
PDP-II-------~ 

DATE: October 22, 1969 

SUBJECT: Tentative Design Goals for 11/20 Successors 

TO: 11 Steering Committee 
John Jones 
Alan Kotok 
Gordon Bell 
Jim O'Loughlin 
Nathan Teicholtz 
Ad van de Goor 

F~OM: 
Bruce Delagi 

I am currently working toward the design of the next 11 
processor. The goals for this processor are not now well 
defined and I'd like to avoid building into a corner by 
at least considering the design goals and implementation 
for the top of the 11 line - whatever that is. I would 
appreciate comments any of you might have concerning the 
goals listed below in relation to: 

a.How you would break these goals into those suitable 
for processors selling (including TTY, 4K core and 
power supply) for: 
$13K - 17K 
$17K 30K 
$30K - SOK 
$50K - 75K 

b. Additional goals you would set for processors in any 
of the above price classes. 

c. Specific suggestions you may have on the realization 
of these goals. 

Tentative d~sign goals for PDP-II family elements: 

1. Reductiop of the processor overhead required in specifying; 
a memory access to approximately 400 ns. 

2. Overlapping processor op~rations with memory access. 

OIGITAL EQUIPMENT CORPORATION. MAYNARD. MASSACHUSETTS 
OCT 241959 



... 2 ... · 

3. Achieving a speed advantage for subroutines resident in 
read only memory - as an alternative to microprogramming. 

4. Access of processor
4

adders and 'control logic from the bus 
in an NPR transfer. This would enable use of the processor 
logic for boxes that do block arithmetic of the form: 
~Aibi+j including on-line convolution (digital filtering) 
convolution (EEG and seismic analysis), and fourier 
analysis. 

5. Overlapping processor usage by two simultaneous processes 
(while one process is waiting for memory, the other is 
using the addres and control logic) - Potentially a 
particularly powerful way to implement block arithmetic 
processes. 

6. Providing bus parity checking -perhaps on both address and 
data with the option of either bringing the system to a 
halt or trapping. Parity should be provided on byte 
operations as well as word. The implication might be 
that core storage with parity on the 11 is 18 bits wide. 

7~ Providing for correct bus operation notwithstanding 2 
or 3 unpowered control units on the bus. (loading and 
pass-the-pulse problems) 

8. Buffering of the I/O to remote controls (bidirectional 
buffer) • 

9. Separation of the memory bus from the I/O bus ( to provide 
a faster, wider path). 

10. Multiport memory operation. 

11. Overlapping memory operation in banks. 

12. Accessing memories in the middle of read/modify/write 
~ operations. 

13. Using multiple processors on the bus. 

14. Sharing devices between busses (e.g. multiported disks). 

15. Paging in a TS environment - Two page sizes: 8 bytes for 
the I/O area (low-overhead user I/O), 512 bytes for other 
core storage (lease area for each user is 256 bytes for 
core leases and 256 bytes for I/O leases - a total of 1 
page of leases/user). 



-3 ... " 

16. Recovery from "page-out" (page not in memory) faults - ' 
i.e. allowing the instruction causing a page out to resume 
after fetching the page into core. 

17. Allowing direct user control of block transfer peripherals -
How does the user know how to set the XM bits of the status 
word? How does the monitor protect other user's core? 
How does the monitor know when it can roll a user out 
of core if he has block I/O in progress? Maybe this can 
not be a direct operation. 

18. Attaching and detatching special device handlers to the 
running monitor as ~equire~ - billing the user requesting 
such attachment. 

19. Monitor to user communication thru the paging box- paged 
executes? 

20. User to monitor communication - monitor calls with address 
calculation. 

21. context switching in a guaranteed latency environment -
minimum latency on the order of 500 us. 

22. Direct user I/O - how direct? Protection from devices 
requesting at too fast a rate. 

23. Priority Sliding - automatic priority reduction with cpu 
usage time in user interrupt service routines. 

24. CPU usage clock, accounting clock. 

25. Monitor registers as distinct from user registers. 
pointer especially) 

(stack 

26. Repeat and Execute instructions (conditional repeat). 

27. Limit" registers for stack overflow protection. 

28. Signed Multiply (16 bit*16 bit to 32 bit) and signed 
Divide (32 bit/16 bit to 16 bit and 16 bit remainder) 
watch out for stacks. 

29. Multiple word, Multiple place shifts and rotates. 

30. Normalize (32 bit) operation. 

31. Other 32 bit arithmetic? 

32. Floati~g point operations (normalized, unnormalized; 
with r6unding, without rounding). 



33. Floating and double precision register mapping (onto 
registers and onto core). 

34. Minimizing mode switching. 

35. Programmed Interrupt Requests (like 9's API). 

36. Address match trap console option (causes trap or halt 
on attempts to reference or write specified (programmable) 
address) • 

37. Dynamic examine and modify console operations (examine/ 
modify while processor is running). 

38. Execution of instruction specified in console. 


