

Device Notes

• See Appendix E for the relationship between colors and pens.

• Plotter GIDIS never changes the secondary color: the paper
always remains the same color. However there is an effect.
If you set secondary color to N, drawing in color 0 will draw
with the pen that is normally used when drawing with color N.

• If secondary color modulus 16 is greater than or equal to 8,
Plotter GIDIS slows pen speed to 10 cps. The slower speed
results in better quality when drawing a transparency.

6-109

Example:

. BYTE

.WORD
1., 15 .
1.

SET_SECONDARY_COLOR

;length=l,opcode for SET_SECONDARY_COLOR
;defines secondary color as index 1

6-110

SET_WRITING_MODE

6.56 SET WRITING MODE

SET_WRITING_MODE defines how PRO/GIDIS interprets ON and OFF bits
in line textures, area textures, and glyphs. There are 10
options as described in Table 6-11.

Opcode: 22 Length: 1

Format: SET_WRITING_MODE mode-code

mode-code Specifies one of the integer values listed in
Table 6-11.

Table 6-11: Writing Mode Options

Code Writing Mode

0 Transparent

1 Transparent
Negate

2 Complement

3 Complement Negate

4 Overlay

5 Overlay Negate

Description

Updates the current position, but
does no drawing.

Updates the current position, but
does no drawing.

If current-pattern-bit is on,
complements the color of the
current pixel. This means the
current pixel is set to (2 **
plane's current color). In a 3
plane system, complementing 2 sets
it to 6 (2 ** 3 - 2).

If current-pattern-bit is off,
complements the current pixel.

If current-pattern-bit is on, the
current pixel is set to the
current primary color.

If current-pattern-bit is off, the
current pixel is set to the
current primary color.

6-111

Code

6

7

8

9

SET_WRITING_MODE

Writing Mode

Replace

Replace Negate

Erase

Erase Negate

Description

If current-pattern-bit is on, the
current pixel is set to the
current primary color (same as
overlay). If current-pattern-bit
is off, the current pixel is set
to secondary color.

If current-pattern-bit is off, the
current is set to the current
primary color. If
current-pattern-bit is on, the
current pixel is set to secondary
color.

The current pixel is set to
secondary color.

The current pixel is set to
primary color.

Status: SUCCESS if a valid mode is requested;
FAILURE.

otherwise,

Notes:

• No drawing is done by the SET_WRITING_MODE instruction.

Figure 6-9 shows the same line texture (which includes ON and OFF
bits) drawn over light and dark areas in all visible writing
modes.

