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Preface

This manual contains the run-time services information required for designing and developing
MicroPower/Pascal microcomputer application programs. Run-time services include kernel
processing of primitive requests, interrupts, exceptions, and clock services.

This manual also describes the configuration file macros required for building a target memory
image.

Structure of This Document

Seven chapters and two appendixes make up this manual, as follows:

Chapter 1 presents an overview of the MicroPower/Pascal run-time system. Kernel
organization is described in general terms, including an overview of primitive services
and system processes.

Chapter 2 describes MicroPower/Pascal processes and system data structures. You must
read and understand this information before attempting to write application code using the
run-time services described in the remainder of this manual.

Chapter 3 gives detailed descriptions for each of the MACRO-11 primitive service
requests. Primitive services provided by the MicroPower/Pascal kernel are also accessible
to applications written in Pascal. See the MicroPower/Pascal Language Guide for details on
issuing kernel primitive requests in Pascal programs.

Chapter 4 provides complete user information for the configuration macros required for
building a kernel and memory image file. Information is provided for both Pascal and
MACRO-11 users.

Chapter 5 describes the dynamic-RAM allocation and mapping services that are available
to both the Pascal and MACRO-11 user.

Chapter 6 describes MicroPower/Pascal exception processing. (Exceptions are hardware or
software errors or traps that may occur when application programs are executed or debugged
on the target system in the real-time environment.)

Chapter 7 describes kernel interrupt dispatching, interrupt service routines (ISRs), and fork
routines.

xi



Appendix A describes the scheduling-priority hierarchy throughout a MicroPower/Pascal
application.

Appendix B explains how to interface subroutines written in MACRO-11 with Pascal
programs.

Infended Audience

The content of this manual is based on the assumption that you are familiar with either Pascal
or MACRO-11. All MicroPower/Pascal microcomputer software development is done with one
or both of those development languages. Additional run-time services reference information for
writing applications in Pascal is contained in the MicroPower/Pascal Language Guide.

Conventions Used in This Document

The following conventions are used in this document:

Pascal-reserved words that must not be abbreviated are shown in uppercase characters
in syntax examples. Within those examples, lowercase characters are used for variable
parameters (or other syntax elements) that you may choose for your application.

Optional parameters and syntax are shown within brackets ([ ]). This document convention
is used mainly in Chapter 3 for kernel primitive parameters. Before considering any
parameters optional, carefully read Section 3.1.1, which describes the general form and
usage rules for the prim$ macro variant.

In this manual, some MACRO-11 syntax examples are shown with long macro invocations
continued on a second line—for example, the CRP$ and DFSPC$ macro calls. However,
when writing source code in MACRO-11, you must keep each macro invocation on a single
line.

In this manual, the numeric values for symbols for data structure sizes, offsets, and so forth,
are subject to change. Therefore, use symbol names rather than numeric values for system
data structure components.

Associated Documents

The following software documentation is required for complete reference purposes:

MicroPower/Pascal document set

Standard documentation for your host operating system

You will also need the following hardware reference documentation to configure your target
(application) hardware correctly, to use the standard device drivers, or to write device drivers
that are hardware- and software-compatible with other system components:

Microcomputer handbooks
— Microcomputers and Memories
— Microcomputer Interfaces Handbook

MB8063 Falcon SBC-11/21 Single-Board Computer User's Guide (required when developing
SBC-11/21 applications)

xii



SBC-11/21-PLUS Single-Board Computer User’s Guide (required when developing SBC-
11/21-PLUS applications)

KXJ11-CA Single-Board Computer User’s Guide (required when developing KX]J11-CA
applications)

KXT11-CA Single-Board Computer User’s Guide (required when developing KXJ11-CA
applications)

DPV11 Serial Synchronous Interface Technical Manual (required when developing applications
that use DPV11 communications hardware)

LSI-11 Analog System User's Guide (required when developing applications that use the
ADV11-C, AAV11-C, AXV11-C, or KWV11-C analog I/O boards)

MSCP Basic Disk Functions Manual (required when developing applications that use MSCP
disk-class devices)

Additional hardware documentation for microcomputer hardware presently not covered in
the microcomputer handbooks

xiii






Chapter 1
Infroduction

This manual describes the organization of the MicroPower/Pascal run-time system and the
services that the MicroPower/Pascal kernel provides for user programs. The explicit, user-
requested services provided by the kernel are the real-time primitive operations, described in
Chapter 3. (Standard device-I/O services, file system services, and communications support are
provided by system processes and are described in the MicroPower/Pascal 1/0 Services Manual.)
Implicit services provided by the kernel include process scheduling (Chapter 2), trap/exception
processing (Chapter 6), and interrupt dispatching (Chapter 7).

Chapter 2 provides an overview of the process/kernel relationship. The chapter discusses
the dynamic characteristics of a MicroPower/Pascal concurrent process and gives a detailed
description of process states, scheduling, and the effects of process-mapping type in a mapped
environment. Chapter 2 also describes the system data structures the kernel uses to implement
primitive operations. Chapter 4 describes the system configuration macros used at build
time to determine the application’s run-time environment. Other chapters provide supporting
information.

Other manuals in the MicroPower/Pascal documentation set focus on the Pascal user and
provide only Pascal-oriented descriptions. Much of the information in this manual is applicable
to both Pascal and MACRO-11 users; wherever possible, concepts are explained in terms of
both Pascal and MACRO language constructs.

However, some of the information (particularly Chapter 3, which describes MACRO-11 primitive
service requests) is pertinent only to MACRO-11 programmers. Analogous information for Pascal
programmers is provided primarily in Part II of the MicroPower/Pascal Language Guide.
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1.1 The MicroPower/Pascal Run-Time System

The MicroPower/Pascal run-time system is the collection of DIGITAL-supplied software that
resides in the target system and provides the execution-time environment for application
programs. The run-time system consists of the MicroPower/Pascal kernel, numerous system-
level processes, and, optionally, a resident, shared library.

The kernel provides the set of basic operations, called primitives, that are required for concurrent
programming. These primitives implement, for example, process creation and deletion, process
synchronization, and interprocess communication. The system processes basically provide I/0
support. Optionally, you can build a run-time shared library containing common code that
would otherwise be duplicated in several or many processes’ physical address space. Typically,
the library would contain Pascal OTS routines but could be used for processes implemented
in MACRO-11 as well. Such a library may be used to achieve optimal memory utilization in
some target environments.

User programs obtain primitive services by invoking appropriate kernel routines through a
service request interface provided for both Pascal and MACRO-11 programming. The kernel also
performs implicit functions, such as process scheduling, interrupt dispatching, and trap/exception
dispatching, which are largely transparent to user programs. The kernel is modular; when you
build the application, you can tailor the kernel to match both the target hardware configuration
and the primitive service requirements of the application processes.

The DIGITAL-supplied system processes provide device-handling services for commonly used
I/O devices and device interfaces, file system support, and network or local communications
support. Application processes written in MACRO-11 obtain these services by using queue
semaphore primitives to send request messages to the appropriate system process. Pascal-
implemented processes normally obtain the same services through various Pascal I/O statements.
The system processes are included in the target system during system building on an individual,
as-needed basis.

1.2 Kernel Organization

The MicroPower/Pascal kernel consists of many small program modules with well-defined
functions and interfaces. The highly structured character of the kernel not only makes it easier
to configure, maintain, and modify but also allows a great deal of common code to be used in
kernels for different hardware environments—for example, mapped versus unmapped systems.
(The common code contributes significantly to kernel reliability.) Among the many kernel
modules, however, six major functional components can be distinguished:

® The scheduler, which allocates the CPU to processes, according to priority, on an event-
driven, preemptive basis

® The primitive service routines—the many modules that implement the individual primitive
operations requested by processes

® The primitive dispatcher, which receives all primitive service requests and passes control to
the appropriate primitive service module

® The interrupt dispatcher, which receives all device interrupts and passes control to
appropriate service routines, providing the necessary entry and exit processing

1-2 Introduction



1.2.

® The trap handler/exception dispatcher, which receives all exception conditions—actual and
simulated processor traps—and transfers control as required for handling the exception

* The system-initialization routine, which initializes kernel data structures and installs static
processes at start-up/restart time

The primitive service modules constitute by far the largest kernel component. This component
is configurable, however; only those primitives used in a given application system need to
be included in the kernel for that system. The remaining components, along with other
miscellaneous functions and common kernel subroutines, constitute the mandatory kernel core.

1 Overview of Primitive Services

The primitive service component supplies approximately 60 primitive operations for concurrent
programming. Most of those primitives can be grouped into 10 major categories, as follows:

* Process management—Creation, deletion, suspension, resumption, and forced termination
of processes.

® Resource management—Creation and deletion of data structures, such as semaphores and
ring buffers, and allocation and deallocation of message packets.

® Process synchronization—Synchronization of cooperating processes by means of Signal and
Wait operations on binary and counting semaphores.

* Message transmission and synchronization—Interprocess communication through operations
on queue semaphores and combinations of packet queuing/dequeuing and Signal and Wait
operations.

* Ring buffer management—Variable-length data transfers between processes, through ring
buffers, without the need for close synchronization between putters and getters.

* Exception management—Control of hardware and software exception-condition dispatching
to an appropriate exception-handling process or exception service routine and reporting of
a software exception by a process. (The hardware-detected events reported by processor
traps other than IOT or power-fail constitute the MicroPower/Pascal hardware exceptions.)

® Interrupt management—Control of interrupt dispatching; used only by processes that
manage an [/O device.

* Timer services—Control of system time and process “sleeping” for a desired time.

* Dynamic region allocation and management (DRAM)—Acquisition of unused regions of
memory, sharing of a region of memory with another process, and the mapping operations
connected with the use of those regions.

* Logical-name services—Creation, translation, and deletion of logical names.

Primitives are described briefly in the following subsections. Chapter 3 contains complete
descriptions for the MACRO-11 programmer. See Part II of the MicroPower/Pascal Language
Guide for a description of the Pascal primitive service request interface. (Several process-
management services are transparent, or implicit, in Pascal programming; the primitives are
invoked automatically when required rather than by explicit service requests. These few
differences between MACRO and Pascal usage are indicated in the next subsection.)
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Note
Several assembly-time macros—Define Static Process (DFSPC$), Define a Pure
Program Instruction Section (PURE$), Define a Pure Program Data Section
(PDATS$), and Define an Impure Program Data Section (IMPUR$)—are defined in
Chapter 3 for MACRO-11 programming convenience. Chapter 3 also describes
two special kernel services, used only in interrupt service routines, that are

not implemented as primitive operations. The two kernel services are Fork
Processing (FORK$) and Enter Normal ISR State (P7SYS$).

1.2.1.1 Process-Management Primitives

This category of primitives contains the following:

Create Process—Lets an existing process create a new process dynamically and cause it
to be scheduled for execution. In Pascal, invocation of this primitive is implicit in a
process-invocation statement.

— MACRO-11 service request name: CRPC$
— Pascal equivalent: Process invocation statement

Delete Process—Lets a process delete itself from the system; the only valid way in which
a process can terminate. In Pascal, invocation of this primitive is implicit if control flow
reaches the end of the level-0 block for a static process or the end of a PROCESS declaration
block for a dynamic process.

— MACRO-11 service request name: DLPC$
— Pascal equivalent: None

Suspend Process—Lets a process suspend another active process or itself. Once suspended,
a process remains in that state, ineligible for execution, until it is resumed by another
process.

— MACRO-11 service request name: SPND$

— DPascal equivalent: SUSPEND function

Resume Process—Lets a process reactivate another suspended process.
— MACRO-11 service request name: RSUM$

— Pascal equivalent: RESUME function

Stop Process—Lets one process force another process or itself to execute its termination
routine or (Pascal) TERMINATE procedure. (The “stopped” process must delete itself to go
away.)

— MACRO-11 service request name: STPC$
— Pascal equivalent: STOP procedure

Get Process Status—Lets one process obtain information about the status of either itself or
another process.

— MACRO-11 service request name: GTST$
— Pascal equivalent: GET_STATE procedure
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Change Process Priority—Lets a process modify its own or another process’s scheduling
priority. Normally, this primitive is used to lower priority from a very high start-up value
used only for initialization code. (In Pascal, the INITIALIZE procedure attribute indirectly
serves this purpose.)

— MACRO-11 service request name: CHGP$
— Pascal equivalent: CHANGE _PRIORITY procedure

Schedule Process—Lets a process relinquish control of the CPU to another process of equal
priority, if one is ready to execute.

— MACRO-11 service request name: SCHD$
— Pascal equivalent: SCHEDULE procedure

Define Stop Flag Address—Lets a process defer the effect of a Stop Process request issued
by another process.

— MACRO-11 service request name: SSFA$
— DPascal equivalent: DEFINE_STOP_FLAG procedure

1.2.1.2 Resource-Management Primitives

This category of primitives contains the following:

Create Structure—Creates a system data structure (a semaphore, ring buffer, or unformatted
structure) in kernel data space.
— MACRO-11 service request name: CRST$

CREATE_BINARY_SEMAPHORE function
CREATE_COUNTING_SEMAPHORE function
CREATE_QUEUE_SEMAPHORE function
CREATE_RING_BUFFER function

Delete Structure—Deletes a system data structure.

— MACRO-11 service request name: DLST$

— Pascal equivalents:

— Pascal equivalent: DESTROY procedure

Get Structure Value—Obtains the characteristics (for example, type) and value of a system
data structure.

— MACRO-11 service request name: GVAL$
— Pascal equivalent: GET_VALUE procedure

Allocate Packet—Obtains an empty message packet from the kernel’s free-packet pool
(returns a pointer).

— MACRO-11 service request name: ALPK$
— Pascal equivalent: ALLOCATE_PACKET procedure
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* Conditionally Allocate Packet—Obtains an empty message packet from the kernel’s free-
packet pool but does not block the process if no packets are available.

— MACRO-11 service request name: ALPC$ ,
= Pascal equivalent: COND_ALLOCATE_PACKET function

¢ Deallocate Packet—Returns a message packet to the kernel’s free-packet pool, thus freeing
the packet for reuse.

— MACRO-11 service request name: DAPKS$
— Pascal equivalent: DEALLOCATE_PACKET procedure

1.2.1.3 Process-Synchronization Primitives

The primitives in this category operate on a binary or counting semaphore and are used by
two or more cooperating processes for mutual exclusion and other forms of synchronization. A
binary semaphore is a variable that can assume the values of 0 and 1. The two basic operations
defined on a binary (B) semaphore are:

SIGNAL(B): If B =0 then B :=B + 1
WAIT(B) : IfB=1then B :=B -1
else

Process must wait
(becomes ’blocked’)
until B = 1, then
B:=B -1
A Signal of a binary semaphore having a value of 0 allows one subsequent Wait to proceed
without blocking the process issuing the Wait. Signaling a binary semaphore having a value of
1 has no effect; one process issuing a subsequent Wait proceeds without blocking.

A counting semaphore uses a variable that can assume a value greater than 1. The two basic
operations defined on a counting (C) semaphore are:

SIGNAL(C): C :=C + 1

WAIT(C): IfC>0thenC :=C -1
else
Process must wait
until C > 0, then

cC:=C-1
As with binary semaphores, a Signal of a counting semaphore having a value of 0 allows one
subsequent Wait to proceed without blocking the process. Unlike binary semaphores, however,
successive Signals without intervening Wait operations are not lost. Each Signal is counted and
allows one Wait to proceed without blocking.

The process-synchronization primitives are:

® Signal Semaphore—Performs an unconditional Signal operation on a specified binary or
counting semaphore.

— MACRO-11 service request name: SGNL$
— Pascal equivalent: SIGNAL procedure
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®* Wait on Semaphore—Performs an unconditional Wait operation on a specified binary or
counting semaphore.

— MACRO-11 service request name: WAIT$
— Pascal equivalent: WAIT procedure

* Conditionally Signal Semaphore—Performs a conditional Signal operation, which increments
the binary or counting semaphore variable only if a process is already waiting on the
semaphore. The primitive returns a FALSE indication if the Signal was not performed.

— MACRO-11 service request name: SGLC$
— Pascal equivalent: COND_SIGNAL function

* Conditionally Wait on Semaphore—Performs a conditional Wait operation, which decre-
ments the binary or counting semaphore variable only if the semaphore has already been
signaled (that is, its value is nonzero). This test-semaphore-and-decrement-if-possible oper-
ation never causes the requesting process to block. The primitive returns a FALSE indication
if the Wait was not performed.

— MACRO-11 service request name: WAIC$
— Pascal equivalent: COND_WAIT function

* Wait on Any Semaphore—Performs either a conditional or unconditional Wait operation on
up to four specified binary or counting semaphores, with an optional timeout if a Signal
does not occur within a given time.

— MACRO-11 service request name: WAIA$
— Pascal equivalent: WAIT_ANY procedure

® Signal All Waiting Processes—Performs a special form of Signal operation, which unblocks
any and all processes that may be waiting on the specified binary or counting semaphore
and sets the semaphore value to 0 unconditionally.

— MACRO-11 service request name: SALL$
— Pascal equivalent: SIGNAL_ALL procedure

1.2.1.4 Message-Transmission Plus Synchronization Primitives

The primitives in this category operate on queue semaphores and combine message-packet
transmission and reception with Signal and Wait operations. A queue semaphore is a
generalization of the counting semaphore and has a queue of elements associated with it,
in addition to the counter variable. (A standard MicroPower/Pascal queue element is called a
message packet.)

The basic Signal Queue Semaphore operation adds a packet to the queue and increments the
counter variable. The basic Wait on Queue Semaphore operation removes a packet, if any,
from the queue and decrements the variable; if the queue is empty, the process must wait
until an element can be removed. Thus, the value of the counter variable always represents
the number of elements, usually packets, on the queue. The synchronization characteristics of
queue semaphores are identical to those of counting semaphores.
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Two distinct levels of queue semaphore operations are supplied, one built on the other. The
higher-level, more automatic operations (Send and Receive) are provided specifically for general
processes in a mapped-memory environment. They can, however, be used by any process in
either a mapped or an unmapped environment. The individual queue semaphore primitives,
beginning with the lower-level operations, are:

Signal Queue Semaphore (Put Packet)—Signals the specified semaphore and places a packet
pointer (supplied by the caller) on the semaphore’s packet queue.

— MACRO-11 service request name: SGLQ$
— Pascal equivalent: PUT_PACKET procedure

Wait on Queue Semaphore (Get Packet)—Performs a Wait operation on the specified
semaphore by removing a packet pointer from the queue and returning it to the requesting
process if a packet is available immediately. If not, the process blocks until the semaphore
is signaled.

— MACRO-11 service request name: WAIQ$
— Pascal equivalent: GET_PACKET procedure

Conditionally Signal Queue Semaphore—Performs a conditional Signal Queue operation,
which places a packet pointer (supplied by the caller) on the semaphore’s queue only if a
process is already waiting for a packet on that semaphore. The primitive returns a FALSE
indication if the Signal operation was not performed.

— MACRO-11 service request name: SGQC$
= Pascal equivalent: COND_PUT_PACKET function

Conditionally Wait on Queue Semaphore—Performs a conditional Wait on Queue operation,
which removes a packet pointer from the semaphore’s queue and returns it to the requester
only if a packet is on the queue (that is, if the semaphore had already been signaled). This
test-semaphore-and-get-packet-if-possible operation never causes the requesting process to
block. The primitive returns a FALSE indication if a packet was not immediately available.

= MACRO-11 service request name: WAQC$
— Pascal equivalent: COND_GET_PACKET function

Wait on Any Queue Semaphore (Get Packet Any)—Performs either a conditional or
unconditional Wait operation on up to four specified queue semaphores, with an optional
timeout if a packet does not arrive within a given time.

— MACRO-11 service request name: WAQA$
— Pascal equivalent: GET_PACKET_ANY procedure
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Send Data by Queue Semaphore—Allocates a packet (obtains a free packet from the pool),
copies caller-specified data into the packet, and then performs a Signal operation on the
specified queue semaphore. (See the Allocate Packet description for possible blocking
condition.)

— MACRO-11 service request name: SEND$
— Pascal equivalent: SEND procedure
— Pascal variant: SEND_ACK procedure

Receive Data by Queue Semaphore—Performs a Wait operation on a specified queue
semaphore, then copies data from the packet thus obtained into a caller-specified data area,
and finally deallocates the packet (that is, returns the packet to the free-packet pool). The
calling process blocks if a packet is not immediately available.

— MACRO-11 service request name: RCVD$
— Pascal equivalent: RECEIVE procedure
— Pascal variant: RECEIVE_ACK procedure

Conditionally Send Data—Performs a Send Data operation as described above, but only if
a process is already waiting to get a packet or receive packet data through the specified
queue semaphore. The primitive returns a FALSE indication if the Send operation was not
performed.

— MACRO-11 service request name: SNDC$
— Pascal equivalent: COND_SEND procedure
— Pascal variant: COND_SEND_ACK procedure

Conditionally Receive Data—Performs a Receive Data operation as described above, but
only if a packet is on the specified semaphore’s queue. This test-semaphore-and-receive-
data-if-available operation never causes the requesting process to block. The primitive
returns a FALSE indication if the Receive operation was not performed.

— MACRO-11 service request name: RCVC$
— Pascal equivalent: COND_RECEIVE procedure
— Pascal variant: COND_RECEIVE_ACK procedure

Receive Data Through Any Queue Semaphore—Performs a complex Receive operation on
up to four specified queue semaphores, then copies data from the packet obtained from any
one of those queues into a caller-specified data area, and finally deallocates the packet (that
is, returns the packet to the free-packet pool). The calling process may or may not block if
a packet is not immediately available, depending on the form of the call, and the Wait can
optionally be timed out if a packet is not sent within a given time.

— MACRO-11 service request name: RCVA$
— Pascal equivalent: RECEIVE_ANY procedure
— Pascal variant: RECEIVE_ACK_ANY procedure
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In a mapped environment, a process must have privileged or driver mapping to use the lower-
level queue semaphore primitives (Put Packet and Get Packet). Packets reside in kernel data
space, and the process must be mapped to that space to access (write into or read from) the
packet.

1.2.1.5 Ring Buffer Primitives

The primitives in this category operate on ring buffer structures, which facilitate variable-length
data transfers, normally of character or byte-oriented data, between processes, without the need
for tight, signal/wait synchronization between them. The size, or capacity, of a ring buffer is
determined when the structure is created; the size can be from 8 bytes to just less than 8K
bytes. The ring buffer primitives are:

* Get Element—Moves a specified number of bytes of data from a ring buffer to a data area
specified by the requester. If the buffer does not have enough data to satisfy the request,
the calling process blocks until a sufficient amount of data is put into the buffer by another
process.

— MACRO-11 service request name: GELM$
— Pascal equivalent: GET_ELEMENT procedure

® Put Element—Moves a specified number of bytes of data from a data area specified by
the requester to the ring buffer. If the buffer has insufficient space to accommodate the
new element, the calling process blocks until sufficient space becomes available because of
subsequent Get operations.

