
Tool Kit
Reference Manual

Order No. AA-BT74B-TH

November 1985

This manual provides reference information for some of
the components of the Tool Kit.

REQUIRED SOFTWARE: Host Tool Kit V3.0
or PRO/Tool Kit V3.0

OPERATING SYSTEM: P/OS V3.0

DIGITAL EQUIPMENT CORPORATION
Maynard. Massachusetts 01754-2571

First Printing, April 1984
Updated, July 1985

Revised, November 1985

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a
license and may only be used or copied in accordance with the
terms of such license.

No responsibility is assumed
software on equipment that
affiliated companies.

for the use or reliability of
is not supplied by DIGITAL or its

The specifications and drawings, herein, are the property of
Digital Equipment Corporation and shall not be reproduced or
copied or used in whole or in part as the basis for the
manufacture or sale of items without written permission.

Copyright © 1985 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTI BUS MASS BUS Rainbow
DEC PDP RSTS
DECmate P/OS RSX
DECsystem-10 PRO/BASIC Tool Kit
DECSYSTEM-20 PRO/Communications UNIBUS
DECUS Professional VAX
DECwriter PRO/FMS VMS
DIBOL PRO/RMS VT

mnmnamaTM PROSE Work Processor
PROSE PLUS

CHAPTER 1

1.1
1.2
1. 2 .1
1. 2. 2
1. 2. 3
1. 2. 4

1. 2. 5
1. 2. 6

CHAPTER 2

2.1
2 .1.1
2 .1. 2
2 .1. 3
2.2
2.2.1
2.2.2
2.2.2.1
2.2.2.2
2.2.2.3
2.2.2.4
2.2.2.5

2.2.2.6
2.2.2.7
2.2.2.8
2.2.2.9
2.2.2.10
2.2.2.11
2.2.2.12
2.2.2.13
2.2.2.14
2.2.2.15
2.3
2.3.1
2.3.2
2.3.2.1
2. 3. 3
2.3.3.1
2.3.3.2

CONTENTS

PREFACE ix

APPLICATION DISKETTE BUILDER (ADB)

USING ADS
THE ADS DIALOGUE

Step 1: Choose Target System .
Step 2: Choose Installation Command File .
Step 3: Ready Target Diskette
Step 4: Copy Installation Command File to
First Diskette
Step 5: Copy Files to Target Diskette
Step 6: Label Completed Diskette ...

COMMUNICATIONS SERVICES

OVERVIEW OF COMMUNICATIONS SERVICES
Status Returns
Line Descriptor Block
Autodial Modem Support

BASE SYSTEM SERVICES . .

1-1
1-2
1-2.
1-3
1-3

1-4
1-4
1-4

2-2
2-2
2-4
2-8
2-9
2-9 Base System Start-Up

Base System Routines .
Attach Line (CCATT and CCATA)
Detach Line (CCDET)

. . . 2-10
. . 2-10
. . 2-11
. . 2-11
. . 2-12

Set Line Characteristics (CCSMC) ..
Get Line Characteristics (CCGMC) ..
Get/Put Line Configuration Record
(CCLCRG and CCLCRP) 2 -13
Set Translate Table (CCMTT) 2-14
Di a 1 ca 11 (cc DI AL) 2 -1 5
Answer Call (CCANS) .. 2-18
Originate Call (CCORG) 2-19
Hang Up a Call (CCHNG) 2-21
Transmit Data (CCTXD) 2-21
Receive Data (CCRXD) 2-22
Flush Input Buffer (CCFLSH) 2-23
Generate Break (CCBRK) 2-24
Kill Transfer (CCKILL) 2-25

PRO/COMMUNICATIONS SERVICES 2-25
PRO/Communications Start-Up 2-26
PRO/Communications Utilities 2-26

Spawn Communications Utility (CCSPWN) . 2-27
Phone Book Services 2-28

Get Phone Book Record (CPHREC) 2-28
Select Phone Book Entry (CPHSEL) 2-29

iii

CHAPTER

CHAPTER

CHAPTER

2.3.4
2.3.4.1
2.3.4.2
2.3.4.3
2.3.4.4
2.3.4.5
2.3.4.6

2.3.4.7
2.3.4.8
2.3.4.9
2.3.4.10
2.3.4.11

2.3.4.12
2.3.4.13
2.3.4.14
2.4
2.4.1
2.4.2
2.4.2.1
2.4.2.2

2.4.2.3
2.4.2.4

3

3.1

4

4.1
4;2
4.3

5

5.1
5.2
5.2.1
5.2.2
5.2.3
5.3
5.3.1
5.3.2
5.3.3
5.3.4

File Transfer Services
File Transfer Initiation Protocol
Attaching the File Transfer Subsystem
Releasing the File Transfer Subsystem
Synchronous and Asynchronous Operations
File Transfer Synchronization

. 2-30

. 2-31

. 2-31

. 2-32
2-32
2-32

Set Up File Transfer Options (FTOPTG and
FTOPTP) 2-33
Attach File Transfer Subsystem (FTATT) . 2-35
File Transfer Operation Request (FTOPRN) 2-36
Notify On Incoming File (FTNTFY) 2-38
Synchronize with File Transfer (FTSYNC) 2-40
Unpack File Transfer Message Area
(FTUNPK).............. 2-41
Detach File Transfer (FTDET} 2-42
Start File Transfer Server (FTSERV) 2-43
Enable/Disable File Listening (FTLISN) . 2-44

TELEPHONE MANAGEMENT SYSTEM (TMS) SERVICES . 2-45
TMS Start-Up 2-45
TMS Routines 2-45

Change Mode (CCMODE) 2-45
Auxiliary Keyboard Enable/Disable
(C CAUXK) 2 - 4 6
Prepare to Go Voice (CCPTGV) 2-47
Set DTMF Escape Sequence (CCDTMF) . 2-48

FAST INSTALL

INSTALLING DECNET OBJECTS FOR TESTING 3-3

FILE CONTROL SERVICES (FCS)

SUPPORT BY HIGH-LEVEL LANGUAGES 4-1
USING FCS RESIDENT LIBRARY 4-2
USING FCS IN-TASK VERSION 4-2

FRAME DEVELOPMENT TOOL (FDT)

FDT OVERVIEW
INVOKING FDT .

Invoking FDT
Invoking FDT
Invoking FDT

FILE COMMANDS
ADD
CONVERT
DELETE .
EXIT . .

on VAX/VMS
on RSX-11M/M-PLUS (DCL)
in PRO/Tool Kit

iv

5-1
5-2
5-2
5-3
5-3
5-3
5-4
5-4
5-5
5-5

5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10
5.3.11
5.3.12
5.3.13
5.4
5.4.1
5.4.2
5. 4. 3
5.4.4
5. 4. 5
5.4.6
5. 4. 7
5.5
5.6
5.6.1
5.6.2
5.6.3
5.7
5.7.1
5.7.2
5.7.3
5.8
5.8.1
5.8.2
5.9
5.9.1
5.9.2
5.10
5.11

CHAPTER 6

6.1

FILE
HELP
LIST .
MODIFY . .
NAME .
QUIT .
REPORT . .
SAVE . . .
WINDOW .

FRAME COMMANDS .
ACTION . .
DISPLAY
EXIT . .
HELP . . .
PROFILE
QUIT .
SAVE .

PROFILE, DISPLAY, AND ACTION FORMS .
CREATING A SINGLE-CHOICE MENU

The Profile Form . .
The Display Form . .
The Action Form

CREATING A HELP MENU .
The Profile Form
The Display Form . .
The Action Form

CREATING A HELP TEXT FRAME
The Profile Form
The Display Form

CREATING A MESSAGE TEXT FRAME
The Profile Form
The Display Form

RESOLVING ERRORS .
SAMPLE TERMINAL SESSION

INSTALLATION COMMAND LANGUAGE

INSTALLATION COMMAND FILE FORMAT
Using .INB and .INS Files

5-6
. . . . 5-6

5-7
5-7
5-7
5-8
5-8
5-8
5-9

. . 5-10
. 5-10
. 5-11
. 5-11
. 5-12
. 5-12

. . 5-12

. . 5-13

. . 5-13

. . 5-18
. 5-18

. . . 5-20
. 5-21
. 5-23
. 5-23
. 5-24

. . 5-25
. 5-26

. . 5-26
. 5-27

. . 5-28

. . 5-28
. 5-28

. . 5-29
. 5-29

6-2
6-3 6 .1.1

6 .1. 2 Using /USER, /NETWORK, and /CLUSTER in Your

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

. I NB Fi 1 e 6-3
6-7
6-8

INSTALLATION FILE ERRORS
\ ASSIGN HELP

ASSIGN LOGICAL
ASSIGN MENU
ASSIGN MESSAGE (.INB FILE ONLY)
COMMENT
EXECUTE
FILE . . .
INSTALL

v

. . . . 6-9
. . 6-10

. 6-11
. . 6-12

. . . . 6-12
. 6-19

. . 6-21

6.11
6.12
6.13
6.14
6.15

CHAPTER 7

7.1
7.2
7.3

CHAPTER 8

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16

8.17
8.18
8.19
8.20
8.21
8.22

CHAPTER 9

9.1
9.2
9.3
9.4

MOUNT 6-23
NAME 6-24
RUN 6 - 2 5
IMPROVING APPLICATION PERFORMANCE 6-26
REQUIRED COMMANDS FOR APPLICATIONS . . 6-26

MACR0-11 ASSEMBLER (PMA)

INVOKING PMA ON THE PRO/TOOL KIT . .
INVOKING PMA ON RSX-11M/M-PLUS
INVOKING PMA ON VAX/VMS

7-1
7-1
7-2

POSRES USER INTERFACE LIBRARY ROUTINES

NOTES ON USING POSRES ROUTINES . . 8-1
DMENU - DISPLAY DYNAMIC MENU 8-3
DPACK - PACK DYNAMIC SINGLE CHOICE MENU 8-5
FATLER - FATAL ERROR 8-8
GETKEY - GET KEYSTROKE 8-9
HCLOSE - CLOSE HELP FILE . 8-10
HELP - DISPLAY HELP FRAME 8-11
HFILE - OPEN HELP FILE 8-12
HFRAME - SPECIFY HELP FRAME . 8-14
MCLOSE - CLOSE MENU FILE 8-15
MENU - DISPLAY SINGLE-CHOICE MENU . 8-16
MFILE - OPEN MENU FILE 8-18
MFRAME - READ MENU FRAME 8-20
MMENU - DISPLAY MULTIPLE-CHOICE MENU . 8-21
MPACK - PACK MULTIPLE-CHOICE MENU 8-23
MSGBRD - SEND MESSAGE TO A MESSAGE/STATUS
DISPLAY
MUNPK - UNPACK MENU BUFFER
NEWFIL - NEW FILE
OLDFIL - OLD FILENAME
PRSCSI - PARSE STRING
RDMSG - READ MESSAGE
WTRES - WAIT FOR RESUME KEY

CALLABLE PRINT SERVICES

. 8-25
. . . 8-26

8-28
. 8-30

. 8- 32
. • • . 8- 3 3

. 8- 3 5

CPRNT
CPRNV3

9-1
9-4
9-8
9-8

COMPATIBILITY BETWEEN CPRNT AND CPRNV3 .
EXAMPLE

vi

CHAPTER 10

CHAPTER 11

11.1
11. 2
11. 3
11. 4
11. 4 .1
11. 5
11. 6
11.6.1
11. 7
11.7.1
11. 8
11.8.1
11. 9
11.10
11.11
11.11.1
11.12
11.12.1
11.13
11.14

APPENDIX A

A.1
A.2

APPENDIX B

B.1
B.2

APPENDIX C

APPENDIX D

APPENDIX E

E.1
E.2

PROSE TEXT EDITOR

PRO/SORT

USING PRO/SORT •
VALID RMS RECORD FORMATS •
PRO/SORT COMMANDS AND COMMAND FILE .

. . 11-1
. 11-2
. 11-3

COLLATE 11-4
. 11-5
. 11-5
. 11-7

COLLATE Compared to SORT ALTSEQ
DEFAULT • . .
FIELD

Pseudo-Fields RRN and RFA
FORCE

FORCE Compared to SORT F .
INCLUDE

11-9
. 11-10
. 11-10

11-11
INCLUDE Compared to SORT 0 and I . . 11-12

11-13
11-13

INPUT AND OUTPUT
PROCESS
SORT

SORT Compared to SORT N and 0
WRITE

WRITE Compared to SORT D .
PRO/SORT ERROR CODES . .
PRO/SORT EXAMPLE

. . . . 11-13
11-14
11-15

. 11-15
11-15
11-18

APPLICATION DISKETTE BUILDER ERROR MESSAGES

ADB NORMAL ERRORS . . .
ADB SERIOUS ERRORS .

FDT ERROR MESSAGES

USER ERRORS
INTERNAL ERRORS

POSRES STATUS BLOCK CODES

FUNCTION KEY NAMES AND CODES

P/OS ERROR CODES

APPLICATION CANNOT BE STARTED
SYSTEM ABORTED TASK

vii

A-2
A-7

B-2
B-9

E-1
E-3

INDEX

FIGURES

TABLES

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
6-1
9-1
11-1

11-2
11-3
11-4
11-5

Forms for a Single-Choice Menu
FDT Screen Editor Keypad
Profile Form for Single-Choice Menu
Display Form for Single-Choice Menu
Action Form for Single-Choice Menu .
Profile Form for Help Menu .
Display Form for Help Menu
Action Form for Help Menu
Profile Form for Help Text Frame
Display Form for Help Text Frame
Profile F~rm for Message Frame . . .
Installation Command File Format .
Sample Call to CPRNV3
Mapping of Bytes to Fields in Input Data
Stream
Sample PRO/SORT Command File
Sample Input File INPUT.DAT
Sample Indirect Command File FIELDS.CMD
Resulting Output File OUTPUT.DAT

. 5-15

. 5-16

. 5-18

. 5-20

. 5-21

. 5-23

. 5-24

. 5-25

. 5-26

. 5-27

. 5-28
6-2
9-9

. 11-8
11-18
11-19
11-19
11-21

1-1 Application File Locations for ADB . . 1-2
2-1 Communications Status Return Codes . . 2-3
2-2 Characteristic Positions in the LOB 2-5
2-3 Transmit/Receive Rate Values for LOB . 2-6
3-1 Application File Locations for Fast Install 3-2
6-1 Summary of /USER, /NETWORK, and /CLUSTER

Qualifiers 6-6
6-2 EXECUTE Qualifiers and Phases of

Installation/Removal 6-17
6-3 Required Commands 6-27
9-1 CPRNT Condition Codes 9-2
9-2 CPRNT Error Codes 9-3
9-3 Status Returns for CPRNV3 9-6
10-1 Callable Editor - Status Return Codes . 10-3
11-1 Number of PRO/SORT Commands per Command File 11-3
11-2 PRO/SORT Error Codes 11-16
C-1 POSRES Status Values C-1
C-2 Menu Service Routine Errors C-4
D-1 Function Key Names and Codes. D-1
E-1 Elements of the Status Array E-1
E-2 Elements of Status Array E-3

viii

PREFACE

Manual Objectives

After reading this manual, you will be able to use several
important tools contained in the Tool Kit. Note that some tools
described in this manual have their primary documentation in
other manuals; this manual supplements the primary material.

Intended Audience

This document is intended for programmers familiar with the
Kit development cycle and at least one Tool Kit language.
the Tool Kit User's Guide before using this manual.

Structure of This Document

This manual describes 11 tools, one per chapter:

• Chapter 1: Application Diskette Builder (ADB)

• Chapter 2: Communications Services

• Chapter 3: Fast Install

• Chapter 4: File Control Services (FCS)

• Chapter 5: Frame Development Tool (FDT)

• Chapter 6: Installation Command Language

• Chapter 7: MACR0-11 Assembler (PMA)

• Chapter 8: POSRES User Interface Library Routines

• Chapter 9: Print Services

e Chapter 10: PROSE Text Editor

• Chapter 11: PRO/SORT

Tool
Read

Appendices A and 9 are devoted to error messages returned by ADB
and FDT. Appendices C and D provide tabular information related
to POSRES user interface programming. Appendix E describes P/OS
error codes.

ix

Preface

Associated Documents

Throughout this manual, we refer to related documentation within
the Tool Kit document set. For abstracts of other Tool Kit
documents, see the Tool Kit User's Guide.

Conventions Used in This Document

Convention

BOLD UPPERCASE

UPPERCASE LETTERS

bold lowercase

lowercase letters

element, ..•

red letters

Meaning

Bold uppercase letters indicate elements
that you must use exactly as shown.

Uppercase letters indicate elements that you
can omit or use exactly as shown.

Bold lowercase letters
that you must replace
description in the text.

indicate
according

elements
to the

Lowercase letters indicate elements that you
can omit or replace according to the
description in the text.

Shaded areas containing bold letters
indicate a list of elements from which you
must select one.

Shaded areas containing non-bold letters
indicate a list of elements from which you
can optionally select one.

A comma followed by a horizontal ellipsis
indicates that you can repeat the preceding
element one or more times, separating the
elements with commas.

A vertical ellipsis in a figure or example
means that part has been omitted for
brevity.

Red letters indicate your input to the
computer.

x

CHAPTER 1

APPLICATION DISKETTE BUILDER (ADB)

The Application Diskette Builder (ADB) creates a master copy of
an application diskette that can be reproduced for distribution.
ADB is distributed with the Host Tool Kit and the PRO/Tool Kit on
the Application Diskette Builder diskette.

ADB uses the information in your installation command file to
copy your application from the hard disk to one or more
diskettes, from which it can be installed on other systems.

An application can span several diskettes. Multiple applications
can be copied to a single diskette if space allows.

1.1 USING ADB

To prepare a master distribution diskette for your application,
follow these steps:

1. If you have not already installed ADB on your Professional,
do so now. Insert the ADB diskette and install it as you
would any application.

2. Copy your application files to the appropriate device and
directory as shown in Table 1-1. The table shows how to use
the qualifiers you have specified on FILE commands in your
installation file to determine the destination of your files.

3. Select ADB from the menu on which it was installed. The ADB
dialogue is described in Section 1.2. During the dialogue,
you can press MAIN SCREEN to return to the Main Menu.

1-1

USING ADB

Table 1-1: Application File Locations for ADB

FILE Command

FILE fname.ext
or
FILE fname.ext/USER

FILE [dir]fname.ext
or
FILE [dir]fname.ext/USER

FILE fname.ext/NETWORK

FILE [dir]fname.ext/CLUSTER

FILE fname.ext/CLUSTER

1.2 THE ADB DIALOGUE

Copy File From

SYOOO:[applicdir]
where applicdir is the name of
the directory containing the
installation command file.

SYOOO:[dir]
where dir is the name of the
directory that you specified in
the FILE command in your
installation command file.

SYOOO:[applicdir]
where applicdir is the name of
the directory containing the
installation command file.

LBOOO:[dir]
where dir is the name of the
directory that you specified in
the FILE command in your
installation command file.

SYOOO:[applicdir]
where applicdir is the name of
the directory containing the
installation command file.

ADB first displays an introductory frame. Press DO to begin the
dialogue.

1.2.1 Step 1: Choose Target System

ADB displays the menu for choosing the
application. Choose the appropriate
appli ca ti on.

1-2

target
target

system
system

for your
for your

THE ADB DIALOGUE

1.2.2 Step 2: Choose Installation Command File

ADB displays a list of installation files contained in your
current directory. If the desired installation command file is
not on this list, press the ADDTNL OPTIONS key to:

• Select a file from a different directory

• Select a file from a different volume and directory

• View the next group of files

• Specify the file with an extended filename

If ADB does not find an installation command file in the current
directory, it displays the Additional Options menu.

When you have selected a file, ADB checks it for errors. If ADB
detects an error, refer to Appendix A, correct the problem, and
try again.

1.2.3 Step 3: Ready Target Diskette

If ADB finds no errors, it displays the Diskette Drive Selection
and Initialization Menu.

• If the diskette contains information that must be preserved,
select one of the options that indicates copying will take
place without initializing the diskette. Existing
information will be saved.

NOTE

If the installation command file contains a
MOUNT line for this diskette, ADB will expect
the diskette to have the same volume name as
that specified in the MOUNT line.

• If you do not want to preserve any existing information on
the target diskette, select an option that will initialize
the diskette. When ADB prompts for the volume name, enter
the desired volume name. ADB will check the volume for bad
blocks.

1-3

THE ADB DIALOGUE

NOTE

If your installation command file references
this diskette in a MOUNT line, you will not
be prompted for a volume name.

1.2.4 Step 4: Copy Installation Command File to First Diskette

ADB displays a form asking you for the name of the application
directory to be created on the application diskette. If an
installation command file contains errors, ADB will not copy the
file and will display an error message. Check the format of the
installation command file, correct the file, and start again.

1.2.5 Step 5: Copy Files to Target Diskette

The ADB now copies the files listed in the FILE lines of the
installation command file to the target diskette. If ADB
encounters a MOUNT line, it prompts you to insert a new diskette
and repeats the diskette initialization process. ADB then
resumes copying files with the next FILE line and continues until
all MOUNT and FILE lines have been processed.

ADB searches for the files to copy in the locations shown in
Table 1-1. If ADB cannot find a file, is displays a Directory
Selection Menu. Specify the directory that contains the file.

ADB displays a confirmation message when all files are copied.

1.2.6 Step 6: Label Completed Diskette

You should label your application diskettes with:

• The application's name

• The volume name, which must match the name provided in the
corresponding MOUNT line, if there is one.

• The number of diskettes on which the application resides

1-4

THE ADB DIALOGUE

• Minimum hardware configuration required

• Media space required

If your application spans more than one diskette, you should also
indicate which is the first diskette; that is, indicate which
diskette contains the installation command file.

1-5

CHAPTER 2

COMMUNICATIONS SERVICES

Communications Services allow you to perform communications
operations on the Professional. Your application program can
access the services either by calling communications routines, or
by spawning tasks that execute communications utility programs.
For example, your program can call a routine named CCATT to
attach a phone line, or it can spawn a task that executes a
terminal emulation utility.

The communications services fall into the following categories:

1. Base System Services, which DIGITAL provides with the P/OS
operating system. These services include an asynchronous
driver (XKDRV) for the Communication Port as well as a
communications service library (COMLIB).

2. PRO/Communications Services, which DIGITAL supplies as an
optional application, providing features beyond those
supplied with the base system. These services include
utility programs (such as a terminal emulator), as well as
additional communications routines.

3. Telephone Management System (TMS) Services, which DIGITAL
supplies as an optional application. The TMS services
consist of a set of routines that allow your application to
control the TMS hardware. Note that this hardware must be
installed on the Professional in order to call the TMS
routines.

The next section presents general information common to all the
communications services. Succeeding sections describe each of
the services.

2-1

OVERVIEW OF COMMUNICATIONS SERVICES

2.1 OVERVIEW OF COMMUNICATIONS SERVICES

Before executing any communications service that performs I/O,
you must assign a logical unit number (LUN) to the required
communication line(s). The device names for the communication
lines are:

Device Name

XKO:
XT1:
XT2:
XT3:

Represents

Communication Port
TMS Line 1
TMS Line 2
TMS Voic~ Unit

You can assign a LUN to a communication line either as a static
assignment at task build time, or by using the ALUN$ system
directive (described in the P/OS System Reference Manual). The
system automatically incorporates the communications impure data
area in the root of any task linking to the COMLIB cluster
library.

If you want to service unsolicited events on the communication
line, you can call the CCATA routine to attach the line. You are
notified of all unsolicited events via the user asynchronous
system trap (AST) routine declared in the call.

You can perform either synchronous or asynchronous I/O to the
communication line driver. The event flag number (EFN)--a
parameter on your call line--indicates the type of I/O performed.
For asynchronous I/O, the system sets the event flag on
completion of the I/O transfer.

Parameters in calls to the communications routines are all
one-word integers, unless the description of a particular
parameter specifies otherwise. For details on a routine's
parameters, refer to the routine's description later in this
chapter.

For a description of the calling conventions for all the
routines, refer to the Tool Kit User's Guide.

2.1.1 Status Returns

All communications routines check for proper I/O termination,
returning a two-word status value in the first parameter in the
call line.

2-2

OVERVIEW OF COMMUNICATIONS SERVICES

The first word of the status value contains a code indicating
whether or not the I/O termination was successful. The second
status word contains a code indicating the specific error, if an
error occurred. The routine obtains this code from the first
word of the I/O status block (IOSB). You can check the first
byte of this word to determine the specific error.

For routines that accept calls issuing an asynchronous QIO, your
application must specify an additional two-word area for the
IOSB. If you use the routine in its synchronous mode, the
routine signals its termination status as described above.

However, if you use the routine's asynchronous mode, the first
status word indicates only whether or not the routine has
successfully issued the QIO. Your program must test the IOSB to
determine if the I/0 terminated successfully after the QIO
completed. For some routines, the system signals QIO completion
by setting an event flag that you specify in the call line.

COMLIB defines all returned status codes as global symbolic
constants. For those languages that allow you to define external
constants, the Professional Application Builder (PAB) resolves
the values at build time.

Each status return has a symbolic name, called the return code.
Table 2-1 shows the return codes and their values. Success
returns are positive values; error returns are negative values.

For the possible return codes for a particular routine, see that
routine's description later in this chapter.

Table 2-1: Communications Status Return Codes

Return
Code Value Meaning

cs.sue 1 Successful reply

CS.NTB 2 Successful, no translate table
(CCLCRG, CCLCRP routines only)

CS.FUN 2 Successful, function key exit
Second word contains key value

CE.UNO -1 Unsupported message option

CE.MFE -2 Message format error

2-3

Return
Code

CE.REJ

C2.DIS
C2.UAB
C2.FTB
C2. IAC
C2.BSY
C2.BPL
C2. IDL
C2.IPW
C2.SAA
C2.NAE

CE.MSC

CE.DOC

CE. IEA

CE.RMS

CE.LIB

CE.STU

CE.PRM

CE.DIR

CE. IER

CE.NNF

CE.CTB

OVERVIEW OF COMMUNICATIONS SERVICES

Value

-3

-4

-5

-6

-7

-9.

-11.

-16.

-17.

-18.

-19.

-20.

Meaning

Invalid message option
Second word contains:
1 - Operation disallowed
2 User requested abort
3 File exceeds maximum
4 Invalid action code
5 - File transfer Subsystem busy
6 - Bad parameter
7 - No operation currently active
8. - Invalid password
9. - Server already active
64. - File Transfer Subsystem unattached

Message type not synchronized

Data link error

Internal error abort

PRO/RMS error
Second word contains the PRO/RMS error code

Library mismatch error

File transfer startup in progress

External parameter error

RSX Directive error
Second word contains the DSW

I/O termination error

Name not found in Phone Book

Phone Book is empty

2.1.2 Line Descriptor Block

The line descriptor block (LOB) stores line characteristics,
which describe how voice or data travels over your communication
line. You need this information to set up the line, either for a
voice or data connection. You can transmit via the Communication
Port or Telephone Management System (TMS) telephone lines.

2-4

OVERVIEW OF COMMUNICATIONS SERVICES

(We describe TMS later in this chapter.)

Each line characteristic consists of one byte, stored in the LOB
in a position-dependent manner. That is, each value's position
in the LOB indicates what characteristic it represents. Table
2-2 shows the characteristic positions in the LDB.

Table 2-2: Characteristic Positions in the LOB

Byte Description

0 Transmit Rate (Bits per sec)
For allowed values, see Table 2-3

1 Receiver Rate (Bits per sec)
For allowed values, see Table 2-3

2 Number of Data Bits
8, 7, 6, or 5

3 Number of Stop Bits
1 or 2

4 Parity Checking and Generation
1 Enable
0 Disable

5 Odd or Even parity
1 Even
0 Odd

6 XON/XOFF Recognition
1 Enable
0 Disable

7 Pass 8-bit characters
1 Enable
0 Disable (pass 7-bit characters)

8 Auto answer ring count

9

0-9 decimal (zero means don't answer)

Modem
-1

0
1

10

Type
No modem, hardwired line
us FSK, 0-300 baud Bell 103 (TMS)
us DPSK, 1200 baud Bell 212 (TMS)
(decimal) Mini-Exchange

2-5

OVERVIEW OF COMMUNICATIONS SERVICES

Byte Description

10 Dial
0
1
2

Mode
Dial pulse, 10 pulses/second
DTMF
Dial pulse, 20 pulses/second

3 Off-hook service (external fixed number)

11 Data
0
1
2
3

Mode
Voice telephone
Serial data
Encoded voice
DTMF data

12 DTMF Tone Time (10 ms multiples)
1 or 255

13 DTMF Interdigit Time (10 ms multiples)
1 or 255

14 TMS Silence Detect Timeout
1 Enable
0 Disable

15 Reserved

Table 2-3 shows the codes you can use to specify receive or
transmit rate in bytes zero and one of the LDB.

Table 2-3: Transmit/Receive Rate Values for LOB

Symbol Decimal Value Actual baud rate
(Bits per Second

S.50 2 50

S.75 3 75

S.110 5 110

S.134 6 134.5

S.150 7 150

2-6

OVERVIEW OF COMMUNICATIONS SERVICES

Symbol Decimal Value Actual baud rate
(Bits per Second

S.200 8 200
(TMS only)

S.300 9 300

S.600 10 600

S.1200 11 1200

S.1800 12 1800

S.2000 13 2000

S.2400 14 2400

S.3600 15 3600

S.4800 16 4800

S.7200 17 7200

S.9600 18 9600

S.EXTA 19 External
clocking

S.19.2 21 19200

To change a line characteristic, first call CCGMC or CCLCRG to
get either the current settings or the default settings,
respectively. Then modify the particular characteristic byte or
bytes and write the new set back using CCLCRP or CCSMC. Note
that CCLRP does not check for validity when you write back the
default characteristics.

In general, all the settings in the LOB must be valid for the
line to which you write them.

Much of the information contained in the line descriptor block is
optional and depends on the type of link that you are setting up.
For a voice link, the system uses only those fields that control
the manner in which the call is dialed.

Some data options available via TMS are unavailable on the
Communication Port, and vice versa. When you choose such an
option, it is ignored, except where a functional incompatibility

2-7

OVERVIEW OF COMMUNICATIONS SERVICES

occurs. For example, you can specify the 200 baud rate only for
TMS lines. Also, baud rates of 1800 and above are not supported
on the TMS unit.

Note that a particular line characteristic (a byte in the LOB)
corresponds to the second byte in the QIO functions SF.GMC and
SF.SMC. (The communication routines that handle the line
characteristics use these two QIO functions. See the P/OS System
Reference Manual for details.)

2.1.3 - Autodial Modem Support

The XKO: device handles any autodial modem that accepts a dial
sequence as data passed on the primary transmit lead. This type
of modem usually has both a start control sequence (indicating
that a telephone number follows) and an end sequence (indicating
the end of the telephone number). Not all modems require the end
sequence.

You can use two methods of dialing through the Communication Port
when an autodial modem is attached. The first method is to
define the line as hardwired and transmit the dial sequence as
data to the modem. Most autodial modems give some kind of
response indicating whether or not the connection was
successfully established. This can be read as data received from
the modem. Note that this method will only work on XKO: (one
side effect is that a hardwired line automatically answers any
call because the DTR signal is held high).

The second method supports XKO:, XT1: and XT2: lines. A
program that uses this method need not know the specific line
type that the call is dialed on. To set up the system to support
an autodial modem on XKO: you must define a translate table as
the XKO: device.

The translate table contains three parts:

• The first part defines a set of character translations.

• The second part defines the start sequence for the autodial
modem.

• The third part defines the end sequence.

The first part of the translate table defines a set of character
translations that can occur during the dial operation. This
allows you to substitute graphics characters for control
characters in the phone number. Also, it allows you to remove

2-8

OVERVIEW OF COMMUNICATIONS SERVICES

format characters from the phone number.
characters for a phone number are as follows:

Additionally, the space
sample phone number
555-4444.

character is
with format

a format
characters

Normal format

character. A
is [12] (222)

You can set the translate table by calling the Base System
routine CCMTT (see Section 2.2.2.6) or by executing the
PRO/Communications Set-Up Utility (see Section 2.3.2).

By default (that is, if you do not override the default translate
table), the XKO: device assumes that a DIGITAL DF03 autodial
modem is attached.

Note that any of the parts of the table can be empty. Look in
the user handbook for the start and end sequence of the
particular autodial modem you are using. The translate table as
stored and returned by the CCLCRP and CCLCRG routines begins at
the first count-byte.

2.2 BASE SYSTEM SERVICES

The Base System Services include an asynchronous driver (XKDRV)
for the Communication Port, as well as a communication service
library (COMLIB). To perform communications operations, you can
either issue QIO requests directly to the XKDRV (see the P/OS
System Reference Manual), or call the routines in COMLIB.

If you are writing your program in a high-level language, it is
best to use the COMLIB routines.

The Base System Services allow you to set up and control a
telephone connection for data communication. Additionally, the
Base Services allow you to handle voice communication if you
install the optional Telephone Management System (TMS).

The following sections describe the Base System start-up and the
Base System routines.

2.2.1 Base System Start-Up

When you power up a Professional and boot P/OS, a Base System
start-up program executes. The program is present on all
systems. This program loads the asynchronous driver, XKDRV, and

2-9

BASE SYSTEM SERVICES

sets up the default line characteristics. It also loads the TMS
Driver, if the hardware is present, and sets the default line
characteristics of TMS lines.

