
BLUEFISH Functional Specification

14 ,-July 1978

Art Lim

Table of Contents

section 1 .PDP 11/68 Overview

section 2

1.1 Introduction

1.2 11/68 Internal I/O Page Address Register
Index

PDP 11/68 Processor

2.1 Base Processor Instructions

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 2.5

Table 2.6

Table 2.7

Addressing Modes

Single Operand Instructions

Double Operand Instructions

Processor Control Instructions

Miscellaneous Instructions

Condition Code Operators

Programming Difference List

2.2 Processor Control Registers

2.3 Aborts, Traps, Interrupts

2.4 Memory Management

2.5 Cache/Memory Operations

Section 3 Floating Point Processor/Instructions

Section 4 Memory System
To be specified

Section 5 Console

Sections 6 Software Issues

Appendix A Midrang~ Systems Console Functi.onal
Specification

PROJECT BLUEFISH (PDP 11/68)

1.0 Introduction

BLUEFISH represents the new high end of the PDP-II architecture
offering performance in excess of the 11/74 (target at 1.5 times
11/74 base processor) at a significantly reduced cost (~ trans­
fer cost of 11/74). Multiprocessor hooks will be incorporated
within the hardware to permit the multiprocessor multi-port
memory configuration of the 11/74.

Full 11/74 functionality will be provided with the exception of
the following:

System l/D Register

System Size Register

17 777 764

17 777 760 -- 17 777 762

Trap functions within Memory Management

The PDP 11/68 system configuration is illustrated in figure #1.
Communication between functional units of the system is pro­
vided through a high bandwidth synchronous backplane interconnect
called the PPBI.

Mass bus peripherals will communicate with primary memory through
RH68 controllers compatible with RH70 controllers of the 11/70.

The Unibus mapping functions, Unibus arbitration as well as
translation of signals from Unibus to PPBI is provided by the
Unibus Controller (UBC).

BLUEFISH will provide the Commercial Instruction (DEC STD 168
Revision B) and both integral and accelerated versions of floating
point containing the full FP11 instruction set. The cache buffer
provides for ~~ bytes of data storage configured in set size 2
and block size 2.

This document bas been assembled as a preliminary software ref­
erence guide for the Bluefish processor. It's purpose is to
summarize the software compatibilities, point out any instructions
and in general to eliminate any confusion that may arise in the
upgrade of DEC operating systems and diagnostics.

Please review the contents of this document primarily focussing
on the format of control and status registers that reflect pro­
cessor specific functions, trap vectors, and priorities as well
as the differ.ence list which identifies the differences in the
implementation of functions by different processes in the PDP-II
family. (Table 2-7).

1.1-1 11/68

1.2

Address

17 777 776

17 777 774

17 777 772

17 777 77~

17 777 766

17 777 764

17 777 762

17 777 76~

17 777 754

17 777 752

17 777 75[4

17 777 746

17 777 744

17 777 74·2

17 777 74[4

17 777 696
17 777 6i1~

17 777 576

17 777 574

17 777 572

17 777 57i1

17 772 576

11/68 Internal I/O Page Address Register Index

Register

Processor status Word

stack Limit

Program Interrupt Request

Micro break

CPU Error

System I/D

Upper System Size

Lower System Size

Cache/Memory Maintenance
Register g

Cache/Memory Maintenance
Register 1

Cache/Memory Maintenance
Register 2

Cache Control

Cache/Memory System Error

High Error Address

Low Error Address

User I/O ;:PAR/PDR

Memory Management Register 2

Memory Management Register 1

Memory Management Register 0

Console and Display

Memory Management Register 3

1.2-1

Section Described

Program Control

Program Control

Program Control

Program Control

Not Implemented

Not Implemented

Not Implemented

Cache/Memory

Cache/Memory

Cache/Memory

Cache/Memory

Cache/Memory

Cache/Memory

Cache/Memory

Memory Management

Memory Management

Memory Management

Memory Management

Console

Memory Management

11/68

Address Register Section Described

17 772 376 Kernal lID PAR/PDR Memory Management 17 772 3~~

17 772 276 Supervisor I/O PAR/PDR Memory Management 17 772 2~~

1.2-2 11/68

~LJP/y6"
PROCEJSOR

I I t , II 1 I I I
.c--cc t1IENtJ~Y NE,4It)fY /(#68 . __ • /?#68

AleA AA/uY A/rA'AY
#0 ... #7

! ~ ... J ~ ~ ~ ~ ~
NASsllUS AlAsSBV,j

PfYICE3 D/YICES

·PDP11/68 SYSTEM CONFIGURATION

1
UNIlIUS
(AlaL -

secti.on 2 PDP 11/68 Processor

2.1 Base Processor Instructions

't'
OP CODE

• ·SPECIFIES DIRECT OR INDIRECT ADORESS
•• • SPECIFIES HOW REGISTER Will AE USED

•••• SPECIFIES ONE OF 8 GENE~AL PURPOSE REGISTERS

•• • • ••

~C~ M+E (Q) Rft

1~ 12 11 10 9 8
T

SOURCE AOOR£SS riELD

6

(0)

6
J..

• -OIRECT/DEFERRED Btl FOR ~OURCE AND DESTINATION AOORESS
... SPECIFIES HOW S!:LECTEO REGISTERS ARE TO BE USED

•••• SPt:CIFIES A GE~RAl REGISTER

Cb)

•• • •••

MO:DE (q) Rft

~ 4 3 2
T

DESTINATION AOOAESS Fir LO

•• • •••

M+E (Q) Aft

5 4 3 2
T

DESTINATION AODRESS FIELD

Figure 2-1 Addressing Mode In~truction Formats

2.1-1

I"
0

0
j

II·'lll

Mode

o

2

4

6

Binary
Code

000 .

010

100

110

Addressing Modes

Name

Register

Autoincrement

Autodecrement

Index

Assembler
Syntax *

Direct Modes

Rn

(Rn)+

-(Rn)

X(Rn)

2.1.2

Function

Register contains operand.
Operations performed on reg­
isters in byte mode refer to
the low order byte (bits <7:0»
of the register.

Register contains address of
operand. Register contents
incremented after reference.
Registers 6 (SP) and 7 (PC) are
always incremented by 2 after
reference • R~ - R5 are incre­
mented by 2 for word and by 1
for byte instructions.

Register contents decremented
before reference. Register
contains address of operand.
Registers 6 (SP) and 7 (PC)
are always decremented by 2 be­
fore reference. RSf - R5 are
decremented' by 2 for word. and
by 1 for byte instructions.

Value X (stored in a word fol­
lowing the instruction) is ad­
ded to eRn) to produce address
of operand. Neither X nor (Rn)
is modified.

11/68

1 001

3 011

5 101

7 111

Addressing Modes (con't)

Register
Deferred

Autoincrement
Deferred

Autodecrement
Deferred

Index Deferred

Deferred Modes

@Rn or (Rn)

@(Rn)+

@-(Rn)

@X(Rn)

2.1-3

Register contains the address
of the operand.

Register is first used as a
pointer to a word containing
the address of the operand,
then incremented (always by
two, even for byte instructions).

Register is decremented (always
by two, even for byte instruc­
tions) and then used as a
pointer to a word containing
the address of the operand.

Value X (stored in the memory
word following the instruction)
and(Rn) are added and the sum
is used as a pointer to a word
containing the address of the
operand. Nei ther X nor (Rn)
is modified.

11/68

.:

Tahle 2-1 . ·Addressin~ Modes (cont)

Binlry Assemhler
Mode Code Name Syntax· Fundion

PC Addressing

2 010 Immediate In Operand follows instruction.

3 011 Absolute @IIA Absolute address follows
instruction.

6 110 Relative A Address of A. relative to the
instruction, follows the instruction.

7 III Relative Deferred @A Address of location containin~
address of A, relative to the instruc-
tion, follows the in~truction.

• Rn = Regi5tcr
X. n. A - ne~t program counter (PC) word (constant)

PDP 11/68 INSTRUCTIONS

PDP 11/68 instructions can be divided into five groups:

1. Single-Operand Instructions (shifts, multiple precision
instructions, rotations)

2. Double-Operand Instructions (arithmetic and logical
ins+ructions)

3. Program Control Instructions (branches, subroutines,
traps)

.. -
4. Operate Group Instructions (processor control operations)

5. Condition Code Operators (processor status word bit
instructions)

Tables2~2 through 2-6 list each instruction, including byte
instructions for the respective instruction groups. Figure
2-2 shows the six different instruction formats of the
instruction set, and the individual instructions in each format.

2.1-4
11/68

Table! 2·2 Sin&le O~rand Instructions

~tnemonic OP Cod~ Operalion Condition Codes Oescriplion

ClR 005000- Idsr-"'" 0 N. deJr~d C vnlf..'n(s of speclfil!~ desr milllun are repIJ~c!d with l~ro~s.

CLRB 105000 z. set

Clear V: clearc!'d
C. cleared

COM 005100 (dst. - r. (dst I ~: set if mUit)lgniiic:lt1[R;:piJ~~s thl! ~onr'-'nls of Ih~ dl!sflnation addrl!ss b: . h·i:

COMB 105100 bit of rcsuh is 0 logi~JI ..:omplement {ca~h bit equal to 0 set and C:J~h bit equal

Cumplemenl z. sel If n:sult is 0 (0 1 deJreJ t-
V: cleared
C: SI!'

ISC 005200 (dst) - (dSll t I S: set if r~sul{ is less than 0 Add I to the contents of the destination.

INCB lO5lDO Z: set if resuit 'i 0
[ncrement V: sct if (dst) was 077777

C: nor affected .,
IV .
7'
U1

DEC 00530D (dsl' - (d)11 - I N· set if n.:sull !S less than 0 SubtrJct I from {hI! CO/HC:lIls of the desrination. I .

DECR 105300 Z: set if result is 0

Decrement V: Se!l if ,dsn was 100000
C; not affected

NEG 0054DD (dsU - -(dst) ~. ~t if r~sull IS I~ss thart 0 Rc!pla~cs the coments ot th~ Jc:stlO:Jlion addrc:ss by .(5 2"5 com·

NEGB 10S400 Z: set .f r~sult IS 0 pkmcnt. ;o.JotC that H)()OOO IS rc:placed by itself.

Negate V: set if result is 100000
C l:h:;Jn:d If r~sult is 0

AOC OOSSOD (dstt - (dst) + C N: .-.ct if resull is kss than 0 Adds Ihl! ~nnrenlS of rh,-, (' ·bi! Ilito the destinJlion. This p~rmit s

ADell 105500 z. s~r jf result IS 0 th~ ~Jrry "rom lh~ addition of (he: low-order words.:byles to be

Add Carry V: SCI if hht) IS 077777 Jlld C3rricd into the high-ordcr results.
C is I

C: ~l If {dsn is 177177 lnll
C is I

Table 2·2 Single Operand Insuvctions (Cont)

Mnemonic OP Code Operation Condition Codes Description

sac OOS6DD (dst) - (dst) -C ~. set jf result IS I~ss than 0 Subtracts the contents of the C·bit from the destination. This

SBCB 105600 Z: set if resuh is 0 permits the carry from the subtraction of the low order wordsl

Subtract Cafry V: set if (dstl was 100000 byres to be subtracted from the high-order p:lft of the result.
c: dtartd if (dst) is 0 lnd C

is i

TST oo57DO (dst)-(dst) ~: s~t If result is Its) rh:lI': 0 Sets lh(condition codes Nand Z lecording to the conlents or

TSTB 105700 Z: ser If result IS 0 the dtSlinalion address.
Test V: cil!3red

C. dl!ared

ROR 006000 (dsl) - (c.lsU ~: SI!I ... high-order bit of ROl:nc:s all bilS or (he: destination right one place. Tll,,' !ow-
RORO rmatt right the result is set , ordl!r bit is loadl!d into the C·bit and the previous cc:uents of
Rotate Right one place. Z: set if all bllS of re:sult [he C ·bit are loaded inlo the high·order bit of the d~stina tion.

:ueO
V: load.:d with the ex~lusm~·

OR ui lht ~·bit :md the
C ·bit as set by RO R

ROl OO6l00 (dsl} - (~st) ~: set if the high orc.ltr btl \1(ROlate! :all bits 0.- .hl! destination Ic:fl one place. The high-
ROlB 106100 rotate lei, lh~ r.:sult word IS set ordc:r bJl is loaded into the C ·bit uf the status word and the
Rotate left onl! place. (rtsulr < 0): dc:arcd pre\'ious conlents 0; the C ·bit are loaded into the low-order

oth~rwls~ bit \)f lhe: des I anat ion.
Z: set ii all bilS \1(thl!

result word = 0; cleared
othc(wls~

V: lo .. JcJ With lhe: e:xc!usi\,··
OR of rh~ ~·bu Jnd C·b,t
(a) S\!t b~ (h~ ·..:ompl~llon

of th~ rotltt op~ratlt>n I
C; load~d wilh the high ord.:r

bu 1)1' th~ jeSltnJ(hln

Table ~-2 Single Operand Instructions (Cont)

Mnemonic OP Code Operation Cu;;dilion Cud~s D~scripuon

ASR 006:00 hhU -(dsli "-': set !f the: hl~h l~·d('. b,t Shifts Jil "its 0" !h~ dl!SlinJtlun fight 0nl! pla~e. The high-
ASRll 10620D shifted Olle C) (. iIIe r~su; t li)~ r ord\!r bat I) r~pJi~ated. The (-btl is ioadc:d from the low-order
Arithmetic pileI! to the (rc!sul(< 0 L ~1;!;'H;!d bit vI the de~t1natlon . .\SR performs signed division of the
Shift Right right. urhc:r lsl! dl!StII1JUUn by IWI)

1. Sc: It [he rl!sult = 0.
~t>O \~~ ~~ dl.!arcd olhc:rw.;e

\'. loaded "rom :he ~~dusivl!'
OR 0l the: :"\·bi(and C ·blt
(as set by the t.:ompkt,on
of the shift opcr:won)

C· luaded {rum low urd~r on
of the! dCStlnallOn

N .
ASL OObJDD (d~(• - (dst ~ ~. set If high-order bit of the Shifts all bits I)" (he deslInaflon lett one pliH;e. The low-order
ASlB 106300 shiftl'd Olle Crl!sull < 0): cleared bit IS loaded with a o. The C·bit of the s13tU5 word is loaded
Arithmetic pla'l! to [he tl!fl . o(h\."rwls~ from the high-order hit of the dl!stination. ASL performs .l
Shift Left l sc:c If lh~ rC'iuh :: 0; ,;Ieard signed muhiplicatlOll of thl! destination by ::! with overflow

\)(h~rWi~c U1dl':Jtioll
V loaded with thl! ~,<dllSI\·~·

OR uf thl! S·b,r Jnd C·bit
~md C ·bll I JS s~r by fh~
~OrtlpkllOIl of rtll~ :.hlef
upc.'r.J'h1Ilt

C lu J.:J \', Ilh th~ high-l'rJ&:t
bu of thl! deSWIJllUIi

tv .
'I
CD

Mnemonic

ASH
Arithmetic
Shift

ASHC
Arithmetic
Shift Combined

SXT
Sign Extend

Op Code

072RSS

073RSS

006700

Operation

R R Shifted
Arithmetically NN
places to right or
left
Where NN = (src)

R, Rvl+ R, Rvl
The double word
is shifted NN
places to the right
or left, where NN =
(src)

(dst)+ 0 if N bit
is clear
(dst)+ -1 N bit
is set

Condition Codes

N: set if result<O; cleared
otherwise.
Z: set if result = 0; cleared
otherwise.
V: set if sign of register
changed during shift; cleared
otherwise.
C: loaded from last bit shift
out of register.

N: set if result <0; cleared
otherwise.
Z: set if result = 0; cleared
otherwise.
V: set if sign bit changes
during shift; cleared
otherwise •
C: loaded with high-order bit
when right shift (loaded with
the last bit shifted out of the
32-bit operand).

N: unaffected
Z: set if N bit clear
V: cleared
C: unaffected

Description

The contents of the register are shifted
right or left the number of times spe­
cified by the source operand. The shift
count is taken as the low-order 6 bits of
the source operand. This number ranges
from -32 to +31. Negative is a right
shift and positive is a left shift.

The contents of the register Rand Rvl
are treated as one 32-bit register and
shift count (low order 6 bits of source
operand). This number ranges from -32
to +31. Negative is right shift and
posittve is a left shift. Condition codes
are affected by the 32-bit result. Bits
<31:16> of the result are stored in R if
R is even. Bits <15:0> are stored in Rvl.
R can be odd or even.

If R is odd, the left shift works like a
l6-bit left shift. A right shift works
like a l6-bit right rotate for shift
counts up to 16. If a right shift by
more than l6-bits is specified the op­
eration results in an arithmetic right
shift by an amount equal to the shift
count less 16.

If the condition code bit N is set then a
-1 is p~aced in the destination operand:
If N bit is clear, then a 0 is placed in
the destination operand. This instruc­
tion is particularly useful in multiple
precision arithmetic because it permits
the sign to be extended through mUltiple
words.

11 /{;P.

N .

Mnemonic

SWAB
Swap B)'t~

OPCode

! ,
oooJOO

I

I

Table 2·2 Singje Operand Instructions l CORl)

Operation

Byte l/BYle 0
Byte O/BYle I

Condition Codes

N: set if high-ocder bit of
low-ordcr byte (bit 7) of
result is set; cleared
otherwise,
Z: ScH if l\)w-order byte of I
result:: 0; cleared otherWise,,'
V: cleared
C; cleared

Description

Exchanges tugh-urder byte and low-order byte of the
destination word (destination must be a word
address).

. ..
I-'
o

~monic

MO\
MO\5
Mo\·:

C~lP
Q)lP3 (IIIPO

Cor.:~e

OPCode Operation

• OISSOO- (d:il) - (Sf C) •

IlSSDD

O~SSDD hrc) - (dst)
l~SSDD (in detail.

(src) +-
(dill ... II

Table 2·) Double Operand Insuuctions

Condition Cocks Description

S: sc: t if (Sh: j < o. clearc:d Word: Moves thl! sourc~ operand to the destination location.
olh~lwise Th~ previous contents of the deslination are los(. The source

z;)tt Ii (src) = O . ..;!~ared oper:md is not affected.
othl!rwisc! Byte: Samt' as MOV The MOVB to a resistor (unique among

V: ~lc:Jrcd byt~ anslructions) extends th~ most signific3nt bit ot the low
C: not affected urd~r byte (sign ext~nsion). Otherwise MOVB operates on

bytes c:xa~tly as MOV operates on words.

~. set if result < o. dc:trcd Comp;lrcs the source and destination operands and Sl!t . the
otherwise ~onditlon codes which may then be used for arithmetiC and

z. ~t if r~su" = 0; d~3fcd l~i~al ~onditional branches. Both operands arc unaffected.
otherwi~ The only actIon is to set the condition codes. The compare IS

V: Sf!t if [h~re was Olrirhmctr..: ~ustomarily followed by J conditional branch instruction. ': Ite·

overflow (Lt .• operands (hll unhk~ the subtra;.;r instruction [hI! ordu or' Opl!rallOn is
were of Opt>O\ilC signs '(src) - (dst) not (dsO - (src).
:md lh~ slBn 0" (he d~s·
Cin3tion was .ahe Slmc:

as the Sign of the result)~
cleared ot~rwist.

c: cleared if rh~re W3:l a
carry from !hc: mO')1 slg·
nific:.nl bit of th~ result.
s~t olhc:rwls~

Table 2·3 Double Operand Instructions (Cont)

~fnemoruc OP Code Opera(ion Condition Codes Description

BIT 03SS0D (src)I\(\!st) ~: ~~(If high ordl!r bll 0f P;!rform~ logical :\:,\D (omparison of the source and dtstinallo n
BITB 13SS0D result set: d~ared other· uperands and modifies ~ondilion codes accordingly. Neither
Bit Test wist the source nor destination operands are affected. The BIT in-

Z: set If rl!sull = O. deJred struction may be used to t~St whether any of the corresponding
o(h~rwise bits that Jr~ set In the destination are clear in the $llUrce.

V: deJr~d

C: not affected

BIC 04SSDD (dsq (sec) ~. se.t if high order bit of Clc.:ars c.:ach bit III the destination thaI corresponds fI.) a set bit
BICB 14SS0D t\ (dst) result set; cleared 0thcr· III the sour~c. The original conlents of the deSlinltlon are lost.
Bit Clear wise The contents of the source are unaffected.

t Z: set if result: 0; cleared
otherwIse.:

V: cleared
C; no(affeclcd

SIS 05SSDD (dSl) ... f sr(; ~ ~: sel if Iligh order bit of Performs inclusiv~.QR lIp~'Jtion between the source and des-
81S8 ISSSDO 1\ (dstJ resulr Se!t. clean:cJ oth~r· [inllion opc:rands and ka\-es dle! result at the: destination
Bit Sc!t wise.: Jddrcss: i.~., corresponding bits sc:t in the desunalion. The

Z: set If rc!sult = 0; ~kar~d ~ontcnfs or' rhe: dc:slInauon :.Ire losl.
oth.:rwlse

V: d~arl!d

C: not affected

AOD 06SSDD (dsn - (s{~) ~. sC:l if rc:sult O. d~;ared Adds the source opcrlnd to the destination oper:md and storc~
Add + (dsn otherwise lh~ resull at the: dC:Sl1ll3lion addrc!ss. The original conlents of

Z.)(t If r~suh = 0; cleared thl.! dcstJf13tion :m.' lost. Th~ I.:Onlc:nts of the source 3rc not
othl!rwis~ affected. Two's complement lJdition is perfonned.

Mnemonic OPCode Opcr:ation

ADD (Cont)

"

1

SL'B • 16SSDD (dso +- (dst) -
Subtract (sec) in det3il.

tdst, ... - hre)
+ I (dst)

• 55:; SJlH~~ IJddrcss mudc: Jnd rtgl)t-:r)

'i- i)j': I = 5~liH";~ ..:on[~nts

Table 1-3 Double Operand Instruction (COAt)

Condition Codes Description

V: set if (here was arithmelic
overflow as II result of the:
operation (that is. both
opera,uJs wer.: of the same
sign and the: resuh was of
the opposite sign)~ cleared
otherwise.

C; set If there was a carry from
tht most signtfi~anl bit of
the result: cleared other-
wise.

N: set if resuh < O. ~Jellred Subtracts the sour&:e operand from the destination operand and
otherwis~ 1~3V~S the resuh :at- the destination address. The original ~ontenlS

Z: set if result = O. cleared 0; the destinalion are lost. Th~ contenlS of tht source ar~ nUl
olhl!r~'isc afftcred.1 n double precision arithmetic. the C -bit. when set.

V; sel if lher.: was arithml!lic illlli~alcs OJ borrow.
ov~rtlow ilS a result of
the operation (i.a,. if
op~r.:.tnds wt!rc uf op-
posite signs and the sIgn
of the suur..:.: w.as the
same JS the iign of 'he
result); cleared otherwise

C: d~~Hl!d If lhel i! was .a
~rr} (rum rhe most
slgnj"l~ant bn of 'he
resull: ie!t otherWISe!

N
w

Mnemonic

MUL
Multiply

DIV
Divide

XOR

OP Code

070RSS

071RSS

074RDD

Table 2-3 Double Operand Instructions (Cont.)

Operation

R,Rvl +Rx(src)

R,Rvl+R,Rvl
(src)

(dst)+Rv Cdst)

Condition Codes

N: set if product is<O:
cleared otherwise.
Z: set if product is 0;
cleared otherwise.
V: cleared
C: set if the result is
less than _215 or greater
than or equal to 215 -1.

N: unpredictable if V is set.
Set if quotient 0; cleared
otherwise.
Z: unpredictable if V is set.
Set if quotient =0; cleared
otherwise.
V: set if source = 0 or over­
flow (quotient less than _2 15

or greater than 215 -1).
C: set if source = 0; cleared
otherwise.

N: set if the result <0;
cleared otherwise.
Z: set if result=O; cleared
otherwise.
V: cleared'
C: unaffected

Description

The contents of the destination register
and source taken as two's complement
integers are· multiplied and stored in the
destination register and the succeeding
register (if R is even). If R is odd, only·
the low-order product is stored. Assembler
syntax is: MULS,R.
(Note that the actual destination is
R,Rvl which reduces to just R when R
is odd.)

If division by zero is attempted the
instruction is terminated and the
destination operand is left unchanged •
Otherwise, the 32-bit two's complement
integer in R and Rvl is divided by the
source operand. The quotient is left in
R; the remainder in Rvl. Non-zero
remainder always has the same sign as
the dividend. If the quotient cannot be
represented as a 16 bit two's complement
integer, overflow occurs. In this case
the instruction aborts and the contents of
the destination registers are unpredictable.
If R is odd or if R6 is used the result
is unpredictable.

The exclusive OR of the register and
destination operand is stored in the
destination address. Contents of
register are unaffected. Assembler
format is XOR R,D.

Table 2·4 Prognm Controllnstrucrions

Mnemonic OP Code Operation Condition Codes Description

BR 000400 P(>- PC + Unaffected Provides a way of transferring program control within a range
Branch XXXT (2 X offset) of - 128 to + 127 words with a one word insuuction. It is ail

um:ondlliollal branch.

B~E 001000 PC4-PC+ Unaffected Tests the state of the Z·bit and causes a branch Ii the Z·bit is
Branch if not xxx (2 X utfset) IS dear. B!\1E is the complementary operation to SEQ. It is
equal ifl = 0 us~J to test inequality iollowing a CMP. to test thai sQrne bits

sc:t in ihe d~stination were also in the source. following 3 BIT.
and generally. lO test that' the result of the previous ;'p('lJtion
WJS Itor 0

BEQ 001400 PC"'PC+ Unaffected Tests th~ state of the Z·bi[and causes a branch if Z is s;.:~ .. \i
Branch if equal xxx (2 X offs\!t) if an example. it IS us~d to test equality following 3 C~1P opera·

Z=l lion. to test that no bits set in the destination were also seE in
th~ source following a BIT operation. and generally. to test
rh:u the result of the previous oper3tion was O .

.
BGE OO:!OOO PC-PCt Unaffected CJUSC$ a branch if ~ and V Jre either both clear or both S~l.
Brln~h if great~r ~,,~ (2 X llfis.:t) If BGE is the compltrnenr3r}' op~ration to BlT. Thus. BGE
than or \!qual ~vV=O ah~J}s ~Juses a branch wh<n it follows an operat£on that

caus~d Jddition to two positive numbers. BGE also C3US~S J

brln~h on a 0 result.

Table 2-4 Program Controllnslrucrions CConr)

Mnemonic OPCode Oper~rion Condjtion Codes Descriptjon

BlT OO~"'OO PC -PC + Unaffectl!d Causes l bran~h if the exdusive.QR of th~ ~. and V-bits Jr~ i.
Branch if less x.xx (2 X offset) If Thus. Bl T JI~'ays branches foJ/owing an operation thaI Jdd~d
than ~ V= I two negarive numbers, even if o'''~rt1ow occurred. In parucular.

Bl T alw:JYs causes a branch jf it follows a C~IP instruction
operatlllg on a negative source and :1 po~illv~ destinr.:i:)11 (~\"en
if over/low ,)ccurred). Funhcr. Bl T never causes a i,ranch when
it follows J C~tP instruction t'lperating on a positive source and
neg3tiw destin:nion. Bl T doc:s not cause 3 branch jf the result
of the prevIOus operation was 0 (wuhout overflow).

