PDP-K Tuchnical Memorandum # 4

A 1 A g s I

T3 bles An Instruction Set for the 18-~bit P
authoris) e Al wvan de SDoor

Index hevos Instruction St
Op Codsa
Data Typus

Distribution
- Reys:

Revision: None
Ohsolete: Ncone

Date: February 20, 1370

?'q‘

Ak’

P-K

An instruction set for an 18-bit computerd is proposel.
It combines the best features of the FOP-~ll's architec-
ture and the PDEP-10°'s instruction set

For soveral reasong, an 18-bit computsr was considersd
superior; it sclves both the op code and address space

problems of a 1é6~-bit computer. In addition, it iz a
better data base in two important arei's. Pulse Height
Analysis (PHA) programs have proven {he need for 18 bits,
Also, the 36-bit floating-point representation has much
wider acceptance, due to its superiority of 32-bit for-
mats. ’

ilﬁ&», a computer with a word length of 18 bity.

2.0 ;g:gcruction Format and Terminology

The instruction format of most Yinary {(two address)
instructions is shown below. It resembles that of
the PoP-11 and has three fields

*‘ns%ruchan

P b

o & | 6

b e s [N—— L
oc g b
Description

Operation Code
Specifies the binary instruction.

Source

- Specifies the Effective Address (EA) of the

source.

Destlnatzon
Specifies- the Effective Address (EBA) of the
destination.

i
e

‘The formats of the S and D fields are identical and

shown below.

Field

M:

Sa O Field
] 3
- >
M R
Description

Reg1ster
Denotes 1 out of 8 general registers,

Mode
Specifies the addressing mode in a simila:
way to those for tie PDP-11.1

lgsee PDP-11 Handbook.

~

‘B contains Zdatno

-.

0: R

1: @R i R contains address of datal
2 @ (R)+ ; Autoincrement, defer —
‘3: Az (R) 3 Iﬁdex, defey ——]
{/4: (R) + ; Autoincrement — %
é{S: -(R) : Autodecrementtj ; g
f 6;1 @-(R) : Aﬁtodecrement, défer
{ 7: A(R) i Index | -

The address as computed from the R and M fields is called
the Effective Address "EA". When M=0, this is from

0 to 7. The location of the memory ce112 actually
addressed is called the Effective Location "EL". For
most binary instructions, Enaﬁﬁ, i.e., the effectzve
location = the effectlve addrees.

In some instructions, the S or D field denotes _
an integer number; for example, to specify the number
" of shifts in a shift 1nstrurtlon, The format id as
follcws:
& o D Field

-

i o2 [3

| -

et Sy Ly

FA MS f
EP Field

I"@" is used as the “indirect" symbol.

2A registexr is also considered "memory".

Pioe1d

mMS:

FR:

Description

Register
Denotes 1 out of 8 general registers.

Modes, Short

Specifies the addressing mode. They are
identical to the first 4 modes of the M
field:

0: R ; EP1 is R

1: @R ; EP is (R)2

2: A (R)+ ; EP is @ (R), autoincrement
3: @A(R) ; EP is (R)+A

Free Bit

Bit not used to determine EP.

The Effective Position "EP" can be interpreted as the

number representing the EA when M would be restricted
to the first 4 combinations. The table below shows
"the values EP can have: ‘

Values of EP

MS Signed Integer Unsigned Integer
0: R -4 to 0; 0 to +3 0 to +7
1: @R -217 o 0; 0 to 217-1 0 to 218
2: @(R)+ ~217 t5 0; 0 to 217-1 0 to 218
3: @A(R) ~217 t5 0; 0 to 217-1 0 to 218
loppr = Effective_?csition'

27 (R)* = Contents of R,'

3.1

3.2

Compatibility

Introducing a different word length will cause some
compatibility problems.

Peripheral Compatibility

A separate memorandum will be devoted to this problem.
The incompatibility can be reduced by having the same
bus structure for the PDP-X as the PDF-1ll. This is be-
ing considered.

Pfogram Compatibility

Two aspects have to be considered.