2.2.2 Base System Routines

This section describes the communication routines that DIGITAL
provides with the P/OS operating system.

attach
an AST

The
AST

2.2.2.1 Attach Line (CCATT and CCATA) - There are two
routines. The CCATA routine attaches a line and declares
routine that your application uses for unsolicited events.
CCATT only attaches the line. The caller specifies the
routine that CCATA uses.

Format:

CCATT (status, lun)

CCATA (status, lun, ast, param)

status A two-word status block as described in Section 2.1.1.

lun The logical unit number for the communication line.

ast The entry point for an unsolicited event AST.

pa ram

Status:

CS.SUS

CE.PRM

CE.DIR

CE. IER

CE.IEA

A number that identifies this line as the input source
upon entry to an unsolicited event AST routine.

Successful

Service call parameter error

RSX Directive error
Second status word contains the DSW

I/O Termination error
Second status word contains the IOSB first word

Internal error

2-10

BASE SYSTEM SERVICES

Note:

The routines CCATT and CCATA issue asynchronous QIOs to perform
the attach, which always completes immediately. However, if
another task has attached the line prior to your request, you
receive the status return code CE.IEA, with the second status
word equal to zero. The zero indicates that the attach request
will pend until the line is free. When the line is free, the
driver updates the status parameters with the completion status
of the attach QIO (that is, the driver asynchronously writes the
IOSB to the status block).

To avoid data corruption upon completion of the attach, you might
want to use a separate status block when calling CCATT or CCATA.

2.2.2.2 Detach Line (CCDET) - This routine detaches a line
previously attached by the CCATT or CCATA routines.

Format:

CCDET (status, lun)

status A two-word status block as described in Section 2.1.1.

lun The logical unit number for the communication line.

Status:

cs.sue Successful

CE.PRM Service call parameter error

CE.DIR RSX Directive error
Second status word contains the DSW

CE.IER I/O Termination error
Second status word contains the IOSB first word

CE.IEA Internal error

2.2.2.3 Set Line Characteristics (CCSMC) - This routine modifies
line characteristics to the required settings. The routine
writes the characteristics stored in the ldb parameter (see the
call line) to the appropriate driver.

2-11

BASE SYSTEM SERVICES

Format:

CCSMC (status, lun, ldb)

status A two-word status block as described in Section 2.1.1.

lun The logical unit number for the communication line.

ldb

Status:

cs.sue

CE.PRM

CE.DIR

CE. !ER

CE. !EA

The line descriptor block containing the new
characteristics. The block size must be 16 bytes.

Successful

Service call parameter error

RSX Directive error
Second status word contains the DSW

I/O Termination error

line

Second status word contains the IOSB first word

Internal error

2.2.2.4 Get Line Characteristics (CCGMC) - This routine returns
the current line characteristics for the specified line.

Format:

CCGMC (status, lun, ldb)

status A two-word status block as described in Section 2.1.1.

lun The logical unit number for the communication line.

ldb

Status:

cs.sue

CE.PRM

CE.DIR

A buffer into
returned in
bytes.

which the
ldb format.

Successful

line
The

characteristics may be
buffer size must be 16

Service call parameter error

RSX Directive error
Second status word contains the DSW

2-12

BASE SYSTEM SERVICES

CE.IER I/O Termination error
Second status word contains the IOSB first word

CE.IEA Internal error

2.2.2.5 Get/Put Line Configuration Record (CCLCRG and CCLCRP) -
You can use these routines to retrieve and modify the line
configuration record for the specified line.

Format:

CCLCRG (status, dev, unit, ldb, ttble)

CCLCRP (status, dev, unit, ldb, ttble)

status A two-word status block as described in Section 2.1.1.

dev A two-byte ASCII string containing the device mnemonic.

unit The unit number in binary format.

ldb The line descriptor block. The block size must be 16
bytes.

ttble

Status:

cs.sue

CS.NTB

CE.PRM

CE.DIR

CE.RMS

CE.IEA

Notes:

A 64-byte translate table for converting internal
telephone numbers to a format accepted by an autodial
modem. The table begins at the first count-byte.

Successful

Successful, no translate table defined (CCLCRG only)
or
Successful, ttble parameter not supplied
(CCLCRG and CCLCRP)

Service call parameter error

RSX Directive error, second status word contains DSW

File I/O error
PRO/RMS-11 error code passed in second word

Internal error

These routines perform file I/O to the communications set-up data

2-13

BASE SYSTEM SERVICES

file. (This file stores default line characteristics, translate
tables, and other information used by the communications
services.) In order to perform the file I/O, you must assign a
logical unit number to the set-up data file. Insert the
following global definition command in your PAB command (.CMD)
file:

GBLDEF = CM$LUN:lun

where "lun" is the logical unit number that the system associates
with the communications set-up file.

See the section on command files in this manual for
information. Also, see the description of GBLDEF
RSX-11M/M-PLUS and Micro/RSX Task Builder Manual.

further
in the

If you specify "ttble" without having previously defined a
translate table, CCLCRG assigns the value zero to the first three
bytes of the translate table buffer. The CS.NTB status return
indicates this condition. Note that both CCLCRG and CCLCRP also
return CS.NTB if you omit the ttble parameter.

You can set up a translate table either by calling CCLCRP
using the PRO/Communications application to "Set
characteristics."

or by
modern

2.2.2.6 Set Translate Table {CCMTT) - This routine allows you to
set a translate table when you are using an autodial modern.

Format:

CCMTT (status, lun, ttble)

status A two-word status block as described in Section 2.1.1.

lun The logical unit number for the communication line.

ttble A 64-byte translate table for converting internal
telephone numbers to a format accepted by an autodial
modern. The table begins at the first count-byte.

Status:

cs.sue Successful

CE.PRM Service call parameter error

CE.DIR RSX Directive error
Second status word contains the DSW

2-14

BASE SYSTEM SERVICES

CE.IER I/O Termination error
Second status word contains the IOSB first word

CE.IEA Internal error

Notes:

Some autodial modems require that a delay be introduced between
sending the start sequence and presenting the telephone number.
You can introduce a one-second delay by adding an "!" to the end
of the start sequence. An additional "!" adds an additional
one-second delay.

2.2.2.7 Dial Call (CCDIAL) - This routine dials a call in data
mode on a designated communication line. The type of call you
establish (voice or data) depends on the current data mode of the
device. Use the CCSMC routine to set the data mode.

Format:

CCDIAL (status, lun, tel, len, efn, iosb, tmo)

status A two-word status block as described in Section 2.1.1.

lun The logical unit number for the communication line.

tel A string up to 32 bytes long representing a telephone
number.

len The length of the telephone number.

efn

iosb

tmo

An event flag the system
operation, or zero if
synchronously.

sets
you

A two-word array used as an IOSB.

on completion of the
perform the operation

The timeout period for the dial to complete.· Specify the
value as follows:

bits 0-7 Number of ten-second intervals, up to 255 decimal

bits 8-15 Number of one-second intervals, up to 255 decimal

The longest timeout interval is 255 (decimal) seconds.
If the timeout value is larger than 255 seconds, the
routine uses 255 seconds.

2-15

Status:

cs.sue

CE.PRM

CE.DIR

CE.IER

CE.IEA

Notes:

BASE SYSTEM SERVICES

If you do not specify tmo, the driver uses 60 seconds as
the timeout value.

Successful

Service call parameter error

RSX Directive error
Second status word contains the DSW

I/O Termination error
Second status word contains the IOSB first word

Internal error

Before issuing the dial, the Communication Port driver raises DTR
and RTS. These may be dropped depending upon the termination
status of the dial, as described in the following paragraphs.

If you specify a zero timeout (or no timeout parameter), the
Communication Port driver waits 60 seconds to establish carrier.
If at the end of this period carrier is not raised, then DTR and
RTS are dropped.

If you specify a nonzero timeout, the request completes after the
timeout period or after a connection is established. If the
timeout period expires, then the Communication Port driver drops
DTR and RTS and the routine returns an IE.DNR error in the first
word of the I/O status block. If the modem raises carrier before
the timeout period expires, the routine returns rs.sue in the
first word of the I/O status block.

When dialing a call, the Communication Port driver automatically
deletes the format effectors. These include left and right
parentheses, the dash, and the space character. The driver also
inserts the appropriate start and end codes for a DF03 modem,
provided that you use the default translate table. For other
types of format effector editing, or for support of autodial
modems with different start/end codes, you must set up a new
translate table (see the description of the CCMTT routine earlier
in this chapter).

If you are dialing TMS, you can specify the following characters
in your telephone number.

2-16

BASE SYSTEM SERVICES

An exclamation mark causes an access pause and waits for
an initial or intermediate dial tone. This pause is
required by some telephone systems.

If TMS receives a dial tone, it continues dialing the
remaining characters in the dial string. After six
seconds, if TMS has not received a dial tone, it
continues dialing as if it had received a dial tone.

You can use this feature where a second dial tone is
needed. For example, to dial from within a company's
phone system that requires a "9" followed by a dial tone,
the Phone Book entry could be: 9!(222)555-4444.

!! Two exclamation marks cause a longer access pause
(maximum of 40 seconds) that waits for an intermediate
dial tone. This is used when more than a few seconds of
network switching time is needed.

*ABCD

A comma provides a fixed, two-second delay.

The pound sign symbol is used in two cases. First, if
you are dialing in Touch-Tone0 mode, it transmits the "#"
signal, which may be used if your telephone recognizes it
(for example, as a terminator at the end of
variable-length international telephone numbers).

The pound sign can also be used where mixed-mode dialing
is necessary. For example, if your phone service allows
only rotary dial, and you need to communicate with a
device that requires Touch-Tonea signals, the pound sign
switches from rotary dialing to Touch-Tone0 dialing; the
pound sign itself is not sent. For example 555-4444#
could dial in rotary, and all communication after the
pound sign would occur in Touch-Tones.

These additional signals are required
communications networks and applications.
is available if you have Touch-Tones service.

by special
The asterisk

If you are dialing the Mini-Exchange, you can specify the
following characters in your telephone number. Note that you
must have specified Mini-Exchange as your modem type in byte 9 of
the line descriptor block (see Section 2.1.2 for details).

2-17

1-8

BASE SYSTEM SERVICES

The Mini-Exchange ports are numbered
connect to a Mini-Exchange port,
instead of a phone number.

1 through 8. To
use the port number

R The R character specifies that a modem is attached to
port 8. It can be followed by a telephone number that
the modem will dial. For example, R555-4444.

HR

LR

HR specifies that a
attached to port
number that the
HRSSS-4444.

LR specifies that
attached to port 8.

modem operating at 1200 baud is
8. It can be followed by a telephone

modem will dial. For example,

a modem operating at 300 baud is
Mini-Exchange will set the baud rate

to that of the modem. It can be followed by a telephone
number that the modem will dial. For example,
LRSSS-4444.

An underscore indicates that the modem of one
Mini-Exchange is connecting to the port of another
Mini-Exchange (the two Mini-Exchanges must be connected
by modems). For example, if 555-4444 were the number of
the other Mini-Exchange, R555-4444_6 would dial it and
connect to its port number 6. The port selector
following a phone number can be 1 through 7 only.

P The P character following a port number indicates that a
DIGITAL printer is attached to the specified port. Note
that a telephone number cannot accompany the P code.

When the Professional accepts a connection through Mini-Exchange,
its baud rate is automatically set to that of the originator.

2.2.2.8 Answer Call (CCANS) - This routine answers a call on the
specified telephone line in data mode. The routine answers the
call in the current mode of the line (voice or data).

Format:

CCANS (status, lun)

status A two-word status block as described in Section 2.1.1.

lun The logical unit number for the communication line.

Status:

cs.sue Successful

2-18

BASE SYSTEM SERVICES

CE.PRM Service call parameter error

CE.DIR RSX Directive error
Second status word contains the DSW

CE.IER I/O Termination error
Second status word contains the IOSB first word

CE.IEA Internal error

Notes:

If no connection occurs within 60 seconds, the routine returns an
error status. You should call this routine in response to a
"ring indicator" unsolicited event.

In the case of a TMS line where the call has already been
established in voice mode, this routine causes the TMS software
to connect the designated modem in answer mode when a change mode
command is issued to place the line in ASYNC mode. The
corresponding party must have placed their modem in originate
mode. (Use the CCORG routine, followed by a change mode to
ASYNC, to place a modem in originate mode.)

The converse of this is also true. That is, to change a line
from ASYNC mode to voice mode, use the following procedure:

1. Use CCPTGV to indicate that the line is not
disconnected when carrier loss occurs.

to be

2. Use CCMODE to set the desired mode, which does not take
effect until you issue a CCANS or CCORG call.

3. Use CCANS or CCORG to effect the mode change.

2.2.2.9 Originate Call (CCORG) - This routine initiates the
connection in originate mode, once the line has already been
connected. You can use the routine to determine whether or not a
connection currently exists, or to raise DTR and RTS before
making a manual connection.

Format:

CCORG (status, lun, efn, iosb, tmo)

2-19

BASE SYSTEM SERVICES

status A two-word status block as described in Section 2.1.1.

lun The logical unit number for the communication line.

efn An event flag the system
operation, or zero if
synchronously.

sets
you

on completion of the
perform the operation

iosb A two-word array to be used as an IOSB.

tmo The optional timeout parameter. See the description of
the tmo parameter in the description of CCDIAL.

Status:

cs.sue Successful

CE.PRM Service call parameter error

CE.DIR RSX Directive error
Second status word contains the DSW

CE.IER I/O Termination error
Second status word contains the IOSB first word

CE.IEA Internal error

Notes:

If you you do not specify a timeout parameter, the driver
DTR and RTS. You can then initiate a manual connection
normal manner. If you have specified that the line has a
DTR is not raised until you issue CCORG with no
parameter. When using CCDIAL, the driver automatically
DTR before dialing a call.

raises
in the
modem,

timeout
raises

If you specify a zero timeout parameter, the request completes
immediately. When carrier is down, the driver drops DTR and RTS
and the routine returns an IE.DNR error in the first word of the
IOSB. When carrier is up, the routine returns rs.sue in the
first byte of the IOSB. You can use this to determine if a
connection exists on a line.

If you specify a nonzero value in timeout, the request completes
either after the timeout period or after a connection is
established. If the timeout period expires, the driver drops DTR
and RTS and the routine returns an IE.DNR error in the first word
of the IOSB. If carrier is up (or comes up before the timeout
period expires), the routine returns rs.sue in the first word of
the IOSB.

2-20

BASE SYSTEM SERVICES

2.2.2.10 Hang Up a Call (CCHNG) - This routine disconnects a
call previously established on a specified line.

Format:

CCHNG (status, lun)

status A two-word status block as described in Section 2.1.1.

lun The logical unit number for the communication line.

Status:

cs.sue Successful

CE.PRM Service call parameter error

CE.DIR RSX Directive error
Second status word contains the DSW

CE.IER I/0 Termination error
Second status word contains the IOSB first word

CE.IEA Internal error

Note:

The Communication Port driver drops DTR and RTS when CCHNG
executes. The TMS driver puts the telephone line on-hook.

2.2.2.11 Transmit Data (CCTXD) - This routine transmits a data
buffer to the destination system at the other end of a
communication line. The routine delivers the data to the remote
system as a character string with no intermediate line protocol.

Format:

CCTXD (status, lun, efn, iosb, stadd, size)

status A two-word status block as described in Section 2.1.1.

lun The logical unit number for the communication line.

efn An event flag the system
operation, or zero if
synchronously.

2-21

sets
you

on completion of the
perform the operation

iosb

stadd

size

Status:

cs.sue

CE.PRM

CE.DIR

CE.IER

CE.IEA

BASE SYSTEM SERVICES

A two-word array used for the IOSB.

A buffer that contains the data to be transferred.

An integer specifying the amount of
transferred.

Successful

Service call parameter error

RSX Directive error
Second status word contains the DSW

I/0 Termination error

data to

Second status word contains the IOSB first word

Internal error

be

2.2.2.12 Receive Data (CCRXD) - This routine reads data from a
communication line. You can either read all the data currently
buffered in the driver or wait a specific period of time and read
all the data accumulated up to that point. Alternatively, you
can read a fixed amount of data from the line. Input always
terminates when your task's buffer becomes full.

If you specify XON/XOFF support, the driver transmits XOFF when
the driver's buffer becomes three-quarters full, and transmits
XON when the driver's buffer is emptied to the one-quarter point.
The driver has a limited amount buffer space.

If the driver's buffer becomes full,
characters are lost.

additional incoming

Note that the amount of data received is in the second word of
the IOSB.

Format:

CCRXD (status, lun, efn, iosb, stadd, size, tmo)

status A two-word status block as described in Section 2.1.1.

2-22

BASE SYSTEM SERVICES

lun The logical unit number for the communication line.

efn

iosb

stadd

size

tmo

Status:

cs.sue

CE.PRM

CE.DIR

CE.IER

CE.IEA

Note:

An event flag the system
operation, or zero if
synchronously.

sets
you

A two-word array for the IOSB.

on completion of the
perform the operation

A buffer into which the routine can place the data.

An integer specifying the input buffer size.

If you do not specify this parameter, input is not
complete until "size" characters have been written to the
buffer.

If tmo is zero, the request returns immediately after
transferring as many characters as are available up to
the input buffer size. If tmo is not equal to zero, the
request completes after the timeout period specified.
See CCDIAL for the format of tmo.

Successful

Service call parameter error

RSX Directive error
Second status word contains the DSW

I/O Termination error
Second status word contains the IOSB first word

Internal error

If you are using a TMS line in DTMF mode, the Touch-Tonee keys
are presented as data characters. (See the TMS Programmer's
Manual.) Further, in CODEC mode the use of the Touch-Tones keys
is signalled by an AST (if the line is attached for ASTs).

2.2.2.13 Flush Input Buffer (CCFLSH) - This routine flushes the
input buffer for the specified communication line.

2-23

BASE SYSTEM SERVICES

Format:

CCFLSH (status, lun)

status A two-word status block as described in Section 2.1.1.

lun The logical unit number for the communication line.

Status:

cs.sue Successful

CE.PRM Service call parameter error

CE.DIR RSX Directive error
Second status word contains the DSW

CE. IER I/O Termination error
Second status word contains the IOSB first word

CE. IEA Internal error

2.2.2.14 Generate Break (CCBRK) - This routine generates a break
or a long space on the line.

Format:

CCBRK (status, lun, brk)

status A two-word status block as described in Section 2.1.1.

lun The logical unit number for the communication line.

brk Specify 0 to send a break. Specify 1 to send a long
space.

Status:

cs.sue Successful

CE.PRM Service call parameter error

CE.DIR RSX Directive error
Second status word contains the DSW

CE. IER I/O Termination error

2-24

BASE SYSTEM SERVICES

Second status word contains the IOSB first word

CE. !EA Internal error

2.2.2.15 Kill Transfer (CCKILL) - This routine kills any
outstanding transfers. You can use it only with asynchronous I/O
transfers. The outstanding transfer terminates in the normal
manner (the system sets the event flag you specified at
initiation).

Format:

CCKILL (status, lun)

status A two-word status block as described in Section 2.1.1.

lun The logical unit number for the communication line.

Status:

cs.sue successful

CE.PRM Service call parameter error

CE.DIR RSX Directive error
Second status word contains the DSW

CE. !ER I/O Termination error
Second status word contains the IOSB first word

CE.IEA Internal error

2.3 PRO/COMMUNICATIONS SERVICES

PRO/Communications services consist of:

• An application that you can invoke from the P/OS menu system.

• A set of utilities that you can call from your application
program.

• A set of routines that allow you to perform Phone Book and
File Transfer operations.

As with the Base System Services, you can access
PRO/Communications services by calling the COMLIB routines.

2-25

PRO/COMMUNICATIONS SERVICES

The following sections describe PRO/Communications start-up, the
utilities you can execute, and the routines that allow you to
perform Phone Book and File Transfer operations.

2.3.1 PRO/Communications Start-Up

Once you have installed PRO/Communications on your system, every
time you power up a Professional and boot P/OS, a
PRO/Communications Start-Up Program executes. It performs the
following operations:

• installs necessary PRO/Communications tasks

• starts up the background File Transfer Subsystem

The PRO/Communications Start-Up Program is present on your system
only if you have installed PRO/Communications.

2.3.2 PRO/Communications Utilities

Any application program can use the PRO/Communications utilities.
If you install PRO/Communications on the machine, the system
installs all utilities as part of the start-up procedure.

The utilities supplied with PRO/Communications are:

• Communications Set-Up - allows the user to specify parameters
that control the functioning of the communications services.
To allow users to change the parameters, your application
program can either invoke this service or call the Base
System routines.

• Terminal Emulator - allows the Professional to act as a
VT102, VT125, VT52 or native mode terminal connected to a
host operating system. Your program can invoke the terminal
emulator to allow the user to communicate with a host system.
The host system, in turn, can terminate the emulator and
return control to the application.

• Call Services - allows users to dial and answer calls, using
either TMS or an autodial modem attached to the Communication
Port. This service runs a call control task that you can use
to make connections via entries stored in the Phone Book.

2-26

PRO/COMMUNICATIONS SERVICES

• Phone Book Maintenance - allows users to maintain the phone
book. The phone book is a file containing information about
how to connect a Professional to another computer system.
Note that the routines you can use to access the phone book
do not allow maintenance. The phone book runs two programs
as tasks: a file maintenance program and a server program
that reads or displays entries in the phone book. You can
call the server program through the phone book services.

Each of the utilities has a user interface. See the
Pro/Communications Manual for a description of the utilities and
their user interfaces. Also, see the Terminal Subsystem Manual
for additional details on the terminal emulator.

You use the CCSPWN routine (see below) to make a request to
initiate a utility.

2.3.2.1 Spawn Communications Utility (CCSPWN) - This routine
spawns a PRO/Communications utility task. On termination the
routine returns the exit status to the requester.

Format:

CCSPWN (status, name)

status A two-word status block as described in Section 2.1.1.

name A four-byte string that identifies the requested utility.

Status:

cs.sue

CE.PRM

CE.DIR

CE.IEA

EMUL
CSET
CALL
PHNE

Terminal Emulator
Communications Set-Up
Call Services
Phone Book Maintenance

Successful

Service call parameter error

RSX Directive error
Second status word contains the DSW

Internal error

2-27

PRO/COMMUNICATIONS SERVICES

Note:

In the case of a successful return, the routine returns the exit
status of the utility in the second status word, as follows:

1.
2-4
5-9.
9.
10.

Successful
Error exit
Unused
MAIN SCREEN key was used to terminate program
EXIT key was used to terminate program

2.3.3 Phone Book Services

The services described in this section allow an application to
read specified entries from the phone book, or display the phone
book and allow the user to select an entry. To perform phone
book maintenance, you must use the phone book maintenance
program.

2.3.3.1 Get Phone Book Record (CPHREC) - This service returns a
specified record from the phone book.

Format:

CPHREC (status, name, number, numlen, descr, descrlen, ldb)

status

name

number

A two-word status block as described in Section 2.1.1.

A 15-byte, space-filled string in which you specify the
name of the entry to be retrieved.

A string in which the routine returns the telephone
number. The string can be up to 48 bytes.

numlen An integer the routine returns indicating the length of
the telephone number.

descr A string in which the routine returns the description
stored in the phone book. The string can be up to 40
bytes.

descrlen The length of the description string.

ldb The line descriptor block, a 16-element byte string in
which the routine returns the line characteristics
required to set up the call.

2-28

PRO/COMMUNICATIONS SERVICES

Status:

cs.sue Successful

CE.PRM Service call parameter error

CE.DIR RSX Directive error
Second status word contains the DSW

CE.IER I/O Termination error
Second status word contains the IOSB first word

CE.NNF Name not found

CE.IEA Internal error

Note:

If you call this routine with a blank name parameter, it
functions identically to CPHSEL.

2.3.3.2 Select Phone Book Entry (CPHSEL) - This service displays
all the phone book entries and allows the user to select a
specific entry from those available. Note that the task that
calls CPHSEL must be running from TT1:, or the system returns the
error CE.IEA.

Format:

CPHSEL (status, name, number, numlen, descr, descrlen, ldb)

status

name

number

A two-word status block as described in Section 2.1.1.

A 15-byte string in which the routine returns the name
of the entry to be retrieved.

A string in which the routine returns the telephone
number. The string can be up to 48 bytes.

numlen An integer the routine returns indicating the length of
the telephone number.

descr A string in which the routine returns the description
stored in the phone book. The string can be up to 40
bytes long.

descrlen The length of the description string.

ldb The line descriptor block, a 16-element byte string in

2-29

Status:

PRO/COMMUNICATIONS SERVICES

which the routine returns the line characteristics
required to set up the call.

cs.sue successful

CE.PRM Service call parameter error

CE.DIR RSX Directive error
Second status word contains the DSW

CE.IER I/O Termination error
Second status word contains the IOSB first word

CE.NNF Name not found

CE.IEA Internal error

CE.CTB CTAB display error (empty phone book)

2.3.4 File Transfer Services

This section describes services that allow you to use the File
Transfer Subsystem. Using the File Transfer Subsystem, you can
transfer files between Professionals through callable service
routines. (Note that PRO/Communications already includes a
Professional-to-Professional file transfer application, which
itself uses the File Transfer Subsystem.)

The File Transfer Subsystem consists of the following components:

• Communications Manager Program - controls the initiation and
termination of the file transfer programs.

• File Transfer Server - executes in response to a request from
another system to initiate a file transfer. The server
communicates with the "host" program to perform a file
transfer. The host program currently runs on RSX-11M/11M+,
VMS or the Professional.

• File Transfer Host Program - initiates a file transfer. It
communicates with the server program.

• Listener Program - monitors the following communication lines
in the background: the Communication Port, TMS line 1 and
TMS line 2. The program monitors lines in data mode only for
ASYNC transfers. When the Professional receives unsolicited

2-30

PRO/COMMUNICATIONS SERVICES

ASYNC data over a monitored line, the listener program
attempts to interpret the data as an ANSI escape sequence,
provided the line is not currently attached and no
outstanding reads are present. The listener processes only
file transfer requests.

You can initiate a file transfer to the Professional either when
the Professional is in terminal emulation mode or when the
listener intercepts the file transfer escape sequence. The
latter case constitutes a background transfer.

The File Transfer Subsystem always runs asynchronously in the
background; however, the program issuing calls to lt can either
synchronize with each call to the Subsystem or run file transfer
operations asynchronously.

2.3.4.1 File Transfer Initiation Protocol - Receipt of the
escape sequence initiates file transfer. The escape sequence is:

ESC [1 ! ""

Prior to sending the escape sequence, the file transfer host
program tries to determine if the Professional is able to perform
the transfer. It does this by sending a device status request
(DSR) :

ESC [5 n

The Professional must respond with a "ready, no malfunctions"
response report:

ESC [0 n

After accepting the file transfer escape sequence, your
application should request the file transfer server task. At the
end of the file transfer, a further DSR escape sequence will be
received and the "ready, no malfunctions" report described above
must be returned.

2.3.4.2 Attaching the File Transfer Subsystem - In order to
initiate a file transfer, the requesting task must attach the
File Transfer Subsystem. This applies both to transfers
initiated by the local system and requests to activate the server
in response to requests from a remote system. Because of
processor limitations, only one file transfer can be active in
the system at any time. If another task has alread attached the
File Transfer Subsystem, the Subsystem rejects further requests

2-31

PRO/COMMUNICATIONS SERVICES

for attachment. The process of attachment informs the File
Transfer Subsystem of the line on which it performs the transfer.
Also, attachment can optionally send a password to the remote
system (if the local system is the initiator).

2.3.4.3 Releasing the File Transfer Subsystem - You
automatically release the File
terminating the task that attached it.
request the release of the Subsystem
Note that any queued requests continue
you have released the Subsystem.

Transfer Subsystem upon
Also, you can explicitly

(using the FTDET routine).
to be processed, even if

2.3.4.4 Synchronous and Asynchronous Operations - A program that
initiates an operation to the File Transfer Subsystem has two
options. It either can wait for the operation to complete, or
can synchronize with the return message at a later point in time.
This is called an asynchronous operation; you can use it to
initiate multiple file operations.

Each call to the file transfer services (except FTDET) results in
a message sent to the File Transfer Subsystem. For each message
sent, the Subsystem returns a response to the requesting task
(unless suppressed). You can synchronize these responses by
calling the FTSYNC routine. Use the msgid parameter to identify
the response to the requesting task.

2.3.4.5 File Transfer Synchronization - The file transfer
service calls contain "reply" and "sync" parameters to enable
synchronization between your application program and the File
Transfer Subsystem. Calls to the file transfer routines that
contain a "reply" parameter cause action messages to be sent to
the File Transfer Subsystem. The Subsystem generates response
messages depending on the value you specify for "reply." These
messages are passed using the variable send/receive data
directives. You can synchronize the caller with response
messages from the Subsystem by either setting the sync parameter
when issuing a call and setting the reply flag to 2 (running the
Subsystem synchronously), or calling the FTSYNC routine, which
also uses the sync parameter.

In either case, setting the sync flag causes the calling task to
stop for a response message from the File Transfer Subsystem.
The user's impure data area holds the response; you can access it
by calling FTUNPK.

2-32

PRO/COMMUNICATIONS SERVICES

The possible values for "reply" are:

Bit(s)

0-1

2-3

3-15

Value

0
1
2

0
1
2

3

Meaning

No response message.
Response message requested.
Response message and unstop requested.
File Transfer Subsystem will issue unstop
directive for requesting task. You
must use this value if sync flag = 1.

Do not write message to system message board.
Write message to system message board.
Write message to system message board only
on error.
Write message to system message board only
if successful.

Reserved.

NOTE

The File Transfer Subsystem writes messages to
the system message board when a task that has
requested a response message has exited.

2.3.4.6 Set Up
routines allow
automatic file
routine FTOPTG
FTOPTP modifies

Format:

File Transfer Options (FTOPTG and FTOPTP) - Two
you to configure the file transfer options for

transfer initiated by a remote system. The
returns the current option settings; the routine

the current option settings.

FTOPTG (status, flags, pswrd, vol, direc, max_file)

FTOPTP (status, flags, pswrd, vol, direc, max_file)

status A two-word status block as described in Section 2.1.1.

flags Option Flags:

2-33

pswrd

PRO/COMMUNICATIONS SERVICES

bit 0 1 Enable remote file copy
0 Disable remote file copy

bit 1 1 Enable remote file receive
0 Disable remote file receive

bit 2 1 Supersede existing files
0 Do not supersede existing

bit 3 1 Enable password security
0 Disable password security

bit 4 1 Local delete enabled
0 Local delete disabled

Bits 5 through 15 are reserved.

A nine-character password to be
Professional. It must be space
disabled password security.

files

used by a remote
filled if you have

vol A 12-character name of the volume to which the File
Transfer Subsystem places files received from another
Professional. The Subsystem uses this parameter only
if the incoming file specification contains no volume
specification.

direc A nine-character name of the directory into which the
File Transfer Subsystem places files being received
from another Professional. The Subsystem uses this
parameter only if the incoming file specification
contains no directory specification.

max_file A two-word integer specifying the maximum size, in
blocks, of a local file that the remote Professional
can create. Note that a zero value indicates no limit.

Status:

cs.sue Successful

CE.PRM Service call parameter error

CE.RMS File I/O error
PRO/RMS-11 error code passed in second word

CE. IEA · Internal error

2-34

PRO/COMMUNICATIONS SERVICES

NOTE

These routines perform file I/O to the
communications set-up data file. (This file
stores default line characteristics, translate
tables, and other information used by the
communications services.) In order to perform the
file I/O, you must assign a logical unit number
to the set-up data file. You do this by
inserting the following global definition command
in your PAB command (.CMD) file:

GBLDEF = CM$LUN:lun

lun is the logical unit number that the system
associates with the communications set-up file.

See the section on command files in this manual
for further information. Also, see the
description of GBLDEF in the RSX-llM/M-PLUS and
Micro/RSX Task Builder Manual.

2.3.4.7 Attach File Transfer Subsystem (FTATT) - This routine
attaches the designated line to the issuing task for use with the
File Transfer Subsystem. You must call this routine prior to
invoking any of the other File Transfer Subsystem routines,
except as noted in the routine definitions. The issuing task can
optionally specify a password to gain access to the remote
system.

Format:

FTATT (status, msgid, reply, sync, dev, unit, 'PSWD', paswrd)

status A two-word status block as described in Section 2.1.1.

dev A two-byte ASCII string containing the device mnemonic.

unit The unit number.

reply A reply flag.

msgid An unsigned integer that identifies the return message
for this call.

2-35

sync

PSWD

PRO/COMMUNICATIONS SERVICES

A synchronization flag: an
whether or not the calling
response message is queued.

0 - Do not stop ·for response
1 - Stop for response message

integer that
program will

determines
stop if no

An optional keyword that specifies the presence of a
password parameter immediately following.

paswrd A optional nine-byte string containing the password for
the remote system, space-filled. You must immediately
precede this parameter with the PSWD keyword.

Status:

cs.sue Successful

CE.PRM Service call parameter error

CE.DIR RSX Directive error
Second status word contains the DSW

CE.IEA Internal error

Notes:

If a task issues two calls to FTATT without an intervening call
to FTDET, an error occurs on the second call to FTATT.

