Instrument Bus Subroutines
Programmer’s Reference Manual

AA-5613C-TC and AD-5613C-T1

August 1982

This document describes how to use the FORTRAN Instrument
Bus Subroutines to support either the IBV11-A or IB11
Instrument Bus Interface between a PDP-11 system and the
IEEE 488-1978 General Purpose Instrument Bus.

This document updates the Instrument Bus Subroutines
Programmer’s Reference Manual, order number

AA-5613C-TC.
OPERATING SYSTEM: RT-11 V4.0
SOFTWARE: IBS V2.1

FORTRAN IV V2.5

Software and manuals should be ordered by title and order number. In the United States. send orders
to the nearest distribution center. Outside the United States. orders shouid be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid-Atlantic Region Central Region Western Region

Digital Equipment Corporation Digital Equipment Corporation Digital Equipment Corporation

PO Box C52008 Accessories and Supplies Center Accessories and Supplies Center

Nashua, New Hampshire 03061 1050 East Remington Road 632 Caribbean Drive

Telephone:(603)884-6660 Schaumburg. lllinois 60195 Sunnyvale, California 94086
Telephone:(312)640-5612 Telephone:(408)734-4915

digital equipment corporation e marlboro. massachusetts

First Printing, November 1978

Revised, June 1980
Revised, October 1981
Updated, August 1982

Copyright ©, 1978, 1980, 1981, 1982, Digital Equipment Corporation. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

DEC DECnet IAS
DECUS DECsystem—-10 MASSBUS
DECSYSTEM-20 PDT PDP
DECwriter RSTS UNIBUS
DIBOL RSX VAX
EduSystem VMS VT
dlilgliltlal RT

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user’s critical evaluation to assist us in preparing future
documentation.

Contents

Preface

Chapter 1 Fundamental IEEE Bus Concepts

1.1
1.2
1.3

14

1.5
1.6

1.7

1.8 .

1.9

What isthe IEEEBus?
What are the FORTRAN IB Routines?
Talker, Listener, Controller
1.3.1 Instrument Addresses
1.3.2 ThelInterface
Message Routines
141 Messages
14.2 Sending Messages
1.4.3 Receiving Messages
144 Transferring Messages.
Triggering.
Status. L
1.6.1 SerialPolls
1.6.2 ServiceRequests.
1.6.3 ParallelPolls
Remoteand Local, ...
Resets.
1.8.1 Clearing Interfaces.
1.82 Clearing Instruments
Asynchronous Processing . . . e

........

........

........

........

........

........

........

........

........

........

........

........

........

........

Page

1ii

Chapter 2 Advanced Concepts

Chapter 3

Chapter 4

iv

2.1 Commands: The Attention (ATN) Line.

211
2.1.2
2.1.3

Instrument Addressing.o
Universal and Addressed Commands.
Control Conflict« v v o v o o e e e

2.2 The End or Identify (EOI) Line.

2.2.1
2.2.2

Parallel Polls: Identify ADY). e
Fragmented Messages EOL.

93 TheDatalines o v o v v v v v i e e

23.1
2.3.2
2.3.3

Message Codes.o
Command Codes « v o e e
Poll Results o v v i e e e e e

24 The Handshake Lines « « . .« v v v v o v v oo

24.1
2.4.2
243

The Handshake e e e e e e
Error Conditions.« o . . o o e e e e e
TheIdle State v v v v v i e e e e e e

System Hardware Installation

3.1 Installing the IBV11-A Instrument Bus Interface Module
3.2 Instrument Addresses« . . . 0w e e e e e e e

3.2.1
3.2.2

3.2.3
3.24
3.2.5
3.2.6

Setting Instrument Addresses — Primary Addresses
Instruments with Alternate Functions —

Secondary Addresses.o
Addressable Mode« . oo oo e
Duplicate Addresses« ...
Checking Instrument Addresses
How to Determine What your Instrument Addresses Are .

33 BusCables o i e e e e e e e

3.3.1
3.3.2
3.3.3

Connecting BusCables.
Maximum System Cable Length
Instruments in Your System

System Software Installation and Operation Procedures

4.1 Preparing to Use the Instrument Bus Subroutines
4.2 Installation Requirements
4.3 Installing your Instrument Bus Subroutines Software

43.1
4.3.2
4.3.3
434
4.3.5

4.3.6

Copying the Distribution Kit.
Copying with Only Two Mass Storage Devices
File Protection. v « v o v v i v e e
Making Corrections
Determining if You Need to Build a New IBV11-A

Device Handler and IBS Subroutine Library
Copying, Installing and Loading your IB Device Handler .

Page

2-2
2-2
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-6
2-17
2-8
2-8
2-9
2-10

3-1
34

3-4

3-6
3-7
3-17
3-7

. 3-17

3-8
3-8
3-10
3-10

Chapter 5

Chapter 6

Chapter 7

Page

44 Testing your Instrument Bus Subroutines Software. 4-8
4.5 Creating a Program that Calls the Instrument Bus Subroutines . . . 4-10
45.1 UsingLibraries 4-11
lntroductory Programmmg Techmques
5.1 Routine Calling Format 5-1
5.2 Talker and Listener Addressing 5-2
5.2.1 Addressing with Primary and Secondary Addresses. 5-3
5.2.2 Addressing with ASCII Characters. 5-5
5.2.3 Addressing with Byte Arrays. 5-7
5.2.4 Default Talker and Listener Lists 5-9
5.3 Data Transmission. e e e e e e e e e e 5-11
5.3.1 Sending Data (IBSEND) 5-11
5.3.2 Endorldentify IBSEOD., ...513
5.3.3 Receiving Data (IBRECV) e e e e 5-14
5.3.4 Transferring Data (IBXFER)on the IEEEBus 5-17
5.3.5 Data Receive Status ABRCVS). 5-18
5.4 Asynchronous Data Transmission 5-20
54.1 AsynchronousSend IBASND) 5-20
5.4.2 Asynchronous Receive IBARCV). 5-20
5.4.3 Asynchronous Transfer IBAXFR)521
5.4.4 Free Transfer of Data IBFREE) 5-22
Instrument Control Commands
6.1 SystemCommands. 6-1
6.1.1 Remote Disable IBRDA). 6-1
6.1.2 Remote Enable IBREN). 6-1
6.1.3 Remote Status IBREMO) 6-2
6.1.4 Interface Clear AIBIFC) 6-2
6.2 Universal Commands e 6-3
6.2.1 Local Lockout IBLLO). : e e e e e e e 6-3
6.2.2 DeviceClear (IBDCL) 6-3
6.23 Untalk ABUNT). v v v i i i, 64
6.24 Unlisten IBUNL) 6—4
6.2.5 Parallel Poll Unconfigure IBPPU) 6-4
6.3 Addressed Commands 6-4
6.3.1 Go To Local IBGTL). N P 6-4
6.3.2 Selected Device Clear IBSDC). 6-5
6.3.3 Group Execute Trigger (IBGET) 6-5
6.4 Programmed Commands (IBCMD) 6-6
Checking Instrument Status
7.1 Using Serial Poll to Check Instrument Status L 7-1

7.1.1 Determining an Instrument’s Status ABSTS) 7-2
7.1.2 Determine the Source of a Service Request (IBSPL). 7-2
72 ParallelPolling e 7-4
7.2.1 Parallel Poll Enable IBPPE). 7-4
7.2.2 Parallel Poll Disable IBPPD) 7-5
7.2.3 Parallel Poll Unconfigure IBPPU) 7-5

7.2.4 Parallel Polling IBPPL) e e e e 7-5

Chapter 8 Service Request

81 UsingServiceRequest:. 0o 8-1
8.1.1 Testing the Service Request Flag IBSRQF) 8-3
8.1.2 Specifying the Service Request Device List IBDEV) 8-3
8.1.3 Specifying the Service Request Routine IBSRQ) 84

Chapter 9 Detecting and Reporting Errors

9.1 Errorsand Error Messages.« . o o 9-1
9.1.1 Setting Error Handling Characteristics IBSTER) 94
9.1.2 Reading the Error Flag IBERRF) 9-5

Chapter 10 Advanced Programming Techniques

10.1 Selecting an IBV11-A/IB11 Unit IBUNIT). 10-

10.2 Defining Data Message Terminators IBTERM) 10-2
10.3 Setting the Timeout IBTIMO) 104
10.4 Waiting for Asynchronous Transmission to Complete IBWAIT) . . . 10-5
10.5 Checking for Valid Listeners IBLNR) 10-5

Appendix A ASCII Character Codes

Appendix B Command Mnemonics

B IEEE Standard Command Codes . . . « . « .« o oo v oo ot B-1
B.2 Mnemonic and Symbol Definitions for Table B-1. B-3

Appendix C Building a New IBV11-A Device Handler
and Modifying the IBS Library

C.1 Building a New IBV11-A Device Handler C-1
C.2 Modifying the IBS Library. C—+4
C.3 Verifying the New Handler and Library C-5

Appendix D Sample Instrument Address Form

Appendix E FORTRAN IB Subroutine Call Formats

vi

£ ™

Appendix F Unsigned Integers Page

Figures

Tables

Index

1-1
1-2
1-3
14
1-5
1-6
1-7
1-8
1-9
1-10
2-1
2-2
2-3
24
2-5
2-6
2-7
3-1
3-2
3-3

34
3-5
3-6

3-1
9-1
9-2
B-1
B-2
B-3

B-5
B-6

Computer Receives a Message 1-2
Computer Sendsa Message 1-3
Sample Address Record 14
An Instrument’s Interface 1-5
An Instrument Listens. 1-5
AnInstrument Talks 1-6
An Instrument Accepts Commands from the Computer 1-6
Serial Poll Response 1-11
Example of a Parallel Poll Response 1-13
Remote and Local States. 1-14
The IEEEBusLines. 2-1
Values Associated with the Data Lines. 2-4
ASCII Character Codes 2-5
Command Codes. 2-6
Command Code Format 2-7
Poll Result Bits Correspond to Data Lines 2-7
AHandshake 2-8
IBV11-A Module and BN11A Connector Cable. 3-3

S1 and S2 Switch Pack Settings for a MINC or DECLAB-11/MNC . . 3-3
St and S2 Switch Pack Settings for a PDP-11 other than

a MINC or DECLAB-11/MNC 34
Typical Instrument Address Switches 3-5
Instrument Address Switch Information 3-9
Linear and Star Cable Connections. 3-10
Instrument Addresses and Binary Address Switch Settings. 3-6
IB Routine Error Messages. 9-2
Value Added to the Result in MAPERR 9-6
Command Codes. B-2
Addressed Commands B4
Universal Commands B4
Listener Addressed Commands. B-5
Talker Address Commands. B-6
Secondary Address Commands B-7

vii

Preface

August 1982

Manual Objectives

This manual describes FORTRAN Instrument Bus (IB) Subroutines that
you can use to transfer data between the PDP-11 computer and instru-
ments on the IEEE Standard 488-1978 General Purpose Instrument Bus.
The IBV11-A or IB11 Instrument Bus Interface is used to connect the
computer to the IEEE bus. You can use these subroutines on any PDP-11
system under Version 4.0 of the RT-11 Single Job (SJ),

'Foreground/Background (FB), or Extended Memory (XM) operating

systems.

The capabilities‘of the IEEE Bus are specified in the IEEE publication
entitled IEEE Standard Digital Interface for Programmable
Instrumentation (488-1978).

To use this manual you should be familiar with a laboratory, should under-
stand the capabilities and operation of all instruments in your system, and
should have access to instrument manufacturers’ documentation. You
should also be familiar with the RT-11 SJ, FB, or XM operating system,
and with the FORTRAN IV programming language.

You can use this manual whether you are just beginning to use the IB
subroutines in programming, or whether you have more advanced pro-
gramming skills.

Manual Structure

Chapter 1 describes the IEEE Bus. It also explains how the IB subroutines
control the activities of the bus through the IBV11-A/IB11 Instrument Bus
Interface.

Chapter 2 explains how the IEEE bus works.

ix

Chapter 3 explains how to install the IBV11-A instrument bus interface on
an LSI-11 system and tells where to find information to install the inter-
face on other PDP-11 systems.

Chapter 4 explains how to install, test, and use the IB subroutines.

Chapter 5 explains the notational conventions, addressing techniques and
formats needed to understand and use the IB subroutines. The chapter also
describes the IB subroutines that are used in data transmission, and which
are the subroutines required most often in a-user’s program.

Chapters 6 through 9 explain the IB subroutines that control activities of
the instrument bus other than data transmission. These activities include
polling routines that check for instrument service requests and routines
that handle errors in the IB subroutines.

Chapter 10 contains IB subroutines used in more advanced programming.

The Appendixes provide information about ASCII character codes, com-
mand mnemonics, installing additional IBV11-A units, and IB subroutine
formats. A sample instrument address form is provided.

Related Documents

The following documents provide more information about the RT-11 opera-
ting system and the FORTRAN-IV programming language.

Software Manual Order Number
Introduction to RT-11 AA-5281B-TC
RT-11 Programmer’s Reference Manual AA-H378A-TC
RT-11 Software Support Manual AA-H379A-TC
RT-11 System User’s Guide AA-5279B-TC
RT-11/RS TS/E FORTRAN IV User’s Guide AA-5749B-TC
RT-11 Installation and System Generation Guide AA-H376A-TC
Hardware Manual ‘ Order Number
IB11 UNIB US to IEEE Insz;rument Bus Interface -

Installation Manual EK-IB11A-IN-001
IBV11-A LSI-11/Instrument Bus Interface

User’s Manual EK-IBV11-UG-001

Microcomputer Processor Handbook ~ EB-15836-18/79

Documentation Conventions

The following conventions apply to this manual:

1.

In programming examples, all information the computer prints appears
in black. All commands and responses you type appear
in red.

BEDmeans you must press the RETURN key on your terminal.

represents the CTRL key and another key (represented here by x)
which control some of the computer’s functions. To perform one of these
functions, hold down the CTRL key and type the other letter.

In examples of commands or file names, capital letters represent actual
commands, file names or file types which you must type as shown.
Lowercase letters mean that you must supply a name.

ASCII characters are the usual data format used to transmit data and
programmed instructions between instruments as well as between in-
struments and the IBV11-A/IB11 instrument bus interface. Therefore,
this manual refers to bytes of data as “characters.”

xi

Chapter 1
Fundamental IEEE Bus Concepts

1.1 What is the IEEE Bus?

The IEEE bus is a cable consisting of 16 wires, which are called bus lines.
These bus lines are shared by MINC and all instruments on the bus. The
cable, connectors to the cable, and electrical requirements are defined by
standards set by the Institute of Electrical and Electronic Engineers.

The IEEE bus allows a computer to communicate with and control a variety
of instruments. By using strings of characters called messages, the com-
puter can send an instrument a message that tells the instrument what to
do. The instrument can send back a message about data it has gathered.

The standard describes each line of the bus and specifies exactly when and
how an instrument may use that line. Eight of the lines, called the data
lines, are used to encode the messages sent on the bus. Three more lines,
called the handshake lines, are used to make certain that each character
sent is received. The remaining five lines are for general bus management.
The purpose of each of these 16 lines is discussed in more detail later.

1.2 What are the FORTRAN IB Routines?

The FORTRAN IB routines described in this manual control the activities
of the IEEE Instrument Bus. Through the interface, these routines commu-
nicate with instruments connected to the IEEE bus. They specify instru-
ments as talkers or listeners and control the transmission of data on
the bus.

Instruments can be polled to determine their status, using one of two poll-
ing techniques: serial polling or parallel polling. A serial poll checks the
status of one instrument at a time. A parallel poll checks the status of up to
eight instruments simultaneously.

1-1

Instruments on the bus can request service from the IB routines by setting
one of the bus’s 16 lines, which is reserved for this purpose. You can desig-
nate a FORTRAN subroutine that will be called automatically whenever
an instrument requests service.

When an error occurs in an IB routine, an error message is typed, indicat-
ing the type of error. An error will normally stop your program, but you can
specify that a given type of error will not stop your program.

1.3 Talker, Listener, Controller

Instruments play well-defined roles on the bus. An instrument sending a
message is called a talker. Only one instrument may talk at any one time.
An instrument receiving a message is called a listener. Any number of
instruments can listen to the message being sent by the talker. Instruments
can be talkers only, listeners only, or talkers and listeners. The user’s guide
for your instrument will tell you what your instruments are.

The computer is called the controller of the bus. As such, it tells bus instru-
ments when to talk and when to listen. No instrument can ever talk or
listen unless told to do so by the computer. The computer controls all bus
activity, and it must be the only controller of the bus. This means that no
other device not even another computer, can be a controller on this IEEE
bus. The computer can make itself a talker or listener, however, it listens to
all traffic on the bus.

For example, suppose your IEEE bus system consists of a computer, a mul-
timeter, and a signal generator. You want the computer to receive from the
multimeter a message that reports a voltage reading and then send the
signal generator a message that causes it to generate a signal based on the
voltage reading. To receive the voltage reading, the computer tells the mul-
timeter to be the talker, and the computer itself is the listener. The com-
puter tells the signal generator to neither talk nor listen, so the signal
generator ignores the message that the multimeter sends to the computer
(see Figure 1-1). To send instructions for the signal output, the computer
tells the signal generator to be a listener, and the computer itself is the
talker. The computer tells the multimeter to neither talk nor listen, so the
multimeter ignores the message that the computer sends to the signal gen-
erator (see Figure 1-2).

Figure 1-1: Computer Receives Wa Message

IEEE Bus
MINC Multimeter ' : Signal Generator
(listener) (talker)

MR-2127

1-2 Fundamental IEEE Bus Concepts

PN

Figure 1-2: Computer Sends a Message

~ IEEE Bus

MINC Multimeter Signal Generator
(talker) (listener)

MR-2128

1.3.1 Instrument Addresses

Each instrument on the bus has a number between 0 and 30 that the
computer uses to identify the instrument when the computer tells the in-
strument to either talk or listen. This number is the instrument’s address
and can be set with switches located on the instrument itself. Chapter 3
describes these switches and how to set them. Before you can use the IEEE
routines, you must know the addresses of the instruments on your IEEE
bus. In the previous example, you might set the multimeter to have an
address of 1, and the signal generator to have an address of 2. An instru-
ment’s address is also called its primary address.

Some bus instruments have different functions or parts that the computer
can specify by using a secondary address in addition to the instrument’s
primary address. Secondary addresses are in the range 0 to 30, though in
order to distinguish them from primary addresses, they are specified in
IEEE bus routines by numbers in the range 200 to 230. Each instrument’s
designer defines the meanings of any secondary addresses the instrument
recognizes. For example, when you tell the multimeter above to talk, it
might report a voltage reading if you specify secondary address 2, and a
resistance reading if you specify secondary address 1.

We suggest that you write down the address of each bus instrument, along
with any secondary addresses and what they specify, on a form such as the
one shown in Figure 1-3. Be sure that no two instruments have the same
primary IEEE bus address.

Fundamental IEEE Bus Concepts 1-3

Figure 1-3: Sample Address Record

Instrument Address Secondary Addresses
Multimeter 1 1 resistance
2 amperage
voltage
Signal Generator 2 none

MR-2126

1-4 Fundamental IEEE Bus Concepts

1.3.2 The Interface

Figure 1-4: An Instrument’s Interface

'd -
IEEE bus cable >
|EEE bus 4 Defined

by
the

- IEEE
8 standard
Interface
{Instrument-independent)
3
Instrument < Defined
Instrument-dependent by
part the
instrument’s
designer
L J

MR-2129

Figure 1-5: An Instrument Listens

IEEE bus

Messages

Interface
accepts
messages

h y A

N

Instrument

Instrument-dependent
part interprets
messages

MR-2130

Part of each instrument on the IEEE bus is defined by the IEEE standard
and is thus not instrument-dependent. This part is called the instrument’s
interface to the bus. The rest of the instrument is not defined by the stan-
dard but by the instrument’s designer. These parts are illustrated in Figure
1-4. Because every instrument on the IEEE bus has an interface, the bus is
sometimes called the interface bus.

Only an instrument’s interface interacts directly with the bus. Messages
are interpreted by the instrument-dependent part of the instrument, but
they are sent and received through the interface. When the computer tells
the instrument to listen, the instrument’s interface passes any subsequent
messages sent on the bus to the instrument-dependent part of the instru-
ment. This is illustrated in Figure 1-5.

Fundamental IEEE Bus Concepts 1-5

1-6

When the computer tells the instrument to talk, the instrument’s interface
transmits messages from the instrument-dependent part of the instrument.
This is illustrated in Figure 1-6.

Figure 1-6: An Instrument Talks

|EEE bus
—/\

{Y

Interface
transmits
messages

Messages

Instru ment-dependent
part provides
messages

Instrument

" MR-2131

The computer controls the bus by sending commands, which are instruc-
tions to the interfaces on the bus. This is illustrated in Figure 1-7. Like
messages, commands are sent as characters on the data lines but, unlike
messages, commands are intercepted and interpreted by the interface, not
passed to the instrument-dependent part of the instrument. The interface
interprets each command according to the meaning defined for that com-
mand by the IEEE standard. Only the computer can send commands. The
computer uses commands to tell instruments to talk or listen.

Figure 1-7: An Instrument Accepts Commands from the Computer

IEEE bus cable

< Commands

Interface

Instrument

instrument-dependent
part

MR.2132

Fundamental IEEE Bus Concepts

£

1.4 Message Routines

‘The routines described in this section control message transmission. In the
IBSEND routine, the computer transmits a message to an instrument on
the bus (the computer sends); in the IBRECV routine, an instrument on the
bus transmits a message to the computer (the computer receives). Since
message transmission between IEEE bus instruments and the computer is
the main purpose of the bus, IBSEND and IBRECV are the most used and
most important IEEE bus routines.

1.4.1 Messages

The contents of each message string and the effect it has or the information
it reports are as varied as the types of instruments on the bus. The IEEE
standard only defines how instruments communicate, not what they com-
municate. For this reason, the user’s guide for each instrument is an essen-
tial source of information when you use the IEEE routines. It helps you
decide what strings to send to that instrument and tells you what strings
you should expect to receive from it.

For example, the multimeter above might send back a reading with these
characters:

V +4.382E+01

where the “V” indicates that this was a voltage reading (not an amperage
or resistance reading) and the other characters indicate a measurement of
43.82 volts. Based on this reading, your program might tell the signal
generator to generate a 43.8 volt signal at 1250 Hz. The message telling the
signal generator to do this might be:

V43.8F1250

where “V43.8” means “43.8 volts” and “F1250” means “at a frequency of
1250 Hz.”

1.4.2 Sending Messages

The IBSEND routine sends a message to one or more instruments on the
IEEE bus. The computer itself is the talker and sends a message string
specified by your program to the listeners specified by your program. Not
all instruments are able to listen.

Each instrument that can listen has a vocabulary of characters and a syn-
tax that are meaningful to it. Because vocabularies differ from instrument
to instrument, you usually send each message to only one instrument. The
user’s guide for a particular instrument lists the characters the instrument
recognizes and the effect of each character. The message you send to an
instrument depends on the effect you want and which character or charac-
ters cause that effect.

Fundamental IEEE Bus Concepts 1-7

1-8

One of the five general management bus lines is known as the End or
Identify (EOI) line. One of its functions is to allow the talker to set it while
sending the last character of its current message and thus indicate the end
of that message to the listeners. Some instruments do not act on any mes-
sage characters until the End or Identify (EOI line is set. The IBSEOI
routine sets this bus line when it sends the last character of the string
specified by your program. The EOI line could also be set by common termi-
nating characters.

1.4.3 Receiving Messages

The IBRECV routine receives a message from an instrument on the IEEE
bus. The computer is a listener and stores the message string sent by the
talker you specify. Not all instruments are able to talk. For example, the
signal generator might be able only to listen.

The meaning and format of the string is determined by the instrument’s
designer. The user’s guide for an instrument tells you what information the
instrument sends and the format of its messages.

For example, a statement to take a voltage reading from the multimeter
above is:

CALL IBRECV (READ1,15,METER)

where READI is the name of the array where the information is stored, 15
is the maximum number of characters to be stored in the array, and
METER is the listener address specification.

The computer knows the message is complete when one of the following
three conditions occurs:

1. The talker sets the EOI bus line while sending a character. For exam-
ple, the multimeter above might set the EOI line while it sends the
character “1.”

9. The talker sends a terminator, a character the computer recognizes as
an end-of-message indicator. There are two types of terminators, those
recognized by the computer and those recognized by the instruments.
Normally, the computer recognizes a carriage return or a line feed as a
terminator, but you can change which characters are terminators by
using the IBTERM routine. For example, the multimeter might follow
the “1” character with a carriage return character. Note that if it did
this, it could not set the EOI line while sending the “1.” Depending on
how it was designed, an instrument might or might not set the EOI line
while sending the carriage return character. Your instrument manual
will tell you what character your instrument recognizes as a
terminator.

Fundamental IEEE Bus Concepts

£

3. The number of characters sent in this message reaches a limit set by
your program in the IBRECV statement. For example, if the multime-
ter is not designed to set the EOI line or send a terminator, your pro-
gram should specify the number of characters in the string as the
maximum number of characters in the message.

NOTE

If the instrument sends more characters than the limit set by
the program, the remaining characters are not lost by the
system. Any further transmissions by the talker are delayed
until the program takes some action to retrieve the remain-
ing characters.

1.4.4 Transferring Messages

The IBXFER routine supervises the transfer of a message between instru-
ments. Even though it does not store the message, the computer does listen
so that it can know when the message is complete. As in the IBRECV
routine, the computer knows the message is complete when the talker sets
the EOI line, sends a terminating character, or sends a message whose
length reaches a limit set by your program in the IBXFER routine.

The IBXFER routine should only be used with compatible instruments; the
vocdbulary of the listener you specify should be compatible with that of the
talker you specify.

1.5 Triggering

The IBGET routine triggers one or more instruments to start their basic
operations. Each instrument’s designer defines what that instrument does
when triggered. Many instruments take a reading when triggered; the
value of this reading is sent when your program asks for it with the
IBRECYV routine.

IBGET is often used to trigger a single instrument, but it can also trigger
many instruments simultaneously. For example, you might first want to
use the IBSEND routine to set the ranges on a voltmeter, a temperature
probe, and an ohmmeter. Later, your program can trigger all three of these
instruments to take readings simultaneouly and can then obtain the re-
spective readings one at a time by using IBRECV statements.

1.6 Status

An instrument on the IEEE bus can report information about its current
status to the computer. Though the type of status information reported
depends on the particular instrument, the procedures to report status are
part of the IEEE standard and are the same for all instruments.

Fundamental IEEE Bus Concepts 1-9

1-10

As controller of the IEEE bus, the computer can ask instruments for their
status by conducting either a serial poll or a parallel poll. In a serial poll,
instruments report status information, one at a time, on the bus’s data
lines. Since the bus has eight data lines, each instrument can report up to
eight bits of status information. In a parallel poll, up to eight instruments
can simultaneously report status information on the bus’s data lines. Each
instrument can use only one data line and can thus report only one bit of
status information. The bit of information reported in a parallel poll is not
necessarily related to any of the information reported in a serial poll. A
particular instrument could respond to one, both, or neither of these types
of polls. The user’s guide for a particular instrument tells you which polls
that instrument can respond to and what status information it reports.

There is one type of status information an instrument can tell the computer
without having to wait to be polled. It can tell the computer that it needs
service. It issues this service request by setting a bus line reserved for this
purpose, the SRQ (service request) bus line. If your program ignores the
service request, the instrument can take no further initiative. Setting the
SRQ line is the only action on the IEEE bus that instruments can initiate
independently of the computer.

Since bus lines are shared by all instruments, the computer doesn’t know
which instrument is setting the SRQ line. One function of a serial poll is to
give the controller a way to find out which instrument is requesting service
and clear the SRQ line. As part of the information in its serial poll re-
sponse, each instrument must report whether or not it is requesting service.
Any instrument that can request service must be able to respond to serial
polls.

1.6.1 Serial Polls

The IBSPL routine conducts a serial poll of the instruments you specify. If
more than one instrument is to be polled, the routine polls the instruments
one after the other.

Each instrument polled has eight bits of status information in its interface;
this group of bits is called the instrument’s status byte. Each bit of the
status byte is set (1) or clear (0) to report specific information about the
instrument. When the computer serially polls the instrument, the instru-
ment reports the state of each of these bits by setting or clearing the corre-
sponding data line on the bus.

As shown in Figure 1-8, data line 6 contains the same type of information
for all instruments. An instrument sets this line in response to a serial poll
if it is requesting service from the computer. This line is different from the
SRQ line, which is not one of the data lines. If an instrument has set the
SRQ line, however, then when it is serially polled it must also set data line
6. Each instrument’s designer determines the type of information that the
instrument reports on each of the other data lines.

Fundamental IEEE Bus Concepts

Figure 1-8: Serial Poll Response

Data Line | Meaning

Meaning is instrument-dependent
Set if the instrument is setting the SRQ line
Meaning is instrument-dependent
Meaning is instrument-dependent
Meaning is instrument-dependent
Meaning is instrument-dependent
Meaning is instrument-dependent
Meaning is instrument-dependent

OC=NWHhOOON

MR-2123

1.6.2 Service Requests

Your program can detect a service request in either of two different ways.
Which you choose will depend on how you wish to perform the detection
operation itself and on how you wish subsequent serial polls to be initiated.