BGT 003000 PC-PC+ Unaffected Operation of BGT is similar to BGE. \!xcept BCT dOl!s not
Bunch if grealer xxx (2 X offset) caus~ a branch on a 0 rcsult.
than if Z v (N¥

V) =0

RlE 0030100 pc ... pc+ Unaffco;tcd Opera lion is similar to Bl T. bUI in addi tion wilJ cause" branch
BC.1nch if less than xxx (2 X offset. if if the r~sult vI" the previous operation was O.
or equal to Z v (N¥V)

=1

BPl 100000 PC-p(+ Unaffected Tes(s (hI! start! of the ~-bit and causes a branch if N is clelr.
Branch if plus x.xx (2 X ot'fsCl) if BPlis thl! ~omplc:rnc"tar>' operllion oi B~II.

N=O

BMI 100",00 pc-pe+ Unaffected Tcsts lhe Slale of lhe N·bJl and ~lUSi!S J branch If N is set. It 1$

Brlnch if minus x.u (2 X offset) It used ru res(the: sign (most signaficant bit) of lhe result oi lh.:
N= I prc:vlous operariun.

Table 24 Ptopam ControllnstrucCions (ConI)

Mnemonic OPCode Opera.ion Condition Codes Description

SHI 101000 PC+-PC+ Unaffected Causes a branch if the previous operation causes neilher a carry
Branch If higher xxx (2 X offset) if nor a 0 result. This will happtn in comparison (CMP) operations

C=O as long :as the source has a higher unsigned value than the
destination.

8l0S '01~00 PC+-PC+ Un3ffected Causc!s.l branch If rhe: pre\"&ous operation caused either a carry
Branch if lower xxx (2 X orfseO if or :1 0 result. BLOS is th~ complementary operation to BHI.
or same CvZ = I Tht br:mch occurs in comparison oper;Uions as 'ong 3S the

source is equal to or has a lower unsigned value than the
" deslin:llion. Comparison of unsigned values with the C~IP

instruction to be tested for "higher o.r same" and "higher"' by
a simple: test of the C ·bit .

Bve 102000 PC+-PC+ Unaffected Tests the state of .he V·bit and causes a branch if ~he V·blt is
Branch if V·bit xxx (1 X offset) if clear. Bye is complementar}' operation to BVS.
clear V=O

BVS J01~00 PC - PC + l'n.:lffected T ~sts the stale of V ·bit (o\c!rrlow) and causes a br:ln~h 11 the
Branch if V·bit set x.xx (:! X offset t if Y·bit i~ set. BVS is used to detect Jrilhmetic overflow in the!

V= 1 previous operaticn.

BCC} 103000 PC +-PC + Unaffected T~sts the state of the C·blllnd ,a uses a branch ife is ~le3r.
BHIS xxx f1 X offset) if BCC IS the .:ornplementary operltion to BCS.
Branch if carry C=O
delr
Branch if higher
than the Slme

BeS} I03~00 PC - PC + l'naifected T ~sts lhe state of the C-blt Jnd ~luses :1 branch If C is set. Ir is
BlD xxx (2 X offset) it' used to lest for a c:Jrry III the result of a previous operath.)O.
Brandl If ~lrr}' set C = I
Brllich If :o\\er

Mnemonic

JMP
J~p

SPL
Set priority
Level

OP Code

000100

00023N

Operation • Condition Codes

p~(dst) Unaffected

PS<7:S> + priority N unaffected

Description

JMP provides more flexible program branch­
ing than provided with the branch instruc-

·tion. Control may be transferred to any
location in memory (no range limitation)
and can be accomplished with the fu1i
fl~xibility of the addressing modes with
the exception of register mode O. Exe­
cution of a jump with mode 0 will cause
an illegal instruction condition. (Pro­
gram control cannot be transferred to a
register.) Register deferred mode is
legal and will cause program control to
be transferred to the address held in the
specified register. Note that instructions
are word data and must therefore be
fetched from an even numbered address. A
boundary error trap condition will result
when the processor attempts to fetch an
instruction from an odd address.

The least significant three bits of the
instruction are loaded into the Program
status Word(PS) bits 7-5 thus causing a
changed priority. The old priority is
lost.
Assembler syntax is: SPL N
Note: This instruction is a no op in User
and Supervisor modes.

11/68

Table 2-4 Program Control Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description

JRS 004RDD (tmp) 4- (dst) Unaffected In execution of the JSR, the old contents of the specified
Jump to (Imp is an inter- rtgist.:r (the linkage pointer) are automatically pushed onto
subroutine nal processor the pr~essor slack and new linkage: informacion placed in

register) the register. ThuS. subroutines nested within subroutines to any
L (SP) .. reg depth may all be called with the same linkage register. There
(push reg can· is no need eith.:r to plan the ma:<imum depth at which any
tents OntO proces· particular subroutine will be called or to include Instructions
sor stack) In t:!3ch routine 10 save and restore the linkage pointer. Further.
leg" PC PC sance :llliinkages are savc:d in a re<ntrant manner on the pro-
holds location fol· cessor stack, execution of a subroutine may be jnterrupted.
lowing JSR: this and the same subroutine re-entered and executed by an in-
address PC +- terrupt service routine. Execution of the initial subr·~uune can
(Imp,. now pUI in then be resumed when other requests are satisfied. i'his pro-
(reg) cess (called nesting, can proceed to any level.

JSR PC. dst is a special case of the PDp·I J subroutine caU
suuabJ~ for subroutin~ calls that transmit parameters.

RTS OOO~OR PC ... (rc:g) Unaffecteu Ll>ads ~ont~nrs l>f regmer into PC and pops the rop elc!menr
Rerum from (reg) -- SP t l>f rhe procc!ssor stack in ro the specified register.
subroutine

R~rurn from a non·r~-enU3nt subroutine IS tYPlc311y madli:
lhroush (he);Ame register thal WlS used in its call. Thus ...
subrouune cliled with il JSR PC. dst exits wilh an RTS PC.
and a subrou(inli: CJIlc!d wllh a JSR RS. dst may pick up
parJm~lerS With JddresslOg modes (RS) +. X (R5). or I~X (RS)
3nd rJnJlly eXll. wuh In RTS R5.

Mnemonic

RTI

RTT

OP Code

000002

000006

Operation

P~CSP)+
Psw+-CSp)+

PC+-(SP)+
PS+(SP)t

Condi tion Codes

N: loaded from processor
stack.
Z: loaded from processor
stack
V: loaded from processor
stack
c: loaded from processor
stack

N: loaded from processor
stack
Z: loaded from processor
stack
'V: loaded from processor
stack
C: loaded from processor
stack

Description

Used to exit from an interrupt or trap
service routine. The PC and PSW are
restored (popped) from the processor
stack. If the RTI sets the T-bit in the
PSW, a trace trap will occur prior to
executing the next instruction.

This is the same as the RTI instruction,
except that it inhibits a trace trap,
while RTI permits a trace trap. If a
trace trap is pending, the first instruc­
tion after the RTT will be executed prior
to the next "Til trap. In the case of
the RTI instruction, the liT" trap will
occur immediately after the RTI.

In RTT and RTI, only transactions from
more privileged processor modes to the,
same or less privileged modes are' a1;"
lowed. When executed in Supervisor mode,
the new PSW bits cannot be Kernel. When
executed in User mode, the new PSW mode
bits can only be User.

11/68

Mnemonic OP Code

MARK

Table 2-4 Propam Control Instructions (Conn

Operation

sp - SP + 2x.nn
PC-R5
R5 (SP) ~

M = number of
p.1r3mete:-s

Condition Codes

Unaffected

Description

Used as put of the sl3l1<iard PDp·II subroutine return
convenlion. !ttARK r3cilil.UeS (he stack cle:1~up pro­
cedures involved in subroutine exit. Assembler ronnat
is: ~tARK ~

EXJmple;~fOV RS,-(SP)
MOV P 1,-(5P)
MOV P~t-{5P)

;placc old R5 on stack
;place N par:unclcrs on
;the stack to be used
;there by the subroutine·

MOV PN ,-(SP) ;places the instruction
MOV =MARK.'.: ,-(SP) ~MARK N on the ~,::.:lr..

;set up address at :.lark
MOV SP,R5 ;N instruction

JSR PC,SUB ;jump to subroutine

At this poim the stack is as follows:

OLD R5
PI'
PN

MARKN
OlOPe

And the progr:un is at the address SUB which is the
beginning of the subroutine.

SUB: ;execution of the subroutine itself
RTS RS: ;the return begins

This causes the contents of RS to be placed in the PC
which then results in the execution of the instruction
MARK N. The conlenti of old PC are pt:1ced in R5

MARK N causes: (1) the stack pointer to be adjusted to
point to the old RS value: (2) the value now in R5lthe
old PC) to be placed in the PC. and (3) contents of the
old R5 to be popped into RS. thus COmpl\!ling the return
from subroutine.

Mnemonic

SOB
Subtract one and
branch if not
equal to 0

"

PT B
B re:lk·point Trap

lOT
lOT Trap

OPCode

077ROO
plus offset,

I

000003

I
I
I

000004

Table 2-4 Proenm Controllnstruaions (Cont)

Operation

R- R-I
if this result :F
o then PC-PC
-(2 x offset)

~ (SP) - PS
~ (SP) -- PC
PC -(14)
ps ... (16)

~ (SP) - PS
~ (SP)'" PC
PC -(:!O)
PS .- (22)

Condition Codes

Unaffected

N: loaded from trap vector'
Z: loaded from uap vector
V: loaded (rom trap vector
C; loaded from trap vector

N: loaded from trap vector
Z: loaded from trap vector
C: loaded from trap vector

I

,
I

I
t

I
I

Description

The register is decremented. If it is not equal to 0, twice
the offsct is subtracted from the PC (now pointing to the
foUowing word). The offset is interpreted as a six-bit
positive number. This instruction provides a fast, efficient
method of loop control. Assembler syntax is:

SOB R,A

where A is the address to which transfer is to be made if
the decremented R is not equal to O. Note that the SOB
instruction cannot be used to transfer control in the
forward direction.

Performs a trap sequence with a trap vector address of 14.
Used to caU debugging aids. The user is cautioned against
employing code 000003 in programs run under these
debugging aids.

Perfonns a rrap sequence with 3 trap vector address ot
::!O. Used to C3U lhe 1/0 executive routine lOX in the
p3per-tape soflware system and for error reporting in the
disk operating system.

Table 2-4 Program Controllnstruclions (Cont)

Mnemonic OPCode Operntion

E~tr 104000 , C.SPl- PS
Emulator Trap t (SP) - PC

PC -(30)
PS-(3:)

TRAP
I

104400 to '·(SP)"" PS
104777 t (·SP)"" PC ,

PC - (34)
PS -()6)

NOTE: Condition Codes are unaffected by these instructions

-DD = destin~lion (address mode :md register)
t (dSI) = deslination contents

Condition Codes

~: loaded from trap vector
Z: loaded from trap "'ector
V: loaded from trap vector
C: I\)aded from trap ~~ctor

N: loaded from Hap vector
Z: loaded from trap vector
V: loaded from trap vector
c: loaded from trap vector

J Descriplion
I
I

I AU operation codes from 104000 to 104371 are E~tT

I
instructions and may be used (0 tr311smit information to

j the emulating routine le.,., function to be performed). I
I The trap vector for EMT is at address 30; the new central

I processor status (PS) is taken from the word at address 3:!.

I CAUTION
I EMT is used frequently by DEC system software I

I
and is therefore not recommended for genera! use.

Oper:llion codes from 104400 to 104777 are TRAP instruc- .

I tions. TRAPs· and EMTs are identicaJ in operation. except

i that the trap vector for TRAP is at address 34.
I

NOTE I
f

Since DEC software makes frequent use of EMT. the

I TRAP instruction is recommended for lenerai use.

Mnemonic OP Code

WAIT 000001

RESET 000005

MFPT

Table 2-5 Miscellaneous Instructions (Cont.)

Operation

PC(SP)
PSW(SP)

R0<7: 0>+
Processor Code
Code 1
RO< 15 :8>+
Processor
Subcode

Condition Codes

Unaffected

Unaffected

Unaffected

Description

Provides a way for the processor to
relinquish use of the bus while it
waits for an external interrupt.
Having been given a WAIT command, the
processor will not compete for bus
by fetching instructions or operands
from memory. This permits higher
transfer rates between device and
memory, as no processor-induced latencies
will be encountered by bus requests
from the device. In WAIT, as in all
instructions, the PC points to the
next instruction following the WAIT
operation. Thus, '''hen an interrupt
causes the PC and PS to be pushed onto
the stack, the address of the next
instruction following the WAIT is
saved. The exit from the interrupt
routine (i.e." execution of an RTI
instruction) will cause resumption of
the interrupted process at the
instruction following the WAIT.

Sends IN IT on the Unibus for 100 ms.
All devices on the Unibus are reset to
their state at power-up.

Upon execution, the MFPT instruction
r.eturns to the low byte of RO a
processor model code (octal 3 for
PDP 11/68.)

The high byte of RO will be
loaded with a processor specified
subcode (octal ~ for PDP 11/68.

II.)
I

II.)

~

Mnemc:-.. ic

MFPI
MFPD

MTPI
MTPD

HALT

OP Code

006555
106555

006655
106655

000000

Table 2-5 Miscellaneous Instructions (Cont.)

Operation

(temp)+-(src)
t (sp)+- (temp)

(temp)+- (SP) t
Cdst)+- (temp)

Condition Codes

N: set if the source <0;
otherwise cleared
Z: s~t if the source =0;
otherwise cleared
V: cleared
C: unaffected

N: set if the source <0;
otherwise cleared
Z: set if the source =0;
otherwise cleared
V: cleared
C: unaffected

Unaffected

Description

This instruction is provided in order to
allow inter-address space communication
when the PDP 11/68 is using the Memory
Management unit. The address of the
source operand is determined in the
current address space. That is, the
address is determined using the SP and
memory pages determined by PS<l5:l4>.
The address itself is then used in the
previous leD) space (as determined by
PS<l3:l2> to get the source operand.
This operand is then pushed on to the'
current R6 stack .

The aadress of the destination operand
is determined in the current address
space. MTPI(D) then pops a word off
the current stack and stores that word
in the destination address in the
previous mode's 1(0) space (bits 13,
12 of PS).

Causes the processor operation to
cease. The,console is given control
of the processor. The console data
lights display the address of the HALT
instruction plus two. Transfers on the
Unibus are terminated immediately. The
PC points to the next instruction to be
executed. Pressing the CONT key on the
console causes processor operation to
resume. No IN IT signal is given.

Table 2-6 Condidon Code Opera'ors

1\1 neRlonic 1 Op Code 1n. .. trucdoR

elC
CLV
Cf.Z
CI.N
C("C
SEC
SEV
SEZ
SEN
sec

000241
000242
000244
(111251)
000257
000261
000262
000264
000270
000277

Clear condition code C.
Clear condition code V.
Clear condition code Z.
Clear condition code ~'.
Clear all condition code bits.
Set condition code C.
Set condition code V.
Set condition code Z.
Set condition code N.
Set all condition code bits.

--------------------NoiE:
Selectable combin.tion~ of condition cude bits may
ht' cleared or ~. together. The status of bit 4 confrol~
'he "'ay in which bits 0, I, 2. and 3 are to be modi­
fied. I r bit 4 = I. the ~p(lcified hits are se'; if bit 4 =
0, Iht' specified bit, are cleared.

, !I....,. ! ", ... lfllt.Ct." •. C OV.Cm.e.IIIIC.I~e.O(c.(If'ce.N(r..N(G •. "OC .• «".511(. ~(•• tST.UTII.O')lt . .., ••• ttO\. .ltQ.e ... ~" ... " ••
Ul.aSl •• J.-... ,wae,

,~

o .. t:
I

,~

\ _ t .. -Go
•. e._" -....e I ... el 1

,~

t.t:. "" • u ... flt'\'

Il "

Soc
I

011
I

• 0

.. ..
I

0

.ff •• ,

0

~ .. "".
I

---------------------------------------,--------~ c=== __ -L_~~ ____ _L __ ~_0_L_._..~ __ ~~ __ ~ __ ~ __ L_~ ____ ~ __ ~___J 0 I.'

~ cOOt
I'

40 .. _ ,. 'ftA\.T.WAlt.'U f.SlJJ

~---------------.-..-----.-..-----------------------.-..------~

Figure 2-2 PDP-II Instruction Formats

2.1-25

Table 2-7 Programming Differences

44 04 34 Fll LSIll 05/10 15/20 35/40 45 70 68

1. OPR%R, (R)+ or OPR%R, - (R) using the same X X X

register as both source and destination:
contents of R are incremented (decremented)
by 2 before being used as the source
operand.

OPR%R, (R)+ or OPR%R, - (R) using the same X X X X X X X X
register as both register and destination:
initial contents of R are used as the source
operand.

2. OPR%R, @(R)+ or OPR%R, @-(R) using the same X X X
register as both source and destination:
contents of R are incremented (decremented)

N
by 2 before being used as the source . operand •

~
I

N
CTt OPR%R, @(R)+ or OPR%R, @-(R) using the same X X X X X X X X

register as both source and destination:
initial contents of R are used as the source
operand.

3. OPR PC, X(R); OPR PC, @ X(R)i OPR PC, @ Ai X X X
OPR PC, A: Location A will contain the PC
of OPR +4.

OPR PC, X{R)i OPR PC, @ X(R), OPR PC, Ai X X X X X X X X
OPR PC, @ A: Location A will contain the
PC of OPR +2.

4. JMP (R)+ or JSR reg, (R) +: Contents of R X X
are incremented by 2, then used as the new
PC address

JMP (RP)+ or JSR reg. (R)+ : Initial X X X X X X X X
X

COJltents of R are used as the new PC.

5. JMP %R or JSR reg, %R traps to 4 (illegal X X X X X X X
instruction) . 11/68

Table 2-7 Programming Differences

44 04, 34 F11 LSIl1 05/10 15/20 35/40 45 70 68

JMP %R or JSR reg, %R traps to 10 (illegal X X X X
instruction).

6. SWAB does not change v. X

SWAB clears v. X X X X X X X X X X

7. Register addresses (177700-177717) are valid X
Program addresses when used by CPU.

Register addresses (177700-177717) time out X X X X X X X X X X
when used as a program address by the cpu.
Can be addressed under console operation.~~~~
Note addresses cannot be addressed under
Console for LSI-II or F11.

t\) .
Basic Instructions I-' 8. noted in PDP-II processor X X X X X X X X X X X I

t\) handbook.
-..,J

SOB, MARK, RTT, SXT instructions X X X X X X X X

ASH, ASHC, DIV, MOL, XOR X X X X X X X X

MFPT Instruction X X

The external option KEl1-A provides MUL, DIV, X X
SHIFT operation in the same data format.

The KEl1-E (Expansion Instruction Set) X
provides the instructions MUL, DIV, ASH,
and ASHe. These new instructions are 11/45
compatible.

The KEll-F adds unique stack ordered floating X
point instructions: FADD, FSUB, FMUL, FDIV.

The KEV-11 adds EIS/FIS instructions X

SPL Instruction X X X

11/68

Table 2-7 Programming Differences (Cont.)

44 04 34 Pll LSIll 05/10 15/20 35/40 45 70 68

9. Power fail during RESET instruction is not X X

recognized until after the instruction is I

finished (70 milliseconds). RESET
instruction consists of 70 millisecond pause
with !NIT occurring during first 20 milli-
seconds.

Power fail immediately ends the RESET X X X X X X
instruction and traps if an INIT is in
progress. A minimum INIT of 1 microsecond
occurs if instruction aborted. PDP 11/04/34/44
are similar with no minimum INIT time'.

Power fail acts the same as 11/45 (22 milli- X
seconds with about 300 nanoseconds minimum).

t-.,) Power fail during RESET fetch is fatal with .
no power down sequence • ..

t-.,)

CD RESET instruction consists of 10 Usec of INIT X X
followed by a 90 Usec pause. Power fail not
recognized until the instruction is complete.

10. No RTT instruction X X

If R'I'l' sets the T bit, the T bit trap occurs X X X X X X X X X
after the instruction following RTT.

11. If RTI sets "T" bit, "T" bit trap is acknowledged X X
after instruction following RTI.

If RTf sets "T" bit, tiT" bit trap is acknowledged X X X X X X X X X
immediately following RTI.

12. If an interrupt occurs during an instruction X X X X X X, X X
that has the "T" bit set, the liT" bit trap is
acknowledged before the interrupt.

If an interrupt occurs during an instruction X X X
and the "T" bit is set, the interrupt is
acknowledged before "T" bit trap.

11/68

Table 2-7 Programming Differences (Cont.)

44 04 34 Fll LSIll 05/10 15/20 35/40 45 70 68

13. "T" bit trap will sequence out of WAIT X X X X X X X
instruction.

"T" bit trap will not sequence out of X X X X
WAIT instruction. Waits until an interrupt.

14. Explicit reference (direct access) to PS can X X X
load "T" bit. Console can also load liT" bit.

Only implicit references (RTI, RTT, traps and X X X X X X X X
interrupts) can load "Ttl bit. Console cannot
load "T" bit.

15. Odd address/non-existent references using the X X X X X X X

I\.) SP cause a HALT. This is a case of double
.. bus error with the second error occurring in t-D
I the trap servicing·the first error. Odd I\.)

\D address trap not in.LSI-11 or F-ll.

Odd address/non-existent references using X X X X
the stack pointer cause a fatal trap. On bus
error in trap service, new stack created at 0/2.

16. The first instruction in an iriterrupt routine X X X X X X X X X X
will not be executed if another interrupt occurs
at a higher priority level than assumed by the
first interrupt.

The first instruction in an interrupt service X
is guaranteed to be executed.

17. 8 General purpose registers. X X X X X X X X

16 General purpose registers. X X X

11/68

Table 2-7 Programming Differences (Cant.)

44 04 34 F-ll LSIll 05/10 15/20 35/40 45 70 68

18. FSW address, 177776, not implemented must use X

~EW instructions, MTPS (move to PS) and MFPS
;::::K)ve from PS).

?SW address implemented, MTPS and MFPS not X X X X X X X X

i.=plemented.

PSV; address and MTPS and MFPS implemented. X X

19. :mly one interrupt level (BR4) exists. X

FC'..lr interrupt levels exist. X X X X X X X X X X

20. S~ck overflow not implemented. X

N So~e sort of stack overflow implemented. X X X X X X X X X X .
I-'
I
w
0

21. Cdd address trap not implemented. X X

acid address trap implemented. X X X X X X X X X

22. ~of";L and FDIV instructions implicitly use X
RE (one push and pop); hence R6 must be set
up correctly.

F!~:L and FDIV instructions do not implicitly X
use R6.

23. Due to their execution time, EIS instructions X
can abort because of a device interrupt.

EIS ~nstructions do not abort because of a X X X X X X X
d€":ice interrupt.

24. S'.l€ -:c their execution time, FIS instructions X X
:: a:-. al::or~ because of a device interrupt.

25. E15 i~structions do a DATIP and DATO bus X
seq;;er.:e v,"!1en fetching source operand.

11/68

Table 2-7 Programming Differences (Cont.)

44 04 34 F-1l LSI11 05/10 15/20 35/40 45 ' 70 68

EIS instructions do a DATI bus sequence when X X X X X X X
fetching source operand.

26. MOV instruction does just a DATO bus sequence X X X X X X X X

for the last memory cycle.

MOV instruction does a DATIP and DATO bus X X X
sequence for the last me~ory cycle.

27. If PC contains non-existent memory address and X X X X X X X X X X

a bus error occurs, PC will have been incremented.

If PC contains non-existent memory address and X
a bus error occurs, PC will be unchanged.

....,
28. If register contains non-existent memory X X X X X X X X .

~ address in mode 2 and a bus error occurs, I
w register will be incremented. ~

Same as above bU,t register is unchanged. X X X

29. If register contains an odd value Ln mode 2 X X X X X X

and a bus error occurs, register will be
incremented.

If register contains an odd value in mode 2 X X X X X
and a bus error occurs, register will be
unchanged.

30. Condition codes restored to original values X
after FIS interrupt abort (EIS doesn't
abort on 35/40)

;;

Condition codes that are restored after X
EIS/FIS interrupt abort are indeterminate.

31. OP codes 075040 through 075377 unconditionally X X X X X X X X X X

trap to 10 as reserved Op codes.

11/68

Table 2-7 Programming Differences (Cont.)

44 04 34 F-11 LSI11 5/10 15/20 35/40 45 70 68

If KEV-11 option is present, Op codes 75040 X
through 07533 perform a memory read using the
register specified by the low order 3 bits as
a pointer. If the register contents are a non-
existent address, a trap to 4 occurs. If the
register contents are an existent address, a
trap to 10 occurs.

32. Op codes 210 thru 217 trap to 10 as reserved X X X X X X X X X X

Op codes.

Op codes 210 thru 217 are used as a maintenance
'instruction. X

N
thru 75777 X . 33. Op codes 75040 trap to 10 as X X X X X X X X X ...,

I reserved Op codes. w
N

Only if KEY-II option is present, Op codes X
75040 thru 75377 can be used as escapes to
user microcode. Op codes 75400 thru 75777
can also be used.

As escapes to user microcode and KEV-ll option
need not be present. If no user microcode
exists, a trap to 10 occurs.

34. Op codes 170000 thru 177777 trap to 10 as reserv X X X X
reserved instructions.

Op codes 170000 thru 177777 are implemented as X X X X X X

floating point instructions.

Op codes 170000 thru 177777 can be used as X
escapes to user microcode. If no user microcode
exists, a trap to 10 occurs.

11/68

Table 2-7 Programming Differences (Cant.)

44 04 34 F-ll LSIll 05/10 15/20 35/40 45 70 68

35. CLR and SXT do just a DATO sequence for the X
last bus cycle.

CLR and SXT do DATIP-DATO sequence for the X X X X X X X X X X
last bus cycle.

.
36. MEM.MGT maintenance mode SR~ bit 8 is implemented. X X X X X X

MEM.HGT maintenance mode SR~ bit 8 is not X
implemented.

37. PS<15:l2>, user mode, user stack pointer, and X X X X X
MTPX and MFPX instructions exist even when
ME..~ • !-1GT is not conf~gured.

l\)

• PS<l5: 12>, user mode, user stack pointer, and X
I MTPX and MFPX instructions exist only when w
w MEM.MGT is configured.

l8. Current mode PS bits <15:14> set to i'11ega1 mode X X X X X X
will cause a MEM.MGT trap upon any memory
reference,(~1 is illegal in 34, 60, 35/40)

Current mode PS bits <15:14> set to 01 or 10 X
will be treated as kernel mode (00) and not
cause a MEM.MGT trap.

39. MTPS in user mode will cause MEM.MGT trap if' X
PS address 177776 not mapped. If mapped PS
<7:5> and <3:0> affected.

MTPS in user mode will only affect PS < 3 :0> X
regardless of whether PS address 177776 is
mapped.

40. MFPS i~ user mode will cause MEM.MGT trap if X
PS address 177776 not mapped. If mapped, PS
< 7 :0> are accessed.

11/68

· ..
w
~

41.

MFPS in user mode will access PS
regardless of whether PS address
is mapped.

A HALT instruction in user mode

A HALT instruction in user mode

Table 2-7 Programming Differences (Cont.)

44 04 34 F-11 LSI11 05/10 15/20 35/40 45 70 68

< 7 :0> X
177176

traps to 4. X X X X

traps to 10. X X X

11/68

N .
~
I .
w
U1

LSI-II

Priority of
processor traps.

Bus error trap
Memory refresh
TRAP Instructions
TRACE Trap
Power Fail Trap
HALT LINE
Event Line Inter­

rupt
Device (BUS) I

Interrupt Request

Same as II/OS

Same as 11/34 with
PROGRAM INTERRUPT
Request having
higher priority than
UNIBUS BUS
REQUESTS.