2.3.4.8 File Transfer Operation Request (FTOPRN) - This routine
issues file operation requests to the File Transfer Subsystem.
The routine allows you to: transfer files between systems,
determine the status of file transfers currently in progress, or
abort the current transfer. You can specify only one file
operation request in any call to the routine.

Format:

FTOPRN (status, msgid, reply, sync, request)

The format of a request is:

2-36

PRO/COMMUNICATIONS SERVICES

status A two-word status block as described in Section 2.1.1.

msgid

reply

sync

ABRT

STAT

SEND

READ

An unsigned integer that identifies the return message
for this call.

Reply flags.

A synchronization flag: an
whether or not the calling
response message is queued.

integer that
program will

determines
stop if no

0 - Do not stop for response
1 - Stop for response message

Allows you to abort the current file operation. If no
file operation is in progress, the routine returns an
error in the "status" parameter.

Causes the routine to return statistics on
file transfer operation to the caller.
the statistics via the FTUNPK routine.

the current
You can access

Allows you to transfer files to the remote system. You
can use only a single file specification (no wildcards).

Allows you to transfer files from the remote system. You
can use only a single file specification (no wildcards).

fspecl A string buffer holding the file specification of the
file to be transferred.

lenl The length of fspecl.

fspec2 A string buffer holding the destination file

len2

DELE

specification of the file to be transferred.

The length of fspec2. By default, the destination file
has the same name and type as fspecl. If no change is
required, len2 should be zero. If you want to place the
file on a specific device or in a specific directory, you
must specify fspec2; otherwise, the routine uses the
system's default destination.

Allows you to delete a file at a remote system. You can
only specify a single file specification (no wildcards).

2-37

PRO/COMMUNICATIONS SERVICES

fspecl A string buffer holding the file specification of the
file to be deleted.

lenl The length of fspe~l.

protcl A one-word integer indicating the protocol to be used on
the operation. It can have one of two values:

Status:

cs.sue

CE.PRM

CE.UNO

CE.MFE

CE. IMO

CE.MSC

CE.DOC

CE.RMS

CE.NFT

CE.IEA

0 - Use existing file transfer protocol (default)
1 - Use encoded protocol

In order to use encoded protocol, both systems involved
in the file transfer must be running PRO/Communications
V3.0 or later.

Successful

Service call parameter error

Unsupported message option

Message format error

Operation rejected

Message type out of sync

DDCMP error

File I/O error
RMS Error code passed in second word

No file transfer

Internal error

2.3.4.9 Notify On Incoming File (FTNTFY) - This routine requests
the File Transfer Subsystem to notify a specified task when a
file is received from a remote system. Upon arrival of each
file, the Subsystem sends a duplicate of the response message
that it returns to the task requesting the server activation.
This indicates the full specification of the incoming file and
termination statistics.

2-38

PRO/COMMUNICATIONS SERVICES

Format:

FTNTFY (status, msgid, reply, sync, notify,
'TASK', taskid, 'CNCL')

status A two-word status block as described in Section 2.1.1.

msgid

reply

sync

notify

An unsigned integer that identifies the return message
for this call.

Reply flags.

Synchronization flag: an integer that determines whether
or not the calling program stops if no response message
is queued. This parameter applies only to the File
Transfer Subsystem's initial verification to indicate
acceptance of the request.

0 - Do not stop for response
1 - Stop for response message

Notification flag: an integer that
File Transfer Subsystem notifies
specified file has arrived.

determines
the task

how
that

the
the

1 - Send the notification message to the specified task.
2 - Send notification message and unstop the specified task.
3 - Send the notification message using the request and

connnect directive.

TASK Requests the File Transfer Subsystem to direct
notification messages to the task specified in taskid.
If you omit this option, the routine by default uses the
current task name.

taskid Task to be notified, in Radix-50 format.

CNCL Cancels previous requests for file transfer notification.

Status:

cs.sue

CE.IMO

CE.PRM

CE.IEA

The only other optional parameter that you can use with
'CNCL' is 'TASK.'

Successful

Operation Rejected

Service call parameter error

Internal error

2-39

PRO/COMMUNICATIONS SERVICES

CE.DIR RSX Directive error
Second status word contains the DSW

Notes:

The File Transfer Subsystem sends response messages to the
specified task. You can interpret these messages by using the
FTSYNC and FTUNPK routine to access the filename and termination
statistics of the file received. Setting the sync flag when
calling FTSYNC requires having used a notification flag = 2. The
original msgid you specified when calling FTNTFY is preserved in
all subsequent notification messages. The task being notified
need not be active.

2.3.4.10 Synchronize with File Transfer (FTSYNC) - Use this
routine to synchronize your task with an asynchronous request
previously issued by a call to FTATT, FTDET, FTOPRN or FTNTFY.
It places a response message from the File Transfer Subsystem
into the calling program's impure data area. You should
immediately unpack the response message by calling FTUNPK.

Format:

FTSYNC (status, msgid, sync)

status A two-word status block as described in Section 2.1.1.

msgid A message identifier that the File Transfer Subsystem
returns. You pass this parameter in the original call.

sync Synchronization flag: an integer that determines whether
the program stops if no message is currently queued.

0 Do not stop
1 Stop for response message

Status:

cs.sue Successful

CE.PRM Service call parameter error

CE.IMO Operation Rejected

CE.STU File transfer start-up in progress

CE.IEA Internal error

2-40

PRO/COMMUNICATIONS SERVICES

2.3.4.11 Unpack File Transfer Message Area (FTUNPK) - This
routine unpacks the message components from the impure data area.
You specify each message component with a keyword. Note that the
calling task need unpack only those components that are of
interest to it. You mus.t immediately precede a call to FTUNPK
with a call to FTSYNC.

Format:

NOTE

Any call to the other communication service
routines between calls to FTSYNC and FTUNPK can
overwrite the response message held in the
application's impu~e data area.

FTUNPK (status,

status

SIZE

A two-word status block as described in Section 2.1.1.

Returns a two-word integer indicating the size of the
file you are transferring.

filesize A two-word integer into which the routine places the
file's size.

FILE

f spec

Returns the name of the current file on which you are
performing the file operation.

A buffer into which the routine can place the file
specification of the file being transferred. This
buffer should be at least 50 bytes long.

len The length of the file specification returned in the
fspec buffer.

BLCK

blcknum

DEVC

Returns the current block number of the file you are
transferring.

A two-word integer that receives the current block
number of the file you are transferring.

Returns the device mnemonic for the current file
operation.

2-41

PRO/COMMUNICATIONS SERVICES

dev A two-byte ASCII string that receives the device
mnemonic.

UNIT

unit

TIME

elpstim

OPER

Returns the unit number for the current file operation.

An integer that receives the unit number.

Returns the elapsed time for the current file transfer.

A two-word integer that receives the elapsed time in
seconds.

Returns the current file operation.

operation A single-length integer that receives the code for the
operation in progress:

Status:

cs.sue

CE.PRM

CE. IMO

CE.MSC

CE.IEA

1 - READ
2 - SEND
3 - LOCAL DELETE
4 - REMOTE DELETE

Successful

Service call parameter error

Operation rejected

Message type out of sync

Internal error

2.3.4.12 Detach File Transfer (FTDET) - This routine detaches
the File Transfer Subsystem from use by the requesting task.

Format:

FTDET (status, msgid, reply, sync)

status A two-word status block as described in Section 2.1.1.

msgid

reply

Status:

An unsigned integer that identifies the return message
for this call.

Reply flags.

2-42

PRO/COMMUNICATIONS SERVICES

cs.sue Successful

CE.PRM Service call parameter error

CE.DIR RSX Directive error
Second word contains the DSW

CE.IEA Internal error

2.3.4.13 Start File Transfer Server (FTSERV) - This routine
requests the file transfer server on the local system. You
should call this routine in conjunction with initiation of the
host file transfer program.

Format:

FTSERV (status, msgid, reply, sync, protcl)

status A two-word status block as described in Section 2.1.1.

msgid

reply

sync

An unsigned integer that identifies the return message
for this call.

Reply flags.

Synchronization flag:
or not the calling
message is queued.

an integer that determines whether
program will stop if no response

0 - Do not stop for response message
1 - Stop for response message

protcl A one-word integer indicating the protocol to be used on
the operation. It can have one of two values:

Status:

cs.sue

CE.PRM

CE.UNO

0 - Use existing file transfer protocol (default)
1 - Use encoded protocol

In order to use encoded protocol, both systems involved
in the file transfer must be running PRO/Communications
V3.0 or later.

Successful

Service call parameter error

Unsupported message option

2-43

PRO/COMMUNICATIONS SERVICES

CE.MFE Message format error

CE.IMO Operation rejected

CE.MSC Message type out of sync

CE.DOC DDCMP error

CE.RMS File I/O error
RMS Error code passed in second word

CE.NFT No file transfer

CE.IEA Internal error

2.3.4.14 Enable/Disable File Listening (FTLISN) - Calling this
routine with the enable flag set causes the File Transfer
Subsystem to monitor an unattached line for unsolicited data.
The listener program reads unsolicited data from the specified
line. Upon receiving a valid file transfer request, the listener
automatically initiates a file transfer.

Note that other applications can ATTACH or DETACH the File
Transfer Subsystem; however, the listening task will not be able
to initiate file transfers while the Subsystem is attached.

Format:

FTLISN (status, dev, unit, flag)

status A two-word status block as described in Section 2.1.1.

dev A two-byte ASCII string containing the device mnemonic.

unit The unit number.

flag A flag that indicates the type of request:

Status:

cs.sue

CS.FLE

CS.FLO

0 - Disable listening
1 - Enable listening

Successful

File listening already enabled with enable request

File listening already disabled with disable reque~

2-44

PRO/COMMUNICATIONS SERVICES

CE.PRM Service call parameter error

CE.DIR RSX Directive error
Second word contains the DSW

CE. IEA Internal error

Note:

If you call FTLISN with just the status parameter,
status word contains the current listener status.
means listening is enabled on XKO:.

2.4 TELEPHONE MANAGEMENT SYSTEM {TMS) SERVICES

the second
Bit zero set

This section describes services that enable your application
program to control the TMS hardware.

Note the following if you are using CODEC input on a TMS line:
TMS digitizes the voice signal at 4 kilobytes per second, and so
you will lose voice data unless you perform asynchronous I/O and
double buffer the input requests. Each input request should
specify a 4 kilobyte buffer; this provides 1 second for your
application to process the first buffer before the second buffer
fills.

The following sections describe TMS start-up and routines.

2.4.1 TMS Start-Up

Base system start-up loads the TMS device driver and sets the
default line characteristics for each TMS line.

2.4.2 TMS Routines

This section describes the routines that you can call to control
the operation of the TMS hardware. Note that you must have
installed the hardware in order to call any of the routines.

IS; ...

2.4.2.1 Change Mode (CCMODE) - This routine changes the current
mode of the line. The line must be attached. Alsor the mode
change does not take effect until you issue a CCANS or CCORG
call.

2-45

TELEPHONE MANAGEMENT SYSTEM (TMS) SERVICES

Format:

CCMODE (status, lun, mode)

status A two-word status block as described in Section 2.1.1.

lun The logical unit number for the communication line.

mode One of the following available mode settings:

0 VOICE
1 = ASYNC (Modem)
2 CODEC
3 DTMF Keypad (Touch-Tonee pass all keys)

Status:

cs.sue Successful

CE.PRM Service call parameter error

CE.DIR RSX Directive error
Second status word contains the DSW

CE.IER I/O Termination error
Second status word contains the IOSB first word

CE.IEA Internal error

Note:

After calling CCMODE, if you want to change the current mode to
ASYNC, you must establish a connection by calling CCORG. In the
case where your application will be communicating with another
TMS unit, one unit must be in originate mode (using CCORG) and
the other TMS unit must be in answer mode (using CCANS).

2.4.2.2 Auxiliary Keyboard Enable/Disable (CCAUXK) - This
routine enables or disables the auxiliary keyboard for the
specified TMS line. The line must be attached. An AST trap
signals input from the auxiliary keyboard. You must use the
CCATA routine to attach the line.

Format:

CCAUXK (status, lun, flag)

2-46

TELEPHONE MANAGEMENT SYSTEM (TMS) SERVICES

status A two-word status block as described in Section 2.1.1.

lun The logical unit number for the communication line.

flag

Status:

cs.sue

CE.PRM

CE.DIR

CE. IER

CE. IEA

This flag indicates whether the keyboard is
enabled/disabled:

0 Disabled
1 Enabled

Successful

Service call parameter error

RSX Directive error
Second status word contains the DSW

I/0 Termination error

being

Second status word contains the IOSB first word

Internal error

2.4.2.3 Prepare to Go Voice (CCPTGV) - This routine warns the
specified TMS line that it is about to go into VOICE mode. TMS
does not disconnect the call when the change in mode occurs. The
line must be attached.

Format:

CCPTGV (status, lun)

status A two-word status block as described in Section 2.1.1.

lun The logical unit number for the communication line.

Status:

cs.sue Successful

CE.PRM Service call parameter error

CE.DIR RSX Directive error
Second status word contains the DSW

CE.IER I/O Termination error
Second status word contains the IOSB first word

2-47

TELEPHONE MANAGEMENT SYSTEM (TMS) SERVICES

CE. IEA Internal error

Note:

You can call CCHNG to cancel CCPTGV and disconnect the telephone
line.

2.4.2.4 Set DTMF Escape Sequence (CCDTMF) - This routine sets a
DTMF escape sequence on the specified TMS line. The line must be
attached. When the TMS unit recognizes the DTMF escape sequence
the driver causes an unsolicited event AST for the user task to
indicate the event. (See the TMS Programmer's Manual.)

Format:

CCDTMF (status, lun, dtmf, dtmflen)

status A two-word status block as described in Section 2.1.1.

lun The logical unit number for the communication line

dtmf A string that contains the DTMF escape sequence.
string terminates with a zero byte.

dtmflen The length of the DTMF escape sequence.

Status:

cs.sue Successful

CE.PRM Service call parameter error

CE.DIR RSX Directive error
Second status wor'a contains the DSW

CE. IER I/O Termination error

The

Second status word contains the IOSB first word

CE. IEA Internal error

2-48

CHAPTER 3

FAST INSTALL

Fast Install allows you to install your application without
having to build application diskettes. It saves time when you
are testing .your application.

Fast Install does the following:

• Checks the syntax and organization of your installation
command file.

• Processes EXECUTE/INS commands in your installation command
file. (It does not process EXECUTE commands with the /CLS,
/NTW, or /USR commands.) See Chapter 6 for details on the
EXECUTE command.

• Places the application name into the P/OS menu system.

Fast Install is distributed with the Host Tool Kit and the
PRO/Tool Kit on the Application Diskette Builder (ADB) diskette.

To use Fast Install, follow these steps:

1. If you have not already installed Fast Install on your
Professional, do so now. Insert the ADB diskette and install
it as you would any application.

2. Copy your application files to the appropriate device and
directory as shown in Table 3-1. The table shows how to use
the qualifiers you have specified on FILE commands in your
installation file to determine the destination of your files.

3. Select Fast Install from the menu on which it was installed.

4. Fast Install prompts for the name of your application
directory and for the file type ~.INS or .INB) of your
installation command file. Enter the information and press
DO.

3-1

FAST INSTALL

5. Fast Install opens the installation command file, checks the
format, and displays a list of application groups. Select
the group in which you want to install your application and
press DO.

6. After successful installation, you can run your application
from the P/OS user interface.

Table 3-1: Application File Locations for Fast Install

FILE Command

FILE fname.ext
or
FILE fname.ext/USER

FILE [dir]fname.ext
or
FILE [dir]fname.ext/USER

FILE fname.ext/NETWORK

FILE [dir]fname.ext/CLUSTER

FILE fname.ext/CLUSTER

3-2

Copy File To

SYSDISK:[applicdir]
where applicdir is the name of
your application directory,
which must be the same as the
name of your installation
command file.

SYSDISK:[dir]
where dir is the name of the
directory that you specified in
the FILE command in your
installation command file.

SYSDISK:[applicdir]
where applicdir is the name of
you application directory,
which must be the same as the
name of your installation
command file.

LBOOO:[dir]
where dir is the name of the
directory that you specified in
the FILE command in your
installation command file.

For details on this case, see
Section 3.1.

FAST INSTALL

Notes:

• If Fast Install cannot find the application directory, or the
application directory does not contain an installation
command file with the same name, installation fails.

• If a PRO/RMS-11 record error occurs while Fast Install is
opening the installation command file, look up the error code
in the PRO/RMS-11 manual set. If you cannot correct the
problem, contact your local DIGITAL software support
representive.

• If the installation command file contains errors in syntax,
Fast Install prints them.

3.1 INSTALLING DECNET OBJECTS FOR TESTING

Applications that contain a DECnet object use a /CLUSTER file
named DECNET.ODS, and possibly other /CLUSTER files, in the FILE
command of the installation file. If you specify the directory
in the FILE command for these files, naming conflicts can occur
with the /CLUSTER files of other applications.

To avoid such conflict, the system creates a directory for these
/CLUSTER files during normal installation. However, because Fast
Install does not copy any files, you must manually create the
directory, copy the /CLUSTER files into it, and place an entry in
the DECnet object database.

Follow these steps:

• Log in to a privileged account. On P/OS Server systems, you
must log in to the Server.

• Create a new directory on device LBOOO:.

• Copy all /CLUSTER files that do not specify a directory in
the FILE command of the installation command file to the
directory you created in the previous step.

• Using DCL on your Professional, issue the following commands:

$ASSIGN LBOOO:[directory] APPL$DST
$ASSIGN LBOOO:[directory] APPL$DST:
$ ASSIGN "applic_name" DST$NAME
$RUN LBOOO:[ZZDECNET]DAI/COMMAND="/INS/CLS"

3-3

CHAPTER 4

FILE CONTROL SERVICES (FCS)

File Control Services (FCS) is a set of file management routines
for use on the RSX-11 family of operating systems. It was
designed for the RSX-llD operating system in the early 1970s, and
has been implemented subsequently for IAS, RSX-llM, RSX-llM-PLUS,
the RSX Application Migration Executive on VMS, and for the RSX
run-time system on RSTS/E. FCS can be considered the precursor
of Record Management Services (RMS-11), which is implemented on
all of the above systems as well as on P/OS (PRO/RMS-11).

NOTE

FCS is described in detail in the IAS/RSX-11 I/O
Operations Reference Manual, which is part of the
RSX-llM/M-PLUS documentation set.

Originally, P/OS applications could use only PRO/RMS-li for file
system operations. All applications targeted for P/OS had to use
PRO/RMS-11. Applications that had been written to use FCS had to
be converted to use PRO/RMS-11 instead.

With the release of the PRO/Tool Kit Vl.O and the Host Tool Kit
Vl.7, the FCS routine library became part of the P/OS system
module library. Tool Kit V3.0 also includes a vectored FCS
resident library. Thus, you can move applications that use FCS
to P/OS without conversion to PRO/RMS-11. ·

Although P/OS provides a full implementation of FCS, you are
urged to always use RMS in new applications. Use FCS to port
applications designed to run on RSX systems when such
applications already use FCS.

4.1 SUPPORT BY HIGH-LEVEL LANGUAGES

Programs written in MACR0-11
Programs written in other

assembly
Tool Kit

4-1

language can use FCS.
languages (BASIC-PLUS-2,

File Control Services (FCS)

COBOL-81, PRO/DIBOL, FORTRAN-77 and PASCAL) do not work with FCS
because the Object Time Systems (OTS) of these languages on P/OS
use PRO/RMS-11 rather than FCS. The RSX versions of some of
these languages will work on P/OS provided that the programs are
linked using the Tool Kit version of the System Library (SYSLIB)
which includes FCS.

High-level languages available from vendors other than DIGITAL
can use FCS in their object-time systems. Please refer to
product documentation of these software products.

4.2 USING FCS RESIDENT LIBRARY

Vectored FCS is included with the Tool Kit V3.0. It is
compatible with the FCSRES for Micro/RSX and RSX-llM-PLUS. A
task linked with vectored FCS can perform FCS operations on
either system without relinking.

4.3 USING FCS IN-TASK VERSION

FCS is also available as modules that you can include in the
task's virtual address space.

NOTE

We recommend that you use the resident library if
possible, since that ordinarily enables the task
to acquire new functionality without relinking.

If it is not possible or desirable to use the resident library,
you can automatically include the same FCS modules from SYSLIB.
However, note that the FCS modules in SYSLIB can handle only
those logical names that translate to devices; the modules do not
handle logical names that translate to any other fields in a file
specification.

Perform the following steps if you are using the in-task version
of FCS and you require the enhanced logical name capability:

1. Make copies of LB:[l,5]RSXMAC.SML and LB:[l,5]SYSLIB.OLB.
These two libraries will be modified in the following steps.
It will be easier to return the current capabilities if you
save these libraries.

4-2

File Control Services (FCS)

The next three steps show DCL commands that you invoke to
perform the modifications.

2. $ LIBRARY/REPLACE LB:[1,5]RSXMAC.SML FCSMAC.NEW

3. $ LIBRARY/REPLACE LB:[1,5]SYSLIB.OLB FCSEP.NEW

4. $ LIBRARY/REPLACE/NOGLOBALS LB:[1,5]SYSLIB.OLB FCSNOEP.NEW

5. Assemble and taskbuild your programs.

The replacement modules were not included in the distributed
version of SYSLIB because they require more virtual address space
than the existing FCS modules.

Should it be necessary to restore RSXMAC and SYSLIB
prior states, replacement modules are provided.
following DCL commands to restore RSXMAC and SYSLIB:

1. $ LIBRARY/REPLACE LB:[1,5]RSXMAC.SML FCSMAC.OLD

2. $ LIBRARY/REPLACE LB:[1,5]SYSLIB.OLB FCSEP.OLD

to their
Use the

3. $ LIBRARY/REPLACE/NOGLOBALS LB:[1,5]SYSLIB.OLB FCSNOEP.OLD

4-3

CHAPTER 5

FRAME DEVELOPMENT TOOL {FDT)

The Frame Development Tool (FDT) is a special-purpose utility for
creating menu, help, and message frames. When these frames are
used with the POSRES User Interface Library, they provide a user
interface for your P/OS application. Designing a user interface
and programming with POSRES are described in the Tool Kit User's
Guide.

5.1 FDT OVERVIEW

Creation or modification of a frame file follows these general
steps:

1. Plan your frames. You should have a good idea of what frames
your menu structure and help structure will require before
you use FDT.

2. Start FDT and specify a filename for the frame definition
file. If you are creating a new file, specify the type of
frames (menu, help or message) you want to create. This
leaves you at File Command level.

3. Enter a File Command. When creating a new frame file, you
would typically use the Add command. When modifying a frame
file, you might use commands such as Add, Delete, Modify.

4. If you are adding or modifying a frame~ enter a Frame
Command. A frame is defined by three separate forms that you
fill in or modify. While entering data in.a form, you use a
special set of keypad keys.

When you are finished with a form, you press ENTER. When you
are finished adding or modifying the frame, you enter the
Save or Quit command.

5-1

FDT OVERVIEW

5. You are back at File Command level, where you can repeat
Steps 3 and 4 with another frame, or you can supply a File
Command that uses the whole frame file, such as Convert,
List, Report, Window.

When you are finished with the file, you enter Save or Quit.

The following sections describe how to run FDT, the File
commands, the Frame commands, and the forms in more detail. If
you would like to try out a sample FDT editing session before
moving on, turn to Section 5.11.

5.2 INVOKING FDT

FDT is invoked in different ways depending on whether you are
running it on a VAX, PDP-11, or your Professional. The commands
required to start it are discussed in the following sections.

In each case, FDT requires the name of the frame file. If you do
not include the filename, FDT prompts for one. The default
type is .DAT. If the file does not exist, FDT assumes that
are creating a new file and prompts for the type of frame
you will store in the file.:

Create (H)elp, (M)essage, or (S)ingle-choice menu file?

You enter H, M, or S.

NOTE

You can only store frames of the same type in a
file. You must create separate files for help,
messages, and single-choice menus.

5.2.1 Invoking FDT on VAX/VMS

file
you

that

For convenience, edit your LOGIN.COM file and insert the
following symbol definition:

$ FDT :== $FDT

Once the symbol is defined, you can invoke FDT by typing:

$ FDT filename

5-2

INVOKING FDT

5.2.2 Invoking FDT on RSX-11 M/M-PLUS (DCL)

If FDT is installed on your system as " ... FDT II, enter:

$ FDT filename

If FDT is not an installed task, enter:

$ RUN $FDT

5.2.3 Invoking FDT in PRO/Tool Kit

You must install the FDT task. You might edit your start-up
command file with the appropriate command to install FDT from the
directory in which it resides.

To start FDT, enter:

$ FDT filename

If FDT is not an installed task, enter:

$ RUN $FDT

5.3 FILE COMMANDS

Some file commands operate on all frames in the frame file.
Other file commands operate on individual frames; these require
that you supply the name of the frame (called the frame
identifier, or frameid) with the command. File commands are
entered in response to the prompt:

File Command:

With the exception of the QUIT command, you can abbreviate any
file command to a single character. If you enter a command and
omit required parameters, FDT displays prompts requesting them.

While working at file command level, the current file type and
filename are displayed in a message at the top of your screen.

NOTE

Do not embed spaces in frame identifiers. POSRES
routines cannot retrieve them correctly at run
time.

5-3

FILE COMMANDS

5.3.1 ADD

The ADD command begins the creation of a new frame. New frames
can be added to a new or existing frame definition file.

Format:

ADD f rameid

frameid A string of up to eight alphanumeric characters that
identifies the new frame.

Notes

• A frame identifier must consist of alphanumeric ASCII
characters. FDT converts all characters to uppercase.

• If you are editing a help file, FDT prompts as follows:

Help (M)enu or (T)ext?

Respond with M for a help menu or T for a help text frame.

• FDT displays a Profile form, which is the first form you must
fill in when you are creating a new frame.

5.3.2 CONVERT

The CONVERT command creates a converted frame file that can be
read directly by POSRES menu services during program execution.

Format:

CONVERT output-file

output-file The name of the converted frame file.

Notes:

• The default file types for converted files are:

.HLP Help definition file

.MSG Message definition file

.MNU Menu definition file

5-4

FILE COMMANDS

• All required fields on frames must be filled in before the
frame is converted. If a frame lacks required information,
an error message appears and the frame is not converted.

• FDT displays these messages:

x frames converted, y frames not converted.
The largest frame, "<framename>", is n (m octal) bytes long.

The numbers x, y, and n, are decimal. The number m is the
octal equivalent of n. If there are unconverted frames,
other messages will appear.

Record the size of the largest frame converted. You can use
this number to compute the minimum amount of buffer space
required for frames of the type stored in this file (see the
discussions of the Professional Application Builder and the
P/OS User Interface Services in the Tool Kit User's Guide).

5.3.3 DELETE

The DELETE command deletes the specified frame from the current
file.

Format:

DELETE f rameid

frameid The identifier of the frame to be deleted.

Notes:

• Before deleting the frame, FDT shows the Display form for the
specified frame and prompts:

Delete this frame?

Enter YES to delete the frame; enter NO to avoid deleting it.
Control returns to the File Command prompt.

5.3.4 EXIT

The EXIT command saves the current frame definition file on disk
and exits from FDT. (The EXIT command is identical to the SAVE
command.)

5-5

FILE COMMANDS

Format:

EXIT

Notes:

• If the file already exists, it is assigned the next higher
version number.

• After saving a file, FDT displays a confirmation message
naming the file saved and returns control to system command
level.

5.3.5 FILE

The FILE command terminates processing of the current file and
opens a new frame file.

Format:

FILE filename

filename The name of the new frame file. The default file type
is .DAT.

Notes:

• If you have modified the current file, FDT prompts:

Save current file?

Enter YES to save it, or NO to discard it.

• If you are creating a new frame file, FDT prompts for the
type of file you want to create:

Create (H)elp, (M)essage, or (S)ingle-choice menu file?

Enter H, M, or S; or press RETURN to exit.

5.3.6 HELP

The HELP command displays a list of FDT file commands.

5-6

Frame Development Tool

Format:

HELP

5.3.7 LIST

The LIST command displays a list of the frames in the current
file, by frame identifier.

Format:

LIST

Notes:

• The frames are listed in the order they were created,
although the order may change as a result of the addition or
deletion of frames.

5.3.8 MODIFY

The MODIFY command begins the process of modifying an existing
frame in the frame file.

Format:

MODIFY frameid

frameid The identifier for the frame to be modified.

Notes:

• FDT displays a message indicating the frame is available for
modification and displays the "Frame Command" prompt.

5.3.9 NAME

The NAME command renames a frame.

5-7

FILE COMMANDS

Format:

NAME old-frameid new-frameid

old-frameid Is the frameid that is to be renamed.

new-frameid Is the new name (up to eight ASCII alphanumeric
characters).

5.3.10 QUIT

The QUIT command returns control to system command level without
saving the current file. All changes made to the current file in
the current editing session are discarded. (All of the
characters in the QUIT command must be typed.)

Format:

QUIT

5.3.11 REPORT

The REPORT command creates a printable file containing
information about each frame in the current frame file.

Format:

REPORT filename

filename The name of the output file that will contain the
report.

Notes:

• The default file type for the report file is .RPT.

• If you do not specify a filename, FDT uses the current frame
filename by default.

5.3.12 SAVE

The SAVE command saves the current frame definition file on disk
and exits from FDT. (The SAVE command is identical to the EXIT
command.)

5-8

Frame Development Tool

Format:

SAVE

Notes:

• If the file already exists, it is assigned the next higher
version number.

• After saving a file, FDT displays a confirmation message
naming the file saved and returns control to system command
level.

5.3.13 WINDOW

The WINDOW command converts the current file to a Synergy source
frame file. (See the Synergy Programmer's Manual.)

Format:

WINDOW filename

Notes:

• The default file type is .SFF.

• The text that appears in the Display form becomes the text in
the Synergy window. Other text fields, such as action
strings, become option values or comments in the Synergy
frame file.

• Frame identifiers are not changed. (The Synergy Frame
Compiler Tool diagnoses numeric names and names that are
longer than six characters.)

• The conversion cannot be complete, since the frame files of
FDT and FCT do not provide identical functionality. However,
FCT will diagnose most of the problems during the first
attempt to compile the Synergy frame file. If you encounter
strange errors, use the CONVERT command to discover and
correct missing fields before trying the WINDOW command a
second time.

5-9

•

Frame Development Tool

Combine the SFF files that you derive from your MNU
files before using the Synergy Frame Compiler,
references to help frames will be resolved.

5.4 FRAME COMMANDS

and HLP
so that

Frame commands allow you to modify frames. They are entered in
response to the prompt:

Frame Command:

With the exception of the QUIT command, you can abbreviate any
frame command to a single character. If you enter a command and
omit required parameters, FDT displays prompts requesting them.

5.4.1 ACTION

The ACTION command invokes Action forms for the options on the
current menu. An Action form specifies a keyword, a help frame
pointer, and (for single-choice menus only) an action string for
each option.

Format:

ALL

ACTION

Specifies all options in the current menu.
default.

ALL is the

NEW Specifies only those options for which you have not yet
entered an action form.

option Specifies a particular option by ordinal number (1 to
12) •

Notes:

• Action information can be assigned only to menus (not text
frames).

5-10

Frame Development Tool

• Each option must be assigned action information.

• If you specify an option that has already been assigned
action information, the current description is displayed on
the Action form. You can then enter new information or
change existing information.

5.4.2 DISPLAY

The DISPLAY command invokes a Display form for the current frame.
The Display form contains the text that the user sees on the
screen.

Format:

DISPLAY

Notes:

• A Display form for a menu contains the title, explanatory
text, options, and prompt.

• A Display form for a help text frame contains the title and
text.

• A Display form for a message frame contains the message text.

5.4.3 EXIT

The EXIT command saves the current frame on disk in the current
file, displays a confirmation message, and returns control to
file editing level. (The EXIT command is identical to the SAVE
command.)

Format:

EXIT

CAUTION

This command saves the current frame, not the
file. To save the file, enter an EXIT or SAVE
command at file command level when you are
finished editing.

5-11

Frame Development Tool

5.4.4 HELP

The HELP command displays a list of FDT frame commands.

Format:

HELP

Notes:

• If you request help at the Frame Command prompt while you are
working on a text or message frame, the ACTION command is not
listed.

5.4.5 PROFILE

The PROFILE command displays a Profile form for the current
frame. The Profile form contains data that documents the frame
and describes the operation of the frame to menu services. This
information is not visible to the end user.

Format:

PROFILE

Notes:

• The Profile form for a single-choice menu contains a frame
description, a global help frame pointer, the default option,
and the global action string.

• The Profile
description,
option.

form for a help menu contains a frame
a previous help frame pointer, and the default

• The Profile form for a help text frame contains a frame
description, the frame's screen location, a previous help
frame pointer, and a next help frame pointer.

• The Profile form for a message frame contains a frame
description.

5.4.6 QUIT

The QUIT command returns control to file command level without

5-12

Frame Development Tool

saving the current frame.
discarded.

Any changes made to the frame are

Format:

QUIT

Note:

All four characters of the QUIT command must be entered.