. Word Length Compatibility

This can be done by hardware by having a 16~ and an 18-bit

‘mode; by software through a conversion pr>gram similar

to that for converting PDP-8 to PDP-9/15 »rograms leaving
certain portions to be recoded "by hand" ‘e.g., shift
and rotate instructions).

Instruction Set Compatibility

This can be accomplished through mlcropro;rammlng.
Recause of the PDP-K's 18-bit word length,uucroprogram~

ming becomes very attractive because the ’DP-10 can be

emulated.

4.0

4.5

.

Proposed PDP-K Instruction Sct

The proposed instruction set is shown in Appendix A.
Only the major instructions are shown. These are the
essential ones or those requiring lots of op code ‘space.
It is assured that the reader has some knowledge of the
PDP-11 instruction set.

The instructions operate on 5 data types.‘

Bit, "p"1

A bit is a Boolean quantity which is true "T" or
false 'F".

Byte, "¥"

A byte is a character

\

Word, "wW" ')

A word is:

L. A Boolean Array with 18 elements .
2. A signed integer (2's complement)
3. Aw unsigned integer

Doulle Word, "D"

A double word is a single precision, floating-point
numoer,

Quisdruple Word, "Q©

A jquadruple word is a double-precision, floating-point
number.

lpenotes abbreviation for the particular data type.

Bytes are handled in a way similar to the PDP-10,

as described in Appendix B. Few instructions operate
on byte because bytes are considered a data ‘ormat for
characters only.

Most instructions operate on words as the word is con-
sidered the data format for program control and integer
numbers. It is felt that higher level languages
(FORTRAN, ALGOL, etc.) use integers mostly for subscript-
ing and program control and, therefore, a single 18-bit
integer is considered sufficient.

The condition conde "CC" is handled in a way as described
in Appendix C. *

-

5.0 Dgscr;pticn of Instructions
Appendix D describes the instruction formats and the
interpretation of the fields of the format.
The data type of the instruction will be indicated by
a letter following the mnemonic of the instruction.
The letters are, as defined before: B = bit, Y = byte,
W = word or no letter (default), D = double word and
- Q = quadruple word. Hence, MOV can be designated by
MOVY, MOVW or MOV, MOVD and MOVQ. »
The operation of the indxvidual instructions is given
below. S
MNEM Operatlon | "~ * Name Format - =~ =
MOV (s)+D ~ Move #spl
((s) «o)z»ca. 4,
{{s)=C)+C2
'((S)>0)*C3*
coM . (D)- (S) T . ~ Compare #SD
(r<0)3+Cl '
{r=0) +c2
{(r>0)-C3
(Carry=0)-+C .
_(OverflowM1)*V
oML (D)~ (s), (S+n)‘-(b) Compare #SD
({D)<(S))*C1 : - with Limits '
28w ((s+n);(n)))~c2
f((D)*(S+n))*C
ADD (D)+(S)+D add #sD
(r<0)-Cl - A)
{r=0)+C2
(£>0)+C3
:jCarrywl)*c -
(Ovarflowal)wv

dgor inst?ﬁction format see Appendix D.

{2“((3) <ﬁ)~>c‘" means: if (S) *0 then 1+Cl, else 0-Cl.

3":“: result of operation.

cin®= next data locatlon from the source.

MNEM Operation Name Format
SUB {D)~(8)}+D Subtract #SD
' For CC %ea COoM
MUL m)*(sh&n Q}lj Multiply #SD
{(r<0¥>Cl
(x=0}-+C2
(r>0)+C3
!lr§>217}2¢V
DIV (D), (D+1)/(S}+D,D+1 Divide $SD
(q-0)3+Cl
(g=0)+C2
(g>0)-+C3
([g|2217)av
IMUL- (B}*(S)fp Integer £5D
- . B Multiply
For CC see MUL
IDIV (B)/ (51D, /37‘/' Integer 4SD
SR - bivide
for C@ ﬁic DIV
EXCH (s)-rtenp.,ﬁb)*s,(temp.)+D Exchange #SD-
(is)<c)+c1
{(8)=0)-C3
(153>Q)+C3
COML (D)&(s),((ms(sne(smm Compare #SD
. Logical
((D)& (S)=0) All 1's in (5) are 0 in. (D)
(({L)&(S))@(S]$0) Some 1°'s in (8) are 0 in (D)
((D) & (S) #0) +cC Some i's in (S) ars 1 in (D)
{((D)&(S))&(8S)=0) 1l 1's in (8) are 1 in (D)
AND (D)}&(S)+D Logical #SD
(r<0)+Cl
{r=0)+C2
{x>0)+C3