~ One of these ways is to use IBSRQ to designate a service subroutine. In this
case, the IB device driver assumes the responsibility of detecting a subse-
quent service request and initating a serial poll. This procedure is identi-
fied as a “driver-initiated” serial poll.

A second way, which allows your program to retain the responsibility of
detecting service requests, is to use IBSRQF to test the state of the SRQ
line and when the line is found to be asserted, to perform a serial poll using
IBSPL or IBSTS. This procedure is identified as a “user-initiated” serial
poll.

You can choose either the driver-initiated or user-initiated method of han-
dling service requests through a call to IBSRQ. By specifying a service
subroutine you indicate that you would like service requests to be handled
by the driver. A call to IBSRQ with the service subroutine’s name defaulted
but with the delay flag set for delayed processing, leaves the responsibility
of testing the SRQ line and performing serial polls with the user.

Driver-initated handling of service requests begins with detection of the
SRQ-asserted condition. Once this occurs, the driver serially polls the list
of devices capable of generating service requests as specified in a call to
IBDEV. When a device is found to be requesting service, the service sub-
routine is called by the driver. This subroutine is user-written and has as
its purpose the servicing of instruments requiring service.

When a service request is detected, your program receives the instrument
address of the device which asserted the SRQ line. The variable which
receives this information is used by your service subroutine to determine
which instrument requested service and therefore the type of service to be
rendered. You should place the variable which receives this information in
a COMMON statement, because it is specified to the driver in your call to
IBSRQ which is made in another part of your FORTRAN program.

Fundamental IEEE Bus Concepts 1-11

1-12

An SRQ service subroutine has the same form as a normal subroutine, even
though it is invoked by an instrument requesting service rather than by a
CALL SUBROUTINE statement. The last statement executed in a service
subroutine is a RETURN statement. With normal subroutines, the
RETURN statement transfers control back to the statement following the
CALL SUBROUTINE statement. With an SRQ service subroutine, the
RETURN statement transfers control back to the statement following the
last statement executed before the service subroutine was invoked. For
more information about service subroutines, read the FORTRAN manual
for your operating system.

The action required when an instrument requests service depends on the
characteristics of the particular instrument. For example, one instrument
on your IEEE bus might request service when it has new data; your pro-
gram would ask it for the data by using the IBRECV routine. Another
instrument might request service when it is out of paper; your program
would type a warning on the terminal.

1.6.3 Parallel Polls

The IBPPL routine conducts a parallel poll. Every instrument that can do
so responds to the poll. Each instrument polled has in its interface a bit of
status information called the instrument’s status bit. The meaning of each
instrument’s status bit is determined by the instrument’s manufacturer
and is described in its user’s guide.

An instrument can respond to a parallel poll only if it is designed to re-
spond and if its response has been enabled. Any instrument that can re-
spond to a parallel poll must be able to have its reponse enabled either by
local controls or by the computer, but not by both. The method of local poll
enabling is not part of the IEEE standard, but is determined by the instru-
ment’s designer. The IBPPE routine enables the parallel poll response of
instruments whose response can be enabled by the bus controller (the
computer).

An instrument can respond to parallel polls until its parallel poll response
is disabled. If the response was enabled locally, it is also disabled locally. If
the parallel poll response was enabled by the IBPPE routine, however, it
can be disabled by the IBPPD routine. The IBPPD routine affects selected
instruments, while the IBPPU routine affects all instruments.

Enabling an instrument’s parallel poll response assigns the instrument one
of the bus’s data lines and a condition. The instrument sets the data line
during a parallel poll if the status bit in its interface is in the assigned
condition. If the condition assigned to it is 0, the instrument sets the data
line if its status bit is O at the time of the poll; if the condition assigned to it
is 1, the instrument sets the data line if its status bit is 1 at the time of the
poll.

Fundamental IEEE Bus Concepts

For example, suppose your program enables instrument 17 with data line 5
and condition 0, and enables instrument 15 with data line 2 and condition
1. When your program conducts a parallel poll, the data lines have the
values shown in Figure 1-9.

Figure 1-9: Example of a Parallel Poll Response

Data Line | Value

0
0
0 if instrument 17’s status bit is 1
1 if instrument 17’s status bit is O
0
0
0 if instrument 15's status bit is O
1 if instrument 15's status bit is 1
0
0

= N W 01 ON

MR-2124

More than one instrument can be assigned to a single data line; this is not
usually done, however, because if the line were set during a parallel poll,
your program could not determine which instrument set it. Each of the
eight data lines is clear in a parallel poll unless one or more instruments
sets it.

NOTE

When more than eight instruments must be polled, two or
more instruments may be assigned the same data line for
their poll reply signal. If this is done, a logical one on the
data line would signify that at least one of the asociated in-
struments had replied to the poll. A logical zero would signify
that none of those instruments had replied.

1.7 Remote and Local

An instrument on the IEEE bus can use input information either from the
bus or from manual controls on the instrument itself. When messages from
the IEEE bus are the source of input information, the instrument is said to
be in the remote state. When the manual controls on the instrument are
the source of input information, the instrument is said to be in the local
state. This section discusses how your program can control which state each
instrument is in; these controls are summarized in Figure 1-10. A heavy
arrow in this figure represents a transition between the local and remote
states. A light arrow represents a statement that enables or disables the
transition that the arrow points to.

Fundamental IEEE Bus Concepts 1-13

No instrument can be in the remote state unless the remote enable (REN)

bus line is set. When you start the computer, this line is clear, so all instru-
ments on the bus are in the local state. The first IEEE bus routine to \

execute after the computer is started sets the REN line automatically. This
line remains set while the computer communicates with instruments on the
bus. An instrument enters the remote state when the computer tells it to

listen while the REN bus line is set.

Figure 1-10: Remote and Local States

IEEE Bus

REMOTE
STATE

Instrument

] L

Interface

|

Instrument-
dependent

Local Controls

IOGTL

IBREN
enables

told to listen

instrument
IBRDA

disables

return-to-local

button

enables

IBLLO

disables

IEEE Bus

Instrument'’s
power
turned on

LOCAL
STATE

Instrument

J 1

Interface

Instrument-
dependent
part

Local Controls

1-14 Fundamental IEEE Bus Concepts

MR-2122

The IBRDA routine clears the REN bus line, causing all instruments on the
bus to enter the local state. The IBGTL routine causes selected instruments
to enter the local state, but it does not change the REN line. The IBREN
routine sets the REN line, and the IBREMO routine reports whether the
REN line is currently set or clear.

Some instruments have a return-to-local button, which can be used to put
the instrument in the local state. The user’s guide for a particular instru-
ment tells you whether or not that instrument has a return-to-local button
and, if so, where it is. The IBLLO routine disables the return-to-local but-
tons of all instruments on the bus and thus prevents each instrument from
unexpectedly entering the local state (perhaps at a critical time) in the
event that someone accidentally presses its return-to-local button. IBRDA
still causes instruments to enter the local state even if IBLLO has been
executed. IBREN cancels the effect of IBRDA, causing the return-to-local
buttons to become operative again.

- The instrument designer determines how the instrument behaves under
local control and under remote control. When going from local to remote
control, an instrument can either use its current local settings until they

are subsequently overridden by remote input or use remote input that was
previously received. In either case, the instrument must ignore future use
of its local controls and become responsive to remote input. Some instru-
ments, however, have functions that are always controlled locally, even in
the remote state. When going from remote to local control, an instrument
can either use input from its local controls immediately or continue to use
the last input from the bus until that input is overridden by subsequent
local control settings. In either case, the instrument must ignore future
remote input and respond to future use of its local controls. It can still talk
and listen while in the local state.

1.8 Resets

Your progrém can separately clear, or reset, either the instrument’s inter-
face to the bus or its instrument-dependent part.

1.8.1 Clearing Interfaces

The IBIFC routine clears the bus and every instrument’s interface to the
bus by setting the interface clear (IFC) bus line, a line reserved for this
purpose by the standard. Note that the IBIFC routine does not clear the
SRQ line. This routine clears only the interfaces, not the instrument-
dependent parts of instruments. Each interface returns to the clear state
defined by the IEEE standard. This routine has the following effects:

1. All return-to-local buttons of bus instruments become operative. If
IBLLO has been called to disable these buttons, it is no longer in effect.

2. The REN bus line is cleared and then set.

Fundamental IEEE Bus Concepts 1-15

3. All instruments enter the local state. However, because the REN bus
line is set, each instrument enters the remote state when it is told to
listen.

4. Any condition set by a message (for example, a range or a sampling
rate set by an IBSEND routine) is not affected by this routine.

You can use IBIFC at the beginning of your program to undo any effect that
previous IEEE bus routines have had on the interfaces.

1.8.2 Clearing Instruments

Two routines clear the instrument-dependent parts of instruments on the
bus. The IBDCL routine clears all bus instruments, and the IBSDC routine
clears only selected instruments. These routines do not clear the instru-
ment’s interfaces. Each instrument cleared returns to a clear state defined
by that instrument’s manufacturer; this is usually the state the instrument
is in after its power is turned on. Refer to the user’s guide for the particular
instrument for the properties of this state.

You can use the IBDCL routine at the beginning of your program to undo
the effects of previous message routines.

CAUTION

Never turn on an instrument’s power while the computer is
running!

1.9 Asynchronous Processing

1-16

A program written in FORTRAN IV normally executes in a sequential
manner. That is, the process initiated by one statement of the program
completes before the process initiated by the next statement begins. -

Such sequential processing by the computer can be interrupted, however,
by signals sent to the computer from peripheral hardware devices. These
signals not only interrupt the normal sequential execution of program
statements. They also direct the computer to execute an alternate set of
instructions designed to enable communication between the computer and
the interrupting peripheral device. These alternate instruction sets are re-
ferred to as Interrupt Service Routines (ISRs).

In most cases, an ISR “saves” (keeps track of) the state of the computer at
the time it is interrupted. Then, after the ISR has finished using the com-
puter to execute its own set of instructions, it restores the computer to that
prior state. The computer is then free to continue processing the statements
of the main program.

Fundamental IEEE Bus Concepts

This capability of interrupting main programs to execute an alternate set of
instructions is called asynchronous processing. An ISR enables the com-
puter to process two sets of instructions: those in the main program and the
alternate set provided in the ISR. Although these operations do not use the
computer at precisely the same time, processing is so fast that the opera-
tions seem to occur simultaneously.

Since an asynchronous process can be invoked at anytime, it is important to
be very careful when the interactive process between the main routine and
the Interrrupt Service Routine ISR are designed. The (ISR) should not
change a value that the main program expects to be unchanged.

Fundamental IEEE Bus Concepts 1-17

Chapter 2
Advanced Concepts

Until now we have emphasized what the IEEE bus does, not how it works.
This chapter discusses in detail how the IEEE bus and the IEEE routines
work. For a few applications you do not need the information here. This
chapter is for people who need to know how the IEEE routines control
the bus.

As you know from Chapter 1, the bus has 16 lines: eight data lines, three
handshake lines, and five general bus management lines. These are illus-
trated in Figure 2-1. Each line is set when it is grounded, so that a bus line
is set if one or more instruments set it. A line is clear only if no instrument
sets it. The state of the line is the logical OR of all the instruments that
assert it.

Figure 2-1: The IEEE Bus Lines

DiO0
DIO1
D102
DIO3
DI04
DI05
DIO6
DIO7

NRFD
DAV Handshake Lines

NDAC

ATN

REN Controller
IFC Only
SRQ

EOI (End or Identify)

Data Lines

General Bus
Management Lines

MR-2133

2-1

2.1 Commands: The Attention (ATN) Line

2-2

The computer is the controller and controls the bus by sending commands
to the interfaces. A command is a character the computer sends on the bus
while the attention (ATN) bus line is set. Only the computer can send a
command or change the ATN line. A command differs from a message in
the following ways:

1. A character is a command if it is sent when ATN is set and is part of a
message if it is sent when ATN is clear.

2. A command is sent by the controller (the computer), a message by a
talker. o -

3. A command is received by all instruments, a message only by listeners.

4. A command is a directive to the instrument’s interface, so the interpre-
tation of a command is defined by the standard. A message, however, is
sent through the interface to the instrument; its interpretation depends
on the instrument’s vocabulary, which is defined by the instrument’s
designer.

2.1.1 Instrument Addressing

Some commands tell a certain instrument to talk or listen. When your
program specifies a talker address in an IEEE routine, the computer directs

the instrument with that address to talk by sending the appropriate MTA

(my talk address) command, in the range MTAO to MTA30. An instrument
becomes the talker when its interface detects the MTA command for its
address. The instrument can send message characters when the computer
clears the ATN line. It stops being the talker when it detects any other
MTA command; this assures that at most one instrument is a talker at any
one time. The instrument also stops being the talker when it detects the
UNT command. The UNT command is sent by the IBUNT routine or any
other routine in which the computer is the talker so that no instrument
talks when the computer clears the ATN line.

For example, instrument 15 becomes the talker when the computer sends
the MTA15 command. It stops being the talker when the computer sends
MTAO to MTA14, MTA16 to MTA30, IBUNT, or IBIFC.

In a similar way, when your program specifies a listener address in an
IEEE routine, the computer directs the instrument with that address to
listen by sending the appropriate MLA (my listen address) command, in the
range MLAO to MLA30. An instrument becomes a listener when its inter-
face detects the MLA command for its address. The instrument can receive
message characters when the computer clears the ATN line. It does not stop
being a listener when it detects any other MLA command; this allows more

‘than one instrument to be a listener at the same time. An instrument stops

being a listener only when the computer sends the UNL command, after
which no instrument is a listener. This is done by the IBUNL routine every
time a new listener list is specified.

Advanced Concepts

=N

.

When your program specifies a secondary address, the computer sends the
appropriate MSA (my secondary address) command, in the range MSAO to
MSAS30. ‘

2.1.2 Universal and Addressed Commands

The other commands the computer sends are classified as either universal
commands or addressed commands. Universal commands affect all instru-
ments, while addressed commands affect only the addressed instruments.
The names of these commands are listed in Figure 2-4 and Appendix B.

2.1.3 Control Conflict

Only the computer, the bus controller, can set or clear the ATN, IFC, and
REN bus lines. If another controller changes any of these three lines, the
computer produces an error message (“conflict over control of the bus”,
error number 14; see Chapter 9) when the next IEEE routine is invoked.
The computer also produces this error message if the total cable length of
your IEEE bus is too long or if there is an impedance problem because your
instrument does not meet the IEEE standard.

2.2 The End or Identify (EOI) Line

August 1982

The EOI (End Or Identify) bus line has two functions. If the ATN line is
clear, the EOI line is used by the talker as the End-of-Message (EOI) line to
mark the last character of the message. If the ATN line is set, the EOI line
is used by the controller as the IDY (identify) line to conduct a parallel poll.

2.2.1 Parallel Polls: Identify (IDY)

The computer conducts a parallel poll by setting both the ATN and IDY
lines, waiting at least two microseconds, and then reading the bus’s data
lines.

2.2.2 Fragmented Messages EOI

In Chapter 1 we pointed out that the IBSEQOI routine sets the EOI line
while sending the last character of the string to mark that character as the
last one of the message. The IBSEND routine is identical to IBSEOI except
that it does not set the EOI line while sending the last character.

A call to IBSEND, IBSEOI, or IBASND can specify the number of charac-
ters to be sent in one of three ways. If the message length argument is
defaulted or equal to —1, the contents of the array are sent until a null byte
(octal 0) is reached. If the message length is equal to zero, no message is
sent. And finally, if the message length is a positive integer greater than
zero, it specifies the number of characters to be sent. In this case, octal 0 is
sent like any other character.

Advanced Concepts 2-3

If a very long message is to be sent, null byte termination is the simplest
method because it does not require you to specify the exact length of the
message, and because if the length is greater than 65534 characters, only
one call to the IBS software will handle the entire transaction. Should the
message itself contain 0 bytes, the actual message length must be specified
as a positive integer greater than zero but less than or equal to 65534 (see
Appendix F for information about handling integers larger than 32,767).

Therefore, if a counted message contains 65535 charcters or more, it must
be sent in fragments, with each message fragment containing up to 65534
characters, and using the EOI line to signal the end of the message. The
EOI line should be set only at the end of the entire message, not at the end
of each fragment of the message. To do this, use IBSEND for every message
fragment except the last, and use IBSEOI for the last fragment of the
message. "

2.3 The Data Lines

24

The eight data lines are used for messages, commands, and status informa-
tion. They are called DIOO to DIO7 (Data In/Out). The IEEE standard
numbers the lines 1 to 8, but in this book we number them 0 to 7 for
consistency with the computer. The data lines can represent numbers in the
range 0 to 255. Each data line is associated with a value, as shown in
Figure 2-2. The number represented by the data lines is the sum of the
values associated with the lines that are set. For example, if lines 0, 1, 2,
and 5 are set, the data lines represent the number 39 (=1+2+4+32). ~

Figure 2-2: Values Associated with the Data Lines

Data Line Associatgd Value
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
MR-2125

2.3.1 Message Codes

The data on the data lines can be binary data or ASCII characters. Each
ASCII character is associated with a unique number in the range 0 to 127,
called its ASCII value. The binary data values are defined by the user in
the instrument user’s manual. A talker sends a message character by set-
ting the data lines so that they represent the ASCII value of that character.
Figure 2-3 lists the characters and their representation on the data lines as

Advanced Concepts

binary numbers. For example, the character “A” is represented by data
lines 0 and 6 set. Appendix A also lists the ASCII values and their octal,
decimal, and hexadecimal equivalents.

To send a nonprinting character as part of a message, use the function
described in the Programmer’s Reference manuals for your operating sys-
- tem. Use the character’s ASCII value and concatenate that string with the
printing characters in the message.

To make a character a message terminator, specify its ASCII value in the
argument of the IBTERM routine.

Figure 2-3: ASCII Character Codes

N o Jo_ 0 0 0 0 0

. 6] o 0 0 0 1 1 1 1

Line # g 0 0 1 1 0 0 1 1

4 0 1 0 1 0 1 0 1

3210 :
o000 |NUL DLE sP 0 @ P ' p
0001 | SOH DC1 ! 1 A Q a q
0010 |sTx DC2 " 2 B R b r
0011 ETX DC3 # 3 [S c s
0100 |EOT DC4 $ 4 D T d t
0101 |ENQ NAK % 5 E U e u
6110 |ACK SYN & 6 F v f v
0111 |BEL ETB : 7 G w g w
1000 |BS CAN { 8 H X h x
1001 |HT EM) 9 i Y i y
1010 |tF suB . : J z i z
1011 vT ESC + : K [k {
1100 |FF FS , (L \ |
1101 CR GS - = M] m }
1110 |so RS) N ~ n ~
1111 |s us / ? o o DEL

MR-2135

Advanced Concepts 2-5

2-6

2.3.2 Command Codes

Each command has a numeric code and therefore a representation on the
data lines. These representations are shown in Figure 2—4. This figure
shows all of the command codes supported by the IEEE standard. Figure

" 9_5 shows the format of these command codes. Many of the possible codes
for addressed and universal commands have not yet been assigned mean-
ings by the standard. Chapter 5 explains how to address and send messages
to instruments on the IEEE Bus using IB routines.

Figure 2-4: Command Codes

Data Line # Command Command
76543210 | Abbreviation Name
~ f(oo0o000001 | GTL Go To Local

Addressed } 00000100 | SDC Selected Device Clear

Commands | 00000101 | PPC Parallel Poll Configure
L00001000 | GET Group Execute Trigger
00010001 | LLO Local Lockout

. 00010100} DCL Device Clear
32,‘,”,:’;:",’,' 4 100010101 | PPU Parallel Poll Unconfigure
00011000 | SPE Serial Poll Enable
L00O0O11001 SPD Serial Poll Disable
00100000 | MLAO My Listen Address 0

Listener 00100001 MLA1 My Listen Address 1

Address ¢ : : :

Commands | 00111110 | MLA30 My Listen Address 30
Loo0o111111 UNL Unlisten
(01000000 | MTAO My Talk Address 0

Talker 01000001 MTA1 : My Talk Address 1

Address % : :

Commands 01011110]| MTA30 My Talk Address 30
Lo1011111]| UNT Untalk

Secondary (01100000 | MSAO My Secondary Address 0

 Address) 0 1100001 N:ISA1 I\gly Secondary Address 1

Commands | 1911110 MSA30 My Secondary Address 30

_ . Parallel Poll Enable
01100000 | PPE Condition 0, Data Line O
01100001 PPE ‘ Condition 0, Data Line 1

';a'f"e‘ 01100111]| PPE Condition 0, Data Line 7

E°| b 4 01101000} PPE Condition 1, Data Line O

nable 01101001 | PPE Condition 1, Data Line 1
Commands | : .
01101111 PPE Condition 1, Data Line 7
L 01 110000} PPD Parallel Poll Disable

MR-2136

Notice that the codes for secondary address commands and parallel poll
enable commands overlap. Command codes in this range are interpreted as
secondary address commands if they follow a talker or listener address

Advanced Concepts

command; they are interpreted as parallel poll enable commands if they
follow a parallel poll configure command, which is one of the addressed
commands.

Figure 2-5: Command Code Format

Code Format Type of
Command

Data Line#—->7 6 5 4 3 2 1 0

o o o o * * *° * | Addressed

o 0 o 1 * * * * Universal
Instrument Address
o o 1 > * * * * | MLA
Instrument Address
0) 1 0 % * * * * MTA -
Secondary Address
0 1 10 * ‘ * Data MSA
Condition Line

*=0or1
MR-2134

2.3.3 Poll Results

Both parallel and serial poll results are received on the data lines and are
therefore numbers between 0 and 255. Often you need to know whether a
certain data line was set or clear. Bits 0 through 7 of the poll result argu-
ment correspond to the data lines 0 through 7 during the poll, as shown in
Figure 2-6.

Figure 2-6: Poll Result Bits Correspond to Data Lil‘les‘

Data Line # N Value

Oor 1

Oor 1

Oor1

Oor1

Qor 1

Oor1

Oor1

Oor1
7 .
1 ' v v v

Bit#— 15 14 13 12 11 10 9 8 7 5 4 3 2 1 0
Lefofofofofofofo] | l HERER
Poli Result

MR-2137

IBS Version 2.1
August 1982 Advanced Concepts 2-7

- 2.4 The Handshake Lines

2-8

2.4.1 The Handshake

Three bus lines provide a handshake mechanism to ensure that every char-
acter sent is received. This handshake must have both “hands”: for message
characters, the source handshake is provided by the talker and the acceptor
handshake is provided by the listeners; for command characters, the source
handshake is provided by the computer and the acceptor handshake is pro-
vided by the command acceptors, which are all the instruments on the bus.
Because there is a handshake for every character, the speed of the trans-
mission is limited by the slowest instrument involved in the transmission.

The DAYV (data valid) line indicates whether or not a character is available
and valid on the data lines. The source sets this line when the character on
the data lines is valid.

The NRFD (not ready for data) line indicates whether or not the acceptors
are ready for the next character of data. Each acceptor sets this line if it is
not ready for data. The line is clear only if no acceptor is setting it, which
means that every acceptor is ready for the next character.

The NDAC (not data accepted) line indicates whether or not the acceptors
have accepted the current character of data. Each acceptor sets this line if
it has not accepted the current character. The line is clear only if no accep-
tor is setting it, which means that every acceptor has accepted the current
character. '

Figure 2-7: A Handshake

®

< clear = data not valid }
DAV set by source
4 b < set = data valid
@ « clear = data accepted }
NDAC set by acceptors
« set = not data accepted -

— e clear = ready for data
NRFD set by acceptors
) < set = not ready for data

Time—

MR-2138

A detailed description of the handshake mechanism is available in the
IEEE standard. The following brief description starts at the time when one
character is on the bus and DAV has been set by the source to indicate that
the character is valid data. Figure 2-7 shows the state of the three
handshake lines during one handshake. Time is from left to right in the
figure but is not to scale.

Advanced Concepts

The source:

S1.

S2.

S3.
S4.

S5.

Waits for NDAC to be cleared, which indicates that all acceptors
have accepted the character of data.

Clears DAV, indicating to the acceptors that the data lines no longer
contain valid data. ‘

Changes the data lines to the next character.

Waits for NRFD to be cleared, which indicates that all acceptors are
ready for the next character of data.

Sets DAYV, indicating to the acceptors that the next character is on
the data lines.

Each acceptor:

Al
A2
A3.
A4

A5.

AG6.

Sets NRFD, indicating to the source that it is not ready for the next
character of data. This line sets when the first acceptor sets it.

Reads the current character.

‘Stops setting NDAC. This line remains set until the last acceptor

stops setting it, at which time it becomes clear, indicating to the
source that all-acceptors accepted the current character of data.

Waits for the source to clear the DAV line. .

Sets NDAC to prepare for the next handshake. This line sets when
the first acceptor sets it.

Stops setting NRFD when it is ready to accept the next character.
This line remains set until the last acceptor stops setting it, at which
time it clears, indicating to the talker that all acceptors are ready for
the next character of data. ‘

2.4.2 Error Conditions

If the source tries to send a character and there is no acceptor, NRFD and
NDAC are both clear, a condition that never occurs when there is an
acceptor handshake. This causes the computer to produce a no valid lis-
tener on the bus error (see Chapter 9).

This error condition can be caused by one of the following bus conditions:

1.
2.

There is no instrument on the bus, hence no command acceptor.

There is no instrument on the bus with the address of the listener
specified.

The instrument specified as a listener cannot listen, is set locally to
“talk only,” or is turned off.

Advanced Concepts 2-9

2-10

The IBLNR routine tests for this error condition by trying to send a one-
character message (a line feed) to the instruments specified. This routine
does not produce an error if it successfully addresses a valid listener, but
does not complete the message handshake. Instead, it reports the error to
your program in its argument. This routine does produce an error, however,
if there is no instrument on the bus, hence no command acceptor.

The absence of a talker does not produce an error message. The following
conditions result in the absence of a talker:

1. There is no instrument on the bus with the address of the talker you
specified.

2. The instrument specified as a talker cannot talk, is set locally to “listen
only,” or is turned off.

3. The instrument is not designed to respond to a serial poll (IBSRQ,
IBSTS, and IBSPL routines only).

4. Impedance problems caused by an improper configuration or by an in-
strument that does not comply with the IEEE specification.

You can use the IBTIMO routine to set a time limit for each handshake,
so that the computer generates an error instead of waiting indefinitely
for the next character from the talker when one of the above conditions
occurs.

2.4.3 The Idle State

At the end of every IEEE routine, the computer puts the bus in an idle
state. The computer sets the NRFD line to prevent the talker from sending
any characters. The ATN line is asserted, except at the end of the IBFREE
routine.

Advanced Concepts

Chapter 3
System Hardware Installation

The IBV11-A can be installed in any LSI-11 system configuration. It can
be included among user-assembled component systems, and be added to the
PDP-11/03 packaged LSI-11 mlcrocomputer system or to the PDP-11/03
floppy disk system.

~ This chapter explams how to install the IBV11-A interface to the IEEE
standard instrument bus in an LSI-11 system. See the IB11 UNIBUS to
IEEE Instrument Bus Interface Installation Manual for information on how
to install the IBV1 1—A interface in other PDP-11 systems.

3.1 Installlng the IBV11—A Instrument Bus Interface Module

You can expand your LSI-11 system to a programmable instrument system
‘by installing the IBV11-A (see Figure 3-1) in the console backplane. The
IBV11-A has two switch packs, S1 and S2 (see Figures 3-2 and 3-3) to set
‘the device address and vector address. These switch packs for the first
IBV11-A unit should be set correctly at the factory for your installation.

The standard address configuration for MINC and DECLAB-11/MNC users
is 171420 (octal) as the Control Status Register (CSR) address (S2), and 420
(octal) as the vector address (S1) for the first IBV11-A unit. For all other
PDP-11 users, the standard CSR address is 160150 (octal). Note that only
the IB status register address is configured by using switch pack two. The
IB data register address is always the IB status register address plus 2.
Similarly, only the error interrupt vector address is configured by using
switch pack one. The remaining three vector addresses are permanently
assigned sequential addresses in address increments of 4 (octal).

If you have more than one IBV11-A unit, each unit must have a unique
address setting. Successive units should be assigned sequential CSR ad-
dresses (switch pack two) in address increments of 10 (octal). Vector ad-
dresses should also be assigned sequentially (switch pack one) though in
address increments of 20 (octal). If an IBV11-A unit is installed with its

3-1

3-2

switches set differently from the standard ones, or if you are using multiple
units, see Chapter 4 of this manual. Multiple unit settings must be set
according to the address increments described above for proper operation
with the IB software.

Example:

on a MINC system:
IBCSRO (the CSR address for unit 0) = 171420

IBVECO (the base vector address for unit 0) = 420
IBCSR1 = 171430

IBYEC1 = 440

etc.

on a non-MINC svstem:

IBCSRO = 160150
IBVECO = 420
IBCSR1 = 160160
IBVEC1 = 440
etc.

With the computer system’s power turned off, insert the IBV11-A into the
console backplane. There must be no empty positions between the first and
last filled sequential positions in the backplane. (See the Microcomputer
Processor Handbook.) With the IBV11-A oriented the same as the LSI-11
modules, align the IBV11-A with the guides on the side of the module case,
and push it toward the rear until you feel some resistance. Then push more
firmly, see-sawing the module as you seat 1ts connector fingers in the
backplane.

