
"f" +; S her"';n are the prop-
This drawino an-l S-f"C' 'c~ on " 'an· i, s"'a'i not be

f 0 , .,,' q' - . or ora .In
erty 0 Ig! a . ~.-I' W o'e cr in (:art as

duce "r -' ~r ",e:..l In . 't' t repro. J.' ~'e or s.") c.'): :.tems WI. f10U
Hie has 5 ,0; ~ ,muac .. ur .

. WrlL.0tl

PDP-K Technical Memorandum f 3-1

Title:

Author(s):

Index Keys:

Distribution
Reys:

Revision:

Obsolete:

Date:

Extension of the PDP-I! Address Space

Robert Gray

Memory
paging
Segmentation

1

Technical Memorandum #3

March 12, 1970

·'~.1

ABSTRACT

This u.amo discusses the limited address space in the PDP-Il
archicecture.

Tb~ PDP-II 16-bit processor can address a maximum of 32K
(~ndirect or indexed) I6-bit words. A 32-bit version of the
?DP-ll could address 16K 32-bit words.

This aspect of the present PDP-II architecture is examined
as a potential problem in larger versions (32-bits) of a
proposed PDP-Il famdly. The 16K limit is compared with medium
size computers offered by other manufacturers. It is also
compared with the expected user requirements of machines in
this performance category. Finally, this me~o discusses brief
ly the limit and advantages of two possible memory expansion
techniques: Paging and Sqementation.

It is concluded that the 16K limit in a 32-bit PDP-11 would
be a severe competitive handi.cap. It is further concluded
that neither paging nor sqementation offers an efficient way
to run procedures that exceed 16K 32-bit words.

-2-

Direct Addressing Capability of Other Com~~ters

A survey was conducted to determine what direct addressing
capability other manufacturers offered in their computers.
The purpose of this was to give a perspective on the "competi
tion" and to discover, throuqh their hardware, their estimates
of the amount of addressable memory needed in medium computers ..

In a family of computers, it is the viability of the upper
end processor (32 or 36-bit words) that would be most limited
by insufficient address space. Hence, the survey covered
only processors with word size above 16 bits. '

Representative 18, 24, 32, and 36-bit processors are presented
in the chart below, as well as the present PDP-ll o

MAXIMUM tiORDS ADDRESSABLE

No.
Processor Bits Direct Indirect Indexed --,
PDP-Il (KAIl) 16

PDP-1S 18

DPD224 24
XDS 940 24

Sigma 5 & 7 32
System 86 32
KP Omega 32
IBM 360 Series 32

Univac 1108 36
PDP-lO 36
"GE 635/645 36

8

4K

16K

321(

32X

16K

1281(1281(
128K l28K
Not Available
4K 4000K

64K
2561(
256K

(AI/8m)

6.~~\T!»
256K
256K

VfSlts)

32K

128K

64K
64K

l28K
128K

4000K

256K
256K
256K

As can be seen in the chart above, the 16K of address capability
in a 32-bit machine is far below that of other machines in
this performance class. In the next section, we will examine
the need for address capability greater than 16K. This will
be broken down into two classes of systems: the single user
system and the multi-user (time-sharing) system.

-3-

The "Market" Need for Address Capability Greater than 16K

It is simple to say, "everybody knows 16K is too small in
a large machine." But it is much harder to determine the
correct number.

Certain facts, however, tend to indicate larger computers need
greater than 16Ko Such system programs as the PDP-IS Backgroundl
Foreground Monitor "barely" runs in 16K. Hore orders are be-
ing received for PDP-lS's with 32 to 64K. PDP-9 customers
are asking how they can put more than 32K on their machines.
There was such a market for' the Ampex 128K memory system that
the PDP-IO group was f~rced to market it. The PDP-IO time
sharing system requires about 48K to be "respectable" and
the average PDP-IO system being sold today is ordered with
64K.

-4-

Single User Market

DEC'·s traditional market has been in the scientific market.
This market often uses the real time capability of the proces
sor and bas very large problems: simulations, array manipu
lations, real time control, etc. It is this class of users
who probably are most sophisticated in using the computer and
in evaluating competing processors. :They are also theqroup
that is often under-funded and, hence, try to qet every last
bit of processing power out of their machine. In the future,
this group can be expected to attempt to write ever larger,
more comple~ programs as the complexity of the problems they
try to solve increases. .