ACC= condition code.
{r! = absolute value of X.

3g = quotiemt of dxvisxmnt

w 1) -

MNEM Operation , Hame Format
ANDCS (D) &(S) '-D Logical — #SD
: AND with
For C¢ see AND. Comple-
mented
Source
TOR (DYI(8)-D Logioal 5D
, Incliusive
- IR
For CC see AND
IORCS (D) !(8)'+D Logical #5D
Inclusive
Ok with
Compla-

mantad
SOuTOe

For CC see AND

XOR {(D;@(8)-D Logical 3D
: ‘ Buclusive
S R
For CC see AND
XORCS (D) §(8)*+D #SD
{ﬂ?»%?’:‘&a
Bouroe
PADD (D)4 (S)}-D ¥Floating. #%90
. AT
{r<0)-C1
(r=0)»C2
{r>0)-»C3
{Gverflow=1}+V and trap
{Underflow=l) -}
TPSUB (D} -(S)+D . : Fioating 95D
Subtract
For CC see FADD _ :
FMUL (D}*{(8)+D Floating $5D
' , : Bultiply
For CC see FADD :
FOIV (D) /{8)~D - Floating #SD
3 ' Divide '

ror O gee WADD -

MNEM Operation Name Format
AOS (D) +1-D Add One #CSEP

1f (CC=T), then (PC}+R+PC

and Skiyp

When skip condition is satisfied, the PC is incremented

with the value in the R field (0 to 7

505 {(j-1+D

if {CC=T), then (PC)+R+PC
TSTS (D)+D

if (CC=T), then (PCI+R>PC
rOJ (RI¥1sR

AR ICC=TY, &ham\{DE+PC

SOJ {R)~1+R

if fCCéT), then (D)~PC
TSTI (R)-R |
if (CC=T), them (D)+PC
LSH shift (D)+D

The shift direction and theﬂhumhs

-]

Subtract
Oone and
Skip

Tagt and
Skip

Add Cne
and Jump

Subtract
One and
Jump

Test and
Jump

Logical
Shift

iCcsRP

of the instruciion.

$CIMP

$CIMP

e
4

$CIMP

$EPD,

#LSH

r of shifts depend on

‘the sign and absolute value of the number determined by
the EP in the S field of the instruction.

(r<Q)-Cl
- {x=0)~+C2
(r>0)+C3

. {last bit shifted out)-C

(Overflow=1l)lsv

LSHC
-+ ;D+l

- For explanation and CC

see LSH

1

unequal. Once V is set,
~rotate, V is cleared,

chift Combined (D), (D+1)

Logical
Shift
Combined

$EPD,

$LSKHC

Overflow oceurs {on 1€ft shifts and rotates only) whenever
the value of the two most significant bits of (D) become j

it stays set. On a right shift or

 MNEM ﬁperdtlnr ’ dame Format

ROT Rotate {D;ru B . Rotate §EPD, #ROT
The rotate direction and the nuw~~w of bit positions
"rotated depend on the sign and aksolute value of the.
number d-texrmined by %ﬁ@ EF in the 5 field of the in-
struction, : :

k)

{r<g)-»Cl

{r=0})-C2

{YZ'.?'G}vCB

{iast bit xotated mut}wc
(Overflow=1) 1.y

ROTC Rotate Combined (B}, (D+1} Rotate $EPD, %Rﬁ?ﬁ
. 1ne .