Next, attach the BN11A connector cable to the IBV11-A. One end of the
BN11A cable has a single 20—pin connector that mates with a complemen-
tary connector on the module. The other end has a two-sided 24—pin connec-
tor. Pass the end with the 20—pin connector through an access slot in the
rear panel of the console cabinet. Orient the cable to the module so that the
extreme end of the connector is toward the latch on the module connector
(see Figure 3-1). Apply pressure to the cable connector until the module
latch snaps over the connector.

System Hardware Installation

Figure 3-1: IBV11-A Module and BN11A Connector Cable

20 PIN CONNECTOR

MODULE
CONNECTOR
LATCH

2 SIDED
24 PIN
CONNECTOR

SWITCH PACKS
S1 AND 82

9121-8

Figure 3-2: S1 and S2 Switch Pack Settings for a MINC or
DECLAB-11/MNC

S2—

10101-4

System Hardware Installation @ 3-3

3.2

34

Figure 3-3: S1 and S2 Switch Pack Settings for a PDP-11 other
than a MINC or DECLAB-11/MNC

S2—

9121-13

Instrument Addresses

Before you can operate your instrument system under the control of the
IBV11-A/IB11 instrument bus interface, you must assign an address to
each instrument. This instrument address is a number that identifies each
instrument.

When you want an instrument to receive data or programmed instruction,
you enter its instrument address in a listener specification of an IB routine.
The FORTRAN IB routines automatically translate this into its corre-
sponding ASCII character, in the range of proper listener addresses con-
forming to the IEEE standard (see Appendix B). The corresponding octal
code is sent on the instrument bus, and the instrument is ready to receive
data or programmed instruction.

Similarly, an instrument address given in a talker specification is automat-
ically translated by the FORTRAN IB routines into its corresponding
ASCII character in a range of proper talker addresses within the IEEE
standard. When the corresponding octal code is sent on the instrument bus,
the instrument with that address assigned is ready to send data.

3.2.1 Setting Instrument Addresses — Primary Addresses

Most instruments that connect to the instrument bus have sets of switches
resembling those in Figure 3—4. Each switch in an instrument address
switch set represents one position in binary code. You set the switches to

System Hardware Installation

——

correspond to the binary equivalent of the assigned decimal instrument
address. A switch set to ON usually assigns a 1; a switch set to OFF usually
assigns a 0. For example, if you assign the address 6 to an instrument, its
corresponding binary code switch settings will be as follows:

b(5) b4) b3 b2 bQ)
0 0 1 1 0 =6

There are other ways to set instrument addresses. For example, some in-
struments use pairs of jumper posts to represent binary code. Usually,
when a jumper is connected across a pair of posts, a 1 is assigned to that
position in the binary code. An unconnected pair of jumper posts usually
assigns a 0.

The operation manual for each instrument describes the method used, and
how to set the assigned instrument address. The operation manual also
tells whether the instrument has its instrument address preset, and
whether it can be changed. There are 31 instrument addresses recognized
by the IB routines; therefore it should not be necessary to change any of the
preset instrument addresses unless instruments with distinct operations
have identical preset instrument addresses.

Figure 3-4: Typical Instrument Address Switches

9121-21

System Hardware Installation 3-5

3-6

The 31 instrument addresses (0 through 30) and their corresponding bi-
nary, octal, and hexadecimal switch settings are listed in Table 3-1.

Table 3-1: Instrument Addresses and Binary Address Switch

Settings
Instrument | Binary Address Switch Settings (1 = switch on)
Address Octal Hexadecimal
(Decimal) A®B) A@ A®) A(2) A1) Address | Address
0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1
2 0 0 0 1 0 2 2
3 0 0 0 1 1 3 3
4 0 0 1 0 0 4 4
5 0 0 1 0 1 5 5
6 0 0 1 1 0 6 6
7 0 0 1 1 1 7 7
8 0 1 0 0 0 10 8
9 0 1 0 0 1 11 9
10 0 1 0 1 0 12 A
11 0 1 0 1 1 13 B
12 0 1 1 0 0 14 C
13 0 1 1 0 1 15 D
14 0 1 1 1 0 16 E
15 0 1 1 1 1 17 F
16 1 0 0 0 0 20 10
17 1 0 0 0 1 21 11
18 1 0 0 1 0 22 12
19 1 0 0 1 1 23 13
20 1 0 1 0 0 24 14
21 1 0 1 0 1 25 15
22 1 0 1 1 0 26 16
23 1 0 1 1 1 27 17
24 1 1 0 0 0 30 18
25 1 1 0 0 1 31 19
26 1 1 0 1 0 32 1A
27 1 1 0 1 1 33 1B
28 1 1 1 0 0 34 1C
29 1 1 1 0 1 35 1D
30 1 1 1 1 0 36 1E

Use these addresses and no others. Regardless of the method used to make
the binary settings, each instrument must be assigned a unique address by
which it is recognized. The instrument address is also called the primary
address.

'3.2.2 Instruments with Alternate Functions — Secondary
Addresses

Some instruments can function as talker or listener in more than one way.
These functions are distinguished by a set of 31 secondary addresses in the
range 0 through 30. These addresses are predetermined by instrument
manufacturers and usually cannot be changed. Their use in address specifi-
cations is described in Section 5.2.1.

System Hardware Installation

3.2.3 Addressable Mode

Many instruments have a switch that lets you select either addressable or
independent operating modes. For programmed operation under control of
the IBV11-A/IB11 Instrument Bus Interface, set this switch to the address-
able position. : :

3.2.4 Duplicate Addresses

In general, two instruments should not have the same primary address. To
avoid assigning duplicate addresses, it is good practice to tabulate the ad-
dresses assigned to all instruments. List the instrument by name with its
primary address, as well as any secondary addresses. This list also makes a
useful reference for the programmer to specify instruments as talkers or
listeners during a programming session. Appendix D contains a sample
instrument address form that you can use for this purpose.

3.2.5 Checking Instrument Addresses

After you have assigned addresses to all instruments, ensure that the fol-
lowing statements are valid for your system:

e Each instrument has its own unique address, and a written record show-
ing the assignment of this address set to an instrument has been made in
a form suitable for easy reference. Only primary addresses in the range 0
through 30 have been used. Any secondary addresses (in the range 0
through 30) have been recorded.

e Each instrument with an addressable control switch has been set to the
addressable mode so that it can operate under control of the
IBV11-A/IB11.

3.2.6 How to Determine What your Instrument Addresses Are

Some IEEE instrument manuals refer to instrument addresses in a way
that differs from the IB addressing scheme. However, the names used for
the two types of addresses are similar. A manufacturer may suggest that
you set the address switch of an instrument to a particular “talk address”
or “listen address,” while argument lists for some IB routines, such as
IBSEND and IBRECYV include talkers and listeners. The address of a talker
or listener in FORTRAN is not quite the same as the manufacturer’s in-
structions. The IB software requires you to address an instrument by a
single decimal number, which differs from, but is related to, the manufac-
turer’s “talk” and “listen” addresses. This section explains how you can
derive this decimal address from addresses given by a manufacturer and
how the IB software uses the address.

Let’s look at an instrument whose manufacturer’s instructions advise you
to set the “talk address” to V and the “listen address” to 6. First, “V” and
“6” are ASCII characters and ASCII characters are one of many compact

System Hardware Installation 37

notations for binary numbers. The binary numbers might be represented in
octal, decimal, hexadecimal or ASCII as well as in binary. To determine
your instrument’s IB address, do the following:

e In the Master IEEE Bus Address Table in Figure 3-5, find the row that
contains ASCII “talk address” V and ASCII “listen address” 6.

e Locate the instrument’s IB address in the left column of that row. The
number in this column is 22. This is the instrument address you must use
in IB routines to refer to this instrument either as a talker or a listener.

NOTE

An IB primary address of zero must be specified using its
ASCII “talk address” or ASCII “listen address.” An IB pri-
mary address of zero, if specified as a value of zero, will be
interpreted by the IB routines as terminating the address
list.

To understand how the IB address is derived, examine some of the other
numbers in the row. Note that the binary instrument address is 10110.
This number equals the last 5 bits of the binary representation of both the
“talk address” and the “listen address.” The decimal instrument address in
the table is the decimal equivalent of the binary instrument address. The
decimal instrument address in the row we’ve been using is 22. This num-
ber, in turn, equals the IB address. You must also set the address switch on
your instrument. The most common types of address switches are binary
and hexadecimal. If you do not know which type your instrument has,
consult your instrument manual. Set the switch to the number in the in-
strument address column that corresponds to your type of switch. If the

switch is binary, use the binary instrument address from the table. If the .

switch is hexadecimal use the hexadecimal instrument address.

3.3 Bus Cables

3-8

After you have correctly set all instrument address switches, you must
connect the instruments to the IBV11-A. The BN11A cable attached to the

IBV11-A (see Section 3.1); has on its free end a two-sided 24—pin connector. '

One side is a male 24—pin connector and the other side is a female 24—pin
connector. The BN11A connector conforms to the IEEE 488-1978 standard
and can be connected to any instrument that also conforms to that stan-
dard. Attach the connector to an instrument in your system.

3.3.1 Connecting Bus Cables

You can connect the remaining instruments in your system to the IBV11-A
with BNO1A bus cables. These cables have the IEEE standard two-sided
24-pin connectors on both ends and connect to all IEEE bus-compatible
instruments, as well as to each other. They are available in lengths of 1, 2,
and 4 meters (3.3, 6.6, and 13.1 feet).

System Hardware Installation

£

Figure 3-5: Instrument Address Switch Information
1 (up) _| ‘—| I
0 (down) l l

1

NI

0 0 1 6 001t 0110
Hexadecimal Instrument Address Switch Binary instrument Address Switch

Note: Instrument address switches are usually found on the rear panel of an instrument,

MASTER IEEE BUS ADDRESS TABLE

]
L Instrument | ‘‘tatk address” | “listen address” Instrument Address (the 5 low-order
Addresses MTA MLA bits of the talk and listen addresses)
Set your instrument’s address switch
to one of these
ASCIl Octal | ASCII Octal |Octal Decimal Hexadecimal Binary
0 @ 100 space 40 0 0 0 00 000
1 A 101 ! 41 1 1 1 00 001
2 B 102 " 42 2 2 2 00010
i 3 Cc 103 # 43 3 3 3 00011
4 D 104 $ 44 4 4 4 00 100
5 E 105 % 45. 5 5 5 00 101
6 F 106 & 46 6 6 6 00110
7 G 107 ‘ 47 7 7 7 00 111
8 H 110 (50 10 8 8 01000
9 | 111) 51 11 9 9 01001
10 J 112 * 52 12 10 A 01010
11 K 113 + 53 13 1 8 01011
12 | L 14 54 14 12 C 01 100
13 M 115 - 55 15 13 D 01101
14 N 116 . 56 16 14 E 01110
15 0 117 / 57 17 15 F 01111
16 P 120 0 60 20 16 10 10 000
17 Q 121 1 61 21 17 11 10 001
18 R 122 2 62 22 18 12 10010
19 S 123 3 63 23 19 13 10011
20 T 124 4 64 24 20 14 10 100
21 u 125 5 65 25 21 15 10 101
22 \ 126 6 66 26 .22 16 10110
23 w 127 7 67 27 23 17 10111
24 X 130 8 70 30 24 18 11000
25 Y 131 9 n 31 25 19 11 001
26 4 132 : 72 32 26 1A 11010
27 [133 ; 73 33 27 1B 11011
28 \ 134 < 74 34 28 1Cc 11 100
29] 135 = 75 35 29 1D 11101
30 ~ 136 > 76 36 30 1E 11110
Note: Instruments usually have address switches in binary or hexadecimal.
MR-8-1637-81

System Hardware Installation 3-9

3-10

Connect the bus cables from one instrument to the next, using either linear
or star configurations, as shown in Figure 3-6. The connectors on the bus
cables can be fastened securely to each other with the captive locking
screws that are part of the connector assembly.

Figui'e 3-6: Linear and Star Cable Connections

BNO1A CABLES

BVIIA BN11A CABLE n\—-/ IL
PDP-11 BUS oR J——C4 "
1811 = " o

INSTRUMENT A INSTRUMENT 8 INSTRUMENT C [F\ISTRUMENT D

{A) LINEAR

BNO1A CABLES

INSTRUMENT B :/

1BV11-A BN11A CABLE
PDP-11 BUS OR i =
1811 =
INSTRUMENT A

(B) STAR INSTRUMENT C

P

INSTRUMENT D

MR-S-686-80

Although any number of instruments can be connected in a star configura-
tion, the combined weight of many connectors could place excessive stress
upon the instrument connector supporting them. It is advisable to avoid
stacking connectors more than three or four high.

e

3.3.2 Maximum System Cable Length

If a system is to function properly, certain voltage levels and timing rela-
tionships must be maintained on the IEEE bus. Since these are affected by
cable length and number of instruments connected to the bus, the following
constraints must be observed when installing a system. The total cable
length for the system must be no greater than 2 meters (6.6 feet) times the
number of instruments (including the IBV11-A) connected to the bus, up to
a maximum of 20 meters (66 feet). For example, if there are 3 instruments
in your system, the maximum cable length is (3+1) * 2 = 8 meters (26.4
feet). If there are 12 instruments in your system, the maximum cable
length is 20 meters (66 feet), since (12+1) * 2 = 26 meters, which is
greater than 20 meters. :

3.3.3 Instruments in Your System

If the total number of instruments in your system is N, the number of
instruments powered on must be [(N/2)+1]. Furthermore, each
IBV11-A/IB11 in your system must be counted as part of the total number
of instruments, N.

System Hardware Installation

PN

Chapter 4

System Software Installation and Operation
Procedures

This chapter explains how to use the Instrument Bus Subroutines with
your FORTRAN programs under the RT-11 operating system. The chapter
outlines the procedures to install, test, and use the Instrument Bus
Subroutines software. The chapter also describes the general use of RT-11
"‘commands and utilities needed to install the software.

Because this chapter is intended only as a guide to program development, it
does not include detailed information about the FORTRAN programming
language, the FORTRAN compiler, or the RT-11 operating system. There-
fore, read the chapter to familiarize yourself with the steps you must follow
to use the Instrument Bus Subroutines with your own programs. Then see
the RT-11 or FORTRAN IV documentation referenced in each section for
more information on those topics.

4.1 Preparing to Use the Instrument Bus Subroutines

The package of Instrument Bus Subroutines contains a library of subrou-
tines called IBLIB.OBJ, the IBS verification program called IBSVER.FOR,
and four prebuilt IB device drivers called IBMNC.SYS, IBNMNC.SYS,
IBXMNC.SYS, and IBXNMC.SYS. You should choose only one of the IB

device drivers as follows:

e Use IBMNC.SYS if you have a standard MINC or DECLAB-11/MNC
system and if you are using either the SJ or the FB distributed system
monitors.

e Use IBNMNC.SYS if you have any other standard PDP-11 system and if
you are using either the SJ or the FB distributed system monitors.

4-1

e Use IBXMNC.SYS if you have a standard MINC or DECLAB-11/MNC
system and if you are using an XM (extended-memory) system monitor,
generated for device timeout support and no error logging support.

¢ Use IBXNMC.SYS if you have any other standard PDP-11 system and if
you are using an XM (extended-memory) system monitor, generated for
device timeout support and no error logging support.

Before you can use the Instrument Bus Subroutines in your FORTRAN
programs, you must install them on your system and then test them to
verify that they are properly installed and that they work correctly.
Sections 4.2 through 4.4 explain how to install and test your Instrument
Bus Subroutines software and how to use them with your FORTRAN
programs.

4.2 Installation Requirements
Program development instructions in this chapter require that:

1. All files acted upon by system programs are on the default device, DK,
unless a device is specified in a command.

2. You are using the default file types which are:

FOR FORTRAN source files
.OBJ object files and object library files
.SAV image (executable) files

3. The FORTRAN compiler, FORTRA.SAV, has already been built and
resides on the system device. .

4. The FORTRAN Object Time System (OTS) has been built and added to
the system library, SYSLIB.OBJ, which resides on the system device,
SYy.

5. The FORTRAN compiler and Object Time System have been success-
fully tested and verified using the DIGITAL-supplied DEMO.FOR
FORTRAN installation/verification test program.

6. All system programs are on the system device, SY.

7. All necessary operating systems and device drivers are installed and
reside on the system device, SY.

4.3 Installing your Instrument Bus Subroutines Software

The information that follows explains how to install your Instrument Bus
Subroutines software.

4.3.1 Copying the Distribution Kit

The first step in the installation procedure is to copy your Instrument Bus
Subroutines software distribution kit. Always keep several copies of any
software that cannot be easily re-created. All storage media can be

: IBS Version 2.1
4-2 System Software Installation and Operation Procedures August 1982

adversely affected by environmental conditions, vandalism, and human
error. Therefore, it is good practice to copy (back up) your distribution kit.
After you have done so, store the kit in a safe place and use it only when
you need to make copies of your software. Use a copy for the following
procedure.

The distribution kit containing the Instrument Bus Subroutines is on a
single volume with a file structure that RT—11 can read. To copy the distri-
bution kit, do the following:

1. Load the distribution volume.

2. Load an initialized, blank storage volume. (See the RT—11 System
User’s Guide for information about using the INITIALIZE command to
initialize your blank storage volume.)

NOTE

If you are using RK05 disks you must format each disk
before you initialize it. If you are using RX02 drives, you
must format each floppy disk to be either single density
or double density before you initialize it. See the RT—11
System User’s Guide for information about using the util-
ity program FORMAT to format your disks or floppies.

3. Use the SQUEEZE command with the /OUTPUT switch to copy files
from your distribution volume to your blank storage volume. Using the
SQUEEZE command with the /OUTPUT switch transfers all the files
from the input volume (your distribution volume) to the beginning of
your output volume (your storage volume) and consolidates all the
empty space on the output volume at the end of that volume. Use the
SQUEEZE command with the /OUTPUT switch to copy your distribu-
tion volume rather than the COPY command. The COPY command
does not copy the protection code of files.

After the monitor prompt appears type:

SQUEEZE/OUTPUT:dun: dum:GED

where:

/OUTPUT is a switch that copies all files from the input device to the
output device

dv: is a physical device name

m is the unit number of the device containing the distribution
volume

n is the unit number of the device containing your blank

storage volume

For more information about system commands and copying files, see the
RT-11 System User’s Guide.

System Software Installation and Operation Procedures 4-3

44

4.3.2 Copying with Only Two Mass Storage Devices

If your system has only two mass storage devices, you cannot copy the
distribution volume directly to another volume. This problem occurs be-
cause the volume containing the RT-11 operating system occupies one of
your storage devices.

Therefore, to copy your distribution volume under these circumstances, use
both the /OUTPUT and the /WAIT switches with the SQUEEZE command.
The /WAIT switch causes a pause before copying begins so that you can
remove the system volume from the system device. Then you can load the
distribution volume in the system device and begin copying files.

See the RT—-11 System User’s Guide for information about how to use the
/OUTPUT and /WAIT switches with the SQUEEZE command to copy your
distribution volume if you have only two mass storage devices.

4.3.3 File Protection

All the files in the distribution kit have been protected. If you want to
delete or supersede a protected file, you must first change its protection
code. To do this, rename the file using the /NOPROTECTION switch with
the RENAME command. To protect an unprotected file, use the
/PROTECTION switch with the RENAME command.

Never remove the protection of files in your distribution kit. Remove pro-
tection only on copies of your software.

4.3.4 Making Corrections

Now make any corrections to your software that may be necessary. You can
find these corrections in the RT-11 Software Dispatch along with instruc-
tions on how to make the corrections. Since this version of IB represents a
newly-released version, you only need to make corrections published in the
dispatch for this version of IB.

Never make corrections to your distribution kit. Use only copies of your
distribution kit to make corrections. After you make any corrections, you
should copy your software again.

4.3.5 Determining if You Need to Build a New IBV11-A Device
Handler and IBS Subroutine Library

If you have rebuilt your RT-11 monitor using the RT-11 system generation
procedure, or if you do not have a standard IBV11-A device configuration,
you must build a new device handler and a new IBS Subroutine Library
before you can proceed.

There are two standard IBV11-A device configurations for the Instrument
Bus Subroutines software. If you have a MINC or a DECLAB-11/MNC
system, the standard IBV11-A device configuration is one in which:

System Software Installation and Operation Procedures

1. There is only one IBV11-A unit.
2. The vector address of that unit is set at location 420(octal).

3. The Control Status Register (CSR) address of that unit is set at
171420(octal).

If you have any other PDP-11 system, the standard IBV11-A device config-
uration is one in which:

1. There is only one IBV11-A unit.
2. The vector address of that unit is set at location 420(octal).

3. The Control Status Register (CSR) address of that unit is set at
160150(octal).

You cannot use any of the IBV11-A device handlers or the IBS library
distributed in your Instrument Bus Subroutines software kit if your system
fails to conform to either standard device configuration defined above.
Thus, you must build a new IBV11-A device handler and a new IBS sub-
routine library if at least one of the following is true:

1. You plan to use the device handler with an RT-11 SJ, FB, or XM
monitor created during the RT-11 system generation process.

2. Your system has multiple IBV11-A units.

3. Your system has a single IBV11-A unit but its vector address is not set
to 420, or its CSR address is not set to 171420 (for MINC and
DECLAB-11/MNC users) or to 160150 (for other PDP-11 users).

If you need to build a new device handler and subroutine library, see
Appendix C before going any further, and follow the procedure given
there to build a new device handler and subroutine library.

4.3.6 Copying, Installing and Loading your IB Device Handler

Before you can use the IB handler, it must reside on your system volume.
Therefore, you need to copy one of the distributed handlers (or your newly
created handler) and the distributed library (or your newly created library)
to your system volume. Then you need to install and load the handler on
your system.

If you already have an IB handler on your system volume, remove it before
you perform the copy procedure. After the monitor prompt is displayed

type:

UNLOAD IBGED
REMOVE IBGE

Now copy the appropriate IB handler (device driver) to your system volume.

If you can use one of the distributed handlers, copy the one that corresponds
to your particular hardware/software system. (See Section 4.1 to determine

System Software Installation and Operation Procedures 4-5

which of the distributed handlers corresponds to your particular
hardware/software system.) Whichever distributed handler you copy, give f
it the name IB.SYS if you are running under either the SJ or FB system "
monitors, or give it the name IBX.SYS if you are running under the XM
(extended-memory) system monitor. After the monitor prompt is displayed,

type one of the following:

COPY/SYSTEM dun:IBMNC.SYS dum:IB,S5YSGED

or

COPY/SYSTEM dun:IBNMNC,.5Y¥S dum:IB.SYSED

or

COPY/SYSTEM dun:IBXMNC,S5YS dum: IBX,5YSEED

or \

COPY/SYSTEM dun:IBXNMC,5YS dum: IBX,.SYSRED

where:
/SYSTEM is the switch that allows you to copy system files
m is the unit number of the system device (

n is the unit number of the device containing IBMNC.SYS or
IBNMNC.SYS or IBXMNC.SYS or IBXNMC.SYS

If you built a new device handler, the procedure you followed in Appendix C
creates a file called IB.SYG which must be copied to your system volume
with the proper name. After the monitor prompt appears, type:

COPY/SYSTEM dun:IB.SYG dum:driv,SYSRED

where:

/SYSTEM is the switch that allows you to copy system files

m is the unit number of the system device

n is the unit number of the device containing your newly cre-
ated IB handler, IB.SYG

driv is IB for SJ or FB operating systems and IBX for the XM

operating system

When you copy the appropriate IB handler to your system volume, the
RT-11 utility program PIP prints the following warning message on your
terminal:

/
?PIP-W-Reboot y

4-6 System Software Installation and Operation Procedures

You can ignore this message as long as you unload and remove any IB
handler present on your system before you performed the copy procedure.
- Now install your IB handler. The following format is the same for SJ, FB,
and XM system monitors. After the monitor prompt appears type:

_INSTALL IBGD

Each time you boot your system, the IB handler will probably be installed
automatically. RT-11 automatically installs each handler on its system
each time you boot if the following conditions are true:

1. the handler resides on the system volume

2. the device for the handler is physically connected to the hardware
system

3. the monitor’s device table has enough slots for each type of device phys-
ically connected to the hardware system.

Distributed RT-11 monitors contain 16 device slots. If your hardware sys-
tem has fewer than 16 different types of devices physically connected to it
when it is booted, the IB handler will be installed automatically as long as
the IBV11-A unit itself is physically connected to the hardware system. If
all of your device slots are occupied, you can remove a device handler to
make a device slot available for the IB handler. If you cannot remove any of
your device handlers, and if you do not have any extra device slots, you will
have to regenerate your RT-11 monitor. See Section 3.8.13 of the RT—11
Installation and System Generation Guide for more information.

Although RT-11 automatically installs the IB handler when you boot the
system, you must still load the handler before you can use it. To load the IB
handler, use the following command. The following format is the same for
the SJ, FB, and XM system monitors. After the monitor prompt appears

type:

LOAD IBGED

You must load the IB handler each time you boot the system or you cannot-
run any program using the Instrument Bus Subroutines. If you are going to
use the IB handler often, you can avoid loading it each time you boot your
system by including the LOAD command in the appropriate start-up com-
mand file for your monitor. Start-up command files are -called
STARTS.COM for the SJ monitor, STARTF.COM for the F/B monitor, and
STARTX.COM for the XM monitor. Remember that you cannot load the IB
handler before it has been installed. Therefore, you should include the
LOAD command in a start-up command file only if you are sure that your
handler will be installed automatically each time you boot your system.

For more information about copying files, start-up command files and in-
stalling and loading devices, see the RT-11 System User’s Guide and the
RT-11 Installation and System Generation Guide.

System Software Installation and Operation Procedures 4-7

4.4 Testing your Instrument Bus Subroutines Software

4-8

After you install your Instrument Bus Subroutines software (see Section
4.5.1), test your software to verify that you performed the installation pro-
cedure correctly and that your IB software was delivered in good working
order.

To test your IB software, run the test program IBSVER.FOR which is part
of your Instrument Bus Subroutines distribution kit. To run IBSVER.FOR,
do the following:

1. Make sure that the installation requirements listed in Section 4.2 are
true for your system

2. Make sure that the following assumptions are also true:

e The test program IBSVER.FOR and the library of Instrument Bus
Subroutines, IBLIB.OBJ are on the default device.

e The default device has approximately 60 blocks on it for the files
IBSVER.OBJ and IBSVER.SAV that you will create in the process of
running the test program.

e For the purposes of the test program the device handler, IB.SYS or
IBX.SYS has not yet been loaded.

e No devices are connected to IBV11-A/IB11 instrument bus.

3. Run IBSVER.FOR by typing all the commands that appear in red in
the following program sample. Type each command exactly as it ap-
pears and wait for the computer’s response before you type the next
command. The computer’s response appears in black.

, LOAD IBGED

, FORTRAN IBSVERGE
+MAIN,
SERVE

o LINK IBSVER »IBL IBGED
. RUN IBSVERGED

IBSVER checks IB software functions by intentionally creating non-fatal
error conditions. If the software responds to these conditions with appropri-
ate error messages, the chances are good that it is operating correctly.
Compare the messages the program displays on your terminal with the
paradigm below. The results should match. If they do not match, and if you
have not made any typing errors, you may not have received a reliable copy
of your Instrument Bus Subroutines distribution kit. Contact DIGITAL for
further information.

System Software Installation and Operation Procedures

IBg-11 V2.1 Yerification Prodram-

‘ This procedure assumes that IB.GYS (or IBX.5Y5) has been INSTALLED
‘ and LOADED in this svstem, Alsos this procedure assumes that no de-
vices are connected to vour IBV1I1-A/IB1l instrument bus.

The first part of this test calls routines that do not derend on anv
device and thus should Produce no error messages,

Error in routine IBTIMO: No timeout support available

IBREMOD should return minus one at this point, IBREMO = -1

At this point non-fatal error messades should bedin to arpear,

Error
Error
Error
Error
Error
Error
Error
Error
Error
Error
Error
Error
Error

Error

Error i

Error
Error
Error
Error
Error
Error
Error
Error

Error

in
in
in
in
in
in
in
in
in
in
in
in
in

in

in
in
in
in
in
in

in

*%¥%¥EXPECTED ERROR MESSAGES** %%

routine IBTIMD: No timeout support available

routine IBLNR: No default listener list available

routine IBSEND: No
routine IBSEOI: No
routine IBRECV: No
routine IBXFER: No
routine IBASND: No
routine IBARCY: No
routine IBAXFR: No

routine IBFREE: No

valid

valid

listener on

listener on

valid listener on

valid
valid
valid
valid

valid

listener on
listener on
listener on
liétener on

listener on

the bus
the bus
the bus
the bus
the bus
the bus
the bus

the bus

routine IBGTL: No valid listener on the bus

routine IBSDC: No
routine IBGET: No
routine IBCMD: No
routine IBSTS: No
routine IBSPL: No
routine IBPPE: No
routine IBPPD: No
routine IBPPU: No
routine IBUNL: No
routine IBUNT: No
routine IBLLO: No

routine IBDCL: No

valid listener on the bus

valid listener on the bus

default listener list available

valid listener on the bus

valid

listener on

the bus

default listener list available

default listener list available

valid
valid
valid
valid

valid

listener on
listener on
listener on
listener on

listener on

the bus
the bus
the bus
the bus

the bus

routine IBUNIT: Invalid IBVY11-A unit number

IBS-11 VERIFICATION PROCEDURE SUCCESSFUL!

