PRO/GIDIS Manual

Order No. AA-HJ45A-TK

November 1985

This document describes PRO/GIDIS, DIGITAL’S General
Image Display Instruction Set, as implemented for the
PRO/Tool Kit. It is a user guide and reference manual
for programmers developing graphics applications for the
Professional.

REQUIRED SOFTWARE: Professional Host Tool Kit V3.0
or PRO/Tool Kit V3.0

OPERATING SYSTEM: P/OS V3.0
or RT-11 V5.2

dlilgliltlall |

DIGITAL EQUIPMENT CORPORATION
Maynard, Massachusetts 01754-2571

First Printing, December 1983
Updated, April 1984
Revised, November 1985

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document 1is furnished wunder a
license and may only be used or copied in accordance with the
terms of such license.

No responsibility is assumed for the wuse or reliability of
software on equipment that is not supplied by DIGITAL or its
affiliated companies.

The specifications and drawings, herein, are the property of
Digital Equipment Corporation and shall not be reproduced or
copied or used 1in whole or in part as the basis for the
manufacture or sale of items without written permission.

Copyright © 1985 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTI BUS MASSBUS Rainbow

DEC PDP RSTS

DECmate P/0OS RSX
DECsystem-10 PRO/BASIC Tool Kit
DECSYSTEM-20 PRO/Communications UNIBUS

DECUS Professional VAX

DECwriter PRO/FMS VMS

DIBOL PRO/RMS vT

o] t]a]1 1 PROSE Work Processor

PROSE PLUS

CONTENTS

PREFACE . B
CHAPTER 1 INTRODUCTION TO PRO/GIDIS
1.1 USES OF PRO/GIDIS e e e e e e e e e e 1-1
1.2 RELATIONSHIP TO OTHER P/0S GRAPHICS TOOLS . 1-2
1.2.1 When to Use PRO/GIDIS « « « « . . 1-4
1.2.2 When Not to Use PRO/GIDIS 1-4
CHAPTER 2 UNDERSTANDING PRO/GIDIS
2.1 INTRODUCTION TO GRAPHIC PROGRAMMING e . . 2-1
2.1.1 Viewing Transformation Instructions . . 2-2
2.1.2 Interactive Control Instructions 2-3
2.1.3 Drawing Instructions 2-5
2.1.4 Attribute Instructions . . . e « .« <« . 2-5
2.2 INTRODUCTION TO GIDIS INSTRUCTIONS e e e e . 2-5
2.2.1 Picture Management Instructions 2-6
2.2.2 Interactive Control Instructions 2-9
2.2.3 Drawing Instructions 2-12
2.2.4 The Current Position 2-12
2.2.5 Drawing Lines, Arcs, Filled Figures,
Characters, Images « « « « « « . . 2-12
2.2.6 Drawing Attributes 2-14
2.2.7 Writing Attributes 2-14
2.2.8 Line and Curve Attributes 2-16
2.2.9 Filled Figure Attributes 2-16
2.2.10 Text Attributes 2-17
2.2.11 Alphabets and Fonts 2-22
2.2.12 Font Files . . . e e e e e e e e . 222
2.2.13 Dynamically Created Fonts e e e e e . o« . 2-23
2.2.14 REPOrtS . . « ¢ & « « ¢« « « & « « o« « « . 2-25
CHAPTER 3 PRO/GIDIS INSTRUCTION SYNTAX
3.1 OPCODE BYTE . . e e e e e e e e 3-1
3.2 LENGTH BYTE AND THE ARGUMENT LIST e e e e e 3-2
3.3 SYNTAX ERRORS e e e e o e a2 4 e e e o o o o 3-3
CHAPTER 4 USING PRO/GIDIS WITH P/OS
4.1 THE GIDIS CALL INTERFACE (GIDCAL) e e e e e 4-1
4.1.1 GIOPEN . . ¢ ¢ ¢ o o« o o o o o o o o o o = 4-3
4.1.2 GIWRIT . . ¢ v ¢ o o o o o o o o o o o o = 4-4

iii

4.1.3 GIREAD . + © « & ¢ ¢ ¢ o o o o o o o o« o« . 4-4
4,1.4 GICLOS . . . « ¢« ¢ ¢ ¢« v « ¢ o o« o o« o « o 4-5
4.1.5 GIFONT . . . ¢« « ¢« ¢ ¢ & o ¢ o« o o« « o« « . 4-6
4.1.6 GIPLAY . ¢ v &« &« ¢ o« o ¢ o o o o o o o « « 4-6
4.2 DEVICES ACCESSED BY GIDCAL . . &« . « o « + . 4-17
4.2.1 Disk File « « « . . 4-7
4.2.2 LAS0 e e e e e e e e e e e e e e e e . . 4-8
4.2.3 LQPO2+ ¢+ ¢ ¢« 4« e« < . < . . 4-8
4.2.4 LAL10O,/LA210 ¢« ¢« « ¢ & « « . . 4-8
4.2.5 LVP16, HP7475, HP7470 Plotters 4-8
4,2.6 Other Device « . . 4-9
4.2.7 Professional Video e e e e e e e e e .. 4-9
4.2.8 LNO3 e e e e e e e e e e e e e e e .. 4-9
4.2.9 Polaroid Palette e e e e e e e e e e . . 4-9
4.2.10 LOPO3« « ¢ v v o e e e e e e 4-10
4.3 BUILDING A TASK WITH GIDCAL 4-11
4.3.1 Video GIDIS . . ¢ «¢ ¢ o & o o o o o « . . 4-11
4.3.2 Other GIDIS Drivers . . . « « « « « . . . 4-11
4.4 ERROR REPORTING e .]
4.5 SAMPLE P/0S PROGRAMS e e e e e e e e e . . 4-14
4.5.1 Sample MACRO-11 Program 4-14
4.5.2 Sample FORTRAN Program 4-15
CHAPTER 5 USING PRO/GIDIS WITH RT-11
5.1 THE GIDIS CALL INTERFACE (GIDCAL) e e e e 5-2
5.1.1 GIOPEN . . .+ « v o ¢ o o o o o o « o o o = 5-3
5.1.2 GIWRIT . . ¢ ¢ ¢ o« o« o o o o o o o o o o = 5-4
5.1.3 GIREAD . . ¢ . ¢ o« o o o o o o o o o o o = 5-4
5.1.4 GICLOS . .+ ¢ ¢ ¢ o o o o o o o o o o o o = 5-5
5.1.5 GIDCAL Error Reporting . « « « « <« <« « . b5-5
5.1.6 Sample Program Using GIDIS Call Interface 5-8
5.2 THE MACRO-11 PRO/GIDIS INTERFACE 5-10
5.2.1 LSPFUN 371 « ¢« < « « « « . . . 5-11
5.2.2 LSPFUN 370 « . « « « « « « + « . . 5-11
5.2.3 SAMPLE MACRO-11 PROGRAM o . 5-12
5.3 THE FORTRAN PRO/GIDIS INTERFACE 5-13
5.4 RESTRICTIONS . . . ¢ ¢ & =« o« o =« « « o« « « o 5-16
CHAPTER 6 PRO/GIDIS INSTRUCTIONS
6.1 BEGIN_DEFINE_CHARACTER . . ¢« + « « o o « o = 6-2
6.2 BEGIN_FILLED_FIGURE« ¢« o o« o & o = 6-7
6.3 CREATE_ALPHABET ¢« v ¢« o « « « « . . 6-11
6.4 DRAW_ARCS e e e e e e e e e e e e e e e . . 6-14
6.5 DRAW_CHARACTERS e e e e e e e e e e e e . . 6-17
6.6 DRAW_LINES + . « « « &« « « « « . 6-19
6.7 DRAW_PACKED_CHARACTERS +« « . « . . . 6-21
6.8 DRAW_REL_ARCS e e e e s e e s e e e e « . . 6-23

iv

e R R oo koo o koo oo Koo le We W We)We We i« W e i) N e Ne) I o) N e I e\ Ne) I e) N o) Yo Rie) o) I N o) I e o) o) Jie) Bl o) R o) Re) B o) B e RO)
.

e}

.10
.11
.12
.13
.14
.15
.16
.17
.18
.19
.20
.21
.22
.23
.24
.25
.26
.27
.28
.29
.30
.31
.32
.33
.34
.35
.36
.37
.38
.39
.40
.41
.42
.43
.44
.45
.46
.47
.48
.49
.50
.51
.52
.53
.54
.55
.56

DRAW_REL_LINES
END_DEFINE_CHARACTER
END_FILLED_FIGURE
END_LIST

END_PICTURE .
ERASE_CLIPPING REGION
FLUSH_BUFFER

INITIALIZE
LOAD_BY_NAME(1)
LOAD_BY_NAME(2)
LOAD_CHARACTER_CELL
NEW_PICTURE

NOP .

PRINT SCREEN
REQUEST_CELL STANDARD
REQUEST_CURRENT_POSITION
REQUEST_OUTPUT_SIZE
REQUEST_STATUS . .
REQUEST_VERSION NUMBER .
SCROLL_CLIPPING_REGION
SET_ALPHABET
SET_AREA_CELL_SIZE
SET_AREA_TEXTURE
SET_AREA_TEXTURE_SIZE
SET_CELL_DISPLAY_SIZE
SET_CELL_EXPLICIT_MOVEMENT
SET_CELL_MOVEMENT_MODE
SET_CELL_OBLIQUE
SET_CELL_RENDITION
SET_CELL_ROTATION
SET_CELL_UNIT_SIZE
SET_COLOR_MAP_ENTRY
SET_GIDIS_OUTPUT_SPACE
SET_LINE_TEXTURE
SET_OUTPUT_BITMAP .
SET_OUTPUT_CLIPPING REGION
SET_OUTPUT_CURSOR

SET_OUTPUT_CURSOR RENDITION

SET_OUTPUT_IDS
SET_OUTPUT_RUBBER_ BAND
SET_OUTPUT_VIEWPORT
SET_PIXEL_SIZE
SET_PLANE_MASK
SET_POSITION
SET_PRIMARY_COLOR
SET_REL_POSITION
SET_SECONDARY_COLOR
SET_WRITING_MODE

6-25
6-28
6-29
6-30
6-31
6-33
6-34
6-35
6-40
6-42
6-43
6-45
6-46
6-47
6-49
6-51
6-52
6-54
6-55
6-56
6-58
6-59
6-61
6-63
6-64
6-67
6-69
6-71
6-73
6-75
6-76
6-78
6-81
6-86
6-88
6-89
6-91
6-94
6-95
6-98

6-100

6-102
6-104
6-106
6-107
6-108
6-109
6-111

APPENDIX A

APPENDIX B

APPENDIX C

anan
w N P

APPENDIX D

BwWwwwwNh e

UUUUUUU
Wk

APPENDIX E
E.1
E.2

APPENDIX F

APPENDIX G

INDEX

PRO/GIDIS INSTRUCTION SUMMARIES

DEC MULTINATIONAL CHARACTER SET

FONT FILE FORMAT

HEADER ¢« « « « o .
POINTER TABLE
GLYPHS e e 4 e e e e e e o o .

MANAGING FONTS
MAKING A FONT AVAILABLE TO GIDIS

FONT NAMING CONVENTIONS
FONTS SUPPLIED WITH GIDIS . . .

. .

.

Default GIDIS Fonts Loaded Automatically
Rest of DGIDIS Monospaced Font Files .

Proportionally Spaced Fonts .
EDITING .FDF FILES

AREA TEXTURE AND COLOR ON THE PLOTTER

AREA TEXTURE
COLORS

QUEUE I/0 INTERFACE TO PRO/GIDIS

THE PRO/GIDIS INTERFACE e e e e
Write Special Data (IO.WSD) .
Read Special Data (IO.RSD) . .

PRO/GIDIS INSTRUCTION SYNTAX .

SAMPLE MACRO-11 PROGRAM e e e .

SAMPLE FORTRAN PROGRAM . e .

GLOSSARY

vi

Q0N
|
w N -

FIGURES

1-1 PRO/GIDIS Sample OQutput 1-1
1-2 PRO/GIDIS Interface . . . e e e e e e o o 1-3
2-1 Window to Viewport Mapping Optlons e e . . . 2-4
2-2 IDS Mapped onto a View Surface « e+« . . 2-8
2-3 Various Logical Pixel Sizes 2-16
2-4 Implicit and Explicit Movement e+ 2-18
2-5 Character Cell Rotation 2-19
6-1 Sample Character T)
6-2 Sample Filled Figure Square 6-9
6-3 Sample Filled Figure Bow Tie 6-10
6-4 Sample Arc « . . 6-15
6-5 Character Unit Cell and Dlsplay Cell « « . . 6-65
6-6 Italic and Back-Slanted Display Cells 6-72
6-7 Mapping of GOS to a Different Shaped

Viewport e e e e 6-82
6-8 Mapping a Portlon of a Plcture to a Vlewport 6-83
6-9 Writing Modes Shown with Line Texture . . 6-113
D-1 Default GIDIS Monospaced Fonts D-5
D-2 Hershey Sans Serif Font D-5
D-3 Hershey Serif Font D-6
D-4 Hershey Italicized Serif Font D-6
D-5 Hershey Script Font D-6
D-6 Hershey Gothic Font . . . e « e« « « « « . D=7
E-1 Hatch Patterns 1 through 12 e e + ¢« « « « . E-3
F-1 PRO/GIDIS Data Path F-=2

TABLES

2-1 Picture Management Instructions 2-9
2-2 Interactive Control Instructions 2-11
2-3 Drawing Instructions 2-13
2-4 GIDIS Drawing Attributes e e e e e e o« . . 2-20
2-5 Alphabet and Font Instructions 2-24
2-6 Report Instructions 2-25
4-1 GIDCAL Palette Errors« . . 4-10
4-2 GIDCAL Errors Listed by Class - P/OS B S
4-3 GIDCAL Interface Errors - P/OS 4-13
5-1 GIDCAL Errors Listed by Class - RT-11 . . . 5-5
5-2 GIDCAL Interface Errors - RT-11 b5-6
5-3 RT-11 Operating System Errors 5-6
6-1 Attributes Initialized by

BEGIN_DEFINE_CHARACTER e e e e e e e .. . b6-4
6-2 CREATE_ALPHABET Flags e e e e e e e e . . . 6-11
6-3 Initialization of Subsystems . . . « . . . 6-35
6-4 Values of GIDIS Attributes After an

INITIALIZE e e e e . .« e . e« . . . 6-37
6-5 SET_CELL_MOVEMENT_MODE Flag Values 6-69
6-6 SET_CELL_RENDITION Flags« . 6-73

vii

a O

JLUN TR N T N | [}

P NP WP P PO o
= o

1

HOQOOQ» PP OO O

Sample Color Map Values 6-79
GIDIS Attributes Affected by

SET_GIDIS_OUTPUT_SPACE 6-84
GIDIS Attributes Affected by SET OUTPUT IDS 6-96
Types of Rubber Bands 6-98
Writing Mode Options . . . e e e 6 111
GIDIS Instructions in Opcode Order e« « <« . . A-1
GIDIS Instructions in Alphabetical Order . A-5
Report Tags . . ¢« « « « ¢ « « « « « « « « . A-8
Header Format C-1
Pointer Table Format C-3
Hatch Patterns for Char-Index 1 to 48 « .« . E-=2

viii

PREFACE

Manual Objectives

PRO/GIDIS is one of the tools you can wuse to develop graphics
applications for the Professsional. This manual is both a user’s
guide and a reference manual for PRO/GIDIS, the General Image
Display Instruction Set. It explains how to use PRO/GIDIS and
describes each instruction in detail. It provides information
about device-independent text and graphics programming with
PRO/GIDIS.

Intended Audience

You should read this manual if you are developing a graphics
application for the Professional and need information about
PRO/GIDIS.

This document is intended for programmers who have had experience
with systems programming and graphics applications software. You
should also have experience with either MACRO-11 or FORTRAN.

This document explains how to use PRO/GIDIS on both the P/0S and
RT-11 operating systems. All chapters except 4 and 5 apply to
both operating systems. If you are using P/0S, read Chapter 4;
if you are using RT-11, read Chapter 5.

Structure of This Document

This document has six chapters and eight appendixes.

Chapter 1, Introduction to PRO/GIDIS, describes PRO/GIDIS and
places it in the <context of other graphic tools. It provides
guidelines so that you can determine whether to use PRO/GIDIS or
some other graphics software.

Chapter 2, Understanding PRO/GIDIS, provides a conceptual
framework for PRO/GIDIS. It explains key terms and introduces
GIDIS instructions. Together with Chapter 4 (for P/0S), or

Chapter 5 (for RT-11), this chapter serves as a user’s guide.

Chapter 3, PRO/GIDIS Syntax, describes the GIDIS instruction
syntax, which is the same for P/0S and RT-11.

Chapter 4, Using PRO/GIDIS with P/0S, explains how to wuse

ix

PRO/GIDIS with ©P/0S, the Professional Operating System. The
chapter describes the GIDIS Call Interface (GIDCAL), the devices
accessed by GIDCAL, and error handling.

Chapter 5, Using PRO/GIDIS with RT-11, describes how to wuse
PRO/GIDIS with the RT-11 operating system. The chapter describes
three interfaces (including GIDCAL) and error handling.

Chapter 6, PRO/GIDIS Instructions, lists each GIDIS instruction
in alphabetical order for quick reference. Information includes:
format, arguments, notes explaining how the instruction works,
and examples.

Appendix A, PRO/GIDIS Instruction Summaries, lists each PRO/GIDIS
instruction, its operation code (opcode), argument length, opcode
word, and associated arguments. Instructions are grouped two
ways: by opcode and in alphabetical order.

Appendix B, DEC Multinational Character Set, shows the code table
for the Professional’s alphabet 0, the DEC Multinational
Character Set.

Appendix C, Font File Format, describes the font file format
required by the LOAD_BY_NAME instruction.

Appendix D, Managing Fonts, describes how to tell the font server
about your font files.

Appendix E, Area Texture and Color on the Plotter, describes how
Plotter GIDIS processes instructions that affect area texture and

color.

Appendix F, Alternate Access to Video GIDIS, explains the Queue
I/0 Request (QIOS$) and Queue I/O Request and Wait (QIOWS) system
directives for P/0OS. This access method 1is documented for
backward compatibility with earlier versions.

Appendix G, Glossary, defines key terms used in this manual.

Associated Documents - P/OS
® CORE Graphics Library Manual
e P/0S System Reference Manual

® RMS-11 Macro Programmers Guide

® PRO/Document VDM Manual

e Tool Kit Language Manuals

Associated Documents - RT-11

@ RT-11 Programmer’s Reference Manual

Conventions Used in This Document

Convention/Term

[optional]

UPPERCASE

lowercase

Tool Kit

Host Tool Kit

PRO/Tool Kit

Meaning

In a command line, square brackets indicate
that the enclosed item is optional. In a file
specification, square brackets are part of
the required syntax.

Uppercase words and letters indicate that you
should type the word or letter exactly as
shown.

Lowercase words and letters indicate that you
should substitute a word or wvalue of your
own. Usually the lowercase word identifies
the type of substitution required.

A horizontal ellipsis indicates that you can
repeat the preceding item one or more times.
For example:

parameter [,parameter...]

A vertical ellipsis means that not all of the
statements are shown.

Interactive input appears in red.

This general term refers to the software you
use to develop applications to run on a
Professional computer.

The Host Tool Kit is Tool Kit software that
runs on a host computer, rather than on the

Professional itself.

The PRO/Tool Kit is the Tool Kit software
that runs on the Professional computer.

xi

CHAPTER 1
INTRODUCTION TO PRO/GIDIS

PRO/GIDIS, the General Image Display Instruction Set, is one of
several tools wused to develop graphics applications for the
Professional 300 Series computer. It consists of a set of
instructions that provide the lowest-level, wvirtual device
interface to the Professional’s graphics hardware.