6-112

Transparent

Transparent

Over la~.
~~~~ 
Overla'd Ne 

tl38 ~ tl38 
lace 
~~ 

Replace- Ne 
11.1 ass ~ 

C_9-_!!!P l ement 
~~iW~ 

Comp 1 ement I\.! 
~ SSS ~ 

Erase 

Erase Ne ate 

Figure 6-9: Writing 

Device Notes 

es Line 

e Plotter GIDIS treats modes 2, 3, 4, 5, 6, 7 as overlay and 
modes 0, 1, 8, 9 as transparent. 

Example: 

. BYTE 

. WORD 
l. '22 . 
6 . 

;length=l,opcode for SET_WRITING_r10DE 
;Specifies REPLACE writing mode 

6-113 





APPENDIX A 

PRO/GIDIS INSTRUCTION SUMMARIES 

This appendix contains PRO/GIDIS instruction summaries and report 
tags for quick reference. 

The instruction summaries are in two different formats: in 
ascending opcode order and in alphabetic order. The opcode and 
number of arguments are shown as separate byte values, and as 
opcode word values. The opcode word value = (opcode * 256) + 
number of arguments. Note, when the resultant opcode word value 
is greater than 32,000, it is subtracted from 65,536 (2**16) and 
a negative opcode word value results. 

Table A-1: GIDIS Instructions in Opcode Order 

Opcode 

0 

1 

3 

4 

5 

6 

Number of 
Arguments 

0 

1 

2 

4 

6 

0 

Opcode 
Word 

0 

257 

770 

1028 

1286 

1536 

A-1 

Instruction and Arguments 

NOP 

INITIALIZE mask 

SET_AREA_TEXTURE_SIZE w, h 

SET_OUTPUT_CLIPPING_REGION 
ulx, uly, w, h 

SET_OUTPUT_CURSOR 
alpha, index, w, h, ox, oy 

NEW_PICTURE 



Opcode 

9 

12 

13 

14 

15 

16 

17 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

PRO/GIDIS INSTRUCTION SUMMARIES 

Number of 
Arguments 

4 

2 

4 

2 

1 

6 

3 

4 

1 

1 

1 

3N 

0 

2N 

2N 

3N 

0 

2 

2 

0 

0 

4 or 5 

Opcode 
Word 

2308 

3074 

3332 

3586 

3841 

4102 

4355 

4868 

5121 

5377 

5633 

5888+3N 

6144 

6400+2N 

6656+2N 

6912+3N 

7168 

7426 

7682 

7936 

8192 

8448+N 

A-2 

Instruction and Arguments 

SET_GIDIS_OUTPUT SPACE 
x, y, w, h 

SET_OUTPUT_IDS w, h 

SET_OUTPUT_VIEWPORT 
ulx, uly, w, h 

SET_AREA_TEXTURE a, c 

SET SECONDARY COLOR color 

SET_COLOR_MAP ENTRY 
m, color, r, g, b, mono 

SET_LINE_TEXTURE 
patlen, pattern, size 

SET_PIXEL SIZE w, h, ox, oy 

SET_PLANE_MASK mask 

SET PRIMARY COLOR color 

SET_WRITING_MODE mode 

DRAW_ARCS x, y, angle 

END PICTURE 

DRAW_LINES x, y 

DRAW_REL_LINES dx, dy 

DRAW_REL_ARCS dx, dy, angle 

FLUSH_BUFFER 

SET_POSITION x, y 

SET_REL POSITION dx, dy 

BEGIN FILLED FIGURE 

END FILLED FIGURE 

BEGIN_DEFINE CHARACTER 
c, w, nw, nh, [lo ff] 



Opcode 

34 

35 

36 

37 

37 

38 

40 

41 

42 

43 

44 

45 

46 

48 

52 

53 

54 

55 

57 

58 

65 

PRO/GIDIS INSTRUCTION SUMMARIES 

Number of 
Arguments 

2+N 

N 

0 

2 

3-7 

1 

2 

2 

1 

1 

1 

2 

5 or 6 

0 

2 

3 

0 

0 

0 

0 

1 

Opcode 
Word 

8706+N 

8960+N 

9216 

9474 

9472+N 

9729 

10242 

10498 

10753 

11009 

11265 

11522 

11775+N 

12288 

13314 

13571 

13824 

14080 

14592 

14848 

16641 

Instruction and Arguments 

LOAD_CHARACTER_CELL 
c, w, dO ... d15 

DRAW_CHARACTERS char-index 

END_DEFINE_CHARACTER 

LOAD_BY_NAME name_O, name_l 

LOAD_BY_NAME 
Chl, Ch2, Ch3, . . . Chn 

SET_ALPHABET alphabet 

SET_CELL_DISPLAY_SIZE w, h 

SET_CELL_EXPLICIT_MOVEMENT dx, 
dy 

SET_CELL_MOVEMENT_MODE flags 

SET_CELL_RENDITION flags 

SET_CELL_ROTATION angle 

SET_CELL_UNIT_SIZE w, h 

CREATE_ALPHABET 
w, h, extent, flags, 
[initialize], [ave-width] 

ERASE_CLIPPING_REGION 

SCROLL_CLIPPING_REGION 
dx, dy 

A-3 

SET_OUTPUT_RUBBER_BAND 
type, x, y 

REQUEST_CELL_STANDARD 

REQUEST_CURRENT_POSITION 

REQUEST_OUTPUT_SIZE 

REQUEST_STATUS 

SET_CELL_OBLIQUE angle 



Opcode 

69 

71 

72 

74 

128 

141 

145 

PRO/GIDIS INSTRUCTION SUMMARIES 

Number of 
Arguments 

2 

0 

1 

N 

0 

6 OR 7 

2 

Opcode 
Word 

17666 

18176 

18433 

18944+N 

-32768 

-29434 

-28414 

A-4 

Instruction and Arguments 

SET_AREA_CELL_SIZE w, h 

REQUEST_VERSION_NUMBER 

SET_OUTPUT_CURSOR_RENDITION 
mask 

DRAW_PACKED_CHARACTERS 
2charindex 

END_LIST 

PRINT_SCREEN 
x, y, w, h, hxly, dxly, [mask] 

SET_OUTPUT_BITMAP 
bitmap-no, dis-flag 



PRO/GIDIS INSTRUCTION SUMMARIES 

Table A-2 lists GIDIS instructions in alphabetical order. 

Table A-2: GIDIS Instructions in Alphabetical Order 

Opcode 

33 

. 
. 31 

46 

23 

35 

25 

74 

27 

26 

36 

32 

128 

24 

48 

28 

1 

37 

Number of 
Arguments 

4 or 5 

0 

4,5 or 6 

3N 

N 

N 

N 

3N 

N 

0 

0 

0 

0 

0 

0 

1 

2 

Opcode 
Word 

8448+N 

7936 

11775+N 

5888+3N 

8960+N 

6400+N 

18944+N 

6912+3N 

6656+N 

9216 

8192 

-32768 

6144 

12288 

7168 

257 

9474 

Instruction and Arguments 

BEGIN_DEFINE_CHARACTER 
c, w, nw,nh, [loff] 

BEGIN_FILLED_FIGURE 

CREATE_ALPHABET 
w, h, extent, flags 
[initialize], [ave-width] 

DRAW_ARCS x, y, angl~ 

DRAW_CHARACTERS char-index 

DRAW_LINES x, y 

DRAW_PACKED_CHARACTERS 
2charindex 

DRAW_REL_ARCS dx, dy, angle 

DRAW_REL_LINES dx, dy 

END_DEFINE_CHARACTER 

END_FILLED_CHARACTER 

END_LIST 

END_PICTURE 

ERASE CLIPPING_REGION 

FLUSH_BUFFER 

INITIALIZE mask 

LOAD_BY_NAME name_O, name_l 

A-5 



Opcode 

37 

34 

6 

0 

141 

54 

55 

57 

58 

71 

52 

38 

69 

14 

3 

40 

41 

42 

65 

43 

44 

45 

PRO/GIDIS INSTRUCTION SUMMARIES 

Number of 
Arguments 

3-7 

2+N 

0 

0 

6 OR 7 

0 

0 

0 

0 

0 

2 

1 

2 

2 

2 

2 

2 

1 

1 

1 

1 

2 

Opcode 
Word 

9472+N 

8706+N 

1536 

0 

-29434 

13824 

14080 

14592 

14848 

18176 

13314 

9729 

17666 

3586 

770 

10242 

10498 

10753 

16641 

11009 

11265 

11522 

A-6 

Instruction and Arguments 

LOAD_BY_NAME 
Chl, Ch2, Ch3, ... Chn 

LOAD_CHARACTER_CELL 
c, w, ao, ... a1s 

NEW_PICTURE 

NOP 

PRINT SCREEN 
x, y, w, h, hxly, dxly, [mask] 

REQUEST_CELL_STANDARD 

REQUEST_CURRENT_POSITION 

REQUEST_OUTPUT_SIZE 

REQUEST_STATUS 

REQUEST_VERSION_NUMBER 

SCROLL_CLIPPING_REGION 
dx, dy 

SET_ALPHABET alphabet 

SET_AREA_CELL SIZE 

SET_AREA_TEXTURE a, c 

SET_AREA_TEXTURE_SIZE w, h 

SET_CELL_DISPLAY SIZE w, h 

SET_CELL EXPLICIT_MOVEMENT 
dx, dy 

SET_CELL_MOVEMENT_MODE flags 

SET_CELL_OBLIQUE angle 

SET_CELL_RENDITION flags 

SET_CELL_ROTATION angle 

SET_CELL_UNIT SIZE w, h 



Opcode 

16 

9 

17 

145 

4 

5 

72 

12 

53 

13 

19 

20 

29 

21 

30 

15 

22 

PRO/GIDIS INSTRUCTION SUMMARIES 

Number of 
Arguments 

6 

4 

3 

2 

4 

6 

1 

2 

3 

4 

4 

1 

2 

1 

2 

1 

1 

Opcode 
Word 

4102 

2308 

4355 

-28414 

1028 

1286 

18433 

3074 

13571 

3332 

4868 

5121 

7426 

5377 

7682 

3841 

5633 

Instruction and Arguments 

SET_COLOR_MAP_ENTRY 

SET_GIDIS_OUTPUT_SPACE 
x' y' w., h 

SET_LINE_TEXTURE 
patlen, pattern, size 

SET_OUTPUT_BITMAP 
bitmap-no,dis-flag 

SET_OUTPUT_CLIPPING_REGION ox, 
oy, w, h 

SET_OUTPUT_CURSOR 
a, c, w, h, ox, oy 

SET_OUTPUT_CURSOR_RENDITION 

SET_OUTPUT_IDS w, h 

SET_OUTPUT_RUBBER_BAND 
type, x, y 

SET_OUTPUT_VIEWPORT 
x, y, w, h 

SET PIXEL SIZE w, h, ox, oy 

SET_PLANE_MASK mask 

SET_POSITION x, y 

SET PRIMARY_COLOR color 

SET_REL_POSITION dx, dy 

SET SECONDARY_COLOR color 

SET_WRITING_MODE mode 

A-7 



PRO/GIDIS INSTRUCTION SUMMARIES 

Table A-3 lists report tags. 

Table A-3: Report Tags 

Tag 
Number 

1 

2 

4 

5 

7 

Argument 
Length 

2 

9 

1 

4 

2 

Opcode 
Word 

258 

521 

1025 

1284 

1794 

A-8 

Report Tag and Arguments 

CURRENT_POSITION_REPORT x,y 

OUTPUT_SIZE_REPORT 
ulx, uly, screen_width, 
screen_height, total_width, 
total_height, resolution_x, 
resolution_y, total_plane_mask 

STATUS_REPORT code 

CELL_STANDARD_REPORT 
uw, uh, dw, dh 

VERSION NUMBER_REPORT 
code, version 



APPENDIX B 

DEC MULTINATIONAL CHARACTER SET 

COLUMN 0 1 2 3 4 5 6 7 

bB BITS 0 0 0 0 0 0 0 0 
b7 

0 0 0 0 1 1 1 1 r---i b6 
0 0 1 1 0 0 1 1 

bS 
0 1 0 1 0 1 0 1 

ROW b4 bJ b2 b1 

0 20 40 60 100 120 140 160 
' 0 0 0 0 0 NUL 0 OLE 16 SP 32 0 48 @ 64 p 80 96 p 112 

0 10 20 30 40 so 60 70 
1 DC1 21 41 61 101 121 141 161 

1 0 0 0 1 SOH 1 
IXONI 

17 ! 33 1 49 A 65 Q 81 a 97 q 113 
1 11 21 31 41 51 61 71 

2 22 42 62 102 122 142 162 

2 0 0 1 0 STX 2 DC2 18 II 
34 2 50 B 66 R 82 b 98 r 114 

2 12 22 32 42 52 62 72 

3 DC3 23 43 63 103 123 143 163 

3 0 0 1 1 ETX 3 19 # 35 3 51 c 67 s 83 c 99 s 115 IXOFFI 
3 13 23 33 43 53 63 73 

4 24 44 64 104 124 144 164 

4 0 1 0 0 EOT 4 DC4 20 $ 36 4 52 D 68 T 84 d 100 t 116 
4 14 24 34 44 54 64 74 

5 25 45 65 105 125 145 165 

5 0 1 0 1 ENQ 5 NAK 21 % 37 5 53 E 69 u 85 e 101 u 117 
5 15 25 35 45 55 65 75 

6 26 46 66 106 126 146 166 

6 0 1 1 0 ACK 6 SYN 22 & 38 6 54 F 70 v 86 f 102 v 118 

6 16 26 36 46 56 66 76 

7 27 
I 

47 67 107 127 147 167 

7 0 1 1 1 BEL 7 ETB 23 39 7 55 G 71 w 87 g 103 w 119 

7 17 27 37 47 57 67 77 

10 30 50 70 110 130 150 170 

8 1 0 0 0 BS 8 CAN 24 ( 40 8 56 H 72 x 88 h 104 x 120 

8 18 28 38 48 58 68 78 

11 31 51 71 111 131 151 171 

9 1 0 0 1 HT 9 EM 25 ) 41 9 57 I 73 y 89 i 105 y 121 
9 19 29 39 49 59 69 79 

12 32 52 72 112 132 152 172 

10 1 0 1 0 LF 10 SUB 26 * 42 : 58 J 74 z 90 j 106 z 122 
A 1A 2A 3A 4A SA 6A 7A 

13 33 53 73 113 133 153 

{ 
173 

11 1 0 1 1 VT 11 ESC 27 + 43 ; 59 K 75 [ 91 k 107 123 

8 18 28 38 48 58 68 78 

14 34 54 74 114 134 154 174 

12 1 1 0 0 FF 12 FS 28 44 < 60 L 76 \ 92 1 108 I 124 
c 1C ' 2C 3C 4C SC 6C 7C 

15 35 55 75 115 135 155 

} 
175 

13 1 1 0 1 CR 13 GS 29 - 45 = 61 M 77 ] 93 m 109 125 

D 10 2D 30 40 50 6D 7D 

16 36 56 76 116 
A 

136 156 
""" 

176 

14 1 1 1 0 so 14 RS 30 46 > 62 N 78 94 n 110 126 

E 1 E 2E 3E 4E SE 6E 7E 

17 37 57 77 117 137 157 177 

15 1 1 1 1 SI 15 us 31 I 47 ? 63 0 79 95 0 111 DEL 127 

