
MicroPower /Pascal Run-Time
Services Manual

Order No. AA-M391 D-TK

... ' ~ :~ .

June 1987

MicroPower /Pascal Run-Time
Services Manual

Order No. AA-M391 D-TK

This manual contains the run-time services information required for designing and
developing MicroPower /Pascal microcomputer application prograrns. Run-time ser
vices include kernel processing of primitive requests, interrupts, exceptions, and clock
services.

This manual also describes the configuration file macros required for building a target
memory image.

1;

This manual supersedes the MicroPower/Pascal Run- Time Services Manual, AA-M391 C-TK.

Operating System and Version: Micro/RSX Version 3.0
RSX-11 M Version 4.2
RSX-11 M-PLUS Version 3.0
RT-11 Version 5.2
VAX/VMS Version 4.0

Software Version: MicroPower/Pascal-Micro/RSX Version 2.4
MicroPower /Pascal-RSX Version 2 .4
Micro Power /Pascal-RT Version 2 .4
MicroPower/Pascal-VMS Version 2.4

Digital Equipment Corporation Maynard, Massachu-setts

First Printing, February 1982
Updated, June 1982
Updated, October 1982
Updated, February 1983
Revised, July 1983
Updated, February 1984
Revised, June 1985
Updated, April 1986
Updated, October 1986
Revised, June 1987

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1982,1983,1984,1985,1986,1987 by Digital Equipment Corporation

All Rights Reserved.

The READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist in: preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DECmate
DECUS
DECwriter
DIBOL
MASS BUS
MicroPower /Pascal

PDP
P/OS
Professional
Rainbow
RSTS
RSX
RT

UNIBUS
VAX
VMS
VT
Work Processor

t!JDrnDDElU
ML-S692

This document was prepared using an in-house documentation production system. All page
composition and make-up was performed by TEX, the typesetting system developed by Donald
E. Knuth at Stanford University. TEX is a trademark of the American Mathematical Society.

Contents

Preface xi

Chapter 1 Introduction

1.1 The MicroPower/Pascal Run-Time System 1-2
1.2 Kernel Organization ... 1-2

1.2.1 Overview of Primitive Services 1-3
1.2.1.1 Process-Management Primitives 1-4
1.2.1.2 Resource-Management Primitives 1-5
1.2.1.3 Process-Synchronization Primitives 1-6
1.2.1.4 Message-Transmission Plus Synchronization Primitives 1-7
1.2.1.5 Ring Buffer Primitives . 1-10
1.2.1.6 Exception-Processing Primitives 1-11
1.2.1.7 Interrupt-Management Primitives ,. 1-12

1.3 Overview of System Processes 1-12
1.4 Resident Shared Libraries ... 1-13

Chapter 2 Processes and System Data Structures

2.1 Processes .. 2-1
2.1.1 Static and Dynamic Processes 2-2
2.1.2 Process Names .. 2-6
2.1.3 Process' States ... 2-7

2.1.3.1 Process State Codes and State Code Modifiers 2-10
2.1.3.2 State Queues 2-11

2.1.4 Process Scheduling 2-12
2.1.4.1 Process Preemption 2-12
2.1.4.2 Process Blocking and Unblocking 2-12
2.1.4.3 Process·Suspension 2-14
2.1.4.4 Exception Handling 2-15
2.1.4.5 Scheduler ... 2-16

iii

2.1.5 Process Control Block (PCB) · 2-17
2.1.6 Memory Partitioning and Process/Program Segmentation 2-22
2.1.7 Process Mapping Types 2-25

2.2 System Data Structures . 2-34
2.2.1 Typed Data Structures 2-35

2.2.1.1 Structure Names and Name Blocks 2-35
2.2.1.2 Structure Header 2-36
2.2.1.3 Binary Semaphore Definition . 2-38
2.2.1.4 Counting Semaphore Definition 2-38
2.2.1.5 Queue Semaphore Definition 2-39
2.2.1.6 Ring Buffer Definition 2-40
2.2.1.7 Shared Region Descriptor Definition 2-42
2.2.1.8 Logical-Name Structure Definition 2-43
2.2.1.9 Unformatted Structure Definition 2-44

2.2.2 Message Packets 2-44
2.2.3 System Queues ... 2-45

2.2.3.1 Singly-Linked Lists 2-45
2.2.3.2 Doubly-Linked Lists 2-46

2.2.4 Kernel Data Segment Organization 2-47

Chapter 3 MACRO- 11 Primitive Service Requests

3.1 General Conventions and Usage Rules 3-1
3.1.1 Macro Variant prim$ 3-2
3.1.2 Macro Variant prim$S 3-4
3.1.3 Macro Variant prim$P 3-4
3.1.4 Error Returns .. 3-5
3.1.5 Structure Descriptor Block (SDB) Usage 3-6

3.1.5.1 Initialization of SDBs for Named Structures 3-8
3.1.5.2 Initialization of SDBs for Unnamed Structures 3-8
3.1.5.3 Implicit Translation of Logical Names 3-8

3.1.6 Process Descriptor Block (PDB) Usage 3-10
3.2 ACSR$ (Access Shared Region) 3-12
3.3 ALPC$ (Conditionally Allocate Packet) 3-16
3.4 ALPK$ (Allocate Packet) ... 3-18
3.5 ALRG$ (Allocate Region) ... 3-20
3.6 CCND$ (Connect to Exception Condition) 3-23
3.7 CHGP$ (Change Process Priority) 3-26
3.8 CINT$ (Connect to Interrupt) 3-28
3.9 CRLN$ (Create Logical Name) 3-32
3.10 CRPC$ (Create Process) .. 3-35
3.11 CRSR$ (Create Shared Region) 3-40

iv

3.12 CRST$ (Create Structure) ... 3-44
3.13 DAPK$ (Deallocate Packet) .. 3-47
3.14 DEXC$ (Dismiss Exception Condition) 3-49
3.15 DFSPC$ (Define Static Process) 3-51
3.16 DINT$ (Disconnect from Interrupt) 3-55
3.17 DLLN$ (Delete Logical Name) 3-57
3.18 DLPC$ (Delete Process) .. 3-59
3.19 DLRG$ (Deallocate Region) 3-60
3.20 DLSR$ (Delete Shared Region) . 3-63
3.21 DLST$ (Delete Structure) ... 3-65
3.22 FORK$ (Fork Processing) ... 3-67
3.23 GELA$ (Get Element Any) 3-69
3.24 GELC$ (Conditional Get Element) 3-74
3.25 GELM$ (Get Element) ... 3-77
3.26 GMAP$ (Get Mapping) 3-80
3.27 GTIM$ (Get Time) ... 3-83
3.28 GTST$ (Get Process State) .. 3-86
3.29 GVAL$ (Return Structure Value) 3-88
3.30 IMPUR$ (Define an Impure-Data Program Section) 3-92
3.31 MAPW$ (Map Window) 3-93
3.32 POAT$ (Define a Pure-Data Program Section) 3-100
3.33 PELC$ (Conditional Put Element) 3-101
3.34 PELM$ (Put Element) . 3-104
3.35 PURE$ ([)efine a Pure-Code Program Section) . 3-107
3.36 PWFL$ (Powerfail Detection) 3-108
3.37 P7SYS$ (Enter Normal ISR State) 3-110
3.38 RBUF$ (Reset Ring Buffer) . 3-111
3.39 RCTX$ (Restore Context) .. 3-113
3.40 RCVA$ (Receive Any Data) . 3-115
3.41 RCVC$ (Conditional Receive Data) 3-120
3.42 RCVD$ (Receive Data) .. 3-125
3.43 REXC$ (Report Exception) 3-129
3.44 RSUM$ (Resume Process) 3-132
3.45 SALL$ (Signal All Waiters) ; 3-134
3.46 SCHD$ (Schedule Process) 3-136
3.47 SCTX$ (Save Context) .. 3-137
3.48 SEND$ (Send Data) ... 3-139
3.49 SERA$ (Set Exception Routine Address) 3-144
3.50 SGLC$ (Conditionally Signal Semaphore) 3-146
3.51 SGLQ$ (Signal Queue Semaphore) 3-148
3.52 SGNL$ (Signal Semaphore) 3-150
3.53 SGQC$ (Conditionally Signal Queue Semaphore) 3-152

v

3.54 SLEP$ (Sleep) ... 3-154
3.55 SNDC$ (Conditional Send Data) 3-157
3.56 SPND$ (Suspend Process) 3-161
3.57 SSFA$ (Set Stop Flag Address) 3-163
3.58 STIM$ (Set Time) ... 3-165
3.59 STPC$ (Stop Process) .. 3-167
3.60 TRLN$ (Translate Logical Name) 3-169
3.61 UMAP$ (Unmap Window) 3-172
3.62 WAIA$ (Wait on Any Semaphore) 3-175
3.63 WAIC$ (Conditionally Wait on Semaphore) 3-179
3.64 WAIQ$ (Wait on Queue Semaphore) 3-181
3.65 WAIT$ (Wait on Semaphore) 3-184
3.66 WAQA$ (Wait on Any Queue Semaphore) 3-186
3.67 WAQC$ (Conditional Wait on Queue Semaphore) 3-190

Chapter 4 System Configuration Macros

4.1 Functions of the Configuration File 4-2
4.2 Prototype Configuration Files CFDxxx.MAC 4-3
4.3 Configuration Macro Calls ... 4-4

4.3.1 CONFIGURATION Macro 4-4
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9
4.3.10
4.3.11
4.3.12
4.3.13

DEVICES Macro 4-4
ENDCFG Macro 4-5
FALCON Macro 4-6
KXJllC Macro ... 4-8
KXTl 1 C Macro 4-9
LOGICAL Macro . 4-11
MEMORY Macro .. 4-11
PRIMITIVES Macro . 4-15
PROCESSOR Macro 4-16
RESOURCES Macro 4-19
SYSTEM Macro , 4-21
TRAPS Macro .. 4-23

vi

Chapter 5 Dynamic RAM Allocation and Region Sharing

5.1 Definition of Terms .. 5-2
5.2 Region ID Block (RIB) .. 5-3

5.2.1 RIB Definition ... 5-3
5.2.2 Relationship to Primitive Operations 5-4
5.2.3 Form and Use of RIB Content 5-5

5.2.3.1 For Physical Regions 5-5
5.2.3.2 For Mapped Shared Common Regions 5-6

5.3 Dynamic Region Allocation and Use 5-6
5.3.1 Free-RAM List ... 5-7
5.3.2 Creation of Shared Regions at Build Time 5-8
5.3.3 Syntax of Relevant Pascal Requests 5-8
5.3.4 Coding Examples ... 5-9

5.3.4.1 Unshared Use of a Physical Region 5-10
5.3.4.2 Shared Use of a Physical Region 5-11

5.4 Shared Common Region Allocation and Use 5-13
5.4.1 Syntax of Additional Relevant Pascal Request 5-13
5.4.2 Shared Common Region Coding Example 5-13
5.4.3 Virtual Array Coding Example 5-16

Chapter 6 Exception Processing

6.1 Exception Types and Codes ; . 6-2
6.2 Reporting Exceptions ... 6-9

6.2.1 Deriving an Exception-Type Bit Mask in MACR0-11 6-10
6.2.2 Deriving an Exception-Type Set Value in Pascal 6-11

6.3 Exception Dispatching . 6-11
6.4 Exception Handling ... 6-13

6.4.1 Exception-Handling Processes 6-13
6.4.2 Exception Service Routines and Procedures 6-16

6.4.2.1 Exception Routines in MACR0-11 6-16
6.4.2.2 Exception Procedures in Pascal 6-17

6.5 Exception Stack Frames .. 6-18
6.5.1 General Stack Frame Format 6-18
6.5 .2 Argument Lists for Software Exceptions . 6-19
6.5.3 Argument Lists for Hardware Exceptions 6-19
6.5.4 Special Cases of MMU-Fault Exception Processing 6-21

vii

Chapter 7 Interrupt Dispatching and Interrupt Service Routines

7.1 Device Interrupts and Device Driver Functions . 7-1
7.2 Interrupt Service Routine .. 7-2
7.3 ISRs and Interrupt Dispatching 7-3

7.3.1 Interrupt Dispatch Block (IDB) 7-3
7.3.2 Kernel Interrupt Dispatcher 7-5
7.3.3 Establishing the Interrupt-to-JSR Interface 7-6

7.3.3.1 Allocating IDBs and Setting Vectors 7-6
7.3.3.2 Initializing IDBs During Start-Up 7-6
7.3.3.3 Connecting Interrupts to ISRs 7-7

7.4 Entering and Executing ISRs .. 7-8
7.4.1 Entering and Executing Normal ISRs 7-8
7.4.2 Entering and Executing Priority-7 ISRs 7-9
7.4.3 Fork Routine .. 7-9
7.4.4 Dismissing an Interrupt 7-13

7.5 Kernel Interrupt Exit Processing 7-14
7.6 Pascal Language ISR Interface 7-14

Appendix A Scheduling Hierarchy and Recommended Process
Priorities

A.l Priority Scheduling Hierarchy A-1
A.2 Recommended Process Priorities A-2

Appendix B MACRO-11 Subroutine Calling Conventions

B.l Normal MicroPower/Pascal Subroutine Calling Conventions B-1
B.2 Standard PDP-11 (SEQll) Subroutine Calling Conventions B-3

Index

Examples
7-1 Kernel Clock ISR and Fork Routine . 7-11

viii

Figures
2-1 Process State Transitions 2-9
2-2 Process Control Block (PCB) 2-18
2-3 ROM/RAM Physical Memory Layout 2-23
2-4 RAM-Only Physical Memory Layout 2-24
2-5 Kernel Mapping .. 2-27
2-6 General Process Mapping 2-28
2-7 Device-Access Process Mapping 2-29
2-8 Driver Memory Mapping 2-30
2-9 Privileged Process Mapping 2-31
2-10 Interrupt Service Routine Mapping 2-32
2-11 Supervisor-Mode Shared-Library Mapping 2-33
2-12 System Queue Structures 2-46
2-13 Free-Memory Pool .. 2-48
3-1 SEND$/SNDC$ Packet Format _ 3-142
5-1 Linked List of Free-RAM Segments 5-7
6-1 Kernel Exception Dispatching 6-13
6-2 Exception Stack Frame Format 6-18

Tables
2-1 PCB Field Descriptions 2-19
4-1 Configuration Macro Functions . 4-1
6-1 Exception Types and Codes . 6-3

ix

Preface

This manual contains the run-time services information required for designing and developing
Micro Power /Pascal microcomputer application programs. Run-time services include kernel
processing of primitive requests, interrupts, exceptions, and clock services.

This manual also describes the configuration file macros required for building a target memory
image.

Structure of This Document
Seven chapters and two appendixes make up this manual, as follows:

•

•

•

•

•

•

•

Chapter 1 presents an overview of the MicroPower/Pascal run-time system. Kernel
organization is described in general terms, including an overview of primitive services
and system processes.

Chapter 2 describes MicroPower /Pascal processes and system data structures. You must
read and understand this information before attempting to write application code using the
run-time services described in the remainder of this manual.

Chapter 3 gives detailed descriptions for each of the MACR0-11 primitive service
requests. Primitive services provided by the MicroPower /Pascal kernel are also accessible
to applications written in Pascal. See the MicroPower /Pascal Language Guide for details on
issuing kernel primitive requests in Pascal programs.

Chapter 4 provides complete user information for the configuration macros required for
building a kernel and memory image file. Information is provided for both Pascal and
MACR0-11 users.

Chapter 5 describes the dynamic-RAM allocation and mapping services that are available
to both the Pascal and MACR0-11 user.

Chapter 6 describes MicroPower/Pascal exception processing. (Exceptions are hardware or
software errors or traps that may occur when application programs are executed or debugged
on the target system in the real-time environment.)

Chapter 7 describes kernel interrupt dispatching, interrupt service routines (ISRs), and fork
routines.

xi

• Appendix A describes the scheduling-priority hierarchy throughout a MicroPower/Pascal
application.

• Appendix B explains how to interface subroutines written in MACR0-11 with Pascal
programs.

Intended Audience
The content of this manual is based on the assumption that you are familiar with either Pascal
or MACR0-11. All MicroPower /Pascal microcomputer software development is done with one
or both of those development languages. Additional run-time services reference information for
writing applications in Pascal is contained in the MicroPower /Pascal Language Guide.

Conventions Used in This Document
The following conventions are used in this 'tiocument:

• Pascal-reserved words that must not be abbreviated are shown in uppercase characters
in syntax examples. Within those examples, lowercase characters are used for variable
parameters (or other syntax elements) that you may choose for your application.

• Optional parameters and syntax are shown within brackets ([]). This document convention
is used mainly in Chapter 3 for kernel primitive parameters. Before considering any
parameters optional, carefully read Section 3.1.l, which describes the general form and
usage rules for the prim$ macro variant.

• In this manual, some MACR0-11 syntax examples are shown with long macro invocations
continued on a second line-for example, the CRP$ and DFSPC$ macro calls. However,
when writing source code in MACR0-11, you must keep each macro invocation on a single
line.

• In this manual, the numeric values for symbols for data structure sizes, offsets, and so forth,
are subject to change. Therefore, use symbol names rather than numeric values for system
data structure components.

Associated Documents
The following software documentation is required for complete reference purposes:

• MicroPower /Pascal document set

• Standard documentation for your host operating system

You will also need the following hardware reference documentation to configure your target
(application) hardware correctly, to use the standard device drivers, or to write device drivers
that are hardware- and software-compatible with other system components:

• Microcomputer handbooks

•

Microcomputers and Memories

Microcomputer Interfaces Handbook

M8063 Falcon SBC-11/21 Single-Board Computer User's Guide (required when developing
SBC-11/21 applications)

xii

• SBC-11/21-PLUS Single-Board Computer User's Guide (required when developing SBC-
11/21-PLUS applications)

• KX/11-CA Single-Board Computer User's Guide (required when developing KXJll-CA
applications)

• KXT11-CA Single-Board Computer User's Guide (required when developing KXJll-CA
applications)

• DPV11 Serial Synchronous Interface Technical Manual (required when developing applications
that use DPVll communications hardware)

• LSl-11 Analog System User's Guide (required when developing applications that use the
ADVll-C, AAVll-C, AXVll-C, or KWVll-C analog 1/0 boards)

• MSCP Basic Disk Functions Manual (required when developing applications that use MSCP
disk-class devices)

• Additional hardware documentation for microcomputer hardware presently not covered in
the microcomputer handbooks

xiii

Chapter l
Introduction

This manual describes the organization of the MicroPower/Pascal run-time system and the
services that the MicroPower/Pascal kernel provides for user programs. The explicit, user
requested services provided by the kernel are the real-time primitive operations, described in
Chapter 3. (Standard device-1/0 services, file system services, and communications support are
provided by system processes and are described in the MicroPower /Pascal I/ 0 Services Manual.)
Implicit services provided by the kernel include process scheduling (Chapter 2), trap/exception
processing (Chapter 6), and interrupt dispatching (Chapter 7).

Chapter 2 provides an overview of the process/kernel relationship. The chapter discusses
the dynamic characteristics of a MicroPower /Pascal concurrent process and gives a detailed
description of process states, scheduling, and the effects of process-mapping type in a mapped
environment. Chapter 2 also describes the system data structures the kernel uses to implement
primitive operations. Chapter 4 describes the system configuration macros used at build
time to determine the application's run-time environment. Other chapters provide supporting
information.

Other manuals in the MicroPower/Pascal documentation set focus on the Pascal user and
provide only Pascal-oriented descriptions. Much of the information in this manual is applicable
to both Pascal and MACR0-11 users; wherever possible, concepts are explained in terms of
both Pascal and MACRO language constructs.

However, some of the information (particularly Chapter 3, which describes MACR0-11 primitive
service requests) is pertinent only to MACR0-11 programmers. Analogous information for Pascal
programmers is provided primarily in Part II of the MicroPower /Pascal Language Guide.

Introduction 1-1

1. 1 The MicroPower/Pascal Run-Time System
The MicroPower/Pascal run-time system is the collection of DIGITAL-supplied software that
resides in the target system and provides the execution-time environment for application
programs. The run-time system consists of the MicroPower/Pascal kernel, numerous system
level processes, and, optionally, a resident, shared library.

The kernel provides the set of basic operations, called primitives, that are required for concurrent
programming. These primitives implement, for example, process creation and deletion, process
synchronization, and interprocess communication. The system processes basically provide 1/0
support. Optionally, you can build a run-time shared library containing common code that
would otherwise be duplicated in several or many processes' physical address space. Typically,
the library would contain Pascal OTS routines but could be used for processes implemented
in MACR0-11 as well. Such a library may be used to achieve optimal memory utilization in
some target environments.

User programs obtain primitive services by invoking appropriate kernel routines through a
service request interface provided for both Pascal and MACR0-11 programming. The kernel also
performs implicit functions, such as process scheduling, interrupt dispatching, and trap/exception
dispatching, which are largely transparent to user programs. The kernel is modular; when you
build the application, you can tailor the kernel to match both the target hardware configuration
and the primitive service requirements of the application processes.

The DIGITAL-supplied system processes provide device-handling services for commonly used
1/0 devices and device interfaces, file system support, and network or local communications
support. Application processes written in MACR0-11 obtain these services by using queue
semaphore primitives to send request messages to the appropriate system process. Pascal
implemented processes normally obtain the same services through various Pascal 1/0 statements.
The system processes are included in the target system during system building on an individual,
as-needed basis.

1.2 Kernel Organization
The MicroPower /Pascal kernel consists of many small program modules with well-defined
functions and interfaces. The highly structured character of the kernel not only makes it easier
to configure, maintain, and modify but also allows a great deal of common code to be used in
kernels for different hardware environments-for example, mapped versus unmapped systems.
(The common code contributes significantly to kernel reliability.) Among the many kernel
modules, however, six major functional components can be distinguished:

• The scheduler, which allocates the CPU to processes, according to priority, on an event
driven, preemptive basis

• The primitive service routines-the many modules that implement the individual primitive
operations requested by processes

• The primitive dispatcher, which receives all primitive service requests and passes control to
the appropriate primitive service module

• The interrupt dispatcher, which receives all device interrupts and passes control to
appropriate service routines, providing the necessary entry and exit processing

1-2 Introduction

• The trap handler/exception dispatcher, which receives all exception conditions-actual and
simulated processor. traps-and transfers control as required for handling the exception

• The system-initialization routine, which initializes kernel data structures and installs static
processes at start-up /restart time

The primitive service modules constitute by far the largest kernel component. This component
is configurable, however; only those primitives used in a given application system need to
be included in the kernel for that system. The remaining components, along with other
miscellaneous functions and common kernel subroutines, constitute the mandatory kernel core.

1.2. 1 Overview of Primitive Services

The primitive service component supplies approximately 60 primitive operations for concurrent
programming. Most of those primitives can be grouped into 10 major categories, as follows:

• Process management-Creation, deletion, suspension, resumption, and forced termination
of processes.

• Resource management-Creation and deletion of data structures, such as semaphores and
ring buffers, and allocation and deallocation of message packets.

• Process synchronization-Synchronization of cooperating processes by means of Signal and
Wait operations on binary and counting semaphores.

• Message transmission and synchronization-Interprocess communication through operations
on queue semaphores and combinations of packet queuing/dequeuing and Signal and Wait
operations.

• Ring buffer management-Variable-length data transfers between processes, through ring
buffers, without the need for close synchronization between putters and getters.

• Exception management-Control of hardware and software exception-condition dispatching
to an appropriate exception-handling process or exception service routine and reporting of
a software exception by a process. (The hardware-deteded events reported by processor
traps other than IOT or power-fail constitute the MicroPower/Pascal hardware exceptions.)

• Interrupt management-Control of interrupt dispatching; used only by processes that
manage an I/ 0 device.

• Timer services-Control of system time and process "sleeping" for a desired time.

• Dynamic region allocation and management (DRAM)-Acquisition of unused regions of
memory, sharing of a region of memory with another process, and the mapping operations
connected 'With the use of those regions.

• Logical-name services-Creation, translation, and deletion of logical names.

Primitives are described briefly in the following subsections. Chapter 3 contains complete
descriptions for the MACR0-11 programmer. See Part II of the MicroPower/Pascal Language
Guide for a description of the Pascal primitive service request interface. (Several process
management services are transparent, or implicit, in Pascal programming; the primitives are
invoked automatically when required rather than by explicit service requests. These few
differences between MACRO and Pascal usage are indicated in the next subsection.)

Introduction 1-3

Note
Several assembly-time macros_;_Define Static Process (DFSPC$), Define a Pure
Program Instruction Section (PURE$), Define a Pure Program Data ,Section
(PDAT$), and Define an Impure Program Data Section (IMPUR$)-are defined in
Chapter 3 for MACR0-11 programming convenience. Chapter 3 also describes
two special kernel services, used only in interrupt service routines, that are
not implemented as primitive operations. The two kernel services are Fork
Processing (FORK$) and Enter Normal ISR State (P7SYS$).

1.2.1.1 Process-Management Primitives

This category of primitives contains the following:

• Create Process-Lets an existing process create a new process dynamically and cause it
to be scheduled for execution. In Pascal, invocation of this primitive is implicit in a
process-invocation statement.

MACR0-11 service request name: CRPC$

Pascal equivalent: Process invocation statement

• Delete Process-Lets a process delete itself from the system; the only valid way in which
a process can terminate. In Pascal, invocation of this primitive is implicit if control flow
reaches the end of the level-0 block for a static process or the end of a PROCESS declaration
block for a dynamic process.

MACR0-11 service request name: DLPC$

Pascal equivalent: None

• Suspend Process-Lets a process suspend another active process or itself. Once suspended,
a process remains in that state, ineligible for execution, until it is resumed by another
process.

MACR0-11 service request name: SPND$

Pascal equivalent: SUSPEND function

• Resume Process-Lets a process reactivate another suspended process.

MACR0-11 service request name: RSUM$

Pascal equivalent: RESUME function

• Stop Process-Lets one process force another process or itself to execute its termination
routine or (Pascal) TERMINATE procedure. (The "stopped" process must delete itself to go
away.)

MACR0-11 service request name: STPC$

Pascal equivalent: STOP procedure

• Get Process Status-Lets one process obtain information about the status of either itself or
another process.

MACR0-11 service request name: GTST$

Pascal equivalent: GET_STATE procedure

1-4 Introduction

•

•

Change Process Priority-Lets a process modify its own or another process's scheduling
priority. Normally, this primitive is used to lower priority from a very high start-up value
used only for initialization code. (In Pascal, the INITIALIZE procedure attribute indirectly
serves this purpose.)

MACR0-11 service request name: CHGP$

Pascal equivalent: CHANGE_pRJORITY procedure

Schedule Process-Lets a process relinquish control of the CPU to another process of equal
priority, if one is ready to execute.

MACR0-11 service request name: SCHD$

Pascal equivalent: SCHEDULE procedure

• Define Stop Flag Address-Lets a process defer the effect of a Stop Process request issued
by another process.

MACR0-11 service request name: SSF A$

Pascal equivalent: DEFINE_STOPJLAG procedure

1.2. 1.2 Resource-Management Primitives

This category of primitives contains the following:

• Create Structure-Creates a system data structure (a semaphore, ring buffer, or unformatted
structure) in kernel data space.

MACR0-11 service request name: CRST$

{

CREATE_BINARY_SEMAPHORE function }
- Pascal equivalents: CREATE_COUNTING_SEMAPHORE function

CREATE_QUEUE_SEMAPHORE function
CREATE_RING_BUFFER function

• Delete Structure-Deletes a system data structure.

•

MACR0-11 service request name: DLST$

Pascal equivalent: DESTROY procedure

Get Structure Value-Obtains the characteristics (for example, type) and value of a system
data structure.

MACR0-11 service request name: GV AL$

Pascal equivalent: GET_ VALUE procedure

• Allocate Packet-Obtains an empty message packet from the kernel's free-packet pool
(returns a pointer).

MACR0-11 service request name: ALPK$

Pascal equivalent: ALLOCATE_p ACKET procedure

Introduction 1-5

• Conditionally Allocate Packet-Obtains an empty message packet from the kernel's free
packet pool but does not block the process if no packets are available.

MACR0-11 service request name: ALPC$

Pascal equivalent: COND-ALLOCATE_P ACKET function

• Deallocate Packet-Returns a message packet to the kernel's free-packet pool, thus freeing
the packet for reuse.

MACR0-11 service request name: DAPK$

Pascal equivalent: DEALLOCATE_P ACKET procedure

1.2. 1.3 Process-Synchronization Primitives

The primitives in this category operate on a binary or counting semaphore and are used by
two or more cooperating processes for mutual exclusion and other forms of synchronization. A
binary semaphore is a variable that can assume the values of 0 and 1. The two basic operations
defined on a binary (B) semaphore are:

SIGNAL(B): If B = 0 then B := B + 1

WAIT(B): If B = 1 then B := B - 1
else
Process must wait

(becomes 'blocked')
until B = 1, then

B := B - 1

A Signal of a binary semaphore having a value of 0 allows one subsequent Wait to proceed
without blocking the process issuing the Wait. Signaling a binary semaphore having a value of
1 has no effect; one process issuing a subsequent Wait proceeds without blocking.

A counting semaphore uses a variable that can assume a value greater than 1. The two basic
operations defined on a counting (C) semaphore are:

SIGNAL(C): C := C + 1

WAIT(C): If C > 0 then C := C - 1
else
Process must wait

until C > 0, then
c := c - 1

As with binary semaphores, a Signal of a counting semaphore having a value of 0 allows one
subsequent Wait to proceed without blocking the process. Unlike binary semaphores, however,
successive Signals without intervening Wait operations are not lost. Each Signal is counted and
allows one Wait to proceed without blocking.

The process-synchronization primitives are:

• Signal Semaphore-Performs an unconditional Signal operation on a specified binary or
counting semaphore.

MACR0-11 service request name: SGNL$

Pascal equivalent: SIGNAL procedure

1-6 Introduction

• Wait on Semaphore-Performs an unconditional Wait operation on a specified binary or
counting semaphore.

MACR0-11 service request name: WAIT$

Pascal equivalent: WAIT procedure

• Conditionally Signal Semaphore-Performs a conditional Signal operation, which increments
the binary or counting semaphore variable only if a process is already waiting on the
semaphore. The primitive returns a FALSE indication if the Signal was not performed.

MACR0-11 service request name: SGLC$

Pascal equivalent: COND_SIGNAL function

• Conditionally Wait on Semaphore-Performs a conditional Wait operation, which decre
ments the binary or counting semaphore variable only if the semaphore has already been
signaled (that is, its value is nonzero). This test-semaphore-and-decrement-if-possible oper
ation never causes the requesting process to block. The primitive returns a FALSE indication
if the Wait was not performed.

MACR0-11 service request name: WAIC$

Pascal equivalent: COND_ WAIT function

• Wait on Any Semaphore-Performs either a conditional or unconditional Wait operation on
up to four specified binary or counting semaphores, with an optional timeout if a Signal
does not occur within a given time.

MACR0-11 service request name: WAIA$

Pascal equivalent: WAIT.-ANY procedure

• Signal All Waiting Processes-Performs a special form of Signal operation, which unblocks
any and all processes that may be waiting on the specified binary or counting semaphore
and sets the semaphore value to 0 unconditionally.

MACR0-11 service request name: SALL$

·Pascal equivalent: SIGNAL.-ALL procedure

1.2.1.4 Message-Transmission Plus Synchronization Primitives

The primitives in this category operate on queue semaphores and combine message-packet
transmission and reception with Signal and Wait operations. A queue semaphore is a
generalization of the counting semaphore and has a queue of elements associated with it,
in addition to the counter variable. (A standard MicroPower/Pascal queue element is called a
message packet.)

The basic Signal Queue Semaphore operation adds a packet to the queue and increments the
counter variable. The basic Wait on Queue Semaphore operation removes a packet, if any,
from the queue and decrements the variable; if the queue is empty, the process must wait
until an element can be removed. Thus, the value of the counter variable always represents
the number of elements, usually packets, on the queue. The synchronization characteristics of
queue semaphores are identical to those of counting semaphores.

Introduction 1-7

Two distinct levels of queue semaphore operations are supplied, one built on the other. The
higher-level, more automatic operations (Send and Receive) are provided specifically for general
processes in a mapped-memory environment. They can, however, be used by any process in
either a mapped or an unmapped environment. The individual queue semaphore primitives,
beginning, with the lower-level operations, are:·

• Signal Queue Semaphore (Put Packet)-Signals the specified semaphore and places a packet
pointer (supplied by the caller) on the semaphore's packet queue.

MACR0-11 service request name: SGLQ$

Pascal equivalent: PUT_p ACKET procedure

• Wait on Queue Semaphore (Get Packet)-Performs a Wait operation on the specified
semaphore by removing a packet pointer from the queue and returning it to the requesting
process if a packet is available immediately. If not, the process blocks until the semaphore
is signaled.

MACR0-11 service request name: WAIQ$

Pascal equivalent: GET_p ACKET procedure

• Conditionally Signal Queue Semaphore-Performs a conditional Signal Queue operation,
which places a packet pointer (supplied by the caller) on the semaphore's queue only if a
process is already waiting for a packet on that semaphore. The primitive returns a FALSE
indication if the Signal operation was not performed.

MACR0-11 service request name: SGQC$

Pascal equivalent: COND_pLJT_p ACKET function

• Conditionally Wait on Queue Semaphore-Performs a conditional Wait on Queue operation,
which removes a packet pointer from the_semaphore's queue and returns it to the requester
only if a packet is on the queue (that is, if the semaphore had already been signaled). This
test-semaphore-and-get-packet-if-possible operation never causes the requesting process to
block. The primitive returns a FALSE indication if a packet was not immediately available.

MACR0-11 service request name: WAQC$

Pascal equivalent: COND_GET_p ACKET function

• Wait on Any Queue Semaphore (Get Packet Any)-Performs either a conditional or
unconditional Wait operation on up to four specified queue semaphores, with an optional
timeout if a packet does not arrive within a given time.

MACR0-11 service request name: WAQA$

Pascal equivalent: GET_p ACKET-.ANY procedure

1-8 Introduction

• Send Data by Queue Semaphore-Allocates a packet (obtains a free packet from the pool),
copies caller-specified data into the packet, and then performs a Signal operation on the
specified queue semaphore. (See the Allocate Packet description for possible blocking
condition.)

MACR0-11 service request name: SEND$

Pascal equivalent: SEND procedure

Pascal variant: SEND-ACK procedure

• Receive Data by Queue Semaphore-Performs a Wait operation on a specified queue
semaphore, then copies data from the packet thus obtained into a caller-specified data area,
and finally deallocates the packet (that is, returns the packet to the free-packet pool). The
calling process blocks if a packet is not immediately available.

MACR0-11 service request name: RCVD$

Pascal equivalent: RECEIVE procedure

Pascal variant: RECEIVE-ACK procedure

• Conditionally Send Data-Performs a Send Data operation as described above, but only if
a process is already waiting to get a packet or receive packet data through the specified
queue semaphore. The primitive returns a FALSE indication if the Send operation was not
performed.

MACR0-11 service request name: SNDC$

Pascal equivalent: COND_SEND procedure

Pascal variant: COND_SEND-ACK procedure

• Conditionally Receive Data-Performs a Receive Data operation as described above, but
only if a packet is on the specified semaphore's queue. This test-semaphore-and-receive
data-if-available operation never causes the requesting process to block. The primitive
returns a FALSE indication if the Receive operation was not performed:

MACR0-11 service request name: RCVC$

Pascal equivalent: COND_RECEIVE procedure

Pascal variant: COND_RECEIVE-ACK procedure

• Receive Data Through Any Queue Semaphore-Performs a complex Receive operation on
up to four specified queue semaphores, then copies data from the packet obtained from any
one of those queues into a caller-specified data area, and finally deallocates the packet (that
is, returns the packet to the free-packet pool). The calling process may or may not block if
a packet is not immediately available, depending on the form of the call, and the Wait can
optionally be timed out if a packet is not sent within a given time.

MACR0-11 service request name: RCVA$

Pascal equivalent: RECEIVE-ANY procedure

Pascal variant: RECEIVE-ACK-ANY procedure

Introduction 1-9

In a mapped environment, a process must have privileged or driver mapping to use the lower
level queue semaphore primitives (Put Packet and Get Packet). Packets reside in kernel data
space, and the process must be mapped to that space to access (write into or read from) the
packet.

1.2. 1.5 Ring Buffer Primitives

The primitives in this category operate on ring buffer structures, which facilitate variable-length
data transfers, normally of character or byte-oriented data, between processes, without the need
for tight, signaljwait synchronization between them. The size, or capacity, of a ring buffer is
determined when the structure is created; the size can be from 8 bytes to just less than SK
bytes. The ring buffer primitives are:

• Get Element-Moves a specified number of bytes of data from a ring buffer to a data area
specified by the requester. If the buffer does not have enough data to satisfy the request,
the calling process blocks until a sufficient amount of data is put into the buffer by another
process.

MACR0-11 service request name: GELM$

Pascal equivalent: GET-ELEMENT procedure

• Put Element-Moves a specified number of bytes of data from a data area specified by
the requester to the ring buffer. If the buffer has insufficient space to accommodate the
new element, the calling process blocks until sufficient space becomes available because of
subsequent Get operations.

MACR0-11 service request name: PELM$

Pascal equivalent: PUT-ELEMENT procedure

• Conditionally Get Element-Obtains a data element of specified length from a ring buffer
if the buffer contains enough data to satisfy the request. This primitive will not cause the
calling process to block. If the buffer does not have enough data to satisfy the request,
the primitive either gets as many bytes as possible or moves no data at all, depending
on the output mode (stream or record) specified for the buffer when it was created. This
primitive returns a value indicating the number of bytes that remain to be moved following
the operation.

MACR0-11 service request name: GELC$

Pascal equivalent: COND_GET_ELEMENT function

• Conditionally Put Element-Places a data element of specified length into a ring buffer if
the buffer has enough space to accommodate the element. This primitive will not cause
the calling process to block. If the buffer does not have enough space to accommodate the
entire element, the primitive either puts as many bytes as possible or moves no data at
all, depending on the input mode (stream or record) specified for the buffer when it was
created. This primitive returns a value indicating the number of ~ytes that remain to be
moved following the operation.

MACR0-11 service request name: PELC$

Pascal equivalent: COND_pUT_ELEMENT function

1-10 Introduction

• Get Element Any-Moves a specified number of bytes of data from any one of up to four
specified ring buffers to a data area specified by the requester. If the buffer does not have
enough data to satisfy the request, the calling process may or may not block, depending on
the form of the call; optionally, the wait for data can be timed out after a given time.

MACR0-11 service request name: GELA$

Pascal equivalent: GET_ELEMENT_ANY procedure

• Reset Ring Buffer-Empties a specified ring buffer of all data.

MACR0-11 service request name: RBUF$

Pascal equivalent: RESET_RJNG_BUFFER procedure

1.2. 1.6 Exception-Processing Primitives

This category contains the following primitives:

• Connect to Exception Condition-Lets a process establish itself as an exception handler for
processes that belong to a given exception-handling group.

MACR0-11 service request name: CCND$

. { CONNECT_EXCEPTION procedure }
- Pascal eqmvalents: DISCONNECT_EXCEPTION procedure

• Dismiss Exception Condition-Lets an exception-handler process dismiss an exception,
releasing the faulting process from exception-wait state for further disposition by the kernel.

MACR0-11 service request name: DEXC$

Pascal equivalent: RELEASE_EXCEPTION procedure

• Set Exception Routine Address-Lets any process specify the entry point of an internal
exception service routine or procedure that will handle exceptions caused by the process.

MACR0-11 service request name: SERA$

. { ESTABLISH procedure }
- Pascal eqmvalents: REVERT procedure

• Report Exception-Lets a process report a software exception condition or force a hardware
exception (simulate a processor trap).

MACR0-11 service request name: REXC$

Pascal equivalent: REPORT procedure

Introduction 1-11

1.2. 1. 7 Interrupt-Management Primitives

The two primitive operations in this category involve interrupt service routines (ISRs):

• Connect to Interrupt-Lets a device-handling, or driver, process connect an ISR to a specified
interrupt vector. (A Pascal variant of this primitive lets a process connect a binary or counting
semaphore to an interrupt vector indirectly.)

MACR0-11 service request name: CINT$

Pascal equivalent: CONNECT-1NTERRUPT procedure

Pascal variant: CONNECT_SEMAPHORE procedure

• Disconnect from Interrupt-Lets a driver process disconnect an JSR from a specified interrupt
vector.

MACR0-11 service request name: DINT$

Pascal equivalent: DISCONNECT-1NTERRUPT procedure

Pascal variant: DISCONNECT_SEMAPHORE procedure

1.3 Overview of System Processes
System processes provide commonly used hardware-oriented services for user programs. These
processes include many standard (DIGITAL-supplied) device drivers; the ancillary control process
(ACP), which provides RT-11-compatible file management and/or non-file-structured device
access; and several network and point-to-point communications support processes. (Two driver
processes are supplied specifically for communication between a Q-bus arbiter processor and one
or more KXTll-CA or KXJll-CA IOP slave processors.) The MicroPower/Pascal 1/0 Services
Manual describes those system processes in detail.

A device driver is a process, or a family of cooperating processes, that accepts requests for
device-level 1/0 operations from other processes. Device drivers communicate and synchronize
with other processes in the application through standard primitive operations. 1/0 service
requests for a particular hardware device are passed to the device driver in the form of a
request message (queue packet). Each driver maintains a request queue semaphore through
which device-level 1/0 requests are passed. After receiving a request, the driver performs
all process-level, interrupt-level, and fork-level processing for the requesting process. When
the 1/0 operation has been completed, the driver signals the requesting process and returns
completion status by means of a reply message packet. The reply message packet indicates
successful completion or error and other information, such as number of bytes successfully
transferred, _as applicable.

Standard 1/0 functions generally supported by device drivers include read (physical and logical),
write (physical and logical), set device characteristics, and get device characteristics. Other
device-specific functions are supported for each device.

Device drivers can be written in either MACR0-11 or Pascal, with some restrictions on Pascal
implementation, and driver processes can be accessed by other processes written in either Pascal
or MACR0-11. All standard DIGITAL-supplied device drivers are written in MACR0-11 for
maximum efficiency and flexibility.

1-12 Introduction

The ACP and, optionally, the network service process (NSP) provide a higher level of control
that is "layered" on top of the driver-level processes, eliminating the need for user processes to
talk to drivers directly. Access to drivers, the ACP, and the NSP by a user process implemented
in Pascal is generally transparent, obtained. through OPEN and other MicroPower/Pascal I/O
statements.

1.4 Resident Shared Libraries
A resident shared library, or run-time library, allows two or more static processes to share
"library" code at run time that would otherwise have to be merged into each process's object code
at build time. Such libraries permit a savings in physical memory requirements by eliminating
duplication of pure code across static processes. Resident shared libraries are possible in all
target hardware environments, but the cost/benefit tradeoffs vary with the environment. For
an unmapped target system, use of a resident shared library is a clear win if the application
contains more than one user static process. (In unmapped applications, all user processes are
often part of one static process family for the most economical implementation.) An unmapped
environment has no virtual address-space considerations, and, if the application is intended for
ROM, use of a shared library can make PROM burning less laborious.

For a mapped target system with supervisor mode, such as an LSI-11 /73-based target, use of a
shared library is also a clear win, since such a library has a separate supervisor-mode mapping
and thus does not impinge in a negative way on the virtual address space of a user process that
references the library. Again, if the application is intended for ROM, use of a shared library
can simplify PROM burning.

For a mapped target system without supervisor mode, such as an LSI-11/23-based target, the
tradeoff considerations are somewhat complex, because the entire shared library is mapped into
the virtual address space of any referencing process. The shared library will contain all the code
that any referencing process uses and thus may contain much code that a given process does not
need. That is to say, a shared library may "steal" a significant amount of virtual address space
from user static processes, due both to unused code and to PAR boundary alignment problems.
Therefore, if a given static process family (that is, an individual build unit) is approaching the
limits of its virtual address space, the tradeoff of increased virtual address space for the process
in question against decreased physical memory for the entire application may not be possible
without redesign of the user static processes. (An application could contain multiple shared
libraries, but that option complicates the application-building procedure considerably, since the
"automatic" MPBUILD facility cannot readily be used to achieve it.) Again, if the application is
intended for ROM, use of a shared library can simplify PROM burning.

The choice of whether to use an object-time (nonshared) library or a resident shared library is
made at application build time. An application may consist of a mixture of static processes that
do and do not use the resident shared library code. In a mapped system, a member process of
a static process family that does not reference a shared library is not affected by the existence
of that library. See Chapter 2 for a description of shared supervisor-mode library mapping
and the MicroPower /Pascal system user's guide for your host system for details of building an
application with a shared library.

Introduction 1-13

Chapter 2
Processes and System Data Structures

This chapter begins with a general description of processes and then presents implementation
related details. Later sections describe the significant data structures defined by the
MicroPower/Pascal kernel. Some of the information in this chapter is provided primarily
for debugging purposes.

2. 1 Processes
A MicroPower/Pascal process is an independent, asynchronous CPU activity, or task. Process
execution proceeds concurrently (logically in parallel) with the execution of other processes in
an application. (The basic characteristics of a MicroPower/Pascal process are the same as those
described for a concurrent process or a parallel process in the recent literature on concurrent
programming.) The kernel's event-driven scheduling mechanism provides each process with its
own virtual CPU (in a single-processor environment). Thus, a process can be thought of as
a sequential program that can communicate and interact with other such programs executing
in parallel on separate virtual processors to achieve a common goal. That goal might be, for
instance, to monitor and control several related aspects of a particular real-time environment.

Since the actual CPU is shared by processes on an event-triggered basis (as opposed to
equal-interval time slicing), the execution rate of one process relative to another is generally
unpredictable, particularly among processes of the same scheduling priority. However, the
MicroPower /Pascal process-synchronization primitives allow functionally related processes to
execute in proper time relationship.

One source program can define many processes, as described in Section 2.1.1. Since all the
processes so defined exist in the same virtual address space, they can access shared data directly
and can use common subroutines or procedures. Again, proper use of MicroPower/Pascal
synchronization primitives permits several processes to modify shared data in a safe, controlled
fashion. Also, multiple processes can be based on one (reentrant) instruction sequence, with a
unique data area for each process.

The process construct allows you to decompose an otherwise monolithic sequential program
into a number of autonomous subprograms that are scheduled independently when triggered by
appropriate events. Such events may be external, as signaled by a device interrupt, or internal,
as signaled by another process (for example, availability of a shared resource or data item) and

Processes and System Data Structures 2-1

generally are a mixture of the two. The process approach avoids the wasteful busy-waiting
loops that would otherwise be needed to synchronize with critical device interrupts. Thus, the
process approach allows more efficient use of the CPU and other hardware resources and a
moreflexible response to multiple external events of varying urgency.

The process construct also provides a simpler conceptual approach to solving many real-time
problems. For example, consider an application involving a windowed display; the physical
display screen is divided into several subareas, or windows. Each window is to be a virtual
display that is updated independently in response to a set of external events. A sequential
programming approach would require a complicated screen-management algorithm to ensure
complete and valid updating of each part of the screen, assuming that the triggering events are
asynchronous. MicroPower /Pascal lets the programmer manage each window with a separate
process and assign priorities to the processes on the basis of the relative importance or timeliness
of the data to be displayed in each window. Programming a windowed display then becomes
conceptually straightforward.

A process is essentially a dynamic, execution-time entity. At execution time, a process consists
of the following:

• A block of control information (process control block, or PCB), created and maintained by
the kernel, that re.fleets the context of the process at any given point. The PCB information
exists only during the lifetime of the process it describes and is the "activation record" of
the process.

• An instruction sequence, or procedure, that the process executes. (In a dedicated, real
time environment, this instruction sequence is often nonterminating except under special
conditions.) The instruction sequence associated with a process is identified in the process's
context simply by the address to which control is to be transferred when the CPU is next
dispatched to the process.

• A set of data segments, such as the process stack and any static variables, that are unique
to the process, plus any shared data.

An instruction sequence, if reentrant, may be shared (concurrently executed) by several processes.
Thus, a process represents one specific invocation of an instruction sequence as an independent
scheduling unit. The PCB maintains a continuous record of the context and the "activation
status" of that scheduling unit, as described in Section 2.1.5.

2. 1. 1 Static and Dynamic Processes
A static process is one of the processes known to the kernel at system-initialization time and
is always present after power-on or system-reset processing. The kernel's initialization (INIT)
routine creates a PCB for and schedules each static process.

In Pascal, a static process is implicitly defined by a [SYSTEM(MicroPower), ...] PROGRAM
declaration. (Other optional attributes within the brackets specify characteristics such as
stack/heap size, mapping type, and running priority.) The main body of the program, together
with all procedures and functions called from main level, constitute the instruction segments
associated with the static process. Likewise, the variables declared at main level, together with
the stack space and heap space allocated to the main program, constitute the data segments
associated with the static process. (The heap is used dynamically for NEW and DISPOSE and
for the stack and local variables of any dynamic processes created by the static process.)

2-2 Processes and System Data Structures

A procedure declared at the outermost level with the [INITIALIZE] attribute has a special
relationship to the static process and has a special characteristic relative to all other Pascal static
processes in the application system. If an [INITIALIZE] PROCEDURE declaration exists in a
program, the procedure is executed before the corresponding static-process code (main program
body) is initially executed. (No procedure call is required.)

Furthermore, the initialization procedure has a default scheduling priority of 248, the highest
recommended start-up priority value for a user process. The static process itself is scheduled
at the running priority specified or defaulted to in the program heading. (Running priorities
in general should not exceed 247 and should be less than 160 for normal user processes. See
Appendix A for recommended process priorities.) The combination of implicit precedence of
execution and special start-up priority guarantees that the initialization procedure will run not
only before its associated static process but also before any other Pascal static process begins
execution-assuming that the initialization code does nothing that might cause it to block, which
it should not do.

The purpose of the initialization procedure is to permit creation of any system data structures
semaphores, ring buffers, or shared regions, for example-that other processes depend on for
proper operation, before any such process can attempt an operation on the structure. For
example, an initialization procedure might create a queue semaphore on which other processes
will perform a Send operation to request a service, thereby avoiding the potential race condition
that could arise if one process were to depend on another to start first. (Relative running
priorities should not be relied on to ensure the order in which processes start up and are not
intended for that purpose.)

In MACR0-11, a static process is defined by the Define Static Process (DFSPC$) assembly-time
macro; see Section 3.15. This macro produces a block of information used by the memory
image builder (MIB) utility and the kernel's INIT routine. The information includes the initial
address of the instruction sequence to be executed, the size and location of the process stack,
the tun-time process name, mapping type, priority, and other characteristics specified in the
macro call.

A MACR0-11 static process can implement the same kind of special, system-level initialization
"procedure" as described above for Pascal, using the following strategy. The process starts up
at priority 248 or higher, as specified in the DFSPC$ macro, in order to execute its initialization
code. Immediately after the initialization processing, the process uses the Change Priority
(CHGP$) primitive to drop its priority to the desired operating level; the process can then enter
its main code, corresponding to the Pascal main program body. (The CHGP$ primitive call
always implies a scheduling operation.) This strategy is in fact the same as that used by the
Pascal OTS to implement Pascal initialization procedures, of which a program may have several.

A dynamic process is created by the action of another process during system execution. The
action consists of a request to the kernel's process-creation service, which creates a process
control block (PCB) and schedules the new process. The kernel allows a static process to create
one or more dynamic processes, each of which can in tum create other dynamic processes. The
created process is essentially a subprocess of the static process in the sense that the instruction
and data segments of the created process must be located within the address space of the static
process (that is, within the same object program). In a mapped environment, a dynamic process
necessarily inherits the mapping type of its parent, or originating static process, since it shares
the virtual address space of that static process. Thus, a static process can create a family of

Processes and System Data Structures 2-3

dynamic processes to handle a set of related asynchronous events; such processes may share
common data areas.

In Pascal, each process-invocation statement is an implicit request for creation of a dynamic
process. The process-invocation statement consists of a reference to an identifier defined by a
PROCESS declaration, plus optional process attributes and invocation parameters. (Although
syntactically similar to a procedure call, a process invocation initiates a control flow that is
separate and distinct from that of the invoking process, as opposed to a transfer of control
within the calling process. Flow of control cannot be explicitly transferred from one process to
another.) The PROCESS declaration defines the instruction sequence and local variables to be
associated with a process created by a reference to that declaration. Multiple dynamic processes
can be based on the same PROCESS declaration; separate instances of the local variables are
allocated from the heap for each dynamic process, as well as a separate stack.

In MACR0-11, a dynamic process is created by a Create Process (CRPC$) service request;
see Section 3 .10. The request specifies the initial address of the instruction sequence to be
executed, the stack address, run-time process name, priority, and other characteristics of a
dynamic process.

Static and dynamic processes are functionally equivalent; all kernel primitives are available
to both kinds of processes. In particular, any process can delete itself-which is the only
valid way for a process to terminate, assuming that such termination is ever required. The
MicroPower /Pascal kernel does not enforce any hierarchical relationships between the members
of a process family. Thus, any process can outlive its creator; no restrictions exist on the order
in which related processes may terminate (if any must indeed do so).

The MicroPower/Pascal compiler and object-time system (OTS) does, however, impose its own
default structure on a process family with respect to the longevity of processes and process-local
variables. Essentially, the compiler and OTS provides a method for proper sequencing of process
termination, as explained below, in order to safeguard data that is shared between processes.
Since the compiler applies the same scoping rules to PROCESS declarations as to PROCEDURE
declarations, it can control the scope of variables declared in and accessed by processes at
various levels, in a manner consistent with standard Pascal syntax rules. Furthermore, variables
that are local to a dynamic process are allocated from dynamic storage (the process's memory
stack) when the process is created, unless the variables are declared with the STATIC attribute.
The storage for these variables is automatically released (returned to the heap for reuse) if and
when the process terminates and is deleted.

The MicroPower/Pascal method for sequencing the termination of Pascal-implemented processes
causes a process to wait for the termination of all processes created by it before it will terminate.
That is the default condition for all process invocations and assumes that the created, or child,
process has a data dependency on the parent process. The RELATIONSHIP parameter of the
process-invocation statement lets you modify the default termination condition for the creating,
or parent, process. The lifetime of data items used by but not declared within the child process
(variables local to the parent, passed parameters, or new variables generated by the parent)
must be considered when you determine the correct setting of the RELATIONSHIP parameter:
DEPENDENT or INDEPENDENT.

2-4 Processes and System Data Structures

For a dynamic process to be safely declared INDEPENDENT of its parent, all data items used
by the former must continue to exist for the lifetime of the created process. (MicroPower /Pascal
guarantees that PROGRAM-level variables and variables declared with the AT, EXTERNAL,
GLOBAL, or STATIC attributes exist for at least as long as any process in the static process
family exists.) For a process declared as DEPENDENT, the MicroPower /Pascal compiler and
OTS make sure that the creating process is never deleted (does not actually terminate) before
any of its dependent-child processes terminate, although it may have stopped executing. That is,
the storage for a given process is not released, and the process is not deleted, until all dependent
processes terminate, even though the process has logically terminated either by "reaching" its
END statement" or by executing its termination procedure.

When a process terminates, the local variables (VAR declarations) and any non-VAR formal
parameters cease to exist. Therefore, a created process that uses those kinds of data items
belonging to the parent process is necessarily DEPENDENT on the parent. Such uses can occur
in four ways:

• Up-level addressing. This occurs when a process is declared within the body of another
process. Since the typical and proper use of this type of nesting is to take advantage of
up-level addressing, the created process can always be said to be DEPENDENT on the
creating process.

• VAR formal parameters. If the created process accepts a VAR formal parameter and the
creating process passes, as the corresponding actual, one of its local variables or one of its
non-VAR formal parameters, the created process is DEPENDENT on the creating process.

• Pointer-type formal parameters. If the created process accepts a pointer to a data item
and the creating process passes, as the corresponding actual, a pointer to one of its local
variables or to one of its non-VAR formal parameters, the created process is DEPENDENT
on the creating process:

• Records containing pointers. If the created process uses a record that contains a pointer
to one of the creating processes' local variables or one of the creating processes' non-VAR
formal parameters, the created process is DEPENDENT on the creating process. (The
manner in which the created process gains access to the record does not affect the validity
of this rule.)

If any of the four conditions is met, the created process should be invoked with the default
RELATIONSHIP:=DEPENDENT parameter, which will direct MicroPower/Pascal to sequence
the termination of the respective processes. If the stated conditions indicate that the created
process is in fact dependent but the RELATIONSHIP:=INDEPENDENT parameter is used, you
must make ·sure that the data item in question continues to exist. Otherwise, unpredictable
results may occur_.

When determining the relationship of processes, you should examine only the two directly
related processes: creating and created. That is, if the creating process was itself created by
another process, their parent/ child relationship need not be considered.

Processes and System Data Structures 2-5

Three programming errors are commonly associated with the passing and/or sharing of data
items between processes:

• Passing a pointer to a record obtained by means of NEW to another process and subsequently
disposing of the record before the sharing process is finished with it.

• Declaring a process within the body of a PROCEDURE or FUNCTION. As when a process
terminates, the local variables and the non-VAR formal parameters cease to exist when a
PROCEDURE or FUNCTION exits. The process-termination sequencing method in no way
guarantees that PROCEDURE or FUNCTION local variables survive the created process.

• Concurrent use of variables between processes without use of a mutual-exclusion (mutex)
mechanism, such as a semaphore or mutex.

Variables declared at the outermost (static process) level remain available to any and all
subprocesses until every member of the process family terminates.

2.1.2 Process Names
One process can refer to another in a limited number of kernel primitive requests (for example,
in a Suspend Process or Resume Process request). To facilitate such references, especially across
process families, a process can be given a run-time name in the program that defines the process.
A run-time process name consists of a 6-character ASCII string (for example, 'ALPHAS') that
is dynamically associated with the process when it is created. The name identifies the process
control block corresponding to the process. The string 'ALPHAS' can be used in primitive ·
requests in another program to refer to the process globally known by that name.

Process names must be unique among not only all named processes throughout the system
but also all named system structures. That is, a process name must not duplicate the name
of any coexisting semaphore, ring buffer, or other type of dynamic data structure. Violation
of this rule will cause errors during execution. (The names of system structures created by
DIGITAL-supplied system processes, such as device drivers, always contain a dollar sign ($)
character. You should therefore avoid that character in all user-specified names.)

Since run-time names are fixed-length character strings, both case and trailing blanks are
significant. Thus, the name 'abc123' is not equivalent to 'ABC123', and 'ABCD ' is not
equivalent to I ABCD'.

In Pascal, a static process gets its run-time name from the compile-time program name specified
in the program heading; the name is either truncated to six characters or padded with trailing
spaces to that length, as necessary. A dynamic process gets its run-time name, if any, from a
NAME attribute, specified in either a PROCESS declaration or a process-invocation statement.
A name assigned at the point of process invocation overrides the default run-time name, if
any, specified in the corresponding PROCESS declaration. See the MicroPower /Pascal Language
Guide, Chapter 10, for a detailed description of the NAME attribute.

In MACR0-11, a run-time name is specified directly in the Define Static Process (DFSPC$)
macro call and indirectly in the Create Process .(CRPC$) service request. Section 3.1.6 discusses
the process descriptor block.

2-6 Processes and System Data Structures

Every process is in one and only one state at any time. The kernel supports the following eight
process states:

1. Run: the state of the process eligible for execution. This process may be executing at
process level, may be executing a primitive operation in the kernel, or may be interrupted.
(An interrupt does not of itself cause a transition from run state.) By definition, the priority
of the running process is at least equal to that of any process in the ready-active state.
The running process continues in the run state until it blocks, suspends, or deletes itself; is
preempted by a higher-priority process becoming ready to execute; or causes an exception.

2. Ready active: the state of a process that is ready to execute and is eligible for the processor
to be assigned to it. The highest-priority ready-active process is assigned to the processor
whenever the running process relinquishes control or is preemptable.

3. Wait active (blocked): the state of a process forced to wait (defer execution) until a particular
event occurs or a given resource becomes available. A waiting process is always blocked
on a blocking structure (for example, semaphore or a ring buffer). When unblocked, the
process changes to the ready-active state. See Section 2.1.4.2.

4. Ready suspended: the state of a process that is otherwise ready to execute but has been
explicitly suspended by itself or by another process. A Resume operation by another process
increments a suspend counter associated with the suspended process. When the suspend
count changes from -1 to 0, the suspended process is returned to the ready-active state. (A
Stop operation will also implicitly resume a suspended process, returning it unconditionally
to the ready-active state.)

5. Wait suspended: the state of a process that was blocked (forced to wait for an event or a
resource) and has subsequently been suspended by another process. A Resume operation
by another process increments a suspend counter associated with the suspended process.
When the suspend count changes from -1 to 0, the suspended process is returned to the
wait-active state. If the process becomes unblocked while suspended, it changes to the
ready-suspended state.

6. Exception-wait active: the state of a process that has caused an exception to occur and must
wait for the exception condition to be processed by an exception handler. The offending
process must be removed from execution in order to allow the exception-handling process to
execute and to take diagnostic and, possibly, corrective action with respect to the exception
condition. Therefore, the exception-wait state indicates that the offending process is waiting
for action by an exception-handling process, as described further in Section 2.1.4.4. The
waiting process is placed in the ready-active state when the exception handler "dismisses"
the exception condition.

7. Exception-wait suspended: the state of a process explicitly suspended while in the exception
wait-active state. A Resume operation increments a suspend counter associated with the
suspended process. When the suspend count changes from -1 to 0, the suspended process is
returned to the exception-wait-active state. If the exception handler dismisses the exception
while the process is suspended, the process is placed in ready-suspended state.

Processes and System Data Structures 2-7

8. Inactive: the state of a process that has been terminated abnormally by the kernel because
of an unhandled exception condition. Unlike normally terminated processes, an inactive
process's PCB is not deleted but is retained on a speciat "dead end" queue solely for
diagnostic purposes. An inactive process cannot be reactivated. See Section 2.1.4.4.

When created, a process is in the ready-active state. The possible subsequent state transitions
can be summarized as follows:

From

Ready active

Run

Wait active

Ready suspended

Wait suspended

To

Run (by priority)

Ready suspended (by suspension)

Ready active (by preemption)

Wait active (by blocking)

Exception-wait active (by exception)

Ready suspended (by self-suspension)

Inactive (by abnormal termination)

Nonexistent (by deletion)

Ready active (by unblocking)

Wait suspended (by suspension)

Ready active (by resumption or forced termination)

Ready suspended (by unblocking)

Wait active (by resumption)

Exception-wait active Ready active (by dismissal)

Exception-wait
suspended

Exception-wait suspended (by suspension)

Ready suspended (by dismissal)

Exception-wait active (by resumption)

The inactive state is a "final" state from which no transition is possible; a process in that state
is essentially nonexistent, but its context is preserved for diagnostic purposes.

Figure 2-1 shows the state transitions and the events associated with them. The numbers
indicate the kind of event, or the condition, that can cause the state transition represented
by each arc. An asterisk preceding the number denotes a significant event, which causes the
scheduler to be invoked.

2-8 Processes and System Data Structures

Figure 2-1: Process State Transitions

Legend:

* Significant event
1 Process creation
2 Highest-priority runnable process
3 Blocking
4 Unblocking
5 Preemption
6 Occurrence of exception

7 Dismissal of exception
8a Self-suspension
8b Suspension
9 Resumption

1 Oa Normal process deletion
1 Ob Process deletion for

unhandled exception

7

ML0-391-87

Processes and System Data Structures 2-9

2. 1.3. l Process State Codes and State Code Modifiers

The state of a process is described by the state code byte in its PCB (field PC.STA); see Section
2.1.5. The state code values are represented by the following global symbols, as defined by the
QUEDF$ system macro:

State Code

SC.RUN

SC.RDA

SC.RDS

SC.WTA

SC.WTS

SC.EWA

SC.EWS

SC.IAC

Process State

Run

Ready active

Ready suspended

Wait active

Wait suspended

Exception-wait active

Exception-wait suspended

Inactive (abnormally aborted because of exception)

Whenever a process changes state, the kernel modifies the state code in its PCB. For most state
changes, the kernel must also transfer the PCB from one state queue to another, as described
below.

The state-code modifier bits in the status byte of the PCB (field PC.STS) describe several possible
substates in the case of a process that requires special handling during subsequent state changes.
The modifier bit-mask values are represented by the following global symbols:

Modifier

SM.FPA

SM.BCS

SM.ABI

SM.UBL

SM.ABP

Meaning

Process has a pending Floating Point Accelerator exception.

Blocked on complex structure. The process is blocked on multiple blocking
structures because of execution of a complex primitive.

Abort to inactive in progress. An unhandled exception has occurred, which
causes the process to be aborted (forced to its termination entry point) as for
SM.ABO. The termination will be abnormal, however, in that issuance of the
Delete Process (DLPC$) request will cause the process's PCB to be placed on
the inactive queue instead of being deallocated. (SM.ABO is also set whenever
SM.ABI is set.)

Unblocked but not yet ready. The process has been unblocked and is in the
kernel resumption queue for completion of a primitive operation.

Abort pending. A Stop Process (STPC$) request has been issued for this process
but has not yet been honored, because the process is blocked on a ring buffer
or is in an exception-wait state.

2-10 Processes and System Data Structures

Modifier

SM.ABO

Meaning

Abort in progress. A Stop Process (STPC$) request has been issued for the
process, forcing execution at its termination entry point. The process may run,
block, and so on but may not be suspended. Any Suspend requests for the
process will be ignored.

2.1.3.2 State Queues

The kernel maintains several queues (linked lists) of PCBs, called state queues. Each such queue
reflects the state of the PCBs linked into it, although not every process state has a state queue.
The PCB of every process that is not in an exception-wait state is linked into one and only one
logical state queue.

Conceptually, there are only five state queues, although the so-called wait queue is a logical
entity that consists of many distinct queues. The characteristics of the five state queues are as
follows:

1. Run queue: a degenerate, singly-linked list that contains at most one element: the PCB of
the running process.

2. Ready-active queue: a doubly-linked list of all ready-active PCBs, ordered according to
process priority.

3. Ready-suspended queue: a doubly-linked list of all ready-suspended PCBs, in LIFO order.
(The ordering of this queue has no bearing on the order in which processes may be resumed,
that is, removed from the queue.)

4. Wait queue: a logical entity representing the collection of all waiting process lists associated
with semaphores and ring buffers. Every semaphore has one waiting process list; the first
word of a semaphore structure is the list header (see Sections 2.2.1.3 and 2.2.3). Every
ring buffer has two waiting process lists (one for input and one for output) as described in
Section 2.2.1.6.

A waiting process list, also called a blocking queue, is a singly-linked list of all PCBs
blocked on the associated structure. Except for the kernel's timer queue, the PCBs on a
given blocking queue may be queued in either FIFO or priority order, depending on the
queuing characteristics specified for that structure. (The kernel's timer queue has a special
time-dependent ordering policy.) Also, the PCBs may be in either wait-active or wait
suspended state. Thus, the nominal wait queue comprises all waiting processes, whether
active or suspended.

Normally, a blocked process is linked into a single structure's blocking queue, but the
"complex" primitives (GELA$, RCVA$, WAIA$, and WAQA$) allow a process to block
simultaneously on multiple structures of a given type (for example, up to four binary
semaphores), and optionally on the kernel's timer queue at the same time. (Multiple
blocking structures are referred to as a "complex structure"; the queuing for that case is
handled by the complex-structure-descriptor field in the process's PCB.)

Processes and System Data Structures 2-11

5. Inactive queue: a doubly-linked list of all inactive PCBs, ordered according to process
priority. (The ordering of this queue is immaterial, since PCBs are never removed from
it.) The kernel global symbol $IACTV identifies the list head, in kernel data space, for this
queue.

No state queue exists for processes in an exception-wait state. The PCB of a process entering
exception-wait-active state is passed to the appropriate exception-handler process and remains
in the possession of that handler until it is returned to the ready state.

2. 1.4 Process Scheduling

2. 1.4. 1 Process Preemption

The running process is preempted, or displaced from run state, if a higher-priority process
becomes ready active. That can happen if either the running process or an ISR performs an
operation that unblocks a wait-active process, resumes a ready-suspended process, or "dismisses"
an exception-wait-active process. Preemption can also occur if the running process creates a
new, higher-priority process, lowers its own priority, or raises the priority of another process.

Many kinds of semaphore and ring buffer operations (for example, a signal operation) can
change a waiting process to ready active; the Resume operation may, of course, change a
suspended process to ready active. If the newly ready process is of higher priority than the
running process, the former switches immediately to run state, and the latter reverts to the
ready-active state. Preemption is always associated with the execution of certafo primitive
operations.

When a process is preempted, it is always placed at the head of the ready-active queue, before
any other processes of equal priority already on the queue. Thus, a preempted process always
has the highest effective scheduling priority relative to any other ready-active process of the
same priority. That is contrary to the equal-priority queuing policy effective for other operations,
such as unblocking, which places a newly queued process behind any other processes of the
same_ priority already on the queue.

2. 1.4.2 Process Blocking and Unblocking

A running process is said to block when it must give up the CPU in order to wait for a signal
or a resource to be provided by another process. Thus, a process blocks for synchronization
purposes; the blocking is always associated with execution of an unconditional, wait-type
primitive operation on a semaphore or ring buffer. The kernel changes the process's state code
from run to wait active and queues the PCB on the blocking queue of the semaphore or ring
buffer.

The running process potentially allows itself to block by executing any of the primitive
operations listed below. The MicroPower/Pascal predeclared procedure name for each operation
is followed, in parentheses, by the corresponding MACR0-11 primitive request name.

• An unconditional Wait operation on a binary or counting semaphore:
WAIT procedure (WAIT$ request)
WAIT-ANY procedure (WAIA$ request)

Blocking condition: The semaphore was not open-not already signaled-at the time of the
Wait operation.

2-12 Processes and System Data Structures

• An unconditional Get Packet or Receive Data operation on a queue semaphore:
GET_PACKET procedure (WAIQ$ request)
GET_p ACKET_ANY procedure (WAQA$ request)
RECEIVE procedure (RCVD$ request)
RECEIVE_ANY procedure (RCVA$ request)
RECEIVE_ACK procedure (RCVD$ request)
RECEIVE_ANY_ACK procedure (RCVA$ request)

Blocking condition: A packet was not available at the time of the Get or Receive operation.

• An unconditional Get Element or Put Element operation on a ring buffer:
GET_ELEMENT procedure (GELM$ request)
GET_ELEMENT_ANY procedure (GELA$ request)
PUT_ELEMENT procedure (PELM$ request)

Blocking condition: Either too few buffer elements were available at the time of a Get
Element operation or too little buffer space was available at the time of a Put Element
operation.

• A Sleep operation:
SLEEP procedure (SLEP$ request)

Blocking condition: The time interval specified in the Sleep request has not yet expired.

The conditional forms of the operations listed previously (for example, the COND_WAIT
function or the WAIC$ request) never cause the executing process to block.

A blocked process is unblocked either by a primitive operation that provides the signal or
resource for which the process was waiting or by elapse of a given time interval for a process
blocked on the kernel timer queue. Unblocking implies a transition from the wait-active or
wait-suspended state to the corresponding ready state. The PCB of the unblocked process is
moved to the appropriate ready-state queue. As noted above, unblocking a wait-active process
may in turn cause preemption of the running process. The following primitive operations may
unblock a waiting process:

• A Signal operation on a binary or counting semaphore:
SIGNAL procedure (SGNL$ request)
COND_SIGNAL function (SGLC$ request)
SIGNAL _ALL procedure (SALL$ request)

• A Put Packet or Send Data operation on a queue semaphore:
PUT_p ACKET procedure (SGLQ$ request)
COND_puT_p ACKET function (SGQC$ request)
SEND procedure (SEND$ request)
COND_SEND function (SNDC$ request)
SEND_ACK procedure (SEND$ request)
COND_SEND_ACK function (SNDC$ request)

Processes and System Data Structures 2-13

• A Get Element or Put Element operation on a ring buffer:
GET-ELEMENT procedure (GELM$ request)
GET-ELEMENT-ANY procedure (GELA$ request)
COND_GET_ELEMENT function (GELC$ request)
PUT-ELEMENT procedure (PELM$ request)
COND_pUT_ELEMENT function (PELC$ request)

Unblocking conditions: A Get Element operation will unblock a process waiting to put
elements into the same buffer if the Get frees enough space to satisfy the requirements of
the Put operation. Conversely, and more obviously, a Put Element operation will unblock
a process waiting to get elements from the same buffer if the Put supplies enough elements
to satisfy the requirements of the Get operation.

When the operation is successful, the conditional form of the semaphore operations listed
previously always unblocks a process, since the operation is performed only if a process is
waiting on the semaphore.

2.1.4.3 Process Suspension

The running process can suspend itself or another active process by requesting a Suspend
(SPND$) operation. In the case of self-suspension, the kernel changes the state code of the
running process to ready suspended (SC.RDS) and moves its PCB to the ready-suspended
queue. If the subject process was in the ready-active state, its PCB is similarly moved to the
ready-suspended queue with the state code SC.RDS. If the subject process was either wait active
or exception-wait active, however, suspension involves only a modification of the state code to
the suspended version of the previous state, with no movement of the PCB from one queue to
another. The PCB of a waiting process remains on the same blocking queue throughout any
transitions between the active and suspended substates.

The Suspend and Resume operations modify the value of a suspend counter associated with
each process. The value of the suspend counter is initially O; a Suspend operation decrements
this value, and a Resume operation increments it. An active process is in fact suspended only
when its suspend count changes from 0 to -1, and a suspended process is in fact resumed
only when its suspend count changes from -1 to 0. Therefore, a particular Suspend operation
may not effectively suspend the subject process; conversely, a particular Resume operation may
not effectively resume it, depending on the sequence in which preceding Suspend or Resume
operations, if any, have been executed. (See the SPND$ and RSUM$ primitives in Chapter 3.)

2-14 Processes and System Data Structures

2.1.4.4 Exception Handling

The MicroPower/Pascal kernel reports certain processor traps as exception conditions that can
be intercepted by an exception-handling process. The following processor traps are so reported:

Vector

000

004

010

014

024

030

034

114

140

244

250

Name and Description

Vector fetch trap: SBC-11/21 and LSI-11/23-PLUS only

Trap to 4: Bus timeout; nonexistent memory address or invalid addressing mode

Trap to 10: Illegal and reserved instructions

BPT or T-bit instruction trap

Power-fail trap

EMT instruction trap

TRAP instruction trap

Memory parity error

Break trap to 140: SBC-11/21 only

Floating-point exception: FP-11, FIS, or FPA option

Memory-management unit error: MMU option in effect

The kernel also reports a stack overflow or underflow exception for user-stack boundary
violations detected by the kernel during process context switching.

In addition, a large set of software exceptions are defined for other error conditions detected
by software, whether at kernel, system process, or user process level. Except for the kernel
detected stack boundary violations, however, these conditions are not automatically reported as
exceptions by the kernel. Rather, such conditions must be reported as such at process level, by
means of the Report Exception (REXC$) primitive, by the process that itself detects the error or
receives an error indication from the kernel or a system process. (The MicroPower /Pascal OTS
provides optional, automatic exception reporting for processes implemented in Pascal.) Table
7-1 lists all exception types and codes.

Further, the kernel permits a process to establish itself as an exception handler that services a
particular type of exception condition for processes belonging to a given exception-handling
group. (All processes have an exception group attribute that is specified during process
creation.) Exception handlers establish themselves through the use of either the Pascal
CONNECT_EXCEPTION procedure or the MACR0-11 Connect to Condition (CCND$) request;
the latter is described in Chapter 3.

Finally, assume that a running process of exception-handling group G causes an exception
condition of type T to occur. That process is placed in the exception-wait-active state only if an
exception handler exists for exceptions of type T caused by a process of group G. If so, the PCB
of the process is passed to the handler through its exception queue semaphore, for disposition
according to the management strategy implemented by that handler. The handler can dismiss
the exception, pass the exception to the process's exception service routine or procedure, if any,
or request that the process be aborted. See the DEXC$ request in Chapter 3 for more details.

Processes and System Data Structures 2-15

If no such handler exists, the faulting process remains in run state, but its flow of control is
redirected by the kernel as follows:

• The process is reentered at its exception service routine (or Pascal exception service
procedure), if any. The process stack will contain a frame of information related to
the exception condition.

• If no exception service routine or procedure has been established, the kernel sets special
state-code modifier bits in the PCB field PC.STS, indicating an abnormal-abort substate
(SM.AB! and SM.ABO), and then forces the process to its termination entry point, as if
a Stop Process (STPC$) request had been issued for the process. However, because of
the special substate when the process issues its Delete Process (DLPC$) request (which
customarily ends a termination routine), the process's PCB is not deleted but is placed on
the inactive queue. The process is essentially terminated, but its final context is preserved,
including an exception code stored in the PCB (field PC.ESC).

If an exception handler does exist for the faulting process and its disposition of the process is
"abort," the kernel also sets the SM.AB! state code modifier as for the case just described.

An exception service routine is established for a process or for a family of processes by
the Set Exception Routine Address (SERA$) primitive, as described in Chapter 3. For a
process implemented in Pascal, an exception service procedure is established by the ESTABLISH
predeclared procedure.