5.4.7 SAVE

The SAVE command saves the current frame on disk in the current
file, displays a confirmation message, and returns control to
file editing level. (The SAVE command _is identical to the EXIT
command.)

Format:

SAVE

CAUTION

This command saves the current frame, not the
file. To save the file, enter an EXIT or SAVE
command at file command level when you are
finished editing.

5.5 PROFILE, DISPLAY, AND ACTION FORMS

FDT provides access to frame descriptions by
When you enter the ADD command to create
displays a series of forms for you to fill in.
the MODIFY command to edit an existing frame,
specify which forms you want to modify.

means of forms.
a new frame, FDT
When you enter

FDT allows you to

As shown in Figure 5-1, there are three types of forms:

5-13

PROFILE, DISPLAY, AND ACTION FORMS

• The Profile Form

The Profile form (invoked by the PROFILE command) contains
data that describes the purpose and operation of the frame to
POSRES and to your task. This information is not visible to
the user.

• The Display Form

The Display form (invoked by the DISPLAY command) contains
fields that correspond to the fields in the frame. It
describes how the form will appear to the user.

• The Action Form

The Action form (invoked by the ACTION command) is for menu
frames only. It specifies a keyword, help frame pointer, and
(for single-choice menus) an action string for each option.

5-14

PROFILE, DISPLAY, AND ACTION FORMS

FORMS
ProI'ile for Single Choice Menu MAIN

Frame Description r This is the main menu for the elementary education application.

l

[DATABASE • ELEM

Display for Single Choice Menu MAIN

Global Help Frame [MENU}

Default Option f 3 I

Global Action String

ELEMENTARY EO'JCATION APPLICATION

This application offers elementary education in seven fields of study. Select
one of the courses :isted here.

[
[H~e a selection and press the DO key:

Action Number J for Sing:i.e Choice Menu MAIN

9IOLOGY

COt-!P'JTER SC I ENCE

GEOGRAPHY

GOVERN~ENT

HISTORY
LITERAT1JRE
MATHE:-!A 7 I CS

~escription: GEOGRAPHY

[GEO

'"'"e [llEL?GEO]

[GEOG0010
Option Action S'::-~r.g

l

CD

I
MENU DEFINITION FILE

... •
I I

MENU

-------- ELEMENTARY EDUCATION APPLICA''!CN --------.

This application offers elementary education in seven flelds of :it'..:.dy. ;:ie:ect
one of the courses listed here:

BIOLOGY

COMPUTER SC I ENCE
-> CEOCRAPHY

GOVERNMENT

HISTORY
LiiERAT~RE

MATHEMATICS

Make a selection and press the DO key:

Add1<;1onal Options avaUab~e

Figure 5-1: Forms for a Single-Choice Menu

5-15

PROFILE, DISPLAY, AND ACTION FORMS

Each form contains one or more fields. The meaning of some
fields is clear from the field name or prompt. Other fields,
such as help frame pointers, are interrelated and are more
complex.

Some fields are optional; others are required. If you fail to
fill in a required field, FDT accepts the frame. However, when
you try to CONVERT the frame file, an error occurs and the
conversion fails.

You can use your keyboard's numeric keypad and ARROW keys to
manipulate text within a field. Figure 5-2 shows the layout of
the numeric keypad. Like other screen editors, FDT uses an
insert mode for entering text. There is no insert command. To
enter text, simply type on the main keyboard.

0 G 0 rDELETE-,

HELP CURRENT
LINE

: ~1~'ti, .., [I] ,. ~~i~o DELETE
WORD

BOJB: g~~~TE
Door

EXIT
CURRENT [JO ~FORM

Figure 5-2: FDT Screen Editor Keypad

5-16

PROFILE, DISPLAY, AND ACTION FORMS

The keypad keys operate as follows:

Move the cursor forward, backward, up, or down,
within and between fields. You can use the 6, 4,
8, and 2 keys (respectively) on the numeric
keypad for the same purposes.

Displays a description of the field the cursor
currently points to. If pressed again, the HELP
key displays a description of the keypad keys.

Deletes from the cursor to the end of the line.

Deletes from the cursor to the next word.

Deletes the character the cursor is on.

Positions the cursor at the beginning of the
next field on the form.

Positions the cursor at the beginning of the
previous field on the form.

Returns control to frame editing command level
unless you are filling in multiple Action forms,
in which case the next Action form for the menu
(if there is one) is displayed.

5-17

CREATING A SINGLE-CHOICE MENU

5.6 CREATING A SINGLE-CHOICE MENU

5.6.1 The Profile Form

Profile for Single Choice Menu [IDENTIFIER]

Frame Description

[l
Global Help Frame []
Default Option []

[
Global Action String

J

Figure 5-3: Profile Form for Single-Choice Menu

Field

Frame
Descrip­
tion

Global
Help Frame

Default
option

Type

Optional

Optional

Optional

Max. Size

Six lines of
72 characters

Eight alphanu­
meric charac­
ters

Two digits

5-18

Purpose

Enter a description
of the overall
purpose and operation
of the menu. For
example, you can
document the content
and meaning of the
global action string.

Specify the help
frame to be displayed
when the selector is
at the rest position
or if no option frame
pointer exists.

Specify the ordinal
number of the option
on which the selector
is to begin when the
menu is displayed. If
you leave this field
blank, the selector
begins at the rest
position.

Field

Global
action
string

CREATING A SINGLE-CHOICE MENU

Type Max. Size

Optional 72 characters

5-19

Purpose

Specify a string that
associates some
useful data with this
menu. When the MFRAME
routine reads this
menu into memory, it
returns the global
action string to your
task, which can use
or ignore it.

CREATING A SINGLE-CHOICE MENU

5.6.2 The Display Form

Display for Single Choice Menu [IDENTIFIER]

[TITLE TEXT J

[
EXPLANATORY TEXT

J

OPTION DESCRIPTION

[PROMPT J

Figure 5-4: Display Form for Single-Choice Menu

Field

Title

Explana­
tory text

Option
descrip­
tions

Prompt

Type

Required

Optional

Required

Required

Max,. Size

64 alphanumer­
ic characters

Three lines of
72 characters

Twelve lines
of 64 charac­
ters

72 characters

5-20

Purpose

Enter the title to be
displayed on the
first line of the
menu.

Enter text
introducing the user
to the options listed
on this menu.

Enter the option
list. You must
specify at least one
option.

Enter a string that
requests the user to
make a selection.

CREATING A SINGLE-CHOICE MENU

5.6.3 The Action Form

Action Number [#] for Single Choice Menu [IDENTIFIER]

Description: [OPTION DESCRIPTION]

[
Action Description

J
Option Keyword [J
Option Help Frame [J

[
Option Action String

J

Figure 5-5: Action Form for Single-Choice Menu

The message line at the top of the form shows the ordinal number
of the option for which action is being assigned. It also shows
the identifier of the menu on which the option is displayed.

Field

Action
Descrip­
tion

Option
keyword

Option
Help Frame

Type

Optional

Required

Optional

Max. Size

Two lines of
72 characters

30 characters

Eight alphanu­
meric charac­
ters

5-21

Purpose

Enter a description
of the overall
purpose and operation
of the option. For
example, you can
document the content
and meaning of the
option action string.

Enter any contiguous
substring of the
option. This keyword
appears in bold when
the menu is displayed
in order to indicate
which characters the
user can type to
select this option.

Specify the help
frame to be displayed
when the user presses
the HELP key while
the selector is
positioned at this
option.

Field

Option
action
string

CREATING A SINGLE-CHOICE MENU

Type Max. Size

Optional 72 characters

5-22

Purpose

Specify a string that
associates some
useful data with this
option. When the user
selects an option,
the MENU routine
returns this string
to your task, which
can use or ignore it.

CREATING A HELP MENU

5.7 CREATING A HELP MENU

5. 7 .1 The Profile Form

Profile for Help Menu [IDENTIFIER]

Frame Description

[
Previous Help Frame [
Default Option []

Figure 5-6: Profile Form for Help Menu

Field

Frame
Descrip­
tion

Previous
Help Frame

Default
option

Type

Optional

Optional

Optional

Max. Size

Six lines of
72 characters

Eight alphanu­
meric charac­
ters

Two digits

5-23

l

Purpose

Enter a description
of the ave rall
purpose and operation
of the menu. For
example, you can
document how it fits
into the larger help
structure.

Specify the help
frame to be displayed
when the user presses
the PREV SCREEN key.

Specify the ordinal
number of the option
on which the selector
is to begin when the
menu is displayed. If
you leave this field
blank, the selector
begins at the rest
position.

CREATING A HELP MENU

5.7.2 The Display Form

Display for Help Menu [IDENTIFIER]

[TITLE TEXT

[
EXPLANATORY TEXT

OPTION DESCRIPTION

[PROMPT

Figure 5-7: Display Form for Help Menu

Field

Title

Explana­
tory text

Option
descrip­
tions

Prompt

Type

Required

Optional

Required

Required

Max. Size

64 alphanumer­
ic characters

Three lines of
72 characters

Twelve lines
of 64 charac­
ters

72 characters

5-24

J

J

Purpose

Enter the title to be
displayed on the
first line of the
menu.

J

Enter text
introducing the user
to the options listed
on this menu.

Enter the option
list. You must
specify at least one
option.

Enter a string that
requests the user to
make a selection.

CREATING A HELP MENU

5. 7 .3 The Action Form

Action Number [#] for Help Menu [IDENTIFIER]

Description: [OPTION DESCRIPTION]

[
Action Description

Option Keyword [
Option Help Frame []

Figure 5-8: Action Form for Help Menu

Field

Action
Descrip­
tion

Option
keyword

Option
Help Frame

Type

Optional

Required

Required

Max. Size

Two lines of
72 characters

30 characters

Eight alphanu­
meric charac­
ters

5-25

J
]

Purpose

Enter a description
of the overall
purpose and operation
of the option. For
example, you can
document whether the
option help frame is
a menu or a text
frame.

Enter any contiguous
substring of the
option. This keyword
appears in bold when
the menu is displayed
in order to indicate
which characters the
user can type to
select this option.

Specify the name of
the help menu or text
frame to be displayed
when the user selects
this option.

CREATING A HELP TEXT FRAME

5.8 CREATING A HELP TEXT FRAME

5.8.1 The Profile Form

Profile for Help Text [IDENTIFIER]

[
Frame Description

]
Frame Location [FULL]
Previous Help Frame []
Next Help Frame []

Figure 5-9: Profile Form for Help Text Frame

Field

Frame
Descrip­
tion

Frame
Location

Previous
Help Frame

Next Help
Frame

Type

Optional

Required

Optional

Optional

Max. Size

Six lines of
72 characters

Specific
options

Eight alphanu­
meric charac­
ters

Eight alphanu­
meric charac­
ters

5-26

Purpose

Enter a description
of the overall
content of the frame.

Specify "FULL",
"TOP", or "BOTTOM",
according to where
you want this frame
to appear. A full
frame has 16 lines of
text; a top or bottom
frame has 8 lines.
The default is
"FULL". To change it,
position the cursor
on the "F" and press
the DELETE WORD key
on the keypad.

Specify the help
frame to be displayed
when the user presses
the PREV SCREEN key.

Specify the help
frame to be displayed
when the user presses
the NEXT SCREEN key.

CREATING A HELP TEXT FRAME

5.8.2 The Display Form

Display for Help Text [IDENTIFIER]

[TITLE TEXT J
......,

Help Text

Figure 5-10: Display Form for Help Text Frame

Full screen and top or bottom half help text frames have
different Display forms representing the difference in the number
of lines in the frame. However, they all share the same fields,
and the full screen help text frame is representative.

Field Type

Title Required

Help text Required

Max. Size

64 alphanumer­
ic characters

16 lines of 72
characters

5-27

Purpose

Enter the title to be
displayed on the
first line of the
frame.

Enter at least one
line of text that
provides help on some
aspect of your
application.

CREATING A MESSAGE TEXT FRAME

5.9 CREATING A MESSAGE TEXT FRAME

5.9.1 The Profile Form

Profile for Message [IDENTIFIER]

Frame Description

Figure 5-11: Profile Form for Message Frame

Field

Frame
descrip­
tion

Type

Optional

5.9.2 The Display Form

Max. Size

17 lines of 72
characters

Purpose

Enter text that
documents the
contents and purpose
of the message.

Message text frames are displayed with no border or prompt. The
Display form for this type of frame is simply a blank screen with
the usual message line at the top identifying the current frame.

Field

Message
text

Type

Required

Max. Size

21 lines of 79
characters

5-28

Purpose

Enter the message
text. You must enter
at least one line.

RESOLVING ERRORS

5.10 RESOLVING ERRORS

All FDT user errors produce a short beep from the keyboard. For
example, while you are filling in forms, if you press a key that
is not on the FDT keypad or attempt to type over field
boundaries, the keyboard beeps and the key action is ignored.

Errors other than the example given above produce a descriptive
error message following the keyboard beep. FDT Error messages
are described in Appendix B.

Certain invalid keystrokes disrupt the FDT screen display. For
example, a line feed entered while an FDT form is displayed
scrolls the screen upward. Also, a backspace typed to the File
or Frame Command prompt allows typing over the prompt, causing
valid commands typed at this point to be rejected. If you enter
an invalid keystroke that alters a form display, type CTRL/W to
refresh the screen and continue. If you enter an invalid
keystroke that alters a File or Frame Command prompt, enter valid
commands until one is accepted.

5.11 SAMPLE TERMINAL SESSION

The following is a sample of a terminal session using the Frame
Development Tool on an RSX-11M/M-PLUS system. It is recommended
that you use the single-choice menu shown in Figure 5-1 to fill
in the forms.

$ RUN $FDT

FDT starts and prompts for a filename.
creates a new file.

Filename: SAMPLE

In this example, FDT

FDT prompts for the type of frames to be stored in the file.

Create (H)elp, (M)essage, or (S)ingle-choice menu file?

The file SAMPLE.DAT will contain single-choice menus. FDT
prompts for a file command.

File Command: ADD MAIN

The ADD command creates a new frame called MAIN. Because it is a
new frame, FDT displays a Profile form. When you finish the
form, press the ENTER key. MAIN is now the current frame. FDT
prompts for a frame command.

5-29

SAMPLE TERMINAL SESSION

Frame Command: DISPLAY

The DISPLAY command creates a Display form for MAIN. When you
finish the form, press the ENTER key. FDT prompts for another
frame command.

Frame Command: ACTION

The ACTION command creates Action forms for each option on the
display form for MAIN. When you finish an Action form, press the
ENTER key. When all the Action forms are done, FDT prompts for
another frame command. Suppose that you want to correct a
mistake on the Action form for the third option.

Frame Command: ACTION 3

FDT displays the action form for option three with the
information you entered before. When you finish the form, press
the ENTER key. FDT prompts for another frame command.

Frame Command: SAVE

MAIN is saved on disk, and a confirming message is displayed.
FDT prompts for a file command.

File Command: SAVE

FDT saves the file SAMPLE.DAT, which contains MAIN, on disk and
returns control to host system command level.

Suppose that you decide to modify the Profile form for MAIN.

$ RUN $FDT

Filename: SAMPLE

File Command: MODIFY MAIN

FDT extracts MAIN, displays a message confirming that MAIN is
available for modification, and prompts for a frame command.

Frame Command: PROFILE

The PROFILE command invokes the
current frame. The information
there. When you finish the form,
prompts for a frame command.

Frame Command: SAVE

5-30

Profile form for MAIN, the
you entered before is still
press the ENTER key. FDT

SAMPLE TERMINAL SESSION

FDT saves MAIN with the new Profile form and prompts for a file
command.

File Command: QUIT

FDT discards all changes made to the file SAMPLE.DAT (including
the new Profile form) and returns control to host system command
level.

5-31

CHAPTER 6

INSTALLATION COMMAND LANGUAGE

Every application requires an installation command file. This
file, whose filename contains either a .INB or .INS extension, is
important for creating application diskettes and for installing,
running, and removing an application.

The system uses an installation file in the following ways:

• Building Application Diskettes

When you start the Application Diskette Builder (ADB) to
build the distribution diskettes for your application, ADB
reads the installation file to identify the files to copy to
the application diskette(s).

• Copying Application to Public Library

The system manager on a P/OS system can copy applications
into the Public Library. The installation file directs the
transfer of files from application diskette to the Public
Library on hard disk.

• Installing an Application

When the user installs your application, P/OS reads the
installation file to identify the files to copy to the hard
disk at installation time. If you have tasks that should
execute during the installation process, they can be run by
the EXECUTE command in the installation file.

• Running an Application

When a user runs your application, P/OS reads the
installation file to identify task images (it adds the names
to its list of executable tasks), to open any Menu, Message,
and Help frame files (specified in ASSIGN commands), and to
start the first application task.

6-1

Installation Command Language

• Removing an Application

When the user removes
installation file to
hard disk.

your application, P/OS reads the
identify the files to delete from the

• Deleting Application from Public Library

When the system manager deletes applications from the Public
Library, the system reads the installation file to determine
which application files to delete from the Library.

6.1 INSTALLATION COMMAND FILE FORMAT

An installation command file is an ordinary text file that you
can create with any editor. Some Tool Kit languages provide a
facility for creating a general-purpose installation file. Note
the following requirements for command files:

• Command lines can be up to 132 characters long.

• There is one command per line.

• Commands must appear in a prescribed order.

The format of an installation file is shown in Figure 6-1.
Boldface indicates a mandatory command.

NOTES COMMAND LINES

! A sample install file.
NAME "name"
FILE filespec/option1/option2

1 MOUNT volume
EXECUTE taskspec/option1/option2/option3
INSTALL f ilespec/option1/option2/NOREMOVE/FIX
ASSIGN MESSAGE filespec/option
ASSIGN MENU f ilespec/option
ASSIGN HELP filespec/option frameid
ASSIGN LOGICAL name "equiv"

2 RUN taskname

Figure 6-1: Installation Command File Format

6-2

INSTALLATION COMMAND FILE FORMAT

Notes to Figure 6-1

1. The MOUNT command is required for multiple-diskette
applications. (See Section 6.11.)

2. ADB and Fast Install generate a warning message if you
omit the RUN command. Although P/OS does not require the
RUN command to be present, most applications must use it.

The order of the FILE commands determines the order in which
files are copied from the application diskettes or Public
Library. The order of the INSTALL commands determines the order
in which task image files are processed when an application is
started.

6.1.1 Using .INB and .INS Files

For applications that will run on P/OS V3.0 you should use the
.INB extension on your installation filename. This will allow
your application to take advantage of additional features present
in P/OS V3.0 and later versions.

To run on V2.0A and earlier P/OS systems, your application must
supply a .INS file. These systems do not recognize .INB files as
installation files.

You can supply both an .INB and .INS file for any application.
In general, we recommend that you supply both forms of the
installation file so that your application is compatible with the
maximum number of systems.

The following are valid only in .INB files:

• ASSIGN MESSAGE command

• /USR, /NTW, and /CLS qualifiers on the EXECUTE command

e /USER, /NETWORK, and /CLUSTER qualifiers on
specification

• /TASK=name qualifier on the INSTALL command

any file

6.1.2 Using /USER, /NETWORK, and /CLUSTER in Your .INB File

You use the /USER, /NETWORK, and
command whose format includes a

6-3

/CLUSTER qualifiers
file specification.

on any
These

INSTALLATION COMMAND FILE FORMAT

qualifiers tell P/OS where on the system each application file
normally resides; thus they allow you to control access to the
files.

A description of each qualifier follows.:

• /USER--Separate file available for each user

Application files with the /USER qualifier are available
separately to each user who installs the application. Such
files cannot be shared among different users. An example of
a /USER file is a file containing individual set-up
information. On P/OS V2.0A or earlier systems, all
application files were treated as /USER files.

Files given the /USER qualifier always reside on the device
SYSDISK:, in either a dynamically-created directory named
[ZZAPnnnnn] or in the directory specifed in the installation
command.

During run time, your application can refer to any /USER
files either by using the logical APPL$USER: in conjunction
with the filename and extension (preferred), or by using the
complete file specification. However, for compatibility with
P/OS V2.0A and earlier systems, you must instead translate
the logical APPL$DIR and use the resulting device and
directory in your file specification.

Sample references to a /USER file:

APPL$USER:SETUP.DAT
SYSDISK:[MYAPPLDIR]SETUP.DAT

• /NETWORK--file can be shared among users

Application files with the /NETWORK qualifier can be shared
among users executing the same application. This saves disk
space, since the system can use a single copy of the file for
all users executing your application on a particular system.
Most read-only files are good candidates for the /NETWORK
qualifier. Also, a read-write database could be a /NETWORK
file, provided that your application properly manages any
concurrent accesses.

qualifier reside on the disk
manager when they are copied from

places /NETWORK files in a

Files having the /NETWORK
specified by the system
diskette. The system
dynamically-created
[ZZAPnnnnn.ZZPUBAP].

directory of the form

6-4

INSTALLATION COMMAND FILE FORMAT

During run time, your application must refer to any /NETWORK
files by using the logical APPL$NETWORK: in conjunction with
the filename and extension.

Sample reference to a /NETWORK file:

APPL$NETWORK:DATABASE.DAT

• /CLUSTER--file can be shared among different applications

Application files with the /CLUSTER qualifier caf1 be shared
among users executing different applications. Only a Server
manager can install /CLUSTER files on a system.

As with /NETWORK files, a read-only file or a
properly-managed read-write database is a good candidate for
the /CLUSTER qualifier. A callable editor task would be a
very good candidate.

Files given the /CLUSTER qualifier reside on LBOOO:, the boot
device of the Server that down-line loaded the system on
which your application is running.

Usually, you specify the directory in the installation
command. However, if you omit the directory, P/OS places the
file in a dynamically-created directory of the form
[ZZCLnnnnn]. In general, we strongly recommend that you
supply the directory, since your application cannot determine
the dynamically-created name at run time. See Section 3.1
for an exception that applies to applications using DECnet.

During run time, your application must refer to any /CLUSTER
files by using the actual file specification. No logical
names are available for /CLUSTER files.

Sample reference to a /CLUSTER file:

LBOOO:[ZZPRQDCL]PIP.TSK

Table 6-1 summarizes the three qualifiers.

6-5

INSTALLATION COMMAND FILE FORMAT

Table 6-1: Summary of /USER, /NETWORK, and /CLUSTER Qualifiers

Qualifier

/USER

/NETWORK

/CLUSTER

Location

SYSDISK:[ZZAPnnnnn]
or
SYSDISK:[directory]

• SYSDISK: points to the
user home.

• nnnnn is created
dynamically by the
system.

• directory is specified in
the installation command.

device:[ZZPAnnnnn.ZZPUBAP]

• device is the device
chosen by the workstation
or Server manager.

• nnnnn is created
dynamically by the
system.

LBOOO:[directory]
or
LBOOO:[ZZCLnnnnn]

• LBOOO: points to the
system library device.

• directory is specif~ed in
the installation command.

• nnnnn is created
dynamically by the
system.

6-6

Logical Name

APPL$USER:

APPL$NETWORK:

None

INSTALLATION FILE ERRORS

6.2 INSTALLATION FILE ERRORS

Errors resulting from an incorrect installation command file are
documented as follows:

• Errors returned during operation of ADB or Fast Install are
documented in Appendix A.

• Errors returned to the end user when installing, removing, or
transferring your application to or from the Public Library
are documented in Appendix E.

6-7

ASSIGN HELP

6.3 ASSIGN HELP

Thi~ command assigns a filename as the default help file for your
application. If you have a default help file, you need not call
the Open Help File service routine at run time.

This command is used only when your application is started by the
user.

Format:

ASSIGN HELP f ilespec/option f rameid

filespec Specifies the name of a help frame file.

option Is optional and can only be specified in .INB files.

f rameid

Notes:

It can be one of /USER, /NETWORK, or /CLUSTER. The
qualifier you specify indicates where the help frame
file resides. See Section 6.1.2 for details.

Is a string of up to eight characters that specifies
the default help frame.

• You must use the same f ilespec that you used in the the FILE
command.

• You can have only one ASSIGN HELP command per installation
file.

• The ASSIGN HELP command is optional. However, we strongly
recommend that you supply it in your installation command
file. If you do not supply an ASSIGN HELP command, POSRES
does not provide any default help file.

• If you have multiple help files, always use ASSIGN HELP to
specify your primary help file as the default. In an HFILE
call to open a different help file, specify only the file
name of the other help file, not the complete file
specification. POSRES obtains any missing fields of the file
specification from the value given in ASSIGN HELP.

6-8

ASSIGN LOGICAL

6.4 ASSIGN LOGICAL

This command defines a logical name at run time. (See the Tool
Kit User's Guide and P/OS System Reference Manual for information
about logical names.) This command is used only when your
application is started by the user.

Format:

name

equiv

Notes:

ASSIGN LOGICAL name "equiv"

Is a string that specifies the logical name that is to
be defined.

Is a string that specifies the equivalence name.

• The ASSIGN LOGICAL command is optional.

• Multiple ASSIGN LOGICAL commands can be used.

6-9

ASSIGN MENU

6.5 ASSIGN MENU

This command assigns a file as the default menu file for your
application. If you have a default menu file, you need not call
the Open Menu File (MFILE) service routine at run time. This
command is used only when your application is started by the
user.

Format:

ASSIGN MENU f ilespec/option

filespec Specifies a menu frame file.

option Is optional and can only be specified in .INB files.

Notes:

It can be one of /USER, /NETWORK, or /CLUSTER. The
qualifier you specify indicates where the menu file
resides. See Section 6.1.2 for details.

• You must use the same f ilespec that you used in the the FILE
command.

• You can have only one ASSIGN MENU command per installation
file.

• The ASSIGN MENU command is optional. However, we strongly
recommend that you supply it in your installation command
file. If you do not supply an ASSIGN MENU command, POSRES
does not provide any default menu file.

• If you have multiple menu files, always use ASSIGN MENU to
specify your primary menu file as the default. In an MFILE
call to open a different menu file, specify only the file
name of the other menu file, not the complete file
specification. POSRES obtains any missing fields of the file
specification from the value given in ASSIGN MENU.

6-10

ASSIGN MESSAGE (.INB FILE ONLY)

6.6 ASSIGN MESSAGE (.INB FILE ONLY)

This command assigns a file as the default message file for your
application. This command is used only when your application is
started by the user.

Format:

ASSIGN MESSAGE f ilespec/option

filespec Specifies a message frame file.

option Is optional and can only be specified in .INB files.

Notes:

It can be one of /USER, /NETWORK, or /CLUSTER. The
qualifier you specify indicates where the message file
resides. See Section 6.1.2 for details.

• You must use the same f ilespec that you used in the the FILE
command.

• You can have only one ASSIGN MESSAGE command per installation
file.

• This command is valid only for P/OS V3.0 or later versions.

• You can have only one ASSIGN MESSAGE command per installation
file.

• The ASSIGN MESSAGE command is optional. However, we strongly
recommend that you supply it in your installation command
file. If you do not supply an ASSIGN MESSAGE command, POSRES
uses APPL$DIR as the default device and directory
specification for all message file operations.

• If you have multiple message files, always use ASSIGN MESSAGE
to specify your primary message file as the default. In an
RDMSG call to open a different message file, specify only the
file name of the other message file, not the complete file
specification. POSRES obtains any missing fields of the file
specification from the value given in ASSIGN MESSAGE.

6-11

COMMENT

6.7 COMMENT

An exclamation point (!) indicates that the line is a comment.
The exclamation point must be the first nonblank character on the
line.

Format:

text

6.8 EXECUTE

This command causes a specified task to execute during the
following operations:

• Install application

• Remove application

• Copy application to the Public Library

• Delete application from the Public Library

If the task exits with status greater than one, the install or
copy operation aborts.

P/OS acts on the EXECUTE command as soon as it is read from the
install~tion file. Thus, the position of the EXECUTE command
relative to FILE commands is significant, as explained below.

Format:

EXECUTE taskspec/option1/option2/option3

taskspec Is the task image file in one of the following forms
for both .INB and .INS files:

[directory]file.TSK

APPL$DST:file.TSK

Additionally, the following form of taskspec is allowed
for .INB files:

file.TSK

file Is the filename for the task image to be executed.

6-12

EXECUTE

directory Is the directory containing the task image to be
executed.

APPL$DST Points to the destination device:[directory] for files
being transferred.

/optionl Is required. It is one of the following:

/INS Executes the specified task either during
application installation, or when the workstation
or Server manager is copying application files
into a shared area (such as the Public Library or
LBOOO:). This command must follow the FILE
command that copies the specified task image to
the hard disk. It can precede other FILE
commands in order to avoid copying files
needlessly in the event that the task exits
unsuccessfully.

/REM Executes the specified task at application
removal, or when the workstation or Server
manager is deleting application files from a
shared area (such as the Public Library or
LBOOO:). This command must precede the
FILE/DELETE command that refers to the same task
image file.

/option2 Is optional is and allowed only for .INB files. This
option further specifies when the task should be
executed.

Omitting option2 executes the task as follows:

• During installation (you have also specified
the /INS qualifier): The system executes the
task when copying /USER files from the
application diskette into APPL$USER:.

• During removal (you have also specified the
/REM qualifier): The system executes the
task when deleting from APPL$USER: those
/USER files originally copied from
application diskette.

/USR as option2 executes the task as follows:

• During installation (you have also specified
the /INS qualifier): The syst~m executes the
task when copying /USER files from the Public
Library into APPL$USER:.

6-13

EXECUTE

• During removal (you have also specified the
/REM qualifier): The system executes the
task when deleting from APPL$USER: those
/USER files originally copied from the Public
Library.

/NTW as option2 executes the task as follows:

• When copying (you have also specified the
/INS qualifier): The system executes the
task when copying /NETWORK files from
application diskette to APPL$NETWORK:.

• When deleting (you have also specified the
/REM qualifier): The system executes the
task when deleting /NETWORK files from
APPL$NETWORK:.

/CLS as option2 executes the task as follows:

• When copying (you have also specified the
/INS qualifier): The system executes the
task when copying /CLUSTER files from the
application diskette onto LBOOO:

• When deleting (you have also specified the
/REM qualifier): The system executes the
task when deleting /CLUSTER files from
LBOOO:.

/option3 is optional and is allowed only for .INB files. This
option specifies the location of the task image, if you
did not specify it in the taskspec. If present,
option3 is one of:

/USER Specifies that the task image is found in
APPL$USER:. If the corresponding FILE line
has a /USER qualifier, the EXECUTE line
should also have a /USER qualifier.

/NETWORK Specifies that the task image is found in
APPL$NETWORK:. If the corresponding FILE
line has a /NETWORK qualifier, the EXECUTE
line should also have a /NETWORK qualifier.

/CLUSTER Specifies that the task image is found in the
system library, LBO:. If the corresponding

6-14

EXECUTE

FILE line has a /CLUSTER
EXECUTE line should also
qualifier.

Notes on Combining Qualifiers:

qualifier, the
have a /CLUSTER

In most cases, combinations of the EXECUTE qualifiers option2 and
option3 are straightforward. The following examples are typical:

EXECUTE ATASK.TSK/INS/USR/USER

This command executes ATASK.TSK during application
installation (see /INS), at the point when the system is
copying /USER files from the Public Library (see /USR) into
APPL$USER:. The system expects to find ATASK.TSK in
APPL$USER:--that is, the corresponding FILE command precedes
the EXECUTE command. (See /USER.)

EXECUTE XTASK.TSK/INS/USER

This command executes
installation (see /INS),
copying /USER files from
option2 qualifier present)
expects to find ATASK.TSK in

EXECUTE BTASK.TSK/REM/NTW/NETWORK

XTASK.TSK during application
at the point when the system is

the application diskette (no
into APPL$USER:. The system

APPL$USER:. (See /USER.)

This command executes BTASK.TSK during application removal
(see /REM), at the point when the system is removing
/NETWORK files (see /NTW) from APPL$NETWORK:. The system
expects to find ATASK.TSK in APPL$NETWORK:. (See /NETWORK.)

The following examples are somewhat more complicated.

EXECUTE CTASK.TSK/INS/USR/NETWORK

This command executes CTASK.TSK during application
installation (see /INS), at the point when the system is
copying /USER files from the Public Library (see /USR) into
APPL$USER:. The system expects to find CTASK.TSK in
APPL$NETWORK:. (See /NETWORK.) The file CTASK.TSK is a
shared component that the workstation or Server manager has
previously copied to APPL$NETWORK:.

EXECUTE [ZZWHA]DTASK.TSK/INS/USR/CLUSTER

This command executes DTASK.TSK during application
installation (see /INS), at the point when the system is
copying /USER files from the Public Library (see /USR) into

6-15

EXECUTE

APPL$USER:. The system expects to find DTASK.TSK on LBOOO:
(see /CLUSTER). The file DTASK.TSK is a shared component
that the Server manager has previously copied to LBOOO:.

Examples showing invalid combinations of option2 and option3
follow.

EXECUTE [SOMEDIR]ETASK.TSK/INS/USR/NETWORK

INVALID COMMAND: The /NETWORK file ETASK.TSK cannot have an
explicit directory.

EXECUTE (ZZSYS]FTASK.TSK/INS/CLS/USER

INVALID COMMAND: The desire is to execute the task when the
Server manager is copying /CLUSTER files from diskette onto
LBOOO:. (See /CLS.) However, the /USER qualifier tells the
system to locate the file in the user-specific application
directory, which does not exist at the time the Server
manager is copying /CLUSTER files.

