
KXT11-C Peripheral Processor
Software User's Guide
AA-Y615A-TK

March 1984

This manual will help you use the KXT11-C Peripheral Processor soft
ware.

Operating System: RT-11 Version 5.0
RSX-11 M Version 4.1
RSX-11 M-PLUS Version 2.1
VAX/VMS Version 3.4 .

Software: MicroPower/Pascal Version 1.5

To order additional documents from within DIGITAL, contact the Software Distribution
Center, Northboro, Massachusetts 01532.

To order additional documents from outside DIGITAL, refer to the instructions at the back
of this document.

digital equipment corporation . maynard, massachusetts

First Printing, March 1984

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this docu
ment.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by DIGITAL or its affiliated companies.

© Digital Equipment Corporation 1984.
All Rights Reserved.

Printed in U.S.A.

A postage-paid READER'S COMMENTS form is included on the last page of this
document. Your comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

~nmnomo™
DEC IAS Rainbow
DECmate MASSBUS RSTS
DECnet MicroPower/Pascal RSX
DECsystem-10 PDP UNIBUS
DECSYSTEM-20 PDT VAX
DEC US P/OS VMS
DECwriter Professional VT
DIBOL Q-BUS Work Processor

M31000

PREFACE

CHAPTER

CHAPTER

1

1.1
1.2
1. 2.1

1. 2. 2

1. 2. 3

1.2.3.1
1.2.3.2
1.2.3.3

1.2.3.4

1. 3

2

2.1

2.1.1
2.1.2

2.1.3
2.1.4
2 .1. 5
2.1.6

2.1.7

2.1.7.1
2.1.7.2
2.1.a
2.1.9
2.1.10

2.1.11
2 .1.12

2.2

CONTENTS

Page

vii

INTRODUCTION 1-1

KXTll-C HARDWARE FEATURES 1-2
USING THE KXTll-C AS A PERIPHERAL PROCESSOR 1-4

Peripheral Processor Hardware
Configuration 1-6
Peripheral Processor Application Software
Corifiguration 1-6
KXTll-C Application Developnent Software
Tools 1-7
MicroPower/Pascal 1-7
KXTll-C Peripheral Processor Tool Kits 1-9
Traditional PDP-11 Application Developnent
Software Tools 1-9
DECprom and PROM/RT-11 Utility Programs
for PROM Loading 1-9

USING THE KXTll-C AS A STAND-ALONE SYSTEM 1-9

KXTll-C APPLICATION SYSTEM DEVELOPMENT
CYCLES

PERIPHERAL PROCESSOR APPLICATION DEVELOPMENT

2-1

CYCLE 2-1
Partitioning the KXTll-C Application 2-1
Choosing the Application Software
Developnent Tools 2-2
Designing the KXTll-C Application System 2-3
Coding the KXTll-C Application 2-3
Developing Test Processes 2-4
Building an Application Debugging
Configuration 2-4
Configuring the Hardware for Application
Debugging 2-5
KXTll-C Debugging Configuration 2-5
System Hardware Debugging Configuration 2-5
Testing and Debugging the Application 2-6
Completing the Test Cycle 2-6
Testing and Debugging the Integrated
Application System 2-6
Building the Final Application System 2-6
Configuring the Final Application System
Hardware 2-7

STAND-ALONE PROCESSOR APPLICATION
DEVELOPMENT CYCLE 2-7

iii

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.3

3.3.1
3.3.1.1
3.3.1.2
3.3.2
3.3.2.1
3.3.2.2
3.3.3
3.3.3.1

3.3.3.2

3.3.3.2.1
3.3.3.2.2
3.3.3.2.3
3.3.3.2.4
3.3.3.2.5
3.3.3.2.6
3.4

3.4.1
3.4.1.1

3.4.1.2

3.4.1.3

3.4.1.4

3.4.1.5

3.4.2

3.4.3

3.4.3.1
3.4.3.2
3.4.3.3
3.4.4

3.4.5

3.4.5.1

3.4.5.2
3.4.5.3
3.4.5.3.1
3.4.5.3.2
3.4.5.4
3.4.5.4.1
3.4.5.4.2

3.4.5.5
3.4.5.~
3.4.6

PROGRAMMING A KXTll-C USING
MICROPOWER/PASCAL

KXTll-C SYSTEM FILES
BUILD PROCEDURE

Optimizing the Kernel
Building KXTll-C Applications with MPBLD

SOFTWARE AND HARDWARE CONFIGURATION
GUIDELINES

Configuring Memory
Memory Configuration Steps
Memory Selection Rules
Using Battery Backup
Configuration Considerations
Programming Considerations
Configuring the KXTll-C System Environment
Selecting Stand-Alone or Peripheral
Processor Operation
Selecting KXTll-C Initialization and
Self-test Options
ROM Application Start-up
TU58 and RSP Bootstrap
Loading from the Arbiter
Automatic Self-Tests
Debugging (ODT) Mode
Dedicated Test Mode

I/O PROGRAMMING AND CONFIGURATION
CONSIDERATIONS

Using the Parallel I/O (YK) Handler
Transferring a Series of Bytes or Words
Through a Po rt
Transferring Data to and from Analog
Devices
Receiving Data from a 12-Bit Analog
to-Digital Converter
Using the Counter-Timers to Count External
Pulses
Using the Counter-Timers to Supply
External Pulses
Using the Asynchronous I/O {XL) Device
Handler
Using the Synchronous I/O (XS) Device
Handler
XS Device Handler Functions
Functions Performed by user Software
Accessing the XS Handler
Using the TU58 DECtape II (DD) Device
Handler
Using the QD (OMA Transfer Controller)
Handler
Transferring Between Local· Memory and
Q-BUS Memory
Transferring Data Within Local Memory
Using the Search Option
Searching with Transfer
Searching Without Transfer
Transferring to and from Local I/O Devices
Parallel I/O Using OMA
Reading and Writing Data from/to Serial
Line Ports
Accessing the Q-BUS I/O Page
Assuring Access to a OMA Channel
Using the KX (Arbiter-Resident Two-Port
RAM) Handler

iv

3-1

3-1
3-3
3-4
3-4

3-7
3-7
3-8
3-9
3-10
3-U.I
3-11
3-11

3-12

3-12
3-13
3-14
3-14
3-14
3-15
3-15

3-15
3-16

3-17

3-19

3-21

3-23

3-25

3-27

3-28
3-28-
3-28
3-29

3-30

3-31

3-32
3-32
3-33
3-33
3-33
3-33
3-33

3-34
3-35
3-35

3-35

CHAPTER

3.4.7

3.5

3.5.1
3.5.2
3.5.3
3.6
3.6.1
3.6.2
3.6.3

3.6.4

3.6.5

3.6.5.1
3.6.5.2
3.6.5.3
3.6.6
3.6.7

4

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5

4.3
4.3.1
4.3.2
4.3.3
4.3.4

4.3.5
4.3.6
4.3.7

APPENDIX A

A. l
A.2
A.2.1
A.2.2

A.2.3

A.2.3.1
A.2.3.2
A.3
A.3.1
A.3.1.1
A.3.1.2
A.3.1.3
A.3.1.4
A.3.1.5
A.3.1.6

Using the KK {KXTll-C-Resident Two-Port
RAM) Handler

PROGRAMMING THE KXTll-C PERIPHERAL PROCESSOR
INTERFACE

Interface Considerations
KK/KX Interface Example
Determining Physical Addresses

DEBUGGING A KXTll-C APPLICATION
Setting up PASDBG
Test System Configuration
Debugging with an RT-11 or RSX-11 Arbiter
Test Program
Debugging with a MicroPower/Pascal
Arbiter-Resident Test P~ogram
Debugging Multiple-Processor MicroPower/
Pascal Applications Simultaneously
Setting up PASDBG as a Single Host Process
Loading and Starting Target Processors
Setting Breakpoints and Watchpoints
Using the KK Handler Debugging Locations
Debugging an Application in a KXTll-C with
Battery Backup

THE KXTll-C AND YOUR RSX-11 OR RT-11
ARBITER APPLICATION

KUI UTILITY COMMANDS
ARBITER APPLICATIONS THAT USE RT-11

Interface Tools
Calculating Physical Memory Addresses
Application Building for Debugging
Final RT-11 Application Configuration
Loading a KXTll-C Peripheral Processor
from the RT-11 Arbiter

ARBITER APPLICATIONS THAT USE RSX-11
Interface Tools
Calculating a Physical Memory Address
Accessing Shared Memory Areas
Protecting Shared Data Areas from
Simultaneous Access
Application Building for Debugging
Final RSX-11 Application Configuration
Loading a KXTll-C Peripheral Processor
from the RSX-11 Arbiter

3-35

3-36
3-36
3-37
3-38
3-39
3-39
3-39

3-40

3-40

3-40
3-41
3-41
3-42
3-42

3-42

4-1

4-1
4-2
4-2
4-3
4-3
4-3

4-3
4-4
4-4
4-4
4-4

4-5
4-5
4-5

4-5

KX/KK DEVICE HANDLER COMMUNICATION PROTOCOL A-1

COMMUNICATION MECHANISMS
KX/KK PROTOCOL DEFINITION

KX and KK Handler Transactions
Message Communication Between the KK and
KX Handlers
Synchronizing KK and KX Device Handler
Operation
Interrupting When Data is Available
Interrupting When Data is Requested

REGISTER DEFINITIONS
Command Register Definition
Command Field {KC.COM)
Interrupt When Data Available Bit {KC.IDA)
Interrupt When Data Requested Bit {KC.IDR)
Length Field {KC.LEN)
End-of-Message Bit (KC.EOM)
vector Number Field (KC.VEC)

v

A-1
A-3
A.-4

A-6

A-7
A-7
A-7
A-8
A-8
A-8
A-11
A-11
A-11
A-11
A-11

A.3.2
A.3.2.1
A.3.2.2
A.3.2.3
A.3.2.4
A.3.2.5
A.3.2.6
A.3.2.7
A.3.2.8
A. 3. 3

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

INDEX

Figure

Table

F.l
F.2
F.2.1
F.2.2

F.2.3

1-1
1-2

1-3

3-1
3-2
3-3

3-4

3-5

3-6

A-1
A-2

3-1

3-2

3-3

Status Register Def in i ti on
Error Code Field (KS.ERC)
Data Requested Bit (KS.DR)
End-of-Message Bit (KS.EOM)
Data Available Bit (KS.DA)
Actual Length Field (KS.ALN)
Interrupt Enabled Bit (KS.IEN)
Interface Ready Bit (KS.ON)
Cumulative Error Bit (KS.ERR)
Interface Initialization

A-11
A-12
A-12
A-12
A-13
A-13
A-13
A-13
A-13
A-13

KXTll-C CSR AND VECTOR ASSIGNMENTS B-1

SYSTEM ID SWITCH POSITIONS, TWO-PORT RAM CSR
AND VECTOR ASSIGNMENTS C-1

SAMPLE MICROPOWER/PASCAL CONFIGURATION FILE D-1

CALCULATING CHECKSUMS FOR PROMS E-1

DETECTING NONFATAL FIRMWARE ERROR CONDITIONS F-1

STAND-ALONE MODE F-1
PERIPHERAL PROCESSING MODE F-1

Application in ROM F-2
Application Loaded from Arbiter with
MicroPower/Pascal F-2
Application Loaded from Arbiter with RT-11
or RSX-11 F-2

Index-1

FIGURES

KXTll-C Hardware Features
Adding KXTll-C Peripheral Processors to
Traditional LSI-11 Systems
Peripheral Processor Application Software
Configuration
KXTll-C Memory Map Configurations
Sending Data to a Parallel Printer
Transmitting Data to and Receiving Data from
Analog Devices
Receiving Data from a 12-Bit Analog
to-Digital Converter
Using the Counter-Timers to Count External
Events
Using the Counter-Timers to Supply External
Pulses
KX/KK Device Handler Communication Linkages
TPR Register Layout

TABLES

KXTll-C System Files Provided with
MicroPower/Pascal
MicroPowet/Pascal Usage of KXTll-C Memory
Maps
Initialization/Self-Test Options

vi

1-3

1-6
3-8
3-17

3-19

3-22

3-24

3-26
A-2
A-3

3-2

3-10
3-13

PREFACE

This manual helps you use the software tools provided by DIGITAL to
program and use the KXTll-C Peripheral Processor. Detailed
information about KXTll-C hardware and supporting software is provided
by reference manuals which are cited throughout this manual.

Reader Assumptions

This manual helps the programmer using MicroPower/Pascal or one of the
KXTll-C peripheral processor tool kits. It is possible to program and
use KXTll-C's with traditional LSI-11 software developnent tools;
however, guidelines for doing this are not discussed at any length in
this manual.

This manual assumes you are familiar with DIGITAL's LSI-11
computer products and have programming experience in
following environments:

• MicroPower/Pascal-RT-11, -RSX or -VMS host
developnent environment, writing programs
MicroPower/Pascal or the MACR0-11 language.

series of
one of the

application
in the

• RT-11, RSX-llM or RSX-llM-PLUS host system
writing and debugging MACR0-11 assembly
stand-alone PDP-11 applications.

environment,
programs for

Doct.DDent Structure

This manual contains four chapters and six appendixes.

• Chapter 1 summarizes the features of the KXTll-C hardware and
its supporting software and provides examples of typical
applications.

• Chapter 2 describes the procedures for programming KXTll-C
application systems.

• Chapter 3 provides information about programming a KXTll-C
with MicroPower/Pascal software and using KXTll-C peripheral
processors in MicroPower/Pascal arbiter applications.

• Chapter 4 describes how to use KXTll-C peripheral processors
in applications based on RT-11 or RSX-11 system environments.

• Appendix A describes the communication protocol that the KX
and KK device handlers use to pass messages between the
arbiter processor and KXTll-C peripheral processors. It
assists those who want to write their own KK or KX handler.

vii

• Appendix B lists the CSR and interrupt vector assignments for
KXTll-C devices.

• Appendix C 1 ists the CSR and interrupt vector assignments, KX
device handler logical unit numbers, and system ID switch
settings for the KXTll-C two-po rt RAM.

• Appendix D shows
configuration file.

a sample KXTll-C MicroPower/Pascal

• Appendix E describes the procedures ~or calculating checksums
for PROMs that are loaded by the DECprom program.

• Appendix F describes how
nonfatal error conditions
self-test routines.

your application can check for
reported by the native firmware's

Associated Documents

The following software and hardware documentation supports KXTll-C
application develo£ltlent for host and target environments. The
documents you will need depend on which host developnent system you
are using and whether you are developing KXTll-C applications in the
MicroPower/Pascal environment or in a traditional MACR0-11
environment.

MicroPower/Pascal Application Development Environment

The MicroPower/Pascal-RT documentation set, QJ029-GZ, provides a
complete description of MicroPower/Pascal software tools in the
RT-11 host system environment.

The MicroPower/Pascal-VMS documentation set, QD029-GZ, provides a
complete description of MicroPower/Pascal software tools in the
VAX/VMS host system environment.

The MicroPower/Pascal-RSX documentation set, QP029-GZ, provides a
complete description of MicroPower/Pascal software tools in the
RSX-llM and RSX-llM-PLUS host system environments.

Tool Kit Application Developnent Environment (for arbiter
application development)

KXTll-C Software Toolkit/RT Reference Manual, AA-AU63A-TC

KXTll-C Software Toolkit/RSX Reference Manual, AA-AU64A-TC

PROM Loading Utility Programs

PB-11 System user's Guide, AA-8488-TC

VAX/VMS DECprom User's Guide, AA-W754A-TK

Host Operating System Documentation

The MicroPower/Pascal documentation sets include
the sets listed below that are necessary
MicroPower/Pascal application development.

viii

documents from
to facilitate

The RT-11 documentation set, QJ013-GZ, provides a complete
description of the software tools for the RT-11 host environment.

The RSX-llM documentation set, QJ628-GZ, provides a complete
description of the software tools for the RSX-llM host
environment.

The RSX-llM-PLUS documentation set, QR500-GZ, provides a complete
description of the software tools for the RSX-llM-PLUS host
environment.

The VAX/VMS documentation set provides a complete description of
the software tools for the VAX/VMS host environment.

You will also need the following hardware reference
configure your application hardware to use the
handlers, or to write device handlers that are
software-compatible with other system components:

Microcomputer Manual

documentation to
standard device
hardware- and

KXTll-CA user's Guide hardware reference manual, EK-KXTCA-UG

Microcomputer Handbooks

MICRO/PDP-11 Handbook, EB-24944-18

Microcomputers and Memories, EB-20912-20

Microcomputer Interfaces Handbook, EB-23144-18

PDP-11 Architecture Handbook, EB-23657-18

Document Conventions

1. Throughout the text, the term RSX-11 is used to simplify
references that apply to both the RSX-llM and RSX-llM-PLUS
operating systems.

2. Pascal-reserved words that must not be abbreviated are shown
in uppercase characters in syntax examples. Within those
examples, lowercase characters are used for para~eters or
other syntax elements that you must include for your
particular application.

3. All hardware device register and memory addresses specified
in this manual are octal values (for example, 77xxxx).
Addresses for the arbiter's Q-BUS memory are shown as 22-bit
values; while those for the KXTll-C are shown as 16-bit
values.

4. All command strings terminate with a carriage return. The
symbol used in this manual to represent a carriage return is
<RET>.

ix

5. To produce certain characters in system commands, you must
type a combination of keys concurrently. For example, while
holding down the CTRL key, type C to produce the CTRL/C
character. Key combinations such as this are documented as
<CTRL/C> ,. <CTRL/O>, and so forth.

6. In examples, you must distinguish between the capital letter
O and the number 0. Examples in this manual represent these
characters as follows:

Letter 0: O

Number 0: 0

7. The sample terminal output in this manual contains version
numbers where they would normally appear. The version
numbers include xx in those fields that can vary from
installation to installation.

x

CHAPTER 1

INTRODUCTION

The KXTll-C Peripheral Processor is- an LSI-11 single-board 16-bit
computer with local memory and communication ports. You can use it as
a self-contained stand-alone system or as a component (peripheral
processor) of an LSI-11-based multiple processor system.

In a multiple processor system, you can add up to 14 user-programmed
KXTll-C Peripheral Processors to traditional LSI-11 Q-BUS systems and
communicate with them from the LSI-11 CPU acting as arbiter. The
software architecture is master/slave (not to be confused with the
bus-master/bus-slave hardware concept) which means the KXTll-C
application (slave) performs operations only on command from the
arbiter application (master). The master application runs in the
LSI-11 (Q-BUS) arbiter processor and controls the KXTll-C application
by sending it messages over the KXTll-C two-port RAM (TPR) registers
in the I/O page. The KXTll-C can also transfer data to and from main
memory with its OMA transfer controller facility (OTC).

When configured for stand-alone operation, the KXTll-C is completely
self-contained with no Q-BUS required.

The DIGITAL-supplied software supports KXTll-C single-board computers
as stand-alone systems or as peripheral processors in a multiple
processor environment. You can program the KXTll-C using the
MicroPower/Pascal or MACR0-11 language. In peripheral processing
applications, you can then incorporate the processors into arbiter
applications based on the RT-11, RSX-llM, RSX-llM-PLUS or
MicroPower/Pascal operating environment.

In addition to DIGITAL's standard LSI-11 software development tools,
you can choose from the following three software products that provide
tools for KXTll-C application development:

• MicroPower/Pascal

• KXTll-C/RT-11 Peripheral Processor Tool Kit

• KXTll-C/RSX-11 Peripheral Processor Tool Kit

1-1

INTRODUCTION

MicroPower/Pascal software provides tools for developing KXTll-C
stand-alone or peripheral processor applications in MicroPower/Pascal
and MACR0-11 under the control of the MicroPower/Pascal run-time
kernel. Included are handlers for the following KXTll-C on-board
devices:

Asynchronous serial I/O

Synchronous serial I/O

Parallel .I/O and counter-timers

Real-time clock

DMA transfer

For peripheral processor applications, device handlers provide
communication through the two-port RAM (T,PR). They allow a
MicroPower/Pascal application on the KXTll-C to communicate with a
MicroPower/Pascal, RT-11, or RSX-11 application in the arbiter
processor. MicroPower/Pascal provides a device handler for
MicroPower/Pascal arbiter applications. The handlers for RT-11 and
RSX-11 are available in the tool kits.

The KXTll-C peripheral processor tool kits provide tools for using
peripheral processors in traditional Q-BUS systems. Support is
provided for RT-11, RSX-llM, and RSX-llM-PLUS arbiter applications to
load and communicate with KXTll-C peripheral processors across the
Q-BUS. The handlers communicate with KXTll-C processors programmed in
MicroPower/Pascal.

If those tools do not meet your needs, you can program the KXTll-C in
the MACR0-11 assembly language using the standard PDP-11 application
development tools (MACR0-11, LINK, ODT, MACDBG, and so on).

If your KXTll-C application program uses ROM, you can load it with the
DECprom program (VMS ·systems) or the PROM/RT-11 program (RT-11
systems) •

1.1 KXTll-C HARDWARE FEATURES

Figure 1-1 shows the general layout of the following major
components. DIGITAL-supplied software supports most but
hardware features; the software documentation describes the
s9pported.

1-2

hardware
not all

features

INTRODUCTION

PARALLEL ASYNCHRONOUS ASYNCHRONOUS/SYNCHRONOUS
DEVICES SERIAL DEVICE SERIAL DEVICES

..-~~~.,-.,-~~-++++f+f+~.,-.,-.._,,+1,r--r---0000-------...----------..--.--~~~--

Boot/
Self
Test
Switch

Parallel 1/0
Counter-Timers

SLU1
Console

LEDs

SLU2
Channel A

SLU2
Channels

T-11 Processor, Native Firmware, Native RAM, ROM/RAM User Sockets

OMA Transfer Controller Two-Port RAM

System
ID

Switch

Figure 1-1: KXTll-C Hardware Features

• DIGITAL DCT-11 microprocessor A 16-bit, 7-MHz
microprocessor that executes the PDP-11 basic instruction set.

• On-board memory -- Local memory consisting of 32K bytes of
static read/write memory (RAM), sockets for up to 32K bytes of
PROM or static RAM, and 8K bytes of native firmware.
Additional features include eight memory map configurations,
and battery backup for native RAM.

• Native firmware -- Provides:

•

Power-up self test

Optional loopback tests

Hardware initialization

Serial ODT accessible from a console terminal or via the
Q-BUS

Application start-up: ROM, TU58 boot, or load from the
Q-BUS arbiter

Two-port RAM (TPR) -- A 16-word interface to the
passes control information and data between the
the arbiter. The RAM is divided into three areas:
for KXTll-C native firmware commands and two
application message passing.

1-3

Q-BUS that
KXTll-C and

one area
areas for

INTRODUCTION

• Two-channel DMA transfer controller (DTC) A device that
provides for memory and I/O data transfers between the local
KXTll-C and global memory on the Q-BUS using direct memory
access. Permitted transfer combinations are:

Local memory to global memory

Global memory to local memory

Local memory to local memory

Global memory to_ global memory

• Parallel I/O interface -- Contains two bidirectional 8-bit
input/output ports, one 4-bit control port, and three 16-bit
programmable counter-timers.

• Console port (DLART) -- Provides DLll-compatible asynchronous
serial communication.

• Multiprotocol controller Provides two-channel
synchronous/asynchronous serial I/O communication

• System ID switch -- Sets the system identification address and
establishes the KXTll-C for Q-BUS or stand-alone operation.

• Boot/Self-test switch
self-test operations.

Selects bootstrap and firmware

• Configuration jumpers -- Electrical jumpers on the KXTll-C
circuit board that select some of the hardware configuration
options (other options are software configurable).

Refer to the KXTll-CA User's Guide hardware reference manual for
detailed information about the KXTll-C hardware.

1.2 USING THE KXTll-C AS A PERIPHERAL PROCESSOR

Peripheral processor applications help you off-load tasks from a
conventional LSI-11 processor application. This improves overall
system performance by distributing the application task load. You can
add up to 14 KXTll-C peripheral processors to a traditional LSI-11
(Q-BUS) system configuration in the same way you add other I/O device
controllers (Figure 1-2). The difference between the KXTll-C and
conventional I/O devices is that the KXTll-C is user programmable
while conventional I/O devices are not.

1-4

ARBITER
CPU

~~ ,,

j.
, Ir

MEMORY

INTRODUCTION

,
u ,.

KXT11-C
PERIPHERAL
PROCESSOR

~~ ,,
Q-BUS

l~ ,,
1/0

DEVICE

USER
INTERFACE

.A

• • •

• • •

,

~· ,,
KXT11-C

PERIPHERAL
PROCESSOR

~~
llr

~· ,,
1/0

DEVICE

Figure 1-2: Adding KXTll-C Peripheral Processors to
LSI-11 Systems

Traditional

The following are examples of tasks that KXTll-C peripheral processors
can perform.

• Guaranteed response time -- A dedicated KXTll-C can assure a
specific interrupt response time.

• Data collection and reduction -- The arbiter is relieved of
the overhead of the interrupts required to control devices and
the CPU Q-BUS time required to refine and format the data.

• Machine control -- The arbiter processor gives high-level
commands to the KXTll-C. The KXTll-C translates the commands
to the level required by the device(s) and monitors progress.
The arbiter application merely issues commands and manages
higher-level application tasks.

• Communication protocol handling -- The KXTll-C relieves the
arbiter processor from handling communication line interrupts,
packing/unpacking messages, and formatting them. Only data is
transferred to and from the arbiter.

1-5

INTRODUCTION

1.2.1 Peripheral Processor Hardware Configuration

The application system consists of one Q-BUS arbiter CPU (LSI-11,
LSI-11/2, SBC-11/21, LSI-11/23, LSI-11/23-PLUS or LSI-11/73) and up to
14 KXTll-C peripheral processors attached to the Q-BUS. The KXTll-C
cannot be a bus arbiter.

Communication between the arbiter and the peripheral processor takes
place over the Q-BUS through the TPR. The TPR's control, status and
data registers, and vectors appear in the arbiter's I/O page.
Programs can access the registers in ways similar to those of I/O
devices. The peripheral processor's hardware configuration options
determine where its TPR area appears in the arbi te.r • s I/O page.

1.2.2 Peripheral Processor Application Software Configuration

A master application in the arbiter processor directs slave peripheral
processor operations (Figure 1-3). Communication takes place over the
Q-BUS using messages to control the KXTll-C hardware and its
application software and to transfer data. Communication can take
place using the TPR or the OMA transfer controller (OTC). If desired,
the peripheral processor can interrupt the arbiter application when it
completes the requested task.

- - - - - - - -" - - - -Q-BUS- -

commands and messages

DMA data transfers

KX I
handler I __ J

arbiter application

LSl-11 PROCESSOR

QD I KK
handler I handler
-·- ..J. __

peripheral
processor
application

KXT11-C

• • •

QD I KK
handler I handler __ L __

peripheral
processor
application

KXT11-C

Figure 1-3: Peripheral Processor Application Software Configuration

1-6

INTRODUCTION

1.2.3 KXTll-C Application Development Software Tools

DIGITAL provides the following software tools to support development
of KXTll-C applications for peripheral processing and stand-alone
environments.

Tools for Developing KXTll-C Peripheral Processing or Stand-alone
Applications

• MicroPower/Pascal

• Traditional development tools: MACR0-11, TKB/LINK, MACDBG,
ODT

e VAX DECprom or RT-11 PROM/RT-11 for loading PROMS

Tools for Developing Arbiter Applications Using the KXTll-C

• MicroPower/Pascal

• KXTll-C peripheral processor tool kits for
and the traditional development tools:
MACDBG, ODT

RT-11 and RSX-11
MACR0-11, TKB/LINK,

1.2.3.1 MicroPower/Pascal - MicroPower/Pascal supports development
and use of KXTll-C applications in the environments listed above. You
can write application programs in MicroPower/Pascal or MACR0-11 and
place the target application in RAM or ROM. MicroPower/Pascal
software provides a complete set of tools for building, debugging, and
loading peripheral processor applications. It includes a modular
kernel that provides 43 primitive services, system initialization,
event/priority scheduling, and interrupt and exception dispatching.
Device handlers provide support for all on-board devices and for
communication between the arbiter and one or more KXTll-C peripheral
processors. The KXT LOAD procedure loads KXTll-C peripheral
processors from memory image files residing in the arbiter's mass
storage.

MicroPower/Pascal provides the following tools for the KXTll-C.

• DD handler (TU58 DECtape II) -- The DD device handler supports
logical and physical I/O operations on a TU58 cartridge tape
subsystem. The TU58 subsystem can be interfaced through any
or all of the three serial I/O ports on the KXTll-C. Each
subsystem can have two drives.

• XL handler (asynchronous serial line) The XL handler
supports concurrent operation of all three serial I/O ports in
asynchronous mode with full modem control for one of the
ports.

• XS handler (synchronous serial line) -- The XS device handler
supports channel A of the synchronous/asynchronous controller
(MPCC) serial I/O ports in synchronous mode using bit-oriented
block mode transfers.

1-7

INTRODUCTION

• YK handler (parallel I/O} -- The YK device handler supports
the 20 bits of the parallel I/O port and three counter-timers.
It supports most combinations of 4-bit, 8-bit, or 16-bit port
configurations and the interlocked, strobed, pulsed, and
three-wire handshake modes. Ports can be input, output,
bidirectional, or mixed mode. The YK handler also supports
OMA data transfers (using one of the OTC channels) to and from
the port, the three independent 16-bit counter-timers, and the
pattern matching feature.