Consider the implications of 16K of 32-bit words on a user
doing matrix manipulations: assume that the user desires
a high-precision solution and, hence,: chooses to use a quadruple
word floating-point format (64 bits) to store the· matrix points.
Assume that 8X of the 16K 32-bit addresses available to the
user are to be occupied bYPX'o,Qedure and the othe,r :81{ is to
be occupied by 3 matrices·(allQWing [AJ + [B] = [C))0 .He
can then have a total of ,4K,.(of quadruple words), or 1,333
words per matrixo This wl-ll·al1ow him to have 36 X36 matrices
(1296. points per matrix)~! ... In.<certain classes ofproqrams,
this is nat···sufficient (e~9·.·,~inear and dynamic 'prQ9;r;cumning) •

'.' . -. .

Paging c;:an be used to ex:tend:.·,.1lbe amount of core on ·{thePDP-ll
as is being done on with·t:be·:··:·KT-llA paqinq Box. However,:· as
will be shown in thesecti.()~,.:.~fi!,·scribinq paging, it wi11·.re
quire many instructions ev:e.J;Y.· time a user tries to·. re·ference
a location outside his l~It.\ .. ':(:~d, assuming the inoili~or allows
such) to accomplish the· '·ti:~~f:er"

"",, :.: :.'

Even with paging, a progr~·:.~.ater than 32X would· have: -to
be split into blocks with.· an:.!·-~solute minimum ofcross;·:~ef
erencea between the b1oaJ<s;::t(f':,run effici~ntly. 'Phis makes
it more difficult to wri~e.p.roqrams and results il\,very····'lpoor
~erformanoe:wben they are'::f:~~~l~y operatinq. . .,

'. ~ 1 ~ •• ::." •

,::: ."

-5-

The Conventional Time-Sharing Market

This market is characterized by a different set of requirements
than the single user. In ~ese systems all users· are using
high level languCige$. In these systems, no attempt is made
to put all of··.a user's program in core at once. . The core is
allocated amonq many users··': and p~rts of a given user',s,proqram
are moved into core as the p~oqram requests thfi!m. This ·tech
nique obviously does not provi~e the real-time capability that
a single user system can ciri~ a "job" in time-sharing mode
(assuming that the job contains' few I/O instructions) will
take muc~ l.C?Dg.er to be ex~cuted than if the job had all of
the computer t.o itself. Atiitte-sharing sys·tem will ·often
process a job for a finit~ t.ime slice or until it'is'waiting
for some I/O process. At that· time, the computer transfers
to another job .and, if necf:!ss~~, moves the first job from
core onto some secondary ·$~o~aqe, usually a high-speed disk.

It is usu.ally assumed that to have an economically operating
system, .th~s swapping must occur as it cannot be economically
justified to have enough fast memory to have all of the active
jobs totally in core. This philosophy has led to studies to
determine how to allocate the limited amount of core among
many programs. The studies.give the impression that the first
rule is to attempt to divide core equally among the' jobs -
given equa;Lity in the jobs. The result of this memory alloea
tion is that program execution speed is' limited by the shpring
of facilities and by the time taken as users are swapped in
and out of secondary stora<1e.

In this situation, thefact;·.thata proqram exceeded the, direct
address capabilities of "t:he': machine probably would 'less si9-
nificantly increase the #~me ·~.t took t9 rtm (compared with
a single user system), s'~n~' the execqtion time. is already
limited by' .tl1~ program .swiipt>!ng., which 'is elCternal to ·the
program itself. . . ,' ... ~ . , .. J:' .

. ~ ~f ! r~.;~t·, -: .. ;. z" ,-.'.

To allow programs qreater;'-:th~ 32K, however, means that the
compiler and monitors ·mu8~be structured to alloW writing
proqrams larqer than the address space and must break ·them
up into.parts that can 'be ·overlaid.as the computation pro
qresses. This is probably- a very difficult task to accomplish
and would make large comp.te~ .:p~oqrams even more difficult to
document, deb~g and wou1.d·.;;~~Jtt·,y.nly increase their time to
run.

