
Introduction to
MicroPower /Pascal

Order No. AA-M388C-TK

Introduction to
M icroPower /Pasco I

Order No. AA-M388C-TK

June 1987

This manual introduces the MicroPower/Pascal software development toolset.

This manual supersedes the Introduction to MicroPower/Pascal, AA-M388B-TK.

Operating System and Version: Micro/RSX Version 3.0
RSX-11 M Version 4.2
RSX-11 M-PLUS Version 3.0
RT-11 Version 5.2
VAX/VMS Version 4.0

Software Version: MicroPower /Pascal-Micro/RSX Version 2 .4
MicroPower/Pascal-RSX Version 2.4
MicroPower/Pascal-RT Version 2.4
MicroPower/Pascal-VMS Version 2.4

Digital Equipment Corporation Maynard, Massachusetts

First Printing, January 1982
Revised, June 1985
Revised, June 1987

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copy~ght ©1982,1985,1987 by Digital Equipment Corporation

All Rights Reserved.

The READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:
DEC PDP UNIBUS
DECmate P /OS VAX
DECUS Professional VMS
DECwriter Rainbow VT
DIBOL RSTS Work Processor
MASS BUS RSX
MicroPower /Pascal RT

ML-S701
This document was prepared using an in-house documentation production system. All page
composition and make-up was performed by TEX, the typesetting system developed by Donald
E. Knuth at Stanford University. T£X is a trademark of the American Mathematical Society.

Contents

Preface ix

Chapter l Introducing MicroPower/Pascal

1.1 What Is MicroPower/Pascal? .. 1-1
1.1.1 Host/Target Development Environment 1-2
1.1.2 Concurrent Program Design 1-2
1.1.3 Interprocess Communication and Synchronization 1-3

1.1.3.1 Semaphores ... 1-3
1.1.3.2 Priority-Based Scheduling 1-3

1.2 Micro Power /Pascal Software Components . 1-3
1. 2.1 Development Tools . 1-4.

1.2.1.1 Extended Pascal Compiler 1-4
1.2.1.2 Automated Build Procedure 1-4
1.2.1.3 Application Build Utilities 1-4
1.2.1.4 PASDBG Symbolic Debugger 1-4

1.2.2 Run-Time Support 1-5
1.2.2.1 MicroPower/Pascal Kernel 1-5
1.2.2.2 System Processes 1-5

1.3 MicroPower/Pascal Development Cycle 1-5

Chapter 2 Host and Target

2.1 The Host System · 2-1
2.1.1 General Host System Requirements 2-2
2.1.2 Your Micro/RSX or RSX-llM/M-PLUS Host System 2-2
2.1.3 Your RT-11 Host System 2-3
2.1.4 Your VAX/VMS Host System 2-4

2.2 The Target System .. 2-4
2.2.1 Target System Memory 2-5

iii

2.2.2
2.2.3

Supported Devices . 2-5
Describing the Target System 2-7

.Chapter 3 A Micro Power /Pascal Process

3.1 Process Definition . 3-1
3.1.1 Static Versus Dynamic Processes 3-1
3.1.2 System Processes ... 3-2
3.1.3 Process Types ... 3-2
3.1.4 Process Components 3-2

3.1.4.1 Process Control Block 3-2
3.1.4.2 Data Structures for the Process 3-3
3.1.4.3 Process Stack .. 3-3
3.1.4.4 Instruction Sequence 3-3

3.2 How Static Processes Run Concurrently in Your Target Application 3-3
3.3 Process Scheduling and Synchronization 3-4

3.3.1 Kernel's Role .. 3-4
3.3.2 Process States and State Transitions . 3-4

3.4 Using Processes in Your Application 3-9
3.4.1 Declaring a MicroPower/Pascal Process 3-10

3.4.1.1 DATA_SPACE Attribute 3-10
3.4.1.2 STACK_SIZE Attribute 3-10
3.4.1.3 PRIORITY Attribute . 3-11
3.4.1.4 NAME Attribute 3-11

3.4.2 Invoking a MicroPower/Pascal Process 3-11
3.4.3 Referencing MicroPower/Pascal Processes Within Your Application 3-12
3.4.4 Declaring, Invoking, and Referencing MicroPower/Pascal Processes 3-12

Chapter 4 MicroPower/Pascal and Concurrent Programming

4.1 Concurrent Application Design 4-1
4.2 Process Synchronization ... 4.;.2

4.2.1 Using Semaphores for Process Synchronization 4-2
4.2.1.1 CREATE_BINARY_SEMAPHORE Function 4-3
4.2.1.2 CREATE_COUNTING_SEMAPHORE Function 4-3
4.2.1.3 · SIGNAL Procedure . 4-3
4.2.1.4 WAIT Procedure 4-A

4.2.2 Using SUSPEND and RESUME for Process Synchronization 4-5
4.2.2.1 - SUSPEND Function . 4-5
4.2.2.2 RESUME Function 4-6

4.3 Interprocess Communication . : . . . 4-6

iv

4.3.1 Using Ring Buffers to Send Messages 4-6
4.3.1.1 CREATE_RING_BUFFER Function 4-6
4.3.1.2 GET-ELEMENT Procedure 4-6
4.3.1.3 PUT-ELEMENT Procedure 4-6

4.3.2 Using Queue Semaphores to Send Messages 4-7
4.3.2.1 CREATE_QUEUE_SEMAPHORE Function 4-8
4.3.2.2 SEND Procedure 4-8
4.3.2.3 RECEIVE Procedure 4-9

4.4 Connecting Processes to Interrupts . 4-10
4.4.1 CONNE<;T-1NTERRUPT Procedure . 4-10
4.4.2 CONNECT_SEMAPHORE Procedure 4-10

4.5 Exception-Handling Processes and Procedures 4-10
4 .5 .1 Exception-Handling Processes . 4-11
4.5.2 Exception-Handling Procedures 4-12
4.5.3 Generating an Exception 4-12

4.6 Concurrent Design Solution: Bottle-Corking Machine 4-12
4.6.1 Target Hardware .. 4-12
4.6.2 Operating Characteristics 4-13
4.6.3 Designing a Concurrent Solution 4-14

4.6.3.1 Device Driver Processes 4-14
4.6.3.2 Commander Process 4-16
4.6.3.3 Using Process Priorities to Gain Efficiency 4-16

Chapter 5 Application Development: Designing the Source
Code

5.1 Introducing the CARS Program 5-1
5.2 First CARS Program Example: CARSl 5-2

5.2.1 Program Heading ... 5-3
5.2.2 Procedures ... 5-3
5.2.3 Execution .. 5-3

5.3 Second CARS Program Example: CARS2 5-3
5.3.1 Procedures ... 5-4
5.3.2 Processes .. 5-4
5.3.3 Execution .. 5-5

5 .4 Third CARS Program Example: CARS3 . 5-5
5.4.1 Global Variable Declarations 5-7
5.4.2 Procedures ... 5-7
5.4.3 Processes ... 5-8
5.4.4 Execution .. 5-8

v

Chapter 6 Development Cycle Overview

6.1 Design and Code Source Programs . 6-3 ·
6.2 Compile or Assemble Source Code . 6-3
6.3 Build the Application Image . 6-3

6.3.1 Configuration File ... 6-3
6.3.2 MPBUILD .. 6-4
6.3.3 MicroPower/Pascal Build Utilities 6-4

6.3.3.1 MERGE 6-6
6.3.312 RELOC .. 6-6
6.3.3.3 MIB .. 6-6

6.4 Load the Application into the Target 6-6
6.5 Test and Debug the Application 6-7
6.6 Rebuild the Debugged Application 6-10

Chapter 7 Building and Running the CARS Program Examples

7.1 Sample Build Session: CARS2 Program 7-1
7 .1.1 Prepare Source Files . 7 -1
7.1.2 Configure the Hardware 7-2
7.1.3 Invoke the Automatic Build Command Procedure 7-2
7.1.4 Execute the Command File 7-4
7.1.5 Load and Run the Application 7-6

7.2 Sample Build Session: CARS3 Program 7-7
7.3 Future Use of MPBUILD .. 7-8

Glossary

Index

Examples
5-1 Program CARSl .. 5-2
5-2 Program CARS2 .. 5-4
5-3 Program. CARS3 . 5-6

vi

Figures
1-1 Constructing a MicroPower /Pascal Application . 1-5
1-2 MicroPower/Pascal Application Development. 1-6
2-1 Transferring Application to Target System Memory ; 2-2
2-2 Interfaces to LSI-11 Bus (Q-bus) 2-6
3-1 State Category Diagram . 3-5
3-2 State Changes That Invoke Kernel Scheduler 3-7
3-3 State Changes Involving the Run State . 3-8
3-4 Summary of All State Changes 3-9
4-1 Using a Ring Buffer . 4-7
4-2 Using a Message Packet 4-8
4-3 Bottle-Corking Machine . 4-13
4-4 Processes Comprising the Concurrent Solution 4-14
4-5 The Device Driver .. 4-15
5-1 Program CARS2 Flowchart . 5-5
5-2 Program CARS3 Flowchart 5-9
6-1 MicroPower/Pascal Application Development 6-2
6-2 MicroPower/Pascal Utilities 6-5
6-3 MicroPower/Pascal Debugger Features 6-9

Tables
3-1 MicroPower /Pascal Process States . 3-6

vii

Preface

This manual introduces the basic concepts and components of MicroPower /Pascal. This book
gives you a general understanding of MicroPower /Pascal's capabilities and uses and enables
you to build and run a sample MicroPower /Pascal application. This introduction provides you
with an overall perspective in preparation for your independent use of the MicroPower /Pascal
software and documentation set.

Structure of This Document
This manual consists of seven chapters and a glossary as follows:

•

•

•

•

•

•
•

Chapter 1 provides a general overview of the MicroPower/Pascal product. The chapter
introduces concurrent-programming concepts and describes the MicroPower /Pascal software
components.

Chapter 2 describes host and target system environments and the features, options, and
requirements of the host operating systems.

Chapter 3 defines the process concept as used in MicroPower/Pascal and provides detailed
information on declaring and creating processes within MicroPower/Pascal applications.
Examples illustrating the concepts are included.

Chapter 4 discusses both concurrency concepts, as they relate to processes and procedures,
and functions that operate on processes. This chapter describes process synchronization and
communication using semaphores and ring buffers and introduces procedures that operate
on semaphores and ring buffers. Connecting processes to interrupts and exception-handling
processes and procedures are also covered.

Chapter 5 presents a sample program, developed in three stages, to illustrate the use of
specific MicroPower /Pascal features.

Chapter 6 discusses the steps necessary to build and run a Micro Power /Pascal application .

Chapter 7 uses the design example developed in Chapter 5 to build and run a
MicroPower/Pascal application. The automatic build procedure is introduced as a tool
to facilitate application building.

ix

• The Glossary defines terms used throughout the MicroPower/Pascal documentation set.
You should find the Glossary a valuable aid in understanding new terms specific to
MicroPower /Pascal.

Intended Audience
This manual assumes that you have a general understanding of your host system hardware
and that you are familiar with your host operating system concepts. In addition, this manual
assumes your familiarity with the Pascal language. Although this introduction presents language
features specific to the MicroPower/Pascal implementation of Pascal, it does not offer a tutorial
on programming in Pascal. For operating system information, RT-11 users may refer to the
RT-11 documentation supplied in their MicroPower/Pascal-RT distribution kit. Other users are
referred to the documentation supplied with their host operating systems.

Conventions Used in This Document
The following conventions are used in this manual:

• Unless otherwise noted, MPBUILD is used as the generic name of the supplied command
file generator, known as MPBUILD to RSX and VMS users or as MPBLD to RT-11 users.

•

•
•

•

•

•

Unless otherwise noted, user input in command examples is shown in boldface type to
differentiate it from computer output.

All commands or command strings terminate with a carriage return .

To produce certain characters in system commands, you must type a combination of
keys simultaneously; For example, while holding down the CTRL key, type C to
produce the CTRL/C character. Such key combinations are documented as <CTRL/C>,
<CTRL/O>, and so forth.