STOP -- END IBS VERIFY

IBS Version 2.1
August 1982

System Software Installation and Operation Procedures

4-9

4.5 Creating a Program that Calls the Instrument Bus Subroutines

After you install your Instrument Bus Subroutines software and test it to

verify that it works correctly, you are ready to use the subroutines in your
own FORTRAN programs.

To create a FORTRAN program that calls the Instrument Bus Subroutines,
do the following:

1. Write and check your program.
2. Use one of the RT-11 edltors such as EDIT, to enter your program into
a source file. After the monitor prompt appears type:

EDIT/CREATE prod.FORGD

where: _

/CREATE is the switch that allows the editor to create a new file
_prog - 1is the name of your FORTRAN source program

.FOR is the file type for a FORTRAN source file

For information about entering the text of your file, making changes,
and typing or printing the file, see the Introduction to RT—11 and the
RT-11 System User’s Guide.

NOTE

Always specify a file type when you use an RT-11 editor.
RT-11 editors do not use default file types. In this case,
give your source file the type .FOR since that is the de-
fault file type the FORTRAN IV compiler uses when it

compiles your program.
3. Use fhe FORTRAN IV compiler to create an object file of your program.
After the monitor prompt is displayed, type:
FORTRAN ;rog
where:
prog is the name of your FORTRAN source program

4. Use the RT-11 linker to link the object file of your program with
IBLIB.OBJ, the Instrument Bus Subroutines library. After the monitor
prompt is displayed, type:

LINK prog:IBLIBGRED

4-10 System Software Installation and Operation Procedures

where:
prog is the name of your FORTRAN program
IBLIB is the name of the Instrument Bus Subroutines library

If you want to receive short error messages (see Section 9.1), type the
commands in red in the following example:

+LINK/INCLUDE proy,IBLIBGED
Libtrary Search? IB$SRTED
Library Search?RED)

where:

/INCLUDE is the switch that you use to include a global symbol from
a library

IB$SRT is the name of the global symbol that you want to include

from your library

Run the program. Remember that IB.SYS or IBX.SYS must be
installed and loaded before you can run the program. After the monitor
prompt is displayed, type:

RUN e ro 9@

where:
prog is the name of your executable program

For more information about compiling and linking FORTRAN IV pro-
grams, see the RT-11 System User's Guide and the RT-11/RSTS/E
FORTRAN 1V User’s Guide.

4.5.1 Using Libraries

You receive the IB subroutines as a pre-built object library called
IBLIB.OBJ. The library makes it easier to organize and link the subrou-
tines. Each time you call an IB subroutine, it may call several general-
purpose subroutines as well. If you use the IB subroutines as a library, you
do not need to remember the relationships between them and the general-
purpose subroutines. Each time you link a program requiring any IB sub-
routine, you only need to include the name of the library in the link
command to call all the necessary subroutines.

If you plan to use the IB subroutines often, you can make them easier to use
by placing IBLIB.OBJ in the RT-11 system library, SYSLIB.OBJ. If you
place IBLIB in SYSLIB, you do not need to specify the name of the library .
in the link command at all. The RT-11 linker always searches the system
library for a subroutine or function needed by a program even though it
was not named in the link command.

System Software Installation and Operation Procedures 4-11

4-12

You can add IBLIB to SYSLIB using the RT-11 librarian program,
LIBR.SAV. However, there are considerations you should be aware of when
you attempt to do this. Adding IBLIB (or any other file) to SYSLIB causes
the entire SYSLIB file to be rebuilt. In particular, this means that any
global symbols removed from SYSLIB’s directory during the last library
build procedure must be removed again when you add IBLIB (or any other
file) to SYSLIB.

Global symbols are removed from SYSLIB’s directory on at least two
occasions:

1. When SYSLIB.OBJ is built for distribution. At this time the symbol
$OVRH is removed from the library directory. \

2. When you add the FORTRAN IV OTS library to the system library.
This occurs if you answered “Y” to the first question asked by the OTS
generation program, OTSGEN.SAV, distributed with your FORTRAN
IV/RT-11 V2.5 software. At this time, two additional symbols are re-
moved: $ERRS and $ERRTB.

Also, you must remove any global symbols previously removed from
IBLIB’s directory (or from the directory of any other library you add to an
existing library). In this case, remove the global symbol IBSERR.

To add IBLIB to a system library containing the distributed SYSLIB.OBJ
file and the FORTRAN IV OTS library, use the LIBRARY command with
the /REMOVE switch. The /REMOVE switch allows you to remove a global
symbol from a library directory. After the monitor prompt is displayed, type
the commands in red:

LIBRARY/REMOVE dun:SYSLIB dum:IBLIB.,0OBJGED
Global? $0VRHGED

Global? $ERRSED

Global? $ERRTBGRD

Global? IB$ERRGED

Global?@®ED

where:

/REMOVE is the switch that you use to remove a global symbol from a

library.
m is the number of the device on which IBLIB is stored.
n is the number of the device on which SYSLIB is stored.

System Software Installation and Operation Procedures

NOTE

If you do not remember the names of global symbols to re-
move when you execute this command, a number of warning
messages appear equal to the number of globals you failed to
remove from SYSLIB’s or IBLIB’s directory. Each message
specifies one of the global symbols you failed to remove. An
example of the warning message is:

?LIBR-W-I1llegal insert of $0VRH

When this happens, each global symbol specified in an error
message is now defined in SYSLIB’s directory more than
once. You may get unexpected and undesirable results when
you link programs to libraries with directories containing
global symbols that are defined more than once.

For more information about libraries, see the RT—-11 System User’s Guide.

System Software Installation and Operation Procedures = 4-13

Chapter 5 |
Introductory Programming Techniques

Data or programmed instructions can be sent as ASCII characters from one
instrument on the IEEE bus to other instruments on the bus. This data is
often coded as ASCII characters.

NOTE

Because ASCII characters are the usual data format used,
this manual refers to bytes of data as “characters”.

" Since the IBV11-A/IB11 is an instrument, it can send and receive such
ASCII characters. An instrument sending data or programmed instruction
is called the “talker”. The instrument or instruments receiving data or
programmed instructions from the talker are called “listeners.” At any
given time only one instrument can talk, but any number of instruments
can listen.

The IB routines described in this chapter are used to send and receive data
between instruments on the IEEE bus. They are used in FORTRAN pro-
grams to direct the operation of your instrument system. You can accom-
plish many tasks on the instrument bus with these routines. They may be
the only routines you need. These routines are an important part of any
program you write, so become thoroughly familiar with them before you
begin to learn about other IB routines in the chapters that follow.

5.1 Routine Calling Format

Any IB routine can be called by a FORTRAN CALL statement. Each rou-
tine description in this document includes the format of that routine in a
FORTRAN CALL statement. For example, the format of the routine
IBRECYV, described in this chapter, is shown in the following example as a
guide to the way it would appear in a CALL statement.

CALL IBRECV (array,len-limit[,[tkr][,Inrs]])

5-1

The routine format consists of the routine name, IBRECV, and a sequence
of argument names within parentheses, separated from one another by
commas.

The argument names are in lower case letters to indicate that appropriate
values (variables, numbers, or quoted character strings) should be entered
in place of the argument names. When you enter values, you must type the
parentheses that enclose them and the commas that separate them. The
commas mark the boundaries that define an argument’s position in the
argument sequence.

Arguments within square brackets are optional. They need not be specified.

Do not type the square brackets when entering a value in an optional
argument. Type the commas as you would for any argument. The commas
that mark the position of each argument in the argument sequence need
not be typed after the last specified argument. When no value is entered in
an optional argument, the IB routine uses a predetermined value called a
default value. For example, in the IBRECV CALL statement above, all the
following argument specification formats are legal:

CALL IBRECYV (array,len-limit)

- CALL IBRECYV (array len-limit,tkr)

CALL IBRECYV (array,len-limit,,Inrs)
CALL IBRECYV (array,len-limit,tkr,Inrs)

Some IB routines can be used as functions, as well as being called by a
CALL statement. When this is the case, the IB routine is assigned an
integer value by the IB software. IBRECV can be used as a function. The
value assigned to it can then be used in your program by any FORTRAN
statement. In the following example, an ellipsis (...), for the sake of brevity,
is used in place of the full argument description.

TYPE 10, (M(D, I=1, IBRECV(...))
L=1+IBRECV(...)

In the second line, IBRECV has been assigned a numeric value, which is
added to the integer 1.

When an IB routine can be used as a function, the routine description
includes a full function description, format, and the values that are
assigned.

5.2 Talker and Listener Addressing

5-2

You can designate which instrument is to be talker and which instruments
are to be listeners by specifying their addresses in the appropriate argu-
ments of an IB routine. Not all routines require both a talker and a lis-
tener. Some routines accept no address specification. See the routine
descriptions that follow in this and succeeding chapters.

Only one instrument can talk at a time. Whenever you address an instru-
ment as talker, the previous talker is automatically unaddressed. The new
talker is the only instrument that can transmit data. The previous address

Introductory Programming Techniques

is removed from the IEEE bus and the instrument must be readdressed as
talker before it can talk again. The IB routines remember internally the
instrument most recently specified as talker on the default talker list (see
Section 5.2.4). In some IB routines, the IBV11-A/IB11 is the talker. In
these cases, the IB routines automatically specify the IBV11-A/IB11 as
talker, because the IBV11-A/IB11 does not have an instrument address.
The default talker list remains unchanged.

Usually when you address one or more instruments as listeners in an IB
routine, all previous listeners are automatically unaddressed. Their ad-
dresses are removed from the default listener list (see Section 5.2.4), and
the new listeners’ addresses are entered. Only the new listeners can receive
data. You must readdress the instruments previously addressed as listeners
before they can listen again. The IB routines remember internally the in-
struments most recently specified as listener on the default listener list. In
some routines the IBV11-A/IB11 is the listener. In these cases the IB
routines automatically specify the IBV11-A/IB11 as listener, because the
IBV11-A/IB11 does not have an instrument address.

5.2.1 Addressing with Primary and Secondary Addresses

Each instrument that can be used with the IEEE bus has a number in the
range 0 through 30 which identifies it uniquely. This number is known as
its primary address, and corresponds to the setting of the address switches
on that instrument. (Many instrument addresses are selectable.) The ad-
dress for each instrument must always be used to designate that instru-
ment as talker or listener. Note, however, that IB only supports a primary
address of zero in its ASCII translation (see Section 5.2.2.).

Some instruments have more than one function. These functions are some-
times designated by secondary addresses, which fall in the range 0 through
30. Secondary addresses are specified in address arguments as the corre-
sponding decimal values 200 through 230. They must always be preceded
by the primary address of the instrument with which they are associated.

When you want to designate an instrument as talker, enter its primary
address in the argument that specifies the talker. If you want to designate
one of its alternate functions as talker, enter the primary address of that
instrument, followed by a decimal value (200 through 230) corresponding to
its secondary address.

Similarly, when you want to designate an instrument as listener, enter its
primary address in the argument that specifies listeners. If you want to
designate one of its alternate functions as listener, enter the primary ad-
dress of that instrument followed by a decimal value (200 through 230)
corresponding to the secondary address.

Examples:

Assume that a system contains one instrument with primary address 5 and
another with primary address 6, and that instrument 5 has an alternate
function that can be enabled by the secondary address 13. Both instruments
can be talkers or listeners.

Introductory Programming Techniques 5-3

54

The following examples specify instruments as talker or listener with pri-
mary and secondary addresses, using the conventions described in Section
5.2. The address arguments are last in the argument sequence. Since we
are interested here only in addressing, no other elements of the call state-
ment are shown, but are indicated by three dots (ellipsis) to the left of the
first address argument.

In each example, the argument name is given first, as it would appear in
the routine format (see Section 5.1); then the specific values are substituted
for the argument names.

1.

Specify instrument 5 as talker. Use the primary address.

(..., tkr) [the argument name]
(.., 5) [the specific value 5 has been substituted for the argument
name tkr.]

Specify instrument 6 as talker. Use the primary address.

(..., tkr)
(.., 6)

Specify the alternate function of instrument 5 as talker. Use the pri-
mary address, followed by the secondary address, separating them with
a comma. Specify the secondary address 13 by using its corresponding
value 213.

(..., tkr)
(.., 5, 213)

Specify instrument 6 as listener. Use the primary address.

(..., Inrs)

(..., 6)

Specify instruments 6 and 5 as listeners. Use the primary addresses.
(..., Inrs)

(.., 6,5)

Specify instrument 5 with its alternate function 13 and instrument 6 as
listeners,

(..., Inrs)

(..., 5,213, 6)

Specify instrument 6 as talker and instrument 5, with its alternate
function, as listener. Only the first primary address is recognized as
specifying a talker.

(..., tkr, Inrs)
(..,#6,5,213)

Introductory Programming Techniques

8. Specify instrument 5 with its alternate function as talker and instru-
ment 6 as listener.

(..., tkr, Inrs)
(.., 5,213, 6)

The values that you entered in example 8 look exactly like those entered in
example 6 above, when you specified instrument 5, with its alternate func-
tion, and instrument 6 both as listeners. Each IB routine interprets the
arguments according to its own format. In example 6, the routine format
calls for only a listener specification. Both addresses 5, 213 and 6 are en-
tered in the Inrs argument. In example 8, the routine format calls for both a
talker and a listener specification. The address 5, 213 is entered in the tkr
argument, and the address 6 is entered in the Inrs argument.

5.2.2 Addressing with ASCIl Characters

You can also address instruments by using ASCII characters. When you
designate an instrument as talker, the IB routines automatically translate
its primary address into the ASCII character that directs that instrument
to talk. This character is in the range @ through *, which corresponds to
the decimal range 64 through 94, or octal 100 through 136. The
IBV11-A/IB11 accepts these ASCII characters as valid talker addresses
that correspond to the primary addresses 0 through 30. ASCII characters
used as addresses must appear between single quotation marks (for
example, ‘B’).

When you designate an instrument as listener, the IB routines automat-
ically translate its primary address into an ASCII character that directs
that instrument to listen. This character is in the range SP through >,
which corresponds to the decimal ranges 32 through 62 or octal 40 through
76. The IBV11-A/IB11 accepts these ASCII characters as valid listener
addresses that correspond to primary addresses 0 through 30.

NOTE

IB supports a primary address of zero only in its ASCII (or
the equivalent decimal or octal) translation. The talker speci-
fication for a primary address of zero is “@” (the at sign —
decimal 64, octal 100), and the corresponding listener specifi-
cation is “SP” (space — decimal 32, octal 40).

The IB routines also translate secondary address specifications into ASCII
characters in the range apostrophe (') through tilde (7). These characters
correspond to the decimal ranges 96 through 126, or octal 140 through 176.
The IBV11-A accepts these ASCII characters as valid secondary addresses
that correspond to decimal values 200 through 230.

Examples:

The following examples illustrate the use of ASCII characters for talker
and listener addressing. The characters correspond to the primary and sec-
ondary addresses used above.

Introductory Programming Techniques 5-5

5-6

ASCII Characters

Primary and Secondary Addresses Talker Listener

5,213 Em %,m

6 F &

1. Specify instrument 5 as télker, using its corresponding ASCII

character.

(..., tkr)
(.., 'E)

Specify instrument 6 as talker, using its corresponding ASCII
character.

(..., tkr)
(..., 'F)

Specify the alternate function of instrument 5 as talker, using its corre-
sponding ASCII characters.

(..., tkr) ‘

(..., 'Em") or (..., 'E’, 'm’)

Specify instrument 6 as listener, using its corresponding ASCII
character.

(..., Inrs)

(..., '&")

Specify instruments 6 and 5 both as listeners, using their corresponding
ASCII characters.

(..., Inrs)
(..., '&%")or (..., "%&") or (..., '&', '%")

Specify instrument 5 with its alternate function, and instrument 6 as
listeners, using their corresponding ASCII characters.

(o Ints)
(..., '%m&") or (..., "%m’, '&') or (..., '%', 'm’', '&")

Specify instrument 6 as talker and instrument 5 with its alternate
function as listener, using their corresponding ASCII characters.

(..., tkr, Inrs)
(..., 'F', "%m’) or (..., 'F%m') or ('F', '%', 'm’)
Specify instrument 5 with its alternate function as talker and instru-

ment 6 as listener, using their corresponding ASCII characters.

(..., tkr, Inrs)
(...,'Em’, '&") or (..., 'Em&’) or (..., 'E’, 'm’, '&’)

Introductory Programming Techniques

PN

In examples 7 and 8, note that different ASCII characters are used to ad-
dress the same instrument to talk and to listen. If you use ASCII charac-
ters, you are doing the translation that the routines do automatically when
they change primary and secondary addresses into proper talker or listener
addresses. However, if you use an ASCII character which would normally
denote a talker to designate a listener, the IB routine translates this speci-
fication into the proper listener character. For example, although the
ASCII character E is actually the ASCII code telling instrument 5 to talk,
you can use E to denote instrument 5 as a listener. In this case, the IB
routine translates the E into %. Similarly % may also be used to specify
instrument 5 as either a listener or a talker.

5.2.3 Addressing with Byte Arrays

" You can address instruments using byte arrays. Each element of an array
contains an address. A list of addresses must always end with a zero
byte (0).

Examples:

These examples use byte arrays for talker and listener addressing. The
values in the byte array may be integers or ASCII characters corresponding
to primary or secondary addresses.

1. Specify instrument 5 as talker, using a byte array.

(..., tkr)

BYTE ADDR(2) or BYTE ADDR(2)
DATA ADDR /5, 0/ DATA ADDR /'E’, 0/
(...ADDR) (...ADDR)

2. Specify instrument 6 as talker, using a byte array.
(..., tkr)

BYTE ADDR(2)
DATA ADDR /6, 0/

.

(..., ADDR(1))

Introductory Programming Techniques 5-7

3. Specify the alternate function of instrument 5 as talker using a byte

array.
(..., tkr)
BYTE ADDR(3) or BYTE ADDR(3)
DATA ADDR /5, 213, 0/ ADDR(1)=5
. ADDR(2)=213
ADDR(3)=0
(..., ADDR) '
i..., ADDR)
4. Specify instrument 6 as listener, using a byte array.
(..., Inrs)
BYTE ADDR(2) or BYTE ADDR(2)
DATA ADDR /'&’, 0/ ADDR(1)="&’
ADDR(2)=0
(.., ADDR) (..., ADDR)
5. Specify instruments 6 and 5 both as listeners, using a byte array.
(..., Inrs)
BYTE ADDR(3) or BYTE ADDR(4)
DATA ADDR /6, '%’, 0/ DATA ADDR /6, 0, 5, 0/
(., ADDR) (..., ADDR(1), ADDR(3))

6. Specify instrument 5 with its alternate function and instrument 6 as
listeners, using a byte array.

(..., Inrs)

BYTE ADDR(4) or BYTE ADDR1(3) ADDR2(2)

DATA ADDR /5, 213, 6, 0/ DATA ADDR1/5,213,0/
DATA ADDR2 /6, 0/

(... ADDR) (... ADDR1, ADDR2)

5-8 Introductory Programming Techniques

s

7. Specify instrument 6 as talker and instrument 5 with its alternate
function as listener, using a byte array.

(..., tkr, Inrs)

BYTE ADDR(4) or BYTE TADDR(2), LADDR(3)
DATA ADDR /'F’, "%', 'm', 0/ DATA TADDR /'F’, 0/
DATA LADDR /%', 'm’, 0/

i..., ADDR) (TADDR, LADDR)

8. Specify instrument 5 with its alternate function as talker and instru-
ment 6 as listener, using a byte array.

(..., tkr, Inrs)

BYTE ADDR(4) or BYTE ADDR(5)

DATA ADDR /5, 213, 6, 0/ DATA ADDR /5, 218, 0, 6. 0/
(... ADDR) (... ADDR, ADDR(4))

5.2.4 Default Talker and Listener Lists

Default talker and listener lists are used whenever a talker or listener
specification is required but has not been specified, or whenever transmis-
sion is reestablished after an interrupt.

Instruments last specified as listeners in an IB routine are remembered
internally as listeners on the default listener list. Commands are sent on
the IEEE bus addressing those instruments to listen.

When you specify instruments as listeners in a later IB routine, they re-
place the previous listeners on the default listener list and on the IEEE
bus. If a listener is required in an IB routine but none is specified, the
instruments on the default listener list (those last specified as listeners) are
addressed to listen if their addresses are no longer on the IEEE bus.

The instrument last specified as talker in an IB routine is remembered
internally by the IB routines as talker on the default talker list. A com-
mand is sent on the IEEE bus addressing that instrument to talk.

When you specify an instrument as talker in a later IB routine, it replaces
the previous talker on the default talker list and on the IEEE bus. If a
talker is required in an IB routine but none is specified, the instrument on
the default talker list (the last one specified as talker) is addressed to talk if
its address is no longer on the IEEE bus.

Introductory Programming Techniques 5-9

You can add new listeners to the current default listener list by entering
minus one (-1) as the first element of the listener specification. This pre-
vents current listeners from being removed from the list. A —1 cannot be
entered in any address specification, except as the first element of the lis-
tener specification. It can never be used in a talker specification.

When the main program is interrupted by a service request (see Section
8.1.2), default talker and listener lists are established locally within the
SRQ routine. The default lists of the main program are neither used nor
altered. An error occurs if talker or listener specifications are not given in a
routine in which they are required before their respective default lists have
been established, either in the main program or locally within the SRQ
routine.

Examples:

1. IBGET (see Section 6.3.3) requires a listener specification. The follow-
ing program segment illustrates use of the default listener list.

FORTRAN Program These instruments listen

+

+

CALL IBGET(1)

1
CALL IBGET(2) 2
CALL IBGET() 2
CALL IBGET(-1: 3, 212, B) 23,2126
CALL IBGET 23,2126
CALL IBGET(4,5) 453

+
.

+

2. IBSTS (see Section 7.1.1) is used as a function and requires a talker
specification. The following program segment illustrates the use of the
default talker list.

FORTRAN Program This instrument talks

+

ISTAT=1IBSTS(1)
ISTAT=IBSTS(2)
ISTAT=IBSTS()
ISTAT=IBSTE(3,212)
ISTAT=IBSTS()
ISTAT=IBSTS(4)

+

EWWMNMN -

1

L]

5-10 Introductory Programining Techniques August 1982

o

3. IBSEND (see Section 5.3.1) requires a listener specification. The
IBV11-A/IB11 is automatically the talker. IBXFER (see Section 5.3.4)
requires both a talker and a listener specification. Both these routines
also require arguments other than addresses: for clarity, no values are
entered in these arguments.

FORTRAN Program This These
instrument instruments
talKks listen
CALL IBSEND(msd-arravsmsd-lensl) IBVii-A/7IBIL 1
CALL IBXFER(len-limit+2,3) 2 3
CALL IBSEND(msd-arravysmsd-len) IBYii1-A/IBL1L 3
CALL IBXFER(lern-limit 4,205,:-1,8) 4,208 36

CALL IBSEND(msd-arrav smsd-lens»-118:+212,7)
IBY11-A/1IB11 368,212 7
3

CALL IBXFER(len-limit) 44205 6 8,212 7
CALL IBSEND(msd-arravsmsg-lens2) IBY11-A/IB11 2

CALL IBXFER(len-limit+1) 1 2

CALL IBXFER(len-limit ++3) 1 3

CALL IBXFER(len-limitss-1+6) B | 36

+

+

5.3 Data Transmission

The IEEE bus provides for data transmission among all instruments con-
nected to the bus. IB routines provide three types of transmission, as
follows:

1. They send data or programmed instruction to instruments.

2. They receive data from an instrument, storing the data in an array you
specify.

3. They transfer data from one instrument to another with no data
storage.

5.3.1 Sending Data (IBSEND)

Use IBSEND to send data from the computer to specified listeners. Use
IBSEOI if an EOI is required. The IBV11-A/IB11 is the talker. The previ-
ous talker is automatically removed from the IEEE bus, but the talker
default list remains unchanged. It is used automatically during the next
command that requires a talker, if one is not specified.

Introductory Programming Techniques 5-11

.Call IBSEND as a subroutine.
CALL IBSEND (msg-array [, [msg-len] [, Inrs]])

where:

msg-array The message that you want to send in single quotes, or the
name of the array in which that message is stored. If format
conversion of a numerical value is required, use the
FORTRAN statement ENCODE (see the RT-11/RSTS/E
FORTRAN 1V User’s Guide) before sending the message.

msg-len The number of characters you want to send from the array up
to a maximum of 65,534 (see Appendix F for specifying num-
bers greater than 32,767).

If msg-len is -1, the contents of the array are sent until a null
byte (0) is reached. The null byte terminates the transmission
but is not sent. Specify -1 for msg-len when you send a mes-
sage in quotes or when the last character in the message is
followed by a null byte. If msg-len is not specified, the effect is
the same as specifying -1.

If msg-len is 0, no message is sent. The listeners specified in
this routine replace those previously on the default listener
list. This can be used to change the default listener list with-
out sending a message.

If msg-len is greater than 0, it specifies the number of charac-
ters to be sent. The character 0 is sent like any other charac-
ter. It does not terminate the message.

Inrs The optional listener specification. If you do not specify this
argument, IBSEND uses the default listener list.

Example:

This program accepts character strings from the terminal and sends
those strings to instrument 6.

BYTE MESSAG (20)
INSTR = 6
1 TYPE 1001 ,INSTR
ACCEPT 1002, NCHAR + MESSAG
IF (NCHAR.GT.20) GO TO 10
CALL IBSEND (MESSAGs NCHAR s INSTR)
GO TO 1
10 TYPE 1003
GO TO 1
1001 FORMAT ('’ Enter characters to be sent to instrument ‘'
1 I2,/7 "1%)
1002 FORMAT (Qs 20A1)
1003 FORMAT (1X,’Too many characterss try adain.’)
END)

5-12 Introductory Programming Techniques

5.3.2 End or Identify (IBSEOI)

IBSEOI is like IBSEND, with one exception: when IBSEOI is used, the EOI
(end or identify) bit of the IEEE bus is set when the last byte of data is sent
(see the IB11 UNIBUS to IEEE Instrument Bus Interface Installation
Manual). Many instruments require this so that they can identify the end
of the message. See the operation manual for each instrument.

CALL IBSEOI (msg-array [, [msg-len] [, Inrs]])

where:

msg-array The message that you want to send in single quotes, or the
name of the array in which the message is stored. If format
conversion of a numerical value is required, use the
FORTRAN statement ENCODE (see the RT-11/RSTS/E
FORTRAN 1V User’s Guide) before sending the message.

msg-len The number of characters you want to send from the array.

If msg-len is -1, the contents of the array are sent until a null
byte (0) is reached. The null byte terminates the transmission
but is not sent. Specify -1 for msg-len when you send a mes-
sage in quotes or when the last character in the message is
followed by a null byte. If msg-len is not specified, the effect is
the same as specifying -1.

If msg-len is 0, no message is sent. The listeners specified in
this routine replace those previously on the default listener
list. This can be used to change the default listener list with-
out sending a message.

If msg-len is greater than 0, it specifies the number of charac-
ters to be sent. The character 0 is sent like any other charac-
ter. It does not terminate the message.

Inrs The optional listener specification. If you do not specify this
argument, IBSEOI uses the default listener list.

Examples:

You want to send the message M23.1,103.5 to instrument 5. This instru-
ment requires that you terminate messages to it with a carriage return
(ASCII octal value 15) sent with the EOI bit set. Use example 1 or 2:

1. INSTR=5
CALL IBSEND (‘/M23.1,103,5’s -1+ INSTR)
CALL IBSEOI ("15, 1) ICarriade return is octal 15

Introductory Programming Techniques 5-13

2. BYTE MESSAG(S)

DATA X/23.1/4+ Y /103,57
CALL IBSEND (‘M’ » » 5)
ENCODE (4, 1001, MESSAG) X
CALL IBSEND (MESSAG: 4)
CALL IBSEND (‘)

ENCODE (5, 1001, MESBAG) Y

1001 FORMAT (FS5.1)
CALL IBSEND (MESSAG: 5)

CALL IBSEOI ("13)

P

If a message is broken into more than one IBSEND or IBSEOI call, all
calls following the first call should use the default listener list. Use no
other IB routines between the calls in which the message begins and
ends. :

The service request routine waits for any IB calls in progress to com-

plete before it interrupts the main program. If you have specified a

service request routine (see Section 8.1.3) do not break a message into

more than one IBSEND or IBSEOI call. Doing so could result in an /
incomplete (and probably useless) message, as the service request rou-
tine could interrupt after the message in the first call is transmitted.

