
MicroPqwer /Pascal
Langudg~ Guide

Order No. AA-M389E-TK

June 1987

MicroPqwer /Pascal
Langudg~ Guide

Order No. AA-M389E-TK

This manual describes the elements of the MicroPower /Pascal Language and its real
time extensions. The manual is intended as a reference manual for use in preparing
MicroPower /Pascal programs.

Revision/Update Information: This manual supersedes the MicroPower/Pascal
Language Guide, AA-M389D-TK.

Operating System and Version: Micro/RSX Version 3.0
RSX-11 M Version 4.2
RSX-11 M-PLUS Version 3.0
RT-11 Version 5.2
VAX/VMS Version 4.0

Software Version: MicroPower/Pascal-Micro/RSX Version 2.4
MicroPower/Pascal-RSX Version 2.4
MicroPower/Pascal-RT Version 2.4
MicroPower/Pascal-VMS Version 2.4

Digital Equipment Corporation Maynard, Massachusetts

First Printing, February 1982
-updated, June 1982
Revised~ October 1982
Updated, February 1983
Revised, July 1983
Updated, February 1984
Revised, June 1985
Updated, April 1986
Updated, October 1986
Revised, June 1987

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1982, 1983, 1984, 1985, 1986, 1987 by Digital Equipment Corporation

All _Rights Reserved.

The READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC PDP
DECma~ P/OS
DECUS Professional
DEC writer Rainbow
DIBOL RSTS
MASS BUS RSX
Micro Power /Pascal -RT

UNIBUS
VAX
VMS
VT
Work Processor

~DrnDll~D
ML-S690

This document was prepared using an in-house documentation production system. All page
composition and make-up was performed by TEX, the typesetting system developed by Donald
E. Knuth at Stanford University. TEX is a trademark of the American Mathematical Society.

Contents

Preface xvii

Part I The Pascal Language

Chapter l Introduction

1.1 Terminology .. 1-2
1.1.1 Data Types ... 1-2
1.1.2 Definitions and Declarations 1-2
1.1.3 Executable Statements . 1-3
1.1.4 Subprograms . 1-3

1.1.4.1 Routines ... 1-3
1.1.4.2 Processes ... 1-3

1.1.5 Compilation Units . 1-4
1.1.6 Attributes .. 1-4
1.1. 7 Structure of a Pascal Program . 1-4

1.2 Elements of the Language ... 1-6
1.2.1 Character Set ... 1-6
1.2.2 Special Symbols .. 1-7
1.2.3 Reserved Words .. 1-7
1.2.4 Ide11tifiers .. 1-8

1.2.4.1 Predefined Identifiers 1-8
1.2.4.2 User-Defined Identifiers 1-9

1.3 Documenting Your Program . 1-9

iii

Chapter 2 Data Types

2.1 Ordinal Data Types ... 2-2
2.1.1 INTEGER and LONG-1NTEGER 2-2
2.1.2 UNSIGNED ... 2-3
2.1.3 CHAR .. 2-3
2.1.4 BOOLEAN ... 2-4
2.1.5 Enumerated Types .. 2-4
2.1.6 Subrange Types .. 2-5

2.2 REAL Types ... 2-6
2.3 RECORD Data Types .. 2-7

2.3.1 Variant Clause ... 2-9
2.3.2 Record Examples .. 2-11

2.4 ARRAY Types .. 2-11
2.4.1 Multidimensional Arrays 2-12
2.4.2 String Types : 2-14
2.4.3 Array Examples ... 2-14

2.5 SET Types · 2-15
2.6 FILE Types .. 2-16
2.7 TEXT File Type ... 2-18
2.8 Pointer Types .. 2-19
2.9 Type Checking Rules ... 2-20

2.9.1 Identical Types ... 2-20
2.9.2 Compatible Types .. 2-21

Chapter 3 Expressions

3.1 Variables .. 3-2
3.2 Constants .. 3-2

3.2.1 Scalar Constants ... 3-3
3.2.2 Structured Constants ... 3-3

3.2.2.1 String Constants 3-7
3.3 Function Identifiers .. 3-8
3.4 Set Constructors .. 3-8
3.5 Operators ; 3-9

3.5.1 Arithmetic Operators 3-10
3.5.2 Relational Operators 3-11
3.5.3 Boolean Operators : 3-12
3.5.4 String Operators ... 3-13
3.5.5 Set Operators .. 3-13

3.6 Precedence of Operators ... 3-14
3.7 Order of Evaluation of Boolean Operands 3-15

iv

3.8 Type Promotion ... 3-16
3.9 Type Cast Operator .. 3-16

Chapter 4 The Declaration Section

4.1 Constant Declaration 4-1
4.2 LABEL Declaration .. 4-3
4.3 TYPE Definition ... 4-3
4.4 Variable Declaration ... 4-4

Chapter 5 Pascal Statements

5.1 Assignment Statement .. 5-2
5.2 CASE Statement ... 5-3
5.3 Compound Statement .. 5-5
5.4 FOR Statement .. 5-6
5.5 GOTO Statement ... 5-8
5.6 IF-THEN Statement ... 5-9
5.7 IF-THEN-ELSE Statement ... 5-11
5.8 Procedure Call .. 5-13
5.9 Process Invocation ... 5-15
5.10 REPEAT Statement ... 5-20
5.11 WHILE Statement .. 5-21
5.12 WITH Statement .. 5-23

Chapter 6 Subprograms: Procedures, Functions, and Processes

6.1 Concept of Subprograms 6-1
6.1.1 Routines: Procedures and Functions 6-2
6.1.2 Processes .. 6-2
6.1.3 Subprogram Structure 6-2

6.2 Subprogram Declarations 6-3
6.2.1 Procedure Heading Syntax 6-4
6.2.2 Function Heading Syntax 6-4
6.2.3 Process Heading Syntax 6-5

6.3 Formal Parameters .. 6-5
6.3.1 Formal Parameter List 6-6
6.3.2 Value Parameters 6-6
6.3.3 Variable (VAR) Parameters 6-8

6.3.3.1 Conformant Arrays 6-11
6.3.4 Procedure and Function Parameters 6-14
6.3.5 Predefined Process Parameters 6-14

v

6.4 Subprogram Blocks and Scope of Identifiers .. 6-15
6.4.1 Scope of Identifiers · 6-15
6.4.2 Function Result .. 6-17
6.4.3 Subprogram Examples .. 6-17

6.5 Directives . 6-19
6.5.1 FORWARD Directive 6-19
6.5.2 External Subprograms 6-20

6.5.2.1 EXTERNAL Directive 6-21
6.5.2.2 SEQl 1 Directive 6-21

6.6 Activating Procedures, Functions, and Processes 6-22
6.6.1 Parameter Association 6-22
6.6.2 Default Parameters 6-24
6.6.3 Actual Value Parameters 6-24
6.6.4
6.6.5

Chapter 7

Actual VAR Parameters 6-25
Actual Procedure and Function Parameters 6-26

Compilation Units

7.1 Compilation Unit Structure ... 7-1
7 .2 Sharing Declarations and Definitions . 7-3

7.2.1 Using Global and External Identifiers · 7-3
7.2.2 Multiply Declared Identifiers 7-4

7.3 The %INCLUDE Directive ... 7-5

Chapter 8 Utility Routines

8.1 ABS(x) Function ... 8-3
8.2 ADDRESS(x) Function ... 8-3
8.3 ARCTAN(x) Function .. 8-3
8.4 BITNEXT Function .. 8-3
8.5 BITSIZE Function ... 8-4
8.6 CHR(x) Function ... 8-4
8. 7 COS(x) Function ·. 8-5
8.8 DISPOSE(p) Procedure ... 8-5
8.9 DISPOSE Procedure: Record-with-Variants Form 8-7

if

8.10 EXP(x) Function .. 8-7
8.11 LN(x) Function .. 8-7
8.12 LROUND(r) Function .. 8-7
8.13 L TRUNC(r) Function ... 8-8
8.14 NEW(p) Procedure .. 8-8
8.15 NEW Procedure: Record-with-Variants Form 8-8
8.16 NEXT(x) Function ... 8-9

vi

8.17 ODD(x) Function .. 8-10
8.18 ORD(x) Function . 8-10
8.19 PACK Procedure . 8-10
8.20 PRED(x) Function . 8-12
8.21 ROUND(r) Function .. 8-12
8.22 SHORT(l) Function ... 8-12
8.23 SIN(x) Function ... 8-12
8.24 SIZE Function . 8-12
8.25 SQR(x) Function ... 8-13
8.26 SQRT(x) Function .. 8-13
8.27 SUCC(x) Function .. 8-13
8.28 TRUNC(r) Function ... 8-13
8.29 UAND(ul,u2) Function .. 8-14
8.30 UNOT(ul) Function .. 8-14
8.31 UNPACK Procedure .. 8-14
8.32 UOR(ul,u2) Function ... 8-16
8.33 UROUND(r) Function .. 8-16
8.34 USHORT(l) Function 8-16
8.35 UTRUNC(r) Function 8-16
8.36 UXOR(ul,u2) Function ... 8-17

Chapter 9 Input and Output

9.1 Terminology .. 9-3
9.2 I/O Processing .. 9-4

9.2.1 MicroPower/Pascal File Organization 9-4
9.2.2 File Access Methods 9-4
9.2.3 File Variables and I/O Servers 9-4
9.2.4 External File Storage 9-5
9.2.5 Specifying I/O Servers 9-5

9.2.6
9.2.7
9.2.8
9.2.9

9.2.5.1 Syntax for Specifying External Files and Devices 9-5
9.2.5.2 Syntax for Specifying a Logical Link 9-6

Error Returns from I/O Requests .. 9-8
I/O Server Buffering 9-9
Open and Closed Files . 9-9
Standard Pascal File Variables INPUT and OUTPUT 9-10

9.2.10 Additional Files Required for Using the I/O System 9-10
9.3 BREAK ... 9-11
9.4 CLOSE .. 9-12
9.5 DELETE-FILE .. 9-13
9.6 EMPTY_BUFFER .. 9-14
9.7 EOF .. 9-15

vii

9.8 EOLN ... 9-17
9.9 FIND · 9-18
9.10 FORMAT_RX02 ... 9-19
9.11 GE'f .. 9-20
9.12 INIT_DIRECTORY " 9-22
9.13 OPEN ... 9-24
9.14 PAGE ... 9-29
9.15 PROTECT_FILE ... 9-30
9.16 PURGE .. 9-31
9.17 PUT .. 9-32
9.18 READ ... 9-34
9.19 READLN ... 9-37
9.20 Input Integer Conversion Functions (VMS only) 9-38

9.20.1 BIN(x) ... 9-38
9.20.2 HEX(x) ... 9-39
9.20.3 OCT(x) ... 9-40

9.21 RENAME_FILE ... 9-41
9.22 RESET .. 9-42
9.23 REWRITE ... 9-43
9.24 SQUEEZE_DIRECTORY ... 9-44
9 .25 UNPROTECT_FILE . 9-45
9.26 WRITE ... 9-46
9 .2 7 WRITELN . 9-48
9.28 Text File Output Field Width Specifications , 9-49
9.29 Output Integer Conversion Functions 9-51

9.29.1 BIN(x) ... 9-51
9.29.2 HEX(x) ... 9-52
9.29.3 OCT(x) ... 9-52

9.30 Delayed Device Access .. 9-53

Chapter 10 Attributes

10.1 Specifying Attributes .. 10-3
10.1.1 General Syntax Diagrams 10-3
10.1.2 Memory-Mapping Attributes 10-4

10.2 Attribute Descriptions ... 10-4
10.2.1 AT ... 10-5
10.2.2 BIT ... 10-6
10.2.3 BYTE .. 10-7
10.2.4 CONTEXT .. 10-8
10.2.5 DATA_SPACE .. 10-9
10.2.6 DEV_ACCESS . 10-13

viii

10~2.7 DRIVER ... 10-14
10.2.8 EXTERNAL ... 10-15
10.2.9 GLOBAL .. 10-17
10.2.10 GROUP ... 10-18
10.2.11 IDENT ... 10-19
10.2.12 INIT_PRIORITY . 10-20
10.2.13 INITIALIZE . 10-22
10.2.14 NAME .. 10-24
10.2.15 NOOPTIMIZE ... 10-25
10.2.16 OPTIMIZE . 10-26
10.2.17 OVERLAID ... 10-27
10.2.18 POS ... 10-28
10.2.19 PRIORITY . 10-29
10.2.20 PRIVILEGED . 10-30
10.2.21 READONLY .. 10-31
10.2.22 STACK_SIZE . 10-33
10.2.23 STATIC . 10-34
10.2.24 SYSTEM . 10-36
10.2.25 TERMINATE .. 10-37
10.2.26 UNSAFE .. 10-38
10.2.27 VOLATILE . 10-40
10.2.28 WORD .. 10-42
10.2.29 WRITEONLY. 10-43

Part II Real-Time Requests for Run-Time Services

Chapter 11 Introduction to Real-Time Programming Requests

11.1 General Conventions and Usage Rules 11-3
11.1.1 Name and Descriptor Parameters 11-4

11.1.1.1 Specifying Names 11-4
11.1.1.2 Specifying Descriptors 11-4
11.1.1.3 Using Descriptors for Unnamed Structures 11-4
11.1.1.4 Process Descriptor Usage . 11-5

11.1.2 STATUS Parameter 11-5
11.2 Error Returns from Real-Time Programming Requests . 11-5

ix

Chapter 12 Process Management Requests

12.1 CHANGE_FRIORITY ... 12-2
12.2 DEFINE_STOP_FLAG ... 12-4
12.3 GET_STATE- 12-6
12.4 INIT_FROCESS_DESC ; 12-10
12.5 RESUME .. 12-12
12.6 SCHEDULE .. 12-14
12.7 STOP .. 12-15
12.8 SUSPEND

Chapter 13 Binary and Counting Semaphore and Mutex
Management Requests

12-18

13.1 Binary and Counting Semaphores 13-3
13.2 Mutex Structures .. 13-3
13.3 COND_SIGNAL .. 13-4
13.4 COND_WAIT .. 13-6
13.5 CREATE_BINARY_SEMAPHORE 13-8
13.6 CREATE_BINARY_SEMAPHORE_P . 13-11
13.7 CREATE_COUNTING_SEMAPHORE : 13-14
13.8 CREATE_COUNTING_SEMAPHORE_P 13-l7
13.9 CREATE_MUTEX .. 13-20
13.10 DESTROY ... 13-22
13.11 DESTROY_MUTEX .. 13-24
13.12 GET_VALUE .. 13-26
13.13 INIT_STRUCTURE_DESC 13-28
13.14 LOCK_MUTEX .. 13-30
13.15 SIGNAL ... 13-32
13.16 SIGNAL_ALL ... 13-34
13.17 UNLOCK_MUTEX . 13-36
13.18 WAIT ... 13-38
13.19 WAIT_ANY .. 13-40

x

Chapter 14 Queue Semaphore Management Requests

14.1 Data Access Features of Processes ~ 14-4
14.2 General Packet Structure for Send/Receive Requests 14-4
14.3 ALLOCATE_PACKET ... 14-7
14.4 COND__ALLOCATE_PACKET 14-9
14.5 COND_GET_PACKET ... 14-11
14.6 COND_PUT_PACKET ... 14-13
14.7 COND_RECEIVE ... 14-16
14.8 COND_RECEIVE__ACK ... 14-21
14.9 COND_SEND ... 14-24
14.10 COND_SEND__ACK . 14-28
14.11 CREATE_QUEUE_SEMAPHORE . 14-32
14.12 CREATE_QUEUE_SEMAPHORE_P . 14-35
14.13 DEALLOCATE_PACKET . 14-38
14.14 DESTROY . 14-40
14.15 GET_PACKET ... 14-42
14.16 GET_PACKET__ANY . 14-44
14.17 GET_VALUE .. 14-48
14.18 INIT_STRUCTURE_DESC . 14-50
14.19 PUT_PACKET ... 14-52
14.20 RECEIVE . 14-54
14.21 RECEIVE__ACK . 14-59
14.22 RECEIVE__ANY . 14-62
14.23 RECEIVE__ANY__ACK . 14-68
14.24 SEND .. 14-73
14.25 SEND__ACK .. 14-78

Chapter 15 Ring Buffer Management Requests

15.1 COND_GET_ELEMENT ... 15-3
15.2 COND_PUL.ELEMENT ... 15-6
15.3 CREATE_RING_BUFFER .. 15-9
15.4 CREATE_RING_BUFFER_P 15-12
15.5 DESTROY ... 15-15
15.6 GET_ELEMENT . 15-17
15.7 GET_ELEMENT__ANY .. 15-20
15.8 GET_VALUE .. 15-25
15.9 INIT_STRUCTURE_DESC 15-27
15.10 PUT_ELEMENT . 15-29
15.11 RESET_RING_BUFFER ... 15-32

xi

Chapter 16 Interrupt Management Requests

16.1 CONNECT_INTERRUPT ... 16-3
16.2 CONNECT_SEMAPHORE .. 16-6
16.3 DISCONNECT_INTERRUPT · 16-10
16.4 DISCONNECT_SEMAPHORE 16-12

Chapter 1 7 Exception Management Requests

17 .1 Exception Types and Codes . 17 -3
17.2 Format for Exception-Handling Procedure Declaration 17-9
17.3 CONNECT_EXCEPTION .. 17-11
17.4 DISCONNECT_EXCEPTION · 17-14
17.5 ESTABLISH ... 17-16
17.6 RELEASE_EXCEPTION ... 17-18
17.7 REPORT ... 17-20
17.8 REVERT ... 17-22
17.9 WAIT_EXCEPTION ... 17-24

Chapter 18 Dynamic Memory-Allocation and Region-Sharing
Requests

18.1 ACCESS_SHARED_REGION 18-3
18.2 ALLOCATE_REGION ... 18-6
18.3 CREATE_SHARED_REGION 18-9
18.4 DEALLOCATE_REGION .. 18-13
18.5 DELETE_SHARED_REGION 18-16
18.6 GET_MAPPING ... 18-18
18.7 MAP_WINDOW ... 18-21
18.8 RESTORE_CQNTEXT .. 18-27
18.9 SAVE_CONTEXT .. 18-29
18.10 UNMAP_WINDOW ... 18-31

Chapter 19 Clock Service Requests

19 .1 About System Time . 19-1
19.2 Format of CLOCK_TIME Record 19-2
19.3 GET_ TIME .. 19-3
19.4 SET_TIME .. 19-5
19.5 SLEEP ... 19-7

xii

Chapt'?r 20 Miscellaneous Requests

20.1 About Logical Names ... 20-1
20.2 CHECK_FREE_SPACE .. 20-3
20.3 CREATE_LOGICAL _NAME 20-4
20.4 DELETE_LOGICAL_NAME 20-7
20.5 GET_CONFIG .. 20-9
20.6 POWER_FAIL ... 20-12
20.7 TRANSLATE_LOGICAL_NAME 20-14

Appendix A ASCII Character Set

Appendix B Syntax Summary

Appendix C Compile-Time Options

Appendix D Predefined Data Types in PREDFL.PAS

Appendix E Storage Allocation Rules for Standard Data Type~

E.1 Scalar Types . E-1
E.1.1 INTEGER and UNSIGNED Types (unpacked) . E-1
E.1.2 INTEGER and UNSIGNED Types (packed) . E-2
E.1.3 LONG_INTEGER Type (unpacked and packed) . E-2
E.1.4 BOOLEAN Type (unpacked) . E-2
E.1.5 BOOLEAN Type (packed) . E-3
E.1.6 REAL Type (packed or unpacked) . E-3
E.1.7 Enumerated Type (unpacked) . E-3
E.1.8 Enumerated Type (packed) . E-3
E.1.9 CHAR Type (unpacked). E-3
E.1.10 CHAR Type (packed) . E-3

E.2 Pointer Types . E-3
E.3 Structured Types . E-3

E.3.1 Array Type . E-4
E.3.2 RECORD Type . E-6
E.3.3 SET Type _ . E-8

xiii

Appendix F Summary of Attribute Use

Appendix G Predefined Identifiers

Appendix H MicroPower/Pascal Compiler Limitations

H.1 Heap .. H-1
H.2 Subprogram Table ... H-6
H.3 Unique Identifier Table .. H-7

Appendi.x I System 0/olNCLUDE and Module Files and Associated
Requests

Index

Figures
1-1 Structure of a Micro Power /Pascal Program '. 1-5
2-1 A 2-Dimensional Array 2-13
2-2 A 3-Dimensional Array 2-14
2-3 Buffer Variable Contents After Using READ and RESET 2-17
2-4 Buffer Variable Contents During Use 2-17
3-1 Values Assigned to a 2-Dimensional Array 3-6
7-1 %INCLUDE File Levels 7-6
9-1 MicroPower/Pascal Program and 1/0 Server Buffering Relationship 9-9
14-1 General Packet Format for Send/Receive Requests 14-5
14-2 SEND Request Packet Format 14-76
14-3 SEND_ACK Request Packet Format 14-81

Tables
3-1 Arithmetic Operators . , 3-10
3-2 Result Types for Arithmetic Operations . 3-11
3-3 Relational Operators : 3-12
3-4 Boolean Operators .. 3-12
3-5 String Operators . 3-13
3-6 Set Operators ... 3-14
8-1 Utility Routines by Functional Category .. 8-1
9-1 Predeclared I/O Routines 9-1

xiv

10-1
11-1
12-1

13-1

14-1
15-1
16-1
17-1
17-2

18-1
19-1
20-1
A-1

A-2

E-1
F-1

MicroPower/Pascal Attributes by Functional Class
MicroPower/Pascal Real-Time Programming Requests by Functional Group
Operations Performed by Process Management Requests
Operations Performed by Binary and Counting Semaphore and Mutex
Management Requests .
Queue Semaphore Management Requests
Ring Buffer Management Requests
Interrupt Management Requests
Exception Management Requests
Exception Types and Codes . . .
Memory-Allocation and Region-Sharing Requests ...
Clock Service Requests
Miscellaneous Requests
ASCII Character Set
Control Code Abbreviations for Nonprinting Characters
Storage Allocation for Packed Integer and Unsigned Subrange Types
Summary of Attribute Use ..

xv

10-1
11-1
12-1

13-1
14-2
15-1
16-1
17-1
17-3
18-2
19-1

. 20-1
A-1

A-3
E-2

. F-1

Preface

This manual describes the MicroPower /Pascal language, which is an extension of the standard
Pascal programming language proposed by the International Standardization Organization (ISO).

Structure of This Document
This 2-part manual contains 20 chapters and 9 appendixes.

Part I describes the standard Pascal language, as defined by Niklaus Wirth, and a number of
DIGITAL-created extensions.

• Chapter 1 provides an overview of the MicroPower/Pascal language and describes the
structure of a MicroPower/Pascal program.

• Chapter 2 presents detailed information on standard data types.

• Chapter 3 discusses expressions involving constants, variables, function designators, and
operators.

• Chapter 4 describes the statements of the declaration section.

• Chapter 5 describes the statements that perform the actions of a program, including the
process invocation (creation) and procedure call statements.

• Chapter 6 describes the declaration and structure of subprograms (procedures, functions,
and processes).

• Chapter 7 describes compilation units and independent compilation.

• Chapter 8 describes the predeclared data manipulation functions and procedures supplied
with the MicroPower/Pascal software.

• Chapter 9 describes the syntax and use of the predeclared input/output procedures. Those
procedures provide access to standard I/O devices and the MicroPower/Pascal file system.

• Chapter 10 describes the syntax and use of the MicroPower/Pascal attributes. A syntactic
feature of the MicroPower/Pascal software, attributes provide additional control over the
properties of a variety of language elements and constructs.

xvii

Part II describes the real-time programming requests (predeclared programming procedures and
functions) that extend the capabilities of standard (sequential) Pascal to allow access to the
real-time concurrent programming services of the MicroPower/Pascal kernel.

• Chapter 11 discusses the conventions to follow when using the real-time programming
requests.

• Chapter 12 describes process management requests, which provide for dynamic process
deletion, suspension, resumption, status reporting, and forced termination.

• Chapter 13 describes semaphore management requests, which provide the basic synchro
nization mechanisms between cooperating processes through signal and wait operations on
binary and counting semaphores.

• Chapter 14 describes queue semaphore management requests, which provide interprocess
message transmission service by combining message packet queuing and dequeuing with
semaphore signal and wait operations.

• Chapter 15 describes ring buffer management requests, which provide for variable-length
data transfers without the need for explicit synchronization between sending and receiving
processes.

• Chapter 16 describes interrupt management requests, which provide interrupt dispatching
control for processes that manage an 1/0 or a clock device.

• Chapter 17 describes exception condition management requests, which direct the dispatching
of hardware and software exception conditions to an appropriate exception-handling
procedure or exception-handling service routine. The requests also permit a process to
report a software exception.

• Chapter 18 describes the memory allocation and mapping requests, which allow a process
to control dynamically the allocation of target memory.

• Chapter 19 describes the timer requests, which allow a process to set and obtain the
kernel-maintained system time and to implement timed process blocking.

• Chapter 20 describes a miscellaneous group of requests that permit a process to obtain heap
storage space information, create a logical name that translates to a specified string value,
eliminate the translation value defined for a given logical name, obtain build-time hardware
configuration information, detect a power failure, and obtain the translation string defined
for a given logical name.

• Appendix A lists the ASCII character set.

• Appendix B provides a complete summary of MicroPower /Pascal language syntax, using a
modified version of the Backus-Naur form.

• Appendix C explains the use of compile-time aids for the programmer.

• Appendix D shows the declarations of the predeclared data types used by the real-time
programming requests.

• Appendix E describes the rules by which the compiler allocates storage of the standard data
types.

• Appendix F lists the MicroPower/Pascal attributes and the entities to which they apply.

xviii

•

•

•

Appendix G lists the identifiers that are predefined in the MicroPower/Pascal language as
the names of files, functions, procedures, types, and values.

Appendix H describes the limitations of the MicroPower /Pascal compiler and suggests
programming techniques to avoid encountering them.

Appendix I lists the system %INCLUDE and module files and the predefined MicroPower/
Pascal 1/0 and real-time requests that are defined in them.

Intended Audience
This manual is intended.for readers who know the Pascal language and who are familiar with
concepts of concurrent programming. This manual is not a tutorial manual but instead is
primarily for reference. If either Pascal or concurrent programming concepts are new to you,
see the bibliography at the end of this manual for a partial list of applicable tutorial manuals.

For detailed information about the MicroPower/Pascal run-time system and utility programs,
see the Associated Documents section.

Conventions Used in This Document

Convention

{ }

{ }, ...

[]

[]

(* *)
{ }

Meaning

Braces enclose lists from which you must choose one item. For example:

. { ::It:ment }

Horizontal ellipses indicate that the preceding item can be repeated. For
example:
filename, ...

Braces followed by a comma or a semicolon and horizontal ellipses mean
that you can repeat the enclosed item one or more times, separating the
items with commas or semicolons as applicable. For example:
REPEAT { statement } ; ...

Double brackets in the statement format descriptions enclose items that
are optional. For example:
[PACKED]

Single brackets are used in the statement syntax for arrays, sets, and
attributes. For example:
ARRAY [subscriptl]

Parentheses and asterisks or single braces in the same typeface as the
text are part of the statement syntax. This notation is used in program
comment text. For example:
(* This is a comment. *)

xix

Convention

ITEMS IN
UPPERCASE
CHARACTERS

items in lowercase
characters

numbers

standard Pascal

Meaning

Uppercase characters in syntax descriptions indicate MicroPower/Pascal
predefined identifiers and reserved words that you must not abbreviate.
For example:
BEGIN
END

Lowercase characters in format descriptions represent elements that you
must replace according to the description in the text.

Vertical ellipses indicate that one or more statements in a figure or an
example are not shown.

Unless otherwise specified, all numbers are in decimal radix. For
example:
3452
7631 l(octal)

The phrase "standard Pascal" refers to the Pascal language as described
by the International Standards Organization in the ISO Specification for
Computer Programming Language PASCAL, Draft Proposal 7185, Level 0.

Associated Documents
The following software documentation is required for complete reference purposes. Refer to the
documentation list for your host .operating system.

• RT-11 Host:
MicroPower/Pascal-RT documentation set. A complete list of documents is contained
in the MicroPower /Pascal-RT Documentation Directory.

RT-11 host operating system documentation set. A subset of the RT-11 V5.2
documentation set is contained in the MicroPower/Pascal-RT documentation set. No
additional RT-11 documentation is required for MicroPower/Pascal-RT application
software development.

• RSX-11M/M-PLUS Host:
MicroPower/Pascal-RSX documentation set. A complete list of documents is contained
in the MicroPower /Pascal-RSX Installation Guide.

RSX-1 lM/M-PLUS host operating system documentation set. Refer to the documenta
tion set supplied with your host operating system.

• VAX/VMS Host:
MicroPower /Pascal-VMS documentation set. A complete list of documents is contained
in the MicroPower /Pascal-VMS Installation Guide.

VAX/VMS host operating system documentation set. Refer to the documentation set
supplied with your host operating system.

xx

Chapter l
Introduction

The MicroPower/Pascal language, a combination of the standard Pascal language and a
programmable run-time system, was developed for use under the RT-11, Micro/RSX-11, and
VMS operating systems to produce microprocessor code appropriate for storage in read-only
memory. The MicroPower/Pascal language includes all the standard Pascal language elements
plus the following extensions:

•

•
•
•

•
•
•
•
•
•
•
•
•

•
•
•

Attributes on data objects and the names of functions, modules, procedures, processes, and
programs

Binary, hexadecimal, and octal integers

Compile-time inclusion of external text files into source program text

Concurrent processes programmed in Pascal that control run-time procedures by using a
combination of predeclared and user-written routines

Dollar sign ($) and underscore (-) characters in identifiers

Error-handling and interrupt capabilities

Extended parameter specifications to support standard PDP-11 calling sequence

External functions, procedures, processes, and variables

LONG_INTEGER data type (32 bits)

MODULE declaration to support separate and independent compilation

Nonpositional parameters and default parameter values

OTHERWISE clause in the CASE statement

Predeclared procedures and functions that facilitate the creation of multiprogrammed
applications

Structured constants

Type cast operator that allows selective overriding of type checking

UNSIGNED data type

Introduction 1-1

This chapter presents an overview of the important concepts in Pascal and illustrates the structure
of a Pascal program. The chapter also describes Pascal's lexical elements: the character set,
identifiers, reserved words, and special symbols. The final section explains how to document a
program.

1. 1 Terminology
A Pascal program performs operations on data items known as constants, variables, and function
identifiers. A constant is a quantity with an unchanging value. A constant to which you give
a name is called a symbolic constant. A variable is a named entity for storing a program's
modifiable data. A function identifier initiates execution of a group of statements with which
it is associated and returns a value. The data type of the function identifier is the type of the
value it returns.

1 . 1 . 1 Data Types
Every data item has an associated data type. A data type, usually indicated by a type identifier,
determines both the range of values a data item can assume and the operations that can be
performed on it. In addition, the type implicitly indicates how much storage space is required
for the data item's possible values.

Pascal provides identifiers for many predefined types. Thus, a program's operations can involve
arrays, Boolean and character data, integers, pointers to dynamic variables, real numbers,
records, sets, and unsigned values. Pascal also allows you to create your own types by defining
an identifier of your choice to represent a list of objects or a range of values.

The type of a constant is the type of its corresponding value. The types of a variable and a
function identifier are established when they are declared and cannot be changed. Although
variables and function identifiers can change in value any number of times, the values they
assume must be within the range established by the type. A variable does not assume a value
until the program assigns it one. A function identifier is assigned a value during the execution
of the function.

Pascal associates types with both data items and expressions. An expression is the computation
of a value resulting from a combination of constants, function designators, operators, and
variables. You can form expressions by using arithmetic, logical, relational, set, and string
operators. Arithmetic expressions produce integer, long integer, real-numbered, or unsigned
values. Logical, relational, string, and most set expressions yield Boolean results. Other set
expressions form the differences, intersection, and union of two sets.

1. 1.2 Definitions and Declarations
Pascal requires you to define every constant and user-created type and to declare every function,
label, procedure, process, and variable used in your program. The declaration section of the
program contains CONST, FUNCTION, LABEL, PROCEDURE, PROCESS, TYPE, and VAR
sections, in which you define and declare the data and subprograms that your program uses.
All except the LABEL section introduce identifiers and indicate what they represent. A LABEL
section declares numeric labels that correspond to executable statements accessed by the GOTO
statement.

1-2 Introduction

1.1.3 Executable Statements

The executable section of a program contains the statements that specify the program's actions.
The executable section is delimited by the reserved words BEGIN and END. Between BEGIN
and END are conditional and repetitive statements, statements that assign values to variables
and function identifiers, and statements that control program execution.

1. 1.4 Subprograms

The MicroPower/Pascal language allows you to group declarations, definitions, and executable
statements into an identifiable entity called a subprogram. The two categories of subprograms
are routines and processes.

1. 1.4. 1 Routines

Routines may be declared as either procedures or functions and are a convenient way to isolate
the individual tasks that the program is to accomplish. Procedures are usually written to perform
a series of actions, whereas functions are written to compute a value. Routines do not exist
independently of the program; they are called either by an executable statement known as
a procedure call or by a function identifier appearing within an expression. Routines always
execute to completion before returning control to the caller. The MicroPower /Pascal software
supplies many predeclared routines that perform commonly used operations, including input,
output, and requests for real-time services from the MicroPower /Pascal kernel.

A routine consists of a heading and a block. The heading provides the routine's name, usually
a list of formal parameters that declare the input data for the routine, and, in the case of
functions, the type of the result. The block consists of an optional declaration section and an
executable section. When the declaration section is present, it declares data that is local to the
routine-data that is unavailable outside the routine.

Pascal is a block-structured language, allowing you to nest routine blocks not only within the
program but also within other routines. Each routine can make its own local definitions and
declarations and can even redeclare an identifier that has been declared in a block at an outer
nesting level. A routine declared at an inner nesting level has access to the declarations and
definitions made in all blocks that enclose it.

1. 1.4.2 Processes

MicroPower/Pascal processes are similar in structure to procedures, but differ in purpose in that
they execute concurrently-logically in parallel-with the execution of other processes in a given
program. The process construct lets you decompose an otherwise monolithic, sequential program
into autonomous subprograms that are scheduled for independent execution and that can be
triggered by appropriate events. The process construct provides a simpler conceptual approach
than one that uses sequential programming techniques to solving real-time problems. The real
time programming requests, described in Part Two, provide the process synchronization and
communication services necessary for effective concurrent programming. The MicroPower /Pascal
Run-Time Services Manual describes processes and concurrent programming.

Introduction 1-3

1. 1.5 Compilation Units

The two kinds of compilation units that MicroPower/Pascal provides are the program and the
module. Although the structures of the two are similar, programs have executable blocks at
the outermost nesting level, whereas modules do not. A program can be compiled, built, and
executed by itself with only the system modules that are included automatically.

A program consists of a heading and a block, just as a routine does. The heading consists of
the program's name and possibly a list of identifiers. The declaration section of the program's
block declares data that is accessible at all program levels, including all nested routines.

A module consists of a heading, the format of which is similar to the program heading, and
a declaration section. A module does not contain any executable sections at the outermost
program level and though a module can be compiled separately from a program, a module
cannot be executed unless it is merged with a program.

Chapter 7 specifies the syntax for both programs and modules.

1. 1.6 Attributes

For systems-programming applications, standard Pascal does not allow sufficient control over
certain aspects of a program. By including a class of language extensions known as attributes,
the MicroPower /Pascal language allows you to control program elements for which the compiler
otherwise provides defaults. Some examples of program elements controlled by attributes are
the addressing boundaries on which data items are aligned, default allocation sizes for data
types, and the form of storage a variable occupies. According to the needs of your program,
you can change the defaults by associating attributes with compilation units, formal parameters,
routines, and variables.

The syntax for specifying attributes is given throughout this manual in the sections describing
type definitions, variable declarations, and routine, program, and module headings.

Chapter 10 discusses explanations, defaults, and rules for the attributes.

1. 1. 7 Structure of a Pascal Program

Figure 1-1 illustrates some of the parts of a typical MicroPower/Pascal program.

1-4 Introduction

Figure 1-1: Structure of a MicroPower/Pascal Program

Declaration
Section

Subprogram
Declarations

C* This Prosram mo~•es two "cars", represented by the SYmbol #.across
the screen of a terminal. Each car. one at line 10 and the other at
line 12. is controlled bY its own process. *>

[SYSTEMCMICROPOWERl. PRIORITYCll, DATA_SPACEC2000l, STACK_SIZEC400lJ
PROGRAM CARS3:

Global {l)A7* SemaPhores for the "handshake" mechanism *l
Variable Sl, 52 : SEMAPHORE_DESC;
Declaration C* Boolean to indicate successful semaPhore creation *>

Ok : BOOLEAN;

Procedure
Block

Process
Block

Executable
Section

[INITIALIZEJ PROCEDURE Setup;
BEGIN

Ok CREATE_BINARY_SEMAPHORE
CREATE_BINARY_SEMAPHORE

END:

PROCEDURE Clear_screen:
BEGIN

WRITE C ''C27l '[2J');
END:

[STACK_SIZEC400ll PROCESS Car
Cline : INTEGER: VAR Start. Done

VAR
Column : INTEGER;

PROCEDURE Move_car_risht:
BEGIN

WRITE C ''C27l '[', Line:l.
IF Column < 77

THEN
BEGIN

WRITE('#');
Column .- Column+ 1;

END
ELSE

BEGIN
WRITE<' ');
Column := 1;

DESC
DESC

Sl, VALUE
S2. VALUE

SEMAPHORE_DESC);

Column:1. 'H');

0 l AND
0) ;

WR !TE C ' ' C 27 l ' [' ,
END;

Co 1 umn: 1 , 'H#' l ;

END; <* Procedure Move_Car_Risht *l

BEGIN <* Process car *>
Column:= 1;
WHILE TRUE DO

BEGIN
WAIT <DESC Start l;
Move_car_risht:
SIGNAL <DESC :=Donel:

END;
END; C* Process car *>

BEGIN C* Main Prosram CARS3 *l
IF Ok

END.

THEN
BEGIN

Clear_screen:
C* create first car on line 10 *>

Car Cline := 10. Start := Sl. Done := sz.
PRIORITY := 2. NAME:= 'LANE10');

C* create second car on line 12 *>
Car Cline := 12. Start := S2, Done := Sl.

PRIORITY := 3, NAME 'LANE12');
SIGNAL <DESC := Sll;

END;

ML0-555-87

Introduction 1-5

1.2 Elements of the Language
A program is composed of lexical elements: individual symbols, such as arithmetic operators,
or words that have special meanings in Pascal. The basic unit of any lexical element is a
character, which must be a member of the ASCII character set, as described in Section 1.2.1.
Some characters are special symbols that Pascal uses as statement delimiters, operators, and
elements of the language syntax. Special symbols are presented in Section 1.2.2.

The words that Pascal uses are combinations of alphabetic characters, dollar signs, percent
signs, and underscores. Pascal reserves some words for the names of executable statements,
operations, and some of the predefined data types. Reserved words are listed in Section 1.2.3.
Other words in a Pascal program are called identifiers. Predeclared identifiers represent routines
and data types provided by Pascal. Other identifiers are user declared to name constants,
programs, variables, and any other necessary program segment that is not already named.
Section 1.2.4 explains the use of both kinds of identifiers.

1.2. l Character Set

Pascal uses an extended American Standard Code for Information Interchange (ASCII) character
set (see Appendix A). This extended ASCII character set contains 256 characters in the following
categories:

•
•
•
•
•

The uppercase and lowercase letters A to Z

The numbers 0 to 9

Special characters, such as the ampersand (&), equal sign (=), and question mark (?)

Nonprinting characters, such as the bell, carriage return, line feed, space, and tab

Extended, unspecified characters with numeric codes from 128 to 255

The MicroPower /Pascal compiler does not distinguish between uppercase and lowercase letters
except in character and string constants. For example, the word PROGRAM has the same
meaning when written as any of the following:

PROGRAM
PRogrAm
program

The following constants, however, represent different characters:
'b'
'B'

The following string constants are also different:
'BREAD AND ROSES'
'Bread and Roses'

1-6 Introduction

1.2.2 Special Symbols

Pascal uses special symbols to represent delimiters, operators (arithmetic, logical, relational, set,
and string), and other syntax elements. The special symbols are listed below.

Name Symbol Name Symbol

Assignment operator ·= Minus sign

Brackets [] or (..) Multiplication *
Colon Not equal <>
Comma Parentheses ()

Comment delimiters (* *) or { } Decimal point or
Field selector

Division I Plus sign +

Equal Pointer ~or@

Greater than > Semicolon

Greater than or >= Subrange operator
equal to

Less than < Type cast operator

Less than or <=
equal to

1.2.3 Reserved Words

The MicroPower/Pascal language reserves the words listed below as names for statements and
operators. Reserved words shown in bold type are extensions to standard Pascal. This manual
shows reserved words in uppercase. You can use reserved words in your program only in
the contexts in which Pascal allows them. You cannot redefine a reserved word for use as an
identifier.
AND DOWNTO FUNCTION NIL PROCESS TO

ARRAY ELSE GOTO NOT PROGRAM TYPE

BEGIN END IF OF RECORD UNTIL

CASE EXTERNAL IN OR REPEAT VAR

CONST FILE LABEL OTHERWISE SEQll WHILE

DIV FOR MOD PACKED SET WITH

DO FORWARD MODULE PROCEDURE THEN

Introduction 1-7

1.2.4 Identifiers

Pascal uses identifiers to name constants, formal parameters, functions, modules, procedures,
processes, programs, record fields, types, and variables. An identifier is a sequence of digits,
dollar signs ($), letters, and underscores (-), with the following restrictions:

• An identifier cannot start with a digit.

• An identifier must be unique in the first 31 characters within the block in which it is
declared.

• An identifier must not contain any spaces or special symbols.

Pascal scans only the first 31 characters of an identifier for uniqueness; the remaining characters
are ignored. Thus, the compiler will ignore the second declaration of a pair of identifiers that
are not unique within 31 characters.

The following examples are valid and invalid identifiers:

Valid

FOR2N8
MAX_ WORDS
UPTO
LOGICAL_NAME_TABLE
LOGICAL_NAME_SCANNER
SYS$CREMBX

Invalid

4AWHILE
UP&TO
YEAR_END_80_MASTER_FILE_TOTAL_DISCOUNT
YEAR_END_80_MASTER_FILE_TOTAL_DOLLARS

unique in first
31 characters

starts with a digit
contains an ampersand
not unique in first
31 characters -
duplicate is ignored

Note
Although the MicroPower/Pascal language allows the dollar sign ($) in
identifiers, this character has a special meaning to the Micro Power /Pascal
system software in some contexts. You should restrict the use of the dollar
sign ($) to identifiers representing DIGITAL-supplied symbolic names.

1.2.4. 1 Predefined Identifiers

The identifiers listed in Appendix G are predefined within the MicroPower/Pascal language
as names of files, functions, procedures, types, and values. This manual shows predefined
identifiers in uppercase.

You can change a predefined identifier to denote another item. If you do so, however, you
can no longer use the identifier for its usual purpose within the scope of the block in which it
is redefined. See Section 6.4.1 for a description of the scope of identifiers. For example, the
identifier READ denotes the READ procedure, which performs input operations. If you use the
word READ to denote something else (say, a variable) you cannot use the READ procedure
within the same block. Because you could lose access to a useful language feature, you should
avoid redefining predeclared identifiers.

1-8 Introduction

1.2.~.2 User-Defined Identifiers

These identifiers denote the names of constants, record fields, formal parameters, functions,
modules, procedures, processes, programs, user-defined types, and variables. User-defined
identifiers represent significant data actions, structures, and values that are not represented by
a predeclared identifier, reserved word, or special symbol.

1.3 Documenting Your Program
You can insert lines of comment text in your program to document its operation by enclosing
the text within matching pairs of comment delimiters. You can place a comment anywhere that
a space is valid.

Syntax

{ ;. } comment-text { :) }

comment-text
Any ASCII character other than a comment delimiter. The comment text must be enclosed
in the delimiters that you choose.

Example

{ This is a comment. }

(* This is a comment too. *)

Introduction 1-9

Chapter 2
Data Types

In Pascal, data types are divided into scalar, structured, and pointer categories. Scalar data
types are the building blocks for the structured types. The pointer data type lets you refer to a
variable indirectly. A scalar type is an ordered group of values. A value of a particular scalar
type is always greater than, equal to, or less than another value of the same type. For example,
the scalar type INTEGER denotes positive and negative integers. The integers follow a certain
order; for example, -700 is less than 2.

Micro Power /Pascal supplies predefined scalar types for integer, unsigned integer, character,
Boolean, and real data. In addition, you can define other scalar types to fit your needs. You
construct your own scalar type either by enumerating each value of the type or by defining a
subrange of another scalar type other than the real types. Values of user-defined scalar types
are ordered like those of predefined scalar types.

The set of scalar data types is divided into subsets of ordinal types and real types. The ordinal
types are INTEGER, LONG_INTEGER, UNSIGNED, CHAR, BOOLEAN, and user-defined
enumerated and subrange types. Section 2.1 discusses the ordinal types; Section 2.2 discusses
the type REAL.

Pascal has four structured types: records, arrays, sets, and files. Structured data types let you
process groups of scalar, structured, or pointer data items. For example, you could have an
array of integers, an array of arrays, a record of integers and characters, a file of records, or a
set of an enumerated type. Sections 2.3 to 2.8 describe the predefined structured types.

Pascal lets you pack structured data types to save storage space. Packed structures are stored
in as few bits as is feasible. To create a packed structured type, specify the modifier PACKED
in the applicable type definition (see Chapter 4). You can determine the storage allocation for
packed and unpacked structures with the information provided in Appendix E.

Type compatibility rules determine the operations and assignments you can perform with data
items of different types. The complete rules of type compatibility are presented in Section 2.9.

You specify the types of data that your program will use by including statements in the
declaration section (see Chapter 4). See Section H.3 for a discussion of compiler limitations
governing the placement of type definitions in a program.

Data Types 2-1

2. 1 Ordinal Data Types
The ordinal data types let you specify entities that have an ordinal sequence based on a one
to-one correspondence with the set of integers. The components of an ordinal data type are
ordered so each has a unique ordinal value indicating its position in a list of all the values of
that type. The ordinal data types are discussed individually in the following subsections.

Three predeclared functions operate only on expressions of ordinal types and return information
about the type's ordered sequence of values. Each value (except the smallest) of an ordinal type
has a predecessor, which you can determine by using the PRED function. Similarly, each value
(except the largest) of an ordinal type has a successor, which you can determine by using the
SUCC function. The ORD function finds the ordinal value of any expression of an ordinal type
and returns that value as an integer. The ordinal value of an integer is the integer itself.

Examples
1. ORD(23) (* is 23 *)

2. ORD(-1984) (* is -1984 *)

3. TYPE COLOR= (red,white,blue);

ORD (white) (* is 1 *)

PRED (blue) (* is white *)

SUCC (white) (* is blue *)

2. 1. 1 INTEGER and LONG_INTEGER
Variables of type INTEGER and LONG_INTEGER can assume both positive and negative
integer values. Type INTEGER values can be from -32768 to 32767. The value 32767 is
known by the predefined constant identifier MAXINT. Type LONG_INTEGER values can be
from -2147483647 to 2147483647.

You indicate a decimal integer constant by using decimal digits and the optional plus and minus
signs.

Examples

A minus sign (-) must precede a negative integer value. A plus sign (+) may precede a positive
integer but is not required. No commas or decimal points are allowed.

17
-333

0
+1

21343
9826492

In addition to decimal notation, MicroPower/Pascal software lets you specify integer constants
in binary, hexadecimal, and octal notations. You can use constants written in those notations
wherever decimal integer constants are permitted.

2-2 Data Types

To specify an integer constant in binary, hexadecimal, or octal notation, place a percent sign
(%) and a letter in front of the number and apostrophes around the number. The appropriate
letters, which may be either uppercase or lowercase, are B for binary notation, X for hexadecimal
notation, and 0 for octal notation. An optional plus or minus sign may precede the percent
sign to indicate a positive or a negative value. Intervening spaces are ignored.

Examples

-%B'110001'
%b'10 00 0011'
%0'112 101 103 113'
%0'7712'
-%0 1 473'
+%X'53 A 1'
-%x'DEC'

2. 1.2 UNSIGNED
The UNSIGNED data type identifies integer values from 0 through 65535. The range of
unsigned values includes no negative numbers. UNSIGNED is a machine-dependent type that
identifies the range of positive numbers representable in one 16-bit word.

When a program contains an integer constant greater than MAXINT, that constant is treated
as having type UNSIGNED or LONG_INTEGER if its value cannot be represented by 16 bits
of binary data. Unsigned constants can use binary, decimal, hexadecimal, and octal notations,
as described for integers in Section 2.1.1. Integer constants not greater than MAXINT are
always treated as having type INTEGER. The ORD function, described in Section 8.18, converts
unsigned values to integer values just as it converts other ordinal types to integers.

2.1.3 CHAR
A value of type CHAR is a single character from the ASCII character set, as listed in Appendix
A. To specify a character value, enclose an ASCII character in apostrophes. The apostrophe
character must be typed twice within apostrophes.

Examples

'A'
'Z'
'0'

'? J

You must represent strings of characters, such as 'CONEHEAD' and '****', as packed arrays
of characters (see Section 2.4.2). When you use the ORD function on an expression of type
CHAR, the function returns the ordinal value in the ASCII character set of the character value
stored in the variable.

Data Types 2-3

Example

ORD(Q_Character);

Suppose that the variable Q _Character is of type CHAR and has a value of 'Q'. The expression
returns 81, the ordinal value of uppercase Q in the ASCII character set.

The order of the ASCII character set may not be what you expect if you have not used it
before. Although the numeric characters are in numerical order and the alphabetic characters
are in alphabetical order, all uppercase characters have lower ordinal values than all lowercase
characters.

Examples

1. ORD('O') is less than ORD('9')

2. ORD('A') is less than ORD('Z')

3. ORD('Z') is less than ORD('a')

2. 1.4 BOOLEAN

The BOOLEAN data type consists of the values FALSE and TRUE. Pascal defines those values
as predeclared identifiers and orders them so FALSE is less than TRUE. Thus, the ORD function
applied to the Boolean value FALSE returns the integer 0; if the value is TRUE, ORD(TRUE)
returns the integer 1. Boolean values are the result of testing relationships for truth or validity.

2. 1.5 Enumerated Types
An enumerated type is an ordered set of values denoted by identifiers. To define an enumerated
type, list in order all the identifiers denoting the constant values of the type; then enclose the
list in parentheses.

Syntax

({ identifier } , ...)

identifier
A constant value of the type.

The values of an enumerated type follow a left-to-right order. Thus, any identifier in the list is
greater than all identifiers to its left and less than all identifiers to its right.

Example

TYPE
Seasons=(Spring, Summer, Fall, Winter);

BEGIN
IF Spring < Fall
THEN WRITELN ('TRUE')

END.

The relational expression above is TRUE, because Spring precedes Fall in the list of constant
values.

2-4 Data Types

The enumerated type definition associates an ordinal value with each value in the type. The
ordinal value of the first identifier is O; the ordinal value of the second identifier is 1, and so
forth. You can apply the ORD function to values of enumerated types. For example, with
the enumerated type Seasons, the function ORD(Summer) is valid and returns the integer 1,
because Summer is the second value listed.

The only restriction on the values of an enumerated type is that a value identifier cannot be
defined for any other purpose within the current scope.

Example

Suppose that you have the following enumerated type:

TYPE
Some_Seasons=(Fall, Winter, Spring);

That enumerated type cannot be defined in the same program as the type shown in the previous
example, because the identifiers Spring, Fall, and Winter would not be unique.

The following examples are enumerated types that you could define:

TYPE
Drinks=(Milk, Water, Cola, Beer);
Activities=(Swim, Run, Ski);
Cookies=(Oatmeal, Sugar, Peanut_Butter, Choc_Chip);

2. 1.6 Subrange Types

A subrange specifies a limited portion of another ordinal type (called the parent type) for use
as a type.

Syntax

lower-limit.. upper-limit

lower-limit
The constant value of the lower limit of the subrange.

upper-limit
The constant value of the upper limit of the subrange.

The subrange type is defined only for the values between and including the lower and upper
limits. The limits you specify must be single values of the parent type. The value of the upper
limit must be greater than or equal to the value of the lower limit. The subrange symbol (..)
separates the limits of the subrange.

The parent type can be any enumerated or predefined ordinal type. The values in the subrange
are in the same order as in the parent type. You can therefore use the ORD function with an
identifier of a subrange type; the result is the ordinal value of the identifier with respect to the
parent type. In general, you can use a subrange type anywhere in the program that its parent
type is legal. The rules for operations and value initializations on a subrange are the same as
for its parent type. A value of a subrange type is converted to a value of its parent type before
it is used in an operation.

Data Types 2-5

The use of subrange types can make a program clearer. For example, integer values for
the days of the year range from 1 to 366. Any value outside that range is incorrect. You
could specify an integer subrange for the days of the year as 1..366 and give it the variable
identifier Day_OLYear. By specifying a subrange, you indicate that the values of the variable
Day_OLYear are restricted to the integers from 1 to 366. If you use the CHECK option
at compile time, the system generates a run-time error for an out-of-range assignment to a
subrange variable. In this example, such an error occurs when an integer less than 1 or greater
than 366 is assigned to Day_OLYear.

Examples

The following examples are subrange types that you could create:

TYPE
Year=(Jan, Feb, Mar, Apr, May,
Single_Digits = '0' .. '9';
Alpha_First_Half = 'A' .. 'M';
Month_Days = 1 .. 31;
Year_First_Half = Jan .. Jun;
Year_Second_Half =Jul .. Dec;

2.2 REAL Types

Jun, July, Aug, Sept, Oct, Nov,
(* Single-digit characters *)
(* First half of alphabet *)
(* The days of the month *)
(* First half of year *)
(* Second half of year *)

Dec) ;

The identifier REAL denotes the real number type. Numbers of type REAL have the following
range of values and degree of precision:

Smallest negative value: -2.938736 x 10-39

Largest negative value:

Smallest positive value:

Largest positive value:

Precision:

-1.701411 x 1038

2.938736 x 10-39

1.701411 x 1038

7 decimal digits (approximately)

Real number values can be written in either fixed-point decimal or exponential notation. Real
numbers in fixed-point notation use the set of decimal digits and a decimal point, as well as an
optional plus or minus sign.

Examples

The following are valid real number values in fixed-point notation:

2.4
893.2497

-0.01
8.0

-23 .18
0.0

In fixed-point notation, at least one digit must appear on each side of the decimal point. That
is, a 0 must always precede the decimal point of a number between 1 and -1, and a 0 must
follow the decimal point of a whole number.

2-6 Data Types

Some numbers are too large or too small to be written conveniently in the format above. Pascal
provides exponential, or floating-point, notation as a second way of writing real numbers. Real
numbers in exponential notation use an optional plus or minus sign, a real number or an integer
number, an uppercase or lowercase letter E, and an integer exponent with its optional plus or
minus sign. The letter E after the value indicates that the value is to be multiplied by a power
of 10. The integer following the letter E shows which power of 10; positive or negative.

Examples

2.3E2
-0.07e4
10.0E-1
-201E+3
-3.14159EO

The real number 237.0 can be represented in the following ways:

237e0 2.37E2 0.000237E+6 2370E-1 0.0000000237E10

In such floating-point format, the position of the decimal point varies (floats) depending on the
integer following the E.

2.3 RECORD Data Types
The record is a convenient way to organize several related data items of different types. A
record consists of one or more fields, each containing one or more data items. The fields of a
record can be of different types. The record syntax specifies the name and type of each field.

Syntax

RECORD
field-list
END

The syntax of a field-list is:

{

{{field-identifier} , ... : [[{attribute} , ...]] type} ;... }
[;v arian t-cla use] [;]
variant-clause [;]

field-identifier
The names of one or more fields.

attribute
BIT, BYTE> POS, READONLY, UNSAFE, VOLATILE, WORD, and WRITEONL Y attributes
provide additional information (see Chapter 10).

type
The type identifier or type definition of the corresponding field(s). A field can be any type.

variant-clause
The variant part of the record (see Section 2.3.1).

Data Types 2-7

The POS attribute, which can be applied only to a field of a packed record, allows you to
position record fields relative to the beginning of the record (see Chapter 10).

The identifiers of the fields must be unique within the record but can be repeated in different
record types or subrecords of the same record. For instance, you may define the field Name
only once within a particular record type. Other record types, however, could also have fields
called Name. The scope of field identifiers within a record type is the record type definition
itself.

The values for the fields are stored in the order in which the fields are defined.

Examples

1. The values for the fields of the variable record Team_Rec would be stored in the order
Wins, Losses, Percent.

VAR
Team_Rec:RECORD

Wins : INTEGER;
Losses : INTEGER;
Percent : REAL;

END;

2. You refer to a field within a record by specifying the identifier of the record variable and
the identifier of the field, separated by a period. For example, the three fields of the
record Team_Rec are Team_Rec.Wins, Team_Rec.Losses, and Team_Rec.Percent. You
can specify a field anywhere in the program that a variable of the field type is allowed.
Thus, you could write:

Team_Rec.Wins := 9;

Team_Rec.Losses := 4;

3. Records can include fields that are themselves records.

VAR
Order:RECORD

Part : INTEGER;
Received : RECORD

Month : (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov, Dec);
Day : 1.. 31;
Year : INTEGER;

END;
. Inventory : INTEGER;
END;

The fields in record Order are Order.Part, Order.Received.Month, Order.Received.Day,
Order.Received.Year, and Order.Inventory.

2-8 Data Types

2.3.1 Variant Clause

Variants are fields or groups of fields that can contain different types or amounts of data. Thus,
two variables of the same record type can contain different types of data. To specify a variant,
include a variant clause in the record type syntax. The variant clause must be the last field in
the record.

Syntax

CASE [tag-field :] tag-type OF { case-label-list : (field-list) } ; ...

tag-field
The current variant of the record. This field in the record is common to all variants. You
can reference the tag-field in the same way that you use any other field in the record. The
tag-field may not have attributes associated with it.

tag-type

The ordinal type of the variant field.

case-label-list
One or more constants of the tag-type.

field-list
The names of one or more fields (see Section 2.3).

Examples

1. Assume that the types Name and Day have already been defined. In this example, the
last three fields in the record type vary, depending on whether the part is on order. The
tag-field identifier Onorder is defined in the variant clause. Records for which the value
of Onorder is TRUE will contain information about the current order. Those for which the
value of Onorder is FALSE will contain information about the previous shipment.

VAR
Order:RECORD

Part : 1 .. 9999;
Stock_Quantity : INTEGER;
Supplier : Name;
CASE Onorder : BOOLEAN OF

END;

TRUE :
(Promised : Day;
Order_Quantity INTEGER;
Price: REAL);

FALSE :
(Last_Shipment : Day;
Rec_Quantity : INTEGER;
Cost : REAL);

2. The second way of specifying the tag field is to use only a tag type, as in this example.
(Assume that Sex is an enumerated type with values Male and Female.) Here you must
keep track of the currently valid variant.

Data Types 2-9

VAR
Persons:RECORD

Patient : Name;
Birthdate : Date;
Age : INTEGER;
CASE Sex OF

END;

Female : (Births 1 .. 30);
Male : ();

You can define a variant only for the last field in the record. Variant fields, however, can be
nested.

Example

VAR
Patients:RECORD

Patient : Name;
Birthdate : Date;
Age : INTEGER;
CASE Parsex : Sex OF

Male : ();
Female : (CASE Births : BOOLEAN OF

FALSE : ();
TRUE : (Nofkids : INTEGER));

END;

A variable of this record type can contain a patient's name, birth date, age, and sex. In
addition, the variable includes a variant field for each woman, based on whether she has had
any children. A second variant, containing the number of children, is defined for women who
have given birth.

Implementation Notes

• Neither the compiler nor the Pascal OTS verifies that the use of a particular variant, through
one of its fields, is consistent with the value of the tag field. Though it is possible to access
the fields of different variants without regard to the tag-field value, it is not recommended.

• The compiler does not verify that the case-label value contained in the tag field is the same
as the case label associated with the current field references.

• A program must not reference one variant when the record contains the data of another
variant. Programs that violate this restriction to facilitate the reinterpretation of a data item
must never reference an unpacked field of a variant in an expression or statement containing
a packed operand (field or array element); invalid data may result.

2-10 Data Types

2.3.2 Record Examples

1. This example shows a record with six fields.

TYPE
Tax = RECORD

Year : INTEGER;
Gross : REAL;
Net : REAL;
Deductions : INTEGER;
Itemized BOOLEAN;
Interest : ARRAY[1 .. 5] OF REAL;

END;

To write a structured constant (Section 3.2.2) for a record of this type, specify its type and
include in parentheses a value of the appropriate type for each field. Because the array
Interest is nested inside the record, you must include a structured constant for the array
within this structured constant, as the following example shows (see Section 2.4 for details):

Tax (1979, 10000.0, 8000.0, 1500, FALSE, (5 OF 0.05))

2. This example shows a record nested within another record.

TYPE
Name_Data = RECORD

Name : PACKED ARRAY[1 .. 20] OF CHAR;
Address : RECORD

Number : INTEGER;
Street, Town : PACKED
ARRAY[1 .. 20] OF CHAR;

END;
Age 0 .. 150;

END;

2.4 ARRAY Types
An array is a group of components of the same type. You refer to each component of the array
by the array identifier and an index. The array syntax specifies an index type and a component
type.

Syntax

Form 1:

ARRAY [{ inqex-type } , ...] OF component-type

Form 2:

ARRAY

[index-type] { OF ARRAY [index-type] OF } , ... component-type

Data Types 2-11

index-type
The type of the index; the type can be any ordinal type except LONG_INTEGER.

component-type
The type of the array components.

The components of an array can be of any type. For example, you can define an array of integers,
an array of records, or an array of real numbers. An array of arrays is a multidimensional array,
as described in Section 2.4.1.

The indexes of an array must be of an ordinal type. You cannot specify the type INTEGER
as the index type, because such an array would exceed the available memory space. To use
integer values as indexes, you must specify an integer subrange.

The range of the index type establishes the size of the array and the way in which it is stored.
Suppose that the variable Let_l is an array with 10 components of type CHAR with index 1..10.
You refer to the components as Let_l[l], LeL1[2], LeL1[3], and so on through LeLl[lO].

You can use array components in any expressions in which you can use variables of the
component type. An array can be passed as a parameter and can be the result type of a
function. The only operation defined for the array as a whole is the assignment (:=) operation.
An exception to this rule is character strings, as described in Section 2.4.2.

2.4. l Multidimensional Arrays

An array with more than one index is multidimensional; its components are of an array type.
An array can have any number of dimensions, and each dimension can have a different index
type.

Examples

1. The following is a definition of a 2-dimensional array:

TYPE
Two_D=ARRAY [O .. 4] OF ARRAY ['A' .. 'D'] OF INTEGER

2. You can abbreviate that syntax by specifying all the index types in one pair of brackets:

TYPE
Two_D=ARRAY [O .. 4, 'A' .. 'D'] OF INTEGER

To refer to a component of the array Two_D, you specify two indexes (one integer and one
character) in the order they were declared: Two_D[O,' A'], Two_D[O,'B'], and so on. You can
also use the alternative form Two_D[O][' A']. The first index indicates the rows of the array; the
second index indicates the columns. Figure 2-1 represents the array Two_D,

2-12 Data Types

Figure 2-1: A 2-Dimensional Array

'A' 'B' 'C' 'D'

0

2

3

4

TWO_D
ML0-557-87

When you refer to· the components of Two_D, the first component in the first row is
Two_D[O,' A']. The second component in this row is Two_D[O,'B'). The first component in
the second row is Two_D[l,' A'). The last component in the last row is Two_D(4,'D'). In
general, element j of row i is Two_D[i,j).

You construct arrays of three or more dimensions in a similar fashion.

Example

The array below specifies a 3-dimensional chessboard whose indexes are the levels, ranks, and
files of the chessboard.

TYPE
Chessmen=(QR,QN,QB,Q,K,KB,KN,KR,P,E);

VAR
Chess3d : ARRAY[1 .. 3, 1 .. 8, QR .. KR] OF Chessmen;

The reference Chess3d[l) indicates one level or a single chessboard. The reference
Chess3d[l,1,QR] specifies the first level, first square in the upper left corner (bottom level,
first rank, Queen's Rook file). Figure 2-2 illustrates the three levels of this array.

Data Types 2-13

2

3

4

5

6

7

8

OR ON OB 0 K KB KN KR

CHESS3D [1,n,CHESSMEN]

(bottom)

2.4.2 String Types

2

3

4

5

6

7

8

OR ON OB 0 K KB KN KR

CHESS3D [2,n,CHESSMEN]
(middle)

2

3

4

5

6

7

8

OR ON OB 0 K KB KN KR

CHESS3D [3,n,CHESSMEN]
(top)

ML0-558-87

A character string type in Pascal is a single-dimensional packed array of characters with a lower
bound of 1. The length of the string is always fixed and is established by the upper bound of
the array's index type. A string constant (see Section 3.2.2.1) is a special case of an implicitly
defined packed array of characters.

Example

You could associate the identifier Name with an array of the following description:

VAR
Name : PACKED ARRAY [1 .. 20] OF CHAR;

That association would allow you to store a string of 20 characters in the array variable Name.
The length of the string must be exactly 20 characters. Pascal neither adds blanks to extend a
shorter string nor truncates a longer string. If you specify a string of incorrect length, an error
occurs.

2.4.3 Array Examples

1. This example shows a SO-component array of integers in the subrange from 0 to 200.

TYPE
Abe = ARRAY[1 .. 50] OF 0 .. 200;

If you wanted to write a structured constant (see Section 3.2.2) to give all the ·components
the value 0, you would write Abc(SO OF 0).

2. This example shows a 2-dimensional array representing a chessboard.

TYPE
Board= ARRAY[1 .. 8,QR .. KR] OF Chessmen;

2-14 Data Types

Assume that the type of the array, Chessmen, is an enumerated type with values QR, QN,
QB, Q, K, KB, KN, KR, P, E. You could write the following structured constant to show
how the chess pieces are arranged on the board at the start of a game:

Board((QR,QN,QB,Q,K,KB,KN,KR), (8 OF P), 4 OF (8 OF E),
(8 OF P), (QR,QN,QB,Q,K,KB,KN,KR))

The pieces from Queen's Rook (QR) to King's Rook (KR) are lined up along each end of
the board, in the first and eighth rows of the array. The second and seventh rows of the
array contain Pawns (P). The third through sixth rows are empty (E).

3. Suppose that you have an array of this description:

TYPE
String=PACKED ARRAY[1 .. 10] OF CHAR;

You could write the following string constants:

'C.P.E.Bach'
'engrossing'
Beta = (10 OF ' ')

2.5 SET Types
A set is a collection of data items of the same ordinal type (called the base type). The set type
definition specifies the values that can be members of sets of that type.

Syntax

SET OF base-type

base-type
The identifier or definition of the type from which the members of sets of this type are
selected. Any ordinal type except LONG_INTEGER may be used.

You define a set by listing all the values that can be its members. A set can have a maximum
of 256 elements. In the case of INTEGER and UNSIGNED values, the value of each element
must be between 0 and 255. Values outside that range therefore cannot be set members. For
sets of other ordinal base types, members can include the full range of the type, provided no
more than 256 members are in the range.

You initialize a set variable by using a set constructor (see Section 3.4) in an assignment
statement. The constructor specifies one or more values of the base type.

Examples

1. This example shows a set with individual characters as members.

TYPE
Alphabet = SET OF CHAR;

You could write the following constructors for a set of this type:

['A', 'E', 'I', '0', 'U']
['B' .. 'D', 'F' .. 'H', 'J' .. 'N', 'P' .. 'T', 'V' .. 'Z']

Data Types 2-15

2. This example shows a set with an integer subrange as its base type.

TYPE
MAP= SET OF 1 .. 255;

A constructor for this set might include the following values:

[3,4,15,20,23,34,40,45,55,60,70]

The upper limit of this subrange is the maximum allowed for sets.

2.6 FILE Types
A file is a sequence of components of the same type. The number of components in a file is
not fixed; a file can be of any length.

Data of a file type is intended for output to or input from an environment that is external to
a program. Typical external file environments are terminals, disks, digital-to-analog converters,
and other programs residing on the same or remote processors.

The file type definition identifies the component type.

Syntax

FILE OF component-type

component-type
The type of the file's components. Any scalar or structured type may be used except a file
type or a structured type containing a component that is of a file type.

A variable declared to be of a file type is called a file variable and identifies the file. You
may not use a file variable or a structure containing file components in an expression or in an
assignment statement. Therefore, you cannot assign one file variable to another. Likewise, you
cannot compare two arrays that have file components or form structured constants of a file type.

Type compatibility for file variables applies only to those that are passed to a routine. You can
pass a file only as a VAR parameter (see Section 6.6.4).

When you declare a variable of a file type, Pascal automatically declares a buffer variable of
the component type. That variable takes on the value of one file component at a time. The
predeclared 1/0 requests, described in Chapter 9, move the file position, thus changing the
value of the buffer variable. That buffer variable is given a name composed of the file variable's
identifier suffixed by either the circumflex(") or the at(@) symbol. For example, if Math_Scores
is a FILE OF INTEGER, Pascal creates Math_Scores" as an integer buffer variable associated
with the file Math_Scores.

Figure 2-3 illustrates the buffer variable contents after execution of a RESET 1/0 request and
again after a READ 1/0 request.

2-16 Data Types

Figure 2-3: Buffer Variable Contents After Using READ and RESET

file TRAVEL
l I
I I

PANAM505530PM1130PMY I UNITED323830AM1100PMY I WESTERN6061200PM400PMY
I

_l

\. A -......r,,...

RECORD1 RECORD2

Buffer variable

undefined
RESET I

Buffer variable
before

,__ ________________ ~ ____ __,

UNITED323830AM1100PMY

Buffer variable
after

1st read

I
.1

A -......r
RECORD3

PANAM505530PM1130PMY

WESTERN6061200PM400PMY

)

Buffer variable

after
RESET

Buffer variable

after
2nd read

ML0-559A-87

Figure 2-4 illustrates the contents of the buffer variable during the use of the file Math_Scores.

Figure 2-4: Buffer Variable Contents During Use

one file component

70 73 81 89

f
file position

0 Buffer variable Math-Scores

ML0-560-87

Data Types 2-17

Examples

1. This example shows a file of Boolean values.

VAR
Truthvals : FILE OF BOOLEAN;

If you give this file the variable identifier Truthvals, you would refer to the buffer variable
as Truthvals".

2. The components of the following file are character strings 20 characters in length:

TYPE
Alpha20 =FILE OF PACKED ARRAY[! .. 20] OF CHAR;

You could create variables of this file type to contain lists of names, such as Accept_List,
RejecLList, and WaiLList.

3. This example shows a file of records.

TYPE
Sample = FILE OF

RECORD
Trial : INTEGER;
Date : RECORD

Month : (Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec);
Day : 1 .. 31;
Year : INTEGER;

END;
Temp, Pressure : INTEGER;
Yield, Purity : REAL;

END;

If this file had the variable identifier Results, you would access fields of the record
components as Results".Trial, Results".Date.Month, and so on.

2. 7 TEXT File Type
Pascal supplies a predefined file type called TEXT. Variables of file type TEXT are called text
files and consist of components of type CHAR.

Unlike a FILE OF CHAR, the components of a file of type TEXT are grouped into sequences or
lines of characters terminated by an end-of-line marker. You can refer to the marker indirectly
through the READLN and WRITELN procedures and the EOLN function (see Sections 9.19
and 9.27).

Note
The NULL ASCII code (CHR(O)) is not valid in a TEXT file and is ignored on
input.

The predeclared file variables INPUT and OUTPUT are files of type TEXT. The variables refer
to the standard Pascal input and output files, which ordinarily communicate with· a terminal.
Those files are the defaults for all the predeclared TEXT file procedures (see Chapter 9).

2-18 Data Types

2.8 ·Pointer Types
Variables normally exist for the lifetime of the program or the routine in which they are
declared. Program-level variables are allocated in static storage, whereas routine-level variables
are allocated automatically on the stack. Some applications, however, require variables that
have shorter lifetimes or an unknown number of variables of a certain type. Pascal allows you
to declare variables of the pointer type, called dynamic variables, to fill those requirements.

During program execution, dynamic variables are allocated from an area called heap storage as
they are needed. Unlike other variables, dynamic variables do not have identifiers; you must
refer to them indirectly with pointers. A variable of the pointer type may have as its value
either the address of a dynamic variable or the predefined identifier NIL.

Syntax

{ ~ } base-type-identifier

base-type-identifier
The type of the dynamic variable to which the pointer type refers. The base type can be
any type except a file type.

A pointer assumes a value by:

• Assigning the pointer the value of another pointer of the same type

•
•

•

Assigning the value of the NIL constant
0 ?
CJ~ ~? Using the ADDRESS function

Using the GET_P ACKET procedure

• Using the NEW procedure [). I tf
The constant NIL indicates that the pointer does not specify an address. Thus, a NIL pointer
does not point to a variable.

Note
At execution time, the system can verify that a pointer does not have a NIL
value but the system cannot check for other illegal addresses.

The NEW and DISPOSE procedures, described in Sections 8.14 and 8.8, allocate and deallocate
dynamic variables.

Variables of a pointer type point to variables of the base type and are said to be bound to
that type. To indicate a pointer variable, specify its name. To indicate the dynamic variable to
which a pointer is bound, specify the pointer name, followed by a circumflex n or an at (@)
sign. For example, suppose that M is a pointer variable bound to records of type Myree. You
specify M" to denote the record variable to which M points.

In the only exception to the rule for declaring an identifier, Pascal allows you to use the base
type identifier in a pointer type definition before you define the base type. However, the base
type must be defined before the end of the TYPE section in which it is first mentioned.

Data Types 2-19

Example

This example defines a pointer to a user-created type Movie.

TYPE
Ptr_to_Movie = -Movie;

Later in the same TYPE section, you could define a record type with a component of type
Ptr_to_Movie.

The MicroPower/Pascal language allows you to define pointers to types containing files. The
files referenced by a pointer are not closed until execution of the program terminates. If you
do not want the files to remain open throughout program execution, you must use the CLOSE
procedure (see Section 9 .4).

Example

Suppose that the following record type is associated with the type identifier Hits and that
another type identifier, Ptr_to_Hits, is declared to be of type AHits:

VAR
Rec_Info:RECORD

Title, Artist, Composer : ARRAY [1 .. 30] OF CHAR;
Weeks_On_Chart, NSold : INTEGER;
First_Version : BOOLEAN;

END;

You could then create an array variable Topten of the type:

ARRAY [1 .. 10] OF Ptr_to_Hits;

The variable Topten would thus have 10 components of a pointer type to refer to the record
type Hits. You could use this array to create a table of pointers to 10 records of type Hits.·

2.9 Type Checking Rules
Pascal enforces type checking for identical types and compatible types. Identical-type rules
determine the types of data you can pass as VAR parameters and the types of pointer assignments
you can make. Compatible-type rules determine the types of values you can assign to variables
of each type or pass as value parameters.

2.9. 1 Identical Types
Types are identical if they have the same type identifier or an alias thereof. Pascal requires that
a variable passed as an actual parameter to a routine be identical to the corresponding formal
VAR parameter. Pascal also checks that the base types are identical when you assign a pointer
expression to a pointer variable.

Type A is identical to type B if one of the following conditions is true:

• A and B have the same type identifier. For example, type C is defined first or is predefined,
and A and B are both of type C.

• A and B have been made equivalent by a type definition. For example, type A is defined
first or is predefined; then the definition B = A is made.

2-20 Data Types

• A and B have been made equivalent to two type identifiers that were previously made
equivalent in a type definition. For example, type C is defined first or is predefined; the
definition D = C is then made; finally, the definitions A= D and B = C are made.

2.9.2 Compatible Types
Compatible-type rules apply to the values with which you initialize variables, values assigned
using the assignment statement, and actual parameters passed to formal value parameters. The
contexts in which an expression is assignment compatible with a variable of the same or a
different type are listed below.

Source Type

INTEGER

LONG_INTEGER

UNSIGNED

CHAR

Subrange

Destination Type

INTEGER or integer subrange, LONG_INTEGER, UNSIGNED or
unsigned subrange, REAL type

LONG_INTEGER or REAL

UNSIGNED or unsigned subrange, LONG_INTEGER, REAL type

CHAR

Base type

REAL REAL type

PACKED ARRAY OF CHAR PACKED ARRAY OF CHAR

Pointer Pointer to identical type

Rules

•
•

•

•

Two record types are compatible only if they are identical (see Section 2.9.1) .

Two array types are compatible only if they are identical or if they are single-dimensional
PACKED arrays of CHAR with the same number of elements.

A set expression is compatible with a set variable if the base types are equivalent. In
addition, all members of the expression must be included in the range of the variable's base
type.

Assignment operations are not allowed on file types and on structured types having file
components.

Certain attributes affect the rules of compatible types. (See Chapter 10 for a complete discussion
of attributes.) The resulting changes to compatible-type rules are as follows:

• READO NL Y-No expression is compatible with either a READO NL Y variable of equivalent
type or a variable with a READONL Y component of equivalent type.

Data Types 2-21

• UNSAFE-An expression of any type is compatible with an UNSAFE variable unless
the variable has the READONL Y attribute. If the expression type and the variable type
have the same allocation sizes, Pascal assigns the value of the expression with no type
conversion. If the representation of the expression is larger than the UNSAFE variable,
the compiler generates a diagnostic error. If the representation of.the expression is smaller
than the UNSAFE variable, the compiler leaves the high-order bits of the UNSAFE variable
unchanged.

2-22 Data Types

Chapter 3
Expressions

An expression is a range of value descriptions. An expression is an operand or a combination
of operands and operators. Operands include constants, variables, function identifiers, set
constructors, and subexpressions, which are expressions enclosed in parentheses. Examples of
operands are:

Operand

123.34

'x'

TRUE

Average (3.3, 'T', 9)

'TEST.TXT'

numberofpeople

students.grade

master[a,b]

(xc+bd)

SQRT(newval)

[i, elt2]

Type

Numeric constant

Character constant

Boolean constant

Structured constant

String constant

Identifier of a variable or a constant

Identifier of a record field

Identifier of a subscripted variable

Subexpression

Function identifier

Set constructor

The operators in an expression represent predefined arithmetic, relational, logical, string, and
set operations.

Expressions 3-1

Examples

AZ I VST
A = B

Contents of AZ divided by the contents of VST
Contents of A compared with the contents of B

Pascal recognizes compile-time expressions and run-time expressions. A compile-time expression
consists of one or more elements that can be evaluated when the program is compiled. The
simplest compile-time expression is a single constant or a constant identifier. Other compile
time expressions combine constants and constant identifiers with Pascal operators and certain
predeclared functions (see Section 4.1).

A run-time expression consists of at least one element that cannot be evaluated until the
program is executing. Run-time expressions contain variables and function identifiers and can
also include constants, constant identifiers, Pascal operators, and predeclared functions.

You can use arithmetic, relational, logical, string, and set operators to form Pascal expressions.
Those operators are explained in Sections 3.5.1 to 3.5.5. The order in which Pascal evaluates
the components of an expression is determined by the precedence rules for the operators and
operands, as outlined in Sections 3.6 and 3.7.

When forming an expression in Pascal, you are not limited to combining integers only with
integers, real numbers only with real numbers, and so forth. Pascal promotes data from one type
to another under certain circumstances, presented in Section 3.8, so you can form expressions
with data of different types.

Although you cannot change the type of a variable once it has been declared, you might want
to have this capability when forming expressions. The Micro Power /Pascal language allows you
to alter temporarily your concept of a variable's type by using the type cast operator, explained
in Section 3.9.

3. 1 Variables
A variable is a symbolic representation of a data storage location. Variables contain data that
may be altered during a program's operation. You declare the name of each variable that you
use and associate it with a particular data type.

Variables may contain either scalar data or structured data (see Chapter 2). The data in a
variable must conform to the requirements of the data type definition with which the variable is
declared. The declaration may be either in the VAR part of the declaration section of a program,
module, or subprogram (see Chapter 4) or in the formal parameter list of a subprogram (see
Chapter 6).

3. 2 Constants
A constant is the explicit or symbolic representation of a value that does not change during the
execution of a program. The two kinds of constants in the MicroPower /Pascal language are
scalar constants and structured constants.

You may refer to a constant in two ways. You may write it explicitly by specifying the value
itself. Or, you may declare a constant in a CONST declaration so you can refer to it symbolically
by an identifier (called a constant identifier).

3-2 Expressions

3.2. 1 Scalar Constants

Scalar constants are constant values of the scalar data types (INTEGER, LONG_INTEGER,
UNSIGNED, REAL, CHAR, BOOLEAN) and user-declared enumerated types. The ranges of
numeric constant values and their associated data types are:

Constant in Range Resulting Type

-2147483647 .. -32769 LONG_INTEGER

-32768 .. 32767 INTEGER

32768 .. 65535 UNSIGNED

65536 .. 2147483647 LONG_INTEGER

-2.938736 x 10-39 .. -1.701411 x 1038 REAL

2.938736 x 10-39 .. 1.701411 x 1038 REAL

Example

In the following example, 12, 64, 'T', 3.4, A, B, 2, and Constchar are scalar constants:

CONST
A = 12;
B = 64;
Const char = • T' ;

12+3.4

A DIV 2

Const char

3.2.2 Structured Constants

Structured constants are constant values of the RECORD and ARRAY types. You specify a
structured constant by using the following syntax:

Syntax

{
ty~e-identifier ({ value } , ...) }
string-constant

type-identifier
The identifier of the data type of the structure to which this constant applies. If the type
identifier describes a packed array of type CHAR, you must explicitly specify the values for
each element of the array as character constants.

value
A constant, the sequence "integer-constant OF value", or a list of the form"(" value {,value}
... ")". The form of this parameter is determined by the structure specified by type-identifier.

Expressions 3-3

The value(s) specified must be consistent with the components of the structure specified by
type-identifier.

string-constant
A character string. This is a special case of structured consta~t because a string has an
implied type of PACKED ARRAY [1..n] OF CHAR (n is the length of the string). Use this
form of structured constant for string types (see Sections 2.4.2 and 3.2.2.1).

Rules and Defaults

•

•

•
•

•

•

You must specify a value for every component in the structure. For records, the component
values must also be of the same type as the fields in which they reside. For arrays or
records with multiple fields, the constants must be specified in the same order in which
they were declared.

You may not specify a set constructor (see Section 3.4) as a value in a structured constant.
When a variable of a structured data type includes a set, its components may receive values
only by explicit assignment.

You can use the OF repetition factor to specify the same constant for consecutive components .

Structured constants for nested records or nested arrays must be nested to the same level as
specified by the record or array declaration and be delimited by parentheses. If the nested
record has a type identifier, that identifier cannot appear in the constant.

A structured constant for a variant record must include constants for the tag fields that
specify the variants.

A value in a structured constant will never have its type converted to conform to the type
of a structured component. Conversion rules for operands in expressions do not apply. For
example, you cannot use an INTEGER value where a REAL value is expected. You can,
however, use a value of less than 65,536 where a LONG_INTEGER value is expected,
because integers below that value are promoted to LONG_INTEGER values, if required.

Examples

1. This example shows how you can use string types with structured constants.

TYPE
String= PACKED ARRAY[1 .. 10] OF CHAR;

CONST
Name = 'JEFFERSON ';

VAR
String_var : String;

You can write assignment statements such as:

String_var := Name;
String_ var String ('J', 'E', 'F', 'F', 'E', 'R', 'S', 'O', 'N',' ');
String_var 'JEFFERSON '·

3-4 Expressions

2. This example shows a record nested within another record.

TYPE
Voter = RECORD

Party : (Democrat,Republican,Independent,Other);
Registered : BOOLEAN;
Name_Data RECORD

Name,Street,Town : PACKED ARRAY[1 .. 16] OF CHAR;
Zip : PACKED ARRAY[1 .. 5] OF CHAR;

END;
END;

VAR
P Voter;

Given this record type, you could write the following structured constant:

P :=Voter (Democrat, TRUE,(' Adam Smith' ,
'114 Birdhouse Rd',

Bird-in-Hand',
'06312'));

Note the use of parentheses to specify record fields that are nested records.

3. Suppose that you have the following record type:

TYPE
Calltyp = RECORD

VAR

Caller : PACKED ARRAY[1 .. 10] OF CHAR;
Time : REAL;
Subj : (Work, Play, Sales, Chat);
CASE BOOLEAN OF

END;

TRUE : (HOUR : INTEGER);
FALSE : ();

Call Calltyp;

You could initialize a variable of this record type by using the following structured constant:

Call := Calltyp ('Washington'. 10.30, Chat, TRUE, 12)

The constant provides a string constant for the field Caller, a real number for the field Time,
and the constant identifier Chat for the field Subj. The structured constant specifies the tag
field with the Boolean value TRUE and the variant field Hour with the integer value 12.
Note that the tag field is specified even though it does not have an identifier.

To specify a constant for this record with the value FALSE for the variant's tag field, you
could write the following structured constant:

Call := Calltyp ('Washington', 10.30, Chat, FALSE)

This constant specifies the same values as the previous one for all fields except the tag field.
The tag field value is now last in the list because the FALSE case of the variant specifies
no additional fields.

4. Suppose that you have the following array:

TYPE
Average= ARRAY[1 .. 10] OF REAL;

Expressions 3-5

You could specify the following structured constant:

Average (1.318, 4.2029, 2 OF 3.68, 2 OF 9.6445, 7.0, 3 OF 5.772)

The structured constant specifies the value 1.318 for the first component of the array, 4.2029
for the second component, and 7.0 for the seventh component. The structured constant
includes the repetition factor 2 OF 3.68, which specifies the value 3.68 for the third and
fourth components and the repetition factor 2 OF 9.6445, which specifies the value 9.6445
for the fifth and sixth components. The repetition factor 3 OF 5.772 spedfies the value
5.772 for the last three components.

5. This example shows a structured constant for the array Students of component type
Student_Range.

TYPE
Student_Range = 1 .. 50;
Students= ARRAY[1 .. 10] OF Student_Range;

The type identifier is optional when it is nested inside another structured constant.

Students(25,22,23,20,35,17,29,31,20,26)

6. This example shows a 2-dimensi
1

onal array of real numbers:

TYPE
Twoby = ARRAY[O .. 3] OF ARRAY[1 .. 5] OF REAL;

A structured constant for that array must consist of four structured constants, each having
five real values.

Twoby ((1.0,1.1,1.2,1.3,1.4), 2 OF (5 OF 0.0),(10.1, 2 OF 11.0, 2 OF 11.1))

If you visualize the first index of this array as representing rows and the second index as
representing columns, the structured constant above is filling the columns of the array one
row at a time. Figure 3-1 illustrates the assignment of those constants to an array variable.

Figure 3-1: Values Assigned to a 2-Dimensional Array

2 3 4 5

0 1.0 1. 1 1.2 1.3 1.4

0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 0.0

3 10.1 11.0 11.0 11. 1 11.1

ML0-559-87

7. You initialize arrays of three or more dimensions with structured constants, using the same
syntax as shown in the previous example.

3-6 Expressions

TYPE
Letters= ARRAY[! .. 2,1 .. 3,1 .. 4] OF CHAR;

Given the array above, you could write the following structured constant:

Letters (2 OF (3 OF(4 OF'*')))

8. Suppose you have the following record:

TYPE
Datarec = RECORD

Kids : INTEGER;
De~iation : REAL;
Code : CHAR;
Verified : BOOLEAN;
Name : (Washington, Lincoln, Jefferson, Adams);

END;

The following example shows a structured constant for a variable of this record type:

Datarec (17, 3.2075, 'P', FALSE, Adams)

9. You can declare a constant as a structured constant and reference its components as you
would a structured variable.

TYPE cities= (Nr.sF,LA,BOS,CHI,CLE,STL,KAN);
cities_array = ARRAY[1 .. 8] OF cities;

CONST tax_rank = cities_array(NY,BOS,SF,LA,CHI,STL,CLE,KAN);

number_one := tax_rank[1];

3.2.2. 1 String Constants

A string constant is a sequence of characters enclosed in apostrophes (' '). A string constant
is a special case of structured constant. The type of a string constant is implicitly defined as a
packed array of characters that is the length of the specified string.

Syntax

' [{ character } ...] ' [[({ integer } , ...)] [string-constant]]

character
A graphic ASCII character, a space character, or a tab character.

integer
An integer constant in the range 0 to 255 that specifies an ASCII character code. The integer
must not be a constant identifier. This syntax allows you to specify any ASCII character,
including the nonprinting characters, as a string constant.

string-constant
A string constant.

You must specify at least one character or integer. Null strings are not allowed.

Expressions 3-7

Examples

1. The following string constants are implicitly defined as a packed array with length 20. If
the string has fewer than 20 characters, you must add characters to extend the string.

'Indianapolis, Indiana'
'Milwaukee, Wisconsin'
'Paris, France

2. The ordinal value of the bell character is 7, whereas the value of the null character is 0.
The integers 7 and 0 are enclosed in parentheses within the character string.

'A bell '(7)' in a null-terminated ASCII string'(O)

3. In this example, CR illustrates an illegal use of a constant identifier.

CONST
CR = %0' 15';

WRITELN ('INVALID'(CR)'USE');

3. 3 Function Identifiers
A function identifier is the name of a group of statements declared to be a function (see Chapter
6). The function identifier is an expression operand that represents a value derived from the
execution of the statements that it identifies.

3.4 Set Constructors
A set constructor is an expression that specifies the members of a particular set. The set
constructor consists of a list of scalar elements of the same base type or an empty list.

Syntax

[{ element } , ...]

element
A variable, constant, or expression that specifies a value of the base type. You can specify
constants that appear consecutively in the set definition by using the subrange (..) symbol.
If no element is specified, the set is empty.

You use an assignment statement (see Section 5.1) to assign the values specified by a set
constructor to a set variable. The base type of the variable must include all members of the set
to which the expression evaluates. You can use a set constructor with the set operators (see
Section 3.5.5) to form expressions.

A set having no elements is called an empty set and is written [].

3-8 Expressions

Examples

1. This example shows a set with individual characters as members.

TYPE
Alphabet=SET OF CHAR;

VAR
Vowels, Consonants: Alphabet;

BEGIN
Vowels := ['A', 'E', 'I', '0', 'U'];
Consonants := ['B' .. 'D', 'F' .. 'H', 'J' .. 'N', 'P' .. 'T', 'V' .. 'Z'];

END.

The set variables Vowels and Consonants are of the same base type but are initialized to
contain the appropriate characters as specified in the set constructors.

2. This example shows a set with an integer subrange as its base type.

TYPE
MAP=SET OF 0 .. 255;

A constructor for this set might include the foilowing values:

[3,4,15,20,23,34,40,45,55,60,70]

The upper limit of this set's subrange is the maximum number of elements allowed for sets.

3. This example shows a constructor for a set of integers ranging from 35 to 115.

[39, 67. 95, 110 .. 115]

The constructor specifies nine constants: 39, 67, 95, and all the integers between 110 and
115.

3.5 Operators
Operators let you form complex compile-time and run-time expressions to combine constants,
constant identifiers, variables, and function identifiers. Operators can be either dyadic or
monadic. A dyadic operator has two operands, as demonstrated by the + operator in the
expression A+B. Most Pascal operators are dyadic operators. A monadic operator has one
operand, as demonstrated by the "-" operator in the expression -B. The three monadic operators
are identity (+), sign inversion (-), and NOT.

The Pascal operators are classified as follows:

• Arithmetic

• Relational

• Boolean

• String

• Set

Expressions 3-9

3.5. 1 Arithmetic Operators
An arithmetic operation usually provides a formula for calculating a value. To construct an
arithmetic expression, you combine numeric constants, variables, and function identifiers with
one or more of the operators from Table 3-1.

Table 3-1: Arithmetic Operators

Operator Example Result

+ A+B Sum of A and B

+ +B The positive value B

A-B B subtracted from A

-B The negative value B

* A*B Product of A and B

I A/B A divided by B

DIV A DIV B Truncated result of A divided by B

MOD AMODB Modulus of A with respect to B

The addition(+), subtraction(-), and multiplication(*) operators allow operands of the INTEGER,
LONG_INTEGER, UNSIGNED, and REAL types. An expression with op~rands of the same
type produces a result of the same type. The result type for an expression with operands of
different types is the operand type having the higher precedence (see Section 3.8).

The division (/) operator allows operands of the INTEGER, LONG_INTEGER, UNSIGNED,
and REAL types but always produces a REAL result.

The DIV and MOD operators allow operands of the INTEGER, LONG_INTEGER, and
UNSIGNED types. DIV divides the first operand value by the second operand value and
truncates any fraction from the result. An expression with operands of the same type produces
a result of the same type. The result type for an expression with operands of different types is
the operand type having the higher precedence (see Section 3.8). For example, the expression
23 DIV 12 equals 1, and -5 DIV 3 equals -1. MOD returns the modulus of the first operand
with respect to the second. The operation A MOD B is defined only when B is a positive
integer. The result of A MOD B is always an integer from 0 to B-1.

Examples

5 MOD 3 (* The result is 2 *)
(-4) MOD 3 = 2 (* The result is 2 *)
2 MOD 5 = 2 (* The result is 2 *)

In arithmetic expressions, Pascal allows you to mix INTEGER, LONG_INTEGER, UNSIGNED,
and REAL values with subranges of INTEGER and UNSIGNED values. When you assign the
value of an expression to a variable, you must make sure that their types are compatible (see
Section 2.9.2).

3-10 Expressions

Table 3-2 lists the type of the result for all possible combinations of arithmetic operators and
operands.

Table 3-2: Result Types for Arithmetic Operations

Multiply (*)
First Second Subtract (-) DIV Divide
Operand Operand Add(+) MOD (/)

INTEGER INTEGER INTEGER INTEGER REAL

LONG_INTEGER LONG_INTEGER LONG_INTEGER REAL

UNSIGNED UNSIGNED UNSIGNED REAL

REAL REAL ERROR REAL

LONG_INTEGER INTEGER LONG_INTEGER LONG_INTEGER REAL

LONG_INTEGER LONG_INTEGER LONG_INTEGER REAL

UNSIGNED LONG_INTEGER LONG_INTEGER REAL

REAL REAL ERROR REAL

UNSIGNED INTEGER UNSIGNED UNSIGNED REAL

LONG_INTEGER LONG_INTEGER LONG_INTEGER REAL

UNSIGNED UNSIGNED UNSIGNED REAL

REAL REAL ERROR REAL

REAL INTEGER REAL ERROR REAL

LONG_INTEGER REAL ERROR REAL

UNSIGNED REAL ERROR REAL

REAL REAL ERROR REAL

3.5.2 Relational Operators
A relational operation or condition tests the relationship between two arithmetic or Boolean
expressions. A relational expression consists of two scalar variables or arithmetic expressions
separated by one of the relational operators listed in Table 3-3.

Expressions 3-11

Table 3-3: Relational Operators

Operator

<>

>
>=

<
<=

Example

A=B

A <>

A> B

A>= B

A <B

A <= B

B

Result

TRUE if A is equal to B

TRUE if A is not equal to B

TRUE if A is greater than B

TRUE if A is greater than or equal to B

TRUE if A is less than B

TRUE if A is less than or equal to B

The two characters in the not-equal (< >), greater-than-or-equal (> =), and less-than-or-equal
(<=) operators must appear in the specified order and cannot be separated by a space.

Pascal produces a Boolean result when evaluating a relational expression. Every relational
expression therefore evaluates to TRUE or FALSE. For example, the condition 2 <3 is always
TRUE; the condition 2> 3 is always FALSE.

3.5.3 Boolean Operators
Boolean operations test the truth value of combinations of conditions. A Boolean expression
consists of two or more expressions that have Boolean results, separated by one of the Boolean
operators in Table 3-4.

Table 3-4: Boolean Operators

Operator

AND

OR

NOT

Example

AAND B

A ORB

NOT A

Result

TRUE if both A and Bare TRUE

TRUE if either A or B is TRUE (or if both are TRUE)

TRUE if A is FALSE (and FALSE if A is TRUE)

The AND and OR operators combine two conditions to form a compound condition. The NOT
operator reverses the truth value of a condition, so that if A is TRUE, NOT A is FALSE, and
vice versa.

As with relational expressions, the result of a Boolean expression is a Boolean value.

3-12 Expressions

3.5.4 String Operators
You can use the operators in Table 3-5 to compare character string variables and constants. Two
character strings are compared character by character in a left-to-right order. The comparison is
based on the ASCII collating sequence (see Appendix A).

Table 3-5: String Operators

Operator

<>

<

<=

>

>=

Example

A=B

A<> B

A <B

A <=B

A> B

A> =B

Result

TRUE if character strings A and B have equal ASCII values

TRUE if character strings A and B have unequal ASCII values

TRUE if ASCII value of character string A is less than that of
character string B

TRUE if ASCII value of character string A is less than or equal
to that of character string B

TRUE if ASCII value of character string A is greater than that
of character string B

TRUE if ASCII value of character string A is greater than or
equal to that of character string B

The string operators are legal only for character strings of the same length. You may not use
them to compare two character strings with unequal lengths.

Examples

'motherhood' > 'cherry pie'

This relational expression is TRUE because lowercase 'm' comes after lowercase 'c' in the ASCII
character set. If the first characters in the strings are the same, Pascal looks for differing
characters, as in the following:

'string!' < 'string2'

This expression is also TRUE, because the digit 1 precedes the digit 2 in the ASCII character
set.

3.5.5 Set Operators

The set operators let you form sets and test for various set relationships. You can use the
operators in Table 3-6 with operands that are set values: set variables, set constructors, and set
expressions. The left operand of the IN operator, however, must be a scalar value.

Expressions 3-13

Table 3-6: Set Operators

Operator Example Result

+ A+B Union of sets A and B

* A*B Intersection of sets A and B

A-B Set of those elements of set A that are not also in set B

A=B TRUE if set A is equal to set B

<> A<> B TRUE if set A is not equal to set B

<= A <=B TRUE if set A is a subset of set B

>= A> =B TRUE if set B is a subset of set A

IN A IN B TRUE if scalar value A is an element of set B

The IN operator requires a set expression as its right operand and a scalar expression of the
associated base type as its left operand-for example:

2*3 IN [1 .. 10]

The value of this expression is TRUE, because 2*3 evaluates to 6, which is a member of the set
[1..10].

3.6 Precedence of Operators
The operators in an expression establish the order in which Pascal combines the values. The
order of precedence of the operators is listed below, from highest to lowest.

Operator Precedence

NOT Highest

*, /, DIV, MOD, AND

l unary+, unary-,+,-, OR

=, <>, <, <=, >,>=,IN Lowest

Pascal evaluates operators of equal precedence (such as + and -) from left to right. You must
use parentheses for correct evaluation when you combine relational operators. Consider, for
example:

A<=X AND B<=Y

If no parentheses are used, Pascal attempts to evaluate this expression as A <= (X AND B)
<=Y and generates an error. The expression needs parentheses as follows:

(A<=X) AND (B<=Y)

To evaluate the rewritten expression, Pascal compares the truth values of the two relational
expressions.

3-14 Expressions

You can use parentheses in any expression to force a particular order for combining the values.
For example:

Expression:

8 * 5 DIV 2-4

8 * 5 DIV (2-4)

Evaluates to:

16

-20

Pascal evaluates the first expression, according to the normal rules for precedence. First, Pascal
multiplies 8 by 5 and divides the result (40) by 2. Then Pascal subtracts 4, resulting in 16. The
parentheses in the second expression, however, force Pascal to subtract before dividing. Hence,
it subtracts 4 from 2, producing -2. Then it divides 40 by -2, with -20 as the result.

Parentheses can also help to clarify an expression. For instance, you could write the first
example above as follows:

((8 * 5) DIV 2) - 4

The parentheses eliminate any confusion about how the expression is to be evaluated.

3.7 Order of Evaluation of Boolean Operands
The order of evaluation of Boolean operands used with the dyadic operators is indeterminate,
and the side effects of the evaluations are not predictable. Pascal's ability to produce the correct
result is not usually affected, but it is an important consideration when you are performing
Boolean operations involving function identifiers that have side effects. (A side effect is an
assignment to a nonlocal variable or to a VAR parameter within a function block.) For example,
the following IF statement contains two function identifiers for function F:

IF F(A) OR F(B) THEN ...

Suppose that function F assigns the value of the actual parameter to a nonlocal variable. Because
Pascal does not guarantee which function identifier is evaluated first, you cannot be sure of the
value of the nonlocal variable after the IF statement is performed.

The compiler uses a "short-circuit" evaluation algorithm on expressions with Boolean operands.
Thus, the compiler will not evaluate an entire expression if the compiler obtains an intermediate
result that conclusively establishes the final result. Function identifiers, however, are always
evaluated.

Example

WHILE (I <= !max) AND (A[I] <> ' ') DO I := !+1 ;

Since no guarantee is supplied that the evaluation of the compound condition will proceed in
left-to-right sequence, the subscripted reference (A[I]) may not always be legal.

Expressions 3-15

3.8 Type Promotion
Since Pascal performs extensive type checking on data, you cannot normally use a value of one
type as if the value were of a different type. For example, you cannot assign the character '1'
to an integer data item, because '1' is a character value, not an integer value. For the numeric
data types, however, the compiler promotes data from one type to another in three instances:
arithmetic operations (see Section 3.5.1), assignment statements (see Section 5.1), and when
passing actual parameters to formal parameters (see Section 6.6.1). The compiler performs this
type conversion according to the following precedence:

lowest ---------- highest

INTEGER < UNSIGNED < LONG_INTEGER < REAL

Thus, an INTEGER operand used with an UNSIGNED operand produces an UNSIGNED result.
Similarly, a LONG_INTEGER operand used with a REAL operand produces a REAL result.

Note
When converting a negative integer to an unsigned value, the compiler retains
the value of the integer's sign bit (bit 15). Because the sign bit is the most
significant bit in an unsigned value, negative integers are converted into large
unsigned integers.

3. 9 Type Cast Operator
The type cast operator (::) lets you change the type characteristics of an expression, variable, or
component variable. You may use the type cast operator when you want to mix data objects
of different types in contexts where Pascal type-checking rules would prohibit mixing. The
type cast operator can follow any expression, variable, or component selector that appears in a
statement.

Type casting alters the way data is interpreted for the duration of an operation but does not
convert the data of a given variable to a target type. For example, the expression ('1 ')::INTEGER
casts the representation of the string constant '1' as an integer. The resulting value is 49, the
decimal value of the ASCII character 1.

Syntax

{

(expression) { :: typ~.-identi~er },. '."
. bl 'd t'fi { .. type-identifier vana e-1 en 1 er

component-selector

expression
An expression that is to be type cast.

type-identifier

} ' ... }

The identifier of the type to which the object variable or expression is to be cast.

variable-identifier
The identifier of a variable that is to be type cast. The identifier can be an entire variable,
an array element, a record field, a buffer variable, a file variable, or a pointer variable.

3-16 Expressions

component-selector
One of the following: an uparrow (j), a record field selector followed by a record field
identifier (for example, .fieldname), or an array index designator (for example, (n,m]).

Rules and Restrictions

• The effect of a type cast operation occurs exactly where it is specified and has no effect
elsewhere.

• A variable or a selected record field may be cast to any type having the same storage
allocation size as that of the variable's original type. For example, in the expression:

integervar: :recordtype.field1: :boolean

recordtype must have a size of 16 bits, and fieldl must have a size of 8 bits, or 1 bit if
recordtype is packed.

• An expression may be cast to a type of any size. If the expression is cast to a smaller type,
the expression's value is truncated on the left. If the expression is cast to a larger type,
the new type implies data in the high-order portion of the expression value that is the size
difference between the old expression type and its new type. That data is undefined.

When assigning an expression result to a variable, you should clear the destination variable
before use if an expression result may have a smaller storage allocation requirement than
the variable. Doing so guarantees that the unused high-order portion of the variable does
not contain unpredictable data.

Note
When the destination variable in an assignment statement involving two
variables is 16 bits, the compiler clears the high-order portion if the source
variable is smaller than 16 bits.

• In some instances, a data object may be type cast in a context that requires word alignment,
even though the data object's initial declaration may have assigned the object to a byte
boundary. No compile-time error results, but a run-time odd address error may ensue.
Make the correction by inserting a 1-byte filler in the object's declaration to force word
alignment.

• Except where the allocation size of an operand is the same in both packed and unpacked
contexts (see Appendix E), do not type cast an unpacked operand that appears in the same
statement or expression as a packed operand; corrupt data will result. For instance, assume
you wish to type cast an 8-bit unpacked record field to a type (such as a Boolean value)
so you can interpret the 8-bit unpacked record field as a 1-bit field. If you do this in
a statement that contains a packed Boolean operand, the result will be incorrect if this
unpacked field contains data in its upper seven bits. The compiler will not detect this error.