In examples, you must distinguish between the capital letter 0 and the number 0. Examples
in this manual represent these characters as follows:

Letter 0: 0

Number 0: 0

The sample terminal output in this manual contains version numbers where they would
normally appear. The version numbers include xx in those fields that may vary from
installation to installation.

The RSX system prompt is shown as a right angle bracket(>). The RT-11 system prompt
is shown as a period (.). If you are using a DCL interface, you should see the dollar sign
prompt($) rather than a right angle bracket.

x

Associated Documents
The following manuals and reference card are included in the MicroPower /Pascal documentation
set for all users of MicroPower/Pascal:

• Introduction to MicroPower /Pascal

• MicroPower /Pascal Debugger User's Guide

• MicroPower /Pascal I/ 0 Services Manual

• MicroPower /Pascal Language Guide

• MicroPower /Pascal Pocket Guide

• MicroPower /Pascal Run-Time Services Manual

• MicroPower /Pascal Master Index

• MicroPower /Pascal Release Notes

• PDP-11 MACR0-11 Language Reference Manual

• PDP-11 Programming Card

For RT-11 host system users, these additional manuals are included in your documentation set:

• MicroPower /Pascal-RT Installation Guide

• MicroPower /Pascal-RT Messages Manual

• MicroPower /Pascal-RT System User's Guide

For RSX and VAX/VMS host system users, these additional manuals are included in your
documentation set:

• MicroPower /Pascal-RSX/VMS Messages Manual

• MicroPower /Pascal-RSX/VMS System User's Guide

• MicroPower /Pascal-RSX Installation Guide (for RSX host system users only)

• MicroPower /Pascal-VMS Installation Guide (for VAX/VMS host system users only)

Document Descriptions

A brief overview of the MicroPower /Pascal and PDP-11 manuals in your documentation
set follows. The MicroPower/Pascal-RT Installation Guide describes the RT-11 and PDP-11
documentation included only in the MicroPower/Pascal-RT documentation set.

MicroPower /Pascal Debugger User's Guide

This manual describes the MicroPower/Pascal symbolic debugger, PASDBG. Chapter 1
introduces P ASDBG, describes its operating environment, and outlines steps to be taken
before you attempt to debug a MicroPower/Pascal application. Chapter 2 describes PASDBG's
features and command set by functional group. Chapter 3 contains detailed descriptions of
each P ASDBG command, including the action performed by the command and correct syntax.
Examples accompany most command descriptions. The commands are listed in alphabetical
order. Chapter 4 contains two PASDBG tutorials. Each tutorial stresses the use of different

xi

PASDBG commands and is based on the CARS3 example program described in the Introduction
to MicroPower /Pascal.

The appendixes describe set-up requirements for the host/target communication line, target
interface specifications, debugging hints, and a recursive Pascal program example that uses the
SET SCOPE command.

MicroPower/Pascal 1/0 Services Manual

This manual describes IjO services provided by MicroPower/Pascal system processes. Chapter
1 presents an overview of MicroPower/Pascal I/O services (file system services, task-to-task
communication, and device drivers). This chapter lists the supported devices and protocols,
then describes the basic mechanisms of MicroPower/Pascal IjO, the I/O system architecture,
and the available I/O interfaces. Subsequent chapters detail the device drivers and other system
processes that provide ljO services. Addressed topics include the features and capabilities of
each driver and its supported hardware device or protocol; build information particular to the
driver; user interfaces to the driver, including (as applicable) the standard Pascal I/O interface,
the Pascal support routine interface, and the device-level (send/receive) interface; the status
completion codes returned by the driver; and the driver prefix file. The manual concludes with
a guide to writing a device driver and a chapter describing useful driver macros and subroutines.

MicroPower /Pascal, Language Guide

This manual presents the Pascal programming language and its extensions for use in
microprocessor application programming. The manual covers Pascal's format and structure,
basic concepts, data types, statements, procedures, functions, and specific MicroPower/Pascal
extensions.

Part One of the manual describes the standard Pascal language, as defined by Niklaus Wirth,
and the DIGITAL-created extensions not related to re~l-time programming. Part Two describes
the real-time programming requests-predeclared programming procedures and functions that
extend the capabilities of standard (sequential) Pascal to allow access to the real-time concurrent
programming services of the Micro Power /Pascal kernel.

Chapter 1 provides an overview of the MicroPower /Pascal language and describes the structure
of a MicroPower/Pascal program. Subsequent chapters in Part One include discussion
of standard data types, declaration section statements, process invocation (creation) and
procedure call statements, compilation units and independent compilation, predeclared data
manipulation functions and procedures supplied with the MicroPower /Pascal software, the
syntax and use of the predeclared input/output procedures, and the syntax and use of
the MicroPower/Pascal attributes. Chapters in Part Two discuss real-time programming.
requests conventions, process management requests, semaphore management requests, queue
semaphore management requests, ring buffer management requests, interrupt management
requests, exception condition management requests, memory allocation and mapping requests,
timer requests, and miscellaneous requests, including logical name assignments and creating
mutual exclusion (mutex) structures.

MicroPower /Pascal Pocket Guide

This manual summarizes reference information for experienced MicroPower/Pascal users. The
manual contains Pascal language syntax, Pascal real-time requests, MACR0-11 real-time
requests, utility program commands, P ASDBG symbolic debugger commands, and other useful
reference information.

xii

MicroPower /Pascal Run-Time Services Manual

This manual describes the entire MicroPower /Pascal programming environment and, in
particular, the services and functions supplied by the MicroPower/Pascal kernel.

This manual provides details of the system services provided by the MicroPower /Pascal run-time
system modules that make up a part of your application. Chapter 1 presents an overview of the
MicroPower /Pascal run-time system. Kernel organization is described in general terms, as are
primitive services and system processes. Chapter 2 describes processes in the MicroPower/Pascal
context and system data structures. Chapter 3 gives detailed descriptions for each MACR0-11
primitive service request. Chapter 4 describes system configuration macros. Chapter 5 describes
dynamic region allocation and shared regions. Chapter 6 describes MicroPower /Pascal exception
processing. Chapter 7 describes kernel interrupt dispatching and ISRs.

MicroPower /Pascal Master Index

This manual is a summary of the indexes of the manuals in the Micro Power /Pascal
documentation set.

MicroPower /Pascal Release Notes

This manual contains changes and restri.ctions to MicroPower/Pascal software not reflected
in other documents. Chapter 1 lists restrictions you must. observe when using the software
and clarifies some obscure error conditions. Chapter 2 lists documentation corrections to and
additions for the other manuals in your documentation set. Chapter 3 contains an annotated
listing of the contents of your distribution kit.

PDP-11 MACR0-11 Language Reference Manual

This manual explains how to use the MACR0-11 relocatable assembler to develop applications
in PDP-11 assembly language. The manual gives detailed descriptions of MACRO-ll's features,
including source and command string control of assembly and listing functions, directives for
conditional assembly and program sectioning, and user-defined and system macro libraries.

PDP-11 Programming Card

This card is a compact reference for the PDP-11 instruction set numerical operation codes and
mnemonics.

MicroPower /Pascal Installation Guides

A separate installation guide exists for each host operating system (RSX, RT-11, and VMS).
Each guide includes the hardware configuration information you need to connect the host
(development) system to the target (application) system hardware by means of a serial
communication line.

The MicroPower /Pascal-RSX Installation Guide contains the information you need when installing
MicroPower /Pascal-RSX software on your host system. Complete software installation
procedures are given for magnetic tape, RK07, and RX02 distribu~on kit media.

The MicroPower /Pascal-RT Installation Guide contains the information you need when installing
MicroPower /Pascal-RT software on your host system. Complete software installation procedures
are given for RL02, RX02, and RXSO distribution kit media.

xiii

The MicroPower /Pascal-VMS Installation Guide contains the information you need when
installing MicroPower/Pascal-VMS software on your host system. Complete software
installation procedures are given for magnetic tape, RK07, and RL02 distribution kit media.

MicroPower /Pascal Messages Manuals

These manuals (one for RSX/VMS host users and one for RT-11 host users) list and describe
the MicroPower/Pascal utility program messages and the compiler messages. Chapter 1
describes the order and format of messages, hard error conditions, and memory information.
Chapter 2 lists messages issued by the utility programs COPYB, MERGE, MIB, PASDBG, and
RELOC. In addition, Chapter 2 describes the cause of the error and the most likely recovery
procedure. Chapter 3 details the compiler command line, compile-time, run-time, and compiler
malfunction error messages. The command line messages are described in the same way as
utility program messages. Chapter 4 describes the exception codes generated by run-time errors
in the application and reported by PASDBG.

MicroPower /Pascal System User's Guides

These manuals (one for RSX/VMS host users and one for RT-11 host users) explain how to
build programs by using the MicroPower/Pascal compiler and utility programs. The manuals
also contain detailed information on linking, loading, and debugging a MicroPower /Pascal
application.

Chapter 1 provides an overview of the MicroPower/Pascal development tools and run-time
software and of the MicroPower /Pascal development process. Chapter 2 describes the operation
of the command file generator, MPBUILD, used to build most MicroPower/Pascal applications.
Chapter 3 explains how to build a MicroPower/Pascal kernel image by using the individual build
utilities. Chapter 4 explains how to build system processes by using the individual build utilities.
Chapter 5 explains how to build user processes by using the individual utilities. Chapter 6
discusses the use of supervisor-mode and user-mode shared libraries and explains how to build
applications with instruction (I-) and data (D-) space separation. Chapter 7 describes methods
of loading application images. Chapters 8 through 11 describe the compiler and the utilities
MERGE, RELOC, and MIB individually. Chapter 12 describes the COPYB utility. Chapter 13
of the RSX/VMS version describes how to down-line load an application image into a target
system over the DECnet/DDCMP.

xiv

Chapter 1
Introducing MicroPower /Pascal

This chapter describes features that distinguish MicroPower/Pascal from other development sys­
tems. The host/target environment, concurrent program design, and interprocess communication
are unique MicroPower/Pascal features. These concepts are explained briefly in this chapter and
are expanded later in this manual. Next, the chapter describes the MicroPower/Pascal software
components that make up the development system and the stand-alone run-time support. The
chapter concludes with an overview of the application build cycle.

1.1 What Is MicroPower/Pascal?
MicroPower/Pascal is a software development toolkit for creating real-time applications that
run in dedicated target systems. Dedicated real-time MicroPower/Pascal applications can
include instrumentation, materials handling, process control, and robotics. You develop
MicroPower/Pascal applications with two systems: a host and a target. You use the full
capabilities of the host operating system for compiling, building, and debugging. You tailor
your application to contain only the specific MicroPower/Pascal operating system services it
needs to run in the target system.

You code MicroPower /Pascal applications in a version of Pascal that includes extensions for
real-time and multitasking support. You may also use MACR0-11 to code part or all of an
application. (This manual provides an overview of the extended features that MicroPower/Pascal
offers to enhance your real-time programming tasks. Although MACR0-11 is also available for
programming applications, examples in this manual use Pascal.)

MicroPower /Pascal code is RO Mable. Portions of the application that do not change value
during the operation (code and read-only data, such as constants) can be placed in read-only
memory in the target.

MicroPower /Pascal offers these advantages over traditional software development systems:

• Simpler real-time programs, with separate processes for each real-time event

• Better program structure, as each process concentrates on its task

• Shorter debug time, resulting from simpler code and symbolic debugging capability

Introducing MicroPower/Pascal 1-1

1. 1. 1 Host/Target Development Environment
MicroPower/Pascal uses both a host system environment and a target system environment for
application development. With MicroPower/Pascal, you develop fast, powerful stand-alone
run-time systems, using the full capabilities of your host system to design, build, and debug the
application while it runs on the target system. A serial line connects the host system and the
console port of the target system so you can use the MicroPower /Pascal symbolic debugger on
the host to control and track execution of the application program on the target system.