F 3F 4F - 5F 6F 7F 1 F 2F 

L_____ GL CODES 
~co CODES---+-----------(ASCll GRAPHICS) 

KEY 
CHARACTER ESC 33 OCTAL 

27 DECIMAL 

18 HEX 

B-1 



DEC MULTINATIONAL CHARACTER SET 

8 9 10 11 12 13 14 15 COLUMN 

1 1 1 1 1 1 1 1 b8 
b7 BITS 0 0 0 0 1 1 1 1 

0 0 1 1 () 0 1 1 b6 
0 1 0 1 0 1 0 1 b5 I--

b4 b3 b2 b1 ROW 

200 220 

~ 
240 0 260 ... 300 320 340 360 

128 DCS 144 160 176 192 208 
... 

224 0 0 0 A a 240 0 0 
so 90 AO BO co DO EO FD 

201 221 241 261 , 301 .... 321 341 361 

PU1 i ± , -129 145 161 177 A 193 N 209 a 225 n 241 0 0 0 1 1 
81 91 A1 B1 C1 01 E 1 F1 

202 222 242 2 262 A 302 

' 
322 

A 
342 

' 
362 

130 PU2 146 ¢ 162 178 A 194 0 210 a 226 0 242 0 0 1 0 2 
82 92 A2 82 C2 02 E2 F2 

203 223 243 3 263 - 303 , 323 - 343 363 
STS £ 

, 
131 147 163 179 A 195 0 211 a 227 0 243 0 0 1 1 3 

83 93 A3 83 C3 03 E3 F3 

204 224 244 264 .. 304 A 324 344 A 364 

IND CCH 
.. 

4 132 148 164 180 A 196 0 212 a 22B 0 244 0 1 0 0 
84 94 A4 84 C4 04 E4 F4 

205 225 245 265 305 - 325 345 
""' 

365 

NEL 133 MW 149 ~ 165 µ 181 A 197 0 213 a 229 0 245 0 1 0 1 5 
85 95 A5 85 C5 05 E5 F5 

206 226 246 266 306 .. 326 346 .. 366 

SSA 134 SPA 150 166 ,-r 182 A:: 198 0 214 ~ 230 0 246 0 1 1 0 6 
86 96 AB BB C6 06 E6 F6 

207 227 247 267 c; 307 327 347 367 

ESA 135 EPA 151 § 167 . 183 199 CE 215 i; 231 oe 247 0 1 1 1 7 
87 97 A7 87 Cl 07 E7 F7 

210 230 250 270 
' 

310 330 

' 
350 370 

HTS 136 152 "Xi_ 168 184 E 200 0 216 e 232 J!i 248 1 0 0 0 8 
88 9S AS SB cs OS EB F8 

211 231 

© 
251 1 271 If' 311 .. 331 351 371 

HTJ " ' 9 137 153 169 185 E 201 u 217 e 233 I.I 249 1 0 0 1 

89 99 A9 89 C9 09 E9 F9 

212 232 § 252 Q 272 A 312 
If' 

332 

~ 
352 372 

VTS 
, 

138 154 170 186 E 202 u 218 234 I.I 
250 1 0 1 0 10 

SA 9A AA BA CA DA EA FA 

213 233 253 273 .. 313 A 333 353 
A 

373 

PLO 139 CS! 155 « 171 » 1S7 E 203 u 219 e· 235 u 251 1 0 1 1 11 
SB 9B AB SB CB DB EB FB 

214 234 254 274 ' 314 .. 334 

' 
354 374 

PLU ST % .. 12 140 156 172 188 I 204 u 220 I 236 u 252 1 1 0 0 

BC 9C AC BC cc DC EC FC 

215 235 255 275 , 315 .. 335 355 .. 375 

RI osc 112 , 
1 0 1 13 141 157 173 189 I 205 v 221 I 237 y 253 1 

SD 90 AD SD CD DD ED FD 

216 C36 256 276 A 316 336 356 376 

SS2 PM 206 222 
A 

238 254 1 1 1 0 14 142 158 174 190 I I 
BE 9E AE BE CE DE EE FE 

217 237 257 277 .. 317 337 357 

~ 
377 

SS3 APC l 191 207 n .. 
239 255 1 1 1 I 15 143 159 175 I 223 i 

BF 9F AF BF CF OF EF FF 

[_ __ GR CODES 
~C1 CODES---+->-------(DEC SUPPLEMENTAL GRAPHICS) 

KEY 
CHARACTER ESC 306 OCTAL 

198 DECIMAL 

C6 HEX ..._ ____ __, 

B-2 



APPENDIX C 

FONT FILE FORMAT 

This Appendix describes the memory-resident format of a font 
file. A LOAD_BY_NAME font must have this format. GIDIS requires 
the data in a font file to be ordered as follows: 

• header 

• pointer table 

• glyphs 

C.1 HEADER 

Header information (word wide) starts at the beginning of the 
font file. For example, Word 0 in the font is AL$MAG. Table C-1 
shows the format of the header. 

Table C-1: Header Format 

Name Offset Description 

AL$MAG 0 Magic number--must be 16473. 

AL$STR 2 Structure version number--102. 

AL$SIZ 4 Size of header in bytes--30. 

AL$TOT 6 Total size of font file in 
bytes--may be up to 64KB. 

C-1 



Name Off set 

AL$FLG 8 

AL$RS0 10 

AL$WID 12 

AL$HGT 14 

AL$FST 16 

AL$EXT 18 

AL$PTR 20 

AL$RS1 22 

AL$FNT 24 

AL$0RP 26 

AL$RS2 28 

C.2 POINTER TABLE 

HEADER 

Description 

Flags--see CREATE_ALPHABET. 

Reserved for future. 

Width of glyphs in this font--1 to 64 
bits. 

Height of glyph--1 to 64 bits. 

Index of first character represented in 
this font file--0 or greater. 

Extent of font file--number of glyph 
pointers you want in the font file. 
There is no specific limit if AL$TOT is 
less than 8KB; otherwise, AL$EXT must 
not be greater than 512. 

Offset from start of font file to 
pointer table. Pointer table must be 
present and on a word boundary. See 
Section C.2. 

Reserved for future use. 

Offset from start of font file to start 
of glyphs. See Section C.3. 

Offset from start of glyphs to 
out-of-range glyph, or -1. If -1, 
PRO/GIDIS will use its default 
out-of-range character. 

Reserved for future use. 

The pointer table contains AL$EXT words. Note that multiple 
table entries may point to the same glyph. If a table entry 
contains -1, GIDIS treats the character as if it were out of 
range. Table C-2 shows the format of the pointer table. 

C-2 



POINTER TABLE 

Table C-2: Pointer Table Format 

Name Description 

1st entry Offset from start of glyphs to the font 
information for the character with index 
AL$FST. 

2nd entry Offset from start of glyphs to the font 
information for the character with index 
(AL$FST + 1). 

Last entry Offset from start of glyphs to the font 
information for the character with index 
(AL$FST + (n-1)). 

C.3 GLYPHS 

If AL$WID is 9 to 16, each glyph must start on a word boundary. 
Otherwise, glyphs may start on byte boundaries. There are no 
wasted bytes in a glyph. For example, if AL$WID is 22 (3 bytes 
per row of a glyph) and the glyph starts at offset x, then the 
second row starts at x + 3, the third row starts at x + 6, etc. 

The leftmost pixel of a glyph is the low order bit of a row's 
first byte. Conversely, the rightmost pixel of a glyph is the 
first used bit of the row's last byte. For example, let AL$WID 
be 14, and examine the first row of a glyph. The leftmost pixel 
is bit 0 of byte 0 and the rightmost pixel is bit 5 of byte 1. 

If the proportional flag is set, an extra word precedes other 
glyph data. The first byte of this extra word is the glyph's 
ave-width; the second byte is its left-offset. 

C-3 



PENDIX D 

MANAGING FONTS 

D.1 MAKING A FO AVAILABLE TO GIDIS 

The .FDF files on LB:[ZZFONT] are files that tell the font server 
about the font files available on your system. When you boot 
your system, the font server is spawned and reads each .FDF file 
on [ZZFONT]. To make your fonts available in an application and 
for printing GIDIS files, have the application's installation 
file (.INS or .INB) copy the application's name with an .FDF 
extension (for example, APPname.FDF) to [ZZFONT]. 

An .FDF file contains one line per font file. Each line contains 
several fields. The fields are separated by spaces, but there 
may not be spaces before the first field in the line. You may 
use tabs in place of spaces. The order of fields is fixed. The 
fields must appear in the following order: 

File type 

File spec 

Family ID 

Ave-width 

A one-character field. It should be G 
for a GIDIS font file, and S for a DEC 
standard font file. S fonts are used 
only on the LN03. 

The full file specification of the font 
file. There may be no embedded spaces. 

The font style. Note that a number of 
fonts are called DGIDIS, the family ID 
for the default GIDIS fonts. 

For proportionally spaced fonts, the 
average width (number of horizontal 
pixels) of glyphs in a font file. For 
monospaced fonts, use the actual width 
(in pixels) of glyphs in this field. 
For example, the initial font on Video 
GIDIS has an ave-width of 12. 

D-1 



MAKING A FONT AVAILABLE TO GIDIS 

Character cell height The height (number of vertical pixels) 
of glyphs in a font file. For example, 
the initial font on Video GIDIS has a 
height of 10. 

Region name The region name defined for the font 
when its .TSK file was built by calling 
GIFONT. 

Rendition flags Zero or more one-character fields. Each 
field defines the rendition built into 
the font. The defined options are I for 
italics, B for bold, P for proportional, 
and L for limit multiplication. Use L 
to prevent a heavily multiplied low 
detail font from being selected over a 
better font. 

The following is a sample line in an .FDF file: 

G LB:[ZZFONT]DMGZO.TSK dgidis 9 10 DG$20 L 

L ~limit multiplication 

region name 

cell height = 10 

cell width = 12 

default GIDIS font 

complete file specification 

indicates a GIDIS-format font file. 

You may put blank lines in an .FDF file, but no comments. 

D-2 



FONT NAMING CONVENTIONS 

D.2 FONT NAMING CONVENTIONS 

A potentially large number of font files must coexist. For GIDIS 
fonts, this means their region names must coexist. Because 
region names are limited to six Radix-50 characters, not much 
name space exists. We suggest that you name fonts and regions as 
follows: 

where 

ff cwha 

ff Indicates the family ID of the font. For 
default GIDIS fonts, ff is DG. 

c Identifies the character set. The reserved 
values are $ for DEC Multinational (in file 
spec$ is replaced by M), P for patterns, 
and S for symbols. 

wh Specifies the ave-width and height of the font. The 
encoding for each is as follows: 

x means 7 
y means 8 
z means 9 
0-9 means 10-19 
A-K means 20-30 
L means 32 
M means 34 
N means 36 

z means 60 

NOTE 

Because of the limitations of the Radix-50 naming 
space, some problems occur with this naming 
convention. You'll note that YZ can mean a 
character that is 8 x 9 or 58 x 60. In such 
cases, distinguish between the two by giving each 
size a unique family ID. Note also that you 
cannot create characters with odd numbered 
ave-widths or heights greater than 30, unless you 
create your own naming convention. 

D-3 



FONT NAMING CONVENTIONS 

a indicates font rendition attributes. The following are 
reserved values: 

B for bold 
c for bold + italics 
D for bold + proportional 
I for italics 
J for italics + proportional 
p for proportional 
z for bold + italics + proportional 