• QO handler (OMA transfer controller) -- The QD device handler
supports DMA data transfer operations using the DMA transfer
controller (OTC) • The handler provides two high-speed
channels for a MicroPower/Pascal application to transfer data
between global' Q-BUS memory and local memory on the KXTll-C.
It can also perform transfers completely within the KXTll-C
memory or the Q-BUS memory.

• KK and KX handlers (arbiter-to-KXTll-C Q-BUS interface) -- The
KK and KX handlers aid in programming the Q-BUS communication
interface between the KXTll-C and the arbiter application.
The handlers use the two-port RAM (TPR) to pass
variable-length messages between applications.

When using these handlers, the KXTll-C functions as a typical
Q-BUS device in a master-slave relationship with the Q-BUS
arbiter. The arbiter (master) controls all interactions
between the two processors. The KXTll-C (slave) waits for a
command from the arbiter processor before initiating a message
transfer. The handlers use a request-reply protocol to assure
that message transfers are complete and correct.

Appendix A describes the KK/KX communication protocol to
assist those who want to write their own KK or KX handler.

• Device handler support routines A group of
MicroPower/Pascal functions that provide a Pascpl interface to
the KXTll-C device handlers.

• Kernel features specified using the KXTllC macro:

BHALT parameter to enable/disable debugging traps in
response to the arbiter's BHALT signal.

POWER parameter to determine the action to take on power
failure and restoration.

CLOCK parameter to enable/disable the KXTll-C's real-time
clock at system start-up.

RESET parameter to determine the action to take in
response to the arbiter's BRESET signal.

MAP parameter to identify the memory map used on the
KXTll-C.

1-8

INTRODUCTION

• KXT LOAD peripheral processor load procedure -- KXT LOAD is a
MicroPower/Pascal utility procedure for lbading one or more
KXTll-C peripheral processors. The procedure reads a memory
image file (.MIM file type) from a specified mass storage
device and loads the memory of a designated KXTll-C over the
Q-BUS. KXT LOAD is described in Appendix H of the
MicroPower/Pascal Runtime Services Manual.

1.2.3.2 KXTll-C Peripheral Processor Tool Kits - The KXTll-C
peripheral processor tool kits are for RT-11, RSX-llM and RSX-llM-PLUS
arbiters. They provide the software for the arbiter application to
load and communicate with user-programmed KXTll-Cs. The tool kits
contain the following software:

• KX device handler (Q-BUS interface) -- The KX handler is the
device handler/driver for LSI-11 (Q-BUS) systems. It allows
the arbiter application to communicate with the KK handler
running under MicroPower/Pascal in the KXTll-C. See Appendix
A for a description of the KK/KX communication protocol.

• KUI load utility -- The KUI program loads memory image files
into a KXTll-C over the Q-BUS. It accepts the RSX-11 .MIM and
.TSK file types and the RT-11 .MIM, .SAV and .LDA file types.

1.2.3.3 Traditional PDP-11 Application Development Software Tools -
You can also program the KXTll-C in MACR0-11 using the traditional
PDP-11 assembly language tools provided with RT-11 and RSX-11 systems.
These tools include: MACR0-11, TKB {RSX-11 task builder) or LINK
(RT-11 linker), and ODT. In addition, RT-11 supports the MACDBG
remote symbolic debugger which operates on an RT-11 host connected by
serial line to the target KXTll-C. Refer to the appropriate software
product description (SPD) for complete information.

1.2.3.4 DECprom and PROM/RT-11 Utility Programs for PROM Loading -
The VMS DECprom utility and the PB-11 system's PROM/RT-11 utility load
EPROMs and PROMS. DECprom accepts input files of the .MIM, .SAV,
.LOA, .EXE and .TSK types. It can generate ROM checksums in the
format used by the ROM verification self-test routines in the native
firmware. PROM/RT-11 accepts input files of the .MIM .LDA and .SAV
types.

1.3 USING THE KXTll-C AS A STAND-ALONE SYSTEM

The KXTll-C also satisfies applications where a single-board computer
is required. When used as a stand-alone system, the KXTll-C operates
independently from the Q-BUS (though it can receive power from
Q-BUS-wired backplanes). All the peripheral processing tools
described in Section 1.2.3.l are applicable to stand-alone application
development except for the KK and KX device handlers.

1-9

CHAPTER 2

KXTll-C APPLICATION SYS!EM DEVELOPMENT CYCLES

This chapter summarizes the following procedures and decisions you
must make when developing a KXTll-C peripheral processing application
system or a KXTll-C stand-alone application.

• Decide which application processes the KXTll-C will perform.

• Decide how to match process requirements with the KXTll-C's
functionality and performance.

• Decide which software tools you will use for KXTll-C and
arbiter application development.

• Program and test each component of the application system.

• Combine and test the application system (arbiter and all
KXTll-Cs)

The following sections provide a general description of these
procedures and decisions. Succeeding chapters will help you
understand how to most effectively use the software development tools
in the application development process.

2.1 PERIPHERAL PROCESSOR APPLICATION DEVELOPMENT CYCLE

The following subsections describe the procedures to
developing a peripheral processor application and
considerations for such applications.

2.1.1 Partitioning the KXTll-C Application

follow when
the specific

Determine if your application can be partitioned to take advantage of
multiple processors. There must be a set of processes that can be
performed usefully in paralleL and within the capabilities of the
KXTll-C hardware. It must be possible to direct and monitor the
progress of the process through messages or transfer of blocks of
data. Some characteristics of processes that are good candidates for
KXTll-C applications:

• Input/Output processes with critical interrupt latency
requirements -- By assigning processes with critical interrupt
latency requirements to dedicated KXTll-C peripheral
processors, you can assure that the rest of the application
does not interfere with the service of critical devices.

2-1

KXTll-C APPLICATION SYSTEM DEVELOPMENT CYCLES

• Input/Output processes with a high frequency of interrupts
KXTll-C peripheral processors can relieve the arbiter from the
continual context switching required to process
interrupt-driven I/O.

• Input/Output data reduction processes -- By assigning one or
more KXTll-C peripheral processors to I/O processes that
require large quantities of input data and produce a small
amount of output, you can save arbiter processing time. The
peripheral processor receives the data, decodes it and reduces
it to the required subset, discarding the rest.

• Computational processes -- The KXTll-C can perform parallel
computational operations by using the OMA transfer controller
(OTC) to transfer data directly to its memory, perform the
operation, and transfer the data back to Q-BUS memory.

• Real-time control functions -- You can assign a KXTll-C to
control functions that require constant interaction with a
device but little interaction with the main application. The
arbiter can then direct the peripheral processor with
high-level commands.

2.1.2 Choosing the Application Software Development Tools

Decide which of the available software tools best suits your
application. You can choose from the following system application
development environments.

• MicroPower/Pascal

e RT-11

e RSX-llM

e RSX-llM-PLUS

Each of these arbiter application environments contains a device
handler/driver that communicates with a device handler in one or more
KXTll-C applications, and a utility to load the KXTll-C with
application software. With MicroPower/Pascal, you can write your
KXTll-C application programs in Pascal or MACR0-11. With RT-11 and
RSX-11 you can write your own system and application software in
MACR0-11.

MicroPower/Pascal provides you with modular system building blocks,
important functions such as semaphores, queues and ring buffers, a
choice of Pascal or MACR0-11 languages, and a complete set of
application building, loading and symbolic debugging facilities.

If you choose MicroPower/Pascal, be sure that its device handlers
support the hardware features you need. The handlers support most but
not all features of the hardware. Refer to the MicroPower/Pascal
System User's Guide and the MicroPower/Pascal Runtime Services Manual
for detailed information on the MicroPower/Pascal device handlers. If
you decide to modify a MicroPower/Pascal device handler, you can
obtain its source file from DIGITAL as part of a separate source kit.

2-2

KXTll-C APPLICATION SYSTEM DEVELOPMENT CYCLES

Your arbiter application design decision depends on what you need from
an operating system. RT-11 and RSX-11 are general-purpose, real-time
oriented operating systems, single user and multiuser respectively.
The other choice, MicroPower/Pascal, is for dedicated application
systems. You can find more information about these systems in
succeeding chapters and in the documentation listed in the Preface.

2.1.3 Designing the KXTll-C Application System

In a KXTll-C peripheral processor application, you must design the
communication protocol between the arbiter application and the
KXTll-C. This is an application-level protocol for controlling and
passing data between the KXTll-C application processes and the
arbiter. Think of the KXTll-C application as an intelligent I/O
device used by the arbiter. You design the protocol to command the
device to perform its functions (for example, start, stop, and
transfer data). The commands are generally formatted into messages
and sent through the two-port RAM (TPR).

MicroPower/Pascal provides the KK/KX device handler pair to facilitate
TPR communication in applications using MicroPower/Pascal for the
KXTll-C and arbiter. RT-11 and RSX-11 versions of the KX device
handler are also provided in the KXTll-C peripheral processor tool
kits to allow a KXTll-C using the MicroPower/Pascal KK device handler
to communicate with an RT-11 or RSX-11 arbiter application.

In addition to commands, you can also use the TPR to send data as
messages, depending on the amount and frequency of occurrence, or you
can transfer it directly using the OMA transfer controller (DTC).
When you use the OTC, the arbiter typically passes a message to the
peripheral processor specifying the location of the data buffer to
transfer. The KXTll-C application then directs the OTC locally to
make the transfer.

In general, you should use the TPR to send small messages or
infrequently issued messages. You should use the OTC to send large
messages or frequently issued messages, especially if this can be done
in parallel with other KXTll-C processes. When to use the OTC depends
on the applications and must be determined on a case-by-case basis.

When using the TPR to send large but infrequent messages, if your
application makes no other use of the OTC, you need not build its
handler into your application, thereby saving memory space.

2.1.4 Coding the KXTll-C Application

Code and test each application process in stages that minimize the
number of new variables at each stage. The exact procedure will be
application-dependent, but here are some suggestions.

• Develop the KXTll-C application and arbiter
separately in a stand-alone environment.

application

• Isolate communication between the arbiter and KXTll-C to one
process or process group on each side. Create separate test
processes to validate and exercise communication linkages on
each side.

2-3

KXTll-C APPLICATION SYSTEM DEVELOPMENT CYCLES

• Separately test and debug all application processes before
integrating them in the peripheral processing environment.

• Remove the test processes and integrate the communication
processes only when you are confident that the arbiter and
KXTll-C applications are operating correctly. This avoids the
need for loading two or more targets for testing until the
bulk of the application system has been debugged.

2.1.5 Developing Test Processes

The test processes you create should exercise and validate the
functions of the arbiter and KXTll-C applications. Each process
should simulate the operation ~f the other peripheral processing
system component. For example, the test process on the arbiter should
simulate the operation of the KXTll-C application. An
arbiter-resident test process is useful for performing regression
tests on the KXTll-C, because the actual KXTll-C application should
prod~ce the same results as those simulated by the test process.

2.1.6 Building an Application Debugging Configuration

The application configuration for debugging is slightly different from
the final configuration. If you are using the PASDBG or MACDBG remote
debugger you must build a debugger service module (DSM) into your
application. If you are using MicroPower/Pascal you must enable the
debugging option in the compiler and include debugging symbols in the
MERGE, RELOC, and MIB build steps.

If you are developing a ROM application you must decide
it. ROM applications are usually debugged using
emulator.

how
RAM

to
or

test
a ROM

Next you must decide ho~ you are going to load the application image
into the target. Your options for loading the application for
debugging are:

• Load using a remote debugger.

• Boot target system from TUSB DECtape II media.

• Load from arbiter's mass storage with. the KUI load utility.

• Load from arbiter's mass storage with the KXT LOAD procedure.

You cannot use the last three options with remote debuggers; thus,
they are of less utility than the first option in the debugging stage
of development. In general, you should use a debugger to load your
application unless your application needs the memory occupied by the
debugger service module. In this case, you will have to break up your
application into smaller modules that can be debugged separately, or
use console ODT for debugging.

2-4

KXTll-C APPLICATION SYSTEM DEVELOPMENT CYCLES

The PASDBG and MACDBG debugger service modules occupy no more than 800
bytes of the application's memory image. However, all application
programs written in MicroPower/Pascal will become a few percentage
points larger when the debugging option is enabled in the compiler.

2.1.7 Configuring the Hardware for ·Application Debugging

Be sure the hardware is configured properly and the system
configuration is operable. Hardware configurations for specific
environments and uses of the KXTll-C are discussed in succeeding
chapters of this manual. Full information on all KXTll-C options and
how to configure the hardware can be found in the KXTll-CA User's
Guide hardware reference manual.

2.1.7.1 KXTll-C Debugging Configuration - The following steps
describe the hardware configuration requirements for the KXTll-C.

1. Set the base address of the TPR in the arbiter's (Q-BUS) I/O
page using the system ID switch and the base address range
jumper on the KXTll-C. Be sure the addresses you select do
not conflict with those assigned to another KXTll-C or with
other Q-BUS devices. Appropriate address selection depends
on the peripheral processor's environment.

2. Select the appropriate boot/self-test power-up option with
the boot/self-test switch. The boot options permit execution
from ROM, booting from a TU58, waiting for boot-and-load over
the Q-BUS, and console ODT operation. The self-test options
determine whether self-tests, ROM tests and I/O loopback
tests are performed before booting the application.

3. Configure the I/O ports used by your application. Each I/O
port has several optional configurations. These are fully
described in the KXTll-CA User's Guide hardware reference
manual, and discussed as they relate to each
MicroPower/Pascal handler in the MicroPower/Pascal Runtime
Services Manual and the MicroPower/Pascal System User's
Guide.

4. Select the appropriate KXTll-C memory map. This is discussed
in. Chapter 3 for MicroPower/Pascal applications. If you are
building a ROM application, it is advisable to start
debugging with a RAM configuration so you can set breakpoints
in memory locations that will ultimately reside in ROM.

2.1.7.2 System Hardware Debugging Configuration - The system
configuration required for debugging a KXTll-C application consists of
the KXTll-C to be debugged, the arbiter CPU, and its Q-BUS I/O
devices, if any. If you are using PASDBG or MACDBG, you must connect
a serial asynchronous communication line between the host system
(RT-11, RSX-11, VMS) and the KXTll-C console port. Otherwise, use the
peripheral processor's console ODT by connecting a terminal to its
console port.

2-5

KXTll-C APPLICATION SYSTEM DEVELOPMENT CYCLES

When you use MicroPower/Pascal software in the arbiter and the
KXTll-C, you can connect multiple invocations of PASDBG running on one
or more host processors {depending on your host operating system) to
the arbiter and KXTll-C processors over separate serial lines. This
is the best way to debug peripheral processor applications. You can
also use a single invocation of PASDBG and a terminal to debug several
targets. Refer to Section 3.6 for detailed information.

2.1.8 Testing and Debugging the Application

Run the arbiter or the KXTll-C application with the communication test
process until you detect an error; then use a debugger to isolate the
error. If you use PASDBG you can debug your application symbolically,
setting breakpoints, examining the state of the application, changing
the contents of memory locations, and controlling the execution of the
application. If you use console ODT, you must use octal numbers and a
memory load map.

2.1.9 Completing the Test Cycle

Repeat the preceding procedures {Sections 2.1.1 through 2.1.8) for
each processor used in the application system. When you are through
with this procedure, you will be confident that each processor
application is running correctly {to the extent that this can be
verified with test programs). You can then proceed to testing
sections of the peripheral processor application together.

2.1.10 Testing and Debugging the Integrated Application System

After completing the test cycle described above, integrate all the
application system components as follows.

1. Remove all test processes.

2. Configure the peripheral processor system hardware and the
debugging equipment. ·

3. Build a debugging configuration of the software including the
actual communication processes.

It is this stage of debugging where multiple invocations of PASDBG are
useful. If you tested the individual processes well, this phase
should proceed easily with most of the problems being isolated in the
communication process.

2.1.11 Building the Final Application System

For the final application configuration:

• Remove any debug aids.

• Generate an optimized kernel.

2-6

KXTll-C APPLICATION SYSTEM DEVELOPMENT CYCLES

• Decide how the final application will be loaded.

The arbiter and KXTll-C applications must be loaded. For the arbiter
application, you can use mass storage, down-line loading, or ROM. The
software to support arbiter application loading depends on the
facilities provided by the arbiter's operating system
(MicroPower/Pascal, RT-11, or RSX-11).

KXTll-C software provides facilities for loading your application from
the following media.

• Memory-image binary files on a Q-BUS mass storage device using
the KXT LOAD procedure, the KU! program or other user-created
load program issuing commands to the native firmware through
the command registers of the TPR

• Native ROM on the KXTll-C

• TU58 DECtape II cartridge tape subsystem or other RSP {radial
serial protocol) device connected to the KXTll-C

Your choice depends on your application requirements.

2.1.12 Configuring the Final Application System Hardware

Review your final hardware configuration. You may need to select a
memory map that is different from the one used during debugging. Make
sure there are no CSR and vector address conflicts in the arbiter.
Compare the CSR and vector assignments of devices you add for
application loading with those assigned to the KXTll-C processors in
the system.

2.2 STAND-ALONE PROCESSOR APPLICATION DEVELOPMENT CYCLE

The stand-alone application development cycle is the same as the
application development cycle for traditional LSI-11 systems.
Specific information relating to hardware and software configurations
for KXTll-C stand-alone operation is included in succeeding chapters.

2-7

CHAPTER 3

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

Developing an application for the KXTll-C when using MicroPower/Pascal
is similar to developing other MicroPower/Pascal applications, with
the following major differences.

• When using the MPBLD utility you must specify that the target
processor is a KXTll-C.

• The MicroPower/Pascal device handlers for the KXTll-C are in
the DRVK.OBJ library.

• You will debug and test a target system that has multiple
processors.

• Separate memory images (.MIM files) must be built for each
processor in the application system; one for the arbiter
processor (if the arbiter will run MicroPower/Pascal) and one
for each KXTll-C.

3.1 KXTll-C SYSTEM FILES

KXTll-C software for MicroPower/Pascal consists of %INCLUDE files,
device handler interface routines, prefix files, and device handler
modules (refer to Table 3~1).

%INCLUDE files define Pascal device-handler interface routines and the
standard I/O packet structures that the device handlers use. You
include these files in your program with the %INCLUDE command so you
can use the associated interface routine or packet.

Device handler interface routines provided in the run-time hardware
support library (RHSLIB.OBJ) perform all message construction,
semaphore creation, queue signaling, and queue waiting needed to send
and receive commands or data to and from the device handler. Using
these interface routines, or the MicroPower/Pascal file system,
greatly simplifies the programming of your application.

Prefix files configure I/O device handler operating characteristics
and cause the inclusion of the device handler in the application
image. When you use the MicroPower/Pascal utility program MPBLD, you
select handlers by specifying the pref ix file of the handler to be
included. This file may be a MicroPower/Pascal-supplied file or a
customized version of a MicroPower/Pascal-supplied file. Also, when
using a device handler interface routine, you must include RHSLIB.OBJ
as an additional library module. Chapters 5 and 6 of the
MicroPower/Pascal System User's Guide provide complete information on
using the M1cr0Power/Pascal librarfeS and bootstraps.

3-1

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

Table 3-1: KXTll-C System Files Provided with MicroPower/Pascal

File Description

CKPFX.MAC Prefix file for KXTll-C line-frequency clock {CK) handler
{standard MicroPower/Pascal clock handler).

CFDKTC.MAC Sample KXTll-C system configuration file that specifies
all features, handlers, and debugging support. Used in
generation of installation verification program, and
peripheral processor verification program.

CLKLIB.PAS %INCLUDE file for device interface routines that access
clock {CK) handler.

DDPFXK.MAC Prefix file for TU58 DECtape II {DD) device handler.

DRVK.OBJ Device handler object module library for KXTll-C devices.
'Contains KK, DD, QD, XL, XS, YK, and CK device handler
modules. Use this library in merge step when building
device handler modules into your application.

DRVM.OBJ Device handler object module library for mapped arbiter
applications. Contains arbiter Q-BUS {KX) device handler
and other standard MicroPower/Pascal device handler
modules. Use this library in merge step when building
arbiter application's device handler modules.

DRVU.OBJ Device handler object module library for unmapped arbiter
applications. Contains arbiter Q-BUS (KX) device handler
and other standard MicroPower/Pascal device handler
modules. Use this library in merge step when building
arbiter application's device handler modules.

IODEF.PAS %INCLUDE file that defines common I/O definitions for
Pascal KXTll-C-resident device handler %INCLUDE files.
Used when compiling KXTll-C device handlers written in
Pascal and when using KXTll-C MicroPower/Pascal device
handler interface routines described in Appendix H of
MicroPower/Pascal Runtime Services Manual.

IOPKTS.PAS %INCLUDE file that defines standard Pascal I/O packet
structure used by KX device handler and the other standard
Pascal arbiter-resident device handlers. Use this file
when compiling Pascal device handlers and user programs to
run on arbiter.

KKPFXK.MAC Prefix file for KK (KXTll-C-resident two-port RAM) device
handler.

KKINC.PAS

KXPFX.MAC

%INCLUDE file defining device handler interface routines
that access KK (KXTll-C-resident two-port RAM) device
handler.

Prefix file for KX {arbiter-resident two-port RAM) device
handler. Used in peripheral processor verification and
demonstration programs.

(Continued on next page)

3-2

File

KXINC.PAS

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

Description

%INCLUDE file defining device handler interface routines
that access KX (arbiter-resident two-port RAM) device
handler.

KXLINC.PAS %INCLUDE file defining Pascal-callable procedure KXT LOAD
that loads KXTll-C from arbiter.

QDPFXK.MAC Prefix file for DMA transfer controller (DTC) device
handler (QD) •

QDINC.PAS %INCLUDE file defining device handler interface routines
that access DMA transfer controller (QD) device handler.

RHSLIB.OBJ Device-handler interface routine object module library.
Contains modules for KK, KX, QD and YK device handler
interface routines, KXT LOAD (load KXTll-C from arbiter)
procedure, and standard MicroPower/Pascal device handler
interface routines. Use this library in merge step when
building Pascal program compiled with %INCLUDE file
KKINC.PAS, KXINC.PAS, QDINC.PAS, YKINC.PAS, KXLINC.PAS or
RHSDSC.PAS.

XLPFXK.PAS Prefix file for asynchronous serial line (XL) device
handler for KXTll-C serial devices.

XSPFXK.PAS Prefix file for synchronous serial line (XS) device
handler.

XSINT.MAC Source file for synchronous serial line (XS) device
handler's interrupt service routine. Provided as
instructional aid in creating application-specific version
of XS device handler.

XSDRVK.PAS Source file for synchronous serial line (XS) device
handler. Provided as instructional aid in creating
application-specific version of XS device handler.

YKPFXK.MAC Prefix file for parallel port and counter-timer (YK)
device handler.

YKINC.PAS %INCLUDE file defining device handler interface routines
used with parallel J/O (YK) device handler.

PPVFY.COM Command file that generates and loads peripheral processor
verification and demonstration programs. In RSX-11
versions of MicroPower/Pascal kit, has .CMD file type.

IOPVFY.PAS Pascal source file for KXTll-C half of peripheral
processor verification and demonstration programs.

ARBVFY.PAS Pascal source file for arbiter half of peripheral
processor verification and demonstration programs.

3.2 BUILD PROCEDURE

Building an application that runs on the KXTll-C is similar to
building Q-BUS processor applications. You can build your application
automatically using the MPBLD command procedure, or build your
application manually issuing commands to MERGE, RELOC, MIB, the

3-3

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

MACR0-11 assembler, and the MicroPower/Pascal compiler. In manual
builds, you must specify the appropriate library file names to each
build program. In contrast, MPBLD automatically supplies the
appropriate file specification for a corresponding build step,
depending on CPU type and other entries.

Chapters 5 and 6 of the MicroPower/Pascal System User's Guide provide
complete information on using the MicroPower/Pascal libraries and
bootstraps.

3.2.1 Optimizing the Kernel

Optimizing the kernel in the KXTll-C environment is the same as for
the LSI-11 ~nvironment. An optimized kernel is a customized version
of the kernel that contains only the primitives your application uses;
unused primitives are discarded. Building an - optimized kernel
minimizes its size and corisequently the amount of memory the
application will occupy.

You can optimize the kernel as one of the final application building
steps after debugging is complete. If memory space is at a premium,
you can eliminate some of the kernel's primitives before debugging.
When you specify YES in the OPTIMIZE parameter of the SYSTEM macro,
you can list in the PRIMITIVES macro the kernel primitives your
application uses. You can then determine how much RAM and ROM your
application occupies by obtaining the maps generated by the MIB and
RELOC utilities. These maps show th~ size of the RAM and ROM used by
the MicroPower/Pascal kernel, and all other processes. As you omit
primitives from the list, you can obtain new copies of the maps to
determine the additional amount of memory reclaimed. Alternatively,
you can use an application building style that automatically
configures the kernel primitives used by your application code.
Chapter 7 of the MicroPower/Pascal System User's Guide describes this
procedure.

3.2.2 Building KXTll-C Applications with MPBLD

MPBLD is an interactive command procedure utility that builds
application images. (Refer to Appendix B of the MicroPower/Pascal
System User's Guide for more information about MPBLD.) The following
paragraphs list MPBLD questions for building KXTll-C applications and
discuss the appropriate answers. Message text enclosed by angle
brackets (<>) represents information the MPBLD procedure supplies.

Questions 1 through 5 do not relate exclusively to the KXTll-C.

Question 6: Do you wish to modify <kernel configuration file>? [no]:

If you have not created a configuration file that includes the
KXTll-C, or if you are not using the standard CFDKTC.MAC configuration
file supplied with MicroPower/Pascal, you should answer YES to this
question. This allows you to create a configuration file or edit a
copy of the standard configuration file to include the KXTll-C
parameters. If you answer NO to this question, the kernel will be
built with the configuration file parameters that exist in the file.

3-4

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

For KXTll-C applications you must specify the following macros and
arguments.

PROCESSOR

You must specify the following parameters.

mmu=NO
type=KXTllC
vector=<address>

where <address> is the address of the first free memory location
above the highest interrupt vector used by the application.

MEMORY

Specify the memory allocation scheme you selected. The KXTll-C
has eight different jumper-selected memory mapping schemes; maps
0 through 7 described in Section 3.3.1.

KXTllC

Select parameters required for your application. Be sure the MAP
parameter agrees with the memory configuration you specified in
the MEMORY macro.

DEVICES

Specify the
application.
assignments.

interrupt
Appendix

vectors of the devices used by the
B lists standard KXTll-C device vector

Question 7: Satisfied with edit? [yes]:

At this point you exit the editor and proceed to question 8 (YES) or
repeat the editing session (NO}. If you answer NO, you return to the
editor with the originally specified file as input. This question is
asked each time you leave the editor.

Questions 8 through 10 do not relate exclusively to the KXTll-C.

Question 11: Mapped image? [no]:

Answer NO. The KXTll-C has no memory mapping hardware.

Question lla: Is the target a KXTll-C? [no]:

Answer YES. This answer selects the KXTll-C device handler library
DRVK.OBJ.

Question 12 does not relate exclusively to the KXTll-C.

3-5

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

Question 13: Does this system contain any ROM? [no]:

If the KXTll-C contains ROM, answer YES; otherwise, answer NO.

Question 14: What is the base address of RAM (octal address)?

Enter the lowest address assigned to RAM. The answer you give will
depend on the KXTll-C memory map you selected. Specify the address as
an octal number.

Question 15:
[default]:

Instruction set hardware? {NHD, FPP, EIS, FIS}

Since the KXTll-C does not support FPP, EIS or FIS hardware, answer
NHD or <RET>. The default is NHD because you answered NO to question
11.

Question 16: LSI-11/2 mode on compilations? [no]:

Answer NO. The processor is not an LSI-11/2.

Question 17: Handler Prefix filespec?

This question is the first of a series of questions (17 through 20)
that allow you to specify a standard DIGITAL-supplied KXTll-C device
handler and tailor it to your particular needs by editing its prefix
file. The sequence will repeat until you have no further device
handlers to specify. The MicroPower/Pascal Runtime Services Manual
describes the standard device handlers. The associated pref ix files
are described in the MicroPower/Pascal System User's Guide.

If your application uses one of the KXTll-C devices and you are not
providing your own handler for this device, enter the name of one of
the following DIGITAL-s?pplied KXTll-C device handler prefix files.
If you are not using one of these handlers or you have entered all the
handlers to be used, answer <RET>. MPBLD will then skip to question
21.

Prefix
Filename Device

CKPFX.MAC Line clock

DDPFXK.MAC TU58 DECtape II

KKPFXK.MAC KK (KXTll-C-resident two-port RAM) handler

QDPFXK.MAC DMA transfer controller

XLPFXK.MAC Asynchronous serial lines SLUl, SLU2 channel A and
SLU2 channel B

XSPFXK.PAS Synchronous serial line

YKPFXK.MAC Parallel I/O ports and counter-timers

3-6

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

Question 18: Is this a Pascal-implemented handler? [no]

Answer YES if you specified the XSPFXK.PAS prefix file in the previous
question.