Your host system may be a Micro/RSX, RSX-llM/M-PLUS, RT-11-based, or VAX/VMS
computer. Your applications execute on separate target Q-bus-based PDP-11 systems.

Each application is constructed specifically for its target system, with the exact set of operating
system services it . needs. This customized set of routines is called the kernel. When you
include· only the required system services in the modular, tailored kernel, the target run­
time environment can minimize physical memory requirements and avoid the overhead of a
traditional, general-purpose operating system. Chapter 2, Host and Target, provides a more
detailed discussion of the host and target environments.

HOST TARGET

MLL"l-744-87

1. 1.2 Concurrent Program Design
A MicroPower/Pascal application consists of user processes, system processes, and a kernel of
required system services. A MicroPower/Pascal process is a program unit that may operate in
parallel with other program units. MicroPower /Pascal applications typically contain multiple
processes-a separate process is programmed for each task. The multiple processes in your
program appear to execute simultaneously. Such execution is known as multitasking, or
concurrent execution.

The concurrent approach to software design provides a simpler conceptual approach to solving
real-time problems than does one that uses sequential programming techniques. Concurrent
design encourages well-structured applications by dividing both a user program and the entire
application into multiple tasks.

Concurrent processes make efficient use of the target system. Your concurrent design coordinates
all the processes in one or several user programs. Such coordination keeps the size of the
application to a minimum, since no general-purpose operating system is required to referee
processes.

1-2 Introducing MicroPower /Pascal

1. 1.3 Interprocess Communication and Synchronization
Each process communicates with the others to synchronize execution. MicroPower /Pascal
contains mechanisms for synchronizing executing processes and mutually excluding processes
from shared resources. Semaphores are mechanisms for synchronization and mutual exclusion.
Priority-based scheduling may also be used to synchronize process execution.

1.1.3.1 Semaphores

A semaphore is a data structure that implements interprocess communication and synchroniza­
tion. Manipulated by two or more processes, a semaphore may be used to block the execution
of one process until another process sends a signal to proceed. Semaphores may be used so
their states at any given time correctly guide the responses of the entire application to external
real-time events. Semaphores are also used to provide mutual exclusion for data or devices that
must be protected from concurrent access.

MicroPower/Pascal defines three types of semaphores: binary, counting, and queue. Chapter 4
discusses semaphores and their use in detail.

1. 1.3.2 Priority-Based Scheduling

You can determine the order in which processes gain access to the CPU by assigning a priority to
each process. Processes that respond to critical external events typically receive higher priorities.

The occurrence of a real-time event, such as a signal from an external monitoring device, causes
the target system hardware to interrupt the microprocessor. The microprocessor stops work and
notifies the device driver process, which becomes ready to compete for control of the CPU in
response to the interrupt. A relatively high priority ensures timely response to the real-time
interrupt.

1.2 MicroPower/Pascal Software Components
Your MicroPower /Pascal software is packaged to correspond to the host system environment
that you plan to use for application development. (Although applications may be developed
in different host system environments, the choice of host system does not influence
subsequent execution on the target run-time system.) You may choose from the following
environments: MicroPower /Pascal-Micro/RSX, MicroPower /Pascal-RSX, MicroPower /Pascal­
RT, and MicroPower/Pascal-VMS. For the MicroPower/Pascal-RT user, all necessary RT-11
operating system software elements are provided for the single-user environment. The other
choices are layered products for multiuser environments.

MicroPower /Pascal software comprises two categories: application development tools and run­
time system software. The following sections introduce major components of each category.

Introducing MicroPower /Pascal 1-3

1.2. 1 Development Tools
The following components are the major MicroPower /Pascal development tools:

• Extended Pascal compiler

• The automated build procedure: MPBUILD

• The application build utilities: MERGE, RELOC, MIB

• The P ASDBG symbolic debugger

1.2. 1. 1 Extended Pascal Compiler

The MicroPower /Pascal compiler operates on a superset of the standard Pascal language to
produce optimized code. MicroPower/Pascal enables you to use a high-level language to.
program complex real-time applications. An extended version of the ISO-Standard Pascal
language, the MicroPower /Pascal language can handle interprocess communication, process
synchronization, and multitasking (tasks normally associated with system-level operations).
That capability limits the need for system services, since tasks normally handled by a traditional
operating system may be handled by the processes themselves.

1.2. 1.2 Automated Build Procedure

This program, known as MPBUILD (or MPBLD for RT-11 users), automates much of the
process of building an application. Through a question-and-answer dialog, MPBUILD constructs
a command file that, when executed, produces the files for loading into the target system and
debugging.

1.2. 1.3 Application Build Utilities

The three build utilities (MERGE, RELOC, and MIB) let you build an application memory
image for the target system. These build utility programs transform compiled or assembled
object modules into a loadable memory image. MERGE combines individual object modules
into a single, merged object module. RELOC transforms virtual addresses into actual memory
addresses, allocates memory, and sorts programs into read-only and read-write sections. MIB
creates the final memory image.

Creating an application is a multistep, multiphase process. Each component of the final
application (the kernel, system processes, and user processes) goes through the build utility
cycle. This modular approach makes testing and debugging easier and simplifies the job of
updating and expanding applications. Although you may run the build utilities directly, you
usually use MPBUILD to invoke them indirectly when constructing your application.

1.2.1.4 PASDBG Symbolic Debugger

The debugger resides on the host development system and communicates over a serial line
with a debugger service module in the application. You use interactive debugging commands
to track the execution of your application and to locate and correct bugs. Because it is a
symbolic debugger, PASDBG permits debugging using the Pascal source program's variables,
scopes, labels, and identifiers. Information is presented to the programmer in the same form as
described to the compiler in the source program.

1-4 Introducing MicroPower /Pascal

1.2.2 Run-Time Support

Run-time software consists of the kernel and system processes, including device drivers, the
Ancillary Control Process (ACP), and network support.

1.2.2. 1 MicroPower/Pascal Kernel

The kernel is the modular executive portion of the target run-time system. The kernel supplies
the target system with basic services, handles interrupts and traps, and schedules process
execution. On request from processes, the kernel provides the interprocess synchronization and
communication services, called primitives, that let processes interact in a real-time environment.

1 . 2. 2. 2 System Processes

System processes include driver processes, the ACP, and the network service process
(NSP). MicroPower/Pascal provides precompiled .driver processes that interface between your
application and a variety of DIGITAL devices. These drivers are supplied in object libraries.
You include in your application only those drivers needed for your target system.

The ACP interfaces between user processes and device handlers. The ACP provides file system
support that lets any process create, maintain, and delete file directory entries on target mass­
storage devices. The ACP and NSP let you create network links for task-to-task communication
and provide DECnet task-to-task end-node support on Ethernet. Figure 1-1 provides a synopsis
of application building, including source code, host development tools, and the final target
application composed of the kernel and multiple processes.

Figure 1-1: Constructing a MicroPower /Pascal Application

Source Code

User
Programs
and
Modules

DIGITAL­
Supplied
Source Files

Host System

Compiler

Utilities

Operating ----­
System

Libraries

Debugger

Target System

User/ User/
System System
Process Process

User/
System
Process

Operating System Services
(Kernel)

User/
System
Process

ML0-745-87

1.3 MicroPower/Pascal Development Cycle
The following list summarizes the steps required to develop a MicroPower /Pascal application:

1. Design the application and write Pascal or MACR0-11 source code.

2. Compiie and/or assemble the source programs into object code.

3. Use MPBUILD or the MicroPower/Pascal build utility programs on the host to build the
full application by linking the output from step 2 with kernel functions and services.

4. Load the completed application program into the target system, using P ASDBG.

Introducing MicroPower /Pascal 1-5

5. Test and debug the application executing in the target under control of the P ASDBG
symbolic debugger program residing in the host system.

Figure 1-2 shows the development cycle of a MicroPower /Pascal application.

Figure 1-2: MlcroPower/Pascal Application Development

Create
Source Code

Debug
Application

Compile/
Assemble
Source Code

Build
Application

Chapter 6 explains the development cycle in greater detail.

1-6 Introducing MicroPower /Pascal

yes

Load and Run
Application
in Target

no

Success

ML0-746-87

Chapter 2
Host and Target

Two systems are used in MicroPower /Pascal application development: the host system and the
target system. You develop application programs on a PDP-11 or VAX host system and load
the resulting memory image into a low-end, PDP-11-family target system for debugging and
execution.

This chapter provides an overview of the host/target development environment and the
target run-time environment. The host operating systems available for MicroPower/Pascal
development are described in terms of hardware requirements, options, and features available
for each. This information is of interest to you if you are to select the host operating system
for- MicroPower/Pascal development or are considering migrating from one host system to
another. If you want more specific hardware information, consult the MicroPower/Pascal
software product description for the host operating system that interests you. Target system
characteristics are also discussed in this chapter.

2. 1 The Host System
You use the facilities of your host system to design and build your application software.
Application software is tested and debugged in the run-time environment under control of
P ASDBG, which resides on the host. During the debugging stages of application software
development, an asynchronous serial communications line connects the target system to your
host system.

You use the serial line to transfer applications ·to target system memory when debug support
is required or when you want to use P ASDBG to load the application without debug support.
Other means are available for applications that do not require debug support. You may include
a bootstrap in the application image and place it on disk or TU58 DECtape II for booting from
a target device. Your application may also be placed into programmable read-only memory
(PROM). See Figure 2-1.

Host and Target 2-1

Figure 2-1: Transferring Application to Target System Memory

E/PROM

Serial Line

RX02, RX50
RL01, RL02
DECtape II

2. 1. 1 General Host System Requirements

TARGET

ML0-747-87

You need an asynchronous serial line for down-line loading or debugging a MicroPower/Pascal
application on each target system. For required host/target serial line unit characteristics for
down-line loading or debugging MicroPower/Pascal applications, see the MicroPower/Pascal
installation guide for your host system.

2. 1.2 Your Micro/RSX or RSX-11 M/M-PLUS Host System
RSX offers a multiprogramming environment for application development on PDP-11 systems.
You use the capabilities and utility programs provided by your host system to develop your
applications, then transfer the application to the target for debugging and execution. RSX host
environments may include the EDI line-oriented editor and the EDT character-oriented editor
to create and modify source programs, as well as the LBR (Librarian) and PIP. (Peripheral
Interchange Program) utility programs.

The minimum host system requirements include the following:

• Any Micro/RSX system with at least 256K words of memory running on a MicroPDP-11
with a lOMB (or larger) disk, RSX-llM system with at least 124K words of memory, or
any RSX-1 lM-PLUS system with at least 256K words of memory

• An asynchronous serial line for host/target system communication

For additional information, refer to the Micro/RSX or RSX-1 lM/M-PLUS software documenta­
tion for your host system.

2-2 Host and Target

2. 1.3 Your RT-11 Host System

RT-11 is an interactive, single-user operating system. MicroPower /Pascal users who choose to
work in the RT-11 environment are given all the RT-11 software components that are necessary
to develop and run target applications. Those components include the extended memory (XM)
monitor and the following utility programs:

• KED and EDIT-Editors for creating and modifying text files. EDIT includes character- and
line-oriented commands. KED is a keypad editor for use with video terminals.

• LIBR-RT-11 librarian utility, which creates and modifies library files of commonly used
object modules.

• PIP-RT-11 peripheral interchange program, which lets you transfer files from one area of
the system to another or delete files.

• DIR-RT-11 directory program, which displays the file directory of any file-structured
device.

The RT-11 System Utilities Manual and the PDP-11 Keypad Editor User's Guide describe these
utilities and their use. See the Guide to RT-11 Documentation for information on these and other
RT-11 manuals provided in your documentation set.

The host system hardware generally consists of an LSI-11 or PDP-11 processor with memory­
management hardware, a console terminal, mass-storage devices, and peripheral devices, such
as a printer.