— MACRO-11 service request name: PELM$
— Pascal equivalent: PUT_ELEMENT procedure

* Conditionally Get Element—Obtains a data element of specified length from a ring buffer
if the buffer contains enough data to satisfy the request. This primitive will not cause the
calling process to block. If the buffer does not have enough data to satisfy the request,
the primitive either gets as many bytes as possible or moves no data at all, depending
on the output mode (stream or record) specified for the buffer when it was created. This
primitive returns a value indicating the number of bytes that remain to be moved following
the operation.

— MACRO-11 service request name: GELC$
— Pascal equivalent: COND_GET_ELEMENT function

* Conditionally Put Element—Places a data element of specified length into a ring buffer if
the buffer has enough space to accommodate the element. This primitive will not cause
the calling process to block. If the buffer does not have enough space to accommodate the
entire element, the primitive either puts as many bytes as possible or moves no data at
all, depending on the input mode (stream or record) specified for the buffer when it was
created. This primitive returns a value indicating the number of bytes that remain to be
moved following the operation.

— MACRO-11 service request name: PELC$
— Pascal equivalent: COND_PUT_ELEMENT function
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Get Element Any—Moves a specified number of bytes of data from any one of up to four
specified ring buffers to a data area specified by the requester. If the buffer does not have
enough data to satisfy the request, the calling process may or may not block, depending on
the form of the call; optionally, the wait for data can be timed out after a given time.

— MACRO-11 service request name: GELA$

— Pascal equivalent: GET_ELEMENT_ANY procedure
Reset Ring Buffer—Empties a specified ring buffer of all data.
— MACRO-11 service request name: RBUF$

— Pascal equivalent: RESET_RING_BUFFER procedure

1.2.1.6 Exception-Processing Primitives

This category contains the following primitives:

Connect to Exception Condition—Lets a process establish itself as an exception handler for
processes that belong to a given exception-handling group.

— MACRO-11 service request name: CCND$

CONNECT_EXCEPTION procedure
DISCONNECT_EXCEPTION procedure

Dismiss Exception Condition—Lets an exception-handler process dismiss an exception,
releasing the faulting process from exception-wait state for further disposition by the kernel.

— MACRO-11 service request name: DEXC$
— Pascal equivalent: RELEASE_EXCEPTION procedure

— Pascal equivalents: {

Set Exception Routine Address—Lets any process specify the entry point of an internal
exception service routine or procedure that will handle exceptions caused by the process.

— MACRO-11 service request name: SERA$

ESTABLISH procedure
REVERT procedure

Report Exception—Lets a process report a software exception condition or force a hardware
exception (simulate a processor trap).

— MACRO-11 service request name: REXC$

— Pascal equivalents: {

— Pascal equivalent: REPORT procedure
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1.2.1.7 Interrupt-Management Primitives
The two primitive operations in this category involve interrupt service routines (ISRs):

* Connect to Interrupt—Lets a device-handling, or driver, process connect an ISR to a specified
interrupt vector. (A Pascal variant of this primitive lets a process connect a binary or counting
semaphore to an interrupt vector indirectly.)

— MACRO-11 service request name: CINT$
— Pascal equivalent: CONNECT_INTERRUPT procedure
— Pascal variant: CONNECT_SEMAPHORE procedure

* Disconnect from Interrupt—Lets a driver process disconnect an ISR from a specified interrupt
vector.

— MACRO-11 service request name: DINT$
— Pascal equivalent: DISCONNECT_INTERRUPT procedure
— Pascal variant: DISCONNECT_SEMAPHORE procedure

1.3 Overview of System Processes

System processes provide commonly used hardware-oriented services for user programs. These
processes include many standard (DIGITAL-supplied) device drivers; the ancillary control process
(ACP), which provides RT-11-compatible file management and/or non-file-structured device
access; and several network and point-to-point communications support processes. (Two driver
processes are supplied specifically for communication between a Q-bus arbiter processor and one
or more KXT11-CA or KXJ11-CA IOP slave processors.) The MicroPower/Pascal 1/0 Services
Manual describes those system processes in detail.

A device driver is a process, or a family of cooperating processes, that accepts requests for
device-level I/O operations from other processes. Device drivers communicate and synchronize
with other processes in the application through standard primitive operations. I/O service
requests for a particular hardware device are passed to the device driver in the form of a
request message (queue packet). Each driver maintains a request queue semaphore through
which device-level I/O requests are passed. After receiving a request, the driver performs
all process-level, interrupt-level, and fork-level processing for the requesting process. When
the I/O operation has been completed, the driver signals the requesting process and returns
completion status by means of a reply message packet. The reply message packet indicates
successful completion or error and other information, such as number of bytes successfully
transferred, as applicable.

Standard I/0 functions generally supported by device drivers include read (physical and logical),
write (physical and logical), set device characteristics, and get device characteristics. Other
device-specific functions are supported for each device.

Device drivers can be written in either MACRO-11 or Pascal, with some restrictions on Pascal
implementation, and driver processes can be accessed by other processes written in either Pascal
or MACRO-11. All standard DIGITAL-supplied device drivers are written in MACRO-11 for
maximum efficiency and flexibility.

1-12 Introduction



The ACP and, optionally, the network service process (NSP) provide a higher level of control
that is “layered” on top of the driver-level processes, eliminating the need for user processes to
talk to drivers directly. Access to drivers, the ACP, and the NSP by a user process implemented
in Pascal is generally transparent, obtained.through OPEN and other MicroPower/Pascal 1/0O
statements.

1.4 Resident Shared Libraries

A resident shared library, or run-time library, allows two or more static processes to share
“library” code at run time that would otherwise have to be merged into each process’s object code
at build time. Such libraries permit a savings in physical memory requirements by eliminating
duplication of pure code across static processes. Resident shared libraries are possible in all
target hardware environments, but the cost/benefit tradeoffs vary with the environment. For
an unmapped target system, use of a resident shared library is a clear win if the application
contains more than one user static process. (In unmapped applications, all user processes are
often part of one static process family for the most economical implementation.) An unmapped
environment has no virtual address-space considerations, and, if the application is intended for
ROM, use of a shared library can make PROM burning less laborious.

For a mapped target system with supervisor mode, such as an LSI-11/73-based target, use of a
shared library is also a clear win, since such a library has a separate supervisor-mode mapping
and thus does not impinge in a negative way on the virtual address space of a user process that
references the library. Again, if the application is intended for ROM, use of a shared library
can simplify PROM burning.

For a mapped target system without supervisor mode, such as an LSI-11/23-based target, the
tradeoff considerations are somewhat complex, because the entire shared library is mapped into
the virtual address space of any referencing process. The shared library will contain all the code
that any referencing process uses and thus may contain much code that a given process does not
need. That is to say, a shared library may “steal” a significant amount of virtual address space
from user static processes, due both to unused code and to PAR boundary alignment problems.
Therefore, if a given static process family (that is, an individual build unit) is approaching the
limits of its virtual address space, the tradeoff of increased virtual address space for the process
in question against decreased physical memory for the entire application may not be possible
without redesign of the user static processes. (An application could contain multiple shared
libraries, but that option complicates the application-building procedure considerably, since the
“automatic” MPBUILD facility cannot readily be used to achieve it.) Again, if the application is
intended for ROM, use of a shared library can simplify PROM burning.

The choice of whether to use an object-time (nonshared) library or a resident shared library is
made at application build time. An application may consist of a mixture of static processes that
do and do not use the resident shared library code. In a mapped system, a member process of
a static process family that does not reference a shared library is not affected by the existence
of that library. See Chapter 2 for a description of shared supervisor-mode library mapping
and the MicroPower/Pascal system user’s guide for your host system for details of building an
application with a shared library.
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Chapter 2
Processes and System Data Structures

This chapter begins with a general description of processes and then presents implementation-
related details. Later sections describe the significant data structures defined by the
MicroPower/Pascal kernel. Some of the information in this chapter is provided primarily
for debugging purposes.

2.1 Processes

A MicroPower/Pascal process is an independent, asynchronous CPU activity, or task. Process
execution proceeds concurrently (logically in parallel) with the execution of other processes in
an application. (The basic characteristics of a MicroPower/Pascal process are the same as those
described for a concurrent process or a parallel process in the recent literature on concurrent
programming.) The kernel’s event-driven scheduling mechanism provides each process with its
own virtual CPU (in a single-processor environment). Thus, a process can be thought of as
a sequential program that can communicate and interact with other such programs executing
in parallel on separate virtual processors to achieve a common goal. That goal might be, for
instance, to monitor and control several related aspects of a particular real-time environment.

Since the actual CPU is shared by processes on an event-triggered basis (as opposed to
equal-interval time slicing), the execution rate of one process relative to another is generally .
unpredictable, particularly among processes of the same scheduling priority. However, the
MicroPower/Pascal process-synchronization primitives allow functionally related processes to
execute in proper time relationship.

One source program can define many processes, as described in Section 2.1.1. Since all the
processes so defined exist in the same virtual address space, they can access shared data directly
and can use common subroutines or procedures. Again, proper use of MicroPower/Pascal
synchronization primitives permits several processes to modify shared data in a safe, controlled
fashion. Also, multiple processes can be based on one (reentrant) instruction sequence, with a
unique data area for each process.

The process construct allows you to decompose an otherwise monolithic sequential program
into a number of autonomous subprograms that are scheduled independently when triggered by
appropriate events. Such events may be external, as signaled by a device interrupt, or internal,
as signaled by another process (for example, availability of a shared resource or data item) and
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generally are a mixture of the two. The process approach avoids the wasteful busy-waiting
loops that would otherwise be needed to synchronize with critical device interrupts. Thus, the
process approach allows more efficient use of the CPU and other hardware resources and a
more flexible response to multiple external events of varying urgency.

The process construct also provides a simpler conceptual approach to solving many real-time
problems. For example, consider an application involving a windowed display; the physical
display screen is divided into several subareas, or windows. Each window is to be a virtual
display that is updated independently in response to a set of external events. A sequential
programming approach would require a complicated screen-management algorithm to ensure
complete and valid updating of each part of the screen, assuming that the triggering events are
asynchronous. MicroPower/Pascal lets the programmer manage each window with a separate
process and assign priorities to the processes on the basis of the relative importance or timeliness
of the data to be displayed in each window. Programming a windowed display then becomes
conceptually straightforward.

A process is essentially a dynamic, execution-time entity. At execution time, a process consists
of the following:

* A block of control information (process control block, or PCB), created and maintained by
the kernel, that reflects the context of the process at any given point. The PCB information
exists only during the lifetime of the process it describes and is the “activation record” of
the process.

* An instruction sequence, or procedure, that the process executes. (In a dedicated, real-
time environment, this instruction sequence is often nonterminating except under special
conditions.) The instruction sequence associated with a process is identified in the process’s
context simply by the address to which control is to be transferred when the CPU is next
dispatched to the process.

® A set of data segments, such as the process stack and any static variables, that are unique
to the process, plus any shared data.

An instruction sequence, if reentrant, may be shared (concurrently executed) by several processes.
Thus, a process represents one specific invocation of an instruction sequence as an independent
scheduling unit. The PCB maintains a continuous record of the context and the “activation
status” of that scheduling unit, as described in Section 2.1.5.

1 Static and Dynamic Processes

A static process is one of the processes known to the kernel at system-initialization time and
is always present after power-on or system-reset processing. The kernel’s initialization (INIT)
routine creates a PCB for and schedules each static process.

In Pascal, a static process is implicitly defined by a [SYSTEM(MicroPower),...] PROGRAM
declaration. (Other optional attributes within the brackets specify characteristics such as
stack/heap size, mapping type, and running priority.) The main body of the program, together
with all procedures and functions called from main level, constitute the instruction segments
associated with the static process. Likewise, the variables declared at main level, together with
the stack space and heap space allocated to the main program, constitute the data segments
associated with the static process. (The heap is used dynamically for NEW and DISPOSE and
for the stack and local variables of any dynamic processes created by the static process.)
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A procedure declared at the outermost level with the [INITIALIZE] attribute has a special
relationship to the static process and has a special characteristic relative to all other Pascal static
processes in the application system. If an [INITIALIZE] PROCEDURE declaration exists in a
program, the procedure is executed before the corresponding static-process code (main program
body) is initially executed. (No procedure call is required.)

Furthermore, the initialization procedure has a default scheduling priority of 248, the highest
recommended start-up priority value for a user process. The static process itself is scheduled
at the running priority specified or defaulted to in the program heading. (Running priorities
in general should not exceed 247 and should be less than 160 for normal user processes. See
Appendix A for recommended process priorities.) The combination of implicit precedence of
execution and special start-up priority guarantees that the initialization procedure will run not
only before its associated static process but also before any other Pascal static process begins
execution—assuming that the initialization code does nothing that might cause it to block, which
it should not do.

The purpose of the initialization procedure is to permit creation of any system data structures—
semaphores, ring buffers, or shared regions, for example—that other processes depend on for
proper operation, before any such process can attempt an operation on the structure. For
example, an initialization procedure might create a queue semaphore on which other processes
will perform a Send operation to request a service, thereby avoiding the potential race condition
that could arise if one process were to depend on another to start first. (Relative running
priorities should not be relied on to ensure the order in which processes start up and are not
intended for that purpose.)

In MACRO-11, a static process is defined by the Define Static Process (DFSPC$) assembly-time
macro; see Section 3.15. This macro produces a block of information used by the memory
image builder (MIB) utility and the kernel’s INIT routine. The information includes the initial
address of the instruction sequence to be executed, the size and location of the process stack,
the Tun-time process name, mapping type, priority, and other characteristics specified in the
macro call. ‘

A MACRO-11 static process can implement the same kind of special, system-level initialization
“procedure” as described above for Pascal, using the following strategy. The process starts up
at priority 248 or higher, as specified in the DFSPC$ macro, in order to execute its initialization
code. Immediately after the initialization processing, the process uses the Change Priority
(CHGP$) primitive to drop its priority to the desired operating level; the process can then enter
its main code, corresponding to the Pascal main program body. (The CHGP$ primitive call
always implies a scheduling operation.) This strategy is in fact the same as that used by the
Pascal OTS to implement Pascal initialization procedures, of which a program may have several.

A dynamic process is created by the action of another process during system execution. The
action consists of a request to the kernel’s process-creation service, which creates a process
control block (PCB) and schedules the new process. The kernel allows a static process to create
one or more dynamic processes, each of which can in turn create other dynamic processes. The
created process is essentially a subprocess of the static process in the sense that the instruction
and data segments of the created process must be located within the address space of the static
process (that is, within the same object program). In a mapped environment, a dynamic process
necessarily inherits the mapping type of its parent, or originating static process, since it shares
the virtual address space of that static process. Thus, a static process can create a family of
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dynamic processes to handle a set of related asynchronous events; such processes may share
common data areas.

In Pascal, each process-invocation statement is an implicit request for creation of a dynamic
process. The process-invocation statement consists of a reference to an identifier defined by a
PROCESS declaration, plus optional process attributes and invocation parameters. (Although
syntactically similar to a procedure call, a process invocation initiates a control flow that is
separate and distinct from that of the invoking process, as opposed to a transfer of control
within the calling process. Flow of control cannot be explicitly transferred from one process to
another.) The PROCESS declaration defines the instruction sequence and local variables to be
associated with a process created by a reference to that declaration. Multiple dynamic processes
can be based on the same PROCESS declaration; separate instances of the local variables are
allocated from the heap for each dynamic process, as well as a separate stack.

In MACRO-11, a dynamic process is created by a Create Process (CRPC$) service request;
see Section 3.10. The request specifies the initial address of the instruction sequence to be
executed, the stack address, run-time process name, priority, and other characteristics of a
dynamic process.

Static and dynamic processes are functionally equivalent; all kernel primitives are available
to both kinds of processes. In particular, any process can delete itself—which is the only
valid way for a process to terminate, assuming that such termination is ever required. The
MicroPower/Pascal kernel does not enforce any hierarchical relationships between the members
of a process family. Thus, any process can outlive its creator; no restrictions exist on the order
in which related processes may terminate (if any must indeed do so).

The MicroPower/Pascal compiler and object-time system (OTS) does, however, impose its own
default structure on a process family with respect to the longevity of processes and process-local
variables. Essentially, the compiler and OTS provides a method for proper sequencing of process
termination, as explained below, in order to safeguard data that is shared between processes.
Since the compiler applies the same scoping rules to PROCESS declarations as to PROCEDURE
declarations, it can control the scope of variables declared in and accessed by processes at
various levels, in a manner consistent with standard Pascal syntax rules. Furthermore, variables
that are local to a dynamic process are allocated from dynamic storage (the process’s memory
stack) when the process is created, unless the variables are declared with the STATIC attribute.
The storage for these variables is automatically released (returned to the heap for reuse) if and
when the process terminates and is deleted.

The MicroPower/Pascal method for sequencing the termination of Pascal-implemented processes
causes a process to wait for the termination of all processes created by it before it will terminate.
That is the default condition for all process invocations and assumes that the created, or child,
process has a data dependency on the parent process. The RELATIONSHIP parameter of the
process-invocation statement lets you modify the default termination condition for the creating,
or parent, process. The lifetime of data items used by but not declared within the child process
(variables local to the parent, passed parameters, or new variables generated by the parent)
must be considered when you determine the correct setting of the RELATIONSHIP parameter:
DEPENDENT or INDEPENDENT.
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For a dynamic process to be safely declared INDEPENDENT of its parent, all data items used
by the former must continue to exist for the lifetime of the created process. (MicroPower/Pascal
guarantees that PROGRAM-level variables and variables declared with the AT, EXTERNAL,
GLOBAL, or STATIC attributes exist for at least as long as any process in the static process
family exists.) For a process declared as DEPENDENT, the MicroPower/Pascal compiler and
OTS make sure that the creating process is never deleted (does not actually terminate) before
any of its dependent-child processes terminate, although it may have stopped executing. That is,
the storage for a given process is not released, and the process is not deleted, until all dependent
processes terminate, even though the process has logically terminated either by “reaching” its
END statement” or by executing its termination procedure.

When a process terminates, the local variables (VAR declarations) and any non-VAR formal
parameters cease to exist. Therefore, a created process that uses those kinds of data items
belonging to the parent process is necessarily DEPENDENT on the parent. Such uses can occur
in four ways:

® Up-level addressing. This occurs when a process is declared within the body of another
process. Since the typical and proper use of this type of nesting is to take advantage of
up-level addressing, the created process can always be said to be DEPENDENT on the
creating process.

* VAR formal parameters. If the created process accepts a VAR formal parameter and the
creating process passes, as the corresponding actual, one of its local variables or one of its
non-VAR formal parameters, the created process is DEPENDENT on the creating process.

* Pointer-type formal parameters. If the created process accepts a pointer to a data item
and the creating process passes, as the corresponding actual, a pointer to one of its local
variables or to one of its non-VAR formal parameters, the created process is DEPENDENT
on the creating process.

® Records containing pointers. If the created process uses a record that contains a pointer
to one of the creating processes’ local variables or one of the creating processes’ non-VAR
formal parameters, the created process is DEPENDENT on the creating process. (The
manner in which the created process gains access to the record does not affect the validity
of this rule.)

If any of the four conditions is met, the created process should be invoked with the default
RELATIONSHIP:=DEPENDENT parameter, which will direct MicroPower/Pascal to sequence
the termination of the respective processes. If the stated conditions indicate that the created
process is in fact dependent but the RELATIONSHIP:=INDEPENDENT parameter is used, you
must make -sure that the data item in question continues to exist. Otherwise, unpredictable
results may occur.

When determining the relationship of processes, you should examine only the two directly
related processes: creating and created. That is, if the creating process was itself created by
another process, their parent/child relationship need not be considered.
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Three programming errors are commonly associated with the passing and/or sharing of data
items between processes:

* Passing a pointer to a record obtained by means of NEW to another process and subsequently
disposing of the record before the sharing process is finished with it.

® Declaring a process within the body of a PROCEDURE or FUNCTION. As when a process
terminates, the local variables and the non-VAR formal parameters cease to exist when a
PROCEDURE or FUNCTION exits. The process-termination sequencing method in no way
guarantees that PROCEDURE or FUNCTION local variables survive the created process.

® Concurrent use of variables between processes without use of a mutual-exclusion (mutex)
mechanism, such as a semaphore or mutex.

Variables declared at the outermost (static process) level remain available to any and all
subprocesses until every member of the process family terminates.

2.1.2 Process Names

One process can refer to another in a limited number of kernel primitive requests (for example,
in a Suspend Process or Resume Process request). To facilitate such references, especially across
process families, a process can be given a run-time name in the program that defines the process.
A run-time process name consists of a 6-character ASCII string (for example, "ALPHAS5’) that
is dynamically associated with the process when it is created. The name identifies the process
control block corresponding to the process. The string ‘ALPHAS5" can be used in primitive
requests in another program to refer to the process globally known by that name.

Process names must be unique among not only all named processes throughout the system
but also all named system structures. That is, a process name must not duplicate the name
of any coexisting semaphore, ring buffer, or other type of dynamic data structure. Violation
of this rule will cause errors during execution. (The names of system structures created by
DIGITAL-supplied system processes, such as device drivers, always contain a dollar sign ($)
character. You should therefore avoid that character in all user-specified names.)

Since run-time names are fixed-length character strings, both case and trailing blanks are
significant. Thus, the name ‘abc123’ is not equivalent to ‘ABC123’, and 'ABCD ’ is not
equivalent to "ABCD’.

In Pascal, a static process gets its run-time name from the compile-time program name specified
in the program heading; the name is either truncated to six characters or padded with trailing
spaces to that length, as necessary. A dynamic process gets its run-time name, if any, from a
NAME attribute, specified in either a PROCESS declaration or a process-invocation statement.
A name assigned at the point of process invocation overrides the default run-time name, if
any, specified in the corresponding PROCESS declaration. See the MicroPower/Pascal Language
Guide, Chapter 10, for a detailed description of the NAME attribute.

In MACRO-11, a run-time name is specified directly in the Define Static Process (DFSPC$)
macro call and indirectly in the Create Process (CRPC$) service request. Section 3.1.6 discusses
the process descriptor block.
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Every process is in one and only one state at any time. The kernel supports the following eight
process states:

1.

Run: the state of the process eligible for execution. This process may be executing at
process level, may be executing a primitive operation in the kernel, or may be interrupted.
(An interrupt does not of itself cause a transition from run state.) By definition, the priority
of the running process is at least equal to that of any process in the ready-active state.
The running process continues in the run state until it blocks, suspends, or deletes itself; is
preempted by a higher-priority process becoming ready to execute; or causes an exception.

Ready active: the state of a process that is ready to execute and is eligible for the processor
to be assigned to it. The highest-priority ready-active process is assigned to the processor
whenever the running process relinquishes control or is preemptable.

Wait active (blocked): the state of a process forced to wait (defer execution) until a particular
event occurs or a given resource becomes available. A waiting process is always blocked
on a blocking structure (for example, semaphore or a ring buffer). When unblocked, the
process changes to the ready-active state. See Section 2.1.4.2.