1.1 USES OF PRO/GIDIS

PRO/GIDIS is aimed at applications <creating compass and ruler
graphics, those in which 1images can be described wusing
geometrical entities such as lines, arcs, and shaded areas. You
can also wuse PRO/GIDIS to display mixed text and graphics.
Figure 1-1 shows typical PRO/GIDIS output, a graphical
representation of some sample statistical data.

s AL A0 A SHILS “g&;g:g

100 i

Errollment, total
[Pwblic Errollment _1— Right Scale
% - 8 Private Ervollment — -4

--- Pwlic Expenditures Left Scale e

19%60 1962 194 196 1968 1970 1972

Figure 1-1: PRO/GIDIS Sample Output

1-1

USES OF PRO/GIDIS

PRO/GIDIS is the lowest layer of software that receives and
interprets graphics instructions in a device-independent way.
When the current output device cannot fully support an
instruction, GIDIS provides an appropriate fallback.

With GIDIS under P/0S, you can write on a number of devices.
Among them are the Professional video monitor, the LVP16 plotter,
and various printers (the LN03, LA50 and LA100). You can also
store GIDIS instructions in a file and later print the stored
picture, either by itself or as part of a document. Under RT-11,
you can write only on the video monitor.

The GIDIS Call Interface (GIDCAL) provides uniform access to each
device supported by GIDIS. It also simplifies access to GIDIS
from high-level languages.

1.2 RELATIONSHIP TO OTHER P/OS GRAPHICS TOOLS

PRO/GIDIS provides the foundation for several other graphics
tools on the Professional. Because these tools are implemented
as layers above PRO/GIDIS, each tool sets GIDIS attributes and
expects to be in full control of them. As a result, use of more
than one graphics protocol within an application is not
supported.

Other graphics tools include:

@ The PRO/Tool Kit CORE Graphics Library (CGL), a library of
high-level graphics subroutines based on the ACM SIGGRAPH
CORE Standard.

® ReGIS (Remote Graphics Instruction Set), a DIGITAL-developed,
ASCII-based protocol, is used to transmit graphics
instructions from a host computer to a remote Professional,
VT125, VT240 or GIGI graphics terminal. A ReGIS to GIDIS
converter (RTOG) translates ReGIS data files to GIDIS files
that can be displayed (or printed) on the Professional.
ReGIS currently cannot be used by applications that reside on
the Professional itself; it can only be used in terminal
emulation mode.

e NAPLPS, North American Presentation Level Protocol Syntax, is
an ASCII-based protocol developed for Videotex/Teletext.
NAPLPS currently cannot be used by applications that reside
on the Professional itself; it can only be used in terminal
emulation mode.

RELATIONSHIP TO OTHER P/0S GRAPHICS TOOLS

e TEK 4014 is an industry-standard Tektronix-based software
protocol adapted from storage tube technology. TEK 4014 is
available as a third party application that runs on the
Professional only in terminal emulation mode.

® PRO/Document VDM, not a graphics tool itself, is the layer of
P/0S that enables you to integrate graphics into documents.

Figure 1-2 shows the relationship between PRO/GIDIS and other
graphic tools.

PRO GRAPHICS ARCHITECTURE

REMOTE HOST PRO PRINT

APPLICATION APPLICATION SERVICES
. i% A UTILITIES
4T0E1K4 ReGIS NAPLPS nggim 7 INTERPRETER INTERFACE
GENERAL [MAGE DISPLAY [INSTRUCTION SET] mma
VIDEO DRIVER | FILE DRIVER | HPeL DRIVER | SIXELDRIVER | 35mm pRrven | INTERFACE
LVP16 Moo | PHYSICAL

BIT POLAROID

w |lEe] [me] (e (RS me
PREPARED WITH PRO/STGHT

Figure 1-2: PRO/GIDIS Interface

RELATIONSHIP TO OTHER P/0OS GRAPHICS TOOLS

1.2.1 When to Use PRO/GIDIS

Sometimes your choice of a graphics tool is a matter of taste,
but there are some guidelines to go by.

@ Use PRO/GIDIS if you want uniform access to the
Professional’s graphic devices.

® Use PRO/GIDIS if execution speed is most important.

® Use PRO/GIDIS to implement graphics utility layers, like
CORE, or tools rather than applications.

1.2.2 When Not to Use PRO/GIDIS
Do not use PRO/GIDIS under the following conditions:

e If your program requires support for real (floating point)
coordinates, curves, markers, and so forth, use the CORE

Graphics Library.

@ If you are concerned with portability of programs and
industry-standard program interfaces to graphics routines,
use the CORE Graphics Library.

@ If you require VT100 or VT200 compatibility, use ReGIS with
the Professional Terminal Emulator.

CHAPTER 2
UNDERSTANDING PRO/GIDIS

This chapter begins by briefly describing concepts 1in graphic
programming. It then relates these concepts to GIDIS. Finally,
it summarizes the types of instructions available in GIDIS.

2.1 INTRODUCTION TO GRAPHIC PROGRAMMING
Graphic systems typically provide the following functions:

e Viewing Transformation Instructions. These enable you to
define your drawing area in coordinate units that are
convenient for your application, then map the units to a

device-independent coordinate system for displaying the
image.

@ Interactive Control Instructions. These enable you to
interactively control how an image displays on a view
surface. You can modify how a picture is mapped to a view
surface, define cursors, scroll data, and output an image.

e Drawing Instructions. These enable you to draw figures
within a picture.

e Attribute Instructions. These enable you to specify how the
image appears when it displays.

The following sections describe the main functions and introduce
terms commonly used in graphic programming.

INTRODUCTION TO GRAPHIC PROGRAMMING

2.1.1 Viewing Transformation Instructions

Two-dimensional graphic programming packages allow vyou to draw
pictures in a Cartesian coordinate system, similar to drawing on
graph paper. Most graphics systems allow you to define
coordinate units that suit your particular application. Think of
it as choosing graph paper with different scales, for example ten
squares per inch versus fifteen squares per inch. These units
are purely logical coordinates whose range is limited only by the

arithmetic limits of the processor. Some systems allow floating
point coordinates; others allow only integers. You draw pictures
in user coordinate units that you define. All drawing

instructions are stored in a database in user coordinates units.
This wuser coordinate system 1is sometimes called the World
Coordinate System.

Besides allowing you to create and store graphic data, a graphics
system must have a way of displaying the contents of the
database. (Display is used in a generic sense to include output
to any device, not just screen display.) Because graphic output
is displayed on a variety of output devices, a graphics system
must have a way of mapping the wuser coordinates to a view
surface. While a video monitor may be the most common view
surface, printer and plotter output can also be considered a view
surface.

The variety of output devices, both their shape and resolution,
makes it desirable to have a device-independent way of describing
the view surface. Hence, most graphics systems have a display
coordinate system to describe the view surface. These coordinate
system is sometimes called Normalized Coordinate Space. The
exact way of defining the coordinate units within normalized
space differs among graphic systems, but most allow you to choose
coordinate units appropriate for any output device.

NOTE

To avoid confusion, this manual refers to
operations performed in user coordinates as
drawing a picture. It refers to operations
performed in display coordinates as displaying an
image.

Each graphic system performs the computations necessary to map
the contents of the wuser coordinate system to the display
coordinate system. This process of mapping from the wuser
coordinate system to the display coordinate system is called the
viewing transformation. However, the way the mapping proceeds
differs from system to system. For example, when some graphic
systems map the picture to the displayed 1image, distortion

2-2

INTRODUCTION TO GRAPHIC PROGRAMMING

results. Other systems preserve the shape of the picture. Some
systems supply device drivers to complete the mapping in a way
that preserves the image and suits the hardware requirements of
the displaying device.

2.1.2 Interactive Control Instructions

Besides the standard viewing transformation operation, most
systems provide interactive control instructions for modifying
the mapping and manipulating the display.

Graphics systems differ in how much control they give you over
the mapping process, for example controlling the size and shape
of the displayed image. An explanation of how a graphics system

gives you control over mapping requires the introduction of
several more terms.

We refer to the entire contents of graphic data in the wuser
coordinate space as a picture. You can map the entire picture to
the view surface, or you can map only a portion of the picture to
the wview surface. You choose which portion to map by defining a
window, a rectangular extent within the wuser coordinate space.
By defining a window the same size as the picture, you map the
entire picture to the view surface. By defining a window smaller
than the picture, you map only a portion of the picture to the
view surface. Only data within the defined window maps to the
view surface. Anything outside the window 1is clipped. It
remains in the picture, but is not displayed in the image on the
view surface.

On the view surface, the image displays in a rectangular area
called the viewport. The viewport 1is defined in display
coordinates. Graphics systems allow you to define the viewport
in a number of ways. For example, you can fill an entire view
surface, providing you define your viewport as having the same
shape as the output device. Or vyou can change the size and
placement of a viewport. In some graphics systems, you can
display more than one viewport simultaneously.

Because of all the options available both in defining the window
and the viewport, mapping from user coordinates to display
coordinates allows for many possibilities. You can, for example,
define wuser and display coordinates to be identical and map an
entire picture (the window encompasses the entire picture) to the
entire viewport (which may or may not fill the display surface,
depending on the shape of the viewport in relation to the shape

of the display surface). Or vyou can define a window that
includes only part of the picture, and map it to a larger
viewport. This results in enlarging the image. Conversely, if

2-3

INTRODUCTION TO GRAPHIC PROGRAMMING

you define the window as larger than the picture and map it to a
smaller viewport, vyou reduce the image. Besides affecting the
size, enlarging or reducing the image also affects the
granularity of the image.

Figure 2-1 shows several mapping possibilities. Each case
assumes a viewport that covers the entire view surface.

VIEWPORT

—

—
OF =~
\ —

WINDOW
WINDOW, CLIPPING RECTANGLE, AND VIEWPORT SAME SIZE.
NO CLIPPING OF PICTURE.

VIEWPORT

WINDOW

WINDOW SMALLER THAN VIEWPORT, IMAGE ENLARGED, PICTURE CLIPPED.

VIEWPORT

-
- -0

-~
/

WINDOW LARGER THAN VIEWPORT, IMAGE REDUCED, NO CLIPPING OF PICTURE.

MA-1148-85

Figure 2-1: Window to Viewport Mapping Options

2-4

INTRODUCTION TO GRAPHIC PROGRAMMING

Besides controlling mapping, graphics systems may also include
instructions for wusing cursors or rubber bands to mark the
current location. Other interactive control instructions enable
you to erase, scroll, display, or print an image.

2.1.3 Drawing Instructions

Graphics systems provide you with building blocks to create a

picture. These building blocks are called output primitives.
Most systems have instructions for drawing points, lines, arcs,
circles and text. Some also have instructions for filling
figures, both closed and open figures. You build pictures by

selecting appropriate drawing instructions.

2.1.4 Atiribute Instructions

Graphics systems have attribute instructions that enable you to

control how graphic output appears. Some attributes, like
foreground and background color, affect all graphic output. Such
attributes are called global attributes. Others affect only
certain types of instructions, for example drawing lines or
drawing text. These are typically called line attributes and
text attributes, respectively. In most graphics systems,
attributes are modal, that 1is they remain in effect until you

explicitly change them.

2.2 INTRODUCTION TO GIDIS INSTRUCTIONS

GIDIS has the types of instructions common to most graphics
systems, plus additional instructions for fonts and reports.
This chapter describes GIDIS instructions in the following
functional groupings:

e Picture Management Instructions. These provide the framework
for creating and storing pictures, and for mapping them to an
output device.

@ Interactive Control Instructions. These include instructions
for modifying the mapping process and manipulating the
display.

e Drawing Instructions. These enable you to draw figures.

INTRODUCTION TO GIDIS INSTRUCTIONS

e Attribute Instructions. These enable you to specify how the
figure appears when it displays.

e Alphabet and Font Instructions. These allow you to create
alphabets and fonts.

e Report Instructions. These enable you to check the state of
GIDIS.

2.2.1 Picture Management Instructions

Picture Management instructions provide a framework for defining
pictures and set up the viewing transformation.

Because GIDIS attributes remain in effect until changed, you must
include your specifications for the viewing transformation and
all attributes in any picture you draw. The recommended way to
do this is to frame all instructions for a given picture between
a BEGIN_PICTURE and an END_PICTURE instruction.

In general, you wuse the Picture Management instructions as
follows:

1. Use BEGIN_PICTURE to initiate definition of a picture.

2. You can use an INITIALIZE -1 next. This initializes GIDIS to
its default values (see INITIALIZE in Chapter 6). Although
it is more work, it is better practice to explicitly
initialize each GIDIS attribute to a value of your own
choice.

3. Set up an appropriate address space with SET_OUTPUT_IDS.
Define coordinate values that are convenient for your
application.

4. To control the appearance of your output, you should also set
up the color map with SET_COLOR_MAP_ENTRY.

5. At this point you can use GIDIS attribute instructions and
drawing instructions in any order you choose.

6. When you have finished, terminate the picture definition with
an END_PICTURE.

The following paragraphs describe the GIDIS wuser and display
coordinate spaces and how pictures are mapped to a view surface.

INTRODUCTION TO GIDIS INSTRUCTIONS

In GIDIS the user coordinate space is called GIDIS Output Space
(GOS) . GOS units are limited to integers. The origin of GOS is
the upper left-hand corner of the coordinate space. The pixel
aspect ratio of X coordinate units to Y coordinate units is 1:1.
All GIDIS instructions except SET_OUTPUT_IDS and
SET_OUTPUT_VIEWPORT refer to GOS coordinates. You draw pictures
and store them in GOS wunits. However, unless vyou wuse the
Interactive Control instructions to alter the mapping process,
you do not directly define a window in GOS coordinates.
SET_OUTPUT_IDS defines the window and controls the mapping.

In GIDIS the display coordinate space is called Imposed Device
Space (IDS). Like GOS, the units are limited to integers, the
origin is the upper left-hand corner of the coordinate space, and
the pixel aspect ratio is 1:1. The left edge of the display
surface is called the Y axis, and the top edge of the surface 1is
called the X axis. You determine the extent of IDS by the
coordinates you choose for the 1lower right-hand corner. You
assign values to the bottom right-hand corner of the view surface
with SET_OUTPUT_IDS.

You must always use a SET_OUTPUT_IDS instruction to set up a
device- independent address space for displaying your image.
SET_OUTPUT_IDS implicitly performs several other functions.

e It sets GIDIS Output Space (GOS) such that IDS and GOS units
are identical. This means that the picture in GOS maps to
the image in IDS identically.

e It sets your viewport to the entire view surface as defined
by IDS. Your viewport is the rectangle (defined in IDS)
within which the image is displayed on the view surface.

@ It sets the clipping rectangle to the entire view surface as
defined by IDS. The clipping rectangle is the window
(defined in GOS) that contains the picture you want to map to
the viewport. Thus, the window and viewport are identical.

The ability to define IDS in any coordinate wunits you choose
allows you to control how your image displays in a
device-independent way. Each output device has a certain shape
(picture aspect ratio), resolution (number of physical pixels
horizontally and vertically), and pixel aspect ratio (shape of
physical pixel). These are hardware dependent. We call this
hardware-dependent view Hardware Address Space (HAS). For
example, the Professional 350 video has a shape of 8 x 5 inches,
a resolution of 960 horizontal by 240 vertical hardware pixels,
and a pixel aspect ratio of 1:2.5. Because each X unit is not
equal to each Y unit, the HAS is anisotropic. This means that
you cannot map a coordinate system wusing a 1:1 ratio to the

2-7

INTRODUCTION TO GIDIS INSTRUCTIONS

Professional video without performing calculations to compensate
for the distortion that would otherwise occur. The driver
supplied for each of th= supported output devices performs these
adjustments.

You can choose, if you like, to tailor 1IDS for a particular
output device. For example, if you want your image to fill the
view surface, assign coordinate values that reflect the shape of
the view surface. For example, if the view surface were 8 units
wide by 5 units high, you might set [X,Y] of the bottom right
corner to [79,49] or [799,499] or [959,599]. All these
coordinates would fill the view surface and maintain the same
shape. The only difference would be in the resolution. The more
logical pixels (expressed in higher X and Y values), the finer
the resolution of your drawing. 1In many cases, you will want to
use the entire display surface.

If the shape you give IDS does not match the shape of the
device's view surface, GIDIS starts at the upper left corner and
maps as much as it can, leaving space on the bottom or to the
right as necessary to maintain the proportions of your picture.
This is why IDS is called device independent.

Figure 2-2 shows an example of a square IDS shape (with arbitrary
coordinates of (500,500) that does not fill the view surface of
an 8 by a 5-inch video display.

HAS

500 5in

e

MA-1147-85

Figure 2-2: |IDS Mapped onto a View Surface

INTRODUCTION TO GIDIS INSTRUCTIONS
You <can wuse all picture management instructions either
interactively or store them in a .GID file.

Table 2-1 lists the Picture Management instructions.

Table 2-1: Picture Management Instructions

Instruction Action

NEW_PICTURE Indicates the beginning of a new
picture.

END_PICTURE Indicates the end of a picture.

Action depends on device.

INITIALIZE Returns GIDIS to its power-up
state. Aborts character, filled
figure and picture definition
blocks.

SET_OUTPUT_IDS Specifies the coordinate units
and shape of the image that
displays on the view surface.
Implicitly sets GOS, the clipping
rectangle, and the viewport to be
identical with IDS.

SET_COLOR_MAP_ENTRY Sets red, green, blue mixture for
the specified color map entry.

2.2.2 Interactive Control Instructions

These instructions control drawing operations within an
interactive environment. Consequently, these instructions are
inappropriate in a .GID file, a stored picture. Most interactive
environments presume a video display.

INTRODUCTION TO GIDIS INSTRUCTIONS

Interactive applications should allow you to modify the display
quickly and easily. GIDIS has interactive control instructions
for modifying how an existing picture displays on the view
surface and for drawing new pictures. When drawing new pictures,
you need to be able to mark the current position, erase, scroll,
output the picture to a view surface, and make a hard copy of the
displayed image.

Several instructions control how an existing picture maps to a
view surface. GIDIS allows you to display only part of a picture
or change the size and location of your viewport.

If you want to display only a part of picture, use
SET_GIDIS_OUTPUT_SPACE to define a coordinate extent smaller than
the picture. This is useful to blow up a portion of a picture.
For complete details, see SET_GIDIS_OUTPUT_SPACE in Chapter 6.

I1f you want to draw on only part of the view surface, use
SET_OUTPUT_VIEWPORT to specify the size and location of your
viewport. You can also specify multiple viewports and map a
separate picture into each. For details, see Chapter 6.

Normally, vyour clipping rectangle equals your viewport.
(SET_OUTPUT_IDS, SET_GIDIS_OUTPUT_SPACE, and SET_OUTPUT_VIEWPORT
all set the clipping rectangle to match your viewport.) However,

you can use SET_OUTPUT_CLIPPING_REGION to make your clipping
rectangle smaller than your viewport. You might do this if you
want to display a picture (or part of a picture) within a
rectangle smaller than your viewport.

If you want to clear a rectangle within your viewport, set the
clipping rectangle to the desired size and use
ERASE_CLIPPING_REGION.

When using video GIDIS, you may want to scroll (vertically or
horizontally) whatever has been drawn within your clipping
rectangle. Use SCROLL_CLIPPING_REGION to do this. The cleared
space reverts to the current secondary color. Data scrolled out
may not be scrolled back in; it must be redrawn.

While drawing a new picture with video GIDIS, you may want to
mark the current position. GIDIS gives you the option of using a
cursor or rubber band to mark the current position. See
SET_OUTPUT_CURSOR and SET_OUTPUT_RUBBER_BAND in Chapter 6. You
select whether the cursor or rubber band blinks or is continuous
with SET_OUTPUT_CURSOR_RENDITION.

When you want your application to execute all pending drawing
instructions and prompt a user for further input, use
FLUSH_BUFFER.

INTRODUCTION TO GIDIS INSTRUCTIONS

With the Professional 380 wvideo, vyou can work with several
pictures at a time. SET_OUTPUT_BITMAP enables you to draw up to
four pictures (two in high resolution mode) in separate pages of
the video bitmap. You can quickly move among them.

Wwhile drawing, you may want to print all or some portion of the

video Dbitmap. PRINT_SCREEN allows vyou to send a specified

portion of the video bitmap to a sixel printer connected to the
printer port.

Table 2-2 summarizes the GIDIS Interactive Control Instructions.