=D,D+1 Combinad
For explanmtaon and CC,
see ROT.
ASH Shift Arithmetically (D}-D Arithmetic #EPD, #ALD
For explanation apnd CC, shift
sae SH,

ASHC Shift Arvithmetically Com- Zarithmetic &EPD, #5000
bined (1), (D+1)+D,0L+1 shift Com- ~ ‘

, kined
For explanation and CC, . <
. . see LSH. S
315 1+EBLY : Bit Set #EPD

The EBL is det&rmin&ﬁ 28 faalmws. the BA of the D field

of the instruction is taken, starting from the beginning

of the ward denoted by EA, EP bit locations are counted.
 Note: EP is allowed to be bigger than 18.

(EBL) & {C)+CL
{EBL) 21 {C)+C2
{EBL)3& {C}+C3
(EBL) 3 -0

BICL 0-EBL Bit Clear $EPD
- For explanation and CC,
- see BIS.

“overflow occurs {on left shifts and rotates only) whenever
the value of the two most significant bits of (D} become
Cunegual. Once V is get it stay« get, Omn a right shift ox

rotate, V ig cleared.

Ty Sl ® s .
CUERLT = effective bit location.

3In here 1t is meant the (EBL) pricr to change.

- MNEM Operation o Name Format
BICM (EBL) '~EBL | ‘Bit Com- 4EPD
, plament '
For explanation and CC,
see BIS,
BIC? (()-+EBL ' Bit Copy #EPD
{(EBL) L& (C)»C2 o

tg8n) 1y (c) -2
(EBL) 1@ (C)~C3
(C)-+EBL

" BIT (EBL)-EBL ' CBit rest $EPD
For explanaticon and CC,
see BIS.

BYTC ({EBL)-EBL : Bit Tast #EPD
(ERI)Y "& {C)-C1 . Compliement
{(EBL) "1 {C)~+C2 :
{EBL) "®{(C}+C3
{EBL} "

BIME {(EBL)+{~8P} Bit Move #5PD

' ~ to Stack '
The (EBL) is pushed on the stack as if it were an 18- -
bit woera,

BIM! (iP)++EBL Bit Move FEPD
. to HMemory
If iSP)“ t, then 0+EBL e:-lse 1+EBL,
SMOV (D}s-(5p) - Stack $EPD
’ Move

This is a mwve from meme dry to the stack (RE is implied
stack pointer), EP is interpreted s a post inlex and
the FR field i{g interpr.2ted as a post inditect JIt.

Ele= if FR=0 ‘hen EA+EP elﬂa‘fEA+EF}
For CC, ize MOV,

MMOV {(SP) 4D | Memory $EP!

. Move ,
This is a move fivm sta.ck to memory. For Zurther éxplana-
tion and CC, see .oy,

BR if (CC=T) e\ (p(T3+ (OFFS) Branch $BR

+PC «
when the branch condii on js satisfied, the offset | a
9-bit signed guantity) j5 added to the PC.

«;izhfhétﬁ/iF i3 m83nﬁ‘the (EBL) prior to change.

-

MNEM Opﬁrétian ‘ L Name Format

JSR, ' (" Jump to #EPD

sp ~ Subroutine
Spccxal squuuthﬁ »::alll,r passes parameters to the stack
automatically. See Appendix E.

ANAL / Analyse #SD
To be defined later. ' .
REPS ‘ Repeat #REP

’ Single

The EP is interpreted as an unsigned integer repre-
senting the repeat count "RC". The repeat action is
stopped when (RC=0)!(CC=T). -When REPS stops and
(CC=T) & (RC#0), then the remainder of the repeat count

,1s pu:zhed on the stack,i.e,, RC oy~ (EP).
REPD "“, " Repeat #REP
’ Double

- Repeat naxt two inatructiang,' For explanation, see
RE?S.

JMP if (CO=T) the (D)PC Jump R
Jump takes place when jump condition is satisfied,

XCT if (CC=T)- then Execute Execute #JMP
-When condition satisfled, the instruction derfoted by (D}
*is executed. o

Xﬂ#ﬂ if {CC=T) the EYecute ‘' Execute 3JMP
%%,; Undistuxbed) Undig-
” ' turbed

‘uhen candition aatinfze&, the iﬁstxuation é¬ad by
ﬂﬂ% is executed undisturbed, iwq., the ‘result of the
qperation is not stored only the CC is set.