For example the file name DGMFF.TSK and region 
indicate Default GIDIS, DEC Multinational, 20 x 
rendition attributes. 

0.3 FONTS SUPPLIED WITH GIDIS 

name DG$FF 
20, and no 

Three different groups of fonts are supplied with GIDIS. 

e Monospaced default GIDIS fonts that are automatically 
installed. 

e Optional monospaced fonts that you can install. 

• Optional proportionally spaced fonts that you can install. 

Because font files require disk and system resources, only five 
font files from the default font family (DG) are loaded 
automatically. You may choose to load other monospaced and 
proportionally spaced font families as needed. 

The following sections describe the font families and show an 
example of each. Each font family contains several font files. 
These font files contain several sizes of raster fonts and one 
stroke font. 

D-4 



FONTS SUPPLIED WITH GIDIS 

D.3.1 Default GIDIS Fonts Loaded Automatically 

Five default GIDIS (DG) fonts files are automatically installed. 
These fonts are monospaced, sans serif fonts that use the DEC 
Multinational Character Set. 

Pro/Gidis V3.0 (Dgidis) 
Figure D-1: Default GIDIS Monospaced Fonts 

D.3.2 Rest of DGIDIS Monospaced Font Files 

Installing the application "Rest of DGIDIS Monospaced Font Files" 
loads twelve additional font files from the default GIDIS font 
family. These files provide additional sizes of the same style 
font. 

D.3.3 Proportionally Spaced Fonts 

You can also install several proportionally spaced fonts. 

When you install the application "Hershey Sans Serif Font," you 
load twelve sans serif font files that use the DEC Multinational 
Character Set. 

Pro/Gidis V3.0 (Dgidis) 
Figure D-2: Hershey Sans Serif Font 

D-5 



FONTS SUPPLIED WITH GIDIS 

When you install the application "Hershey Serif Font," you load 
twelve serif font files that use the DEC Multinational Character 
Set. 

Pro/G idis V3. 0 (Uherser) 
Figure D-3: Hershey Serif Font 

When you install the application "Hershey Italicized Serif Font," 
you load twelve italicized serif font files that use the ASCII 
Character Set. 

Pro/Gidis V3. 0 (Uherser) 
Figure D-4: Hershey Italicized Serif Font 

When you install the application "Hershey Script Font," you load 
seven script font files that use the ASCII Character Set. 

:P~I~~ V-3. o (U~) 
Figure D-5: Hershey Script Font 

D-6 



FONTS SUPPLIED WITH GIDIS 

When you install the application "Hershey Gothic Font," you load 
five gothic font files that use the ASCII Character Set. 

Figure D-6: Hershey Gothic Font 

D.4 EDITING .FDF FILES 

If you want to save resources, you can delete individual font 
files from .FDF files. For example, if you do not need certain 
sizes or do not need a stroke font, you can delete them from your 
.FDF files. 

D-7 



.APPENDIX E 

AND COLOR ON THE PLOTTER 

This appendix provides information on how the Hewlett-Packard 
HP7470A and HP7475A Plotters process GIDIS instructions 
differently from other supported devices. If an instruction is 
not mentioned, it performs as described in Chapter 4. 

E. i TEXTU 

The plotter cannot handle bit patterned textures. Instead, area 
textures used for fill are mapped to a special set of hatch 
patterns. The mapping depends on the arguments supplied with 
SET_AREA_TEXTURE. There are three cases: 

• Where alphabet = -1 and char-index = 0, the plotter draws 
horizontal hatch lines about .04 inches apart using the 
current linestyle. 

e Where alphabet = 0 through 15 and char-index 
draws a true solid fill. 

0, the plotter 

• Where alphabet = 0 through 15 and char-index is greater than 
0, the plotter draws one of the hatch patterns shown in Table 
E-1. 

E-1 



AREA TEXTURE 

Table E-1: Hatch Patterns for Char-Index 1 to 48 

Solid Lines Dashes Long Dashes 

Line Separation .06 inches 

1 plus sign 13 plus sign 25 plus sign 

2 slash 14 slash 26 slash 

3 horiz. line 15 horiz. line 27 horiz. line 

4 backslash 16 backslash 28 backslash 

5 vert. line 17 vert. line 29 vert. line 

6 x 18 x 30 x 

Line Separation .11 inches 

7 plus sign 19 plus sign 31 plus sign 

8 slash 20 slash 32 slash 

9 horiz. line 21 horiz. line 33 horiz. line 

10 backslash 22 backslash 34 backslash 

11 vert. line 23 vert. line 35 vert. line 

12 x 24 x 36 x 

Long/Short 
Dashes 

37 plus sign 

38 slash 

39 horiz. line 

40 backslash 

41 vert. line 

42 x 

43 plus sign 

44 slash 

45 horiz. line 

46 backslash 

47 vert. line 

48 x 

The entire hatch pattern set repeats with codes 49 through 96. 
The basic 12 patterns are shown in Figure E-1. 

E-2 



1. 
·• ,. 

,. 
5 I' 

11 

AREA TEXTURE 

·• 
9 __ _ 

Figure E-1: Hatch Patterns 1 through 12 

E.2 COLORS 

You control the colors in a picture by placing pens in the 
carousel as desired. You can set up any pens you like. However, 
the recommended setting for the 6-pen plotter is: 

Pen 1 - Red 
Pen 2 - Green 
Pen 3 - Blue 
Pen 4 - Yellow 
Pen 5 - Cyan 
Pen 6 - Black 

Because you control 
SET - COLOR_MAP - ENTRY. 
follows: 

Color 0 
Color 1/5/7 
Color 2/6 
Color 3 
Color 4 

the 
The 

colors, Plotter GIDIS ignores 
2-pen plotter handles colors as 

background (no pen) 
left pen 
right pen 
left pen slowed down 
right pen slowed down 

E-3 



COLORS 

The 6-pen plotter handles colors as follows: 

Color 0 background (no pen) 
Color 1 Pen 1 
Color 2 Pen 2 
Color 3 Pen 3 
Color 4 Pen 4 
Color 5 Pen l slowed down slightly 
Color 6 Pen 5 
Color 7 Pen 6 

E-4 



APPENDIX F 

QUEUE 1/0 INTERFACE TO PRO/GIDIS FOR P/OS 

Earlier versions of PRO/GIDIS used the P/OS Terminal Driver to 
access Video GIDIS through Queue I/O Request (QIO) and Queue I/O 
Request and Wait (QIOW) system directives. This appendix 
contains descriptions of the directive formats. QIO error 
messages are listed at the end of each description. 

Figure F-1 depicts the instruction and parameter data path 
between your program and PRO/GIDIS. 

You can use PRO/GIDIS from MACR0-11 or any supported Tool Kit 
high-level language that supports external MACR0-11 routines. 
The recommended method is to write callable MACR0-11 routines 
that issue QIO and QIOW directives. Tool Kit FORTRAN-77 provides 
its own callable QIO and WTQIO routines in SYSLIB. 

For information on calling a MACR0-11 routine from one of the 
Tool Kit high-level languages, refer to the documentation for 
your programming language. 

F.1 THE PRO/GIDIS INTERFACE 

PRO/GIDIS instructions are sent to the graphics device with a QIO 
system directive that specifies the Write Special Data (IO.WSD) 
I/0 function code. For low-overhead, high-speed, device 
interaction, a number of PRO/GIDIS instructions can be passed to 
the graphics device at one time. Status information returns with 
the Read Special Data (IO.RSD) I/O function call. P/OS transfers 
the instruction data to and from the graphics device according to 
the request priority and device availability. 

Programs that use PRO/GIDIS also can use the Professional VT102 
terminal emulator. Normal QIO directives (IO.WLB, IO.WVB, and so 
forth) are passed to the VT102 emulator. For more information, 
refer to the description of the Terminal Driver in the P/05 
System Reference Manual. 

F-1 



THE PRO/GIDIS INTERFACE 

User 
Application 

Program 

Professional 
Operating 

System (P/OS) 

Terminal 
Driver 

: 
: 

Call QIO IO.WSD 
Call QIO IO.RSD 

: 
: 

.,. 

• 

I/O Queue 

' 
• 

Terminal 
Driver 

Instruc. 
Data 
Block 

---------
Report 
Buffer 

IO.WSD ... SD.GDS IO.RSD ... SD.GDS 

~WLB and variants 

~ VT102 
[Emulator 

PRO/GIDIS 
Interpreter 

Video 
Display 

GIDIS Instructions 
and Data 

F\ __ \ 
lnl + + I 

Figure F-1: PRO/GIDIS Data Path 

Keyboard 

............ . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . 
\ _______ / 

On a single-plane system, both GIDIS and the VT102 emulator draw 
on the same plane and overwrite each other's data. On a 
three-plane system, the VT102 emulator only draws on plane three. 

F-2 



THE PRO/GIDIS INTERFACE 

Thus, if PRO/GIDIS modifies only planes one and two, there will 
be minimal interference. The SET_PLANE_MASK instruction 
specifies which planes PRO/GIDIS can modify. 

The VT102 emulator scrolls all three planes when the scrolling 
region is set to the entire screen. Any graphics information in 
any plane scrolls with the text. If the scrolling region is 
smaller than the entire screen, the VT102 emulator redraws the 
characters in their new positions. This does not scroll or 
otherwise affect graphics information in planes one and two but 
it erases graphics information in plane three. 

You can send an RIS (Reset to Initial State <ESC>c) escape 
sequence to the VT102 emulator in order to reset both the VT102 
emulator and PRO/GIDIS to their initial states. PRO/GIDIS 
immediately performs an "INITIALIZE -1" instruction, clears the 
bitmap, and expects an opcode as the next word in the 
instruction/data stream. Thus, you can use RIS to ensure that 
your program and PRO/GIDIS are "in synch" when your program 
starts up. You cannot use it arbitrarily in the middle of 
picture generation because of the global initialization effect. 

The QIO and QIOW directives are described in detail in the P/OS 
System Reference Manual. The examples in this appendix show the 
$S forms for clarity. The $C and $ forms can be used as well. 

IO.WSD and IO.RSD are resolved in the normal manner for system 
symbols: the Application Builder gets them from module QIOSYM in 
SYSLIB.OLB. This works correctly in MACR0-11 but may not work 