Question 19: Do you wish to modify <prefix filespec>? [no]:

Answer YES if you want to edit the prefix file specified in question
17 to include handler features other than the default features. Refer
to the MicroPower/Pascal S*stem User's Guide for device-handler prefix
file descriptions and to t e MicroPower/Pascal Runtime Services Manual
for device handler descriptions.

Question 29: Satisfied with the edit? [yes]:

At this point exit the editor and return to question 17 (YES) or
repeat the editing session (NO). If you answer NO, you return to the
editor with the originally specified file as input. This question is
asked each time you leave the editor.

The remaining MPBLD questions do not relate exclusively to the
KXTll-C.

3.3 SOFTWARE AND HARDWARE CONFIGURATION GUIDELINES

This section tells you how to configure the MicroPower/Pascal software
and KXTll-C hardware. There are four main areas of concern:

1. The location of RAM and ROM

2. The system configuration, stand-alone or peripheral processor

3. The I/O device options

4. The bootstrap start-up option

3.3.l Configuring Memory

KXTll-C native memory has eight jumper-selectable configurations
(maps) as shown in Figure 3-1. Each map defines a particular
combination of native (local) RAM and user-installed RAM or ROM
residing in the user sockets of the KXTll-C.

3-7

PROGRAMMING A KXTll-C USING MICRO POWER/PASCAL

177777

2KB 1/0 PAGE 2KB 1/0 PAGE

4KB Native Firmware ROM 4KB Native Firmware ROM

2KB Self-test Overlay ____ 160000 2KB Self-te~ .Qv~~y
Reserved

8KB 8KB
64 Bytes Native Native

Firmware Firmware
Extension 140000 Extension

Reserved 64 Bytes
Native
RAM

120000 24KB

8KB 16KB 16KB
4KB
User User User User Native Native Native

ROM/RAM ROM/RAM ROM/RAM ROM/RAM 100000
RAM RAM RAM

Reserved 64 Bytes 32KB 32KB 32KB

60000

Native Native Native Native
RAM RAM RAM RAM 40000
32KB 32KB 32KB 32KB

20000

16KB 32KB

0 User User User User
ROM/RAM ROM/RAM ROM/RAM ROM/RAM

MAPO MAP 1 MAP 2 MAP3 MAP4 MAP 5 MAPS MAP7

Figure 3-1: KXTll-C Memory Map Configurations

3.3.1.1 Memory Configuration Steps - When you configure KXTll-C
memory, you must specify parameters in the software configuration file
and install jumpers on the KXTll-C circuit board:

1. Select a map according to the
application.

requirements of your

2. Specify the number of the map you selected in the KXTllC
configuration file macro.

3. Install additional ROM or RAM in the user sockets.

NOTE

If your application uses ROM, consider
substituting RAM in its place during
debugging so you can use the PASDBG debugging
program.

3-8

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

4. Specify, in the configuration file's MEMORY macro, each
contiguous block of RAM and ROM defined by ~he selected map
and the ROM or RAM installed in the user sockets.

5. Install the map selection jumpers on the KXTll-C circuit
board. (The KXTll-CA User's Guide hardware reference manual
shows the location of these jumpers.)

6. Select an appropriate setting for the boot/self-test switch
(see Table 3-3).

3.3.1.2 Memory Selection Rules - MicroPower/Pascal software can use
any KXTll-C memory map option as long as you observe the following
configuration rules.

1. You can select any memory map for RAM-only applications that
is appropriate for the type of RAM devices installed in the
user sockets.

2. You can select maps 4, 5, 6, or 7 for MicroPower/Pascal
applications that use ROM. MicroPower/Pascal memory
allocation rules require that you configure all ROM in memory
addresses lower than those assigned to RAM. Thus, you should
not specify maps 0 to 3 if your MicroPower/Pascal application
uses ROM.

3. If your application will be loaded from TU58 DECtape II-, you
must configure RAM to start at address 0.

4. Do not configure your application to use the highest 64 bytes
of native RAM. This area is reserved for KXTll-C native
firmware. The location of this 64-byte area depends on which
memory map you select with the boot/self-test switch (see
Figure 3-1) • If you are going to use RAM in the user
sockets, assign it to low memory addresses (maps 4 to 7). In
this way the reserved 64-byte area will reside at the highest
RAM locations rather than within the RAM address range.

5. Do not configure your application to use nonexistent memory
addresses (address space identified as NXM in Figure 3-1).

6. Never configure the 8KB block of memory addresses shown in
maps 3 and 6 and designated 8KB Native Firmware Extension.
These addresses reference locations in the native firmware
socket that are outside the address space of the native
firmware ROM provided by DIGITAL.

Table 3-2 summarizes MicroPower/Pascal map usage.

3-9

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

Table 3-2: MicroPower/Pascal Usage of KXTll-C Memory Maps

Map Usage

0 32KB of native RAM; 4KB RAM in user sockets mapped high. Do not
allocate memory between 77700 and 77777.

1 32KB of native RAM; 8KB RAM in user sockets mapped high. Do not
allocate memory between 77700 and 77777.

2 32KB of native RAM; 16KB RAM in user sockets mapped high. Do not
allocate memory between 77700 and 77777.

3 32KB of native RAM; 16KB RAM in user sockets mapped high. Do not
allocate memory between 77700 and 77777.

4 32KB of native RAM; 4KB ROM/RAM in user sockets mapped low. Do
not allocate memory between 137700 and 137777.

5 32KB of native RAM; 8KB ROM/RAM in user sockets mapped low. Do
not allocate memory between 137700 and 137777.

6 32KB of native RAM; 16KB ROM/RAM in user sockets mapped low. Do
not allocate memory between 137700 and 137777.

7 24KB of native RAM; 32KB ROM/RAM in user sockets mapped low. Do
not allocate memory between 157700 and 157777.

3.3.2 Using Battery Backup

The battery backup feature of the KXTll-C preserves the contents of
the native RAM during power failure so that the application program
can recover after a power failure.

3.3.2.1 Configuration Considerations - You must configure the
hardware and software to set up RAM for battery backup operation.

To configure the hardware:

• Obtain an appropriate SV battery.

• Connect the battery to the KXTll-C backplane.

• Install the battery backup jumper on the KXTll-C circuit
board.

• Install ROM in the user sockets and configure the jumpers
appropriately for the ROM devices used.

• Select a memory map with the ROM starting at location 0.

Refer to Chapter 6 of the KXTll-CA User's Guide hardware reference
manual for detailed information.

3-10

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

To configure the software:

• Edit the kernel configuration file so the POWER parameter of
the KXTllC macro specifies NONVOL (that is, POWER = NONVOL).
This causes the appropriate kernel power failure and power
restoration routines to be built into your application.

• Specify the use of RAM and ROM using the MEMORY macro.

• Build the system so all code resides in ROM.

Configuring memory in this way affects the way you use PASDBG (see
Section 3.6.7).

3.3.2.2 Programming Considerations - To make effective use of battery
backup, you must design your application with the following
information in mind.

On restart after a power failure, the MicroPower/Pascal kernel
completely initializes itself and the user's application; it does not
attempt to recover the application's context. Your application must
recover its own context after a power failure. I/O transactions that
occurred during the failure are lost.

The kernel's power-up routine generates an interrupt and maintains a
recovery indicator to facilitate application recovery. Each time
power is restored, the kernel's power-up routine generates a trap
through vector 214. Whether or not your application responds to the
interrupt depends on the actions that need to be performed when a
power restart occurs. If no action is required, the application can
ignore the interrupt. The application's initialization routines may
also test the kernel's one-word recovery indicator (KXT$RI). If the
value is nonzero, a power restart rather than a cold start is in
progress. If your application requires a direct response to the
interrupt, you must write a power-failure interrupt service routine
that connects to this vector (CONNECT INTERRUPT in Pascal or CINT$ in
MACR0-11) • The routine can examine KXT$RI to determine whether a cold
start or recovery occurred so it can direct an action to take after
the power failure. When your interrupt routine completes, the native
firmware will reinitialize to reconfigure the peripheral controller
circuits which are not protected during a power failure.

In another recovery technique your application can maintain a system
of I/O status flags and perform buffer validation after a restart from
a power failure. Refer to the description of the KXTllC macro in
Chapter 4 of the MicroPower/Pascal System User's Guide for additional
programming information. ·

3.3.3 Configuring the KXTll-C System Environment

This section tells you how to set up the KXTll-C for its system
environment. The features you can select include stand-alone
operation or peripheral processor operation, and the system's start-up
options (application bootstrap device, console ODT operation, and
self-test program execution). When you select these features, you
must configure jumpers and switches on the KXTll-C circuit board and
change some of the parameters of the KXTllC macro in the configuration
file.

3-11

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

The system ID switch and the boot/self-test switch specify to the
native firmware the desired environmental and operational features of
the KXTll-C. The boot/self-test switch determines when the self-tests
will be performed and how the application program will be initialized.

3.3.3.1 Selecting Stand-Alone or Peripheral Processor Operation - You
can select stand-alone or peripheral processor operation with the
system ID switch on the KXTll-C circuit board.

To use stand-alone mode, select switch positions 0 or 1. In
stand-alone mode, the two-port RAM (TPR) is disabled since no Q-BUS is
required. To use peripheral processing mode, select switch positions
2 to 15. You can configure a maximum of 14 KXTll-C peripheral
processors in a Q-BUS system by selecting switch positions 2 to 15.

In peripheral processing mode, the TPR is enabled and connected to the
Q-BUS. Each switch position selects a different base address for the
TPR registers in the arbiter's I/O page. The switch selects addresses
from a high or low range depending on whether or not you install the
TPR base address jumper on the KXTll-C circuit board.

Appendix C lists system ID switch settings and the associated I/O page
base addresses of the two-port RAM. When selecting the TPR base
addresses, avoid conflicts between the KXTll-C processor's I/O page
registers and I/O page registers allocated to other devices on the
application system's Q-BUS.

Do not configure TPR addresses in the high range for system ID switch
settings 8 to 15, as many of these addresses are allocated for
standard devices and processor registers.

Each system ID switch number you select must be unique among all
system ID switch numbers for KXTll-C processors on the same Q-BUS.
The number need not be in a continuous sequence with the system ID
switch numbers selected for other KXTll-C processors on the Q-BUS.

Specify the CSR address implied by the system ID switch and TPR base
address jumper setting you select in the KX device handler prefix
file. You can insert this information in the file manually with an
editor or automatically during execution of MPBLD (described in
Appendix B of the MicroPower/Pascal System User's Guide).

3.3.3.2 Selecting KXTll-C Initialization and Self-test Options -
KXTll-C firmware provides initialization and diagnostic self-test
functions that are selected by the boot/self-test switch on the
KXTll-C circuit board. They are power-up features that provide for
hardware initialization, automatic self-tests, console ODT,
application bootstrapping, and execution of control routines that
handle local restart interrupts to allow the arbiter to gain control
of the KXTll-C. Table 3-3 summarizes the boot/self-test switch
functions.

3-12

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

Table 3-3: Initialization/Self-Test Options

Boot/Self-Test Switch Position*

Initialize/Test
Feature " 1 2 3 4 5 6 7 8 9 18 11 12 13

Start-up in ROM x x x

Boot from TU58 x
DECtape

Load RAM from x x
arbiter and run

Enter debugging x
(ODT) mode

Perform user x x
ROM tests

Perform auto x x x x x
self-tests

Dedicated test x x
mode

Reserved x x x x

*Switch positions 7 and 11 to 15 are reserved. If you apply power to
the KXTll-C with these positions selected, it will not function and
the LED display will indicate a fatal error.

14 15

x x

3.3.3.2.1 ROM Application Start-up - Boot/Self-test switch positions
0, 1 and 2 allow you to execute a ROM application. The native
firmware transfers control ,to the ROM code by emulating a trap to
location 24. Consequently you must configure the ROM to start at
address 0 (maps 4 to 7) to assure that the contents of vector 24 are
preserved.

Switch position 0 inhibits the automatic self-tests. By using this
switch position, you can reduce application start-up time to a
minimum. Choose this position only when necessary to maintain
acceptable application performance.

Switch position 1 inhibits the user ROM checksum test. This allows
you to start an application that was loaded into ROM that contains no
checksum or that was loaded into ROM with a checksum that was
calculated by an algorithm that is incompatible with the test.
Appendix E describes the procedure to use with the DECprom program to
calculate and program ROM checksums for KXTll-C applications. The
KXTll-CA User's Guide hardware reference manual describes the checksum
algorithm.

Use switch position 2 if your ROM application supports the user ROM
checksum test.

3-13

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

3.3.3.2.2 TOSS and RSP Bootstrap - If you are going to load your
application image from a TU58 DECtape II drive or an RSP (radial
serial protocol) link, select switch position 3. This causes the TU58
primary bootstrap to execute on power-up and load your application
using RSP from a TU58 DECtape II subsystem or other system through
SLUl (DLART). Once the primary bootstrap begins receiving the boot
block from the TU58, it checks that the first word of the block is in
the range 240(-0ctal) to 277(octal). If true, it considers this block
to be a valid boot block and it loads the remaining blocks into RAM
and starts the program. If the first word's value is invalid, the
primary bootstrap continues to check, alternating between unit 0 and
unit 1, until it finds a valid boot block.

When your application will be loaded from TU58 DECtape II, you must
configure RAM to start at address 0.

3.3.3.2.3 Loading from the Arbiter - You can load your peripheral
processor application from a system storage device via the arbiter.
If your arbiter application runs under MicroPower/Pascal, you can use
the Pascal routine KXT LOAD described in Appendix H of the
MicroPower/Pascal Runtime Services Manual. If your arbiter
appl1cat1on runs under RSX-11 or RT-11, you can use the KU! utility
program described in the KXTll-C Software Toolkit/RSX Reference Manual
or KXTll-C Software Toolkit/RT Reference Manual.

Boot/Self-test switch positions 5 and 6 instruct the KXTll-C to wait
for a command over the Q-BUS from KXT LOAD or KUI. The automatic
self-tests will be performed first if you select switch position 5;
they will be inhibited if you select switch position 6.

3.3.3.2.4 Automatic Self-Tests - The automatic self-tests are a
subset of the self-test functions that the native firmware provides.
These tests will run when the boot/self-test switch is in positions 1,
2, 3 and 5.

The automatic self-tests include a:

• CPU test

• RAM test, native and user (if RAM resides in user sockets)

• ROM test, native and user {if selected)

• CSR test, NXM test of all native CSRs and the TPR (read-only
test)

• OMA test, local-to-local OMA transfers

The tests report diagnostic errors using the LED display on the
KXTll-C circuit board and the TPR system control registers. The LED
display reports automatic self-test diagnostic data and general
KXTll-C status. Control registers 2 and 3 of the TPR contain the test
status information on completion of the nonfatal tests. Register 2
indicates which tests failed and register 3 specifies the type of
failure. Register 3 is overwritten only if an error was encountered,
and will contain the valid discrete error code for the last test that
found an error.

3-14

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

The native firmware considers failure of the following self-tests as a
fatal condition and will not allow the application to run.

e CPU test

• Native RAM test

• Native ROM test

• CSR test (TPR portion)

The tests report fatal errors only in the LED indicators since the
firmware disables the TPR under these conditions.

The results of the remaining nonfatal tests do not prevent the
application from running and will be reported in the LED display and
the TPR system control registers. The user application should check
for these nonfatal error conditions to see if they affect the
application. Appendix F describes the procedures to follow.

Chapter 6 of the KXTll-CA User's Guide hardware reference manual
discusses the meaning of all LED displays; Chapter 5 in that document
describes the TPR registers and associated error codes.

If you do not select the automatic self-tests, you can reduce
application start-up time to a m1n1mum. However, these tests are
useful diagnostic tools. You should bypass them only when necessary
to maintain acceptable application performance.

3.3.3.2.5 Debugging (OOT) Mode - When you use boot/self-test switch
position 4, the KXTll-C enters console ODT through SLUl (DLART).
Select this switch position when you want to debug your application
with PASDBG.

3.3.3.2.6 Dedicated Test Mode - This mode is for dedicated diagnostic
testing; the tests permit no execution of application code. You
select the tests with boot/self-test switch positions 8, 9 and 10.
These switch positions cause RAM to be mapped to low memory addresses
by overriding the selected memory map jumper settings. ROMS jumpered
for high memory mapping are mapped to their corresponding positions in
low memory.

Switch positions 8 and 9 select the automatic self-tests and I/O port
loopback tests; position 9 includes the ROM test. You must install
loopback connectors on the I/O ports for these tests.

Switch position 10 selects the automatic self-tests, then causes the
KXTll-C to wait for self-test commands through the TPR from the
arbiter.

Chapter 6 of the KXTll-CA User's Guide hardware reference manual
provides further information.

3.4 I/0 PROGRAMMING ANO CONFIGURATION CONSIDERATIONS

The following subsections discuss how you can use the device handlers
DIGITAL provides for the KXTll-C with MicroPower/Pascal software.

3-15

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

Examples illustrate features of these handlers that differ from the
non-KXTll-C MicroPower/Pascal device handlers.

3.4.1 Using the Parallel I/O (YK) Handler

The YK device handler operates -the parallel I/O and counter-timer
controller on the KXTll-C. It allows your MicroPower/Pascal programs
to interface with the two 8-bit parallel ports, the 4-bit
special-purpose I/O port, and the three independent 16-bit
counter-timers. The handler provides the functions of read, write,
pattern recognition, DMA read, OMA write, counter-timer set,
counter-time~ read, and counter-timer clear.

The parallel I/O port has configuration options you can select by
editing the handler's prefix file. Many of these options interact
with one another in subtle ways. You must be thoroughly familiar with
the operation of this device and with the configuration rules before
building an application that uses the YK device handler. (Refer to
the KXTll~CA User's Guide hardware reference manual and Chapter 4 of
the MicroPower/Pascal System User's Guide.)

The parallel I/O port can read and write streams or individual bits of
data using its event synchronization options. Your programs can
access the YK handler from MicroPower/Pascal or MACR0-11 routines by
using the standard primitive I/O requests or the MicroPower/Pascal
device handler interface routines listed below.

YK PORT READ -- Reads data from a parallel port

YK PORT WRITE -- Writes data to a parallel port

YK SET PATTERN -- Sets pattern recognition modes for a parallel
port

YK SET TIMER -- Sets a timer to an initial value, triggers a
timer -after setting it, or sets a timer to periodically signal a
binary semaphore

YK READ TIMER -- Reads a timer's or counter's current count

YK CLEAR TIMER -- Deactivates a timer or counter

Refer to Chapter 4 and Appendix H of the MicroPower/Pascal Runtime
Services Manual for detailed information.

Typical parallel I/O port applications include:

• Transferring a series of bytes or words through a port with
handshake protocol

• Setting or reading the bits of external state lines

• Generating a time base to software

e Generating a waveform for external output

• Counting pulses from an external input

3-16

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

The paragraphs that follow provide examples to illustrate these
applications. All examples use the MicroPower/Pa~cal device handler
interface routines listed above.

3.4.1.1 Transferring a Series of Bytes or Words Through a Port - This
example illustrates how a program can send a stream of parallel data
from a buffer to an output port connected to a parallel printer. The
example makes full use of the parallel I/O ports. The printer must
operate under handshake signal control and the user's program must
monitor the printer's error . status data and send control/indicator
data to it.

Parallel
Printer

Port A
bits

<7:0>

Port B
bits

<7:0>

Parallel 1/0 Counter-Timer

Port C
bits

<3:0>

Y111111~ L.;111111~ Yllt---

~IAI ~- ,._.... ,~_ --------
l ~

.... ----·--Port B Acknowledge Handshake Input

-~---Port B Data Available Handshake Output

-------~~ ----i-----1-----------

Device Error
Status Lines

Control/Indicator
Lines

v
Data Input

Lines
UHandshake lines:

1
Ready for Data
Accept Data

Figure 3-2: Sending Data to a Parallel Printer

Configuration

Figure 3-2 shows the external connections between the parallel I/O
port and the printer. The listing of the YK handler prefix file that
follows shows you how to specify this configuration.

Port A is configured as a bit port. The least significant bits {0 to
3) are configured as output lines to the printer's control and
indicator lines. The most significant bits {4 to 7) are configured by
default as input lines to receive error input signals from the
printer. Pattern matching is specified to detect changes in error
input signals.

3-17

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

Port B is configured as an output port with interlocked handshake for
the data bytes going to the printer.

Port C is configured as a bit port with bit 0 as an output for the
printer's data-accepted line. Bit 1 is configured by default as an
input for the printer's ready-for-data line.

.MCALL YKCI$
YKCI$

; Port A Setup

YKCP$ CHAN=A, PTYPE=YK$BIT
YKCP$ CHAN=A, OUT=17
YKCP$ CHAN=A, PAT=TRUE

; Port B Setup

YKCP$ CHAN=B, PTYPE=YK$0UT
YKCP$ CHAN=B, HSH=YK$INL

; Port C Setup

YKCP$ CHAN=C, PTYPE=YK$BIT
YKCP$ CHAN=C, OUT=2

YKCE$

; Beginning of Prefix File

Port A is a Bit Port.
Least Signific~nt 4 bits are outputs.
Pattern Recognition to detect
changes in Error Input Lines.

Port B is an Output Port
with Interlocked Handshake.

Port C is a Bit Port.
Bit 1 is a Handshake Output.

End of Prefix File

MicroPower/Pascal Program Fragment

The following MicroPower/Pascal program fragment illustrates how a
program can write a line of data to the YK handler configured to
operate a parallel printer.

The %INCLUDE commands in the following example refer to the RT-11
logical device LB:. If your host environment is RSX-11 or VMS,
substitute the appropriate logical device. Refer to the
MicroPower/Pascal Installation Guide for this information.

%include 'LB:IODEF' { get the INCLUDE file for the common}
{ I/O definitions}

%include 'LB:YKINC' { get the INCLUDE file for the
{ device handler interface routines}

VAR
LP DATA : PACKED ARRAY [L. 512) OF CHAR ;
DATA LEN : INTEGER ;
RESULTS : I0$STATUS ;

BEGIN

RESULTS := YK PORT WRITE

END

{ -PORT-NUM := PORT B ,
BUFFER := LP_DATA ,
BYTE COUNT := DATA LEN

3-18

{ LP data }
{ number of characters}
{ write results }

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

3.4.1.2 Transferring Data to and from Analog Devices - This is an
example of analog-to-digital (A/D) and digital-to-analog (D/A) I/O.
It illustrates how a program can receive a constant flow of 8-bit A/D
data, filter the data in some way, then send the reduced data to a D/A
converter. The example uses two external input clocks to control the
rate of flow of input and output data individually.

This example assumes that:

An input buffer cannot be filled with incoming data in less time
than it takes to filter and process the previous input buffer.

The rate of data output equals the input data rate times the
ratio of output buffer size divided by input buffer size.

These assumptions prevent input data from being lost and keep output
data flowing continuously. The example does not incorporate a method
of detecting a violation of either assumption which could occur if the
external clocks are misadjusted.

Port A
bits

<7:0>

8-Bit AID
Converter

Port B
bits

<7:0>

8-Bit DIA
Converter

Parallel 110 Counter-Timer

Port C
bits

<3:0>

.__---Analog Input Sample Rate
(Port A Strobed Handshake Input)

'-------~Analog Output
-----------------Analog Input

Figure 3-3: Transmitting Data to and Receiving Data from Analog
Devices

Configuration

Figure 3-3 shows the external connections between the parallel I/O
port and the A/D and D/A converters. The listing of the YK handler
prefix file that follows shows you how to specify this configuration.

The YK configuration macros set up port A as an
strobed handshake and port B as an output
handshake.

3-19

input
port

port with a
with a strobed

YKCI$

;Port

YKCP$

;Port

YKCP$

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

.MCALL

A Setup

CHAN=A,

B Setup

CHAN=B,

YKCI$

PTYPE=YK$INP, HSH=YK$STR

PTYPE=YK$0UT, HSH=YK$STR

Beginning of Prefix File.

Port A is an input port
with strobed handshake.

Port B is an output port
with strobed handshake.

;Po-rt C Setup

YKCP$ CHAN=C, PTYPE=YK$BIT, OUT=<YK$Bl+YK$B3> ; Port c is a bit port
with bits 1 and 3 set for
output

YKCE$ End of Prefix File

MicroPower/Pascal Program Fragment

The following MicroPower/Pascal program fragment illustrates how a
program can use the YK handler to read data from an A/D converter and
write data to a D/A converter.

The %INCLUDE commands in the following example refer to the RT-11
logical device LB:. If your host environment is RSX-11 or VMS,
substitute the appropriate logical device. Refer to the
MicroPower/Pascal Installation Guide for this information.

[SYSTEM(MICROPOWER)] PROGRAM C3EX2

. {$NOLIST}
%include 'LB:IODEF' { get the INCLUDE file for the common}

{ I/O definitions}
%include 'LB:YKINC 1 { get the INCLUDE file for the

{ device handler interface routines}
{$LIST}

CONST

TYPE

IN BUF SIZE = 256
LAST BUF = 3 ;

OUT BUF SIZE 64

{size of input buffers }
number of input/output buffers pairs, a minimum of
3 are needed because the filter will (at certain
points in time) be reading data from the end of a
first input buffer and the beginning of a second
at the same time. Meanwhile the YK handler will
be filling a third. }

The size of the output buffers must be proportional
to the data reduction ratio.

IN DAT BUF =PACKED ARRAY [l •• IN BUF SIZE] OF BYTE RANGE { data bu_~fer
IN=DAT~AREA = RECORD

DAT LEN : UNSIGNED ;
DAT-SECT : IN DAT BUF;
END- - -

length of buf, or t of bytes in it}
input data buffer }

OUT DAT BUF =PACKED ARRAY [l •• OUT BUF SIZE] OF BYTE RANGE; {out buffer
OUT-DAT-AREA = RECORD - - -

- - DAT LEN : UNSIGNED ; { length of buf, or t of bytes in it}
DAT-SECT OUT DAT BUF; { output data buffer }
END-; - -

3-20

VAR

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

IN BLK : ARRAY [l •• LAST BUF] OF IN DAT AREA ; { input records }
OUT BLK : ARRAY [l •• LAST BUF] OF OUT DAT AREA; { output records }
IN STATUS : IO$STATUS ; - { Tnput status }
OUT STATUS : IO$STATUS ; { output status }
CURRENT BUF : UNSIGNED ; { current buffer being filtered
IN REPLY DESC : STRUCTURE DESC ; { input Reply sem descriptor }
OUT REPLY DESC : STRUCTURE DESC { output Reply sem desc }
IN_REPLY_PKT : YK_REPLY - { YK reply Packet }

Beginning of Process }

BEGIN

OUT REPLY_DESC .ID := NO_SEM ; { prevent replies from output}

IF CREATE QUEUE SEMAPHORE (DESC := IN_REPLY_DESC) THEN
BEGIN- -
{ Send all the input buffers to the YK handler }
FOR CURRENT BUF := 1 TO LAST BUF DO

BEGIN -
IN BLK [CURRENT BUF] .DAT LEN := IN BUF SIZE
IN-STATUS := YK PORT READ (

- -PORT-NUM := PORT A ,

END
WHILE
AND

BUFFER := IN BLK-[CURRENT BUF .DAT_SECT ,
BYTE COUNT :~ IN BLK [CURRENT BUF] .DAT LEN,
REPLY := ADDRESS-(IN_REPLY_DESC)) ;

IN STATUS • ERROR CODE = IE$NORMAL)
OUT_STATUS • ERROR_CODE = IE$NORMAL)) DO

BEGIN
RECEIVE VAL DATA := IN REPLY PKT ,

VAL-LENGTH :=SIZE (YK REPLY) ,
DESC := IN_REPLY_DESC T ;

IF IN REPLY PKT .STATUS .ERROR CODE <> IE$NORMAL THEN
IN STATUS := IN REPLY PKT :sTATUS

ELSE - - -

END
END .;

END.

BEGIN
{ now go do the filtering of the data coming in from

IN BLK [CURRENT BUF] .DAT SECT and put the results
into OUT BLK [CURRENT BUF] ~DAT SECT • Also put
the number of output bytes into-the length entry of
OUT BLK • }

OUT STATUS := YK PORT WRITE (
PORT NUM := PORT B '
BUFFER:= OUT BLK [CURRENT BUF].DAT SECT,
BYTE COUNT:=OUT BLK [CURRENT BUF].DAT LEN,
REPLY := ADDRESS (OUT_REPLY_DESC)) ; -

IF CURRENT BUF = LAST BUF THEN
CURRENT BUF := CURRENT BUF + 1

ELSE - -
CURRENT BUF := 1

IN BLK [CURRENT BUF] .DAT LEN := IN BUF SIZE ;
IN-STATUS := YK PORT READ (

END

PORT NUM-:= PORT A ,
BUFFER : = IN BLK-[CURRENT BUF] • DAT SECT ,
BYTE COUNT :~ IN BLK [CURRENT BUF] ~DAT LEN,
REPLY := ADDRESS-(IN_REPLY_DESC)) ; -

3.4.1.3 Receiving Data from a 12-Bit Analog-to-Digital Converter -
This example shows how you can use the parallel I/O port to receive
analog data of higher resolution than 8 bits and also use one of the
port's timers to control the sample rate instead of supplying an
external clock.