~15-

6.0 Register Seven

General register "R7" is used in the PDP-11 as the BC
(program gounter). PBecause of this, certain addressing
modes are notf advisable or lead to "self-

destruction” of the program. The table below shows
this.

ADDRESSING MODES FOR R7

Sourece PDestination
R7 OK R7 oK
er7 OK . @R7 Error
@(R7)+ OX @IR7)+ OK
@A(R?) OK @K(R7) oK
(R7)+ _ OK. (RT)+ wR!
«(R?} .Ezror. - {R7) Error
@*(R?)‘f Errux é-(RrR7) " Error

A(R’};;&;Oﬁ o A(RT) OK

st ¥s suggested nnﬁ aﬁly to prnwnnt the programmer

£rom meking these errors, but also to turn these
faﬁlty combinations into something useiul.

:;;‘f.'

6. ise the destination mode (R7)+ tha n@xual way except
;@0 not store the result of the opsration. This way

1 binary instructians become "test immediate™ in-
‘structions., .

‘lsNR" = produces non-resentrant code,

-16~

Use the destination modes -(R7) and 8-{R7) as flags
indicating the fo¢llowing,

~{R7) Case

Consider the instruction a stack vperation with the
stack (i.e., there where R6 pcints to) as the destination
and as source the contents of "({R%}+EN"., The Elfective

A > } TEN . SEAAAT R4S
Number "EN" is the contents of the & field of the instruc-

ﬁoznz

tion interpreted as an unsigned integer (i.e., from

0 to 63). . The binary instructions look like:

-

{5P) Operation ((RS5)+EN)~+{SP)

€-(R7) Case

Operation similar to the -(R7) case except &s source
the contents of ((R3)+EN) is taken. Binary instructions
lock like:

(SP) Operation @((R5)+EN}+(SP)

) ;i?PE%;X A

PROPOSED PDP~K INSTRUCTION SET

[

Count Incﬁj:ué&ion 'f "Des,-cgiiatsaﬂ ' - | Bit Byte Word Dw!l
4 MOV {8)D / v N
4 coM (D)~{8) are v / v
4 COML - (D)=(8), (5+n) 3-(D) Ppare with Limits J/ / /
1 ADD {D)+(S)+D | add W,

i SUB . (D)~(S)*D Subtract J/
1 MUL \ (D)*(8)-+D,D+1 Multiply Y
l Div ‘ {D) ' (QQ'.!«}/(SHﬁ;D‘Q'l Divide. J
1 CIMUL - (D) *(S)»D -~ Integer Multiply /
1 DIV - {D}/(S}+D,D+1 Integer Divide J/
1 EXCH (DIHS) ' Exchange /
1 CoML {D)&(S)-CC Compare Logical /
"~ ((D)e(5))e(8)sCC
1 AND (D}&(8)+D And | v
1 ANDCS {D)&(8) '>D ’ (* "
i IOR : (L)1 (8)-D - Inclusive Or Y
i IORCS oo Apyi(8) s , J/
1 XOR {D}e(s}»p = Exclusive Or v
1 XORCS - {D)e(s)y'sp v
2 FADD (D)+(8)+D ' Floating Add
2 FSUB (D}~ (S)>D Fleoating Subtract Y
2 FMUL (D)*({5)-»D Floating Multiply v
2 FDIV (D)/(s)»D Floating Divide Y
v/
1 ACS - {D}+1»D, skip? Add One and Skip v
1 S0¢& (D)~-1+D, skip? Subtract One and Skip /
i TSTS {(D)»D, skip? . Test and Skip v
1Dw = double 20w = guadruple word 38+ﬁ‘f next data word