with languages that have symbol naming restrictions. For 
example, FORTRAN-77 does not permit periods in symbol names. 

F.1.1 Write Special Data (10.WSD) 

The write-special-data QIO function directs one or more 
instructions to PRO/GIDIS. The instructions and their associated 
parameter values are passed in a buffer that must have an even 
address. 

The MACR0-11 format for the Write Special Data QIO (or QIOW) call 
is shown below. 

NOTE 

The punctuation marks and the items in bold are 
mandatory; nonbold items are optional. Items in 
uppercase letters must be used exactly as shown. 
Items in lowercase letters must be replaced as 
described. 

F-3 



THE PRO/GIDIS INTERFACE 

QIOW$S #10.WSD,LUN,efn,pri,isb,ast,<buffer,length,,#SD.GDS> 

LUN Is a logical unit number assigned to the terminal. 

efn Is an event flag number (required with the synchronous 
wait form QIOW). 

pri Is the priority (ignored but must be present). 

isb Is the address of the I/O status block. 

ast Is the address of the AST service routine entry point. 

buffer Is the address of the buffer containing 
instructions and parameters. 

PRO/GI DIS 

length Is the length of the PRO/GIDIS instruction/parameter 
buffer (specified as an even number of bytes in the range 
2 to 8128). 

SD.GDS Is a data type parameter that indicates PRO/GIDIS output. 

The QIO system directive returns status in a special global 
variable called $DSW. Some possible values are: 

rs.sue 
IE. ILU 
IE.IEF 

Successful completion 
Invalid logical unit number 
Invalid event flag number 

For a full list of error codes, refer to the QIO directive 
description and the terminal driver section of the P/OS System 
Reference Manual. 

When the QIO directive is successful, it can return the following 
status codes in the I/O status block. 

ro.suc 
IS.PND 
IE.ABO 
IE.DNR 

Successful completion 
I/0 request pending 
Operation aborted 
Device not ready 

F.1.2 Read Special Data (10.RSD) 

The read-special-data QIO function reads reports 
report queue by the following PRO/GIDIS 
instructions: 

F-4 

placed in the 
report-request 



THE PRO/GIDIS INTERFACE 

o REQUEST_CURRENT_POSITION 

o REQUEST_STATUS 

o REQUEST_CELL_STANDARD 

These instructions are detailed in Chapter 6. 

The MACR0-11 format for the Read Special Data QIO or QIOW call is 
shown below. 

NOTE 

The punctuation marks and the items in bold are 
mandatory. Nonbold items are optional. Items in 
uppercase letters must be used exactly as shown. 
Items in lowercase letters must be replaced as 
described. 

QIOW$S #IO.RSD,LUN,efn,pri,isb,ast,<buffer,length,,#SD.GDS> 

LUN Is a logical unit number assigned to the terminal. 

efn Is an event flag number (required with the synchronous 
wait form QIOW). 

pri Is the priority (ignored but must be present). 

isb Is the address of the I/O status block. 

ast Is the address of the AST service routine entry point. 

buffer Is the address of the buffer to contain PRO/GIDIS report 
data. 

length Is the length of the PRO/GIDIS report buffer (specified 
as an even number of bytes in the range 2 to 8128). 

SD.GOS Is a data type parameter that indicates PRO/GIDIS output. 

If there is no data available, the QIO waits until enough data to 
fill the buffer becomes available. During this wait, no IO.WSD 
(write special data) is performed, even if the no-wait form was 
used. To avoid deadlock, the preferred method is to issue a 
QIO$W for the exact number of bytes expected after the request 
instruction is sent to PRO/GIDIS. 

F-5 



THE PRO/GIDIS INTERFACE 

The QIO system directive returns status in a special global 
variable called $DSW. Some possible values are: 

Is.sue 
IE.ILU 
IE.IEF 

Successful completion 
Invalid logical unit number 
Invalid event flag number 

For a full list of error codes, refer to the QIO directive 
description and the terminal driver section of the P/OS System 
Reference Manual. 

When the QIO directive is successful, it can return the following 
status codes in the I/O status block. 

Io.sue 
IS.PND 
IE.ABO 
IE.DNR 

Successful completion 
I/O request pending 
Operation aborted 
Device not ready 

F.2 PRO/GIDIS INSTRUCTION SYNTAX 

The instructions syntax remains the same whether 
system directives are used to access PRO/GIDIS. 
for details. 

GIDCAL or QIO 
See Chapter 3 

F.3 SAMPLE MACR0-11 PROGRAM 

IOSB: .BLKW 
OBUF: .BYTE 
RBUF: . BLKW 

QIOW$S 
BCS 
TSTB 
BLE 

QIOW$S 
BCS 
TSTB 
BLE 

ERROR: 

2. 
0 • I 55 • 
3 . 

;Length=O REQUEST_CURRENT_POSITION 

;SEND INSTRUCTION TO PRO/GIDIS 
#IO.WSD,#5,#1,,#IOSB, ,<#OBUF,#2,,#SD.GDS> 

ERROR ; DIRECTIVE FAILED 
IOSB 
ERROR ;OPERATION FAILED 

;READ THE REPORT 
#IO.RSD,#5,#1, ,#IOSB,,<#RBUF,#6,,#SD.GDS> 

ERROR ;BRANCH IF DIRECTIVE FAILED 
IOSB 
ERROR ;BRANCH IF OPERATION FAILED 

NEW CONTENTS OF RBUF: 
BYTE AT RBUF 2. (LENGTH) 
BYTE AT RBUF+l 1. 

(CURRENT POSITION REPORT TAG) 
RBUF+2: CURRENT X POSITION 
RBUF+4: CURRENT Y POSITION 
Error handling routine 

F-6 



SAMPLE MACR0-11 PROGRAM 

F.4 SAMPLE FORTRAN PROGRAM 

INTEGER*2 SDGDS, IOWSD, IORSD, ISSUC 
PARAMETER (SDGDS=l) I (IOWSD="5410) I (IORSD="6030) I (ISSUC=l) 
INTEGER*2 IOSB(2), IDS, OBUF 
INTEGER*2 RBUF(3),PARLST(6) 

OBUF = 55*256+0 !OPCODE 55=REQUEST_CURRENT_POSITION 
!LENGTH=O 

CALL GETADR(PARLST(l),OBUF) ! ADDRESS 

PARLST(2) 
PARLST(4) 

2 
SDGDS 

!LENGTH=2 BYTES 

CALL WTQIO(IOWSD,5,1,0,IOSB,PARLST,IDS) 
IF (IDS.NE.ISSUC) GO TO 999 !DIRECTIVE FAILED 
IF (IOSB(l).NE.ISSUC) GO TO 999 !I/O REQUEST FAILED 

CALL GETADR(PARLST(l),RBUF) 

PARLST(2) = 6 !EXPECTED LENGTH OF REPORT IN BYTES 

CALL WTQIO(IORSD,5,1,0,IOSB,PARLST,IDS) 
IF (IDS.NE.ISSUC) GO TO 999 !DIRECTIVE FAILED 
IF (IOSB(l).NE.ISSUC) GO TO 999 !I/O REQUEST FAILED 

999 

NEW CONTENTS OF RBUF: 
RBUF(l): 258 
REPORT TAG = 1*256+2 
1 = THE REPORT TAG AND 2 = LENGTH OF DATA FOLLOWING 
RBUF(2): CURRENT X POSITION IN GIDIS OUTPUT SPACE 
RBUF(3): CURRENT Y POSITION IN GIDIS OUTPUT SPACE 

ERROR FOUND 

F-7 



APPENDIX G 

GLOSSARY 

The words in this glossary are used throughout this manual. 
These definitions are not absolute and might differ somewhat in 
other contexts. Where possible, the most common computer 
industry usage is the basis of the definition. 

alphabet 
A collection of characters. The character indexes are 
numbered 0,1, ... n-1, where n is the extent of the alphabet. 

anisotropic 
An uneven ratio of width to height. In an anisotropic 
coordinate space, one unit in the X direction is not equal 
in size to one unit in the Y direction. 

area texture 
The two-dimensional binary pattern that you select to shade 
filled figures. 

aspect ratio 
The ratio of the width of an object to its height. Objects 
whose aspect ratio are important in graphics include video 
displays, pixels, and address spaces. 

attribute 
A property that tells GIDIS something about how to 
specified drawing operation. For example, when 
GIDIS to draw a line, one of the attributes used in 
the line is current primary color. 

bitmap 

do the 
you tell 

drawing 

The rectangular array of pixels (picture elements) that 
constitutes the view surface of a dot-oriented device. Also 
known as a raster or frame buffer. The Professional 350 has 
a bitmap 960 pixels wide by 240 pixels high. 

G-1 



GLOSSARY 

character 
A graphic symbol, such as a letter, number, or other 
typewritten symbol. In GIDIS, characters are elements in an 
alphabet. A character is uniquely identified by specifying 
its alphabet number and its index within the alphabet. 

character cell 
(See display cell or unit cell.) 

clipping 

color 

Clipping means displaying only part of what is drawn. In 
GIDIS, you can select a clipping rectangle. What you draw 
inside the rectangle is displayed; what you draw outside the 
rectangle is not displayed. 

In GIDIS the term has a double meaning. It has its usual 
"real world" meaning, and it also means an index into the 
GIDIS color map. 

color map 
A table whose entries contain a description of how to 
generate a particular color. In GIDIS this description is 
in terms of red, green and blue intensities. For example, 
bright yellow results from a maximum intensity of red, a 
maximum intensity of green, and a zero intensity of blue. 

complement 
The writing mode in which the foreground and background 
colors are reversed. 

current position 
The position in relation to which lines, 
characters are drawn by GIDIS. 

cursor 

arcs, 

The marker displayed by GIDIS at the current position. 

display cell 

and 

In GIDIS text processing, the display cell is that area of 
the view surface in which a unit cell is drawn. The top 
left corner of the unit cell is always placed at the top 
left corner of the display cell. Any portion of the display 
cell not covered by the unit cell is treated as though the 
unit cell is OFF for that area. If the unit cell is larger 
than the display cell, the unit cell is clipped at the 
display cell borders. 

G-2 



GLOSSARY 

filled figure 
To GIDIS, a figure is any sequence of connected lines and 
arcs. A filled figure is just a figure whose interior has 
been painted with the area texture of your choice. 

font family 
Loosely speaking, the style in which an alphabet is drawn, 
for example, Courier. 

font file 
The collection of glyphs and attribute information used by 
GIDIS to draw characters for a particular font. 

GIDIS Output Space (GOS) 
The isotropic coordinate space you set up for GIDIS to use 
in all drawing and report operations. A location within GOS 