-6-

Paqing and Seqmentation

There are two well-known techniques t~ expand me~ory space.
One, paging has previously been mentiOned. This and the
second technique, segmentation, will be explained and examined
for possible ways to efficiently run procedures exceedinq
16K on the PDP-ll.

-7-

8eneral Explanation of paging

We can conceptually divide a core memory into sections.
For purposes of example, suppose we divide a memory system
into sections of 1024 words .(sections of 2048, 4096, 512,
and 128 words are also commonly used.) We call each 1024
word section a "page. a A nominally 32K memory system will
then have 32 pages. 'l'he 10 least significant bits of the
address generated by an instruction will tell the location
of a reference wlthin a page. We say that the least.
significant 10 bits tell the location in; terms of a "dis
placement .. from. Itlle lowest: address of the page. The most
significant 5 biti:s of. the address determine the page number
of t:he address.

\;

PAGE # DISPLACEMEN'l'

5 bits 10 bits

In a non-paged computer system. the. 15 bi~ address is sent .
1lDchanged to the memory from the Proces:~r. In a paged
comput.er system a hardware box is plac8d .:1n the memory bus
between the processor, .. -and the meDiory. 'lhis box passes the
10 bit displacement address directly to the memory. The
box. however, change 8 the page nWDber (most significant 5 bits)
it receives and subs'tttutes a new paCJe Dumber which it sends
on. t:o the memory •. assumiDg no page fault. The manner and
reason for this subsf:itution requires explanat.ion.

We will first CODs·ider a paging &yat:. where the "paging box·
hardware sUbsf:i~~es the same size page number as it receives.
In our 15 bit addzess example. this means that the paging bOx
sends a 5 bit: page number and 10 bit displacement: to the
memory. 'l'hus. the address transmitted by the paging box can
directly address a ~~am of 32K as could ~e original
address sent into the paging box.

In a t:im.e-shariDg. system. sev.eral programs may be in core
at one time. Be~use each program was written at. a different
time and because segments of the manozy were already occupied,
when a program was writt:en one program may be physically in
several separate non-connected pages.

-8-
Virtual Core
Page Page Core Memory
Address Address

1 4

2 7

3 23

4 24

') ')
Ofv N . j

In the-"above diagram the program is located in c e at page
addresses 4, 7, 23 and 24. Suppose the proqra was written
for pages 1-4 (note JMP instructions). It w Id seem that
there is a- problem! The program won't w · e. We could re
shuffle the programs in core to place the program in core
pages 1,2, 3, and 4. This, however, would be very time
consuming and is not necessary with paging.

Suppose that whenever the paging box receives a page 1 address
from the processor, it sends to the memory page number 4 ad
dress. When it receives i2, it sends '7, receives 123 sends
13, receives 14 sends 124. Then the program would access
tile correct core memory location even though its physical
page location was different- from the page address sent by
the program. In this manner I the program never "knows't that
it was loaded into the physi.cal core in several separate
places. The program addresses pages 1-4 and operates normally
as if the instructions were really located at physical core
locations 1-4. The phY$ical core addresses are sometimes called
REAL addresses and the program addresses the VIRTUAL addresses.

Suppose -that we wish to have.- .. a memory system of nominally" -f_

l28K of core and that we wi~h to have 4 different programs
in core at once on our lS-bit--address computer. We will" have
one program in the first 32K, anothe~ in the second 32K (the
assumption_ that each proqramis in a continuous group of
paqes is made to simplify this- section. Each program could
be in any 32- pag-es with the.- ",separations as explained previously.) ,
etc. Since we only have a 15-~·bit -address capability in the
proposed computer, how can we address all 128K? First, recall
that anyone program will address a maximum of 32K -- never
the entire core. Suppose our paging box, when it receives

-9-

a S-bit page number substitutes a 7-bit page number which it
sends to the memory. This 7-bit page number can then select
32 of the 128 pageso Obviously when proqrams are switched,
the paging box must be changed so that it substitute$ a dif
ferent page number corresponding to the relationship between
the VIRTUAL and REAL page tIs of each program.