3-21

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL

Port A
bits

<7:0>

Port B
bits

<7:0>

12-Bit AID
Converter

lsb = least significant bits
msb = most significant bits

Parallel 1/0 Counter-Timer

Port C
bits

<3:0>

II

~~~ 
L_J L_J L_J 

----Conversion Ready Signal 
to Acknowledge Input 

Figure 3-4: Receiving Data from a 12-Bit Analog-to-Digital Converter 

Configuration 

Figure 3-4 shows the external connections between the parallel I/O 
port ·and the 12-bit A/D converter. The listing of the YK handler 
pref ix file that follows shows you how to specify this configuration. 

3-22 



PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

.MCALL YKCI$ 

YKCI$ ;Beginning of Prefix File 

;Port A Setup 

YKCP$ CHAN=A, PTYPE=YK$INP, HSH=YK$STR 

;Port B Setup 

YKCP$ CHAN=B, PTYPE=YK$BIT, PLNK=TRUE 

;Port C Setup 

Port A is an input port with 
strobed handshake. 

Port B is a bit input port 
linked to Port A. 

YKCP$ CHAN=C, PTYPE=YK$BIT, OUT=<YK$B3+YK$B0> ; Port C is a bit port with 
; bits 0 and 3 set for output. 

;Timer Setup 

YKCT$ TNUM=3, TEXTO=YES, TOUT=YK$TPL ; Timer 3 enabled for pulsed output. 

YKCE$ End of Pref ix File 

MicroPower/Pascal Program Fragment 

Programming for the 12-bit A/D input is similar to that shown in ·the 
portion of the previous example that received 8-bit A/D values. You 
still have to provide the YK handler with multiple buffers so it can 
continue to receive input after it returns a buffer. In addition, a 
SET TIMER command must be sent to provide the clock output that 
triggers the A/D/device. 

3.4.1.4 Using the Counter-Timers to Count External Pulses - This 
example shows how to create an external pulse counter that is 
unaffected by timing delays caused by software. Timing accuracy is 
guaranteed by setting up the hardware to stop the counting process at 
the instant it presents an interrupt request to the processor. 

The example uses timer 3 to ~ime the counting interval and timer 1 to 
count the number of pulses. Timer 3 causes the software to be 
signaled and stops timer 1 from counting by shutting off its gate 
input. That way, when the software reads the number of counts from 
timer 1 it will be exact. As explained in the hardware documentation, 
timer 3 must be set up to have a one-shot output and run in the 
noncontinuous mode to accomplish this. To expand this into a 32-bit 
counter, you can link timer 2 to timer 1. 

3-23 



PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

Port A 
bits 

<7:0> 

II II II 

Port B 
bits 

<7:0> 

Parallel 1/0 Counter-Timer 

<3:0> 1 ~ 3 

II ----------------

P~~sc ~imer ~ I ~:er I 
----- -----

..__._ ____ ~---Timer 3 Output 
(internal connection through Port C) 

i-..-------Timer 1 Gate Input 
(internal connection through Port B) 

User's Application 

Input Signal 

Figure 3-5: Using the Counter-Timers to Count External Events 

Configuration 

Figure 3-5 shows the external connections between the parallel I/O 
port and the application environment. The listing of the YK handler 
prefix file that follows shows you how to specify this configuration. 

.MCALL 

YKCI$ 

;Port B Setup 

YKCP$ CHAN=B, 

; Port C Setup 

YKCP$ CHAN=C, 

;Timer Setup 

YKCT$ TNUM=l, 
YKCT$ TNUM=l, 

YKCT$ TNUM=3, 

YKCE$ 

YKCI$ 

PTYPE=YK$BIT 

PTYPE=YK$B IT, OUT=l 

TEXTG=YES 
TEXTC=YES 

TEXTO=YES, TOUT=YK$TlS 

3-24 

Beginning of Prefix File 

timer l's gate input via bit 7 

Timer 3's output via bit 0. 

Enable timer l's gate input. 
Enable timer l's count input 
via port B bit 5. 
Enable timer 3's output 
in one-shot mode. 

End of Prefix File. 



PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

MicroPower/Pascal Program Fragment 

The following MicroPower/Pascal program fragment illustrates how a 
program can use the YK handler to count pulses. 

[ SYSTEM(MICROPOWER)] PROGRAM C3EX3 

{$NOLIST} 
%include 'DEF:IODEF.PAS' 
%include 'DEF:YKINC.PAS' 
{$LIST} 

CONST 

VAR 

BEGIN 

COUNT INT 11.HJ 

YK IO STATUS IO$STATUS ; 
NIL REPLY DESC : STRUCTURE DESC 
REPLY DESC : STRUCTURE DESC 
REPLY-PKT : YK REPLY -
COUNTS : UNSIGNED ; 

define the counting interval 

{ Status code returned from YK } 
{ Dummy reply descriptor } 
{ Actual reply descriptor } 

·{Reply packet from the YK handler} 
{ Number of counts during interval} 

NIL REPLY_DESC .ID := NO_SEM ; 

IF CREATE_QUEUE_SEMAPHORE (DESC := REPLY DESC ) THEN 
BEGIN 

END. 

{ First set the counter to zero } 
YK IO STATUS := YK SET TIMER 

( TIMER NUM := TIMER 1 , 
TIMER-VALUE := 0 ,-
MODE T= [ init constant, trigger ] , 
REPLY := ADDRESS (NIL_REPLY_DESC) 

{ Now start the time interval, and the counter } 
YK IO STATUS := YK SET TIMER 

( TIMER NUM := TIMER 3 , 
TIMER-VALUE := COUNT INT , 
MODE == [ init constant, trigger ] , 
REPLY := ADDRESS ( REPLY_DESC ) ) 

{ Wait for the time interval to expire } 
RECEIVE (VAL DATA :=REPLY PKT, 

VAL-LENGTH := SIZE (YK REPLY) , 
DESC := REPLY_DESC ) ;-

{ Read the number of pulses, and put the answer in COUNTS } 
YK IO STATUS := YK READ TIMER timer num := TIMER 1 I 

pt_tirne := ADDRESS-( COUNTS ) ) 

END 

3.4.1.5 Using the Counter-Timers to Supply External Pulses - This 
example shows how to set up a timer to generate external pulses but 
not reply at the completion of any of the cycles. This configuration 
is useful when you need an output waveform that is independent from 
the application software time base. 

3-25 



PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

Port A 
bits 

<7:0> 

111111 

Port B 
bits 

<7:0> 

111111 

Parallel 110 Counter-Timer 

Port C 
bits 

<3:0> 

II 
I TI~er II TI~er II ~er I 

----------------

.---Timer 3 Output 
(internal connection to Port C) 

User's Device 

Output Waveform 

Figure 3-6: Using the Counter-Timers to Supply External Pulses 

Configuration 

Figure 3-6 shows the external connections between the parallel I/O 
port and the application environment. The listing of the YK handler 
prefix file that follows shows you how to specify this configuration • 

• MCALL YKCI$ 

YKCI$ Beginning of Prefix File 

;Port C Setup 

YKCP$ CHAN=C, PTYPE=YK$BIT, OUT=l 

;Timer Setup 

YKCT$ TNUM=3, TEXTO=YES 

YKCE$ 

MicroPower/Pascal Program Fragment 

Timer 3's output via bit 0 

Enable timer 3's output and 
leave it in the default (square 
wave mode) • 

End of Prefix File 

The following MicroPower/Pascal program fragment illustrates how 
to generate program can use the YK device handler 

software-independent time base. 

a 
a 

The %INCLUDE commands in the following example refer to the. RT-11 
logical device LB:. If your host environment is RSX-11 or VMS, 
substitute the appropriate logical device. Refer to the 
MicroPower/Pascal Installation Guide for this information. 

3-26 



PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

[ SYSTEM(MICROPOWER)] PROGRAM C3EX4 

{$NOLIST} 
%include 'LB:IODEF' 

%include 'LB:YKINC' 

{$LIST} 

CONST 
COUNT_INT = 109 ; 

VAR 

{ get the INCLUDE file for the common} 
{ I/O definitions} 
{ get the INCLUDE file for the 
{ device handler interface routines} 

define the counting interval } 

YK IO STATUS 
NIL REPLY DESC - -

IO$STATUS ; 
STRUCTURE DESC 

Status code returned from YK } 
Dummy reply descriptor } 

BEGIN 

NIL_REPLY_DESC .ID := 

BEGIN 
{ First set the 
YK IO STATUS := 

NO SEM 

counter to the initial value and trigger it. } 
YK SET TIMER 

1 TIMER NUM := TIMER 3 I 

TIMER-VALUE := COUNT lNIT I 

MODE T= [ init constant, trigger, continuous ] , 
REPLY := NIL_REPLY DESC ) ; 

END 
END. 

3.4.2 Using the Asynchronous I/O (XL) Device Handler 

The KXTll-C XL device handler supports asynchronous I/O operations on 
devices connected to any of the three serial I/O ports on the KXTll-C 
peripheral processor. This handler is similar to the non-KXTll-C XL 
handler described in the MicroPower/Pascal Runtime Services Manual 
except it also supports the mult1protocol communication controller 
(7201 chip) on the KXTll-C. This allows the KXTll-C to concurrently 
service the three serial ports SLUl, SLU2 channel A, and SLU2 channel 
B. 

The first serial I/O port on the KXTll-C (SLUl) is a standard DL 
asynchronous receive/transmit (DLART) device. The second port (SLU2 
channel A) provides all the features of a DLVll-E, including modem 
control, but is a distinct hardware type. The third port (SLU2 
channel B) provides all the features of a standard DLART device but is 
a different hardware device. When you use SLU2 channel A or channel 
B, you must specify one of the following TYP parameters for the LINDF$ 
macro in the handler's prefix file. 

TYP Description of Type 

TT$DM 
TT$DMP 
TT$DMM 

Multiprotocol channel using no modem control 
Multiprotocol channel using partial modem control 
Multiprotocol channel using full modem control 
channel A only) 

(SLU2 

. A description of the modem control options can be found in the 
MicroPower/Pascal System Users Guide. 

3-27 



PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

3.4.3 Using the Synchronous I/O (XS) Device Handler 

The XS device handler supports synchronous serial I/O via the KXTll-C 
multiprotocol communication controller (7201 chip) SLU2 channel A, 
allowing you to establish an elementary bit-oriented communication 
channel. The handler performs the following functions of bit-oriented 
communication procedures. 

Synchronization (flag detection) 

Transparency (bit stuffing) 

Invalid frame detection 

Frame abortion detection 

Frame check sequence (FCS) checking/calculation 

The handler can be used by user-written software as a component in 
performing such bit-oriented communication procedures as CCITT X.25, 
ISO HDLC, IBM SDLC, ANSI ADCCP, and others. However, the XS handler 
does not, in itself, completely perform any of these procedures. The 
XS handler provides no explicit modern control, although the 
line-enable and line-disable services control modem signals as 
necessary to activate and deactivate a modem. 

3.4.3.1 XS Device Handler Functions - The XS handler provides basic 
ISO HDLC style framing and error detection. 

___ F_LA_G ______ o_a_ta_f_ro_m_~~r~-e_r_b_uff_e_r _____ F_c_s ______ F_LA_G __ _ 

Data sent by the handler has the FCS (fra~e check sequence) appended 
to form a frame. If any errors are detected as the handler sends the 
frame it is aborted and resent. Frames received by the handler use 
the embedded FCS to verify the frame; the FCS is then removed. If FCS 
checking indicates the frame was received in error or if the frame was 
aborted or invalid, the frame is discarded with no indication to the 
user. Otherwise the data is returned to the user. 

The source files of this handler are provided on the MicroPower/Pascal 
distribution kit to assist you in writing your own handler for the 
multiprotocol controller. 

3.4.3.2 Functions Performed by User Software - Because frames 
received in error are discarded, user software must be able to 
determine when a frame has not been received. A sequence 
number/timeout scheme can be used for this purpose: A sequence number 
is included in the data portion of each frame. As the user software 
receives each frame it responds by sending another frame acknowledging 
receipt with the first frame's sequence number. If, after a period of 
time, the originator of the first frame determines that no 
acknowledgment has been received, it resends that frame. 

For further information about the techniques of data communication, 
refer to Technical Aspects of Data Communication, John E. McNamara, 
DIGITAL Press, 1982, or a~good book of your choice on data 
communication principles. 

3-28 



PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

3.4.3.3 Accessing the XS Handler -

Configuration 

The XS handler makes no assumptions about the configuration of the 
multiprotocol communication controller, other than assuming the 
interrupts have been enabled for the device. Refer to the KXTll-CA 
User's Guide hardware reference manual for complete information on 
this device. 

MicroPower/Pascal Program Fragment 

This example shows you how to access the XS handler only; it is not an 
example of data communication protocol. The handler is configured 
with the standard XSPFXK.PAS prefix file. 

The %INCLUDE command in the following example refers to the RT-11 
logical device LB:. If your host environment is RSX-11 or VMS, 
substitute the appropriate logical device. Refer to the 
MicroPower/Pascal Installation Guide for this information. 

program exampl; { XS handler use -- program fragment 

{$no list} 
%include 'LB:iopkts.pas' 
{$list} 

con st 

get frame = IF$READ PHYSICAL; 
send frame = IF$WRITE PHYSICAL; 
enable line = IF$DEV DEP 01; 
disable line = IF$DEV DEP 02; 
kill_requests IF$DEV_DEP_03; 

buf size = 33 size of buffers } 

start_pattern '1234567890ABCDEFGHIJKLMNOPQRSTUVW' 

PACKET LENGTH 22; 

type 

buffer = record 
num unsigned; 
dat : packed array [l •• buf_size] of CHAR 

end; 

var 

I : integer; 
garbage : BOOLEAN; 

{ beginning pattern } 

reply queue : structure desc; { SDB for my reply queue 
handler_queue : structure_desc; { SDB for the handler } 

read request, write request, 
enabTe_request, disable_request I0$REQ_PKT; 

command_reply : IO$REPLY_PKT; 

write_buffer, read buffer : buffer; 

begin 

{* 
* First initialize things 
*} 

3-29 



{* 

PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

garbage := create_queue_semaphore (NAME := 'RPLYQ ' ) ; 

init structure desc ( desc := reply queue , name := 'RPLYQ ' 
init=structure=desc ( desc := handler_queue , name := '$XSA ' ) 

WITH enable request DO BEGIN 
oper := enable line; 
reply sem := reply queue.ID 

END ; - -

WITH write request DO BEGIN 
oper :=send frame ; 
reply sem :=-reply queue.ID 

END ; - -

WITH read request DO BEGIN 
oper :=-get frame ; 
reply sem :~ reply queue.ID 

END ; - -

write buffer.dat := start_pattern 

SEND ( 
VAL DATA := enable request, 
VAL-LENGTH := PACKET LENGTH, 
OESC := handler_queue ) ; 

RECEIVE ( 
VAL DATA := command reply, 
VAL-LENGTH := PACKET LENGTH, 
DESC := reply_queue r 

* Now loop here, sending a read and write request, and wait for replies. 
*} 

WHILE TRUE DO BEGIN 

SEND ( 
VAL DATA := read request, 
VAL-LENGTH := PACKET LENGTH, 
REF-DATA := read buffer, 
REF-LENGTH := SIZE ( buffer ) , 
DESC := handler_queue ) ; 

write buffer.num := write_request.sequence; 

SEND ( 
VAL DATA := write request, 
VAL-LENGTH := PACKET LENGTH, 
REF-DATA :=write buffer, 
REF-LENGTH := SIZE ( buffer ) , 
DESC := handler_queue ) ; 

FOR I· : = 1 TO 2 DO RECEIVE ( 
VAL DATA := command reply, 
VAL-LENGTH := PACKET LENGTH, 
DESC := reply_queue r ; 

END; 
END. 

3.4.4 Using the TUSB DECtape II (DD) Device Handler 

The DD device handler is similar to the standard MicroPower/Pascal 
arbiter DD handler except it includes support for SLU2 channel A and 
SLU2 channel B (multiprotocol communication controller) on the 
KXTll-C. This lets you connect a TU58 DECtape II subsystem to any of 
the serial lines on the KXTll-C. 

3-30 



PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

The DD device handler supports logical and physical I/O operations on 
a TU58 cartridge tape subsystem. The handler also supports 
read-with-increased-threshold and write-verify options and reports the 
storage capacity of the device in terms of logical blocks. 

Requests for logical read/write functions specify the initial tape 
address in terms of a 512-byte logical block. Logical block numbers 
range from 0 to 511. 

Requests for physical read/write functions specify the initial tape 
address in terms of a 128-byte physical record (that is, tape 
positioning is performed in special address mode). Physical record 
numbers range from 0 to 2047. Multirecord transfers exceeding 128 
bytes read from or write to physically sequential records on the tape. 

The functions provided by the handler are described in further detail 
in the MicroPower/Pascal Runtime Services Manual. 

The KXTll-C DD handler is in the KXTll-C handler library, DRVK.OBJ. 
To use the KXTll-C DD handler, you must edit its prefix file, 
DDPFXK.MAC, and then use the prefix file to build the KXTll-C DD 
handler into your application software. Software configuration 
procedures are described in the MicroPower/Pascal-RT-11 System - User's 
Guide. In the TYPRM parameter of the CTFCF$ macro you must specify 
the terminal type and bit rate of the KXTll-C line you intend to use. 
The type parameter can be one of the TT$DMx parameters described in 
Section 3.4.2. 

3.4.5 Using the QD (OMA Transfer Controller) Handler 

The QD device handler provides a standard device handler interface to 
the two-channel DMA transfer controller (DTC) on the KXTll-C. The QD 
handler moves data from place to place without the assistance of the 
CPU. Any memory location can serve as a source or destination 
including I/O device registers (with certain restrictions). However, 
at least one location, source or destination, must be local to the 
KXTll-C. 

Your programs can access the QD handler from MicroPower/Pascal or 
-MACR0-11 routines by using the standard primitive I/O requests or the 
MicroPower/Pascal device-handler interface routines listed below. All 
examples shown in this section use these routines. 

$DMA TRANSFER -- Performs DMA transfer 

$DMA SEARCH -- Performs DMA search 

$DMA_SEARCH_TRANSFER -- Performs transfer while searching 

$DMA_ALLOCATE -- Allocates DMA channel 

$DMA_DEALLOC -- Deallocates DMA channel 

$DMA_GET _STATUS -- Gets status of DMA unit 

Chapter 4 and Appendix H of the MicroPower/Pascal Runtime Services 
Manual provide detailed information about the MACR0-11 and 
MicroPower/Pascal interface to the QD device handler. 

3-31 



PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

You cah use the QD handler and its associated interface routines to: 

• Transfer data to and from Q-BUS memory. 

• Transfer data to and from local memory. 

• Search for data • 

• Transfer to and from local I/O devices. 

• Access the Q-BUS I/O page • 

• Assure access to a OMA Channel. 

3.4.5.1 Transferring Between Local Memory and Q-BUS Memory - The QD 
handler can transfer data between KXTll-C and system memory. The 
following program fragment shows such a transfer. 

CONST 
BUFSIZE 
QBUSBUF 

%0 1 2000'; 
DMA$ADDRESS ( %0'70000', %0'2', DMA$NOIO, DMA$WAIT 0, DMA$UP, 

DMA$NOWFR, DMA$NOBYTE, DMA$QBUS ); -
VAR 

bufl : PACKED ARRAY[l •• BUFSIZE] OF BYTE_RANGE; 
address 1 : DMA$ADDRESS; 

BEGIN 
address 1 := DMA$NORM IBUS ADDRESS; 
address=l.low := (ADDRESS(BUFl))::UNSIGNED; 

$DMA TRANSFER ( 
UNIT-:= un, 

SOURCE := address_l, 
DEST := QBUSBUF, 
COUNT := BUFSIZE 

{ transfer ••• } 
{ on this unit } 
{ from my local buff er } 
{ to the Q-BUS buff er } 
{ this much } 

3.4.5.2 Transferring Data Within Local Memory - The QD handler can 
transfer data within KXTll-C memory. The calls are similar to the 
previous example except the destination address is replaced by a local 
address. In the following example fragment, some of the addressing 
options are also used. This transfer will invert a local (to the 
KXTll-C) buffer end for end, in byte mode, which will have the effect 
of reversing the byte order. 

VAR 
bufl, buf2 PACKED ARRAY[l •• BUFSIZE] OF BYTE; 
address_!, address 2 : DMA$ADDRESS; 

BEGIN 
address 1 := DMA$NORM !BUS ADDRESS; 
address-1.low := (ADDRESS(BUFl)) ::UNSIGNED; 
address-2 := DMA$NORM !BUS ADDRESS; 
address-2.low := (ADDRESS(BUF2))::UNSIGNED+BUFSIZE-l; 
address-2.ws := DMA$WAIT 4; 
address-2.inc := DMA$DOWN; 
address-2.bm := DMA$BYTE; 

$DMA TRANSFER ( 
UNIT-:= un, 

SOURCE := address_!, 
DEST := address 2, 
COUNT := BUFSIZE ) 

3-32 

{ transfer... } 
{ on this unit } 
{ from my local buffer } 
{ to the other local buffer } 
{ this much } 



PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

3.4.5.3 Using the Search Option - The QD handler s~pports two search 
options, with or without data transfer. 

3.4.5.3.1 Searching with Transfer - This option can transfer 
variable-length messages. The search looks for an end-of-message 
character and terminates the transfer at that point. The following 
example shows how to copy variable-length messages. 

VAR 
bufl, buf2 : PACKED ARRAY[l. .BUFSIZE] OF BYTE; 
address_l, address_2 : DMA$ADDRESS; 

BEGIN 
address 1 := DMA$NORM IBUS ADDRESS; 
address-1.low :=.(ADDRESS (BUFl)): :UNSIGNED; 
address-2 := DMA$NORM IBUS ADDRESS; 
address=2.low := (ADDRESS(BUF2))::UNSIGNED; 

k := $OMA SEARCH TRANSFER 
UNIT := un, -

SOURCE := address 1, 
DEST := address 2, -

VAL := 0, -
MASK:= %0'377', 

COUNT:= BUFSIZE ); 

{ transfer ... } 
{ on this unit } 
{ from my local buffer } 
{ to the other local buff er 
{looking for a 0 ••• } 
{ in the high byte } 
{ this much } 

3.4.5.3.2 Searching Without Transfer - This option allows a program 
to determine the length of a buffer of data by searching for an 
end-buffer character. Searching can also be used to poll a location. 

3.4.5.4 Transferring to and from Local I/O Devices - The QD handler 
can transfer data to and from KXTll-C local I/O devices without the 
involvement of the processor. The YK handler supports interaction 
with the QD handler. The SLU2 serial lines can be accessed directly 
from user-written software in OMA mode, but DIGITAL-supplied software 
does not support OMA access to the serial ports. 

3.4.5.4.1 Parallel I/O Using OMA - The YK and QD handlers in 
conjunction can perform OMA transfers to and from the parallel I/O 
port. The following example shows a sequence of commands that 
transfer data from the parallel port to local memory on the KXTll-C. 
The example assumes the port A request line is connected to DMA 
channel 1 and that channel is allocated for use by this process. 

The %INCLUDE commands in the following example contain references to 
RT-11 logical device LB:. If your host environment is RSX-11 or VMS, 
substitute th€ appropriate logical device. Refer to the 
MicroPowe~/Pascal Installation Guide for this information. 

3-33 



PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

MicroPower/Pascal Program Fragment 

%INCLUDE LB:IODEF.PAS 
%INCLUDE LB: QDINC. PAS 
%INCLUDE LB:YKINC.PAS 

VAR 
YK REQ : YK PORT RQST ; 
YK~RPLY DESC : SEMAPHORE DESC - -

FUNCTION PORT A OMA INPUT ( 

BEGIN 

YK OMA ADR : DMA$ADDRESS ; 
BUF OMA ADR : DMA$ADDRESS 
DATA LENGTH : UNSIGNED 

-) ; DMA$BYTE_COUNT 

WITH YK REQ DO 
BEGIN 
oper := OMA READ ; 
funct mods := [] ; 
ind mods := [ FI$SIMPLE REPLY 
unit num := PORT A ; -
reply sem := yk rply desc .id 
END ;- - -

SEND ( NAME := '$YKA , 
VAL DATA := YK REQ , 
VAL-LENGTH := SIZE (YK_PORT RQST) 

WAIT ( DESC := YK_RPLY_DESC ) ; 

{ Request Packet for YK handler } 
{ Sem for YK reply - assumed 

to be already initialized } 

{ port address in OMA format } 
{ buffer address in OMA format } 
{ length of data transfer } 
{ function returns number of 

bytes actually transferred 

PORT A OMA INPUT := $DMA_TRANSFER SOURCE := YK OMA ADR , 
DEST := BUF OMA ADR , 
COUNT := DATA LENGTH , 
UNIT : = 1 ) ; -

YK_REQ • oper := DMA_COMPLETE 

SEND ( NAME := '$YKA , 
VAL DATA := YK REQ , 
VAL-LE~GTH := SIZE (YK_PORT RQST) 

WAIT ( DESC := YK RPLY DESC ) ; 

END ; 

3.4.5.4.2 Reading and Writing Data from/to Serial Line Ports - You 
can use the OMA handler to read data from or write data to the 
serial-line ports SLU2 channel A and SLU2 channel B. This operation 
must be done by user-supplied software that sends requests to the OMA 
handler since the XL and XS handlers do not support the operation. 
You can read or write characters by using the request line hardware on 
either channel of SLU2. 

3-34 



PROGRAMMING A KXTll-C US ING MICROPOWER/PASCAL 

3.4.5.5 Accessing the O-BUS I/O Page - The QD handler can be used to 
access the O-BUS I/O page, allowing I/O processing directly by the 
KXTll-C, but you cannot connect the Q-BUS OMA request line to the 
KXTll-C OMA device {which would notify the OMA device that the Q-BUS 
device is ready to be read or written). However, the QD handler can 
be used with a Q-BUS device if the device has a silo that will accept 
new data each time it is written/read. 

3.4.5.6 Assuring Access to a OMA Channel - To assure that a OMA 
channel is available when you need it, you can dedicate access to 
either or both channels to a given process with the OMA ALLOCATE 
command. This feature can be used when a transfer must occur-within a 
specific time period following an event. You dedicate the OMA channel 
before the event so you are assured your transfer request will not be 
held up by another transfer in progress. 

3.4.6 Using the KX {Arbiter-Resident Two-Port RAM) Handler 

The KX handler performs the arbiter {master) portion of the KX/KK 
protocol described in Appendix A. It passes data between the arbiter 
CPU and up to 14 KXTll-C peripheral processors running on the Q-BUS. 
The handler communicates with the KXTll-C through the command and 
status registers of data channel 0 and data channel 1 of the two-port 
RAM {TPR). It operates in conjunction with the KK handler described 
in Section 3.4.7. 

Each unit is associated with a unique interrupt to the handler to 
permit fast communication. The controller IDs, unit numbers, 
associated register base address, and default interrupt vectors for 
each system ID switch position are shown in Appendix c. The KX 
handler is in DRVU.OBJ and DRVM.OBJ, not DRVK.OBJ. 

The run-time hardware support library {RHSLIB.OBJ) includes two 
routines, KX WRITE DATA and KX READ DATA, that can be used to send and 
receive data-via the KX/KK handlers-to and from the KXTll-C. These 
routines and associated data structures are defined by the %INCLUDE 
file KXI NC. PAS. 

Refer to Section 3.5 for examples of the use of the KX handler in 
peripheral processing applications. 

3.4.7 Using the KK (KXTll-C-Resident Two-Port RAM) Handler 

The KK handler performs the slave portion of the KX/KK protocol 
described in Appendix A, and operates in conjunction with the KX 
handler described in Section 3.4.6. The prefix file KKPFXK.PAS 
configures data channel 0 {4-byte data area) as KK unit 0 and data 
channel 1 {12-byte data a~ea) as KK unit 1. 

The run-time hardware support library {RHSLIB.OBJ} includes two device 
handler interface routines, KK WRITE DATA and KK READ DATA, that can 
be used to send and receive data-via the KK/KX handlers- to and from 
the arbiter. These routines and associated data structures are 
defined by the %INCLUDE file KKINC.PAS. 

Refer to Section 3.5 for examples of the use of the KK handler in 
peripheral processing applications. 

3-35 



PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

3.5 PROGRAMMING THE KXTll-C PERIPHERAL PROCESSOR INTERFACE 

MicroPower/Pascal provides the following tools to assist you in 
programming your peripheral processing application. 

• KX and KK device handlers. They provide a two-channel 
communication path from the arbiter to the KXTll-C and can be 
used to pass data or commands to and from the KXTll-C under 
control of the arbiter program. 

• QD device handler. It provides a two-channel DMA path that 
can move interfacing data at a high rate without processor 
intervention. 

• Device handler interface 
files that simplify the 
handlers. 

routines 
use of 

and 
the 

associated %INCLUDE 
KK, KX and QD device 

3.5.1 Interface Considerations 

A peripheral processing application consists of several separate 
processes that control the peripheral processor and send, receive, and 
process data associated with it. Some of these processes reside in 