maps to a location within your viewport. 

global symmetry 

glyph 

Preservation of GIDIS Output Space relationships at the 
expense of Hardware Address Space relationships. For 
example, assume a ten-unit distance in GIDIS output space 
maps to 7.5 hardware pixels. With global symmetry, 
repeatedly moving ten GIDIS output space units results in a 
move of seven hardware pixels, then eight hardware pixels, 
then seven, and so forth. With local symmetry, repeatedly 
moving 10 GIDIS Output Space units always results in a move 
of 7 hardware pixels. 

The data in a font file that tells GIDIS how to draw a 
particular character. In other words, it is the internal 
representation of a character. 

Hardware Address Space (HAS) 

image 

The coordinate space (possibly anisotropic) used by a 
graphic output device. GIDIS hides this space from your 
program, and addresses the device's view surface through an 
isotropic Imposed Device Space. 

A figure as defined in Imposed Device Space. In GIDIS you 
can display an image on a variety of output devices. 

Imposed Device Space (IDS) 
The isotropic coordinate space imposed on the device's view 
surface. You use IDS only to set the viewport. All other 
coordinates are in GIDIS Output Space (GOS). 

G-3 



GLOSSARY 

isotropic 
A 1:1 ratio of width to height. In an isotropic coordinate 
space one unit in the X direction is equal in size to one 
unit in the Y direction. 

line texture 
A linear pattern used to draw lines. Examples are solid, 
dashed, dotted, and so forth. PRO/GIDIS enables you to 
define any two-color pattern up to 16 units in length. 

local symmetry 
Preservation of Hardware Address Space relationships at the 
expense of GIDIS Output Space relationships. For example, 
assume a ten-unit distance in GIDIS output space maps to 7.5 
hardware pixels. With local symmetry, repeatedly moving 10 
GIDIS Output Space units always results in a move of 7 
hardware pixels. With global symmetry, repeatedly moving 
ten GIDIS output space units results in a move of seven 
hardware pixels, then eight hardware pixels, then seven, and 
so forth. 

origin 
The origin of an address space is the point [0,0]. In 
PRO/GIDIS, the origin of IDS is always the upper left corner 
of the device's view surface. The origin of GIDIS output 
space is set by your program. 

The origin 
cell) is 
position. 
rotates. 

of a character cell (either display cell or unit 
the point in the cell placed over the current 
This is also the poin~ about which the cell 

picture 
A figure as defined in GIDIS Output 
you can store it in a file or 
display on a view surface. 

pixel (picture element) 

Space. Once defined, 
map it to a viewport for 

The smallest element of a view surface that can be assigned 
a color or intensity. In a single plane device, it is one 
bit in the bitmap. 

pixel aspect ratio 
The ratio of the width of a pixel to its height. The width 
is the horizontal distance between adjacent pixels, and the 
height is the vertical distance. Pixel aspect ratio is 
normally expressed as two small numbers, for example, 1:2. 
The pixel aspect ratio on the Professional 350 monitor is 
2: 5. 

G-4 



plane 

GLOSSARY 

A view surface that has N bits per pixel (that is, a pixel 
can be one of 2**N colors) is said to have N planes. A 
plane is a slice of a bitmap that contains one bit for each 
pixel. 

primary color 
The color index used to draw on-bits in area textures, line 
textures, and glyphs. GIDIS enables you to set the current 
primary color. 

rubber band 
A rubber band is a marker that shows the current position 
relative to a point of your choice, called the origin. 
There are two types of rubber bands available in PRO/GIDIS: 
the rubber band line and the rubber band rectangle. The 
line stretches from the rubber band origin to the current 
position. The rectangle has one corner at the rubber band 
origin and the opposite corner at the current position. The 
rectangle will degenerate to a line or point if the current 
position and rubber band origin are the same in one or both 
coordinates. 

secondary color 
The color index that indicates the absence of the drawing 
color. Thus its main function is to serve as the background 
color of a picture. In replace mode, it is also used to 
draw off-bits in area textures, line textures, and glyphs. 
GIDIS enables you to set the current secondary color. 

standard display size 
The standard display size is normally equal to the standard 
unit size. However, for alphabet 0 the standard display 
size is slightly smaller (horizontally) than the standard 
unit size. This is for increased compatibility with the 
VT125. 

standard unit size 
The size in GIDIS Output Space of a character such that 80 
characters would fit horizontally and 24 characters would 
fit vertically, when IDS width/height is 8/5. 

stroke device 
A device whose view surface is written to with pen strokes, 
in contrast to a bitmap device, whose surface is written to 
with a sequence of dots. 

text rendition 
The variations of character appearance. 
balding and italics are renditions. 

G-5 

For example, 



GLOSSARY 

unit cell 
In GIDIS, a character is viewed as a rectangular field of ON 
and OFF bits. ON bits form a character pattern; OFF bits 
form the background. 

viewport 
A rectangle within Imposed Device Space. You place this 
rectangle where you want the image to be displayed. 

view surface 
The part of the device upon which drawing can occur. For 
example, the screen is the view surface of the Professional 
Video monitor. 

viewing transformation 
The process of mapping graphic data from user coordinate 
space to display coordinate space. 

window 
A rectangle you define within GIDIS Output Space to control 
which part of your picture to map to a viewport. 

G-6 



INDEX 

Absolute position 
in GIDIS instructions, 2-12 

Addressing 
controlling with 

SET_GIDIS_OUTPUT_SPACE, 
2-10 

Alphabet 
and REQUEST_CELL_STANDARD, 6-49 
current, 2-22 
definition, 2-22, G-1 
in relation to font, 2-22 
number available, 2-22 
reset state, 6-39 
selecting current with 

SET_ALPHABET, 2-22 
Alphabet and font instructions 

summary of, 2-24 
Anisotropic 

definition, G-1 
Application management 

instructions 
definition of, 2-9 
ERASE_CLIPPING_REGION, 2-10 
FLUSH_BUFFER, 2-10 
SCROLL_CLIPPING_REGION, 2-10 
SET_GIDIS_OUTPUT_SPACE, 2-10 
SET_OUTPUT_BITMAP, 2-11 
SET_OUTPUT_CLIPPING_REGION, 

2-10 
SET_OUTPUT_CURSOR, 2-10 
SET_OUTPUT_CURSOR_RENDITION, 

2-10 
SET_OUTPUT_RUBBER_BAND, 2-10 
SET_OUTPUT_VIEWPORT, 2-10 
used interactively, 2-9 

Arcs 
drawing, 6-14, 6-23 

Area cell size 
setting, 6-59 

Area texture 
affected by 

SET_GIDIS_OUTPUT_SPACE, 
6-84 

affected by SET_OUTPUT_IDS, 
6-97 

definition, G-1 
reset state, 6-39 

setting, 6-61 
taken from line texture, 6-61 

Area texture size 
setting, 6-63 

Argument list 
counted, 3-2 
length byte in, 3-2 
uncounted, 3-2 

Argument word(s) 
fixed number of, 3-1 
format of, 3-1 
variable number of, 3-1 

Aspect ratio 
definition, G-1 

Associated documents, xi 
Attribute 

definition, G-1 

Back-slant 
character rendition, 2-20 

BEGIN_DEFINE_CHARACTER 
aborted by initialization, 6-36 
reference description, 6-2 
used to define glyphs, 2-23 

BEGIN_FILLED_FIGURE 
aborted by initialization, 6-36 
drawing instruction, 2-13 
reference description, 6-7 

Bitmap 
definition, G-1 

Bold 
character rendition, 2-20 

Cartesian coordinate space, 2-8 
Cell display size 

affected by 
SET_GIDIS_OUTPUT_SPACE, 
6-84 

affected by SET_OUTPUT_IDS, 
6-97 

reset state, 6-39 
Cell movement 

affected by 
SET_GIDIS_OUTPUT_SPACE, 
6-84 

affected by SET_OUTPUT_IDS, 
6-97 

Index-1 



INDEX 

reset state, 6-39 
Cell oblique 

reset state, 6-39 
Cell rendition 

reset state, 6-39 
Cell rotation 

reset state, 6-39 
Cell unit size 

affected by 
SET_GIDIS_OUTPUT_SPACE, 
6-84 

affected by SET_OUTPUT_IDS, 
6-97 

reset state, 6-39 
Centerpoint 

of arcs, 2-12 
CGL 

relationship to PRO/GIDIS, 1-2 
Character 

definition, G-2 
Character cell 

changing the shape of, 2-20 
definition, 2-17, G-2 
display cell size, 2-17 
renditions available, 2-20 
rotating, 2-17 
shape of, 2-20 
types of, 2-17 
unit cell size, 2-17 

Character cell rendition 
specifying with 

SET_CELL_RENDITION, 2-20 
Character rotation 

and REQUEST_CELL_STANDARD, 6-49 
Clipping 

area texture cell, 2-17 
definition, 2-3, G-2 

Clipping rectangle 
changing the size of, 2-8, 2-10 
reasons to change the size of, 

2-10 
size of, 2-10 

Clipping region 
affected by 

SET_GIDIS_OUTPUT_SPACE, 
6-84 

affected by SET_OUTPUT_IDS, 
6-97 

erasing, 6-33 
setting, 6-89 

Color 

definition, G-2 
Color map 

definition, G-2 
interaction with plane mask, 

6-104 
reset state, 6-39 
setting, 6-78 
values, 6-79 

Complement 
defintion, G-2 

Complement mode 
effect on filled figure, 6-8 
effect on lines, 6-19, 6-26 
effect on pixel size, 6-103 

Complement negate mode 
effect on filled figure, 6-8 
effect on lines, 6-19, 6-26 

CORE Graphics Library 
see CGL 

CREATE_ALPHABET 
and dynamically created fonts, 

2-23 
disadvantages of, 2-23 
in uncounted argument list, 3-1 
options with, 2-23 
reference description, 6-11 
storing fonts created with, 

2-23 
Current position 

affected by 
SET_GIDIS_OUTPUT_SPACE, 
6-84 

affected by SET_OUTPUT_IDS, 
6-97 

after DRAW_ARCS, 6-14 
after DRAW_REL_ARCS, 6-23 
changing as a result of drawing 

instruction, 2-12 
changing with SET_POSITION, 

2-12 
changing with 

SET_RELATIVE_POSITION, 2-12 
definition, 2-12, G-2 