EXECUTE (ZZSYS]GTASK.TSK/INS/CLS/NETWORK

INVALID COMMAND: This example is similar to the previous
one. The /NETWORK area, in which the system will search for
GTASK.TSK, does not exist when the Server manager is copying
/CLUSTER files from diskette onto LBOOO:.

General Notes:

• The EXECUTE command is not supported on P/OS Hard Disk prior
to Version 2.0.

• The qualifiers /option2 and /option3 are supported for .INB
files only.

• To execute a task whenever the installation process copies
/USER files into APPL$USER:, you must provide two EXECUTE
commands: one that specifies the /USR qualifier as option2,
and one that omits option2 altogether.

• The task referred to by taskspec in the EXECUTE command
cannot be linked with libraries that must be installed during
application installation. This is because all EXECUTE
commands must precede all INSTALL commands in the
installation file. Consequently, tasks written in high-level
languages, which normally require installation of a run-time
library, cannot be executed in the installation file.

6-16

EXECUTE

NOTE

A solution is to execute a task written in
MACR0-11 that install.s any required tasks or
libraries, and then spawns other tasks
written in high-level languages.

• Your executing task can determine the phase of installation
or removal by issuing a GMCR$ directive (documented in the
P/OS System Reference Manual). This directive returns the
option! and option2 qualifiers present on the EXECUTE
command. Table 6-2 describes the phases associated with
different combinations of the qualifiers.

• You can place an EXECUTE command anywhere that a MOUNT or
FILE command can be placed.

• APPL$DST points to the destination
files being transferred during
installation.

device:[directory] for
the current phase of

• At installation, copying, or removal time the logical names
APPL$DIR, APPL$USER:, and APPL$NETWORK: are not defined for
your application.

• The logical name APPL$SRC: points to the source
device:[directory] of the most recent file copied during the
current phase of installation.

Table 6-2: EXECUTE Qualifiers and Phases of Installation/Removal

option1/option2

/INS

/INS/USR

/INS/NTW

/INS/CLS

Installation or Removal Phase

End user is installing from diskette

End user is installing from Public Library

System manager is installing the "entire
application" or "application-specific
components" from diskette into Public Library

System manager is installing "entire
application" or "system-wide components" from
diskette onto LBOOO:.

6-17

option1/option2

/REM

/REM/USR

/REM/NTW

/REM/CLS

EXECUTE

Installation or Removal Phase

End user is removing application

End user is removing application

System manager is removing application from
Public Library

System manager is removing application from
Public Library

6-18

FILE

6.9 FILE

The FILE command specifies the name of an application file. You
must supply a FILE command for each file that is to be copied to
your diskettes during application building and that is to be
copied to or removed from the hard disk during application
installation or removal.

This command is used by ADB when your application diskettes are
built, and by P/OS when your application is installed or removed.

Format:

FILE f ilespec/option1/option2

filespec Is the file specification in the following form for
both .INB and .INS files:

file.TSK

[directory]file.TSK

During the execution of ADB, the file specification is
used to locate the file so that it can be copied to the
diskette. The details of this search for the file to
be copied are described in Chapter 1.

The file is copied to the diskette in the application
directory, or in the directory that is named in the
file specification. A directory is created on the
diskette, if it does not already exist. Thus, FILE
[ABC]FOO.DAT causes the file to be placed in (ABC] on
the diskette.

During the installation of the application, the FILE
command is used to determine where to place the file
that is copied from the diskette.

/option1 Is required. It must be one of the following:

/KEEP

/DELETE

Prevents the file (and
directory) from being
application is removed.

the application
deleted when the

Allows the file (and the application
directory, if there are no files remaining)
to be deleted when the application is
removed.

6-19

/option2

Note:

FILE

Is optional and allowed only
determines where the file is
must be one of the qualifiers
/CLUSTER. The default is /USER,
explicitly specify the qualifier.
for details.

for .INB files. It
to be placed. Option2

/USER, /NETWORK, or
but you should always

See Section 6.1.2

Do not include a FILE command for the installation file itself.

6-20

INSTALL

6.10 INSTALL

This command specifies each task image or library to be installed
(placed in the installed task list) at run time. This command is
used only by P/OS when the user selects your application to be
run.

Format:

INSTALL f ilespec/option1/option2/NOREMOVE/FIX

filespec Is the file specification in the following form for
both .INB and .INS files:

/option!

option2

[directory]file.TSK

file.TSK

Is required. It must be one of the following strings:

/LIBRARY Specifies that the file is a read-only
resident library.

/COMMON Specifies that the file is a read-write
resident library.

/TASK Specifies that the file is an executable
task image.

/TASK=name Is valid for .INB files only. It specifies
that the file is an executable task image,
and the name of the task image should be
replaced with "name". The assigned name
must be a one- to six-character string of
characters in the Radix-50 character set.

Is optional and is allowed only in .INB files. It can
be one of /USER, /NETWORK, or /CLUSTER. The qualifier
you specify indicates where the task image or library
to be installed resides. The default is /USER, but you
should always explicitly specify this qualifier. See
Section 6.1.2 for details.

/NOREMOVE Can be specified only with the /TASK option. It
specifies that the task will not be aborted or removed
when the application exits (or is aborted).

/FIX Can be specified only with the /TASK option. It
specifies that the task is to be fixed in memory during
execution (not swapped).

6-21

INSTALL

Notes:

• The maximum number of INSTALL commands allowed in an
installation file is 31.

• All INSTALL commands with /LIBRARY and /COMMON options must
precede any INSTALL command with a /TASK option.

• The /NOREMOVE option can
noninteractive background
not aborted on request.

be used to ensure that a
task, such as a file transfer, is

Use care with the /NOREMOVE option. The task remains
installed after your application terminates. When any
application starts up, if it attempts to install a task with
the same name as the task that you left installed, the new
install command is ignored provided the INSTALL command has a
/NOREMOVE option.

This is convenient for your application, since its
installation file has such an option on the INSTALL line.
But if another application happens to use the same task name,
and its INSTALL does not use the /NOREMOVE option (the normal
case), the INSTALL command fails and the other application
cannot be run.

Once you install a task with /NOREMOVE, it remains installed
(it can be checkpointed if active) until another task
explictly removes it (using the PRO/Tool Kit DCL REMOVE
command, for example), or until the system is powered down.

For more information about installing tasks, refer to the
PROTSK routine in the P/OS System Reference Manual.

6-22

MOUNT

6.11 MOUNT

This command specifies the name of the next volume in a multiple­
diskette application.

When you are preparing your distribution diskettes, the MOUNT
command signals ADB to prompt you to insert a new diskette, and
causes ADB to copy subsequent files to the new volume.

When the user installs the application from your distribution
kit, the MOUNT command specifies when the user should be prompted
to insert the next diskette for installation to continue.

Format:

volume

Notes:

MOUNT volume

Is a string of up to 12 characters that specifies a
volume name (without a colon).

• The MOUNT command is optional for appiications that reside
entirely on one diskette.

• No MOUNT command is required for the first diskette of a
multiple-diskette application.

6-23

NAME

6.12 NAME

This command specifies the application name seen by the user when
the application is installed. P/OS places this name (or a
replacement name supplied by the user) on a menu.

Format:

NAMB "name"

name Is a string of up to 40 characters that identifies your
application.

Notes:

• You must supply exactly one NAME command per installation
file.

• You can use single or double quotes to delimit the string.

6-24

RUN

6.13 RUN

This command specifies the name of the first task to execute at
run time.

Format:

RUN taskname

taskname is a string of up to six characters that specifies the
name of an installed task.

Notes:

• You can include no more than one RUN command per installation
file.

• The task name must be identical to the name specified in the
TASK option in your PAB command file, or in the /TASK=name
option. (If you did not use a TASK option when you built the
application, the task name defaulted to the first six
characters of the name of the task image file.)

6-25

IMPROVING APPLICATION PERFORMANCE

6.14 IMPROVING APPLICATION PERFORMANCE

To minimize the disk seek
start-up process, follow
installation file:

time
these

and enhance the
guidelines when

application
creating an

• Place FILE commands that have corresponding INSTALL commands
before any other FILE commands. Arrange the INSTALL commands
in the same order as their corresponding FILE commands.
INSTALL commands with the /COMMON and /LIBRARY options must
appear before INSTALL commands with the /TASK option.

• Wherever possible, group FILE commands and INSTALL commands
by directory. This will minimize seek time for retrieving
directory information.

6.15 REQUIRED COMMANDS FOR APPLICATIONS

Table 6-2 shows command lines that you might need to include in
your installation command file, depending on other software that
your application uses.

Note the following:

• For .INS files, omit the /CLUSTER qualifier.

• Applications do not need FILE or INSTALL commands for
PRO/FMS-11, PRO/GIDIS, POSRES, PRO/Communications, RMSRES, or
the print utility.

6-26

REQUIRED COMMANDS FOR APPLICATIONS

Table 6-3: Required Commands

If Application Uses:

BASIC-PLUS-2

COBOL-81

DIBOL

FORTRAN-77

PASCAL

CET

PRO/SORT

Installation File (.INB) Must Include:

INSTALL [ZZSYS]PBFSML.TSK/LIBRARY/CLUSTER

INSTALL [ZZSYS]C81LIB.TSK/LIBRARY/CLUSTER

INSTALL [ZZSYS]DBLRES.TSK/LIBRARY/CLUSTER

INSTALL [ZZSYS]PROF77.TSK/LIBRARY/CLUSTER

INSTALL [ZZSYS]PASRES.TSK/LIBRARY/CLUSTER

INSTALL [ZZSYS]PASRES.TSK/LIBRARY/CLUSTER
INSTALL [ZZSYS]CET.TSK/TASK/CLUSTER

INSTALL [ZZSYS]PASRES.TSK/LIBRARY/CLUSTER
INSTALL [ZZSYS]PROSORT.TSK/TASK/CLUSTER

6-27

CHAPTER 7

MACR0-11 ASSEMBLER (PMA)

Professional Tool Kit MACR0-11 (PMA) is the PDP-11 relocatable
assembly language processor. Refer to the PDP-11 MACR0-11
Language Reference Manual for detailed information about PMA.

7.1 INVOKING PMA ON THE PRO/TOOL KIT

To invoke PMA on a Professional running the PRO/Tool Kit, type:

$ MACRO

See the description of the MACRO
Command Lanuage and Utilities
command.

command in the PRO/Tool Kit
Manual for details on the MACRO

You can also invoke PMA on the PRO/Tool Kit by entering the
following command in DCL:

$ RUN $PMA

You receive the PMA> prompt, indicating that you are in the PMA
environment. See the PDP-11 MACR0-11 Language Reference Manual
for command line format.

7.2 INVOKING PMA ON RSX-11M/M-PLUS

If PMA is installed on your system as " ... PMA" and your terminal
Command Language Interpreter (CLI) is MCR, type the following
command:

> PMA command

where "command" is a command string. See the PDP-11 MACR0-11
Language Reference Manual for command line format.

7-1

INVOKING PMA ON RSX-11M/M-PLUS

If PMA is installed on your system as " ... PMA" and your terminal
CLI is DCL, type the following command:

$ MACRO

See the RSX-11M/M-PLUS Command Language Manual for further
information on the MACRO command.

If PMA is not an installed task (whether your terminal CL! is MCR
or DCL), type:

$ RUN $PMA

You receive the PMA> prompt, indicating that you are in the PMA
environment. See the PDP-11 MACR0-11 Language Reference Manual
for command line format.

7.3 INVOKING PMA ON VAX/VMS

For convenience, edit your LOGIN.COM file and insert the
following symbol definit~on:

$ PMA :== MCR PMA

Once the symbol is defined, you can invoke PMA by typing:

$ PMA command

where "command" is a command string. See the PDP-11 MACR0-11
Language Reference Manual for command line format.

7-2

CHAPTER 8

POSRES USER INTERFACE LIBRARY ROUTINES

This chapter describes the routines provided by POSRES, the P/OS
User Interface Library.

8.1 NOTES ON USING POSRES ROUTINES

• You can call POSRES routines from MACR0-11 or from high-level
languages. POSRES uses the PDP-11 calling sequence
convention, which is described in the Tool Kit User's Guide.
POSRES preserves the stack pointer (SP); it does not preserve
any other registers.

• Tasks that use POSRES must include some specific information
in their PAB files, as described in the Tool Kit User's
Guide.

• All POSRES routines accept a two-o/ord integer parameter named
"status". The values returned in the status block vary
according to the routine called and are listed in Appendix C.

• Some POSRES routine parameters specify values (input
parameters), others return values (output parameters), and
some do both. Output parameters must be variables. Input
parameters, however, can be variables, constants, or constant
expressions, depending on your language. If it does not
support constant expressions as actual parameters, read
"expression" as "constant."

• Several POSRES routines accept parameters consisting of
variable-length character (byte) string buffers. All string
buffers are accompanied by an integer value that specifies
the length of the buffer. Because these values mean the same
thing, they are all named "buflen" and directly follow the
buffer parameter.

8-1

NOTES ON USING POSRES ROUTINES

• String buffers that return values are accompanied by an extra
parameter that returns an integer value representing the
actual length of the string returned in the buffer. Because
these integer variables all mean the same thing, they are all
named "strlen" and directly follow the "buflen" parameter.

• Some POSRES routines have parameters that can can be omitted
from the right. For example, if the fourth parameter is
omitted, then parameters five, six, and seven must also be
omitted.

• Some POSRES routines have parameter groups with a variable
format within the group. Short parameter lists (no more than
three or four groups) are easier to read and debug. Long
parameter lists, however, are more efficient because they
require fewer calls.

• POSRES parameter list run-time checking is somewhat limited.
Check your source code against the lists in this chapter
carefully. Invalid parameters can cause unpredictable
results.

8-2

DMENU - DISPLAY DYNAMIC MENU

8.2 DMENU - DISPLAY DYNAMIC MENU

This routine displays the single-choice menu in the dynamic
buffer.

Format:

status

action

buf len

strlen

DMENU (status, action, buflen, strlen, display, add_opt,
msgl, buflen, msg2, buflen)

Is a two-word
indicating the
Appendix C.)

integer
results

array that returns a
of the routine call.

code
(See

Is a string buffer of up to 80 characters that returns
the action string associated with the option selected.
The action string is truncated or filled with blanks to
fit the buffer.

Is an integer expression that specifies the length of
the action buffer.

Is an integer variable that returns the actual length of
the string in the action buffer.

display Is reserved for future use. Specify an integer value of
zero for this parameter.

add_opt Is an integer expression that specifies whether to
display an Additional Options flag on the menu and
whether to return control if the user presses the ADDTNL
OPTIONS key. Values:

zero = no flag

nonzero = display Additional Options flag

msgl Is a string expression of up to 80 characters that
specifies a message to be displayed on line 23.

buflen Is an integer expression that specifies the length of
msgl.

msg2 Is a string expression of up to 80 characters that
specifies a message to be displayed on line 24.

bu fl en Is an integer expression that specifies the length of
msg2.

8-3

DMENU - DISPLAY DYNAMIC MENU

Note:

If you specify a nonzero value for the Additional Options
flag, POSRES returns (-14/14) in the status block when the
user presses the ADDTNL OPTIONS key.

Example:

1880 REM *** Displaying a single-choice Dynamic Menu. ***
1890 Act$ = SPACE$(80%) !Buffer area of the action string
1900 Msg1$ 'This is the first message line for the dynamic menu.'
1910 Len1% LEN(Msg1$) !Length of the first message line
1920 Msg2$ 'This is the second message line for the dynamic menu.'
1930 Len2% LEN(Msg2$) !Length of the second message line
1940 CALL Dmenu BY REF &

(Stblk%(),Act$,80%,Len3%,0%,0%,Msgl$,Lenl%,Msg2$,Len2%)

8-4

DPACK - PACK DYNAMIC SINGLE CHOICE MENU

8.3 DPACK - PACK DYNAMIC SINGLE CHOICE MENU

This routine packs (stores information in) the dynamic menu
buffer.

Format:

DPACK (status, group, ...)

The format of a group is:

status

f ieldid

buf len

Is a two-word
indicating the
Appendix C).

integer
results

array that returns a
of the routine call

code
(see

Is a string expression of up to six uppercase
characters that specifies one of the following field
identifiers:

f ieldid

'TITL'
'TEXTnn'
'GHLP'
'PRMT'
'OPTNnn'
'ACTNnn'
'OHLPnn'

nn

01,02,03

01-12
01-12
01-12

menu field

title
explanatory text
global help frame identifier
prompt text for line 21
option text for option nn
action string for option nn
help frame identifier
for option nn

Is an integer expression that specifies the length of
the fieldid.

fieldval Is a string variable of any length that specifies the
contents of the field. For example, if fieldid is
'TITL' then fieldval specifies the title text.

bu fl en

CLRB

Is an integer expression that specifies the length of
the field value.

Is a string constant containing a command that clears
the dynamic buffer.

8-5

DPACK - PACK DYNAMIC SINGLE CHOICE MENU

DFLTnn Is a string constant containing a command that sets the
default option number to nn (01-12).

KEYWnn Is a string constant containing a command
specifies the keyword of option nn (01-12).

that

off set Is an integer expression that specifies the beginning
of an option keyword as an offset from the beginning of
the option (range zero to one less than the length of
the option text).

keylen Is an integer expression that specifies the length of
the option keyword.

Notes:

• The order in which you pack menu fields is not significant.

• If you specify an option help frame identifier (OHLPnn) with
an invalid (greater than 12) number, POSRES does not return
an error code in the status block.

Example:

1480 REM *** Packing the Dynamic menu buffer.
1490 Title$ = 'Title for DYNAMIC Menu'
1500 L1% = LEN(Title$) !Length of title field
1510 Txt1$ = 'This menu is a shorter version of the FRAME001 Menu.'
1520 L2% = LEN(Txt1$) !Length of textl field
1530 Glbhlp$ = 'HELPOOOO'
1540 Prmtln$ = 'Select the desired option and hit DO'
1550 L3% = LEN(Prmtln$) !Length of prompt line
1560 Opt1txt$ = 'Option 1 - the first choice'
1570 L4% = LEN(Optltxt$) !Length of option 1 text
1580 Opt2txt$ = 'Second option - the default'
1590 L5% = LEN(Opt2txt$) !Length of option 2 text
1600 Actst1$ = 'Action string for the first test option.'
1610 L6% = LEN(Actst1$) !Length of action 1 text
1620 Actst2$ = 'Action string for the second option'
1630 L7% = LEN(Actst2$) !Length of action 2 text
1640 Hlpfr1$ 'HELP0001'
1650 Hlpfr2$ = 'HELP0002'

1655 The Dpack call can be specified on multiple lines.
However, the first parameter must always be Status

1657 REM *** Packing the new Dynamic Single Choice Menu.***
1660 Call Dpack BY REF &

(Stblk%(), 'CLRB', 4%, 'TITL', 4%, Title$, L1%)
1680 Call Dpack BY REF &

8-6

DPACK - PACK DYNAMIC SINGLE CHOICE MENU

(Stblk% ()I
1700 Call Dpack

(Stblk%(),
1720 Call Dpack

(Stblk%(),
1740 Call Dpack

(Stblk%(),
1760 Call Dpack

(Stblk% () I

1780 Call Dpack
(Stblk% ()I

1800 Call Dpack
(Stblk%(),

1820 Call Dpack
(Stblk%(),

1840 Call Dpack
(Stblk%(),

1860 Call Dpack
(Stblk% ()I

'TEXT01', 6%, Txt1$, L2%)
BY REF &
'GHLP' I 4%, Glbhlp$, 8%, 'DFLT02' I 6%)
BY REF &
'PRMT', 4%, Prmtln$, L3%)
BY REF &
'0PTN01', 6%, Opt1txt$, L4%)
BY REF &
'0PTN02', 6%, Opt2txt$, L5%)
BY REF &
'ACTN01'' 6%, Actst1$, L6%)
BY REF &
'ACTNIT2', 6%, Actst2$, L7%)
BY REF &
'0HLP01', 6%, Hlpfr1$, 8%)
BY REF &
'OHLP02',
BY REF &
'KEYW01' I

6 9-,. 0'

6 9-,.
0 '

Hlpfr2$, 8%)

0%, 8%, 'KEYW02', 6%,0%,6%)

8-7

FATLER - FATAL ERROR

8.4 FATLER - FATAL ERROR

The Fatal Error routine informs the user of an unexpected and
disabling error condition and returns control to P/OS (not to
your task). It blanks line 22, displays the message "Application
error. Press RESUME to return to Main Menu." on line 23, and
displays an application-defined message on line 24. ·That message
can tell the user why the application failed and where to look
for recovery information.

Format:

FATLER (message, buflen)

message Is a string expression of up to 80 characters that
specifies an error message.

bu fl en Is an integer expression that specifies the length of
the message parameter.

Example:

100 ON ERROR GOTO 1120

1120 REM Fatal error handling
1130 Linenum$ = STR$(ERL) l Get line number
1140 Errormsg$ = ERT$(ERR) l Get error message number
1150 Rtnmsg$ = 'Fatal error occurred at ' &

+ Linenum$ + '. '+ Errormsg$
1160 L% = LEN(Rtnmsg$)
1170 CALL Fatler BY REF(Rtnmsg$, L%)

8-8

GETKEY - GET KEYSTROKE

8.5 GETKEV - GET KEYSTROKE

Gets a
echoed

Format:

status

single keystroke from the terminal. The keystroke
on the screen.

GETKEY (status)

Is a two-word integer array containing one
following codes:

First
Word

+1

Second
Word

A DEC Multinational decimal character
representing a main keyboard key.

is not

of the

code,

+2 A code representing one of the function keys
shown in Appendix D.

n Indicates an error has occurred. See Appendix C
for status values.

Example:

100 DIM Stblk%(1%)
PRINT "Enter a key";\. CALL Getkey BY REF(Stblk%())
SELECT Stblk%(0%)

CASE 1%
PRINT "Main keyboard key="; CHR$(Stblk%(1%))

CASE 2%
PRINT "Function or Keypad key

CASE ELSE
- ". - ' Stblk%(1%)

PR I NT " Er r o r . St at us = " ; St b 1 k % (0 %) , St b 1 k % (1 %)
END SELECT
GOTO 100

8-9

HCLOSE - CLOSE HELP FILE

8.6 HCLOSE - CLOSE HELP FILE

This routine closes the current help definition file.

Format:

HCLOSE (status)

status Is a two-word integer array that returns a code
indicating the results of the routine call. (See
Appendix C.)

Example:

1990 REM *** Closing help definition file ***
2000 CALL Hclose BY REF(Stblk%())

8-10

HELP - DISPLAY HELP FRAME

8.7 HELP - DISPLAY HELP FRAME

Displays the default help frame or a specified help frame.

Format:

status

HELP (status, frameid, buflen)

Is a two-word
indicating the
Appendix C.)

integer
results

array that returns a
of the routine call.

code
(See

frameid Is a string of up to eight characters that identifies
the help frame to display.

bu fl en Is an integer expression that specifies the length of
frame id.

Note:

If you specify a nonexistent help frame
returns immediately without an error
block.

Example:

1180 REM *** Display help text frame ***

identifier, POSRES
code in the status

1190 CALL Help BY REF(Stblk%(), 'HELP0000', 8%)

8-11

HFILE - OPEN HELP FILE

8.8 HFILE - OPEN HELP FILE

This routine opens the specified help definition file and sets
the default help frame.

Format:

status

HFILE (status, filespec, buflen, frameid, buflen)

Is a two-word
indicating the
Appendix C.)

integer
results

array that returns a
of the routine call.

code
(See

filespec Is a string expression that specifies
definition file.

the help

buf len

f rameid

buf len

Notes:

Is an integer expression that specifies the length of
the help file specification.

Is a string expression of one to eight characters that
specifies the name of the default help frame.

Is an integer expression that specifies the length of
the default help frame string.

• Only one help file can be open at any time. If another help
file is open, HFILE closes it before the requested file is
opened.

• You should provide a complete file specification for your
help file, unless your installation command file contains an
ASSIGN HELP command. If your installation command file does
contain an ASSIGN HELP command, you do not have to specify a
device and directory in the file specification.

Use the appropriate system logical name to represent the
device and directory. The location of the help file depends
on the qualifiers you use on the FILE command in your
installation file.

For example, suppose you specify the following FILE command
in your .INB file:

FILE TEST.HLP/NETWORK

In your HFILE call, the file specification for TEST.HLP is:

APPL$NETWORK:TEST.HLP

8-12

HFILE - OPEN HELP FILE

Note that if you omit
POSRES uses the P/OS
almost certainly wrong.

fields in the file specification,
default file specification, which is

See the Tool Kit User's Guide, for details regarding system
logical names and accessing application components.

• You must supply a default help frame.
results in a fatal error.

Failure to do so

Example:

100 DIM SCB%(7%), STATUS%(1%)

! Get name of application directory

FILE_SPEC$ = SPACE$(29%) ! buffer for equivalence name
CALL PROLOG BY REF &

(SCB%(), 4%, 'APPL$DIR', 8%, FILE_SPEC$, 30%)

Construct filespec and open help file

FILE_SPEC$ = FILE_SPEC$ + 'TEST.HLP'
CALL HFILE BY REF &

(STATUS%(), FILE_SPEC$, LEN(FILE_SPEC$), 'FOO', 3%)

8-13

HFRAME - SPECIFY HELP FRAME

8.9 HFRAME - SPECIFY HELP FRAME

Specifies the frameid of the frame to be displayed when help is
requested. This call does not result in a display; it simply
defines the default frame.

Format:

status

HFRAME (status, frameid, buflen)

Is a two-word
indicating the
Appendix C.)

integer
results

array that returns a
of the routine call.

code
(See

f rameid Is a string expression of up to eight characters that
specifies the default help frame identifier. A fatal
error results if frameid is specified as blank or of
zero length.

buf len Is an integer expression that ~pecifies the length of
the frameid string.

Notes:

• The help frame definition file must be open before calling
HFRAME.

• If you specify a nonexistent help frame
returns immediately without an error
block.

Example:

1140 REM *** Calling help frame ***

identifier, POSRES
code in the status

1150 CALL Hframe BY REF(Stblk%(), 'HELP0001', 8%)

8-14

MCLOSE - CLOSE MENU FILE

8.10 MCLOSE - CLOSE MENU FILE

This routine closes the current menu file.

Format:

status

Example:

MCLOSE (status)

Is a two-word
indicating the
Appendix C.)

integer
results

array that returns a
of the routine call.

2020 REM *** Closing menu definition file ***
2030 CALL Mclose BY REF(Stblk%())

8-15

code
(See

MENU - DISPLAY SINGLE-CHOICE MENU

8.11 MENU - DISPLAY SINGLE-CHOICE MENU

Displays a frame from the default static menu buffer.

Format:

status

action

bu fl en

strlen

MENU (status, action, buflen, strlen, display, ad_opt,
msgl, buflen, msg2, buflen)

Is a two-word
indicating the
Appendix C.)

integer
results

array that returns a
of the routine call.

code
(See

Is a string buffer of up to 80 characters that returns
the action string associated with the option selected.
The action string is truncated or filled with blanks to
fit the buffer.

Is an integer expression that specifies the length of
the action buffer.

Is an integer variable that returns the actual length of
the string in the action buffer.

display Is reserved for future use. Specify an integer value of
zero for this parameter.

add_opt Is an integer expression that specifies whether to
display an Additional Options flag on the menu and
whether to return control if the user presses the ADDTNL
OPTIONS key. Values:

msgl

bu fl en

msg2

bu fl en

zero = no flag

nonzero = display Additional Options flag

Is a string expression of up to 80 characters that
specifies a message to be displayed on line 23.

Is an integer expression that specifies the length of
msgl.

Is a string expression of up to 80 characters that
specifies a message to be displayed on line 24.

Is an integer expression that specifies the length of
msg2.

8-16

MENU - DISPLAY SINGLE-CHOICE MENU

Example:

1350 REM *** Calling menu routine ***
1360 Action$ = Space$(80%) !Buffer area for the action string
1370 Msg1$ = 'This is the first message line'
1385 L1% = LEN(Msg1$) !Length of the first message
1390 Msg2$ = 'This is the second message line'
1400 L2% = LEN(Msg2$) !Length of the second message
1410 !0% = display (full)
1420 CALL Menu BY REF &

(Stblk%(),Action$,80%,Length%,0%,0%,Msgl$,Ll%,Msg2$,L2%)
1430 !0% = add. options (no)

8-17

MFILE - OPEN MENU FILE

8.12 MFILE - OPEN MENU FILE

This routine opens the specified menu definition file.

Format:

MFILE (status, filespec, buflen)

status Is a two-word
indicating the
Appendix C.)

integer
results

array that returns a
of the routine call.

filespec Is a string expression that specifies
definition file.

the

code
(See

menu

buf len Is an integer expression that specifies the length of
the menu file specification.

Notes:

• Only one menu file can be open at any time. MFILE closes any
open menu file before opening the requested file.

• You should provide a complete file specification for your
menu file, unless your installation command file contains an
ASSIGN MENU command. If your installation command file does
contain an ASSIGN MENU command, you do not have to specify a
device and directory in the file specification.

Use the appropriate system logical name to represent the
device and directory. The location of the menu file depends
on the qualifiers you use on the FILE command in your
installation file.

For example, suppose you specify the following FILE command
in your .INB file:

FILE TEST.MNU/USER

In your MFILE call, the file specification for TEST.MNU is:

APPL$USER:TEST.MNU

Note that if you omit
POSRES uses the P/OS
almost certainly wrong.

fields in the file specification,
default file specification, which is

8-18

MFILE - OPEN MENU FILE

See the Tool Kit User's Guide, for details regarding system
logical names and accessing application components.

Example:

100 DIM SCB%(7%), STATUS%(1%)

l Get name of application directory

FILE_SPEC$ = SPACE$(29%) ! buffer for equivalence name
CALL PROLOG BY REF &

(SCB%(), 4%, 'APPL$DIR' I 8%, FILE_SPEC$, 30%)

Construct filespec and open menu file

FILE_SPEC$ = FILE_SPEC$ + 'TEST.MNU'
CALL MFILE BY REF (STATUS%(), FILE_SPEC$, LEN(FILE_SPEC$))

8-19

MFRAME - READ MENU FRAME

8.13 MFRAME - READ MENU FRAME

Reads the specified menu frame into the static menu buffer.

Format:

status

f rameid

bu fl en

action

bu fl en

strlen

Note:

MFRAME {status, frameid, buflen, action, buflen, strlen)

Is a two-word
indicating the
Appendix C.)

integer
results

array that returns a
of the routine call.

code
(See

Is a string of one to eight characters that specifies a
menu frame identifier.

Is an integer expression that specifies the length of
the frameid.

Is a string variable of any length that returns the
global action string associated with the menu frame, if
present. The global action string is truncated or
padded with spaces to fit the buffer.

Is an integer expression that specifies the maximum
length of the action parameter.

Is an integer variable that returns the actual length
of the returned global action·string.

The menu definition file must be open before calling MFRAME.

Example:

1220 Gloact$ = Space$(80%) !Buffer for global action string
1230 CALL Mf rame BY REF &

(Stblk%(), 'FRAME001', 8%, Gloact$, 80% , Len%)

8-20

MMENU - DISPLAY MULTIPLE-CHOICE MENU

8.14 MMENU - DISPLAY MULTIPLE-CHOICE MENU

This routine displays a multiple-choice menu.

Format:

status

opt_buf f

opt_len

MMENU (status, opt_buff, opt_len, opt_count, max_opt,
resp_count, resp_array, add_opt,
msg1, buflen, msg2, buflen)

Is a two-word integer array
indicating the results of
Appendix C) .

that returns a
the routine call.

code
(See

Is a string buffer that specifies the options on this
menu, in the form of a concatenated string.

Is an integer expresssion that specifies the length
of an option (up to 64 characters). All options must
have the same length. Before concatenation, use
trailing space characters to pad all option strings
to this length.

opt_count Is an integer expression that specifies the number of
options in the buffer.

max_ opt Is an integer expression that specifies the maximum
number of options that the user can select.

resp_count Is an integer variable that returns the number of
options actually selected.

resp_array Is an integer array of the size specified in max_opt
that returns the ordinal numbers of the selected
options in ascending order.

add_opt Is an integer expression that specifies whether to
display an Additional Options flag on the menu and
whether to return control if the user presses the
ADDTNL OPTIONS key. Values:

msgl

bu fl en

zero = no fla9

nonzero = display Additional Options flag

Is a string expression of up to 80 characters that
specifies text to be displayed on line 23.

Is an integer expression that specifies the length of
msgl.

8-21

msg2

MMENU - DISPLAY MULTIPLE-CHOICE MENU

Is a string expression of up to 80 characters that
specifies text to be displayed on line 24.

buf len Is an integer expression that specifies the length of
msg2.

Example:

2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2430
2435
2440

REM *** Setting up
Optlen% = 6%

to display the Multiple-choice Menu ***
!Maximum option length
! Option count. Optct% = 9%

Opttxt$(0%) "Red "
Opttxt$(1%) "Orange"
Opttxt$(2%) "Yellow"
Opttxt$(3%) "Green "
Opttxt$(4%) = "Blue "
Opttxt$(5%) "Purple"
Opttxt$(6%) "Brown "

!Option text. Note that
!Tool Kit BP2 zero-based arrays
!are returned in Resary%
!as 1 through 9, not
!O through 8.