2. 1.4.5 Scheduler

The scheduler is responsible for switching a ready-active process into the run state. The
scheduler runs whenever a significant event (one that could affect the ability of the running
process to continue execution) occurs in the system. The three categories of significant events
are as follows:

•

•

•

A primitive executed by the running process that causes it to leave the run state, typically
switching to the wait-active state (blocking)

A primitive executed by either the running process or an interrupt service routine that causes
another process to enter the ready-active state, typically by unblocking, which in turn may
cause preemption of the running process

Occurrence of an exception condition that is dispatched to an exception-handling process,
causing the running process to enter the exception-wait-active state

If the run queue is vacant when the scheduler executes, it moves the first (highest-priority)
PCB from the ready-active queue to the run queue and restores the context of the new running
process. Otherwise, the scheduler compares the priority of the PCB at the head of the ready
active queue with that of the PCB on the run queue to determine whether the running process
should be preempted. If so, the scheduler makes the necessary queue change for both PCBs,
placing the previously running process on the ready-active queue in proper priority order. The
scheduler also performs a process context switch, saving and restoring the context of the old and
new running processes, so the latter gains control of the CPU on return from kernel processing.

2-16 Processes and System Data Structures

2. 1.5 Process Control Block (PCB)

A process is physically represented within the kernel by a process control block (PCB), the
system data structure that identifies a particular activation of an instruction segment. The kernel
creates a PCB in system-common memory when a process is created. The PCB is always
linked into one of the kernel's state queues unless the process is in an exception-wait state, as
previously described. The PCB serves a number of functions:

• Defines the name, if any, and all other fixed attributes of the process.

• Contains all dynamic state information maintained by the kernel about the process. This
collection of information is called the software context of the process.

• Provides a save area for kernel context that must be saved on a per-process basis under
certain circumstances.

• Provides the save area for process context switching. The full hardware context of the
process is saved in the PCB when the kernel switches the process out of run state. This
context includes the contents of all registers that must be restored when the process is
switched back to the run state. (In an unmapped system, the R3, R4, RS, PC, and PS values
are saved in an interrupt stack frame on the process stack rather than in the PCB whenever
the process is either interrupted or switched out of run state.) The PCB for a mapped process
also points to a separate save/restore area for the process's MMU register contents, which
is initialized during process creation. A process's mapping context is optionally saved in
this area when the process is switched out and is always restored from this area whenever
the process is switched in.

Most primitive operations affect the content of a PCB either directly, as in the case of process
management primitives, or indirectly, as when a primitive causes process blocking or unblocking.
Figure 2-2 shows how the PCB is organized.

Processes and System Data Structures 2-17

Figure 2-2: Process Control Block (PCB)

Top of

PCB

For
mapped
systems

only

l__

PC.FLK

PC.BLK

PC.STA I PC.PAI

PC.STS l PC.TYP

PC.PNT

PC.EXC

PC.MSK

PC.SF A

PC.SPT

PC.ALK

PC.SPC

PC.ALK

PC.GAP] PC.CXW

PC.TEA

PC.MCX

PC.GOS

PC.GUS

PC.EPC

PC.EPS

PC.ESC

PC.TML

PC.TMH

1-- PC.CSD ~

PC.KSP

~ PC.KSV -

~ PC.USV -
PC.MAP

PC.EXP

PC.TPS

PC.USP

PC.CBP

t-- PC.STK -
t-- PC.FSV -

2-18 Processes and System Data Structures

State-queue forward link word

State-queue backward link word

State code/Priority

Status bits/Mapping type

Pointer to parent process

Exception-routine entry point

Exception-type bit mask

Stop flag address

Pointer to blocking structure

Active-process list link word

Suspend counter

Kernel-resumption link word

Exe. group code/Context-switch mask

Termination entry point

Memory location to save/restore

Stack-overflow guardword pointer

Stack-underflow guardword pointer

PC associated with stack violation

PS associated with stack violation

Unhandled (aborted) exception code

Low-order part of timeout interval

High-order part of timeout interval

Complex-structure descriptor area
(12 words)

Saved kernel stack pointer

Saved kernel-primitive context (3
words in unmapped system; 5 words
in mapped system)

Saved user context (5 words in
unmapped system; 10 words in mapped
system)
------ Mapped process only:
Pointer to current process mapping

PS for exception-rtn. dispatch

PS for termination-rtn. dispatch

Saved user-mode SP value for pro
cess using supervisor-mode library
Pointer to saved-context (COB) list

Per-process kernel stack (38 words)

Optional context:

Floating-point registers (25 words,
if FPP context-save is requested)

ML0-392-87

Table 2-1 describes the PCB fields shown in Figure 2-2. The fields noted as dynamic reflect
the current state of the process and constitute its dynamic context.

Table 2-1: PCB Field Descriptions

Field

PC.FLK

PC.BLK

PC.PR!

PC.STA

PC.TYP

PC.STS

PC.PNT

PC.EXC

PC.MSK

PC.SFA

PC.SPT

PC.ALK

PC.SPC

PC.RLK

PC.CXW

PC.GRP

PC.TER

PC.MCX

Description

Forward pointer to the next PCB in the current state queue; dynamic (used for
linking into the kernel timer queue if the PCB is blocked on a complex structure
through field PC.CSD)

Backward pointer to the previous PCB in the state queue; dynamic (zeroed when
PCB is linked into a blocking queue)

Process priority value (range 0 to 255); set during process creation; may be modified
by the CHGP$ primitive (Chapter 3)

Process state code; dynamic

Process-mapping type code: PT.GEN for general, PT.SYS for privileged, PT.ORV
for driver, or PT.DEV for device access; set during process creation

State-code modifier bits; dynamic

Pointer to the PCB of the parent process; 0 if a static process; set during process
creation

Address of process's exception service routine; set by the SERA$ primitive (Chapter
3)

Bit mask of exceptions that the process will accept; set by SERA$

Address of process's stop flag, if any; set by the SSFA$ primitive (Chapter 3)

Pointer to semaphore or ring buffer that the process is blocked on, if any; the
value in this field is valid only when the state code (in field PC.STA) is either
SC.WTA or SC.WTS; dynamic

Pointer to the next PCB in the list of all unterminated processes; dynamic

Suspend count; modified by the SPND$ and RSUM$ primitives (Chapter 3);
dynamic

Pointer to the next PCB in the kernel resumption list; dynamic (used by the kernel
to queue processes awaiting "kernel resumption" following certain unblocking
operations)

Context-switch option bits; set during process creation (see CRPC$ or DFSPC$
primitive in Chapter 3)

Exception group code; set during process creation (see CRPC$ or DFSPC$)

Termination entry point; set during process creation

Address of optional user-memory location to be saved in PC.USV; zero value if
CX$MCX option was not selected; set during process creation

Processes and System Data Structures 2-19

Table 2-1 (Cont.): PCB Field Descriptions

Field Description

PC.GOS Lower-boundary guardword address for stack overflow checking; set during process
creation

PC.GUS Upper-boundary guardword address for stack underflow checking; set during
process creation

PC.EPC PC save/restore word for kernel-detected stack guardword violation, used by
stack-exception reporting mechanism; dynamic

PC.EPS PS save/restore word for kernel-detected stack guardword violation, used by
stack-exception reporting mechanism; dynamic

PC.ESC Exception code corresponding to an unhandled exception that caused the process
to be aborted; valid only when process state is SC.IAC (inactive); dynamic

PC.TML Low-order portion of the time-out interval value maintained by the kernel's clock
service routine when a process is blocked on the kernel timer queue; set by the
SLEP$ primitive or a complex primitive and modified by the kernel clock ISR;
dynamic

PC. TMH High-order portion of the time-out interval doubleword formed by PC. TML and
PC. TMH; dynamic

PC.CSD The complex structure descriptor area used by the WAIA$, WAQA$, RCVA$, or
GELA$ primitive when a process is waiting on multiple blocking structures (field
PC.FLK is the link into the kernel timer queue if the process is also blocked for
timeout); dynamic

PC.KSP Saved stack pointer for resumed kernel-primitive operations; this value points into
the process stack in an unmapped system or into PC.STK in a mapped system (see
note below); dynamic

PC.KSV Save area for kernel-primitive context: in an unmapped system, three words for
R4, R3, and RO; in a mapped system, five words for R4, R3, RO, and kernel-mode
P ARs 2 and 3 (see note below); dynamic

PC.USV Save area for user-context switch: in an unmapped system, 5 words for user SP,
RO, Rl, R2, and the optional memory location; in a mapped system, 10 words for
previous-mode SP, user-mode RO-RS, PC, PS, and the optional memory location;
dynamic

PC.MAP1 Pointer to the 16- or 32-word save /restore area for the process's current memory
mapping register (PAR and PDR) values; set during process creation. The MMU
registers are dynamically saved in the area on switchout only if the CX$KT option
was specified, indicating that the privileged or driver-mapped process modifies its
mapping itself rather than through a primitive service. The MMU registers are
always restored from this area on switchins, however. (The size of the save area
is reflected by the setting of the CX$IAD bit, which is determined at build time.)

PC.EXP1 PS used for dispatching to the exception routine, significant if a supervisor-mode
shared library is in effect; dynamic.

1 Present only in mapped systems

2-20 Processes and System Data Structures

Table 2-1 (Cont.): PCB Field Descriptions

Field Description

PC.TPS1 PS used for dispatching to the termination routine, significant if a supervisor-mode
shared library is in effect; dynamic.

PC.USP1 User-mode stack pointer saved and restored in case the process accesses a
supervisor-mode shared library (an LSI-11/73 target build option); dynamic.

PC.CBP1 Pointer to a pushdown list of context descriptor blocks (CDBs), containing explicitly
requested "snapshots" of process mapping, created by the SCTX$ primitive and
used by the RCTX$ primitive; zero if the list is empty; dynamic.

PC.STK1 Per-process kernel stack; 38 words; in a mapped system, the kernel uses this area
as its stack for primitive operations; dynamic (in an unmapped system, the process
stack is used instead).

PC.FSV2 Save area for FP-11 floating-point registers; 25 words for processes that use FP-11
floating-point instructions (KEFl 1-A or FPFl 1 option).

1 Present only in mapped systems

2Present only if the CX$FPP option was selected for the process, indicating that it uses the FP-11 floating-point processor

Note
The PC.KSP and PC.KSV context values are valid while a process is blocked on
a structure other than a single binary or counting semaphore. The kernel uses
these context values when a primitive service must resume operation in order
to unblock the waiting process and switch it to its subsequent ready state. In
contrast, the user-context (PC. USV) values are valid whenever the process is
not in the run state.

The size of a PCB varies both by hardware environment and by floating-point processor (FP-11)
usage, as follows:

•

•

For a process in an unmapped system:
Without FPP context, 43 words
With FPP context, 68 words

For a process in a mapped system:
Without FPP context, 93 words
With FPP context, 118 words

In addition, the MMU restore area pointed to by PC.MAP adds 16 or 32 words to the space
requirement for each PCB (32 words only if separate data-space mapping is in effect for the
process: bit CX$IAD = 1 in field PC.CXW).

A PCB is prefixed by a structure header that is common to all typed structures, as described in
Section 2.2.1. The header adds five words to the total amount of space allocated for any PCB.
Also, if the PCB represents a named process (is a named structure), a 4-word structure name
block is prefixed to the header, as described in Section 2.2.1.

Processes and System Data Structures 2-21

2. 1.6 Memory Partitioning and Process/Program Segmentation
MicroPower/Pascal uses a memory-layout technique designed to work effectively in either a
ROM/RAM hardware environment or a RAM-only environment. If a target system does include
both ROM and RAM, enough ~OM must be configured in low memory to contain the vector
area and at least the kernel's pure-code and pure-data segment. (The low-ROM requirement
does not apply in the special case of a CMR21 target system.) From that point on, the ROM
and RAM areas may in principle be configured as desired. The physical addresses implemented
by the memory configuration need not be contiguous; "holes" may exist in memory both within
and between the ROM and RAM areas. Also, ROM and RAM may be interspersed in physical
memory; that is, some ROM may be configured at higher addresses than RAM.

As a practical consideration, either fragmented memory or interspersed ROM and RAM can
cause some memory to be wasted, may necessitate a complicated, nonautomatic application
building procedure, or both. In a ROM/RAM target system, you should configure all ROM as
low memory and all RAM as high memory if at all possible, since at least some ROM must be
low addressed, as already stated. With a FALCON-PLUS target, however, the memory-map 1
configuration may be required for a given application and necessitate building for interspersed
ROM/RAM.

To allow the MicroPower/Pascal build utilities to handle ROM/RAM as well as mapped or
unmapped RAM-only applications, the address space of a MicroPower/Pascal process family
must be partitioned into two segments, low and high, through appropriate program sectioning.
(For processes implemented in Pascal, program sectioning is automatic.) The low segment
contains the process pure-code and pure-data sections and will be located in ROM, if any. The
high segment contains the impure-data sections and will be located in RAM. Thus, the two
segments of each process family (static process and any dynamic subprocesses) will be located
in at least two physically separate memory regions in a ROM/RAM environment, as shown
in Figure 2-3 for the simple low-ROM and high-RAM case. The kernel's address space is
partitioned in the same manner. (For simplicity, each process family is represented as a single
process.)

2-22 Processes and System Data Structures

Figure 2-3: ROM/RAM Physical Memory Layout

Highest address
1/0 page

...
Process-B

high segment

Process-A High

Kernel
high segment

(system common) RAM
~ ... ROM

Process-B Low

Process-A
low segment

Kernel Low

000000
Vectors

ML0-393-87

In a RAM-only system, the pure (low) and impure (high) segments are not physically separated
in memory (ignoring the small gaps imposed by the memory-mapping hardware in a mapped
environment). The RAM-only memory layout is shown schematically in Figure 2-4.

Processes and System Data Structures 2-23

Figure 2-4: RAM-Only Physical Memory Layout

Highest address
1/0 page

...

. . .
Process-8 High - - - - - - - -
Process- B Low

Process-A High - - - - - - - -
Process-A Low

Kernel
high segment

(system common) - - - - - - - -
Kernel Low

000000 Vectors

ML0-394-87

To achieve the low /high process code and data segmentation described above, a MACR0-11
application program must segregate its code and data into appropriate read-only and read/write
program sections, or p-sects. This must be done for any type of target-memory environment.

As previously stated, program sectioning is provided transparently by the MicroPower/Pascal
compiler for a Pascal program. The MACR0-11 programmer can use the PURE$, POAT$, and
IMPUR$ program sectioning macros; preceding code; and pure-data and impure-data sequences,
respectively, to conveniently generate the proper program sectioning directives for a process
that can be handled automatically by the build utilities. (See Chapter 3.)

If a process has special relocation and memory-allocation requirements, however, additional
program sectioning directives may be needed. (The RELOC and MIB utilities have options
that permit special relocation and memory allocation by p-sect name.) Nondefault relocation
might be required, for example, for most efficient building of an application for an unmapped,
interspersed ROM/RAM target.

During the application build cycle, the RELOC utility groups a process's p-sects according to the'
read-only versus read/write attribute. Within each group, the p-sects are sorted into alphabetical
order by p-sect name. One important effect of the RO versus RW p-sect grouping and the
subsequent alphabetical sorting is to make sure that the critical read-only p-sect .ALST. always
appears first in a static-process memory image, as required by the MIB utility and the kernel.
(See the DFSPC$ macro description in Chapter 3.)

In an unmapped environment, all processes have direct access to kernel memory space and in
particular to the kernel's impure segment. The total application is limited to 28K words in a
target system with a 4K-word 1/0 page or to 30K words in a target system with only a 2K-word
1/0 page and no high-memory firmware, such as an SBC-11/21 target. (If an MVSll-DD
or MVSll-ED memory module is used with the "extra 2K words" option enabled, 30K words

2-24 Processes and System Data Structures

of usable memory is possible. The option effectively halves the size of the I/O page for an
LSI-family target.)

In a mapped environment, the MMU address-relocation hardware assists in memory segmenta
tion and also provides memory protection. A mapped system with 18-bit physical addressing
can support up to 124K words of usable memory, and a single process or process family with
general mapping can occupy up to 32K words. A mapped system with 22-bit addressing can
support up to approximately 2M words of memory. If the target system provides separate
I&D-space mapping, as does the LSI-11/73, a general-mapped process family can occupy up
to 64K words (32KW code and 32KW data) if the mapping separation is used.

2. 1. 7 Process Mapping Types

The information in this section applies only to a mapped-memory hardware environment, such
as an LSI-11/23 target system. For simplicity, assume that I&D-space separation is not in effect
except where specifically noted.

Mapping type refers to the pattern of virtual-to-physical address translation used for a particular
mappable object in the system. The mappable objects are the kernel, interrupt service routines
(ISRs), run-time shared libraries, and four types of processes: general, device access, driver, and
privileged. More specifically, a mapping type identifies a particular active page register (APR)
usage convention associated with one of these objects. Both kernel mapping and ISR mapping
use the kernel-mode set of APRs.

A run-time shared library in a mapped system can be mapped in either user mode or supervisor
mode~ A user-mode shared library uses the user-mode set of APRs and thus does not have a
mapping of its own, strictly speaking, but affects the mapping of any process that is built with
such a library. In a target system that supports supervisor mode, a supervisor-mode shared
library uses the supervisor-mode set of APRs for mapping library code and pure data. Thus, a
supervisor-mode shared library does have its own mapping, independent of that of a referencing
process, but use of such a library also affects the mapping of the referencing process to a limited
extent, imposing a special restriction on user-mode APR 0.

The four types of process mappings use the user-mode set of APRs. (Figures 2-5 to 2-11,
discussed later, show the APR assignments for each kind of mappable object and for each of
the process mapping types.)

A mapping type is specified when a static process is defined. Any subprocesses cieated by the
static process inherit its mapping type and its mapping register values, since all the code and
data associated with a given process family resides in the same virtual address space. (Although
a process's mapping type is fixed, a process can dynamically modify its mapping register values
without affecting the mapping of any other process in the family, since the context of every
process includes a unique mapping image that is restored on each context switch.) The basic
characteristics of the general, device-access, driver, and privileged process mappings are as
follows:

• General: the standard mapping for most application processes. General process mapping is
intended for processes that do not require direct access to system data structures or access
to the I/O page. General process mapping allows for the largest possible static process
or process family; the full range of virtual addresses (0 to 177777) is available for process
code and data. Therefore, the pure and impure segments defined for a static process and
its subprocesses, if any, can occupy up to 32K words. (If I&D-space separation is available

Processes and System Data Structures 2-25

•

•

on the target system, the process family size can range up to 64K words, with the full
range of virtual addresses available both for the pure-code segment and for the pure- and
impure-data segments.)

B~cause of hardware constraints, however, the high, or impure, segment in a mapped
ROM/RAM target environment must begin on a 4K-word virtual address boundary. The
requirement is enforced by the build utilities. Thus, a sizable "hole" in the virtual address
space (up to 4K-32 words) may exist between the highest address in the low segment
and the beginning of the high segment, reducing the potential process family size by that
amount. (This is true for processes of any mapping type.)· If l&D-space separation is in
effect, the possible hole will exist only in the process's data address space, between the
pure-data and impure-data segments required by such separation.

In Pascal, if no mapping attribute (DEV-ACCESS, DRIVER, or PRIVILEGED) is specified,
the process family defined by the program has general mapping.

Device access: intended for processes that require access to the 1/0 page (for example, to
device CSRs), but not to system data structures. Device-access mapping is suitable for a
process that communicates directly with a dedicated 1/0 device for limited device handling.
Device-access mapping differs from general process mapping only in that virtual addresses
160000 to 177777 are mapped to the 1/0 page. This removes a 4K-word segment from
the address space available for process code and data. Thus, the maximum size of a
device-access process family is 28K words. (If l&D-space separation is available on the
target system, the process family size can range up to 60K words, with the full 32KW range
of virtual addresses available for the pure-code segment and 28K words of virtual address
space for the pure- and impure-data segment.)

In Pascal, if the DEV-ACCESS mapping attribute is specified, the process family defined by
the program has device-access mapping.

Driver: intended for device-handling processes that include an ISR. Driver mapping allows
direct access to system data structures (to the kernel's common data space) as well as to
the 1/0 page. Driver mapping also allows APR 1 to be used as a "stratch" address register
(for example, for mapping to another process's input or output data buffer area). Driver
mapping restricts process size to a maximum of BK words but allows very efficient queue
semaphore operations, for interprocess message transmission, and is fully compatible with
the kernel-mode mapping of an ISR. Although I&D-space separation, where available, is
possible for driver process-level code and data (but not for the ISR code and data), a
properly designed driver process family is not likely to require such separation.

The lowest 4K words of virtual address space should not be used. The next 4K words of
virtual space (addresses 020000 to 037777) are initially unmapped and are available for any
dynamic use (typically for mapping to a requesting process's buffer space). Virtual addresses
040000 to 077777 (BK words) are available for statically allocated driver process/JSR code
and data. Virtual addresses 100000 to 157777 are mapped as needed to the kernel's common
data area (variable in size up to 12K words), and addresses 160000 to 177777 are mapped
to the 1/0 page (4K words).

In Pascal, if the DRIVER mapping attribute is specified, the process family defined by the
program has driver mapping.

2-26 Processes and System Data Structures

• Privileged: intended for processes that need direct access to system data structures (to
the kernel's common data space) as well as to the I/O page. Also called full-system
mapping, privileged mapping restricts process size to a maximum of 16K words but allows
very efficient queue semaphore operations, for interprocess message transmission. Privileged
mapping is commonly used by processes that provide systemwide services other than device
handling and is typically used by exception handlers, which generally require direct access
to PCBs.

The lowest 16K words of virtual address space (addresses 0 to 077777) are available for
process code and data. Virtual addresses 100000 to 157777, corresponding to APRs 4, 5,
and 6, are mapped as needed to the kernel's common data area (variable in size up to 12K
words). (Any of those APRs can be borrowed for dynamic remapping. APR 6 in particular
will effectively be a scratch APR in an application in which the kernel's data area does not
exceed SK words.) Virtual addresses 160000 to 177777 are mapped to the I/O page (4K
words). (If I&D-space separation is available on the target system, the process family size
can range up to 4SK words, with the full 32KW range of virtual addresses available for
code, and 16K words of address space available for pure and impure process data.)

In Pascal, ·if the PRIVILEGED mapping attribute is specified, the process family defined by
the program has privileged mapping.

Figure 2-5 illustrates kernel mapping.

Figure 2-5: Kernel Mapping

1/0 page

...
Kernel impure

System common

RAM ...
ROM ...

Kernel pure code

Vectors

Kernel-mode APRs

~ ~ I APR 7

APRs 4 to 6
(as required)

APRs 2 to 3

APRsOto 1

Kernel context: PC, PS, SP, R3 to R5,
1

Kernel AP Rs 2 and 3.

ML0-395-87

Kernel-mode APRs 0 and 1 map the hardware vector area and the kernel pure-code segment;
thus, the latter is limited to less than SK words. APRs 2 and 3 are scratch address registers;
they are modified as needed to map to user address space (for example, mapping user argument
blocks). APRs 4 to 6 are used as needed to map system-common memory and the kernel's own
impure data, allowing up to 12K words of system data. Only APR 4 or APRs 4 and 5 may

Processes and System Data Structures 2-27

actually be in use, depending on the amount of memory allocated for the system-common area
in the RESOURCES configuration macro (see Chapter 4) and on the number of interrupt vectors
in use. (The system-common area consists of two separately configurable memory pools in
which the kernel allocates space for dynamic data structures-such as semaphores, ring buffers,
and PCBs-and for queue packets.) Privileged and driver processes can access the entire kernel
data segment, which is mapped by user-mode APRs 4 to 6 for those kinds of processes. See
Section 2.2.4 for further information on kernel data segment organization. Kernel-mode APR 7
maps the 1/0 page. (I&D-space separation is not applicable to the kernel.)

Figure 2-6 illustrates general process mapping, which provides access only to user-defined
memory. Note that Figure 2-6 does not reflect possible l&D-space separation.

Figure 2-6: General Process Mapping

User-mode AP Rs

Process
APRs (n+1) to 7

impure data

RAM ...
ROM ...

Process

code and APRs 0 ton
pure data

Process context: PC, PS, SP, RO to R5, user APRs 0 to 7.

ML0-396-87

All eight user-mode APRs are available for mapping process code and data, allowing a maximum
of 32K words of process space. Process pure code is mapped by APRs 0 to n, where n < 7,
allowing 4K•(n+l) words of code (up to 28KW). Process data is then mapped by the remaining
APRs, (n+l) through 7, permitting 4K•(7-n) words of data.

l&D-space separation, available on some target systems, potentially doubles the virtual address
space available to a process-at the possible expense of additional context switching time. If
that separation is in effect for a given process, two full sets of user-mode APRs exist-one
for code and one for data. Thus, the process's pure-code segment can consist of up to 32K
words, and its combined pure- and impure-data segments can consist of up to 32K words, less
a possible hole of up to 4K words in the data-space virtual addresses in the ROM/RAM case.

2-28 Processes and System Data Structures

Figure 2-7 illustrates device-access process mapping, which provides access to the 1/0 page
but not to the system-common area. Note that Figure 2-7 does not reflect possible I&D-space
separation.

Figure 2-7: Device-Access Process Mapping

User-mode APRs

1/0 page, '-___ A_P_R_7 __ _

...

Process
APRs (n+1) to 6

impure data

RAM
ROM

Process

code and APRs 0 ton
pure data

Process context: PC, PS, SP, RO to R5, user APRs 0 to 7.

ML0-397-87

User-mode APRs 0 to 6 are available for mapping process code and data, allowing a maximum
of 28K words of process space. Process pure code is mapped by APRs 0 to n, where n <6,
allowing 4K•(n+l) words of code (up to 24KW). Process data is then mapped by the remaining
APRs, (n+l) to 6, permitting 4K•(6-n) words of data. APR 7 maps the 1/0 page.

If supported by the target system, I&D-space separation may be used for a device-access process
as well as for a general mapped process. This permits a maximum code segment size of 32K
words, mapped by I-space APRs 0 to 7, and a maximum of the pure- and impure-data segment
sizes, combined, of 28K words, mapped by D-space APRs 0 to 6. (The possible virtual-address
break between the pure- and impure-data segments in an application built for ROM/RAM can
cause a hole of up to 4K words in the data-space virtual addressing.) Data space APR 7 maps
the 1/0 page.

Processes and System Data Structures 2-29

Figure 2-8 illustrates driver-process mapping, which provides access to both the I/O page and
the system-common area.

Figure 2-8: Driver Memory Mapping

RAM

ROM

1/0 page

...

System common

Driver/ISR data

Driver/ISR code

Scratch

Reserved

User-mode APRs

. ~ I APR 7

APRs 4 to 6
(as req u ired)

APR 3

APR 2

APR 1

APR 0

Process context: PC, PS, SP, RO to R5, user AP Rs 0 to 7.

ML0-398-87

User-mode APR 1 is a scratch register for the driver process-level code. (The ISR code is
mapped by kernel-mode APRs at interrupt level, and kernel-mode APR 1 is not scratch but can
be borrowed. See Figure 2-10.) APRs 2 and 3 map the combined process/ISR code and data,
respectively, which can occupy up to BK words. APRs 4 to 6 map the system-common data
area, as needed. APR 7 maps the I/O page. User-mode APR 0 is reserved by DIGITAL for
future device driver interfaces.

I&D-space separation is possible but not generally applicable to a driver mapped process and in
particular is not valid for the ISR code and data that is normally included in the process code
and data segments.

2-30 Processes and System Data Structures

Figure 2-9 illustrates privileged-process mapping, which provides access to both the 1/0 page
and the system-common area. Note that Figure 2-9 does not reflect possible l&D-space
separation.

Figure 2-9: Privileged Process Mapping

1/0 page

...

System common

Process

RAM
impure data

ROM ...
Process

code and
pure data

User-mode APRs

. ~ I APR 7

. ... ---------
APRs 4 to 6

(as required)

... ·---------
APRs (n+1) to·3

: : : : [APRs 0 to n

Process context: PC, PS, SP, RO to R5, user APRs 0 to 7.

ML0-399-87

User-mode APRs 0 to 3 map the process code and data, which may total 16K words. APRs 4
to 6 map the system-common data area, as needed. APR 7 maps the 1/0 page.

If supported by the target system, l&D-space separation may be used for a privileged process,
significantly increasing the potential maximum process size at a possible cost in performance.
The separation permits a maximum code segment size of a full 32K words, mapped by I-space
APRs 0 to 7, and a maximum of the pure- and impure-data segment sizes, combined, of 16K
words, mapped by D-space APRs 0 to 3. (The possible virtual-address break between the pure
and impure-data segments in an application built for ROM/RAM can cause a hole of up to 4K
words in the D-space virtual addressing.) D-space APRs 4 to 6 map the system-common data
area, and D-space APR 7 maps the 1/0 page.

Processes and System Data Structures 2-31

Figure 2-10 illustrates JSR mapping; ISRs are described in Chapter 7.

Figure 2-10: Interrupt Service Routine Mapping

1/0 page

...

System common

RAM !SR/Driver data
-----..
ROM I SA/Driver code

Kernel pure code

Vectors

Kernel-mode APRs

. ~ I APR 7

APRs 4 to 6

(as required),__ ______ ~
APR 3

APR 2

APRs 0 to 1

.... ----------
ISR context: PC, PS, SP, R3 to R5, Kernel APRs 2 and 3.

ML0-400-87

The mapping of ISRs uses the kernel-mode APRs and is designed to be very fast. Kernel-mode
APRs 2 and 3 are saved and then set up to map the driver/JSR code and data. The rest of
the mapping context remains that of the kernel; thus, the JSR is mapped to system common,
the IjO page, and the kernel. APR 1, which is mapped to kernel code, is available to the JSR
(can be borrowed) for mapping to user buffers, but the JSR must save and restore it if so used.
In particular, APR 1 must, if borrowed, be restored before issuing a FORK$ request and any
subsequent primitive requests. Note that I&D-space separation is not applicable to an JSR.

2-32 Processes and System Data Structures

Figure 2-11 illustrates supervisor-mode shared-library mapping.

Figure 2-11: Supervisor-Mode Shared-Library Mapping

Supervisor-mode
I- space AP Rs

(As needed)

Library

code and

dispatcher

APR 7

APR 6

APR 5

APR 4

APR 3

APR 2

APR 1

APR 0

Supervisor-mode
D-space APRs

(Free for
overmapping

by the
corresponding

user-mode data-
space AP Rs, if

separate, or the
undifferentiated

user mode APRs,
if unseparated,

of the referencing
user process)

Library pure data

(A supervisor-mode shared library always uses l&D-space separation,

regardless of whether that separation is in effect for a referencing process.)

ML0-401-87

The run-time library pure-code segment, comprising the library dispatcher and subroutine code,
is mapped by supervisor-mode I-space APRs 0 through n as required. Thus, the library code in
no way impinges on the virtual address space of a referencing process.

The library's pure-data segment is mapped by supervisor-mode D-space APR 0. (A shared
library contains no impure-data segment of its own.) The remainder of the library's D-space
APRs are overmapped with process-mapping values each time a referencing process is switched
into the run state. That is, except for APR 0, a calling process's data-space mapping, if separated
(or undifferentiated I&D-space mapping, if not separated) is copied to the library's D-space APRs
1 through 7 to allow access to the process's data by the library routines. That implies, of course,
that the caller's D-space APR 0 (or its undifferentiated APR 0) maps no process data that
the library routines need to access, since the library's D-space APR 0 is reserved for its own
read-only data and is never modified. Therefore, the build-time implications for a static process
that references a supervisor-mode shared library are the following:

•

•

For a static process built with I&D-space separation, the RELOC utility will by default start
the process's pure-data segment at virtual address 20000, thus removing the D-space APR
0 from the process's mapping.

For a static process built without I&D-space separation, the RELOC utility will by default
start the process's pure-code (low) segment at virtual address 20000, thus removing the
undifferentiated APR 0 from the process's mapping.

Processes and System Data Structures 2-33

• For a static process built without I&D-space separation, you may force your mapping to begin
at virtual address 0 by using the RELOC utility option /RO:O (VMS/RSX) or /0:0 (RT-11)
at build time. That lets you retain the use of APR 0 (assuming that APR 0 maps only code or
that none of the pure data, if any, also mapped by APR 0 is accessed by the library routines).
In any case, if use of APR 0 is forced, it must not map any read/write data. Violation
of either constraint is likely to result in unpredictable and probably very obscure run-time
errors. (In an all-RAM target environment, the process's code and pure-data segments are
brought together and by default are contiguous with the impure-data segment in virtual
and physical space.) The process's read/write data can be separated from the code and
pure data, as if for a ROM/RAM target, through use of the /AL (VMS/RSX) or /X (RT-11)
RELOC option, which forces the impure-data segment to the next available 4KW virtual
address boundary, satisfying the read/write data constraint. For a static process comprising
at least 4KW of code, conformance to the more general constraint on APR 0 is implicit. For
a Pascal static process having a code segment smaller than 4KW, total code/data separation
can be achieved by using the RELOC option /QB:.IDAT.:20000 (under RSX/VMS) or /Q
(under RT-11) supplying the .IDAT. and 20000 values in response to a RELOC interactive
prompt. (If you are using the MPBUILD or MPBLD facility for application building, you
can edit the generated build-command file to add the required RELOC options.)

In general, for simplicity of application building and avoidance of programming constraints,
I&D-space separation should be used when building a user process with a supervisor-mode
shared library. The automatic relocation in that case, reserving the low-order 4KW of virtual
data-space addressing, still allows up to 28K words of program data for a general mapped
process, up to 24KW for device-access mapping, or up to 12KW for privileged mapping.

2.2 System Data Structures
The MicroPower/Pascal run-time system uses a variety of dynamic data structures, which are
allocated by the kernel in system-common memory as a direct or indirect result of requests for
kernel services. This section describes the format of those structures. However, you do not need
to know how they are implemented in order to use the kernel services; the primitive-request
interface hides this level of detail. The information is provided because it is often useful, and
sometimes necessary, when debugging an application. In addition, you need some knowledge
of kernel internals for designing and coding privileged system-level processes such as exception
handlers.

The structures described here comprise typed data structures (for example, semaphores and
ring buffers), message packets, and several kinds of queues (linked lists of structures) used
by the kernel. The descriptions include the MACR0-11 symbolic offset names assigned to
each element of a structure. The offset symbols and other MACR0-11 symbols shown in this
section are defined by the QUEDF$ macro in the COMM and COMU macro libraries except
where indicated otherwise. The overall organization of the system-common memory area is
also described.

Several kernel structures related to exception dispatching and interrupt dispatching are described
in Chapters 6 and 7.

2-34 Processes and System Data Structures

2.2. l Typed Data Structures

The system data structures created and deleted by processes through primitive operations are
called typed data structures. Each instance of a typed structure carries a structure-type code,
used for validity checking, in its structure header. Eight structure types are defined:

• Binary semaphore (BSM)

• Counting semaphore (CSM)

• Queue semaphore (QSM)

• Ring buffer (RBF)

• Shared region descriptor (SRD)

• Logical-name value (LNM)

• Process control block (PCB)

• Unformatted structure (UDF)

Semaphores, ring buffers, and unformatted structures are explicitly created and deleted by the
Create Structure (CRST$) and Delete Structure (DLST$) primitives. Logical-name structures are
created and deleted by the Create Logical Name (CRLN$) and Delete Logical Name (DLLN$)
primitives. Shared region descriptors are created and deleted by the Create Shared Region
(CRSR$) and Delete Shared Region (DLSR$) primitives. PCBs are implicitly created and deleted
as a part of process creation and deletion. Note that the PCB was defined in Section 2.1.5 under
the general discussion of processes.

No kernel operations other than creation and deletion are defined on an unformatted structure;
its internal format is undefined. This type of structure is available for application-defined
purposes.

All typed structures can be named. Section 2.1.2 discusses the naming of PCBs.

2.2. 1. 1 Structure Names and Name Blocks

The kernel allows a run-time name composed of six ASCII characters to be dynamically
associated with a typed structure when the typed structure is created. The name must be unique
across all typed structures to which a run-time name is assigned, including PCBs. Uniqueness
here extends to a distinction between a capital letter and its lowercase form. (Because of its
intrinsic nature, a logical-name structure must be named.) Once a named structure is created,
any process in ·the system can refer to it by name when requesting operations on it. Such names
facilitate source-time references to a given structure in several application programs, which in
a mapped environment represent processes in separate address spaces. In Pascal, a structure
name can be specified directly in a structure-creation request and used in other requests for
operations on the structure. Section 3.1.5 describes the use of structure names and the structure
descriptor block in MACR0-11 programs.

Every named structure is prefixed by a 4-word structure name block that precedes the standard
structure header described in Section 2.2.1.2. The name block contents are set during structure
creation. The format of the structure name block is as follows (FOOBAR represents a structure
name):

Processes and System Data Structures 2-35

SN.NAM 0 F

B 0

R A

SN.LNK • Next name block

ML0-402-87

In the previous format:

• The SN.NAM field contains the 6-character ASCII structure name.

• SN.LNK is a structure name table (SNT) link word.

The SN.NAM and SN.LNK symbols are defined by the QUEDF$ system macro as negative
offsets from the start of the structure body. (Run-time pointers to typed structures point to the
actual structure body.) The symbol SN.SIZ defines the size of a structure name block in bytes.
The symbol SN.CHR defines the number of characters in the SN.NAM field.

2.2. 1.2 Structure Header

All typed structures have a standard prefix, or structure header. The header contents are set
during structure creation and are never modified. The format of the structure header is as
follows:

HD.SSZ

t-- HD.SNM -

HD.A TR l HD. TYP

HD. LCK

ML0-403-87

In the previous format:

• HD.SSZ is the structure size in bytes, including the header, and is used during structure
deallocation.

• HD.SNM is the structure serial number (32 bits), a value that is unique to each instance of
a typed structure, and is used during structure name lookups for validity checking.

• HD.TYP is the structure-type code (defined below) and is used by many primitives for
validity checking.

2-36 Processes and System Data Structures

• HD.ATR is the structure attribute bits (defined below).

• HD.LCK is reserved for future use.

The HD.xxx symbols are defined by the QUEDF$ system macro as negative offsets from the
start of the structure body. (Run-time pointers to typed structures point to the actual structure
body, not to the header.) The symbol HD.SIZ defines the size of a structure header in bytes.

The structure type code (in HD.TYP) has the following range of symbolic values:

Code Value

ST.BSM Binary semaphore

ST.CSM Counting semaphore

ST.QSM Queue semaphore

ST.RBF Ring buffer

ST.PCB Process control block

ST.SRD Shared region descriptor

ST.LNM Logical name value

ST.UDF Unformatted structure

The structure-attribute bits (in HD.ATR) are defined as follows:

Code Bit Definition

SA$NAM For any structure type, structure is named if set, unnamed if not.

SA$RIA For type ST.RBF, determines the ring buffer input access mode as stream or record:

SA$RIA = SA$RIS (1) for stream mode
SA$RIA = SA$RIR (0) for record mode

Input access mode affects only Conditional Put Element (PELC$) operations.

SA$ROA For type ST.RBF, determines the ring buffer output access mode as stream or
record:

SA$QUO

SA$ROA = SA$ROS (1) for stream mode
SA$ROA = SA$ROR (0) for record mode

Output access mode affects only Conditional Get Element (GELC$) operations;
stream-mode output access is invalid for Get Element Any (GELA$) operations.

For types ST.QSM and ST.RBF, determines the packet-queue ordering or the
waiting-input-process list ordering, respectively, as by priority or FIFO:

SA$QUO = SA$IPR (1) for priority ordering
SA$QUO = SA$IFF (0) for FIFO ordering

Processes and System Data Structures 2-37

Code

SA$PRO

SA$SRD

Bit Definition

For types ST.PSM, ST.CSM, and ST.QSM, determines the waiting-input-process
list ordering; for type ST.RBF, determines the waiting-output-process list ordering,
by priority or FIFO:

SA$PRO = SA$0PR (1) for priority ordering
SA$PRO = SA$0FF (0) for FIFO ordering

For type ST.SRO, determines the shared-region mode as physical or common:

SA$SRD = SA$PHY (1) for physical mode
SA$SRD = SA$COM (0) for common mode

2.2. 1.3 Binary Semaphore Definition

A binary semaphore consists of a binary variable and a singly-linked list of waiting processes.
Two operations on the variable are defined: Signal and Wait. The Signal operation increments
the semaphore variable. (The variable cannot assume a value greater than l, however.) The
Wait operation decrements the semaphore variable, if possible. If the value of the variable is 0,
it cannot be decremented; binary variables can assume only the values 0 and 1. The process
invoking this operation then waits until the value can be decremented.

The format of a binary semaphore, excluding the structure header, is as follows:

In the previous format:

Pointer to

semaphore
BS.FPT

BS.VAR

ML0-404-87

• BS.FPT is the forward pointer to the first waiting process, if any.

• BS.VAR is the semaphore gate variable.

The SA$PRO bit of the structure-header attribute byte (HD.ATR) must be set if waiting processes
are to be queued in priority order.

2.2. 1.4 Counting Semaphore Definition

A counting semaphore consists of a nonnegative integer variable, or counter, and a singly
linked list of waiting processes. Two operations on the variable are defined: Signal and Wait.
The Signal operation increments the semaphore variable. The Wait operation decrements the
semaphore variable, if possible. If the variable is 0, it cannot be decremented; nonnegative
variables cannot, by definition, assume values less than 0. The process invoking the operation
must then wait until the variable can be decremented. The counting semaphore differs from
the binary semaphore only in that the semaphore variable can assume values greater than 1.
Thus, n successive Signal operations will allow n subsequent Wait operations to proceed without
waiting.

2-38 Processes and System Data Structures

The format of a counting semaphore, excluding the structure header, is as follows:

Pointer to
CS.FPT

semaphore
CS.CNT

ML0-405-87

In the previous format:

•
•

CS.FPT is the forward pointer to the first waiting process, if any .

CS.CNT is the counter variable .

The SA$PRO bit of the structure-header attribute byte (HD.ATR) must be set if waiting processes
are to be queued in priority order.

2.2.1.5 Queue Semaphore Definition

A queue semaphore is a further generalization of a counting semaphore. This case has two
singly-linked lists; one of waiting processes and another of available elements, or message
packets. The two basic operations defined on queue semaphores are Put Packet and Get Packet.
The Get Packet operation tests the element queue for an available element. If one is available, it
is dequeued and passed to the requesting process. If no elements are on the queue, the process
is blocked on the semaphore's waiting-process list until one becomes available.

The Put Packet operation places an element on the semaphore's element queue. The Put
operation first tests to see if a process is waiting; if so, it unblocks the process, moving it to
the appropriate ready state queue, and passes the element pointer to the unblocked process. If
no process is waiting for an element, the element is placed on the semaphore's element queue.
The standard queue element, or message packet, is defined in Section 2.2.2.

The higher-level Send Data and Receive Data operations are essentially elaborations of the
basic Put Packet and Get Packet operations, for use by general or device-access processes in a
mapped environment.

The format of a queue semaphore, excluding the structure header, is as follows:

In the previous format:

Pointer to

semaphore
OS.FPT

OS.OPT

OS.LPT

OS.CNT

ML0-406-87

• QS.FPT is the forward pointer to the first waiting process, if any.

• QS.QPT is the pointer to the first element on the queue, if any.

Processes and System Data Structures 2-39

• QS.LPT is the pointer to the last element on the queue, if any .

• QS.CNT is the count of the available queue elements.

The SA$QUO bit of the structure-header attribute byte (HD.AIR) must be set if queue element
ordering is to be by priority rather than by FIFO. The SA$PRO bit of the attribute byte must
be set if waiting processes are to be queued in priority order.

2~2. 1.6 Ring Buffer Definition

A ring buffer consists of a control structure and a data buffer of user-specified size. The control
structure includes a Get substructure that controls buffer output (Get Element) operations and a
Put substructure that controls buffer input (Put Element) operations. The Get substructure has a
waiting output-process list, or Get queue, and the Put substructure has a waiting input-process
list, or Put queue.

The buffer, which is circular in the implementation sense, can be thought of as having both
an input and an output end, such that two buffer-transfer operations can be in progress at the
same time. For example, a process can be blocked on the output end of the buffer, waiting for
sufficient data to satisfy its Get request, while another process is putting bytes into the buffer at
the input end. The reverse situation can also occur, of course, as when an input process must
wait for space to become available. Once a process gains active access to the buffer, its input
or output operation must complete before another process is given access to the same end of
the buffer. If necessary, the requesting process will block on the buffer until the transfer is
completed. Other processes attempting to access the same end of the buffer will be blocked
behind the process whose transfer is in progress, regardless of their priority.

See the GELM$, GELC$, GELA$, PELM$, PELC$, and RBUF$ primitives in Chapter 3 for a
complete description of ring buffer operations.

The format of a ring buffer, excluding the structure header, is as follows:

2-40 Processes and System Data Structures

Pointer to
RB.CNT

structure
RB.LOW

RB.HI

RB.MAX

RB.GET

RB.GWT t
Get

RB.GVA
substructure

RB.PRO

RB.PPG I
RB.PUT

RB.PWT t
Put

RB.PVA
su bstru ctu re

RB.GRQ

RB.GPC

Buffer

ML0-407-87

In the previous format:

• RB.CNT is the count of bytes of data available for output.

• RB.LOW is the low limit-the starting address of the buffer.

• RB.HI is the high limit-the highest address of the buffer-used to determine when to wrap
the PUT or GET pointer around to the beginning of the buffer, creating the circular buffer
structure.

• RB.MAX is the size of the buffer-the maximum number of bytes it can contain.

• RB.GET is the pointer to the next available byte; used when removing an element from the
buffer.

Processes and System Data Structures 2-41

• RB.CWT is the pointer to the first process, if any, waiting for active output access-the
head of the Get queue (see RB.GPC).

• RB.GVA is the binary gate variable that controls the granting of active output access for Get
operations.

• RB.PRQ is a wake-up counter used during concurrent Get/Put operations for awakening
the putting process pointed to by RB.PPC.

• RB.PPC is the pointer to the blocked process with active input access to the buffer, if any.

• RB.PUT is the pointer to the next free location in the buffer; used when inserting elements
into the buffer. -

• RB.PWT is the pointer to the first process, if any, waiting for active input access-the head
of the Put queue (see RB.PPC).

• RB.PVA is the binary gate variable that controls the granting of active input access for Put
operations.

• RB.GRQ is a wake-up counter used during concurrent Get/Put operations for awakening
the getting process pointed to by RB.GPC.

• RB.GPC is the pointer to the blocked process with active output access to the buffer, if any.

The control structure and the buffer area may not be contiguous in memory.

The SA$QUO bit of the structure-header attribute byte (HD.AIR) must be set if waiting input
processes are to be queued in priority order rather than FIFO. The SA$PRO bit of the attribute
byte must be set if waiting output processes are to be queued in priority order. The SA$RIA and
SA$ROA access-mode bit settings affect certain characteristics of the Put (PELM$ and PELC$)
and Get (GELM$, GELC$, and GELA$) operations, respectively, as described in Chapter 3.

2.2. l. 7 Shared Region Descriptor Definition

A shared region descriptor (SRD) consists of three words that specify the location and extent of
a user-defined shareable memory area. The SRD structure allows the indirect association of a
structure name to a region of memory. (By the nature of its use, an SRD is normally a named
structure.) Other than creation and deletion, the only operation defined on an SRD structure
is access shared region, which returns information about the described region. Region-sharing
operations are described in Chapter 5.

The format of an SRD, excluding the structure header, is as follows:

Pointer
AG.ADD

to SAD
AG.LEN

AG.OFF

ML0-408-87

2-42 Processes and System Data Structures

In the previous format:

• RC.ADD is a physical memory address, specified as a PAR value in a mapped system or
simply as an address in an unmapped system.

• RC.LEN is the length of the region, specified in PAR ticks (units of 32 words) in a mapped
system or in bytes in an unmapped system.

• RC.OFF is, for a mapped common region, an offset in bytes from the PAR value (RC.ADD)
to the region base.

The SA$SRD bit of the structure-header attribute byte (HD.ATR) indicates the region mode as
physical if set or common if clear. Note that the RC.OFF word is not significant for a physical
region or an unmapped application.

2.2. 1.8 Logical-Name Structure Definition

A logical-name structure contains the translation value, or definition, for a logical name, which
is itself a structure name. The structure is variable in size up to 258 bytes and consists of a
string-length word followed by a variable-length ASCII character string. Other than creation
and deletion, the only explicit operation defined on a logical-name structure is Translate
Logical Name, which returns the immediate translation value of a logical name. (Logical-name
definitions may be "nested," providing for multiple levels of indirection, since the translation
value may represent another structure name.) However, all other primitive operations that
operate on typed structures implicitly operate on logical-name structures to obtain the eventual
translation of a logical name into another kind of structure name.

The format of a logical-name structure, excluding the mandatory structure name block and the
structure header, is as follows:

Pointer to
LN. LEN

structure
LN.VAL

ML0-409-87

In the previous format:

• LN.LEN is the length in bytes of the character string contained in field LN.VAL; maximum
value is 256.

• The LN.VAL field contains a variable-length ASCII character string.

The SA$NAM bit of the structure-header attribute byte (HD.ATR) is always set.

Processes and System Data Structures 2-43

2.2. 1.9 Unformatted Structure Definition

An unformatted structure consists of a data area of user-specified size, preceded by a standard
structure header. The kernel does not impose a format on the data area, as no primitives are
provided to operate on it. An unformatted structure is allocated by the CRST$ primitive from
system-c9mmon memory, has the ST.UDP type code, and may be named. Such a structure
may be operated on directly by a privileged or driver mapped process or by any process in
an unmapped environment. (An unformatted structure might be used in connection with a
user-implemented primitive operation, for example.)

2.2.2 Message Packets
Standard, fixed-length queue elements, called packets, are used with queue semaphores to
implement message transmission within the system. The kernel maintains a pool of free packets
in the system-common area. A process obtains a packet from this pool by performing an
ALLOCATE_PACKET (or ALPK$) primitive operation. When no longer needed, the packet
must be returned to the free-packet pool by a DEALLOCATE_PACKET (or DAPK$) operation.
Thus, a packet is a reusable (serially shareable) kernel resource.

A packet consists of a 3-word packet header and a fixed amount of message space, called the
undefined portion. (The header is part of the packet and should not be confused with the
prefixed structure header of a typed structure.) The size of a packet is 40 bytes, allowing up to
34 bytes of usable message space, the undefined portion.

The format of a packet is as- follows:

Pointer

to packet
SE.LNK

SE.AUX

SE.CTL l SE.PR I

SE.UDF

1
OE. LEN bytes

i
ML0-410-87

In the previous format:

•

•
•

SE.LNK is the forward link word for packet queuing (that is, the pointer to the next packet in
a queue); set by the Signal Queue Semaphore (SGLQ$) and Send Data (SEND$) primitives.

SE.AUX is the auxiliary link word; reserved for future use .

SE.PRI is the packet priority value, if any; used by the SGLQ$ and SEND$ primitives if the
packet queue is priority ordered.

2-44 Processes and System Data Structures

•

•

SE.CTL is the message-format control byte; the subfields of this byte are set by the SEND$
primitive and used by the Receive Data (RCVD$) primitive, as described in Chapter 3.

SE.UDP is the start of the undefined portion (message area) .

The content of a packet as obtained from the free-packet pool is undefined.

The global symbol QE.LEN represents the length in bytes of the undefined portion; the symbol
SE.SIZ represents the overall packet size. These symbols, and the SE.xxx offset symbols shown
above, are defined by the QUEDF$ system macro.

2.2.3 System Queues

The kernel maintains a number of queues, or linked lists, of dynamically related elements such
as PCBs or message packets. Two queuing mechanisms are used: the singly-linked list and the
doubly-linked list.

2.2.3. l Singly-Linked Lists

A singly-linked list structure uses one link word, or pointer, for each list element and is used
for the following purposes:

•
•

•
•
•
•
•
•
•
•
•

The blocking queue of a semaphore or a ring buffer (waiting-process list)

The blocking queue of the kernel's timer-service semaphore (time-ordered list of "sleeping"
processes)

The packet queue of a queue semaphore

The list of all current processes (all PCBs)

The fork request queue (an internal queue associated with ISR management)

The exception-handler dispatch lists (internal queues associated with exception dispatching)

The static-process list (used by INIT)

The system-common free-memory lists

The unallocated free-RAM list

Structure name table lists

Kernel primitive-resumption list

A singly-linked list is shown schematically in Figure 2-12(a). The list head consists of a single
link word. The link word of a list element may or may not be the first word of the element,
but in all cases except the kernel resumption list, the link word points to the beginning of the
successor element. The list is terminated by a zero-value link word.

Processes and System Data Structures 2-45

Figure 2-12: System Queue Structures

List head First element Last element

I~ •

(a) Singly-Linked List Structure

(b) Doubly-Linked List Structure (State Queue)

ML0-445-87

A singly-linked list is normally either FIFO or priority ordered, depending on the ordering
attribute associated with the list. (An exception is the blocking queue of the kernel's timer
service semaphore, which has a special time-dependent ordering.) In the case of blocking queues
and packet queues, the ordering attribute is determined by the user when the corresponding
semaphore or ring buffer is created. (FIFO ordering is the default.) The internal, kernel
maintained lists of free-memory elements are ordered by ascending addresses of the linked
elements.

2.2.3.2 Doubly-Linked Lists

A doubly-linked list structure uses two link words (a forward pointer and a backward pointer)
for each list element. This list structure is used for the ready-active and ready-suspended
state queues, where insertion or extraction of a PCB at any point in the queue is a frequently
performed operation. The ready-active state queue is priority ordered; the ready-suspended
state queue is LIFO ordered for quick enqueuing. (A doubly-linked list is also used for the
inactive queue.)

A doubly-linked list is shown schematically in Figure 2-12(b). The list head (at a fixed location
in kernel data space) has the following format, identical to the first three words of a PCB:

SO.FPT

SO.BPT

SO.STA I SO.PAI

ML0-411-87

2-46 Processes and System Data Structures

In the previous format:

• SQ.FPT is the forward link word, the pointer to the first PCB.

• SQ.BPT is the backward link word, the pointer to the last PCB.

• SQ.PRI is unused.

• SQ.STA is the state code corresponding to the process state represented by the queue
SC.RDA or SC.RDS, for example.

The list is terminated by pointing the forward link of its last element (PCB) back to the list
head. If a state queue is empty, both link words of the list head point back to the list head.

2.2.4 Kernel Data Segment Organization
All dynamic system data structures are allocated in the system-common memory area of the
kernel's impure-data segment. This area, beginning at $FREE, ordinarily constitutes the major
portion of the kernel data segment; see Figure 2-5. The size of the area is determined at system
build time by the STRUCTURES and PACKETS parameters of the RESOURCES configuration
macro. The rest of the kernel data segment consists of the following:

• System-interrupt stack (. lOSTK p-sect)

• Kernel's private impure data (.20DAT p-sect)

• Interrupt dispatch block area (.30IDB p-sect)

These areas follow the system-common area.

System-common memory is subdivided by the system-initialization (INIT) routine at run time
as follows:

• The free-packet pool, from which processes obtain "empty" packets by means of the ALPK$
or ALPC$ primitive. The INIT routine preallocates n packets in this pool, where n is the
number of packets requested in the packets parameter of the RESOURCES macro. The
default is 20 packets. Thus, the default size of this pool is 800 bytes (20 x 40 bytes); see
Section 2.2.2. The available packets are linked into a free-element queue by INIT.

• The free-memory pool, from which all dynamic system data structures other than queue
packets are allocated. The size of this pool is determined by the structures parameter of the
RESOURCES macro. The default size is 3000 bytes. After establishing this pool, the INIT
routine creates the static-process PCBs in it.

The structure of the free-memory pool is as follows. Blocks of memory are allocated from
the free-memory pool as data structures are created and are deallocated (returned to the pool)
when structures are deleted, by the common kernel procedures $ALLOC and $DALOC. (These
procedures are used only by primitive operations and other kernel routines.)

The allocation/ deallocation algorithms assume that free memory is linked together in a singly
linked, open list structure, with the first word of a memory block used as a pointer to the next
available block and the second word used to indicate the size of the block in bytes. Thus, the
free-memory pool looks as shown in Figure 2-13.

Processes and System Data Structures 2-47

Figure 2- 1 3: Free-Memory Pool

List head First element ith element

$FREEM: •

·1
•

I 'I • •
Size Size

••• • ••

ML0-446-87

A zero pointer value terminates the list. The INIT routine initializes the kernel variable $FREEM
to point to the first word of the free-memory pool. The initial size of the pool is placed in the
second word, the first word being an empty (zero) pointer to the next entry in the list.

Memory is allocated from the pool in multiples of four bytes. The allocation algorithm is first-fit.
If the first element that can accommodate a given request is larger than the amount of space
requested, the space is allocated from the beginning of the element. Since structures are usually
created and deleted in an arbitrary sequence, the free-memory pool can become fragmented
during system operation.

The $DALOC procedure returns a released memory block to the free-memory pool. Whenever
possible, $DALOC will merge contiguous memory elements into a single element during
deallocation.

Note
The free-memory pool should not be confused with the free-RAM list, which is
described in Chapter 5.

2-48 Processes and System Data Structures

Chapter 3
MACR0-1 1 Primitive Service Requests

This chapter describes the MACR0-11 interface to the real-time primitive services provided
by the Micro Power /Pascal kernel. This chapter describes the purposes and applications of the
kernel primitives, as well as the detailed syntax and semantics of the macro calls used to request
the primitive services. In addition, the chapter provides information about structure descriptor
blocks and process descriptor blocks, which are used with many primitive service requests. For
ease of reference, the primitive descriptions are in alphabetical order, by primitive name.

The MACR0-11 interface consists of a set of keyword macros. The macros facilitate construction
of the argument block required by each kernel primitive routine, as well as the invocation of the
routine. The three forms of macro call provided for each primitive service permit the following
variant usages:

•

•
•

Run-time construction or modification of the required argument block in user-specified RAM
storage

Run-time construction of the argument block on the user's stack

Assembly-time construction of the argument block in either ROM or RAM storage

The MicroPower /Pascal compiler also provides an interface to the primitive services described
in this chapter. This interface consists of the predefined procedure and function calls known
collectively as the MicroPower/Pascal real-time programming extensions. Each macro call
description in this chapter includes the name of the equivalent Pascal procedure or function.

3.1 General Conventions and Usage Rules
Kernel primitives are invoked from process level by the IOI trap instruction, which in
MicroPower /Pascal is reserved and dedicated to that purpose. The IOI instruction is followed
immediately by the global entry-point symbol for the desired primitive, of the form $prim, as
follows:

IDT
$prim

RO must point to the caller's argument block when the IOT is executed. The primitive service
macro calls generate this sequence as part of their expansion.

MACR0-11 Primitive Service Requests 3-1

The primitive name (prim in the previous example) is always a 4-character mnemonic for the
service performed by the primitive (for example, CRST for the Create Structure primitive and
SGNL for the Signal Semaphore primitive). The corresponding macro call names are formed
by appending $, $S, or $P to the mnemonic (for example, CRST$, CRST$S, or CRST$P). The
suffixes $, $S, and $P identify variant forms of the basic macro call; the three variants provide
maximum coding flexibility and efficiency. The three variants differ as follows:

• The variant prim$ is used for run-time construction or modification of both the required
argument block in a preallocated memory area and the IOI sequence. (This variant can
also be used in a special form to pass a preexisting argument block that may have been
built in ROM with the prim$P macro variant.)

• The variant prim$S is used for dynamic generation of both the required argument block on
the user's stack and the IOI sequence. This variant is useful if a static argument block area
is not desirable, as for a primitive that is executed only once or infrequently.

• The variant prim$P is used for assembly-time generation, in ROM or pure RAM, of the
argument block only. (No IOI sequence is generated.) This variant is used with the null
or single-argument form of the prim$ variant, as described below. The prim$P variant may
also be used without arguments for convenient allocation of an area of the correct size for a
given argument block in impure RAM, to be used with the "full" form of the prim$ variant.

The radix for any MACR0-11 argument value is octal, unless you put a decimal point after the
value.

The following subsections describe the general form of each macro variant and the usage rules
associated with each.

3. 1. l Macro Variant prim$
General Form-A primitive that takes N arguments will have a corresponding prim$ macro
call of the general form:

prim$ area,argument_1,argument_2, ... argument_N

This macro call expands into a code sequence of the general form:

MOV area.RO
MOV argument_1,(RO)
MOV argument_2,2(RO)

MOV argument_N,N*2(RO)
IDT
$prim

3-2 MACR0-11 Primitive Service Requests

Various optimizations of this sequence are produced for special cases. For example, a call with
a relatively large number of arguments produces the following:

MDV area.RO
MDV RO, -(SP)
MDV argument_1,(RO)+
MDV argument_2,(RO)+

MDV argument_N,(RO)+
MDV (SP)+,RO
IDT
$prim

If one or more of the primitive argument values are null in the call, the corresponding move
instructions are omitted in the expansion. For example, a call may have the form:

prim$ area, ,argument_2, ,argument_4

This call produces the following expansion:

MDV area.RO
MDV argument_2,2(RO)
MDV argument_4,6(RO)
IDT
$prim

Similarly, a call may have the form:

prim$ area

This call produces the following expansion:

MDV area.RO
IDT
$prim

This expansion allows for precall modification of selected fields in an existing argument block
or use of an existing argument block without modification.

Note
If the area parameter is null, RO is assumed to be preset to the address of the
argument block, and the MOV area,RO instruction is omitted in the expansion.
Therefore, if the entire argument list is missing, the macro expansion produces
only the IOT sequence.

Usage Rules-As implied by the foregoing, the general usage rules for the prim$ form of macro
call are the following:

•

•

If any of the second through Nth macro arguments are null, the precall content of the
corresponding argument block location is not modified by the call.

If the area parameter is null, the argument block address must be stored in RO prior to the
call.

MACR0-11 Primitive Service Requests 3-3

3.1.2 Macro Variant prim$S
General Form-A primitive that takes N arguments will have a corresponding prim$S (stack
version) macro call of the general form:

prim$S argument_1,argument_2, ... ,argument_N

This macro call expands into a code sequence of the general form:

MDV argument_N, -(SP)
MDV argurnent_N-1, -(SP)

MDV argument_!, -(SP)
MDV SP.RO
IDT
$prim
< code for popping arguments from stack >

The argument list may be omitted, as in call of the form:

prim$S

This call produces the following degenerate expansion:

MDV SP.RO
IDT
$prim

This expansion assumes that an appropriate argument block exists on the stack when the call is
executed.

Usage Rules-The general usage rules for the prim$S form of macro call are the following:

• If one macro argument is specified, all arguments must be specified, except where a default
value is explicitly described for a given argument. The stack is purged of all arguments on
return from the call.

• If no macro argument is specified, the desired argument block must be constructed on the
stack prior to the call. The stack is not purged following the call.

3. 1.3 Macro Variant prim$P

General Form-A primitive that takes N arguments will have a corresponding prim$P
(parameters only) macro call of the general form:

[label:] prim$P argument_1,argument_2, ... ,argument_N

This macro call expands into a code sequence of the general form:

[label:] .WORD argument_!
.WORD argument_2

WORD argument_N

3-4 MACR0-11 Primitive Service Requests

If one or more of the macro arguments are null in the call, a 0 is generated for that argument.
For example, a call may have the form:

[label:] prim$P ,argument_2, ,argument_4

This call produces the following expansion:

[label:] .WORD 0
.WORD argument_2
.WORD 0
.WORD argument_4

Usage Rule-If an argument is null in the macro call, the corresponding location in the argument
block will have a zero value.

Guidelines-The prim$P macro variant can be used within the scope of a PDAT$ (pure-data
p-sect) macro to generate an argument block in ROM or write-protected RAM storage. (This
usage implies that the argument values will never be modified and that the primitive operation
to which the block is passed does not return any values in the block.) The "prim$ area" form
of macro call can then be used to pass the address of the block to the appropriate primitive.

Alternatively, the prim$P macro can be used within the scope of an IMPUR$ (impure-data
p-sect) macro to allocate an argument block area of the required size in read/write storage. The
argument list is not needed for this purpose, since the argument block must be filled in at run
time. The argument block is filled in prior to the issuing of a "prim$ area" call.

3. 1.4 Error Returns
An error condition encountered by a primitive service routine is reported to the caller by a
return of control to the call site with the carry (C) bit set in the processor status word (PSW).
An exception code identifying the error condition is returned in RO. Therefore, the caller should
test the C bit following a primitive call to detect a possible error return and evaluate the content
of RO.

Note
Some primitives alternatively return a nonerror function value in RO, such as a
TRUE or FALSE indication from a conditional primitive operation. In that case,
the C bit is clear on return from the primitive, distinguishing the RO function
value from a possible exception code.

Exception codes and types are described in general in Section 6.1 and Table 6-1. Collectively,
the primitive routines return only a limited subset of the exception codes of types EX$SVC
(system service) and EX$RSC (resource). (The return of some address-check exceptions is
conditional on the· CHECK option of the SYSTEM configuration macro; see Chapter 4.) That
subset of possible exception code values, mapped by globally defined symbols of the form
ES$xxx, is as follows:

MACR0-11 Primitive Service Requests 3-5

• Codes for conditions of type EX$SVC
ES$AOV Already owned vector, cannot connect

ES$IAD

ES$IPM

ES$IPR

ES$IST

ES$IVC

ES$NID

ES$SIU

ES$SNI

Invalid address: odd or not in user's virtual space

Illegal parameter

Illegal primitive for context

Invalid structure descriptor

Illegal vector address

No interrupt dispatch block established for vector

Structure is in use

Structure name already in use

• Codes for conditions of type EX$RSC
ES$NFA No free APR for window mapping

ES$NMK Insufficient space for creation of a dynamic kernel structure

The exception symbol values are defined by the EXMSK$ macro in the COMM and COMU
system macro libraries. The particular exception codes returned by a given primitive are specified
in the description of that primitive.

A process may elect to raise an exception, by means of the Report Exception (REXC$) primitive,
based on the exception code it receives as an error return. The REXC$ primitive requires an
exception type value as well as an exception code as calling parameters. Before using REXC$,
therefore, the reporting process must derive an exception-type mask value from type information
that is encoded in every exception code value. Section 6.2.1 shows a MACR0-11 program
fragment that perf~:nms the required code-to-type transformation.

3. 1.5 Structure Descriptor Block (SOB) Usage

A structure descriptor block (SDB) describes a particular kernel data structure, such as a
semaphore, ring buffer, or logical-name translation value. (These dynamic typed structures,
described in Section 2.2.1, are allocated in kernel space but are created, used, and deleted
at user request.) Many primitives act on a given structure; therefore, the structure must be
identified (indirectly) in the corresponding primitive request.

An example of such a request is the Signal Semaphore (SGNL$) primitive call, which has the
form:

SGNL$ area,sdb

The sdb argument, which is a pointer to an SDB, indirectly identifies the semaphore to be
signaled.

The user allocates and initializes an SDB in process space. An SDB for a named structure is a
6-word block consisting of a 3-word structure identifier (filled in by the kernel) and a 6-byte
alphanumeric structure name. The SDB for an unnamed structure can be abbreviated to four
words, as explained later.

3-6 MACR0-11 Primitive Service Requests

The format of an SDB is as follows:

Structure index

Structure

seria I number

6-character

structure

name

Structure ID
(kernel-level

identifier)

Global
process- level

identifier

ML0-412-87

An SDB must be in RAM and may be constructed on the stack.

An SDB has three uses, as follows:

• To specify the name, if any, of a structure to be created by the CRST$ or CRSR$ primitive.

• To specify a logical name, that is, the name of a logical-name value structure to be created
by the CRLN$ primitive.

• To access, through other primitive services, an existing structure that is referenced by either
structure ID or structure name. (The reference may be indirect, through an intermediate
logical name.)

When a structure is either created or accessed by structure name, the primitive writes a structure
identifier into the first three words of the SDB. In subsequent uses of the filled-in SDB, the
structure identifier permits direct, optimized access to the structure, bypassing the table-lookup
step needed for a reference by name. Such use results in faster processing of the primitive
request.

Primitives that operate on structures test the first word of the passed SDB (the structure index)
to determine how to use information in the SDB. If the index value is nonzero, the primitive
assumes that the structure ID field contains valid information and uses it to locate the structure.
In this case, the last three words of the SDB are not significant. If the index value is 0, a
reference by name is implied, and the primitive uses the contents of the structure name field to
find the structure by a name-table lookup procedure. (The latter case is invalid for an unnamed
structure.)

Structure and process names must be unique throughout an entire application. (A process name
describes a process control block, another kind of system structure.) A logical name is a form of
structure name (the name of a data structure of type ST.LNM), which contains the translation
value for the name. Therefore, an SDB containing a logical name is subject to the same rules as
an SDB for any other kind of named structure. However, since the translation value of a logical
name can itself be another structure name, logical-name references are treated differently from
other structure references by most primitives, as described in Section 3.1.5.3.

MACR0-11 Primitive Service Requests 3-7

3. 1.5. l Initialization of SDBs for Named Structures

Before using an SDB to either create a named structure or refer to an existing structure by name
(in a SGNL$ or WAIT$ request, for example), you must initialize the SDB as follows:

1. Set the value of the first word (structure index) to 0.

2. Ensure that the structure name field contains the ASCII character string used to globally
name the structure. If shorter than six characters, the name string must be left-justified in
the field; the trailing character positions should be space-filled.

By system convention, a structure name shorter than six printing characters is padded with
trailing spaces. Therefore, any unused high-order bytes of tDe structure name field in the
SDB should contain the ASCII SPACE character (octal 040). (The MicroPower/Pascal compiler
space-fills such names by default.) This convention is significant, for example, if you construct
an SDB to describe a semaphore created by a system service process, such as the I/O request
queue semaphores established by the standard device drivers. (The driver request queues have
names of the form $xxx followed by two spaces.)

3. 1.5.2 Initialization of SDBs for Unnamed Structures

An unnamed structure may be created by passing the CRST$ primitive a pointer to an SDB that
contains a 0 in the first byte of the structure name field. Since the last five bytes of the SDB are
not significant in this case, an SDB for an unnamed structure need be only seven bytes long.

Before using an SDB to create an unnamed structure, you must initialize the SDB as follows:

1. Set the value of the first word (structure index) to 0.

2. Make sure that the value of the seventh byte (first byte of the structure name field) is 0.

For subsequent references to the structure, only the first three words of the SDB (the structure
ID field) are needed, as is the case with named structures.

To refer to an existing unnamed structure, the calling process must supply an SDB containing a
valid structure identifier. Therefore, to access such a structure, a process other than the creator
must also have access to the SDB used to create it. In a mapped environment, then, an unnamed
structure is used only for internal synchronization or communication between processes in the
same static process family; that is, among processes residing in the same address space.

3. 1.5.3 Implicit Translation of Logical Names

The primary design intention for logical names is to permit a level of indirection within file
specifications that are passed to an I/O ancillary control process (ACP), such as the RTACP. In
addition to this and other possible uses, however, a logical name can also be used as an alias
for another structure name.

All primitives that operate on existing structures other than PCBs will accept a logical name
as a structure reference. The reference can be either by name or by structure ID, as described
for named structures in general. Except for the Translate Logical Name (TRLN$) and Delete
Logical Name (DLLN$) primitives, none of those primitives operates directly on the identified
logical-name structure. Instead, they attempt to translate the logical-name reference into a valid
reference to a kind of structure they do operate on, such as a semaphore or a ring buffer.

3-8 MACR0-11 Primitive Service Requests

The rules for such primitive operations with respect to logical names are:

1. If the SDB passed to the primitive identifies a logical-name structure, the primitive obtains
the corresponding translation string.

2. If the translation string exceeds six characters and thus is not a structure name, the primitive
returns an "invalid structure descriptor" (ES$IST) error.

3. If the translation string does not exceed six characters, the primitive performs a structure
lookup, using the translation string as the structure name. (If the translation string is
shorter than six characters, the kernel's name-lookup mechanism will pad out the string
with trailing NULLs, not space characters.)

4. If the lookup produces another logical-name structure, the primitive repeats the translation
and attempted lookup procedure according to rules 2, 3, and 4.

5. If the lookup produces an existing structure of a type appropriate to the primitive operation,
the primitive performs the requested operation.

Note
Following a successful lookup, both the name and the structure ID fields of
the SDB are updated to reflect the structure to be operated on rather than
the original logical-name structure.

6. If the lookup fails (no matching structure) or finds an existing structure of an invalid type
for the primitive operation, the primitive returns an invalid structure descriptor (ES$IST)
error.

The Create Structure (CRST$) primitive, which creates a semaphore, ring buffer, or unformatted
structure, and the Create Shared Region (CRSR$) primitive, which creates a shared region
descriptor (SRD) structure, will also accept a logical name as an indirect specification of the
name to be given to the created structure. (This use of logical names is less likely than their
use for indirect access to an existing structure, however.) The CRST$ and CRSR$ primitives
operate with respect to logical names according to the following rules (rules 1 through 4 are the
same as those for structu:r:e access):

1. If the SDB passed to the primitive identifies a logical-name structure, the primitive obtains
the corresponding translation string.

2. If the translation string exceeds six characters and thus does not qualify as a structure name,
the primitive returns a "structure name already in use" (ES$SNI) error.

3. If the translation string does not exceed six characters, the primitive performs a structure
lookup, using the translation string as the structure name. (If the translation string is
shorter than six characters, the kernel's name-lookup mechanism will pad out the string
with trailing NULLs, not space characters.)

4. If the lookup produces another logical-name structure, the primitive repeats the translation
and attempted lookup procedure according to rules 2, 3, and 4.

5. If the lookup produces an existing structure of a type other than logical name, the primitive
returns a "structure name already in use" (ES$SNI) error.

6. If the lookup fails to find a matching named structure, the primitive creates the requested
structure with the name used in the final lookup operation.

MACR0-11 Primitive Service Requests 3-9

See the CRLN$, TRLN$, and OLLN$ primitives for a description of the specific logical-name
operations: creation, single-level translation, and deletion, respectively. Only those primitives
create or operate on logical-name structures.

3. 1.6 Process Descriptor Block (PDB) Usage

A process descriptor block (POB) describes a process. The POB identifies a process control block
(PCB), the kernel structure that represents an existing process and contains the state and context
information for that process. Although POBs and SOBs are structurally identical, they differ
somewhat in the way they are interpreted and treated by some primitive operations. Like an
SOB, a POB is a 6-word block consisting of a 3-word process identifier filled in by the kernel
and a 6-byte alphanumeric process name. The format of a POB is as follows:

Process index

Process

serial number

6-character

process

name

Process ID
(kernel-level

identifier)

Global
process-level

identifier

ML0-413-87

The use of a POB for process creation (CRPC$ primitive) is identical to the use of an SOB for
structure creation, as described above. The use of a POB in requests for a primitive operation
on another process is also the same as the use of an SOB for reference to an existing structure.

However, the primitives that operate on existing processes provide a shorthand way for the
calling process to identify itself as the process to be acted on rather than another process. The
shorthand rule is that, in a process-related request, if the POB argument value is 0 (implying
no POB) or the content of the specified POB is null, the request will operate reflexively on the
calling process.

Reference to an existing process is best illustrated by example. The following primitives operate
on an existing process and, possibly, on the calling process:

• CHGP$ (Change Process Priority)

• GMAP$ (Get Process Mapping)

• GTST$ (Get Process State)

• SPN0$ (Suspend Process)

• STPC$ (Stop Process)

Each of those primitives requires the address of a POB as a calling argument and interprets that
argument in a consistent manner. For example, the call for the GTST$ primitive, which returns
information about a given process, is of the form:

GTST$ area,pdb,buf

3-10 MACR0-11 Primitive Service Requests

The pointer to the PDB that identifies the subject process is pdb, and buf points to the caller's
information-return buffer.

The primitive interprets the pdb argument value as follows:

1. If the argument value is 0, indicating no PDB, the primitive assumes that the calling process
is to be acted on. (In the case of GTST$, information about the calling process is returned
to the caller.) If the argument value is nonzero, the primitive uses the indicated PDB to
locate the process to be acted on (see step 2).

2. If the process index field of the PDB is nonzero, the primitive uses the contents of the
process ID field to locate the process to be acted on. If the process index field is 0, the
primitive examines the process name field (see step 3).

3. If the value of the first byte of the name field is 0, the primitive assumes that the calling
process is to be acted on. If the value is nonzero, the primitive uses the process name string
to locate the process to be acted on.

In all cases, if a PDB address is specified in the call and the process index value is 0, the
primitive writes a valid process identifier in the process ID field as an implicit part of the
primitive operation. This action is like that performed for a structure access by structure name,
as described in Section 3.1.5, and permits optimal access to the process on subsequent uses of
the PDB.

MACR0-11 Primitive Service Requests 3-11

3.2 ACSR$ (Access Shared Region)
Pascal equivalent: ACCESS_SHARED_REGION Procedure

The Access Shared Region (ACSR$) primitive lets the calling process gain access to a region
of memory that was previously cmade shareable by another process, by means of a run-time
name assigned to the shared region. (The ACSR$ primitive can also be used to access a shared
region that was defined at build time by a MEMORY configuration macro.) More precisely,
the ACSR$ primitive returns a physical description of the named shared region to a region ID
block (RIB) that is pointed to in the call. The RIB information is normally used in a subsequent
window-mapping operation, performed for general mapped processes by the MAPW$ primitive.