The minimum host system hardware requirements for developing MicroPower/Pascal-RT
application software include the following:

• Any PDP-11 or LSI-11 CPU with EIS, memory-management hardware, and a line time
clock

• 128K bytes of memory

• An RL02 or RX02 drive for media installation and one of the following random-access,
mass-storage device drives (RK06, RK07, RLOl, or RL02)

or

any MicroPDP-11 system that includes a lOMB (or larger) Winchester disk and an RXSO
diskette drive

• Two DL Vl 1-compatible serial line units for the console terminal and the host/target system
communications

• A VT52, VTlOO, VT220, VT240, LA34, LA36, or LA120 console terminal

Host and Target 2-3

2. 1.4 Your VAX/VMS Host System
VAX/VMS is a comprehensive multiuser operating system. MicroPower /Pascal is installed
as a layered product on VAX/VMS systems. That arrangement permits you to use your
VAX/VMS system, with its fast execution speed and large mass-storage capabilities, to develop
applications for your PDP-11-based target run-time system. VAX/VMS offers powerful text
editors for creating and modifying your source code and Digital Command Language (DCL) for
communication with the VMS operating system.

VAX/VMS host system development requirements include the following:

• A VAX 11/750, 11/780, 11/782, 11/785, or 8600 configuration that contains an RL02 or
RK07 disk drive or a 9-track 1600 bpi magnetic tape (PE) and two megabytes of memory

or

a VAX 11 /730 that contains both an RL02 and an RASO disk drive and two megabytes of
memory

• A VAX/VMS-supported asynchronous serial line (DZl l, DZ32, or DMF32) for host/target
system communication

• At least 10,000 free blocks on system disk for installation, after which 5500 blocks are used
for storage of MicroPower /Pascal files

For additional information, refer to the VAX/VMS software documentation for your host system.

2.2 The Target System
MicroPower/Pascal target systems function in dedicated real-time environments such as:

• Computer-assisted manufacturing

• Ethernet server networks

• Materials handling

• Monitoring and testing

• Process control

• Robotics

MicroPower /Pascal supports application execution on component and packaged microcomputer
systems using SBC-11/21, SBC-11/21-PLUS, LSl-11, LSI-11/2, LSI-11/23, LSI-11/73,
KXTll-C (IOP), KXJll-C (IOP), and LSI-11/23-PLUS processors. PDP-11/03, PDP-11/23,
PDP-11/23-PLUS, PDP-11/73, PDP-11/83, MicroPDP-11, MicroPDP-11/53 (RAM only), and
CMR21 packaged systems are also supported.

The following target system hardware is required:

• Memory consisting of any combination of RAM and PROM, including at least 4K bytes of
RAM

• DL Vl 1-compatible serial line unit for down-line loading and debugging application software

• Interface hardware for your own target devices

2-4 Host and Target

2.2.1 Target System Memory
Target system memory may be unmapped or mapped. An unmapped memory system has a
total address space of 64KB. A mapped memory system increases the supported physical address
space to 256KB with 18-bit addressing and 4096KB with 22-bit addressing. In a target system
with memory-management hardware, memory can be split into independent sections known as
virtual address spaces. The largest possible virtual address space is 64KB. Each virtual address
space in the mapped target system contains· one process family-one static process and its
dynamic process descendants. (See Chapter 3 for a discussion of static and dynamic processes.)
Details of memory mapping are presented in the MicroPower /Pascal Run-Time Services Manual
and the Microcomputer and Memories Handbook.

2.2.2 Supported Devices
The following DIGITAL devices and interfaces are supported by device-driver software supplied
with MicroPower /Pascal:

• ADVll-C, AAVll-C, and AXVll-C A/D and D/A modules.

• DELQA-M Ethernet controller, supported in DEQNA mode only.

• DEQNA Ethernet controller.

• DHQll-M cost-reduced DHVll, dual height.

• DHVl 1 serial line unit.

• DLVll, DLV11-E, DLVll-F, and DLVll-J serial line units.

• DPVl 1 synchronous serial line unit.

• DRVll, DRVll-B, DRV11-J parallel line units.

• DZQll-M cost-reduced DZVll, dual height.

• DZVl 1 serial line unit.

• FALCON, FALCON-PLUS parallel port.

• FPJ floating-point accelerator-for KDJl 1.

• IEQ-11 IEEE-488 bus interface.

• KEFll, FPFll floating-point options-for LSI-11/23 microcomputers.

• KEVll EIS/FIS arithmetic option-for LSI-11 or LSbll/2 microcomputers.

• KWVl 1-C programmable real-time clock.

• KXT11-A2 Macro-ODT ROM option, which must be installed. on the target system when
you are debugging FALCON applications, or KXT11-A5 Macro-ODT ROM, which must be
installed on the target system when you are debugging FALCON-PLUS applications.

• KXTl 1-CA and KXJl 1-CA single-board computers' pe\rallel, asynchronous, and synchronous
ports, DMA capabilities, and 2-port RAMs.

• Line clocks for the LSI-11, LSI-11/2, LSI-11/23, FALCON SBC-11/21, and FALCON-
PLUS. .

• MRVl 1-C, -D PROM module.

Host and Target 2-5

• MSVll-D, -L, -P, -S RAM module.

• MXVl 1-A or MXVl 1-B I.llUltifunction module, which includes PROM, RAM, two serial
lines, and 50 / 60 Hz clock. If you are bootstrapping your application software from RLO 1
or RL02 disk, DECtape II cartridge, or RX02 diskette, you must use the MXV1 l-A2 or
MXV11-B2 bootstrap ROM option, respectively, with the MXVl 1-A or MXVl 1-B.

• RLV12 RL01/RL02 disk cartridge controller.

• RQDXl, RQDX2, RQDX3 controller for RD3n, RDSn Winchester disk and RXSO diskette
drives used in the MicroPDP-11 target system.

• RX33 flexible disk drive (with RXSO media only).

• RXV21 dual-density d~skette.

• TKSO streaming tape cartridge (non-file-structured).

• TU58 DECtape II cartridge tape.

The processor, memory, and devices attach to the LSI-11 bus. Figure 2-2 shows a possible
LSI-11 bus configuration for MicroPower/Pascal target applications.

Figure 2-2: Interfaces to LSl-11 Bus (Q-bus)

Microprocessor

Peripheral
Processor

Device Device

2-6 Host and Target

Device

Interface

LSl-11 Bus (0-bus)

Interface

Device Device

Memory Module

Interface

Communication
Line to Device

ML0-748-87

2.2.3 Describing the Target System
The system configuration file describes the hardware of the target system and its memory
characteristics. The configuration file is one of your inputs to the build cycle during application
development. The configuration file is used to tailor the memory image in general and the
kernel in particular.

The configuration file consists of a series of MACR0-11 calls that define certain hardware
characteristics, including the type of target processor, mapped or unmapped memory, floating­
point hardware, device information, and kernel requirements. MicroPower /Pascal provides
several prototype configuration files that describe typical configurations. You may choose a
configuration file to use as is or to edit. Configuration files are discussed in more detail in
Chapter 6, Development Cycle Overview.

Host and Target 2-7

Chapter 3
A MicroPower /Pascal Process

The fundamental unit of a MicroPower /Pascal application is a process. Each application is
composed of user and system processes: This chapter describes the process concept, differentiates
between static and dynamic processes, and discusses the types of processes that may make up
a MicroPower /Pascal application. The chapter then shows you how to declare, create, and
refer to processes in a Pascal environment and provides an example that uses the language
features that are introduced. The chapter concludes with a discussion of the kernel's role in
process synchronization and scheduling-the basis for the ·concurrent-programming concepts
and techniques discussed in Chapter 4.

3. 1 Process Definition
A process is a program unit that operates in parallel with other program units. The application
is organized as if to perform many activities at once. Although processes appear to execute
simultaneously, only one process has control of the CPU at any time. That is, the concurrency
is virtual, not actual. A process executes a particular sequence of instructions to perform a
distinct task. (The same set of instructions might be executed by several processes.) Processes
both compete and cooperate with one another for control of the CPU and processes share other
common resources (for example, data areas and peripheral devices) while appearing to execute
simultaneously. Processes are supported by a software kernel that supplies basic system services
to the concurrent processes (see Section 3.3).

3. 1. l Static Versus Dynamic Processes
A typical MicroPower /Pascal application includes several independent processes, both static
and dynamic. A static process exists in the application after initialization; that is, a static process
is always present after power is turned on or system-reset processing is completed. A static
process corresponds to a Pascal program. Your MicroPower /Pascal application contains one or
more user static processes and at least one system static process. A dynamic process is created
by the action of another process during execution of the application. Each process family in the
application consists of one static process and all dynamic processes created by the static process.
Processes may be referenced within the static-process family to which they belong and, under
certain conditions described later in this chapter, by another static process.

A MicroPower /Pascal Process 3-1

3.1.2 System Processes
System processes are provided as part of the MicroPower /Pascal software product. They furnish
commonly required services and are, in general, privileged processes.

System processes that are provided include device drivers for particular devices and interfaces,
including DL Vl l, DRVl l, RX02, TU58; the ancillary control process (ACP), which provides file
system support; and the network service process (NSP), for communications support.

3. 1. 3 Process Types
Processes may be categorized into four types: device-access, privileged, driver, and general. In
unmapped systems, the entire application exists in a mutually accessible address space, and
mapping types are not applicable. In mapped systems, the process types determine which areas
of memory processes can access.

• Device-access processes access the 1/0 page, which contains 1/0 device addresses. A device­
access process can manipulate the control and status registers (CSRs) and data buffers of
target devices, such as a DL Vl l interface.

• Privileged processes access the kernel data area, where data structures such as semaphores
and process control blocks reside, and the 1/0 page.

• Driver processes, like privileged processes, access both kernel data area and the 1/0 page.
Driver processes also contain interrupt service routines (ISRs), independent sections of code
designed to execute in response to interrupts from target devices.

• General processes do not access the 1/0 page or kernel data area directly.

3. 1.4 Process Components
Each active process within a MicroPower /Pascal application consists of a process control block
(PCB), associated data structures, the process stack, and an instruction sequence.

3. 1.4. 1 Process Control Block

A PCB is a kernel data structure that identifies the process to the kernel. The kernel creates a
PCB whenever a process is created. Information in the PCB describes a process completely and
includes:

• Process name (optional)

• Process priority

• Process state

• Process type

• Saved process context

The MicroPower /Pascal Run-Time Services Manual contains complete information on the content
and use of the PCB.

3-2 A MicroPower /Pascal Process

3. 1.4.2 Data Structures for the Process

Two types of data structures are associated with every process. Although created by the process,
system data structures reside in the kernel memory and include semaphores and ring buffers.
The target system's configuration file specifies the amount of memory needed for system data
structures.

Other data structures (for example, arrays, records, and integers) are local to the process and
reside in data areas associated with the process. To provide those data areas, each process must
have its own memory associated with it. Section 3.4.1 explains how to allocate process data
areas by using the DATA_SPACE attribute.

3.1.4.3 Process Stack

The process stack is an area of memory associated with each process for the creation of data
structures. Section 3.4.1 explains how to allocate process stack area from the process data area
by using the STACK_SIZE attribute.

3. 1.4.4 Instruction Sequence

Each process has an associated instruction sequence. That code may be placed in ROM.

3.2 How Static Processes Run Concurrently in Your Target
Application

When the target system is powered up and the application loaded into memory, the kernel
readies each static process for execution. Then, an initialization procedure, if any, runs for each
static process. Named system data structures, such as semaphores and ring buffers, are typically
created in the initialization procedure. You declare this procedure in the source code for each
static process and identify the procedure with the INITIALIZE attribute:

[INITIALIZE] PROCEDURE Do_first;

All initialization procedures within the total application execute first, before the main program
of any static process is activated. In that way, all needed semaphores and other structures are
created and initialized before any other process can start. Thus, the necessary synchronization
mechanisms are in place when the static processes begin to compete for control of the CPU.