Opttxt$(7%) "Black "
Opttxt$(8%) = "White "
! Now concatenate all the options
! in one string (Optct% by Optlen%)
Opt$ = Opttxt$(0%) + Opttxt$(1%) + Opttxt$(2%)

Opttxt$(4%) + Opttxt$(5%) + Opttxt$(6%)
Opttxt$(8%)

+ Opttxt$(3%)
+ Opttxt$(7%)

2450 Lmt% = 9% !Max. number of options
2460 Msg1$ SPACE$(75%)
2470 Msg2$ = SPACE$(75%)

!Buffer area for message line one.
!Buffer area for message line two.

2475 REM *** Displaying the Dynamic Multi-Choice Menu. ***
2480 CALL Mmenu BY REF &

+ &
+ &

(Stblk%(), Opt$, Optlen%, Optct%, Lmt%, Res%, Resary%(), &
0%, Msg1$, 75%, Msg2$, 75%)

8-22

MPACK - PACK MULTIPLE-CHOICE MENU

8.15 MPACK - PACK MULTIPLE-CHOICE MENU

This routine packs (stores information in) the multiple-choice
menu buffer.

Format:

MPACK (status, group, ...)

The format of a group is:

status

f ieldid

bu fl en

Is a two-word
indicating the
Appendix C.)

integer
results

array that returns a
of the routine call.

code
(See

Is a string expression of up to six uppercase
characters that specifies one of the following field
identifiers:

f ieldid

'TITL'
'TEXTnn'
'GHLP'
'PRMT'

nn

01,02,03

menu field

title
explanatory text
global help frame identifier
prompt text for line 21

Is an integer expression that specifies the length of
the field identifier.

fieldval Is a string variable of any length that specifies the
contents of the field. For example, if fieldid is
'TITL' then fieldval specifies the title text.

bu fl en Is an integer expression that specifies the length of
the field value string.

CLRB Is a string constant containing a command that clears
the multi-buffer before use.

Note:

You can make multiple calls to MPACK.

8-23

MPACK - PACK MULTIPLE-CHOICE MENU

Example:

2050 REM *** Setting up to pack the multi-buffer **
2060 Title$ = 'Title for Multiple-choice Menu '
2070 L1% = LEN(Title$) !Length of the title field
2080 Txt1$ = 'This menu is an example of a Multiple-choice menu.
2090 L2% = LEN(Txt1$) !Length of the first text line
2100 Txt2$ ='Use the SELECT key to choose your favorite colors.'
2110 L3% = LEN(Txt2$) !Length of the second text line
2140 Glbhlp$ = 'HELP0000'
2150 Prmtln$ = 'Use the SELECT key to make a choice and press DO'
2160 L5% = LEN(Prmtln$) !Length of the prompt line
2170 REM *** Packing the multi-buffer. ***
2180 Call Mpack BY REF &

(Stblk%(), 'CLRB', 4%, 'TITL', .4%, Title$, L1%)
2200 Call Mpack BY REF &

(Stblk%(), 'TEXT01', 6%, Txt1$, L2%)
2220 Call Mpack BY REF &

(Stblk%(), 'TEXT02', 6%, Txt2$, L3%)
2260 Call Mpack BY REF &

(Stblk%(), 'GHLP', 4%, Glbhlp$, 8%)
2280 Call Mpack BY REF &

(Stblk%(), 'PRMT', 4%, Prmtln$, L5%)

8-24

MSGBRD - SEND MESSAGE TO A MESSAGE/STATUS DISPLAY

8.16 MSGBRD - SEND MESSAGE TO A MESSAGE/STATUS DISPLAY

This routine sends a message to the P/OS Message/Status Display,
described in the Hard Disk System User's Guide. In a P/OS Server
environment, the Message/Status Display can belong to the user,
the workstation, or the Server.

Format:

status

MSGBRD (status, message, buflen, destin)

Is a two-word
indicating the
Appendix C.)

integer
results

array that returns a
of the routine call.

code
(See

message Is a string expression of up to 59 characters that
specifies text to be sent to the Message/Status Display.
All nonprintable characters in the message are replaced
with blanks.

buflen Is an integer expression that specifies the length of the
message string.

destin Is an integer expression that specifies which
Message/Status Display is to receive the message. If
omitted, the destination defaults to the user's
Message/Status Display.

Note:

Value

0
1

Global

u.def
w.def

Destination

user's Message/Status Display
workstation's Message/Status Display

The MSGBRD routine is not in POSRES; it is in the system library
(SYSLIB).

Example:

111 Dim Stblk%(1%)
114 Msg$ = "A sample message for posting."
117 REM Post message on workstation's message display.
140 Call Msgbrd By Ref (Stblk%(),Msg$,Len(Msg$),1%)
150 Print Stblk%(0), Stblk%(1)
160 End

8-25

MUNPK - UNPACK MENU BUFFER

8.17 MUNPK - UNPACK MENU BUFFER

This routine unpacks (returns the information stored in) the
static menu buffer.

Format:

MUNPK (status, group, ...)

The format of a group is:

status Is a two-word
indicating the
Appendix C.)

integer
results

array that returns a
of the routine call.

code
(See

fieldid Is a string expression of up to six uppercase characters
that specifies one of the following field identifiers:

bu fl en

f ieldid

'TITL'
'TEXTnn'
'GACT'
'GHLP'
'PRMT'
'OPTNnn'
'ACTNnn'
'OHLPnn'

nn

01,02,03

01-12
01-12
01-12

Menu Field

title
explanatory text
global action string
global help frame identifier
prompt text for· line 21
option text for option nn
action string for option nn
help frame identifier
for option nn

Is an integer expression that specifies the length of
the field identifier string.

fieldval Is a string variable of any length that returns the
value of the field. For example, if fieldid is 'TITL',
then fieldval returns the title text.

bu fl en

strlen

Is an integer expression that specifies the length of
the field value buffer.

Is an integer variable that returns the length of the
field value string.

8-26

MUNPK - UNPACK MENU BUFFER

DFLT Is a string constant containing a command that requests
the default option number.

def opt

KEYWnn

off set

keylen

Example:

Is an integer variable that returns the default option
number (01-12).

Is a string constant containing a command that requests
the off set and length of the keyword of option nn
(01-12).

Is an integer variable that returns the beginning of an
option keyword as an off set from the beginning of the
option (range zero to one less than the length of the
option text).

Is an integer variable that returns the length of the
keyword.

1290 Title$ = Space$(40%) !Buffer area for the menu title
1300 CALL MUNPK BY REF(Stblk%(), 'TITL' I 4%, Title$, 40%, Length%)

8-27

NEWFIL - NEW FILE

8.18 NEWFIL - NEW FILE

Solicits the name of a new file to be created by displaying the
P/OS New File Specification form.

Format:

status

NEWFIL (status, filespec, buflen, strlen, deftype,
buflen, strlen, text, buflen, msg, buflen)

Is a two-word
indicating the
Appendix C.)

integer
results

array that returns a
of the routine call.

code
(See

filespec Is a 50-character string buffer that returns the file
specification entered by the user. If you specify a
default filename, it can be no longer than nine
characters and must be followed by a null character or
a space.

bu fl en

strlen

def type

buf len

strlen

text

bu fl en

msg

bu fl en

Is an integer expression that specifies the length of
the filename buffer (50).

Is an integer variable that returns the actual length
of the file specification.

Is a four-character string variable that specifies a
default file type. If the user changes the file type
via Additional Options, NEWFIL returns the updated file
type.

Is an integer expression that specifies the length of
the file type buffer (4).

Is an integer variable that returns the length of the
string returned in deftype.

Is a string expression of 0 to 72 characters that
specifies text to appear at the top of the form.

Is an integer expression that specifies the length of
the text string.

Is a string expression of 0 to 80 characters that
specifies text to appear on line 23.

Is an integer expression that specifies the length of
rnsgl.

8-28

NEWFIL - NEW FILE

Example:

100 REM Program to test the NEW FILE Service
110 DIM Stblk%(1%)
120 Filename$ = SPACE$(50% ~ Set up buffer for filename
130 Filetype$ ='.DAT' ! Set up filename type
140 Text1$ = 'Test to check the Service of NEW FILE.'
160 Msg1$ = 'Message at bottom of NEW FILE menu.'
180 CALL Newfil BY REF (Stblk%(),

Filename$, 50%, Namelen%, &
Filetype$, 4%, Typelen%, &
Text1$, LEN(Text1$), Msg1$, LEN(Msg1$))

190 PRINT "Status="; Stblk%(0%), Stblk%(1%)
200 PRINT "Filename = "; Filename$
210 PRINT "Name length "; Namelen%
220 PRINT "Type length="; Typelen%
230 END

8-29

OLDFIL - OLD FILENAME

8.19 OLDFIL - OLD FILENAME

The Old Filename routine solicits the names of one or more
existing files by displaying the File Selection Menu.

Format:

status

OLDFIL (status, maxfiles, files, strlens,
wildcard, buflen, textl, buflen,
msgl, buflen, msg2, buflen)

Is a two-word
indicating the
Appendix C.)

integer
results

array that returns a
of the routine call.

code
(See

maxfiles Is an integer variable that specifies the maximum
number of files the user can select and returns the
number of files actually selected.

files Is a string buffer that returns the selected file
specifications in concatenated SO-character strings,
left-justified and blank-filled. Thus, the size in
characters is 50 times the number specified in
maxfiles.

strlens Is an integer array of the size specified
that returns the actual length of
specification string.

in maxfiles
each file

wildcard Is a string ~xpression that specifies
selection criteria.

the file

bu fl en

text

bu fl en

msgl

bu fl en

msg2

Is an integer expression that specifies the length of
the wildcard string.

Is a string expression
specifies text to be
screen.

of 0 to 72
displayed at

characters that
the top of the

Is an integer expression that specifies the length of
text.

Is a string expression of 0 to 54 characters that
specifies text to be displayed on line 23.

Is an integer expression that specifies the length of
msgl.

Is a string expression of 0 to 54 characters that
spetifies text to be displayed on line 244

8-30

bu fl en

Notes:

OLDFIL - OLD FILENAME

Is an integer expression that specifies the length of
msg2.

• You can use the default wildcard specification (*.*) by
supplying a zero-length string, in order to display the
latest versions of all files in the user's current directory.

• The Additional Options "show all versions" and "show only the
latest versions" work only when you use the default wildcard
specification. Otherwise, the same file selection menu will
reappear.

Example:

100 DIM STBLK%(1%), SIZEARRAY%(1%)
120 NUMCHOICE% 2%
130 FILEBUF$ SPACE$(100%)
140 WILDSPEC$ '*.TSK'
160 TEXT1$ 'Choose a file spec and Press DO'
180 MSG1$ 'This is the first message'
200 MSG2$ 'This is the second message'
230 CALL OLDFIL BY REF &

(STBLK%(), NUMCHOICE%, FILEBUF$, SIZEARRAY%(), &
WILDSPEC$, LEN(WILDSPEC$), TEXT1$, LEN(TEXT1$), &
MSG1$, LEN(MSG1$), MSG2$, LEN(MSG2$))

250 PRINT "Status:"; STBLK%(0%), STBLK%(1%)
260 PRINT "Files chosen:"; NUMCHOICE%
270 PRINT MID$(FILEBUF$, (I%* 50%) -49%, SIZEARRAY%(I%-1%)) &

FOR I% = 1% TO NUMCHOICE%

8-31

PRSCSI - PARSE STRING

8.20 PRSCSI - PARSE STRING

This routine parses a string for a CSI sequence. The character~

in the buff parameter are scanned from the left until a CSI
character is found. The sequence following the CSI character is
parsed and translated int:' a value indicating which function key
terminates the string.

Format:

PRSCSI (status, buff, buflen, csipos)

status Is a two-word integer array. In the first element of the
array, +2, indicates that a valid CSI sequence was found
and that the second element contains one of the function
key values in Appendix D. A value less than 0 indicates
an error occurred. (See Appendix C.)

buff Is a string variable of any length.

buflen Is an integer expression that specifies the length of
buff.

csipos Is an integer variable that returns the position of the
CSI character, counting from one. (See the notes.)

Note:

The csipos parameter was described in previous Tool Kit
documentation as the length of the string, up to but not
including the CSI character. The value returned is actually the
length of the string, up to and including the CSI character.

Example:

10 Dim Stblk%(1%)
30 Buffer$ = "This is an example of PARSE" + ESC + "[29"'"
40 Call Prscsi By Ref &

(stblk%(), buffer$, len(buffer$), csipos%)
50 If stblk%(0%) < 0 goto 100
60 Buffer$ = left$(buffer$, csipos% - 1%)
70 Print buffer$
80 Print Stblk%(1%)
90 Goto 200
100 Print "error"; stblk% (0%); stblk% (1%)
200 End

8-32

RDMSG - READ MESSAGE

8.21 RDMSG - READ MESSAGE

This routine reads a message from a message definition file into
a buffer.

Format:

status

RDMSG (status, filespec, buflen, frameid, buflen,
message, buflen, strlen)

Is a two-word
indicating the
Appendix C.)

integer
results

array that returns a
of the routine call.

code
(See

filespec Is a string specifying the message definition file.

bu fl en

f rameid

bu fl en

message

bu fl en

strlen

Notes:

Is an integer expression that specifies the length of
the filespec parameter.

Is a string expression of 1 to 8 characters that
identifies the message frame to read from the message
file. A fatal error results if frameid is specified as
blank or of zero length.

Is an integer expression that specifies the length of
the frameid string.

Is a string buffer of any length that returns the
specified message. The message is truncated or filled
with blanks to fit the buffer.

Is an integer expression that specifies the length of
the message buffer.

Is an integer variable that returns the actual length
of the returned message string.

• If you do not
installation
specification
attempts to
(or APPL$DIR

include an ASSIGN MESSAGE command in your
file, and you do not provide a complete file
for your message file in the RDMSG call, POSRES
open the message definition file in APPL$USER:

for older systems).

• If you do include an ASSIGN MESSAGE command in your
installation command file, you do not have to specify a
device and directory in the file specification. POSRES uses
the qualifiers specified on the ASSIGN MESSAGE command to
determine where to look for the the message definition file.

8-33

RDMSG - READ MESSAGE

For example, suppose you specify the following ASSIGN MESSAGE
command in your .INB file:

ASSIGN MESSAGE TEST.MSG/USER

POSRES searches for TEST.MSG using the following file
specification:

APPL$USER:TEST.MSG

See the Tool Kit User's Guide, for details regarding system
logical names and accessing application components.

Example:

1100 CALL Rdmsg BY REF &
(Stblk%(),'BASETEST.MSG',12%,'MESS0001' ,8%,B$,B%,L%)

8-34

WTRES - WAIT FOR RESUME KEY

8.22 WTRES - WAIT FOR RESUME KEY

This routine echoes all keyst~okes except the RESUME key with a
bell character. When the user presses the RESUME key, control
returns to the task. You can use this routine to allow the user
to read something on the screen or change a diskette, for
example, before proceeding. Before calling WTRES, display a
message such as "Press RESUME to continue." on the screen.

Format:

WTRES ()

Example:

1180 PRINT "Calling HELP frame. Press RESUME to continue."
1190 CALL Wtres BY REF() ! Allow user to read message
1120 CALL Help BY REF(Stblk%(), 'HELP0000', 8%)

a ... 35

CHAPTER 9

CALLABLE PRINT SERVICES

Print Services consists of two callable routines that allow your
application to print a file, stop, continue, abandon or restart a
print job, or obtain printer status.

The two routines, CPRNT and CPRNV3, differ in their capabilities
and in their compatibility with different operating system
versions. See Section 9.3 for complete details.

CPRNV3 provides an additional feature: the ability to submit
print requests to a particular print queue. Print queues are
available only on P/OS V3.0 systems or later.

If you need compatibility across all system versions, use CPRNT
instead of CPRNV3.

For both routines, a request to print a file executes a
noninteractive task whose installed name is C$PRNT. Also, both
routines use the RS calling convention to pass parameters. For
each call, register 5 must contain the address of your parameter
buffer. For details on the RS calling convention, see the P/OS
System Reference Manual.

9.1 CPRNT

Format:

status

request

CPRNT (status, request, filespec, len)

A two-word
indicating
below) .

integer array
the results of

used
the

to return a code
service request (see

A 75-word integer array. The first word specifies one
of the following request values:

9-1

CPRNT

+1 Print file
+2 Abandon current print job
+3 Pause current print job
+4 Continue the paused print job
+5 Restart the current print job
+6 Report printer condition

The remainder of the array is used as temporary storage
by the CPRNT routine.

f ilespec An ASCII string expression that contains the file
specification of the file to be printed if the print
file service (+l) is requested. Spe~ify zero if a
service other than print file is requested.

len An integer expression that contains the number of
characters in filespec. Specify zero if the filespec
parameter was omitted.

Status Values:

+1 In the first word of the status array indicates that the
request was accepted. If the request was "report printer
condition," the second word returns one of the decimal
condition codes shown in Table 9-1.

-1 In the first word of the status array indicates that a
directive error occurred. The Directive Status Word (DSW)
error is contained in the second element of the array.

-21 In the first word of the status array indicates that a Print
Service error occurred. The second element of the array
contains one of the decimal error codes shown in Table 9-2.

Table 9-1: CPRNT Condition Codes

Code

1.
2.
3.
4.
5.
6.
7.
8.
9.

Description

Print job accepted
Stop print job accepted
Pause print job accepted
Continue print job accepted
Restart current file accepted
Print job active
Print job paused
Print job inactive
Printer offline

9-2

Code

10.
22.
23.

CPRNT

Description

Printer offline/paused
Print request accepted, but printer type does not match
Unable to determine printer status

Table 9-2: CPRNT Error Codes

Code

-11.
-12.
-13.
-14.
-15.
-16.
-17.
-18.
-19.
-20.
-21.
-24.
-25.
-26.
-27.
-28.
-29.
-30.
-31.
-32.
-33.
-34.

-35.
-36.
-37.

-38.
-39.
-40.

Description

Print job already active
Printer busy
Printer already attached
Print job not in progress
Print job not paused
Print job already paused
Parameter out of range
Printer is offline
More than 9 files selected
Printer offline / print job paused
Illegal file specification length
Port currently in use
Mini-Exchange not connected
Mini-Exchange printer currently in use
Print Server directive error encountered
Previous Mini-Exchange connection not broken
Error accessing set-up file. General RMS error.
Error accessing set-up file. File access error.
Error accessing set-up file. Error reading attributes.
Error closing set-up file.
Error accessing set-up file. Bad device specification.
Error accessing set-up file. Bad directory
specification.
Error accessing set-up file. No such directory.
Error accessing set-hlp file. Device not ready.
Error accessing set-up file. File locked by another
user.
Error accessing set-up file.
Error accessing set-up file.
Error accessing set-up file.

9-- 3

File not found.
Bad node name.
Privilege violation.

CPRNT

Code Description

-41. Error accessing set-up file. File processor error.
-42. Error accessing set-up file. File processor error.
-43. Error accessing set-up file. Bad file extension.
-44. Error accessing set-up file. Bad file version number.
-45. Error accessing set-up file. Illegal wildcard in merged

string.
-46. Error accessing set-up file. Extraneous data in file

specification.

Notes:

• On P/OS Hard Disk, the call to
immediately with status. If
accepted, then CPRNT prints the
application while the calling
processing.

the CPRNT always returns
a request to print a file is
file as a noninteractive

application goes on to other

• For compatibility with earlier versions of P/OS, you can call
CPRNT on sytems running P/OS V3.0 or later. See Section 9.3
for details.

9.2 CPRNV3

Format:

status

request

CPRNV3 (status, request, subfun, copynum, reserv
qnam, qlen, filespec, flen, jobnum)

Is an eight-word integer array used to return status
information. CPRNV3 currently uses only the first four
words.

Is a 75-word integer array. The first word contains
the request:

9-4

sub fun

copynum

reserv

qlen

f spec

Symbol

RQ.PRN
RQ.ABO
RQ.HLD
RQ.REL
RQ.STS

Value

1
2
3
4
5

CPRNV3

Request

Submit a set of files to print
Abort a print request
Hold a print request
Release a held print request
Report status of a print request

The remainder of the array is used as temporary storage
by the CPRNV3 routine.

Reserved.

Is a one-word integer representing the number of copies
of the job to print. The default value is one, and the
maximum value is 100.

Is reserved. You must supply a place holder, which
CPRNV3 ignores. qname Is a variable-length string
representing the name of the queue in which to place
the print job. The maximum length is 39. If you
specify zero for this parameter, CPRNV3 places the job
in the default queue, if defined.

Note that, to send a request to the default print
queue, the user who is running your application must
have previously specified a default queue. You should
query the user for the print queue name if your program
receives the error CE.QNF (default print queue not
defined).

Is a one-word integer representing the length of the
qname parameter.

Is a variable-length string representing the file
specification of the file to be printed. The maxi~um
length is 65. CPRNV3 ignores this parameter if the
request is other than to print files.

flen Is a one-word integer representing the length of the
fspec parameter.

jobnum Is an integer word specifying the job number of the job
to be aborted, held, released or reported. CPRNV3
ignores this parameter if the request is to print
files.

9-5

CPRNV3

Status Values:

Table 9-3 shows the status returns that you can receive after a
call to CPRNV3.

For a successful return (PS.sue in word 0 of the return block),
CPRNV3 places the job number in word 1 of the return block. If
there is a directive error during processing, CPRNV3 returns the
Directive Status Word (DSW) in word 1. For information on DSW
values, see the P/OS System Reference Manual.

The error PE.PRN in word 0 indicates that an error occurred in
the C$PRNT task. The specific C$PRNT error code is in word 1.
All other error codes in word 0 indicate that the error occurred
in the CPRNV3 routine.

Whenever CPRNV3 returns a value of -12. in word 2 of the return
block, an RMS error has occurred; CPRNV3 returns the RMS STS and
STV status in words 3 and 4, respectively. See the PRO/RMS-11
Macro Programmer's Guide for information on RMS errors.

Table 9-3: Status Returns for CPRNV3

Word 0 Word 1 Word 2 Word 3 Description

PS.sue Job Success
(+1) number

PE.DSW DSW Directive error
(-1)

CE.EXT Server exited before
(-3) completing function

CE.BAB Invalid argument block
(-4)

CE.BQL Invalid print queue name
(-5) length

CE.BFL Invalid file spec length
(-6)

PE.PRN CE.BFN Invalid or unsupported
(-2) (-2) request function

9-6

CPRNV3

Word 0 Word 1 Word 2 Word 3 Description

PE.PRN CE.BRP Incomplete request packet
(-2) (-3)

PE.PRN CE.QNF (Default) print queue not
(-2) (-4) defined

PE.PRN CE.QFU Print queue is full
(-2) (-5)

PE.PRN CE.NSJ No such job
(-2) (-6)

PE.PRN CE.DNF Data file not found
(-2) (-8.)

PE.PRN CE.ADF -12. RMS Error accessing data file
(-2) (-9.) error

PE.PRN CE.PDF -12. RMS Error parsing data file
(-2) (-10.) error specification

PE.PRN CE.VRC DSW Error issuing VRCX
(-2) (-12.) directive

PE.PRN CE.BQN Invalid print queue name
(-2) (-13.)

PE.PRN CE.QUE -12. RMS Error queueing (creating
(-2) (-14.) error request file)

PE.PRN CE.CPY -12. RMS Error copying a data file
(-2) (-15.) error

PE.PRN CE.FVE Bad file version string
(-2) (-16.)

PE.PRN CE.APS -12. RMS Error accessing private
(-2) (-17.) error set-up file

PE.PRN CE.BJN Invalid job number
(-2) (-19.)

PE.PRN CE.AQF -12. RMS Error accessing queue file
(-2) (-20.) error

PE.PRN CE.ARQ -12. RMS Error accessing entry file
(-2) (-21.) error

9-7

CPRNV3

Notes:

• The CPRNV3 routine defines all request (RQ.xxx) and status
(PE.xxx and CE.xxx) symbols. When the task builder resolves
a reference to CPRNV3, it automatically resolves these
symbols as well.

• After a call to CPRNV3, there might be a waiting period
before Print Services processes the request. If your
application queues a set of files to print and immediately
follows with a status report request, the call may return a
"No such job" error (CE.NSJ) because the print request has
not yet been processed. In such cases, your application
should wait for some time and retry.

• To indicate that you want the default value for a parameter,
specify a place holder whose value is zero for a numeric
parameter, or a null string (a string whose length is zero)
for a string parameter.

9.3 COMPATIBILITY BETWEEN CPRNT AND CPRNV3

Use CPRNT if you design an application to run on all P/OS
versions. However, when calling CPRNT on P/OS V3.0 systems or
later, note that you can only specify the print request (RQ.PRN)
in the call to CPRNT. No other requests are valid on P/OS V3.0
systems or later.

9.4 EXAMPLE

Figure 9-1 shows a sample MACR0-11 program that calls CPRNV3.

9-8

PRMBLK: . WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

STATUS: .BLKW
REQUEST: . WORD

. BLKW
SUBFUN: .WORD
NUMCOP: .WORD
BANNER: .WORD
QUEUE:

.ASCII
LQUEUE: .WORD
FI LEN: .ASCII
TMP = . -

.EVEN
FILENL: .WORD
JOBNUM: .WORD

;+
; Code
. -,

.MCALL

START: MOV
CALL

EXIT$S

.END

10 .
STATUS
REQUEST
SUB FUN
NUMCOP
BANNER
QUEUE
LQUEUE
FI LEN
FILENL
JOBNUM

8.
RQ.PRN
74 .
0
1
1

EXAMPLE

Number of parameters
Status block
Print request
Subfunction
Number of copies to print
Banner page flag
Print queue name
Length of the print queue name
Address of the filename(s) to print
Length of the filename(s)
Job number

Status block
Print file(s) request
Required buffer space for CPRNV3
Subfunction value (reserved)
Print 1 copy of the file
Print with a banne~ p~ge
Print queue name

/PRO$$PROVOLUME$LAS0Q/ ;Example print queue name
0 No length if using default queue
/FILE.TYP/ File name to print

FILEN Actual length of the filename
Ensure on an even boundary

TMP Length of the filename
0 No job number needed to print

EXIT$S

#PRMBLK, RS RS => Parameter block pointer
CPRNV3 Call Print Services to print a file

Exit the task

START

Figure 9-1: Sample Call to CPRNV3

9-9

CHAPTER 10

PROSE TEXT EDITOR

PROSE is the text editor supplied with P/OS. It offers
facilities for entering and editing text to create documents,
source programs, and memos or similar text files. Editing keys
on the Professional keyboard allow text manipulation. The end
user documentation describes PROSE and the PROSE user interface.

By calling the PROSE callable editor task (CET), an application
can offer the text editor for use within its own context. For
example, an electronic mail application might use the editor to
provide editing services for message creation or modification.
All the editor functions offered to the end user are available in
the callable form of the editor.

Application tasks invoke the callable editor task by calling the
CET subroutine that resides in SYSLIB. This subroutine invokes a
separate editor server task to perform the actual editing
session.

Parameters to the CET subroutine define the input and output
filename, a temporary work filename, format options, maximum line
length for text entry, and left and right margin values.

The input filename is the file to be edited. An empty or new
file can also be created with the newfile parameter .. After
editing, the callable editor opens the output file with the
specified name to create the edited version of the file.

The CET subroutine passes the specified parameters to the
callable editor by spawning it as a task. The subroutine waits
until the editor server task terminates before returning control
to the calling application. When the editing session terminates,
the server task returns a two-word status block to the CET
routine, which in turn passes the status back to the application.
The callable editor uses EFN (event flag number) 32, so the
calling application should not use it.

10-1

PROSE Text Editor

Prior to calling the CET subroutine, the calling task should
detach from the terminal since the callable editor attaches to
the terminal during execution. After the callable editor task
exits, the calling task can reattach to the terminal. For
example, if the application is written in BASIC-PLUS-2 and
attaches the terminal for CTRL/C ASTs, it should use RCTRLC to
detach the terminal before CET is invoked.

List the name of the callable editor task in the application
installation file to make sure that it is installed when the
application task calls it. (See Chapter 6 for details.)

Format:

status

infile

inlen

outfile

outlen

workfile

wklen

newfile

CET (status, infile, inlen, outfile, outlen,
workfile, wklen, newfile, format, maxline,
in1tleft, initright, initwrap, lun)

A two-word integer array that returns the results of
the editing session as shown in Table 10-1.

A string expression that specifies an input file.
The default file type is .DOC.

An integer expression that specifies the number of
characters in the input filename.

A string expression that specifies an output file.
The default file type is .DOC. If the output file is
the same as the input file, P/OS creates a new
version of the file.

An integer expression that specifies the number of
characters in the output filename.

A string expression that specifies a temporary work
file. The editor task deletes this file on exit.

An integer expression that specifies the number of
characters in work filename.

An integer expression that specifies whether a new
source file should be created.

zero

nonzero

Uses an existing file with
specified in infile

the name

Creates a new file with the name specified
in outf ile

10-2

format

maxline

initleft

initright

initwrap

lun

Note:

PROSE Text Editor

An integer expression that specifies whether or not
to retain escape sequences in the output file (see
notes).

zero Discards formatting data

nonzero Retains formatting data

An integer expression in the range 2 to 160 that
specifies the maximum number of characters on a line
that can be saved by a user.

An integer expression in the range 1 to 131 that
specifies the initial left margin value for a new
file.

An integer expression that specifies the initial
right margin value for a new file.

An integer expression that specifies the default word
wrap setting for a new file.

zero Disables word wrap

nonzero Enables word wrap

An integer expression that must be present but is
ignored by the editor task. Specify zero.

During the editing session, the user can define margin settings
for different regions of text that result in the inclusion of
nonprinting characters, called escape sequences, in the output
file. The presence of escape sequences in files may cause errors
if the file is used with host system utilities. If you remove
the escape sequence from a file, it will print as expected.
However, if you edit the file again, the margins will be lost.

Table 10-1: Callable Editor - Status Return Codes

First Second

+1 0

Meaning

The editing session completed
normally.

10-3

First

+2

-1

-2

-3

-4

-5

-6

PROSE Text Editor

Second

0

DSW code

POSRES code

-1

-2

RMS code

RMS code

RMS code

Meaning

The editing session completed
normally, and the output file it
produced contains escape sequences
indicating formatting information
(for example, margin settings).

The CET subroutine could not invoke
the server task.

The Callable Editor Task could not
open its help file. The second status
word contains the second word of the
status block that was returned from
the execution of the HFILE routines
in POSRES.

The Callable Editor Task encountered
a problem related to the parameters
passed to it. The second status word
has a specific code:

The server encountered an error while
trying to receive the parameters from
the CET subroutine.

The parameters contain invalid
values. For example, the initial left
margin value is greater than or equal
to the initial right margin value.

The Callable Editor Task could not
open the specified input file. The
second status word contains the RMS
error code returned in the STS field
of the FAB when the open failed.

The Callable Editor Task could not
create the specified output file. The
second status word contains the RMS
error code returned in the STS field
of the FAB when the create failed.

The Callable Editor Task could not
create the specified work file. The
second status word contains the RMS
error code returned in the STS field
of the FAB when the create failed.

10-4

First

-8

-9

-10

-11

-12

-13

-14

-15

-16

Example:

10

20

PROSE Text Editor

Second

RMS code

RMS code

RMS code

RMS code

DSW code

DSW code

DSW code

DIM StatBlk%(1%)
PRINT "Calling CET
CALL CET BY REF
(StatBlk% (),
II If I 0 % I
"MESG.EXC",
"SY:W. FIL" I

1%,
0%,
160%,
5%, 72%,
0%)
PRINT

l g,.
o I

8%,
8%,

Meaning

The server task encountered a fatal
run-time error (for example, an odd
address trap).

The input file is not an RMS
sequential file.

An I/O error occurred when writing
the output file.

An I/O error occurred when performing
I/O to the work file.

An I/0 error occurred when reading
the input file.

The UDK/Set-Up file could not be
opened. The STS field of the FAB used
to access the file is returned in the
second status word.

CET could not create the dynamic
region used to hold the editor's XBUF
buffer pool.

CET could not create the address
window needed to map to XBUF.

An error occurred during a mapping
operation to access CET's XBUF
region.

Status return data
" ! Calling the editor task

Return status block.
No name since creating new file.
Name of resulting output file.
Work file used by editor.
We're creating a new file.
Allow margins; discard ESCapes
Let user create long lines.
Initial margins 5, 72, word wrapped
placeholder - value is ignored

&

&

&

&

&

&

&

&

&

PRINT "Back from editor~ Status block:"

10-5

PRINT "
PRINT "
END

PROSE Text Editor

Word 0
Word 1

-" - ,
-" - ,

StatBlk%(0%)
StatBlk%(1%)

10-6

CHAPTER 11

PRO/SORT

PRO/SORT is a general-purpose sorting utility that runs on P/OS.
This section discusses how to use PRO/SORT and the commands it
supports. Error messages are listed in Section 11.13. For a
sample PRO/SORT command file, see Section 11.14.

11.1 USING PRO/SORT

Application tasks use the PROSRT routine to invoke and pass to
PRO/SORT the name of a command file containing sorting commands.
The parameter list can include the names of an input file
(containing records to be sorted) and an output file (containing
the sorted records or indices to the sorted records).