The accessed region can be either a common or physical shared region (see the CRSR$ primitive).
The information returned in the RIB describes the region's location, size, and mode attribute.
~The location of a shared region is represented by a combination of the region base, specified
by a physical PAR value, and the region offset, specified as a displacement in bytes from the
base. The region size is described in PAR ticks (32-word units). The size of a common region
as described in the RIB can therefore exceed the size declared by the region's creator by up
to 31 words. (The creator and accessors should have common size definitions independent of
the RIB description where necessary.) Since a physical region is located on a 32-word physical
boundary and allocated in 32-word units, its offset is 0, and the described size, in PAR ticks,
represents the exact amount of space allocated for the region.

Although region sharing by means of the kernel is applicable primarily to a mapped target
environment, the CRSR$ / ACSR$ primitives can be useful in an unmapped application containing
more than one user static process. (Because of the single address space in an unmapped system,
however, having multiple user static processes is generally of no advantage.) Coding details
differ for unmapped usage, since there is no distinction between virtual and physical addresses.
In the unmapped case, the RIB specifies the base of the region directly as a physical address,
and the region size is represented in bytes. The base and size information· supplied in the RIB
is used directly. Also, common and physical regions are effectively equivalent; the region offset
is 0.

A semaphore is usually required to protect against concurrent references to a region shared
by several processes. Also, the kernel structure (shared region descriptor) that represents a
shared region can be deleted by the DLSR$ primitive, although typically that is done only if the
creating static process terminates. The kernel does not provide any automatic safeguard against
inadvertent reference to a deleted (and possibly deallocated) shared region, since any process
that accessed the region while shareable retains a description of it.

Chapter 5 contains a general discussion of region sharing, including the use of ACSR$ in the
context of the related primitives ALRG$, CRSR$, DLRG$, DLSR$, MAPW$, and UMAP$. The
CRSR$ primitive provides the complementary Create Shared Region operation, which declares
a region as being shareable and assigns its run-time name.

3-12 MACR0-11 Primitive Service Requests

Syntax

The three variants of the ACSR$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant Macro Call

ACSR$

ACSR$S

ACSR$P

ACSR$ [area,sdb,rib]

ACSR$S [sdb,rib]

ACSR$P [sdb,rib]

area

sdb

rib

The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of the user-constructed structure descriptor block (SDB) containing the name
of the shared region to be accessed (that is, the name associated with the corresponding
kernel SRD structure) and in which the kernel returns information identifying the SRD. See
Section 3.1.5 for the format and use of an SDB. This argument has the form:

[SDB=]sdb-address

The address of a 4-word (Rl.SIZ bytes) area in user memory, the region ID block, in which
the location, size, and mode attribute of the allocated region is returned by the primitive,
as described under Semantics. This argument has the form:

[RIB=]area-address

Restrictions

This primitive may be used only at process level; it may not be called from an ISR fork routine.

Argument Block

The calling argument block generated (or assumed to exist) by the ACSR$x macro has the
following format:

RO-. SOB address

RIB address

(pointer)

(pointer)

ML0-414-87

MACR0-11 Primitive Service Requests 3-13

Syntax Example

ACSR$S sdb=#SRGNAM,rib=#REGDSC

This stack ($5) form of the macro call specifies the location of the structure descriptor block
SRGNAM containing the name of the region to be accessed and specifies the location of the
region ID block REGDSC in which the region description is to be returned. (See the CRSR$
primitive description for a corresponding region-creation example.)

Semantics

The ACSR$ primitive looks for a shared region descriptor (SRD) having the name specified in
the caller's SDB. If that SRD exists, the primitive copies information in the SRD to the RIB
specified in the call and returns to the caller. If no such SRD exists, the primitive returns to the
caller, with an error indication.

Information describing the accessed region is returned in the user's RIB area in the following
form, assuming a mapped environment:

rib-.. region base

region size

reserved l mode

region offset

Physical/Common

PAR value/PAR value

PAR ticks/PAR ticks

RAPHY /RACOM

Zero/no. of bytes

ML0-415-87

The offset and size symbols defined for the RIB fields are:
RI.ADD Region base

RI.LEN

RI.ATR

RI.RES

RI.OFF

RI.SIZ

Region size

Region mode (attribute byte)

Reserved (high byte)

Region offset

RIB size in bytes

The RIBDF$ macro in the MicroPower/Pascal COMU and COMM system macro libraries defines
these symbols.

In the mapped environment, the region base is returned as a physical PAR value, representing a
32-word physical boundary. (That value is not directly usable as an address, of course, but can
be used in a physical-to-virtual mapping operation as implemented by the MAPW$ primitive.)
The region offset, relevant for a shared common region, is an increment in bytes from the PAR
value to the beginning of the region. (The region-offset field is significant for the Map Window
operation.) The region size specifies the number of PAR ticks (units of 32 words) in the region.
In the case of a common region, the described size represents the actual size of the region
(specified to CRSR$ in bytes) rounded up to the next multiple of 32 words. The region mode

3-14 MACR0-11 Primitive Service Requests

is indicated by the value of the mode symbol RA$PHY or RA$COM, denoting a physical or
common region, respectively. (The RA$xxx symbols are defined by the RIBDF$ macro.)

In an unmapped environment, the region base is a physical address that can be used directly,
and the region size is the number of bytes specified in the Create Shared Region request. The
region offset is always 0, regardless of the region mode.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; the RIB address is not on a word boundary.

ES$IST Invalid structure description (index or name); no such shared region descriptor exists.
(This error return could be caused by an erroneous SDB address.)

MACR0-11 Primitive Service Requests 3-15

3.3 ALPC$ (Conditionally Allocate Packet)
Pascal equivalent: COND_ALLOCATE_PACKET Function

The Conditionally Allocate P·acket (ALPC$) primitive allocates a message packet (standard queue
element) from the kernel's free-packet pool, if one is available, or returns a FALSE indication if
not. If a free packet is available, it is logically removed from the pool. A pointer to the packet
is returned to the caller, and the kernel-defined value TRUE is returned in RO. If all packets are
in use at the time of the call, the primitive returns control immediately, with the kernel-defined
value FALSE in RO.

This primitive permits the caller to obtain a packet pointer for use in a Signal Queue Semaphore
(SGLQ$) or Conditionally Signal Queue Semaphore (SGQC$) primitive operation, without
blocking if a packet is not available. (Compare with ALPK$, the unconditional form.)

The DAPK$ primitive is the inverse of ALPC$, allowing a process to deallocate a message
packet.

Syntax

The three variants of the ALPC$ macro and their respective macro calls are listed below. (The
differences are described in Section 3 .1.)

Variant

ALPC$

ALPC$S

ALPC$P

area

Macro Call

ALPC$ [area,qelm]

ALPC$S [qelm]

ALPC$P

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

qelm
The address of a location that is to receive the packet pointer returned by the primitive.
This argument has the form:

[QELM=]destination-address

Or, the address may be null. (If specified, it must be a word address.)

If the qelm argument is null, the packet pointer returned by the primitive is available only in
the calling argument block. If the argument is null in the stack ($S) version of the macro call,
the returned pointer value is left on the stack. (Ordinarily, the argument block is purged from
the stack following the call.) In the parameters-only ($P) version of the macro call, no qelm
argument is specified, and the returned pointer value is available only in the calling argument
block. (See the following Restrictions section.)

Restrictions

The argument block must be in read/write memory.

3-16 MACR0-11 Primitive Service Requests

Argument Block

The calling argument block generated (or assumed to exist) by the ALPC$x macro has the
following format:

Ro...-1 ... --==----____ ,....._Default destination of
· - returned pointer value

ML0-416-87

Semantics

The ALPC$ primitive tests the free-packet pool for a free packet. If the pool contains at least
one packet, the primitive logically removes a packet from the pool and returns the address of
that packet in the argument block, from which it is moved to a user-specified location by the
macro expansion, if requested (qelm argument). The primitive also returns the value TRUE in
RO.

If no packets are free, the primitive returns immediately to the calling process, with the value
FALSE in RO.

The TRUE and FALSE symbol values are defined by the EXMSK$ macro in the COMM
and COMU libraries. In the current version of MicroPower/Pascal, the values are 1 and 0,
respectively.

Error Returns

None.

MACR0-11 Primitive Service Requests 3-17

3.4 ALPK$ (Allocate Packet)
Pascal equivalent: ALLOCATE_PACKET Procedure

The Allocate Packet (ALPK$) primitive allocates a message packet (standard queue element)
from the kernel's free-packet pool. If a free packet is available, it is logically removed from the
pool, and a pointer to the packet is returned to the caller. If all packets are in use at the time
of the call, the calling process is blocked until the request can be satisfied. (If several processes
are concurrently waiting for packet allocation, the requests are satisfied according to process
priority as packets are returned to the pool.)

This primitive permits the caller to obtain a packet pointer for use in either the Signal
Queue Semaphore (SGLQ$) or the Conditionally Signal Queue Semaphore (SGQC$) primitive
operation.

The Conditionally Allocate Packet primitive (ALPC$) permits a process to request packet
allocation without blocking if no packets are free.

The inverse of ALPK$ is the DAPK$ primitive, allowing a process to deallocate a message
packet.

Syntax

The three variants of the ALPK$ macro and their respective macro calls are listed below. (The
differences are described in Section 3 .1.)

Variant

ALPK$

ALPK$S

ALPK$P

area

Macro Call

ALPK$ [area,qelm]

ALPK$S [qelm]

ALPK$P

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

qelm
The address of a location that is to receive the packet pointer returned by the primitive.
This argument has the form:

[QELM=]destination-address

Or, the address may be null. If specified, it must be a word address. Because the argument
you specify is expanded directly into an MOV instruction destination argument, it should
not contain an immediate expression indicator (#).

3-18 MACR0-11 Primitive Service Requests

If the qelm argument is null, the packet pointer returned by the primitive is available only in
the calling argument block. If the argument is null in the stack ($S) version of the macro call,
the returned pointer value is left on the stack. (Ordinarily, the argument block is purged from
the stack following the call.) In the parameters-only ($P) version of the macro call, no qelm
argument is specified, and the returned pointer value is available only in the calling argument
block. (See the following Restrictions section.)

Restrictions

The argument block must be in read/write memory.

Argument Block

The calling argument block generated (or assumed to exist) by the ALPK$x macro has the
following format:

RO~ I - - - , .._Default destination of
.... --------- returned pointer value

ML0-417-87

Semantics

The ALPK$ primitive tests the free-packet pool for a free packet. If the pool contains at least
one packet, the primitive logically removes a packet from the pool and returns the address of
that packet in the argument block. If requested (qelm argument), the macro expansion moves
the address to a user-specified location.

If no packets are free, the primitive blocks the calling process on a semaphore associated with
the free-packet pool and calls the scheduler. The process remains on the semaphore's waiting
process list, in priority order relative to other processes that may also be waiting, until enough
packets have been freed to permit allocation. (See the DAPK$ primitive.)

Error Returns

None.

MACR0-11 Primitive Service Requests 3-19

3.5 ALRG$ (Allocate Region)
Pascal equivalent: ALLOCATE-REGION Function

The Allocate Region (ALRG$) primitive allocates an area of unused physical memory, if available,
to the calling process. The memory area, called a region, is of user-specified size and is allocated
dynamically from a list of free-RAM segments maintained by the kernel. (See Sections 5.1 and
5.3.) If a region is successfully allocated, the primitive returns control to the calling process, with
a Boolean TRUE value in RO (RO=l); and other information as described below. If a region of
the required size cannot be allocated, the primitive returns control to the caller, with a Boolean
FALSE value in RO (RO=O).

Allocation is achieved through a user-supplied region ID block (RIB), in which the primitive
returns information about the location and size of the allocated region. The process that "owns"
the RIB is completely responsible for the region and can use it for any purpose; the kernel
does not keep track of the allocated space. A physical region can be deallocated by the DLRG$
primitive when the space is no longer needed.

Although dynamic RAM allocation is designed primarily for a mapped target environment,
the ALRG$ primitive can be used in an unmapped application as well. Coding details differ
between mapped and unmapped usage. In the mapped case, the caller specifies the required
region size in term of PAR ticks; units of 32-word blocks (100 octal bytes). The primitive returns
the physical base address of the region as a page address register (PAR) value and returns the
region size in PAR ticks. This PAR information, returned in the RIB, can be used in subsequent
window-mapping operations, implemented by the MAPW$ primitive.

In the unmapped case, the caller specifies the required region size directly in bytes. The
primitive returns the base address of the region directly, of course, and returns the region size
in bytes, rounded up to the next multiple of 4, if necessary.

Chapter 5 contains a general discussion of dynamic RAM allocation, including the use of ALRG$
in the context of the related primitives ACSR$, CRSR$, DLRG$, DLSR$, MAPW$, and UMAP$.

Syntax

The three variants of the ALRG$ macro and their respective macro calls are listed below. (The
differences are described in Section 3 .1.)

Variant

ALRG$

ALRG$S

ALRG$P

area

Macro Call

ALRG$ [area,size,rib]

ALRG$S [size,rib]

ALRG$P [size,rib]

The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address

3-20 MACR0-11 Primitive Service Requests

size

rib

A value that specifies the size of the region to be allocated. For a mapped application, the
size value specifies the number of 32-word (64-byte) blocks required. For an unmapped
application, the size value specifies the number of bytes required. This argument has the
form:

[SIZE=] integer

The address of a 4-word (RI.SIZ bytes) area in user memory, the region ID block, in which
the location, size, and mode attribute of the allocated region is returned by the primitive, as
described under Semantics. (The mode of a dynamically allocated region is always physical.)
This argument has the form:

[RIB=]area-address

Restrictions

This primitive may be used only at process level; that is, it may not be called from an ISR fork
routine.

Argument Block

The calling argument block generated (or assumed to exist) by the ALRG$x macro has the
following format:

Ro-.. size

RIB address

Syntax Example

ALRG$ area=#ALARGS,size=#200,rib=#8KBREG

(value)

(pointer)

ML0-418-87

Assuming a mapped target system, this macro call requests an 8192-byte region, specified in
octal as 200 PAR ticks, that is, 200 units of lOO(octal) bytes, each (20000 /100). (A physical
region of that size can be mapped exactly by one PAR.) The 4-word user area located at 8KBREG
will receive the information returned by the primitive describing the allocated region.

Semantics

The ALRG$ primitive checks the kernel's free-RAM list for a memory segment that equals or
exceeds the size of the requested region. If such a segment exists, the primitive removes the
required amount of memory from the free-RAM list, modifies the caller's RIB area as described
below, sets RO to 1, and returns control to the caller. (The primitive allocates from the free-RAM
list on a first-fit basis.) If no sufficiently large free-RAM segment exists, the primitive clears the
caller's RO and returns control to the calling process.

In either case, the user's C bit is clear, distinguishing the value returned in RO from an
error-return indication.

MACR0-11 Primitive Service Requests 3-21

When a region is allocated, the following information is returned in the user's RIB area:

rib-. region base

region size

reserved J mode

Mapped/Unmapped

PAR value/address

PAR ticks/bytes

RA$PHY

(zeroed)

ML0-419-87

The offset and size symbols defined for the RIB fields are:
RI.ADD Region base

RI.LEN

RI.AIR

RI.RES

RI.OFF

Region size

Region mode (attribute byte)

Reserved (high byte)

Region offset

RI.SIZ RIB size in bytes

The RIBDF$ macro in the MicroPower /Pascal COMU and COMM system macro libraries defines
these symbols.

In a mapped environment, the region base, always on a 32-word physical boundary, is returned
as a physical PAR value. (That value is not directly usable as an address, of course, but can
be used in a physical-to-virtual mapping operation as provided by the MAPW$ primitive.) The
region size is an integer representing the number of PAR ticks (100 octal bytes) allocated, as
represented in the allocation request.

In an unmapped environment, the region base is a physical address that can be used directly,
and the region size is an integer representing the number of bytes allocated. If the requested
number of bytes was not a multiple of 4, the next higher multiple of four bytes is allocated.

In both cases, the region mode is indicated by the value of the symbol RA$PHY, denoting a
physical region. (The RA$xxx mode symbols are defined by the RIBDF$ macro.) The mode of a
region (physical or common) is significant to the Create Shared Region (CRSR$) primitive and,
indirectly, to the Map Window (MAPW$) primitive. The last word of the RIB, the region-offset
field, is not relevant for region allocation; the field is significant only in operations on shared ·
common regions. The ALRG$ primitive sets the word to 0 as appropriate for a physical region.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IAD Invalid address; the RIB address is not on a word boundary.

3-22 MACR0-11 Primitive Service Requests

3.6 CCND$ (Connect to Exception Condition)
Pascal equivalent: { CONNECT_EXCEPTION Procedure }

DISCONNECL.EXCEPTION Procedure

The Connect to Exception Condition (CCND$) primitive establishes a process as the exception
handler for a particular group of processes and for a specified type of exception. (See
Chapter 6 for a general discussion of exception handling.) The primitive establishes an existing
queue semaphore, identified by the caller, as the exception queue through which the specified
exceptions will be signaled by the kernel.

This primitive allows a process to be activated when a specific type of exception occurs in any
of the processes belonging to the specified exception group. The handler receives the exception
by doing a WAIQ$ operation on its exception queue semaphore.

The handler can call the CCND$ primitive several times to specify either the same exception type
for several exception groups or several exception types for one exception group. Alternatively,
a process can establish itself as the exception handler for all exception groups (all processes in
the system, regardless of exception group code) for a given type of exception.

The PCB of the process causing the exception is placed on the handler's exception queue,
in exception-wait state, when the queue semaphore is signaled by the kernel. The handler
must then process the exception condition and dispose of the PCB through use of the Dismiss
Exception Condition (DEXC$) primitive. (See also the SERA$ primitive for exception servicing
within the faulting process.)

Syntax

The three variants of the CCND$ macro and their respective macro calls are listed below. (The
differences are described in Section 3 .1.)

Variant

CCND$

CCND$S

CCND$P

area

Macro Call

CCND$ [area,mask,group,sdb]

CCND$S [mask,group,sdb]

CCND$P [mask,group,sdb]

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

mask
The type of exception, as indicated by a predefined bit-mask symbol, for which the handler
is to be established by the current call. The exception type symbols, of the form EX$xxx,
are defined by the EXMSK$ macro and are described in Chapter 6. This argument has the
form:

[MASK=] symbol

MACR0-11 Primitive Service Requests 3-23

group

sdb

The group of processes, as indicated by an integer group code value of 0 to 255, for which
exception conditions will be serviced. (See the grp argument of the CRPC$ and DFSPC$
macros.) This argument has the form:

[GROUP=]integer-value

The group code 0 is the wildcard group code, indicating all exception-handling groups.

The address of a structure descriptor block (SDB) that identifies the queue semaphore to be
used as the exception queue. (See Section 3.1.5 for the format and use of an SDB.) This
argument has the form:

[SDB=]sdb-address

Note
If the sdb,argument value is 0, the meaning of the request changes to "disconnect
exception handler" for the specified exception type and process group. That
is, the exception queue that was connected by a previous call specifying the
same exception type and group is disconnected from that particular type/group
combination.

Argument Block

The calling argument block generated (or assumed to exist) by the CCND$x macro has the
following format:

Ro---. mask

group

sdb

ML0-420-87

Semantics

If a queue semaphore is identified in the call, the CCND$ primitive makes an entry in the kernel's
exception-dispatching table to associate the queue semaphore with the specified combination of
exception type and exception group(s). The primitive then returns to the caller.

If no queue semaphore is identified in the call (sdb argument value 0), the CCND$ primitive
deletes the entry, if any, in the kernel's exception-dispatching table for the specified combination
of exception type and exception group(s).

Each exception-dispatching table entry describes one exception type, one exception group code,
and the associated queue semaphore. No more than one entry for any one type/group
combination is allowed, precluding multiple handlers for a given type and group. Also, if a
table entry for a given exception type specifies the wildcard group code (0), no other entry may
exist for the same exception type. Otherwise, many table entries may exist for each exception
type. Chapter 6 describes the kernel's exception-dispatching mechanism.

3-24 MACR0-11 Primitive Service Requests

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:

ES$IAD Invalid address; the SDB address is not on a word boundary or is not in the user's
address space. (The address is checked only if the CHECK option is selected in the
configuration file.)

ES$IPM Illegal parameter; either no bits were set in the mask word or more than one bit was
set.

ES$NMK Resource not available; either the kernel's free-memory pool was exhausted (a table
entry could not be allocated for the connection) or an entry exists for the specified
type/group combination.

Implementation Notes

The group code permits several exception handlers for the same exception condition to coexist,
each handler implementing a management strategy suited to one or more groups of processes. If
one exception-management strategy is applicable to several groups for an exception type, several
CCND$ calls can be used to connect one type of exception from several exception groups to
the same exception queue. Alternatively, several CCND$ calls can be used to connect several
types of exceptions from one exception group to the same exception queue.

Care should be taken in the use of the wildcard group code, 0, which implies all exception
groups. Although exception handlers in general should not cause exceptions to occur, it
is particularly important that a wildcard-group handler not do so, since the wildcard group
necessarily includes the handler itself. (Like any other process, a handler must be a member
of an exception group.) If any handler (wildcard group or otherwise) causes an exception of a
type handled by itself, the handler will lock up indefinitely in the exception-wait state, as will
any other process that subsequently causes an exception of the same type.

MACR0-11 Primitive Service Requests 3-25

3.7 CHGP$ (Change Process Priority)
Pascal equivalent: CHANGE_PRIORITY Procedure

The Change Process Priority (CHGP$) primitive changes the priority of either the caller or
another process to the value specified in the call. Thus, the calling process can dynamically
modify its own scheduling priority or that of another process, normally to a lower value.

Typically, this primitive lets a process lower its priority to a normal operating level (less than
128 for a noncritical process) after starting at a high priority level for initialization purposes.
The special start-up priorities for static processes are 248 to 255, as described in Appendix A.
The highest start-up priority, 255, is used by the most critical static process in an application
(for example, an error logger) to execute a 1-time initialization sequence involving the creation
of globally needed data structures. Other processes may use start-up priorities in the range
248 to 254 to ensure a particular starting order among a group of related processes, again for
initialization purposes.

The initialization code of a given static process might, for example, create a queue semaphore
that must exist before another process begins execution at its normal running priority, which
may, in fact, be higher than the running priority of the process that must create the semaphore.
The initialization code would end with a CHGP$ request to lower priority to an appropriate
level. In general, global system structures must be created at a priority level that is higher than
any normal operating priority used in the system, in order to prevent start-up race conditions
among processes in different process families.

Note
The functionality of CHGP$ has been extended for MicroPower/Pascal Version
2.0, with corresponding changes to both the macro call and the calling argument
block. However, the older form of the macro call, with no pdb argument, will
assemble correctly with a Version 2.0 or later COMx macro library.

Syntax

The three variants of the CHGP$ macro and their respective macro calls are listed below. (The
differences are described in Section 3 .1.)

Variant

CHGP$

CHGP$S

CHGP$P

area

Macro Call

CHGP$ [area,pri,pdb]

CHGP$S [pri,pdb]

CHGP$P [pri,pdb)

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

3-26 MACR0-11 Primitive Service Requests

pri

The new scheduling priority value for the subject process. This argument has the form:

[PRI=]priority-value

The value must be from 0 to 255.

pdb

The address of the process descriptor block (PDB) that identifies the process to be acted on
or 0. If #0 is specified or the argument is null, the calling process is implied. (See Section
3.1.6 for the format and use of a PDB.) This argument has the form:

[PDB=]pdb-address or #0

The argument default value is 0 in all forms of the macro.

Argument Block

The calling argument block generated (or assumed to exist) by the CHGP$x macro has the
following format:

RO_. pdb

pri

(pointer)

(value)

ML0-421-87

Note that the macro-call argument order is reversed in the argument block.

Syntax Example

CHGP$S pri=#125.

This call sets the calling process's priority to 125(decimal).

Semantics

The CHGP$ primitive places the specified priority value in the PC.PR! field of the specified or
implied PCB and calls the scheduler. Thus, the calling process will be preempted if any process
in the ready-active queue has a higher priority than the caller as a result of the call. Otherwise,
control returns to the calling process.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:

ES$IPM Illegal parameter; the specified priority value was not within the range 0 to 255.

ES$1ST Invalid structure descriptor (index or name); no such process exists. (This error return
could be caused by an invalid PDB address.)

MACR0-11 Primitive Service Requests 3-27

3.8 CINT$ (Connect to Interrupt)
Pascal equivalent: CONNECT_INTERRUPT Procedure

Pascal variant: CONNECT_SEMAPHORE Procedure

The Connect to Interrupt (CINT$) primitive associates an interrupt vector with an interrupt
service routine (ISR) entry point specified in the call.

The CINT$ primitive allows a process to establish itself as a device driver and to define the ISR
code segment. Chapter 7 provides a general discussion of interrupt dispatching and the coding
of ISRs. In a mapped environment, the CINT$ primitive is normally used only by a process
with the PT.DRY (driver) mapping type.

Syntax

The three variants of the CINT$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant Macro Call

CINT$

CINT$S

CINT$P

CINT$ [area,vec,ps,val,imp,isr,pic]

CINT$S [vec,ps,val,imp,isr,pic]

CINT$P [vec,ps,val,imp,isr,pic]

area

vec

ps

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of the hardware interrupt vector to be connected to the ISR. This argument has
the form:

[VEC=]vector-address

The content of the PSW desired on dispatch to the ISR. This argument sets the CPU priority
level at which the ISR is to execute when entered. If priority-level 7 is requested (that is,
PS = 340) a special form of ISR dispatching is implied (see Chapter 7). Note that the CC
bits can also be set with this argument, but the T bit cannot. This argument has the form:

[PS=]word-value

The effective PSW value is in the low byte.

3-28 MACR0-11 Primitive Service Requests

val

imp

isr

pie

An arbitrary value to be passed to the ISR in R4 on interrupt dispatch. (Typical uses of val
are to pass a device address, table index, or other means of identifying the vector causing
the interrupt, in the case of an ISR connected to several vectors.) This argument has the
form:

[VAL=]word-value

In an unmapped system, an arbitrary address to be passed to the ISR in R3. In mapped
systems, if the PIC argument (see below) is TRUE, the value is assumed to be the starting
address of the ISR's impure area, which is adjusted as necessary to fall in the range of APR
3 virtual addresses and is passed to the ISR in R3 on interrupt. (The ISR's kernel-mode
APR 3 is remapped accordingly when the interrupt occurs.) If the PIC argument is FALSE,
the address value is checked to ensure that it is already in the APR 3 range and is passed
unchanged to the ISR in R3. (The process's user-mode APR 3 mapping is used to remap
kernel-mode APR 3 on interrupt in that case; see Restrictions.) This parameter is typically
used to pass the base address of the ISR' s impure area. This argument has the form:

[IMP=]impure-area-address

The address of the ISR code segment. In mapped systems, if the PIC argument (see below)
is TRUE, the value is used to determine the proper mapping of the ISR's kernel-mode APR
2 when an interrupt occurs. If the PIC argument is FALSE, the address value is checked
to make sure that it is already in the APR 2 range, and the process's user-mode APR 2
mapping is used "as is" to remap kernel-mode APR 2 on interrupt; see Restrictions. This
argument has the form:

[ISR=]isr-address

A Boolean value indicating that the ISR is implemented in non-PIC code (FALSE) or in PIC
code (TRUE). (PIC stands for position-independent code.) This argument has the form:

[PIC=]#TRUE or #FALSE

The TRUE and FALSE symbol values, defined by the EXMSK$ macro, are currently 1 and
0, respectively. This argument is ignored in an unmapped system. (A PIC-coded ISR is
typically used only by a process that performs a CINI$ but does not have driver mapping.
The Pascal OTS uses the PIC option to implement the CONNECT_SEMAPHORE procedure,
which can be used in a process of any mapping type.)

Restrictions

The ISR code segment must not exceed 8128 bytes.

The ISR's impure-data segment must not exceed 8128 bytes.

MACR0-11 Primitive Service Requests 3.,...29

In a mapped environment, if PIC coding is not used, the combined process/ISR code- and
data-segment virtual addresses must be relocated at build time to fall exclusively within the
PAR 2 and PAR 3 address ranges, respectively. See the description of driver process mapping
in Section 2.1.7.

A module that has a CINT$ primitive should not be added to a supervisor-mode library.

Argument Block

The calling argument block generated (or assumed to exist) by the CINT$x macro has the
following format:

RO~ vec

ps

val

imp

isr

pie (Ignored in unmapped case)

ML0-422-87

Syntax Example

CINT$ area=#CAREA,vec=#300,ps=#200,val=#O,imp=#DATA,isr=#DEVISR,pic=#FALSE

Semantics

The CINT$ primitive sets up the interrupt dispatch block (IDB) associated with the specified
vector, causing interrupts through that vector to be dispatched to the specified ISR entry point.
The primitive also identifies the caller as the process owning the connected vector (compare
with the DINT$ primitive).

Chapter 7 contains information closely related to the use of CINT$ and the coding of ISRs.
That chapter describes interrupt dispatching, which is affected by certain CINT$ arguments
(especially the PS and IMP values) and describes the kerneljISR interface in general.

3-30 MACR0-11 Primitive Service Requests

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:

ES$AOV Already owned vector; the specified vector is already connected.

ES$IAD

ES$IVC

ES$NID

Invalid address; invalid ISR mapping (mapped systems only).

Illegal vector; the specified vector address is less than 60(octal) or beyond the valid
range of vectors established at build time (PROCESSOR macro).

No interrupt dispatch block established for vector; the vector address was not specified
in the DEVICES macro of the system configuration file.

MACR0-11 Primitive Service Requests 3-31

3.9 CRLN$ (Create Logical Name)
Pascal equivalent: CREATE_LOGICAL_NAME Procedure

The Create Logical Name (CRLN$) primitive allows the caller to define or redefine a 1- to
6-character logical name. More precisely, the CRLN$ primitive creates a kernel data structure
containing a user-specified translation string value for a given name. Subsequent instances of
the logical name will be automatically translated to the corresponding value by other primitive
services that operate on dynamic data structures, as described in Section 3.1.5.3.

The caller supplies the logical name in a structure descriptor block (SOB) and specifies a
buffer area that contains the translation-string value. The translation string may be up to
256 characters in length and may contain any ASCII character. An override option permits a
preexisting logical-name definition to be replaced, thus redefining the name.

The complementary Translate Logical Name (TRLN$) primitive returns the translation-string
value directly associated with a logical name, and the Delete Logical Name (DLLN$) primitive
eliminates the translation-string value associated with a currently defined logical name. Logical
names may also be defined at build time, with the LOGICAL configuration macro described in
Chapter 4.

Syntax

The three variants of the CRLN$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant Macro Call

CRLN$

CRLN$S

CRLN$P

CRLN$ [area,sdb ,string,length,opt]

CRLN$S [sdb ,string,length,opt]

CRLN$P [sdb,string,length,opt]

area

sdb

The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of a user-constructed structure descriptor block (SOB) containing the structure
name to be defined as a logical name. (See Section 3.1.5 for the format and use of an SOB.)
A structure name is mandatory for the CRLN$ primitive. This argument has the form:

[SDB=]sdb-address

3-32 MACR0-11 Primitive Service Requests

string

The address of a user-memory area that contains the ASCII character string to be used as
the translation value for the logical name. (The effective size of the area is determined by
the length parameter.) This argument has the form:

[STRING=Jarea-address

length

opt

An integer that specifies the length in bytes of the character string beginning at the location
pointed to by the string argument. The valid range of the length parameter is 1 to
256(decimal). This argument has the form:

[LENGTH=]integer

An optional bit symbol, LN$0VR, indicating that the logical name may already exist as such
and, if so, that the supplied translation value is to replace the translation value currently
associated with the name. This argument has the form:

[OPT=]LN$0VR or #0

If the option value is 0 or the argument is null, a preexisting logical-name definition will not
be overridden, and the primitive will return an error if any definition of the name already
exists.

Restrictions

The index field (first word) of the SDB must be zeroed unless the corresponding logical name
already exists and the LN$0VR option is specified.

Like other kinds of structure names, a logical name must be unique across all types of kernel
data structures.

By system convention, if the translation value of a given logical name is itself intended as a
logical name (through serial definitions) and the translation value consists of fewer than six
printing characters, the name should be padded to six characters with trailing ASCII spaces in
the supplied translation string.

Argument Block

The calling argument block generated (or assumed to exist) by the CRLN$x macro has the
following format:

RO-. sdb (pointer)

string (pointer)

length (value)

opt (value)

ML0-423-87

MACR0-11 Primitive Service Requests 3-33

Syntax Example

CRLN$ area=#LNARGS,sdb=#LGNAME,string=#TRANS,length=#6

In this call, the final argument (opt) is null, implying no override if the logical name supplied
in the structure descriptor block LGNAME is already defined.

Semantics

The CRLN$ primitive attempts to create a named kernel data structure of type ST.LNM (logical
name) large enough to contain the supplied translation string. If the creation is successful, the
primitive copies the translation string into the named structure and returns to the caller.

If the specified structure name is already defined as a logical name and the override (LN$0VR)
option was specified, the primitive deletes the existing logical-name structure and attempts to
create and fill in a new one. If the LN$0VR option was not specified or the structure name is
in use as other than a logical, the primitive returns to the caller, with a "name already in use"
error indication.

If the structure creation fails for another reason, the primitive returns to the caller with an
appropriate error indication.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IPM Illegal parameter; the specified string length exceeds 256.

ES$NMK Insufficient space for kernel structure; the required logical-name structure could not
be allocated.

ES$SNI Structure name in use; the name to be defined as a logical conflicts with an existing
structure name.

3-34 MACR0-11 Primitive Service Requests

3. 1 O CRPC$ (Create Process)
Pascal equivalent: Process-invocation statement

The Create Process (CRPC$) primitive service creates a dynamic process, as requested by the
caller, and places it in the ready-active state, eligible for scheduling. This primitive permits an
existing process (static or dynamic) to create and activate a subprocess. The created process has
a combination of the process attributes specified in the service request (for example, priority
and exception group) and attributes inherited from the parent process (address space, mapping
type, and some context-switch options).

The CRPC$ primitive constructs a process control block (PCB) for the new process. The PCB
physically represents the process within the kernel, as described in Chapter 2.

The Create Process service is transparent to the Pascal user; no predefined Micro Power /Pascal
procedure is equivalent to the CRPC$ request. In Pascal, creation of a process is implicit in
each call of a construct declared as a process.

Syntax

The three variants of the CRPC$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant Macro Call

CRPC$

CRPC$S

CRPC$P

CRPC$ [area, pdb, pri,cxo, grp, ter ,cxl,sti,stl,sth,start,ini]

CRPC$S [pdb, pri,cxo ,grp, ter ,cxl,sti,s tl,sth,start,ini]

CRPC$P [pdb,pri,cxo,grp,ter,cxl,sti,stl,sth,start,ini]

area
The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

pdb

pri

The address of the user-constructed process descriptor block (PDB) containing the name, if
any, of the process to be created and in which the kernel returns information identifying
the process. (See Section 3.1.6 for the format and use of a PDB.) This argument has the
form:

[PDB=]pdb-address

The priority value (0 to 255) to be associated with the process. This argument has the form:

[PRI=]integer-value

MACR0-11 Primitive Service Requests 3-35

cxo

grp

ter

cxl

sti

stl

Any optional hardware context, as indicated by predefined bit-mask symbols, to be included
(saved and restored) in the context switching performed for this process. The option symbols
are:
CX$FPP

CX$KT

CX$MCX

FP-11 floating-point registers

MMU registers (optionally saved, always restored)

Single memory location specified by cxl and intended for use primarily by
the Pascal compiler

CX$STD Standard context switching only; that is, "save no additional context"

The option symbols may be ORed as required. These symbols are defined by the CXODF$
macro. This argument has the form:

[CXO=]option[!option]

An integer code value of 1 to 255 indicating the exception-handling group to which the
process belongs. The exception-group code value is significant only if one or more exception
handling processes are implemented in the application. Appropriate values are established
by design convention. (See the CCND$ primitive and Chapter 6.) This argument has the
form:

[GRP=]integer-value

The entry point of the termination routine for the process. (See the Semantics section
below.) This argument has the form:

[TER=]instruction-address-value

The address of the user-memory location whose content is to be saved/restored when
context switching this process. This argument is meaningful only if CX$MCX is specified in
cxo; otherwise, the argument value must be 0. This argument has the form:

[CXL=]address-value

The initial value for the process's stack pointer (SP) register. Normally, this value will be
the same as the sth argument value, assuming that the first-executed instruction affecting
the stack is a push (autodecrement of SP). This argument has the form:

[STI=]first-top-of-stack-address

The address of the low boundary of the user-allocated process stack, reserved for stack
overflow checking. This argument has the form:

[STL=]low-bound-address

3-36 MACR0-11 Primitive Servicf Requests

sth
The address of the high boundary of the user-allocated process stack, reserved for stack
underflow checking. This argument has the form:

[STH=]high-bound-address

start

ini

The initial entry point for the process. This argument has the form:

[START=] first-instruction-address

The initial value for location cxl; that is, the value to be stored in that location by the
kernel when the process is first executed. This argument is meaningful only if CX$MCX is
specified in cxo; otherwise, the value must be 0. This argument has the form:

[INI=]word-value or #0

Restrictions

The first word of the passed PDB (the process index) must be zeroed.

The stack addresses sti, stl, and sth must be word addresses (even values).

The usable area of the process stack lies between stl and sth, exclusively. That is, the value of
the user's SP register may range from sth (empty stack) to stl+2 (full stack). The kernel uses
the stl and sth locations for dynamic stack-checking purposes, and those locations must not be
modified by the user code. (See the Semantics section.)

The size of the process stack in bytes, excluding locations stl and sti, must equal or exceed the
value $MINST, which defines the maximum number of bytes that the kernel and IS Rs may
push on the process stack. In unmapped systems, the value of $MINST is 54(decimal) bytes;
in mapped systems, the value of $MINST is 0. When calculating the required stack space for a
process, you should add the process's own stack requirement to $MINST.

MACR0-11 Primitive Service Requests 3-37

Argument Block

The calling argument block generated (or assumed to exist) by the CRPC$x macro has the
following format:

RO~ pdb

pri

cxo

grp

ter

cxl

sti

stl

sth

start

ini

ML0-424-87

Syntax Example

CRPC$S pdb=#P1,pri=#25.,cxo=#CX$FPP,grp=#6,ter=#END,cxl=#O,
sti=#HIS,stl=#LOS,sth=#HIS,start=#BEGIN,ini=#O

Semantics

The CRPC$ primitive allocates a PCB representing the requested process in system-common
memory and initializes it with the following:

• The attributes and values specified in the call

• The name, if any, contained in the PDB

• Attributes inherited from the parent process (address space and mapping type in a mapped
environment) and certain context-switch options unless overridden in the call

The primitive then starts the new process by placing its PCB in the kernel's ready-active queue
and calling the scheduler. Thus, the calling process will be preempted if the new process has a
higher priority than the caller.

On either immediate or eventual return from the primitive call, the PDB passed by the caller
contains information that can be used subsequently by other primitives for efficient access to
the process. (See Section 3.1.6.)

The implications of the CRPC$ parameters that are not covered in Section 2.1 are described in
the following paragraphs.

3-38 MACR0-11 Primitive Service Requests

The termination entry point (ter) is the location to which control is transferred by the kernel
in the event of an exception abort or a Stop Process operation executed on the subject process.
This allows the subject process to execute a "graceful termination" procedure, which must end
with a Delete Process (DLPC$) request.

The CX$FPP option (cxo argument) allows a process using FP-11 floating-point instructions to
have the contents of the floating-point processor registers saved and restored when it is context
switched. (If the option is specified either in a target environment that does not support the
FP-11 instruction set or for a process that does not use those instructions, the PCB will be
larger than necessary in either case, and needless overhead will be incurred in the latter case.)

The CX$MCX option, the cxl argument, and the ini argument collectively allow a process to
have a single location in its data space added to its switched context. (This feature is required
by the MicroPower/Pascal compiler.)

The CX$KT option causes the mapping registers to be saved during context switch-outs, allowing
a process with privileged, driver, or device-access mapping to modify its mapping through direct
I/O page access. This option is meaningless in an unmapped system; it incurs needless overhead
if, in a mapped environment, it is applied to a process that does not modify its mapping or
does so by means of the MAPW$ and UMAP$ primitives.

The kernel places guard words (special values) in the stl and sth locations and tests those
guard words during context switch-ins. Modification of either the lower or the upper boundary
location will cause a range exception of type EX$RAN, code ES$STO or ES$STU.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:

ES$IAD Invalid address; one of the specified address arguments is not on a word boundary or
is not in the appropriate address space. (The address is checked only if the CHECK
option is selected in the configuration file.)

ES$NMK Insufficient space for kernel structure; could not allocate the required PCB.

ES$SNI Structure name already in use; a kernel structure already exists with the specified
name.

MACR0-11 Primitive Service Requests 3-39

3. 11 CRSR$ (Create Shared Region)
Pascal equivalent: CREATE_SHARED_REGION Procedure

The Create Shared Region (CRSR$) primitive allows the calling process to declare a region of
memory to be shareable by other static processes and to assign a systemwide run-time name
to the region. More precisely, the CRSR$ primitive creates a named kernel data structure,
called a shared region descriptor (SRD), that describes the memory region specified by the
caller. Subsequently, other processes can gain access to the shared region through the ACSR$
primitive, by means of the run-time name associated with the SRD.

Note
The CRSR$ primitive is relevant primarily to a mapped memory environment
and is described in terms of a mapped application except where indicated
otherwise.

A shared region can be either a shared common region or a shared physical region. A common
region is one that exists within the caller's statically allocated address space; the location of a
shared common region is therefore completely determined by the process declaring it as shared.
A physical region is one that was dynamically allocated from unused physical memory by an
Allocate Region (ALRG$) operation. Thus, the location of a shared physical region is initially
determined by the ALRG$ primitive. See Chapter 5 for a general discussion of common versus
physical regions.

Whether common or physical, the region to be made shareable is identified by a region ID
block (RIB) in user space that is pointed to in the call. The RIB specifies the region's location,
size, and mode attribute. The location, or base, of a common region is specified as a virtual
address, the size is specified in bytes, and the mode attribute is "common" (RA$COM). The
information describing a common region is placed in the RIB by the user process. (The primitive
modifies the information supplied in the caller's RIB for a common region, replacing the virtual
description with a physical description, as described under Semantics.)

The base of a physical region is specified as a physical PAR value, the size is specified in PAR
ticks (32-word units), and the mode attribute is "physical" (RA$PHY). Normally, the information
in the RIB for a physical region is precisely that returned by the prior ALRG$ call that allocated
the region.

Although region sharing through the kernel applies primarily to a mapped target environment,
the CRSR$ primitive can be useful in an unmapped application containing more than one user
static process. (Because of the single address space in an unmapped system, however, generally
no advantage is gained from having multiple user static processes.) Coding details differ for
unmapped usage, since there is no distinction between virtual and physical addresses. The
RIB always specifies the base of a region directly as a physical address, and the region size is
represented in bytes. Therefore, the distinction between common and physical regions is not
significant for unmapped shared-region creation, although the RA$COM and RA$PHY mode
attributes are recognized and applied to the SRD and should be used consistently.

Chapter 5 contains a general discussion of dynamic RAM allocation and region sharing, including
the use of CRSR$ in the context of the related primitives ACSR$, ALRG$, DLRG$, DLSR$,
MAPW$, and UMAP$. The ACSR$ primitive provides the complementary Access Shared Region
operation, which returns RIB information based on a specified shared region name.

3-40 MACR0-11 Primitive Service Requests

Syntax

The three variants of the CRSR$ macro and their respective macro calls are listed below. (The
differences are described in Section 3 .1.)

Variant Macro Call

CRSR$

CRSR$S

CRSR$P

CRSR$ [area,sdb,rib]

CRSR$S [sdb,rib]

CRSR$P [sdb,rib]

area

sdb

rib

The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of the user-constructed structure descriptor block (SDB) containing the name of
the shared region to be created (that is, the name to be associated with the corresponding
kernel SRD structure) and in.which the kernel returns information identifying the SRD. See
Section 3.1.5 for the format and use of an SDB. This argument has the form:

[SDB=]sdb-address

The address of a 4-word (Rl.SIZ bytes) area in user memory, the region ID block, containing
the location, size, and mode attribute of the region to be made shareable, as described
under Semantics. In a mapped environment, the region base, size, and offset fields of a RIB
for a common region are modified by the primitive; that is, the RIB is both a source and
destination parameter in the mapped common case. This argument has the form:

[RIB=] area-address

Restrictions

This primitive may be used only at process level; that is, it may not be called from an ISR fork
routine.

Argument Block

The calling argument block generated (or assumed to exist) by the CRSR$x macro has the
following format:

RO---.. SOB address

RIB address

(pointer)

(pointer)

ML0-447-87

MACR0-11 Primitive Service Requests 3-41

Syntax Example

SRARGS: CRSR$P sdb=SRG8KB,rib=8KBREG

This assembly-time, parameters-only ($P) form of the macro call constructs a calling argument
block for run-time reference. The call sets up, at location SRARGS, a pointer to the structure
descriptor block SRG8KB containing the name to be assigned to the shared region and a pointer
to the region ID block 8KBREG that will describe the region to be made shareable. The argument
block, in read-only memory, can be used in a run-time call of the form:

CRSR$ SRARGS

Semantics

The CRSR$ primitive creates a shared region descriptor (SRD) in the kernel's system-common
area, using the region base and size information specified in the caller's RIB. The primitive
associates the name specified in the caller's SDB with the SRD structure and returns the
structure index and serial number in the SDB. In a mapped environment, if the region mode
indicated in the RIB is common (RA$COM), the virtual base and size values supplied in the
RIB are converted to a "nearest" physical PAR value and a number of PAR ticks, respectively.
The primitive also generates a region-offset value indicating the positive displacement, if any,
of the common region base from the calculated PAR value.

For a physical region, no transformation of information between the RIB and the SRD is required,
since the values in the RIB are already in the ·appropriate form.

The information in the user's RIB area prior to the call must be in the following form, assuming
a mapped environment:

Physical/Common

rib---. region base PAR value/virtual address

region size PAR ticks/no. of bytes

reserved l mode RAPHY /RACOM

region offset (ignored)

ML0-425-87

The offset and size symbols defined for the RIB fields are:
RI.ADD Region base

RI.LEN

RI.ATR

RI.RES

RI.OFF

RI.SIZ

Region size

Region mode (attribute byte)

Reserved (high byte)

Region offset

RIB size in bytes

3-42 MACR0-11 Primitive Service Requests

The RIBDF$ macro in the MicroPower /Pascal COMU and COMM system macro libraries defines
these symbols.

On return from the primitive, the RIB for a physical region is unmodified, and the RIB for
a common region contains the converted base and size values and the generated offset value
already described.

In an unmapped environment, the region base is a physical address, and the region size is an
integer representing a number of bytes, as for a mapped common region. The region mode may
be either RA$PHY or RA$COM, denoting a physical or common region, although no effective
distinction exists between the two in the unmapped case. (The values of the RA$xxx mode
symbols are defined by the RIBDF$ macro.)

The last word of the RIB, the region-offset field, is not relevant as input to CRSR$. The field is
significant only in shared-common-region mapping operations. Effectively, the offset field value
is assumed to be 0 for all operations on mapped physical regions as well as for all unmapped
operations.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; the RIB address is not on a word boundary.

ES$NMK Insufficient space for kernel structure; the SRD could not be created.

ES$SNI Structure name in use; a kernel structure already exists with the name specified for
the region/SRD. (This error return could be caused by an invalid SDB address.)

Implementation Notes

After modification by CRSR$, the caller's RIB for a shared common region contains exactly
the same information that would be returned by the Access Shared Region (ACSR$) primitive.
Thus, if any process in the same static process family as the creator needed to map a window
to the region, the creator's RIB could be used as input to MAPW$ without the need for a call
to ACSR$. For example, if the mapping of a sibling dynamic process has diverged from that of
the creating process with respect to the region (but not with respect to the RIB) the same RIB
can be used by the sibling for remapping.

MACR0-11 Primitive Service Requests 3-43

3. 12 CRST$ (Create Structure)

Pascal equivalents· CREATE_COUNTING_SEMAPHORE Function
{

CREATE_BINARY_SEMAPHORE Function }

. CREATE_QUEUE_SEMAPHORE Function
CREATE_RING _BUFFER Function

The Create Structure (CRST$) primitive creates a semaphore, ring buffer, or unformatted
structure in system-common memory. The typed data structures, which include binary and
counting semaphores, queue semaphores, and ring buffers, are defined by the kernel and
described in Section 2.2.1.

If the structure is successfully created, the primitive returns the kernel-defined value TRUE in
RO. If the structure cannot be created, because of lack of free system memory, the primitive
returns the kernel-defined value FALSE in RO.

The CRST$ primitive permits a process to create named structures intended for interprocess
synchronization and communication. These structures can be operated on in a controlled and
reliable fashion through the use of other primitives. See also the CRLN$ and CRSR$ primitives
concerning logical-name and shared-region structure creation.

Syntax

The three variants of the CRST$ macro and their respective macro calls are listed below. The
differences are described in Section 3.1.

Variant Macro Call

CRST$

CRST$S

CRST$P

CRST$ [area,sdb,styp,satr,value]

CRST$S [sdb,styp,satr,value]

CRST$P [sdb,styp,satr,value]

area

sdb

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of the user-constructed structure descriptor block (SDB) containing the name, if
any, of the structure to be created and in which the kernel returns information identifying
the structure. (See Section 3.1.5 for the format and use of an SDB.) This argument has the
form:

[SDB=]sdb-address

styp
The type of structure to be created, as indicated by a predefined symbol. The valid
structure-type symbols for a CRST$ call are:

ST.BSM-Binary semaphore
ST .CSM-Counting semaphore

3-44 MACR0-11 Primitive Service Requests

satr

ST.QSM-Queue semaphore
ST.RBF-Ring buffer
ST.UDF-Unformatted structure

The symbol values are defined by the QUEDF$ macro in the COMM and COMU system
macro libraries. This argument has the form:

[STYP=]type-symbol

The ordering attributes, as indicated by predefined bit-mask symbols, for any formatted
structure and the access attributes for a ring buffer. The ordering attribute symbols are:

SA$0FF-FIFO ordering or
SA$0PR-Priority ordering of:

1. The waiting process list of a binary, counting, or queue semaphore

2. The waiting output-process list of a ring buffer (processes waiting to get an element)

SA$IFF-FIFO ordering or
SA$IPR-Priority ordering of:

1. The queue of packets in a queue semaphore

2. The waiting input-process list of a ring buffer (processes waiting to put an element)

The access attributes apply only to a ring buffer and affect the operation of the
PELM$ /PELC$ primitives (input access) and the GELM$ /GELC$ primitives (output access).
The access attributes are:

SA$RIR-Record-oriented input access
SA$RIS-Stream-oriented input access
SA$ROR-Record-oriented output access
SA$ROS-Stream-oriented output access

Note that SA$IFF and SA$IPR are not applicable to binary or counting semaphores. Two
or more attribute symbols may be ORed as required for queue semaphores and ring buffers.
These symbols are also defined by the QUEDF$ macro. This argument has the form:

[SATR=]attribute-symbol[!attribute-symbol ...]

The argument value is not meaningful for an unformatted structure and must be #0 if type
is ST.UDF.

value
Either the initial value of a semaphore variable or the buffer size for a ring buffer, depending
on the type of structure requested. For a binary semaphore, value must be 0 or 1; for a
counting semaphore, value may be a nonnegative integer; for a queue semaphore, value
must be O; for a ring buffer, value is the even number of bytes to be allocated for element
space. For an unformatted structure, value is the even number of bytes to be allocated.
This argument has the form:

[VALUE=]integer-value

MACR0-11 Primitive Service Requests 3-45

Restrictions

The first word of the passed SDB (the structure index) must be zeroed.

The minimum size of a ring buffer is 8 bytes; the maximum, 8128 bytes. The number of bytes
specified (value argument) must be even.

Argument Block

The calling argument block generated (or assumed to exist) by the CRST$x macro has the
following format:

RO~ sdb

styp

satr

value

ML0-426-87

Syntax Example

CRST$S sdb=#SEM,styp=#ST.BSM,satr=#SA$0PR,value=#1

Semantics

The CRST$ primitive allocates and initializes the requested structure in system-common memory
and returns to the caller, with the value TRUE in RO. If the structure is successfully created, it
is named as specified in the passed SDB. On return, the SDB contains additional information
that can subsequently be used by other primitives for optimized access to the structure.

If the operation is unsuccessful, because of insufficient space in system-common memory, the
primitive returns immediately to the caller, with the value FALSE in RO.

The TRUE and FALSE symbol values are defined by the EXMSK$ macro in the COMM and
COMU libraries. Those values are 1 and 0, respectively.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; the SDB address is not on a word boundary or is not in the user's

address space. (The address is checked only if the CHECK option is selected in the
configuration file.)

ES$IPM

ES$IPR

ES$SNI

Illegal parameter; an invalid structure type was specified.

Illegal primitive; user code attempted to create a PCB (type ST.PCB specified).

Structure name already in use; a kernel structure already exists with the specified
name.

3-46 MACR0-11 Primitive Service Requests

3. 13 DAPK$ (Deallocate Packet)
Pascal equivalent: DEALLOCATE_P ACKET Procedure

The Deallocate Packet (DAPK$) primitive returns a message packet (standard queue element)
to the kernel's free-packet pool. This primitive permits the caller to release a packet it has
acquired through a Wait on Queue Semaphore (WAIQ$ or WAQC$) primitive operation when
the packet is no longer needed.

The inverse of DAPK$ is the ALPK$ primitive. ALPK$ lets a process allocate (obtain a pointer
to) a free packet for use with SGLQ$ or SGQC$.

Syntax

The three variants of the DAPK$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant

DAPK$

DAPK$S

DAPK$P

area

Macro Call

DAPK$ [area,qelm]

DAPK$S [qelm]

DAPK$P [qelm]

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

qelm
The address of the packet that is to be deallocated. This argument has the form:

[QELM=]packet-pointer

The argument must specify a word address in the kernel's data space.

Argument Block

The calling argument block generated (or assumed to exist) by the DAPK$x macro has the
following format:

RO_. qelm

ML0-427-87

MACR0-11 Primitive Service Requests 3-47

Syntax Example
DAPK$ area=#BLOCK,qelm=R3

Semantics

The DAPK$ primitive tests the pointer value to ensure that it is a valid packet pointer in the
kernel's address space. If the packet pointer is valid, the primitive returns the packet to the
kernel's free-packet pool. If no other process is waiting for packet allocation, DAPK$ returns
control to the calling process.

If at least one process is waiting for packet allocation, the newly freed packet is allocated to
the highest-priority waiting process, that process is unblocked, and the scheduler is called .. This
sequence may cause the calling process to be preempted, depending on the priority of the
unblocked process. (See the ALPK$ primitive.)

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IAD Invalid address; the pointer value is not a word address within the range of valid

packet addresses. (The address is checked only if the CHECK option is selected in
the configuration file.)

3-48 MACR0-11 Primitive Service Requests

3. 14 DEXC$ (Dismiss Exception Condition)
Pascal equivalent: RELEASE_EXCEPTION Procedure

The Dismiss Exception Condition (DEXC$) primitive is used by an exception-handler process to
return an exception-wait process to the kernel for additional disposition. The process changes
to the appropriate ready state, normally ready active. (See Chapter 6 for a general discussion
of exception handling.)

The primitive allows the handler to dispose of a PCB that it received on its exception queue,
after processing the exception and determining a course of action. An action code specified in
the DEXC$ call directs the kernel to take one of three actions concerning the returned PCB:
cancel the exception, abort the process, or pass the exception to the process's exception service
routine, if any.

Syntax

The three variants of the DEXC$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant

DEXC$

DEXC$S

DEXC$P

area

Macro Call

DEXC$ [area,pcb,action]

DEXC$S [pcb,action]

DEXC$P [pcb,action]

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

pcb
The address of the PCB that is to be returned to the kernel. This argument has the form:

[PCB=]pcb-pointer

action
The type of action, as indicated by a predefined action code symbol, to be taken by the
kernel. The action code symbols are:

EA$DIS-Dismiss exception; place process in ready state.
EA$ABT-Abort process by forcing termination entry point.
EA$PAS-Pass exception to the process, if possible; otherwise, abort.

These symbols are defined by the EXACT$ macro in the COMM and COMU libraries. This
argument has the form:

[ACTION=] action-symbol

MACR0-11 Primitive Service Requests 3-49

Argument Block

The calling argument block generated (or assumed to exist) by the DEXC$x macro has the
following format:

RO~ pcb

action

ML0..,-428-87

Syntax Example
DEXC$S pcb=R4,action=#EA$DIS

Semantics

The DEXC$ primitive places the passed PCB, which was received in exception-wait-active
state on the caller's exception queue, on the appropriate ready-state queue for disposition as
requested in the call. (The PCB is placed on the ready-active queue unless the subject process
was suspended while in the exception-wait state.) Return of the subject process to the ready
active state implies a scheduler call, which will cause the handler process to be preempted if
the subject process has a higher priority.

The kernel will take one of the following actions relative to the subject process:

• Cancel the exception, allowing the process to be reentered normally when it is rescheduled
(action = EA$DIS).

• Abort the process, causing its termination entry point to be forced when the process is
rescheduled (action= EA$ABT).

• Pass the exception condition to the process's own exception service routine. If no exception
entry point exists for the subject process or if the process has not requested the particular
type of exception, the termination entry point will be forced instead (action= EA$PAS).

See the SERA$ primitive concerning exception handling within the process.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IPM Illegal parameter; an invalid PCB address or an invalid action code was specified.

3-50 MACR0-11 Primitive Service Requests

3. 15 DFSPC$ (Define Static Process)
Pascal equivalent: Declaration of a PROGRAM

The Define Static Process (DFSPC$) assembly-time macro defines the entry point and other
attributes of a static process; the equivalent of a Pascal [SYSTEM(MICROPOWER)] PROGRAM
declaration, which implicitly defines the source program's main body as a static process. Section
2.1.1 describes the characteristics of a Micro Power /Pascal static process. Each static process in
an application is represented in the memory image by an entry in the static-process definition
list. (Each list entry can be viewed as a prototype PCB.) At system start-up, the kernel's INIT
routine uses the information in the entries to create static-process PCBs, which are queued on
the ready-active state queue.

The DFSPC$ macro is not a primitive call. Rather, it generates a special read-only p-sect named
.ALST. that contains the required static-process list entry. The complement of the DFSPC$
macro for run-time creation of dynamic processes is CRPC$. See the description of processes
in Chapter 2 for additional information.

A static process in a mapped environment has a specific type of address mapping: general,
device access, driver, or privileged. The mapping type is specified in the DFSPC$ macro in
addition to the kind of information that is also specified in a CRPC$ call for a dynamic process.
A dynamic process inherits its mapping type and its address mapping from its originating static
process, since every dynamic process exists in the address space of a given static process. The
characteristics of the mapping types are described in Section 2.1. 7.

The PURE$, PDAT$, and IMPUR$ program-sectioning macros should be used with the DFSPC$
macro to segregate read-only code (ROM or RAM), read-only data (ROM or RAM), and
read/write data (RAM only) program sections.

Syntax

The DFSPC$ macro syntax is:

DFSPC$ pid,pri,typ,cxo,grp,ter,cxl,sti,stl,sth,start,ini

pid

pri

typ

A 6-character ASCII string specifying the run-time name of the static process, that is, the
name to be associated with the corresponding PCB. The name is padded with trailing blanks
if it has fewer than six characters. This argument has the form:

[PID=]ascii-string

The priority value (0 to 255 decimal) to be associated with the process. This argument has
the form:

[PR!=] integer-value

The mapping type of the process, as indicated by a predefined process-type symbol. The
type symbols are PT.GEN for general process mapping, PT.DEV for device-access process
mapping, PT.DRY for driver process mapping, and PT.PRY for privileged (full-system)

MACR0-11 Primitive Service Requests 3-51

cxo

grp

ter

cxl

sti

process mapping. The type symbols are defined by the PTDF$ macro in the COMM and
COMU libraries. This argument has the form:

[TYP=]type-symbol

Any optional hardware context, as indicated by predefined bit-mask symbols, to be included
(saved and restored) in the context switching performed for this process. The option symbols
are:
CX$FPP

CX$KT

CX$MCX

FP-11 floating-point registers

MMU registers (optionally saved, always restored)

Single memory location specified by cxl and intended for use primarily by
the Pascal compiler

CX$STD Standard context switching only; that is, "save no additional context"

The option symbols may be ORed as required. They are defined by the CXODF$ macro.
This argument has the form:

[CXO=]option[!option]

An integer code value of 1 to 255 indicating the exception-handling group to which the
process belongs. The exception-group code value is significant only if one or more exception
handling processes are implemented in the application. Appropriate values are established
by design convention. (See the CCND$ primitive and Chapter 6.) This argument has the
form:

[GRP=]integer-value

The entry point of the termination routine for the process. (See Semantics.) This argument
has the form:

[TER=]instruction-address-value

The address of the user-memory location whose content is to be saved/restored when
context switching this process. This argument is meaningful only if CX$MCX is specified in
cxo; otherwise, the argument value must be 0. This argument has the form:

[CXL=]address-value

The initial value for the process's stack pointer (SP) register. Normally, this value will be
the same as the sth argument value, assuming that the first-executed instruction affecting
the stack is a push (autodecrement of SP). This argument has the form:

[STI=]first-top-of-stack-address

3-52 MACR0-11 Primitive Service Requests

stl

sth

The address of the low boundary of the user-allocated process stack, reserved for stack
overflow checking. This argument has the form:

[STL=]low-bound-address

The address of the high boundary of the user-allocated process stack, reserved for stack
underflow checking. This argument has the form:

[STH=]high-bound-address

start

ini

The initial entry point for the process. This argument has the form:

[START=]first-instruction-address

The initial value for location cxl; that is, the value to be stored in that location by the
kernel when the process is first executed. This argument is meaningful only if CX$MCX is
specified in cxo; otherwise, it may be null. This argument has the form:

[INI=]word-value

Restrictions

The stack addresses sti, stl, and sth must be word addresses (even values).

The usable area of the process stack lies between stl and sth, exclusively. That is, the value of
the user's SP register may range from sth (empty stack) to stl+2 (full stack). The kernel uses
the stl and sth locations for dynamic stack-checking purposes, and those locations must not be
modified by the user code. (See Semantics.)

The size of the process stack in bytes, excluding locations stl and sti, must equal or exceed the
value $MINST, which defines the maximum number of bytes that the kernel and ISRs may
push on the process stack. In unmapped systems, the value of $MINST is 54(decimal) bytes;
in mapped systems, the value of $MINST is 0. When calculating the required stack space for a
process, you should add the process's own stack requirement to $MINST.

Syntax Example

DFSPC$ pid=MOVER,pri=5,typ=PT.PRV,cxo=CX$KT,grp=1,ter=ABT,cxl=O,
sti=HIS,stl=LOS,sth=HIS,start=BEGIN,ini=O

Note: Only constants may be specified; do not use '#'.

Semantics

From the information specified in the call, the DFSPC$ macro generates the read-only program
section .ALST., containing a static-process list entry. (The .ALST. p-sect must be the first section
placed in the process image file built by the RELOC utility at build time. That ordering is
normally achieved through RELOC's alphabetic sorting of program sections.) At build time, the
MIB utility links the entries into a static-process definition list for the kernel. The list is used
during system initialization by the kernel's INIT routine to "install" the defined static processes.

MACR0-11 Primitive Service Requests 3-53

The implications of the DFSPC$ parameters that are not covered in Section 2.1 are described in
the following paragraphs.

The termination entry point (ter) is the location to which control is transferred by the kernel in
the event of an unhandled-exception abort or a Stop Process operation executed on the process.
The termination routine allows the process to execute a "graceful termination" procedure, which
must end with a Delete Process (DLPC$) request.

The CX$FPP option (cxo argument) allows a process using FP-11 floating-point instructions to
have the contents of the floating-point processor registers saved and restored when it is context
switched. (If the option is specified either in a target environment that does not support the
FP-11 instruction set or for a process that does not use those instructions, the PCB will be
larger than necessary in either case, and needless overhead will be incurred in the latter case.)

The CX$MCX option, the cxl argument, and the ini argument collectively allow a process to
have a single location in its data space added to its switched context. (This feature is required
by the MicroPower/Pascal compiler.)

The CX$KT option causes the mapping registers to be saved during context switch-outs, allowing
a process with privileged, driver, or device-access mapping to modify its mapping at process
level. In an unmapped system, this option is meaningless. In a mapped environment, it incurs
needless overhead if it is applied to a process that does not modify its mapping or does so only
by means of the MAPW$ and UMAP$ primitives.

The kernel places guard words (special values) in the stl and sth locations and tests those guard
words during context switch-outs. Modification of either the lower or the upper boundary
location will cause an exception of type EX$RANGE, code ES$STO or ES$STU.

Error Returns

Not applicable; this macro is not executable.

3-54 MACR0-11 Primitive Service Requests

3. 16 DINT$ (Disconnect from Interrupt)
Pascal equivalent: { DISCONNECT-1NTERRUPT Procedure }

DISCONNECT_SEMAPHORE Procedure

The Disconnect from Interrupt (DINT$) primitive breaks the connection between a specified
interrupt vector and the interrupt service routine (ISR) that it is connected to, if any. Additional
interrupts through that vector are ignored.

This primitive can be used only by the current owner of the vector. (The primitive will
not ordinarily be used in a dedicated system environment but is supplied for functional
completeness.)

Syntax

The three variants of the DINT$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant

DINT$

DINT$S

DINT$P

area

Macro Call

DINT$ [area, vec]

DINT$S [vec]

DINT$P [vec]

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

vec
The address of the hardware interrupt vector to be disconnected from the ISR. This argument
has the form:

[VEC=]vector-address

Restrictions

If connected, the specified vector must have been connected by the calling process.

A module that has a DINT$ primitive should not be added to a supervisor-mode library.

Argument Block

The calling argument block generated (or assumed to exist) by the DINT$x macro has the
following format:

RO~ vec

ML0-429-87

MACR0-11 Primitive Service Requests 3-55

Syntax Example
DINT$ area=#argblk,vec=#300

Semantics

The DINT$ primitive reinitializes the interrupt dispatch block (IDB) associated with the specified
vector to point to the null (do nothing) ISR. (The null ISR dismisses any irtterrupts from
unconnected vectors after incrementing an unsolicited-interrupt counter.)

If the specified vector is not connected at the time of the call, the primitive returns an illegal
vector (ES$IVC) error.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IVC Illegal vector; the specified vector address is invalid or points to a vector that is not

connected or not owned by the calling process.

3-56 MACR0-11 Primitive Service Requests

3. 17 DLLN$ (Delete Logical Name)
Pascal equivalent: DELETE_LOGICAL_NAME Procedure

The Delete Logical Name (DLLN$) primitive allows the caller to eliminate the translation
value defined for a given logical name, effectively "undefining" the name. More precisely, the
DLLN$ primitive deletes the kernel data structure containing the translation string immediately
associated with the name supplied in the call. (Contrast with the DLST$ primitive, which
attempts to translate any logical name into the name of another type of structure and will not
delete a logical-name structure. DLLN$, on the other hand, requires that the named structure
be a logical-name value and will not perform any translation.)

The caller supplies the logical name and/ or corresponding structure index in a structure
descriptor block (SDB).

The complementary Create Logical Name (CRLN$) primitive defines the translation value
associated with a logical name, and the Translate Logical Name (TRLN$) primitive returns the
translation value associated with a currently defined logical name.

Syntax

The three variants of the DLLN$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant

DLLN$

DLLN$S

DLLN$P

area

Macro Call

DLLN$ [area,sdb]

DLLN$S [sdb]

DLLN$P [sdb]

The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

sdb

[AREA=]arg-blk-address

The address of a user-constructed SDB identifying the logical-name structure to be deleted.
See Section 3.1.5 for the format and use of an SDB. This argument has the form:

[SDB=]sdb-address

Argument Block

The calling argument block generated (or assumed to exist) by the DLLN$x macro has the
following format:

RO~ sdb (pointer)

ML0-430-87

MACR0-11 Primitive Service Requests 3-57

Syntax Example
DLLN$S sdb=#LGNAME

Semantics

The DLLN$ primitive verifies that the kernel data structure identified by the passed SDB is of
type ST.LNM (logical name) and, if it is, deletes the structure and removes the corresponding
name from the system name table.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IST Invalid structure descriptor (index or name); no such logical-name structure exists.

(This error return could be caused by an erroneous SDB address.)

3-58 MACR0-11 Primitive Service Requests

3. 18 DLPC$ (Delete Process)
Pascal equivalent: None

The Delete Process (DLPC$) primitive service deletes the calling process. This primitive permits
a process (static or dynamic) to terminate itself. Delete Process is the only method of process
termination.

The Delete Process service is transparent to the Pascal user; no predefined MicroPower /Pascal
procedure is equivalent to the DLPC$ macro. In Pascal, deletion of a process is implicit when
a PROCESS or a PROGRAM terminates; that is, when the final END statement of either entity
is encountered or the END statement of a [TERMINATE] procedure is encountered.

Syntax

The DLPC$ macro call syntax is:

DLPC$

Semantics

If the SM.AB! state-code modifier bit is not set in the caller's PCB (field PC.STS), the DLPC$
primitive removes the caller's PCB from the run queue, unlinks the PCB from the all-process
list, deallocates the PCB (returns it to the kernel's free-memory pool) and calls the scheduler.

If the SM.AB! bit is set, indicating an abnormal-abort substate, the DLPC$ primitive switches
the caller's PCB from the run queue to the inactive queue, sets the inactive state code (SC.IAC),
unlinks the PCB from the all-process list, and calls the scheduler.

Error Returns

None.

MACR0-11 Primitive Service Requests 3-59

3.19 DLRG$ (Deallocate Region)
Pascal equivalent: DEALLOCATE_REGION Procedure

The Deallocate Region (DLRG$) primitive allows the calling process to return a physical memory
region, previously allocated by ALRG$, to the list of free-RAM segments maintained by the
kernel. (See Section 5.3.) The base, size, and mode of the region to be deallocated are specified
by a region ID block (RIB) in the caller's address space. The primitive zeroes the size field
contained in the RIB on successful deallocation. The mode of the region must be physical.

The DLRG$ primitive attempts to consolidate the free-RAM list whenever possible by combining
the newly deallocated space with any adjoining space already represented in the list. Such
consolidation results in a "new" free segment that is larger than the region just deallocated.

Whether list consolidation takes place or not, any region deallocation may free up enough space
to allow a previously unsuccessful allocation request issued by another process to be satisfied
if the request were reissued. DLRG$ always returns control to the calling process. (There is no
blocking form of the complementary ALRG$ primitive.)

Although dynamic RAM allocation is designed primarily for a mapped target environment,
the ALRG$ and DLRG$ primitives can be used in an unmapped application as well. RIB
content differs between mapped and unmapped usage, as described for the ALRG$ primitive.
(Presumably the RIB supplied to DLRG$ contains the values that were returned by an ALRG$
call.) Chapter 5 contains a general discussion of dynamic RAM allocation, including the use of
DLRG$ in the context of the related primitives ACSR$, ALRG$, CRSR$, DLSR$, MAPW$, and
UMAP$.

Syntax

The three variants of the DLRG$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant Macro Call

DLRG$

DLRG$S

DLRG$P

DLRG$ [area,rib]

DLRG$S [rib]

DLRG$P [rib]

area

rib

The address of a user-memory location in which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of a 4-word (Rl.SIZ bytes) area in user memory, the region ID block, that
defines the region to be deallocated, as described under Semantics. This argument has the
form:

[RIB=]area-address

3-60 MACR0-11 Primitive Service Requests

Restrictions

This primitive may be used only at process level; that is, it may not be called from an ISR fork
routine.

Argument Block

The calling argument block generated (or assumed to exist) by the DLRG$x macro has the
following format:

Syntax Example
DLRG$S rib=#8KBREG

Semantics

RO~ R 18 address (pointer)

ML0-431-87

The DLRG$ primitive adds the memory space described by the caller's RIB to the kernel's linked
list of free-RAM segments either by inserting a new list element or by modifying an existing
one. (As a consequence, the information in the user's RIB is no longer valid.) If the RIB pointer
is valid (even address) and the region-size field is nonzero, the DLRG$ primitive zeroes the size
field, deallocates the described region, and returns control to the calling process. Otherwise, the
primitive sets the caller's C bit and returns to the caller, with an error indication in RO.

The information in the caller's RIB area must be of the same form as that returned by a
corresponding region-allocation operation, as follows:

rib~ region base

region size

reserved l mode

region offset

Mapped/Unmapped

PAR value/physical address

PAR ticks/number of bytes

RA$PHY

(not significant)

ML0-432-87

MACR0-11 Primitive Service Requests 3-61

The offset and size symbols defined for the RIB fields are:
RI.ADD Region base

RI.LEN

Rl.ATR

RI.RES

RI.OFF

RI.SIZ

Region size

Region mode (attribute byte)

Reserved (high byte)

Region offset

RIB size in bytes

The RIBDF$ macro in the MicroPower /Pascal COMM and COMU system macro libraries defines
these symbols.

In a mapped environment, the region base must be a physical PAR value representing a 32-word
physical boundary, not a virtual address. The region size specifies the number of consecutive
32-word units to be deallocated starting at the region base.

In an unmapped environment, the region base is simply the physical address of the region,
and the region size is the number of bytes to be deallocated starting at the region base. If the
specified size is not a multiple of 4, the next higher multiple of four bytes is deallocated.

In both cases, the region mode is indicated by the value of the symbol RA$PHY, denoting a
physical region. (The RA$xxx mode symbols are defined by the RIBDF$ macro.) The last word
of the RIB, the region-offset field, is not relevant for region deallocation and is ignored; the field
is significant only in operations on shared common regions.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may b~ returned by the primitive are:
ES$IAD Invalid address; the RIB address is not on a word boundary.

ES$IPM Illegal parameter; the region-size value in the RIB is 0. (This error might reflect either
an already deallocated region or an erroneous RIB address.)

Implementation Notes

The DLRG$ primitive does not limit the user to deallocating an entire region, as originally
allocated, in a given operation. You can deallocate just a portion of a region or can return
a region piecemeal in successive operations. Partial deallocation might be useful in some
applications. Note, however, that it entails user modification of supplied RIB contents: the
region base and size values supplied by ALRG$. In order to avoid obscure run-time problems,
considerable care should be taken to ensure the correctness of any such modifications, since
the primitive does minimal checking of RIB values. Any deallocation error introduced by
user-modified values will corrupt the kernel's free-RAM list with unpredictable consequences;
typically, a delayed system crash. The integrity of the free-RAM list depends entirely on the
validity of the space descriptions supplied in deallocation requests.

3-62 MACR0-11 Primitive Service Requests

3.20 DLSR$ (Delete Shared Region)
Pascal equivalent: DELETE_SHARED_REGION Procedure

The Delete Shared Region (DLSR$) primitive request lets the calling process delete the shared
region descriptor (SRD) identified in the call; the kernel data structure that represents a region
as shared. The effect of the operation is to preclude any subsequent access to the region through
the ACSR$ primitive. However, the operation does not disable any previously gained access to
the region.

Typically, the DLSR$ primitive would be used only in the termination routine of the process
responsible for creating the SRD. (Processes commonly delete structures they have created if
forced to terminate.) The kernel does not provide any automatic safeguard against inadvertent
reference to a deleted (and possibly deallocated) shared region, since any process that previously
accessed the region while it was shareable retains a description of it. The effective lifetime of a
shared region could be coordinated among the processes having access to it through a special
semaphore established for that purpose.

Chapter 5 contains a general discussion of region sharing, including the use of DLSR$ in the
context of the related primitives ACSR$, ALRG$, CRSR$, DLRG$, MAPW$, and UMAP$. The
CRSR$ primitive provides the complementary Create Shared Region operation, which declares
a region as being shareable and assigns its run-time name.

Strictly speaking, there is no $DLSR primitive routine as such; the DLSR$ macro generates
an appropriate call to the Delete Structure ($DLST) primitive routine, which implements the
required operation.

Syntax

The three variants of the DLSR$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant Macro Call

DLSR$

DLSR$S

DLSR$P

DLSR$ [area,sdb]

DLSR$S [sdb]

DLSR$P [sdb]

area

sdb

The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of the user-constructed structure descriptor block (SDB) that identifies the
shared region to be deleted; that is, the SDB that contains the name and/ or index and serial
number of the corresponding kernel SRD structure. See Section 3.1.5 for the format and
use of an SDB. This argument has the form:

[SDB=]sdb-address

MACR0-11 Primitive Service Requests 3-63

Restrictions

This primitive may be used only at process level; that is, it may not be called from an JSR fork
routine.

Argument Block

The calling argument block generated (or assumed to exist) by the DLSR$x macro has the
following format:

Syntax Example
DLSR$S sdb=#SRG8KB

RO--.. I __ s_D_B_a_d_d_r_e_ss _ ___. (pointer)

ML0-433-87

This stack ($S) form of the macro call specifies the location of the structure descriptor block
SRG8KB containing the name of the shared region to be deleted. See the CRSR$ primitive
description for the corresponding region-creation example.