Examples 1 and 2 can be used in the absence of a service request rou-
tine. Only example 3 should be used when a service request routine is

specified.
3. BYTE MESSAG (13)
DATA X/23.1/+ Y/7103,5/ /
DATA MESSAG (1)/'M’/ 4 MESSAG(B)/’ 4’/ |

DATA MESSAG (12)/"15/» MESSAG(13)/0/
ENCODE (4 1001, MESSAG(2)) X
ENCODE (5 1001 MESSAG(7)) V¥
1001 FORMAT (F3.1)
CALL IBSEOI (MESSAG: » 3)

5.3.3 Receiving Data (IBRECV)

Use IBRECV to receive data messages through the IBV11-A/IB11 from a /
specified talker. The IBV11-A/IB11 is always a listener, even when none is .
specified. The data message is stored in a message array. Use IBRECV as a
function.

len = IBRECV (array, len-limit [, [tkr] [, Inrs]]
where: ‘

len An integer variable that is set equal to the total number of
characters actually received by the listeners. This number
never exceeds the maximum imposed by len-limit. Data mes-
sages will be terminated when:

o The number of data characters reaches the maximum im-
posed by the len-limit specification.

Pl

5-14 Introductory Programming Techniques

e The EOI control bit is detected as set when a character is sent
by the talker (see the IBV1I-A LSI-11/Instrument Bus
Interface User’s Manual). .

o A terminating character is received. The terminating charac-
ter is normally @ or @D unless another is defined by IBTERM
(see Section 10.2). The terminating character is stored with
the rest of the associated message.

e Any error is detected.

array The name of an array in which data received from the talker is
stored. If format conversion to numeric values is required, use
the FORTRAN statement DECODE (see the RT-11/RSTS/E
FORTRAN 1V User’s Guide) after the data is received. Note
that this parameter must be specified; it cannot be defaulted.

len-limit A positive integer or 0, that specifies the maximum number of
characters to be stored in the array. This integer should be no
greater than the size of the array. You should specify len-limit
to accommodate any anticipated number of characters. A 0 here
means that no characters will be received. This argument must
be specified. No default value is allowed.

tkr The optional talker specification. If you do not specify a talker,
IBRECYV uses the default talker list. If you specify a talker, it
replaces the default talker in the default talker list.

Inrs The optional listener specification. If you do not specify a lis-
tener, IBRECV does NOT use the default listener list. Instead,
the IBV11-A/IB11 is the ONLY listener. Any default listeners
are removed from the IEEE bus. The default listener list re-
mains unchanged. IBRECV and IBARCYV are the only routines
in which the default listeners list is not used if you do not
specify a listener.

To use the current default listener list, specify —1. The default
listeners will listen, along with the IBV11-A/IB11.

To add new listeners to the current default listener list, specify
-1, and then enter the addresses of the instruments you want to
listen. This also applies for any other routine.

To specify listeners, do so without using -1. These new listeners
become the default listener list, as in any other routine. These
instruments and the IBV11-A/IB11 all listen.

When the full capacity of IBRECV as é function is not required, you can
call IBRECV as a subroutine.

CALL IBRECV (array,len-limit[,[tkr][,Inrs]])

The arguments are the same as for IBRECV used as a function.

Introductory Programming Techniques 5-15

5-16

Examples:

1. Get a maximum of 10 bytes from instrument 5 and type the result on

the terminal.

BYTE MESSAG(10)

+

.

N=IBRECV(MESSAG: 10 » 5)
TYPE 1001, (MESSAGE(I) s I=1, N)
1001 FORMAT(1X,s 10A1)

+

or

BYTE MESSAG(10)

+

+

TYPE 1001, (MESSAG(I)» I=1, IBRECV(MESSAG, 10, 5))
1001 FORMAT(1Xs 10A1)

.
+

+

Suppose that instrument 7 is a printer on which you want to keep a log
of all bus data. This program segment allows the printer to listen to the
message that instrument 5 is sending to the IBV11-A/IB11.

BYTE MESSAG(10)

+

+

TYPE 1001, (MESSAGE(I)s I=1, IBRECV(MESSAG, 10, 5, 7))
1001 FORMAT(1X» 10A1)
+

+

After the multimeter has been sent the string MOT2R0X, it sends a
reading every time IBGET is issued (See Sectlon 6.3.3). The data is in
the format:

XXXX +d.ddddE + dGED
where:

XXXX information other than the numeric readlng

d a digit 0 through 9
E the character E
®ED the return character

Introductory Programming Techniques

Assuming that the multimeter is instrument 2, your program to type
the average of two readings is:

1001

1002

BYTE READ1(15) READZ2(15)
METER=2

+

CALL IBSEND ('MOT2ROX’» » METER)
cALL IBGET (METER)

CALL IBRECV (READ1,» 15+ METER)
CALL IBGET

CALL IBRECV (READZ2+ 15)

DECODE (10, 1001, READ1(5)) R1
DECODE (10 10014 READZ2(S)) R2
FORMAT (E10.,4)

AVERAG = (R1+R2)/2

TYPE 1002+ AVERAG

FORMAT (1Xs ‘Averade of the 2 readinds is 'y E10.4)

+

Measure resistance
Get readingd
Measure again

]
1
!
| Get reading

+

*

5.3.4 Transferring -Data (IBXFER) on the IEEE Bus

Use the IBXFER function to establish and control the transfer of data
among instruments on the IEEE bus. IBXFER does not store this data. Use
IBXFER as a function.

len = IBXFER ([len-limit] [, [tkr] [, Inrs]])

where:

len

len-limit

An integer variable that is set equal to the total number of
characters actually received by the listeners. This number will
never exceed the maximum imposed by len-limit. Data mes-
sages will be terminated when:

e The number of data characters reaches the maximum im-
posed by the len-limit specification.

e The EOI control bit is detected as set when a character is sent
by the talker (see the IBV11-A LSI-11/Instrument Bus
Interface User’s Manual).

e A terminating character is received. The terminating charac-
ter is normally GED or @ unless another is defined by IBTERM
(see Section 10.3).

e Any error is detected.

A positive integer (or 0) that specifies the maximum number of
characters to be transferred. Len-limit should be specified to
accommodate any anticipated number of characters. A 0 here
means that no characters will be transferred. Default or -1 al-
lows the maximum number of characters (65,535 decimal) to be
transferred.

Introductory Programming Techniques 5-17

5-18

tkr The optional talker specification. If you do not specify this ar-
gument, IBXFER uses the default talker list.

Inrs The optional listener specification. If you do not specify this
argument, IBXFER uses the default listener list.

When the full capabilities of the function are not required, call IBXFER as
a subroutine. The integer representing the actual number of data charac-
ters received (len) is not available.

CALL IBXFER ([len-limit] [, [tkr] [, Inrs]])
The arguments are the same as those used for the function IBXFER.
Examples:

If you want up to 10 bytes of data from instrument 5 to go to instrument 7 ,
a line printer, but your program does not need the data, then you can use
IBXFER.

CALL IBXFER (10, 5, 7)

This is the same as example 2 for IBRECV, except that the data is not
stored in the array MESSAG.

You can also use:

CALL IBXFER (10, 'EG")
or

CALL IBXFER(10, 'E’, 'G")
or

BYTE ADDR(3)

DATA ADDR /'E’, 'G’, 0/

CALL IBXFER (10, ADDR)
or

BYTE ADDR(3)

DATA ADDR /5, 7, 0/

CALL IBXFER (10, ADDR)

5.3.5 Data Receive Status (IBRCVS)

Use IBRCVS to obtain the status of a data transmission initiated by one of
the following routines: IBRECV, IBARCV, IBXFER, IBAXFR. The driver
terminates the receipt or transfer of data when one or more of three condi-
tions is met:

e The length limit (as specified in bytes) is reached.

Introductory Programming Techniques

e A terminator character is detected.

e The EOI line is asserted.

The IBRCVS routine allows the user to determine whether termination
actually occurred before completion of the data transmission. If an instru-
ment is still in the process of transmission, the user can recall the receive
or transfer routine that initiated the transmission to bring about proper
completion. If termination was indeed premature, the instrument may have
additional data to transmit, but the driver as controller will not recognize
it. This condition will hang the bus.

Note that with termination of a receive or transfer function (excluding that
initiated by IBFREE), the actual length of the transmission in bytes is also
returned to the user (via IBWAIT if the transmission was asynchronous).
This information may be instrumental in determining whether termination
was premature.

IBRCVS can be called as a FORTRAN subroutine or function:
CALL IBRCVS ([iend])

or

iend = IBRCVS ()

Where:

jend is an integer variable that receives the receive-status code. There
are 3 meaningful bits in iend as follows:

¢ Bit 0 (least significant bit) if set indicates that transmission was
terminated upon reaching the user-specified byte length limit.

e Bit 1 if set indicates that transmission was terminated upon de-
tection of a terminator character.

e Bit 2 if set indicates that transmission was terminated upon de-
tection of the EOI line asserted.

The receive-status word is returned as a value such that 0 <iend< 8, iend
being one of all possible combinations of these three bits excluding the case
in which all bits are clear. In this way, it can be determined which set of
conditions existed upon termination of the data transfer.

For example, if iend = 1, we know that the length limit was reached, no
terminator was detected, and EOI was not asserted. If iend = 7, the length
limit was reached, a terminator character was detected, and the EOI line
was asserted upon transmission termination.

Introductory Programming Techniques 5-19

5.4 Asynchronous Data Transmission

5-20

The asynchronous subroutines (see Section 1.9) IBASND, IBARCV, and
IBAXFR are like their synchronous correspondents above, except that they
return to the FORTRAN program in progress while the data is being
transmitted. You must call IBWAIT or any other IB routine before using
the transmitted data, to be sure that the transmission is complete.

These asynchronous routines cannot be used as functions. If IBWAIT is the
first IB routine called after an asynchronous routine, it can be used as a
function to return the number of bytes transmitted, just as IBRECV and
IBXFER would (see IBWAIT, Section 10.4).

The synchronous functions IBSEND, IBRECV, and IBXFER automatically
call IBWAIT before returning to the FORTRAN program in progress.

5.4.1 Asynchronous Send (IBASND)
CALL IBASND (msg-array [, [msg-len] [, Inrs]])

where:

msg-array The message that you want to send in single quotes, or the
name of the array in which that message is stored. If format
conversion of a numerical value is required, use the
FORTRAN statement ENCODE (see the RT-11/RSTS/E
FORTRAN 1V User’s Guide)before sending the message.

msg-len The number of bytes you want to send from the array.

If msg-len is -1, the contents of the array are sent until a null
byte (the integer 0) is reached. The character 0 terminates the
transmission but is not sent. Specify -1 for msg-len, when you
send a message in quotes, or when the last character in the
message is followed by a null byte. If msg-len is not specified,
the effect is the same as specifying -1.

If msg-len is 0, no message is sent. The listeners specified in
this routine replace those previously on the default listener
list. This can be used to change the default listener list with-
out sending a message.

If msg-len is greater than 0, it specifies the number of charac-
ters that will be sent. The character 0 is sent like any other
character. It does not terminate the message.

Inrs The optional listener specification. If you do not specify this
argument, IBASND uses the default listener list.

5.4.2 Asynchronous Receive (IBARCV)
CALL IBARCV (array, len-limit [, [tkr] [, Inrs]])

Introductory Programming Techniques

where:

array

len-limit

tkr

Inrs

The name of an array in which data received from the talker is
stored. If format conversion to numeric values is required, use
the FORTRAN statement DECODE (see the RT-11/RSTS/E
FORTRAN IV User’s Guide) after the data is received.

A positive integer or 0 that specifies the maximum number of
characters to be stored in the array. This integer should be no
greater than the size of the array. You should specify len-limit
to accommodate any anticipated number of characters. A 0 here
means that no characters will be received. This argument must
be specified. No default value is allowed.

The optional talker specification. If you do not specify a talker,
IBARCYV uses the default talker list.

The optional listener specification. If you do not specify a lis-
tener, IBARCV does NOT use the default listener list. Instead,
the IBV11-A/IB11 is the ONLY listener. Any default listeners
are removed from the IEEE bus. The default listener list re-
mains unchanged. IBRECV and IBARCYV are the only routines
in which the default listener list is not used if you do not spec-
ify a listener.

To use the current default listener list, specify —-1. The default
listener will listen, along with the IBV11-A/IB11.

To add new listeners to the current default listener list, specify
-1, and then enter the addresses of the instruments you want to
listen. This also applies for any other routine.

To specify listeners, do so without using —1. These new listeners
become the default listener list, as in any other routine. These
instruments and the IBV11-A/IB11 all listen.

5.4.3 Asynchronous Transfer (IBAXFR)
CALL IBAXFR ([len-limit] [, [tkr] [, Inrs]])

where:

len-limit

tkr

Inrs

A positive integer (or 0) that specifies the maximum number of
characters to be transferred. You should specify len-limit to
accommodate any anticipated number of characters. A 0 here
means that no characters will be transferred. Default or -1 al-
lows the maximum number of characters (65,535) to be trans-
ferred.

The optional talker specification. If you do not specify a talker,
IBAXFR uses the default talker list.

The optional listener specification. If you do not specify a lis-
tener, IBAXFR uses the default listener list.

Introductory Programming Techniques 5-21

5.4.4 Free Transfer of Data (IBFREE)

IBFREE is similar to IBXFER. It transfers data from a talker to listeners,
but is not monitored by the IB routines. The IBV11-A/IB11 neither talks
nor listens. Data passes freely from talker to listener without the IB
routines checking for terminating characters, EOI, or message length. This
message transfer continues independent of your program, until you call
IBUNT or any other IB routine that sends data or commands on the
IEEE bus.

CALL IBFREE ([tkr [, Inrs]])

where:

tkr The optional talker specification. If you do not specify a talker,
IBFREE uses the default talker list.

Inrs The optional listener specification. If you do not specify a listener,
IBFREE uses the default listener list.

5-22 Introductory Programming Techniques

Chapter 6
Instrument Control Commands

6.1 System Commands

Most instruments on the IEEE bus can operate under either the local con-
trols on their front panels, or under remote control of the IBV11-A/IB11.
The first IB routine to communicate with a particular IBV11-A/IB11 unit
causes the Remote line of the IEEE bus to be set. The IBV11-A/IB11 is
ready to administer programmed instruction to the instruments in the sys-
tem. An instrument becomes ready to receive instructions under remote
control when it is first addressed.

6.1.1 Remote Disable (IBRDA)

If you wish to turn Remote off while running a program, use Remote
Disable (IBRDA).

CALL IBRDA

IBRDA turns Remote off and returns to the program in progress after a 100
microsecond delay. Addresses in the default lists are removed from the
IEEE bus, but the lists themselves remain intact. IBRDA delays 100 micro-
seconds to ensure that any Go To Local command (see Sectlon 6.3.1) will be
undone if remote is enabled again.

' 6.1.2 Remote Enable (IBREN)

If you wish to return to remote control, use Remote Enable (IBREN).
CALL IBREN

IBREN turns Remote on and returns lmmedlately to the program in
progress.

6-1

6-2

6.1.3 Remote Status (IBREMO)

You can determine whether Remote is on or off by using the function
IBREMO. When used with its optional argument n omitted, it returns an
integer that reports the status of Remote. If this integer is 0, Remote is off:
if the integer is -1, Remote is on.

IBREMO can also be used to turn Remote on and off at the same time it
reports the previous status. If IBREMO turns Remote off, it waits 100
microseconds before returning to the program in progress, just as IBRDA
does. Also like IBRDA, it removes the addresses in the default lists from
the IEEE bus, but the lists themselves remain intact.

When n is specified, IBREMO either turns Remote on (any non-zero inte-
ger) or off (0) and then returns an integer value (0 or -1) indicating the
previous status of Remote.

iold = IBREMO ([n])

where:

iold An integer value returned by the function IBREMO, indicating the
prior status of Remote. 0 is off. -1 is on.

n An optional integer, zero or non-zero. A 0 turns Remote off and
returns an integer to iold, indicating the prior status of Remote. A
non-zero integer turns Remote on and returns an integer to iold,
indicating the prior status of Remote. If n is omitted, the status of
Remote is simply reported and remains unchanged.

Examples:
1. CALL IBREN 'Turns Remote on,
I=IBREMO() . 18ets I eaual to -1

TYPE 10, IBREMO(Q) ITypes -1 then turns Remote off.,
TYPE 10, IBREMO('L) ITyrpes Oy then turns Remote on.

10 FORMAT (1X, I2)

2. SUBROUTINE REMOTE
I=IBREMO(-1) 'Turns Remote on
IF(I,EQ.,0) TYPE 10 ,
10 FORMAT (1X)'Remote was of f and we Just turned it on.’)
RETURN

END

6.1.4 Interface Clear (IBIFC)

Each instrument communicates with the IEEE bus through an interface.
You can clear all of the interfaces with the Interface Clear command.

"CALL IBIFC

All instrument addresses are removed from the bus, so that no instrument
is addressed to talk and no instrument is addressed to listen. The default
lists remain intact, however, and any service routine in your program re-
mains enabled.

Instrument Control Commands

—

This is an extreme measure, and should be used only to recover from unu-
sual circumstances that prevent normal operations. such as a system hang
up or a control conflict.

Calling IBIFC disables the Remote bus line and then enables it again.
Special conditions such as Local Lockout (see Section 6.2.1) or Go To Local
(see Section 6.3.1) are undone. Instruments in your system come under
remote control again when they are readdressed by an IB routine.

6.2 Universal Commands

Universal commands apply to all instruments in the system. Each instru-
ment capable of responding does so in a manner appropriate to its function.
Because universal commands are sent to all instruments, specific address-
ing is not necessary. The default talker and listener lists are unaffected.

6.2.1 Local Lockout (IBLLO)

Many instruments that operate on the IEEE bus have a front panel
LOCAL/RESET button. When this button is pressed, the operator can re-
gain local control of an instrument that is under remote control of the
IBV11-A/IB11. You can prevent such accidental return to local by calling
(IBLLO).

CALL IBLLO

Now any instrument in your system with a LOCAL/RESET button ignores
the position of that button and continues under the remote control of the
IBV11-A/IB11.

To regain local control of bus instruments after calling Local
Lockout, call Remote Disable (IBRDA).

CALL IBRDA

IBRDA may be followed by IBREN if remote control is desired when the
local button is not pressed. All instruments are now ready for manual oper-

ation under local control as soon as their LOCAL/RESET button is pressed.
Default lists are unaffected by IBLLO.

6.2.2 Device Clear (IBDCL)

Calling IBDCL clears all instruments on the IEEE bus. Each instrument
returns to a predefined state appropriate to its function. See the operating
manual of each instrument for a description of its predefined state.

CALL IBDCL

The default talker and listener lists are unaffected. The next IB routine
requiring a talker or listener uses the pre-established default list(s) if no
talker or listener is specified.

Instrument Control Commands 6-3

6.2.3 Untalk (IBUNT)

Normally when you specify a new talker in a routine requiring a talker, the
former talker is automatically removed from the bus and the talker default
list. Calling IBUNT removes the current talker from the IEEE bus only,
without specifying a new talker.

CALL IBUNT

Now no talker is specifically addressed. However, the default talker list is
unaffected. Any following IB routine requiring a talker uses the default
talker list if no talker is specified.

6.2.4 Unlisten (IBUNL)

Calling IBUNL removes all addressed listeners from the IEEE bus.
CALL IBUNL

Now no instrument is on the IEEE bus as a listener. The default listener
list is unaffected. Any following IB routine requiring a listener uses the
default listener list if no listener is specified.

6.2.5 Parallel Poll Unconfigure (IBPPU)

The Parallel Poll Unconfigure (IBPPU) universal command prevents all
instruments previously prepared to respond to a parallel poll by IBPPE (see
Section 7.2.1) from responding. For a further description of this routine, see
Section 7.2.3.

6.3 Addressed Commands

64

Addressed commands affect only instruments specifically addressed as lis-
teners. The default listener list is used if the listener specification is
omitted.

6.3.1 Go To Local (IBGTL)

When you are operating under remote control, it may be necessary to go to
local control of a particular instrument to perform some function that can-
not be done under remote control. You may simply want instruments that
are not part of the current program to function locally. Use Go To Local
(IBGTL), specifying instruments as listeners.

CALL IBGTL ([Inrs])

where:

Inrs Optional listener address specification. If this argument is not speci-
fied, the default listener list is used.

After IBGTL is called, the instruments specified as listeners operate inde-
pendently under local control.

Instrument Control Commands

Go to Local is effective even though IBLLO has been called. IBLLO disables
the LOCAL/RESET button. Instruments specified as listeners in the IBGTL
call operate under local control, but the LOCAL/RESET button remains
disabled.

After you complete operation under local control, return to remote control
by calling IBUNL, or any IB routine requiring a listener address, without
defaulting the listener address.

Example:
Use IBGTL to return devices 9 and 14 to local (manual) control.

CALL IBGTL (9, 14)

6.3.2 Selected Device Clear (IBSDC)

It might be useful at times to clear selected instruments on the IEEE bus
returning each to its own predefined state, generally the state when first
powered on. IBSDC differs from IBDCL in that only those instruments
specified as listeners are cleared.

CALL IBSDC ([Inrs])

where:

Inrs Optional listener address specification. If this argument is not speci-
fied, the default listener list is used.

Exémple:
Use IBSDC to return instruments 6, 8, and, 24 to their predefined states.
CALL IBSDC (6, 8, 24).

6.3.3 Group Execute Trigger (IBGET)

You may want to execute the functions of more than one instrument in
your system at the same time. Group Execute Trigger (IBGET) simulta-
neously triggers the functions of multiple instruments addressed as listen-
ers. Not all instruments are designed to respond to IBGET. The operator’s
manual for each instrument tells whether that instrument responds, and
what its response is. The response is instrument specific.

IBGET is often used with IBSEND to trigger the function of a single instru-
ment. IBSEND sends programmed instruction to prepare the instrument to
respond. IBGET then triggers the response.

CALL IBGET ([Inrs))

where:

Inrs Optional listener address specification. If you do not specify this
argument, the default listener list is used.

Instrument Control Commands 6-5

Examples:

1. Use IBGET to take simultaneous readings of a voltmeter (17), an
ammeter (19), and a thermometer (4). These instruments have been
prepared by appropriate IBSEND commands.

CALL IBGET (17,19,4)

2. Example 3 of Section 5.3.3 shows the use of IBGET to trigger a single
instrument. ,

6.4 Programmed Commands (IBCMD)

66

You can augment the existing lists of universal and addressed commands
by using IBCMD. Each addressed command is associated with a decimal
value in the range 0 through 15, and each universal command is associated
with a decimal value in the range 16 through 31. (See Appendix B.) Some of
these commands have specific meanings. Many of them are treated as sepa-
rate IB routines (for example, IBLLO and IBGET). Several possible com-
mands do not yet have a specific meaning associated with them. If such a
meaning becomes defined for a command, IBCMD will allow you to use it,
even though the existing IB routines have no separate mnemonics for it.

CALL IBCMD (n [, Inrs])

where:

n The IB command specification. Enter a decimal value in the range 0
through 31. Specify addressed commands with values in the range 0
thru 15. Specify universal commands with values in the range 16
through-31. (See Appendix B.)

Inrs Optional listener address specification. If you do not specify this

argument, the default listener list is used. Listener specification

applies to addressed commands only. You cannot specify listener
addresses for a universal command.

Examples:

1. Assume that instrument 5 in your system recognizes a new addressed
command with a code of 12 that causes it to send out to the bus the
ASCII character string “general purpose instrument bus”. Use IBCMD
to execute this new addressed command.

CALL IBCMD (12,5)

Even if other instruments recognize this command they will not re-
spond, because they are not addressed to do so.

Instrument Control Commands

&

TN

2. Assume that several instruments in your system recognize a new uni-
versal command with a code of 29 that will ring a bell. Use IBCMD to
execute this new universal command.

CALL IBCMD (29)

Although this is a universal command, it rings the bells of only those
instruments that recognize its code 29.

Instrument Control Commands 6-7

&a

~=v

Chapter 7
Checking Instrument Status

Instruments on the IEEE bus can report their status to the IBV11-A/IB11.
Some instruments are designed to report their status by responding to a
serial poll. Others report their status by responding to a parallel poll. Some
can respond to both, but not simultaneously.

Serial polling checks the status of instruments one at a time. An instru-
ment responds to the serial poll by sending its status byte. The status byte
can report more than one piece of status information.

Parallel polling checks the status of one or more instruments simulta-
neously. Each instrument polled indicates one piece of information, its
status bit. This status bit is different from the status byte used with serial
polling.

7.1 Using Serial Polling to Check Instrument Status

When you serial poll an instrument on the IEEE bus, it sends a byte of
status information. Bit 6 (octal value 100) of this status byte has a special
meaning: it is set when the instrument is issuing a service request (see
Chapter 8) and clear when it is not. The other bits have no reserved mean-
ing, but indicate aspects of the current status of an instrument that are
defined in the instrument manual.

Instruments request service from the IBV11-A/IB11 by asserting the ser-
vice request (SRQ) bus line. However, since all instruments on the bus
share this line, the IB routines cannot recognize which instrument is re-
questing service until a serial poll is performed. Once the instrument re-
questing service is identified, it stops asserting the SRQ bus line.

7-1

-2

You can use either of two methods for identifying the device requesting
service through the IBSRQ routine (see Section 8.1.3). One method is to
allow the driver to initiate a serial poll once it detects assertion of the SRQ
line of the IEEE bus. This method is referred to as a “driver-initiated”
serial poll and entails the use of a user-written service routine. The second
method is the 'user-initiated’ serial poll. No service routine name is in-
cluded in the IBSRQ call; however, delayed SRQ processing must be speci-
fied to enable the system to perform the serial poll successfully while the
SRQ line is asserted.

The operating manual for each instrument tells whether the instrument is
designed to respond to a serial poll, and what that response indicates. An
instrument that can request service must be able to respond to a serial poll.

7.1.1 Determining an Instrument’s Status (IBSTS)

Use the function IBSTS to check the status of a single instrument by per-
forming a serial poll on that instrument.

istat = IBSTS ([tkr])
where:

istat The integer variable that receives the status byte. Its value is in
the range 0 through 255 (octal values 0 through 377). If bit 6 (octal
value 100) is set, the instrument addressed is requesting service. It
will stop requesting service because of this serial poll.

tkr The address specification of the device being polled. If no address is
specified, IBSTS uses the default talker list.

Example:

Assume that instrument 8 is a plotter which indicates in bit 5 (octal value
40) of its status byte whether its pen is up or down.

IPEN = IBSTS(8)
IF((IPEN,AND,"40) .NE.Q) TYPE 100
IF((IPEN.AND."40).,EQ.0Q) TYPE 101
100 FORMAT (1X»‘My Pen is ur.’)
101 FORMAT (1Xs’'My pen-is down.’)

7.1.2 Determine the Source of a Service Request (IBSPL)

You can determine whether any instrument is requesting service by seri-
ally polling the group with the function IBSPL. The instruments are polled
individually in the order in which they appear in the multiple talker speci-
fication. The polling continues until an instrument requesting service is
found or until the list of specified talkers is exhausted. When an instru-
ment requests service, an integer representing its status byte is returned to
the variable istat. This is the same status byte as that returned by IBSTS.
Another integer is returned to the variable index identifying the instru-
ment requesting service (1 indicates the first listed, 3 indicates the third,

Checking Instrument Status

PN

and so forth). IBSPL returns to your program without polling any of the
talkers listed after the one requesting service. If the complete list of talkers
is polled and none is requesting service, the variable index contains 0 and
the variable istat contains the status byte of the last device in the list.

index = IBSPL ([istat] [, tkr [, tkr [, ...]J])

where:

index An integer variable containing the serial number of the first in-
strument requesting service. The integer 1 indicates the first in-
strument in the list, 2 indicates the second, and so forth. The
integer 0 indicates that no instrument in the list is requesting
service. :

istat An optional integer variable that receives the status byte of the
last talker polled. The values are in the range 0 through 255 (octal
0 through 377).

tkr The address specification of talkers being polled. More than one
primary address can be specified, with optional secondary ad-
dresses as appropriate. Only the first talker specification may be
defaulted. When IBSPL is done, the default talker is the last in-
strument polled.

This call is useful for serial polling just one instrument, since index indi-
cates whether the instrument is requesting service. Therefore, it is not
necessary to check bit 6 of istat. -

Examples:

1. Také a serial poll of devices 1, 7, and 4.

BYTE INSTR (4)

DATA INSTR /1 7+ 4y O/

INDEX=IBSPL (ISTAT: INSTR)

IF (INDEX.EQ.0) TYPE 1001

IF (INDEX.NE.OQO) TYPE 1002, INSTR(INDEX),» ISTAT
1001 FORMAT(/1X:’'None of the instruments is resquesting service’)
1002 FORMAT(/1X¥s'Instrument’ +12: ‘is requesting service’/

1 /71Xy ’Its status byte is’y 04)

2. Serial poll instruments 4 and 7.

GO TO (100 200, 300), IBSPLIISTAT 44 7)+1
100 TYPE 101
101 FORMAT (/1X+’'No one reauesting service’)

+

200 TYPE 201

201 FORMAT (/1X¥» Instrument 4 is requesting service’)
C WE MIGHT WANT TO RECEIVE DATA FROM

c INSTRUMENT 4 AT THIS POINT

+

+

August 1982 Checking Instrument Status 7-3

300 TYPE 301
301 FORMAT (/1Xs’Instrument 7 is requesting service’)

+

3. Is instrument 3 requesting service?

IF (IBSPLCISTAT, 3) +NE.O) TYPE 1001
1001 FORMAT (/1Xs’Instrument 3 is reauesting service’)

7.2 Parallel Polling

7-4

Parallel polling provides a quick means of determining information con-
cerning the status of more than one instrument. This is because several
instruments can be polled simultaneously. An instrument indicates a sin-
gle piece of information with its status bit. Do not confuse this status bit
with the status byte used in serial polling. The status bit is either set or
clear to indicate one piece of information concerning an instrument’s
status. An instrument capable of responding to a parallel poll may have to
be enabled beforehand to do so with IBPPE. The operating manual for each
instrument tells whether the instrument is designed to respond to a paral-
lel poll. The response can be unique for as many as eight instruments.