Expressions 3-17

Examples

1. This example shows you how to check a packed array of 16 Boolean flags quickly to see if
any of the flags are set.

VAR
Flags : PACKED ARRAY [1 .. 16] OF BOOLEAN;
Any_flags_set : BOOLEAN;

BEGIN
Any_flags_set := Flags : : UNSIGNED <> 0;

END;

2. This example shows you how to examine the fifth bit of a byte to see if the fifth bit is set.

TYPE
Bit_map PACKED RECORD

Bit0,Bit1,Bit2,Bit3,Bit4,Bit5,Bit6,Bit7 0 .. 1;
END;

VAR
Bite 0 .. 255;
Bitset : BOOLEAN;

BEGIN
Bitset := Bite: :Bit_map.Bit4: :BOOLEAN;

END;

3. This example shows you how to use type casting as a convenient way to implement block
assignments where type or size is not important.

TYPE
fiftychartype =PACKED ARRAY [1 .. 50] OF CHAR;
tenchartype =PACKED ARRAY [1 .. 10] OF CHAR;

VAR
ten_chars : tenchartype;
fifty_chars : fiftychartype;

BEGIN
fifty_chars := (ten_chars): :fiftychartype;
{ ten bytes starting at the address denoted by "ten_chars"

are moved to the start address of "fifty_chars"; the
remaining forty bytes of "fifty_chars" are undefined }

END;

3-18 Expressions

Chapter 4
The Declaration Section

The first two parts of a Pascal block are the heading and the declaration section. The heading
specifies the program, module, procedure, and function or process name. The declaration
section contains sections that declare labels, variables and their types, procedures, functions,
and processes and that define constant identifiers and user-created types. Each section is
introduced by an appropriate reserved word: CONST, LABEL, TYPE, VAR, PROCEDURE,
FUNCTION, or PROCESS. A block need not include all those sections, and any number of
those sections may appear. CONST, LABEL, TYPE, and VAR sections should appear first,
in any order, followed by subprogram declarations. Subprogram declarations with either the
EXTERNAL directive or the EXTERNAL attribute may be placed anywhere in the declaration
section.

This chapter describes the constant declaration, the label declaration, type definition, and the
variable declaration. See Chapter 6 for information on procedures, functions, and processes.

4. l Constant Declaration
The constant declaration specifies identifiers to represent constant values.

Syntax

CONST { constant-identifier = { scalar-constant } } ; ...
structured-constant

constant-identifier
The identifier to be used as the name of the constant.

scalar-constant
An integer value, an unsigned value, a long integer, a real number, a string, a Boolean
value, a value of an enumerated type, or the identifier (optionally signed) of another declared
constant value.

The Declaration Section 4-1

structured-constant
A structured constant consisting of a record or array type identifier followed, in parentheses,
by a list of constant values appropriate to the record or array type. See Section 3.2.2 for
syntax and examples.

The value assigned to a constant identifier cannot be an expression or a set constructor; string
constants must be enclosed in apostrophes. The use of constant identifiers makes a program
easier to read and understand. In addition, if you need to change the value of a constant, you
can modify the CONST declaration instead of changing each occurrence of the value in the
program. That capability makes programs simpler to maintain and easier to transport.

Examples

1. The following CONST declaration specifies seven constant identifiers. YEAR, PI, and
TINYD are numeric constants. MONTH and INITIAL represent string values. Both LIE and
UNTRUTH are equal to the Boolean value FALSE.

CONST
YEAR = 1979;
MONTH= 'January';
INITIAL = 'p';
PI= 3.141592;
TINYD = 1.7253E-10;
LIE = FALSE;
UNTRUTH = LIE;

2. The following CONST declaration specifies a constant array of type Block that contains all
asterisk (*) characters.

TYPE
Block= ARRAY [1 .. 2, 1 .. 3, 1 .. 4] OF CHAR;

CONST
Brick= Block (2 OF (3 OF (4 OF '*')));

VAR
Corner_row_of_brick : ARRAY[1 .. 4] OF char;

Corner_row_of_brick := brick[1,1];

3. You can reference the fields of a structured constant in the same way as the fields of a
structured variable.

TYPE
Codes = 1. . 255 ;
Users = RECORD

Last_name, First_name PACKED ARRAY [1 .. 10] OF CHAR;
Badge_nwnber : INTEGER;
Region_code : Codes;

END;

CONST
Default_Owner = Users (' Doe', ' John', 2324, 1);

4-2 The Declaration Section

VAR
Current_Owner Users

BEGIN

Current_owner.Badge_number := Default_owner.Badge_number;

END.

4.2 LABEL Declaration
The LABEL declaration establishes the numeric identifiers that are used to make statements
accessible to a GOTO statement (see Section 5.5).

Syntax

LABEL { integer } , ... ;

integer
A decimal integer between 0 and 9999. When you declare more than one label, you can
specify them in any order.

A label can precede any statement in a program. You must use a colon (:) to separate the
label from the statement. Each label must precede exactly one statement within the scope of its
declaration.

Example

LABEL 0, 6656, 778, 4352;

This LABEL section specifies the four labels 0, 6656, 778, and 4352. The labels need not be
specified in numeric order.

4.3 TYPE Definition
The TYPE definition introduces the name and set of values for a type.

Syntax

TYPE {type-identifier= [[{attribute}, ...]] [PACKED] type;} ...

type-identif1er
The identifier to be used as the name of the type.

attribute
Additional information about variables of this type, provided through the READONLY,
STATIC, UNSAFE, VOLATILE, and WRITEONLY attributes. (See Chapter 10.)

The Declaration Section 4-3

PACKED
The structure to be stored in as few bits as is feasible. You can specify PACKED in type
definitions for arrays, records, and sets. Though permitted, PACKED has no effect on file
types. You may not specify PACKED with enumerated and subrange types or with type
identifiers.

type
A type definition, which can be any of the predefined scalar or structured types, an
enumerated type, a subrange, a pointer type, or the identifier of a previously defined type.

Application Notes

1. The size of a type definition may not exceed 65536 bytes. The size of a PACKED type
definition may not exceed 65536 bits or 8192 bytes.

2. Specifying PACKED for a structure may significantly increase the size of the object code
generated to access the structure's data elements.

3. Refer to Appendix H for further information on the efficient use of type definitions.

Example

The following TYPE section defines seven types with their identifiers. Both Entertainment and
Days_of_Week are enumerated types. Hours_Worked is an array with five integer components.
Salary and Pay are identical arrays of 50 real numbers each. Ptr_to_Hits is defined as a pointer
to a record of type Hits, which has the five fields listed.

TYPE
Entertainment = (Dinner, Movie, Theater, Concert);
Days_of_Week = (Sun, Mon, Tues, Wed, Thurs, Fri, Sat);
Hours_Worked = ARRAY [Mon .. Fri] OF INTEGER;
Salary =ARRAY [1 .. 50] OF REAL;
Pay = Salary;
Ptr_to_Hits = -Hits;
Hits = RECORD

Title, Artist, Composer : PACKED ARRAY [1 .. 30] OF CHAR;
Weeks_on_Chart : INTEGER;
First_Version : BOOLEAN;

END;

4.4 Variable Declaration
The variable declaration allocates a variable and associates it with an identifier and a type.

Syntax

VAR { {variable-identifier},... [[{attribute}, ...]] } ...
[PACKED] type ;

4-4 The Declaration Section

variable-identifier
The identifier to be used as the name of the variable.

attribute
Additional information about the variable, provided through the AT, EXTERNAL, GLOBAL,
STATIC, READONLY, UNSAFE, VOLATILE, and WRITEONLY attributes. (See Chapter
10.)

PACKED
The structure to be storedqn as few bits as is feasible. You can specify PACKED in type
defi:ui.itions for arrays, records, and sets. Though permitted, PACKED has no effect on file
types. You may not specify PACKED with enumerated and subrange types or with type
identifiers.

type
A type identifier or a type definition. The type can be any of the predefined scalar or
structured types, an enumerated type, a subrange, a pointer type, or the identifier of a
previously defined type.

Application Notes

1. The size of a variable declaration. may not exceed 65536 bytes. The size of a PACKED
variable declaration may not exceed 65536 bits or 8192 bytes.

2. Specifying PACKED for a structure may significantly increase the size of the object code
generated to access the structure's data elemel)ts.

3. Refer to Appendix H for further information on the efficient use of type definitions.

Example

The following VAR section declares six variables, and indicates the type of each. The types
for variables Choice and Weekly_Hours are specified by type identifiers, defined in a previous
TYPE definition section (not shown). The types for variables Answer, Rumor, Temp, Grade,
and Status_Link are specified by type definitions.

VAR
Choice : Entertainment;
Answer, Rumor : BOOLEAN;
Temp : INTEGER;
Grade : 'A' .. 'D' ;
Weekly_Hours : Hours_Worked;
Status_Link : [GLOBAL.UNSAFE] UNSIGNED;

The Declaration Section 4-5

Chapter 5
Pascal Statements

Pascal provides statements to perform various actions within the program. This chapter presents
reference information on each of the statements, in alphabetic order.

These statements can appear anywhere in the executable part of a Pascal program, procedure,
function, or process. Pascal includes both simple and structured statements. The simple
statements are the assignment and GOTO statements, the procedure call, and the process
invocation. The compound, conditional, repetitive, and WITH statements are the structured
statements. They enclose simple and structured statements that must be executed in order,
repetitively, or when conditions are met. You can use a structured statement anywhere in the
program that a simple statement is allowed. This manual uses the term statement to mean
either a simple or a structured statement.

Pascal Statements 5-1

5. l Assignment Statement
The assignment statement assigns the value of an expression to a variable.

Syntax

variable := expression

variable
The identifier of an array component, a file buffer variable, a function identifier, a field of
a record, or a variable of any type except a file.

expression
A simple or structured constant value, variable name, set constructor, function reference, or
expression.

A MicroPower/Pascal variable has no default value; a value must be assigned with the
assignment statement. The expression on the right of the assignment operator (:=) establishes
the value to be assigned to the variable on the left.

The compiler does not detect the occurrence of an undefined pointer on the left side of an
assignment statement.

Examples

1. The variable X is assigned the value of 1.

x := 1;

2. The value of the Boolean expression A <B is assigned to T.

T := A<B;

3. The set Vowel_Set is assigned the set constructor shown. The base type of Vowel_Set
must include the characters 'A', 'E', 'I', 'O', and 'U'.

Vowel_Set :=['A', 'E', 'I', '0', 'U'];

4. The first component of My-Array is assigned the sum of the seventh component of
My-Array and the fourteenth component of Your-Array.

My_Array[1] := My_Array[7] + Your_Array[14];

5. Assume that Awardrec and New_Winner are record variables of assignment-compatible
types. This example assigns the value of each field of New_Winner to the corresponding
field of Awardrec.

Awardrec := New_Winner;

5-2 Pascal Statements

5.2 CASE Statement
The CASE statement causes one of several statements to be executed, depending on the value
of an ordinal expression.

Syntax

CASE case-selector OF
{case-label-list : statement } ; ... [;]

[OTHERWISE { statement } ; ... [;]]
END

case-selector
An expression that evaluates to any ordinal type except LONG_INTEGER.

case-label-list
One or more constants, separated by commas, of the same type as the case selector.

statement
A simple or a structured statement.

Each case-label-list element is associated with a statement that may be executed. The list
contains the value of the case selector expression for which the system should execute the
associated statement. You can specify the case labels in any order. Each.case label can appear
only once within any CASE statement but can appear in other CASE statements.

At run time, the system evaluates the case selector and chooses which statement to execute.
If the value of the case selector expression does not appear in any case-label-list, the system
executes the statement(s) in the OTHERWISE clause.

The case selector expression must match one of the case labels if you omit the OTHERWISE
clause. When you enable the compiler's CHECK command option, an error message results if the
CASE statement fails to select an executable statement. When you disable the CHECK option,
the result is undefined if the CASE statement fails and you have omitted the OTHERWISE
clause.

Note
An error results if you do not specify at least one case-label-list element and
associated statement. This condition is not detected by the compiler.

Examples

1. At run time, the system evaluates AGE and executes one of the statements.

CASE Age OF
5,6 : IF Birth_Month > Sep THEN Grade
7 : BEGIN

Grade := 2;
Reading_Skill := TRUE;
END;

8 : Grade := 3;
END;

1 ELSE Grade := O;

If Age is not equal to 5, 6, 7, or 8, the program contains an error.

Pascal Statements 5-3

2. An OTHERWISE clause is added in this example.

CASE Age OF
5,6 : IF Birth_Month > Sep THEN Grade
7 : BEGIN

Grade := 2;
Reading_Skill := TRUE;
END;

8 : GRADE := 3;
OTHERWISE Grade := 0;

Reading_Skill := FALSE;
END;

1 ELSE Grade := O;

If the value of Age is not 5, 6, 7, or 8, the value 0 is assigned to the variable Grade, and
the value FALSE is assigned to the variable Reading_Skill.

3. This example assigns a value to Alpha_Flag, depending on the value of the character
variable Alphabetic.

CASE Alphabetic OF
'A', 'E', 'I', '0', 'U' : Alpha_Flag :=Vowel;
'Y' : Alpha_Flag := Sometimes;
OTHERWISE Alpha_Flag := Consonant;

END;

5-4 Pascal Statements

5.3 Compound Statement
The compound statement permits you to group Pascal statements for sequential execution as a
single statement.

Syntax

BEGIN
[{statement} ; ... [;]]

END

statement
A simple or a structured statement.

You create a compound statement by using any combination of Pascal statements, including
other compound statements. You must use semicolons to separate the individual statements
within a compound statement. No semicolon is required-although it is allowed-between the
last statement and the END delimiter. Pascal treats the entire compound statement as a single
statement. Examples of compound statements appear throughout this chapter.

Pascal Statements 5-5

5.4 FOR Stat~ment
The FOR statement specifies the repetitive execution of a statement based on the value of an
automatically incremented or decremented control variable.

Syntax

FOR control-variable := initial-value { DO~~TO } final-value DO statement

control-variable
The identifier of a variable of any ordinal type except LONG_INTEGER. The variable must
be local to the program or subprogram block containing the FOR statement and must not
be a component of a structure or the object of a pointer.

initial-value
An expression that is assignment compatible with the control variable.

final-value
An expression that is assignment compatible with the control variable.

statement
A simple or a structured statement.

The control variable, the initial value, and the final value must be of the same ordinal type. The
statements within the repeat range must not change the value of the control variable, although
they may interrogate it.

At run time, completion tests are performed before the statement is executed. In the TO form,
if the value of the control variable is less than or equal to the final value, the loop is executed,
and the control variable is incremented. When the value of the control variable is greater than
the final value, execution of the loop is complete. In the DOWNTO form, if the value of the
control variable is greater than or equal to the final value, the loop is executed, and the control
variable is decremented. When the value of the control variable is less than the final value,
execution of the loop is complete.

Because completion tests are performed before the statement is executed, some loops are never
executed; for example:

FOR Control := N TO N+Q DO
Week[N] := Week[N]+Netpay;

If the value of N+Q is less than the value of N (that is, if Q is negative) the loop is never
executed.

Pascal begins execution of a FOR statement by assigning the value of the initial-value parameter
to the variable specified by the control-variable parameter. During subsequent iterations, Pascal
increments or decrements, as applicable, the control variable by units of the appropriate type.
For numeric values, Pascal adds or subtracts 1 upon each iteration. For values of other types,
the control variable takes on each successive value of the type. For example, a control variable
of type 'A' .. 'Z' is incremented or decremented to the next character value each time the loop is
executed.

5-6 Pascal Statements

The FOR loop terminates when the loop count is completed or a GOTO statement is encountered.
The value of the control variable is left undefined and does not contain a valid value. You must
therefore assign a new value to the control variable if you use it elsewhere in the program.

Examples

1. This FOR loop computes the sum of the components of Int_Array with index values from
Lowbound through Highbound.

FOR N := Lowbound TO Highbound DO
Sum := Sum + Int_Array[N];

2. The DOWNTO form is used here to print an inverted list of all the leap years in the
nineteenth century.

FOR Year := 1899 DOWNTO 1800 DO
IF (Year Mod 4) = 0 THEN
WRITELN(Year:4,' IS A LEAP Year');

3. This example shows how you can nest FOR loops. For each value of I, the system steps
through all 10 values of J and assigns the value 0 to the appropriate array component.

FOR I := 1 TO 10 DO
FOR J := 1 TO 10 DO
A[I, J] := 0;

4. This example combines structured statements. The inner FOR statement computes the
number of hours each employee worked from Monday through Friday. The outer FOR
statement resets hours to 40 for each employee and computes each person's pay as the
product of wage and hours worked.

FOR Employee := 1 TO N DO
BEGIN

Hrs := 40;
FOR Day := Mon TO Fri DO

IF Sick[Employee,Day]
THEN

Hrs := Hrs-8;
Pay[Employee] := Wage[Employee] * Hrs;

END;

Pascal Statements 5-7

5.5 GOTO Statement
The GOTO statement causes an unconditional branch to a statement prefixed by a label.

Syntax

GOTO label

label
A statement label.

Upon execution of the GOTO statement, program control shifts to the statement with the
specified label.

The GOTO statement must be within the scope of the label declaration. You cannot use a
GOTO statement that is outside a structured statement to jump to a label that is within that
structured statement. A GOTO statement within a routine can branch to a labeled statement
in an enclosing block only if the labeled statement appears in the block's outermost level of
nesting. That is, the labeled statement cannot occur within a structured statement.

Example

This example shows how you can use the GOTO statement to exit from a loop. The loop
computes the sum (Invertsum) of the inverses of the components of Real_Array. If, however,
one of the components is 0, the sum is set to 0, and the GOTO statement forces an exit from
the loop.

FOR I := 1 TO 10 DO
BEGIN

IF Real_Array[I] = 0.0
THEN

BEGIN
Result := 0.0;
GOTO 10

END;
Result :=Result+ 1.0/Real_Array[I];

END;

10: Invertsum:= Result;

5-8 Pascal Statements

5.6 IF-THEN Statement
The IF-THEN statement causes the conditional execution of a statement.

Syntax

IF expression THEN [statement)

expression
A Boolean expression.

statement
A simple or a stuctured statement.

The statement is executed only if the value of the expression is TRUE. Otherwise, program
control passes to the statement following the IF-THEN statement.

The THEN clause can specify a structured statement. However, if you use the compound
statement, you must not place a semicolon between the words THEN and BEGIN-for example:

IF Day = Thurs THEN;
BEGIN
statement

END;

(* misplaced semicolon *)

As a result of the misplaced semicolon, the empty statement becomes the object of the THEN
clause. In this example, the compound statement following the IF-THEN statement will be
executed regardless of the value of Day.

Examples

1. If the value of the arithmetic expression is greater than 1000.0, a new value is assigned to
the variable Answer.

IF ((X*37/Constant) + Factor) > 1000.0
THEN

Answer := Answer - Factor;

2. If both relational expressions are true, D is assigned the value of A-C. Note that Pascal
does not always evaluate all the terms of a Boolean expression if it can evaluate the entire
expression based on the value of one term. Thus, if A is less than or equal to B, the
expression B> C may not be evaluated.

IF (A>B) AND (B>C)
THEN

D := A-C;

Pascal Statements 5-9

3. This example counts the number of J Smiths, prints each one's street address, and stores it
in an array.

IF (Name = 'Smith') AND (Initial 'J')
THEN

BEGIN
Count := Count + 1;
Smithadd[Count] := Address;
WRITELN ('J Smith no. ',Count, 'Lives At ',Address);

END;

4. If the value of the variable Day is Thurs, the FOR loop is executed, and values for Pay[i]
are computed. If the value of Day is not Thurs, the FOR loop is not executed. Program
control passes to the statement following the end of the loop.

IF Day = Thurs
THEN

FOR I := 1 TO Max_Emp DO
Pay(i] := Salary[i] * (1-Tax_Rate_Fica);

5-10 Pascal Statements

5. 7 IF-THEN-ELSE Statement
The IF-THEN-ELSE statement is an extension of the IF-THEN statement and includes an
alternative statement, the ELSE clause. The ELSE clause is executed if the test condition is false.

Syntax

IF expression THEN statementl ELSE statement2

expression
A Boolean expression.

sfatementl
The simple or structured statement to be executed if the expression is true.

sfafement2
The simple or structured statement to be executed if the expression is false.

The objects of the THEN and ELSE clauses can be any simple or structured statement, including
another IF-THEN or IF-THEN-ELSE statement. The ELSE clause is always paired with the
closest IF-THEN statement-for example:

IF A=1 THEN
IF B<>l THEN C:=l

ELSE D:=1;

By definition, Pascal interprets the statement above as if it included BEGIN and END delimiters,
as follows:

IF A=1 THEN
BEGIN

IF B<>1 THEN C:=1
ELSE D:=1;

END;

The variable D is assigned the value 1 if both A and B are equal to 1. An ELSE clause to be
executed if A is not equal to 1 would be placed as follows:

IF A=1 THEN
IF B<>1 THEN C:=1
ELSE D:=1

ELSE C:=O;

Examples

1. This example prints a different line of text, depending on the value of the Boolean variable
Disease.

IF Disease
THEN

WRITELN ('This person is sick.')
ELSE

WRITELN ('This person is healthy.');

Pascal Statements 5-11

2. If the value of Balance is negative, the compound statement is executed. The compound
statement prints two lines of notification, adds a loan to Balance, and computes the amount
of the bill for the loan. A zero or positive Balance results in a message stating that no loan
was issued. The WRITELN procedure that prints the final balance is independent of the
conditional statement and is always executed. ·

IF Balance < 0.0
THEN
BEGIN

WRITELN ('Overdrawn by ',ABS(BALANCE));
WRITELN ('Loan of ',Loan,' at ',Rate,'% automatically deposited');
Balance :=Balance + Loan;
Bill_Amt :=Loan* (1+Rate);

END
ELSE WRITELN ('No loan issued this month ');
WRITELN ('Balance is ',Balance);

5-12 Pascal Statements

5.8 Procedure Call
A procedure call specifies the actual parameters to a procedure and executes the procedure. You
may include a procedure call in any part of a program or subprogram where a statement can
be used. See Chapter 6 for a complete description of procedures.

Syntax

procedure-identifier [({actual-parameter} , ...)]

procedure-identifier
The identifier of the procedure being called, as declared in the procedure's formal declaration.

actual-parameter
A constant, an expression, the identifier of a procedure or function, or a variable of an
appropriate type. (Pascal passes actual parameters as described in Section 6.6.)

The procedure call associates a list of actual parameters with the formal parameters in the
heading of the procedure declaration, then transfers control to the procedure.

The formal parameter list in the procedure declaration determines the possible contents and the
order of the actual parameter list. The actual parameters must be compatible with the formal
parameters. Depending on the types of the formal parameters, the actual parameters can be
constants, variables, expressions, procedure names, or function names. An array name without
an index in a parameter list refers to i:he entire array. You can specify the parameters in an
order other than that implied by the formal parameter list by using the nonpositional syntax
described in Section 6.6.1. You may omit parameters for which a default value or variable has
been specified in the formal parameter list (see Section 6.6.2).

Examples

1. Suppose that you have the following procedure declaration:

TYPE
T=ARRAY[1 .. 10] OF INTEGER;

PROCEDURE Tollbooth
(VAR Change: REAL;

Toll: REAL;
Lane: T);

The following statement calls the procedure Tollbooth, specifying the variable Change, the
real constant 0.25, and the array Lane.

Tollbooth (Change_X, 0.25, Lane_X);

2. Suppose that you have the following procedure declaration:

TYPE
Status= (Pay, Collect, No_Owe);

VAR
My_Amount, Rate, Income: REAL;

PROCEDURE Taxes
(Real_Tax: REAL;
VAR Amount_Withheld: REAL;
Action: Status);

Pascal Statements 5-13

The following statement calls the procedure Taxes, with the expression Rate*lncome, the
variable My-Amount, and the identifier Pay as actual parameters.

Taxes (Rate*Income, My_Amount, Pay);

3. Suppose that you have the following procedure declaration:

TYPE
Color_Code=(Red, Orange, Yellow, Green, Violet);
Action_Str=PACKED ARRAY[1 .. 10] OF CHAR;
Status_Type=INTEGER;

PROCEDURE Check_Flag
(Condition: Color_Code;
Code: Action_Str;
Status: Status_Type);

The following statement calls the procedure Check_Flag, using nonpositional syntax to
specify the parameters 6, Green, and TEST.

Check_Flag Status := 6, Condition := Green,
Code := ' TEST')

5-14 Pascal Statements

5.9 Process Invocation
A process invocation creates a dynamic process and specifies its actual parameters. You may
include a process invocation in any part of a program or subprogram where a statement
can be used. Although structurally similar to procedures, processes differ greatly from the
other subprogram types in that processes execute concurrently and do not necessarily run to
completion. See the MicroPower /Pascal Run-Time Services Manual for detailed information on
processes and process relationships.

You invoke a process by specifying its identifier (given in the process's formal declaration)
followed optionally by a parameter list enclosed in parentheses. The process invocation
associates the actual parameters in the list with the formal parameters in the heading of
the process declaration (see Chapter 6).

Each time the same process is invoked, a replication of the process is created using the data
specified by the actual and predeclared parameters in the invocation statement.

The process that invokes a process is called the parent. When you invoke a process, you can
specify the kind of dependency relationship that will exist between the parent and the process
that the parent invokes. The invoked process can be either dependent or independent of the
parent. If a process requires access to variables declared within the parent, you declare the
process to be dependent (the default condition). If a process does not require access variables
declared within the parent, you declare the process to be independent. When a process is
dependent, the Pascal OTS will automatically preserve the heap space allocated for the parent
processes' variables and OTS run-time structures until the dependent process exits. By creating
independent processes, you make more efficient use of heap space since the invoked process
does not require the presence of the parent process and the heap space allocated to the parent
process.

The predeclared parameters DESC, NAME, PRIORITY, RELATION, STACK_SIZE, and STATUS
establish the identification and environment for each invocation of a process.

Syntax

process-identifier [({ actual-parameter } , ...)]
predeclared-parameter

process-i dentifter
The identifier of the process being invoked, as declared in the process's formal declaration.

actual-parameter
A constant, an expression, the identifier of a procedure or function, or a variable of an
appropriate type. (Pascal passes parameters as described in Section 6.6.)

predeclared-parameter
One or a combination of the predeclared parameters described below.

Pascal Statements 5-15

Predeclared Parameters

The compiler automatically declares the formal parameters DESC, NAME, PRIORITY,
RELATION, STACK_SIZE, and STATUS for each process you create. Those parameters permit
the kernel to obtain and to pass control information about a process.

Note
Because the order in which the predeclared parameters are declared is not
within your control, DIGITAL recommends that you use the nonpositional
syntax described in Section 6.6.1 to avoid possible incompatibilities among the
MicroPower /Pascal versions.

DESC := process-descriptor
The identifier of the descriptor variable to use for this invocation of the process. Process
descriptor must be a variable of predefined type PROCESS_DESC. That variable will be
initialized with the process's identifier when the process is invoked. Thereafter, you may
reference that variable in process-management requests (Chapter 12) to identify a process.
If you do not specify a descriptor variable, the process can be referenced by name only.
You should specify a new descriptor variable for each concurrent process.

NAME := process-name
The name of a particular invocation of a process. Process-name must be a 6-character
string. If you use fewer than six printing characters, you must pad the string with trailing
spaces. You may specify the name either as a string constant or as a variable that contains
the string. Uppercase and lowercase versions of the same character are treated as unique.
You may supply a default value for this parameter by specifying the NAME attribute in the
process heading (see Section 10.2.14).

PRIORITY := process-priority
The execution priority of a process. Process-priority must be an integer value in the range
0 to 254 that specifies the priority. The highest priority, 255, can be specified only with the
predeclared procedure CHANGE_PRIORITY (see Section 12.1). The default priority value
for a process is the priority of the program or process that invoked it. You may change
the default value for this parameter by specifying the PRIORITY attribute in the process
heading (see Section 10.2.19).

. { DEPENDENT }
RELATION .= INDEPENDENT

The relationship between the invoked process and the parent process-the process from
which the invocation is issued-with regard to the accessibility and visibility of variable
data.

• DEPENDENT (default)

The invoked process is dependent on the parent process for access to intermediate-level
nonstatic local variables or for access to variable data passed as parameters that is locally
defined within the parent (see Rules below). With this option in effect, the Pascal OTS
will not allow a parent process to exit before its dependent process exits.

5-16 Pascal Statements

• INDEPENDENT

The invoked process is not dependent on the parent process either for access ·to
intermediate-level nonstatic local variables or for access to variable data passed as
parameters that is locally defined within the parent (see Rules below). With this option
in effect, the Pascal OTS will allow the parent process to exit before an independent
process exits.

STACK_SIZE := stack-size
The number of bytes of memory to allocate for a process's stack. The stack-size value you
select must be a positive integer constant in the range 0 to 65 ,532, must be a multiple of 4,
and must be less than the value specified for the DATA_SPACE attribute. You may change
the default value, 400 bytes, for this parameter by specifying the STACK_SIZE attribute (see~
Section 10.2.22) in the process heading. The steps to follow for determining an appropriate
STACK_SIZE value to specify are provided in the description of the STACK_SIZE attribute
(see Section 10.2.22).

ST A TUS := status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in that variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Rules

a. The formal parameter list in the heading of the process declaration determines the possible
contents and the order of the actual parameter list. The actual parameters must be compatible
with the formal parameters. Depending on the types of the formal parameters, the actual
parameters can be constants, variables, expressions, or routine identifiers.

b. You may omit parameters for which a default value has been specified in the formal
parameter list (see Section 6.6.2).

c. If you invoke a named process so it is concurrent with a previous invocation of itself, you
should supply new NAME and DESC parameters to avoid a conflict with those used in
the first invocation. If you do not supply a new name, a run-time exception condition
will occur. If you do not supply a new descriptor, the kernel will reinitialize the default
descriptor and will use it as the descriptor for the current invocation of the process.

d. Unless the variable is statically allocated, the parent process should not declare a variable
passed by VAR semantics to a process invoked with RELATION:= INDEPENDENT.

Note
Statically allocated variables are created either when you declare them at
the highest program level or when you use the AT, EXTERNAL, GLOBAL,
or STATIC attributes.

e. A variable of the pointer type passed to a process invoked with RELATION ·=
INDEPENDENT should not point to a data item declared in the parent process unless
that data item is statically allocated.

Pascal Statements 5-17

f. A variable of a structured type passed by VAR or by value semantics to a process invoked
with RELATION := INDEPENDENT should not contain components that contradict the
requirements of Note e.

g. A parent process should not deallocate (DISPOSE procedure) a dynamic variable passed by
VAR semantics to a process invoked with RELATION:= INDEPENDENT.

h. A process invoked with RELATION := INDEPENDENT that is (lexically) declared within the
parent process may access only those variables declared at the outermost (program) level or
intermediate-level variables that are statically allocated.

i. If a process, invoked from within a routine, is passed local variable data by VAR semantics,
the routine must not exit before the process terminates. Failure to observe this rule may
result in erroneous data. Variable data passed to a process invoked in this way must be
d~clared either at the outermost (program) level or be statically allocated.

Examples

1. Suppose that you have the following process declared:

[NAME ('Task_1'), PRIORITY (14), STACK_SIZE (1500)]
PROCESS Task (Inq_No: INTEGER);

The process begins running in response· to the following invocation statement:

Task(!, PRIORITY:=32, STACK_SIZE:=2500, NAME:='Task_2', DESC:=Pdesc);

The process will have parameter value I, a stack size of 2500, a priority of 32, and a name
of 'Task_2', and its descriptor will be stored in variable Pdesc.

2. The following example shows two invocations of the same process. In the first invocation,
the process is given the default name 'Procl ', which was specified in the process heading
by the NAME attribute. The second invocation of the process is named 'Proc2 '.

VAR Pname : PACKED ARRAY[1 .. 6] OF CHAR;

[NAME('Proc1 ')]PROCESS Task(I:INTEGER);
BEGIN

END;
BEGIN

Task(!); (*This will have the default name 'Proc1 ' *)

Pname : = 'Proc2 ' ;

Task(!, NAME:=Pname); (*This will have the name 'Proc2' *)

END.

5-18 Pascal Statements

3. The following example shows two unnamed invocations of process P2, in which a descriptor
is provided only for the second invocation.

VAR
Pdsc, Newdsc : PROCESS_DESC;

[PRIORITY(27)] Process P2(I:INTEGER);
BEGIN

P2(I); (*The descriptor is disregarded. *)
P2(I, Desc:= Newdsc); (*The descriptor is put in*)

(* Newdsc. *)
END;

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; illegal PRIORITY or STACK_SIZE

parameter value

ES$NMK (type: RESOURCE)-Insufficient space for kernel structure; the process could not be
created

ES$SNI (type: SYSTEM_SERVICE)-Structure name in use; a kernel structure already exists
with the name you specified for the process

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to buffer or structure is odd or

not in user address space

Pascal Statements 5-19

5. 10 REPEAT Statement
The REPEAT statement groups one or more statements for execution until the specified condition
is true.

Syntax

REPEAT {statement}; ... UNTIL expression

statement
A simple or a structured statement.

expression
A Boolean expression.

The format of the REPEAT statement lets you include several statements between the reserved
words REPEAT and UNTIL without specifying them as a part of a compound statement.
Because the expression is evaluated after the statements are executed, the REPEAT group is
·always executed at least once.

Example

Assume that the variable X is of type CHAR and that the variables Digit_Count, Digit_Sum,
and Char_Count are integers. The example reads a character (X). If X is a digit, the count of
digits is incremented by 1, and the sum of digits is increased by the value of X. The ORD
function, described in Section 8.18, computes the value of X. If X is not a digit, the variable
Char_Count is incremented by 1. The example continues processing characters until it reaches
an end-of-line condition.

REPEAT
READ(X);
IF (X IN ['0' .. '9'])
THEN

BEGIN
Digit_Count := Digit_Count + 1;
Digit_Sum := Digit_Sum + ORD(X) - ORD('O');

END
ELSE Char_Count := Char_Count+1;

UNTIL EOLN(INPUT);

5-20 Pascal Statements

5. 11 WHILE Statement
The WHILE statement causes a statement to be executed while a specified condition is true.

Syntax

WHILE expression DO statement

expression
A Boolean expression.

statement
A simple or a structured statement.

The WHILE statement causes the statement following the word DO to be executed while the
expression is true. Unlike the REPEAT statement, the WHILE statement controls the execution
of only one statement. Hence, to repeatedly execute a group of statements, you must use a
compound statement. Otherwise, Pascal repeats only the single statement immediately following
the word DO.

The expression is evaluated before the statement is executed. If the expression is initially
false, the statement is never executed. The repeated statement must change the value of the
expression; otherwise, the result is an infinite loop.

Examples

1. This statement skips to the end of the text file FILEl.

WHILE NOT EDF (FILE1) DO
READLN (FILE1);

2. This example reads an input character from the current line on the terminal. If the character
is not a digit or a letter, the error count (ERR) is incremented by 1.

WHILE NOT EOLN(INPUT) DO
BEGIN

READ(X);
IF NOT (X IN ['A' .. 'Z ' , 'a' .. 'z ' , 'O' .. '9 '])
THEN

Err : = Err + 1 ;
END;

Pascal Statements 5-21

3. After initializing Sum to 0, this program fragment repeatedly calculates a student's average
test score. If the average score falls below 90, the calculations cease, and the system prints
an informational message. If the average never falls below 90, calculations continue until
Ntests is greater than Maxtests, and no message is printed.

Sum := O;
Ntests : = 1;
Avg := 100;

WHILE (Avg >= 90) AND (Ntests <= Maxtests) DO
BEGIN

Sum := Sum + Test [NTests];
Avg := Sum DIV Ntests;
Ntests := Ntests +1;

END;
IF Avg < 90 THEN

WRITELN ('Your average dropped below 90 as of test ' Ntests:5);

5-22 Pascal Statements

5. 12 WITH Statement
The WITH statement provides abbreviated notation for references to fields of a record.

Syntax

WITH { record-variable } , ... DO statement

record-variable
The identifier of the record variable.

statement
A simple or a structured statement.

The WITH statement allows you to refer to the fields of a record directly instead of using the
record.fieldname syntax. In effect, the WITH statement opens the scope of the field identifiers,
allowing you to use them as you would use variable identifiers.

Specifying more than one record variable has the same effect as nesting WITH statements.
Thus, the following two statements are equivalent:

WITH Cat, Dog DO
Bills := Bills + Catvet + Dogvet;

and

WITH Cat DO
WITH Dog DO

Bills :=Bills + Catvet + Dogvet;

If the record Dog is nested within the record Cat, you must specify Cat before Dog. The names
must appear in the order of their declaration.

Examples

1. This statement tests the value of the field Taxes.Net and sets Taxes.Itemized to TRUE if
Taxes.Net is less than 10000.0.

VAR
Taxes : RECORD

Gross : REAL;
Net : REAL;
Bracket : REAL;
Itemized : BOOLEAN;
Paid : REAL;

END;

WITH Taxes DO
IF Net < 10000.0 THEN Itemized := TRUE;

Pascal Statements 5-23

2. The program segment in this example shows how you can use the WITH statement to
assign values to the fields of a record. The WITH statement specifies the names of the
record variables Hosp and Birthdate. The record names must be in order; that is, Hosp
must precede Birthdate. The assignment statements need specify only tl~e field names-for
example, Patient instead of Hosp.Patient and Month instead of Hosp.Birthdate.Month.

TYPE
Name= PACKED ARRAY [1 .. 20] OF CHAR;
Date = RECORD

VAR

Month : (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);
Day : 1 .. 31;
Year : INTEGER;

END;

Hosp RECORD
Patient : Name;
Birthdate : Date;
Age : INTEGER;

END;

WITH Hosp, Birthdate DO
BEGIN

Patient := 'Thomas Jefferson
Month :=Apr;
Age 236;

END;

5-24 Pascal Statements

Chapter 6
Subprograms: Procedures, Functions, and
Processes

You can usually break down a complex problem into a collection of simpler subproblems.
MicroPower/Pascal's subprogram constructs let you segment programs into procedures,
functions, and processes. You can thus isolate the individual tasks that the main program
is to accomplish. By developing and debugging each subprogram independently, you increase
the probability that the entire program will execute successfully.

6. 1 Concept of Subprograms
A subprogram is an identifiable entity consisting of definitions, declarations, and executable
statements that execute as a group. The two categories of subprograms are routines, which
consist of procedures and functions, and processes. Routines and processes are structurally
similar but semantically different.

You can either include subprograms in the main program or compile them as separate modules.
A MicroPower /Pascal program can include subprograms of the following categories:

•
•
•
•

User-created internal subprograms

User-created external subprograms written in Pascal

User-created external subprograms writt~n in MACR0-11 assembly language

Predeclared subprograms (see Chapters 8, 9, and 11 to 17)

Subprograms: Procedures, Functions, and Processes 6-1

6. 1. 1 Routines: Procedures and Functions
Both procedures and functions perform a set of closely related program steps but differ in the
context in which they are used. A procedure performs a task that does not necessarily require
or return data and is activated by an executable statement known as a procedure call, described
in Section 5.8. A function computes and returns a value of its declared result type to the
calling program or subprogram. You may call a function by naming it as an operand within an
expression where its result type is allowed (see Chapter 3). Routines execute in strict sequence;
they do not execute independently of other parts of a program.

Pascal supplies many predeclared routines that perform commonly used operations, in
cluding arithmetic operations, input and output services, and real-time requests from the
MicroP ow er/Pas cal kernel.

6. 1.2 Processes

A process is similar in structure to a routine; rather than executing in sequence, however, a
process executes concurrently-logically in parallel-with other processes in a given application
program. The process construct lets you decompose an otherwise monolithic, sequential program
into autonomous subprograms that are scheduled independently when triggered by appropriate
events. A process provides a simpler conceptual approach to solving real-time problems than
one that uses sequential programming techniques. You invoke, or create, a process by using an
executable statement known as a process invocation, described in Section 5. 9.

The real-time programming requests, described in Part Two, provide the process synchro
nization and communication services necessary for effective concurrent processing. The
MicroPower /Pascal Run-Time Services Manual describes processes and concurrent processing
in detail.

6. 1. 3 Subprogram Structure

A subprogram consists of a heading and a block. The heading identifies the subprogram and
may include a list of identifiers that the subprogram will use to exchange data with the calling
program or subprogram. The body consists of either a block or a directive. A block contains a
declaration section and an executable section.

You may create up to 14 levels of nested subprogram declarations. Declarations that are
global or external, however, must appear at the outermost, or top, program or module level-a
technique called subprogram nesting. A directive supplies information about forward-declared
and external subprograms. Subprograms must be declared in a declaration section of a main
program, module, or another subprogram before they can be called. A procedure call, function
identifier, or process invocation statement in the executable section of a main program or another
subprogram causes a subprogram to run.

Subprograms exchange data with the main program and with each other by means of function
results and identifiers called parameters. The formal parameters (parameters used within the
subprogram block) must be listed in the subprogram heading. At execution, each formal
parameter corresponds to an actual parameter provided in the subprogram call. You can invoke
a subprogram several times with different actual parameters. Pascal checks every call to a
subprogram to ensure that the types of the actual and formal parameters are compatible.

6-2 Subprograms: Procedures, Functions, and Processes

The scope of an identifier is the part of the program in which the identifier is accessible.
In Pascal, the scope of an identifier-which represents a constant, variable, type, procedure,
process, function, or a label-is the block in which the identifier is defined or declared, minus
any nested blocks that redeclare the same identifier or label. The declaration section in the main
program block introduces identifiers that are accessible in the main program and in all nested
subprograms. The declaration sections in subprogram blocks specify local identifiers. You can
use a local identifier in the subprogram that contains the local identifier's declaration and in all
nested subprograms. You can redeclare in a subprogram an identifier that has been declared in
an outer block; the identifier always refers to the declaration of most limited scope.

6.2 Subprogram Declarations
To declare a subprogram, you supply the subprogram's heading and either its block or a directive
in the declaration section of a main program, a module, or another subprogram. Normally,
you must declare subprograms before you can refer to them within a program. The FORWARD
directive, described in Section 6.5 .1, lets you escape that restriction. The subprogram declaration
provides all the information necessary to determine whether the actual parameters in a call to
the subprogram can legally be passed to the formal parameters in the declaration.

Syntax

{

procedure-heading } { directive }
function-heading ;
process-heading block

procedure-heading
A procedure heading (see Section 6.2.1).

function-heading
A function heading (see Section 6.2.2).

process-heading
A process heading (see Section 6.2.3).

directive
The FORWARD, SEQl l, m EXTERNAL directives (see Section 6.5).

block
Defined as follows:

I
constant-declaration
label-declaration
type-definition
variable-declaration
subprogram-declaration

) ... BEGIN [{statement}; ... ll END

Subprograms: Procedures, Functions, and Processes 6-3

constant-declaration
A constant declaration, as defined in Section 4.1.

label-declaration
A label declaration, as defined in Section 4.2.

type-definition
A type definition, as defined in Section 4.3.

variable-declaration
A variable declaration, as defined in Section 4.4.

subprogram-declaration
A subprogram declaration, as defined above.

statement
One of the MicroPower/Pascal statements, described in Chapter 5.

6.2. 1 Procedure Heading Syntax
The following syntax diagram defines the procedure heading:

Syntax

[[{ attribute } , ...]] PROCEDURE procedure-identifier
[(formal-parameter-list)] ;

attribute
GLOBAL, EXTERNAL, INITIALIZE, and TERMINATE attributes. The GLOBAL and
EXTERNAL attributes may be used only on procedures declared at the outermost level
of a program or module. (See Chapter 10 for more information on attributes.)

procedure-identifier
The identifier to be used when calling the procedure.

formal-parameter-list
The identifiers and types of the formal parameters (see Section 6.3).

Example

PROCEDURE Put_Data
(VAR Buffer: [UNSAFE] Big;

Byte_Count: INTEGER);

6.2.2 Function Heading Syntax
The following syntax diagram defines the function heading:

Syntax

[[{ attribute } , ...]] FUNCTION function-identifier
[(formal-parameter-list)] : result-type-identifier ;

6-4 Subprograms: Procedures, Functions, and Processes

attribute
GLOBAL and EXTERNAL attributes, which may be used only on functions declared at the
outermost program or module level. (See Chapter 10 for more information on attributes.)

function-identifier
The identifier to be used when invoking the function and the name of the function result.

formal-parameter-list
The identifiers and types of the formal parameters (see Section 6.3).

result-type-identifier
The data type of the value returned by the function.

Example

FUNCTION Count_substr
(VAR String: [READONLY] PACKED ARRAY
[Ls .. Us: INTEGER] OF CHAR; VAR Key: [READONLY] PACKED ARRAY
[Lk .. Uk: INTEGER] OF CHAR): INTEGER;

6.2.3 Process Heading Syntax
The following syntax diagram defines the process heading:

Syntax

[[{ attribute } , ...]] PROCESS process-identifier
[(formal-parameter-list)] ;

attribute
CONTEXT, GROUP, NAME, PRIORITY, STACK_SIZE, GLOBAL, and EXTERNAL at
tributes. The GLOBAL and EXTERNAL attributes may be used only on processes de
clared at the outermost level of a program or module. (See Chapter 10 for more information
on attributes.)

process-identifier
The identifier to be used when invoking the process.

formal-parameter-list
The identifiers and types of the formal parameters (see Section 6.3).

Example

[PRIORITY(10), STACK_SIZE(100), NAME ('DRIVER')] PROCESS Driver;

6.3 Formal Parameters
A formal parameter establishes a logical data path between a subprogram and its caller and
specifies the characteristics of that data. A formal parameter may be used to provide a data
value to a subprogram or to return a value to the calling program or subprogram. The function
result is a special case of a parameter and returns only data. Parameters used purely to supply
data to a subprogram may be specified as value parameters. Parameters that return values to

Subprograms: Procedures, Functions, and Processes 6-5

the caller are specified as variable (VAR) parameters. Parameters that allow a calling block to
pass a routine are specified as procedure and function parameters.

MicroPower /Pascal lets you declare formal parameters that can accept arrays of different sizes.
By using the conformant array syntax, a subprogram can process arrays of different sizes within
specified bounds.

You can also associate a default value with a formal value or variable parameter when you
declare it, so you need only specify an actual parameter if you want to pass a different value
or address (see Section 6.6.2).

6.3. l Formal Parameter List
A formal parameter list is composed of parameter sections. A parameter section introduces
one or more formal parameter identifiers and indicates how they will be interpreted within the
subprogram.

Syntax

{

value-parameter-section }
variable-parameter-section
procedure-parameter-section '· · ·
function-parameter-section

value-parameter-section
Parameters to be used only to input data (see Section 6.3.2).

variable-parameter-section
Parameters to be used for both input and output (see Section 6.3.3).

procedure-parameter-section
Parameters that identify a procedure and its parameters to the subprogram (see Section
6.3.4).

function-parameter-section
Parameters that identify a function and its parameters to the subprogram (see Section 6.3.4).

The following subsections describe the semantics of parameter passing in Pascal and the use of
each kind of parameter.

6.3.2 Value Parameters
By the rules of value semantics, a formal value parameter acts like a local variable within the
called subprogram. During execution, the value of an actual parameter is passed to the called
subprogram to initialize the formal parameter. When control returns to the calling block, the
formal parameter value is not retained. If the called subprogram assigns a new value to the ·
formal parameter, the change is therefore not reflected in the calling block.

You may specify a default for a value parameter to omit commonly used parameters from an
actual parameter list.

6-6 Subprograms: Procedures, Functions, and Processes

Syntax

{ identifier } , ... : [[{attribute} , ...]]
type-identifier [:= default-value]

identifier
The name of a formal parameter. Multiple identifiers must be separated with commas.

attribute
READO NL Y, UNSAFE, and VOLATILE attributes. (See Chapter 10 for more information
on attributes.)

type-identifier
The type identifier of the parameters in this section.

default-value
A variable identifier or a constant for the parameter if no actual parameter is provided when
the subprogram is invoked (see Section 6.6.2).

Rules and Defaults

•

•

•

•

•

A default value for a value parameter declaration is used in place of the actual parameter
value when that parameter is omitted from the actual parameter list. If you specify a
variable identifier as the default, the contents of that variable will be used. A NIL default
is interpreted as having the value 0.

When a formal value parameter has the UNSAFE attribute, the types of the actual parameters
passed to it are not checked for compatibility; their allocation sizes, however, must be the
same.

A variable specified as a default must have been declared at the outermost program or
module level prior to this reference.

The type of a constant or variable specified as a default must be identical to that of its
corresponding formal parameter.

The NIL default may be used only with a formal parameter that is of a pointer type .

Examples

1. This example shows how you can disable type checking on actual parameter values.

PROCEDURE P1(X: [UNSAFE] INTEGER:= 0);

The procedure Pl has one parameter, X, of type INTEGER. The UNSAFE attribute disables
type checking on actual parameter values. If no actual parameter is specified when Pl is
called, a parameter value of 0 is assumed.

2. This example demonstrates the use of default value parameters.

Subprograms: Procedures, Functions, and Processes 6-7

TYPE
iptr = AINTEGER;

VAR
i : INTEGER;
p : iptr;

PROCEDURE z (y

BEGIN
END;
BEGIN

x
w

INTEGER := i;
iptr := p;
iptr :=NIL);

z; { use defaults for y, x, and w }
z(i, ,p); {use default for x}
z(w := p); { use defaults for y and x }
z(, ,p); {use defaults for y and x}

END.

6.3.3 Variable (VAR) Parameters
Pascal uses variable semantics to pass data to a formal parameter that is preceded by the
reserved word VAR. Such a parameter is called a formal VAR parameter. By the rules of
variable semantics, the formal variable parameter represents the address of a variable in the
called subprogram. The subprogram accesses the actual variable directly to obtain its value
rather than accessing a copy of it, as with value semantics. Thus, the subprogram can assign a
new value to the formal parameter during execution, and the changed value will be reflected
immediately in the calling block.

You may specify a default for a VAR parameter to omit a commonly used parameter from the
actual parameter list. The default denotes the address of the specified variable.

Syntax

{

{identifier} , ... : [[{ attribute } , ...] D }
VAR type-identifier [:= default-address D

identifier : conformant-array

identifier
The name of a formal parameter. Multiple identifiers must be separated with commas.

attribute
READONLY, UNSAFE, VOLATILE, and WRITEONLY attributes. (See Chapter 10 for more
information on attributes.)

type-identifier
The type identifier of the parameters in this section.

default-address
The default for the parameter (a variable identifier, an unsigned integer, or NIL) if no actual
parameter is provided when the subprogram is invoked (see Section 6.6.2). The NIL default
is interpreted as an unsigned integer oi 0; that is, address 0.

conformant-array
Declaration of the formal parameter as a conformant array (see Section 6.3.3.1).

6-8 Subprograms: Procedures, Functions, and Processes

Rules and Defaults

• A default for a VAR parameter declaration is used in place of the actual parameter when
that parameter is omitted from the actual parameter list. If you specify a variable identifier
as the default, the address of that variable will be used. If you specify an unsigned integer,
that value is taken as an address.

• A variable specified as a default parameter must have been declared at the outermost
program or module level prior to this reference.

• The type of a variable specified as a default parameter must be identical to that of its
corresponding formal parameter definition.

• An unsigned integer specified as a default parameter is not checked for type identity with
its corresponding formal parameter.

Rules for effecting the use of default parameters in actual parameter syntax are provided in
Section 6.6.2.

Application Notes

Because no copy is made of the actual VAR parameter, you can save storage space by using
formal VAR parameters instead of value parameters. This technique can be especially helpful
when you are passing actual parameters that require large amounts of storage space. However,
to use a VAR parameter as an efficient substitute for a value parameter, you:

• Must not modify the actual parameter

• Should not refer to the actual parameter by more than one name within the same block (for
example, by reference to a program-level variable)

Examples

1. Two examples of VAR declaration sections follow:

VAR A : List;
VAR Valid : BOOLEAN;

Subprograms: Procedures, Functions, and Processes 6-9

2. The following example illustrates how passing a large array to a formal VAR parameter
differs from passing it to a value parameter:

TYPE
Big_Array =ARRAY [0 .. iOOO] OF REAL;

PROCEDURE Reverse
(VAR In_Array, Out_Array : Big_Array);
VAR

I, J : INTEGER;
BEGIN

J := 0;
FOR I := iOOO DOWNTO 0 DO

BEGIN
Out_Array [I] In_Array [J] ;
J := J + i;

END;
END;

VAR
Ai, A2 Big_Array;

Reverse (Ai, A2);
Reverse (Ai, Ai);

(* Would execute successfully *)
(* Would fail *)

The second call to the Reverse procedure would fail to execute as you expect, because
you are using the same array for both input and output. Since Al is being passed to a
VAR parameter, the procedure accesses Al directly and modifies the input values as the
procedure writes the values of the formal parameter into Al.

3. This example demonstrates how you can use default VAR parameters.

TYPE
iptr = -INTEGER;

VAR
i : INTEGER;
p : iptr;

PROCEDURE z (VAR y
VAR x

INTEGER := i;
iptr := p;

BEGIN
END;
BEGIN

z;
z(i, ,p);
z(i,p);
z(v := p);
z(, ,p);

END.

VAR v iptr := %O'i0000') ;

{ use defaults for y, x, and v }
{ use default for x }
{ use default for v }
{ use defaults for y and x }
{ use defaults for y and x }

6-10 Subprograms: Procedures, Functions, and Processes

6.3.3. 1 Conformant Arrays

Some programming applications require general purpose subprograms that can process arrays
or character strings with different bounds. For example, you could write a procedure that finds
the minimum, maximum, and average of the components of a 1-dimensional array of integers.
Similarly, you could write a function that returns the number of times one string occurs in
another. Your subprogram would then ·treat the formal parameter as though its bounds were
those of the actual. Unfortunately, since two arrays of different sizes are not of the same type,
you could not define the type of a formal parameter that would accept both arrays.

A conformant array represents a collection of array types having the same component type
but different dimension bounds. The bounds of an actual parameter are available within
the subprogram through additional identifiers declared in the formal conformant array. A
conformant array can be specified only in a variable-parameter section of a formal parameter
list.

Syntax

Form 1

[[{attribute} , ...]]
ARRAY [{lower-bound-identifier .. upper-bound-identifier :

. d 'd 'fi }] OF { type-identifier } m ex-type-1 enh er ;... f
con ormant-array

Form 2

[[{attribute} , ...]]
PACKED ARRAY [lower-bound-identifier .. upper-bound-identifier :

index-type-identifier] OF CHAR

attribute
READONL Y, VOLATILE, and WRITEONLY attributes. (See Chapter 10 for more information
on attributes.)

lower-bound-identifier
The lower bound of the conformant array's index.

upper-bound-identifier
The upper bound of the conformant array's index.

index-type-identifier
The ordinal type of the index.

type-identifier
The type of the array components.

Subprograms: Procedures, Functions, and Processes 6-11

Rules and Defaults

• You must use type identifiers to specify the type of the index; they may be of any ordinal
type.

• The upper- and lower-bound identifiers are implicitly declared as_ READO NL Y ~alue
parameters and may be referenced only within the subprogram block.

• Unless the conformant array is packed, the component may be either a type identifier or
another conformant array.

Note
Except for PACKED ARRAY OF CHAR, MicroPower/Pascal does not allow
packed conformant arrays.

• Two conformant arrays are compatible if both their index types and components are
compatible.

Examples

1. This example shows a 1-dimensional conformant array.

PROCEDURE Sub_string
(VAR A: PACKED ARRAY [I .. J: INTEGER] OF CHAR;
VAR B: PACKED ARRAY [L .. M: INTEGER] OF CHAR;
Start, Len: INTEGER);

VAR
Temp: INTEGER;

BEGIN
IF (I > Start)

OR (J < Start + Len)
OR (L > Start)
OR (M < Start + Len)

THEN WRITELN('?Bad strings')
ELSE

BEGIN
FOR Temp := Start TO Start + Len DO

A[I + Temp - Start] := B[Temp];
FOR Temp := I + Len TO J DO A[Temp]

END;
END (* Sub_string *) ;

The string specified by A is filled with a number of characters, specified by Len, from the
string specified by B, beginning at Start. A is filled with spaces after the substring is placed
in it. The bounds of the arrays are checked to make sure that the substring operation
requested is legal.

2. A conformant array can have more than one dimension, as in this example.

6-12 Subprograms: Procedures, Functions, and Processes

TYPE
Level_Range = 1 .. 6;
Nclasses = 1 .. 8;
Nstudents = 1 .. 40;
Names= PACKED ARRAY [1 .. 35] OF CHAR;

PROCEDURE Kid_Count
(VAR School :
ARRAY [Grade_Low .. Grade_High : Level_Range;

Units_Low .. Units_High : Nclasses;
Pupils_Min .. Pupils_Max : Nstudents]

OF Names);

This example declares School as a 3-dimensional conformant array parameter. Each array
passed to School might contain the names of all the students in a particular elementary
school. The indexes of the array denote the number of grades in the school, the number of
classes at each grade level, and the number of students in each class.

3. To pass character strings, which are interpreted as constants, as conformant array parameters,
the corresponding formal parameter must be declared as a VAR PACKED parameter with
the READONLY attribute (see Sections 6.6.4 and 10.2.21). The reason is that conformant
arrays must be declared as VAR parameters, and character strings passed as VAR parameters
must be declared READO NL Y. The following example shows this:

FUNCTION Search (* Return TRUE if String_A *)
(* occurs in String_B *)

(VAR String_A: [READONLY]PACKED ARRAY [J .. K:INTEGER]
OF CHAR;

VAR

VAR String_B: [READONLY]PACKED ARRAY [M .. N:INTEGER]
OF CHAR): BOOLEAN;

I, Count : INTEGER;
Found, Match : BOOLEAN;

BEGIN
I := O;
Found := FALSE;
WHILE (NOT Found) AND (I <= (N - M)) DO

BEGIN
Count := O; Match := TRUE;
WHILE Match AND (Count <= (K - J)) AND

(Count + I <= (N - M)) DO
BEGIN

IF NOT String_A [J + Count]
String_B [M + I + Count])

THEN
Match := FALSE;
Count :=Count + 1;

END;
IF Match AND (Count (K - J + 1))

THEN Found := TRUE;
I := I + 1;

END;
Search := Found;

END;
BEGIN (* Main Program *)

Subprograms: Procedures, Functions, and Processes 6-13

Found:= Search ('keyword', Some_character_array):

Found:= Search ('abc' ,'aababbabcabd');

END.

6.3.4 Procedure and Function Parameters
Formal procedure and function parameter semantics allow you to declare a formal parameter
that is a procedure or a function. Thus, the calling block can pass a procedure or a function to
a subprogram.

Syntax

{
procedure-heading }
function-heading

procedure-heading
The procedure heading to be passed by this parameter (see Section 6.2.1).

function-heading
The function heading to be passed by this parameter (see Section 6.2.2).

The identifiers listed in the formal parameter list of a formal procedure ·or function parameter
are not accessible outside the routine declaration. The identifiers merely indicate the number
and types of actual parameters necessary. You refer to those identifiers only when you use
nonpositional syntax to pass the routine parameter (see Section 6.6.1).

Examples

1. This parameter includes a function name along with its own formal parameter list, result
type, and value parameter.

(FUNCTION Operation (Left, Right : REAL) : REAL;
Result : REAL)

2. This specification allows you to pass a procedure to the subprogram declared with this
formal parameter list.

(PROCEDURE Display_Status (Error_Code : INTEGER));

6.3.5 Predeflned Process Parameters
In addition to any formal parameters that you may declare, the compiler automatically declares
the formal parameters DESC, NAME, PRIORITY, RELATION, STACK_SIZE, and STATUS for
each process. Those parameters allow you to specify the name, descriptor variable, execution
priority, stack size, and error status for each invocation of a process (see Section 5.9). You
may specify default values for the NAME, PRIORITY, and STACK_SIZE parameters when you
declare a process by using their like-named attributes NAME, PRIORITY, and STACK_SIZE,
described in Chapter 10.

6-14 Subprograms: Procedures, Functions, and Processes

6.4 Subprogram Blocks and Scope of Identifiers
A subprogram block, like a program block, contains a declaration section and an executable
section. The declaration section defines labels and identifiers for constants, types, variables,
procedures, processes, and functions that are available within the block. An identifier defined
in the declaration section may be used in subsequent declarations and definitions. The labels
and identifiers declared in the block are local to the subprogram and are unknown outside its
scope.

By default, all local variables are automatically allocated and deallocated; that is, the system
does not retain the values of local variables once a subprogram completes execution. Because
subprogram-level variables are automatically allocated, each call to a subprogram creates space
for all local variables. You can therefore call a subprogram recursively without affecting the
values held by the variables at prior activations of the subprogram. To preserve the value of a
local variable (not the copy) from one invocation to the next, you must declare the local variable
with the STATIC attribute (see Section 10.2.23).

The executable section of the block contains the statements that perform the actions of the
subprogram. You can cause an exit from a subprogram block by a GOTO statement to a
label outside the block of a routine or in the case of a process, by issuing a STOP real-time
programming request.

6.4. 1 Scope of Identifiers

In Pascal, the scope defines the legal limits of an identifier's accessibility. The scope of an
identifier extends from the point at which its declaration or definition appears to the end of
the block, minus any nested blocks that redeclare or redefine the identifier. The existence of
scope rules helps limit the declaration or definition of an identifier to that part of the program
in which it is used. You can take advantage of scope rules to use an identifier more than once
within a program and give it different meanings. You should, however, limit the redefinition
of identifiers to very short names, such as I, J, and X, to avoid confusion. The following rules
of scope apply to Pascal identifiers:

• A previously declared identifier can be redeclared by a nested block.

• Identifiers declared in the main program block are accessible at all levels of the program;
that is, their scope is the entire program.

• A procedure identifier can be redeclared within its own declaration section.

• A function identifier can also be redeclared except in the outermost subprogram-level
declaration section. Because a function identifier must have a value assigned to it, it can be
redeclared only in a nested subprogram.

• Formal parameter names follow the same rules of scope as identifiers declared within the
block. A formal parameter name can be redeclared only in a nested subprogram.

• Label definitions follow rules of scope similar to those of identifiers. The scope of a label is
the block in which it is declared, minus any nested blocks that redefine the label number.
You can therefore transfer control from one block to an enclosing block, but you must
follow certain restrictions, as outlined in Section 5.5.

Subprograms: Procedures, Functions, and Processes 6-15

Caution
If, within the block of a routine (procedure or function), you declare a
process that accesses data from higher-level local (nonstatic) variables, you
must ensure that the routine does not exit before the process terminates.
Otherwise, the process should access only data that is static, t9 avoid
erroneous results. Statically allocated variables are created either when you
declare them at the outermost level of a program or module or when you
use the AT, EXTERNAL, GLOBAL, or STATIC attributes.

Example

This example shows the scope of identifiers that appear in several blocks in a program.

VAR A, B : INTEGER;

PROCEDURE Level1a (Z, Y : INTEGER);
TYPE C = ARRAY [1 .. 35] OF CHAR;
VAR D, E : C;

END; (* end procedure Level1a *)

PROCEDURE Level1b (V, U: CHAR; VAR T INTEGER);

FUNCTION Level2:REAL;
VAR B : BOOLEAN;

END; (* end function Level2 *)

END; (* end procedure Level1b *)

Because of Pascal's scope rules, the following statements about the identifiers declared in the
example are true:

•

•

•

Variables A and B are accessible everywhere in the program, and except in function Level2,
which redeclares B as a BOOLEAN variable, they are treated as integers.

Type identifier C and variables D and E are declared in procedure Levella and are accessible
in that block. The scope of C, D, and E, however, does not include the part of the program
that is outside the declaring procedure. You could not, for example, use the variable E in
procedure Levellb, because that block is outside the scope of the identifier E.

Function Level2 redeclares the identifier B so it is a BOOLEAN variable rather than an
integer. Inside Level2, B is treated as BOOLEAN, but elsewhere in the program, B is still
interpreted as an integer. You may not redeclare B within the scope of the main program
block, because B has already been declared there as an integer.

6-16 Subprograms: Procedures, Functions, and Processes

• ThE! identifier Levella is declared as a procedure name at the outermost level of the
program. Levella could have been redeclared in its own declaration section in addition to
the procedure's local identifiers C, D, and E (which were already declared).

• The identifier Level2 is declared as a function name within procedure Levell b. Level2
cannot be redeclared within its own declaration section but could be redeclared within any
nested blocks.

• The formal parameters V, U, and T in procedure Levellb cannot be redeclared as local
identifiers within that procedure but could be redeclared within the nested block of function
Level2.

6.4.2 Function Result

Within a function block, the function identifier acts much like a variable and is called the function
result. Any attributes associated with the function result apply only within the function block.
When the function is called, its result is undefined. A function block should include at least one
statement (for every potential path through the code) that as.signs a value of the result type to
the function identifier. The function result is the last value assigned to the function identifier.
When the function finishes executing, its result is returned to the calling block.

Note
The compiler checks that at least one assignment to the function result is within
the body of the function. If multiple paths through the code exist, however,
the compiler will not verify that an assignment to the function result is on each
path.

The function result may be of any scalar, record, array, set, or pointer type but may not be a
file type or a structured type having a file component. Although it may appear in expressions,
assignment(:=) is the only operation allowed on the function result. You cannot access individual
array components or record fields of the function result; nor can you access the storage to which
a function result of a pointer type refers. You cannot pass a function identifier to a formal
VAR parameter, and you cannot use the function identifier as the parameter to the predeclared
ADDRESS function (see Section 8.2).

A subprogram block may refer to a function identifier declared in an enclosing block but only
for the purpose of assigning a value to it. If you use the function identifier as an expression
within its own executable section, the result is a recursive call to the function rather than a
variable reference.

6.4.3 Subprogram Examples
The following examples show complete procedure, function, and process declarations:

1. This procedure computes the minimum, maximum, and average values in array A. Min,
Max, and Avg are formal VAR parameters. Their values are returned to the calling block
and can be used in further computations in the program. A is specified as a value parameter,
because the procedure is concerned only with the values in the array; the array is not an
output of the procedure.

Subprograms: Procedures, Functions, and Processes 6-17

PROCEDURE Min_Max_Avg
(VAR A : ARRAY [L .. H:INTEGER] OF range;
VAR Min, Max: Range; VAR Avg: REAL);

VAR
Sum, J : INTEGER;

BEGIN
Max A[L];
Min := Max;
Sum := Max;
FOR J := L+1 TO H DO

BEGIN
Sum := Sum + A[J];
IF A[J] > Max
THEN

Max := A[J];
IF A[J] < Min
THEN

Min := A[J];
END;

Avg:= Sum/(H - L+1);
END;

2. This function uses two VAR parameters: String and Key. Count_substr returns an integer
value indicating the number of times Key appears within String.

FUNCTION Count_substr
(VAR String: [READONLY] PACKED ARRAY [Ls .. Us: INTEGER] OF CHAR;
VAR Key: [READONLY] PACKED ARRAY [Lk .. Uk: INTEGER] OF CHAR): INTEGER;

(* This function returns the number of times one substring *)
(* is found in another. *)

LABEL
10;

VAR
I, J, K: INTEGER;

BEGIN
K := 0;
FOR I := Ls TO Us - Uk - Lk + 2 DO

IF String[I] = Key[Lk]
THEN

BEGIN
FOR J := 1 TO Uk - Lk DO

IF String[I + J] <> Key[J + 1]
THEN GOTO 10;

K := K + 1;
10: END;

Count_substr := K;
END (* Count_substr *)

3. This example shows the declaration of a process that, when invoked, waits on a queue
semaphore until a packet of data becomes available, then copies it into a local buffer.

6-:-18 Subprograms: Procedures, Functions, and Processes

VAR
Queue_! : QUEUE_SEMAPHORE_DESC;
Buffer : PACKED ARRAY [O .. 511] OF CHAR;
Length : 0 .. 512;
Info : INFO_BLOCK;

[PRIORITY(10), STACK_SIZE(100), NAME ('CONSUM')] PROCESS Consumer;
BEGIN

WHILE TRUE DO
BEGIN

(* Receive one full buffer by value. *)
RECEIVE (VAL_DATA :=Buffer,

VAL_LENGTH := Length,
RET_INFO := Info,
DESC := Queue_1);

(* Process the data *)

END;
END; (* Process Consumer *)

6.5 Directives
A directive is the alternative to a block in a subprogram declaration. A directive gives the
compiler information about subprograms for which you declare the heading separately from
the body, indicated by the FORWARD directive, and subprograms that are external to a Pascal
program, indicated by the EXTERNAL and SEQl 1 directives.

To specify a directive, include it as the last item in the subprogram heading and follow it with
a semicolon (;). Directives are recognized only in that position in the heading. When you use a
directive, the heading must not be followed by a block. The following subsections describe the
two classes of directives.

6.5. l FORWARD Directive

Although Pascal requires you to declare subprograms before you refer to them, a forward
declaration allows a subprogram to reference another subprogram before its block has been
declared. For example, if two subprograms call each other recursively, a complete declaration
of both subprograms is impossible. Omitting the declaration is also impossible, because Pascal
needs information about a subprogram's formal parameters before it can compile a reference
to the subprogram. You must therefore forward-declare one of the recursive subprograms.
The forward declaration gives the compiler the information it needs, just as any other
declaration does. However, the forward declaration allows you to withhold the declaration
of the subprogram block until later in the source file.

A forward declaration consists of the subprogram heading followed by the FORWARD directive,
without a subprogram block. For example:

PROCEDURE Chestnut
(Bld : REAL; Doc : CHAR;
VAR Arc : Rec); FORWARD;

Subprograms: Procedures, Functions, and Processes 6-19

This example forward-declares thP. procedure Chestnut. The forward declaration includes only
the information shown in the example.

When you specify the block of a forward-declared subprogram, you supply only the appropriate
reserved word (PROCEDURE, FUNCTION, or PROCESS) and the subprogram name. You do
not repeat any other information that appears in the subprogram heading.

Example

This example forward-declares the function Adder. The function block appears after the
declaration of the procedure Printer. The heading of the Adder block describes its formal
parameters and result type within comment delimiters. Although you must omit the parameter
list and result type when you declare the function block, inserting them as a comment is good
documentation practice.

FUNCTION Adder (Op1, Op2, Op3 : REAL) : REAL; FORWARD;

PROCEDURE Printer (Student : Name_Array);

BEGIN

Z :=Adder (A, B, C);

END;

FUNCTION Adder (* (Op!, Op2, Op3 REAL) REAL*)

BEGIN

Printer ('Leonardo da Vinci');

END;

6.5.2 External Subprograms

The EXTERNAL and SEQll directives let you declare Pascal and MACR0-11 subprograms that
are external to a main program. Those directives specify that a. procedure, function, or process
resides in an independently compiled module (Chapter 7). The subprogram declaration within
the other module must include the GLOBAL attribute (see Section 10.2.9).

6-20 Subprograms: Procedures, Functions, and Processes

6.5.2. 1 EXTERNAL Directive

The EXTERNAL directive causes the compiler to generate a standard MicroPower /Pascal calling
sequence. Use this directive whenever you want to specify an external subprogram that you
have written either in Pascal or in MACR0-11.

The name that you use in the subprogram heading must be unique; that is, no two global
subprograms can have the same name. You may use the EXTERNAL and GLOBAL attributes
to create a global name for a subprogram that is different from the subprogram name.

MACR0-11 subprograms must be explicitly coded to respond to this calling sequence so calls
and parameters are passed correctly. Appendix B of the MicroPower /Pascal Run-Time Services
Manual provides complete specifications for this calling sequence.

Examples

1. This example declares MTH as an external routine.

FUNCTION MTH (Angle : REAL) : REAL; EXTERNAL;

2. This example declares the process Alarm. The attributes specify that the default run-time
name for the process is Alarml and that its priority is 20. The formal parameter list specifies
I as an integer parameter with a default value of 52.

[NAME('Alarm1'), PRIORITY(20)] PROCESS Alarm
(I:INTEGER:= 52); EXTERNAL;

6.5.2.2 SEQ 11 Directive

The SEQll directive causes the compiler to generate a standard PDP-11 FORTRAN calling
sequence. Use that directive whenever you want to access MACR0-11 assembly language
routines that were written to be called from a FORTRAN program. Appendix B of the
MicroPower /Pascal Run-Time Services Manual provides complete specifications for this calling
sequence. That directive is illegal in PROCESS declarations.

Note
Routine declarations using that directive must specify all parameters as variable
(VAR) parameters to ensure that they are passed correctly. Failure to comply
with this rule will not be detected by the compiler.

Example

This example declares the FORTRAN library procedure $FSTRG. The formal parameter list
specifies S as a parameter.

[EXTERNAL($FSTRG)] PROCEDURE Forstring (VARS : INTEGER); SEQ11;

Subprograms: Procedures, Functions, and Processes 6-21

6.6 Activating Procedures, Functions, and Processes
A Pascal subprogram executes in response to an activation request in the executable section of
a program or subprogram. Those requests are procedure calls, function identifiers, and process
invocations.

The syntax for activating procedures, functions, and processes is the same, but the ways in
which you use procedure calls, function identifiers, and process invocations within an executable
section are different. A procedure call and a process invocation are statements by themselves.
A function identifier cannot appear by itself; it is an expression whose resulting value is used
within an executable statement.

For example, you could invoke the procedure Yearly_Totals as follows:

Yearly_Totals (Amount_Purchased, Amount_Sold, Amount_Discount);

You might invoke the function Compute_Jnterest like this:

Earnings := Compute_Interest (Investment, 0.13, 5);

The procedure Yearly_Totals is executed for its effects; the function Compute_Jnterest is
executed to compute a value that is then assigned to the variable Earnings.

A process invocation might appear in your program as:

Move_Data (in, out, NAME:='data01', PRIORITY:= 30,
DESC:=mdesc, STACK_SIZE:= 3000)

The procedure call and process invocation are described in Chapter 5, along with the other
executable Pascal statements.

The MicroPower /Pascal language allows much flexibility in specifying the association of formal
and actual parameters. You can call a routine or invoke a process at different times with
different actual parameters. Whether an actual parameter is legal depends on the kind of formal
parameter to which it is being passed.

6.6. 1 Parameter Association
The parameter list passed during subprogram activation must include exactly one actual
parameter for each formal parameter. The actual parameter is either specified explicitly in
the activating statement or supplied as a default value in the formal parameter list of the
subprogram declaration. You may establish the correspondence between actual parameters
mentioned in the call and formal parameters by using either positional or nonpositional syntax.

Positional syntax associates actual parameters with formal parameters solely on the basis of
position in the respective parameter lists. You must specify the actual parameters in the
positional order established in the formal parameter declaration. That is, the association of
actual and formal parameters proceeds from left to right, item by item, through both lists.

Nonpositional syntax associates the actual parameters with formal parameters, without regard
to their position in the parameter lists, by specifying both the formal parameter keyword and
the actual parameter in an assignment (:=) statement. Because the association is by name,
the parameters in the call do not have to appear in the same order as the formal parameters
appeared in the declaration.

6-22 Subprograms: Procedures, Functions, and Processes

Nonpositional Syntax

{ formal-parameter := actual-parameter } , ...

formal-parameter
The parameter name specified in the formal parameter list of the subprogram declaration.

actua I-parameter
The. actual parameter to be associated with the formal parameter.

You may include both positional and nonpositional actual parameters in the same subprogram
activation statement. You must still, however, supply one actual parameter for each formal
parameter, whether it be a positional, a nonpositional, or a default parameter. If you use both
positional and nonpositional parameters, you must list the positional parameters first, separated
by commas.

Examples

1. Suppose that you have declared the following procedure:

PROCEDURE Compute_Sum (X, Y: INTEGER; VAR Z : INTEGER);

Using positional syntax, you could issue the following procedure call:

Compute_Sum (Quantity+ 6, 15, Total);

Formal parameter X is thus passed the value of Quantity+ 6; Y is passed the integer value
15; and Z is passed the variable Total.

2. Using nonpositional syntax, you could call the procedure Compute_Sum with the following
statement:

Compute_Sum (Z :=Total, X :=Quantity+ 6, Y := 15);

This call to Compute_Sum is equivalent to the call above that used positional syntax.

3. If you used both positional and nonpositional actual parameters in the same parameter list,
the call above to Compute_Sum might look like this:

Compute_Sum (Quantity+ 6, Z :=Total, Y := 15);

The first actual parameter, Quantity + 6, corresponds to the formal parameter X because
they are the first parameters in their respective lists. Since the next two actual parameters
use nonpositional syntax, you must specify the formal parameters to which they belong.

Subprograms: Procedures, Functions, and Processes 6-23

6.6.2 Default Parameters
When a call to a subprogram supplies no actual parameter for a formal parameter that was
declared with a default value, the default is used. You declare a default parameter in the formal
parameter list of a subprogram (see Sections 6.3.2 and 6.3.3).

You may use positional or nonpositional syntax (see Section 6.6.1) when selecting a default
parameter. If you use positional syntax, omit the actual parameter and indicate the position of
its default with a comma. If you use nonpositional syntax, omit the parameter from the list.
For example, suppose that you declare the following function:

FUNCTION Net_Pay
(Hours : INTEGER; Tax : REAL := 0.05;
Rate : REAL; Fica : REAL := 0.07;
Overtime : INTEGER) : REAL;

The formal parameters Tax and Fica are given default values of 0.05 and 0.07, respectively. You
need to pass actual parameters only to the formal parameters Hours, Rate, and Overtime. You
may call the function Net_pay in several ways, as illustrated in the following example:

Take_Home_Year := Take_Home_Year +
Net_Pay (Overtime := Overtime_Week, Rate := Pay_Rate, Hours := Hours_Week);

Take_Home_Year := Take_Home_Year +
Net_Pay (Hours_Week, ,Pay_Rate, , Overtime_Week);

You can override the default values of a formal parameter by associating it with an actual
parameter. For example, if you wanted to replace the default value of the formal parameter Tax
in the example above, you could call Net_Pay as follows:

Take_Home_Year:= Take_Home_Year +
Net_Pay (Hours_Week, 0.06, Pay_Rate, , Overtime_Week);

As a result, the default value of Tax would be replaced by the value 0.06, supplied in the actual
parameter list.

6.6.3 Actual Value Parameters
When a subprogram requires an actual parameter solely for an input value, you may use value
semantics to pass the actual parameter. An actual value parameter must be an expression that is
assignment-compatible with the formal value parameter to which it corresponds. Because there
is no assignment compatibility for file variables, they can never be passed as value parameters.

If necessary, the type of an actual parameter is converted to the type of the formal parameter
to which it is being passed. Pascal does so by following the same type-conversion rules it uses
to perform any other assignment. You may, for example, pass an integer expression to a formal
parameter of a real type. If the formal parameter has the UNSAFE attribute, no conversion
occurs (see Section 10.2.26).

The following formal parameter list requires three value parameters:

PROCEDURE Alpha (A, B : INTEGER; C : CHAR);

You could write the following procedure call, with X and Y as integer variables, for the procedure
Alpha:

Alpha (X+Y, 11, 'G');

6-24 Subprograms: Procedures, Functions, and Processes

The actual parameters corresponding to. A and B must be integer expressions and the actual
parameter corresponding to C must be a character expression.

6.6.4 Actual VAR Parameters

When a subprogram requires an actual parameter as output, you must use VAR semantics to
pass the actual parameter. Because the subprogram has direct access to the variable, any change
the subprogram makes to its value is reflected in the actual parameter when control returns to
the calling block. An actual parameter corresponding to a formal VAR parameter must be a
variable in an unpacked context; an actual parameter cannot be a constant unless the formal
VAR parameter has the READONLY attribute (see Section 10.2.21). You must pass file variables
as VAR parameters.

Caution
If a process invoked within a· routine is passed a local (nonstatic) variable to a
formal VAR parameter, you must ensure that the routine does not exit before
the process terminates. Otherwise, any variable data to be passed to that
process using formal VAR parameters must be static to avoid erroneous results.
Statically allocated variables are created either when you declare them at the
outermost level of a program or when you use the AT, EXTERNAL, GLOBAL,
or STATIC attributes.

When passing arrays and character strings to formal conformant array parameters, you must
make sure that the components and indexes of both parameters are of the same base type.

Before passing a character string constant to a formal packed conformant array parameter, ensure
that the formal parameter was declared READONLY (see Sections 6.3.3.1and10.2.21).

The index bounds of an actual array parameter must be within the bounds specified by the
conformant array in the formal parameter declaration.

A variable passed to a subprogram as an actual VAR parameter must have the identical type of
the corresponding formal parameter. You cannot pass a component of a packed structure to a
formal VAR_ parameter, although you can pass the entire structure.

Certain attributes of subprogram parameters affect the rules of compatibility between actual
and formal VAR parameters. The resulting modifications to structural compatibility rules are
outlined below. Those rules also apply to the corresponding components of structured types
and pointer types used as formal parameters.

• Volatility-A VOLATILE actual VAR parameter may not be passed to a formal VAR
parameter that is not VOLATILE.

• Accessibility-A READONLY actual VAR parameter can be passed only to a READONLY
formal VAR parameter. Likewise, a WRITEONLY actual VAR parameter can be passed only
to a WRITEONLY formal VAR parameter.

• Unsafe-An UNSAFE formal VAR parameter will accept an actual parameter if the size of
the actual parameter is greater than or equal to the size of the formal parameter. If the
formal parameter is declared with the READO NL Y attribute, this size restriction does not
apply.

The following formal parameter list contains three VAR parameters:

PROCEDURE Tempest (VAR Sea, Breeze : REAL; VAR Sick: Med_File);

Subprograms: Procedures, Functions, and Processes 6-25

You could call the procedure Tempest with this statement:

Tempest (Tide, Speed, Patient);

The actual parameters Tide and Speed must be variables of type REAL. The actual parameter
Patient must be a variable of the previously defined type MecLFile.

6.6.5 Actual Procedure and Function Parameters
Sometimes a subprogram requires the name of a procedure or function as an actual parameter.
When passing routines to other subprograms, you must make sure that the formal parameter
lists in both declarations are congruent. As described in Section 6.3, a formal parameter list
can have value, VAR, procedure, and function parameter sections. Two formal parameter lists
are congruent if they have the same number of sections and if the sectiorts in corresponding
positions meet any of the following conditions:

• They are both value parameter sections containing the same number of parameters of
compatible types (see Section 2.9.2).

• They are both VAR sections containing the same number of parameters. The parameters
must either be of identical types or be equivalent conformant arrays. Any attributes
associated with a formal VAR parameter affect the kinds of actual parameters that can be
passed (see Section 6.6.4).

• They are both procedure identifier sections having congruent formal parameter lists or no
formal parameters at all. '

• They are both function identifier sections with congruent formal parameter lists or no formal
parameters at all and with compatible result types.

6-26 Subprograms: Procedures, Functions, and Processes

Chapter 7
Compilation Units

The MicroPower/Pascal software permits as compilation units programs and modules. Although
the structures of the two are similar, programs have executable blocks at the outermost level,
whereas modules do not. A program can be compiled, built, and executed by itself with only
the various system modules that are included automatically. A module, on the other hand,
cannot be executed unless it is merged with a main program written in Pascal or MACR0-11.
Pascal gives you the option of writing modules that can be:

• Combined with a program and other separately compiled but logically coordinated modules
for execution as a single unit

• Developed independently from other programs or modules but used as library modules
bound into larger entities at· build time

The %INCLUDE directive simplifies program coding by allowing commonly used declarations
and statements to reside in a single file. Each compilation unit that uses these declarations and
statements references the file in a %INCLUDE directive where needed (see Section 7.3).

7. l Compilation Unit Structure
A MicroPower /Pascal compilation unit begins with a heading that identifies it as either a
program or a module.

Syntax

[[{attribute} , ...]] { ~~;J~M } identifier [({file-variable} , ...)] ;

~;;;~~:~~i~~!~ation ... BEGIN [{statement}; ...] END. [!
label-declaration I]
variable-declaration
subprogram-declaration

Compilation Units 7-1

attribute
Additional information about the compilation unit, provided through the attributes:
CONTEXT, DATA_SPACE, DEV-ACCESS, DRIVER, GROUP, INIT_PRIORITY, OVERLAID,
PRIORITY, PRIVILEGED, STACK_SIZE, and SYSTEM (see Chapter 10).

PROGRAM
The statements that make up a declaration section and an executable section to form a main
program.

MODULE
The compilation unit. A module may contain declarations, including subprograms. Any
executable statement within the module must be contained within a subprogram declaration.

identifier
The name of the program or module.

fl le-variable
The external file variables used by the program or module. MicroPower /Pascal does not
interpret the file variable list, and you need provide it only to be consistent with the
requirements of standard Pascal. In particular, MicroPower /Pascal assumes the default
program parameter declarations of INPUT and OUTPUT (see Sections 2.7 and 9.2.9).
MicroPower /Pascal also differs from standard Pascal by allowing you to redefine the
INPUT and OUTPUT identifiers at the program level.

label-declaration
A label declaration, as defined in Section 4.2.

constant-declaration
A constant declaration, as defined in Section 4.1.

type-definition
A type definition, as defined in Section 4.3.

variable-declaration
A variable declaration, as defined in Section 4.4.

subprogram-declaration
A subprogram declaration, as defined in Section 6.2.

statement
One of the MicroPower/Pascal statements, described in Chapter 5.

Restriction

Within a declaration section, CONST, LABEL, TYPE, and VAR sections should appear first,
followed .by · any subprogram declarations. However, subprogram declarations with the
EXTERNAL directive or the EXTERNAL attribute may be placed anywhere in the declaration
section.

7-2 Compilation Units

7 .3 The 0/olNCLUDE Directive
The %INCLUDE directive inserts source text from one source file into another source file
during compilation. The contents of the included file are inserted at the point where the
MicroPower /Pascal compiler encounters the %INCLUDE directive. That command can appear
anywhere that a comment is legal and is often used when the same information resides in several
compilation units. Appendix H discusses compiler limitations and the use of type definitions in
%INCLUDE files.

Syntax

%INCLUDE 'file-specification'

fl le-specification
The file to be included. You must enclose the file specification within apostrophes. Refer
to the applicable MicroPower/Pascal system user's guide for the file-specification syntax.

Rules and Defaults

• You must refrain from using the %INCLUDE directive recursively. The compiler does not
detect this error condition.

• You may not place comment text between the %INCLUDE keyword and its file-specification.

When the compiler encounters the %INCLUDE directive, the compiler saves its position in this
file and begins reading from the included file. Upon reaching the end of the included file, the
compiler resumes reading the original file at the point immediately following the %INCLUDE
directive.

An included file at the outermost level of a program is said to be included at the first level. A
file included by a first-level include file is at the second level, and so on. A program may not
include any files beyond the fifth level. Figure 7-1 illustrates the legal levels of included files.

Compilation Units 7-5

Figure 7-1: °lolNCLUDE File Levels

Main Program File: Main.Pas

%INCLUDE 'A.Pas'

Source Fil~: A.Pas ~
%1NC~UDE 'B.Pa~

Source File: B.Pas

%1NC:UDE 'C.Pa~

Source File: C.Pas

%INCLUDE 'D.Pa~

Source Fil~: D. Pas

%INCLUDE 'E.Pas'

Source File: E.Pas ~

7-6 Compilation Units

Level 1

Level 2

Level 3

Level 4

Level 5

May not have any included
files at this level.

ML0-561-87

Examples

1. The following %INCLUDE directive specifies the file CONDEF.P AS, which contains constant
definitions.

(*File CONDEF.PAS *)

Max_Class = 300;
N_Profs = 140;
Frosh = 3000;

(* Main Pascal Program *)

[SYSTEM(MICROPOWER)] PROGRAM Student_Courses;
CONST %INCLUDE 'CONDEF.PAS'
TYPE

Schedules = RECORD
Year : (FR, SO, JR, SR);
Name : PACKED ARRAY [1 .. 30] OF CHAR;
Parents PACKED ARRAY [1 .. 40] OF CHAR;
College : (Arts, Engineering, Architecture, Agriculture, Hotel)
END;

The %INCLUDE directive instructs the compiler to insert the contents of the file
CONDEF.PAS after the reserved word CONST in the main program. The main program
Student_Courses is compiled as if it contained the following:

[SYSTEM(MICROPOWER)] PROGRAM Student_Courses;
CONST

Max_Class = 300;
N_Profs = 140;
Frosh = 3000;

TYPE
Schedules = RECORD

Year: (Fr, So, Jr, Sr);
Name: PACKED ARRAY [1 .. 30] OF CHAR;
Parents PACKED ARRAY [1 .. 40] OF CHAR;
College : (Arts, Engineering, Architecture, Agriculture, Hotel)
END;

2. Although you may use %INCLUDE directives in another included file, you should not use
them recursively. If, for example, the file OUT.PAS contains a %INCLUDE directive for the
file IN.PAS, IN.PAS should not contain the command %INCLUDE for the file OUT.PAS.

Compilation Units 7-7

Chapter 8

Utility Routines

The MicroPower/Pascal software supplies predeclared procedures and functions that perform
commonly required operations. Predeclared functions always return a value that is associated
with the function name. Table 8-1 lists those routines by functional category.

Table 8-1: Utility Routines by Functional Category

Name Description

ABS

ARC TAN

cos
EXP

LN

SIN

SQR

SQRT

PRED

succ

ODD

Arithmetic Functions

Computes absolute value

Computes arctangent

Computes cosine

Computes exponential

Computes natural logarithm

Computes sine

Computes square

Computes square root

Ordinal Functions

Returns value that precedes x

Returns value that follows x

Boolean Functions

Determines whether a value is odd or even

Utility Routines 8-1

Table 8-1 (Cont.): Utility Routines by Functional Category

Name

CHR

LROUND

LTRUNC

ORD

PACK

ROUND

SHORT

TRUNC

UNPACK

UROUND

USHORT

UTRUNC

ADDRESS

DISPOSE

NEW

UAND

UNOT

UOR

UXOR

8-2 Utility Routines

Description

Transfer Routines

Converts integers to characters

Converts a real value to a long integer by rounding the fraction

Converts a real value to a long integer by truncating the fraction

Obtains ordinal position of a member of an ordinal type

Converts an unpacked array to a packed array

Converts a real value to an integer by rounding the fraction

Converts a long integer value to an integer by truncating the most significant
16 bits of the value

Converts a real value to an integer by truncating the fraction

Converts a packed array to an unpacked array

Converts a real value to an unsigned value by rounding the fraction

Converts a long integer value to an unsigned value by truncating the most
significant 16 bits of the value

Converts a real value to an unsigned value by truncating the fraction

Pointer Routines

Obtains a pointer to a variable

Deallocates memory used by a dynamic variable

Allocates memory to contain a dynamic variable

Unsigned Functions

Performs bit-by-bit AND of its parameters

Performs bit-by-bit one's complement of its parameter

Performs bit-by-bit OR of its parameters

Performs bit-by-bit EXCLUSIVE-OR of its parameters

Table 8-1 (Cont.): Utility Routines by Functional Category

Name Description

Allocation Size Functions

Obtains size, in bits, of a data item in a packed array

Obtains size, in bits, of a packed record field

BITNEXT

BIT SIZE

NEXT

SIZE

Obtains size, in bytes, of a data item in an unpacked array

Obtains size, in bytes, of a data item

The following sections describe the predeclared MicroPower /Pascal utility routines in alphabet
ical order by name.

8. 1 ABS(x) Function
The ABS(x) function computes the absolute value of a number. The parameter (x) is an
expression of type INTEGER, LONG_INTEGER, UNSIGNED, or REAL. The function returns a
result type that is the same type as the parameter.

Note
The function does not detect the presence of the overflow condition that occurs
when the parameter (x) has the integer value -32,768.

8.2 ADDRESS(x) Function
The ADDRESS(x) function returns a pointer value that references the parameter (x). The
parameter (x) is any data item that is the identifier of a variable or a formal parameter.

8.3 ARCTAN(x) Function
The ARCTAN(x) function computes the arctangent. The parameter (x) is an expression of type,
INTEGER, LONG_INTEGER, UNSIGNED, or REAL. The function result is a value of type
REAL expressed in radians.

8.4 BITNEXT Function
The BITNEXT function determines the number of bits allocated for a single component of the
specified type in a packed array. The function result is an INTEGER value.

Syntax

BITNEXT (x [{,t} ...])

Utility Routines 8-3

x
A type identifier or a variable; treated as if it were a component of that type in a packed
array.

An ordinal constant that represents a nested tag field value. The first constant of a series of
constants represents the outermost variant.

If parameter (x) is a variant, you may supply one or more additional parameters (t): the case
constant corresponding to a variant of the record. See Appendix E for the default allocation
sizes of standard data types.

Note
The BITNEXT and BITSIZE functions return the same bit size values for a
particular type, unless the components of the specified type in a packed array
would have been padded to ensure proper alignment.

8.5 BITSIZE Function
The BITSIZE function determines the number of bits allocated for a packed record field of that
type. The function returns a value of type INTEGER.

Syntax

BITSIZE (x [{,t} ...])

x
A type identifier or a variable; treated as if it were a packed record field of that type.

An ordinal constant that represents a nested tag field ·value. The first constant of a series of
constants represents the outermost variant.

If parameter (x) is a variant, you may supply one or more additional parameters (t): the case
constant corresponding to a variant of the record. See Appendix E for the default allocation
sizes of standard data types.

Note
The BITSIZE and BITNEXT functions return the same bit size values for a
particular type, unless the components of the specified type in a packed array
would have been padded to ensure proper alignment.

8.6 CHR(x) Function
The CHR(x) function returns a value of type CHAR whose ordinal position in the character set
is specified by the parameter. The parameter (x) is an integer value from 0 to 255.

8-4 Utility Routines

8.7 COS(x) Function
The COS(x) function computes the cosine of an angle. The parameter (x) is an expression of
type INTEGER, LONG-1NTEGER, UNSIGNED, or REAL that is the angle expressed in radians.
The function result is a value of type REAL.

8.8 DISPOSE(p) Procedure
The DISPOSE(p) procedure deallocates memory occupied by a dynamic variable and returns
the space to the heap. The parameter (p) is a pointer variable.

Examples

1. This example deallocates memory for the dynamic variable Ptr.

DISPOSE(Ptr);

As a result, the memory allocated for Ptr" is deallocated, and the variable is destroyed. The
value of Ptr is now undefined.

2. This program constructs a linked list of records. Each student record contains data on one
student (a name and a student ID number) and a field that is a pointer to the next record.
The program reads a number and a name and assigns each of them to a field of the student
record. Then the program inserts the new component at the beginning of the linked list by
assigning the "Start" pointer to that new record.

[SYSTEM(MICROPOWER)]PROGRAM LinkedList;
TYPE

Student_Ptr = -student_Data;
String,= PACKED ARRAY[! .. 20] OF CHAR;
Number= 1 .. 9999;
Student_Data = RECORD

VAR

Name : String;
Stud_ID : Number;
Next : Student_Ptr;

END;

Start, Student : Student_Ptr;
New_ID : Number;
New_Name : String;
Count : INTEGER;

PROCEDURE Write_Data(Student : Student_Ptr);

(* This procedure prints the list of students. Because *)
(* the printing starts at the beginning of the linked *)
(* list. the student names and ID numbers are printed in *)
(* the reverse of the order in which they were entered. *)

Utility Routines 8-5

VAR
I,J : INTEGER;
Next_Student : Student_Ptr;

BEGIN
WRITELN ('Name:', 'Student ID#: ':29);
REPEAT
WRITELN(Student-.Name : 20, Student-.Stud_ID 7);
Next_Student := Student-.Next;
DISPOSE (Student);
Student := Next_Student
UNTIL Student = NIL;

END; (* End of Write_Data *)

(* Main Program *)
BEGIN

Count := 0;
WRITELN ('Type a 5-digit ID number and a name for each student.');
WRITELN('Press CTRL/Z when finished.');
Start := NIL;
WHILE NOT EDF DO

BEGIN
READLN (New_Id, New_Name);
NEW (Student);
Student-.Next :=Start;
Student-.Name := New_Name;
Student-.Stud_Id := New_Id;
Start := Student;
Count := Count + 1;

END;
IF Count > 0
THEN

Write_Data(Start);
END.

In the main program, the WHILE loop reads a number and a name for one student. The
following procedure call allocates memory for a new student record:

NEW(Student);

The new record is inserted at the beginning of the list: at Student". "Next" points to the
previous head of the list. The value of the new student record is assigned to the Start pointer.

The Write-Data procedure writes the name and student ID number for each student in the
linked list. After writing data for one student, the procedure assigns the address of the next
record in the list to Next_Student. The following call deallocates memory for one student
record:

DISPOSE(Student);

After deallocating memory, the procedure assigns the value of Next_Student to Student. When
the current Student record points to NIL, the loop stops executing.

8-6 Utility Routines

8.9 DISPOSE Procedure: Record-with-Variants Form
Use this form of the DISPOSE procedure when manipulating dynamic variables of a record type
with variants.

Syntax

DISPOSE (p {,t} ...)

p
A pointer value with a type that points to a record with variants.

An ordinal constant that represents a nested tag field value. The first constant of a series of
constants is the outermost variant.

This form of DISPOSE releases memory occupied by the variable referenced by p. The tag
field values should be identical to those specified when memory was allocated with the NEW
procedure (see Section 8.14).

Example

DISPOSE(Menu_Selection, Beef, Oz_32);

This call deallocates the memory allocated by the last NEW procedure call. If a dynamic
variable with specified record variants was allocated by the NEW procedure, the variable should
be deallocated only by the DISPOSE procedure specifying identical record variants.

8. 1 O EXP(x) Function
The EXP(x) function computes the exponential of its parameter. The parameter (x) is an
expression of type INTEGER, LONG_INTEGER, UNSIGNED, or REAL. The function result is
a value of type REAL.

8. 11 LN(x) Function
The LN(x) function computes the natural logarithm of a number. The parameter (x) is an
expression having a value greater than 0 and must be of type INTEGER, UNSIGNED, or REAL.
The function result is a value of type REAL.

8. 12 LROUND(r) Function
The LROUND(r) function converts a value of type REAL to its representation as a long integer
by rounding any fractional part. The parameter (r) is a value of type REAL. Rounding proceeds
as follows:

• When the value (r) is positive and the fractional part of the number is 0.5 or greater, 1 is
added to the integer part.

• When the value is negative and the absolute value of the fractional part of the number is
0.5 or greater, -1 is added to the integer part.

Utility Routines 8-7

• When the absolute value of the fractional part of the number is less than 0.5, the integer
part is unaffected.

LROUND(r) returns a value that is of type LONG_INTEGER. An exception occurs if the value
is too large to be represented by a long integer value.

8. 13 LTRUNC(r) Function
The LTRUNC(r) function converts a value of type REAL to its representation as a long integer
by truncating any fractional part. The parameter (r) is a value of type REAL. The value returned
is of type LONG_INTEGER. An exception occurs if the value is too large to be represented by
a long integer value.

8.14 NEW(p) Procedure
The NEW(p) procedure allocates memory for a dynamic variable. The procedure sets aside
memory for p"-the variable to which parameter (p) refers. To access the allocated variable,
you must dereference the pointer variable by appending a circumflex n to the variable's
identifier. The value of the newly allocated variable (p") is undefined; you cannot assume that
it contains any meaningful data.

Examples

1. This example declares Ptr as a pointer to an integer variable. However, the integer variable
and its address do not yet exist.

VAR Ptr: -rnteger;

2. You use the following procedure call to allocate memory for the dynamic variable:

NEW(Ptr);

This call allocates a variable of type INTEGER in dynamically allocated heap storage. The
variable is denoted by Ptr": the pointer variable's name followed by a circumflex ("). This
call also assigns the address of the allocated integer to Ptr.

8. 15 NEW Procedure: Record-with-Variants Form
Use this form of the NEW procedure when manipulating dynamic variables of a record type
with variants.

Syntax

NEW (p {,t} ...)

p
A pointer variable with a type that points to a record with variants.

An ordinal constant that represents a nested tag field value. The first constant of a series of
constants is the outermost variant.

8-8 Utility Routines

If you create a pointer without spedfying the tag field values, the system allocates enough
memory to hold any of the variants in the record. Sometimes, however, a dynamic variable
will take values of only a particular variant. If that variant requires less memory than NEW(p)
would allocate, you can use the form shown above. Because the record-with-variants form of
the NEW procedure allocates memory for the specified variant and not for the largest variant
in the declaration, you should not assign or evaluate the entire record. You should assign and
evaluate only the individual record fields.

Example

TYPE
Menu_Ptr = ~Menu_Order;
Meat_Type = (Fish, Fowl, Beef);
Beef_Portion = (Oz_10, Oz_16, Oz_32);
Menu_Order = RECORD

CASE Entree : Meat_Type OF
Fish : (Fish_Type : (Salmon, Cod, Perch, Trout);

Lemon: BOOLEAN);
Fowl : (Fowl_ Type : (Chicken, Duck, Goose);

Sauce : (Orange, Cherry, Raisin));
Beef : (Beef_Type : (Steak, Roast, Prime_rib);

CASE Size : Beef _Portion OF

END;

Oz_10, Oz_16: (Beef_veg : (Pea, Mixed));
Oz 32 (Stomach_Cure : (Bicarbonate,

Antacid, None_Needed)));

VAR Menu_Selection : Menu_Ptr;

You can allocate memory for only the Fish variant as follows:

NEW(Menu_Selection, Fish);

The following example shows how to call NEW and to specify tag field values for nested
variants:

NEW(Menu_Selection, Beef, Oz_32);

The tag field values must be listed in the order in which they were declared.

8. 16 NEXT(x) Function
The NEXT(x) function determines the number of bytes allocated for a single component of the
specified type in an unpacked array. The function result is an INTEGER value.

Syntax

NEXT (x [{,t} ...])

x
A type identifier or a variable; treated as if it were a component of that type in an unpacked
array.

An ordinal constant that represents a nested tag field value. The first constant of a series of
constants represents the outermost variant.

Utility Routines 8-9

If parameter (x) is a variant, you may supply one or more additional parameters (t): the case
constant corresponding to a variant of the record. See Appendix E for the default allocation
sizes of standard data types.

Note
The NEXT and SIZE functions return the same byte size values for a particular
type, unless the components of the specified type in an unpacked array would
have been padded to ensure proper alignment.

8. 17 ODD(x) Function
The ODD(x) function tests whether a value is odd. The parameter (x) is a value of type
INTEGER or UNSIGNED. The function returns TRUE if the value of x is odd and FALSE if the
value of x is even.

8. 18 ORD(x) Function
The ORD(x) function returns an integer that is the position of x in the ordered sequence of
values of that type. The parameter (x) is a value of any ordinal type. The ordinal value of an
integer is the integer itself.

8.19 PACK Procedure
The PACK procedure copies the elements of an unpacked array into a packed array.

Syntax

PACK (a, i, z)

a

z

The identifier of the unpacked array. The component type of this array must be the same
as that of array z.

The index value in array a where the operation is to begin. This value must be an expression
that is assignment compatible with the index type of array a.

The identifier of the array to which the elements of array a are copied. This identifier must
be a packed array of the same component type as array a.

PACK assigns components of a, starting with a[i], to array z, starting with the first element of
z, until all the components in z are filled.

The upper bound of array a (that is, n) must be greater than or equal to i+v-u, where v is the
upper bound of array z and u is the lower bound of array z. In other words, ORD(n) > =
ORD(i) + ORD(v) -ORD(u).

8-10 Utility Routines

'The operation of PACK is equivalent to the following:

TYPE
s1 = x .. y;
s2 = u .. v;
rec = RECORD

END;

VAR
j s2;
k s1;
i s1;
a ARRAY [s1] OF REC;
z PACKED ARRAY [s2] OF REC;

BEGIN
k := i;
FOR j := u TO v DO

BEGIN

END

z [j] : = a [k] ;
IF j <> v THEN k := SUCC(k)
END

Examples

1. This program fragment assigns the components A[l] through A[20] to P[l] through P[20];
that is, all the components in A are packed into P.

TYPE
Somenums = 0 .. 15;

VAR
A : ARRAY[1 .. 20] OF Somenums;
P : PACKED ARRAY[1 .. 20] OF Somenums;
I : INTEGER;

BEGIN
FOR I := 1 TO 20 DO

READ (A[I]);
PACK (A.1.P);
END

2. The call to PACK in this example moves components of array Data into the packed array
Pdata. The index parameter 3 specifies that the packing will start with array component
Data[3]. Thus, the 20 components Data[3] through Data[22] are assigned to Pdata[l] through
Pdata[20]. The remaining components of the source array, Data[23] through Data[25], will
be ignored.