Each process may have a termination procedure. Execution shifts to this procedure when the
process is stopped. (A process can be stopped by the STOP request, issued by itself or by
another process, as the result of an unhandled exception condition, or by normal completion.)
You specify the termination procedure in the source code and identify it with the TERMINATE
attribute:

[TERMINATE] PROCEDURE Do_last;

Typically, the termination procedure performs any general clean-up steps, deletes kernel
structures created by the process, and releases any allocated resources, such as message packets.

A MicroPower /Pascal Process 3-3

3.3 Process Scheduling and Synchronization
Processes are supported by a modular executive, known as the kernel. The kernel provides
rudimentary, or primitive, services on demand (as well as other services implicitly). The kernel
performs all process synchronization _in response to requests by processes.

3.3. 1 Kernel's Role
The kernel responds to demands for service but has no independent control in areas other
than scheduling and interrupt/trap handling. For example, a process may request the kernel to
assign it a packet in kernel-controlled memory or to change the value of a semaphore.

The kernel scheduler determines which process gains control of the processor after a significant
event, based on the priorities· of the currently eligible processes and the running process. (For
a definition of significant event, see Section 3.3.2.)

The kernel supplies basic system services, such as:

• Exception dispatching

• Interprocess communication, including primitives required to create, operate on, and destroy
queue semaphores and ring buffers, and primitives to operate on message packets

• Interrupt dispatching and trap handling

• Process creation and deletion

The MicroPower /Pascal,. Run-Time Services Manual contains complete information on services
provided by the kernel.

3.3.2 Process States and State Transitions
As shown in Figure 3-1, an existing process may be in one of three state categories at any one
time-running, ready-to-run, or waiting for an event. The arrows represent transitions from
one state category to another.

3-4 A MicroPower /Pascal Process

Figure 3-1 : State Category Diagram

ML0-749-87

Every existing MicroPower/Pascal process is in one of seven states at any time. Each state
belongs to one of the state categories shown in Figure 3-1. Ready and waiting processes may be
suspended explicitly and must be explicitly resumed before reentering the ready or waiting state
they were in. Separate wait states exist for processes waiting for an exception-handling process
to execute. (In MicroPower/Pascal, an abnormally terminated process is considered to be in the
inactive state. The inactive state is not discussed in this manual. See the MicroPower /Pascal
Run-Time Seroices Manual for information about this auxiliary state.)

A process in the run state has control of the processor. Only one process may be running at any
one time. A process leaves the run state when it gives up control of the CPU or is preempted
by another process. A ready-to-run process is eligible to run when the processor is available
and the kernel scheduler determines that it may run, based on the process's priority relative to
other eligible processes. The MicroPower/Pascal ready-to-run process states are:

• Ready active

• Ready suspended

A process in a wait state can enter a ready-to-run state only after an event that it has been
waiting for occurs. The MicroPower /Pascal wait states are:

• Wait active

• Wait suspended

• Exception-wait active

• Exception-wait suspended

A MicroPower /Pascal Process 3-5

When a process is created, it is in the ready-active state. Events occur to cause a process in one
state to undergo a transition to another state. Such an event might be waiting on a semaphore
or waiting for a device. A process waiting for an event is known to be blocked. A blocked
process is unblocked when the signal or resource for which it is waiting is provided. Unblocking
implies a transition from either the wait-active or wait-suspended state to the corresponding
ready state.

Table 3-1 summarizes the seven states and their characteristics.

Table 3-1: MicroPower/Pascal Process States

State Category State Name

Running Run

Ready to run Ready active

Ready suspended

Waiting Wait active

Wait suspended

Exception-wait active

Exception-wait
suspended

Description

This process is currently executing. Only one
process may be in the run state at a time.

Eligible to run. When the running process gives
up control or is preempted, the highest-priority
ready-active process gains the CPU.

Ready but has been explicitly suspended by a
suspend request and needs to be "resumed" before
reentering the ready-active state.

Waiting for a particular event or resource. When
unblocked, moves to ready-active state.

Waiting and suspended. "Resume" will return it to
the wait-active state. If unblocked before resumed,
returns to the ready-suspended state.

Waiting for action of an exception-handling pro­
cess. Returns to ready-active state when exception
handler done.

Explicitly suspended while in exception-wait active
state.

Any event that causes a process to move into the ready-active state or out of the run state
is known as a significant event. The occurrence of a significant event invokes the kernel
scheduler. Whenever a process is eligible to take control of the CPU Goins the ready-active
state) or whenever the running process becomes ineligible (leaves the run state) the kernel
scheduler takes control. The scheduler compares the priority of the running process, if one is
running, with that of the highest-priority ready-active process. If the priority of the highest­
priority ready-active process is higher than that of the currently running process, that process
moves into the run state, thereby gaining control of the CPU.

Figure 3-2 shows state changes that invoke the kernel scheduler and that consequently may
cause control of the CPU to shift from one process to another. Figure 3-3 shows changes in
and out of the run state, and Figure 3-4 shows all state changes.

3-6 A MicroPower /Pascal Process

Figure 3-2: State Changes That Invoke Kernel Scheduler

EXCEPTION
WAIT

ACTIVE

READY
SUSPENDED

ML0-750-87

A MicroPower /Pascal Process 3-7

Figure 3-3: State Changes lnvotvtng the Run State

i'.IL0-752-87

3-8 A MicroPower /Pascal Process

Figure 3-4: Summary of All State Changes

3.4 Using Processes in Your Application
The following sections describe how to declare, invoke, and reference MicroPower /Pascal
processes within your application.

A MicroPower /Pascal Process 3-9

3.4.1 Declaring a MicroPower/Pascal Process
A process declaration consists of the process header and block. The header may contain
attributes, the reserved word PROCESS (or PROGRAM, if it is the static process), and the
process identifier or compile-time name. The header is followed by process declarations and
the process statements delimited by the reserved words BEGIN and END.

The following example shows a process declaration:

PROCESS RACE;

BEGIN
WRITELN ('This is the process Race.');
END;

When you declare a process, MicroPower/Pascal allows you to specify attributes that control
certain properties associated with the process. If an attribute is unspecified, Pascal may supply
a default value. Three attributes are specified in the following program header (note that CAR
is a static process):

[DATA_SPACE(2000), STACK_SIZE(400), PRIORITY(1)] PROGRAM CAR;

These attributes are described in the following sections.

3.4. 1.1 DAT~SPACE Attribute

This attribute may be specified for static processes only. The DATA_SP ACE attribute specifies
the amount of storage space to be used for all dynamically allocated program (static process)
data and for the stack space for all dynamic processes in this family.

DATA_SP ACE is a keyword included in the Pascal main program header. All process stacks,
including the main program's stack, are allocated from the data space assigned to the main
program. Thus, the DATA_SP ACE size must be as large as the sum of the greatest number of
stack sizes that can exist at any time. The data space also includes the heap, an area in which
memory is allocated by means of the Pascal NEW procedure during execution for dynamic data
structures.

To specify DATA_SP ACE, include the keyword along with a constant value in the program
header.

3.4.1.2 STACl<-SIZE Attribute

This attribute specifies the amount of stack space that is used for program and process stacks.
This space is allocated from the storage space declared by the DATA_SP ACE attribute, which
may be specified in program declarations and process declarations. For each process, data
structures, such as arrays, constants, and variables, are allocated in data areas associated with
the process. Therefore, each process must have an amount of memory associated with it for
the creation of structures. For help in determining the appropriate stack size to declare for a
process, see Chapter 10, Attributes, in the MicroPower/Pascal Language Guide.

3-10 A MicroPower /Pascal Process

3.4. 1.3 PRIORITY Attribute

This attribute may be specified in program declarations and process declarations. The scheduler,
a component of the kernel, compares priorities to determine which process gains control of the
CPU.

You assign process priorities to specify the relative importance of MicroPower/Pascal processes.
Certain processes in your application may be more time. critical than others. A process that
responds to real-time events may need to execute at a higher priority than a process that
updates a terminal screen display. You assign relative priorities by including a priority attribute
at process declaration or creation time. A process priority may be any integer between 0 and
255. Whenever two processes of different priorities are eligible to control the target CPU, the
higher-priority process takes precedence.

The f()llowing example creates the process CAR and includes priority as a parameter:

CAR (PRIORITY := 2);

Generally, you should not use priority as a mechanism for synchronizing the execution of
two processes. If the higher-priority process blocks, the synchronization is no longer correct.
Priorities should be assigned to processes only to enhance the efficiency of the application.

3.4. 1.4 NAME Attribute

You may assign a run-time name to a process by including the NAME attribute in the process
declaration. Alternatively, you may assign a run-time name to a process by specifying a name
parameter in the invocation statement.

Run-time names must consist of six characters within parentheses. Shorter names must be
padded with trailing blanks. This example includes the NAME attribute:

[NAME ('JALOPY')] PROCESS CAR;

3.4.2 Invoking a MicroPower/Pascal Process
You invoke, or create, a process with its compile-time name followed by a parameter list.
You may specify a run-time name, a process descriptor, both a run-time name and a process
descriptor, or neither. The process invocation associates the actual parameters in the list with the
formal parameters in the heading of the process declaration. (The predeclared parameters NAME,
DESC, STACK_SIZE, and PRIORITY establish the particular identification and environment for
each invocation of a process.) Each time a process is invoked, a replication of it is created,
using the data specified by the actual and predeclared parameters in the invocation statement.
The following program example invokes Process CAR four times:

[SYSTEM(MICROPOWER). DATA_SPACE(3000)] PROGRAM RACE;{static process}

VAR

Car_desc, Auto_desc : PROCESS_DESC;

PROCESS CAR; {declares dynamic process CAR}

BEGIN

END;

A MicroPower /Pascal Process 3-11

BEGIN
8 CAR;
8 CAR (DESC
C) CAR (NAME
8 CAR (DESC
END.

{creates dynamic process }
:= Car_desc); {creates dynamic process}
:= 'ROBERT'); {creates dynamic process}
:= Auto_desc, NAME := 1 JUDITH 1);{creates dynamic process}

In the previous program example, the process block CAR is created four times; that is, four
separate invocations of the process block CAR may run. The name and descriptor information
is used to identify a particular invocation of the process to the kernel. The first process G has
no specified parameters and no default run-time name. (A NAME attribute was not specified
in the process declaration.) No other process may directly control the execution of O; that is,
it may not be suspended, resumed, or stopped directly by another process through a kernel
request, since the process G cannot be controlled either by name or by descriptor. The second
process 8 may be identified by a process descriptor (the variable Car_desc) which is supplied
as a parameter in the invocation statement. The process descriptor allows a process to be
referenced directly by another process within its static process family. The third process 9
may be identified by its run-time name, ROBERT, supplied as a parameter in the invocation
statement. This process may be referenced both within a static process and across static process
boundaries. The fourth process 8 has two parameters, name and descriptor, and may be
referenced by either.

3.4.3 Referencing MicroPower/Pascal Processes Within Your Application
Because run-time names and descriptors identify processes to the kernel, you can manipulate
processes by referencing either the descriptors or the run-time names. Commands to manipulate
processes include such requests as STOP, SUSPEND, and RESUME-for example:

STOP (NAME:= 'ROBERT');

Inserting this line in the previous example will stop the execution of the Process CAR identified
by the run-time name ''ROBERT" 9.

A process with a run-time name can be referenced both withfo its own static process and by
another static process within the application. However, descriptors are known only within the
static process in which the descriptor variable is declared, unless the value of the descriptor is
passed to another process by means of the SEND request or the descriptor is shared between
two processes by means of the GLOBAL and EXTERNAL attributes.

3.4.4 Declaring, Invoking, and Referencing MicroPower/Pascal Processes
The following example illustrates how processes may be declared, created, and referenced:

[SYSTEM(MICROPOWER), DATA_SPACE(5000)] PROGRAM STATIC_PROCESS_1;

VAR
P1_desc,
P1_B_desc,
P2_desc,
P2_D_desc : PROCESS_DESC;

3-12 A MicroPower /Pascal Process

PROCESS P1;
BEGIN

END;

[NAME- ('P2P2P2')] PROCESS P2;
BEGIN

END;

BEGIN

0 P1; { Cannot reference this process directly. }
f) P1 (DESC := P1_desc);
0 Pi (NAME:= 'AAAAAA');
f) Pi (DESC := Pi_B_desc, NAME := 'BBBBBB');
8 P2; { Can reference this process by name. }
0 P2 (NAME := 'CCCCCC');

STOP (DESC := Pi_desc);
STOP (NAME := 'AAAAAA');

f) STOP (NAME := 'P2P2P2');
0 STOP (NAME := 'CCCCCC');

WRITELN ('Done');
END.