I
",1

..s BIT VI rtua' Adcl fe,S

PAG~ TABLE

Real Pdje AJdr1
5" BJ-l' 1 Bits

1
...-----~-----=-t]

... (----'7 BlrS

.... J.u-

Paging Box Substitution Technique

Each program has a table as part of it that contains the
relationship between its REAL and VIRTUAL pages. For sim
plicity supposetbat the page table is located in memory
locations 0-31 of the program. In location ~O" is the REAL
p-age number where program (VIRTUAL) page "0" can be found.
Hence, in operation, every time a memory reference is performed,
the paging box first does a memory cycle to qet the correct
REAL page number, which it sends out to memory. This is clearly
inefficient as it increases every memory cycle by 1 memory
cycle. .

A newer technique is to place the page table in a special
memory called an associative memory. The associative memory
is usually a semiconducto~ memory that has very fast ac!!ess.
For ovr system we would nee~ a·maximum of 32 words in this
associative memoryo First, let's consider the properties of
an "associative" memory. Recall that a given set of cores
in a stack has fixed address.o. The address is determined by
how the stack is wired. In an associative memory word register,
there is a place to store the "data" and a place to store the
"address" assigned to th~t:.data.

1~_A_d_d_r_e_s_s_· __ ~I~ ____ D_a~t_a~ ______ ~f~~~~~
I .: • ~.

Hence, both the address and the cont.ents are variableo The
contents of the address .part of the word is said to contain
the address of the data "associated" with it. Suppose that
instead of 32. such registers, we only have 8 such regist.ers.
Let's cons~der first what happens when the page number ·referenced
by the program is one of the addresses in one of the 8 registerso

Suppose that page 4 is requested by the processor. Let us
assume t.hat his VIRTUAL p~9',e is located in page 24 of Real
corea Then one of the associa·tive memory registers in the
paging box contains:

Address Data

4 -, I .. ". . 24]