Semantics

The $DLST primitive routine, which is invoked by the DLSR$ primitive call, looks for a shared
region descriptor (SRD) identified by the caller's SDB. If that SRD exists, the primitive deletes
the SRD, removes the structure name from the system name table, and returns to the caller. If
no such SRD exists, the primitive returns to the caller, with an error indication.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IST Invalid structure description (index or name); no such shared region descriptor exists.

(This error return could be caused by an erroneous SDB address.)

3-64 MACR0-11 Primitive Service Requests

3.21 DLST$ (Delete Structure)
Pascal equivalent: DESTROY Procedure

The Delete Structure (DLST$) primitive deletes a specified semaphore, ring buffer, or unformatted
structure from the system and deallocates the memory space associated with it. If a semaphore
or ring buffer, the structure must not be in use at the time of the call. That is, no processes
may be blocked on the structure, a queue semaphore must have no packets on its queue, and
a ring buffer must be empty.

This service permits a process to release the memory allocated to a dynamic structure that is
no longer needed. (See the DLLN$ and DLSR$ primitives concerning deletion of logical-name
and shared-region structures.)

Syntax

The three variants of the DLST$ macro and their respective macro calls are listed below. (The
differences are described in Section 3 .1.)

Variant

DLST$

DLST$S

DLST$P

area

Macro Call

DLST$ [area,sdb]

DLST$S [sdb]

DLST$P [sdb]

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

sdb

[AREA=]arg-blk-address

The address of the structure descriptor block (SDB) that identifies the structure to be deleted.
(See Section 3.1.5 for the format and use of an SDB.) This argument has the form:

[SDB=]sdb-address

Argument Block

The calling argument block generated (or assumed to exist) by the DLST$x macro has the
following format:

Ro~ I sdb

ML0-434-87

MACR0-11 Primitive Service Requests 3-65

Syntax Example
DLST$S sdb=#SEM

Semantics

The DLST$ primitive checks the identified structure to ensure that it is not in use. (No in-use
condition is defined for an unformatted structure.) If the structure is not in use, the primitive
removes the structure name from the system name table, if named, returns the space allocated
to the structure to the kernel's free-memory pool, and returns control to the caller. If the
structure is in use, the primitive returns to the caller, with an in-use error indication.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IST Invalid structure descriptor (index or name); no such structure exists. (This error

return could be caused by an invalid SDB address or by an SBD containing a logical
name that does not translate into a valid nonlogical structure name.)

ES$SIU Structure is in use; the structure cannot be deleted in its current condition.

3-66 MACR0-11 Primitive Service Requests

3.22 FORK$ (Fork Processing)
Pascal equivalent: None

The Fork Processing (FORK$) service request is used by an interrupt service routine (ISR) to
discontinue execution at interrupt level and to resume as a fork routine at system level with all
interrupts enabled. The execution of a fork routine is deferred until all pending interrupts have
been serviced and any interrupted primitive operation has been completed but occurs before
resumed-primitive execution and return to process level. The overall scheduling hierarchy is
shown in Appendix A. The code following the FORK$ call becomes the body of the fork routine,
which must terminate with a RETURN (RTS PC) instruction, as does a normal ISR that does
not fork.

Fork routines provide a level of processing that is intermediate between interrupt level and
process level. As discussed in Chapter 7, fork-level processing has two purposes: to permit an
ISR to safely execute primitives and, when properly used, to minimize overall interrupt latency
through deferral of less critical, interruptable 1/0 processing operations to that level.

An ISR must issue a FORK$ request before requesting any primitive service. Thus, the ISR
will not violate kernel integrity by executing a primitive while a primitive operation has been
interrupted, thereby causing the kernel to be reentered. (Kernel primitive operations can be
interrupted but not reentered, and strictly sequential execution of primitives must be ensured.)
The FORK mechanism guarantees sequential execution of primitives while permitting their use
within ISRs, by serializing execution of ISR code segments that contain primitive requests. Note
that the FORK service is not itself a primitive operation.

Fork routines have normal ISR context and a higher software priority than any process but, like
primitives and processes, run at CPU priority 0. Like the ISR itself, the fork routine executes
in kernel mode in a mapped environment. (A priority-7 ISR must issue a P7SYS$ service
request, transforming itself into a normal ISR, before issuing a FORK$ request.) Fork routines
are executed in FIFO order from a special queue that is independent of process scheduling.

An ISR that issues a FORK$ request can incur a fork-overrun error condition, resulting in an
immediate return to the ISR at interrupt level with the C bit set. This error indicates that, at
worst, a second interrupt has occurred before the fork routine for the first has begun execution
or that, at best, a third interrupt has occurred before the fork routine for the second has begun
execution. (See Semantics and Error Returns for more detail.) Depending on the kind of device
being serviced and the inherent interrupt-handling capability of the target system, an overrun
error may reflect an ISR design problem or may represent a temporary overload condition that
is expectable and can be handled by the application through proper coding of the ISR and fork
routine. (The fork routine can be made conditionally iterative based on indicators set by the
ISR.)

Syntax

The syntax of the FORK$ macro call is:

FORK$

When the request is issued, RS must point to the fork block for the ISR; see the Semantics
section below. (On normal entry to an ISR, RS points to the fork block contained in the interrupt
dispatch block associated with the ISR.)

MACR0-11 Primitive Service Requests 3-67

Restrictions

This service may be requested only by an ISR executing at less than CPU priority-level 7 with
normal ISR context. A priority-7 ISR must issue a P7SYS$ request before issuing a FORK$
request.

Before issuing a FORK$ request, the ISR must purge the stack of any data it has ~ushed.

The fork routine should not execute any form of primitive that may block. (Violation of this
rule is a likely cause of fork-overrun errors or a system crash.)

Semantics

The FORK service tests the fork block pointed to by RS to ensure that it is not already linked
into the fork queue. (The fork block is a portion of the IDB, so an ISR has only one fork block
available to it for each vector that it services.) If the fork block is free, abbreviated ISR context
(R3, R4, and PC) is saved in the block, and it is placed on the fork queue in FIFO order. The
interrupt is then dismissed by a RETURN to the interrupt dispatcher, which allows any pending
interrupts to occur and processing of any lower-level interrupted ISR to continue. If a primitive
operation was interrupted, it is allowed to complete. The kernel assumes that nothing has been
left on the stack by the ISR when the FORK$ request is issued.

Before executing any resumed-primitive code and/ or returning to process level, the kernel
processes the fork request queue. The fork blocks are individually dequeued and the
corresponding fork routines executed at CPU priority 0. Each fork routine must purge the
stack, if used, and terminate with an RTS PC instruction; the normal ISR exit procedure.

If the fork block pointed to by RS is not free when the FORK$ request is issued, the FORK
service sets the carry (C) bit and returns to the ISR.

Registers RO through RS are available for use after a successful $FORK request.

Error Returns

If the FORK$ call returns with the carry (C) bit set, the fork was unsuccessful because a
previously queued fork routine is still pending. (At most, two forks can be outstanding,
provided that the first fork routine has started execution, freeing the fork block for the following
fork request.) The code immediately following the FORK$ call should test for the overrun error
return and take appropriate action. If the C bit is set, the ISR is still running at interrupt level
with its precall register values intact.

3-68 MACR0-11 Primitive Service Requests

3.23 GELA$ (Get Element Any)
Pascal equivalent: GET_ELEMENT_ANY Procedure

The Get Element Any (GELA$) primitive implements a complex form of the Get Element
operation; see the GELM$ and PELM$ primitives for a description of the basic Get Element
and Put Element operations on ring buffers. GELA$ performs the basic Get Element operation
on the logical OR of several ring buffers, with an optional timeout feature. That is, GELA$
permits the calling process to test for and, if necessary, wait on an available data record in any
one of a set of ring buffers. Up to four ring buffers can be specified in the primitive request.
(Each ring buffer must have record-mode output access.) If a complete record is immediately
available in any of the specified ring buffers, the calling process gets the record and continues
execution. Otherwise, the calling process blocks until one of the ring buffers can provide the
requested number of bytes.

More specifically, if each of the specified ring buffers is initially empty or contains less than a
full record, the caller blocks on all the buffers. (Partial data transfers never occur, because of the
mandatory record-mode output access.) The process waits until the full request can be satisfied
by any one of the ring buffers, at which point the process is unblocked from all of them.

Optionally, the Get Any operation can be terminated if a time interval specified in the request
expires. On any nonerror return from the primitive (C bit clear), RO will contain either an
ordinal value identifying the ring buffer that satisfied the request or a 0, indicating that the
request timed out.

Thus, the GELA$ primitive allows a process to get a specified number of elements from any of
up to four ring buffers, although the primitive might be used primarily for its optional timeout
capability, regardless of the number of ring buffers involved.

If a zero time period (immediate timeout) is specified in the request, the GELA$ primitive
provides a complex form of the Conditional Get Element (GELC$) operation, which tests for
available data but will not block the caller. See the GELC$ primitive for a description of the
basic Conditional Get Element operation. Keep in mind, however, that only record-mode output
applies in the case of a nonblocking GELA$ operation.

Syntax

The three variants of the GELA$ macro and their respective macro calls are listed below. (The
differences are described in Section 3 .1.)

Variant

GELA$

GELA$S

GELA$P

Macro Call

GELA$ [area,time,bufptr,bufcnt,sdbl,sdb2,sdb3,sdb4]

GELA$S [time,bufptr,bufcnt,sdbl,sdb2,sdb3,sdb4]

GELA$P [time,bufptr,bufcnt,sdbl,sdb2,sdb3,sdb4]

MACR0-11 Primitive Service Requests 3-69

area
The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address

time
The address of a 2-word user-memory location that specifies a timeout interval, expressed in
milliseconds. The first word of the double-precision integer contains the low-order portion
of the time value; the second word (time+2) contains the high-order portion. An argument
value of 0 implies no timeout for the request; the calling process may block indefinitely.
This argument has the form:

[TIME=]word-address or #0

If the address value is nonzero but the time value pointed to is 0, the request will be timed
out immediately if none of the specified ring buffers has an entire record when the primitive
is called. That is, the calling process will never block if the specified time interval is 0.

bufptr
The address of the user's buffer that is to receive the data from the ring buffer. (The
effective length of the buffer is implied by the bufcnt parameter value.) This argument has
the form:

[BUFPTR=]buffer-address

bufcnt
The number of bytes to be transferred to the buffer pointed to by bufptr. (The value
determines the record length for the operation.) This argument has the form:

[BUFCNT=]integer

sdp-1
The address of a structure descriptor block (SDB) that identifies one of the ring buffers to
be operated on. From one to four SDB addresses may be specified. The order in which
the SDBs are specified (or are identified if enumerated by keyword) determines the order
in which the corresponding ring buffers are initially tested for data elements. (That order
can be critical under certain real-time conditions, as discussed under Implementation Notes
below.) The sdb-i arguments have the form:

[SDBi=]sdb-address

The value "i" may be 1 through 4 if the keyword form of argument is used.

Restrictions

Each ring buffer's output-access mode must be record. (See the satr argument of the CRST$
primitive.)

The number of bytes requested (bufcnt parameter) must not exceed the size of any ring buffer
specified in the request.

3-70 MACR0-11 Primitive Service Requests

The time-out value may not exceed (2*"'31)-1, the largest positive integer expressible in 32 bits.
That is, the sign bit of the time-interval doubleword (bit 15 of the high-order word) must not
be set. (The maximum valid value, in milliseconds, permits a time-out period of just over 24.89
days; see the SLEP$ primitive for more detail.)

In the keyword form of macro call, higher-numbered sdb-i keywords may not be used unless
each of the lower-numbered sdb-i keywords is specified. That is, if the keyword sequence
contains SDB3=, for example, the sequence must also include SDBl= and SDB2=, though not
necessarily in numeric order.

Argument Block

The calling argument block generated (or assumed to exist) by the GELA$x macro has the
following format:

RO_.. time

bufptr

bufcnt

number of SDBs

sdb1

sdb2

sdb3

sdb4

Syntax Example

(pointer)

(pointer)

(value)

(generated value)

(pointer)

The number of SOB-address

fields is variable and is

indicated by the value in
the second word of the block.

ML0-435-87

GELA$ #GEARGS,#RESET,#INPBUF,#RECLEN,#PORTC3,#PORTCO,#PORTC1,#PORTC2

Semantics

For clarity, the following description ignores the unlikely case of multiple waiters for ring buffer
output. That is, the description assumes that only one process is attempting to get data from a
given ring buffer, although the GELA$ operation allows for the possibility of multiple getters
and guarantees sequential access, as does the basic GELM$ primitive. The GELA$ primitive tests
each ring buffer specified in the request for two conditions: at least bufcnt elements available
or fewer than bufcnt elements available. (The ring buffers are tested in the order in which
they are identified in the call, by either position or keyword value.) If any of the ring buffers
contains at least bufcnt bytes at the time of the call, the primitive transfers bufcnt bytes from
the first such ring buffer encountered and returns to the caller, with a nonzero value in RO. The
RO value, an integer between 1 and 4, indicates that the nth ring buffer identified in the call
satisfied the request.

MACR0-11 Primitive Service Requests 3-71

If all the ring buffers contain fewer than bufcnt elements and a zero timeout value was supplied
in the call, the primitive returns immediately to the caller, with a zero value in RO, indicating
a return that is due to timeout. (The calling process thus never leaves the run state in the case
of an immediate-timeout form of request.)

If all the ring buffers contain fewer than bufcnt elements and either a zero time argument or
a nonzero timeout value was supplied in the call, the primitive switches the calling J'rocess to
the wait-active state. The process is blocked on each and every ring buffer specified in the
request. The calling process remains blocked on all the buffers until at least bufcnt bytes of
data (a full record) accumulates in any one of them. At that point, the primitive performs the
requested data transfer, unblocks the caller from all the ring buffers, and switches the caller to
the ready-active state, with the nonzero ordinal value in RO, as described above.

In the case of process blocking described above, if a nonzero timeout value was supplied in
the call,. the calling process is also blocked on an internal timer queue, as well as on one or
more ring buffers. If the specified timeout period expires at any point before the request can
be satisfied, the caller is removed from all blocking structures and is switched to ready-active
state, with 0 in RO. Any partial record(s) accumulated at that point remain in the respective
ring buffer(s).

In all cases described above, the user's C bit is cleared, distinguishing the value returned in RO
from an error-return indication.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; timer-value pointer is an odd address, or a buffer or SDB address is

not on a word boundary or not in the user's address space. (The address is checked
only if the CHECK option is selected in the configuration file.)

ES$IPM Illegal parameter; either the bufcnt value exceeds the size of one of the ring buffers
specified in the request or the timer value is out of range.

ES$IPR Invalid primitive; the output-access mode of one of the ring buffers specified in the
request is stream, not record.

ES$IST Invalid structure description (index or name); no such ring buffer exists. (This error
return could be caused by an invalid SDB address if address checking is not in effect.)

Implementation Notes

Since the initial test of the ring buffers for a complete record is performed in determinate order,
the order in which multiple buffers are identified in the call can be critical under certain real-time
conditions. For example, if the relative frequency of Puts is high for one of several ring buffers
and the "fast" ring buffer is identified as being first, either by position in the SDB sequence or
by the keyword SDBl=, that ring buffer will tend to mask off the others in a sequence of GELA$
operations. In this case, the "slower" ring buffers may seldom or never be tested and serviced.
Optimally, then, the ring buffer with the highest expected Put rate should be identified as last,
the next highest as next to last, and so on, assuming that probable relative frequencies can be
determined. Alternatively, the order in which the ring buffers are identified could be rotated in
successive calls so that at least n buffers are guaranteed to be tested in n calls to GELA$.

3-72 MACR0-11 Primitive Service Requests

As a contrary example, assume that the specified set of ring buffers represents device inputs
(the common use) and that one of the devices has the highest priority in terms of its need to be
serviced. (The service priority might be independent of expected input rates, which, if different,
could be reflected by differing ring buffer sizes, for example.) In this case, the highest-priority
buffer would be identified as first in the GELA$ call, making sure that the buffer is always
tested on any call.

The correct or best-case strategy depends on application-specific factors, of course.

MACR0-11 Primitive Service Requests 3-73

3.24 GELC$ (Conditional Get Element)
Pascal equivalent: COND_GET_ELEMENT Function

The Conditional Get Element (GELC$) primitive implements a nonblocking form of Get Element
operation; compare with the unconditional GELM$ primitive. GELC$ attempts to extract the
requested number of bytes from the ring buffer but does not block the calling process if the
request cannot be satisfied. The output-access mode of the ring buffer (record or stream)
determines how the primitive attempts to satisfy the Get request: whether by a full or a partial
transfer, as described below. Informally, the meaning of a GELC$ request for a record-mode
buffer is "get men bytes right away or none at all," and the meaning for a stream-mode buffer
is "get me as many bytes as you can, up to n."

In either case, however, GELC$ returns to the caller, with a value in RO indicating how many
bytes are still needed to fully satisfy the request. Thus, a return value of 0 indicates that the
request has been fully satisfied; the number of bytes specified in the call have been transferred
from the ring buffer.

The output-access mode of a ring buffer is specified as either record-oriented or stream-oriented
when the structure is created; see the CRST$ primitive. For a ring buffer with record-mode
output, GELC$ attempts to satisfy the request with a full transfer only. If the ring buffer does
not contain as many bytes as requested, the primitive returns immediately to the caller, with
a value equal to the number of bytes specified in the request, indicating that no bytes were
obtained.

For a ring buffer with stream-mode output, GELC$ attempts to satisfy the request with either a
full or a partial transfer. That is, the primitive gets as many bytes as are immediately available
in the ring buffer, up to the number requested, and returns a value indicating the number that
remains to be obtained, if any.

Note the implication that if another process is blocked on the ring buffer, waiting for its GELM$
request to be satisfied, no bytes are available for the caller.

The complementary PELM$ and PELC$ primitives allow a process to put bytes into a ring
buffer.

Syntax

The three variants of the GELC$ macro and their respective macro calls are listed below. The
differences are described in Section 3.1.

Variant

GELC$

GELC$S

GELC$P

Macro Call

GELC$ [area,sdb,bufptr,bufcnt]

GELC$S [sdb,bufptr,bufcnt]

GELC$P [sdb,bufptr,bufcnt]

3-74 MACR0-11 Primitive Service Requests

area
The address of a user-memory area in which the calling argument block is to be constructed
or found, if already existent. This argument has the form:

[AREA=]arg-blk-address

sdb
The address of a structure descriptor block (SDB) that identifies the ring buffer from which
bytes are to be extracted. (See Section 3.1.5 for the format and use of an SDB.) This
argument has the form:

[SDB=]sdb-address

bufptr
The address of the user's buffer. This argument has the form:

[BUFPTR=]buffer-address

bufcnt
The number of bytes to be transferred to the buffer pointed to by bufptr. This argument
has the form:

[BUFCNT=]integer

Restrictions

If the ring buffer's output-access mode is record, the number of bytes requested must not exceed
the size of the ring buffer. (If it does, the Get request will always fail, since the buffer will
never contain a full record.)

Argument Block

The calling argument block generated (or assumed to exist) by the GELC$x macros has the
following format:

RO~ sdb

bufptr

bufcnt

ML0-436-87

Syntax Example

GELC$S sdb=#TTRING,bufptr=#LOW,bufcnt=#10.

Semantics

If the specified ring buffer's output-access attribute is SA$ROR (record mode), the GELC$
primitive tests the ring buffer for bufcnt bytes of available data. If at least that amount of data
is available, the primitive copies bufcnt bytes from the ring buffer to the caller's buffer, deletes

MACR0-11 Primitive Service Requests 3-75

the corresponding bytes from the ring buffer, and returns control to the caller, with 0 in RO. If
the ring buffer contains fewer than bufcnt bytes, GELC$ returns immediately, with the value
bufcnt in RO, indicating that no bytes were transferred.

If the specified ring buffer's output-access attribute is SA$ROS (stream mode), GELC$ gets as
many bytes as are available in the ring buffer, up to the number requested, and returns control
to the caller, with the value (bufcnt minus bytes transferred) in RO.

A successful GELC$ operation may cause preemption of the caller if the operation unblocks a
process waiting to Put elements (see Section 2.1.4). That is, return from a successful GELC$
request is not necessarily immediate.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; buffer or SDB address is not on a word boundary or is not in the

user's address space. (The address is checked only if the CHECK option is selected
in the configuration file.)

ES$IST Invalid structure descriptor (index or name); no such ring buffer exists. (This error
return could be caused by an invalid SDB address if address checking is not in effect.)

3-76 MACR0-11 Primitive Service Requests

3.25 GELM$ (Get Element)
Pascal equivalent: GET_ELEMENT Procedure

The Get Element (GELM$) primitive extracts a specified number of data bytes from a ring buffer
and transfers them to the caller's buffer area. If the ring buffer does not contain enough bytes
to satisfy the Get request, the calling process blocks on the ring buffer, waiting for a sufficient
number of bytes to become available.

In general, if two or more processes are getting data from the same ring buffer, the calling
process will block if another process is waiting for its Get request to be satisfied. The calling
process must wait its proper tum (whether by FIFO or priority order) for access to the buffer,
since sequential access to a ring buffer is ensured for multiple readers as well as for multiple
writers. The process that blocks first is given active read access to the buffer and is never
displaced by another, higher-priority process, regardless of the ordering attribute of the waiting
output-process list.

If the ring buffer's output-access mode is stream, the data transfer may occur in increments
while the process is waiting. Stream-mode access permits a ring buffer to be smaller than the
"records" that may be passed through it.

The complementary PELM$ and PELC$ primitives allow a process to put elements into a ring
buffer.

The conditional, nonblocking form of GELM$ is the GELC$ primitive.

Syntax

The three variants of the GELM$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant Macro Call

GELM$

GELM$S

GELM$P

GELM$ [area,sdb,bufptr,bufcnt]

GELM$S [sdb,bufptr,bufcnt]

GELM$P [sdb,bufptr,bufcnt]

area

sdb

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of a structure descriptor block (SDB) that identifies the ring buffer from which
bytes are to be extracted. (See Section 3.1.5 for the format and use of an SDB.) This
argument has the form:

[SDB=]sdb-address

MACR0-11 Primitive Service Requests 3-77

bufptr
The address of the user's buffer. This argument has the form:

[BUFPTR=]buffer-address

bufcnt
The number of bytes to be transferred to the buffer pointed to by bufptr. This argument
has the form:

[BUFCNT=]integer

Restrictions

If the ring buffer's output-access mode is record, the number of bytes requested must not exceed
the size of the ring buffer.

Argument Block

The calling argument block generated (or assumed to exist) by the GELM$x macros has the
following format:

RO~ sdb

bufptr

bufcnt

ML0-437-87

Syntax Example

GELM$ area=#ARGBLK,bufptr=#BUF1,bufcnt=#SIZE

Semantics

If no other process is waiting to get data from the specified ring buffer, the GELM$ primitive
tests the buffer for bufcnt bytes of available data. If at least that amount of data is available,
the primitive transfers the requested number of bytes from the ring buffer to the caller's buffer
and returns control to the caller. (A Get operation effectively deletes the corresponding data
from the ring buffer.)

If the ring buffer contains fewer than bufcnt bytes and its output access mode is record
(SA$ROR), the primitive blocks the caller with active read access to the ring buffer and calls
the scheduler. When a full record becomes availa~le as a result of one or more subsequent
Put Element operations, the transfer is performed, and the waiting process is unblocked. If the
ring buffer contains fewer than bufcnt bytes and its output access mode is stream (SA$ROS),
the primitive blocks the caller with active read access to the ring buffer, transfers any available
bytes, and calls the scheduler. When enough additional bytes become available as a result of
one or more subsequent Put Element operations, the transfer is completed (possibly by a series
of partial transfers) and the waiting process is unblocked.

3-78 MACR0-11 Primitive Service Requests

Note
In stream mode, partial transfers from a ring buffer (incremental Get operations)
can occur in units of at least one-quarter of the buffer size, up to the point
where the full Get request can be satisfied. Conversely, partial transfers to a
ring buffer (incremental Puts) can occur whenever three-quarters or more of the
buffer is empty, up to the point where the full Put request can be satisfied.

If one or more processes are already waiting to get data from the ring buffer at the time of
the call, implying that another process has active read access, the calling process is blocked on
the buffer's waiting-output-process list in either FIFO or priority order, depending on the ring
buffer definition. (A process with active access is never displaced by another process, regardless
of relative priorities.) The process waits its turn to gain active read access, at which point it is
treated as described above.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAO Invalid address; buffer or SOB address is not on a word boundary or is not in the

user's address space. (The address is checked only if the CHECK option is selected
in the configuration file.)

ES$IST Invalid structure descriptor (index or name); no such ring buffer exists. (This error
return could be caused by an invalid SOB address if address checking is not in effect.)

ES$IPM Illegal parameter; the bufcnt value exceeds the size of the ring buffer for a record
mode operation.

MACR0-11 Primitive Service Requests 3-79

3.26 GMAP$ (Get Mapping)
Pascal equivalent: GET_MAPPING Procedure

The Get Mapping (GMAP$) primitive allows the calling process to obtain a copy of its own
current mapping or that of any other specified process. GMAP$ returns the mapping information
stored in the mapping-context restore area associated with the PCB of the subject process to a
buffer area specified in the call.

The mapping information consists of 16 words of Page Address Register (PAR) and Page
Descriptor Register (PDR) values unless I&D-space separation is in effect for the subject process,
in which case 32 words of information (values for both the instruction and data Active Page
Register (APR) sets) are returned. (Separate I&D-space mapping is possible on an LSI-11/73 or
similar target system but is not necessarily in effect for a given process.)

Syntax

The three variants of the GMAP$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant Macro Call

GMAP$

GMAP$S

GMAP$P

GMAP$ [area,pdb,buf]

GMAP$S [pdb,buf]

GMAP$P [pdb,buf]

area
The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address

pdb

buf

The address of the process descriptor block (PDB) that identifies the subject process, or 0.
If 0 is specified as the argument value, the calling process is implied. (See Sectfon 3.1.6 for
the format and use of a PDB.) This argument has the form:

[SDB=]pdb-address or #0

The address of a 16- or 32-word user-memory area in which the mapping information is to
be returned by the primitive. This argµment has the form:

[BUF=]buffer-address

Restrictions

This primitive may be used only at process level; that is, it may not be called from an ISR fork
routine.

3-80 MACR0-11 Primitive Service Requests

Format of Information Returned

The information returned in the caller's buffer area is in the following form:

buf___. I-space PAR 0

I-space PAR 7

I-space PD R 0

I-space PDR 7

D-space PAR 0

D-space PAR 7

D-space PD R 0

D-space PD R 7

Only if data space is
mapped separately

j

ML0-438-87

The "I-space" mapping registers refer to the only set of user APRs in a target system that
does not provide differentiated instruction and data mapping, such as an LSl-11/23. Note that
the PDR word of any unmapped (currently unused) APR will contain 0; the content of the
corresponding PAR is undefined and is not significant.

Argument Block

The calling argument block generated (or assumed to exist) by the GMAP$x macro has the
following format:

RO_.. PDB address

buffer

(pointer)

(pointer)

ML0-439-87

MACR0-11 Primitive Service Requests 3-81

Syntax Example

GMAP$S pdb=#O,buf=#MAPBUF

This stack ($S) form of the macro call requests that the caller's mapping context be returned to
the user-memory area beginning at location MAPBUF.

Semantics

The GMAP$ primitive copies the contents of the mapping-context restore area pointed to by
the subject process's PCB (field PC.MAP) to the buffer area specified in the call.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; buffer or PDB address is not on a word boundary or is not in the

user's address space. (The address is checked only if the CHECK option is selected
in the configuration file.)

ES$IST Invalid structure description (index or name); no such process control block exists.
(This error return could be caused by an erroneous PDB address if address checking
is not in effect.)

ES$IPR Illegal primitive call; the primitive service was requested in an unmapped environ
ment.

Applications

Among other possible uses, the GMAP$ primitive allows a process with general mapping to
inspect its current mapping in order to identify unused APRs for use in dynamic mapping
operations. This in turn allows the process to optimize a sequence of mapping/remapping
operations by using the fixed mode of MAPW$ call, which eliminates the need for intervening
UMAP$ calls.

3-82 MACR0-11 Primitive Service Requests

3.27 GTIM$ (Get Time)
Pascal equivalent: GET_ TIME Procedure

The Get Time (GTIM$) primitive returns the approximate system time in milliseconds, assuming
that a system clock is present and configured on the target system. System time is either of the
following:

• The elapsed time since the last system initialization (zero based).

• The base time set by the STIM$ primitive plus the elapsed time since the base system time
was last set. (A base time, if used, is normally set as part of the system start-up or restart
procedures.)

GTIM$ returns the system time as a triple-precision integer in a 3-word area specified by the
caller. The triple-precision, 48-bit value allows for a very large maximum elapsed time (until
December 31, 2099), if the Pascal-implemented date/time setting algorithm is used. The calling
process may need to consider only the low-order or low- and middle-order portions of the time
value.

The kernel calculates system time in milliseconds on the basis of interrupts from a clock source
of 50, 60, 100, or 800 Hz. Thus, the time is kept in multimillisecond "granules," or clock ticks.
(A 60-Hz clock, for example, "ticks" only once every 16.6666667 milliseconds.) Thus, a range
of possible discrepancy between reported system time and actual elapsed time varies with clock
frequency. Assuming that the calling process is not preempted before it has a chance to use the
value reported by $GTIM, the worst-case discrepancy between the actual elapsed time and the
reported system time due solely to clock-tick granularity is:

• 50 Hz-20 milliseconds

• 60 Hz-17 milliseconds

• 100 Hz-10 milliseconds

• 800 Hz-2 milliseconds

Also, if the caller is preempted during or just following the Get Time operation, the duration of
the preemption will add to the margin of error in the reported time as perceived by the calling
process. As a safeguard against the preemption problem, the calling process might temporarily
raise its priority across the $GTIM call and the code that processes the returned value.

The SLEP$ primitive provides a related process blocking-and-wakeup service based on elapsed
system time.

The STIM$, GTIM$, and SLEP$ primitives together replace the functionality previously provided
by the DIGITAL-supplied Clock Service Process, which is now obsolete.

Syntax

The three variants of the GTIM$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

MACR0-11 Primitive Service Requests 3-83

Variant

GTIM$

GTIM$S

GTIM$P

area

Macro Call

GTIM$ [area, tim]

GTIM$S [tim]

GTIM$P [tim]

The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address

tlm
The address of a 3-word area in user memory in which the primitive returns the system
time value, as described under Semantics. This argument has the form:

[tim=]area-address

Restrictions

The time argument must specify an even address.

Argument Block

The calling argument block generated (or assumed to exist) by the GTIM$x macro has the
following format:

Syntax Example

GTIM$S tim=#TIMVAL

Semantics

RO-. time (pointer)

ML0-440-87

The GTIM$ primitive disables interrupts, moves the 3-word system time value to the area
specified in the call, enables interrupts, and returns to the caller.

3-84 MACR0-11 Primitive Service Requests

GTIM$ returns the system time to the caller's time area in the following form:

time--.

Portion of
Time Value

low order

middle order

high order

Offsets

TM.LOW

TM.MID

TM.HIG

ML0-441-87

The TM.xxx offset symbols used by the kernel are defined by the TIMDF$ macro.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IAD Invalid address; the time address is an odd value.

MACR0-11 Primitive Service Requests 3-85

3.28 GTST$ (Get Process State)
Pascal equivalent: GET_STATE Procedure

The Get Process State (GTST$) primitive returns information about the status of a process when
the primitive service is invoked. The information includes the mapping type and group code of
the process, which does not change, as well as the priority, state code, substate, suspend count,
and index of the semaphore or ring buffer, if any, on which the process is blocked. GTST$
returns the information in a user-specified buffer area.

Since process state information is dynamic, it could be invalid by the time it is available to the
caller, because of possible effects of interrupt servicing. Unless the calling process is checking
its own substate, however, this possibility is likely to be of concern only if the information is
about another process.

Syntax

The three variants of the GTST$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant Macro Call

GTST$

GTST$S

GTST$P

GTST$ [area,pdb,buf]

GTST$S [pdb,buf]

GTST$P [pdb,buf]

area
The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

pdb

buf

The address of the process descriptor block (PDB) that identifies the process to be reported
on, or 0. If #0 is specified, the calling process is implied. (See Section 3.1.6 for the format
and use of a PDB.) This argument has the form:

[PDB=]pdb-address or #0

If a PDB is specified and its structure index and name fields are zeroed, the calling process
is also implied, and the structure ID of the caller's PCB is returned in the PDB.

The address of a 5-word user-memory area in which the status information is to be returned
by the primitive. This argument has the form:

[BUF=]buffer-address

3-86 MACR0-11 Primitive Service Requests

Argument Block

The calling argument block generated or assumed to exist by the GTST$x macros has the
following format:

RO~ ~~~-p_d_b~-----t
. buf

ML0-442-87

Syntax Example

GTST$S pdb=#O,buf=#MYBUF

Semantics

The GTST$ primitive copies five words of status information from the PCB of the subject process
to the caller's buffer area and returns control to the caller.

The information is returned in the user's buffer in the following form:

but_. PC.STA PC.PAI

PC.STS PC.TYP

Reserved PC.GAP

PC.SPT

PC.SPC

Error Returns

State code/priority

Process substate/type

Exception group

Pointer to blocking structure or 0

Suspend count

ML0-443-87

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; buffer or PDB address is not on a word boundary or is not in the

user's address space. (The address is checked only if the CHECK option is selected
in the configuration file.)

ES$IST Invalid structure descriptor (index or name); the passed PDB does not correctly
describe or imply a process. (This error return could be caused by an invalid PDB
address if address checking is not in effect.)

MACR0-11 Primitive Service Requests 3-87

3.29 GVAL$ (Return Structure Value)
Pascal equivalent: GET_ VALUE Procedure

The Return Structure Value (GVAL$) primitive provides type and value information about a
specified semaphore or ring buffer. GVAL$ returns a code indicating the structure type (binary,
counting, or queue semaphore or ring buffer) and returns a value whose meaning is dependent
on the structure type. For example, the signal count is returned for a counting semaphore, and
the element count is returned for a ring buffer.

Since the value of a structure may change immediately after it is inspected, the information
this primitive provides must be used with caution in order to prevent the introduction of race
conditions. (GVAL$ will also return the type code, only, for a PCB or unformatted structure.)

An alternative use of GVAL$ provides information about the target hardware configuration.
In this variant usage, provided primarily for system processes, GVAL$ returns two words of
configuration information kept in kernel pure-data space.

Syntax

The three variants of the GVAL$ macro and their macro calls are listed below. (The differences
are described in Section 3.1.)

Variant Macro Call

GVAL$

GVAL$S

GVAL$P

GVAL$ [area,sdb,type,val]

GVAL$S [sdb,type,val]

GVAL$P [sdb,type,val]

area

sdb

The address of a user-memory area in which the calling argument block is to be constructed
or found, if already existent. This argument has the form:

[AREA=]arg-blk-address

The address of the structure descriptor block (SDB) that identifies the structure to be
inspected, or 0. If #0 is specified, indicating "no structure," hardware configuration
information is implied. (See Section 3.1.5 for the format and use of an SDB.) This argument
has the form:

[SDB=]sdb-address or #0

type
The address of the location in which the structure type code is to be returned by the
primitive. (Alternatively, a bit mask reflecting hardware options is returned in the specified
location.) This argument has the form:

[TYPE=]word-address

3-88 MACR0-11 Primitive Service Requests

val
The address of the location in which the structure value is to be returned by the primitive.
(Alternatively, a value reflecting the system clock frequency is returned in the specified
location.) This argument has the form:

[VAL=]word-address

Restrictions

The passed SDB must not contain a logical name (or otherwise identify a logical-name structure
(ST.LNM)) that does not translate into the name of a structure of a type other than ST.LNM or
ST.SRO.

Argument Block

The calling argument block generated (or assumed to exist) by the GVAL$x macro has the
following format:

RO_. sdb

type-Pointer to destination of
returned type code

val ..-Pointer to destination of
returned value, if any

ML0-502-87

Syntax Example

GVAL$S sdb=#BSEM,type=#BTYPE,val=#BVAL

Semantics

If the SDB argument value is not 0, the GVAL$ primitive inspects the type and value of the
specified structure, stores the type code and structure value in the user locations (type and val)
pointed to by the call, and returns control to the caller.

The returned type code corresponds to one of the following structure-type symbols defined by
the QUEDF$ macro:
ST.BSM Binary semaphore

ST.CSM Counting semaphore

ST.QSM Queue semaphore

ST.RBF Ring buffer

ST.SRD Shared region descriptor

ST.PCB Process control block

ST.UDF Unformatted structure

MACR0-11 Primitive Service Requests 3-89

The significance of the returned structure value varies according to structure type, as follows:

• For ST .BSM, the value of the gate variable (0 or 1)

•
•
•
•

For ST.CSM, the count of pending signals (0 or positive)

For ST.QSM, the count of queued packets (0 or positive)

For ST.RBF, the count of data bytes in the. ring buffer

For ST.SRO, ST.PCB, or ST.UOF, no significance (0)

If the SOB argument value is 0, the GVAL$ primitive returns two kernel values, reflecting
build-time configuration options, in locations type and val, as follows:

• In the caller's type location, a bit-mask word indicating the possible target processor and
bus characteristics (kernel pure-data word $CNFIG)

• In the caller's val location, an integer value specifying the frequency of the system clock
(50, 60, 100, or 800 Hz) or 0 for no clock (kernel pure-data word $CLKFQ)

The format of the configuration mask value returned at location type is as follows:

Bit
Position

0

1

2

3

4

5

6

7

8

9

15

Bit-Mask
Symbol

HC$FPP

HC$FIS

HC$Fll

HC$Jll

HC$Tll

HC$IOP

HC$Q22

HC$MMU

HC$CMR

HC$FPA

Significance If Bit Is Set

FP-11 floating-point processor

FIS instruction set

F-11 microprocessor, as in an LSI-11/23

J-11 microprocessor, as in an LSI-11/73, POP-11/83, MicroPOP-
11/53, or KXJll-CA

T-11 microprocessor, as in a FALCON or FALCON-PLUS

KXTll-CA or KXJll-CA peripheral processor

22-bit bus addressing

Memory mapping enabled

CMR21 target system

Floating-point accelerator processor

Reserved

HC$ROM ROM/RAM memory image

The HC$xxx symbols, defined by the HOCOF$ macro, represent single bit values, which may
be used to test corresponding bit positions in the configuration word. Note that an LSI-11/2
target is implied if bits 2 through 5 are clear.

3-90 MACR0-11 Primitive Service Requests

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IPR Illegal primitive; the SOB contained a logical name that did not translate to a valid

structure name.

ES$IST Invalid structure descriptor (index or name); no such semaphore, ring buffer, PCB, or
unformatted structure exists. (This error return could be caused by an invalid SOB
address.)

MACR0-11 Primitive Service Requests 3-91

3.30 IMPUR$ (Define an Impure-Data Program Section)
Pascal equivalent: None

The IMPUR$ macro declares a program section of impure data within a MicroPower/Pascal
source module. A program section declared with IMPUR$ has the read/write, data, relocatable,
and concatenated attributes; has the name .MDAT.; and must be allocated in RAM. (The MIB
utility will disallow any inadvertent attempt to place it in ROM.)

The IMPUR$ macro is not a primitive call. Rather, it is an assembly-time macro that is used
with the DFSPC$, PURE$, and PDAT$ macros to segregate read-only code (ROM or RAM),
read-only data (ROM or RAM), and read/write data (RAM only) program sections. During
system building, program sections that have been declared with the DFSPC$, PURE$, PDAT$,
and IMPUR$ macros (or by other means) are grouped_ according to their read-only versus
read/write attribute and consolidated by p-sect name by the RELOC utility. (See Section 2.1.6
for more information on program sectioning under MicroPower/Pascal.) If instruction- and
data-space separation is requested for the static process at build time, RELOC also groups
p-sects according to their instruction versus data attribute, so use of both PURE$ and PDAT$
(or their equivalents) is required for that case, as well as IMPUR$. Although the use of PURE$,
POAT$, and IMPUR$ is not mandatory (if equivalent program sectioning is achieved by other
means), these macros are convenient, and their use is recommended.

Note that program sectioning is implicit in Pascal source programs. That is, appropriate program
sectioning is provided transparently by the MicroPower/Pascal compiler.

Syntax

The syntax of the IMPUR$ macro call is:

IMPUR$

Semantics

At assembly time, the IMPUR$ macro generates a .MOAT. p-sect definition with the attributes
RW (read/write), D (data), REL (relocatable), CON (concatenated), and LCL (local). The
GBL/LCL attribute distinction is not significant for MicroPower/Pascal applications.

Error Returns

Not applicable; this macro is not executable.

3-92 MACR0-11 Primitive Service Requests

3.31 MAPW$ (Map Window)
Pascal equivalent: MAP_WINDOW Procedure

The Map Window (MAPW$) primitive, valid only in a mapped environment, permits a process
to associate a sequence of virtual addresses with a specified region of physical memory. More
precisely, MAPW$ allows the calling process to extend or modify its virtual-to-physical mapping
to include a previously unmapped area of physical memory. The caller supplies the physical
description of a memory region, through a region ID block (RIB), and specifies the portion of the
region to be mapped. The MAPW$ primitive uses this information to alter the calling process's
MMU registers and PCB mapping context, normally by modifying one or more currently unused
APRs, and returns an appropriate virtual-address value to the caller. (Optionally, you can
choose the APR or sequence of APRs to be modified.) Thus, the process obtains a virtual
address window into a region of memory that was not in its original address space. The region
may be a private physical region allocated to the process by the ALRG$ primitive or may be a
shared common or physical region previously accessed through the ACSR$ primitive.

The UMAP$ primitive provides a complementary unmapping operation, which may be required
between successive mapping operations, depending on the mode of MAPW$ usage. The
principal application objectives for the MAPW$ and UMAP$ primitives are:

• Usability by a process with general mapping, which cannot otherwise alter its mapping
context. (Other types of processes, which can perform direct MMU modification, may
use MAPW$ to alter mapping without the need for MMU-register saving during context
switchouts, a performance consideration. The reason for the use of MAPW$ is that, in
contrast to the use of direct MMU modification, changes are also made in the mapping
context restore area associated with the caller's PCB.)

• Use in conjunction with the ALRG$ or ACSR$ primitives, which provide the physical
description of a memory region in the required format.

The MAPW$ primitive is described here in terms of that primary application context. MAPW$
and UMAP$ can also be used by processes with device-access, privileged, or driver mapping,
of course, and also for mapping of objects other than regions as such.

Assuming that a process with general mapping does not "borrow" (force remapping of) an
already allocated APR, the minimum requirement for using MAPW$ is that the calling process's
statically allocated virtual-address space does not exceed 28K words. In other words, at least one
of the static process's APRs must remain unused, or inactive, at build time. This requirement
can be overridden by the "fixed" APR option, which forces MAPW$ to use an APR indicated
by the caller rather than the first unused APR found by the primitive. (Note that a dynamic
process inherits the entire address space of its parent process and might not need the full extent
of its inherite,d mapping.)

The size of a window is controlled by a user-specified length parameter, which implies the
number of APRs needed for the window. Thus, a process can map to an entire multipage region
in a single operation, given that enough APRs are available for modification. If the caller does
not have multiple APRs available for the window and the region to be mapped is larger than
4K words (one virtual page), the process can step through the region by repeated mappings of
a single APR, using suitably incremented window offsets. The potential size of a window is
constrained only by the number of contiguous APRs available for the mapping, not by the size
of the region as described in the RIB. Therefore, you should ensure that the requested window

MACR0-11 Primitive Service Requests 3-93

length not cause the window to extend beyond the end of the region, as a protection against
inadvertent access to space beyond the region that is due to a coding error.

The information supplied in the RIB that is pointed to in the call specifies the region's location
(physical base and byte offset, if any), size, and common/physical mode attribute. (The content
of the RIB is assumed to be that returned by a prior ALRG$ or ACSR$ call; the format of the
information is as described for those primitives.) In addition to the RIB, the caller supplies the
length to map and an optional additive offset into the region specified in PAR ticks (32-word
units); typically, a multiple of 128 ticks when stepping through a large region with a single-PAR
window.

The combination of those parameters determines the size and positioning of the mapped window
within the region for a given call. The RIB content is never modified by the MAPW$ primitive;
the physical description of the region remains invariant throughout successive, incremental
remappings. In general, user modification of the RIB content user is also discouraged as an
unsafe practice.

Chapter 5 contains a general discussion of region sharing and mapping, including the use of
MAPW$ in the context of the related primitives ACSR$, ALRG$, CRSR$, DLRG$, DLSR$,
MAPW$, RCTX$, SCTX$, and UMAP$. The ACSR$ and ALRG$ primitives provide the
supporting operations that obtain RIB information. The GMAP$, SCTX$, and RCTX$ primitives
provide additional support for mapping operations that involve "borrowing" of one or more
APRs.

Syntax

The three variants of the MAPW$ macro and their respective macro calls are listed below. The
differences are described in Section 3.1.

Variant Macro Call

MAPW$

MAPW$S

MAPW$P

MAPW$ [area,rib ,len,opt,offset, wptr]

MAPW$S [rib ,len,opt,offset, wptr]

MAPW$P (rib,len,opt,offset,wptr]

area

rib

The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of the region ID block in user memory containing the physical description of
the region to be mapped to. This argument has the form:

[RIB=] area-address

3-94 MACR0-11 Primitive Service Requests

len

opt

An unsigned integer representing the desired size of the virtual window (the length to map
to) in bytes. This argument has the form:

[LEN=] integer

A set of paired, predefined, bit-mask symbols specifying optional features of the mapping
operation. (The logical OR of the symbol values and/ or defaults produces a bit-mask word
in the calling argument block.) The option symbols, defined by the RIBDF$ macro, and
their meanings are:

WD$INS-The operation modifies the process's I-space mapping or
WD$DAT-The operation modifies the process's 0-space mapping, the default.

Note that the WDINS/WDDAT alternatives are meaningful only if l&D-space
separation is in effect for the process (possible in an LSI-11/73 target).

WD$RO-The operation maps the window for read-only access or
WD$RW-The operation maps the window for read/write access, the default.

WD$FIX-The.operation modifies the APR(s) determined by the precall, virtual-address
value in location wptr or
WD$FRE-The operation modifies the free APR(s) chosen by the primitive, the default.
(See Use of the WPTR Parameter for more details.)

WD$LEC-The operation leaves caching as is, either enabled or disabled (default) or
WD$DAC-The operation disables caching for this window. Sets bit 15 of each PDR
to disable caching for each APR.

This operation is necessary on the arbiter side when you map to a KXJ shared memory
area, if the arbiter uses cache memory; but even if this symbol is specified on an arbiter
processor not using cache memory, there are no adverse effects. See Appendix B of the
MicroPower /Pascal 1/0 Services Manual for additional information.

Two or more option symbols may be ORed as required. This argument has the form:

[OPT=](option-symbol[!option-symbol ...])

The argument can be null, implying the option defaults WDDAT, WDRW, WD$FRE, and
WD$LEC.

offset

An integer representing the desired displacement of the virtual window from the beginning
of the region, expressed in PAR ticks (32-word units). This argument is used when "stepping
through" a large region by incremental remapping of a window. This argument has the
~~ .

[OFFSET=] integer

MACR0-11 Primitive Service Requests 3-95

wptr
The address of a word in user memory (the "window pointer") in which the primitive
returns a virtual address corresponding to the first location in the mapped window, fully
adjusted for offset(s) as described under Semantics. If the WD$FIX option is not specified,
the precall value of location wptr is not significant, and the primitive chooses the APR(s)
to be used in the mapping operation. If WD$FIX is specified, however, the preci,)Jl value of
wptr is used by the primitive to select the first or only APR to be modified, as described
under Use of the WPTR Parameter. This argument has the form:

[WPTR=]word-address

Restrictions

This primitive may be used only at process level; it may not be called from an ISR fork routine.

If I&D-space separation is in effect for the calling process, the combination of the WD$INS
option and the WD$RW (default) option is invalid.

You cannot use the MAPW$ primitive to modify APR 0 of a process without I&D-space
separation or D-space APR 0 of a process with I&D-space separation if that process accesses a
supervisor-mode library.

If the free (default) mode of APR selection is used, Unmap Window calls are required between
successive Map Window calls for iterative remapping of a window.

Use of the WPTR Parameter

In general, if the default (free mode of window mapping) is used, wptr is a destination-only
location, but if fixed mode is selected, location wptr is both a source and a destination.

More specifically, if WD$FRE is specified or defaulted in the call, the pre~all content of location
wptr is ignored by the primitive, and the primitive selects one or more free APRs for the
mapping operation. The virtual address returned at wptr reflects the first or only APR selected
for the window.

If WD$FIX is specified in the call, however, the content of location wptr prior to the call must
be a virtual address in the range of the first or only APR to be modified by the operation. Thus,
you force the selection of AP Rs in fixed mode.

For example, if the precall value in wptr is 140000(octal), corresponding to the base of APR 6,
the primitive uses APR 6 and, if needed, APR 7 for the mapping operation, regardless of the
free or in-use status of those APRs. Note that only the high-order, APR-selecting portion (the
active page field) of the address value in wptr is significant for the operation; MAP$ ignores
the displacement field. The virtual address value returned in wptr would be 140000 plus any
common-region offset contained in the RIB for the region in question. Normally, the returned
address would be exactly 140000 for a physical region or a value between 140000 and 140076
for a shared common region.

If the fixed mode of APR selection is used, Unmap Window calls are not required between
successive Map Window calls for iterative remapping of a window.

3-96 MACR0-11 Primitive Service Requests

Argument Block

The calling argument block generated (or assumed to exist) by the MAPW$x macro has the
following format:

RO~ RIB address (pointer)

length (value)

option mask (value)

offset (value)

WPTR address (pointer)

ML0-444-87

Syntax Example

MAPW$S rib=#COMRGN,len=#30000,opt=#WD$FRE,offset=#O,wptr=#WINDOW

This stack ($5) form of the macro call requests a window that is one and a half virtual pages in
length and that starts at the beginning of the region described by the region ID block COMRGN,
as implied by the 0 offset value. Since WD$FRE is specified, the two APRs that are needed for
the mapping are to be chosen by the primitive. (The calling process must have two consecutive
unused APRs in its current mapping.) The call specifies WINDOW as the location that is
to receive the window pointer (the initial virtual address within the mapped window) that is
returned by the primitive.

Semantics

In the following description, free APR refers to an APR that is unmapped (whose access control
field is set to no access) at the time of the call. Only free APRs are candidates for modification
under the WD$FRE option. (An APR that was modified by a prior MAPW$ call can be freed
for remapping by an intervening UMAP$ operation.)

The MAPW$ primitive calculates the number of APRs, n, needed for the window, based on
the window length specified in the call plus the region offset, if any, described in the RIB.
If l&D-space separation is in effect for the calling process, MAPW$ selects the APR set to be
operated on as requested by the WDINS/WDDAT option.

If the WD$FIX option was specified in the call, MAPW$ determines the initial or only APR to
be mapped, APRi (where i is a value from 0 to 7), from the virtual address value supplied in
location wptr. If more than one APR is needed and n APRs do not exist starting with APRi,
MAPW$ returns to the caller, with an error indicating "too few APRs available." If the WD$FRE
option was specified or defaulted in the call, MAPW$ tests the caller's mapping context for n
consecutive free APRs .. If n consecutive free APRs are not available, MAPW$ returns to the
caller, with an error indicating "too few APRs available." Otherwise, the first of the n free APRs
is established as APRi.

MACR0-11 Primitive Service Requests 3-97

MAPW$ then maps the required APRs, modifying both the MMU hardware registers and the
corresponding locations in the mapping-context restore area associated with the caller's PCB.
MAPW$ forms the physical base address, or PAR value, for APRi by adding the offset specified
in the call (in 32-word units, or PAR "ticks") to the region base described in the RIB. PAR
values for successive APRs, if any, are increased appropriately. Page descriptor register (PDR)
values, specifying access control and page lengths, are set as required. If the WD$DAC option
was specified in the call, MAPW$ sets bit 15 of each PDR to disable caching for these APRs.

Finally, MAPW$ forms the window-pointer address by adding the region offset, if any, described
in the RIB to the 4K-boundary virtual address that corresponds to APRi and returns that
computed value to the wptr location specified in the call.

The information in the user's RIB area must be in the following form:

rib-. region base

region size

reserved l mode

reg ion offset

Physical/Common

PAR value/PAR value

(ignored)

RAPHY /RACOM

Zero/number of bytes

ML0-448-87

The offset and size symbols defined for the RIB fields are:
RI.ADD Region base

RI.LEN

RI.ATR

RI.RES

RI.OFF

Region size

Region mode (attribute byte)

Reserved (high byte)

Region offset

RI.SIZ RIB size in bytes

The RIBDF$ macro in the MicroPower/Pascal COMU and COMM system macro libraries defines
these symbols.

The region offset, relevant for a shared common region, is an increment in bytes from the
region-base PAR value to the beginning of the region. The region size, which specifies the
number of PAR ticks (units of 32 words) contained in the region, is not used in the Map
Window operation, since the len parameter of the call determines the length of the mapped
window.

The region mode, indicated by the value of the symbol RA$PHY or RA$COM, is not tested by
the primitive. Therefore, the offset field must contain 0 for a physical region, as supplied by
the ALRG$ or ACSR$ primitive. (The RA$PHY and RA$COM mode symbols are defined by
the RIBDF$ macro.)

3-98 MACR0-11 Primitive Service Requests

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; the RIB address is not on a word boundary.

ES$IPR Illegal primitive call; the primitive service was requested in an unmapped environ
ment.

ES$NFA No free APR; insufficient number of APRs available for the requested operation (see
Semantics).

Implementation Notes

Since the MMU-register modifications that MAPW$ and UMAP$ perform are reflected by
corresponding changes in the caller's mapping-context restore area in one logically indivisible
operation, MMU-context saving is not required each time the process is switched out of run
state. Such context saving is needed by processes that modify their mapping directly by means
of access to the 1/0 page, at some cost in overall performance. (MMU-context saving is
a process-creation option.) This aspect of MAPW$ usage versus self-modification should be
weighed in the design of driver, privileged, and device-access processes that require dynamic
mapping alterations. Note that the SCTX$ and RCTX$ primitives facilitate saving and restoring
of initial mapping values around temporary remappings.

MACR0-11 Primitive Service Requests 3-99

3.32 POAT$ (Define a Pure-Data Program Section)
Pascal equivalent: None

The PDAT$ macro declares a p-sect of pure data within a MicroPower/Pascal source module.
A p-sect declared with PDAT$ has the read-only, data, relocatable, and concatenated attributes;
has the name .MCON.; and may be allocated in ROM.

The PDAT$ macro is not a primitive call. Rather, it is an assembly-time macro that is used
with the DFSPC$, PURE$, and IMPUR$ macros to segregate read-only code (ROM or RAM),
read-only data (ROM or RAM), and read/write data (RAM only) p-sects. During system
building, p-sects that have been declared with the DFSPC$, PURE$, PDAT$, and IMPUR$
macros (or by other means) are grouped according to their read-only versus read/write attribute
and consolidated by p-sect name by the RELOC utility. (See Section 2.1.6 for more information
on program sectioning under MicroPower/Pascal.) If l&D-space separation is requested for the
static process at build time, RELOC also groups p-sects according to their instruction versus data
attribute, so use of both PURE$ and PDAT$ (or their equivalents) is required for that case, as
well as IMPUR$. That is, pure data must be segregated from pure code as well as from impure
data if l&D separation will be used for the process in question. Although the use of PURE$,
PDAT$, and IMPUR$ is not mandatory (if equivalent program sectioning is achieved by other
means), these macros are convenient, and their use is recommended.

Program sectioning is implicit in Pascal source programs. That is, appropriate program sectioning
is provided transparently by the MicroPower/Pascal compiler.

Syntax

The syntax of the PDAT$ macro call is:

PDAT$

Semantics

At assembly time, the PDAT$ macro generates a .MCON. p-sect definition with the attributes RO
(read-only), D (data), REL (relocatable), CON (concatenated), and LCL (local). The GBL/LCL
attribute distinction is not significant for MicroPower /Pascal applications.

Error Returns

Not applicable; this macro is not executable.

3-100 MACR0-11 Primitive Service Requests

3.33 PELC$ (Conditional Put Element)
Pascal equivalent: COND_PUT_ELEMENT Function

The Conditional Put Element (PELC$) primitive implements a nonblocking form of Put Element
operation; compare with the unconditional PELM$ primitive. PELC$ attempts to copy the
requested number of data bytes from the caller's buffer area to a ring buffer but does not
block the calling process if the request cannot be satisfied, because of insufficient space in the
buffer. The input-access mode (record or stream) of the ring buffer determines whether the
primitive attempts to satisfy the Put request by a full or by a partial transfer, as described below.
Informally, the meaning of PELC$ request for a record-mode buffer is "put n bytes into the
buffer right away or none at all," and the meaning for a stream-mode buffer is "put as many
bytes as will fit, up to n."

In either case, however, PELC$ returns to the caller, with a value in RO indicating how many
bytes remain to be transferred. A return value of 0 indicates that the request has been fully
satisfied; all bytes specified in the call have been successfully put in the ring buffer.

The input-access mode of a ring buffer is specified as either record-oriented or stream-oriented
when the structure is created; see the CRST$ primitive. For a ring buffer with record-mode
input, PELC$ attempts to satisfy the request with a full transfer only. If the ring buffer cannot
immediately accommodate all bytes to be Put, the primitive returns to the caller, with an RO
value equal to the number of bytes specified in the request, indicating that no bytes were copied.

For a ring buffer with stream-mode input, PELC$ attempts to satisfy the request with either a full
or a partial transfer. That is, the primitive puts all bytes that can be immediately accommodated
in the buffer (none, some, or all those requested) and returns a value indicating the remainder,
if any.

Note the implication that if another process is blocked on the ring buffer, waiting for its PELM$
request to be satisfied, no space is available.

The complementary GELM$, GELC$, and' GELA$ primitives allow a process to extract an
element from a ring buffer, freeing the corresponding space.

Syntax

The three variants of the PELC$ macro and their respective macro calls are listed below. The
differences are described in Section 3.1.

Variant

PELC$

PELC$S

PELC$P

Macro Call

PELC$ [area,sdb,bufptr,bufcnt]

PELC$S [sdb,bufptr,bufcnt]

PELC$P [sdb,bufptr,bufcnt]

MACR0-11 Primitive Service Requests 3-101

area
The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

sdb
The address of a structure descriptor block (SDB) that identifies the ring buffer to which
bytes are to be transferred. (See Section 3.1.5 for the format and use of an SDB.) This
argument has the form:

[SDB=]sdb-address

bufptr
The address of the user's buffer containing data to be transferred to the ring buffer. This
argument has the form:

[BUFPTR=]buffer-address

bufcnt
The number of bytes to be transferred. This argument has the form:

[BUFCNT=]integer

Restrictions

If the ring buffer's input-access mode is record, the number of bytes requested must not exceed
the size of the ring buffer. (If it does, the Put request will always fail, since the buffer will
never have room for a full record.)

Argument Block

The calling argument block generated (or assumed to exist) by the PELC$x macros has the
following format:

RO~ sdb

bufptr

bufcnt

ML0-449-87

Syntax Example
PELC$ area=#ARGBLK,bufptr=#MSG,bufcnt=#MSGLEN

Semantics

If the specified ring buffer's input-access attribute is SA$RIR (record mode), the PELC$ primitive
tests the ring buffer for bufcnt bytes of available space. If at least that amount of space is
available, the primitive copies bufcnt bytes of data from the caller's buffer to the ring buffer

3-102 MACR0-11 Primitive Service Requests

and returns control to the caller, with 0 in RO. If less than bufcnt bytes of space is available,
PELC$ returns immediately with the value bufcnt in RO, indicating that no bytes were Put.

If the specified ring buffer's input-access attribute is SA$RIS (stream mode), PELC$ copies as
many bytes from the caller's buffer as can be accommodated in the ring buffer and returns
control to the caller, with the value (bufcnt minus bytes copied) in RO.

A successful PELC$ operation may cause preemption of the caller if the operation unblocks a
process waiting to get elements (see Section 2.1.4). That is, return from a successful PELC$
request is not necessarily immediate.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; buffer or SDB address is not on a word boundary or is not in the

user's address space. (The address is checked only if the CHECK option is selected
in the configuration file.)

ES$IST Invalid structure descriptor (index or name); no such ring buffer exists. (This error
return could be caused by an invalid SDB address if address checking is not in effect.)

MACR0-11 Primitive Service Requests 3-103

3.34 PELM$ (Put Element)
Pascal equivalent: PUT-ELEMENT Procedure

The Put Element (PELM$) primitive copies a specified number of data bytes from the caller's
buffer area to a ring buffer. If the ring buffer has insufficient space for the number of bytes to
be Put, the calling process blocks on the ring buffer until enough space becomes available.

In general, if two or more processes are putting data into the same ring buffer, the calling
process will block if another process is already waiting for its Put request to be satisfied. TJle
calling process must wait its proper turn (whether by FIFO or priority order) for access to the
buffer, since sequential access to a ring buffer is ensured for multiple writers as well as for
multiple readers. The process that blocks first is given active write access to the buffer and is
never displaced by another, higher-priority process, regardless or the ordering attribute of the
waiting-input-process list.

If the ring buffer's input-access mode is stream, the data transfer may occur in increments while
the process is waiting. Essentially, stream-mode access permits a ring buffer to be smaller than
the "records" that may be passed through it.

The complementary GELM$, GELC$, and GELA$ primitives allow a process to extract an
element from a ring buffer, freeing the corresponding space.

The conditional, nonblocking form of PELM$ is the PELC$ primitive.

Syntax

The three variants of the PELM$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant Macro Call

PELM$

PELM$S

PELM$P

PELM$ [area,sdb,bufptr,bufcnt]

PELM$S [sdb,bufptr,bufcnt]

PELM$P [sdb,bufptr,bufcnt]

area

sdb

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of a structure descriptor block (SDB) that identifies the ring buffer to which
bytes are to be transferred. (See Section 3.1.5 for the format and use of an SDB.) This
argument has the form:

[SDB=]sdb-address

3-104 MACR0-11 Primitive Service Requests

bufptr
The address of the user's buffer containing the data to be transferred to the ring buffer.
This argument has the form:

[BUFPTR=]buffer-address

bufcnt
The number of bytes to be transferred. This argument has the form:

[BUFCNT=]integer

Restrictions

If the ring buffer's input-access mode is record, the number of bytes to be put must not exceed
the size of the ring buffer.

Argument Block

The calling argument block generated (or assumed to exist) by the PELM$x macro has the
following format:

RO-. sdb

bufptr

bufcnt

ML0-450-87

Syntax Example

PELM$S sdb=#OUTRNG,bufptr=#INFO,bufcnt=R1

Semantics

If no other process is waiting to put data into the specified ring buffer, the PELM$ primitive
tests the buffer for bufcnt bytes of available space. If at least that amount of space is available,
the primitive copies the data from the caller's buffer to the ring buffer and returns control to
the caller.

If the space for the entire transfer is insufficient and the input access mode is record, the
primitive blocks the caller with active write access to the ring buffer and calls the scheduler.
When sufficient space becomes available as a result of one or more subsequent Get Element
operations, the transfer is performed, and the waiting process is unblocked.

If the space for the entire transfer is insufficient and the input access mode is stream, the
primitive blocks the caller with active write access to the ring buffer, copies the bytes that can
be accommodated, if any, and calls the scheduler. When enough additional space becomes
available as a result of one or more subsequent Get Element operations, the transfer is completed
(possibly by a series of partial transfers) and the waiting process is unblocked.

MACR0-11 Primitive Service Requests 3-105

Note
In stream mode, partial transfers to a ring buffer (incremental Put operations)
can occur whenever three-quarters or more of the buffer is empty, up to the
point where the full Put request can be satisfied. Conversely, partial transfers
from a ring buffer (incremental Gets) can occur in units of at least one-quarter
of the buffer size, up to the point where the full Get request can be satisfied.

If one or more processes are already waiting to put data into the ring buffer at the time of the
call, implying that another process then has active write access, the calling process is blocked
on the buffer's waiting-input-process list in either FIFO or priority order, depending on the ring
buffer definition. (A process with active access is never displaced by another process, regardless
of relative priorities.) The process waits its turn to gain active write access, at which point it is
treated as described above.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception cod.es that
may be returned by the primitive are:
ES$IAD Invalid address; buffer or SDB address is not on a word boundary or is not in the

user's address space. (The address is checked only if the CHECK option is selected
in the configuration file.)

ES$IST Invalid structure descriptor (index or name); no such ring buffer exists. (This error
return could be caused by an invalid SDB address if address checking is not in effect.)

ES$IPM Illegal parameter; the bufcnt value exceeds the size of the ring buffer for a record
mode operation.

3-106 MACR0-11 Primitive Service Requests

3.35 PURE$ (Deflne a Pure-Code Program Section)
Pascal equivalent: None

The PURE$ macro declares a program section of pure code within a Micro Power /Pascal source
module. A program section declared with PURE$ has the read-only, instruction, relocatable,
and concatenated attributes; has the name .MCOD.; and may be allocated in ROM. (A program
section for read-only data can be declared with the PDAT$ macro, described elsewhere in this
chapter.)

The PURE$ macro is not a primitive call. Rather, it is an assembly-time macro that is used with
the DFSPC$, PDAT$, and IMPUR$ macros to segregate read-only code (ROM or RAM), read
only data (ROM or RAM), and read/write data (RAM only) program sections. During system
building, program sections that have been declared with the DFSPC$, PURE$, PDAT$, and
IMPUR$ macros (or by other means) are grouped according to their read-only versus read/write
attribute and consolidated by p-sect name by the RELOC utility. (See Section 2.1.6 for more
information on program sectioning under MicroPower/Pascal.) If instruction- and data-space
separation is requested for the static process at build time, RELOC also groups p-sects according
to their instruction versus data attribute, so use of PDAT$ versus PURE$ (or their equivalents)
is required for that case, as well as IMPUR$. Although the use of PURE$, PDAT$, and IMPUR$
is not mandatory (if equivalent program sectioning is achieved by other means), these macros
are convenient, and their use is recommended.

Program sectioning is implicit in Pascal source programs. That is, appropriate program sectioning
is provided transparently by the MicroPower/Pascal compiler.

Syntax

The syntax of the PURE$ macro call is:

PURE$

Semantics

At assembly time, the PDAT$ macro generates a .MCOD. p-sect definition with the attributes
RO (read-only), I (instruction), REL (relocatable), CON (concatenated), and LCL (local). The
GBL/LCL attribute distinction is not significant for MicroPower /Pascal applications.

Error Returns

Not applicable; this macro is not executable.

MACR0-11 Primitive Service Requests 3-107

3.36 PWFL$ (Powerfail Detection)
Pascal equivalent: POWERJAIL Function

The Powerfail Detection (PWFL$) primitive allows the caller to determine whether the latest
system start-up was a "warm" restart following a power failure or was a cold start. (The warm
restart capability applies only to a target system that has some nonvolatile RAM, as described
below.) The PWFL$ primitive returns the kernel-defined value TRUE in RO if a warm restart
has occurred or the value FALSE if the current start was cold, implying that all of read/write
memory has been cleared by the kernel's initialization routine (as is always the case for an initial
system start-up). The primitive is intended for use in the initialization code of a static process
that implements some form of power-fail recovery through use of checkpointing techniques and
nonvolatile RAM.

A warm restart following a power failure differs from a cold start or "cold restart" only to
the extent that any nonvolatile RAM allocated to a process's impure-data segment is not
reinitialized by the kernel during the restart. (Thus, some valid user data may be preserved
across the power failure and subsequent power-up, although all kernel data structures are lost
and all static processes restarted "from scratch.") Warm restarts are possible only under the
following conditions:

• Some or all of the target RAM is declared as nonvolatile in the MEMORY configuration
macros (volatile=NO) and is implemented with battery backup. See Section 4.3.7. (If you
are debugging under PASDBG and· only simulating power failures for testing purposes, the
RAM in question need not be nonvolatile in actuality but must be declared as such. Section
4.3.7 provides special debugging information concerning such simulation.)

• All code and pure data resides in nonvolatile memory, whether RAM or ROM.

• The kernel's impure-data area resides in nonvolatile RAM so that the restart indicators are
preserved across the power failure, although the area is entirely reinitialized on any restart.

• The impure-data area of any process owning data involved in power-fail recovery resides
in nonvolatile RAM.

The PWFL$ primitive invariably returns a FALSE (cold start) indication if none of the target
RAM is declared as nonvolatile in the system configuration file, regardless of actual or .simulated
power failures. Therefore, the use of PWFL$ is meaningful in a simulated, debugging situation
only if at least the first condition listed above is satisfied and is meaningful in actual stand-alone
operation only if all the stated conditions are satisfied.

Syntax

The syntax of the PWFL$ macro call is:

PWFL$

Restrictions

The primitive is meaningless for a target system configured with volatile RAM and is not included
in the kernel by the PRIMITIVES configuration macro if the target system is so described in the
configuration file (see Chapter 4).

3-108 MACR0-11 Primitive Service Requests

Semantics

The PWFL$ primitive returns to the caller, with the value FALSE in RO if a bootstrap or
the kernel has cleared all of read/write memory during the latest system start-up or restart.
Alternatively, the primitive returns with the value TRUE if user-process data segments allocated
in nonvolatile RAM have not been cleared during the latest restart. Note that the kernel's
restart indicators are not reset by the primitive operation.

The TRUE and FALSE symbol values are defined by the EXMSK$ macro in the COMM
and COMU libraries. Those values are 1 and 0, respectively, in the current version of
MicroPower /Pascal.

Error Returns

None.

MACR0-11 Primitive Service Requests 3-109

3.37 P7SYS$ (Enter Normal ISR State)
Pascal equivalent: None

The Enter Normal ISR State (P7SYS$) service request allows a priority-7 interrupt service routine
(ISR) to enter kernel-interrupt state (gain normal ISR context) and lower the CPU priority to a
specified level. (The priority-7 dispatching mechanism is extremely fast for minimum latency
but imposes severe restrictions on the ISR. An ISR that is dispatched to at hardware priority
7 has virtually no context, and the system-state alterations and stack switching needed for
normal ISR operation are not performed during the dispatch.) A priority-7 ISR must enter
kernel-interrupt state (become a normal ISR) before altering CPU priority or issuing a FORK$
request, since a priority-7 ISR must gain context before becoming interruptable. In contrast, a
normally dispatched ISR may raise and lower CPU priority as required for critical instruction
sequences.

Note that the P7SYS$ service is not a primitive operation. Rather, it is a special entry point in
the interrupt dispatcher that allows a priority-7 IPR to be "redispatched," essentially, after its
most critical code has been executed.

Syntax

The syntax of the P7SYS$ macro call is:

P7SYS$ pri

prl
The desired CPU priority level; an integer from 0 to 6. (On many target systems, only the
values 0, 4, 5, and 6 are valid.) This parameter has the form:

[PRI=] integer

Restrictions

The service may be requested only by an ISR that is initially dispatched to at priority 7.

When the P7SYS$ request is executed, the contents of all registers must be the same as they
were on entry to the ISR.

Syntax Example
P7SYS$ 4 ; Note: P7SYS$ #4 would be invalid!

Semantics

On return from the P7SYS$ request, at the instruction following the call, the ISR is running on
the kernel-interrupt stack with normal ISR context and at the specified hardware priority. The
ISR can subsequently fork for execution of primitives and/ or exit with an RTS PC instruction.

Error Returns

None.

3-110 MACR0-11 Primitive Service Requests

3.38 RBUF$ (Reset Ring Buffer)
Pascal equivalent: RESET_RING_BUFFER Procedure

The Reset Ring Buffer (RBUF$) primitive resets the specified ring buffer by emptying it of data.
That allows a process to cancel an 1/0 sequence and to flush the associated ring buffer without
issuing multiple GELM$ requests.

The RBUF$ request is like a GELM$ request in that the caller is treated as a getting process for
purposes of synchronization. That is, if any other process is blocked on the ring buffer, waiting
for a GELM$ request to be satisfied, the calling process is blocked and must wait its turn for
read access to the buffer, just as it would for a GELM$ request.

Note also that the RBUF$ request does not inhibit any concurrent attempt by another process to
put an element into the buffer. Thus, in certain applications, the ring buffer may not be empty
by the time control returns to the caller.

Syntax

The three variants of the RBUF$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant

RBUF$

RBUF$S

RBUF$P

area

Macro Call

RBUF$ [area,sdb]

RBUF$S [sdb]

RBUF$P [sdb]

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

sdb

[AREA=]arg-blk-address

The address of the structure descriptor block (SDB) that identifies the ring buffer to be reset.
(See Section 3.1.5 for the format and use of an SDB.) This argument has the form:

[SDB=]sdb-address

Argum~nt Block

The calling argument block generated (or assumed to exist) by the RBUF$x macro has the
following format:

Ro-. I sdb

ML0-451-87

MACR0-11 Primitive Service Requests 3-111

Syntax Example
RBUF$S sdb=#TTRING

Semantics

If no other process is waiting to get bytes from the spedfied ring buffer, the RBUF$ primitive
deletes any available bytes from the buffer and returns control to the caller.

If another process is waiting to get bytes from the ring buffer, RBUF$ places the calling process
on the buffer's waiting output-process list, as described for a GELM$ request, and calls the
scheduler. When the blocked process gains read access to the ring buffer, the buffer is emptied,
and the process is unblocked.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IST Invalid structure descriptor (index or name); no such ring buffer exists. (This error

return could be caused by an invalid SOB address.)

3-112 MACR0-11 Primitive Service Requests

3.39 RCTX$ (Restore Context)
Pascal equivalent: RESTORE_CONTEXT Procedure

The Restore Context (RCTX$) primitive permits a process to reset itself to an earlier state of
virtual-to-physical mapping previously saved by means of the SCTX$ primitive. RCTX$ restores
the APR values that were most recently saved by SCTX$ and updates the mapping-context
restore area associated with the caller's PCB accordingly. (The mapping-context restore area
contains the process's current mapping image and is used automatically by the kernel during
process context switches.)

Used with the SCTX$ primitive, RCTX$ allows a process to reset its entire mapping to a known
state. That cancels the effect of intervening alterations of its mapping, especially if such mapping
operations involved "borrowing" of one or more statically mapped IPRs.

Multiple calls to RCTX$ without intervening SCTX$ calls cause successively older "generations"
of mapping context to be restored, assuming that multiple save operations were executed before
the sequence of RCTX$ calls. Multiple copies of mapping context are saved in LIFO orde:r,
as described for the SCTX$ primitive. Thus, a process could take "snapshots" of its mapping
at several points and then restore the last-saved mapping, the next-to-last, and so on, by a
corresponding number of RCTX$ calls.

Chapter 5 contains a general discussion of dynamic mapping.

Syntax

The RCTX$ macro has no variants or arguments; its syntax is:

RCTX$

Restrictions

This primitive may be used only at process level; that is, it may not be called from an ISR fork
routine.

Argument Block

No argument block is generated by the RCTX$ macro.

Syntax Example

RCTX$

Semantics

The RCTX$ primitive copies the mapping-register image contained in the first or only context
descriptor block pointed to by the caller's PCB into both the MMU registers and the mapping
context restore area used for process context switching. The primitive then removes the block
from the caller's context-descriptor list, deallocates the block, and returns to the caller.

If the caller's context descriptor list is empty, the primitive returns an error indication.

MACR0-11 Primitive Service Requests 3-113

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IPR Illegal primitive call; no mapping context currently saved by means of SCTX$, or the

primitive service was requested in an unmapped environment.

Implementation Note

Like MAPW$ and UMAP$, the RCTX$ primitive alters both the MMU hardware registers and
the caller's automatic mapping-context restore area in one logically indivisible operation. Thus,
if all mapping alterations are done exclusively through MAPW$ and RCTX$ operations, MMU
context saving is not required each time the process is switched out of run state. Such context
saving is needed by a process that modifies its mapping directly through access to the 1/0
page, at some cost in overall performance: 16 or 32 extra MOV instructions and a few others
on every switch from run state. (MMU-context saving is a process-creation option.) This aspect
of MAPW$/RCTX$ usage versus self-modification should be weighed in the design of driver,
privileged, and device-access processes that require dynamic mapping alterations.

3-114 MACR0-11 Primitive Service Requests

3.40 RCVA$ (Receive Any Data)
Pascal equivalent: { RECEIVE_A.NY Procedure }

RECEIVE_A.NY_A.CK Procedure

The Receive Any Data (RCVA$) primitive implements a complex form of the Receive Data
operation; see the RCVD$ and SEND$ primitives for a description of the basic Receive and
Send Message operations on queue semaphores. RCVA$ performs the basic Receive operation
on the logical OR of several queue semaphores, with an optional timeout feature. That is,
RCVA$ permits the calling process to test for and, if necessary, wait on message data on any
one of a set of queue semaphores. Up to four queue semaphores may be specified in the
primitive request. If no message packet is available on any of the specified semaphores, the
calling process blocks until any one of those semaphores is signaled (or sent to) and provides a
message for the calling process. (The caller could be blocked behind other waiting processes on
a given queue semaphore, ofcourse, although a multiple-receiver policy is unlikely, particularly
in the case of complex-primitive usage.) The caller receives message data by value or by
reference or by a combination of both, as described for the basic Receive operation.

Optionally, the Receive Any Data operation can be terminated because of the expiration of a
time interval specified in the request. On successful return from the operation (C bit clear), RO
will contain either an ordinal value identifying the semaphore that satisfied the request or a 0,
indicating that the request timed out.