PDP1l/05,10

Priority of internal
processor traps,
external interrupts,
HALT and WAIT:

Bus Error Trap
TRAP Instructions
TRACE Trap
OVFL Trap
PWR Fail Trap
UNIBUS BUS
REQUEST
CONSOLE STOP
WAIT LOOP

Same as 11/35 but no
red zone stack over­
flow.

Har'dware Differences -- Traps
(Transparent to Software)

PDPll/15,20

Priority of internal
processor traps,
external interrupts,
HALT AND WAIT:

Bus Error Trap
Trap Instructions
TRACE Trap
OVFL Trap
PWR Fail Trap
CONSOLE BUS REQUEST
UNIBUS BUS REQUEST
WAIT LOOP

F-ll

Same as 11/34

PDPll/35,40

Priority of internal
processor traps,
external interrupts,
HALT and WAIT:

Memory Parity Errors
Memory Management

Fault
BUS ERROR Traps
OVFL Trap (red zone)
TRAP instructions
TRACE Trap

PDPll/45,70

Priority of internal
processor traps,
external interrupts,
HALT and WAIT:

Memory Parity Error
Bus Error Traps
TRAP Instructions
CONSOLE BUS Request
Memory Management
OVFL Trap
FLOATING POINT

OVFL Trap (yellow zone) Trap
PWR Fail Trap PROGRAM INTERRUPT
CONSOLE BUS request
UNIBUS BUS request
WAIT LOOP

11/68

(See Trap Priorities
Section)

request
UNIBUS BUS Request
WAIT LOOP
TRACE Trap

2.2 processor Control Registers

Processor Registers

CPU Error Register 17 777 766

Illegal Halt------------------------------~

Odd Address Error--------------------------------~

Non-Existent Memory (Cache) --------------------------~

Unibus Time-Out--~·

Yellow Zone Stack Limit--..J
Red Zone Stack Limit

UCS Parity Error

This register identifies the source of the abort or trap that used
the vector at location 4.

Bit

7

6

5

4

3

2

1

Name

Illegal Halt

Odd Address
Error

Non-Existent
Memory

UNIBUS Timeout

Yellow Zone
Stack Limit

Red Zone
Stack Limit

UCS Parity
Error

Function

Set when trying to execute a HALT instruction
when CPU is in User or Supervisor mode (not
Kernel).

Set when a program attempts to do a word reference
to an odd address.

Set when the CPU receives a timeout upon reference
to a main memory address. This does not include
UNIBUS addresses.

Set when there is no response on the UNIBUS
within approx. 20 usec.

Set when a yellow zone trap occurs.

Set when a red zone trap occurs.

Set when a UCS parity error occurs.

2.2-1

NOTE: Any DATO or DABOB to this register clears it.
11/68

Processor Status Word 17 777 776

15 14

'---v--"
Current
Mode

Previous
Mode ------

General Register
Set (0,1) ------~

CIS Instruction
Suspension

MODE: 00 = Kernel
01 == Supervisor
11 == User

7 6 5 4 3 2

Priority T N z

The Processor Status Word contains information on the current status
of the cpu. This information includes the register set currently

1

v

in use; current processor priority; current and previous operational
modes; the condition codes describing the results of the last
instruction; and an indicator for detecting the execution of an
instruction to be trapped during program debugging. The CIS
suspension bit indicates that a CIS instruction has been interrupted
before completion.

program Interrupt Register 17 777 772

A request is booked by setting one of the bits 15 through 9 (for
PIR 7 -- PIR 1) in the Program Interrupt Register at location
17 777 772. The hardware sets bits 7 - 5 and 3 - 1 to the encoded
value of the highest PIR bit set. This Program Interrupt Active
(PIA) should be-used to set the Processor Level and also index
through a table of interrupt vectors for the seven software
priority levels. The figure shows the layout of the PIR Register.

5 •] I o.

I !.A f?al, I A~

When the PIR is granted, the Processor will Trap to location 240
and pick up PC in 240 and the PSW in 242. It is the interrupt
service routine's responsibility to queue requests within a priority
level and to clear the PIR bit before the interrupt is dismissed.

2.2-2

o

C

11/68

STACK LIMIT Register 17 777 774
The Stack Limit allows program control of the lower limit for permissible
stack addresses. This limit may be varied in increments of (400)~ bytes
or (200) .. words, up to a maximum address of 177 400 (almost the top
of a 32K memory).

The normal boundary for stack addresses is 400. The Stack Limit option
allows this lower limit to be raised, providing more address space for
interrupt vectors or other data that should not be destroyed by the pro·
gram.

There is a Stack Limit Register, with the following format:

1$ 7 0

The Stack Limit Register can be addressed as a word at location 17
777774, or as a byte at location 17 777775. The register is accessible to
the processor and console, but not to any bus device.

The 8 bits, 15 through 8, contain the stack limit information. These bits
are cleared by System Reset, Console Start, or the RESET instruction.
The lower 8 bits are not used. Bit 8 corresponds· to a vatue of (400)M
or (256)1"

Stack Umit Violations
When instructions cause a stack address to exceec:t (go lower than) a
limit set by the programmable Stack Limit Register, a Stack Violation
occurs. There is a Yellow Zone (grace area) of 16 words below the Stack
Umit which provides a warning to the program so that corrective steps
can be taken. Operations that cause a Yellow Zone Violation are com­
pleted, then·a bus error trap is effected. The error trap, which itself uses
the stack, executes without causing an additional violation, unless the
stack has entered the Red Zone.

A Red Zone Violation is a Fatal Stack Error. (Odd stack or non·existent
stack are the other Fatal Stack Errors.) When detected, the operation
causing the error is aborted, the stack is repositioned to address 4, and
a bus error occurs. The old PC and PS are pushed into location 0 and 2.
and the new PC and PS are taken- from locations 4 and 6.

Stack Limit Addresses
The contents of the Stack Limit Register (SL) are compared to the stack
address to determine if a violation has occurred. The least Significant
bit of the register (bit 8) has a value of (400) .. The determination of the
violation zones is as follows:

Yellow Zone = (Sl) + (340 through 377).

Red Zone ~ (Sl) + (337).

If the Stack Urnit Register contents were zero:

Yetlow Zone = 340 through 377

execute, then trap

abort. then trap to lo­
cation 4

Red Zone = 000 through 337 ~

\ 1\ \-e(V\ 0. \ ~ \I\,'o~~ ""o-r ~

2.2-3

11/68

2. 3 Aborts, Traps, Interrupts

Processor Traps

There are a series of errors and programming conditions which will
cause the Central Processor to trap to a set of fixed locations.
These include Power Failure, Odd Addressing Errors, Stack Errors,
Timeout Errors, Non-Existent Memory References, Memory Parity
Errors, Memory Management Violations, Floating Point Processor
Exception Traps, use of Reserved Instructions, use of the T bit
in the Processor status Word, and use of the lOT, EMT, and TRAP
instructions.

Trap Priorities

Aborts

Micro break

UCS Parity Error

Odd address

Red Zone

Memory Management Abort

Cache Parity Abort

Memory Parity Error

Bus Errors (Timeout)

Interrupts and Traps

Trap Instructions

Console interrupt

Cache Parity Trap

Yellow Zone Stack Warning

Power Fail

Floating Point Exception

PIRQ7
BR7

PIRQ.6
BR6---

PIRQ5
BRS

PIRQ4
BR4

PIRQ3

PIRQ2

PIRQl

Trace Trapt

2.3-1
11/68

Processor Trap Vectors

The following summary is the set of conditions and vector locations
which causes the processor to trap.

Vector (8)

004

010

014

020

024

030

034

114

240

244

250

Conditions

CPU Errors

Illegal and Re­
served Instructions

BPT breakpoint
and Trace Trap

lOT Input/output
Trap

Power Fail/power up

EM!' Emula ter Trap

TRAP instruction

Memory System
Errors

PIR

Floating point
exceptions

Memory Manage­
ment aborts

2.3-2

Illegal HALT, illegaL odd-address
reference, Non-existant Memory
reference (Main-Memory Timeout),
Unibus Timeout, Yellow Zone,
Red Zone, Stack Violation~
Control Store Parity er~or. Con­
ditions are logged in the CPU
Error Register. (See Section on
Programming Differences).

JMP and JSR. Mode f6 plus reserved
opcodes.

Cache parity
aborts, Cache parity traps, Main
Memory aborts. Condi tions are
logged in Cache/Memory System
Error Register. (See section on
Programming Differences).

Conditions logged in FEC & FEA
registers accessed via STST in­
struction.

Conditions & information logged in
~\MMRl, MMR2~M~ t

11/68

UCS Parity Error

If a parity error is detected during access to the User Control
store, an abort occurs with a resultant trap to vector 4.

Odd Addressing Errors

This error occurs whenever a program attempts to execute a word
instruction on an odd address (in the middle of a word boundary).
The instruction is aborted and the CPU traps through location 4.

stack Limit Violations

When instructions cause.a stack address to exceed a limit set by
the programmable Stack Limit Register, a stack violation occurs
resulting in a trap to vector 4. A yel1~ zone stack violation
provides a warning to the program so that corrective steps can be
taken. If stack operations result in pushes beyond the 16 word
grace area below the stack limit, a red zone Fatal Stack Vio­
lation occurs. (See stack Limit operations in Processor Control
section.)

2.3-3
11/68

Memory Management Abort

When the memory management unit is enabled (MMR~<¢>=l), program access.
to non-resident pages, write operations to read-only pages, and pro­
gram references to addresses beyond the limit set for the current
pages results in an instruction abort with a resultant trap to vec­
tor 240. (See Memory Management Section.)

Memory System Errors

Memory errors resulting from cache parity errors with traps enabled
(CCR<~> = ~), cache parity aborts (CCR<~7> = 1) enabled, or main

memory double bit errors results in a trap to vector 114.

Non-Existent Memory Errors

This error occurs when a program memory reference results in a time­
out response. The cycle is aborted and the processor traps through
vector 4 with bit <5> set in the CPU Error Register.

UNIBUS Time-out Error

This error occurs when a Master Synchronization pulse is placed on
the UNIBUS and there is no slave pulse within 20 usec. This error
usually occurs in attempts to address non-existent peripherals.

The offendirig instruction is aborted and the processor traps through
location 4.

2.3-4 11/68

Reserved Instructions

There is a set of illegal and reserved instructions which cause the
processor to trap through Location 10. All illegal and reserved
instructions trap to vector 10 with the exception of an illegal
HALT which traps to vector 4 with Bit <7> set in the CPU Error
Register.

Power Failure

Whenever AC power drops below 95 volts for 110v power (190 volts
for 220V) or outside the limit of 47 to 63 Hz, as measured by DC
power, the power fail sequence is initiated. The Central Processor
automatically traps to location 24 and the power fail program has 2
msec. to save all volatile information (data in registers), and to
condition peripherals for power fail.

When power is restored the processor traps to location 24 and
executes the power up routine to restore the machine to its state
prior to power failure.

2.3-5
11/68

2.4 Memory Management

General
ThePDP-11/68 Memory Management Unit provides the hardware facilities
necessary for complete memory management and protection. It is
designed to be a memory management facility for accessing all of
physical memory and for multi-user, multi-programming systems where
memory protection and relocation facilities are necessary.

In order to most effectively utilize the power and efficiency of the
PDP-11/68 in medium and large scale systems it is necessary to run
several programs simultaneously. In such multi-programming environ­
ments, several user programs would be resident in memory at any given
time. The task of the supervisory program would be: control the
execution of the various user programs, manage the allocation of
memory and peripheral device resources, and safeguard the integrity
of the system as a whole by careful control of each user program.

In a multi-programming system, the Memory Management Unit provides
the means for assigning memory pages to a user program and preventing
that user from making any unauthorized access to these pages outside
his assigned area. Thus, a user can effectively be prevented from
accidental or willful destruction of any other user program or the
system executive program.

The basic characteristics of the PDP-11/G8 Memory Management Unit
are:

• 16 User mode memory pages
• 16 Supervisor mode memory pages
• 16 Kernel mode memory pages
• 8 pages in each mode for instructions
• 8 pages in each mode for data
• page lengths from 32 to 4096 words
• each page provided with full protection and relocation
• transparent operation
• 4 modes of memory access control
• memory access to 2 million words (4 million bytes)

Virtual Addressing

When the-PDP-11/G8 Memory Management Unit is operating, the normal
16 bit direct byte address is no longer interpreted as a direct
Physical Address (PA) but as a Virtual Address (VA) containing
information to be used in constructing a new 22-bit physical address.
The information contained in the Virtual Address (VA) is combined
with relocation information contained in the Page Address Register
(PAR) to yield a 22-bit Physical Address (PA). Using the Memory
Management lJnit, memory can be dynamically allocated ill pa(jC'!'; l~llCh

composerl of from 1 to 128 integral block~-: of 32 words.

2.4-1
11(G8

PH'fS1CAl.
ACOIIfSS SMa

VIRTUAl 'AGE .5 INSTIlUCT1ON/OATA
-'OOIIfSS SPACE

~§ PAl 1

PAl 6
'AGE 6

PAIl .s

.§
PA_ « MGt 7

""'_3
,All 2

MGt: «
PAIl I

PA_ 0

V .. TUAl ADOIIESS MGI ADOIIBS IfGiST.,~ ACDIIESS
(l681TSI 122 IITSI

PAR -- Page Address Register

Figure 2-3 Virtual Address Mapping into Physical Address

The starting physical address for each page is an integral
multiple of 32 words, and each page has a maximum si·ze of 4096
words. Pages may be located anywhere within the Physical Address
space. The determination of which set of 16 pages registers is
used to form a Physical Address is made by the current mode of
operation of the CPU; i.e., Kernel, Supervisor or User mode.

Interrupt Conditions under Memory Management Control

The Memory Management Unit relocates all addresses. Thus, when it
is enabled, all trap, abort, and interrupt vectors are considered to
be in Kernel mode Virtual Address Space. When a vectored transfer
occurs, control is transferred according to a new Program Counter
(PC) and Processor Status Word (PS) contained in a two-word vector
relocated through the Kernel Page Address Register Set. Relocation
of trap addresses means that the hardware is capable of recovering
from a failure in the first physical bank of memory.

When a trap, abort, or interrupt occurs the "push" of the old PC,
old PS is to the User/Supervisor/Kernel R6 stack specified by CPU
mode bits 15,14 of the new PS in the vector (bits 15,14: 00 =
Kernel, 01 = Supervisor, 11 = User). The CPU mode bits also deter­
mine the new PAR set. In this manner it is possible for a Kernel mode
program to have complete control over service assignments for all
interrupt conditions, since the interrupt vector is located in
Kernel space. The Kernel program may assign the service of some of
these conc;1itions to a Supervisor or User mode program by simply
setting the CPU mode bits of the new PS in the vector to return
control to the appropriate mode.

Construction of a Physical Address

All addresses with memory relocation enabled either reference informa­
tion in instruction (I) Space or Data (D) Space. I Space is used for
all instruction fetches, index words, absolute addresses and
immediate operands, D Space is used for all other references. I Space
and 0 Space each have 8 PAR's in each mode of CPU operation, Kernel,
Supervisor, and User. Using Memory-Management Register #3, the
operating system may select to disable D space and map all references
(Instructions and Data) through I space, or to use both I and D
space.

2.4-2

The basic information needed for the construction of a Physical
Address (PA) comes from tne Virtual Address (VA), which is
illustrated in Figure 2-4 and the appropriate PAR set.

15 13 12

". I

Figure 2-4 Interpretation of a Virtua: rlac.::-c=:~

The Virtual Address (VA) consists of:

1. The Active Page Field (APP). This 3-bit field determines
which of eight Page Address Registers (PARO-PAR7) will be
used to form the Physical Address (PA).

2. The Displacement Field (OF). This 13-bit field contains an
address relative to the beginning of a page. This permits
page lengths up to 4K words (213 = 8K bytes). The OF is further
subdivided into two fields as shown in Figure 2-5.

6 S o

OISl'lACEMENT IN kO(1(

Figure 2-5 Displacement Field of Virtual Address

The Displacement Field (OF) consists of:

1. The Block Number (BN). This 7-bit field is interpreted as the
block number within the current page.

2. "The Displacement in Block (DIB). This 6-bit field contains the
displacement within the block referred to by the Block Number
(BN).

The remainder of the information needed to construct the Physical
Address comes from the l6-bit Page Address Field (PAP) (the Page
Address Register (PAR» that specifies the starting address of the
memory page which that PAR describes. The PAP is actually a block
number in the physical memory; e.g., PAF = 3 indicates a starting
address of 96 (3 x 32) words in physical memory.

The formation"of the Physical Address CPA) is illustrated in
Figure 2-6.

The logical sequence involved in constructing a Physical Address (PA)
is as follows:

1. Select a set of Page Address Registers depending on the space
being referenced.

2. The Active Page Field (APF) of the Virtual Addres~ is uspd to
Holect a Page J\ddn~!-l:; H('(ri:-;t(~r (Pl\l{O-P1\H7).

3. The Page Address Field (PAF) of the selected Page Address
Register (PAR) contains the starting address of thE' currf'ntly
active page as a block number in physicaJ memory.

2.4-3

4. The Block Number (BN) from the Virtual Address (VA) is added to
the Page Address Field (PAF) to yield the number of the block in
physical memory (PBN-Physical Block Number) which will contain
the Physical Address (PA) being constructed.

5. The Displacement in Block (DIB) from the Displacement Field (DF)
of the Virtual Address (VA) is joined to the Physical Block
Number (PBN) to yield a true 22-bit PDP-ll~ Physical Address
(PA) •

OI"StT .. 1O MGt I VAl

~~ss UlL _________________ -----'
Figure 2-6 Construction of a Physical Address

Management Registers

The PDP-l1/G8 Memory Management unit implements three sets of 32
sixteen bit registers. One set of registers is used in Kernel mode,
another in Supervisor, and the other in User mode. The choice of
which set is to be used is determined by the current CPU mode
contained in the Processor Status word. Each set is subdivided into
two groups of 16 registers. One group is used for references to
Instruction (I) Space, and pne to Data (D) Space. The I Space
group is used for all instruction fetches, index words, absolute
addresses and immediate operands. The 0 Space group is used for all
other references, providing it has not been disabled by Memory
Managements Register #3. Each group is further subdivided into two
parts of 8 registers. One part is the Page Address Register (PAR)
whose function has been described in previous paragraphs. The other
part is the Page Descriptor Register (PDR). PARs and PDRs are
always selected in pairs by the top three bits of the virtual
address. A PAR/PDR pair contain all the information needed to describe
and locate a currently active memory page.

The various Memory Management Registers are located in the upper­
most 4K of POP-ll physical 'address space along with the UNIBUS I/O
device registers.

2.4-4 11/68

• ICE!tNEl (00)

PAil POll

, I I I

! l I

I
I !
I
i

I • l

I "..11 'OR

1

r
! I
; I !
j !

I !

I

PItOass STATUS \NOIIO

bffij
rn=B

'All POa

I
!
!
:

! I
I I ! I

• •

t
USER (11)

I p~ i POR I I

I I

I

I 1,-,
i ; I I

i I I j ,
r t i t

~
i :.DO I

1 I I

~
: :: osw.ce
, ,
, : I
1 I

Figure 2-7 Active Page Registers

Page Address Registers (PAR)

The Page Address Register (PAR) contains the Page Address Field
(PAF), 16-bit field, which specifies the starting address of the
page as a block number in physical memory.

o
PAl

Figure 2-8 Page Address Register

The Page Address Register (PAR) which contains the Page Address
Field (PAF) may be alternatively thought of as a relocation
register containing a relocation constant, or as a base register
containing a base address. Either interpretation fndicates the
basic importance of the Page Address Register (PAR) as a relocation
tool.

Page Descriptor Register

The Page Descriptor Register (PDR) contains information relative
to page expansion, page length, and access control.

15 14 o

PLF ACF

Figure 2-9 Page Description Register

2.4-5

11/68

Access Control Field (ACF)

This three-bit field, occupying bits 2-0 of the Page Descriptor
Register (POR) contains the access rights to this particular page.
ACF <~> is treated as a don't care condition. The access codes or
"keys" specify the manner in which a page may be accessed and
whether or not a given access should result in an abort of the cur­
rent operation. A memory reference which causes an abort is not
completed. Aborts are used to catch "missing page fau! ts", prevent
illegal access, etc. .

In the context of access control the tenn Itwrite" is used to
indicate the action of any instruction which modifies the contents
of any addressa1::ile word. "Write" is synonymous with what is usually
called a "store" or "modify" in many computer systems.

The modes of access control are as follows:

ACF Key Mode

OOX 0 non-resident abort all accesses

OlX 2 read only abort on write attempt

lOX 4 (unused) abort all accesses

llX 6 read/write no system abort action

It should be noted that the use of I Space provides the user with
a further form of protection, execute only.

Access Information Bits

W Bit (bit 6) -- This bit indicates whether or not this page has been
modified (i.e., written into) since either the PAR or PDR was
loaded. (W = 1 is Affirmative). The W Bit is useful in applications
which involve disk swapping and memory overlays. It is used to
determine which pages have been modified and hence must~e saved
in their new form and which pages have net been modified and can be
simply overlaid.

ExPansion Direction (ED)

Bit 03 of the Page Description Register (POR) specifies in which
direction the page expands. If ED = 0 the page expands upwards
from Block Number 0 to include blocks with higher addresses; if ED
1, the page expands downwards from Block Number 127 to include
blocks with lower addresses. Upward expansion is usually used for
program space while downward expansion is used for stack space.

Page Length Field (PLF)

This seven-bit field, occupying bits 14-8 of the Page Descriptor
Register (PDR), specifies the block number, which defines the
boundaryof that page. The block number of the Virtual Address is
compared against the Page Length Field to detect Length Errors. An
erro~ occurs when expanding upwards if the block number is greater
than the Page Length Field, and when expanding downwards if the
block number is less than the Page Length Field.

11/e:..a

Bypass Cache (Bn) (POR <15»

When the BYP bit is set in a POR, and relocation is enabled,
any CPU reference to the virtual page mapped by that PAR/POR
pair will go directly to main memory. If read or write hits
occur, the contents of that location in cache will be invali­
dated. Read or write misses will not dist~ the contents of
the cache.

When relocation is disabled, this bit will have no effect on
the cache.

This read/write bit is set and cleared like all other bits in
the PORe

2.4-7
11/68 '

Reserved Bits

Bits 7, 5, & 4 are spare and are always read as (), and should
never be written. They are unused and reserved for possible future
expansion.

Fault Recovery Registers

Aborts and traps generated by the Memory Management hardware are
vectored through Kernel virtual location 250, Memory Management
Registers #0, #1, #2, and #3 are used in order to determine why
the abort occurred, and allow for easy program restarting. Note
that an abort to a location which is itself an invalid address
will cause another abort. Thus the Kernel program must insure that
Kernel Virtual Address 250 is mapped into a valid address, other­
wise a loop will occur which will require console intervention.

Memory Management Register #W (MMR¢) (status and error indicators)

MMRO contains error flags, the page number whose reference caused
the abort, and various other status flags. The register is
organized as shown in Figure 2-10.

Setting bit 0 of this register enables address relocation and error
detection. This means that the bits in MMRO become meaningful.

Bits 15-13 are the error flags. They may be considered to be in a
"priority queue" in that "flags to the right" are less significant
and should be ignored. That is, a "non-resident" fault-service
routine would ignore length, access control, and memory management
flags. A "page length" service routine would ignore access control
and memory management faults, etc.

Bits 15-13 when set (error conditions) cause Memory Management to
freeze the contents of bits 1-7 and Memory Management Registers #]
and #2. This has been done to facilitate error recovery.

These bits may also be written under program control. No abort
will occur, but the contents of the Memory Management Registers
will be locked up as in an abort.

A8OM.fClN "ESUNT~. i ..
AICIRT- PAGE)----'
LENGTH fMCR

A80ftT-REAO OHt.Y)
ACCESS VlOI.ATION

~TU~O------------____ ~
~Tu~O----------________ ~

MAINT(NANC[MOD~-__ "';" _____ --J

~E~--------____________________ ~

P~E~~SSSP~E uo-------------------______ ~ PAGE NUWBER-------________________ ---'
[NAil! RELOCATIO,.-------_________________ ..J.

Figure 2-10 Format of Memory Management
Register #~ (MMR, >

2.4-8
11/68

Abort -- Non-Resident, Bit 15

Bit 15 is the "Abort -- Non-Resident" bit. It is set by attempting
to access a page with an Access Control Field (ACF) key equal to 0,
3, or 7. It is also set by attempting to use Memory Relocation with
a processor mode of 2.

Abort -- Page Length, Bit 14

Bit 14 is the "Abort Page Length" bit. It is set by attempting to
access a location in a page with a block number (Virtual Address
bits, 12-6) that is outside the area authorized by the Page Length

,Field (PLF) of the Page Descriptor Register (PDR) for that page.
Bits 14 and 15 may be set simultaneously by the same access attempt.
Bit 14 is also set by attempting to use Memory Relocation with a
processor mode of 2.

Abort -- Read Only, Bit 13

Bit 13 is the "Abort -- Read Only" bit. It is set by attempting
to write in a "read-Only" page. "Read-Only" page has an access key
of 2 (ACF = ~1X)

Bits 7, 9, 10, 11, and 12

Bits 7, 9, 10, 11, and 12 are spare and are always read as 0, and
should never be written. They are unused and reserved for possible
future expansion.

Maintenance/Destination Mode, Bit 8

Bit 8 specifies th~t only destination mode references will be
relocated using Memory Management. This mode is only used for
maintenance purposes.

Processor Mode, Bits 5 & 6

Bits 5 and 6 indicate the CPU MODE (Kernel/Supervisor/User)
associated with the page causing the abort (Kernel = 00, Supervisor
01, User = 11, Illegal Mode = 10). If an illegal mode is
specified, bits 15 and 14 will be set.

Page Address Space, Bit 4

Bit 4 indicates the type 'of address space (I or D) the Unit was in
when a fault occurred (0 = I Space, 1 = D Space). It is used in
conjunction with bits 3-1, Page Number.

Page Number, Bits 3 to 1

Bits 3-1 contain the page number of a reference causing a Memory
Management fault. Note that pages, like blocks, are numbered from
o upwards.

2.4-9 11/68

Enable Relocation, Bit 0

Bit 0 is the "Enable Relocation" bit.
addresses are relocated by the unit.
Memory Management Unit is inoperative
relocated or protected.

Memory Management Register #1 (MMRl)

When it is set to 1, all
When bit 0 is set to 0 the
and addresses are not

MMRI records any autoincrement/decrement of the general purpose
registers, including explicit references through the pc. MMRI is
cleared at the beginning of each instruction fetch. Whenever a
general purpose register is either autoincremented or autodecremented
the register number and the amount (in 2s complement notation) by
which the register was modified, is written into MMRI.

The information contained in MMRl is necessary to accomplish an
effective recovery from an error resulting in an abort. The low
order byte is written first and it is not possible for a PDP-II
instruction to autoincrement/decrement more than two general
purpose registers per instruction before an "abort-causing"
reference. Register numbers are recorded "MOD 8"; thus it is up to
the software to determine which set of registers (User/Supcrvisr/
Kernel -- General Set O/General Set 1) was modified, by determining
the CPU and Register modes as contained in the PS at the time of the
abort. The 6-bit displacement on R6(SP) that can be caused by the
MARK instruction cannot occur if the instruction is aborted.