-11-

Th~ .. fro,m t.he process~r is c~mpared~ i~ parallel, with the
~~~~t.~ :Q£th~ ~dd~~s~--~<.trt .~~ e~c~·c.ts.~O,ciat~v~ ~emQry 
~~gi.s~~~. ~ .If .~ llla~cl'l o.~curs, i3:~ it w.~~l: ~er~1'- th~ content.s 
9~~' ·~~~t~/~~ctl.Q~ ()f·~·tha~.~~~~c:~~~iy~ r~giste%.' '~ill .be sent 

§)t~Q, ~C:'~~~~~~9~~gls:~~S:~e;' ~i:~a:le_-
make'~e comparison~d then place the· REAL add~ess on the 
memory lines _is on ~eorder of 100 .nsec. This is about 1/10 
. ~e . amoUnt of time it' would ·have taken 1:0 do the memory cycle 
~f the associative memQrYhad not been ·there. 

. . 
Finaily, let us consider what hap~ns when the VIRTUAL page 
r~ested by ~e processor goes not· match the contents of 
any of the address par~.s of the 8' ~ssociat:ive l:'egisters. This 
sect.ion .. ~riill also i~l~~tr~te how paging can be used to provide 
an ~ut.omatic "overlay"~yst;em to make vez'y large. p.rograms run 
in computers with a small ~ount of core~. 

When DO matCh occurs. the paging box will address the core 
location equal to the page address .it r-eceived from the 
processor. This will ~ntain (since it is the page table 
previously defined) the REAL page address (and also some 
"control ~bits"). The box will then substitute the new 
VIRTUAL page number ,and ~L page.number· associ~ted with it 
into .one .of the 8 associative registers. Then the ·REAL page 
n~er . is sent t.o the memory. Frpm·thatt.ime on any reference 
to that page will be px:oce~sed wi:t:hout a special refer.ence .. ~ 
the~core page table. (This assumedtha'c the page \,la9· presen,t.ly 
in core.) Suppose that. the program was larger than the amoun.t. 
of core available. Assume that: there is 41{ ·of core and there 
is an 8K program. .Obviously,. not .all· .ofthe program, ·c:an_.l.le .. ,~~ 
core at once. t*1e could set up the page table so that:· VIRTUAI..;
pages 0,,1, and 2 ~e~e associate<I: ""i,t:h ~eal pages 011 1" an:d :2' 
respective,ly. YIRTUAL pages 3~ 4": :5, 6. and 1 could all be. 
associated with REAL page 3. In this case" when a refe.rence 
~o ViRTUAL page 1- ·i.8 made (and some o:th~.ri virtual page: is 
presently in REA-Leore page '3) the, cO~p:ut:er first swaps ou~ 
the current con~ent :Of REAL page3~,· next:, ~olls in thevir.tual~ 
page 4 and then 'places the new addr;e~s· ,an.d da'ta in the as s 0.-; . 

ciative memorY,1 ~inally ~ the ori9inalp~o:gram referen:c.e .. c.o.r(tinues 
and the program ~~tinues. To accompf~-sh this tl ncont.t~ln· bits 
are usually partp,f t:lie "data" in the pa.ge t.able in a,dd.ii!ion. 
to the REAL pag.e .. n.~ers. 

In most of the apov~ descript.ion of pa9ing~ simpli£ic~t;i~ns 
have been. made co . '-~,is is done in, order t.o stress t.he sys~em 
·~plications of pag.i.ng on the add.ressin.g st.ruct.ure of a computer 
syst.em. All aispects of ··memory p;r:otecti.on u are omitted .. 



-12-

Paging Advanta9~ 

The efficiency of a multiprogramming systerll can be increased 
if several programs can be kept in core a~ all times. wi~~out 
paging (or relocation), the t::ot.al amourl't of ~ore to be sha.red 
by all programs is limited to that. dirac'tly add:ressable by tha 
processor. Hence a each program is all~Jed lin of the to~al 
core where "l13 is the number of programs in core.. tfith paging 
the tot.al amoun't, of core can be increased to t.he point 'YJhe,re severa] 
programs can have all the core they can directly address. 
This scheme though, requiri.ng much cort!11 allows a given user 
to t.ake place by merely storing the Itmat2hine stat.e" and 
bringing in ~he previously stored state of the next program. 
The first user is not swapped out. and tl'1e next does not.. have 
to be rolled in from t.he secondary storage. 

Also, in small systems wit,h minimum core u paging provides an 
autom~tic overlay technique 80 that a small core can be made 
to appear as the maximum addressable core.. When a "non-core 
resident" page is referenced by t:he programo a resident page 
is swapped out and the new page is rolled in.. The program 
then cont.inues as if the computer actually had the larger core .. 
NaturallYe it resnl:ts in a very slow· execut.iol1 of the program 
i.f there is lots of ·overiay. 



We ha"t/e sho';:\7!'?:. ·tha~~. P3.<~1irtt; can. b,g US(?'(1 t,o :~ .. nc:~·cl~c\.:1~! ntemo~~j;' 