Thus, the RCVA$ primitive allows a process to get a message from any of up to four queue
semaphores, each semaphore being signaled (put or sent to) by a separate process, for example.
The primitive might also be used primarily for its timeout capability, regardless of the number
of packet queues involved.

If a zero time period (immediate timeout) is specified in the request, the RCVA$ primitive
provides a complex form of the Conditional Receive Data (RCVC$) operation, which tests for
an available message but will not block the caller. See the RCVC$ primitive for a description
of the basic Conditional Receive Data operation.

Syntax

The three variants of the RCVA$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant

RCVA$

RCVA$S

RCVA$P

Macro Call

RCV A$ [area, time,rtnptr, vlen, vbuf ,rlen,rbuf ,sdb-list]

RCVA$S [time,rtnptr,vlen,vbuf,rlen,rbuf,sdb-list]

RCVA$P [time,rtnptr, vlen, vbuf,rlen,rbuf,sdb-list]

In each of the macro-call variants, the syntax element shown as sdb-list has the form:

sdbl [. sdb2, sdb3, sdb4]

MACR0-11 Primitive Service Requests 3-115

area
The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address

time
The address of a 2-word user-memory location that specifies a timeout interval, expressed
in milliseconds. The first word of the double-precision integer contains the low-order
portion of the time value, and the second word (time+2) contains the high-order portion.
An argument value of 0 implies no timeout for the request; the calling process may block
indefinitely. This argument has the form:

[TIME=]word-address or #0

If the address value is nonzero but the time value pointed to is 0, the request will be timed
out immediately if no packet is available on any of the specified semaphores when the
primitive is called. That is, the calling process will never block if the specified time interval
is 0.

rtnptr
The address of a 4-word area in which information about the Receive operation is to be
returned by the primitive. The format of the information returned is shown in the RCVD$
primitive description. This argument has the form:

[RTNPTR=]word-address

vlen
The length in bytes of the buffer pointed to by vbuf. This argument limits the amount of
by-value data, if any, to be copied from the packet. The argument value can range from 0
to 34. The argument has the form:

[VLEN=]integer

vbuf

rlen

The address of the buffer area in which data sent by value is to be copied. This argument
has the form:

[VBUF=] address

This argument is significant only if vlen is nonzero.

The length in bytes of the buffer pointed to by rbuf. This argument limits the amount of
by-reference data, if any, to be copied from the sender's buffer. If the value of this argument
is 0 and a message reference exists in the packet, the message is not copied; the reference
is returned in the area pointed to by rtnptr, however. This argument has the form:

[RLEN=]integer

3-116 MACR0-11 Primitive Service Requests

rbuf
The address of the buffer area in which data sent by reference is to be copied. This argument
has the form:

[RBUF=]address

This argument is significant only if rlen is nonzero.

sdb-1
The address of a structure descriptor block (SDB) that identifies one of the semaphores to
be operated on. From one to four SDB addresses may be specified. The order in which
the SDBs are specified (or are identified if enumerated by keyword) determines the order in
which the corresponding semaphores are initially tested for a message packet. (That order
can be critical under certain real-time conditions, as discussed under Implementation Notes.)
The sdb-i arguments have the form:

[SDBi=]sdb-address

Where i may have the value 1 through 4 if the keyword form of argument is used.

Restrictions

The value of the rlen parameter may not exceed 8129.

The timeout value may not exceed (2••31)-1, the largest positive integer expressible in 32 bits.
That is, the sign bit of the time-interval doubleword (bit 15 of the high-order word) must not
be set. (The maximum valid value, in milliseconds, permits a timeout period of just over 24.89
days; see the SLEP$ primitive for more detail.)

If the keyword form of macro call is used, higher-numbered sdb-i keywords may not be used
unless each of the lower-numbered sdb-i keywords is specified. That is, if the keyword sequence
contains SDB3=, for example, the sequence must also include SDBl= and SDB2=, although not
necessarily in numeric order.

MACR0-11 Primitive Service Requests 3-117

Argument Block

The calling argument block generated (or assumed to exist) by the RCVA$x macro has the
following format:

RO___. time

rtnptr

vlen

vbuf

rlen

rbuf

number of SDBs

sdb1

sdb2

sdb3

sdb4

Syntax Example

(pointer)

(pointer)

(value)

(pointer)

(value)

(pointer)

(generated value)

(pointer)

The number of SOB-address
fields is variable and is
indicated by the value in
the second word of the block

ML0-452-87

RCVA$P NOWAIT,INF0,40,MSGBUF,O,O,REQSTA,REQSTB,REQSTC,REQSTD

This example shows the parameters-only version of the call with a zero reference-length value,
a zero (effectively null) reference buffer argument, and four SDB addresses. Up to 40(octal)
bytes of data are expected by value, as specified by the vlen parameter. The argument block
is generated at assembly time, can be in read-only memory, and can be referred to with the
"RCVA$ area" form of call.

Semantics

The RCVA$ primitive tests each semaphore specified in the request for an available queue
element, or message packet. (The semaphores are tested in the order in which they are
identified in the call, by either position or keyword value.) If any of the semaphores has a
packet at the time of the call, the primitive performs a basic Receive operation on the first such
semaphore encountered, copying message data to user space as requested, and returns to the
caller, with a nonzero value in RO. (The packet pointer is dequeued and returned to the free
pool as part of the operation.) The RO value, an integer between 1 and 4, indicates that the nth
semaphore identified in the call satisfied the request.

3-118 MACR0-11 Primitive Service Requests

If none of the semaphores has a packet and either no time argument or a nonzero timer value
was supplied in the call, the primitive switches the calling process to the wait-active state. In
that state, the process is blocked on all the semaphores specified in the request.

If none of the semaphores has a packet and a zero timer value was supplied in the call, the
primitive returns immediately to the caller, with a zero value in RO, indicating a return caused by
timeout. (The calling process thus never leaves the run state in the case of an immediate-timeout
form of request.)

If the calling process switches to wait-active state, the process is blocked from execution until
it can be reactivated either by a packet becoming available on one of the blocking semaphores
(see SGLQ$ or SEND$ semantics) or by elapse of the specified timeout period, if any. When
reactivated for either reason, the process is unblocked from all the semaphores and is switched
to either the ready-active or the run state, depending on relative process priorities. If unblocked
because of an available packet, RO contains the ordinal value (from 1 to 4) of the semaphore
that provided the message, as described above. If unblocked because of a timeout, RO contains
a 0. In either case, the user's C bit is cleared, distinguishing the value returned in RO from an
error-return indication.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; the timer-value, buffer, rtnptr, or SDB address is not on a word

boundary or not in the user's address space. (The addres.ses are checked only if the
CHECK option is selected in the configuration file.)

ES$IST Invalid structure description (index or name); no such queue semaphore exists. (This
error return could be caused by an invalid SDB address if address checking is not in
effect.)

ES$IPM Illegal parameter; timer value is out of range.

Implementation Notes

Since the initial test of the semaphores for an available packet is performed in determinate
order, the order in which multiple semaphores are identified in the call can be critical under
certain real-time conditions. For example, if the relative frequency of signals or sends is high
for one of several queue semaphores and the "fast" semaphore is identified as being first, either
by position in the SDB sequence or by the keyword SDBl=, messages on that semaphore will
tend to mask off the others in a sequence of RCVA$ operations. Thus, the "slower" semaphores
may seldom or never be tested and serviced. Optimally, then, the semaphore with the highest
expected signal/send rate should be identified as last, the next highest as next to last, and so
on, assuming that probable relative frequencies can be determined. Alternatively, the order
in which the semaphores are identified could be rotated in successive calls so that at least n
semaphores are guaranteed to be tested in n calls to RCVA$. The correct or best strategy is
application specific.

MACR0-11 Primitive Service Requests 3-119

3.4 1 RCVC$ (Conditional Receive Data)
Pascal equivalent: { COND_RECEIVE Function }

COND_RECEIVE-ACK Function

The Conditional Receive Data (RCVC$) primitive implements the nonblocking. form of the
RCVD$ operation. RCVC$ tests a specified queue semaphore for an available packet. If one is
available, RCVC$ obtains the packet and copies data from or through it to the caller's buffer
space. If no packet is available, however, the primitive returns control immediately to the
caller instead of blocking the process on the semaphore, as is done by RCVD$. If the Receive
operation is performed successfully, the primitive returns the kernel-defined value TRUE in RO.
If not, the kernel-defined value FALSE is returned in RO.

This primitive is the analog of WAQC$ for use by general and device-access processes, which
cannot .access a packet directly in a mapped environment. RCVC$ permits any type of process to
conditionally receive data from another process through a packet. The complementary SEND$
primitives permit any type of process to send data through a packet. See the SGLQ$ primitive
for more information about packets.

The message-reception features of RCVC$ are identical to those provided by RCVD$; the copying
of messages sent either by value or by reference. The only functional difference between the
two primitives is the unconditional Wait performed by RCVD$ versus the conditional Wait
performed by RCVC$.

Syntax

The three variants of the RCVC$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant Macro Call

RCVC$

RCVC$S

RCVC$P

RCVC$ [area,sdb,rtnptr, vlen, vbuf,rlen,rbuf]

RCVC$S [sdb,rtnptr,vlen,vbuf,rlen,rbuf]

RCVC$P [sdb,rtnptr,vlen,vbuf,rlen,rbuf]

area

sdb

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of the structure descriptor block (SDB) that identifies the queue semaphore to
be tested for an available packet. (See Section 3.1.5 for the format and use of an SDB.) This
argument has the form:

[SDB=]sdb-address

rtnptr
The address of a 4-word area in which information about the Receive operation is to be
returned by the primitive. (This area is not modified if the Receive operation is unsuccessful,

3-120 MACR0-11 Primitive Service Requests

that is, if RO contains 0 on return from the primitive.) The format of the information returned
is shown below. This argument has the form:

[RTNPTR=]word-address

vlen
The length in bytes of the buffer pointed to by vbuf. This argument limits the amount of
by-value data, if any, to be copied from the packet. The value of this argument can range
from 0 to 34. This argument has the form:

[VLEN=]integer

vbuf

rlen

rbuf

The address of the buffer area in which data sent by value is to be copied. This argument
has the form:

[VBUF=]address

This argument is significant only if vlen is nonzero.

The length in bytes of the buffer pointed to by rbuf. This argument limits the amount of
by-reference data, if any, to be copied from the sender's buffer. If this argument is 0 and
if a message reference exists in the packet, the message is not copied; the reference itself is
returned in the area pointed to by rtnptr, however. This argument has the form:

[RLEN=]integer

The address of the buffer area in which data sent by reference is to be copied. This argument
has the form:

[RBUF=]address

This argument is significant only if rlen is nonzero.

Restrictions

The value of parameter rlen may not exceed 8128.

MACR0-11 Primitive Service Requests 3-121

Argument Block

The calling argument block generated (or assumed to exist) by the RCVC$x macro has the
following format:

RO---. sdb

rtnptr

vlen

vbuf

rlen

rbuf

ML0-453-87

Format of Information Returned

The information returned to the caller in the 4-word area pointed to by rtnptr is in the following
form:

rtnptr....,.. vxlen l pri

ref-address
Valid only if ref-length > 0

ref.-PAR

ref-length

ML0-454-87

pri
The priority value that was assigned to the packet by the Send operation.

vxlen
The number of bytes sent by value. (This value can be greater than the number of bytes
received, which is limited by the vlen argument.) If the value is 0, no data was sent by
value.

ref-address
The address of the sender's by-reference buffer, if any. This return value is valid only if the
ref-length return value is nonzero; otherwise, the contents of this word are unpredictable.

3-122 MACR0-11 Primitive Service Requests

ref-PAR

The value of the page address register that maps the sender's by-reference buffer, if any;
meaningful only in a mapped environment. This return value is valid only if the ref-length
return value is nonzero; otherwise, the contents of this word are unpredictable.

ref-length

The number of bytes sent by reference. (This value can be greater than the number of
bytes received, which is limited by the rlen argument.) If the value is 0, no data was sent
by reference.

Syntax Example

RCVC$ area=#ARGBLK,sdb=#QSEM,rtnptr=#INFO,vlen=#20.,
vbuf=#DATA,rlen=#O,rbuf=#O

Semantics

The RCVC$ primitive tests the specified queue semaphore for an available packet. If a packet
is available, the primitive removes it from the semaphore's packet queue and then performs the
following actions, as governed by the arguments specified in the call:

• Copies data sent by value, if any, from the packet in kernel space to the caller's vbuf area.
The number of bytes copied is the lesser of the vlen argument value and the number of
bytes sent by value.

• Copies data sent by reference, if any, from the sender's message buffer to the caller's rbuf
area. The number of bytes copied is the lesser of the rlen value. and the number of bytes
sent by reference.

• Copies the priority of the packet and the number of bytes sent by value from the packet
header to the pri and vxlen fields of the receiver's information-return area.

• Copies the message reference, if any, in the packet to the corresponding three words of the
receiver's information-return area. If the packet contains no message reference, the fourth
word of the receiver's information-return area (rxlen) is zeroed.

• Deallocates the packet, returning it to the kernel's free-element pool for reuse.

RCVC$ then returns control to the caller, with the value TRUE in RO.

If no packet is queued on the specified semaphore at the time of the call, RCVC$ returns
immediately to the caller, with the value FALSE in RO, indicating that the Conditional Receive
Data op~ration was unsuccessful. The TRUE and FALSE symbol values are defined by the
EXMSK$ macro in the COMM and COMU libraries. Those values are 1 and 0, respectively, in
the current version of MicroPower/Pascal.

Figure 3-1 shows the packet format expected by RCVC$.

MACR0-11 Primitive Service Requests 3-123

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; buffer, rtnptr, or SDB address is not on a word boundary or is not

in the user's address space. (The address is checked only if the CHECK option is
selected in the configuration file.)

ES$IST Invalid structure descriptor (index or name); no such queue semaphore exists. (This
error return could be caused by an invalid SDB address if address checking is not in
effect.)

3-124 MACR0-11 Primitive Service Requests

3.42 RCVD$ (Receive Data)
p 1 · 1 t' { RECEIVE Procedure }

asca eqmva en· RECEIVE_ACK Procedure

The Receive Data (RCVD$) primitive, the· complement of the SEND$ and SNDC$ primitives,
permits any type of process to receive data sent through a queue packet. This primitive is the
analog of WAIQ$ for use by general and device-access processes, which cannot access a packet
directly in a mapped environment.

RCVD$ performs the same Wait operation on a specifed queue semaphore as performed by
WAIQ$ but also copies the data in the packet to the caller's buffer space instead of returning the
packet pointer. The packet format expected by RCVD$ is the same as that produced by SEND$
or SNDC$ (see Figure 3-1). After the data is copied, the packet is returned to the kernel's
free-element pool for reuse. See the SGLQ$ primitive for more information about packets.

A message sent by value (up to 34 bytes) is copied by the RCVD$ primitive from the packet
to the receiver's buffer. In the case of a message sent by reference, possibly longer than 34
bytes, the message is ordinarily copied from the sender's message buffer, which is described
in the packet, to a buffer specified by the receiver. If no by-reference buffer is specified in
the Receive request, the message is not copied, but the primitive returns the message reference
to the caller. (That might be desirable in an unmapped system or if the receiving process is
capable of mapping itself to the sender's buffer.)

The message-by-reference feature must be used with caution concerning the length of individual
messages. Since message copying is done within the Receive primitive, no other process can
gain control until the entire message has been copied, because kernel primitive operations
are indivisible. Thus, transmission of long messages can seriously affect the servicing of I/O
operations, for example, by locking out high-priority driver processes and by delaying the
execution of fork routines.

See RCVC$ for the conditional (nonblocking) form of the Receive operation.

Syntax

The three variants of the RCVD$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant

RCVD$

RCVD$S

RCVD$P

area

Macro Call

RCVD$ [area,sdb,rtnptr,vlen,vbuf,rlen,rbuf]

RCVD$S [sdb,rtnptr, vlen, vbuf,rlen,rbuf]

RCVD$P [sdb,rtnptr,vlen,vbuf,rlen,rbuf]

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

MACR0-11 Primitive Service Requests 3-125

sdb
The address of the structure descriptor block (SDB) that identifies the queue semaphore to
be waited on. (See Section 3.1.5 for the format and use of an SDB.) This argument has the
form:

[SDB=]sdb-address

rtnptr
The address of a 4-word area in which information about the Receive operation is to be
returned by the primitive. The format of the information returned is shown below. This
argument has the form:

[RTNPTR=]word-address

vlen
The length in bytes of the buffer pointed to by vbuf. This argument limits the amount of
by-value data, if any, to be copied from the packet. The value of this argument can range
from 0 to 34. This argument has the form:

[VLEN=]integer

vbuf

rlen

rbuf

The address of the buffer area in which data sent by value is to be copied. This argument
has the form:

[VBUF=]address

This argument is significant only if vlen is nonzero.

The length in bytes of the buffer pointed to by rbuf. This argument limits the amount of
by-reference data, if any, to be copied from the sender's buffer. If the value of this argument
is 0 and if a message reference exists in the packet, the message is not copied; the reference
is returned in the area pointed to by rtnptr, however. This argument has the form:

[RLEN=]integer

The address of the buffer area in which data sent by reference is to be copied. This argument
has the form:

[RBUF=]address

This argument is significant only if rlen is nonzero.

Restrictions

The value of parameter rlen may not exceed 8128.

3-126 MACR0-11 Primitive Service Requests

Argument Block

The calling argument block generated (or assumed to exist) by the RCVD$x macros has the
following format:

RO~ sdb

rtnptr

vlen

vbuf

rlen

rbuf

ML0-455-87

Format of Information Returned

The information returned to the caller in the 4-word area pointed to by rtnptr is in the following
form:

rtnptr__.,.. vxlen l pri

ref-address
Valid only if ref-length > 0

ref-PAR

ref-length

ML0-456-87

pri
The priority value that was assigned to the packet by the Send operation.

vxlen
The number of bytes sent by value. (This value may be greater than the number of bytes
received, which is limited by the vlen argument.) If the value is 0, no data was sent by
value.

ref-address
The address of the sender's by-reference buffer, if any. This return value is valid only if the
ref-length return value is nonzero; otherwise, the contents of this word are unpredictable.

ref-PAR
The value of the page address register that maps the sender's by-reference buffer, if any;
meaningful only in a mapped environment. This return value is valid only if the ref-length
return value is nonzero; otherwise, the contents of this word are unpredictable.

MACR0-11 Primitive Service Requests 3-127

ref-le~gth

The number of bytes sent by reference. (This value may be greater than the number of
bytes received, which is limited by the rlen argument.) If the value is 0, no data was sent
by reference.

Syntax Example
RCVD$S sdb=#AQSEM,rtnptr=#RTNBLK,vlen=#O,vbuf=#O,rlen=#200,rbuf=#LONGB

Semantics

The RCVD$ primitive performs a Wait operation on the specified queue semaphore, as described
for the WAIQ$ primitive, which may cause the calling process to block until a packet is available.
When a packet is obtained from the semaphore's packet queue, the primitive performs the
following actions, as governed by the arguments specified in the call:

• Copies data sent by value, if any, from the packet in kernel space to the caller's vbuf area.
The number of bytes copied is the lesser of the vlen argument value and the number of
bytes sent by value.

• Copies data sent by reference, if any, from the sender's message buffer to the caller's rbuf
area. The number of bytes copied is the lesser of the rlen argument value and the number
of bytes sent by reference.

• Copies the priority of the packet and the number of bytes sent by value from the packet
header to the pri and vxlen fields of the receiver's information-return area.

• Copies the message reference, if any, in the packet to the corresponding three words of the
receiver's information-return area. If the packet contains no message reference, the fourth
word of the receiver's information return area (rxlen) is zeroed.

• Deallocates the packet, returning it to the kernel's free-element pool for reuse.

RCVD$ places the calling process in ready-active state if the process was blocked by the Wait
operation or returns control to the caller if the process was not blocked.

Figure 3-1 shows the packet format expected by RCVD$.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; buffer, rtnptr, or SOB address is not on a word boundary or is not

in the user's address space. (The addresses are checked only if the CHECK option is
selected in the configuration file.)

ES$IST Invalid structure descriptor (index or name); no such queue semaphore exists. (This
error return could be caused by an invalid SOB address if address checking is not in
effect.)

3-128 MACR0-11 Primitive Service Requests

3.43 REXC$ (Report Exception)
Pascal equivalent: REPORT Procedure

The Report Exception (REXC$) primitive is used to raise a software exception or to simulate
a hardware exception. Any type of exception can be reported with this primitive. The caller
supplies arguments that the primitive uses in constructing an exception stack frame.

The effect of raising an exception varies; the calling process may be switched to exception-wait
state, may execute its own exception service routine, if any, or may be forced to terminate. See
Chapter 6 for a description of exception dispatching and the exception stack frame generated
by REXC$.

The related SERA$ primitive allows a process to declare an exception service routine.

Syntax

The three variants of the REXC$ macro and their respective macro calls are listed below.

Variant Macro Call

REXC$

REXC$S

REXC$P

REXC$ [area,mask,code,arglen,argbuf]

REXC$S [mask,code,arglen,argbuf]

REXC$P [mask,code,arglen,argbuf]

area
The address of a user-memory area in which the calling argument block is to be constructed
(or found). This argument has the form:

[AREA=]arg-blk-address

mask
The type of exception to be raised, as indicated by a predefined bit-mask symbol or
appropriate mask value. The exception-type symbols, of the form EX$xxx, are described in
Section 6.1. The symbols are defined by the EXMSK$ macro. This argument has the form:

[MASK=]type-symbol

code
The specific exception code within the specified type, as indicated by a predefined symbol.
The exception-code symbols, of the form ES$xxx, are described in Section 6.1. The symbols
are defined by the EXMSK$ macro. This argument has the form:

[SUBCOD=]code-symbol

arglen
An integer specifying the length in bytes of the optional exception-argument buffer, if any,
or 0 for no optional arguments. This argument has the form:

[ARGLEN=]byte-count or #0

MACR0-11 Primitive Service Requests 3-129

argbuf
The address of the user's exception-argument buffer, if any. The argument value is significant
only if arglen is nonzero. This argument has the form:

[ARGBUF=]buffer-address or #0

Note
In MicroPower/Pascal V2.0 and later, the positional keyword for the exception
code argument has been changed from "subcod" to "code." The older form of
REXC$x call, specifying "subcod," is upward compatible, however, and will
assemble properly.

Restrictions

The exception argument buffer, if any, must begin on a word boundary, and the buffer length
must be an even number of bytes. (The argument buffer contents are pushed on the stack as
the optional part of the exception stack frame, shown in Section 6.5. Thus, the arguments, if
any, must be word oriented.)

Exception Type/Code Symbols and Values

See Table 6-1 for a complete listing of exception type and code symbols. See Section 6.2.1 for
a program fragment that shows how to derive an exception-type mask value from an exception
code.

Argument Block

The calling argument block generated (or assumed to exist) by the REXC$x macro has the
following format:

RO-.. mask

code

arglen

argbuf

ML0-457-87

Syntax Example

REXC$S mask=#EX$HIO,code=#ES$NXU,arglen=#O,argbuf=#O

3-130 MACR0-11 Primitive Service Requests

Semantics

The REXC$ primitive causes the kernel's exception dispatcher to be entered for normal disposition
of the exception condition indicated by mask and code. Before transferring control to the
dispatcher, the primitive pushes the following items on the reporting process's stack, as part of
the exception stack frame:

•
•
•
•

The optional arguments from the caller's argument buffer, if any

The argument byte count (arglen value); may be 0

The exception code

The exception type (top of stack frame)

Note that the primitive-dispatch mechanism has already saved standard register context (PS,
PC, RS, R4, R3) in the stack frame. Also, the optional argument words are pushed in the order
in which they occur in the caller's argument buffer. Thus, they appear in "reverse order" in the
stack frame. See Section 6.5 for the exception stack-frame format.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; the argument buffer address was not on a word boundary or was

not within the process's address space, or the process's stack pointer was corrupt at
the time of the call.

ES$IPM Illegal parameter; more than one exception type was specified (two or more bits set
in mask), no exception type was specified (no bit set in mask), or the argument buffer
length value was odd.

MACR0-11 Primitive Service Requests 3-131

3.44 RSUM$ (Resume Process)
PascaJ equivalent: RESUME Procedure

The Resume Process (RSUM$) primitive reactivates a suspended process, assuming that the
process's current suspension count is -1, which implies current suspension but no additional
suspensions pending. (The primitive increments the subject process's suspension count and
returns a TRUE or FALSE indication, as described in the Semantics section below.) This
primitive allows the calling process to unsuspend another process (see the SPND$ primitive).

Syntax

The three variants of the RSUM$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant

RSUM$

RSUM$S

RSUM$P

area

Macro Call

RSUM$ [area,pdb]

RSUM$S [pdb]

RSUM$P [pdb]

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

pdb
The address of the process descriptor block (PDB) that identifies the process to be resumed.
See Section 3.1.6 for the format and use of a PDB. This argument has the form:

[PDB=]pdb-address

Argument Block

The calling argument block generated (or assumed to exist) by the RSUM$x macro has the
following format:

Syntax Example

RSUM$S pdb=#APROC

Semantics

Ro-. (pdb

ML0-458-87

The RSUM$ primitive increments the suspension count associated with the specified process.
If the count changes from -1 to 0, the state of the process is changed to ready active, wait
active, or exception-wait active, depending on its state at the time of resumption. The scheduler

3-132 MACR0-11 Primitive Service Requests

is called if the new state is ready active; otherwise, the primitive returns to the caller after
incrementing the count.

Because of the suspension counter, a Resume Process request may not in fact reactivate a process.
(For example, if the suspension count was positive, the process was already active, and no state
transition occurs.) The immediate effect of the request is indicated as a TRUE or FALSE function
return in RO. A TRUE return indicates that the process either was reactivated (changed from the
suspended state to the appropriate active state) or was active. A FALSE return indicates that
the process was not changed from the suspended state, because the suspension count remained
negative after the increment.

The TRUE and FALSE symbol values are defined by the EXMSK$ macro in the COMM
and COMU libraries. Those values are 1 and 0, respectively, in the current version of
Micro Power /Pascal.

The maximum value of the suspension counter is 32,767; the minimum value is -32,768. Thus,
the counter can record a maximum of 32,768 successive Suspend requests or 32,767 successive
Resume requests.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IST Invalid structure descriptor (index or name); no such process exists. (This error return

could be caused by an invalid PDB address.)

MACR0-11 Primitive Service Requests 3-133

3.45 SALL$ (Signal All Waiters)
Pascal equivalent: SIGNAL _ALL Procedure

The Signal All Waiters (SALL$) primitive unblocks the processes waiting on a specified binary
or counting semaphore, setting the semaphore variable value to 0. If no process is waiting on
the semaphore, the SALL$ operation leaves the value of the semaphore variable unchanged.

This primitive permits the calling process to signal simultaneously all processes that are waiting
for the same event to occur and to ensure that the semaphore is left in the closed state in all
cases. (Compare with SGLC$, the conditional signal.)

Together, the WAIT$ and SALL$ calls allow two or more processes to synchronize on a single
event signaled by another process.

Syntax

The three variants of the SALL$ macro and their respective macro calls are listed below. The
differences are described in Section 3.1.

Variant

SALL$

SALL$S

SALL$P

area

Macro Call

SALL$ [area,sdb]

SALL$S [sdb]

SALL$P [sdb]

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

sdb

[AREA=]arg-blk-address

The address of a structure descriptor block (SDB) that identifies the semaphore to be signaled.
(See Section 3.1.5 for the format and use of an SDB.) This argument has the form:

[SDB=]sdb-address

Restrictions

The semaphore identified by the passed SDB must not be a queue semaphore.

3-134 MACR0-11 Primitive Service Requests

Argument Block

The calling argument block generated (or assumed to exist) by the SALL$x macro has the
following format:

Syntax Example

SALL$$ sdb=#SYNCH

Semantics

RO~ f sdb

ML0-459-87

The SALL$ primitive unblocks all processes waiting on the specified semaphore, sets the
semaphore variable to 0, and calls the scheduler. If no process is waiting on the specified
semaphore, the SALL$ primitive leaves the value of the semaphore variable unchanged and
returns control to the caller.

The SALL$ request may cause the calling process to be preempted, depending on the priorities
of the processes unblocked by the operation.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IST Invalid structure descriptor (index or name); no such binary or counting semaphore

exists. (This error return could be caused by an invalid SDB address.)

MACR0-11 Primitive Service Requests 3-135

3.46 SCHD$ (Schedule Process)
Pascal equivalent: SCHEDULE Procedure

The Schedule Process (SCHD$) primitive switches the calling process out of the run state if
another process of equal priority is eligible for control of the CPU.

This primitive permits a process to choose when to relinquish the CPU to another equal
priority process, thus circumventing the kernel's event-triggered scheduling mechanism (see the
Applications section).

Syntax

The syntax of SCHD$ macro call is:

SCHD$

Semantics

If the first process in the ready-active queue has the same priority as the caller, the SCHD$
primitive places the calling process on the ready-active queue, behind all processes of the same
priority, and calls the scheduler. This action causes the first process in the queue to be switched
to the run state.

If no ready-active process is of equal priority at the time of the call, the primitive returns
immediately to the caller.

Error Returns

None.

Applications

The SCHD$ primitive may be used in systems with several processes of the same priority, as
when< several instances of a process are used to create the effect of concurrency. If the task
performed by a process tends to be compute-bound, that process uses an inequitable share
of the processor resource. This situation can be avoided by inserting a SCHD$ request at an
appropriate location in the process. The resulting preemption will place the current process
behind other processes of the same priority in the ready-active queue, giving the latter a chance
to execute.

3-136 MACR0-11 Primitive Service Requests

3.47 SCTX$ (Save Context)
Pascal equivalent: SAVE_CONTEXT Procedure

The Save Context (SCTX$) primitive permits a process to save a copy of its current memory
mapping for subsequent restoration by means of the RCTX$ primitive. SCTX$ saves the contents
of the calling process's mapping registers (APRs) in a context block that is distinct from the
mapping-context restore area always associated with a process's PCB. (The latter area is used
implicitly by the kernel during process context switching.)

Used with the RCTX$ primitive, SCTX$ allows a process to reset its entire mapping to a prior,
known state, canceling the effect of intervening alterations of its mapping, especially if such
mapping operations involved "borrowing" of one or more statically mapped APRs. Typically,
SCTX$ might be used preceding a fixed-mode MAPW$ call or preceding an analogous remapping
operation performed directly by a privileged or driver-mapped process. Assuming that the
remapping is of a temporary nature, an RCTX$ call would be used at some later point to restore
the previous mapping.

Successive calls to SCTX$ without intervening RCTX$ calls cause multiple copies of mapping
context to be saved in a list structure treated by RCTX$ as a LIFO push-down stack. Thus, a
process could take "snapshots" of its mapping at various points and then restore the last-saved
mapping, the next-to-last, and so on, by an appropriate number of successive RCTX$ calls.

Together, the SCTX$ and RCTX$ primitives facilitate easy, uncomplicated restoration of mapping
at a relatively small cost in performance. Also, if used with MAPW$ (as opposed to direct
MMU modification) that set of primitives eliminates the need for MMD-register saving during
process context switches from run state, an overall performance benefit.

Chapter 5 contains a general discussion of dynamic mapping.

Syntax

The SCTX$ macro has no variants or arguments; its syntax is:

SCTX$

Restrictions

This primitive may be used only at process level; that is, it may not be called from an ISR fork
routine.

Argument Block

No argument block is generated by the SCTX$ macro.

Syntax Example

SCTX$

Semantics

The SCTX$ primitive allocates a context descriptor block in system-common memory and copies
the contents of the user's MMU registers into the block. The primitive links the block into the
context-descriptor list pointed to by the caller's PCB, as the first or only element of that list,
and returns to the caller.

MACR0-11 Primitive Service Requests 3-137

In an LSI-11/73 or similar target environment, the primitive saves both the I&D-space mapping
registers if I&D-space separation is in effect for the calling process. Otherwise, only the I-space
APR set is saved.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IPR Illegal primitive call; the primitive service was requested in an unmapped environ

ment.

ES$NMK Insufficent space for kernel structure; a context descriptor block could not be allocated.

3-138 MACR0-11 Primitive Service Requests

3.48 SEND$ (Send Data)
Pascal equivalent: SEND Procedure

Pascal variant: SEND_ACK Procedure

The Send Data (SEND$) primitive allocates a queue packet in kernel space, copies user data
into the packet, and signals a specified queue semaphore. The Signal operation is the same as
that performed by SGLQ$. The SEND$ primitive is the analog of SGLQ$ for use by general
and device-access processes, which cannot access a packet directly in a mapped environment.
SEND$ permits any type of process to transmit data to another process through a packet. The
complementary Receive Data (RCVD$) primitive permits any type of process to receive data
sent through a packet. See the SGLQ$ primitive for more information about packets.

A limited amount of data (up to 34 bytes) can be sent by value; that is, a short message can be
sent directly in the packet. A larger amount of data can be sent by reference, or indirectly; a
reference to the message, not the message itself, is sent in the packet. These two methods can
also be combined in one Send request; some data can be sent by value and some by reference.

The by-reference feature permits messages that are too large to fit into a packet to be exchanged
between two processes with one Send and one Receive request. The address and length of the
message buffer and, if mapped, the buffer's PAR value are placed in the packet for subsequent
use by the RCVD$ primitive. The message is transmitted (copied from the sender's buffer to
the receiver's buffer) only when the corresponding Receive request is issued.

As an alternative to having a message by reference copied by the RCVD$ primitive, the receiver
can specify that only the message reference is to be returned. (That might be done in an
unmapped system or by a receiving process capable of mapping itself to the sender's buffer.)
The message-by-reference feature must be used with caution concerning the length of individual
messages. Since message copying is done within the Receive primitive, no other process can
gain control until the entire message has been copied, because kernel primitive operations
are indivisible. Thus, transmission of long messages can seriously affect the servicing of 1/0
operations (for example, by locking out high-priority driver processes and by delaying the
execution of fork routines).

See SNDC$ for the conditional-signal form of the Send Data operation.

Syntax

The three variants of the SEND$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant

SEND$

SEND$S

SEND$P

Macro Call

SEND$ [area,sdb, pri, vlen, vbuf ,rlen,rbuf]

SEND$S [sdb ,pri, vlen, vbuf,rlen,rbuf]

SEND$P [sdb, pri, vlen, vbuf,rlen,rbuf]

MACR0-11 Primitive Service Requests 3-139

area

sdb

pri

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of the structure descriptor block (SOB) that identifies the queue semaphore to
be signaled. (See Section 3.1.5 for the format and use of an SOB.) This argument has the
form:

[SDB=]sdb-address

The priority value (0 to 255) to be assigned to the packet, which affects the order in which
the packet is queued on a semaphore having a priority-ordered packet queue (see CRST$).
This argument has the form:

[PR!=] integer

vlen
The number of bytes to be transmitted by value. The maximum is 34 if no message is sent
by reference (if rlen = 0) or 28 if a message reference is specified. This argument has the
form:

[VLEN=]integer

vbuf

rlen

rbuf

The address of a message buffer to be transmitted by value. The content of this buffer is
copied into the packet directly. This argument has the form:

[VBUF=]buffer-address

The argument value is significant only if vlen is nonzero.

The length of a message to be sent by reference; the length of the message buffer pointed to
by rbuf. If nonzero, this value is placed in the packet along with the rbuf value, following
any data sent by value. This argument has the form:

[RLEN=]integer

The address of a buffer containing a message to be sent by reference. This address is placed
in the packet along with the caller's PAR value that maps the address, forming a 2-word
"physical address" in the mapped case. (See Figure 3-1.) This argument has the form:

[RBUF=]buffer-address

The argument value is significant only if rlen is nonzero.

3-140 MACR0-11 Primitive Service Requests

Restrictions

Thirty-four bytes are available in a queue packet for message data, a message reference, or both.
A reference occupies three words in the packet and, if included, reduces the space available for
data by value to 28 bytes.

The value of parameter rlen may not exceed 8128.

Argument Block

The calling argument block generated (or assumed to exist) by the SEND$x macro has the
following format:

RO~ sdb

pri

vlen

vbuf

rlen

rbuf

ML0-460-87

Syntax Example

SEND$ area=#ARGBLK,sdb=#MSGSEM,pri=#O,vlen=#34. ,vbuf=#MSG,rlen=#100. ,rbuf=#MSG+34.

Semantics

The SEND$ primitive performs the following actions before signaling the specified queue
semaphore:

1. Obtains a packet (queue element) from the kernel's free-packet pool and writes the specified
priority value into the packet header.

2. Constructs a control byte based on the value-size and reference-length arguments and places
it in the packet header for subsequent use by RCVD$.

3. Copies t!'e data, if any, to be transmitted by value from the buffer in user space to the
packet in kernel space.

4. Copies the address (rbuf) of the message to be sent by reference, if any, along with the
message length, into the packet. In the mapped case, the virtual address is followed by a
corresponding PAR value, forming a 2-word "physical address" in the caller's address space.
The value of the first word is the specified virtual address; the value of the second word is
the content of the caller's PAR associated with that virtual address. In the unmapped case,
of course, the specified address is itself a physical address.

SEND$ then signals the semaphore, placing the packet on the semaphore's queue, as described
for the SGLQ$ primitive. Figure 3-1 shows the format of a packet constructed by SEND$ (or
by SNDC$).

MACR0-11 Primitive Service Requests 3-141

Figure 3-1: SEND$/SNDC$ Packet Format

Packet

pointer

Bit

SE.LNK

SE.AUX Standard packet header

ctr I l pri

Data by
t

vlen bytes
value

!
Unused space, if any

msg address
~ --1

msg PAR value Included if rlen > 0
to- ~

msg length

In all cases ,the packet length is 40 bytes. The format
of the packet-header byte indicated by ctrl is:

--- ol
val I

where: r = 0 if no message reference
= 1 if reference is included

val = number of bytes by value
(7-bit integer) ML0-461-87

Note that synchronization characteristics differ between data sent by value and data sent by
reference. That is, data sent by value is copied immediately by SEND$, thus freeing the
buffer it occupied for immediate reuse on return from the primitive. Data sent by reference,
however, is not copied until the corresponding RCVx$ primitive is executed, and thus the buffer
it' occupies is not free for reuse by the sender until then. Therefore, the sender and receiver
should implement the necessary mutual exclusion of a sender's by-reference buffer through a
separate binary semaphore.

3-142 MACR0-11 Primitive Service Requests

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; buffer or SDB address is not on a word boundary or is not in the

user's address space. (The addresses are checked only if the CHECK option is selected
in the configuration file.)

ES$IPM Illegal parameter; the amount of data to be sent by value (vlen parameter) exceeds
packet capacity, or the amount of data to be sent by reference exceeds 8128 bytes.

ES$IST Invalid structure descriptor (index or name); no such queue semaphore exists. (This
error return could be caused by an invalid SDB address if address checking is not in
effect.)

Applications

SEND$ is the basic buffer-transfer mechanism supplied by the kernel. SEND$ provides a
primitive message-exchange mechanism for use between general processes or between general
and privileged processes. For example, SEND$ is used to implement the interface to higher
level services such as those provided by the communications and device-driver processes. This
interface consists of a request message sent to the appropriate system process and a reply
received from the process, using the SEND$ /RCVD$ facility.

MACR0-11 Primitive Service Requests 3-143

3.49 SERA$ (Set Exception Routine Address)
Pascal equivalents: { ESTABLISH Procedure }

REVERT Procedure

The Set Exception Routine Address (SERA$) primitive establishes an exception service routine
within the calling process for a specified set of exceptions. This primitive allows a process to
regain control at its exception entry point after causing a particular type of exception, in either
of two circumstances:

• No exception-handling process exists for the type of exception and the exception group of
the faulting process.

• The existing exception handler chooses to pass the exception on to the faulting process (by
means of the DEXC$ primitive).

When the process causing the exception is reentered at its exception routine address, the user's
stack contains an exception stack frame describing the condition.

Syntax

The three variants of the SERA$ macro and their respective macro calls are listed below. The
differences are described in Section 3.1.

Variant Macro Call

SERA$

SERA$S

SERA$P

SERA$ [area,adr,mask]

SERA$S [adr,mask]

SERA$P [adr,mask]

area

adr

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of the exception routine for the process or 0. (See the note at the end of this
subsection.) This argument has the form:

[ADR=]exception-entry-point or #0

mask
The type(s) of exception, as indicated by predefined bit-mask symbols, to be accepted by
the exception service routine. The exception type symbols, of the form EX$xxx, are defined
by the EXMSK$ macro and are described in Section 6.1. The type symbols may be ORed
as desired. This argument has the form:

[MASK=]symbol[!symbol]

3-144 MACR0-11 Primitive Service Requests

Note
If the adr argument value is 0, the meaning of the request changes- to "disable
exception address" for the calling process. That is, a call specifying an exception
address of 0 cancels any previous SERA$ call made by the process and disables
the passing of any exceptions to the process. The mask argument is not
meaningful in this case.

Restrictions

This primitive may be used only at process level; it may not be called from an ISR fork routine.

Argument Block

The calling argument block generated (or assumed to exist) by the SERA$x macro has the
following format:

RO_.. ~---ad_r __ _

_ mask

ML0-463-87

Semantics

The SERA$ primitive places the specified exception entry address and exception-type bit mask
in the caller's PCB (fields PC.EXC and PC.MSK), replacing the previous values, if any, and
returns to the caller.

When the kernel passes an exception back to the process that caused it, the exception service
routine is entered as described in Sections 6.3 and 6.4.2.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; the exception routine address was an odd value or not in the process's

address space.

ES$1PR Illegal primitive; SERA$ was called from an ISR.

MACR0-11 Primitive Service Requests 3-145

3.50 SGLC$ (Conditionally Signal Semaphore)
Pascal equivalent: CONO_SIGNAL Function

The Conditionally Signal Semaphore (SGLC$) primitive signals a specified binary or counting
semaphore if at least one process is already waiting on that semaphore. If no process is waiting,
the semaphore is not signaled (its variable value is not incremented) and the kernel-defined
value FALSE-is returned to the caller in RO.

If the semaphore is signaled, the first process waiting on the semaphore is unblocked, and
the kernel-defined value TRUE is returned to the caller in RO. This action permits the calling
process to signal another process that an event it is waiting on has occurred, but only if the
Wait request is issued before the signal. This in turn allows the caller to selectively signal one
of a set of semaphores, unblocking one process, if any, waiting on a semaphore of that set.

Unlike the SGNL$ primitive, the relative order in which the Signal and Wait occur affects the
operation of the SGLC$ primitive. The SGLC$ call provides, for example, a means of testing
each of a set of identical server processes for availability (see also WAIC$).

Syntax

The three variants of the SGLC$ macro and their respective macro calls are listed below. The
differences are described in Section 3.1.

Variant Macro Call

SGLC$

SGLC$S

SGLC$P

SGLC$ [area,sdb]

SGLC$S [sdb)

SGLC$P [sdb)

area

sdb

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of a structure descriptor block (SOB) that identifies the semaphore to be
conditionally signaled. (See Section 3.1.5 for the format and use of an SOB.) This argument
has the form:

[SDB=]sdb-address

Restrictions

The semaphore identified by the passed SOB must not be a queue semaphore.

3-146 MACR0-11 Primitive Service Requests

Argument Block

The calling argument block generated (or assumed to exist) by the SGLC$x macro has the
following format:

Syntax Example
SGLC$S R2

Semantics

Ro~ I sdb

ML0-464-87

The SGLC$ primitive signals the specified semaphore only if at least one process is waiting.
Otherwise, the primitive returns immediately to the caller, with the value FALSE in RO, indicating
that the semaphore was not signaled.

If the Signal operation succeeds, the primitive switches the first waiting process to the ready
active state, decrements the semaphore value, and calls the scheduler. This action may cause
the calling process to be preempted (lose control of the CPU) depending on the relative priority
of the process at the head of the ready-active queue. On eventual return to the caller, RO
contains the value TRUE, indicating that the semaphore was signaled.

The TRUE and FALSE symbol values are defined by the EXMSK$ macro in the COMM
and COMU libraries. Those values are 1 and 0, respectively, in the current version of
MicroPower /Pascal.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IST Invalid structure descriptor (index or name); no such binary or counting semaphore

exists. (This error return could be caused by an invalid SDB address.)

MACR0-11 Primitive Service Requests 3-147

3.51 SGLQ$ (Signal Queue Semaphore)
Pascal equivalent: PUTJ ACKET Procedure

The Signal Queue Semaphore (SGLQ$) primitive places a packet on a specified semaphore's
packet queue and signals the semaphore. If any processes are waiting on that semaphore,
the first waiting process is unblocked, and a pointer to the packet is eventually passed to that
process. (The packet is dequeued when that happens.) If no process is waiting, the packet
remains on the queue, and the signal remains in effect.

This primitive permits the calling process to signal another process that a message packet it
needs, or will need, is available, whether or not the other process is presently waiting for the
signal. (Compare with SGQC$, the Conditionally Signal Queue Semaphore call.)

A packet is a fixed-length system data structure that is allocated by the kernel from a special
system-memory pool (see the ALPK$ primitive and Section 2.2.2). The overall size of a packet,
including the 3-word header, is given by the global symbol SE.SIZ in bytes. The length of
the undefined, arbitrarily usable portion of the packet is 34(decimal) bytes, given by the global
symbol QE.LEN. A process can obtain a "free" packet by means of an Allocate Packet (ALPK$
or ALPC$) request. (The content of a packet as allocated is undefined, that is, not zeroed.) A
packet can be returned to the kernel's free-packet pool through use of the DAPK$ primitive.

In a mapped environment, general and device-access processes do not have direct access to a
packet, since they are not mapped to kernel data space; they cannot move data into a packet,
for example. Therefore, if such a process needs to send data by means of a packet, as opposed
to simply "passing along" a packet pointer that it has acquired by means of another primitive
operation, it must use the SEND$ primitive. SEND$ is a higher-level primitive that provides a
packet-acquisition and data-copying service in addition to the functionality of SGLQ$.

The WAIQ$ call is the inverse of the SGLQ$ call.

Syntax

The three variants of the SGLQ$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant Macro Call

SGLQ$

SGLQ$S

SGLQ$P

SGLQ$ [area,sdb,qelm]

SGLQ$S [sdb,qelm]

SGLQ$P [sdb,qelm]

area

sdb

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of a structure descriptor block (SDB) that identifies the queue semaphore to be
signaled. (See Section 3.1.5 for the format and use of an SDB.) This argument has the form:

[SDB=]sdb-address

3-148 MACR0-11 Primitive Service Requests

qelm
The address of a pointer to the packet that is to be placed on the semaphore queue. This
argument has the form:

[QELM=]pointer-address

Argument Block

The calling argument block generated (or assumed to exist) by the SGLQ$x macro has tll~
following format:

Ro-.. ~---sd_b __ _

_ qelm

ML0-465-87

Syntax Example

SGLQ$S sdb=#QSEM,qelm=#ALPCBF

Semantics

The SGLQ$ primitive tests the specified queue semaphore for waiting processes. If no process
is waiting, the primitive signals the semaphore, links the passed packet into the packet queue,
and returns to the caller.

If at least one process is waiting, the primitive unblocks the first waiting process, associates
the passed packet pointer with that process (as its wait-return value) and calls the scheduler.
This action may cause the calling process to be preempted, depending on the priority of the
unblocked process.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; the SDB address is not on a word boundary or is not in the user's

address space. (The address is checked only if the CHECK option is selected in the
configuration file.)

ES$IST Invalid structure descriptor (index or name); no such queue semaphore exists. (This
error return could be caused by an invalid SDB address if address checking is not in
effect.)

Applications

Queue semaphores may be used to implement general queuing functions. The SGLQ$ operation
places a packet on a queue, where it remains until another process removes it with either a
Wait or a Receive operation. This basic mechanism can be used to implement a simple message
facility or a generalized queued 1/0 facility.

MACR0-11 Primitive Service Requests 3-149

3.52 SGNL$ (Signal Semaphore)
Pascal equivalent: SIGNAL Procedure

The Signal Semaphore (SGNL$) primitive signals a specified binary or counting semaphore,
unblocking the first process, if any, waiting on that semaphore. This primitive permits the
calling process to signal to another process that an event has occurred, whether or not the other
process is presently waiting for the signal. (Compare with SGLC$, the conditional signal.)

When a binary semaphore acts as a "gate" for mutual exclusion, the Signal Semaphore primitive
permits the calling process to open the gate for another process that the caller has previously
closed "behind itself" with a WAIT$ call. In this case, both processes issue a WAIT$ before,
and a SGNL$ following, a critical section of code; critical relative to the operation_ of the other
process.

Together, the WAIT$ and SGNL$ calls allow two or more cooperating processes to implement
a variety of synchronization and mutual-exclusion mechanisms (see also SGLC$, WAIC$, and
SALL$).

Syntax

The three variants of the SGNL$ macro and their respective macro calls are listed below. The
differences are described in Section 3.1.

Variant Macro Call

SGNL$

SGNL$S

SGNL$P

SGNL$ [area,sdb]

SGNL$S [sdb]

SGNL$P [sdb]

area

sdb

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of a structure descriptor block (SDB) that identifies the binary or counting
semaphore to be signaled. (See Section 3.1.S for the format and use of an SDB.) This
argument has the form:

[SDB=]sdb-address

3-150 MACR0-11 Primitive Service Requests

Argument Block

The calling argument block generated (or assumed to exist) by the SGNL$x macro has the
following format:

R0-..1 sdb

ML0-466-87

Syntax Example
SGNL$ area=#ARGBLK,sdb=#CSEM

Semantics

The SGNL$ primitive signals a binary semaphore (increments the semaphore's gate variable) if
it is 0 or returns immediately to the caller if it is 1. The SGNL$ primitive signals a counting
semaphore (increments the semaphore's counter variable) and, if its previous value was greater
than 0, returns immediately to the caller.

In either case, if the signal causes the semaphore value to change from 0 to 1 and if at least one
process is waiting on the semaphore, the primitive unblocks the first waiting process, decrements
the semaphore value, and calls the scheduler. This action may cause the calling process to be
preempted, depending on the priority of the unblocked process. If the semaphore value changes
from 0 to 1 and no process is waiting, the primitive returns immediately to the caller.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IST Invalid structure descriptor (index or name); no such binary or counting semaphore

exists. (This error return could be caused by an invalid SOB address.)

MACR0-11 Primitive Service Requests 3-151

3.53 SGQC$ (Conditionally Signal Queue Semaphore)
Pascal equivalent: COND_puT_p ACKET Function

The Conditionally Signal Queue Semaphore (SGQC$) primitive signals a specified semaphore
only if at least one process is waiting on that semaphore. If so, the first waiting process is
unblocked, and a pointer to the packet passed by the caller is returned to that process. The
kernel-defined value TRUE is eventually returned to the caller in RO. If no process is waiting,
the primitive returns immediately to the <;aller, with the kernel-defined value FALSE in RO.

This primitive permits the calling process to pass a message packet to another process, but only
if the other process is already waiting for the packet. (Compare with SGLQ$, the unconditional
Signal Queue call.)

See the SGLQ$ primitive for a description of queue packets. In a mapped environment,
general or device-access processes would normally use the SNDC$ primitive instead of SGQC$,
since they are not mapped to the kernel data space in which packets reside and thus cannot
access a packet directly. The higher-level SNDC$ primitive provides a packet-acquisition and
data-copying service in addition to the functionality of SGQC$.

The WAQC$ call is the inverse of the SGQC$ call.

Syntax

The three variants of the SGQC$ macro and their respective macro calls are listed below. (The
differences are described in Section 3.1.)

Variant Macro Call

SGQC$

SGQC$S

SGQC$P

SGQC$ [area,sdb,qelm]

SGQC$S [sdb,qelm]

SGQC$P [sdb,qelm]

area

sdb

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of a structure descriptor block (SDB) that identifies the queue semaphore to be
conditionally signaled. See Section 3.1.5 for the format and use of an SDB. This argument
has the form:

[SDB=]sdb-address

qelm
The address of a pointer to the packet that is to be passed by means of the queue semaphore.
This argument has the form:

[QELM=]pointer-address

3-152 MACR0-11 Primitive Service Requests

Argument Block

The calling argument block generated (or assumed to exist) by the SGQC$x macro has the
following format:

Ro~ 1~---sd_b __
_ qelm

ML0-467-87

Syntax Example

SGQC$S sdb=#QSEM,qelm=R5

Semantics

The SGQC$ primitive tests the specified queue semaphore for a waiting process. If at least
one process is waiting on the semaphore, the primitive switches the first waiting process to
the ready-active state, associates the passed packet pointer with that process as its wait-return
value, and calls the scheduler. This operation may cause the calling process to be preempted
(lose control of the CPU) depending on the priority of the unblocked process. On eventual
return· to the caller, RO contains the value TRUE, indicating that the semaphore was signaled
and that the packet was sent. (The caller's packet pointer is no longer valid at that point.)

If no process is waiting on the semaphore, the primitive returns immediately to the caller, with
the kernel-defined value FALSE in RO, indicating that the semaphore was not signaled. (The
caller's packet pointer is consequently still valid.)

The TRUE and FALSE symbol values are defined by the EXMSK$ macro in the COMM
and COMU libraries. Those values are 1 and 0, respectively, in the current version of
MicroPower /Pascal.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAO Invalid address; the SOB address is not on a word boundary or is not in the user's

address space. (The address is checked only if the CHECK option is selected in the
oonfigura ti on file.)

ES$IST Invalid structure descriptor (index or name); no such queue semaphore exists. (This
error return could be caused by an invalid SOB address if address checking is not in
effect.)

Applications

This primitive permits a process to send a record (queue packet) to any of several queue
semaphores, if another process is already waiting for the record. For example, suppose that a
process wishes to send an output request, contained in a packet, to any of three output-service
processes associated with separate queue semaphores. The SGQC$ call allows the submitting
process to test each semaphore for an output process that is ready to service the request.

MACR0-11 Primitive Service Requests 3-153

3.54 SLEP$ (Sleep)
Pascal equivalent: SLEEP Procedure

The Sleep (SLEP$) primitive "puts the calling process to sleep" for at least the period of time
specified in the call. More precisely, SLEP$ blocks the calling process in the wait-active state
until the closest approximation in clock "ticks" equal to or exceeding the specified time interval
has elapsed. At that point, the process changes to the ready-active state, from which it may
be switched to the run state, depending on the relative priorities of the awakened process and
the current running process. (If the process was suspended during its sleep, it changes to ready
suspended rather than ready active, of course.)

The caller specifies the wakeup time as a number of milliseconds following execution of the
SLEP$ call. The sleeping process is never woken in less than the specified time. The range of
positive difference between the specified and actual wakeup interval is a function of both the
clock frequency and relative process priorities. For example, a 60-Hz system clock "ticks" only
once every 16.7 milliseconds. See the GTIM$ primitive for more details.

The wakeup interval, specified as a double-precision, 31-bit integer, can range from one
millisecond (useful only with an 800-Hz clock) to roughly 24.89 days (see Restrictions for exact
value).

The STIM$, GTIM$, and SLEP$ primitives together replace the functionality previously provided
by the DIGITAL-supplied clock service process, which is now obsolete.

Syntax

The three variants of the SLEP$ macro and their macro calls are listed below. The differences
are described in Section 3.1.

Variant

SLEP$

SLEP$S

SLEP$P

area

Macro Call

SLEP$ [area,interv]

SLEP$S [interv]

SLEP$P [interv]

The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[ARE.A=] arg-blk-address

lnterv
The address of a 2-word area in user memory containing the desired wakeup inverval, as
described under Semantics. This argument has the form:

[interv=]area-address

3-154 MACR0-11 Primitive Service Requests

Restrictions

The interv argument must specify an even address.

The interval value is limited to a 31-bit positive integer; that is, the sign bit of the high-order
word must not be set. The maximum valid value, (2**31)-1 milliseconds, specifies a timeout
period of 24 days, 20 hours, 31 minutes, and 23.647 seconds.

Argument Block

The calling argument block generated (or assumed to exist) by the SLEP$x macro has the
following format:

Syntax Example
SLEP$S interv=#WAKEUP

Semantics

RO~ '-~~~i-nt_e_rv~~~- (pointer)

ML0-468-87

The SLEP$ primitive blocks the calling process on the system timer queue, adjusting the queue
order and current expiration values as required, and calls the scheduler. The system timer queue
is maintained jointly by the primitive and the basic kernel clock-service mechanism. The queue
is time ordered; sleeping processes are queued on it in ascending order of wakeup time.

If the interval value supplied in the call is 0, SLEP$ treats the request as a null operation and
returns control to the caller.

At each "tick" of the system clock, the kernel's clock interrupt service updates the system time,
checks the timer queue, and unblocks any process(es) whose time interval has expired. Each
unblocking implies a possible scheduler call.

SLEP$ assumes that the value supplied in the caller's interv area is in the following form:

Portion of
Time Value

interv--.. low order

0 l high order

ML0-469-87

The 0 in the diagram refers to the sign bit of interv+2.

MACR0-11 Primitive Service Requests 3-155

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; the interv address is an odd value.

ES$IPR Invalid parameter; the interv value exceeds (2**31)-1.

3-156 MACR0-11 Primitive Service Requests

3.55 SNDC$ ·(Conditional Send Data)
Pascal equivalent: COND_SEND Function

Pascal variant: COND_SEND_ACK Function

The Conditional Send Data (SNDC$) primitive implements a selective form , of the SEND$
operation. SNDC$ allocates a queue packet, copies user data into it, and signals a specified
queue semaphore, but only if at least one process is waiting on the semaphore. If the Send
operation was performed, the primitive returns the kernel-defined value TRUE (1) in RO. If
the Send was not performed, the kernel-defined value FALSE (0) is returned in RO. The
packet-allocation and data-copying portion of the operation is not done if no process is waiting.

This primitive is the analog of SGQC$ for use by general and device-access processes, which
cannot access a packet directly in a mapped environment. SNDC$ permits any type of process
to conditionally transmit data to another process through a packet. The complementary RCVD$
primitive permits any type of process to receive the data sent through a packet. See the SGLQ$
primitive for more information about packets.

The message-transmission features of SNDC$ are identical to those provided by SEND$; the
sending of messages by value or by reference. The only functional difference between the
two primitives is the unconditional signal performed by SEND$ versus the conditional signal
performed by SNDC$.

Syntax

The three variants of the SNDC$ macro and their respective macro calls are listed below. (The
differences are described in Section 3 .1.)

Variant Macro Call

SNDC$

SNDC$S

SNDC$P

SNDC$ [area,sdb, pri, vlen, vbuf ,rlen,rbuf]

SNDC$S [sdb, pri, vlen, vbuf,rlen,rbuf]

SNDC$P [sdb,pri,vlen,vbuf,rlen,rbuf]

area

sdb

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of the structure descriptor block (SOB) that identifies the queue semaphore to
be signaled. See Section 3.1.5 for the format and use of an SOB. This argument has the
form:

[SDB=]sdb-address

MACR0-11 Primitive Service Requests 3-157

prl
The priority value (0 to 255) to be assigned to the packet, which affects the order in which
the packet is queued on a semaphore having a priority-ordered packet queue (see CRST$).
This argument has the form:

[PR!=] integer

vlen
The number of bytes to be transmitted by value. The maximum is 34 if no message is
sent by reference (that is, if rlen = 0) or 28 if a message reference is also specified. This
argument has the form:

[VLEN=]integer

vbuf

rlen

rbuf

The address of a message buffer to be transmitted by value. The content of this buffer is
copied into the packet directly. This argument has the form:

[VBUF=]buff er-address

The argument value is significant only if vlen is nonzero.

The length of a message to be sent by reference, that is, the length of the message buffer
pointed to by rbuf. If nonzero, this value is placed in the packet along with the rbuf value,
following any data sent by value. This argument has the form:

[RLEN=]integer

The address of a buffer containing a message to be sent by reference. This address is placed
in the packet along with the caller's PAR value that maps the address, forming a 2-word
"physical address" in the mapped case (see Figure 3-1). This argument has the form:

[RBUF=]buffer-address

The argument value is significant only if vlen is nonzero.

Restrictions

Thirty-four bytes are available in a queue packet for message data, a message reference, or both.
A reference occupies three words in the packet and, if included, reduces the space available for
data by value to 28 bytes.

The value of parameter rlen may not exceed 8128.

3-158 MACR0-11 Primitive Service Requests

Argument Block

The calling argument block generated (or assumed to exist) by the SEND$x macro has the
following format:

RO~ sdb

pri

vlen

vbuf

rlen

rbuf

ML0-470-87

Syntax Example
SNDC$ area=#ARGBLK,sdb=#SERVOR,pri=#10,vlen=#O,vbuf=#O,rlen=#200,rbuf=#LONG

Semantics

The SNDC$ primitive tests the specified queue semaphore for a waiting process and performs
the following actions before signaling the semaphore:

1. Obtains a packet (queue element) from the kernel's free-packet pool and writes the specified
priority value into the packet header.

2. Constructs a control byte based on the value-size and reference-length arguments and places
it in the packet header for subsequent use by RCVD$.

3. Copies the data, if any, to be transmitted by value from the buffer in user space to the
packet in kernel space.

4. Copies the address (rbuf) of the message to be sent by reference, if any, along with the
message length, into the packet. In the mapped case, the virtual address is followed by a
corresponding PAR value, forming a 2-word "physical address" in the caller's address space.
The value of the first word is the specified virtual address; the value of the second word is
the content of the caller's PAR associated with that virtual address. In the unmapped case,
of course, the specified address is itself a physical address.

SNDC$ then signals the semaphore, unblocking the first waiting process and passing the packet
to it. This action may cause the calling process to be preempted, depending on the priority of
the unblocked process (see SGLQ$). On eventual return to the caller, RO contains the value
TRUE, indicating a successful operation.

If no process is waiting on the semaphore, the primitive returns immediately to the caller, with
the value FALSE in RO, indicating that the Send operation was not performed.

The TRUE and FALSE symbol values are defined by the EXMSK$ macro in the COMM
and COMU libraries. Those values are 1 and 0, respectively, in the current version of
Micro Power /Pascal.

MACR0-11 Primitive Service Requests 3-159

A packet constructed by SNDC$ has the same format as one constructed by the SEND$ primitive
(see Figure 3-1).

Note
When using SNDC$, the calling process can be blocked waiting for all~cation
of a queue element. In this respect, the SNDC$ primitive differs from other
conditional primitives, which cannot block the caller. (Thus, this primitive must
not be issued by an ISR at fork level; a very unlikely point of use for any
higher-level primitive.)

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; buffer or SDB address is not on a word boundary or is not in the

user's address space. (The addresses are checked only if the CHECK option is selected
in the configuration file.)

ES$1PM Illegal parameter; the amount of data to be sent by value (vlen parameter) exceeds
packet capacity, or the amount of data to be sent by reference exceeds 8128 bytes.

ES$IST Invalid structure descriptor (index or name); no such queue semaphore exists. (This
error return could be caused by an invalid SDB address if address checking is not in
effect.)

Applications

The SNDC$ primitive permits the sending process to be selective about message transmission.
For example, if there are several equivalent service queues, a service-request message can be

, sent to the queue having an idle server process waiting for a request.

3-160 MACR0-11 Primitive Service Requests

3.56 SPND$ (Suspend Process)
Pascal equivalent: SUSPEND Procedure

The Suspend Process (SPND$) primitive places an active process in the suspended state if the
process's suspension count was 0, which implies that no prior suspensions or resumptions were
pending. (The primitive decrements the process's suspension count and returns a TRUE or
FALSE indication, as described in the Semantics section below.)

This primitive allows the calling process to suspend either itself or another process. The
suspended process is prevented from executing until resumed by another process (see the
RSUM$ primitive). Together, the SPND$ and RSUM$ primitives provide a mutual- (or unilateral)
exclusion mechanism more radical than that provided by the WAIT$ and SGNL$ primitives.

Syntax

The three variants of the SPND$ macro and their respective macro calls are listed below. The
differences are described in Section 3.1.

Variant

SPND$

SPND$S

SPND$P

area

Macro Call

SPND$ [area,pdb]

SPND$S [pdb]

SPND$P [pdb]

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

pdb
The address of the process descriptor block (PDB) that identifies the process to be suspended,
or 0 to imply the caller. See Section 3.1.6 for the format and use of a PDB. This argument
has the form:

[PDB=]pdb-address or #0

Argument Block

The calling argument block generated (or assumed to exist) by the SPND$x macro has the
following format:

RO~ I pdb

ML0-471-87

MACR0-11 Primitive Service Requests 3-161

Syntax Example
SPND$S pdb=#O ;#Suspend self

Semantics

The SPND$ primitive decrements the suspension count associated with the specified process
(word PC.SPC of the PCB). If the count changes from 0 to -1, the state of the process is changed
to either ready suspended or wait suspended, depending on the process's state at the time of
suspension, and the scheduler is invoked if the suspended process was the caller. Otherwise,
the primitive returns to the caller after decrementing the count.

Because of the possible cumulative effect of multiple Suspend and Resume operations on a
suspension counter, a given Suspend request may not immediately suspend a process. The
immediate effect of the request is indicated as a TRUE or FALSE function return in RO. A
TRUE return indicates that the process was changed to or was already in the suspended state
(the suspension counter value is -1 or less). A FALSE return indicates that the process was not
suspended by the Suspend operation (the suspension counter value is still positive).

The TRUE and FALSE symbol values are defined by the EXMSK$ macro in the COMM
and COMU libraries. Those values are 1 and 0, respectively, in the current version of
MicroPower /Pascal.

Note that a Suspend operation on a -stopped process is always ineffective; see the STPC$
primitive.

A transition from the wait-suspended state to the ready-suspended state can occur while a
process is suspended. (An SGNL$ operation can unblock a waiting suspended process, for
example.) A Resume operation is required to reactivate a suspended process, however.

The suspension counter is treated as a signed integer value. Thus, the counter can record a
maximum of 32,768 successive Suspend requests or 32,767 successive Resume requests.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IST Invalid structure descriptor (index or name); no such process exists. (This error return

could be caused by an invalid SOB address.)

3-162 MACR0-11 Primitive Service Requests

3.57 SSFA$ (Set Stop Flag Address)
Pascal equivalent: DEFINE_STOPJLAG Procedure

The Set Stop Flag Address (SSFA$) primitive effectively allows the calling process to disable
the effect of a Stop Process request issued against the caller by another process and to receive
instead an indication that such a request has occurred. More specifically, the SSFA$ primitive
establishes the address of a stop-flag byte, which the kernel sets to TRUE when another process
issues a Stop Process request against the subject process (see the STPC$ primitive).

The SSFA$ primitive also allows the caller to eliminate a previously established stop flag, which
effectively reenables the normal, immediate effect of a Stop Process request issued against the
caller. Note that the existence of a stop flag for a given process does not inhibit the process
from stopping itself with a reflexive STPC$ call, nor does it inhibit an implicit stop (or process
abort) resulting from an unhandled exception condition.

The SSFA$ primitive is intended to permit a process to defer execution of its termination
routine, in response to Stop Process request, until an appropriate point is reached in its normal
execution cycle or to modify its normal execution path before terminating. The subject process
can periodically test its stop flag (for example, just before issuing an 1/0 request) and take
appropriate action, depending on the TRUE or FALSE state of the flag. Also, if the flag value
were TRUE, the process could gracefully terminate its 1/0 operations and perform any required
signals to other processes before executing a STPC$ on itself.

The TRUE and FALSE symbol values are defined by the EXMSK$ macro in the COMM
and COMU libraries. Those values are 1 and 0, respectively, in the current version of
MicroPower /Pascal.

Syntax

The three variants of the SSFA$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant

SSFA$

SSFA$S

SSFA$P

area

Macro Call

SSF A$ [area,addr]

SSFA$S [addr]

SSFA$P [addr]

The address of a user-memory location in which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address

addr
The address of a byte location in user memory that the kernel will use as a stop flag for
the calling process or 0. An address value of 0 requests that use of the caller's existing stop
flag is to be discontinued. This argument has the form:

[ADDR=]byte-address or #0

MACR0-11 Primitive Service Requests 3-163

Restrictions

The kernel assumes that the specified byte location is cleared, corresponding to a FALSE state,
when the primitive is issued.

The primitive may be used only at process level; that is, it may not be called from an ISR fork
routine.

Argument Block

The calling argument block generated (or assumed to exist) by the SSFA$x macro has the
following format:

Syntax Example
SSFA$S addr=#STPFLG

Semantics

RO~ addr

ML0-472-87

If the address specified in the call is nonzero and, in a mapped envionment, is within the caller's
address space, the SSFA$ primitive places that address in field PC.SFA of the caller's PCB and
returns. If the address specified in the call is 0, the SSFA$ primitive clears field PC.SFA of the
caller's PCB and returns.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; the specified stop-flag location is not within the process's address

space (mapped only).

ES$IPR Illegal primitive; the request was issued from an ISR.

3-164 MACR0-11 Primitive Service Requests

3.58 STIM$ (Set Time)
Pascal equivalent: SET_TIME Procedure

The Set Time (STIM$) primitive sets the system time maintained by the kernel to an arbitrary
base time value. The caller supplies the base time as a triple-precision integer contained in a
3-word area specified in the call. Presumably, the base time value represents some number
of milliseconds. (Use of STIM$ assumes that a system clock is present and configured on the
target system.)

The STIM$, GTIM$, and SLEP$ primitives together replace the functionality previously provided
by the DIGITAL-supplied clock service process, which is now obsolete.

Syntax

The three variants of the STIM$ macro and their respective macro calls are listed below. The
differences are described in Section 3.1.

Variant

STIM$

STIM$S

STIM$P

area

Macro Call

STIM$ [area,time]

STIM$S [time]

STIM$P [time]

The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address

time

The address of a 3-word area in user memory containing the value that is to replace the
current system time value. This argument has the form:

[time=]area-address

Restrictions

The time argument must specify an even address.

Argument Block

The calling argument block generated (or assumed to exist) by the STIM$x macro has the
following format:

RO__.. l...._~~-t_i_m_e~~~~ (pointer)

ML0-473-87

MACR0-11 Primitive Service Requests 3-165

Syntax Example
STIM$S time=#DATTIM

Semantics

The STIM$ primitive disables interrupts, moves the three words pointed to by the call into the
corresponding words of the system-time variable in the kernel's impure area, enables interrupts,
and returns to the caller.

STIM$ assumes that the caller's time area has the following form:

time_.

Portion of
Time Value

low order

middle order

high order

Offsets

TM.LOW

TM.MID

TM.HIG

ML0-474-87

The TM.xxx offset symbols used by the kernel are defined by the TIMDF$ macro.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IAD Invalid address; the time address is an odd value.

3-166 MACR0-11 Primitive Service Requests

3.59 STPC$ (Stop Process)
Pascal equivalent: STOP Procedure

The Stop Process (STPC$) primitive stops a specified process by forcing it to its termination
entry point when it is next reentered (assuming that the subject process does not have a stop
flag in effect). If the subject process is either blocked or suspended at the time of the call, it
is forced into the ready-active state, as described in the Semantics section below. The subject
process has a special aborted status, which means that it cannot subsequently be suspended.

The STPC$ primitive may return control to the calling process, depending on the relative
priorities of the caller and the process to be stopped. (The calling process and the subject
process may be one and the same.)

When reentered at its termination point, the stopped process must determine what it should do
before stopping (deleting itself). Minimally, it should deallocate any owned resources (delete
any semaphores or other structures that it created, return any packets to the kernel's free-packet
pool, and so forth). Before resource deallocation, it could take any actions needed for a graceful
termination, such as completing an in-progress 1/0 operation or message transmission. At the
appropriate-point, the process deletes itself from the system by issuing a DLPC$ request.

Alternatively, if the subject process has a stop flag in effect (see SSFA$) and is not the caller,
the STPC$ primitive sets the subject process's stop flag to TRUE and has no additional effect.

Syntax

The three variants of the STPC$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant

STPC$

STPC$S

STPC$P

area

Macro Call

STPC$ [area,pdb]

STPC$S [pdb]

STPC$P [pdb]

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

pdb
The address of the process descriptor block (PDB) that identifies the process to be stopped
or 0. If 0 is specified, the calling process is implied. (See Section 3.1.6 for the format and
use of a PDB.) This argument has the form:

[PDB=]pdb-address or #0

MACR0-11 Primitive Service Requests 3-167

Argument Block

The calling argument block generated (or assumed to exist) by the STPC$x macro has the
following format:

RO____. , pdb

ML0-475-87

Syntax Example
STPC$ area=#STPARG,pdb=#NGPROC

Semantics

If the subject process does not have a stop flag in effect or the subject process is the caller,
the STPC$ primitive modifies the subject process's context so that it will begin execution at
its termination entry point when it is subsequently scheduled for execution or when control is
returned in the case of a "self-stop" request. The primitive also sets an aborted status indication
(state-modifier bit SM.ABO or SM.ABP in field PC.STS), which inhibits any later suspension of
the subject process. If the subject process is in ready-active state, the primitive returns control
to the calling process. If the subject process is the caller, the primitive also returns control to
the calling process. If the subject process is not in the ready-active or run state, one of the
following cases applies:

• If the subject process is blocked on a semaphore (wait-active state), it is removed from the
semaphore's waiting-process list and placed on the ready-active queue. The primitive then
calls the scheduler.

• If the subject process is blocked on a ring buffer (wait-active state), it is removed from the
ring buffer's waiting-process list and placed on the ready-active queue. No adjustment is
made for any partial transfer to or from the ring buffer that may have occurred on behalf
of the subject process; no buffer resetting is done. The primitive then calls the scheduler.

• If the subject process is in exception-wait-active state, the primitive returns control to the
caller. The subject process will be placed on the ready-active queue when the exception
handler finishes processing the exception.

• If the subject process is in any of the suspended states (ready suspended, wait suspended,
or exception-wait suspended), it is made active and then treated as described above.

If the subject process does have a stop flag in effect and is not the caller, the STPC$ primitive
sets the process's stop-flag byte to TRUE and returns to the caller.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IST Invalid structure descriptor (index or name); no such process exists. (This error return

could be caused by an invalid PDB address.)

3-168 MACR0-11 Primitive Service Requests

3.60 TRLN$ (Translate Logical Name)
Pascal equivalent: TRANSLATE_LOGICAL_NAME Procedure

The Translate Logical Name (TRLN$) primitive allows the caller to obtain the translation value
defined for a given logical name. More precisely, the TRLN$ primitive returns the translation
string contained in the kernel data structure identified in the call to a specified user-buffer area.
Unlike most primitives that operate on existing kernel structures, the TRLN$ primitive performs
only one level of translation in the case of "nested" logical-name definitions; the immediate
translation value is always returned.

The caller supplies the logical name in a structure descriptor block (SDB) and specifies a buffer
area that is to receive the translation-string value. The caller also specifies a maximum length
for the returned string. On return from the primitive, the user's length parameter is modified
to reflect the actual length of the returned string. (A translation string can be up to 256 bytes
in length.)

The complementary Create Logical Name (CRLN$) primitive defines the translation value
associated with a logical name, and the Delete Logical Name (DLLN$) primitive eliminates the
translation value associated with a currently defined logical name.

Syntax

The three variants of the TRLN$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant Macro Call

TRLN$

TRLN$S

TRLN$P

TRLN$ [area,sdb ,string,lenptr]

TRLN$S [sdb,string,lenptr]

TRLN$P [sdb,string,lenptr]

area

sdb

The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of a user-constructed structure descriptor block (SDB) containing the logical
name to be translated. (See Section 3.1.5 for the format and use of an SDB.) This argument
has the form:

[SDB=]sdb-address

string

The address of a user-memory area that is to receive the ASCII character string defined
as the translation value for the logical name. (The effective maximum size of the area is
determined by the lenptr parameter.) This argument has the form:

[STRING=] area-address

MACR0-11 Primitive Service Requests 3-169

lenptr
The address of a word that specifies the maximum length in bytes of the character string to
be returned at the location pointed to by the string argument. The valid range of the length
value is 1 to 256(decimal). (Location lenptr is updated to reflect the actual string length.)
This argument has the form:

[LENPTR=]word-address

Restrictions

The locations specified by both the string and lenptr arguments must be in read/write memory.

Argument Block

The calling argument block generated (or assumed to exist) by the TRLN$x macro has the
following format:

RO-.. sdb

string

lenptr

Syntax Example

TRLN$S sdb=#LGNAME,string=#TRANS,lenptr=#MAXACT

Semantics.

(pointer)

(pointer)

(pointer)

ML0-476-87

The TRLN$ primitive verifies that the kernel data structure identified by the passed SOB is of
type ST.LNM (logical name) and tests the maximum length pointed to in the call for a value
at least equal to the length of the translation string. If no error is encountered, the primitive
copies the translation string contained in the kernel structure to the caller's buffer, places the
actual string length in location lenptr, and returns to the caller.

3-170 MACR0-11 Primitive Service Requests

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; string-buffer, length-pointer, or SDB address is not on a word

boundary or is not in the user's address space. (The addresses are checked only if
the CHECK option is selected in the configuration file.)

ES$IPM Illegal parameter; the specified maximum string length is less than the actual string
length.

ES$IST Invalid structure description (index or name); no such logical name exists. (This error
return could be caused by an erroneous SDB address if address checking is not in
effect.)