-

L R

-

~

Lol

&
ee

= condition code

4gp = stack pointer

‘Cgaé&u;(;@aggggg$ag';§escriptiﬂn (ﬁi - Bit ngg-v Worc
1 AOJ (R)+1+R, jump? Add One and Jump v/
i s0J (R)~1+R, jump? Subtract One and Jump 4
1 TSTJ (R) >R, jump? Test and Jump v
i/2 LSH Logical Shitc ¥
i/2 LSHC Logical Shift Combined v
172 ROT Rotate . /o
1/2 RCTC Rotate Combined Y
1/2 ASH Arithmetic shift v
1/2 ASHC : Arithmetic Shift Combined 4
1/2 BIMS (EBL) - (sP) ¢ Bit Move to Stack /
i/2 BIMM (SP)++EBL Bit Move to Memory v/
1/2 BIS 1+-gBLl Bit Set /
/2 BICL . 0+EBL , Bit Clear Y
1/2 BICM (EBL)'»EBL ; Bit Complement K
1/2 BICP (C)2+EBL Bit Copy v
1/2 BIT (EBL) »cC3 Bit Test v
1/2 BITC {EBL) '+CC Bit Test Complement /
3 SMOV (D) +- (sP) 4 Stack Move, Multiple Indexed / /
3 MMOV (SP)++D Memory Move, Multiple Indexed / Y/
2 BR Branch O
2 JSR, J8P Subroutine Call
1 AKAL}$ Analyze
1/8 REPS Repeat Single Cond, N
1/8 REPD Repeat Double Cond, N .
1/4 JMP Jump Cond, D
1/4 XcT Execute Cond, D
1/4 XCTU Execute Undicturbed Cond, D
4/64 TST (D) +CC Test / / 4
lgpr = effective bit location 2(c) = contents of carry,létntus bit .

.

o

o e SRR BTN

c

Lock

count structioh~rDé5cription Bit Byte

4/64 SETZ 0+D Set to all Zeros v/ /
1/64 SETPO 1-D Set to Plus One Y
1/64 SETMO ~1+D Set to Minus One

1/64 ADDC {D)+(C)~D . Add Carry v
1/64 SUBC (D)-(C)»D Subtract Carry v
1/64 TOC (D) '-D Take One's Complement 4
3/64 TTC (D) "+1+D Take Two's Complement 4
1/64 CIFS (D) »-(SP) Convert Inteqek to Ploat. Single 4
1/64 CIFD (D) +-(8P) Convert Integer to Float. Double '
1/64 DESI (D)»-(85P) Convert Float. Single to Integer

1,64 - CPSD (D) +-(8P) Convert Float. Single to Float. D.

1/64 CFDI (D) +~(SP) Convert Float. D. to Integer '

'1/64 CFDS (D) +~(SP) Convert Float. D. to Float. S.

1/64 INCBP . Increment Byte Pointer /

1/64 DECBP) Decrement Byte Pointer /

1/256 MCCS {CC)+~(8P) Move CC tb Stack

1/256 MCCC - {CC)+C Move CC to C Bit

1/4096 MSCC (SP)+~+C Move Stack to C Bit.-ﬁ
3/64 NECH (D)z2(D+n) Next Exchange /
1/64 LOCK - ((D)=0)=>(SP)++D 7

Worc_i__DC

NN

s,

} “l - .
RS

...6[..

APPENDIX B

PDP~K Byte Handling

The PDP-K will handle bytes in the same manner as the PDP-10.

The format of the byte instructions w111 be similar to all
other 1nstructions.

Instruction

6 | 6 6
A Logd (S
oc S (>

The possible 0OC's aré{MOVY, COMY, and COMLY.

The S and D fields are identical in format and define the .
locations of the source and destination byte pointers "SYP
and DYP". The S and D fields are interpreted the same way
as the EP field, described in qoction 2.0 and as shown belaw;

SorD Fl&ld
/| 2 | 3
FR Hs R
EP ‘

The locations of ‘the SYP (source byte pointer) and the DYP
(destination byte pointer) azxe determined by the contents
of the EP's of the 8 and D fields of the instructions. The
free bits "FR" are used to allow for incrementing the byte
pointer.