address space {allc:\<J(.'!on£".lection of sev·e·i~aJ .. f(;'.:,~:;:if?::} t.he arnount~ 

of a.ddressable cor'€' to the processor. I'V('; •. 31~30" -,

shown that the adL~.t:~!S3 space of the PDP-ll ir: i;r1E~C\f:E:LcielJ.t 

:Eol: a 32 b~ic comptlte.c.. Is. th{~L'e a t1Ja:y ;:hat: \-h~; Ca":l use pagir· 
~(',.) run tproceCiu.re·~ s!::,:ea r:(1'X." th.:in. 16;r( ill t.hi:-: PDl:I",,,l1.\" 

The an.~~e1.~ .is yes.> P:t"c;:>cedures of gre2,t~t::!r could b~~ 

run on t.he PDP~"'ll.t· b~l t t;,hey '(,·17ou~ld t'un 'v't:!";t f:f :innt::!,):' 
and ~li1ould incr'e~as{~ ·t~be comple::tif:;Y of the ;';:'YSiJ.:7lm.:;;;pror]'.r.nms .. 



J?or 
dasigr!e,fj ':~,(1; .ac,;;~.r~pt p~;::og;;:~;;Ut'.s 91:'li::'~~~:~&;C 

a .;;nGO;111t~,eJ:e:d;, i'~'~ C!c,;:tld 
l:l~b(:Jg J:' atm l~~ a:fj, c~~Y~e:r~ ~j 21( 

had b.z:'{l1;k,f:I:t i ~,:, 11 P i,n 1,~o ~i su.b-p,!'og;;c ams <- '" 

~,'lio>u,lt:1 et.~.ch ha'9'8 a £',epalCa,;:b: pc:.tI:J6 ~;:;;:lble 

«:::t!'lU PJ~()'\i~,:,de a Enoni t;oX' eel 11 tc c'han\~;~E~ 

~:t \;~""'t~ J?x.' (]i{:W E' (1I~1 l~~ ~ll:1~e and £; t~~~a~t:·· t~. :t~t ~'! ,~idct3: ;2' ~~ il 

},:!1,~ 'it:~l"le :l<~T'. ],.:t ~~l!t}\~! \~~;J:! i Si i~11',fC" l>'tr{~ S t:!11e}.Il ~~1 i,.~?6~;; 

n,ot 
~Phe 

Cou.n:r:(n:~ :;;tn"j 

b3f1 B'o RH. 



-15-

High Level Language Programs 

In higher level languages, however, Fortran, CObol, Basicg 

etc., there is· no opportunity t.o '·manually re-organize ll 

the sub-programs. The compiler, unless it is extremely 
sophisticated~ can place the sub-program boundaries any
where in the program. It could easily place the boundary 
in the middle of a freqaently used liDO" loop. Since it 
would probably require 10 to 50 memory reference cycles of 
overhead every time a sub-program boundary was crossed. 
The result would be a very long execution t~e for the pro
gram. 



-16-

l,. 

Desirability of using paging to run procedures greater 
than 16K. 

In the 32/26 bit class of machines, about the only pro
grams written in assembly language will be the operating 
systems. We would not expect these to run greater than 
16K and hence, we do not have to worry too much about: 
them. Most of the applications programs will be writt.en 
in FORTRAN or perhaps, ~ASIC or COBOL. For any large 
program in a higher level language, the use of paging ~o 
get the large address space invites disaster. 

Because it is clear that many programs ap~opriate to a 
32/36 bit class of maChine will run over 16K and since 
most. of them will be in higher level languages, the use 
of paging cannot be recommended as a solution to the 
l~ited address capability of the PDP-ll. 



-17-

General explanat.ion of Segmentation 

Segmentation, like paging, is a technique for dividing 
the address space int:o parts. However, in segmentat.ion 
the two parts (segmen.t. address) are usually each as 
long as ~e total address space provided normally in ~e 
machine. We "ill again consider a 16 bit; processor as 
the basis of further explanation.· 

--f!----lS bitS--+1 
Normal Address 

lc:tf=-----30 bits ----~~ 
Segmented Address 

Figure ~.I Normal and Segment:ed Addresses. 

The segmented address is usually divided into two or three 
parts. For this discussion. we will consider only two 
part.s: Segment number and Address number. Again usually 
~e address nUmber is about 3 bits less ~an the normal 
address. 

I~-------"--s-~---e-n-t#----~I----A-dd-r-e-.-s#--------~· I 
I ... --~-... "· .... ~ 18 bits --+I ..... ---w.12 bits ---.... " .. 1· 

Figure ~.2. Segmented. address divided int.o two part.s. 

This scheme allOWs~156K. 2K segments. If we examine the 
15 right. half bits. it. is clear ~at t;hi.s inclu.des 12 bi~s 
of address and 3 bits of segment Jlumber. We could then say 
that we could directly address 8 segmen~s of 2K each. 

-. 
of 

The goal of the segmentation t:e~ique is ",to provide a con-
venient way to address the other 255. 998 segments. If this 
can be obtained, then the size of programs for all practical 
purposes can be unlimited. 



-18-

prestpJ;.sesmentatioVchemes 

GE645/r·ruLTlcs 

This system accesses t.be other 255,998 segments by using 
a special form of indirect addressing.. ~s low order 18 
bits of the indirect word are no~ normally used as the 