the arbiter processor and some reside in one or more KXTll-C 
peripheral processors. MicroPower/Pascal provides low-level 
interconnections between these processes in the form of semaphores and 
ring buffers for communication between processes running on a single 
processor, and KX, KK, and QD handlers for communication between 
processes running on separate processors. An application using the 
handlers for communication must contain the following additional 
protocols or interfacing. 

• Commands Necessary to Control the KXTll-C Application If 
you need control information to start, stop, or interrupt the 
KXTll-C application from the arbiter, or if you need to 
differentiate between report information and alarm information 
in messages received from the KXTll-C, you can encode the 
commands in a message format. For example, you can assign 
commands as numbers in the first byte of the message followed 
by five bytes containing the address of the buffer to copy the 
data into and two bytes containing the length of the buffer. 

• Message Passing Mechanisms Large blocks of data or 
frequently sent data are more efficiently passed with the DTC. 
To initiate transfer of the data you can pass the address and 
length of the buffer in a command message sent by the KX/KK 
handlers, then instruct the QD handler to transfer it. 
Alternatively you can choose a fixed buffer location and a 
flag location to test (using the DTC) to determine when to 
write the data. The application in the KXTll-C must inform 
the arbiter application each time data is written or read. A 
message through the TPR is the most likely method. 

For shorter or infrequently issued messages, you can send just 
the data as a message using the KX/KK handlers. 

• Arbiter Management of Errors from the KXTll-C Application 
An error message should inform the arbiter application of 
error or alarm conditions, and appropriate procedures should 
deal with them. Such management is required when the KXTll-C 
application cannot access some memory location using the OTC. 

3-36 



PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

• Protection of Shared Memory Areas -- Shared 1nemory areas in 
the Q-BUS system or the KXTll-C should be protected from 
simultaneous access. Semaphores will suffice for some areas, 
but others (for example, buffers that can be used and modified 
by KXTll-C and arbiter applications) will require semaphores 
and control messages. 

If you have two processes in one KXTll-C using the KX/KK communication 
path, you can dedicate one channel to each process. The second 
channel uses more of the two-port RAM (six words at a time instead of 
two) to pass messages and thus is faster for messages greater than two 
words in length. 

If you have more than two processes contending for use of the KX/KK 
communication path, you must write two message switching processes 
that will add a destination address to the message to select the 
rece1v1ng process on the receiving end, with one switching process at 
each end of the path (the KXTll-C end and the arbiter end). Each 
switching process should decode the address, strip it from the 
message, and pass the message on to the receiving process. 

3.5.2 KK/KX Interface Example 

An example peripheral processor application is in the 
MicroPower/Pascal kit. Its installation and operation is documented 
in Appendix A of the MicroPower/Pascal Installation Guide. The 
following KK/KX interface example draws from this example application 
and uses sections of the MicroPower/Pascal source files IOPVFY.PAS and 
ARBVFY. PAS. 

The example peripheral processor application is a simulation of an 
ideal ball bouncing within an ideal rectangular box. It is a 
peripheral processor application because half of the box is managed by 
the arbiter program and the other half is managed by the KXTll-C. As 
the ball leaves the right edge of the screen in the arbiter controlled 
half, it appears at the left edge of the screen in the KXTll-C 
controlled half. 

The ball is modeled in the programs as a vector containing its current 
position and velocity. This is shown by the following 
MicroPower/Pascal data structures. 

col 0 •• 79; 
row = 0 •• 2 3; 

vector = record 
x,y 

end; 
real; 

screen pos 
c : col; 
r : row; 

end; 

record 

Ball = record 
op : vector; 
p : vector; 
v : vector; 
sp : screen_pos; 
osp screen_pos; 

end; 

{ X and Y components } 

{ Old position 
{ Position } 
{ Velocity } 
{ Position in screen units } 
{ Old position in screen units } 

3-37 



PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

The old position and the screen positions are included for ease of 
moving the ball around the· screen. 

When the ball is passed from one system to another the current ball 
record must be transmitted. This is done with a message like this: 

message = record 
case m type : char of 

"b":-(b:Ball); 
end; 

{ Message type } 

The record field m type distinguishes between different types of 
messages, of which only one is defined, the m type "b" for Ball. This 
field can be used to define "i" for Initialize, "a" for Alarm, and so 
on. 

Now, it is a simple matter of repeatedly moving the ball one v 
(velocity) from p (the current position) during each time unit and 
checking to see if it hit a wall or got passed to the other side, as 
follows. 

Fly(b); 
if (b.p.x < LEFT) then Pass(b); 
if (b.p.x > RIGHT) then Bounce(b.p.x,RIGHT,b.v.x); 
if (b.p.y <TOP) then Bounce(b.p.y,TOP,b.v.y); 
if (b.p.y > BOTTOM) then Bounce(b.p.y,BOTTOM,b.v.y); 
Show(b); 

Here, Fly moves the ball one v from p, Bounce performs whatever is 
needed to bounce the ball off one of the walls, Show displays the ball 
on the screen, and Pass takes the current ball vector and passes it to 
the other side. In this application, once the ball is passed to the 
other side, there is nothing else for this side to do but wait for the 
ball to come bouncing back again, and so Pass, shown below, just waits 
for this to happen. (Your application may very well have other 
processes performing other tasks.) 

procedure Pass(var b:Ball); 
var 

m : message; 
garbage : io$status; 
garbage2 : unsigned; 

begin 
m .m type : = "b"; 
m.b-:= b; 
garbage:= KK write data(m,size(m) ,garbage2); 
garbage:= KK=reaq_data(m,size(m) ,garbage2); 
b := m.b; 

end; 

3.5.3 Determining Physical Addresses 

When using the QD handler to move data blocks to and from arbiter 
memory, you should provide a physical address for a buffer in the 
arbiter memory. This is done by declaring a process as handler-mapped 
and using the higher order 3 bits of the buffer address as an index 
into the memory management unit (MMU) registers. Using the PAR (page 
address register) of the MMU and the buffer address, you can calculate 
a physical address. 

3-38 



PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

3.6 DEBUGGING A KXTll-C APPLICATION 

This section describes the aspects of program debugging that are 
unique to KXTll-C applications. 

3.6.1 Setting up PASDBG 

The following list contains general requirements for setting up the 
KXTll-C for use with the PASDBG debugger. 

1. Configure memory as follows. 

For RAM systems, configure memory just as it will be in the 
final application {Section 3.3.1.1). 

For ROM systems, configure memory just as it will be in the 
final application (Section 3.3.1.1, steps 1 to 4) but install 
the equivalent-size RAM in the user sockets in place of ROM. 
Set the memory map selection jumpers appropriately for those 
RAMs (refer to the KXTll-CA User's Guide hardware reference 
manual) . 

When you specify the MEMORY macro parameter TYPE=ROM in the 
kernel configuration file, the application's pure code and 
pure data is built into the ROM (or what will eventually be 
ROM) address space. PASDBG can then load the application 
into the KXTll-C because the ROM has been replaced with RAM. 
Keeping the ROM portions of the application separate from the 
RAM portions helps track the size of each while the program 
is growing and facilitates your use of a logic analyzer to 
detect corrupt areas of ROM. 

2. Build the debugger service module (DSM) into your application 
by specifying DEBUG = YES in the kernel configuration file. 

3. Build in debugging symbols by using the /D option in the 
MERGE, RELOC and MIB steps of the application build process. 
This is performed automatically by the MPBLD procedure when 
you build a configuration that includes debugging. 

4. Set the boot/self-test switch to position 4. 

s. Set the baud for SLUl using the baud jumpers on the KXTll-C 
circuit board. Do not use the autobaud feature. 

6. Install the SLUl break-enable jumper on the KXTll-C circuit 
board. 

7. Once PASDBG and the target KXTll-C are running and before 
loading and running your application, use PASDBG in ODT mode 
to open location 175002. Then set bit 4 (enter console ODT 
on halt) to 1. This prevents the KXTll-C from trapping 
through vector 10 if a HLT instruction is executed. 

3.6.2 Test System Configuration 

You should develop a program specifically to test the operation of 
your peripheral processor application before integrating with the 
arbiter section of the application. The test program can be run under 
RSX-11, RT-11 or MicroPower/Pascal. If you develop the arbiter test 

3-39 



PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

program under RT-11 or RSX-11, you can use all the program development 
and testing a,ids that are available with these operating systems to 
facilitate running your test program and examining the results (for 
example, interactive terminal interface, indirect command files, file 
management and compare utilities, and so on). The test program should 
pass commands to the application in the KXTll-C and verify that the 
correct results are returned. 

3.6.3 Debugging with an RT-11 or RSX-11 Arbiter Test Program 

Develop a test program that runs under RT-11 or RSX-11. 
should pass appropriate commands and messages to 
application and verify the results that are returned. 

Perform the following steps. 

This 
the 

program 
KXTll-C 

1. Connect the host to the KXTll-C console port in the same way 
you connect a stand-alone system. 

2. Load the application into the KXTll-C with PASDBG's LOAD 
command, then start execution with the GO command. 

3. Start your arbiter test program and begin testing. 

You can use PASDBG to set breakpoints and watchpoints as in normal 
debugging operations. You can also use the KK handler debugging 
features described in Section 3.6.6. You can use the KUI utility 
program's TRAP command to test trap handling routines in the KXTll-C 
application. 

3.6.4 Debugging with a MicroPower/Pascal 
Program 

Arbiter-Resident Test 

To debug a KXTll-C application using a MicroPower/Pascal 
arbiter-resident test program, you use PASDBG to interact with the 
test program in the arbiter and the application program in the 
KXTll-C. The methods for accomplishing this are the same as those 
described in Section 3.6.5 for debugging multiple-processor 
MicroPower/Pa~cal applications. 

3.6.5 Debugging Multiple-Processor MicroPower/Pascal 
Simultaneously 

Applications 

If you want to access more than one processor with ~ASDBG to determine 
the cause of a malfunction in a peripheral processing application, you 
can use one of two methods. 

One method has a separate PASDBG host system process and terminal for 
each processor in the target system. This is the most convenient way 
of debugging in the VMS and RSX-11 host environments. The other 
method, using a single PASDBG host system process, switches the 
communication line that PASDBG uses from processor to processor as 
required. With either method you attach a serial 11ne from the host 
to the console port of each target system. 

3-40 



PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

To switch back and forth between systems with PASDBG, you exit PASDBG, 
select the serial line connected to the desired processor, and restart 
PASDBG. You can simplify this by creating indirect commarld files or 
user-defined commands. 

3.6.5.1 Setting up PASDBG as a Single Host Process - To transfer 
control back and forth between processors, you should create indirect 
command files or user-defined DCL commands that will load the 
appropriate handler and start PASDBG. Examples of command files to 
configure PASDBG in RT-11, RSX-11 or VMS are given in the following 
examples. 

RT-11 Host Systems 

.UNLOAD TD 

.SET TD CSR aaaaaa 

.SET TD VECTOR vvv 

.LOAD TD 

RSX-11 Host Systems 

>DEA TD: 
>ALL TTnn:=TD 

VMS Host Systems 

$DEFINE TD: TTcn: 

The peripheral processor verification procedure in the 
MicroPower/Pascal kit includes a command file, PPVFY, which generates 
two other command files that switch PASDBG between the arbiter and 
KXTll-C (refer to the applicable MicroPower/Pascal installation 
guide). Using these files as models, you can create your own command 
files to switch PASDBG between multiple KXTll-C processors. 

3.6.5.2 Loading and Starting Target Processors - You must use the 
PASDBG LOAD command to load each target processor so that the DSM is 
properly initialized. You cannot use the KXT LOAD procedure or the 
KU! utility program to load a KXTll-C from-the arbiter processor if 
you wish to debug it with PASDBG. 

Once a target is loaded, you can set breakpoints or watchpoints 
(Section 3.6.5.3). Thereafter, you can use PASDBG's GO/EXIT command 
to start the target application. The command starts target execution, 
then returns control to the host system monitor. You can then connect 
to another target processor (using an indirect command file) prior to 
loading and executing the next target application. If you are 
debugging with multiple host PASDBG processes, use the PASDBG GO 
command to initiate target execution and continue running with PASDBG. 

3-41 



PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

3.6.5.3 Setting Breakpoints and Watchpoints - You can set breakpoints 
and watchpoints in a system that has several processors by following 
the steps listed below. 

1. Connect to the first processor (see Section 3.6.5). 

2. Load symbols (LOAD/SYM command). 

3. Set the breakpoints and/or watchpoints. 

4. Start up the target application and exit PASDBG with a 
GO/EXIT command. 

The processor is now running with the breakpoint(s) and/or 
watchpoint(s) set. You can connect to other processors and set other 
breakpoints and/or watchpoints if desired. You should start all 
KXTll-C processors before starting the arbiter processor. If your 
arbiter processor is running a MicroPower/Pascal application, you can 
start it with PASDBG. If your arbiter is running under RSX-11 or 
RT-11, you start your application using the appropriate 
system-specific command from the console terminal. 

PASDBG does not save the /AFTER and /PROCESS breakpoint and watchpoint 
modifiers if control is transferred to another processor. On 
reconnection to a processor, all breakpoints and watchpoints have 
modifiers of /AFTER=l and /PROCESS=ALL. 

On reconnection to a processor, if a breakpoint or watchpoint has been 
triggered since the disconnect, the message UNKNOWN BREAKPOINT AT 
nnnnnn is displayed at the terminal. To find the symbolic location, 
load the symbols (LOAD/SYM file.ext) and execute a SHOW TARGET 
command. The SHOW TARGET will symbolically display the location at 
which the target processor halted (the breakpoint location). The 
other processors in the system will continue to execute unless they 
are waiting for something from the processor that is halted at the 
breakpoint. 

3.6.6 Using the KK Handler Debugging Locations 

The KK handler uses two kernel locations, $KXTQW and $KXTQR, which are 
called (JSR PC instruction) just after the arbiter or KXTll-C places a 
message in the TPR command register. By setting breakpoints at either 
or both locations, you can examine th~ communication sequence between 
the arbiter and a KXTll-C processor on a step-by-step basis. 

3.6.7 Debugging an Application in a KXTll-C with Battery Backup 

PASDBG's GO and INIT/RESTART commands start your application directly 
in the kernel's power-up module, bypassing the native firmware that 
sets up the power-up flags. Because of this, you must manually set up 
the flags before issuing these commands. 

The following procedures apply when you are using PASDBG in a KXTll-C 
system configured for battery backup (: POWER = NONVOL specified in 
KXTllC macro) • 

3-42 



PROGRAMMING A KXTll-C USING MICROPOWER/PASCAL 

To down-line load an application: 

1. Use PASDBG in ODT mode to open location 175002. 

2. Set bit 9 (power up without battery backup) to 1 and bit 10 
(power up with battery backup) to 0. 

3. Load your application with the LOAD command. 

To restart a loaded application: 

1. Use PASDBG in ODT mode to open location 175002. 

2. Set bit 9 (power up without battery backup) to 1 and bit 10 
(power up with battery backup) to 0. 

3. Issue the IN IT/RESTART command. 

To test the power-failure and restart sequence: 

1. Use PASDBG in ODT mode to open location 175002. 

2. Set bit 10 (power up with battery backup) to 1 and bit 9 
(power up without battery backup) to 0. 

3. Set kernel location KXT$PF to a nonzero value. 

4. Issue the !NIT/RESTART command. 

If you attempt to load or restart an application configured for 
battery backup, without first setting one of the flags, the target 
will crash. If that happens, enter ODT mode and follow the 
instructions above to repeat the down-line load. 

3-43 





CHAPTER 4 

THE KXTll-C AND YOUR RSX-11 OR "RT-11 ARBITER APPLICATION 

This chapter describes KXTll-C peripheral processor application 
development for target systems that use an arbiter application in an 
RT-11 or RSX-11 system environment. For these target systems, there 
are three types of application development software: 

• MicroPower/Pascal software for programming the KXTll-C 

• RT-11 or RSX-11 software to operate on the arbiter system 

• KXTll-C/RT-11 Peripheral Processor Tool Kit or KXTll-C/RSX-11 
Peripheral Processor Tool Kit 

Each tool kit provides a KX device handler and the KUI program for 
peripheral processor loading and control. 

MicroPower/Pascal KXTll-C software makes the KXTll-C look (to an 
arbiter system) like a traditional Q-BUS I/O device. The KX handler 
(MicroPower/Pascal, RSX-11 and RT-11 versions) treats the two-port RAM 
(and the KK handler on the KXTll-C) as a standard I/O device, and the 
KXTll-C is configured into a system just like any other device. In 
addition, the OMA transfer controller (QD) device handler gives you a 
high-speed data path that is similar to other Q-BUS OMA devices. 

The design considerations identified in Section 3.5 apply to arbiter 
applications that use RT-11 and RSX-11. The major differences between 
these arbiter applications and MicroPower/Pascal arbiter applications 
are the implementation language and the lack of MicroPower/Pascal 
features such as semaphores and run-time hardware support routines. 

4.1 KUI UTILITY COMMANDS 

The KUI program provides the following peripheral 
development support and final application support. 

processing 

• SET and SHOW commands to allocate a peripheral processor and 
display its status. 

• Indirect file commands @, CLOSE, SUSPEND, and RESUME to manage 
the use of command file input. 

• LOG command to write a file containing the commands entered 
during a KUI session. The log file is executable as a command 
file. 

4-1 



THE KXTll-C AND YOUR RSX-11 OR RT-11 ARBITER APPLICATION 

• LOAD command to transfer executable images from the arbiter's 
mass storage device to a KXTll-C. 

• EXECUTE command to start the program on the KXTll-C. 

• REINIT command to cause the KXTll-C native firmware to execute 
a bootstrap procedure. 

• ODT command to emulate the console ODT of the KXTll-C native 
firmware. · 

• TRAP command tQ cause the execution of a trap handling routine 
~n the KXTll-C. 

• SELFTEST command to selectively invoke the self-test routines 
in the KXTll-C native firmware. 

• EXIT command to terminate execution of the KUI program and 
return to the system's command line interpreter. 

4.2 ARBITER APPLICATIONS THAT USE RT-11 

4.2.l Interface Tools 

The KX handler supplied with the KXTll-C/RT-11 Peripheral Processor 
Tool Kit provides the primary interface between application code 
running under the RT-11 system and application code running on the 
KXTll-C. The KX handler supports up to four KXTll-Cs where each 
KXTll-C provides two logical units. Logical unit numbering is 
determined when you build the handler or by subsequent SET KX CSR 
(DCL) commands. 

To support more than four KXTll-C processors, you must edit, rename, 
and rebuild the KX handler. The procedure for creating a second or 
subsequent handler appears in the tool kit documentation. 

The KX handler for RT-11 provides .OPEN, .CLOSE, 
programmed requests. 

.READ, and .WRITE 

• The .OPEN programmed request associates a user-specified 
channel number with a logical unit number of a KXTll-C. 

• The .CLOSE programmed request reverses the effect of the .OPEN 
programmed request, thus freeing the user's channel for use 
with another device or file. 

• The .READ programmed request transfers data from a peripheral 
processor to an arbiter buffer with three options: .READ, 
.READW and .READC. 

• The .WRITE programmed request transfers data from an 
buffer to a peripheral processor with three options: 
.WRITW and .WRITC. 

arbiter 
.WRITE, 

The RT-11 arbiter application may also interface the application on 
the KXTll-C using the KXTll-C's OMA transfer controller (OTC) and QD 
handler. This interface provides for the exchange of buffers of data 
between the arbiter and the KXTll-C using direct memory access. 

4-2 



THE KXTll-C AND YOUR RSX-11 OR RT-11 ARBITER APPLICATION 

The tool kit also provides the MACR0-11 macro KXTDF$ that defines the 
registers of the KXTll-C and the commands and responses defined for 
the KX/KK protocol in Appendix A. This macro can be used when 
necessary to interface the KXTll-C directly without using the KX 
handler, or if the application requires access to the command and 
status registers used by the native firmware.on the KXTll-C. 

In developing a peripheral processing application using an RT-11 
arbiter, you must follow the same steps that were outlined in Chapters 
2 and 3. The following are specific considerations that reflect the 
RT-11 operating system environment. 

4.2.2 Calculating Physical Memory Addresses 

If you want to use DMA transfers between the RT-11 
and the KXTll-C, you must provide a physical address 
on the KXTll-C. The RT-11 KX handler provides a 
(.SPFUN) that converts a 16-bit virtual address to 
address. 

arbiter's memory 
to the QD handler 
special function 
a 22-bit physical 

In the RT-11 SJ and FB monitors, virtual addresses and physical 
addresses are identical. To facilitate the transportability of 
programs among all the RT-11 monitors (SJ, FB, and XM), you should use 
the .SPFUN function in the SJ and FB environments, as well as in the 
XM environment. 

4.2.3 Application Building for Debugging 

The same overall considerations apply to debugging an application 
using an RT-11 arbiter as apply to the MicroPower/Pascal arbiter, as 
outlined in Chapters 2 and 3. Conventional debugging tools, such as 
ODT, are available for debugging the arbiter-resident portion of the 
application. KUI may also be used during the debugging phase of 
development. The ODT and TRAP commands are particularly useful when 
debugging. It is helpful to include PASDBG in the KXTll-C application 
so you can use the two arbiter/KXTll-C deb.ugging locations, $KXTQW and 
$KXTQR, described in Section 3.6.6. 

4.2.4 Final RT-11 Application' Configuration 

Final application configuration considerations include removing. the 
debugging features, adapting the application to its final loading 
method, and testing it in its final configuration. 

4.2.5 Loading a KXTll-C Peripheral Processor from the RT-11 Arbiter 

The KXTll-C application in its final configuration can be loaded using 
the KUI program, loaded from TU58 DECtape II, or resident in ROM. KUI 
supports the loading of .SAV, .LOA and .MIM files on RT-11. Loading 
and starting the application with KUI can be automated by using 
command files at system start-up. Appendix F describes how a program 
can detect nonfatal errors reported when issuing the KUI commands 
REINIT or LOAD to the KXTll-C. 

4-3 



THE KXTll-C AND YOUR RSX-11 OR RT-11 ARBITER APPLICATION 

4.3 ARBITER APPLICATIONS THAT USE RSX-11 

4.3.1 Interface Tools 

The KX handler supplied with the KXTll-C/RSX-11 Peripheral Processor 
Tool Kit provides the primary interface to the KXTll-C. The KX device 
(handler) has one unit number associated with each data channel in 
each KXTll-C two-port RAM area. These units are assigned to their 
respective data channels at the time the KX handler is generated. 
This handler is a conventional RSX-11 handler providing the standard 
requests IO.RVB, IO.WVB, IO.ATT, and IO.DET. 

Another interface is through shared memory areas using the DTC and the 
QD handler on the KXTll-C. This interface is faster than the KX 
handler, especially for larger data blocks, but is more complex to use 
and requires special precautions. 

The tool kit also provides the MACR0-11 macro KXTDF$ that defines the 
registers of the KXTll-C and the commands and responses defined for 
the KX/KK protocol in Appendix A. This macro can be used when 
necessary to interface the KXTll-C directly without using the KX 
handler, or if the application requires access to the command and 
status registers used by the native firmware on the KXTll-C. 

In developing a peripheral processing application using an RSX-11 
arbiter, you must follow the same steps that were outlined in Chapters 
2 and 3. The following are specific considerations that reflect the 
RSX-11 operating system environment. 

4.3.2 Calculating a Physical Memory Address 

You must calculate a physical address when transferring memory blocks 
to and from the arbiter memory space with the KXTll-C using the QD 
handler. Do this by using the get .region parameters directive GREG$ 
from the task containing the buffer. The GREG$ directive returns the 
physical address of the beginning of the task region. Use this 
address plus the offset of the buffer from the beginning of the task 
to calculate the physical address of the buffer. This address can 
then be passed to the QD handler on the KXTll-C. 

4.3.3 Accessing Shared Memory Areas 

You must take precautions when using a shared memory area or a buffer 
that is accessed by the QD handler and DTC device. In RSX-11 systems 
the shuffler task can move a task from place to place in memory, so a 
task issuing a request to a KXTll-C can be moved between the time the 
request is issued and the time the KXTll-C attempts to move the data, 
leading to catastrophic results. 

You can lock a task in position by queuing an I/O request which 
increments the task's I/O-in-progress count; RSX-11 will not shuffle a 
task with I/O in progress. If, however, your application uses the KX 
handler to pass a buffer transfer request to the QD handler, the KX 

·handler request will complete, freeing the task to be swapped before 
the QD handler can move the data. This can lead to unpredictable and 
random failures of the application. 

4-4 