marking with cursor, 2-10 
marking with rubber band, 2-10 
options in updating, 2-17 
reporting, 6-51 
reset state, 6-39 
setting, 6-106, 6-108 
updating of, 2-12 

Cursor 

Index-2 



affected by 
SET_GIDIS_OUTPUT_SPACE, 
6-84 

affected by SET_OUTPUT_IDS, 
6-97 

definition, G-2 
rendition, 2-10 
reset state, 6-39 
selecting built-in, 6-92 
setting, 6-91 
used to mark the current 

position, 2 -10 
Curve attributes 

setting, 2-·16 

Device's view surface 
how to describe, 2-8 
origin of, 2-8 

Devtype 0 
Disk file, 4-7 

Devtype 1 
LA 50, 4-8 

Devtype 2 
LQP02, 4-8 

Devtype 3 
LA100, 4-8 

Devtype 4 
HP7470, 4-8 
HP7475, 4-8 
LVP16, 4-8 

Devtype 5 
other, 4-9 

Devtype 6 
Professional video, 4-9 

Devtype 7 
LN03, 4-9 

Devtype 8 
Palette, 4-9 

Disk file 
Devtype 0, 4-7 

Display cell 
definition, G-2 
reporting, 6-49 

Display cell size 
definition of, 2-17 

DRAW_ARCS 
and END_LIST, 6-30 
and REQUEST_CURRENT_POSITION, 

6-51 
drawing instruction, 2-12 

INDEX 

reference descri ion, 6-14 
DRAW_CHARACTERS 

and END_LIST, 6-30 
and ITION, 

6-51 
drawing instruction, 2-13 
in uncounted a list, 3-1 
invalid in filled figure, 6-7 
reference descri ion, 6-17 

DRAW_LINES 
and END_LIST, 6-30 
drawing instruction, 2-12 
in uncounted ar list, 3-1 
reference descri ion, 6-19 

DRA.W_PACKED __ CHARAC'I'ERS 
and END_LIST, 6-30 
drawing ASCII strings with, 

2-13 
drawing instruction, 2-13 
in uncounted ar list, 3-1 
invalid in filled ~igure, 6-7 
reference description, 6-21 

DRAW_REL_ARCS 
and END_LIST, 6-30 
drawing instruction, 2-12 
in uncounted argument list, 3-1 
reference descri ion, 6-23 

DRAW_REL_LINES 
and END_LIST, 6-30 
drawing instruction, 2-12 
in uncounted ar list, 3-1 
reference description, 6-25 

Drawing arcs 
in a series, 2-12 
individually, 2-12 
relationship of int and 

current position, 2-12 
specifying centerpoint of, 2-12 
with DRAW_ARCS, 2-12 
with DRAW_REL __ ARCS, 2--12 

Drawing Attributes 
classes of attributes, 2- 4 
default values, 2-14 
role of, 2-14 

Drawing characters 
drawing characters in 

succession, 2-13 
rendition of, 2-13 
role of S in, 2-13 
selecting a current al t, 

in uncounted argument list, 3-1 2-13 

Index-3 



selecting the character you 
want to draw, 2-13 

with DRAW_CHARACTERS, 2-13 
with DRAW_PACKED_CHARACTERS, 

2-13 
Drawing filled figures 

and END_FILLED_FIGURE, 2-13 
order of drawing instructions, 

2-13 
Drawing filled figuresand 

BEGIN_FILLED_FIGURE, 2-13 
Drawing instructions 

function of, 2-12 
summary of, 2-13 

Drawing lines 
in a series, 2-12 
individually, 2-12 
relationship of endpoint and 

current position, 2-12 
setting thickness of, 2-16 
with DRAW_LINES, 2-12 
with DRAW_REL_LINES, 2-12 

$DSW variable 
values of, F-4, F-6 

END_DEFINE_CHARACTER 
reference description, 6-28 
used with 

BEGIN_DEFINE_CHARACTER, 
2-23 

END_FILLED FIGURE 
drawing instruction, 2-13 
reference description, 6-29 

END_LIST 
and DRAW_ARCS, 6-14 
and DRAW_LINES, 6-19 
and DRAW_REL_ARCS, 6-23 
and DRAW_REL_LINES, 6-25 
function of, 3-2 
reference description, 6-30 

END_PICTURE 
reference description, 6-31 

Endpoint 
of lines, 2-12 

ERASE_CLIPPING_REGION 
reference description, 6-33 
used to clear space within 

viewport, 2-10 
Error 

in instruction stream, 3-3 

INDEX 

Family name 
see font 

.FDF files 
description of, D-1 
fields in, D-1 
format of, D-1 

Filled figure 
and DRAW_LINES, 6-19 
and DRAW_REL_LINES, 6-26 
defining, 6-7 
definition, G-3 
effect on DRAW_ARCS, 6-14 
effect on DRAW_REL_ARCS, 6-23 
ending, 6-29 

Filled figure attributes 
setting, 2-16 

Filled figure table 
definition of, 2-13 

FLUSH_BUFFER 
and END_PICTURE, 6-31 
reference description, 6-34 
used to control user input, 

2-10 
Font 

definition, 2-22 
family name, 2-22 
in relation to alphabet, 2-22 

Font family 
definition, G-3 

Font file 
definition, G-3 
header format, C-1 
location of glyphs in, C-3 
order of data, C-1 
pointer table format, C-2 
required format, C-1 

Font files 
creating, 2-22 
directory of, D-1 
managing, D-1 
storing, 2-22 
table of available fonts, D-1 

Font server 
spawned at boot time, D-1 

Fonts 
attributes, D-4 
building with CREATE_ALPHABET, 

2-22 
building with LOAD_BY_NAME, 

2-22 
how to build, 2-22 

Index-4 



INDEX 

naming conventions, D-3 
necessity of more than one, 

2-22 
number available, 2-22 
stored in font files, 2-22 

FORTRAN sample proqram 
RT-11, 5-13 

FORTRAN-77 
PRO/GIDIS instruction names in, 

3-2 
sample program, 4-15, F-7 
symbol name restrictions, F-3 
use of with PRO/GIDIS, F-1 

GI CLOS 
arguments for, 4-5 
description of, 4-5 

GICLOS RT-11 
arguments for, 5-5 
description of, 5-5 

GIDCAL 
see GIDIS Call Interface 

GIDIS attributes 
and SET_GIDIS_OUTPUT_SPACE, 

6-84 
and SET_OUTPUT_IDS, 6-95 

GIDIS Call Interface 
accessing routines, 4-2 
advantages of, 1-2 
devices accessed by, 4-7 
driver-specific instructions, 

4-11 
errors, 4-12 
GICLOS, 4-1 
GIFONT, 4-1 
GIOPEN, 4-1 
GIPLAY, 4-1 
GIREAD, 4-1 
GIWRIT, 4-1 
maintain multiple connections, 

4-2 
routines, 4-1 
status code returned, 4-2 
using, 4-2 

GIDIS Call Interface RT-11 
errors, 5-5 
GICLOS, 5-2 
GIOPEN, 5-2 
GIREAD, 5-2 
GIWRIT, 5-2 
interface errors, 5-6 

MACR0-11 interface 
data path, 5-10 

operating system errors, 5-6 
routines, 5-2 
using, 5-2 

GIDIS instructions 
repeatable, 3-1 

GIDIS Output Space (GOS) 
address space used by drawing 

instructions, 2-8 
affected by SET_OUTPUT_IDS, 

6-97 
~eset state, 6-39 
setting, 6-81 

GI FONT 
arguments for, 4-6 
description of, 4-6 
used to store CREATE_ALPHABET 

fonts, 2-23 
GIGI 

and ReGIS, 1-2 
GI OPEN 

and choosing a driver, 4-3 
arguments for, 4-3 
description of, 4-3 
device types accessed, 4-3 

GIOPEN RT-11 
arguments for, 5-3 
description of, 5-3 

GI READ 
arguments for, 4-4 
description of, 4-4 

GIREAD RT-11 
arguments for, 5-4 
description of, 5-4 

GIWRIT 
arguments for, 4-4 
description of, 4-4 

GIWRIT RT-11 
arguments for, 5-4 
description of, 5-4 

Global symmetry 
and SET_REL_POSITION, 6-108 
definition, G-3 

Glyph 
defined with 

BEGIN_DEFINED_CHARACTER, 
2-23 

defined with 
LOAD_CHARACTER_CELL, 2-23 

definition, G-3 

Index-5 



INDEX 

location in font file, C-3 
GOS 

see GIDIS Output Space 

Hardware Address Space (HAS) 
as anisotropic address space, 

2-8 
definition of, 2-8 

HAS 
definition, G-3 

HAS (Hardware Address Space) 
see Hardware Address Space 

Header format 
for font file, C-1 

HP7470 
Devtype 4, 4-8 

HP7475 
Devtype 4, 4-8 

I/O Status Block 
values of, F-4, F-6 

IDS 
definition, G-3 

IDS (Imposed Device Space) 
see Imposed Device Space 

Image 
definition, G-3 

Imposed Device Space (IDS) 
as device-independent address 

space, 2-8 
as isotropic address space, 2-8 
definition of, 2-8 
reset state, 6-39 
resolution of, 2-8 
set by SET_OUTPUT_IDS, 2-8 
setting, 6-95 
setting coordinates of, 2-8 
shape of, 2-8 

INITIALIZE 
and RIS, F-3 
effect on filled figure, 6-8 
reference description, 6-35 

Instruction syntax 
description, 3-1 

Interactive control instructions 
summary of, 2-11 

IO.RSD function code 
format, F-5 
in QIO, F-1 
use of, F-4, F-6 

IO.WLB function code 

and VT102 Emulator, F-1 
I00WSD function code 

format, F-4 
in QIO, F-1 
use of, F-3, F-4 

IOoWVB function code 
and VT102 Emulator, F-1 

Isotropic 
definition, G-4 

Italics 
character rendition, 2-20 

LA 50 
Devtype 1, 4-8 

LA100 
Devtype 3, 4-8 

LB:[ZZFONT] 
font file directory, D-1 

Length byte 
in argument list, 3-2 

Line 
drawing, 6-19, 6-25 

Line attributes 
setting, 2-16 

Line texture 
affected by 

SET_GIDIS_OUTPUT_SPACE, 
6-84 

affected by SET_OUTPUT_IDS, 
6-97 

definition, G-4 
reset state, 6-39 
setting, 6-86 

LN03 
Devtype 7, 4--9 

LOAD_BY_NAME 
formats of, 2-23 
in uncounted argument list, 3-1 

LOAD_BY_NAME(1) 
reference description, 6-40 
uses of, 2-23 

LOAD_BY_NAME(2) 
reference description, 6-42 
uses of, 2-23 

LOAD_CHARACTER_CELL 
in uncounted argument list, 3-1 
reference description, 6-43 
used to define glyphs, 2-23 

Local symmetry 
definition, G-4 

LQP02 

Index-6 



INDEX 

Dev type 2, 4-8 
LVP16 

Dev type 4 I 4-8 

MACR0-11 
PRO/GIDIS instruction names 

3-2 
sample program, 4-14, F-6 
use of with PRO/GIDIS, F-1 

MACR0-11 interface 
with RT-11, 5-10 

MACR0-11 sample program 
RT-11, 5-12 

Mapping 
window to viewport, 2-3 

NAPLPS 

in, 

relationship to PRO/GIDIS, 1-2 
NEW_PICTURE 

reference description, 6-45 
use of, 6-45 

NOP 
reference description, 6-46 

Opcode 
function of, 3-1 

Opcode word 
format, 3-1 

Orientation of character 
definition of, 2-19 
determined by angle specified, 

2-19 
specified by SET_CELL_ROTATION, 

2-19 
Origin 

definition, G-4 
of device's view surface, 2-8 

Other 
Devtype 5, 4-9 

Palette 
Devtype 8, 4-9 
errors, 4-10 

PASCAL 
PRO/GIDIS instruction names in, 

3-2 
Picture 

definition, G-4 
Picture management instructions 

function of, 2-6 
summary of, 2-9 

Pixel 
definition, G-4 

Pixel aspect ratio 
definition, G-4 

Pixel size 
setting, 6-102 

Plane 
definition, G-5 

Plane mask 
reset state, 6-39 
setting, 6-104 

Plotter GIDIS 
area texture, E-1 
color with, E-3 
hatch patterns used with, E-2 
loading pens with, E-3 
2-pen plotter, E-3 
6-pen plotter, E-3 

Pointer table format 
for font file, C-2 

Primary color 
definition, G-5 
reset state, 6-39 
setting, 6-107 

PRINT_SCREEN 
reference description, 6-47 
used to print portion of video 

bitmap, 2-11 
PRO/Document VDM 

relationship to GIDIS, 1-3 
PRO/GIDIS 