indirect word of 36 bits contains only an 18 bit address. 
In a special ITS (Indirect Thru Segment) mode, several of 
the normally unused bits cont.ain ·~a code which cause the 
18 bit address to be considered a n~ segment number and 
cause the following word to be fe~dhed and interpreted as 
the address." . . . 

s~gment Address 

n 

n + 1 Address ITS 

The PDP-ll indirect word has only a single bit that is freew 
and that bit is free only in word oriented instract.ions •. 
The bit is the Byte bit in the indirect address. In all 
word inst.ructions~ this bit must specify a word bo~dary. 

Consider the implications of using t:i\is bit to creat.e a 
special ITS {Indirect. thru Segment} operat.ion. First, of all Q 

none of the Byte ~tructions could be used across segments 
because that bit is used for addressing. MOVB could not 
be used t.o transfer Bytes fran on~ segment t.o another. Like
wise. the other double operand/byte instructions could not 
operate across segments. The single operand byte instructions 
could reference only witllin their segment. Finally, in a. 
compiler envi~Q~men~ the choice would have to be made be
~~een a mUltipass interati~$ compiler ~r one that generated 
ITS indirect. addresse·g for all indirect.. l:'eferences.. This 
wO\.11d be necessary as ev;sxy t,ime an x'rs instruc'cion W'ere 



-19-

inserted into the proc.dure section" it would bump some 
other instruction out of t;he· segment. ~e compiler would 
then have to go bact and make ITS instructions out of all 
references to that: instruction. This would have t.o con
tinue until all out~f-segment references were made with 
ITS for.mats. The only way to avoid this would be for the 
compiler to assume that all references ~1ere out-of-segment 
and creat.e t.he double length address for all memory refer
ences. This in the ex~eme case could .b~ly double the 
program size and t.he execution time.. In addicion, it appears 
that there would be considerable problems with stacks 
crossing segment boundaries. Bf;lcause:·of tpe problems just 
described, this approach t.o segmentat.ion cannot. be recom
mended to ext.end thePDP-ll address space. 



-20·-

IBM 360/Spectra 

The IBM and RCA manuals call their addressing techniqaes 
a segmentation system.. As previously defined. the IBM/RCA 
system is not segmentat.ion. '!'he nomal indirect address 
on these computers is 24 bit long (with space left to go 
to 32 bits). All they have done is call the high indirect 
address bits the "segment" bits. This is a ma'~.r of seman
tics and the technique is of no use whatsoever to t.he PDP-ll 
problem. Applying this would be to call the high order 
bits of the PDP-ll address the segment. bits - the result 
being the same address space as before. 'fhis scheme will 
not be considered further ando of course g . is rejected as 
a possibility for the '-PDP-ll. 



Other Schemes 

Several other segm~ntation schemes are mentioned in the 
literature. Ifone, however. seem t.o attack the problem of 
ext;ending the basic address space· of the machine. They 
are not discussed as their basic ra~~~nal was for core 
allocation or the ~echnique was so interlocked with the 
archit.ecture of the pa~ticular comput:er that it was not 
applicable. 



Segmentation for the PDP-l1 

We are, hence,,, left with creating a special instruction for 
the PDP-ll that says: "Change Segmen1;:s." Such an iDstruction .. 
except perhaps in a very expensive version, would be a mon
i~or call which would replace a current segment with the 
new one. This is identical t.o the' earlier scheme which we 
called "paging"' and it has the very -same disadvanta9'~s. '.-

We are, hence. forced to conclude, unless a different techniqu.e 
can be dem.ons't.rat.ed, that the PDP':"ll architecture does 'not 
lend itself to segmentation for address space expansi~n. 



-2~-

Conclusion 

The address space problem is serious in the PDP-li. Neither 
the paging or segmentation techniques examined seem~ t:c? 
be practical solut.ions t.o this. Since in order to be Com
petitive and to be able to efficiently run large problems 
are requirements for a maChine in the 32/36 bit class, the 
PDP-ll architecture must be rejected as a candidate for this 
market. 