Ready suspended: the state of a process that is otherwise ready to execute but has been
explicitly suspended by itself or by another process. A Resume operation by another process
increments a suspend counter associated with the suspended process. When the suspend
count changes from -1 to 0, the suspended process is returned to the ready-active state. (A
Stop operation will also implicitly resume a suspended process, returning it unconditionally
to the ready-active state.)

Wait suspended: the state of a process that was blocked (forced to wait for an event or a
resource) and has subsequently been suspended by another process. A Resume operation
by another process increments a suspend counter associated with the suspended process.
When the suspend count changes from -1 to 0, the suspended process is returned to the
wait-active state. If the process becomes unblocked while suspended, it changes to the
ready-suspended state.

Exception-wait active: the state of a process that has caused an exception to occur and must
wait for the exception condition to be processed by an exception handler. The offending
process must be removed from execution in order to allow the exception-handling process to
execute and to take diagnostic and, possibly, corrective action with respect to the exception
condition. Therefore, the exception-wait state indicates that the offending process is waiting
for action by an exception-handling process, as described further in Section 2.1.4.4. The
waiting process is placed in the ready-active state when the exception handler “dismisses”
the exception condition.

Exception-wait suspended: the state of a process explicitly suspended while in the exception-
wait-active state. A Resume operation increments a suspend counter associated with the
suspended process. When the suspend count changes from -1 to 0, the suspended process is
returned to the exception-wait-active state. If the exception handler dismisses the exception
while the process is suspended, the process is placed in ready-suspended state.
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8. Inactive: the state of a process that has been terminated abnormally by the kernel because
of an unhandled exception condition. Unlike normally terminated processes, an inactive
process’s PCB is not deleted but is retained on a special, “dead end” queue solely for
diagnostic purposes. An inactive process cannot be reactivated. See Section 2.1.4.4.

When created, a process is in the ready-active state. The possible subsequent state transitions
can be summarized as follows:

From To

Ready active Run (by priority)
Ready suspended (by suspension)
Run Ready active (by preemption)
Wait active (by blocking)
Exception-wait active (by exception)
Ready suspended (by self-suspension)
Inactive (by abnormal termination)

Nonexistent (by deletion)

Wait active Ready active (by unblocking)

Wait suspended (by suspension)
Ready suspended Ready active (by resumption or forced termination)
Wait suspended Ready suspended (by unblocking)

Wait active (by resumption)
Exception-wait active Ready active (by dismissal)
Exception-wait suspended (by suspension)

Exception-wait Ready suspended (by dismissal)
suspended :

Exception-wait active (by resumption)

The inactive state is a “final” state from which no transition is possible; a process in that state
is essentially nonexistent, but its context is preserved for diagnostic purposes.

Figure 2-1 shows the state transitions and the events associated with them. The numbers
indicate the kind of event, or the condition, that can cause the state transition represented
by each arc. An asterisk preceding the number denotes a significant event, which causes the
scheduler to be invoked.
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Figure 2-1: Process State Transitions
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2.1.3.1 Process State Codes and State Code Modifiers

The state of a process is described by the state code byte in its PCB (field PC.STA); see Section
2.1.5. The state code values are represented by the following global symbols, as defined by the
QUEDF$ system macro:

State Code Process State

SC.RUN Run

SC.RDA Ready active

SC.RDS Ready suspended

SC.WTA Wait active

SC.WTS Wait suspended

SC.EWA Exception-wait active

SC.EWS Exception-wait suspended

SC.IAC Inactive (abnormally aborted because of exception)

Whenever a process changes state, the kernel modifies the state code in its PCB. For most state
changes, the kernel must also transfer the PCB from one state queue to another, as described

below.

The state-code modifier bits in the status byte of the PCB (field PC.STS) describe several possible
substates in the case of a process that requires special handling during subsequent state changes.
The modifier bit-mask values are represented by the following global symbols:

Modifier

Meaning

SM.FPA
SM.BCS

SM.ABI

SM.UBL

SM.ABP

Process has a pending Floating Point Accelerator exception.

Blocked on complex structure. The process is blocked on multiple blocking
structures because of execution of a complex primitive.

Abort to inactive in progress. An unhandled exception has occurred, which
causes the process to be aborted (forced to its termination entry point) as for
SM.ABO. The termination will be abnormal, however, in that issuance of the
Delete Process (DLPC$) request will cause the process’s PCB to be placed on
the inactive queue instead of being deallocated. (SM.ABO is also set whenever
SM.ABI is set.)

Unblocked but not yet ready. The process has been unblocked and is in the
kernel resumption queue for completion of a primitive operation.

Abort pending. A Stop Process (STPC$) request has been issued for this process
but has not yet been honored, because the process is blocked on a ring buffer
or is in an exception-wait state.
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Modifier Meaning

SM.ABO Abort in progress. A Stop Process (STPC$) request has been issued for the

process, forcing execution at its termination entry point. The process may run,
block, and so on but may not be suspended. Any Suspend requests for the
process will be ignored.

2.1.3.2 State Queues

The kernel maintains several queues (linked lists) of PCBs, called state queues. Each such queue
reflects the state of the PCBs linked into it, although not every process state has a state queue.
The PCB of every process that is not in an exception-wait state is linked into one and only one
logical state queue.

Conceptually, there are only five state queues, although the so-called wait queue is a logical
entity that consists of many distinct queues. The characteristics of the five state queues are as
follows:

1.

Run queue: a degenerate, singly-linked list that contains at most one element: the PCB of
the running process.

Ready-active queue: a doubly-linked list of all ready-active PCBs, ordered according to
process priority.

Ready-suspended queue: a doubly-linked list of all ready-suspended PCBs, in LIFO order.
(The ordering of this queue has no bearing on the order in which processes may be resumed,
that is, removed from the queue.)

Wait queue: a logical entity representing the collection of all waiting process lists associated
with semaphores and ring buffers. Every semaphore has one waiting process list; the first
word of a semaphore structure is the list header (see Sections 2.2.1.3 and 2.2.3). Every
ring buffer has two waiting process lists (one for input and one for output) as described in
Section 2.2.1.6.

A waiting process list, also called a blocking queue, is a singly-linked list of all PCBs
blocked on the associated structure. Except for the kernel’s timer queue, the PCBs on a
given blocking queue may be queued in either FIFO or priority order, depending on the
queuing characteristics specified for that structure. (The kernel’s timer queue has a special
time-dependent ordering policy.) Also, the PCBs may be in either wait-active or wait-
suspended state. Thus, the nominal wait queue comprises all waiting processes, whether
active or suspended.

Normally, a blocked process is linked into a single structure’s blocking queue, but the
“complex” primitives (GELA$, RCVA$, WAIA$, and WAQAS) allow a process to block
simultaneously on multiple structures of a given type (for example, up to four binary
semaphores), and optionally on the kernel’s timer queue at the same time. (Multiple
blocking structures are referred to as a “complex structure”; the queuing for that case is
handled by the complex-structure-descriptor field in the process’s PCB.)
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5. Inactive queue: a doubly-linked list of all inactive PCBs, ordered according to process
priority. (The ordering of this queue is immaterial, since PCBs are never removed from
it.) The kernel global symbol $IACTV identifies the list head, in kernel data space, for this
queue.

No state queue exists for processes in an exception-wait state. The PCB of a process entering
exception-wait-active state is passed to the appropriate exception-handler process and remains
in the possession of that handler until it is returned to the ready state.

2.1.4 Process Scheduling
2.1.4.1 Process Preemption

The running process is preempted, or displaced from run state, if a higher-priority process
becomes ready active. That can happen if either the running process or an ISR performs an
operation that unblocks a wait-active process, resumes a ready-suspended process, or “dismisses”
an exception-wait-active process. Preemption can also occur if the running process creates a
new, higher-priority process, lowers its own priority, or raises the priority of another process.

Many kinds of semaphore and ring buffer operations (for example, a signal operation) can
change a waiting process to ready active; the Resume operation may, of course, change a
suspended process to ready active. If the newly ready process is of higher priority than the
running process, the former switches immediately to run state, and the latter reverts to the
ready-active state. Preemption is always associated with the execution of certain primitive
operations.

When a process is preempted, it is always placed at the head of the ready-active queue, before
any other processes of equal priority already on the queue. Thus, a preempted process always
has the highest effective scheduling priority relative to any other ready-active process of the
same priority. That is contrary to the equal-priority queuing policy effective for other operations,
such as unblocking, which places a newly queued process behind any other processes of the
same_priority already on the queue.

2.1.4.2 Process Blocking and Unblocking

A running process is said to block when it must give up the CPU in order to wait for a signal
or a resource to be provided by another process. Thus, a process blocks for synchronization
purposes; the blocking is always associated with execution of an unconditional, wait-type
primitive operation on a semaphore or ring buffer. The kernel changes the process’s state code
from run to wait active and queues the PCB on the blocking queue of the semaphore or ring
buffer. ' ’

The running process potentially allows itself to block by executing any of the primitive
operations listed below. The MicroPower/Pascal predeclared procedure name for each operation
is followed, in parentheses, by the corresponding MACRO-11 primitive request name.

® An unconditional Wait operation on a binary or counting semaphore:

WAIT procedure (WAIT$ request)
- WAIT_ANY procedure (WAIA$ request)

Blocking condition: The semaphore was not open—not already signaled—at the time of the
Wait operation.
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* An unconditional Get Packet or Receive Data operation on a queue semaphore:

GET_PACKET procedure (WAIQ$ request)
GET_PACKET_ANY procedure (WAQA$ request)
RECEIVE procedure (RCVD$ request)
RECEIVE_ANY procedure (RCVA$ request)
RECEIVE_ACK procedure (RCVD$ request)
RECEIVE_ANY_ACK procedure (RCVA$ request)

Blocking condition: A packet was not available at the time of the Get or Receive operation.

* An unconditional Get Element or Put Element operation on a ring buffer:
GET_ELEMENT procedure (GELM$ request)
GET_ELEMENT_ANY procedure (GELA$ request)
PUT_ELEMENT procedure (PELM$ request)

Blocking condition: Either too few buffer elements were available at the time of a Get
Element operation or too little buffer space was available at the time of a Put Element
operation.

* A Sleep operation:
SLEEP procedure (SLEP$ request)

Blocking condition: The time interval specified in the Sleep request has not yet expired.

The conditional forms of the operations listed previously (for example, the COND_WAIT
function or the WAIC$ request) never cause the executing process to block.

A blocked process is unblocked either by a primitive operation that provides the signal or
resource for which the process was waiting or by elapse of a given time interval for a process
blocked on the kernel timer queue. Unblocking implies a transition from the wait-active or
wait-suspended state to the corresponding ready state. The PCB of the unblocked process is
moved to the appropriate ready-state queue. As noted above, unblocking a wait-active process
may in turn cause preemption of the running process. The following primitive operations may
unblock a waiting process:

* A Signal operation on a binary or counting semaphore:
SIGNAL procedure (SGNL$ request)
COND_SIGNAL function (SGLC$ request)
SIGNAL _ALL procedure (SALL$ request)

®* A Put Packet or Send Data operation on a queue semaphore:
PUT_PACKET procedure (SGLQ$ request)
COND_PUT_PACKET function (SGQC$ request)
SEND procedure (SEND$ request)
COND_SEND function (SNDC$ request)
SEND_ACK procedure (SEND$ request)
COND_SEND_ACK function (SNDC$ request)
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* A Get Element or Put Element operation on a ring buffer:

GET_ELEMENT procedure (GELM$ request)
GET_ELEMENT_ANY procedure (GELA$ request)
COND_GET_ELEMENT function (GELC$ request)
PUT_ELEMENT procedure (PELM$ request)
COND_PUT_ELEMENT function (PELC$ request)

Unblocking conditions: A Get Element operation will unblock a process waiting to put
elements into the same buffer if the Get frees enough space to satisfy the requirements of
the Put operation. Conversely, and more obviously, a Put Element operation will unblock
a process waiting to get elements from the same buffer if the Put supplies enough elements
to satisfy the requirements of the Get operation.

When the operation is successful, the conditional form of the semaphore operations listed
previously always unblocks a process, since the operation is performed only if a process is
waiting on the semaphore.

2.1.4.3 Process Suspension

The running process can suspend itself or another active process by requesting a Suspend
(SPNDS$) operation. In the case of self-suspension, the kernel changes the state code of the
running process to ready suspended (SC.RDS) and moves its PCB to the ready-suspended
queue. If the subject process was in the ready-active state, its PCB is similarly moved to the
ready-suspended queue with the state code SC.RDS. If the subject process was either wait active
or exception-wait active, however, suspension involves only a modification of the state code to
the suspended version of the previous state, with no movement of the PCB from one queue to
another. The PCB of a waiting process remains on the same blocking queue throughout any
transitions between the active and suspended substates.

The Suspend and Resume operations modify the value of a suspend counter associated with
each process. The value of the suspend counter is initially 0; a Suspend operation decrements
this value, and a Resume operation increments it. An active process is in fact suspended only
when its suspend count changes from 0 to -1, and a suspended process is in fact resumed
only when its suspend count changes from -1 to 0. Therefore, a particular Suspend operation
may not effectively suspend the subject process; conversely, a particular Resume operation may
not effectively resume it, depending on the sequence in which preceding Suspend or Resume
operations, if any, have been executed. (See the SPND$ and RSUMS$ primitives in Chapter 3.)
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2.1.4.4 Exception Handling

The MicroPower/Pascal kernel reports certain processor traps as exception conditions that can
be intercepted by an exception-handling process. The following processor traps are so reported:

Vector Name and Description

000 Vector fetch trap: SBC-11/21 and LSI-11/23-PLUS only
004 Trap to 4: Bus timeout; nonexistent memory address or invalid addressing mode
010 Trap to 10: Illegal and reserved instructions

014 BPT or T-bit instruction trap

024 Power-fail trap

030 EMT instruction trap

034 TRAP instruction trap

114 Memory parity error

140 Break trap to 140: SBC-11/21 only

244 Floating-point exception: FP-11, FIS, or FPA option

250 Memory-management unit error: MMU option in effect

The kernel also reports a stack overflow or underflow exception for user-stack boundary
violations detected by the kernel during process context switching.

In addition, a large set of software exceptions are defined for other error conditions detected
by software, whether at kernel, system process, or user process level. Except for the kernel-
detected stack boundary violations, however, these conditions are not automatically reported as
exceptions by the kernel. Rather, such conditions must be reported as such at process level, by
means of the Report Exception (REXC$) primitive, by the process that itself detects the error or
receives an error indication from the kernel or a system process. (The MicroPower/Pascal OTS
provides optional, automatic exception reporting for processes implemented in Pascal.) Table
7-1 lists all exception types and codes.

Further, the kernel permits a process to establish itself as an exception handler that services a
particular type of exception condition for processes belonging to a given exception-handling
group. (All processes have an exception group attribute that is specified during process
creation.) Exception handlers establish themselves through the use of either the Pascal
CONNECT_EXCEPTION procedure or the MACRO-11 Connect to Condition (CCNDS$) request;
the latter is described in Chapter 3.

Finally, assume that a running process of exception-handling group G causes an exception
condition of type T to occur. That process is placed in the exception-wait-active state only if an
exception handler exists for exceptions of type T caused by a process of group G. If so, the PCB
of the process is passed to the handler through its exception queue semaphore, for disposition
according to the management strategy implemented by that handler. The handler can dismiss
the exception, pass the exception to the process’s exception service routine or procedure, if any,
or request that the process be aborted. See the DEXC$ request in Chapter 3 for more details.
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If no such handler exists, the faulting process remains in run state, but its flow of control is
redirected by the kernel as follows:

* The process is reentered at its exception service routine (or Pascal exception service
procedure), if any. The process stack will contain a frame of information related to
the exception condition.

* If no exception service routine or procedure has been established, the kernel sets special
state-code modifier bits in the PCB field PC.STS, indicating an abnormal-abort substate
(SM.ABI and SM.ABO), and then forces the process to its termination entry point, as if
a Stop Process (STPC$) request had been issued for the process. However, because of
the special substate when the process issues its Delete Process (DLPC$) request (which
customarily ends a termination routine), the process’s PCB is not deleted but is placed on
the inactive queue. The process is essentially terminated, but its final context is preserved,
including an exception code stored in the PCB (field PC.ESC).

If an exception handler does exist for the faulting process and its disposition of the process is
“abort,” the kernel also sets the SM.ABI state code modifier as for the case just described.

An exception service routine is established for a process or for a family of processes by
the Set Exception Routine Address (SERA$) primitive, as described in Chapter 3. For a
process implemented in Pascal, an exception service procedure is established by the ESTABLISH
predeclared procedure.

2.1.4.5 Scheduler

The scheduler is responsible for switching a ready-active process into the run state. The
scheduler runs whenever a significant event (one that could affect the ability of the running
process to continue execution) occurs in the system. The three categories of significant events
are as follows:

® A primitive executed by the running process that causes it to leave the run state, typically
switching to the wait-active state (blocking)

® A primitive executed by either the running process or an interrupt service routine that causes
another process to enter the ready-active state, typically by unblocking, which in turn may
cause preemption of the running process

® Occurrence of an exception condition that is dispatched to an exception-handling process,
causing the running process to enter the exception-wait-active state

If the run queue is vacant when the scheduler executes, it moves the first (highest-priority)
PCB from the ready-active queue to the run queue and restores the context of the new running
process. Otherwise, the scheduler compares the priority of the PCB at the head of the ready-
active queue with that of the PCB on the run queue to determine whether the running process
should be preempted. If so, the scheduler makes the necessary queue change for both PCBs,
placing the previously running process on the ready-active queue in proper priority order. The
scheduler also performs a process context switch, saving and restoring the context of the old and
new running processes, so the latter gains control of the CPU on return from kernel processing.
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2.1.5 Process Control Block (PCB)

A process is physically represented within the kernel by a process control block (PCB), the
system data structure that identifies a particular activation of an instruction segment. The kernel
creates a PCB in system-common memory when a process is created. The PCB is always
linked into one of the kernel’s state queues unless the process is in an exception-wait state, as
previously described. The PCB serves a number of functions:

Defines the name, if any, and all other fixed attributes of the process.

Contains all dynamic state information maintained by the kernel about the process. This
collection of information is called the software context of the process.

Provides a save area for kernel context that must be saved on a per-process basis under
certain circumstances.

Provides the save area for process context switching. The full hardware context of the
process is saved in the PCB when the kernel switches the process out of run state. This
context includes the contents of all registers that must be restored when the process is
switched back to the run state. (In an unmapped system, the R3, R4, R5, PC, and PS values
are saved in an interrupt stack frame on the process stack rather than in the PCB whenever
the process is either interrupted or switched out of run state.) The PCB for a mapped process
also points to a separate save/restore area for the process’'s MMU register contents, which
is initialized during process creation. A process’s mapping context is optionally saved in
this area when the process is switched out and is always restored from this area whenever
the process is switched in.

Most primitive operations affect the content of a PCB either directly, as in the case of process-
management primitives, or indirectly, as when a primitive causes process blocking or unblocking.
Figure 2-2 shows how the PCB is organized.
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Figure 2-2: Process Control Block (PCB)
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Table 2-1 describes the PCB fields shown in Figure 2-2. The fields noted as dynamic reflect
the current state of the process and constitute its dynamic context.

Table 2-1: PCB Field Descriptions
Field Description
PC.FLK Forward pointer to the next PCB in the current state queue; dynamic (used for

PC.BLK

PC.PRI

PC.STA
PC.TYP

PC.S5TS
PC.PNT

PC.EXC

PC.MSK
PC.SFA
PC.SPT

PC.ALK

PC.SPC

PC.RLK

PC.CXW

PC.GRP
PC.TER
PC.MCX

linking into the kernel timer queue if the PCB is blocked on a complex structure
through field PC.CSD)

Backward pointer to the previous PCB in the state queue; dynamic (zeroed when
PCB is linked into a blocking queue)

Process priority value (range 0 to 255); set during process creation; may be modified
by the CHGP$ primitive (Chapter 3)

Process state code; dynamic

Process-mapping type code: PT.GEN for general, PT.SYS for privileged, PT.DRV
for driver, or PT.DEV for device access; set during process creation

State-code modifier bits; dynamic

Pointer to the PCB of the parent process; 0 if a static process; set during process
creation

Address of process’s exception service routine; set by the SERA$ primitive (Chapter
3)

Bit mask of exceptions that the process will accept; set by SERA$
Address of process’s stop flag, if any; set by the SSFA$ primitive (Chapter 3)

Pointer to semaphore or ring buffer that the process is blocked on, if any; the
value in this field is valid only when the state code (in field PC.STA) is either
SC.WTA or SC.WTS; dynamic

Pointer to the next PCB in the list of all unterminated processes; dynamic

Suspend count; modified by the SPND$ and RSUMS$ primitives (Chapter 3);
dynamic

Pointer to the next PCB in the kernel resumption list; dynamic (used by the kernel
to queue processes awaiting “kernel resumption” following certain unblocking
operations)

Context-switch option bits; set during process creation (see CRPC$ or DFSPC$
primitive in Chapter 3)

Exception group code; set during process creation (see CRPC$ or DFSPC$)
Termination entry point; set during process creation

Address of optional user-memory location to be saved in PC.USV; zero value if
CX$MCX option was not selected; set during process creation
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Table 2-1 (Cont.): PCB Field Descriptions

Field

Description

PC.GOS
PC.GUS
PC.EPC
| PC.EPS
PC.ESC

PC.TML

PC.TMH

PC.CSD

PC.KSP
PCKSV

PC.USV

PC.MAP!

PC.EXP!

Lower-boundary guardword address for stack overflow checking; set during process
creation

Upper-boundary guardword address for stack underflow checking; set during
process creation

PC save/restore word for kernel-detected stack guardword violation, used by
stack-exception reporting mechanism; dynamic

PS save/restore word for kernel-detected stack guardword violation, used by
stack-exception reporting mechanism; dynamic

Exception code corresponding to an unhandled exception that caused the process
to be aborted; valid only when process state is SC.IAC (inactive); dynamic

Low-order portion of the time-out interval value maintained by the kernel’s clock
service routine when a process is blocked on the kernel timer queue; set by the
SLEP$ primitive or a complex primitive and modified by the kernel clock ISR;
dynamic

High-order portion of the time-out interval doubleword formed by PC.TML and
PC.TMH; dynamic

The complex structure descriptor area used by the WAIA$, WAQAS$, RCVAS$, or
GELAS$ primitive when a process is waiting on multiple blocking structures (field
PC.FLK is the link into the kernel timer queue if the process is also blocked for
timeout); dynamic

Saved stack pointer for resumed kernel-primitive operations; this value points into
the process stack in an unmapped system or into PC.STK in a mapped system (see
note below); dynamic

Save area for kernel-primitive context: in an unmapped system, three words for
R4, R3, and RO; in a mapped system, five words for R4, R3, RO, and kernel-mode
PARs 2 and 3 (see note below); dynamic

Save area for user-context switch: in an unmapped system, 5 words for user SP,
RO, R1, R2, and the optional memory location; in a mapped system, 10 words for
previous-mode SP, user-mode RO-R5, PC, PS, and the optional memory location;
dynamic

Pointer to the 16- or 32-word save /restore area for the process’s current memory-
mapping register (PAR and PDR) values; set during process creation. The MMU
registers are dynamically saved in the area on switchout only if the CX$KT option
was specified, indicating that the privileged or driver-mapped process modifies its
mapping itself rather than through a primitive service. The MMU registers are
always restored from this area on switchins, however. (The size of the save area
is reflected by the setting of the CX$IAD bit, which is determined at build time.)