Implementation Notes

Since logical names are, by nature, often dynamically redefined and each redefinition can cause
a new logical-name structure to be created, the structure index contained in a "used" SDB for
a logical name could become obsolete between successive uses of the SDB. As a precautionary
measure, therefore, the structure index (first word) of the SDB should be cleared before each
translation call to prevent possible invalid results. (As explained in Section 3.1.5, the presence
of a nonzero structure index causes the reference by structure name to be bypassed in favor of
the faster reference by structure ID.) ·

MACR0-11 Primitive Service Requests 3-171

3.61 UMAP$ (Unmap Window)
Pascal equivalent: UNMAP_WJNDOW Procedure

The Unmap Window (UMAP$) primitive permits a process to reverse the effect of a prior
MAPW$ operation, disassociating a sequence of virtual addresses (the virtual 'window) from
the physical memory to which it was mapped. (The primitive is valid only in a mapped
environment.) More precisely, UMAP$ sets the APR(s) corresponding to a specified window
to inactive, or "no access," and modifies the calling process's mapping context to reflect the
availability of the APR(s) for subsequent remapping.

The caller identifies the window to be unmapped by supplying the base virtual address of
the window and a length to unmap. The address is presumably one previously returned by
the MAPW$ primitive. The MAPW$ primitive provides the complementary window-mapping
operation. An explicit unmapping operation is required between successive mapping operations
that remap a given window in "free" mode. If the "fixed" mode of MAPW$ operation is used
for the remapping, however, intervening UMAP$ calls are unnecessary.

Chapter 5 contains a general discussion of dynamic mapping, including the use of UMAP$ in
the context of the related primitives MAPW$, GMAP$, SCTX$, and RCTX$. The SCTX$ and
RCTX$ primitives provide additional support for mapping operations that involve "borrowing"
of one or more APRs.

Syntax

The three variants of the UMAP$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant

UMAP$

UMAP$S

UMAP$P

area

Macro Call

UMAP$ [area, wptr ,len,opt]

UMAP$S [wptr,len,opt]

UMAP$P [wptr,len,opt]

The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address

wptr

The address of a word in user memory (the window-pointer location) containing the virtual
address that identifies the window to be unmapped. Normally, the value in location wptr
is the value supplied by a prior MAPW$ call. This argument has the form:

[WPTR=]word-address

3-172 ~CR0-11 Primitive Service Requests

len

opt

An unsigned integer representing the length in bytes of the virtual window to be unmapped.
The len value effectively determines the number of APRs that are unmapped, or freed, by
the operation. This argument has the form:

[LEN=]integer

A predefined bit-mask symbol specifying an optional feature of the unmapping operation
for a target environment that supports I&D-space separation, such as an LSI-11 /73. (The
symbol value or default produces a bit-mask word in the calling argument block.) The
alternative option symbols, defined by the RIBDF$ macro, and their meaning are:

WD$INS-The operation modifies the process's instruction-space APR set or
WD$DAT-The operation modifies the process's data-space APR set; the default.

The option argument is meaningful only if I&D-space separation, possible in an LSI-11 /73
or similar target system, is in effect for the calling process. Otherwise, the argument value
is ignored. This argument has the form:

[OPT=] option-symbol

The argument may be null, implying the WD$DAT option default.

Restrictions

This primitive may be used only at process level; that is, it may not be called from an ISR fork
routine.

Argument Block

The calling argument block generated (or assumed to exist) by the UMAP$x macro has the
following format:

RO_.

Syntax Example

UMAP$S wptr=#WINDOW,len=#30000

WPTR address

length

option mask

(pointer)

(value)

(value)

ML0-477-87

This stack ($5) form of the macro call requests the unmapping of a 30000(octal)-byte (12KB)
window whose initial virtual address, or window pointer, is contained in location WINDOW. The
length value, corresponding to one and a half virtual pages, implies that two consecutive APRs
will be freed for subsequent reuse. (See the MAPW$ primitive description for the corresponding
window-mapping example.)

MACR0-11 Primitive Service Requests 3-173

Semantics

The UMAP$ primitive determines which APR(s) map the window identified in the request and
clears the corresponding PDR(s), effectively setting the access control field of the affected APR(s)
to "no access." The unmapping operation is performed on both the MMU hardware registers
and the corresponding locations in the mapping-context restore area associated with the caller's
PCB.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IPR Illegal primitive call; the primitive service was requested in an unmapped environ

ment.

3-174 MACR0-11 Primitive Service Requests

3.62 WAIA$ (Wait on Any Semaphore)
Pascal equivalent: WAIT_ANY Procedure

The Wait on Any Semaphore (WAIA$) primitive implements a complex form of the Wait on
Semaphore operation; see the WAIT$ and SGNL$ primitives for a description of the basic Wait
and Signal operations. WAIA$ performs the basic Wait operation on the logical OR of several
binary or counting semaphores, with an optional timeout feature. That is, WAIA$ permits the
calling process to test for and, if necessary, wait on a signal on any one of a set of binary or
counting semaphores. Up to four such semaphores may be specified in the primitive request. If
none of the specified semaphores can be immediately decremented, the calling process blocks
until any one of those semaphores is signaled and can be decremented on behalf of the calling
process. (The caller could be blocked behind other waiting processes on a given semaphore, of
course, although a multiple-waiter policy is unlikely, particularly in the case of complex-primitive
usage.)

Optionally, the Wait Any operation can be terminated because of the expiration of a time
interval specified in the request. On successful return from the operation (C bit clear), RO
will contain either an ordinal value identifying the semaphore that satisfied the request or a 0,
indicating that the request timed out.

Thus, the WAIA$ primitive allows a process to synchronize with any of up to four events, each
signaled by a separate process, for example. The primitive might also be used primarily for its
timeout capability, regardless of the number of semaphores involved.

If a zero time period (immediate timeout) is specified in the request, the WAIA$ primitive
provides a complex form of the Conditional Wait on Semaphore (WAIC$) operation, which
tests for a signaled semaphore but will not block the caller. See the WAIC$ primitive for a
description of the simple Conditional Wait operation.

Syntax

The three variants of the WAIA$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant

WAIA$

WAIA$S

WAIA$P

area

Macro Call

WAIA$ [area, time,sdb l ,sdb2,sdb3 ,sdb4]

WAIA$S [time,sdbl,sdb2,sdb3,sdb4]

WAIA$P [time,sdbl,sdb2,sdb3,sdb4]

The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address

time
The address of a 2-word user-memory location that specifies a timeout interval, expressed
in milliseconds. The first word of the double-precision integer contains the low-order
portion of the time value, and the second word (time+2) contains the high-order portion.

MACR0-11 Primitive Service Requests 3-175

An argument value of 0 implies no timeout for the request; the calling process may block
indefinitely. This argument has the form:

[TIME=]word-address or #0

If the address value is nonzero but the time value pointed to is zero, the request will be
timed out immediately if none of the specified semaphores can be decremented without
waiting. That is, the calling process will never block if the specified time interval is 0.

sdb-i
The address of a structure descriptor block (SDB) that identifies one of the semaphores to
be operated on. From one to four SDB addresses may be specified. The order in which
the SDBs are specified (or are identified if enumerated by keyword) determines the order
in which the corresponding semaphores are initially tested for a signal. (That order can be
critical under certain real-time conditions, as discussed under Implementation Notes below.)
The sdb-i arguments have the form:

[SDBi=]sdb-address

Where i may have the value 1 through 4 if the keyword form of argument is used.

Restrictions

The semaphore identified by a passed SDB must not be a queue semaphore. (Binary and
counting semaphores may be "intermixed" in the same request.)

The timeout value may not exceed (2**31)-1, the largest positive integer expressible in 32 bits.
That is, the .sign bit of the time-interval doubleword (bit 15 of the high-order word) must not
be set. (The maximum valid value, in milliseconds, permits a timeout period of just over 24.89
days; see the SLEP$ primitive for more detail.)

If the keyword form of macro call is used, higher-numbered sdb-i keywords may not be used
unless each of the lower-numbered sdb-i keywords is specified. That is, if the keyword sequence
contains SDB3=, for example, the sequence must also include SDBl= and SDB2=, though not
necessarily in numeric order.

Argument Block

The calling argument block generated (or assumed to exist) by the WAIA$x macro has the
following format:

RO__. time

number of SDBs

sdb1

sdb2

sdb3

sdb4

3-176 MACR0-11 Primitive Service Requests

The number of SOB-address
fields is variable and is
indicated by the value in
the second word of the block

ML0-478-87

Syntax Example
WAIA$ area=#WAARGS,time=#WAKEUP,sdb1=#HILIMT,sdb2=#LOLMIT

Semantics

The WAIA$ primitive tests each semaphore specified in the request for a gate-variable value
greater than 0. That is, the primitive tests for a semaphore that is "open" and that can be
decremented. (The semaphores are tested in the order in which they are identified in the call,
either by position or by keyword value.) If any of the semaphores· are open at the time of the
call, the primitive decrements the first open semaphore encountered and returns immediately
to the caller, with a nonzero value in RO. The RO value, an integer between 1 and 4, indicates
that the nth semaphore identified in the call was decremented.

If none of the semaphores is open and either no timer value or a nonzero timer value was
supplied in the call, the primitive switches the calling process to the wait-active state. In that
state, the process is blocked on all the semaphores specified in the request.

If none of the semaphores is open and a zero timer value was supplied in the call, the primitive
returns immediately to the caller, with a zero value in RO, indicating a timeout. (The calling
process thus never leaves the run state in the case of an immediate timeout.)

If the calling process switches to wait-active state, the process is blocked from execution until it
can be reactivated either by a signal on one of the blocking semaphores (see SGNL$ semantics)
or by elapse of the specified timeout period, if any, before a signal occurs. When reactivated for
either reason, the process is unblocked from all the semaphores and is switched to either the
ready-active or the run state, depending on relative process priorities. If unblocked because of
a signal, RO contains the ordinal value (from 1 to 4) of the semaphore that triggered the return,
as described above. If unblocked because of a timeout, RO contains a 0. In either case, the
user's C bit is cleared, distinguishing the value returned in RO from an error-return indication.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; timer-value pointer is an odd address or is not in the caller's address

space.

ES$IST Invalid structure description (index or name); no such binary or counting semaphore
exists. (This error return could be caused by an invalid SDB address.)

ES$IPM Illegal parameter; timer value out of range.

Implementation Notes

Since the initial test of the semaphores for a signal is performed in determinate order, the order
in which multiple semaphores are identified in the call can be critical under certain real-time
conditions. For example, if the relative frequency of signals is high for one of several binary
or counting semaphores and the "fast" semaphore is identified as being first, either by position
in the SDB sequence or by the keyword SDBl=, signals on that semaphore will tend to mask
off the others in a sequence of WAIA$ operations. Thus, the "slower" semaphores may seldom
or never be tested and acted on. Optimally, then, the semaphore with the highest expected
signal rate should be identified as last, the next highest as next to last, and so on, assuming
that probable relative frequencies can be determined. Alternatively, the order in which the

MACR0-11 Primitive Service Requests 3-177

semaphores are identified could be rotated in successive calls so that at least n semaphores are
guaranteed to be tested in n calls to WAIA$. The correct or best strategy is application specific.

3-178 MACR0-11 Primitive Service Requests

3.63 WAIC$ (Conditionally Wait on Semaphore)
Pascal equivalent: CONO_WAIT Function

The Conditional Wait on Semaphore (WAIC$) primitive decrements the value of a specified
binary or counting semaphore if its current value is nonzero, indicating a previous signal, and
returns to the caller, with the kernel-defined value TRUE in RO. If the semaphore has not been
signaled (current value is already 0) the primitive returns immediately to the caller, with the
kernel-defined value FALSE in RO. In no case is the calling process blocked, that is, made to
wait until the semaphore is signaled. (Compare with WAIT$, the unconditional form.)

This primitive permits the calling process to test for the arrival of a signal from another process
without blocking when no signal has occurred. That is, the calling process proceeds in any
case.

Syntax

The three variants of the WAIC$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant

WAIC$

WAIC$S

WAIC$P

area

Macro Call

WAIC$ [area,sdb]

WAIC$S [sdb]

WAIC$P [sdb]

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

sdb

[AREA=]arg-blk-address

The address of a structure descriptor block (SOB) that identifies the semaphore to be
conditionally decremented. (See Section 3.1.5 for the format and use of an SOB.) This
argument has the form:

[SDB=]sdb-address

Restrictions

The semaphore identified by the passed SOB must not be a queue semaphore.

MACR0-11 Primitive Service Requests 3-179

Argument Block

The calling argument block generated (or assumed to exist) by the WAIC$x macro has the
following format:

Syntax Example
WAIARG: WAIC$P sdb=BSEM

Ro---.. I sdb

ML0-479-87

This parameters-only ($P) form of the macro call creates a calling argument block at assembly
time, presumably in a pure-data program section, for run-time reference by means of a "WAIC$
AREA=WAIARG" form of call.

Semantics

. The WAIC$ primitive decrements the specified semaphore variable if its current value is greater
than 0 and returns to the caller, with the value TRUE in RO. If the semaphore value is already
0, the WAIC$ primitive returns immediately to the caller, with the value FALSE in RO. The
TRUE and FALSE symbol values are defined by the EXMSK$ macro in the COMM and COMU
libraries. Those values are 1 and 0, respectively, in the current version of MicroPower/Pascal.

The WAIC$ primitive is a "decrement open (currently signaled) semaphore only" function,
returning a successful/unsuccessful indication and never causing the caller to block. Therefore,
the primitive could be used, for example, in an ISR fork routine, which is prohibited from
blocking for any reason.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IST Invalid structure descriptor (index or name); no such binary or counting semaphore

exists. (This error return could be caused by an invalid SDB address.)

3-180 MACR0-11 Primitive Service Requests

3.64 WAIQ$ (Wait on Queue Semaphore)
Pascal equivalent: GET_p ACKET Procedure

The Wait on Queue Semaphore (WAIQ$) primitive tests the specified semaphore for an available
packet. If one is available, it is removed from the semaphore's packet queue, and a pointer to
the packet is returned to the caller. If no packet is available, the calling process is blocked on
the semaphore, awaiting a subsequent signal.

This primitive permits the calling process to receive a signal from another process that a data
packet it is dependent on is available, regardless of the order in which the Signal and Wait calls
occur. (Compare with WAQC$, the Conditional Wait on Queue call.)

A packet is a fixed-length system data structure allocated by the kernel from a special system
memory pool; see the ALPK$ and SGLQ$ primitives and Section 2.2.2. When no longer needed,
a packet obtained through a WAIQ$ request can be returned to the kernel (freed for reuse) by
means of the DAPK$ primitive.

In a mapped environment, general and device-access processes do not have direct access to
packet content, since they are not mapped to kernel data space. Such processes cannot fetch
data from a packet, for example. Therefore, if such a process needs to extract data from an
acquired packet rather than simply "pass along" the packet pointer to another process, it, must
use the RCVD$ primitive. RCVD$ is a higher-level primitive that provides a data-copying and
packet-deletion service in addition to the functionality of WAIQ$. (Use of RCVD$ presumes
that the packet content is of the torm defined by the SEND$ primitive, the higher-level version
of SGLQ$.)

The SGLQ$ call is the inverse of the WAIQ$ call.

Syntax

The three variants of the WAIQ$ macro and their respective macro calls are listed below. The
differences are described in Section 3.1.

Variant

WAIQ$

WAIQ$S

WAIQ$P

area

Macro Call

WAIQ$ [area,sdb,qelm]

WAIQ$S [sdb,qelm]

WAIQ$P [sdb]

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

sdb

[AREA=]arg-blk-address

The address of a structure descriptor block (SDB) that identifies the semaphore to be waited
on. (See Section 3.1.5 for the format and use of an SDB.) This argument has the form:

[SDB=]sdb-address

MACR0-11 Primitive Service Requests 3-181

qelm
The address of a location in which the packet address is to be returned by the primitive.
This argument may be null; otherwise, it has the form:

[QELM=]destination-address

If the qelm argument is null, the packet pointer returned by the primitive is available only in
the last word of the calling argument block. If the argument is null in the stack-($5) version
of the macro call, the returned pointer value is left on the stack. In the parameters-only ($P)
version of the macro call, no qelm argument is specified, and the returned pointer value is
available only in the last word of the calling argument block. (See the Restrictions section.)

Restrictions

The argument block mµst be in read/write memory.

You can use the parameters-only ($P) version of the macro call in a RAM-only system, provided
that you correctly access the queue element word in the argument block. However, you cannot
use the $P call in the RAM portion of a ROM/RAM system unless the argument values are
filled in at run time.

Argument Block

The calling argument block generated (or assumed to exist) by the WAIQ$x macro has the
following format:

RO-. I sdb I
..,.._ ___ -_-. -_-----t ._Default destination of

returned pointer value

ML0-480-87

Syntax Example
WAIQ$ area=#WARGS,qelm=#PKTPTR

Semantics

The WAIQ$ primitive tests the specified queue semaphore for an available packet. If at least one
packet is on the semaphore's packet queue, the primitive decrements the semaphore's counter
value, removes the first available packet from the queue, and returns the address of that packet
in the last word of the argument block. If requested (qelm argument), the macro expansion
moves the address to a user-specified location.

If no packets are on the semaphore's packet queue, the primitive blocks the calling process on
the semaphore and calls the scheduler. The process remains on the semaphore's waiting-process
list until unblocked by a signal of the semaphore, which places a packet on the queue.

3-182 MACR0-11 Primitive Service Requests

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IST Invalid structure descriptor (index or name); no such queue semaphore exists. (This

error return could be caused by an invalid SDB address.)

Applications

See the SGLQ$ description.

MACR0-11 Primitive Service Requests 3-183

3.65 WAIT$ (Wait on Semaphore)
Pascal equivalent: WAIT Procedure

The Wait on Semaphore (WAIT$) primitive attempts to decrement the value of a specified binary
or counting semaphore. If successful (the value was not already 0), the calling process proceeds.
If unsuccessful (the value was already 0), the. calling process is blocked; that is, made to wait
until the semaphore is signaled and can be decremented.

This primitive permits the calling process to receive a signal from another process that an event
it is dependent on has occurred. Or, viewing a binary semaphore as a gate that may be open
or shut, the Wait operation permits the calling process to "close the gate" behind itself with
a WAIT$ call before entering a critical section of code, subsequently opening the gate with a
SGNL$ call following execution of the critical section. A related process that at some point
depends on the former process not being in its· critical section can wait on the same semaphore
and then signal the semaphore on completion of its own critical section.

Together, the WAIT$ and SGNL$ calls allow two or more cooperating processes to implement
a variety of synchronization and mutual-exclusion mechanisms (see also WAIC$, SGLC$, and
SALL$).

Syntax

The three variants of the WAIT$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant

WAIT$

WAIT$S

WAIT$P

area

Macro Call

WAIT$ [area,sdb]

WAIT$S [sdb]

WAIT$P [sdb]

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

sdb
. The address of a structure descriptor block (SDB) that identifies the semaphore to be

decremented. (See Section 3.1.5 for the format and use of an SDB.) This argument has the
form:

[SDB=]sdb-address

Restrictions

The semaphore identified by the passed SDB must not be a queue semaphore.

3-184 MACR0-11 Primitive Service Requests

Argument Block

The calling argument block generated (or assumed to exist) by the WAIT$x macro has the
following format:

Syntax Example
WAIT$S sdb=#CSEM

Semantics

Ro~ (sdb

ML0-481-87

The Wait on Semaphore primitive decrements the semaphore variable if its current value is
greater than 0 and returns immediately to the caller. If the semaphore value is already 0,
the WAIT$ primitive switches the calling process to the wait-active state. In that state, the
process is blocked from execution until it can be reactivated by a subsequent signal (see SGNL$
semantics).

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IST Invalid structure descriptor (index or name); no such binary or counting semaphore

exists. (This error return could be caused by an invalid SDB address.)

MACR0-11 Primitive Service Requests 3-185

3.66 WAQA$ (Wait on Any Queue Semaphore)
Pascal equivalent: GET_p ACKET-ANY Procedure

The Wait on Any Queue Semaphore (WAQA$) pri111itive implements a complex form of the
Wait on Queue Semaphore operation; see the WAIQ$ 'and SGLQ$ primitives for a,.description of
the basic Wait and Signal operations on queue semaphores. WAQA$ performs the basic Wait,
or "get packet," operation on the logical OR of several queue semaphores, with an optional
timeout feature. That is, WAQA$ permits the calling process to test for and, if necessary, wait
on an available packet on any one of a set of queue semaphores. Up to four queue semaphores
may be specified in the primitive request. If no packet is available on any of the specified
semaphores, the calling process blocks until any one of those semaphores is signaled and can
provide a packet pointer for the calling process. (The caller could be blocked behind other
waiting processes on a given queue semaphore, of course, although a multiple-waiter policy is
unlikely, particularly in the case of complex-primitive usage.)

Optionally, the get-any-packet operation can be terminated because of the expiration of a time
interval specified in the request. On successful return from the operation (C bit clear), RO
will contain either an ordinal value identifying the semaphore that satisfied the request or a 0,
indicating that the request timed out.

Thus, the WAQA$ primitive allows a process to get a packet pointer from any of up to four
queue semaphores, each signaled by a different process, perhaps. T);le primitive might also be
used primarily for its timeout capability, regardless of the number of packet queues involved.

If a zero time period (immediate timeout) is specified in the request, the WAQA$ primitive
provides a complex form of the Conditional Wait on Queue Semaphore (WAQC$) operation,
which tests for an available packet but will not block the caller. See the WAQC$ primitive for
a description of the simple conditional-get-packet operation.

Syntax

The three variants of the WAQA$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant

WAQA$

WAQA$S

WAQA$P

area

Macro Call

WAQA$ [area,time,qelm,sdbl,sdb2,sdb3,sdb4]

WAQA$S [time,qelm,sdb l,sdb2,sdb3 ,sdb4]

WAQA$P [time,qelm,sdbl,sdb2,sdb3,sdb4]

The address of a user-memory location at which the calling argument block is to be
constructed (or found if already existent). This argument has the form:

[AREA=]arg-blk-address

time
The address of a 2-word user-memory location that specifies a timeout interval, expressed
in milliseconds. The first word of the double-precision integer contains the low-order
portion of the time value, and the second word (time+2) contains the high-order portion.

3-186 MACR0-11 Primitive Service Requests

An argument value of 0 implies no timeout for the request; the calling process may block
indefinitely. This argument has the form:

[TIME=]word-address or #0

If the address value is nonzero but the time value pointed to is 0, the request will be timed
out immediately if no packet is available on any of the specified semaphores when the
primitive is called. That is, the calling process will never block if the specified time interval
is 0.

qelm
The address of a location in which the packet address is to be returned by the primitive.
This argument may be null; otherwise, it has the form:

[QELM=]destination-address

If the argument is null, the packet pointer returned by the primitive is available only in the
second word of the argument block. If the argument is null in the stack ($5) version of the
macro call, the returned pointer value is left on the top of the stack (@SP).

sdb-i

The address of a structure descriptor block (SDB) that identifies one of the semaphores to
be operated on. From one to four SDB addresses may be specified. The order in which
the SDBs are specified (or are identified if enumerated by keyword) determines the order
in which the corresponding semaphores are initially tested for a signal. (That order can be
critical under certain real-time conditions, as discussed under Implementation Notes below.)
The sdb-i arguments have the form:

[SDBi=]sdb-address

The metavariable "i" may have the value 1 through 4 if the keyword form of argument is
used.

Restrictions

The argument block must be in read/write memory.

The time-out value may not exceed (2**31)-1, the largest positive integer expressible in 32 bits.
That is, the sign bit of the time-interval doubleword (bit 15 of the high-order word) must not
be set. The maximum valid value, in milliseconds, permits a time-out period of just over 24.89
days (see the SLEP$ primitive for more detail).

If the keyword form of macro call is used, higher-numbered sdb-i keywords may not be used
unless each of the lower-numbered sdb-i keywords is specified. That is, if the keyword sequence
contains SDB3=, for example, the sequence must also include SDBl= and SDB2=, though not
necessarily in numeric order.

MACR0-11 Primitive Service Requests 3-187

Argument Block

The calling argument block generated (or assumed to exist) by the WAQA$x macro has the
following format:

RO-. time

number of SDBs

sdb1

sdb2

sdb3

sdb4

Syntax Example

WAQA$S #O,,#UN3RDY,#UN1RDY,#UN2RDY

..-Default destination of
returned pointer value

The number of SOB-address
fields is variable and is
indicated by the value in
the second word of the block

ML0-482-87

This example shows the stack version of the call with a zero time argument, a null qelm
argument, a~d three SBD addresses. (The request will not be timed out.) The argument block
is generated on the stack, and in this case, all fields but qelm are purged on return. The packet
pointer returned by the primitive will be available on the top of the stack (@SP) following the
call.

Semantics

The WAQA$ primitive tests each semaphore specified in the request for an available queue
element, or message packet. (The semaphores are tested in the order in which they are
identified in the call, either by position or by keyword value.) If any of the semaphores has
a packet at the time of the call, the primitive dequeues a packet pointer from the first such
semaphore encountered and returns it immediately to the caller, with a nonzero value in RO.
The RO value, an integer between 1 and 4, indicates that the nth semaphore identified in the call
satisfied the request. (The pointer is returned in a manner determined by the form of request
used; see Syntax.)

If none of the semaphores has a packet and either no timer value or a nonzero timer value was
supplied in the call, the primitive switches the calling process to the wait-active state. In that
state, the process is blocked on all the semaphores specified in the request.

If none of the semaphores has a packet and a zero timer value was supplied in the call, the
primitive returns immediately to the caller, with a zero value in RO, indicating a timeout. Thus,
the calling process never leaves the run state in the case of an immediate timeout.

3-188 MACR0-11 Primitive Service Requests

If the calling process switches to wait-active state, it is blocked from execution until it can
be reactivated either by a packet becoming available on one of the blocking semaphores (see
SGLQ$ semantics) or by elapse of the specified time-out period, if any. When reactivated for
either reason, the process is unblocked from all the semaphores and is switched to either the
ready-active or the run state, depending on relative process priorities. If unblocked because of
an available packet, RO contains the ordinal value (from 1 to 4) of the semaphore that triggered
the return, as previously described. If unblocked because of a timeout, RO contains a 0. In either
case, the user's C bit is cleared, distinguishing the value returned in RO from an error-return
indication.

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception codes that
may be returned by the primitive are:
ES$IAD Invalid address; timer-value pointer is an odd address.

ES$IST Invalid structure description (index or name); no such queue semaphore exists. (This
error return could be caused by an invalid SDB address.)

ES$IPM Illegal parameter; timer value out of range.

Implementation Notes

Since the initial test of the semaphores for an available packet is performed in determinate
order, the order in which multiple semaphores are identified in the call can be critical under
certain real-time conditions. For example, if the relative frequency of signals or sends is high
for one of several queue semaphores and the "fast" semaphore is identified as being first, either
by position in the SDB sequence or by the keyword SDBl=, that semaphore will tend to mask
off the others in a sequence of WAQA$ operations. Thus, the "slower" semaphores may seldom
or never be tested and serviced. Optimally, then, the semaphore with the highest expected
signal rate should be identified as last, the next highest as next to last, and so on, assuming
that probable relative frequencies can be determined. Alternatively, the order in which the
semaphores are identified could be rotated in successive calls so that at least n semaphores are
guaranteed to be tested inn calls to WAQA$. The correct or best strategy is application specific.

MACR0-11 Primitive Service Requests 3-189

3.67 WAQC$ (Conditional Wait on Queue Semaphore)
Pascal equivalent: COND_GETJ ACKET Function

The Conditional Wait on Queue Semaphore (WAQC$) primitive tests the specified semaphore for
an available packet. If one is available, the primitive removes the packet from the semaphore's
packet queue, returns the packet pointer to the caller, and returns the kernel-defined value
TRUE (1) in RO. If no packet is available, the primitive returns immediately to the caller, with
the kernel-defined value FALSE (0) in RO.

This primitive permits the calling process to receive a signal from another process that a data
packet is available but without blocking on the semaphore if the signal has not already occurred.
(Compare with WAIQ$, the unconditional Wait on Queue call.)

See the SGLQ$ primitive and Section 2.2.2 for a description of queue packets. When no longer
needed, a packet obtained through a WAQC$ request can be returned to the kernel (freed for
reuse) by means of the DAPK$ primitive.

In a mapped environment, general and device-access processes do not have direct access to
packet content, since they are not mapped to kernel data space. Such processes cannot fetch data
from a packet, for example. Therefore, if such a process needs to extract data from an acquired
packet, it must use the corresponding RCVC$ primitive. RCVC$ is a higher-level primitive that
provides a data-copying and packet-deletion service in addition to the functionality of WAQC$.
(Use of RCVC$ presumes that the packet content is of the form defined by the SEND$ primitive,
the higher-level version of SGLQ$.)

The inverse of the WAQC$ call is the SGQC$ call.

Syntax

The three variants of the WAQC$ macro and their respective macro calls are listed below. The
differences are described in Section 3 .1.

Variant Macro Call

WAQC$

WAQC$S

WAQC$P

WAQC$ [area,sdb,qelm]

WAQC$S [sdb,qelm]

WAQC$P [sdb]

area

sdb

The address of a user-memory area in which the calling argument block is to be constructed
(or found if already existent). This argument has the form:

[AREA=]arg-blk-address

The address of a structure descriptor block (SDB) that identifies the semaphore to be tested.
(See Section 3.1.5 for the format and use of an SDB.) This argument has the form:

[SDB=]sdb-address

3-190 MACR0-11 Primitive Service Requests

qelm
The address of a location in which the packet address is to be returned by the primitive.
This argument has the form:

[QELM=]destination-address

or, it may be null.

If the qelm argument is null, the packet pointer returned by the primitive is available only in
the last word of the calling argument block. If the argument is null in the stack ($S) version
of the macro call, the returned pointer value is left on the stack. In the parameters-only ($P)
version of the macro call, no qelm argument is specified, and the returned pointer value is
available only in the last word of the calling argument block. (See the Restrictions section.)

Restrictions

The argument block must be in read/write memory.

You can use the parameters-only ($P) version of the macro call in a RAM-only system, provided
that you correctly access the queue element word in the argument block. However, you cannot
use the $P call in the RAM portion of a ROM/RAM system unless the argument values are
filled in at run time.

Argument .Block

The calling argument block generated (or assu.med to exist) by the WAQC$x macro has the
following format:

RO-.. I sdb I
.... -----.-_-_----1,.Default destination of

returned packet pointer

ML0-483-87

Syntax Example

WAQC$S sdb=#QSEM,qelm=R3

Semantics

The WAQC$ primitive tests the specified queue semaphore for an available packet. If at least one
packet :fs on the semaphore queue, the primitive dequeues the first available packet, decrements
the semaphore's counter value, and returns the address of that packet in the last word of the
argument block. If requested (qelm argument), the macro expansion moves the packet pointer
from the argument block to a user-specified location. The primitive also returns the value TRUE
in RO, signifying that a packet was obtained.

If no packets are on the semaphore queue, the primitive returns to the caller, with the value
FALSE in RO, signifying that no packet was obtained. The TRUE and FALSE symbol values are
defined by the EXMSK$ macro in the COMM and COMU libraries. Those values are 1 and 0,
respectively, in the current version of MicroPower/Pascal.

MACR0-11 Primitive Service Requests 3-191

Error Returns

See Section 3.1.4 for general information about error returns. The specific exception code that
may be returned by the primitive is:
ES$IST Invalid structure descriptor (index or name); no such queue semaphore exists. (This

error return could be caused by an invalid SDB address.)

3-192 MACR0-11 Primitive Service Requests

Chapter 4
System Configuration Macros

The first step in building a new application image for a given target system is to create a system
configuration file. That file must contain the configuration macro calls needed to describe
the target system hardware and to specify the kernel software parameters desired for your
specific application. (Often you can create a suitable configuration file by modifying one of the
configuration files included in the distributed MicroPower/Pascal software.) In the kernel-build
phase of application building, you assemble the configuration file with the COMM or COMU
macro library and merge the resulting object module with the P AXM or P AXU kernel object
library to produce a "tailored" kernel object module. The entire process of application building
is described in the MicroPower/Pascal system user's guide for your host system.

Table 4-1 summarizes the basic functions of the configuration macros from the user's viewpoint.

Table 4-1: Connguration Macro Functions

Macro Function

CONFIGURATION Identifies the file as a system configuration file; mandatory, must be the
first macro invoked in the file.

SYSTEM

PROCESSOR

MEMORY

DEVICES

FALCON

Determines whether the kernel should be optimized as specified by optional
RESOURCES, PRIMITIVES, and TRAPS macro calls and whether the
kernel should include the debugger service module; mandatory, must
be invoked as the second macro in the file.

Describes the type of target processor and some of its hardware character
istics; mandatory, must be invoked as the third macro in the file.

Describes the location, size, and characteristics of a uniform segment of
target memory; mandatory, may be invoked more than once.

Specifies the set of I/O interrupt vectors used in the target system (six
vectors in each call); mandatory, may be invoked more than once.

Describes hardware characteristics and the trap-handling options that are
specific to an SBC-11/21 (FALCON or FALCON-PLUS) target.

·System Configuration Macros · 4-1

Table 4-1 (Cont.): Configuration Macro Functions

Macro

KXTllC

KXJllC

RESOURCES

PRIMITIVES

TRAPS

LOGICAL

ENDCFG

Function

Describes hardware characteristics and the trap-handling options that are
specific to a KXTl 1-CA target.

Describes hardware characteristics and the trap-handling options that are
specific to a KXJl 1-CA target.

Specifies the amount of RAM memory to be allocated to the kernel for
its stack, for message packets, and for dynamic data structures; may be
defaulted.

Specifies the set of primitive service modules to be included in the kernel;
may be defaulted; may be invoked more than once.

Specifies trap processors to be included in the kernel (eight traps in each
call); may be defaulted; may be invoked more than once.

Declares a logical name and its translation string; optional; may be invoked
more than once.

Ends the system configuration file; mandatory, must be the last macro in
the file.

The remainder of this chapter discusses the general functions of a configuration file, describes
several prototype configuration files, and describes the individual configuration macros in detail.

4. 1 Functions of the Configuration File
A system configuration file has several interlocking functions:

• Provides hardware configuration information about the target system for use by the kernel
and the build utility programs

• Supplies the application-specific information required for configuring the kernel

• Generates the global symbol references that "pull" all the kernel modules needed by a
particular application from the kernel object module library (P AXM or P AXU)

The hardware and kernel-software configuration information includes the following:

• The type of target processor and its hardware options-described by the PROCESSOR
macro and, possibly, the FALCON, KXTl lC, or KXJllC macro

• The target memory configuration-described by MEMORY macros

• The interrupt vector locations used by all devices installed on the target system-specified
by DEVICES macros

• The need for a debugger service module to be included in the kernel image (used by
P ASDBG)-specified by the SYSTEM macro

• The trap-processing modules to be included in the kernel-implied or specified by any of
the SYSTEM, PROCESSOR, MEMORY, FALCON, KXTllC, KXJllC, and TRAPS macros

4-2 System Configuration Macros

• The amount of read/write memory to be allocated in the kernel's impure area for its stack,
for message packets, and for dynamic data structures-implied by the SYSTEM macro or
specified by the RESOURCES macro

• The primitive service modules to be included in the kernel-implied by the SYSTEM macro
or specified by the PRIMITIVES macro

Six configuration macros must be included in any configuration file; the other macros are used as
needed. The first three macros in the file must appear in the following order: CONFIGURATION,
SYSTEM, and PROCESSOR; and the last macro must be ENDCFG. You must also include the
MEMORY and DEVICES macros. In summary, the configuration file must contain at least the
following macros:

CONFIGURATION
SYSTEM
PROCESSOR
MEMORY
DEVICES
ENDCFG

In addition, if the processor type is FALC or FALCPLUS, you must include the FALCON macro
in the file. Similarly, if the processor type is KXTl lC or KXJl lC, you must include, respectively,
the KXTl 1 C or KXJll C macro in the file. You may or may not need the RESOURCES,
PRIMITIVES, and TRAPS macros, depending on an option specified in the SYSTEM macro.
You only need one or more LOGICAL macros if you are defining logical names at build time.

4.2 Prototype Configuration Files CFDxxx.MAC
The MicroPower /Pascal distribution kit includes configuration files that are used for software
installation verification. Such files have names of the form CFDxxx.MAC and are as follows:

• CFDCMR.MAC for a CMR21 target with 32KB of RAM

• CFDFAL.MAC for a FALCON target with 32KB of RAM and the KXT11-A2 firmware

• CFDFPL.MAC for a FALCON-PLUS target with 32KB of RAM and the KXTl 1-AS firmware

e CFDKJU.MAC for an unmapped KXJll-CA target with 56KB of RAM

• CFDKTC.MAC for a KXTl 1-CA target with 32KB of native RAM (map 0)

• CFDMAP.MAC for a mapped LSl-11/23 target with 64KB of RAM

• CFDUNM.MAC for any unmapped LSI-11 target with 32KB of RAM

Each of the files assumes a hardware configuration that will allow the minimal CARS3 application
image example to be loaded under P ASDBG and, wherever possible, assumes the factory
standard settings for configurable options. Any of the files can be used as a prototype, or editing
base, for development of a configuration file for a real application. A copy of CFDFPL.MAC
might be modified, for example, to develop a "tailored" configuration file for.a FALCON-PLUS
application. After you familiarize yourself with each of the configuration macros that applies
to your type of target system, inspect the relevant CFDxxx.MAC file to see how it needs to be
modified for your target and application.

System Configuration Macros 4-3

Note
In MACR0-11 assembly language notation, a number in the source code
representing a decimal integer value must be terminated by a decimal point.
MACR0-11 interprets numbers not ending with a decimal point as octal values.
Also, angle brackets are used instead of parentheses to delimit an expression.

4.3 Configuration Macro Calls
The configuration macro calls are defined in alphabetical order in the following sections.

Note
In the descriptive text, all numeric values except addresses are expressed in
decimal unless otherwise indicated. Addresses are expressed in octal. In the
macro syntax definitions and examples, however, MACR0-11 notation rules
apply: decimal numbers end with a decimal point; octal numbers do not.

4.3. l CONFIGURATION Macro
The CONFIGURATION macro initializes a configuration file. (A .MCALL CONFIGURATION
directive is needed preceding the CONFIGURATION call, but no .MCALL directives are required
for the other configuration macros.) The macro takes one optional argument, name, which
generates a .!DENT directive for the configuration file. (The .IDENT directive is an assembler
directive that produces a version-identifier record in the resulting object module.)

The CONFIGURATION macro must be the first macro invoked in a configuration file.

Syntax

CONFIGURATION [name]

Arguments

name
An identifier of up to six characters, each of which must be a valid RADSO character
(uppercase alphabetics and numerics only). If you do not specify the argument, no .IDENT
statement is generated, and the MERGE utility defaults the version identifier of the merged
object module to the first such identifier it finds in the modules being merged from the
kernel library.

Example

CONFIGURATION KRNV05

4.3.2 DEVICES Macro

The DEVICES macro defines the set of 1/0 interrupt vectors used by devices installed on the
target system. You can specify up to six vectors in each statement.

Interrupt vectors are locations in low memory that contain the address of a device's interrupt
dispatch block (IDB) and the new processor status word. Each device must be installed so that
it interrupts at one of the specified vector addresses.

4-4 System Configuration Macros

The DEVICES macro allocates a unique IDB for each vector specified in the macro. Since a
vector may be in ROM, the vector must permanently point to its IDB, through which the kernel
dispatches interrupts to interrupt service routines (ISRs). In order to permit run-time connection
of ISRs to interrupts, IDBs therefore must be allocated in RAM, and such allocation must be
done during the build procedure. See Chapter 7 for a full description of IDBs and interrupt
dispatching. If a vector is specified in DEVICES but is not used by the application, some
memory space is wasted because of the unneeded IDB.

Note
When building an all-RAM application image with debugging support, you do
not need to specify the console-terminal vector addresses, 60 and 64, which are
used by the debugger's host-to-target serial line. The DSM and PASDBG will
preempt those vectors when the application begins execution, whether or not
they are specified in DEVICES.

Syntax

DEVICES vl,v2, ... v6

Arguments

vn
The address of the first word of each vector used by the application. You can specify up to
six addresses in each DEVICES macro and can use as many DEVICES calls as needed. The
minimum allowable vector address is 0; the maximum allowable vector address is 1000 for
an LSI-family or J11-based processor (other than a KXJ11-CA) and 400 for an SBC-11/21,
KXTl 1-CA, KXJ11-CA, or CMR21 processor. See also the discussion of the PROCESSOR
macro.

Example

DEVICES 60,64,100,300,310,320

4.3.3 ENDCFG Macro

The ENDCFG macro terminates a system configuration file. (The macro performs various error
checks and other implicit functions.) ENDCFG must be the last macro invoked in a configuration
file.

Syntax

ENDCFG

System Configuration Macros 4-5

4.3.4 FALCON Macro
The FALCON macro must be used in a configuration file for an SBC-11/21 FALCON or
FALCON-PLUS target if the FALC or FALCPLUS processor type is specified in the PROCESSOR
macro. The FALCON macro has the following functions:

• Describes how interrupt vector 140 is configured on the processor board-whether an SLUl
break (bus BHAL T) signal or a nonexistent-memory/ timeout (NXM) error causes a level-7
trap through 140. The board can be jumpered to select either action for a MicroPower/Pascal
application; the break trap to vector 140 is the standard factory configuration, with the NXM
condition trapping to the restart address.

• Selects the action to be taken by the kernel for an SLUl break and, by implication, for a
HALT instruction. The range of possibilities for break handling depends on the· vector 140
configuration.

For a MicroPower /Pascal application, the hardware configuration for break signals and NXM
errors is assumed to be either the factory standard or its exact opposite.

For either configuration, the possible options for break handling include a transfer to ROM
ODT or a transfer to software ODT, with HALTs also transferring to ODT. If a break traps to
140, the additional possibilities for break handling are an ES$BRK exception or a "no action"
response-an immediate return from the trap (IGNORE)-with HAL Ts causing a processor
"hang" (BR . instruction loop). If an NXM ,error traps to 140, the additional possibility for break
handling is a processor hang, with HAL Ts also causing a hang.

In any case, an NXM error results in a simulated ES$BUS (trap to 4) exception, of type EX$MEM.

Syntax

FALCON trap140= { BHALT
NXM

Arguments

trap140=

l ROMODT l SFWODT
} , break= EXCEPTION

IGNORE
HANG

TRAP140=BHALT specifies that a BHALT bus signal, whether generated by the BREAK key
on a terminal connected to SLUl or asserted by an LSl-11 bus (Q-bus) device, will cause a
level-7 trap through vector 140 and that NXM will trap to the restart address.

TRAP140=NXM specifies that a nonexistent-memory /timeout error will cause a level-7 trap
through vector 140 and that a break will trap to the restart address.

The default is TRAP140=BHALT.

break=
BREAK=ROMODT selects a transfer to ROM ODT as the action to be taken by the hardware
or the kernel for a break condition, implying that a Macro-ODT ROM chip set (KXT11-A2
or KXTl 1-AS option) is properly installed on the target processor. Note that this option
also implies that a HALT instruction causes a transfer to ROM ODT.

4-6 System Configuration Macros

BREAK=SFWODT selects a transfer to software ODT as the action to be taken by the kernel
for a break condition and causes the optional software module FALODT to be included in
the kernel. The FALODT module implements. an ODT command set that is very similar
to Macro-ODT; see the MicroPower/Pascal installation guide for your host system. The
module occupies approximately 666 bytes of ROM and on a FALCON-PLUS target uses
128 bytes of additional kernel RAM allocated by this option. Note that this option also
implies that a HALT instruction causes a transfer to software ODT.

Note
If you select the BREAK=SFWODT option, you must also select the proper
baud rate for the console line by editing the configuration file for the
FALCON (CFDFAL.MAC) or FALCON-PLUS (CFDFPL.MAC). Instructions
are provided in those files.

BREAK=EXCEPTION requests that the kernel raise an ES$BRK exception, of type EX$EXC,
for a break trap and implies that a HALT instruction will cause the processor to hang (valid
only if trap140=BHALT).

BREAK=IGNORE requests that a break trap be ignored, that is, result in an immediate
resumption of normal execution, and implies that a HALT instruction will cause the processor
to hang (valid only if trap140=BHALT).

BREAK=i-IANG requests that a break condition will cause the processor to hang and implies
that a HALT instruction will also cause the processor to hang (valid only if trap140=NXM).

The default is BREAK=ROMODT.

Restrictions

Because MicroPower/Pascal requires that some ROM in lowest memory in any ROM/RAM
target system must be other than a CMR21, the FALCON-PLUS memory map 3 configuration
is not supported.

The break=SFWODT option is applicable only to a ROM/RAM target when it is desirable to
retain some console-debugging capability in the PROMed kernel.

Hardware Configuration Assumptions

If the target is RAM-only except for the mandatory Macro-ODT /bootstrap ROM chip set, the
starting address must be either 172000 or 173000 for appliq1tions to be loaded by P ASDBG or
booted stand-alone from a target device. (Start-up at 173000 implies a bus reset and a delay
prior to teinitialization on a restart; start-up at 172000 does not.)

If the target is ROM/RAM, the starting address must be 0 for start-:up and restart in the kernel.

Example

FALCON TRAP140=BHALT, BREAK=EXCEPTION

System Configuration Macros 4-7

4.3.5 KXJ 11 C Macro

The KXJl 1 C macro must be used in a configuration file for a KXJl 1-CA peripheral processor
or stand-alone target if the KXJllC processor type is specified in the PROCESSOR macro. The
KXJl 1 C macro has the following functions:

• Specifies the action to be taken by the kernel for a BHALT signal on the Q-bus, primarily
to facilitate an arbiter/slave debugging situation

• Specifies the action to be taken by the kernel for a BINIT (bus reset) signal on the Q-bus

• Implies special interrupt dispatching for the multiprotocol SLU2 vector

Syntax

KXJl 1 C bhalt= { YES
NO

Arguments

bhalt=

IGNORE }
BOOT
RSTBOT
INTRPT

BHALT=YES specifies that a BHAL T signal on the Q-bus, asserted by the arbiter processor,
will cause a trap that is directed by the powerup module to kernel location $KXJDB. Location
$KXJDB contains an RTS PC instruction, and you can set a P ASDBG breakpoint there while
debugging to effect a "debug trap" for Q-bus halts. (If no breakpoint is set, the trap has no
observable effect; it is dismissed immediately.)

BHAL T=NO specifies that a BHAL T signal on the Q-bus will not be enabled to cause a trap
and will be ignored by the KXJll-CA.

The default is BHALT=NO.

reset=
RESET=option indicates the action to be taken in the event of a reset signal on the Q-bus:

• IGNORE-Q-bus resets are to be ignored.

• BOOT-Q-bus resets are to cause a KXJll-CA powerup.

• RSTBOT-Q-bus resets are to cause a KXJll-CA reset and then a powerup.

• INTRPT-Q-bus resets are to cause a simulated hardware interrupt through vector
220. You can connect an ISR to the interrupt and do any processing needed by the
application. When finished, you can resume application execution by exiting from the
interrupt service routine with an RTS PC instruction. Alternatively, you can restart the
application by branching to location $KXJPC.

The default is RESET=IGNORE.

4-8 System Configuration Macros

The KXJl 1 C macro also causes a special interrupt dispatching module .(KSLU2) to be included
in the kernel. The module effectively "splits" the standard multiprotocol-chip SLU2 vector into
four separate pseudovectors for each channel. The emulated vectors for SLU2 device interrupts
are the following:

• 140-Channel A receive character interrupt

• 144-Channel A transmit character interrupt

• 150-Channel A receive error interrupt

• 154-Channel A modem control interrupt

• 160-Channel B receive character interrupt

• 164-Channel B transmit character interrupt

• 170-Channel B receive error interrupt

• 17 4-Channel B modem control interrupt

The TT, DD, and XS drivers depend on those pseudovectors and should therefore be specified
in the DEVICES macro instead of vector 70 if SLU2 channel A or Bis used.

4.3.6 KXTl 1 C Macro
The KXTllC macro must be used in a configuration file for a KXTll-CA peripheral processor
or stand-alone target if the KXTl lC processor type is specified in the PROCESSOR macro. The
KXTl 1 C macro has the following functions:

• Specifies the action to be taken by the kernel for a BHALT signal on the Q-bus, primarily
to facilitate an arbiter/slave debugging situation

• Specifies the action to be taken by the kernel for a BINIT (bus reset) signal on the Q-bus

• Describes the target's memory map configuration

• Implies special interrupt dispatching for the multiprotocol SLU2 vector

Syntax

KXTl 1 C bhalt= { ~i

Arguments

bhalt=

} , reset- {

IGNORE
BOOT
RSTBOT
INTRPT

BHAL T=YES specifies that a BHAL T signal on the Q-bus, asserted by the arbiter processor,
will cause a trap that is directed by the powerup module to kernel location $KXTDB.
Location $KXTDB contains an RTS PC instruction, and you can set a P ASDBG breakpoint
there while debugging to effect a "debug trap" for Q-bus halts. (If no breakpoint is set, the
trap has no observable effect; it is dismissed immed~ately.)

BHAL T=NO specifies· that a BHAL T signal on the Q-bus will not be enabled to cause a trap
and will be ignored by the KXTl 1-CA.

The default is BHALT=NO.

System Configuration Macros 4-9

reset=
RESET=option indicates the action to be taken in the event of a reset signal on the Q-bus:

• IGNORE-Q-bus resets are to be ignored.

• BOOT-Q-bus resets are to cause a KXTll-CA powerup .

• RSTBOT-Q-bus resets are to cause a KXTl 1-CA reset and then a powerup .

• INTRPT-Q-bus resets are to cause a simulated hardware interrupt through vector
220. You can connect an ISR to the interrupt and do any processing needed by the
application. When finished, you can resume application execution by exiting from the
interrupt service routine with an RTS PC instruction. Alternatively, you can restart the
application by branching to location $KXTPU.

The default is IGNORE.

map=n
MAP=n describes the KXTl 1-CA memory map configuration. The map parameter, n, must
be an integer between 0 and 7 that corresponds to the memory-map jumper settings on the
KXTl 1-CA. The default is 0. By implication, the parameter indicates the location of the
high-order 64 bytes of native RAM that will be used by firmware. (Those last 64 bytes of
native RAM must not be described in the MEMORY macro for that RAM segment.)

Note
The functionality of the POWER argument in earlier versions of the KXTl 1 C
macro, and more specifically of the POWER=NONVOL option, has been shifted
to the VOLATILE argument of the MEMORY macro in MicroPower/Pascal V2.0
and later versions. If the VOLATILE=NO option is specified in the MEMORY
macro for a RAM memory segment, warm-restart capability is included in the
kernel, as described under the MEMORY macro. See also the PWFL$ primitive
description in Chapter 3 for more discussion of warm restarts, as well as the
special rules at the end of Section 4.3.7 about debugging a KXTl 1-CA target
declared as having nonvolatile RAM.

The KXTl 1 C macro also causes a special interrupt dispatching module (KSLU2) to be included
in the kernel. The module effectively "splits" the standard multiprotocol-chip SLU2 vector into
four separate pseudovectors for each channel. The emulated vectors for SLU2 device interrupts
are the following:

•
•
•
•
•
•
•
•

140-Channel A receive character interrupt

144-Channel A transmit character interrupt

150-Channel A receive error interrupt

154~Channel A modem control interrupt

160-Channel B receive character interrupt

164-Channel B transmit character interrupt

170-Channel B receive error interrupt

17 4-Channel B modem control interrupt

4-10 System Configuration Macros

The TT, DD, and XS drivers depend on those pseudovectors and should therefore be specified
in the DEVICES macro instead of vector 70 if SLU2 channel A or B is used.

4.3.7 LOGICAL Macro

The LOGICAL macro specifies a build-time logical name and its translation string. At run time,
the kernel will create the logical names, if any, specified in the configuration file before any
static process is started. Thus, the LOGICAL macro facilitates the use of logical names that are
determined at build time in the initialization code of static processes.

The LOGICAL macro may be invoked as many times as needed.

Syntax

LOGICAL name=xxxxxx, string=yyyyyyyyyy

Arguments

name=XXXXXX
A logicaf name of up to six ASCII characters that is to be associated at run time with
the translation value specified by the string argument. (By system convention, a logical
name-like all run-time structure names-is normally six characters in le_ngth and is padded
with trailing space characters if it contains fewer than six printing characters.) Logical names
and translation strings are case sensitive.

strinQ=YYYYYYYYYY
The ASCII translation string for the logical name.

Examples

LOGICAL <DK >, <DUA1 >

LOGICAL MYLINE, <TTA2 >

LOGICAL <PIPE >, <RBUF3 >

LOGICAL REMNOD, <5.111 >

4.3.8 MEMORY Macro

;For I/O system (ACP)

;For I/0 system (A~P)

;Logical to structure name

;For DECnet communications (NSP)

The set of MEMORY macros included in a configuration file initializes the kernel's memory
configuration table, which is also used by the MIB utility in building the memory image file.
A given ·MEMORY macro invocation describes the origin, size, type, and· characteristics of one
continuous segment of memory in the target system. You use the MEMORY macro once for
each noncontiguous segment of memory and/ or once for each meinory segment that differs
from a neighboring segment in type or characteristics. You can also use the MEMORY macro
to reserve and name a segment of memory that is not to be allocated to any static process
but that will be dynamically accessible to several processes as a physical shared region. For
example, you might use this optional feature of the macro to reserve for shared access the area
of memory associated with a bit-mapped-graphics controller board. See the ACSR$ primitive
description in Chapter 3 and the discussion of shared regions in Chapter 7.

System Configuration Macros 4-11

Note
The MEMORY macro can be specified a maximum of 168 times in a configuration
file.

To describe your target memory, you need to know the following specifics:

• The type of memory (ROM or RAM) assigned to a given range of addresses

• The base of that memory segment in 64-byte address units

• The size of the segment in 64-byte increments

• The presence or absence of memory parity checking

• The volatile or nonvolatile characteristic of the segment if it is RAM

If you specify memory parity checking for any memory segment, the MPT trap handler is
automatically included in the kernel. The MPT handler raises an ES$MPT exception condition
for any memory parity error.

If you describe one or more RAM segments as nonvolatile (implemented with battery backup),
a special warm-restart module is included in the kernel to inhibit the standard reinitialization of
user data areas on a restart with respect to data located in a nonvolatile RAM segment. Warm
restart is intended to support user-implemented data recovery across power failures; see the
PWFL$ primitive in Chapter 3 and the debugging considerations described at the end of this
section.

Syntax

Note
In a KXTl 1-CA target system, the last two words of native RAM are used for
power-failure flags, and the 60 bytes before that are used by native firmware.
Therefore, the highest 64-byte unit of native RAM must not be included in the
size specified in the MEMORY macro for that segment.

In a KXJl 1-CA target system, the addresses 157600(8) to 157777(8) are used for
the native firmware stack on powerup. Therefore, these addresses should not be
specified in any memory macros. See the files CFDKJU.MAC and CFDKJJ.MAC.

MEMORY base=mmmmm, size=nnnnn, type= { ~~~ } , parity= { ~~ } ,

[csr=addr), volatile= { ~~ } [,res= { ~~ } , name=aaaaaa]

Arguments

bas8=mmmmm
Specifies the base address of the memory segment divided by 100 if expressed in o(:tal or
by 64 if expressed in decimal. Default is 0.

slz8=nnnnn
Specifies the size of the memory segment, expressed as the number of 64-byte units in the
segment. Thus, an SK-byte segment size would be specified as 200 in octal (20000 /100) or
as 128 in decimal (8192/64).

4-12 System Configuration Macros

type=
Identifies the type of memory segment: ROM or RAM. The default type is RAM.

parity=
Specifies whether the memory segment is parity checked. The default is NO.

csr=addr
Specifies the address of the control and status register (CSR) associated with parity checking
of the memory segment. The value of this argument is meaningful only if parity=YES.
Otherwise, the argument should be null.

volatile=
Describes a RAM memory segment as being either volatile or nonvolatile with respect to
interruption of the normal power supply. Specify volatile=NO if the memory segment is
provided with battery backup or is to be treated by the kernel as if it were nonvolatile
for debugging purposes. (Recovery from a power failure can be at least partially tested by
"faking" nonvolatile RAM and simulating power failures with !NIT/RESTART commands
while running an application under the P ASDBG symbolic debugger.) Special debugging
rules for an application described as having nonvolatile RAM are given at the end of this
section.

res=

The default is VOLATILE=YES, and the argument value is not meaningful for a ROM
segment.

Specifies whether the segment is to be reserved for run-time shared access. If res=YES, the
described segment is not included in the memory to be allocated by MIB, and the kernel
creates a shared region descriptor (SRD) for the segment at start-up time, identified by the
name specified in the name argument.

The default is RES=NO.

name=aaaaaa
Specifies a 6-character ASCII string to be used as the run-time name of the shared region;
that is, the name of the corresponding SRD. The name is padded with trailing blanks if it
has fewer than six characters. This argument is meaningful and mandatory only if RES=YES.
Otherwise, the argument should be null.

Restrictions

If multiple MEMORY macros are used in a configuration file, they must appear in ascending
order of segment base addresses.

Do not describe any memory that cannot be allocated or is not to be reserved as a fixed-location
shared region. Do not specify the memory space occupied by an ODT /bootstrap ROM chip,
for example, any RAM that is used exclusively by processor firmware, or 1/0 page locations.

For an unmapped target system, the MIB utility makes a simple check to ensure that the memory
image size defined by the MEMORY macro(s)-including any '1holes" in the physical address
space-does not equal or exceed 32K words. The MIB utility rejects any 32K words or larger
memory image as an error. That limit makes no allowance for the 1/0 page, since MIB cannot

System Configuration Macros 4-13

determine the size of the IfO page._ (The practical limit, of course, will be 28K words for an
unmapped target with a 4K-word I/b page.)

Examples

MEMORY BASE=O, SIZE=512., TYPE=ROM
MEMORY BASE=1000, SIZE~384., TYPE=RAM, VOLATILE=NO

These calls describe a 'ROM segment consisting of 32,768 (512 "' 64) bytes originating at location
0 and a RAM segment consisting of 24,576 bytes starting at location 100000-32768(decimal).
Neither segment is parity checked, and the RAM segment is nonvolatile.

MEMORY BASE=1000, SIZE=384., TYPE=RAM, VOLATILE=NO, RES=YES, NAME=SHRREG

The shared region (named SHRREG) consists of 24,576 bytes and originates at location 100000-
32768(decimal). The region is not parity checked and is nonvolatile.

Note
In DIGITAL-supplied configuration files, size values that are multiples of
32 (indicating lK-word increments) such as 512 and 384 would appear
as < 16.•32.> and < 12.•32.> , respectively. The latter are equivalent
expressions intended to indicate 16K-word and 12K-word segment sizes,
respectively, by notational convention.

Rules for Debugging an Application with Nonvolatile RAM

If you have described your target system as having nonvolatile RAM (VOLATILE=NO specified
for one or more RAM segments), the following rules apply when debugging under PASDBG
with regard to simulating a cold start or a power failure and a subsequent warm restart:

1. Whenever you load the target image with the P ASDBG LOAD or LOAD /TARGET command,
all user RAM is zeroed during the loading operation, and the kernel recognizes a cold start
when you start the application. Subsequently, the PWFL$ primitive or Pascal POWERJAIL
function call will return a FALSE value, indicating a cold start. (On any start, cold or warm,
the kernel initializes its own RAM data area, clearing all of system-common memory.)

2. After the application has been loaded and run, if you stop execution and issue the
INIT /RESTART command without modifying the kernel flag word $PWFL1 as described
below, the kernel recognizes a warm restart and clears only those user RAM segments
declared as volatile, if any. (The effect of the INIT /RESTART in this case is to simulate a
power failure and a following powerup, with retention of user read/write data located in
RAM segments' declared as nonvolatile-whether or not those segments are provided with
battery backup.) Subsequently, the PWFL$ primitive or Pascal POWERJAIL function call
will return a TRUE value, indicating a warm restart.

3. After the application has been loaded and run, you can simulate a cold start without having
to reload the application image by zeroing location $PWFL1 in kernel data space before
issuing an INIT /RESTART command. (The effect of clearing location $PWFL1 prior to
the restart is equivalent to an initial load or reload of the target.) If the kernel flag word
$PWFL1, associated with the kernel's powerup processing, is clear before an INIT /RESTART,
the kernel recognizes a cold start and sets its start/restart indicators accordingly.

4-14 System Configuration Macros

In addition to the rules stated above, the following special rules apply only if you are debugging
a KXTl 1-CA target system described as having nonvolatile RAM:

4. If you apply power to the target system just 'before loading the application image with
a PASDBG LOAD or LOAD /TARGET command, the target's powerup firmware executes
properly, and you need not take any special action with respect to the status CSR at 175002
controlled by that firmware.

5. If, after the application has been loaded and run, you want to either reload the application
image or restart the application with an !NIT/RESTART command, you must use ODT
to open location 175002 in the IjO page and set bit 10 of that location, which is a CSR
associated with the powerup firmware. This bit indicates that the system has powered
up with battery backup. (Neither the LOAD nor the INIT /RESTART command of itself
causes the powerup firmware to be entered.) You can then issue either the LOAD or the
INIT /RESTART command to effect the kind of start or restart desired. (Setting of the CSR
bit is independent of clearing or not clearing the kernel flag word $PWFL1 to condition a
restart, as described in items 2 and 3 of the rules for all target systems.)

4.3.9 PRIMITIVES Macro

The PRIMITIVES macro determines the set of primitive service modules to be included in the
kernel for your application. Primitives can be selected by means of the PRIMITIVES macro calls
only if the optimize=YES option has been specified in the SYSTEM macro. If the optimize=NO
option is specified or defaulted, the default value for the PRIMITIVES macro, ALL, is assumed,
and all primitive service modules are included in the kernel.

If optimize=YES is specified in the SYSTEM macro, primitives can be selected in several ways:

• By classes-groups of functionally related primitives-identified by a functional class name,
such as BCSEM for the group of binary and counting semaphore primitives

• By the special class name Vl, implying all MicroPower/Pascal Version 1 primitives

• By individual primitive names-the first four characters of the corresponding primitive-
request macro name, such as SGNL and WAIT

• By the single parameter ALL, implying all primitives

Up to six parameters may be specified in a given invocation of the PRIMITIVES macro, and the
macro may be invoked as many times as needed if any of the first three selection methods are
used.

Syntax

Note
If you use the special "repetitive merge" method of optimizing primitive modules,
which involves the use of the MERGE utility's auxiliary file feature, do not
include any PRIMITIVE macros in the configuration file when building the
kernel. Do specify optimize=YES in the SYSTEM macro, however. See the
MicroPower /Pascal system user's guide for your host system for information
on optimizing the kernel with respect to primitive modules by means of the
"repetitive merge with auxiliary file" method.

PRIMITIVES pl,p2,p3,p4,p5,p6

System Configuration Macros 4-15

Parameters

pl to p6
The possible values for p 1 through p6 are as follows:
ALL All currently available primitives

BCSEM The binary and counting semaphore primitives SALL, SGLC, SGNL, WAIC,
and WAIT

COMPLX The complex primitives GELA, RCVA, WAIA, and WAQA and the related
SLEP timer primitive

DRAM The dynamic RAM allocation, sharing, and mapping primitives ACSR, ALRG,
CRSR, DLRG, GMAP, MAPW, RCTX, SCTX, and UMAP

EXCMGT The exception-management primitives CCND, DEXC, REXC, and SERA

INTMGT The interrupt-management primitives CINT, DINT, and SPL

LOGNAM The logical-name primitives CRLN and TRLN

PRMGT The process-management primitives CHGP, CRPC, DLPC, GTST, RSUM,
SCHD, SPND, STPC, and SSFA

QSEMN The nonprivileged, high-level queue semaphore primitives RCVC, RCVD,
SNDC, and SEND

QSEMP The privileged, low-level queue semaphore primitives ALPC, ALPK, DAPK,
SGLQ, SGQC, WAIQ, and WAQC

RBUF The ring buffer primitives GELC, GELM, PELC, PELM, and RBUF

STRMGT The structure-management primitives CRST, DLST, and GVAL

TIMER The clock services primitives GTIM, SLEP, and STIM

Vl All primitives that were available in Version 1 of MicroPower /Pascal

xxxx An individual primitive name, as represented by the first four characters of
the corresponding MACR0-11 primitive service call, omitting the trailing $
character

The ALL value is mutually exclusive of other parameter values and when explicitly specified
it must be pl. The parameter values for class name and single primitive name may be
intermixed as desired. The default is ALL.

Examples

PRIMITIVES V1,TIMER,DRAM ;Include specified primitive classes

PRIMITIVES ALPC,CRST,CHGP,DAPK,SGLQ,WAIQ ;Include named primitives

4.3.10 PROCESSOR Macro

The PROCESSOR macro describes the type of processor used in the target system and optional
hardware features. The processor type may be any of the following:

• LSI-11/2 (Ll12)

• LSI-11/23 (L1123)

4-16 System Configuration Macros

• SBC-11/21 FALCON (FALC)

• SBC-11/21 FALCON-PLUS (FALCPLUS)

• KXTl 1-CA (KXTl 1 C)

• KXJll-CA (KXJllC) (Specified separately from other Jll-based processors)

• CMR21 (CMR21)

• Jll-based processor such as an LSI-11/73, PDP-11/83 (Jll), or MicroPDP-11/53 (but not
a KXJl 1-CA, which is specified .separately)

Your target configuration may include a memory-management unit, a floating-point instruction
option (FP-11, FIS, or FPA), and a fixed-frequency system clock. The PROCESSOR macro
specifies those features if they are present and are used by the application. The PROCESSOR
macro must appear and should be the third macro in the configuration file, immediately following
the SYSTEM macro.

If the PROCESSOR macro specifies a memory-management unit (MMU=YES), mapping support
and an MMU trap handler are included in the kernel. (A target system that has a memory
management unit can be used in unmapped mode, if desired.)

Note
For a Jll-based target system (other than a KXJll-CA), you can specify
TYPE=Jl 1, MMU=YES, and Jl lMAP=NO to operate the target as a mapped
system without Jl 1-specific capabilities .(for example, without I&D-space separa
tion or supervisor mode). Alternatively, specifying TYPE=Ll 123 and MMU=YES
produces a functionally equivalent kernel. A setup without Jl 1-specific capabil
ities is desirable if the user static processes do not exceed 56KB in size and the
application does not require a supervisor-mode shared library. The advantage is
minimized kernel overhead: faster context switching and smaller PCBs, primar
ily. Specification of TYPE=Jl 1 and MMU=YES implies full Jl 1 capabilities. (If
MMU=NO, then TYPE=Jll and TYPE=Ll 123 are functionally equivalent, gener
ating a kernel for an unmapped target. Usable physical memory cannot exceed
56KB.)

For a KXJll-CA (TYPE=KXJl lC), you can also operate the target as a mapped
system without Jl 1-specific capabilities by specifying Jl lMAP=NO.

If the PROCESSOR macro specifies that the target supports the FP-11 or the FIS floating-point
instruction set, the appropriate trap handler is included in the kernel. Note that the .KEFl 1
and FPFl 1 hardware options are equivalent for configuration purposes; both support the FP-11
instruction set.

If the PROCESSOR macro specifies that the target (for example, a PDP-11/83) has a floating
point accelerator (FP A), the appropriate trap handler is included in the kernel. The included
code correctly handles the asynchronous floating-point exceptions that occur with PP As.

Note
Enabling FP A support adds two instructions to the kernel common exit code.
This may slightly increase kernel processing overhead.

System Configuration Macros 4-17

If the PROCESSOR macro specifies a clock, in terms of its frequency and its CSR, if any, the
appropriate clock-handling service routine is included in the kernel. The clock argument should
be specified if the application uses the kernel sleep primitive, the complex primitive timeout
option, or network or point-to-point communication.

You can also indicate in the PROCESSOR macro where the effective interrupt vector area
ends by specifying the first free address above the highest vector used on the target system.
Doing so permits kernel code to begin at a location below the end of the standard vector area;
that is, below address 1000 for an LSI-family or JU-based processor (other than a KXJl l-CA)
and below 400 for an SBC-11/21, KXTll-CA, KXJll-CA, or CMR21 processor. If the vector
argument is. not specified, the standard vector area for the target processor is assumed.

Syntax

PROCESSOR mmu, [fpu], type, j11map, vector, clock [,clkcsr]

Arguments

mmu

fpu

Specifies the effective presence (YES) or absence (NO) of a memory-management unit,
determining whether . the application is to be mapped or unmapped. (A memory
management unit might be physically present on the target but will be unused if mmu=NO.)

The default is MMU=NO.

Specifies the effective presence of the FP-11 floating-point option (fpu=FPll or FPP), the
FIS floating-point option (fpu=FIS), or a floating-point accelerator (fpu=FP A). If the target
processor does not have floating-point hardware or it is not used by any user process, omit
the fpu argument.

type
Identifies the type of target processor, as indicated by the parameter value. If the type is
FALC or FALCPLUS, the FALCON macro must appear in the configuration file; if the type is
KXTllC or KXJllC, the KXTllC or KXJllC macro, respectively, must appear. (Types L112
and Ll 123 are equivalent for configuration purposes; significant differences are indicated by
the mmu, fpu, and clkcsr parameters. The distinction is provided for documentation only.)

The default is TYPE=LL123.

jl lmap
Indicates, for a Jl 1-based processor or a KXJl 1-CA, whether Jl 1-specific capabilities (I&D
space· separation and supervisor-mode) are to be supported. If the processor type is Jll
or KXJl lC, the default is YES. For other processor types, this argument is ignored and is
treated as a value of NO.

vector
Specifies the address of the next free location above the highest interrupt or trap vector
configured on the target system. Effectively, the argument value indicates the point in
memory at which the kernel's code may begin.

4-18 System Configuration Macros

The default is lOOO(octal) for an LSI- or J11-based target or 400(octal) for an SBC-11/21,
KXTll-CA, KXJ11-CA, or CMR21 target.

clock
Indicates, by a frequency specification (nnHz), the effective presence of a source of clock
interrupts through vector 100 or indicates the effective absence of clock source (NONE).
(The kernel sleep primitive, the complex primitive timeout option, and system processes
that provide network and point-to-point communications services require a system clock.)
If a clock is specified here, you must also specify vector 100 in a DEVICES macro.

clkcsr
Specifies the address of the CSR associated with the clock, if any. (Clock CSRs are
implemented on LSI-11/23-PLUS, KXTll-CA, KXJll-CA, and J11-based targets and on
the MXVl lB multifunction board.)

If the target has no clock CSR or clock=NONE, omit the clkcsr argument. Where
implemented, the standard clock CSR address is 177546 for all targets except the KXTl 1-CA
and KXJ11-CA, for which the address is 177520.

Examples

PROCESSOR MMU=YES, FPU=FP11, TYPE=L1123, CLOCK=60HZ

PROCESSOR FPU=FIS, TYPE=L112, VECTOR=400

PROCESSOR MMU=YES, TYPE=J11, CLOCK=60HZ, CLKCSR=177546

PROCESSOR MMU=NO, TYPE=KXT11C, CLOCK=60HZ, CLKCSR=177520

PROCESSOR MMU=YES, TYPE=KXJ11C, CLOCK=60HZ, CLKCSR=177520

PROCESSOR TYPE=FALCPLUS, CLOCK=60HZ

4.3. 11 RESOURCES Macro
The RESOURCES macro determines the amount of read/write memory (RAM) to be included
in the kernel's data space for the following purposes:

• Message packets-the free-packet pool

• System data structures other than packets-the kernel free-memory pool

• The kernel-interrupt stack

• The free-RAM table, used by MIB during memory image building and by the kernel for
creation of the run-time free-RAM list

Reasonable defaults are provided for the memory to be allocated for each of those uses, but
you can override any or all of the default values by specifying optimize=YES in the SYSTEM
macro and by including a RESOURCES macro in the configuration file. Note that RESOURCES
can be invoked only if optimize=YES.

The free-packet pool and the free-memory pool form the kernel's system-common memory
area. (Before using the packets or structures arguments of the RESOURCES macro, see Chapter
2 for information on system-common memory organization.) The default free-packet pool
permits run-time allocation of 20 packets; thus, 20 packets are available for use by processes
at the same time. That number has been found adequate for most applications and may be

System Configuration Macros 4-19

excessive for some. Since packets are reusable, the optimum number of packets is generally a
space/performance tradeoff, but too few packets relative to application needs can cause obscure
real-time problems. If space is not an overriding consideration, specify the maximum number
of packets that could be required simultaneously by all processes in your application. (Implicit
I?ascal IjO support routines may use a number of packets.)

The default free-memory pool provides 3000 bytes for allocation of all other system data
structures allocated at run time, such as PCBs, semaphores, and ring buffers (see Chapter 2 for
individual structure sizes). The default pool size is sufficient for complex unmapped applications
with many processes and structures and should be adequate for many mapped applications as
well. Mapped applications require a larger free-memory pool than do unmapped applications
even assuming the same number of processes and structures-due in part to the mapping-image
save/restore area associated with mapped PCBs (16 or 32 words for each process). In either
case, if the pool is too small, a run-time failure will occur because of a process's inability to
create another process or a needed data structure or the kernel's inability to create all static
processes. If space is not a constraint, start with 4K or more bytes for the free-memory pool
for a large mapped application; the pool size can be reduced in a later build cycle if experience
shows it to be excessive. (While debugging, you can use the SHOW FREE STRUCTURES
command to assess the amount of unused pool space at various points of system operation.
Correspondingly, the SHOW FREE PACKETS command shows the number of free packets at
any given point.)

The default kernel-interrupt stack size is a "safe" value and is sufficient for virtually all
applications. Additional kernel stack might be needed if the application software includes
ih addition to three standard device drivers of different hardware priorities-a user-written
interrupt service routine that pushes more than eight words on the stack or a FORK routine that
pushes more than nine words on the stack. In any case, you should allocate additional stack
space only if you encounter kernel-stack overflow problems at run time. You can determine
whether a kernel-stack overflow has occurred by examining the guardword at kernel location
$KSTKL. If overflow has occurred, the guardword will contain a value other than the preset
octal value 42557-defined by the kernel symbol $GRD.

MIB uses the free-RAM table to keep track of unallocated RAM memory areas during image
building. The table is retained in the memory image as part of kernel read-only data and is used
to form the run-time free-RAM list for dynamic RAM allocation. The default table size allows
entries for five noncontiguous areas of free RAM, ordinarily a quite "safe" value. At build time,
overflow of the table that is due to a very fragmented target memory configuration would be
indicated by the MIB warning message "?MIB-W-Kernel Free RAM table too fragmented." Some
memory space might be wasted if the table overflows; that is, one or more otherwise usable
"holes" could exist in the resulting memory image. You can increase the table size in 4-byte
increments to allow for additional entries if needed.

Some memory in addition to that specified by RESOURCES is included in the kernel's impure
area for its private data structures and for interrupt dispatch blocks (IDBs). The amount of
space allocated for IDBs depends on the number of vectors specified in the DEVICES macro;
see Chapter 7 for details.

Syntax

RESOURCES stack=nnn, packets=nn, structures=nnnn, ramtbl=nn

4-20 System Configuration Macros

Arguments

stack
The size in bytes of the kernel interrupt stack. The default size is supplied by the kernel
symbol .. KIS. The recommended method of increasing the stack size, if necessary, is to
specify the symbol .. KIS plus an increment, in an expression of the form < .. KIS+n> . (The
default size could change in a future version; use of the symbol guards against a potential
version skew.)

packets
The number of message packets that can be allocated concurrently from the free-packet
pool. The default is 20 packets, implying a free-packet pool of 800 bytes.

structures
The size in bytes of the free-memory pool, from which all dynamic system data structures
are allocated. The default is 3000 bytes.

ramtbl
The size in bytes of the kernel free-RAM table. You can use this argument to change
the number of 4-byte entries that can be accommodated. The default . size is 20 bytes
(five entries), which is excessive for a target system configured with one or two continuous
segments of RAM. If the argument is specified, the value must be a multiple of 4.

Example
RESOURCES PACKETS=30., STRUCTURES=4096.

This macro statement allocates space for 30 message packets (1200 bytes) and 4K bytes of
memory for other dynamic structures, implying a fairly large, complex application. The macro
also allocates a standard-size kernel interrupt stack and a 20-byte free-RAM table by default.

4.3. 12 SYSTEM Macro

The SYSTEM macro determines whether debugging support is included in the kernel, whether
certain kernel-configuration parameters are to be defaulted or specified in the configuration
file, whether address checking should be performed by some primitive operations, whether the
system can be network booted, and whether the system will respond to a network request to
reboot. The SYSTEM macro must appear and should be the second macro in the configuration
file, immediately preceding the PROCESSOR macro.

The five SYSTEM macro arguments (optimize, debug, addrcheck, netboot, and nettrigger) take
YES or NO values. If you specify NO for the optimize argument, the SYSTEM macro supplies
default values for the RESOURCES, PRIMITIVES, and TRAPS macros, and those three macros
may not appear in the configuration file. Effectively, optimize=NO produces a standard kernel
software configuration, with default system-common memory resources, all primitive service
modules, and a basic set of trap processors appropriate to the target system. (Certain options
expressed in other macros, such as mmu and fpu in the PROCESSOR macro, imply the presence
or absence of optional trap processors.)