Format:

cmdfile

bu fl en

outfile

bu fl en

inpfile

PROSRT (cmdfile, buflen,
outfile, buflen,
inpfile, buflen, status)

Is a string expression containing a PRO/SORT command
file specification. The default file type is ".CMD".

Is an integer expression that specifies the number of
characters in cmdfile.

Is a string expression containing a PRO/SORT output
file specification. There is no default file type.

Is an integer expression that specifies the number of
characters in outfile.

Is a string expression containing a PRO/SORT input file
specification. There is no default file type.

11-1

USING PRO/SORT

bu fl en Is an integer expression that specifies the number of
characters in inpfile.

status Is a two-word integer array that receives status
information from PRO/SORT.

In your application installation command file, make sure to
include a FILE command for each PRO/SORT command file. Also,
include the following commands in the order shown:

INSTALL [ZZSYS]PASRES.TSK/LIBRARY/CLUSTER
INSTALL [ZZSYS]PROSORT.TSK/TASK/CLUSTER

A sample BASIC-PLUS-2 call to PRO/SORT follows:

1000 DIM STATUS%(1%)
CALL PROSRT BY REF ('TEST.CMD' I 8%, 'DATA.OUT' I 8%,

'SOURCE.INF' I 10%, STATUS%())

Programmers using MACR0-11 should note that PRO/SORT uses event
flag #31.

11.2 VALID RMS RECORD FORMATS

The PRO/SORT input and command files can be of variable-length or
fixed-length sequential record format, independently of each
other. For example, the input file can have variable-length
records and the command file fixed-length records. The record
type for the output file matches that of the input file.

If the input file uses variable-length records,, the maximum
record size (MRS) of the output file equals the input file MRS.
If the input file uses fixed-length records, there are two
possibilities for the output file:

• If the PRO/SORT command file has WRITE commands, the size of
the output file equals the total length of all fields
specified by the WRITE commands.

• If the PRO/SORT command file
entire record is copied.
record sizes are identical.

has no
Therefore

WRITE comman~s, the
the input and output

The maximum record length for a RECORD sort is 400 bytes. The
maximum record length for a TAG sort is 1005 bytes. The maximum
record length for an INDEX sort is 1005 bytes. The default is
PROCESS RECORD. If you use a record that is too long, PRO/SORT
returns an appropriate error message.

11-2

PRO/SORT COMMANDS AND COMMAND FILE

11.3 PRO/SORT COMMANDS AND COMMAND FILE

The following sections describe the commands supported by
PRO/SORT. Where appropriate, the corresponding PDP-11 SORT
specification lines are also described. If you are familiar with
PDP-11 SORT, the comparison between SORT and PRO/SORT command
syntax will be helpful.

Figure 11-2 on page 11-18 illustrates the structure of a PRO/SORT
command file. During program execution, the command file is
passed to the sort program and the sort is performed.

The maximum command line length is 80 characters. Table 11-1
lists the maximum number of commands allowed in a command file.

Table 11-1: Number of PRO/SORT Commands per Command File

Command Maximum Number of Commands per File

COLLATE no limit
DEFAULT 1
FIELD 20
FORCE 30
INCLUDE 20 *
INPUT 1 **
OUTPUT 1 **
PROCESS 1
SORT 16
WRITE 30 ***

Notes for Table 11-1:

* Each condition in an INCLUDE line counts as an INCLUDE
command.

** You can use the INPUT and OUTPUT statements in the command
file only if no input or output file is specified in the
CALL PROSRT parameter list.

*** Each field name in a WRITE statement counts as a WRITE line.

Comment statements in a PRO/SORT command file are indicated by an
exclamation point (l) or semicolon(;) as their first character.
For example:

!This is a PRO/SORT comment.
;This is an alternate form of the PRO/SORT comment.

11-3

PRO/SORT COMMANDS AND COMMAND FILE

By comparison, SORT comments are indicated by an asterisk (*) in
column seven. For example:

*This is a SORT comment.

You can nest indirect command files within the PRO/SORT command
file, to group related commands. To invoke an indirect command
file from within the PRO/SORT command file, use the following
format:

@f ilespec

filespec Is the name of the indirect command file to be
accessed. The default file type is ".CMD".

Indirect command files can be nested as many as ten levels.

11.4 COLLATE

Use the COLLATE command to sort and output specific characters in
a new position relative to the second value specified. For
example, you can use the COLLATE command to perform
country-specific collating sequences by changing the logical
ordering of a character set. COLLATE operates on CHAR fields
only.

Format:

COLLATE entity,

The format of an entity is:

value

value value

A number or a character. Characters must be enclosed in
single or double quotes.

BEFORE Sorts the first value immediately before the second
value.

AS Sorts the first value as though it were the same as the
second value.

11-4

COLLATE

AFTER Sorts the first value immediately after the second value.

Notes:

• If you use the COLLATE command before the DEFAULT command,
the collating sequence specified by DEFAULT supersedes that
specified by COLLATE. See the DEFAULT command for details.

• A command file can contain an unlimited number of COLLATE
commands.

11.4.1 COLLATE Compared to SORT ALTSEQ

SORT performs alternate sequencing of records in a specification
file through the ALTSEQ command. The format of an ALTSEQ record
in SORT is:

ALTSEQ aaabbbxxxyyy ...

aaa The octal value of a character.
bbb The value of the character to use in the sort.
xxx The octal value of a character.
yyy The value of the character to use in the sort.

The PRO/SORT COLLATE command provides a superset of the same
function.

For example, to sort commercial "at" signs (@) as ASCII zero
characters you would type:

ALTSEQ 100060

Using PRO/SORT, you would type:

COLLATE "@" AS "0" or COLLATE 100 AS 60

11.5 DEFAULT

Use the DEFAULT command to set up the default collating sequence.
If you use the COLLATE command before the DEFAULT command, the
collating sequence specified by DEFAULT will supersede that
specified by COLLATE.

11-5

DEFAULT

The DEFAULT command has one of two formats. If you want to
specify a country-specific collating sequence, use the following
command format:

Format:

DEFAULT

language Any of the national collating sequences supported by
PRO/SORT: MULTINAT (DEC Multinational), DANISH, DUTCH,
ENGLISH, FINNISH, FRENCH, GERMAN, ITALIAN, NORWEGIAN,
PORTUGESE, SPANISH, SWEDISH, and BINARY. The default
is MULTINAT.

USER Specifies a user-defined collating sequence.

n Is an integer representing the binary value of the
eight-bit character t~ be collated at this position.
Separate integers with commas or carriage returns.

The DEFAULT USER command is equivalent to specifying individual
COLLATE commands for all 256 values of an 8-bit character.
Therefore, the list must always have 256 integer values. If you
choose to have all characters treated distinctly (no "collate
as"), the value of "n" ranges from 0 to 255. For example,

DEFAULT USER
4,3,0,1,2,5,6,7,8,9
10,11,12, ...

... 248,249
250,251,252,253,254,255

In the above example, character 4 is collated first, followed by
character 3. The remaining characters are collated normally, in
order of increasing binary value up to the last character (255).

If you want to force a character to collate as the preceding
character in the collating sequence, you must add 1000 to its
normal value. For example,

DEFAULT USER
1,2,0,3,7,8,12,1013,14,15,4, ...

In this example, character 0 is collated after characters 1 and
2. Character 13 is collated equivalent to character 12.

You can specify only one DEFAULT command in the command file.

11-6

FIELD

11.6 FIELD

The FIELD command assigns a symbolic name to a positional
within an input record. For example, you could assign the
name "ZIP" to columns 5' through 9 in each record, the field
"Address" to characters 10-25, and so on. You can define
20 fields with FIELD commands.

range
field

name
up to

Once the FIELD command has assigned a symbolic name to a field,
other PRO/SORT commands reference that field by field name only.
You must define a field before it can be referenced by other
PRO/SORT commands.

Format:

FIELD fname datatype start end

fname A field name (must be a character string).

datatype One of the following six datatypes:

start

CHAR

SINT

Specifies character data. The field width for
this data type is equal to the number of
characters.

Specifies signed binary
field width must be
number.

integer format. The
given as two bytes per

UNSINT Specifies unsigned binary integer format. The
field width must be given as two bytes per
number.

DBLINT Specifies double precision binary integer
format. The field width must be given as four
bytes per number.

SPFP Specifies single precision floating point. The
field width must be given as four bytes per
number.

DPFP Specifies double precision floating point. The
field width must be given as eight bytes per
number.

Is an integer representing the starting column number
of the field within the record.

end Is an integer representing the ending column number of
the field within the record.

11-7

FIELD

Figure 11-1 shows how PRO/SORT interprets bytes as they occur in
the input data stream.

Bit Bit

CHAR 8 1
(1 byte/char.)

Bit Bit

SINT 16 Byte 2 Byte 1 1
(2 bytes)

Bit Bit

UNSINT 16 Byte 2 Byte 1 1
(2 bytes)

Bit Bit

DB LINT
(4 bytes)

1

17

16 B:te 2 B:te 1
32 B te 4 B te 3

Bit Bit

SPFP
(4 bytes)

1

17

16 B:te 2 B:te 1
32 B te 4 B te 3

Bit Bit

DPFP 16 B_y_te 2 B_yte 1 1
(8 bytes)

32 Byte 4 B_yte 3 17

48 B_yte 6 B_yte 5 33

64 Byte 8 B_yte 7 49

Figure 11-1: Mapping of Bytes to Fields in Input Data Stream

11-8

FIELD

Notes:

• For both the SPFP and DPFP data types, the sign appears in
bit 16 (byte 2), the exponent appears in bits 8 through 15
(bytes 1 and 2), and the mantissa appears in the remaining
bits. This conforms to the standard PDP-11 data type
convention.

• For SINT, UNSINT, DBLINT, the most significant bit is 16, 16,
or 32, respectively. For SPFP and DPFP, bit 15 is the most
significant bit of the exponent and bit 7 is the most
significant bit of the mantissa.

11.6.1 Pseudo-Fields RRN and RFA

Two pseudo-fields are predefined as part of PRO/SORT: relative
record number (RRN) and record file address (RFA). The relative
record number is defined as if your command file included the
line:

FIELD RRN SINT x x+l

where x is the pseudo starting column of the field. This
two-byte number identifies the record's position in the input
file. Use RRN to perform random indexing of fixed length
sequential files.

The record file address of a record is defined as if your command
file included the line:

FIELD RFA CHAR x x+S

where x is the pseudo starting column of the field. This
6-character identifier provides the block and byte offset of the
record in the input file. RFAs assist in the random access
within a file that contains either fixed or variable length
records. You can use RFA access to retrieve records randomly.

Use RRN and RFA in any other PRO/SORT command to obtain pointers
to desired records. For example, the following commands would
select the first 19 records in the input file and then write the
each record's location (RFA) and key (KEYFIELDNAME) to the output
file.

INCLUDE RRN < '20'
FIELD KEYFIELDNAME CHAR 1 10
WRITE RFA, KEYFIELDNAME

11-9

FORCE

11.7 FORCE

Use the FORCE command to force any record containing a particular
field (or a field with a particular value) to a specified
position in the collating sequence.

Format:

FORCE fname TO val IF val

f name The field name (must be a character string).

val A number or a character. Characters must be enclosed in
single or double quotes.

You can use FORCE only on CHAR fields. While COLLATE affects all
fields equally, FORCE operates only on the first character of the
specified field. FORCE IF operates on that field only if its
current value is equal to the value specified in the IF clause of
the command.

For example, you could sort an input containing zip codes so that
all zip codes appear at the top of the output file:

FORCE ZIP TO "0"

You could also sort such an input file so that only the zip codes
beginning with 5 appear at the top of the list; all other zip
codes would be sorted as usual:

FORCE ZIP TO "0" IF "5"

You can specify up to 30 FORCE commands in the command file.

11.7.1 FORCE Compared to SORT F

With the SORT F field record specification, you specify the
column to be forced and the character that column should be
forced to. An optional trigger character specifies that the
force should not occur unless the indicated column contains that
character.

The SORT "F" field specifier can also logically combine
conditions through a FORCE command. PRO/SORT cannot do this.

For example, using SORT to sort all X characters in column 50 as
if they were Ys, you would type:

F 50XY

11-10

FORCE

To perform a similar sort in PRO/SORT, you would type:

FIELD NAME CHAR 50 59

FORCE NAME TO 'Y' IF 'X'

11.8 INCLUDE

Use the INCLUDE command to sort and write to the output file only
records containing fields that match certain conditions.

Format:

INCLUDE condition, ...

The format of a condition is:

fname operator

The format of an operator is:

f name

(equal to)
(not equal to)
(less than)
(less than or equal to)
(greater than)
(greater than or equal to)

A field name (must be a character string enclosed in
single or double quotes).

For example, to select and sort all records whose in an input
file whose zip code field, ZIP, begins with 0, you could use the
command:

INCLUDE ZIP < "10000"

Fields of data type CHAR can only be compared to other CHAR
fields. Numeric fields can be compared to any other numeric
fields. If a constant is specified along with a numeric field,
it is assumed to be numeric.

When you specify more than one condition with a single INCLUDE
command, PRO/SORT will combine the conditions logically with AND.
Only records that meet all the INCLUDE line's conditions will
appear in the output file.

11-11

INCLUDE

You can specify up to 20 INCLUDE conditions in a command file.

When you specify more than one condition with multiple INCLUDE
lines, PRO/SORT will combine the conditions logically with OR. A
record need only match one of the INCLUDE lines to appear in the
output file.

For character fields, INCLUDE can also be used
only in the case of an EQ or NE comparison.
for LT, LE, GT, or GE. The following examples
this special case.

INCLUDE fname = 'XYZ ... '

as follows, but
It cannot be used
will illustrate

Include any record that has a field starting with 'XYZ'.

INCLUDE fname = ' ... XYZ'

Include any record that has a field containing 'XYZ'.

11.8.1 INCLUDE Compared to SORT 0 and

SORT and PRO/SORT use the same logical relationship tests to
determine whether an output file will omit or include a given
record. When you use the SORT I specification, you may either
omit or include portions of the input file to be sorted.
PRO/SORT provides one way to achieve either result through an
INCLUDE command.

For example, using SORT to omit all records with column 10 to 14
equal to XYZZY you would type:

0 C 10 14EQXYZZY

With PRO/SORT, you would type:

or:

FIELD PLUGH CHAR 10 14
INCLUDE PLUGH NE "XYZZY"

INCLUDE PLUGH <> "XYZZY"

11-12

INPUT AND OUTPUT

11.9 INPUT AND OUTPUT

The INPUT command specifies which input file contains the data to
be sorted. The OUTPUT command specifies which file the sorted
records (or indices to sorted records, for the PROCESS INDEX
command) are to be written to. You can use the INPUT and OUTPUT
statements in the command file only if no input or output file is
specified in the CALL PROSRT parameter list.

Format:

INPUT filespec

OUTPUT f ilespec

filespec A string that specifies the file being sorted or
written to.

You can specify that file be output to your terminal screen by
using TI: as the filename.

11.10 PROCESS

The PROCESS command specifies whether PRO/SORT uses a RECORD or
TAG sort.

Format:

PROCESS

For a RECORD or TAG sort, the PROCESS command operates like the
/PR switch in SORT. For an INDEX sort, the PROCESS command
operates like the SORTA address routing sort.

In a RECORD sort, PRO/SORT manipulates actual records. Use a
RECORD sort for small sorting jobs. In a TAG sort, PRO/SORT
manipulates pointers to records. The TAG option can be
significantly faster; use it for longer records. Switch to TAG
if RECORD fails.

The default is PROCESS RECORD.

11.11 SORT

The SORT command specifies the key fields which will be used to
reorder the records in the output file. Specify the key fields

11-13

SORT

in the order of their importance to the sort (primary, secondary,
etc.).

Format:

SORT field, . ..

The format of a field is:

f name

f name The field name (must be a character string).

A leading plus or minus sign before the field name controls the
order of the sort for the field. A leading plus sign indicates
that the sort of that field should be performed in ascending
order. A leading minus sign indicates that the sort should be
performed in descending order.

To specify multiple key fields, you can use more than
command or combine more than one key field on a line.
key fields can be specified in a command file.

11.11.1 SORT Compared to SORT N and 0

one SORT
Up to 16

Both SORT and PRO/SORT permit key structures (primary, secondary,
etc.). However, with SORT you can specify a maximum of 10 key
fields. SORT uses N ("normal") and O ("opposite") in column 7 of
the specification file to indicate ascending or descending sort
per key. PRO/SORT uses the plus (+) and minus (-) signs.

For example, using SORT to sort the primary key ascending from
columns 1 to 5, secondary descending from 34 to 37, you would
type:

FNC 1 5
FOC 34 37

Using PRO/SORT, you would type:

FIELD PRIMARY CHAR 1 5
FIELD SECONDARY CHAR 34 37
SORT +PRIMARY, -SECONDARY

11-14

WRITE

11.12 WRITE

The WRITE command creates an output file with a different
arrangement of fields from the input file. You can use the WRITE
command to omit a field from the output file, for example, or you
can retain all the fields but output them in a new order.

Format:

WRITE fname, ...

f name A field name (must be a character string).

You can specify up to 30 fields with WRITE commands in the
command file.

11.12.1 WRITE Compared to SORT D

Both SORT and PRO/SORT permit the creation of an output file
whose records differ in field order from the input file. In
SORT, for example, if the input consists of a name in columns 1
to 19, address in 20 to 39, and zip in 40 to 44, the output
records could be rearranged in the order <zip>, <address>, <name>
by typing:

FDC 1 19
FDC 20 39
FDC 40 44

Using PRO/SORT, you would type:

FIELD NAME CHAR 1 19
FIELD ADDRESS CHAR 20 39
FIELD ZIP CHAR 40 44
WRITE ZIP, ADDRESS, NAME

11.13 PRO/SORT ERROR CODES

When PRO/SORT returns control to your program, the first element
of the status array (element 0) contains one of the following
codes:

1 normal successful completion
-1 error occurred in processing
-2 could not invoke PRO/SORT

PRO/SORT is a separate task image on the P/OS system.

11-15

If it

PRO/SORT ERROR CODES

could not be invoked, the spawn has probably failed. Check that
you have listed the following lines (in the order shown) in the
application installation file:

INSTALL [ZZSYS]PASRES.TSK/LIBRARY/CLUSTER
INSTALL [ZZSYS]PROSORT.TSK/TASK/CLUSTER

If an error occurred in processing, the second element of the
status array (element 1) contains an error code.

A code that is greater than zero indicates a PRO/SORT internal
error. Refer to the PDP-11/SORT Reference Manual.

A code that is less than zero indicates an error detected by the
PRO/SORT task. Table 11-2 lists the error codes (decimal) and
descriptions.

Table 11-2: PRO/SORT Error Codes

Decimal
Error Code Description of Error Condition

-1 A command in the sorting command file contains an
invalid parameter, for example a string parameter
where a numeric parameter is needed.

-2 The sort command file contains a line that is not
recognized as a valid sort command.

-3 Can't open the specified sort command file.

-4 An INCLUDE command describes a relation between
two fields of different data type.

-5 Two FIELD commands use the same name for their
field.

-6 Multiple INPUT commands. Either the parameter
list and the command file both contain an INPUT
command or the the command file contains more than
one.

-7 Multiple OUTPUT commands. Either the parameter
list and the command file both contain an OUTPUT
command or the the command file contains more than
one.

11-16

Decimal
Error Code

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

-15

-21

-22

-23

-24

-25

PRO/SORT ERROR CODES

Description of Error Condition

A command has spurious text following the normal
end of the command.

A fatal error has been found in the logic of the
PR.0/SORT utility. Call the Hot Line.

Too many FIELD commands have been given.

Too many FORCE commands have been given.

Too many INCLUDE commands have been given.

Too many SORT commands have been given.

Too many WRITE commands have been given.

Ellipses were used with a relational operator
other than = or <>.

No INPUT command was found in the command file
stream.

No OUTPUT command was found in the command file
stream.

A command omitted a required parameter.

FORCE commands may only be used on fields of type
character, but a FORCE command was found in
violation of this.

The PRO/SORT data file be opened
(SYSDISK:[ZZSYS]PROSORT.SYS).

The input file is empty.

Can't open the input file.

Can't open the output file.

The total size of all key fields
large.

added up is too

The user's command file pool has too many levels
of indirect command files.

11-17

PRO/SORT ERROR CODES

Decimal
Error Code Description of Error Condition

-26

-27

-28

-29

-30

-100
to

-5200

11.14

A field name that does not yet exist has been
referred to.

More than one PROCESS command in file.

Too few characters specified in the DEFAULT USER
command.

An input record larger than 1005 bytes was found.

Insufficient disk space for temporary files.

An internal error reported by the PASCAL run-time
system used by PRO/SORT.

PRO/SORT EXAMPLE

Figures 11-2 through 11-5 show several files associated with a
sorting example. Figure 11-2 shows the PRO/SORT command file.
It is designed to sort the information in the input file
INPUT.DAT (Figure 11-3), rearrange it, and output it in a new
order to the output file OUTPUT.DAT (Figure 11-5). The indirect
command file FIELDS.CMD (Figure 11-4) is invoked by the PRO/SORT
command file.

Command file for sorting the INPUT.DAT file.
Define the Fields:

@FIELDS
Set up sorting parameters:

INPUT INPUT.DAT
OUTPUT OUTPUT.DAT
SORT Type, LastName
INCLUDE Type <> "Heral"
FORCE Type to "0" if "V"
WRITE Type, Space, FirstName, LastName

Figure 11-2: Sample PRO/SORT Command File

11-18

PRO/SORT EXAMPLE

Fake Name2 Hxyzzy
Fake Name Hardy
Dick Tracy Hero
Mary Worth Normal
Clark Kent Hero
Peter Parker Herol
Lex Luther Villain
Green Hornet Hero
Lois Lane Heroine
Bruce Wayne Herol
King Tut Villain
Gen. Zod Villain
Scooby Doo Herol
David Banner Hero
Perry White Normal
Comm. Gordon Normal
Mary Jane Normal
The Joker Villain
Miss Piggy Normal
Darth Vader Villain
Leia Organa Heroine

Figure 11-3: Sample Input File INPUT.DAT

The PRO/SORT command file begins with two comment lines:

Command file for sorting the INPUT.DAT file.
Define the Fields:

The first comment identifies
second introduces the next
executes the indirect command
fields in the input file:

@FIELDS

FIELDS.CMD

the PRO/SORT command
command line, which
file FIELDS.CMD to

file. The
invokes and
define the

Field specification for the input file INPUT.DAT

Field FirstName Char 1,7
Field LastName Char 8,14
Field Type Char 15,21
Field Space Char 7,7

--~
Figure 11-4: Sample Indirect Command File FIELDS.CMD

11-19

PRO/SORT EXAMPLE

FIELDS.CMD defines each field in INPUT.DAT and assigns
symbolic name. The field of characters 1-7 receives the
name FirstName; the field of characters 8-14 receives the
name LastName, and so on. Once PRO/SORT has executed
indirect command file, the program can refer to any field in
input file by the field name alone.

it a
field
field
this
the

The next line in the PRO/SORT command file is another comment:

Set up sorting parameters:

This line identifies the subsequent commands as those which set
up the sorting parameters for the ~ata file. The sorting
parameters determine how fields in the data file will be sorted.

The first sorting parameter specifies the input file:

INPUT INPUT.DAT

It identifies INPUT.DAT as the file containing the data to be
sorted. The next sorting parameter specifies the output file:

OUTPUT OUTPUT.DAT

It identifies OUTPUT.DAT as the file to which the sorted records
will be written.

If INPUT.DAT and OUTPUT.DAT are specified in the CALL PROSRT
parameter list, they can't be specified also in the PRO/SORT
command file.

The next sorting parameter is a SORT command:

Sort Type, LastName

It specifies which key fields in the input file are pertinent to
this sort, and in what order they will be sorted. The symbolic
names Type and LastName have already been assigned by the
indirect command file FIELDS.COM. They are now identified as the
primary and secondary fields, which will be sorted in the
default, or ascending, order.

The next line is an INCLUDE command:

Include Type <> "Herol"

It specifies which records will be sorted and written to the
output file. In this case, only records whose field "Type" is
not equal to "Herol" will be handled by PRO/SORT. Records with
the Type "Herol" will be ignored.

11-20

PRO/SORT EXAMPLE

The next line is a FORCE command:

Force Type to "0" if "V"

It specifies that any record with a field type that begins with V
should be sorted and written to the top (0) of the output file.

The last line is a WRITE command:

Write Type, Space, FirstName, LastName

Using this command, the programmer could have omitted any of the
fields from the output record. Instead, the programmer has
retained all fields but specified that they appear in the new
order.

When this program is run, PRO/SORT creates the output file,
OUTPUT.DAT. (See Figure 11-5.)

Villain The Joker
Villain Lex Luther
Villain King Tut
Villain Darth Vader
Villain Gen. Zod
Hardy Fake Name
Hero David Banner
Hero Green Hornet
Hero Clark Kent
Hero Dick Tracy
Heroine Lois Lane
Heroine Leia Organa
Hxyzzy Fake Name2
Normal Comm. Gordon
Normal Mary Jane
Normal Miss Piggy
Normal Perry White
Normal Mary Worth

Figure 11-5: Resulting Output File OUTPUT.DAT

11-21

APPENDIX A

APPLICATION DISKETTE BUILDER ERROR MESSAGES

The Application Diskette Builder displays an error message if it
cannot continue building a diskette or if it finds an error in
the installation command file. In the latter case, ADB may
respond with more than one error message for the same error. For
example, if the RUN command has an error, then two error messages
result:

Invalid task name

A 'RUN' line must be present.

The normal ADB error messages are listed in alphabetic order in
Section A.1.

Some error messages report conditions that you might not be able
to resolve. These error messages indicate that a serious error
has occurred. In most cases, the errors are the result of a
failed file operation. These errors are listed in Section A.2
and appear in the following form:

ADB<xxx,yyy> - Message text

The values xxx and yyy represent error status numbers. These
numbers correlate to a specific error, which is generally
described by the message text. These values are positive. Look
up the error status code in the PRO/RMS-11 manual set. If you
cannot determine the cause of the error, submit a Software
Performance Report (SPR) to DIGITAL. Record on the SPR the error
message exactly as it was displayed on the terminal, including
the values represented here as <xxx,yyy>.

A-1

ADB NORMAL ERRORS

A.1 ADB NORMAL ERRORS

A 'NAME' line must be present

The application installation file does not contain a NAME "menu
name" line.

A NAME "menu name" must be present in each application
installation file. The NAME "menu name" line assigns a default
name to this application. Correct the application installation
file and restart ADB;

A 'RUN' line must be present

The application installation file does not contain a RUN taskname
line.

The application installation file must have, as the last line of
the file, a RUN taskname line. When the application is invoked,
P/OS executes the task listed in the RUN line. Correct the
application installation file and restart ADB.

An 'INSTALL/TASK' line must be present

Ei~her the application installation file does not contain an
INSTALL line, or the INSTALL line(s) contain syntax errors.

INSTALL lines list all the programs that P/OS must install to run
this application. Correct the application installation file and
restart ADB.

At least one 'FILE' line must be present

Either the application installation file does not contain a FILE
line or the FILE line(s) contain syntax errors.

FILE lines list all the files that must be copied to the target
diskette. Correct the application installation file and restart
ADB.

Copy aborted

An error occurred while ADB was copying files.

A-2

ADS NORMAL ERRORS

Error <xxx,yyy> creating directory <dirname>.

ADB could not create a directory specified in the FILE or REQUIRE
command line.

Check the installation file and try again.

Invalid number or too large. -- Try again.

The number of blocks to allocate for a checkpoint file was
entered incorrectly.

Invalid switch for this command line

The application installation file has an invalid switch.

Correct the application installation file and restart ADB.

Invalid syntax for this command

The application installation
characters at the end of a line.

file contains unrecognized

Correct the application installation file and restart ADB.

Invalid task name

A line in the application installation file that accepts task
filenames lists an invalid task name.

Task names can be no more than 6 characters long.
application installation file and restart ADB.

Correct the

/LIBRARY and /COMMON switches must precede /TASK switches on
INSTALL lines

An INSTALL/TASK line in the application installation file occurs
before an INSTALL/LIBRARY or INSTALL/COMMON line.

Correct the application installation file and restart ADB.

A-3

ADB NORMAL ERRORS

Not enough contiguous space on the volume for <filename>

The file <filename> requires contiguous space and could not be
copied to the remaining free space on the diskette.

use a different diskette with more free space on it, or try to
use the same diskette by changing the order in which files are
copied.

To reorder the which file copying, list task images and files
that are built to reside in contiguous or adjoining blocks first
in the FILE lines of the application installation file. After
contiguous files are copied, the remaining fragmented space can
be used to store files that do not require a contiguous area.

Not enough room on this diskette for the application directory

The main ADB screen is displayed.

Not enough space left on the diskette for <filename>

During the copy operation the diskette filled up before the file
<filename> could be copied to it.

Start over with another diskette.

Only one 'ASSIGN HELP' line is allowed

The application installation file contains multiple ASSIGN HELP
lines. Only one line of this type is permitted.

The ASSIGN HELP line assigns a default help definition file to
this application. Correct the application installation file and
restart ADB.

Only one 'ASSIGN MENU' line is allowed

The application installation file contains multiple ASSIGN MENU
lines. Only one line of this type is permitted.

The ASSIGN MENU line assigns a default menu definition file to
this application. Correct the application installation file and
restart ADB.

A-4

ADB NORMAL ERRORS

Only one 'NAME' line is allowed

The application installation file contains multiple NAME "menu
name" lines.

Only one line of this type is permitted. The NAME "menu name"
line assigns a default menu name to this application. Correct
the application installation file and restart ADB.

Only one 'RUN' line is allowed

The application installation file contains multiple RUN taskname
lines.

The application installation file must have, as the last line of
the file, a RUN taskname line. When the application is invoked,
P/OS executes the task listed in the RUN line. Correct the
application installation file and restart ADB.

Please enter a valid alphanumeric name

Either no characters or invalid characters were entered.

The filename is invalid

A filename in the application installation file is not a correct
PRO/RMS-11 file specification.

Correct the application installation file and restart ADB.

The frame identifier is incorrect

A frame identifier (frameid) in the application installation file
is not in the correct format.

Check the help definition file to make sure you are spelling the
frameid correctly. Correct the frame identifier in the
application installation file and start again.

The Installation file command lines are in an incorrect order

The application installation file contains lines that are not in
correct order.

Review the application installation file format and correct the
errors in the file. Restart ADB.

A-5

ADB NORMAL ERRORS

The string must be quoted and within length boundaries

A string, such as the "menu name" string in the NAME line, is not
surrounded by quotes, or it contains too many characters.

See the description of string syntax for strings appearing in the
offending command in Chapter 6. Correct the application
installation file and restart ADB.

The volume name is invalid

The volume name in a MOUNT line is not a 1- to 12-character
alphanumeric string. A volume name in a MOUNT line cannot
include a colon(:).

Correct your volume name and try again.

This command is invalid

An invalid command is listed in the application installation
file.

Check the list of valid commands in the section on application
installation files. Correct the application installation file
and restart ADB.

Unable to bad block the diskette in <drive> Try another

The diskette in the named drive could not be checked for bad
blocks as part of the initialization.

Replace the diskette and try the operation again.

Unable to locate the file <filename>

The application installation file could not be located in either
the current directory or in the specified new directory.

Make sure the installation file is in the specified directory.
Specify the correct application installation file.

A-6

ADB SERIOUS ERRORS

A.2 ADB SERIOUS ERRORS

ADB<xxx,yyy> - Cannot access menu file

ADB menu file could not be accessed.

Try running ADB again. If you receive the same error message,
submit an SPR.

ADB<xxx,yyy> - Error creating this directory -- Try another

The destination di rectory could not be cre-ated on the target
diskette, possibly because the diskette has bad blocks or format
errors. The error code corresponds to either a PRO/RMS-11 error
code or an I/O error code.

Either try another directory, or restart ADB with a new diskette.

ADB<xxx,yyy> - Error while gathering additional user directories

An error occurred while ADB was gathering additional user
directories.

Submit an SPR.

ADB<xxx,yyy> - RMS error accessing the installation file

The application installation file could not be opened because of
a record access error.

Check the diskette to make sure it contains an installation
command file. If it does, make sure you have named the
installation command file with the .INS or .INB file type. Look
up the PRO/RMS-11 I/O error codes in the PRO/RMS-11 manual set,
and restart ADB. If you receive the same error message, submit
an SPR.

ADB<xxx,yyy> - RMS error connecting to <filename>

ADB could not access the file listed as <filename>.

Look up the PRO/RMS-11 I/O error codes in the PRO/RMS-11 manual
set. Try running ADB again. If you receive the same error
message, follow the procedures for submitting an SPR.

A-7

ADB SERIOUS ERRORS

ADB<xxx,yyy> - RMS error creating <filename>

ADB could not create the file listed as <filename>.

Look up the PRO/RMS-11 I/O error codes in the PRO/RMS-11 manual
set. Try running ADB again. If you receive the same error
message, follow the procedures for submitting an SPR.

ADB<xxx,yyy> - RMS error opening <filename>

ADB could not open the file listed as <filename>.