PS used for dispatching to the exception routine, significant if a supervisor-mode
shared library is in effect; dynamic.

1present only in mapped systems
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Table 2-1 (Cont.): PCB Field Descriptions

Field

Description

PC.TPS!

PC.USP!

PC.CBP!

PC.STK!

PC.FSV?

PS used for dispatching to the termination routine, significant if a supervisor-mode
shared library is in effect; dynamic.

User-mode stack pointer saved and restored in case the process accesses a
supervisor-mode shared library (an LSI-11/73 target build option); dynamic.

Pointer to a pushdown list of context descriptor blocks (CDBs), containing explicitly
requested “snapshots” of process mapping, created by the SCTX$ primitive and
used by the RCTX$ primitive; zero if the list is empty; dynamic.

Per-process kernel stack; 38 words; in a mapped system, the kernel uses this area
as its stack for primitive operations; dynamic (in an unmapped system, the process
stack is used instead).

Save area for FP-11 floating-point registers; 25 words for processes that use FP-11
floating-point instructions (KEF11-A or FPF11 option).

1present only in mapped systems

2present only if the CX$FPP option was selected for the process, indicating that it uses the FP-11 floating-point processor

Note

The PC.KSP and PC.KSV context values are valid while a process is blocked on
a structure other than a single binary or counting semaphore. The kernel uses
these context values when a primitive service must resume operation in order
to unblock the waiting process and switch it to its subsequent ready state. In
contrast, the user-context (PC.USV) values are valid whenever the process is
not in the run state.

The size of a PCB varies both by hardware environment and by floating-point processor (FP-11)
usage, as follows:

* For a process in an unmapped system:

Without FPP context, 43 words
With FPP context, 68 words

®* For a process in a mapped system:

Without FPP context, 93 words
With FPP context, 118 words

In addition, the MMU restore area pointed to by PC.MAP adds 16 or 32 words to the space
requirement for each PCB (32 words only if separate data-space mapping is in effect for the
process: bit CX$IAD = 1 in field PC.CXW).

A PCB is prefixed by a structure header that is common to all typed structures, as described in
Section 2.2.1. The header adds five words to the total amount of space allocated for any PCB.
Also, if the PCB represents a named process (is a named structure), a 4-word structure name
block is prefixed to the header, as described in Section 2.2.1.
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2.1.6 Memory Partitioning and Process/Program Segmentation

MicroPower/Pascal uses a memory-layout technique designed to work effectively in either a
ROM/RAM hardware environment or a RAM-only environment. If a target system does include
both ROM and RAM, enough ROM must be configured in low memory to contain the vector
area and at least the kernel’s pure-code and pure-data segment. (The low-ROM requirement
does not apply in the special case of a CMR21 target system.) From that point on, the ROM
and RAM areas may in principle be configured as desired. The physical addresses implemented
by the memory configuration need not be contiguous; “holes” may exist in memory both within

~ and between the ROM and RAM areas. Also, ROM and RAM may be interspersed in physical
memory; that is, some ROM may be configured at higher addresses than RAM.

As a practical consideration, either fragmented memory or interspersed ROM and RAM can
cause some memory to be wasted, may necessitate a complicated, nonautomatic application
building procedure, or both. In a ROM/RAM target system, you should configure all ROM as
low memory and all RAM as high memory if at all possible, since at least some ROM must be
low addressed, as already stated. With a FALCON-PLUS target, however, the memory-map 1
configuration may be required for a given application and necessitate building for interspersed
ROM/RAM.

To allow the MicroPower/Pascal build utilities to handle ROM/RAM as well as mapped or
unmapped RAM-only applications, the address space of a MicroPower/Pascal process family
must be partitioned into two segments, low and high, through appropriate program sectioning.
(For processes implemented in Pascal, program sectioning is automatic.) The low segment
contains the process pure-code and pure-data sections and will be located in ROM, if any. The
high segment contains the impure-data sections and will be located in RAM. Thus, the two
segments of each process family (static process and any dynamic subprocesses) will be located
in at least two physically separate memory regions in a ROM/RAM environment, as shown
in Figure 2-3 for the simple low-ROM and high-RAM case. The kernel’s address space is
partitioned in the same manner. (For simplicity, each process family is represented as a single
process.)
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Figure 2-3: ROM/RAM Physical Memory Layout
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In a RAM-only system, the pure (low) and impure (high) segments are not physically separated
in memory (ignoring the small gaps imposed by the memory-mapping hardware in a mapped
environment). The RAM-only memory layout is shown schematically in Figure 2-4.
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Figure 2-4: RAM-Only Physical Memory Layout
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To achieve the low/high process code and data segmentation described above, a MACRO-11
application program must segregate its code and data into appropriate read-only and read /write
program sections, or p-sects. This must be done for any type of target-memory environment.

As previously stated, program sectioning is provided transparently by the MicroPower/Pascal
compiler for a Pascal program. The MACRO-11 programmer can use the PURE$, PDAT$, and
IMPURS$ program sectioning macros; preceding code; and pure-data and impure-data sequences,
respectively, to conveniently generate the proper program sectioning directives for a process
that can be handled automatically by the build utilities. (See Chapter 3.)

If a process has special relocation and memory-allocation requirements, however, additional
program sectioning directives may be needed. (The RELOC and MIB utilities have options
that permit special relocation and memory allocation by p-sect name.) Nondefault relocation
might be required, for example, for most efficient building of an application for an unmapped,
interspersed ROM/RAM target.

During the application build cycle, the RELOC utility groups a process’s p-sects according to the'
read-only versus read/write attribute. Within each group, the p-sects are sorted into alphabetical
order by p-sect name. One important effect of the RO versus RW p-sect grouping and the
subsequent alphabetical sorting is to make sure that the critical read-only p-sect .ALST. always
appears first in a static-process memory image, as required by the MIB utility and the kernel.
(See the DFSPC$ macro description in Chapter 3.)

In an unmapped environment, all processes have direct access to kernel memory space and in
particular to the kernel’s impure segment. The total application is limited to 28K words in a
target system with a 4K-word I/O page or to 30K words in a target system with only a 2K-word
I/O page and no high-memory firmware, such as an SBC-11/21 target. (If an MVS11-DD
or MVS11-ED memory module is used with the “extra 2K words” option enabled, 30K words
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of usable memory is possible. The option effectively halves the size of the I/O page for an
LSI-family target.)

In a mapped environment, the MMU address-relocation hardware assists in memory segmenta-
tion and also provides memory protection. A mapped system with 18-bit physical addressing
can support up to 124K words of usable memory, and a single process or process family with
general mapping can occupy up to 32K words. A mapped system with 22-bit addressing can
support up to approximately 2M words of memory. If the target system provides separate
I&D-space mapping, as does the LSI-11/73, a general-mapped process family can occupy up
to 64K words (32KW code and 32KW data) if the mapping separation is used.

2.1.7 Process Mapping Types

The information in this section applies only to a mapped-memory hardware environment, such
as an LSI-11/23 target system. For simplicity, assume that I&D-space separation is not in effect
except where specifically noted.

Mapping type refers to the pattern of virtual-to-physical address translation used for a particular
mappable object in the system. The mappable objects are the kernel, interrupt service routines
(ISRs), run-time shared libraries, and four types of processes: general, device access, driver, and
privileged. More specifically, a mapping type identifies a particular active page register (APR)
usage convention associated with one of these objects. Both kernel mapping and ISR mapping
use the kernel-mode set of APRs.

A run-time shared library in a mapped system can be mapped in either user mode or supervisor
mode. A user-mode shared library uses the user-mode set of APRs and thus does not have a
mapping of its own, strictly speaking, but affects the mapping of any process that is built with
such a library. In a target system that supports supervisor mode, a supervisor-mode shared
library uses the supervisor-mode set of APRs for mapping library code and pure data. Thus, a
supervisor-mode shared library does have its own mapping, independent of that of a referencing
process, but use of such a library also affects the mapping of the referencing process to a limited
extent, imposing a special restriction on user-mode APR 0.

The four types of process mappings use the user-mode set of APRs. (Figures 2-5 to 2-11,
discussed later, show the APR assignments for each kind of mappable object and for each of
the process mapping types.)

A mapping type is specified when a static process is defined. Any subprocesses created by the
static process inherit its mapping type and its mapping register values, since all the code and
data associated with a given process family resides in the same virtual address space. (Although
a process’s mapping type is fixed, a process can dynamically modify its mapping register values
without affecting the mapping of any other process in the family, since the context of every
process includes a unique mapping image that is restored on each context switch.) The basic
characteristics of the general, device-access, driver, and privileged process mappings are as
follows:

* General: the standard mapping for most application processes. General process mapping is
intended for processes that do not require direct access to system data structures or access
to the I/O page. General process mapping allows for the largest possible static process
or process family; the full range of virtual addresses (0 to 177777) is available for process
code and data. Therefore, the pure and impure segments defined for a static process and
its subprocesses, if any, can occupy up to 32K words. (If I&D-space separation is available
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on the target system, the process family size can range up to 64K words, with the full
range of virtual addresses available both for the pure-code segment and for the pure- and
impure-data segments.)

Because of hardware constraints, however, the high, or impure, segment in a mapped
ROM/RAM target environment must begin on a 4K-word virtual address boundary. The
requirement is enforced by the build utilities. Thus, a sizable “hole” in the virtual address
space (up to 4K-32 words) may exist between the highest address in the low segment
and the beginning of the high segment, reducing the potential process family size by that
amount. (This is true for processes of any mapping type.) If I&D-space separation is in
effect, the possible hole will exist only in the process’s data address space, between the
pure-data and impure-data segments required by such separation.

In Pascal, if no mapping attribute (DEV_ACCESS, DRIVER, or PRIVILEGED) is specified,
the process family defined by the program has general mapping.

® Device access: intended for processes that require access to the I/O page (for example, to
device CSRs), but not to system data structures. Device-access mapping is suitable for a
process that communicates directly with a dedicated I/O device for limited device handling.
Device-access mapping differs from general process mapping only in that virtual addresses
160000 to 177777 are mapped to the I/O page. This removes a 4K-word segment from
the address space available for process code and data. Thus, the maximum size of a
device-access process family is 28K words. (If 1&D-space separation is available on the
target system, the process family size can range up to 60K words, with the full 32KW range
of virtual addresses available for the pure-code segment and 28K words of virtual address
space for the pure- and impure-data segment.)

In Pascal, if the DEV_ACCESS mapping attribute is specified, the process family defined by
the program has device-access mapping.

® Driver: intended for device-handling processes that include an ISR. Driver mapping allows
direct access to system data structures (to the kernel’s common data space) as well as to
the I/O page. Driver mapping also allows APR 1 to be used as a “stratch” address register
(for example, for mapping to another process’s input or output data buffer area). Driver
mapping restricts process size to a maximum of 8K words but allows very efficient queue
semaphore operations, for interprocess message transmission, and is fully compatible with
the kernel-mode mapping of an ISR. Although I&D-space separation, where available, is
possible for driver process-level code and data (but not for the ISR code and data), a
properly designed driver process family is not likely to require such separation.

The lowest 4K words of virtual address space should not be used. The next 4K words of
virtual space (addresses 020000 to 037777) are initially unmapped and are available for any
dynamic use (typically for mapping to a requesting process’s buffer space). Virtual addresses
040000 to 077777 (8K words) are available for statically allocated driver process/ISR code
and data. Virtual addresses 100000 to 157777 are mapped as needed to the kernel’s common
data area (variable in size up to 12K words), and addresses 160000 to 177777 are mapped
to the I/O page (4K words).

In Pascal, if the DRIVER mapping attribute is specified, the process family defined by the
program has driver mapping.
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* Privileged: intended for processes that need direct access to system data structures (to
the kernel’s common data space) as well as to the I/O page. Also called full-system
mapping, privileged mapping restricts process size to a maximum of 16K words but allows
very efficient queue semaphore operations, for interprocess message transmission. Privileged
mapping is commonly used by processes that provide systemwide services other than device
handling and is typically used by exception handlers, which generally require direct access
to PCBs.

The lowest 16K words of virtual address space (addresses 0 to 077777) are available for
process code and data. Virtual addresses 100000 to 157777, corresponding to APRs 4, 5,
and 6, are mapped as needed to the kernel’s common data area (variable in size up to 12K
words). (Any of those APRs can be borrowed for dynamic remapping. APR 6 in particular
will effectively be a scratch APR in an application in which the kernel’s data area does not
exceed 8K words.) Virtual addresses 160000 to 177777 are mapped to the I/O page (4K
words). (If [&D-space separation is available on the target system, the process family size
can range up to 48K words, with the full 32KW range of virtual addresses available for
code, and 16K words of address space available for pure and impure process data.)

In Pascal, if the PRIVILEGED mapping attribute is specified, the process family defined by
the program has privileged mapping.

Figure 2-5 illustrates kernel mapping.

Figure 2-5: Kernel Mapping
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Kernel-mode APRs 0 and 1 map the hardware vector area and the kernel pure-code segment;
thus, the latter is limited to less than 8K words. APRs 2 and 3 are scratch address registers;
they are modified as needed to map to user address space (for example, mapping user argument
blocks). APRs 4 to 6 are used as needed to map system-common memory and the kernel’s own
impure data, allowing up to 12K words of system data. Only APR 4 or APRs 4 and 5 may
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actually be in use, depending on the amount of memory allocated for the system-common area
in the RESOURCES configuration macro (see Chapter 4) and on the number of interrupt vectors
in use. (The system-common area consists of two separately configurable memory pools in
which the kernel allocates space for dynamic data structures—such as semaphores, ring buffers,
and PCBs—and for queue packets.) Privileged and driver processes can access the entire kernel
data segment, which is mapped by user-mode APRs 4 to 6 for those kinds of processes. See
Section 2.2.4 for further information on kernel data segment organization. Kernel-mode APR 7
maps the I/0 page. (1&D-space separation is not applicable to the kernel.)

Figure 2-6 illustrates general process' mapping, which provides access only to user-defined
memory. Note that Figure 2-6 does not reflect possible I&D-space separation.

Figure 2-6: General Process Mapping
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All eight user-mode APRs are available for mapping process code and data, allowing a maximum
of 32K words of process space. Process pure code is mapped by APRs 0 to n, where n <7,
allowing 4K*(n+1) words of code (up to 28KW). Process data is then mapped by the remaining
APRs, (n+1) through 7, permitting 4K*(7-n) words of data.

I&D-space separation, available on some target systems, potentially doubles the virtual address
space available to a process—at the possible expense of additional context switching time. If
that separation is in effect for a given process, two full sets of user-mode APRs exist—one
for code and one for data. Thus, the process’s pure-code segment can consist of up to 32K
words, and its combined pure- and impure-data segments can consist of up to 32K words, less
a possible hole of up to 4K words in the data-space virtual addresses in the ROM/RAM case.
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Figure 2-7 illustrates device-access process mapping, which provides access to the 1/O page
but not to the system-common area. Note that Figure 2-7 does not reflect possible 1&D-space
separation.

Figure 2-7: Device-Access Process Mapping
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User-mode APRs 0 to 6 are available for mapping process code and data, allowing a maximum
of 28K words of process space. Process pure code is mapped by APRs 0 to n, where n <6,
allowing 4K*(n+1) words of code (up to 24KW). Process data is then mapped by the remaining
APRs, (n+1) to 6, permitting 4K*(6-n) words of data. APR 7 maps the I/O page.

If supported by the target system, I&D-space separation may be used for a device-access process
as well as for a general mapped process. This permits a maximum code segment size of 32K
words, mapped by I-space APRs 0 to 7, and a maximum of the pure- and impure-data segment
sizes, combined, of 28K words, mapped by D-space APRs 0 to 6. (The possible virtual-address
break between the pure- and impure-data segments in an application built for ROM/RAM can
cause a hole of up to 4K words in the data-space virtual addressing.) Data space APR 7 maps
the I/0O page.
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Figure 2-8 illustrates driver-process mapping, which provides access to both the I/O page and
the system-common area.

Figure 2-8: Driver Memory Mapping

User—-mode APRs
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APRs 4 to 6
System common ;
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ROM Driver/ISR code APR 2
Scratch APR 1
Reserved APR O

Process context: PC, PS, SP, RO to R5, user APRsQO to 7.

MLO-398-87

User-mode APR 1 is a scratch register for the driver process-level code. (The ISR code is
mapped by kernel-mode APRs at interrupt level, and kernel-mode APR 1 is not scratch but can
be borrowed. See Figure 2-10.) APRs 2 and 3 map the combined process/ISR code and data,
respectively, which can occupy up to 8K words. APRs 4 to 6 map the system-common data
area, as needed. APR 7 maps the I/O page. User-mode APR 0 is reserved by DIGITAL for
future device driver interfaces.

I&D-space separation is possible but not generally applicable to a driver mapped process and in
particular is not valid for the ISR code and data that is normally included in the process code
and data segments.
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Figure 2-9 illustrates privileged-process mapping, which provides access to both the I/O page
and the system-common area. Note that Figure 2-9 does not reflect possible 1&D-space
separation.

Figure 2-9: Privileged Process Mapping
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User-mode APRs 0 to 3 map the process code and data, which may total 16K words. APRs 4
to 6 map the system-common data area, as needed. APR 7 maps the I/O page.

If supported by the target system, I&D-space separation may be used for a privileged process,
significantly increasing the potential maximum process size at a possible cost in performance.
The separation permits a maximum code segment size of a full 32K words, mapped by I-space
APRs 0 to 7, and a maximum of the pure- and impure-data segment sizes, combined, of 16K
words, mapped by D-space APRs 0 to 3. (The possible virtual-address break between the pure-
and impure-data segments in an application built for ROM/RAM can cause a hole of up to 4K
words in the D-space virtual addressing.) D-space APRs 4 to 6 map the system-common data
area, and D-space APR 7 maps the I/O page.
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Figure 2-10 illustrates ISR mapping; ISRs are described in Chapter 7.
Figure 2-10: Interrupt Service Routine Mapping
Kernel-mode APRs

/0 page APR 7
APRs4to 6
System common .
(as required)
RAM ISR/Driver data APR 3
ROM ISR/Driver code APR 2
Kernel pure code
APRsOto 1

Vectors

ISR context: PC, PS, SP, R3 to R5, Kernel APRs 2 and 3.
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The mapping of ISRs uses the kernel-mode APRs and is designed to be very fast. Kernel-mode
APRs 2 and 3 are saved and then set up to map the driver/ISR code and data. The rest of
the mapping context remains that of the kernel; thus, the ISR is mapped to system common,
the I/O page, and the kernel. APR 1, which is mapped to kernel code, is available to the ISR
(can be borrowed) for mapping to user buffers, but the ISR must save and restore it if so used.
In particular, APR 1 must, if borrowed, be restored before issuing a FORK$ request and any
subsequent primitive requests. Note that I&D-space separation is not applicable to an ISR.
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Figure 2-11 illustrates supervisor-mode shared-library mapping.

Figure 2-11: Supervisor-Mode Shared-Library Mapping
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regardless of whether that separation is in effect for a referencing process.)
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The run-time library pure-code segment, comprising the library dispatcher and subroutine code,
is mapped by supervisor-mode I-space APRs 0 through n as required. Thus, the library code in
no way impinges on the virtual address space of a referencing process.

The library’s pure-data segment is mapped by supervisor-mode D-space APR 0. (A shared
library contains no impure-data segment of its own.) The remainder of the library’s D-space
APRs are overmapped with process-mapping values each time a referencing process is switched
into the run state. That is, except for APR 0, a calling process’s data-space mapping, if separated
(or undifferentiated I&D-space mapping, if not separated) is copied to the library’s D-space APRs
1 through 7 to allow access to the process’s data by the library routines. That implies, of course,
that the caller's D-space APR 0 (or its undifferentiated APR 0) maps no process data that
the library routines need to access, since the library’s D-space APR 0 is reserved for its own
read-only data and is never modified. Therefore, the build-time implications for a static process
that references a supervisor-mode shared library are the following:

* For a static process built with 1&D-space separation, the RELOC utility will by default start
the process’s pure-data segment at virtual address 20000, thus removing the D-space APR
0 from the process’s mapping.

* For a static process built without 1&D-space separation, the RELOC utility will by default
start the process’s pure-code (low) segment at virtual address 20000, thus removing the
undifferentiated APR 0 from the process’s mapping.
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¢ For a static process built without I&D-space separation, you may force your mapping to begin
at virtual address 0 by using the RELOC utility option /RO:0 (VMS/RSX) or /O:0 (RT-11)
at build time. That lets you retain the use of APR 0 (assuming that APR 0 maps only code or
that none of the pure data, if any, also mapped by APR 0 is accessed by the library routines).
In any case, if use of APR 0 is forced, it must not map any read/write data. Violation
of either constraint is likely to result in unpredictable and probably very obscure run-time
errors. (In an all-RAM target environment, the process’s code and pure-data segments are
brought together and by default are contiguous with the impure-data segment in virtual
and physical space.) The process’s read/write data can be separated from the code and
pure data, as if for a ROM/RAM target, through use of the /AL (VMS/RSX) or /X (RT-11)
RELOC option, which forces the impure-data segment to the next available 4KW virtual
address boundary, satisfying the read/write data constraint. For a static process comprising
at least 4KW of code, conformance to the more general constraint on APR 0 is implicit. For
a Pascal static process having a code segment smaller than 4KW, total code/data separation
can be achieved by using the RELOC option /QB:.IDAT.:20000 (under RSX/VMS) or /Q
(under RT-11) supplying the .IDAT. and 20000 values in response to a RELOC interactive
prompt. (If you are using the MPBUILD or MPBLD facility for application building, you
can edit the generated build-command file to add the required RELOC options.)

In general, for simplicity of application building and avoidance of programming constraints,
1&D-space separation should be used when building a user process with a supervisor-mode
shared library. The automatic relocation in that case, reserving the low-order 4KW of virtual
data-space addressing, still allows up to 28K words of program data for a general mapped
process, up to 24KW for device-access mapping, or up to 12KW for privileged mapping.

2.2 System Data Structures

The MicroPower/Pascal run-time system uses a variety of dynamic data structures, which are
allocated by the kernel in system-common memory as a direct or indirect result of requests for
kernel services. This section describes the format of those structures. However, you do not need
to know how they are implemented in order to use the kernel services; the primitive-request
interface hides this level of detail. The information is provided because it is often useful, and
sometimes necessary, when debugging an application. In addition, you need some knowledge
of kernel internals for designing and coding privileged system-level processes such as exception
handlers.