System Configuration Macros 4-21

If you specify YES for the optimize argument, the default values for the RESOURCES,
PRIMITIVES, and TRAP macros are inhibited, and you use those macros to tailor the kernel
to your specific application requirements. The RESOURCES macro lets you specify the amount
of RAM to be included in the kernel's data space for various purposes. The PRIMITIVES and
TRAPS macros let you specify the primitive service modules and the set of trap processors to be
included in the kernel. (If you use the special "repetitive MERGE with auxiliary files" method
of optimizing the kernel with respect to primitive modules, described in the Microl'ower/Pascal
system user's guide for your host system, you must omit the PRIMITIVES macro from the
configuration file for the build cycle in which that form of optimization is performed.)

If you specify YES for the debug argument, the debugger service module (DSM) is included in
the kernel. Include the DSM only if you intend to use the P ASDBG symbolic debugger to load
and debug the application. If you do not plan to use P ASDBG or will use P ASDBG only for
loading (LOAD/EXIT command), the DSM must not be included in the kernel (debug=NO). If
the DSM is present, it automatically gains control at start-up time; that would cause a system
hang in a nondebug target configuration or if P ASDBG LOAD /EXIT were used.

If you specify YES for the addrcheck argument, the kernel performs some checks on primitive
request address parameters that are normally appropriate only during the debugging phase of
application development. (The option controls occurrences of the ES$1AD~invalid address
exception return for some but not all primitive operation.) If you do not specify the addrcheck
argument, it defaults to the value of the debug argument.

Note
If you specify optimize=YES but do not include the RESOURCES macro in the
configuration file, an assembly error is generated. Presence of the PRIMITIVES
and TRAPS macros is not enforced, however.

If you specify YES for the netboot argument, the application image can be downline loaded
and booted from an RSX or VMS host via DECnet/Ethernet. Ethernet downline loading
is for debugged applications only (debug=NO). If netboot is enabled and the application is
mapped, information supplied by the host (NCP)-such as the target node number-is used
by MicroPower/Pascal network services, if present in the application. Potentially, the same
application image can be loaded onto multiple machines in a network. If you do not specify
the netboot argument, it defaults to NO, indicating that a different loading method is used.

If you specify YES for the nettrigger argument, the target system responds to a network request
to reboot after the application is up and running. The Ethernet (QN) driver must be present in
the application. If nettrigger is enabled, host system NCP commands can be issued to reload
the same application image or to load a new image onto the target system. If you do not specify
the nettrigger argument, it defaults to NO, disabling the netboot capability.

Syntax

SYSTEM optimize= { ~~ } , debug= { ~~ } , addrcheck= { ~~ } ,

netboot= { YES } nettrigger= { YES }
NO I NO

4-22 System Configuration Macros

Arguments

optimize=
Specifies whether you want to optimize the kernel by using additional configuration macros
(YES) or want the default kernel configuration (NO).

debug=
Specifies whether the debugger service module (DSM) should be included in the k.ernel. If
the DSM is included, it preempts use of the console-terminal serial line (vectors 60 and 64
and CSR 176560), which is required by P ASDBG.

The default is no DSM.

addrcheck=
Specifies whether you want to receive address-checking (ES$IAD) error/ exception returns
for invalid buffer or data structure addresses specified in certain primitive service requests.
(The individual primitive descriptions in Chapter 3 identify the error returns that are affected
by this option.) The default is NO.

netboot=
Specifies whether the system can be network booted. The default is NO.

nettrigger=
Specifies whether the system responds to a network request to reboot. The default is NO.

Example

SYSTEM OPTIMIZE=NO, DEBUG=YES

The ADDRCHECK option defaults to YES because of the DEBUG option value. The NETBOOT
and NETTRIGGER options default to NO.

4.3. 13 TRAPS Macro

The TRAPS macro defines the set of trap-processing modules to be included in the kernel in
addition to those implied by hardware-configuration parameters in other macros. (Use this
macro only if the SYSTEM macro specifies optimize=YES.) You need to include in the kernel
the trap handlers for the kinds of traps that your application may generate. If a given trap
handler is not included and the corresponding trap occurs, the trap is effectively igne>red.

The trap handlers needed for a given application depend on the hardware characteristics of the
target with respect to error traps, such as illegal-instruction and nonexistent-memory faults, and
on whether the application uses any explicit "service" trap instructions (EMT, TRAP, or BPT).
The possible range of error traps varies according to both the type of processor and hardware
options. (For example, an SBC-11/21 processor does not generate a trap-to-4 but may generate
a break or NXM trap to vector 140 that the other processors do not.)

Certain options expressed in macros other than TRAPS cause implicit inclusion of appropriate
trap handlers, as follows:

• PROCESSOR macro-The MMU=YES option implies the memory-management unit (MMU)
trap handler, and the FPU=FP11 (or FPP), FPU=FIS, or FPU=FPA implies the corresponding
floating-point trap handler.

System Configuration Macros 4-23

• MEMORY macro-The P ARITY=YES option implies the memory-parity error (MPT) trap
handler.

• FALCON macro-The BREAK=EXCEPTION option implies the break (BRK) trap handler.

The TRAPS macro default of ALL causes inclusion of the basic set of error and. service trap
handlers that are applicable to the target processor. Thus, the TRAPS ALL default is generally
appropriate unless you want to exclude handlers for EMT, TRP, and/or BPT traps. (The BPT
handler is needed only for user-coded BPT instructions, not for breakpoints set by means of
PASDBG.) If the SYSTEM macro specifies optimize=NO, the TRAPS ALL default is assumed.

Syntax

TRAPS [tl,t2,t3,t4,t5,t6,t7,t8]

Arguments

tn
May be either the mnemonic for one of the trap-processing modules listed below or ALL
(default). Up to eight arguments may be specified in each macro call.

The trap handler mnemonics are:
BPT Breakpoint instruction trap

BRK SBC-11/21 break-character exception trap

EMT EMT instruction trap

FIS FIS exception trap

FPA FPA exception trap

FPP FPll exception trap

MMU Memory-management fault

MPT Memory parity error

TlO Trap to 10

TR4 Trap to 4 (invalid for SBC-11/21 target)

TRP TRAP instruction trap

For all processor types other than FALC and FALCPLUS, the basic set of trap handlers implied
by TRAPS ALL is TR4, T 10, BPT, EMT, and TRP.

For processor type FALC or FALCPLUS, the basic set of trap handlers implied by TRAPS ALL is
TlO, EMT, and TRP. In addition, if the FALCON macro does not specify BREAK=ROMODT or
BREAK=SFWODT, the BPT handler is implied, and NXM errors simulate a trap-to-4 exception
(ES$BUS).

Example
TRAPS TR4,T10,EMT ;Excludes TRP and BPT from basic LSI set

4-24 System Configuration Macros

Chapter 5
Dynamic RAM Allocation and Region Sharing

This chapter discusses the 10 primitive services that, collectively, let user processes ·do the
following:

• Obtain an area of unused memory and, optionally, release it after temporary use (dynamic
RAM allocation/deallocation)

• Share an area of "static" or "dynamic" memory between static process families (region
sharing)

• In a mapped system, obtain a virtual-address window into either a dynamic or shared
memory area, in support of capabilities 1 and 2 (dynamic mapping)

These related capabilities are intended principally to support large memory configurations and
shared common memory in mapped target systems and are described here in that context unless
otherwise indicated. Dynamic RAM allocation may be useful in some unmapped applications,
but memory sharing by means of kernel services has a very limited utility, since more efficient
design alternatives exist in the unmapped environment. All user processes can be members of
the same static-process family, for example, since mapping considerations do not apply.

The Pascal and MACR0-11 primitive service requests corresponding to the capabilities
previously listed are:

• Dynamic RAM allocation

ALLOCATE_REGION function; ALRG$ macro call

DEALLOCATE_REGION procedure; DLRG$ macro call

• Region sharing

CREATE_SHARED_REGION procedure; CRSR$ macro call

ACCESS_SHARED_REGION procedure; ACSR$ macro call

DELETE_SHARED_REGION procedure; DLSR$ macro call

Dynamic RAM Allocation and Region Sharing 5-1

• Dynamic mapping

· MAP_WINDOW procedure; MAPW$ macro call

UNMAP_WINDOW procedure; UMAP$ macro call

GET_MAPPING procedure; GMAP$ macro call

SAVE_CONTEXT procedure; SCTX$ macro call

RESTORE_CONTEXT procedure; RCTX$ macro call

Chapter 18 of the MicroPower /Pascal Language Guide (for Pascal programmers) and Chapter 3
of this manual (for MACR0-11 programmers) describe the full syntax and formal semantics
of the individual service requests. This chapter discusses and shows by coding examples the
relationship between those requests. For your convenience, brief syntax summaries of the Pascal
calls are provided where relevant.

5. l Definition of Terms
Several terms are used here and elsewhere in this manual in a special, limited sense when
referring to region allocation and sharing. The following paragraphs define those terms for a
mapped-memory environment. Differences for the unmapped case are given at the end of the
section.

Free RAM is that portion of the described RAM configuration that remains unused in the
application memory image following a build cycle, as opposed to statically allocated RAM. Free
RAM, if present, may consist of one continuous segment or several disjoint segments.

A region is a contiguous block of physical memory, normally RAM, and can be either a physical
region or, a common region.

A physical region is dynamically allocated from free RAM. The maximum size of a physical
region is limited only by the size of the largest free-RAM segment available in an application.
The granularity of both the physical base address and the size of a physical region is 32 words,
or lOO(octal) bytes, the size of a physical memory block for mapping purposes. (For brevity,
this size unit is referred to as a "PAR tick.")

A common region is defined in one process's statically allocated memory space-typically but
not necessarily RAM-for the purpose of memory sharing among several static processes. (The
concept of a common region is relevant only in relationship to shared regions and, for the
most part, only in mapped systems.) The maximum size of a common region is limited by
virtual-address space considerations and is generally less than 24K words except in a system
with I&D-space separation in effect. The granularity of size of a common region is effectively
32 words. A common region need not begin on a 32-word physical boundary.

A shared region is accessible by any and all processes in an application. A shared region has
a run-time name that is assigned by the creator of the shared region and used by accessing
processes in other static-process families. A named kernel structure, called a shared region
descriptor (SRO), identifies a shared region as such. The mode of a shared region can be either
physical or common.

A region ID block (RIB) is a 4-word data structure in the user's address space and is used to
describe a region or a shared region.

5-2 Dynamic RAM Allocation and Region Sharing

A window is a sequence of virtual addresses in a program's address space having a 1-to-1
correspondence with a range of physical addresses in a region. The maximum size of a window
is essentially limited by the "unused" virtual address space available to the accessing process,
that is, by the number of free APRs available to the process for modification.

The differences to the preceding definitions for an unmapped-memory environment are as
follows:

• Physical region-The granularity of size of a physical region is four bytes, and the region
may start on any word boundary.

• Common region-The size of a common region has no fixed granularity; the size may be
any number of bytes.

• Window-The concept is inapplicable.

5.2 Region ID Block (RIB)
The region ID block, or RIB, is a predefined MicroPower/Pascal data structure that you declare
in a program. The RIB is a link between most of the primitive operations covered in this
chapter, as discussed in Section 5.2.2.

5.2. 1 RIB Definition

The following type definition is provided in DRAM.PAS for declaring RIB variables in Pascal:

TYPE
ADDRESS_TYPE =(COMMON.PHYSICAL);

REGION_ID_BLOCK = RECORD
REGION_ADDRESS : UNIVERSAL;
REGION_SIZE : UNSIGNED;
REGION_MODE : ADDRESS_TYPE;
REGION_OFFSET : UNSIGNED;
END;

(The MACR0-11 region-mode symbols RA$COM [value=O] and RA$PHY [value=l] correspond
to the Pascal constants COMMON and PHYSICAL of the type ADDRESS_TYPE.)

Dynamic RAM Allocation and Region Sharing 5-3

The MACR0-11 programmer may declare a RIB area with a .BLKW 4 directive or, more
generally, with a .EVEN and .BLKB RI.SIZ directive and can use the predefined symbolic offsets
shown in the following diagram:

Offsets RIB

rib+Rl.ADD region base

RI. LEN region size

Rl.ATR region mode

RI.OFF region offset

Rl.SIZ = RIB size in bytes
RA$PHY denotes physical mode
RA$COM denotes common mode

ML0-484-87

The RI.xxx and RA$xxx symbols are defined by the RIBDF$ macro in the MicroPower /Pascal
COMM and· COMU system macro libraries.

5.2.2 Relationship to Primitive Operations
A RIB address is required for the Allocate Region, Deallocate Region, Create Shared Region,
Access Shared Region, and Map Window primitive calls. The RIB is a destination variable for
the Allocate Region and Access Shared Region operations and a source variable for the Create
Shared Region, Map Window, and Deallocate Region operations. In only one case, preparatory
to creation of a shared common region, does the user program place any information in a RIB
directly.

In a little more detail, the RIB' s role in the various operations is:

• In dynamic RAM allocation/ deallocation:

The Allocate Region primitive sets up a physical description of the allocated region in
the caller's RIB. The region mode is set to PHYSICAL (RA$PHY). The RIB can then serve
as input to Map Window and/or Create Shared Region and eventually to Deallocate
Region.

The Deallocate Region primitive obtains the description of the region to be deallocated
from the caller's RIB. (The RIB content is invalidated by the operation.)

• In common-region definition:

The user program "allocates," or defines, a common region by initializing a RIB with the
description-virtual address, length in bytes, and mode-of ,the static data structure to
be made shareable. The data structure might be, for example, a large array defined in
the creating program's address space. The mode must be set as COMMON (RA$COM).
A RIB so initialized is useful only as input to a Create Shared Region operation.

5-4 Dynamic RAM Allocation and Region Sharing

• In shared-region operations:

The Create Shared Region primitive obtains the description of the region to be made
shareable-accessible to other processes-from the caller's RIB. The region mode may
be COMMON (RA$COM) or PHYSICAL (RA$PHY). The primitive uses the information
in the RIB, either "as is" for a physkal region or transformed for a common region, to
construct a shared region descriptor (SRD) in kernel space.

The Access Shared Region primitive sets up the physical description and mode of the
named shared region, common or physical, in the caller's RIB. (The access request is
made by a process other than the shared-region creator, of course.) The RIB can then
serve as input to Map Window.

• In mapping and remapping operations:

The Map Window primitive obtains from the caller's RIB a physical description of
the region to be mapped into. The information in the RIB was presumably set up
either by Allocate Region for a physical region or by Access Shared Region for either a
shared physical or shared common region. (Although any shared region is "physical"
in relation to the accessing process-in the' sense that it is not in the accessor's static
virtual space-the COMMON /PHYSICAL mode distinction is critical to the operation
of the Map Window primitive.)

5.2.3 Form and Use of RIB Content

The kind of information in a RIB and, consequently, the way it is used differs between mapped
and unmapped environments. Also, in the mapped case, the RIB content for a shared common
region differs somewhat from that for a physical region, depending on its point of use.

5.2.3. 1 For Physical Regions

The following diagram illustrates the difference in RIB content for a physical region in mapped
and unmapped usage:

RIB for
Physical Region

region base

region size

region mode

region offset

Content
Mapped/Unmapped

PAR value/address

PAR ticks/number of bytes

RA$PHY (physical)

Always zero

ML0-485-87

In mapped usage, the user code never modifies or uses RIB content djrectly. The Map Window
primitive ultimately supplies the virtual pointer that the user program needs for references to
the region. In unmapped usage, the user program normally does not modify RIB content but
uses the address and size information set up by the Allocate Region or Access Shared Region
primitive for references to the region.

Dynamic RAM Allocation and Region Sharing 5-5

5.2.3.2 For Mapped Shared Common Regions

The following diagram illustrates how the RIB content for a mapped common region varies,
depending on its point of use:

RIB for Mapped As Set Up As Returned by
Common Region by User Code Access Shared Region

region base Virtual address Physical PAR value

region size Number of bytes Number of PAR ticks

region mode RA$COM (COMMON) RA$COM (COMMON)

region offset Must be zero Bytes from PAR base
(range: 0 to 31)

ML0-486-87

The user program that "creates" a shared common region sets up the base, size, and mode fields
of the RIB for input to the Create Shared Region primitive. (The offset field is not significant
at this point.) A user program that accesses a shared common region does not either modify or
use RIB content directly but passes the RIB as input to Map Window. ·

In unmapped usage, the content of a RIB for a shared common region is always the same as
that for a physical region except for the mode attribute, and the accessing program uses the
region base and size fields directly for reference to the region. (The offset field is not significant
for an unmapped common region.)

5.3 Dynamic Region Allocation and Use
The Pascal programmer can think of the combined Allocate Region and Map Window operations
·as analogous to a NEW operation and of the Unmap Window and Deallocate Region operations
as analogous to a DISPOSE. The pointer variable obtained by means of Map Window is used in
a very similar fashion to that obtained with NEW. The difference is that the memory space so
obtained comes out of unallocated, unmapped physical memory, as opposed to memory statically
allocated to the program's heap-to which the process is already mapped. A concomitant
difference is that the process (static or dynamic) must have at least one APR available for
dynamic modification. If you use Map Window in the standard, "safe" fashion described in
this section, at least one full page (4KW) of the virtual addresses potentially available to the
program (that is, to the static process family) has not been allocated at build time.

A process can obtain a physical region to:

• Acquire a relatively large "chunk" of physical memory on a temporary basis for either 1-shot
or very intermittent use. In this case, the process deallocates the region after each such use.
(The entire region may or may not fit in the process's unused virtual-address space; if it
does not, iterative window mapping is required.) This usage assumes that, by convention,
some or all of free RAM is treated as a serially reusable resource by two or more processes,
with no functional connection between those processes.

5-6 Dynamic RAM Allocation and Region Sharing

• Circumvent the virtual-address space limitation of 32K words of code and data (or 32K of
data, assuming I&D-space separation) in order to manipulate one or more large physical
data structures. In this case, the dynamically acquired region or regions will presumably
not be returned, and the process will typically devote one or more APRs-one or more
4K-word pages of virtual address space-for iterative window mapping. A physical region
obtained for this reason is often also shared with another related process.

The next section describes how the kernel keeps track of and allocates free RAM.

5.3. 1 Free-RAM List

The kernel maintains a linked list of free-RAM segments in unallocated memory, where each
free segment is an element of the list, as illustrated in Figure 5-1. The list represents any
read/write memory that was described in the system configuration file and not allocated to
any application component at build time, less any currently allocated region(s). (The free RAM
available at system-initialization time is identified as "Available RAM" in a memory-image map
of the complete application produced by the MIB utility program.) Ordinarily, the initial free
RAM list contains a single segment if all of the target's RAM is physically continuous (no gaps
or intervening ROM segments). However, free RAM could become fragmented during the build
cycle because of the use of special RELOC and/or MIB utility options that "force" arbitrary,
user-specified physical start locations.

The free-RAM list is in ascending-address order. Regions are allocated on a first-fit basis; that is,
the required amount of memory is "removed" from the first-encountered Hst element that equals
or exceeds the size of the requested region. On deallocation, the returned region is recombined
with adjoining free segments, if any. The kernel does not keep track of a memory block once
it has been allocated. The application program must return an allocated block when done with
it, especially in the case of a terminating process.

Figure 5-1: Linked List of Free-RAM Segments

List Head First Element

• I .. next pointer

size

free memory

. .

(The pointer and size values indicate PAR ticks in a mapped system
or bytes in an unmapped system.)

Last Element

size

free memory

ML0-487-87

Dynamic RAM AllocatiOn and Region Sharing 5-7

5.3.2 Creation of Shared Regions at Build Time
Shared regions can be created dynamically at run time, or they can be set up at build time by
means of the MEMORY macro. If they are set up at build time, the kernel allocates the regions
and creates the shared regions at system start-up time. See the description of the MEMORY
macro in Chapter 4 for more information.

5.3.3 Syntax of Relevant Pascal Requests
An informal presentation of the Pascal primitive request syntax is given here to minimize the
need for reference to the MicroPower /Pascal Language Guide when reading examples in this
chapter. See Chapter 3 of this manual for the corresponding MACR0-11 ALRG$, MAPW$,
UNMAP$, and DLRG$ macro calls.

The syntax of the Allocate Region function call is as follows:

ALLOCATE_REGION (RIB := rib-variable, REG_SIZE := unsigned-value)

The REG_SJZE constant or·variable parameter specifies the number of 64-byte units of memory,
or PAR ticks, required; the value 128, for example, indicates a region size of 8192 bytes (4K
words).

The essential syntax of the Map Window procedure call, omitting the optional STATUS
parameter, is as follows:

MAP_WINDOW (ADDRESS_SPACE := space-option , {default D_SPACE}
ACCESS := access-option , {default READ_WRITE}
PAR_CHOICE := free/fixed-option , {default FREE}
CACHING := caching-option , {default LEAVE}
WINDOW_PTR := pointer-variable ,
OFFSET := unsigned-value , {default 0}
LENGTH := unsigned-value ,
RIB := rib-variable)

The WINDOW_PTR parameter names a variable of type UNIVERSAL in which the procedure
returns a beginning-of-window virtual-address value, which can subsequently be used as a
pointer to a Pascal data structure, such as an array or a record. (The parameter is a destination
only variable when the P AR_CHOICE option is FREE, the default, representing the "safe"
mode of using MAP_WINDOW.) The LENGTH variable or constant specifies a number of
bytes, the length of the required window. The OFFSET variable or constant specifies a number
of PAR ticks (64-byte units) and defaults to 0. The parameter is needed only if the required
window is not to start at the beginning of the region described by the RIB. A description
of the nondefault options for the ADDRESS_SP ACE, ACCESS, PAR-CHOICE, and caching
parameters is provided in Chapter 3. (ADDRESS-SP ACE is significant only for target systems
that support instruction- and address-space separation and only if such separation is in effect
for the calling process.)

The essential syntax of the Unmap Window procedure call is as follows:

UNMAP_WINDOW (WINDOW_PTR := pointer-variable ,
LENGTH := unsigned-value ,
ADDRESS_SPACE := space-option) {default D_SPACE}

5-8 Dynamic RAM Allocation and Region Sharing

The WINDQW_pTR parameter names the source variable containing the beginning-of-window
address value of the window to be unmapped. Normally, this variable is of type pointer;
the corresponding formal parameter is of type UNIVERSAL. The LENGTH variable or
constant specifies the length of window to be unmapped, in bytes-essentially indicating
the number of consecutive APRs to be made inactive. The nondefault option, I_SP ACE, for the
ADDRESS_SPACE parameter is described in Chapter 3. The purpose of the Unmap Window
operation is to free up one or more APRs previously used to map a window so they can be reused
in a subsequent Map Window operation. (Typically, MAP_WINDOW and UNMAP_WINDOW
calls are used in symmetric pairs.)

The essential syntax of the Create Shared Region procedure call, omitting the optional STATUS
parameter, is as follows:

CREATE_SHARED_REGION (RIB := rib-variable ,
DESC := structure-descriptor,
NAME := region-name)

The specified RIB variable describes the region-physical or common-to be made shareable
with any other process. The structure descriptor, if specified, receives the structure identifier
of the shared region descriptor (SRD) that the kernel will create for the shared region. The
region-name character string or variable of type NAME_STR provides the run-time name of
the shared region.

The essential syntax of the Access Shared Region procedure call, omitting the optional STATUS
parameter, is as follows:

ACCESS_SHARED_REGION (RIB := rib-variable ,
DESC := structure-descriptor,
NAME := region-name)

The specified RIB variable receives a description of the region-physical or common-to be
accessed. The structure descriptor, if specified, contains the structure identifier of the shared
region descriptor (SRD) that was previously established for the shared region. (The DESC
parameter must be omitted if the NAME parameter is supplied and vice-versa.) The region
name character string or variable of type NAME_STR specifies the run-time name of the shared
region.

The syntax of the Deallocate Region procedure call is as follows:

DEALLOCATE_REGION (RIB := rib-variable)

The following coding examples illustrate the combined use of the several primitive services.

5.3.4 Coding Examples
In the examples in this section, the structure of the sample arrays and the nature of the operation
performed on them are quite arbitrary and simplistic, sufficient to illustrate the programming
principles involved without introducing excessive coding detail.

Dynamic RAM Allocation and Region Sharing 5-9

5.3.4. 1 Unshared Use of a Physical ,Region

Assume that a process needs 32K bytes of memory in order to, create and manipulate a rather
large array and, consequently, would require four APRs if that much space were to be statically
allocated to the program. Further assume that the array could not be accommodated in the
process's virtual address space if it were statically allocated-declared as a program variable
so dynamic RAM allocation and mapping is needed. The minimum requirem~pt is that the
static-process family to which the example process belongs does not exceed 28K words, leaving
at least one unused APR available for window mapping.

Keeping the stated assumptions in mind, consider the following program segment:

PROCESS map1;

1 %INCLUDE 'MICROPOWER$LIB:DRAM.PAS' { To get the "right stuff" }

TYPE
2 big_record =ARRAY [0 .. 1023] OF INTEGER;
3 huge_record =ARRAY [0 .. 4095] OF INTEGER;

VAR
4 i, off_set : INTEGER;
5 p : A big_record;
6 q : A huge_record;
7 rib1 : REGION_ID_BLOCK;

BEGIN
{ Allocate 32Kb of free RAM }

8 IF NOT ALLOCATE_REGION (RIB := rib1, REG_SIZE := %0'1000')

BEGIN
9

10
11

12
13
14
15
16

THEN WRITELN ('Not enough free memory') {and quit} .
ELSE { go on with life hereafter }

FOR i := 0 TO 3 DO { Repeat mapping with same PAR 4 times }
BEGIN
off_set := i*128; { Map one page at a time }
MAP_WINDOW (RIB := rib1, LENGTH := 8192,

OFFSET := off_set, WINDOW_PTR := q);
qA(O) (i*4);
qA[1024] (i*4) + 1;
qA[2048] (i*4) + 2;
qA[3072] := (i*4) + 3;
UNMAP_WINDOW (WINDOW_PTR := q, LENGTH:= 8192);
END;

17 FOR i := 0 TO 15 DO
BEGIN

{ i*32 for 2048-byte records }
18 off_set := i * (SIZE(big_record) DIV 64);
19 MAP_WINDOW (RIB := rib1, LENGTH := 2048,

offset := OFF_SET, WINDOW_PTR := p);
20 WRITELN (pA[O]); {For program checkout}
21 IF pA[O] <> i

THEN WRITELN ('Mapping error');
22 UNMAP_WINDOW (WINDOW_PTR := p, LENGTH:= 2048);

END;
END;

END;

5-10 Dynamic RAM Allocation and Region Sharing

The MAPl example shows a single process that acquires, maps, and manipulates a physical
region. (The process does not share the region with any other process.) The MAPl process
uses one available APR to repetitively map the entire 32KB region, in increments of four 8KB
windows and sixteen 2KB windows, respectively. In statement 8, the process acquires the 32KB
region whose description is returned by the primitive operation in the program variable ribl.
The size of the requested region is specified in the allocation request as 1000(octal) PAR ticks,
each tick consisting of 64 bytes.

In statements 9 through 16, the region is mapped incrementally in SKB-128 PAR-tick
windows (full pages), and the first location in each 2KB "quadrant" of the windows is marked
with an arbitrary value that is a function of the mapping loop index. Statements 17 through 22
remap the same region in 2KB increments, increasing the region offset by 2KB each time the
region is mapped. The first location in each window is tested for a valid value.

In each mapping iteration, the UNMAP_WINDOW call frees the APR used for the window for
subsequent reuse. The APR used for the mapping is chosen by the MAP_WINDOW primitive
because the default value of FREE for the P AR_CHOICE option is in effect. The primitive uses
the first-lowest-numbered-available APR for the mapping operation.

5.3.4.2 Shared Use of a Physical Region

Assume that two independent processes need to access the same SK-byte area of memory, in the
form of a 4K-array of integers. Further assume either that the array could not be accommodated
in the "declaring" process's virtual address space if it were statically allocated- declared as a
program variable-or that the amw is needed only temporarily. Thus, dynamic RAM allocation,
sharing, and mapping are indicated. The minimum requirement is that both of the static-process
families to which the processes belong do not exceed 28K words, leaving at least one unused
APR available for window mapping.

Keeping the stated assumptions in mind, consider the following two program segments:

[SYSTEM (MICROPOWER)] PROGRAM map2; { One static process }

1 %INCLUDE 'MICROPOWER$LIB:DRAM.PAS' { To get the "right stuff" }

TYPE
2 big_record = ARRAY [0 .. 4095] OF INTEGER;

VAR
3 p : A big_record;
4 ib1 : REGION_ID_BLOCK;

5 [INITIALIZE] PROCEDURE start;
BEGIN

{ Allocate 8 Kb of free RAM }
6 IF NOT ALLOCATE_REGION (RIB := rib1, REG_SIZE := 128)

THEN WRITELN ('Not enough free memory');
7 CREATE_SHARED_REGION (RIB := rib1, NAME:= 'SHARED');
8 MAP_WINDOW (RIB := rib1, LENGTH := 8192,

OFFSET := 0, WINDOW_PTR := p);
9 pA(O] ·= 1;

END;

BEGIN

Dynamic RAM Allocation and Region Sharing 5-11

10 WRITELN ('Map2 Done');
END.

{ Another static process in the same application }
[SYSTEM (MICROPOWER)] PROGRAM map3;

11 %INCLUDE 'MICROPOWER$LIB:DRAM.PAS' { To get the "right stuff" }

TYPE
12 big_record = ARRAY [O .. 4095] OF INTEGER;

VAR
13 q : A big_record;
14 rib2 : REGION_ID_BLOCK;

BEGIN
15 ACCESS_SHARED_REGION (RIB:= rib2, NAME:= 'SHARED');
16 MAP_WINDOW (RIB := rib2, LENGTH := 8192,

OFFSET:= 0, WINDOW_PTR := q);
17 IF qA[O] = 1

END;

THEN WRITELN ('Successful mapping');
ELSE WRITELN ('Unsuccessful mapping');

The MAP2/MAP3 example shows two processes that interact through a shared physical region.
The MAP2 process acquires a physical region and makes it shareable by any other process in
the application. The MAP3 static process accesses the same region by means of its run-time
name, "SHARED."

In statements 6 through 9, process MAP2 allocates an 8KB region (described as 128 PAR ticks),
makes the region shareable, and then maps and "marks" the region with an initial value. All
these operations are done within an INITIALIZE procedure so that the region will be available
to the sharing process whenever that process starts up, regardless of the relative priorities of
the two processes. In particular, statement 7 requests that the kernel create a system-wide
data structure, called a shared region descriptor (SRD) and named SHARED, that describes the
physical region described by the RIB "ribl".

In statement 15, the MAP3 static process obtains a physical description of the shared region in its
RIB "rib2", by means of the SRD named SHARED. (Like all run-time names, the name SHARED
is case sensitive.) In statement 16, process MAP3 maps the physical region described in rib2 and
obtains a virtual-address (window) pointer to the corresponding array in the pointer variable q.
The mapping operation uses the first-lowest-numbered-unused APR in the process's APR set
for the window mapping. Statement 17 tests the array for its "initialization" value and reports
the result before performing further, unstated operations on the array.

5-12 Dynamic RAM Allocation and Region Sharing

5.4 Shared Common Region Allocation and Use
To a process accessing a shared common region, that region looks the same as if it were a
dynamic physical region. The process that owns the "region," however, initially declares it as a
program variable of the required size and type and then defines the region as such by placing
a description of the variable, in terms of its virtual location and size, in a region ID block (RIB).
Thus, the region is in fact both an ordinary variable in the program's normally allocated address
space and a memory area that can be made accessible to another process family through use of
run-time kernel services.

A shared region should be deleted by the creating process if that process terminates, since
the process's data space in which the corresponding variable exists is deallocated at process
termination. (A variable of a dynamic process will not be deallocated if it is declared STATIC
unless the parent static process also terminates, but the useful lifetime of a shared region as
such must be coordinated between the sharing processes in any case.)

5.4. 1 Syntax of Additional Relevant Pascal Request
The essential syntax of the Delete Shared Region procedure call, omitting the optional STATUS
parameter, is as follows:

DELETE_SHARED_REGION (DESC := structure-descriptor)

or

DELETE_SHARED_REGION (NAME := region-name)

If specified, the structure descriptor contains the structure identifier of the shared region descriptor
(SRD) that was previously established for the shared region. The region-name character string
or variable of type NAME_STR specifies the run-time name of the shared region; the name of
the corresponding SRD. Both forms of the request result in deletion of the identified SRD.

The following coding examples illustrate the combined use of the several primitive services.

5.4.2 Shared Common Region Coding Example
Assume that two independent processes need to access the same 2K-byte area of memory, in
the form of a lK-array of integers. Further assume that the array both can be accommodated
in the declaring process's virtual-address space (that is, can be statically allocated as a program
variable) and is needed throughout a run of the application. Thus, sharing and mapping of a
common region are indicated. The minimum requirement is that the static-process family to
which the accessing process in the example belongs does not exceed 28K words, leaving at least
one unused APR available for window mapping.

Keeping the stated assumptions in mind, consider the following two program segments:

[SYSTEM (MICROPOWER)] PROGRAM map4; { One static process }

1 %INCLUDE 'MICROPOWER$LIB:DRAM.PAS' { To get the "right stuff" }

TYPE
2 biggish_record = ARRAY [0 .. 1023] OF INTEGER;

Dynamic RAM Allocation and Region Sharing 5-13

VAR
3 a : biggish_record;
4 rib1 : REGION_ID_BLOCK;
5 region_guard1 : SEMAPHORE_DESC;
6 region_complete1 : SEMAPHORE_DESC;

7 [INITIALIZE] PROCEDURE start;
BEGIN

8 WITH rib1 DO
BEGIN

9 region_address :=ADDRESS (a);
10 region_size :=SIZE (a);
11 region_mode := COMMON;

END;
{ Assume enough kernel data space for an SRD and several }
{ semaphores; otherwise, fail with a RESOURCE exception }

12 CREATE_SHARED_REGION (RIB := rib1, NAME:= 'COMMON');
13 a[O] := 1;
14 CREATE_BINARY_SEMAPHORE (DESC:= region_guard1,

VALUE := 1, { Gate is open }
NAME:= 'ACCESS');

15 CREATE_BINARY_SEMAPHORE (DESC:= region_complete1,

END;
BEGIN

VALUE := 0, { Gate is closed }
NAME := 'RGDONE');

16 WAIT (DESC:= region_guard1);

{ operations on region }

17 SIGNAL (DESC:= region_guard1)

{ other operations }

18 WAIT (DESC:= region_complete1);
19 WRITELN ('Map4 Done');
20 (NAME:= 'COMMON');

END.

{ Another static process in the same application }
[SYSTEM (MICROPOWER)] PROGRAM map5;

21 %INCLUDE 'MICROPOWER$LIB:DRAM.PAS' { To get the "right stuff" }

TYPE
22 biggish_record =ARRAY [0 .. 1023] OF INTEGER;

VAR
23 q : ~ biggish_record;
24 rib2 : REGION_ID_BLOCK;
25 region_guard2 : SEMAPHORE_DESC;
26 region_complete2 : SEMAPHORE_DESC;

5-14 Dynamic RAM Allocation and Region Sharing

BEGIN
27 ACCESS_SHARED_REGION (RIB := rib2, NAME:= 'COMMON');
28 MAP_WINDOW (RIB := rib2, LENGTH := 2048,

OFFSET := 0, WINDOW_PTR := q);
29 IF qA[O] = 1

THEN WRITELN ('Correct array access')
ELSE BEGIN

WRITELN ('Incorrect array access');
STOP;
END;

30 INIT_STRUCTURE_DESC (DESC:= region_guard2,
NAME :='ACCESS');

31 WAIT (DESC:= region_guard2)

{ operations on region }

32 SIGNAL (DESC := region_guard2)

{ other operations }

{ When finished with region }
33 SIGNAL (NAME := 'RGDONE')

END.

The MAP4/MAPS example shows two processes that interact through a shared common region.
The MAP4 process declares a program variable, a, and makes it shareable with any other
process in the application by describing the variable as a common region and then creating a
shared common region from it. The MAPS static process accesses the same region by means of
its run-time name, "COMMON".

In statements 8 through 11, process MAP4 places the virtual description of the 2KB-array a in the
RIB ribl, indicating that the memory area is a common region. Statement 12 creates the shared
region descriptor (SRD)-a system data structure-with the run-time name "COMMON", based
on the region description in the variable ribl, thus making the region shareable. Statement 13
"marks" the first element of the corresponding array with an initial value. All these operations
are done within an INITIALIZE procedure so that the region will be available to the sharing
process whenever that process starts up, regardless of the relative priorities of the>two processes.

As a side effect, the virtual region description placed in variable ribl by statements 9 and 10
is transformed by the Created Shared Region operation to a physical memory description that
is directly usable in a mapping operation. (The transformed description is identical to that
provided to process MAPS by the Access Shared Region operation requested in statement 29.)

The static process MAPS is structurally identical to process MAP3, previously described. In
statement 27, the MAPS static process obtains a physical description of the shared common
region in its RIB "rib2", by means of the SRD named "COMMON". (Like all run-time names, the
name COMMON is case sensitive.) In statement 28, process MAPS maps the common region
described in rib2 and obtains a virtual-address (window) pointer to the corresponding array
in the pointer variable q. The mapping operation uses the first-lowest-numbered-unused
APR in the process's APR set for the window mapping. Statement 29 tests the array for its
"initialization" value and reports the result before performing further, unstated operations on
the array.

Dynamic RAM Allocation and Region Sharing 5-15

5.4.3 Virtual Array Coding Example
The example in this section shows a more advanced use of the DRAM primitives to achieve
a "virtual array" implementation. (A virtual array is an array of a size such that it would not
ordinarily fit into a program's address space.) No new primitive operations are introduced in
the virtual array example, but iterative remapping and other techniques extending the use of
the primitives are illustrated. The example takes full advantage of the fact that a given virtual
window, using as few as one APR, can be freely moved about within a large memory region.

Assume that a process needs 32K bytes of memory in order to create and manipulate a single
large array and, consequently, would require four APRs if that much space were to be statically
allocated to the program. Further assume that the array would not fit in the process's virtual
address space if it were statically allocated (declared as a program variable), so dynamic RAM
allocation and mapping are needed. The minimum requirement is that the static-process family
to which the process in the example belongs does not exceed 28K words, leaving at least one
unused APR available for window mapping.

Keeping the stated assumptions in mind, consider the following program segment:

[SYSTEM (MICROPOWER)] PROGRAM map6;

%INCLUDE 'MICROPOWER$LIB:DRAM.PAS' { To get the "right stuff" }

TYPE

VAR

huge_record = ARRAY [O .. 4095] OF INTEGER;

i, off_set : INTEGER;
q : A huge_record;
rib1 : REGION_ID_BLOCK;
window_base : UNSIGNED;

[INITIALIZE] PROCEDURE start;
BEGIN

END;

{ Allocate 32 Kb of free RAM }
IF NOT ALLOCATE_REGION (RIB := rib1, REG_SIZE := %0'1000')

THEN ;
{ Map window to bottom of array initially }

MAP_WINDOW (RIB := rib1, LENGTH := 8192,
OFFSET := 0, WINDOW_PTR := q);

window_base := O;

{ Return Ith element as function value }
FUNCTION arry (index: UNSIGNED): INTEGER;
BEGIN

END;

IF NOT (((index - window_base) >= 0) AND
((index - window_base) < 4096))

THEN
BEGIN { Not currently mapped, remap }

END;

UNMAP_WINDOW (WINDOW_PTR := q, LENGTH:= 8192);
{ Point to par tick }

window_base := (INDEX DIV 32) * 32;
MAP_WINDOW (RIB := rib1, LENGTH := 8192,

OFFSET := window_base DIV 32,
WINDOW_PTR := q);

arry := qA[(index - window_base)]

5-16 Dynamic RAM Allocation and Region Sharing

PROCEDURE set_arry (index.val : UNSIGNED);
BEGIN

END;

BEGIN

IF NOT (((index - window_base) >= 0) AND
((index - window_base) < 4096))

THEN
BEGIN { Not currently mapped, remap }

UNMAP_WINDOW (WINDOW_PTR := q, LENGTH ·= 8192);
{ Point to par tick }

window_base := (INDEX DIV 32) * 32;
MAP_WINDOW (RIB := rib1, LENGTH := 8192,

OFFSET := window_base DIV 32,
WINDOW_PTR := q);

END;
q-[(index - window_base)] :=val;

{ Clobber the base to force a remap}
window_base := 0;

{ Map, starting at arry[9984], the par tick just below
arry[10000]}

set_arry (10000,23);

{ No remap }
set_arry (10002,25);

{ Still no remap, right at the end of the virtual address window}
set_arry (14079,27);

{ Must remap, starting at arry[14080] }
set_arry (14080,29);

{ No remap }
set_arry (14081,31);

{ Clobber the base to force a remap }
window_base := 0;

{ Map, starting at arry[9984], the par tick just below
arry[10000]}

IF arry(10000) = 23
THEN writeln ('success on 10000'
ELSE writeln ('failure on 10000'

{ No remap }
IF arry(10002) = 25

THEN writeln ('success on 10002'
ELSE writeln ('failure on 10002'

{ Still no remap, right at the end of the virtual address window}
IF arry(14079) = 27

THEN writeln ('success on 14095'
ELSE writeln ('failure on 14095'

{ Must remap, starting at arry[14080] }
IF arry(14080) = 29

THEN writeln ('success on 14096'
ELSE writeln ('failure on 14096'

Dynamic RAM Allocation and· Region Sharing 5-17

END.

{ No remap }
IF arry(14081) = 31

THEN writeln ('success on 14097'
ELSE writeln ('failure on 14097'

5-18 Dynamic RAM Allocation and Region Sharing

Chapter 6

Exception Processing

An exception is a significant event associated either with a processor trap (usually representing
a hardware-detected error) or with a software-detected error or other special condition. The
condition indicated by an exception, such as a memory fault or an arithmetic error, generally casts
doubt on the ability of the running process to continue normal execution. Therefore, exceptions
are essentially a kind of synchronous program interruption that, unlike 1/0 interrupts, cause
a change in the flow of control within the currently running process. The kind of change
depends on the kind of exception processing, if any, provided for the particular process and
for the exception condition in question. The process may be switched to exception-wait state,
to await "attention" by a separate exception-handling process; control may be redirected to the
process's own exception service procedure; or the process may be aborted (forced to terminate
abnormally into the inactive state). Note that any "unhandled" exception is fatal, causing the
process to abort.

Despite the 16 types of exceptions defined for MicroPower/Pascal and the many possible
exception conditions within a given exception type, all exceptions can be loosely grouped into
two categories: hardware exceptions and software exceptions. (Software exceptions constitute
by far the larger category.) The characteristics of each category are as follows:

• Hardware exceptions result from processor traps that cause an exception to be raised
directly and unconditionally by the kernel. (All traps except IOT, debugger-set breakpoint,
and power-:-fail/restart cause an exception, assuming that the corresponding trap handler has
been included in the kernel.) Hardware exceptions represent either a hardware-detected error
resulting from an instruction failure (an implicit error trap) or a special condition signaled
by the intentional execution of a trap instruction in user code (an explicit "service trap").
Hardware-detected error conditions include bus timeouts, illegal or nonexistent addresses,
illegal or reserved instructions, memory-parity errors, memory-management faults, and
floating-point errors.

The so-called service traps are caused by EMT, TRAP, and-possibly-BPT instructions.
However, the BPT instruction is used by the P ASDBG symbolic debugger for setting
dynamic breakpoints and thus is not recommended for use in source code. (The remaining
trap instruction, JOT, implements normal entry to the kernel for primitive services and
cannot be used for any other purpose.) Such intentional traps can be used in a MACR0-11

Exception Processing 6-1

program to trigger a user-defined service or other form of intervention from an exception
handling process. Although trap instructions cannot be coded directly in a Pascal program,
they could be implemented if necessary with a MACR0-11 subroutine.

• A software exception represents an error or other special condition that is detected by
software and is conditionally raised as an exception by means of the Report Exception
primitive service (REXC$ macro request or Pascal REPORT procedure). In most cases, the
condition is detected by a system software component, such as a kernel primitive or a
system service process, which reports the condition back to the requesting process through
a uniform status-return mechanism, leaving the exception reporting to the discretion of the
user process.

In principle, therefore, occurrence of a software-detected condition corresponding to a
defined exception does not necessarily and automatically raise that exception. Except for
kernel-detected stack violations, this principle holds across the board for a user process
implemented in MACR0-11. For a Pascal-implemented process, however, many software
exceptions (mostly relating to I/O and arithmetic functions) are unconditionally reported
as such by the generated code. Some of the Pascal real-time service requests have an
optional STATUS parameter that suppresses the otherwise implicit, automatic reporting of
SYSTEM_SERVICE- and RESOURCE-type exceptions by the OTS interface routines that
support the primitive service calls.

The kernel provides a mechanism for dispatching exceptions to either an exception-handling
process or an exception service routine (Pascal exception procedure), as described in Section 6.3.
If no form of exception handling is provided, the kernel aborts the faulting process, causing it
to terminate in the inactive state.

The remainder of this chapter discusses exception types and codes, kernel exception dispatching,
and exception handlers and service routines. Before reading further in this chapter, MACR0-11
programmers should be familiar with the CCND$, DEXC$, SERA$, and REXC$ primitive requests
described in Chapter 3. Pascal programmers should be familiar with the corresponding requests
(CONNECT-EXCEPTION, RELEASE-EXCEPTION, ESTABLISH, and REPORT) described in
Chapter 17 of the MicroPower /Pascal Language Guide.

6. 1 Exception Types and Codes
Exception conditions are identified by both a type and a code within the type. Of the 16
exception types, 12 are defined essentially for use by system software, 2 are reserved for future
use, and 2 are dedicated to user-defined conditions. Each exception type is identified by an
exception type symbol, such as EX$HIO in MACR0-11, and by a corresponding exception
type symbol, such as HARD-10 in Pascal. The machine representation of a type symbol is
a bit-mask word with a single bit set. Thus, type values can be used in MACR0-11 logical
word instructions such as BIS and BIT. In equivalent Pascal terms, a type symbol represents a
single element of a 16-member set, defined by the include file EXC.PAS as EXC_SET, and type
values can be used in set expressions. (In some contexts, an exception type variable can validly
represent several exception types, that is, the logical OR or union of two or more type symbols.)

Within each exception type, individual exception conditions are identified by an exception code.
(Most of the 12 types defined for system use each comprise many specific exceptions.) The
exception code symbols, of the form ES$xxx, are the same for both Pascal and MACR0...-11 usage
and represent unsigned word values. The internal format of an exception code value, composed

6-2 Exception Processing

of an encoded type portion and a subcode value, is described in Section 6.2. Normally, only the
MACR0-11 programmer need be concerned with the composition of an exception code value.

Table 6-1 lists the exception types and codes and gives a brief description of each exception.
The asterisks (*) in the table identify unconditional, kernel-raised exceptions that apply equally
to MACR0-11 and Pascal processes. For MACR0-11 users, the exception type and code values
are defined by the EXMSK$ macro in the COMU and COMM system macro libraries. For Pascal
users, the corresponding exception types and codes are declared in the DIGITAL-supplied include
file EXC.PAS. (EXC.DOC provides the commented form of the "condensed" EXC.PAS file.)

Note
Do not confuse an exception type with an exception group, which is an attribute
of a process. The exception group code is a value that is specified when a
process is created or declared. The group code parameter (Pascal GROUP
attribute) declares a process to be a member of a group for exception-handling
purposes. (An exception group is a set of processes grouped together because
of common exception-handling requirements.) The group code is then used to
associate one or more exception handlers with a particular exception group. See
Section 6.4.1 for further information.

Table 6-1: Exception Types and Codes

Type Code

EX$MEM•

ES$BUS•

ES$MEM

ES$MPT•

ES$MMU•

ES$VEC•

EX$IOP•

ES$FOP•

ES$ILL•

ES$IOP

EX$EMT•

ES$EMT•

ES$xxx•

EX$TRP•

ES$TRP•

Description

MEMORY-FAULT

Bus error: illegal address, bus timeout; trap to vector 4

Unspecified memory fault (subcode = 0); should never be encountered

Memory parity error, where applicable; trap to vector 114

Memory-management error, mapped targets only; trap to vector 250

Vector fetch error, FALCONs only; trap to vector 0

ILLEGAL_OPERATION

FP-11 or FP A floating-point opcode error; trap to vector 244

Illegal or reserved instruction; trap to vector 10

Unspecified illegal operation (subcode = O); should never be encoun
tered

EMULATOR_ TRAPMT instruction executed; trap to vector 30

EMT instruction with a zero operand (subcode = 0)

User-defined EMT exception codes, with a low-byte value from 1 to
255 matching EMT instruction operand

TRAP-TRAP instruction executed, trap to vector 34

TRAP instruction with a zero operand (subcode = 0)

Exception Processing 6-3

Table 6-1 (Cont.): Exception Types and Codes

Type

EX$BPT•

EX$HIO

Code

ES$xxx*

ES$BPT•

ES$ABT

ES$ATN

ES$BOT

ES$CTL

ES$DAL

ES$DRV

ES$EVL

ES$FOR

ES$FRM

ES$HIO

ES$IBN

ES$IDA

ES$IVD

ES$IVM

ES$IVP

ES$NXM

ES$NXU

ES$0FL

ES$0VF

ES$0VR

ES$PAR

ES$PNA

ES$PWR

6-4 Exception Processing

Description

User-defined TRAP exception codes, with a low-byte value from 1 to
255 matching TRAP instruction operand

BREAKPOINT_TRAP (not generated via PASDBG)

User-coded BPT instruction executed; trap to vector 14

HARD-IO-Hard 1/0 error conditions returned by a driver or
communications process; corresponding exceptions are raised by the
Pascal OTS

IjO request canceled by user or aborted by remote node

Device attention required

Beginning of tape

Controller error

Device already allocated

Drive error

End of volume

Format error

Framing error

Unspecified hard IjO error (subcode = O); should never be encoun
tered

Invalid block number

Invalid device address

Invalid data

Invalid mode

Invalid parameter

Nonexistent or read-only memory

Nonexistent unit

Device off line or not mounted

Data overflow

Device overrun

Parity error

Packet not available to support request

Device power failure

Table 6-1 (Cont.): Exception Types and Codes

Type

EX$SIO

Code

ES$SPD

ES$TIM

ES$UNS

ES$WLK

ES$ABO

ES$BIV

ES$DAS

ES$DCF

ES$DIO

ES$DNU

ES$DRF

ES$DVF

ES$EOF

ES$FAO

ES$FIV

ES$FNF

ES$FNO

ES$FNR

ES$FNW

ES$FRO

ES$FVC

ES$ICD

ES$IDR

Description

I/ 0 processing stopped

Device timeout

Unsafe volume

Write-locked unit

SOFLJO-Soft 1/0 errors or special conditions, returned primarily
by a driver, ACP, or communications process; the corresponding
exceptions are raised by the Pascal OTS if the condition is unexpected.
(Certain errors are detected as well as reported by the Pascal OTS,
as noted.)

1/0 aborted

Illegal Boolean value (Pascal only, detected by OTS)

Direct access requested on sequential file (Pascal only, detected by
OTS)

Device full

Directory I/ 0 error

Destination node is unreachable

Directory full

Attempt to signal device driver or ACP failed (detected by the OTS,
ACP, or a communications process)

End of file encountered; not normally an error (detected by the ACP,
conditionally reported by the OTS)

File already open (Pascal only, detected by OTS)

Illegal floating-point value (Pascal only, detected by OTS)

File not found

File not open (Pascal only, detected by OTS)

File not reset (Pascal only, detected by OTS)

File not rewritten (Pascal only, detected by OTS)

File is read-only: invalid write to OLD disk file (Pascal only, detected
by OTS)

File-variable contention error (Pascal only, detected by OTS)

Invalid driver configuration data

Invalid directory format

Exception Processing 6-5

Table 6-1 (Cont.): Exception Types and Codes

Type

EX$NUM•

Code

ES$IDS

ES$IFN

ES$IFS

ES$IFW

ES$IIV

ES$ILV

ES$INS

ES$IRS

ES$IUP

ES$IVL

ES$LRJ

ES$NIP

ES$NFS

ES$NRF

ES$PAL

ES$PRO

ES$REF

ES$RSZ

ES$SIO

ES$TNF

ES$UFN

ES$UIV

ES$WEF

Description

Illegal device specification

Illegal function

Illegal file specification

Illegal field width (Pascal only, detected by OTS)

Illegal integer value (Pascal only, detected by OTS)

Illegal long integer value (Pascal only, detected by OTS)

Invalid network specification

Illegal rename specification

Illegal use of UPDATE or DIRECT parameter (Pascal only, detected
by OTS)

Invalid length specified

°Link rejected by remote task

No 1/0 in progress

Device not file structured

No reference data present

Path to remote task has been lost

File protection error

Attempted read past EOF

Record size of 0 specified (Pascal only, detected by OTS)

Unspecified soft IjO error (subcode = 0); should never be encountered

Task not found

Unsupported function

Illegal unsigned value (Pascal only, detected by OTS)

Attempted write past EOF

NUMERIC-Numeric errors reported either by the kernel (floating
point traps) or by Pascal runtime checks

ES$CON• Floating-point conversion error (FP-11 or FPA)

ES$FDZ• Floating-point divide by 0 (FP-11, FIS, or FPA)

ES$FOV• Floating-point overflow (FP-11, FIS, or FPA)

ES$FUN• Floating-point underflow (FP-11, FIS, or FPA)

6-6 Exception Processing

Table 6-1 (Cont.): Exception Types and Codes

Type

EX$RSC

Code

ES$IDZ

ES$INM

ES$IOV

ES$LDZ

ES$LIC

ES$LNM

ES$LNP

ES$LOV

ES$LUC

ES$NUM

ES$SRN

ES$UDV•

ES$UDZ

ES$UOV

ES$DDP

ES$LNR

ES$NFA

ES$NFR

ES$NLZ

ES$NMB

ES$NMC

ES$NMF

ES$NMK

ES$NMP

ES$NMS

ES$NNS

ES$RNR

Description

Integer divide by 0 (Pascal only)

Modulus of negative integer (Pascal MOD function)

Integer overflow (Pascal only)

Long integer divide by 0 (Pascal only)

Long integer to integer conversion error (Pascal only)

Modulus of negative long integer (Pascal MOD function)

Log of nonpositive value (Pascal LN function)

Long integer overflow (Pascal only)

Long integer to unsigned conversion error

Unspecified numeric error (subcode = O); should never be encountered

Square root of negative value (Pascal SQRT function)

Undefined floating-point variable (FP-11 or FPA)

Unsigned divide by 0 (Pascal only)

Unsigned overflow (Pascal only)

RESOURCE-Resource errors, either returned by a primitive or
system process and optionally reported by the Pascal OTS, or detected
and reported only by the Pascal OTS

DISPOSE of already disposed pointer (Pascal only)

Local node has no room for logical link

No free APR for window mapping

No free RAM available for a system process

NEW request of length 0 (Pascal only)

Insufficient DATA_SP ACE for I/O buffer (Pascal only)

Insufficient space for operation in RTACP pool

Insufficient DATA_SP ACE for file variable (Pascal only)

Insufficient pool space for kernel structure

Insufficient DATA_SP ACE for user structure (Pascal only)

Insufficient DATA_SP ACE for process stack (Pascal only)

No network service process installed

Remote node has no room for logical link

Exception Processing 6-7

Table 6-1 (Cont.):

Type

EX$RAN•

EX$EXC•

EX$SVC

Code

ES$RSC

ES$ASO

ES$CSO

ES$NIL

ES$PCC

ES$RAN

ES$SEO

ES$STO•

ES$STU•

ES$VSE

ES$BRK•

ES$EXC

ES$AOV

ES$CDN

ES$EPN

ES$IAD

ES$IPM

ES$IPR

ES$IST

ES$IVC

ES$MDN

6-8 Exception Processing

Exception Types and Codes

Description

Unspecified resource error (subcode = O); should never be encountered

RANGE-Range errors, detected and reported by Pascal runtime
checks only, except as noted

Array subscript out of bounds (Pascal INDEXCHECK option)

Case selector out of range (Pascal RANGECHECK option)

Reference of a NIL pointer (Pascal POINTERCHECK option)

Program consistency check; system-software error or version skew,
should not occur

Unspecified range error (subcode = 0); should never be encountered

Set element out of range (Pascal RANGECHECK option)

Stack overflow (detected either by kernel or Pascal STACK CHECK
option)

Stack underflow (detected either by kernel or Pascal STACKCHECK
option)

Variable subrange exceeded (Pascal RANGECHECK option)

EXECUTION-Execution error, pertaining to a FALCON target
configuration option only

FALCON break trap, if configured; trap to vector 140

Unspecified execution error (subcode = O); should never be encoun
tered

SYSTEM_SERVICE-System service errors returned mostly by prim
itive operations and optionally reported by the Pascal OTS; a few are
detected and reported by the Pascal OTS only, as noted

Already owned vector, cannot connect

Cannot specify both descriptor and name (Pascal requests only)

Exception procedure not defined (Pascal REVERT request only)

Invalid address: odd or not in user address space

Illegal parameter

Illegal primitive

Invalid structure descriptor

Illegal vector address

Must specify descriptor or name (Pascal requests only)

Table 6-1 (Cont.):

Type Code

ES$NID

ES$RDE

ES$SIU

ES$SNI

ES$SVC

EX$RS1

EX$RS2

EX$US1

ES$US1

ES$xxx

EX$US2

ES$US2

ES$xxx

Exception Types and Codes

Description

No interrupt dispatch block (IDB) configured for vector; address not
specified in DEVICES macro

Reply descriptor expected by RECEIVE__ACK (Pascal request only)

Structure is in use

Structure name already in use

Unspecified system service exception (subcode = O); should never be
encountered

RESERVED_l-(Reserved by DIGITAL for future use)

RESERVED_2-(Reserved by DIGITAL for future use)

USER_l-Type reserved for user-defined, user-reported exceptions

Nonspecific exception of type USER_l (subcode = 0)

User-definable USER_l type exception code, with subcode value
from 1 to 2047(decimal); see Section 6.2 for exception code format

USER_2-Type reserved for user-defined, user-reported exceptions

Nonspecific exception of type USER_2 (subcode = 0)

User-definable USER_2 type exception code, with subcode value
from 1 to 2047(decimal); see Section 6.2 for exception code format

6.2 Reporting Exceptions
Any process can deliberately raise an exception by issuing a Report Exception (REXC$) primitive
request or the corresponding Pascal REPORT procedure. The REXC$ or REPORT parameters
specify the exception type and code and, optionally, any additional arguments to be passed to
an exception-handling process or exception service routine by means of the process stack. (A
somewhat different but analogous interface exists in Pascal for passing additional arguments to
an exception procedure.) See Chapter 3 of this manual or Chapter 17 of the MicroPower /Pascal
Language Guide for detailed syntax of the REXC$ and REPORT calls, respectively.

For a process implemented in Pascal, many OTS routines make implicit use of REPORT to
raise software exceptions, either optionally or unconditionally as Table 6-1 indicates. (The
STATUS parameter of many Pascal primitive requests may be used to inhibit the implicit
reporting of RESOURCE and SYSTEM_SERVICE exceptions by the corresponding OTS interface
routines.) No software exceptions other than kernel-detected stack violations are ever reported
automatically for a process implemented in MACR0-11. When a 'software exception is raised
by means of the REXC$ /REPORT mechanism, the kernel dispatches the exception in the same
manner as for a hardware exception.

Exception Processing 6-9

As previously mentioned, an exception type and a code are both mandatory parameters to an
REXC$ or REPORT call. In some circumstances, a process that chooses to raise an exception
based on an exception code returned by a kernel primitive or a system process may need to derive
an exception type value from the returned exception code before issuing the REXC$/REPORT
call.

If the reporting process is implemented in MACR0-11, it may need to do so for any kind of
error return-whether from a primitive or a system service process. (A MACR0-11 process
receives only an exception code as the error return from either a primitive or a system process.)

If the reporting process is implemented in Pascal, it may need to do so only if it interacts directly
with a device driver or other system process through the request/reply packet interface. (A
Pascal process receives both an exception type and a code as the optional STATUS return from
a primitive service call; the OTS interface routine performs the needed code-to-type translation.)

Every system-defined exception code value has type information encoded in a high-order field
of the word value, permitting an exception-type mask value to be dynamically derived from the
exception code. The format of an exception code value is as follows:

Bits oj
J tt sub code

ML0-488-87

The high-order 5-bit field tt contains a value ranging from 1 to 16, corresponding to the bit
to be set in the matching exception-type mask or to the matching exception-type set element
in equivalent Pascal terminology. The subcode is a value that normally ranges between 1 and
2047 (3777 octal) and identifies ~ specific exception condition within the type. (Except for the
codes ESEMT, ESTRP, and ES$BPT associated with trap instructions, an exception code with a
subcode of 0 indicates an unspecified condition of a given type and is essentially a "placeholder"
or origin value for meaningful codes of that type.)

Program fragments for dynamically deriving the matching exception type are shown in the next
two subsections.

6.2. 1 Deriving an Exception-Type Bit Mask in MACR0-11

The following program fragment assumes that RO contains an exception code and that Rl and
R2 are free for use. The exception code is retained in Rl, and the derived exception-type mask
is produced in R2, with RO free for the subsequent REXC$ call. The fragment also assumes a
non-EIS hardware environment-in particular, no ASH instruction.

MDV RO,R1 ; Save exception code intact

Transform type field (highest 5 bits) in RO into a rotate count
SWAB RO
BIC #177407,RO

Switch type field to the low byte
Isolate the encoded type value

ASR RO . Shift isolated value down 3 bits
ASR RO
ASR RO RO = encoded type in bits O to 4

6-10 Exception Processing

; Construct type bit-mask in R2 corresponding to encoded type
CLR R2 Start off clean
SEC Set C bit for initial rotate

RPTR: ROL R2 ; Form the bit mask
SOB RO,RPTR ; Shift set bit as needed

; Report the exception condition
rexc$s mask=R2,code=R1,arglen=#O

6.2.2 Deriving an Exception-Type Set Value in Pascal
The following program fragment assumes that the variable except_code contains an exception
code that might have been returned by a driver in an 1/0-service reply packet. The derived
exception-type set value is produced in the variable except-type, which may then be used in
the subsequent REPORT call.

TYPE

VAR

BEGIN

two_part = PACKED RECORD
sub_cod [POS(O), BIT(11)] 0 .. 2047;
enc_typ [POS(11), BIT(5)] 1 .. 16;
END;

except_type EXC_SET;
except_code EXC_CODES;

except_type := [((except_code): :two_part).enc_typ-1): :EXCEPTIONS];

REPORT (EXC_TYPE := except_type, EXC_CODE := except_code);

END.

6.3 Exception Dispatching
When an exception occurs, an exception stack frame is built on the running process's stack,
and control passes to the kernel's exception-dispatching mechanism. The exception stack
frame, described in Section 6.5, contains the exception type, exception code, and any additional
arguments specific to the exception in question, as well as certain saved registers. The kernel first
checks whether an exception-handling process is present for the group to which the running
process belongs and for the type of exception to be handled. If such a handler exists, the
kernel switches the running process (the process incurring the exception) from run state to the
exception-wait-active state and places the process's PCB on the exception handler's exception
queue semaphore, effectively signaling that semaphore and unblocking the exception handler.

Exception Processing 6-11

The PCB contains the faulting process's latest context, of course, including its stack pointer (SP
register). The kernel then declares a significant event, which causes the scheduler to switch a
ready-active process (possibly the exception handler) into the run state.

At this point, the process causing the exception remains in exception-wait state, waiting for its
exception to be processed and its eventual disposition to be determined. The exception handler,
which was signaled by the kernel, is presumably in either ready-active or run state. Like any
other process, the exception handler will run on the basis of its process priority relative to that
of other processes on the kernel's ready-active queue.

If an exception handler does not exist for the exception group in question and for the type
of exception to be handled, the kernel checks whether the running process has declared an
exception service procedure. The kernel does that by examining the PCB of the running
process. If the process has an exception procedure, established by the Set Exception Routine
Address (SERA$) primitive or corresponding Pascal ESTABLISH procedure call, an exception
service entry address will be present in field PC.EXC of the PCB. However, the kernel will not
dispatch to that address unless the exception is of a type that is represented in the the PCB's
exception-type bit mask (field PC.MSK). That bit mask reflects the exception type(s) specified in
the SERA$ request or ESTABLISH procedure call that established the exception service routine
or procedure.

When the exception procedure finishes its diagnostic or corrective processing, control returns
to the point at which the exception occurred if the procedure ends normally-with an RTI
instruction in the case of a MACR0-11 exception service routine. If the procedure issues a Stop
Process request, however, control transfers directly to the process's termination entry point for
a normal termination.

If neither an exception handler nor an exception routine/procedure is provided, the kernel
immediat~ly aborts the process by setting both the SM.ABO and SM.ABI state-code modifier
bits in the process's PCB (field PC.STS) and directing control to the process's termination entry
point (PC.TER) contained in the PCB. (The SM.ABI bit causes the process to terminate into the
inactive state instead of simply disappearing when the Delete Process request is issued.) If you
are debugging, P ASDBG will report the fatal (unhandled) exception.

Note
Unless the application was designed to allow the offending process to terminate
without disrupting the application, continued execution of the application after
a process has aborted will produce unpredictable results.

Figure 6-1 shows the action of the kernel in dispatching an exception.

6-12 Exception Processing

Figure 6-1 : Kernel Exception Dispatching

Trap or R EXC$ Entry to
Exception Dispatcher

~

NO

Does a handler
exist for the

exception group

and the
exception type?

YES

Does the running

process have an

exception service

routine or procedure

for this type?

NO f YES

Dispatch to

exception

routine

address

'
Set SM.AB I substate
and dispatch to the
process termination

entry point

6.4 Exception Handling
6.4. l Exception-Handling Processes

Context-switch the

running process

into the exception

wa it-active state

(significant event)

•
Put PCB of process

on the exception
handler's queue,

unblocking handler

ML0-489-87

An exception handler is a process that receives and manages specified typ.es of exceptions for
one or more groups of other processes. Note that in a mapped environment, an exception
handler typically requires privileged (full system) mapping for direct access to PCBs.

An exception handler receives a pointer to the PCB of a faulting process on the queue semaphore
that it has defined as its exception queue. After creating the required queue semaphore at start
up time, a process establishes itself or one of its subprocesses as an exception handler through
use of the Connect to Exception Condition (CCND$) primitive request or the corresponding
Pascal CONNECT_EXCEPTION procedure.

Exception Processing 6-13

The CCND$ primitive associates an exception type and an exception group with a specified
queue semaphore, thereby making that semaphore known to the kernel as the exception handler
queue for that type and group. Several type/group combinations can be associated with the
same exception queue, but any given type/group combination can have only one exception
queue.

As described under exception dispatching, the kernel queues the PCB of a faulting process
on the exception queue, if any, established for the type of exception that occurred and the
group to which the faulting process belongs. (The kernel uses the standard signal-queue
operation but puts a PCB pointer instead of a packet pointer on the queue.) The exception
handling process synchronizes with the arrival of exceptions through use of the Wait on Queue
Semaphore (WAIQ$) primitive request or the Pascal GET-EXCEPTION procedure, an analog of
GET_pACKET.

Every process has a group code in the range 1 to 255(decimal) associated with it when it
is created. Essentially, group codes permit more than one exception handler for the same
exception type to be present in the system, each implementing a different management strategy
on behalf of the group(s) that it handles. The group code is defined for each process by
the grp parameter of MACR0-11 DFSPC$ and CRPC$ requests or the GROUP attribute in
Pascal PROGRAM headings and PROCESS declarations. The group parameter of a CCND$
or CONNECT-EXCEPTION request correspondingly specifies the group to be handled. Each
Connect request can specify only one exception type and one group code. A number of Connect
requests can be issued for a given queue semaphore, however, to establish the same exception
queue for more than one group for an exception type and/or for more than one exception type
for a group.

Alternatively, an exception handler can establish itself as the handler of a given exception
type for all processes in an application, regardless of their group codes. That is done by
specifying a group code of 0 (wildcard value) for the group parameter of the CCND$ or
CONNECT-EXCEPTION request. Once a handler connects its exception queue to the wildcard
group for a given exception type, no subsequent Connect requests for a specific group will be
honored for the same exception type; conversely, no wildcard Connect request will be honored
after a specific-group Connect request for a given exception type. That is to say, only one
handler can be in effect for any combination of group and type, and the wildcard group code
0 implies all exception groups. (Group code 0 is invalid as a process attribute.)

Caution
If a wildcard group handler itself causes an exception of a type that it handles,
the handler process will lock up _in a "fatal embrace" with itself and the process
whose exception it was handling. (The handler will be blocked indefinitely
on its own exception queue.) This situation can also occur if the handler is a
member of any specific group that it handles, of course. Exception handlers in
general should not cause exceptions in a debugged application.

When an exception occurs and an exception queue is signaled by the kernel, the exception
handler waiting on that queue semaphore receives a pointer to the PCB of the process that
caused the exception. That process has been blocked in the exception-wait-active state by the
kernel.

6-14 Exception Processing

The exception handler has access to the faulting process's exception stack frame through the
user SP value saved in the PC.USV area (offset UC.SP) of the passed PCB, as well as access
to all of the other saved context of the faulting process. (PCB offset symbols for Pascal coding
are defined in the PCBM.PAS and PCBU.PAS include files for mapped and unmapped systems,
respectively. See the corresponding PCBM.DOC or PCBU.DOC file for the commented form of
those include files. The MACR0-11 offset symbols are defined by the PCBDF$ macro in the
COMM and COMU macro libraries.)

Section 6.5 describes both the general format of an exception stack frame and specific stack
frame formats for kernel-raised exceptions. In a mapped environment, the handler will already
be mapped to the PCB but will need to map itself to the faulting process's stack area, using the
stack pointer and mapping-context information in the PCB, assuming that the handler process
is privileged and not a member of the same process family as the faulting process. Based on
information in the stack frame and other information in or pointed to by the PCB, the handler
must determine a course of action, "process the exception" in some fashion, and dispose of the
PCB.

The exception handler can determine, by examination of PCB fields PC.EXC and PC.MSK,
whether the process causing the exception is prepared to receive the exception for processing
by its own exception service routine. The exception handler then must decide, based on that
determination and the condition causing the exception, whether to pass the exception back to
the process or to handle the exception by itself.

The exception handler uses the Dismiss Exception Condition (DEXC$) primitive request or the
corresponding Pascal RELEASE-EXCEPTION procedure to dispose of the PCB and return the
faulting process to the ready-active state for resumption of normal execution, further exception
processing, or termination. The DEXC$ /RELEASE_EXCEPTION options allow the exception
handler three courses of action, as follows:

• Dismiss the exception (action= DISMISS). The process will resume execution at the point
following the exception unless the saved user PC value was modified in the PCB by the
exception handler.

• Pass the exception back to the process, causing it to resume execution at its exception service
routine entry point (action = PASS). If the subject process has not declared an exception
procedure that services the type of exception in question, this option has the same effect as
ABORT, described next.

• Abort the process, causing it to resume execution at its termination entry point (action =
ABORT). This action is appropriate if the exception represents a fatal situation that cannot
be remedied by either the exception handler or the process causing the exception.

An exception handler must leave the exception stack frame on the process's stack exactly as
received. The DISMISS and ABORT action options cause the necessary registers to be restored
and the frame to be purged automatically. The PASS option leaves the stack frame for the
process's exception routine or procedure if there is one. (If not, the PASS action is equivalent
to ABORT.) In any case, the Dismiss Exception operation causes a significant event, returning
the subject PCB to the kernel's ready-active queue for scheduling, unless the faulting process
was suspended while in the exception-wait-active state.

The running priority of an exception handler should be higher than that of any process that
may cause an exception that it handles.

Exception Processing 6-15

6.4.2 Exception Service Routines and Procedures
Any process can establish an exception routine or procedure to service one or more types of
exceptions caused by itself. A MACR0-11 process can have only one exception service routine,
regardless of the number of exception types it wishes to manage internally. A Pascal process,
however, can establish multiple exception procedures, up to the number of exception types to be
serviced. As previously described, a process's own routine or procedure "receives" an exception
condition either directly, if no external handler exists for the exception type and the process's
exception group, or indirectly, if such a handler exists and exercises the PASS option for the
exception in question.

6.4.2. 1 Exception Routines in MACR0-11

An exception routine is essentially a synchronous "software interrupt" service routine that runs
at process level on the process stack, has normal process mapping and several free registers (R3,
R4, and RS), and can execute primitive operations if RO is properly saved and restored. The
routine is coded in assembly language as a closed subroutine that ends with a stack cleanup
and an RTI instruction. (One exception routine code segment can be used by more than one
process within a process family.)

A MACR0-11 process establishes its exception routine by issuing a Set Exception Routine
Address (SERA$) primitive request, which specifies the routine's entry point and the type(s) of
exceptions it will accept. This information is made available to the kernel by means of the
PC.EXC and PC.MSK fields of the process's PCB.

When an exception is dispatched to an exception routine, whether directly or through an
exception handler, the routine is entered in full process context, with SP pointing to the
exception stack frame on the process stack. As shown in Figure 6-2, the stack frame contains
the process's R3, R4, RS, PC, and PS context that was saved when the exception was raised, as
wep as the exception type, code, and variable-size argument list associated with the exception
condition. General registers R3, R4, and RS are therefore available for use by the routine
without saving. If used, RO, Rl, or R2 should be saved for restoring prior to exit unless the
process is terminated by the exception routine. In particular, if any primitives are executed, RO
should be saved and restored around the primitive calls.

In its exception-specific code, the routine could perform some form of error logging and then
force termination of the process with a Stop Process (STPC$S #0) request, which transfers
control to the process's termination routine. Alternatively, the exception routine may take a
corrective action where possible and appropriate to the particular exception condition. After
corrective action is taken, the routine must do the following:

• Restore any registers it has explicitly saved

• Purge the stack down through the exception type, code, and argument list

• Rest~re and pop the saved R3, R4, and RS values

• Exit by means of an RTI instruction, with SP pointing to the PC value

The RTI exit will return control to the process code at the point of the exception unless the
exception routine has modified the saved PC value. (See the description of the ES$MMU
exception stack frame in Section 6.S.3 for a case in which corrective action necessarily includes
modification of the PC value.)

6-16 Exception Processing

6.4.2.2 Exception Procedures in Pascal

For a process coded in Pascal, an OTS module implements the "outer shell" of the run-time
exception routine mechanism described in the preceding section, concealing all hardware-level
details from the Pascal programmer. (Register usage considerations and stack manipulations are
all transparent, of course.) The OTS routine forms an interface between the kernel's exception
dispatcher and one or more exception procedures explicitly declared and established as such
in the Pascal program. The routine itself acts as a higher-level dispatcher, selectively calling a
procedure based on exception type and executing the subsequent return, if any, to the process
code. Functionally, then, the declared exception procedure(s) constitute the exception-specific
"innards" of the run-time exception routine pointed to by field PC.EXC of the faulting process's
PCB.

In the Pascal source code, the programmer declares one or more exception procedures for each
process that will service its own exceptions. The procedures may be declared at outermost
main program-level for the static process or within a PROCESS declaration for a given
dynamic process. As described in Chapter 17 of the MicroPower /Pascal Language Guide, such
procedures have a formal parameter list consisting of a value parameter of type EXC_SET; a
value parameter of type EXC_CODES; a value parameter of type UNSIGNED, representing
an optional-argument byte count; and a VAR parameter of type UNIVERSAL, representing an
optional-argument pointer variable. Further, an ESTABLISH procedure call is required for each
declared exception procedure in order to establish each one as the procedure to be automatically
invoked for one or more particular types of exceptions. Each ESTABLISH call specifies a
procedure name and one or more exception type values, such as MEMORY_FAULT. The
ESTABLISH call(s) must be executed within the process for which the corresponding exception
procedure is to be established.

If an exception is dispatched to the faulting process, the procedure established for the
corresponding exception type is invoked and is passed a set-element value indicating the
exception type, an exception code, a byte count indicating the length of the optional arguments
passed in the exception stack frame (may be 0), and a read-only pointer to the additional,
exception-specific arguments, if any. The pointer value, of type UNIVERSAL, points to a
variable of indeterminate type and size that is in fact the optional-argument portion of the
exception stack frame, as shown in Figure 6-2. The pointer value will be undefined if the byte
count is 0, that is, if no optional arguments have been passed in the stack frame, and the pointer
must not be used in that case. (The UNIVERSAL type is predefined as [UNSAFE] INTEGER,
which disables type checking for an entity of that type and effectively allows a formal parameter
declared as such to accept and be used as a pointer of any type.) Thus, an exception procedure
has access to all of the potentially useful information provided by an exception stack frame. If
a given exception procedure is "interested" in interpreting optional-argument information, it can
use the exception code and byte-count values as case selectors of an appropriate record type for
the pointer.

A Pascal exception procedure is, however, generally more limited than a MACR0-11 exception
routine in the range of actions it can take with respect to an exception representing an error,
because of the difference in language level. Typically, an exception procedure is restricted to
diagnostic action, some form of error logging, and process termination. If the procedure does
not issue a STOP request, exit from the procedure will cause control to return either to the
instruction following the one causing the trap, in the case of a hardware exception, or to the
code following the REPORT_EXCEPTION operation, in the case of a software exception. In

Exception Processing 6-17

either case, and especially in the former, a return to "normal" processing following an error
exception is usually undesirable.