Table 2-2: Interactive Control Instructions

Instruction Action

SET_GIDIS_OUTPUT_SPACE Specifies the coordinate units
and shape of a window you define
in GOS. Sets the clipping
rectangle to coincide with the

window.
SET_OUTPUT_VIEWPORT Specifies the size and location
of your viewport.
SET_OUTPUT_CLIPPING_REGION Specifies the rectangle on the
view surface where GIDIS can
draw.
ERASE_CLIPPING_REGION Clears clipping rectangle.
SCROLL_CLIPPING_REGION In Video GIDIS, scrolls data

within clipping rectangle.

SET_OUTPUT_CURSOR Specifies the type of cursor used
to mark the current position.

SET_OUTPUT_RUBBER_BAND Specifies the type of rubber band
used to mark the current
position.

SET_OUTPUT_CURSOR_RENDITION Selects whether the cursor or
rubber band blinks or is
continuous.

INTRODUCTION TO GIDIS INSTRUCTIONS

Instruction Action

FLUSH_BUFFER Executes any pending GIDIS
instructions.

SET_OUTPUT_BITMAP Selects bitmap on which to draw

or display. (Professional 380
video only)

PRINT_SCREEN Sends a specified portion of the
video bitmap to a sixel printer
connected to the printer port.

2.2.3 Drawing Instructions

GIDIS supplies the graphic primitives to draw lines, arcs, filled
figures and text. You draw all pictures in GOS coordinates.

GIDIS drawing instructions can specify coordinates 1in either
absolute or relative terms. Absolute terms are simply the X and
Y coordinates you designate. Relative terms are in relation to
the current position.

2.2.4 The Current Position

All GIDIS drawing instructions begin at the current position and
end by setting a new current position. When you do not want the
next drawing instruction to start where the last drawing
instruction finished, use SET_POSITION or SET_REL_POSITION to
move the current position to any point within GIDIS Output Space.

2.2.5 Drawing Lines, Arcs, Filled Figures, Characters, Images

You can draw one or a series of lines. DRAW_LINES and
DRAW_REL_LINES draw from the current position to the specified
position. When you use either instruction in a series, each

endpoint becomes the current position for the next line.

You can draw arcs in much the same way with DRAW_ARCS or
DRAW_REL_ARCS. All drawing begins at the current position and
continues around a center point that vyou specify. As with
drawing 1lines, you can draw arcs in a series, with each endpoint
becoming the current position for the next arc. You determine

2-12

INTRODUCTION TO GIDIS INSTRUCTIONS

the direction and length of the arc by the angle. See Chapter 6
for details.

To draw a filled figure, vyou issue a BEGIN_FILLED_FIGURE
instruction. You then use the instructions for drawing lines and
arcs to designate the vertices of the figure. GIDIS stores the
coordinate pairs for the wvertices in the filled figure table.
The order of the coordinates determines how the drawing proceeds.
When GIDIS receives an END_FILLED_FIGURE instruction, it draws
the filled figure. See Chapter 6 for limitations on the filled
figure table.

To draw characters you must first have selected the current
alphabet with a SET_ALPHABET instruction. Section 2.2.11
describes how to do this. Once you have a current alphabet, vyou
indicate which character you want to draw by an index. GIDIS has
two instructions for drawing characters. You can use
DRAW_CHARACTERS for any alphabet, whether a standard one or one
you design. You can use DRAW_PACKED_CHARACTERS for ASCII strings
or any alphabet with fewer than 256 characters. With either
instruction you can draw several characters in succession. The
rendition of the characters is governed by the Text Attributes,
described in Section 2.2.10.

Table 2-3 summarizes the GIDIS Drawing Instructions.

Table 2-3: Drawing Instructions

Instruction Action

SET_POSITION Moves the current position to an
absolute point you specify.

SET_REL_POSITION Moves the current position to a
point you specify relative to the
current position.

DRAW_LINES Draws a line from the current
position to an absolute point you
specify.

DRAW_REL_LINES Draws a line from the current

position to a point you specify
relative to the current position.

INTRODUCTION TO GIDIS INSTRUCTIONS

Instruction Action

DRAW_ARCS Draws an arc from the current
position around an absolute
center point you specify.

DRAW_REL_ARCS Draws an arc from the current
position around a center point
you specify relative to the
current position.

BEGIN_FILLED_FIGURE Begins definition of a filled
figure.

END_FILLED_FIGURE Completes definition of a filled
figure and draws the figure.

DRAW_CHARACTERS Draws the character you specify.

DRAW_PACKED_CHARACTERS Draws two characters you specify

in one word.

2.2.6 Drawing Attributes

Several classes of attributes affect how vyour drawing looks.
Some, namely the Writing Attributes, affect everything you draw.
(The GIDIS Writing Attributes can be called global attributes.)
Others, for example Line, Filled Figure, and Text Attributes,
affect only certain drawing instructions. See Table 2-4 for a
summary of the Drawing Attributes instructions.

When you power-up GIDIS, there are default wvalues for GIDIS

attributes. These default wvalues make it possible to use the
virtual device immediately. Table 6-4 lists the default values
for GIDIS attributes. You can restore these default values at

any time by using an INITIALIZE instruction.

However, you can specify your own values for these attributes by
using the instructions explained in the following sections.

2.2.7 Writing Attributes
A drawing instruction operates on a pattern of ON and OFF bits (1

and 0 respectively). When you draw a line or arc, GIDIS derives
the pattern from the line texture you specify. Wwhen you £fill a

2-14

INTRODUCTION TO GIDIS INSTRUCTIONS

figure, GIDIS derives the pattern from the area texture you
specify. When you draw a character, GIDIS derives the pattern
from the raster image of the character. For example, the

character "L" would be a horizontal and vertical line of 1’s on a
field of 0's.

0000000000
0100000000
0100000000
0100000000
0100000000
0100000000
0100000000
0111111100
0000000000

When you specify a pattern, you also specify its size 1in GOS
units. The size controls how many times each bit in the pattern
is repeated. For example, each 0 and 1 in the sample "L" may be
repeated several times, depending on the size specified. When
the pattern is displayed on a view surface, each bit in the
pattern may be applied to multiple hardware pixels.

The writing attributes control how each drawing instruction
interprets the pattern. There are four writing attributes:
writing mode, primary color, secondary color, and plane mask.

Writing mode controls the Boolean operation performed on each bit
of the pattern. For example, the default writing mode, overlay,
works as follows. For each 1 in the pattern, GIDIS sets the
current pixel to the primary color. For each 0 in the pattern,
GIDIS leaves the current pixel unchanged. Your choice of writing
mode affects how the 1image displays. See SET_WRITING_MODE in
Chapter 6 for a full description of the writing modes provided by
GIDIS.

SET_PRIMARY_COLOR specifies the color map index to wuse for all
1’s in the bit pattern.

SET_SECONDARY_COLOR specifies the color map index to use for all
0’s in the bit pattern.

SET_PLANE_MASK determines which planes are enabled for writing.
Usually, you enable writing to all planes. This instruction ANDs
(Boolean) the current color index and the plane mask (a
representation of the planes you select). For the effect of a
plane mask that is not set to all planes, see SET_PLANE_MASK in
Chapter 6.

INTRODUCTION TO GIDIS INSTRUCTIONS

2.2.8 Line and Curve Attributes

You can choose to draw lines and curves with a solid or patterned
line. With SET_LINE_TEXTURE vyou select the bit pattern that
determines the appearance of the lines you draw.

You can also select the thickness of your drawing 1line with
SET_PIXEL_SIZE. SET_PIXEL_SIZE sets the size of the logical
pixel used as a paintbrush in subsequent drawing. The pixel 1is
always a rectangle orthagonal to the x and y axes. Because of
this, diagonal lines appear thicker than horizontal and vertical
lines, except on a stroke device.

Figure 2-3 shows different pixel sizes used to draw a line.

Figure 2-3: Various Logical Pixel Sizes

2.2.9 Filled Figure Attributes

GIDIS allows you to select the two-dimensional pattern to be used
in filling polygons. The pattern you choose is called the area
texture cell. With the SET_AREA_TEXTURE instruction, you can
choose either a character from an alphabet, or the current line
texture as your area texture cell. Whatever pattern you choose
remains the current area texture cell until you change it with
another SET_AREA_TEXTURE.

You can choose a character from any alphabet, for example the
default DEC Multinational Character Set, or an alphabet you
create. Note, there is a 16 by 16 bit size restriction for a
character used as a texture cell. However, with
SET_AREA_TEXTURE_SIZE, you can enlarge the character wused in
filling a figure. GIDIS does this by multiplying the pattern in
the texture cell. You can also clip unwanted white space from a
text cell with SET_AREA_CELL_SIZE.

2-16

INTRODUCTION TO GIDIS INSTRUCTIONS

If you want a solid fill, specify a solid line with
SET_LINE_TEXTURE and choose the current line texture as your area
texture cell.

2.2.10 Text Attributes

With GIDIS Text Attribute instructions you control the size,
spacing, orientation, and rendition (such as bold or italics) of
text.

The GIDIS text model is based on the notion of character cell. A
character cell 1is a rectangular field of ON and OFF bits. ON
bits form a character pattern; OFF bits form the background. The
character cell that stores the bit patterns can be up to 64 bits
high and 64 bits wide.

You determine how the character cell is displayed by specifying
the wunit cell size and display cell size. SET_CELL_UNIT_SIZE
specifies the size of the character you want displayed. GIDIS
can scale the stored character cell to create larger or smaller
characters. Scaling up is restricted to multiples of the bit
pattern in the character cell.

SET_CELL_DISPLAY_SIZE gives you a way of extending the background
field if you want. Having a display cell larger than the unit
cell is an easy way to create white space between characters.
You must always set both unit and display cell size, even if they
are identical.

Besides setting a display cell width larger than a unit cell
width to <create white space, you can control spacing between
character cells by specifying how to update the current position
after a character is displayed. You have three choices:

e Implicit movement only. Specify implicit movement with
SET_CELL_MOVEMENT_MODE and set explicit movement to (0,0)
with SET_CELL_EXPLICIT_MOVEMENT. This causes the current
position to move a display cell width along the current angle
of cell rotation. If the current angle is 0, normal left to
right text results.

e Explicit movement only. Specify no implicit movement with
SET_CELL_MOVEMENT_MODE and set explicit movement to whatever
you want with SET_CELL_EXPLICIT_MOVEMENT. For example, if
you want upright characters drawn diagonally up to the right,
set explicit movement to (n,-n). Note, however, that unless
your explicit movement is greater than the display cell size,
your characters overwrite each other.

INTRODUCTION TO GIDIS INSTRUCTIONS

@ Implicit and explicit movement. Specify implicit movement
with SET_CELL_MOVEMENT_MODE and explicit movement with
SET_CELL_EXPLICIT_MOVEMENT. If you use both implicit and
explicit movement, your characters move a display cell width
plus whatever explicit movement you specify.

Figure 2-4 shows the three possibilities.

ABC

Implicit Movement Only

A B C

Explicit Movement Only

A B C

Implicit and Explicit Movement

Figure 2-4: Implicit and Explicit Movement

INTRODUCTION TO GIDIS INSTRUCTIONS

GIDIS allows you to control how accurately the current position
is updated. For device-independence and complete accuracy at the
level of GOS, specify global symmetry. For best performance and
constant intercharacter spacing, specify 1local symmetry. You
specify symmetry with SET_CELL_MOVEMENT_MODE.

Accuracy and constant spacing are contradictory goals, because
unit cell width may not be an integral number of hardware pixels.
For example, suppose you specified a spacing of 25 GOS units, and
the current output device had one hardware pixel for every two
GOS units. With local symmetry, each character would move 24 GOS
units. with global symmetry, each move would be 25 GOS units
conceptually, but actually 12 pixels, then 13, 12, 13 and so on.

A character’s orientation (the direction the character faces)
depends on the angle of rotation as specified by
SET_CELL_ROTATION. A character’s angle of rotation 1is with
respect to its top 1left corner. A positive angle rotates the
left edge of the cell counter-clockwise; a negative angle rotates
the 1left edge of the cell clockwise. The entire character cell
rotates, without changing the shape of the cell. Figure 2-5
shows character cell rotation.

AR

Figure 2-5: Character Cell Rotation

INTRODUCTION TO GIDIS INSTRUCTIONS

You can change the shape of the cell by wusing SET_CELL_OBLIQUE.
When vyou specify a nonzero angle, the character cell becomes a
parallelogram. A positive angle results 1in a back-slanted
character; a negative angle in a front-slanted character.

You select various cell renditions by setting the appropriate
flag with the SET_CELL_RENDITION instruction. If possible, GIDIS
selects a font with the specified rendition. Otherwise, GIDIS
algorithmically creates the specified rendition. You can specify
the following rendition attributes: back-slant, italics, bold
and proportional text.

Table 2-4 summarizes the GIDIS Drawing Attributes.

Table 2-4: GIDIS Drawing Attributes

Instruction Action

Writing Attributes

SET_PRIMARY_COLOR Identifies the color map entry
to use when drawing subsequent
ON bits.

SET_SECONDARY_COLOR Identifies the color map entry
to use when drawing subsequent
OFF bits.

SET_PLANE_MASK Specifies which planes are
accessible.

SET_WRITING_MODE Selects writing mode to use in

subsequent drawing.
Line and Curve Attributes

SET_LINE_TEXTURE Specifies the pattern used in
drawing lines.

SET_PIXEL_SIZE Specifies the thickness of the
drawing line.

INTRODUCTION TO GIDIS INSTRUCTIONS

Instruction

Action

Filled Figure Attributes

SET_AREA_TEXTURE

SET_AREA_TEXTURE_SIZE

SET_AREA_CELL_SIZE

Text Attributes

SET_CELL_UNIT_SIZE

SET_CELL_DISPLAY_SIZE

SET_CELL_EXPLICIT_MOVEMENT

SET_CELL_MOVEMENT_MODE

SET_CELL_OBLIQUE

SET_CELL_ROTATION

' SET_CELL_RENDITION

Selects the character to use as
the texture cell in filling
subsequent figures.

Specifies the size to draw
subsequent texture cells.

Clips or pads the last selected
texture cell.

Specifies the size to draw
subsequent character cells.

Specifies the size of a
character’s background field.

Specifies the distance to move
the current position after a
character is drawn.

Specifies how the current
position moves after a
character is drawn, and how
accurately the current position
is updated.

Specifies how much to slant the
character display cell.

Defines the angle of rotation
at which subsequent characters
are drawn.

Selects character renditions
such as backslant, italics,
bold, and proportional spacing.

2-21

INTRODUCTION TO GIDIS INSTRUCTIONS

2.2.11 Alphabets and Fonts

GIDIS uses the current alphabet 1in all text operations. To
select an alphabet, wuse SET_ALPHABET. The selected alphabet
remains current until you do another SET_ALPHABET.

A GIDIS alphabet is 1like an ASCII character set. When you
specify an index within an alphabet, you know which particular
character should be displayed. For example, the default alphabet
(alphabet 0) is the DEC Multinational Character Set. When you
specify index 101 (octal), you know that an uppercase "A" will be
displayed.

A font, on the other hand, controls what the "A" looks 1like. A
font’s general appearance 1is denoted by typeface, for example
Courier. A font has a rendition, for example roman, italic,
bold, or bold italic. Fonts may be monospaced (each character

cell has the same width) or proportionally spaced (character cell
width varies with the character, for example the cell containing
the character "m" is wider that the cell containing the character
llill).

You create more than one font for an alphabet for improved
quality. As Section 2.5 explained, GIDIS enables you to vary the
appearance of text in a number of ways. GIDIS achieves these
variations by either selecting a new font or algorithmically
transforming the current font. Because there are limits to what
can be effectively done by algorithmic transformation, you can
ensure better quality by supplying a variety of fonts.

with GIDIS, vyou are not limited to standard alphabets and
character sets. You can build your own alphabets and design your
own glyphs, the graphic representations of each member of the

alphabet. Section 2.2.13 explains how to do both. You may have
up to 16 alphabets available at any time and an unlimited number
of fonts. When vyou first select an alphabet from 1-15, it

contains no characters. You fill the alphabet 1in one of two
ways: you load a font file with LOAD_BY_NAME, or you dynamically
create a font with CREATE_ALPHABET.

2.2.12 Font Files

A font file is simply a font that has been stored in a file.
Appendix D explains how to name and store a font file so that the
font server can use it.

INTRODUCTION TO GIDIS INSTRUCTIONS

You load a font file with the LOAD_BY_NAME instruction.
LOAD_BY_NAME has two formats. Format 1 selects a specific font
file. This format is primarily provided for compatibility with
earlier versions of GIDIS. (See Chapter 6 for details.)

Format 2 (also called a family LOAD_BY_NAME) selects a typeface,
known in GIDIS as a font family and identified by a family ID.
When you do a Family LOAD_BY_NAME, you have really selected a
pool of fonts. As you vary text attributes (such as unit cell

size) and rendition attributes (such as bold), GIDIS
automatically switches to the font file of the current family
that best satisfies the attributes vyou have selected. (See

Chapter 6 for details.)

2.2.13 Dynamically Created Fonts

You can build a font with CREATE_ALPHABET. This instruction
establishes a storage cell size for each glyph in the font and
the number of glyphs it contains. When you build a font with
CREATE_ALPHABET you have two options for designing each glyph.
With LOAD_CHARACTER_CELL you define a glyph by rows of bit
patterns within a character cell. This method of defining glyphs
is well-suited to raster devices.

With BEGIN_DEFINE_CHARACTER and END_DEFINE_CHARACTER, you create
a glyph by drawing into the character cell with any of the GIDIS
drawing instructions. All instructions between
BEGIN_DEFINE_CHARACTER and END_DEFINE_CHARACTER draw into the
character cell. This method of defining glyphs is well-suited to
any device.

A font created dynamically with CREATE_ALPHABET has certain
disadvantages.

e It takes time to build the font each time your application
runs.

e The font remains defined only until you put another font into
its alphabet. '

e The font is stored in Read/Write memory. As a result, it is
expensive to swap it to disk.

Thus, CREATE_ALPHABET should be used primarily for small, special
alphabets like a set of patterns for filling figures.

INTRODUCTION TO GIDIS INSTRUCTIONS

If you are using P/0S, you can store a dynamically created font
in a font file, by using the GIFONT routine of the GIDIS Call
Interface. See Chapter 4 and Appendix D for details.

Table 2-5 summarizes GIDIS instructions for alphabets and fonts.

Table 2-5: Alphabet and Font Instructions

Instruction Action
SET_ALPHABET Selects the current alphabet.
LOAD_BY_NAME(1) Loads the specified font file

into the current alphabet.

LOAD_BY_ NAME(2) Associates the current alphabet
with the specified font family.

CREATE_ALPHABET Reserves storage space for a new
alphabet font. Specifies the
number of glyphs in the alphabet
and the size of glyphs in the
font.

LOAD_CHARACTER_CELL Defines a glyph in terms of bit
patterns within a character cell.

BEGIN_DEFINE_CHARACTER Starts a character definition
block. All subsequent
instructions draw into the
character cell.

END_DEFINE_CHARACTER Completes a character definition
block and draws the glyph.

INTRODUCTION TO GIDIS INSTRUCTIONS

2.2.14 Reports

You can ask GIDIS to generate various reports. You do this by
issuing the appropriate request instruction. You read the report
using GIREAD, as described in Chapter 4 (for P/0S) or Chapter 5
(for RT-11).

You can use reports to control program flow. For example, the
position after a DRAW_ARCS or DRAW_CHARACTERS (local symmetry)
may be different than what your program computes. You can check
the actual current position with REQUEST_CURRENT_POSITION.

You can also use reports during debugging. 1In particular, every
GIDIS instruction sets current status to SUCCESS or FAILURE. You
may want to check current status after each GIDIS instruction
when debugging. However, the cost of REQUEST_STATUS is too high
for such use in a running application.

Table 2-6 summarizes all the GIDIS report generating
instructions.

Table 2-6: Report Instructions

Instruction Action

REQUEST_CELL_STANDARD Reports in current GOS units the
cell width and height to specify
to generate standard size

characters.
REQUEST_CURRENT_POSITION Reports the current position.
REQUEST_OUTPUT_SIZE Reports the attributes of the

current device’s view surface.

REQUEST_STATUS Reports the success or failure of
the last instruction.

REQUEST_VERSION_NUMBER Reports characteristics of the
current driver.

CHAPTER 3
PRO/GIDIS INSTRUCTION SYNTAX

The PRO/GIDIS interpreter accepts a stream of PRO/GIDIS
instructions. An instruction consists of an operation code
(opcode) word, and some number of argument words.