15 n

I
'0 a 7 J 2 0

AMClIJfcT CHANGED REGISTER AMOUNT Ct1ANGEO REGISTER (2'S COMPI..£M£NTj NUMBER (ts CCJMPl.(MENTI NU""
Figure 2-11 Format of Memory Management Register #1 (MMRl)

Memory Management Register #2

MMR2 is loaded with the l6-bit Virtual Address (VA) at the beginning
of each instruction fetch. MMR2 is Read-Only; it cannot be writt:en.
MMR2 is the Virtual Address Program Counter.

Memory Management Register #3

The Memory Management Register #3 (MMR3) enables or disables the
use of the 0 space PAR's and PDR's and 22-bit mapping and UNIBUS
mapping. When D space is-disabled, all references use the I space
registers; when D space is enabled, both the I space and D space
registers are used. Bit 0 refers to the User's Registers, Bit 1
to the Supervisor·s, and Bit 2 to the Kernel's. When the appropriate
bits are set D space is enabled; when clear, it is disabled. Bit 03
is read as zero and never written. It is reserved for future use.
Bit 04 enables 22-bit mapping. If Memory Management is not enabled,
bit 04 is ignored and l6-bit mapping is used.

2.4-10
11/68

'blt<4> is clear and ~lemory Management 1s enilbled (M"1<0=1), ttl"!
processor uses 18~tilt mapping. If Blt<4> Is set and MemorV
Management 1s enabled, the processor uses 22-bit ~applng. bites>
1s set to enable relocation of the UNIBUS M~p: tne cit 1s
cleared to disable relocatlon. Blts<15:7> are unused. On
initialization this register 1s cleared and o~ly l-space is used.

~emory Management Register 3 17 77l 576

!1111/11/1//I//I/I//I/I/II/III//I/I/!
1/111//1/111//1111!/111111/1/11111//1

J
•
1

lilt!
11//1

• . I .. ,
• --------.------------_._------.---------._.--------... -----------

15 14 13 12 11 10 9 8 7 6 5 3 1

D1sable Write Buftering _____________ --_____ 1
Enable Unibus Map ___________ - _____ t I .
Enable 22-Bit Mapping ___________________ 1 r
Enable Kernal 0 Space _________ ----__________ !
Enable supervisor 0 Space _______________________ !
Enable User 0 Space _____________________________ 1

FOP MAT OF ME~OFY MANAGEMENT R~GlSTEB J

Bit State Operation
b 0 Enables write buffering

1 Disables write outfering

5 0 Unibus !oilap relocation disableu
1 Unlt>us relocation enabled

4 0 €nable 19 ol.t mapp1nq if
S1t<0> of f.j:1R~ = 1

1 Enable ~2 bit :nappinq 1f
bite-V»~ ot i-' t·1R0 ': 1

2 1 Enable -Kernal D Scace
1 1 t:nable supervis10r D space
0 1 Enable User D Space

PDP 11/~8 ~rite Buffering (MMR3<6»

The PoP11/6d will buffer write operations and continue ~rocess1n~
using cach~ data 1" its normal mOde ot operation. the Power uo

•

te will have this function enabled. ~hf!n ~naoled, 'Jirite

.
terlnq will oe automatically dlsablea in ooeratlons performlnQ

1 writes to the I/O page (both internal ~nd er.ternal).
Flushing of the buffer ~ill occur in all direct Or inolrect
references to the Processor Status ~ord (Traps, ~rl, ~Tl,

interrupts: MOV X,PS~) such that all memcry errors w111 oe
associated with the process tnat initiated the ~rite.

2.4-11

Instruction Back-up/Restart Recovery

The process of "backing-up" and restarting a partially completed
instruction involves:

1. Performing the appropriate memory management tasks to
alleviate the cause of the abort (e.g., loading a missing
page, etc.).

2. Restoring the general purpose registers indicated in MMRI to
their original contents at the start of the instruction by
subtracting the "modify value" specified in MMRI.

3. Restoring the PC to the "abort-time" PC by loading R7 with the
contents of MMR2, which contains the value of the Virtual PC
at the time the "abort-generating" instruction was fetched.

Note that this back-up/restart procedure assumes that the general
purpose register used in the program segment will not be used by
the abort recovery routine. For back-up restart procedures for
Commercial Instructions (CIS) see DEC STD 168.
Clearing Status Registers Following Trap/Abort

At the end of a fault service routine bits 15-12 of MMRO must be
cleared (set to 0) to resume error checking. On the next memory
reference following the clearing of these bits, the various
Registers will resume monitoring the status of the addressing
operations. MMR2 will be loaded with the next instruction
address, MMRI will store register change information and MMRO will
log Memory Management Status information.

2.4-12 11/68

Multiple Faults

Once an abort has occurred, any subsequent errors that occur will
not affect the state of the machine. The information saved in
MMRO through MMR2 will always refer to the first abort that it
detected.

In the case that an abort occurs after a trap, but in the same
instruction, only one stack operation will occur; and the PC and
PS at the time of the abort will be saved.

ICUi.STUI

......., Mat R #O(MMRO)

......., Met lteeister #1(MMR1)

......., Met #2(MIIII2)

......., Mat Reel #3(MMRl)

. User I $place DeIcriptor Rectar (UISORa)

Uaer , s,.c. Descriptor R.., (um."
u.., D Sp.ce Descriptor R (UDSDRO)

· U .. 0 SplIce Descriptor R_ltar (UDSDR7)

U I Sp.ce Add Realstar (UISARO)

· u.. I Sp8ce AcIchu Reatster (U'SAII7)
User D ___ Add,.. R (UOSARO)

·
User 0 Sp8ce Add Reat-- (UDSAR7) .

..,.".... I Space Descriptor llelister (SISDRO)

Supervisor D Space Descriptor Register (S~RO)

Supervisor 0 Space Descriptor Re.j~.ter (SDSDR7)

Supervisor I Space Address Reaister (SISARO)

Supervisor I Space Add s Register: (SISAR7)

Supervisor 0 Space Address Register (SDSARO)

. .
Supervisor D Space Address Reeist ... (SDSDR7)

K.",., I $pKe Descriptor Reaist (KISORO)

Keme. , Spece o..criptor Reeister (KIOiR7)

2.-i-13

.....

AUDR£.A

17777572
17777574
17777571
1777251 •
17777 ...

.
17m.l1
17777&20

.
177770&
17777 ..

.
17777ua

177776fiO

.
17777671
17772200

1777221.

17772226

17772236

17772240

17772256

17 n2260

17772276

17772300

.
17772316

11/68

Kttmel D Space Descriptor Register (KDSDRO)

· Kernel D SpM:e OescriptorRegister (KDSDR7)

Kernel I Space Address Register (KISARO)

· Kemel I Space Address Register (KISAR7)

Kernel 0 Space Address Recister (KDSARO)

· Kernel D SpKe Address Register (KDSAR7)

2.4-14

17772320

17772336

17772340

17772356

17772360

.
17772376

Cache/Memory Operations

CPU MEMORY REFERENCE

Cache memory within the 11/68 operates SynChrOnously with
CPU memory reterences. Virtual address informat1on from the
CPU 1s app11@d to ma1n cache and, in parallel, to the Memory
~anagement unit as described above. Tne CPU always looks
for data in cache memory first when attempting a read befor€
accessing maln memory. If the data is in caChe, a hit
occurs and main memory is not accessed. tour bytes of data
are returned to t~e CPU via the 32 bit internal bUS in time
for latching at the end ot tne microstate In whicn the bus
code was issued. on a m1ss, the CPU ClOCK 1s suppresseti and
two words are fetched from backing store and placed on the
internal bus. Ihe ClOCK 1s then The data and tag of a cache
location are UPdated to correspond to tne data obtained 1n
the access to main memory (allocation). DurlnQ a write into
memory, if a hit occurs, both main memory and cache are
updated. If a m1ss occurs, main memory is wrltte~, out
caChe is not allocated because of tne prevalence ot stngle
-ord writes whlCh are not compatable with the olock size of
two.

HIT or MISS OPERATIONS

411f:~!~~:.~~~:=::~~ ~=:~~ -...... ~~:~.:~:~:: -.
Read

H1t
Miss

NO Chanqe
Allocated

~o Change
~o Change

-----------_._.------------------------_.---------_._-------------
Write

Hit
Miss

Upd~ted

No Change
Updated
Updated

-----.--
OMA Operations
.-----------_._--
Read

Hit (not crtecKed)
MiSS (not checked)

No Chanqe
No Chanqe

NO Change
~o Cnanqe

------------------------------------_ .. _--------------------------
~rlte

Hit
M1ss

Inva11dated
NO Change

updated
~~dated

------.-------------------------_._------.-----------------.----~-

Allocated- the data and tag of the cache location 1s chanq~d
to correspond to the main memory location.

Updated- The data in cache or main memory 1s modified or
~vised.

~valldated. Valid bit in the cacne location is cleared to
show tnat the data Is stale and does not correspond to the
data in main memory,

2.5-1

CACHE MEMORY FORM~T
I tit'< 1J)1{6

The size of tne c~che memory is 1~96 words ~ cytes),
organized as a two-way associative cacne with two-word
bloCKS. Th1s means tnere are two sets in the cache7 each
set contains ~ clOCKS of data, and each Dloc~ contains
two PDP 11 'Ii 0 r d~. g a c h b i 0 c J(a 1 s 0 has a vir t u a lad are sst a Q

field and a ~age Address field (PAF) of .the Page Adoress
Register (PAR) correspond1ng to the PAF accessed by adOress
b1ts<15:13> of the v1rtual address d~rlng allocation, This
information uniquely determ1nes the physical address in main
memory w~ere toe original copy of this data oloc~ resides.
The data from main memory"can be stored within the cache in
one index position determined by its virtual address. The
1~ bit index field (blts<tf:2» determine wnich element Of
tne array will contain the data (but it can be either in Set
o or Set 1).

15 10 0 02 01 (10
_- _____________________ ~l ______________ ~ ______________ ___ _

VIRTUAL trAG INDEX
I . I •

! ~~ORDl BYTE1

--
Vlrtu~lly Addressed Data Cache rormat

The elements Of the cacne mus~ store not only the data, but
also the address identification. Since the index oosit1on
itself implies part of the address, only the h1gh address
field (called Tag and FAF data) must be stored. The
combination of the virtual and PAr tag plus index gives the
address of the two-word bloCK 1n main memory. The lowest
two bits in the address select the particular word 1n the
block, and the byte (1f needed), There are two places in
the cache where any block of data can be stored, d
particular index position 1n either Set ~ or Set 1. Rando~
selection determines into which set the infOrmation 1s
placed, overwrit1ng the previous data. Anotner clt 1s
needed with1n the cache to determine if the block has been
loaded w1th data." wnen power 1s first applied, tne CAche
data 15 invalid, and the valid bit for each data block Is
cleared, When a part1cular block location 1s updated, tne
~ssoc1ated valid bit 1s set to indicate good data, The
followlnq f1gur~ shows the organization for a single bloc~

-of data witnin a set. ~ote tnat data has byte parity, and
that the non-data part called Tag contains a dfblt hlgn
order virtual address f1eld (PAF), a 16 blt Paqe Address
~eld, a val1d bit and 3 par1ty bits.

2.5-2

3
bits

16
blts " b1ts

1
o1t

ij

bits
1

b1t
8

bits
1

bit
a

o1ts
t

:,it
8

oits
1

bit
--_._-----------------.-------_._._---_._---------------------_._---------------

1
1 P 1
I
•

PAF
VIRTUAL!

TAG 1 V
1 FIELD !

I t • •
11 8YTEJ
1 1

1
1 p
!

a~TE2 i
• p 1 BYTEl

1 , . _____________________________________ .-. ________________ ft ____ - _________________ _

2.5-3

LJMA OPERATIONS

Exterior uMA mAmory references that write into memory are
monitored by the cacne control logic. Physical address
blts<'l:2> are used as an index to access a PhysIcal Tag
store. This physical cacne tracKS the main cache memory anu
conta1ns the phys1cal address tag of each location that nas
been allocated. In addition, the pnysical tag store
contains tne corresponding virtual index field which existed
when tne physical adaress tag was stored from the v1rtual
address bits <'1:2> Which was used dUring allocation thereby
always permllt1nq a backward reference Into the
corresponding locat1on 1n the virtua~ addressed data cache.
It tne tag bits of the physical address from a OMA write
matChes tne address b1ts In tne "Physlcal~ tag store, then
the cache control will "steal" a cycle from main cacne ~nd
invalidate the location. To -provide the necessary cross
reference ~et.een pnys1cal and virtual, the virtu~l index
field 1s used to address the main data cache. It tne tag
blts of tne pnysical address used 1n the D~A write ooerat1on
do not match the aadress bits in tne physical tag store,
then no time 1s taken from processor maln cache operations
and no invalidation 1s necessary.

3
bits

1
bit

1J­
bits

---._---.-~-----------------------. 1 1 1
1 PAR IVALIDl
1 ITY ! 1

PHYSICAL TAG I • V IFIUAL I r-lOC:X
I .

---.. _--------------.. _---------------
PHYSIC~L TAG DATA FORMAT

2.5-4

Cache Control Register 17 717 746

£1/11
11/11

1
1

• it

!
1111l
1111£

f • I •
1

,
•
1

,
•
I •

1
1

,
•
I •

1
1

1//11
11/11

• •
I •

--------------------.---~--15 14 13 12 11 1~ 9 S 7 6 5 4 3 2 1 -1\ 't_-, , • J 1 t • • • • ..
Write Wrong I 1 I 1 1 1 1 ,

• • · Physical I I , , I , 1 ! • • · • • .
Tag , 1 1 I 1 1 1 1 ! • •
Parity , I 1 I t I 1 1 , -- _e • • · · •

1 I 1 • 1 ! I ,
• • • •

Valid Store 1 ,
1 I 1 1 ,

• • • In Use I 1 . I 1 t 1 1 , I ------ • • • •
Valid Store 1 , , 1 1 ! • · In Progress , , , 1 ! ----_. • .
~rite Wrong Tag Par1ty , , , 1

___ a

• -Bypass Cacne , 1 ~~-----------.-.----.
Cache Flusn ___ •. ______________ .--_______ 1

1 , ! •
Parity Abort Enable , 1 , .. --------.... ~ -.....-. .
write Wronq Data Parity ,

--~~~--.-----~-.
Force Replacement Set 1 -----------Force Replacentent Set 0 I I I

~ -------... -~~ .. ~-----~--. . •
Force Miss Set 1

, , ------.-----~----~----~-..... ---~ ... ,. · _ce P-liss Set 13 _________________ 1 1
ab le Traps ______________________________ !

CCR<14> ~rite Wrong Physical Tag Parity

This bit is read/write and wnen set causes tag
parity bits to be written witn wrong parity on CPU
read misse~. A parity error w1ll thus occur on the
next read miss allocation/invalidation cycle using
tn1s location in-the phys1cal tag store. A parity
error will olso occur in the invalidation cycle on
a DMA write hit to this locat1on in the onysical
tag store.

CCR<13> Va11d Store In Use

Tn1s bit controls whlch set of valid store bits 1s
currently being used to determine toe validity of
the contents ot the tag store memory. It 15 read
only and 1s complemented eacn time that the cache
1s flushed. When set valid olt B 1s is use. ~nen
clear valid bit A 1s in use.

2.5-5

CCR<12> Valid Clear In Progress

This bit 1s read only and is set to indicate that
the cache is currently 1n the process of clearlng a
valid store bit. The clear cycle occurs on power
up and when the flush cache bit Is set. Toe
hardware clear cycle will take approximately ?usec
to be accomplished. While a valid store set 1s

. being cleared, tne other set is in use a!10w1nQ the
cache to continue functlonlnq,

CCR<10) write wrong Virtual Tag Parity

ThiS bit is read/write and when set causes tag
parity bits to be written Wlth wrong parity on CPU
read m1sses and write hits. A parity error will
thus occur on the next access to that location.

CCR<09> Unconditional Cache ey~ass

This bIt 1s read/wrIte. When set. all references
to memory DY the CPU will De forced to go to ~ain
memory. Read and write hIts ~111 result in
Invalidation of- those locations in the cache and
misses will not change the contents.

CCR<08> Flush Cache

This bit is write only. It will always be read as
"0", Writing a "1" into this location will cause
the ent1re cache-contents to be declared invalid.
writing a "0" into this oit will have no etfeet.

CCR<07> Parity Error Abort

This bit 1s read/write and controls res~onse of the
cacne to a par1ty error, When set d cacne parity
will cause the cache reference to be aborted and
trap to vector 114, wnen cleared this bit inhlbits
the abort dna enables an interrupt to parity error
vector 114 depend1ng on toe condition of the traps
enable bit CCR<0~>.

CCR<06> Write Wronq Parity Data

This bit 1s read/write and when set causes ~1qn and
low parity bytes to be written with wrong parity on
all UPdate cycles. This will cause a cache parity
error to occur on the next access to that location.

2.5-6

CCR<05> Force Replacement Set 1

Setting this b1t forces data reolacement within Set
1 in the cache on a read miss by main memory.

CCR<04> Foree Replacement Set 0

Setting this b1t forces data repl~cemnet ~ithln set
o in the cache on a read miss oy ma1n memory.

CCR<03> Foree MIss Set 1

settIng this bit inhib1ts nl~S from occurring trom
Set 1 forcing read references to occur trom ~ain
memory.

CCR<02> Force Miss Set 0

sett1ng this bit inhibits h1ts from occurring from
set 0 forcing read references to occur trom main
memory.

CCR<00> Disable Cache Par1ty Interrupt

Th1s bit 1s read/write. when set this b1t inhibits
an 1nterrupt tram occurring on cache parity errors
when cache parity abort 1s disabled (CCR<07>=0).
All references resulting 1n a par1ty error with
abort disabled w1ll result 1n a force miss,

CCR<07> CCF<0~>
o 0
~ 1
1 X

Force miss and trap to 114
Foree miss only
~Dort and Trap to 114

2.5-7

CachelMemory Syst@m Error Register 17 777 744
--------~-----.. ~..-.~~--.......,~ ~--~-------.-.-.-.-------......
! 11/11111111111111111111111111 1 ! 11//1

11/1111/1111111111111/1111111 1 1 1/1/!

---------------------.. _---15 14 13 12 11 1i() 9 8 7 b 5 " " 2 1 , t I ,
• • . • 1

CPU I • i e

Abort I 1 1
_e

I •
I • 1

Cache Data Error set 1 _________________ 1 !!! L
Cache Data Error Set 0 ______ _____ 1 1
Virtual Tag parity Error Set 1 _________________ 1 1 1 1
Virtual Tag parity Error Set" ___________ 1 L 1
Physical Tag Parlty Set 1 _______ •• - _______ 1 1
Physical Tag Parity Set'" _________________ 1
Main Memory 1)ata Error _____________________ 1

B1t<lS> CPU Abort

Set if an error occurs wnlcn causes a processor
memory reference to be aborted due to cache parity
errors or main memory errors and tlmeouts.

81t<~7> Cache Data grror set 1

Th!S bit is set 1f a parity error 1s detected in tne
data field of Set 1 of the cache.

a1t<.6> CaChe Data Error Set 0

Th1s bit 1s set 1f a parity error is detected in t~e
data tield of Set 0 of the cache.

Bit<0S> Virtual Cache Tag Parity Error Set 1

This bit 1s set if a parity error is detected 1n the
Tag field of the Virtual cache store of Set 1.

B1t<04> Virtual Cacne Tag Parity Error ~et ~

Th1s bit is set if a parity error is aetected in the
Tag field of the Virtual Cacne Store of Set 0.

~<03> CaChe Physical Tag parity Error Set 1 ..
This bIt 1s set it a parIty error is detected in the
Tag field of the Physical Cache Store ot Set 1.

2.5-8

81t<02> Cache PhysIcal Tag" Parity Error Set 0

This bit 1s set if a parity error 1s detected in the
TAg field of the Phys1cal Cache Store of SgT 0,

81t<01> Main Memory oat a Error

This bit 1s set it a
received from a main
processor.

non-correctable error 1s
memory reference oy the

/-------­
--------~---------------

Note: Is there
a
resolved
systems,
Error R

~lngulsh the source at
error 1111 Issue to be

and sOftware operating
d cacne/Me~ory System

2.5-9

H1gn Error Address Register 11 717 142
--.--------.~.-.---.~~------.-..----~--------.--~ ... ----..

11/11111111111111111111111111111£
! Cycle 11111111111111111/111111111111//!

High Error
Address BIts ,

• -------_ .. ---
15 14 13 12 11 10 9 8 7 b 5 4 3 2 1

Low Error Address Register 17 777 140

, · Low Error Address Bits , · ---15 14 13 12 11 10 9 7 5 4 3

The Hign and Low ~rror Address ~egisters log the 22-oit
physical address being accessed when a memory reference
error occurred. All bits are read only. Tne olts are
undetermined after power up and are not affected by a
~so. le start or a RESET 1nstruction. The Low Error Address
~lster conta1ns tne low order 16 D1ts of the pnyslcal
address. The Hlqn Error Address Register contains the uPger
6 bits of the physical address and the type ot cycle being
performed when the err~r oecurred,All CPU cacne/me~ory
references that result in an error will hav~ the physica!
address logged 1n tne ERROF AOD~ESS ~EGISTER. A CPU memory
reference resulting 1n a CPU ABORT will cause the EPROk
ADDRESS REGISTER to lock up unt1l tne condition 1s cleared
in the Memory system Error Register 81t<15>. nlts<15:14>
define the type of memory cycle performed when the error
occurred.

Bit 15 Bit 14 Function

0 0 :R1:.:.1\l)
10 1 FEAD PAuSE
1 0 ~R 11'£
1 1 WRITE BYT~

(May expand to Bit<l]> due to addltlondl bus operations
performed by the 11/68).

2.5-10

2 1

Section 3 Floating Point processor/Instructions

FLOATING POINT PROCESSOR

INTRODUCTION
The PDP-11/68 contains an integral Floating Point Instruction set sup­
ported by microcode in the base machine, and by the optional FPll
Floating Point Processor. This optional unit fits into the pro­
cessor backplane and provides ::t high performance execution of the
Floating Point Instruction set. ,
Both units provide significant improvement in execution over software
subroutine implementation of floating point.

This chapter discusses the -Optional FPll Floating Point Processor.
Format and instruction information are the same for the integral floating
pOint with the exceptions already noted The sequence of
operation differs as the FPll Floating Point Processor can operate in
parallel with the base machine.

The features of the FPll unit are:
• 17 digit accuracy

• Overlapped operation with the central processor

• High speed
• Single and double precision (32 or 64 bit) floating pOint modes

• Flexible addressing modes

• Six 64-bit floating point accumulators

• ~rror recovery aids

OPERATION
The Floating Point instruction set is an integral part of the Central Pro­
cessor. It operates using similar address modes, and the same memory
management facilities provided by the Memory Management Option, as
the Central Processor. Floating Point Proce3sor (FPP) instructions can
reference the floating paint accumulators, the Central Processor's generaJ
registers, or any location in memory.

When. in the course of a program, an FPP Instruction is fetched from
memory, the FPP will execute instruction in parallel with the CPU con­
tinuing with its instruction sequence. The CPU is delayed a very short
period of time during the FPP Instruction's Fetch operation, and then is
free to proceed independently of the FPP. The interaction between the
two processors is automatic. and a program can take full advantage of
the parallel operation of the two processors by intermixing Floating Point
Processor and Central Processor instructions.

Interaction between Floating Point and Central Processor instructions is
automatically taken care of by the hardware. When an FPP Instruction
is encountered in a program, the machine first initi.ates Floating Point
handshaking and calculates the address of the operand. It th~n checks
the status of the Floating Point Processor. If the FPP is "busy," the CPU
will wait until it is "done" before continuing execution of the program.
As an example, consider the following sequence of instructions:

LDO(R3)+,AC3

ADDLP: LDO(R3) +, ACO

MULAC3.ACO

ADOO ACO,ACl

S08 R5,AODLP

STCOI AC 1 @R4

;Pick up constant operand and place it
in AC3

;Load ACO with next value in table

;and multiply by constant in AC3

;and add the result into ACl

;check to see whether done

;done, convert double to integer and
store

In the above example, the Floating Point Processor will execute the first
three instructions. After the "ADDD" is fetched into the FPP, the CPU
will execute the "SOB", calculate the effective address of the STCOI
instruction, and then wait for the FPP to be "done" with the "AOOO"
before continuing past the STCOI instruction.

As can be seen from this example, autoincrement and autodecrement
addressing automatically adds or subtracts the correct amount to the
contents of the register, depending on the modes represented by the
instruction.

3.1-1 11/68

ARCHITECTURE
The Floating Point Processor contains scratch registers and six general
purpose accumulators (ACO-AC5).

Each accumulator is interpreted to be 32 or 64 bits long depending on
the instruction and the status of the Floating Point Processor. For 32·bit
instruction only the left-most 32 bits are used, while the remaining 32
bits remain unaffected.

The six Floating Point Accumulators are used in numeric calculations
and interaccumulator data transfers; the first four (ACO-AC3) are also
used for all data transfers between the FPP and the General Registers or
Memory.

[CENTRAL PRocessoR - - ~ - - - -- - .. rFLDATlNGPOtNTPROCESSOR (FP1T-" r - - - - -, ~
I

32-81T
ACCLMULATOR
~

ACO

ACl

I
I
I
I

,..-------, I

I IFPP EXCEPT ION I I FPP I I CODE STATUS I REGISTER REGISTER

I f
11

FLOATING I UNI8US CENTRAL· 1------1
POINT .1 I PROCESSOR

AC21--__ I--__ _ ARITHMETIC ~--'-t---.. ARITHMETIC
AND t AND

PROCESSOR
STATUS

AC3

AC4

ACS

SCRATCH

'----------' 64-81T
ACCUMUlATOR

CONVERSION I MEMORY LOGICAL
UNIT I UNIT ----I

I :
I I
I I PROGRAM

I POINTER
I TO LAST

I I INSTRUCTION

GENERAL
REGISTER

FLOATING
POINT

REGISTERS
FOR BASIC
MACHINE

I CAUSING ERROR L ______________ ..J'r L _____ _ _______ -.J

Floating Point Processor and Central Processor
of the PDP-11/6S

3.1-2 11/68

FlOAnNG POINT DATA FORMATS
Mathematically, a floating point number may be defined as having the
form (2*O::K)~'f. where K is an integer and f is a fraction. For a non­
vanishing number. K and f are uniquely determined by imposing the
condition Ih ~f < 1. The fractional part, f, of the number is then
said to be normalized. For the number zero, f must be assigned the
value 0, and the value of K is indeterminate.

The FPP floating point data formats are derived from this mathematical
representation for floating point numbers. Two types of floating po_int
data are provided. In single precision, or Floating Mode, the word is 32
bits long. In double precision, or Double Mode, the word is 64 bits long.
Sign magnitude notation is used.

Non-vanishina floating Point Numbers
The fractional part f is assumed normalized, so that its most significant
bit must be 1. This 1 is the "hidden" bit: it is not stored in the data
word, but of course the hardware restores it before carrying out arith·
metic operations. The Floating and Double modes reserve 23 and 55
bits, respectively, for f, which with the hidden bit, imply effective word
lengths of 24 bits and 56 bits for arithmetic operations.

Eight bits are reserved for the storage of the exponent K In excess 128
(200 octal) notation (i.e. as K + 200 octal). Thus exponents from -128
to + 127 could be represented by 0 to 377 (octal), or 0 to 255 (deci­
mal). For reasons given below, a biased EXP of 0 (true exponent of
-200 octal), is reserved for floating paint zero. Thus exponents are
restricted to the range -127 to +127 inctusive (-177 to 177 octal) or,
in excess 200 (octal) notation, 1 to 377 (octal).

The remaining bit of the floating point word is the sign bit.

