
momoomo INTEROFFICE 

SUBJECT: Extension of PDP-II Instruction 
set - Floating pt. 

TO: Bruce Delagi 

LOCATION: 

MEMORANDUM 

DATE: December 22, 1969 

FROM: Grant Saviers 

LOCATION: 

Assume that a floating pt processor (Multiply, Divide, Add, 
Subtract, Float, Entier) is interfaced to the unibus. 

Associate 6 memory (I/O) locations with the floating'pt functions. 
Use the Move instruction to extend the instruction set, as follows: 

MOV address, function 

where function is one of the six addresses associated with the 
FP processor. The output word is an address pointer to a 3 
word tabl~ of operand addresses. 

Address Location of operand 1 
II II u 2 
.. II result 

The FP processor then obtains operands and stores the result. 

For multiple word operands, this technique is faster and requires 
less core than distinct moves of addresses or operands. 

Hand translating the expression. 

F = (A + (B * c)/(~ + B»* F 

Results Code 

Move z, mult z 

Move y, add 
Move x, div 'y 

Move v, mult 

x 

w 

v 

this would change example to y 

x 

w 

Address pointers 

B 
C 
tl 
A 
B 
t2 
tl 
t2 
t3 
A 

t4 
F 
F 
A 
B 

t2 
tl 
t3 

CO~PO~ATION • MAYNARO. MASSACHUSET'TS 



page two 
December'22, 1969 

, Note that the code is automatically l'optimized ll to eliminate 
unnecessary saving of results (tn's) and that no Moves are 
required, even for the replacement (=) operation. 

This technique has definite possibilities for common subexpression 
evaluation/optimization. 

It is clear that the I/O devices should have access to the 
condition codes for this to really work. 

For the anti-symmetric operators (-)/ it may not cost much (in 
terms of instruction codes) to have the backwards operators. 

e.g. normal/ address list 

backwards/ 

A 
Be:: 'A/B 
C 
A 
B 
C 

C = B/A 

G.E. apparently thought backwards operators useful enough to 
include in instruction sets, to avoid swapping registers/core. 
with 3 address instructions they may be superfluous. 

Note that the end result looks suspiciously like a tistack" machine 
with operators in one stack and operands in the other. 

I mentioned this technique to Ad van de Goor. He proposed putting 
Qperators on same stack, but note that you still must have an 
¥in~ruction to initiate the operation. 

As a generalization, I believe one should always pass the address 
at a descriptor table, so that the table may be completely general. 
This also has the advantage that only one word1~ ~ved. 

Ad suggests a micro-programmed arithmetic processor for things like 
matrix multiply or even implementation of the floating point. Note 
that for a 3 address pointer table, the instructions and table are 
independent of arithmetic precision. Only actual reserved operand 
locations are different. 

Why mess around with other machines when such things are possible 
on the ll? 

/bca 


