
PRFf '~llJl~.II\RY --.~ Ii ,,' f j , " l"\
THIS DJCU;~IENT IS ~UJJiCT TO CHANG':

WITHOUT NOTICE A:,:D SHOULD NOr BE'"
CONSTRUED AS A COMMITMENT BY
DJGJTAL EQUJPMENT CORPORATION.

PDP-ll/40 Technical Memorandum # 17

TITLE:

AUTHOR (5) :

INDEX KEYS:

DISTRIBUTION:

REVISION:

OBSOLETE:

DATE:

The Repeat Instruction

Ad van de Goor

Repeat Count
Repeat Conditions
Resumption
Reentrance
Interruptability

PDP-ll/40 Group
Bruce Delagi
Jud Leonard
Richard DeMorgan
Jeff Scott
Jack Burness

None

None

September 2, 1970

- 1 -

0.0 Abstract

The desirability of a conditional repeat instruction has
been demonstrated on several occasions. The repeat in
struction provides for the shortest possible program
loop (namely a single instruction), besides that it seems
to have a big market appeal.

Because this instruction is considered for the 11/25, the
possible 11/40 implementations are considered for compati
bility reasons.

The problems with this instruction are two-fold:

1) How to implement it, considering implementation
cost and required OP code space.

2) Which instructions cannot be repeated,or repeated
with restrictions.

1.0 Implementation Aspects

The Univac 1108 has a repeat operation implemented in the
following way:

1) A special repeat register is used to contain the
repeat count.

2) Special, one word, instructions make use of the
repeat operation (e.g. Search for Equal, Search
for Greater, etc.). The repeat action is implied
in the instruction.

3) When the repeat condition (e.g. Equal, Greater,
etc.) is satisfied, the next instruction is
skipped. Otherwise, the next instruction is
executed.

Considering the limited PDP-II OP code space, special in
structions, making use of the repeat operation, are difficult,
if not impossible, to implement. An alternative way is
discussed below. It essentially makes every repeat operation
a two instruction sequence.

-2-

The programmer will experience this 2 instruction sequence
in the following way:

RXX cnt
Instruction to be repeated

The first instruction "RXX cnt" (which is a special in
struction) is the repeat instruction where "R" is the
mnemonic for repeat, II XX II stands for the repeat condition
and "cnt" stands for the repeat count.

The second instruction (which can be a regular PDP-II
instruction) is the instruction to be. repeated. (Note:
only a single instruction will be repeated because of cost
considerations.) The repeat operation stops when the "cnt"
is zero or the condition "XX" is satisfied or both (i.e ..
stop if cnt=O or XX =true). The cnt is considered a positive
integer and is decremented for every execution of the
"instruction to be repeated. II

The problems concerning the implementation are the
following:

1) What are the conditions "xx. II

2) How is the repeat count specified.

3) How can the stop reasons be determined.

1.1 The repeat conditions "XX.II

Rather than introduce a set of new conditions, it is
suggested to use the branch conditions for this as well as
their mnemonics. They are known and considered adequate.
The 11/40, until now, has 16 branch conditions, 15 of
which are the same as those for the 11/20. The 16th branch
condition :is "BSF" (branch if top of the stack is false)
followed by a pop of the stack (see PDP-ll/40 Technical
Memo #15). This branch condition is not expected to be
very useful and hard to implement. It is therefore
suggested to make this an illegal branch condition.

- 3 -

1.2 Specification of the Repeat Count "CNT"

Three requirements should be made concerning the handling
of the .. cnt. "

1) upon a stop, because the condition XX=true, it should
be possible to resume the repeat operation as if the
stop had not occured.

2) stops should be implemented in such a way that
reentrant coding is not excluded.

3) The "setup" of the repeat instruction should be as
small as possible. This applies especially to the
count .. cnt. "

until now, two basic solutions have been found and are
discussed below.

1.2.1 A Register Specifies CNT

The format of the repeat instruction for this case will
be as follows.

9 I 4 3

OC RC R

The repeat count "cntll is specified by the general purpose
register indicated by the 3-bit "R II field. The repeat
condition XX is specified by the 4-bit "RC" field.

When the repeat operation stops Or is interrupted, the
remainder of the cnt is stored in the register specified
by the 3-bit IIRI1 field. This way requirements 1 and 2
of section 1.2 are satisfied.

with respect to the third requirement, the following sequence
of instructions can be considered quite common.

MOVE
MOVE
Repeat

;'

/t
R, -(SP)

#cnt, R

- 4 -

/save register
/load cnt in R

Instruction to be repeated
MOVE (SP)+, R /restore register

'/ ~
,,"'

This shows that 3 instructions, occupying 4 words are
required for "setup."

It should be noted that the register R. containing the
cnt, cannot be used by the lIinstruction to be repeated"
unless the repeat count is updated in R.

1.2.2 Effective Address ilEA" Specifies cnt

The format of the repeat instruction for this case is
shown below:

7 4 2 3

OC RC MS R
/:/ .A _I A.