TYPE
Int_15 = 1. . 15;

VAR
Data: ARRAY[1 .. 25] OF Int_15;
PData : PACKED ARRAY[1 .. 20] OF Int_15;

BEGIN
PACK(Data,3,Pdata);

END

Utility Routines 8-11

8.20 PRED(x) Function
The PRED(x) function returns the value that immediately precedes the value specified by the
parameter (x) in the ordered sequence of values associated with that type. The parameter (x) is
a value of any ordinal type except LONG-1NTEGER. The function result is of the same type
as the parameter. An exception condition occurs if x has no predecessor.

8.21 ROUND(r) Function
The ROUND(r) function converts a value of type REAL to its representation as an integer by
rounding any fractional part. The parameter (r) is a value of type REAL. Rounding proceeds as
follows:

• When the value (r) is positive and the fractional part of the number is 0.5 or greater, 1 is
added to the integer part.

• When the value is negative and the absolute value of the fractional part of the number is
0.5 or greater, -1 is added to the integer part.

• When the absolute value of the fractional part of the number is less than 0.5, the integer
part is unaffected.

The value returned is of type INTEGER. An exception occurs if the value is too large to be
represented by an integer.

8.22 SHORT(I) Function
The SHORT(l) function converts a value of type LONG_INTEGER to its representation as an
integer by truncating the most significant 16 bits of the value. An exception occurs if the most
significant 16 bits are not 0 or negative. The parameter (1) is a value of type LONG_INTEGER.
The value returned is of type INTEGER.

8.23 SIN(x) Function
The SIN(x) function computes the sine. The parameter (x) is an expression of type INTEGER,
LONG-1NTEGER, UNSIGNED, or REAL that is the angle expressed in radians. The function
result is a value of type REAL.

8.24 SIZE Function
The SIZE function determines the number of bytes allocated for a variable or record field of
that type. The function returns a value of type INTEGER that indicates the number of bytes
allocated by the NEW procedure for a dynamic variable of the specified variant.

Syntax

SIZE (x [{,t} ...])

8-12 Utility Routines

x
A type identifier or a variable; treated as if it were a variable or a record field of that type.

An ordinal constant that represents a nested tag field value. The first constant of a series of
constants represents the outermost variant.

If parameter (x) is a variant, you may supply one or more additional parameters (t): the case
constant corresponding to a variant of the record. (Refer to Appendix E for the default allocation
sizes of standard data types.)

Note
The NEXT and SIZE functions return the same byte size values for a particular
type, unless the components of the specified type in an unpacked array would
have been padded to ensure proper alignment.

8.25 SQR(x) Function
The SQR(x) function computes the square of a number. The parameter (x) is an expression of
type INTEGER, LONG_INTEGER, UNSIGNED, or REAL. The function returns a result type
that is the same type as the parameter.

Note
The function does not detect the presence of an overflow condition.

8.26 SQRT(x) Function
The SQRT(x) function computes the square root of a number. The parameter (x) is an expression
of type INTEGER, LONG_INTEGER, UNSIGNED, or REAL. If x has a value less than 0, an
exception condition results.

8.27 SUCC(x) Function
The SUCC(x) function returns the value that immediately succeeds the value specified by the
parameter (x) in the ordered sequence of values associated with that type. The parameter (x) is
a value of any ordinal type except LONG__INTEGER. The function result is of the same type
as the parameter.

8.28 TRUNC(r) Function
The TRUNC(r) function converts a value of type REAL to its representation as an integer by
truncating any fractional part. The parameter (r) is a value of type REAL. The value returned is
of type INTEGER. An exception occurs if the value is too large to be represented by an integer.

Utility Routines 8-13

8.29 UAND(u 1,u2) Function
The UAND(ul,u2) function performs a binary logical AND on the corresponding bits of its two
parameters. The parameters (ul,u2) are values of type UNSIGNED. The function result is a
value of type UNSIGNED.

Example

Result := UAND (%X'751',%X'7A1');

The UAND function performs a binary logical AND operation on each pair of bits and returns
the unsigned hexadecimal value %X'701'.

8.30 UNOT(u 1) Function
The UNOT(ul) function returns the one's complement of its parameter (ul). The parameter
(ul) is a value of type UNSIGNED. The function result is a value of type UNSIGNED.

Example

Result := UNOT (%B'1000111000111000');

The UNOT function performs a binary logical NOT operation on each bit and returns the
unsigned value %B'0111000111000111'.

8.31 UNPACK Procedure
The UNPACK procedure copies the elements of a packed array into an unpacked array.

Syntax

UNPACK (z, a, i)

z

a

The identifier of the array from which elements are being copied. This array must be a
packed array of the same component type as array a.

The identifier of the array into which elements are being copied. The component type of
this array must be the same as that of the array z.

The index value in array a where the operation is to begin. This value must be an expression
· that is assignment compatible with the index type of array a.

UNPACK assigns components of z, starting with z[l], to array a, starting with a[i], until all the
components in z are assigned.

The upper bound of array a (that is, n) must be greater than or equal to i+v-u, where v is the
upper bound of array z, and u is the lower bound of array z. In other words, ORD(n) > =
ORD(i) + ORD(v) -ORD(u).

8-14 Utility Routines

The operation of UNPACK is equivalent to the following:

TYPE
s1 = x .. y;
s2 = u .. v;
rec = RECORD

END;

VAR
j s2;
k s1;
i s1;
a ARRAY [s1] OF REC;
z PACKED ARRAY [s2] OF REC;

BEGIN
k := i;
FOR j := u TO v DO

BEGIN

END

a [k] : = z [j] ;
IF j <> v THEN k := SUCC(k)
END

Example

Normally, you cannot pass components of a packed array to a routine using VAR parameters
(see Section 6.6.4). If you unpack the array, however, you can pass its components to the
routine by reference.

VAR
P : PACKED ARRAY[1 .. 10] OF CHAR;
A : ARRAY[1 .. 10] OF CHAR;
I : INTEGER;

PROCEDURE Process_Components (VAR Ch CHAR);
BEGIN

WRITE (''(10,13),Ch);
END;

BEGIN
FOR I := 1 TO 10 DO

BEGIN
WRITE ('Enter Character');
READLN (P[I]);

END
UNPACK(P,A,1);
FOR I := 1 TO 10 DO

Process_Components (A[I]);

END

This program reads characters into the packed array P. The procedure call to UNPACK assigns
P[l] through P[lO] to the unpacked array components A[l] through A[lO]. Then, for each call
to Process_Components, one component of A is passed to the procedure to print it on the
terminal.

Utility Routines 8-15

8.32 UOR(u 1,u2) Function
The UOR(ul,u2) function performs a binary logical OR on the corresponding bits of two
parameters. The parameters (ul,u2) are values of type UNSIGNED. The function result is a
value of typ~ UNSIGNED.

Example

Result :=UDR (%B'10101' .%B'10111');

The UOR function performs an OR operation on each pair of bits and returns the unsigned
value %B'10111'.

8.33 UROUND(r) Function
The UROUND(r) function converts a value of type REAL to its representation as,an UNSIGNED
type by rounding any fractional part. The parameter (r) is a value of type REAL. Rounding
proceeds as follows:

• When the value (r) is positive and the fractional part of the number is 0.5 or greater, 1 is
added to the integer part.

• When the value is negative and the absolute value of the fractional part of the number is
0.5 or greater, -1 is added to the integer part.

• When the absolute value of the fractional part of the number is les$ than 0.5, the integer
part is unaffected.

UROUND(r) returns a value that is of type UNSIGNED. An exception occurs if the REAL value
is too large to be represented by an unsigned value.

8.34 USHORT(I) Function
The USHORT(l) function converts a value of type LONG-1NTEGER to its representation as an
unsigned value by truncating the most significant 16 bits of the value. An exception occurs
if the most significant 16 bits are not 0 or negative. The parameter (1) is a value of type
LONG_INTEGER. The value returned is of type UNSIGNED.

8.35 UTRUNC(r) Function
The UTRUNC(r) function converts a value of type REAL to its representation as an UNSIGNED
type by truncating any fractional part. The parameter is a value of type REAL. An exception
occurs if the REAL value is too large to be represented by an unsigned value.

8-16 Utility Routines

8.36 UXOR(u l ,u2) Function
The UXOR(ul,u2) function performs a binary logical EXCLUSIVE-OR on the corresponding bits
of two parameters. The parameters (ul,u2) are values of type UNSIGNED. The function result
is a value of type UNSIGNED.

Example

Result := UXOR (Y.B'0011',Y.B'0101');

The UXOR function performs an EXCLUSIVE-OR operation on each pair of bits and returns
the unsigned value %B'Ol 10'.

Utility Routines 8-17

Chapter 9
Input and Output

This chapter describes the general concepts of 1/0 processing under MicroPower/Pascal and its
predeclared 1/0 requests. MicroPower/Pascal's extensive set of predeclared routines governing
input/output (1/0) processing enable you to establish files on a variety of external 1/0 resources
and to communicate with programs executing on remote computer systems. Table 9-1 lists
these predeclared routines.

Table 9-1: Predeclared 1/0 Routines

Routine

BIN

BREAK

CLOSE

DELETEJILE

EMPTY_BUFFER

EOF

EOLN

FIND

Description

On output, converts a WRITE or a WRITELN procedure
parameter to a binary representation. On input, converts a
binary representation of a number in a TEXT file to a READ
or READLN procedure parameter.

Writes the contents of the current 1/0 buffer to the I/O
server. Operates synchronously (control returns to the caller
only when the I/O buffer is empty).

Closes a file.

Deletes a named external file from a directory-structured
I/O server.

Initiates an operation to write the contents of the current
I/O buffer to the IjO server. When double buffering is
selected, operates asynchronously (control returns to the
caller immediately after initiating the output operation).

Tests for the end-of-file condition of an input file.

Tests for the end-of-line condition in an input file of type
TEXT.

Moves the file pointer to the specified component.

Input and Output 9-1

Table 9-1 (Cont.): Predeclared 1/0 Routines

Routine

FORMAT_RX02

GET

HEX

INIT_DIRECTORY

OCT

OPEN

PAGE

PROTECT_FILE

PURGE

PUT

READ

READLN

RENAME_FILE

RESET

REWRITE

SQUEEZE_DIRECTORY

UNPROTECT_FILE

WRITE

WRITELN

9-2 Input and Output

Description

Formats RX02 flexible diskettes.

Assigns the value of the next component of a file to the
buffer variable.

On output, converts a WRITE or a WRITELN procedure
parameter to a hexadecimal representation. On input,
converts a hexadecimal representation of a number in a
TEXT file to a READ or READLN procedure parameter.

Initializes the directory of a directory-structured I/O server.

On output, converts a WRITE or a WRITELN procedure
parameter to an octal representation. On input, converts an
octal representation of a number in a TEXT file to a READ
or READLN procedure parameter.

Prepares the I/O system to access a specified file and
establishes the file's characteristics and access parameters.

Sends a form-feed character to an output file of type TEXT.

Protects an external file on a directory-structured I/O server
from deletion.

Disconnects a file variable from an IJO server and terminates
access to the file.

Writes the component in a buffer variable to a file.

Reads one or more file components.

Reads a line of data from a text file.

Renames an external file on a directory-structured I/O
server.

Prepares the file for input and reads the first component.

Prepares a file for output.

Consolidates the directory entries and all unused blocks on
a directory-structured device.

Makes an external file available for deletion.

Assigns data to a file.

Writes a line of data to a text file.

9.1 Terminology
The following terms are specific to input and output operations using MicroPower /Pascal.

A Pascal file is a collection of logically related components that are arranged in a specific order
and treated as a unit.

An external file is the physical manifestation of a Pascal file. An external file may be written to
or read from direct- or sequential-access storage devices such as A/D converters, disks, logical
links, magnetic tapes, and terminals. An external file may be named or unnamed, depending
on the device with which the file is associated. The MicroPower /Pascal I/ 0 Services Manual
describes the physical structure of an external file.

A named external file is identified by a name and resides on a directory-structured storage
device such as a disk or DECtape II.

An unnamed external file resides on a nondirectory-structured device medium. An unnamed
file is identified only by the name of the device on which the file resides.

A directory-structured device is a direct-access device having a storage medium that contains
(at its beginning) a directory of information (file name and length) about all the external files
that reside on the medium. Examples of directory-structured devices are disks and DECtape II.

A nondirectory-structured device is either a direct- or a sequential-access device having a
storage medium that contains no directory of file information. The entire device is treated as a
single unnamed external file. Examples of nondirectory-structured devices are A/D converters,
DECtape II, disks, logical links, magnetic tape, ring buffers, and terminals.

A logical link is a virtual data path connection between two processes. Logical links are created
through the network service process (NSP) logical link server (described in the MicroPower /Pascal
1/0 Services Manual).

A logical link partner is the process to which a process is connected over a logical link.

A remote node is another computer system where the logical link partner resides.

An 1/0 server is a MicroPower/Pascal task that provides an input or output connection between
a user's process and an I/O resource. The various MicroPower/Pascal device drivers, the NSP,
and the ancillary control process (ACP) are 1/0 servers.

An active task is a process that seeks to establish a connection over a logical link server to a
passive task.

A passive task is a process that defines itself to a logical link server as being available for
connection to an active task.

An 1/0 buffer is the physical buffer between a Pascal buffer variable (Chapter 2) and an 1/0
server. The size of an 1/0 buffer is determined by the type of device with which it is associated
and can be specified in the OPEN statement.

Input and Output 9-3

9.2 1/0 Processing
9.2. l MicroPower/Pascal File Organization

MicroPower/Pascal stores files and maintains directories in the same format as the RT-11 file
system. MicroPower /Pascal files are sequentially organized: a file's components are ordered in
physical sequence.

Each component, except the first, has another component preceding it and each component,
except the last, has another component following it. The physical order in which the components
appear is identical to the order in which they were written to the file.

9.2.2 File Access Methods
The access method is the technique a program uses to retrieve and store file components. The
access method is specified as part of the OPEN procedure request, which prepares a file for
access. A file's access method cannot be changed unless the file is closed (CLOSE procedure)
and opened again with a different access method specification. MicroPower/Pascal provides
the sequential, direct, and update access methods.

A file may always be processed sequentially, even when the specified access method is direct
or update. If the access method is not specified, MicroPower/Pascal defaults to the sequential
method.

Sequential access means that file components are processed in the physical sequence in which
the components are arranged.

Direct access means that file components are read in an order specified by the FIND request.

Update access means that file components are read in an order specified by the FIND request
and may be updated and subsequently written back into the file.

9.2.3 File Variables and 1/0 Servers
In the MicroPower /Pascal language, as in standard Pascal, you perform IjO operations by
using predefined procedures that reference file variables (that is, variables of type FILE) to pass
data to and from external files. You can associate those files with a variety of 1/0 servers that
access:

•

•

Nondirectory-structured devices, including A/D converters, DECtape II, disks, logical links,
magnetic tape, ring buffers, and terminals.

Directory-structured devices, including disks and DECtape II .

Note
DECtape II and disks, although traditionally directory structured, may be
nondirectory structured as well.

9-4 Input and Output

9.2.4 External File Storage
External files, when stored on a magnetic device medium, may be named or unnamed, depending
on whether the device medium is to contain one external file or many external files.

You may use magnetic storage devices, such as the RL02 cartridge disk system and the TU58
cartridge/magnetic tape system, to store one or more files on each device medium. When you
want to store several files on a device, you create a directory on the device medium that can
contain the names of the files residing on the medium. You give an external name to each file
that you write on that medium. When the medium is to contain one file only, a directory is not
required.

9 .2.5 Specifying 1/0 Servers

The two classes of 1/0 servers are each specified by a different format. One format applies
to the various peripheral devices and ring buffers; the second to using the NSP to establish a
logical link connection to another task.

9.2.5.1 Syntax for Specifying External Files and Devices

The following syntax shows how you form an 1/0 specification for external files, devices, and
ring buffers.

The way in which a device or a named external file on a directory-structured device is identified
depends on the way in which that device or file will be used. For example:

• To identify a nondirectory-structured device to be treated as a single file or to identify a
sequential-access device such as a terminal or a ring buffer, you specify the name of the
device only.

• To identify a file on a directory-structured device that contains named external files, you
specify the name of the file and the device on which the file resides.

Syntax

device-specification : [filename.type]

device-speciftcation
A device name, a ring buffer name, or a logical name. Device names have the form:

ddcuuu

dd
A 2-character device name.

c
A 1-character controller designation character. The default is A.

uuu
A 1- to 3-digit controller unit number. The default is 0.

Input and Output 9-5

Ring buffer names and logical names are strings of one to six ASCII characters. Names
with less than six characters are automatically padded to six characters with leading spaces.
When you substitute a logical name for a device name or ring buffer name, the logical name
you choose must translate into a legal 1- to 6-character device name or ring buffer name.
See Chapter 20 for information on creating logical names. See the MicroPower/Pascal I/O
Services Manual for the standard device names.

filename. type
The name and type of the external file. The file name consists of no more than six
alphanumeric characters. The type consists of no more than three alphanumeric characters.
Uppercase and lowercase forms of a letter are not unique. This parameter is meaningful
only when provided with device specifications for directory-structured devices.

Examples

1. This example identifies the file test.dat on drive 0 of RX02 controller A.

DYAO:test.dat

2. This example identifies the previously created ring buffer IRING.

IRING:

3. This example identifies drive 0 on the RX02 controller A.

DYAO:

9.2.5.2 Syntax for Specifying a Logical Link

A logical link specification identifies both active and passive communication tasks to ·the NSP
logical link server.

Note
To completely establish a task as active or passive, the OPEN request must
specify HISTORY:= OLD for an active task or HISTORY:= NEW for a passive
task.

Syntax

{
node-address ["access-control-string"]:: } "task-specification-string"

SY$NET:

node-address
A unique 2-part number separated by a period that identifies the remote node to be accessed.
Specifying a node address declares to the NSP that this task is an active task. The form is:

area . number

area
An integer value in the range 0 to 63. A value of 0, or no value, will cause the default
value specified in the NSP prefix file to be used (see the MicroPower/Pascal I/O Services
Manual).

9-6 Input and Output

The period that separates the two parts.

number
An integer value in the range 1 to 1023.

As an alternative to providing a node address, you may substitute a logical name that
translates into a string of up to seven ASCII characters, which is the desired node address.
See Chapter 20 for information on creating logical names.

Note
The naming convention governing DECnet node names requires that the
node name must be a 1- to 6-alphanumeric character name that contains
at least one alphabetic character. If your MicroPower/Pascal application
communicates with non-MicroPower/Pascal DECnet nodes, you may wish
to restrict the logical names that you create to this standard.

access-control-string
A 3-field string, separated by spaces, containing log-in information that is sent to the remote
node. This string designates the remote account where tasks reside that will execute in your
behalf. The string is in the form:

user-identifier password account

user-identifier
A 1- to 39-character user identifier string.

password
A 1- to 39-character password string.

account
A 1- to 39-character account string.

For more information on access control string formats, see the DECnet documentation
applicable to the operating system of the node you wish to access. Nodes operating under
MicroPower/Pascal do not require this string.

SY$NET:
Declares to the NSP that the task is passive, that is, available for access by active tasks.

task-specification-string
A string that does the following:

• For an active task, identifies the name or object type of the passive task to which the
string is attempting a logical link connection

• For a passive task, declares the name or object type by which an active task can make
a logical link connection

Input and Output 9-7

Tasks are identified across logical links by a discrete identifier that may be either a name or
an object type, as shown below:

{
{ ~':SK = } task-name }

object-type =

task-name
A 1- to 16-character string that uniquely identifies the task. You may optionally substitute
0 in place of the word TASK-"O=MYTASK."

object-type
An integer in the range 1 to 255 that uniquely identifies the task. By convention, object
types in the range 1 to 127 are reserved by DIGITAL for generic DECnet system services.
DIGITAL suggests that you assign your tasks to object types in the range 128 to 255, unless
they are to communicate with those system services.

Examples

1. The following statements establish a task as available for task-to-task communication. The
first statement identifies the task as GOOBAR, the second statement identifies the task as
object number 211.

OPEN (file_ variable, 'SY$NET: 11 TASK=GOOBAR 11
' ,HISTORY:=NEW);

OPEN (file_ variable, 'SY$NET: 11 211= 11
' ,HISTORY:=NEW);

2. The following statements instruct the NSP to establish a connection to a task. The first
statement identifies the named task as POOBAH; the second statement identifies the task
generically as object number 211.

OPEN (file_variable, 'MEXICO: : 11 TASK=POOBAH 11
' ,HISTORY:=OLD);

OPEN (file_ variable, 'MEXICO:: 11 211= 11
' ,HISTORY:=OLD);

9.2.6 Error Returns from 1/0 Requests
The MicroPower/Pascal kernel recognizes an error condition caused by the execution of an 1/0
request. Those errors may cause an exception condition, depending on the error-handling policy
of your application (see Chapter 17).

The section Error Returns in the description of each request lists the exceptions that are directly
associated with it. Each description includes the exception type and code and the error message
text displayed by the P ASDBG program.

Other exceptions that are not listed may also occur when using these requests. Generally, such
exceptions are of the SOFT_IO or HARD_IO type and are reported by the MicroPower/Pascal
ACP, the NSP, and device drivers when accessed by the I/O requests. Some examples are
"Device off line" and "Unsafe." Those exceptions are described in the MicroPower /Pascal 1/0
Services Manual.

Section 11.2 and Chapter 17 contain additional information about exception handling. See
the applicable MicroPower /Pascal messages manual for a more detailed description of each
exception.

9-8 Input and Output

9.2.7 1/0 Server Buffering
Although the physical buffering that takes place between a process and a device is largely
transparent, you should be aware of the functioning of the 1/0 buffer during output operations.

Two levels of buffering exist between the MicroPower/Pascal program and the 1/0 server: the
standard Pascal buffer variable (see Section 2.6) and the 1/0 buffer. This relationship is shown
in Figure 9-1.

Figure 9-1: MicroPower/Pascal Program and 1/0 Server Buffering Relationship

PUT
WRITE
WR ITELN

-- __ J

T GE

READ
READLN

-1

Buffer
Variable

file component LOL
I

1/0 Buffer

1/0 Server
file component
file component Device
file component -- - or -

Logical Link

ML0-562-87

The IjO buffer exists between the buffer variable and the 1/0 server and may contain several
file components. The IjO buffer is used to group multiple file components together in a single
1/0 message. A large buffer reduces the number of messages that must be exchanged between
the object-time system (OTS) and the 1/0 server handling the open file.

During input operations, a GET, READ, or READLN obtains a file component from the 1/0
buffer and places it into the buffer variable. The actual reading from the 1/0 server to the 1/0
buffer is automatic and asynchronous with program operation.

During output operations, a PUT, WRITE, or WRITELN places the contents of the buffer
variable into the 1/0 buffer. The writing of the 1/0 buffer to the 1/0 server is automatic and
asynchronous, with program operation occurring when the buffer is about to overflow. Thus,
data output to the 1/0 server may not always occur when the program requires it. The BREAK
and EMPTY_BUFFER requests make sure that the 1/0 buffer (but not the buffer variable) is
emptied .

. The OPEN statement lets you specify the 1/0 buffer size and whether single or double 1/0
buffering is in effect.

9.2.8 Open and Closed Files
An open file is one that has been identified in a call to the OPEN procedure. Except for
the standard files INPUT and OUTPUT, you must initialize the 1/0 system with the OPEN
procedure before accessing a file. Thereafter, you use the RESET procedure to prepare the file
for input and the REWRITE procedure to prepare the file for output. When file operations
are complete, you close the file with the CLOSE procedure or purge the file with the PURGE
procedure. When an open file is closed, buffer operations are finished, and dynamically allocated
storage is returned to the heap. If a program (static process) terminates, all files that are open
are automatically purged.

Input and Output 9-9

9.2.9 Standard Pascal File Variables INPUT and OUTPUT
The standard Pascal file variables INPUT and OUTPUT are predefined as files of type TEXT.
They are automatically opened for you and have default characteristics, as if you had specified
the following statements in your program:

VAR
FSIZE : INTEGER;

FSIZE := O;
OPEN (OUTPUT, 'TTAO: ',

FILESIZE := FSIZE,
BUFFERSIZE := 66,
HISTORY := NEW,
ACCESS_METHOD := SEQUENTIAL,
OVERLAPPED := ENABLE,
AUTOEMPTY :=TRUE);

REWRITE (OUTPUT);
OPEN (INPUT, 'TTAO:',

FILESIZE := FSIZE,
BUFFERSIZE := 132,
HISTORY := OLD,
ACCESS_METHOD := SEQUENTIAL,
OVERLAPPED := DISABLE,
AUTOEMPTY :=FALSE);

RESET (INPUT);

You need not explicitly open INPUT and OUTPUT unless you want to change their operational
parameters or assign them to different I/O servers.

Additional default characteristics, such as echoing, are established by the terminal driver's prefix
file, as described in the MicroPower /Pascal 1/0 Services Manual.

9.2. l O Additional Files Required for Using the 1/0 System
Many of the I/O requests described in this chapter depend on symbol definitions and library
routines that are external to the MicroPower/Pascal compiler (see Appendix I for details).

9-10 Input and Output

9.3 BREAK
The BREAK procedure writes the contents of the I/O buffer to the I/O server. (Ordinarily,
the MicroPower/Pascal I/O system performs output to an I/O server only when an output
request will cause I/O buffer overflow.) BREAK lets a process synchronize its operation of the
completion of output to the I/O server. After a call to BREAK, control does not return to the
caller until the I/O system writes the contents of the I/O buffer to the I/O server.

BREAK is a null operation for an input file.

The EMPTY_BUFFER procedure performs an asynchronous BREAK procedure operation for files
opened with double buffering (OVERLAPPED:= ENABLE).

Syntax

BREAK (file-variable)

fl le-variable
The identifier of the file variable associated with the I/O buffer to be written.

When the I/O server is a logical link, BREAK makes the nontext data file being written, using
either PUT or WRITE, available to the logical link partner and defines the end of the logical
record expected by the partner. This operation is performed automatically for text data files
being written to a logical link with WRITELN. See the MicroPower /Pascal I/O Services Manual
for more information.

Example
BREAK(Fvar);

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$FNO (type: SOFL-10)-File not open

ES$FVC (type: SOFT--10)-File-variable contention error; two or more processes attempted
concurrent access to the same file variable

Input and Output 9-11

9.4 CLOSE
The CLOSE procedure disconnects a file variable from an IjO server and returns all buffer
space to the heap.

CLOSE provides for an orderly termination of file use. CLOSE permits a process to synchronize
its operation on the completion of IjO operations to an IjO server. CLOSE operates
synchronously, returning control to the caller only when the operation is complete. (Contrast
with the PURGE procedure.)

For output files, CLOSE writes the contents of the If O buffer to the 1/0 server. A CLOSE
to an output file on a directory-structured 1/0 server makes the external file permanent if
the file was opened with DISPOSITION:=SAVE and HISTORY:=NEW. The file is deleted if
DISPOSITION:=DELETE.

A CLOSE to a file opened on a logical link disconnects the caller from the logical link partner
and causes EOF to be TRUE for that partner.

Syntax

CLOSE (file-variable)

flle-variable
The identifier of the file variable associated with the 1/0 buffer being closed.

Example
CLOSE(Fvar);

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
code may be returned:
ES$FNO (type: SOFT_IO)-File not open

9-12 Input and Output

9.5 DELETE_flLE
The DELETE_FILE procedure deletes a specified named external file on a directory-structured
device.

Syntax

DELETE_FILE (file-specification [STATUS := status-record])

ft le-specification
A character string constant or the identifier of a string variable that specifies the file to be
deleted; a standard MicroPower/Pascal external file specification (see Section 9.2.5.1).

status-record
The identifier of a variable of predefined record type Exc_sTATUS that may receive an
exception type and code. If you specify this parameter, the exception status (either success
or error) that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Rules and Defaults

• You must make sure that another process is not accessing the specified file.

Examples

1. This example deletes the file identified by a string constant.

DELETE_FILE('DYA1:test.dat');

2. This example deletes a file identified by a string variable. The actual file specification is
determined at run time.

DELETE_FILE(string_var);

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
code may be returned:
ES$NMF (type: RESOURCE)-Insufficient space for file variable

Input and Output 9-13

9.6 EMPTY-BUFFER
The EMPTY-BUFFER procedure writes the contents of the 1/0 buffer to the IJO server.
(Ordinarily, the MicroPower/Pascal 1/0 system performs output to an 1/0 server only when an
output request causes a buffer overflow condition.) EMPTY_BUFFER operates asynchronously
when a file is opened with double buffering (OVERLAPPED:= ENABLE specified in OPEN).

After a call to EMPTY_BUFFER, control will be returned immediately to the calling process
unless the 1/0 system has not finished writing the contents of the previous buffer to the 1/0
server. If a file is not opened with double buffering (OVERLAPPED:= DISABLE), the calling
process waits until output to the 1/0 server is complete (identical to the operation of BREAK).

When the 1/0 server is a logical link, EMPTY_BUFFER makes the nontext data file being
written (PUT or WRITE) available to the logical link partner and defines the end of the logical
record expected by the partner. This operation is performed automatically for text file data
being written to a logical link with WRITELN. See the MicroPower /Pascal I/ 0 Services Manual
for more information.

EMPTY_BUFFER is a null operation for all input files.

The EMPTY_BUFFER procedure performs an asynchronous break operation for files opened with
double buffering (OVERLAPPED:= ENABLE). The BREAK procedure performs a synchronous
EMPTY-BUFFER operation.

Syntax

EMPTY_BUFFER (file-variable)

ftle-varlable
The identifier of the file variable associated with the IJO buffer to be written.

Example

EMPTY_BUFFER(Fvar);

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$FNO (type: SOFT__IO)-File not open

ES$FVC (type: SOFT__!O)-File-variable contention error; two or more processes attempted
concurrent access to the same file variable

9-14 Input and Output

9.7 EOF
The EOF function tests the end-of-file (EOF) status and returns a Boolean value. A TRUE value
indicates that the buffer variable's position is beyond the last file component. A FALSE value
indicates that the buffer variable's position is not beyond the last file component.

Syntax

EOF [(file-variable)]

fl le-variable
The identifier of the file variable to be tested. If no file variable is given, INPUT is tested.

Rules and Defaults

• When EOF is TRUE, the content of the buffer variable is undefined.

• When EOF is TRUE, EOLN is also TRUE.

• For files of type TEXT, EOF returns a TRUE when the ASCII code for CTRL/Z is encountered.

• For nontext files, EOF becomes TRUE when the physical end of the file is reached. Since
direct-access block replaceable devices are read and written in 512-byte block increments,
EOF becomes TRUE when the last block of the file is accessed, not when the last file
component is accessed.

Note
Because the last component in a file will not reside exactly at the end of the
last block, unused storage locations beyond the last file component, though
accessible, will not contain meaningful data. Therefore, the calling routine
must determine the logical end of file. Two possible ways to do so are by
reading the exact number of components that were written to the file or by
searching the file for an end-of-file data item.

• Over a logical link, EOF returns FALSE when the logical link is functional. EOF becomes
TRUE if the logical link partner issues a CLOSE request for the link's file variable.

• An EOF operation is affected by delayed device access (see Section 9 .30).

Examples

1. This program segment displays characters from a file of type TEXT at the console terminal.
The input file is assumed to be open and reset.

VAR
Fvar: TEXT;
Ch: CHAR

BEGIN
WHILE NOT EOF(fvar) DO
BEGIN

Ch:=Fvar-;
GET(Fvar);
WRITELN(Ch);

END;
END;

Input and Output 9-15

2. This example program loops executing the command file SHOWSYS.COM in the default
DECnet account on the node at address 13.5. The program uses PUT rather than WRITE
to defeat the AUTOEMPTY feature. AUTOEMPTY is done only after the WRITELN.

[SYSTEM(MICROPOWER), DATA_SPACE(2000)] PROGRAM Network_Read;
VAR

F : TEXT;
Ch : CHAR;
I : INTEGER;
U : UNSIGNED;

BEGIN
WHILE TRUE DO
BEGIN

OPEN (F, '13. 5: : "TASK=SHOWSYS" ' , BUFFERSIZE : = 100,
HISTORY:= OLD, OVERLAPPED :=ENABLE);

RESET(F);
WHILE NOT EOF(F) DO
BEGIN

WHILE NOT EOLN(F) DO
BEGIN

OUTPUT- : = F- ;
PUT(OUTPUT);
GET(F);

END;
WRITELN (OUTPUT);
GET(F);

END;
CLOSE(F);
END;

END.

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$FNO (type: SOFT_IO)-File not open

ES$FVC (type: SOFT_IO)-File-variable contention error; two or more processes attempted
concurrent access to the same file variable

9-16 Input and Output

9.8 EOLN
The EOLN function tests for the end-of-line (EOLN) marker (RETURN ASCII character) within
a file of type TEXT and returns a Boolean value indicating the result of that test. EOLN returns
TRUE when the EOLN marker has been reached; otherwise, EOLN returns FALSE.

Syntax

EOLN [(file-variable)]

flle-varlable
The identifier of the file variable to be tested. If no file variable is given, INPUT is tested.

Rules and Defaults

• When EOLN is TRUE, the buffer variable contains a space character.

• An EOLN operation is affected by delayed device access (see Section 9.30).

Example

This program segment reads characters from a file of type TEXT and writes them to the file
OUTPUT.

VAR Testfile : TEXT;
Ch : CHAR;

BEGIN

WHILE NOT EOF(Testfile) DO
BEGIN

WHILE NOT EOLN(Testfile) DO
BEGIN

READ(Testfile,Ch);
WRITE(Ch);

END;
READLN(Testfile);
WRITELN;

END;
END.

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$FNO (type: SOFT-10)-File not open

ES$FVC (type: SOFT-10)-File-variable contention error; two or more processes attempted
concurrent access to the same file variable

Input and Output 9-17

9.9 FIND
The FIND procedure positions the file on the specified component and assigns the value of
that component to the buffer· variable. FIND operates only on input files residing on directory
and nondirectory-structured I/O servers when the DIRECT or UPDATE options to OPEN are
selected.

Syntax

FIND (file-variable , component-number);

file-variable
The identifier of the file variable of the file to be searched.

component-number
A value specified by a constant, expression, or variable of type INTEGER that is the ordinal
displacement of the file component from the beginning of the file. The first component is 1.

Rules and Defaults

• A FIND operation is affected by delayed device access (see Section 9.30).

Examples

1. This example shows the component-number specified by a constant.

FIND(Fvar,10);

2. This example shows the component-number specified by an expression.

FIND(Fvar, index+2);

3. This example shows the component-number specified by a variable.

FIND(Fvar, offset);

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$DAS (type: SOFT--10)-Direct access on a sequential file

ES$FNO (type: SOFT_IQ)-File not open

ES$FVC (type: SOFT .. , .. .10)-File-variable contention error; two or more processes attempted
concurrent access to the same file variable

ES$REF (type: SOFT--10)-Read past EOF

9-18 Input and Output

9.10 FORMAT_RX02
The FORMAT_RX02 procedure formats a diskette mounted in the specified unit of an RX02
disk drive.

Syntax

FORMAT_RX02 [([controller], [unit], [density])];

controller
A string constant or a string variable that identifies the controller of the disk being formatted.
The default value is 'A'.

unit
An integer constant or a variable of type INTEGER that specifies the unit of the disk to be
formatted. The maximum value is l; the default is 0.

density
The recording density formatting; either DOUBLE, for double density, or SINGLE, for single
density; the default is DOUBLE.

Examples

1. This statement when executed formats a diskette in unit 1 of controller A, using double
density.

FORMAT_RX02('A',1);

2. This statement when executed formats a diskette in unit 0 of controller B, using single
density.

FORMAT_RX02('B', ,SINGLE);

3. This statement when executed formats a diskette in unit 0 of controller A, using double
density.

FORMAT_RX02;

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
code may be returned:
ES$DVF (type: SOFT_IO)-Attempt to signal driver failed; illegal controller parameter or

handler not loaded

Input and Output 9-19

9. 11 GET
The GET procedure positions the file variable on the next component, then assigns the value of
that component to the buffer variable.

Syntax

GET (file-variable);

ftle-varlable
The identifier of the file variable associated with the file from which the GET procedure
reads the data.

Rules and Defaults

• For a file opened for sequential, direct, or update access, a RESET request must be executed
before issuing the first GET.

• A GET operation is affected by delayed device access (see Section 9.30).

Examples

1. This program segment demonstrates the basic use of GET. Given a file identified by the
file variable Data, GET's buffer variable would be called Data". The current value of Data"
is assigned to variable Ch, which is the same type as the components in the file. In a file
of TEXT, the components are of type CHAR. The OPEN procedure identifies the file; the
RESET procedure prepares the file for input and places the first component in the buffer
variable Data". The WHILE statement establishes a loop condition that the terminal executes
after the last component in the file is read. The call to GET reads a new value into Data".
The WRITE procedure sends the character to the file OUTPUT (default file for WRITE).

VAR
Data : TEXT;
Ch : CHAR;
namstr: NAME_STR;
namdesc:STRUCTURE_DESC;

BEGIN
Namstr : = 'DLA1 ' ;
CREATE_LOGICAL_NAME (LENGTH:=2, STRING:='DK',

DESC:=namdesc, NAME:=namstr);
OPEN(Data, 'DK:IN.TXT', HISTORY:= OLD);
RESET(Data);

WHILE NOT EOF(Data) DO
BEGIN

Ch :·= DataA;
GET(Data);
WRITE(Ch);

END;
END.

9-20 Input and Output

2. This program segment reads real numbers from the file 'DYAO:test.dat' and displays them
at the console terminal. The first component in the file is assumed to be the file size, that
is, the number of components that the file contains.

VAR
Fvar : FILE OF REAL;
Datum : REAL;
Count : INTEGER;

BEGIN
OPEN(Fvar, 'DYAO:test.dat', HISTORY:= OLD);
RESET(Fvar);

BEGIN
Datum := FvarA ;
Count=ROUND(Datum);
GET(Fvar);

END;
WHILE Count > 0 DO

BEGIN

(* Get the first component which, *)
(* in this example, is the number *)
(* of components in file *)

(* Get first file component *)
(* Point to next component *)
(* Send it to OUTPUT *)

Datum:=FvarA;
GET(Fvar);
WRITELN(Datum);
Count:= Count - 1; (* Decrement component count *)

END;
END.

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$FNR (type: SOFT-10)-File not reset

ES$REF (type: SOFT-10)-Read past EOF

ES$FVC (type: SOFT-10)-File-variable contention error; two or more processes attempted
concurrent access to the same file variable

Input and Output 9-21

9. 12 INIT_DIRECTORY
The INIT_DIRECTORY procedure initializes a directory on the specified directory-structured
1/0 device.

Syntax

INIT_DIRECTORY (device-specification , [directory-size] , [STATUS := status-record]);

device-specification
A string constant or a string variable that specifies the device and unit number containing
the media to be initialized; a standard MicroPower/Pascal device specification (see
Section 9.2.5.1).

directory-size
An integer constant or variable of type INTEGER in the range 0 to 31 that specifies the size,
in segments, of the device's directory. Each segment occupies two blocks. If you specify a
value of 0 or do not specify a valid value, the directory is created with the default directory
size for that device.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status (either success
or error) that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Rules and Defaults

• The default size depends on the media storage capacity shown below:

•

Media Size

< 512

> 512

> 2048

> 12,288

Number of Segments

1

4

16

31

The MicroPower /Pascal 1/0 Services Manual describes the structure of device directories,
number of files in a segment, and the size of specific device media.

You must make sure that another process is not accessing the specified device .

9-22 Input and Output

Examples

1. This statement when executed initializes the directory on DYAO:, using the default directory
size for that device.

INIT_DIRECTORY('DYAO: ');

2. This statement when executed initializes the directory on DYAl:, using the value of the
variable size as the number of segments in the device's directory.

INIT_DIRECTORY('DYA1:',size);

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:

None

Input and Output 9-23

9.13 OPEN
The OPEN procedure prepares the I/O system to access a specified file by associating a file
variable with an I/O server and establishing the file's characteristics and access parameters.

A file that has been identified in a call to OPEN is said to be opened. Yoti must explicitly use
the OPEN procedure on all files except when using the default characteristics of INPUT and
OUTPUT (see Section 9.2.9) and when using the default temporary file created by the REWRITE
procedure. Upon completion of a call to OPEN, EOF is undefined. Once a file is opened, you
use the RESET procedure to prepare an open file for input or update access and the REWRITE
procedure to prepare the file for output access.

Syntax
OPEN (file-variable

if o-specification
[STATUS :=status-record]
[FILESIZE := file-size]
[BUFFERSIZE := buffer-size]

[HISTORY := { ~~ }]

[[
ACCESS_METHOD := { ~~~t~~TIAL

UPDATE

[DISPOSITION := { SAVE }]
DELETE

[OVERLAPPED:= {ENABLE }]
DISABLE

[AUTOEMPTY := { ~!~:E }])

ftle-variable

}]]

The identifier of the file variable to assign to the opened file. This file variable is the logical
(internal) name of the file and is used by a program to refer to the open file. If the file
variable is not specified, a compilation error occurs.

I/ o-speciflcation
A string constant or the identifier of a string variable or a conformant array that specifies a
standard MicroPower/Pascal I/O specification (see Section 9.2.5.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status (either success
or error) that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

9-24 Input and Output

fl le-size
The identifier of a variable of type INTEGER that contains a value that is the amount of
storage occupied by a file residing on a directory-structured I/O device. For a new file
(HISTORY:= NEW), this parameter specifies the amount of storage to allocate for the file.
The value of the file size may be one of the following:

• An integer value that is the number of 512-byte blocks to allocate

• 0, the default, which requests the I/O system to allocate half of the largest free space
or all of the second largest space, whichever is larger

• -1, which requests the I/O system to allocate the largest free space

On return to the caller, for both new and old files, the variable will contain an integer value
that is the amount of storage space actually allocated.

buffer-size
An integer constant that is the suggested size, in bytes, of the I/O buffer to use for this
file. The default value is 1. The maximum buffer-size is 7680 bytes for direct-access block
replaceable devices and 8128 for other devices. This restriction results from the architecture ·
of the PDP-11 systems, particularly the maximum length of a page. The 8128 limit results
from subtracting the maximum relocatable offset of 64 bytes from the maximum length of
a page (8192 bytes). The 7680 limit is the largest 512 multiple under the 8128 limitation,
that is, (15 * 512).

If the I/O server is a direct-access block-replaceable device, the I/O system adjusts the
buffer size you specify as follows:

• If the value you specify is not a multiple of 512, a buffer size is selected that is the
smallest multiple of 512 larger than the specified value.

• If you do not specify a value, the default is. 512.

If the I/O server is not a direct-access device, the size you select is used unless the I/O
server provides the I/O system with a value to override the size you specify. See the
MicroPower/Pascal 1/0 Services Manual for buffer-size information for specific I/O servers.

HISTORY
Establishes the I/O status of the file. NEW declares an output file. OLD, the default,
declares an input file.

• NEW-For directory-structured I/O servers, enters the name of a new file in the device's
directory. A new file with the same name as an existing file replaces the existing file in
the directory when the file is closed, unless the file was protected (see PROTECTJILE
request).

• For logical-link I/O servers, declares that the caller is the passive task identified by the
i/ a-specification parameter.

• OLD (default)-For directory-structured I/O servers, searches the device's directory for
the specified file. Since old (existing) external files retain the same space allocation as
when created, they cannot increase in size.

Input and Output 9-25

For logical-link I/O servers, declares to the NSP that the caller is an active task and
requests that the NSP search for a passive task identified by the i/ o-specification
parameter.

ACCESS_METHOD
The order in which components of a file can be accessed. The options are DIRECT,
SEQUENTIAL, or UPDATE; the default is SEQUENTIAL.

• DIRECT-Components of the file can be read randomly with the FIND procedure.
This option is valid only for old files (HISTORY:=OLD) that reside on directory
or nondirectory-structured block-repl~ceable I/O servers. DIRECT implicitly sets the
OVERLAPPED parameter to DISABLE. You cannot use the DIRECT method to access a
text file.

• SEQUENTIAL (default)-Components of the file will be accessed sequentially.

• UPDATE-Components of the file can be read, updated, and written back into the
file. The FIND procedure can be used to access the components of such a file
at random. This option is valid only for old files (HISTORY:=OLD) that reside on
directory- or nondirectory-structured block-replaceable I/O devices and implicitly sets
the OVERLAPPED parameter to DISABLE. You cannot use the UPDATE method to
access a text file.

DISPOSITION
Controls whether an output file on a directory-structured I/O device is to be temporary
or permanent. This parameter is meaningful only for new files (HISTORY := NEW). The
values DELETE or SAVE can be assigned; the default is SAVE.

• SAVE (default)-The output file is kept as a permanent file when the file is closed.

• DELETE-The output file is temporary. The directory entry is deleted when the file is
closed.

OVERLAPPED
Controls whether double buffering is in effect for the file. The options are ENABLE or
DISABLE; the default is DISABLE. (The size of the buffers is specified by the buffer-size
parameter.)

• ENABLE-Specifies that If O transfers will be double buffered. This parameter is
ignored for an I/O server that is a ring buffer or when the access method is DIRECT
or UPDATE.

• DISABLE (default)-Specifies that I/O transfers will not be double buffered.

AUTOEMPTY
Controls whether the EMPTY_BUFFER request is automatically issued after each WRITE or
WRITELN request. The options are TRUE or FALSE; the default is FALSE.

• TRUE-Specifies that the EMPTY_BUFFER procedure be called automatically after each
WRITE or WRITELN request.

• FALSE (default)-Specifies that the contents of a buffer will be written when a WRITE or
WRITELN request would cause buffer overflow. Section 9.2.7 describes I/O buffering.

9-26 Input and Output

Restriction

The file system makes only rudimentary checks before believing the data in a disk's directory
segments. Certain uninitialized flexible diskettes pass those few checks and are not flagged as
uninitialized.

Thus, an OPEN (with a STATUS parameter) of an uninitialized flexible diskette may not return
an error status indication. Ultimately, the file system will incur an exception, such as a memory
management trap (ES$MMU).

Examples

1. This statement when executed opens the file specified by SPEC and assigns it the internal
name FIL VAR. The file size is the value of the variable fsize. The remaining parameters use
the default values.

OPEN(FILVAR, SPEC, FILESIZE:=fsize);

2. This statement when executed opens the file specified by the string constant
COMMX2::"TASK=FRED" and assigns it the internal name FILVAR. I/O transfers are double
buffered and the file size is the value of the variable fsize. The remaining parameters use
the default values.

OPEN(FILVAR, 'COMMX2:: "TASK=FRED"', HISTORY:=OLD,
OVERLAPPED:=ENABLE, FILESIZE:=fsize);

3. This statement when executed opens the input buffer on TTAO: as a new file and assigns
it the logical name FIL VAR. The remaining parameters use the default values.

OPEN(FILVAR, 'TTAO: ', HISTORY:=NEW);

4. This statement when executed opens the ring buffer RINGBF: as an old file and assigns it
the logical name INPUT. The EMPTY_BUFFER request is automatically issued after each
WRITE or WRITELN request. The remaining parameters use the default values.

OPEN(INPUT, 'RINGBF: ', AUTOEMPTY:=TRUE);

5. This statement when executed opens the file specified by SPEC and assigns it the logical
name FIL VAR. The file size is the value of fsize and the I/O buffer size is the value
of buffsize. The file components can be read randomly with the FIND procedure. The
remaining parameters use the default values.

OPEN(FILVAR, SPEC, FILESIZE:=fsize, BUFFERSIZE:=buffsize,
HISTORY:=OLD, ACCESS_METHOD:=DIRECT);

Input and Output 9-27

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
. codes may be returned:

ES$FAO (type: SOFT_IO)-File already open

ES$IUP (type: SOFT_IO)-Illegal use of UPDATE parameter

ES$NMB (type: RESOURCE)-Insufficient space for data buffer

The request may return the following error, though not as a result of standard Pascal
programming practice.
ES$RSZ (type: SOFT_IO)-Record size of 0 specified

9-28 Input and Output

9.14 PAGE
The PAGE procedure sends a form-feed character to the output file. The file must be of
predefined type TEXT.

Syntax

PAGE (file-variable);

file-variable
The identifier of the file variable associated with the output file.

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$FNO (type: SOFT_IO)-File not open

ES$FVC (type: SOFT_IQ)-File-variable contention error; two or more processes attempted
concurrent access to the same file variable

Input and Output 9-29

9. 15 PROTECT _FILE
The PROTECT_FILE procedure protects a named external file residing on a directory-structured
1/0 device from deletion. This protection can be removed with the UNPROTECT_FILE
procedure.

Syntax

PROTECT_FILE (file-specification , [STATUS := status-recordD);

fl le-specification
A string constant or the identifier of a string variable that specifies the name of the file to
be protected and the device on which the file resides; a standard MicroPower /Pascal file
specification (see Section 9.2.5.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status (either success
or error) that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format, of the exception record
is described in Section 11.1.2.

Rules and Defaults

• Read and write operations can be performed on a protected file.

• You must ensure that another process is not accessing the specified device.

Example

PROTECT_FILE('DYAO:Exampl.dat');

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:

None

9-30 Input and Output

9.16 PURGE
The PURGE procedure disconnects the specified file variable from the 1/0 device and terminates
access to the file. All buffer space allocated to the file is returned to the heap, and the contents
of the buffer variable and the 1/0 buffer are lost. The PURGE operation is asynchronous, and
control returns immediately to the caller. (Contrast with the CLOSE procedure.)

A PURGE to an output file opened on a directory-structured 1/0 server with HISTORY :=
NEW causes the space that the file occupies to become available for reuse (the file is not made
permanent).

A PURGE to a file opened on a logical link causes abnormal termination of the link and may
cause an exception for the logical-link partner.

Syntax

PURGE (file-variable);

file-variable
The identifier of the file variable associated with the file to be purged.

Example
PURGE(Fvar);

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
code may be returned:
ES$FNO (type: SOFT_IO)-File not open

Input and Output 9-31

9.17 PUT
The PUT procedure writes the value of the buffer variable to the file and positions the file on
the next component.

Syntax

PUT (file-variable);

fl le-variable
The identifier of the file variable associated with the file to which the PUT procedure writes
data.

Rules and Defaults

• A REWRITE request must be executed before issuing the first PUT to a file.

• After execution of a PUT, the value of the buffer variable becomes undefined, unless the
file was opened in UPDATE mode.

• Output to an 1/0 server occurs asynchronously with this request. (Section 9.2.7 describes
ljO buffering.)

• A PUT operation is affected by delayed device access (see Section 9.30).

·Example

This program segment writes an integer array to a file.

VAR
Fvar
Datum
Index
Fsize

BEGIN
Fsize:= 10;

FILE OF INTEGER;
ARRAY[1 .. 100] OF INTEGER;
INTEGER;
INTEGER;

OPEN(Fvar, 'DYAO:test.dat',FILESIZE:=Fsize, HISTORY:= NEW);

FOR Index := 1 TO 100 DO
BEGIN

FvarA := Datum[Index];
PUT(Fvar);

END;

9-32 Input and Output

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$FNO (type: SOFT_IO)-File not open

ES$FNW (type: SOFT_IQ)-File not rewritten

ES$FVC (type: SOFT_IO)-File-variable contention error; two or more processes attempted
concurrent access to the same file variable

ES$WEF (type: SOFT_IQ)-Write past EOF

Input and Output 9-33

9.18 READ
The READ procedure reads one or more file components into a variable.

Syntax

READ ([file-variable] , (variable-id} ...);

fl le-variable
The identifier of the file variable associated with the input file. If no file variable is specified,
the default is INPUT.

variable-id
The name of the variable into which a file component will be read.

Rules and Defaults

• For nontext files, READ reads the components of any scalar or structured type from the file
by performing the following sequence for each variable in the parameter list:

•

•

•

•

•

•

•

•

variable-identifier :=file-variable-;
GET (file-variable);

READ assigns file components to the variables in parameter list order until READ has found
a value for each variable. The file components must be assignment compatible with the
specified variable.

While reading text file components into a scalar variable, READ skips any spaces that
precede a valid value, then reads the value until a nonnumeric character is encountered.

For text files, file components to be read into a character or a string variable must not be
delimited by spaces because the components are read from the file and assigned to the
variable one character at a time.

For text files, values being read into scalar variables must be assignment compatible with
those variables.

For text files, READ reads the value of any scalar type or string type from the file (includes
scalar and string components of record and array types); enumerated and structured types
are not allowed.

For text files, READ performs the assignment and GET sequence shown in item 1 on each
file component until READ has read a series of characters that represent a legal value for
the type of the next variable in the parameter list. If the variable is of a scalar type, READ
converts the value appropriately. The procedure continues to read components until it has
assigned a value to each variable in the list.

Except for string variables, a READ will skip over the end-of-line marker and position the
file at the beginning of the next line.

A READ into a variable of type CHAR when EOLN is TRUE obtains a space character, and
the file position advances.

A READ into a string variable when EOLN is TRUE obtains space characters; a READLN
must be issued to advance the position past the end-of-line marker.

9-34 Input and Output

• When reading into a string variable, READ assigns successive characters to successive
elements of the packed array until it is full. If READ encounters the end of the line before
the array is full, the remaining elements are filled with spaces. If the array is filled before
the end of the line is reached, the next READ begins with the next character on the same
line.

Note
Every nonempty text file ends with an EOLN marker and an EOF marker.
Therefore, the function EOF never returns TRUE when you are reading
strings with READ. To test for EOF when reading strings, use READLN to
advance beyond the EOLN marker.

Examples

1. This program segment reads a value for a variable of type Cube from a file of component
type Cube.

TYPE
Cube : RECORD

VAR

X,Y,Z REAL;
Weight: REAL;
Number: INTEGER;

END;

Cubefile FILE OF Cube;
Cubic Cube;

BEGIN
OPEN(Cubefile,'DYAO:cubes.dat',HISTORY :=OLD);
RESET(Cubefile);
READ(Cubefile,Cubic);

2. This program segment declares and reads the file Comfile.

TYPE
String= PACKED ARRAY [1 .. 20] OF CHAR;

VAR
Comfile : TEXT;
Command : String;

BEGIN
READ(Comfile,Command);
READ(Comfile,Command);

Comfile contains the following characters:

Run Process 3 Halt Process 1 <EOLN>

The first execution of the READ procedure assigns to the variable Command the value 'Run
Process 3 '. The second call to READ assigns the value 'Halt Process 1 ' to Command.

Input and Output 9-35

Error Returns

See Sections 9 .2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$BIV (type: SOFT-10)-Illegal Boolean value

ES$FIV (type: SOFT-10)-Illegal floating-point value

ES$FNO (type: SOFT-10)-File not open

ES$FVC

ES$IIV

ES$ILV

ES$UIV

(type: SOFT_JO)-File-variable contention error; two or more processes attempted
concurrent access to the same file variable

(type: SOFT-10)-Illegal integer value

(type: SOFT_IO)-Illegal long-integer value

(type: SOFT-10)-Illegal unsigned value

9-36 Input and Output

9.19 READLN
The READLN procedure reads lines of data from a text file.

Syntax

READLN [({ file-variable } , [{variable-id} .. .])]
variable-id

flle-varlable
The identifier of a variable of type TEXT associated with the file to be read. If no file
variable is specified, the default is INPUT.

variable-id
The name of the variable into which a value will be read.

Rules and Defaults

• READLN performs the following sequence for each variable in the parameter list:

READ (file-variable, variable-identifier)

READLN performs this sequence until READLN has read a series of characters that represent
a legal value for the type of the next variable in the parameter list.· If the variable is of a
scalar type, READLN converts the value appropriately. The procedure continues to read file
components until it has assigned a value to each variable in the list. After reading values
for all the listed variables, READLN skips any characters remaining on the current line and
positions the file at the beginning of the next line.

• With the file positioned at the end of a line, a call to READLN obtains the first value in the
next line.

• When no variable-id is supplied, READLN skips to the next line in the input file.

• After execution, READLN sets EOLN to FALSE except when the next line is empty.

Examples

1. This program segments reads lines containing a 20-character string and a Boolean value.

TYPE
String= PACKED ARRAY [1 .. 20] OF CHAR;

VAR
Conditions : TEXT;
Ready : BOOLEAN;
Name String;

BEGIN
READLN(Conditions, Name, Ready);

The input file CONDITIONS might look like this:

MACHINE NUMBER ONE TRUE

2. The statement below skips over an input line of the default file INPUT.

READLN;

Input and Output 9-37

3. The statement below skips an input line in the file FVAR.

READLN(Fvar);

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$BIV (type: SOFT-10)-Illegal Boolean value

ES$FIV (type: SOFT-10)-Illegal floating-point value

ES$FNO (type: SOFT-10)-File not open

ES$FVC (type: SOFT_IO)-File-variable contention error; two or more processes attempted
concurrent access to the same file variable

ES$IIV (type: SOFLJO)-Illegal integer value

ES$IL V (type: SOFT-10)~Illegal long-integer value

ES$UIV (type: SOFT-10)-Illegal unsigned value

9.20 Input Integer Conversion Functions (VMS only)
MicroPower/Pascal software supplies the predeclared functions BIN, HEX, and OCT to perform
radix conversion after input by the READ and READLN procedures. Those functions operate
on INTEGER, UNSIGNED, and LONG-1NTEGER values and are legal only for files of type
TEXT. A compilation error occurs if you specify those functions for a file that is not of type
TEXT.

Note
The input integer conversion functions are only available with MicroPower/Pascal
VMS.

9 .20. 1 BIN(x)

The BIN function converts the binary representation of a number in a TEXT file into the
INTEGER, UNSIGNED, or LONG-1NTEGER type of a READ or READLN procedure parameter
(x).

Examples

1. The BIN function converts the binary representation of a number (1010101010101010) in a
TEXT file into the READ procedure integer parameter (513).

READ (BIN (I)); (*where I is declared as INTEGER. *)

2. The BIN function converts the binary representation of a number (1000000000001010) in a
TEXT file into the READ procedure unsigned parameter (32778).

READ (BIN (U)); (*where U is declared as UNSIGNED. *)

9-38 Input and Output

3. The BIN function converts the binary representation of a number
(00000000000000100000000000000000) in a TEXT file into the READ procedure long integer
parameter (131072).

READ (BIN (L)) ; (* where L is declared as LONG_INTEGER. *)

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$IL V (type: SOFT--10)-Illegal long-integer value

ES$UIV (type: SOFT_IO)-Illegal unsigned value

9 .20.2 HEX(x)

The HEX function converts the hexadecimal representation of a number in a TEXT file into the
INTEGER, UNSIGNED, or LONG_INTEGER type of a READ or READLN procedure parameter
(x).

Examples

1. The HEX function converts the hexadecimal representation of a number (A) into the READ
procedure integer parameter (10).

READ (HEX (I)); (*where I is declared as INTEGER. *)

2. The HEX function converts the hexadecimal representation of a number (800A) into the
READ procedure unsigned parameter (32778).

READ (HEX (U)); (*where U is declared as UNSIGNED. *)

3. The HEX function converts the hexadecimal representation of a number (00040000) into the
READ procedure long integer parameter (262144).

READ (HEX (L)); (*where Lis declared as LONG_INTEGER. *)

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$IL V (type: SOFT--10)-Illegal long-integer value

ES$UIV (type: SOFT_IO)-Illegal unsigned value

Input and Output 9-39

9.20.3 OCT(x)
The OCT function converts the octal representation of a number in a TEXT file into the INTEGER,
UNSIGNED, or LONG_INTEGER type of a READ or READLN procedure parameter (x).

Examples

1. The OCT function converts the octal representation of a number (12) into the READ
procedure integer parameter (10).

READ (OCT (I)); (*where I is declared as INTEGER. *)

2. The OCT function converts the octal representation of a number (100012) into the READ
procedure unsigned parameter (32778).

READ (OCT (U)); (*where U is declared as UNSIGNED. *)

3. The OCT function converts the octal representation of a number (400000) into the READ
procedure long integer parameter (131072).

READ (OCT (L)); (*where Lis declared as LONG_INTEGER. *)

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$IL V (type: SOFT-10)-Illegal long-integer value

ES$UIV (type: SOFT_IO)-Illegal unsigned value

9-40 Input and Output

9.21 RENAME_FILE
The RENAME procedure changes the name of a named external file residing on a directory
structured 1/0 device.

Syntax

RENAME_FILE (old-name , new-name , [STATUS := status-record]);

old-name
A string constant or a string variable that specifies the current name of the file; a standard
MicroPower/Pascal external file specification (see Section 9.2.5.1).

new-name
A string constant or a string variable that specifies the new name for the file; a standard
MicroPower/Pascal file specification (see Section 9.2.5.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status (either success
or error) that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Rules and Defaults

• If a file having the same name as the new file name already exists on the device, that file
is deleted.

• You must make sure that another process is not accessing the specified device.

Example

RENAME_FILE('DYAO:test.dat', 'DYAO:test.old');

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:

None

Input and Output 9-41

9.22 RESET
The RESET procedure readies a file for input by setting EOF to FALSE, positioning the file on
its first component, and placing that component in the buffer variable.

Syntax

RESET (file-variable);

ft le-variable
The identifier of the file variable associated with the file being reset for input.

Rules and Defaults

•

•

•

An existing output file remains open. Any data in the buffer variable and the 1/0 buffer is
written to the file before positioning it at the beginning.

If the file is opened as NEW on a directory-structured I/O device, the size is truncated to
the amount of data in the file. If the file is opened as OLD, the size remains as specified
when opened.

A RESET operation is affected by delayed device access (see Section 9.30) .

Example
RESET(Fvar);

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$FNO (type: SOFT_IO)-File not open

ES$FVC (type: SOFT_IO)-File-variable contention error; two or more processes attempted
concurrent access to the same file variable

ES$WEF (type: SOFT_IO)-Write past EOF

9-42 Input and Output

9.23 REWRITE
The REWRITE procedure readies a file for output and sets EOF to TRUE.

Syntax

REWRITE (file-variable);

file-variable
The identifier of the file variable associated with the output file.

Rules and Defaults

• REWRITE positions a file on a mass-storage device at the beginning .

•

•
•

If you do not use the OPEN procedure on a file, REWRITE creates a temporary file on the
device associated with the default logical name DK: (see CREATE_LOGICAL_NAME in
Chapter 20).

You may use REWRITE on a fiie variable any number of times .

An attempt to REWRITE an open file that was previously RESET will cause the ES$FRO
exception if the file was opened with double buffering (OVERLAPPED := ENABLE).

Example

REWRITE(Fvar);

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$FRO (type: SOFT_IO)-No write access allowed

ES$FVC (type: SOFT_IO)-File-variable contention error; two or more processes attempted
concurrent access to the same file variable

Input and Output 9-43

9.24 SQUEEZE_DIRECTORY
The SQUEEZE_DIRECTORY procedure consolidates the directory entries and all unused blocks
on the device you specify into a single area.

The operation does not affect the device's bootstrap blocks or files with .BAD file types. This
feature prevents you from reallocating bad blocks to new files. (You create files with the .BAD
type to mark defective areas on the device media.)

Syntax

SQUEEZE_DIRECTORY (device-specification , [STATUS :=status-record]);

device-specification
A string constant or a string variable that specifies the device and unit number; a standard
MicroPower/Pascal device specification (see Section 9.2.5.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status (either success
or error) that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Example
SQUEEZE_DIRECTORY ('DK:');

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:

None

Application Notes

SQUEEZE_DIRECTORY is a potentially destructive operation if you do not observe the following
suggestions:

• The squeeze operation should not be performed if there are files open on the device.

• No new files should be opened during a squeeze operation.

• You must make sure that no other process is accessing the specified device.

9-44 Input and Output

9.25 UNPROTECT_FILE
The UNPROTECT_FILE procedure removes the protection from a named external file residing
on a directory-structured I/O device. The procedure reverses the action performed by the
PROTECT_FILE procedure. You can delete an unprotected file with the DELETE_FILE
procedure.

Syntax

UNPROTECTJILE (file-specification , [STATUS := status-record~);

fl le-specification
A string constant or a string variable specifying the file to be unprotected; a standard
MicroPower/Pascal file specification (see Section 9.2.5.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status (either success
or error) that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Rules and Defaults

• You must make sure that another process is not accessing the specified file.

Examples

1. This statement when executed removes the protection from the file test.dat on DYAl:.

UNPROTECT_FILE('DYA1:test.dat');

2. This program segment when executed removes the protection from the file specified by the
variable filespec.

VAR filespec : PACKED ARRAY[! .. 24] OF CHAR;

UNPROTECT_FILE(filespec);

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:

None

Input and Output 9-45

9.26 WRITE
The WRITE procedure assigns data to a file.

Syntax

WRITE ([file-variable] , {expression} ...);

file-variable
The identifier of the file variable associated with the output file. If no file variable is
specified, the default is OUTPUT.

expression
The compile-time or run-time expression value to be written. Values are written with a
default field width (see Section 9.28).

Rules and Defaults

• Scalar values must be delimited by spaces to let READ and READLN access them properly.
Spaces should not be used to delimit strings, as they become part of the string, when read.

• For nontext files, WRITE writes the value of any scalar or structured type by performing
the following sequence for each value in the parameter list:

file-variable- := expression;
PUT (file-variable);

The type of each output value must be assignment compatible with the component type of
the file.

• For text files, WRITE writes the value of any scalar type or string type to the file (includes
scalar and string components of record and array types and conformant arrays). Enumerated
and structured types are not allowed. WRITE converts the value of each expression to a
sequence of characters, repeating the assignment and PUT process until all the values in
the parameter list have been written to the file.

Note
Writing conformant arrays is only available in MicroPower /Pascal-VMS.

• Output to an I/O server will occur asynchronously with this request. (Section 9.2.7 describes
buffering.)

Examples

1. The file Test_scores contains test data that includes the test parameter name, test score
value, and score weight factor value. The WRITE procedure writes the values Par_name,
Score, a space(""), and Weight_factor into the file in order. The space is used as a delimiter
between values to allow READ or READLN to read the values into appropriate scalar
variables.

9-46 Input and Output

VAR
Test_scores : TEXT;
Par_name : PACKED ARRAY [1 .. 20] OF CHAR;
Score : 0 .. 100;
Weight_factor : REAL;

WRITE (Test_scores. Par_name, Score."".Weight_factor);

2. This example shows the use of string conformant arrays (packed arrays of CHAR with any
lower and upper bounds). When executed, the code would output:

ABCDEFGHIJ
ABCDEFGHIJKLMNO
That's all.

CONST
A_LOWER_LIMIT = 3;
A_UPPER_LIMIT = 12;
B_LOWER_LIMIT = 41;
B_UPPER_LIMIT = 55;

VAR
A_ARRAY : PACKED ARRAY [A_LOWER_LIMIT .. A_UPPER_LIMIT] OF CHAR;
B_ARRAY : PACKED ARRAY [B_LOWER_LIMIT .. B_UPPER_LIMIT] OF CHAR;
M : INTEGER;

PROCEDURE P (VAR C: PACKED ARRAY [i .. j : INTEGER] OF CHAR);
BEGIN

WRITELN(C)
END;

BEGIN
FOR M := A_LOWER_LIMIT TO A_UPPER_LIMIT DO

A_ARRAY[M] := CHR(65 + M - A_LOWER_LIMIT);
P(A_ARRAY);

FOR M := B_LOWER_LIMIT TO B_UPPER_LIMIT DO
B_ARRAY[M] := CHR(65 + M - B_LOWER_LIMIT);

P(B_ARRAY);

WRITELN('That' 's all.')
END.

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$FNO (type: SOFT_IO)-File not open

ES$FVC (type: SOFT_IO)-File-variable contention error; two or more processes attempted
concurrent access to the same file variable

ES$IFW (type: SOFT_IO)-Illegal field width

Input and Output 9-47

9.27 WRITELN
The WRITELN procedure writes a line of data to a text file and starts a new line.

Syntax

WRITELN [({ file-var~able } [{expression} ...]) .]
express10n

fl le-variable
The identifier of the file variable associated with the output file. If no file variable is
specified, the default is OUTPUT.

expression
The compile-time or run-time expression value to be written. Yalu.es are written with a
default field width (see Section 9.28).

Rules and Defaults

•

•

•

•

•

•

WRITELN writes the value of any scalar type or string type to the file (includes scalar
and string components of record and array types and conformant arrays); enumerated and
structured types are not allowed.

Scalar values must be delimited by spaces to allow READ and READLN to access them
properly. Spaces should not be used to delimit strings, as they become part of the string
when read.

If no data values are specified, WRITELN writes an end-of-line marker and positions the
file at the beginning of the next line.

WRITELN performs the following sequence for each value in the parameter list:

WRITE (file-variable, expression);

WRITELN converts the value of each expression to a sequence of characters, writes each
value in parameter list order into the text file, inserts an end-of-line marker after the end of
the last value, and positions the file at the beginning of the next line.

Output to an 1/0 server will occur asynchronously with this request. (Section 9.2.7 describes
1/0 buffering.)

When writing over a logical link, WRITELN performs an implicit EMPTY_BUFFER operation
to send the line to the logical link partner.

Examples

1. This statement when executed writes a 2 in DATA[l].

WRITELN (DATA[1]:2);

2. This statement when executed writes a blank line in OUTPUT.

WRITELN;

3. This statement when executed writes the specified phrase in TEXTFILE.

WRITELN (TEXTFILE,'Analysis begun');

9-48 Input and Output

4. See' Section 9.26, Example 2 for an example using a conformant array.

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$FNO (type: SOFT_IO)-File not open

ES$FVC (type: SOFT-10)-File-variable contention error; two or more processes attempted
concurrent access to the same file variable

ES$IFW (type: SOFT_IO)-Illegal field width

9.28 Text File Output Field Width Specifications
The output values of a WRITE or WRITELN procedure can be compile-time or run-time
expressions with values of any ordinal (excluding enumerated), real, or string type. Each value
is written with a default field width that specifies the minimum number of characters to be
written for the value.

You can override these default field widths for a particular value by using the following format:

expression : minimum : fraction

expression
A WRITE or WRITELN procedure output value.

minimum
A positive or zero-valued integer expression that specifies the minimum number of characters
to be written for the value.

fraction
A positive or zero-valued integer expression that specifies the number of digits to be written
to the right of the decimal point for a real value. The output data representation is
fixed-point decimal.

Rules and Defaults

• The default field width for each type of output value is:

Data Type Number of Characters

INTEGER 7

LONG-INTEGER 11

REAL 15

CHAR 1

BOOLEAN 5

UNSIGNED 7

Input and Output 9-49

• The default field width for a subrange type is the same as that of the parent type of the .
subrange. ·

• The default display format for type REAL values is floating-point format (see Section 2.2).
Each value is preceded by one space.

• If the field width is larger than the value, the value is right justified in the field with unused
character positions filled with spaces.

• When a value of type PACKED ARRAY OF CHAR is larger than its field-width specification,
the excess characters to the right are truncated.

• When a value of type REAL is larger than its field-width specification, the excess characters
to the right are truncated, and the last digit is rounded up.

• When a value of type INTEGER, LONG-1NTEGER, or UNSIGNED is larger than its
field-width specification, the field width is expanded to include all characters in the value.

Examples
[SYSTEM (MICROPOWER), PRIORITY (20),

DATA_SPACE (1000), STACK_SIZE (200)] PROGRAM FORMAT;

VAR
R REAL;
I INTEGER;
B BOOLEAN;
S PACKED ARRAY [1 .. 5] OF CHAR;
L LONG_INTEGER;

BEGIN
R := 1.555;
I := -12345;
B := FALSE;
S := 'ABCDE';
L := 145645;

9-50 Input and Output

(* FIELD WIDTH OUTPUT *)
(* SPECIFICATION 1234567890123 *)

WRITELN (, *, ' R, '* '); (* * 1.5550000E+OO* *)
WRITELN (, *, ' I, '*'>; (* * -12345* *)
WRITELN (, *, ' B, '* '); (* *FALSE* *)
WRITELN (, *, ' S, '* '); (* *ABCDE* *)
WRITELN (, *, ' L, '* '); (* * 145645* *)
WRITELN (, *, ' R:3, , * '); (* * 1.6E+OO* *)
WRITELN (, *,' I:3, , * '); (* *-12345* *)
WRITELN ('*, ' B:3, , * '); (* *FAL* *)
WRITELN (, *, ' S:3, , * '); (* *ABC* *)
WRITELN (, *, ' L:3, , * '); (* *145645* *)
WRITELN (, *, ' R: 10, , * '); (* * 1.5550E+OO* *)
WRITELN (, *, ' I:10, , * '); (* * -12345* *)
WRITELN (, *, ' B: 10, , * '); (* * FALSE* *)
WRITELN ('*,' S:10, '* '); (* * ABCDE* *)
WRITELN (, *, ' L: 15, , *,); (* * 145645* *)
WRITELN (, *, ' R:3:1, , * '); (* * 1.6* *)
WRITELN (, *, ' R:4:2, , *,); (* * 1.55* *)
WRITELN ('Done') ; (* Done *)

END.

9.29 Output Integer Conversion Functions
MicroPower /Pascal software supplies the predeclared functions BIN, HEX, and OCT to perform
radix conversion in preparation for output by the WRITE and WRITELN procedures. Those
functions operate on INTEGER, UNSIGNED, and LONG_INTEGER values and are legal only
for files of type TEXT. A compilation error occurs if you specify those functions for a file that
is not of type TEXT.

9.29. l BIN(x)

The BIN function converts a WRITE or WRITELN procedure parameter (x) of type INTEGER
or UNSIGNED to its 16-bit binary representation and of type LONG_INTEGER to its 32-bit
binary representation.

Examples

1. The BIN function converts the value of the actual parameter %0'125252' to its binary
representation and returns this value to the WRITE procedure. The result would be
displayed as 1010101010101010.

WRITE (BIN (%0'125252'));

2. The BIN function converts the decimal value 10 to its binary representation and returns this
value to the WRITE procedure. The result would be displayed as 1010.

WRITE (BIN (10));

3. The BIN function converts the hexadecimal value 20000 to its binary representation
and returns this value to the WRITE procedure. The result would be displayed as
100000000000000000.

WRITE (BIN (%X'20000'));

Input and Output 9-51

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$IFW (type: SOFT_IQ)-Illegal field width

ES$LDZ (type: SOFT_IQ)-Long integer divided by zero

9.29.2 HEX(x)

The HEX function converts a WRITE or WRITELN procedure parameter (x) of type INTEGER or
UNSIGNED to a 4-digit hexadecimal representation and of type LONG _INTEGER to an 8-digit
hexadecimal representation.

Examples

1. The HEX function converts the value of the actual parameter %0'125252' to its hexadecimal
representation and returns this value to the WRITE procedure. The result would be displayed
as AAAA.

WRITE (HEX (%0'125252'));

2. The HEX function converts the value of the actual parameter 262144 to its hexadecimal
representation and returns this value to the WRITE procedure. The result would be displayed
as 40000.

WRITE (HEX (262144)) ;

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$IFW (type: SOFT_IQ)-Illegal field width

ES$LDZ (type: SOFT_IQ)-Long integer divided by zero

9.29.3 OCT(x)

The OCT function converts a WRITE or WRITELN procedure parameter (x) of type INTEGER
or UNSIGNED to a 6-digit octal representation and of type LONG_INTEGER to an 11-digit
octal representation.

Examples

1. The OCT function converts the value of the actual parameter %X' AAAA' to its octal
representation and returns this value to the WRITE procedure.' The result displayed is the
octal value 125252.

WRITE (OCT (%X'AAAA'));

2. The OCT function converts the value of the actual parameter 131072 to its octal
representation and returns this value to the WRITE procedure. The result displayed is
the octal value 400000.

WRITE (OCT (131072));

9-52 Input and Output

Error Returns

See Sections 9.2.6 and 11.2 for general information about error returns. The following exception
codes may be returned:
ES$IFW (type: SOFT_IO)-Illegal field width

ES$LDZ (type: SOFT_IQ)-Long integer divided by zero

9.30 Delayed Device Access
The standard Pascal language definition requires that a file's buffer variable contain the next file
component that will be processed by the program. This definition can cause problems when
the input data to the program depends on the output data most recently generated, as when
printing a message that prompts for data at a terminal. To alleviate such problems in the
processing of the text files, MicroPower /Pascal uses a technique called delayed device access,
or "lazy lookahead I/ 0."

All input operations in Pascal are based on obtaining data from a buffer variable. As a result
of delayed device access, an item of data is not retrieved from an 1/0 server and inserted in
the buffer variable until the program is ready to process the data. The buffer variable is filled
when the program makes the next reference to the file. A reference to the file consists of the
use of the buffer variable as a source operand in the GET, READ, and READLN procedures
and in the EOF and EOLN functions (for example, variable:= file_variableA).

The RESET procedure, which is required when any file is opened for input, initiates the process
of delayed device access. (An OPEN and RESET are done automatically on the predeclared file
INPUT.) RESET expects to fill the buffer variable with the first component of the file. However,
because of delayed device access, an item of data is not supplied from the input device to fill
the buffer variable until the next reference to the file.

When writing a program for which the input data will be supplied by a text file, you should be
aware that delayed device access occurs. Since RESET initiates delayed device access and since
EOF and EOLN cause the buffer variable to be filled, you should place the first prompt for
input from a terminal before any tests for EOF of EOLN. The information you enter in response
to the prompt supplies data that is retained by the file device until you make another reference
to the input file.

The following example shows the use of prompts in the reading of input data:

Example

[SYSTEM (MICROPOWER)] PROGRAM LAZY (INPUT, OUTPUT);

Input and Output 9-53

VAR
Purch_Amount REAL;

WRITE
WRITE ('Enter amount of purchase or <CTRL/Z>: ');
WHILE NOT EOF DO

BEGIN
READLN (Purch_Amount);
WRITE ('Enter amount of purchase or <CTRL/Z>: ');
END;

The first reference to the file INPUT is the EOF test in the WHILE statement. When the test is
performed,. the MicroPower /Pascal run-time system attempts to read a line of input from the
text file. So, in this program, you must prompt for the amount of purchase before testing for
EOF. If you respond to the prompt by typing CTRL/Z, EOF returns TRUE. If you respond by
entering a purchase amount, EOF returns FALSE.

Suppose you respond to the first prompt for input by typing a real number. Access to the input
device is delayed until the EOF function makes the first reference to the file INPUT. The EOF
function causes a line of text to be read into the internal line buffer. The subsequent READLN
procedure reads the input value from the line of text and assigns the input value to the variable
Purch-A.mount. The final statement in the WHILE loop is the request for another input value.
The WHILE loop is executed until EOF detects the end-of-file marker.

A sample run of a program containing this loop might be:

$ RUN PURCH
Enter amount of purchase or <CTRL/Z>: 7.95
Enter amount of purchase or <CTRL/Z>: 6.49
Enter amount of purchase or <CTRL/Z>: 19.99
Enter amount of purchase or <CTRL/Z>: -z
$

The following program fragment shows a method of writing the same loop that does not take
into account delayed device access and therefore produces incorrect results:

WHILE NOT EOF DO
BEGIN
WRITE ('Enter amount of purchase or <CTRL/Z>: ');
READLN (Purch_Amount);
END;

The EOF test at the beginning of the loop causes the file buffer to be filled. However, because
no input has been supplied, the prompt does not appear on the terminal screen until you have
supplied input to fill the INPUT file buffer.

A sample run of a program containing this loop might be:

$ RUN PURCHASE
7.95
Enter amount of purchase or <CTRL/Z>: 6.49
Enter amount of purchase or <CTRL/Z>: 19.99
Enter amount of purchase or <CTRL/Z>: -z
$

The prompt always appears after you have typed a value for Purch-Amount.

9-54 Input and Output

Chapter 10
Attributes

MicroPower/Pascal attributes increase your control over the properties of variables, routines,
processes, and compilation units. Attributes may be specified for type definitions, variable
declarations, and PROCEDURE, PROCESS, FUNCTION, PROGRAM, and MODULE headings.
In the absence of explicit attributes, Pascal follows default rules to assign properties to variables,
routines, processes, and compilation units.

This chapter describes the syntax and meaning of the MicroPower/Pascal attributes. The
descriptions are presented in alphabetical order by attribute name. The term "entity" refers to
the language element to which an attribute applies.

Appendix F lists the attributes and shows the language entities to which they apply. Table 10-1
summarizes the attributes by functional class.

Table l 0-1: MicroPower/Pascal Attributes by Functional Class

Class

Accessibility

Allocation

Privilege

Procedure
activation

Name

READONLY
WRITEONLY

AT
STATIC

DEV.:.._ACCESS
DRIVER
PRIVILEGED

INITIALIZE
TERMINATE

Description

Specify how a program can access an entity

Specify the form of storage that an entity will be
allocated

Specify the areas of physical storage that a program
(static process) and its subprograms can directly
access

Establish special conditions under which a proce
dure can be called

Attributes 10-1

Table 10-1 (Cont.): MlcroPower/Pascal Attributes by Functional Class

Class

Run-time

Size

Visibility

Miscellaneous

Name

CONTEXT
DATA_SPACE
GROUP
INIT_PRIORITY
NAME
PRIORITY
STACK_SIZE
SYSTEM

BIT
BYTE
WORD

EXTERNAL
GLOBAL

ID ENT

NOOPTIMIZE

OPTIMIZE

OVERLAID

POS

UNSAFE

VOLATILE

Description

Indicate the default execution-time characteristics
of programs (static processes) and dynamic pro
cesses

Specify the amount of storage to allocate to an
entity in a structure

Allow an entity to be shared between compilation
units

Indicates the program identification or version
number

Specifies that optimized code should not be gen
erated for the associated procedure, function, pro
cess, or main program

Specifies that optimized code should be generated
for the associated procedure, function, process, or
main program

Indicates how storage should be allocated for outer
level variables in different compilation units

Specifies the location of a field in a packed record

Disables type checking so an entity can accept
values of any type without incurring type-checking
errors

Specifies that the entity can be subject to unusual
side effects during execution

Attributes associated with types usually modify type-compatibility rules. Some attributes, when
applied to components of structured types, affect the entire structure. The sections of this
chapter pertaining to the READONLY, WRITEONLY, alignment, POS, procedure activation,
size, UNSAFE, and VOLATILE attributes describe their effects on type compatibility. The
sections discussing the accessibility, size, and volatility attributes also present the rules for using
those attributes with structured types. The sections covering run-time environment define the
attributes that establish characteristics of the real-time programming environment for pr~grams
(static processes) and dynamic processes.

10-2 Attributes

l 0. l Specifying Attributes
Attributes become associated with an entity in two explicit ways in a program:

• They can appear in the definition of a user-defined type, and the entity is later declared to
be of that type.

• They can appear in the declaration of an entity preceding the type.

If the program does not associate an attribute with an entity, Pascal may automatically supply
default attributes for the unspecified entity at the time of the declaration.

A complete list of attributes is associated with an entity of that type only when the type
identifier with attributes is used in a declaration.

10. 1. 1 General Syntax Diagrams
The following diagrams show the syntactic relationship of an attribute and its entity. Complete
syntax descriptions of each entity appear in the chapters referenced below.

Syntax

In a type definition (Chapters 2 and 4):

TYPE {type-identifier= [[{attribute} , ...]] [PACKED] type; } ...

In a variable declaration (Chapter 4):

VAR {{variable-identifier}, ... : [[{attribute}, ...]] [PACKED] type; } ...

In routine and process headings (Chapter 6):

[[{attribute} , ...]] PROCEDURE procedure-identifier
[(formal-parameter-list)] ;

[[{attribute} , ...]] FUNCTION function-identifier
[(formal-parameter-list)] : result-type-identifier;

[[{attribute} , ...]] PROCESS process-identifier
[(formal-parameter-list)] ;

In formal-parameter lists for routines and processes (Chapter 6):

{identifier} , ... : [[{attribute} , ...]] type-identifier [:= default-value]

VAR { ~iden~i~er} , ... : [[{attribute}, ...]] type-identifier[:= default-address] }
identifier : conformant-array

[[{attribute} , ...]]
ARRAY [{lower-bound-identifier .. upper-bound-identifier :

. d 'd 'fi }] OF { type-identifier } m ex-type-1 enh er ,.. . f
con ormant-array

[[{attribute} , ...]]
PACKED ARRAY [lower-bound-identifier .. upper-bound-identifier :

type-identifier] OF CHAR

Attributes 10-3

In the heading of a program or module (Chapter 7):

[[{attribute}, ...]] { ~~DGU~M } identifier [({file-variable}, ...)];

10. 1.2 Memory-Mapping Attributes
The memory-mapping attributes specify the areas of physical storage that a program (static
process) and its subprograms directly access. These attributes apply only to application
environments that use memory-mapping hardware. A mapping type is established for a
program when it is declared. Any processes created by the program inherit its mapping type,
since the code and data associated with a given program must reside in the same address space.
Thus, from the viewpoint of mapping, all processes are "part of" a parent program: One set of
address relocation values is used for all processes within a family. Four mapping types can be
selected:

• General mapping is for processes that do not require direct access to system data structures,
the I/O page, and the interrupt service routines or their data areas. General mapping is the
default if no other mapping attribute is specified.

• Device-access mapping allows access to the processor's I/O page and is specified by the
DEV-ACCESS attribute.

• Privileged mapping allows access to the processor's I/O page and the kernel's common-data
space and is specified by the PRIVILEGED attribute.

• Driver mapping allows access to the processor's I/O page, the kernel's common-data space,
and the interrupt service routines and their data areas and is specified by the DRIVER
attribute.

General mapping, the standard mapping for most application processes, is intended for processes
that do not require direct access to system data structures or to the I/O page. General mapping
allows for the largest possible program.

See Chapter 2 of the MicroPower /Pascal Run-Time Services Manual for a complete discussion of
the MicroPow~r/Pascal memory-mapping scheme.

1 0. 2 Attribute Descriptions
The remainder of this chapter describes the attributes, which are presented in alphabetical order.

10-4 Attributes

10.2.1 AT

The AT attribute specifies the storage address to allocate for an entity.

Syntax

AT (constant)

constant
A value of type UNSIGNED that specifies a memory address.

Rules and Defaults

• This attribute can be specified in variable declarations.

• A variable with this attribute is assumed to reside at the memory address specified by the
constant.

• A variable having the AT attribute is implicitly static.

• Variables representing machine-dependent registers are frequently given the AT attribute.

Attributes 10-5

10.2.2 BIT
The BIT attribute specifies the number of bits of storage to be reserved for a field of a packed
record.

Syntax

BIT [(constant)]

constant
A positive integer that specifies the number of bits to allocate.

Rules and Defaults

• The default allocation size for the entity depends on the data type (see Appendix E).

• The default value for constant is 1.

• The amount of storage described must be large enough to contain an entity of the specified
type; otherwise, a compile-time error results.

• Two variables of the same type that have different allocation sizes are assignment compatible.

10-6 Attributes

10.2.3 BYTE
The BYTE attribute specifies the number of bytes of storage to be reserved for a field of a record.

Syntax

BYTE [(constant)]

constant
A positive integer that specifies the number of bytes to allocate.

Rules and Defaults

• The default allocation size for the entity depends on the data type (see Appendix E).

• The default value for constant is 1.

• The amount of storage described must be large enough to contain an entity of the specified
type; otherwise, a compile-time error results.

• Two variables of the same type that have different allocation sizes are assignment compatible.

Attributes 10-7

10.2.4 CONTEXT

The CONTEXT attribute specifies the processor hardware resources used by a program or a
process that the kernel must save during a context-switching operation.

Syntax

CONTEXT ({ MMU } ,...)
NOFPP

MMU
The kernel is to save and to restore the MMU registers. Use of this option implies that the
program or process may be modifying its MMU registers. If not specified, memory mapping
is fixed, and the MMU registers are not saved, but they are restored.

NOFPP
The kernel will not save the floating-point processor (FPP) registers. You may select this
option to eliminate unnecessary kernel operations for processes that are known not to use
the FPP. NOFPP applies only to compilations in which you have selected the compiler's
/l:FPP command option. This option is activated by default when you select the /I:NHD,
/l:EIS, and /I:FIS compiler command options.

Note
The purpose of the NOFPP option is to permit selective use of the kernel's
FPP register save feature. U~e extreme care when performing floating
point operations if a program contains processes that disable FPP context
switching.

Rules and Defaults

• This attribute can be specified in program and process declarations.

• If MMU is not specified, the memory-mapping hardware should not be modified by the
program or process.

• If NOFPP is not specified, the kernel automatically saves and restores the FPP registers if
you select the compiler's /l:FPP command string option.

10'-8 Attributes

10.2.5 DATA_SPACE

The DATA_SP ACE attribute specifies the amount of storage (heap) space in memory. to reserve
for dynamically allocated program (static process) and dynamic process data.

Syntax

DATA_SPACE (constant)

constant
A positive integer value in the range 0 to 65532 that specifies the number of bytes to
allocate.

Rules and Defaults

• This attribute can be specified in program declarations.

• The default value for this attribute is 2000 bytes.

• The compiler allocates data space in multiples of four bytes.

• An exception occurs if a program attempts to use more space than was allocated.

Calculating Data Space

To determine an appropriate data-space value to specify for a program, perform the following
steps:

1. For static and dynamic processes:

a. Obtain the stack size value for each process (see Section 10.2.22).

b. Add 56 (process impure area size, in bytes) to each value obtained in step la.

2. Determine the size, in bytes (see Appendix E), of each dynamic variable allocated by the
NEW procedure. Add 3 to that value and round the result down to the next multiple of 4.

3. For each open file:

a. Calculate the component size (see Appendix E). Add 3 to the value obtained and round
the result down to the next multiple of 4. (Opening a file results in a call to NEW to
obtain space from the heap.)

b. Add 76 (file descriptor block size, in bytes) to the value obtained in step 3a.

c. Obtain the buffer size value specified in the OPEN statement for the file. Add 3 to
the value obtained and round the result down to the next multiple of 4. (Buffer space
is allocated from the heap through a call to NEW.) If the file is opened with double
buffering (OVERLAPPED := ENABLE), multiply this value by 2. Add the value obtained
in step 3b to this value.

4. Each CONNECT_SEMAPHORE request requires 16 bytes.

5. Each static or dynamic process that has one or more ESTABLISH requests requires 32 bytes.

Attributes 10-9

6. Using the values obtained in steps 1 through 5, calculate the maximum space necessary to
accommodate the largest possible concurrent occurrence of:

• The static process and dynamic processes

• Dynamic variables

• Files

• CONNECT_SEMAPHORE requests

• ESTABLISH requests

7. Add the values obtained in step 6.

8. Add 56 (the size, in bytes, of the OTS impure area) to the value obtained in step 7. The
result is the minimum data-space value to specify.

Example

The following example demonstrates how to determine the DATA_SP ACE value for a simple
program:

[DATA_SPACE (1136), STACK_SIZE (200)]PROGRAM Test (INPUT, OUTPUT);

[STACK_SIZE (100)]PROCESS P1;
BEGIN

END;

[STACK_SIZE (150)]PROCESS P2;
TYPE

Number_ptr = -INTEGER;
VAR

Number : Number_ptr;

PROCEDURE EX 1 ;
BEGIN
ESTABLISH(...

END;

10-10 Attributes

PROCEDURE EX2;
BEGIN
ESTABLISH(...

END;
BEGIN
NEW (Number)

END;
BEGIN
Pi;
P2;
END.

Calculate data space requirements as follows:

1. Process stack and impure area size:

200+56
i00+56
i50+56

static process Test
dynamic process Pi
dynamic process P2

6i8 bytes

2. Open files:

INPUT

OUTPUT

4
76

i32

component size i (rounded) = 4
file descriptor
buff er size

4 component size i (rounded) = 4
76 file descriptor

i36 66 (rounded) = 68 x 2 for double
buffering

428 bytes

3. Dynamic variables:

2 integer variable
2 rounding to multiple of 4

4 bytes

4. Concurrent processes, files, dynamic variables, ESTABLISH requests (assume that all are
concurrent):

6i8 process stack and impure area
428 open files

4 dynamic variables
32 ESTABLISH requests in P2
56 OTS impure area

ii38 bytes (absolute minimum value to specify for DATA_SPACE)

Attributes 10-11

Application Notes

You can use PASDBG's SHOW HEAP command to dynamically observe allocation from the
heap during application execution. Remember that:

• The value returned by SHOW HEAP is not meaningful until the first Pascal statement in
your program executes.

• Before the first statement executes, low-level initialization code in the OTS sets up the data
space and allocates the process impure area for the static process, the OTS impure area,
and the static process stack. The program then runs any initialization procedures declared
in the static process.

• After the first statement executes, the value returned by SHOW HEAP is the DATA_SP ACE
value you specified minus the space required for:

The static process stack
The static process impure area
The OTS impure area
Files, dynamic variables, ESTABLISH requests, and CONNECT_SEMAPHORE requests
resulting from execution of any initialization procedures

10-12 Attributes

10.2.6 DEV_ACCESS

The DEV_ACCESS attribute instructs the compiler to generate object code that allows a progra·m
in a mapped-memory environment to access the processor's 1/0 page (including the device
CSRs, MMU registers, and so on) but not the system data structures. DEV_ACCESS mapping
is suitable for a program or a process that communicates directly with a dedicated 1/0 device
or for a process that must modify its own mapping. See Section 10.1.2 for general information
about memory-mapping attributes and the MicroPower /Pascal Run-Time Services Manual for
information on programming and virtual address restrictions implied by this attribute.

Syntax

DEV_ACCESS

Rules and Defaults

• This attribute can be specified in program declarations.

• Subprograms that reside in a program with this attribute inherit DEV_ACCESS mapping
characteristics.

• The default condition for this attribute is general mapping.

Attributes 10-13

10.2. 7 DRIVER
The DRIVER attribute instructs the compiler to generate object code that allows a program in
a mapped-memory environment to access directly system data structures (that is, the kernel's
common-data space), the 1/0 page, and the interrupt service routines and their data areas.

DRIVER mapping is suitable for use by device driver processes. See Section 10.1.2 for general
information about memory-mapping attributes and the MicroPower /Pascal Run-Time Services
Manual for information on programming and virtual address restrictions implied by this attribute.

Syntax

DRIVER

Rules and Defaults

• This attribute can be specified in program declarations.

• Subprograms that reside in a program with this attribute inherit DRIVER mapping
characteristics.

• The default condition for this attribute is general mapping.

·10-14 Attributes

10.2.8 EXTERNAL
The EXTERNAL attribute indicates that an entity is assumed to be defined with the GLOBAL
attribute and resident in another compilation unit. Entities with this attribute are not allocated
storage space in memory. The data or subprogram body resides in the storage space allocated
for the compilation unit that contains the corresponding GLOBAL declaration.

Syntax

EXTERNAL [(global-id) ~

global-Id
A 6-character build-time name of the entity. Uppercase and lowercase versions of a character
are equivalent. Underscore characters (-) are converted to periods (.).

Rules and Defaults

• This attribute can be specified in declarations for variables, procedures, functions, and
processes.

•

•

•
•
•

•

•

The EXTERNAL attribute can be specified in declarations for a function, procedure, or
process only if that subprogram appears at the outermost level of a program or module. In
other words, a subprogram with the EXTERNAL attribute cannot be nested within another
subprogram.

The compiler passes the first six characters of the identifier specified cby global-id to the
application-build utilities (described in the MicroPower/Pascal system user's guide applicable
to your host system). The identifier must be unique within the first six characters across all
compilation units. If no identifier is specified for the global-id parameter, the compiler uses
the first six characters of the identifier declared for the entity.

By default, variables and subprograms are not visible to separate compilation units .

This attribute is illegal on record fields and formal parameters .

The names and declarations for corresponding GLOBAL and EXTERNAL entities must be
identical.

EXTERNAL subprogram declarations must be followed by a block containing either the
EXTERNAL or the SEQl 1 directive (see Section 6.5.2).

A subprogram that is nested (see Section 6.1.3) cannot have the EXTERNAL attribute .

Attributes 10-15

Examples
VAR

Variable_1 : [EXTERNAL] INTEGER;
Variable_2 : [EXTERNAL] REAL;

[EXTERNAL (Unique)] PROCEDURE ~umber_Unique (I:INTEGER);EXTERNAL;

Although the variable names above are unique within the compilation unit, both specify the
external name Variab. To avoid this conflict, specify a build-time name.

VAR
Variable_1 : [EXTERNAL (Vi)] INTEGER;
Variable_2 : [EXTERNAL (V2)] REAL;

In these declarations, the EXTERNAL names for these variables are uniquely named Vl and V2.

10-16 Attributes

10.2.9 GLOBAL

The GLOBAL attribute provides a definition of a variable or a subprogram so other independently
compiled units can refer to it through variables or subprograms declared with the EXTERNAL
attribute and through subprograms declared with the EXTERNAL or SEQl 1 directive (see
Section 6.5.2).

Syntax

GLOBAL [(global-id)]

global-id
A 6-character build-time name of the entity. Uppercase and lowercase versions of a character
are equivalent. Underscore characters (-) are converted to periods (.).

Rules and Defaults

• This attribute can be specified in declarations for variables, functions, procedures, and
processes.

• The GLOBAL attribute can be specified in declarations for a function, procedure, or process
only if that subprogram appears at the outermost level of a program or module. In
other words, a subprogram with the GLOBAL attribute cannot be nested within another
subprogram.

• The compiler passes the first six characters of the name that is specified by global-id
to the application-build utilities (described in the MicroPower/Pascal system user's guide
applicable to your host system). The identifier must be unique within the first six characters
across all compilation units. If no identifier is specified for the global-id parameter, the
compiler uses the first six characters of the identifier declared for the entity.

• By default, variables and subprograms are not visible to separate compilation units.

• This attribute is illegal on record fields and formal parameters.

• The names and declarations for corresponding GLOBAL and EXTERNAL variables and
subprograms must be identical.

Example

VAR
Variable_! : [GLOBAL] INTEGER;
Variable_2 : [GLOBAL] REAL;

Although the variable names above are unique within the compilation unit, both specify the
6-character global name Variab. To avoid this conflict, specify an identifier.

VAR
Variable_! : [GLOBAL (V1)] INTEGER;
Variable_2 : [GLOBAL (V2)] REAL;

[GLOBAL(Unique)] PROCEDURE UNIQUE_NUMBER(I:INTEGER);

In these declarations, the GLOBAL names for these variables are uniquely named Vl and V2.

Attributes 10-17

10.2. 10 GROUP

The GROUP attribute specifies that the entity is a member of a specified process exception
group. When an exception occurs within a process, the exception handler for this group is
called.

Syntax

GROUP (constant)

constant
A positive integer from 1 to 255 that specifies the exception group.

Rules and Defaults

• This attribute can be specified in program declarations and process declarations.

• The default value for this attribute is 1.

10-18 Attributes

10.2. 11 IDENl
The IDENT attribute overrides the compiler generated program identification or version number
(corresponding to the .IDENT directive in MACR0-11).

Syntax

IDENT (ident-string)

ident-string
A string constant that contains the program identification string. The string must be exactly
six characters long. If fewer than six printing characters are used, the string must be padded
with trailing spaces. Uppercase and lowercase versions of the same character are treated as
unique.

Rules and Defaults

• This attribute can only be specified in program and module declarations.

• If this attribute is not specified, a system generated string is used for the program
iden tifica ti on.

Example

[IDENT('V2.4b ')]PROGRAM test
BEGIN

END.

Attributes 10-19

l 0.2.12 INIT_PRIORITY

For applications having multiple static processes (programs), the INIT_PRIORITY attribute
establishes execution priority for the "INITIALIZE procedures" within the application (see
Section 10.2.13). INIT_pRIORITY lets you establish a sequenced startup, in which initialization
procedures in different static processes can be executed in a predetermined sequence.

Syntax

INIT_PRIORITY (constant)

constant
An integer value in the range 0 to 255 that specifies the priority value.

Rules and Defaults

• This attribute can be specified in a program declaration.

• This attribute establishes the execution priority of all procedures that have the INITIALIZE
attribute.

• The highest priority is 255.

• In the absence of this attribute, the default priority value is 248.

• Within a program, the order of execution of initialization procedures is undetermined.

• Across programs, the order of execution of initialization procedures is determined by their
respective priorities.

Example

[SYSTEM (MICROPOWER), DATA_SPACE(4000),PRIORITY(15),
INIT_PRIORITY(239)] PROGRAM Routine_Activate;

[INITIALIZE] PROCEDURE Check_Open;

BEGIN (* Routine_Activate *)

END

[SYSTEM (MICROPOWER), DATA_SPACE(2300),PRIORITY(50),
INIT_PRIORITY(240)] PROGRAM Alarm_Activate;

[INITIALIZE] PROCEDURE Indicator_Clear;

BEGIN (* Alarm_Activate *)

10-20 Attributes

These program fragments include initialization procedures among their declarations. At system start
up time, the initialization procedure Indicator_Clear will execute before the initialization procedure
Check_Open. Thereafter, the main program Alarm_Activate will execute at priority 50, and main
program Check_Open will execute at priority 15.

Attributes 10-21

l 0.2. 13 INITIALIZE
The INITIALIZE attribute specifies that the associated procedure is to be called before control
passes to the main part of any program (static process). A procedure with this attribute is called
an initialization procedure.

Syntax

INITIALIZE

Rules and Defaults

•
•
•
•

•

•

•

•

•

•

•
•
•

This attribute can be specified in procedure declarations .

A procedure with this attribute must be declared at the outermost level of a program .

A program can contain any number of procedures with this attribute .

The default priority value for a procedure with this attribute is 248. You may specify other
priorities with the INIT_PRIORITY attribute (see Section 10.2.12).

Within the same program, the order of execution of procedures with this attribute is not
defined.

Between programs, the order of execution of initialization procedures is undetermined unless
the INIT_pRIORITY attribute is used in one or more of the program declarations.

In the absence of the INITIALIZE attribute, the compiler assumes that a procedure can be
activated only by calls within the program.

A procedure with this attribute cannot use the standard system input/output mechanisms .
The procedure can, however, access the I/O page directly.

A procedure with this attribute can be passed as an actual parameter to a formal routine
parameter that does not have this attribute.

A procedure with this attribute can access only its local variables and variables at the
outermost level.

A procedure with this attribute cannot have a parameter list.

A procedure with this attribute cannot be declared EXTERNAL.

A procedure with this attribute can be called as an ordinary procedure .

Example

[SYSTEM (MICROPOWER)] PROGRAM Routine_Activate;

[INITIALIZE] PROCEDURE Check_Open;

BEGIN (* Routine_Activate *)

10-22 Attributes

This program includes an INITIALIZE procedure among its declarations. The body of
Check_Open is executed before the main program is activated.

Applications

A typical task for a procedure with this attribute would be to create global structures. You
should not use an initialization procedure to perform tasks that depend on the existence of
or refer to structures created by other processes. See Appendix A of the MicroPower /Pascal
Run-Time Services Manual for a list of suggested user and system process priorities.

Attributes 10-23

10.2.14 NAME

The NAME attribute identifies an invocation of a process.

Syntax

NAME (process-name)

process-name
A string constant or a variable that contains the run-time name of the process. The name
must be a 6-character string. If fewer than six printing characters are used, you must pad
the name with trailing spaces. Uppercase and lowercase versions of the same character are
treated as unique.

Rules and Defaults

• This attribute can be specified in process declarations.

• You may override this specification during process invocation by supplying a value for the
predeclared parameter NAME (see Section 5.9).

Example

VAR Pname : PACKED ARRAY[1 .. 6] OF CHAR;

[NAME('Proc1 ')]PROCESS Task(I:INTEGER);
BEGIN

END;
BEGIN

Task(I); (* This will have the default name 'Proc1 ' *)

Pname: = 'Proc2 ' ;

Task(I, NAME:=Pname); (*This will have the name 'Proc2 ' *)

END.

10-24 Attributes

10.2. 15 NOOPTIMIZE

The NOOPTIMIZE attribute specifies that optimized code should not be generated for the
associated procedure, function, process, or main program.

Syntax

NOOPTIMIZE

Rules and Defaults

• This attribute can be specified in procedure, function, process, or program declarations. It
has no effect on module declarations.

• The attribute is used to override the effect on optimization by the /DEBUG option; specifying
/NODEBUG enables code optimizations for all routines, and the NOOPTIMIZE attribute
overrides the optimizations for individual routines.

• If the /DEBUG option is specified, the NOOPTIMIZE attribute has no effect.

Example

{compiled with the /NODEBUG option}
VAR b: PACKED ARRAY [1 .. 8] OF BOOLEAN;

{two separate MACRO instructions are generated}
[NOOPTIMIZE]PROCEDURE noopt;
BEGIN

b[1] := true;
b[4] := true;

END;

{one optimized instruction is generated}
PROCEDURE opt;
BEGIN

b[1] := true;
b[4] := true;

END;

Attributes 10-25

10.2. 16 OPTIMIZE
The OPTIMIZE attribute specifies that optimized code should be generated for the associated
procedure, function, process, or main program.