THE KXTll-C AND YOUR RSX-11 OR RT-11 ARBITER APPLICATION 

To prevent this problem, manually change the I/O-in-progress count to 
prevent task shuffling during critical periods, or use data partitions 
for the shared data areas. 

4.3.4 Protecting Shared Data Areas from Simultaneous Access 

RSX-11 does not provide. semaphore operations, so other means of 
protecting data areas from simultaneous access must be devised. You 
should design this protection into the protocol used in communicating 
with the KXTll-C. 

4.3.5 Application Building for Debugging 

You will probably include ODT or some other debugging tool in your 
RSX-11 application while debugging it. You can use the KUI program 
during the debugging phase of development. The ODT and TRAP commands 
are particularly useful when debugging. It is helpful to include 
PASDBG in the KXTll-C application so you can use the two 
arbiter/KXTll-C debugging locations, $KXTQW and $KXTQR, described in 
Section 3.6.6. 

4.3.6 Final RSX-11 Application Configuration 

Final application configuration considerations include removing the 
debugging features, adapting the application to its final loading 
method, and testing it in its final configuration. 

4.3.7 Loading a KXTll-C Peripheral Processor from the RSX-11 Arbiter 

The KXTll-C application in its final configuration can be loaded using 
the KUI program, or resident in ROM. KUI can load memory image files 
with the .TSK and .MIM file types. Loading and starting the 
application with KUI can be automated by using command files at system 
start-up. Appendix F describes how a program can detect nonfatal 
errors reported when issuing the KUI commands REINIT or LOAD to the 
KXTll-C. 

4-5 





APPENDIX A 

KX/KK DEVICE HANDLER COMMUNICATION PROTOCOL 

This appendix describes the protocol that the KK and KX device 
handlers use to communicate with one another through the two-port RAM 
(TPR). It contains information to assist you in designing your own KK 
or KX device handler so it can communicate with the DIGITAL-supplied 
KK or KX handler. The KK and KX handlers are used when the KXTll-C is 
set up for peripheral processor operation. 

The protocol provides a master-slave relationship between the arbiter 
processor and the KXTll-C {do not confuse master-slave with the 
bus-master/bus-slave hardware concept) • The KK handler running on the 
KXTll-C uses the TPR to emulate a traditional Q-BUS peripheral device. 
The KX handler running on the arbiter communicates with this device. 
The protocol implements a request-reply dialog between the arbiter on 
the Q-BUS and the KXTll-C to assure correct and complete transfer of 
data between them. 

The arbiter is the master in all transactions with the peripheral 
processor which is the slave (refer to Figure A-1). The peripheral 
processor must receive a command from the arbiter before it passes any 
data to the arbiter or before it receives any data from the arbiter. 

A.1 COMMUNICATION MECHANISMS 

The basic TPR hardware communication mechanisms are the: 

• Command register for each data channel -- used by the master 
to pass commands to the slave 

• Status register for each data channel -- used by the slave to 
pass error and operational status to the master 

• Data registers 
data channel 
the slave 

4 bytes for data channel 0 and 12 bytes for 
1, used for passing data between the master and 

• QIR register in the slave -- used by the slave to interrupt 
the master 

A-1 



KX/KK DEVICE HANDLER COMMUNICATION PROTOCOL 

j.--- --- MASTER-- -- -~ - - -- -SLAVE- - ----....j 

Arbiter 

KX 

Handler 

Data 

Channel 1 

Data 

ChannelO 

-- ---
---
""---
--

----- --
~ 

-- ---
System Control Registers 

Two-Port RAM 

Data Register 

Status Register 

Command Register 

... 
Data Register 

Status Register 

Command Register 

... 

-
--
~ 

-
---

...... -

----

-

------

Data 

Channel 1 

Data 

ChannelO 

System Control Registers 

KXT11-C 

QIR 

_KK 
Handler 

Figure A-1: KX/KK Device Handler Communication Linkages 

The interface between the arbiter and the KXTll-C consists of layers 
of software. The lowest layer contains MACRO definitions for the bits 
in the command and status registers of the TPR. The next layer 
consists of KX and KK handlers that move data between a KXTll-C 
process and a process in the arbiter. 

The protocol provides the arbiter with commands that cause the: 

• Device initialization of the peripheral processor 

• Arbiter read request/peripheral processor write reply sequence 

• Arbiter write request/peripheral processor read reply sequence 

• Enabling and disabling interrupts 
processor to the arbiter 

from the peripheral 

The following sections describe the special meanings 
assigns to the TPR registers in the context of 
operations. Figure A-2 shows the TPR's general layout. 

A-2 

the 
KX/KK 

protocol 
handler 



KX/KK DEVICE HANDLER COMMUNICATION PROTOCOL 

Base+36---

KW.DST 

KW.DCC 
Base+20---

KW.DST 

KW.DCO 
Base+10 ---

Base+OO---

Note 1 Writing 

Data Register 

Data Register 

Data Register 

Data Register 

Data Register 

Data Register 

Status Register (arbiter read-only) 

Command Register (note 1) 

Data Register 

Data Register 

Status Register (arbiter read-only) 

Command Register (note 2) 

Data Register 

Data Register 

Status Register (arbiter read-only) 

Command Register (note 3) 

to this register from 
interrupt through vector 124 

Note 2 Writing to this register from 
interrupt through vector 120 

T 
Data Channel 1 

:i: 
KXT11-C 

System Control 
Registers 
(note4) 

* 
the arbiter causes 

on the KXTll-C. 

the arbiter causes 
on the KXTll-C. 

a level 5 

a level 5 

Note 3 Writing to this register from the arbiter causes the KXTll-C 
to restart the native firmware. 

Note 4 The system control registers are not part of the protocol. 
They are used by the KU~ utility program, the KXT LOAD 
procedure, diagnostic programs, and user-written programs. 

Figure A-2: TPR Register Layout 

A.2 KX/KK PROTOCOL DEFINITION 

In the protocol a data channel's command register (KW.DCO in Figure 
A-2) controls ownership of the contents of the data channel's data 
register. If the command register is 0, the KX handler owns the data 
channel's registers. If the command register is nonzero, the KK 
handler owns them. All status registers (KW.DST in Figure A-2) are 
owned by the KK handler. 

When the KX handler communicates with the KK handler with interrupts 
disabled, it must poll the command register (KW.DCO) using it as the 
ownership flag for the data channel. To poll the KK handler, the KX 
handler must: 

1. Poll the command register until it becom~s zero. The zero 
condition means the KK handler is idle and any previous 
command has completed. 

A-3 



KX/KK DEVICE HANDLER COMMUNICATION PROTOCOL 

2. Issue a command by writing it into the command register. 
This causes the KK handler to perform the command. Once the 
command register has been written, the KX handler cannot 
alter the contents of any of the data channel's registers. 
Consequently the KX handler must write the data being 
transferred by the command into the data registers before the 
command is issued. 

3. Poll the command register_ until it becomes zero. At that 
time, the status register data is valid and the KX handler 
can issue furt~er commands (as in step 2). 

When the KX handler communicates with the KK handler with interrupts 
enabled, the KK device handler uses the Q-BUS interrupt register (QIR) 
to signal the KX handler that an operation is complete. The KK 
handler interrupts the KX handler after a command has completed and 
the proper status and/or data bits have been set. 

By using the interrupt-on-data-available (KC.IDA) and interrupt-on
data-requested (KC.IDR) bits of the enable interrupts command, the KX 
handler can instruct the KK handler to interrupt the KX handler when 
the KS.DA and/or KS.DR status register bits change from 0 to 1. This 
presents a device-like interface analogous to a physical device's 
receive-buffer-full and transmit-buffer-empty interrupts. 

A.2.1 KX and KK Handler Transactions 

The transactions between the KX handler and the KK handler are 
illustrated below. 

1. The KX handler tests the command register. If it is zero, 
the handler proceeds to the next step. If nonzero, the 
handler repeats this step. 

KX HANDLER KK HANDLER 

Data Register 

Status Register 

Is it Zero? ,..___ Command Register 

2. Since the command register is zero, the KX handier owns the 
data channel. It can write data to or read data from the 
data registers, as implied by the pending command. The KX 
handler issues the command by writing it to the command 
register. The act of writing the command to the command 
register, thereby making it nonzero, switches ownership of 
the data channel to the KK handler. 

A-4 



KX/KK DEVICE HANDLER COMMUNICATION PROTOCOL 

KX HANDLER KK HANDL~R 

Read/Write data ..._.. Data Register 

Status Register 

Command~ Command Register 

3. The KK handler is interrupted by the KX handler writing to 
the command register.· The KK handler now owns the data 
channel. It reads and validates the command. 

KX HANDLER KK HANDLER 

Data Register 

Status Register 

Command Register --. Validate the command 

If the KK handler detects an error in the command, it reports 
this error in the status register and proceeds with step 4. 

KX HANDLER KK HANDLER 

Data Register 

Status Register ...__ Channel Error Status 

Command Register 

If it detects no error, the KK handler performs the command, 
moves any data required by the command into or out of the 
data registers, and writes the status of the channel into the 
status register. 

KX HANDLER KK HANDLER 

Data Register .._.... Read/Write any data 

Status Register ....,__ Channel Status 

Command Register __.... Read the command 

4. The KK handler completes the transaction by zeroing the 
command register, thus transferring ownership of the data 
channel back to the KX handler. If interrupts are enabled, 
the KK handler interrupts the KX handler by queuing an 
interrupt to the Q-BUS interrupt register (QIR). 

A-5 



KX/KK DEVICE HANDLER COMMUNICATION PROTOCOL 

KX HANDLER KK HANDLER 

Data Register 

Status Register 

Command Register ....- Zero 

5. Finally, the KX handler regains ownership of the data channel 
by: 

Polling the command register and testing for zero 

or 

Waiting for an interrupt and testing the command register 
on being interrupted to find it is zero 

Once it gains ownership1 the KX handler checks the status 
register for error and status information and reads from or 
writes to the data registers as implied by the pending 
command. From this point the cycle repeats. 

KX HANDLER KK HANDLER 

Read/Write data ....,... Data Register 

Status ~ Status Register 

ls it Zero?~ Command Register 

A.2.2 Message Communication Between the KK and KX Handlers 

In the transactions between the KX and KK handlers over the TPR 
(Section A.2.1), the number of bytes in a data transfer is limited by 
the number of data registers in the channel (4 bytes for data channel 
0 and 12 bytes. for data channel 1). At the application-program 
handler level of communication, however, the protocol provides for 
longer messages by using an end-of-message (EOM) indicator. Thus, a
read or write request to the KX handler causes multiple transactions 
over the TPR if the ~essage is larger than the size of the data 
channel. 

When the KX handler receives a write request from the arbiter program, 
it performs as many TPR write operations as necessary to send the 
message. For each TPR write operation, the KK handler completes the 
transaction by performing a corresponding TPR read operation. On the 
last write operation, the KX handler sets the EOM indicator in the 
data channel's status register. This informs the KK handler that all 
data has been sent. Therefore, the arbiter program's write request is 
complete. 

When the KX handler receives a read request from the arbiter program, 
it performs as many TPR read operations as necessary to receive the 
message. For each TPR read operation, the KK handler completes the 
transaction by performing a corresponding TPR write operation. On the 
last TPR write operation, the KK handler sets the EOM indicator in the 

A-6 



KX/KK DEVICE HANDLER COMMUNICATION PROTOCOL 

data channel's status register. This informs the KX handler that all 
data has been sent. Therefore the program's read request is complete. 
Accordingly, the number of bytes received can be less than the number 
of bytes specified in the arbiter program's read request. 

A.2.3 Synchronizing KK and KX Device Handler Operation 

For a TPR read operation by the KX handler to complete, there must be 
a corresponding TPR write operation by the KX handler. Similarly, a 
TPR write operation by the KX handler requires a TPR read operation by 
the KK handler. If the KX handler issues a TPR read operation and the 
KK handler has not posted a TPR write operation, the KX handler 
receives an error indicating no data is available. 

To optimize synchronization of TPR operations, the KX and KK handlers 
use two interrupts: interrupt when data available and interrupt when 
data requested (Sections A.3.1.2 and A.3.1.3). By using these 
interrupts the handlers need not continually issue and retry commands 
because of data-not-requested or data-not-available error conditions. 

A.2.3.1 Interrupting When Data is Available·- The KX handler uses the 
interrupt-when-data-available as follows. 

1. Before issuing a TPR read command it checks for TPR data 
available. 

2. If data is available, it issues the read command and returns, 
waiting for an interrupt on completion. 

If data is not available, it does not issue the read command. 
Instead, it saves its context and returns, waiting for an 
interrupt on data available. 

When the KK handler issues a TPR write command, 
data-available indicator and requests an interrupt. 
handler receives the interrupt, it checks that it has 
command pending and that data is available before issuing 
command. 

it sets the 
When the KX 

a TPR read 
its TPR read 

The KK handler can request an interrupt-when-data-available when it 
has no read pending. The KX handler ignores these interrupts. 

A.2.3.2 Interrupting When Data is Requested - The KX handler uses the 
interrupt-when-data-requested as follows. 

1. Before issuing a TPR write command it checks for TPR data 
requested. 

2. If data is requested, it issues the write command and 
returns, waiting for an interrupt on completion. 

If data is not requested, it does not issue the write 
command. Instead, it saves its context and returns, waiting 
for an interrupt on data requested. 

A-7 



KX/KK DEVICE HANDLER COMMUNICATION PROTOCOL 

When the KK handler issues a TPR read command, it sets the 
data-requested indicator and requests an interrupt. When the KX 
handler receives the interrupt, it checks that it has a TPR write 
command pending and that data is requested before issuing its TPR 
write command. 

The KK handler can request an interrupt-when-data-requested when it 
has no write pending. The KX handler ignores these interrupts. 

A.3 REGISTER DEFINITIONS 

The following sections define the command and status registers as 
viewed from the Q-BUS (KX handler) side of the interface between the 
Q-BUS and the KXTll-C. 

A.3.1 Command Register Definition 

KW.DCO 

151413121110 9 8 7 6 5 4 3 2 1 0 

x 

Command field (KC.COM) 
Interrupt when data available (KC. IDA) 

1-..------ Interrupt when data requested (KC.IDR) 
....___ ________ Length field (KC.LEN) 

"-.._ __ ::---.....,1-------- End of message (KC.EOM) 
v 

......._ ___________ Vector number field (KC.VEG) 

Bit 5 is set to 0. Bits KC.IDA, KC.IDR, KC.LEN, KC.EOM, and KC.VEC 
have meaning for specific commands only. 

A.3.1.1 Command Field (KC.COM) - The command field, KC.COM, contains 
one of the following commands, issued to the KK handler from the KX 
handler. The codes are designed to allow your program to index them 
from a table. 

No-Op Command KC$NOP (Code 9) 

A null operation. The KK handler places the data channel's status in 
the status register (KW.DST) and clears the command· register (KW.DCC). 
If interrupts are enabled (KC$EI command) a Q-BUS interrupt occurs. 

A-8 



KX/KK DEVICE HANDLER COMMUNICATION PROTOCOL 

Reset KK Handler to KX Handler Command KC$RSM (Code 2) 

Resets ownership of the TPR to the KX handler. The KK handler reports 
the channel's status in the status register (KW.DST) and clears the 
command register (KW.DCC). If interrupts are enabled (KC$EI command) 
a Q-BUS interrupt occurs. 

Enable Interrupt Command KC$EI (Code 4) 

Enables interrupt mode in the KK handler. The address of the vector 
to use must be in the KC.VEC field (bits 8 to 15) of the command 
register and must be the vector address divided by four. 

The KK handler interrupts the KX handler under any of 
conditions. 

1. Command completion 

these 

2. If the KS.DA bit in the status register changes from 0 to 1 
when the interrupt-when-data-available bit (KC.IDA) is set 

3. If the KS.DR bit in the status register changes from 0 to 1 
when the interrupt-when-data-requested bit (KC.IDR) is set 

The KK handler interrupts the KX handler on command completion when 
the interrupt mode is enabled. Conditions 2 and 3 (above) cause the 
KK handler to interrupt the KX handler only if the KC.IDA and KC.IDR 
bits are set when the command is issued (see Sections A.3.1.2 and 
A.3.1.3). Before interrupting the KX handler, the KK handler places 
the channel's status in the status register and clears the command 
register. · 

Disable Interrupt Command KC$DI (Code 6) 

Disables interrupt mode in the KK handler. The KK handler places the 
channel's status in the status register and clears the command 
register. Completion of the command never interrupts the KX handler. 

Get Status Command KC$GS (Code 8) 

Instructs KK handler to place its internal status in the data 
registers. This status information is currently undefined and 
reserved by DIGITAL for future use. The command is effectively the 
same as the no-op command. The KK handler places the channel status 
in the status register and clears the command register. If interrupts 
are enabled (KC$EI command) a Q-BUS interrupt occurs. 

Read Status Command KC$SS (Code 10) 

Instructs KK handler to read the new internal status from the data 
registers. This status information is currently undefined and 
reserved by DIGITAL for future use. The command is effectively the 
same as the no-op command. The KK handler places the channel's status 
in the status register and clears the command register. If interrupts 
are enabled (KC$EI command) a Q-BUS interrupt occurs. 

A-9 



KX/KK DEVICE HANDLER COMMUNICATION PROTOCOL 

Read Data Command KC$RD (Code 12) 

Causes KK handler to place bytes of data into the channel's data 
registers. The maximum number of bytes to transfer is specified by 
data length field KC.LEN {see Section A.3.1.4}. The KK handler must 
be ready to send the data {as indicated by the data-available KS.DA 
bit in the status register) or it will return a no-data-available 
(KE$NDA) error in the status register. 

The KK handler: 

1. Moves the data into the data registers 

2. Sets the number of bytes being transferred in the actual 
length field (KS.ALN) of the status register 

3. Sets the end-of-message bit (KS.EOM) in the status register 
if this is the last transfer in the me~sage 

4. Sets any other status 

5. Clears the command register and interrupts the arbiter if 
interrupts are enabled 

If the KX handler buffer being filled with data overflows, 
handler issues a reset KK-handler-to-KX-handler command 
thereafter. If interrupts are enabled (KC$EI command), 
interrupt occurs. 

Write Data Command KC$WD (Code 14) 

the KX 
{KC$RSM) 
a Q-BUS 

Causes KK handler to accept bytes of data from the channel's data 
registers. The maximum number of bytes to transfer is specified by 
data length field KC.LEN (see Section A.3.1.4). The KK handler must 
be ready to accept the data (as indicated by the data-requested KS.DR 
bit in the status register) or it will return the no-data-requested 
{KE$NDR) error in the status register. If the KK handler buffer being 
filled with data overflows, excess data is discarded and the KK 
handler returns a data overrun {KE$0VR) error. 

The KK handler: 

1. Examines the length field {KC.LEN) for the number of bytes 
being transferred 

2. Removes the number of bytes specified by KC .LEN from the data· 
registers 

3. Tests for the EOM bit {KC.EOM) to find the last transfer in 
the message 

4. Places its status in the status register 

5. Clears the command register and interrupts the arbiter if 
interrupts are enabled 

A-10 



KX/KK DEVICE HANDLER COMMUNICATION PROTOCOL 

A.3.1.2 Interrupt When Data Available Bit (KC.IDA) - The interrupt
when-data-available bit, KC.IDA, when set to 1 indicates the KK 
handler should interrupt the KX handler when the data-available bit 
(KS.DA) of the status register changes from 0 to 1. This bit is 
meaningful only when used with the KC$EI command. 

A.3.1.3 Interrupt When Data Requested Bit (KC.IDR) - The interrupt
when-data-requested bit, KC.IDR, when set to 1 indicates the KK 
handler should interrupt the KX handler when the data-requested bit 
(KS.DR) in the status register changes from 0 to 1. This bit is 
meaningful only when used with the KC$EI command. 

A.3.1.4 Length Field (KC.LEN) - The length field, KC.LEN, indicates 
the maximum number of bytes to be transferred by the read-data (KC$RD) 
and write-data (KC$WD) commands. This field is meaningful only when 
used with the KC$RD and KC$WD commands. 

A.3.1.5 End-of-Message Bit (KC.EOM) - The end-of-message bit, KC.EOM, 
when set to 1 indicates the last byte in the current transfer that 
ends the message. This bit is meaningful only when used with the 
KC$WD command. 

A.3.1.6 Vector Number Field (KC.VEC) - The vector number field, 
KC.VEC, specifies the vector nQ~ber (vector address divided by four) 
of the interrupt vector being activated by the enable-interrupt 
command (KC$EI). This field is meaningful only when used with the 
KC$EI command. 

A.3.2 Status Register Definition 

151413121110 9 8 7 6 5 4 3 2 1 0 

KW.DST 

1 
....__ __ Error code field (KS.ERG) 

-------- Data requested (KS.DR) 
....__ _____ End of message (KS.EOM) 

....__ ______ Data available (KS.DA) 
._ _________ Actual length field (KS.ALN) 

-------------- Interrupt enabled (KS.IEN) 
.__ ____________ Interface ready (KS.ON) 

.__ ______________ Cumulative error (KS.ERR) 

Bit 12 is set to 0. 

~-11 



KX/KK DEVICE HANDLER COMMUNICATION PROTOCOL 

A.3.2.1 Error Code Field (KS.ERC) - The error code field, KS.ERC, 
contains the following status or one of the following errors after a 
requested command operation. The codes are designed to allow your 
program to index them from a table. 

Operation Successful Status KE$0K (Code 0) 

The operation previously requested completed without errors. 

No Data Available Error KE$NDA (Code 2) 

The read data command (KC$RD) was rejected because no data was 
available. 

No Data Requested Error KE$NDR (Code 4) 

The write data command (KC$WD) was rejected because no data was 
requested by the KK handler. 

Illegal Command Error KE$ILC (Code 6) 

The command specified in the command field (KC.COM) of the command 
register is invalid. 

Illegal Length Error KE$ILL (Code 8) 

The number of bytes specified in the length field (KC.LEN) of the 
command register is invalid. 

Illegal Vector Error KE$ILV (Code 10) 

The ~ector number (vector address divided by four) specified in the 
vector number field (KC.VEC) of the command register is invalid. 

KK Handler Buffer Overflow Error KE$0VR (Code 12) 

The KK handler buffer being filled by a write data (KC$WD) command 
overflowed and excess data was discarded. 

A.3.2.2 Data Requested Bit (KS.DR) - The data-requested bit, 
when set to 1 indicates the KK handler is requesting data. 
write data (KC$WD) command issued by the KX handler will be 
by the KK handler. 

KS.DR, 
Thus, a 

accepted 

A.3.2.3 End-of-Message Bit (KS.EOM) - The end-of-message bit, KS.EOM, 
when set to 1 indicates the last byte in the current transfer ends ~he 
message. 

A-12 



KX/KK DEVICE HANDLER COMMUNICATION PROTOCOL 

A.3.2.4 Data Available Bit (KS.DA) - The data-available bit, KS.DA, 
when set to 1 indicates data is available to be read from the KK 
handler. Thus, the KK handler will accept a read data (KC$RD) command 
issued by the KX handler. 

A.3.2.5 Actual Length Field (KS.ALN) - The actual-length field, 
KS.ALN, is set to the number of bytes to be transferred in response to 
a read data (KC$RD) command. 

A.3.2.6 Interrupt Enabled Bit (KS.IEN) - The interrupt-enabled bit, 
KS.IEN, when set to l indicates an enable interrupt (KC$EI) command 
completed successfully and the KK handler will interrupt the arbiter 
on the specified interrupt condition. 

A.3.2.7 Interface Ready Bit (KS.ON) - The interface-ready bit, KS.ON, 
when set to 1 indicates t~ the KX handler that the KK handler is ready 
to perform the protocol. 

A.3.2.8 Cumulative Error Bit (KS.ERR) - The cumulative error bit, 
KS.ERR, when set to 1 indicates an error condition exists. The error 
code is in the error code (KS.ERC) field •. When this bit is set to 1, 
the KS.ALN field is not meaningful and its contents should be ignored. 

A.3.3. Interface Initialization 

At system start-up the TPR is locked from write access by the KX 
handler side, and the status and command registers are in a cleared 
state. The KX handler waits for the KK handler to initialize itself, 
and indicates its readiness by waiting for the interface-ready bit 
(KS.ON) in the status register to be set to 1. The KK handler cannot 
clear the KS.ON bit until it has permanently ceased TPR communication. 

A-13 





APPENDIX B 

KXTll-C CSR AND VECTOR ASSIGNMENTS 

This appendix lists the interrupt vector assignments for all KXTll-C 
devices and their associated control status registers (CSRs). Refer 
to Appendix C for the interrupt vector and CSR assignments for the 
two-port RAM (TPR). 

Vector 

60 

64 

70 

100 

104 

110 

CSR 
Address Device 

177560- SLUl console 
1 77562 DLART receiver 

177564- SLUl console 
177566 DLA RT 

transmitter 

175700- SLU2 hardware 
1 75716 

1 75720-
175736 

177520 

8254 timer 0 
and timer 1 

Line frequency 
clock 

175720- 8254 timer 2 
175736 

174400- OTC channel 0 
174536 

Comments 

Do not specify this vector as an 
argument to the MicroPower/Pascal 
DEVICES macro. The kernel routes its 
interrupts from this vector through 
vectors 140 to 174. 

Timer 0 and timer 1 on the 
device provide timing for SLU2. 

8254 

Interrupts through this vector are 
enabled in the MicroPower/Pascal 
kernel if CLOCK=ON in the KXTllC 
macro. The MicroPower/Pascal clock 
handler enables the interrupt with or 
without specifying CLOCK=ON. 

CSR 177520 is 
enables/disables 
clock as in the 
177546. However, 
allocated to serve 

KXTCSRA. Bit 6 
the line frequency 
usual clock CSR at 
the other bits are 
other functions. 

MicroPower/Pascal does not support 
this timer. You must write your own 
handler for it. Specify vector 104 
in the MicroPower/Pascal DEVICES 
macro. Timer 2 is enabled by bit 7 
in KXTCSRA (address 177520). 

The native firmware sets up this 
vector. 

B-1 



KXTll-C CSR AND VECTOR ASSIGNMENTS 