as foreground job under XM 
monitor, 5-1 

conceptual framework of, 2-1 
definition of, 1-1 
devices supported with P/OS, 

1-2 
devices supported with RT-11, 

1-2 
interface, 1-3 
relationship to other P/OS 

graphic tools, 1-2 
RT-11 

files required, 5-1 
FORTRAN interface, 5-1 
GIDIS Call Interface, 5-1 
interfaces, 5-1 
MACR0-11 interface, 5-1 
Professional INTERFACE (PI) 

handler, 5-1 
starting, 5-1 

Index-7 



sample output, 1-1 
use of fallbacks, 1-2 
uses of, 1-1 
when to use, 1-4 

PRO/GIDIS attributes 
summary of, 2-20 

PRO/GIDIS instruction 
definition of, 3-1 

PRO/GIDIS instruction summary 
in alphabetical order, A-5 
in opcode order, A-1 

PRO/GIDIS RT-11 
FORTRAN interface, 5-13 
MACR0-11 interface, 5-10 

Professional video 
Devtype 6, 4-9 

Proportional text 
character rendition, 2-20 

QIO 
access to PRO/GIDIS, F-1, F-7 
expansion forms, F-3 
FORTRAN-77 routine, F-1 

QIOW 
see QIO 

Queue I/0 Request 
see QIO 

Read Special Data 
see IO.RSD 

ReGIS 
relationship to PRO/GIDIS, 1-2 
when to use, 1-4 

Relative position 
in GIDIS instructions, 2-12 

Remote Graphics Instruction Set 
see ReGIS 

Rendition 
available for character cells, 

2-20 
Report instructions 

function of, 2-25 
REQUEST_CURRENT_POSITION, 2-25 
REQUEST_STATUS, 2-25 
summary of, 2-25 

Report tags, A-8 
Reports 

how to read, 2-25 
why use, 2-25 

REQUEST_CELL_STANDARD 
and IO.RSD, F-5 

INDEX 

reference description, 6-49 
REQUEST_CURRENT_POSITION 

and IO.RSD, F-5 
reference description, 6-51 
uses of, 2-25 

REQUEST_OUTPUT_SIZE 
reference description, 6-52 

REQUEST_STATUS 
and IO.RSD, F-5 
cost of, 2-25 
reference description, 6-54 
uses of, 2-25 

REQUEST_VERSION_NUMBER 
reference description, 6-55 

Reset to Initial State (RIS) 
use of, F-3 

RIS {Reset) escape sequence 
use of, F-3 

RT-11 
requirements for using 

PRO/GIDIS, 5-1 
Rubber band 

definition, G-5 
rendition, 2-10 
used to mark the current 

position, 2-10 

Scaling pictures 
with SET_GIDIS_OUTPUT_SPACE, 

2-10 
Screen 

printing, 6-47 
SCROLL_CLIPPING_REGION 

reference description, 6-56 
used to clear space within 

clipping rectangle, 2-10 
Scrolling 

by VT102 Emulator, F-3 
SD.GDS parameter 

use of, F-4, F-5 
Secondary color 

definition, G-5 
reset state, 6-39 
setting, 6-109 

Secondary color and NEW_PICTURE, 
6-45 

SET_ALPHABET 
reference description, 6-58 
used to select current alphabet, 

2-22 
SET_AREA_CELL_SIZE 

Index-8 



INDEX 

reference description, 6-59 
used to clip area texture cell, 

2-17 
SET_AREA_TEXTURE 

effect on area cell size, 6-59 
reference description, 6-61 
size limitation in, 2-17 
used to set fill pattern, 2-16 

SET_AREA_TEXTURE_SIZE 
reference description, 6-63 
used to scale fill character, 

2-17 
SET_CELL_DISPLAY_SIZE 

reference description, 6-64 
SET_CELL_EXPLICIT_MOVEMENT 

reference description, 6-67 
used in updating the current 

position, 2-17 
SET_CELL_MOVEMENT_MODE 

reference description, 6-69 
used in updating the current 

position, 2-17 
used to specify symmetry, 2-19 

SET_CELL_OBLIQUE 
reference description, 6-71 
used for changing the character 

cell shape, 2-20 
SET_CELL_RENDITION 

reference description, 6~73 
specifying, 2-20 

SET_CELL_ROTATION 
reference description, 6-75 

SET_CELL_UNIT_SIZE 
reference description, 6-76 

SET_COLOR_MAP_ENTRY 
reference description, 6-78 

SET_GIDIS_OUTPUT_SPACE 
function of, 2-8 
invalid in filled figure, 6-7 
reference description, 6-81 
used to display a part of a 

picture, 2-10 
used to scale pictures, 2-10 

SET_LINE_TEXTURE 
reference description, 6-86 
with line and curve attributes, 

2-16 
SET_OUTPUT_BITMAP 

reference description, 6-88 
used to create up to four 

picture, 2-11 

SET_OUTPUT_CLIPPING_REGION 
function of, 2-8 
reference description, 6-89 
set by SET_OUTPUT_VIEWPORT, 

2-10 
uses of, 2-10 

SET_OUTPUT_CURSOR 
reference description, 6-91 
used to select cursor, 2-10 

SET_OUTPUT_CURSOR_RENDITION 
reference description, 6-94 
specifies cursor/rubber band 

rendition, 2-10 
SET_OUTPUT_IDS 

invalid in filled figure, 6-7 
other functions performed by, 

2-8 
reference description, 6-95 
setting clipping rectangle with, 

2-8 
setting GIDIS Output Space 

(GOS) with, 2-8 
setting viewport with, 2-8 
used to set Imposed Device 

Space, 2-8 
SET_OUTPUT_RUBBER_BAND 

reference description, 6-98 
used to select rubberband, 2-10 

SET_OUTPUT_VIEWPORT 
function of, 2-8 
invalid in filled figure, 6-7 
reference description, 6-100 
used to specify size and 

location of viewport, 2-10 
SET_PIXEL_SIZE, 2-16 

reference description, 6-102 
SET_PLANE_MASK, 2-15 

and VT102 Emulator, F-3 
reference description, 6-104 

SET_POSITION 
invalid in filled figure, 6-7 
reference description, 6-106 

SET_PRIMARY_COLOR, 2-15 
reference description, 6-107 

SET_REL_POSITION 
invalid in filled figure, 6-7 
reference description, 6-108 

SET_SECOND.ARY_COLOR, 2-15 
reference description, 6-109 

SET_WRITING_MODE, 2-15 
reference description, 6-111 

Index-9 



Spacing between characters 
explanation of, 2-17 

.SPFUN 370 
checking errors with, 5-11 
function of, 5-11 
structure of, 5-11 

.SPFUN 371 
checking errors with, 5-11 
function of, 5-11 
structure of, 5-11 

.SPFUN programmed request 
with RT-11 MACR0-11 interface, 

5-10 
Standard display size 

definition, G-5 
Standard unit size 

definition, G-5 
Status 

in error condition, 3-3 
reporting, 6-54 

Stroke device 
definition, G-5 

Symmetry 
global 

definition, 2-19 
local 

definition, 2-19 
specifying with 

SET_CELL_MOVEMENT_MODE, 
2-19 

Syntax errors 
how GIDIS handles, 3-3 
insufficient arguments, 3-3 
too many arguments, 3-3 

SYSLIB 
as source of QIO routine, F-1 
module QIOSYM, F-3 

TEK 4014 
relationship to PRO/GIDIS, 1-3 

Terminal emulation 
and ReGIS, 1-2 

Terminal emulator 
see VTlOO mode emulator 
see VT102 Emulator 
see VT200 mode emulator 

Text attributes 
determining rendition of drawn 

characters, 2-13 
function of, 2-17 

Text rendition 

INDEX 

definition, G-5 
Texture cell 

changing the size of, 2-17 

Unit cell 
definition, G-6 
reporting, 6-49 

Unit cell size 
definition of, 2-17 

View surf ace 
and NEW_PICTURE, 6-45 
definition, G-6 

Viewing transformation 
definition, G-6 

Viewport 
affected by SET_OUTPUT_IDS, 

6-97 
changing the location of, 2-8 
changing the size of, 2-8 
definition, G-6 
definition of, 2-3 
reset state, 6-39 
setting, 6-100 

VT100 mode emulator 
use of, 1-4 
use of planes, 6-104 

VT102 Emulator 
interaction with PRO/GIDIS, F-2, 

F-3 
use of with PRO/GIDIS, F-1 

VT200 mode emulator 
use of, 1-4 

Window 
clipping of, 2-3 
definition, G-6 
definition of, 2-3 

window, G-6 
Write Special Data 

see IO.WSD 
Writing attributes 

and drawing characters, 2-14 
and drawing lines and arcs, 

2-14 
and filling figures, 2-14 
definition of, 2-14 
plane mask, 2-15 
primary color, 2-15 
relationship to bit patterns, 

2-14 

Index-10 



secondary color, 2-15 
writing mode, 2-15 

Writinq mode 
default, 2-15 
function of, 2-15 

INDEX 

Index-11 

reset state, 6-39 
setting, 6-111 
setting with SET_WRITING_MODE, 

2-15 



READER'S COMMENTS 

PRO/GIDIS Manual 
AA-HJ45A-TK 

NOTE: This form is for document comments only. DIGITAL 
will use comments submitted on this form at the com
pany's discretion. If you require a written reply and 
are eligible to receive one under Software Perfor
mance Report (SPA) service, submit your comments 
on an SPA form. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Did you find errors in this manual? If so. specify the error and the page number. 

Please indicate the type of reader that you most nearly represent. 
0 Assembly language programmer 
0 Higher-level language programmer 
0 Occasional programmer (experienced) 
0 User with little programming experience 
0 Student programmer 
0 Other (please specify)--------------------------

Name ______________________ Date __________ _ 

Organization-----------------------·---------

Street-----------------~-----------------

City _______________ State ________ Zip Code--------

or 

Country 



I 
I 

Do Not Tear - Fold Here and Tape --------------------------------------------------: 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

Professional Workstations Publications 
DIGITAL EQUIPMENT CORPORATION 
146 Main Street, ML021-2/T76 
Maynard, Massachusetts 01754-2571 

[----~] No Postage 
Necessary 

if Mai fed in the 
1 United States 

L______ _____ _ 

I 
I 
I 
I 
I 
I 
I 

i 
I 
1 

I 
I 
I 
I 
1 

I 
I 
I 
I 
I 
I 
I 

--- Do Not Tear - Fold Here-------------------------------------------------1 
I 
I 
I 
I 
I 
I 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	6-001
	6-002
	6-003
	6-004
	6-005
	6-006
	6-007
	6-008
	6-009
	6-010
	6-011
	6-012
	6-013
	6-014
	6-015
	6-016
	6-017
	6-018
	6-019
	6-020
	6-021
	6-022
	6-023
	6-024
	6-025
	6-026
	6-027
	6-028
	6-029
	6-030
	6-031
	6-032
	6-033
	6-034
	6-035
	6-036
	6-037
	6-038
	6-039
	6-040
	6-041
	6-042
	6-043
	6-044
	6-045
	6-046
	6-047
	6-048
	6-049
	6-050
	6-051
	6-052
	6-053
	6-054
	6-055
	6-056
	6-057
	6-058
	6-059
	6-060
	6-061
	6-062
	6-063
	6-064
	6-065
	6-066
	6-067
	6-068
	6-069
	6-070
	6-071
	6-072
	6-073
	6-074
	6-075
	6-076
	6-077
	6-078
	6-079
	6-080
	6-081
	6-082
	6-083
	6-084
	6-085
	6-086
	6-087
	6-088
	6-089
	6-090
	6-091
	6-092
	6-093
	6-094
	6-095
	6-096
	6-097
	6-098
	6-099
	6-100
	6-101
	6-102
	6-103
	6-104
	6-105
	6-106
	6-107
	6-108
	6-109
	6-110
	6-111
	6-112
	6-113
	6-114
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	replyA
	replyB