7.2.1 Parallel Poll Enable (IBPPE)

Some instruments in your system can respond to parallel polling, but you
may have to prepare them to do this. Use parallel poll enable (IBPPE) to
assign a data line on which the instrument can respond, and a sense (0 or 1)
to indicate whether the instrument is to set that data line during parallel
poll when its status bit is set (1) or when it is clear (0). IBPPE only tells
instruments how to respond to a parallel poll; it does not actually conduct a
parallel poll. This is done by IBPPL.

CALL IBPPE (isense, line |, Inrs)

where:

isense An unsigned integer that specifies what state of the status bit will
cause the data line set when a parallel poll is conducted by calling
IBPPL. If isense is set to 0, the instrument sets the data line in
response to a parallel poll if its status bit is 0 (when it is not
requesting service). If it is set to any other value, the instrument
sets the data line when it is requesting service.

line Data line assignment. This tells the addressed instrument(s)
which data line to respond on when a parallel poll is conducted. It
is an unsigned integer in the range 1 through 8, corresponding to
the 8 data lines on the IEEE bus. Data line 1 indicates the least
significant bit of the data byte (see Section 7.2.4).

Checking Instrument Status

Inrs = Optional listener specification. This argument specifies the in-
strument(s) to which the data line and its sense are assigned. If no
listener is specified, the default listener list is used.

~ Usually, the best practice is to assign a separate data line to each
instrument. If this is done, only one instrument can assert any
one data line during a parallel poll.

7.2.2 Parallel Poll Disable (IBPPD)

Parallel poll disable (IBPPD) selectively disables instruments addressed as
listeners from responding to a parallel poll. It clears the line and sense
assignments specified to instruments with IBPPE. This is like IBPPU, ex-
cept that it applies only to the instruments addressed as listeners.

CALL IBPPD ([Inrs])

where:

Inrs Optional listener specification. If no listener is specified, the default
list is used.

7.2.3 Parallel Poll Unconfigure (IBPPU)

Calling IBPPU stops all instruments previously addressed as listeners in a
call to IBPPE (see Section 7.2.1) from responding to a parallel poll. Com-
pare this with IBPPD, Section 7.2.2

CALL IBPPU

Now no instrument can respond to a parallel poll until IBPPE is called
again. Calling IBPPU does not alter the default listener list.

7.2.4 Parallel Polling (IBPPL)

Use IBPPL to determine the state of instruments on the IEEE bus. Only
instruments that can respond and are enabled by IBPPE will respond. A
single piece of information concerning the status of an instrument is recog-
nized by whether a data line assigned to the instrument is asserted. Each
data line has an associated integer value. When an instrument asserts its
data line during a parallel poll, IBPPL returns the associated value to the
integer variable ireslt. If only one data line is asserted, its associated value
is recognized easily. If more than one data line is asserted, ireslt contains
the arithmetic sum of the values.

ireslt = IBPPL ([nl [, ..., n8]])
where:

nl, ..., n8 A list of up to 8 integers in the range 1 through 8 correspond-
ing to the 8 data lines. Only data lines specified here are in-
cluded in the poll. If no lines are specified, all 8 lines are
included in the poll.

Checking Instrument Status 7-5

7-6

ireslt An integer variable that receives the response to the poll.
Each data line has an associated integer value. Ireslt is set
equal to the sum of the integers associated with data lines that
are both asserted and included in the poll. The result of the
poll contained in ireslt is a value in the range 0 through 255.

The following list shows the contribution of each included and
asserted data line to the total result. If more than one device
asserts the same data line, the associated value of that data
line is added only once to the total result.

Data Line Value Added To Ireslt
1
2
4
8
16
32
64
128

W 3 & Ot B W N -

Checking Instrument Status

p-==1

Chapter 8
Service Requests

8.1 Using Service Requests

Some instruments on the IEEE bus are capable of requesting service from
the IBV11-A/IB11 Instrument Bus Interface. The operating manual for
each instrument tells whether the instrument can request service and, if so,
for what purpose. '

Service requests are indicated on the SRQ interface control line of the IEEE
bus. The IBV11-A/IB11 can check the line to determine whether a service
request is present. All instruments on the bus, however, share this line. If
SRQ has been asserted, the IB routines cannot determine which instrument
is involved until a serial poll is performed. The service request can only be
cleared by performing a serial poll.

You can specify to the driver one of two methods of identifying the device
requesting service with the IBSRQ routine. One method is to allow the
driver to initiate a serial poll once it detects assertion of the SRQ line of the
IEEE bus. This method is referred to as a “driver-initiated” serial poll. The
- second method is the ‘user-initiated’ serial poll. Here it is the user’s respon-
sibility to detect assertion of the SRQ line and to perform the serial poll.

Upon performing a serial poll and identifying the instrument requesting
service, you can also examine the instrument’s status byte to determine
what action is appropriate. If you have chosen the driver-initiated serial
poll, this examination and action takes place in a user-written service rou-
tine to which the system transfers control immediately following the serial
poll. This service routine executes asynchronously with respect to the rest
of your program. If you have chosen the user-initiated serial poll method,
you will examine the status byte and perform the requested service syn-
chronously with respect to the rest of the program.

8-1

You must call IBSRQ to be able to use either the driver—initiated or the
user—initiated method. Specifying both the service routine name and the
status byte variable constitutes selection of the driver—initiated approach.
Alternately, defaulting the service routine name and at the same time
specifying delayed processing, designates a user—initiated serial poll.

Several considerations are essential to a clear understanding of the driver’s
role in handling service requests with driver—initiated serial polls. These
considerations include:

e the need to provide the driver with a list of instruments capable of re-
questing service

e the information the driver passes to the service subroutine
e the situations that generate error conditions

e the consequence of more than one instrument requesting service at one
time

These four matters are expanded upon below.

Your program must supply a list of all instruments connected to the
IBV11-A/IB11 unit that are capable of generating a service request. This
list determines which instruments will be serially polled by the driver.
IBDEV permits you to specify this list.

After the requesting instrument has been identified, the driver returns its
bus address(es) and status byte to variables in the service routine which
you have specified in the IBSRQ call. These variables should be placed in a
COMMON statement, because their specification occurs in a part of your
FORTRAN program that is independent of the service routine. .

If you fail to call IBDEV with a device list, or if you omit from this list a
device which is indeed capable of asserting the SRQ bus line, it is possible
that the driver will detect the SRQ asserted condition but be unable to
identify the device requesting service. This is an error condition, but one
which is handled in a manner independent of the error processing scheme
presented in Chapter 9. In particular, this is called a locator error and is
identified as a -1 in the status byte variable. Therefore, to check for this
error condition, the first step your service routine should take is to test the
status byte for a -1. If -1 is detected, the service routine should be immedi-
ately exited.

There are three other error codes: -2, -3, and —4. An error code of -2 means
that a timeout error occurred during a serial poll, —3 means that there was
a conflict over control of the bus, and —4 means that there was no listener
on the bus.

Note that the status byte variable normally returns an 8-bit byte in the
least significant byte of the 16-bit variable. The upper eight bits are there-
fore always zero, except during an error condition. When an error occurs,
the full 16 bits are used to return a negative number. Therefore, there can
be no confusion between the error codes and the normal 8-bit status bytes.

IBS Version 2.1
8-2 Service Requests August 1982

Since all instruments use the same IEEE bus line to request service, the
SRQ line may still be asserted following the identification and complete
servicing of one instrument. The driver will continue to initiate serial polls
in this case, providing complete service for each instrument until all re-
questing devices have been serviced and the SRQ line is clear. Complete
service for each requesting instrument implies the execution of the user-
written service routine.

8.1.1 Testing the Service Request Flag (IBSRQF)

Use the function IBSRQF to determine if any instrument on the IEEE bus
is requesting service.

iflag = IBSRQF ()

where:

iflag An integer variable that indicates if any instrument is requesting
service. If no instrument is requesting service, the value 0 is re-
turned to iflag. If one or more instruments are requesting service,
the value -1 is returned to iflag. (See the IB11 UNIBUS to IEEE
Instrument Bus Interface Installation Manual.)

You can also call IBSRQF as a subroutine.
CALL IBSRQF (iflag)
Example: v

Your system contains only one instrument (3) that can request service.
When you press its CALL button, 1t requests service, indicating that it has
data to send.

BYTE VALUE (13)

+

+

TYPE 10
10 FORMAT (1X:’Press CALL button to take a reading.,’)
20 IF (IBSRQF().EQ.0) Go to 20 Wait for SRO)
CALL IBSTS(3) !Serial poll tells 3 to stop resuesting
lservice
CALL IBRECV (VALUE +15.3) 1Cet data

+
+

.

8.1.2 Specifying the Service Request Device List (IBDEV)

IBDEYV supplies the list of all instrument bus addresses which are capable
of generating service requests. When a driver-initiated serial poll is
selected and an SRQ request occurs, the driver polls the devices on this list
to determine which instrument caused the request. Should the SRQ line be
set before such a list is made available, or should the SRQ line be set by a
device not included in the device list, an error value of -1 will be returned
in the status byte variable which is specified in the IBSRQ call.

Service Requests 8-3

84

CALL IBDEV (dev—1st)

dev-1st A list of primary and/or secondary bus addresses of instruments
that are capable of generating an SRQ request. The maximum
number of devices that may be specified is 30 (decimal). At least
one address specification is required. Byte array addressing is
preferable with specification of a large number of devices.

The order in which devices are listed constitutes a priority struc-
ture with respect to servicing if multiple service requests occur.
Thus, the first entry is serviced first and so on.

Example: see example in Section 8.1.3.

8.1.3 Specifying the Service Request Routine (IBSRQ)

IBSRQ specifies information related to the disposition of service requests.

- This subroutine call selects either the driver—initiated or the user—initiated

serial poll method of handling service requests.

- If you minimally specify the subroutine-name and status byte variable, the

system will execute the driver—initiated serial poll. In this case, specifica-
tion of the remaining variables is an important consideration with respect
to the associated service routine. Your service routine will use the bus
address variables and the status byte to recognize the device which re-
quested service and the nature of the service required. Additionally, the
dev—1st parameter will notify the driver of precisely which devices on the
serial poll list are to be dealt with by the service routine. Note that an
instrument which is included in the list supplied to IBDEV need not neces-
sarily be handled by the service routine. If this is the case, the instru-
ment(s) in question will have their requests recognized and cleared by the
driver—initiated serial poll. Synchronous processing by your main program
will continue, and no attempt will be made to call a service routine.

On the other hand, if you default the subroutine-name and specify the
idelay parameter to indicate delayed processing, you designate the user—in-
itiated serial poll. These two steps are prerequisites to the calling of
IBSRQF and /or one of the serial poll routines.

CALL IBSRQ ([subroutine—ngime],[ipaddr],[isaddr],[istat],[idelay],[dev—-lst])
where:

subroutine—name is the name of the user—written subroutine that will
handle service request interrupts generated by instru-
ments included in the dev-1st. If no routine is speci-
fied, the current subroutine assignment is disabled;
this allows you to conduct your own serial poll (as long
as idelay = 1 for delayed processing). If this argument
is defaulted, the only other significant parameter spec-
ification is the idelay argument.

Service Requests August 1982

ipaddr

isaddr

istat

idelay

dev-lst

is an integer variable to receive the primary bus ad-
dress of the instrument that asserted the SRQ line.
This variable is used by a service routine which ser-
vices more than one device to identify which instru-
ment issued the request currently being serviced.

is an integer variable to receive the secondary bus ad-
dress of the instrument that asserted the SRQ line. If
the instrument requesting service does not have a sec-
ondary address, a value of -1 will be returned. This
variable is used by a service routine which services
more than one device to identify which instrument is-
sued the request currently being serviced.

is an integer variable to receive the status byte re-
turned by the requesting device in response to the
driver’s serial poll. This variable is used by a service
routine to determine the nature of the current request
and must be specified if the subroutine-name para-
meter is specified. The error values are also reported
in this variable as described in Section 8.1.

is a flag determining whether SRQ processing is to
take place as soon as the service request is received, or
is to be delayed. If idelay = 0, the system will abort
any transfer that is in progress at the moment of the
SRQ interrupt and the SRQ processing will take place
immediately. If idelay = 1, the SRQ processing will be
delayed until the end of the current transaction or a
device timeout, whichever occurs first. If idelay is de-
faulted, the abort case will be assumed. If the SRQ
subroutine—name is defaulted, this flag should be set
to 1 to prevent any SRQ interrupts from aborting the
current transaction and to allow the user—initiated se-
rial poll to be performed.

is a list of primary and/or secondary bus addresses of
instruments to be serviced by the user—specified rou-
tine. This list is a subset of the IBDEV list. The maxi-
mum number of addresses is 30 (decimal). If this
argument is defaulted, service requests from all of the
instruments listed in the call to IBDEV will be di-
rected to the user’s serivce routine.

Requirements of the user—written service routine:

1. The service routine can have no arguments and can only communicate
with the main program that has been interrupted by means of
COMMON areas. The variables which will receive the primary address,
secondary address and status byte information will often be part of this
COMMON area. This procedure allows specification in the IBSRQ call
and provides access in the service routine.

IBS Version 2.1
August 1982

Service Requests 8-5

8-6

secondary address and status byte information will often be part of this
COMMON area. This procedure allows specification in the IBSRQ call
and provides access in the service routine.

2. The service routine can change terminators, but when the service rou-
tine is completed and control returns to the main program, the termina-
tors in the main program remain as they were changed by the service
routine. The same applies to the timeout value.

3. The main program and the service routine establish and maintain sepa-
rate default talker and listener lists. An error occurs if talker or lis-
tener specifications are not given in a routine in which they are
required before their respective default lists have been established.

4. If the user-written service routine attempts to call IBDEV, IBSRQ,
IBSTS, or IBSPL, an error condition results.

5. User-written subroutines return through the normal RETURN state-
ment.

6. In Extended Memory (XM) systems, user-written routines must reside
in the root segment in low memory (below 28K words) and the associ-
ated job must be privileged.

7. In Extended Memory (XM) systems, the user-written service routine
and any data areas used or modified by the user-written service routine
must not reside in the physical memory mapped by kernel page-
address-register number 1; this encompasses the virtual address range
from 020000 (octal) to 037776 (octal). 1f necessary, use the LINKER
program to enforce this restriction. (For additional information, see the
RT-11 Version 4 System User’s Guide.) Additionally, the routine that

* establishes the user-written service routine (by calling IBSRQ) and the
user-written service routine itself must employ privileged, not virtual,

mapping.
Example:

Assume that instrument 4 is a voltmeter which can be programmed to
automatically trigger a reading every 0.1 seconds and to assert the SRQ
bus line when it is ready to transfer data. Assume that this capability can
be programmed with the ASCII string 'PROGRAM'. The following sample
illustrates the way in which IBSRQ and IBDEV would be used to handle
the service requests.

Service Requests

COMMON ISTAT
EXTERNAL IBSERVY

+

CALL IBDEV (4+5:1,+7)

CALL IBSRQ (IBSERV,,» ISTAT,IDELAY +4)

CALL IBUNT

CALL IBUNL

CALL IBDCL

CALL IBSEQOI (’PROGRAM’ ++4)

CALL IBUNL

PAUSE ‘DATA ACOUISITION PHASE’

IF ((ISTAT.EQ.,-1).,0R.(ISTAT.EQ.-2)) GO TO S00

+

+

500 STOP ‘END’
END

‘SUBROUTINE IBSERV
COMMON ISTAT
DIMENSION MESSAG (10}

+

IF (ISTAT.EQ.-1) GO TO 900
IF (ISTAT.EQ.-2) GO TO 910
LEN = IBRECY (MESSAG,10.:4)
CALL IBRCUS (IEND)

CALL IBUNT
TYPE SOy IENDs(ITXTBF(I)»I=1,LEN)
50 FORMAT(’ The receive status word is: " 4I1/

147 The messade received from the voltmeter wass: ‘' +10AR2)
+

GO TO 950

900 TYPE 901
901 FORMAT(’ Locator error,’)
GO TO 950
910 TYPE 911
911 FORMAT(’ Timeout error.’)
930 RETURN
END

Service Requests 8-7

C'hapter 9
Detecting and Reporting Errors

9.1 Errors and Error Messages

Each IB routine can detect and report errors to an internal error handling
routine. This routine prints an error message to identify the problem and
then returns control to the system monitor. This is called a fatal error
because the program is not completed (see Section 9.1.1).

There are two forms of error messages: long and short. The long form ex-
plains more but requires more memory. The short form is an integer associ-
ated with each error type. You will receive long error messages unless you
request short ones. If you want to use short error messages, see Section 4.5.

In the long form, the error message is preceded by “Error in routine
xxxxxx:”. For example:

Error in routine IBSEND: Invalid parameter
The corresponding short error message is
- IB Error #3

Table 9-1 lists the error messages, the associated integer value for each
error type, and the appropriate action to correct the error condition.

9-1

Table 9-1:

IB Routine Error Messages

Error Type

Error Message

Action

Timeout

Invalid instrument address

Invalid parameter

No default talker list available |

No default listener list

available

SRQ abort of in progress
transmission . -

The IB routine waited for the
next character to be sent or
received for a longer time than
specified in the IBTIMO routine.
Specify a longer timeout (see
Section 10.4), or check that all
your instruments are connected,
turned on, and correctly ad-
dressed (see Section 5.2). '

Primary addresses specified
must be in the range 1 through
30, or ASCII characters ‘@
through *’ or ‘SP’ through ‘>,
and secondary addresses must be
in the range 200 through 230, or
ASCII characters *’ through .
(See Section 5.2).

Check that all parameters are
valid. No parameter that must
be specified can be defaulted.
Each parameter must be within
the limits defined in the descrip-
tion of the routine for which it is
specified. All parameters must
be of the proper data type. For
example, integers must be used,
not real numbers.

~The first IB routine in the main-

program, or in an SRQ routine,
that required a talker specifica-
tion cannot use the default
talker list until a talker has been
specified, to establish the default
talker list.

The first IB routine in the main
program, or in an SRQ routine,
that requires a listener specifica-
tion cannot use ‘the default lis-
tener list until listeners have
been specified, to establish the
default listener list.

The current bus transaction was
aborted as a result of an SRQ in-
terrupt (assertion of the SRQ
line causes the interrupt). This is
the default case. To allow com-
pletion of the transaction, specify
the IBSRQ idelay argument
equal to 1 (see Section 8.1.3).

Detecting and Reporting Errors

~v—

Table 9-1: IB Routine Error Messages (Cont.)

Error Type

Error Message

Action

7

10

11

12

13

14

15

Invalid IBV11-A unit number

IB.SYS is not loaded

Default talker list overﬂow

Default listener list overflow

Device issuing SRQ was not
listed in a call to IBDEV.

The user-written service rou-
tine attempted to call IBSRQ,
IBDEV, IBSTS, or IBSPL.

Same instrument addressed to
talk and listen

Conflict over control of the bus

No valid listener on the bus

- vices capable of generating an

If this error is set to be nonfatal,

_in control of the IEEE bus at any

Rebuild IB.SYS after editing
IBLOC.ASM to include informa-
tion about the IBV11-A/IB11
unit specified (See Appendix C),
or make corrections to the unit
number specified in the call to
IBUNIT.

Type: LOAD IB (see Section
4.3.6.) after the monitor prompt,
then rerun your program.

Default talkers exceed the capac-
ity of the default lists. The de-
fault talker list can include a
maximum of one primary and
one secondary address. The
length of this list cannot be
extended.

Default listeners exceed the ca-
pacity of the default listener list.
The default listener list can in-
clude a maximum of 30 decimal
listener address values. The
length of this list cannot be
extended.

Supply the complete list of de-

SRQ in a call to IBDEV (see
Section 8.1.2).

Remove the call to IBSRQ,
IBDEV, IBSTS, or IBSPL from
the service routine.

In calls to IBRECV, IBARCV,
IBXFER, and IBAXFR, make
sure that no instrument is speci-
fied as both talker and listener.

the instrument is addressed first
as a listener, then as a talker,
and transmission is allowed.

Only one IBV11-A/IB11 must be

one time. Make sure that no
other instrument is attempting
to control the bus.

Ensure that all IEEE bus cables
are connected, and that all in-
struments are turned on and cor-
rectly addressed.

Detecting and Reporting Errors 9-3

94

Table 9-1: IB Routine Error Messages (Cont.)

Error Type Error Message : Action

16 . No timeout support available. Perform a sysgen on the system
monitor in order to include sup-
port for device timeout, then re-
build the device driver and IBS
subroutine library as outlined in
Appendix C.

There is one known situation in which the IB routines do not detect an
error condition. If your FORTRAN program is complex, it can use the stack
heavily. If too many words are entered on the stack, the IBV11-A’s vectors
can be written into by the stack. When the next IB interrupt occurs, the
vector location will contain incorrect values. This will generally cause a
fatal error with no IB error message. The exact symptoms are unpredict-
able (possibly an “illegal instruction” message or an “illegal memory refer-
ence” message).

The solution is to relink your FORTRAN program using the BOTTOM
switch to specify that the stack begin at an address greater than the default
of 1000 (octal). For example, to allow 200 (octal) more bytes for the stack
(see the RT—11 System User’s Guide), type:

.LINK TEST,IBLIB/BOTTOM:1200

9.1.1 Setting Error Handling Characteristics (IBSTER)

The internal error handler should be adequate for most operations. How-
ever, you may need to modify the way it responds to certain errors.

Although this error handler cannot be called directly from your FORTRAN
program, you can set parameters within it to define its response when an
error is detected.

Each error type is identified by number in Table 9-1. By using IBSTER
with a number identifying the error type, and another integer, you can
define the response of the error handler to an error condition.

CALL IBSTER (nerr, ncount)

where:

nerr An integer corresponding to the type of error for which you are
setting the error handling characteristics (see Table 9-1).

ncount An integer value that indicates the action to take to handle
this type of error.

Detecting and Reporting Errors

s

P

Value Action

0 Prints the error message and returns to
your program.

1 Prints the error message and exits to the
monitor. This is the default case, when IB-
STER has not been called for an error type.

2-127 Prints the error message and returns to
your program. The value is decremented.
You can use this feature to specify how
many times you will allow this type of error
to occur before it becomes fatal. If ncount
falls in this range, the error is fatal when it
occurs for the ncount’th time.

<0 or >127 Any value less than 0 or greater than 127
causes this error type to return to your pro-
gram without printing the error message.

Examples:

After the following call is executed all future ‘No default listener list avail-
able’ errors will print a message and then return to your program. After the
call, error 5 will never be fatal.

CALL IBSTER (5, 0)

After the following call each of the next three timeout errors prints a mes-
sage and then returns to your program. The fourth timeout error will be
fatal and the program will print a message and exit to the monitor.

CALL IBSTER (1, 4)

9.1.2 Reading the Error Flag (IBERRF)

IBERRF returns an integer that designates all error types that have oc-
curred since the last call to IBERRF (or since the beginning of the program,
if this is the first call to IBERRF). IBERRF returns to the integer variable
maperr the arithmetic sum of the values associated with the different types
of errors which have occurred, and which are listed in the call to IBERRF.
Only the error types that are reported in maperr are cleared from the
internal error log. For example, if you first call IBERRF with only error
type 3 specified, no other errors will be reported at that time, even if they
have occurred. If later you call IBERRF to report all errors (with no argu-
ments specified), then it will report error 3 only if another error 3 has
occurred since the previous call to IBERRF. However, it will report other
errors whether they occurred before or after the previous call.

maperr = IBERRF (Inl [, ..., n16]])

Detecting and Reporting Errors 9-5

where:

maperr

nl, ..., nl16

Table 9-2: Value Added to the Result in MAPERR

The sum of the associated values of all error types that have
occurred since the last call to IBERRF, or since the beginning

of the program.

A list of integers corresponding to the error types. The values
must be in the range 1 through 16. Only the associated val-
ues of error types specified will be returned in the result to
maperr. If no values are listed, all error types are included.
The associated values of error types are listed in Table 9-2.

Error Type Decimal Octal
1 1 1
2 2 2
3 4 4
4 8 10
5 16 20
6 32 40
7 64 100
8 128 200
9 256 400

10 512 - 1000

11 1024 2000

12 2048 4000

13 4096 10000

14 8192 20000

15 16384 40000

16 32768* 100000

*You must check this value using the octal representation;
the number is too large to represent as a FORTRAN

decimal integer.

Example:

The following example checks to see if there is a valid listener on the bus. If
there is none, the ‘No valid listener’ error condition exists, and its associ-
ated octal value 40000 is returned to the integer variable maperr. Other
error conditions can also exist, but are not included. These are not cleared
from the internal error flag, and can be detected in later calls to IBERRF.
You can check for a valid listener much more easily by using IBLNR, as
seen in the example in Section 10.6.

9-6 Detecting and Reporting Errors

August 1982

10

20

BYTE MESSAG(30)
CALL IBSTER(15: -1)

CALL IBSEND (‘SETUP’ s +7)
IF(IRERRF(15).EQ.0) GO TO 20

PAUSE ‘Turn on the equipment!’
GO TO 10
caLL IBSTER(15: 1) !
CALL IBRECV(MESSAG, 30 7)

L]

+

+

MaKke error iZ nonfatal, do
not print messasdge.

Try to send it a messade.

Instrument iz on the bus:

continue.

MaKe error 15 fatal agdain,

Detecting and Reporting Errors

9-7

Chapter 10
Advanced Programming Techniques

10.1 Selecting an IBV11-A/IB11 Unit (IBUNIT)

An instrumentation system with more than one IEEE bus must have a
separate IBV11-A/IB11 unit for each bus. The software can communicate
through only one unit at a time.

The default control/status register address (defined by the symbol IB§CSR)
and the default vector address (defined by the symbol IB§VEC) for the first
IBV11-A/IB11 unit must be entered into the file IBLOC.ASM. The symbol
IBNUNI in the file IBLOC.ASM must be set equal to the total number of
IBV11-A/IB11 units in your system (from one to eight). Then the IB device
driver must be re-built to accommodate all units in the system (see
Appendix C). If these conditions are not met, or if the locations specified in
the file IBLOC.ASM are not actually present on the computer, an error is
generated and you cannot change from one IBV11-A/IB11 unit to another.

When the first IB routine is called in your program communication is auto-
matically established with unit 0, unless that routine is IBUNIT specifying
a different unit number. To change operations from one instrument bus to
another, specify which IBV11-A/IB11 unit you want to communicate
through by using IBUNIT either as a subroutine or as a function.

Each call to change units creates the need to establish new default talker
and listener lists. The IB software maintains the following information
separately for each unit: SRQ processing information, terminator lists, and
timeout values.

IBS Version 2:1
August 1982 . 10-1

SRQ processing can be active on only one unit at a time. The SRQ routine
will remain active on that unit, no matter which unit has been selected by
IBUNIT.

CALL IBUNIT ([nunit])
or

nold = IBUNIT ([nunit])
where:

nunit An integer in the range 0 to 7 specifying the number of the new
IBV11-A/IB11 unit. If this integer is omitted, the unit number
remains unchanged.

nold An integer variable that is set equal to the number of the
IBV11-A/IB11 unit before this call to IBUNIT.

Example:

1. A system is specified to operate on unit 2. Then operation is changed to
unit 1. A record is kept of the number of the unit (2) under which the
system was formerly operating. The system is later returned to unit 2.

CALL IBUNIT (2)
nold = IBUNIT (1)

CALL IBUNIT (nold)

10.2 Defining Data Message Terminators (IBTERM)

Data messages are most commonly terminated by line feed @ or carriage
return @ED. However, this is not universal among all laboratory instru-
ments. The operator’s manual for each instrument tells which terminator(s)
that instrument sends or receives. IBTERM allows you to specify which
characters will be recognized as message terminators in future calls to
IBRECV, IBARCV, IBXFER or IBAXFR. Message terminators are stored
in the array you specify as the first argument in a call to IBRECV or
IBARCV.

Before you call IBTERM, only @ and are recognized as terminating
characters. This means that if a talker other than the IBV11-A/IB11 sends
either U or @ED, the IBV11-A/IB11 stops the instrument from transmitting

IBS Version 2.1
10-2 Advanced Programming Techniques August 1982

any further data at that point. In case your instrument sends message
terminators of followed by @ with the EOI line asserted, be sure to
define only @ as a valid terminator; otherwise, the BED is considered the end
of the message, and the bus may hang due to no listener present to receive
the @.

Use IBTERM to change the message terminators from @ and @D to what-
ever terminators the various instruments in your system send. You can
specify up to four message terminators at one time. When you do this, you
establish a new list of terminating characters. and @ are no longer
recognized as terminators unless they are included in the new list.

When no special message terminators are desired, remove them by calling
IBTERM with no argument specified. @ and will not be restored auto-
matically. You must call IBTERM with @ and @D specified to re-establish
them as active message terminators.

