TO:
"John Jones

> PDP-I|

' DATE: October 22, 1969

- SUBJECT: pentative Design Goals for 11/20 Succesgors

: FROM: :
11 Steerlng Commlttee - Bruce Delagi

Alan Kotok

- Gordon Bell

Jim O'Loughlin
‘Nathan Teicholtz

Ad van de Goor

I am currently working toward the design of the'next'll'

. processor. The goals for this processor are not now well

~ defined and I'd like to avoid building into a corner by

at least considering the design goals and implementation

~ for the top of the 11 line - whatever that is. I would

appreciate comments any of you might have concernlng the

o goals listed below in relation to:

" a. . How you would break these goals into those suitable

for processors selling (including TTY, 4K core and
- power supply) for: : : :
- $13K - 17K
- $17K - 30K

$30K - 50K

$50K = 75K :

b. Additional goals you would set for processors in any

of the above price classes.

c. Specific suggestions you may have on the reallzatlon
of these goals. ‘

Tentative design goals for PDP-11 family elements:

1. Reductiop of the processor overhead required in spec1fy1ng

a memory access to approximately 400 ns.

2. Overlapping processor operations with memory access.

DIGITAL EQUIPMENT CDHPORATION . MAYNARD MASSACHUS&TTS

0CT 24 1985

Achieving a speed advantage for subroutines resident in
read only memory - as an alternative to microprogramming.

Access of processor adders and ‘control logic from the bus
in an NPR transfer. This would enable use of the processor
logic for boxes that do block arithmetic of the form:

A bl+] including on-line convolution (digital filtering)
convolution (EEG and selsmlc analy31s) and fourier
analy51s.

wOverlapping processor usage by two simultaneous processes

(while one process is waiting for memory, the other is

using the addres and control logic) - Potentially a

particularly powerful way to 1mplement block arithmetic
processes.

Providing bus parity checking - perhaps on both address and
data with the option of either bringing the system to a

~ halt or trapping. Parity should be provided on byte

§;10;

11,

12.

13.

14.

15.

operations as well as word. The implication might be
that core storage with parity on the 11 is 18 blts w1de.

Prov1d1ng for correct bus operation notw1thstand1ng 2
or 3 unpowered control units on the bus. (loading and
pass~the-pulse problems)

E Buffering of the I/0 to remote controls (bldlrectlonal

buffer).

kaeparatlon of the memory bus from the I/O bus (to prov1de

a faster, wider path).
Multiport memory operation.
Overlapping memory operation in banks.

Accessing memories in the middle of read/modlfy/erte‘
operations.

Using multiple processors on the bus.
Sharing devices between busses (e.g. multiported diéks).

Paging in a TS environment - Two page sizes: 8 bytes for
the I/0 area (low-overhead user I/0), 512 bytes for other
core storage (lease area for each user is 256 bytes for
core leases and 256 bytes for I/0 leases - a total of 1
page of leases/user).

~16.

- 17.

18.

16,
‘20,‘
21..
't22;'
23,

24,

- 25.

26.

.27.,

- 28.

‘ 29.
30.

31.

32,

P~ 3_. -

Recovery from "page-out" (page not in memory) faults -
i.e. allowing the instruction causing a page out to resume

after fetching the page into core.

Allowing direct uSef’control of block transfer peripherals -
How does the user know how to set the XM bits of the status
word? How does the monitor protect other user's core?
How does the monitor know when it can roll a user out
of core if he has block I/0 in progress'> Maybe this can

not be a direct operation.

Attaching and detatching epecial device handlers to the
running monitor as required - bllllng the user requestlng

- such attachment.

executes?

Monitor to user communlcatlon thru the paglng box— paged

User to monltor communlcatlon - monltor calls w1th address

calculatlon.

Context sw1tch1ng in a guaranteed latency env1ronment -
minimum latency on the order of 500 us. :

Direct user I/0 - how direct? Protection from devices

requesting at too fast a rate.

Priority Sliding'-'automatic priority reduction with‘cpu '
- usage time in user interrupt service routines. ‘

CPU usage‘clock; accounting clock.

Monitor registers as distinct from user registers.

pointer especially)

~A(staek =

Repeat and Execute instructions (conditional repeat).

Limit registers for stack overflow protection.

' signed Multiply (16 bit*16 bit to 32 bit) and signed

Divide (32 bit/16 bit to 16 bit and 16 bit remalnder)

watch out for stacks.

Multiple word, Multiple place shifts and rotates.

Normalize (32 bit) operation.
Other 32 bit arithmetic?

Floating point operations (normalized,

kw1th riundlng, without roundlng)

unnormalized;

33,
34.
35,
36.
37.

38.

Floating and double prec151on register mapplng (onto
registers and onto core).

Minimizing mode switching.

Programmed Interrupt Requests (like 9's API).

Address match trap console option (causes trap or halt

- on attempts to reference or write spec1f1ed (programmable)

address)

Dynamlc examine and modify console operatlons (examlne/
modify whlle processor is runnlng)

Execution of instruction specified in console.