Syntax

OPTIMIZE

Rules and Defaults

• This attribute can be specified in procedure, function, process, or program declarations. It
has no effect on module declarations.

• The attribute is used to override the effect on optimization by the /DEBUG option; specifying
/DEBUG suppresses code optimizations for all routines, and the NOOPTIMIZE attribute
overrides the suppression for individual routines.

• If the /NODEBUG option is specified, the OPTIMIZE attribute has no effect.

Example

{compiled with the /DEBUG option}
VAR b: PACKED ARRAY [1 .. 8] OF BOOLEAN;

{one optimized instruction is generated}
[OPTIMIZE]PROCEDURE opt;
BEGIN

b[1] := true;
b[4] := true;

END;

{two separate MACRO instructions are generated}
PROCEDURE noopt;
BEGIN

b[1] := true;
b[4] := true;

END;

10-26 Attributes

10.2. 17 OVERLAID
The OVERLAID attribute allows a program and its modules to share a common outer-level
variable storage area. The variables declared at program or module level will, at build time,
overlay the storage of outer-level variables in all other compilation units. (Ordinarily, data
storage space for each compilation unit is allocated to separate memory areas.)

Syntax

OVERLAID

Rules and Defaults

• This attribute can be specified in program and module declarations.

• By default, variables are not stored in OVERLAID storage regions.

• The VAR, CONST, and TYPE declaration sections of each compilation unit that uses the
OVERLAID attribute must be physically and logically identical to ensure proper alignment
in physical storage. This identity is easily accomplished by creating a separate file that
contains common declarations and inserting them into each program and module with the
%INCLUDE directive (see Section 7.3).

• This attribute has no effect on variables defined within procedures, functions, or processes;
those variables are allocated storage space dynamically at run time.

Attributes 10-27

10.2.18 POS

The POS attribute specifies the bit position of a field in a packed record.

Syntax

POS (constant)

constant
An integer from 0 to 2*MAXINT+l that specifies the ordinal bit position, relative to the
beginning of the record, at which the field begins.

Rules and Defaults

• Default conditions for the positioning of record fields are described in Appendix E.

• The constant cannot be a negative integer.

• The starting position for a field must be greater than the ending position of the field
preceding it.

• Within a record variant declaration, the starting position for a field must be greater than
the ending position of the preceding field within the same variant. As always, the variants
may overlap.

• A field larger than 16 bits must be positioned on a word boundary.

• The specified bit position must not conflict with the alignment required explicitly by the
item.

10-28 Attributes

10.2.19 PRIORITY
The PRIORITY attribute establishes the execution precedence among programs and processes.

Syntax

PRIORITY (constant)

constant
An integer value in the range 0 to 254 that specifies the priority value.

Rules and Defaults

• This attribute can be specified in program and process declarations.

• The highest priority is 255. You may specify this priority only by using the predeclared
procedure CHANGE_PRIORITY (see Section 12.1).

• The default priority value for programs is 1.

• The default value for a process is the priority of the program or process that invoked it.

• You can override this specification during process invocation by supplying a value for the
predeclared parameter PRIORITY (see Section 5.9).

• You can override this specification during process execution by using the CHANGE_
PRIORITY procedure (see Section 12.1).

Attributes 10-29

10.2.20 PRIVILEGED
i

The PRIVILEGED attribute instructs the compiler to generate object code that will allow a
program in a mapped-memory environment to access directly both the system data structures in
kernel data space and the 1/0 page. See Section 10.1.2 for general informatiort about memory
mapping attributes and the MicroPower /Pascal Run-Time Services Manual for information on
programming and virtual address restrictions implied by this attribute.

Syntax

PRIVILEGED

Rules and Defaults

• This attribute can be specified in program declarations.

• Subprograms that reside in a program with this attribute inherit the mapping characteristics
of this attribute.

• The default condition for this attribute is general mapping.

PRIVILEGED mapping is used by exception-handling processes, which generally require access
to process control blocks (PCBs). Although PRIVILEGED mapping restricts process size, it
allows for efficient queue semaphore operations for interprocess message transmission.

10-30 Attributes

10.2.21 READONLY
The READONLY attribute specifies that an entity can be the source of an assignment statement
but not the destination of an assignment statement.

Syntax

READONLY

Rules and Defaults

• This attribute can be specified in declarations for variables, formal parameters, record fields,
and type declarations.

• By default, entities can be both read and written.

• You cannot specify more than one accessibility attribute in the same attribute list. That is,
an entity cannot be both READONL Y and WRITEONL Y.

• No value of any type is assignment-compatible with a READONLY entity.

• A READONL Y field in a record prohibits the entire record from having values assigned to
it. The record as a whole may not be explicitly declared WRITEONLY.

• A READO NL Y expression used as an actual parameter can be passed only to a READO NL Y
formal parameter.

Example

This example shows a compilation listing that contains both legal and illegal references to
a READONL Y data item. In Tt_Csr, the field Int_Enb is a read/write item specifying the
interrupt enable field of a terminal status register. Done is a read-only field indicating that a
character is ready to be processed. Done is under control of the hardware and may not be
modified by the user program.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

*** 171:

[SYSTEM (MICROPOWER)] PROGRAM R_Only;

TYPE
Tt_Csr =

VAR

PACKED RECORD
Int_Enb: [POS(6)] BOOLEAN;
Done: [POS(7), READONLY, VOLATILE] BOOLEAN;

END;

Rcsr: [AT(Y.0'177560')] Tt_Csr;
Rchr: [AT(Y.0'177562')] CHAR;

BEGIN

(* Initialize the register. *)
Rcsr.Int_Enb :=FALSE;
Rear.Done := FALSE;

-171
Illegal reference to a readonly data item

Attributes 10-31

19
20
21
22
23
24

10-32 Attributes

(* Wait until a character is typed. *)
WHILE NOT Rear.Done DO;

(*Process the character using Rchr ... *)
END.

10.2.22 STACK_SIZE
The STACK_SIZE attribute specifies the amount of stack space used for program and process
stacks. This space is allocated from the storage space declared by the DATA_SP ACE attribute.

Syntax

STACK_SIZE (constant)

constant
A positive integer value from 0 to 65532 that specifies the number of bytes to allocate.

Rules and Defaults

• This attribute can be specified in program declarations and process declarations.

• The value selected must be a multiple of 4 and be less than that specified for the
DATA_SP ACE attribute.

• The default value for this attribute is 400 bytes for programs and processes.

• You can override this specification during process invocation by supplying a value for the
predeclared parameter STACK_SIZE (see Section 5.9).

• An exception occurs if a program or process attempts to use more space than was allocated
for the stack.

• An exception occurs if more space is allocated for the stack than is available.

Calculating Stack Size

To determine an appropriate stack size value to specify for a program or process, perform the
following steps:

1. Compile the program or module, using the /E option (see the applicable MicroPower /Pascal
system user's guide).

2. Note the stack-depth value for the program or process specified in the compilation listing.

3. For each recursive procedure or function, multiply the stack-depth value by the number of
recursions.

4. Add the products obtained in step 3 to the stack-depth value and 56 (OTS work area size).

5. If the process is to reside in an unmapped-memory environment, add 54 (stack space used
by the kernel) to the value obtained in step 4 to obtain the stack-size value. Otherwise, in
a mapped-memory environment, the value obtained in step 4 is the stack size to use.

Attributes 10-33

10.2.23 STATIC
The STATIC attribute specifies that the storage allocation for a variable be allocated only once.
A STATIC variable exists as long as the memory image in which it was allocated remains active.

Syntax

STATIC

Rules and Defaults

• This attribute can be specified in variable declarations and type declarations.

• A variable having the AT attribute is implicitly STATIC.

• Variables having the GLOBAL and EXTERNAL attributes are implicitly STATIC.

• Variables declared. with this attribute that reside in a program or a module with the
OVERLAID attribute are not allocated from the same storage region as are variables not
declared with a storage allocation attribute.

• By default, variables declared at the outer level of a program or module are STATIC.

Note
Statically allocated variables can affect the results of routines that are called
recursively.

Example

[SYSTEM(MICROPOWER)] PROGRAM Print_Random(OUTPUT);
FUNCTION Random(New_Seed: INTEGER := 0): INTEGER;

CONST
A = 13077;
c = 6925;
M = 32768;

VAR
Seed: [STATIC] INTEGER;

BEGIN
IF New_Seed <> 0

THEN Seed := New_Seed;
Seed := ((Seed * A) + C) MOD M;
Random := Seed;

END (* Random *)
VAR

I: INTEGER;
BEGIN

(* Provide a new seed for Random. *)
I := Random(15);
FOR I := 1 TO 20 DO WRITELN(Random);

END.

10-34 Attributes

The program 'Print_Random includes a function that generates a random integer. The variable Seed
declared inside the function Random is given the STATIC attribute. Thus, the variable's value will be
preserved from one activation of the function to the next. The STATIC attribute overrides the default
allocation for inner-level variables, which would have caused the storage for Seed to be deallocated
when control returned to the main program after execution of the function. Because Seed is declared
STATIC, it retains the value it had when Random ended and uses this value the next time Random
is called.

Attributes 10-35

10.2.24 SYSTEM
The SYSTEM attribute selects the run-time environment for a program. This· attribute instructs
the compiler to generate object code for the specified run-time environment.

Syntax

SYSTEM (environment-name)

environment-name
The identifier MICROPOWER.

Rules and Defaults

• This attribute can be specified in program declarations.

• This attribute is optional and is for documentation purposes only. SYSTEM is intended for
use in future versions of this product.

• If you specify this attribute, you must specify MICROPOWER as the environment name.

10-36 Attributes

10.2.25 TERMINATE
The TERMINATE attribute specifies that a procedure will be called by the kernel prior to
termination of the program or process in which the procedure resides. The kernel passes control
to a termination procedure in response to a STOP request (see Section 12.7), an exception
condition (see Chapter 17), or normal process termination.

Syntax

TERMINATE

Rules and Defaults

• This attribute can be specified in procedure declarations.

• A termination procedure must be declared at the outermost level of a program or a process.

• No more than one procedure with this attribute can be declared for a program or a process.

• A termination procedure can also be called as an ordinary procedure.

• In the absence of this attribute, the compiler assumes that a procedure can be activated only
by calls within the program.

• A termination procedure cannot have a parameter list.

• A termination procedure cannot be declared EXTERNAL.

The purpose of a termination procedure is to perform operations necessary to ensure an orderly,
controlled response to the occurrence of a terminating condition. A typical task for a termination
procedure would be to supervise the destruction of data structures created by the subject process
or program so the space they occupy can be restored to the heap and to the kernel pool.

Example

[SYSTEM (MICROPOWER)] PROGRAM Routine_Activate;

PROCESS Parallel;
VAR

S: SEMAPHORE_DESC;
Result : BOOLEAN;

[TERMINATE] PROCEDURE Abort;
BEGIN (* procedure abort *)

DESTROY(desc:=S);
END; (* of procedure abort *)

BEGIN
Result := CREATE_BINARY_SEMAPHORE(DESC:=S, NAME:='SEM1 ');

END;(* Of process parallel*)

Attributes 10-37

10.2.26 UNSAFE
The UNSAFE attribute inhibits type checking so an entity can accept values. of any type.

Syntax

UNSAFE

Rules and Defaults

• This attribute can be specified in declarations for variables, record fields, type declarations,
and formal parameters, except conformant arrays.

• Any expression is assignment compatible with an UNSAFE variable. If the machine
representations of the expression's value and the UNSAFE variable differ, the compiler
forces them to have the same number of bits by modifying the value of the expression, as
follows:

1. If the UNSAFE variable is larger than the expression's value, assignment is performed
as follows:

a. An expression value smaller than 16 bits is assigned to the low-order bits of the
variable. The unused region up to the variable's first word boundary (or byte
boundary if the variable is byte sized) is zero filled. The remaining high-order part
of the variable (if it exists) is unchanged.

b. An expression value of 16 bits or larger is assigned to the low-order bits of the
variable. If the top of the assigned region falls on other than a byte boundary, the
region up to the next byte boundary is zero filled. The remaining high-order part
of the variable is unchanged.

2. If the UNSAFE variable is smaller than the expression's value, the compiler generates a
diagnostic error.

• A pointer expression is assignment compatible with an UNSAFE pointer variable if the
machine representations of the base types are the same size and if their volatility,
accessibility, and alignment attributes allow them to be assignment-compatible.

• An actual value parameter variable may be passed to an UNSAFE formal parameter if the
machine representations for both types are the same size and if their volatility, accessibility,
and alignment attributes allow them to be structurally compatible.

• An actual VAR parameter may be passed to an UNSAFE formal parameter without regard
to its allocation size. However, your application must handle the size difference.

Example

The procedure in this program uses an [UNSAFE] procedure parameter to write norihomogeneous
data into a file. The parameter Buffer is used to pass the data to be written. Because Buffer
is declared [UNSAFE], type checking is disabled for the corresponding actual parameter at the
procedure call. Thus, any buffer may be passed to Put_Data for output to file. Byte_Count is
an integer parameter that informs the procedure how many bytes to write from the specified
buffer.

10-38 Attributes

The procedure Put_Data is called several times in this program to illustrate the many different
actual parameter types. The actual parameter need not be an array.

The data buffers in this example are passed by VAR rather than by value to avoid the size
matching restriction on UNSAFE value parameters.

[SYSTEM(MICROPOWER)]PROGRAM Data_Out;
TYPE

Big= PACKED ARRAY [1 .. 1000] OF CHAR;
VAR

Data_File: FILE OF CHAR;
PROCEDURE Put_Data(VAR Buffer: [UNSAFE,READONLY] Big;

Byte_Count: INTEGER);
VAR

I: INTEGER;
BEGIN

FOR I := 1 TO Byte_Count DO
BEGIN

Data_File- := Buffer[!];
PUT(Data_File);

END;
END (* Put_Data *) ;

VAR
I: INTEGER;
Real_Buf: ARRAY [1 .. 100] OF REAL;
Int_Buff: ARRAY [1 .. 100] OF INTEGER;
Chr_Buff: PACKED ARRAY [1 .. 6] OF CHAR;
Iv: INTEGER;
Rv: REAL;

BEGIN

(* Initialize the data. *)
Chr_Buff := 'ABCDEF';
FOR I := 1 TO 100 DO Int_Buff [I] I;
FOR I := 1 TO 100 DO Real_Buf [I] I;
Iv := 1023;
Rv := 100.345;

(* Create the file. *)
OPEN(Data_File, 'TEMP.DAT', NEW);
REWRITE(Data_File);

(* Output the data. *)
Put_Data(Chr_Buff, SIZE(Chr_Buff));
Put_Data(Int_Buff, SIZE(Int_Buff));
Put_Data(Real_Buf, SIZE(Real_Buf));
Put_Data(Iv, SIZE(INTEGER));
Put_Data(Rv, SIZE(REAL));

(* Finish off the file. *)
CLOSE(Data_File);

END.

Attributes 10-39

10.2.27 VOLATILE
The VOLATILE attribute informs the compiler that the entity may be subject to unusual side
effects during execution. Ordinarily, the compiler assumes that an entity will not be subject to
unusual side effects.

A VOLATILE entity may change not only in the usual ways but also as the result of an action
not directly specified in the program. Thus, the compiler assumes that the value of a VOLATILE
entity can be changed or evaluated at any time during program execution. Consequently, a
VOLATILE entity does not participate in any optimization based on assumptions about its value.
Examples of VOLATILE behavior are modification by asynchronous processes and exception
handlers and the behavior of device registers.

Syntax

VOLATILE

Rules and Defaults

• This attribute can be specified in declarations for formal parameters, record fields, type
declarations and variables.

• By default, entities are not VOLATILE.

• A variable of a structured type having a VOLATILE component is VOLATILE as a whole.
However, the presence of a VOLATILE component does not make other components of the
same type VOLATILE.

Example

The following code fragment shows the use of the VOLATILE attribute in declaring a device
control/status register (CSR):

VAR
Newchar : CHAR;
Receiver : [AT(%0'176500'),

VOLATILE] PACKED RECORD

BEGIN
WITH Receiver DO

BEGIN
WHILE NOT Done DO;
IF NOT Err

Inten : [POS(6)] BOOLEAN;
Done : [POS(7), READONLY] BOOLEAN;
Data: [POS(16), READONLY] CHAR;
Err : [POS(31), READONLY] BOOLEAN;
END;

THEN Newchar := Data;
END;

END.

10-40 Attributes

Application Note

Multiple processes in a MicroPower/Pascal application can share a variable with access to the
shared variable synchronized by a SEMAPHORE or MUTEX structure. However, failure to use
the VOLATILE attribute when declaring the variable can produce a form of race condition. The
compiler allocates registers for frequently used variables in a procedure, function, or process. If
the compiler is allowed to allocate a register for a variable shared with another process, changes
to the shared variable might occur in registers rather than in the actual memory location. Here
the processes are not using a common value.

Another complication is that during compilation for debugging, the compiler disables the
optimization to let you examine the shared variable with PASDBG and obtain correct results.
Thus, a program that works correctly during debugging may fail when built for production.

Use of the VOLATILE attribute when declaring a shared variable prevents the compiler from
optimizing the value of the variable into a register.

Attributes 10-41

10.2.28 WORD

The WORD attribute specifies the number of words of storage to be reserved for a record field
(one word contains two bytes).

Syntax

WORD [(constant)]

constant
A positive integer that specifies the number of words to allocate.

Rules and Defaults

• The default allocation size for the entity depends on the data type (see Appendix E).

• The default value for constant is 1.

• The amount of storage described must be large enough to contain an entity of the specified
type; otherwise, a compile-time error results.

• Two variables of the same type that have different allocation sizes are assignment compatible.

10-42 Attributes

l 0.2.29· WRITEONL Y

The WRITEONL Y attribute specifies that the entity can be the destination of an assignment
statement but not the source of an assignment statement. The WRITEONL Y attribute is used
primarily in 1/0 device register declarations.

Syntax

WRITEONLY

Rules and Defaults

• This attribute can be specified in declarations for formal parameters, record fields, type
declarations, and variables.

• By default, entities can be both read and written.

• A WRITEONL Y entity cannot be combined in expressions with other values of the same
type.

• A WRITEONL Y component of a record prohibits the entire record from being read by a
program. The record type as a whole may not be explicitly declared READONLY.

• A WRITEONLY expression used as an actual parameter can be passed only to a WRITEONLY
formal parameter.

• A pointer to a WRITEONL Y base type is not assignment compatible with a pointer to a
base type that is not WRITEONLY.

Example

Caution
The size of a WRITEONLY entity should be one word only. Otherwise, the
compiler generates object code that may cause some models of the target
processor to perform a read-modify-write memory cycle and thus read the
entity.

This example shows a compilation listing of a program that contains some legal and illegal
references to a write-only data item. The character buffer to the serial interface, Xchr, is a
write-only field and may not be examined by the program. The character buffer may, however,
be loaded from the program.

Attributes 10-43

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

[SYSTEM (MICROPOWER)] PROGRAM W_Only;

TYPE
Tt_Csr

VAR

PACKED RECORD
Int_Enb: [POS(6)] BOOLEAN;
Done: [POS(7), READONLY, VOLATILE]

END;

Xcsr: [AT(%0'177564')] Tt_Csr;
Xchr: [AT(%0'177566'), WRITEONLY] CHAR;

BEGIN

(* Initialize the register. *)
Xcsr.Int_Enb :=FALSE;

(* Put out a char. *)
Xchr := 'A';
(* Wait until the interface is done. *)
WHILE NOT Xcsr.Done DO;

(* Continue processing *)
IF Xchr = 'A'

-169
*** 169: Illegal reference to a writeonly data item

27 THEN;
28 END.

10-44 Attributes

BOOLEAN;

Chapter 11
Introduction to Real-Time Programming Requests

This chapter introduces the real-time programming requests that are the Pascal language interface
to the primitive services of the MicroPower /Pascal kernel (see MicroPower /Pascal Run-Time
Services Manual, Chapter 3). The requests consist of a set of procedure and function calls that
are predeclared in one of several system files that you can include in your program or module
with the %INCLUDE directive. Appendix I lists those files and the requests they define.

Table 11-1 lists the real-time programming requests by functional groups.

Table 11-1: MicroPower/Pascal Real-Time Programming Requests by Functional
Group

Clock Services

GET_ TIME

SET_ TIME

Descriptor Initialization

INIT_PROCESS_DESC

Exception Condition Control

CONNECT_EXCEPTION

DISCONNECT_EXCEPTION

ESTABLISH

RELEASE_EXCEPTION

SLEEP

INIT_STRUCTURE_DESC

REPORT

REVERT

WAIT__EXCEPTION

Introduction to Real-Time Programming Requests 11-1

Table 11-1 (Cont.): MicroPower/Pascal Real-Time Programming Requests by Functional
Group

1/0 Control

CONNECT_INTERRUPT

CONNECT_SEMAPHORE

Memory Allocation and Mapping

ACCESS_SHARED_REGION

ALLOCATE_REGION

CREATE_SHARED_REGION

DEALLOCATE-REGION

DELETE_SHARED_REGION

Miscellaneous

CREATE_LOGICAL_NAME

DELETE_LOGICAL _NAME

GET_CONFIG

Process Management

CHANGE_PRIORITY

GET_STATE

RESUME

Process Message Transmission

COND_GEt_p ACKET

COND_PUT_P ACKET

COND_RECEIVE

COND_RECEIVE _ACK

COND_SEND

COND_SEND_ACK

GET_PACKET

11-2 Introduction to Real-Time Programming Requests

DISCONNECT_INTERRUPT

DISCONNECT_SEMAPHORE

MAP_WINDOW

RESTORE_CONTEXT

SAVE_CONTEXT

UNMAP_WINDOW

POWER_FAIL

TRANSLATE_LOGICAL_NAME

SCHEDULE

STOP

SUSPEND

GET_P ACKET_ANY

PUT_PACKET

RECEIVE

RECEIVE _ACK

RECEIVE_ANY

SEND

SEND_ACK

Table 11-1 (Cont.): MicroPower/Pascal Real-Time Programming Requests by Functional
Group

Process Synchronization

COND_SIGNAL

COND_WAIT

DEFINE_STOPJLAG

GET_ VALUE

LOCK__MUTEX

Resource Allocation/Deallocation

ALLOCATE_P ACKET

CREATE_BINARY_SEMAPHORE

CREATE_BINARY--'-SEMAPHORE_p

CREATE_COUNTING_SEMAPHORE

CREATE_CQUNTING_SEMAPHORE_P

CREATE_MUTEX

CREATE_QUEUE_SEMAPHORE

Ring Buffer Management

COND_GET_ELEMENT

COND_PUT_ELEMENT

GET_ELEMENT

SIGNAL

SIGNAL_ALL

UNLOCK_MUTEX

WAIT

WAIT_ANY

CREATE_QUEUE_SEMAPHORE_P

CREATE _RING _BUFFER

CREATE _RING _BUFFER_P

DEALLOCATE_pACKET

DESTROY

DESTROY_MUTEX

GET_ELEMENT_ANY

PUT_ELEMENT

RESET_RING_BUFFER

11 . 1 General Conventions and Usage Rules
The real-time programming requests are supplied as standard Pascal procedures and functions.
The general rules of usage described in Chapter 6 apply, except that you should use only the
nonpositional parameter (keyword) syntax when passing actual parameters to a request. Do not
use the positional parameter syntax; unpredictable results may occur. Not enough information
about the formal parameter definitions is supplied to allow you to specify the correct positional
syntax.

When you specify more than one parameter, use a comma to separate each parameter from the
next.

Introduction to Real-Time Programming Requests 11-3

11. 1. 1 Name and Descriptor Parameters
Most of the real-time programming requests have parameters that include the specification of a
name or a descriptor or both. Both names and descriptors identify a process or a structure such
as a semaphore or a ring buffer, for example.

A name is a system-wide identifier for a structure or for a particular invocation of a process. The
name provides access to a structure or a process across the boundaries of a mapped-memory
environment. Names for structures and processes must be unique among themselves throughout
the MicroPower /Pascal application environment.

A descriptor is a variable initialized to contain an identifier of a structure or a process. You
allocate and initialize descriptors in process space. In subsequent uses of the initialized descriptor,
the identifier permits direct, optimized access to the structure or process. Since the table-lookup
step performed by the kernel for a reference by name is bypassed, the request is processed
more quickly.

11. l. l. l Specifying Names

A name is a 6-character ASCII string that globally names a structure or a process. If you use
fewer than six printing characters, you must pad the name with trailing spaces. Uppercase
and lowercase characters are interpreted uniquely, unlike characters in Pascal identifiers and
keywords.

You should not define a name that contains a dollar sign ($), which is reserved for use by
DIGITAL-supplied software. You may, of course, specify a name that contains a dollar sign
when the name refers to a DIGITAL-supplied software component.

You can create a logical equivalent for a name with the logical name requests described in
Chapter 20.

11. l. 1.2 Specifying Descriptors

Before you use a descriptor, it must be declared as a variable of a predefined descriptor type
and be initialized by one of the CREATE or INIT requests, as applicable. Those requests copy
a structure or a process identifier into a variable.

11. l. 1.3 Using Descriptors for Unnamed Structures

If a structure is not named, the structure descriptor block (SDB) provides the only access path
to it. To refer to an existing unnamed structure, the calling process must supply a descriptor
variable that contains a valid structure identifier. Thus, in order to access such a structure, a
process other than the creator must also have access to the descriptor variable used to create it.
In an unmapped memory environment, the descriptor variable of an unnamed structure would
be easily accessible, within Pascal scoping rules, to all processes. In a mapped environment,
however, an unnamed structure's descriptor variable can be shared only among processes
residing in the .same address space, for most practical purposes. (However, the descriptor could
be sent as a message to another process.)

11-4 Introduction to Real-Time Programming Requests

11. 1. 1.4 Process Descriptor Usage

A process descriptor identifies a process control block (PCB), the system structure that stores the
current state and context of an existing process. Like a structure descriptor, a process descriptor
provides efficient access to a process when using the process management requests.

The rules for reference to an existing process differ from those for reference to an existing
structure in that the descriptor parameter to any of those requests has a default value-the
identity of the calling process. Requests that operate on existing processes thus allow the calling
process to specify itself as the process to be acted on-as well as some other process.

11. 1.2 STATUS Parameter
The optional STATUS parameter is provided for those predeclared requests for which recovery
from a run-time error may be possible. Thus, a process can handle request-related errors locally.

When you specify this parameter, errors relating to the request will be intercepted by the Pascal
object-time system (OTS) rather than being reported as exceptions. Each time a request is
issued, the OTS copies a status record into the variable specified by the parameter to indicate
the results, success or error, of the request; the process execution state is not altered. In the
case of an error, the status record contains the exception type and code associated with the
error condition. In the case of no error (success), the status record's code field will contain the
code ES$NOR. The routine issuing the request can examine the status record to determine the
appropriate action. If you do not specify the STATUS parameter, the OTS reports the error as
an exception, which is handled by an exception-handling process or procedure or causes the
offending process to be aborted.

The variable that you specify for the STATUS parameter must be of predefined type
EXC_STATUS, for example:

EXC_STATUS = RECORD

EXC_TYPE

EXC_TYPE EXC_SET;

EXC_CODE UNSIGNED;

END;

A variable of predefined type EXC_SET that indicates the exception type (see Table 17-1).

EXC_CODE
A variable of predefined type UNSIGNED that indicates the exception code (see Table
17-1).

11.2 Error Returns from Real-Time Programming Requests
The MicroPower/Pascal kernel recognizes an error condition caused by the execution of a
real-time programming request. Those errors may cause an exception condition depending on
the error-handling policy of your application (see Chapter 17).

Introduction to Real-Time Programming Requests 11-5

The Error Returns section in the description of each request lists the errors that can cause
exceptions. Some of the errors listed are described as "not occurring when using standard
Pascal programming practice." The errors occur when an invalid parameter is passed through a
real-time request to a kernel primitive, which is usually the result of careless use of one of the
"nonstandard" MicroPower/Pascal features on a parameter.

Typical examples are:

• Failure to initialize a variable-An uninitialized descriptor variable is passed as an actual
parameter.

• A parameter is type cast.

• A parameter is defined as a case variant, and the wrong case variant is selected.

• A global variable is used that has incompatible GLOBAL/EXTERNAL type declarations.

The MicroPower /Pascal Run-Time Services Manual contains detailed information about exception
conditions. Chapter 3 describes the exception management primitives, and Chapter 7 describes
the kernel's exception condition management strategy. Chapter 17 of this manual lists all
exceptions and describes the requests that let you create exception-handling processes and
procedures.

11-6 Introduction to Real-Time Programming Requests

Chapter 12
Process Management Requests

This chapter describes the requests that provide for process execution control. These requests,
implemented through the predeclared procedures and functions listed in Table 12-1, are the
Pascal language interface to the services provided by the kernel's process management primitives.
The requests provide for process access, control, forced termination, resumption, status reporting,
and suspension. Chapter 2 of the MicroPower /Pascal Run-Time Services Manual provides more
detail on process concepts.

You must include in your program or module the definitions of the routines that implement the
requests described in this chapter before using them. See Appendix I for more information.

Table 12-1 summarizes the operations performed by these requests.

Table 12-1: Operations Performed by Process Management Requests

Request

CHANGE_pRJORITY

DEFINE_STOPJLAG

GET_STATE

INIT_PROCESS_DESC

RESUME

SCHEDULE

STOP

SUSPEND

Operation

Changes a process's priority

Permits a process to disable a STOP request issued against it

Obtains information about a process

Sets up a descriptor for efficient reference to a process

Reactivates a suspended process

Relinquishes the CPU to another process having the same priority

Stops a process

Suspends an active process

Process Management Requests 12-1

12. 1 CHANGE_PRIORITY
MACRO equivalent: CHGP$

The CHANGE_PRIORITY procedure changes the execution priority of a process to the value
specified in the call. Thus, the calling process can dynamically modify its own scheduling
priority or that of another process.

Typically, a process uses this procedure to lower its priority to a normal operating level (less
than 248) after starting at a high priority level, as may be required for initialization tasks other
than those with the INITIALIZE attribute (see Chapter 10). The special start-up priorities are
from 248 to 255; the highest is 255. See the MicroPower /Pascal Run-Time Services Manual for
additional ~nformation about priorities.

Procedures with the INITIALIZE attribute (see Chapter 10) automatically execute at a default
priority of 248. When exe~ution is complete, the run-time system automatically lowers the
priority to the value you specified in the program's heading. The 1-time initialization sequences
involving creation of global system structures, and possibly subprocesses, can thus occur before
processes that use those resources begin operating. Other processes may use start-up priorities
from 248 to 254 to guarantee a particular starting order among a group of related processes.

In general, you should create system-wide resources at a priority level higher than any normal
operating priority used in the system. That prevents start-up race conditions among processes
in different process families.

Syntax

CHANGE_pRIORITY (PRIORITY := process-priority

process-priority

[{
DESC :=process-descriptor }]
NAME:= process-name

[STATUS := status-record])

The identifier of a variable of predefined type PRIORITY__RANGE that specifies the new
priority of the process. This value must be from 0 to 255.

process-descriptor
The identifier of a variable of predefined type PROCESS_DESC that contains the process
identifier. The variable must have been previously initialized by an INJT_pROCESS_DESC
request or by a process invocation statement with the DESC parameter.

process-name
Either a character-string constant or the identifier of a variable of predefined type
NAME_STR that contains the 6-character name of an existing process (see Section 11.1.2).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error will cause the corresponding exception to be reported. The format of the exception
record is described in Section 11.1.2.

12-2 Process Management Requests

If you do not specify either a process-descriptor or a process-name parameter, the
CHANGE_pRJORITY procedure changes the execution priority of the process issuing the
request.

Example
[PRIORITY(10), STACK_SIZE(100), NAME ('DRIVER')] PROCESS Driver;
BEGIN

(* Change the priority of this process. *)
CHANGE_PRIORITY (PRIORITY := 3);

END; (* Process Driver *)

Semantics

Tlie CHANGE_PRIORITY procedure requests the kernel to place the specified priority value in
the process control block of the identified process and to call the scheduler. If no process is
explicitly identified in the call, the request alters the priority of the calling process, causing the
calling process to be preempted if a process with a priority higher than the new priority is. in
the ready-active state at the time of the call. Otherwise, control returns to the calling process.

This request is implemented through the CHGP$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such process exists

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; the specified priority is less than 0 or

greater than 255

Process Management Requests 12-3

12.2 DEFINE_STOP _FLAG
MACRO equivalent: SSFA$

The DEFINE_STOP_FLAG procedure lets the calling process disable the effect of a STOP
(process) request issued against the caller by some other process and to receive instead an
indication that such a request has occurred. More specifically, DEFINE_STOPJLAG establishes
a Boolean stop-flag variable, which the kernel sets to TRUE if and when another process issues
a STOP request against the subject process.

DEFINE_STOP_FLAG also allows the caller to eliminate a previously established stop flag,
which effectively reenables the normal, immediate effect of a STOP request issued against the
caller. Note that the existence of a stop flag for a given process does not inhibit the process
from stopping itself with a reflexive call to STOP nor does it inhibit an implicit stop (or process
abort) resulting from an unhandled exception condition.

Syntax

DEFINE_STOP_FLAG [(FLAG:= stop-flag)]

stop-flag
The identifier of a variable of type BOOLEAN that the kernel will use as a stop flag for the
calling process. You must initialize this variable to FALSE prior to invoking the request. Not
specifying this parameter requests that use of the caller's existing stop flag be discontinued.

Restriction

The kernel assumes that the specified Boolean variable is FALSE when the request is issued.

Example

%INCLUDE 'MISC.PAS'

PROCESS· A;
VAR

Stop_flag BOOLEAN;

BEGIN

(* Indicate that we do not want to be stopped. *)
Stop_flag := FALSE;
DEFINE_STOP_FLAG (FLAG := Stop_flag);

END; (* Process A *)

Semantics

The DEFINE_STOPJLAG procedure instructs the kernel to inhibit STOP requests issued against
the caller and instead to set the value of a specified Boolean variable to TRUE. If no variable is
specified, use of the caller's current stop flag is discontinued. This null operation occurs if there
is no currently defined stop flag.

This request is implemented through the SSFA$ kernel primitive.

12-4 Process Management Requests

Error Returns

See Section 11.2 for general information about error returns. The request may return the
following errors, though not as a result of standard Pascal programming practice:
ES$1AD (type: SYSTEM_SERVICE)-Invalid address; the specified stop-flag location is not

within the process's address space (mapped only)

ES$1PR (type: SYSTEM_SERVICE)-Illegal primitive; the request was issued from an ISR

Application Note

DEFINE_STOPJLAG is intended to permit a process to defer execution of its termination
routine, in response to a STOP request, until an appropriate point is reached in its normal
execution cycle or to modify its normal execution path before terminating. The subject process
can periodically test its stop flag (for example, just before issuing an 1/0 request) and take
appropriate action depending upon the TRUE or FALSE state of the flag. To further the
example, if the flag value were TRUE the process could gracefully terminate its 1/0 operations
and perform any required signals to other processes before executing a STOP on itself.

Process Management Requests 12-5

12.3 GET_STATE
MACRO equivalent: GTST$

The GET_STATE procedure obtains information about a process. The data includes the state
code, group, priority, abort status, and type of a process, as well as its suspension count.

Note
Process information is dynamic and, except for group, priority, and type data,
may be invalid by the time it becomes available to the requestor.

Syntax

GET_STATE (STATE :=state-record

state-record

[{
DESC :=process-descriptor }]
NAME:= process-name

[STATUS := status-record])

The identifier of a variable of predefined type STATE_BLOCK that receives the process
state data.

process-descriptor
The identifier of a variable of predefined type PROCESS_DESC that contains the process
identifier. The variable must have been previously initialized by an INITJROCESS_DESC
request or by a process invocation statement with the DESC parameter.

process-name
Either a character-string constant or the identifier of a variable of predefined type
NAME_STR that contains the 6-character name of an existing process (see Section 11.1.2).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

If you specify neither a process-descriptor nor a process-name parameter, the procedure obtains
the state of the process issuing the request.

State Record Format

The state record is a variable of predefined type STATE_BLOCK as defined in the following:

12-6 Process Management Requests

STATE_BLOCK = PACKED RECORD
PRIORITY : [BYTE] PRIORITY_RANGE;
STATE : [BYTE] PROCESS_STATE;
TYP : [BYTE] PROCESS_TYPE;
STATE_CODE_MODIFIER : [BYTE] STATE_CODE_MODIFIER_TYPE
GROUP : [BYTE] EXC_GROUP;
RESERVED : [BYTE] BYTE_RANGE;
BLOCKING_SEMAPHORE : UNIVERSAL
SUSPEND_COUNT : INTEGER;

END;

PRIORITY
The value of type PRIORITY_RANGE that specifies the priority of the process.

STATE

TYP

A variable of enumerated type PROCESS_STATE that indicates the execution state of the
process. PROCESS_STATE type is defined as follows:

PROCESS_STATE = (RUN, READY_ACTIVE, READY_SUSPENDED,
WAIT_ACTIVE, WAIT_SUSPENDED,
EXCEPTION_WAIT_ACTIVE,
EXCEPTION_WAIT_SUSPENDED);

A variable of the predefined type PROCESS_TYPE that indicates the process's mapping
type as specified in the program heading. PROCESS_ TYPE is defined as follows:

PROCESS_TYPE = (GENERAL, PRIVILEGED, DEV_ACCESS, DRIVER)

STATE_CODE_MODIFIER
A variable record of the predefined type [BYTE] STATE_CODE_MODIFIER_TYPE that
provides additional information about the process state. The record is defined as follows:

[BYTE] STATE_CODE_MODIFIER_TYPE = PACKED RECORD
RES1, RES2, RES3, RES4 : BOOLEAN;
UNBLOCK_IN_PROGRESS : BOOLEAN;
ABORT_PENDING : BOOLEAN;
ABORTED : BOOLEAN;

END;

RES 1, RES2, RES3, RES4
Reserved by DIGITAL.

UNBLOCK_IN_PROGRESS
Used by the kernel for internal operations.

ABORLPENDING
A Boolean variable; when TRUE, indicates that the process is in one of the exception-wait
states and that another pro~ess has issued a STOP request for this process.

ABORTED
A Boolean variable; when TRUE, indicates that the process is being aborted.

Process Management Requests 12-7

GROUP
A variable of predefined type EXC_GROUP that indicates the exception-handling group to
which this process is assigned. This value is from 0 to 255.

RESERVED
Reserved by DIGITAL.

BLOCKING_SEMAPHORE
A variable of predefined type UNIVERSAL that receives the value of the PC.SPT field of
the process control block (PCB) (see Chapter 2 of the MicroPower /Pascal Run-Time Services
Manual).

SUSPEND_CQUNT
An integer variable that contains a count of the number of SUSPEND or RESUME requests
issued for the process. A negative sign indicates that the value is the number of SUSPEND
requests; a positive sign, that the value is the number of RESUME requests. A value of 0
indicates that the process is not suspended and that no RESUME requests are pending.

Example

TYPE
Lines = 0 .. 15;

VAR
Line1_state, Line2_state, Line3_state : STATE_BLOCK;
Line2_desc : PROCESS_DESC;

[PRIORITY(10), STACK_SIZE(100)] PROCESS Control (n : Lines);
BEGIN

(* Get the state information for this process. *)
GET_STATE (STATE := Line1_state);

(* Get the state information for the process whose *)
(* id is in Line2_desc. *)
GET_STATE (STATE := Line2_state, DESC := Line2_desc);

(*Get the state for the process with name 'LINE3 '. *)
GET_STATE (STATE := Line3_state, NAME := 'LINE3 ');

END; (* Process Control *)

Semantics

The GET_STATE procedure requests the kernel to copy state information from the process
control block (PCB) of the specified process to a record in the caller's storage area and to return
control to the caller.

This request is implemented through the GTST$ kernel primitive.

12-P Process Management·Requests

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both name and descriptor

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such process exists

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to buffer or structure is odd or

not in user address space

Process Management ReqJ!,ests 12-9

12.4 INIT_PROCESS_DESC
MACRO equivalent: GTST$

The INIT_PROCESS_DESC procedure copies process identification information into a process
descriptor record, which provides the kernel with a rapid-access path to a process referred to in
the other process management requests described in this chapter.

Syntax

INIT_PROCESS_DESC (DESC :=process-descriptor
[NAME :=process-name]
[STATUS := status-record])

process-descriptor
The identifier of a variable of predefined type PROCESS_DESC that will receive the structure
identifier of the process.

process-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that contains the 6-character name of an existing process (see Section 11.1.2). If you do not
specify a name, the procedure initializes the descriptor of the process issuing the request.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Example

VAR
Reader_desc, Writer_desc : PROCESS_DESC;

[PRIORITY(10), STACK_SIZE(100), NAME ('READER')] PROCESS Reader;
BEGIN

(* Get the id of this process. *)
INIT_PROCESS_DESC (DESC := Reader_desc);

(*Get the id of the process with name 'WRITER'. *)
INIT_PROCESS_DESC (DESC := Writer_desc, NAME :='WRITER');

END; (* Process Reader *)

Semantics

The INIT_PROCESS_DESC procedure requests the kernel to copy the index and serial number
of the specified process into the specified descriptor variable in the caller's local storage.

This request is implemented through the GTST$ kernel primitive.

12-10 Process Management Requests

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such process exists

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to buffer or structure is odd or

not in user address space

Process Management Requests 12-11

12.5 RESUME
MACRO equivalent: RSUM$

The RESUME function attempts to restore a process to an active state. The function returns a
Boolean TRUE or FALSE value to indicate the result of the operation.

Syntax

RESUME [({ DESC := process-descriptor }
NAME :=process-name

[STATUS := status-record])]

process-descriptor
The identifier of a variable of predefined type PROCESS_DESC that contains the process
identifier. The variable must have been previously initialized by a process invocation or by
an INIT_PROCESS_DESC request.

process-name
Either a character-string constant or the identifier of a variable of predefined type
NAME_STR that contains the 6-character name of an existing process (see Section 11.1.2).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1. 2.

If you specify neither a process-descriptor nor a process-name parameter, the procedure resumes
the process issuing the reqcest.

Example

TYPE
Lines = 0 .. 15;

VAR
Line2_desc : PROCESS_DESC;

[PRIORITY(10), STACK_SIZE(100)] PROCESS Control (n : Lines);
BEGIN

(* Unconditionally increment the suspend count of this process. *)
IF RESUME

THEN
ELSE;

(* Unconditionally increment the suspend count of the process *)
(* whose id is in Line2_desc. *)
IF RESUME (DESC := Line2_desc)

THEN
ELSE;

12-12 Process Management Requests

(* Unconditionally increment the suspend count of the process *)
(* whose name is 'LINE3 , . *)
IF RESUME (NAME := 'LINE3 ')

THEN
ELSE;

END; (* Process Control *)

Semantics

The RESUME function increments the suspension count associated with the specified grocess.
If the count changes from -1 to 0, the state of the process is changed to ready active, wait
active, or exception-wait active, depending on its state at the time of resumption. If the new
state is ready active and the process is of higher priority than the caller, the process is placed
in the run state. Otherwise, control returns to the caller after incrementing the count.

Depending on the value of the suspension count, a RESUME request may not reactivate a
process. (For example, if the suspension count was less than -1, the process is still suspended,
and no state transition occurs.)

The immediate effect of the request is indicat~d as a Boolean function return. A TRUE return
indicates that the process either was reactivated (changed from the suspended state to the
appropriate active state) or was already active. A FALSE return indicates that the process was
not changed from the suspended state because the suspension count remained negative after
the increment.

The maximum value of the suspension counter is 32,767; that is, the counter can record a
maximum of 32,767 successive SUSPEND or RESUME requests.

This request is implemented through the RSUM$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both name and descriptor

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such process exists

Process Management Requests 12-13

12.6 SCHEDULE
MACRO equivalent: SCHD$

The SCHEDULE procedure blocks the calling process if another process of equal priority is in
the ready-active state.

This procedure permits a process to choose when to relinquish the CPU to another process of
equal priority, allowing some degree of CPU sharing among such processes.

Syntax

SCHEDULE

Example
[PRIORITY(10), STACK_SIZE(100), NAME ('INVERT')] PROCESS Invert;
BEGIN

(* We have used our share of the CPU, let someone else run. *)
SCHEDULE;

END; (* Process Invert *)

Semantics

If the first process in the ready-active queue has the same priority as the caller, the SCHEDULE
procedure places the calling process on the ready-active queue behind all processes of the same
priority. The first process in the queue is placed in the run state.

If no process of equal priority is in the ready-active state at the time of the call, control returns
immediately to the caller.

This request is implemented through the SCHD$ kernel primitive.

Error Returns

None

12-14 Process Management Requests

12.7 STOP
MACRO equivalent: STPC$

The STOP procedure halts a specified process by scheduling the process for execution at its
termination procedure, assuming that the subject process does not have a stop flag in effect. If
blocked or suspended at the time of the call to STOP, the process is placed in the ready-active
state, as described under Semantics. The process is assigned a special "aborted" status that
prevents the process from being subsequently suspended.

The request may return control to the calling process, depending on the relative priorities of
the caller and the subject processes. (The calling process and the process being stopped may
be one and the same.)

When a stopped process begins execution at its termination procedure, the process must
determine what action to take before deleting itself. Minimally, the process should deallocate
any resources it owned; for example, it should delete any semaphores or other structures that
it created, return any packets to the kernel's free-packet pool, and so forth. Prior to resource
deallocation, the process could take any actions needed for a graceful termination, such as
completing an in-progress 1/0 operation or message transmission. At the appropriate point,
the process deletes itself from the system by allowing the sequence of statement execution to
proceed to the END statement.

Alternatively, if the subject process has a stop flag in effect (see DEFINE_STOP_FLAG) and
the subject process is not the caller, STOP simply sets the subject process's stop flag to TRUE
and has no further effect.

You define a termination procedure for a process by declaring within the process a procedure
having the TERMINATE attribute (see Section 10.2.25). If no termination procedure is defined
for the process, it terminates immediately when placed in the run state.

Syntax

STOP [({ DESC :=process-descriptor }
NAME:= process-name

[STATUS := status-record])]

process-descriptor
The identifier of a variable of predefined type PROCESS_DESC that contains the process
identifier. The variable must have been previously initialized by a process invocation or by
an INIT_PROCESS_DESC request.

process-name
Either a character-string constant or the identifier of a variable of predefined type
NAME_STR that contains the 6-character name of an existing process (see Section 11.1.2).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Process Management Requests 12-15

If you specify neither a process-descriptor nor a process-name parameter, the procedure stops
the process issuing the request.

Example

VAR
P2_desc : PROCESS_DESC;

[PRIORITY(10), STACK_SIZE(100), NAME ('P1
BEGIN

(* Stop this process. *)
STOP;

')] PROCESS P 1 ;

(* Stop the process whose id is in P2_desc. *)
STOP (DESC := P2_desc);

(* Stop the process with name 'P3 ' . *)
STOP (NAME:= 'P3 ');

END; (* Process Pi *)

Semantics

If the subject process does not have a stop flag in effect or if the subject process is the caller,
STOP will:

• Modify the context of the subject process so the process's execution will resume at its
termination entry point when the process is subsequently scheduled for execution, or when
control is returned in the case of a "self stop" request

• Flag the process with a special "aborted" status indication, which prohibits any later
SUSPEND or STOP of the subject process

If the subject process is in the ready-active or the run state, control returns to the calling process.
If the subject process is the caller, control also returns to the calling process. If the subject
process is not in the ready-active or the run state, one of the following cases applies:

• If blocked on a binary, counting, or queue semaphore (wait-active state), the subject process
is removed from the semaphore's waiting process list and is placed on the ready-active
queue. The system scheduler is then called.

• If blocked on a ring buffer (wait-active state), the subject process is removed from the ring
buffer's waiting process list and is placed on the ready-active queue. The system scheduler
is then called. No adjustment is made for any partial transfer to or from the ring buffer
that may have occurred on behalf of the subject process; that is, the buffer is not reset. The
system scheduler is then called.

• If the subject process is in the exception-wait-active state, control returns to the caller. The
subject process will be placed on the ready-active queue when the exception handler finishes
processing the exception (see Chapter 17).

If the subject process has a stop flag in effect and the subject process is not the caller, STOP
sets the process's stop-flag byte to TRUE and returns to the caller. If in the ready-suspended,
wait-suspended, or exception-wait-suspended state, the subject process is made active and is
then treated as described for a process in one of the applicable active states listed above.

This request is implemented through the STPC$ kernel primitive.

12-16 Process Management Requests

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both name and descriptor

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such process exists

Process Management Requests 12-17

12.8 SUSPEND
MACRO equivalent: SPND$

The SUSPEND function places an active process in the suspended state if no prior RESUME
request is pending for that process. The function returns a Boolean TRUE or FALSE value to
indicate whether the process was suspended.

This request allows the calling process to suspend either itself or another process. The suspended
process is prevented from executing until resumed by another process (see RESUME request).

Syntax

SUSPEND [({ DESC := process-descriptor }
NAME:= process-name

[STATUS :=status-record])]

process-descrl pt or
The identifier of a variable of predefined type PROCESS_DESC that contains the process
identifier. The variable must have been previously initialized by a process invocation or by
an INJT_PROCESS_DESC request.

process-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that contains the 6-character name of an existing process (see Section 11.1.2).

status-record
The identifier of a variable of predefined record type EXC_STATUS th may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

If you specify neither a process-descriptor nor a process-name parameter, the procedure suspends
the process issuing the request.

Example

TYPE
Lines = 0 .. 15;

VAR
Gate : SEMAPHORE_DESC;
Line2_desc : PROCESS_DESC;

[PRIORITY(10), STACK_SIZE(100)] PROCESS Control (n: Lines);
BEGIN

(* If SUSPEND is TRUE, suspend this process. When (and if)
this process is resumed, THEN signal the semaphore Gate.
If SUSPEND is false, then take ELSE path and continue. *)

IF SUSPEND
THEN SIGNAL (DESC := Gate)
ELSE (* Continue, but note that the suspend count is

decremented. *);

12-18 Process Management Requests

(* Unconditionally decrement the suspend count of the process
whose id is in p2_desc. *)

IF SUSPEND (DESC := Line2_desc)
THEN
ELSE;

(* Unconditionally decrement the suspend count of the process
whose name is 'LINE3 '. *)

IF SUSPEND (NAME := 'LINE3 ')
THEN
ELSE;

END; (* Process Control *)

Semantics

The SUSPEND procedure decrements the suspension count associated with the specified process.
If the count changes from 0 to -1, the state of the process is changed to the ready-suspended,
wait-suspended, or exception-wait-suspended state, depending on its state at the time of
suspension. If the suspended process was the caller, it is removed from the run state, and the
highest-priority process in the ready-active state is placed in the run state. Otherwise, control
returns to the caller after the count is decremented.

Depending on the value of the suspension count, a SUSPEND request may not suspend a
process. The immediate effect of the request is indicated as a Boolean function return. A TRUE
return indicates that the process was changed to a suspended state. A FALSE return indicates
that the process was not suspended by the current SUSPEND operation.

Note
A SUSPEND operation on a "stopped" process is ignored. (See the STOP
request.)

Transitions between the wait-suspended or exception-wait-suspended states and the ready
suspended state can occur while a process is suspended. (A SIGNAL operation can cause a
transition from wait-suspended to ready-suspended state, for example.) A RESUME request is
required to return a suspended process to one of the active states.

The maximum value of the suspension counter is 32,767; that is, the counter can record a
maximum of 32,767 successive SUSPEND or RESUME requests.

This request is implemented through the SPND$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both name and descriptor

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such process exists

Process Management Requests 12-19

Chapter 13
Binary and Counting Semaphore and Mutex
Management Requests

This chapter describes the requests that operate on binary and counting semaphore structures
and mutual exclusion (mutex) structures. Those requests, implemented through the predeclared
procedures and functions listed in Table 13-1, are the Pascal language interface to the services
provided by the kernel's semaphore management primitives. The requests are used by two or
more cooperating processes for mutual exclusion and other forms of synchronization.

Table 13-1 summarizes the operations performed by those requests.

Table 13-1: Operations Performed by Binary and Counting Semaphore
and Mutex Management Requests

Request

COND_SIGNAL

COND_WAIT

CREATE_BINARY_SEMAPHORE

Operation

Performs a conditional signal operation, which
increments the semaphore variable only if a
process is waiting on the semaphore. The
function returns a FALSE indication if the
signal was not performed.

Performs a conditional wait operation, which
decrements the semaphore variable only if the
semaphore has been signaled or is initialized to
TRUE-that is, its value is nonzero. Essentially
a 'Jtest semaphore and decrement if possible"
operation, this request never causes the re
questing process to block. The function re
turns a FALSE indication if the wait was not
performed.

Creates a binary semaphore and sets up
a descriptor for efficient reference to the
semaphore.

Binary and Counting Semaphore and Mutex Management Requests 13-1

Table 13-1 (Cont.): Operations Performed by Binary and Counting Semaphore
and Mutex Management Requests

Request

CREATE_BINARY_SEMAPHORE_p

CREATE_COUNTING_SEMAPHORE

CREATE_COUNTING_SEMAPHORE_P

CREATE_MUTEX

DESTROY

DESTROY_MUTEX

GET_ VALUE

INIT_STRUCTURE_DESC

LOCK_MUTEX

SIGNAL

SIGNAL_ALL

UNLOCK_MUTEX

WAIT

WAIT_ANY

Operation

Creates a binary semaphore and sets up a de
scriptor for efficient reference to the semaphore
by a procedure.

Creates a counting semaphore and sets up
a descriptor for efficient reference to the
semaphore.

Creates a counting semaphore and sets up a de
scriptor for efficient reference to the semaphore
by a procedure.

Creates a mutex structure.

Deletes a structure from the system and deal
locates the memory space used by it.

Deletes a specified mutex structure and deallo
cates the memory space associated with it.

Obtains a structure's value and type code.

Sets up a descriptor for efficient reference to a
semaphore. ·

Locks a resource for exclusive use. The process
is blocked. if the resource is already locked.

Signals a binary or a counting semaphore and
unblocks the first waiting process.

Unblocks any and all processes that may be
waiting on the specified semaphore.

Releases a resource for use by other processes.

Tests the specified binary or counting sema
phore for a signal (positive value). The calling
process is blocked if the semaphore was not
signaled.

An enhanced form of WAIT that permits a
process to test up to four semaphores for
the arrival of a signal. The time interval
during which a process may be blocked can
be specified.

13-2 Binary and Counting Semaphore and Mutex Management Requests

13. 1 Binary and Counting Semaphores
A binary semaphore is a variable that can assume the values of 0 and 1. A signal of a binary
semaphore whose value is 0 allows exactly one subsequent wait to proceed without blocking
the process issuing the wait. Signaling a binary semaphore whose value is 1 has no effect; that
is, exactly one process issuing a subsequent wait operation will proceed without blocking.

A counting semaphore uses a variable that can assume a value greater than 1. As with binary
semaphores, a signal of a counting semaphore whose value is 0 allows exactly one subsequent
wait operation to proceed without blocking the process. Unlike binary semaphores, however,
successive signals without intervening wait operations are not lost. Each signal is counted and
will allow one wait to proceed without blocking.

You must include in your program or module the definitions of the routines that implement the
requests described in this chapter before using them. See Appendix I for more information.

13.2 Mutex Structures
A mutex (mutual exclusion) structure is an optimization of the binary semaphore that allows
dynamic processes within the same program (static process) to share a common resource in an
orderly and controlled manner. (If the resource is to be shared between static processes, you
must protect it by direct use of a binary or counting semaphore.)

The general semantics of mutex operations are identical to the comparable operations on
binary semaphores; that is, UNLOCK_MUTEX corresponds to SIGNAL, and LOCK_MUTEX
corresponds to WAIT. An important difference is that when a program locks a mutex to gain
access to a shared resource, no call to the WAIT procedure is performed unless other processes
are waiting for the resource. This results in a significant improvement in efficiency compared
with the WAIT and SIGNAL operations on binary semaphores.

The operations on mutex structures are summarized in the table above. Each procedure takes
a mutex variable as its argument. This variable is the linkage between the user's processes and
the mutex structure.

Processes access a mutex-protected shared resource by calling the LOCK__MUTEX and
UNLOCK_MUTEX procedures in paired sequence as shown in the following:

Dynamic Process AO Dynamic Process Ai Dynamic Process A2

LOCK_MUTEX (res); LOCK_MUTEX (res); LOCK_MUTEX (res);

use res use res use res

UNLOCK_MUTEX (res); UNLOCK_MUTEX (res); UNLOCK_MUTEX (res);

Whenever a process has access to a mutex-protected shared resource, other processes attempting
to lock it are blocked waiting until the current user unlocks it. When the resource is unlocked
by the process currently using the resource, it is locked by the next process in the resource's
waiting-process list. -

Binary and Counting Semaphore and Mutex Management Requests 13-3

13.3 COND_SIGNAL
MACRO equivalent: SGLC$

The COND_SIGNAL function, the conditional form of the SIGNAL procedure, signals a
specified binary or counting semaphore if at least one process is waiting on that semaphore.
The first process waiting on the semaphore is unblocked, and the function returns a Boolean
TRUE value. If no process is waiting, the semaphore is not signaled, and the function returns
a Boolean FALSE value.

COND_SIGNAL permits the calling process to signal another process that an event it is waiting
on has occurred, but only if the request to wait is issued before the signal. This feature allows
the caller to selectively signal one of a set of semaphores, unblocking one process, if any,
waiting on some semaphore of that set.

Syntax

COND_SIGNAL ({ DESC := sem-descriptor }
NAME:= sem-name

[STATUS :=status-record])

sem-descriptor
The identifier of a variable of predefined type SEMAPHORE_DESC that contains
the semaphore structure identifier. The variable must have been previously initial
ized by a CREATE_BINARY_SEMAPHORE, CREATE_COUNTING_SEMAPHORE, or
INIT_STRUCTURE_DESC request.

sem-name
A character-string constant or a variable of predefined type NAME_STR that specifies the·
6-character name of an existing semaphore (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Restriction

The semaphore must not be a queue semaphore.

Example

VAR
Gate : SEMAPHORE_DESC;
Someone_waiting : BOOLEAN;
N, Count : UNSIGNED;

PROCEDURE Fill_buffer;
BEGIN

END; (* Procedure Fill_buffer *)

13-4 Binary and Counting Semaphore and Mutex Management Requests

PROCEDURE Compute (Term UNSIGNED);
BEGIN

END; (* Procedure Compute *)

[PRIORITY(iO), STACK_SIZE(iOO), NAME ('Pi
BEGIN

')] PROCESS Pi ;

(* Conditionally signal an unnamed semaphore. *)
IF COND_SIGNAL (DESC := Gate)

THEN Count :=Count + i (* Keep count of the signals. *)
ELSE Fill_buffer;

(* Conditionally signal a named semaphore. *)
Someone_waiting := COND_SIGNAL (NAME:= 'ACCESS');
IF Someone_waiting

THEN Count :=Count + i (* Keep count of the signals. *)
ELSE Compute (N+i); (* Compute next term. *)

END; (* Process Pi *)

Semantics

The COND_SIGNAL function signals the specified semaphore only if at least one process is
waiting. Otherwise, it returns a Boolean FALSE value to indicate that the semaphore was not
signaled. If the signal operation succeeds, COND_SIGNAL unblocks the first waiting process,
decrements the semaphore value, and calls the scheduler, if required. The calling process may
be preempted; the process loses control of the CPU. The function will return a Boolean TRUE
value, indicating that the semaphore was signaled, when control returns to the caller.

This request is implemented through the SGLC$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such semaphore exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

Binary and Counting Semaphore and Mutex Management Requests 13-5

13.4 COND_WAIT
MACRO equivalent: WAIC$

The COND_WAIT function, the conditional form of the WAIT procedure, permits the calling
process to test for the arrival of a signal from another process without being blocked when
no signal has occurred. If the semaphore has been signaled, COND_WAIT returns a Boolean
TRUE value and closes the semaphore. If the semaphore has not been signaled, the function
returns a Boolean FALSE value. In neither case is the calling process blocked, that is, made to
wait until the semaphore is signaled. (Compare with the WAIT request.)

This request allows more process concurrency than is possible with the totally synchronous
operation provided by the WAIT request. (See also SIGNAL and COND_SIGNAL.)

Syntax

COND_WAIT ({ DESC := sem-descriptor }
NAME:= sem-name

[STATUS := status-record])

sem-descriptor
The identifier of a variable of predefined type SEMAPHORE_DESC that contains
the semaphore structure identifier. The variable must have been previously initial
ized by a CREATE_BINARY_SEMAPHORE, CREATE_COUNTING_SEMAPHORE, or
INIT_STRUCTURE_DESC request.

sem-name
A character-string constant or a variable of predefined type NAME_STR that specifies the
6-character name of an existing semaphore (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Restriction

The specified semaphore must not be a queue semaphore.

Example

TYPE
Block_number = 0 .. 511;

VAR
Gate : SEMAPHORE_DESC;
N : Block_number;

13-6 Binary and Counting Semaphore and Mutex Management Requests

PROCEDURE Output_block (I Block_number);
BEGIN

END; (* Procedure Output_block *)

[PRIORITY(iO), STACK_SIZE(iOO), NAME ('Pi
BEGIN

(* Wait on an unnamed semaphore. *)
IF COND_WAIT (DESC := Gate)

THEN BEGIN
Output_block (N);

')] PROCESS Pi;

N := N + i; (* Increment block number. *)
SIGNAL (DESC :=Gate);

END;

(* Wait on a named semaphore. *)
IF COND_WAIT (NAME := 'ACCESS')

THEN BEGIN
Output_block (N);
N := N + i; (* Increment block number. *)
SIGNAL (DESC :=Gate);

END;

END; (* Process Pi *)

Semantics

The COND_WAIT function decrements the specified semaphore variable if its value is greater
than 0 and returns a Boolean TRUE value. If the semaphore value is 0, COND_WAIT returns
a Boolean FALSE value.

This request is implemented through the WAIC$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such semaphore exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

Binary and Counting Semaphore and Mutex Management Requests 13-7

13.5 CREATE_BINARY _SEMAPHORE
MACRO equivalent: CRST$

The CREATE_BINARY_SEMAPHORE function creates a binary semaphor~ structure. If the
semaphore is successfully created, the function returns a Boolean TRUE value. If not enough
free system memory is available to create the semaphore, the function returns a Boolean FALSE
value.

The function permits a process to create a binary semaphore that can be manipulated by the
various semaphore management requests described in this chapter.

Syntax

CREATE_BJNARY_SEMAPHORE ([WAI'LORDER :~ { ~:!~ }]
[VALUE :=gate-count]

WAILORDER

{
DESC := sem-descriptor }
NAME:= sem-name

[STATUS := status-record])

The order in which waiting processes are queued on the semaphore's waiting process list.
FIFO (first-in/first-out) is the default value. PRIO specifies ordering by process priority.

gate-count
The identifier of a variable or a constant of predefined type BIN _SEM_ VAL that specifies
the initial value of the semaphore, either 0 or 1. A value of 0, the default, specifies that
the semaphore is closed; a value of 1 specifies that the semaphore is open.

sem-descrlptor
The identifier of a variable of predefined type SEMAPHORE_DESC that is to receive the
semaphore's structure identifier.

sem-name
A character-string constant or a variable of predefined type NAME_STR that specifies the
6-character name of the semaphore (see Section 11.1.1.1). You must not use the name of
an existing process or structure.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

If you do not specify the sem-name parameter, the function creates an unnamed binary
semaphore identified by the information returned in the sem-descriptor variable.

13-8 Binary and Counting Semaphore and Mutex Management Requests

Example

%INCLUDE 'EXC.PAS'

VAR
Access, Gate_A, Gate_B : SEMAPHORE_DESC;

[INITIALIZE] PROCEDURE !nit;
(* Create the needed binary semaphores. If any create fails, then

report an exception. *)
BEGIN

(* Create an unnamed binary semaphore, which is initially closed
and has FIFO ordering. *)

IF NOT CREATE_BINARY_SEMAPHORE (DESC := Gate_A)
THEN REPORT (EXC_TYPE := [RESOURCE], EXC_CODE := ES$NMK);

(* Create a named binary semaphore, which is initially closed
and has FIFO ordering. *)

IF NOT CREATE_BINARY_SEMAPHORE (DESC := Access, NAME := 'ACCESS')
THEN REPORT (EXC_TYPE := [RESOURCE], EXC_CODE := ES$NMK);

(* Create an unnamed binary semaphore, which is initially open
and has FIFO ordering. *)

IF NOT CREATE_BINARY_SEMAPHORE (DESC := Gate_B, VALUE := 1)
THEN REPORT (EXC_TYPE := [RESOURCE], EXC_CODE := ES$NMK);

END; (* Procedure !nit *)

Semantics

The CREATE_BINARY_SEMAPHORE function requests the kernel to allocate and initialize a
binary semaphore structure in system-common memory.

If the semaphore is successfully created, the function returns a Boolean TRUE value. The
semaphore is named as specified in the sem-name parameter, and its structure identifier is
copied into the variable specified by the sem-descriptor parameter.

If the semaphore cannot be created because the system's free-memory pool has insufficient
space, the function returns a Boolean FALSE value.

This request is implemented through the CRST$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$MDN (type: SYSTEM_SERVICE)-Must specify structure descriptor or name

ES$SNI (type: SYSTEM_SERVICE)-Structure name already in use; the specified name has
already been given to another process, semaphore, ring buffer, logical name, or
shared region

Binary and Counting Semaphore and Mutex Management Requests 13-9

The request may return the following errors, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to descriptor is odd or not in

user address space

ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; an invalid structure type or argument
value was specified

ES$1PR (type: SYSTEM_SERVICE)-Illegal primitive; user code attempted to create a PCB
(type ST.PCB specified)

13-10 Binary and Counting Semaphore and Mutex Management Requests

13 .6 CREATE_BINARY _SEMAPHORE_P
MACRO equivalent: none

CREATE_BINARY_SEMAPHORE_P creates a binary semaphore structure by a procedure. If
the semaphore is successfully created, the STATUS parameter is set to ES$NOR. If not enough
free system memory is available to create the semaphore, the STATUS parameter is set to the
appropriate exception code.

The procedure permits a process to create a binary semaphore that can be manipulated by the
semaphore management requests described in this chapter.

Syntax

CREATE_BINARy_SEMAPHOREJ ([WAILORDER :~ { ~:!~ }]
[VALUE := gate-count]

WAILORDER

{
DESC := sem-descriptor }
NAME:= sem-name

[STATUS := status-record])

The order in which waiting processes are queued on the semaphore's waiting process list.
FIFO (first-in/first-out) is the default value. PRIO specifies ordering by process priority.

gate-count
The identifier of a variable or a constant of predefined type BIN _SEM_ VAL that specifies
the initial value of the semaphore, either 0 or 1. A value of 0, the default, specifies that
the semaphore is closed; a value of 1 specifies that the semaphore is open.

sem-descri pt or
The identifier of a variable of predefined type SEMAPHORE_DESC that is to receive the
semaphore's structure identifier.

sem-name
A character-string constant or a variable of predefined type NAME_STR that specifies the
6-character name of the semaphore (see Section 11.1.1.1). You must not use the name of
an existing process or structure.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

If you do not specify the sem-name parameter, the function creates an unnamed binary
semaphore identified by the information returned in the sem-descriptor variable.

Binary and Counting Semaphore and Mutex Management Requests 13-11

Example

%INCLUDE 'EXC.PAS'
%INCLUDE 'CRPROC.PAS'

VAR
BDESC1, BDESC2 : SEMAPHORE_DESC;
P_STATUS : EXC_STATUS;
SUCCESS : Boolean;

(* Create the binary semaphores. If any create fails, then
set Boolean SUCCESS to false. *)

[INITIALIZE] PROCEDURE !nit;
BEGIN

SUCCESS := True;
CREATE_BINARY_SEMAPHORE_P (WAIT_ORDER := FIFO, VALUE := 0,

DESC := BDESC1, NAME ·= 'IMFREE',
STATUS := P_STATUS);

IF (P_STATUS.EXC_CODE <> ES$NOR)
THEN SUCCESS := False;

CREATE_BINARY_SEMAPHORE_P (DESC := BDESC2, STATUS := P_STATUS);
IF (P_STATUS.EXC_CODE <> ES$NOR)

END;

BEGIN (* Main *)
IF NOT SUCCESS

THEN SUCCESS := False;

THEN WRITELN('%ERROR - Semaphore creation failed')
ELSE

END.

Semantics

The CREATE_BINARY_SEMAPHORE_p procedure requests the kernel to allocate and initialize
a binary semaphore structure in system-common memory.

If the semaphore is successfully created, the STATUS parameter is set to ES$NOR. The
semaphore is named as specified in the sem-name parameter, and its structure identifier is
copied into the variable specified by the sem-descriptor parameter.

If the semaphore cannot be created because the system's free-memory pool has insufficient
space, the STATUS parameter is set to the appropriate exception code.

This request is implemented through the CRST$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$MDN (type: SYSTEM_SERVICE)-Must specify structure descriptor or name

ES$SNI (type: SYSTEM_SERVICE)-Structure name already in use; the specified name has
already been given to another process, semaphore, ring buffer, logical name, or
shared region

13-12 Binary and Counting Semaphore and Mutex Management Requests

The request may return the following errors, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to descriptor is odd or not in

user address space

ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; an invalid structure type or argument
value was specified

ES$IPR (type: SYSTEM_SERVICE)-Illegal primitive; user code attempted to create a PCB
(type ST.PCB specified)

Binary and Counting Semaphore and Mutex Management Requests 13-13

13. 7 CREA TE_COUNTING_SEMAPHORE
MACRO equivalent: CRST$

The CREATE_COUNTING_SEMAPHORE function creates a counting semaphore structure. If
the semaphore is successfully created, the function returns a Boolean TRUE value. If insufficient
memory exists to create the semaphore or if an exception occurs, the function returns a Boolean
FALSE value.

The function permits a process to create a counting semaphore that can be manipulated by the
various semaphore management requests described in this chapter.

Syntax

CREATE_COUNTING-5EMAPHORE ([WAI'LORDER :- { ~~~ }]

[VALUE :=gate-count]

WAILORDER

{
DESC := sem-descriptor }
NAME:= sem-name

[STATUS := status-record])

The order in which waiting processes are queued on the semaphore's waiting process list.
FIFO (first-in/first-out) is the default value; PRIO specifies ordering by process priority.

gate-count
A constant or variable that specifies the initial value of the semaphore. This value must
be from 0 to 65,535. A value of 0, the default, specifies that the semaphore is closed. A
nonzero value specifies that the semaphore is open and indicates the number of WAIT or
COND_WAIT requests that processes can perform before the semaphore closes.

sem-descrlptor
The identifier of a variable of predefined type SEMAPHORE_DESC that is to receive the
semaphore's structure identifier.

sem-name
A character-string constant or a variable of predefined type NAME_STR that specifies the
6-character name of the semaphore (see Section 11.1.1.1). You must not use the name of
an existing process or structure.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

If you do not specify a sem-name, the function creates an unnamed counting semaphore
identified by the information returned in the sem-descriptor variable.

13-14 Binary and Counting Semaphore and Mutex Management Requests

Example

%INCLUDE 'EXC.PAS'

VAR
Access, Gate, Priority_access : SEMAPHORE_DESC;

[INITIALIZE] PROCEDURE !nit;
(* Create the needed counting semaphores. If any create fails.

then report an exception. *)
BEGIN

(* Create a named counting semaphore, which is initially closed
and has FIFO ordering. *)

IF NOT CREATE_COUNTING_SEMAPHORE (DESC := Access, NAME := 'ACCESS')
THEN REPORT (EXC_TYPE :=[RESOURCE], EXC_CODE := ES$NMK);

(* Create an unnamed counting semaphore, which is initially
open and has FIFO ordering. *)

IF NOT CREATE_COUNTING_SEMAPHORE (DESC := Gate, VALUE := 1)
THEN REPORT (EXC_TYPE := [RESOURCE], EXC_CODE := ES$NMK);

(* Create an unnamed counting semaphore, which is initially
closed and has priority ordering. *)

IF NOT CREATE_COUNTING_SEMAPHORE (DESC := Priority_access, WAIT_ORDER := PRIO)
THEN REPORT (EXC_TYPE := [RESOURCE], EXC_CODE := ES$NMK);

END; (* Procedure !nit *)

Semantics

The CREATE_COUNTING_SEMAPHORE function requests the kernel to allocate and initialize
a counting semaphore structure in system-common memory.

If the semaphore is successfully created, the function returns a Boolean TRUE value. The
semaphore is named as specified in the sem-name parameter, and its structure identifier is
copied into the variable specified by the sem-descriptor parameter.

If the semaphore cannot be created because the system's free-memory pool has insufficient
space, the function returns a Boolean FALSE value.

This request is implemented through the CRST$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$MDN (type: SYSTEM_SERVICE)-Must specify structure descriptor or name

ES$SNI (type: SYSTEM_SERVICE)-Structure name already in use; the specified name has
already been given to another process, semaphore, ring buffer, logical name, or
shared region

Binary and Counting Semaphore and Mutex Management Requests 13-15

The request may return the following errors, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to descriptor is odd or not in

user address space

ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; an invalid structure type or argument
value was specified

ES$IPR (type: SYSTEM_SERVICE)-Illegal primitive; user code attempted to create a PCB
(type ST.PCB specified)

13-16 Binary and Counting Semaphore and Mutex Management Requests

13. 8 CREATE_CQUNTING_SEMAPHORE_P
MACRO equivalent: none

CREATE_COUNTING_SEMAPHORE_P creates a counting semaphore structure by a proce
dure. If the semaphore is successfully created, the STATUS parameter is set to ES$NOR.
If insufficient memory exists to create the semaphore or if an exception occurs, the STATUS
parameter is set to the appropriate exception code.

The procedure permits a process to create a counting semaphore that can be manipulated by
the various semaphore management requests described in this chapter.

Syntax

CREATE_COUNTING_SEMAPHORE_p ([WAILORDER :~ { ~~~ }]

[VALUE := gate-count]

WAILORDER

{
DESC := sem-descriptor }
NAME:= sem-name

[STATUS := status-record])

The order in which waiting processes are queued on the semaphore's waiting process list.
FIFO (first-in/first-out) is the default value; PRIO specifies ordering by process priority.

gate-count
A constant or variable that specifies the initial value of the semaphore. This value must
be from 0 to 65,535. A value of 0, the default, specifies that the semaphore is closed. A
nonzero value specifies that the semaphore is open and indicates the number of WAIT or
COND_WAIT requests that processes can perform before the semaphore closes.

sem-descrlptor
The identifier of a variable of predefined type SEMAPHORE_DESC that is to receive the
semaphore's structure identifier.

sem-name
A character-string constant or a variable of predefined type NAME_STR that specifies the
6-character name of the semaphore (see Section 11.1.1.1). You must not use the name of
an existing process or structure.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

If you do not specify a sem-name, the function creates an unnamed counting semaphore
identified by the information returned in the sem-descriptor variable.

Binary and Counting Semaphore and Mutex Management Requests 13-17

Example

%INCLUDE 'EXC.PAS'
%INCLUDE 'CRPROC.PAS'

VAR
P_STATUS : EXC_STATUS;
SUCCESS := Boolean;
SYNC1, SYNC2 : SEMAPHORE_DESC;

(* Create the counting semaphores. If any create fails,
then set Boolean SUCCESS to false. *)

[INITIALIZE] PROCEDURE Init;
BEGIN

SUCCESS := True
CREATE_COUNTING_SEMAPHORE_P (WAIT_ORDER := FIFO, VALUE := 0,

DESC := SYNC1, NAME := 'GATE '
STATUS:= P_STATUS);

IF (P_STATUS.EXC_CODE <> ES$NOR)
THEN SUCCESS := False;

CREATE_COUNTING_SEMAPHORE_P (NAME= 'CS1 ', STATUS := P_STATUS);
IF (P_STATUS.EXC_CODE <> ES$NOR)

END;

BEGIN (* Main *)
IF NOT SUCCESS

THEN SUCCESS := False;

THEN WRITELN('%ERROR - Semaphore creation failed')
ELSE

END.

Semantics

The CREATE_CQUNTING_SEMAPHORE_P procedure requests the kernel to allocate and
initialize a counting semaphore structure in system-common memory.

If the semaphore is successfully created, the STATUS parameter is set to ES$NOR. The
semaphore is named as specified in the sem-name parameter, and its structure identifier is
copied into the variable specified by the sem-descriptor parameter.

If the semaphore cannot be created because the system's free-memory pool has insufficient
space, the STATUS parameter is set to the appropriate exception code.

This request is implemented through the CRST$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$MDN (type: SYSTEM_SERVICE)-Must specify structure descriptor or name

ES$SNI (type: SYSTEM_SERVICE)-Structure name already in use; the specified name has
already been given to another process, semaphore, ring buffer, logical name, or
shared region

13-18 Binary and Counting Semaphore and Mutex Management Requests

The request may return the following errors, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to descriptor is odd or not in

user address space

ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; an invalid structure type or argument
value was specified

ES$IPR (type: SYSTEM_SERVICE)-Illegal primitive; user code attempted to create a PCB
(type ST.PCB specified)

Binary and Counting Semaphore and Mutex Management Requests 13-19

13. 9 CREA TE_MUTEX
MACRO equivalent: CRST$

The CREATE_MUTEX procedure creates a mutex (mutual exclusion) structure for use in guarding
the access to a shared resource. The mutex is initialized to the UNLOCK state.

Syntax

CREATE_MUTEX (MUTEX_VAR := mutex-variable-id

[WAILORDER :- { ~~~ }]

[STATUS :=status-record])

mutex-varlable-ld
The identifier of a variable of predefined type mutex that will be initialized with the mutex
identification and control information.

WAILORDER
The ordering of the list of processes waiting to use the mutex-protected resource. FIFO
specifies first-in-first-out order and is the default value. PRIO specifies ordering by process
priority.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an

, exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Restriction

The processes using the mutex must reside in the same program (static process).

Example

%INCLUDE 'MUTEX.PAS'

VAR
M1, M2 : MUTEX;

[INITIALIZE] PROCEDURE !nit;
BEGIN

(* Create a MUTEX with FIFO wait order. *)
CREATE_MUTEX (MUTEX_VAR := M1);

(* Create a MUTEX with PRIO wait order. *)
CREATE_MUTEX (MUTEX_VAR := M2, WAIT_ORDER := PRIO);

END; (* Procedure !nit *)

13-20 Binary and Counting Semaphore and Mutex Management Requests

Semantics

The CREATE_MUTEX procedure creates a binary semaphore, initializes the variable specified by
the mutex-variable-id parameter, and returns to the caller. The binary semaphore is initialized
to the UNLOCK state.
This request is implemented through the CRST$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$NMK (type: RESOURCE)-Insufficient space for kernel structure; could not obtain space

for the mutex structure

The request may return the following errors, though not as a result of standard Pascal
programming practice:
ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter

ES$IPR (type: SYSTEM_SERVICE)-Illegal primitive

ES$SNI (type: SYSTEM_SERVICE)-Structure name already in use

Binary and Counting Semaphore and Mutex Management Requests 13-21

13. l 0 DESTROY
MACRO equivalent: DLST$

The DESTROY procedure deletes a specified structure (in this case, a binary or counting
semaphore) from the system and deallocates the memory space associated with the structure.
The operation is performed only if no processes are blocked on the structure at the time of the
call.

Syntax

DESTROY ({ DESC := descriptor }
NAME:= name

[STATUS :=status-record])

descriptor
The identifier of a variable of predefined type SEMAPHORE_DESC that contains
the semaphore's structure identifier. The variable must have been previously initial
ized by a CREATE_BINARY_SEMAPHORE, CREATE_COUNTING_SEMAPHORE, or
INIT_STRUCTURE_DESC request.

name
A character-string constant or a variable of predefined type NAME_STR that specifies the
6-character name of an existing semaphore.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Example

VAR
Gate : SEMAPHORE_DESC;

[TERMINATE] PROCEDURE Term;
BEGIN

(* Destroy an unnamed semaphore. *)
DESTROY (DESC :=Gate);

(* Destroy a named semaphore. *)
DESTROY (NAME := 'GATE ');

END; (* Procedure Term *)

Semantics

If a semaphore is not in use, DESTROY removes the semaphore's name (if one exists) from the
system name table, returns the space that the semaphore occupies to the system's free-memory
pool, and returns control to the caller.

This request is implemented through the DLST$ kernel primitive.

13-22 Binary and Counting Semaphore and Mutex Management Requests

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such semaphore exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

ES$SIU (type: SYSTEM_SERVICE)-Structure is in use

Binary and Counting Semaphore and Mutex Management Requests 13-23

13.11 DESTROV_MUTEX
MACRO equivalent: DLST$

The DESTROY-MUTEX procedure deletes a mutex structure from the system and deallocates
the memory space associated with it. The operation is performed only if there are no processes
blocked on the mutex at the time of the call.

Syntax

DESTROY_MUTEX (MUTEX_VAR := mutex-variable-id
[STATUS := status-record])

mutex-varlable-id
The identifier of a variable of predefined type mutex that is the mutex variable of the mutex
to be destroyed. The variable must have been previously initialized by the CREATE-MUTEX
procedure.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Restriction

The processes using the mutex must reside in the same program (static process).

Example

%INCLUDE 'MUTEX.PAS'

VAR
M1 : MUTEX;

[TERMINATE] PROCEDURE Term;
BEGIN

(* Destroy the MUTEX. *)
DESTROY_MUTEX (MUTEX_VAR := M1);

END; (* Procedure Term *)

Semantics

If a mutex is not currently in use, DESTROY_MUTEX returns the space that the associated
semaphore occupies to the system's free-memory pool, updates the mutex data structure, and
returns control to the caller.

When a mutex is deleted with DESTROY-MUTEX, the mutex-variable is set to 0, indicating
the mutex is locked. The next operation (LOCK_MUTEX or UNLOCK-MUTEX) will do a
wait operation and fail, which helps to prevent operations on mutexes after they have been
destroyed.

This request is implemented through the DLST$ kernel primitive.

13-24 Binary and Counting Semaphore and Mutex Management Requests

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such semaphore exists

ES$SIU (type: SYSTEM_SERVICE)-Structure is in use; the mutex is being used by another
process and cannot be destroyed

Binary and Counting Semaphore and Mutex Management Requests 13-25

13.12 GET_VALUE
MACRO equivalent: GVAL$

The GET_ VALUE procedure obtains the value and type code of a specified structure. The code
identifies a structure as a semaphore (binary, counting, or queue) or as a ring buffer. The
meaning of the structure's value depends on the structure type. For example, the value of a
counting semaphore is the current signal count, whereas the value of a ring buffer is the current
element count.

Note
The value of a structure may change immediately after it is inspected. Therefore,
the information this request provides must be used cautiously, to prevent the
introduction of race conditions.

Syntax

GET_ VALUE (VALUE :=count

count

TYP := structure-type

{
DESC := descriptor }
NAME:= name

[STATUS := status-record])

The identifier of a variable of type INTEGER that receives the structure's value.

structure-type
The identifier of a variable of type INTEGER that receives the structure's type code.

descriptor
The identifier of a variable of predefined type SEMAPHORE_DESC that contains the
semaphore's structure identifier. The variable must have been previously initialized by an
appropriate CREATE-type request or an INIT_STRUCTURE_DESC request.

name
A character-string constant or a variable of predefined type NAME_STR that specifies the
6-character name of an existing semaphore.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

13-26 Binary and Counting Semaphore and Mutex Management Requests

Structure Type Identification Codes

The type codes and meaning of the values that the procedure can return are:

Structure

Binary semaphore

Counting semaphore

Queue semaphore

Ring buffer

PCB

SRO

Unformatted structure

Example

VAR

Type Code

0

1

2

3

4

5

7

Sem_val, Sem_typ : INTEGER;
Gate : SEMAPHORE_DESC;

[PRIORITY(10), STACK_SIZE(100)] PROCESS P1;
BEGIN

Meaning of Value Parameter

The value of the gate variable (0 or 1)

The count of pending signals (0 or positive)

The count of pending signals (0 or positive)

The count of data elements in the ring buffer

No meaning

No meaning

No meaning

(* Get the value of an unnamed semaphore. *)
GET_VALUE (VALUE:= Sem_val, TYP := Sem_typ, DESC :=Gate);

(* Get the value of a named semaphore. *)
GET_VALUE (VALUE := Sem_val, TYP := Sem_typ, NAME

END; (* Process P1 *)

Semantics

'GATE ');

The GET_ VALUE procedure obtains the type code and value of the specified structure, stores
this information in the variables specified in the call, and returns control to the caller.

This request is implemented through the GVAL$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN. (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IPR (type: SYSTEM_SERVICE)-Illegal primitive; the descriptor or name parameter is a
logical name that does not translate to the name of a structure

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such semaphore or ring
buffer exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

Binary and Counting Semaphore and Mutex Management Requests 13-27

13. 13 INIT_STRUCTURE_DESC
MACRO equivalent: GVAL$

The INIT_STRUCTURE_DESC procedure copies identifying information about a specified binary
or counting semaphore structure into a structure descriptor record. J'hat record provides the
kernel with a rapid-access path to a structure referred to in the other semaphore management
requests described in this chapter.

When you create a semaphore, you may also use the CREATE_BJNARY_SEMAPHORE or the
CREATE_COUNTING_SEMAPHORE requests to set up a descriptor.

Syntax

INIT_STRUCTURE_DESC (DESC :=descriptor
NAME:= name
[STATUS := status-record])

descriptor
The identifier of a variable of predefined type SEMAPHORE_DESC that is to receive the
semaphore's structure identifier.

name
A character-string constant or a variable of predefined type NAME_STR that specifies the
6-character name of an existing semaphore.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Example

VAR
Gate : SEMAPHORE_DESC;

[PRIORITY(10), STACK_SIZE(100), NAME ('P1
BE(HN

>)] PROCESS P 1 ;

(* Get the id of the semaphore named 'GATE ' *)
INIT_STRUCTURE_DESC (DESC :=Gate, NAME:= 'GATE ');

END; (* Process P1 *)

Semantics

The INIT_STRUCTURE_DESC procedure requests the kernel to copy the index and serial
number information associated with the named structure into the specified descriptor variable
in the caller's storage area.

This request is implemented through the GVAL$ kernel primitive.

13-28 Binary and Counting Semaphore and Mutex Management Requests

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; semaphore does not exist

Binary and Counting Semaphore and Mutex Management Requests 13-29

1 3. 14 LOCK_MUTEX
MACRO equivalent: WAIT$

The LOCK_MUTEX procedure locks the specified mutex structure.

The UNLOCK_MUTEX request is the logical complement of LOCK_MUTEX. Together, the
LOCK_MUTEX and UNLOCK_MUTEX requests provide a means for two or more cooperating
processes to implement a variety of mutual-exclusion mechanisms for shared resource protection.

Syntax

LOCK_MUTEX (MUTEX_VAR := mutex-variable-id)

mutex-varlable-id
The identifier of a variable of predefined type mutex that specifies the mutex to be locked.
The variable must have been previously initialized by the CREATE_MUTEX procedure.

Restrictions

• The processes using the mutex must reside in the same program (static process).

• LOCK_MUTEX must be paired with UNLOCK_MUTEX in the program sequence.

Example
%INCLUDE 'MUTEX.PAS'

VAR
M1 : MUTEX;

PROCESS A;
BEGIN

(* Lock the resource. *)
LOCK_MUTEX (MUTEX_VAR := M1);

(* Unlock the resource. *)
UNLOCK_MUTEX (MUTEX_VAR : = M1); .

END; (* Process A *)

Semantics

The LOCK_MUTEX procedure locks the specified mutex. If the mutex is not currently locked,
the calling process continues to run. If another process has already locked the mutex, the calling
process will be blocked on a queue of processes waiting to access the mutex.

This request is implemented through the WAIT$ kernel primitive.

13-30 Binary and Counting Semaphore and Mutex Management Requests

Error Returns

See Section 11.2 for general information about error returns. The request may return the
following error, though not as a result of standard Pascal programming practice:
ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such binary semaphore

exists

Binary and Counting Semaphore and Mutex Management Requests 13-31

13. 15 SIGNAL
MACRO equivalent: SGNL$

The SIGNAL procedure signals a specified binary or counting semaphore, unblocking the first
process, if any, waiting on that semaphore. This procedure permits the calling process to signal
another process that an event has occurred, whether or not the other process is waiting for the
signal. (Compare with COND_SIGNAL, the conditional signal request.)

Together the SIGNAL and WAIT requests provide a means for two or more cooperating processes
to implement a variety of synchronization and mutual-exclusion mechanisms. (See also the
COND_SIGNAL, WAIT, COND_WAIT, and SIGNAL_ALL requests.)

Syntax

SIGNAL ({ DESC := sem-descriptor }
NAME:= sem-name

[STATUS :=status-record])

sem-descriptor
The identifier of a variable of predefined type SEMAPHORE_DESC that contains
the semaphore structure identifier. The variable must have been previously initial
ized by a CREATE_BINARY_SEMAPHORE, CREATE_CQUNTING_SEMAPHORE, or
INIT_STRUCTURE_DESC request.

sem-name
A character-string constant or a variable of predefined type NAME_STR that specifies the
6-character name of an existing semaphore (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Restriction

The semaphore must not be a queue semaphore.

Example

VAR
Gate : SEMAPHORE_DESC;

[PRIORITY(10), STACK_SIZE(100), NAME ('PRODUC')] PROCESS Producer;
BEGIN

(* Signal an unnamed semaphore. *)
SIGNAL (DESC :=Gate);

(* Signal a named semaphore. *)
SIGNAL (NAME:= 'GATE ');

END; (* Process Producer *)

13-32 Binary and Counting Semaphore and Mutex Management Requests

Semantics

The SIGNAL procedure increments a binary semaphore's gate variable if its current value is 0.
If its value is already 1, the procedure returns control to the caller, with no other action.

The SIGNAL procedure increments a counting semaphore's counter; if its previous value was
greater than 0, the procedure returns to the caller.

In either case, if the signal causes the semaphore value to change from 0 to 1 and if at least
one process is waiting on the semaphore, the procedure unblocks the first waiting process,
decrements the semaphore value, and calls the scheduler. That sequence may cause the calling
process to be preempted (lose control of the CPU) depending on the relative priority of the
process at the head of the semaphore's queue of blocked processes.

If the semaphore value changes from 0 to 1 and if no process is waiting, control returns to the
caller.

This request is implemented through the SGNL$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such semaphore exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

Binary and Counting Semaphore and Mutex Management Requests 13-33

13. 16 SIGNALALL
MACRO equivalent: SALL$

The SIGNAL -ALL procedure unblocks all processes waiting on a specified binary or a counting
semaphore and sets the value of that semaphore to 0. If no process is waiting on the
semaphore, the semaphore value is unchanged. SIGNAL -ALL permits the calling process to
signal simultaneously all processes that are waiting for the same event to occur.

Together, the WAIT and SIGNAL-ALL requests provide a means for two or more processes to
synchronize on a single event signaled by another process.

Syntax

SIGNAL -ALL ({ DESC := sem-descriptor }
NAME := sem-name

[STATUS :=status-record])

sem-descrlptor
The identifier of a variable of predefined type SEMAPHORE_DESC that contains
the semaphore structure identifier. The variable must have been previously initial
ized by a CREATE_BINARY_SEMAPHORE, CREATE_COUNTING_SEMAPHORE, or
INIT_STRUCTURE_DESC request.

sem-name
A character-string constant or a variable of predefined type NAME_STR .that specifies the
6-character name of an existing semaphore (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Restriction

The specified semaphore must not be a queue semaphore.

Example

VAR
Access : SEMAPHORE_DESC;

[PRIORITY(10), STACK_SIZE(100), NAME ('DRIVER')] PROCESS Driver;
BEGIN

(* Signal all processes waiting on an unnamed semaphore. *)
SIGNAL_ALL (DESC :=Access);

(* Signal all processes waiting on a named semaphore. *)
SIGNAL_ALL (NAME:= 'ACCESS');

END; (* Process Driver *)

13-34 Binary and Counting Semaphore and Mutex Management Requests

Semantics

The SIGNAL_ALL procedure unblocks all processes waiting on the specified semaphore and
calls the scheduler if any processes are unblocked; the value of the semaphore is set to zero.

If no process is waiting on the specified semaphore, the procedure returns control to the caller,
with the semaphore variable unchanged.

The SIGNAL_ALL procedure may cause the calling process to be preempted (lose control of
the CPU).

This request is implemented through the SALL$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such semaphore exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

Binary and Counting Semaphore and Mutex Management Requests 13-35

13. 17 UNLOCK_MUTEX
MACRO equivalent: SGNL$

The UNLOCK_MUTEX procedure unlocks the specified mutex structure.

The LOCK_MUTEX request is the logical complement of UNLOCK....:..MUTEX. Together, the
LOCK_MUTEX and UNLOCK_MUTEX requests provide a means for two or more cooperating
processes to implement a variety of mutual-exclusion mechanisms for shared resource protection.

Syntax

UNLOCK_MUTEX (MUTEX_VAR := mutex-variable-id)

mutex-varlable-ld
The identifier of a variable of predefined type mutex that specifies the mutex to be locked.
The variable must have been previously initialized by the CREATE_MUTEX procedure.

Restrictions

•
•

The processes using the mutex must reside in the same program (static process) .

UNLOCK_MUTEX must be paired with LOCK_MUTEX in the program sequence .

Example
%INCLUDE 1 MUTEX.PAS'

VAR
Mi : MUTEX;

PROCESS A;
BEGIN

(* Lock the resource. *)
LOCK_MUTEX (MUTEX_VAR := M1);

(* Unlock the resource. *)
UNLOCK_MUTEX (MUTEX_VAR := M1);

END; (* Process A *)

Semantics

The UNLOCK_MUTEX procedure unlocks the specified mutex. If at least one process is waiting
on the mutex, the procedure unblocks the first waiting process and calls the scheduler. This
procedure may cause the calling process to be preempted (lose control of the CPU) depending
on the relative priority of the process at the head of the mutex's queue of blocked processes.

This request is implemented through the SGNL$ kernel primitive.

13-36 Binary and Counting Semaphore and Mutex Management Requests

Error Returns

See Section 11.2 for general information about error returns. The request may return the
following error, though not as a result of standard Pascal programming practice:
ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such binary semaphore

exists

Binary and Counting Semaphore and Mutex Management Requests 13-37

13.18 WAIT
MACRO equivalent: WAIT$

The WAIT procedure tests a semaphore for the arrival of a signal from another process. If no
signal has occurred (semaphore value is 0), the process is blocked on that semaphore. If a
signal has occurred (nonzero semaphore value}, the calling process proceeds.

WAIT permits the calling process to receive a signal from another process, indicating that an
event on which the calling process is dependent has occurred. For example, a related process
that depends on exclusive access to a shared structure can wait on a semaphore that indicates
the structure's availability.

Together, the WAIT, SIGNAL, and SIGNAL-ALL requests and their conditional forms provide
a means for two or more cooperating processes to implement a variety of synchronization and
mutual-exclusion mechanisms.

Syntax

WAIT ({ DESC := sem-descriptor }
NAME:= sem-name

[STATUS :=status-record])

sem-descrlptor
The identifier of a variable of predefined type SEMAPHORE_DESC that contains
the semaphore structure identifier. The variable must have been previously initial
ized by a CREATE_BJNARY_SEMAPHORE, CREATE_COUNTING_SEMAPHORE, or
INIT_STRUCTURE_DESC request.

sem-name
A character-string constant or a variable of predefined type NAME_STR that specifies the
6-character name of an existing semaphore (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Example

VAR
Gate : SEMAPHORE_DESC;

[PRIORITY(10), STACK_SIZE(100), NAME ('CONSUM')] PROCESS Consumer;
BEGIN

(* Wait on an unnamed semaphore. *)
WAIT (DESC := Gate);

(* Wait on a named semaphore. *)
WAIT (NAME := 'GATE ');

END; (* Process Consumer *)

13-38 Binary and Counting Semaphore and Mutex Management Requests

Semantics

The WAIT procedure decrements the semaphore variable if its value is greater than 0 and returns
control to the caller. If the semaphore value is 0, the WAIT procedure blocks the calling process
until it is unblocked by a subsequent signal request. (See also the SIGNAL, COND_SIGNAL,
and SIGNAL_ALL requests.)

This request is implemented through the WAIT$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such semaphore exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

Binary and Counting Semaphore and Mutex Management Requests 13-39

13·.19 WAIT-ANY
MACRO equivalent: WAIA$

The WAIT-ANY function implements a complex form of the wait on semaphore operation;
see the WAJT and SIGNAL requests for a description of the basic wait and signal operations.
WAIT-ANY performs the basic wait operation on the logical OR of several binary or counting
semaphores, with an optional timeout feature. That is, WAIT-ANY permits the calling process to
test for and, if necessary, wait on a signal on any one of a set of binary or counting semaphores.
Up to four such semaphores can be specified in the request. If none of the specified semaphores
can be decremented immediately, the calling process blocks until any one of those semaphores
is signaled and can be decremented on behalf of the calling process.

Optionally, a WAIT-ANY operation can be terminated due to the expiration of a time interval
specified in the request.

Thus, WAIT-ANY allows a process to synchronize with any of up to four events, each signaled
by a separate process, for example. The function might also be used primarily for its timeout
capability.

The function returns ordinal values from 0 to 5, indicating the results of the operation (see
Semantics).

If a zero time period (immediate timeout) is specified in the request, WAIT-ANY provides a
complex form of the COND_WAIT operation, which tests for a signaled semaphore but will not
block the caller. See COND_WAIT for a description of the simple conditional wait operation.

Syntax

WAIT-ANY ([SDB4 := sem-descriptor-4 D
[SDB3 := sem-descriptor-3 D
[SDB2 := sem-descriptor-2 D
[SDBl := sem-descriptor-1 D
[TIMEOUT := timeout-interval D
[STATUS :=status-record D)

sem-descriptor-4
sem-descrlptor-3
sem-descriptor-2
sem-descrlptor-1

The identifier of a variable of predefined type SEMAPHORE_DESC that contains a
semaphore's structure identifier. You can specify up to four binary or counting semaphores
or a combination of both. The order in which you specify multiple semaphores determines
the order in which they are initially tested for a signal. (That order can be critical under
certain real-time conditions, as discussed under Semantics and Implementation Notes.)
Each variable must have been previously initialized by a CREATE_BINARY_SEMAPHORE,
CREATE_COUNTING_SEMAPHORE, or INIT_STRUCTURE_DESC request.

timeout-Interval
The identifier of a variable of predefined type LONG-1NTEGER that specifies the maximum
time, in milliseconds, that the caller wishes to be blocked waiting for a signal. The value
must be a positive integer from 0 to (2••31) -1. A value of 0 causes the request to time
out immediately if none of the specified semaphores can be decremented without waiting.

13-40 Binary and Counting Semaphore and Mutex Management Requests

That is, the calling process will never block if the specified time interval is 0. If you do
not specify this parameter, the function assumes no timeout for the operation; the calling
process may block indefinitely.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Restrictions

• The specified semaphore(s) must not be queue semaphore(s). (Binary and counting
semaphores may be "intermixed" in the same request.)

• The timeout-interval value is limited to a 31-bit positive integer; that is, the sign bit of the
high-order word must not be set. (The maximum valid value, in milliseconds, permits a
timeout period of just over 24.89 days; see the SLEEP procedure for more detail.)

• If you wish to use fewer than four semaphore descriptor parameters, you must assign them,
beginning with keyword SDBl. You may not assign keyword parameters with higher
numbered suffixes unless all keywords with lower-numbered suffixes are assigned. For
example, if the parameter sequence specifies keyword SDB3, the sequence must also include
keywords SDB2 and SDBl.

Example
%INCLUDE 'COMPLX.PAS'

VAR
Line1, Line2, Line3 : SEMAPHORE_DESC;
Which_one : COMPLEX_FUNC_VALUE;
Timeout_val : LONG_INTEGER;

[PRIORITY(10), STACK_SIZE(100), NAME ('CONSUM')] PROCESS Consumer;
BEGIN

(* Wait on three semaphores. *)
Which_one := WAIT_ANY

(SDB1 := Line1, SDB2 := Line2, SDB3 := Line3);

(* Wait on two semaphores with a timeout. *)
Timeout_val := 1000;
Which_one := WAIT_ANY

(SDB1 := Line1, SDB2 := Line2, TIMEOUT := Timeout_val);

END; (* Process Consumer *)

Semantics

The WAIT-ANY function tests each of the semaphores specified in the request for a gate-variable
value greater than 0. That is, the function tests for a semaphore that is "open" and can be
decremented. The semaphores are tested in the keyword order: SDBl to SDB4.

Binary and Counting Semaphore and Mutex Management Requests 13-41

The function returns the following values:

Value Meaning

0 Request timed out

1 Request satisfied by SDBl

2 Request satisfied by SDB2

3 Request satisfied by SDB3

4 Request satisfied by SDB4

5 Error condition

If any of the semaphores are open at the time of the call, WAIT_ANY decrements the first open
semaphore encountered and returns immediately to the caller, with a value between 1 and 4
that indicates which semaphore satisfied the request.

If none of the semaphores is open and either no timeout argument or a nonzero timeout value
was supplied in the call, the function switches the calling process to the wait-active state, where
the process is blocked on all the semaphores specified in the request.

If none of the semaphores is open and a zero timeout value was supplied in the call, the
function returns immediately to the caller, with a zero value indicating a timeout. (The calling
process thus never leaves the run state in the case of an immediate timeout.)

If an error occurs, the function returns a 5.

If the calling process switches to the wait-active state, the process is blocked from execution
until it can be reactivated either by a signal on one of the blocking semaphores (see SIGNAL
semantics) or by elapse of the specified timeout period, if any, before a signal occurs. When
reactivated for either reason, the process is unblocked from all the semaphores and is switched
to either the ready-active or the run state, depending on relative process priorities. If unblocked
because of a signal, the function returns the ordinal value (from 1 to 4) of the semaphore that
triggered the return, as described above. If unblocked because of a timeout, the function returns
a 0.

This request is implemented through the WAIA$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$IST (type: SYSTEM_SERVICE)-lnvalid structure descriptor; no such binary or counting

semaphore exists

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; timeout value out of range

13-42 Binary and Counting Semaphore and Mutex Management Requests

Implementation Notes

Since the initial test of the semaphores for a signal is performed in determinate order, the order
in which multiple semaphores are identified in the call can be critical under certain real-time
conditions. For example, assume that the relative frequency of signals is high for one of several
binary or counting semaphores and that the "fast" semaphore is identified as being first, by
being associated with keyword SDBl. In a series of calls to WAIT_ANY, that semaphore will
be serviced far more often than the others, and the "slower" semaphores may seldom or never
be tested and serviced.

Optimally, then, the semaphore with the highest expected signal rate should be assigned to the
keyword that is tested last; the next highest as next to last, and so on, assuming that probable
relative frequencies can be determined. Alternatively, the order in which the semaphores are
identified could be rotated in successive calls so that at least N semaphores are guaranteed to
be tested in N calls to WAIT_ANY. The correct or best strategy is application specific.

Binary and Counting Semaphore and Mutex Management Requests 13-43

Chapter 14
Queue Semaphore Management Requests

This chapter describes the requests that operate on queue semaphore structures. These requests
are the Pascal language interface to the services provided by the kernel's queue semaphore
primitives. Table 14-1 lists the predeclared procedures and functions that implement these
requests. They combine message-packet transmission with the synchronization features of
signal and wait operations on counting semaphores.

A queue semaphore is a generalization of the counting semaphore and has a queue of elements
associated with it in addition to the counter variable. (A standard MicroPower /Pascal element
is called a packet.) Two distinct levels of queue semaphore operations are supplied, one built
on the other. The basic signal operation adds a packet to the queue and increments the counter
variable, implemented through the various forms of the PUT and SEND requests. The basic
wait operation removes a packet from the queue and decrements the variable, implemented
through the various forms of the GET and RECEIVE requests. If the queue is empty, the process
must wait until an element can be removed. Thus, the value of the counter variable represents
the number of elements on the queue.

The higher-level, more "automatic" operations are provided specifically for general processes
in a mapped-memory environment. Those operations feature additional services that include
copying of data by value and by reference between the sending process and the receiving
process and signaling of a message-acknowledgment semaphore. Data transmission "by value"
means that the message data is transmitted in the packet. Data transmission "by reference"
means that a pointer to a referenced message buffer is transmitted in the packet.

You must include in your program or module the definitions of the routines that implement the
requests described in this chapter before using them. See Appendix I for more information.

Table 14-1 lists the queue semaphore requests.