This example declares two dynamic processes: Pl and P2. Pl is declared without a name
attribute; P2 is given the default name "P2P2P2." The first invocation of Pl 0, without a
run-time name or descriptor parameter, cannot be suspended, resumed, or stopped either within
this static process or by another static process. The second invocation of Pl f), with a descriptor
"Pl_desc," may be stopped by a process within its own static process (in this case, the program
itself) because it can be identified by its descriptor. The third invocation of Pl 0, with the
run-time name "AAAAAA," may also be referenced because of its run-time name "AAAAAA."
The fourth invocation of Pl 8 may be referenced by either its run-time name or its descriptor.

P2 has been declared with a name attribute. An invocation without a name parameter causes
that invocation to have the default name "P2P2P2." The STOP procedure f) causes 8 to stop.

The run-time name "CCCCCC" 0 can be stopped by STOP 0.

A MicroPower /Pascal Process 3-13

Chapter 4
MicroPower/Pascal and Concurrent Programming

This chapter describes Pascal language extensions for process synchronization and communi­
cation. It begins with a general discussion of concurrent programming and then shows how
to synchronize processes by using data structures known as binary and counting semaphores.
Other synchronization methods are also briefly discussed. The chapter continues with a discus­
sion of process communication using ring buffers and queue semaphores. Interrupt-handling
and exception-handling techniques are discussed. The chapter concludes with an overall design
strategy for a hypothetica~ real-time problem.

4. l Concurrent Application Design
The efficiency and compactness of MicroPower /Pascal applications result from a concurrent
program design that eliminates the need for a traditional operating system in the target.
Concurrent programming structures an application into independent parts designed to execute
simultaneously. These parts compete for control of the target CPU and other target system
resources. MicroPower /Pascal contains mechanisms for synchronizing the executing processes_
and mutually excluding processes from shared resources. Semaphores (see Section 4.2) and ring
buffers (see. Section 4.3) are data structures that implement process synchronization.

The concurrent design of your application coordinates all processes in a program. This keeps
the size of the application to a minimum, since no general-purpose operating system is needed
to coordinate processes.

The following three conditions must be built into any real-time system of concurrent processes:

• Processes that must respond to an event should have priority over less important processes.

When you design a MicroPower /Pascal application, you assign a priority. to each process to
determine the relative importance of all processes in the application.

• Shared resources, such as devices and data, must be protected by mutual-exclusion
mechanisms.

Access to each shared resource in the application must be mutually excluded from competing
processes. Binary semaphores and mutual exclusion structures establish mutual exclusion
between processes, thus protecting the shared resource.

MicroPower /Pascal and Concurrent Programming 4-1

• Real-time interrupts must be handled immediately. Interrupted processes must be guaranteed
safe storage until they resume later.

MicroPower /Pascal provides two mechanisms for handling interrupts. These mechanisms
are discussed in Section 4.4.

4.2 Process Synchronization
The kernel performs process synchronization in response to requests from processes. Your
processes request kernel services to create, operate on, and destroy semaphores and ring buffers.

The following sections discuss process synchronization and mutual-exclusion techniques. Mutual
exclusion protects shared resources, preventing simultaneous access that coul.d destroy the
integrity of the shared resource.

4.2. l Using Semaphores for Process Synchronization
Operations on semaphores control the execution of concurrent processes. A semaphore is a data
structure that is manipulated by two or more processes. Any process can create a semaphore
by issuing a request to the kernel. A semaphore is used to block execution of one process until
another process sends a signal to proceed. Processes can wait for specific events, such as the
ringing of alarms, by waiting on a semaphore that is signaled by the key event. If more than
one process is waiting on the semaphore, the highest priority or oldest process unblocks and
proceeds. The remaining processes are still blocked on the semaphore.

You may create three types of semaphores: binary, counting, and queue. (Queue semaphores
are discussed in Section 4.3.2.) A binary semaphore is a gate variable that allows one process
to proceed and exclude the next process. Binary semaphores may provide mutual exclusion to
shared data resources. Thus, the "gate" is like a garden gate, protecting the shared resource
("garden") from access by another process.

In addition, MicroPower/Pascal offers another data structure, called a mutex, to use in place of
a binary semaphore for mutual exclusion within the same program. A mutex i~ an optimization
of a binary semaphore. See the MicroPower /Pascal Language Guide for information about the
mutex structure.

A counting semaphore allows as many processes to proceed as specified by the value parameter of
the CREATE_CQUNTING_SEMAPHORE request and then excludes the next process. Counting
semaphores may be used in applications that contain multiple servers.

The following sections describe the Pascal language statements you use in your source code to
access semaphore data structures. The procedures and functions used to operate on binary and
counting semaphores are requests to the primitive services provided by the MicroPower /Pascal
kernel. See the MicroPower /Pascal Language Guide for information about the Pascal language
interface to the MicroPower/Pascal kernel. See the MicroPower/Pascal Run-Time Services Manual
for information about kernel primitive services.

4-2 MicroPower /Pascal and Concurrent Programming

4.2.1.1 CREATE_BINARY_SEMAPHORE Function

This function requests the kernel to allocate and initialize a binary semaphore structure in
system-common memory. You use the name parameter to specify a unique name, if desired,
and the descriptor parameter to specify the semaphore's structure identifier. This function
permits a process to create a binary semaphore that can be manipulated by the semaphore
management requests. The following statement creates a binary semaphore:

Result := CREATE_BINARY_SEMAPHORE (DESC := R1, NAME:= 'BISEM1');

This statement creates a binary semaphore with two parameters: a structure descriptor "Rl" and
the run-time name "BISEMl". This statement returns the value TRUE or FALSE for the Boolean
variable Result, indicating whether or not the semaphore was created.

4.2.1.2 CREATE_CQUNTING_SEMAPHORE Function

This function requests the kernel to allocate and initialize a counting semaphore structure in
system-common memory. You use the name parameter to specify a unique name, if desired,
and the descriptor parameter to specify the semaphore's structure identifier.

The value parameter tells how many processes can perform WAITs before the semaphore closes.
The value parameter may be in the range 0 to 65,535. A value of 0 specifies that the semaphore
is dosed. A positive value specifies how many processes the semaphore is open to. The
following statement creates a counting semaphore:

Result := CREATE_COUNTING_SEMAPHORE (VALUE := 4, DESC := CS1);

This statement creates a counting semaphore referenced by the structure descriptor "CSl." This
semaphore is open, and four WAITs can proceed before the semaphore is closed to other
processes.

4.2. 1.3 SIGNAL Procedure

This procedure signals a specified binary or counting semaphore, unblocking the first process
waiting on that semaphore. This procedure permits the calling process to signal another process
that an event has occurred.

The SIGNAL procedure increments (opens) a binary or counting semaphore's gate variable if
the semaphore's current value is 0 (closed). If a binary semaphore is open, the procedure
returns control to the caller, with no other action. If a counting semaphore is open, its value
is incremented if its maximum value has not yet been reached; and, if its value was 1 or
more before the signal, control returns to the caller. If the signal causes the semaphore to
open, and if at least one process is waiting on the semaphore, the procedure unblocks the
first waiting process and calls the kernel scheduler. This may cause the calling process to be
preempted-lose control of the CPU-depending on the relative priority of the process at the
head of .the semaphore's queue of blocked processes. If the semaphore value changes from
closed to open, and if no process is waiting, control returns to the calling process.

MicroPower /Pascal and Concurrent Programming 4-3

The actions resulting from a call to the SIGNAL procedure for binary and counting semaphores
can be summarized as follows:

Initial Conditions

Semaph~re is open

Semaphore is closed;
no processes waiting

Semaphore is closed;
one or more processes
waiting

Resulting Action

No effect (binary)
Increment count if less than maximum (counting)

Semaphore opens

First waiting process unblocks (moves from a wait to a ready
state)
Scheduler is invoked if unblocked process has a higher priority
than that of currently running process

COND_SIGNAL, the conditional form of SIGNAL, permits the calling process to signal a
semaphore if at least one process is waiting on that semaphore. If no process is waiting, the
semaphore is not signaled.

4.2. 1.4 WAIT Procedure

A WAIT on a semaphore tests the specified semaphore for a signal (positive value). The
calling process is blocked if the semaphore had not been signaled. When a process waits on a
semaphore, the value associated with the semaphore is checked. If the semaphore value is 0,
the process blocks (waits) and is placed in the wait-active state. Each semaphore may have a
queue of waiting processes. When the semaphore is signaled, the process at the head of the
queue enters the ready-active state and is eligible to resume execution according to its priority.
If the semaphore value is not 0 when checked, it is decremented, and the process continues.

The results from a call to the WAIT procedure can be summarized as follows:

Initial Conditions

Semaphore is closed

Semaphore is open

Resulting Action

Process blocks
Scheduler is invoked

Close semaphore (binary)
Decrement count (counting)

COND_WAIT, the conditional or nonblocking form of the WAIT procedure, permits the calling
process to test' for the arrival of a signal from another process without being blocked if the
signal has not yet occurred. ·

Together, the SIGNAL and WAIT requests provide a means for two cooperating processes
to implement a variety of synchronization and mutual-exclusion mechanisms. The following
example, using a binary semaphore, illustrates the role of SIGNAL and WAIT in process
synchronization.

4-4 MicroPower /Pascal and Concurrent Programming

PROGRAM Binary_Semaphore_Example;

VAR
Gate : SEMAPHORE_DESC;

PROCESS Me_Too;

BEGIN
WRITE (Ix I) ;

SIGNAL (Gate);
END;

BEGIN
IF CREATE_BINARY_SEMAPHORE (DESC := Gate)

THEN
BEGIN

Me_Too;
WAIT (Gate);
WRITELN ('marks the spot.');

END
ELSE

WRITELN ('Failed');
END.

This example uses one binary semaphore, and the two processes synchronize by means of
SIGNAL and WAIT operations on the semaphore.

The program first creates the semaphore with a default value of 0 (closed). The program creates
process Me_Too and then waits on the semaphore. Because the semaphore is closed, the main
program blocks, allowing process Me_Too to run. Me_Too writes one character, then signals
the semaphore. Signaling the semaphore unblocks the main program, allowing it to finish
execution. Output of this example is:

X marks the spot.

4.2.2 Using SUSPEND and RESUME for Process Synchronization

The kernel can also achieve process synchronization by using the SUSPEND and RESUME
functions.

4.2.2. 1 SUSPEND Function

This function gives to the running process power over other processes waiting for control of
the CPU. Specifically, SUSPEND allows the running process to suspend execution of another
process (or itself) directly. The suspended process may not execute until resumed by another
process.

A process issuing a SUSPEND on another process specifies a process descriptor or process name.

Result :=SUSPEND (NAME:= 'JALOPY');

This statement suspends the process with the run-time name JALOPY and, if successful, returns
the value TRUE to the Boolean variable Result. The state of the suspended process is changed
to ready suspended, wait suspended, or exception-wait suspended, depending on its state at the
time of suspension. If neither a name nor a descriptor is specified as a parameter, the process
is itself suspended:

Rpsult := SUSPEND;

MicroPower /Pascal and Concurrent Programming 4-5

The running process suspends itself, and the highest-priority process in the ready-active state is
placed in the run state.