The structures described here comprise typed data structures (for example, semaphores and
ring buffers), message packets, and several kinds of queues (linked lists of structures) used
by the kernel. The descriptions include the MACRO-11 symbolic offset names assigned to
each element of a structure. The offset symbols and other MACRO-11 symbols shown in this
section are defined by the QUEDF$ macro in the COMM and COMU macro libraries except
where indicated otherwise. The overall organization of the system-common memory area is
also described.

Several kernel structures related to exception dispatching and interrupt dispatching are described
in Chapters 6 and 7.
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2.2.1 Typed Data Structures

The system data structures created and deleted by processes through primitive operations are
called typed data structures. Each instance of a typed structure carries a structure-type code,
used for validity checking, in its structure header. Eight structure types are defined:

* Binary semaphore (BSM)

* Counting semaphore (CSM)

*  Queue semaphore (QSM)

* Ring buffer (RBF)

¢  Shared region descriptor (SRD)
* Logical-name value (LNM)

® Process control block (PCB)

*  Unformatted structure (UDF)

Semaphores, ring buffers, and unformatted structures are explicitly created and deleted by the
Create Structure (CRST$) and Delete Structure (DLST$) primitives. Logical-name structures are
created and deleted by the Create Logical Name (CRLN$) and Delete Logical Name (DLLN$)
primitives. Shared region descriptors are created and deleted by the Create Shared Region
(CRSR$) and Delete Shared Region (DLSR$) primitives. PCBs are implicitly created and deleted
as a part of process creation and deletion. Note that the PCB was defined in Section 2.1.5 under
the general discussion of processes.

No kernel operations other than creation and deletion are defined on an unformatted structure;
its internal format is undefined. This type of structure is available for application-defined
purposes.

All typed structures can be named. Section 2.1.2 discusses the naming of PCBs.

2.2.1.1 Structure Names and Name Blocks

The kernel allows a run-time name composed of six ASCII characters to be dynamically
associated with a typed structure when the typed structure is created. The name must be unique
across all typed structures to which a run-time name is assigned, including PCBs. Uniqueness
here extends to a distinction between a capital letter and its lowercase form. (Because of its
intrinsic nature, a logical-name structure must be named.) Once a named structure is created,
any process in the system can refer to it by name when requesting operations on it. Such names
facilitate source-time references to a given structure in several application programs, which in
a mapped environment represent processes in separate address spaces. In Pascal, a structure
name can be specified directly in a structure-creation request and used in other requests for
operations on the structure. Section 3.1.5 describes the use of structure names and the structure
descriptor block in MACRO-11 programs.

Every named structure is prefixed by a 4-word structure name block that precedes the standard
structure header described in Section 2.2.1.2. The name block contents are set during structure
creation. The format of the structure name block is as follows (FOOBAR represents a structure
name):
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SN.NAM 0

SN.LNK e ——— — Next name block

MLO-402-87

In the previous format:
e The SN.NAM field contains the 6-character ASCII structure name.
e SN.LNK is a structure name table (SNT) link word.

The SN.NAM and SN.LNK symbols are defined by the QUEDF$ system macro as negative
offsets from the start of the structure body. (Run-time pointers to typed structures point to the
actual structure body.) The symbol SN.SIZ defines the size of a structure name block in bytes.
The symbol SN.CHR defines the number of characters in the SN.NAM field.

2.2.1.2 Structure Header

All typed structures have a standard prefix, or structure header. The header contents are set
during structure creation and are never modified. The format of the structure header is as
follows:

HD.SSZ

—  HD.SNM = —

HD.ATR | HD.TYP
HD.LCK

MLO-403-87

In the previous format:

e HD.SSZ is the structure size in bytes, including the header, and is used during structure
deallocation. '

* HD.SNM is the structure serial number (32 bits), a value that is unique to each instance of
a typed structure, and is used during structure name lookups for validity checking.

* HD.TYP is the structure-type code (defined below) and is used by many primitives for
validity checking.
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e HD.ATR is the structure attribute bits (defined below).
e HD.LCK is reserved for future use.

The HD.xxx symbols are defined by the QUEDF$ system macro as negative offsets from the
start of the structure body. (Run-time pointers to typed structures point to the actual structure
body, not to the header.) The symbol HD.SIZ defines the size of a structure header in bytes.

The structure type code (in HD.TYP) has the following range of symbolic values:

Code Value

ST.BSM Binary semaphore
ST.CSM Counting semaphore
ST.QSM Queue semaphore
ST.RBF Ring buffer

ST.PCB Process control block
ST.SRD Shared region descriptor
ST.LNM Logical name value
ST.UDF Unformatted structure

The structure-attribute bits (in HD.ATR) are defined as follows:

Code Bit Definition

SA$NAM  For any structure type, structure is named if set, unnamed if not.

SA$RIA For type ST.RBF, determines the ring buffer input access mode as stream or record:
SA$RIA = SASRIS (1) for stream mode
SASRIA = SASRIR (0) for record mode

Input access mode affects only Conditional Put Element (PELC$) operations.

SASROA  For type ST.RBF, determines the ring buffer output access mode as stream or
record:

SAS$ROA = SA$ROS (1) for stream mode
SAS$ROA = SA$ROR (0) for record mode
Output access mode affects only Conditional Get Element (GELC$) operations;
stream-mode output access is invalid for Get Element Any (GELAS$) operations.
SA$QUO  For types ST.QSM and ST.RBF, determines the packet-queue ordering or the
waiting-input-process list ordering, respectively, as by priority or FIFO:

SA$QUO = SASIPR (1) for priority ordering
SA$QUO = SASIFF (0) for FIFO ordering
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Code Bit Definition

SA$PRO For types ST.PSM, ST.CSM, and ST.QSM, determines the waiting-input-process
list ordering; for type ST.RBF, determines the waiting-output-process list ordering,
by priority or FIFO:

SA$PRO = SA$OPR (1) for priority ordering
SA$PRO = SA$OFF (0) for FIFO ordering

SA$SRD For type ST.SRD, determines the shared-region mode as physical or common:

SA$SRD = SA$PHY (1) for physical mode
SA$SRD = SA$COM (0) for common mode

2.2.1.3 Binary Semaphore Definition

A binary semaphore consists of a binary variable and a singly-linked list of waiting processes.
Two operations on the variable are defined: Signal and Wait. The Signal operation increments
the semaphore variable. (The variable cannot assume a value greater than 1, however.) The
Wait operation decrements the semaphore variable, if possible. If the value of the variable is 0,
it cannot be decremented; binary variables can assume only the values 0 and 1. The process
invoking this operation then waits until the value can be decremented.

The format of a binary semaphore, excluding the structure header, is as follows:

Pointer to
— BS.FPT
semaphore
BS.VAR
MLO-404-87

In the previous format:
e BS.FPT is the forward pointer to the first waiting process, if any.
* BS.VAR is the semaphore gate variable.

The SA$PRO bit of the structure-header attribute byte (HD.ATR) must be set if waiting processes
are to be queued in priority order.

2.2.1.4 Counting Semaphore Definition

A counting semaphore consists of a nonnegative integer variable, or counter, and a singly-
linked list of waiting processes. Two operations on the variable are defined: Signal and Wait.
The Signal operation increments the semaphore variable. The Wait operation decrements the
semaphore variable, if possible. If the variable is 0, it cannot be decremented; nonnegative
variables cannot, by definition, assume values less than 0. The process invoking the operation
must then wait until the variable can be decremented. The counting semaphore differs from
the binary semaphore only in that the semaphore variable can assume values greater than 1.
Thus, n successive Signal operations will allow n subsequent Wait operations to proceed without
waiting.
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The format of a counting semaphore, excluding the structure header, is as follows:

Pointer to
—_—_—— CS.FPT
semaphore
CS.CNT
MLO-405-87

In the previous format:
* (CS.FPT is the forward pointer to the first waiting process, if any.
* (CS.CNT is the counter variable.

The SA$PRO bit of the structure-header attribute byte (HD.ATR) must be set if waiting processes
are to be queued in priority order.

2.2.1.5 Queue Semaphore Definition

A queue semaphore is a further generalization of a counting semaphore. This case has two
singly-linked lists; one of waiting processes and another of available elements, or message
packets. The two basic operations defined on queue semaphores are Put Packet and Get Packet.
The Get Packet operation tests the element queue for an available element. If one is available, it
is dequeued and passed to the requesting process. If no elements are on the queue, the process
is blocked on the semaphore’s waiting-process list until one becomes available.

The Put Packet operation places an element on the semaphore’s element queue. The Put
operation first tests to see if a process is waiting; if so, it unblocks the process, moving it to
the appropriate ready state queue, and passes the element pointer to the unblocked process. If
no process is waiting for an element, the element is placed on the semaphore’s element queue.
The standard queue element, or message packet, is defined in Section 2.2.2.

The higher-level Send Data and Receive Data operations are essentially elaborations of the
basic Put Packet and Get Packet operations, for use by general or device-access processes in a
mapped environment.

The format of a queue semaphore, excluding the structure header, is as follows:

Pointer to
—_— QS.FPT
semaphore
QS.QPT
QS.LPT
QS.CNT
MLO-406-87

In the previous format:
* QS.FPT is the forward pointer to the first waiting process, if any.
* QS.QPT is the pointer to the first element on the queue, if any.
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e QS.LPT is the pointer to the last element on the queue, if any.
* (QS.CNT is the count of the available queue elements.

The SA$QUO bit of the structure-header attribute byte (HD.ATR) must be set if queue element
ordering is to be by priority rather than by FIFO. The SA$PRO bit of the attribute byte must
be set if waiting processes are to be queued in priority order.

2.2.1.6 Ring Buffer Definition

A ring buffer consists of a control structure and a data buffer of user-specified size. The control
structure includes a Get substructure that controls buffer output (Get Element) operations and a
Put substructure that controls buffer input (Put Element) operations. The Get substructure has a
waiting output-process list, or Get queue, and the Put substructure has a waiting input-process
list, or Put queue.

The buffer, which is circular in the implementation sense, can be thought of as having both
an input and an output end, such that two buffer-transfer operations can be in progress at the
same time. For example, a process can be blocked on the output end of the buffer, waiting for
sufficient data to satisfy its Get request, while another process is putting bytes into the buffer at
the input end. The reverse situation can also occur, of course, as when an input process must
wait for space to become available. Once a process gains active access to the buffer, its input
or output operation must complete before another process is given access to the same end of
the buffer. If necessary, the requesting process will block on the buffer until the transfer is
completed. Other processes attempting to access the same end of the buffer will be blocked
behind the process whose transfer is in progress, regardless of their priority.

See the GELM$, GELC$, GELAS$, PELM$, PELC$, and RBUF$ primitives in Chapter 3 for a
complete description of ring buffer operations.

The format of a ring buffer, excluding the structure header, is as follows:
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Pointer to

—_— RB.CNT
structure

RB.LOW

RB.HI

RB.MAX

RB.GET

RB.GWT

RB.GVA

RB.PRQ

RB.PPC

|

Get

substructure

|

RB.PUT

RB.PWT

RB.PVA

RB.GRQ

RB.GPC

|

Put

substructure

l

Buffer

In the previous format:

MLO-407-87

RB.CNT is the count of bytes of data available for output.

RB.LOW is the low limit—the starting address of the buffer.

RB.HI is the high limit—the highest address of the buffer—used to determine when to wrap
the PUT or GET pointer around to the beginning of the buffer, creating the circular buffer

structure.

RB.MAX is the size of the buffer—the maximum number of bytes it can contain.

RB.GET is the pointer to the next available byte; used when removing an element from the

buffer.
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¢ RB.GWT is the pointer to the first process, if any, waiting for active output access—the
head of the Get queue (see RB.GPC).

¢ RB.GVA is the binary gate variable that controls the granting of active output access for Get
operations.

* RB.PRQ is a wake-up counter used during concurrent Get/Put operations for awakening
the putting process pointed to by RB.PPC.

* RB.PPC is the pointer to the blocked process with active input access to the buffer, if any.

* RB.PUT is the pointer to the next free location in the buffer; used when inserting elements
into the buffer.

e RB.PWT is the pointer to the first process, if any, waiting for active input access—the head
of the Put queue (see RB.PPC).

* RB.PVA is the binary gate variable that controls the granting of active input access for Put
operations.

¢ RB.GRQ is a wake-up counter used during concurrent Get/Put operations for awakening
the getting process pointed to by RB.GPC.

* RB.GPC is the pointer to the blocked process with active output access to the buffer, if any.
The control structure and the buffer area may not be contiguous in memory.

The SA$QUO bit of the structure-header attribute byte (HD.ATR) must be set if waiting input
processes are to be queued in priority order rather than FIFO. The SA$PRO bit of the attribute
byte must be set if waiting output processes are to be queued in priority order. The SA$RIA and
SA$ROA access-mode bit settings affect certain characteristics of the Put (PELM$ and PELC$)
and Get (GELM$, GELC$, and GELAS$) operations, respectively, as described in Chapter 3.

2.2.1.7 Shared Region Descriptor Definition

A shared region descriptor (SRD) consists of three words that specify the location and extent of
a user-defined shareable memory area. The SRD structure allows the indirect association of a
structure name to a region of memory. (By the nature of its use, an SRD is normally a named
structure.) Other than creation and deletion, the only operation defined on an SRD structure
is access shared region, which returns information about the described region. Region-sharing
operations are described in Chapter 5.

The format of an SRD, excluding the structure header, is as follows:

Pointer
—_— RG.ADD
to SRD
RG.LEN
RG.OFF
MLO-408-87
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In the previous format:

* RG.ADD is a physical memory address, specified as a PAR value in a mapped system or
simply as an address in an unmapped system.

* RG.LEN is the length of the region, specified in PAR ticks (units of 32 words) in a mapped
system or in bytes in an unmapped system.

* RG.OFF is, for a mapped common region, an offset in bytes from the PAR value (RG.ADD)
to the region base.

The SA$SRD bit of the structure-header attribute byte (HD.ATR) indicates the region mode as
physical if set or common if clear. Note that the RG.OFF word is not significant for a physical
region or an unmapped application.

2.2.1.8 Logical-Name Structure Definition

A logical-name structure contains the translation value, or definition, for a logical name, which
is itself a structure name. The structure is variable in size up to 258 bytes and consists of a
string-length word followed by a variable-length ASCII character string. Other than creation
and deletion, the only explicit operation defined on a logical-name structure is Translate
Logical Name, which returns the immediate translation value of a logical name. (Logical-name
definitions may be “nested,” providing for multiple levels of indirection, since the translation
value may represent another structure name.) However, all other primitive operations that
operate on typed structures implicitly operate on logical-name structures to obtain the eventual
translation of a logical name into another kind of structure name.

The format of a logical-name structure, excluding the mandatory structure name block and the
structure header, is as follows:

Pointer to
—_— LN.LEN
structure
LN.VAL
MLO-409-87

In the previous format:

¢ LN.LEN is the length in bytes of the character string contained in field LN.VAL; maximum
value is 256.

* The LN.VAL field contains a variable-length ASCII character string.
The SA$NAM bit of the structure-header attribute byte (HD.ATR) is always set.
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2.2.1.9 Unformatted Structure Definition

An unformatted structure consists of a data area of user-specified size, preceded by a standard
structure header. The kernel does not impose a format on the data area, as no primitives are
provided to operate on it. An unformatted structure is allocated by the CRST$ primitive from
system-common memory, has the ST.UDF type code, and may be named. Such a structure
may be operated on directly by a privileged or driver mapped process or by any process in
an unmapped environment. (An unformatted structure might be used in connection with a
user-implemented primitive operation, for example.)

2.2.2 Message Packets

Standard, fixed-length queue elements, called packets, are used with queue semaphores to
implement message transmission within the system. The kernel maintains a pool of free packets
in the system-common area. A process obtains a packet from this pool by performing an
ALLOCATE_PACKET (or ALPKS$) primitive operation. When no longer needed, the packet
must be returned to the free-packet pool by a DEALLOCATE _PACKET (or DAPK$) operation.
Thus, a packet is a reusable (serially shareable) kernel resource.

A packet consists of a 3-word packet header and a fixed amount of message space, called the
undefined portion. (The header is part of the packet and should not be confused with the
prefixed structure header of a typed structure.) The size of a packet is 40 bytes, allowing up to
34 bytes of usable message space, the undefined portion.

The format of a packet is as follows:

Pointer
—— SE.LNK
to packet
SE.AUX
SE.CTL SE.PR!
SE.UDF T

QE.LEN bytes

i

MLO-410-87

In the previous format:

* SE.LNK s the forward link word for packet queuing (that is, the pointer to the next packet in
a queue); set by the Signal Queue Semaphore (SGLQ$) and Send Data (SEND$) primitives.

* SE.AUX is the auxiliary link word; reserved for future use.

e SE.PRI is the packet priority value, if any; used by the SGLQ$ and SEND$ primifives if the
packet queue is priority ordered.
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SE.CTL is the message-format control byte; the subfields of this byte are set by the SEND$
primitive and used by the Receive Data (RCVD$) primitive, as described in Chapter 3.

SE.UDF is the start of the undefined portion (message area).

The content of a packet as obtained from the free-packet pool is undefined.

The global symbol QE.LEN represents the length in bytes of the undefined portion; the symbol
SE.SIZ represents the overall packet size. These symbols, and the SE.xxx offset symbols shown
above, are defined by the QUEDF$ system macro.

2.2.3 System Queues

The kernel maintains a number of queues, or linked lists, of dynamically related elements such
as PCBs or message packets. Two queuing mechanisms are used: the singly-linked list and the
doubly-linked list.

2.2.3.1 Singly-Linked Lists

A singly-linked list structure uses one link word, or pointer, for each list element and is used
for the following purposes:

The blocking queue of a semaphore or a ring buffer (waiting-process list)

The blocking queue of the kernel’s timer-service semaphore (time-ordered list of “sleeping”
processes)

The packet queue of a queue semaphore

The list of all current processes (all PCBs)

The fork request queue (an internal queue associated with ISR management)

The exception-handler dispatch lists (internal queues associated with exception dispatching)
The static-process list (used by INIT)

The system-common free-memory lists

The unallocated free-RAM list

Structure name table lists

Kernel primitive-resumption list

A singly-linked list is shown schematically in Figure 2-12(a). The list head consists of a single
link word. The link word of a list element may or may not be the first word of the element,
but in all cases except the kernel resumption list, the link word points to the beginning of the
successor element. The list is terminated by a zero-value link word.
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Figure 2-12: System Queue Structures
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A singly-linked list is normally either FIFO or priority ordered, depending on the ordering
attribute associated with the list. (An exception is the blocking queue of the kernel’s timer-
service semaphore, which has a special time-dependent ordering.) In the case of blocking queues
and packet queues, the ordering attribute is determined by the user when the corresponding
semaphore or ring buffer is created. (FIFO ordering is the default.) The internal, kernel-
maintained lists of free-memory elements are ordered by ascending addresses of the linked
elements.

2.2.3.2 Doubly-Linked Lists

A doubly-linked list structure uses two link words (a forward pointer and a backward pointer)
for each list element. This list structure is used for the ready-active and ready-suspended
state queues, where insertion or extraction of a PCB at any point in the queue is a frequently
performed operation. The ready-active state queue is priority ordered; the ready-suspended
state queue is LIFO ordered for quick enqueuing. (A doubly-linked list is also used for the
inactive queue.)

A doubly-linked list is shown schematically in Figure 2-12(b). The list head (at a fixed location
in kernel data space) has the following format, identical to the first three words of a PCB:

SQ.FPT

SQ.BPT
SQ.STA | SQ.PRI

MLO-411-87

2-46  Processes and System Data Structures



In the previous format:

* SQ.FPT is the forward link word, the pointer to the first PCB.
* SQ.BPT is the backward link word, the pointer to the last PCB.
e SQ.PRI is unused.

¢ SQ.STA is the state code corresponding to the process state represented by the queue—
SC.RDA or SC.RDS, for example.

The list is terminated by pointing the forward link of its last element (PCB) back to the list
head. If a state queue is empty, both link words of the list head point back to the list head.

2.2.4 Kernel Data Segment Organization

All dynamic system data structures are allocated in the system-common memory area of the
kernel’s impure-data segment. This area, beginning at $FREE, ordinarily constitutes the major
portion of the kernel data segment; see Figure 2-5. The size of the area is determined at system
build time by the STRUCTURES and PACKETS parameters of the RESOURCES configuration
macro. The rest of the kernel data segment consists of the following:

* System-interrupt stack (.10STK p-sect)

* Kernel's private impure data (.20DAT p-sect)
* Interrupt dispatch block area (.30IDB p-sect)
These areas follow the system-common area.

System-common memory is subdivided by the system-initialization (INIT) routine at run time
as follows:

*  The free-packet pool, from which processes obtain “empty” packets by means of the ALPK$
or ALPC$ primitive. The INIT routine preallocates n packets in this pool, where n is the
number of packets requested in the packets parameter of the RESOURCES macro. The
default is 20 packets. Thus, the default size of this pool is 800 bytes (20 x 40 bytes); see
Section 2.2.2. The available packets are linked into a free-element queue by INIT.

* The free-memory pool, from which all dynamic system data structures other than queue
packets are allocated. The size of this pool is determined by the structures parameter of the
RESOURCES macro. The default size is 3000 bytes. After establishing this pool, the INIT
routine creates the static-process PCBs in it.

The structure of the free-memory pool is as follows. Blocks of memory are allocated from
the free-memory pool as data structures are created and are deallocated (returned to the pool)
when structures are deleted, by the common kernel procedures $ALLOC and $DALOC. (These
procedures are used only by primitive operations and other kernel routines.)

The allocation/deallocation algorithms assume that free memory is linked together in a singly-
linked, open list structure, with the first word of a memory block used as a pointer to the next
available block and the second word used to indicate the size of the block in bytes. Thus, the
free-memory pool looks as shown in Figure 2-13.
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Figure 2-13: Free-Memory Pool

List head : First element ith element
$FREEM: (= - ——A— }—» I
Size Size
eee eooe

MLO-446-87

A zero pointer value terminates the list. The INIT routine initializes the kernel variable $FREEM
to point to the first word of the free-memory pool. The initial size of the pool is placed in the
second word, the first word being an empty (zero) pointer to the next entry in the list.

Memory is allocated from the pool in multiples of four bytes. The allocation algorithm is first-fit.
If the first element that can accommodate a given request is larger than the amount of space
requested, the space is allocated from the beginning of the element. Since structures are usually
created and deleted in an arbitrary sequence, the free-memory pool can become fragmented
during system operation.

The $DALOC procedure returns a released memory block to the free-memory pool. Whenever
possible, $DALOC will merge contiguous memory elements into a single element during
deallocation.

Note

The free-memory pool should not be confused with the free-RAM list, which is
described in Chapter 5.
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Chapter 3
MACRO-11 Primitive Service Requests

This chapter describes the MACRO-11 interface to the real-time primitive services provided
by the MicroPower/Pascal kernel. This chapter describes the purposes and applications of the
kernel primitives, as well as the detailed syntax and semantics of the macro calls used to request
the primitive services. In addition, the chapter provides information about structure descriptor
blocks and process descriptor blocks, which are used with many primitive service requests. For
ease of reference, the primitive descriptions are in alphabetical order, by primitive name.