The £omts of the SYP and DYP are idonticql ‘and shown below.
3)'P. or DYP ‘

-2%-

Field Description

YP ‘the position of the first bit of the byte in the
double word addressed by YL.

YS The length of the byte in bits.

YL YL is interpreted as a regular destination anl de-
notes the location of the double word contain:ng the

byte.

.22~

APPENDIX C
Condition Codes

The PDP-K condition code differs from the PDP-1ll because

of the speciil requirements imposed by the single bit diddling
instructions* of PDP-K. The. instructions making use of the
condition code have 4 bits to specify the condition. The
function of 4 of the condition code flip-flops will be discussed

below.
Condition Cod Flip- Flops
- : oAs_Flip P
c1 | c2 c3 | C
4 - = -
& i ®
Cl: indicates " < in arithmetic opei'ationl
indicates "&" in single bit operations
C2: . indicates "=" Ln'iiithuiticfopcratibns
"indicates '!f ;n single bit operations
C3:" indicates ">" in arithmetic operations
o indicates "®" in single bit operations
C:i* carry bit also used as test bit in single bit

operations

In arithmetic operations the flip-flops Cl, C2, C3 and C are
used as listed in the table below and interpretad as follows.
Cl=} when the result is <0; C2=] when result =0; C3=1 when
‘result 20, and C»l when thert is a carry or when there is no
bortow

T
In the case of bit diddling, thc flip-flops are used as
follovs

(eBL) 2s (c) 342

(EBL) ! (C)~+C2

(EBL)®(C)~C3
(EBL)+C

nQ}SQQ Appendix A inat:uqﬁioﬁs BIS, BICL, BICD, BIT, BI!c_ahd BICP.

2gRL, = contents of Effective Bit Location,complemented when
the BTC (bit test complement) instruction is used.

3(c) = contents of the carry flip-flop.

-23-

The operation above allows all 16 boolean operators between
2 variables directly and allows complex boolean equations

to be evaluated easily.

The interpretation of the contents of the flip-flops Cl, C2
and C3 for signed arithmetic and bit didling is shown below
and required 8 "condition code combinations” out of the 16

total.
TABLE Cl

& ! ® Signed Bit

< = > Arithmetic Diddling

Cl c2 - C3 Interpretation Interpretation
0 0 0 0 False BNOT
| 0 0 1 > BGT ® BXOR
2 0 1 o = BEQ Y BIOR
3 0 1 1 2 BGE' &' ' BNAND
4 1 0 o < | BLT & ~ BAND
5 1 0 1 x | EBNE 1 BNIOR
6 |~ 1 1 o < BLE ®' BNXOR
7 1 1 1 True ' BRA True * BRA

The remaining 8 éombinatiéﬁs are used as shown in the table
below. Together with the BEQ and BNE conditions from above
they contain all conditions for unsigned arithmetic.

~24-

TABLE C2
Specizl Unsigned
Condition - Arithmetic
Interpretation Interpretation
0 Repeat count = 0 BZR
1 | o> BHI
2 Overflow BOV |
3 No Carry BNCA 2 BHIE
4 - Carry BCA < BLO
5 No Overflow BNOV
6 s BLdE
7 Repeat count % 0 . BNZR

-G -

APPENDIX D

Instruction Formats

D.1

D.2

Format #SD, Source Destination

Instruction has 3 fields of 6 bits

instruction
—— N —
6 6 6 OC = operation code
N A~ Al / S = source
v v h D = destination
0oC s D -

The S and D fields have the same format as shown below.
S or D field

N\

w

R =-register field
‘ M = mode field

3
n's
M

@ <

Format #CSKP, Conditional Skip

Instruction has 4 fields. The SC field (skip

- condition) is interpreted as in Table Cl of Appendix C.

The R field contains the number of words to be skipped
(fxom 0 to 7). o '

D3

D.5

~26-

Format #CIMP, Conditional Jump

fidis instruction has 4 fields. The JC field contains
the jump condition, interpreted as shown in Table C1
of Appendix C., The R field dcnotes the register to ke
tested after an increment {decrement or test).