The format of an opcode word is:

high byte low byte

opcode length

Most GIDIS instructions require a fixed number of arguments. For
example, SET_POSITION needs exactly two arguments.

Some GIDIS instructions accept a variable number of arguments,
depending on whether optional arguments are included.
Instructions in this category include: LOAD_BY_NAME and
CREATE_ALPHABET. When an optional argument is omitted, GIDIS
supplies a default as described in Chapter 6.

Some fixed length instructions are repeatable. You can repeat
some of the arguments without repeating the opcode. For example,
DRAW_REL_LINES X1, v1, X2, Y2, X3, Y3 is equivalent to
DRAW_REL_LINES X1, Yl DRAW_REL_LINES X2, Y2, DRAW_REL_LINES X3,
Y3. The instructions in this <c¢lass include: DRAW_LINES,
DRAW_REL_LINES, DRAW_ARCS, DRAW_REL_ARCS, DRAW_CHARACTERS, and
DRAW_PACKED_CHARACTERS.

3.1 OPCODE BYTE

Each GIDIS instruction has a corresponding numeric code. For
example, the INITIALIZE instruction has an opcode of 1, while the
SET_PRIMARY_COLOR instruction opcode is 21. (Appendix A provides

a list of PRO/GIDIS instructions and their corresponding
opcodes.)

OPCODE BYTE

Your program can define PRO/GIDIS instruction names as numeric
constants. For example, in MACRO-11, this could be:

GSINIT
GSPRIM

1.
21.

In FORTRAN, this could be:

INTEGER*2 GINIT,GPRIM
PARAMETER (GINIT = 1, GPRIM = 21)

In PASCAL, this could be:

CONST
INITIALIZE = 1;
SET_PRIMARY_COLOR = 21;

3.2 LENGTH BYTE AND THE ARGUMENT LIST

The length byte dictates the format of the instruction’s argument
list: counted or uncounted. Generally, you use a counted list
for instructions with a fixed number of arguments, and an
uncounted 1list for instructions with a wvariable number of
arguments. However, you can use either a counted or uncounted
argument list with any instruction.

A length value in the range 0 to 254 indicates a counted argument
list. For example, if vyou specify a 1length wvalue of two,
PRO/GIDIS expects two argument words as shown below:

.BYTE 2.,29. ;Instruction data block length = 2
;Opcode for SET_POSITION instruction = 29

.WORD 100. ;x coordinate for current position

.WORD 350. ;v coordinate for current position

;Following execution of this instruction,
;the current position is 100,350.

A length value of 255 indicates an uncounted argument 1list.
Uncounted argument lists are terminated by an END_LIST
instruction word (-32768), as shown below. Thus an argument word
in an uncounted argument list cannot contain the value -32768.

.BYTE 255.,26.;introduces an uncounted argument list
;opcode for DRAW_REL_LINES

.WORD 10. sdx1
.WORD -30. ;dyl
.WORD 20. ;dx2
.WORD +60. ;dy2
.WORD -32768. ;END_LIST instruction opcode word

3-2

SYNTAX ERRORS

3.3 SYNTAX ERRORS

If GIDIS does not recognize an instruction opcode, it 1ignores

that instruction and accompanying arguments. It also sets the
status flag to FAILURE. If GIDIS encounters an instruction with
insufficient arguments, it does not execute the instruction and
sets the status flag to FAILURE. If GIDIS encounters an

instruction with extra arguments, it executes the instruction as
though the extra arguments did not exist.

For example, a SET_POSITION instruction with only one argument is
ignored, while a SET_POSITION with three arguments is executed
using only the first two arguments.

There are only two ways to confuse the GIDIS interpreter:

e Use END_LIST as an argument word in an uncounted argument
list.

e Specify an argument count that differs from the actual number
of arguments passed.

If you do either, you must reinitialize GIDIS. See the
INITIALIZE instruction in Chapter 6.

CHAPTER 4
USING PRO/GIDIS WITH P/OS

This chapter describes how to wuse the GIDIS Call 1Interface
(GIDCAL) with P/0OS. It assumes you understand the conceptual
framework of PRO/GIDIS (described in Chapter 2) and the PRO/GIDIS
instruction syntax (described in Chapter 3).

@ Section 3.1 describes the GIDIS Call Interface (GIDCAL).

@ Section 3.2 describes the various devices accessed by GIDCAL.
e Section 3.3 explains how to build a task with GIDCAL.

e Section 3.4 documents GIDCAL error reporting.

® Section 3.5 lists sample programs for P/0OS.

4.1 THE GIDIS CALL INTERFACE (GIDCAL)

The GIDIS call interface (GIDCAL) allows you to access each of
the wvarious GIDIS devices in the same way. GIDCAL consists of
six routines:

e GIOPEN
® GIWRIT
® GIREAD
e GICLOS
e GIFONT

THE GIDIS CALL INTERFACE (GIDCAL)

e GIPLAY

You access each routine by using the FORTRAN-compatible calling
sequence (sometimes called the R5 calling convention). This
means arguments are passed by reference, R5 is set to point to
the argument list, and R1 through R5 are preserved by the called
routine.

These standard routines make it easy for vyou to develop
applications in high-level 1languages. You can use GIDCAL from
MACRO-11 or any Tool Kit high-level 1language that supports
FORTRAN-style calls.

Normally you use GIDCAL as follows:
1. Select the GIDIS driver you want to use with GIOPEN.
2. Pass GIDIS instructions with one or more calls to GIWRIT.

3. Read reports from REQUEST-type instructions, if any, with
GIREAD.

4., Terminate the GIDIS connection with GICLOS.

Each GIDCAL routine returns a status <code that indicates the
results of the requested operation. If the operation is
successful, a code of 1 1is returned. If the operation is
unsuccessful, a two-word error code block is returned. Section
4.4 explains how to interpret the codes.

You may have more than one GIDIS connection open at a time. This
is useful if you want to print a GIDIS graphic while maintaining
a connection to video GIDIS. GIDIS knows which driver to send
instructions to by the Logical Unit Number (LUN) you specify with
the GIOPEN call.

NOTE
Some high-level languages may reserve certain
LUNs for their own use. If this is the case, you
cannot access the same LUN. Check 1language

documentation prior to assigning LUNs.

The following sections describe each GIDCAL routine and 1its
arguments. The actual syntax for passing these arguments is
specific to the high-level language you are using. See language
documentation for details.

THE GIDIS CALL INTERFACE (GIDCAL)

4.1.1 GIOPEN

GIOPEN initiates contact with the GIDIS driver of your choice.
You choose a driver by specifying device type (Devtype) in the
list of arguments. If you try to GIOPEN an active driver, Status
is set to (-1,-7).

A GIOPEN does not affect the state of GIDIS. All attributes
currently selected remain in force.

The list of arguments for GIOPEN follows.
GIOPEN (Status, LUN, Message, Msglen, Devtype, Driver)

Status A two-word integer array used to return a code
indicating the results of the requested
operation.

LUN Unit-number associated with this GIOPEN. It
should be an integer from 0 to 15. 1If not,
Status is set to (-5,-1). 1If this LUN is
already assigned to a GIDIS driver, Status is
set to (-5,-4).

Message Data to send to the driver when contact is
initiated. Except as noted in Section 4.2,
Message should be a word containing a 0.

Msglen The number of words in Message. Except where
noted, it should be 1. 1If Msglen is less than 0
or greater than 128, Status is set to (-5,-3).

Devtype An integer that identifies the desired output
device. If Devtype is invalid, Status is set to
(-5,-2). 1If you try to GIOPEN a device for

which there is no driver, Status is set to
(-1,-2). The device types are:

- Disk File

- LA50

- LQPO2

- LA100,/LA210
- LVP16

Other

- Video

- LNO3

- Palette

- LQPO3

W oo~ U WO
|

Driver Normally a 0. It should be nonzero only if you
need to override the driver designated for the

4-3

THE GIDIS CALL INTERFACE (GIDCAL)

device. (See Section 4.2 for driver names.) If
you supply your own driver, identify it by the
task name, in Radix-50.

Normally, the argument list for GIOPEN is (Status, LUN, 0, 1,
Devtype, 0).

4.1.2 GIWRIT

GIWRIT outputs a buffer of GIDIS command data to the specified
GIDIS driver. The data in a buffer does not have to start or end
on a command boundary.

The list of arguments for GIWRIT follows.
GIWRIT (Status, LUN, Message, Msglen)

Status A two-word integer array used to return a code
indicating the results of the requested
operation.

LUN Identifies the GIDIS driver to talk to. If no

GIOPEN has been done for the specified value,
Status is set to (-5,-1).

Message The command data to send to the specified
driver.

Msglen The number of words in Message. If it is less
than 0 or greater than 4095, Status is set to
(-5,-3).

4.1.3 GIREAD

GIREAD waits for GIDIS to return the report and places it in the
specified Dbuffer. If the vreport is longer than the specified
buffer, the end of the report is truncated. If the report is
shorter than the specified buffer, the trailing words of the
buffer are left unchanged.

The list of arguments for GIREAD follows.
GIREAD (Status, LUN, Buffer, Buflen)
Status A two-word integer array used to return a code

indicating the results of the requested
operation.

THE GIDIS CALL INTERFACE (GIDCAL)

LUN Identifies the GIDIS driver sending the report.
If no GIOPEN has been done for the specified
device driver, Status is set to (-5,-1).

Buffer Room for the report returned by GIDIS. Recall
that the first word of a report contains a
header specifying the type of report and the
number of words in the buffer.

Buflen The number of words in the report buffer.
4.1.4 GICLOS
GICLOS tells the specified GIDIS to end the connection. GICLOS

does not return to its caller until the specified GIDIS has told
it that all picture data has been output to the device.

A GIDIS driver processes a GICLOS by simulating an END_PICTURE

instruction. (See Chapter 6 for details.) If the driver is not
Video GIDIS, it exits when it has finished processing the
picture.

If the driver is the type that buffers a picture before writing
it, (for example, GSBITM) GICLOS causes picture output to
commence if either:

® The user task has not done any END_PICTURE commands.

e The user task has done drawing commands since its last
END_PICTURE.

The list of arguments for GICLOS follows.
GICLOS (Status, LUN)
Status A two-word integer array used to return a code

indicating the results of the requested
operation.

LUN Identifies the GIDIS driver to terminate. 1If no
GIOPEN has been done for the specified value,
Status is set to (-5,-1).

THE GIDIS CALL INTERFACE (GIDCAL)

4.1.5 GIFONT

GIFONT is independent of the other routines in GIDCAL. You use
it to create a font file from the font loaded into alphabet 15.
See CREATE_ALPHABET, SET_ALPHABET, BEGIN_DEFINE_CHARACTER, and
LOAD_CHARACTER_CELL in Chapter 6 for information on how to create
a GIDIS font.

The list of arguments for GIFONT follows.
GIFONT (Status, File spec, Len, Region name, Buffer, APR, LUN)

Status A two-word integer array used to return a code
indicating the results of the requested
operation.

File spec Name of the font file you want created in ASCII.
For example, "MYFONT.TSK."

Len Number of characters in File spec.

Region name Name (in Radix-50) to use for the font region
when the font file is later used by GIDIS. See
Appendixes C and D for details.

Buffer 256 word buffer that GIFONT uses as a temporary
work area.

APR APR that GIFONT maps alphabet fifteen’s font
into (8KB at a time).

LUN Driver GIFONT should use when writing a font
File spec

I1f you want to create a stroke font file (as opposed to a raster
font file), vyou must run Plotter GIDIS. This ensures that the
font is properly stored. To indicate a stroke font in the .FDF
file (see Appendix D), specify a cell width and height of 1.

4.1.6 GIPLAY

Like GIFONT, GIPLAY 1is independent from the other GIDCAL
routines. GIPLAY plays back the specified .GID file to the
current output device, such as the video monitor. The file vyou

want to play back must be on the local node. Only one task at a
time can be doing a playback.

THE GIDIS CALL INTERFACE (GIDCAL)

To use GIPLAY, you must first install the following file:
INSTALL [ZZSYS]CGLGRT.TSK

The list of arguments for GIPLAY follows:

GIPLAY (Status, LUN, File Spec, Len)

Status A two-word integer array used to return a code
indicating the results of the requested
operation.

LUN Identifies the GIDIS driver writing the picture.

File spec

Len

If no
value,

GIOPEN has
Status is set

Name of the file you

Number of characters

been done for the specified
to (-5,-1).

want played back.

in File spec. A File spec
can contain 1 to 59 characters. A length
outside these bounds returns a Status of
(-5,-5).

4.2 DEVICES ACCESSED BY GIDCAL

The Devtype value defined in a GIOPEN tells GIDIS which driver to

access. Information about each device and its associated driver
follows.
4.2.1 Disk File

The Message argument to GIOPEN should be the file specification
that is the output device. There should be a null byte following
the characters in the file spec. The Msglen argument to GIOPEN
is the number of words in the file spec. Thus, whether the file
specification is "A.GID" or "AB.GID", Msglen contains 3.

Calling GICLOS closes the file.

The driver is the task GSFILE.

DEVICES ACCESSED BY GIDCAL

4.2.2 LA50

The device area is assumed to be 8 inches wide by 10 and 2/3
inches high. The picture is automatically drawn to best fill the
available area, so a landscape picture is drawn sideways.

Picture drawing starts when an END_PICTURE instruction is issued
(or GICLOS simulates one).

The driver is the task GSBITM.

4.2.3 LQPO2

No GIDIS driver is supplied for the LQP02. However, GIOPEN tries
to access a task named GSLQP. If GS$LQP does not exist, GIOPEN
fails with Status set to (-1,-2).

4.2.4 LA100/LA210

The device area is assumed to be 8 inches wide by 10 and 2/3
inches high. The picture is automatically drawn to best f£ill the
available area, so a landscape picture is drawn sideways.

Picture drawing starts when an END_PICTURE instruction is issued
(or GICLOS simulates one).

The driver is the task G$SBITM.

4.2.5 LVP16, HP7475, HP7470 Plotters

The user controls the device area by setting a dip switch. If
set to A3, the area is about 17 inches wide by 11 inches high.
If set to A4, the area is about 10 inches wide by 7.5 inches
high. The picture 1is automatically drawn to best £ill the
available area, so a portrait picture is drawn sideways.

NOTE

The large paper size and portrait output do not
apply to the HP7470.

The driver is the task GS$SHPGL.

4-8

DEVICES ACCESSED BY GIDCAL

4.2.6 Other Device

This device type is for accessing a private GIDIS. This allows
third-party suppliers to develop alternative GIDIS devices. The
format and content of the initialization message depend on the
device supplier. However, we do suggest that suppliers allow a
one-word message containing a zero.

No device driver is supplied for device type Other. However,
GIOPEN tries to access a task named GS$SOTH. If the device
supplier gives his GIDIS driver a different name than GS$SOTH, he

must specify that name in the Driver argument to GIOPEN.
Remember, the driver name should be the task name in Radix-50.

4.2.7 Professional Video

The device area is the entire screen. The screen is 8 units wide
by 5 units high.

Picture drawing occurs as GIDIS instructions are received.

The driver is part of the Terminal Subsystem.

4.2.8 LNO3

The device area is assumed to be 8 inches wide by 10 and 2/3
inches high. The picture is automatically drawn to best fill the
available area, so a landscape picture is drawn sideways.

Picture drawing starts when an END_PICTURE instruction is issued
(or GICLOS simulates one).

The driver is the task GSBITM.

4.2.9 Polaroid Palette

The device area is the entire print or slide. It is nominally 4
units wide by 3 units high.

Picture drawing starts when an END_PICTURE instruction is issued
(or when GICLOS simulates one). During picture drawing, the
Palette driver uses the video screen as a work area. When a
slide camera 1is being used, GIOPEN opens the camera’s shutter;
GICLOS closes it and advances the film.

4-9

DEVICES ACCESSED BY GIDCAL

The driver is the task GSPAL. 1If it sets Status to (-6, any), it
means a Palette I/0 error has occurred. The second word of
Status is the code returned by the Palette system. Table 4-1
lists the error codes, their meanings, and user actions.

Table 4-1: GIDCAL Palette Errors

Palette Decimal Error User Action
Code Value
"o" 48 Invalid Palette Report to Polaroid
command if the error
recurs.

" 49 Invalid argument to Report to Polaroid

Palette command if the error
recurs.

" 50 Filter wheel error Report to Polaroid
if the error
recurs.

"3 51 Communications Try readjusting

error RS-232 cable. If

the error recurs,
report to Polaroid.

4" 52 No vertical sync Try readjusting
video cables and
turning Palette off
and on. If the
error recurs,
report to Polaroid.

4.2.10 LQPO3

No GIDIS driver is supplied for the LQP03. However, GIOPEN tries
to access a task named GSLQP. If GSLQP does not exist, GIOPEN
fails with Status set to (-1,-2).

BUILDING A TASK WITH GIDCAL

4.3 BUILDING A TASK WITH GIDCAL

GIDCAL is part of the PRO/Tool Kit. To 1link GIDCAL with your
task, specify GIDCAL/LB just as you would for any other .OLB
file. GIDCAL.OLB is on LB:[1,5]. GIDCAL, without GIFONT, uses
about 800 words of your address space.

When you use GIFONT, you must include RMS in your task, plus room
for the data area you pass to it.

Note the driver-specific instructions in Sections 4.4.1 and
4.4.2.

4.3.1 Video GIDIS

e When accessing Video GIDIS, GIDCAL uses one event flag (EFN).
The default EFN is 29. 1If you want to give the EFN a
different value, specify GBLDEF=GISEFN:value in the task
build command file.

e GIOPEN assigns the LUN you specified, if Devtype is Video.

4.3.2 Other GIDIS Drivers

@ The GIDIS tasks GSBITM, GSHPGL, and GSPAL were built with an
assigned ASG of the form ASG=LP:1. When one of these tasks
starts up, it attaches the device associated with LUN 1;
consequently, you cannot attach this device.

@ Do not use the RSUMS and SPNDS system directives with GIDCAL.

@ GICLOS sends a one-word message that contains a -1.
Therefore, you should not send such a buffer using GIWRIT.

e If you plan to access an LA50, LA100, or LNO3, put INSTALL
[ZZSYS]GIBITM in your installation file. If you plan to
access Palette, put INSTALL [ZZSYS]GIPAL in your installation
file. 1If you plan to access a private GIDIS, add the
appropriate INSTALL command to your installation file.

ERROR REPORTING

4.4 ERROR REPORTING

All GIDCAL routines return a two-word status value. If the value
of the first word is less than 0, an error was detected. The
first word identifies the <class of error; the second word
identifies which error of the <class has occurred. Table 4-2
lists the error classes and user actions to deal with the
problem.

Table 4-2: GIDCAL Errors Listed by Class - P/OS

Code Meaning User Action

-1 Directive error Refer to RSX-11M/M-Plus
Executive Reference
Manual for specific
error.

-2 I/0 Error Refer to IAS/RSX-11
Operations Reference
Manual for specific
error.

-3 RMS Error Refer to RMS-11 Macro
Programmer’s Guide for
specific error.

-4 Internal error in GIDIS Report error to

driver DIGITAL.

-5 Interface error Refer to Table 4-3 for
specific errors.

-6 Palette driver error Refer to Table 4-1 for

specific error.

An error is
anything but
example,
passed

the device is offline),
a bad File spec to File GIDIS.

driver-related if the

first word of Status 1is

-5. This usually indicates a device problem (for

of errors for the value -5.

but it could also mean that you
Table 4-3 lists the types

ERROR REPORTING

Table 4-3: GIDCAL Interface Errors - P/OS

Code Error User Action
-1 Invalid or unassigned Assign LUN with GIOPEN.
LUN
-2 Invalid device type See Section 4.3.
-3 Improper message length Assign Msglen within
range.
-4 LUN already attached to Select a new LUN.

a GIDIS driver

SAMPLE P/0S PROGRAMS

4.5 SAMPLE P/OS PROGRAMS
4.5.1 Sample MACRO-11 Program

.BLKW 2.
OBUF: .BYTE 0.,55. ;Length=0 REQUEST_CURRENT_POSITION
RBUF: .BLKW 3.