4.2.2.2 RESUME Function

This function gives to the running process power over other processes waiting for control of the
CPU. A resume request is required to return a suspended process to one of the active states.
Specifically, RESUME allows the running process to resume a suspended process. The following
statement resumes the suspended process JALOPY and, if successful, returns the value TRUE
to the Boolean variable Result:

Result :=RESUME (NAME:= 'JALOPY');

4.3 Interprocess Communication
The kernel uses two data structures to transmit messages between processes: ring buffers and
queue semaphores. Ring buffers are a means of asynchronous data transfers, usually involving
interrupt-driven input/ ~mtput devices. Queue semaphores provide tighter synchronization of
the message transfer than is possible with ring buffers.

4.3.1 Using Ring Buffers to Send Messages
Ring buffers are kernel data structures that transmit variable-length messages between processes.
Data is input by one process and may be removed by another process in the same sequence:
first in, first out. Two ring buffer operations may take place concurrently; one process may put
data into the buffer at the same time another process removes data.

4.3.1.1 CREATE_RING_BUFFER Function

This function creates a ring buffer data structure and sets up a descriptor for referring to it.

4.3. 1.2 GET_ELEMENT Procedure

This procedure extracts a specified number of bytes of data from a ring buffer and transfers them
to the calling process. If an insufficient number of bytes is present, the calling process blocks.
COND_GET_ELEMENT, the conditional or nonblocking form, does not cause the receiving
process to block if the request cannot be satisfied. Instead, the request may implement a partial
transfer or return without a transfer.

4.3. 1.3 PUT_ELEMENT Procedure

This procedure copies a specified number of bytes from the calling process to a ring buffer; the
calling process is blocked if the ring buffer has insufficient space. CONDJUT_ELEMENT, the
nonblocking form, attempts to copy the specified number of bytes to the ring buffer but does
not block if the request cannot be satisfied.

The following example creates a ring buffer structure, puts data into the buffer, removes data
from the buffer, and writes it.

4-6 MicroPower /Pascal and Concurrent Programming

PROGRAM Ring_Buffer_Example;

VAR
Bye RING_BUFFER_DESC;
Chars PACKED ARRAY [1 .. 2] OF CHAR;

BEGIN
IF CREATE_RING_BUFFER (DESC := Bye, SIZE := 16)

THEN
BEGIN

PUT_E~EMENT (DESC:= Bye, DATA := 'Message', LENGTH:= 7);
GET_ELEMENT (DESC:= Bye, DATA :=Chars, LENGTH:= 2);
WRITE (Chars);

END.

END
ELSE

WRITELN ('Failed');

The output of this program is:

Me

Figure 4-1 illustrates the use of the ring buffer in this example.

Figure 4-1: Using a Ring Buffer

Put
Element

Get
Element

l~L M

E

s
s
A

G

E

Pointer

'

A. Ring Buffer Input B. Ring Buffer Output

4.3.2 Using Queue Semaphores to Send Messages

' Put
Pointer

ML0-753-87

You may want to pass a message from one process to another by using a queue semaphore.
The queue semaphore is an extension of a counting semaphore. A queue semaphore associates
a counting semaphore with a queue of message packets to implement synchronized message
transfer.

The message packets are composed of a packet header and a data area. The header contains
such information as the pointer to the next packet in the queue and a reference data flag. The
data area portion of the packet may contain up to 34 bytes of data. Message transmission may
be by value, by reference, or by a combination of both means. When data is sent by value,
the data to be transmitted is copied into the message packet. When data is sent by reference,
the packet tells the kernel to look for a pointer to the sender's message buffer. This pointer is
contained in the kernel data structure INFO_BLOCK. INFO_BLOCK is a record that contains
information about the packet. Figure 4-2 shows transmission of value data by using a message
packet.

MicroPower /Pascal and Concurrent Programming 4-7

Figure 4-2: Using a Message Packet

Message Packet

I

Pointer to next packet
in queue

H T

s

RECEIVE Buffer

4.3.2.1 CREATE_QUEUE_SEMAPHORE Function

}

Packet
Header

Packet
Data Area

ML0-754-87

This function permits a process to create a queue semaphore that can be manipulated by the
various queue semaphore management requests. Like binary and counting semaphores, queue
semaphores are created by specifying a descriptor parameter and an optional name parameter.

4.3.2.2 SEND Procedure

This procedure requests the kernel to allocate a packet, fill it with the specified data, and signal
a queue semaphore. Data may be sent by value (up to 34 bytes), by reference if the message
is larger, or by both means. If a packet is not available, the process blocks on the queue
semaphore until the packet becomes available. See the MicroPower /Pascal Language Guide for
more information.

COND_SEND is the conditional form of the SEND procedure. COND_SEND determines if a
process is waiting on the queue semaphore. If a receiving process is not waiting for the packet,
COND_SEND returns control to its process.

4-8 MicroPower /Pascal and Concurrent Programming

4.3.2.3 RECEIVE Procedure

The receiving process issues the RECEIVE statement, naming the queue semaphore. When the
sending process sends a message to that queue semaphore, the receiving process gets the data
in the packet.

COND-RECEIVE, the conditional form of the RECEIVE procedure, checks for an available
packet. If no packet is available, execution returns to the process without blocking.

Both the sender and the receiver must specify the size and configuration of the message.
Processes can designate optional reply (acknowledgment) semaphores to report successful
transmission. For more information about queue semaphore requests, see the MicroPower /Pascal
Language Guide.

The following example uses the SEND and RECEIVE procedures to transfer data by means of
a message packet.

[SYSTEM (MICROPOWER)] PROGRAM Queue_Semaphore_Example;

TYPE
Buffer = PACKED ARRAY [1 .. 34] OF CHAR;

VAR
Queue : QUEUE_SEMAPHORE_DESC;
Send_Buff : Buffer;

PROCESS Get_Message;

VAR
Info INFO_BLOCK;
Counter INTEGER;
Rec_Buff Buffer;

BEGIN
:= Queue,
:= Rec_Buff,

RECEIVE (DESC
VAL_DATA
VAL_LENGTH
RET_INFO

:= SIZE(Rec_Buff). (* size of message received *)
:=Info); (*records information about what is sent*)

FOR Counter := 1 TO Info.VAL_XMIT_LEN DO
WRITE (Rec_Buff[Counter]);

WRITELN;
END;

BEGIN (* Main Program *)
Send_Buff :='This message is 34 bytes long!!!!!';
IF CREATE_QUEUE_SEMAPHORE (DESC := Queue)

THEN
BEGIN

Get_Message;
SEND (DESC := Queue,

VAL_LENGTH := SIZE(Send_Buff), (*size of message sent*)
VAL_DATA := Send_Buff)

END
ELSE

WRITELN ('Failed');
END.

The main program SENDs a message to Process Get_Message, which prints it out after receiving
it. (When the message packet is created, Get_Message blocks on the queue semaphore, Queue,
until the complete message has been transmitted by the sending process.)

MicroPower /Pascal and Concurrent Programming 4-9

VAL_LENGTH is a parameter used by both the SEND and RECEIVE procedures. For SEND,
the VAL _LENGTH parameter specifies the size of the message being .. sent. For RECEIVE,
VAL _LENGTH specifies how many bytes are accepted. The number of bytes may be equal to
the size of the buffer declared to accept the message, or it may be fewer bytes. (For data sent
by value, the limit is 34 bytes for both the SEND and RECEIVE procedures.)

VAL_)(MIT_LEN, a field of INFO_BLOCK, contains the size of the data transferred by value.
The size is determined by the VAL_LENGTH parameter of the RECEIVE or the VAL_LENGTH
parameter of the SEND, whichever is smaller.

4.4 Connecting Processes to Interrupts
An interrupt, or signal from a device, automatically causes a change in the flow of instruction
execution within the processor. In a MicroPower/Pascal target system, interrupts can arrive
unpredictably and, therefore, are called asynchronous. When an interrupt occurs, control of the
CPU transfers to an appropriate interrupt service routine (ISR).

After the ISR runs, the kernel assigns control of the CPU to the highest priority process. That
process may or may not be the same process that was in control when the interrupt occurred.
(Actions taken by the ISR responding to the interrupt may have enabled a waiting process or
affected the eligibility of processes in some other way.) ISRs are a part of any process written
to handle devices, usually a process of type DRIVER.

4.4. 1 CONNECT_INTERRUPT Procedure

This procedure associates an interrupt vector with an ISR to establish a process as a device
driver. CONNECT-1NTERRUPT is used to handle interrupts that occur at a relatively high rate
for the amount of data being transmitted.

4.4.2 CONNECT-SEMAPHORE Procedure

This procedure associates an interrupt vector with a semaphore. The specified semaphore is
signaled each time an interrupt occurs. CONNECT_SEMAPHORE is used to handle interrupts
that occur at a relatively low rate for the amount of data being transmitted, with slow devices,
and when millisecond response times are adequate.

4.5 Exception-Handling Processes and Procedures
An exception is an event that alters the normal flow of execution. An exception condition is a
consequence of the execution of the current instruction. An exception condition may or may
not represent a fatal execution error in the application.

The target system hardware and software can detect 16 types of exceptions to normal application
execution. Three examples of exception conditions are:

• Accessing a nonexistent I/O device (Type: Hard_IO)

• Executing an illegal instruction (Type: Illegal_Operation)

• Insufficient space for stack (Type: Resource)

In addition to the exception conditions recognized by MicroPower /Pascal software, you can
define your own category of exceptions that are specific to your application.

4-10 MicroPower/Pascal and Concurrent Programming

Either processes or procedures may be declared as exception handlers. An exception-handling
procedure is typically used when you want to log exception occurrences within a particular
process. An exception-handling process is used to detect exception conditions for groups of
processes and when process control block (PCB) information is required to take corrective
action. You include the appropriate system exception declaration file(s) with the source modules
that contain your exception handlers. See the MicroPower /Pascal Run-Time Services Manual
and the MicroPower /Pascal Language Guide for further information on exception handling in
Micro Power f Pascal.

4.5. 1 Exception-Handling Processes

You can set up processes to take control when the system detects an exception condition. You can
design each exception-handling process to respond to exceptions of certain types. Also, you can
specify one process to handle the exceptions of a group of processes. To establish an exception­
handling process, use the CONNECT-EXCEPTION and WAIT-EXCEPTION statements within
the process.

The CONNECT-EXCEPTION statement identifies that process to the kernel as the exception
handler. The WAIT_EXCEPTION statement causes the process to block on the specified queue
semaphore. When an exception occurs, the kernel signals the queue semaphore and returns the
address of the PCB of the offending process. Upon examining the information provided by the
PCB, the exception-handling process can use this information to determine its corrective action.

The following code fragment sets up an exception-handling process for SYSTEM_SERVICE
exceptions and waits on the queue semaphore Exception.

PROCESS Exception_Handler;

VAR
Exception : QUEUE_SEMAPHORE_DESC;
Ptr : PCB_POINTER;

BEGIN

CONNECT_EXCEPTION (DESC :=Exception, EXC_TYPE := [SYSTEM_SERVICE]);
WAIT_EXCEPTION (DESC :=Exception, PCB_PTR := Ptr);

END;

MicroPower /Pascal and Concurrent Programming 4-11

4.5.2 Exception-Handling Procedures
Exceptions for processes in one address space can be handled by procedures nested directly
inside the Pascal main program (static process). To identify a procedure to handle exceptions
for the program, you include an ESTABLISH statement, which has the form:

ESTABLISH (EXC_PROCEDURE := Resource_Errors,
EXC_TYPE := [RESOURCE]);

In the previous statement, the Pascal procedure Resource-Errors is designated to handle
exceptions of type RESOURCE that arise during execution.

4.5.3 Generating an Exception
When testing an exception handler, you may want to generate an exception. You can generate
an exception by using the REPORT statement, which has the form:

REPORT (EXC_TYPE :=[RESOURCE], EXC_CODE := ES_$NMP);

The exception defined by type RESOURCE and code ES_$NMP is generated wherever this
statement is included in the process.

If you define your own category of exceptions specific to your application, you must use
the REPORT statement to declare exceptions of that type at the appropriate places in your
application.