6 3 3 8 .
JC = jump condition
\”WM-—“/ \'M\l’ \'w\{ ot \""‘“_\/‘""""“"”‘/
oC JC R D

Format #EPD, Effective Position-Destination

6 1 5 I :
- - Ep = effective position
L [— \mmp~m~\mmwwﬂ”mwl b2
g field
oC : EP D
| —

FR = free bit used to extend the OC field

D is a regular destination field, EP is a regular ef-
fective position field.

Format #LSH, Logical Shift
(D)
A

0 > high 18 low > 0

D.

8

Format #LSHC, Logical Shift Combined

(D) (D+1)
~ AL . . A
o —*high 18 low |_gu|high 18 Tow |77 o
| [
Format #ROT, Rotate
{D)
7/ L -~) i Y
: bty
T N
by
Format #ROTC, Rotate Combined
, L _ .
3 (D) (D+1)
? F . /- A 4 __ _“ N -\
L .| B s
-ge| Nigh 18 low g Nigh 18 low
E ——

b e e a— e —

- o

D.% Format #ASH, Axithmetic Shift

(D)

' o - “

igh- | !
Egt —#— high 17 . low "‘"‘@“‘i 0

D.10 Format #ASHC, Arithmetic Shift Combined

]

highy 7 : Tims
bit - Boi hip k@ «
(D), \ " L L (D+1} Y

B
!

‘e | by | , .
lhxgh 17 low g Nigh 17 low ;ﬂj~
. " V “J -, 'V 4
D.11 Format #BR, Branch (D} ()"H»})
5 4 9
. ~)h“v, A ~ vy . .
oC BC NEfant sc = branch condition

Offget = 9-bit signed integer

D.12 Format #REP, Repeat

b we o = e

8 4 1l 5 <
. ~" A v v ——’ ’,
oC COND EP

single/double bit

' D.13 Format $JMP, Jump

ocC COND

e

APPENDIX E

Subroutine Calls

Besides the standard PDP-11 JSR, the PDP~K will have a more
power ful subroutine call. This new call "JSP" (Jump to
Subroutine with Parameters) automatically passes parameters

to the stack and does "stack house-keeping"™ in such a way that
subroutine returns can be done ia a trivial way while the
stack is "cleaned up” autcmatically.

The format of the call is #EPD where the EP field is in-
terpreted as the number of parameters to be pushed on tha
stack. Register R5 1is used tc point to the first passed
parameter after it has been pushed on the stack. The example
below shows how the JSP could be implemented. Note that in
addition to the parameters themselves, three other quantities
have o be pushed on the stack to allcw for automatic up-
dating upon return from the subroutine.

1. The number c¢f parameters “NP"
2. A link to the previous call "LNX"
3. The return address "RA"
Below is shown how the JSP actually operates. The left

stack shows the situation just prior to the call of subroutine
2, the right stack shows the situation just after the cal..

Free stack

area

Scratch 1

R51

RAl
LNK1

NP1l

P1.0
Pl.1

Stack just prior
- to the call

n, SuBz2”

R69

Free stack

area

RA2
LNKZ2

NP2

R52

P2.0
P2.1

e * e

P2.n-2

" P2.n-1

Scratch 1

LNK1

NP1

P1.0
Pl.l

?«J

Stack just after

the call *Jsp
n, SUBZ2"

-32-

The passing on of parameters which are passed as parameters
is taken care of by giving the to-be-passed-on parameter an
address relative to the parameter pointer, i.e., (R5). A
parameter following a subroutine call is considered a "new"
parameter when its value is >64 and a passed parameter
otherwise, See example below:

JsSP n,SUBL /call SUBl with n parameters

P1.0
L Pl.1
Pl.n-1
$UBl, ~-----
~ JsP m,8UB2 Jeall SUB2 with m
P2.0 /parametars
P2.1
P2.2
1 -/parameter. g 63 so it
f‘!??lf is iﬂterpreted as a

passed parameter, not
$im-1 *1" but ((R5)+1) will
- | be puahed<an the stack.
This is just parameter
21.1 of_ the previous