Call IBTERM as a subroutine.
CALL IBTERM ([chr-val [, chr-val, ...]})
where:

chr-val = A decimal or octal integer value of the ASCII character being

: defined as a terminator, or a quoted ASCII character. Specify up
to four values at one time. Designate a value as octal by preced-
ing it with a double quote. When no argument is specified, IB
routines recognize no message terminators.

A select list of ASCII characters commonly used as message terminators is

-shown below with their decimal and octal values. Any ASCII character
with a decimal value in the range 0 through 127 (octal 0 through 177) can
be used as a terminator. Appendix A contains a complete list of ASCII
characters with their decimal and octal values.

Symbol Decimal Octal Name

<ETX> 3 3 End of text

<EOT> 4 4 End of transmission
<LF> 10 12 Line feed

<VT> 11 13 Vertical tab

<FF> 12 14 Form feed

<RET> 13 15 Carriage return
<ETB> 23 27 End of transmission block
 25 31 End of medium
<SUB> - 26 32 End of file

<ESC> 27 33 Escape ,
<FS> 28 34 File separator
<GS> 29 35 Group separator
<RS> 30 36 Record separator

Advanced Programming Techniques 10-3

Example:

If one of your instruments recognizes carriage return G as a message /
terminator, and another recognizes form feed &, you can specify these char- '
acters as message terminators with the following:

CALL IBTERM("15, "14)
or

CALL IBTERM(13, 12)

LF is no longer an active message terminator. @D is retained as a message
terminator. When any instrument sends as a terminator, data transmis-
sion stops.

You can retain @ as an active terminator by including its integer value
among those specified in the argument.

CALL IBTERM ("15, "14, "12)

10.3 Setting the Timeout (IBTIMO)

Use IBTIMO to specify how long the software will wait for an action to
complete during data transmission. If, for any character in a message
transfer, the addressed talker does not complete transmission within the
specified timeout period, or the addressed listeners do not respond, a
timeout error occurs.

As a prerequisite to specification of the timeout period, device timeout sup-
port must be included in your system monitor. Otherwise, this routine will
return an error message. Additionally, if no timeout period is specified, or if
the current one is disabled, the IB routines wait indefinitely for transmis-
sion to complete. This will cause the system to hang if for some reason the
action never occurs. You can use IBTIMO as either a subroutine or as a
function.

CALL IBTIMO ([nticks]) ‘
or
nold = IBTIMO ([nticks])

where:

nticks An unsigned integer that specifies the length of the timeout
period in ticks (65,535 maximum — see Appendix F for handling
integers larger than 32,767). A tick is 1/60 second on 60Hz power
and 1/50 second on 50Hz power. If some timeout period is speci-
fied, the system must have a system line clock. If nticks is speci-
fied as 0, the timeout feature is disabled. If nticks is defaulted, the
current timeout setting remains unchanged.

nold An integer variable whose value is the length in ticks of the previ-
ous timeout period before this IBTIMO was called.

v

104 Advanced Programming Techniques

Example:

The following example establishes an initial timeout period of one second
(assuming 60 Hz line frequency). The timeout is then increased to three
seconds, saving the initial timeout period in the integer variable nold. The
initial timeout period is finally restored. ‘

CALL IBTIMO (60)
NOLD = IBTIMO (180)

CALL IBTIMO (NOLD)

10.4 Waiting for Asynchronous Transmission to Complete
(IBWAIT) |

When you use IBASND, IBARCV, or IBAXFR, data transmission proceeds
asynchronously while your program continues. IBWAIT waits for that data
transmission to complete. It is called automatically at the beginning of
every other IB routine.

CALL IBWAIT

If the last IB routine called before IBWAIT was IBARCV or IBAXFR, you
can use IBWAIT as a function. Used this way, IBWAIT will return to the
integer variable nbytes the number of bytes actually received by IBARCV
or the number of bytes actually transferred during IBAXFR (just as
IBRECV and IBXFER work as functions).

nbytes = IBWAIT ()

where:

nbytes An integer variable that receives the number of character bytes
transmitted.

10.5 Checking for Valid Listeners (IBLNR)

To ensure that instruments you want to be listeners are currently con-
nected to the IEEE bus and turned on, use the function IBLNR. If any of
the instruments specified as listeners are valid, IBLNR returns —1 (true) to
the integer variable ivalid. If none of the instruments specified is currently
a valid listener, the ‘No valid listener’ error condition exists, but does not
cause an error or affect the error flag. IBLNR returns O (false) to the inte-
ger variable ivalid. This is especially useful in checking a single device.

Advanced Programming Techniques 10-5

ivalid = IBLNR ([Inrs])

where:

ivalid An integer variable that receives the value returned by IBLNR. A
-1 (true) indicates that at least one instrument specified is a valid
listener. A 0 (false) indicates that no instrument specified is a
valid listener.

Inrs The optional listener specification. If no listener is specified,
IBLNR uses the default listener list. '

Example:

LOGICAL THERE
BYTE MESSAG (30)

10 THERE = IBLNR (15) !'Ts instrument 15 on?
IF (THERE) GO TO 20 'If sos Proceed,
PAUSE ‘Turn on the equipment!’

GO TO 10

20 CALL IBSEND (‘SETUP’+415)
CALL IBRECY (MESSAG:30,15)
TYPE 30

30 FORMAT ('$EQUIPMENT IS NOW ON‘)
END

10-6 Advanced Programming Techniques

Appendix A
ASCII Character Codes

ASCII Octal Decimal Binary Hexadecimal
Character Code Code Code Code
NUL 000 0 0000000 00
SOH 001 1 0000001 01
STX 002 2 0000010 02
ETX 003 3 0000011 03
EOT 004 4 0000100 04
ENQ 005 5 0000101 05
ACK 006 6 0000110 06
BEL 007 7 0000111 07
BS 010 8 0001000 08
HT 011 9 0001001 09
LF 012 10 0001010 0A
VT 013 11 0001011 0B
FF 014 12 0001100 0oC
CR 015 13 0001101 (1))
SO 016 14 0001110 OE
SI 017 15 0001111 OF
DLE 020 16 0010000 10
DC1 021 17 0010001 11
DC2 022 18 0010010 12
DC3 023 19 0010011 © 13
DC4 024 20 0010100 14
NAK 025 21 0010101 15
SYN 026 22 0010110 16
ETB 027 23 0010111 17
CAN 030 24 0011000 18
EM 031 25 0011001 19
SUB 032 26 0011010 1A
ESC 033 27 0011011 1B
FS 034 28 0011100 1C
GS 035 29 0011101 1D
RS 036 30 0011110 1E

us 037 31 0011111 1F

ASCII Octal
Character Code

Sp 040
! 041
¥ 042
043
$ 044
% 045
& 046
' 047

(050
) 051
* 052
+ 053
) 054

-~
[=]
(35
J

O O WNHO
(=3
[=2]
44

O AT
(=]
\1
»

S<CHRITOY OZZURS-I QEEUQEPE
[y
—
'S

A2 ASCII Character Codes

Decimal
Code

Binary
Code

0100000
0100001
0100010
0100011
0100100
0100101
0100110
0100111

0101000
0101001
0101010
0101011
0101100
0101101
0101110
0101111

0110000
0110001
0110010
0110011
0110100
0110101
0110110
0110111

0111000
0111001
0111010
0111011
0111100
0111101
0111110
0111111

1000000
1000001
1000010
1000011
1000100
1000101
1000110
1000111

1001000
1001001
1001010
1001011
1001100
1001101
1001110
1001111

1010000
1010001
1010010
1010011
1010100
1010101
1010110
1010111

Hexadecimal
Code

ASCII
Character_

>u_.|/r—\N'_<N

ormy D g hO L0 T

s<gcwaoD

P e N K

DEL

Octal Decimal
Code Code
130 88
131 89
132 920
133 91
134 92
135 93
136 94
137 95
140 96
141 97
142 98
143 929
144 100
145 101
146 102
147 103
150 104
151 105
152 106
153 107
154 108
155 109
156 110
157 111
160 112
161 113
162 114
163 115
164 116
165 117
166 118
167 119
170 120
171 121
172 122
173 123
174 124
175 125
176 126
177 127

Binary
Code

1011000
1011001
1011010
1011011
1011100
1011101
1011110
1011111

1100000
1100001
1100010
1100011
1100100
1100101
1100110
1100111

1101000
1101001
1101010
1101011
1101100
1101101
1101110
1101111

1110000
1110001
1110010
1110011
1110100
1110101
1110110
1101111

1111000
1111001
1111010
1111011
1111100
1111101
1111110
1111111

Hexadecimal

Code

58
59
5A
5B
5C
5D
5E
5F

60
61

ASCII Character Codes

A-3

Appendix B
Command Mnemonics

B.1 IEEE Standard Command Codes

Table B-1 lists the IEEE standard command codes and shows the lines that
are set on the IEEE bus when they are executed. The commands that are
used to address instruments and the codes to address the instruments are
explained in Tables B-2 through B-6.

Table B-1: Command Codes

Mnemonic
ACG addressed command group
ATN attention
DAB data byte
DAC data accepted
DAV data valid
DCL device clear
END end
EOS end of string
GET group execute trigger
GTL go to local
IDY identify
IFC interface clear
LAG listen address group
LLO local lock out
MLA my listen address
MTA my talk address
MSA my secondary address
NUL null byte
OSA other secondary address
OTA other talk address
PCG primary command group
PPC parallel poll configure
PPE parallel poll enable
PPD parallel poll disable
PPR1 parallel poll response 1
PPR2 parallel poll response 2
PPR3 parallel poll response 3
PPR4 parallel poll response 4
PPR5 parallel poll response 5
PPR6 parallel poll response 6
PPR7 parallel poll response 7
PPR8 parallel poll response 8
PPU parallel poll unconfigure
REN remote enable
RFD ready for data
RQS request service
SCG secondary command group
SDC selected device clear
SPD serial poll disable
SPE serial poll enable
SRQ service request
STB status byte
TCT take control
TAG talk address group
UCG universal command group
UNL unlisten
UNT untalk

B-2 Command Mnemonics

Message Name

(Notes 1,9)

(Notes 2, 9)

(Note 3)
(Note 4)

(Note 5)

(Note 6)

(Note 7)

(Note 10)

(Note 10)

(Note 9)

(Notes 8, 9)

(Note 11)

Bus Signal Line(s) and Coding That Asserts
the True Value of the Message

=
w e —=E

o <

AC
SE

SE

ERERER BEcCcRRERCccEgccccccacc 2 RREERER B B BEBRccEE BaRrca zgaz

KoK R RO E MM O ML O Y

(OSA

D

I

0
7654321

000XXXX
XXXXXXX
DDDDDDD
7654321
XXXXXXX
XXXXXXX
0010100
XXXXXXX
EEEEEEE
7654321
0001000
0000001
XXXXXXX
XXXXXXX
01 XXXXX
0010001
O1LLLLL

NN
DRD
AFA
vDC

XXX
XXX
XXX

XX0
1XX
XXX
XXX
XXX

XXX
XXX
XXX
XXX
XXX
XXX
XXX

XXX

XXX

XXX

MSA)

(OTA = TAG N\ MTA)

MR DR R R MR MMM <

O OO
oO~OoOoCOWMMKOOO

O N - O
MM R DM~ ~O
= H MO WNNKO O
HHMKONNNMKOOO
MM R, DO RO

0000101
110SPPP

321
111DDDD

4321
XXXXXX1
XXXXX1X
XXXX1XX
XXX1 XXX
XX1XXXX
X1 XXXXX
1 XXXXXX
XXXXXXX
0010101
XXXXXXX
XXXXXXX
1 XXXXXX
11 XXXXX

MO OO

XXX
XXX

XXX

XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
X0X
XXX
XXX
XXX
XXX
XXX
XXX
XXX

XXX
XXX
XXX
XXX
XXX

zZnp»

O

(==
F T B B B i Rl ST Rl i B

il I S

1
1

-
>

= e e e e e e e

R I R R e

T T

-t
I->R-"R
Q==
ZE=

b
»
i

X XX
X XX
X XX
X XX

X XX
X XX
X XX
X1X
X XX
X XX
X XX

X XX

X XX

X XX

— (PCG = ACG V UCG V LAG V TAG)

X X XX
X X XX

X XX

X XX
X XX
X XX
X XX
X XX
X XX
X XX
X XX
X XX
X X1
X XX
X XX
X XX
X XX
X XX
X XX
1 XX
X XX

X XX
X XX
X XX
X XX
X XX

TN

Table B-1: Command Codes (Cont.)

The 1/0 coding on ATN when sent concurrent with multiline messages has been added to this revision for interpretive
convenience.

NOTES:

A A

10.

11

D1-D8 specify the device dependent data bits.

E1-E8 specify the device dependent code used to indicate the EOS message.
L1-L5 specify the device dependent bits of the device’s listen address.
T1-T5 specify the device dependent bits of the device’s talk address.

S1-S5 specify the device dependent bits of the device’s secondary address.

S specifies the sense of the PPR.)

S Response

0 0
1 1

P1-P3 specify the PPR message to be sent when a ;;arallel poll is executed.
P3 P2 P1 PPR Message
0 0 0 PPR1

1 1 1 PPRS8

D1-D4 specify don’t care bits that shall not be decoded by the receiving device. It is recommended that all zeroes be
sent.

S1-S6, S8 specify the device depe}ident status. (DIO7 is used for the RQS message.)

The source of the message on the ATN line is always the C function, whereas the messages on the DIO and EOI
lines are enabled by the T function.

The source of the messages on the ATN and EOI lines is always the C function, whereas the source of the messages
on the DIO lines is always the PP function.

This code is provided for system use.

B.2 Mnemonic and Symbol Definitions for Table B-1

The logical state a bus signal can have is specified in the Table B-10,1,Y,
or X. These represent the logic states as follows:

0 = logical zero

1 = logical one

X = don’t care for the coding of a received message

X = must not drive unless directed by another message for the coding
of a transmitted message

Y = don’t care for transmitted messages

The mnemonic used for signal type in Table B-1 are as follows:

U
M

One line message
Multiline message

The mnemonic used for class of signal in Table B-1 are:

AC = Addressed command

AD = Address (talk or listen)
DD = Device dependent
HS = Handshake signal

August 1982 Command Mnemonics B-3

UC = Universal command
SE = Secondary command
ST = Status

Addressed Commands — Table B-2 lists the IEEE-bus command codes
that affect only the instruments addressed to listen.

Table B-2: Addressed Commands

Octal
FORTRAN ASCII ASCII Keyboard Command Command
Routine Code Character Function Function Mnemonic
IBGTL 001 SOH CTRL/A Go to local GTL
IBSDC 004 EOT CTRL/D Selected SDC
device clear
IBGET 010 BS CTRL/H Group execute GET
trigger

Universal Commands — Table B-3 lists the IEEE-bus command codes
that affect all instruments on the IEEE bus.

Table B-3: Universal Commands

Octal
FORTRAN ASCII ASCII Keyboard Command Command
Routine Code Character Function Function Mnemonic
IBLLO 021 DC1 CTRL/Q Local lockout LLO
IBDCL 024 DC4 CTRL/T Device clear DCL
IBPPU 025 NAK CTRL/U Parallel poll PPU

unconfigure

Listener Addressing — Table B—4 contains the IEEE-bus command
codes that direct instruments to listen. They are sent automatically when
you specify a primary address in a listener address argument.

B-4 Command Mnemonics

Table B-4: Listener Address Commands

Octal
ASCII
Code

041
042
043
044
045
046
047
050

ASCII
Character

AT CpKew

LTI NEWN=O ™" |

Vo AT

AT SCRLE

Keyboard
Function

YV AT

Command
Function

Listener Address
Listener Address
Listener Address
Listener Address
Listener Address
Listener Address
Listener Address
Listener Address
Listener Address
Listener Address 10
Listener Address 11
Listener Address 12
Listener Address 13
Listener Address 14
Listener Address 15
Listener Address 16
Listener Address 17
Listener Address 18
Listener Address 19
Listener Address 20
Listener Address 21
Listener Address 22
Listener Address 23
Listener Address 24
Listener Address 25
Listener Address 26
Listener Address 27
Listener Address 28
Listener Address 29
Listener Address 30
Unlisten

Nele JBEN e rNG, BT VLY VI

Command
Mnemonic

MLAO01
MLAO02
MLAO03
MLA04
MLAO05
MLAO06
MLAO07
MLAO0S8
MLAO09
MLA10
MLA11
MLA12
MLA13
MLA14
MLA15
MLA16
MLA17
MLA18
MLA19
MLA20
MLA21
MLA22
MLA23
MLA24
MLA25
MLA26
MLA27
MLA28
MLA29
MLA30
UNL

Command Mnemonics

B-5

Talker Addressing — Table B-5 lists the IEEE-bus command codes that
direct instruments to talk. They are sent automatically when you specify a
primary address in a talker address argument.

Table B-5: Talker Address Commands

Octal

ASCII ASCII Keyboard Command Command
Code Character Function Function Mnemonic
101 A A Talker Address 1 MTAO1
102 B B Talker Address 2 MTA02
103 C C Talker Address 3 MTAO03
104 D D Talker Address 4 MTA04
105 E E Talker Address 5 MTAO05
106 F F Talker Address 6 MTA06
107 G G Talker Address 7 MTAO07
110 H H - Talker Address 8 MTAO08
111 I I Talker Address 9 MTAO09
112 J J Talker Address 10 MTA10
113 K K Talker Address 11 MTA11
114 L L Talker Address 12 MTA12
115 M M Talker Address 13 MTA13
116 N N Talker Address 14 MTA14
117 (0] (0] Talker Address 15 MTA15
120 P P Talker Address 16 MTA16
121 Q Q Talker Address 17 MTA17
122 R R Talker Address 18 MTA18
123 S S Talker Address 19 MTA19
124 T T Talker Address 20 MTA20
125 U U Talker Address 21 MTA21
126 \" \' Talker Address 22 MTA22
127 w w Talker Address 23 MTA23
130 X X Talker Address 24 MTA24
131 Y Y Talker Address 25 MTAZ25
132 V/ Z Talker Address 26 MTAZ26
133 [[Talker Address 27 MTA27
134 \ \ Talker Address 28 MTA28
135]] Talker Address 29 MTA29
136 . " Talker Address 30 MTA30
137 - - Untalk UNT

B-6 Command Mnemonics

P BN

Secondary Addressing — Table B-6 lists the IEEE-bus command codes
that direct alternate functions of instruments to talk or listen. When you
specify a primary address followed by a secondary address in a talker argu-
ment, these command codes are sent automatically, designating which al-
ternate function of an instrument is to talk. When you specify a primary
address followed by a secondary address in a listener address argument,
these command codes are sent automatically, designating which alternate
function of an instrument is to listen.

Table B-6: Secondary Address Commands

Octal

ASCII ASCII Keyboard Command Command
Code Character Function Function Mnemonic
140 v \ Secondary Address 0 MSA00
141 a a Secondary Address 1 MSAO01
142 b b Secondary Address 2 MSAO02
143 c c Secondary Address 3 MSAO03
144 d d Secondary Address 4 MSA04
145 e e Secondary Address 5 MSAO05
146 f f Secondary Address 6 MSA06
147 g g Secondary Address 7 MSAOQ07
150 h h Secondary Address 8 MSAO08
151 i i Secondary Address 9 MSA09
152 j j Secondary Address 10 MSA10
153 k k Secondary Address 11 MSA11
154 1 1 Secondary Address 12 MSA12
155 m m Secondary Address 13 MSA13
156 n n Secondary Address 14 MSA14
157 0 0 Secondary Address 15 MSA15
160 p P Secondary Address 16 MSA16
161 q q Secondary Address 17 MSA17
162 r r Secondary Address 18 MSA18
163 s s Secondary Address 19 MSA19
164 t t Secondary Address 20 MSA20
165 u u Secondary Address 21 MSA21
166 v v Secondary Address 22 MSA22
167 w w Secondary Address 23 MSA23
170 X X Secondary Address 24 MSA24
171 y y Secondary Address 25 MSA25
172 z z Secondary Address 26 MSA26
173 { { Secondary Address 27 MSA27
174 | | Secondary Address 28 MSA28
175 } } Secondary Address 29 MSA29
176 - - Secondary Address 30 MSA30 .
177 DEL DEL Not used

Command Mnemonics B-7

Appendix C

Building a New IBV11-A Device Handler and
Modifying the IBS Library

C.1 Building a New IBV11-A Device Handler

Your Instrument Bus Subroutines software distribution kit contains four
standard device handlers. The standard distributed device handlers func-
tion only with systems that meet the following two conditions:

1. The RT-11 monitor you plan to use with the device handler is either
the RT-11 SJ or FB monitor distributed with the RT-11 software distri-
bution kit, or an XM monitor generated for device timeout support and
no error logging support.

2. Your system has the following IBV11-A device configuration which is
called the “standard IBV11-A device configuration for the Instrument
Bus Subroutines software”: \

a. There is only one IBV11-A unit. ‘
b. The vector,address of that unit is set at location 420(octal).

c. The Control Status Register (CSR) address of that unit is set at
- 171420(octal) (for MINC and DECLAB-11/MNC users) or
160150(octal) (for any other PDP-11 users).

| The standard device handlers are named as follows: IBMNC.SYS,
IBNMNC.SYS, IBXMNC.SYS and IBXNMC.SYS. ‘

e Use IBMNC.SYS if you have a standard MINC or DECLAB-11/MNC
system and if you are using either the SJ or the FB distributed system
monitors.

e Use IBNMNC.SYS if you have any other standard PDP-11 system and if
you are using either the SJ or the FB distributed system monitors.

e Use IBXMNC.SYS if you have a standard MINC or DECLAB-11/MNC
system and if you are using an XM (extended—memory) system monitor
generated for device timeout support and no error logging support.

IBS Version 2.1 :
August 1982 C-1

e Use IBXNMC.SYS if you have any other standard PDP-11 system and if
you are using an XM (extended-memory) system monitor generated for
device timeout support and no error logging support.

You cannot use any of the standard IBV11-A device handlers if your sys-
tem fails to meet any of the above conditions. Thus, you must build a new
IBV11-A device handler to meet the requirements of your specific system
configuration if:

1. You plan to use the IBV11-A device handler with an RT-11 SJ or FB
monitor that was created during the RT-11 system generation process,
or an XM monitor generated with error logging support or without
device timeout support. '

2. Your system does not have one of the standard IBV11-A device configu-
rations for the Instrument Bus Subroutines software. That is, either:

a. Your system has multiple IBV11-A units.

b. Your system has a single IBV11-A unit or multiple IBV11-A units,
but the vector address of the first or only IBV11-A unit is not set to
420(octal), or its CSR address is not set to 171420(octal) (for MINC
and DECLAB-11/MNC users) or 160150(octal) (for all other PDP-11
users).

3. You plan to use the time—out capabilities in the IB driver with an
RT-11 SJ or FB monitor; device time—out support requires a system
generation under these two monitors.

NOTE

For information about how to determine and set the vector
and CSR addresses of an IBV11-A unit, see the IBV11-A
LSI-11/Instrument Bus Interface User’s Manual.

If you do not need to build a new IBV11-A device handler, make sure you
have copied your distribution kit and applied any necessary corrections (see
Chapter 10) before you attempt to use one of the distributed device han-
dlers. Chapter 10 also contains instructions for using your distributed de-
vice handler.

If you do need to build a new device handler, you should also not attempt to
do so before you have copied your distribution kit and applied any neces-
sary corrections (see Chapter 4). After you have done so, use the procedure
that follows to build a new device handler.

In this procedure, two device specifications are required, one for an “input”
device, to contain the IB and IBS conditional, source, and command files,
and one for an “output” device. The “output” device will probably be your
active system volume, since it will contain the rebuilt IB (or IBX) device
driver. However, before initiating the re-build procedure, be sure to
UNLOAD and REMOVE the existing IB (or IBX) device driver from the
“output” active system volume (see the RT'11 V4 System User’s Guide for a

C-2 Building a New Device Handler and Library August 1982

description of the UNLOAD and REMOVE commands). Next, make sure
that you have at least 82 (decimal) contiguous free blocks on your “output”
volume if you are building the IBS package for an SJ or an FB operating
system, or at least 94 (decimal) contiguous free blocks on your “output”
volume if you are building the IBS package for the XM operating system
(see the RT11 V4 System User’s Guide for a description of the DELETE and
the SQUEEZE commands).

Finally, you must assign physical deV1ces to the two required loglcal device
names as follows.

After the monitor prompt is displayed, type:

LASSIGN dun: IN:@ED
LASSIGN dxm OU:GED

where:

dv is the physical device name for the volume to contain the “input” files
(e.g.: DL, DY, RK, etc.)

n is the unit number on which the “input” volume is mounted;

dx is the physical device name for the volume to contain the “output”
files (usually this is the system device)

m is the unit number on which the “output” volume is mounted.

This procedure requires the following files contained in the distribution kit:
IBLOC.ASM, IB.MAC, and either IBDBLD.COM for RT-11 SJ and FB, or
IBXBLD.COM for RT-11 XM.

The other file is called SYCND.MAC. If you are using a distributed RT-11
monitor, the file is in your RT-11 distribution Kkit, but it is called
SYCND.DIS. This is the file you need. In Step 3 of the following procedure,
you copy SYCND.DIS to your input device, and you give it the name
SYCND.MAC. If you are using a version of the RT—11 monitor produced by
the RT-11 system generation procedure, you created a file called
SYCND.MAC during that procedure Use SYCND.MAC when you build
your new IB handler.

If you are using an RT-11 XM monitor, you will also need XM.MAC, cre-
ated during the RT-11 system generation.

After you have met these requirements, rebuild your IBV11-A device han-
dler as follows:

Step 1

Refer to Chapter 10 and edit the IBLOC.ASM file on your “input” volume
to reflect the number of IBV11-A/IB11 hardware units on your system. You
can have from one to eight units. Indicate the CSR (control and status
register) address and vector address of your first or only IBV11-A/IB11

IBS Version 2.1 : .
August 1982 Building a New Device Handler and Library C-3

hardware units. More than one IBV11-A/IB11 unit must have contiguous
addresses (see Chapter 3).

Step 2

. Copy the 3 files named above from a copy of your Instrument Bus
Subroutines software distribution volume to device “IN:”.

Step 3

If you plan to use this IBV11-A device handler with the distributed RT-11
monitor, copy the file SYCND.DIS from a copy of your RT-11 distribution
kit to device “IN:” giving it the name SYCND.MAC. If you plan to use this
device handler with an RT-11 SJ, FB, or XM monitor created during the
system generation process, copy the file SYCND.MAC which you created
during that system generation process, to device “IN:”. If you plan to use
this device handler with an XM monitor, also copy the file XM.MAC, which
is on the RT-11 distribution media, to device “IN:”.

Step 4

Copy the file IBLIB.OBJ from a copy of your Instrument Bus Subroutines
software distribution volume to device “ou:”;

Create the new device handler by doing the following:

1. a. If the handler is for an RT—11 SJ or FB system, execute the indirect
command file IBDBLD.COM. IBDBLD.COM assembles the source
code for the new handler, links it to create a new IB handler called
IB.SYG. After the monitor prompt appears, type

+BIN: IBDBLDRED

b. If the handler is for an RT-11 XM system, execute the indirect com-
mand file IBXBLD.COM. IBXBLD.COM assembles the source code
for the new handler, links it to create a new IB handler called IBX-
SYG. After the monitor prompt appears, type:

+BIN: IBXBLDGRED

2. Next you must rename your IB device handler file as follows:

a. If you will be running under either the SJ or the FB operating
systems, type:

+RENAME/SYSTEM QU:IB.8YG OU:IB.,S5YSRD

b. If you will be running under the XM (extended-memory) operating
system, type:

+RENAME/SYSTEM OU:IB.SYG OU:IBX,.SYSED

IBS Version 2.1
C—4 Building a New Device Handler and Library August 1982

3. Install and load your new IB handler by typing:

+ INSTALL IBGD
+L.OAD IBGED

C.2 Modifying the IBS Library

If you do not have more than one IBV11-A, you do not need to modify the
IBS library. Proceed to Section C.3. If you do have more than one IBV11-A,
then you need to rebuild three files in the IBS library. The rebuild proce-
dure requires that MACRO.SAV and LIBR.SAV (from your RT-11 distri-
bution kit) be on your system device and that you have performed Steps 1
and 4 above.

Step 1

Copy IBUNIT.MAC, IBINIT.MAC, IBBASE.MAC, IB.ASM, and" I
IBSBLD.COM from your distribution volume to device “IN:”.

Step 2

Modify the IBS library by executing the indirect command file
IBSBLD.COM. IBSBLD.COM assembles the three .MAC files named in
Step 1 and updates the library. After the monitor prompt appears, type

+ BIN: IBSBLDEED

C.3 Verifying the New Handler and Library

Referring to Section 4.4, compile, link and run the IBS installation/
verification program to verify proper IBS operation after the re-build
session.

Your new IBV11-A/IB11 device handler is now tailored to your system and
ready for use. For more information on using this package see Section
10.3.6.