MOV #OARG, Rb

JSR PC,GIOPEN ; SEND INSTRUCTION TO PRO/GIDIS
TST STAT
BLE ERROR ;BRANCH IF GIOPEN FAILED

MOV #WARG, RS

JSR PC,GIWRIT ;SEND INSTRUCTION TO PRO/GIDIS
TST STAT
BLE ERROR ;BRANCH IF GIWRIT FAILED

;READ THE REPORT
MOV #RARG, R5
JSR PC, GIREAD ;READ THE REPORT
TST STAT
BLE ERROR ;BRANCH IF GIREAD FAILED
14
; NEW CONTENTS OF RBUF:
; BYTE AT RBUF 2. (LENGTH)
; BYTE AT RBUF+1 1.
; (CURRENT POSITION REPORT HDR)
RBUF+2: CURRENT X POSITION
; RBUF+4: CURRENT Y POSITION

“e

MOV #CARG, Rb
JSR PC, GICLOS

TST STAT

BLE ERROR ;BRANCH IF GICLOS FAILED
ERROR: ; Error handling routine
OARG: .BYTE 6.,0

.WORD STAT

.WORD LUN

.WORD OPMSGL
.WORD OPMLEN
.WORD DEVTYP
.WORD DRIVER

WARG: .BYTE 4.,0.
.WORD STAT
.WORD LUN
.WORD OBUF
.WORD MSGLEN

RARG: .BYTE
.WORD
.WORD
.WORD
.WORD
CARG: .BYTE
.WORD
.WORD
STAT: .WORD
LUN: .WORD
OPMSGL: .WORD
OPMLEN: .WORD
DEVTYP: .WORD
DRIVER: .WORD
MSGLEN: .WORD
BUFLEN: .WORD

SAMPLE P/0S PROGRAMS

4.,0.
STAT
LUN
RBUF
BUFLEN

2.,0.
STAT
LUN

~
o
.

Wk OO OoOLRUuUlo
. . .

o

4.5.2 Sample FORTRAN Program

INTEGER*2 OBUF
INTEGER*2 RBUF(3),STAT(2)
OBUF = 55%256+0 !OPCODE 55=REQUEST_CURRENT_POSITION
! LENGTH=0
CALL GIWRIT (STAT, 5, OBUF, 1)
IF (STAT.LE.0) GO TO 999 !BRANCH IF GIWRIT FAILED
CALL GIREAD (STAT, 5, RBUF, 3)
IF (STAT.LE.0) GO TO 999 !BRANCH IF GIREAD FAILED
! NEW CONTENTS OF RBUF:
! RBUF(1): 258 (i.e., 1*256+2 BECAUSE
! 1 = THE REPORT HDR AND 2 = LENGTH OF DATA FOLLOWING)
! RBUF(2): CURRENT X POSITION IN GIDIS OUTPUT SPACE
! RBUF(3): CURRENT Y POSITION IN GIDIS OUTPUT SPACE
999 ! ERROR FOUND

CHAPTER 5
USING PRO/GIDIS WITH RT-11

This chapter describes how to pass instructions to the GIDIS
interpreter under RT-11. It assumes you understand the
conceptual framework of PRO/GIDIS (described in Chapter 2) and
the PRO/GIDIS instruction syntax (described in Chapter 3).

RT-11 requires that the FPU (floating point wunit) hardware be
installed on the Professional running PRO/GIDIS. RT-11 V5.2 runs
PRO/GIDIS only as the foreground job wunder the XM monitor.
Information in Chapter 6 about other devices does not apply to
PRO/GIDIS under RT-11.

PRO/GIDIS requires two files: GIDIS.SAV and ALPHOO.FNT.
GIDIS.SAV is the utility save image. ALPHOO.FNT is the default
GIDIS font file. Both files must be on the system (SY:) device.

Issue the following command to start PRO/GIDIS and make it
available to application programs:

.FRUN GIDIS.SAV

RT-11 provides software access to PRO/GIDIS using three
interfaces.

@ The GIDCAL interface (GIDIS call routines)

® The MACRO-11 interface (.SPFUN programmed request)

@ The FORTRAN interface (ISPFN/ISPFNC/ISPFNF/ISPFNW)

The Professional Interface (PI) handler controls the operation of
PRO/GIDIS and is transparent to the user. PRO/GIDIS instructions

from application programs are sent to and received from PI using
any of the above interfaces.

THE GIDIS CALL INTERFACE (GIDCAL)

5.1 THE GIDIS CALL INTERFACE (GIDCAL)

Under RT-11, the GIDCAL routines consist of four FORTRAN system
subroutines:

e GIOPEN
e GIWRIT
® GIREAD
@ GICLOS

The subroutines are located in the system subroutine 1library
SYSLIB.OBJ.

With the following exceptions, the GIDCAL routines work the same
under RT-11 as they do under P/0S.

@ GIFONT and GIPLAY, two GIDCAL routines available under P/0S,
are not currently supported.

e For RT-11 V5.2, GIDCAL addresses only the PRO Video (Devtype
6).

e In GIWRIT the maximum message length (msglen) is 2048 decimal
words.

Normally you would use GIDCAL as follows:
1. Initiate the GIDIS operation with GIOPEN.
2. Pass GIDIS instructions with one or more calls to GIWRIT.

3. Read reports from REQUEST-type instructions, if any, with
GIREAD.

4., Terminate the GIDIS connection with GICLOS.

Each GIDCAL routine returns a status code that indicates the
results of the requested operation. If the operation is
successful, a code of 1 1is returned. If the operation is
unsuccessful, a two-word error code block is returned. Section
5.1.5 explains how to interpret the codes.

NOTE

Some high-level 1languages may reserve certain
LUNs for their own use. If this is the case, you
cannot access the same LUN. Check 1language
documentation prior to assigning LUNs.

5-2

THE GIDIS CALL INTERFACE (GIDCAL)

The following sections describe each GIDCAL routine and its
arguments. The actual syntax for passing these arguments is

specific to the high-level language you are using. See language
documentation for details.

5.1.1 GIOPEN

GIOPEN initiates contact with the Professional interface (PI)
handler and assigns a logical unit number (LUN) for this GIDIS
operation. A GIOPEN does not affect the state of GIDIS. All
attributes currently selected remain in force.

To 1initialize the Professional video screen, execute the
INITIALIZE -1 (complete initialization) instruction, followed by
the NEW_PICTURE instruction.

The list of arguments for GIOPEN follows.

GIOPEN (Status, LUN, Message, Msglen, Devtype, Driver)

Status A two-word integer array used to return a code
indicating the results of the requested
operation.

LUN Unit-number associated with this GIOPEN. It

should be an integer from 0 to 15. If not,
Status is set to (-5,-1). 1If this LUN is
already connected to a GIDIS operation, Status
is set to (-5,-4).

Message Data to send to Video GIDIS. Message should be
a word containing a 0.

Msglen The number of words in Message. Except where
noted, it should be 1. If Msglen is less than 0
or greater than 128, Status is set to (-5,-3).

Devtype An integer that identifies the desired output
device. For RT-11 V5.2 only Devtype 6 is valid.
Integer values 0 through 5, 7 and 8 are
reserved. If Devtype is invalid, Status is set
to (-5,-2).

Driver 0, as RT-11 accesses only video GIDIS

Normally, the argument list for GIOPEN is (Status, LUN, o, 1,
Devtype, 0).

THE GIDIS CALL INTERFACE (GIDCAL)

5.1.2 GIWRIT

GIWRIT outputs a buffer of GIDIS command data to the specified
GIDIS driver. The data in a buffer does not have to start or end
on a command boundary. The list of arguments for GIWRIT follows.

GIWRIT (Status, LUN, Message, Msglen)

Status A two-word integer array used to return a code
indicating the results of the requested
operation.

LUN Identifies the unit number assigned by GIOPEN.
If no GIOPEN has been done for the specified
value, Status is set to (-5,-1).

Message The command data to send to Video GIDIS

Msglen The number of words in Message. If it is less
than 0 or greater than 2048 (decimal words),
Status is set to (-5,-3).

5.1.3 GIREAD

GIREAD waits for GIDIS to return the report and places it in the
specified buffer. If the report is longer than the specified
buffer, the end of the report is truncated. If the report is
shorter than the specified buffer, the trailing words of the
buffer are left unchanged.

The list of arguments for GIREAD is as follows.
GIREAD (Status, LUN, Buffer, Buflen)

Status A two-word integer array used to return a code
indicating the results of the requested
operation.

LUN The unit number assigned by GIOPEN. If no
GIOPEN has been done for the specified device
driver, Status is set to (-5,-1).

Buffer Room for the report returned by GIDIS. Recall
that the first word of a report contains a
header specifying the type of report and the
number of words in the buffer.

Buflen The number of words in the report buffer.

THE GIDIS CALL INTERFACE (GIDCAL)

5.1.4 GICLOS

GICLOS ends the GIDIS connection to the Professional interface
handler. The output device treats a GICLOS subroutine as an
END_PICTURE instruction. Control is returned to the calling
program once all data specified by the GIWRIT subroutine has been
sent to the output device. (See Chapter 6 for details.)

The list of arguments for GICLOS is as follows.

GICLOS (Status, LUN)

Status A two-word integer array used to return a code
indicating the results of the requested
operation. ‘

LUN The unit number to terminate. If no GIOPEN has
been done for the specified value, Status is set
to (-5,-1).

5.1.5 GIDCAL Error Reporting

GIDCAL subroutines can return the following error codes and
subcodes in the two-word status array. The first word specifies
the class of the error; the second word specifies the type of
error within the class.

GIDCA running under RT-11 returns three classes of errors listed
in Table 5-1.

Table 5-1: GIDCAL Errors Listed by Class - RT-11

Code Meaning
-1 Directive error
-5 Interface error
-7 Operating System Error

THE GIDIS CALL INTERFACE (GIDCAL)

The directive error code (-1) can return the following subcode:
-1 No handler. The output device handler is not loaded.

The interface error code (-5) returns the subcodes 1listed 1in
Table 5-2.

Table 5-2: GIDCAL Interface Errors - RT-11

Code Error
-1 Invalid or unassigned LUN
-2 Invalid device type
-3 Improper message length
-4 LUN already attached to a GIDIS driver

In addition to the directive and interface errors, RT-11 also
reports operating system errors (-7). Table 5-3 describes the
specific errors within this class.

Table 5-3: RT-11 Operating System Errors

Code Error

Codes returned during a GIDIS operation

-1 Required argument missing. A required
argument in a GIDCAL subroutine is not
specified.

-2 Handler not found. The indicated file was not
found on the device.

-3 File not found. The indicated file was not
found on the device.

THE GIDIS CALL INTERFACE (GIDCAL)

Code Error
-4 File open on nonsharable or
non-file-structured device.
-5 An attempt was made to read or write past the
end-of-file (EOF) mark.
-6 Hard error. The GIDIS operation experienced a

Codes returned when
-129
-130
-131

-132

-133
-134
-135

-136

-137

-138
-139
-140
-141
-142
-143
-144

-145

hard error on the output device.

the .SERR programmed request is in effect.
Called USR from completion routine.

No device handler; this operation needs one.
Error doing directory I/O.

.FETCH error. An I/O error occurred while the
handler was being used, or an attempt was
made to load the handler over USR or RMON.
Error reading an overlay.

No more room for files in the directory.

Reserved.

Invalid channel number; number is greater
than actual number of channels that exist.

Invalid EMT, and invalid function code has
been decoded.

Reserved.

Reserved.

Invalid directory.
Unloaded XM handler.
Reserved.

Reserved.

Reserved.

Reserved.

THE GIDIS CALL INTERFACE (GIDCAL)

Code Error

-146 Reserved.

5.1.6 Sample Program Using GIDIS Call Interface

The following FORTRAN program fragment uses the GIDCAL
subroutines to request the current cursor position.

C
C Declare storage.
C
INTEGER*2 BUFLEN , LUN , MSGLEN , OCLEN , OPCODE
INTEGER*2 BUFFER(3) , MESSAG(1) , STATUS(2)
c
C User program begins here...
c
c
c Assign Logical Unit Number.
C
LUN = 5
C
C Assign opcode (REQUEST_CURRENT_POSITION) and opcode
C length (0).
c
OPCODE = 55%256
OCLEN = 0
C
C Insert opcode and opcode length into message buffer
C (one word).
C
MESSAG(1) = OPCODE + OCLEN
MSGLEN =1
C
c Send the message to GIDIS
c
CALL GIWRIT(STATUS , LUN , MESSAG , MSGLEN)
C
C Check for errors.
c
IF (sTATUS(1) .LE. 0) GOTO 999
c
c Assign buffer length for report.

5-8

oo NN NS EC NN RSSO KS! oEeNe!

[eNeNe!

999

THE GIDIS CALL INTERFACE (GIDCAL)

BUFLEN = 3

Get a report from GIDIS.

CALL GIREAD(STATUS , LUN , BUFFER , BUFLEN)
Check for errors.

IF (STATUS(1) .LE. 0) GOTO 999

Contents of BUFFER after successful return:

BUFFER(1)

258 ((1*256) + 2)

1 = Report header,

2 = Number of data elements in buffer
Current "X" position in GIDIS output space
Current "Y" position in GIDIS output space

BUFFER(2)
BUFFER(3)

User program continues from here...

Handle errors.

End of GIDCAL example.

END

5-9

THE MACRO-11 PRO/GIDIS INTERFACE

5.2 THE MACRO-11 PRO/GIDIS INTERFACE

With the MACRO-11 interface, PRO/GIDIS instructions from
application programs are sent to and received from the
Professional interface handler wusing the .SPFUN programmed
request. The .SPFUN programmed request 1is located in the
distributed RT-11 MACRO library SYSMAC.SML.

RT-11 supports PRO/GIDIS from MACRO-11 or any supported
high-level 1language that wuses external MACRO-11 routines. The
recommended method is to write callable MACRO-11 routines that
issue the .SPFUN programmed request. For information on calling

the

.SPFUN programmed request from a supported high-level

language, refer to the documentation for that language.

When programming for GIDIS using the .SPFUN request of ISPFN
subroutines, you should initialize GIDIS before sending it your
GIDIS instructions. Perform the following operations each time
you begin a new program:

Establish a channel to PI with the .LOOKUP request.

Issue an .SPFUN 371 request and specify -1 for the wcnt
argument.

Issue an .SPFUN 371 with the INITIALIZE instruction.

Issue the .SPFUN 371 that writes your data buffer to GIDIS.

RT-11 requires PRO/GIDIS to be the highest priority job.
The following is a simplified illustration of the RT-11 PRO/GIDIS

data path:
.SPFUN 371
APPLICATION > PROFESSIONAL — GIDIS
PROGRAM INTERFACE UTILITY
€ HANDLER <“—
.SPFUN 370

VIDEO
TERMINAL
DISPLAY

5-10

THE MACRO-11 PRO/GIDIS INTERFACE

5.2.1 .SPFUN 371

The .SPFUN 371 writes (sends) one or more PRO/GIDIS instructions
and their associated parameter values to the Professional
interface handler in a buffer. The buffer must begin at an even
address. The Professional interface handler passes the buffer to
the GIDIS utility for processing. You can pass a maximum of 2048
(decimal) words to the PI handler in one .SPFUN 371 request.

The following is the structure of the .SPFUN 371 programmed
request when used with the Professional interface handler.

Macro Call: .SPFUN area,chan,func,buf,wcnt,blk

area Is the address of a six-word EMT argument block

chan Is the channel number in the range 0 to 376 (octal)

func Is 371

buf Is the address of the buffer containing the input to
the GIDIS wutility. Buf must start on a word
boundary

bcnt Is the number of bytes of information being sent

blk Is zero

The .SPFUN 371 request can return error codes; see the RT-11
Programmer’s Reference Manual for complete information.

Issuing a REQUEST_STATUS instruction returns a report on the
success or failure of an instruction sent by .SPFUN 371. Check
the carry bit on return from .SPFUN 371 to determine whether the
instruction was successfully sent to PRO/GIDIS.

5.2.2 .SPFUN 370

The .SPFUN 370 reads (returns) a buffer of information generated
from a PRO/GIDIS REQUEST-type instruction (sent using .SPFUN
371). The buffer must begin at an even address. The
Professional interface handler passes the buffer address to
PRO/GIDIS, and PRO/GIDIS loads the information into the buffer.

The following is the structure of the .SPFUN 370 programmed
request when used with the Professional interface handler.

Macro Call:

area

chan

func

buf

went

blk

THE MACRO-11 PRO/GIDIS INTERFACE

.SPFUN area,chan, func,buf,bcnt,blk
Is the address of a six-word EMT argument block

Is the channel number in the range 0 to 376 (octal)

Is 370

Is the address of the buffer containing the input to
the GIDIS wutility. Buf must start on a word
boundary

Is the maximum number of words the GIDIS utility can
place in the buffer

Is zero

The .SPFUN 370 request can return error codes; see the RT-11
Programmer’s Reference Manual for complete information.

5.2.3 SAMPLE MACRO-11 PROGRAM

The following example returns the current position of the cursor.

GSRCP=:55. ; Specify instruction
GSINT=: 1. ; codes

.LOOKUP #IOAREA,#0,#PIBLK

BCS

; Open PI on channel 0
ERROR ; Check for success

°
14

.SPFUN #IOAREA,#0,#371,,%#-1,4#0

BCS

; Initialize GIDIS
ERROR ; Check for success

°
r

.SPFUN #IOAREA,#0,#371,#REQPOS,#3,#0

BCS

; Send the instructions
to initialize GIDIS
internal symbols and
REQUEST_CURRENT_POSITION.

H
H
H
7
ERROR ; Check for success
7
P

.SPFUN #IOAREA,#0,#370,#REPBUF,#3,#0

BCS

Read the current
position.

ERROR Check for success

e we wo wo

5-12

THE MACRO-11 PRO/GIDIS INTERFACE

.SPFUN 370 causes the following report to be
placed in REPBUF:

BYTE 2. (number of data words following).

BYTE 1. (CURRENT_POSITION_REPORT
identifier).

WORD x (PRO/GIDIS coordinates

WORD y for current position).

The current position of the cursor will be in
the second and third words of REPBUF.

Ne Mo WMo We Ne Wwe We Wwo Wwe wo we

IOAREA: .BLKW 6 ; .SPFUN EMT argument block
PIBLK: .RAD50 /PI / File name in Radix-50 characters
.WORD 0,0,0
REQPOS: .BYTE 1,GSINT Length=1, opcode = INITIALIZE
.WORD -1 ; Initialize operand
.BYTE 0,GSRCP Length=0,
opcode = REQUEST_CURRENT_POSITION.
Buffer for info returned from GIDIS.
Error handling routine.

e we wo W

REPBUF: .BLKB 6
ERROR:

No wo we wo W

5.3 THE FORTRAN PRO/GIDIS INTERFACE

FORTRAN provides its own system subroutines
(ISPFN/ISPFNC/ISPFNF/ISPFNW) that are used in the same manner as
the MACRO-11 .SPFUN programmed requests. These subroutines are
described in Chapter 3 of the RT-11 Programmer’s Reference
Manual. The four subroutines are located in the distributed
RT-11 system subroutine library SYSLIB.OBJ.

Follow the order of operations described in Section 5.2.

A sample FORTRAN program using the ISPFNW system subroutine
follows.

SAMPLE FORTRAN PROGRAM

The following example returns the current position of the cursor.

Sample FORTRAN program for PRO/GIDIS.

Declare storage.

NN NS NS!

INTEGER*2 RDCPOS , RQCPOS

5-13

oo Ne!

THE FORTRAN PRO/GIDIS INTERFACE

INTEGER*2 BLOCK , CHAN , STATUS , WCNT
INTEGER*2 FILSPC(4)

BYTE REPBUF(6) , REQBUF(2)
DATA FILSPC/ 3RPI , 0 , 0 , 0 /

Assign SPFUN function codes (Read, Request).

RDCPOS "370
RQCPOS = "371

Initialize default values.
BLOCK = 0

Get an RT-11 channel.

STATUS = IGETC()
IF (STATUS .EQ. -1) GOTO 900
CHAN = STATUS

Open the PI handler.

STATUS = LOOKUP(CHAN , FILSPC)
IF (STATUS .NE. 0) GOTO 910

Send the instruction to request from PI the current

position.