Ii "(,~~~ .. n '""-«

~r~ .. ~ s\+~,f"
The meaning of the fields is the same as those shown in
section 1.2.1 except for the 2-bit short mode field "MS."

The 11/40 addressing modes differ from the 11/20 addressing
modes. The first four 11/40 modes are not only used to
specify addresses for datal but also to specify the shift/
rotate count in multiple shift/rotate instructions.

These four modes are (see m:~mo #15):

NUMBER MODE EA CNT RANGE

0 R R o to 7

1 @ R (R) -21'15 to 21'15 -1

2 A (R) A+(R) -2'1'15 to 2~15 -1

3 @(R)+ ((R)) -21'15 to 21-15 -1

Mode #0 allows for small values of cnt to be specified in

I Mode

R

@R

A(R)

@(R)+

NOTE:

- 5 -/
/

the instruction word itself (i.e.fin 16 bits). Mode #1
allows the count to be specifie~~~ a register, like in
~,section 1.2.1. Mode #~ allows the count to be
specified by the top word of a stack or the word trailing
the repeat instruction (when @(R7)+ is used).

Looking at the first four 11/40 addressing modes, it can
be concluded that only mode 2 "A(R) " differs from the
11/20-11/25 mode 2 II (R)+". Upward compatibility can be
guaranteed by interpreting mode 2 ort the 11/25 differently
(i.e. as A(R) rather than (R)+) for the repeat instruction
or declaring this mode illegal.

When the repeat operation stops, because XX=true, the re
mainder of the count can be saved or ignored. The table
below shows some alternatives.

I

I ACTION WHEN XX=TRUE
Alt. 1 I Alt. 2 Alt. 3

cnt~ - (SP) * cnt~- (SP) *

cnt"? - (SP) * cnt·-'I R cnt-+ R

cnt7- (SP) * cnt~- (SP) *

cnt~- (St» * cnt-7- (SP) * cnt-;).;... (SP) ** .

* only when cnt I 0
** only when cnt I 0 and H=R6

*** only when cnt I 0 and RIR7.

Alt. 4

cnt'-!) R

cnt~ - (R) ***

Alternative 1 satisfies requirement 1 (i.e. resume after
stop) only when the @(R)+ mode is used with R=R6.

Alternative 2 satisfies requirement 1 when the @R mode is
used and when the @.(R) + mode is used with R=R6.

Alternative 3 satisfies requirement 1 when the @R mode is
used and when the @(R)+ mode is d with R=R6, i.e. under
the same conditions as alterna ·ve 2. The difference between

._~ ~.'alternative 3 and alternative ~ri that when requirement 1
~ ~. in alternative 3 is not satis . d (i.e. for the modes R,

A(R) and @(R)+ with RIR6) the remainder of the repeat count
is not saved.

- 6 -

Alternative 4 is like alternative 3 except that requirement
1 is satisfied for the @(R)+ mode under more general condi
tions, i.e. for R=Rl, R2, R3, R4, R5, and R6 rather than
R=R6 only.

The repeat operation can be interrupted by storing the
remainder of the cnt as the third word on the stack (i.e.
after the PC and PS words). When the mode "@R" is used,
the remainder of the cnt could be stored in R upon interrupt.

The amount of OP code space required for this solution is
four times as much as that of the solution of section 1.2.1.
It is still only 1/8 of an OP code space, however.

If the 11/25 would implement the method of section 1.2.1,
compatibility with this method can then be guaranteed for
alternatives 2, 3, and 4.

1.3 stop Reasons

A repeat operation can stop for the following three reasons:

1) XX= True and cnt ~ 0

2) XX= True and cnt = 0

3) XX= False and cnt = 0

For the programmer it can be very important to know for which
of the above three reasons the program stopped.

On the Univac 1108 this problem was solved by having the next
instruction skipped when the repeat operation stopped for
reasons 1 and 2 as listed above. Unconditional repeat opera
tions, like block transfer (e.g. a repeated move' never
skipped.

1.3.1 Skip Method

This method is similar to the one used for the univac 1108.
A disadvantage of this method is that it introduces a new
concept in the PDP-ll architecture, namely skipping. This
concept, however, may also be used by some other instruc
tions to be added (like the P and V interlock instructions).

- 7 -

For the 11 family it is suggested to have the repeat opera
tion skip one word when a stop occurs because of reasons 1
and 2, and no skip when a stop occurs because of reason 3.
For unconditional instructions a skip would mean the waste
of a word; it is therefore suggested never to skip when the
condition "Always" is used (i.e. the condition associated
with the branch instruction BR). A single skip of one word
is advisable because: a) A variable length skip would take
more OP code space (to specify the length), and b) A fixed
length skip of more than one word would lead to a waste of
core memory in many cases.

Because a single skip cannot distinguish between reasons
1 and 2, the following requirements have to be made of the
suggested solutions of section 1.2.

For solution 1.2.1, when the repeat operation starts with
cnt =0, the lIinstruction to be repeated" should not be ex
ecuted and no skip should take place (i.e. the stop reason
should be that of number 3).