Queue Semaphore Management Requests 14-1

Table 14-1: Queue Semaphore Management Requests
General Requests

DESTROY

GET_ VALUE

INIT_STRUCTURE_DESC

Low-Level Requests

ALLOCATE_P ACKET

COND_ALLOCATE_P ACKET

COND_GET_P ACKET

COND_puT_p ACKET

CREATE_QUEUE_SEMAPHORE

CREATE_QUEUE_SEMAPHORE_p

DEALLOCATE_PACKET

GET_pACKET

GET_p ACKET_ANY

PUT_PACKET

14-2 Queue Semaphore Management Requests

Function

Deletes a queue semaphore from the system
and deallocates the memory space used by it.

Obtains a structure's value and type code.

Sets up a descriptor for efficient reference to a
queue semaphore.

Function

Allocates a packet from the kernel's packet
pool; if no packets are available, the calling
process is blocked.

Conditional form of ALLOCATE_PACKET;
performs the operation only if a packet is
available.

Conditional form of GET_p ACKET; does not
block the calling process if no packet is avail
able.

Conditional form of PUT_p ACKET; performs
the operation only if a process is waiting on
the semaphore.

Creates a queue semaphore in the system's
common-memory area and sets up a descriptor
for efficient reference to a queue semaphore.

Creates a queue semaphore in the system's
common-memory area and sets up a descriptor
for efficient reference to a queue semaphore by
a procedure.

Returns a packet to the kernel's packet
allocation pool.

Tests specified queue semaphore for a packet of
data: if one is available, the packet is detached
from the queue, and a pointer to it is passed
to the calling process; if no packet is available,
the process is blocked.

An enhanced form of GET_p ACKET that waits
for a variable time interval on up to four queue
semaphores.

Places a packet of data on a queue; if any
processes are waiting on that semaphore, the
first process is unblocked.

Table 14-1 (Cont.): Queue Semaphore Management Requests
High-Level Requests

COND_RECEIVE

COND_SEND

RECEIVE

RECEIVE-ANY

SEND

High-Level Requests with
Message Reply Capability

COND_RECEIVE_.ACK

COND_SEND_ACK

RECEIVE-ACK

RECEIVE_ANY_ACK

SEND_ACK

Function

Conditional form of RECEIVE; does not block
the calling process if no packet is available.

Conditional form of SEND; performs the op
eration only if a process is waiting on the
semaphore.

Waits on a queue semaphore for an avail
able packet, then copies a message from the
sender's buffer or up to 34 bytes of message
data, or both, from the packet into the caller's
buffers.

An enhanced form of RECEIVE that waits for
a variable time interval on up to four queue
semaphores.

Copies up to 34 bytes of message data or a
reference to a message buffer, or both, into a
packet and places the packet on a queue.

Function

Conditional form of RECEIVE-ACK; does not
block the calling process if no packet is avail
able.

Conditional form of SEND_ACK; performs the
operation only if a process is waiting on the
queue semaphore.

Waits on a queue semaphore for an avail
able packet, then copies a message from the
sender's buffer to the caller's buffer and op
_tionally signals a reply semaphore identified
by the sender.

An enhanced form of RECEIVE_ACK that
waits for a variable time interval on up to
four queue semaphores.

Copies a reference to a message and an
optional reply semaphore identifier into a
packet and places the packet on a queue.

Queue Semaphore Management Requests 14-3

14. 1 Data Access Features of Processes
In a mapped-memory environment, a process must have special mapping attributes (driver
mapping or privileged mapping) to use fully the lower-level queue semaphore requests
(PUT_pACKET, GET_pACKET, and their conditional forms). Since those requests directly
access the contents of a packet and since packets reside in kernel data space, the process must
be mapped to that space to access (write into or read from) the packet. Therefore, a program
containing a process that uses those requests must be declared with the PRIVILEGED or DRIVER
attribute (see Section 10.1.2).

Processes with either general mapping or DEV-ACCESS mapping do not have direct access
to the contents of a packet and therefore may not store data directly into a packet. If such a
process needs to access the contents of a packet rather than pass one along that the process has
acquired by means of another request, the process must use a form of the SEND and RECEIVE
requests. Those requests provide a packet-creation and data-copying service in addition to the
functionality of the PUT_p ACKET /GET_p ACKET combination.

Note
Since packets exist in kernel data space, a general-mapping process attempting
to access a packet will obtain unpredictable results. If the packet address is
not also a valid virtual address in the process's address space, the kernel will
generate a memory-management exception (ES$MMU). No exception will occur
if the packet address is a valid virtual address in the process's space, but the
process will then obtain invalid data.

For further information about mapping strategy, refer to Chapter 2 of the MicroPower /Pascal
Run-Time Services Manual.

14.2 General Packet Structure for Send/Receive Requests
A packet is a standard fixed-length data structure that the kernel allocates from a special system
memory pool. A packet's overall size is 40 bytes (see Figure 14-1), including the header; that
of the undefined, arbitrarily usable portion of the packet is 34 bytes. (Those standard sizes are
provided in the MicroPower/Pascal software as distributed by DIGITAL.)

14-4 Queue Semaphore Management Requests

Figure 14-1: General Packet Format for Send/Receive Requests

control
byte

15 87

packet pointer

auxiliary pointer

priority

undefined

bit
0

kernel-maintained
packet header (6 bytes)

packet data area
(34 bytes for user
supplied data)

ML0-563-87

Descriptions of the components of the packet format shown in Figure 14-1 follow:

packet pointer
The kernel-maintained pointer to the next packet in the queue; for kernel use only.

auxiliary pointer
For DIGITAL use only.

The reference data flag, provided by the various forms of the SEND request to indicate that
a pointer to a data buffer is in the packet.

0 =no data by reference specified
1 = data by reference specified

value-data-length
The value data byte count, provided by the various forms of the SEND request.

priority
The packet-priority value, provided by the various forms of the SEND request.

Queue Semaphore Management Requests 14-5

A process obtains a packet from the kernel by issuing either an ALLOCATE_PACKET or a
COND_ALLOCATE_P ACKET request. (The undefined portion of the packet returned by the
kernel is not initialized.)

A process issues a DEALLOCATE_PACKET request to return a packet to the system's free
element pool.

Refer to Figures 14-2 and 14-3 for specific layouts of packets used with the SEND,
COND_SEND, SEND-ACK, and COND_SEND_ACK requests.

14-6 Queue Semaphore Management Requests

14.3 ALLOCATE_PACKET
MACRO equivalent: ALPK$

The ALLOCATE_PACKET procedure obtains a message packet (standard queue element) from
the kernel's free-packet pool. If available, a free packet is logically removed from the free-packet
pool, and a pointer to the packet is returned to the caller. If all packets are in use at the time
of the call, the calling process is blocked until the request can be satisfied. (If several processes
are concurrently waiting for packet allocation, the requests are satisfied according to process
priority as packets are returned to the pool.)

The procedure permits the caller to obtain a packet pointer for use with the GET_P ACKET,
GET_pACKET_ANY, COND_GET_PACKET, PUT_PACKET, and COND_PUT_PACKET re
quests. This procedure is for use by processes with the PRIVILEGED or DRIVER attributes or
processes that reside in an unmapped-memory environment (see Sections 10.1.2 and 14.1 for
further information).

The COND_ALLOCATE_p ACKET function permits a process to request packet allocation
without blocking if no packets are free.

The DEALLOCATE_pACKET procedure, the complement of ALLOCATE_PACKET, lets a
process deallocate a message packet.

Syntax

ALLOCATE_pACKET (PACKET_pTR :=pointer)

pointer
The identifier of a variable of predefined type QUEUE_PTR that will receive a pointer to
the packet.

Example
VAR

Pack : QUEUE_PTR;

[PRIORITY(iO), STACK_SIZE(iOO), NAME ('Pi
BEGIN

(* Allocate a packet. *)
ALLOCATE_PACKET (PACKET_PTR :=Pack);

END; (* Process Pi *)

Semantics

')] PROCESS Pi;

The ALLOCATE_p ACKET procedure tests the free-packet pool for a free packet. If the pool
contains at least one packet, the procedure logically removes a packet from the pool and returns
the address of that packet in the variable specified by the pointer parameter.

If no packets are free, the request blocks the calling process on a semaphore ($KP~EM) associated
with the free-packet pool and calls the scheduler. The process remains on the semaphore's
waiting process list, in priority order relative to other processes that may also be waiting,
until enough packets have been freed to permit allocation. (See the DEALLOCATE_p ACKET
procedure.)

Queue Semaphore Management Requests 14-7

This request is implemented through the ALPK$ kernel primitive.

Error Returns

None

14-8 Queue Semaphore Management Requests

14.4 COND_ALLOCATE_PACKET
MACRO equivalent: ALPC$

The COND_ALLOCATE_PACKET function (the condition~l, or nonblocking, form of the
ALLOCATE_P ACKET request) obtains a message packet from the kernel's free-packet pool,
if one is available, and returns to the caller with a Boolean TRUE value. If all packets are in use
at the time of the call, the function returns control to the caller immediately, with a Boolean
FALSE value.

This function permits the caller to obtain a packet pointer for use with the GET_p ACKET,
GET_pACKET_ANY, COND_GET_PACKET, PUT_PACKET, and COND_pLJT_pACKET re
quests without blocking if the request cannot be satisfied. (Compare with the unconditional
form, ALLOCATE_PACKET.) This function is for use by processes with the PRIVILEGED
or DRIVER attributes or processes that reside in an unmapped-memory environment (see
Sections 10.1.2 and 14.1 for more information).

The DEALLOCATE_P ACKET procedure lets a process deallocate a message packet.

Syntax

COND_ALLOCATE_p ACKET (P ACKET_PTR := pointer)

pointer
The identifier of a variable of predefined type QUEUE_pTR that will receive a pointer to
the packet.

Example

VAR
Pack : QUEUE_PTR;
Access : SEMAPHORE_DESC;

[PRIORITY(iO), STACK_SIZE(iOO), NAME ('Pi
BEGIN

')] PROCESS Pi;

(* Conditionally allocate a packet. If the allocation fails then
wait for someone to return one. *)

IF NOT COND_ALLOCATE_PACKET (PACKET_PTR := Pack)
THEN WAIT (DESC :=Access);

END; (* Process Pi *)

Queue Semaphore Management Requests 14-9

Semantics

The COND_ALLOCATE_PACKET function tests the free-packet pool for a free packet. If the
pool contains at least one packet, the function does the following:

1. Logically removes a packet from the pool.

2. Returns the address of that packet in the variable specified by the pointer parameter.

3. Returns a Boolean TRUE value.

If no packets are free, the function returns immediately to the calling process, with a Boolean
FALSE value.

This request is implemented through the ALPC$ kernel primitive.

Error Returns

None

14-10 Queue Semaphore Management Requests

14.5 COND_GET_PACKET
MACRO equivalent: WAQC$

The COND_GET_P ACKET function implements the conditional, or nonblocking, form of the
GET_P ACKET request. This function permits the calling process to r-eceive a signal from another
process that a data packet is available, without being blocked on the semaphore if it has not
been signaled yet.

This function is for use by processes with the PRIVILEGED or DRIVER attributes or processes
that reside in an unmapped-memory environment (see Sections 10.1.2 and 14.1 for more
information).

The COND_PUT_P ACKET and PUT_P ACKET requests allow a process to place a packet in
the queue of a queue semaphore.

Syntax

COND_GET_P ACKET (P ACKET_PTR := pointer

pointer

{
DESC := queue-sem-descriptor }
NAME := queue-sem-name

[STATUS := status-record])

The identifier of a variable of predefined type QUEUE_PTR that will receive a pointer to
the packet being obtained.

queue-sem-descriptor
The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that contains
the semaphore's structure identifier. The variable must have been previously initialized by
a CREATE_QUEUE_SEMAPHORE or an INIT_STRUCTURE_DESC request.

queue-sem-name
A character-string constant or variable of predefined type NAME_STR that specifies the
6-character name of an existing semaphore (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Example

VAR
Queue_! : QUEUE_SEMAPHORE_DESC;
Pack : QUEUE_PTR;

[PRIORITY(10), STACK_SIZE(100), NAME ('CONSUM')] PROCESS Consumer;
BEGIN

Queue Semaphore Management Requests 14-11

(* Conditionally get a packet via an unnamed queue semaphore. *)
IF COND_GET_PACKET (PACKET_PTR := Pack,

DESC := Queue_1)
THEN(* Use the data. *);

(* Conditionally get a packet via a named queue semaphore. *)
IF COND_GET_PACKET (PACKET_PTR := Pack,

NAME := 'QUEUE1')
THEN (*Use the data. *);

END; (* Process Consumer *)

Semantics

The COND_GET_P ACKET function tests the specified queue semaphore for an available packet.
If at least one packet is in the semaphore's queue, the function does the following:

1. Removes the first available packet from the queue.

2. Decrements the specified queue semaphore.

3. Places a pointer to the packet in the variable specified by the pointer parameter.

4. Returns a Boolean TRUE value to the caller.

If no packets are on the semaphore's queue, the function returns to the caller, with a Boolean
FALSE value.

This request is implemented through the WAQC$ kernel primitive.

Error Returns.

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such queue semaphore
exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

Applications

The COND_GET_P ACKET request can be used to determine if a particular event has occurred
without the possibility of the process blocking. Such a request is useful in time-critical situations
when the caller cannot afford to block waiting for an event, and when strict synchronization is
not required.

14-12 Queue Semaphore Management Requests

14.6 COND_PUT_PACKET
MACRO equivalent: SGQC$

The COND_pUT_P ACKET function implements the conditional, or nonblocking, form of the
PUT_P ACKET request. This function permits the calling process to pass a data packet to another
process, but only if the other process is already waiting for the packet. (Compare with the
unconditional form, PUT_P ACKET.)

This function is for use by processes with the PRIVILEGED or DRIVER attributes or processes
that reside in an unmapped-memory environment (see Sections 10.1.2 and 14.1 for more
information).

The COND_GET_P ACKET and GET_P ACKET requests let a process obtain a packet from a
queue semaphore.

Syntax

COND_pUT_P ACKET (P ACKET_PTR := pointer

pointer

{
DESC := queue-sem-descriptor }
NAME := queue-sem-name

[STATUS := status-record])

The identifier of a variable of predefined type QUEUE_PTR that contains a pointer to the
packet being sent.

queue-sem-descrlptor
The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that contains
the semaphore structure identifier. The variable must have been previously initialized by a
CREATE_QUEUE_SEMAPHORE or an INIT_STRUCTURE_DESC request.

queue-sem-name
A character-string constant or variable of predefined type NAME_STR that specifies the
6-character name of an existing semaphore (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Example

VAR
Queue_! : QUEUE_SEMAPHORE_DESC;
Pack : QUEUE_PTR;
Failures : UNSIGNED;

[PRIORITY(10), STACK_SIZE(100), NAME ('PRODUC')] PROCESS Producer;
BEGIN

Queue Semaphore Management Requests 14-13

(* Conditionally send a packet via an unnamed queue semaphore
while keeping count of failures. *)

IF NOT COND_PUT_PACKET (PACKET_PTR := Pack,
DESC := Queue_1)

THEN Failures :=Failures + 1;

(* Conditionally send a packet via a named queue semaphore
while keeping count of failures. *)

IF NOT COND_PUT_PACKET (PACKET_PTR := Pack,
NAME := 'QUEUE1')

THEN Failures :=Failures + 1;

END; (* Process Producer *)

Semantics

The COND_puT_p ACKET function tests the specified semaphore for waiting processes. If at
least one process is waiting on the semaphore, the function does the following:

1. Unblocks the first waiting process.

2. Associates the passed packet pointer with that process as its wait-return value.

3. Calls the scheduler.

This sequence may cause the calling process to be preempted: to lose control of the CPU.
When the calling process eventually gains control, the function returns a Boolean TRUE value
to indicate a successful operation.

If no process is waiting on the semaphore, the function returns control immediately to the caller,
with a Boolean FALSE value to indicate an unsuccessful operation.

This request is implemented through the SGQC$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such queue semaphore
exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to buffer or structure is odd or

not in user address space

14-14 Queue Semaphore Management Requests

Applications

This request permits a process to send a record (packet) to any of several queue semaphores,
based on the condition that another process is waiting for the record. For example, suppose that a
process wishes to send an output request contained in a packet to any one of three output-service
processes associated with separate queue semaphores. The COND_PUT_PACKET request lets
the submitting process test each semaphore for an output process that is ready to service the
request.

Queue Semaphore Management Requests 14-15

14. 7 COND_RECEIVE
MACRO equivalent: RCVC$

The COND_RECEIVE function implements the conditional, or nonblocking, form of the
RECEIVE request. This function tests the specified queue semaphore for an available packet.
If a packet is available, COND_RECEIVE obtains the packet's pointer, copies data from or
through it to the caller's buffer space, and returns a Boolean TRUE value to the caller. If no
packet is available, the function returns control immediately to the caller, with a Boolean FALSE
value instead of blocking the process on the semaphore, as with the RECEIVE request. The
packet format expected by COND_RECEIVE is the same as that produced by the SEND and
COND_SEND requests, as described in Figure 14-2.

The message-reception features of COND_RECEIVE are identical to those provided by the
RECEIVE request, that is, the copying of messages sent either by value or by reference. The
only functional difference between the two requests is the unconditional wait performed by
RECEIVE versus the conditional wait performed by COND-RECEIVE.

Note
The message-by-reference feature must be used with caution concerning the
length of the message. Once the message-copying operation begins, no other
process can gain control until the entire message is copied, because of the
indivisible nature of kernel primitive operations. Thus, transmission of long
messages can seriously affect the servicing of interrupts by increasing interrupt
latency throughout the system.

COND_RECEIVE is intended for use by processes with general or DEV-ACCESS mapping; such
processes cannot access a packet directly in a mapped-memory environment (see Section 10.1.2).
This function allows any process, regardless of mapping type, to obtain a packet of data from
another process.

The SEND and COND_SEND requests permit a process to transmit data through a packet.

Syntax
COND_RECEIVE ([REF_DATA := reference-data-id

REF_LENGTH :=reference-data-length]
[VAL_DATA :=value-data-id

reference-data-id

VAL _LENGTH := value-data-length]
[RET_INFO :=information-record]

{
DESC := queue-sem-descriptor }
NAME:= queue-sem-name

[STATUS := status-record])

The identifier of the variable (buffer) that will contain the data being received by reference.
This parameter is significant only if the reference-data-length parameter is nonzero.

reference-data-length
A constant or the identifier of a variable of predefined type REF_DATA_LEN that specifies
the length, in bytes, of the message buffer (reference-data-id parameter) containing the data
to be sent by reference. This parameter limits the amount of data to be copied from the
sender's buffer. If the value is 0 and if a message by reference exists in the packet, the

14-16 Queue Semaphore Management Requests

message is not copied; the reference is passed to the receiver in the record specified by the
information-record parameter. The maximum value is 8128 bytes. The default value is 0.

value-data-id
The identifier of the variable (buffer) that will contain the data being sent by value. The
contents of this buffer are copied directly from the packet. This parameter is significant
only if the value-data-length parameter is nonzero.

value-data-length
A constant or the identifier of a variable of predefined type VAL_DATA_LEN that specifies
the length, in bytes, of the buffer identified by the value-data-id parameter. This parameter
limits the amount of data to be copied from the packet. The value of this parameter can be
from 0 to 34 inclusively; the default value is 0.

information-record
The identifier of a variable of predefined type INFO_BLOCK that may receive status
information about the operation.

queue-sem-descriptor
The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that contains
the semaphore's structure identifier. The variable must have been previously initialized by
a CREATE_QUEUE_SEMAPHORE or an INIT_STRUCTURE_DESC request.

queue-sem-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of an existing semaphore (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Format of Information Record

The information returned to the caller in the variable specified by the information-record
parameter is a record of predefined type INFO_BLOCK as follows:

INFO_BLOCK = PACKED RECORD
PRIORITY
VAL_XMIT_LEN
ADDRESS
REF_XMIT_LEN

END;

PRIORITY

[BYTE] PRIORITY_RANGE;
[BYTE] VAL_DATA_LEN;
PHYSICAL_ADDRESS;
[WORD] REF_DATA_LEN;

The priority value that was assigned to the packet by the send operation.

Queue Semaphore Management Requests 14-17

VALXMILLEN
The number of bytes that were sent by value. This value may be greater than the number
of bytes received, which is limited by the value-data-length parameter. A 0 indicates that
no data by value was sent.

ADDRESS
A record of predefined type PHYSICAL _ADDRESS that contains the physical address of
the sender's message-by-reference buffer, if any. The format of the record is:

PHYSICAL_ADDRESS = PACKED RECORD
ADDRESS
PAR_ VALUE

END;

ADDRESS

UNSIGNED;
UNSIGNED;

The address within the sender's address space of the message-by-reference buffer. This
return value is valid only if the REF_)(MIT_LEN value is nonzero; otherwise, the contents
of this word are unpredictable.

PAR_ VALUE
The value of the page address register (PAR) that maps the sender's message-by-reference
buffer, if any. This return value is valid only in a mapped-memory environment when the
REF_)(MIT_LEN value is nonzero; otherwise, the contents of this word are unpredictable.

REF _xMtLLEN
The number of bytes that were sent by reference. This value may be greater than the
number of bytes received, which is limited by the reference-data-length parameter. A 0
indicates that no data by reference was sent.

Restrictions

• The maximum value for the reference-data-length parameter is 8128.

• A total of 34 bytes is available in a packet for message data, a message reference, or both.
A reference occupies three words in the packet and, if included, reduces the space available
for data by value to 28 bytes.

Example

VAR
Queue_! : QUEUE_SEMAPHORE_DESC;
Buffer : PACKED ARRAY [O .. 511] OF CHAR;
Length : 0 .. 512;
Info : INFO_BLOCK;

[PRIORITY(10), STACK_SIZE(100), NAME ('CONSUM')] PROCESS Consumer;
BEGIN

(* Conditionally receive data by reference. *)
IF COND_RECEIVE (REF_DATA := Buffer,

REF_LENGTH := Length,
RET_INFO := Info,
DESC := Queue_!)

THEN (*Use the data. *);

14-18 Queue Semaphore Management Requests

(* Conditionally receive data by value. *)
IF COND_RECEIVE (VAL_DATA := Buffer,

VAL_LENGTH := Length,
RET_INFO := Info,
DESC := Queue_!)

THEN (* Use the data. *)

END; (* Process Consumer *)

Semantics

The COND-RECEIVE function tests the specified queue semaphore for an available packet. If a
packet is available, the function removes the packet from the semaphore's queue and performs
the following actions as governed by the parameter specified in the call:

1. Copies data sent by value, if any, from the packet in system space to the caller's value-data
id buffer area. The number of bytes copied is the lesser of the value-data-length parameter
value and the number of bytes sent by value.

2. Copies data sent by reference, if any, from the sender's message buffer to the caller's
reference-data-id buffer area. The number of bytes copied is the lesser of the reference
data-length parameter value and the REF_)(MIT_LENGTH field returned in the variable
specified by the information-record parameter.

3. Copies the priority of the packet and the number of bytes sent by value from the packet
header to the PRIORITY and VAL_)(MIT_LEN fields of the receiver's information-record
area.

4. Copies the message reference, if any, contained in the packet to the corresponding three
words of the receiver's information-record area.

5. Zeros the REF_XMIT_LEN field of the receiver's information-record area if the packet
contains no message reference.

6. Deallocates the packet, returning it to the system's free-element pool for reuse.

7. Returns control to the caller, with a Boolean TRUE value.

If no packet is queued on the specified semaphore at the time of the call, the function returns
immediately to the caller, with a Boolean FALSE value to indicate that the conditional receive
operation was unsuccessful.

The packet format expected by the COND_RECEIVE request is described in Figure 14-2.

This request is implemented through the RCVC$ kernel primitive.

Queue Semaphore Management Requests 14-19

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such queue semaphore
exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to buffer or rtnptr is not a

word-address (even) value

14-20 Queue Semaphore Management Requests

14.8 COND_RECEIVE_ACK
MACRO equivalent: RCVC$

The COND_RECEIVE_ACK function implements the conditional, or nonblocking, form of the
RECEIVE_ACK request. This function tests the specified queue semaphore for an available
packet. If a packet is available, the function performs the following operations:

• Copies any referenced data from the sender's buffer to the receiver's buffer

• Signals the reply semaphore automatically or passes the structure identifier of a reply
semaphore to the receiver for manual signaling if the sender specified a reply semaphore

• Returns a Boolean TRUE value

If no packet is available, the function returns control immediately to the caller, with a Boolean
FALSE value.

The packet format expected by COND_RECEIVE_ACK is the same as that produced by the
SEND_ACK and COND_SEND_ACK requests as discussed in Figure 14-3.

Note
The message-by-reference feature must be used with caution concerning the
length of the message. Once the message-copying operation begins, no other
process can gain control until the entire message is copied, because of the
indivisible nature of kernel primitive operations. Thus, transmission of long
messages can seriously affect the servicing of interrupts by increasing interrupt
latency throughout the system.

COND_RECEIVE_ACK is intended for use by processes with general or DEV_ACCESS
mapping; such processes cannot access a packet directly in a mapped-memory environment
(see Section 10.1.2). This function permits a process, regardless of mapping type, to obtain data
by reference and a reply semaphore from another process through a packet.

The SEND_ACK and COND_SEND_ACK requests permit a process to transmit data by
reference and a reply semaphore through a packet.

Syntax

COND__RECEIVE_ACK ([REF_DATA := reference-data-id
REF_LENGTH :=reference-data-length]
[REPL Y_DESC := reply-sem-descriptor]
REC_LENGTH := ref-xmit-length

reference-data-id

{
DESC := queue-sem-descriptor }
NAME:= queue-sem-name

[STATUS := status-record])

The identifier of the variable (buffer) that may contain the data being received by reference.
This parameter is significant only if the reference-data-length parameter is nonzero.

reference-data-length
A constant or the identifier of a variable of predefined type REF_DATA_LEN that specifies
the length, in bytes, of the message buffer (reference-data-id parameter) containing the data
to be sent by reference. This parameter limits the amount of data to be copied from the

Queue Semaphore Management Requests 14--21

sender's buffer. If the value is 0 and if a message by reference exists in the packet, the
message is not copied. The maximum value is 8128 bytes.

reply-sem-descriptor
The identifier of a variable of predefined type SEMAPHORE_DESC that will receive the
structure identifier of the binary or counting reply semaphore provided by the sender. If
you do not specify this parameter, the procedure automatically signals the reply semaphore
when the receive operation is complete. Otherwise, the reply semaphore may be signaled
manually at the receiver's discretion.

ref-xmit-length
The identifier of a variable of predefined type REF_DATA_LEN that will receive a value
that is the number of bytes of data sent by reference. This value may be greater than the
number of bytes received, which is limited by the reference-data-length parameter. Zero
indicates that no data by reference was sent.

queue-sem-descriptor
The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that contains
the semaphore's structure identifier. The variable must have been previously initialized by
a CREATE_QUEUE_SEMAPHORE or an INIT_STRUCTURE_DESC request.

queue-sem-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of an existing semaphore (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Example

VAR
Queue_1 : QUEUE_SEMAPHORE_DESC;
Buffer : PACKED ARRAY [0 .. 511] OF CHAR;
Length : 0 .. 512;
Received : REF_DATA_LEN;
Reply : SEMAPHORE_DESC;

[PRIORITY(10), STACK_SIZE(100), NAME ('CONSUM')] PROCESS Consumer;
BEGIN

(* Conditionally receive data with acknowledgment. *)
IF COND_RECEIVE_ACK (REF_DATA := Buffer,

REF_LENGTH := Length,
REPLY_DESC :=Reply.
REC_LENGTH := Received,
DESC := Queue_1)

THEN SIGNAL (DESC :=Reply);

END; (* Process Consumer *)

14-22 Queue Semaphore Management Requests

Restriction

The maximum value for the reference-data-length parameter is 8128.

Semantics

The COND_RECEIVE_ACK function decrements the specified queue semaphore and tests for
an available packet. If at least one packet is on the semaphore's queue, the function removes
the first available packet from the queue and performs the following operations:

1. Copies data sent by reference, if any, from the sender's message buffer to the caller's
reference-data-id buffer area. The number of bytes copied is the lesser of the reference
data-length parameter value and the ref-xmit-length parameter.

2. Returns a 0 in the variable specified by the ref-xmit-length parameter if the message reference
in the packet contained no data.

3. Signals the reply semaphore automatically if the receiver did not specify the reply-sem
descriptor parameter and the sender passed a reply semaphore structure identifier in
the packet, or returns the reply semaphore structure identifier if the reply-sem-descriptor
parameter was specified and the sender passed a reply semaphore structure identifier in the
packet.

4. Deallocates the packet, returning it to the system's free-element pool for reuse.

5. Returns control to the caller, with a Boolean TRUE value.

If no packets are on the semaphore's queue, the function returns immediately to the caller, with
a Boolean FALSE value to indicate that the conditional operation was unsuccessful.

The packet format expected by the COND_RECEIVE_ACK request is described in Figure 14-3.

This request is implemented through the RCVC$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; reply semaphore or queue
semaphore does not exist

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

ES$RDE (type: SYSTEM_SERVICE)-Reply descriptor expected

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to buffer or rtnptr is not a

word-address (even) value

Queue Semaphore Management Requests 14-23

14. 9 COND_SEND
MACRO equivalent: SNDC$

The COND_SEND function implements a conditional form of the SEND request. If the function
finds a process waiting (blocked) on the specified queue semaphore, this function performs the
following operations:

• Allocates a packet in system space

• Copies user data into the packet

• Signals the queue semaphore in the same way as the PUT_P ACKET request

• Returns a Boolean TRUE value to the caller

If no process is waiting on the semaphore, the function returns control immediately to the caller
with a Boolean FALSE value.

A packet constructed by COND_SEND has the same format as one constructed by the SEND
request.

The message-transmission characteristics and packet structure used by COND_SEND are
identical to those provided by SEND, that is, the sending of messages by value or by reference.
The only functional difference between the two requests is the unconditional signal performed
by SEND versus the conditional signal performed by COND_SEND.

Note
The message-by-reference feature must be used with caution concerning the
length of the message. Once the message-copying operation begins, no other
process can gain control until the entire message is copied, because of the
indivisible nature of primitive operations. Thus, transmission 'of long messages
can seriously affect the servicing of interrupts by increasing interrupt latency
throughout the system.

COND_SEND is intended for use by processes with general or DEV_ACCESS mapping; such
processes cannot access a packet directly in a mapped-memory environment (see Section 10.1.2).
This function permits a process, regardless of mapping type, to transmit data to another process
through a packet.

The RECEIVE and COND_RECEIVE requests permit a process to receive data sent through a
packet.

Syntax
COND_SEND ([REF_DATA := reference-data-id

REF_LENGTH :=reference-data-length]
[VAL_DATA :=value-data-id
VAL _LENGTH := value-data-length]
[PRIORITY := packet-priority]

{
DESC := queue-sem-descriptor }
NAME:= queue-sem-name

[STATUS := status-record])

14-24 Queue Semaphore Management Requests

reference-data-Id
The identifier of the variable (buffer) that contains the data to be sent by reference. The
address of this variable is converted to a physical address and is placed in the packet
with the reference-data-length parameter value. This parameter is significant only if the
reference-data-length parameter is nonzero.

reference-data-length
A constant or the identifier of a variable of predefined type REF_DATA_LEN that specifies
the length, in bytes, of the message buffer (reference-data-id parameter) containing the data
to be sent by reference. The maximum value is 8128 bytes.

value-data-Id
The identifier of the variable (buffer) that contains the data to be sent by value. The contents
of this buffer are copied into the packet directly. This parameter is significant only if the
value-data-length parameter is nonzero.

value-data-length
A constant or the identifier of a variable of predefined type VAL_DATA_LEN that specifies
the number of bytes to be transmitted by value. The maximum is 34 if no message is sent
by reference (that is, if reference-data-length = 0) or 28 if a message reference is specified.
The default value is 0.

packet-priority
A constant or the identifier of a variable of predefined type PRIORITY~RANGE that specifies
the priority value (0 to 255) to be assigned to the packet. This value affects the order in
which the packet is queued on a semaphore having a priority-ordered packet queue (see
the CREATE_QUEUE_SEMAPHORE request). The default priority value is 1.

queue-sem-descrlptor
The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that contains
the semaphore's structure identifier. The variable must have been previously initialized by
a CREATE_QUEUE_SEMAPHORE or an INIT_STRUCTURE_DESC request.

queue-sem-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of an existing semaphore (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive· an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

You must specify at least one set of parameters; either value or reference.

Queue Semaphore Management Requests 14-25

Restrictions

• The maximum value for the reference-data-length parameter is 8128.

• A total of 34 bytes is available in a packet for message data, a message reference, or both.
A reference occupies three words in the packet and, if included, reduces the space available
for data by value to 28 bytes.

Example
VAR

Queue_1 : QUEUE_SEMAPHORE_DESC;
Buffer : PACKED ARRAY (0 .. 511] OF CHAR;
Failures : UNSIGNED;

[PRIORITY(10), STACK_SIZE(100), NAME ('PRODUC')] PROCESS Producer;
BEGIN

(*Conditionally send data.by reference while keeping count of failures. *)
IF NOT COND_SEND (REF_DATA := Buffer,

REF_LENGTH := 512,
DESC := Queue_1)

THEN Failures :=Failures + 1;

(* Conditionally send data by value while keeping count of failures. *)
IF NOT COND_SEND (VAL_DATA := Buffer,

VAL_LENGTH := 12,
DESC := Queue_1)

THEN Failures :=Failures + 1;

END; (* Process Producer *)

Semantics

The COND_SEND function tests the specified queue semaphore for a waiting process. If a
process is waiting, the function performs the following actions prior to signaling the semaphore:

1. Obtains a packet from the system's free-element pool and writes the specified priority value
into the packet header.

2. Constructs a control byte based on the value-data-length and reference-data-length
parameters and places it in the packet header for subsequent use by the RECEIVE and
COND--RECEIVE requests.

3. Copies the data, if any, to be transmitted by value from the buffer in user space to the
packet in system space.

4. Constructs a physical address from the address (reference-data-id) of the message to be sent
by reference, if any. This physical address is placed in the packet with the message length.
A physical address consists of two words. The value of the first word is the virtual address;
the value of the second word is the content of the user-mode PAR associated with that
virtual address.

If at least one process is waiting, COND_SEND unblocks the first waiting process, associates
the packet with that process (as its wait-return value), and calls the scheduler, which may cause
the calling process to be preempted: to lose control of the CPU. On eventual return to the
caller, the function returns a Boolean TRUE value, indicating a successful operation.

14-26 Queue Semaphore Management Requests

If no process is waiting on the semaphore, th~ function returns immediately to the caller, with
a Boolean FALSE value to indicate that the send operation was not performed.

A packet constructed by COND_SEND has the same format as one constructed by SEND, as
described in Figure 14-2.

This request is implemented through the SNDC$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such queue semaphore
exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

The request may return the following errors, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to buffer or structure is odd or

not in user address space

ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; amount of data to be sent by value
(primitive's vlen parameter) exceeds packet capacity or amount of data sent by
reference (primitive's rlen parameter) exceeds 8128 bytes

Applications

The COND_SEND function permits the sending process to be selective about message
transmission. For example, assuming the existence of several equivalent service queues, a
service-request message can be sent to the queue that has an idle server process waiting for a
request.

Queue Semaphore Management Requests 14-27

14. l 0 COND_SEND_ACK
MACRO equivalent: SNDC$

The COND_SEND_ACK function implements a conditional form of the SEND_ACK request.
If the function finds a process waiting (blocked) on the specified queue semaphore, this function
performs the following operations:

• Allocates a packet in system space

• Copies a message buffer reference and a reply semaphore structure identifier into the packet

• Signals the queue semaphore in the same way as the PUT_p ACKET request

• Returns control to the caller, with a Boolean TRUE value

The reply semaphore allows the receiver process to signal an acknowledgment to the sender.

If no process is waiting on the semaphore, the function returns control immediately to the caller,
with a Boolean FALSE value.

A packet constructed by COND_SEND_ACK has the same format as one constructed by the
SEND_ACK request.

The message-transmission characteristics and packet structure used by COND_SEND_ACK
are identical to those provided by SEND_ACK (that is, the sending of a message reference
along with a reply semaphore). The only functional difference between the two requests is
the unconditional signal performed by SEND_ACK versus the conditional signal performed by
COND_SEND_ACK.

Note
The message-by-reference feature must be used with caution concerning the
length of the message. Once the message-copying operation begins, no other
process can gain control until the entire message is copied, because of the
indivisible nature of kernel primitive operations. Thus, transmission of long
messages can seriously affect the servicing of interrupts by increasing interrupt
latency throughout the system.

COND_SEND_ACK is intended for use by processes with general or DEV_ACCESS mapping,
which cannot access a packet directly in a mapped-memory environment (see Section 10.1.2).
This function permits a process, regardless of mapping type, to transmit data by reference and a
reply semaphore structure identifier to another process through a packet. The RECEIVE_ACK
and COND--RECEIVE_ACK requests allow any process to receive the reference data and reply
semaphore transmitted by COND_SEND_ACK.

The SEND_ACK request is the unconditional form of the COND_SEND_ACK request.

Syntax
COND_SEND_ACK ([REF_DATA := reference-data-id

REF-LENGTH:= reference-data-length]
REPL Y_DESC := reply-sem-descriptor
[PRIORITY := packet-priority]

{
DESC := queue-sem-descriptor }
NAME:= queue-sem-name

[STATUS := status-record])

14-28 Queue Semaphore Management Requests

reference-data-id
The identifier of the variable (buffer) that contains the data to be sent by reference. The
address of this variable is converted to a physical address and is placed in the packet
with the reference-data-length parameter value. This parameter is significant only if the
reference-data-length parameter is nonzero.

reference-data-length
A constant or the identifier of a variable of predefined type REF_DATA_LEN that specifies
the length, in bytes, of the message buffer (reference-data-id parameter) containing the data
to be sent by reference. The maximum value is 8128 bytes.

reply-sem-descriptor
The identifier of a variable of predefined type SEMAPHORE_DESC that contains the
reply semaphore's structure identifier. The variable must have been previously initialized
by a CREATE_BINARY_SEMAPHORE or a CREATE_COUNTING_SEMAPHORE, as
appropriate, or by an INIT_STRUCTURE_DESC request.

packet-priority
A constant or the identifier of a variable of predefined type PRIORITY_RANGE that specifies
the priority value (0 to 255) to be assigned to the packet. This value affects the order in
which the packet is queued on a semaphore having a priority-ordered packet queue (see
the CREATE_QUEUE_SEMAPHORE request). The default priority value is 1.

queue-sem-descriptor
The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that contains
the semaphore's structure identifier. The variable must have been previously initialized by
a CREATE_QUEUE_SEMAPHORE or an INIL-5TRUCTURE_DESC request.

queue-sem-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of an existing semaphore (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1. 2.

Examples

VAR
Queue_! : QUEUE_SEMAPHORE_DESC;
Buffer : PACKED ARRAY [0 .. 511] OF CHAR;
Reply : SEMAPHORE_DESC;

[PRIORITY(10), STACK_SIZE(100), NAME ('PRODUC')] PROCESS Producer;
BEGIN

Queue Semaphore Management Requests 14-29

(* Conditionally send data with acknowledgment. *)
IF COND_SEND_ACK (REF_DATA := Buffer.

REF_LENGTH := 512,
REPLY_DESC := Reply,
DESC := Queue_1)

THEN WAIT (DESC :=Reply);

END; (* Process Producer *)

Restriction

The maximum value for the reference-data-length parameter is 8128.

Semantics

The COND_SEND_ACK function tests the specified queue semaphore for a waiting process. If a
process is waiting, the function performs the following actions prior to signaling the semaphore:

1. Obtains a packet from the system's free-element pool and writes the specified priority value
into the packet header.

2. Constructs a control byte that consists of the reference data flag bit (r) and a 7-bit value
data-length field containing a 12; the length of the structure identifier used for the reply
semaphore.

3. Places the control byte in the packet header for subsequent use by the RECEIVE_ACK and
COND_RECEIVE_ACK requests and copies the reply semaphore structure identifier into
the packet's value data area.

4. Constructs a physical address from the address of the message to be sent by reference, if
any. This physical address is placed in the packet with the message length. A physical
address consists of two words. The value of the first word is the virtual address; the value
of the second word is the content of the user-mode page address register (PAR) associated
with that virtual address.

If at least one process is waiting, it unblocks the first waiting process, associates the packet
with that process (as its wait-return value) and calls the scheduler, which may cause the calling
process to be preempted: to lose control of the CPU. On eventual return to the caller, the
function returns a Boolean TRUE value to indicate a successful operation.

If no process is waiting on the semaphore, the function returns immediately to the caller, with
a Boolean FALSE to indicate that the send operation was not performed.

A packet. constructed by COND_SEND_ACK has the same format as one constructed by
SEND_ACK, as described in Figure 14-3.

This request is implemented through the SNDC$ kernel primitive.

14-30 Queue Semaphore Management Requests

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; reply semaphore or queue
semaphore does not exist

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

The request may return the following errors, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-lnvalid address; pointer to buffer or structure is odd or

not in user address space

ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; amount of data to be sent by value
(primitive's vlen parameter) exceeds packet capacity or amount of data sent by
reference (primitive's rlen parameter) exceeds 8128 bytes

Queue Semaphore Management Requests 14-31

14.11 CREATE_QUEUE_SEMAPHORE
MACRO equivalent: CRST$

The CREATE_QUEUE_SEMAPHORE function creates a queue semaphore structure in the
system's common-memory area managed by the kernel.

If the semaphore is successfully created, the request returns a Boolean TRUE value. If not
enough system memory is free to create the semaphore or if an exception occurs, the function
returns a Boolean FALSE value.

The function permits a process to create a queue semaphore that can be manipulated by the
various queue semaphore management requests described in this chapter.

Syntax

CREATE_QUEUE_SEMAPHORE ([PROCESS-ORDER := { ~:~ }]

PROCESS_ORDER

[P ACKELORDER := { ~~!~ }]

{
DESC := queue-sem-descriptor }
NAME:= queue-sem-name

[STATUS :=status-record])

The order in which waiting processes are queued in the semaphore's waiting process list.
FIFO specifies first-in-first-out order and is the default value; PRIO specifies ordering by
process priority.

PACKELORDER
The order in which the packets are kept in the semaphore's available-packet list. FIFO
specifies first-in-first-out order and is the default value; PRIO specifies ordering by process
priority.

queue-sem-descrlptor
The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that is to
receive the semaphore's structure identifier.

queue-sem-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of the semaphore (see Section 11.1.1.1). The name must
not be the identifier of an existing process or structure.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

If you do not specify the queue-sem-name parameter, the function creates an unnamed queue
semaphore identified by the information returned in the queue-sem-descriptor variable.

14-32 Queue Semaphore Management Requests

Example
%INCLUDE 'EXC.PAS'

VAR
Queue_!, Queue_2, Queue_3 : QUEUE_SEMAPHORE_DESC;

[INITIALIZE] PROCEDURE !nit;
(* Create the needed queue semaphores. If any create fails, then

report an exception. *)
BEGIN

(* Create an unnamed queue semaphore with FIFO process ordering
and FIFO packet ordering. *)

IF NOT CREATE_QUEUE_SEMAPHORE
(DESC := Queue_!)

THEN REPORT (EXC_TYPE := [RESOURCE], EXC_CODE := ES$NMK);

(* Create a named queue semaphore with FIFO process ordering
and FIFO packet ordering. *)

IF NOT CREATE_QUEUE_SEMAPHORE
(DESC := Queue_2,

NAME := 'QUEUE2')
THEN REPORT (EXC_TYPE := [RESOURCE], EXC_CODE := ES$NMK);

(* Create an unnamed queue semaphore with priority process
ordering and priority packet ordering. *)

IF NOT CREATE_QUEUE_SEMAPHORE
(DESC := Queue_3,
PROCESS_ORDER := PRIO.
PACKET_ORDER := PRIO)

THEN REPORT (EXC_TYPE := [RESOURCE], EXC_CODE := ES$NMK);

END; (* Procedure !nit *)

Semantics

The CREATE_QUEUE_SEMAPHORE function requests the kernel to allocate and to initialize
a queue semaphore structure in the system's common memory.

If the semaphore is successfully created, the function returns a Boolean TRUE value. The
semaphore is named as specified in the queue-sem-name parameter, and its structure identifier
is copied into the structure descriptor record specified in the queue-sem-descriptor parameter.

If not enough system memory is free to create the semaphore, the function returns a Boolean
FALSE value.

This request is implemented through the CRST$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$MDN (type: SYSTEM_SERVICE)-Must specify structure descriptor or name

ES$SNI (type: SYSTEM_SERVICE)-Structure name already in use; the specified name has
already been given to another process, semaphore, ring buffer, logical name, or
shared region

Queue Semaphore Management Requests 14-33

The request may return the following errors, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to descriptor is odd or not in

user address space

ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; an invalid structure type or argument
value was specified

ES$1PR (type: SYSTEM_SERVICE)-Illegal primitive; user code attempted to create a PCB
(type ST.PCB specified)

14-34 Queue Semaphore Management Requests

14. 12 CREATE_QUEUE_SEMAPHORE_P
MACRO equivalent: none

CREATE_QUEUE_SEMAPHORE_P creates (by a procedure) a queue semaphore structure in
the system's common-memory area managed by the kernel.

If the semaphore is successfully created, the STATUS parameter is set to ES$NOR. If not enough
system memory is free to create the semaphore or if an exception occurs, the STATUS parameter
is set to the appropriate exception code.

The procedure permits a process to create a queue semaphore that can be manipulated by the
various queue semaphore management requests described in this chapter.

Syntax

CREATE_QUEUE_SEMAPHORE_P (

PROCES5-0RDER

[PROCESS_ORDER :~ { ~~~ }]

[P ACKELORDER :~ { ~~!~ }]

{
DESC := queue-sem-descriptor
NAME:= queue-sem-name

[STATUS := status-record])

}

The order in which waiting processes are queued in the semaphore's waiting process list.
FIFO specifies first-in-first-out order and is the default value; PRIO specifies ordering by
process priority.

PACKET_ORDER
The order in which the packets are kept in the semaphore's available-packet list. FIFO
specifies first-in-first-out order and is the default value; PRIO specifies ordering by process
priority.

queue-sem-descriptor
The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that is to
receive the semaphore's structure identifier.

queue-sem-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of the semaphore (see Section 11.1.1.1). The name must
not be the identifier of an existing process or structure.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

If you do not specify the queue-sem-name parameter, the procedure creates an unnamed queue
semaphore identified by the information returned in the queue-sem-descriptor variable.

Queue Semaphore Management Requests 14-35

Example
%INCLUDE 'EXC.PAS'
%INCLUDE 'CRPROC.PAS'

VAR
QDESC1, QDESC2 : QUEUE_SEMAPHORE_DESC;
P_STATUS : EXC_STATUS;
SUCCESS : Boolean;

(* Create the queue semaphores. If any create fails, then set SUCCESS to false. *)
[INITIALIZE] PROCEDURE Init;
BEGIN

SUCCESS := True;
CREATE_QUEUE_SEMAPHORE_P (PROCESS_ORDER := FIFO, PACKET_ORDER := FIFO,

. DESC := QDESC1, NAME:= 'QUEUE1',
STATUS := P_STATUS);

IF (P_STATUS.EXC_CODE <> ES$NOR)
THEN SUCCESS := False;

CREATE_QUEUE_SEMAPHORE_P (DESC := QDESC2, STATUS := P_STATUS);
IF (P_STATUS.EXC_CODE <> ES$NOR)

END;

BEGIN (* Main *)
IF NOT SUCCESS

THEN SUCCESS := False;

THEN WRITELN('%ERROR - Semaphore creation failed')
ELSE

END.

Semantics

The CREATE_QUEUE_SEMAPHOREJ procedure requests the kernel to allocate and to
initialize a queue semaphore structure in the system's common memory.

If the semaphore is successfully created, the STATUS parameter is set to ES$NOR. The
semaphore is named as specified in the queue-sem-name parameter, and its structure identifier
is copied into the structure descriptor record specified in the queue-sem-descriptor parameter.

If not enough system memory is free to create the semaphore, the STATUS parameter is set to
the appropriate exception code.

This request is implemented through the CRST$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$MDN (type: SYSTEM_SERVICE)-Must specify structure descriptor or name

ES$SNI (type: SYSTEM_SERVICE)-Structure name already in use; the specified name has
already been given to another process, semaphore, ring buffer, logical name, or
shared region

14-36 Queue Semaphore Management Requests

The request may return the following errors, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to descriptor is odd or not in

user address space

ES$1PM (type: SYSTEM_SERVICE)-Illegal parameter; an invalid structure type or argument
value was specified

ES$IPR (type: SYSTEM_SERVICE)-Illegal primitive; user code attempted to create a PCB
(type ST.PCB specified)

Queue Semaphore Management Requests 14-37

14.13 DEALLOCATE_PACKET
MACRO equival~nt: DAPK$

The DEALLOCATE_PACKET procedure returns a message packet to the kernel's free-packet
pool. This procedure permits the caller to release a packet acquired by means of a GET_p ACKET,
GET_p ACKET-ANY, or a COND_GET_p ACKET request when the packet is no longer needed.
This procedure is for use by processes with the PRIVILEGED or DRIVER attributes or processes
that reside in an unmapped-memqry environment (see Sections 10.1.2 and 14.1 for more
information).

The ALLOCATEJ ACKET and COND-ALLOCATE_PACKET procedures permit a process
to allocate (that is, obtain a pointer to) a free packet for use with PUT_PACKET and
COND_puT_p ACKET requests.

Syntax

DEALLOCATE_P ACKET (P ACKET_PTR := pointer)

pointer
The identifier of a variable of predefined type QUEUE_pTR that contains a pointer to the
packet being deallocated. The pointer must be to a word address in the kernel's data space.

Example

VAR
Pack : QUEUE_PTR;
Access : SEMAPHORE_DESC;

[PRIORITY(10), STACK_SIZE(100), NAME ('P1
BEGIN

')] PROCESS P1;

(* Deallocate a packet. Also indicate we are returning one. *)
DEALLOCATE_PACKET (PACKET_PTR :=Pack);
SIGNAL (DESC :=Access);

END; (* Process P1 *)

Semantics

The DEALLOCATE_p ACKET procedure performs the following operations:

1. If address checking is enabled in the SYSTEM macro of the kernel configuration file, the
pointer parameter value is checked to ensure that it lies within the kernel's packet space.
If the address is invalid, it raises an exception and returns to the calling process. If the
address is valid or address checking is not enabled, the operation proceeds.

2. Returns the assumed packet to the kernel's free-packet pool.

3. If no other process is waiting for packet allocation, the procedure returns control to the
calling process.

4. If at least one process is waiting for packet allocation, the newly freed packet is allocated to
the highest-priority waiting process, that process is unblocked, and the scheduler is called,
which may cause the calling process to be preempted, depending on the priority of the
unblocked process. See the ALLOCATE_pACKET procedure.

14-38 Queue Semaphore Management Requests

This request is implemented through the DAPK$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; the pointer value is not a word address

within the range of valid packet addresses

Queue Semaphore Management Requests 14-39

14. 14 DESTROY
MACRO equivalent: DLST$

The DESTROY procedure deletes a specified structure (in this case, a queue semaphore) from
the system and deallocates the memory space associated with the semaphore. The operation is
performed only if no processes are blocked on the queue semaphore at the time of the call.

Syntax

DESTROY ({ DESC := descriptor }
NAME:= name

[STATUS :=status-record])

descriptor
The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that contains
the queue semaphore's structure identifier. The variable must have been previously
initialized by a CREATE_QUEUE_SEMAPHORE or an INIT_STRUCTURE_DESC request.

name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of an existing semaphore.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, .m
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Example

VAR
Queue_1 QUEUE_SEMAPHORE_DESC;

[TERMINATE] PROCEDURE Term;
BEGIN

(* Destroy an unnamed queue semaphore. *)
DESTROY (DESC := Queue_1);

(* Destroy a named queue semaphore. *)
DESTROY (NAME := 'QUEUE1 ');

END; (* Procedure Term *)

Semantics

If the queue semaphore is not in use, DESTROY removes its name, if one exists, from the
system name table, returns the space the semaphore occupies to the free-memory pool, and
returns control to the caller.

This request is implemented through the DLST$ kernel primitive.

14-40 Queue Semaphore Management Requests

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such queue semaphore
exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

ES$SIU (type: SYSTEM_SERVICE)-Structure is in use and cannot be deleted

Queue Semaphore Management Requests 14-41

14.15 GET_PACKET
MACRO equivalent: WAIQ$

The GET_p ACKET procedure waits on a specified queue semaphore for a packet. When a
packet becomes available, GET_P ACKET removes the packet from the semaphore's queue and
returns its pointer to the caller. If no packet is available, the calling process is blocked on the
semaphore, awaiting a subsequent PUT_P ACKET operation. GET_P ACKET permits the calling
process to receive a signal from another process that a data packet on which the process is
dependent is available, regardless of the order in which the PUT_P ACKET and GET_p ACKET
requests occur. (Compare with the conditional wait-on-queue request, COND_GET_PACKET.)

This procedure is for use by processes with the PRIVILEGED or DRIVER attributes or by
processes that reside in an unmapped-memory environment (see Sections 10.1.2 and 14.1 for
more information).

The PUT_P ACKET and COND_PUT_P ACKET requests send a packet to a queue semaphore.

Syntax

GET_P ACKET (P ACKET_PTR := pointer

pointer

{
DESC := queue-sem-descriptor }
NAME := queue-sem-name

[STATUS :=status-record])

The identifier of a variable of predefined type QUEUE_PTR that will receive a pointer to
the packet being obtained.

queue-sem-descriptor
The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that contains
the semaphore's structure identifier. The variable must have been previously initialized by
a CREATE_QUEUE_SEMAPHORE or an INIT_STRUCTURE_DESC request.

queue-sem-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of an existing semaphore (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

14-42 Queue Semaphore Management Requests

Example

VAR
Queue_1 : QUEUE_SEMAPHORE_DESC;
Pack : QUEUE_PTR;

[PRIORITY(10), STACK_SIZE(100), NAME ('CONSUM')] PROCESS Consumer;
BEGIN

(* Get a packet via an unnamed queue semaphore. *)
GET_PACKET (PACKET_PTR := Pack,

DESC := Queue_1);

(* Get a packet via a named queue semaphore. *)
GET_PACKET (PACKET_PTR := Pack,

NAME:= 'QUEUE1');

END; (* Process Consumer *)

Semantics

The GET_p ACKET procedure tests for an available packet. If at least one packet is on the
semaphore's queue, the procedure does the following:

1. Decrements the specified queue semaphore.

2. Removes the first available packet from the queue.

3. Returns the pointer to that packet in the variable specified by the pointer parameter.

If no packets are on the semaphore's queue, the request blocks the calling process and calls
the scheduler. The calling process remains blocked until it can be reactivated by a subsequent
signal of the semaphore, which places a packet on the queue.

This request is implemented through the WAIQ$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such queue semaphore
exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

Applications

See the description of the PUT_p ACKET request.

Queue Semaphore Management Requests 14-43

14.16 GET_PACKET-ANY
MACRO equivalent: WAQA$

The GET_P ACKET-ANY function implements a complex form of the GET_P ACKET request.
See the GETJ ACKET and PUT_P ACKET requests for a description of the basic wait and signal
operations on queue semaphores. GETJACKET-ANY performs the basic wait, or "get packet,"
operation on the logical OR of several queue semaphores, with an optional timeout feature.
That is, GETJ ACKET-ANY permits the calling process to test for and, if necessary, wait on
an available packet on any one of a set of queue semaphores. Up to four queue semaphores
can be specified in the request.

The function returns ordinal values from 0 to 5 to indicate the results of the operation (see
Semantics).

If no packet is available on any of the specified queue semaphores, the calling process blocks
until any one of those semaphores is signaled and can provide a packet pointer for the
calling process. (The caller could be blocked behind other waiting processes on a given queue
semaphore, of course, although a multiple-waiter policy is unlikely, particularly in the case of
GET_P ACKET-ANY usage.)

Optionally, a GET_P ACKET-ANY operation can be terminated due to the expiration of a time
interval specified in the request.

Thus, GETJ ACKET-ANY allows a process to get a packet pointer from any of up to four
queue semaphores, each signaled by a different process, perhaps. The function might also be
used primarily for its timeout capability.

If a zero time period (immediate timeout) is specified in the request, GETJ ACKET-ANY
provides a complex form of the COND_GETJ ACKET operation, which tests for an available
packet but will not block the caller. See COND_GET_P ACKET for a description of the simple
conditional-get-packet operation.

This function is for use by processes with the PRIVILEGED or DRIVER attributes or processes
in an unmapped-memory environment (see Sections 10.1.2 and 14.1 for more information).

Syntax
GETJ ACKET-ANY ([SDB4 := queue-sem-descriptor-4]

[SDB3 := queue-sem-descriptor-3 D
[SDB2 := queue-sem-descriptor-2 D
SDBl := queue-sem-descriptor-1
P ACKETJTR := pointer
[TIMEOUT := timeout-interval D
[STATUS := status-record D)

queue-sem-descriptor-4
queue-sem-descrlptor-3
queue-sem-descrlptor-2
queue-sem-descrlptor-1

The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that contains
a semaphore's structure identifier. You can specify up to four queue semaphores. The order
in which you specify multiple queue semaphores determines the order in which they are

14-44 Queue Semaphore Management Requests

initially tested for a signal. (That order can be critical under certain real-time conditions, as
discussed under Semantics and Implementation Notes.)

Each descriptor must have been previously initialized by an INIT_STRUCTURE_DESC or
a CREATE_QUEUE_SEMAPHORE request.

pointer
The identifier of a variable of predefined type QUEUE_PTR that will receive a pointer to
the packet being obtained.

timeout-Interval
The identifier of a variable of predefined type LONG-1NTEGER that specifies the maximum
time, in milliseconds, that the caller wishes to be blocked waiting for a signal. The value
must be a positive integer from 0 to (2••31) -1. A value of 0 causes the request to time out
immediately if no packet is available from any of the semaphores when GET_p ACKET__ANY
is called. That is, the calling process will never block if the specified time interval is 0. If
you do not specify this parameter, the function assumes no timeout for the operation; the
calling process may block indefinitely.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Restrictions

• The timeout-interval value is limited to a 31-bit positive integer; that is, the sign bit of the
high-order word must not be set. (The maximum valid value, in milliseconds, permits a
timeout period of just over 24.89 days; see the SLEEP procedure for more detail.)

• If you wish to use fewer than four queue semaphore descriptor parameters, you must
assign them beginning with keyword SDBl. You may not assign keyword parameters with
higher-numbered suffixes unless all keywords with lower-numbered suffixes are assigned.
For example, if the parameter sequence specifies keyword SDB3, the sequence must also
include keywords SDB2 and SDBl.

Example

%INCLUDE 'COMPLX.PAS'

VAR
Queue_1, Queue_2, Queue_3 : QUEUE_SEMAPHORE_DESC;
Pack : QUEUE_PTR;
Which_one : COMPLEX_FUNC_VALUE;
Timeout_val : LONG_INTEGER;

[PRIORITY(10), STACK_SIZE(100), NAME ('CONSUM')] PROCESS Consumer;
BEGIN

Queue Semaphore Management Requests 14-45

(* Get a packet from one of three queue semaphores. *)
Which_one := GET_PACKET_ANY

(PACKET_PTR := Pack,
SDB1 := Queue_1,
SDB2 := Queue_2,
SDB3 := Queue_3);

(* Get a packet from one of two queue semaphores with a timeout. *)
Timeout_val := 1000;
Which_one := GET_PACKET_ANY

(PACKET_PTR := Pack,
SDB1 := Queue_1,
SDB2 := Queue_2,
TIMEOUT:= Timeout_val);

END; (* Process Consumer *)

Semantics

The GET_P ACKET-ANY function tests each of the queue semaphores specified in the request
for an available queue element or message packet. The queue semaphores are tested in the
keyword order: SDBl to SDB4.

The function returns the following values:

Value Meaning

0 Request timed out

1 Request satisfied by SDBl

2 Request satisfied by SDB2

3 Request satisfied by SDB3

4 Request satisfied by SDB4

5 Error con di ti on

If any of the semaphores has a packet at the time of the call, the function dequeues a packet
pointer from the first such semaphore encountered and returns the pointer immediately to the
caller along with a function return value between 1 and 4 that indicates which queue semaphore
specified in the call satisfied the request.

If none of the semaphores has a packet and either no timeout-interval or a nonzero timeout
interval was supplied in the call, the function switches the calling process to the wait-active
state. In that state, the process is blocked on all the semaphores specified in the request.

If none of the semaphores has a packet and a zero timeout-interval was supplied in the call, the
function returns immediately to the caller with a zero value, indicating a return due to timeout.
Thus, in the case of an immediate timeout, the calling process never leaves the run state.

If the calling process switches to the wait-active state, the process is blocked from execution until
it can be reactivated either by a packet becoming available on one of the blocking semaphores
(see PUT_pACKET semantics) or by elapse of the specified timeout period, if any. When
reactivated for either reason, the process is unblocked from all the semaphores and is switched
to either the ready-active or run state, depending on relative process priorities. If unblocked

14-46 Queue Semaphore Management Requests

because of an available packet, the function returns the ordinal value (from 1 to 4) of the
semaphore that triggered the return, as described above. If unblocked because of a timeout, the
function returns a 0.

If an error occurs, the function returns a 5.

This request is implemented through the WAQA$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$IST (type: SYSTEM_SERVICE)-lnvalid structure descriptor; no such queue semaphore

exists

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; timeout value out of range

Implementation Notes

Since the initial test of the semaphores for an available packet is performed in determinate
·order, the order in which multiple semaphores are identified in the call can be critical under
certain real-time conditions. For example, assume that the relative frequency of signals or sends
is high for one of several queue semaphores and that the "fast" queue semaphore is identified
as the first to be tested for signals by being associated with keyword SDBl.

In a series of calls to GET_PACKELANY, that semaphore will be serviced far more often than
the others, and the "slower" semaphores may seldom or never be tested and serviced. Optimally,
then, the semaphore with the highest expected signal rate should be assigned to the keyword
that is tested last; the next highest as next to last, and so on, assuming that probable relative
frequencies can be determined. Alternatively, the order in which the semaphores are identified
could be rotated in successive calls so at least N semaphores are guaranteed to be tested in N
calls to GET_P ACKET_ANY. The correct or best-case strategy depends on application-specific
factors, of course.

Queue Semaphore Management Requests 14-47

14.17 GET_VALUE
MACRO equivalent: GVAL$

The GET_ VALUE procedure obtains the value and type code of a specified structure. The code
identifies a structure as a binary, counting, or queue semaphore or as a ring buffer. The meaning
of the structure's value depends on the structure type. For example, the value of a counting
semaphore is the current signal count, whereas the value of a ring buffer is the current element
count.

Note
The value of a structure may change immediately after it is inspected. Therefore,
the information this request provides must be used cautiously, to prevent the
introduction of race conditions.

Syntax
GET_ VALUE (VALUE:= count

count

TYP := structure-type

{
DESC := descriptor }
NAME:= name

[STATUS := status-record])

The identifier of a variable of type INTEGER that receives the structure's value.

structure-type
The identifier of a variable of type INTEGER that receives the structure's type code.

descriptor
The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that contains
the semaphore's structure identifier. The variable must have been previously initialized by
an appropriate CREATE-type request or an INIT_STRUCTURE_DESC request.

name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of an existing semaphore.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

14-48 Queue Semaphore Management Requests

Structure Type Identification Codes

The type codes and meaning of the values that the procedure can return are:

Structure

Binary semaphore

Counting semaphore

Queue semaphore

Ring buffer

PCB

SRD

Unformatted

Example

VAR

Type Code

0

1

2

3

4

5

7

Sem_val, Sem_typ : INTEGER;
Queue_1 : QUEUE_SEMAPHORE_DESC;

[PRIORITY(iO), STACK_SIZE(iOO)] PROCESS Pi;
BEGIN

Meaning of Value Parameter

The value of the gate variable (0 or 1)

The count of pending signals (0 or positive)

The count of pending signals (0 or positive)

The count of data elements in the ring buffer

No meaning

No meaning

No meaning

(* Get the value of an unnamed queue semaphore. *)
GET_VALUE (VALUE:= Sem_val, TYP := Sem_typ. DESC := Queue_i);

(* Get the value of a named queue semaphore. *)
GET_VALUE (VALUE := Sem_val, TYP := Sem_typ, NAME

END; (* Process Pi *)

Semantics

'QUEUEi ');

The GET_ VALUE procedure obtains the type code and value of the specified structure, stores
that information in the variables specified in the call, and returns control to the caller.

This request is implemented through the GVAL$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IPR (type: SYSTEM_SERVICE)-Illegal primitive; the descriptor or name parameter is a
logical name that does not translate to the name of a structure

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; specified structure does not
exist

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

Queue Semaphore Management Requests 14-49

14. 18 INIT_STRUCTURE_DESC
MACRO equivalent: GVAL$

The INIT_STRUCTURE_DESC procedure copies identifying information about a specified queue
semaphore into a structure descriptor record. This record provides the kernel with a rapid-access
path to a semaphore referred to in the other queue semaphore management requests described
in this chapter.

You may also set up a structure descriptor record when you create a queue semaphore, using
the CREATE_QUEUE_SEMAPHORE request.

Syntax

INIT_-5TRUCTURE_DESC (DESC :=descriptor
NAME:= name
[STATUS := status-record D)

descriptor
The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that is to
receive the semaphore's structure identifier.

name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of an existing semaphore.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Example

VAR
Queue_! : QUEUE_SEMAPHORE_DESC;

[PRIORITY(10), STACK_SIZE(100), NAME ('P1
BEGIN

')] PROCESS P1;

(* Get the id of the queue semaphore named 'QUEUE! ' *)
INIT_STRUCTURE_DESC (DESC :=Queue_!, NAME 'QUEUE! ');

END; (* Process P1 *)

Semantics

The INIT_STRUCTURE_DESC procedure requests the kernel to copy the structure identifier,
consisting of the index and serial number associated with the structure named in the name
parameter, into the structure descriptor record specified in the descriptor parameter.

This request is implemented through the GVAL$ kernel primitive.

14-50 Queue Semaphore Management Requests

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; ~o such queue semaphore

exists

Queue Semaphore Management Requests 14-51

14.19 PUT_PACKET
MACRO equivalent: SGLQ$

The PUT_p ACKET procedure places a packet on the queue of a specified queue semaphore
and signals that semaphore. If any processes are waiting on that semaphore, the first one is
unblocked, and a pointer to the packet is eventually passed to that process. (The packet is
dequeued in this case.) If no process is waiting, the packet remains on the queue, and the signal
remains in effect.

PUT_P ACKET permits the calling process to signal another process that a data packet the
process needs or will need is available, whether or not that process is waiting for the signal.
(Compare with the conditional form of the request, COND_PUT_P ACKET.)

This procedure is for use by processes with the PRIVILEGED or DRIVER attributes or by
processes that reside in an unmapped-memory environment (see Sections 10.1.2 and 14.1 for
more information).

The GET_P ACKET and COND_GET_p ACKET requests allow a process to obtain a packet from
a queue semaphore.

Syntax
PUT_P ACKET (P ACKET_pTR := pointer

pointer

{
DESC := queue-sem-descriptor }
NAME := queue-sem-name

[STATUS := status-record])

The identifier of a variable of predefined type QUEUE_PTR that contains a pointer to the
packet being sent.

queue-sem-descrlptor
The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that contains
the semaphore structure identifier. The variable must have been previously initialized by a
CREATE_QUEUE_SEMAPHORE or an INIT_STRUCTURE_DESC request.

queue-sem-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of an existing semaphore (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

14-52 Queue Semaphore Management Requests

Example

VAR
Queue_! : QUEUE_SEMAPHORE_DESC;
Pack : QUEUE_PTR;

[PRIORITY(10), STACK_SIZE(100), NAME ('PRODUC')] PROCESS Producer;
BEGIN

(* Send a packet via an unnamed queue semaphore. *)
PUT_PACKET (PACKET_PTR := Pack,

DESC :=Queue_!);

(* Send a packet via a named queue semaphore. *)
PUT_PACKET (PACKET_PTR := Pack,

NAME:= 'QUEUE! ');

END; (* Process Producer *)

Semantics

The PUT_P ACKET request tests the specified queue semaphore for waiting processes. If no
process is waiting, the request signals the semaphore, links the passed packet into the queue,
and returns to the caller.

If at least one process is waiting, the request unblocks the first waiting process, associates the
packet with that process, and calls the scheduler, which may cause the calling process to be
preempted: to lose control of the CPU.

This request is implemented through the SGLQ$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such queue semaphore
exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

Applications

Queue semaphores may be used to implement general queueing functions. The PUT_p ACKET
request places a packet on a queue, where the packet remains until another process removes
the packet with either a GET_P ACKET or a receive operation. This basic mechanism can be
used to implement a simple message facility or a generalized queued 1/0 facility.

Queue Semaphore Management Requests 14-53

14.20 RECEIVE
MACRO equivalent: RCVD$

The RECEIVE procedure waits on a specified queue semaphore until a packet becomes available,
then copies the data in the packet into the caller's buffer space. After the data is copied, the
packet is returned to the system's free-element pool for reuse. The packet format expected by
RECEIVE is the same as that produced by the SEND and COND_SEND requests, as described
in Figure 14-2.

A message sent by value (up to 34 bytes in length) is copied by the RECEIVE request from the
packet to the receiver's buffer. In the case of a message sent by reference (possibly longer than
34 bytes), the message is ordinarily copied from the sender's message buffer, which is described
in the packet, to a buffer specified by the receiver. If no message-by-reference buffer is specified
in the receive request, the message is not copied, but the request returns the message reference
to the caller.

Note
The message-by-reference feature must be used with caution concerning the
length of the message. Once the message-copying operation begins, no other
process can gain control until the entire message is copied, because of the
indivisible nature of kernel primitive operations. Thus, transmission of long
messages can seriously affect the servicing of interrupts by increasing interrupt
latency throughout the system.

RECEIVE is intended for use by processes with general or DEV-ACCESS mapping, which
cannot access a packet directly in a mapped-memory environment (see Section 10.1.2). This
function permits a process, regardless of mapping type, to obtain data from another process
through a packet.

The COND_RECEIVE request is the conditional, or nonblocking, form of the RECEIVE request.

The SEND and COND_SEND requests permit any type of process to transmit data through a
packet.

Syntax
RECEIVE ([REF_DATA := reference-data-id

REF_LENGTH := reference-data-length]
[VAL _DATA := value-data-id
VAL _LENGTH := value-data-length]
[REL.INFO := information-record]

{
DESC := queue-sem-descriptor }
NAME:= queue-sem-name

[STATUS := status-record])

reference-data-id
The identifier of the variable (buffer) that will contain the data being received by reference.
This parameter is significant only if the reference-data-length parameter is nonzero.

14-54 Queue Semaphore Management Requests

reference-data-length
A constant or the identifier of a variable of type REF_DATA_LEN that specifies the length,
in bytes, of the message buffer (reference-data-id parameter) containing the data to be
received by reference. This parameter limits the amount of data to be copied from the
sender's buffer. If the value is 0 and if a message by reference exists in the packet, the
message is not copied; the reference is passed to the receiver in the record specified by the
information-record parameter. The maximum value is 8128 bytes.

value-data-id
The identifier of the variable (buffer) that will contain the data being received by value.
The contents of this buffer are copied directly from the packet. This parameter is significant
only if the value-data-length parameter is nonzero.

value-data-length
. A constant or the identifier of a variable of type VAL_DATA_LEN that specifies the length,
in bytes, of the buffer identified by the value-data-id parameter. This parameter limits the
amount of data to be copied from the packet. The value of this parameter can be from 0 to
34. (See Restrictions.) The default is 0.

Information-record
The identifier of a variable of predefined type INFO_BLOCK that may receive status
information about the receive operation.

queue-sem-descriptor
The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that contains
the semaphore's structure identifier. The variable must have been previously initialized by
a CREATE_QUEUE_SEMAPHORE or an INIT_STRUCTURE_DESC request.

queue-sem-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of an existing semaphore (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Format of Information Record

The information returned to the caller in the variable specified by the information-record
parameter is a record of predefined type INFO_BLOCK as follows:

INFO_BLOCK = PACKED RECORD
PRIORITY
VAL_XMIT_LEN
ADDRESS
REF_XMIT_LEN

END;

[BYTE] PRIORITY_RANGE;
[BYTE] VAL_DATA_LEN;
PHYSICAL_ADDRESS
[WORD] REF_DATA_LEN;

Queue Semaphore Management Requests 14-55

PRIORITY
The priority value that was assigned to the packet by the send operation.

VALXMILLEN
The number of bytes that were sent by value. This value may be greater than the number
of bytes received, which is limited by the value-data_;length parameter. A 0 indicates that
no data by value was sent.

ADDRESS
A record of predefined type PHYSICAL _.ADDRESS that contains the physical address of
the sender's message-by-reference buffer, if any. The format of the record is:

PHYSICAL_ADDRESS = PACKED RECORD
ADDRESS
PAR_ VALUE

END;

ADDRESS

UNSIGNED;
UNSIGNED;

The address within the sender's address space of the message-by-reference buffer. This
return value is valid only if the REF__)(MJT_LEN value is nonzero; otherwise, the contents
of this word are unpredictable.

PAILVALUE
The value of the page address register (PAR) that maps the sender's message-by-reference
buffer, if any. This return value is valid only in a mapped-memory environment when the
REF__)(MJT_LEN value is nonzero; otherwise, the contents of this word are unpredictable.

REF-XMILLEN
The number of bytes that were sent by reference. This value may be greater than the
number of bytes received, which is limited by the reference-data-length parameter. Zero
indicates that no data by reference was sent.

Restrictions

• The maximum value for the reference-data-length parameter is 8128.

• A total of 34 bytes is available in a packet for message data, a message reference, or both.
A reference occupies three words in the packet and, if included, reduces the space available
for data by value to 28 bytes.

Example

VAR
Queue_! : QUEUE_SEMAPHORE_DESC;
Buffer : PACKED ARRAY [O .. 511] OF CHAR;
Length : 0 .. 512 ;
Info : INFO_BLOCK;

[PRIORITY(10), STACK_SIZE(100), NAME ('CONSUM')] PROCESS Consumer;
BEGIN

14-56 Queue Semaphore Management Requests

(* Receive data by reference. *)
RECEIVE (REF_DATA :=Buffer,

REF_LENGTH := Length,
RET_INFO := Info,
DESC :=Queue_!);

(* Receive data by value. *)
RECEIVE (VAL_DATA :=Buffer,

VAL_LENGTH := Length,
RET_INFO := Info,
DESC :=Queue_!);

END; (* Process Consumer *)

Semantics

The RECEIVE procedure decrements the specified queue semaphore and tests for an available
packet. If at least one packet is on the semaphore's queue, RECEIVE removes the first available
packet from the queue and performs the following operations:

1. Copies data sent by value, if any, from the packet in system space to the caller's value-data
id buffer area. The number of bytes copied is the lesser of the value-data-length parameter
value and the number of bytes sent by value.

2. Copies data sent by reference, if any, from the sender's message buffer to the caller's
reference-data-id buffer area. The number of bytes copied is the lesser of the reference
data-length parameter value and REF_xMIT_LENGTH field returned in the variable specified
by the information-record parameter.

3. Copies the priority of the packet and the number of bytes sent by value from the packet
header to the PRIORITY and VAL_xMIT_LEN fields of the receiver's information-record
area.

4. Copies the message reference, if any, contained in the packet to the corresponding three
words of the receiver's information return area.

5. Zeros the REF_xMIT_LEN field of the receiver's information-record area if the packet
contains no message reference.

6. Deallocates the packet, returning it to the system's free-element pool for reuse.

If no packets are on the semaphore's queue, RECEIVE blocks the calling process and calls the
scheduler.

The calling process remains blocked until it can be reactivated by a subsequent signal of the
semaphore that places a packet on the queue.

The packet format expected by the RECEIVE request is described in Figure 14-2.

This request is implemented through the RCVD$ kernel primitive.

Queue Semaphore Management Requests 14-57

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such queue semaphore
exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to buffer, rtnptr is not a word

address (even) value

14-58 Queue Semaphore Management Requests

14.21 RECEIVE_ACK
MACRO equivalent: RCVD$

The RECEIVE_ACK procedure waits on a specified queue semaphore until a packet becomes
available. If a packet is available, RECEIVE_ACK performs the following operations:

• Copies any referenced data from the sender's buffer to the receiver's buffer

• Signals the reply semaphore automatically or passes the structure identifier of a reply
semaphore to the receiver for manual signaling if the sender specified a reply semaphore

If no packet is available, the calling process blocks until a packet becomes available.

The packet format expected by RECEIVE_ACK is the same as that produced by the SEND_ACK
and COND_SEND_ACK requests, as described in Figure 14-3.

Note
The message-by-reference feature must be used with caution concerning the
length of the message. Once the message-copying operation begins, no other
process can gain control until the entire message is copied, because of the
indivisible nature of kernel primitive operations. Thus, transmission of long
messages can seriously affect the servicing of interrupts by increasing interrupt
latency throughout the system.

RECEIVE_ACK is intended for use by processes with general or DEV_ACCESS mapping, which
cannot access a packet directly in a mapped-memory environment (see Section 10.1.2). This
function permits a process, regardless of mapping type, to obtain data by reference and a reply
semaphore from another process through a packet.

The SEND_ACK and COND_SEND_ACK requests permit a process to transmit data by
reference and a reply semaphore through a packet.

The COND_RECEIVE_ACK request is the conditional, or nonblocking, form of the
RECEIVE _ACK request.

Syntax
RECEIVE_ACK ([REF_DATA := reference-data-id

REF_LENGTH := reference-data-length]
[REPLY_DESC := reply-sem-descriptor]
REC_LENGTH := ref-xmit-length

reference-data-id

{
DESC := queue-sem-descriptor }
NAME:= queue-sem-name

[STATUS := status-record])

The identifier of the variable (buffer) that will contain the data being received by reference.
This parameter is significant only if the reference-data-length parameter is nonzero.

reference-data-length
A constant or the identifier of a variable of predefined type REF_DATA_LEN that specifies
the length, in bytes, of the message buffer (reference-data-id parameter) containing the data
to be received by reference. This parameter limits the amount of data to be copied from

Queue Semaphore Management Requests 14-59

the sender's buffer. If the value is 0 and if a message by reference exists in the packet, the
message is not copied. The maximum value is 8128 bytes.

reply-sem-descriptor
The identifier of a variable of predefined type SEMAPHORE_DESC that will receive the
structure identifier of the binary or counting reply semaphore provided by the sender. If
you do not specify this parameter, the procedure automatically signals the reply semaphore
when the receive operation is complete. Otherwise, the reply semaphore may be signaled
manually at the receiver's discretion.

ref-xm it-length
The identifier of a variable of predefined type REF_DATA_LEN that will receive a value
that is the number of bytes of data sent by reference. This value may be greater than the
number of bytes received, which is limited by the reference-data-length parameter. Zero
indicates that no data by reference was sent.

queue-sem-descriptor
The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that contains
the semaphore's structure identifier. The variable must have been previously initialized by
a CREATE_QUEUE_SEMAPHORE or an INIT_STRUCTURE_DESC request.

queue-sem-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of an existing semaphore (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Examples

VAR
Queue_! : QUEUE_SEMAPHORE_DESC;
Buffer : PACKED ARRAY [O .. 511] OF CHAR;
Length : 0 .. 512;
Received : REF_DATA_LEN;
Reply : SEMAPHORE_DESC;

[PRIORITY(10), STACK_SIZE(100), NAME ('CONSUM')] PROCESS Consumer;
BEGIN

(*Receive data with acknowledgment. *)
RECEIVE_ACK (REF_DATA := Buffer,

REF_LENGTH := Length,
REPLY_DESC :=Reply,
REC_LENGTH := Received,
DESC :=Queue_!);

(* Signal the reply semaphore. *)
SIGNAL (DESC :=Reply);

END; (* Process Consumer *)

14-60 Queue Semaphore Management Requests

Restrictions

The maximum value for the reference-data-length parameter is 8128.

Semantics

The RECEIVE_ACK procedure decrements the specified queue semaphore and tests for an
available packet. If at least one packet is on the semaphore's queue, RECEIVE_ACK removes
the first available packet from the queue and performs the following operations:

1. Copies data sent by reference, if any, from the sender's message buffer to the caller's
reference-data-id buffer area. The number of bytes copied is the lesser of the reference
data-length parameter value and the ref-xmit-length parameter value.

2. Returns a 0 in the variable specified by the ref-xmit-length parameter if the message reference
in the packet contained no data.

3. Signals the reply semaphore automatically if the receiver did not specify the reply-sem
descriptor parameter and if the sender passed a structure identifier in the packet. The
procedure returns the reply semaphore structure identifier if the receiver did specify the
reply-sem-descriptor parameter and if the sender passed a structure identifier in the packet.

4. Deallocates the packet, returning it to the system's free-element pool for reuse.

If no packets are on the semaphore's queue, the RECEIVE_ACK blocks the calling process and
calls the system's scheduler.

The calling process remains blocked until it can be reactivated by a subsequent signal of the
semaphore that places a packet on the queue.

The packet format expected by the RECEIVE_ACK request is described in Figure 14-3.

This request is implemented through the RCVD$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such queue semaphore
exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

ES$RDE (type: SYSTEM.._SERVICE)-Reply descriptor expected

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to buffer, or rtnptr is not a

word-address (even) value

Queue Semaphore Management Requests 14-61

14.22 RECEIVE_ANY
MACRO equivalent: RCVA$

The RECEIVE-ANY function implements a complex form of the RECEIVE operation; see the
RECEIVE and SEND requests for a description of the basic receive and send message operations
on queue semaphores. RECEIVE-ANY performs the basic receive operation on the logical OR
of several queue semaphores, with an optional timeout feature. That is, RECEIVE-ANY permits
the calling process to test for and, if necessary, wait on message data on any one of a set of
queue semaphores. Up to four queue semaphores can be specified in the request.

The function returns ordinal values from 0 to 5 to indicate the results of the operation (see
Semantics).

If no message packet is available on any of the specified semaphores, the calling process blocks
until any one of those semaphores is signaled (or sent to) and provides a message for the
calling process. (The caller could be blocked behind other waiting processes on a given queue
semaphore, of course, although a multiple-receiver policy is unlikely, particularly in the case
of RECEIVE-ANY usage.) The caller receives message data by value or by reference, or by a
combination of both, as described for the basic RECEIVE operation.

Optionally, a RECEIVE-ANY operation can be terminated due to the expiration of a time
interval specified in the request.

Thus, RECEIVE-AN)'.' allows a process to get a message from any of up to four queue
semaphores, each semaphore being signaled (put or sent to) by a separate process, for example.
The function might also be used primarily for its timeout capability.

If a zero time period (immediate timeout) is specified in the request, RECEIVE-ANY provides
a complex form of the COND_RECEIVE request, which tests for an available message but will
not block the caller.

Note
The message-by-reference feature must be used with caution concerning the
length of the message. Once the message-copying operation begins, no other
process can gain control until the entire message is copied, because of the
indivisible nature of kernel primitive operations. Thus, transmission of long
messages can seriously affect the servicing of interrupts by increasing interrupt
latency throughout the system.

RECEIVE-ANY is intended for use by processes with general or DEV-ACCESS mapping, which
cannot access a packet directly in a mapped-memory environment (see Sections 10.1.2 and 14.1
for more information). The function permits a process, regardless of mapping type, to obtain
data from another process through a packet.

See COND_RECEIVE for a description of the basic conditional-receive operation.

14-62 Queue Semaphore Management Requests

Syntax

RECEIVE_ANY ([SDB4 := queue-sem-descriptor-4 D
[SDB3 := queue-sem-descriptor-3 D
[SDB2 := queue-sem-descriptor-2 D
SDBl := queue-sem-descriptor-1
[REF_DATA := reference-data-id
REF_LENGTH := reference-data-length D
[VAL_DATA :=value-data-id
VAL_LENGTH :=value-data-length]
[RET_INFO :=information-record D
[TIMEOUT := timeout-interval D
[STATUS := status-record D)

queue-sem-descriptor-4
queue-sem-descriptor-3
queue-sem-descriptor-2
queue-sem-descriptor-1

The identifier of a variable of predefined type QUEUE_SEM_DESC that contains a
semaphore's structure identifier. You can specify up to four queue semaphores. The
order in which you specify multiple queue semaphores determines the order in which they
are initially tested for a signal. (That order can be critical under certain real-time conditions,
as discussed under Semantics and Implementation Notes.)

Each variable must have been previously initialized by a CREATE_QUEUE_SEMAPHORE
or an INIT_STRUCTURE_DESC request.

reference-data-id
The identifier of the variable (buffer) that will receive the data being sent by reference. This
parameter is significant only if the reference-data-length parameter is nonzero.

reference-data-length
A constant or the identifier of a variable of type REF_DATA_LEN that specifies the length,
in bytes, of the buffer identified by the reference-data-id parameter that will receive the
data sent by reference. This parameter limits the amount of data to be copied from the
sender's buffer. If the value is 0 and if a message by reference exists in the packet, the
message is not copied; the reference is passed to the receiver in the record specified by the
information-record parameter. The maximum value is 8128 bytes.

value-data-id
The identifier of the variable (buffer) that will receive the data being sent by value. The
contents of this buffer are copied directly from the packet. This parameter is significant
only if the value-data-length parameter is nonzero.

value-data-length
A constant or the identifier of a variable of type VAL _DATA_LEN that specifies the length,
in bytes, of the buffer identified by the value-data-id parameter. This parameter limits the
amount of data to be copied from the packet. The value of this parameter can be from 0 to
34. (See Restrictions.) The default value is 0.

Queue Semaphore Management Requests 14-63

information-record
The identifier of a variable of predefined type INFO_BLOCK that may receive status
information about the receive operation.

timeout-interval
The identifier of a variable of predefined type LONG_INTEGER that specifies the maximum
time, in milliseconds, that the caller wishes to be blocked waiting for data. The value must
be a positive integer from 0 to (2**31) -1. A value of 0 causes the request to time
out immediately if no packet is available from any of the specified semaphores when
RECEIVE-ANY is called. That is, the calling process will never block if the specified time
interval is 0. If you do not specify this parameter, the function assumes no timeout for the
operation; the calling process may block indefinitely.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Format of Information Record

The information returned to the caller in the variable specified by the information-record
parameter is a record of predefined type INFO_BLOCK as follows:

INFO_BLOCK = PACKED RECORD
PRIORITY
VAL_XMIT_LEN
ADDRESS
REF_XMIT_LEN

[BYTE] PRIORITY_RANGE;
[BYTE] VAL_DATA_LEN;
PHYSICAL_ADDRESS
[WORD] REF_DATA_LEN;

END;

PRIORITY
The priority value that was assigned to the packet by the send operation.

VALXMIT_LEN
The number of bytes that were sent by value. This value may be greater than the number
of bytes received, which is limited by the value-data-length parameter. Zero indicates that
no data by value was sent.

ADDRESS
A record of predefined type PHYSICAL-ADDRESS that contains the physical address of the
sender's message-by-reference buffer, if any. With suitable manipulation, this information
could be used to construct a RIB for a MAP_WINDOW operation. The format of the record
is:

PHYSICAL_ADDRESS = PACKED RECORD
ADDRESS
PAR_ VALUE

END;

14-64 Queue Semaphore Management Requests

UNSIGNED;
UNSIGNED;

ADDRESS
The virtual address of the message-by-reference buffer in the sender's address space. This
return value is valid only if the REF_)(MJT_LEN value is nonzero; otherwise, the contents
of this word are unpredictable.

PAR_ VALUE
The value of the page address register (PAR) that maps the sender's message-by-reference
buffer, if any. This return value is valid only in a mapped-memory environment when the
REF_)(MJT_LEN value is nonzero; otherwise, the contents of this word are unpredictable.

REF _XMILLEN
The number of bytes that were sent by reference. This value may be greater than the
number of bytes received, which is limited by the reference-data-length parameter. Zero
indicates that no data by reference was sent.

Restrictions

• The maximum value for the reference-data-length parameter is 8128.

• A total of 34 bytes is available in a packet for message data, a message reference, or both.
A reference occupies three words in the packet and, if included, reduces the space available
for data by value to 28 bytes.

• The timeout-interval value is limited to a 31-bit positive integer; that is, the sign bit of the
high-order word must not be set. (The maximum valid value, in milliseconds, permits a
timeout period of just over 24.89 days; see the SLEEP procedure for more detail.)

• If you wish to use fewer than four queue semaphore descriptor parameters, you must
assign them beginning with keyword SDBl. You may not assign keyword parameters with
higher-numbered suffixes unless all keywords with lower-numbered suffixes are assigned.
For example, if the parameter sequence specifies keyword SDB3, the sequence must also
include keywords SDB2 and SDBl.

Example

%INCLUDE 'COMPLX.PAS'

VAR
Queue_1, Queue_2, Queue_3 : QUEUE_SEMAPHORE_DESC;
Buffer PACKED ARRAY [O .. 511] OF CHAR;
Length : 0 .. 512;
Info : INFO_BLOCK;
Which_one : COMPLEX_FUNC_VALUE;
Timeout_val : LONG_INTEGER;

[PRIORITY(10), STACK_SIZE(100), NAME ('CONSUM')] PROCESS Consumer;
BEGIN

(*Receive data by reference from one of three queue semaphores. *)
Which_one := RECEIVE_ANY

(REF_DATA := Buffer,
REF_LENGTH := Length,
RET_INFO := Info,
SDB1 := Queue_!,
SDB2 := Queue_2,
SDB3 := Queue_3);

Queue Semaphore Management Requests 14-65

<* Receive data by value from one of two queue semaphores *)
(* with a timeout. *)
Timeout_val := 1000;
Which_one := RECEIVE_ANY

(VAL_DATA := Buffer,
VAL_LENGTH := Length,
RET_INFO := Info,
SDB1 :=Queue_!,
SDB2 := Queue_2,
TIMEOUT := Timeout_val);

END; (* Process Consumer *)

Semantics

The RECEIVE-ANY function tests each of the queue semaphores specified in the request for an
available queue element, or message packet. The queue semaphores are tested in the keyword
order SDBl to SDB4.

The function returns the following values:

Value Meaning

0 Request timed out

1 Request satisfied by SDB 1

2 Request satisfied by SDB2

3 Request satisfied by SDB3

4 Request satisfied by SDB4

5 Error condition

If any of the semaphores has a packet at the time of the call, the function performs a basic
receive operation on the first such semaphore encountered, copying message data to user space
as requested, and returns to the caller with a value between 1 and 4 to indicate which queue
semaphore specified in the call satisfied the request. The packet is dequeued and returned to
the free pool as part of the operation.

If none of the semaphores has a packet and either no timeout-interval or a nonzero timeout
interval was supplied in the call, the function switches the calling process to the wait-active
state. In this state, the process is blocked on all the semaphores specified in the request.

If none of the semaphores has a packet and a zero timeout-interval was supplied in the call, the
function returns immediately to the caller with a zero value, indicating a return due to timeout.
(The calling process thus never leaves the run state in the case of an immediate timeout.)

If the calling process switches to the wait-active state, the process is blocked from execution until
it can be reactivated either by a packet becoming available on one of the blocking semaphores
(see SEND or COND_SEND request semantics) or by elapse of the specified timeout period,
if any. When reactivated for either reason, the process is unblocked from all the semaphores
and is switched to either the ready-active or run state, depending on relative process priorities.
If unblocked because of an available packet, the function returns the ordinal value (from 1 to

14-66 Queue Semaphore Management Requests

4) of the semaphore that triggered the return, as described above. If unblocked because of a
timeout, the function returns a 0.

If an error occurs, the function returns a 5.

This request is implemented through the RCVA$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$IST (type: SYSTEM_SERVICE)-Invalid structure descriptor; no such queue semaphore

exists

The request may return the following errors, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to buffer, rtnptr is not a word

address (even) value

ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; timeout value out of range

Implementation Notes

Since the initial test of the semaphores for an available packet is performed in determinate
order, the order in which multiple semaphores are specified in the call can be critical under
certain real-time conditions. For example, assume that the relative frequency of signals or sends
is high for one of several queue semaphores and that the "fast" queue semaphore is identified
as the first to be tested for signals by being associated with keyword SDBl.

In a series of calls to RECEIVE_ANY, that semaphore will be serviced far more often than the
others, and the "slower" semaphores may seldom or never be tested and serviced. Optimally,
then, the semaphore with the highest expected signal rate should be assigned to the keyword
that is tested last; the next highest as next to last, and so on, assuming that probable relative
frequencies can be determined. Alternatively, the order in which the semaphores are identified
could be rotated in successive calls so at least N semaphores are guaranteed to be tested in
N calls to RECEIVE_ANY. The correct or best-case strategy depends on application-specific
factors, of course.

Queue Semaphore Management Requests 14-67

14.23 RECEIVE_ANV_ACK
MACRO equivalent: RCVA$

The RECEIVE-ANY-ACK function implements a complex form of the RECEIVE-ACK
operation; see the RECEIVE-ACK and SEND-ACK requests for a description of the basic
receive acknowledge and send acknowledge message operations on queue semaphores.
RECEIVE-ANY-ACK performs the basic RECEIVE-ACK operation on the logical OR of several
queue semaphores, with an optional timeout feature. That is, RECEIVE-ANY-ACK permits the
calling process to test for and, if necessary, wait on message data on any one of a set of queue
semaphores. Up to four queue semaphores can be specified in the request.

The function returns ordinal values from 0 to 5 to indicate the results of the operation (see
Semantics).

If no message packet is available on any of the specified semaphores, the calling process blocks
until any one of those semaphores is signaled (or sent to) and provides a message for the
calling process. (The caller could be blocked behind other waiting processes on a given queue
semaphore, of course, although a multiple-receiver policy is unlikely, particularly in the case of
RECEIVE-ANY-ACK usage.) The caller receives message data by reference, as described for
the basic RECEIVE-ACK operation.

Optionally, a RECEIVE-ANY-ACK operation can be terminated due to the expiration of a time
interval specified in the request.

Thus, RECEIVE-ANY-ACK allows a process to get a message from any of up to four queue
semaphores, each semaphore being signaled (put or sent to) by a separate process, for example.
The function might also be used primarily for its timeout capability.

If a zero time period (immediate timeout) is specified in the request, RECEIVE-ANY-ACK
provides a complex form of the COND_RECEIVE-ACK request, which tests for an available
message but will not block the caller.

The packet format expected by RECEIVE-ANY-ACK is the same as that produced by the
SEND-ACK and COND_SEND-ACK requests, as described in Figure 14-3.

Note
The message-by-reference feature must be used with caution concerning the
length of the message. Once the message-copying operation begins, no other
process can gain control until the entire message is copied, because of the
indivisible nature of kernel primitive operations. Thus, transmission of long
messages can seriously affect the servicing of interrupts by increasing interrupt
latency throughout the system.

RECEIVE-ANY-ACK is intended for use by processes with general or DEV-ACCESS mapping,
which .cannot access a packet directly in a mapped-memory environment (see Sections 10.1.2
and 14.1 for more information). This function permits a process, regardless of mapping type,
to obtain data from another process through a packet.

The SEND-ACK and COND_SEND-ACK requests permit a process to transmit data by
reference and a reply semaphore through a packet.

See COND_RECEIVE-ACK for a description of the basic conditional receive with acknowledg
ment operation.

14-68 Queue Semaphore Management Requests

Syntax

RECEIVE-ANY-ACK ([REPLY_DESC := reply-sem-descriptor]
REC_LENGTH := ref-xmit-length

rep ly-sem-descri pt or

[SDB4 := queue-sem-descriptor-4]
[SDB3 := queue-sem-descriptor-3]
[SDB2 := queue-sem-descriptor-2]
SDBl := queue-sem-descriptor-1
[REF_DATA := reference-data-id
REF_LENGTH := reference-data-length]
[TIMEOUT := timeout-interval]
[STATUS := status-record])

The identifier of a variable of predefined type SEMAPHORE_DESC that will receive the
structure identifier of the binary or counting reply semaphore provided by the sender. If
you do not specify this parameter, the procedure automatically signals the reply semaphore
when the receive operation is complete. Otherwise, the reply semaphore may be signaled
manually at the receiver's discretion.

ref-xmit-length
The identifier of a variable of predefined type REF_DATA_LEN that will receive a value
that is the number of bytes of data that were sent by reference. This value may be greater
than the number of bytes received, which is limited by the reference-data-length parameter.
Zero indicates that no data was sent by reference.

queue-sem-descriptor-4
queue-sem-descriptor-3
queue-sem-descriptor-2
queue-sem-descriptor-1

The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that contains
a semaphore's structure identifier. You can specify up to four queue semaphores. The order
in which you specify multiple queue semaphores determines the order in which they are
initially tested for a signal. (That order can be critical under certain real-time conditions, as
discussed under Semantics and Implementation Notes.)

Each descriptor must have been previously initialized by an INIT_STRUCTURE_DESC or
a CREATE_QUEUE_SEMAPHORE request.

reference-data-id
The identifier of the variable (buffer) that will receive the data being sent by reference. This
parameter is significant only if the reference-data-length parameter is nonzero.

reference-data-length
A constant or the identifier of a variable of type REF_DATA_LEN that specifies the length,
in bytes, of the message buffer (reference-data-id parameter) that will receive the data sent
by reference. This parameter limits the amount of data to be copied from the sender's
buffer. If the value is 0 and if a message by reference exists in the packet, the message is
not copied. The maximum value is 8128 bytes.

Queue Semaphore Management Requests 14-69

timeout-interval
The identifier of a variable of predefined type LONG _INTEGER that specifies the maximum
time, in milliseconds, that the caller wishes to be blocked waiting for data. The value
must be a positive integer from 0 to (2**31) -1. A value of 0 causes the request to
time out immediately if no packet is available on any of the specified semaphores when
RECEIVE--1\NY--1\CK is called. That is, the calling process will never block if the specified
time interval is 0. If you do not specify this parameter, the function assumes no timeout
for the operation; the calling process may block indefinitely.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Restrictions

• The maximum value for the reference-data-length parameter is 8128.

• The timeout-interval value is limited to a 31-bit positive integer; that is, the sign bit of the
high-order word must not be set. (The maximum valid value, in milliseconds, permits a
timeout period of just over 24.89 days; see the SLEEP procedure for more detail.)

• If you wish to use fewer than four queue semaphore descriptor parameters, you must
assign them beginning with keyword SDBl. You may not assign keyword parameters with
higher-numbered suffixes unless all keywords with lower-numbered suffixes are assigned.
For example, if the parameter sequence specifies keyword SDB3, the sequence must also
include keywords SDB2 and SDBl.

Example

%INCLUDE 'COMPLX.PAS'

VAR
Queue_1, Queue_2, Queue_3 : QUEUE_SEMAPHORE_DESC;
Buffer : PACKED ARRAY [O .. 511] OF CHAR;
Length : 0 .. 512;
Received : REF_DATA_LEN;
Reply : SEMAPHORE_DESC;
Which_one : COMPLEX_FUNC_VALUE;

[PRIORITY(10), STACK_SIZE(100), NAME ('CONSUM')] PROCESS Consumer;
BEGIN

(* Receive data with acknowledgment from one of three *)
(* queue semaphores. *)
Which_one := RECEIVE_ANY_ACK

(REF_DATA := Buffer,
REF_LENGTH := Length,
REPLY_DESC :=Reply,
REC_LENGTH := Received,
SDB1 := Queue_1,
SDB2 := Queue_2,
SDB3 := Queue_3);

14-70 Queue Semaphore Management Requests

(* Signal the reply semaphore. *)
SIGNAL (DESC :=Reply);

END; (* Process Consumer *)

Semantics

The RECEIVE_ANY_ACK function tests each of the queue semaphores specified in the request
for an available queue element, or message packet. The queue semaphores are tested in the
keyword order SDBl to SDB4.

The function returns the following values:

Value Meaning

0 Request timed out

1 Request satisfied by SDBl

2 Request satisfied by SDB2

3 Request satisfied by SDB3

4 Request satisfied by SDB4

5 Error condition

If any of the semaphores has a packet at the time of the call, the function performs a basic
receive acknowledge operation on the first such semaphore encountered, copying message data
to user space, signaling a reply semaphore as requested. The function returns control to the
caller, with a value between 1 and 4 to indicate which queue semaphore specified in the call
satisfied the request. The packet pointer is dequeued and returned to the free pool as part of
the operation.

If none of the semaphores has a packet and either no timeout argument or a nonzero timeout
value was supplied in the call, the function switches the calling process to the wait-active state.
In that state, the process is blocked on all the semaphores specified in the request.

If none of the semaphores has a packet and a zero timeout value was supplied in the call, the
function returns immediately to the caller with a 0 value, indicating a return due to timeout.
(The calling process thus never leaves the run state in the case of an immediate timeout.)

If the calling process switches to the wait-active state, the process is blocked from execution
until it can be reactivated either by a packet becoming available on one of the blocking
semaphores (see SEND_ACK or COND_SEND_ACK request semantics) or by elapse of the
specified timeout period, if any. When reactivated for either reason, the process is unblocked
from all the semaphores and is switched to either the ready-active or run state, depending on
relative process priorities. If unblocked because of an available packet, the function returns the
ordinal value (from 1 to 4) of the semaphore that triggered the return, as described above. If
unblocked because of a timeout, the function returns a 0.

If an error occurs, the function returns a 5.

This request is implemented through the RCVA$ kernel primitive.

Queue Semaphore Management Requests 14-71

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$IST (type: SYSTEM_SERVICE)-lnvalid structure descriptor; no such queue semaphore

exists

The request may return the following errors, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-lnvalid address; pointer to buffer, rtnptr is not a word

address (even) value

ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; timeout value, out of range

Implementation Notes

Since the initial test of the semaphores for an available packet is performed in determinate
order, the order in which multiple semaphores are identified in the call can be critical under
certain real-time conditions. For example, assume that the relative frequency of signals or sends
is high for one of several queue semaphores and that the "fast" queue semaphore is identified
as the first to be tested for signals by being associated with keyword SDBl.

In a series of calls to RECEIVE_ANY_ACK, that semaphore will be serviced far more often than
the others, and the "slower" semaphores may seldom or never be tested and serviced. Optimally,
then, the semaphore with the highest expected signal rate should be assigned to the keyword
that is tested last; the next highest as next to last, and so on, assuming that probable relative
frequencies can be determined. Alternatively, the order in which the semaphores are identified
could be rotated in successive calls so at least N semaphores are guaranteed to be tested in N
calls to RECEIVE_ANY_ACK. The correct or best-case strategy depends on application-specific
factors, of course.

14-72 Queue Semaphore Management Requests

14.24 SEND
MACRO equivalent: SEND$

The SEND procedure allocates a packet in system space, copies user data into the packet, and
signals a specified queue semaphore. SEND provides you with two methods for sending data:
by value and by reference. Data sent by value is transmitted in the packet; data sent by
reference is copied from a variable specified by the sender to a variable specified by the receiver.

Up to 34 bytes of data can be sent by value; that is, a short message can be sent directly in the
packet. A larger amount of data can be sent by reference, or indirectly; a reference to the data,
not the data itself, is sent in the packet. You can combine those two methods in one SEND
request, sending some data by value and some by reference, or you can use them separately.

The message-by-reference feature permits messages that are too large to fit into a packet to be
exchanged between two processes with one SEND and one RECEIVE request. The physical
buffer address and length are placed in the packet for subsequent use by the RECEIVE and
CO ND-RECEIVE requests. The actual message is copied from the sender's buffer to the
receiver's buffer only when the corresponding receive request is issued.

Note
The message-by-reference feature must be used with caution concerning the
length of messages. Once the message-copying operation begins, no other
process can gain control until the entire message is copied, because of the
indivisible nature of kernel primitive operations. Thus, transmi_ssion of long
messages can seriously affect the servicing of interrupts by increasing interrupt
latency throughout the system.

SEND is intended for use by processes with general or DEV-.ACCESS mapping, which cannot
access a packet directly in a mapped-memory environment (see Section 10.1.2). This function
permits a process, regardless of mapping type, to transmit data to another process through a
packet.

The RECEIVE and COND_RECEIVE requests permit a process to receive data sent through a
packet.

The COND_SEND request is a conditional form of the SEND request in which a packet of data
is placed in the semaphore's queue only when a process is waiting on that queue.