CODE = RQCPOS

WCNT = 1

STATUS =

ISPFNW(CODE , CHAN , WCNT , REQBUF , BLOCK)
IF (STATUS .NE. 0) GOTO 920

Read the current position.

CODE = RDCPOS

WCNT = 3

STATUS =

ISPFNW(CODE , CHAN , WCNT , REPBUF , BLOCK)
IF (STATUS .NE. 0) GOTO 930

User program continues from here...

Close the channel.

[eNeNe!

[eNeKe!

900

910

920

930

940

950

THE FORTRAN PRO/GIDIS INTERFACE

STATUS = ICLOSE(CHAN)
IF (STATUS .NE. 0) GOTO 940

Return the channel to RT-11.

STATUS = IFREEC(CHAN)
IF (STATUS .NE. 0) GOTO 950

Go to common exit.
GOTO 1000

Error messages begin.

TYPE 1

FORMAT (1X , 'No channels available.’)

GOTO 1000

TYPE 2

FORMAT (1X , ’"Lookup error on PI:.’)

GOTO 1000

TYPE 3

FORMAT (1X , 'Error requesting current
position.’)

GOTO 1000

TYPE 4

FORMAT (1X , 'Error reading current
position.’)

GOTO 1000

TYPE 5

FORMAT (1X , '"FATAL - SYSTEM ERROR.’)

GOTO 1000

TYPE 6 , CHAN

FORMAT (1X , 'Channel " 12 ,

' is not currently allocated.’

Common Exit point.
CALL EXIT
End of sample FORTRAN program for PRO/GIDIS.

END

)

RESTRICTIONS

5.4 RESTRICTIONS

Observe the following restrictions when running PRO/GIDIS wunder
RT-11:

@ Run PRO/GIDIS only under the XM monitor.

® Run PRO/GIDIS only as the foreground job using the FRUN
command.

® The area operation instruction PRINT_SCREEN is not supported.

® VT102 emulation is not supported.

CHAPTER 6
PRO/GIDIS INSTRUCTIONS

This chapter contains detailed reference information for all

GIDIS instructions, which are listed in alphabetical order for
convenience.

The entry for each GIDIS instruction includes the following
information:

@ A brief description of the instruction.
@ Opcode - used by GIDIS to identify the instruction.

@ Length - specifies the number of arguments for the
instruction.

e Format - lists and describes each argument.

® Status - indicates conditions for success or failure of the
instruction.

® Notes - explain in detail how to use the instruction.

e Device Notes - describe behavior specific to particular GIDIS
drivers.

e Example - lists excerpts from a sample MACRO-11 program that
uses the instruction.

Unless specified otherwise, all units are in GIDIS Output Space
(GOS) .

BEGIN_DEFINE_CHARACTER

6.1 BEGIN_DEFINE_CHARACTER

BEGIN_DEFINE_CHARACTER starts a character definition block. This
causes subsequent instructions to draw into the space associated
with the given character, rather than drawing 1into the entire
view surface. This instruction is paired with the
END_DEFINE_CHARACTER instruction.

Opcode: 33 Length: 4 or 5

Format: BEGIN_DEFINE_CHARACTER char-index, width, nom-width,
nom-height, [left-offset]

char-index The index of the character cell to be 1loaded.
This wvalue must be within the extent of the
alphabet (See CREATE_ALPHABET), or -1.

width This field is used only if the font 1is defined
as variable-width. It then specifies (in GOS
units) the implicit movement that should be used
for the character being defined. For example,
if nom-width were 60, width for i would be about
20 and width for m would be about 60.

nom-width Nominal width. The number of GOS wunits to
assign to alphabet width.

nom-height Nominal height. The number of GOS wunits to
assign to alphabet height.

left-offset Identifies where the character is placed
relative to the current position when it is
drawn. Zero, the default, places the left edge
of the character at the current position.
Values greater than 0 move the cell left; values
less than 0 move it right. Units of movement
are the same as those for width. Left-offset is
specified in GOS units.

Status: SUCCESS if the current alphabet is not equal to 0 and is
not a loaded font, char-index is within the extent of
the current alphabet, and there are sufficient resources
to define this character; otherwise, FAILURE.

BEGIN_DEFINE_CHARACTER

Notes:

Nom-width and nom-height select the natural shape of the
character. If the character definition contains a circle,
thea drawing that character will yield a circle only when
unit cell width and height are proportional to nom-width and
nom-height.

Besides affecting shape, nom-width and nom-height control
resolution. For example, although 10 x 20 is the same shape
as 100 x 200, the latter values give you finer drawing
control.

To define the error character and any undefined character
within a font, specify a char-index of -1.

A character created by a character definition block can be

manipulated (for example, scaled and rotated) like any other
GIDIS character.

You cannot use the following instructions inside a character
definition block:

BEGIN_DEFINE_CHARACTER
LOAD_CHARACTER_CELL
CREATE_ALPHABET
LOAD_BY_NAME

If BEGIN_DEFINE_CHARACTER fails, GIDIS skips all subsequent
instructions until it encounters an END_DEFINE_CHARACTER or
INITIALIZE. This includes report handling instructions. For
example, the following sequence will hang your program:

BEGIN_DEFINE_CHARACTER that fails
request report
END_DEFINE_CHARACTER

read report

1f left-offset is nonzero, the character should not be drawn
in replace, complement negate, or overlay negate modes.

To abort a character definition, send the INITIALIZE
instruction with any argument (including 0). An INITIALIZE 0
instruction aborts a character definition without affecting
anything else.

BEGIN_DEFINE_CHARACTER

@ This instruction implicitly saves all GIDIS attributes for
the duration of the BEGIN_DEFINE_CHARACTER process. The
END_DEFINE_CHARACTER instruction restores the saved GIDIS
attributes. Table 6-1 lists the values in effect during the
BEGIN_DEFINE_CHARACTER process.

Table 6-1: Attributes Initialized by BEGIN_DEFINE_CHARACTER

Attribute Value

output IDS width nominal width
output IDS height nominal height
output viewport x origin 0

output viewport y origin 0

output viewport width nominal width
output viewport height nominal height
GIDIS output space x origin 0

GIDIS output space y origin 0

GIDIS output space width nominal width
GIDIS output space height nominal height
output clipping x origin 0

output clipping y origin 0

output clipping width nominal width
output clipping height nominal height
current position x 0

current position y 0

area texture solid

line texture solid

logical pixel x offset 0

logical pixel y offset 0

logical pixel width 1 hardware pixel
logical pixel height 1 hardware pixel
cell unit size width nominal width
cell unit size height nominal height
cell display size width nominal width
cell display size height nominal height
cell movement mode flag 2 (implicit)

BEGIN_DEFINE_CHARACTER

Attribute Value

cell movement mode flag 2 (implicit)
cell explicit movement dx 0

cell explicit movement dy 0

primary color 1

secondary color 0

character cell all 0’'s
plane mask 1

writing mode overlay

Device Notes:

@ Plotter GIDIS does not store a character definition as a
raster, but rather as a sequence of strokes.

@ Except for Plotter GIDIS, a successful CREATE_ALPHABET
instruction ensures sufficient resources to store the
definition of the character.

@ In Video GIDIS, do not allow the terminal subsystem to do a
full screen scroll while defining a character.

Example: This illustrates an entire character definitiion.

;assume current alphabet is 1, storage
;size of alphabet 1 is 9 by 9.

.BYTE 4.,33. ;length = 4,
;opcode for BEGIN_DEFINE_CHARACTER

.BYTE 3. ;defining character 3
.WORD 9. ;width

.WORD 90. snom-width

.WORD 225. ;nom-height

;now ready to draw into the 9 x 9
;storage area using GOS of

;90 X 225.
.BYTE .2,29. j;length = 2, opcode for SET_POSITION
.WORD 0. ;[0,100] is middle of left hand side.

.WORD 100.

.BYTE .255.,25. ;introduces uncounted argument list
;opcode for DRAW_LINES

.WORD 40. ;40,2001

6-5

BEGIN_DEFINE_CHARACTER

.WORD 200. ;

.WORD 80. ;080,100]
.WORD 100. ;

.WORD 40. ;040,0]
.WORD 0. ;

.WORD 0 ;00,1007

.WORD 100. ;
.WORD -32768. ;end list
;the four lines draw a diamond

.BYTE 0.,36. ; END_DEFINE_CHARACTER

Figure 6-1 illustrates the character defined by this example.

Figure 6-1: Sample Character

BEGIN_FILLED_FIGURE

6.2 BEGIN_FILLED_FIGURE

BEGIN_FILLED_FIGURE starts the definition of a filled figure.
Use DRAW_LINES, DRAW_REL_LINES, DRAW_ARCS, and DRAW_REL_ARCS to
enter positions in the filled figure table. Positions are stored
in the order given. A corresponding END_FILLED_FIGURE
instruction is required to actually fill the figure.

Opcode: 31 Length: 0
Format: BEGIN_FILLED_FIGURE
Status: SUCCESS

Notes:

® BEGIN_FILLED_FIGURE sets the filled figure flag to TRUE.

® You should not use the following PRO/GIDIS instructions
between a BEGIN_FILLED_FIGURE instruction and its
corresponding END_FILLED_FIGURE. (However, this is an
unenforced restriction.)

BEGIN_FILLED_FIGURE
DRAW_CHARACTERS
DRAW_PACKED_CHARACTERS
SET_GIDIS_OUTPUT_SPACE
SET_OUTPUT_IDS
SET_OUTPUT_VIEWPORT
SET_POSITION
SET_REL_POSITION

@ The filled figure table must contain at least 1 user-provided
point for any drawing to occur. You can enter up to 255
points in the filled figure table. When GIDIS receives the
END_FILLED_FIGURE instruction, it adds the original current
position twice, as the first and last points of the figure.
Thus, GIDIS automatically closes figures for you.

e If you specify too many points, GIDIS uses only the first 255
points. GIDIS ignores points that exceed the capacity of the
filled figure table. i

e An edge of the filled area is not gquaranteed to be identical
to a line drawn through the same points, due to differences
in drawing direction and round-off errors.

BEGIN_FILLED_FIGURE

® You may draw lines that cross earlier lines in the filled
figure table. Only the enclosed areas will fill. Contrast
the examples below. The first creates a square; the second,
a bow tie.

® GIDIS attributes used in doing the fill are: primary color,
secondary color, writing mode, plane mask, area texture cell,
area cell size, and area texture size.

e Complement and complement-negate writing modes can give
unexpected results when filled figure areas overlap or abut.

e To abort a filled figure definition, send the INITIALIZE
instruction with any argument (including 0). An INITIALIZE O
instruction aborts a filled figure definition without
affecting anything else.

® No drawing is done by the BEGIN_FILLED_FIGURE instruction.

Example:

.BYTE 2.,29. ;Length=2,opcode for SET_POSITION

.WORD 100. ;Current position
.WORD 100. ; now [100,100]
.BYTE 0.,31. ;Length=0,opcode for BEGIN_FILLED_FIGURE

;filled figure table now has [100,100]
.BYTE 6.,26. ;Length=4,opcode for DRAW_REL_LINES

.WORD +100. sdx1
.WORD +0. ;dyl
.WORD +0. ;dx2
.WORD +100. ;dy2
.WORD -100. ;dx3
.WORD +0. ;dy3

;Adds points [200,100], [200,2007],
; and [100,200] to
; the filled figure table
.BYTE 0.,32. ;Length=0,opcode for END_FILLED_FIGURE
;Adds point [100,100] to table
;The area defined by [100,100],
[200,100], [200,200], [100,200]), and
[100,100]--a square--is filled with
the current area texture governed by
the following writing attributes:
writing mode, color map entry,
plane mask, primary color,
secondary color.

I
14
4
-
!
°
’
o
’
°
’

BEGIN_FILLED_FIGURE

Figure 6-2 illustrates the filled figure created by this example.

Figure 6-2: Sample Filled Figure Square

Example:

.BYTE 2.,29. ;Length=2,opcode for SET_POSITION

.WORD 100. ;Current position

.WORD 100. ; now [100,100]

.BYTE 0.,31. ;Length=0,0pcode for BEGIN_FILLED_FIGURE
;£illed figure table now has [100,100]

.BYTE 6.,26. ;Length=4,opcode for DRAW_REL_LINES

.WORD +100. ;dx1

.WORD +100. ;dyl

.WORD +0. ;dx?2

.WORD -100. ;dy2

.WORD -100. ;dx3

.WORD +100. ;dy3

;Adds points [200,200], [200,100],
; and [100,200] to
; the filled figure table

.BYTE 0.,32. ;Length=0,0opcode for END_FILLED_FIGURE
;Adds point [100,100] to table
;The area defined by [100,100],
; [200,200], [200,1001, [100,200], and
(100,100]--a bow tie--is filled with
the current area texture governed by
the following writing attributes:
writing mode, color map entry,
plane mask, primary color,
secondary color.

Ne Ne e we N N

6-9

BEGIN_FI LLED__FIGURE

Figure 6-3 illustrates the filled figure created by this example.

Figure 6-3: Sample Filled Figure Bow Tie

6-10

CREATE_ALPHABET

6.3 CREATE_ALPHABET

CREATE_ALPHABET reclaims resources used for the current
alphabet’s font and reserves resources for a new font with the
indicated storage size. Storage size in bytes is: 30 + (extent
* 2) + (width/8 rounded up) * height * (extent + 1). See
Appendix C.

Opcode: 46 Length: 4, 5, or 6

Format: CREATE_ALPHABET width, height, extent, flags,
[initialize], [ave-width]

width Is an integer in the range (0 to 64) that
specifies the number of horizontal bits in a
character pattern.

height Is an integer 1in the range (0 to 64) that
specifies the number of wvertical bits 1in a
character pattern.

extent Is an integer that specifies the number of
characters 1in the alphabet. Character indices
can range from 0 to extent-1, (or 32 to extent
+31, if bit 8 of flags is set).

flags Is a word that specifies one or more of the

character renditions and font attributes. Table
6-2 lists the supported renditions.

Table 6-2: CREATE_ALPHABET Flags

Cell Rendition Bit Value
Italics 1 o2
Bold 3 8
Proportionally spaced 4 16
ASCII 8 256

CREATE_ALPHABET

If ASCII (bit 8) is set, you do not have to
include indices 0 through 31 in the font, and
the error character is automatically associated
with those indices.

initialize W to initializes all characters in the newly
created font. If 0, initialize to blank. 1If
not 0, initialize to solid. If not present,

initialize to solid.

ave-width Is the average width in pixels of glyphs in this
font. It is not a true average, but an
indication of how many characters £fit on an
average line of text when this font is used. 1If

not specified, width is used.

Status: SUCCESS if width is 0 to 64, height is 0 to 64, current
alphabet number is 1 to 15, extent is greater than or
equal to 0, storage size is less than 64 XB, and there
are sufficient resources to create the alphabet;
otherwise, FAILURE.

Notes:

@ To only reclaim the memory used for an alphabet’s current
font, execute a CREATE_ALPHABET instruction with width,
height or extent set to 0.

@ If alphabet 15 is current, CREATE_ALPHABET creates a region
CRESAL. See the description of the GIFONT routine in Chapter
4.

@ The largest allowable storage size on the Professional is
64KB. If you create a font whose total size is greater than
8KB, the total extent must be less than or equal to 512.

® Specify ave-width for proportionally spaced fonts; width for
monospaced fonts.

@ When describing a font in an .FDF file (see Appendix D), use
ave-width for proportionally spaced fonts and width for
monospaced fonts.

@ The true limits for font width and height are: (width in
bytes) * (height) may not be greater than 512; height may not
be greater than 80.

® SET_CELL_UNIT_SIZE uses ave-width, when trying to select the
best font.

6-12

CREATE_ALPHABET

Device Notes:

® For Plotter GIDIS, no storage is reserved when a
CREATE_ALPHABET is done. Space is reserved per character as
character definition blocks are processed.

Example:
;Current alphabet is alphabet number 2
.BYTE 4.,46. ;Length=4, opcode for CREATE_ALPHABET
.WORD 10. ;width
.WORD 16. ;height
.WORD 32. ;extent
.WORD 8. ;rend-type bold

;Reclaims space occupied by alphabet 2's
; current font, allocates space for a

; new font, and initializes each

; character in the font to a solid

; block (because the initialize argument
; 1s omitted).

DRAW_ARCS

6.4 DRAW_ARCS

The DRAW_ARCS instruction draws one or more circular arcs
starting from the current position around the specified
center(s).

Opcode: 23 Length: 3N

Format: DRAW_ARCS x, y, angle

X Specifies the x coordinate of the arc’s center
point

y Specifies the y coordinate of the arc’s center
point

angle The angle for the arc is given in degrees, with
a positive value meaning counter-clockwise with
respect to the view surface. For example, an

angle of zero means no drawing is done; +360 or
-360 means a full circle is drawn.

Status: SUCCESS if angle is from -360 to +360 and there 1is no
filled figure table overflow; otherwise, FAILURE.

Notes:

® DRAW_ARCS is a repeatable instruction. You can, for example,
draw three connected arcs by specifying: x1, yl, anglel, x2,
y2, angle2, x3, y3, angle3. The coordinates can be specified
either in a counted argument list (with the count supplied in
the opcode word), or in an uncounted argument list (with 255
in the opcode word and an END_LIST instruction after the last
argument). See END_LIST.

@ GIDIS draws an arc as a series of straight lines. The
"PRO/GIDIS interpreter calculates one line endpoint per 10
degrees of arc (or portion thereof), regardless of the size
of the circle.

@ If the filled figure flag is TRUE then, instead of drawing
the arc, all internally calculated line endpoints are added
to the filled figure table.

e The current position is left at the end of the arc, whether
the instruction returns SUCCESS or FAILURE.

DRAW_ARCS

® Full quadrant arcs (1/4 circle) always end at the exact point
expected. Fractional quadrant arcs end at the closest
available point. Multiple fractional quadrant arcs are not
guaranteed to end at the exact point predicted by your
program. For example, a full circle drawn as a 103 degree
arc and a 257 degree arc is not guaranteed to leave the
current position exactly where it started.

® DRAW_ARCS is affected by the following GIDIS attributes:
writing mode, primary color, plane mask, secondary color,
pixel size, line texture, and filled figure flag.

® DRAW_ARCS modifies the view surface only inside the clipping

rectangle.
Example:

;Not in a filled figure definition
;(filled figure flag is FALSE)
;Current position is [500,300]

.BYTE 3.,23. ;Length=3, opcode for DRAW_ARCS

.WORD 400. :X coordinate of center

.WORD 300. ;y coordinate of center

.WORD 180. ;180 degrees is one-half a circle

; (counter-clockwise)

;Draws the top half of the circle
;centered at [400,300] with radius 100
;Middle of the arc is [400,200]

;New current position is [300,300]

Figure 6-4 shows the arc created by this sample program.

Figure 6-4: Sample Arc

6-15

DRAW_ARCS

Example:
;Not in a filled figqure definition
;(filled figure flag is FALSE)
;Current position is [500,300]

.BYTE 3.,23. ;Length=3, opcode for DRAW_ARCS

.WORD 100. :Xx coordinate of center
.WORD 300. ;y coordinate of center
.WORD -90. ;90 degrees is one-fourth of a circle

; (clockwise)

;Draws a quadrant

;centered at [100,300] with radius 400
;Middle of the arc is [300,400]

;New current position is [(100,700]

Example:
;Inside a filled figure definition
; (filled figure flag is TRUE)
;jCurrent position is [500,300]

.BYTE 3.,23. ;Length=3, opcode for DRAW_ARCS

.WORD 400. ;Center is [400,300]
.WORD 300.
.WORD -90. ;90 degrees = 1 quadrant

;Adds eight line endpoints

; (internally calculated)

;plus [400,400] to filled

;figure table

;New current position is [400,400]

DRAW_CHARACTERS

6.5 DRAW_CHARACTERS

The DRAW_CHARACTERS instruction draws the character identified by
the specified character index. The character is taken from the
currently selected alphabet.

Opcode: 35 Length: N

Format: DRAW_CHARACTERS char-index
char-index Is an unsigned 16-bit word

Status: SUCCESS

Notes:

e DRAW_CHARACTERS is a repeatable instruction. You can, for
example, draw several characters in succession by specifying:
char-indexl, char-index2, char-index3, . . . char-indexn.
You can specify characters in either a counted argument list
(with the count supplied in the opcode word) or in an
uncounted argument list (with 255 in the opcode word and an
END_LIST after the last argument.) See END_LIST.