For solution 1.2.2 when the repeat operation starts with
cnt =0, the "instruction to be repeated ll should not be
executed, no skip should take place, and if the zero cnt
was specified through the @(R)+ mode, the auto increment
should take place. For those alternatives and mode combina
tions where a resume after stop is possible, the footnotes
11*", "**", and "***" should be changed such that when the
repeat operation stops because of reason 2 (XX=true and
cnt =0). The remainder of the count (i.e. cnt =0) should
be stored. This means that the footnotes should read as
follows:

* Only when cnt I 0 or when cnt =0 and
XX = True (i.e. stop reasons 1 and 2)

** Only when R=R6 and (cnt I 0 or cnt =0
and XX = True)

*** Only when RIR7 and (cnt I 0 or cnt = 0
and XX = True)

using the skip method, the condition code of the machine can
be handled in the "normal lt way, i.e. a.ccording to the "instru
tion to be repeated. It When the initial cnt = 0 the "instruction
to be repeated" is not executed and therefore the condition
code will not be affected.

- 8-

1.3.2 The Condition Code Method

Here the condition code of the machine is used to indicate
the stop reason which then can be tested with the regular
branch instructions. In order to be able to branch on all
stop conditions, their inverse conditions and some combina
tions, it is suggested to set the S, N, and e condition
code bits, upon a stop, according to the table below. The
V bit is not affected. The exact way of handling the
condition code is not very important as long as the major
conditions can be tested. An example is given below.

STOP REASON COND.CODE BRANCH ON BRANCH ON
C Z N COND. INV.COND.

1. XX=true & cnt 10 1 0 0 Z=O BNE Z=l BEQ

2. XX=true & cnt =1 1 1 1 N=l BMI N=O BPL

3. XX=false & cnt =0 0 1 0 C=O Bce C=l BCS

1 or 2 C=l I BCS c=o BCC

2 or 3 Z=l BEQ Z=O BNE

A disadvantage of this method is that the condition code
has to be set in a special non-standard way, which means
some more hardware and, perhaps more important, that the
condition code has a different meaning after a repeat
instruction then after all other instructions. This means
that the above table has to be memorized (or at least con
sulted) when repeat is used.

2.0 Instructions to be Repeated

The instructions to be repeated can be executed in two
different ways.

1) Fetched from memory for every execution

2) Fetched from memory only once for the whole
repeat operation, unless interrupted. Upon
interrupt the instruction to be repeated has to
be refetched.

- 9 -

The advantage of the second scheme is a much higher
execution speed, the disadvantage is that self modifying
instructions will not work. The latter is not a severe
limitation, and does not cancel the advantage of the
higher speed.

It is suggested, for speed reasons, that operands re
ferenced by the repeated instruction are refetched and
rewritten only if address changes occur.

Upon interrupts, the saved PC will-point to the repeat
instruction, rather then to the instruction to be repeated
in order to allow for easy resumption.

Some questions which have to be solved are:

1. Are multiple word length instructions (i.e. 32, 48
and 64-bit) allowed to be repeated because of problems
in handling the PC?

2. Where does the PC point to after the repeat operation
stops? If it is forced to point to the instruction
directly following the instruction to be repeated or
the word thereafter (assuming the skip method) certain
groups of instructions are made no-ops automatically
(e.g., Branches, Jumps, SOB instructions, etc.). If
JSR instructions have to be repeated, the parameter
passing will be more difficUlt th~n because the first
instruction following the JSR has to be a Branch around
the parameters following the call (assuming there are
parameters) which is non-standard.

A flow chart of the conditional repeat instruction could be
as follows. (The count is shown in "cnt", the condition
in "XX", and the exit numbers are those of the 3 stop condi
tions of section 1.3.)

- 10 -

~\ r:art) y
I

,read repeat
instruction

no yes

t
exit 3

cnt=cnt -~
1

execute
instruction
to be

repeated

r
r~S =tr

/
1

cn~1 (exit 2)

~ 0Xit 1 J

~ ______________________ ~ __________ <:exit 3)

- 11 -

3.0 Conclusions

djc

Looking at some PDP-Il/20 programs, it can'be noted that
a repeat with a small count (typically less than 8) would
be very useful. This suggests that the count should be
determined according to method 1.2.2, i.e. through an
effective address. Whether any of the four suggested
alternatives should be used or still another alternative
for storing the remainder of the count when the repeat
operation stops, is still a point of discussion.

As far as the stop reasons of section 1.3 are concerned,
it should be noted that the skip method will be easier
to understand by the programmer. The condition code
method has the advantage that upon stop reason #2 (i.e.
XX=True and cnt =0) the remainder of the cnt (which is
=0) does not have to be saved in order to satisfy the
resumption requirement (i.e. requirement #1). Another
advantage is that any of the stop reasons and any of
their combinations can be tested for.

Before a final decision can be made, some more {your!'
inputs are very desirable ..