The MACRO-11 interface consists of a set of keyword macros. The macros facilitate construction
of the argument block required by each kernel primitive routine, as well as the invocation of the
routine. The three forms of macro call provided for each primitive service permit the following
variant usages:

* Run-time construction or modification of the required argument block in user-specified RAM
storage

* Run-time construction of the argument block on the user’s stack
*  Assembly-time construction of the argument block in either ROM or RAM storage

The MicroPower/Pascal compiler also provides an interface to the primitive services described
in this chapter. This interface consists of the predefined procedure and function calls known
collectively as the MicroPower/Pascal real-time programming extensions. Each macro call
description in this chapter includes the name of the equivalent Pascal procedure or function.

3.1 General Conventions and Usage Rules

Kernel primitives are invoked from process level by the IOT trap instruction, which in
MicroPower/Pascal is reserved and dedicated to that purpose. The IOT instruction is followed
immediately by the global entry-point symbol for the desired primitive, of the form $prim, as
follows:

I0T
$prim

RO must point to the caller’s argument block when the IOT is executed. The primitive service
macro calls generate this sequence as part of their expansion.
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3.1.

3-2

The primitive name (prim in the previous example) is always a 4-character mnemonic for the
service performed by the primitive (for example, CRST for the Create Structure primitive and
SGNL for the Signal Semaphore primitive). The corresponding macro call names are formed
by appending $, $S, or $P to the mnemonic (for example, CRST$, CRST$S, or CRST$P). The
suffixes $, $S, and $P identify variant forms of the basic macro call; the three variants provide
maximum coding flexibility and efficiency. The three variants differ as follows:

* The variant prim$ is used for run-time construction or modification of both the required
argument block in a preallocated memory area and the IOT sequence. (This variant can
also be used in a special form to pass a preexisting argument block that may have been
built in ROM with the prim$P macro variant.)

® The variant prim$S is used for dynamic generation of both the required argument block on
the user’s stack and the IOT sequence. This variant is useful if a static argument block area
is not desirable, as for a primitive that is executed only once or infrequently.

® The variant prim$P is used for assembly-time generation, in ROM or pure RAM, of the
argument block only. (No IOT sequence is generated.) This variant is used with the null-
or single-argument form of the prim$ variant, as described below. The prim$P variant may
also be used without arguments for convenient allocation of an area of the correct size for a
given argument block in impure RAM, to be used with the “full” form of the prim$ variant.

The radix for any MACRO-11 argument value is octal, unless you put a decimal point after the
value.

The following subsections describe the general form of each macro variant and the usage rules
associated with each.
1 Macro Variant prim$

General Form—A primitive that takes N arguments will have a corresponding prim$ macro
call of the general form: '

prim$ area,argument_1,argument_2,...argument_N

This macro call expands into a code sequence of the general form:

Mov area,RO
Mov argument_1, (RO)

MOV argument_2,2(RO)

MOV argument_N,N*2(RO)
I0T
$prim

MACRO-11 Primitive Service Requests



Various optimizations of this sequence are produced for special cases. For example, a call with
a relatively large number of arguments produces the following:

MOV area,RO

MOV RO, -(SP)

MoV argument_1, (RO)+
MoV argument_2, (RO)+
MoV argument_N, (RO) +
MOV (SP)+,RO

I0T

$prim

If one or more of the primitive argument values are null in the call, the corresponding move
instructions are omitted in the expansion. For example, a call may have the form:

prim$ area,,argument_2,,argument_4

This call produces the following expansion:

MoV area,RO

MOV argument_2,2(RO)
MoV argument_4,6(RO)
I0T

$prim

Similarly, a call may have the form:

prim$ area

This call produces the following expansion:

Mov
I0T

area,RO

$prim

This expansion allows for precall modification of selected fields in an existing argument block
or use of an existing argument block without modification.

Note

If the area parameter is null, RO is assumed to be preset to the address of the
argument block, and the MOV area,R0 instruction is omitted in the expansion.
Therefore, if the entire argument list is missing, the macro expansion produces
only the IOT sequence.

Usage Rules—As implied by the foregoing, the general usage rules for the prim$ form of macro
call are the following:

If any of the second through Nth macro arguments are null, the precall content of the
corresponding argument block location is not modified by the call.

If the area parameter is null, the argument block address must be stored in R0 prior to the
call.
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3.1.2 Macro Variant prim$S

General Form—A primitive that takes N arguments will have a corresponding prim$S (stack
version) macro call of the general form:

prim$S argument_1,argument_2, ..., argument_N

This macro call expands into a code sequence of the general form:

MoV argument_N, -(SP)
MoV argument_N-1, -(SP)
MOV argument_1, -(SP)
Mov SP,RO

I0T

$prim

< code for popping arguments from stack >

The argument list may be omitted, as in call of the form:
prim$s

This call produces the following degenerate expansion:

MOV SP,RO
I0T
$prim

This expansion assumes that an appropriate argument block exists on the stack when the call is
executed.

Usage Rules—The general usage rules for the prim$S form of macro call are the following:

¢  If one macro argument is specified, all arguments must be specified, except where a default
value is explicitly described for a given argument. The stack is purged of all arguments on
return from the call.

* If no macro argument is specified, the desired argument block must be constructed on the
stack prior to the call. The stack is not purged following the call.

3.1.3 Macro Variant prim$P

General Form—A primitive that takes N arguments will have a corresponding prim$P
(parameters only) macro call of the general form:

[label:] prim$P argument_1,argument_2,..., argument_N
This macro call expands into a code sequence of the general form:

[1abel:] .WORD argument_1
.WORD argument_2

WORD argument_N
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If one or more of the macro arguments are null in the call, a 0 is generated for that argument.
For example, a call may have the form:

[label:] prim$P ,argument_2,,argument_4
This call produces the following expansion:

[label:] .WORD 0
.WORD argument_2
.WORD 0
.WORD argument_4

Usage Rule—If an argument is null in the macro call, the corresponding location in the argument
block will have a zero value.

Guidelines—The prim$P macro variant can be used within the scope of a PDAT$ (pure-data
p-sect) macro to generate an argument block in ROM or write-protected RAM storage. (This
usage implies that the argument values will never be modified and that the primitive operation
to which the block is passed does not return any values in the block.) The “prim$ area” form
of macro call can then be used to pass the address of the block to the appropriate primitive.

Alternatively, the prim$P macro can be used within the scope of an IMPURS$ (impure-data
p-sect) macro to allocate an argument block area of the required size in read/write storage. The
argument list is not needed for this purpose, since the argument block must be filled in at run
time. The argument block is filled in prior to the issuing of a “prim$ area” call.

3.1.4 Error Returns

An error condition encountered by a primitive service routine is reported to the caller by a
return of control to the call site with the carry (C) bit set in the processor status word (PSW).
An exception code identifying the error condition is returned in RO. Therefore, the caller should
test the C bit following a primitive call to detect a possible error return and evaluate the content
of RO.

Note
Some primitives alternatively return a nonerror function value in R0, such as a
TRUE or FALSE indication from a conditional primitive operation. In that case,
the C bit is clear on return from the primitive, distinguishing the RO function
value from a possible exception code.

Exception codes and types are described in general in Section 6.1 and Table 6-1. Collectively,
the primitive routines return only a limited subset of the exception codes of types EX$SVC
(system service) and EX$RSC (resource). (The return of some address-check exceptions is
conditional on the' CHECK option of the SYSTEM configuration macro; see Chapter 4.) That
subset of possible exception code values, mapped by globally defined symbols of the form
ES$xxx, is as follows:
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* Codes for conditions of type EX$SVC

ES$AOV Already owned vector, cannot connect
ES$IAD Invalid address: odd or not in user’s virtual space
ES$IPM Illegal parameter
ESS$IPR Illegal primitive for context
ESS$IST Invalid structure descriptor
ES$IVC [llegal vector address
ES$NID No interrupt dispatch block established for vector
ES$SIU Structure is in use
ES$SNI Structure name already in use
* Codes for conditions of type EX$RSC
ES$NFA No free APR for window mapping
ES$NMK Insufficient space for creation of a dynamic kernel structure

The exception symbol values are defined by the EXMSK$ macro in the COMM and COMU
system macro libraries. The particular exception codes returned by a given primitive are specified
in the description of that primitive.

A process may elect to raise an exception, by means of the Report Exception (REXC$) primitive,
based on the exception code it receives as an error return. The REXC$ primitive requires an
exception type value as well as an exception code as calling parameters. Before using REXCS,
therefore, the reporting process must derive an exception-type mask value from type information
that is encoded in every exception code value. Section 6.2.1 shows a MACRO-11 program
fragment that performs the required code-to-type transformation.

3.1.5 Structure Descriptor Block (SDB) Usage

A structure descriptor block (SDB) describes a particular kernel data structure, such as a
semaphore, ring buffer, or logical-name translation value. (These dynamic typed structures,
described in Section 2.2.1, are allocated in kernel space but are created, used, and deleted
at user request.) Many primitives act on a given structure; therefore, the structure must be
identified (indirectly) in the corresponding primitive request.

An example of such a request is the Signal Semaphore (SGNL$) primitive call, which has the
form:

SGNL$ area,sdb

The sdb argument, which is a pointer to an SDB, indirectly identifies the semaphore to be
signaled.

The user allocates and initializes an SDB in process space. An SDB for a named structure is a
6-word block consisting of a 3-word structure identifier (filled in by the kernel) and a 6-byte
alphanumeric structure name. The SDB for an unnamed structure can be abbreviated to four
words, as explained later. :
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The format of an SDB is as follows:

Structure index

———

| Structure ID
Structure (kernel-level

— . — identifier)
serial number

L 6-character

— Global
structure process-level
— — identifier
name
MLO-412-87

An SDB must be in RAM and may be constructed on the stack.
An SDB has three uses, as follows:
* To specify the name, if any, of a structure to be created by the CRST$ or CRSR$ primitive.

¢ To specify a logical name, that is, the name of a logical-name value structure to be created
by the CRLN$ primitive.

* To access, through other primitive services, an existing structure that is referenced by either
structure ID or structure name. (The reference may be indirect, through an intermediate
logical name.)

When a structure is either created or accessed by structure name, the primitive writes a structure
identifier into the first three words of the SDB. In subsequent uses of the filled-in SDB, the
structure identifier permits direct, optimized access to the structure, bypassing the table-lookup
step needed for a reference by name. Such use results in faster processing of the primitive
request.

Primitives that operate on structures test the first word of the passed SDB (the structure index)
to determine how to use information in the SDB. If the index value is nonzero, the primitive
assumes that the structure ID field contains valid information and uses it to locate the structure.
In this case, the last three words of the SDB are not significant. If the index value is 0, a
reference by name is implied, and the primitive uses the contents of the structure name field to
find the structure by a name-table lookup procedure. (The latter case is invalid for an unnamed
structure.)

Structure and process names must be unique throughout an entire application. (A process name
describes a process control block, another kind of system structure.) A logical name is a form of
structure name (the name of a data structure of type ST.LNM), which contains the translation
value for the name. Therefore, an SDB containing a logical name is subject to the same rules as
an SDB for any other kind of named structure. However, since the translation value of a logical
name can itself be another structure name, logical-name references are treated differently from
other structure references by most primitives, as described in Section 3.1.5.3.
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3.1.5.1 Initialization of SDBs for Named Structures

Before using an SDB to either create a named structure or refer to an existing structure by name
(in a SGNL$ or WAITS$ request, for example), you must initialize the SDB as follows:

1. Set the value of the first word (structure index) to 0.

2. Ensure that the structure name field contains the ASCII character string used to globally
name the structure. If shorter than six characters, the name string must be left-justified in
the field; the trailing character positions should be space-filled.

By system convention, a structure name shorter than six printing characters is padded with
trailing spaces. Therefore, any unused high-order bytes of the structure name field in the
SDB should contain the ASCII SPACE character (octal 040). (The MicroPower/Pascal compiler
space-fills such names by default.) This convention is significant, for example, if you construct
an SDB to describe a semaphore created by a system service process, such as the I/O request
queue semaphores established by the standard device drivers. (The driver request queues have
names of the form $xxx followed by two spaces.)

3.1.5.2 Initialization of SDBs for Unnamed Structures

An unnamed structure may be created by passing the CRST$ primitive a pointer to an SDB that
contains a 0 in the first byte of the structure name field. Since the last five bytes of the SDB are
not significant in this case, an SDB for an unnamed structure need be only seven bytes long.

Before using an SDB to create an unnamed structure, you must initialize the SDB as follows:
1. Set the value of the first word (structure index) to 0.
2. Make sure that the value of the seventh byte (first byte of the structure name field) is 0.

For subsequent references to the structure, only the first three words of the SDB (the structure
ID field) are needed, as is the case with named structures.

To refer to an existing unnamed structure, the calling process must supply an SDB containing a
valid structure identifier. Therefore, to access such a structure, a process other than the creator
must also have access to the SDB used to create it. In a mapped environment, then, an unnamed
structure is used only for internal synchronization or communication between processes in the
same static process family; that is, among processes residing in the same address space.

3.1.5.3 Implicit Transiation of Logical Names

The primary design intention for logical names is to permit a level of indirection within file
specifications that are passed to an I/O ancillary control process (ACP), such as the RTACP. In
addition to this and other possible uses, however, a logical name can also be used as an alias
for another structure name.

All primitives that operate on existing structures other than PCBs will accept a logical name
as a structure reference. The reference can be either by name or by structure ID, as described
for named structures in general. Except for the Translate Logical Name (TRLNS$) and Delete
Logical Name (DLLN$) primitives, none of those primitives operates directly on the identified
logical-name structure. Instead, they attempt to translate the logical-name reference into a valid
reference to a kind of structure they do operate on, such as a semaphore or a ring buffer.
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The rules for such primitive operations with respect to logical names are:

1.

If the SDB passed to the primitive identifies a logical-name structure, the primitive obtains
the corresponding translation string.

If the translation string exceeds six characters and thus is not a structure name, the primitive
returns an “invalid structure descriptor” (ES$IST) error.

If the translation string does not exceed six characters, the primitive performs a structure
lookup, using the translation string as the structure name. (If the translation string is
shorter than six characters, the kernel’s name-lookup mechanism will pad out the string
with trailing NULLSs, not space characters.)

If the lookup produces another logical-name structure, the primitive repeats the translation
and attempted lookup procedure according to rules 2, 3, and 4.

If the lookup produces an existing structure of a type appropriate to the primitive operation,
the primitive performs the requested operation.

Note

Following a successful lookup, both the name and the structure ID fields of
the SDB are updated to reflect the structure to be operated on rather than
the original logical-name structure.

If the lookup fails (no matching structure) or finds an existing structure of an invalid type
for the primitive operation, the primitive returns an invalid structure descriptor (ES$IST)
error.

The Create Structure (CRST$) primitive, which creates a semaphore, ring buffer, or unformatted
structure, and the Create Shared Region (CRSR$) primitive, which creates a shared region
descriptor (SRD) structure, will also accept a logical name as an indirect specification of the
name to be given to the created structure. (This use of logical names is less likely than their
use for indirect access to an existing structure, however.) The CRST$ and CRSR$ primitives
operate with respect to logical names according to the following rules (rules 1 through 4 are the
same as those for structure access):

1.

If the SDB passed to the primitive identifies a logical-name structure, the primitive obtains
the corresponding translation string. ‘

If the translation string exceeds six characters and thus does not qualify as a structure name,
the primitive returns a “structure name already in use” (ES$SNI) error.

If the translation string does not exceed six characters, the primitive performs a structure
lookup, using the translation string as the structure name. (If the translation string is
shorter than six characters, the kernel’s name-lookup mechanism will pad out the string
with trailing NULLSs, not space characters.)

If the lookup produces another logical-name structure, the primitive repeats the translation
and attempted lookup procedure according to rules 2, 3, and 4.

If the lookup produces an existing structure of a type other than logical name, the primitive
returns a “structure name already in use” (ES$SNI) error.

If the lookup fails to find a matching named structure, the primitive creates the requested
structure with the name used in the final lookup operation.
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See the CRLNS$, TRLN$, and DLLN$ primitives for a description of the specific logical-name
operations: creation, single-level translation, and deletion, respectively. Only those primitives
create or operate on logical-name structures.

3.1.6 Process Descriptor Block (PDB) Usage

A process descriptor block (PDB) describes a process. The PDB identifies a process control block
(PCB), the kernel structure that represents an existing process and contains the state and context
information for that process. Although PDBs and SDBs are structurally identical, they differ
somewhat in the way they are interpreted and treated by some primitive operations. Like an
SDB, a PDB is a 6-word block consisting of a 3-word process identifier filled in by the kernel
and a 6-byte alphanumeric process name. The format of a PDB is as follows:

Process index
— Process ID
Process (kernel-level
— — identifier)
serial number
6-character
__ —_ Global
process process-level
L — identifier
name
MLO-413-87

The use of a PDB for process creation (CRPC$ primitive) is identical to the use of an SDB for
structure creation, as described above. The use of a PDB in requests for a primitive operation
on another process is also the same as the use of an SDB for reference to an existing structure.

However, the primitives that operate on existing processes provide a shorthand way for the
calling process to identify itself as the process to be acted on rather than another process. The
shorthand rule is that, in a process-related request, if the PDB argument value is 0 (implying
no PDB) or the content of the specified PDB is null, the request will operate reflexively on the
calling process.

Reference to an existing process is best illustrated by example. The following primitives operate
on an existing process and, possibly, on the calling process:

* CHGP$ (Change Process Priority)
* GMAP$ (Get Process Mapping)

* GTST$ (Get Process State)

* SPND$ (Suspend Process)

* STPC$ (Stop Process)

Each of those primitives requires the address of a PDB as a calling argument and interprets that
argument in a consistent manner. For example, the call for the GTST$ primitive, which returns
information about a given process, is of the form:

GTST$ area,pdb,buf
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The pointer to the PDB that identifies the subject process is pdb, and buf points to the caller’s
information-return buffer.

The primitive interprets the pdb argument value as follows:

1. If the argument value is 0, indicating no PDB, the primitive assumes that the calling process
is to be acted on. (In the case of GTST$, information about the calling process is returned
to the caller.) If the argument value is nonzero, the primitive uses the indicated PDB to
locate the process to be acted on (see step 2).

2. If the process index field of the PDB is nonzero, the primitive uses the contents of the
process ID field to locate the process to be acted on. If the process index field is 0, the
primitive examines the process name field (see step 3).

3. If the value of the first byte of the name field is 0, the primitive assumes that the calling
process is to be acted on. If the value is nonzero, the primitive uses the process name string
to locate the process to be acted on.

In all cases, if a PDB address is specified in the call and the process index value is 0, the
primitive writes a valid process identifier in the process ID field as an implicit part of the
primitive operation. This action is like that performed for a structure access by structure name,
as described in Section 3.1.5, and permits optimal access to the process on subsequent uses of
the PDB.

MACRO-11 Primitive Service Requests 3-11



3.2 ACSRS$ (Access Shared Region)
Pascal equivalent: ACCESS_SHARED_REGION Procedure

The Access Shared Region (ACSR$) primitive lets the calling process gain access to a region
of memory that was previously made shareable by another process, by means of a run-time
name assigned to the shared region. (The ACSR$ primitive can also be used to access a shared
region that was defined at build time by a MEMORY configuration macro.) More precisely,
the ACSR$ primitive returns a physical description of the named shared region to a region ID
block (RIB) that is pointed to in the call. The RIB information is normally used in a subsequent
window-mapping operation, performed for general mapped processes by the MAPW$ primitive.

The accessed region can be either a common or physical shared region (see the CRSR$ primitive).
The information returned in the RIB describes the region’s location, size, and mode attribute.

_The location of a shared region is represented by a combination of the region base, specified
by a physical PAR value, and the region offset, specified as a displacement in bytes from the
base. The region size is described in PAR ticks (32-word units). The size of a common region
as described in the RIB can therefore exceed the size declared by the region’s creator by up
to 31 words. (The creator and accessors should have common size definitions independent of
the RIB description where necessary.) Since a physical region is located on a 32-word physical
boundary and allocated in 32-word units, its offset is 0, and the described size, in PAR ticks,
represents the exact amount of space allocated for the region.

Although region sharing by means of the kernel is applicable primarily to a mapped target
environment, the CRSR$ /ACSR$ primitives can be useful in an unmapped application containing
more than one user static process. (Because of the single address space in an unmapped system,
however, having multiple user static processes is generally of no advantage.) Coding details
differ for unmapped usage, since there is no distinction between virtual and physical addresses.
In the unmapped case, the RIB specifies the base of the region directly as a physical address,
and the region size is represented in bytes. The base and size information- supplied in the RIB
is used directly. Also, common and physical regions are effectively equivalent; the region offset
is 0.

A semaphore is usually required to protect against concurrent references to a region shared
by several processes. Also, the kernel structure (shared region descriptor) that represents a
shared region can be deleted by the DLSR$ primitive, although typically that is done only if the
creating static process terminates. The kernel does not provide any automatic safeguard against
inadvertent reference to a deleted (and possibly deallocated) shared region, since any process
that accessed the region while shareable retains a description of it.

Chapter 5 contains a general discussion of region sharing, including the use of ACSR$ in the
context of the related primitives ALRG$, CRSR$, DLRG$, DLSR$, MAPWS$, and UMAPS$. The
CRSR$ primitive provides the complementary Create Shared Region operation, which declares
a region as being shareable and assigns its run-time name.
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Syntax

The three variants of the ACSR$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant Macro Call

ACSR$ ACSRS$ [area,sdb,rib]
ACSR$S ACSRS$S [sdb,rib]
ACSRS$P ACSRS$P [sdb,rib]
areqa

The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address

sdb

The address of the user-constructed structure descriptor block (SDB) containing the name
of the shared region to be accessed (that is, the name associated with the corresponding
kernel SRD structure) and in which the kernel returns information identifying the SRD. See
Section 3.1.5 for the format and use of an SDB. This argument has the form:

[SDB=]sdb-address
rib
The address of a 4-word (RI.SIZ bytes) area in user memory, the region ID block, in which

the location, size, and mode attribute of the allocated region is returned by the primitive,
as described under Semantics. This argument has the form:

[RIB=]area-address

Restrictions

This primitive may be used only at process level; it may not be called from an ISR fork routine.

Argument Block

The calling argument block generated (or assumed to exist) by the ACSR$x macro has the
following format:

RO+ SDB address {pointer)
RIB address (pointer)
MLO-414-87
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Syntax Example
ACSR$S sdb=#SRGNAM,rib=#REGDSC

This stack ($S) form of the macro call specifies the location of the structure descriptor block
SRGNAM containing the name of the region to be accessed and specifies the location of the
region ID block REGDSC in which the region description is to be returned. (See the CRSR$
primitive description for a corresponding region-creation example.)