114 

120 

124 

130 

134 

174400 
174536 

OTC channel 1 

175000- TPR system 
175006 control 

175010-
175016 

175020-
175036 

177532 

175030-
175036 

TPR data 
channel 0 

TPR data 
chqnnel 1 

QIR 

Q-BUS 
interrupt 
answer-back 

TPR data 
channel 2 

140 175700- SLU2 channel A 

144 

150 

154 

160 

175736 character 

175700-
175736 

175700-
175736 

175700-
175736 

175700-
175736 

received 

SLU2 channel A 
character sent 

SLU2 channel A 
error 

SLU2 channel A 
modem control 

SLU2 channel B 
character 
received 

The native firmware sets up this 
vector. 

The first four words of the two-port 
RAM used for KXTll-C native firmwaTe/ 
arbiter communication. When the 
arbiter writes to word 0 (TPR command 
register), the KXTll-C restarts at 
173004. 

This vector is used when the arbiter 
writes to TPR word 4 (command 
register for data channel 0) • 

This vector is used when the arbiter 
writes to TPR word 8 (command 
register for data channel 1). 

Q-BUS interrupt register. The 
MicroPower/Pascal KK device handler 
writes the arbiter's vector address 
to use for TPR operations. 

This vector is used when the arbiter 
acknowledges the interrupt requested 
by the MicroPower/Pascal KK device 
handler over the QIR. 

This vector is used when the arbiter 
writes to word 12 of the TPR (enabled 
by a bit in KXTCSRD). Words 12 to 15 
of the TPR form data channel 2 which 
is not supported by the MicroPower/ 
Pascal KK/KX device handlers. 
Instead, MicroPower/Pascal uses these 
locations as the last four words of 
data channel 1. Do not specify this 
vector in the MicroPower/Pascal 
DEVICES macro. 

Module KSLU2 in MicroPower/Pascal's 
kernel fans out the interruots from 
SLU2, the multiprotocol chip,-through 
the vector at 70 to the vectors 140 
to 174. 

B-2 



164 

170 

174 

200 

204 

210 

214 

220 

KXTll-C CSR AND VECTOR ASSIGNMENTS 

175700- SLU2 channel B 
175736 character sent 

175700- SLU2 channel 
175736 error 

175700- SLU2 channel 
175736 modem control 

177000- Parallel I/O 
177140 port A 

177000- Parallel I/O 
177140 port B 

177000- Parallel I/O 
1 77140 timers 

Nonvolatile 
RAM 
power restore 

Arbiter RESET 

B 

B 

This vector is set up by the KXTll-C 
native firmware and used by parallel 
I/O port A. 

This vector is set up by the KXTll-C 
native firmware and used by parallel 
I/O port B. 

This vector is set up by the KXTll-C 
native firmware and used by parallel 
I/O port counter-timers. 

This vector is used by MicroPower/ 
Pascal when the KXTll-C, set up for 
battery backup, performs a power 
restore operation. You must specify 
POWER=NONVOL in the KXTllC macro to 
obtain this service. A user 
interrupt service routine connected 
to this vector is called during a 
power recovery. 

This vector is used when the 
arbiter's BRESET signal is asserted. 
BRESET is asserted when the arbiter 
executes a RESET instruction or its 
RESTART switch is toggled. 

Many device interrupts are enabled 
and disabled by setting bits in the 
CSRs. 

B-3 





APPENDIX C 

SYSTEM ID SWITCH POSITIONS, TWO-PORT RAM CSR ARD VECTOR ASSIGNMENTS 

This appendix shows the control status register (CSR) and interrupt 
vector assignments for the two-port RAM (TPR) that are selected by the 
KXTll-C system ID switch. These registers and vectors appear in the 
I/O page and vector area of arbiter memory. The table also shows the 
associated KX device handler logical unit IDs. 

The KX device handler passes data between the arbiter CPU and up to 14 
KXTll-C peripheral processors running on the Q-BUS. The handler 
communicates with the KK device handler in the KXTll-C through the 
command and status registers in the data channel areas of the TPR (see 
Sections 3.4.6 and 3.4.7 and Appendix A for more information). 

ID 
Switch 
Position 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

MicroPower 
KX Handler 
ID 

TPR Base Address 
Jumper 
In 

Stand-alone mode 
Stand-alone mode 
A 17762100 
B 17762140 
c 17762200 
D 17762240 
E 17762300 
F 17762340 
G 17777400 
H 17777440 
I 17777500 
J 17777540 
K 17777600 
L 17777640 
M 17777700 
N 17777740 

Jumper 
Out 

17760100 
17760140 
17760200 
17760240 
17760300 
17760340 
17775400 
17775440 
17775500 
17775540 
17775600 
17775640 
17775700 
17775740 

Default Vectors 
MicroPower 
and RSX-11 RT-11 

500,504 
510,514 
520,524 
530,534 
540,544 
550,554 
560,564 
570,574 
600,604 
610,614 
620,624 
630,634 
640,644 
650,654 

340,344 
350,354 
360,364 
370,374 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

*RT-11 .device handlers have no more than eight logical units. Since 
two units are assigned to each KXTll-C, an RT-11 KX handler can 
support no more than four KXTll-C peripheral processors. For each 
four additional KXTll-C processors you want to use on an RT-11 
system, you must rename, edit and rebuild the handler. The KXTll-C 
Software Toolkit/RT Reference Manual describes the procedure to build 
the second and subsequent KX handl~rs. 

Since RT-11 uses memory above location 500 for passing data during 
.CHAIN operations, you must restrict all KXTll-C vectors to less than 
500, thus allocating vectors to the KX handler that are not in use by 
other devices in the system. 

C-1 





APPENDIX D 

SAMPLE MICROPOWER/PASCAL CONFIGURATION FILE 

The following is a copy of the MicroPower/Pascal configuration file 
that you must edit according to your hardware and software 
requirements in preparation for building a KXTll-C application • 

;+ 
; 

• enabl 

.mcall 

GBL 

CONFIGURATION 

Module name: CFDKTC.MAC 

System: MicroPower/Pascal 

Functional Description: 

This module describes t~e hardware and system software configuration on 
which the application system is to run. It must be edited by the user 
and assembled. The resulting object module is used to build the kernel. 
This file has been edited for a typical ROM/RAM system on a KXTll-C, 
including debug symbols and NOT including kernel optimizations. 

The following set of macros may be used in this file. The CONFIGURATION 
macro must be the first macro evoked. The ENDCFG macro must be the last. 
A configuration file must contain at the minimum the CONFIGURATION, 
SYSTEM, PROCESSOR, KXTllC, MEMORY, DEVICES, and ENDCFG macros. 

CONFIGURATION 
SYSTEM 
PROCESSOR 
MEMORY 
DEVICES 
RESOURCES 
PRIMITIVES 
KXTll 

KXTllC 
TRAPS 

{name} 
optimize[=NO] ,debug[=NO] 
mmu=[NO], fpu{=FPll;=FIS}, type[=Lll23], vector[=l000] 
base[=0], size[=0], type[=RAM], parity[=NO], csr[=0] 
vl,v2, ••• ,v6 
stack[= •• KIS],packets[=20.],structures[=3000.],ramtbl[=20.] 
pl[=ALL],p2,p3,p4,p5,p6 
nxm[=HALT], break[=TRAP], syshalt[=ODTROM], level7[=TRAP], 
slul [=9600], slu2 [=9600] 
bhalt=NO, reset=IGNORE, clock=OFF, power=BOOT, map=0 
tl{=ALL;tl},t2,t3,t4,t5,t6,t7,t8 
ALL - TR4, Tl0, BPT, EMT, and TRP (std. LSI-11 set) 

· TR1 - Trap to 4 (bus timeout) 
Tl0 Trap to 10 (reserved instruction) 
BPT Breakpoint instruction trap 
EMT - EMT instruction trap 
TRP TRAP instruction trap 
MPT - Memory parity error 

....................................................................... ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
KXTllC Configuration Macro 

This macro defines the KXTll-C power-up configuration. The macro 
has the parameters listed below, with the DEFAULTS being the first 
ones listed: 

BHALT •.• Used to indicate if Q-bus debug traps (B-HALTs) are 
to cause the routine at $KXTDB to be called. The user 
can put a PASDBG breakpoint there. 

D-1 



SAMPLE MICROPOWER/PASCAL CONFIGURATION FILE 

parameters ••• NO 
YES 

No debug traps are provided on B-halt 
Debug traps are provided on B-halt 

RESET ••• Used to indicate the action to take on a Q-bus reset. 

parameters ••• IGNORE Q-bus resets are ignored by the KXT 
. BOOT Q-bus resets cause a KXT power-up. 

RSTBOT Q-bus reset causes KXT reset then power-up. 
INTRPT An interrupt is dispatched to vector 220. 

The !SR must call or jump to $KXTPU 
(KXTll-C power-up routine) when complete. 

CLOCK ••• Used to indicate whether or not to enable the Real-time clock 
interrupts on the KXTllC through vector 100. 

parameters ••• OFF 
ON 

The real-time clock is not enabled at power-up 
The real-time clock is enabled a power-up 

POWER ••• Used to indicate the action to take on a power-fail and 
subsequent power-up. 

parameters ••• BOOT No power-fail or power-recover processing 
will be done. Every trap through the restart 
vector will be treated like a power-up. 

NONVOL ••• The non-volatile RAM support routines 
will be used. When debugging, !NIT/RESTARTS 
by PASDBG present a special problem. Prior 
to restarting the user must set bit 9 at 
octal address 175002 for a power-up, or set 
bit 10 to test power recover. 

MAP... Used to set the KXTllC memory configuration. 

parameter ••• 0 •• 7 The map parameter must be set to an integer 
between 0 and 7 which corresponds to the 
memory map jumper settings on the KXTllC. 
'rhe parameter is used to select the address 
of the power-fail flags which ODT and the 
kernel will use. The last 2 words of native 
RAM are used. Serial ODT uses 60 bytes before 
that as its scratch pad. 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

CONFIGURATION 

SYSTEM debug=YES, optimize=YES 

PROCESSOR mmu=NO, type=KXTllC, vector=224 

MEMORY base=<0>, size=<777>, type=RAM, volatile=NO 

(note that the highest 64 bytes of the native RAM can not be configured, 
because they are used by the native firmware) 

RESOURCES packets=20., structures=2048. 

PRIMITIVES ALL 

KXTllC bhalt=YES, reset=IGNORE, clock=OFF, power=BOOT, map=0 

TRAPS ALL 

DEVICES 60,64 
DEVICES 100, 104 

DEVICES 110, 114 

;Console Serial line 
;RTC and Spare Timer 

;DMA vectors 

D-2 



SAMPLE MICROPOWER/PASCAL CONFIGURATION FILE 

DEVICES 120,124,130 

DEVICES 140,144,150,154 
DEVICES 160,164,170,174 

DEVICES 200,204,210 

DEVICES 214 
DEVICES 220 

ENDCFG 

;Two-port RAM arbiter write interrupts 

;SLU2 Pseudo-vectors - chan A. 
;SLU2 Pseudo-vectors - chan B. 

;PIO and Counter-Timers 

;Power Recover 
;Q-BUS Reset 

D-3 





APPENDIX E 

CALCULATING CHECKSUMS FOR PROMS 

This appendix tells you how to use the VMS DECprom program to 
calculate checksums for PROM devices (programmable read-only memories) 
on the KXTll-C. The checksums calculated by this method can be 
verified by the ROM checksum test performed by the KXTll-C self-tests 
in the native firmware. The KXTll-CA User's Guide hardware reference 
manual describes the algorithm that the ROM checksum test uses to 
calculate checksums. 

DECprom calculates only checksums for PDP-11 processors based on a 
16-bit system word. The ROM checksum test in the KXTll-C native 
firmware expects that each PROM device will contain its own (byte) 
checksum. Therefore, you must calculate a separate checksum for each 
PROM device, then load the appropriate checksum value into the last 
location of each device. 

The procedure that follows assumes you know how to use DECprom. Refer 
to the VAX/VMS DECprom User's Guide for detailed reference 
information. 

1. Using an initialization file that is appropriate for your 
PROM devices, run DECprom. 

2. Set the system word width to 16 bits. 

3. Load the PROM devices from the input file type of your choice 
(.MIM, .LOA, .SAV) but leave the last location of each PROM 
empty. 

4. Exit DECprom. 

5. Perform steps 1 and 2 (above) but set the system word width 
to 8 bits. This allows DECprom to calculate a byte-wide 
checksum. 

6. LIST the contents of each PROM in a binary (.SAV) file. This 
will produce a file for the low-byte device and a file for 
the high-byte device. 

7. Calculate a separate checksum for each file (CALC_CHECKSUM 
command) • 

8. Store the appropriate checksum in the last location of each 
device (STORE_CHECKSUM command). 

E-1 





APPENDIX F 

DETECTING NONFATAL FIRMWARE ERROR CONDITIONS 

This appendix tells you how to determine the severity of nonfatal 
error conditions reported by the automatic self-tests performed by the 
KXTll-C native firmware. These error conditions can result when the 
boot/self-test switch is in position 1, 2, 3, 5, 8, 9 or 10 (see 
Section 3.3.3.2). 

Not all failures of the KXTll-C automatic self-tests inhibit 
application execution. By examining test result data, your 
application can determine its ability to execute despite the presence 
of these error conditions. 

Automatic self-tests report test results and status information in the 
status and data registers of the TPR system control area. This data 
is available to your application only after the tests complete and 
before other routines or handlers in the application use these 
registers. The KXTll-CA User's Guide hardware reference manual shows 
the format of the status registers and tells you how to interpret the 
test results. 

The procedure to use when.checking results of these tests depends on 
your operating system environment. The following sections describe 
the procedures to follow when using the KXTll-C in stand-alone mode 
and in peripheral processing mode under MicroPower/Pascal, RT-11 and 
RSX-11. 

F.l STAND-ALONE MOOE 

An application initialization routine should test for error conditions 
that are considered intolerable for the specific application (for 
example, OMA errors if the OMA controller is used by the application). 
If an error condition is found that is critical to the operation of 
the application, the code should take the appropriate action for that 
particular situation. 

F.2 PERIPHERAL PROGESSING MODE 

The procedure to use depends on where the application resides. 

F-1 



DETECTING NONFATAL FIRMWARE ERROR CONDITIONS 

F.2.1 Application in ROM 

This is similar to the stand-alone environment. Once the application 
code is entered on power-up, it should check for critical error 
responses from the automatic self-tests and indicate the conditions to 
the arbiter using your application's communication protocol. 

F.2.2 Application Loaded from Arbiter with MicroPower/Pascal 

The KXT LOAD utility procedure will not load the KXTll-C if there are 
any error conditions. If you load the KXTll-C in some other fashion, 
you can write a program, as described in Section F.2.3, to check for 
error conditions. 

F.2.3 Application Loaded from Arbiter with RT~ll or RSX-11 

You use the KUI utility program to load an application in the 
RSX-11 environment. Before running KUI, however, you must 
small application program that examines the status registers 
system control area of the TPR for error conditions. This 
should directly access these registers and examine the results 
automatic self-tests. To simplify this task, you can run this 
and the KUI utility under the control of an RT-11 or RSX-11 
file using applicable parameters. 

Your program should perform the following tasks. 

RT-11 or 
create a 

in the 
program 
of the 
program 
command 

1. Poll the system control area's status register for the 
waiting-for-command condition. 

2. Examine the composite error response in the TPR for relevant 
errors. 

3. If there is a relevant error, set a flag that can be passed 
back to the indirect command file processor. 

4. Repeat steps 1, 2 and 3 (above) for each additional KXTll-C 
in the system. 

5. Return to the command file with the error parameters set 
appropriately. 

The command file should then examine the returned parameters and take 
the appropriate action. If there are no significant automatic 
self-test failures, the command file should execute KU! to load the 
peripheral processor(s). 

F-2 



INDEX 

Addresses 
memory 

calculating physical, 3-38 
RSX-11 arbiter memory 

calculating physical 
addresses, 4-4 

RT-11 arbiter memory 
calculating physical 

addresses, 4-3 
/AFTER modifier 

PASDBG, 3-42 
ANSI ~DCCP protocol, 3-28 
Application development, 2-1 to 

2-7 
arbiter 

tool kits, 4-1, 4-6 
building, 3-3 
building optimized kernel, 3-4 
component testing, 2-6 
configuration guidelines, 3-7 

to 3-15 
configuring system environment, 

3-11 to 3-15 
creating test process, 2-4 
debugging, 3-3 9 to 3-4 3 

ROM, 2-4 
RSX-11 arbiter system, 4-5 
RT-11 arbiter system, 4-3 

debugging components, 2-6 
debugging configuration, 2-4 
design, 2-3 
detecting native firmware, F-1 
final build, 2-6 
final hardware configuration, 

2-7 
final loading, 2-7 
hardware debugging 

configuration, 2-5 
I/O configuration and 

programming, 3-15 to 3-35 
initialization and self-test 

options, 3-12 
interface considerations, 3-38 

KK/KX example, 3-37 
interface design considerations, 

3-36 
KXTll-C application coding and 

testing, 2-3 
KXTll-C memory configuration 

steps, 3-8 
loading 

debugging configuration, 2-4 
MACR0-11, 3-4 
MERGE, 3-4 

debugging configuration, 2-4 
MIB, 3-4 

debugging configuration, 2-4 
MicroPower/Pascal, 3-4 

MPBLD differences, 3-1 
partitioning an application, 

2-1 
peripheral processor, 3-1 
RELOC, 3-4 

debugging configuration, 2-4 
ROM 

debugging, 2-4 
RSX-11 arbiter, 4-4 to 4-6 

final configuration, 4-5 
RT-11 arbiter, 4-2 to 4-3 

final configuration, 4-3 
selecting software tools, 2-2 
stand-alone processing, 2-7 
system-level testing, 2-6 
test system configuration, 3-39 
using .MIM files, 3-1 
using MACDBG, 2-4, 2-5 
using MPBLD, 3-7 
using PASDBG, 2-4, 2-5 

Application development tools, 
1-7 to 1-9 

MACR0-11 language, 1-9 
MicroPower/Pascal, 1-2, 1-7 
summary, 1-1 

Application system development 
debugging 

hardware configuration, 2-5 
to 2-6 

peripheral processing, 2-1 to 
2-7 

Applications 
See Peripheral processor and 

Stand-alone processor 
Arbiter 

application development 
environment 

tool kits, 4-1, 4-6 
communication with peripheral 

processor, 1-6, 1-9 
loading KXTll-C, 2-7 
LS I-11 a s , 1-1 
RESET vector, B-3 

Index-1 



INDEX 

RSX-11 application development, 
4-4 to 4-6 

RT-11 and RSX operating system 
environment, 1-1 

RT-11 application development, 
4-2 

TPR I/O page area, 1-6 
Arbiter processor 

device handlers, 1-2 
relationship with peripheral 

processor, 1-1 
ARBVFY.PAS file, 3-3, 3-37 
Assembly language 

programming, 1-1, 1-9 
Asynchronous serial I/O (XL) 

device handler 
using, 3-27 

Asynchronous serial line (XL) 
device handler, 1-7 

Automatic self-tests 
error reporting, 3-15 

Base address range jumper, 2-5 
Battery backup, 3-10 

debugging KXTll-C with, 3-42 
jumper installation, 3-10 
programming considerations, 

3-11 
recovery after power failure, 

3-11 
vector, B-3 

Baud jumper 
SLUl, 3-39 

BHALT parameter 
KXTllC macro, 1-8 

Boot/Self-test switch, 3-9 
use, 3-12 
US ing t 3-12 

Boot/self-test switch, 2-5 
Bootstrap loader 

radial serial protocol (RSP), 
3-14 

TU58 DECtape II, 3-14 
Break-enable jumper 

SLUl, 3-39 
Breakpoints 

setting in multiple-processor 
systems, 3-42 

BRESET signal, 1-8 
Building applications, 3-3 to 3-7 

See Application development and 
MPBLD utility 

Bus-master/Bus-slave hardware 
concept, 1-1 

CCITT protocol, 3-28 
CFDKTC.MAC 

KXTll-C configuration file, D-1 
CFDKTC.MAC KXTll-C configuration 

file, 3-2 
Checksum 

creating with DECprom, 1-9 
specifying ROM test, 3-13 

Checksums 
calculating with DECprom, E-1 

CK clock device handler 
%INCLUDE file, 3-2 
prefix file, 3-2 

specifying to MPBLD, 3-6 
CKPFX.MAC prefix file, 3-2 

specifying to MPBLD, 3-6 
CLKLIB.PAS %INCLUDE file, 3-2 
Clock 

CSR and vector, B-1 
Clock (CK) device handler 

%INCLUDE file, 3-2 
prefix file, 3-2 

specifying to MPBLD, 3-6 
CLOCK parameter 

KXTllC macro, 1-8 
.CLOSE 

RT-11 programmed request, 4-2 
CLOSE command 

KUI program, 4-1 
@ command 

KUI program, 4-1 
Command register 

KW. DCO, A-3 
Communication protocol 

KK and KX device handlers, A-1 
KK/KX device handlers, 1-8 

Configuration file 
CFDKTC.MAC, D-1 
installation verification, 3-2 
MicroPower/Pascal sample, D-1 

Configuration files 
CFDKTC.MAC, 3-2 

CONFIGURATION macro, D-1 
Configuring KXTll-C hardware and 

software, 3-7 to 3-15 
Console ODT 

debugging setup, 2-5 
hardw~re setup, 3-15 
using, 2-5 

Console po rt 
use with debuggers, 2-5 

CPU test, 3-14 
CSR 

addresses for two-port RAM, C-1 
selection 

Index-2 



avoiding conflicts, 2-7 
two-port RAM, 3-12 

CSR test, 3-14 
C TFCF$ macro 

specifying when using DD 
handler, 3-31 

Data 
assuring OMA channel access, 

3-35 
local device transfers, 3-33 
local/local memory transfers, 

3-32 
local/Q-BUS memory transfers, 

3-32 
Q-BUS I/O page access, 3-35 
searching memory for, 3-33 
transferring variable-length 

messages, 3-33 
transferring with DTC, 3-31 to 

3-35 
use with SLU2, 3-34 

Data transfers 
using DMA transfer controller, 

1-1 
using two-po rt RAM, 1-1, 1-:4 

DCT-11 microprocessor 
general description, 1-3 

DD device handler 
connecting to SLU2, 3-30 
features, 1-7 
prefix file, 3-2 

configuring, 3-31 
s pee i fyi ng to MPB LD, 3-6 

using, 3-30 
DDPFXK.MAC prefix file, 3-2 

configuring, 3-31 
specifying to MPBLD, 3-6 

Debugging 
building configuration, 2-4 
building RSX-11 arbiter system 

configuration, 4-5 
building RT-11 arbiter system 

configuration, 4-3 
console ODT hardware setup, 

3-15 
creating test process, 2-4 
hardware configuration, 2-5 to 

2-6 
integrated application, 2-5 
integrated application system, 

2-6 
KXTll-C applications, 3-39 to 

3-43 

INDEX 

loading and starting target 
processors, 3-41 

loading application, 2-4 
MACDBG hardware setup, 2-5 
PASDBG 

general setup, 3-39 
PASDBG hardware setup, 2-5 
PASDBG with battery backup 

systems, 3-11 
ROM application, 2-4 
ROM configuration, 2-5 
RSX-11 arbiter 

KUI program, 4-5 
ODT program, 4-5 

RT-11 arbiter 
KUI program, 4-3 
ODT program, 4-3 

RT-11 or RSX-11 
arbiter-resident test 
program, 3-4 0 

setting boot/self-test switch, 
2-5 

setting system ID switch, 2-5 
setting TPR base address range 

jumper, 2-5 
size of DSM, 2-5 
special arbiter/KXTll-C 

locations, 3-42, 4-3, 4-5 
switching between multiple 

processors, 3-40, 3-41 
system hardware configuration, 

2-5 
system with battery backup, 

3-42 
test system setup, 3-39 
using console ODT, 2-5, 2-6 
using MACDBG, 2-4 
using MicroPower/Pascal 

arbiter-resident test 
program, 3-40 

using PASDBG, 2-4, 2-6 
DECprom, 1-7 

calculating ROM checksums, E-1 
DECprom PROM loader, 1-9 
DECtape II 

See TU58 
Device handler 

asynchronous serial I/O {XL), 
3-27 

clock (CK) 
%INCLUDE file, 3-2 
prefix file, 3-2 

specifying to MPBLD, 3-6 
DMA transfer controller {QD) 

Index-3 



assuring DMA channel access, 
3-35 

%INCLUDE file, 3-3 
local device transfers, 3-33 
local/local memory transfers, 

3-32 
local/Q-BUS memory transfers, 

3-32 
prefix file, 3-3 

specifying to MPBLD, 3-6 
Q-BUS I/O page access, 3-35 
search option, 3-33 
transferring variable-length 

messages, 3-33 
use in KXTll-C/arbiter, 3-36 
use with RSX-11 arbiter, 4-4 
use with RT-11 arbiter, 4-1 
use with SLU2, 3-34 
using, 3-31 to 3-35 
using with YK handler, 3-33 

DMA transfer controller (QD) 
interface routine 

library, 3-3 
DMA transfer controller (QD) 

interface routines, 3-31 
I/O packet definition file, 3-2 
interface routine 

$DMA TRANSFER, 3-31 
YK CLEAR TIMER, 3-16 
YK-PORT READ, 3-16 
YK-PORT ___ WRITE, 3-16 
YK-READ-TIMER, 3-16 
YK-SET PATTERN, 3-16 
YR-SET-TIMER, 3-16 

interface routines, 3-1 
KX 

RT-11 limitations, C-1 
RT-11 vector allocation, C-1 

MicroPower/Pascal support 
routines, 1-8 

MicroPower/Pascal system files, 
3-1 

parallel I/O (YK) 
example counting pulses, 3-23 
example ot analog I/O, 3-19 
example of D/A output, 3-21 
example of parallel output, 

3-17 
example of pulse generation, 

3--25 
%INCLUDE file, 3-3 
performing DMA transfers, 

3-33 
prefix file, 3-3 

specifying to MPBLD, 3-6 

INDEX 

using, 3-16 to 3-27 
parallel I/O (YK) interface 

routine 
library, 3-3 

parallel I/O (YK) interface 
routines, 3-16 

routines in RHSLIB.OBJ, 3-1 
specifying prefix files, 3-6 
synchronous serial line 

functions, 3-28 
specifying to MPBLD, 3-6 

synchronous serial line (XL) 
prefix file, 3-3 

synchronous serial line (XS 
functions, 3-28 

synchronous serial line (XS), 
3-28 to 3-30 

prefix file, 3-3 
specifying to MPBLD, 3-6 

source file, 3-3 
TU58 DECtape II (DD) 

connecting to SLU2, 3-30 
prefix file, 3-2 

configuring, 3-31 
specifying to MPBLD, 3-6 

using, 3-30 
two-port RAM (KK) 

%INCLUDE file, 3-2 
prefix file, 3-2 

specifying to MPBLD, 3-6 
protocol 

See KK/KX protocol 
use in KXTll-C/arbiter 

interfacing, 3-36 
using, 3-35 

two-port RAM (KK) interface 
routine 

library, 3-3 
Two-port RAM (KX) 

RSX-11 unit numbers, 4-4 
two-port RAM (KX) 

logical units, 4-2 
pref ix file, 3-2 
prefix file KKPFX.PAS, 3-35 
protocol 

See KK/KX protocol 
RSX-11 requests, 4-4 
RT-11 programmed requests, 

4-2 
RT-11 version features, 4-2 
specifying CSR, 3-12 
use in KXTll-C/arbiter 

interfacing, 3-36 
using, 3-35 

Index-4 



INDEX 

two-port RAM (KX) interface 
routine 

1 ibrary, 3-3 
two-port RAM interface routines 

%INCLUDE file, 3-3 
Device handler interface routine 

$DMA ALLOCATE, 3-31 
$DMA-DEALLOC, 3-31 
$DMA-GET STATUS, 3-31 
$DMA-SEARCH, 3-31 
KK READ DATA, 3-35 
KK-WRITE DATA, 3-35 

Device handlers 
arbiter processor, 1-2 
description, 3-15 to 3-35 
KXTll-C I 1-2 

asynchronous serial line (XL), 
1-7 

OMA transfer controller (QD), 
1-8 

parallel I/O (YK) , 1-8 
synchronous serial line (XS), 

1-7 
TU58 DECtape II (DD) , 1-7 
two-port RAM handler (KK), 

1-8 
two-port RAM (arbiter) handler 

(KX) I 1-8 
two-port RAM (KX), 1-9 

DEVICES macro, 3-5, D-1 
Diagnostic tests 

See Tests 
DLART 

SLUl and SLU2 channel B support, 
3-27 

DLVll-E 
SLU2 support, 3-27 

DMA 
use by YK device handler, 1-8 
use with SLU2, 3-34 

OMA test, 3-14 
DMA transfer controller 

assuring DMA channel access, 
3-35 

criteria for using, 2-3 
CSR and vector, B-1 
general description, 1-4 
local device transfers, 3-33 
local/local memory transfers, 

3-32 
local/Q-BUS memory transfers, 

3-32 
Q-BUS I/O page access, 3-35 
search option, 3-33 

transferring variable-length 
messages, 3-33 

use with RSX-11 arbiter, 4-4 
use with RT-11 arbiter, 4-1 
use with SLU2, 3-34 
using, 3-31 to 3-35 

DMA transfer controller (QD) 
use in KXTll-C/arbiter 

interfacing, 3-36 
using with YK handler, 3-33 

DMA transfer controller (QD) 
device handler, 1-8 

%INCLUDE file, 3-3 
interface routine library, 3-3 
interface routines, 3-31 
prefiK file, 3-3 

specifying to MPBLD, 3-6 
use with RSX-11 arbiter, 4-4 
use with RT-11 arbiter, 4-1 

$DMA ALLOCATE 
device handler interface 

routine, 3-31 
DMA ALLOCATE command, 3-35 
$DMA DEALLOC 

device handler interface 
routine, 3-31 

$DM.A GET STATUS 
device-handler interface 

routine, 3-31 
$DMA SEARCH 

device handler interface 
routine, 3-31 

$DMA TRANSFER 
device handler interface 

routine, 3-31 
ORV.OBJ library file, 3-1 
DRVK. OBJ 

library 
DD handler, 3-31 

DRVK.OBJ library, 3-2, 3-35 
DRVM.OBJ library, 3-2, 3-35 
DRVU.OBJ library, 3-2, 3-35 
DTC 

see DMA transfer controller 

Error 
ISO HDLC detection, 3-28 

Errors 
automatic self-tests 

reporting, 3-15 
detecting KXTll-C during 

loading, 4-3, 4-6 
KXTll-C 

fatal, 3-13 

Index-5 



INDEX 

program detection of firmware, 
F-1 

self-tests 
reporting, 3-13 

• EXE f il e type 
use with DECprom, 1-9 

EXECUTE command 
KUI program, 4-2 

EXIT command 
KUI program, 4-2 

FB RT-11 monitor, 4-3 
FCS 

See Frame checker sequence 
File system 

MicroPower/Pascal, 3-1 
File types 

loaded by KUI program, 4-3, 4-5 
Files 

%INCLUDE for application 
building, 3-1 

MicroPower/Pascal 
device handler, 3-1 
pref ix, 3-1 