Syntax
SEND ([REF_DATA := reference;..data-id

REF_LENGTH :=reference-data-length]
[VAL_DATA :=value-data-id
VAL_LENGTH :=value-data-length]
[PRIORITY := packet-priority]

{
DESC := queue-sem -descriptor }
NAME:= queue-sem-name

[STATUS := status-record])

Queue Semaphore Management Requests 14-73

reference-data-id
The identifier of the variable (buffer) that contains the data to be sent by reference. The
address of this variable is converted to a physical address and is placed in the packet
with the reference-data-length parameter value. This parameter is significant only if the
reference-data-length parameter is nonzero.

reference-data-length
A constant or the identifier of a variable of predefined type REF_DATA_LEN that specifies
the length, in bytes, of the message buffer (reference-data-id parameter) containing the data
to be sent by reference. The maximum value is 8128 bytes.

value-data-id
The identifier of a variable (buffer) that contains the data to be transmitted by value. The
contents of this buffer are copied into the packet directly. This parameter is significant only
if the value-data-length parameter is nonzero.

va I ue-data-length
A constant or the identifier of a variable of predefined type VAL _DATA_LEN that specifies
the number of bytes to be transmitted by value. The value of this parameter can be from 0
to 34. (See Restrictions.) The default value is 0.

packet-priority
A constant or the identifier of a variable of predefined type PRIORITY_RANGE that specifies
the priority value (0 to 255) to be assigned to the packet. This value affects the order in
which the packet is queued on a semaphore having a priority-ordered packet queue (see
the CREATE_QUEUE_SEMAPHORE request). The default priority value is 1.

queue-sem-descriptor
The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that contains
the semaphore's structure identifier. The variable must have been previously initialized by
a CREATE_QUEUE_SEMAPHORE or an INIT_STRUCTURE_DESC request.

queue-sem-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of an existing semaphore (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

You must specify at least one set of parameters, either value or reference.

14-74 Queue Semaphore Management Requests

Restrictions

• The maximum value for the reference-data-length parameter is 8128.

• A total of 34 bytes is available in a packet for message data, a message reference, or both.
A reference occupies three words in the packet and, if included, reduces the space available
for data by value to 28 bytes.

Example

VAR
Queue_1 : QUEUE_SEMAPHORE_DESC;
Buffer : PACKED ARRAY [O .. 511] OF CHAR;

[PRIORITY(10), STACK_SIZE(100), NAME ('PRODUC')] PROCESS Producer;
BEGIN

(* Send data by reference. *)
SEND (REF_DATA := Buffer,

REF_LENGTH := 512,
DESC := Queue_1);

(* Send data by value. *)
SEND (VAL_DATA := Buffer,

VAL_LENGTH := 12,
DESC := Queue_1);

END; (* Process Producer *)

Semantics

The SEND procedure performs the following actions prior to signaling the specified queue
semaphore:

1. Obtains a packet from the system's free-element pool and writes the specified priority value
into the packet header.

2. Constructs a control byte based on the value-data-length and reference-data-length
parameters and places it in the packet header for subsequent use by the RECEIVE,
RECEIVE_ANY, and COND_RECEIVE requests.

3. Copies the data, if any, to be transmitted by value from the buffer in user space to the
packet in system space.

4. In a mapped-memory environment, constructs a physical address from the address
(reference-data-id) of the message to be sent by reference, if any. This physical address is
placed in the packet along with the message length. A physical address consists of two
words. The value of the first word is the virtual address; the value of the second word is
the content of the user-mode PAR associated with that virtual address.

The SEND procedure then tests the specified queue semaphore for waiting processes. If no
process is waiting, SEND signals the semaphore, links the packet into the queue, and returns
to the caller.

If at least one process is waiting, SEND unblocks the first waiting process, associates the passed
packet pointer with that process as its wait-return value, and calls the scheduler, if required.
This procedure may cause the calling process to be preempted; to lose control of the CPU.

The format of a packet constructed by SEND (or by COND_SEND) is shown in Figure 14-2.

Queue Semaphore Management Requests 14-75

This request is implemented through the SEND$ kernel primitive.

Figure 14-2: SEND Request Packet Format

15 8 7

packet pointer

auxiliary pointer

priority

control
byte -+--~

,r'

Error Returns

data by value
(up to 34 bytes)

address

PAR value

'reference-data-length

bit

0

-r'

standard packet header

va I ue-data-length

(up to 28 bytes if reference-data-length >O,
up to 34 bytes if reference-data-length=O)

reference data access information
(if reference-data-length >O)

ML0-564-87

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such queue semaphore
exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name.

14-76 Queue Semaphore Management Requests

The request may return the following errors, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to buffer or structure is odd or

not in user address space

ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; amount of data to be sent by value
(primitive's vlen parameter) exceeds packet capacity or amount of data sent by
reference (primitive's rlen parameter) exceeds 8128 bytes

Applications

SEND, the basic buffer transfer service provided by the kernel, provides a message-exchange
mechanism for use between general processes or between general and system processes. For
example, SEND implements the interface to higher-level services such as those provided by the
device-handler processes. This interface consists of a request message sent to the appropriate
system process and a reply received from the process, using the SEND and RECEIVE requests.

Queue Semaphore Management Requests 14-77

14.25 SEND_ACK
MACRO equivalent: SEND$

The SEND-ACK procedure allocates a packet in system space, copies a message-by-reference
buffer and a reply semaphore descriptor into the packet, and signals a specified queue semaphore.
The reply semaphore allows the receiver process to signal an acknowledgment to the sender.

The message-by-reference feature permits messages that are too large to fit into a packet to be
exchanged between two processes with one SEND and one RECEIVE request. The physical
buffer address and length are placed in the packet for subsequent use by the RECEIVE-ACK
and COND_RECEIVE_ACK requests. The message is copied from the sender's buffer to the
receiver's buffer only when the corresponding RECEIVE-ACK or RECEIVE_ANY_ACK requests
are issued.

Note
The message-by-reference feature must be used with caution concerning the
length of messages. Once the message-copying operation begins, no other
process can gain control until the entire message is copied, because of the
indivisible nature of kernel primitive operations. Thus, transmission of long
messages can seriously affect the servicing of interrupts by increasing interrupt
latency throughout the system.

SEND-ACK is intended for use by processes with general or DEV-ACCESS mapping, which
cannot access a packet directly in a mapped-memory environment (see Section 10.1.2). This
function permits a process, regardless of mapping type, to transmit data by reference and a
reply semaphore's structure descriptor to another process through a packet.

The RECEIVE-ACK and COND_RECEIVE_ACK requests allow any process to receive the
reference data and reply semaphore transmitted by SEND-ACK.

The COND_SEND_ACK request is a conditional form of SEND-ACK in which a packet of
data is placed in the semaphore's queue only when a process is waiting on that queue.

Syntax
SEND-ACK ([RELDATA :=reference-data-id

REF_LENGTH :=reference-data-length]
REPLY_DESC := reply-sem-descriptor
[PRIORITY := packet-priority]

{
DESC := queue-sem-descriptor }
NAME:= queue-sem-name

[STATUS := status-record])

reference-data-id
The identifier of the variable (buffer) that contains the data to be sent by reference. The
address of this variable is converted to a physical address and is placed in the packet
with the reference-data-length parameter value. This parameter is significant only if the
reference-data-length parameter is nonzero.

14-78 Queue Semaphore Management Requests

reference-data-length
A constant or the identifier of a variable of predefined type REF_DATA_LEN that specifies
the length, in bytes, of the message buffer (reference-data-id parameter) containing the data
to be sent by reference. The maximum value is 8128 bytes.

reply-sem-descriptor
The identifier of a variable of predefined type SEMAPHORE~DESC that contains the
reply semaphore's structure identifier. The variable must have been previously initialized
by a CREATE_BINARY_SEMAPHORE or a CREATE_COUNTING_SEMAPHORE, as
appropriate, or by an INIT_STRUCTURE_DESC request.

packet-priority
A constant or the identifier of a variable of predefined type PRIORITY_RANGE that specifies
the priority value (0 to 255) to be assigned to the packet. This value affects the order in
which the packet is queued on a semaphore having a priority-ordered packet queue (see
the CREATE_QUEUE_SEMAPHORE request). The default priority value is 1.

queue-sem-descriptor
The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that contains
the semaphore's structure identifier. The variable must have been previously initialized by
a CREATE_QUEUE_SEMAPHORE or an INIT_STRUCTURE_DESC request.

queue-sem-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of an existing semaphore (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Example

VAR
Queue_! : QUEUE_SEMAPHORE_DESC;
Buffer : PACKED ARRAY [0 .. 511] OF CHAR;
Reply : SEMAPHORE_DESC;

[PRIORITY(10), STACK_SIZE(100), NAME ('PRODUC')] PROCESS Producer;
BEGIN

(* Send data with acknowledgment. *)
SEND_ACK (REF_DATA :=Buffer,

REF_LENGTH := 512,
REPLY_DESC :=Reply,
DESC :=Queue_!);

(*Wait for a reply. *)
WAIT (DESC :=Reply);

END; (* Process Producer *)

Queue Semaphore Management Requests 14-79

Restriction

The maximum value for the reference-data-length parameter is 8128.

Semantics

The SEND-ACK procedure performs the following actions prior to signaling the specified queue
semaphore:

1. Obtains a packet from the system's free-element pool and writes the specified priority value
into the packet header.

2. Constructs a control byte that consists of the reference data flag bit (r) and a 7-bit value-data
length field containing the length of the structure identifier used for the reply semaphore.

3. Places the control byte in the packet header for subsequent use by the RECEIVE-ACK,
RECEIVE-ANY-ACK, and COND_RECEIVE-ACK requests and copies the reply sema
phore structure identifier into the packet's value data area.

4. Constructs a physical address from the address of the message to be sent by reference,
if any. This physical address is placed in the packet along with the message length. A
physical address consists of two words. The value of the first word is the virtual address;
the value of the second word is the content of the user-mode PAR associated with that
virtual address.

SEND-ACK then tests the specified queue semaphore for waiting processes. If no process is
waiting, SEND-ACK signals the semaphore, links the packet into the queue, and returns to
the caller. If at least one process is waiting, this procedure unblocks the first waiting process,
associates the passed packet pointer with that process as its wait-return value, and calls the
scheduler, which may cause the calling process to be preempted; to lose control of the CPU.

The format of a packet constructed by SEND-ACK (or by COND_SEND-ACK) is shown in
Figure 14-3.

14-80 Queue Semaphore Management Requests

Figure 14-3: SEND-ACK Request Packet Format

15 87

packet pointer

auxiliary pointer

value-
data- priority
length

control structure index

bit

0

byte ~--~------------+--------..
structure

serial number

6-character
structure name

standard packet header

reply semaphore
structure descriptor

,~ ,rJ
} unused space

address

PAR value

reference-data-length

reference data access information
(if reference-data-length> O)

ML0-565-87

This request is implemented through the SEND$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such queue semaphore
exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

Queue Semaphore Management Requests 14-81

The request may return the following errors, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to buffer or structure is odd or

not in user address space

ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; amount of data to be sent by value
(primitive's vlen parameter) exceeds packet capacity or amount of data sent by
reference (primitive's rlen parameter) exceeds 8128 bytes

14-82 Queue Semaphore Management Requests

Chapter 15

Ring Buffer Management Requests

This chapter describes the requests that operate on ring buffer structures. Those requests,
implemented through the predeclared procedures and functions listed in Table 15-1, are the
Pascal language interface to the services provided by the kernel's ring buffer management
primitives. The requests provide for variable-length data transfers (normally a stream of byte
data) between processes, without the need for tight, signal/wait synchronization between them.
The size, or capacity, of a ring buffer is determined when the structure is created and may be
from 8 to 8128 bytes.

You must include in your program or module the definitions of the routines that implement the
requests described in this chapter before using them. See Appendix I for more information.

Table 15-1 summarizes the operations performed by these requests.

Table 15-1: Ring Buffer Management Requests

Request

COND_GET_ELEMENT

COND_pUT_ELEMENT

CREATE_RING _BUFFER

CREATE _RING _BUFFER_P

DESTROY

Operation

A conditional form of GET_ELEMENT that does not
block the calling process if the request cannot be
satisfied.

A conditional form of PUT_ELEMENT that does not
block the calling process if the request cannot be
satisfied.

Creates a ring buffer structure and sets up a descriptor
for efficient reference to it.

Creates a ring buffer structure and sets up a descriptor
for efficient reference to it by a procedure.

Deletes a structure from the system and deallocates
the memory space used by it.

Ring Buffer Management Requests 15-1

Table 15-1 (Cont.): Ring Buffer Management Requests

Request

GET_ELEMENT

GET_ELEMENT_ANY

GET_ VALUE

INIT_STRUCTURE_DESC

PUT_ELEMENT

RESET_RING _BUFFER

15-2 Ring Buffer Management Requests

Operation

Extracts a specified number of bytes of data from a
ring buffer and transfers them to the caller's buffer;
the calling process is blocked if too few bytes are in
the ring buffer.

An enhanced form of GET_ELEMENT that waits for
a variable time interval on up to four ring buffers.

Obtains a structure's value and type code.

Sets up a descriptor for efficient reference to a ring
buffer.

Copies a specified number of bytes from the caller's
buff er to a ring buffer; the calling process is blocked
if the ring buffer has insufficient space.

Empties the specified ring buffer of all data.

15. l COND_GET_ELEMENT
MACRO equivalent: GELC$

The COND_GET_ELEMENT function implements a nonblocking form of the GET_ELEMENT
request. The function attempts to copy the requested number of bytes of data from the ring
buffer but does not block the caller if the request cannot be satisfied. The output access mode
of the ring buffer (record mode or stream mode) determines whether the request attempts
to satisfy the data transfer by a full or by a partial transfer. Informally, the meaning of a
COND_GET_ELEMENT request for a record-mode buffer is "get N bytes right away or none
at all" and for a stream-mode buffer is "get as many bytes as possible, up to N right away."

In either case, however, the function returns control to the caller, with a value that indicates
how many bytes are needed to satisfy the request. A return value of 0 indicates that the request
has been fully satisfied-all the bytes specified in the call have been successfully read from the
ring buffer.

The output access mode of a ring buffer is declared to be either RECORD_MODE or
STREAM_MQDE when the structure is created. (See the CREATE_RING_BUFFER request.)

For a ring buffer in record mode, COND_GET_ELEMENT attempts to satisfy the request with
a full transfer only. If the ring buffer does not contain as many bytes as are requested, the
function returns control immediately to the caller, with a value that is the number of bytes
requested, thus indicating that no bytes were copied.

For a ring buffer in stream mode, the default, COND_GET_ELEMENT attempts to satisfy the
request with either a full or a partial transfer. That is, the function obtains as many bytes, up
to the number requested, as are available in the ring buffer. The function returns control to the
caller, with a value that is the number of bytes, if any, that remain to be obtained.

The PUT_ELEMENT and COND_PUT_ELEMENT requests allow a process to insert bytes into
a ring buffer.

Syntax
COND_GET_ELEMENT (LENGTH := data-length

DATA := data-id

data-length

{
DESC := ring-buffer-descriptor }
NAME := ring-buffer-name

[STATUS := status-record])

A constant or the identifier of a variable of type RING_BUFFER_DATA that specifies the
number of bytes of data to be read from the ring buffer. This value is the length of the
data identified by the data-id parameter.

data-id
The identifier of the variable (buffer) that is to receive the data being read from the ring
buffer.

Ring Buffer Management Requests 15-3

ring.:buffer-descriptor
The identifier of a variable of predefined type RING_BUFFER_DESC that contains the
ring buffer's structure identifier. The variable must have been previously initialized by a
CREATE_RING_BUFFER or an INIT_STRUCTURE_DESC request.

ring-buffer-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that contains the 6-character name of an existing ring buffer (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Restriction

If the ring buffer's output access mode is record mode, the number of bytes specified by
the data-length parameter must not exceed the size of the ring buffer (as specified in the
CREATE-RING_BUFFER request); otherwise, the request will never be successful.

Example

VAR
Ring_1 : RING_BUFFER_DESC;
Ch : CHAR;
Short : INTEGER;

[PRIORITY(10), STACK_SIZE(100), NAME ('READER')] PROCESS Reader;
BEGIN

(* Conditionally get a character from an unnamed ring buffer. *)
Short := COND_GET_ELEMENT (LENGTH := 1,

DATA := Ch,
DESC := Ring_1);

(* Conditionally get a character from a named ring buffer. *)
Short := COND_GET_ELEMENT (LENGTH := 1,

DATA := Ch,
NAME:= 'RING1 ');

END; (* Process Reader *)

Semantics

If the specified ring buffer's output access mode is record mode, the COND_GET_ELEMENT
function tests the ring buffer. If the ring buffer contains at least that number of bytes, the
function transfers the specified number of bytes of data from the ring buffer to the caller's
storage area and returns control to the caller, with the value 0. If the ring buffer contains less
than the requested number of bytes, the function returns control immediately to the caller, with
the original value of the data-length parameter to indicate that no bytes were transferred.

15-4 Ring Buffer Management Requests

If the ring buffer's output access mode is stream mode, the function copies as many bytes, up
to the number requested, from the ring buffer to the caller's storage area and returns control
to the caller, with the value that is the number of bytes that remain to be copied (data-length
minus bytes transferred).

Note
A successful COND_GET_ELEMENT operation may cause preemption of the
caller if the operation unblocks a process waiting to put elements. That is, return
from a successful COND_GET_ELEMENT request is not necessarily immediate.

This request is implemented through the GELC$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such ring buffer exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to buffer or structure is odd or

not in user address space

Ring Buffer Management Requests 15-5

15.2 COND_PUT_ELEMENT
MACRO equivalent: PELC$

The COND_pLJT_ELEMENT function implements a nonblocking form of the PUT_ELEMENT
request. The function attempts to copy the requested number of bytes of data from the caller's
storage area to a ring buffer but does not block the calling process if the request cannot be
satisfied. The input access mode of the ring buffer (record mode or stream mode) determines
how the request attempts to satisfy the data transfer. In either case, however, the function
returns control to the caller, with a value that indicates how many bytes remain to be transferred.
A return value of 0 indicates that the request has been fully satisfied; all the bytes specified in
the call have been successfully put into the ring buffer.

The input access mode of a ring buffer is declared to be either RECORD-MODE or
STREAM_MODE when the structure is created. (See the CREATE_RING_BUFFER request.)

For a ring buffer in record mode, COND_PUT_ELEMENT attempts to satisfy the request with
a full transfer only. If the ring buffer has insufficient space for the specified number of bytes,
it returns control immediately to the caller, with a value equal to the number of bytes specified
in the request, indicating that no bytes were copied.

For a ring buffer in stream mode, the default, COND_PUT_ELEMENT attempts to satisfy the
request with either a full or a partial transfer. That is, the function inserts all the bytes that can
be accommodated in the buffer-none, some, or all those requested-and returns control to the
caller, with a value that is the number of bytes, if any, that remain to be transferred.

The GET_ELEMENT and COND_GET_ELEMENT requests allow a process to extract bytes
from a ring buffer, freeing the associated space.

Syntax
COND_pUT__ELEMENT (LENGTH := data-length

DATA := data-id

data-length

{
DESC := ring-buffer-descriptor }
NAME :=ring-buffer-name

[STATUS := status-record])

A constant or the identifier of a variable of type RING_BUFFER_DATA that specifies the
number of bytes of data to copy into the ring buffer. This value is the length of the data
identified by the data-id parameter.

data-id
The identifier of the variable (buffer) that contains data to be copied into the ring buffer.

ring-buffer-descriptor
The identifier of a variable of predefined type RING_BUFFER_DESC that contains the
ring buffer's structure identifier. The variable must have been previously initialized by a
CREATE_RING_BUFFER or an INIT_STRUCTURE_DESC request.

ring-buffer-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that contains the 6-character name of an existing ring buffer (see Section 11.1.1.1).

15-6 Ring Buffer Management Requests

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Restriction

If the ring buffer's input access mode is record mode, the number of bytes specified by
the data-length parameter must not exceed the size of the ring buffer (as specified in the
CREATE_RING_BUFFER request); otherwise, the request will never be successful.

Example

VAR
Ring_1 : RING_BUFFER_DESC;
Remaining : INTEGER;

[PRIORITY(10), STACK_SIZE(100), NAME ('WRITER')] PROCESS Writer;
BEGIN

(* Conditionally put a character into an unnamed ring buffer. *)
Remaining := COND_PUT_ELEMENT (LENGTH := 1,

DATA := 'A',
DESC := Ring_1);

(* Conditionally put a character into a named ring buffer. *)
Remaining := COND_PUT_ELEMENT (LENGTH := 1,

DATA 'A',
NAME := 'RING1 ');

END; (* Process Writer *)

Semantics

If the ring buffer's input access mode is record mode, the COND_PUT_ELEMENT function
tests the ring buffer for an amount of available space equal to or greater than the number of
bytes specified in the data-length parameter. If at least that amount of space is available, the
function copies the specified number of bytes of data from the caller's buffer to the ring buffer
and returns control to the caller, with the value 0. If fewer than the specified number of bytes
of space are available, the function returns control immediately to the caller, with the original
value of the data-length parameter to indicate that no bytes were copied into the ring buffer.

If the ring buffer's input access mode is stream mode, the function copies as many bytes from
the caller's buffer as can be accommodated in the ring buffer and returns control to the caller,
with a value that is the number of bytes that remain to be copied-data length minus bytes
copied.

This request is implemented through the PELC$ kernel primitive.

Ring Buffer Management Requests 15-7

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-lllegal structure descriptor; no such ring buffer exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-lnvalid address; pointer to buffer or structure is odd or

not in user address space

15-8 Ring Buffer Management Requests

15.3 CREATE_RING_BUFFER
MACRO equivalent: CRST$

The CREATE_RING_BUFFER function creates a ring buffer structure in the system-common
memory managed by the kernel. ,

If the buffer is successfully created, the request returns a Boolean TRUE value. If system
memory is insufficient to create the buffer, the function returns a Boolean FALSE value.

The function permits a process to create a ring buffer that can be manipulated by the various
ring buffer management requests.

Syntax

CREATE_RING_BUFFER (

INPULMODE

[
INPUT_MODE := { RECORD_MODE }]

STREAM_MODE

[
OUTPUT_MODE := { RECORD_MODE }]

STREAM_MODE

[INPULORDER :~ { ~~g }]
[OUTPULORDER :~ { ~~!~ }]

SIZE := buffer-size

{
DESC := ring-buffer-descriptor }
NAME := ring-buffer-name

[STATUS := status-record])

The input access mode for transferring data to the ring buffer when using the
COND_PUT_ELEMENT procedure. RECORD_MODE specifies that a request will be
honored only when the ring buffer has enough space to allow a complete transfer of all
data. STREAM_MODE, the default, specifies that a request will be honored whenever the
buffer has space to allow one or more bytes of the data to be transferred.

OUTPUT_MODE

The output access mode for obtaining data from the ring buffer when using the
COND_GET_ELEMENT procedure. RECORD_MODE specifies that a request will be
honored only when the ring buffer has enough space to allow a complete transfer of all
data. STREAM_MODE, the default, specifies that a request will be honored whenever the
buff er has space to allow one or more bytes of the data to be transferred.

INPULORDER

The ordering of the ring buffer's input queue, which contains the list of processes waiting
to put bytes into the buffer. FIFO specifies first-in-first-out order and is the default value.
PRIO specifies ordering by process priority.

OUTPULORDER

The ordering of the ring buffer's output queue, which contains the list of processes waiting
to get bytes from the ring buffer. FIFO specifies first-in-first-out order and is the default
value. PRIO specifies ordering by process priority.

Ring Buffer Management Requests 15-9

buffer-size
A constant or the identifier of a variable of type RING_BUFFER_SIZE that specifies the
size, in bytes, of the ring buffer. This value must be an even number from 8 to 8128.

ring-buffer-descriptor
The identifier of a variable of predefined type RING_BUFFER_DESC that contains the ring
buffer's structure identifier.

ring-buffer-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that contains the 6-character name of the ring buffer (see Section 11.1.1.1). This must not
be the name of an existing process or structure.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

If you do not specify the ring-buffer-name parameter, the function creates an unnamed ring
buffer identified by the descriptor specified in the ring-buffer-descriptor parameter.

Example

%INCLUDE 'EXC.PAS'

VAR
Ring_!, Ring_2, Ring_3 : RING_BUFFER_DESC;

[INITIALIZE] PROCEDURE !nit;
(* Create the needed ring buffers. If any create fails then report an exception. *)
BEGIN

(* Create an unnamed ring buffer with all of the defaults. *)
IF NOT CREATE_RING_BUFFER

(DESC : = Ring_ 1 ,
SIZE := 10)

THEN REPORT -
(EXC_TYPE := [RESOURCE],
EXC_CODE := ES$NMK,
EXC_INFO := O);

(* Create a named ring buffer with all of the defaults. *)
IF NOT CREATE_RING_BUFFER

(DESC := Ring_2,
SIZE := 10,
NAME := 'RING2 ')

THEN REPORT
(EXC_TYPE := [RESOURCE],
EXC_CODE := ES$NMK,
EXC_INFO := O);

15-10 Ring Buffer Management Requests

(* Create an unnamed ring buffer with priority orderings. *)
IF NOT CREATE_RING_BUFFER

(INPUT_ORDER := PRIO,
OUTPUT_ORDER := PRIO,
DESC := Ring_3,
SIZE := 10)

THEN REPORT
(EXC_TYPE := [RESOURCE],
EXC_CODE := ES$NMK,
EXC_INFO := 0);

END; (* Procedure !nit *)

Semantics

The CREATE_RING_BUFFER function requests the kernel to allocate and initialize a ring buffer
structure in system-common memory.

If the ring buffer is successfully created, the function returns a Boolean TRUE value. The ring
buffer is named as specified in the ring-buffer-name parameter, and its structure identifier is
copied into the descriptor variable specified by the ring-buffer-descriptor parameter.

If the ring buffer cannot be created because of insufficient space in the system's free-memory
pool, the function returns control to the caller, with a Boolean FALSE value.

This request is implemented through the CRST$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$MDN (type: SYSTEM_SERVICE)-Must specify structure descriptor or name

ES$SNI (type: SYSTEM_SERVICE)-Structure name already in use; the specified name has
already been given to another process, semaphore, ring buffer, logical name, or
shared region

The request may return the following errors, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to descriptor is odd or not in

user address space

ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; an invalid structure type or argument
value was specified

ES$IPR (type: SYSTEM_SERVICE)-Illegal primitive; user code attempted to create a PCB
(type ST.PCB specified)

Ring Buffer Management Requests 15-11

15.4· CREATE_RING_BUFFER_P
MACRO equivalent: none

CREATE_RING_BUFFER_P creates (by a procedure) a ring buffer structure in the system
common memory managed by the kernel.

If the buffer is successfully created, the STATUS parameter is set to ES$NOR. If system memory
is insufficient to create the buffer, the STATUS parameter is set to the appropriate exception
code.

The procedure permits a process to create a ring buffer that can be manipulated by the various
ring buffer management requests.

Syntax

CREATE_RING_BUFFER_P (

•NPULMODE

[
INPUT_MODE := { RECORD_MODE }]

STREAM_MODE

[
OUTPUT MODE ·= { RECORD_MODE }]

- . STREAM_MODE

[INPUT_ORDER ·= { FIFO }]
. PRIO

[OUTPUT ORDER ·= { FIFO }]
- . PRIO

SIZE := buff er-size

{
DESC := ring-buffer-descriptor }
NAME :=ring-buffer-name

[STATUS := status-record])

The input access mode for transferring data to the ring buffer when using the
CONDJUT_ELEMENT procedure. RECORD__MODE specifies that a request will be
honored only when the ring buffer has enough space to allow a complete transfer of all
data. STREAM_MODE, the default, specifies that a request will be honored whenever the
buffer has space to allow one or more bytes of the data to be transferred.

OUTPULMODE

The output access mode for obtaining data from the ring buffer when using the
COND_GET_ELEMENT procedure. RECORD_MODE specifies that a request will be
honored only when the ring buffer has enough space to allow a complete transfer of all
data. STREAM_MODE, the default, specifies that a request will be honored whenever the
buffer has space to allow one or more bytes of the data to be transferred.

INPUT_ORDER

The ordering of the ring buffer's input queue, which contains the list of processes waiting
to put bytes into the buffer. FIFO specifies first-in-first-out order and is the default value.
PRIO specifies ordering by process priority.

15-12 Ring Buffer Management Requests

OUTPUT_ORDER
The ordering of the ring buffer's output queue, which contains the list of processes waiting
to get bytes from the ring buffer. FIFO specifies first-in-first-out order and is the default
value. PRIO specifies ordering by process priority.

buffer-size
A constant or the identifier of a variable of type RING_BUFFER_SIZE that specifies the
size, in bytes, of the ring buffer. This value must be an even number from 8 to 8128.

ring-buffer-descriptor
The identifier of a variable of predefined type RING_BUFFER_DESC that contains the ring
buffer's structure identifier.

ring-buffer-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that contains the 6-character name of the ring buffer (see Section 11.1.1.1). This must not
be the name of an existing process or structure.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

If you do not specify the ring-buffer-name parameter, the function creates an unnamed ring
buffer identified by the descriptor specified in the ring-buffer-descriptor parameter.

Example

%INCLUDE 'EXC.PAS'
%INCLUDE 'CRPROC.PAS'

VAR
RDESC1, RDESC2 : RING_BUFFER_DESC;
P_STATUS : EXC_STATUS;
SUCCESS : BOOLEAN;

(* Create the needed ring buffers. If any create fails then set SUCCESS to false. *)
[INITIALIZE] PROCEDURE !nit;
BEGIN

CREATE_RING_BUFFER_P (INPUT_MODE := STREAM_MODE,
OUTPUT_MODE := STREAM_MODE,
INPUT_ORDER := FIFO, OUTPUT_ORDER := FIFO,
BUFFER_SIZE := 8, DESC := DRESC1,
NAME := 'RBUFF ',STATUS := P_STATUS);

IF (P_STATUS.EXC_CODE <> ES$NOR)
THEN SUCCESS := False;

CREATE_RING_BUFFER_P (INPUT_ORDER := PRIO, OUTPUT_ORDER := PRIO,
BUFFER_SIZE := 8128, DESC := DRESC2,
STATUS := P_STATUS);

IF (P_STATUS.EXC_CODE <> ES$NOR)
THEN SUCCESS := False;

END;

Ring Buffer Management Requests 15-13

BEGIN (* Main *)
IF NOT SUCCESS

END.

THEN WRITELN('%ERROR - Semaphore creation failed')
ELSE

Semantics

The CREATE_RING_BUFFER_P procedure requests the kernel to allocate and initialize a ring
buffer structure in system-common memory.

If the ring buffer is successfully created, the STATUS parameter is set to ES$NOR. The ring
buffer is named as specified in the ring-buffer-name parameter, and its structure identifier is
copied into the descriptor variable specified by the ring-buffer-descriptor parameter.

If the ring buffer cannot be created because of insufficient space in the system's free-memory
pool, the STATUS parameter is set to the appropriate exception code.

This request is implemented through the CRST$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$MDN (type: SYSTEM_SERVICE)-Must specify structure descriptor or name

ES$SNI (type: SYSTEM_SERVICE)-Structure name already in use; the specified name has
already been given to another process, semaphore, ring buffer, logical name, or
shared region

The request may return the following errors, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-lnvalid address; pointer to descriptor is odd or not in

user address space ·

ES$1PM (type: SYSTEM_SERVICE)-Illegal parameter; an invalid structure type or argument
value was specified

ES$1PR (type: SYSTEM_SERVICE)-Illegal primitive; user code attempted to create a PCB
(type ST.PCB specified)

15-14 Ring Buffer Management Requests

15.5 DESTROY
MACRO equivalent: DLST$

The DESTROY procedure deletes a structure (in this case, a ring buffer) from the system and
deallocates the memory space associated with it. The operation is performed only if no processes
are blocked on the ring buffer at the time of the call.

Syntax

DESTROY ({ DESC := ring-buffer-descriptor }
NAME := ring-buffer-name

[STATUS := status-record D)

ring-buffer-descriptor
The identifier of a variable of predefined type RING_BUFFER_DESC that contains the
ring buffer's structure identifier. The variable must have been previously initialized by a
CREATE_RING_BUFFER or an INIT_STRUCTURE_DESC request.

ring-buffer-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that contains the 6-character name of an existing ring buffer (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2. ·

Example

VAR
Ring : RING_BUFFER_DESC;

[TERMINATE] PROCEDURE Term;
BEGIN

(* Destroy an unnamed ring buffer. *)
DESTROY (DESC :=Ring);

(* Destroy a named ring buffer. *)
DESTROY (NAME:= 'RING ');

END; (* Procedure Term *)

Semantics

If the ring buffer is not in use, DESTROY removes its name, if one exists, from the system
name table, returns the space that the ring buffer occupies to the free-memory pool, and returns
control to the caller.

This request is implemented through the DLST$ kernel primitive.

Ring Buffer Management Requests 15-15

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such ring buffer exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

ES$SIU (type: SYSTEM_SERVICE)-Structure is in use and cannot be deleted

15-16 Ring Buffer Management Requests

15.6 GET_ELEMENT
MACRO equivalent: GELM$

The GET_ELEMENT procedure copies a specified number of bytes of data from a ring buffer to
the caller's storage area. If too few bytes are in the ring buffer to satisfy the request, the calling
process waits, or blocks, on the ring buffer for more bytes to become available.

In general, if two or more processes are getting data from the same ring buffer, the calling
process will block if another process is waiting for its GET_ELEMENT request to be satisfied.
The calling process must wait its turn-whether by FIFO, the default, or by priority order-for
access to the buffer, since sequential access to a ring buffer is ensured among multiple readers
as well as among multiple writers. If the ring buffer's output access mode is stream, the process
that blocks first is given active read access to the buffer and the data transfer may occur in
increments while the process is waiting. In stream mode, therefore, the process with active
access is never displaced by a higher-priority process, regardless of the ordering attribute of the
waiting-output-process list.

The COND_GET_ELEMENT function is the conditional form of the GET_ELEMENT request.

The PUT_ELEMENT and the COND_PUT_ELEMENT requests allow a process to insert bytes
into a ring buffer.

Syntax

GET_ELEMENT (LENGTH := data-length
DATA := data-id

{
DESC := ring-buffer-descriptor }
NAME :=ring-buffer-name

[STATUS :=status-record])

data-length
A constant or the identifier of a variable of type RING_BUFFER_DATA that specifies the
number of bytes of data to read from the ring buffer. This value is the length of the data
identified by the data-id parameter.

data-id
The identifier of the variable (buffer) that is to receive the data being read from the ring
buffer.

ring-buffer-descriptor
The identifier of a variable of predefined type RING _BUFFER_DESC that contains the
ring buffer's structure identifier. The variable must have been previously initialized by a
CREATE_RING_BUFFER or an INIT_STRUCTURE_DESC request.

ring-buffer-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
th~t contains the 6-character name of an existing ring buffer (see Section 11.1.1.1).

Ring Buffer Management Requests 15-17

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Restriction

If the ring buffer's output access mode is record mode, the number of bytes specified by
the data-length parameter must not exceed the size of the ring buffer (as specified in the
CREATE_RING_BUFFER request); otherwise, the request will never be successful.

Example

VAR
Ring_! : RING_BUFFER_DESC;
Ch : CHAR;

[PRIORITY(10), STACK_SIZE(100), NAME ('READER')] PROCESS Reader;
BEGIN

(* Get a character from an unnamed ring buffer. *)
GET_ELEMENT (LENGTH := 1,

DATA := Ch,
DESC :=Ring_!);

(* Get a character from a named ring buffer. *)
GET_ELEMENT (LENGTH := 1,

DATA := Ch,
NAME := 'RING! ');

END; (* Process Reader *)

Semantics

If no other process is waiting to obtain data from the specified ring buffer, GET_ELEMENT
tests the buffer for data-length number of bytes of available data. If at least that amount of
data is available, GET_ELEMENT transfers the requested number of bytes from the ring buffer
to the caller's buffer and returns control to the caller. (A get operation effectively removes the
corresponding data from the ring buffer.)

If the ring buffer contains less than data-length bytes and its output access mode is record
mode, GET_ELEMENT blocks the caller with active read access to the ring buffer and calls
the scheduler. When a full record becomes available as a result of one or more subsequent
PUT_ELEMENT or COND_PUT__ELEMENT operations, the transfer is performed and the
waiting process is unblocked.

If the ring buffer contains less than data-length bytes and its output access mode is stream
mode, GET_ELEMENT blocks the caller with active read access to the ring buffer, transfers
any currently available bytes, and calls the scheduler. When enough additional bytes become
available as a result of one or more subsequent PUT_ELEMENT or COND_PUT_ELEMENT
operations, the transfer is completed-possibly by a series of partial transfers-and the waiting
process is unblocked.

15-18 Ring Buffer Management Requests

If one or more processes are waiting to get data from the ring buffer at the time of the call,
implying that some other process has active read access, the calling process is blocked on the
buffer's waiting-output-process list in either FIFO or priority order, depending on the ring buffer
definition. (A process with active access is never displaced by another process, regardless of
relative priorities.) The process waits its turn to gain active read access, at which point it is
treated as described above.

This request is implemented through the GELM$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; the value of the data-length parameter
exceeds the size of the ring buffer for a record-mode operation

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such ring buffer exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-lnvalid address; pointer to buffer or structure is odd or

not in user address space

Ring Buffer Management Requests 15-19

15. 7 GET_ELEMENT_ANY
MACRO equivalent: GELA$

The GET_ELEMENT_ANY function implements a complex form of the GET_ELEMENT request;
see the GET_ELEMENT and PUT_ELEMENT requests for a description of the basic get and
put element operations on ring buffers. GET_ELEMENT_ANY performs the basic get element
operation on the logical OR of several ring buffers, with an optional timeout feature. That
is, GET_ELEMENT_ANY permits the calling process to test for and, if necessary, wait on an
available data record in any one of a set of ring buffers. Up to four ring buffers can be specified
in the request.

The function returns ordinal values from 0 to 5 to indicate the results of the operation (see
Semantics).

If a complete record is immediately available in any of the specified ring buffers, the calling
process gets the record and continues execution. Otherwise, the calling process blocks until one
of the ring buffers can provide the requested number of bytes. More specifically, if each of the
specified ring buffers is initially empty or contains less than a full record, the caller blocks on
all the buffers. (Partial data transfers never occur, due to the mandatory record mode output
access.) The process waits until the full request can be satisfied by any one of the ring buffers,
at which point it is unblocked from all of them.

Optionally, the operation can be terminated due to the expiration of a time interval specified in
the request.

Thus, GET_ELEMENT_ANY allows a process to get a specified number of bytes from any of
up to four ring buffers, although it might be used primarily for its optional timeout capability.

If a zero time period (immediate timeout) is specified in the request, the GET_ELEMENT_ANY
provides a complex form of the COND_GET_ELEMENT operation, which tests for available
data but will not block the caller. See COND_GET_ELEMENT for a description of the basic
conditional get operation.

Syntax

GET_ELEMENT_ANY ([SDB4 := ring-buffer-descriptor-4]
[SDB3 := ring-buffer-descriptor-3]
[SDB2 := ring-buffer-descriptor-2]
SDBl :=ring-buffer-descriptor-I
LENGTH := data-length

ring-buffer-descriptor-4
ring-buffer-descriptor-3
ring-buffer-descriptor-2
ring-buffer-descriptor-1

DATA := input-buffer-id
[TIMEOUT := timeout-interval]
[STATUS := status-record])

The identifier of a variable of predefined type RING_BUFFER_DESC that contains a ring
buffer's structure identifier.

15-20 Ring Buffer Management Requests

Each ring buffer's output access mode must be record mode. You can specify up to
four ring buffers. The order in which you specify multiple ring buffers determines the
order in which they are initially tested for data bytes. That order can be critical under
certain real-time conditions, as discussed under Semantics and Implementation Notes. Each
descriptor must have been previously initialized by a CREATE_RING_BUFFER or an
INIT_STRUCTURE_DESC request.

data-length
A constant or the identifier of a variable of type RING_BUFFER_DATA that specifies the
number of bytes to read from the ring buffer.

i nput-buffer-ld
The identifier of the variable (buffer) that is to receive the ring buffer data.

timeout-interval
The identifier of a variable of predefined type LONG-INTEGER that specifies the maximum
time, in milliseconds, that the caller wishes to be blocked waiting for data. The value
must be a positive integer from 0 to (2**31) -1. A value of 0 c&uses the request to
time out immediately if none of the specified ring buffers has an entire record when
GET_ELEMENT_ANY is called. That is, the calling process will never block if the specified
time interval is 0. If you do not specify this parameter, the function assumes no timeout
for the operation; the calling process may block indefinitely.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Restrictions

• Each ring buffer's output access mode must be record mode (see CREATE_RING_BUFFER).

• The number of bytes requested in the data-length parameter must not exceed the size of
the ring buffer(s) specified in the CREATE_RING_BUFFER request.

• The timeout-interval value is limited to a 31-bit positive integer; that is, the sign bit of the
high-order word must not be set. The maximum valid value, in milliseconds, permits a
timeout period of just over 24.89 days (see SLEEP for more detail).

• If you wish to use fewer than four ring buffer descriptor parameters, you must assign
them beginning with keyword SDB 1. You may not assign keyword parameters with higher
numbered suffixes unless all keywords with lower-numbered suffixes are assigned. For
example, if the parameter sequence specifies keyword SDB3, the sequence must also include
keywords SDB2 and SDB 1.

Ring Buffer Management Requests 15-21

Example

%INCLUDE 'COMPLX.PAS'

VAR
Ring_1, Ring_2, Ring_3 : RING_BUFFER_DESC;
Ch : CHAR;
Which_one : COMPLEX_FUNC_VALUE;
Timeout_val : LONG_INTEGER;

[PRIORITY(10), STACK_SIZE(100), NAME ('READER')] PROCESS Reader;
BEGIN

(* Get a character from one of three ring buffers. *)
Which_one := GET_ELEMENT_ANY

(LENGTH : = 1 ,
DATA := Ch,
SDB1 : = Ring_1,
SDB2 := Ring_2,
SDB3 := Ring_3);

(* Get a character from one of two ring buffers with timeout. *)
Timeout_val := 1000;
Which_one := GET_ELEMENT_ANY

(LENGTH : = 1 ,
DATA := Ch,
SDB1 := Ring_1,
SDB2 := Ring_2,
TIMEOUT:= Timeout_val);

END; (* Process Reader *)

Semantics

For clarity, the following description ignores the unlikely case of multiple waiting processes
for ring buffer output. That is, the description assumes that only one process is attempting to
get data from a given ring buffer, although GET--ELEMENT_ANY allows for the possibility of
multiple getters and guarantees sequential access, as does the basic GET_ELEMENT request.

The GET--ELEMENT_ANY function tests each of the ring buffers specified in the request for
two conditions: at least data-length bytes available or fewer than data-length bytes available.
The ring buffers are tested in the keyword order SDBl to SDB4.

The function returns the following values:

Value Meaning

0 Request timed out

1 Request satisfied by SDB 1

2 Request satisfied by SDB2

3 Request satisfied by SDB3

4 Request satisfied by SDB4

5 Error condition

15-22 Ring Buffer Management Requests

If any of the ring buffers contains at least data-length bytes at the time of the call, the function
transfers data-length bytes from the first such ring buffer encountered and returns to the caller,
with an integer value between 1 and 4 that indicates which ring buffer specified in the call
satisfied the request.

If all the ring buffers contain less than data-length bytes and a zero timeout-interval was
supplied in the call, the function returns immediately to the caller with a zero value, indicating
a return due to timeout. The calling process thus never leaves the run state in the case of an
immediate timeout.

If all the ring buffers contain less than data-length bytes and either no timeout-interval or a
nonzero timeout-interval was supplied in the call, the function switches the calling process to
the wait-active state. The process is blocked on each of the ring buffers specified in the request.
The calling process remains blocked on all the ring buffers until at least data-length bytes of
data (a full record) accumulates in any one of them. At that point, the function performs the
requested data transfer, unblocks the caller from all the ring buffers, and switches the caller to
the ready-active state and returns a nonzero ordinal value as described above.

In the case of process blocking described above, if a nonzero timeout-interval was supplied in
the call, the calling process is also blocked on an internal timer queue, as well as on one or
more ring buffers. If the specified timeout period expires at any point before the request can be
satisfied, the caller is removed from all blocking structures and is switched to the ready-active
state and returns a 0 value. Any partial record(s) accumulated at that point remain in the
respective ring buffer(s).

If an error occurs, the function returns a 5.

This request is implemented through the GELA$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; data-length value exceeds size of one

of the ring buffers specified in the request, or timer value out of range

ES$IPR (type: SYSTEM_SERVICE)-Illegal primitive; the output access mode of one of the
ring buffers is not record mode

ES$IST (type: SYSTEM_SERVICE)-Invalid structure descriptor; no such ring buffer exists

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; timer-value pointer is an odd address

Implementation Notes

Since the initial test of the ring buffers for a complete record is performed in determinate order,
the order in which multiple buffers are associated with the parameters in the call can be critical
under certain real-time conditions. For example, assume that the relative frequency of puts is
high for one of several ring buffers and that the "fast" ring buffer is identified as first by being
associated with keyword SDBl. In a series of calls to GET_ELEMENT_ANY, that ring buffer
will tend to be serviced far more often than the others, and the "slower" ring buffers may seldom
or never be tested and, serviced. Optimally, then, the ring buffer with the highest expected

Ring Buffer Management Requests 15-23

signal rate should be assigned to the keyword that is tested last; the next highest as next to
last, and so on, assuming that probable relative frequencies can be determined. Alternatively,
the order in which the ring buffers are identified could be rotated in successive calls so at least
N buffers are guaranteed to be tested in N calls to GET_ELEMENT_ANY.

As a contrary example, assume that the specified set of ring buffers represent device inputs (a
common use) and that one of the devices has the highest priority in terms of its need to be
serviced. The "service priority" might be independent of expected input rates, which if different
could be reflected by differing ring buffer sizes, for example. In that case, the highest-priority
buffer would be identified as first in the call to GET_ELEMENT_ANY, ensuring that that buffer
is always tested on any call.

The correct or best-case strategy depends on application-specific_ factors, of course.

15-24 Ring Buffer Management Requests

15.8 GET_VALUE
MACRO equivalent: GVAL$

The GET_ VALUE procedure obtains the value and type code of a specified structure. The code
identifies a structure as a binary, counting, or queue semaphore or as a ring buffer. The meaning
of the structure's value depends on the structure type. For example, the value of a counting
semaphore is the current signal count, whereas the value of a ring buffer is the current element
count.

Note
The value of a structure may change immediately after it is inspected. Therefore,
the information this request provides must be used cautiously, to prevent the
introduction of race conditions.

Syntax
GET_ VALUE (VALUE :=count

count

TYP := structure-type

{
DESC :=descriptor }
NAME:= name

[STATUS := status-record])

The identifier of a variable of type INTEGER that will receive the structure's value.

structure-type
The identifier of a variable of type INTEGER that will receive the structure's type code.

descriptor
The identifier of a variable of predefined type RING_BUFFER_DESC that contains the
semaphore's structure identifier. The variable must have been previously initialized by an
appropriate CREATE type request or an INIT_STRUCTURE_DESC request.

name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of an existing semaphore (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Ring Buffer Management Requests 15-25

Structure Type Identification Codes

The type codes and meaning of the values that the procedure can return are:

Structure

Binary semaphore

Counting semaphore

Queue semaphore

Ring buffer

PCB

SRD

Unformatted

Example

VAR

Type Code

0

1

2

3

4

5

7

Sem_val, Sem_typ : INTEGER;
Ring : RING_BUFFER_DESC;

[PRIORITY(10), STACK_SIZE(100)] PROCESS P1;
BEGIN

Meaning of Value Parameter

The value of the gate variable (0 or 1)

The count of pending signals (0 or positive)

The count of pending signals (0 or positive)

The count of data bytes in the ring buffer

No meaning

No meaning

No meaning

(* Get the value of an unnamed ring buffer. *)
GET_ VALUE

(VALUE := Sem_val, TYP := Sem_typ, DESC :=Ring);
(* Get the value of a named ring buffer. *)
GET_ VALUE

(VALUE:= Sem_val, TYP := Sem_typ, NAME := 'RING ');

END; (* Process P1 *)

Semantics

The GET_ VALUE procedure obtains the type code and structure value of the specified structure,
stores that information in the variables specified in the call, and returns control to the caller.

This request is implemented through the GVAL$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IPR (type: SYSTEM_SERVICE)-Illegal primitive; the descriptor or name parameter is a
logical name that does not translate to the name of a structure

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such structure exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

15-26 Ring Buffer Management Requests

15. 9 INIT_STRUCTURE_DESC
MACRO equivalent: GVAL$

The INIT_STRUCTURE_DESC procedure copies identifying information about a specified ring
buffer into a structure descriptor record. That record provides the kernel with a rapid-access
path to the ring buffer referred to in the other ring buffer management requests.

You may also set up a structure descriptor record by using the CREATE_RING_BUFFER request
when you create a ring buffer.

Syntax

INIT_STRUCTURE_DESC (DESC :=descriptor
NAME:= name
[STATUS :=status-record])

descriptor
The identifier of a variable of predefined type RING_BUFFER_DESC that will receive the
ring buffer's structure identifier.

name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that contains the 6-character name of an existing ring buffer (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Example

VAR
Ring : RING_BUFFER_DESC;

[PRIORITY(10), STACK_SIZE(100), NAME ('P1
BEGIN

')] PROCESS P1;

(*Get the id of the ring buffer named 'RING '. *)
INIT_STRUCTURE_DESC (DESC :=Ring, NAME:= 'RING ');

END; (* Process P1 *)

Semantics

The INIT_STRUCTURE_DESC procedure requests the kernel to copy the structur~ identifier,
consisting of the index and serial number associated with the structure identified in the name
parameter, into the structure descriptor record specified in the descriptor parameter.

This request is implemented through the GVAL$ kernel primitive.

Ring Buffer Management Requests 15-27

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such ring buffer exists

15-28 Ring Buffer Management Requests

15. l 0 PUT_ELEMENT
MACRO equivalent: PELM$

The PUT_ELEMENT procedure copies a specified number of data bytes from the caller's storage
area to a ring buffer. If the ring buffer has insufficient space -to contain the number of bytes
specified, the calling process blocks on the ring buffer until space becomes available.

In general, if two or more processes put data into the same ring buffer, the calling process
will block if another process is waiting for its PUT_ELEMENT request to be satisfied. In that
case, the calling process must wait its turn for access to the buffer, since sequential access to a
ring buffer is ensured among multiple writers as well as among multiple readers. The process
that blocks first is given active write access to the buffer and is never displaced by another,
higher-priority process, regardless of the ordering attribute of the waiting-input-process list.

If the ring buffer has stream mode, the data transfer may occur in increments while the process
is waiting. Essentially, stream-mode access permits a ring buffer to be smaller than the "records"
that may be passed through it.

The COND_PUT_ELEMENT is the conditional, or nonblocking, form of the PUT_ELEMENT
request.

The GET_ELEMENT and COND_GET_ELEMENT requests allow a process to extract bytes
from a ring buff er, freeing the corresponding space.

Syntax
PUT_ELEMENT (LENGTH := data-length

DATA := data-id

{
DESC := ring-buffer-descriptor }
NAME :=ring-buffer-name

[STATUS := status-record])

data-length
A constant or the identifier of a variable of type RING_BUFFER_DATA that specifies the
number of bytes of data to copy into the ring buffer. This value is the length of the data
identified by the data-id parameter.

data-id
The identifier of the variable (buffer) that contains data to be copied into the ring buffer.

ring-buffer-descriptor
The identifier of a variable of predefined type RING_BUFFER_DESC that contains the
ring buffer's structure identifier. The variable must have been previously initialized by a
CREATE_RING_BUFFER or an INIT_STRUCTURE_DESC request.

ring-buffer-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that contains the 6-character name of an existing ring buffer (see Section 11.1.1.1).

Ring Buffer Management Requests 15-29

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Restriction

If the ring buffer's input access mode is record mode, the number of bytes specified by
the data-length parameter must not exceed the size of the ring buffer (as specified in the
CREATE_RJNG_BUFFER request); otherwise, the request will never be successful.

Example
VAR

Ring_1 : RING_BUFFER_DESC;

[PRIORITY(10), STACK_SIZE(100), NAME ('WRITER')] PROCESS Writer;
BEGIN

(* Put a character into an unnamed ring buffer. *)
PUT_ELEMENT (LENGTH := 1,

DATA := 'A',
DESC := Ring_1);

(* Put a character into a named ring buffer. *)
PUT_ELEMENT (LENGTH := 1,

DATA := 'A'.
NAME:= 'RING1 ');

END; (* Process Writer *)

Semantics

If no other process is waiting to put data into the ring buffer, the PUT_ELEMENT procedure
tests the ring buffer for the number of bytes of available space specified by the data-length
parameter. If at least that amount of space is available, the procedure copies the data from the
variable specified by the data-id parameter to the ring buffer and returns control to the caller.

If the ring buffer has insufficient space for the entire transfer and the input access mode is
RECORD-MODE, the procedure blocks the calling process with active write access to the ring
buffer and calls the scheduler. When enough additional space becomes available as a result of
one or more subsequent GET-ELEMENT, COND_GET_ELEMENT, or GET_ELEMENT-ANY
requests, the transfer is performed, and the waiting process is unblocked.

If the ring buffer has insufficient space for the entire transfer and the input access mode is
stream mode, the procedure blocks the caller with active write access to the ring buffer, copies
the bytes that can be accommodated, if any, and calls the scheduler. When enough additional
space becomes available as a result of one or more subsequent GET-ELEMENT operations,
the transfer is completed (possibly by a series of partial transfers) and the waiting process is
unblocked.

15-30 Ring Buffer Management Requests

If other processes are waiting to put data into the ring buffer at the time of the call, implying
that some other process has active write access, the calling process is also blocked and is added
to the ring buffer's list of waiting-to-put processes at a position below the head of the list.
Processes are queued on the waiting process list in either FIFO or priority order, depending on
the ring buffer definition (see the CREATE_RING_BUFFER function). (A process with active
access is never displaced by another process, regardless of relative priorities.) The process waits
its turn to gain active write access, at which point the process is treated as described above.

This request is implemented through the PELM$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; the value of the data-length parameter
exceeds the size of the ring buffer for a record-mode operation

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such ring buffer exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to buffer or structure is odd or

not in user address space

Ring Buffer Management Requests 15-31

15. 11 RESET_RING_BUFFER
MACRO equivalent: RBUF$

The RESET_RING_BUFFER procedure resets a ring buffer by emptying it of data bytes. This
procedure allows a process to cancel an I/O sequence and to effectively empty the associated
ring buffer without issuing multiple GET_ELEMENT requests.

This request is like a GET_ELEMENT request in that the calling process is treated as a "getting"
process for synchronization. That is, if any other process is blocked on the ring buffer, waiting
for a GET_ELEMENT request to be satisfied, the calling process is blocked and must wait its
turn for read access to the buffer in the same manner as it would for a GET_ELEMENT request.

Note
The RESET_RING_BUFFER request does not inhibit a concurrent attempt by
another process to copy bytes into the buffer. Thus, in certain applications the
ring buffer may not be empty by the time that control returns to the caller.

Syntax

RESET_RING_BUFFER ({ DESC := ring-buffer-descriptor }
NAME :=ring-buffer-name

[STATUS := status-record])

ring-buffer-descriptor
The identifier of a variable of predefined type RING_BUFFER_DESC that contains the
ring buffer's structure identifier. The variable must have been previously initialized by a
CREATE_RING_BUFFER or an INIT_STRUCTURE_DESC request.

ring-buffer-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that contains the 6-character name of an existing ring buffer (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Example

VAR
Ring_! : RING_BUFFER_DESC;

[PRIORITY(10), STACK_SIZE(100), NAME ('Pi
BEGIN

(* Reset an unnamed ring buffer. *)
RESET_RING_BUFFER (DESC := Ring_!);

(* Reset a named ring buffer. *)
RESET_RING_BUFFER (NAME 'RING! ');

END; (* Process Pi *)

15-32 Ring Buffer Management Requests

')] PROCESS Pi;

Semantics

If no other process is waiting to obtain bytes from the ring buffer, the RESET_RING_BUFFER
procedure deletes any available bytes from the buffer and returns control to the caller.

If another process is waiting to obtain bytes from the ring buffer, the procedure places the
calling process on the ring buffer's waiting-to-get process list at a position below the head of
the list (as described for a GET_ELEMENT request) and calls the scheduler. When the blocked
process gains read access to the ring buffer, the buffer is emptied, and the process is unblocked.

This request is implemented through the RBUF$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Illegal structure descriptor; no such ring buffer exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

Ring Buffer Management Requests 15-33

Chapter 16
Interrupt Management Requests

This chapter describes the requests that let a process establish a connection to an interrupt vector
so the process can respond to the occurrence of an interrupt. Those requests, implemented
through the predeclared procedures listed in Table 16-1, are the Pascal language interface to
the services provided by the kernel's interrupt management primitives. The requests let device
handlers written in Pascal associate interrupts with their interrupt service routines (ISRs) and
signal semaphores when interrupts occur.

Chapter 7 of the MicroPower /Pascal Run-Time Services Manual contains detailed information
on MicroPower /Pascal device handling, focusing on ISRs and their association with device
handlers. You should be thoroughly familiar with the contents of that chapter.

You must include in your program or module the definitions of the routines that implement the
requests described in this chapter before using them. See Appendix I for more information.

Table 16-1 summarizes these requests.

Table 16-1: Interrupt Management Requests

Request

CONNECT_INTERRUPT

CONNECT_SEMAPHORE

DISCONNECT_INTERRUPT

DISCONNECT_SEMAPHORE

Operation

Associates an interrupt vector with an interrupt
service routine to establish a process as a device
handler

Associates an interrupt vector with a semaphore so
the semaphore is signaled each time an interrupt
occurs

Breaks the connection between an interrupt vector
and an interrupt service routine so interrupts from
that vector are ignored

Breaks the connection between an interrupt vector
and the semaphore to which it was connected so
interrupts from the vector are ignored

Interrupt Management Requests 16-1

The CONNECT_SEMAPHORE/DISCONNECT_SEMAPHORE combination can be used where
interrupts occur at a relatively low rate for the amount of data being transmitted, as with
direct memory access (OMA) devices that generate an interrupt when a block of data has been
transferred or with slow devices, such as terminals. Those procedures let you perform device
servicing at process level by using a semaphore to communicate the occurrence of an interrupt.

The CONNECT-INTERRUPT /DISCONNECLJNTERRUPT combination is used where inter
rupts occur at a relatively high rate for the amount of data being obtained, as with fast data
rate serial devices like DECtape II, which generate an interrupt for each character. Using
these procedures, you must create your own interrupt service routine in MACR0-11 assembly
language to perform device servicing at interrupt level rather than at process level. Doing so
eliminates the overhead cost of process-context switching for each interrupt.

16-2 Interrupt Management Requests

16. 1 CONNECT_INTERRUPT
MACRO equivalent: CINT$

The CONNECT-1NTERRUPT procedure associates an interrupt vector with an interrupt service
routine (ISR) specified in the call. The procedure allows a process to establish itself as a device
handler and, unlike the CONNECT_SEMAPHORE procedure, allows the process to define the
ISR code segment. The ISR must be coded in MACR0-11 assembly language. Chapter 7 of
the MicroPower /Pascal Run-Time Services Manual describes the coding requirements for ISRs.

This request is normally used only by a process declared with the DEV_ACCESS or the
DRIVER attribute, since access to the I/O page is generally required for device handling (see
Section 10 .1.2).

Syntax
CONNECT-1NTERRUPT (PIC := pie-indicator

ISR := isr-entry-point

pie-indicator

IMPURE :=impure-area-pointer
[VALUE := r4-value]
PS :=program-status-word
VECTOR := interrupt-vector-address)

The identifier of a variable of type BOOLEAN; when TRUE, indicates that the ISR is written
in position-independent code (PIC).

isr-entry-point
The name of an external procedure that names the MACR0-11 global identifier for the ISR.

impure-area-pointer
The identifier of a variable of predefined type UNIVERSAL that will be passed to the ISR
in processor register R3.

r4-value
A constant or the identifier of a variable of type UNSIGNED that specifies an arbitrary
value to be passed to the ISR in processor register R4 on interrupt dispatch. The default
value is 0. (Typical uses of this argument are to pass a device address, table index, or other
means of identifying the vector causing the interrupt, in the case of an ISR connected to
several vectors.)

program-status-word
A constant or the identifier of a variable of predefined type PRIORITY_RANGE that
specifies the content of the PSW desired on dispatch to the ISR. This argument has the form
[PS:=]word-value, with the effective PSW value in the low byte. The primary effect of this
parameter is to set the processor priority level at which the ISR is to execute when entered.
If priority-level 7 is requested (that is, PS = 340(octal)), a special form of ISR dispatching is
implied (see Chapter 7 of the MicroPower /Pascal Run-Time Services Manual). You can also
set the CC bits with this argument, but not the T-bit.

Interrupt Management Requests 16-3

interrupt-vector-address
A constant or the identifier of a variable of predefined type UNSIGNED that specifies the
address of the interrupt vector to be connected to the ISR.

Restriction

A module that contains a CONNECLJNTERRUPT request should not be added to a supervisor
mode shared library.

Example

TYPE
Unit_range = 0 .. 15;

VAR
Unit : Unit_range;
Impure_ptr : UNIVERSAL;

[EXTERNAL(consol)] PROCEDURE Console; EXTERNAL;

[INITIALIZE] PROCEDURE Init;
BEGIN

(*Set up to catch interrupts through vector 60(octal). *)
CONNECT_INTERRUPT

(PIC := TRUE, (* The ISR is position independent. *)
ISR := CONSOLE, (* External Interrupt Service Routine *)
IMPURE := Impure_ptr, (* Pointer to impure area *)
VALUE :=unit, (* Contents of R4 at entry to ISR *)
PS := %0'200', (*Priority 4 *)
VECTOR:= %0'60');

END; (* Procedure Init *)

Semantics

The CONNECLJNTERRUPT procedure sets up the interrupt dispatch block (IDB) associated
with the specified vector to cause interrupts to be dispatched to the specified ISR entry point.
The procedure also identifies the caller as the process owning the connected vector (see the
DISCONNECT_INTERRUPT procedure).

This request is implemented through the CINT$ kernel primitive.

Note
Chapter 7 of the MicroPower /Pascal Run-Time Services Manual contains infor
mation closely related to the use of CONNECT_INTERRUPT and the coding
of ISRs. The chapter describes interrupt dispatching, which is affected by cer
tain CONNECT_INTERRUPT parameters (especially the PSW value) and the
kerneljISR interface.

16-4 Interrupt Management Requests

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$AOV (type: SYSTEM_SERVICE)-Already owned vector; the specified vector is already

connected

ES$IAD (type: SYSTEM_SERVICE)-lnvalid address; invalid ISR mapping (mapped systems
only)

ES$IVC (type: SYSTEM_SERVICE)-Illegal vector; the specified vector address is less than
60(octal) or beyond the valid range of vectors established at build time (PROCESSOR
macro)

ES$NID (type: SYSTEM_SERVICE)-No IDB established for vector; the vector address was
not specified in the DEVICES macro of the system configuration file

Interrupt Management Requests 16-5

16.2 CONNECT_SEMAPHORE
MACRO equivalent: CINT$

The CONNECT_SEMAPHORE procedure associates an interrupt vector with a binary or a
counting semaphore so the semaphore is signaled each time an interrupt occurs through that
vector. A process can thus establish itself as a device handler.

This request is normally used only by a process declared with either the DEV-ACCESS or the
DRIVER attribute, since access to the 1/0 page is generally required for device handling (see
Section 10.1.2).

Syntax
CONNECT_SEMAPHORE (VECTOR := interrupt-vector-address

PS :=program-status-word
DESC := sem-descriptor
[NAME:= sem-name]
[STATUS :=status-record])

Interrupt-vector-address
A constant or the identifier of a variable of type UNSIGNED that specifies the address of
the interrupt vector to be connected to the specified semaphore.

program-status-word
A constant or the identifier of a variable of predefined type PRIORITY-RANGE that
specifies the content of the PSW desired on dispatch to the JSR. This argument has the form
[PS:=]word-value, with the effective PSW value in the low byte. The primary effect of this
parameter is to set the processor priority level at which the ISR is to execute when entered.

sem-descrlptor
The identifier of a variable of predefined type SEMAPHORE_DESC that contains the
semaphore structure identifier. The variable must have been previously initialized
by a CREATE_BINARY_SEMAPHORE, a CREATE_COUNTING_SEMAPHORE, or an
INIT_STRUCTURE_DESC request.

sem-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of a binary or a counting semaphore.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Restrictions

The specified semaphore must not be a queue semaphore.

16-6 Interrupt Management Requests

Examples

1. The following program segment shows how to use CONNECT_SEMAPHORE to connect
to the clock interrupt vector.

VAR
Isr_sem : SEMAPHORE_DESC;

PROCEDURE Tick;
BEGIN

WHILE TRUE DO
BEGIN

WAIT (DESC := Isr_sem);
WRITELN ('Tick');

END;
END; (* Procedure Tick *)

[INITIALIZE] PROCEDURE Init;
BEGIN

(* Set up to catch interrupts from the clock. *)
CONNECT_SEMAPHORE (VECTOR:= %0'100', (*The clock*)

PS := %0'300', (*Priority 6 *)
DESC Isr_sem);

END; (* Procedure Init *)

2. This program is a device driver for a DL serial line.

[DATA_SPACE(3000),PRIORITY(200)] PROGRAM xl;

TYPE
rcver = PACKED RECORD

interrupt_ enable
done
datai

[POS(6)] BOOLEAN;
[POS(7)] BOOLEAN;
[POS(16)] CHAR;
[POS(31)] BOOLEAN; error

END;
xmitter = PACKED RECORD

VAR

interrupt_enable [POS(6)] BOOLEAN;
ready [POS(7)] BOOLEAN;
datao [POS(16)] CHAR;
error [POS(31)] BOOLEAN;

END;

receiver [AT(%0'176500'), VOLATILE] rcver;
transmitter : [AT(%0'176504'), VOLATILE] xmitter;
in_rb,out_rb : RING_BUFFER_DESC;
in_interrupt, out_interrupt : SEMAPHORE_DESC;
xl_error : BOOLEAN;
i : INTEGER;

Interrupt Management Requests 16-7

[INITIALIZE] PROCEDURE a;
BEGIN

IF (CREATE_RING_BUFFER (DESC:=in_rb,
NAME:='XLIO
SIZE:=80)

AND CREATE_RING_BUFFER (DESC:=out_rb,
NAME:='XLOO , SIZE:=80)

AND CREATE_BINARY_SEMAPHORE (DESC:=in_interrupt,
NAME:='INTRPT')

AND CREATE_BINARY_SEMAPHORE (DESC:=out_interrupt,
NAME:='OUTRPT'))

THEN xl_error := TRUE
ELSE xl_error := FALSE;

CONNECT_SEMAPHORE (VECTOR:=Y.0'300',
PS:=O,
DESC:=in_interrupt);

CONNECT_SEMAPHORE(VECTOR:=Y.0'304',
PS:=O,
DESC:=out_interrupt);

END;

[TERMINATE] PROCEDURE b;
BEGIN

DISCONNECT_SEMAPHORE(VECTOR:=Y.0'300');
DISCONNECT_SEMAPHORE(VECTOR:=Y.0'304');
DISCONNECT_SEMAPHORE(VECTOR:=Y.0'100');
CLOSE(INPUT);
CLOSE(OUTPUT);
DESTROY(NAME:='XLIO ');
DESTROY(NAME:='XLOO ');
DESTROY(NAME:='OUTRPT');
DESTROY(NAME:='INTRPT');

END;

[PRIORITY(210)] PROCESS rev;
VAR c : CHAR;
BEGIN

WITH receiver DO
BEGIN

interrupt_enable := TRUE;
WHILE TRUE DO

BEGIN
WAIT (in_interrupt);
c := datai;
IF NOT error
THEN PUT_ELEMENT (DESC:=in_rb,

DATA:=c,
LENGTH:=1)

ELSE xl_error :=TRUE;(* record that

END;
END;

END;

16-8 Interrupt Management Requests

error occurred *)

[PRIORITY(209)] PROCESS xmt;
VAR c : CHAR;
BEGIN

WITH transmitter DO
BEGIN

interrupt_enable:=true;
WHILE TRUE DO

BEGIN
WAIT(DESC:=out_interrupt);
GET_ELEMENT (DESC:=out_DATA:=c, length:=1);
datao := c;

END;
END;

END;

BEGIN (* main program *)
OPEN(INPUT, 'XLIO: ');
OPEN(OUTPUT,'XLOO:');
RESET(INPUT);
REWRITE(OUTPUT);
rcv(NAME:='rcv ');
xmt(NAME:='xmt ');
WHILE TRUE DO

END.

BEGIN
WRITE('Enter number : ');
READLN (i);
WRITELN ('The number you typed was ' i:1);

END; {WHILE TRUE DO ... }

Semantics

The CONNECT_SEMAPHORE procedure sets up the IDB associated with the specified vector
to cause interrupts to be dispatched to a predefined ISR. This ISR signals the semaphore each
time an interrupt for that vector occurs. The procedure also identifies the caller as the process
owning the connected vector (see the DISCONNECT_SEMAPHORE procedure).

This request is implemented through the CINT$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$AOV (type: SYSTEM SERVICE)-Already owned vector; the specified vector is already

connected
,

ES$IAD (type: SYSTEM_SERVICE)-Invalid address; invalid ISR mapping (mapped memory
environments only)

ES$IVC (type: SYSTEM_SERVICE)-Illegal vector; the specified vector address is less than
60(octal) or beyond the valid range of vectors established at build time (PROCESSOR
macro)

ES$NID (type: SYSTEM_SERVICE)-No IDB established for vector; the vector address was
not specified in the DEVICES macro of the system configuration file

Interrupt Management Requests 16-9

16.3 DISCONNECT_INTERRUPT
MACRO equivalent: DINT$

The DISCONNECT_INTERRUPT procedure breaks the connection between an interrupt vector
and the JSR to which the procedure is connected. Further interrupts through that vector are
ignored.

This procedure can be used only by the current owner of the vector, such as a termination
procedure for a device driver process. (DISCONNECT-1NTERRUPT will not ordinarily be used
in a dedicated system environment but is supplied for functional completeness.)

Syntax

DISCONNECT_INTERRUPT (VECTOR :=interrupt-vector-address)

interrupt-vector-address
The identifier of a variable of type UNSIGNED that specifies the address of the interrupt
vector to be disconnected from the JSR.

Restrictions

• The specified vector, if connected, must have been connected by the calling process.

• A module that contains a CONNECT-1NTERRUPT request should not be added to a
supervisor-mode shared library.

Example

[TERMINATE] PROCEDURE Term;
BEGIN

(*Stop fielding interrupts through vector 60(octal). *)
DISCONNECT_INTERRUPT (VECTOR:= %0'60');

END; (* Procedure Term *)

Semantics

The DISCONNECT-1NTERRUPT procedure reinitializes the IDB associated with the specified
vector to point to the kernel's null (do nothing) JSR. The null JSR dismisses any interrupts from
unconnected vectors, after incrementing. an unsolicited-interrupt counter.

If the specified vector is not connected at the time of the call, the procedure returns an illegal
vector (ES$IVC) error.

This request is implemented through the DINT$ kernel primitive.

16-10 Interrupt Management Requests

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$IVC (type: SYSTEM_SERVICE)-Illegal vector; the specified vector address is less than

60(octal), or beyond the valid range of vectors established at build time (PROCESSOR
macro}, or is not connected or not owned by the calling process

Interrupt Management Requests 16..::.11

16.4 DISCONNECT_SEMAPHORE
MACRO equivalent: DINT$

The DISCONNECT_SEMAPHORE procedure breaks the connection between an interrupt vector
and the semaphore to which the procedure is connected. Further interrupts through that vector
are ignored.

This procedure can be used only by the current "owner" of the vector, such as a termination
procedure for a device driver process. (DISCONNECT_SEMAPHORE will not ordinarily be
used in a dedicated system environment but is supplied for functional completeness.)

Syntax

DISCONNECT_SEMAPHORE (VECTOR := interrupt-vector-address
[STATUS := status-record D)

interrupt-vector-address
A constant or the identifier of a variable of type UNSIGNED that specifies the address of
the interrupt vector to be disconnected from the specified semaphore.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Example

[TERMINATE] PROCEDURE Term;
BEGIN

(* Stop fielding interrupts from the clock. *)
DISCONNECT_SEMAPHORE (VECTOR := %0'100');

END; (* Procedure Term *)

Semantics

The DISCONNECT_SEMAPHORE procedure reinitializes the IDB associated with the specified
vector to point to the kernel's null (do nothing) JSR. The null JSR dismisses any interrupts from
unconnected vectors, after incrementing an unsolicited-interrupt counter.

If the specified vector is not connected at the time of the call, the procedure returns control
immediately to the caller, and no operation is performed.

This request is implemented through the DINT$ kernel primitive.

16-12 Interrupt Management Requests

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$IVC (type: SYSTEM_SERVICE)-Illegal vector; the specified vector address is less than

60(octal) or beyond the valid-range of vectors established at build time (PROCESSOR
macro)

Interrupt Management Requests 16-13

Chapter 17
Exception Management Requests

This chapter describes the requests that let a process or a procedure manage the exceptions that
may occur during application program execution. Those requests are the Pascal language
interface to the services provided by the kernel's exception-handling primitives. Those
procedures direct the dispatching and reporting of hardware and software exceptions to
appropriate exception routines that you create.

The definitions of the routines that implement the requests described in this chapter must be
included in your program or module before using them. See Appendix I for more information.

Table 17-1 summarizes the functions of the predeclared exception management requests.

Table 17-1: Exception Management Requests

Request

CONNECT_EXCEPTION

DISCONNECT_EXCEPTION

ESTABLISH

RELEASE_EXCEPTION

REPORT

REVERT

WAIT_EXCEPTION

Operation

Establishes a process as the exception handler for a group
of processes and for a specified exception type

Reverses the operation performed by the CONNECT_
EXCEPTION procedure

Establishes a procedure as the exception handler for excep
tions caused by the invoking process

Releases a process from the exception-wait state. The
process may be passed to an exception-handling procedure
for further processing, reinstated for normal operation, or
aborted

Allows a process to declare a software exception or to
simulate a hardware exception or processor trap

Reverses the operation performed by the ESTABLISH pro
cedure

Allows an exception-handling process to be notified that an
exception occurred

Exception Management Requests 17-1

An exception is a significant event associated with a processor trap (usually representing a
hardware-detected error), a software-detected error, or other special condition. The condition
indicated by an exception, such as a memory fault or an unavailable resource, generally casts
doubt on the ability of the running process to continue normal execution. Exceptions, therefore,
are essentially a kind of interrupt that, unlike I/O interrupts, causes a change in the flow
of control within the running process. The kind of change depends on the kind of exception
processing, if any, provided for the particular process and for the exception condition in question.
The process may be switched to the exception-wait state, to await "attention" by a separate
exception-handling process, control may be redirected to the process's own exception-service
routine or procedure, or the process may be aborted-forced to an abnormal termination into
the inactive state. (Any "unhandled" exception is fatal, causing the process to abort.)

Although 16 types of exceptions are defined for MicroPower /Pascal and many possible exception
conditions exist within a given exception type, all exceptions can be loosely grouped into two
categories: hardware exceptions and software exceptions. (Software exceptions constitute by far
the larger category.) The characteristics of each category are as follows:

• Hardware exceptions result from p~ocessor traps that cause an exception to be raised directly
and unconditionally by the kernel. (All traps except IOT, debugger-set breakpoint, and
power-fail/restart, cause an exception.) Hardware exceptions represent either a hardware
detected error resulting from an instruction failure (an implicit error trap) or a special
condition signaled by the intentional execution of a trap instruction in user code (an
explicit "service trap"). Hardware-detected error conditions include bus timeouts, illegal or
nonexistent addresses, illegal or reserved instructions, memory-parity errors, and memory
protection faults.

The service traps are caused by EMT, TRP, and-possibly-BPI instructions. The BPT
instruction, however, is used by the P ASDBG symbolic debugger for setting dynamic
breakpoints and thus is not recommended for use in source code. (The remaining trap
instruction, IOT, implements normal entry to the kernel for primitive services and cannot
be used for any other purpose.) Although trap instructions cannot be coded in a Pascal
program, they can be simulated if necessary with the REPORT procedure.

• Software exceptions represent an error or other special condition that is detected by software
and is conditionally raised as an exception via the Pascal REPORT procedure. In most cases,
the condition is detected by a system software component, such as a kernel primitive or
a system service process, which, in the case of some real-time and I/O requests, reports
the condition back to the requesting process through the optional STATUS parameter,
leaving the exception reporting to the discretion of the user process. The STATUS
parameter (Section 11.1.2) is provided with those requests where a potential recovery
is possible. The STATUS parameter suppresses the otherwise implicit, automatic reporting
of SYSTEM_SERVICE and RESOURCE type exceptions by the Pascal OTS routines that
support primitive service calls.

17-2 Exception Management Requests

Many other software exceptions (mostly relating to 1/0 and arithmetic functions) are
unconditionally reported as such by the generated code.

MicroPower/Pascal software allows you to create exception management routines at both the
process and procedure levels.

An exception-handling process is one that has identified itself to the kernel by issuing a
CONNECT_EXCEPTION request. This process manages exceptions for a group of processes
specified by the GROUP parameter of the process declaration.

An exception-handling procedure is one that has been identified to the kernel in an ESTABLISH
request issued by a process. An exception procedure manages exceptions for its parent process
when an exception process either does not exist or dispatched the exception to it.

The hierarchical relationship of exception processes to exception procedures permits the im
plementation of a system-wide exception-handling policy. Chapter 6 of the MicroPower /Pascal
Run-Time Services Manual provides detailed information about the kernel's exception manage
ment strategy.

l 7. l Exception Types and Codes
Exceptions listed in Table 17-2 are categorized by type and code. The exception types identify
the major exception categories and are members of the set type EXC_SET. The codes identify
specific exceptions. The asterisks (*) in the table identify unconditional, kernel-raised exceptions
that apply equally to Pascal and MACR0-11 processes.

Note
Do not confuse an exception type with an exception group, which is an attribute
of a process. The exception group is a value that is specified when a process is
created or declared. The group parameter (GROUP attribute) declares a process
to be a member of a group for exception-handling purposes. (An exception
group is a set of processes grouped because of common exception-handling
requirements.) The group is then used to associate one or more exception
handlers with a particular exception group.

The MicroPower/Pascal messages manual applicable to your host environment describes each
exception in greater detail along with suggested recovery procedures.

Table 17-2: Exception Types and Codes

Type Code

Not Applicable

ES$NOR

MEMORYJAULT *

ES$BUS *

ES$MEM

Description

Normal or successful completion of an operation. It is returned by
the Pascal OTS only when you select the optional STATUS parameter
provided with many of the requests.

Bus error: illegal address, timeout; trap to vector 4

Unspecified memory fault (subcode = O); should never be encountered

Exception Management Requests 17-3

Table 17-2 (Cont.): Exception Types and Codes

Type Code Description

ES$MPT * Memory-parity error, where applicable; trap to vector 114

ES$MMU * Memory protection error, mapped targets only; trap to vector 250

ES$VEC * Vector fetch error, FALCONs only; trap to vector 0

ILLEGAL_QPERATION *

ES$FOP *

ES$ILL •

ES$10P

FP-11 floating-point opcode error; trap to vector 244

Illegal or reserved instruction; trap to vector 10

Unspecified illegal operation (subcode = O); should never be encoun
tered

EMULATOR_TRAP *

ES$EMT *

EMT instruction executed; trap to vector 30

EMT instruction with a zero operand (subcode = 0)

TRAP*

ES$xxx * User-defined EMT exception codes, with subcode value from 1 to 255
matching EMT instruction operand

TRAP instruction executed, trap to vector 34

ES$TRP * TRAP instruction with a zero operand (subcode = 0)

ES$xxx * User-defined TRAP exception codes, with subcode value from 1 to
255 matching TRAP instruction operand

BREAKPOINT_TRAP * These errors are not generated by PASDBG.

HARD_IQ

ES$BPT * User-coded BPT instruction executed; trap to vector 14

ES$ABT

ES$ATN

ES$BOT

ES$CTL

ES$DAL

ES$DRV

ES$EVL

ES$FOR

ES$FRM

ES$HIO

Hard 1/0 errors returned a driver or communications process;
corresponding exceptions are raised by the Pascal OTS

1/0 request canceled by user or aborted by remote node

Device attention required

BOT (beginning of tape) encountered

Controller error

Device already allocated

Drive error

End of volume

Format error

Framing error

Unspecified hard I/O error (subcode = O); should never be encoun
tered

17-4 Exception Management Requests

Table 17-2 (Cont.):

Type

SOFT_IO

Code

ES$IBN

ES$IDA

ES$IVD

ES$IVM

ES$IVP

ES$NXM

ES$NXU

ES$0FL

ES$0VF

ES$0VR

ES$PAR

ES$PNA

ES$PWR

ES$SPD

ES$TIM

ES$UNS

ES$WLK

ES$ABO

ES$BIV

ES$DAS

ES$DCF

ES$DIO

ES$DNU

ES$DRF

ES$DVF

ES$EOF

Exception Types and Codes

Description

Invalid block number

Invalid device address

Invalid data

Invalid mode

Invalid parameter

Nonexistent or read-only memory

Nonexistent unit

Device off line or not mounted

Data overflow

Device overrun

Parity error

Packet not available to support request

Device power failure

1/0 processing stopped

Device timeout

Unsafe volume

Write-locked unit

Soft 1/0 errors or special conditions, primarily returned by a driver,
ACP, or communications process; the corresponding exceptions are
raised by the Pascal OTS if the condition is unexpected. (Certain
errors are detected as well as reported by the Pascal OTS.)

1/0 aborted

Illegal Boolean value

Direct access requested on sequential file

Device full

Directory 1/0 error

Destination node is unreachable

Directory full

Attempt to signal device driver or ACP failed (detected by the OTS,
ACP, or a communications process)

End of file encountered; not normally an error (detected by the ACP)

Exception Management Requests 17-5

Table 17-2 (Cont.):

Type Code

ES$FAO

ES$FIV

ES$FNF

ES$FNO

ES$FNR

ES$FNW

ES$FRO

ES$FVC

ES$ICD

ES$IDR

ES$IDS

ES$IFN

ES$1FS

ES$1FW

ES$IIV

ES$ILV

ES$1NS

ES$1RS

ES$1UP

ES$1VL

ES$LRJ

ES$NFS

ES$NIP

ES$NRF

ES$PAL

ES$PRO

ES$REF

ES$RSZ

ES$SIO

Exception Types and Codes

Description

File already open

Illegal floating-point value

File not found

File not open

File not reset

File not rewritten

File is read-only: invalid write to OLD disk file

File-variable contention error

Invalid driver configuration data

Invalid directory format

Illegal device specification

Illegal function

Illegal file specification

Illegal field width

Illegal integer value

Illegal long integer value

Invalid network specification

Illegal rename specification

Illegal use of UPDATE parameter

Invalid length specified

Link rejected by remote task

Device not file structured

No 1/0 in progress

No reference data present

Path to remote task has been lost

File protection error

Attempted read past EOF

Record size of 0 specified

Unspecified soft 1/0 error (subcode = O); should never be encountered

17-6 Exception Management Requests

Table 17-2 (Cont.):

Type

NUMERIC•

RESOURCE

Code

ES$TNF

ES$UFN

ES$UIV

ES$WEF

ES$CON •

ES$FDZ •

ES$FOV •

ES$FUN *

ES$IDZ

ES$INM

ES$IOV

ES$LDZ

ES$LIC

ES$LNM

ES$LNP

ES$LOV

ES$LUC

ES$NUM

ES$SRN

ES$UDV •

ES$UDZ

ES$UOV

ES$DDP

ES$LNR

ES$NFA

Exception Types and Codes

Description

Task not found

Unsupported function

Illegal unsigned value

Attempted write past EOF

Numeric errors reported either by the kernel (floating-point traps) or
by Pascal runtime checks

Floating-point conversion error (FP-11 only)

Floating-point divide by 0 (FP-11 or FIS)

Floating-point overflow (FP-11 or FIS)

Floating-point underflow (FP-11 or FIS)

Integer divide by 0 (Pascal MATHCHECK option)

Modulus of negative integer (Pascal MOD function)

Integer overflow (Pascal MATHCHECK option)

Long integer divide by 0 (Pascal OTS)

Long integer to integer conversion error (Pascal OTS)

Modulus of negative long integer (Pascal OTS)

Log of nonpositive value (Pascal LN function)

Long integer overflow (Pascal OTS)

Long integer to unsigned conversion error

Unspecified numeric error (subcode = 0); should never be encountered

Square root of negative value (Pascal SQRT function)

Undefined floating-point variable (FP-11 only)

Unsigned divide by 0 (Pascal EIS/FIS/FPP OTS only)

Unsigned overflow (Pascal EIS/FIS/FPP OTS only)

Resource errors, either returned by a primitive or system process and
optionally reported by the Pascal OTS, or detected and reported only
by the Pascal OTS

DISPOSE of already disposed pointer

Local node has no room for logical link

No free APR for window mapping

Exception Management Requests 17-7

Table 17-2 (Cont.): Exception Types and Codes

Type

RANGE*

Code

ES$NFR

ES$NLZ

ES$NMB

ES$NMC

ES$NMF

ES$NMK

ES$NMP

ES$NMS

ES$NNS

ES$RNR

ES$RSC

ES$ASO

ES$CSO

ES$NIL

ES$PCC

ES$RAN

ES$SEO

ES$STO *

ES$STU *

ES$VSE

EXECUTION*

ES$BRK *

ES$EXC

SYSTEM_SERVICE

Description

No free RAM

NEW request of length 0

Insufficient data space for 1/0 buffer

Insufficient space for operation in RTACP pool

Insufficient data space for file variable

Insufficient pool space for kernel structure

Insufficient data space for user structure

Insufficient data space for stack

No network service process installed

Remote node has no room for logical link

Unspecified resource error (subcode = O); should never be encountered

Range errors, detected and reported by Pascal runtime checks only,
except as noted

Array subscript out of bounds (Pascal INDEXCHECK option)

Case selector out of range (Pascal RANGECHECK option)

Reference of a NIL pointer (Pascal POINTERCHECK option)

Program consistency check; should not occur

Unspecified range error (subcode = O); should never be encountered

Set element out of range (Pascal RANGECHECK option)

Stack overflow (detected either by kernel or Pascal STACKCHECK
option)

Stack underflow (detected either by kernel or Pascal STACK CHECK
option)

Variable subrange exceeded (Pascal RANGECHECK option)

Execution error, pertaining to a FALCON or FALCON-PLUS target
configuration option only

FALCON break trap, if configured; trap to vector 140

Unspecified execution error (subcode = O); should never be encoun-
~red ·

System service errors returned mostly by primitive operations and
optionally reported by the Pascal OTS; a few are detected and reported
by the Pascal OTS only.

17-8 Exception Management Requests

Table 17-2 (Cont.):

Type Code

ES$AOV

ES$CDN

ES$EPN

ES$IAD

ES$IPM

ES$IPR

ES$IST

ES$IVC

ES$MDN

ES$NID

ES$RDE

ES$SIU

ES$SNI

ES$SVC

RESERVED_l

RESERVED_2

USER_l

USER_2

ES$US1

ES$xxx

ES$US2

ES$xxx

Exception Types and Codes

Description

Already owned vector, cannot connect

Cannot specify both descriptor and name

Exception procedure not defined (Pascal REVERT request)

Invalid address: odd or not in user space

Illegal parameter

Illegal primitive

Invalid structure descriptor

Illegal vector address

Must specify descriptor or name

No interrupt dispatch block configured for vector

Reply descriptor expected by RECEIVE_ACK

Structure is in use

Structure name already in use

Unspecified system service exception (subcode = O); should never be
encountered

(Reserved by DIGITAL for future use)

(Reserved by DIGITAL for future use)

Type reserved for user-defined, user-reported exceptions

Nonspecific exception of type USER~l (subcode = 0)

User-definable USER_l type exception code, with subcode value
from 1 to 2047 (3777 octal)

Type reserved for user-defined, user-reported exceptions

Nonspecific exception of type USER_2 (subcode = 0)

User-definable USER_2 type exception code, with subcode value
from 1 to 2047 (3777 octal)

17 .2 Format for Exception-Handling Procedure Declaration
You must use the following format to make sure that the procedure correctly receives the data
the kernel passes to the procedure. Upon invocation by the kernel, an exception-handling
procedure receives actual parameter values for the exception type and code, a pointer to the
first word of a variable-length data item, and the length, in bytes, of that data item.

Exception Management Requests 17-9

Syntax

PROCEDURE procedure-identifier (exception-type : EXC_SET ;
exception-code : EXC_CODES ;
info-data-length : UNSIGNED ;
VAR info-data-pointer : [READONL Y] UNIVERSAL);

procedure-Identifier
The identifier of the exception procedure.

exception-type
A parameter of predefined type EXC_SET that passes the exception type to the procedure
(see Table 17-2).

exception-code
A parameter of type EXC_CODES that passes the exception code to the procedure.

info-data-length
A parameter of type UNSIGNED that passes to the procedure the number of bytes of
information pointed to by the info-data parameter. A value of 0 indicates that no data is
being passed; the pointer value in the info-data-pointer parameter is meaningless.

Info-data-pointer
A VAR parameter of type [READONLY]UNIVERSAL that will receive a pointer to the first
word of the optional argument list portion of the faulting process's exception stack frame.
Both kernel-raised exceptions and the REPORT exception procedure provide information
through this parameter. Chapter 6 of the MicroPower /Pascal Run-Time Services Manual
provides the general format of the exception stack frame and the exception-specific argument
lists supplied by various hardware exceptions.

17-10 Exception Management Requests

17 .3 CONNECT_EXCEPTION
MACRO equivalent: CCND$

The CONNECT_EXCEPTION procedure declares a process to be the exception handler for a
group of processes and for a specified type exception. CONNECT_EXCEPTION establishes an
existing queue semaphore, supplied by the caller, as the exception queue through which the
specified exceptions will be signaled by the kernel. A process can thus be activated by and
manage a specific type of exception (or possibly several types) when caused by any one of a
group of processes having the same exception-group number.

A handler can use a single call to CONNECT_EXCEPTION to specify several exception types for
one process group. Conversely, a handler must use a separate call to CONNECT-EXCEPTION
when the same exception type applies to several process groups.

The queue element passed by the kernel by means of the exception queue semaphore to the
handler process is the PCB of the process that caused the exception. The handler must be a
process of high priority with the PRIVILEGED or DRIVER attribute to access the data contained
in the PCB. Chapter 2 of the MicroPower /Pascal Run-Time Services Manual shows the layout
of the PCB. After processing the exception, the handler must return the PCB to one of the
kernel-managed state queues by using the RELEASE_EXCEPTION procedure.

Syntax
CONNECT_EXCEPTION (DESC := queue-sem-descriptor

[GROUP := process-group]
EXC_TYPE :=exception-type
[STATUS := status-record])

queue-sem-descrlptor
The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that contains
the exception queue semaphore's structure identifier. The variable must have been previously
initialized by a CREATE_QUEUE_SEMAPHORE or an INIT_STRUCTURE_DESC request.

process-group
A constant or the identifier of a variable of predefined type EXC_GROUP that contains
a number between 0 and 255. That number identifies the group of processes for which
the handler will service exceptions. The value 0 indicates that the handler will service
exceptions for all process groups. The default value is 1.

exception-type ·

A constant or the identifier of a variable of predefined type EXC_SET that indicates the
type(s) of exceptions to be received by this process (see Table 17-2).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Exception Management Requests 17-11

Example

%INCLUDE 'EXC.PAS'

VAR
MMU_queue : QUEUE_SEMAPHORE_DESC;

[PRIORITY(10), STACK_SIZE(100)] PROCESS MMU_handler;
BEGIN

(* Set up this process as the exception handler for memory faults. *)

CONNECT_EXCEPTION
(DESC := MMU_queue,

GROUP := 3,
EXC_TYPE := [MEMORY_FAULT]);

END; (* Process MMU_handler *)

Semantics

The CONNECT_EXCEPTION procedure makes, in the kernel's exception-dispatching table, an
entry that describes a queue semaphore (identified by the sem-descriptor parameter) for a given
combination of exception type and process group. Control then returns to the caller.

When an exception of the specified type for the specified group occurs, the kernel signals the
handler's exception queue semaphore, puts the process causing the exception in the exception
wait state, and places its PCB on the handler's exception queue.

The group number permits several exception handlers for the same exception to coexist on the
same system, each implementing a management strategy suited to a given class of processes.
The group number 0 is a wildcard value specifying that the exception handler will be activated
for exceptions that occur in all process groups.

If no handler exists for the group of process causing the exception, the kernel dismisses the
exception and passes control to the exception procedure of the faulting process. If the faulting
process has no exception procedure, the kernel aborts that process by forcing execution of its
termination procedure. If no termination procedure was declared for that process, the OTS
aborts the process.

The handler receives the exception by issuing a WAIT_EXCEPTION request on its exception
queue semaphore. The handler subsequently processes the exception and releases the PCB with
the RELEASE_EXCEPTION procedure. This procedure allows three courses of action: to abort
the process, to pass the exception to the process's existing exception handler, or to return the
process to the ready state, that is, to dismiss the exception.

This request is implemented through the CCND$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$NMK (type: RESOURCE)-Resource not available; either the kernel's free-memory pool

was exhausted (a table entry could not be allocated for the connection) or an entry
already exists for the specified type/group combination

17-12 Exception Management Requests

The request may return the following errors, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to structure is odd or not in

user address space

ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; either no bits were set in the mask
word or more than one bit was set

Implementation Notes

You can use several calls to this procedure to connect one type of exception from several
process groups to the same exception queue, if one exception-management strategy is applicable
to several groups for an exception type. Alternatively, you can use a single call to this procedure
to connect several different types of exceptions from one process group to the same exception
queue.

Caution
If a handler itself causes an exception of a type that it handles, the handler
process will lock up in a "fatal embrace" with itself and the process whose
exception it was handling. (The handler will be blocked indefinitely on its own
exception queue.) Exception handlers in general should not cause exceptions in
a debugged application.

Exception Management Requests 17-13

17 .4 DISCONNECT_EXCEPTION
MACRO equivalent: CCND$

The DISCONNECT-EXCEPTION procedure disconnects a process from being the exception
handler for an exception type and process group. DISCONNECT reverses the operation
performed by the CONNECT-EXCEPTION procedure.

Syntax

DISCONNECT_EXCEPTION ([GROUP := process-group]
EXC_TYPE :=exception-type
[STATUS :=status-record])

process-group
A constant or the identifier of a variable of predefined type EXC_GROUP that contains a
number between 0 and 255. That number identifies the group of processes for which this
handler services exceptions. The default value is 1.

exception-type
A constant or the identifier of a variable of predefined type EXC_SET that indicates the
type(s) of exceptions being disconnected (see Table 17-2).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Example

%INCLUDE 'EXC.PAS'

[PRIORITY(10), STACK_SIZE(100)] PROCESS MMU_handler;
BEGIN

(* Remove the exception process for memory faults. *)
DISCONNECT_EXCEPTION

(GROUP := 3,
EXC_TYPE := [MEMORY_FAULT]);

END; (* Process MMU_handler *)

Semantics

The DISCONNECT-EXCEPTION procedure removes from the kernel's exception-dispatching
table the entry that describes a queue semaphore for a given combination of exception type and
process group. Thereafter, when an exception of the specified type is caused by a process of the
specified group, the kernel either passes the exception to the exception procedure of the faulting
process, if one exists, or aborts that process by forcing execution of its termination procedure.
See Chapter 6 of the MicroPower/Pascal Run-Time Services Manual for more information.

This request is implemented through the CCND$ kernel primitive.

17-14 Exception Management Requests

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$NMK (type: RESOURCE)-Resource not available; either the kernel's free-memory pool

was exhausted (a table entry could not be allocated for the connection) or an entry
already exists for the specified type/group combination

The request may return the following errors, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to buffer or structure is odd or

not in user address space

ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; either no bits were set in the mask
word or more than one bit was set

Implementation Notes

You may use a single call to this procedure to disconnect each type of exception managed by
the same process or to disconnect multiple types from the same exception queue.

Exception Management Requests 17-15

1 7. 5 ESTABLISH
MACRO equivalent: SERA$

The ESTABLISH procedure declares a procedure to be the exception handler for a specified type
of exception that may occur within its parent process. ESTABLISH allows a process to perform
exception handling for a specified exception type.

Syntax

ESTABLISH (EXC_pRQCEDURE := procedure-identifier
EXC_TYPE :=exception-type)

procedure-identifier
The identifier of the procedure that is to process the exception. The procedure must be
declared as described in Section 17.3.

exception-type
A constant or the identifier of a variable of predefined type EXC_SET that indicates the
type(s) of exceptions to be processed by this procedure (see Table 17-2).

Restriction

An exception-handling procedure that is nested within another subprogram (another procedure,
function, or process) should refer only to its own local variables or to statically allocated variables.
("Statically allocated" means allocated in memory rather than on the stack.) References to
intermediate variables (nonlocal variables that are not statically allocated) cause unpredictable
results. The compiler does not detect a failure to comply with this restriction.

Example

%INCLUDE 'EXC.PAS'

PROCEDURE Soft_io_and_Resource_errs

BEGIN

(TYP : EXC_SET; COD : EXC_CODES;
EXC_INFO_SIZE : UNSIGNED;
VAR INFO : [READONLY] UNIVERSAL);

END; (* Procedure Soft_io_and_Resource_errs *)

[INITIALIZE] PROCEDURE !nit;
BEGIN

(* Set up an exception procedure for soft i/o and resource exceptions. *)
ESTABLISH

(EXC_PROCEDURE := Soft_io_and_Resource_errs,
EXC_TYPE := [SOFT_IO, RESOURCE]);

END; (* Procedure !nit *)

17-16 Exception Management Requests

Semantics

The ESTABLISH procedure connects a specified exception-handling procedure to the kernel's
exception dispatcher. When an exception of the specified type occurs in this process, the kernel
dismisses the exception and invokes the procedure if:

1. No exception-handling process was declared (CONNECT_EXCEPTION).

2. An exception-handling process used the RELEASE_EXCEPTION procedure's PASS option.

The exception-handling procedure may perform all steps necessary to manage the exception.

This request is implemented through the SERA$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$NMP (type: RESOURCE)-lnsufficient space for Pascal structure; not enough heap space

for table entry

The request may return the following errors, though not as a result of standard Pascal
programming practice:
ES$1AD (type: SYSTEM_SERVICE)-lnvalid address; pointer to structure is odd or not in

user address space

ES$1PR (type: SYSTEM_SERVICE)-Illegal primitive; request issued from ISR level

Implementation Notes

1. You may use a single call to this procedure to establish an exception procedure as the
handler for each type of exception that it is to manage.

2. A subsequent call to this procedure with the same exception type parameter and a new
procedure name parameter will establish the new procedure as the handler for that exception
type. (An implicit REVERT is thus performed for the procedure that previously handled
this exception type.)

3. If an exception-handling or terminate procedure is implemented to handle exceptions
resulting from Pascal 1/0 statements (for example, illegal integer values), the exception
handling or terminate procedure should not perform ljO. The indivisible nature of a Pascal
1/0 statement is inconsistent with the· asynchronous characteristic of an exception handler
or a terminate procedure.

Exception Management Requests 17-17

1 7 .6 RELEASE_EXCEPTION
MACRO equivalent: DEXC$

The RELEASE_EXCEPTION procedure returns a process in the exception-wait state to the
kernel for further disposition. The process's state is changed to the appropriate ready state.

This procedure allows an exception-handler process to dispose of an exception that it has
received (after processing the exception and determining a course of action). An action option
specified in the call directs the kernel to dismiss the exception, abort the process, or pass the
exception to the process's exception-handling procedure, if any.

The ESTABLISH and REVERT requests allow a process to declare its own internal exception
handling procedures.

Syntax

{
DISMISS }

RELEASE_EXCEPTION (ACTION := ABORT
PASS

PCB_PTR := pcb-pointer)

ACTION

Indicates, by one of the following options, the action to take in disposing of the exception.

Option

DISMISS

ABORT

PASS

Description

Dismiss the exception and place the process in the ready state.

Abort the process by forcing execution of its termination procedure.

Pass the exception to the process, if it has an exception-handling procedure
defined within it; otherwise, abort the process.

pcb-pointer
The identifier of a variable of predefined type PCBJOINTER that contains the pointer
to the PCB of the process that caused the exception (ordinarily obtained through the
WAIT-EXCEPTION request).

Example

Y.INCLUDE 'EXC.PAS'
Y.INCLUDE 'PCBM.PAS'

VAR
MMU_queue : QUEUE_SEMAPHORE_DESC;
Pcbptr : PCB_POINTER;

[PRIORITY(10), STACK_SIZE(100)] PROCESS MMU_handler;
BEGIN

(* Wait for an exception. *)
WAIT_EXCEPTION

(PCB_PTR := Pcbptr,
DESC := MMU_queue);

17-18 Exception Management Requests

(* Pass the exception. *)
RELEASE_EXCEPTION

(ACTION := PASS,
PCB_PTR := Pcbptr);

END; (* Process MMU_handler *)

Semantics

The RELEASE_EXCEPTION procedure places the PCB of the process, which was received in
the exception-wait-active state by means of the caller's exception queue, on the appropriate
ready-state queue for disposition as requested in the call. (The PCB is placed on the ready
active queue unless it was suspended while in the exception-wait state.) The kernel will do the
following:

1. Cancel the exception, allowing the process to be reentered normally when it is rescheduled
(ACTION := DISMISS).

2. Abort the process, causing its termination procedure to be executed when the process is
rescheduled (ACTION := ABORT).

3. Cancel the exception and pass control to the process's own exception procedure. If no such
procedure exists or if the process has not requested handling of the type of exception, its
termination procedure will be executed instead (ACTION := PASS).

This request is implemented through the DEXC$ kernel primitive.

Error Returns

See Section 11.2 for general information about error. returns. The request may return the
following error, though not as a result of standard Pascal programming practice:
ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; invalid PCB address or an illegal

action code

Implementation Notes

To use this procedure, you must select the appropriate PCB declaration file as described in
Appendix I.

Exception Management Requests 17-19

17. 7 REPORT
MACRO equivalent: REXC$

The REPORT procedure declares an exception to the kernel to allow a process to announce
a self-detected software exception or to simulate a hardware exception. See Chapter 6 of the
MicroPower /Pascal Run-Time Services Manual for more information.

Syntax

REPORT ([EXC-1NFO :=info-data]

info-data

[EXC_JNFO_SJZE : info-data-length]
EXC_CODE := exception-code
EXC_TYPE :=exception-type)

The identifier of a variable of any user-specified data type. This parameter passes exception
specific data in the optional argument list portion of the reporting process's exception
stack frame to an exception-handling procedure. If you specify 0 or omit this parameter,
you must omit the info-data-length parameter also. The default value is 0. Chapter
6 of the MicroPower /Pascal Run-Time Services Manual provides the general format of the
exception stack frame and the exception-specific argument lists supplied by various hardware
exceptions.

info-data-length
A constant or the identifier of a variable of type UNSIGNED that specifies the number of
bytes of information provided in the variable specified by the info-data parameter. The
value specified must be an even number. If you specify 0 or omit this parameter, you must
omit the info-data parameter also. The default value is 0.

Caution
When calculating the byte-count value for the info-data-length parameter,
use SIZE function to minimize the possibility of error. An incorrect
byte-count value will produce unpredictable and catastrophic effects on
application operation.

exception-code
A constant or the identifier of a variable of predefined type EXC_CODES that contains the
exception code for the exception being reported (see Table 17-2).

exception-type
A constant or the identifier of a variable of predefined type EXC_SET that indicates the
type(s) of exceptions being reported (see Table 17-2).

17-20 Exception Management Requests

Example

%INCLUDE 'EXC.PAS'

PROCEDURE P 1 ;
VAR

I : INTEGER;
BEGIN

(* Report an illegal integer exception. *)
REPORT

(EXC_TYPE := [SOFT_IO],
EXC_CODE := ES$IIV,
EXC_INFO_SIZE :=SIZE(!),
EXC_INFO :=I);

END; (* Procedure Pi *)

Semantics

The REPORT procedure announces an exception to the kernel, which performs one of the
following actions:

1. If an exception-handling process exists for this exception, the kernel dispatches the exception
to the handling process and places the reporting process in the exception-wait state.

2. If no exception-handling process exists for this exception, the exception is dispatched to the
exception-handling procedure, if one exists, of the reporting process.

3. If neither an exception-handling process nor an exception-handling procedure exists, the
kernel forces execution of the termination procedure, if one exists, of the reporting process.