® DRAW_CHARACTERS is affected by several attributes: wunit and
display cell size, cell slant, cell rotation, rendition mask,
current alphabet, writing mode, primary and secondary color,
and plane mask.

e If the specified character index is outside the extent of the
current alphabet, the error character is drawn. Unless
otherwise specified in the font itself, the error character
is a checkerboard.

® The current position is updated after a character is drawn
according to the cell movement controls. (See the
descriptions of the SET_CELL_MOVEMENT_MODE and
SET_CELL_EXPLICIT_MOVEMENT instructions.)

@ To delete a proportionally spaced character, specify erase
writing mode, specify mirrored text by negating the display
cell width, and then redraw the character.

e When using local symmetry, the current position after a
DRAW_CHARACTERS instruction could be different from that
calculated by your program. It is suggested that any series
of DRAW_CHARACTERS instructions be followed by a SET_POSITION
instruction or a REQUEST_POSITION instruction, unless you do
not care exactly where the string ends.

6-17

DRAW_CHARACTERS

e DRAW_CHARACTERS modifies the view surface only inside the
clipping rectangle.

® See also DRAW_PACKED_CHARACTERS.

Example:
;Current alphabet = 0 (DEC Multinational)
.BYTE 3.,35. ;Length=3, opcode for DRAW_CHARACTERS
.WORD 65. ; "AT
.WORD 66. ; "B’
.WORD 67. ; 'CT
; Draws A, B, C from current font for
; alphabet 0
Example:
;Current alphabet = 1 (user-defined)
.BYTE 255.,35. ;introduces uncounted argument list
; opcode for DRAW_CHARACTERS
.WORD 0.
.WORD 13.
.WORD 7.
.WORD 45,
.WORD -32768. ;;END_LIST

;Draws 4 characters from alphabet 1,
which are user-defined characters

.
’

6-18

DRAW_LINES

6.6 DRAW_LINES

The DRAW_LINES instruction draws a straight line from the current
position to the specified endpoint. The endpoint is specified as
an absolute coordinate pair.

Opcode: 25 Length: 2N

Format: DRAW_LINES xend, yend

end Specifies the x coordinate of the line’s
endpoint

yend Specifies the vy coordinate of the line’s
endpoint

Status: SUCCESS, provided no filled figure table overflow

occurs; on overflow, FAILURE.

Notes:

The DRAW_LINES instruction is repeatable. You could, for
example, draw 3 connected lines by specifying: =xendl, yendl,
xend2, yend2, xend3, yend3. The coordinates can be specified
either in a counted argument list (with the count supplied in
the opcode word), or in an uncounted argument list (with 255
in the opcode word and an END_LIST instruction after the last
argument). See END_LIST.

The DRAW_LINES instruction is affected by the following
drawing attributes: writing mode, primary color, plane mask,
secondary color, pixel size, line texture, and filled figure
flag.

When the filled figure flag is TRUE, this instruction does
not draw a line from the current position to the specified
point. 1Instead, it tries to insert [xend, yend] into the
filled figure table.

The current position is updated whether the instruction
returns SUCCESS or FAILURE.

In complement and complement negate modes, the first pixel of
a line is skipped and the last pixel is drawn. But if [xend,
yend] is itself the current position, the 1 pixel is drawn.

DRAW_LINES modifies the view surface only inside the clipping
rectangle.

Example:

Example:

Example:

Example:

.BYTE
.WORD
.WORD

.BYTE
.WORD
.WORD
.WORD
.WORD

.BYTE

.WORD
.WORD
.WORD

.BYTE
.WORD
.WORD
. WORD
.WORD

2.,25.
150.
200.

4.,25.
600.
-10.
300.
+10.

255.,25.

400.
40.
-32768.

4.,25.
300.
200.
300.
300.

DRAW_LINES

;Not in a filled figure definition
;(filled figure flag is FALSE)
;Current position is [200,300]
;Length=2, opcode for DRAW_LINES
;Draw a line from [200,300]

;to [150,200]

;New current position is [150,200]

;current position is ([150,200]

;not in a filled figure definition
;Length=4, opcode for DRAW_LINES

;xendl

;yendl

;xend2

;yvend2

:Draw lines from [150,200] to [600,-10]
sthen from [600,-10] to [300,10]

;New current position is [300,10]

:Note that both the -10 and the +10 are
;absolute coordinates.

;current position is [300,10]

;not in a filled figure definition
;introduces uncounted argument list
;opcode for DRAW_LINES

;xendl

;yendl

;ENDLIST terminator value

;Draws a line from [300,10] to [400,40]
;New current position is [400,40]

;Inside a filled figure definition

; (filled figure flag is TRUE)
;Length=4, opcode for DRAW_LINES

;xendl

;yendl

;xend2

;yend2

;The points [300,200] and [300,300] are
;added to the filled figure table

;new current position is [300,300]

6-20

DRAW_PACKED_CHARACTERS
6.7 DRAW_PACKED_CHARACTERS

DRAW_PACKED_CHARACTERS makes drawing of ASCII strings more
efficient, because it enables you to pack two ASCII characters
into one word. You can use DRAW_PACKED_CHARACTERS for non-ASCII
alphabets, if the indices are less than 255. It uses the low
order byte before the high order byte. Otherwise,
DRAW_PACKED_CHARACTERS is equivalent to DRAW_CHARACTERS.

Opcode: 74 Length: N

Format: DRAW_PACKED_CHARACTERS 2charindex
2charindex is two 8-bit character indices

Status: SUCCESS

Notes:

® DRAW_PACKED_CHARACTERS is appropriate for any alphabet whose
extent is less than 255.

@ A character index of 255 explicitly performs no operation.
Thus, if you want to draw 1 character, place 255 in the high
order byte of the argument.

e Using a DRAW_PACKED_CHARACTERS instruction with repeated
arguments is the fastest way to draw a long string with
GIDIS.

e DRAW_PACKED_CHARACTERS is a repeatable instruction.
Characters can be specified either in a counted argument list
(with the count supplied in the opcode word) or in an
uncounted argument list (with 255 in the opcode word and an
END_LIST after the last argument).

® The current position is updated after a character is drawn,
accoading to the cell movement controls. (See
SET_CELL_MOVEMENT_MODE and SET_CELL_EXPLICIT_MOVEMENT.)

e To delete a proportionally spaced character, specify erase
writing mode, specify mirrored text by negating display cell
width, and then redraw the character.

e When using local symmetry, the current position after a
DRAW_PACKED_CHARACTERS instruction could be different from
that calculated by your program. It is suggested that any
series of DRAW_PACKED_CHARACTERS instructions be followed by

DRAW_PACKED_CHARACTERS

a SET_POSITION instruction or a REQUEST_POSITION instruction,
unless you do not care exactly where the string ends.

e The DRAW_PACKED_CHARACTERS instruction is affected by several
attributes: wunit and display size, cell slant, cell
rotation, rendition mask, current alphabet, writing mode,
primary and secondary color, and plane mask.

e If the specified character index is outside the extent of the
current alphabet, the error character is drawn. Unless
otherwise specified in the font itself, the error character
is a checkerboard.

e DRAW_CHARACTERS modifies the view surface only inside the
clipping rectangle.

Example:

;assume current alphabet is 0
.BYTE 3.,74. ;length=3 words,opcode for
; DRAW_PACKED_CHARACTERS
.BYTE 116.,101. ;'t", 'e’
.BYTE 115.,116. ;'s’, 't’
.BYTE 49.,255. ; '1’, "no character"
;draws the string "testl"

Example:
.BYTE 1.,38. ;length=1, opcode for SET_ALPHABET
.WORD 1. ;alphabet 1
.BYTE 255.,74. ;introduces uncounted argument list
;opcode for DRAW_PACKED_CHARACTERS
.BYTE O0.,1. ;draw characters 0,1
.WORD -32768. ;draws characters that you defined in

;index 0 and 1 of alphabet 1

DRAW_REL_ARCS

6.8 DRAW_REL_ARCS

DRAW_REL_ARCS draws a circular arc from the current position
around the specified center.

Opcode: 27 Length: 3N

Format: DRAW_REL_ARCS dx, dy, angle

dy

Specifies the x coordinate of the arc’s center
point as: x of current position + dx

Specifies the y coordinate of the arc’s center
point as: y of current position + dy
angle The angle for the arc is given in degrees, with

a positive value meaning counter-clockwise with
respect to the view surface. An angle of =zero
means no drawing is done; +360 or -360 means a
full circle is drawn.

Status: SUCCESS, if angle is within a range of -360 to +360 and

there 1is no filled figure table overflow or arithmetic
overflow; otherwise, FAILURE.

Notes:

An arc is drawn as a series of straight lines. The PRO/GIDIS
interpreter calculates one line endpoint per 10 degrees of
arc (or portion thereof), regardless of the size of the
circle.

If the filled figure flag is TRUE, instead of drawing the
arc, all internally calculated line endpoints are added to
the filled figure table.

DRAW_REL_ARCS is a repeatable instruction. You can, for
example, draw three connected arcs by specifying: dx1, dyl,
anglel, dx2, dy2, angle2, dx3, dy3, angle3. The coordinates
can be specified either in a counted argument list (with the
count supplied in the opcode word), or in an uncounted
argument list (with 255 in the opcode word and an END_LIST
instruction after the last argument). See END_LIST.

The current position is left at the end of the last arc.

DRAW_REL_ARCS

e Full quadrant arcs (1/4 circle) always end at the exact point
expected. Fractional quadrant arcs end at the closest
available point. Multiple fractional quadrant arcs are not
guaranteed to end at the exact point predicted by your
program. For example, a full circle drawn as a 103 degree
arc and a 257 degree arc is not guaranteed to leave the
current position exactly where it started.

® DRAW_REL_ARCS is affected by the following GIDIS attributes:
writing mode, primary color, plane mask, secondary color,
pixel size, line texture, and filled figure flag.

® DRAW_REL_ARCS modifies the view surface only inside the
clipping rectangle.

Example:

;Current position is [400,300]
;filled figure flag is FALSE

.BYTE 3.,27. ;Length=3,opcode for DRAW_REL_ARCS

.WORD -100. ;Center is [-100,+30]

.WORD +30. ;Relative to current position

.WORD -90. ;90 degrees = one gquadrant (clockwise)
;Draws one quadrant from [400,300] to
;[330,430] centered at [300,330]
;New current position is [330,430]

Example:

;Current position is [330,430]
;filled figure flag is FALSE

.BYTE 6.,27. ;Length=3, opcode for DRAW_REL_ARCS

.WORD +35. ;

.WORD -50. ;Center is [+35,-50]

.WORD 90. ;[365,380], 90 degree arc

.WORD -35. ;Current position is now [415,415]

.WORD +50. ;Center is 380,465]

.WORD 90. ;90 degrees

;draws a lens shaped object with two
scircular arcs.

DRAW_REL_LINES

6.9 DRAW_REL_LINES

The DRAW_REL_LINES instruction draws a straight 1line from the
current position to the specified endpoint. The endpoint
coordinates are specified relative to the current position.

Opcode: 26 Length: 2N
Format: DRAW_REL_LINES dxend, dyend

dxend Specifies the x coordinate of the line’s
endpoint as: current position + dxend

dyend Specifies the <y coordinate of the line’s
endpoint as: current position + dyend

Status: SUCCESS, if no last pair arithmetic overflow or filled
figure table overflow occurs; on overflow, FAILURE. On
success, the current position is set to [x of current
position + dxend, vy of current position + dyend]. On
failure, the current position is not changed.

Notes:

e The DRAW_REL_LINES instruction is repeatable. You can,for
example, draw 3 connected lines by specifying: dxendl,
dyendl, dxend2, dyend2, dxend3, dyend3. The coordinates can
be specified either in a counted argument list (with the
count supplied in the opcode word), or in an uncounted
argument list (with 255 in the opcode word and an END_LIST
instruction after the last argument). See END_LIST.

e The DRAW_REL_LINES instruction is affected by the following
drawing attributes: writing mode, primary color, plane mask,
secondary color, pixel size, line texture, and filled figure
flag.

DRAW_REL_LINES

e When the filled figure flag is TRUE, this instruction does
not draw a straight line from the current position to the
specified point. Instead, it tries to insert [x of current
position + dxend, y of current position + dyend] into the
filled figure table. No drawing occurs until the
END_FILLED_FIGURE instruction is processed.

@ In complement and complement negate mode, the first pixel of
a line is skipped and the last pixel is drawn. But if [x of
current position + dyend, y of current position + dyend] is
itself the current position, the one pixel is drawn.

@ DRAW_REL_LINES modifies the view surface only inside the
clipping rectangle.

Example:

;Not in a filled figure definition
;(filled figure flag is FALSE)
;Current position is [100,100]

.BYTE 4.,26. ;Length=4, opcode for DRAW_REL_LINES

.WORD +10. :dxendl
.WORD -10. ;dyendl
.WORD +30. ;dxend?2
.WORD +15 ;dyend2

;Draw lines from [100,100] to [110,90]
;and from [110,90] to [140,105]
;New current position is [140,105]

Example:

;Current position is [140,105]

;not in a filled figure definition
.BYTE 255.,26. ;introduces uncounted argument list

;opcode for DRAW_REL_LINES

.WORD 10. ;dxendl
.WORD -30. ;dyendl
.WORD 20. ;dxend?2
.WORD +60. ;dyend2
.WORD -32768. ;END_LIST

;Draw line from [140,105] to [150,75]
;and then to [170,135]
;New current position is [170,135]

Example:

.BYTE
.WORD
.WORD
.WORD
.WORD

5.,26.

100.

100.

DRAW_REL_LINES

;Inside a filled figure definition

; (filled figure flag is TRUE)
;Current position is [100,100]
;Length=5, opcode for DRAW_REL_LINES
;dxendl

;dyendl

;dxend?2

;dyend?2

;Adds the points [200,100] and [200,200]
;to the filled figure table

;New current position is {200,200]

6-27

END_DEFINE_CHARACTER

6.10 END_DEFINE_CHARACTER

END_DEFINE_CHARACTER terminates a character definition block and
restores the GIDIS attributes saved by the BEGIN_DEFINE_CHARACTER

instruction.
Opcode: 36 Length: 0
Formats: END_DEFINE_CHARACTER

Status: SUCCESS if character definition flag is TRUE; otherwise,
FAILURE.

Notes:

@ The defined character can now be used like any other
character in DRAW_CHARACTERS and DRAW_PACKED_CHARACTERS.

Device Notes:

e In vVideo GIDIS, while you are defining a large character, all
but its bottom 16 lines (32 in high resolution mode on the
Professional 380) are visible at the bottom of the screen.
When END_DEFINE_CHARACTER is processed, the area occupied by
the character is set to current secondary color.

Example: See BEGIN_DEFINE_CHARACTER.

END_FILLED_FIGURE

6.11 END_FILLED_FIGURE

END_FILLED_FIGURE terminates the definition of a «closed figure,
and fills the figure. This instruction is used in conjunction
with the BEGIN_FILLED_FIGURE instruction.

Opcode: 32 Length: 0
Format: END_FILLED_FIGURE

Status: SUCCESS if there is at least one point in the filled
figure table; otherwise, FAILURE.

Notes:

e The filled figure table must contain at least 1 user-provided
point for any drawing to occur. GIDIS provides the initial
current position twice, at the beginning and end, thereby
automatically closing the figure.

e If you specify too many points, GIDIS uses only the first 255
points, and draws a straight line connecting the 255th point
with the initial current position. (255 is the maximum
number of user-provided points in the filled figure table.)

@ The current position is unchanged by END_FILLED_FIGURE. The
current position remains wherever the last drawing
instruction in the figure block set it.

e END_FILLED_FIGURE turns off the filled figure flag.

@ This instruction modifies the view surface only inside the
clipping rectangle.

Example: See BEGIN_FILLED_FIGURE

END_LIST

6.12 END_LIST

END_LIST indicates the end of an uncounted argument list. This
instruction follows the last argument in the list. The PRO/GIDIS
instructions often used with an wuncounted argument 1list are:
DRAW_LINES, DRAW_REL_LINES, DRAW_ARCS, DRAW_REL_ARCS,
DRAW_CHARACTERS, DRAW_PACKED_CHARACTERS.

Opcode: 128 Length: must be 0
Format: END_LIST

Statuse: SUCCESS

Notes:

@ You specify an uncounted argument list by placing a length of
255 in an instruction’s opcode word.

e 128 * 256 + 0 equals -32768. Thus, -32768 may not be the
value of an argument word in an uncounted argument list.
However, -32768 is valid as an argument in a counted argument
list. For example, the point [-32768,0] could not be sent in
a DRAW_LINES instruction terminated by an END_LIST
instruction, but could be sent in a DRAW_LINES instruction
with counted arguments.

Example:

.BYTE 255.,25. ;length=255 is a special value that
does not indicate 255 data words
following, but that there are an
unknown number of words
following, to be terminated

; with the END_LIST instruction.
;opcode for DRAW_LINES

we wme W W

.WORD 100. ;DRAW_LINES data
.WORD 110. ;DRAW_LINES data
.WORD -32768. ;;END_LIST

END_PICTURE

6.13 END_PICTURE

END_PICTURE logically terminates the current picture. The action
performed by END_PICTURE depends on the current device.

Opcode: 24 Length: 0
Format: END_PICTURE
Status: SUCCESS

Notes:

e It is recommended that you use NEW_PICTURE and END_PICTURE to
enclose the instructions used in drawing a picture.

@ END_PICTURE simulates a FLUSH_BUFFER instruction.
Device Notes:

e For a GIDIS that builds a virtual bitmap (for example,
Palette GIDIS), END_PICTURE causes the bitmap to be output to
the device.

@ For Sixel GIDIS, an END_PICTURE does a formfeed. However if
you are using the VDM interpreter to print the picture as
part of a document, the formfeed is suppressed.

e For Palette GIDIS, an END_PICTURE advances the film, provided
you are not passing the picture through the VDM interpreter.

e For Plotter GIDIS, an END_PICTURE advances the paper (or
ejects the paper in the case of single sheet feed), provided
you are not passing the picture through the VDM interpreter.

END_PICTURE

Example:

.BYTE 0.,6. ;length=0,0opcode for NEW_PICTURE
. 7
. ;drawing instructions
. H

.BYTE 0.,24. ;length=0,o0pcode for END_PICTURE
. H

;wait for operator response

. ;perhaps

.BYTE 0.,6. ;length=0,0opcode for NEW_PICTURE

1

;more drawing instructions

7

ERASE_CLIPPING_REGION

6.14 ERASE_CLIPPING_REGION

ERASE_CLIPPING_REGION sets every pixel inside the current
clipping rectangle to the current secondary color. This
instruction provides a way to clear an area without implying the
beginning of a new picture.

Opcode: 48 Length: 0

Format: ERASE_CLIPPING_REGION

Status: SUCCESS

Notes:

@ Do not use this instruction as a substitute for NEW_PICTURE
and END_PICTURE.

® You should use ERASE_CLIPPING_REGION, rather than
BEGIN_FILLED_FIGURE and END_FILLED_FIGURE to clear a
rectangular area of the view surface.

® The current writing mode, current area texture, and primary
color do not affect this instruction. However, plane mask
does.

Device Notes:
@ Plotter GIDIS ignores ERASE_CLIPPING_REGION.

Example:

.BYTE 0.,48. ;Length=0,
;opcode for ERASE_CLIPPING_REGION

FLUSH_BUFFER

6.15 FLUSH_BUFFER

FLUSH_BUFFER forces execution of any pending GIDIS processing.
Opcode: 28 Length: 0

Format: FLUSH_BUFFER

Status: SUCCESS

Notes:

e FLUSH_BUFFER enables you to ensure that all previous drawing
instructions have been executed prior to requesting operator
response or the like.

Example:

.BYTE 0.,28. ;length=0,opcode for FLUSH_BUFFER

INITIALIZE

6.16 INITIALIZE

INITIALIZE restores PRO/GIDIS subsystems to their default states.
Also, 1if a character definition block or filled figure block is
active, INITIALIZE aborts it.