Look up the PRO/RMS-11 I/O error codes in the PRO/RMS-11 manual
set. Try running ADB again. If you receive the same error
message, follow the procedures for submitting an SPR.

ADB<xxx,yyy> - RMS error while reading <filename>

ADB could not read the file listed as <filename>.

Look up the PRO/RMS-11 I/O error codes in the PRO/RMS-11 manual
set. Try running ADB again. If you receive the same error
message, follow the procedures for submitting an SPR.

ADB<xxx,yyy> - RMS error while writing to <filename>

ADB could not write to the file listed as <filename>.

Look up the PRO/RMS-11 I/O error codes in the PRO/RMS-11 manual
set. Try running ADB again. If you receive the same error
message, follow the procedures for submitting an SPR.

ADB<xxx,yyy> - Unable to access directory listing

The directory of the specified device could not be obtained. A
fatal error message is displayed.

Check to be sure the directory resides on the specified device
and that the device is properly loaded. Try the operation again.
If you receive the message again, submit an SPR.

A-8

APPENDIX B

FDT ERROR MESSAGES

FDT displays two types of error messages:
internal errors.

user errors and

User error messages are intended to be self-explanatory. If you
need clarification or advice, this appendix contains an
alphabetic* list of user error messages and possible solutions.
A symbol enclosed in left and right angle brackets (< and >)
represents a field name, frame identifier, or file specification
that FDT has copied from your command or retrieved from stored
information. Internal error messages indicate that a serious
error has occurred in FDT processing. In most cases, it results
from a file operation failure. Error messages appear in the
following form:

FDT<xxx,yyy> - Message text.

The values xxx and yyy represent PRO/RMS-11 I/O error status
numbers and correlate to a specific error which is generally
described by the message text. When you see an internal error
message, do the following:

1. Record the error message exactly as it was displayed on your
terminal, including the numbers enclosed in angle brackets.

2. Exit FDT (enter the SAVE or EXIT command).

3. Invoke FDT and use the REPORT command to obtain a hardcopy
listing of the file.

* The error messages ~re sorted by text, not symbols.

B-1

FDT Error Messages

4. Look up the error status code in the PRO/RMS-11 manual set.
If you cannot determine the cause of the error, submit a
Software Performance Report (SPR) to DIGITAL. Include a
detailed description of the user-FDT dialogue up to and
including the error message, and the report file.

8.1 USER ERRORS

Action form deleted.

An option description line was deleted or the keyword in an
option description line was divided onto two lines on a Display
form. The Action form for the option description line was
deleted by FDT. An Action form is deleted if the option it
describes no longer exists.

If you deleted the option description line, create another one.
When you create the new one, an Action form will be set up for
it. If you divided a keyword onto two lines on the Display form,
enter it on only one line. A new Action form will be set up for
it.

<Frame-id> already exists - name of frame unchanged.

The NAME command specified a previously assigned frame identifier
as a new frame identifier.

Use the LIST or REPORT commands to check the names of existing
frame identifiers.

<Frame-id> already exists - no new frame created.

The frame identifier of an existing frame was specified in an ADD
command. Use the MODIFY command to alter the existing frame or
enter a unique frame identifier.

<filename> already saved.

The current file was not changed, so no new copy of the file has
been created. Control returns to host system command level.

B-2

USER ERRORS

Default option is not in the range 0 to xx.

The default option field on a Profile form has a
the valid range. The valid range is zero to xx,
total number of option description lines on the
This error condition is detected after use
command.

value outside
where xx is the

Display form.
of the CONVERT

Use the MODIFY command to alter the Profile form to contain a
value in the range.

Default option specified with no options.

A value was specified in the default option field on the Profile
form, but no options were listed on the Display form. This error
condition is detected after use of the CONVERT command.

Create two or more options in a Display form. Check to make sure
the default option field on the Profile form is correct.

<frame-id> does not exist.

A frame identifier was specified with the Modify, Name, or DELETE
command, but it does not exist in the current file.

Check for typograhical errors in the frame identifier. To
display the list of frames contained in the current definition
file, press RETURN. Then use the LIST command to display the
frame identifiers.

Enter "H", "M• or "S" to select a file type, or a return.

A character other than H, M, or S was entered in response to the
previous prompt.

To select a file type, respond to the prompt by entering the
single· character in parentheses in the message. The file type
determines the type of frames that may be created and stored in
the current definition file. To specify a new definition file,
press RETURN. The prompt Filename: will be displayed.

Field <name> invalid in action form <number>.

The named field, which is on the Action form with the indicated
number, does not contain valid information. This error is
detected after use of the CONVERT command.

B-3

USER ERRORS

Use the MODIFY command to fix the
likely reason for this error
required field.

specified field. The most
message is a blank value for a

Field <name> invalid in display form.

The named field, which is on a Display
valid information. This error is
CONVERT command.

form,
detected

does not contain
after use of the

Use the MODIFY command to fix the
likely reason for this error
required field.

specified field. The most
message is a blank value for a

Field <name> invalid in profile form.

The named field, which is on the Profile form, does not contain
valid information. This error is detected after use of the
CONVERT command.

Use the MODIFY command to fix the
likely reason for this error
required field.

specified field. The most
message is a blank value for a

File <filename> is empty. DELETE command is invalid.

An attempt was made to delete a frame that doesn't exist. No
frame is deleted.

File <filename> is empty. File not written.

There are no frames in a file that was to be saved. The file is
not saved and control returns to host system command level.

Make sure the correct file was specified or use the QUIT command
to leave FDT after opening an empty file.

File <filename> is empty. MODIFY command is invalid.

The MODIFY command was typed, but no frames are available for
modification.

B-4

USER ERRORS

File <filename> is empty. NAME command is invalid.

The NAME command was typed, but no frames are available to
rename.

File <filename> is not an FDT source file - try again.

The specified file is not a valid FDT definition file. FDT will
prompt you again for the filename.

File <filename> not found.

Either the specified file is not a valid FDT definition file, or
the file does not exist.

Create a new FDT definition file using the specified name or
press RETURN to enter a different filename.

No frames written to converted file.

The CONVERT command specified a definition file but it contains
no valid frames that may be converted. All frames in the current
definition file contain errors.

Fix the errors in the frames, and then use the CONVERT command to
convert the file.

Frame identifier may only have alphanumeric characters.

The specified frame identifier contained characters that are not
in the ASCII alphanumeric character set.

Frame identifiers must be specified by ASCII
characters only (A through z and 0 through 9).

Frame <frame-id> not converted.

alphanumeric

The named frame was not converted because it contained invalid
information or it lacked required information in one or more
fields.

Use the MODIFY command to fix the listed errors.
CONVERT command to convert the frames.

B-5

Then use the

USER ERRORS

Invalid command. Enter HELP for a list of commands.

An invalid command was entered.

Review the list of valid commands in the FDT documentation, or
type HELP to display the list of valid commands.

Invalid file specification <filename>.

An error was made in the format of the file specification.

Check for typographical errors in the file specification and
retype if necessary. Refer to the Tool Kit User's Guide or your
host system documentation for more information on file
specifications.

Invalid identifier.

A frame identifier was specified with more than eight characters,
or with characters that are not from the ASCII alphanumeric
character set.

Enter a frame identifier with no more than eight characters in
the ASCII alphanumeric character set (A through z and 0 through
9) •

Keyword deleted.

The keyword for the option description line that was just altered
was deleted. Keywords are deleted whenever the keyword no longer
matches the option description line.

Enter a new keyword for the new option description line.

Keyword does not match description line.

The value entered in the keyword field on an Action form is
invalid. It does not match any segment of contiguous characters
in the option description line on the Display form.

You must either leave the option keyword field blank or enter a
unique, matching keyword in the keyword field.

B-6

USER ERRORS

Keywords not unique for options xx and yy.

Two matching keywords were specified for the named options.
Either keyword xx is a subset of keyword yy or vice versa, or
they are identical. For example, "cat" is a subset of "catch"
and the number 1 is a subset of the number 10. This error
condition is detected after use of the CONVERT command.

Alter the keyword for one or both of the specified options. Do
not delete an option description line on the Display form to
alter it. If you delete the line, the Action form for the option
will be deleted.

No action form found for option xx.

An Action form was not filled in for the named option. This
error condition is detected after use of the CONVERT command.

Use the MODIFY command to fill in the Action form.

No frames to report.

A report on the current definition file was requested, but the
file contains no frames.

Make sure that the correct file is open.

No matching option found.

A nonexistent option was specified in the ACTION command.

Check for typograhical errors in the command line.
list of options on the Display form.

No new options found.

Review the

The ACTION NEW command was specified, but all options were
assigned actions.

Use ACTION ALL or ACTION option-number to modify the desired
options.

B-7

USER ERRORS

No option lines defined.

The ACTION command was used but no option description lines were
specified.

use the DISPLAY command to enter the option description lines,
and then use the ACTION command to assign actions to each option.

No value entered for required field.

This is a warning message indicating that the previous field
requires a value before this frame can be converted.

Determine what the value for the previous field should be and
enter that value in the field before attempting to convert the
file.

Not enough room to insert a line.

There is not enough room in the field to open a new line.

Use the ARROW keys, or the NEXT and PREV FIELD keys on the FDT
editor keypad to make room.

Please answer Yes or No.

You have responded incorrectly to a prompt requiring a Yes or No
response.

Respond with a Y for Yes, or an N for No.

Please enter FULL, TOP, BOTTOM.

The value entered for the field is not one of the valid values
listed.

You cannot proceed to the next field without entering a correct
response. Enter Full, Top, or Bottom to specify the display
location of a help text frame. Initially, FULL is the value in
the location field. To replace FULL or an entered value, use the
ARROW keys to position the cursor on the F, then press the DELETE
WORD key on the FDT keypad and enter a correct value.

B-8

USER ERRORS

Please respond with an "M" or "T".

Before you can add a frame in a help definition file, you must
specify whether you are adding a help menu or a help text frame.

Enter an "M" to add a menu, a "T" to add a text frame, or
carriage return to display the file command prompt.

Value must be between 0 and 12.

A value was entered for the default option field but the value is
neither an integer between zero and 12, nor a blank.

You cannot proceed to the next field without entering a correct
response. The maximum number of options on a menu is 12. You
can assign any one of the 12 options to be the default option.
If you assign an option to be a default, when the menu is
displayed the selector will rest by the default option. Enter a
valid numeric value for the field or leave it blank.

8.2 INTERNAL ERRORS

FDT<xxx,yyy> - Cannot create output file.

The output file specified in the CONVERT command cannot be
written because of a processing error.

FDT<xxx,yyy> - Cannot create temporary file.

The file specified cannot be opened because of a processing erro:
in the file manager.

FDT<xxx,yyy> - Cannot display graphics frame.

A processing error occurred while FDT was attempting to display
form.

FDT<xxx,yyy> - Cannot read frame <frame-id>.

An attempt to read the specified frame failed.

B-9

INTERNAL ERRORS

FDT<xxx,yyy> - Cannot read frame from temporary file.

A a record is not accessible to the MODIFY command.

FDT<xxx,yyy> - Cannot read record.

A record in the current file cannot be accessed for conversion.

FDT<xxx,yyy> - Cannot read record <frame-id> from temporary file.

The named frame cannot be
error. FDT continues to
file.

converted because of a processing
convert the remaining records in the

FDT<xxx,yyy> - Cannot update index record for frame <frame-id>.

The named frame cannot be
error. FDT continues to
file.

converted because of a processing
convert the remaining records in the

FDT<xxx,yyy> - Cannot write index of converted file.

The output file from the
Under no circumstances
Professional.

Convert
should

process has been corrupted.
the output file be used on the

FDT<xxx,yyy> - Cannot write record <frame-id>.

The named frame cannot be
error. FDT continues to
file.

converted because of a processing
convert the remaining records in the

FDT<xxx,yyy> - Closing original file after copy.

The specified file cannot be opened because of a processing error
in the file manager.

FDT<xxx,yyy> - Could not read file index zz.

The specified file cannot be opened because the file index cannot
be read.

B-10

INTERNAL ERRORS

FDT<xxx,yyy> - Frame <frame-id> unreadable.

The specified frame exists in the file but it cannot be read.

FDT<xxx,yyy> - Index not written to data file.

The current file cannot be saved in a permanent file because of a
processing error.

FDT<xxx,yyy> - New file cannot be created.

The current file cannot be saved in a permanent file because of a
processing error.

FDT<xxx,yyy> - Read izz during initial copy.

The specified file cannot be opened because of a processing error
in the file manager.

FDT<xxx,yyy> - Record <frame-id> could not be written to data
file.

The named frame cannot be saved in the permanent file because of
a processing error.

FDT<xxx,yyy> - Record <frame-id> unreadable from temporary file.

The named frame cannot be saved in the permanent file because of
a processing error.

FDT<xxx,yyy> - Unable to write record.

The frame editor cannot write the last record to the file.

FDT<xxx,yyy> - Write izz during initial copy.

The specified file cannot be opened because of a processing error
in the file manager.

B-11

APPENDIX C

POSRES STATUS BLOCK CODES

POSRES uses the status block parameter to return error and status
information to the calling program. It is recommended that your
task check the status block after each POSRES call.

Decimal status values are returned to the calling task in a
two-word integer array. The first column of Table C-1 shows the
values returned in the first word of the status array. The
second column lists the values returned in the second word of the
status array, except for menu routine errors, which are shown in
Table C-2.

In Table C-1, the numbers one and two represent the first and
second status block words, respectively. In your application,
the first word may be array element zero, one, or n, depending on
which programming language you are using. For example,
BASIC-PLUS-2 numbers arrays from zero while PASCAL lets you
define your own numbering scheme.

Table C-1: POSRES Status Values

Status
Word 1

+1

+1

Status
Word 2

1 through 12

ASCII code

Description

For menus: option selection was
successful, and the second word
contains the ordinal option
number.

For GETKEY, the second word
contains an ASCII decimal code
representing a keyboard key.

C-1

Status
Word 1

+1

+2

+2

+2

+2

-1

-2

-3

-4

-5

-6

-7
-7
-7

-9

-10

POSRES STATUS BLOCK CODES

Status
Word 2

Undefined

0

-6

Key code

Key value

DSW

I/O code

-1
-2
-3

-4
-5

See Table

See Table

See Table

-11
-12
-13

0

C-2

C-2

C-2

Description

For other routines, there was no
error.

A record or field was truncated.

A message sent to the message
board was truncated to 59 or
fewer characters and displayed.

For GETKEY, the second word
contains one of the function key
codes listed in Appendix D.

For PRSCSI routine, a valid CSI
sequence was entered.

RSX DSW error. See the P/OS
System Reference Manual for error
codes.

I/O status error code returned
from a QIO$ directive. See the
P/OS System Reference Manual.

File access error:
Index record not 256 bytes long.
No match during index operation.
File index record is greater than
one block.
File is not open.
Frameid is not in Radix-50
character set.

Error executing help routine.

Error executing menu routine.

Error executing dynamic menu
routine.

Invalid CSI sequence found
No CSI sequence found.
File extension error.

Calling parameter error.

Insufficient buffer space.

C-2

Status
Word 1

-11

-12

-13

-14

-15

-16

-17

-18

-19

-20

POSRES STATUS BLOCK CODES

Status
Word 2

-1

RMS error code

See Table C-2

Key code

See Table C-2

See Table C-2

See Table C-2

-1
-2
-3

-1

Description

Short message error.

No matching entry number.

PRO/RMS-11 File access error. See
the PRO/RMS-11 manual set for
error codes.

Error executing menu unpack
routine.

Option selection failed. The
second word contains one of the
function key codes listed in
Appendix D. For example, the
value 14 indicates that the user
pressed the ADDTNL OPTIONS key.

Error displaying frame specified
with frameid.

Error executing multiple-choice
menu routine.

Error executing menu pack or
unpack routine.

Error executing OLDFIL routine:
No choices made.
No files found.
Error in wildcard selection.

Buffer error. The buffers FL$BUF
and MM$BUF are not large enough.

Message rejected. The Message/
Status Display is full. The
Display lists up to 255 messages.

C-3

POSRES STATUS BLOCK CODES

Table C-2: Menu Service Routine Errors

Status Description of Error
Word 2

-1 Option number greater than maximum.

-2 Multiple once-only fields.

-4 Error in.keyword definition.

-5 Title or text field length error.

-6 Text field length error.

-8 Argument error or unknown fieldid.

-9 Buffer error.

-10 Text or option line number greater than maximum.

-11 Error in menu packing.

-12 No options for multiple-choice menu.

-13 Multiple-choice menu limits responses to zero.

-14 More responses allowed than options.

-15 No help available.

C-4

APPENDIX D

FUNCTION KEV NAMES AND CODES

Table D-1 shows the function keys on the Professional keyboard.
The table gives the following information:

o Decimal code: The POSRES routine GETKEY returns this value
in the status array parameter.

o PRO label: The Professional keyboard names each key.

o P/OS label: The keyboard label strip that comes with P/OS
provides alternative names for each key.

Table D-1: Function Key Names and Codes

Code PRO Label P/OS Label

1 Fl Fl

2 F2 F2

3 F3 BREAK

4 F4 SETUP

5 FS F5

6 F6 Reserved

7 F7 RESUME

8 F8 CANCEL

9 F9 MAIN SCREEN

b ... 1

FUNCTION KEY NAMES AND CODES

Code PRO Label P/OS Label

10 FlO EXIT

11 Fll Fll

12 F12 F12

13 F13 F13

14 F14 ADDTNL
OPTIONS

15 HELP HELP

16 DO DO

17 F17 F17

18 F18 F18

19 F19 F19

20 F20 F20

21 FIND FIND

22 INSERT HERE INSERT HERE

23 REMOVE REMOVE

24 SELECT SELECT

25 PREV SCREEN PREV SCREEN

26 NEXT SCREEN NEXT SCREEN

27 UP ARROW UP ARROW

28 LEFT ARROW LEFT ARROW

29 DOWN ARROW DOWN ARROW

30 RIGHT ARROW RIGHT ARROW

31 PFl PFl

32 PF2 PF2

33 PF3 PF3

D-2

FUNCTION KEY NAMES AND CODES

Code PRO Label P/OS Label

34 PF4 PF4

{Application Mode only)

35

36

37

38 ENTER ENTER

39 0 0

40 1 1

41 2 2

42 3 3

43 4 4

44 5 5

45 6 6

46 7 7

47 8 8

48 9 9

D-3

APPENDIX E

P/OS ERROR CODES

P/OS displays error codes in the following situations:

• An application cannot be started. In this case, P/OS
displays an error code in the form of two decimal numbers.
These error codes are listed in Section E.1.

• An application task exits abnormally (with exit status other
than EX$SUC). P/OS displays (in decimal numbers) the first
two words of the exit status block. If the exit status (the
first word) is 4 (EX$SEV), something in the task caused the
system to abort. In that case, the second word is also
significant. The error codes for this case are listed in
Section E.2.

E.1 APPLICATION CANNOT BE STARTED

Table E-1: Elements of the Status Array

First
Word

-1

-2

Second
Word Meaning

0 The installation command file is missing or
cannot be opened.

nxx The installation command file contains errors.
The status number in the error code lists the
installation command file line (n) which contains
the error followed by numbers (xx) that mean the
following:

E-1

First
Word

-3

Second
Word

nxx

APPLICATION CANNOT BE STARTED

Meaning

00 RUN line expected
01 Invalid parameter count
02 Invalid first keyword
03 Invalid filename spec
05 Invalid string on line (improperly quoted)
06 Invalid f rameid
07 Extra characters on line
08 Invalid task name

An application task cannot be installed.
The status number in the error code lists the
installation command file line (n) which contains
the error followed by PROTSK error numbers (xx).

01 Task name in use
02 File not found
03 Specified partition too small
04 Task and partition base mismatch
07 Length ·mismatch common block
08 Base mismatch common block
09 Too many common block requests
11 Checkpoint area too small
13 Not enough APRs for task image
14 File not a task image
15 Base address must be on 4K boundary
16 Invalid first APR
18 Common block parameter mismatch
20 Common block not loaded
22 Task image virtual address overlaps common blocl
23 Task image already installed
24 Address extensions not supported
26 Checkpoint space too small, using

checkpoint file
27 No checkpoint space, assuming not

checkpointable
29 Invalid UIC
30 No pool space
31 Invalid use of partition or region
32 Access to common block denied
33 Task image I/O error
34 Too many LUNs
35 Invalid device
36 Task may not be run
37 Task active
39 Task fixed
40 Task being fixed
41 Partition busy
43 Common/task not in system

E-2

First
Word

-4

-5

-6

-7

-8

Second
Word

n

n

n

n

n

APPLICATION CANNOT BE STARTED

Meaning

44 Region or common fixed
45 Cannot do receive
47 Invalid request
48 Cannot return status
49 Error encountered on file open operation
50 Error encountered on file close operation
51 Cannot get file LBN to process label blocks
99 Too many INSTALL commands in installation

command file (maximum is 31)

Reserved for internal use

Reserved for internal use

Error occurred during Main Menu display

Error occurred while loading PRO/Communications
software driver

Error occurred while loading OPTIONS Graphics
software

E.2 SYSTEM ABORTED TASK

Word 2 is reported to the end user as positive, but returned by
P/OS as a negative number.

Table E-2: Elements of Status Array

First
Word

4

Second
Word

0
2
4
6
8

10
12

Meaning

Odd address and other traps to 4
Memory protect violation
Break point instruction (BPT) or trace trap (T-bit)
IOT instruction
Invalid or reserved instruction
NonRSX EMT instruction
TRAP instruction

E-3

First
word

Second
word

14
16
18
20
22
24
26
28
30
32
34
36

38

SYSTEM ABORTED TASK

Meaninq

11/40 floating point exception
SST abort - bad stack
AST abort - bad stack
Abort via directive (ABRT$)
Task load read failure
Task checkpoint read failure
Task exit with outstanding I/O
Task memory parity error
Task aborted with PMD request
TI: virtual terminal was eliminated
Task installed in 2 different systems
Task aborted due to bad affinity (required
Bus runs are off-line or not present)
Task has run over its time limit

E-4

Action form, 5-10
help menu, 5-25
single-choice menu, 5-21

Action string
global, 8-26
option, 8-3, 8-16, 8-26

ADB
see Application Diskette

Builder

INDEX

Additional Options flag, 8-3, 8-4,
8-16 I 8-21

ALUN$ directive
Communications, 2-2

APPL$DIR, 6-8
APPL$DST, 6-13, 6-17
Application

multiple diskette, 1-5
Application directory, 1-1

and Fast Install, 3-1
Application Diskette Builder, 1-1

to 1-5, 6-23
and Fast Install, 3-3
and installation command file,

1-1
bad block checking, 1-3

Application installation file
see Installation

Background task, 6-22
Bad block

checking by ADB, 1-3
BASIC-PLUS-2, 6-27

CALLABLE PRO/SORT, 11-1
CET

see PROSE
Checkpoint file, A-3
COBOL-81, 6-27
CODEC input on TMS line, 2-45
Collating sequence

PRO/SORT I 11-6
Communications

Base System Services, 2-1
CCANS routine, 2-18, 2-45, 2-46
CCATA routine, 2-2, 2-10, 2-11,

CCAUXK routine, 2-46
CCBRK routine, 2-24
CCDET routine, 2-11
CCDIAL routine, 2-15
CCDTMF routine, 2-48
CCFLSH routine, 2-23
CCGMC routine, 2-7, 2-12
CCHNG routine, 2-21, 2-48
CCKILL routine, 2-25
CCLCRG routine, 2-7, 2-9, 2-13
CCLCRP routine, 2-7, 2-9, 2-13
CCMODE routine, 2-45
CCMTT routine, 2-9, 2-14
CCORG routine, 2-19, 2-45, 2-46
CCPTGV routine, 2-47
CCRXD routine, 2-22
CCSMC routine, 2-7, 2-11
CCSPWN routine, 2-27
CCTXD routine, 2-21
COMLIB, 2-1, 2-2, 2-3, 2-9
CPHREC routine, 2-28
CPHSEL routine, 2-29
device names, 2-2
FTATT routine, 2-35, 2-40
FTDET routine, 2-32, 2-36, 2-40,

2-42
FTLISN routine,
FTNTFY routine,
FTOPRN routine,
FTOPTG routine,
FTOPTP routine,
FTSERV routine,
FT SYNC routine,

2-41

2-44
2-38,
2-36,
2-33
2-33
2-43
2-32,

2-40
2-40

2-40,

FTUNPK routine, 2-32, 2-40,
2-41

getting line characteristics,
2-12

line characteristics, 2-5
line descriptor block, 2-4
modem support, 2-8
service categories, 2-1
status value, 2-2, 2-4
translate table, 2-8
XKDRV, 2-1, 2-9, 2-10

2-46, 2-48
CCATT routine, 2-10, 2-11

Copying application to Public
Library, 6-1

Index-1

INDEX

CPRNT
condition codes, 9-2
error codes, 9-3

CSI sequence
parsing, 8-32

Deleting application from Public
Library, 6-2

DIBOL, 6-27
Diskette

labelling, 1-4
Display form, 5-5, 5-11, 5-14

help menu, 5-24
help text frame, 5-27
message frame, 5-28

Dynamic menu
displaying, 8-3

Escape sequence
PROSE, 10-3

Event flag
Communications, 2-2

Fast Install, 3-1 to 3-3
and Application Diskette

Builder, 3-3
Fatal error handling, 8-8
FCS

see File Control Services
FDT

see Frame Development Tool
File Control Services, 4-1 to 4-3

and Micro/RSX, 4-2
support for various languages,

4-2
File Selection Menu, 8-30
File specification

P/OS default, 8-13, 8-19
use of, 8-28, 8-30

Filename
input routine, 8-28
selection routine, 8-30

FORTRAN-77, 6-27
Frame

computing buffer size, 5-5
Frame Development Tool, 5-1 to

5-31
ACTION command, 5-1, 5-10, 5-12,

5-14' 5-30
ADD command, 5-1, 5-4, 5-13,

5-29

and POSRES, 5-1
CONVERT command, 5-4
DELETE command, 5-1, 5-5
DISPLAY command, 5-11, 5-14,

5-30
DISPLAY commmand, 5-1
error messages, B-1
Errors, 5-29
EXIT command, 5-5, 5-11
FILE command, 5-1, 5-6
file types, 5-6
HELP command, 5-1, 5-6, 5-12
LIST command, 5-1,- 5-7
MODIFY command, 5-1, 5-7, 5-13,

5-30
NAME command, 5-1, 5-7
on PRO/Tool Kit, 5-3
on RSX-11M/M-PLUS, 5-3
on VAX/VMS, 5-2
PROFILE command, 5-1, 5-12,

5-14' 5-30
QUIT command, 5-1, 5-3, 5-8,

5-10' 5-12' 5-31
REPORT command, 5-1, 5-8
SAVE command, 5-1, 5-8, 5-13,

5-30
use of keypad, 5-16
WINDOW command, 5-9

Function key
codes, D-1

GBLDEF option
Communications, 2-35

Help file
closing, 8-10
opening, 8-12

Help frame
default, 8-12, 8-13

specifying, 8-14
displaying, 8-11

I/O status block
Communications, 2-3

Input
single keystroke, 8-9

Installation
and Application Diskette

Builder, 6-1
and running, 6-1
Application, 6-2

Index-2

INDEX

ASSIGN HELP command, 6-8, A-4
ASSIGN LOGICAL command, 6-9
ASSIGN MENU command, 6-10, A-4
ASSIGN MESSAGE command, 6-11
command file, 6-1 to 6-27

and Fast Install, 3-2
errors, A-1
format, 6-2
PRO/SORT, 11-2
PROSE, 10-2
used by ADB, 1-1

comment delimiter, 6-12
EXECUTE command, 6-12
FILE command, 1-4, 6-3, 6-12,

6-19, 6-23, A-2
INSTALL command, 6-3, 6-21, A-2,

A-3
options, 6-26

MOUNT command, 1-3, 1-4, 6-23,
A-6

NAME command, 6-24, A-2, A-6
of application, 6-1
optimization, 6-26
order of commands, 6-3
RUN _co_mm_and, 6-25 ,_ A-1, A-2,

A-5

Keypad
use with FDT, 5-1

Keystroke
input routine, 8-9

Library
Public, 6-1, 6-2

Line descriptor block
Communications, 2-4

Logical name
in Installation Command File,

6-9
Logical unit number

Communications, 2-2

MACR0-11, 7-1
and FCS, 4-2
and PRO/SORT, 11-2

Menu file
closing, 8-15
opening, 8-18
reading from, 8-20

Message
sending, 8-25

Message file
reading from, 8-33

Message/Status Display, 8-25, C-2,
C-3

Micro/RSX
and FCS, 4-2

Mini-Exchange
code characters, 2-17

Modem
support for, 2-8

Multiple diskette application
P/OS Hard Disk, 1-4

Multiple-choice menu­
displaying, 8-21
packing, 8-23

New File Specification form, 8-28

P/OS
error codes, E-1

PASCAL, 6-27
PMA

see Professional Macro
Assembler

POSRES, 8-1 to 8-35
and FDT, 5-1
and registers, 8-1
DMENU routine, 8-3
DPACK routine, 8-5
FATLER routine, 8-8
GETKEY routine, 8-9, C-1, c-2
HCLOSE routine, 8-10
HELP routine, 8-11
HFILE routine, 6-8, 8-12
HFRAME routine, 8-14
MCLOSE routine, 8-15
MENU routine, 8-16
MFILE routine, 6-10, 8-18
MFRAME routine, 8-20
MMENU routine, 8-21
MPACK routine, 8-23
MSGBRD routine, 8-25
MUNPK routine, 8-26
NEWFIL routine, 8-28
OLDFIL routine, 8-30, C-3
omitting parameters, 8-2
parameter checking, 8-2
parameter format, 8-2
parameter types, 8-1
PRSCSI routine, 8-32, C-2
RDMSG routine, 6-11, 8-33

Index-3

INDEX

status block, 8-1
status codes, C-1
valid frame identifiers, 5-4
WTRES routine, 8-35

Print Services, 9-1 to 9-9
CPRINT routine, 9-1
CPRV3 routine, 9-4
P/OS Hard Disk, 9-4

PRO/Communications Services, 2-1
PRO/RMS-11, 4-1

and Fast Install, 3-3
PRO/SORT

calling, 11-1
COLLATE command, 11-3, 11-4,

11-5, 11-10
command file

nesting, 11-4
specifying, 11-1

comment, 11-3
data types, 11-8
DEFAULT command, 11-3, 11-5
error codes, 11-15
event flag number, 11-2
example, 11-18
FIELD command, 11-3, 11-7, 11-9
FILE command, 11-2
FORCE command, 11-3, 11-10
INCLUDE command, 11-3, 11-11
INPUT command, 11-3, 11-13
maximum record lengths, 11-2
OUTPUT command, 11-3, 11-13
PROCESS command, 11-2, 11-3,

11-13
pseudo-fields, 11-9
record formats, 11-2
SORT command, 11-3, 11-13
WRITE command, 11-2, 11-3, 11-9,

11-15
Professional Application Builder,

6-25, 8-1
Communications, 2-3

Professional Macro Assembler, 7-1
to 7-2, 8-1

PRO/Tool Kit, 7-1
RSX-llM/M-PLUS, 7-1
VAX/VMS, 7-2

Profile Form, 5-14
Profile form, 5-4, 5-12

Index-4

help menu, 5-23
help text frame, 5-26
message frame, 5-28
single-choice menu, 5-18

PROSE, 10-1 to 10-6
Callable Editor Task, 6-27,

10-1
event flag number, 10-1
margin settings, 10-3
status codes, 10-3

PROTSK routine (POSSUM), 6-22
Public Library

copying applicatiori to, 6-1
deleting application from, 6-2

RD MSG
default, 8-34

REMOVE command (DCL), 6-22
RESUME key

programming, 8-35
RSX-llM-PLUS

and FCS, 4-2

Single-choice menu
displaying, 8-16
dynamic

packing, 8-5
static

unpacking, 8-26
SORT-11

ALTSEQ command, 11-5
SYSLIB, 8-25

Task name, A-3
TASK option, 6-25
Telephone Management System, 2-1,

2-9
Terminal

detaching, 10-2
TMS

see Telephone Management System
code characters, 2-16

Translate table
format, 2-8

Wildcard
use of, 8-30, 8-31

READER'S COMMENTS

Tool Kit Reference Manual
AA-BT748-TH

NOTE: This form is for document comments only. DIGIT AL
will use comments submitted on this form at the com­
pany's discretion. If you require a written reply and
are eligible to receive one under Software Perfor­
mance Report (SPA) service, submit your comments
on an SPA form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manu·a1? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.
0 Assembly language programmer
0 Higher-level language programmer
0 Occasional programmer (experienced)
0 User with little programming experience
0 Student programmer
DOther(pleasespecify)------------------------~

Name-------------------------Date----------­

Organization---------------------------------

Street-----------------~·---------------~
_

City--------------'---State--~---- Zip Code-------
or

Countrv

I
Do Not Tear - Fold Here and Tape ----------..;.-------------------------------1

~amaama
111111

111 111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Professional Workstations Publications
DIGITAL EQUIPMENT CORPORATION
146 Main Street, ML021-2/T76
Maynard, Massachusetts 01754-2571

No Postage
Necessary

if Mai led in the
United States

- Do Not Tear - Fold Here---

-::I u