4. If none of these conditions is met, the kernel aborts the reporting process.

This request is implemented through the REXC$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The request may return the
following errors, though not as a result of standard Pascal programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to argument buffer is odd or

not in user address space

ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; either no bits were set in the mask
word, more than one bit was set, or the argument buffer length value was odd

Exception Managemen(Requests 17-21

17.8 REVERT
MACRO equivalent: SERA$

The REVERT procedure releases the specified exception-handling procedure from responding to
occurrences of the specified exception within the parent process. This procedure reverses the
operation performed by the ESTABLISH procedure.

Syntax

REVERT (EXC_TYPE :=exception-type)

exception-type
A constant or the identifier of a variable of predefined type EXC_SET that contains the
type(s) of exceptions being released (see Table 17-2).

Example
%INCLUDE 'EXC.PAS'

[TERMINATE] PROCEDURE Term;
BEGIN

(* Remove the exception procedure for soft i/o exceptions. *)
REVERT

(EXC_TYPE := [SOFT_IO]);

END; (* Procedure Term *)

Semantics

The REVERT procedure breaks the connection between the specified exception-handling
procedure and the kernel's exception dispatcher for exceptions of the specified type.

After REVERT is invoked, occurrence of an exception of the specified type within the parent
process will cause the exception dispatcher to do one of the following:

• Dispatch the exception to an exception-handling process, if one exists for this exception type

• Force execution of the parent process's termination procedure, if there is no exception
handling process for this exception ·type

• Abort the parent process if no termination procedure exists

This request is implemented through the SERA$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$EPN (type: SYSTEM_SERVICE)-Exception procedure not defined

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IPR (type: SYSTEM_SERVICE)-Illegal primitive; request issued from ISR level

17-22 Exception Management Requests

Implementation Notes

You may use a single call to this procedure for all exception types being released.

Exception Management Requests 17-23

17.9 WAIT_EXCEPTION
MACRO equivalent: WAIQ$

The WAIT_EXCEPTION procedure permits an exception-handling process to be notified that
an exception occurred. The procedure ';Vaits on a specified exception queue semaphore for a
process control block (PCB). When it becomes available, WAIT_EXCEPTION removes the PCB
from the semaphore's queue and returns the PCB's pointer to the caller. If no PCB is available,
the calling process is blocked on the semaphore, until an exception occurs.

This procedure is for use by processes with the PRIVILEGED or DRIVER attributes or by
processes that reside in an unmapped-memory environment (see Section 10.1.2).

Note
If a process with general mapping attempts to access the contents of a PCB, the
results may be unpredictable. The kernel will generate a memory-management
exception (MS$MMU) so long as the PCB' s address is not also a valid address
in the process's address space. No exception will occur if the PCB's address
is also a valid address in the process's space, and the process will then obtain
invalid data.

The RELEASE_EXCEPTION request is the complement of the WAIT_EXCEPTION request and
places the PCB of the process on the appropriate ready-state queue for disposition as requested
in the call.

Syntax

WAIT_EXCEPTION (PCB_PTR := pcb-pointer

pcb-pointer

{
DESC := queue-sem-descriptor })
NAME:= queue-sem-name

The identifier of a variable of predefined type PCB_pOJNTER that will receive the pointer
to the PCB of the process that created the exception.

queue-sem-descriptor
The identifier of a variable of predefined type QUEUE_SEMAPHORE_DESC that contains
the exception queue semaphore's structure identifier. The variable must have been previously
initialized by a CREATE_QUEUE_SEMAPHORE or an INIT_STRUCTURE_DESC request.

queue-sem-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of an existing exception queue semaphore (see
Section 11.1.1.1).

17-24 Exception Management Requests

Example
%INCLUDE 'EXC.PAS'
%INCLUDE 'PCBM.PAS'

VAR
MMU_queue : QUEUE_SEMAPHORE_DESC;
Pcbptr : PCB_POINTER;

[PRIORITY(10), STACK_SIZE(100)] PROCESS MMU_handler;
BEGIN

(* Wait for an exception. *)
WAIT_EXCEPTION

(PCB_PTR := Pcbptr,
DESC := MMU_queue);

END; (* Process MMU_handler *)

Semantics

The WAIT_EXCEPTION procedure tests the specified exception queue semaphore for an available
PCB. If at least one PCB is on the semaphore's queue, the procedure does the following:

1. Decrements the specified queue semaphore

2. Removes the first available PCB from the queue

3. Returns the pointer to that PCB in the variable specified by the pcb-pointer parameter

If there is no PCB available on the queue, the request blocks the calling process and calls the
scheduler. The calling process remains blocked until it can be reactivated by a subsequent signal
of the semaphore, which places a PCB on the queue.

This request is implemented through the WAIQ$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-lnvalid structure descriptor; exception queue semaphore
does not exist

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

Exception Management Requests 17-25

Chapter 18
Dynamic Memory-Allocation and Region-Sharing
Requests

This chapter describes the requests that let a process control dynamically the allocation and
mapping of target memory. These requests, implemented through the predeclared procedures
and functions listed in Table 18-1, are the Pascal language interface to the services provided by
the kernel's memory-allocation and region-sharing primitives. The requests collectively let your
processes:

1. Obtain an area of unused memory and, optionally, release it after temporary use (dynamic
memory allocation/ deallocation)

2. Share an area of "static" or "dynamic" memory between static process families. (region
sharing)

3. In a mapped system, obtain a virtual-address window into either a dynamic or shared
memory area, in support of capabilities 1 and 2 (dynamic mapping)

These related capabilities are intended principally to support large memory configurations and
shared-common memory in mapped target systems and are described here in that context unless
otherwise indicated. Dynamic RAM allocation may be useful in some unmapped applications,
but memory sharing by using kernel. primitives has a very limited utility, since more efficient
design alternatives exist in the unmapped environment.

Refer to Chapter 5 of the MicroPower /Pascal Run-Time Services Manual for a discussion of
memory-allocation and region-sharing concepts. The chapter also shows the relationship
between the Pascal requests and the kernel's (MACR0-11) primitive service requests and
includes pertinent coding examples.

You must include in your program or module the definitions of the routines that implement the
requests described in this chapter before using them. See Appendix I for more information.

Table 18-1 summarizes the Pascal dynamic memory-allocation, region-sharing, and dynamic
mapping requests.

Dynamic Memory-Allocation and Region-Sharing Requests 18-1

Table 18-1: Memory-Allocation and Region-Sharing Requests

Request

Dynamic Memory-Allocation

ALLOCATE_REGION

DEALLOCATE-REGION

Region-Sharing

CREATE_SHARED_REGION

ACCESS_SHARED-REGION

DELETE_SHARED-REGION

Dynamic Mapping

MAP_WINDOW

UNMAP_WINDOW

SAVE_CONTEXT

RESTORE_CONTEXT

GET_MAPPING

Operation

Allocates an area of unused physical memory to the
calling process

Allows the calling process to return a physi
cal memory region, previously acquired by an
ALLOCATE-REGION request

Allows the calling process to declare a region of
memory to be shareable by other programs and to
assign a systemwide runtime name to the region

Allows the calling process to gain access, through
the runtime name assigned to the shared region, to a
region of memory that was previously made shareable
by another process

Allows the calling process to delete the shared region
descriptor (SRD) identified in the call to preclude
any subsequent access to the region by using the
ACCESS_SHARED_REGION request

Permits a process to associate a window of virtual
addresses with a specified region of physical memory

Permits a process to reverse the effect of a prior
MAP_WINDOW operation, dissociating a sequence
of virtual addresses-the virtual window-from the
physical memory to which it was mapped

Permits a process to save a copy of its current
memory mapping for subsequent restoration by the
RESTORE_CONTEXT request

Permits a process to reset itself to an earlier state of
virtual-to-physical mapping previously saved by the
SAVE_CONTEXT request

Allows the calling process to obtain a copy of its own
current mapping or that of any other specified process

18-2 Dynamic Memory-Allocation and Region-Sharing Requests

18. 1 ACCESS_SHARED_REGION
MACRO equivalent: ACSR$

The ACCESS_SHARED_REGION procedure uses the run-time name assigned to the shared
region to allow the calling process to gain access to a region of memory that was previously
made shareable by another process. (It is also possible to access a· shared region that
was defined at build time by a MEMORY configuration macro.) More precisely, the
ACCESS_SHARED_REGION procedure returns a physical description of the named shared
region to a region ID block (RIB) that is specified in the call. The RIB information is normally
used in a subsequent window-mapping operation, performed for general-mapped processes by
the MAP_WINDOW request.

The accessed region can be either a common or a physical shared region (see the
CREATE_SHARED_REGION request). The information returned in the RIB describes the
region's location, size, and mode attribute.

Although region sharing by using kernel services is applicable primarily to a mapped target
environment, the CREATE_SHARED_REGION and the ACCESS_SHARED_REGION requests
can be useful in an unmapped application containing more than one user program. However,
because of the single address space in an unmapped system, no advantage is generally gained
from having multiple user programs. Coding details differ for unmapped usage, since no
distinction is made between virtual and physical addresses. In the unmapped case, the RIB
always specifies the base of the region directly as a physical address, and the region size is
represented in bytes. The base and size information supplied in the RIB is used directly. Also,
common and physical regions are effectively equivalent; the region offset is always 0.

A semaphore is usually required to protect against concurrent references to a region shared
by several processes. Also, the kernel structure, SRD, that represents a shared region can be
deleted by using the DELETE_SHARED_REGION request, though typically that is done only if
the creating program terminates. The kernel does not provide any automatic safeguard against
inadvertent reference to a deleted (and possibly deallocated) shared region, since any process
that accessed the region while shareable retains a description of it.

Chapter 5 of the MicroPower /Pascal Run-Time Services Manual discusses region sharing,
including the use of ACCESS_SHARED_REGION in the context of other related requests.
The CREATE_SHARED_REGION request provides the complementary create operation, which
declares a region as being shareable and assigns its run-time name.

Syntax
ACCESS_SHARED_REGION (RIB := region-id-block

region-id-block

{
DESC := structure-desc }
NAME:= region-name

[STATUS := status-record])

The identifier of a variable of predefined type REGION _lD_BLOCK that contains a RIB in
which the location, size, and mode attribute of the region to be made shareable are returned
by the request, as described under Semantics.

Dynamic Memory-Allocation and Region-Sharing Requests 18-3

structure-descriptor
The identifier of a variable of predefined type STRUCTURE_DESC that contains the shared
region's structure identifier. The variable. must have been previously initialized by a
CREATE_SHARED_REGION request. ·

region-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that contains the 6-character name of an existing shared region (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Example

%INCLUDE 'DRAM.PAS'

VAR
Rib_1 : REGION_ID_BLOCK;

[PRIORITY(10), STACK_SIZE(100)] PROCESS A;
BEGIN

(* Access a shared region. *)
ACCESS_SHARED_REGION

(RIB := Rib_1,
NAME:= 'REG1 ');

END; (* Process A *)

Semantics

ACCESS_SHARED-REGION looks for the kernel data structure SRD having the name specified
in the region-name parameter or having the structure identifier specified in the structure
descriptor parameter. If that SRD exists, the request copies information contained in the SRD
to the RIB specified by the region-id-block parameter and returns to the caller. If no such SRD
exists, the request returns to the caller, with an error indication.

Information describing the accessed region is returned to the user in the variable specified by the
region-id-block parameter. The variable is of the predefined type as defined in the DRAM.PAS
%INCLUDE file.

REGION_ID_BLOCK = RECORD
REGION_ADDRESS : UNIVERSAL;
REGION_SIZE : UNSIGNED;
REGION_MODE : ADDRESS_TYPE;
REGION_OFFSET : UNSIGNED;
END;

{Physical
{Mode}
Common Unmapped}

{PAR value I PAR value I phys. address}
{PAR ticks I PAR ticks I bytes }
{PHYSICAL / COMMON / ------- }
{0 I bytes I 0 }

18-4 Dynamic Memory-Allocation and Region-Sharing Requests

REGION_ADDRESS
In a mapped environment, the region's base address, always on a 32-word physical
boundary, returned as a physical PAR value (unsigned integer). (That value is not directly
usable as an address, of course, but can be used in a physical-to-virtual mapping operation
as provided by the MAP_WINDOW request.)

In an unmapped environment, the region base is a physical address that can be used directly.

REGION_SIZE
In a mapped environment, the number of PAR ticks (units of 32 words) in the region. In
the case of a common region, the described size represents the actual size of the region
specified to CREATE_SHARED_REGION in bytes-rounded up to the next multiple of 32
words.

In an unmapped environment, the region size is the number of bytes specified in the
CREATE_SHARED_REGION request.

REGION_MODE
The enumerated type values COMMON and PHYSICAL, denoting a common or physical
region, respectively.

REGION_OFFSET
Relevant only for a shared common region, an increment, in bytes, from the PAR value to
the beginning of the region. (The region-offset field is significant for the MAP_WINDOW
operation.)

In an unmapped environment, the region offset is always 0, regardless of the region mode.

This request is implemented through the ACSR$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Invalid structure descriptor; shared region does not exist

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; odd or not in user space

Dynamic Memory-Allocation and Region-Sharing Requests 18-5

18.2 ALLOCATE_REGION
MACRO equivalent: ALRG$

The ALLOCATE-REGION function allocates an area of unused physical memory, if available,
to the calling process. The memory area, called a region, is of user-specified size and is allocated
dynamically from a list of free RAM segments maintained by the kernel. (See Chapter 5 of the
MicroPower/Pascal Run-Time Services Manual.) If a region is successfully allocated, the function
returns control to the calling process with a Boolean TRUE value and other information. If a
region of the required size cannot be allocated, the function returns control to the caller with a
Boolean FALSE value.

Allocation is achieved through a user-supplied RIB, in which the function returns information
about the location and size of the allocated region. The process that owns the RIB is responsible
for the region and can use it for any purpose; the kernel does not keep track of the allocated
space. When the space is no longer needed, you can deallocate a physical region by using the
DEALLOCATE_REGION request.

Although dynamic RAM allocation is designed primarily for a mapped target environment, the
ALLOCATE-REGION request can be used in an unmapped application as well. Coding details
differ between mapped and unmapped usage. In the mapped case, the caller specifies the
required region size in terms of PAR ticks, that is, in units of 32-word blocks (100 octal bytes).
The function returns the physical base address of the region as a PAR value and returns the
region size in PAR ticks. This PAR information, returned in the RIB, can be used in subsequent
window-mapping operations by using the MAP_WINDOW request.

In the unmapped case, the caller specifies the required region size directly in bytes. The function
returns the base address of the region directly, of course, and returns the region size, in bytes,
rounded up to the next multiple of 4, if necessary.

Chapter 5 of the MicroPower /Pascal Run-Time Services Manual discusses dynamic RAM
allocation, including the use of ALLOCATE-REGION in the context of other related requests.

Syntax
ALLOCATE_REGION (RIB := region-id-block

REG_SIZE := region-size)

region-id-block
The identifier of a variable of predefined type REGION _ID_BLOCK in which the location,
size, and mode attribute of the region are returned by the request, as described under
Semantics. (The mode of a dynamically allocated region is always PHYSICAL.)

region-size
A constant or the identifier of a variable of predefined type UNSIGNED that specifies the
size of the region to be allocated. For a mapped application, the size value specifies the
number of 32-word (lOO(octal)-byte) blocks required. For an unmapped application, the
size value specifies the number of bytes required.

18-6 Dynamic Memory-Allocation and Region-Sharing Requests

Example

%INCLUDE 'DRAM.PAS'

VAR
Rib_1 : REGION_ID_BLOCK;
Allocated : BOOLEAN;

[PRIORITY(10), STACK_SIZE(100)] PROCESS A;
BEGIN

(* Allocate a region. *)
Allocated := ALLOCATE_REGION

(RIB : = Rib_1,
REG_SIZE := %0'200');

END; (* Process A *)

Semantics

The ALLOCATE_REGION function checks the kernel's free RAM list for a memory segment
that equals or exceeds the size of the requested region. If such a segment exists, the function
removes the required amount of memory from the free RAM list, modifies the caller's RIB
area and returns control to the caller with a Boolean TRUE value. (The ALLOCATE_REGION
allocates from the free RAM list on a first-fit basis.) If no sufficiently large free RAM segment
exists, the ALLOCATE_REGION returns control to the calling process, with a Boolean FALSE
value.

The information describing the accessed region is returned to the user in the variable specified
by the region-id-block parameter. The variable is of the predefined type as defined in the
DRAM.PAS %INCLUDE file.

REGION_ID_BLOCK = RECORD
REGION_ADDRESS : UNIVERSAL;
REGION_SIZE : UNSIGNED;
REGION_MODE : ADDRESS_TYPE;
REGION_OFFSET : UNSIGNED;
END;

REGION-ADDRESS

{Mode}
{Physical Unmapped}

{PAR value I phys. address}
{PAR ticks I bytes }
{PHYSICAL I ------- }
{O I o }

In a mapped environment, the region's base address, always on a 32-word physical
boundary, returned as a physical PAR value (unsigned integer). (That value is not directly
usable as an address, of course, but can be used in a physical-to-virtual mapping operation
as provided by the MAP_WINDOW request.)

In an unmapped environment, the region address is a physical address that can be used
directly.

REGION_SIZE

In a mapped environment, an integer representing the number of PAR ticks (32-word blocks)
allocated, as represented in the allocation request.

In an unmapped environment, the region size is an integer representing the number of
bytes allocated. If the requested number of bytes was not a multiple of 4, the next higher
multiple of four bytes is allocated.

Dynamic Memory-Allocation and Region-Sharing Requests 18-7

REGION_MODE
In both mapped and unmapped environments, a value returned as PHYSICAL. The mode
of a region, PHYSICAL or COMMON, is significant to the CREATE_SHARED_REGION
request and, indirectly, to the MAP_WINDOW request.

REGION_OFFSET
A field significant only in operations on shared common regions. A value of 0 is always
returned, as appropriate for a physical region.

This request is implemented through the ALRG$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The request may return the
following error, though not as a result of standard Pascal programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; the RIB address is not on a word

boundary

18-8 Dynamic Memory-Allocation and Region-Sharing Requests

18. 3 CREATE_SHARED_REGION
MACRO equivalent: CRSR$

The CREATE_SHARED_REGION procedure allows the calling process to declare a region
of memory to be shareable by other static processes and to assign a system-wide run-time
name to the region. More precisely, CREATE_SHARED_REGION creates a named kernel data
structure called a shared region descriptor (SRD) that describes the memory region specified
by the caller. Subsequently, other processes can gain access to the shared region by using the
ACCESS_SHARED_REGION request, by means of the run-time name associated with the SRD.

Note
CREATE_SHARED_REGION is relevant primarily to a mapped memory
environment and is described in terms of a mapped application except where
indicated otherwise.

A shared region can be either a shared common region or a shared physical region. A common
region exists within the caller's statically allocated address space; the location of a shared
common region is therefore determined by the process declaring it as shared. A physical region
was dynamically allocated from unused physical memory by an allocate-region operation. Thus,
the location of a shared physical region is initially determined by the ALLOCATE_REGION
request. Chapter 5 of the MicroPower /Pascal Run-Time Services Manual discusses common versus
physical regions.

Whether common or physical, the region to be made shareable is identified by a RIB in user
space that is specified in the call. The RIB specifies the region's location, size, and mode attribute.
The location, or base, of a common region is specified as a virtual address, the size is specified
in bytes, and the mode attribute is COMMON. The information describing a common region is
placed in the RIB by the user process. The procedure modifies the information supplied in the
caller's RIB for a common region, replacing the virtual description with a physical description,
as described under Semantics. Normally, the information in the RIB for a physical region is
precisely that returned by the prior ALLOCATE_REGION call that allocated the region.

Although region sharing by using kernel services is applicable primarily to a mapped
target environment, CREATE_SHARED_REGION can be useful in an unmapped application
containing more than one user static process. However, because of the single address space
in an unmapped system, no advantage is generally gained from having multiple user static
processes. Coding details differ for unmapped usage, since no distinction is made between
virtual and physical addresses. The RIB always specifies the base of a region directly as a
physical address, and the region size is represented in bytes. Therefore, the distinction between
common and physical region is not significant for unmapped shared-region creation, although
the COMMON and PHYSICAL mode attributes are recognized and applied to the SRD and
should be used consistently.

Chapter 5 of the MicroPower /Pascal Run-Time Services Manual discusses region sharing, including
the use of CREATE_SHARED_REGION in the context of other related requests.

The ACCESS_SHARED_REGION request provides the complementary access operation, which
returns· RIB information based on a specified shared region name.

Dynamic Memory-Allocation and Region-Sharing Requests 18-9

Syntax

CREATE_SHARED-REGION (RIB := region-id-block
[DESC := structure-desc]
NAME:= region-name
[STATUS := status-record])

region-Id-block
The identifier of a variable of predefined type REGION _ID_BLOCK that contains the
location, size, and mode attribute of the region to be made shareable, as described under
Semantics. In a mapped environment, the region's address, size, and offset fields for a
common region are modified by the request. That is, the RIB is both a source and a
destination variable in the mapped common case.

structure-descriptor
The identifier of a variable of predefined type STRUCTURE_DESC that is to receive the
shared region's structure identifier.

region-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that contains the 6-character name of the region to be made shareable (see Section 11.1.1.1).
The name must not be the name of an existing process or structure.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Example

%INCLUDE 'DRAM.PAS'

TYPE
Common_! =ARRAY [1 .. Y.0'10000'] OF INTEGER;

VAR
Rib_! : REGION_ID_BLOCK;
Reg_! : Common_!;

[PRIORITY(10), STACK_SIZE(100)] PROCESS A;
BEGIN

(* Create a shared region. *)
WITH Rib_1 DO

BEGIN
NEW (Reg_1);
REGION_ADDRESS := Reg_! : : UNSIGNED;
REGION_OFFSET := O;
REGION_SIZE := Y.0'20000';
REGION_MODE := COMMON;
CREATE_SHARED_REGION

END;

(RIB : = Rib_!,
NAME := 'REG1 ');

END; (* Process A *)

18-10 Dynamic Memory-Allocation and Region-Sharing Requests

Semantics

The CREATE_SHARED_REGION procedure creates a SRD structure in the kernel's system
common area, using the region's base address and size information contained in the RIB specified
by the caller. The request associates the name specified by the region-name parameter with the
SRD structure and returns the structure identifier of the SRD in the variable specified by the
structure-desc parameter.

The information describing the shared region specified by the region-id-block parameter is of
the predefined type as defined in the DRAM.PAS %INCLUDE file.

REGION_ID_BLOCK = RECORD
REGION_ADDRESS : UNIVERSAL;
REGION_SIZE : UNSIGNED;
REGION_MODE : ADDRESS_TYPE;
REGION_OFFSET : UNSIGNED;
END;

REGION-ADDRESS

{Mode}
{Physical Common}

{PAR value I virtual address}
{PAR ticks I bytes }
{PHYSICAL I COMMON }
{ ignored }

In a mapped environment, the region's virtual address if the REGION_MODE is COMMON.
On return to the caller, the address is converted to a nearest physical PAR value. If the
REGION _MODE is PHYSICAL, no conversion is required, since the value provided by the
prior ALLOCATE_REGION call is already in the appropriate form (PAR value).

In an unmapped environment, this field contains a physical address regardless of the region
mode.

REGION_SIZE
In a mapped environment, the number of bytes in the region if the REGION _MODE is
COMMON. On return to the caller, this value is converted to the number of PAR ticks
(32-word units) in the region. If the byte value you supply is not a multiple of 32, the
result is rounded up to the next multiple of 32. If the REGION _MODE is PHYSICAL, no
conversion is required, since the value is already in the appropriate form (PAR ticks).

In an unmapped environment, this field contains the number of bytes in the region; no
conversion is necessary.

REGION_MODE

The enumerated type values COMMON and PHYSICAL, denoting a common or physical
region respectively, although no effective distinction is made between the two in the
unmapped case.

REGION_OfFSET

A value indicating the positive displacement in bytes, if any, of the common region base
address from the calculated PAR value. The field is significant only in shared common
region mapping operations. Effectively, the offset field value is assumed to be 0 for all
operations on mapped physical regions as well as for all unmapped operations.

This request is implemented through the CRSR$ kernel primitive.

Dynamic Memory-Allocation and Region-Sharing Requests 18-11

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$MSS (type: SYSTEM_SERVICE)-Must specify structure descriptor; the structure-desc

parameter is not optional

ES$NMK (type: RESOURCE)-lnsufficient space for kernel structure; could not create shared
region

ES$SNI (type: SYSTEM_SERVICE)-Structure name in use; a kernel structure already exists
with the name you specified for the region

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; the RIB address is not on a word

boundary

18-12 Dynamic Memory-Allocation and Region-Sharing Requests

18.4 DEALLOCATE_REGION
MACRO equivalent: DLRG$

The DEALLOCATE_REGION procedure allows the calling process to return a physical memory
region, previously allocated by ALLOCATE_REGION, to the list of free RAM segments
maintained by the kernel. (See Chapter 5 of the MicroPower /Pascal Run-Time Services Manual.)
The base, size, and mode of the region to be deallocated are specified by a RIB in the
caller's address space. The procedure zeroes the size field contained in the RIB on successful
deallocation. The mode of the region must be PHYSICAL.

DEALLOCATE__REGION attempts to consolidate the free RAM list whenever possible by
combining the newly deallocated space with any adjoining space already represented in the list.
Such consolidation results in a new free segment that is larger than the region just deallocated.

Whether or not list consolidation takes place, any region deallocation may free up enough space
to allow a previously unsuccessful allocation request issued by another process to be satisfied
if the request were reissued. DEALLOCATE_REGION always returns control to the calling
process.

Although dynamic RAM allocation is designed primarily for a mapped target environment,
you can use the ALLOCATE_REGION and DEALLOCATE__REGION requests in an unmapped
application as well. RIB content differs between mapped and unmapped usage, as described
for ALLOCATE__REGION. (Presumably, the RIB supplied to DEALLOCATE__REGION contains
the values that were returned by a call to ALLOCATE_REGION.)

Chapter 5 of the MicroPower/Pascal Run-Time Services Manual discusses dynamic RAM allocation
and deallocation in the context of other related requests.

Syntax

DEALLOCATE_REGION (RIB := region-id-block)

region-id-block
The identifier of a variable of predefined type REGION _ID_BLOCK that contains the
location, size, and mode attribute of the region to be deallocated, as described under
Semantics.

Example

%INCLUDE 'DRAM.PAS'

VAR
Rib_1 : REGION_ID_BLOCK;

[PRIORITY(10), STACK_SIZE(100)] PROCESS A;
BEGIN

(* Deallocate a region. *)
DEALLOCATE_REGION

(RIB := Rib_1);

END; (* Process A *)

Dynamic Memory-Allocation and Region-Sharing Requests 18-13

Semantics

The DEALLOCATE_REGION procedure adds the memory space described by the caller's RIB
to the kernel's linked list of free RAM segments, either by inserting a new list element or by
modifying an existing list element. (As a consequence, the information in the user's RIB is
no longer valid.) If the region-size field is nonzero, DEALLOCATE_REGION zeroes the size
field, deallocates the described region, and returns control to the calling process. Otherwise, the
procedure returns to the caller, with an error indication.

The information describing the region to deallocate resides in the variable specified in the
region-id-block parameter and must be of the same form as that returned by a corresponding
region-allocation operation. The variable is of the type as defined in the DRAM.PAS %INCLUDE
file.

REGION_ID_BLOCK = RECORD
REGION_ADDRESS : UNIVERSAL;
REGION_SIZE : UNSIGNED;
REGION_MODE : ADDRESS_TYPE;
REGION_OFFSET : UNSIGNED;
END;

REGION-ADDRESS

{Mode}
{Mapped Unmapped}

{PAR value I phys. address}
{PAR ticks I bytes }
{PHYSICAL I -.------ }
{ ignored }

In a mapped memory environment, a value representing a 32-word physical boundary: the
region's physical PAR value.

In an unmapped memory environment, this field contains the physical address of the region
to be deallocated.

REGION_SIZE
In a mapped memory environment, the number of consecutive 32-word units (PAR ticks)
to be deallocated starting at the region base address.

In an unmapped memory environment, the field contains the number of bytes to be
deallocated starting at the region base. If the specified size is not a multiple of 4, the next
higher multiple of four bytes is deallocated.

On return from the caller, the field contains zeros if the request was successful.

REGION-MODE
The enumerated type value PHYSICAL, denoting a physical region.

REGION_OFFSET
Significant only in operations on shared common regions.

This request is implemented through the DLRG$ kernel primitive

18-14 Dynamic Memory-Allocation and Region-Sharing Requests

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; the region-size value in the RIB is 0.

The region is already deallocated

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; the RIB address is not on a word

boundary

Implementation Notes

The DEALLOCATE_REGION procedure does not limit you to deallocating an entire region, as
originally allocated, in a given operation. You can deallocate just a portion of a region or return
a region piecemeal in successive operations. Partial deallocation, which might be useful in
some applications, entails user modification of supplied RIB contents: the region base and size
values supplied by ALLOCATE_REGION. To avoid obscure run-time problems, considerable
care should be taken to ensure the correctness of any such modifications, since the request does
minimal checking of RIB values. Any deallocation error introduced by user-modified values
will corrupt the kernel's free RAM list with unpredictable consequences-typically a delayed
system crash. The integrity of the free RAM list depends entirely on the validity of the space
descriptions supplied in deallocation requests.

Dynamic Memory-Allocation and Region-Sharing Requests 18-15

18.5 DELETE_SHARED_REGION
MACRO equivalent: DLST$

The DELETE_SHARED-REGION procedure lets the calling process delete the SRD identified
in the call (that is, the kernel data structure that represents a region as shared). The
effect of the operation is to preclude any subsequent access to the region by using the
ACCESS_SHARED_REGION request. However, the operation does not disable any previously
gained access to the region.

Typically, DELETE_SHARED-REGION would be used only in the termination routine of the
process responsible for creating the SRD. (Processes commonly delete structures they have
created if forced to terminate.) The kernel does not provide any automatic safeguard against
inadvertent reference to a deleted (and possibly deallocated) shared region, since any process
that previously accessed the region while it was shareable retains a description of it. The
effective lifetime of a shared region could be coordinated among the processes having access to
it through a special semaphore established for that purpose. Chapter 5 of the MicroPower /Pascal
Run-Time Services Manual discusses shared memory usage.

The CREATE_SHARED-REGION request provides the complementary create operation, which
declares a region as being shareable and assigns its run-time name.

Syntax

DELETE_SHARED_REGION ({ DESC := structure-desc }
NAME:= region-name

[STATUS := status-record])

structure-descriptor
The identifier of a variable of predefined type STRUCTURE_DESC that contains the shared
region's structure identifier.

region-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that contains the 6-character name of an existing shared region (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Example

%INCLUDE 'DRAM.PAS'

TYPE
Common_!= ARRAY [1 .. %0'10000'] OF INTEGER;

VAR
Rib_1 REGION_ID_BLOCK;
Reg_1 ACommon_1;

18-16 Dynamic Memory-Allocation and Region-Sharing Requests

[PRIORITY(10), STACK_SIZE(100)] PROCESS A;
BEGIN

(* Delete a shared region. *)
DISPOSE

(Reg_1);
DELETE_SHARED_REGION

(NAME:= 'REG1 ');

END; (* Process A *)

Semantics

The DELETE_SHARED-REGION procedure looks for a SRD (a kernel data structure) identified
by the caller's structure descriptor block (SDB). If that SRD exists, the procedure deletes the
SRD, removes the structure name from the system name table, and returns to the caller. If no
such SRD exists, the procedure returns to the caller with an error indication.

This request is implemented through the DLST$ kernel primitive

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Invalid structure descriptor; shared region does not exist

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

Dynamic Memory-Allocation and Region-Sharing Requests 18-17

18.6 GET-MAPPING
MACRO equivalent: GMAP$

The GET-MAPPING procedure lets the calling process obtairt a copy of its own current mapping
or that of any other specified process. The request, valid. only in mapped memory environments,
returns the mapping information stored in the ·mapping-context restore area associated with the
process control block (PCB) of the subject process to a record variable specified in the call.

The mapping information consists of a record of type MAPPING containing 16 fields of page
address register (PAR) and page descriptor register (PDR) values. If instruction- and data-space
(I&D-space) separation is in effect for the subject process, the record is of type ID-MAPPING
and contains 32 fields of information: values for both the instruction and data APR sets.

Note
Though separate I&D-space mapping is possible on an LSI-11 /73 or similar
target system, it may not necessarily be in effect for a given process.

Syntax

GET-MAPPING (INFO:= mapping-record

[{
DESC := process-desc }]
NAME:= process-name

[STATUS :=status-record])

mapping-record
The identifier of a variable of predefined type MAPPING or ID_MAPPING that is to receive
process mapping information.

process-descriptor
The identifier of a variable of predefined type PROCESS_DESC that contains the process
identifier. The variable must have been previously initialized by an INIT_PROCESS_DESC
request or by a process invocation statement with the DESC parameter (see Chapter 5).

process-name
Either a character-string constant or the identifier of a variable of predefined type
NAME_STR that contains the 6-character name of an existing process (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2. -

If you specify neither a process-descriptor nor a process-name parameter, the procedure obtains
the mapping status of the process issuing the request.

18-18 Dynamic Memory-Allocation and Region-Sharing Requests

Format of Mapping Record

The information returned to the caller through the mapping-record parameter is a record of either
type MAPPING or of type ID_MAPPING. Those types are declared in the system %INCLUDE
file DRAM.PAS, as follows:

REGISTER_RANGE : ARRAY [0 .. 7] OF UNSIGNED;

MAPPING = RECORD
PARS REGISTER_RANGE;
PDRS REGISTER_RANGE;

END;

ID_MAPPING = RECORD
I_PARS
I_PDRS
D_PARS
D_PDRS

END;

REGISTER_RANGE;
REGISTER_RANGE;
REGISTER_RANGE;
REGISTER_RANGE;

Type MAPPING is for target contexts in which separate l&D-space mapping is not in effect,
such as an LSI-11/23.

PARS
Contains the current values of the eight P ARs. P ARS[O] corresponds to PAR 0, and so on.

PDRS
Contains the current values of the eight PDRs. PDRS[O] corresponds to PDR 0, and so on.

Type ID_MAPPING is for target contexts in which separate I&D-space mapping is in effect,
such as provided by an LSI-11/73.

LPARS
Contains the current values of the eight I-space PARs. PARS[O] corresponds to I-space PAR
0, and so on.

LP DRS
Contains the current values of the eight I-space PDRs. PDRS[O] corresponds to I-space PDR
O, and so on.

O_PARS
Contains the current values of the eight D-space P ARs. P ARS[O] corresponds to D-space
PAR 0, and so on.

O_PDRS
Contains the current values of the eight D-space PDRs. PDRS[O] corresponds to D-space
PDR 0, and so on.

Note
The PDR word of any unused APR will contain 0. The content of the
corresponding PAR is undefined and is not significant.

Dynamic Memory-Allocation and Region-Sharing Requests 18-19

Example
%INCLUDE 'DRAM.PAS'

VAR
Mapping_info : MAPPING;

[PRIORITY(10), STACK_SIZE(100), NAME ('A
BEGIN

')] PROCESS A;

(* Get the mapping information for this process. *)
GET_MAPPING

(INFO := Mapping_info,
NAME:= 'A ');

END; (* Process A *)

Semantics

The GET_MAPPING procedure copies the contents of the mapping-context restore area specified
by the process-descriptor or name parameters to the record variable specified in the call.

This request is implemented through the GMAP$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-Invalid structure description; process does not exist

ES$IPR (type: SYSTEM_SERVICE)-Illegal primitive call; the request is illegal in an
unmapped environment

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to buffer or structure is odd or

not in user address space

Applications

Among other possible uses, the GET_MAPPING procedure lets a general-mapped process
inspect its current mapping to identify unused APRs for use in dynamic mapping operations.
This, in turn, lets the process optimize a sequence of mapping/remapping operations by using
the FIXED mode of the call to MAP_WINDOW, which eliminates the need for intervening
UNMAP_WINDOW calls.

18-20 Dynamic Memory-Allocation and Region-Sharing Requests

18.7 MAP_WINDOW
MACRO equivalent: MAPW$

The MAP_WINDOW procedure, valid only in a mapped environment, permits a process to
associate a sequence of virtual addresses with a specified region of physical memory. More
precisely, MAP_WINDOW allows the calling process to extend or modify its virtual-to-physical
mapping to include a previously unmapped area of physical memory. The caller supplies the
physical description of a memory region, through a RIB, and specifies the portion of the region
to be mapped. The MAP_WINDOW procedure then alters the calling process's MMU registers
and PCB mapping context, normally by modifying one or more currently unused APRs, and
returns an appropriate virtual address value to the caller. (Optionally, you can choose the APR
or sequence of APRs to be modified.) Thus, the process obtains a virtual-address window into
a region of memory that was not in its original address space.

The region may be a private physical region allocated to the process or may be a shared common
or physical region previously accessed through the ACCESS_SHARED_REGION request.

The UNMAP_WINDOW request provides a complementary unmapping operation, which
may be required between successive mapping operations, depending on the mode of
MAP_WINDOW procedure usage. The main application objectives for the MAP_WINDOW
and UNMAP_WINDOW procedures are the following:

• Usability by a general-mapped process, which cannot otherwise alter its mapping. (Other
types of processes, which can perform direct MMU modification, may use MAP_WINDOW
to alter mapping without the need for MMD-register saving during context switchouts, a
performance consideration.)

• Use in conjunction with the ALLOCATE-REGION or ACCESS_SHARED_REGION re-
quests, which provide the physical description of a memory region in the required format.

Therefore, the MAP_WINDOW procedure is described in terms of that primary application con
text. MAP_WINDOW and UNMAP_WINDOW can be used by processes with DEV_ACCESS,
PRIVILEGED, or DRIVER mapping, of course, and also for mapping of objects other than
memory regions as such.

Assuming a general-mapped process that does not borrow (force remapping of) an already
allocated APR, the minimum requirement for using MAP_WINDOW is that the calling process's
statically allocated virtual-address space not exceed 28K words when I&D-space separation is
not in effect. In other words, at least one of the static process's APRs must remain unused,
or inactive, at application build time. This requirement can be overridden by the fixed APR
option, which forces MAP_WINDOW to use an APR indicated by the caller rather than the
first unused APR that it finds. A dynamic process inherits the entire address space of its parent
process and might not need all of that inherited mapping, as discussed in Chapter 5 of the
MicroPower /Pascal Run-Time Services Manual.

The size of a window is controlled by a user-specified length parameter, which implies the
number of APRs needed for the window. Thus, a process can map to an entire multipage region
in a single operation, given that enough APRs are available for modification. If the caller does
not have multiple APRs available for the window, and the region to be mapped is larger than
4K words (one virtual page), the process can step through the region by repeated mappings
of a single APR, using suitably incremented window offsets. The potential size of a window
is constrained only by the number of contiguous APRs available for the mapping, not by the

Dynamic Memory-Allocatio.n and Region-Sharing Requests 18-21

size of the region as described in the RIB. To prevent "overmapping," you must ensure that the
requested window length does not cause the window to extend beyond the end of the region.

The information supplied in the RIB variable that is specified in the call contains the
region's location (physical base address and byte offset, if any), size, and mode attribute.
The content of the RIB is assumedly that returned by a prior ALLOCATE_REGION or
ACCESS_SHARED_REGION call; the format of the information is as described for those
requests. In addition to the RIB, the caller supplies the length to map and an optional additive
offset into the region specified in PAR ticks (32-word units); typically, a multiple of 128 ticks
when stepping through a large region with a single-PAR window. The combination of those
parameters determines the size and positioning of the mapped window within the region for a
given call. The RIB content is never modified by MAP_WINDOW; the physical description of
the region remains invariant throughout successive, incremental remappings. In general, you
should not modify the RIB content.

Chapter 5 of the MicroPower /Pascal Run-Time Services Manual discusses region sharing and
mapping, including the use of MAP_WINDOW in the context of other related requests.
The ACCESS_SHARED_REGION and ALLOCATE_REGION requests provide the supporting
operations that obtain RIB information. The GET__MAPPING, SAVE_CONTEXT, and
RESTORE-CONTEXT requests provide additional support for mapping operations that involve
borrowing of one or more APRs.

Syntax

MAP_WINDOW (

ADDRESS_SPACE

[ADDRESS_SP ACE := { o_sp ACE }]
!_SPACE

[
ACCESS := { READ_ WRITE }]

READ_ONLY

[P AR_CHOICE := { FREE }]
FIXED

[CACHING := { LEAVE }]
DISABLE

WINDOW_PTR :=window-pointer
[OFFSET :=region-offset]
LENGTH := window-length
RIB := region-id-block
[STATUS :=status-record])

Specifies whether the operation is to modify the process's D-space APR set. D_SP ACE,
the default, indicates yes; !_SPACE specifies that the operation is to modify the process's
I-space APR set.

These parameters are meaningful only if l&D-space separation, possible in an LSI-11/73
target processor, is in effect for the calling process. Otherwise, the parameter is ignored.

ACCESS
Specifies that the operation map the window for read/write access (READ_WRITE, the
default) or for read-only access (READ_ONL Y).

18-22 Dynamic Memory-Allocation and Region-Sharing Requests

PAR_CHOICE
Specifies the method of APR selection. FREE, the default, indicates that the operation
modifies the free APR(s) chosen by MAP_WINDOW. (See Use of the Window-Pointer
Parameter for further details.) FIXED indicates that the operation modifies the APR(s) that
you specify by means of the window-pointer parameter.

CACHING
Specifies that the operation leave caching as is, either enabled or disabled (LEAVE, the
default) or that the operation disable caching for this window, setting bit 15 of each PDR
to disable caching for each APR (DISABLE). This operation is necessary on the arbiter side
when you map to a KXJ shared memory area, if the arbiter uses cache memory; but even
if this symbol is specified on an arbiter processor not using cache memory, there are no
adverse effects. See Appendix B of the MicroPower /Pascal 1/0 Services Manual for additional
information.

window-pointer
The identifier of a variable of type UNIVERSAL in which the request will return a virtual
address corresponding to the first location in the mapped window, fully adjusted for
offset(s), as described under Semantics. If the FREE option is specified, the precall value of
this variable is not significant, and MAP_WINDOW chooses the APR(s) to use for mapping.
If FIXED is specified, however, MAP_WINDOW uses the value you specify in this variable
to select the first or only APR to be modified, as described under Use of the Window-Pointer
Parameter.

region-offset
An unsigned integer value that is the desired displacement of the virtual window from the
beginning of the region, expressed in PAR ticks (32-word units). This parameter is used
when stepping through a large region by incremental remapping of a window. The default
value is 0.

window-length
A constant or the identifier of a variable of type UNSIGNED that specifies size, in bytes, of
the virtual window.

region-id-block
The identifier of a variable of predefined type REGION _ID_BLOCK that contains the
location, size, and mode attribute of the region to map to, as described under Semantics.

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Dynamic Memory-Allocation and Region-Sharing Requests 18-23

Restrictions

•

•

•

If I&D-space separation is in effect for the calling process, the combination of the l_SP ACE
option and the READ_WRITE (default) option is invalid.

If you choose the FREE (default) APR selection option, calls to the UNMAP_WINDOW
request are required between successive calls to MAP_WINDOW for iterative remapping of
a window.

The MAP_WINDOW (MAPW$) request may not be used to modify APR 0 of a process
without I&D-space separation or D-space APR 0 of a process with I&D-space separation if
that process accesses a supervisor-mode library.

Use of the Window-Pointer Parameter

In general, if you use the FREE (default) option, the variable specified by window-pointer is a
destination-only variable, but if you select the FIXED option, window-pointer is both a source
and destination variable.

More specifically, if you select the FREE option, whether explicitly or by default, MAP_ WINDOW
ignores the content of the window-pointer variable and selects one or more free APRs for the
mapping operation. MAP_WINDOW returns the virtual address corresponding to the first or
only APR selected for the window in the window-pointer variable.

If you select the FIXED option, however, the variable specified by window-pointer prior to the
call must contain a virtual address in the range of the first or only APR to be modified by the
operation. Thus, you can force the selection of APRs when you use the FIXED option.

For example, if the precall value in window-pointer is 140000(octal}, corresponding to the base
of APR 6, the request uses APR 6 and, if needed, APR 7 for the mapping operation, regardless
of the free or in-use status of those APRs. For the purposes of this example, the value in
window-pointer could be any address within the virtual page beginning at 140000 (that is,
could be from 140000 to 157776) with exactly the same effect.

The virtual address value returned in window-pointer would be 140000 plus any common-region
offset contained in the RIB for the region in question. Normally, the returned address would
be exactly 140000 for a physical region or a value between 140000 and 140076 for a shared
common region.

If you use the FIXED APR selection option, calls to UNMAP_WINDOW are not required between
successive calls to MAP_WINDOW for iterative remapping of a window.

Example

%INCLUDE 'DRAM.PAS'

VAR
Rib_1 : REGION_ID_BLOCK;
W_ptr : UNIVERSAL;

[PRIORITY(10), STACK_SIZE(100)] PROCESS A;
BEGIN

18-24 Dynamic Memory-Allocation and Region-Sharing Requests

(* Map the window. *)
MAP_WINDOW

(PAR_CHOICE := FIXED,
WINDOW_PTR := W_ptr,
OFFSET := 0,
LENGTH:= %0'20000',
RIB := Rib_1);

END; (* Process A *)

Semantics

In the following description, free APR refers to an APR that is unmapped (whose access control
field is set to no access) at the time of the call. Only free APRs are candidates for modification
under the FREE option. (An APR that was modified by a prior call to MAP_WINDOW can be
freed for remapping by an intervening call to UNMAP_WINDOW.)

The MAP_WINDOW procedure calculates the number of APRs, n, needed for the window,
based on the window-length value specified in the call plus the region offset, if any, described
in the RIB. If I&D-space separation is in effect for the calling process, MAP_WINDOW selects
the APR(s) to be operated on as specified by the D_SPACE or I_SPACE option.

If the FIXED option was specified, MAP_WINDOW determines the initial or only APR to be
mapped, APRi, from the virtual address value supplied in the window-pointer variable. If more
than one APR is needed and n APRs do not exist starting with APRi, MAP_WINDOW returns
to the caller, with an error indicating "too few APRs available." If the FREE option was specified
explicitly or by default, MAP_WINDOW tests the caller's mapping context for n consecutive
free APRs. If n consecutive free APRs are not available, MAP_WINDOW returns to the caller
with an error indicating "too few APRs available." Otherwise, the first of the n free APRs is
established as APRi.

MAP_WINDOW then maps the required APRs, modifying both the MMU hardware registers
and the corresponding locations in the mapping-context restore area associated with the caller's
PCB. MAP_WINDOW forms the physical base address, or PAR value, for APRi by adding the
offset specified in the call (in PAR ticks) to the region base described in the RIB. PAR values for
successive APRs, if any, are incremented appropriately. Page descriptor register (PDR) values,
specifying access control and page lengths, are set as required.

Finally, MAP_WINDOW forms the window-pointer address by adding the region offset, if any,
described in the RIB to the 4K-boundary virtual address that corresponds to APRi, and returns
that value to the window-pointer variable specified in the call.

Information describing the region to be mapped is supplied in a variable specified by the
region-id-block parameter. The variable is of the form defined in the DRAM.PAS %INCLUDE
file.

REGION_ID_BLOCK = RECORD
REGION_ADDRESS : UNIVERSAL;
REGION_SIZE : UNSIGNED;
REGION_MODE : ADDRESS_TYPE;
REGION_OFFSET : UNSIGNED;
END;

{Mode}
{Physical Common}

{PAR value I PAR value}
{ ignored }
{PHYSICAL I COMMON }
{O I bytes }

Dynamic Memory-Allocation and Region-Sharing Requests 18-25

REGION-ADDRESS
An unsigned integer that specifies the region's base address and must be a physical PAR
value (always on a 32-word boundary).

REGION_SIZE
The number of PAR ticks (units of 32 words) contained in the region. This parameter is
not used in the MAP_WINDOW operation, since the window-length parameter in the call
determines the length of the mapped window.

REGION_MODE
The enumerated type values COMMON and PHYSICAL, denoting a common or physical
region, respectively. This field is not checked by MAP_WINDOW.

REGION_ OFFSET
Relevant only for a shared common region, an increment, in bytes, from the
region-base PAR value to the beginning of the region. The ALLOCATE_REGION,
ACCESS_SHARED_REGION, and CREATE_SHARED_REGION requests will supply an
appropriate value for this field.

This request is implemented through the MAPW$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$IPR (type: SYSTEM_SERVICE)-Illegal primitive call; the request was issued in an

unmapped environment

ES$NFA (type: RESODRCE)-No free APR; insufficient number of APRs available for the
requested operation (see Semantics)

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; the RIB address is not on a word

boundary

Implementation Notes

Since the MMD-register modifications MAP_WINDOW and DNMAP_WINDOW perform are
reflected by corresponding changes in the caller's mapping-context restore area in one logically
indivisible operation, MMD-context saving is not required each time the process is switched
out of the run state. Such context saving is needed by processes that modify their mapping
directly by accessing the IjO page, at some cost in overall performance. (MMD-context saving
is a process creation option.) This aspect of MAP_WINDOW usage versus self-modification
should be weighed in the design of DRIVER, PRIVILEGED, and DEVICE__ACCESS processes
that require dynamic mapping alterations. The SAVE_CONTEXT and RESTORE_CONTEXT
requests facilitate saving and restoring of initial mapping values when using the MAP_WINDOW
and DNMAP_WINDOW requests.

18-26 Dynamic Memory-Allocation and Region-Sharing Requests

l 8. 8 RESTORE_CONTEXT
MACRO equivalent: RCTX$

The RESTORE-CONTEXT procedure permits a process to reset itself to an earlier
state of virtual-to-physical mapping previously saved using the SAVE_CONTEXT proce
dure. RESTORE_CONTEXT restores the APR values that were most recently saved by
SAVE_CONTEXT and updates the mapping-context restore area associated with the caller's
PCB accordingly. (The mapping-context restore area contains the process's mapping image and
is used automatically by the kernel during process context switches.)

Used in conjunction with the SAVE_CONTEXT procedure, RESTORE_CONTEXT allows a
process to reset its entire mapping to a known state, canceling the effect of intervening
alterations of its mapping, especially if such mapping operations involved borrowing of one or
more statically mapped APRs.

Multiple calls to RESTORE_CONTEXT without intervening calls to SAVE_CONTEXT cause
successively older generations of mapping context to be restored, assuming that multiple save
operations were executed prior to the sequence of calls to RESTORE_CONTEXT. Multiple
copies of mapping context are saved in LIFO order, as described for the SAVE_CONTEXT
procedure. Thus, a process could take snapshots of its mapping at several points and then
restore the last-saved mapping, the next-to-last, and so on, by a corresponding number of calls
to RESTORE_CONTEXT.

Syntax

RESTORE_CONTEXT

Example

%INCLUDE 'DRAM.PAS'

[PRIORITY(10) I STACK_SIZE(100)] PROCESS A;
BEGIN

(* Restore the mapping context. *)
RESTORE_CONTEXT;

END; (* Process A *)

Semantics

The RESTORE_CONTEXT procedure copies the mapping-register image contained in the first
or only context descriptor block pointed to by the caller's PCB into both the MMU registers
and the mapping-context restore area used for process context switching. The procedure then
removes the block from the caller's context-descriptor list, deallocates the block, and returns to
the caller.

If the caller's context-descriptor list is empty, the procedure returns an error indication.

This request is implemented through the RCTX$ kernel primitive.

Dynamic Memory-Allocation and Region-Sharing Requests 18-27

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$IPR (type: SYSTEM_SERVICE)-Illegal primitive call; no mapping context has been

saved;
SAVE_CONTEXT or RESTORE_CQNTEXT was issued in an unmapped environment

Implementation Notes

Like MAP_WINDOW and UNMAP_WINDOW, the RESTORE_CONTEXT procedure alters
both the MMU hardware registers and the caller's automatic mapping-context restore area
in one logically indivisible operation. Thus, if all mapping alterations are done exclusively
through MAP_WINDOW and RESTORE_CONTEXT operations, MMU-context saving is not
required each time the process is switched out of run state. Such context saving is needed
by a process that modifies its mapping directly by accessing to the I/O page, at some cost
in overall performance. (MMU-context saving is a process creation option.) This aspect of
MAP_ WINDOW /RESTORE_CQNTEXT usage versus self-modification should be weighed in
the design of DRIVER, PRIVILEGED, and DEVICE-ACCESS processes that require dynamic
mapping alterations.

18-28 Dynamic Memory-Allocation and Region-Sharing Requests

1 8. 9 SA VE_ CONTEXT
MACRO equivalent: SCTX$

The SAVE_CONTEXT procedure permits a process to save a copy of its memory mapping for
subsequent restoration by using the RESTORE_CONTEXT procedure. SAVE_CONTEXT saves
the contents of the calling process's mapping registers (APRs) in a context block that is distinct
from the mapping-context restore area always associated with a process's PCB. (The latter area
is used implicitly by the kernel during process context switching.)

Used with the RESTORE_CONTEXT procedure, SAVE_CONTEXT allows a process to reset
its entire mapping to a prior, known state~ canceling the effect of intervening alterations of its
mapping, especially if such mapping operations involved borrowing of one or more statically
mapped APRs. Typically, SAVE_CONTEXT might be used preceding a fixed-mode call to
MAP_WINDOW.

Assuming that the remapping is of a temporary nature, a call to RESTORE_CONTEXT would
be used at some later point to restore the previous mapping.

Successive calls to SAVE_CONTEXT without intervening calls to RESTORE_CONTEXT
cause multiple copies of mapping context to be saved in a list structure treated by
RESTORE_CONTEXT as a LIFO push-down stack. Thus, a process could take snapshots
of its mapping at various points and then restore the last-saved mapping, the next-to-last, and
so on, by an appropriate number of successive calls to RESTORE_CONTEXT.

Together, the SAVE_CONTEXT and RESTORE_CONTEXT procedures facilitate easy, uncom
plicated restoration of mapping, at a relatively small cost in performance. Also, if used with
MAP_WINDOW (as opposed to direct MMU modification) that set of requests eliminates the
need for MMD-register saving during process context switches from run state, an. overall per
formance benefit.

Chapter 5 of the MicroPower /Pascal Run-Time Services Manual discusses dynamic mapping.

Syntax

SAVE_CONTEXT ([STATUS :=status-record])

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Example

%INCLUDE 'DRAM.PAS'

[PRIORITY(10), STACK_SIZE(100)] PROCESS A;
BEGIN

(* Save the mapping context. *)
SAVE_CONTEXT;

END; (* Process A *)

Dynamic Memory-Allocation and Region-Sharing Requests 18-29

Semantics

The SAVE_CONTEXT procedure allocates a context descriptor block in system-common memory
and copies the contents of the user's MMU registers into the block. The procedure links the
block into the context-descriptor list pointed to· by the caller's PCB, as the first or only element
of that list, and returns to the caller.

In an LSI-11/73 or similar target environment, the procedure saves both the I&D-space mapping
registers if I&D-space separation is in effect for the calling process. Otherwise, only the I-space
APR set is saved.

This request is implemented through the SCTX$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$IPR (type: SYSTEM_SERVICE)-Illegal primitive call; SAVE_CONTEXT was issued in

an unmapped environment

ES$NMK (type: RESOURCE)~Insufficient space for kernel structure; a context descriptor block
could not be allocated

18-30 Dynamic Memory-Allocation and Region-Sharing Requests

18.10 UNMAP_WINDOW
MACRO equivalent: UMAP$

The UNMAP_WINDOW procedure permits a process to reverse the effect of a prior
MAP_WINDOW operation, dissociating a sequence of virtual addresses (the virtual window)
from the physical memory to which it was mapped. (The procedure is valid only in a mapped
environment.) More precisely, UNMAP_WINDOW sets the APR(s) corresponding to a specified
window to inactive or no access and modifies the calling process's mapping context to reflect
the availability of the APR(s) for subsequent remapping.

The caller identifies the window to be unmapped by supplying the base virtual address of
the window and a length to unmap. The address is presumably one previously returned by
the MAP_WINDOW procedure. The MAP_WINDOW request provides the complementary
window-mapping operation. An explicit unmapping operation is required between successive
mapping operations that remap a given window in free mode. However, if the fixed mode of
MAP_WINDOW operation is used for the remapping, intervening UNMAP_WINDOW calls are
unnecessary.

Chapter 5 of the MicroPower /Pascal Run-Time Services Manual discusses dynamic mapping,
including the use of UNMAP_WINDOW in the context of other related requests. The
SAVE_CONTEXT and RESTORE_CONTEXT requests provide additional support for mapping
operations that involve borrowing of one or more APRs.

Syntax

UNMAP_WINDOW (

ADDRES5-SPACE

[ADDRESS_SP ACE := { D_SP ACE
!_SPACE

LENGTH := window-length
WINDOW_PTR :=window-pointer)

Specifies that the operation is to modify the process's D-space (D_SPACE, default) APR set
or the process's I-space (!_SPACE) APR set.

These parameters are meaningful only if I&D-space separation, possible in an LSI-11/73
target processor, is in effect for the calling process. Otherwise, the parameter is ignored.

window-length
A constant or the identifier of a variable of type UNSIGNED that specifies the size, in bytes,
of the virtual window to be unmapped. This value effectively determines the number of
APRs that are unmapped, or freed, by the operation.

window-pointer
The identifier of a variable of type UNIVERSAL that contains the virtual address that
identifies the window to be unmapped. Normally, this value is supplied by a prior call to
MAP_WINDOW.

Dynamic Memory-Allocation and Region-Sharing Requests 18-31

Example
Y.INCLUDE 'DRAM.PAS'

VAR
W_ptr : UNIVERSAL;

[PRIORITY(10), STACK_SIZE(100)] PROCESS A;
BEGIN

(* Unmap the window. *)
UNMAP_WINDOW

(WINDOW_PTR := W_ptr,
LENGTH:= Y.0'20000');

END; (* Process A *)

Semantics

The UNMAP_WJNDOW procedure determines which APR(s) map the window identified in
the request and clears the corresponding PDR(s), effectively setting the access control field
of the affected APR(s) to no access. The unmapping operation is performed on both the
MMU hardware registers and the corresponding locations in the mapping-context restore area
associated with the caller's PCB.

This request is implemented through the UMAP$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$IPR (type: SYSTEM_SERVICE)-Illegal primitive call; UNMAP_WJNDOW was issued in

an unmapped environment

18-32 Dynamic Memory-Allocation and Region-Sharing Requests

Chapter 19
Clock Service Requests

This chapter describes the requests that provide for setting and obtaining the kernel-maintained
system time and for timed process blocking. These requests, implemented through the
predeclared procedures listed in Table 19-1, are the Pascal language interface to the services
provided by the kernel's timer primitives.

Note
To use these requests, a system clock must be present and configured on your
target system.

You must include in your program or module the definitions of the routines that implement the
requests described in this chapter before using them. See Appendix I for more information.

Table 19-1 summarizes the Pascal clock service requests.

Table 19-1: Clock Service Requests

Request Operation

Obtains the system time GET_ TIME

SET_ TIME

SLEEP

Sets the system time to an arbitrary value

Blocks the calling process in the wait-active state until a specified
time interval has elapsed

19. 1 About System Time
The kernel calculates system time in milliseconds on the basis of interrupts generated by a 50
Hz, 60 Hz, 100 Hz, or 800 Hz clock source. Thus, the time is kept in multimillisecond granules
or clock ticks. (For example, a 60 Hz clock ticks only_ once every 16.7 milliseconds.) Chapter 3
of the MicroPower /Pascal Run-Time Services Manual describes the possible range of discrepancy
between reported system time and actual elapsed time due to clock frequency and discusses
the further effect that relative process priorities may have on reported time as perceived by the
calling process. Chapter 3 of the MicroPower /Pascal Run-Time Services Manual also provides
additional information about the kernel's primitive clock services.

Clock Service Requests 19-1

19.2 Format of CLOCK_TIME Record
The CLOCK_TIME record facilitates manipulation of the triple-precision (48-bit) system time
value used by clock service requests and the auxiliary routines.

CLOCK_TIME = RECORD
CASE Clock_time_use OF

(* Used by GET_TIME and SET_TIME *)
Clock_value : (Low, Middle, High: UNSIGNED);

(* Used by SLEEP *)
Sleep_interval : (Interval : LONG_INTEGER; Overflow UNSIGNED);

END;

Low
An unsigned value that is the low-order 16 bits of time value.

Middle
An unsigned value that is the middle-order 16 bits of time value.

High
An unsigned value that is the high-order 16 bits of time value.

Interval
A long-integer value that is the low-order 32 bits of the 48-bit time value. (This value is
used by the SLEEP request.)

Overflow
An unsigned value that is the high-order 16 bits of the 48-bit time value. (This overflow
count is for SLEEP request values that exceed the magnitude of the SLEEP request's
parameter.)

19-2 Clock Service Requests

19.3 GET_TIME
MACRO equivalent: GTIM$

The GET_TIME procedure obtains the approximate system time. System time is either of the
following:

1. The elapsed time since the last system initialization (zero based).

2. The base time set by the SET_TIME procedure plus the elapsed time since the base system
time was last set. (A base time, if used, is normally set as part of the system startup or
restart procedures.)

GET_TIME obtains the system time in milliseconds as a 48-bit triple-precision value. GET_TIME
returns this value in a record variable that contains three unsigned integer fields: a low-order
value field, a middle-order value field, and a high-order value field. This value allows for an
extremely large maximum elapsed time-more than 4400 years, assuming a zero base. The
calling process may need to consider only the low-order or low- and middle-order portions of
the time value, as discussed in Chapter 3 of the MicroPower /Pascal Run-Time Services Manual.

The SLEEP procedure provides a related process blocking-and-wakeup service based on elapsed
system time.

Syntax

GET_TIME (SYS_TIME :=time-record)

time-record
The identifier of a variable of predefined record type CLOCK_TIME that will receive the
system time value. See Section 19.2.

Example

%INCLUDE 'TIMER.PAS'

VAR
T : CLOCK_TIME;

PROCESS Stop_watch;
BEGIN

(* Get the system time. *)
GET_TIME

(SYS_TIME := T);

END; (* Process Stop_watch *)

Semantics

The GET_TIME procedure copies the 48-bit system time value into three unsigned values that
comprise the variable specified in the call and returns to the caller.

This request is implemented through the GTIM$ kernel primitive.

Clock Service Requests 19-3

Error Returns

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; odd or not in user space

19-4 Clock Service Requests

19.4 SET_TIME
MACRO equivalent: STIM$

The SET_ TIME procedure sets the system time maintained by the kernel to an arbitrary base
time value, assuming that a system clock is present and configured on the target system.

SET_TIME obtains the new system time in milliseconds from a 48-bit triple-precision value
specified in the call. This record variable contains three unsigned integer fields: a low-order
value field, a middle-order value field, and a high-order value field. The 48-bit value allows
for an extremely large maximum elapsed time-more than 4400 years, assuming a zero base.
Chapter 3 of the MicroPower /Pascal Run-Time Services Manual discusses the clock and timer
services provided by the kernel.

Syntax

SET_TIME (SYS_TIME :=time-record)

time-record
The identifier of a variable of predefined record type CLOCK_TIME that will receive the
system time value. See Section 19.2.

Example
%INCLUDE 'TIMER.PAS'

VAR
T : CLOCK_TIME;

PROCESS Stop_watch;
BEGIN

(* Set the system time. *)
WITH T DO

BEGIN
LOW := 0;
MIDDLE := O;
HIGH := 0;

END;
SET_TIME

(SYS_TIME := T);

END; (* Process Stop_watch *)

Semantics

The SET_TIME procedure copies the 48-bit time value specified by the three unsigned values of
the variable specified in the call into the kernel's system time variable and returns to the caller.

This request is implemented through the STIM$ kernel primitive.

Clock Service Requests 19-5

Error Returns

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; odd or not in user space

19-6 Clock Service Requests

19.5 SLEEP
MACRO equivalent: SLEP$

The SLEEP procedure blocks the calling process in the wait-active state , until the closest
approximation in clock ticks equal to or exceeding the specified time interval has elapsed. At
that point, the process changes to the ready-active state, from which it may be switched to the
run state, depending on the relative priorities of the unblocked process and the current running
process. (If the process was suspended during the blocking interval, the process changes to
ready suspended rather than ready active, of course.)

The caller specifies the blocking interval as the number of milliseconds following execution of
the call to SLEEP. The blocked process is never unblocked in less than the specified time. The
range of positive difference between the specified and actual blocking time is a function of
both the clock frequency and relative process priorities. (A 60 Hz system clock, for example,
ticks only once every 16.7 milliseconds.) Chapter 3 of the MicroPower/Pascal Run-Time Services
Manual describes the range of possible differences and discusses techniques for eliminating or
minimizing any discrepancy.

The blocking, specified as a positive long-integer value, can range from one millisecond (useful
only with an 800 Hz clock) to roughly 24. 9 days.

Use of SLEEP assumes that a system clock is present and configured on the target system.

Syntax

SLEEP (INTERVAL := blocking-interval)

blocking-interval
A constant or the identifier of a variable of predefined type LONG _INTEGER that specifies
the time, in milliseconds, that is the desired interval during which the process is blocked.
The value must be from 0 to (2**31) -1.

Example

%INCLUDE 'TIMER.PAS'

PROCESS Stop_watch;
BEGIN

(* Go to sleep for a while. *)
SLEEP

(INTERVAL := 100000);

END; (* Process Stop_watch *)

Semantics

The SLEEP procedure blocks the calling process on the system timer queue, adjusting the
queue order and current expiration values as required, and calls the scheduler. The queue is
time-ordered; blocked processes are queued on it in ascending order of blocking interval time
values. ·

If the blocking interval value supplied in the call is 0, SLEEP treats the request as a null
operation and returns control to the caller.

Clock Service Requests 19-7

At each tick of the system clock, the kernel's clock interrupt service updates the system time,
checks the timer queue, and unblocks any process(es) whose blocking interval has expired. Each
unblocking implies a possible scheduler call.

This request is implemented through the SLEP$ kernel primitive.

Restriction

The interval value is limited to a 31-bit positive integer; that is, the sign bit of the high-order
word must not be set.

Error Returns

See Section 11.2 for general information about error returns. The following exception code may
be returned:
ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; a negative interval was specified

(value exceeds (2••31) -1)

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; odd or not in user space

19-8 Clock Service Requests

Chapter 20
Miscellaneous Requests

This chapter describes a miscellaneous group of requests. Table 20-1 lists the predeclared
procedures and functions that are the Pascal language interface to primitive services provided
by the kernel.

You must include in your program or module the definitions of the routines that implement the
requests described in this chapter before using them. See Appendix I for more information.

Table 20-1: Miscellaneous Requests

Request

CHECKJREE_SP ACE

CREATE _LOGICAL _NAME

DELETE_LOGICAL_NAME

GET_CONFIG

POWER_FAIL

TRANSLATE_LOGICAL_NAME

20. l About Logical Names

Operation

Obtains heap storage space information

Defines or redefines a 1- to 6-character logical name

Eliminates the translation value defined for a given
logical name, effectively "undefining" the name

Obtains hardware configuration information

Detects whether a recovery from a power failure is in
progress

Obtains the translation string defined for a given
logical name

A logical name is a kernel structure that contains the translation value for the name. Logical
names provide a way of establishing equivalent values for strings, thus allowing you to write
generic applications that will execute differently, depending on the current value of a logical
name. For example, by associating a file specification with a logical name, an application could
communicate with a serial line, a file on disk, or a communication port, with no change to the
source code. Thus, a program could reference a default device named "DK:", and the file system
will have the logical name DK assigned to a real device, say, DYAO:.

Miscellaneous Requests 20-1

You can also use logical names to represent kernel resources such as semaphores, ring buffers,
or process run-time names for later translation by the other real-time programming requests.
The real-time programming requests (other than the logical name requests) and 1/0 requ~sts
that use file names will automatically translate a logical name, provided as a name parameter,
to its equivalence string when the request is invoked. The translation will traverse multiple
levels of serial logical name definitions to the final equivalence string. Refer to Chapter 3 of
the MicroPower /Pascal Run-Time Services Manual for additional details about logical names.

20-2 Miscellaneous Requests

20.2 CHECK_fREE_SPACE
MACRO equivalent: none

The CHECKJREE_SP ACE procedure obtains information on heap storage space. The
procedure returns the total size of free space and the largest contiguous segment of free
space in heap storage.

Syntax

CHECKJREE_SP ACE (TOTAL := total-free-space
LARGEST :=largest-contiguous-segment)

total-free-space
The identifier of an unsigned variable that receives the size in bytes of the free heap storage
space.

largest-contiguous-segment
The identifier of an unsigned variable that receives the size in bytes of the largest contiguous
segment of free heap storage space.

Example

%INCLUDE 'MISC.PAS'

VAR
Total, Largest : UNSIGNED;

PROCEDURE Free_~pace;
BEGIN

CHECK_FREE_SPACE(Total, Largest);
WRITELN('Total: ',Total);
WRITELN('Largest: ',Largest);

END;

Semantics

The CHECK_FREE _SP ACE procedure walks through the linked list of free heap storage space
to calculate the total free space. The size of each free segment is added to a running total
to calculate TOTAL. The largest segment size (LARGEST) is determined by comparing each
segment size to the previous largest size and setting LARGEST equal to the current segment
size when it is larger than the previous largest size.

Error Returns

None

Miscellaneous Requests 20-3

20.3 CREATE_LOGICALNAME ·
MACRO equivalent: CRLN$

The CREATE_LOGICAL_NAME procedure allows the caller to define or redefine a logical name
and associate it with a translation string. More precisely, the procedure creates a logical name
data structure containing a user-specified translation string value for a given name. Subsequent
instances of the logical name will be automatically translated to the corresponding value by
the other real-time requests that operate on dynamic data structures, described in Chapters 12
through 19. An override option permits a preexisting logical name definition to be replaced,
thus redefining the name.

The complementary TRANSLATE_LOGICAL _NAME request returns the translation string
value directly associated with a logical name, and the DELETE_LOGICAL_NAME request
eliminates the translation-string value associated with a currently defined logical name.

Syntax

CREATE_LOGICAL_NAME (

OVERRIDE

[OVERRIDE := { TRUE }]
FALSE

LENGTH : translation-string-length
STRING :=translation-string
[DESC := logical-name-descriptor]
NAME := logical-name
[STATUS := status-record])

If TRUE, the logical name already exists, and the character string provided by the translation
string parameter should replace the translation string associated with the logical name.
FALSE, the default, specifies that a preexisting logical name definition will not be replaced.

translation-string-length
The identifier of a variable of predefined type LOGICAL __NAME_LEN or an integer
constant that is the length, in bytes, of the character string specified by the translation-string
parameter. The valid range of this parameter is 1 to 256

translation-string
A string constant or the identifier of a variable that confains a 1- to 256-character ASCII
character string to be used as the translation string. (The effective length of the string is
determined by the translation-string-length parameter.)

logical-name-descriptor
The identifier of a variable of predefined type STRUCTURE_DESC that is to receive the
logical name's structure identifier.

logical-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of the logical name structure (see Section 11.1.1.1).

20-4 Miscellaneous Requests

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Restrictions

• Like other structure names, a logical name must be unique among all names of kernel data
structures.

• By system convention, if the translation value of a given logical name is itself intended as a
logical name {through serial definitions) and the translation value consists of fewer than six
printing characters, the name should be padded to six characters with trailing ASCII spaces
in the supplied translation string.

Example

PROGRAM logical;
%INCLUDE 'LOGNAM.PAS'

VAR
F1 : TEXT;
V1 : STRUCTURE_DESC;

[INITIALIZE] PROCEDURE Init;
BEGIN

(* Create a logical name. *)
CREATE_LOGICAL_NAME (DESC := V1,

NAME := 'MY_DEV',
STRING := 'DYAO',
LENGTH:= 4);

END; (* Procedure Init *)

BEGIN
OPEN (F1, 'MY_DEV:TEST.DAT', history:=NEW);

END.

Semantics

The CREATE_LOGICAL_NAME procedure attempts to create a logical-name kernel data
structure named as specified in the logical-name parameter and large enough to contain the
supplied translation string. If successful, the procedure copies the translation string into the
named structure and returns to the caller.

If the specified structure name is defined as a logical name and OVERRIDE is specified as TRUE,
the procedure deletes the existing logical-name structure and attempts to create and fill in a
new one. If the TRUE option was not specified or the structure name is in use as other than a
logical, the procedure returns to the caller, with a "name already in use" error indication.

If the structure creation fails for some other reason, the procedure returns to the caller, with an
appropriate error indication.

This request is implemented through the CRLN$ kernel primitive.

Miscellaneous Requests 20-5

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$NMK (type: RESOURCE)-Insufficient spa.ce for kernel structure; the required logical-name

structure could not be allocated

ES$MDN (type: SYSTEM_SERVICE)-Must specify structure descriptor or name

ES$SNI (type: SYSTEM_SERVICE)-Structure name in use; the name to be defined as a
logical name conflicts with an existing structure name

The request may also return the following error, though not as a result of standard Pascal
programming practice:
ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; the specified string length exceeds

256

20-6 Miscellaneous Requests

20.4 DELETE_LOGICALNAME
MACRO equivalent: DLLN$

The DELETE_LOGICAL_NAME procedure allows the caller to eliminate the translation
value defined for a given logical name, effectively "undefining" the name. More precisely,
DELETE_LOGICAL_NAME deletes the kernel data structure containing the translation string
immediately associated with the name supplied in the call. (Contrast with the DESTROY
procedure, which attempts to translate any logical name into the name of another type of
structure and will not delete a logical-name structure. DELETE_LOGICAL_NAME, on the
other hand, requires that the named structure be a logical-name value and will not perform any
trans la ti on.)

The complementary CREATE_LOGICAL_NAME procedure defines the translation value
associated with a logical name, and the TRANSLATE_LOGICAL_NAME procedure returns
the translation value associated with a currently defined logical name.

Syntax

DELETE_LOGICAL _NAME ({ DESC := logical-name-descriptor }
NAME := logical-name

[STATUS :=status-record])

logical-name-descriptor
The identifier of a variable of predefined type STRUCTURE_DESC that contains the structure
identifier of the logical name to be deleted.

logical-name
A character string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of the logical-name structure to be deleted (see
Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Caution
Logical names are, by nature, often dynamically redefined. Since each
redefinition can cause the creation of a new logical-name structure, a
reference to the logical-name structure, using a descriptor (DESC parameter),
may access an obsolete structure.

DIGITAL recommends as a safe programming practice that you refer
to logical-name structures by name (NAME parameter) rather than by
descriptor to avoid an accidental reference to an obsolete logical-name
structure.

Miscellaneous Requests 20-7

Example
%INCLUDE 'LOGNAM.PAS'

VAR
Temp_file : STRUCTURE_DESC;

[TERMINATE] PROCEDURE Term;
BEGIN

(* Delete a logical name. *)
DELETE_LOGICAL_NAME (DESC := Temp_file);

END; (* Procedure Term *)

Semantics

The DELETE_LOGICAL_NAME procedure verifies that the kernel data structure identified in
the call is a logical-name structure and, if so, deletes the structure and removes the corresponding
name from the system name table.

This request is implemented through the DLLN$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IST (type: SYSTEM_SERVICE)-lnvalid structure descriptor; no such logical-name
structure exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

20-8 Miscellaneous Requests

20.5 GET_CONFIG
MACRO equivalent: GV AL$

The GET_CONFIG procedure obtains information about the target hardware configuration. The
information returned is that supplied in the configuration file at application build time and does
not necessarily reflect the hardware configuration of a particular target.

Syntax

GET_CONFIG (CLOCK_FREQ :=clock-frequency
CONFIG :=configuration-record
[STATUS :=status-record])

clock-frequency
The identifier of an integer variable that will receive the frequency, in Hertz, of the real-time
clock. The value received will be one of the following: 50, 60, 100, or 800 or 0 if there is
no clock.

conftguration-record
The identifier of a variable of predefined record type HARDWARE_CONFIG that will
receive configuration information (see the Configuration Record Format).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status, either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

Configuration Record Format

The configuration record is a variable of predefined type HARDWARE_CONFIG, as follows:

HARDWARE_CONFIG = PACKED RECORD

FPP

FPP [POS(O)] BOOLEAN;
FIS [POS(1)] BOOLEAN;
F11 [POS(2)] BOOLEAN;
J11 [POS(3)] BOOLEAN;
T11 [POS(4)] BOOLEAN;
IOP [POS(5)] BOOLEAN;
Q22 [POS(6)] BOOLEAN;
MMU [POS(7)] BOOLEAN;
CMR [POS(8)] BOOLEAN;
FPA [POS(9)] BOOLEAN;
ROM_RAM : [POS(15)] BOOLEAN;

END;

A Boolean value that, when TRUE, indicates that the target processor is configured with a
KEFl 1 floating-point processor option.

Miscellaneous Requests 20-9

FIS

Fll

Jll

Tll

IOP

A Boolean value that, when TRUE, indicates that the target processor is configured with a
KEVl 1 floating-point option.

A Boolean value that, when TRUE, indicates that the target processor is a KDF-11 or
KDF-1 lB (contains the KTFll CPU).

A Boolean value that, when TRUE, indicates that the target processor is a KDJl 1 (contains
the DCJll CPU); or, if the IOP Boolean value is also TRUE, indicates that the target
processor is a KXJ 11-CA.

A Boolean value that, when TRUE, indicates that the target processor is a KDll-F, KDll
HA, KXT-llA, or KXTll-CA (contains the Tll CPU).

A Boolean value that, when TRUE, indicates that the target processor is a KXTl 1-CA; or,
if the Jl 1 Boolean value is also TRUE, indicates that the target processor is a KXJl 1-CA.

Q22
A Boolean value that, when TRUE, indicates that the system has 22-bit addressing capability.

MMU
A Boolean value that, when TRUE, indicates that the target processor is configured with a
KT-11 memory-management unit.

CMR
A Boolean value that, when TRUE, indicates that the target processor is a CMR21.

FPA
A Boolean value that, when TRUE, indicates that the target processor is configured with a
FPJl 1-AA floating-point accelerator.

ROM_RAM

A Boolean value that, when TRUE, indicates that the target is a ROM-based system.

Example

%INCLUDE 'MISC.PAS'

VAR
Freq : INTEGER;
Info : HARDWARE_CONFIG;

PROCESS A;
BEGIN

(* Get the clock frequency and the hardware configuration info *)
GET_CONFIG (CLOCK_FREQ := Freq,

CONFIG :=Info);

END; (* Process A *)

20-10 Miscellaneous Requests

Semantics

The GET_CONFIG procedure obtains information about the target from the kernel's hardware
configuration words.

This request is implemented through the GVAL$ kernel primitive.

Error Returns

None

Miscellaneous. Requests 20-11

20.6 POWER_FAIL
MACRO equivalent: PWFL$

The POWERJAIL function allows a process to determine when the kernel has resumed
operation after a power failure condition. The function returns a Boolean value to signify
whether a power failure has occurred. TRUE indicates that the kernel has resumed operation
after a power failure (warm start). FALSE indicates application initialization (cold start), implying
that all read/write memory has been cleared by the kernel's initialization routine, as is always
the case for an initial system startup. POWER_FAIL is intended for use in the initialization
code of a static process that implements some form of powerfail recovery through checkpointing
techniques.

A warm restart following a power failure differs from a cold start or cold restart only to the
extent that any nonvolatile RAM allocated to a process's impure-data segment is not reinitialized
by the kernel during the restart. (That implies that some valid user data may be preserved
across the power failure and subsequent power-up, although all kernel data structures are lost
and all static processes restarted "from scratch.")_ Warm restarts are possible only under the
following conditions:

• Some or all of the target RAM is declared as nonvolatile in the MEMORY configuration
macros (volatile=NO) and is implemented with battery backup. (If you are debugging under
P ASDBG and only simulating power failures for testing purposes, the RAM in question
need not be nonvolatile in actuality but must be declared as such.)

• All code and pure data must reside in nonvolatile memory, whether RAM or ROM.

• The kernel's impure-data area must reside in nonvolatile RAM so the restart indicators are
preserved across the power failure, although the area is almost entirely reinitialized on any
restart.

• The impure-data area of any process owning data involved in powerfail recovery must
reside in nonvolatile RAM.

POWERJAIL will invariably return a FALSE (cold start) indication if none of the target RAM is
declared as nonvolatile in the system configuration file, regardless of actual or simulated power
failures. Therefore, the use of POWER_FAIL is meaningful in a simulated, debugging situation
only if at least condition 1 is satisfied and is meaningful in actual stand-alone operation only if
all the stated conditions are satisfied.

Syntax

POWERJAIL

Example

%INCLUDE 'MISC.PAS'

VAR
First_time : BOOLEAN;

[INITIALIZE] PROCEDURE !nit;
BEGIN

(* Determine if this is an initial power-up. *)
First_time := NOT POWER_FAIL;

END; (* Procedure !nit ~)

20-12 Miscellaneous Requests

Semantics

The POWERJAIL function returns to the caller, with the value FALSE if a bootstrap or
the kernel has cleared all read/write memory during the latest system startup or restart.
Alternatively, POWERJAIL returns the value TRUE if user-process data segments allocated in
nonvolatile RAM have not been cleared during the latest restart. (The kernel's restart indicators
are not reset by the operation of POWERJAIL.)

This request is implemented through the PWFL$ kernel primitive.

Error Returns

None

Application Notes

POWER_FAIL enables applications that use nonvolatile RAM memories to preserve data when
a power failure occurs.

A typical use of POWERJAIL would be to invoke it from an initialization procedure to enable
application software to distinguish between a startup and a resumption after a power failure.
If it returns a FALSE, the first-time initialization code is executed. If it returns a TRUE, the
applicable code can be executed to resume operation.

Application checkpointing can be accomplished by prudent use of data structures in nonvolatile
RAM. Variables that you may wish to use for data-recovery indicators must be defined with
the STATIC and VOLATILE attributes at the outermost program level so they will be statically
allocated.

You may select the following power-up options with configuration file macros as described in
the MicroPower/Pascal system user's guide for your host system:

• Cold start (volatile memory)-All memory is reinitialized, and the application is restarted
from the kernel initialization code. All dynamic processes and structures are lost. Static
processes are recreated at their initialization code.

• Warm start (nonvolatile memory)-The application is restarted from the kernel-initialization
code. However, RAM that is not allocated for the kernel pool (or code) but which is declared
as nonvolatile by the MEMORY macro in the configuration file will not be initialized during
a power-up following a power failure.

Volatile and nonvolatile memory may be mixed in this configuration, but the kernel pool
must reside in nonvolatile memory (kernel indicators must be preserved).

Miscellaneous Requests 20-13

20.7 TRANSLATE_LQGICALNAME
MACRO equivalent: TRLN$

The TRANSLATE_LOGICAL_NAME procedure lets the caller obtain the translation string
defined for a given.logical name. More precisely, TRANSLATE_LOGICAL_NAME returns the
translation string contained in the logical name kernel data structure identified in the call to a
specified variable.

TRANSLATE_LOGICAL_NAME, unlike most real-time procedures that operate on existing
kernel structures, performs only one level of translation in the case of "nested" logical-name
definitions; the immediate translation value is always returned.

The complementary CREATE_LOGICAL_NAME procedure defines the translation value
associated with a logical name, and the DELETE_LOGICAL_NAME procedure eliminates
the translation value associated with a currently defined logical name.

Syntax

TRANSLATE_LOGICAL_NAME (LENGTH := translation-string-length
STRING := translation-string

translation-string-length

{
DESC :=logical-name-descriptor }
NAME := logical-name

[STATUS := status-record])

A variable of predefined type LOGICAL_NAME_LEN that specifies the maximum length,
in bytes, of the character string being returned to the variable specified by the translation
string parameter. That variable is updated to reflect the actual length of the returned
translation string. The valid range of the returned value is 1 to 256.

translation-string
The identifier of a variable that is to receieve the ASCII character string defined as the
translation value for the logical name. (The effective length of the string being returned is
determined by the translation-string-length parameter.)

logical-name-descriptor
The identifier of a variable of predefined type STRUCTURE_DESC that contains the logical
name's structure identifier.

logical-name
A character-string constant or the identifier of a variable of predefined type NAME_STR
that specifies the 6-character name of the logical name structure (see Section 11.1.1.1).

status-record
The identifier of a variable of predefined record type EXC_STATUS that may receive an
exception type and code. If you specify this parameter, the exception status,. either success
or error, that results from issuing the request is reported in this variable. Otherwise, an
error causes the corresponding exception to be reported. The format of the exception record
is described in Section 11.1.2.

20-14 Miscellaneous Requests

Caution
Logical names are, by nature, often dynamically redefined. Since each
redefinition can cause the creation of a new logical-name structure, a
reference to the logical-name structure, using a descriptor (DESC parameter)
may access an obsolete structure.

DIGITAL recommends as a safe programming practice that you refer
to logical-name structures by name (NAME parameter) rather than by
descriptor to avoid an accidental reference to an obsolete logical-name
structure.

Example
%INCLUDE 'LOGNAM.PAS'

VAR
Temp_file : STRUCTURE_DESC;
Len : LOGICAL_NAME_LEN;
Str : PACKED ARRAY [1 .. 256] OF CHAR;

[INITIALIZE] PROCEDURE !nit;
BEGIN

(* Translate a logical name. *)
TRANSLATE_LOGICAL_NAME (DESC := Temp_file,

STRING := Str,
LENGTH:= Len);

END; (* Procedure !nit *)

Semantics

The TRANSLATE_LOGICAL_NAME procedure verifies that the kernel data structure identified
in the call is a logical name structure and tests that the specified maximum length value is at
least equal to the length of the translation string. If no error is encountered, the procedure
copies the translation string to the caller's buffer variable, places the actual string length in the
variable specified by the translation-string-length parameter, and returns to the caller.

This request is implemented through the TRLN$ kernel primitive.

Error Returns

See Section 11.2 for general information about error returns. The following exception codes
may be returned:
ES$CDN (type: SYSTEM_SERVICE)-Cannot specify both descriptor and name

ES$IPM (type: SYSTEM_SERVICE)-Illegal parameter; the specified maximum string length
is less than the actual string length

ES$IST (type: SYSTEM_SERVICE)-Invalid structure description (index or name); no such
logical name exists

ES$MDN (type: SYSTEM_SERVICE)-Must specify descriptor or name

Miscellaneous Requests 20-15

The request may return the following error, though not as a result of standard Pascal
programming practice:
ES$IAD (type: SYSTEM_SERVICE)-Invalid address; pointer to buffer or structure is odd or

not in user address space

20-16 Miscellaneous Requests

Appendix A

ASCII Character Set

Table A-1 lists the standard ASCII character set used by the MicroPower/Pascal software.

Table A-1: ASCII Character Set

Code Code Code Code

Dec Oct Chr Dec Oct Chr Dec Oct Chr Dec Oct Chr

000 000 NUL 016 020 DLE 032 040 SP 048 060 0

001 001 SOH 017 021 DCl 033 041 049 061 1

002 002 STX 018 022 DC2 034 042 050 062 2

003 003 ETX 019 023 DC3 035 043 # 051 063 3

004 004 EOT 020 024 DC4 036 044 $ 052 064 4

005 005 ENQ 021 025 NAK 037 045 % 053 065 5

006 006 ACK 022 026 SYN 038 046 & 054 066 6

007 007 BEL 023 027 ETB 039 047 055 067 7

008 010 BS 024 030 CAN 040 048 056 070 8

009 011 HT 025 031 EM 041 051 057 071 9

010 012 LF 026 032 SUB 042 052 ... 058 072

011 013 VT 027 033 ESC 043 053 + 059 073

012 014 FF 028 034 FS 044 054 060 074 <
013 015 CR 029 035 GS 045 055 061 075

014 016 so 030 036 RS 046 056 062 076 >
015 017 SI 031 037 us 047 057 I 063 077 ?

ASCII Character Set A-1

Table A-1 (Cont.): ASCII Character Set

Code Code Code Code

Dec Oct Chr Dec Oct Chr Dec Oct Chr Dec Oct Chr

064 100 @ 080 120 p 096 140 112 160 p

065 101 A 081 121 Q 097 141 a 113 161 q

066 102 B 082 122 R 098 142 b 114 162 r

067 103 c 083 123 s 099 143 c 115 163 s

068 104 D 084 124 T 100 144 d 116 164 t

069 105 E 085 125 u 101 145 e 117 165 u

070 106 F 086 126 v 102 146 f 118 166 v

071 107 G 087 127 w 103 147 g 119 167 w

072 110 H 088 130 x 104 150 h 120 170 x

073 111 089 131 y 105 151 121 171 y

074 112 J 090 132 z 106 152 j 122 172 z

075 113 K 091 133 107 153 k 123 173 {

076 114 L 092 134 \ 108 154 124 174

077 115 M 093 135] 109 155 m 125 175 }

078 116 N 094 136 110 156 n 126 176

079 117 0 095 137 111 157 0 127 177 DEL

Table A-2 lists the control code abbreviations of the nonprinting characters.

A-2 ASCII Character Set

Table A-2: Control Code Abbreviations for Nonprinting Characters

Abbreviation

ACK

BEL

BS

CAN

CR

DCl

DC2

DC3

DC4

DEL

DLE

EM

ENQ

EOT

ESC

ETB

ETX

FF

FS

GS

HT

LF

NAK

NUL

RS

SI

so
SOH

SP

Meaning

Acknowledge (CTRL/F)

Audible signal (CTRL/G)

Backspace (CTRL/H)

Cancel (CTRL/X)

Carriage return (CTRL/M)

Device control 1 (CTRL/Q)

Device control 2 (CTRL/R)

Device control 3 (CTRL/S)

Device control 4 (CTRL/T)

Delete

Data link escape (CTRL/P)

End of medium (CTRL/Y)

Enquiry (CTRL/E)

End of transmission (CTRL/D)

Escape (CTRL/[)

End of transmission block (CTRL/W)

End of text (CTRL/C)

Form feed (CTRL/L)

File separator (CTRL/\)

Group separator (CTRL/])

Horizontal tab (CTRL/I)

Linefeed (CTRL/J)

Negative acknowledge (CTRL/U)

Null

Record separator (CTRL/')

Shift in (CTRL/O)

Shift out (CTRL/N)

Start of heading (CTRL/ A)

Space

ASCII Character Set A-3

Table A-2 (Cont.): Control Code Abbreviations for Nonprinting Characters

Abbreviation

STX

SUB

SYN

us
VT

Meaning

Start of text (CTRL/B)

Substitute (CTRL/Z)

Synchronous idle (CTRL/V)

Unit separator (CTRL/-)

Vertical tab (CTRL/K)

A-4 ASCII Character Set

Appendix B

Syntax Summary

This appendix summarizes the syntax of the MicroPower/Pascal language. The metalanguage
used to specify the syntax of the language constructs is based on the Bakus-Naur Form (BNF).
The notation has been modified from the original to permit greater convenience of description.

Each element of the language is defined in terms of simpler elements. The element being
defined is written to the left of the equal (=) symbol, and its definition is written to the right of
that symbol.

The metalanguage uses a metasymbology that differs from the conventions used in the rest of
this manual. These metasymbols are not part of the MicroPower /Pascal language; they are the
following:

Symbol

>

[x]

{x}

(xly)

"xyz"

character-string

Meaning

Shall be defined to be

Shall have as an alternative definition

Alternatively

End of definition

0 or 1 instance of x

0 or more instances of x

Grouping: either x or y

The terminal symbol xyz

A nonterminal symbol

The remainder of this appendix summarizes MicroPower/Pascal language syntax. For ease of
reference, the elements are presented in alphabetical order.

Syntax Summary B-1

actual-par.ameter =
[formal-name ":="]

(expression I
variable-access I
procedure-identifier I
function-identifier I
empty-parameter).

actual-parameter-list =
11

(
11 actual-parameter { II II actual-parameter} 11

)
11

•

adding-operator =
"+" I "-"

apostrophe-image
"' '"

array-type =

"OR" .

"ARRAY" 11
[

11 index-type { 11
,

11 index-type} 11
]

11 "OF"
(type-identifier I new-type) .

array-variable =
variable-access

assignment-statement =
(variable-access function-identifier) 11 := 11 expression

attribute =
attribute-identifier [11

(11 (constant I identifier) ") 11
] •

attribute-identifier
identifier

attribute-sequence
11

[" attribute { " " attribute } 11
]

11
•

base-type =
ordinal-type

binary-digit =
11 0 11 I 11 1 11

binary-digit-sequence
binary-digit { binary-digit } .

binary-integer =
11 %11 letter-b 11

•
11 binary-digit-sequence

block =
declaration-part statement-part .

Boolean-expression
expression

Boolean-type =
"BOOLEAN"

bound-identifier =
identifier

buff er-variable =
file-variable 11

-
11

case-constant =
constant

B-2 Syntax Summary

II Jll

case-constant-list =
case-constant { 11 11 case-constant } .

case-index =
expression

case-list-element =
case-constant-list 11

•
11 statement .

case-statement =
11 CASE 11 case-index 11 0F 11

case-list-element { 11
;

11 case-list-element}
["OTHERWISE" statement-sequence [11

•
11

]]

"END" .

character-constant
11111 string-element 11111

character-string =

11.11

11111
{ string-element } 11111

[
11

(" unsigned-integer
{

11111 unsigned-integer } 11
)

11
[{ character-string }]] .

char-type =
"CHAR" .

compilation-unit
program I module

component-type =
type-denoter

component-variable =
indexed-variable I field-designator

compound-statement =
"BEGIN" statement-sequence "END" .

conditional-statement =
if-statement I case-statement

conf ormant-array-schema =
packed-conf ormant-array-schema

unpacked-conf ormant-array-schema

constant =
[sign] (unsigned-number I constant-identifier) I
11 NIL 11 I character-constant I
character-string I structured-constant

constant-definition =
identifier 11 =11 constant

constant-definition-part =
["CONST" constant-definition 11

;
11

{ constant-definition 11
•

11
}] •

constant-element =
ordinal-constant [" 11 ordinal-constant]

constant-identifier =
identifier

control-variable =
entire-variable

Syntax Summary B-3

decimal-digit =
11 0 11 I 11 1 11 I 11 2 11 I 11 3 11

· I 11 4 11 I 11 5 11 I 11 6 11 I 11 7 11 I 11 8 11 I 11 9 11
•

decimal-digit-sequence =
decimal-digit { decimal-digit } .

declaration-part =
{ label-declaration-part

constant-definition-part
type-definition-part
variable-declaration-part
procedure-function-process-declaration-part } .

digit-sequence =
decimal-digit-sequence

directive =
"FORWARD" I "EXTERNAL"

domain-type =
type-identifier

empty-parameter

empty-statement

entire-variable
variable-identifier

enumerated-constant =

11 SEQU 11
•

unsigned-number I constant-identifier I "NIL" .

enumerated-type =
"(" identifier-list 11

)
11

•

expression =
simple-expression

factor

relational-operator simple-expression] .

variable-access I unsigned-constant I bound-identifier
function-designator I set-constructor I "NOT" factor I
"(" expression ")" { 11

• ·" type-identifier } I
structured-constant

field-designator =
record-variable " " field-specifier I
field-identifier

field-identifier =
identifier

field-list =
(fixed-part [";" variant-part] I variant-part) ["·"] .

field-specifier =
field-identifier

file-type =
"FILE" "OF" component-type

file-variable =
variable-access

B-4 Syntax Summary

final-value =
expression

fixed-part =
record-section {

for-statement =

.... , . record-section } .

"FOR" control-variable 11 := 11
initial-value (11 T0 11 I "DOWNTO") final-value
11 00 11 statement,.

formal-name =
identifier

formal-parameter-list
11 (11 formal-parameter-section

{ 11 ; 11 formal-parameter-section} ")" .

formal-parameter-section =
value-parameter-specification I
variable-parameter-specification
procedural-parameter-specification
functional-parameter-specification

function-block =
block .

function-declaration
function-heading directive I
:function-identification function-block
~:.nction-heading function-block.

'""on-designator =
function-identifier [actual-parameter-list] .

function-heading =
[attribute-sequence] "FUNCTION" identifier

[formal-parameter-list] ":"result-type 11 · 11

function-identification =
"FUNCTION" function-identifier 11

•
11

function-identifier =
identifier .

functional-parameter-specification
function-heading

goto-statement =
"GOTO" label

hexadecimal-digit
"0" I II 111 "2" "3" 11411
"A" I "B" uc11 11011 "E"
"a" I llbll "c" "d" 11e11

hexadecimal-digit-sequence =

11511
"F"
"f"

11511 I

hexadecimal-digit { hexadecimal-digit } .

"7"

hexadecimal-integer =
11 %11 letter-x II"' hexadecimal-digit-sequence

identified-variable =
pointer-variable 11-11

I

II"'

"8" I "9"

Syntax Summary B-5

identifier =
ietter { letter I decimal-digit } .

identifier-list =
identifier { " " identifier } .

if-statement =
"IF" Boolean-expression

"THEN" statement
["ELSE" statement] .

include-directive =
"%INCLUDE"

index-expression =
expression

"'"

index-type =
ordinal-type

file-specification"'" .

index-type-specification
identifier" "identifier 11 · 11 ordinal-type-identifier .

indexed-variable =
array-variable

11 [11 index-expression { 11 II

'
index-expression} "]" .

initial-value =
expression

integer-type =
"INTEGER"

label =
unsigned-integer .

label-declaration-part =
["LABEL" label {" "label} 11 · 11

letter
"A11 "B11 11c11 llD" llE" llf"
llJll 11K11 "L11 "M" llN" 11011
ns11 11T11 "U" "V" 11w11 11x11
"bll "c11 lldll lie" llfll I l 11 g"
"kll 11111 11m11 "n" llo" I llpll
"tll "u11 11v11 "w" llx" I 11y11

letter-b =
"bll "B"

letter-o =
"011 "0"

letter-x =
11 x 11 I 11 X11

member-designator
expression [" 11 expression] .

module

11G11
11p11
11y11
llhll

I I 11q 11

I 11z"

module-heading declaration-part "END" II II

module-heading =
[attribute-sequence] "MODULE" identifier

[" (11 program-parameters ")"] "·"

B-6 Syntax Summary

llH" "I11
llQll "R11
11z11 "a11
Iii" II j II

"r" 11s11
11$11 II II

multiplying-operator =
"*" I "/" I "DIV" l"MOD" I "AND"

new-ordinal-type =
enumerated-type subrange-type .

new-pointer-type =
"-" domain-type

new-structured-type =
["PACKED"] unpacked-structured-type

new-type =
new-ordinal-type I new-structured-type I new-pointer-type

octal-digit =
"0" I "1" I "2" I "3" I

11 4" I
11 5" I "6" I "7" .

octal-digit-sequence =
octal-digit { octal-digit }

octal-integer =
"%" letter-o "'" octal-digit-sequence ","

ordinal-constant =
integer=constant Boolean=constant I
character-constant I enumerated-constant

ordinal-type =
new-ordinal-type I integer-type I unsigned-type I

Boolean-type I char-type I ordinal-type-identifier

ordinal-type-identifier =
identifier .

packed-conformant-array-schema
"PACKED" "ARRAY" "[" index-type-specification"]"

"OF" char-type

pointer-variable =
variable-access

procedural-parameter-specification
procedure-heading

procedure-block =
block .

procedure-declaration
procedure-heading directive I
procedure-identification procedure-block
procedure-heading procedure-block .

procedure-function-process-declaration-part
{ (procedure-declaration I

function-declaration I
process-declaration) 11

;"} •

procedure-heading =
[attribute-sequence] "PROCEDURE" procedure-identifier

[formal-parameter-list] ";" .

procedure-identification =
"PROCEDURE" procedure-identifier 11.11

Syntax Summary B-7

procedure-identifier
identifier .

procedure-statement =
procedure-identifier [actual-parameter-list] .

process-block =
block .

process-declaration
process-heading directive I
process-identification process-block
process-heading process-block .

process-heading =
[attribute-sequence] "PROCESS" process-identifier

[formal-parameter-list] ";" .

process-identification =
[attribute-sequence] "PROCESS" process-identifier

process-identifier
identifier

process-statement =
process-identifier [actual-parameter-list] .

program =
program-heading program-block

program-block =
block .

program-heading
[attribute-sequence] "PROGRAM" identifier

[" (" program-parameters ") "] " · "

program-parameters =
identifier-list

..... .

radix-integer =
binary-integer octal-integer I hexadecimal-integer

read-parameter-list =
11

(" [file-variable
variable-access {

record-section =
identifier-list 11.11

II II .
II II . variable-access } ")" .

type-denoter

record-type =
"RECORD" field-list] "END" .

record-variable =
variable-access

record-variable-list =
record-variable {","record-variable} .

relational-operator =
"=" I "<>" I "<" I ">" I "<=" I 11 >= 11 I "IN"

repeat-statement =
"REPEAT" statement-sequence "UNTIL" Boolean-expression

repetition-factor =
unsigned-integer I constant-identifier

B-8 Syntax Summary

repetitive-statement =
repeat-statement I while-statement I for-statement .

result-type =
type-identifier

scale-factor =
signed-integer

set-constructor =
"[" [member-designator { II II member-designator}] 11] 11 .

set-type =
11 SET 11 "OF" base-type

sign
"+" I "-"

signed-integer =
[sign] unsigned-integer .

simple-constant =
[sign] (unsigned-number
11 NIL 11 I character-constant
character-string .

simple-expression =

constant-identifier) I

[sign] term { adding-operator term } .

simple-statement =
empty-statement I assignment-statement I
procedure-statement I process-statement I
goto-statement .

special-symbol =
"+" I "-11
II," I 11.11
.. ... I "="

"*" I 11 / 11 I 11 =11 I 11 <11 I 11 >11 I 11 [11 I 11] 11 I 11 . 11
11 ; 11 I .. - .. I 11 (11 I 11) 11 I 11 <> 11 I 11 <= 11 I 11 >= 11 I
11 11 I 11 · · 11 I word-symbol .

statement
[label 11 : 11] (simple-statement I structured-statement) .

statement-part =
compound-statement

statement-sequence =
statement { 11 · 11 statement}

string-character =
"!" I 111111 I "#" "$" 11%11 I 11&;11 11•11 II (11 11) II "*"
"+" I II II I "-" II II 11/11 I 11011 11111 11211 11311 11411 ,
11511 I "6" I 11711 "8" 11911 I 11.11 11.11 11(11 11:11 11>11 ,
"?II I II (Qll I "A" "B" 11c11 I "D" "E" "F" "G" "H"
"I" I "J" I "K" "L" llM" I "N" "0" "P" "Q" "R"
"S" I "T11 I "U" "V" 11w11 I "X" "Y" "Z" II (11 "\"
"]II I 11-11 I II II "a" llbll I llc" "d" "e·" "f" "g"
"h" I "ill I II j II "kll 11111 I llm" "n" "o" "p" "q"
"r" I "s11 I "t" "u" llv" I llw" "x11 11y11 11z" 11{11

"I" I "}" I 11-11 space I tab

string-element =
apostrophe-image I string-character

structured-constant =
type-identifier II (11 value {",II value} II) II,

Syntax Summary B-9

structured-statement =
compound-statement conditional-statement
repetitive-statement I with-statement .

subrange-type =
ordinal-constant 11 11 ordinal-constant .

tag-field =
identifier

tag-type =
ordinal-type

term =
factor { multiplying-operator factor }

type-definition =
identifier "="type-denoter 11 ;

11
•

type-definition-part =
["TYPE" type-definition { type-definition }] .

type-denoter =
[attribute-sequence] (type-identifier I new-type)

type-identifier =
identifier

unpacked-conf ormant-array-schema
"ARRAY" "[" index-type-specification

{ 11 ; 11 index-type-specification} 11
] 11 "OF"

(type-identifier I conf ormant-array-schema

unpacked-structured-type =
array-type I record-type I set-type I file-type

unsigned-constant =
unsigned-number I character-string I constant-identifier
character-constant I "NIL" .

unsigned-integer =
digit-sequence I radix-integer

unsigned-number =
unsigned-integer unsigned-real .

unsigned-real =
unsigned-integer " 11 digit-sequence ["E" scale:-factor] I
unsigned-integer 11 E11 scale-factor .

unsigned-type =

value =

"UNSIGNED"

11
(" value 11

)
11 I simple-constant

unsigned-integer 11 0F 11 value .

value-parameter-default =
11 := 11 (variable-identifier I constant) .

value-parameter-specification =
identifier-list 11

: 11 [attribute-sequence]
type-identifier [value-parameter-default]

B-10 Syntax_ Summary

· variable-access =
(entire-variable

component-variable
identified-variable I
buff er-variable) { variable-selection } .

variable-declaration =
identifier-list 11

:
11 type-denoter";" .

variable-declaration-part =
["VAR" variable-declaration { variable-declaration }] .

variable-identifier =
identifier .

variable-parameter-specification =
"VAR" identifier-list ":" [attribute-sequence
(type-identifier [variable-parameter-default
conf ormant-array-schema) .

variable-parameter-default =
": =" (variable-identifier unsigned-integer I "NIL") .

variable-selection =

variant

"::"type-identifier I
"["index-expression {

11-11

II II

case-constant-list 11
•

11
"("

"·"field-specifier I
index-expression} "]" .

field-list] ")" .

variant-part =
"CASE" variant-selector "OF"

variant { 11
•

11 variant} .

variant-selector =
[tag-field

while-statement

11.11] tag-type

"WHILE" Boolean-expression "DO" statement .

with-statement
"WITH" record-variable-list "DO" statement .

word-symbol =
"AND" I "ARRAY" I "BEGIN" I "CASE" I "CONST" I "DIV" I "DO"
"DOWNTO" I "ELSE" I "END" I "EXTERNAL" I "FILE" I "FOR" I
"FORWARD" I "FUNCTION" I "GOTO" I "IF" I "IN" I "LABEL" I
"MOD" I "MODULE" I "NIL" I "NOT" I "OF" I "OR" I
"OTHERWISE" I "PACKED" I "PROCEDURE" I "PROCESS" I "PROGRAM"
"RECORD" I "REPEAT" I "SEQ11" I "SET" I "THEN" I "TD" I
"TYPE" I "UNTIL" I "VAR" I "WHILE" I "WITH"

write-parameter =
expression [11

:
11 expression 11.11 expression]]

write-parameter-list =
" (" [file-variable

write-parameter {
II II

'
II II

'
write-parameter } 11

)
11

•

Syntax Summary B-11

Appendix C

Compile-Time Options

This appendix describes the compiler options you can include in your Pascal program. These
options let you select the various compile-time features of the MicroPower/Pascal compiler.
The options are analogous to the command string options described in the appropriate
MicroPower/Pascal system user's guide.