FIoatinc Point Zero
Because. of the hidden bit, the fractional part is not available to dis·
tinguish between zero and non-vanishing numbers whose fractional part
is exactly 1/2. Therefore the FPll reserves a biased exponent of 0 for
this purpose. And any floating point number with biased exponent of 0
either traps or is treated as if it were an exact 0 in arithmetic operations.
An exact zero is represented by a word. whose bits are aU O's. An arith·
metic operation for which the resulting true exponent exceeds 177
(octal) is regarded as producing a floating overflow; if the true expo·
nent is less than -177 (octal) the operation is regarded as producing a
floating underflow. A biased exponent of 0 can thus arise from arith·
metic operations as a speCial case of overflow (true exponent = 400
octal), or as a special case of underflow (true exponent = 0). (Recall
that only eight bits are reserved for the biased exponent.) The fractional
part of results obtained from such overflows and underflows is correct.

The Undefined Variable
The undefined variable is defined to be any bit pattern with a sign bit of
one and a biased exponent of zero. The term "undefined variable" is
used. for historical reasons, to indicate that these bit patterns are not
assigned a corresponding floating point arithmetic value. Note that the
undefined variable is frequently referred to as "-0" elsewhere in this
chapter.

A design objective of the FPll· was to assure that the undefined vari.
able would not be stored as the res~lt of any floating paint operation in
a program run with the overflow and underflow interrupts disabled.
This is achieved by storing an exact zero on overflow or underflow, if
the corresponding interrupt is disabled. This feature together with an
ability to detect a reference to the undefined variable (implemented by
the FtUV bit discussed in the next section) is intended to provide the
user with a debugging aid: if the presence of -0 occurs, it did not result
from a pl'evious floating point arithmetic instruction.

3.1-3
11/68

F'IodnI Point Data
floating point data is stored in words of memory as illustrated below.

f format, single precision

o format, double precision

S = Sign of Fraction .
EXP = Exponent in excess 200 notation, restricted to 1 to 377 octal for
non-vanishing numbers.

FRACTION = 23 bits in F Format, 55 bits in 0 Format. + one hidden bit
(normalization). The binary radix point is to the left.

The FPP provides for conversion of Floating POint to Integer Format and
vice-versa. The processor recognizes si'ngle precision integer (I) and
double precision integer long (L) numbers. which are stored in stan­
dard two's complement form:

Format:

l Format:

where

S = Sign of Number

NUMBER = 15 bits in 1 format, 31 bits in L format.

3.1-4
11/68

FLOATING POINT UNIT STATUS REGISTER (FPS Register)
This register provides (1) mode and' interrupt control for the floating
pojnt unit. and (2) conditions resulting from the execution of the pre­
vious instruction.

Four bits of the FPS register control the modes of operation:

Single/Double: Floating point numbers can be either single or
doubte precision.

Long/Short: Integer numbers can be 16 bits or 32 bits.

Chop/Round: The result of a floating point operation can be either
chopped or rounded. The term "chop" is used instead of "trun·
cate" in order to avoid confusion with truncation of series lIsed
in approximations for function subroutines.

Normal/Maintenance: a special maintenance mode is available.

The FPS register contains an error flag and four condition codes (5 bits):

Cany. overflow, zero, and negative, which are equivalent to the
Processor Status condition codes.

The floating pOint processor (FPP) recognizes seven "floating pOint
exceptions":

detection of the presence of the undefined variable in memory
floating overflow
floating underflow _
failure of floating to integer conversion
maintenance trap
attempt to divide by zero
illegal floating OP code

For the first five of these exceptions, bits in the FPS register are
available to individuaUy enable or disable interrupts. An interrupt
on the occurrence of either of the last two exceptions can be dis­
abled only by setting a bit which disables interrupts on all seven of
the exceptions, as a group.

Of the fourteen bits described above, five are set by the FPP as part
of the output of a floating pOint instruction: the error flag and condi­
tion codes. Any of the mode and interrupt control bits (except the
FMM bit) may be set by the user; the LDFS instruction is available
for this purpose. These fourteen bits are stored in the FPS register
as follows:

15 14 13 12 11 '0 9 8 7 6 5 4 3 4 0

3.1-5 11/68

BIT

15

14

NAME

Floating Error (FER)

Interrupt Disable (FlO)

DESCRIPTION

The FER bit is set by the FPP if

1. division by zero occurs
2. illega' OP code occurs
3. anyone of the remaining

occurs and the correspond·
ing interrupt is enabled.

Note that the above action is in·
dependent of whether the FlO
bit (next item) is set or clear.

Note also that the FPP never reo
sets the -FER bit. Once the FER
bit is set by the FPP, it can be
cleared only by an LOFPS in·
struction (or by the RESET in­
struction described in Section
4.7). This means that the FER
bit is up to date only if the most
recent floati ng pOint instruction
produced a floating pOint excep­
ception.

If the FlO bit is set, aU ffoating
paint interrupts are disabled.
Note that if an individuaJ inter·
rupt is simultaneously enabled,
only the interrupt is inhibited; all
other acbons associated with the
individual interrupt enabled take
place.

NOTES
1. The FrO bit is primarily a maintenance fea­

ture. It should normally be clear. In particu­
lar, it must be clear if one wishes to assure
that storage of -0 by the FPll is always
accompanied by an interrupt.

2_ Through the rest of this chapter. "it is as·
sumed that the FlO bit is clear in aU discus­
sions involving overtlow, underflow, occur·
renee of -0, and integer conversion errors.

13 Not Used

12 Not used

11 Interrupt on Undefined
Variable (FIUV)

An interrupt occurs if FIUV is
set and a -0 is obtained from
memory as an operand of APo,
SUB. MUL. DIV. eMP, MOD,
NEG. ABS. TST or any LOAD in­
struction. The interrupt occurs
before execution on the FPll
except on NEG and ABS for which

3.1-6 11/68

SIT NAME DESCRIPTION

it occurs after execution. When
FIUV is reset, -0 can be loaded
and used in any FPP operation.
Note that the interrupt is not ac­
tivated by the presence of -0 in
an AC operand of an arithmetic
instruction: in particular, trap on
-0 never occurs in Mode O.

The FPll will not store a result
of -0 without the simultaneous
occurrence of an interrupt

10 Interrupt on Underflow (FlU) When the FlU bit is set, Floating
Underflow will cause an interrupt.
The fractional part of the result
of the operation causing the in­
terrupt will be correct. The biased
exponent will be too large by 400
(octa!) , except for the special
case of 0, which is correct. An
exception is discussed in the de­
tailed description of -the lDEXP
instruction.

If the FlU bit is reset and if un­
derflow occurs, no interrupt oc·
curs and the result is set to
exact O.

9 Interrupt on Overflow (Fly) When the FIV bit is set, Floating
Overflow will cause an interrupt.
The fractional part of the result
of the operation causing the
overflow will be correct. The bi­
ased exponent will be too small
by 400 (octal).

8 Interrupt on Integer
Conversion Error (FIC)

If the FIV bit is reset. and over·
flow occurs. there is no inter­
rupt. The FPll returns exact O.

Special cases of overflow are
discussed in the detailed des­
criptions of the MOD and lDEXP
instructions.

When the FIC bit is set. and a
conversion to integer instruction
fails: an interrupt will occur. If

301-7

11/68

BIT

7

6

5

4

3

2

1

o

NAME

Floating Double Precision
Mode (FD)

Floati ng Long Integer
Mode (FL)

Floating Chop Mode (FT)

Floating Maintenance Mode
(FMM)

Floating Negative (FN)

Floating Zero (FZ)

Floating Overflow (FV)

Floating Carry (FC)

DESCRIPTION

the interrupt occurs, the destina·
tion is set to 0, and all other
registers are left untouched.

If the FIC bit is reset, the result
of the operation will be the same
as detailed above, but no inter·
rupt will occurr.

The conversion instruction fails
if it generates an integer with
more bits than can fit in the
short or long integer word speci­
fied by the FL bit (see 6 below).

Determines the preciSion that is
used for floating pOint calcula·
tions. When set, double precision
is assumed; when reset, single
precision is used.

Active in conversion between ir.­
teger and floating pOint format.
When set, the integer format as­
sumed is double precision two's
complement (Le. 32 bits). When
reset, the integer format is as­
sumed to be single preciSion
two's complement (Le. 16 bits).

When bit FT is set, the result
of any arithmetic operation is
chopped (or truncated).

When reset, the result is rounded.

See Section 10.8 for a discussion
of the chopping and rounding
operations.

This code is a maintenance fea­
ture. Refer to the Maintenance
Manual for the details of its oper·
ation. The F~1M bit can be set
only in Kernel Mode.

FN is set if the result of the last
operation was negative, otherwise
it is reset.

FZ is set if the result of the last
operation was zero; otherwise it
is reset.

FV is set if the last operatIon reo
suIted in an exponent overflow;
otherwise it is reset.

FC is set if the last- operation
resulted in a carry of the most
sigOificant bit. This can only oc·
cur in floating or double to inte­
ger conversions.

3.1-8 11/68

FlOATING EXCEPTION CODE AND ADDRESS REGISTER
One interrupt vector is assigned to take care of all floating point excep­
tions (location 244). The seven possible errors are coded in the four bit
FEe (Floating Exception Code) register as follows:

2 Floating OP code error
4 Floating divide by zero
6 Floating (or double) to integer conversion error
8 Floating overflow

10 Floating underflow
12 Floating undefined variable
14 Maintenance trap

The address of the instruction producing the exception is stored in the
FEA (Floating Exception Address) register.

The FEC and FEA registers are updated only when one of the following
occurs: .

1. divide by zero
2. illegal OP code'
3. any of the other five exceptions with the corresponding interrupt

is enabled.

NOTE
1. If one of the last five exceptions occurs with

the corresponding interrupt disabled. the FEC
and FEA are not updated.

2. Inhibition of interrupts by the FlO bit does not
inhibit updating of the FEe and FEA. if an
exception occurs.

3. The FEC and FEA do not get updated if no
exception occurs. This means that the STST
(store status) instruction will return current
information only if the most recent floating
point instruction produced an exception.

4. Unlike the FPS register. no instructions are
provided for storage into the FEC and FEA
registers.

FLOATING POINT PROCESSOR INSTRUCTION ADDRESSING
Floating Point Processor instructions use the same type of addressing as
the Central Processor instructions. A source or destination operand is
specified by.designating one of eight addressing modes and one of
eight central processor general registers to be used in the specified
mode. The modes of addressing are the same as those of the central
processor except for mode O. In alode 0 the operand is located in the
designated Floating Point Processor Accumulator. rather than in a Cen·
tral processor general register. The modes of addressing:

o = Direct Accumulator

1 = Deferred

2 = Auto-increment

3 = Auto-increment deferred

4 = Auto-decrement
5 = Auto-decrement deferred

6 = Indexed
7 = Indexed deferred

Autoincrement and autodecrement operate on increments and decre­
ments of 4 for F Format and 10. for 0 Format.

In mode O. the user can make use of aft six FPP accumulators (ACo­
AC5) as his source or destination. In all other modes, which involve
transfer of data from memory or the general register. the user is reo
striCted to the first four FPP accumulators (ACO-AC3).

In i.mmediate addressing (Mode 2. R7) only 16 bits are loaded or stored.

11/68

ACCURACY .
General comments on the accuracy of the FPP are presented here. The
descriPtions of the individual instructions include the accuracy .at which
they operate. An instruction or o~eration is regarded as "exact" if the
result is identical to an infinite prtC'-cision calculation involving the same
operands. The a priori accuracy of the operands is thus ignored. All
arithmetic instructions treat an operand whose biased exponent is 0 as -
an exact 0 (unless FIUV is enabled and the operand is -0, in which case
an interrupt occurs). For atl arithmetic operations, except DIV, a zero
operand implies that the instruction is exact. The same statement holds
for DIV if the zero operand is the dividend. But if it is the divisor. division
is undefined and an. interrupt occurs.

For non-vanishing floating point operands, the fractional part is binary
normalized. It contains 24 bits or 56 bits for Floating Mode and Double
Mode, respectively. The interna. hardware registers contain 60 bits for
processing the fractional parts of the operands. of which the high order
bit is reserved for arithmetic overflow. Therefore there are, internally, 35
guard bits for Floating Mode and 3 guard bits for Double Mode arithmetic
operations. For ADD, SUB, MUl, and DIV. two guard bits ar4! necessary
and sufficient to guarantee return of a chopped or rounded result iden·
tical to the corresponding infinite precision operation chopped or rounded
to the specified word length. Thus, with two gu<.. rd bits, a chopped result
has an error bound of one least significant bit (lSB); a rounded result
has an error bound of 1/2 lSB. (For a radix other than 2. replace "bit"

• with "digit" in the two· preceding sentences to get the corresponding
statements on accuracy.) These error bounds are realized by the FP11
for most instructions. For the addition of operands of opposite sign or
for the subtraction of operands of the same sign in rounded double pre­
cision, the error bound is 3/4 lSa, which is slightly larger than the 1/2
LS8 error bound for all other rounded operations.

In the rest of thiS chapter an arithmetic result is called exact if no non­
vanishing bits would be lost by chopping. The first bit lost in chopping
IS referred to as the "rounding"blt. The value of a rounded result is
related to the chopped result as follows:

1. if the rounding bit is one, the rounded result is the chopped result
incremented by an LSD (least significant bit).

2. if the rounding bit is zero. the rounded and Chopped results are
identical.

It fonows that
1. If the result is exact

rounded value = chopped value = exact value
2. If the result is not exact. its magnitude

(a> is always decreased by chopping
(b) is decreased by rounding if the rounding bit is zero
(c) is increased by rounding if the rounding bit is one.

Occurrence of floating point overflow and underflow is an error condition:
the result of the calculation cannot be correctly stored because the expo­
nent is too big to fit into the 8 bits reserved for it. However, the internal
hardware has prOduced the correct answer. For the case of underflow
replacement of the correct answer by zero is a reasonable resolution of
the problem for many applications. This is done on the FP11 if the
underftow in.terrupt is' disabled. The error incurred by this action is an
absolute rather than a relative error; it is bounded (in absolute value) by
2'11·(-128)_ There is no such simpte resolution for the case of overflow.
The action taken, if the overftow interrupt is disabled, is described under
FlY (bit 9)

The FIV and FlU bits (of the floating point status word) provide the user
with an opportunity to implement his own fix up of an overflow or
underflow condition. If such a condition occurs and the corresponding
interrupt is enabled. the hardware stores the fractional part and the low
eight bits of the biased exponent. The interrupt will take place and the
user can identify the cause by examination of the FV (floating overflow)
bit or the FEe (floating exception) register. The r~ader can readily verify
that (for the standard arithmetic operations ADD, SUB. MUl, and DIV)
the biased exponent returned by the hardware bears the following
relation to the correct exponent generated by the hardware:

1. on overflow: it is too small by 400 octal _
2. on underflow: if the biased exponent is 0 it is correct. If it is not O.

it is too large by 400 octal.

Thus, with the interrupt enabled. enough infonnation is available to
determine ~he correct answer. The user may. for example. rescale his
variabJes (Vl. STEXP and lDEXP) to continue his calculation. Note that
the accuracy of the fractional part is unaffected by the occurrence of
underflow or overflow.

3.:-.10
11/68

FLOAnNG POINT INSTRUCTJONS
Each instruction that references a floating point number can operate on
either floating .or double precision numbers depending on the state of
the FO mode bit. Similarly. there is a mode bit Fl that determines
whether a .32·bit integer (FL = 1) or a I6·bit integer (FL = O)is used in
conversion between integer and floating point representation. FSRC and
FDST use floating point addressing modes; SRC and DSTuse CPU
addressinlil Modes.

Floating Point Instruction Format
Double Operand Adressing

OC FCC

'2 tt

Single Operand Addressing

oc FOC
I

8 7

AC I FSRC, FDST, SRC, OST
f ! I !

6 5 o

FSRC,FOST,SRC, DST
, I I ,

15 '2 1t 650

OC = Op Code = 17
FOC = Floating Op Code
AC = Accumulator
FSRC, FOST use FPP Address Modes
SRC. OST use CPU Address Modes

General Definitions:
XL = largest fraction that can be represented:

1-2·*(-24). FD = 0; single precision
1-2* *(-56), FD = 1); double precision

XLl = smallest number that is not identicaJly zero = 2··(-128) -2**
(-127»·(1/2)

XUL = 'argest number that can be represented = 2**(127)"'Xl
JL = largest integer that can be represented:

2··(15)-1 if FL = 0 2 0 *(31)-1 if FL = 1
ASS (address) = absolute value of (address)
EXP (address) = biased exponent of (address)
.LT. = '"Jess than"
.LE. = .. tess than or equal··
.OT. = "greater than'·
.OE. = '"greater than or equal"
LS8 = least significant bit

3.1-11
11/68

STF
STD

Store Floating/Double 174ACFDST

I '
Operation:
Condition COdes:

Description:

Interrupts:

Accuracy:

Special Comment:

t I ' ,0 0 .1 0 I AC

12 " 8 1 6 5

FDST ~ (AC)

FC ~FC
FV ~FV
FZ -FZ
FN ~FN

o

Store Single or Double Precision Number- from
Accumulator.

These instructions do not interrupt if FIUV. en­
abled, because the -0, if present, ;s in AC. _ not
in memory. Neither overflow nor underflow can
occur.

These instructions are exact.

These instructions permit storage of a -0 in
memory from AC. There are two conditions in
which minus 0 can be stored in AC of the FPII-C
or FPll One occurs when underflow or over­
flow is present and the corresponding interrupt
is enabled. A second occurs when an LOI or LDF
instruction is -executed and the FIUV bit is dis·
abled.

3.1-12 11/68

ABSF
ABSD

Make Absolute Floating/ Double 1706FDST

I' , '
15 12 11

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

o I
6 5

FDST
I

If (FDST) r 0, FDST +- - (FDST).

If EXP(FDST) = 0, FDST - exact O.

For all other cases, FDST - (FDST).

Fe -0.
FV -0. ~

FZ - 1 if EXP(FDST) = 0, else FZ - O.
FN -0

o

Set the contents of FDST to its absolute value.

If FIUV is set. Trap on -0 occurs after execution.

These instructions are exact.

If a minus 0 is present in memory and the FIUV
bit is enabled, then the FPll . and integral float­
ing point unit store exact 0 in memory (zero ex­
ponent, zero fraction, and positive sign). The
conditi0!1 code reflects an exact 0 (FZ .- 1).

3.1-13 11/68

NEGF
NEGD

Negate Floating/ Double 1707FDST

15 '2 "

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

FOST
I

6 5 o

FDST - - (FDST) if EXP(FDST);:: 0, else FDST +­

exact O.

Fe -0.
FV -D.
FZ - 1 If EXP(FDST) = 0, else FZ +- O.
FN - 1 If (FDST) < 0, else FN +- O.

Negate single or double Precision number, store
result in same location. (FDST)

If FIUV is enabled
Trap on -0 occurs after execution.

Neither overflow nor underflow can occur.

These instructions are exact.

If a minus 0 is present in memory and the FIUV
bit is enabled, then the FPll and the integral
floating point unit store exact 0 in memory (zero
exponent, zero fraction, and positive sign). The
condition code reflects an exact 0 (FZ +- 1).

3.1-14

11/68

DIVF
DIVD

Divide Floating/Double 174(AC + 4)FSRC

15 12 11

Operation:

Condition Codes:

Description:

-'nterrupts:

Accuracy:

Specia' Comment:

o o I 1 AC
'(

8 .., 6 5

FSRC
I

o

If EXP(FSRC) = 0, AC +- (AC): instruction is
aborted.

If EXP(AC) = 0, AC +- exact O.

For aU other cases, let QUOT = (AC)/(FSRC):

If underflow occurs and FlU is not enabled
AC ~exact O.

If overflow occurs andFIV is not enabled, AC ~
exact O.

For all remaining cases AC ~ QUOT.

FC +-0.
FV +- lif overflow occurs, else FV +- O.
FZ +- 1 if EXP(AC) = 0, else FZ ~ O.
FN +- 1 if (Ae) < 0, else FN +- O.

If either operand has a biased exponent of 0, it
is treated as an exact O. For FSRC this would
imply division by zero; in this case the instruc·
tion is aborted, the FEC register is set to 4 and
an interrupt occurs. Otherwise the quotient is
developed to single or double precision with
enough guard bits for correct rounding. The
quotient is rounded or chopped in accordance
with the values of the FD and FT bits in the FPS
register. The result is stored in AC except for:
Overflow with interrupt disabled •.

Underflow with interrupt disabled.

for these exceptional cases an exact 0 is stored
in accumulator.

If FIUV is enabled, trap on -0 in FSRC occurs
before execution. ~

If EXP(FSRC) = 0 interrupt traps on attempt to
divide by O.

If overflow or underflow occurs and if the cor·
responding interrupt is enabled, the trap occurs
with the faulty results in AC. The fractional parts
are correctly stored. The exponent part is too
small by 400 octal for overflow. It is too large by
400 octal for underflow, except for the special
case of 0, which is correct.

Errors due to overflow, underftow and division
by 0 are described above. If none of these
occurs, the error in the quotient will be bounded
by 1 LSB in chopping mode and by 1/2 LSB in
rounding mode.

The undefined variable -0 can OCcur only in con­
junction with overflow or underflow. It will be
stored in AC only if the corresponding interrupt is
enabled.

3.1-15 11/68

STCFI
STeFL
STCDI
STeDl

Store and Convert from Floating or
Double to Integer or long Integer

175(AC + 4)OST

I' I '
15

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

1 11 , 0 I 1 1.1 r AC

12 11 8 7 6 5

CST
I

o

DST +-C'i (AC) if - Jl- 1 < CO' (AC) < Jl + 1.
else OST +- 0, where C. specifies con­
version from floating mode x to inteser
mode j;

j = t if FL = O. j = l if Fl = 1,
x = F if FD = O. x = 0 if FO = 1.

Jl is the largest integer:

2u 15 - 1 for Fl = 0
2 H 31 - 1 for Fl = 1

C +- FC +- 0 if -Jl - 1 < c" (AC) < Jl + 1,
else FC +- 1.
V +- FV +- O.
Z +- FZ +- 1 if (OST) = 0, else FZ +- 0.
N +- FN +- 1 if (OST) < 0, else FN +- O.
Conversion is performed from a floating paint
representation of the data in the accumulator to
an integer representation.
If the conversion is to a 32-bit word (l mode)
and an address mode of 0, or immediate adress·
Ing mode, is specified, only the most significant
16 bits are stored in the destination register.
If the operation is out of the integer range se­
lected by Fl, FC is set to 1 and the contents
of the OST are set to O.
Numbers to be converted are always chopped
(rather than rounded) before conversion. This
is true even when the Chop Mode bit. FT is

- cleared in the Floating Point Status Register.
These instructions do not interrupt if FIUV is
enabled, because the -0, if present, is in AC,
not in memory.
If Fie enabled. trap on conversion failure will
occur.
These instructions store the integer part of the
floating point operand, which may not be the
integer most closely approximating the operand.
They are exact if the integer part is wfthin the
range implied by FL.

3.1-16 11/68

T5TF
T5rD

Test Floating/ Double 1705FDST

15 '2 11

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

FDST - (FDST)
Fe +- o.
FV +- O.

6 5

FDST
I

FZ +- 1 jf EXP(FDST) = 0, else FZ +- O.
FN +- 1 if (FDST) < 0, else FN +- O.

o

Set the Floating Point Processor's Condition
Codes according to the contents of FOST.

If FJUV is set, trap on -0 occurs after execution

Overflow and underflow cannot occur.

These instructions are exact.

3.1-17 11/68

ADDF
ADDD

,I\.dd Floating/ Double 172ACFSRC

1 I 0, 1 0 I 0 I AC

15 '2 It

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

8 7 6 5 o

let SUM = (AC) + (FSRC):

If underflow occurs and FlU is not enabled,
AC ~ exact O.

If overflow occurs and FIV is not enabled.
AC ~ exact O.

For all other cases. AC ~ SUM.

FC ~O.
FV - 1 If overflow occurs, else FV +- O.
FZ +- 1 If (Ae) = 0, else FZ +- O.
FN -1 If (AC) < 0, else FN ~O.

Add the contents of FSRC to the contents of AC.
The addition is carried out in single or double
precision and is rounded or chopped in accor­
dance with the values of the FO and FT bits in
the FPS register. The result is stored in AC
except for overflow with interrupt disabled and
underflow with interrupt disabled.

For these exceptional cases an exact 0 is
stored in AC.

If FIUV is enabled, trap on -0 in FSRC occurs
before execution.

If overflow or underflow occurs and if the cor·
responding interrupt is enabled, the trap occurs
with the faulty result in AC. The fractional parts
are correctly stored. The exponent part is too
large by 400 octal for underflow, except for the
special case of O. which is correct.

Errors due to overftow and underflow are de­
scribed above. If neither occurs, then: For
oppOSitely signed operands with exponent dif·
ferences of 0 or 1. the answer returned is exact
if a loss of significance of one or more bits'
occurs. Note that these are the only cases for
which loss of significance of more than one bit
can occur. For aU other cases the result is
inexact with error bounds of

1 lSB in chopping mode with either single or
double precision.
3/4 eS8 in rounding mode with double precision.
For an ADO instruction specifying double pre·
cision with rounding, the accuracy of the integral
floating paint unit is 1/2 lS8.

The undefined variable -0 can occur only in can·
junction with overflow or underflow. It will be
stored in AC only if the corresponding inter'
rupt is enabled.

3.1-18 11/68

SETI

Set Integer Mode 170002

I' 1 I 0 0 0 0 0 0 ,'0 0 0 I 0 o I
'5 o

Operation: FL +-0

Description: Set the FPP for Integer Data.

SETl
Set long Integer Mode 170012

l' I 1
'100000000 1 0 1

I , o I
15 12 " o

Operation: Fl +- 1

Description: Set the FPP for long Integer Data.

3.1-19
11/68

Store FPPs Status

I '
15 12 11

Operation:

Description:

DST ~ (FEC)
DST + 2 ~(FEA)

6 5

STST

1703DST

CST· ,
o

Store the FEC and then the FPP's Exception
Address Pointer in DST and DST + 2.
NOTES: 1. If destination mode specifies a

general register or immediate ad·
dressing. only the FEe is saved.

2. The information in these registers
is current only if the most recently
executed floating point instruction
(refer to Section 10.6) caused a
floating point exception.

CFCC

Copy Floating Condition Codes 170000

I ' I 1
15 12 11

Operation:

Description:

C +- FC
V+-FV
Z +- FZ
N +-FN

o o
6

o 0 o I 0 o
5 o

Copy FPP Condition Codes into the CPU's Con·
dition Codes.

3.1-20 11/68

ClRF
·ClRD

Clear Floatingl Double 1704FDST

15 12 "

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

o 0 I

FDST +- exact O.

Fe +- o.
FV +- O.
FZ +-1
FN +- O.

6 5

FOST
I

o

Set FDST to O. Set FZ condition code and clear
other condition code bi~s.

No interrupts will occur. Neither overflow nor
underflow can occur.

These instructions are exact.

3.1-21 11/68

lDEXP
Load Exponent

15 12 11

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

176(AC + 4)SRC

o t 1 AC

8 7 6 5

SRC
I

o

NOTE: 177 and 200, appearing below, are octal
numbers.

If -200 < SRC < 200, EXP(AC) ~(SRC) + 200
and the rest of AC is unchanged on FPIIC and
FPllB.

If (SRC) > 177 and FIV is enabled,
EXP(AC) ~ (SRC) < 6:0 >
EXP(AC) ~ (SRC) < 7:0 > on FPll B.

If (SRC) > 177 and FIV is disabled,
AC +-exact 0
EXP(AC) +- (SRC + 200) < 7:0 > on
FPIIB.