If an exception procedure is implemented to handle exceptions resulting from Pascal 1/0
statements (for example, illegal integer value on a read), the exception procedure should
not perform 1/0. The indivisible nature of a Pascal 1/0 statement is inconsistent with the
asynchronous characteristic of exception handlers.

6.5 Exception Stack Frames
This section describes the general form of an exception stack frame and specific instances of the
nonzero argument list contained in the frame for certain hardware exceptions.

6.5. 1 General Stack Frame Format
Figure 6-2 shows the general form of the exception stack frame produced on the faulting
process's stack by the kernel when an exception is raised.

Figure 6-2: Exception Stack Frame Format

Ascending
addresses

j
_i..-

,....

Exception type

Exception code

Argument byte

count (1 word)

Optional

arguments,

possibly null

R3

R4

R5

PC

PS

-loo-

..-y-"

,...._--SP

Variable-size
argument list
(minimun size

is one word)

I

ML0-490-87

The argument-list portion of the exception frame is variable in size, allowing the reporter of
an exception condition to provide an arbitrary amount of information about it in addition to
type and code. The minimum, or zero-argument, form of argument list consists of one word:
an argument byte count of 0, indicating that the frame contains no optional arguments. The
exception stack frame contains an argument list of that form for a large majority of system
defined exception codes.

6-18 Exception Processing

6.5.2 Argument Lists for Software Exceptions

All software exceptions raised by system software components-the Pascal OTS and, in a very
few cases, the kernel-have a null argument list. This category of exceptions includes all
exceptions of types HARD-10 (EX$HIO), SOFT-10 (EX$SIO), RESOURCE (EX$RSC), RANGE
(EX$RAN), and SYSTEM_SERVICE (EX$SVC) and exceptions of type NUMERIC (EX$NUM)
other than floating-point errors.

The only software exceptions raised by the kernel are stack overflow (ES$STO) and stack
underflow (ES$STU), of type RANGE, when such conditions are detected by the kernel through
stack guardword checking during a context switch. Such checking determines only whether
a stack boundary guardword has been overwritten, not whether the SP value has jumped
around either guardword. (The same conditions may be detected and reported by optional,
Pascal-generated range-checking code, which does not rely on the boundary guardwords.)

6.5.3 Argument Lists for Hardware Exceptions

The kernel produces optional arguments-an argument list with a nonzero argument byte
count-for some of the hardware exceptions that it raises. The variable portion of the stack
frame is described below for all hardware exceptions, grouped by exception type.

• MEMORYJAULT (EX$MEM) Exceptions

ES$BUS, Bus em~rs-No optional arguments

ES$MPT, Memory parity errors on other than a KXJll-CA:

6

CSR address

Extended address

CSR contents

Parity CSR
contents

....,_Contains 0 for 16- or
18-bit target systems

ML0-491-87

As indicated in the diagram, the value of the second argument is significant only for
22-bit target systems.

For the KXJll-CA, there are no optional arguments.

Exception Processing 6-19

- ES$MMU, Memory-management unit errors:

8

MMU status
register 3

MMU status
register 2

MMU status
register 1

MMU status
register 0

ML0-492-87

The PC value saved on the stack for an ES$MMU exception does not point to the
beginning of the instruction that caused the protection fault but rather to an intermediate
point within the instruction. However, the content of MMU status register 2 is the proper
instruction address. Therefore, if an ES$MMU exception handler or service routine takes
corrective action in order to return control to the offending instruction, the handler or
routine must, prior to exit, replace the saved PC valu~ with the value of the second
argument provided in the argument list.

See Section 6.5.4 for a description of special-case ES$MMU exception processing by the
kernel involving a corrupted or marginal user SP value.

ES$VEC, Vector fetch error (FALCON or FALCON-PLUS only)-No optional arguments

• ILLEGAL _OPERATION (EX$IOP) Exceptions

ES$ILL, Illegal instruction errors-No optional arguments

ES$FOP, Floating-point opcode error-No optional arguments

• EMULATOR_TRAP (EX$EMT) Exceptions

ES$EMT, Zero-operand EMT instruction executed-No optional arguments

ES$xxx, EMT instruction executed with the nonzero operand xxx-No optional
arguments

• TRAP (EX$TRP) Exceptions

ES$TRP, Zero~operand TRP instruction executed-No optional arguments

ES$xxx, TRP instruction executed with the nonzero operand value xxx-No optiortal
arguments

6-20 Exception Processing

• BREAKPOINT_ TRAP (EX$BPT) Exceptions

- ES$BPT, BPT instruction executed-No optional arguments

• NUMERIC (EX$NUM) Exceptions

Floating-point processor faults for conversion errors (ES$CON), overflow (ES$FOV),
underflow (ES$FUN), divide by 0 (ES$FDZ), and undefined variable (ES$UDV):

2

Address of faulty
instruction

ML0-493-87

(All other exceptions of type NUMERIC represent software-detected errors.)

• RANGE (EX$RAN) Exceptions

ES$STO, Process stack overflow-No optional arguments

ES$STU, Process stack underflow-No optional arguments

(All other exceptions of type RANGE represent software-detected errors.)

• EXECUTION (EX$EXC) Exceptions

ES$BRK, Break trap (if configured, on a FALCON or FALCON-PLUS only)-No optional
arguments

6.5.4 Special Cases of MMU-Fault Exception Processing
To prevent a fatal trap-to-4 or MMU trap from occurring within the kernel's exception dispatcher
as a result of nested traps, the kernel takes special action in a mapped application for the two
cases described below. In both cases, the faulting process's stack is invalidated, and no run-time
recovery is possible:

• If an ES$MMU exception occurs-presumably as a result of a corrupted user stack pointer
and the kernel detects that the user's SP value is obviously invalid, that is, not within the
user's address space, the kernel resets the user SP to the initial beginning-of-stack value
before pushing the exception stack frame. Thus, the MMU register-2 value will point to the
offending instruction in the user's address space, but the user's stack will contain nothing
below the MMU exception stack frame.

• If any type of exception occurs and the user SP value points close enough to the process's
address-space limit to cause an MMU trap while the kernel is pushing the exception stack
frame .for the initial exception, the kernel ignores the initial exception, resets the user SP
to the beginning-of-stack value, and processes the MMU trap as if caused by the faulting
process. Thus, an ES$MMU exception is raised against the process causing the initial
exception, but the PC and the MMU register values in the exception stack frame will
point into kernel address space, and the user's stack will contain nothing below the MMU
exception stack frame.

Exception Processing 6-21

Chapter 7

Interrupt Dispatching and Interrupt Service Routines

This chapter discusses MicroPower/Pascal device driving, focusing on interrupt service routines
(ISRs) associated with device drivers. Before reading this chapter, you should read the
descriptions of the CINI$ and DINT$ kernel primitives and the FORK$ and P7SYS$ kernel
services in Chapter 3. See also the description of driver/ISR mapping in Chapter 2.

7. l Device Interrupts and Device Driver Functions
An interrupt is essentially a processor trap caused by a request for service or attention generated
by an external device. Depending on the device's hardware priority and the priority at
which the processor is operating, the interrupt request is serviced either immediately, if it is
from the highest-priority device requesting the processor, or later, following the current higher
priority operation. Interrupts serviced in that manner permit prioritized, event-driven processing
involving I/O devices.

An interrupt is serviced by the processor after completion of the current instruction-excepting
floating-point instructions that can be interrupted during their execution. Once the instruction
execution has completed, the processor saves its present context (PC and PSW registers) before
servicing the interrupt. After all interrupt processing-including any other pending interrupt
requests, fork processing, and interrupted kernel primitive processing-has completed, the
context of the originally interrupted program is restored, and processing continues as before.

I/O device handling in MicroPower/Pascal applications is done by a device driver-a static
process that includes an interrupt service routine (ISR) and an optional fork routine. The ISR
is an essential part of the real-time environment of MicroPower/Pascal applications. The fork
routine, an extension of the ISR, permits critical processing to be done within the ISR itself,
followed by less critical processing in the fork routine. Fork routines can be interrupted by any
interrupt request. Thus, interrupt latency-the time between a hardware-generated interrupt
request and ISR entry-can be kept to a minimum, an important requirement in many real-time
applications.

An interrupt results in entering an ISR only when an interrupt by the device is expected by
a given device driver. The Connect to Interrupt (CINI$) kernel primitive permits a driver to
connect its ISR to a particular interrupt vector. Interrupt requests for the device configured to
that vector result in service by the ISR only after the CINI$ primitive has been issued. If an

Interrupt Dispatching and Interrupt Service Routines 7-1

ISR has not been connected to an interrupt vector or has been disconnected by the DINT$
primitive, the interrupt is vectored to the default null ISR, which dismisses the interrupt without
performing any useful processing.

Entry to the driver's ISR or to the null ISR is made by means of an interrupt vector in low
memory. One or more vectors for each hardware device are defined for the application by
editing the system configuration file. This file must be edited to reflect the device hardware
configuration before building the kernel and driver software.

ISRs for device drivers written in Pascal must be written in MACR0-11 and merged with the
program as an external procedure. The MicroPower/Pascal CONNECT-1NTERRUPT procedure
call effectively ties the "procedure" in with the rest of the Pascal driver program. Typically, the
MACR0-11 ISR will be written in position-independent (PIC) code so the build-time constraints
of relocating the ISR code and data to the PAR 2 and 3 address ranges, respectively, are avoided.
(The build-time relocation requirements can be very difficult to satisfy in the case of a Pascal
implemented driver program.) The kernel-mode mapping of ISR code and data into PAR 2
(code) and PAR 3 (da~a) values in a mapped environment is described in Chapter 2. When
an ISR is coded as PIC, the CONNECT-1NTERRUPT procedure call or corresponding CINT$
primitive request dynamically relocates the ISR code and data appropriately on interrupt, using
the contents of the corresponding user-mode P ARs for the virtual-address transformations, as
described for- the CINT$ primitive in Chapter 3.

ISRs for device drivers written in MACR0-11 can be written as either PIC or non-PIC. In the
case of an ISR written in PIC, the CINT$ primitive translates the virtual addresses as described
for a device driver written-in Pascal.

7 .2 Interrupt Service Routine
The ISR has the following functions:

• To respond quickly to interrupt requests generated by a hardware device, with a minimum of
context-switching overhead-the time required to save part of the context of the interrupted
process and enter the interrupt servicing code

• To perform, at interrupt level, some critical time-dependent processing

• To perform, at fork level, the remaining part of the time-dependent processing required to
completely service the interrupt and to signal the driver process that the evenf (interrupt)
has occurred

In essence, the ISR and associated fork routine processes hardware events as they occur in real
time. Less critical I/O processing, such as replying to another process's I/O request, is done by
the device driver at process level.

The proportion of I/O processing performed by the ISR and by the driver process is determined
largely by the characteristics of the device serviced and the nature of the I/O transfer. In
general, deferring as much I/O processing as possible to process level as opposed to interrupt
or fork level (in the ISR) reduces interrupt latency for lower-priority devices.

For example, a direct-memory-access (OMA) device, such as a disk controller, transfers large
blocks of data without processor intervention, interrupting only when done with a transfer. As
a result, the only interrupt-level processing that need be done is to awaken the driver process
when a transfer completes. The ISR issues a FORK$ request-enters fork-level processing-and

7-2 Interrupt Dispatching and Interrupt Service Routines

signals the driver process, indicating that an interrupt has occurred, that the requested I/O
transfer has completed, and that I/O processing at process level can continue.

In contrast, a device that transmits only one or two bytes for an interrupt at a relatively high and
fixed transfer rate may require that almost all of its I/O processing be done at interrupt level.
This requirement is based on the excessive context-switching time that would otherwise be
required by the frequent interrupts if data were processed by the device driver at process level,
even assuming that the system load would allow the process to keep up with the interrupts.
Thus, once a read or write operation is initiated by the driver process, the ISR iteratively handles
the transfers to or from a device and a buffer and signals, at fork level, the driver process when
the operation is completed. In addition, the ISR informs the driver process that the transfer
was either successful or that an error was detected. In case of an error, the process-level I/O
handling performed by the driver typically is responsible for determining whether a retry is
required and, if so, for initiating the retry operation.

7 .3 ISRs and Interrupt Dispatching
The MicroPower/Pascal kernel receives device interrupts and passes them to appropriate ISRs
through a 2-level dispatching mechanism. The transfer of CPU control on occurrence of an
interrupt by means of the interrupt dispatch block (IDB) and the kernel interrupt dispatcher is
as follows:

Vector IDB

JSR R5
r-- -•

ISR
entry

context

ISR
address ID.ENT

ID.PR7
Priority-7

ISR
address

7 .3. 1 Interrupt Dispatch Block (IDB)

$1NTEN
or $P71 NT Kernel

interrupt

dispatchers

•
To ISR via ID.ENT or ID.PR7

ML0-494-87

All interrupts are indirectly vectored to the kernel's interrupt dispatcher through an intervening
data structure called the interrupt dispatch block (IDB). One IDB exists for each interrupt vector
configured in a given system. Each IDB contains all the information needed for dispatching
the interrupt that it uniquely represents, as well as an instruction that transfers control to the
kernel's interrupt entry point.

A ·user-determined number of IDBs are statically allocated from the kernel's RAM data
segment during the system-build process. Information from the DEVICES macro in the system
configuration file determines the number of IDBs to be created.

Interrupt Dispatching and Interrupt Service Routines 7-3

The format of an IDB is:

(Vector)__..,..

In the previous format:

ID.PCB

ID.VEC I ID.PSW

1-- ID.COD --I

ID.VAL

ID.IMP

ID.PA2

ID.PA3

ID.ENT

t-- --i

1-- ID.FBK ~

t-- ~
'

ID.PR7

(In mapped systems only)

(In mapped systems only)

ML0-495-87

• ID.PCB is the pointer to the PCB of the process owning the vector, if an owner currently
exists-that is, the process that performed the connect-interrupt operation.

• ID.PSW is the desired value of the PSW priority and condition code (CC) bits on entry into
the JSR.

• ID.VEC is the scaled address of the vector associated with this IDB (address/2)-effectively,
a backpointer to the corresponding vector.

• ID.COD is the JSR RS,@#$INTEN (or JSR RS,@#$P7INT) instruction (two words).

• ID.VAL is the value to be passed in R4 on normal JSR entry; the value is specified in the
CINT$ call.

• ID.IMP is the pointer to the impure area; the location is specified in the CINT$ call.

• ID.PA2 is the kernel-mode PAR 2 value for mapping the JSR code segment. This IDB field
exists only in a mapped environment.

• ID.PA3 is the kernel-mode PAR 3 value for mapping the JSR data segment. This IDB field
exists only in a mapped environment.

• ID.ENT is the address of a normal ISR's entry point (that is, with priority less than 7).

7-4 Interrupt Dispatching and Interrupt Service Routines

• ID.FBK is the start of the fork block for this interrupt (four words).

• ID.PR7 is the address of a priority-7 ISR's entry point.

7.3.2 Kernel Interrupt Dispatcher
An interrupt at a given vector causes processor control to pass to field ID.COD in that vector's
IDB. The IDB field contains either a JSR RS,@#$INTEN or a JSR RS,@#$P7INT, causing a
transfer to the kernel's interrupt dispatcher, with RS pointing to field ID.VAL in the IDB.

The interrupt dispatcher has two entry points: the normal entry point ($INTEN) for dispatching
to ISRs that execute at a CPU priority less than 7 and a special entry point ($P7INT) for
dispatching to ISRs that initially execute at priority 7. In either case, the dispatcher is entered
with interrupts inhibited at CPU priority 7. The correct entry point for a particular interrupt is
set in the corresponding IDB.

When entered for a normal ISR, the interrupt dispatcher saves the full ISR hardware context
(R3, R4, RS, and, if mapped, PAR 2 and PAR 3), updates the kernel-state indicators to indicate
the current level of processing, and establishes the ISR' s entry context, using information stored
in the IDB. (In a mapped system, the interrupt dispatcher also modifies APRs 2 and 3 in the
kernel-mode mapping.) The interrupt dispatcher then dispatches to the ISR at the appropriate
CPU priority, also indicated in the IDB.

When the interrupt dispatcher is entered for a priority-7 ISR, it bypasses its normal context
switching procedure-except for mapping the ISR code and data segment in a mapped system
and immediately dispatches to the ISR. Priority-7 interrupts reduce interrupt-processing overhead
significantly but impose severe restrictions on the ISR execution environment. During a priority-
7 execution, no other interrupts can be serviced until ISR execution is completed; thus, much
care must be taken to keep the ISR code that is executed at priority 7 as brief as possible.

To summarize, the interrupt dispatcher performs the following functions:

• When dispatching to normal ISRs, saves on the stack general registers R3 and R4 and,
in mapped systems, kernel-mode mapping registers P AR2 and PAR3; RS is automatically
saved by the JSR RS instruction in the IDB.

When dispatching for priority-7 interrupts, saves general register R4 as well as kernel-mode
P AR2 and P AR3 in mapped systems; RS is automatically saved by the JSR RS instruction
in the IDB.

• Increments the interrupt nesting level. The interrupt level is initialized to -1 by INIT, which
represents process level (no interrupts or primitive requests being serviced). Assuming that
user code is currently executing, the first interrupt raises the nest level to 0, which marks
the transition from process level to either kernel-primitive or interrupt level.

• In an unmapped system, switches to the system interrupt stack if the nesting level is
incremented to 0. In both mapped and unmapped systems, if the nesting level is incremented
to 1 and a kernel-primitive execution was interrupted, the stack is switched from the per
process kernel stack in the process's PCB to the system interrupt stack.

• In· a mapped system, establishes the mapping context of the ISR: kernel-mode P ARs 2 and
3.

• Establishes the priority and condition code bits in the PSW for the ISR by moving the
ID.PSW field of the IDB to the PSW.

Interrupt Dispatching and Interrupt Service Routines 7-5

• For a normal ISR, dispatches to the ISR, with R3 pointing to the impure area, R4 containing
the value passed in the CINT$ primitive, and RS containing a pointer to the fork block for
this interrupt. R3, R4, and RS are available for use without explicit saving and restoring.
Any other registers must be saved before use and restored afterwards.

For a priority-7 ISR, dispatches to the ISR, with RS containing a pointer to the ID.VAL field
in the IDB and R4 containing the return address for the ISR; no other registers are saved,
excepting APR 2 and 3 in a mapped system. RS is available for use without explicit saving
and restoring, provided that the ISR is not going to issue a P7SYS$ followed by a FORK$.
All other registers must be saved before use and restored afterwards.

7.3.3 Establishing the lnterrupt-to-ISR Interface

An interrupt vector is connected to an ISR through the IDB in several distinct stages, beginning
during system building. Although much of the process is automatic and transparent to the user,
understanding the process aids your overall comprehension of MicroPower /Pascal interrupt
handling and the functions of the CINT$ primitive.

7 .3.3. 1 Allocating IDBs and Setting Vectors

Every interrupt vector that will be used in an application must be declared in the system
configuration file so a corresponding number of IDBs can be allocated during application
building. Those vectors are declared in the DEVICES macro. Each declared vector points to a
unique IDB when the kernel memory image is constructed. (In most ROM/RAM-based systems,
it is assumed that the vector region will be located in ROM, since it is contiguous with the
kernel code segment and part of kernel mapping. The power-fail/restart vector must also be
located in ROM to permit system start-up on application of power.)

All vectors not declared as part of the hardware configuration point to a single null IDB;
any undeclared interrupts will dispatch to the null ISR. The null ISR, located in the kernel,
runs at priority 7, increments a counter, and returns-executes an RTS R4 instruction-thereby
dismissing the interrupt.

Since IDBs are dynamically modified by the CINT$ kernel service, IDBs must always be in
RAM.

7 .3.3.2 Initializing IDBs During Start-Up

IDBs are statically allocated in the kernel's impure-data segment but are not statically initialized;
that is, lDB content is undefined at build time. The system-initialization routine, INIT, initializes
all IDBs during the start-up /restart sequence by directing each IDB to the null ISR.

INIT places a JSR RS,@#$P7INT instruction in IDB field ID.COD, which passes control to
the interrupt dispatcher's priority-7 entry point when an interrupt occurs. INIT then places
the null ISR's entry address in IDB field ID.PR7, which is used for dispatching priority-7
ISRs. Thus, after system start-up, any unsolicited interrupts from declared vectors-as well as
unexpected interrupts from undeclared vectors-are ignored until a proper connection has been
made between a particular interrupt vector and an ISR, by means of the CINT$ primitive. The
linkages in place after system initialization are as follows:

7-6 Interrupt Dispatching and Interrupt Service Routines

Vector

(MERGE
utility)

IDB

JSR R5
ID.COD (INIT) Interrupt
$P71NT •----- dispatcher

priority-7
entry point

10.FBK

(INIT)
ID.PR7 •----~Null

ISR

ML0-495-87

7.3.3.3 Connecting Interrupts to ISRs

Each IDB remains in the state shown previously, directed to the null ISR, until a device
handling process executes a CINT$ primitive. (Processes written in Pascal use either the
CONNECT_SEMAPHORE or the CONNECT_INTERRUPT procedure call to access the CINT$
primitive.) This primitive associates a specified vector with the ISR specified in the CINT$
call or with the implied ISR in the case of CONNECT_SEMAPHORE, by modifying the IDB
assigned to the vector.

Specifically, executing the CINT$ primitive does the following:

• Places the appropriate dispatcher entry point address ($INTEN or $P71NT) in subfield
ID.COD+2, depending on the priority level specified for the ISR in the CINT$ call (less than
or equal to 7, respectively).

• Places the ISR entry point address either in field ID.ENT, for a normal dispatch, or in field
ID.PR7, for a priority-7 dispatch.

• Links the IDB back to its vector through the ID.VEC field.

• Sets all other fields of the IDB, except ID.FBK, to the values specified or implied in the CINT$
call; those fields contain ISR context-related information. (The fork-block substructure is
not involved in the set-up operation.)

Interrupt Dispatching and Interrupt Service Routines 7-7

The result of connecting the interrupt to the ISR is:

IDB

(CINT$) ID.PCB

(MERGE)

Vector

ID.IMP

ID.PA2

ID.PA3

ID.ENT

(Unaffected
ID.FBK

by connect)

ID.PR7

•

•

(CINT$)

(In mapped systems only)

(In mapped systems only)
(CINT$)

Normal ISR

[ID.ENT for normal ISRs.
Both ID.ENT and ID.PR7
for priority-7 ISRs]

~
(CINT$)

Priority-7
ISR

ML0-497-87

The process connecting a given interrupt vector becomes the owner of the vector /IDB involved;
the owner's PCB index is placed in field ID.PCB of the IDB. Any subsequent CINT$ operation
specifying the same vector will fail and will return the busy/ error code (E.BUSY). However,
the owning process can disconnect the vector with the DINT$ primitive, which reinitializes the
corresponding IDB. The vector can then be connected to another ISR.

7 .4 Entering and Executing ISRs
7 .4. l Entering and Executing Normal ISRs

The code fragment in Example 7-1 shows the typical form of an ISR. On entry to the normal
ISR, the kernel interrupt stack is available for use by the ISR, and registers R3, R4, and RS
contain information that may be used by the ISR. R3 points to the ISR' s impure area. R4
contains the val parameter specified in the CINT$ call. (This parameter can be used to pass a
device address or table index to an ISR.) RS points to the fork block contained in the IDB; this
pointer must be present when a FORK$ call is issued by the ISR. The ISR runs at the priority
specified by the PS parameter in the CINT$ call, with the specified PSW condition code bits set
on entry.

7-8 Interrupt Dispatching and Interrupt Service Routines

Kernel primitives cannot be called from ISRs at interrupt level. To prevent kernel reentrancy
problems, an ISR must issue a FORK$ service call before issuing any kernel primitive. That
guarantees that an ISR issuing a primitive request will not usurp a process-level primitive
operation, causing the kernel to be invalidly reentered. However, interrupts can be nested; that
is, higher-priority interrupts can be serviced without causing any reentrancy problems in the
kernel.

Note
In a normal ISR, R3, R4, and RS can be used without first saving their content.
However, those registers may contain information needed by the ISR and, thus,
may require saving anyway. In a priority-7 ISR, only RS can be used without
first saving its contents. However, the contents of RS must be saved and restored
before using a P7SYS$ call.

7 .4.2 Entering and Executing Priority-7 ISRs

A priority-7 specification in the CINT$ call indicates a special case. Since running at priority
7 excludes all other interrupts, the ISR is dispatched without executing the full interrupt entry
procedure. ISRs servicing high-priority interrupts can use this mechanism to perform critical
operations requiring low interrupt latency. However, the ISR is responsible for saving and
restoring any general registers it uses and should use as little time as possible at priority 7.

When the interrupt dispatcher enters a priority-7 ISR, R4 contains the return address, and RS
contains a pointer to ID.VAL in the IDB. The ISR can access its impure area by adding an offset
to the address in RS to point to ID.IMP; ID.IMP is a pointer to the impure area. For example,
if ID.VAL contained the address of a device register having a word to be input to the first word
of the impure area, the following MOV instruction would perform the function by using RS
addressing:

MOV ~(R5).~2(R5) ; Move word from device to buffer

Only the P7SYS$ kernel service can be called from priority-7 ISRs while executing at priority 7,
since they do not have sufficient context. Thus, to issue a fork request, which must precede any
primitive request, the ISR must first issue a P7SYS$ call. The P7SYS$ call sets the ISR priority
to a specified value less than 7 and establishes the ISR general register context, as on entry to
a normal ISR. In other words, the primitive changes the context of a priority-7 ISR to a normal
ISR context.

7 .4.3 Fork Routine

An ISR must issue a fork request before requesting any other kernel service, that is, any primitive
service. The fork request ends execution of the ISR at interrupt level, and the remainder of the
ISR is executed as a deferred fork routine at CPU priority 0, although still in kernel mode. The
fork request is made by issuing a $FORK call, with RS pointing to the fork block, as it does on
entry to· a normal ISR. The stack must be purged of any data pushed on it by the ISR before
issuing the FORK$ call.

Chapter 3 describes the FORK$ primitive. Appendix A describes the overall scheduling hierarchy.

The kernel responds to the FORK$ call by queuing the request on the kernel's fork-request
queue. The context of the ISR (R3, R4, and PC) is preserved in the fork block, including the
ISR' s kernel-mode mapping in the case of a mapped system.

Interrupt Dispatching and Interrupt Service Routines 7-9

The format of a fork block is as follows:

In the previous format:

Pointer to

fork block
FB.R3

FB.R4

FB.LNK

ML0-498-87

• FB.ADR is the PC of the requesting JSR-the address to return to at fork-processing level.

• FB.R3 is the saved R3 of the requesting ISR.

• FB.R4 is the saved R4 of the requesting JSR.

• FB.LNK is the link word for the fork request queue.

Fork routines must not issue kernel primitives that may cause them to block. Fork routines
may perform Signal operations, for example, on semaphores but may not wait on a semaphore,
which could block if no signal were pending. Conditional waits may, however, be used, since
they never block.

The fork-queue overrun mechanism, described under the FORK$ request in Chapter 3, provides
a kind of synchronizing function for ISRs that service a device with a high interrupt rate, such
as a fast serial or parallel line that signals the receipt of every byte or word. The fork overrun
essentially indicates that a previously issued fork request is still in the queue. (One fork routine
can also be in progress and have been interrupted.) The occurrence of an overrun-a C-bit
return from the FORK$ request-allows the JSR code to store the data just received and to
increment a counter-for example, for the pending fork routine-assuming that the fork routine
has been designed to operate in an iterative fashion. Due care must be taken in the instructions
used to implement the coordination in both the ISR and fork routine coding, to prevent a race
condition when a dequeued fork routine has been interrupted in progress.

The kernel's clock service routine, shown in Example 7-1, illustrates the interaction between
JSR and fork-level code with respect to fork overruns. An asterisk in the comments indicates a
line of code executed at CPU priority 7, and an asterisk in parentheses (*) indicates a line of
code executed at a CPU priority less than 7 but greater than 0. Thus, all lines of code having an
asterisk in the commentary constitute JSR coding. The remaining code forms the fork routine.

The decrementing of the timeout value-or expiration count-$EXPCL and $EXPCH by the
JSR and the incrementing and testing of the same value by the fork code implements the
coordination between the two code segments in a simple, raceproof, but subtle manner.

7-10 Interrupt Dispatching and Interrupt Service Routines

Example 7-1 : Kernel Clock ISR and Fork Routine

; +

;+

.enabl

.mcall
macdf $
idbdf $
misdf$
timdf$
.globl
orig$

GBL
MACDF$,P7SYS$,FORK$,SGNL$S,IDBDF$,MISDF$,TIMDF$

$TIME
.20CL1,<RO,GBL,I>

Module name: CLK60.MAC

System: MicroPower/Pascal

Functional Description:

This module contains the clock interrupt-service-routine front end
for 60 Hertz systems. It keeps the system time in milliseconds.
To do this, it must add 17, 17, 16 for each group of 3 ticks.
This is because (17+17+16) * (60/3) = 1000 milliseconds
after 60 ticks .

. sbttl Declarations

; Local macro definitions - None

;+
; Data owned by this module is defined here and storage is allocated in
; the appropriate data section.

dat$

TICCNT: .word 0 ; Tick counter

;+
.sbttl Initialization code

Code to initialize data defined in this module. (This code constitutes
a portion of the kernel !NIT routine and performs a sufficient subset of
the CINT$ primitive function. Note that all IDBs must have already been
set up by preceding !NIT code.)

ini$,5

$0CIDB:

Initialize clock IDB

MOV ~#V.CLK,RO
MOV #$CLK60,ID.PR7-ID.COD(RO)

MOV #3,TICCNT

psect$ *

RO -> IDB for clock
Dispatch to system clock

ISR on interrupt
Initialize tick counter

(Continued on next page)

Interrupt Dispatching and Interrupt Service Routines 7-11

Example 7-1 (Cont.): Kernel Clock ISR and Fork Routine

$CLK60::

10$:

.sbttl Clock ISR Front End

DEC TICCNT
BNE 20$
MOV #3,TICCNT

assum$ TM.SIZ EQ 6

ADD #16. ,$TIME+TM.LOW
ADC $TIME+TM.MID
ADC $TIME+TM.HIG
SUB #16. , $EXPCL
SBC $EXPCH
BMI $CLKFK

BNE 10$
TST $EXPCL
BEQ $CLKFK
RTS R4

20$: assum$ TM.SIZ EQ 6

ADD #17.,$TIME+TM.LOW
ADC $TIME+TM.MID
ADC $TIME+TM.HIG
SUB #17.,$EXPCL
SBC $EXPCH
BMI $CLKFK

30$:

$CLKFK:

BNE 30$
TST $EXPCL
BEQ $CLKFK
RTS R4

orig$.20CL2,<RO,GBL,I>
;+

Module name: CLKISR.MAC

System: MicroPower/Pascal

Functional Description:

;* Add 16 milliseconds this tick?
;* If NE, no
;* Reset tick counter

;*Add 16 millisecs to low-order time
;* Add carry to middle-order time
;* Add carry to high-order time
;*Decrement low-order timeout value
;* Decrement high-order timeout value
;* If MI, must fork to check for
;* timeout expirations
;* If NE, no expiration yet
;* Exact expiration?
;* If EQ, yes
;* Dismiss priority-7 interrupt

;* Add 17 millisecs to low-order time
;* Add carry to middle-order time
;* Add carry to high-order time
;* Decrement low-order timeout value
;* Decrement high-order timeout value
;* If MI, must fork to check for
;* timeout expirations

;* If NE, no expiration yet
;* Exact expiration?
;* If EQ, yes
;* Dismiss priority-7 interrupt

;* Common clock fork routine is con
;* tained in psect .20CL2 in source
;* module CLKISR.MAC.

This module contains the common clock-interrupt-service code and
fork routine for all clock frequencies. It keeps the system time
in milliseconds. It must be merged with a frequency-specific front
end. P-sect ordering is crucial; the clock front ends are contained
in section .20CL1 and this module is in section .20CL2.

(Continued on next page)

7-12 Interrupt Dispatching and Interrupt Service Routines

Example 7-1 (Cont.): Kernel Clock ISR and Fork Routine

$CLOCK::

10$:

20$:

25$:

30$:

40$:

;+

.sbttl Common Clock ISR

P7SYS$ 6
FORK$
BCS 70$

MOV $SYSTM,R4
CLR R3
MOV ~R4,R4
BEQ 60$
BR 20$

ADD PC.TML(R4),$EXPCL
ADC $EXPCH
ADD PC.TMH(R4),$EXPCH
TST $EXPCH
BMI 25$
BNE 30$
TST $EXPCL
BNE 30$
INC R3
MOV ~R4,R4
BNE 10$
MOV $SYSTM,R4
TST R3
BEQ 50$
CALL $SGNLS

;* Drop priority to do fork
; (*) Fork
;(*) If CS, then reentrant fork rtn.

will wake up the next process too
R4 -> Head of timer blocking queue
R3 = Number of signals to do
Any sleeping processes?
If EQ, no
Merge in loop

Expired?

Expired?
Expired?
If MI. yes
If NE, no
Expired?
If NE, no
Yes, do a signal
Any sleeping processes?
If NE, yes
R4 -> Timer semaphore
Wake anybody up?
If EQ, no
Call stack form of SGNL$ primitive

;Following is what you would do if from a driver ISR fork routine. Use the
;call $SGNLS instead, since we are in the kernel.

SGNL$S #$SYSTM ; Wake up process

;+

50$:

60$:
70$:

BCS

SOB R3,40$
TST ~R4
BNE 70$
MDV #77777,$EXPCH
RETURN

.end

7 .4.4 Dismissing an Interrupt

Wake up R3 # of processes
Anybody left on the queue?
If NE, yes
No, don't wake me up for a few days

The normal ISR dismisses an interrupt by issuing an RTS PC instruction. Before dismissing the
interrupt, however, the routine must first clean the stack and restore any registers that were
saved by the ISR on entry. The interrupt can be dismissed in this manner either at interrupt
level or when executing a fork routine.

The priority-7 ISR dismisses the interrupt by issuing an RTS R4 instruction. Before dismissing
the interrupt, however, the routine must also clean the stack and restore any registers that were
saved by the ISR on entry.

Interrupt Dispatching and Interrupt Service Routines 7-13

7 .5 Kernel Interrupt Exit Processing
A return from an ISR is always made by means of either an RTS PC instruction (normal ISRs)
or an RTS R4 instruction (priority-7 interrupts). If a priority-7 ISR issues the P7SYS$ call,
it becomes a normal ISR, exiting by way of the RTS PC instruction rather than the RTS R4
instruction. Processing in the kernel on return from an ISR depends on whether a lower-priority
ISR was previously interrupted, kernel primitive execution was interrupted, a fork routine was
interrupted, or a process was interrupted. These four ISR return conditions are:

• If the return is to an interrupted ISR, the kernel decrements the interrupt nesting level and
restores R3, R4, and RS, as well as kernel mapping registers APR 2 and APR 3 in mapped
systems.

• If the return is to kernel primitive execution, the kernel switches to the per-process kernel .
stack in use by the primitive, decrements the interrupt nest level, and restores registers R3,
R4, and RS, as well as kernel mapping registers APR 2 and APR 3 in mapped systems.

• If the return is to a fork routine, the kernel decrements the interrupt nesting level and
resumes the interrupted fork routine execution. If one or more additional fork routines are
queued, the interrupted fork routine is executed first, followed immediately by the remaining
fork routines, according to their order of placement on the fork queue. No return is made
to process-level execution until all ISR and fork routine execution has completed.

• If the return is to process-level execution, the kernel decrements the interrupt nesting level,
restores registers R3, R4, and RS, as well as kernel mapping registers APR 2 and APR
3 in mapped systems, processes any significant events by calling the scheduler, and, in
unmapped systems, switches to the user's stack and resumes process-level execution.

7 .6 Pascal Language ISR Interface
Device drivers can be written in Pascal for all processing except the ISR and fork routine; that
code must be written in MACR0-11. However, the MicroPower/Pascal language extensions
allow drivers written in Pascal either to associate interrupts with their ISRs or to signal a
semaphore without resort to a user-implemented ISR when an interrupt occurs. These extensions
provide the functional equivalent of the CINT$ primitive issued by drivers written in MACR0-11.
The predeclared procedures (language extensions) are:

Predeclared Procedure Function

CONNECT_SEMAPHORE Associates an interrupt vector with a specified semaphore so
the semaphore is signaled each time an interrupt occurs.

DISCONNECT_SEMAPHORE Breaks the connection between an interrupt vector and the
semaphore to which it was connected so interrupts from the
vector are subsequently ignored.

CONNECT_INTERRUPT Associates an interrupt vector with an interrupt service routine
to establish a process as a "full fledged" device driver.

DISCONNECLJNTERRUPT Breaks the connection between an interrupt vector and an
interrupt service routine so interrupts from the vector are
subsequently ignored.

Chapter 16 of the MicroPower /Pascal Language Guide describes these predeclared procedures.

7-14 Interrupt Dispatching and Interrupt Service Routines

Appendix A
Scheduling Hierarchy and Recommended Process
Priorities

A. 1 Priority Scheduling Hierarchy
MicroPower /Pascal implements the following priority scheduling hierarchy:

Highest
Priority

Lowest
Priority

Hardware interrupt priority 7
6
5
4

Interrupted primitive

Fork request routines

Resumed primitive

Software process priority 255
254

0

In the previous list, "interrupted primitive" refers to a primitive operation that was executing
when a hardware interrupt occurred and thus did not complete. The interrupted operation is
completed after all interrupts have been serviced but before any fork-level processing occurs
and/ or before the return to process level. "Resumed primitive" refers to a user-requested
primitive operation that blocked part way through execution, in a consistent state, because a
resource was not available. When the resource becomes available, the continuation of that
primitive operation is scheduled at the level shown above.

Scheduling Hierarchy and Recommended Process Priorities A-1

When an interrupt service routine (JSR) finishes its high-priority, interrupt-level processing, it
exits by either dismissing the hardware interrupt or issuing a FORK$ call. Scheduling then
proceeds as follows. First, all pending interrupts and lower-level interrupted ISRs are processed.
After all interrupts have been serviced, the kernel checks to see whether a primitive operation
was interrupted; if so, it is allowed to complete.

Next, the kernel processes the FIFO-ordered fork request queue. After all fork routines have been
run, the kernel checks to see whether any blocked primitive operations have been unblocked;
if so, they are allowed to complete.

Finally, the kernel returns to normal process-level scheduling, executing the highest-priority
process then in the ready-active state-usually the process that was originally interrupted.

For more information on interrupt and fork processing, see Chapter 7 and the descriptions of the
CINT$, FORK$, and P7SYS$ kernel requests in Chapter 3. For more information on software
process priorities and process scheduling, see Chapter 2; the descriptions of the CHGP$, CRPC$,
DFSPC$, and SCHD$ kernel requests in Chapter 3; and the rest of this appendix.

A.2 Recommended Process Priorities

Recommended
Priority Range

0

1-127

128-159

160-223

224-247

224

248-255

250

251

254

255

Process Type

Null process (lowest priority)

Least-critical processes

Critical real-time processes

Device drivers (default for DEC drivers= 175)

Most-critical processes (ones that create structures that other processes can
access)

Error-recording process, if any

Initialization processes (248 for general use)

Device driver initialization

(Reserved by DIGITAL)

Most critical process initialization

Error-recording process initialization (highest priority); otherwise reserved

A-2 Scheduling Hierarchy and Recommended Process Priorities

Appendix B
MACR0-1 l Subroutine Calling Conventions

Subroutines written in MACR0-11 can be executed as procedures in a program written in the
MicroPower/Pascal version of the Pascal language. This appendix describes the conventions
you must observe in order to invoke MACR0-11 subroutines from a Pascal program.

A MACR0-11 subroutine can be invoked from a Pascal program in two ways. The first is to use
the normal MicroPower /Pascal subroutine calling sequence. The second is to use the SEQl 1
directive (described in Chapter 6 of the MicroPower /Pascal Language Guide) to generate the
standard PDP-11 subroutine calling sequence. Section B.1 describes the conventions associated
with normal MicroPower/Pascal subroutine calls, and Section B.2 describes the conventions
associated with subroutine calls that are generated with the SEQl 1 directive.

B. l Normal MicroPower/Pascal Subroutine Calling Conventions
For a normal MicroPower/Pascal subroutine call, the parameters specified in the subroutine's
procedure declaration are passed to the subroutine on the stack. The MicroPower /Pascal
compiler pushes one actual parameter onto the stack for each formal parameter in the procedure
declaration. Actual parameters are pushed onto the stack in the order in which the formal
parameters were declared.

For VAR parameters, the address (one word) of the parameter is pushed. For value parameters,
the value of the actual parameter is pushed. Each value parameter pushed occupies an integral
number of consecutive words of stack. The number of words occupied by a value parameter is
dictated by the associated type (see Appendix F of the MicroPower /Pascal Language Guide). A
minimum of one word is occupied by each value parameter.

For function invocations, the caller must allocate stack space for the returned function value.
This space is an integral number of consecutive words, one word minimum. The number of
words is dictated by the function result type (see Appendix F of the MicroPower /Pascal Language
Guide). Stack space for the function return value must be allocated before any actual parameters
are pushed onto the stack.

MACR0-11 Subroutine Calling Conventions B-1

If the formal parameter list contains a procedure or function parameter, the associated actual
parameter consists of two words. The first is a static link (0 for external subprograms but
normally points to the stack frame of the subprogram that most closely contains the actual
subprogram). The second is the address of the actual procedure or function.

The called procedure or function is responsible for removing the pushed actual parameters, if
any, from the stack before returning, by means of an RTS PC instruction, to the caller.

Before returning from a function, the function value must be loaded into the return value
stack slot, which was previously allocated by the caller immediately before pushing any actual
parameters.

The sample Pascal program below illustrates the procedure declaration for a MACR0-11
subroutine (ADD) that is to be called with the normal MicroPower/Pascal calling sequence.
Included in the procedure declaration are three parameters that will be passed to the ADD
subroutine. The MACR0-11 subroutine code is shown following the Pascal program segment.

[SYSTEM(MICROPOWER), DATA_SPACE (300), STACK_SIZE (100), PRIORITY (10)]
PROGRAM EXAMPLE;

VAR
I,J,K : INTEGER;

[EXTERNAL] PROCEDURE Add (Addend_!, Addend_2 INTEGER;
VAR Sum : INTEGER)

BEGIN
READ (I,J);
Add (I,J,K);
WRITE (K);

END.

MACR0-11 subroutine:

EXTERNAL;

ADD:: MDV
MDV
ADD
MOV
MOV
MOV
CMP
RTS

RO, -(SP)
8(SP),RO
6(SP),RO
R0,04(SP)
(SP)+,RO
(SP)+,4(SP)
(SP)+, (SP)+
PC

Save needed register
Initialize sum to first addend
Add second addend
Return the sum
Restore used register
Move the return PC
Clean the stack
Return

When the subroutine is entered, the state of the stack is:

High
address

Low
address

Value of I

Value of J

Address of K

Return PC

B-2 MACR0-11 Subroutine Calling Conventions

~sP

ML0-499-87

Upon entry, the MACR0-11 subroutine saves any general registers it needs during execution.
In this example, only RO is saved. In the instructions that follow, operands are obtained through
indexed addressing, with RO accumulating the sum. Once the sum has been obtained, it is
moved by index-deferred addressing to the address specified on the stack, which is the address
of the variable K. Finally, the subroutine restores RO, cleans the stack, and returns to the calling
program through an RTS PC instruction.

Upon returning to the Pascal program segment, the variable K contains the sum of I and J. The
Pascal program then writes the integer sum obtained through the MACR0-11 subroutine and
ends.

B.2 Standard PDP-11 (SEQ 11) Subroutine Calling Conventions
A standard PDP-11 subroutine call is generated by placing the SEQl 1 directive immediately
after the procedure declaration for the MACR0-11 subroutine to be called. (The SEQl 1 directive
is described in Chapter 6 of the MicroPower /Pascal Language Guide.) The SEQl 1 directive causes
the compiler to generate a call to the OTS. When executed at runtime, this call causes the OTS
to generate and initiate the standard PDP-11 calling sequence.

Note
Since standard PDP-11 (SEQll) subroutine calls are generated at runtime (not
at compile time, like normal MicroPower/Pascal subroutine calls), heavy use of
standard PDP-11 calls may degrade system performance.

For a standard PDP-11 subroutine call, the parameters specified in the subroutine procedure
declaration are passed to the subroutine by means of a parameter list. When the subroutine
is entered, RS contains the address of the parameter list, which the OTS has constructed as
follows:

Low
address

High
address

i.-

(Undefined) Number of
parameters

Address of first parameter

Address of second parameter

Address of last parameter

~R5

'-'

ML0-500-87

Upon returning from the subroutine, the OTS cleans the stack and returns to the Pascal program.

MACR0-11 Subroutine Calling Conventions B-3

The sample Pascal program below illustrates the procedure declaration for a MACR0-11
subroutine (ADD) that is to be called with the standard PDP-11 subroutine calling sequence.
Included in the procedure declaration are three parameters that will be passed to the ADD
subroutine. Immediately following the procedure declaration is the SEQl 1 directive. The
MACR0-11 subroutine code is shown following the Pascal program segment.

[SYSTEM(MICROPOWER), DATA_SPACE (300), STACK_SIZE (100), PRIORITY (10)]
PROGRAM EXAMPLE;

VAR
I,J,K : INTEGER;

[EXTERNAL] PROCEDURE Add (VAR Addend_!,
Addend_2,

BEGIN
READ (I,J);
Add (I,J,K);
WRITE (K);

END.

MACR0-11 Subroutine:

ADD:: MDV RO, -(SP)

Sum : INTEGER)
SEQ11;

Save needed register
TST
MDV
ADD

(RS)+
<O(R5)+,RO
<O(R5)+,RO

Point to first addend
Initialize sum to first addend
Add second addend

MDV RO,<O(RS) Return the sum
MDV (SP)+,RO Restore RO
RTS PC Exit to OTS

The parameter list passed to the MACR0-11 subroutine by means of RS is as follows:

Low
address

High
address

(Undefined) }

Address of I

Address of J

Address of K

3 ~R5

ML0-501-87

Upon entry, the MACR0-11 subroutine saves any general registers it needs during execution. In
this example, only RO is saved. The TST instruction increments the parameter list pointer (RS)
so it points to the second word in the parameter list, which contains the address of the variable
I. In the instructions that follow, operands are obtained by means of RS autoincrement-deferred
addressing, with RO accumulating the sum. Once the sum has been obtained, it is moved to
the third address specified in the parameter list, which is the address of the variable K. Finally,
the subroutine restores RO and returns to the OTS through an RTS PC instruction.

Upon returning to the Pascal program segment, the variable K contains the sum of I and J. The
Pascal program then writes the integer sum obtained through the MACR0-11 subroutine and
ends.

B-4 MACR0-11 Subroutine Calling Conventions

Index

A
ACCESS_SHARED_REGION

procedure
syntax, 5-9

ACSR$ primitive
argument block, 3-13
description, 3-12
error returns, 3-15
restrictions, 3-13
semantics, 3-14
syntax, 3-13
syntax example, 3-14

ALLOCATE-REGION function
syntax, 5-8

ALPC$ primitive
argument block, 3-17
description, 3-16
error returns, 3-17
restrictions, 3-16
semantics, 3-17
syntax, 3-16

ALPK$ primitive
argument block, 3-19
description, 3-18
error returns, 3-19
restrictions, 3-19
semantics, 3-19
syntax, 3-18

ALRG$ primitive
argument block, 3-21
description, 3-20
error returns, 3-22
restrictions, 3-21
semantics, 3-21
syntax, 3-20
syntax example, 3-21

.ALST. p-sect, 2-24

APR
mapping type, 2-25

B
Binary semaphores

definition, 2-38
format, 2-38

c
CCND$ primitive, 2-15, 6-13

argument block, 3-24
description, 3-23
error returns, 3-25
implementation notes, 3-25
semantics, 3-24
syntax, 3-23

Central Processing Unit (CPU)
interrupt processing, 7-3
priority levels, 7-5

CHGP$ primitive
argument block, 3-27
description, 3-26
error returns, 3-2 7
semantics, 3-27
static process, 2-3
syntax, 3-26
syntax example, 3-27

CINT$ primitive, 7 -2
argument block, 3-30
description, 3-28
error returns, 3-31
Interrupt Service Routine (ISR),

7-7
restrictions, 3-29
semantics, 3-30
syntax, 3-28
syntax example, 3-30

Index-1

Compiler
interface, primitive services, 3-1

Configuration file
hardware macro, FALCON, 4-6
hardware macro, KXJllC, 4-8
hardware macro, KXTllC, 4-9
hardware macro, MEMORY,

4-11
hardware macro, PROCESSOR,

4-16
initialize macro,

CONFIGURATION, 4-4
prototypes, CFDxxx.MAC, 4-3
required macros, 4-3
trap handler macro, TRAPS,

4-23
Configuration information

overview, 4-2
CONFIGURATION macro

arguments, 4-4
description, 4-4
example, 4-4
syntax, 4-4

Configuration macros
functions, 4-1
overview, 4-1

CONNECT-EXCEPTION
procedure, 2-15

CONNECLJNTERRUPT
procedure, 7-2

Counting semaphores
definition, 2-3 8
format, 2-39

CPU
See Central Processing Unit

(CPU)
CREATE_SHARED-REGION

procedure
syntax, 5-9

CRLN$ primitive
argument block, 3-33
description, 3-32
error returns, 3-34
restrictions, 3-33
semantics, 3-34
syntax, 3-32
syntax example, 3-34

CRPC$ primitive, 2-4, 2-6, 3-10
argument block, 3-38
description, 3-35
error returns, 3-39
restrictions, 3-3 7

Index-2

CRPC$ primitive (cont'd.)
semantics, 3-38
syntax, 3-35
syntax example, 3-38

CRSR$ primitive, 3-9
argument block, 3-41
description, 3-40
error returns, 3-43
implementation notes, 3-43
restrictions, 3-41
semantics, 3-42
syntax, 3-41
syntax example, 3-42

CRST$ primitive, 3-9
argument block, 3-46
description, 3-44
error returns, 3-46
restrictions, 3-46
semantics, 3-46
syntax, 3-44
syntax example, 3-46

D
$DALOC procedure, 2-48
DAPK$ primitive

argument block, 3-47
description, 3-47
error returns, 3-48
semantics, 3-48
syntax, 3-47
syntax example, 3-48

Data section
impure declaration macro,

IMPUR$ I 3-92
Data space

determining macro,
RESOURCES, 4-19

Data structures
binary semaphore, 2-38
counting semaphore, 2-39
create primitive, CRST$, 3-44
delete primitive, DLST$, 3-65
doubly-linked list, 2-46
free-memory pool, 2-47
header, 2-36
index, 3-7
logical-name structure, 2-43
message packet, 2-44
named

Structure Descriptor Block
(SDB), 3-8

Data structures (cont'd.)
names, 3-7
queue semaphore, 2-39
return value primitive, GVAL$,

3-88
ring buffer, 2-40
run-time name, 2-35
Shared Region Descriptor

(SRD), 2-42
system, 2-34
typed, 2-35
unformatted, 2-44
unnamed

Structure Descriptor Block
(SDB), 3-8

DEALLOCATE_REGION
procedure

syntax, 5-9
DELETE_SHARED_REGION

procedure
syntax, 5-13

Delete Structure primitive, DLST$,
3-65

Device access
process mapping, 2-29

Device driver
definition, 1-12
Interrupt Service Routine (ISR),

7-2
memory mapping, 2-30

DEVICES macro
arguments, 4-5
description, 4-4
example, 4-5
interrupt vectors, 7-6
syntax, 4-5

DEXC$ primitive, 6-15
argument block, 3-50
description, 3-49
error returns, 3-50
semantics, 3-50
syntax, 3-49
syntax example, 3-50

DFSPC$ macro, 2-3, 2-6
description, 3-51
error returns, 3-54
restrictions, 3-53
semantics, 3-53
syntax, 3-51
syntax example, 3-53

DINT$ primitive, 7-2
argument block, 3-55

DINT$ primitive (cont'd.)
description, 3-55
error returns, 3-56
restrictions, 3-55
semantics, 3-56
syntax, 3-55
syntax example, 3-56

DLLN$ primitive, 3-8
argument block, 3-5 7
description, 3-5 7
error returns, 3-58
semantics, 3-58
syntax, 3-57
syntax example, 3-58

DLPC$ primitive
description, 3-59
error returns, 3-59
semantics, 3-59
syntax, 3-59

DLRG$ primitive
argument block, 3-61
description, 3-60
error returns, 3-62
implementation notes, 3-62
restrictions, 3-61
semantics, 3-61
syntax, 3-60
syntax example, 3-61

DLSR$ primitive
argument block, 3-64
description, 3-63
error returns, 3-64
restrictions, 3-64
semantics, 3-64
syntax, 3-63
syntax example, 3-64

DLST$ primitive
argument block, 3-65
call, 3-65
description, 3-65
error returns, 3-66
semantics, 3-66
syntax, 3-65
syntax example, 3-66

Dynamic mapping
primitive services, overview,

5-1
Dynamic process

create primitive, CRPC$, 3-35
CRPC$ primitive, 2-4
delete primitive, DLPC$, 3-59
general description, 2-3

Index-3

Dynamic process (cont'd.)
PROCESS declaration, 2-4
run-time name, 2-6

Dynamic RAM allocation
primitive services, overview,

5-1

E
ENDCFG macro

description, 4-5
syntax, 4-5

Error returns
primitive services, 3-5

ESTABLISH procedure
establish exception handler,

6-12
establish exception procedure,

6-17
EXC.PAS, 6-3
Exception codes

value format, 6-10
Exception condition, 2-15

codes, 6-2
connect primitive, CCND$,

3-23
dismiss primitive, DEXC$, 3-49
report primitive, REXC$, 3-129,

6-9
report procedure, REPORT, 6-9
service procedure, 6-17
service routine, 6-16
types, 6-2

Exception dispatching
kernel, 6-12

Exception handler, 2-15, 6-11,
6-13

CCND$ primitive, 2-15
CONNECT-EXCEPTION

procedure, 2-15
exception queue, 6-14
exception stacl· frame, 6-15
Process Control Block (PCB),

6-12, 6-15
process group codes, 6-14
process priority, 6-15
set address primitive, SERA$,

3-144
Exception handling

MMU trap, 6-21
overview, 6-1

Index-4

Exception processing
primitive services, 1-11

Exception reporting
REXC$ primitive, 2-15

Exception stack frame, 6-11
format, 6-18

Exception-type mask
derivation, MACR0-11, 6-10
derivation, Pascal, 6-11

EXCEPTION-WAIT ACTIVE
process state, 2-15

EXMSK$ macro, 6-3

F
FALCON macro

arguments, 4-6
description, 4-6
example, 4-7
hardware assumptions, 4-7
restrictions, 4-7
syntax, 4-6

FORK$ request
call, 3-67
description, 3-67
error returns, 3-68
Interrupt Service Routine (ISR),

7-9
restrictions, 3-68
semantics, 3-68
syntax, 3-67

Fork block
format, 7-10

Fork level
Interrupt Service Routine (ISR),

7-2
Fork routine

example, 7-10
interrupt processing, 7-2
Interrupt Service Routine (ISR),

7-1, 7-9
restrictions, 7-10

Free-memory pool, 2-47
allocation algorithm, 2-48
deallocation procedure, 2-48

Free-RAM lists
kernel, 5-7

G
GELA$ primitive

argument block, 3-71
description, 3-69

GELA$ primitive (cont'd.)
error returns, 3-72
implementation notes, 3-72
restrictions, 3-70
semantics, 3-71
syntax, 3-69
syntax example, 3-71

GELC$ primitive
argument block, 3-75
call, 3-74
description, 3-74
error returns, 3-76
restrictions, 3-75
semantics, 3-75
syntax, 3-74
syntax example, 3-75

GELM$ primitive
argument block, 3-78
call, 3-77
description, 3-77
error returns, 3-79
restrictions, 3-78
semantics, 3-78
syntax, 3-77
syntax example, 3-78

Get element
any primitive, GELA$, 3-69

Get element primitive
basic, GELM$, 3-77
conditional, GELC$, 3-74

GMAP$ primitive
applications, 3-82
argument block, 3-81
description, 3-80
error returns, 3-82
information returned format,

3-81
restrictions, 3-80

.., semantics, 3-82
syntax, 3-80
syntax example, 3-82

GTIM$ primitive
argument block, 3-84
description, 3-83
error returns, 3-85
restrictions, 3-84
semantics, 3-84
syntax, 3-83
syntax example, 3-84

GTST$ primitive, 3-10
argument block, 3-87
description, 3-86

GTST$ primitive (cont'd.)
error returns, 3-87
semantics, 3-87
syntax, 3-86
syntax example, 3-87

GVAL$ primitive
argument block, 3-89
description, 3-88
error returns, 3-91
restrictions, 3-89
semantics, 3-89
syntax, 3-88
syntax example, 3-89

H
Hardware exceptions

argument lists, 6-19
characteristics, 6-1

Header
data structures, 2-36

I/ 0 processing
Interrupt Service Routine (ISR),

7-3
l&D-space

separation
memory mapping, 2-28

IDB
See Interrupt Dispatch Block

(IDB)
IMPUR$ macro, 2-24

description, 3-92
error returns, 3-92
semantics, 3-92
syntax, 3-92

Impure-data
high segment, 2-22

Initialization procedures
data structures, 2-3

INITIALIZE attribute
static process, 2-3

Input/ output
See 1/0

Interrupt dismissal
Interrupt Service Routine (ISR),

7-13
Interrupt Dispatch Block (IDB),

7-3
format, 7-4
initialization, 7-6

Index-s·

Interrupt Dispatch Block (IDB)
(cont'd.)

overview, 7-3
Interrupt dispatcher

entry points, 7-5
functions, 7-5
overview, 7-5

Interrupt handling
overview, 7-1

Interrupt management
primitive services, 1-12

Interrupt processing
fork routine, 7-2

Interrupt Service Routine (ISR)
CINT$ primitive, 7-7
device driver, 7-1, 7-2
dismissing interrupts, 7-13
entering, 7-8
example, 7-10
executing, 7-8
FORK$ request, 3-67
fork routine, 7-1, 7-9
functions, 7-2
1/0 procressing, 7-3
Pascal interface, 7-14
Position Independent Code

(PIC), 7-2
Priority-7, 7-9
return conditions, 7-14
undeclared interrupts, 7-6

Interrupt vector
connect primitive, CINT$, 7-2
define macro, DEVICES, 4-4
disconnect primitive, DINT$,

7-2
system configuration file, 7-6

IOT instruction
kernel primitives, 3-1

ISO
See Internal Symbol Directory

(ISO)
ISR

See Interrupt Service Routine
(ISR)

connect primitive, CINT$, 3-28
disconnect primitive, DINT$,

3-55
enter normal state service,

P7SYS$, 3-110
mappable object, 2-25
memory mapping, 2-32

Index-6

K
Kernel

exception dispatching, 6-12
free-RAM lists, 5-7
impure data segment, 2-47
interrupt dispatcher, 7-3
memory mapping, 2-27
organization, 1-2
primitive services, 1-2

Kernel primitives
IOT instruction, 3-1

KXJllC macro
arguments, 4-8
description, 4-8
syntax, 4-8

KXTllC macro
arguments, 4-9
description, 4-9
syntax, 4-9

L
Lists

doubly-linked, 2-46
singly-linked, 2-45

LOGICAL macro
arguments, 4-11
description, 4-11
example, 4-11
syntax, 4-11

Logical names
build-time macro, LOGICAL,

4-11
create primitive,CRLN$, 3-32
delete primitive, DLLN$, 3-57
implicit translation, 3-8
translate primitive, TRLN$,

3-169
translation rules, 3-9

Logical-name structure
definition, 2-43
format, 2-43

M
MACR0-11 interface

primitive services, 3-1
Macro calls

DLST$, 3-65
FORK$, 3-67
GELC$, 3-74
GELM$, 3-77
PELC$, 3-101

Macro calls (cont'd.)
PELM$, 3-104

MAP_WINDOW procedure
syntax, 5-8

Mappable object, 2-25
Mapped target

memory access, 2-25
region allocation, 3-20
shared region, 3-12

Mapping information
get primitive, GMAP$, 3-80

Mapping type, 2-25
characteristics, 2-25

MAPW$ primitive
argument block, 3-97
description, 3-93
error returns, 3-99
implementation notes, 3-99
restrictions, 3-96
semantics, 3-97
syntax, 3-94
syntax example, 3-97
WPTR parameter, 3-96

Map window primitive, MAPW$,
3-93

Memory
system-common, 2-47

Memory access
unmapped target, 2-25

Memory configuration
physical addresses, 2-22

Memory layout
RAM-only environment, 2-23
ROM/RAM environment, 2-22

MEMORY macro
arguments, 4-12
description, 4-11
examples, 4-14
restrictions, 4-13
syntax, 4-12

Memory mapping
device driver, 2-30
I&D-space separation, 2-28
ISRs, 2-32
privileged process, 2-31
supervisor-mode, 2-33

Memory partitioning
program segments, 2-22

Message data
receive any primitive, RCVA$,

3-115

Message packet, 2-39
conditional allocation, 3-16
deallocate primitive, DAPK$,

3-47
definition, 2-44
format, 2-44
unconditional allocation, 3-18

Message transmission
primitive services, 1-7

N
NAME attribute, 2-6

p
P7SYS$ service, 7-9

description, 3-110
error returns, 3-110
restrictions, 3-110
semantics, 3-110
syntax, 3-110
syntax example, 3-110

PCB
See Process Control Block (PCB)

POAT$ macro, 2-24
description, 3-100
error returns, 3-100
semantics, 3-100
syntax, 3-100

PDB
See Process Descriptor Block

(PDB)
PELC$ primitive

argument block, 3-102
call, 3-101
description, 3-101
error returns, 3-103
restrictions, 3-102
semantics, 3-102
syntax, 3-101
syntax example, 3-102

PELM$ primitive
argument block, 3-105
call, 3-104
description, 3-104
error returns, 3-106
restrictions, 3-105
semantics, 3-105
syntax, 3-104
syntax example, 3-105

Index-7

Physical region
program segment

PIC

shared, 5-11
unshared, 5-10

See Position Independent Code
(PIC)

Position Independent Code (PIC),
3-29, 7-2

Power failure
detection primitive, PWFL$,

3-108
prim$ macro variant

general form, 3-2
usage rules, 3-3

prim$P macro variant
general form, 3-4
usage rules, 3-5

prim$S macro variant
general form, 3-4
usage rules, 3-4

Primitive calls
Process Descriptor Block (PDB)

usage, 3-10
Primitive services

compiler interface, 3-1
error returns, 3-5
exception processing, 1-11
interrupt management, 1-12
kernel, 1-2
MACR0-11 interface, 3-1
message transmission, 1-7
modules, 4-15
name, definition, 3-2
overview, 1-3
process management, 1-4
process synchronization, 1-6
request interface, 1-3
resource management, 1-5
ring buffers, 1-10
Structure Descliptor Block

(SOB), 3-6
user processes, 1-2

PRIMITIVES macro
description, 4-15
examples, 4-16
parameters, 4-15
syntax, 4-15

Priorities
static process, 2-3

Index-8

Priority-7
Interrupt Service Routine (ISR),

7-9
Priority scheduiing

hierarchy, A-1
Privileged process

memory mapping, 2-31
Process context, 2-17

restore primitive, RCTX$, 3-113
save primitive, SCTX$, 3-137
scheduler, 2-16
unmap window primitive,

UMAP$, 3-172
Process Control Block (PCB)

activation status, 2-2
exception handler, 6-12
exception handling, 6-15
organization, 2-17
overview, 2-17
space requirements, 2-21
state codes, 2-10
state queues, 2-11

PROCESS declaration
dynamic process, 2-4

Process Descriptor Block (PDB)
format, 3-10
primitive call usage, 3-10

Processes
blocking and unblocking, 2-12
definition, 2-1
execution-time entity, 2-2
memory mapping, 2-28
preemption, 2-12
relationships, 2-5
resume primitive, RSUM$,

3-132
run-time name, 2-6
schedule primitive, SCHD$,

3-136
scheduling, 2-12, 2-16
shared data, 2-1
shared resources, 2-2
sleep primitive, SLEP$, 3-154
state codes, 2-10
state queues, 2-11
states, 2-7
state transitions, 2-8
stop primitive, STPC$, 3-167
suspend primitive, SPND$,

3-161
suspension, 2-14
synchronization, 2-1

Processes (cont'd.)
termination, 2-4
unblocking signal primitive,

SALL$, 3-134
Process group codes

exception handling, 6-14
Process management

primitive services, 1-4
Process priority

change primitive, CHGP$, 3-26
exception handler, 6-15
recommended, A-2

Process states
get primitive, GTST$, 3-86
ready-active, 2-8

Process synchronization
primitive services, 1-6

PROCESSOR macro
arguments, 4-18
description, 4-16
examples, 4-19
syntax, 4-18

Processor scheduling, 2-16
Processor Status Word (PSW)

error condition, 3-5
PROGRAM declaration

static process, 2-2
Program section

See P-sect
P-sect

pure-code declaration macro,
PURE$, 3-107

pure-data declaration macro,
POAT$, 3-100

PSW
See Processor Status Word

(PSW)
PURE$ macro, 2-24

description, 3-107
error returns, 3-107
semantics, 3-107
syntax, 3-107

Pure-code
declaration macro, PURE$,

3-107
Pure-data

declaration macro, POAT$,
3-100

low segment, 2-22
Put element primitive

basic, PELM$, 3-104
conditional, PELC$, 3-101

PWFL$ primitive
description, 3-108
error returns, 3-109
restrictions, 3-108
semantics, 3-109
syntax, 3-108

Q

QUEDF$ system macro, 2-36,
2-37

Queue elements, 2-39, 2-44
Queue packet

send primitive, SEND$, 3-139
Queue semaphores

definition, 2-39
format, 2-39

Queuing mechanisms, 2-45

R
RAM, nonvolatile

application debugging rules,
4-14

RAM-only environment
memory layout, 2-23

Random-Access Memory
See RAM

RBUF$ primitive
argument block, 3-111
description, 3-111
error returns, 3-112
semantics, 3-112
syntax, 3-111
syntax example, 3-112

RCTX$ primitive
argument block, 3-113
description, 3-113
error returns, 3-114
implementation notes, 3-114
restrictions, 3-113
semantics, 3-113
syntax, 3-113
syntax example, 3-113

RCVA$ primitive
argument block, 3-118
description, 3-115
error returns, 3-119
implementation notes, 3-119
restrictions, 3-117
semantics, 3-118
syntax, 3-115
syntax example, 3-118

Index-9

RCVC$ primitive
argument block, 3-122
description, 3-120
error returns, 3-124
information returned, 3-122
restrictions, 3-121
semantics, 3-123
syntax, 3-120
syntax example, 3-123

RCVD$ primitive
argument block, 3-127
description, 3-125
error returns, 3-12 8
information returned, 3-12 7
restrictions, 3-126
semantics, 3-128
syntax, 3-125
syntax example, 3-128

Ready-active process state, 2-8
Receive data primitive

basic, RCVD$, 3-125
conditional, RCVC$, 3-120

Region
deallocate primitive, DLRG$,

3-60
Region allocation

mapped target, 3-20
terms, defined, 5-2
unmapped target, 3-20

Region ID Block (RIB)
content, 5-5
primitive service relationships,

5-4
symbolic offsets, 5-4
type definition, 5-3

Region sharing
primitive services, overview,

5-1
terms, defined, 5-2

RELATIONSHIP parameter
process termination, 2-4

RELEASE_EXCEPTION
procedure, 6-15

REPORT procedure
reporting exceptions, 6-9

Resource management
primitive services, 1-5

RESOURCES macro, 2-47
description, 4-19
example, 4-21
parameters, 4-20
syntax, 4-20

Index-10

REXC$ primitive, 2-15
argument block, 3-130
description, 3-129
error returns, 3-131
reporting exceptions, 6-9
restrictions, 3-130
semantics, 3-131
syntax, 3-129
syntax example, 3-130

Ring buffers
definition, 2-40
format, 2-40
primitive services, 1-10
reset primitive, RBUF$, 3-111

ROM/RAM environment
memory layout, 2-22

RSUM$ primitive
argument block, 3-132
description, 3-132
error returns, 3-133
semantics, 3-132
syntax, 3-132
syntax example, 3-132

Run-time name, 2-6
CRPC$ service request, 2-6
data structures, 2-35
DFSPC$ macro, 2-6
dynamic process, 2-6
static process, 2-6

Run-time system
definition, 1-2

s
SALL$ primitive

argument block, 3-135
description, 3-134
error returns, 3-135
restrictions, 3-134
semantics, 3-135
syntax, 3-134
syntax example, 3-135

SCHD$ primitive
applications, 3-136
description, 3-136
error returns, 3-136
semantics, 3-136
syntax, 3-136

Scheduler, 2-16
process context switch, 2-16

Scheduling processes, 2-12
blocking, 2-12

Scheduling processes (cont'd.)
preemption, 2-12
unblocking, 2-13

SCTX$ primitive
argument block, 3-137
description, 3-137
error returns, 3-138
restrictions, 3-137
semantics, 3-137
syntax, 3-137
syntax example, 3-137

SOB
See Structure Descriptor Block

(SOB)
Semaphore

binary, 1-6, 2-38
counting, 1-6, 2-38
queue, 1-7, 2-39

SEND$ primitive
applications, 3-143
argument block, 3-141
description, 3-139
error returns, 3-143
restrictions, 3-141
semantics, 3-141
syntax, 3-139
syntax example, 3-141

Send queue packet primitive
conditional, SNDC$, 3-157

SERA$ primitive
argument block, 3-145
description, 3-144
error returns, 3-145
establish exception handler,

6-12
establish exception service,

6-16
restrictions, 3-145
semantics, 3-145
syntax, 3-144

SGLC$ primitive
argument block, 3-147
description, 3-146
error returns, 3-14 7
restrictions, 3-146
semantics, 3-147
syntax, 3-146
syntax example, 3-147

SGLQ$ primitive
applications, 3-149
argument block, 3-149
description, 3-148

SGLQ$ primitive (cont'd.)
error returns, 3-149
semantics, 3-149
syntax, 3-148
syntax example, 3-149

SGNL$ primitive
argument block, 3-151
description, 3-150
error returns, 3-151
semantics, 3-151
syntax, 3-150
syntax example, 3-151

SGQC$ primitive
applications, 3-153
argument block, 3-153
description, 3-152
error returns, 3-153
semantics, 3-153
syntax, 3-152
syntax example, 3-153

Shared common region
program segment, 5-13

Shared libraries
resident, 1-13

Shared Region Descriptor (SRO)
definition, 2-42
format, 2-42

Shared regions
access, 3-12
create primitive, CRSR$, 3-40
delete primitive, DLSR$, 3-63
deletion, 3-12
mapped target, 3-12
unmapped target, 3-12

Shorthand rule
process-related request, 3-10

Signal queue semaphore primitive
basic, SGLQ$, 3-148
conditional, SGQC$, 3-152

Signal semaphore primitive
basic, SGNL$, 3-150
conditional, SGLC$, 3-146

Significant event, 2-16
SLEP$ primitive

argument block, 3-155
description, 3-154
error returns, 3-156
restrictions, 3-155
semantics, 3-155
syntax, 3-154
syntax example, 3-155

Index-11

SNDC$ primitive
applications, 3-160
argument block, 3-159
description, 3-157
error returns, 3-160
restrictions, 3-158
semantics, 3-159
syntax, 3-157
syntax example, 3-159

Software exceptions
argument lists, 6-19
characteristics, 6-2
reporting, 6-9

SPND$ primitive
argument block, 3-161
description, 3-161
error returns, 3-162
semantics, 3-162
syntax, 3-161
syntax example, 3-162

SRO
See Shared Region Descriptor

(SRO)
SSFA$ primitive

argument block, 3-164
description, 3-163
error returns, 3-164
restrictions, 3-164
semantics, 3-164
syntax, 3-163
syntax example, 3-164

State codes, 2-10
Process Control Block (PCB),

2-10
State queues, 2-11

characteristics, 2-11
State transitions, 2-8
Static process

CHGP$ primitive, 2-3
define macro, DFSPC$, 3-51
delete primitive, DLPC$, 3-59
DFSPC$ macro, 2-3
general description, 2-2
INITIALIZE attribute, 2-3
priorities, 2-3
PROGRAM declaration, 2-2
run-time name, 2-6

STIM$ primitive
argument block, 3-165
description, 3-165
error returns, 3-166
restrictions, 3-165

lndex-12

STIM$ primitive (cont'd.)
semantics, 3-166
syntax, 3-165
syntax example, 3-166

Stop flag
set address primitive, SSFA$,

3-163
STPC$ primitive

argument block, 3-168
description, 3-167
error returns, 3-168
semantics, 3-168
syntax, 3-167
syntax example, 3-168

Structure Descriptor Block (SOB)
data structure index, 3-7
format, 3-7
initialization, 3-8
primitive services, 3-6
uses, 3-7

Subroutine calling
MACR0-11 conventions, B-1
SEQll conventions, B-3

Supervisor-mode
mapping, 2-25
memory mapping, 2-33

SUSPEND operation, 2-14
System-common memory, 2.,.47
System configuration file

configuration macros, 4-1
debugging support macro,

SYSTEM, 4-21
functions, 4-2
interrupt vectors, 7-6
terminate macro, ENDCFG, 4-5

System data structures, 2-34
SYSTEM macro

description, 4-21
example, 4-23
parameters, 4-22
syntax, 4-22

System processes
DIGITAL-supplied, 1-2
overview, 1-12

System time

T

get primitive, GTIM$, 3-83
set primitive, STIM$, 3-165

Target system
supervisor mode, 1-13

TRAPS macro
arguments, 4-24
description, 4-23
example, 4-24
syntax, 4-24

TRLN$ primitive, 3-8
argument block, 3-170
description, 3-169

u

error returns, 3-171
implementation notes, 3-171
restrictions, 3-170
semantics, 3-170
syntax, 3-169
syntax example, 3-170

UMAP$ primitive
argument block, 3-173
description, 3-172
error returns, 3-174
restrictions, 3-173
semantics, 3-174
syntax, 3-172
syntax example, 3-173

Unformatted data structure
definition, 2-44

UNMAP_WINDOW procedure
syntax, 5-8

Unmapped target
memory access, 2-25
region allocation, 3-20
shared region, 3-12

User-mode
mapping, 2-25

User processes
primitive services, 1-2

v
Virtual array

program segment, 5-16

w
WAIA$ primitive

argument block, 3-176
description, 3-175
error returns, 3-177
implementation notes, 3-177
restrictions, 3-176
semantics, 3-177
syntax, 3-175
syntax example, 3-177

WAIC$ primitive
argument block, 3-180
description, 3-179
error returns, 3-180
restrictions, 3-179
semantics, 3-180
syntax, 3-179
syntax example, 3-180

WAIQ$ primitive, 6-14
applications, 3-183
argument block, 3-182
description, 3-181
error returns, 3-183
restrictions, 3-182
semantics, 3-182
syntax, 3-181
syntax example, 3-182

WAIT$ primitive
argument block, 3-185
description, 3-184
error returns, 3-185
restrictions, 3-184
semantics, 3-185
syntax, 3-184
syntax example, 3-185

Wait on semaphore primitive
any, WAIA$, 3-175
any queue, WAQA$, 3-186
binary, WAIT$, 3-184
conditional, WAIC$, 3-179
conditional queue, WAQC$,,

3-190
counting, WAIT$, 3-184
queue, WAIQ$, 3-181

WAQA$ primitive
argument block, 3-188
description, 3-186
error returns, 3-189
implementation notes, 3-189
restrictions, 3-187
semantics, 3-188
syntax, 3-186
syntax example, 3-188

WAQC$ primitive
argument block, 3-191
description, 3-190
error returns, 3-192
restrictions, 3-191
semantics, 3-191
syntax, 3-190
syntax example, 3-191

Index-13

HOW TO ORDER

ADDITIONAL DOCUMENTATION

From Call

Alaska, Hawaii, 603-884-6660
or New Hampshire

Rest of U.S.A. 800-258-1710
and Puerto Rico•

Write

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

• Prepaid orders from Puerto Rico must be placed with DIGITAL's local subsidiary (809-754-
7575)

Canada

Internal orders
(for software
documentation)

Internal orders
(for hardware
documentation)

800-267-6219
(for software
documentation)

613-592-5111
(for hardware
documentation)

617-234-4323

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: Direct Order desk

Software Distribution Center (SOC)
Digital Equipment Corporation
Westminster, MA 01473

Publishing & Circulation Serv. (P&CS)
NR03-1/W3
Digital Equipment Corporation
Northboro, MA 01532

MicroPower /Pascal
Run-Time Services Manual

AA-M391D-TK

READER'S
COMMENTS

Note: This form is for document comments only. DIGIT AL will use comments
submitted on this form at the company's discretion. If you require a written
reply and are eligible to receive one under Software Performance Report (SPR)
service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

Name

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)

Organization

Street

City

Date

State Zip Code
or Country

- Do Not Tear - Fold Here and Tape

mnmnomn

Do Not Tear - Fold Here

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS
ML05-5/E45
146 MAIN STREET
MAYNARD, MA 01754-2571

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