Semantics

The ACSR$ primitive looks for a shared region descriptor (SRD) having the name specified in
the caller’'s SDB. If that SRD exists, the primitive copies information in the SRD to the RIB
specified in the call and returns to the caller. If no such SRD exists, the primitive returns to the
caller, with an error indication.

Information describing the accessed region is returned in the user’s RIB area in the following
form, assuming a mapped environment:

Physical/Common

rib —» region base PAR value/PAR value
region size PAR ticks/PAR ticks
reserved mode RASPHY/RASCOM
region offset Zero/no. of bytes
MLO-415-87

The offset and size symbols defined for the RIB fields are:

RI.LADD Region base

RLLEN Region size

RLATR Region mode (attribute byte)
RLRES Reserved (high byte)’

RI.OFF Region offset

RIL.SIZ RIB size in bytes

The RIBDF$ macro in the MicroPower/Pascal COMU and COMM system macro libraries defines
these symbols.

In the mapped environment, the region base is returned as a physical PAR value, representing a
32-word physical boundary. (That value is not directly usable as an address, of course, but can
be used in a physical-to-virtual mapping operation as implemented by the MAPW$ primitive.)
The region offset, relevant for a shared common region, is an increment in bytes from the PAR
value to the beginning of the region. (The region-offset field is significant for the Map Window
operation.) The region size specifies the number of PAR ticks (units of 32 words) in the region.
In the case of a common region, the described size represents the actual size of the region
(specified to CRSR$ in bytes) rounded up to the next multiple of 32 words. The region mode
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is indicated by the value of the mode symbol RA$PHY or RA$COM, denoting a physical or
common region, respectively. (The RA$xxx symbols are defined by the RIBDF$ macro.)

In an unmapped environment, the region base is a physical address that can be used directly,
and the region size is the number of bytes specified in the Create Shared Region request. The
region offset is always 0, regardless of the region mode.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:

ES$IAD Invalid address; the RIB address is not on a word boundary.

ES$IST Invalid structure description (index or name); no such shared region descriptor exists.
(This error return could be caused by an erroneous SDB address.)
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3.3 ALPCS (Conditionally Allocate Packet)
Pascal equivalent: COND_ALLOCATE_PACKET Function

The Conditionally Allocate Packet (ALPC$) primitive allocates a message packet (standard queue
element) from the kernel’s free-packet pool, if one is available, or returns a FALSE indication if
not. If a free packet is available, it is logically removed from the pool. A pointer to the packet
is returned to the caller, and the kernel-defined value TRUE is returned in RO. If all packets are
in use at the time of the call, the primitive returns control immediately, with the kernel-defined
value FALSE in RO.

This primitive permits the caller to obtain a packet pointer for use in a Signal Queue Semaphore
(SGLQ$) or Conditionally Signal Queue Semaphore (SGQCS$) primitive operation, without
blocking if a packet is not available. (Compare with ALPK$, the unconditional form.)

The DAPK$ primitive is the inverse of ALPCS$, allowing a process to deallocate a message
packet.
Syntax

The three variants of the ALPC$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.) '

Variant Macro Call
ALPC$ ALPCS$ [area,qelm]
ALPC$S ALPC$S [gelm]
ALPCS$P ALPCS$P

area

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address
qelm

The address of a location that is to receive the packet pointer returned by the primitive.
This argument has the form:

[QELM=]destination-address
Or, the address may be null. (If specified, it must be a word address.)

If the gelm argument is null, the packet pointer returned by the primitive is available only in
the calling argument block. If the argument is null in the stack ($S) version of the macro call,
the returned pointer value is left on the stack. (Ordinarily, the argument block is purged from
the stack following the call.) In the parameters-only ($P) version of the macro call, no gelm
argument is specified, and the returned pointer value is available only in the calling argument
block. (See the following Restrictions section.)

Restrictions

The argument block must be in read/write memory.
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Argument Block

The calling argument block generated (or assumed to exist) by the ALPC$x macro has the
following format:

RO+ —_——— -s—Default destination of
returned pointer value

MLO-416-87

Semantics

The ALPC$ primitive tests the free-packet pool for a free packet. If the pool contains at least
one packet, the primitive logically removes a packet from the pool and returns the address of
that packet in the argument block, from which it is moved to a user-specified location by the
macro expansion, if requested (gelm argument). The primitive also returns the value TRUE in
RO.

If no packets are free, the primitive returns immediately to the calling process, with the value
FALSE in RO.

The TRUE and FALSE symbol values are defined by the EXMSK$ macro in the COMM
and COMU libraries. In the current version of MicroPower/Pascal, the values are 1 and 0,
respectively.

Error Returns

None.
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3.4 ALPKS (Allocate Packet)
~ Pascal equivalent: ALLOCATE_PACKET Procedure

The Allocate Packet (ALPKS$) primitive allocates a message packet (standard queue element)
from the kernel’s free-packet pool. If a free packet is available, it is logically removed from the
pool, and a pointer to the packet is returned to the caller. If all packets are in use at the time
of the call, the calling process is blocked until the request can be satisfied. (If several processes
are concurrently waiting for packet allocation, the requests are satisfied according to process
priority as packets are returned to the pool.)

This primitive permits the caller to obtain a packet pointer for use in either the Signal
Queue Semaphore (SGLQ$) or the Conditionally Signal Queue Semaphore (SGQC$) primitive
operation.

The Conditionally Allocate Packet primitive (ALPC$) permits a process to request packet
allocation without blocking if no packets are free.

The inverse of ALPK$ is the DAPK$ primitive, allowing a process to deallocate a message
packet.
Syntax

The three variants of the ALPK$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant Macro Call

ALPK$ ALPKS$ [area,qelm]
ALPK$S ALPKS$S [gelm]
ALPK$P ALPK$P

areq

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=] arg-blk-address
gelm

The address of a location that is to receive the packet pointer returned by the primitive.
This argument has the form:

[QELM=] destination-address

Or, the address may be null. If specified, it must be a word address. Because the argument
you specify is expanded directly into an MOV instruction destination argument, it should
not contain an immediate expression indicator (#).
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If the gelm argument is null, the packet pointer returned by the primitive is available only in
the calling argument block. If the argument is null in the stack ($S) version of the macro call,
the returned pointer value is left on the stack. (Ordinarily, the argument block is purged from
the stack following the call.) In the parameters-only ($P) version of the macro call, no gelm
argument is specified, and the returned pointer value is available only in the calling argument
block. (See the following Restrictions section.)

Restrictions

The argument block must be in read/write memory.

Argument Block

The calling argument block generated (or assumed to exist) by the ALPK$x macro has the
following format:

RO—» _——— -s— Default destination of
returned pointer value

MLO-417-87

Semantics

The ALPK$ primitive tests the free-packet pool for a free packet. If the pool contains at least
one packet, the primitive logically removes a packet from the pool and returns the address of
that packet in the argument block. If requested (qelm argument), the macro expansion moves
the address to a user-specified location.

If no packets are free, the primitive blocks the calling process on a semaphore associated with
the free-packet pool and calls the scheduler. The process remains on the semaphore’s waiting-
process list, in priority order relative to other processes that may also be waiting, until enough
packets have been freed to permit allocation. (See the DAPK$ primitive.)

Error Returns

None.
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3.5 ALRGS (Allocate Region)
Pascal equivalent: ALLOCATE_REGION Function

The Allocate Region (ALRG$) primitive allocates an area of unused physical memory, if available,
to the calling process. The memory area, called a region, is of user-specified size and is allocated
dynamically from a list of free-RAM segments maintained by the kernel. (See Sections 5.1 and
5.3.) If a region is successfully allocated, the primitive returns control to the calling process, with
a Boolean TRUE value in RO (RO=1), and other information as described below. If a region of
the required size cannot be allocated, the primitive returns control to the caller, with a Boolean
FALSE value in RO (R0=0).

Allocation is achieved through a user-supplied region ID block (RIB), in which the primitive
returns information about the location and size of the allocated region. The process that “owns”
the RIB is completely responsible for the region and can use it for any purpose; the kernel
does not keep track of the allocated space. A physical region can be deallocated by the DLRG$
primitive when the space is no longer needed.

Although dynamic RAM allocation is designed primarily for a mapped target environment,
the ALRG$ primitive can be used in an unmapped application as well. Coding details differ
between mapped and unmapped usage. In the mapped case, the caller specifies the required
region size in term of PAR ticks; units of 32-word blocks (100 octal bytes). The primitive returns
the physical base address of the region as a page address register (PAR) value and returns the
region size in PAR ticks. This PAR information, returned in the RIB, can be used in subsequent
window-mapping operations, implemented by the MAPW$ primitive.

In the unmapped case, the caller specifies the required region size directly in bytes. The
primitive returns the base address of the region directly, of course, and returns the region size
in bytes, rounded up to the next multiple of 4, if necessary.

Chapter 5 contains a general discussion of dynamic RAM allocation, including the use of ALRG$
in the context of the related primitives ACSR$, CRSR$, DLRG$, DLSR$, MAPW$, and UMAPS$.
Syntax

The three variants of the ALRG$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant Macro Call

ALRG$ ALRGS [area,size,rib]
ALRG$S ALRGS$S [size,rib]
ALRG$P ALRGS$P [size,rib]
area

The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address
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size
A value that specifies the size of the region to be allocated. For a mapped application, the
size value specifies the number of 32-word (64-byte) blocks required. For an unmapped
application, the size value specifies the number of bytes required. This argument has the
form:

[SIZE=]integer

rib
The address of a 4-word (RI.SIZ bytes) area in user memory, the region ID block, in which
the location, size, and mode attribute of the allocated region is returned by the primitive, as

described under Semantics. (The mode of a dynamically allocated region is always physical.)
This argument has the form:

[RIB=]area-address

Restrictions

This primitive may be used only at process level; that is, it may not be called from an ISR fork
routine.

Argument Block

The calling argument block generated (or assumed to exist) by the ALRGS$x macro has the
following format:

RO—» size (value)
RIB address (pointer)
MLO-418-87

Syntax Example
ALRG$ area=#ALARGS,size=#200,rib=#8KBREG

Assuming a mapped target system, this macro call requests an 8192-byte region, specified in
octal as 200 PAR ticks, that is, 200 units of 100(octal) bytes, each (20000/100). (A physical
region of that size can be mapped exactly by one PAR.) The 4-word user area located at 8KBREG
will receive the information returned by the primitive describing the allocated region.

Semantics

The ALRG$ primitive checks the kernel’s free-RAM list for a memory segment that equals or
exceeds the size of the requested region. If such a segment exists, the primitive removes the
required amount of memory from the free-RAM list, modifies the caller’s RIB area as described
below, sets RO to 1, and returns control to the caller. (The primitive allocates from the free-RAM
list on a first-fit basis.) If no sufficiently large free-RAM segment exists, the primitive clears the
caller’s RO and returns control to the calling process.

In either case, the user's C bit is clear, distinguishing the value returned in RO from an
error-return indication.
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When a region is allocated, the following information is returned in the user’s RIB area:

Mapped/Unmapped
rib— region base PAR value/address
region size PAR ticks/bytes
reserved mode - RASPHY
—_— (zeroed)
MLO-419-87

The offset and size symbols defined for the RIB fields are:

RI.ADD Region base

RLLEN Region size

RI.LATR Region mode (attribute byte)
RI.RES Reserved (high byte)

RI.OFF Region offset

RI.SIZ RIB size in bytes

The RIBDF$ macro in the MicroPower/Pascal COMU and COMM system macro libraries defines
these symbols.

In a mapped environment, the region base, always on a 32-word physical boundary, is returned
as a physical PAR value. (That value is not directly usable as an address, of course, but can
be used in a physical-to-virtual mapping operation as provided by the MAPW$ primitive.) The
region size is an integer representing the number of PAR ticks (100 octal bytes) allocated, as
represented in the allocation request.

In an unmapped environment, the region base is a physical address that can be used directly,
and the region size is an integer representing the number of bytes allocated. If the requested
number of bytes was not a multiple of 4, the next higher multiple of four bytes is allocated.

In both cases, the region mode is indicated by the value of the symbol RA$PHY, denoting a
physical region. (The RA$xxx mode symbols are defined by the RIBDF$ macro.) The mode of a
region (physical or common) is significant to the Create Shared Region (CRSR$) primitive and,
indirectly, to the Map Window (MAPWS$) primitive. The last word of the RIB, the region-offset
field, is not relevant for region allocation; the field is significant only in operations on shared -
common regions. The ALRG$ primitive sets the word to 0 as appropriate for a physical region.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:

ES$IAD Invalid address; the RIB address is not on a word boundary.
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3.6 CCND$ (Connect to Exception Condition)

CONNECT_EXCEPTION Procedure }
DISCONNECT_EXCEPTION Procedure

The Connect to Exception Condition (CCND$) primitive establishes a process as the exception
handler for a particular group of processes and for a specified type of exception. (See
Chapter 6 for a general discussion of exception handling.) The primitive establishes an existing
queue semaphore, identified by the caller, as the exception queue through which the specified
exceptions will be signaled by the kernel.

Pascal equivalent: {

This primitive allows a process to be activated when a specific type of exception occurs in any
of the processes belonging to the specified exception group. The handler receives the exception
by doing a WAIQ$ operation on its exception queue semaphore.

The handler can call the CCND$ primitive several times to specify either the same exception type
for several exception groups or several exception types for one exception group. Alternatively,
a process can establish itself as the exception handler for all exception groups (all processes in
the system, regardless of exception group code) for a given type of exception.

The PCB of the process causing the exception is placed on the handler’s exception queue,
in exception-wait state, when the queue semaphore is signaled by the kernel. The handler
must then process the exception condition and dispose of the PCB through use of the Dismiss
Exception Condition (DEXC$) primitive. (See also the SERA$ primitive for exception servicing
within the faulting process.)

Syntax

The three variants of the CCND$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant Macro Call

CCND$ CCND#$ [area,mask,group,sdb]
CCND$S CCND$S [mask,group,sdb]
CCND$P CCNDS$P [mask,group,sdb]
area

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

mask
The type of exception, as indicated by a predefined bit-mask symbol, for which the handler
is to be established by the current call. The exception type symbols, of the form EX$xxx,

are defined by the EXMSK$ macro and are described in Chapter 6. This argument has the
form:

[MASK=]symbol
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group
The group of processes, as indicated by an integer group code value of 0 to 255, for which
exception conditions will be serviced. (See the grp argument of the CRPC$ and DFSPC$
macros.) This argument has the form:

[GROUP=] integer-value

The group code 0 is the wildcard group code, indicating all exception-handling groups.

sdb

The address of a structure descriptor block (SDB) that identifies the queue semaphore to be
used as the exception queue. (See Section 3.1.5 for the format and use of an SDB.) This
argument has the form:

[SDB=]edb-address

Note
If the sdb argument value is 0, the meaning of the request changes to “disconnect
exception handler” for the specified exception type and process group. That
is, the exception queue that was connected by a previous call specifying the
same exception type and group is disconnected from that particular type/group
combination.

Argument Block

The calling argument block generated (or assumed to exist) by the CCND$x macro has the
following format:

RO—» mask

group

sdb

MLO-420-87

Semantics

If a queue semaphore is identified in the call, the CCND$ primitive makes an entry in the kernel’s
exception-dispatching table to associate the queue semaphore with the specified combination of
exception type and exception group(s). The primitive then returns to the caller.

If no queue semaphore is identified in the call (sdb argument value 0), the CCND$ primitive
deletes the entry, if any, in the kernel’s exception-dispatching table for the specified combination
of exception type and exception group(s).

Each exception-dispatching table entry describes one exception type, one exception group code,
and the associated queue semaphore. No more than one entry for any one type/group
combination is allowed, precluding multiple handlers for a given type and group. Also, if a
table entry for a given exception type specifies the wildcard group code (0), no other entry may
exist for the same exception type. Otherwise, many table entries may exist for each exception
type. Chapter 6 describes the kernel’s exception-dispatching mechanism.
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Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; the SDB address is not on a word boundary or is not in the user’s

address space. (The address is checked only if the CHECK option is selected in the
configuration file.)

ES$IPM  Illegal parameter; either no bits were set in the mask word or more than one bit was
set.

ES$NMK Resource not available; either the kernel’s free-memory pool was exhausted (a table
entry could not be allocated for the connection) or an entry exists for the specified
type/group combination.

implementation Notes

The group code permits several exception handlers for the same exception condition to coexist,
each handler implementing a management strategy suited to one or more groups of processes. If
one exception-management strategy is applicable to several groups for an exception type, several
CCNDS$ calls can be used to connect one type of exception from several exception groups to
the same exception queue. Alternatively, several CCND$ calls can be used to connect several
types of exceptions from one exception group to the same exception queue.

Care should be taken in the use of the wildcard group code, 0, which implies all exception
groups. Although exception handlers in general should not cause exceptions to occur, it
is particularly important that a wildcard-group handler not do so, since the wildcard group
necessarily includes the handler itself. (Like any other process, a handler must be a member
of an exception group.) If any handler {wildcard group or otherwise) causes an exception of a
type handled by itself, the handler will lock up indefinitely in the exception-wait state, as will
any other process that subsequently causes an exception of the same type.
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3.7 CHGP$ (Change Process Priority)
Pascal equivalent: CHANGE_PRIORITY Procedure

The Change Process Priority (CHGPS$) primitive changes the priority of either the caller or
another process to the value specified in the call. Thus, the calling process can dynamically
modify its own scheduling priority or that of another process, normally to a lower value.

Typically, this primitive lets a process lower its priority to a normal operating level (less than
128 for a noncritical process) after starting at a high priority level for initialization purposes.
The special start-up priorities for static processes are 248 to 255, as described in Appendix A.
The highest start-up priority, 255, is used by the most critical static process in an application
(for example, an error logger) to execute a 1-time initialization sequence involving the creation
of globally needed data structures. Other processes may use start-up priorities in the range
248 to 254 to ensure a particular starting order among a group of related processes, again for
initialization purposes.

The initialization code of a given static process might, for example, create a queue semaphore
that must exist before another process begins execution at its normal running priority, which
may, in fact, be higher than the running priority of the process that must create the semaphore.
The initialization code would end with a CHGP$ request to lower priority to an appropriate
level. In general, global system structures must be created at a priority level that is higher than
any normal operating priority used in the system, in order to prevent start-up race conditions
among processes in different process families.

Note

The functionality of CHGP$ has been extended for MicroPower/Pascal Version
2.0, with corresponding changes to both the macro call and the calling argument
block. However, the older form of the macro call, with no pdb argument, will
assemble correctly with a Version 2.0 or later COMx macro library.

Syntax

The three variants of the CHGP$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant Macro Call

CHGP$ CHGPS$ [area,pri,pdb]
CHGP$S CHGPS$S [pri,pdb]
CHGP$P CHGPS$P [pri,pdb]
area

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address
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pri
The new scheduling priority value for the subject process. This argument has the form:

[(PRI=]priority-value
The value must be from 0 to 255.
pdb
The address of the process descriptor block (PDB) that identifies the process to be acted on

or 0. If #0 is specified or the argument is null, the calling process is implied. (See Section
3.1.6 for the format and use of a PDB.) This argument has the form:

[PDB=] pdb-address or #0

The argument default value is 0 in all forms of the macro.

Argument Block

The calling argument block generated (or assumed to exist) by the CHGP$x macro has the
foliowing format:

RO— pdb (pointer)
pri {value)
MLO-421-87

Note that the macro-call argument order is reversed in the argument block.

Syntax Example
CHGP$S pri=#125.

This call sets the calling process’s priority to 125(decimal).

Semantics

The CHGP$ primitive places the specified priority value in the PC.PRI field of the specified or
implied PCB and calls the scheduler. Thus, the calling process will be preempted if any process
in the ready-active queue has a higher priority than the caller as a result of the call. Otherwise,
control returns to the calling process.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:

ES$IPM Illegal parameter; the specified priority value was not within the range 0 to 255.

ES$IST  Invalid structure descriptor (index or name); no such process exists. (This error return
could be caused by an invalid PDB address.)
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3.8 CINTS (Connect to Interrupt)
Pascal equivalent: CONNECT_INTERRUPT Procedure
Pascal variant: CONNECT_SEMAPHORE Procedure

The Connect to Interrupt (CINT$) primitive associates an interrupt vector with an interrupt
service routine (ISR) entry point specified in the call.

The CINT$ primitive allows a process to establish itself as a device driver and to define the ISR
code segment. Chapter 7 provides a general discussion of interrupt dispatching and the coding
of ISRs. In a mapped environment, the CINT$ primitive is normally used only by a process
with the PT.DRV (driver) mapping type.

Syntax

The three variants of the CINT$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant Macro Call

CINT$ CINTS$ [area,vec,ps,val,imp,isr,pic]
CINT$S CINTS$S [vec,ps,val,imp,isr,pic]
CINTS$P CINTSP [vec,ps,val,imp,isr,pic]
area

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

vec

The address of the hardware interrupt vector to be connected to the ISR. This argument has
the form:

[VEC=]vector-address

ps
The content of the PSW desired on dispatch to the ISR. This argument sets the CPU priority
level at which the ISR is to execute when entered. If priority-level 7 is requested (that is,

PS = 340) a special form of ISR dispatching is implied (see Chapter 7). Note that the CC
bits can also be set with this argument, but the T bit cannot. This argument has the form:

[PS=]word-value

The effective PSW value is in the low byte.
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val

imp

isr

pic

An arbitrary value to be passed to the ISR in R4 on interrupt dispatch. (Typical uses of val
are to pass a device address, table index, or other means of identifying the vector causing
the interrupt, in the case of an ISR connected to several vectors.) This argument has the
form:

{VAL=]word-value

In an unmapped system, an arbitrary address to be passed to the ISR in R3. In mapped
systems, if the PIC argument (see below) is TRUE, the value is assumed to be the starting
address of the ISR’s impure area, which is adjusted as necessary to fall in the range of APR
3 virtual addresses and is passed to the ISR in R3 on interrupt. (The ISR’s kernel-mode
APR 3 is remapped accordingly when the interrupt occurs.) If the PIC argument is FALSE,
the address value is checked to ensure that it is already in the APR 3 range and is passed
unchanged to the ISR in R3. (The process’s user-mode APR 3 mapping is used to remap
kernel-mode APR 3 on interrupt in that case; see Restrictions.) This parameter is typically
used to pass the base address of the ISR’s impure area. This argument has the form:

[IMP=] impure-area-address

The address of the ISR code segment. In mapped systems, if the PIC argument (see below)
is TRUE, the value is used to determine the proper mapping of the ISR’s kernel-mode APR
2 when an interrupt occurs. If the PIC argument is FALSE, the address value is checked
to make sure that it is already in the APR 2 range, and the process’s user-mode APR 2
mapping is used “as is” to remap kernel-mode APR 2 on interrupt; see Restrictions. This
argument has the form:

[ISR=]isr-address

A Boolean value indicating that the ISR is implemented in non-PIC code (FALSE) or in PIC
code (TRUE). (PIC stands for position-independent code.) This argument has the form:

[PIC=]#TRUE or #FALSE

The TRUE and FALSE symbol values, defined by the EXMSK$ macro, are currently 1 and
0, respectively. This argument is ignored in an unmapped system. (A PIC-coded ISR is
typically used only by a process that performs a CINT$ but does not have driver mapping.
The Pascal OTS uses the PIC option to implement the CONNECT_SEMAPHORE procedure,
which can be used in a process of any mapping type.)