Opcode: 1 Length: 1
Format: INITIALIZE sub-mask

sub-mask Is a word that specifies =zero or more of
PRO/GIDIS’s subsystems. The subsystems defined
at this time are 1listed in Table 6-3. A
subsystem 1is represented in the mask value as a
bit, as shown in the table. For example, a
value of 6 (bit 2 + Dbit 1) resets text and
writing attributes.

Status: SUCCESS

Table 6-3: Initialization of Subsystems

Subsystem Description Bit Value

Addressing Sets IDS, Viewport, GOS 0 1
and clipping region to 960
x 600. Also sets all
attributes that specify
distances or coordinates
(for example, unit cell

size).
Writing Reinitializes writing 1 2
Attributes mode, primary color,

secondary color, line and
area texture, planes
selected, and pixel size.

INITIALIZE

Subsystem Description Bit Value

Text Resets the current 2 4
alphabet, unit size,
display size, cell
rotation, cell rendition,
implicit cell movement
flag, and explicit cell

movement.

Color Map Reinitializes the color 4 16
map.

Alphabet Clears all user-defined 5 32

alphabets and sets family
ID of alphabet 0 to
"DGIDIS".

Cursor Resets the output cursor 8 256
and output rubber band.

Notes:

e INITIALIZE O is useful, as it aborts any blocks begun with
BEGIN_FILLED_FIGURE and BEGIN_DEFINE_CHARACTER without
affecting any GIDIS subsystems.

® You can combine mask bits to initialize multiple subsystems
in one instruction.

@ A mask of -1 decimal (177777 octal) initializes all
subsystems.

@ The order of initialization is: (1) addressing, (2) writing
attributes, (3) text, (4) color map, (5) alphabet storage,
and (6) cursor.

@ .GID files that use default text attributes may not come out
as expected, because some defaults are appropriate only for
video GIDIS.

@ Table 6-4 lists all of the GIDIS attributes affected and
their values after initialization. Note that some attributes
are included in more than one subsystem. All coordinates and
distances are in GOS, unless otherwise noted.

INITIALIZE

Table 6-4: Values of GIDIS Attributes After an INITIALIZE
Attribute Value
Addressing Subsystem

output IDS width 960

output IDS height 600

output viewport x origin 0 in IDS
output viewport y origin 0 in IDS
output viewport width 960 in IDS
output viewport height 600 in IDS
GIDIS output space x origin 0

GIDIS output space y origin 0

GIDIS output space width 960

GIDIS output space height 600

output clipping x origin 0

output clipping y origin 0

output clipping width 960

output clipping height 600

current position x 0

current position y 0

line texture size N/A

area texture width 12

area texture height 25

logical pixel width 0 (1 hardware pixel)
logical pixel height 0 (1 hardware pixel)
logical pixel x offset 0

logical pixel y offset 0

cell movement mode flag 2 (implicit)
cell explicit movement dx 0

cell explicit movement dy 0

cell display size width 12

cell display size height 25

cell unit size width 12

cell unit size height 25

INITIALIZE

Attribute Value

Writing Attributes Subsystem

primary color 7

secondary color 0

plane mask all available planes
writing mode overlay
logical pixel width 0

logical pixel height 0

logical pixel x offset 0

logical pixel y offset 0

line texture pattern solid (all ones)
line texture length N/A

line texture size N/A

area texture alphabet -1

area texture character 0 (solid)
area texture width 12

area texture height 25

Text Subsystem

current alphabet 0

cell display size width 12

cell display size height 25

cell unit size width 12

cell unit size height 25

cell rotation 0

cell oblique 0

cell rendition 0

cell movement mode flag 2 (implicit)
cell explicit movement dx 0

cell explicit movement dy 0

INITIALIZE

Attribute Value
Color Map Subsystem (values associated)

R G B M Color Mono
color map [0] .0 .0 .0 .0 black (dark)
color map [1] .2 .2 .6 .2 Dblue (dk. gray)
color map [2] 7 .2 .2 .3 red (lt. gray)
color map [3] .2 .7 .2 .4 green (light)
color map [4] .6 .6 .6 .7 white (light)
color map [5] .6 .6 .6 .7 white (light)
color map [6] .6 .6 .6 .7 white (light)
color map [7] .6 .6 .6 .7 white (light)
Alphabet Storage Subsystem
family name of alphabet 0 "DGIDIS"

Cursor Subsystem

output cursor alphabet -1

output cursor character index N/A

output cursor width N/A

output cursor height N/A

output cursor x offset N/A

output cursor y offset N/A

output cursor rendition blinking

output rubber band type none

Example:
.BYTE 1.,1. ;length=1,opcode for INITIALIZE
.WORD 1.12.14 ;addressing, writing attributes,

;and text subsystems mask bits

;are set

LOAD_BY_NAME(1)

6.17 LOAD_BY_NAME(1)

LOAD_BY_NAME (1) loads a pre-built font into the current alphabet.

The

argument list is a pair of words which contain a region name

in Radix-50.

Opcode: 37 Length: 2

Format: LOAD_BY_NAME(1l) name-0, name-1

name -0 3 radix-50 characters

name-1 3 radix-50 characters

Statuss SUCCESS if the region named identifies a wvalid region,

the region has the proper format, the current alphabet
number is not 0, and there are sufficient resources to
load the font region; otherwise, FAILURE.

Notes:

Subsequent SET_ALPHABET instructions do not affect previous
LOAD_BY_NAME INSTRUCTIONS. For example, if you loaded font
MYALPH into alphabet 1, it would remain alphabet 1’s font
until INITIALIZE 32, another LOAD_BY NAME, or a
CREATE_ALPHABET was processed for alphabet 1.

If no such region can be found or installed, GIDIS simulates
a LOAD_BY_NAME(2) and loads "DGIDIS", the default family ID
for alphabet 0.

A GIDIS font file is an RSX Common Library. In other words,
installing a GIDIS font file creates a font region.

A font region must conform to the format shown in Appendix C.
A font region can be accessed in one of 3 ways:

1. Prior to doing the LOAD_BY_NAME(1), you can create and
load the region in your application.

2. Prior to doing the LOAD_BY_NAME(1l), you can install a
font file with the DCL INSTALL command, PROTSK, or your
application installation file (.INS).

3. You can rely on GIDIS to install the region’s font file

when the LOAD_BY NAME(1l) is done. You enable GIDIS to
install the file in either of two ways:

6-40

Example:

Example:

LOAD_BY_NAME(1)

Place the font file on LB:[ZZFONT] and name it
region-name.TSK. (Note: $’'s and .’s in a region
name become Z’s in the filename).

Describe the font in an .FDF file. See Appendix D.

.BYTE 2.,37. ;length=2, opcode for LOAD_BY_NAME
.Radix-50 "BOLD";let MACRO-11 compute the Radix-50 for

BOLD

.BYTE 2.,37. ;Radix-50 for MYALPH
.WORD 050500+001750+000001 ;s MYA

.WORD 045400+001200+000010 ; LPH

LOAD_BY_ NAME(2)

6.18 LOAD_BY NAME(2)

LOAD_BY_NAME(2) associates the current alphabet with the
specified font family. When a subsequent DRAW_CHARACTERS or
DRAW_PACKED_CHARACTERS is done, GIDIS finds the font file in the
family that best matches the current GIDIS text attributes. See
Appendix D.

Opcode: 37 Length: 3 to 7
Format: LOAD_BY _NAME(2) Chl, Ch2, Ch3, ...Chn
Chl - Chn Is a font family ID, encoded as 1 character per
word

Status: SUCCESS

Notes:

® Subsequent SET_ALPHABET instructions do not affect previous
LOAD_BY_NAME instructions. For example, if you loaded family
ID MYALPH into alphabet 1, it would remain alphabet 1's
family ID until INITIALIZE 32, another LOAD_BY_NAME, or a
CREATE_ALPHABET was processed for alphabet 1.

e The default family ID for alphabet 0 is DGIDIS.

e Family IDs are mapped to uppercase. For example, specifying
"dgidis" is equivalent to specifying "DGIDIS".

e A font must be described in an .FDF file on LB:[ZZFONT] to be
accessible via a LOAD_BY_NAME(2) (see Appendix D).

e If the specified family has no members, GIDIS simulates a
LOAD_BY_NAME(2) "DGIDIS."

Example:
.BYTE 1.,38. ;Length=1,o0opcode for SET_ALPHABET
.WORD 1. ;Selects alphabet 1 as current alphabet
.BYTE 6.,37. ;Length=6,opcode for LOAD_BY_NAME
.WORD 68. ;D
.WORD 71. ;G
.WORD 73. ;I
.WORD 68. ;D
.WORD 73. H
.WORD 83. ;S,associates alphabet 1 with family

;ID "DGIDIS"

6-42

LOAD_CHARACTER_CELL

6.19 LOAD_CHARACTER_CELL

LOAD_CHARACTER_CELL defines a character cell from the specified
data. This instruction acts on the current alphabet.

Opcode: 34 Length: 2 + N
Format: LOAD_CHARACTER_CELL char-index, width, 40, d1,...,dn

char-index The index of the character cell to be 1loaded.
This wvalue must be in the range 0 to extent-1,
where extent is the total character count for
the current alphabet.

width The width value must be in the range 0 to the
width value given with the CREATE_ALPHABET
instruction that established the alphabet.

d0, d1,...dn Zero or more words of data to be loaded into the
character cell. The top character cell row is
loaded from the first data word(s), the second
row from the next data words, and so forth.
Excess data words are ignored, and missing data
words are assumed to be 0’s. Each row of the
cell is (alphabet width + 15)/16 data words.
For example, an 8-bit wide alphabet has 1 word
per row, and a 20-bit wide alphabet has 2 words
per row.

Status: SUCCESS if not within a character definition block (See
BEGIN_DEFINE_CHARACTER), character index is 1in range
(see CREATE_ALPHABET), width is in the range 0 to
alphabet width, and a CREATE_ALPHABET has been done for
the current alphabet; otherwise, FAILURE.

Notes:
e The defined character can now be used like any other
character in SET_AREA_TEXTURE, SET_OUTPUT_CURSOR,
DRAW_CHARACTER and DRAW_PACKED_CHARACTER instructions.

e The leftmost pixel in a row comes from the low-order bit in
the appropriate data word.

6-43

LOAD_CHARACTER_CELL

Example:

;Alphabet 2 has width of 5, height of 6,
; and extent of 10

.BYTE 7.,34. ;Length=7, opcode for LOAD_CHARACTER_CELL

.WORD 9. ;Character index (last cell in alphabet)
.WORD 5. ;Width

.WORD ~B00001 ;Pattern: ON -- -- -- --
.WORD ~B00011 ON ON -- -- -
.WORD ~B00101 (Note the ON - ON - --
.WORD ~B01001 bit reversal) ON -- -- ON --

ON ON ON ON ON
;Last row not given; set to 0's
;automatically.

;Character is a triangle

.WORD ~B11111

“e we we we we

NEW_PICTURE

6.20 NEW_PICTURE

NEW_PICTURE indicates the beginning of a new picture.
Opcode: 6 Length: 0

Formats NEW_PICTURE

Status: SUCCESS

Notes:

e It is recommended that you use NEW_PICTURE and END_PICTURE to
enclose the instructions used in drawing a picture.

e Secondary color is written to the view surface subject to the
plane mask in effect at the time NEW_PICTURE executes. (See
SET_PLANE_MASK.)

® A NEW_PICTURE clears all of hardware address space,
regardless of the current clipping region. In particular, it
clears the 32-pixel bands on both sides of the screen not
normally used in video GIDIS.

Device Notes:

o NEW_PICTURE does not affect picture background in Plotter
GIDIS.

Example:

.BYTE 0.,6. ;length=0,0opcode for NEW_PICTURE

NOP

6.21 NOP

NOP performs no operation. Execution of a NOP has no effect on
the current state of PRO/GIDIS, other than to set the status flag
to SUCCESS.
Opcode: 0 Length: 0
Format: NOP
Status: SUCCESS
Note:
® This instruction is useful for transparently inserting
information from a higher level protocol into a stream of

GIDIS instructions. Use a nonzero length, when you want to
insert information.

Example:
.BYTE 0.,0. ;length=0,opcode for NOP
Example:
.BYTE 2.,0. ;length=2,o0pcode for NOP
.WORD 1540. ;private data (ignored by PRO/GIDIS)
.WORD 71. ;private data (ignored by PRO/GIDIS)

PRINT_SCREEN

6.22 PRINT_SCREEN

PRINT_SCREEN sends the specified portion of the video bitmap to a
sixel printer connected to the printer port.

Opcode:
Format:

X

width

height

hxly

dxly

mask

Status:

Notes:

141 Length: 6 or 7

PRINT_SCREEN x, y, width, height, hxly, dxly, [mask]

SUCCESS

Specifies the leftmost horizontal coordinate of
the GOS data to be printed

Specifies the uppermost vertical coordinate of
the GOS data to be printed

Width of the area to be printed
Height of the area to be printed

Specifies the horizontal offset from the current
printhead location to where you want to begin
printing the screen data.

Specifies the vertical offset from the current
printhead 1location to where you want to begin
printing the screen data.

Specifies the color indexes that cause printing
a dot on the paper. The low order bit is color
0, the next bit color 1, and so on. If mask 1is
omitted, it 1is generated as follows. In a
single plane system (no EBO), a pixel value of 0
is mapped to a skip (leaves paper white) and a 1
is mapped to a strike (prints on the paper). On
multi-plane systems, the value of the color map
is tested as follows. If the entry (color index
of point) equals 0, the point 1is skipped
(white). 1If not 0, the point prints.

® Applies to video GIDIS only.

e If the printer port does not have a sixel printer connected,
nothing occurs.

Example:

.BYTE
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

6.,141.

100.
100.
400.
200.

0.

PRINT_SCREEN

;Length=6, opcode for PRINT_SCREEN
;Upper left bitmap corner

; is [100,100]

;Data to be printed is 400 units wide
; by 200 units high

;Begin printing at current printhead
; location

REQUEST_CELL_STANDARD

6.23 REQUEST_CELL_STANDARD

REQUEST_CELL_STANDARD reports the GOS dimensions you would have
to specify to generate a standard size character. A standard
size character has dimensions such that when its width/height =
8/5, 80 characters fit across the device and 24 lines fit
vertically.

Opcode: 54 Length: 0

Format: REQUEST_CELL_STANDARD

Statuss: SUCCESS

The report consists of 5 words:

Report Header, unit-wd, unit-ht, display-wd, display-ht

where
unit-wd Is the unit cell width of the standard size
character.
unit-ht Is the unit cell height of the standard size
character.
display-wd Is normally the same as unit-wd. However if the
current alphabet is 0, this value is 11/12 of
the current cell width.
display-ht Is normally the same as unit-ht. However if the
current alphabet is 0, this value is 11/12 of
the current cell height.
Notes:

e This instruction takes into account the storage size of the
current alphabet and the character rotation currently in
effect. As a result, the standard size for alphabet 0 (DEC
Multinational) is not necessarily the same as the standard
size for a user alphabet.

e Rounding could take place converting from device coordinates
to GIDIS space. If your program later sets unit cell size to
'n’ times the size of the standard, the characters actually
formed might not be precisely ’'n’ times the standard.

Example:

.BYTE

0.

,54.

REQUEST_CELL_STANDARD

,opcode for REQUEST_CELL_STANDARD

;Length=0,
Byte 4.
Byte 5.
Word 9.
Wword 20.
wWord 8.

; Word 20.

I
.
4
°
’
.
’
.
4
4
4

(Data words following)
(Cell Standard Rpt. Tag)
(Unit-wd)

(Unit-ht)

(Display-wd)
(Display-ht)

REQUEST_CURRENT_POSITION

6.24 REQUEST_CURRENT_POSITION

REQUEST_CURRENT_POSITION reports the absolute 1location of the
current position in GIDIS Output Space. The current position is
the display location at which the next character, 1line, or arc
would be drawn.

Opcode: 55 Length: 0

Format: REQUEST_CURRENT_POSITION

Status: SUCCESS

The report consists of 3 words:
Report header, current x, current y

Notes:

@ The current position is not necessarily the same as the last
position given to SET_POSITION or DRAW_LINES; DRAW_CHARACTERS
and DRAW_ARCS instructions also move the current position.

@ REQUEST_CURRENT_POSITION is most useful following a DRAW_ARCS
or a DRAW_CHARACTERS (local symmetry), since your program
cannot determine precisely where PRO/GIDIS leaves the current
position after these instructions.

Example:

.BYTE 0.,55. ;Length=0,
;opcode for REQUEST_CURRENT_POSITION
;This instruction causes the following
report to be placed in the report
queue if there is sufficient room.

~e mo We o W wo wp

Byte 2. Data words following

Byte 1. Current Position Report Tag
Word x PRO/GIDIS coordinates

Word y for the current position

REQUEST_OUTPUT_SIZE

6.25 REQUEST_OUTPUT_SIZE

REQUEST_OUTPUT_SIZE reports the attributes of
device’s view surface.

Opcode: 57 Length: 0
Format: REQUEST_OUTPUT_SIZE
Status:s SUCCESS

The report consists of 10 words:

the current

Report header, ulx, uly, screen_width, screen_height,

total_width, total_height, resolution_x, resolution_y,

Total_plane_mask

where

[ulx, uly] Are the coordinates of the wupper 1left
corner of the device’s view surface in IDS
units

Screen_width Is device width in IDS units

Screen_height Is device height in IDS units

Total_width Is device width in IDS units

Total_height Is device height in IDS units

Resolution_x Is device width in HAS x units

Resolution_y Is device height in HAS y units

Total_plane_mask Is the plane mask that contains a 1 for

every plane accessible. See device notes

of SET_PLANE_MASK.

Example:

.BYTE

0.,57.

REQUEST_OUTPUT_SIZE

;Assume PRO 350 video with EBO
;Assume IDS is 960 by 600
;length=0,o0pcode for REQUEST_OUTPUT_SIZE

7

;BYTE
H

;BYTE
; WORD
; WORD
;s WORD
; WORD
; WORD

’

; WORD

;1024.

’
;WORD

r

; WORD

9.

2.
-32.
0.
1024.

600.
1024.

600.

240.

7.

9 words following output size
report tag

OUTPUT_SIZE_REPORT tag

IDS coordinate of device’s
upper left corner is [-32,0]
IDS width and height of
entire view surface

IDS width and height of
entire view surface

number of pixels in total
device width

number of pixels in total
device height

total plane mask

REQUEST_STATUS

6.26 REQUEST_STATUS

REQUEST_STATUS reports the success or failure of the last
PRO/GIDIS instruction. All PRO/GIDIS instructions set the status
variable.

Opcode: 58 Length: 0

Format: REQUEST_STATUS

Status: SUCCESS

The report consists of 2 words:
Report header, status

where the low-order bit of the status word is either
1 - indicating SUCCESS
0 - indicating FAILURE.

Notes:

@ No other codes are defined. (Codes other than 0 or 1 are
reserved for future use.)

e FAILURE status is not saved. If your program needs
information about the success or failure of every
instruction, you must place a REQUEST_STATUS instruction
after each PRO/GIDIS instruction.

e Testing is recommended only following major PRO/GIDIS
instructions, such as CREATE_ALPHABET.

Example:

;assumes previous instruction failed
.BYTE 0.,58. ;Length=0,

;opcode for REQUEST_STATUS

; Byte 1. (Data words following)
Byte 4. (Current Status Report Tag)
Word 0 (FAILURE status)

o
7
-

14

REQUEST_VERSION_NUMBER

6.27 REQUEST_VERSION_NUMBER

The REQUEST_VERSION_NUMBER instruction reports the version number
and driver of PRO/GIDIS.

Opcode: 71 Length: 0
Format: REQUEST_VERSION_NUMBER
Status: SUCCESS

The report consists of 3 words:

Report header, driver, version

where
driver Is 21 for Video GIDIS,
22 for Plotter GIDIS,
23 for Sixel GIDIS,
24 for File GIDIS,
25 for Palette GIDIS.
version Is the version number of GIDIS.
Notes:

e For P/0S v2.0, the version number of GIDIS is 21.

e For P/0S V2.0A, the version number of GIDIS is 29.

e For P/0S V3.0, the version numer of GIDIS is 32.

Example:

.BYTE 0.,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>