If (SRC) < -177 and FlU is disabled,
AC +- exact O.

If (SRC) < -177 and FlU is enabled,
EXP(AC) ~ (SRC) < 6:0 >
EXP(AC) +- (SRC)+ 200) < 7:0 >

FC ~O.
FV +- 1 if (SRC) > 177, else FV +- O.
FZ +- 1 if EXP(AC) = 0, else FZ +- O.
FN +- 1 if (AC) < 0, else FN +- O.

Change AC so that its unbiased exponent =
(SRC). That is, convert (SRC) from 2's comple­
ment to excess 200 notation, and insert in the
EX? field of AC. This is a meaningful operation
only if ABS(SRC}.lE.177.

If SRC > 177, result is treated as overflow. If
SRC < -177, result is treated as underflow.
Note that the FPllC and FPllB do not treat
these abnormal conditions in exactly the same
way.

No trap on -0 in AC occurs, even if FIUV en·
abled.

If SRC > 177 and FIV enabled, trap on over-
flow will occur. .

If SRC < -177 and FlU enabled, trap on under·
flow will occur.

Errors due to overflow and underflow are de­
scribed above. If EXP(AC) = 0 and SRC .,..,.;- -200,
(Ae) changes from a floating pOInt number
treated as 0 by all floating arithmetic operations
to a non·zero number. This is because the inser­
tion of the "hidden" bit in the hardware imple­
mentation of arithmetic instructions is triggered
by a non·vanishing value of EXP.

For all other cases, LDEXP implements exactly
the transformation of a floating point number
(2**K)*f into (2**(SRC»"f where 1/2 .LE.ABS
(f).LT.!.

~_ 1-')')

11/68

lDF
lDD

Load Floating/Double 172(AC + 4)FSRC

I ' l't I t I 0 I' 0 I t t AC FSRC
J

US 12 tt _ 8 7 6 5 o

Operation:
Condition Codes:

Description:

Interrupts:

Accuracy:
Special Comment:

AC +- (FSRC)

FC +-0
FV +-0
FZ +- 1 if (AC) = 0, else FZ +- o.
FN +- 1 if (AC) < O. else FN +- O.

Load Single or Double Precision Number into
Accumulator.

If FIUV is enabled, trap on -0 occurs before AC
is loaded. However, the condition codes will re­
fleet a fetch of minus 0 regardless of the flUV
bit. Neither overflow nor underflow can occur.

These instructions are exact.
These instructions permit use of -0 in a subse·
quent floating point instruction if FIUV is not
enabled and (FSRC) = -0.

3.1-23 11/68

STCFD
STCDF

Store and convert from Floating to
Double or from Double to Floating

176ACFOST

I L_'-L __ ~1~,_'~1 __ '~~~0~,~O~ __ A~C __ ~~ __ ~F_O~r_T~ __ ~~1.
15 12 II

lperation:

Condition Codes:

Description:

Interrupts:

Accuracy:

8 7. 6 5 o

If EXP(AC) == 0, FDST ~ exact 0

If FO = 1, FT = 0, FIV = 0 and rounding causes
overflow, FDST .- exact O.
In all other cases, FOST - C .. (AC). where

C. specifies conversion from floating mode x
to floating mode y;

x = F and y = 0 if FD = O.
x = 0 and y = F if FO = 1.

FC +- O.
FV .- 1 If conversion produces overflow else
FV +-0.
FZ +- 1 If (AC) = 0, else FZ +- O.
FN +- 1 If (AC) < 0, else FN +- O.

If the current mode is Single precision, the Ac·
cumulator is stored left justified in FOST and
the lower half is cleared. If the current mode
is double precision,· the contents of the accumu·
lator are converted to single precision, chopped
or rounded depending on the state of FT, and
stored in FOST. .

Trap on -0 will not occur even if FIUV is en·
abled because FSRC is an accumulator.

Underflow cannot occur.

Overflow cannot occur for STeFO.

A trap occurs if FIV is enabled, and jf rounding
with STeOF causes overflow; FOST +- overflowed
result of conversion. This result must be +0
or -0.

STCFO is an exact instruction. Except for over·
flow, described above, STeDF incurs an error
bounded by 1 LSB in chopping mode and 1/2
LSB in rounding mode.

3.1-24 11/68

CMPF
CMPD

Compare Floating/Double 173 (AC + 4) FSRC

15 12 "

Operation:
Condition Codes:

Description:

Interrupts:

~ccuracy:

Special Comment:

, I ' AC

8 7 6 5

(FSRC) - (AC)

FC +- O.
FV +- O.

FSRC
I

o

FZ +-.1 If (FSRC) - (AC) = 0, else FZ +- O.
FN +- 1 If (FSRC) - (AC) < 0, else FN +- O.

Compare the contents of FSRC with the accu·
mulator. Set the appropriate floating pOint con·
dition codes. FSRC and the accumulator are left
unchanged.

If FIUV is enabled. trap on -0 occurs before
execution.

These instructions are exact.

An operand which has a biased exponent of zero
is treated as if it were exact zero. In the case
where both operands are zero, the floating point
processor will store exact 0 in the AC.

3.1-25
11/68

SETF
Set Floating Mode 170001

o o I 0 o 0,0 ° ° , 0 °
15 o

Operation: FO +-0

Description: Set the FPP in Single Precision Mode.

SETD
Set Floating Double Mode 170011

15 o

Operation: FO +-1

Description: Set the FPP'n Double Precision, Mode.

lDFPS
Load FPPs Program Status 1701SRC

I 1 I 1

15 12 1~

Operation:
Description:

Special Comment:

STFPS

o 0,0 °
6 5

FPS +- (SRC)

Load FPP's Status from SRC.

SRC
I

o

The user is cautioned not to use bits 13 and 12
for his own purposes, since these bits are not
recoverable by the STFPS instruction.

Store FPPs Program Status 17020ST

l' , 1
I I COO 0 OST

I
15 12 11

Operation:
DesCription:

Special Comment:

6 5 o

OST ~ (FPS)

Store FPP's Status in OST.

Bits 13 and 12 are loaded with O. All other bit!
are the corresponding bits in the FPS.

3.1-26
11/68

STEXP

Store Exponent

I ' I t
1 j , o o I AC

I

175ACDST

CST
I

15 12 11 e 7 6 5 o

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

. OST 4- EXP(AC)-200 octal

C -FC -0.
V -FV -0.
Z - FZ - 1 if (oST) = O. else FZ '"- O.
N - FN 4- 1 if (OST) < 0, else FN - O.

Convert accumulator'S exponent from excess
200 octal notation to 2-'s complement, and store
result in OST.

This instruction will not trap on -0.

Overflow and underflow cannot occur.

This instruction is always exact ..

3.1-27
11/68

LDCIF
LDCID
LDClF
lDCLO

Load and Convert Integer or l,.ong Integer to
Floating or Double Precision

177ACSRC

I 1 , I

15 12 11

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

o I AC

8 7 6 5

AC - C,. (SRC). where

SRC
I

o

C,. specifies conversion from integer mode·
j to floating mode x;

j = I if FL = 0, j = L if FL = I,
x = F if FD = 0, x = D if FO = 1.

FC -0.
FV -0.
FZ -1 If (AC) = 0, else FZ -0.
FN +- 1 If (AC) < 0, else FN - O.

Conversion is performed on the contents of SRC
from a 2's complement integer with preciSion i
to a floating pOint number of precision x. Note
that j and x are determined by the state of the
mode bits FL and FO: J = I or L, and X = F or D.

If a 32·bit Integer is specified (L mode) and
(SRC) has an addressing mode of 0, or immedi·
ate addressing mode is specified, the 16 bits of
the source register are left justified and the
remaining 16 bits loaded with zeroes before
conversion.

In the case of LOCLF the fractional part of the
floating point representation is chopped or
rounded to 24 bits for FT = 1 and 0 respec·
tively •.

None; SRC is not floating point, so trap on -0
cannot occur.

Overflow and underflow cannot occur.

LCCIF, LOCIO. LOCLO are exact instructions.
The error incurred by LDCLF is bounded by one
LSB in chopping mode, and by 1'/2 LSB in
rounding mode.

3.1-28 11/68

LDCDF
LDCFD

load and convert from Double to Float·
ing or from Floating to Double

177(AC + 4)FSRC

I ' I 1 '! 1 I'
'5 12. 11

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

t I ' f A~
8 7 6 5

FSRC
I

If EXP(FSRC) = 0, AC 4- exact o.

L
o

If FD = I. FT = O. FIV = 0 and rounding
causes overflow, AC +- exact O.

In all other cases AC +- C.y (FSRC), where C.,
specifies conversion from floating mode x to
floating mode Yi

x = 0, Y = F if FD = 0 (single)
x = F, Y = 0 if FD = 1. (double)

FC +-0.
FV +- 1 if conversion produces overflow. else
FV -0.
FZ +- 1 if (AC) = O. else FZ +- O.
FN +- 1 if (Ae) < 0, else FN +- O.

If the current mode is Floating Mode (FD = 0)
the source is assumed to be a double· precision
number and is converted to Single precision. If
the Floating Chop bit (FT) is set. the number
is chopped. otherwise the number is rounded.

If the current mode is Double Mode (FD = 1),
the source is assumed to be a single· precision
number. and is loaded left justified in the AC.
The lower half of the AC is cleared.
If FIUY is enabled, trap on -0 occurs before
execution. However. the condition codes will re­
flect a fetch minus 0 regardless of the FIUV bit.

Overflow cannot occur for lDCFD.

A trap occurs if FlY is enabled. and if rounding
with lDCOF causes overflow; AC - overflowed
result of conversion. This result must be +0· or
-0.
Underflow cannot occur.

lOCFD is an exact instruction. Except for over·
flow, described above, lDCDF incurs an error
bounded by one lSB in chopping mode. and by
1/2 lSB in rounding mode.

3.1-29 11/68

MODF
MODO

Multiply and Integerize Floating/Double 171(AC + 4)FSRC

15

Description
and Operation

12 11

AC
I

876 5

FSRC
I

o

ThiS instruction generates the product of its
two floating point operands, separates the prod·
uct into integer and fractional parts and then
stores one or both parts as floating point num­
bers.

let PROD = (AC)*(FSRC) so that in:

Floating point: ABS(PROD) = (2**K) *f

where l/2.LE.f.LT.l and
EXP(PROD) = (200 + K) octal

Fixed Point binary: PROD = N + g, with

N = INT(PROD) = the integer
part of PROD

and

g = PROD - INT(PROD) = the fractional
part of PROD with O.LE.g.LT.l

Both Nand g have the same sign as PROD.
They are returned as follows:

If AC is an even-numbered accumulator (0 or
2), N is stored in AC + 1 (1 or 3), and g is
stored in AC.

If AC is an odd·numbered accumulator, N is
not stored, and g is stored in AC.

The two statements above can be combined as
fonows: N is returned to ACvl and g is returned
to AC, 'where y means .OR.

Five special cases occur, as indicated in the
following formal description' with L = 24 for
Floating Mode and l = 56 for Double Mode:

1. If PROD overflows and FIV enabled:

ACyl +- N, chopped to L bits, AC +- exact 0

Note that EXP(N) is too small by 400 (octal),
and that +-0 can get stored in ACyl.

If FIV is not enabled: ACvl exact 0, AC +­
exact 0, and -0 will never be stored.

2. If 2·°l.lE.ABS(PROO) and no overflow

ACvl N, chopped to l bits, AC +- exact 0

The sign and EXP of N are correct, but low
order bit information, such as parity, is lost.

3. If l.LE.ABS(PROD).LT.2*':'L
ACyl +- N, AC +- g

The integer part N is exact. The fractional part
g is normalized, and chopped or rounded in
accordance with FT. Rounding may cause are·
turn of ==unity for the fractional part. For l
= 24, the error in g is bounded by 1 LSB in
chopping mode and by 1 /2 lSB in rounding
mode. For l = 56, the error in g increases from
the above limits as ABS(N) increases above 3
because only 59 bIts of PROD are generated:

if 2l)(tp.LE.ABS(N).lT.2(t*(p + 1). witJ'l p > 2.
the tow order p - 2 bits of g may be in error.

3.1-30 11/68

Condition Codes:

Interrupts:

Accuracy:

Applications:

4. If ASS (PROD). LT.l and no underflow:

ACvl ... exact 0 AC ... g

There- is no error in the integer part: The error in
the fractional part -is bounded by 1 LSB in chop·
ping mode and 1/2 LSB in rounding mode.
Rounding may cause a return of ±unity for the
fractional part.

5. If PROD underflows and FlU enabled:

ACvl ... exact 0 AC ... g

Errors are as in case 4, except that EXP(AC) will
be too large by 400 octal (except if EXP = 0, it
is correct). Interrupt will occur and -0 can be
stored in AC.

IF FlU is "not enabled, ACvl ... exact 0 and AC
+- exact O. For this case the error in the trac­
tional part is less than 2**(-128).

FC -0.
FV +- 1 if PROD overflows, else FV +- o.
FZ ... 1 if (AC) = 0, else FZ ... 0.
FN ... if (AC) < 0, else FN· ... O.
If FIUV is enabled. trap on -0 in FSRC will oc·
cur before execution.

Overflow and Underflow are discussed above.

Discussed above.

1. Binary to decimal conversion of a proper
fraction: the following algorithm, using MOD, will
generate oecimal digits 0(1), 0(2) ... from left
to right:

• Initialize: I+-O _
X ... number to be converted;
ABS(X) < 1

While x,~ a do
Begm PROD +- X'~ 10:
I-I + 1:
0(1) +- INT(PROD):
X +- PROD - INT(PROo);
END:

This algorithm is exact; it is case 3 in the de­
scription: tlie number of non-vanishing bits in
the fractional part of PROD never exceeds L.
and hence neither chopping nor rounding can
introduce error.

2. To reduce the argument of a trigonometric
function.

ARG lOI 2/PI = N + g. The low two bits of N
identify the quadrant, and g is ·the argument
reduced to the first quadrant. The accuracy of
N +g is limited to L bits because of the factor
2/PI. The accuracy of the reduced argument
thus depends on the size of N.

3. To evaluate the exponential function eO ·x,
obtain

x·(log e base 2) = N + g.
Then e*·x = (2*oN)*(e lOl O(g*ln 2»

The reduced argument is g·ln2 < 1 and the
factor 2~lOIN is an exact power of 2, which may
be scaled in at the end via STEXP, AOD N to
EXP and LDEXP. The accuracy of N + g is lim­
ited to L bits because of the factor (log e base
2). The accuracy of the reduced argument thus
depends on the size of N.

3.1-31
11/68

MULF
MULD

Multiply Floating/ Double 171ACFSRC

t 10 , 0 o I AC

15 12 "

Operation:

Condition C-oc:Ies:

Description:

Interrupts:

Accuracy:

Special Comment:

e 7 6 5 o

let PROD = (AC) #(FSRC)

If underflow occurs and FlU is not enabled,
AC .- exact O.

If overflow occurs and FIV is not enabled,
AC +- exact O.
For all other cases AC .-PROD

FC +- O.
FV .- 1 if overflow occurs, else FV .- O.
FZ +- 1 if (AC) = 0, else FZ +- O.
FN .- 1 if (AC) < 0, else FN +- O.

If the biased exponent of either operand is zero,
(AC) .- exact O. For all other cases PROD is
generated to 48 bits for Floating Mode and 59
bits for Double Mode. The product is rounded or
c.hopped for FT = 0 and I, respectively, and is
stored in AC except for
Overflow with interrupt disabled.

Underflow with interrupt disabled.

For these exceptional cases, an exact 0 ;s stored
in accumulator.

If FIUV is enabled, trap on -0 occurs before
execution.

If overflow or underflow occurs and if the cor·
responding interrupt is enabled. the trap occurs
with the faulty results in AC. The fractional parts
are correctly stored. The exponent part is too
small by 400 octal for overflow. It is too large by
400 otea. for underflow, except for the special
case of ,0. which is correct.

Errors due to overflow and underflow are de­
scribed above. If neither occurs, the error
incurred is bounded by 1 lSB in chopping mode
and 1/2 lSB in rounding mode.

The undefined variable -0 can occur only in
conjunction with overflow or underflow. It will be
stored in AC only if corresponding interrupt is
enabled.

3.1-32 11/68

Section 5 PDP 11/68 Console

The following section describes specific details of the
11/68 console and confOrms in all respects to the Mid­
range Systems Console Functional Specification as described
in Appendix A. The 11/68 console functions and operations
are currently in the process of being defined such that t~e
section described so far is incomplete.

FORWARD -------
This document w1l1 be used to define the prooosed funct10ns of

the 11/68 ASCII console.There is go1ng to be a coroorate standard for
the ASCII console functions and the syntax used to implement them. The
11/68 console will conform to these guidelines and specifIcat1ons.

The console interfaces to an operator via a console terminal
(e.g. LA36),and interfaces to the processor through a hardware 1nter­
face.The console terminal and the CPU hardware will be linked
by an 8085 microprocessor which will 1nterpret the commands and execute
them throuqh the microprocessor software and CPU microcode.The console
will be the functional equivilent of the past CPU~s liqhts and switches
console.The console terminal will also function as KB0: (TT0:),when not
In console mode.

The console oanel equivilent functions will include starting and
stoppinq the CPU;reading and writtlnQ main memory,I/O reglsters,lnternal
CPU registers anq CPU execution contrOl.

< >

[]

<sp>

<count>

<address>

<data>

<qualifier>

<prompt>

<cr>

<If>

BOOT COM~A~D

Syntax:

TERMINOLOGY & NOTATION

~-~----~----------------
Angle brackets are used to denote cateqory names.For exam­
ple,the category name <address> may be used to represent
any legal address.

Brackets surrounrling part of an expression indicate that
part of the expression 1s optional.

Indicates one spac~.

Represents a numeric count.

~epresents an
EXP.

address arqument.
<12345670> - numeric address
<PC> - ~rogram counter (internal
<PS> - pr~cessor status word
<SW> - switch register
<SP> - stack pointer (GR6)

Represents a numeric argument.

A command modifier or switCh.

Indicates the console input prompt, '»>'.

Carriaqe return.

Line feed.

COMMANDS
-~~-----

B«sp><devlce-name»<cr>

R7)

~mantlCS:

Response:

CONTtNUE COMMAND

Syntax:

Semantics:

Response:

DEPOSIT COMMANO

Syntax:

aual1f1ers:

Semantics:

Response:

EXAI"'INE COt"'''iA.ND

Syntax:

Qualifiers;

. _semantiCS:

Response:

<device-name> Is of the following format "~On'
where 'DO' Is a two letter device mnemonic (such as OT
for DEC-Tape), and 'n' is a one digit unit number.

If no <device-name> Is given the console will preform the
boot sequence for the default syste~ device.

The console enters the proqram 1/0 state (terminal func­
tions as KB0:), after startlnq the boot seauence.

C<cr>

The CPU beqins instruction execution at the addr~ss
currently contained in the CPU proqram counter (PC).
CPU initialization is NOT oerformed.The console enters
prqram 1/0 mode after the continue is issued.

<cr><lf>,console enters progam I/O mode.

D[Quallfler-11st]<sp><address><sp><data><cr>

/wCS
IB
IW
IG
IP
IV

-deposit data to the wrlttable control store.
-byte wr~te.
-word write.
-internal register.
-physical ~ddres5
-virtual address

Deposits <data> to the <address> specified.The address type
will depend upon the qualifier used with the command.
Sequential deposits will write sequential locations.

<cr><l£><prompt>

E[<qualifier-list>] [<sp><address>]<cr>

18
IW
IG
IP
IV

-byte read.
-word read.
-internal register read.
-physical address.
-virtual address.

Examines and displays the contents of the specifIed
<address>.If no <address> is specified than the <default­
address> is examined.

<cr><lf><tab><address-space-identifier><sp><address><sp>
<data><cr><lf><prompt>

INITIALIZE COMMAND

Syntax:

Semantics:

Response:

HALT COMMANO

Syntax:

Semantics:

Response:

LOAD COMMAND

syntax:

_emantlCS:

Qualifiers:

I<cr>

A CPU system init is performed.

<cr><lf><prompt>

H<er>

Thp. CPU will stop instruction execution after the current
-instruction is completed.

<contents ot the CPU PC><cr><lf><prompt>

L(Qualifler-listl<sp><flle-sQec><cr>

The load command 15 used to load (read),file data from
the console's load device to main memory,or to the ~CS.
If no qualifier is used the data is transferred to memory.

IS:<address>-the start sw1tch is used to specify a start­
ing address for the load .If no address Is
s~ecifled the starting address is 0.

IWCS-used to specify the WCS Is to be the target of the load. ~

IP or IV-force either physical or virtual main memory.

MICROSTEP COMMAND

Syntax:

Semantics:

Response:

e'EXT COHMANO

stntax:

Semantics:

M{<Sp><count>]<cr>

The CPU ~s allowed to execute the number of ml~ro­
instructions specified by the number <count>.If no
count is specified the console enters SPACE-BAR-~TEP_mode.
Each time the space har is hit one microinstructIon is
executed.

<cr><lf><tab>"halted at <contents of micro PC>"

N[<Sp><count>]<cr>

The CPU 1s allowed to execute the number of MACRO­
instructions specified by the number <count>.If no <count>
Is soeci£ied the console enters SPACE-BAR-STEP mOde.

eesponse:

START COMMAND

Syntax:

Semantics:

Response:

TEST COMMAND

Syntax:

semantics:

_Ual1flers:

Response:

X COM.l-1AND

Syntax:

Semantics:

Qualifiers:

Response:

CONTROL 0

<cr><lf><tab>"halted at <contents of PC>"

s<sp><address><cr>

or

S/C<sp><address><cr>

S <address> intts the CPU,load_s the address into the PC
and starts MACPO instruction execution.

SIC <address> deposits the <address> into the MICRO­
PC and starts the system ClOCK In free running mode.

<cr><lf><prompt>

r<cr>

The console Subsystem will execute a self check to
insure its own Inteqrity.

ID-causes CPU micro-diagnostics to be run upon successful
execution of the console self-test.

To be determined.Some sort of message code.

Mot fully defined at this time.

This command is to be utilized by the APT (Automat~c
Processor Test system), and the ~O (Remote Diagnosis),
systems for loading binary data to either the CPU's main
memory or the WCS option.Upon recelvlnq the X command the
local echo Is turned off,a byte count and checKsum is
Is received and binary data is transferred to the CPU.
This allows diagnostics (both MACRO and MICRO), to be loaded
for verification and trouble-shooting of the CPU.

IWCS-allows the WCS optIon to receIve binary data.

Not defIned.

CONTROL AND SPECIAL CHARACTERS

----~-----~--------~----~-~---
Causes the suspension of all repetitive console
ooerations.

Suoresses or enables console terminal output.

~ONTROL P

CONTROL U

CR

Enters the terminal to console mode.

Deletes all characters typed 1n a command lIne.

Terminates a console command line.

BRIEF INTERFACE DESCRIPTION

--~--------~---~~.---~-----
The Phys~cal location of the console In the 11/68 is as yet undefined.

It must be positioned In a way that it may get at the internal data bus of
the CPU and also have a window to the UNIBUS. Incorporated into the
console will be the SLU (Serial Line Unit), and LFC (Line Frequencv Clock),
functions now provided by the DL11-w option.The console load device (TU58),
~ll1 also be able to be accessed from the UNIBUS to facIlitate using the
TU58 for software and possibly MICRO-CODE patching.

~PENDIX A

Midrange Systems Console Functional

Specification

MIDRANGE SYSTEMS CONSOLE FUNCTIO~AL SPEClFICATION

ABSTFACT

This spec1flcation detlnes the
functions ,command syntax of ASCII CONSOLE
implementations for future processors developed oy
Digital's kid-range systems Development €nqineering.
The ASCII CONsoLE provides a programroed Interfdce
between an operator dt a console termlnal, a"d a
g1ven CPU's hardware and software. A minimum subset
of console commands 1s detined, as ere areas for
1ndividual maChlne~speeifle gr~wth of functionality.

ReVision history:

Description Author· Revised Date

1 orlQlnal Compilation K, OKIN
(Condensation of 11/780 Spec,)

Edit after Internal Review K. OKIN
on June 23,1978

Dig1tal Equipment Corporation COMPANY CONFIDENTlAL
4iJCII CONSOLE fUNCTIONAL SPECIfICATION

1.0 INTRODUCTION

Page 2

This spec1fication def1nes the command functions and syntax of the
ASCII CONSOLE to be 1mplemented on future DIGITAL Mld-range CPUs. rne
ASCII CONSOLE provides a programmed interface between an o~erator at the
console terminal, and tr.e CPU hardware, microcOde, ana ISP software.
The console interfaces to an operator -via a console term1nal (e,g.
LA3&), and interfaces to the CPU via a hardware interface, the console
1nterprets operator commands typed at tne console keyboard, and pertorms
tne appropriate operations tor each command by means of console software
and/or CPU microcode, The eonsole funct10nality 1s the equivalent ot
traditional CPU control ana status functions performed by a 'lights and
swltch@s' console panel. Wnen it is not in ·Console MOde,' the console
terminal may also be used as a user terminal to comrnunlcate with an
operating system.

The console command syntax will conform to the 'D£C Commana
~anguage standard' ~DCLS), or to Q sUb-set thereot.

2.0 CONSOLE FUNCTIONAL DESCRIPTION

~ this section descr1bes the functions provided bY the console,
These functions are described 1n terms of the actions that may oe
initiated via console commands, ho~ever the actual com~and syntax used
to Implement th1s funct1onality. 1s not discussed in this section.

2.1 CONSOLE PANEL ~QUIVALEhT FUNCTIONS

The console panel equivalent functions include starting ard
stopping the CPU Instruction Set Processor (ISP), reading d~d wrltinq
main memory, 1/0 registers, and processor & internal registers, and CPU
execution control,

2.1.1 CPU ISP CO~TROL

The functions listed below must be provided by the console to
permit Initiation and ter~ination of ISP-Level orogram execution by the
CPU.

1. CPU Initializat1on: The CPU can be initialized by setting
certain CPU logic elements to a definea state.

lSP Execut10n Inltiation:
be initiated in the CPU.
will specify the ~emory
will begin.

ISP-Level lnstructlo~ ex~cutlon can
The CPU proqra~ counter (PC) contents

address where instruction execution

Dlqltal Equipment Corporation COM~ANY CONfIDENTIAL
_ClI CONSOLE FUNCTIONAL SPECIFICATION

Page 3

3. ISP Execut10n Stop: CPU ISP-Level instruction execution may be
stopped,

2.1.2 DISPLAY AND MODIfICATION Of MEMO~Y €LEMENTS

The console must provide for the dlSplay ana modification of me~ory
elements 1n the system, 1nelud1ng elements 1n the main memory, IIO,
General Reqlster (R~ to Fn), Internal Processor Feq1ster (VAX only), and
Macnine Dependent Req1ster addressing space. Tne address and data rao1x
1~ architecture de~endent~ H~X for VAX implementat10ns and OCTAL for
POP-l1 implementations,

1. Main memory or 1/0 ele~ents can be read and wrltten as byte (~

bits (OPtIonal), word (10 b1ts), lonqworo (j2 blts (VAX only))
quantities.

2. CPU General Registers are read and written as lonQ word (32 oit
VAX) or word (16 bit PDP-tl) quantities. The genera! registers
are R0 thru R13(VAX) or R0 thru R5(PDP-l1), SP, and PC.

3. CPU Internal Processor Registers exist only in vAX
implementations, and are read or ~r1tten as long woro
quantities. The Internal processor Register space includes thp
architectural registers descrloed in Chanter 9 of the VAX SRM,
and other machine dependent registers available to an ISP level
program througn ~ MTPR of MFPR instruct1o".