Restrictions

The ISR code segment must not exceed 8128 bytes.

The ISR’s impure-data segment must not exceed 8128 bytes.
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In a mapped environment, if PIC coding is not used, the combined process/ISR code- and
data-segment virtual addresses must be relocated at build time to fall exclusively within the
PAR 2 and PAR 3 address ranges, respectively. See the description of driver process mapping
in Section 2.1.7.

A module that has a CINT$ primitive should not be added to a supervisor-mode library.

Argument Block

The calling argument block generated (or assumed to exist) by the CINT$x macro has the
following format:

RO—» vec

ps

val

imp

isr

pic (lgnored in unmapped case)

MLO-422-87

Syntax Example
CINT$ area=#CAREA,vec=#300,ps=#200,val=#0,imp=#DATA,isr=#DEVISR,pic=#FALSE

Semantics

The CINT$ primitive sets up the interrupt dispatch block (IDB) associated with the specified
vector, causing interrupts through that vector to be dispatched to the specified ISR entry point.
The primitive also identifies the caller as the process owning the connected vector (compare
with the DINT$ primitive). '

Chapter 7 contains information closely related to the use of CINT$ and the coding of ISRs.
That chapter describes interrupt dispatching, which is affected by certain CINT$ arguments
(especially the PS and IMP values) and describes the kernel /ISR interface in general.
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Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:

ES$AOV Already owned vector; the specified vector is already connected.
ES$IAD Invalid address; invalid ISR mapping (mapped systems only).

ES$IVC Illegal vector; the specified vector address is less than 60(octal) or beyond the valid
range of vectors established at build time (PROCESSOR macro).

ES$NID No interrupt dispatch block established for vector; the vector address was not specified
in the DEVICES macro of the system configuration file.
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3.9 CRLNS (Create Logical Name)
Pascal equivalent: CREATE_LOGICAL _NAME Procedure

The Create Logical Name (CRLNS$) primitive allows the caller to define or redefine a 1- to
6-character logical name. More precisely, the CRLN$ primitive creates a kernel data structure
containing a user-specified translation string value for a given name. Subsequent instances of
the logical name will be automatically translated to the corresponding value by other primitive
services that operate on dynamic data structures, as described in Section 3.1.5.3.

The caller supplies the logical name in a structure descriptor block (SDB) and specifies a
buffer area that contains the translation-string value. The translation string may be up to
256 characters in length and may contain any ASCII character. An override option permits a
preexisting logical-name definition to be replaced, thus redefining the name.

The complementary Translate Logical Name (TRLN$) primitive returns the translation-string
value directly associated with a logical name, and the Delete Logical Name (DLLN$) primitive
eliminates the translation-string value associated with a currently defined logical name. Logical
names may also be defined at build time, with the LOGICAL configuration macro described in
Chapter 4.

Syntax

The three variants of the CRLN$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant Macro Call

CRLNS$ CRLNS$ [area,sdb,string,length,opt]
CRLNS$S CRLNS$S [sdb,string,length,opt]
CRLN$P CRLNS$P [sdb,string,length,opt]
area

The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address

sdb

The address of a user-constructed structure descriptor block (SDB) containing the structure
name to be defined as a logical name. (See Section 3.1.5 for the format and use of an SDB.)
A structure name is mandatory for the CRLN$ primitive. This argument has the form:

[SDB=]sdb-address
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string
The address of a user-memory area that contains the ASCII character string to be used as
the translation value for the logical name. (The effective size of the area is determined by
the length parameter.) This argument has the form:

[STRING=]area-address

length :

An integer that specifies the length in bytes of the character string beginning at the location
pointed to by the string argument. The valid range of the length parameter is 1 to
256(decimal). This argument has the form:

[LENGTH=] integer

opt
An optional bit symbol, LNSOVR, indicating that the logical name may already exist as such
and, if so, that the supplied translation value is to replace the translation value currently
associated with the name. This argument has the form:

[OPT=]LN$OVR or #0

If the option value is 0 or the argument is null, a preexisting logical-name definition will not
be overridden, and the primitive will return an error if any definition of the name already
exists.

Restrictions

The index field (first word) of the SDB must be zeroed unless the corresponding logical name
already exists and the LN$OVR option is specified.

Like other kinds of structure names, a logical name must be unique across all types of kernel
data structures.

By system convention, if the translation value of a given logical name is itself intended as a
logical name (through serial definitions) and the translation value consists of fewer than six
printing characters, the name should be padded to six characters with trailing ASCII spaces in
the supplied translation string.

Argument Block

The calling argument block generated (or assumed to exist) by the CRLN$x macro has the
following format:

RO—» sdb (pointer)
string (pointer)
length (value)

opt (value)
MLO-423-87
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Syntax Example
CRLN$ area=#LNARGS,sdb=#LGNAME,string=#TRANS, length=#6

In this call, the final argument (opt) is null, implying no override if the logical name supplied
in the structure descriptor block LGNAME is already defined.

Semantics

The CRLNS$ primitive attempts to create a named kernel data structure of type ST.LNM (logical
name) large enough to contain the supplied translation string. If the creation is successful, the
primitive copies the translation string into the named structure and returns to the caller.

If the specified structure name is already defined as a logical name and the override (LN$SOVR)
option was specified, the primitive deletes the existing logical-name structure and attempts to
create and fill in a new one. If the LN$OVR option was not specified or the structure name is
in use as other than a logical, the primitive returns to the caller, with a “name already in use”
error indication.

If the structure creation fails for another reason, the primitive returns to the caller with an
appropriate error indication.
Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:

ES$IPM lllegal parameter; the specified string length exceeds 256.

ES$NMK Insufficient space for kernel structure; the required logical-name structure could not
be allocated.

ES$SNI  Structure name in use; the name to be defined as a logical conflicts with an existing
structure name.
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3.10 CRPCS$ (Create Process)

Pascal equivalent: Process-invocation statement

The Create Process (CRPCS$) primitive service creates a dynamic process, as requested by the
caller, and places it in the ready-active state, eligible for scheduling. This primitive permits an
existing process (static or dynamic) to create and activate a subprocess. The created process has
a combination of the process attributes specified in the service request (for example, priority
and exception group) and attributes inherited from the parent process (address space, mapping
type, and some context-switch options).

The CRPC$ primitive constructs a process control block (PCB) for the new process. The PCB
physically represents the process within the kernel, as described in Chapter 2.

The Create Process service is transparent to the Pascal user; no predefined MicroPower/Pascal
procedure is equivalent to the CRPC$ request. In Pascal, creation of a process is implicit in
each call of a construct declared as a process.

Syntax

The three variants of the CRPC$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant Macro Call

CRPC$% CRPCS$ [area,pdb,pri,cxo,grp,ter,cxl,sti,stl,sth,start,ini]
CRPC$S CRPCS$S [pdb,pri,cxo,grp,ter,cxl,sti,stl sth,start,ini]
CRPC$P CRPC$P [pdb,pri,cxo,grp,ter,cxl,sti,stl sth,start,ini]
areaqa

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=] arg-blk-address
pdb .
The address of the user-constructed process descriptor block (PDB) containing the name, if
any, of the process to be created and in which the kernel returns information identifying

the process. (See Section 3.1.6 for the format and use of a PDB.) This argument has the
form:

[PDB=]pdb-address

pri
The priority value (0 to 255) to be associated with the process. This argument has the form:

[PRI=]integer-value
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CcXo

Any optional hardware context, as indicated by predefined bit-mask symbols, to be included
(saved and restored) in the context switching performed for this process. The option symbols

are:

CX$FPP FP-11 floating-point registers

CX$KT MMU registers (optionally saved, always restored)

CX$MCX Single memory location specified by cxl and intended for use primarily by
the Pascal compiler

CX$STD Standard context switching only; that is, “save no additional context”

The option symbols may be ORed as required. These symbols are defined by the CXODF$
macro. This argument has the form:

[CX0=]option[!option]

grp
An integer code value of 1 to 255 indicating the exception-handling group to which the
process belongs. The exception-group code value is significant only if one or more exception-
‘handling processes are implemented in the application. Appropriate values are established
by design convention. (See the CCND$ primitive and Chapter 6.) This argument has the
form:

[GRP=]integer-value

ter

The entry point of the termination routine for the process. (See the Semantics section
below.) This argument has the form:

[TER=]instruction-address-value
cxl
The address of the user-memory location whose content is to be saved/restored when

context switching this process. This argument is meaningful only if CX$MCX is specified in
cxo; otherwise, the argument value must be 0. This argument has the form:

[CXL=] address-value

sti
The initial value for the process’s stack pointer (SP) register. Normally, this value will be
the same as the sth argument value, assuming that the first-executed instruction affecting
the stack is a push (autodecrement of SP). This argument has the form:
[STI=]first-top-of-stack-address V

stl

The address of the low boundary of the user-allocated process stack, reserved for stack
overflow checking. This argument has the form: '

[STL=]low-bound-address
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sth
The address of the high boundary of the user-allocated process stack, reserved for stack
underflow checking. This argument has the form:

[STH=}high-bound-address
start
The initial entry point for the process. This argument has the form:
[START=]first-instruction-address
ini
The initial value for location cxl; that is, the value to be stored in that location by the

kernel when the process is first executed. This argument is meaningful only if CX$MCX is
specified in cxo; otherwise, the value must be 0. This argument has the form:

[INI=]word-value or #0

Restrictions
The first word of the passed PDB (the process index) must be zeroed.
The stack addresses sti, stl, and sth must be word addresses (even values).

The usable area of the process stack lies between stl and sth, exclusively. That is, the value of
the user’s SP register may range from sth (empty stack) to stl+2 (full stack). The kernel uses
the stl and sth locations for dynamic stack-checking purposes, and those locations must not be
modified by the user code. (See the Semantics section.)

The size of the process stack in bytes, excluding locations stl and sti, must equal or exceed the
value $MINST, which defines the maximum number of bytes that the kernel and ISRs may
push on the process stack. In unmapped systems, the value of $MINST is 54(decimal) bytes;
in mapped systems, the value of $MINST is 0. When calculating the required stack space for a
process, you should add the process’s own stack requirement to $MINST.
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Argument Block

The calling argument block generated (or assumed to exist) by the CRPC$x macro has the
following format: ‘

RO—= pdb

pri

CX0

grp

ter

cxl

sti

stl

sth

start

ini

MLO-424-87

Syntax Example

CRPC$S pdb=#P1,pri=#25.,cxo=#CX$FPP,grp=#6,ter=#END,cx1=#0,
sti=#HIS,st1=#L0S, sth=#HIS, start=#BEGIN, ini=#0

Semantics

The CRPC$ primitive allocates a PCB representing the requested process in system-common
memory and initializes it with the following:

¢ The attributes and values specified in the call
® The name, if any, contained in the PDB

* Attributes inherited from the parent process (address space and mapping type in a mapped
environment) and certain context-switch options unless overridden in the call

The primitive then starts the new process by placing its PCB in the kernel’s ready-active queue
and calling the scheduler. Thus, the calling process will be preempted if the new process has a
higher priority than the caller.

On either immediate or eventual return from the primitive call, the PDB passed by the caller
contains information that can be used subsequently by other primitives for efficient access to
the process. (See Section 3.1.6.)

The implications of the CRPC$ parameters that are not covered in Section 2.1 are described in
the following paragraphs.
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The termination entry point (ter) is the location to which control is transferred by the kernel
in the event of an exception abort or a Stop Process operation executed on the subject process.
This allows the subject process to execute a “graceful termination” procedure, which must end
with a Delete Process (DLPC$) request.

The CX$FPP option (cxo argument) allows a process using FP-11 floating-point instructions to
have the contents of the floating-point processor registers saved and restored when it is context
switched. (If the option is specified either in a target environment that does not support the
FP-11 instruction set or for a process that does not use those instructions, the PCB will be
larger than necessary in either case, and needless overhead will be incurred in the latter case.)

The CX$MCX option, the cxl argument, and the ini argument collectively allow a process to
have a single location in its data space added to its switched context. (This feature is required
by the MicroPower/Pascal compiler.)

The CX$KT option causes the mapping registers to be saved during context switch-outs, allowing
a process with privileged, driver, or device-access mapping to modify its mapping through direct
1/0 page access. This option is meaningless in an unmapped system; it incurs needless overhead
if, in a mapped environment, it is applied to a process that does not modify its mapping or
does so by means of the MAPW$ and UMAP$ primitives.

The kernel places guard words (special values) in the stl and sth locations and tests those
guard words during context switch-ins. Modification of either the lower or the upper boundary
location will cause a range exception of type EX$RAN, code ES$STO or ES$STU.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:

ES$IAD Invalid address; one of the specified address arguments is not on a word boundary or
is not in the appropriate address space. (The address is checked only if the CHECK
option is selected in the configuration file.)

ES$NMK Insufficient space for kernel structure; could not allocate the required PCB.

ES$SNI  Structure name already in use; a kernel structure already exists with the specified
name.

MACRO-11 Primitive Service Requests 3-39



3.11 CRSRS (Create Shared Region)
Pascal equivalent: CREATE_SHARED_REGION Procedure

The Create Shared Region (CRSR$) primitive allows the calling process to declare a region of
memory to be shareable by other static processes and to assign a systemwide run-time name
to the region. More precisely, the CRSR$ primitive creates a named kernel data structure,
called a shared region descriptor (SRD), that describes the memory region specified by the
caller. Subsequently, other processes can gain access to the shared region through the ACSR$
primitive, by means of the run-time name associated with the SRD.

Note

The CRSR$ primitive is relevant primarily to a mapped memory environment
and is described in terms of a mapped application except where indicated
otherwise.

A shared region can be either a shared common region or a shared physical region. A common
region is one that exists within the caller’s statically allocated address space; the location of a
shared common region is therefore completely determined by the process declaring it as shared.
A physical region is one that was dynamically allocated from unused physical memory by an
Allocate Region (ALRGS) operation. Thus, the location of a shared physical region is initially
determined by the ALRGS$ primitive. See Chapter 5 for a general discussion of common versus
physical regions.

Whether common or physical, the region to be made shareable is identified by a region ID
block (RIB) in user space that is pointed to in the call. The RIB specifies the region’s location,
size, and mode attribute. The location, or base, of a common region is specified as a virtual
address, the size is specified in bytes, and the mode attribute is “common” (RA$COM). The
information describing a common region is placed in the RIB by the user process. (The primitive
modifies the information supplied in the caller’s RIB for a common region, replacing the virtual
description with a physical description, as described under Semantics.)

The base of a physical region is specified as a physical PAR value, the size is specified in PAR
ticks (32-word units), and the mode attribute is “physical” (RA$PHY). Normally, the information
in the RIB for a physical region is precisely that returned by the prior ALRG$ call that allocated
the region.

Although region sharing through the kernel applies primarily to a mapped target environment,
the CRSR$ primitive can be useful in an unmapped application containing more than one user
static process. (Because of the single address space in an unmapped system, however, generally
no advantage is gained from having multiple user static processes.) Coding details differ for
unmapped usage, since there is no distinction between virtual and physical addresses. The
RIB always specifies the base of a region directly as a physical address, and the region size is
represented in bytes. Therefore, the distinction between common and physical regions is not
significant for unmapped shared-region creation, although the RA$COM and RA$PHY mode
attributes are recognized and applied to the SRD and should be used consistently.

Chapter 5 contains a general discussion of dynamic RAM allocation and region sharing, including
the use of CRSR$ in the context of the related primitives ACSR$, ALRG$, DLRG$, DLSRS,
MAPWS$, and UMAP$. The ACSR$ primitive provides the complementary Access Shared Region
operation, which returns RIB information based on a specified shared region name.
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Syntax

The three variants of the CRSR$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant Macro Call

CRSR$ CRSR$ [area,sdb,rib]
CRSR$S CRSR$S [sdb,rib]
CRSR$P CRSR$P [sdb,rib]
area

The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=] arg-blk-address

sdb

The address of the user-constructed structure descriptor block (SDB) containing the name of
the shared region to be created (that is, the name to be associated with the corresponding
kernel SRD structure) and in which the kernel returns information identifying the SRD. See
Section 3.1.5 for the format and use of an SDB. This argument has the form:

[SDB=]sdb-address

rib
The address of a 4-word (RI.SIZ bytes) area in user memory, the region ID block, containing
the location, size, and mode attribute of the region to be made shareable, as described
under Semantics. In a mapped environment, the region base, size, and offset fields of a RIB

for a common region are modified by the primitive; that is, the RIB is both a source and
destination parameter in the mapped common case. This argument has the form:

[RIB=]area-address

Restrictions

This primitive may be used only at process level; that is, it may not be called from an ISR fork
routine.

Argument Block

The calling argument block generated (or assumed to exist) by the CRSR$x macro has the
following format:

RO—» SDB address (pointer)
RIB address " (pointer)
MLO-447-87
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Syntax Example
SRARGS:  CRSR$P sdb=SRG8KB,rib=8KBREG

This assembly-time, parameters-only ($P) form of the macro call constructs a calling argument
block for run-time reference. The call sets up, at location SRARGS, a pointer to the structure
descriptor block SRG8KB containing the name to be assigned to the shared region and a pointer
to the region ID block 8KBREG that will describe the region to be made shareable. The argument
block, in read-only memory, can be used in a run-time call of the form:

CRSR$ SRARGS

Semantics

The CRSR$ primitive creates a shared region descriptor (SRD) in the kernel’s system-common
area, using the region base and size information specified in the caller's RIB. The primitive
associates the name specified in the caller's SDB with the SRD structure and returns the
structure index and serial number in the SDB. In a mapped environment, if the region mode
indicated in the RIB is common (RA$COM), the virtual base and size values supplied in the
RIB are converted to a “nearest” physical PAR value and a number of PAR ticks, respectively.
The primitive also generates a region-offset value indicating the positive displacement, if any,
of the common region base from the calculated PAR value.

For a physical region, no transformation of information between the RIB and the SRD is required,
since the values in the RIB are already in the -appropriate form.

The information in the user’s RIB area prior to the call must be in the following form, assuming
a mapped environment:

Physical/Common

rib—- region base PAR value/virtual address
region size PAR ticks/no. of bytes
reserved mode RASPHY/RA$COM
region offset (ignored)
MLO-425-87

The offset and size symbols defined for the RIB fields are:

RI.LADD Region base

RI.LEN Region size

RLATR Region mode (attribute byte)
RLRES Reserved (high byte)
RI.OFF Region offset

RI.SIZ RIB size in bytes
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The RIBDF$ macro in the MicroPower /Pascal COMU and COMM system macro libraries defines
these symbols.

On return from the primitive, the RIB for a physical region is unmodified, and the RIB for
a common region contains the converted base and size values and the generated offset value
already described.

In an unmapped environment, the region base is a physical address, and the region size is an
integer representing a number of bytes, as for a mapped common region. The region mode may
be either RA$PHY or RA$COM, denoting a physical or common region, although no effective
distinction exists between the two in the unmapped case. (The values of the RA$xxx mode
symbols are defined by the RIBDF$ macro.)

The last word of the RIB, the region-offset field, is not relevant as input to CRSR$. The field is
significant only in shared-common-region mapping operations. Effectively, the offset field value
is assumed to be 0 for all operations on mapped physical regions as well as for all unmapped
operations.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:

ES$IAD Invalid address; the RIB address is not on a word boundary.
ES$NMK Insufficient space for kernel structure; the SRD could not be created.

ES$SNI  Structure name in use; a kernel structure already exists with the name specified for
the region/SRD. (This error return could be caused by an invalid SDB address.)

Implementation Notes

After modification by CRSR$, the caller’s RIB for a shared common region contains exactly
the same information that would be returned by the Access Shared Region (ACSR$) primitive.
Thus, if any process in the same static process family as the creator needed to map a window
to the region, the creator’s RIB could be used as input to MAPW$ without the need for a call
to ACSR$. For example, if the mapping of a sibling dynamic process has diverged from that of
the creating process with respect to the region (but not with respect to the RIB) the same RIB
can be used by the sibling for remapping.
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3.12 CRSTS (Create Structure)

CREATE_BINARY_SEMAPHORE Function
CREATE_COUNTING _SEMAPHORE Function
CREATE_QUEUE_SEMAPHORE Function
CREATE__RING _BUFFER Function

The Create Structure (CRST$) primitive creates a semaphore, ring buffer, or unformatted
structure in system-common memory. The typed data structures, which include binary and
counting semaphores, queue semaphores, and ring buffers, are defined by the kernel and
described in Section 2.2.1.

Pascal equivalents:

If the structure is successfully created, the primitive returns the kernel-defined value TRUE in
RO. If the structure cannot be created, because of lack of free system memory, the primitive
returns the kernel-defined value FALSE in RO.

The CRST$ primitive permits a process to create named structures intended for interprocess
synchronization and communication. These structures can be operated on in a controlled and
reliable fashion through the use of other primitives. See also the CRLN$ and CRSR$ primitives
concerning logical-name and shared-region structure creation.

Syntax

The three variants of the CRST$ macro and their respective macro calls are listed below. The
differences are described in Section 3.1.

Variant Macro Call

CRST$ CRST$ [area,sdb,styp,satr,value]
CRST$S CRST$S [sdb,styp,satr,value]
CRSTS$P CRST$P [sdb,styp,satr,value]
area

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=] arg-blk-address

sdb
The address of the user-constructed structure descriptor block (SDB) containing the name, if
any, of the structure to be created and in which the kernel returns information identifying
the structure. (See Section 3.1.5 for the format and use of an SDB.) This argument has the
form:

[SDB=] sdb-address

styp )
The type of structure to be created, as indicated by a predefined symbol. The valid
structure-type symbols for a CRST$ call are:

ST.BSM—Binary semaphore
ST.CSM—Counting semaphore
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ST.QSM—CQueue semaphore
ST.RBF—Ring buffer
ST.UDF—Unformatted structure

The symbol values are defined by the QUEDF$ macro in the COMM and COMU system
macro libraries. This argument has the form:

[STYP=] type-symbol

satr
The ordering attributes, as indicated by predefined bit-mask symbols, for any formatted
structure and the access attributes for a ring buffer. The ordering attribute symbols are:
SA$OFF—FIFO ordering or
SA$OPR—Priority ordering of:

1. The waiting process list of a binary, counting, or queue semaphore

2. The waiting output-process list of a ring buffer (processes waiting to get an element)

SA$IFF—FIFO ordering or
SAS$IPR—Priority ordering of:

1. The queue of packets in a queue semaphore
2. The waiting input-process list of a ring buffer (processes waiting to put an element)

The access attributes apply only to a ring buffer and affect the operation of the
PELM$/PELC$ primitives (input access) and the GELM$/GELC$ primitives (output access).
The access attributes are:

SA$RIR—Record-oriented input access

SA$RIS—Stream-oriented input access

SA$ROR——Record-oriented output access

SA