MicroPower/Pascal software for 
KXTll-C, 3-1 

Firmware 
See Native firmware 

Frame checker sequence 
XS device handler, 3-28 

Framing 
ISO HDLC, 3-28 

GO command 
PASDBG, 3-40 

GO/EXIT command 
PASDBG, 3-41, 3-42 

GO/INIT command 
PASDBG, 3-42 

GREG$ RSX-11 directive, 4-4 

Handlers 
See Device handlers 

Hardware 
configuration guidelines, 3-7 

to 3-15 
debugging configuration, 2-5 to 

2-6 
final application configuration, 

2-7 
jumper 

battery backup, 3-10 
map selection, 3-9 
memory map, 3-1 5 
memory map selection, 3-39 

SLUl baud, 3-39 
SLUl break-enable, 3-39 
TPR base address, 3-12 

selecting memory map, 2-7 
selecting memory map for 

debugging, 2-5 
system configuration for 

debugging, 2-5 
test system setup, 3-39 

Hardware configuration 
peripheral processor, 1-6 

I/O 
configuration and programming, 

3-15 
I/O definitions %INCLUDE file 

IODEF.PAS, 3-2 
I/O devices 

configuration and programming, 
3-35 

I/O packet 
%INCLUDE file, 3-1, 3-2 

I/O page 
arbiter 

selecting two-port RAM base 
address, 3-12 

arbiter TPR area, 1-6 · 
avoiding CSR assignment 

conflicts, 2-7 
setting arbiter TPR base 

address, 2-5 
two-port RAM registers, 1-1 

I/O ports 
conf ig ur ing, 2-5 

IBM SDLC protocol, 3-28 
%INCLUDE 

device handler interface 
routine, 3-35 

files for KXTll-C application 
building, 3-1 

INIT/RESTART command 
PASDBG, 3-4 3 

Initialization options 
selecting, 3-12 

Installation verification 
configuration file, 3-2 

Installation/verification 
command file, 3-3 

Installation/Verification 
(arbiter) programs 

source files, 3-3 
Installation/Verification 

(KXTll-C) programs 
source files, 3-3 

Interface 

Index-6 



KK/KX example, 3-37 
Interface considerations, 3-38 
Interface design considerations, 

3-36 
Interface routines 

See Device handler 
Interrupt vector 

See Vector 
IO.ATT 

RSX-11 KX handler request, 4-4 
IO.DET 

RSX-11 KX handler request, 4-4 
IO. RVB 

RSX-11 KX handler request, 4-4 
IO. WVB 

RSX-11 KX handler request, 4-4 
IODEF.PAS %INCLUDE file, 3-2 
IOPKTS.PAS %INCLUDE file, 3-2 
IOPVFY.PAS file, 3-3, 3-37 
ISO HDLC framing and error 

detection, 3-2 8 
ISO HDLC protocol, 3-28 

Jumper 
battery backup, 3-10 
map selection, 3-9 
memory map, 3-15 
memory map selection, 3-39 
SLUl baud, 3-39 
SLUl break-enable, 3-39 
TPR base address, 3-12 
TPR bas·e address range, 2-5 

KC$DI command 
KK/KX protocol, A-9 

KC$EI command 
KK/KX protocol, A-9 

KC$GS command 
KK/KX protocol, A-9 

KC$NOP command 
KK/KX protocol, A-8 

KC$RD command · 
KK/KX protocol, A-10 

KC$RSM command 
KK/KX protocol, A-9 

KC$SS command 
KK/KX protocol, A-9 

KC$WD command 
KK/KX protocol, A-10 

KC.COM command field 
KK/KX protocol, A-8 

KC. EOM bit 
KK/KX protocol, A-10, A-11 

Kc • I DA b i t I A-4 
KK/KX protocol, A-9, A-11 

INDEX 

Kc • IDR b i t I A- 4 
KK/KX protocol, A-9, A-11 

KC.LEN field 
KK/KX protocol, A-10, A-11 

KC.VEC field 
KK/KX protocol, A-9, A-11 

KE$ILC code 
KK/KX protocol, A-12 

KE$I LL code 
KK/KX protocol, A-12 

KE$I LV code 
KK/KX protocol; A-12 

KE$NDA code 
KK/KX protocol, A-12 

KE$NDR code 
KK/KX protocol, A-12 

KE$0K code 
KK/KX protocol, A-12 

KE$0VR code 
KK/KX protocol, A-12 

Kernel 
features controlled by KXTllC 

macro, 1-8 
optimizing, 3-4 
restart after power failure, 

3-11 
KK device handler, 1-8 

communication protocol, 1-8 
interface routine 

library, 3-3 
interface routines 

%INCLUDE file, 3-3 
prefix file, 3-2 

specifying to MPBLD, 3-6 
protocol 

See KK/KX protocol 
special arbiter/KXTll-C 

debugging locations, 3-42, 
4-3, 4-5 

use in KXTll-C/arbiter 
interfacing, 3-36 

using, 3-35 
KK two-port RAM device handler 

%INCLUDE file, 3-2 
KK/KX protocol, A-1 to A-13 

command register definitions, 
A-8 to A-11 

concepts, A-3 
interface initialization, A-13 
interrupting when data is 

available, A-7 
interrupting when data is 

requested, A-7 
KC$DI command, A-9 
KC$EI command, A-9 

Index-7 



INDEX 

KC$GS command, A-9 
KC$RD command, A-10 
KC$RSM command, A-9 
KC$SS command, A-9 
I<C$WD command, A-10 
KC.COM command, A-8 
KC.COM command field, A-8 
KC.EOM bit, A-10, A-11 
KC.IDA bit, A-9, A-11 
KC.IDA command register bit, 

A-4 
KC.IDR bit, A-9, A-11 
KC.IDR command register bit, 

A-4 
KC.LEN field, A-10, A-11 
KC.VEC field, A-9, A-11 
KE$ILC code, A-12 
KE$ILL code, A-12 
KE$ILV code, A-12 
KE$NDA code, A-12 
KE$NDR code, A-12 
KE$0K code, A-12 
KE$0VR code, A-12 
KS.ALN field, A-13 
KS • DA b i t , A-1 3 
KS.DA status register bit, A-4 
KS • DR b it , A-1 2 
KS.EOM bit, A-12 
KS.ERC field, A-12 
KS.ERR bit, A-13 
KS.IEN bit, A-13 
KS.ON bit, A-13 
KW.DCO register, A-3 
master/slave relationship, A-1 
message communication, A-6 
register definitions, A-8 to 

A-13 
status register definitions, 

A-11 to A-13 
synchronizing KK and KX handler 

operation, A-7 
KK READ DATA 

device handler interface 
routine, 3-35 

KK WRITE DATA 
aevice-handler interface 

routine, 3-35 
KKINC. PAS 

%INCLUDE file, 3-35 
KKINC.PAS %INCLUDE file, 3-2, 3-3 
KKPFXK.MAC prefix file, 3-2 

specifying to MPBLD, 3-6 
KS. ALN field 

KK/KX protocol, A-13 
KS.DA bit 

KK/KX protocol, A-13 
KS.DA status register bit, A-4 
KS.DR bit 

KK/KX protocol, A-12 
KS.EOM bit 

KK/KX protocol, A-12 
KS.ERC field 

KK/KX protocol, A-12 
KS.ERR bit 

KK/KX protocol, A-13 
KS.IEN bit 

KK/KX protocol, A-13 
KS. ON bit 

KK/KX protocol, A-13 
KSLU2 kernel module, B-2 
KT LOAD procedure 

%INCLUDE file, 3-3 
KUI load utility 

description, 1-9 
KUI program 

commands, 4-1 
debugging RSX-11 arbiter 

applications, 4-5 
debugging RT-11 arbiter 

applications, 4-3 
features, 4-1 
loading debugging configuration, 

2-4 
loading final application, 2-7 
loading final RT-11 arbiter 

application, 4-3 
loading KXTll-C from RSX-11 

arbiter, 4-5 
TPR system control register use, 

A-3 
use with PASDBG, 3-41 
using, 3-14 

KX device handler, 1-8, 1-9 
communication protocol, 1-8 
interface routine 

library, 3-3 
logical unit IDs, C-1 
logical units, 4-2 
pref ix file, 3-2 
prefix file KKPFX.PAS, 3-35 
protocol 

See KK/KX protocol 
RSX-11 requests, 4-4 
RSX-11 unit numbers, 4-4 
RT-11 limitations, C-1 
RT-11 programmed requests, 4-2 
RT-11 vector allocation, C-1 
RT-11 ~ersion features, 4-2 
specifying CSR, 3-12 

Index-8 



INDEX 

use in KXTll-C/arbiter 
interfacing, 3-36 

using, 3-35 
KXLINC.PAS %INCLUDE file, 3-3 
KXPFX.MAC prefix file, 3-2 
KXT$RI recovery indicator, 3-11 
KXTll-C 

configuring hardware, 3-7 to 
3-15 

configuring system environment, 
3-11 to 3-15 

CSR and vector assignments, B-1 
to B-3 

DCT-11 microprocessor features, 
1-3 

debugging 
loading and starting target, 

3-41 
device handlers 

See Device handlers 
fatal error, 3-13 
hardware features, 1-2 
jumper 

battery backup, 3-10 
memory map selection, 3-39 
SLUl baud, 3-39 
SLUl break-enable, 3-39 
TPR base address, 3-12 

loading from arbiter, 3-14 
memory 

general description, 1-3 
loading with KUI utility, 1-9 
loading with KXT LOAD, 1-9 

memory configuration steps, 3-8 
memory map usage by 

MicroPower/Pascal, 3-10 
MicroPower/Pascal system files, 

3-1 
native firmware 

features, 1-3 
peripheral processor 

See Peripheral processor 
peripheral processors 

Q-BUS limits, 3-12 
Programming languages, 1-2 
programming languages, 1-1 
programming with 

MicroPower/Pascal, 3-1 to 
3-43 

QIR register, A-1 
RT-11 arbiter 

supporting additional 
peripheral processors, 
4-2 

stand-alone operation 

See Stand-alone operation, 
1-1 

switches 
system ID, 3-12 

use as a peripheral processor, 
1-9 

use as peripheral processor, 
1-4 

KXTll-C hardware 
debugging configuration, 2-5 

KXTll-C macro 
POWER parameter, 3-11 

KXTllC macro, 3-5, D-1 
kernel control parameters, 1-8 

KXT LOAD procedure 
description, 1-9 
1 ibrary, 3-3 
loading debugging configuration, 

2-4 
loading final application, 2-7 
TPR system control register use, 

A-3 
use with PASDBG, 3-41 

KXT LOAD routine 
loading KXTll-C, 3-14 

KXTCSRA register, B-1 
KXTDF$ macro, 4-3, 4-4 
$KXTQR 

arbiter/KXTll-C debugging 
location, 3-42, 4-3, 4-5 

$KXTQW 
arbiter/KXTll-C debugging 

location, 3-42, 4-3, 4-5 

.LDA file type 
loading with KUI program, 4-3 
use with DECprom, 1-9, E-1 

LED d i s pl a y , 3-1 5 
fatal errors, 3-13 

Library 
device handler interface 

routine 
RHSLIB.OBJ, 3-35 

DRVK.OBJ 
DD handler, 3-31 

KXTll~C device handler 
DRVK.OBJ, 3-2, 3-35 
DRVM.OBJ, 3-35 
DRVU.OBJ, 3-35 

mapped arbiter device handler 
DRVM.OBJ, 3-2 

unmapped arbiter device handler 
DRVU.OBJ, 3-2 

Library file 
ORV.OBJ, 3-1 

Index-9 



INDEX 

LINDF$ macro, 3-27 
LINK, 1-7 
LOAD command 

KUI program, 4-2, 4-3, 4-6 
PASDBG, 3-40, 3-41, 3-43 

LOAD/SYM command, 3-42 
PASDBG, 3-42 

Loading 
application configured for 

debugging, 2-4 
final RSX-11 arbiter 

application, 4-5 
final RT-11 arbiter application, 

4-3 
integrated application, 2-7 
KXTll-C 

from arbiter, 3-14 
from RT-11 and RSX-11 systems, 

3-14 
KXT LOAD routine, 3-14 
TU58 DECtape II, 3-14 

KXTll-C from arbiter, 2-7 
KXTll-C from TU58 DECtape II, 

4-3, 4-5 
LOG command 

KUI program, 4-1 
Logical unit IDs 

KX device handler, C-1 
Logical uni ts 

KX device handler, 4-2 
Loopback tests, 3-15 

selecting, 2-5 
LSI-11 

arbiter processor, 1-1 
LSI-11 systems 

adding peripheral processors, 
1-5 

MACDBG, 1-7 
debugging application, 2-4 
hardware setup, 2-5 
size of DSM, 2-5 

MACR0-11 
progamming language, 1-2 

MACR0-11 assembler, 3-4 
Macros 

configuration file, D-1 
Map 

See Memory map 
MAP parameter 

KXTllC macro, 1-8 
Master protocol, 3-35 
Master/slave 

software architecture, 1-1 

Master/slave architecture, 1-6, 
1-8 

Ma st er/Slave relationship 
KK/KX protocol, A-1 

Memory 
address conversion function 

RT-11 KX handler, 4-3 
addresses 

calculating physical, 3-38 
assuring DMA channel access, 

3-35 
configuration 

loading from TU58 DECtape II, 
3-9 

native firmware restrictions, 
3-9 

dete rm in ing program storage 
requirements, 3-4 

KXTll-C 
configuration steps, 3-8 
general description, 1-3 
selecting maps, 3-7 

loading KXTll-C with KUI 
utility, 1-9 

loading KXTll-C with KXT_LOAD, 
1-9 

local device transfers, 3-33 
local/local transfers, 3-32 
local/Q-BUS transfers, 3-32 
map jumper, 3-15 
map layout, 3-8 
map selection jumper, 3-9 
map selection rules, 3-9 
maps used by MicroPower/Pascal, 

3-10 
Q-BUS I/O page access, 3-35 
RSX-11 arbiter 

accessing shared memory areas, 
4-4 

calculating physical 
addresses, 4-4 

protecting shared data areas, 
4-5 

RT-11 arbiter 
calculating physical 

addresses, 4-3 
search option, 3-33 
selecting map for debugging, 

2-5 
selecting map for final 

configuration, 2-7 
specifying in MEMORY macro, 3-9 
specifying maps, 3-5 
transferring data with DTC, 

3-31 to 3-35 

Index-10 



INDEX 

transferring variable-length 
messages, 3-3 3 

use with SLU2, 3-34 
MEMORY macro, D-1 

specifying maps, 3-5 
specifying memory blocks, 3-9 

Memory map jt.nnper, 3-15 
battery backup, 3-10 
selection, 3-3 9 
TPR base address, 3-12 

Memory map selection jt.nnper, 3-9 
MERGE 

creating debugging 
configuration, 2-4 

Message 
passing, 2-3 

Message passing 
See Data transfers 

MIB 
creating debugging 

configuration, 2-4 
MIB program, 3-4 

use in determining memory 
requirements, 3-4 

MicroPower/Pascal 
application building 

KXTll-C differences, 3-1 
arbiter 

debugging with test program, 
3-40 

building optimized kernel, 3-4 
device handlers, 1-2 
features, 1-2, 1-7 
kernel 

restart after power failure, 
3-11 

memory restrictions for KXTll-C, 
3-9 

operating environment, 1-1 
programming KXTll-C, 3-1 to 

3-43 
programming language, 1-2 
programming· languages, 2-2 
sample KXTll-C configuration 

file, D-1 
system files for KXTll-C, 3-1 

MicroPower/Pascal compiler, 3-4 
MicroPower/Pascal Software 

configuration guidelines, 3-7 
MicroPower/Pascal software 

configuration guidelines, 3-15 
.MIM file type 

loading with KUI program, 4-3, 
4-5 

use with DECprom, 1-9, E-1 

.MIM files 
building peripheral processing 

applications, 3-1 
peripheral processing 

application building, 3-1 
MPB LD u t il it y 

building applications, 3-3 to 
3-7 

building KXTll-C applications, 
3-1 

Multiple processors 
switching PASDBG between, 3-41 

Multiprotocol controller 
See also XS device handler 
XL handler, 3-27 

Native firmware 
error conditions 

program detection of, F-1 
features, 1-3 
initialization after power 

failure, 3-11 
memory configuration 

restrictions, 3-9 
selecting options, 3-12 

ODT 
See Console ODT 

ODT command 
KUI program, 4-2, 4-3, 4-5 

ODT program 
RSX-11 arbiter debugging, 4-5 
RT-11 arbiter debugging, 4-3 

.• OPEN 
RT-11 programmed request, 4-2 

OPTIMIZE 
SYSTEM macro parameter, 3-4 

Packet 
See I/O packet 

Parallel I/O 
CSR and vector, B-3 

Parallel I/O (YK) device handler, 
1-8 

OMA feature, 1-8 
example counting pulses, 3-2 3 
example of analog I/O, 3-19 
example of D/A output, 3-21 
example of parallel output, 

3-17 
example of pulse generation, 

3-25 
%INCLUDE file, 3-3 
interface routine library, 3-3 
interface routines, 3-16 

Index-11 



INDEX 

performing DMA transfers, 3-33 
pref ix fi 1 e, 3-3 

specifying to MPBLD, 3-6 
using, 3-16 to 3-27 

Parallel processing, 2-1 
Partitioning an application, 2-1 
PASDBG 

/AFTER modifier, 3-42 
building into application, 2-4 
debugging 

ROM systems, 3-8 
systems with battery backup, 

3-11 
debugging integrated 

application, 2-6 
general setup for debugging, 

3-39 
GO command, 3-40 
GO/EXIT command, 3-41, 3-42 
GO/INIT command, 3-42 
hardware setup, 2-5 
INIT/RESTART command, 3-43 
LOAD command, 3-40, 3-41, 3-43 
LOAD/SYM command, 3-42 
/PROCESS modifier, 3-42 
setup as single host process, 

3-41 
SHOW TARGET command, 3-42 
size of DSM, 2-5 
switching between multiple 

processors, 3-40, 3-41 
PB-11 PROM loading system, 1-9 
Peripheral processing 

debugging 
setting breakpoints and 

watchpoints, 3-42 
Peripheral processor 

adding to traditional LSI-11 
systems, 1-5 

application development 
MicroPower/Pascal, 1-1 
RT-11 and RSX tool kits, 1-1 
RT-11 and RSX-11 tool kits, 

1-2, 1-9 
application develoµnent 

procedures, 2-1 to 2-7 
application software 

configuration, 1-6, 1-7 
applications 

partitioning, 2-1 
communication with arbiter, 1-6, 

1-9 
debugging configuration, 2-5 
enviro~~ent, 1-1 
hardware configuration, 1-6 

hardware setup, 3-12 
interface considerations, 3-38 

KK/KX example, 3-37 
interface design considerations, 

3-36 
loading 

KUI utility, 1-9 
KXT LOAD procedure, 1-9 

master/slave architecture, 1-6 
.MIM files required, 3-1 
relationship with arbiter 

processor, 1-1 
RT-11 arbiter 

supporting five or more 
peripheral processors, 
4-2 

software architecture, 1-1 
typical applications, 1-4 

Peripheral processor application 
developnent, 3-1 

Power failure 
recovery after, 3-10, 3-11 

POWER parameter 
.KXTll-C macro, 3-11 
KXTllC macro, 1-8 

Power-up 
selecting type of, 2-5 
tests 

selecting, 2-5 
PPVFY verification procedure, 

3-41 
PPVFY.CMD file, 3-3 
PPVFY.COM file, 3-3 
Prefix file 

specifying to MPBLD, 3-6 
Primitives 

MicroPower/Pascal kernel 
optimization, 3-4 

PRIMITIVES macro, 3-4, D-1 
/PROCESS modifier 

PASDBG, 3-42 
PROCESSOR macro, 3-5, D-1 
Programming languages 

KXTll-C, 1-1, 1-2 
PROM/RT-11, 1-7 
PROM/RT-11 PRO~ loader, 1-9 
Protocol 

master, 3-35 
slave, 3-35 

Q-BUS 
KXTll-C limitations, 3-12 

Q-BUS interrupt 
CSR and vector, B-2 

QD device handler, 1-8 

Index-12 



INDEX 

assuring OMA channel access, 
3-35 

calculating physical.addresses 
for, 3-38 

interface routine 
library, 3-3 

interface routine %INCLUDE file, 
3-3 

interface routines, 3-31 
local device transfers, 3-33 
local/local memory transfers, 

3-32 
local/Q-BUS memory transfers, 

3-32 
prefix file, 3-3 

specifying to MPBLD, 3-6 
Q-BUS I/O page access, 3-35 
search option, 3-33 
transferring variable-length 

messages, 3-33 
use in KXTll-C/arbiter 

interfacing, 3-36 
use with RSX-11 arbiter, 4-4 
use with RT-11 arbiter, 4-1 
use with SLU2, 3-34 
using, 3-31 to 3-35 
using with YK handler, 3-33 

QDINC.PAS %INCLUDE file, 3-3 
QDPFXK.MAC prefix file, 3-3 

specifying to MPBLD, 3-6 
QIR 

CSR, B-2 
QIR register, A-1 

Radial serial protocol (RSP) 
bootstrap loader, 3-14 

RAM 
battery backup vector, B-3 
determining program storage 

requirements, 3-4 
rules for selecting, 3-9 
selecting battery backup, 3-10 
selecting maps for, 3-7 
specifying base address, 3-6 
use in place of ROM when 

debugging, 3-8 
RAM test, 3-14 
• READ 

RT-11 programmed request, 4-2 
Read-only memory 

See ROM 
• READC 

RT-11 programmed request, 4-2 
• READW 

RT-11 programmed request, 4-2 

Recovery 
after power failure, 3-11 

Recovery indicator KXT$RI, 3-11 
Register definitions 

Two-port RAM, A-8 
two-port RAM, A-8 to A-13 

REINIT command 
KUI program, 4-2, 4-3, 4-6 

RELOC 
creating debugging 

configuration, 2-4 
RELOC program, 3-4 

use in determining memory 
requirements, 3-4 

RESET parameter 
KXTllC macro, 1-8 

RESET vector, B-3 
RESOURCES macro, D-1 
RESUME command 

KUI program, 4-1 
RHSLIB. OBJ 

library, 3-35 
RHSLIB.OBJ library, 3-3 

device handler interface 
routines, 3-1 

ROM 
application debugging, 2-4 
application start-up 

s e 1 e c ting , 3-1 3 
calculating checksums for, E-1 
debugging configuration, 2-5 
debugging considerations, 3-8 
determining program storage 

requirements, 3-4 
loading with DECprom and 

PROM/RT-11, 1-9 
selecting maps for, 3-7 
selecting power-up tests, 2-5 
specifying checksum test, 3-13 

ROM rules for selecting, 3-9 
ROM test, 3-14 
RSX 

operating environment, 1-1 
RSX-11 

arbiter 
accessing shared memory areas, 

4-4 
building system debugging 

configuration, 4-5 
final configuration, 4-5 
KUI program, 4-5 
KX handler requests, 4-4 
loading final application, 

4-5 

Index-13 



INDEX 

protecting shared data areas, 
4-5 

using test program, 3-40 
arbiter application developnent, 

4-6 
GREG$ directive, 4-4 
programming language, 2-2 

RSX-11 arbiter application 
develoµnent, 4-4 

RSX-llM 
See RSX 

RSX-llM-PLUS 
See RSX 

RT-11 
arbiter 

building system debugging 
configuration, 4-3 

final configuration, 4-3 
KUI program, 4-3 
loading final application, 

4-3 
programmed requests for KX 

handler, 4-2 
supporting five or more 

peripheral processors, 
4-2 

using test program, 3-40 
KX device handler logical unit 

limitations, C-1 
KX device handler vector 

allocation, C-1 
operating environment, 1-1 
programming language, 2-2 

RT-11 arbiter application 
developnent, 4-2 to 4-3 

• SA V f il e type 
loading with KUI program, 4-3 
use with DECprom, 1-9, E-1 

Search option 
QD handler, 3-33 

Self-test 
KUI command to execute, 4-2 
selecting, 3-12 
selecting for ROM applications, 

3-13 
Self-tests 

automatic, 3-14 
detecting error conditions, 

F-1 
error reporting, 3-13 

selecting, 2-5 
SELFTEST command. 

KUI program, 4-2 
SET command 

KUI program, 4-1 
SHOW command 

KUI program, 4-1 
SHOW TARGET command 

PASDBG, 3-42 
SJ RT-11 monitor, 4-3 
Slave protocol, 3-35 
Slave/Master relationship 

KK/KX protocol, A-1 
SLUl 

CSR and vector, B-1 
DLART support, 3-27 
loading programs from TU58 

DECtape II, 3-14 
specifying prefix file to MPBLD, 

3-6 
SLU2 

connecting TU58 DECtape II, 
3-30 

DLART support, 3-27 
DMA access, 3-33 
hardware CSR and vector, B-1 
software CSR and vector, B-2 
specifying prefix file to MPBLD, 

3-6 
using with DMA, 3-34 
vector fan-out module, B-2 

.SPFUN 
KX handler function, 4-3 

Stand-alone operation 
general requirements, 1-9 

Stand-alone processor 
application development 

procedures, 2-7 
hardware setup, 3-12 

Starting 
ROM application, 3-13 

SUSPEND command 
KUI program, 4-1 

Switch 
system ID, 3-12 

Synchronous serial line (XL) 
device handler 

prefix file, 3-3 
synchronous serial line (XL) 

device hand 1 er 
prefix file 

specifying to MPBLD, 3-6 
Synchronous serial line (XS) 

/device handler, 1-7 
prefix file, 3-3 

specifying to MPBLD, 3-6 
source file, 3-3 
using, 3-28 to 3-30 

System control registers 

Index-14 



INDEX 

two-port RAM (KX) 
using, 3-14 

use by KUI program, A-3 
use by KXT LOAD procedure, A-3 

System ID swTtch, 2-5 
associated two-port RAM CSR and 

vector assignments, C-1 
selecting, 3-12 
use, 3-12 

Target proc es so r 
debugging 

loading and starting, 3-41 
Target processors 

loading· and starting, 3-12 
Test 

CPU, 3-14 
CSR, 3-14 
DMA, 3-14 
RAM, 3-14 
ROM, 3-14 

Testing 
integrated application system, 

2-6 
KXTll-C applications, 2-3 

Tests 
See also Power-up self-tests 
automatic self-tests, 3-14 
dedicated off-line, 3-15 
developing, 2-4 
loopback, 3-15 
obtaining status information, 

3-14 
8254 timer 

CSR and vector, B-1 
TKB, 1-7 
Tool kits 

See Application development 
tools 

Tool kits for RT-11 and RSX-11 
arbiter applications, 4-1, 
4-6 

Tools 
See Application development 

tools 
TPR 

See Two-port RAM 
TRAP command 

KUI program, 4-2, 4-3, 4-5 
TRAPS macro, D-1 
.TSK file type 

loading with KUI program, 4-5 
use with DECprom, 1-9 

TU58 DECtape II 
bootstrap loader, 3-14 

loading debugging configuration, 
2-4 

loading final application, 2-7 
loading KXTll-C, 4-3, 4-5 
memory configuration 

requirement, 3-9 
TU58 DECtape II (DD) device 

handler, 1-7 
TU58 DECtape II device handler 

connecting to SLU2, 3-30 
prefix file, 3-2 

configuring; 3-31 
specifying to MPBLD, 3-6 

using, 3-30 
Two-po rt RAM 

command register, A-1 
command register definitions, 

A-8 to A-11 
criteria for using, 2-3 
CSR and vector, B-2 
CSR and vector assignments, C-1 
data channel, A-1 
data registers, A-1 
disabling, 3-12 
enabling, 3-12 
KC$DI command, A-9 
KC$EI command, A-9 
KC$GS command, A-9 
KC$NOP command, A-8 
KC$RD command, A-10 
KC$RSM command, A-9 
KC$SS command, A-9 
KC$WD command, A-10 
KC.COM command field, A-8 
KC.EOM bit, A-10, A-11 
KC.IDA bit, A-9, A-11 
KC.IDR bit, A-9, A-11 
KC.LEN field, A-10, A-11 
KC.VEC field, A-9, A-11 
KE$ILC code, A-12 
KE$ILL code, A-12 
KE$ILV code, A-12 
KE$NDA code, A-12 
KE$NDR code, A-12 
KE$0K code, A-12 
KE$0VR code, A-12 
KS.ALN field, A-13 
KS. DA bit, A-13 
KS.DR bit, A-12 
KS. EOM bit, A-12 
KS.ERC field, A-12 
KS. ERR bit, A-13 
KS. IEN bit, A-13 
KS • ON b it, A-1 3 
master/slave architecture, 1-1 

Index-15 



message passing, 1-4 
register definitions, A-8 to 

A-13 
registers in I/O page, 1-1 
selecting base address, 3-12 
status register definitions, 

A-11 to A-13 
system control registers, 3-14 
use, 1-3 

Two-port RAM (arbiter) device 
handler (KX), 1-8 

Two-port RAM (KK) device handler 
%INCLUDE file, 3-2 
interface routine 

1 ibrary, 3-3 
prefix file, 3-2 

specifying to MPBLD, 3-6 
protocol 

See KK/KX protocol 
use in KXTll-C/arbiter 

interfacing, 3-36 
using, 3-3 5 

Two-port RAM (KX) device handler 
interface routine library, 3-3 
prefix file, 3-2 
prefix file KKPFX.PAS, 3-35 
protocol 

See KK/KX protocol 
RSX-11 requests, 4-4 
RSX-11 unit numbers, 4-4 
RT-11 programmed requests, 4-2 
RT-11 version features, 4-2 
specifying CSR, 3-12 
use in KXTll-C/arbiter 

interfacing, 3-36 
using, 3-3 5 

Two-port RAM (KXTll-C) device 
handler (KK), 1-8 

Two-port RAM device handler, 1-9 
TYPRM parameter 

specifying when using DD 
handler, 3-31 

Unit numbers 
KX handler 

RSX-11 arbiter, 4-4 
RT-11 arbiter, 4-2 

User sockets 
specifying ROM and RAM, 3-9 

Vee tor 
a s s i g rune n ts f o r two- po rt RAM, 

C-1 
Kernel power-up, 3-11 
selection 

INDEX 

avoiding conflicts, 2-7 
Vector 120 

KXTll-C, A-3 
vector 124 

KXTll-C, A-3 
vectors 

KXTll-C assignments, B-1 to B-3 
verification procedures 

PPVFY, 3-41 

wa tchpo in ts 
setting in multiple-processor 

systems, 3-42 
.WRITC 

RT-11 programmed request, 4-2 
.WRITE 

RT-11 programmed request, 4-2 
.WRITW 

RT-11 programmed request, 4-2 

X.25 protocol, 3-28 
XL device handler 

features, 1-7 
prefix file, 3-3 

specifying to MPBLD, 3-6 
using, 3-27 

XLPFXK.MAC prefix file, 3-3 
specifying to MPBLD, 3-6 

XM RT-11 monitor, 4-3 
XS device handler, 1-7 

configuration, 3-29 
functions, 3-2 8 
prefix file, 3-3 

specifying to MPBLD, 3-6 
source file, 3-3 
using, 3-28 

XSINT.MAC file, 3-3 
XSPFXK.MAC prefix file, 3-3 

specifying to MPBLD, 3-6 

YK device handler, 1-8 
DMA feature, 1-8 
example counting pulses, 3-23 
example of analog I/O, 3-19 
example of D/A output, 3-21 
example of parallel output, 

3-17 
example of pulse generation, 

3-25 
interface routine 

library, 3-3 
interface routines, 3-16 
performing DMA transfers, 3-33 
prefix file, 3-3 

specifying to MPBLD, 3-6 

Index-16 



using, 3-16 to 3-27 
YK parallel I/O device handler 

%INCLUDE file, 3-3 
YK CLEAR TIMER 

device-handler interface 
routine, 3-16 

YK PORT READ 
device handler interface 

routine, 3-16 
YK PORT WRITE 

device handler interface 
routine, 3-16 

INDEX 

YK READ TIMER 
device handler interface 

routine, 3-16 
YK SET PATTERN 

aevice handler interface 
routine, 3-16 

YK SET TIMER 
device handler interface 

routine, 3-16 
YKINC.PAS %INCLUDE file, 3-3 
YKPFXK.MAC prefix file, 3-3 

specifying to MPBLD, 3-6 

Index-1 7 





From 

Chicago 

San Francisco 

Alaska, Hawaii 

New Hampshire 

Rest of U.S.A., 
Puerto Rico* 

HOW TO ORDER 
ADDITIONAL DOCUMENTATION 

Call 

312-640-5612 
8:15 A.M. to 5:00 PM CT 

408-734-4915 
8:15 A.M. to 5:00 PM PT 

603-884-6660 
8:30 A.M. to 6:00 PM ET 

or 408-734-491 5 
8:15 A.M. to 5:00 PM PT 

603-884-6660 
8:30 A.M. to 6:00 PM ET 

1-800-258-1710 
8:30 A.M. to 6:00 PM ET 

Write 

Digital Equipment Corporation 
Accessories & Supplies Center 
1050 East Remington Road 
Schaumburg, IL 60195 

Digital Equipment Corporation 
Accessories & Supplies Center 
632 Caribbean Drive 
Sunnyvale, CA 94086 

Digital Equipment Corporation 
Accessories & Supplies Center 
P. 0. Box CS2008 
Nashua, NH 03061 

*Prepaid orders from Puerto Rico must be placed with the local DIGITAL subsidiary (call 809-754-7575) 

Canada 
British Columbia 

Ottawa-Hull 

Elsewhere 

Elsewhere 

1-800-267-6146 
8:00 A.M. to 5:00 P.M. ET 

613-234-7726 
8:00 A.M. to 5:00 PM ET 

112-800-267-6146 
8:00 A.~. to 5:00 P.M. ET 

Digital Equipment of Canada Ltd 
940 Belfast Road 
Ottawa, Ontario K1 G 4C2 
Attn: A&SG Business Manager 

Digital Equipment Corporation 
A&SG Business Manager* 

*clo DIGITAL's local subsidiary or approved distributor 





READER'S COMMENTS 

KXTll-C Peripheral Processor 
Software User's Guide 

AA-Y615A-TK 

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the 
company's discretion. If you require a written reply and are eligible to receive one under Software 
Performance Report (SPR) service, submit your comments on an SPR form. 

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of user/reader that you most nearly represent. 

Assembly language programmer 
Higher-level language programmer 
Occasional programmer (experienced) 
User with little programming experience 
Student programmer 
Other(pleasespecify) _____________________________ ~ 

Organization---------------------Telephone ---------------

Street __________________________________________ _ 

CitY----------------------- State ------Zip Code------
or Country 



Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - - -

Do Not Tear - Fold Here 

1111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT N0.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SSG/ML PUBLICATIONS, ML05-5/E45 
DIGITAL EQUIPMENT CORPORATION 
146 MAIN STREET 
MAYNARD, MA 01754 

No Postage 
Necessary 

if Mai led in the 
United States 