4, CPU Mach1ne Dependent Fegisters are read or wr1tten as word
(PDP-tl) or long word (VAX) Quantltles. The MaCh1ne Dependent
Register space includes all the implementation specific
registers which ex1st for a given machine. this is a defined
area ot incompatabi11ty: the Machine De~endent registers en
one CPU will procably oear no resemblance to any other CPU.

2.1.3 CPU EXECUTION CONTFOL

The execution control modes ava11aole as opt1onal console
functionality may include bootstrapping, single instruction step, ana
sln91e micro-1nstruction step.

1. Single instruction step mOde (_hen lmolemented) will allow CPU
ISP-Level progra~s to he executed one instruction at a ~lnle.
This mode causes-the CPU to enter the halt state after the
execution of an instruct10n 1s com.pleted.

2. Single ~icro Cycle step mOde (when 1mplem~nted) will cause the
CPU microsequencer to sto~ each tiwe a new micro-instruction is
about to be executed. The ~rocessor will remain in this st~te

Dlgital Equ1pment CorporatIon COMPANY CONr'IuENTIAL
elI CONSOLE FUNCTIONAL SFECIFlCA'UON

Paqe 4:

until it 1s told e1ther to resume normal execution or to step
anotner micro state.

J. Bootstrap: Tne CPU can be ·Bootstra~ped·. A bootstrap
sequence may consist of loading the CPU main memory with a
specific flle from the Console Sub-system load device, and
initiating CPU ISP-Level instruction execution at a pre-detined
address after the load. Certain 1mplem~ntct1ons may not have a
load aev1ce, and wll~ merely initiate execution of an lSP RO~!
bootstrap program, while pass1n~ parameters to that p~oqram to
specify the the exact bootstrap aevlce.

2.2 DEFAULTS ANU HADICES

The RADIX of a given console 1s architecturally defined and w111 be
constant across a given family. Tne address1rg s~ace and data length
referenced bY console commands is not constant, and is selectaole oy
command qualifiers, The fOllowing defaults will oe used b~ tne consoles
upon power up:

Address Type
Radix

=
=

Physical
HEX (VAX)
OCTAL (PDP-tl) Radix -..

Data Length
Data Length

=
=

LOng Word (32 bits VAX)
Word (10 8its fOP-il)

2.3 ABBREVIATIons

Due to a poss1ble lack ot console program space. tne consoles for
tois class of machine may not be able to acc~pt the entire english
spell1ng of a command nau.e. The fOllowlnq standard ~111 be adhered to:

At the time of their Imple~entat1on, ALL
consoles MUST recognize the MINIMUM.abDreviatlons
for their implemented commands as defined in this
spec. Depend1ng upon the programming space
ava1lable, the lmplementor may allow a given console
to accept longer strings as a command (ex~mple: 5,
or 5T, or START. for start.)

However, should the console recognize only 5
it shoUld NOT accept a longer 5trlng ~HtCH IT CANhOT
V~RIFY. Should a longer string be typed as a
command, the console snould return an error messaqe
and not execute the command.

Digital Equipment Corporation COMPlNl CONfIDE~T1AL
411fCII CONSOLE FUNCTIONAL SPECIFICATIOn

This restrict10n prevents a USer from typing one command and having
the console execute anotner, potentially destructive, command, It also
preserves a common command set accross consoles, n~melY tne snort~st

abbreviation possible for a glven commano. 'fhis im~l1es that all
consoles w1ll process a S 100<CR> as a start command, dnd snould some
console command be added to th~s spec wnlch also starts ~lth the letter
S, the minimum abbreviation for that new (hyoothetical) commana ~111
consist ot at least two letters.

2.4 TYPING ERRURS

Some consoles of this class will parse the input string as it 1s
typed. rt 1s thus may not be possible to "erase" errors by tyoinq a
rubout (or delete) character. However, snould a given console not begin
parsing a line until the receipt of ~ carriage return, it may allow
rubouts to erase characters already tYDed. It this 1s allowed, wnen the
rUbout is typed tne console must eCho the character be1ng deleted (after
printing a bacKslasn(\) upon receipt of the tlrst rubout), and the
console must also add a backs lash oetween the last rUQout typed and the
next input character,

Example: 1f the operator types:
the console must print:
and ~ill act as 1f:
was ty~ed.

12er<rUbout><rubout>34,
12er_\re_\34
1234

Any given console will accept only certain chsracters as a com~and
(l.e. tne tirst letter typed on a line.) Once a valid commana character
is recognized, the syntax def1nes the next permissible character or
characters. Whenever tne console receives a cnaracter wnich 1s not
perm1ssible in the syntax or represents an unlmplemented co~mand, it
will ignore tne rest Of the line (unless a control U or control C is
typed) and print an error message u90n receipt of tne carriage return.

Digital·Equipment Corporation CO~PANY CONFIDENTIAL
~CII CONSOLE FUNCTIONAL SPECIFICATION

Page c

2.5 SUBSETTING

The console detault data length 1s architecture dependent. All
consoles MUST implement tne following commands ana qualifiers:

IP
IG
II
IL
IW

c
o

E

H
I
X

pnysical addreS$ space qUalifier is default
General ~eglster address soace
Processor Internal Register address space (V~X only)
Long word ddta length 1s default (VAX only)
Word data length qualifier is default on PDP-l1
and necessary On VAX implementations to reference
UNIBUS pnyslcal address space
Continue
DepOSit into ~emorY, reg1sters, or 1/0 space
(datd length default is arcnltecture dependent)
Examine memory, registers, or 1/0 soace
(data lengtn default 1s architecture dependent)
Halt
In1t
Binary load comma.nd

the remaining commands and qualifiers described in this soec are
~tional, 1,e. they are not required to exist, out 1f they 00 exist in

a given 1mplement~t1on they have the syntax and etfect descrioed herein.

D1g1tal Equ1pment Corporation COMPANY CONFIDENTIAL
~CII·CONSOLE FUNCTIONAL SPECIFICATION .

2,5.1 RECOMMENDED SUBSET

Tne following list of commands and qualifiers should be used as a
guideline for implementors, If a given console will implement a subset
of all possible commands, the ones closer to the top of the list should
be implemented first, w1tn the others added as to1me and space allow:

6 mand1tory commands, II (VAX only) and IG

5 Start
B Bootstrap
T Self test command
18 Byte data length
1M Machine dependent"Internal Register space
IV V1rtual address space
N Next command
IN Next qua11fler
M Microstep command
IwCS WCS qualifier
R Repeat command

2.6 SUPERSgTTING

It is conc1evable that a given CPU might want to implement a
command not spec1fied 1n th1s spec. The new command MOST nave an
unique, dist1nct, abbrev1ation assigned to it, or it must start wlth a
d1fferent letter from ~ny of tne commands described here or in the
Console Spec for the 111180. Once the character denot1nQ tne new
eommand has been accepted by the architecture group, that command and
its abbreviation w1ll be entered into this spec, It some other
implementor wished to add another command with different functionality,
It MUST be assigned another unique abbreviation. Tnls will insure tnat
commands and their abbreviat10ns have unique tunctiona11ty wherever they
are 1mplemented.

D1gital Equipment corporation COMPANY CONFIDENTIAL
_elI CONSOLE FUNCTIONAL SPECIfICATION

Page 8

< :>

[]

<SP>

3.0 CONSOLE COMMA~D SYNiAX & SEMANTICS

Angle bracKets are used to denote category names. A
category name is a label used to name a cateqory.
For example, the category n~roe <aadress> may De used
to represent any valid address, instead ot actually
list1ng all the strings of c~aracters that can
represent an address.

Brackets surrounding part ot d~ expression indicate
that part of the expression is o~tlonal.

represents one space.

<COU;~T> Represents a numeric count in the RADIX ot the
architecture.

<AODRt::SS> R~presents an address argument. See section 5.2.1
for a l1st of valid <ADDRESS>, types.

<DATA> Represents a nUmeric argument.

<QUALlfo'IER>

~NPUT-PROMPT)
<CR>

A command modifier (switch). See section 5,

Represents the console's lnput prompt string ~»>~.

Carrl~qe return,

<t.F> Line teed.

3~1 NOTATION EXAMPLE

. -
E[<QUALlfIER-LISI>J [<SP><ADDRESS>]<C~>

The ~xplanat1on Of the examine command 15 as tollows:

1, An examine command may opt1onally contain a list of one or more
qualif1ers.

2. An examine command may optionally contain an address argument.
If the address 1s spec1fied it must be preceded oy one space.

Listed below are several examples of valid eXdmine commandS.

E<CR>
E/B/V<eR>
E/V/B<CR>
E<SP>123456<CR>
E/W<SP>123456<CR>

Digital Equ1pment Corporation COMPANY CONFIDENTIAL 411FC!! CONSOLE FUNCTIONAL SPECIFICATION
Page 9

4. COMMANDS

4,1 800T Command

SYhTAX:

SEMANTICS:

RESPONSE:

Bt<SP><DEVICE-NAME>j<CF>

<DEVICE-NAM~> 1s of toe tOllo~1ng tormat -DOn',
,here 'DO' 1s a 2 letter device mnemonic (such as Dr
tor DEC-Tape), and ~n- 1s a one-dlqlt unit number.

If no <DEVICE-NAM~> 1s given with tne boot command,
the console ~111 perform the boot sequence tor tne
default system device by either start1nq a ROh
boostrap witn predefined parameters, or by loading
and executing a specifIC oootstrap proqra~ named
'DEFBOO.EXE' from the conscle load device. rhis
program contains code which will bootstrdo the
system from a selected default device.

If a <DEVICE-NAME> 15 given with
console will either calculate the
to be passed to the ROM bootstrap
ROM bOQtstrap to execute), or
prOQram named ddnBOO.EXE, ~~ere

<DEVICE-NAME> given.

the command, tne
correct parameters
(or decide *hlch

~xample:

it may execute an
'ddn' 1s the

's RP0' - W111 cause tne console to either
pass parameters to the POM saVing to boot
from the ~·th device on the first R4, or
it may execute a orograrn tile nameo
'RP0BOO.EXE-,

(console enters proqram 1/0 ~ode, after starting the
ROM proqr~m or executing the command file.)

NOTES

1) After CPU bootstrap completion, a
response from tne Operating system will
be displayed on the console terminal.

2) Bootstraps from devices other than the
system default device are perfor~ed by
passing dlfterent parameters or by
loading and executing different
bootstrap programs.

4,2 CONTINUE command

~a1tal Equipment Corporation COMP~NY CuNFIDENTIAL
~CII CONSOLE FUNCTIONAL SPECIFICATION .

Page 10

SYNTAX:

SEi·iANTICS:

RESPONSE:

C<CR>

The CPU ISP begins instruction execution at the
address c~rrently cOntaIned in the CPU ~rogram
counter (PC). CPU initialization 1s ~~OT'
performed. The Console enters ~Proqram I/O· ~ode
after issuing the Continue to the lSP~ T01s
command may be used to return t~e console to
·Program I/O~ mode even it the CPU was already
runn1nQ.

<CR><LF>(Console enters ~program 110· Mode)

4.3 OEPOSIT Command

SYNTAX:

QUAl"IFIERS:

RESPONSE:

D[<QUALIFIER-LIST>J<SP><AODRESS><SP><0ATA><CR>

la,/W,/L,/N,/V,/P,/I,/M,IG,/~CS. Refer to section
5 for a descr1ption of qualifiers & defaults.

Deposlts (i.e. writes) <DATA) into tne <ADDRESS>
specified. The Address ~pace used will depeno
upon the Qua11fiers specified with the ccmmand.
If no Qualifiers are used, the curre~t
Address-Type default will aeterm1ne the Address
Space to be used. (PHYSICAL, VIRTUAL, tNTER~AL

REGISTER, GENERAL REGI5lEB.).

<CR><LF><INPur-PPOMPT>

NOTE

In certain optlonal implementations,
<ADDRESS> may also be one of the
follo~ln9 symbolic addresses:

PS -Deposits to the processer status
word (PDP-1l).

PSL -Deposits to the proc~sser status
longword ~VAX).

PC -Deposits to the program counter
(General Peqlster 7 (POP-11) or F
(VAX»).

sw -oeposits to the Switch Register
(lSP reads from lac 177~70 on
Pf)P-l1"s ONLY)

SP -oeposlts to the stacK po1f'1ter

DlqltQl Equ1pment Corporation COMPANY CONFIDENTIAL
~SCI1 CONSOLE FUNCTIONAL SPECIFICAtION

(General Reaister 6 (~OP-l1) or E
(VAX)).

Rn -Deposits to General ~eg1ster n.
-n' 1s a number in the architecture
default radix. Use of the 'IG'
qualifier 1s not necessary when
'Rn· ls typed. Examole:

DIG 5 1234 has the same effect as

o R5 1234

+ -Deposits to the location
immediately fOllowlnQ the 'Last'
location referenced. For physl~al
and virtual references the location
referenced will oe the 'Last
Address' plus -n' where n=l for
Byte, 2 for ~ord, 4 tor Longword.
For all other Address spaces 'n' is
al~ays equal to 1.

• -DeposIts to toe locat1on
immedlately preCeedlng the 'Last'
location referenced.

-Depos1ts to the location
referenced.

last

@ -DeposIts to the Address
re9resented by the ~Last Data'
examined or deposIted,

~.G. 'E Sp· - Examines tne
Stack POinter.

'0 @<OATA>'· Deposits <DATA> to
tne location specifIed by the
contents of the st~cK po1nter,

p~ge 11

~91 tal Equ1pment Corporation COr'H?AN.~Y CONfI~E:"T lAL
~Cl1 CONSOLE FUNCTIONAL SPECIFICATION

Page 1~

4.4 EXAMINE Command

SYNTAX:

QUALIFIERS:

SEMANTICS:

RESPONSE:

E[<QUALIFIER-LIST>]t<SP><AODFES~>J<CF.>

18,/W,/L,/N,/v,/P,lr,/M,/G,/~CS. ~efer to section
5 for a description of quallflers & defaults.

Examines (i.e, Reaua and displays) the contents
of the jpee1fled <ADDRESS>. If no <ADDR~SS> is
specified, tne current <DEFAUL!-ADDR~SS> 1s
examined.

<CR><LF><TAB><AODRESS-SPACE-IDENTIFIER><ADDRE.SS>
<DATA><CR><LF><INPUT-P~OMPT>

NOTE

<ADDRESS> may also be one of tne
following symbolic address ndmes:

PS -Displays the processer status word
(PDP 11).

PSL -Displays the processer
longword ~VAX),

status

PC -Displays tne program counter (as
in deposit)

5W -Displays the SwitCh Register (on
PDP-l1's only as in deposit)

SP -Displays the stack pOinter (as 1n
depos1t)

Rn -Displays General Peg1ster 'n' (See
Deposit eommand.)

t -Displays the locat1on 1mmediately
follo_1n; the last locatIon
referenced.

• -Displays the location immediately

*

preceedlng tne last location
referenceci.

-Oisplays tne
referenced.

last location

@ -Displays the locatlon whose
<AOPPESS> is the 'Last Data'
rte~os1ted or examined.

DigItal Equipment Corporation COMPANY CONFIDE~TrAL
ASCII-CONSOLE fUNCTIONAL SPECIFICATION

Page 13

Sample Examine Nesponses: (console output underlined)

»> E/P 1234 ----
P ~00~12j4 ABCD~Fb9

------------------_ ..
»> E/V 1234

P 0005634 01234567

NOTE; That the translated physical Address is

displayed for Vlrtual Examines

»> E/G fa ----
G 00000000 98705432

4.5 INITIALIZE Command

e NTAX :

SEMANTICS:

RESPONSE:

4,6 HALT Command

SYNTAX:

SEMANTICS:

RESPO~SE:

4.7 LOAD Command

SYNTAX:

SI::MANTICS:

QUALIfIERS: 1)

I<CP>

A CPU system initialize 1s performea.

<CR><LF><lNPUT-PPOMPT>

H<CR>

Tne CPU ISP will stop 1nstruction execution after
completing the execution of the lnstructioll being
executed when the console presents the HALl
request to the CPU.

<CONTENTS Of CPU PC><CR><L~><INPUT-~ROMPT>.

L[<QUALIFIEH-LIST>]<SP><F1LE-SPECIFICATIQN><CR>

The Load command 1s used to read tile data from
the console~s loaa device to main me~ory, or to
tne wr1table control store l~CS). If no qua11fl~r
Is g1ven witn the Load command, physlCdl main
memory is loaoed.

IS:<ADDRESS)

D1gItal Equipment Corporation COMPANY CONFIDENTIAL
~CII CONSOLE fUNCTIONAL SPECIfICATION

Page 14

2)

3)

IWCS

The 'START' Qualitier is used to s~ec1fy d

start1ng aadress for the load. It no 'SIART'
Qualifier is given, the console w1ll start loading
at Address 0.

The ·WCS' Qualifier is used to specifY that the
writable control store is to be loaded.

IP or IV
The 'Physical- or 'Virtual' Qualif1er 1s used to
force either Physical or V1rtual main memory as
the destination Of the load.

NOTE

If no qualif1er for address soace ewes,
Physical, Virtual), the destination of
the LOAD is physical main memory.

~.8 MICROSTEP Command

SYNTAX:

SEMANtICS:

RESPONSE:

4.9 Nt:X'I Command

eYNTAX:

SEMANTICS:

M[<SP><CO~NT>l<CR>

The CPU Is allowed to execute
MICRO-instructions indicated by
<COUNT> is specif1ed, one
pertormed, and the consol~ enters
mode. (See Section 4,9.1)

the nu.mber of
<COUNT>. I £ no

instruction Is
, SPACI£-8AJ~-STf~P'

The Console enters ~Program 1/0' NOde immediately
before issuing the Step, and re-er.ters 'Console
I/O' Mode as soon as the Step completes. The ISP
may be restarted by typing 'C', and will continue
executing the current lnstruet1on. Typing an 'N'
will cause the ISP to finish the current
instruction before halting.

<CR><LF><TAB> nMIC~O PC= <CONTENTS OF MICRO
PC>"

N[<SP><COUNf>]<CR>

The CPU is allowed to execute
MACRO-instructions Indicated ry
<COUNT> 1s spec1fied, one

the numoer of
<Cl)UNT>. If no

instruction 1s

Digital Equipment Corporation COMPANY CONFIDENTIAL
~SCII CONSOLE FUNCTIONAL SPECIFICATION

Page 1~

RESPONSE:

performed, ana the console enters #SPACg-bA~-~T~P·
mode. (See Section 4.9.1)

The Console enters 'Program I/O' Mode lmmed1atety
before issuing the Step, and re-enters ·Console
1/0' Mode as soon as the step completes.

<CR><LF><TA8> "HALTED AT <CC~TENTS OF PC>"

1, Each time a ~NEXT~ or MICROSTEP" command ~1th no <COUNT>
argument 1s given to the console, the Step is executec and
then tne console may enter "SPACE-BAB STEP" mOde. Eaen
depression of the SPACE.SAR will cause 1 Step of the flavor
currently enabled (Micro Cycle, l~structIon).

2. A 'NEXT' or -MICROSTEp· command wittl an argument will not
enable the Space-Bar feature.

E,G. "NEXT 2" w1ll cause 2 1nstructions to oe executea, then
the console w1ll prom~t for another cornmano.

3. Ex1ting "SPACE-8A~ STEP" mOde - Type any character exceot
"SPACE" to exit "SPACE-BAR STEP" mode.

4,10 REPEAT Command

SYNTAX: R<SP><CONSOLE COMMAND>

SEMANTICS:

RESPONSE:

4.11 START Command

SYNTAX:

SEMANtICS:

-R <CONSOLE COMMA~D>' causes the console to
repeatedly execute the <CONSCI,E COMMANO> spe~1f1ed
until ~xecut1on is terminated by a Control-C (-C)
(see Section 5.1). Any valid console command may
be sp~clf1ed for <CONSOL~ COMMANO> with the
exception of the ·repeat' command.

<dependent upon command specified>

S<SP><ADORESS><C~>

or

S/WCS<SP><AOORESS><CR>

1) ~START <ADDREbS>~

The start command performs the equ1v~lent of the

D1gital Equ1pment Corporation COMPANY CONFIDENTIAL
_elI CONSOLE FUNCTIONAL SPECIFICATION

Page lb

RESPONSE:

RESPONSE:

~.12 Test Command

SYNTAX:

SEMANTIGS:

QUALIFIERS:

SYNTAX:

QUALIFIERS:

SEMANTICS:

following sequence of console commands:

1, A CPU system 'initia11ze' is performed.

2. <ADD~E5S> is deposited into the CPu
program counter (PC).

3. A ·cont1nue' 1S issued to beqln C~U ISP
execution.

<CR><IAF>

The console enters -pro~rarn I/O' mode.

2) 'S/WCS <ADDRESS)'
1. <ADDRESS> 1s deposited to the Micro-PC.

2. The CPU
execut1on.

<CR><LF><lNPUT-PFOMPT>

mlerosequer'lcer begins

T<CR>

The console subsystem wll1 execute a self test,
checking to insure its own inteQrety.

10

The ·Olaqnose' Qualifier 1s
mlcrodlaQnostlcs to be
completl~n ot the self test,

4.13 Binary Load Command

used to cause CPU
run upon stlcesstul

X[<QUALIFIER-LI5T>1<SP><ADORESS><SP><COUN1><CR>

/P,/WCS

The console will ~re9are to receive d string Ot
b1nary data to be loaded into the address sQace
spec1fled by the CQUALIFIEH-LIST>. Once tne
command has been parsed, the console will cease to
echo Input bytes received. The first byte of data
1s a CH~CK5UM of the ASCII characters wnlcn
compr1sed tne command string, and will not ~e
loaded into ~emory nor will <CO~NT> oe
decremented. If the cheeksurr. does not comrdre,
the console will respond wIth an error mess~ge,

Oig1tal Equipment Corporat1on COMPANY CONFIDENTIAL
_I CONSOLE FUNCTIONAl" SPECIFICATION

Page 17

re-enable echo of recelvea cnaracters, issue its
input-prompt and awa1e another command, Tt1s will
prevent inadvertent entry into a mode where the
console 1s accepting tne next several tnousand
input characters as data with the only ~ay out
being to turn power otf.

Once tne console has verified the byte
cnecksum at tne input string, it will deposit the
data wORD by WORD into memory. It the <COUNT> was
Odd, the last byte ~ill be byte 0 of the last
word. As the console 1s deposltlnq the data it 1s
also adding tne wordS toqether to form a cnecKsum,
and examining Cif possible) the data it just
stored to assure data integrity. It the <COU~T>
1s odd, the last word aade1 to the cnecksum will
have ~'s ln the hlgn byte.

Once tne <COUNT> 1s exhausted, the final t~o

bytes transmitted Will be the WORD CH~CKSU~ of all
tne data, wltn the low byte sent first. The
console will compare toe CheCKsum and respond wltn
an error messaqe the received and computed
checksums dOn't matCh. In any case, the console
will re-enaole echo, issue a~ 1nput prompt, and
await the next command.

01qital Equipment CorporatIon CONPANY CONFIDEl~TlAL
_II CONSOLE FUNCTIONAL SPECIFICATlON

Pd~e 18

5.0 Commands performed WhiLe CPU is P.unnlnQ

Depend1ng upon implementation, console commands may require t~at
the CPU ISP be halted in order for the commana to be executed.
However, some console implementations rnav allow execution Of certain
commands wh1le the ISP 1s running. The only restriction upon this 1s
that the console should guarantee to have no effect upon tne prOQram
currently runninq should an operation be performed whico results in ~n
error.

If a particular command may not be executed while tne CPU Is
running, the console will respond wIth an error printout.

5.1 Control Characters & Special Characters

This section l1sts tne control Characters ana speclal characters
recognized by the console adaptor, and describes their function.

CONTROL-CC-C)

CONTROL-O(-O)

CONTROL"'P(-P)

CONTROIJ-U(-U)

Causes the suspension ot all repetitive console
operations such as:

1~ Successive operations as a result of a Inext
aualit1er.

2, Repeated comm~nd executions as a result of a
·re~eat· comm~nd.

SUDPresses/endbles console terminal output
(toggle), Console terminal output is ~lAavs
enabled at tne next console input proili9t.

Enters 'Console Mode' (it key sWltch is not
LOCKED,) Characters typ~d are now fielded by t~e
consOle, not the ISP.

·U ty~ed before a line terminator causes tne
delet10n of all chQracters typed since tn@ last
line terminator. The console echoes:
, ·U<C R><Lli'>·

CAPRIAGE RETURN<CH> Ter~lnates a console command line.

5.2 COMMAhD QUALIFIERS AND DEfAULTS

~ Qualifiers are used within a command to srecify the tyoe Ot
1IrresSing and tne length of data arguments lSections 5.2.1 & 5.2.2).
Qualifiers may be tyoed in any order, Defaults are ap~11ed ~y the
~onsole when a command does not contain a quallt1er spec1ty1~g

Digital Equipment Corporation COMPANY CONfIDENTIAL
411fI CONSOLE FUNCTIONAL SPECIFICATIO~

Page 19

address-type or data-length. (Section5.3)

Certain commands permit an address argument to be defaulted (Section
5.4), Tne <DEFAULT-ADDRESS> used by the console 15 the next address
following tne last virtual, physlcal, or reqister A~dress accessed by
an examine or deposit command. Note th~t the next address 1s
dependent upon data-lenqtn, since a byte reference updates the
<Default-Address> by 1, while a long-word reference uoaates the
<Default-Address> Dy4.

The ·/N~ qualifier allows an examine or deposit coromand to operate on
more than one address (Sect1on 5.7).

5,2.1 Quallf1~rs for Address-Type

Qualifiers for address-type are used within ~ comma~d llne to
specltv the type of an address argument as either a Virtual memory or
1/0 space, Physical memory or 1/0 space, General Register, Processoi
Internal Reg1ster (VAX only), Machine Dependent Internal Feglster, or
wr1teable Control Store. The Qua11fiers for the respective types ot
addresses are: 'IV', '/P~, '/G', 'II', '1M' ,'/WCS'.

NOTE

Virtual Addresses that reference
non-existent or non-resident pages will
cause the console to abort execution of
the console command that referenced the
virtual ~ddress. In each case, an
appropriate error meSSaQe will be
displayed on the console terminal.

TO examine virtual address 1234, an o"erator would tyoe:

E/V 1234

The console will display the phvs1cal address corresponding
to virtual address 1234, and the contents of that address.

5,2.2 Defaults for Address Types

The console till reme~ber t~e last address Qualifier typed, ~nd
use that address qualifier as the default address s~ace for sucessivp.
jlimands. when the consOle powers up, tne oetault address soaee is
~s1cal.

D1gital Equipment Corporation CO~PANY CONFIDENTIAL
~lI CONSOLE FU~CTIONAL SPECIFICATION

5.2.3 Qualifiers for Data Lengtn

Qualif1ers for data length are used within a commano line to
specify tne length -of a data quantity assovuated with the com~~nd.
Data length may be specified ~s eithe byte, word, or long word (VAX
only) by means of tne~/B', ~/~', or '/L~.

The following COmmand ~111 display the by~e at address
1233,

'E/B 1233' .

5.2.4 Defaults for Data-Length

The console remembers the last data lengtn qualifier wn1ch was
tYDed. That data length 1s used as the detault data length tor
sucesslve console commands until a new data length 1s specified. lhe
console initIally uses a default data lenqth of ~ord for PDP·l1~s ana
long word tor VAX~s.