IBS Version 2.1
August 1982 \ Building a New Device Handler and Library = C-5

Appendix D

Sample Instrument Address Form

Instrument Name

Instrument
Address

Secondary
Addresses

Function

MR-S-1638-81

D-1

Appendlx E
FORTRAN IB Subroutine Call Formats

August 1982

Routine

IBARCV

IBASND

IBAXFR

IBCMD
IBDCL
IBDEV

IBERRF
IBFREE
IBGET
IBGTL
IBIFC
IBLLO
IBLNR
IBPPD
IBPPE
IBPPL
IBPPU
IBRCVS

Function

Receive data
asynchronously

Send data messages
asynchronously

Transfer data
asynchronously

Programmed command
Device clear

Provides list of
instrument bus addresses
that are capable of
generating service
requests

Read error flag

Free transfer of data
Group executé trigger
Go to local

Interface clear

Local lockout

Check for valid listeners
Parallel poll disable
Parallel poll enable
Parallel poll

Parallel poll unconfigure

Obtain status of a data
transmission initiated by
IBRECV, IBARCYV,
IBXFER, or IBAXFR

Format

CALL IBARCV (array, len-limit(, [tkr] [, Inrs]])
CALL IBASND (msg-array[, [msg-len] [, Inrs]})
CALL IBAXFR ({len—limit][, [tkr] [, Inrs]])

CALL IBCMD (n [, Inrs])
CALL IBDCL '
CALL IBDEV (dev-lst)

maperr = IBERRF (In1[[,.
CALL IBFREE ([tkr] [, Inrs])
CALLIBGET (lnrs)
CALL IBGTL ([Inrs])

CALL IBIFC

CALL IBLLO

ivalid = IBLNR ([Inrs])
CALL IBPPD ({Inrs])

CALL IBPPE (isense, line[, Inrs])

ireslt = IBPPL ([nl [, .., n81D)

CALL IBPPU

Call IBRCVS ([iend)]) or iend=IBRCVS ()

., n161])

Routine

IBRDA
IBRECV

IBREMO
IBREN
IBSDC
IBSEND
IBSEOI

IBSPL
IBSRQ
IBSRQF
IBSTER

IBSTS

IBTERM

IBTIMO

IBUNIT

IBUNL

IBUNT

IBWAIT

IBXFER

E-2

Function

Remote disable

Receive data

Remote status
Remote enable
Selected device clear
Send data messages

Send data messages with
end or identify

Serial poll

Name service routine
Test service request flag
Set error handling

characteristics

Check instrument status

- Define terminating

characters

Set the timeout

Select IBV11-A/B11
unit

Remove listeners from
IEEE bus

Remove talkers from
IEEE bus

Wait for data
transmission to complete

Transfer data

FORTRAN IB Subroutine Call Formats

Format

CALL IBRDA

CALL IBRECV (array, len-limit[, [tkr] [, Inrs]])
len = IBRECV (array, len-limit[, [tkr] [, Inrs]])

nold = IBREMO (n)

CALL IBREN

CALL IBSDC ([Inrs])

CALL IBSEND (msg—array[, [msg-len] [, Inrs]}}
CALL IBSEOI (msg—arry[, [msg—len] [, Inrs]])

index = IBSPL ([istat] [, tkr [, tkr [, ...11D)

CALL IBSRQ
([subroutine-name],[ipaddr],lisadd],
[istat],[idelay],[dev-lst])

CALL IBSRQF ([iflag])
iflag = IBSRQF ()

CALL IBSTER (nerr, ncount)

istat = IBSTS ([tkr]))
CALL IBTERM ([chr—val[, chr—val, ...ID

CALL IBTIMO ([nticks])
nold = IBTIMO ([nticks])

CALL IBUNIT ([nunit])
nold = IBUNIT ([nunit])

CALL IBUNL
CALL IBUNT
CALL IBWAIT

nbytes = IBWAIT ()

CALL IBXFER ([len-limit] [, [tkr] [, Inrs]])
len = IBXFER ([len-limit][, [tkr] [, Inrs]D)

August 1982

Appendix F
Unsigned Integers

Certain IB routine arguments benefit from the extended positive range
available to unsigned integers. Since Fortran uses only signed integers you
need to understand how to convert from one to the other in order to fully
use the range available to these arguments.

Unsigned integer arguments cover the range from 0 to 65535, yet
FORTRAN single precision positive integers only cover the range from 0 to
32767. This apparent conflict is a matter of interpretation of the 16 bit
quantity.

A 16 bit binary number can represent decimal integers from 0 to 65535. In
Fortran this range is divided into two parts: values from 0 to 32767 are
interpreted as positive integers: values in the rest of the range are inter-
preted as negative integers. The Fortran negative number range from
-32768 to -1 corresponds directly to the unsigned number range from 32768
to 65535.

For arguments in the range 0 to 32767 no conversion is necessary. For
larger numbers up to 65535 use the following equation where R is the
unsigned number and N is the signed integer to use in the subroutine call.
Note that FORTRAN cannot handle integers larger than 32767 so R must
be a floating point variable when used in a program.

N =R - 65536,

The following example uses two Fortran statements to convert the un-
signed integer (represented as a real number) in R to a signed integer in N.

c If R < 327687 no conversion is
necessary
IF (R .LE. 32767+) N =R

C If R >» 327687 convert to nedative number
IF (R .GT. 32767.) N =R - G5336.

F-1

7

Index

Acceptor handshake, 2-8
Acceptors,
Command, 2-8
Action taken on errors, 9-1
Additional IBV11-A units,
Installing, C—4
Address,
Invalid instrument, 9-2
Primary, 1-3
Secondary, 1-3
Address commands,
Listener, B-1
Talker, B-1
Address error,
Instrument, 3—4, 9-2
Address form,
Sampte instrument, D-1
Address record,
Sample, 1-4
Address status,
Instrument, 7-2
Address switch setting, 3—4, 5-3
Binary, 3-6 :
Address switches,
Instrument, 3-5
Setting, 34, 5-3
Setting binary, 3-6
Addressable mode, 3-7
Addressed commands, 2-3, 64, B-1
Addressed routines, 2-3
Addresses, 5-3
Checking, 3-7
Checking instrument, 3-7
Duplicate, 3-7
Instrument, 1-3
Listener, 5-3
Primary, 34, 5-3
Secondary, 3—-6, 5-3, B-1

Addresses (Cont.),
Setting instrument, 3-4

Setting primary, 3—4

Talker, 5-2, 5-3

Vector, 4-5, C~1
Addressing,

Instrument, 2—-2

Listener, B-1

Remote, 10-1

Talker, 5-2, B-1
Addressing with arrays, 5-7
Addressing with ASCII characters, 5-5
Addressing with byte arrays, 5-7
Advanced concepts, 2—1
Advanced programming techniques, 10-1
Alternate functions, 3—6

Instruments with, 3-6
Applying corrections, 4—-4
Argument,

Optional, 5-2
Argument name, 5-1, 5-2
Arrays,

Addressing with, 5-7

Addressing with byte, 5-7

Byte, 5-7

Use of byte, 5-7
ASCII character codes, 2-5
ASCII characters, 5-5

Addressing with, 5-5
ASCII codes, A-1
ASCII message terminators, 10-3
ASCII terminators, 10-3
ASCII value, 2-4, 2-5
Asynchronous data transmission, 5-11
Asynchronous processing, 1-16
Asynchronous transfer (IBAXFR), 5-21
Asynchronous transmission, 5-20, 5-21
ATN, 2-2, 2-3
Attention line, 2-2

Index-1

Backplane,
Console, 3-2
Binary address switches,
Setting, 3-6
Binary switch setting, 3-6
Brackets,
Use of, 5-2
Building new device handlers, 4-5, C-1 to
C4

Bus,
IEEE, 1-1, 2-1
Interface, 1-5

Bus cables, 3-8
Connecting, 3-6, 3-8
Bus controller, 2-3
Bus line,
SRQ, 7-1
Bus lines, 1-1
IEEE, 2-1
Bus management lines, 2-1
Byte,
Status, 1-10, 7-1
Byte arrays, 5-7
Addressing with, 5-7
Use of, 5-7

Cable connection,

Linear, 3-10
Cable connections,

Star, 3-10
Cable lengths,

Maximum, 3-10
Cables,

Bus, 3-8

Connecting bus, 3-8

Connection, 3-10
Calling formats, 5-1
Character codes,

ASCII, 2-5
Characters,

ASCII, 5-5
Checking addresses, 3—7
Checking for valid listeners, 10-5, 10-6
Checking instrument addresses, 3—7
Clear device IBDCL), 6-3
Clearing instruments, 1-16
Clearing interfaces, 1-15
Codes,

ASCII, A-1

Command, 2-6, B-1

Message, 2—4
Command acceptors, 2-8
Command code format, 2-7
Command codes, 2-6, B—1

Index-2

Command files,
Start-up, 4-7
Command mnemonics, B-1
Command string, 1-8
Commands,
Addressed, 2-3, 6-4, B-1
Control, 6-1
LIBRARY system, 4-11
Listener address, B-1:
System, 6-1
Talker address, B-1
Universal, 2-3, 6-3, B-1
Commands on the IEEE bus, 1-5
Commas,
Use of, 5-2

- Common statements, 1-11

Compiling programs, 4-10
Configuration,
System, 3-1
Configurations,
Non-standard device, 4-4, 4-5, C-1
Standard device, 4-4, 4-5
Configuring a system, 3-1, 3-2
Connecting bus cables, 3-6, 3-8
Connection, ‘
Linear cable, 3-10
Connection cables, 3-10
Console backplane, 3-2
Control,
Local, 1-15, 6-1, 6-3, 64
Remote, 1-15, 6-1, 6-3
Control commands, 6-1
Control status register (CSR), 4-5
Controller, 1-2, 2-2
Bus, 2-3
Controller (defined), 1-2
COPY, 4-3, 4-6, 4-7
Copying distribution kit, 4-2
Copying with only two mass storage devices,
4-4
Corrections,
Applying, 4-4
/create switch, 4-10
Creating a program, 4-10
CSR, 4-5, C-1

Data (IBSEND),
Sending, 5-11
Data lines, 1-1, 1-13, 2-1, 2-4, 2-7
Data message terminators,
Defining, 10-2, 10-3, 104
Data transmission,
Asynchronous, 5-11
Data valid (DAV), 2-8

DAV, 2-8, 2-9
DECLAB-11/MNC, 3-1, 3-2, 4-1, 4-5
Default file types, 4-2
Default listener list, 5-9, 6-4
Default listener list error, 9-2
Default listener list overflow, 9-3
Default lists, 5-9, 6-3
Default talker list, 5-9
Default talker list error, 9-2
Default talker list overflow, 9-3
Default values, 5-3
Defining data message terminators, 102,
10-3, 104
Determining instrument status, 7-2
Determining source of service requests, 7-2
Device clear IBDCL), 6-3
Device configurations,
Non-standard, 44, C-1
Standard, 4-4, 4-5, C-1
Device handler,
IBMNC.SYS, C-1
IBNMNC.SYS, C-1
Device handlers, 4-1, 44, C-1
Building new, 4-5
Distributed, 4-1, 4-5, C-1
IB.SYS, 4-6
IBMNC.SYS, 4-6
IBNMNC.SYS, 4-1, 4-6
Installing, 4-5
Loading, 4-4, 4-5
Using, 4-5
Device slots, 4-7
DIO 0-7, 24
Disable,
Parallel poll, 7-5
Distributed device handlers, 4-1, 4-5, C-1
Distribution kit, 4-2
Copying, 4-2
Duplicate addresses, 3-7

EDIT, 4-10
Editing files, 4-10
Ellipsis,
Use of, 5-2
Enable,
Parallel poll, 2-7, 7-4
Remote, 1-14
End or identify, (EOI), 1-8
End or identify (IBSEOI), 5-13
End or “identify (EOID) line, 2-3
EOI, 1-8, 1-9, 2-3
Error, 9-1 .
Default listener list, 9-2
Default talker list, 9-2

Error (Cont.),
Instrument address, 3—4, 9-2
Listener, 9-3, 10-5
Parameter, 9-2
Talker, 9-3
Timeout, 9-2, 10-4
Error conditions, 2-9
Error flag,
Reading the, 9-5
Error handling characteristics,
Setting, 9—4
Error log, 9-6
Error message, 2-10, 9-1
Long form of, 9-1
Short form of, 9-1
Error message (defined), 1-2
Errors, 2-9
Action taken on, 9-1
Log of, 9-6

File protection, 4-4
File types,

Default, 4-2
Files,

Editing, 4-10

Protection of, 44
Flag test, ‘

Service request, 8-3
Form,

Sample instrument address, D-1
Form of error messages, 9-1
Format,

Command code, 2—7
Formats,

Calling, 5-1

IB routine, E-1, E-2
Formatting volumes, 4-3
Formatting/initializing volumes, 4-3
FORTRA.SAV, 4-2
FORTRAN, 4-8, 4-10
FORTRAN IV, 1-16
Functions,

Alternate, 3—6

Go to local (IBGTL), 6-4
Group execute trigger IBGET), 6-5

Handlers,
Device, C-1
IBNMNC.SYS device, 4-1
Handshake,
Acceptor, 2-8
Source, 2-8
Handshake lines, 1-1, 2-8

Index-3 »

Hang up, ~ IBUNIT, 10-1

System, 6-3 IBUNL, 6-4

Hardware installation requirements, 3—2 IBUNT, 2-2, 6-4
IBV11-A device configuration,

IB routine formats, E-1, E-2 Non-standard, 44, 4-5, C-1
IB routines, Standard, 44, 4-5, C-1

Preparing to use, 4-2 IBV11-A module, 3-3

Using, 4-1 IBV11-A units,
IB.SYG, C-4 : Multiple, C-2
IB.SYS, 4-6 IBWAIT, 10-5
IB.SYS device handlers, 4-6 IBXFER, 5-17
IBARCV, 5-20, 5-21 IBXFR, 1-9
IBASND, 2-3, 5-20 Idle state, 2—-10
IBAXFR, 5-22 IDY, 2-3
IBCMD, 6-6 IEEE bus, 1-1, 2-1
IBDBLD.COM, C-4 IEEE bus lines, 2-1
IBDCL, 1-16, 6-3 IEEE routines, 2—-1
IBDEV, 1-11 IEEE standard, 1-5
IBERRF, 9-5 IFC, 2-3
IBFREE, 2-10, 5-22 /INCLUDE switch, 4-11
IBGET, 1-9, 6-5 INITIALIZE, 4-3
IBGTL, 1-15, 64 Initializing volumes, 4-3
IBIFC, 1-15, 1-16, 2-2, 6-2 INSTALL, 4-5, 4-7
IBLIB, 4-1 Installation requirements,
(IBLIB.OBJ), Hardware, 3-2

Library of subroutines, 4-1 Software, 4-1

Storage requirements, 4-1 Installing additional IBV11-A units, C—4
IBLLO, 1-15, 6-3 Installing device handlers, 4-5
IBLNK, 2-10 Installing the IBV11-A, 3-2
IBLNR, 10-5 Instrument address,
IBLOC.ASM, C-3 Invalid, 9-2
IBMNC.SYS, 4-1, 46, C-1 " Instrument address error, 3—4, 9-2
IBMNC.SYS device handlers, 4-1, 4-6, C-1 Instrument address form,
IBNMNC.SYS, 4-1, 4-6, C-1 Sample, D-1
IBPPD, 1-12, 7-5 Instrument address status, 7-2
IBPPE, 1-12 Instrument address switches, 3-5
IBPPL, 1-12, 7-5 Instrument addresses, 1-3
IBPPU, 1-12, 64, 7-5 Checking, 3-7
IBRCVS, 5-18 ' Setting, 3—4
IBRDA, 1-15, 6-1 Instrument addressing, 2-2
IBRECV, 1-7, 1-8, 1-9, 1-12, 5-14 Instrument interface, 1-5
IBREMO, 1-15, 6-2 Instrument status, 1-1
IBREN, 1-15, 6-1 Determining, 7-2
IBSDC, 1-16, 6-5 ‘ Instruments,
IBSEND, 1-7, 1-9, 1-16, 2-3, 24, 5-11 Clearing, 1-16
IBSEO], 2-3, 24, 5-13 Instruments with alternate functions, 3-6
IBSPL, 1-11, 2-10, 7-2 Interface, 1-5
IBSRQ, 1-11, 2-10, 84 Instrument, 1-5
IBSRQF, 1-11, 8-3 Interface bus, 1-5
IBSTER, 9-4 Interface clear (IBIFC), 6-2
IBSTS, 1-11, 2-10, 7-2 Interfaces,
IBSVER.FOR, 4-1, 4-8 Clearing, 1-15
IBTERM, 1-8, 10-3, 104 Interrupt,
IBTIMO, 2-10, 104 Program, 5-10

Index—4

Interrupt service requests, 5-10, 8—4
Interrupt service routine, 1-16, 1-17
Interrupts,

Main program, 8—4

Program, 8—4

Introductory programming techniques, 5-1

Invalid instrument address, 9-2
Invalid parameter, 9-2
ISR, 1-16, 1-17

Lengths,
Maximum cable, 3-10
Libraries,
System, 4-11
Using, 4-11
Library of subroutines (IBLIB.OBJ), 4-1
LIBRARY system commands, 4-11
Line,
SRQ, 7-2
Linear cable connection, 3—10
Lines,
Bus, 1-1
Data, 1-1, 2-1, 2-4, 2-7
Handshake, 1-1, 2-8
LINK, 4-8, 4-10
List,
Default listener, 5-9, 6—4
Default talker, 5-9
Listen, 1-5
Listener, 1-2, 2-2
Listener address commands, B-1
Listener addresses, 5-3
Listener addressing, 5-2, 5-3, B-1
Listener error, 9-3, 10-5
Listener list,
Default, 5-9, 6-4
Listener specifications, 3-4
Lists,
Default, 5-9, 6-3
LOAD, 4-7
Loading device handlers, 44, 4-5
Local control, 1-15, 6-1, 6-3, 64
Local lockout IBLLO), 6-3
Location,
Status register, 4-5, 10-1
Vector, C-1, 10-1
Log,
Error, 9-6
Log of errors, 9-6
Long form of error message, 9-1

Main program, 1-16
Main program interrupts, 8-4

MAPERR,
Value added to, 9-6
Maximum cable lengths, 3-10
Maximum system cable length, 3-10
Message,
Error, 9-1
Message (defined),
Error, 1-2
Message codes, 2—4
Message routines, 1-7
Message terminators, 10-2, 10-3, 10—4
Message terminators,
ASCII, 10-3
Message transmission, 1-7
Messages, 1-1
Receiving, 1-8
Sending, 1-7
Transferring, 1-9
MINC, 1-1, 3-1, 3-2, 4-1, 4-4, C-1
MLA, 2-2
Mnemonics,
Command, B-1
Mode,
Addressable, 3—7
Monitor,
Single job, 4-7
Sd, 4-7
MSA, 2-3
Multiple IBV11-A units, C-2
My listen address (MLA), 2-2
My secondary address (MSA), 2-3

Name,
Argument, 5-1, 5-2
NDAC, 2-8, 2-9

New device handlers,
Building, 4-5, C-1 to C—4

Non-standard IBV11-A device configuration,
44,45, C-1

Non-standard configurations, 4-4, 4-5, C-1

Not data accepted (NDAC), 2-8

Not ready for data (NRFD), 2-8

NRFD, 2-8, 2-9, 2-10

Null byte termination, 2—4

Operation,

Remote/local, 1-13
Optional argument, 5-2
Overflow, :

Default listener list, 9-3

Default talker list, 9-3

Packs,
Setting switch, 3-3, 3-4

Index-5

Packs (Cont.)
Switch, 3-2
Parallel poll, 1-10, 1-13
Parallel poll disable, 7-5
Parallel poll enable, 2-7, 74
Parallel poll unconfigure, 7-5
Parallel poll unconfigure (IBPPU), 6-4
Parallel polling (defined), 1-1
Parallel polls, 1-12
Parallel polls: identify (IDY), 2-3
Parameter,
Invalid, 9-2
Parameter error, 9-2
Parentheses,
Use of, 5-2
Poll,
Parallel, 1-10, 1-12, 1-13
Serial, 1-10, 7-1
Poll results, 2-7
Polling, 1-1
Serial, 7-1
Polling (defined),
Parallel, 1-1
Serial, 1-1
Preparing to use IB routines, 4-2
Primary addresses, 1-3, 3-4, 5-3
Setting, 3—4
Processing,
Asynchronous, 1-16
Program,
Creating a, 4-10
Verification, 4-1, 4-9
Program interrupts, 5-10, 8—4
Programmed commands (IBCMD), 6-6
Programming techniques,
Advanced, 10-1
Introductory, 5-1
Programs,
Compiling, 4-10
Protection,
File, 44 X
Protection of files, 44
/PROTECTION switch, 4-4

Reading the error flag, 9-5

Receive asynchronous (IBARCV), 5-20, 5-21

Receiving asynchronous data (IBARCV),
5-20, 5-21

Receiving data (IBRECV), 5-14

Receiving messages, 1-8

Remote addressing, 10-1

Remote control, 1-15, 6-1, 6-3

Remote disable (IBRDA), 6-1

Remote enable, 1-14

Index—6

Remote enable (IBREN), 6-1
Remote status, 6-3

Remote status (IBREMO), 6-1
Remote/local operation, 1-13

REMOVE, 4-5
REN, 1-16
REN line, 1-14, 1-15
RENAME, 44
Report,

Status, 7-1
Requests,

Determining source of service, 7-2
Interrupt service, 5-10, 8—4
Service, 7-1, 8-1
Resets, 1-15
Results,
Poll, 2-7
RETURN, 1-12
Routine,
Interrupt service, 1-16, 1-17
Service request, 8—4
SRQ, 8-4
Routines,
Addressed, 2-3
IEEE, 2-1
Message, 1-7
Using IB, 4-1
RT-11,
Using, 4-1
RUN, 4-8, 4-11
Running the verification program, 4-8, 4-9

Sample address record, 1-4

Sample instrument address form, D-1

Secondary addresses, 1-3, 3-6, 5-3, B-1

Selected device clear (IBSDC), 6-5

Selecting an IBV11-A, 10-1

Send asynchronous (IBASND), 5-20

Sending asynchronous data (IBASND), 5-20

Sending data (IBSEND), 5-11

Sending messages, 1-7

Serial poll, 1-10, 7-1

Serial polling, 7-1

Serial polling (defined), 1-1

Serial polls, 1-10

Service request (SRQ), 1-10

Service request flag test, 8-3

Service request routine, 8-4
Specifying the, 8-4

Service requests, 1-11, 7-1, 8-1
Determining source of, 7-2
Interrupt, 5-10, 8-4
Using, 8-1

Setting,
Address switch, 3—4
Binary switch, 3-6
Setting address switches, 34, 5-3
Setting binary address switches, 36
Setting error handling characteristics, 9—4
Setting instrument addresses, 3—4
Setting primary addresses, 3—4
Setting switch address, 3—-4, 3—6
Setting switch packs, 3-2, 3-3, 3—4
Setting timeout, 10—4
Settings,
Binary address switch, 3-6
Short form of error message, 9-1
Single job (SJ) monitors, C-1
" Single job monitor, 4-7
SJ monitor, 4-7
Slots,
Device, 4-7
Software,
Verifying your IB, 4-8
Software installation requirements, 4—1
Source handshake, 2-8
Source of service requests,
Determining, 7-2
Specifications,
Listener, 3—4
Talker, 3—4
Specifying the service request routine, 8—4
SQUEEZE, 4-3
SRQ, 1-10, 1-12
SRQ bus line, 7-1
SRQ line, 7-2
SRQ routine, 84
Standard,
IEEE, 1-5
Standard device configurations, 4-4, 4-5, C-1
Standard IBV11-A device configuration, 44,
4-5,C-1
Star cable connections, 3-10
Start—up command files, 4-7
STARTF.COM, 4-7
STARTS.COM, 4-7
Statements,
Common, 1-11
Status, 1-9
Instrument, 1-1, 7-2
Instrument address, 7-2
Remote, 6-3
Status bit, 1-12
Status byte, 1-10, 7-1
Status register location, 4-5, 10-1"
Status report, 7-1

Storage requirements (IBLIB.OBJ), 4-1
String,
Command, 1-8
Subroutines (IBLIB.OBJ),
Library of, 4-1
Switch,
/create, 4-10
/INCLUDE, 4-11
/PROTECTION, 4-4
/WAIT, 44
Switch address,
Setting, 3—4, 3-6
Switch packs, 3-2
Setting, 3-2, 3-3, 3—4
Switch settings,
Address, 3-4, 5-3
Binary address, 3-6
Switches,
Instrument address, 3-5
Setting address, 34, 5-3
Setting binary address, 3—6
SYCND.DIS, C-3
SYCND.MAC, C-3
SYSLIB.OBJ, 4-11
System cable length,
Maximum, 3-10
System commands, 61
LIBRARY, 4-11
System configuration, 3—1
System hang up, 6-3
System libraries, 4-11

Talk, 1-5
Talker, 1-2
Talker address commands, B—1
Talker addresses, 5-2, 5~-3
Talker addressing, 5-2, 5-3, B-1
Talker error, 9-3
Talker list,

Default, 5-9
Talker specification, 3—4
Techniques,

Advanced programming, 10-1
Termination,

Null byte, 2-4
Terminator character, 1-8
Terminators,

ASCII, 10-3

ASCII message, 10-3

Message, 10-2, 10-3, 10-4
Testing the service request flag, 8-3
Timeout,

Setting, 10-4

Index—7

Timeout error, 9-2, 10-4
Transferring asynchronous data (IBAXFR),
5-21
Transferring data (IBXFER), 5-17
Transferring data free (IBFREE), 5-22
Transferring messages, 1-9
Transmission,
Asynchronous, 5-20, 5-21
Asynchronous data, 5-11
Message, 1-7
Triggering, 1-9

Unconfigure,

Parallel poll, 7-5
Universal commands, 2-3, 6-3, B-1
Unlisten (IBUNL), 6-4
UNLOAD, 4-5
UNT, 2-2-

Untalk IBUNT), 6-4
Use of brackets, 5-2
Use of byte arrays, 5-7
Use of commas, 5-2
Use of ellipsis, 5-2

Use of parentheses, 5-2

Index-8

Using device handlers, 4-5
Using IB routines, 4-1
Using libraries, 4-11
Using RT-11, 4-1

Using service requests, 8-1

Valid listeners,
Checking for, 10-5, 10-6
Value added to MAPERR, 9-6
Values,
Default, 5-3
Vector addresses, 45, C-1
Vector location, 4-5, C-1, 10-1
Verification program, 4-1, 4-8, 4-9
Verification program,
Running the, 4-8, 4-9
Verifying your IB software, 4-8, 4-9
Volumes,
Formatting, 4-3
Formatting/initializing, 4-3
Initializing, 4-3

/WAIT switch, 44
Waiting for asynchronous transmission to
complete, 10-5

PN

Instrument Bus Subroutines

Programmer’s Reference Manual
AD-5613C-T1

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments sub-
mitted on this form at the company’s discretion. If you require a written reply
and are eligible to receive one under Software Performance Report (SPR) ser-
vice, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

(] Higher-level language programmer

[] Occasional programmer (experienced)

[J User with little programming experience
[J Student programmer
[0 Other (please specify)

Name ‘ Date

Organization Telephone

Street

City . State — Zip Code

or Country

I " " I 1 No Postage
t Necessary
if Mailed in the

United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS
200 FOREST STREET MR1-2/L12
MARLBOROUGH, MASSACHUSETTS 01752

Oft

UPDATE NOTICE

Instrument Bus Subroutines
Programmer’s Reference Manual

AD-5613C-T1

August 1982

Insert this Update Notice in the Instrument Bus Subroutines
Programmer’s Reference Manual to maintain an up-to-date
record of changes to the manual.

Changed Information

The changed pages contained in this update package reflect
the change from Version 2.0 to 2.1 of the IBS software and
corrections to the documentation.

The instructions for inserting this update start on the next page.

Copyright ©, 1982, Digital Equipment Corporation. All Rights Reserved.

dlilgliltiall

VOIE

INSTRUCTIONS
AD-5613C-T1

The following list of page numbers specifies which pages are to be placed in the Instrument Bus
Subroutine Programmer’s Reference Manual as replacements for, or additions to, current pages.

[Title page
Copyright page

:

2-3
2-4

2—7
2-8

4-2

4-9 10-1
4-10 10-2
5-9 B-3
5-10 B4
7-3 C-1
7—4 C-5
8—1 E-1
8-6 E-2
9-5 Index-3
9-6 Index-6

KEEP THIS UPDATE NOTICE IN YOUR MANUAL TO MAINTAIN AN UP-TO-DATE
RECORD OF CHANGES.

TYPE AND IDENTIFICATION OF DOCUMENTATION CHANGES.

Five types of changes are used to update documents contained in the software manuals. Change
symbols and notations are used to specify where, when, and why alterations were made to each update
page. The five types of update changes and the manner in which each is'identified are described in the
following table.

The Following Symbols and/or Notations

1.

Change bar in outside margin; version num-
ber and change date printed at bottom of
page.

Change bar in outside margin; change date
printed at bottom of page.

Change date printed at bottom of page.

_Builet (e) in outside margin; version number

and change date printed at bottom of page.

Bullet (®) in outside margin; change date
printed at bottom of page.

Identify the Following Types of Update Changes

1.

Changes were required by a new version of
the software being described.

Changes were required to either clarify or
correct the existing material.

Changes were made for editorial purposes
but use of the software is not affected.

Data was deleted to comply with a new ver-
sion of the software being described.

Data was deleted to either clarify or correct
the existing material.

August 1982