You specify these options in the comments section of a compilation unit by placing a dollar sign
($) as the first character of the comment. The dollar sign is followed by an option sequence
terminated by a blank (space, tab, or end of line) or by the comment terminator. See Chapter
1 for a description of comments. You must separate each option in a sequence with a comma.

Syntax

{ ~ * } $ option , . . . { ~) }

option
One of the directives in the following list.

Option Name

INDEX CHECK

NOINDEXCHECK

STACK CHECK

NOSTACKCHECK

POINTER CHECK

NOPOINTERCHECK

LIST

Result When Selected

Perform array bounds checking at run time.

Do not perform array bounds checking (default).

Perform procedure stack limit checking at run time.

Do not perform procedure stack limit checking (default).

Check for NIL pointers.

Do not check for NIL pointers (default).

Produce a compilation listing (default). This option is effective
only if a listing file has been specified in the command string.

Compile-Time Options C-1

NO LIST

RANGE CHECK

NORANGECHECK

STANDARD

NOSTANDARD

MATH CHECK

NOMATHCHECK

C-2 Compile-Time Options

Inhibit printing of a compilation listing.

Verify that value assigned to a variable is within range of that
variable's type declaration. This option does not check against
intermediate overflow in expressions.

Do not issue warnings for values that exceed limits specified in
type declarations (default) ..

Issue warnings for use of features not part of Pascal.

Do not issue warnings for use of features not part of Pascal
(default).

Check for division by 0.

Do not check for division by 0 (default).

Appendix D
Predefined Data Types in PREDFL.PAS

This appendix shows declarations for the special data types used with the predeclared pro'cedures
and functions (real-time requests) declared in the system %INCLUDE file PREDFL.PAS. The
MicroPower/Pascal compiler automatically includes this file for you. Other system %INCLUDE
files that the compiler does not automatically include are listed in Appendix I. You may examine
those files to determine the data types defined within them.

CONST
QE_LEN = 34; { Size, in bytes, of value section in a packet. }
BLANK= ''(0,0,0,0,0,0);

TYPE
RELATIONTYPE =(DEPENDENT, INDEPENDENT);

UNIVERSAL = [UNSAFE] INTEGER;

BYTE_RANGE = 0 .. 255;

PRIORITY_RANGE = 0 .. 255;

VAL_DATA_LEN = 0 .. QE_LEN;

REF_DATA_LEN = 0 .. 8128; { 8192 - 64 bytes }

RING_BUFFER_DATA = 0 .. 8128;

RING_BUFFER_SIZE = 8 .. 8128;

NAME_STR =PACKED ARRAY [1 .. 6] OF CHAR;

BIN_SEM_VAL = 0 .. 1;

QUAD_WORD = RECORD
ONE
TWO
THREE
FOUR

END;

UNSIGNED;
UNSIGNED;
UNSIGNED;
INTEGER;

PHYSICAL_ADDRESS = PACKED RECORD
ADDRESS UNSIGNED;
PAR_VALUE : UNSIGNED; { 22-bit addressing }

END;

Predefined Data Types in PREDFL.PAS D-1

STRUCTURE_ID = RECORD
INDEX UNSIGNED;
SERIAL_NUMBER LONG_INTEGER;

END;

STRUCTURE_DESC = RECORD
ID STRUCTURE_ID;
NAME NAME_STR;

END;

STRUCTURE_DESC_PTR = -sTRUCTURE_DESC;

PROCESS_DESC = STRUCTURE_DESC;

SEMAPHORE_DESC = STRUCTURE_DESC;

QUEUE_SEMAPHORE_DESC = STRUCTURE_DESC;

RING_BUFFER_DESC = STRUCTURE_DESC;

PROCESS_STATE = (RUN, READY_ACTIVE, READY_SUSPENDED,
WAIT_ACTIVE, WAIT_SUSPENDED,
EXCEPTION_WAIT_ACTIVE, EXCEPTION_WAIT_SUSPENDED);

PROCESS_TYPE = (GENERAL, PRIVILEGED, DEV_ACCESS, DRIVER);

EXC_GROUP = 0 .. 255;

EXCEPTIONS = (MEMORY_FAULT, ILLEGAL_OPERATION, EMULATOR_TRAP,
TRAP, BREAKPOINT_TRAP, HARD_IO, SOFT_IO, NUMERIC,
RESOURCE, RANGE, EXECUTION, SYSTEM_SERVICE,
RESERVED_!, RESERVED_2, USER_1, USER_2);

EXC_SET = PACKED SET OF EXCEPTIONS;

EXC_STATUS = RECORD
EXC_TYPE EXC_SET;
EXC_CODE UNSIGNED;

END;

STATE_CODE_MODIFIER_TYPE = PACKED RECORD

STATE_BLOCK = PACKED RECORD
PRIORITY
STATE

RES1,RES2, { reserved }
FPA_PENDING,
BLOCKED_ON_COMPLEX,
ABORT_TO_INACTIVE,
UNBLOCK_IN_PROGRESS,
ABORT_PENDING,
ABORTED : BOOLEAN;

END;

TYP
STATE_CODE_MODIFIER

[BYTE] PRIORITY_RANGE;
[BYTE] PROCESS_STATE;
[BYTE] PROCESS_TYPE;
[BYTE] STATE_CODE_MODIFIER_TYPE;
[BYTE] EXC_GROUP; GROUP

RESERVED
BLOCKING_SEMAPHORE
SUSPEND_COUNT

END;

[BYTE] BYTE_RANGE;
UNIVERSAL;
INTEGER;

QUEUE_MESSAGE =PACKED ARRAY [1 .. QE_LEN] OF BYTE_RANGE;

D-2 Predefined Data Types in PREDFL.PAS

PACKET = PACKED RECORD
LINK UNSIGNED;
AUXILIARY UNSIGNED;
PRIORITY [BYTE] PRIORITY_RANGE;
CONTROL [BYTE] BYTE_RANGE;
MESSAGE QUEUE_MESSAGE;

END;

QUEUE_PTR = APACKET;

INFO_BLOCK = PACKED RECORD
PRIORITY
VAL_XMIT_LEN
ADDRESS
REF_XMIT_LEN

[BYTE] PRIORITY_RANGE;
[BYTE] VAL_DATA_LEN;
PHYSICAL_ADDRESS;
[WORD] REF_DATA_LEN;

END;

ORDERING= (FIFO, PRIO);

MODE = (STREAM_MODE, RECORD_MODE) ;

Predefined Data Types in PREDFL.PAS D-3

Appendix E

Storage Allocation Rules for Standard Data Types

This appendix describes the storage allocation rules for each of the Pascal data types. All
references to storage are in the context of the PDP-11 memory structure: a word occupies 16
bits of memory, and a byte occupies 8 bits. Variables described as occupying a word always
start on a word (even address) boundary. Variables described as occupying a byte start on a
byte (odd or even address) boundary. Variables described as occupying a bit or a sequence of
bits always start on the next bit, as appropriate for the type.

For many of the types, the amount of storage allocated will vary, depending on whether the
PACKED modifier was specified in the type definition.

E. 1 Scalar Types
The scalar types are the INTEGER, LONG-1NTEGER, UNSIGNED, REAL, CHAR, and
BOOLEAN, as well as their enumerated and subrange variations. A variable of a scalar
type that is not a component of a structured type can be stored only in an unpacked form. This
optimizes access time rather than storage allocation. A scalar variable that is a component of a
structured type can be stored in either an unpacked or a packed form.

The following sections describe the storage allocation for both unpacked and packed scalar
variables.

E. 1. l INTEGER and UNSIGNED Types (unpacked)

A variable of type INTEGER or type UNSIGNED occupies one word. If the variable is a
subrange of these types, it is also stored in one word. If the lower bound of a subrange is 0 or
positive, the compiler treats the variable as an UNSIGNED type; in this case, the upper bound
of the range may be declared as high as 65535. If the lower bound of a subrange is negative,
the variable is treated as an INTEGER type; in this case, the bounds are from -32768 to 32767.

Storage Allocation Rules for Standard Data Types E-1

E.1.2 INTEGER and UNSIGNED Types (packed)
A variable of type INTEGER or type UNSIGNED that resides in a structure declared to be
packed occupies a word. However, if the variable is a subrange of these types, it occupies only
the number of bits necessary to represent the minimum and maxim.um values of the subrange.
The subrange is positioned on any bit, as long as the component does not overlap a word
boundary. Table E-1 shows the storage allocation for each subrange type.

Table E-1: Storage Allocation for Packed Integer and Unsigned Subrange Types

Integer Subrange Unsigned Subrange Storage (in bits)

-1..0 0 .. 1 1

-2 .. 1 0 .. 3 2

-4 .. 3 0 .. 7 3

-8 .. 7 0 .. 15 4

-16 .. 15 0 .. 31 5

-32 .. 31 0 .. 63 6

-64 .. 63 0 .. 127 7

-128 .. 127 0 .. 255 8

-256 .. 255 0 .. 511 9

-512 .. 511 0 .. 1023 10

-1024 .. 1023 0 .. 2047 11

-2048 .. 2047 0 .. 409 12

-4096 .. 4095 0 .. 8191 13

-8192 .. 8191 0 .. 16383 14

-16384 .. 16383 0 .. 32767 15

-32768 .. 32767 0 .. 65535 16

E. 1.3 LONG_INTEGER Type (unpacked and packed)

A variable of type LONG-1NTEGER always occupies two words, regardless of whether it is
packed or unpacked. Subranges of this type are not allowed.

E. 1.4 BOOLEAN Type (unpacked)

A variable of type BOOLEAN occupies the least significant bit of a byte. A 0 indicates false,
and a 1 indicates true. The remaining seven bits of the byte yield undefined results.

E-2 Storage Allocation Rules for Standard Data Types

E. 1.5 BOOLEAN Type (packed)
A variable of type BOOLEAN in a packed structure is stored in a single bit. A 0 indicates false,
and a 1 indicates true.

E. 1.6 REAL Type (packed or unpacked)
A variable of type REAL occupies two words, whether or not it resides in a packed structure.
The format is that of a standard PDP-11 floating-point number, as described in the PDP-11
Microcomputer Processor Handbook.

E. 1. 7 Enumerated Type (unpacked)
A variable of an enumerated type occupies a byte if the variable has no more than 256 items;
otherwise, it occupies a word.

E. 1.8 Enumerated Type (packed)
A variable of an enumerated type or a subrange of an enumerated type in a packed structure
occupies the minimum number of bits required to represent the number of items in the
enumeration. This is equivalent to the storage requirements for an unsigned integer subrange
as shown in Table E-1.

E. 1.9 CHAR Type (unpacked)
A variable of type CHAR or a subrange of base type CHAR occupies one byte.

E. 1. l 0 CHAR Type (packed)
A variable of type CHAR or a subrange of base type CHAR in a packed structure is stored
according to the rules for packed integers (see Section E.1.2). Most of the printing characters
have large enough ordinal (ASCII) values so little is gained by packing them. Although nothing
is gained in the case of arrays, there is some advantage in the case of small ASCII values; for
example, the subrange "(0) .. "(3) will be packed into two bits, just as would the integer subrange
0 .. 3.

E.2 Pointer Types
Pointer types are stored in a word and are unaffected by packing.

E.3 Structured Types
The structured types (ARRAY, RECORD, and SET) are composed of elements of scalar, pointer,
or structured base types according to the rules presented in Chapter 2. Structured types can be
stored either in a packed or an unpacked form as controlled by the PACKED modifier in the
type definition for the structure. Section E. l describes the allocation for the scalar components
of packed and unpacked structured types.

Note
Defining a structure to be packed may significantly increase the size of the object
code generated to access the structure's data elements.

Storage Allocation Rules for Standard Data Types E-3

E.3. 1 Array Type

An array is stored in successivE:: memory locations according to the row major order sequence
of its dimensions. Thus, in a single-dimensional array, the lowest (ordinal) array index value
addresses the first element in the list, and the highest index value addresses the last element in
the list. For example:

VAR matrix : ARRAY [1 .. 10] OF INTEGER

In this example, the array's elements will be stored in 10 successive locations in memory.
Because the element type is integer, the location size is one word.

matrix[1]
matrix[2]
matrix[3]

matrix[10]

(1st word)
(2nd word)
(3rd word)

(10th word)

For each index of a multidimensional array, the lowest (ordinal) index value addresses the first
element in the list, and the highest index value addresses the last element in the list.

A multidimensional array is considered to be a series of single-dimensional arrays, each element
of which is an array of the succeeding element type. Thus, in a 2-dimensional array, the second
array index definition is the component type of the first array; each element of the list of the
first array index would be an array of the second element, and so forth. For example:

VAR matrix : ARRAY [1 .. 10] OF ARRAY [1 .. 2] OF INTEGER ;

In this example, the following array elements will be allocated 20 words of memory:

matrix[1, 1]
matrix[1, 2]
matrix [2, 1]
matrix [2, 2]
matrix [3, 1]

matrix[10, 2]

(1st word)
(2nd word)
(3rd word)
(4th word)
(5th word)

(20th word)

The amount of storage required for an array depends on the number of elements, the element
type, and whether the array is packed. When an array is not packed, the storage required is
the sum of the number of elements, multiplied by the storage allocation for the element type.
When an array is packed, the storage size, in bits, of an element is established as follows:

• If the element's base type storage size is 16 bits or less, the packed storage size for the
element is the smallest power of 2 that can contain the element.

• If the element's base type storage size is 16 bits or more, the packed storage size for the
element is the next larger multiple of 16.

To calculate the amount of storage for an array, determine the number of elements in the array
as follows:

1. Multiply those values to obtain the total number of elements in the array.

E-4 Storage Allocation Rules for Standard Data Types

2. Multiply the result by the storage size of a single element.

This calculation is illustrated by the following formula:

(U1 - L1 + 1) * (U2 - L2 + 1) ... * elsiz

u
The upper subscript bound.

L
The lower subscript bound.

elsiz
The storage allocation, in bits, bytes, or words, as applicable, for a member of the element
type.

Examples

1. Although an element of the following array requires only 5 bits, its size is rounded to 8,
and the elements are allocated on byte boundaries:

x : PACKED ARRAY [1 .. 10] OF 0 .. 31;

2. The following two arrays are equivalent:

y PACKED ARRAY [1 .. 10,1 .. 3] OF CHAR;

y PACKED ARRAY [1 .. 10] OF PACKED ARRAY [1 .. 3] OF CHAR;

Each character requires 8 bits, but the element PACKED ARRAY [1..3] OF CHAR requires
24 bits, which is rounded to 32 bits. Thus, each element of the first array ([1..10]) requires
32 bits.

3. An array of elements of type CHAR occupies successive bytes of memory, regardless of
whether the array is PACKED. However, the array must be declared PACKED and have a
lower bound of 1 if the array is to be type compatible with a string constant of the same
length.

VAR string : PACKED ARRAY [1 .. 10] OF CHAR;

4. An array of elements of type BOOLEAN occupies successive bytes of memory if the array
is not PACKED.

VAR switches : ARRAY [1 .. 10] OF BOOLEAN;

5. In a PACKED array of elements of type BOOLEAN, the bits are mapped into successive bits
of a word, from right to left-that is, from low order to high order. This example specifies
the bounds of the PACKED array of Boolean elements so that the array index corresponds
to the conventional numbering of the bits in the word. But as shown in the next example,
this is not required.

VAR bit_string : PACKED ARRAY [0 .. 15] OF BOOLEAN;

Storage Allocation Rules for Standard Data Types E-5

6. In the record one_word, field A occupies the low-order byte of a word; field B, a 2-
dimensional array of Boolean elements (bits), occupies the left, or high-order, byte of the
word.

VAR one_word
A
B

PACKED RECORD
CHAR;
PACKED ARRAY [1 .. 4,1 .. 2] OF BOOLEAN;

The mapping of array elements onto the bits of the word is as follows:

Bit Number Array Element

8 b[l, 1]

9 b[l,2]

10 b[2,l]

11 b[2,2]

15 b[4,2]

E.3.2 RECORD Type

In general, a record occupies an amount of storage equal to the sum of the amount of storage
required for each of its component fields. For example:

MIXED = PACKED RECORD
BITS PACKED ARRAY [1 .. 4,1 .. 5] OF BOOLEAN(* 4 bytes*)
NUM : REAL (* 4 bytes *)
CHR : CHAR (* 1 byte *)

This example shows a record declaration that contains fields of different data types. The field
BITS is a 2-dimensional Boolean array containing another array (that is, a PACKED ARRAY
[1..4] OF PACKED ARRAY OF [1..5] OF BOOLEAN). Since the array is packed, each element of
the array described by the second dimension (1..5) requires one bit of storage or a total of five
bits for each occurrence of this array. Thus, the storage required for an element of the array
described by the first dimension (1..4) is also five bits. Since elements must be allocated on
byte boundaries, that value must be rounded up to eight bits (one byte). The total amount of
storage for the array BITS is therefore four bytes.

The field NUM occupies two words (four bytes) because numbers of type REAL always require
this amount of storage.

The field CHR occupies one byte because it is of type CHAR.

Therefore, an occurrence of the record MIXED will occupy nine bytes of storage.

When using the PACKED modifier on records whose components are records, be aware that
a filler byte may be added so a subsequent component begins on a word boundary, as in the
following:

E-6 Storage Allocation Rule~ for Standard Data Types

Type Definitions

TYPE
T1 =PACKED RECORD

F1 : INTEGER;
F2: CHAR;

END;

T2 =PACKED RECORD
F3, F4: T1;

END;

Storage Allocation

Tl .F 1

T1.F2

T2.F3.F1

filler 1 T2. F3. F2

T2.F4.F1

~ T2.F4.F2

ML0-556-87

Also note that the storage associated with a type is independent of the context in which it is
used. See the following example:

Type Definitions

TYPE

T3 =PACKED RECORD
F5: CHAR;
F6: INTEGER

END;

T4 =PACKED RECORD
F7: CHAR;
F8: T3;

END;

Note

Storage Allocation

filler l T3. F5

T3. F6

filler T4.F7

filler T 4_ F8. F5

T4. F8_F6

M L0-556A-87

In an application in which both Pascal and MACR0-11 routines share the same
data structures, the fields of a packed record that are arrays will begin on a
word boundary.

Storage Allocation Rules for Standard Data Types E-7

E.3.3 SET Type
Sets occupy storage ranging from 1 byte to 16 words. The amount of storage allocated depends
on the ordinal position of the highest value of the base type. Integers, however, are an exception
and are allocated 16 words of storage, regardless of the number of elements in the set. The low
value has no effect on the storage allocation.' For example, SET OF 0 .. 255 occupies as much
space as SET OF 250 .. 255.

The allowable base types and the space occupied by the set are as follows:

Base Type

BOOLEAN

Enumerated types

CHAR

INTEGER (and integer subranges)

UNSIGNED

Maximum Space Required

1 byte

(See Note)

16 words

16 words

16 words

Note
The storage required for an enumerated type is determined by the following
formula:

storage (bytes) = (ORD(last identifier)+8) DIV 8

E-8 Storage Allocation Rules for Standard Data Types

Appendix F
Summary of Attribute Use

Table F-1 lists the MicroPower /Pascal attributes and shows the language entities with which
they may be used. See Chapter 10 for descriptions of the attributes.

Table F-1: Summary of Attribute Use

Formal Program/
Param- Record Type Routine Module Process

Attribute Variable et er Field Declar. Declar. Declar. Declar.

AT (constant) Yes No No No No No No

BIT [(constant)] No No Yes No No No No

BYTE [(constant)] No No Yes No No No No

CONTEXT ({ MMU }) No No No No No Yes1 Yes
FPP

DATA_SPACE (constant) No No No No No Yes1 No

DEV_ACCESS No No No No No Yes1 No

DRIVER No No No No No Yes1 No

EXTERNAL [(global-id)] Yes No No No Yes No Yes

GLOBAL [(global-id)] Yes No No No Yes No Yes

GROUP (constant) No No No No No Yes1 Yes

IDENT (ident-string) No No No No No Yes No

INITIALIZE No No No No Yes2 No No

INIT_pRIORITY No No No No No Yes1 No

1 Not meaningful on module declarations.

2Not applicable to function declarations.

Summary of Attribute Use F-1

Table F-1 (Cont.): Summary of Attribute Use

Formal Program/
Par am- Record Type Routine Module Process

Attribute Variable et er Field Declar. Declar. Declar. Declar.

NAME (process-name) No No No No No No Yes

NOOPTIMIZE No No No No Yes Yes1 Yes

OPTIMIZE No No No No Yes Yes1 Yes

OVERLAID No No No No No Yes No

POS (constant) No No Yes3 No No No No

PRIORITY (constant) No No No No No Yes1 Yes

PRIVILEGED No No No No No Yes1 No

READONLY Yes Yes Yes Yes No No No

STACK_SIZE (constant) No No No No No Yes1 Yes

STATIC Yes No No Yes No No No

SYSTEM (environment-name)'.Jo No No No No Yes1 No

TERMINATE No No No No Yes2 No No

UNSAFE Yes Yes Yes Yes No No No

VOLATILE Yes Yes Yes Yes No No No

WORD [(constant)] No No Yes No No No No

WRITEONLY Yes Yes Yes Yes No No No

1 Not meaningful on module declarations.

2 Not applicable to function declarations.

3 Applies to packed record fields only.

F-2 Summary of Attribute Use

Appendix G
Predefined Identifiers

This appendix lists the identifiers that are predefined in the MicroPower /Pascal language as
the names of files, functions, procedures, types, and values. The standard Pascal identifiers
are shown in boldface type to differentiate them from the identifiers that denote the extended
features of the MicroPower/Pascal language.

The declarations for a number of these identifiers are external to the MicroPower /Pascal compiler
and reside in separate system files (see Notes). You must use the %INCLUDE directive to include
these files (except PREDFL.PAS) in your program if you intend to use the features defined therein
(see Appendix I).

If you redefine an identifier, it no longer has its usual meaning within the scope of the block in
which it is redefined. See Section 6.4.1 for a description of the scope of identifiers.

ABORT2

ABORTED

ABORT_PENDING

ABS

ACCESS

ACCESS_SHARED_REGION7

ACTION

ADDRESS

ADDRESS_SP ACE

1 Defined in the system file PREDFL.P AS.

2 Defined in the system file EXC.P AS.

6Defined in the system file TIMER.PAS.

7 Defined in the sy~tem file DRAM.PAS.

ADDRESS_ TYPE7

ADD_CLOCK_ TIME6

ADD_ TIME

ALK

ALLOCATE_P ACKET1

ALLOCATE_REGION7

ARCTAN

ARRAY

AT

Predefined Identifiers G-1

AUTO EMPTY

AUXILIARY

BIN

BIN_SEM_VAL1

BIT

BITNEXT

BIT SIZE

BLK

BLOCKING_SEMAPHORE

BOOLEAN

BREAK

BREAKPOINT_ TRAP1

BUFFERSIZE

BYTE

BYTE_RANGE1

CBP

CHANGE_pRIORITY1

CHAR

CHR

CLOCKJREQ

CLOCK_TIME6

CLOCK_TIME_USE6

CLOCK_VALUE6

CLOSE

COD

COMBINE_DATE6

COMBINE_TIME6

1 Defined in the system file PREDFL.P AS.

2Defined in the system file EXC.PAS.

4Defined in the system files PCBU.PAS and PCBM.PAS.

5 Defined in the system file COMPLX.P AS.

6Defined in the system file TIMER.PAS.

7 Defined in the system file DRAM.PAS.

G-2 Predefined Identifiers

COMMON7

COMPLEX_COUNT5

COMPLEXJUNC_VALUE5

COND-ALLOCATE_p ACKET1

COND-ALLOCATE_REGION7

COND_GET-ELEMENT1

COND_GET_p ACKET1

COND_pUT_ELEMENT1

COND_PUT_P ACKET1

COND_RECEIVE1

COND_RECEIVE-ACK1

COND_SEND1

COND_SEND-ACK1

COND_SIGNAL1

COND_WAIT1

CONFIG

CONNECT_EXCEPTION2

CONNECT_INTERRUPT1

CONNECT_SEMAPHORE1

CONTEXT

CONTEXT_BLOCK4

CONTEXT_SWITCH_OPTIONS2

CONTROL

CONTROLLER

cos
COUNT

CREATE_BINARY_SEMAPHORE1

CREATE_BINARY_SEMAPHORE_P11

CREATE_COUNTING_SEMAPHORE1

CREATE_COUNTING_SEMAPHORE_P11

CREATE_LOGICAL _N AMEs

CREATE_QUEUE_SEMAPHORE1

CREATE_QUEUE_SEMAPHORE_P11

CREATE_RING _BUFFER 1

CREATE_RING_BUFFER_P11

CREATE_SHARED_REGION7

CXW_TYPE2

DATA_SPACE

DEALLOCATE_P ACKET1

DEALLOCATE_REGION7

DEFINE_STOP_FLAG9

DELETE

DELETE_FILE3

DELETE_LOGICAL _NAMES

DELETE_SHARED_REGION7

DENSITIES3

DEPENDENT1

DESC

DESTROY1

DEV_ACCESS1

DIRECT

DISABLE

DISCONNECT_EXCEPTION2

1 Defined in the system file PREDFL.P AS.

2Defined in the system file EXC.P AS.

3Defined in the system file FSINCL.PAS.

7 Defined in the system file DRAM.PAS.

SDefined in the system file LOGNAM.PAS.

9Defined in the system file MISC.PAS.

10Defined in the system file ESCODE.PAS.

11 Defined in the system file CRPROC.P AS.

DISCONNECT_INTERRUPT1

DISCONNECT_SEMAPHORE1

DISMISS2

DISPOSE

DISPOSITION

DOUBLE3

DRIVER1

D_SPACE7

EMPTY_BUFFER

EMULATOR_TRAP1

ENABLE

EOF

EOLN

ES$AB010

ES$ABT10

ES$AOV10

ES$AS010

ES$ATN10

ES$BIV10

ES$BOT10

ES$BPT10

ES$BRK10

ES$BUS10

ES$CDN10

ES$CON10

ES$CS010

Predefined Identifiers G-3

ES$CTL10 ES$IBN10

ES$DAL10 ES$ICD10

ES$DAS10 ES$IDA10

ES$DCF10 ES$IDR10

ES$DDP10 ES$IDS10

ES$DI010 ES$IDZ10

ES$DNU10 ES$IFN10

ES$DRF10 ES$IFS10

ES$DRV10 ES$IFW10

ES$DVF10 ES$IIV10

ES$EMT10 ES$ILL10

ES$EOF10 ES$ILV10

ES$EPN10 ES$INM10

ES$EVL10 ES$INS10

ES$EXC10 ES$IOP10

ES$FA010 ES$1ov10

ES$FDZ10 ES$IPM10

ES$FIV10 ES$IPR10

ES$FNF10 ES$IRS10

ES$FN010 ES$IST10

ES$FNR10 ES$IUP10

ES$FNW10 ES$1vc10

ES$FOP10 ES$IVD10

ES$FOR10 ES$IVL10

ES$FOV10 ES$IVM10

ES$FRM10 ES$IVP10

ES$FR010 ES$KMX10

ES$FUN10 ES$LDZ10

ES$FVC10 ES$LIC10

ES$HI010 ES$LNM10

ES$IAD10 ES$LNP10

lODefined in the system file ESCODE.PAS.

G-4 Predefined Identifiers

ES$LNR10 ES$0VR10

ES$LOV10 ES$PAL10

ES$LRJ10 ES$PAR10

ES$LUC10 ES$PCC10

ES$LUV10 ES$PNA10

ES$MAX10 ES$PR010

ES$MDN10 ES$PWR10

ES$MEM10 ES$RAN10

ES$MMU10 ES$RDE10

ES$MPT10 ES$REF10

ES$NFA10 ES$RNR10

ES$NFR10 ES$RS1 10

ES$NFS10 ES$RS210

ES$NID10 ES$RSC10

ES$NIL10 ES$RSZ10

ES$NIP10 ES$SE010

ES$NLZ10 ES$SI010

ES$NMB10 ES$SIU10

ES$NMC10 ES$SNI10

ES$NMF10 ES$SPD10

ES$NMK10 ES$SRN10

ES$NMP10 ES$ST010

ES$NMS10 ES$STU10

ES$NNS10 ES$SVC10

ES$NOR10 ES$TIM10

ES$NRF10 ES$TNF10

ES$NUM10 ES$TRP10

ES$NXM10 ES$UDV10

ES$NXU10 ES$UDZ10

ES$0FL10 ES$UFN10

ES$0VF10 ES$UIV10

10Defined in the system file ESCODE.PAS.

Predefined Identifiers G-5

ES$UNS10

ES$UOV10

ES$US1 10

ES$US210

ES$VEC10

ES$VSE10

ES$WEF10

ES$WLK10

ESTABLISH2

EXCEPTIONS1

EXCEPTION _WAIT_ACTIVE1

EXCEPTION_ WAIT_SUSPENDED1

EXC_ACTION2

EXC_CODES2

EXC_GROUP1

EXC_SET1

EXC_STATUS1

EXECUTION1

EXP

EXTERNAL

FALSE

FIF01

FILE SIZE

FIND

FIXED7

1 Defined in the system file PREDFL.P AS.

2 Defined in the system file EXC.P AS.

3Defined in the system file FSINCL.PAS.

4Defined in the system files PCBU.PAS and PCBM.PAS.

5 Defined in the system file COMPLX.P AS.

6Defined in the system file TIMER.PAS.

7 Defined in the system file DRAM.PAS.

9Defined in the system file MISC.PAS.

lODefined in the system file ESCODE.PAS.

G-6 Predefined Identifiers

FORMAT_RX023

ppp2

FREE7

FRIDAY6

GENERAL1

GET

GET_CONFIG9

GET_ELEMENT1

GET_ELEMENT_ANY5

GET_MAPPING7

GET_P ACKET1

GET_P ACKET_ANY5

GET_STATE1

GET_SYSTEM_DATE_TIME6

GET_TIME6

GET_VALUE1

GLOBAL

GROUP

HARDWARE_CONFIG9

HARD_I01

HEX

HISTORY

IAD_NOT_USED4

IAD_USED4

ID ENT

ID_MAPPING7

ILLEGAL _OPERATION1

INDEPENDENT1

INFO_BLOCK1

INITIALIZE

INIT_DIRECTORY3

INIT_PRIORITY

INIT_PROCESS_DESC1

INIT_STRUCTURE_DESC1

INPUT

INTEGER

INTERACTIVE

I_AND_D4

I_SPACE7

KXT_LOAD & KXJ_LOAD9

LN

LOGICAL_NAME_LEN8

LONG_INTEGER

LROUND

LTRUNC

MAPPING7

MAP_WINDOW7

MAXINT

MEMORY_FAULT1

MICROPOWER

MMU2

1 Defined in the system file PREDFL.P AS.

2Defined in the system file EXC.P AS.

3oefined in the system file FSINCL.PAS.

4Defined in the system files PCBU.PAS and PCBM.PAS.

6oefined in the system file TIMER.PAS.

7 Defined in the system file DRAM.PAS.

8Defined in the system file LOGNAM.PAS.

9Defined in the system file MISC.PAS.

MODE1

MONDAY6

NAME

NAME_STR1

NEW

NEXT

NOFPP2

NONE

NOOPTIMIZE

NUMERIC1

OCT

ODD

OLD

OPEN

OPTIMIZE

ORD

ORDERING1

OUTPUT

OVERLAID

OVERLAPPED

PACK

PACKET1

PAGE

P AR_FDR_ARRAY4

PASS2

PCB4

Predefined Identifiers G-7

PCB_pOINTER4

PHYSICAL7

PHYSICAL _ADDRESS1

POS

POWER_FAIL9

PRED

PRI01

PRIORITY

PRIORITY_RANGE1

PRIVILEGED1

PROCESS_DESC1

PROCESS_MEMORY_MAP4

PROCESS_STATE1

PROCESS_TYPE1

PROTECT_FILE3

PURGE

PUT

PUT-ELEMENT1

PUT_p ACKET1

QUAD_WORD1

QUEUE_MESSAGE1

QUEUE_pTR1

QUEUE_SEMAPHORE_DESC1

RANGE1

READ

READLN

READONLY

1Defined in the system file PREDFL.PAS.
2oefined in the system file EXC.PAS.
3oefined in the system file FSINCL.PAS.
4Defined in the system files PCBU.PAS and PCBM.PAS.
5Defined in the system file COMPLX.P AS.
7 Defined in the system file DRAM.PAS.
9Defined in the system file MISC.PAS.

G-8 Predefined Identifiers

READ WRITE

READY_ACTIVE1

READY_SUSPENDED1

READ_ONLY7

READ_WRITE7

REAL

RECEIVE1

RECEIVE_ACK1

RECEIVE _ANY5

RECEIVE_ANY_ACK5

RECORD_MODE1

REF_DATA_LEN1

REGION _ID_BLOCK7

REGISTER_RANGE7

RELATIONTYPE1

RELEASE-EXCEPTION4

RENAME_FILE3

REPORT2

RESERVED_l 1

RESERVED_21

RESET

RESET_RING _BUFFER 1

RESOURCE1

RESTORE_CONTEXT7

RESUME1

REVERT2

REWRITE

RING_BUFFER_DATA1

RING _BUFFER_DESC1

RING _BUFFER_SIZE1

ROUND

RUN1

SATURDAY6

SAVE

SAVE_CONTEXT7

SCHEDULE1

SEMAPHORE_DESC1

SEND1

SEND-.ACK1

SEQUENTIAL

SET_SYSTEM_DATE_TIME6

SET_TIME6

SHORT

SIGNAL1

SIGNAL _ALL 1

SIN

SINGLE3

SIZE

SLEEP6

SLEEP-1NTERVAL 6

SOFT_I01

SPLIT_DATE6

SPLIT_ TIME6

SQR

SQRT

1 Defined in the system file PREDFL.P AS.

3Defined in the system file FSINCL.PAS.

6Defined in the system file TIMER.PAS.

7 Defined in the system file DRAM.PAS.

8Defined in the system file LOGNAM.PAS.

SQUEEZE_DIRECTORY3

STACK_SIZE

STATE_BLOCK1

STATE_CODE-MODIFIER_TYPE1

STATIC

STATUS

STOP1

STREAM_MODE1

STRUCTURE_DESC1

STRUCTURE_OESC_PTR1

STRUCTURE -101

SUBTRACT_CLOCK_ TIME6

succ
SUNDAY6

SUSPEND1

SYSTEM

SYSTEM_OATE6

SYSTEM_OATE_TIME6

SYSTEM_SERVICE1

SYSTEM_ TIME6

TERMINATE

TEXT

THURSDAY6

TRANSLATE_LOGICAL_NAME8

TRAP1

TRUE

TRUNC

TUESDAY6

Predefined Identifiers G-9

UAND

UNIVERSAL1

UNMAP_WINDOW7

UNOT

UNPACK

UNPROTECT_FILE3

UNSAFE

UNSIGNED

UOR

UPDATE

UROUND

USER_l 1

USER_21

USHORT

UTRUNC

UXOR

1 Defined in the system file PREDFL.P AS.

2 Defined in the system file EXC.P AS.

3Defined in the system file FSINCL.PAS.

5Defined in the system file COMPLX.PAS.

6Defined in the system file TIMER.PAS.

7 Defined in the system file DRAM.PAS.

G-10 Predefined Identifiers

VAL_DATA_LEN1

VOLATILE

WAIT1

WAIT_ACTIVE1

WAIT_ANY5

WAIT_EXCEPTION2

WAIT_SUSPENDED1

WD$FIX7

WD$INS7

WD$R07

WEDNESDAY6

WEEK_DAY6

WORD

WRITE

WRITELN

WRITEONLY

Appendix H

Micro Power /Pascal Compiler Limitations

This appendix describes the limitations of the MicroPower/Pascal compiler running on RT-11
and RSX-11 host systems. This appendix is intended to help you in selecting application
design and implementation schemes consistent with the compiler's architecture and limits. The
limitations of the compiler running on VMS host systems are rarely encountered and are not
addressed in this appendix, except where table sizes are mentioned in Sections H.2 and H.3.

Note
The compiler resources discussed in this appendix are used independently of
whether the source code resides in one file or is obtained from %INCLUDE
files.

The MicroPower/Pascal compiler's compilation capacity is predicated on the availability of
the host system's memory for storing various data structures. The way the compiler uses
those memory-resident structures may, depending on the program's size and your coding style,
warrant attention. During a compilation, free memory is divided among three major structures:
the heap, the subprogram table, and the unique identifier table.

H. l Heap
The heap is the area of memory where a Pascal program obtains space for storage of dynamic
data. The compiler obtains storage space from the heap when processing VAR, TYPE, and
CONST declarations and character strings. The compiler requests heap space not only for
explicit definitions that appear in the TYPE declaration section but also for implicit type
definitions used in the VAR and CONST sections and other contexts as well. Declaration for
a structured type may result in more than one request for heap space. Although the text of
character strings is placed in a mass-storage file, each string has a type descriptor associated
with it that is allocated from heap space.

As a program or module is processed, type definitions and implicit type definitions use space
from the heap for the duration of the Pascal scope in which they appear. Therefore, if your
source code has a preponderance of type definitions and string constants in the same scope, a
compilation may fail, because of insufficient heap space.

MicroPower /Pascal Compiler Limitations H-1

The scope of a type definition is that portion of the program in which the definition can be
legally referenced (see Section 6.4.1). Given two different scopes, either one is completely
contained within the other, or they are disjoint. Type definitions in disjoint scopes require heap
space at different times during compilation. Type definitions in the same scope require heap
space at the same time during compilation. Assume, for example, that two programs A and B
are similar in the form and number of their type definitions. Further, assume that program A's
type definitions occur at the outermost (program) level, whereas program B's type. definitions
occur at the local (restricted) level. During compilation, program B will consume less heap space
than program A if B's type declarations reside in disjoint scopes.

If a program exceeds the capacity of the heap, the compiler will detect this as a fatal error and
issue one of two messages:

?PASCAL-F-Out of memory, near line NNNNNN

or

?PASOTS-F-Stack Overflow

Programs that use the modular features of the language and that limit declarations to the
modules and procedure scopes in which they are needed are less likely to cause heap-space
problems. However, large applications may have many declarations at the program level. For
example, when many modules share data declarations by means of one or more generalized
%INCLUDE files. Such applications are more likely to experience capacity overflow.

When a program exceeds compiler capacity, try the following remedies in the order shown:

1. Compile the program, using the /F or /Fl (filter declarations) command option. Those
options may permit a successful compilation by filtering out the standard declarations for
real-time requests that are not referenced iri. the compilation unit. Those declarations are
defined in the system file PREDFL.P AS and are automatically included when you do not
use the/Nor /NOP command option. (Refer to the applicable MicroPower/Pascal system
user's guide for detailed information about the /F and /FI command options.)

2. Consider restructuring the program so the type definitions reside within the most limited
(disjoint) scope possible. This tactic requires the careful use of common %INCLUDE files,
especially at the program level.

3. If the previous suggestion is not feasible or does not solve the capacity problem, consider
rewriting the declarations. Different sorts of declarations affect the heap-space allocation
differently. You may be able to replace some declarations with equivalent code that makes
more efficient use of the heap space available to the compiler. Information is provided in
the examples to demonstrate how different constructs use the heap.

4. If a single procedure contains many strings, you should break up the procedure into two
procedures. The disjoint scopes of the procedures will reduce the number of character
strings requiring heap space at any one time. If code containing strings is localized and
appears at the top level of the program, such as when tables of strings are initialized, you
should move that code into a separate procedure. If the capacity problem persists, you may
optionally place the procedure in a separate module with an abbreviated declaration section
and call externally.

H-2 Micro~ower /Pascal Compiler Limitations

In the following examples of Pascal source code, the circumflex (") symbol under a code line
indicates that space is allocated from the heap during compilation for the indicated construct.
Comments explain why the space allocation from the heap is made and what possible alternative
coding styles might reduce heap use.

Source Code

VAR
i integer;

Comment a

(* "integer" is a predefined type, so no heap *)
(* space is required. *)

ARRAY [1. .2] OF integer; (* Every "ARRAY" causes a request for heap *)
(*space, as does every"· . 11 (subrange) construct. *)

TYPE
colors (red, white, blue); (*Generally, every user-defined type results in*)

(* at least one request for heap space, as the *)
(*simple enumerated scalar type "colors". *)

rect = RECORD

wall, floor,
ceiling : colors;

CASE paint : colors OF
red: (glossy:boolean);

(* Every "RECORD" symbol results in a request *)
(* for heap space. If you define a type *)
(* once and use it again, no additional *)
(* heap space is used. Each case variant label *)
(* requires space from the heap. *)

white.blue: (spray:boolean)

END;

ptr = -integer;

alpha = SET OF char;

file1t = FILE OF 0 .. 255;

byte_rng = 0 .. 255;

file2t = FILE OF byte_rng;

byteptr = -byte_rng;

array_range = 1 .. 10;

(*Every 11
-

11 (pointer), SET, and FILE*)
(* requires space from the heap. Heap *)
(* storage is required for 11 0 .. 255". If *)
(* we use this range in other declarations, *)
(* it is best to give it a type identifier *)
(*as in this case "byte_rng". *)

(* Using a type identifier for a subrange *)
(* reduces heap use in subsequent occurrences *)
(* of that subrange. *)

(* This applies to any variable or type *)
(* component that is used often. *)

arrayt1 = ARRAY[array_range,array_range,array_range] OF byte_rng;

VAR
a1,a2,a3 : arrayt1; (* Collapsing commonly used structure *)

(* components into single type definitions *)
(* that are reused reduces heap use. Compare *)
(* this simple declaration with the equivalent: *)

a1 ARRAY [1 .. 10,1 .. 10,1 .. 10] OF 0 .. 255;

a2 ARRAY [1 .. 10,1 .. 10,1 .. 10] OF 0 .. 255;

a3 ARRAY [1 .. 10,1 .. 10,1 .. 10] OF 0 .. 255;

MicroPower /Pascal Compiler Limitations H-3

CONST
one = 1;

ch = •a•;

s1 = 'abc';

TYPE

(* As with VAR or TYPE declarations, if *)
(* the type of a CONST value is a standard *)
(*type (in this case implicitly INTEGER), *)
(* no space is allocated from the heap. *)

(*Standard type "char". *)

(* If a character string appears anyplace -- in *)
(* either a declaration or a statement -- it will *)
(* cause two requests for heap space. In this *)
(* case, 'abc' is best declared with a constant *)
(* identifier if it is used more than once *)
(* in statement code. *)

tablet = ARRAY[array_range] OF PACKED ARRAY[! .. 5] OF char;

CONST

VAR

commands tablet (•start• , •stop • , 'left • , •right• , •help •

•revrs•, 'fast ','slow •,•signl','beep •);

(* Generous use of strings causes *)
(* extensive use of the heap. *)

command : tablet;
(* The same problem occurs when strings *)
(* appear in statement code. *)

{ statement code }
BEGIN

command:= tablet('start•,•stop ','left •,•right','beep •

•revrs• ,•fast •,'slow• ,'signl','help ');

IF command [1] 'beep •THEN { ... } ;

END;

Examples

The following examples show how a declaration's scope affects heap usage:

1. This example illustrates a programming technique that causes inefficient use of heap space.
Note that the type definitions for Namesl through NamesS have been declared at the
outermost (program) level, although several of them could have been placed within a more
restricted scope.

PROGRAM Test3;
TYPE

Names! =
Names2
Names3
Names4
Names5

VAR

(bob, louise, luke, monica);
(mark, alita, brian, jack);
(norm, brad, bill);
(katie, chrissy, anne, adrian);
(james, richard, tom);

AO: Names4;

H-4 MicroPower /Pascal Compiler Limitations

PROCEDURE Z1;
TYPE

Names6 = (harpo, grocho, zeppo);
VAR

Ai: Names5;

PROCEDURE Z2;
VAR

A2: Names!;
BEGIN {Z2}
END; {Z2}

PROCEDURE Z3;
VAR

A3: Names2;
B3: Names6;

BEGIN {Z3}
END; {Z3}

PROCEDURE Z4;
VAR

A4: Names2;
B4: Names3;

BEGIN {Z4}
END; {Z4}

BEGIN {Z1}
END; {Z1}

PROCEDURE Z5;
VAR

A5: Names!;
BEGIN {Z5}
END; {Z5}

BEGIN {test3}
END. {test3}

2. This example illustrates how the type definitions shown in example 1 could be placed to
cause efficient use of heap space during compilation. In each case, the type definitions have
been relocated to reside in the most restricted scope possible.

PROGRAM Test4
TYPE

Names! = (bob, louise, luke, monica):
{Names2 =(mark, alita, brian, jack);} {moved to procedure Z1}
{Names3 = (norm, brad, bill);} {moved to procedure Z4}

Names4 = (katie, chrissy, anne, adrian);
{Names5 = (james, richard, tom);} {moved to procedure Z1}

VAR
AO: Names4;

PROCEDURE Z1;
TYPE

Names2 =(mark, alita, brian, jack); {moved here from outermost level}
Names5 = (james, richard, tom); {moved here from outermost level}

{Names 6 = (harpo, grocho, zeppo);} {moved to procedure Z3}
VAR

Ai: Names5;

MicroPower /Pascal Compiler Limitations H-5

PROCEDURE Z2;
VAR

A2: Names1;
BEGIN {Z2}
END; {Z2}

PROCEDURE Z3;
TYPE

Names6 = (harpo, groucho, zeppo); {moved here from procedure Z1}
VAR

A3: Names2;
B3: Names6;

BEGIN {Z3}
END; {Z3}

PROCEDURE Z4;
TYPE

Names3 = (norm, brad, bill); {moved here from outermost level}
VAR

A4: Names2;
B4: Names3;

BEGIN {Z4}
END; {Z4}

BEGIN {Z1}
END; {Z1}

PROCEDURE Z5 :.
VAR

A5: Names1;
BEGIN {ZS}
END; {ZS}

BEGIN {test4}
END. {test4}

H.2 Subprogram Table
Th~ subprogram table has 110 possible entries (300 for MicroPower/Pascal-VMS), one for each
procedure, function, or process that you declare in the compilation unit. Table entries will also
be allocated for subprograms that are declared through references to %INCLUDE files (including
the system %INCLUDE files listed in Appendix I).

If a program exceeds the capacity of this table, the compiler will issue the message "Too many
procedures (only 110 allowed)." You can correct this problem by using one or more of the
following suggestions:

•
•
•

Divide the program into separate compilation units (modules)

Reduce the number of subprograms by combining some of them

Edit %INCLUDE files to eliminate declarations for subprograms not required by the
compilation unit

H-6 MicroPower /Pascal Compiler Limitations

H.3 Unique Identifier Table
The unique identifier table is used during lexical analysis and contains no information about
program context-that is, whether an identifier is associated with a CONST or VAR declaration
or a TYPE definition. The table has 997 possible entries (3000 for MicroPower/Pascal-VMS),
one for each identifier in the compilation unit. Of these, approximately one-third are used
for the identifiers associated with the predeclared subprograms that reside in the system file
PREDFL.PAS; the remaining entries are available for user-specified identifiers.

If a program exceeds the capacity of this table, the compiler will issue the message "Too many
identifiers (only 997 allowed)." This problem has two possible solutions. You may either divide
the program into separate compilation units (modules) or reduce the number of unique identifiers
and instead reuse identifiers that are not in the current scope. Note that Pascal scoping rules
permit the reuse of identifiers without altering the meaning of a program (see Section 6.4.1).

Example

This example shows how you might rewrite a program (Testl) to reuse identifiers (Test2).

PROGRAM Test1;
CONST

max_1 = 10;
VAR

i : INTEGER;

PROCEDURE Z 1 ;
CONST

max_2 = 20;
VAR

j : INTEGER;
BEGIN {Z1}

FOR j := 1 TO max_2 DO
WRITELN (j, SQRT(j));

END; {Z1}

BEGIN {Test 1}
FOR i := 1 TO max_1 DO

WRITELN (i, i*i);
END. {Test1}

PROGRAM Test2;
CONST

max_val = 10; {replaced max_1 with max_val}
VAR·

i: INTEGER;

MicroPower /Pascal Compiler Limitations H-7

PROCEDURE Z1;
CONST

max_val = 20; {replaced max_2 with max_val}
VAR

{j : INTEGER; replaced j with i}
i : INTEGER;

BEGIN {Z1}
FOR i := 1 TO max_val DO {changed max_2 to max_val}

WRITELN (i, SQRT(i));
END; {Z1}

BEGIN {Test2}
FOR i := 1 TO max_val DO {changed max_! to max_val}

WRITELN (i, i*i);
END. {Test2}

H-8 MicroPower /Pascal Compiler Limitations

Appendix I

System 0/olNCLUDE and Module Files and Associated
Requests

This appendix lists the I/O and real-time requests that are defined in the MicroPower/Pascal
system files. For most of those requests, you must use the %INCLUDE directive to include
their formal parameter definitions in your program or module before using a request. For some
requests, you must also compile and merge with the module that implements the request. The
requests defined in PREDFL.P AS are automatically included for you by the compiler.

Note
If you use the OPEN procedure, you must install the ACP when you build your
application (as described in the MicroPower/Pascal system user's guide for your
host system).

%INCLUDE Files

COMPLX.PAS

CRPROC.PAS

DRAM.PAS

GET_ELEMENT_ANY

GET_P ACKET_ANY

Request

RECEIVE_ANY

RECEIVE_ANY_ACK

CREATE_BINARY_SEMAPHORE_P CREATE_COUNTING_SEMAPHORE_P

CREATE_QUEUE_SEMAPHORE_P CREATE__RING_BUFFER_P

ACCESS_SHARED_REGION GET_MAPPING

ALLOCATE_REGION

CREATE_SHARED_REGION

DEALLOCATE_REGION

DELETE_SHARED_REGION

MAP-WINDOW

RESTORE_CONTEXT

SAVE_CONTEXT

UNMAP_WINDOW

System %INCLUDE and Module Files and Associated Requests I-1

%INCLUDE Files

EXC.P AS1 CONNECT_EXCEPTION

FSINCL.PAS

LOGNAM.PAS

MISC.PAS

MUTEX.PAS

PREDFL.PAS

DISCONNECT_EXCEPTION

ESTABLISH

DELETE_FILE

FORMAT-RX02

INIT_DIRECTORY3

PROTECT_FILE

CREATE_LQGICAL_NAME

DELETE_LQGICAL_NAME

DEFINE_STQP_FLAG

GET_CQNFIG

CREATE _MUTEX

DESTROY-MUTEX

DISABLE_STOP

ENABLE_STOP

ALLOCATE_PACKET

CHANGE_PRIORITY

COND_GET_ELEMENT

COND_GET_PACKET

COND_PUT_ELEMENT

COND_PUT_P ACKET

CO ND-RECEIVE

COND_RECEIVE_ACK

COND_SEND

COND_SEND_ACK

COND_SIGNAL

COND_WAIT

Request

REPORT

RELEASE_EXCEPTION

REVERT

RENAME_FILE

SQUEEZE_DIRECTORY2

UNPROTECTJILE

TRANSLATE _LOGICAL _NAME

POWER__F AIL

SET_STOP_FLAG

LOCK_MUTEX

POWER JAIL

UNLOCK_MUTEX

DISCONNECT_SEMAPHORE

GET_ELEMENT

GET_PACKET

GET_STATUS

GET_ VALUE

INIT_PROCESS_DESC

INIT_STRUCTURE_DESC

PUT_ELEMENT

PUT_PACKET

RECEIVE

RECEIVE-ACK

RESET_RING_BUFFER

1 The two files PCBM.P AS and PCBU.P AS are process control block (PCB) declaration files. Each file contains a variation of the PCB declaration.
You select PCBM.PAS if your application uses memory mapping and PCBU.PAS if it does not use memory mapping. You must include one of
these files and EXC.PAS in the exception handler of your program.

2You must build your program with module SQUEEZ.PAS to use this feature.

3You must build your program with module INTDIR.PAS to use this feature.

1-2 System %INCLUDE and Module Files and Associated Requests

%INCLUDE Files Request

TIMER.PAS

CONNECT_INTERRUPT RESUME

CONNECT_SEMAPHORE SCHEDULE

CREATE_BINARY_SEMAPHORE SEND

CREATE_COUNTING_SEMAPHORE

CREATE_QUEUE_SEMAPHORE

CREATE _RING _BUFFER

DEALLOCATE_pACKET

DESTROY

DISCONNECT_INTERRUPT

ADD_ TIME

COMBINE-DATE

COMBINE_TIME

GET_SYSTEM_DATE_TIME

GET_ TIME

SLEEP

SEND_ACK

SIGNAL

SIGNAL_ALL

STOP

SUSPEND

WAIT

SET_SYSTEM_DATE_TIME

SET_ TIME

SPLIT_DATE

SPLIT_ TIME

SUBTRACT_ TIME

System %INCLUDE and Module Files and Associated Requests 1-3

Index

A
Absolute value

ABS function, 8-3
ACCESS_SHARED_REGION

procedure
error returns, 18-5
overview, 18-3
semantics, 18-4
syntax, 18-3

Active tasks
specifying, 9-6

Actual parameters
default, 6-24
subprograms, 6-2
VAR semantics, 6-25

Actual value parameters
file variables, 6-24

ALLOCATE _PACKET procedure
error returns, 14-8
overview, 14-7
semantics, 14-7
syntax, 14-7

ALLOCATE _REGION function
error returns, 18-8
overview, 18-6
semantics, 18-7
syntax, 18-6

Allocate memory
NEW procedure, 8-8

Allocating variables
subprogram blocks, 6-15

Apostrophe
CHAR specification, 2-3

Arctangent value
ARCTAN function, 8-3

Arithmetic expressions
relational operators, 3-11

Arithmetic operators, 3-10

Array data types
declaration, 2-11
declaring conforman t, 6-11
index, 2-12
multidimensional, 2-12
storage allocation rules, E-4

ASCII character set, 1-6, A-1
Assignment statements, 5-2

file variables, 2-16
AT attribute

applicable entities, F-1
overview, 10-5
syntax, 10-5

Attributes

B

default, 10-3
definition, 1-4
memory-mapping, 10-4
overview, 10-1
RECORD data type, 2-7
specifying, 10-3
syntax diagrams, 10-3
TYPE definitions, 4-3
usage summary, F-1
VAR declarations, 4-5

Bakus-Naur Form, B-1
Base type

SET data type, 2-15
BEGIN delimiter, 1-3

compound statements, 5-5
Binary

conversion function, 9-38, 9-51
notation, 2-2

Binary semaphores, 13-1
as reply semaphore, 14-60
conditional waiting, 13-6
creating, 13-8, 13-11

lndex-1

Binary semaphores (cont'd.)
definition, 13-3
deleting, 13-22
initializing, 13-2 8
interrupt vector, 16-6
interrupt vector disassociation,

16-12
reply semaphore, 14-21, 14-28,

14-78
signaling, 13-4, 13-32, 13-34
type code, 13-26

BIN function
error returns, 9-39, 9-52
overview, input, 9-38
overview, output, 9-51

BIT attribute
applicable entities, F-1
overview, 10-6
syntax, 10-6

BOOLEAN data types, 2-4
constants, 3-3
storage allocation rules

packed, E-3
unpacked, E-2

Boolean expressions, 3-12
relational operators, 3-11

Boolean operands
evaluation order, 3-15

Boolean operators, 3-12
BREAK procedure

error returns, 9-11
overview, 9-11
syntax, 9-11

Buffer variables
file variables, 2-16
I/O server buffering, 9-9

BYTE attribute
applicable entities, F-1
overview, 10-7
syntax, 10-7

Bytes allocated
SIZE function, 8-12

c
Calling

functions, 6-22
procedures, 6-22
processes, 6-22

CASE qualifier, 2-9
CASE statement, 5-3

CHECK option, 5-3

Index-2

CHANGE_PRIORITY procedure
error returns, 12-3
overview, 12-2
semantics, 12-3
syntax, 12-2

Characters
ASCII set, 1-6, A-1
comparing strings, 3-13
packed array, 2-14
string types, 2-3

Character strings
heap allocation, H-1
representation, 2-3

Character value
CHR function, 8-4

CHAR data types, 2-3
constants, 3-3
storage allocation rules

packed, E-3
unpacked, E-3

CHECKJREE_SPACE procedure
error returns, 20-3
overview, 20-3
semantics, 20-3
syntax, 20-3

Checking rules
compatible data types, 2-21
data types, 2-20
identical data types, 2-20

CHECK option, 2-6
CASE statement, 5-3

Clock service requests, 19-1
GET_TIME procedure, 19-3
SET_ TIME procedure, 19-5
SLEEP procedure, 19-7

Clock time record format, 19-2
Closed files, 9-9
CLOSE procedure

error returns, 9-12
file access method, 9-4
overview, 9-12
syntax, 9-12

Cold start
power failure, 20-12

Collating sequence
ASCII, A-1

Comments, 1-9
COMMON attribute

region-sharing mode, 18-9
Common region

shared, 18-9
Comparing strings, 3-13

Compatibility rules
conformant arrays, 6-12
data type attributes, 10-2

Compatible data types
checking rules, 2-21

Compilation units
definition, 1-4
options, C-1
overview, 7 -1
scope of identifiers, 7-4
shared variables, 7-3, 10-27
sharing declarations, 7-3, 10-15,

10-17
sharing definitions, 7-3, 10-15,

10-17
structure, 7-1

Compiler
options

CHECK, 2-6
run-time storage limitations,

H-1
Compile-time

expressions, 3-2
options, C-1

Component size
BITNEXT function, 8-3
NEXT function, 8-9

Component type
FILE data type, 2-16

Compound statement, 5-5
format, 5-5

Concurrent execution, 1-3
COND_ALLOCATE_P ACKET

function
error returns, 14-10
overview, 14-9
semantics, 14-10
syntax, 14-9

COND_GET_ELEMENT function
error returns, 15-5
overview, 15-3
semantics, 15-4
syntax, 15-3

COND_GET_P ACKET function
error returns, 14-12
overview, 14-11
semantics, 14-12
syntax, 14-11

COND_PUT_ELEMENT function
error returns, 15-8
overview, 15-6
semantics, 15-7

COND_PUT_ELEMENT function
(cont'd.)

syntax, 15-6
COND_PUT_P ACKET function

error returns, 14-14
overview, 14-13
semantics, 14-14
syntax, 14-13

COND_RECEIVE_ACK function
error returns, 14-23
overview, 14-21
semantics, 14-23
syntax, 14-21

COND_RECEIVE function
error returns, 14-20
overview, 14-16
Packet format, 14-16
semantics, 14-19
syntax, 14-16

COND_SEND_ACK function
error returns, 14-31
overview, 14-28
semantics, 14-30
syntax, 14-28

COND_SEND function
error returns, 14-27
overview, 14-24
semantics, 14-26
syntax, 14-24

COND_SIGNAL function
error returns, 13-5
overview, 13-4
semantics, 13-5
syntax, 13-4

COND_WAIT function
error returns, 13-7
overview, 13-6
semantics, 13-7
syntax, 13-6

Configuration file
obtaining data, 20-9

Configuration record format, 20-9
Conformant array declaration,

6-11
CONNECT_EXCEPTION

procedure
error returns, 17-12
overview, 17-11
semantics, 17-12
syntax, 17-11

Index-3

CONNECT-INTERRUPT
procedure

error returns, 16-5
overview, 16-3
semantics, 16-4
syntax, 16-3

CONNECT_SEMAPHORE
procedure

error returns, 16-9
overview, 16-6
semantics, 16-9
syntax, 16-6

Constant, predefined
MAXINT, 2-2

Constant identifier
CONST declaration, 3-2
rules, 4-2

Constants
data type, 1-2
declaring, 4-1
definition, 1-2, 3-2
range of values, 3-3
scalar, 3-2, 3-3
specifying as external, 10-15
specifying as global, 10-17
string, 2-14, 3-7
structured, 3-2, 3-3
subprogram blocks, 6-15

CONST declaration, 1-2, 4-1
constant identifier, 3-2
heap allocation, H-1

CONTEXT attribute
applicable entities, F-1
overview, 10-8
syntax, 10-8

Control and Status Register (CSR)
accessing in mapped

environment, 10-13
Conversion functions

BIN, 9-38, 9-51
HEX, 9-39, 9-52
OCT I 9-40 I 9-5 2

Copy array elements
PACK procedure, 8-10
UNPACK procedure, 8-14

Cosine
COS function, 8-5

Counting semaphores, 13-1
conditional waiting, 13-6
creating, 13-14, 13-17
definition, 13-3
deleting, 13-22

Index-4

Counting semaphores (cont'd.)
initializing, 13-28
interrupt vector, 16-6
interrupt vector disassociation,

16-12
reply semaphore, 14-21, 14-28,

14-78
signaling, 13-4, 13-32, 13-34
type code, 13-26

CREATE_BINARY_SEMAPHORE_P
procedure

error returns, 13-12
overview, 13-11
semantics, 13-12
syntax, 13-11

CREATE_BINARY_SEMAPHORE
function

error returns, 13-9
overview, 13-8
semantics, 13-9
syntax, 13-8

CREATE_COUNTING_SEMAPHORE_p
procedure

error returns, 13-18
overview, 13-17
semantics, 13-18
syntax, 13-17

CREATE_COUNTING_SEMAPHORE
function

error returns, 13-15
overview, 13-14
semantics, 13-15
syntax, 13-14

CREATE _LOGICAL _NAME
procedure

error returns, 20-6
overview, 20-4
semantics, 20-5
syntax, 20-4

CREATE__MUTEX procedure
error returns, 13-21
overview, 13-20
semantics, 13-20
syntax, 13-20

CREATE_QUEUE_SEMAPHORE_p
procedure

error returns, 14-36
overview, 14-35
semantics, 14-36
syntax, 14-35

CREATE_QUEUE_SEMAPHORE
function

error returns, 14-33
overview, 14-32
semantics, 14-33
syntax, 14-32

CREATE_RING_BUFFERJ
procedure

error returns, 15-14
overview, 15-12
semantics, 15-14
syntax, 15-12

CREATE-RING _BUFFER
function

error returns, 15-11
overview, 15-9
semantics, 15-11
syntax, 15-9

CREATE_SHARED-REGION
procedure

error returns, 18-12
overview, 18-9
semantics, 18-11
syntax, 18-10

CSR

D

See Control and Status Register
(CSR)

DATA_SP ACE attribute
applicable entities, F-1
overview, 10-9
syntax, 10-9

Data structures
accessing system, 10-14, 10-30
type idenitfication codes, 15-26
type identification codes, 13-26,

14-49
Data transmission

by reference, 14-1
by value, 14-1

Data type attributes
compatibility rules, 10-2

Data types
ARRAY, 2-11
BOOLEAN, 2-4
CHAR, 2-3
checking rules, 2-20
constant, 1-2
defining, 4-3
enumerated, 2-4

Data types (cont'd.)
FILE, 2-16
function results, 6-17
INTEGER, 2-2
LONG-1NTEGER, 2-2
mixing, type cast operator, 3-16
overview, 2-1
PACKED modifier, 2-1
pointer, 2-1, 2-19
predefined identifiers, G-1
predefined in PREDFL.PAS,

D-1
promotion rules, 3-16
purpose, 1-2
REAL, 2-6
RECORD, 2-7
scalar, 2-1
SET, 2-15
storage allocation rules, E-1
string, 2-14
structured, 2-1
subprogram blocks, 6-15
TEXT file, 2-18
UNSIGNED, 2-3
user-created, 1-2

DEALLOCATEJACKET
procedure

error returns, 14-39
overview, 14-38
semantics, 14-38
syntax, 14-38

DEALLOCATE-REGION
procedure

error returns, 18-15
overview, 18-13
semantics, 18-14
syntax, 18-13

Deallocate memory
DISPOSE procedure, 8-5

Deallocating variables
supbrogram blocks, 6-15

Decimal
notation, 2-2

Declarations
subprograms, 6-3

Declaration section, 1-2
Pascal block, 4-1

DECnet node naming
conventions, 9-7

Default
attributes, 10-3
parameters, 6-24

Index-5

Default (cont'd.)
process descriptor, 11-5
value parameters, 6-6

DEFINE_STOPJLAG procedure
error returns, 12-5
overview, 12-4
semantics, 12-4
syntax, 12-4

DELETE-FILE
syntax, 9-13

DELETE-FILE procedure
error returns, 9-13
overview, 9-13

DELETE_LOGICAL_NAME
procedure

error returns, 20-8
overview, 20-7
semantics, 20-8
syntax, 20-7

DELETE _SHARED_REGION
procedure

error returns, 18-17
overview, 18-16
semantics, 18-17
syntax, 18-16

Delimiters
BEGIN, 1-3
comment, 1-9
END, 1-3

Descriptors
specifying, 11-4
unnamed structures, 11-4
use in real-time requests, 11-4

DESTROY_MUTEX procedure
error returns, 13-25
overview, 13-24
semantics, 13-24
syntax, 13-24

DESTROY procedure
error returns, 13-23, 14-41,

15-16
overview, 13-22, 14-40, 15-15
semantics, 13-22, 14-40, 15-15
syntax, 13-22, 14-40, 15-15

DEV-ACCESS attribute
applicable entities, F-1
overview, 10-13
syntax, 10-13

Device access
delayed, 9-53

Index-6

Device driver
memory access privilege, 10-14,

10-30
Device register

VOLATILE attribute, 10-40
Devices

consolidating unused space,
9-44

directory-structured, 9-5
specifying, 9-5
storing external files, 9-5
storing files on directoried

device, 9-5
Directives

definition, 6-19
EXTERNAL, 6-20
FORWARD, 6-19
SEQl l, 6-20, 6-21
subprograms, 6-2

Directory-structured devices, 9-5
initializing directory, 9-22

DISCONNECT_EXCEPTION
procedure

error returns, 17 -15
overview, 17-14
semantics, 17-14
syntax, 17-14

DISCONNECT-1NTERRUPT
procedure

error returns, 16-11
overview, 16-10
semantics, 16-10
syntax, 16-10

DISCONNECT-SEMAPHORE
procedure

error returns, 16-13
overview, 16-12
semantics, 16-12
syntax, 16-12

Diskette formatting procedure,
9-19

Dollar sign
usage in identifiers, 1-8

DRIVER attribute
applicable entities, F-1
overview, 10-14
syntax, 10-14
use in real-time requests, 14-42

Dyadic operators, 3-9
Boolean operands, 3-15
evaluation order, 3-15

Dynamic memory allocation
RAM, 18-1, 18-6, 18-7, 18-13,

18-15
requests, 18-1

Dynamic variables, 2-19
specifying, 2-19

E
E (exponential) specifier, 2-7
EMPTY_BUFFER

syntax, 9-14
EMPTY_BUFFER procedure

error returns, 9-14
overview, 9-14

END delimiter, 1-3
compound statements, 5-5

End-of-file (EOF)
detecting, 9-15

End-of-line (EOLN)
detecting, 9-17

Enumerated data types, 2-4
ordinal values, 2-5

Enumerated types
storage allocation rules

packed, E-3
unpacked, E-3

EOF
See End-of-file (EOF)

EOF function
error returns, 9-16
overview, 9-15
syntax, 9-15

EOLN
See End-of-line (EOLN)

EOLN function
error returns, 9-17
overview, 9-17

Equal sign
string operator, 3-13

Error returns
I/O requests, 9-8
real-time programming

requests, 11-5
STATUS parameter, 11-5

ES$NOR success code, 11-5
ESTABLISH procedure

error returns, 17 -17
overview, 17-16
semantics, 17 -17
syntax, 17-16

Exception condition
declaring, 17 -20
declaring exception handler,

17-9
management requests, 17-1
process release, 17-18
STATUS parameter, 11-5
types and codes, 17-3
wild card group, 17 -12

Exception group
managing exceptions, 17-11
specifying, 10-18

Exception handler
waiting for exceptions, 17-24

Executable section
subprogram blocks, 6-15

Execution
concurrent, 1-3

Execution priority
CHANGE_pRIORITY, 12-2

Exponential notation, 2-6
specifier, 2-7

Exponential value
EXP function, 8-7

Expressions
compile-time, 3-2
definition, 1-2, 3-1
function result, 6-22
operands, 3-1
operators, 3-1
run-time, 3-2

EXTERNAL attribute, 6-21, 7-3
applicable entities, F-1
overview, 10-15
subprogram declarations, 7-2
syntax, 10-15

EXTERNAL directive, 6-20, 6-21
subprogram declarations, 7-2

External files
CLOSE procedure, 9-12
deleting named, 9-13
named and unnamed, 9-5
renaming, 9-41
sending form-feed to, 9-29
specifying, 9-5
specifying size, 9-25

External file storage, 9-5
External identifiers, 7-3
External subprograms, 6-21

Index-7

F
FALSE Boolean values, 2-4

string expressions, 3-13
FIFO ordering

for packet queues, 14-32, 14-35
for ring buffers, 15-9

FILE
reading lines from a file, 9-37

File access methods
CLOSE procedure, 9-4
direct, 9-4
OPEN procedure, 9-4
overview, 9-4
sequential, 9-4
update, 9-4

FILE data types, 2-16
Files

closing, 9-12
concepts of, 9-9
deleting, 9-13
external storage, 9-5
opening for I/O, 9-24
organization, 9-4
positioning for input, 9-18,

9-20
predefined identifiers, G-1
preparing for input, 9,42
preparing for output, 9-43
protecting from deletion, 9-30
purging, 9-11
removing protection from, 9-45
specifying external, 9-5
storing external directoried

device, 9-5
writing, 9-32
writing lines of data, 9-48

Files, DIGITAL-supplied
%INCLUDE and module files,

I-1
File specifications

specifying with logical names,
20-1

File variables
actual value parameters, 6-24
buffer variables, 2-16
definition, 2-16
disconnecting from a device,

9-31
I/O servers, 9-4
INPUT, 2-18
OUTPUT, 2-18
specifying to OPEN, 9-24
VAR parameters, 6-25

lndex-8

FIND procedure
error returns, 9-18
overview, 9-18
syntax, 9-18

Fixed-point notation, 2-6
Formal parameter list, 6-6
Formal parameters, 6-5

declaring, 6-14
declaring default values, 6-24
declaring side effects, 10-40
function identifiers, 6-17
scope of identifiers, 6-15
subprograms, 6-2
UNSAFE attribute, 6-24

FORMAT_RX02 procedure
error returns, 9-19
overview, 9-19
syntax, 9-19

FOR statement, 5-6
FORTRAN subprograms

calling sequence, 6-21
FORWARD directive, 6-19
Free-packet pool

message packets, 14-7
FUNCTION declaration, 1-2
Function identifiers, 3-1, 3-8

data type, 1-2
definition, 1-2
establishing data type, 1-2

Function results
data type, 6-17

Functions
activating, 6-22

G

actual parameters, 6-26
assigning values, 6-17
block, 6-17
concepts, 6-1
default parameters, 6-24
definition, 1-3
external, 6-20
passing identifiers, 6-17
predefined identifiers, G-1
result, 6-17
scope, 6-17
specifying as external, 10-15
specifying as global, 10-17
subprogram blocks, 6-15

General mapping
restriction on PCB access, 17-24

GET_CONFIG procedure
error returns, 20-11
overview, 20-9
semantics, 20-11
syntax, 20-9

GET_ELEMENT_ANY function
error returns, 15-23
overview, 15-20
semantics, 15-22
syntax, 15-20

GET_ELEMENT procedure
error ·returns, 15-19
overview, 15-17
semantics, 15-18
syntax, 15-17

GET_MAPPING procedure
error returns, 18-20
overview, 18-18
semantics, 18-20
syntax, 18-18

GETJ ACKET_ANY function
error returns, 14-4 7
overview, 14-44
semantics, 14-46
syntax, 14-44

GETJ ACKET procedure
error returns, 14-43
overview, 14-42
semantics, 14-43
syntax, 14-42

GET_STATE procedure
error returns, 12-9
overview, 12-6
semantics, 12-8
syntax, 12-6

GET_ TIME procedure
error returns, 19-4
overview, 19-3
semantics, 19-3
syntax, 19-3

GET_ VALUE procedure
error returns, 13-27, 14-49,

15-26
overview, 13-26, 14-48, 15-25
semantics, 13-27, 14-49, 15-26
syntax, 13-26, 14-48, 15-25

GET procedure
error returns, 9-21
1/0 server buffering, 9-9
overview, 9-20
syntax, 9-20

GLOBAL attribute, 6-21, 7-3

GLOBAL attribute (cont'd.)
applicable entities, F-1
external subprograms, 6-20
overview, 10-17
syntax, 10-17

Global identifiers, 7-3
GOTO statement, 5-8

subprogram blocks, 6-15
Greater-than

string operator, 3-13
Greater-than-or-equal-to

string operator, 3-13
GROUP attribute

applicable entities, F-1
overview, 10-18
syntax, 10-18

H
Heading

Pascal block, 4-1
Heap storage

CHECK_FREE_SP ACE
procedure, 20-3

compiler utilization, H-1
dynamic variables, 2-19
parent process, 5-15
recovering space, 8-5

Hexadecimal
conversion function, 9-39, 9-52
notation, 2-2

HEX function
error returns, 9-39, 9-52
overview, input, 9-39
overview, output, 9-52

Host system
compiler limitations, H-1

1/0
concepts, 9-1
delayed device access, 9-53
file organization, 9-4
specifying devices, 9-5
specifying external files, 9-5
summary of requests, 9-1
terminology, 9-3

1/0 buffers
buffer variable, 9-9
purging, 9-9, 9-14

Index-9

1/0 device
disconnecting from file variable,

9-31
1/0 file variables

default characteristics, 9-10
1/0 page

accessing in mapped
environment, 10-13,
10-14, 10-30

1/0 requests
error returns, 9-8
%INCLUDE files, 9-10

I/ 0 Server Buffering
overview, 9-9

1/0 servers
buffer variable, 9-9
disconnecting from file variable,

9-12
file variables, 9-4
1/0 buffer, 9-9
specifying, 9-5

If O specification
OPEN procedure, 9-24

1/0 system
initialization for file access, 9-9

ID_MAPPING record type, 18-18
IDB

See Interrupt Dispatch Block
(IDB)

IDENT attribute
applicable entities, F-1
overview, 10-19
syntax, 10-19

Identical data types
checking rules, 2-20

Identifiers
character limit, 1-8
compile-time limitations, H-7
construction rules, 1-8
data types, 1-2
function, 3-1, 3-8
multiply declared, 7-4
predefined, 1-8, G-1
record field, 2-7
scope, 6-3, 6-15
user-defined, 1-9

IF-THEN-ELSE statement, 5-il
IF-THEN statement, 5-9
%INCLUDE directiv~, 7-5
%INCLUDE files

1/0 requests, 9-10
supplied by DIGITAL, 1-1

Index-10

INDEXCHECK option, C-1
Information record format, 14-17
RECEIVE~NY function,

14-64
RECEIVE procedure, 14-55

INIT_DIRECTORY procedure
error returns, 9-23
overview, 9-22
syntax, 9-22

INJT_pRJORITY
overview, 10-20
syntax, 10-20

INJT_pRJORITY attribute
applicable entities, F-1

INIT_PROCESS_DESC procedure
error returns, 12-11
overview, 12-10
semantics, 12-10
syntax, 12-10

INIT_STRUCTURE_DESC
procedure

error returns, 13-29, 14-51,
15-28

overview, 13-28, 14-50, 15-27
semantics, 13-28, 14-50, 15-27
syntax, 13-28, 14-50, 15-27

Initialization
priority, 12-2
variables, 3-5

Initialization procedures, 10-22
declaring, 10-22
setting execution priority, 10-20

INITIALIZE attribute
applicable entities, F-1
execution priority, 12-2
overview, 10-22
syntax, 10-22

Input/ output
See 1/0

INPUT file variable, 2-18
default characteristics, 9-10

Integer constants
binary notation, 2-2
decimal notation, 2-2
hexadecimal notation, 2-2
octal notation, 2-2
unsigned, 2-3

Integer conversion functions, 9-38
output, 9-51

INTEGER data types, 2-2
constants, 3-3

INTEGER data types (cont'd.)
storage allocation rules

packed, E-2
unpacked, E-1

Integers
conversion for input, 9-38
conversion for output, 9-51

Interrupt Dispatch Block (IDB)
CONNECT-1NTERRUPT

procedure, 16-4
CONNECT_SEMAPHORE

procedure, 16-9
DISCONNECLJNTERRUPT

procedure, 16-10
Interrupt management

requests, 16-1
Interrupt Service Routine (ISR)

interrupt vector disassociation,
16-10

interrupt vectors, 16-1
Interrupt vector, 16-6, 16-10

connecting a process, 16-1
Interrupt Service Routine (ISR),

16-1
semaphore disassociation,

16-12
ISR

K

See Interrupt Service Routine
(ISR)

Kernel
accessing data space, 10-14

L
LABEL declaration, 1-2, 4-3
Labels

subprogram blocks, 6-15
Language elements, 1-6
Lazy lookahead 1/0, 9-53
Less-than

string operator, 3-13
Less-than-or-equal-to

string operator, 3-13
Lexical elements, 1-6
LIST option, C-1
LOCK_MUTEX procedure

error returns, 13-31
over\iiew, 13-30
semantics, 13-30
syntax, 13-30

Logical AND
U AND function, 8-14

Logical exclusive OR
UXOR function, 8-17

Logical links
CLOSE procedure, 9-12
specifying, 9-6

Logical names
creating, 20-4
deleting, 20-7
device name, 9-6
node address, 9-7
obtaining translation string,

20-14
process and structure names,

11-4
purpose, 20-1

Logical NOT
UNOT function, 8-14

Logical OR
UOR function, 8-16

LONG-1NTEGER data types, 2-2
scalar constants, 3-3
storage allocation rules, E-2

Lowercase characters

M

process and structure· names,
11-4

MACR0-11 subprograms, 6-21
MAP_WINDOW procedure

error returns, 18-26
overview, 18-21
semantics, 18-25
syntax, 18-22

Mapped-memory environment
accessing processes, 11-4
allocating memory, 18-6
attributes, 10-13, 10-14, 10-30
deallocating memory, 18-13
deallocating virtual addresses,

18-31
obtaining mapping data, 18-18
region-sharing, 18-1, 18-3
saving context, 18-29
specifying attributes, 10-4

Mapping record format, 18-19
MATHCHECK option, C-2
MAXINT identifier

predefined constant, 2-2

Index-11

Memory
allocating physical, 18-6
deallocating physical, 18-13
dynamic allocation requests,

18-1
region-sharing requests, 18-1

Message packet
free-packet pool, 14-7

Micro/RSX-11 operating system,
1-1

Miscellaneous requests, 20-1
MMU device registers

accessing in mapped
environment, 10-13

Module files
supplied by DIGITAL, I-1

MODULE keyword, 7-1
Modules

compilation unit, 7-1
definition, 1-4
shared variables, 10-27

Monadic operators, 3-9
Multidimensional arrays, 2-12

storage allocation rules, E-4
Mutex management requests, 13-1
M utex structures

creating, 13-20
deleting, 13-24
locking, 13-30
overview, 13-3
unlocking, 13-36

N
NAME attribute

applicable entities, F-2
overview, 10-24
syntax, 10-24

Names
multiply declared, 7-4
specifying process and

structure, 11-4
use in real-time requests, 11-4

Natural logarithm value
LN function, 8-7

Nesting
subprogram declarations, 6-2

Network Service Process (NSP)
creating logical links, 9-5, 9-6

NIL
use with formal parameters, 6-7

Index-12

NIL identifier
pointer variable value, 2-19

Node addresses
logical names, 9-7

Nodes
DECnet naming conventions,

9-7
NOINDEXCHECK option, C-1
NOLIST option, C-2
NOMATHCHECK option, C-2
Nonpositional syntax, 6-23

default parameters, 6-24
NOOPTIMIZE attribute

applicable entities, F-2
overview, 10-25
syntax, 10-25

NOPOINTERCHECK option, C-1
NORANGECHECK option, C-2
NOSTACKCHECK option, C-1
NOSTANDARD option, C-2
Not equal

string operator, 3-13
NSP

See Network Service Process
(NSP)

NULL ASCII code
TEXT files, 2-18

Numeric identifiers
establishing, 4-3

0
Octal

conversion function, 9-40, 9-52
notation, 2-2

OCT function
error returns, 9-40, 9-53
overview, input, 9-40
overview, output, 9-52

Open files, 9-9
OPEN procedure

error returns, 9-28
file access method, 9-4
overview, 9-24
syntax, 9-24

Operands
expression, 3-1

Operators
arithmetic, 3-10
Boolean, 3-12
dyadic, 3-9
monadic, 3-9

Operators (cont'd.)
precedence, 3-14
relational, 3-11
set, 3-13
string, 3-13

OPTIMIZE attribute
applicable entities, F-2
overview, 10-26
syntax, 10-26

Options
compile-time, C-1

ORD function, 2-2
Ordinal data types

array index, 2-12
overview, 2-2

Ordinal value
enumerated data types, 2-5

Output file
field width, 9-49

OUTPUT file variable, 2-18
default characteristics, 9-10

OVERLAID attribute
applicable entities, F-2
overview, 10-2 7
syntax, 10-27

p

Packed array
characters, 2-14

PACKED modifier, 2-1
conformant array parameters,

6-12
storage allocation, E-1

Packed record
specifying storage, 10-6

Packed structures, 2-1
specifying storage, 10-42

PACKET_ORDER, 14-32, 14-35
Packet format

COND_RECEIVE function,
14-16

Packet pointer
use, 14-44, 14-52, 14-62, 14-68

Packets
allocation, 14-4, 14-9
conditional passing, 14-13,

14-24, 14-28
deallocating, 14-38
definition, 14-1
general structure, 14-4

Packets (cont'd.)
obtaining, 14-11, 14-16, 14-21,

14-54, 14-59
obtaining from multiple

semaphores, 14-44, 14-62,
14-68

obtaining pointer, 14-7, 14-9,
14-42

passing, 14-52, 14-73, 14-78
structure for SEND_ACK

procedure, 14-80
structure for SEND procedure,

14-75
Page Address Register (PAR)

ALLOCATE_REGION
function, 18-6

mapping data, 18-18
Page Descriptor Register (PDR)

mapping data, 18-18
PAGE procedure

error returns, 9-29
overview, 9-29
syntax, 9-29

PAR
See Page Address Register

(PAR)
Parameter association

nonpositional syntax, 6-22
positional syntax, 6-22

Parameters
conformant array, 6-11
default, 6-24
formal, 6-5
formal list, 6-6
value declaration, 6-6
variable declaration, 6-8

Parentheses
enumerated data types, 2-4

Parent process, 5-15
Parent types, 2-5
Pascal

predefined identifiers, G-1
program data, 1-2
reserved words, 1-7
syntax summary, B-1

Pascal block
declararation section, 4-1
heading, 4-1

Passive tasks
specifying, 9-6

lndex-13

PCB
See Process Control Block

(PCB)
PDB

See Process Descriptor Block
(PDB)

PDR
See Page Descriptor Register

(PDR)
Permanent files, 9-12
PHYSICAL attribute

region-sharing mode, 18-9
Physical region

shared, 18-9
POINTERCHECK option, C-1
Pointer data types, 2-1, 2-19

compatibility rules, 6-25
storage allocation rules, E-3

Pointer value
ADDRESS function, 8-3

POS attribute
entities applicable to, F-2
overview, 10-28
syntax, 10-28

Position
ORD function, 8-10

Positional syntax
default parameters, 6-24

POWERJAIL procedure
error returns, 20-13
overview, 20-12
semantics, 20-13
syntax, 20-12

Power failure
cold start, 20-12
detecting occurrence, 20-12
warm start, 20-12

Precedence
operators, 3-14

Precision
Real numbers, 2-6

Predecessor value
PRED function, 8-12

Predefined data types
PREDFL.PAS, D-1

Predefined identifiers, 1-8, G-1
Predefined parameters

process, 6-14
PREDFL.PAS

predefined data types, D-1
PRED function, 2-2

lndex-14

PRI 0 ordering
for ring buffers, 15-9

PRIORITY attribute
entities applicable to, F-2
overview, 10-29
syntax, 10-29

PRIVILEGED attribute
entities applicable to, F-2
overview, 10-30
syntax, 10-30
use in real-time requests, 14-42

Procedure call statement, 5-13
PROCEDURE declaration, 1-2
Procedures

activation, 6-22
actual parameters, 6-26
concepts, 6-1
declaring system initialization,

10-22
default parameters, 6-24
definition, 1-3
exception handler disassocia-

tion, 17-22
exception handler format, 17 -9
exception handlers, 17-1
external, 6-20
formal parameters, 6-14
predefined identifiers, G-1
scope of identifiers, 6-15
specifying as external, 10-15
specifying as global, 10-17
subprogram blocks, 6-15
system initialization, 10-20
system termination, 10-37

PROCESS_ORDER, 14-32, 14-35
Process Control Block (PCB)

exception handler access, 17-11
mapping data, 18-18, 18-27
restriction on access, 17-24

PROCESS declaration, 1-2
Process descriptors

default value, 11-5
using, 11-5

Processes
activation, 12-12
changing priority, 12-2
checking for signal, 13-38,

13-40
concepts, 6-1
data access features, 14-4
default parameters, 6-24
definition, 1-3, 6-2

Processes (cont'd.)
dependent, 5-15
descriptor ini tializa ti on, 12-10
disabling effect of STOP

request, 12-4
dollar sign usage in names,

11-4
establishing execution priority,

10-29
exception condition release,

17-18
exception group, 17-3, 17-11
exception handler declaration,

17-16
exception handler diSassocia-

tion, 17-14
exception handlers, 17-1, 17-11
external, 6-20, 10-15
formal parameters, 6-14
global, 10-17
incrementing suspension count,

12-19
independent, 5-15
index and sequence number,

12-10
initialization, 10-20
invocation, 6-22
obtaining status information,

12-6
preventing start-up race

conditions, 12-2
relinquishing CPU, 12-14
specifying exception group,

10-18
specifying names, 11-4
specifying run-time name,

10-22, 10-24
state record format, 12-6
subprogram blocks, 6-15
suspension, 12-18
termination, 10-37, 12-15
unblocking, 13-32, 13-34
variable storage allocation,

10-33
Process invocation statement, 5-15
Process management requests,

12-1
Program data, 1-2
PROGRAM keyword, 7-1
Programs

compilation unit, 7-1

Programs (cont'd.)
declaring initialization

procedures, 10-22
definition, 1-4
documenting with comments,

1-9
identification, 10-19
optimized code, 10-25, 10-26
setting execution priority, 10-20
shared variables, 10-27
variable storage allocation,

10-33
Program section

See P-sect
Program structure

example, 1-4
Promotion rules, data types, 3-16
PROTECT_FILE procedure

error returns, 9-30
overview, 9-30
syntax, 9-30

P-sect
declarative statements, 1-2
executable statements, 1-3

PURGE procedure
error returns, 9-31
overview, 9-31
syntax, 9-31

PUT_ELEMENT procedure
error returns, 15-31
overview, 15-29
semantics, 15-30
syntax, 15-29

PUT_P ACKET procedure
error returns, 14-53
overview, 14-52
semantics, 14-53
syntax, 14-52

PUT procedure

Q

error returns, 9-33
1/0 server buffering, 9-9
overview, 9-32
syntax, 9-32

Queue semaphores
as reply semaphore, 14-60
creating, 14-32, 14-35
definition, 14-1
deleting, 14-40
initializing, 14-32, 14-35, 14-50

Index-15

Queue semaphores (cont'd.)
management requests, 14-1
obtaining a packet, 14-16,

14-42, 14-54

R

obtaining packets, 14-44, 14-62
obtaining packets from

multiple, 14-68
passing a packet, 14-24, 14-28,

14-73, 14-78
placing a packet, 14-52
reply semaphore, 14-21

RAM
dynamic allocation, 18-1, 18-6,

18-7, 18-13, 18-15
Random-Access Memory

See RAM
RANGECHECK option, C-2
READLN procedure

error returns, 9-38
I/O server buffering, 9-9
overview, 9-37
syntax, 9-3 7

READO NL Y attribute
entities applicable to, F-2
overview, 10-31
syntax, 10-31

READ procedure
error returns, 9-36
~/O server buffering, 9-9
mteger conversion functions,

9-38
overview, 9-34
syntax, 9-34

REAL data types, 2-6
constants, 3-3
storage allocation rules, E-3

Real numbers
exponential notation, 2-6
fixed-point notation, 2-6
precision, 2-6
specifying exponents, 2-7

Rea~ -time programming requests
bmary and counting

semaphores, 13-1
clock service, 19-1
comma usage, 11-3
error returns, 11-5
exception condition

management, 17-1

lndex-16

Real-time programming requests
(cont'd.)

general conventions and usage,
11-3

%INCLUDE and module files,
I-1

interrupt management, 16-1
memory allocation, 18-1
miscellaneous, 20-1
name and descriptor

parameters, 11-4
overview, 11-1
process management, 12-1
queue semaphores, 14-1
region sharing, 18-1
ring buffers, 15-1
translation of logical names,

20-2
RECEIVE-ACK procedure

error returns, 14-61
overview, 14-59
semantics, 14-61
syntax, 14-59

RECEIVE-.ANY-.ACKJunction
error returns, 14-7i
overview, 14-68
semantics, 14-71
syntax, 14-69

RECEIVE-ANY function
error returns, 14-67
information record format,

14-64
overview, 14-62
semantics, 14-66
syntax, 14-63

RECEIVE procedure
error returns, 14-58
information record format,

14-55
overview, 14-54
semantics, 14-57
syntax, 14-54

RECORD_MODE option, 15-9
RECORD data types

attributes, 2-7
declaration, 2-7
storage allocation rules, E-6
variant clause, 2-9

Record fields
declaring side effects, 10-40
identifiers, 2-7
positioning, 10-28

Record field size
BITSIZE function, 8-4

Record field values
order in storage, 2-8

Recursive subprograms, 6-19
Region ID Block (RIB)

ACCESS_SHARED_REGION
procedure, 18-3

ALLOCATE_REGION
function, 18-6

CREATE_SHARED_REGION
procedure, 18-9

DEALLOCATE_REGION
proceure, 18-13

UNMAP_WINDOW procedure,
18-22

Region sharing
deleting, 18-16
requests, 18-1

Relational operators
arithmetic expressions, 3-11
Boolean expressions, 3-11

RELEASE_EXCEPTION
procedure

error returns, 17 -19
overview, 17-18
semantics, 17-19
syntax, 17-18

RENAME_FILE procedure
error returns, 9-41
overview, 9-41
syntax, 9-41

REPEAT statement, 5-20
Reply semaphore

obtaining packet, 14-21
REPORT procedure

error returns, 17 -21
overview, 17-20
semantics, 17-21
syntax, 17-20

Reserved words, 1-7
RESET_RING_BUFFER procedure

error returns, 15-33
overview, 15-32
semantics, 15-33
syntax, 15-32

RESET procedure
error returns, 9-42
overview, 9-42
syntax, 9-42

Resource sharing, 13-20

RESTORE-CONTEXT procedure
error returns, 18-28
overview, 18-27
semantics, 18-27
syntax, 18-27

RESUME function
error returns, 12-13
overview, 12-12
semantics, 12-13
syntax, 12-12

REVERT procedure
error returns, 17-22
overview, 17-22
semantics, 17-22
syntax, 17-22

REWRITE procedure
error returns, 9-43
overview, 9-43
syntax, 9-43

Ring buffers
copying data, 15-6
creating, 15-9, 15-12
deleting, 15-15
emptying, 15-32
initializing, 15-27
input/ output ordering, 15-9
management requests, 15-1
obtaining data, 15-3, 15-17
obtaining data from multiple,

15-20
resetting, 15-32
specifying, 9-5
specifying names, 9-6
type code, 15-25

RL02
external file storage, 9-5

Rounding
LROUND function, 8-7
ROUNP function, 8-12
UROUND function, 8-16

Routine block
definition, 1-3

Routine heading
definition, 1-3

Routines
concepts, 6-1
definition, 1-3, 6-2

RT-11 operating system, 1-1
Run-time

error recovery, 11-5
expressions, 3-2

lndex-17

Run-time (cont'd.)
process name specification,

10-24
specifying environment, 10-36

RX02 device
diskette formatting, 9-19

s
SAVE_CONTEXT procedure

error returns, 18-30
overview, 18-29
semantics, 18-30
syntax, 18-29

Scalar data types, 2-1
constants, 3-2
storage allocation rules, E-1

SCHEDULE procedure
error returns, 12-14
overview, 12-14
semantics, 12-14
syntax, 12-14

Scope of attributes
functions, 6-17

Scope of identifiers, 6-3
compilation units, 7-4
functions, 6-17
labels, 6-15
rules, 6-15

SOB
See Structure Descriptor Block

(SOB)
Semantics

actual value parameters, 6-24
formal declaration, 6-14
value parameters, 6-6
variable parameters, 6-8

SEND-ACK procedure
error returns, 14-81
overview, 14-78
semantics, 14-80
syntax, 14-78

SEND procedure
error returns, 14-76
overview, 14-73
semantics, 14-75
syntax, 14-73

SEQl 1 directive, 6-20, 6-21
SET

base type, 2-15
data type, 2-15
type declaration, 2-15

Index-18

SET_ TIME procedure
error returns, 19-6
overview, 19-5
semantics, 19-5
syntax, 19-5

Set constructors
set operators, 3-13
syntax, 3-8

SET data types
storage allocation rules, E-8

Set expressions
set operators, 3-13

Set operators, 3-13
Sets

constructors, 2-15
defining, 2-15
initializing, 2-15

Set variables
set operators, 3-13

Shared Region Descriptor (SRO),
18-3

accessing shared regions, 18-4
creating, 18-9
deleting, 18-16

Shared regions
accessing, 18-3
creating, 18-9

Shared variables
compilation units, 7-3

Side effects
specifying entities with, 10-40

SIGNAL-ALL procedure
error returns, 13-35
overview, 13-34
semantics, 13-35
syntax, 13-34

SIGNAL procedure
error returns, 13-33
overvi~w, 13-32
semantics, 13-33
syntax, 13-32

Sine value
SIN function, 8-12

SLEEP procedure
error returns, 19-8
overview, 19-7
semantics, 19-7
syntax, 19-7

Source files
inserting text, 7-5

Square root
SQRT function, 8-13

Squaring
SQR function, 8-13

SQUEEZE_DIRECTORY
procedure

error returns, 9-44
overview, 9-44
syntax, 9-44

SRD
See Shared Region Descriptor

(SRD)
STACK_SIZE attribute

entities applicable to, F-2
overview, 10-33

- syntax, 10-33
STACKCHECK option, C-1
STANDARD option, C-2
Start-up priority, 12-2
Statements

assignment, 5-2
CASE, 5-3
compound, 5-5
executable, 1-3
FOR, 5-6
GOTO, 5-8
IF-THEN, 5-9
IF-THEN-ELSE, 5-11
procedure call, 5-13
process invocation, 5-15
REPEAT, 5-20
simple, 5-1
structured, 5-1
WHILE, 5-21
WITH, 5-23

State record
format, 12-6

STATIC attribute
entities applicable to, F-2
overview, 10-34
syntax, 10-34

STATUS parameter
using, 11-5

Stopping a process, 12-15
STOP procedure

disabling effect, 12-4
error returns, 12-17
overview, 12-15
relation to termination

procedures, 10-37
semantics, 12-16
syntax, 12-15

Storage allocation
array components, 8-9

Storage allocation (cont'd.)
BIT attribute, 10-6
BYTE attribute, 10-7
common variables, 10-27
dynamic data, 8-8, 10-9
PACKED modifier, E-1
POS attribute, 10-28
rules, E-1
stack, 10-33
variables, 10-33, 10-34
WORD attribute, 10-42

Storage limitations
during compilation, H-1

STREAM-MODE option, 15-9
Strings

comparing, 3-13
constants, 2-14, 3-7
data types, 2-14
operators, 3-13
representation, 2..:3

Structured constants, 3-3
examples, 3-4
rules, 3-4

Structured data types, 2-1
ARRAY, 2-11
compatibility rules, 6-25
constants, 3-2
FILE, 2-16
packed, 2-1
pointer, 2-19
RECORD, 2-7
SET, 2-15
storage allocation rules, E-3
TEXT file, 2-18

Structure Descriptor Block (SDB),
18-17

Structures
dollar sign usage in names,

11-4
specifying names, 11-4

Structures, unamed
descriptors, 11-4

Subexpressions
definition, 3-1

Subprogram block, 6-15
function identifiers, 6-17

Subprogram declarations, 6-3
Subprograms

body, 6-2
calling sequence, 6-20
concepts, 6-1
declaration nesting levels, 6-2

Index-19

Subprograms (cont'd.)
default parameters, 6-24
definition, 1-3
recursive, 6-19

Subprogram table
compile-time limitations, H-6

Subrange types, 2-5
symbol, 2-5

Successor value
SUCC function, 8-13

SUCC function, 2-2
SUSPEND function

error returns, 12-19
overview, 12-18
semantics, 12-19
syntax, 12-18

Suspending a process, 12-18
Suspension count

decrementing, 12-19
incrementing, 12-19
maximum value, 12-19

Symbolic constant
definition, 1-2

Symbols, special, 1-7
Syntax summary, B-1
SYSTEM attribute

entities applicable to, F-2
overview, 10-36
syntax, 10-36

System data structures
accessing, 10-14
binary semaphore, 13-1
counting semaphore, 13-1
queue semaphore, 14-1
ring buffer, 15-1

System time
calcuation, 19-1

T

clock time record format, 19-2
setting and maintaining, 19-1
setting and obtaining, 19-1

Target system
obtaining configuration file

data, 20-9
TERMINATE attribute

entities applicable to, F-2
overview, 10-37
STOP procedure, 12-15
syntax, 10-37

Termination procedures, 10-37

Index-20

Text
inserting files, 7-5

TEXT file data type, 2-18
TRANSLATE_LOGICAL_NAME

procedure
error returns, 20-15
overview, 20-14
semantics, 20-15
syntax, 20-14

Translation string
obtaining logical name, 20-14

TRUE Boolean values, 2-4
string expressions, 3-13

Truncating
L TRUNC function, 8-8
SHORT function, 8-12
TRUNC function, 8-13
USHORT function, 8-16
UTRUNC function, 8-16

TU-58
external file storage, 9-5

Type cast operator
mixing data types, 3-16

Type code
binary semaphore, 13-26
counting semaphore, 13-26

TYPE declaration, 1-2
heap allocation, H-1

u
Unique identifier table

compile-time limitations, H-7
UNLOCK_MUTEX procedure

error returns, 13-37
overview, 13-36
semantics, 13-36
syntax, 13-36

UNMAP_WINDOW procedure
error returns, 18-32
overview, 18-31
semantics, 18-32
syntax, 18-31

Unmapped-memory environment
allocating memory, 18-6
deallocating memory, 18-13
region-sharing, 18-3

UNPROTECTJILE procedure
error returns, 9-45
overview, 9-45
syntax, 9-45

UNSAFE attribute
entities applicable to, F-2
formal parameters, 6-24
overview, 10-38
syntax, 10-38
value parameters, 6-6

UNSIGNED data types, 2-3
constants, 3-3
storage allocation rules

packed, E-2
unpacked, E-1

Unsigned numbers
conversion for input, 9-38
conversion for output, 9-51

Uppercase characters
process and structure names,

11-4
Utility routines

overview, 8-1

v
Value parameters, 6-6
Values

function result, 6-17
predefined identifiers, G-1

Value semantics, 6-6
Value test

ODD function, 8-10
VAR declaration, 1-2

heap allocation, H-1
Variables

actual value parameters, 6-24
declaring, 3-2, 4-4
declaring side effect on, 10-40
definition, 1-2, 3-2
dynamic, 2-19
establishing data type, 1-2
external, 10-15
formal parameters, 6-8
global, 10-17
initializing, 3-5
pointer type

binding to base type, 2-19
program-level, 2-19
reading from a file, 9-34
routine-level, 2-19
semantics, 6-8
sharing declarations, 10-27
specifying storage address, 10-5
specifying storage allocation,

10-34

Variables (cont'd.)
storage allocation, 2-19
subprogram blocks, 6-15

Variant clauses, 2-9
VAR parameters

declaring, 6-8
file variables, 6-25
passing files, 2-16

VAR semantics
actual parameter, 6-25

Virtual memory
allocation, 18-21
deallocation, 18-31
obtaining mafping data, 18-18
restoring previous environment,

18-27
saving mapping context, 18-29

VMS operating system, 1-1
VOLATILE attribute

entities applicable to, F-2
overview, 10-40
syntax, 10-40

w
WAIT_ANY function

error returns, 13-42
implementation notes, 13-43
overview, 13-40
semantics, 13-41
syntax, 13-40

WAIT_EXCEPTION procedure
error returns, 17 -25
overview, 17-24
semantics, 17 -25
syntax, 17-24

WAIT procedure
error returns, 13-39
overview, 13-38
semantics, 13-39
syntax, 13-38

Warm start
power failure, 20-12

WHILE statement, 5-21
WITH statement, 5-23
WORD attribute

entities applicable to, F-2
overview, 10-42
syntax, 10-42

WRITELN procedure
error returns, 9-49
I/O server buffering, 9-9

Index-21

WRITELN procedure (cont'd.)
integer conversion functions,

9-51
overview, 9-48
syntax, 9-48

WRITEONL Y attribute
entities applicable to, F-2
overview, 10-43
syntax, 10-43

WRITE procedure
error returns, 9-47
1/0 server buffering, 9-9
integer conversion functions,

9-51
overview, 9-46
syntax, 9-46

Index-22

HOW TO ORDER

ADDITIONAL DOCUMENTATION

From Call

Alaska, Hawaii, 603-884-6660
or New Hampshire

Rest of U.S.A. 800-258-1710
and Puerto Rico•

Write

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

* Prepaid orders from Puerto Rico must be placed with DIGITAL's local subsidiary (809-754-
7575)

Canada

Internal orders
(for software
documentation)

Internal orders
(for hardware
documentation)

800-267-6219
(for software
documentation)

613-592-5111
(for hardware
documentation)

617-234-4323

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: Direct Order desk

Software Distribution Center (SDC)
Digital Equipment Corporation
Westminster, MA 014 73

Publishing & Circulation Serv. (P&CS)
NR03-1/W3
Digital Equipment Corporation
Northboro, MA 01532

MicroPower /Pascal Language Guide
AA-M389E-TK

READER'S
COMMENTS

Note: This form is for document comments only. DIGIT AL will use comments
submitted on this form at the company's discretion. If you require a written
reply and are eligible to receive one under Software Performance Report (SPR)
service, submit your comments on an SPA form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user /reader that you most nearly represent:

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)

Name _____________________ Date------------------

Organization -----------------------..,...---------------

Street ---------------------------------------~

City ______________________ State ________ Zip Code ____ _

or Country

Do Not Tear - Fold Here and Tape

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POST AGE WI LL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS
ML05-5/E45
146 MAIN STREET
MAYNARD, MA 01754-2571

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

Do Not Tear - Fold Here - - - - - - - - - - - - - - - - - - - I

I

I

I

~

I~
I]

I~
Oil

I _E
<

I :;
u

I