Diqltal Equipment Corporation COMPANY CGNfIDE~TIAL
~II CONSO~E FU~CTIONAL SPECIFICATION

5.3 Default-Address Fac1lity

Page 21

Each time an Examine or OepQ&it command 1s executed, toe console
computes the address ot the next memory location tollowing the
locat1on reterenced by the Examine or Deposit. The address ot the
next memory location is terme~ the <DEFAULT-ADDBESS>, since an examine
command that does not specify an address will reference the next
address by default. (See example below). The console computes tne
<DEFAULT-ADDRESS> as follQ~s:

<OEFAULT-ADDRE5S>=<Address used by last Examine or Depos1~>+n

where "n" 1s 1 for byte references
2 for word references
4 for long-word references

The fOllowl~g example shOws a sequence of console commands, and the
value taken by the default address "after" each co~rnand is executed.

gxample of default address facility: (All numbers are Hex)

COMMAND

411t-:::l
ElL

E/G E

AODPESS USED <D~FAULT-ADD~ESS> AFIEk lXECUTIO~ --.. _._----- ._-----------------_._-----_._---
2341

2342 CUSES<DEFAULT-ADDRESS»

2344 (USES<OEFAULT-ADDRESS»

GENERAL REGISTER 0

GEN~RAL REGISTER E(SP)

PC (USES<DEFAULT-ADDRESS»

2342

2344

2348

G~NERAL R~GISTE~ l(f1)

GENERAL k~GlSr~R repC)

G~NERAL REGISTER 0(R0)

Note that the <DEFAULT-ADDRESS> is P.0 followinq d FC reference.

5.4 Specifying tne <DEfAULT-ADDRESS> in a Command

The symbol '.- can be used as an address argument In a Deposit or ~xam1ne
command, to represent the <DEFAULT-ADDRESS>. Tr.is symool 1s r-rovided to eer~1t
depositing to successive locations, without hav1nQ to tyee the address aroument
after tne first depos1t.

TO 'TOGGLE·IN~ a program starting at aQdress
deposit commands ca~ be used:

o 123456 <OAT~>

12345~, tne following

Digital Equipment corporation COMPANY CONFIUENTIAL
_II·· CONSOLE FUNCTIONAL SPEClnClIT ION

o + <DATA>

o + <DflTA>

etc,

~age 2~

Each Oeposlt command, after the first, puts toe 'DATA> into the next
successive memory location.

5.5 Special Notation for Last Address

The last (Virtual, Phys1cal, General Register, Internal keqister, or WCS)
address referenced via an examine or deposit commana is denoteo by an asterisK
(*). The <Last-Atidress> ~ay be used as an argument" to an examine or oeposlt
command by typing an asterisk 1n lieu of the address argument.

Example:

"S: 1234 ft

will display the contents of location 12J4.

If the next com~and 1ssued Is:

"D * 35b'

The console w1ll deposit the number 350 into aodress 1234.

5,6 Special NotatIon For ·Preceeolnq Address"

The symbol··' (minus sign) may be used as an <AODRESS> in a deposit or
examine command to s~ecify tne location immediately preeeedlng tne last location
referenced,

5,1 Use Of 'Last Data' As An Address Argument

The symbol '@' may be used as an <ADOFESS> 1n a deposit or examine command.
The last <DATA> examined or deposited will be used,as the aodress.

5.8 The IN Qualifler

.. The IN ext qua 11 fie r 1 s pro v 1 ci ~ d to per (f·"i t e x am 1 n e ana de PO sit co [ft man d 5 to
~rate on multiple sequential addresses. tne SYntax ot the INext qualif1er iSi

<SLASH>~[:<COUNT>]

Digital Equipment Corporation COMPANY CON~tOENTIAL
ASCII-CONSOLE FUNCTIONAL SPECIFICATION

The <COUNT> arqument specIfIes the nU~ber of additional executions of tt
command to be performed after the initial execution. The default value tc
<COUNT> is one.

Example #1 The command:

E/ti 1230/N:2

1s evaluated by the console as follows:

1. The console 1n1t1ally evaluates the command and applies ar
applicable default values.

The command with applied defaults is executed.
displays the contents ot location 123~, and
<DEFAULT-ADDRESS> to 1231.

The conso]
updates tt

3. The /Next sw1tch 1s nOw evaluated bV the console. Tne consol
repeats the command operation tne number of times indicated t
the <COUNT> argument. Eacn execution uses tne <O€FAULT·ADDPES~

for its address argument and UPd~tes tne <OEFAULT-ADDRES~
afterwards. In the above example, locations 1231 and 1232 ar
successively displayed. The final value Of the <DEFAULT-ADDRESS
will be 1233.

Example #2 If the command:

E/N:2

1s issued follow1ng toe command in example #1, the contents 0
locations 1233, 1~34, and 12J~ will be displayed. since the examin
command does not conta1n an address arqument, the in1tial execut10
of the command will use tnecurrent <DEfAULT-ADDR~SS> Which was 123
follow1ng the command 1n example #1.

NOTE

When using INext qualifier to examine or de~oslt multiple CPU
qeneral registers, the 'next' register after the program
counter (PC) 1s defined to be R0.

Example #3 The command:

~/N:~/G D

will display the contents of R13, SP, PC, P0, Rl and P.2 In tna
order.

Digital Equipment Corporation COMPANY CONflUE~TIAL
~II-CONSOLE FUNCTIONAL SPECIFICAtION

6.0 CONSOLE COMMUNICATION WITH THE OPERATING SYSTE~

page 24

the console adaptor's termInal, in addition to beIng the console adaptor-s
input device, also serves as the operating system operator-s terminal. ~ne
console adaptor 1s said to be in 'Program 1/0 Mode- wtien the console terminal is
being used as the operator's termInal. The console adaptor is 1n 'console 1/0
Mode' when the console terminal 1s being used to perform tr~altlonal console
panel functions, and CPU hardware test and debuq functions (r.he tunct10ns
defined in sect1ons-2 ~hru 5 of this specification).

6.1 Console 1/0 Mode

When the console adaptor 1s in 'con601e 1/0' mOde, tne console ter~ina!
serves as the oQerator interface to the console adaptor~s console panel
funct10ns defined by this specification. All console terminal lnput is
interpreted by the consOle aaa~tor, and appropriate console adaptor tunctions
are inVOKed. Console terminal input 1s not passed t~ an~ CPU IS~-~fVEL
software. The console will not accept any output from ISP-Level software
running in the CPU. this implies that operator terminal output a~6 systelli
communication with the console's load dev1ce (it implemented) ar~ i1sabled while 4iIf console 1s 1n console 1/0 mode,

6.2 Program 1/0 Mode

when the console adaptor is in 'program 110' mode, console terminal lr~ut
1s ~asseQ, character by character, to CPU ISP-LEVEL software. All validity
check1ng, etc, 1s performea by the CPU softw~re. The console adaptor oper~tes_

transparently with respect to the CPU sOft~are. All terlninal out~ut from the
CPU software is passed directly to the console terminal.

~.l Console 1/0 gscape to Proqram 1/0 Mode

The console 110 escape sequence causes the console adaptor to translt1~n
from console 1/0 mode to program 1/0 mOde. The console 1/0 escaoe sequence Is
the console command:

NOT~

The console commands: ~S', '~~, and ·N' also
enable Drogram 110 mode.

D1Qital Equipment Corporat1on CO~PANY CONFIDENTIAL
4IjII CONSOLE FUNCTIONAL SPeCIFICATION

6.4 Program 1/0 Escape to Console 110 Moae

Page 25

The program 1/0 escape sequence causes tne console adaotor to transition
from program I/O mode to console 1/0 mode. The Pr.ogram 1/0 eseape seque~ce is a
Control-P(-P).

NOTE

Control-P 1s not recognized 1f the console power
switch 1s 1n the 'REMOTE DISABL~' or 'LOCAL
DISABLE- posItion.

Dig1tal Equl~ment Corporation COMP~~1 CONfIDENTIAL
~II CONSOLE FUNCtIONAL·SP~CIFICATrO~

Page 26

7.0 Operating System communication With console load device

·rh1s section was condensed from the 11/78ij console s~ec, and does not
really reflect now a TUSS would be used. once the TUSS interface is clearer,
this section will be updated to reflect it's functionality.

The operating system (aS) must ce aole to read and write
sUb-system*s load device (TUS6, Floppy disc, etc,) 10
functionality, the tollow1n; sei of commands will be supported oy
software:

tne console
dcnieve tnis

toe console

A. ~r1te Sector • OS supplies track, sector, and 128 bytes of data.
Console returns status upon completion of Write.

a. Read Sector - as supplies tracK and sector, console returns 1~8 bytes
of-'data, and status of Read operation,

C. Read Status - console returns load device status

D. write sector w1th deleted data mark - OS
(no data reqU1red), Console returns
write, .

supplies trac~ and sector.
status upon comoletion of tne

E. Cancel Function - Console aborts current load devlcetunction.

The followlnq functions will not De directly available to tne O~:

Empty 5110, flll Silo, Read error reqister, initialize.

While the as 1nitiated load device functions are 1n progress, oper~tor termInal
1/0 1s not disaoled, Terminal 1/0 may be 1nterspersed witn load aevice 1/0.

Once a Function 1s init1ated, no other load device commands will oe issued by
tne as until the function 1s complete, The only exceot1on 1s the command
'Cancel Function·, which may be issued at any time,

The functions described 1n this document will only be aval1~ble to the OS wne~
tne console 1s in ·Program 1/0· mod~. ~i,e. tne console termin3l is being used
as the system operator-s terminal.)

NOTE

In the following protocols,
side-effects are 1m~lied:

two hardware

1, ~ach time the as lqads the 'Transmit Buffer' (TXD81, the '1X Ready' bit
in the 'Transmit Status Register' CTXCS), is automatically Cleared.
'TXD8' Is only loaded bV the OS, and orily ~hen 'TX Ready' 1s set. 'TX
Ready' is explicltly set by the console ~hen the console is reaav to
accept another transfer thru 'TXDB'.

D1gital gqulpment Corporation COMPANY CONFIDENTIAL
411JII CONSOLE FUNCTIONAL SPECIFICATION

Faqe 27

2, Each time the as reads the 'Recelver Buffer' (RXDSl, the 'RX DONE' cit
In the rRece1ver stat~s Register' (RXCS) will automatically clear.
'RXOS- 1s only read by tne OS~ and only when 'HX DO~E' Is set. 'RX·
DONE' is explicitly set by tne console eaCh time the console has loaded
'RXDb- with a character for the as,

7,1 Load Device Function Protocol

A, Write Sector/W~ite Deleted Data Sector

1, the aS puts 'write sector' or 'write-deleted-d~ta sector' command 1nto_
'TXOS-,

2. console takes wr1te command, and sets 'lX ~eady- in 'TXCS',

3. The OS puts a 'Sector #' 1nto 'TXUS',

4. Console taKes sector # and sets 'IX Ready',

5. The OS puts a ~Track #' into 'TXDB'.

6, Console takes track # and sets 'TX Ready'.

7, The OS puts a byte of data into ~TX08'.

8. Console ~ccepts a byte of data and sets 'Tx Ready', Steps 7 & 8 are
done 128 times for wr1te sector. ~teps 1 & 8 are skipped for write
deleted data sector.

9. Console initiates Load Device write.

10. WrIte completes,

11. Console sends 'Function Complete' message, The 'Function complete'
message consists of loadIng RXDB Bits 8-11 with a select code of '2~,
and B1ts 0-7 with tne load device status byte. (see Sec b.5.3 for a
definition of the st~tus byte)

12. The os receives the ~runction Complete' message.

B. Read sector

1, The as puts 'Read Sector' command into TXDb.

2, Console taKes read command, ana sets 'TX Ready' in TXCS.

3. Tne as puts a sector # into TXDB,

Digital Equipment Corporation COMPANY CONf'tPEfiTIAL
.CII CONSOLE FUNCTIONAL SPEClf'1CATIO~

4, Console taKes sector # and sets ~TX Ready',

5, The OS puts a track I into TXOB,

6. Console takes track # and sets 'TX Ready'.

7. Console initiates read,

8, Re~d completes.

Page 28

console sends 'Function Complete' message, The 'function comDlete!
message consists ~f a select cOde of '2' 1n Bits 8~11 of kXDB, and a
status Syte in Bits 0·7 of RXDR. (see Sec. 6.5,3 for Status Byte
def1nition,)

10, The as receives 'Function complete~.

11. console puts one byte of data in RXDS, and sets 'RX Done',

12, The OS accepts one byte of data from RXDH.

Steps 11 and 12 are done 128 t1mes. wnen tne 12dth byte is accepted by
the OS, the read 1s complete,

No're;

If a load dev1ceerror occurs on ste~ B, steps 11
and 12 will be sKlppea.

C. Read status

1. The OS puts ~Read status~ command in TXDB.

2. Console takes 'Read Status' com~and, and sets '!X Ready' in
TXCS.

3. Console gets Status trom last load device fUnction performed,

Console puts
'RXOa- and
def1nition)

'Function
sets 'RX

Complete', witn
Done', (see Sec.

5. The OS reads tne loaa device status.

D. Term1nate Function

the status, into
6.5.3 for Stat'Js

1. The OS Duts ·Cancel Function' cnmmand in TXUrl.

2. Console takes 'Cancel Funct1on~.

DIgital Equipment Corporation COMPANY CONFIDENTIAL 4I1I CONSOLE FUNCTIONAL SPECIFICATION

3. console terminates Function 1n ~rogress, 1£ any.

4, ConSOle sets -TX Ready' in TXCS.

7.2 Mlscella"eou~ Console Communications

The console software will support certain add1tlonal functional
communications from the OperatIng System :

Soft~are Communication Codes

1) Warm Restart Boot Command w The console will boot tne
VAX 11/7810.

2) Clear Warm-Start and Cold·Start ~'laqs -
system Issues these code~ when
restarted/rebooted succe6sfully. The
the associated flags.

NOTE

The operating
the OS n3S

console clears

Tne 'cOld' and 'warm' restart fl~qs are used
by the console to prevent 1nt1n1te loops when
a warm restart results In a CPU error halt.

Page 29

Digital Equipment Corporat1on CO~~ANY CONFIDENTIAL
~CII CONSOLE FUNCTIONAL SPECIFICATION

7,3 Communication Register Formats & Select Codes

Txoa

31 24 16 15 14 13 12 11 8 1

1----------!-----------1-~---------!-----,------------! ,
• 1
1 MBZ ,

• ~lBZ MBZ
• •

I •
1 L 1 1 1 !
1----------1-----------1-----------1-----!------------1

RXDS

31 24

I •

select
field

16 15 14 13 12 11 R 1

, .-
Data
Fleld

1----------1-----------1-~---------1----·1------------! ,
• 1 1
1 MBl 1 MHZ Used by! 1
1 1 1 OL-11 !

JL----------L-----------!-----------!-----!------------!

Select F1eld Values (1n Hex)

, I . .
select
Field

I .
Data
fe'le 1 d

s,lect Code Dev1ce Data field Values
----------- ------ -----------------

0 Qperatorf's Terminal o tnru 7F ! ASCII Odta

i Drive 10 (Data) o thru FF -'Binary Data

2 Function c~mplete (Status)

9 Dr1ve 0 (Command) ~ - Read Sector -
1 = "'rite Sector
2 = Pead Status
3 = Write Deleted Data

5 = Protocol ~rror

F Misc. commun1cation 1 = Software Done

sector
4 = Car

;. = hOr-
j = C 1 t;~
4 = C 1 f-:

NOTE

Code 5 (Protocol Error), 1s sent by tne
console when one of the following
occurs:

1) Another load device command (except
for Cancel Funct1on) 1s issued bV
the Os betore a ~revious command is
completed.

2) The console gets a 'Drive 0 (DATA)'
wnen expecting a command.

7.3.1 Status Byte Def1nition

The Status 6yte 1s used by the OS to determine the success or failure
of a Read or Write operation. The Status ~yte 1s sent to the OS at
the completion of a Read, Write, or Read Status operation. Tne Select
code is always 'Function complete- (code 2). Tne btatus bIt
assignments are.as follows:

RXDB
~--.

24 16 15 .12 11 S 7 6 210

---1
1
1

MBZ
1
f •

1
Maz MBZ ,

•
1

,
• ,
• ,
•

« .
I , I . . .
t I f • • •

I t • •
, , , I
• • • •
! ! , !

. ---------------------------------.------------------------------! I ,
• • •

CODE "2" ! 1 1 eRe EifR

_·--------------1 1 1 ,
1--------.

! !
t , PARITt ERROR • . 1

1
!

! ------------- ..

!---------OELETt:D DA'!A

NOTE

1-------------
, ... _--­.

The Status Bit asslqnments are identIcal
to ~nose supplied by tn~ Floppy
controller, excepting 8it 7. sit 7
corresponds to sit 15 of the Floppv's
'PXCS' Register.

D1gital EQu1Qment Corporation COMPANY CONFIDENTIAL
~CII CONSOLE rUNCTI0~AL SPECIFICATION

All error mess~qes have the fOllowing tormat:

1<~RROR NUMB~R>[<SP><error message>]

Each distinct error message 1s ass1nged a numcer wnich 1s the
same for all implementations. certain implementations may also
Include an optional enq11sh message ind1cating tne nature of the
error. As with the cornmana abbreviations, error nu~oers are unique
and new error~ must have numbers assigned to tnem by the architecture
qroup.

8.1 ERROR LIST

Errors are T.a,S,

8,2 11/7~0 CONSOlE ERRORS

1,0 SYNTACTIC ERRORS

1'<ASCII STRING>' IS INCOMPLETE
The ~ASCll STPl~G> is not a complete console
command,

?'<ASCII STRING>' IS I~CORRECT

1FILE hAME ERR

The <ASCII STRING> 1s not reCOQnlZed as part of a
console command.

A <FILENAME> given with a 'LOAD' or '~. comm.and
cannot oe translated to RAD50.

2,0 COMMAND GENERATED EFRCRS

?FILE NOT FOUND
A <FILE~AME> given with a ~LOAD' or '@' commano

LT, does not matcn any file on tne current Floppy
disc. Thls error ca.n also be qenerated by a
'hELP' or 'BOOT' command If the help file or ~oot
f1le 1s m1ssing from tne ~loPpV.

Page 32

D1g1tal Equipment corporation COMPANY CONFIDENTIAL
~MMAriD GENERATED ERRORS

?CAN~T FIND MICMON.SYS
Generated when a 'TEST' command is issued and the
Micro-d1agnostic monitor file is m1ssinq trom tne
current Floppy.

1CAN-T FIND WCSMON..SYS
Generated by a -WCS· com~and when tne
control-store debUgger file 1s mlss1ng from the
current Flop~Yt

1~O CPU RESPONSE
Tne console timed out ~hile waiting for a response
from a STAR CPU Micro-routine,

1CPU NOT IN CONSOLE WAIT LOOP, CO"MAND ABORI~D
A console command that requires the assistance of.
the STAR 'CPU was issued when t~e CPU 1s not in the
console service loop,

?CPU CLOCK STOPPED, COMMA~D ABO~TED

?INO-COM ERR

?CH~ ERR·

A console command that requires the CPU ClOCK to
be running was issued with tne clock stopped.

An indirect command f1le error ~as detected. this
error 1s generated 1f:

1) An ind1rect
c~aracters.

command line exceeds 80

2) An ind1rect command line does not end ~ltn
<CARHIAGE-RETURN> <LINE fEED>.

A change~mode instruction was attemoted from
the interrupt stacK,

INT PENDING

3.0 kICRO-ROUTINE ERRORS

This 1s not actually an error, but lndicates
that an error was pendina at tne time that a
console-requested halt was ~erformed.

The console uses various micro-code routines 1n the STAR CPU's control
store to perform console functions. The followinq errors are
generated by micro-routine failures:

?MEM-MAN FAULT, CODE=XX
A virtual examine or deposit caused dn error tn­
the memory management micro-routine. 'xx· is a
one byte error code supplied by the me~ory

~age 33

Digital Equipment Corporation COMPANY CONFIDENTIAL
~CRO-ROUTINE ERRORS

management routine. See
Check/Fault/Halt Spec- by c.
def1nlt1on of tne error codes.

'star Machine
~athls tor the

1MICRO-MACHINE TIME OUT
Indicates tnat the VAX 11/780 m1cro-macnlne has
failed to strobe interrupts within the maximum
time period allowed.

?MIC-ERR OM CONSOLE FUNCTION
An unspecified error occured while servicing a
console request, Reterenclng non-existent memory
will cause this error.

An error occured ~hl1e referencing one of tne STAR
CPU Internal (processor) registers. Spec1fy1nQ a
register address th~t 1s too l~rge will cause this
error.

?MICRO-ERROR, CODE=XX
An unrecognized micro-error occured. ~XX~ 1s the
one-byte error code returned by the micro-routine,

4,0 CPU F' AUL'r GENERATED r..;PROR MESSAG,I:;S

?INT-STACK .INVALID
The STAR CPU interrUPt stack ~as marked inva11d.

?CPU DOUBLt:-ERR HALT
The STAR CPU has done a 'Double Error Halt-.

rILL lIE VECTOR

?NO USR WCS

An illegal Interrupt/~xcept1on

encountered by the STAR CPU.

An Interru~t/Exception vector
encountered, and no WCS exists.

NOtE

See 'STAR ~achlne CheCk/fault/halt
spec', C. Matnis, for further
information on these errors.

rMICRO~MACHINE TIME-OUT

vector

to cs

Indicates that the VAX 11/780 micro-macnine has
fal1ea to strobe interrupts within the m~xlmtl;n

Page 34

Digital Equ1pment Corporation COMPANY CONFIDENTIAL «I FAULT GENERATED ERROR MESSAGES

time period allowed.

5.0 MESSAGES GENERATED 81 FLOPPY E~~uRS

?FLOPPY ~RROR, CODE=X
The console Floppy dr1ver detected an error. 'X'
1s an error code with the following meaning: ('X'
is always 1n HEX).

CODE ~ ~Floppy nardwar~ error. (CRC, Parlty, or a
Floppy Firmware detected error).

CODE 1 -An ~Open' failed to
spec1flp.d.

find

CODE 2 -The Floppy dr1ver queue Is tUlle

tne file

CODE 3 -A Floppy sector waS referenced that 1s out
of the leqal range of sector nUllibers,

?FLOPPY NOT READ~
The console flo~py drive failed to oecome ready
wn11e booting.

lFLOPPY ERPOR ON BOOT
A console floppy error was
attempting a console coot,

rietected while

?NO BOOT ON FLOPPY
Tne console attempted to boot from a flopoy that
does not conta1n a valid poot blocK.

6.0 MESSAGES RELATING TO VERSION COMPATIBILITY

1 Remote ACCESS NOT SUPPORTED
Printed when tne console mOde switch enters a
'Remote' position, and remote sottware support 1s
not Included 1n the eonsole.

1 WARNING - ~CS EPLA VERSION MISMATCH

?

The mlerocode 1n wcs 1s not compatible with YPLA.
This message 1s printea on eBen ISP start or
continue, but no other action is taken bv tne
console.

FATAL - WCS 2CS VEFSION MISMATCH
.. The microcode in ~CS Is not compatible with tnat

In WCS. ISP start and continue are disabled by
tne console.

Page 35

Digital Equ1pment Corporation COMPANY CONFIDENTIAL
4ItNSOLE-G£NERATED ERRORS

7.0 CONSOLE-GENERATEO ~RRORS

1 TRAP· 4 , RESTARTING CONSOLE
The console tOOK a time-out traDe
restart.

Console ~111

? UNEXPECTED TRAP

? Q-BLOC~ED

The console trapped to an unused vector. console
reboots on insertion of console floppy, after
CQntrol-C 1s typed.

Console's terminal output queue Is blocked
console w1ll reboot.

Page 30

Dlq1tal Equipment Corporation COMPA~Y CONFIDENTIAL
~NSOLE-G~NERATED ERRORS

APPENDIX A

LIST OF MACHINES ANU THEIR COMMA~~ SETS

This Is 'I.S.S.

Page 37

Section 6 SOFTWARE ISSUES

1. Map Register Bit 15 incorporated in the high word of
Unibus Mapping Registers to perform a cache Bypass is
not implemented in the 11/68 since it is unnecessary.
All Unibus references perform direct accesses to memory
and bypasses cache on the 11/68.

2. All trap related functions in the Memory Management has
been eliminated. We found no one who finds it useful.

3. The System I/D register 17 777 764 is not implement~d
since its function is to be performed by the new in­
struction MFPT.

4. System Size Register is not implemented since memory
sizing is to be performed by all operating systems.
This results in all non-existant memory traps (11/70
Vector 114) to perform TIMEOUT traps to Vector 4
(consistent with all other PDP-II's with exception of
11/70/74) with appropriate bits set in the CPU Error
Register.

5. The RH68 is compatible with operation of the RH70 with
the exception of bus parity on the internal bus (PPBI).

6. The 11/68 implements write buffering on CPU writes. Con­
trol is provided through MMR3 bit <6> for operations
which require synchronization between write operations and
processor operations. See full description of the operation
of write buffering in the description of MMR3 Bit <6>.

7. Format of bits contained in Error and Diagnostic Registers
reflect 11/68 processor specific functions. These include
Cache Control, Cache/Memory System Error, Cache/Memory
Maintenance Registers.

/mmm

11/68

	001
	002
	1_1-01
	1_2-01
	1_2-02
	1_2-03
	2_1-01
	2_1-02
	2_1-03
	2_1-04
	2_1-05
	2_1-06
	2_1-07
	2_1-08
	2_1-09
	2_1-10
	2_1-11
	2_1-12
	2_1-13
	2_1-14
	2_1-15
	2_1-16
	2_1-17
	2_1-18
	2_1-19
	2_1-20
	2_1-21
	2_1-22
	2_1-23
	2_1-24
	2_1-25
	2_1-26
	2_1-27
	2_1-28
	2_1-29
	2_1-30
	2_1-31
	2_1-32
	2_1-33
	2_1-34
	2_1-35
	2_2-01
	2_2-02
	2_2-03
	2_3-01
	2_3-02
	2_3-03
	2_3-04
	2_3-05
	2_4-01
	2_4-02
	2_4-03
	2_4-04
	2_4-05
	2_4-06
	2_4-07
	2_4-08
	2_4-09
	2_4-10
	2_4-11
	2_4-12
	2_4-13
	2_4-14
	2_5-01
	2_5-02
	2_5-03
	2_5-04
	2_5-05
	2_5-06
	2_5-07
	2_5-08
	2_5-09
	2_5-10
	3_1-01
	3_1-02
	3_1-03
	3_1-04
	3_1-05
	3_1-06
	3_1-07
	3_1-08
	3_1-09
	3_1-10
	3_1-11
	3_1-12
	3_1-13
	3_1-14
	3_1-15
	3_1-16
	3_1-17
	3_1-18
	3_1-19
	3_1-20
	3_1-21
	3_1-22
	3_1-23
	3_1-24
	3_1-25
	3_1-26
	3_1-27
	3_1-28
	3_1-29
	3_1-30
	3_1-31
	3_1-32
	5_1-01
	5_1-02
	5_1-03
	5_1-04
	5_1-05
	5_1-06
	5_A-00
	5_A-01
	5_A-02
	5_A-03
	5_A-04
	5_A-05
	5_A-06
	5_A-07
	5_A-08
	5_A-09
	5_A-10
	5_A-11
	5_A-12
	5_A-13
	5_A-14
	5_A-15
	5_A-16
	5_A-17
	5_A-18
	5_A-19
	5_A-20
	5_A-21
	5_A-22
	5_A-23
	5_A-24
	5_A-25
	5_A-26
	5_A-27
	5_A-28
	5_A-29
	5_A-30
	5_A-31
	5_A-32
	5_A-33
	5_A-34
	5_A-35
	5_A-36
	5_A-37
	6_1-01