4.6 Concurrent Design Solution: Bottle-Corking Machine
Process synchronization in concurrent application design can be illustrated by the operation
of a hypothetical bottle-corking machine. This example divides a problem into separate tasks,
assigns processes to correspond to the separate tasks, and coordinates the processes by using
queue semaphores.

In this example, a high-speed bottling plant uses conveyors to transport bottles among automated
bottling stations. Those stations clean, fill, cork, and package bottles. The hypothetical bottle­
corking machine is controlled by a MicroPower/Pascal application.

4.6. 1 Target Hardware
The corking machine consists of a vertical, rotating drum with a rounded ledge on which the
bottles sit in discrete slots. A cork-inserter assembly is attached to the drum above each slot. As
it moves around the drum, a bottle is corked by the inserter positioned above it. The inserters
are reloaded from a cork hopper above the drum.

Two conveyor belts service the machine. The input belt brings bottles to the machine, and the
output belt takes bottles away. The two belts run at the same speed as the drum, preventing
the bottles from jamming as they enter or leave the workspace.

An electric eye positioned near the input conveyor senses the filled bottles as they occupy slots
on the drum. The eye detects vacant slots and slots containing broken or unfilled bottles.

A large bin for bad bottles is in front of the drum. Slots containing bad bottles are emptied
into this rejects bin. That arrangement purges the line of bad bottles and allows glass to be
recycled. See Figure 4-3.

4-12 MicroPower /Pascal and Concurrent Programming

Figure 4-3: Bottle-Corking Machine

Control
Panel

Input
Conveyor

Eye

4.6.2 Operating Characteristics

Corks

Rejects
Bin

The bottle-corking machine performs the following functions:

Cork
lnserters

Output
Conveyor

ML0-755-87

• Inserts corks into bottles, ignoring any slots that do not contain bottles, so as not to waste
corks

• Rejects broken or unfilled bottles from the line

• Senses a low cork supply and notifies the operator

• Senses a depleted cork supply and stops the input conveyor until the corks are restored

• Senses a breakdown of the input conveyor and termination of incoming bottles and shuts
down the machine

• Senses a breakdown of the output conveyor and stops the input conveyor until the output
conveyor restarts

A concurrent MicroPower/Pascal application can be designed to run this bottle-corking machine.

MicroPower/Pascal and Concurrent Programming 4-13

4.6.3 Designing a Concurrent Solution
Concurrent design lets you divide the problem into separate tasks. You can define six parallel
processes to run the machine. Three device driver processes handle 1/0 between the application
and the machine. Another process, Commander, sends normal, repetitive operating commands
to the machine. Error Checker receives notice of abnormal conditions from the machine. (This
process may transmit a message to Commander, which in tum alters the command sequence.)
Finally, Timekeeper interfaces with the system clock to provide timings. •

The processes communicate by means of five queue semaphores, which act like mailboxes,
holding messages from one process to another. Queue semaphores are used rather than binary
semaphores, because each semaphore may be signaled for several reasons. In every case, some
information about the reason must pass to the waiting process. Note that only one arrow
leaves each queue semaphore; in this application, only one process waits on any one queue
semaphore. Finally, more than one arrow may leave the boxes (processes), since one process
can signal more than one queue semaphore during execution.

Figure 4-4 shows how the processes are related. The six processes are represented by boxes.
The five queue semaphorei; are represented by circles.

Figure 4-4: Processes Comprising the Concurrent Solution

Normal

Input
Messenger

Timekeeper
(Clock)

4.6.3. 1 Device Driver Processes

Bottle~orking Machine

Command

Output
Messenger

Commander

Abnormal
Input
Messenger

Error
Checker

ML0-756-87

Serial lines transmit electrical signals to and from the machine. Three device driver processes
handle the lines. The two input messenger processes translate incoming signals into symbolic
codes and pass them on to Commander and Error Checker. On the output side, Command
Output Messenger translates line signals for the outgoing wire ..

4-14 MicroPower /Pascal and Concurrent Programming

The three device driver processes are named for the type of information they convey: Abnormal
Input Messenger, Command Output Messenger, and Normal Input Messenger. The three
processes are as follows:

• Abnormal Input Messenger encodes messages from the station error sensors and passes
codes to the error-handler process.

• Command Output Messenger decodes messages from Commander and places appropriate
signals on the output line to the machine. Command Output Messenger can receive
input from two sources: Commander and Error Checker. Under normal operation, only
Commander'sends messages to Command Output Messenger.

• Normal Input Messenger encodes signals received during the bottle-corking operation.

The application must not miss any incoming signals and should send outgoing signals without
long gaps. Ideally, part of the application should attend to the I/O lines regardless of coding
and decoding operations. Therefore, each device driver is composed of two independent parts:
the process and an ISR. (ISRs and device driver processes, including a guide to writing your
own device drivers, are described in detail in the MicroPower/Pascal 1/0 Services Manual.)

Each device driver uses a ring buffer to pass information between the independent ISR and the
rest of the device driver process (see Figure 4-5). Upon receipt of a line signal, the ISR uses
the PUT-ELEMENT statement to put data into the ring buffer. As the signal requests arrive,
the ISR may do several PUT-ELEMENT operations in a short time. The ISR then waits for
more signals while the process removes each element in tum from the ring buffer (with the
GET-ELEMENT statement) and performs the encoding operation.

Figure 4-5: The Device Driver

From
machine

Abnormal Input Messenger

I~
--P-ro_c_e_s_s_...,/ Ring

Buffer

ISR

ML0-757-87

Prompt response to signals from the real-time environment is critical. So, MicroPower/Pascal
ISRs run at priorities higher than those of normal processes, although priorities may vary among
ISRs. Because quick response is so important, ISRs usually are responsible for little more than
attending to the 1/0 lines. Thus, ISRs receive information from or put information on the lines
and interact with temporary buffer storage, such as ring buffers.

For instance, on the input side, the ISR is ready to respond to an interrupt from the machine,
grabbing signals off the wire and storing them for the encoder part of the process. At the lower
process priority, the process translates the messages into codes to be sent to the Error Checker.

MicroPower /Pascal and Concurrent Programming 4-15

4.6.3.2 Commander Process

As shown in Figure 4-4, each arrow entering a box marks a waiting point for the proce~s
represented by that box. One box, Commander, has two arrows leading into it. Commander
must pay attention to acknowledgments from the machine and messages passed from Error
Checker. If made to wait for input from Error Checker by Queue_Semaphore (5), Commander
cannot run the machine. Ideally, Commander should attend to Error Checker if a message
is forthcoming immediately. This situation calls for use of the RECEIVE-ANY function.
RECEIVE-ANY lets Commander wait on more than one queue semaphore.

The other incoming arrow, Queue_Semaphore (1), to Commander passes acknowledgments
from Normal Input Messenger and timeout signals from Timekeeper. If the machine does not
acknowledge orders from Commander within a specified interval, the clock process notifies
Commander of a· timeout, and the command stream to the machine is interrupted by a halt
sequence. Because at least one of these messages must arrive during each cycle of the machine,
this queue semaphore is vital to proper synchronization. Commander must block itself from
executing and wait for a message before continuing to issue orders to the machine.

4.6.3.3 Using Process Priorities to Gain Etftciency

In this application, if each process executed in a separate CPU, overall performance would be
synchronized. In reality, however, only one process runs at a time. This application may be
defined for greater efficiency by assigning relative priorities to processes.

If an error requiring a stop-at-once command comes in from the machine, it should receive
prompt attention. Therefore, Error Checker may be given higher priority than Commander.
Timekeeper needs to work only when its clock ticks, but that work is very important, because
timings depend on it. Therefore, Timekeeper may be given a high priority.

4-16 MicroPower /Pascal and Concurrent Programming

Chapter 5
Application Development: Designing the Source
Code

This chapter presents a 3-stage overview of concurrent programming in the MicroPower/Pascal
environment. Three application development programs introduce concepts fundamental to real­
time MicroPower/Pascal application development. The programs also are the basis for the
application development examples you can build and run in Chapters 6 and 7.

5. l Introducing the CARS Program
Three examples of the CARS program are presented. The programs run on a target system that
includes video terminal output. In the first two examples, one car, represented by the symbol#,
travels across the terminal screen. When it reaches the right edge, the car starts again at the left
edge, giving the illusion of continuous movement. Example 5-1 uses a monolithic approach,
resembling a traditional Pascal program. Example 5-2 performs the same task but introduces
a MicroPower/Pascal feature, a dynamic process. The process concept is used to an advantage
in Example 5-3, which expands the program to include two cars traveling across the terminal
screen. Each car is directed by its own dynamic process. This program introduces the real-time
features of binary semaphores, which coordinate interprocess synchronization. SIGNAL and
WAIT requests on the two binary semaphores implement a handshake mechanism that makes
sure that the two cars run concurrently across the screen.

The following sections describe these three program examples in detail. Chapters 6 and 7 give
you an opportunity to build and run a version of the CARS program for yourself.

Application Development: Designing the Source Code 5-1

ML0-760-87

5.2 First CARS Program Example: CARS l
Example 5-1 of the CARS program, included to show a typical Pascal program, moves one
car across the terminal screen. This program uses MicroPower /Pascal syntax but does not
include any special real-time features. The program is included as a stepping stone to the
MicroPower/Pascal features introduced in Examples 5-2 and 5-3. ·

Example 5-1: Program CARS 1

[SYSTEM(MICROPOWER), PRIORITY(!),
DATA_SPACE(2000), STACK_SIZE(400)] PROGRAM CARS1;

CONST
Line = 10;

VAR
Column : INTEGER;

PROCEDURE Clear_Screen;
BEGIN

WRITE(' '(27)'[2J');
END;

5-2 Application Development: Designing the Source Code

PROCEDURE Move_Car_Right;
BEGIN

WRITE (''(27)' [', Line:1, '·• Column:1, 'H'); (*position cursor*)
IF Column < 77

THEN
BEGIN

WRITE (I # I) ;

Column := Column + 1;
END

ELSE
BEGIN

WRITE (' ') ; (* blank last column *)
Column := 1; (* position to Column 1 *)
WRITE(' '(27)' ['. Line:1, ';', Column:1, 'H#'); (*write car*)

END;
END;

BEGIN
Clear_Screen;
Column := 1;
WHILE TRUE DO

Move_Car_Right;
END.

5.2. 1 Program Heading
The heading specifies the program name and attributes declared at the global level. The
attributes SYSTEM, PRIORITY, DATA_SPACE, and STACK_SIZE are declared. The attributes
are enclosed in brackets and precede the reserved word PROGRAM. Attribute ·values are
enclosed in parentheses.

5.2.2 Procedures
The program contains two procedures:

• Clear_Screen

• Move_Car-Right

The procedure Clear_Screen writes the escape sequence that clears the terminal screen.
Clear_Screen is invoked by the main program.

The procedure Move_Car_Right advances a "car" one space to the right by using escape
sequences that perform cursor positioning and by writing the symbol "#" to the screen.

5.2.3 Execution
The program invokes the procedure Clear_Screen. Column is initialized to 1. The program
next invokes the procedure Move_Car_Right from within a continuous WHILE loop.

5.3 Second CARS Program Example: CARS2
Example 5-2 introduces a dynamic process, CAR, to the basic program. This example shows the
basic structure of a Micro Power /Pascal program. The components, general format, and correct
language syntax of a MicroPower/Pascal program are illustrated.

Application Development: Designing the Source Code 5-3

Example 5-2: Program CARS2

[SYSTEM(MICROPOWER), PRIORITY(!),
DATA_SPACE(2000), STACK_SIZE(400)] PROGRAM CARS2;

PROCEDURE Clear_Screen;
BEGIN

WRITE(' '(27)' [2J');
END;

[PRIORITY(2), STACK_SIZE(400)] PROCESS Car (Line INTEGER);
VAR

Column : INTEGER;

PROCEDURE Move_Car_Right
BEGIN

WRITE(' '(27)' [' ,line:1,';' ,column:!, 'H');
IF column < 77

THEN
BEGIN

WRITE (I # I) ;

Column :=Column + 1;
END

ELSE
BEGIN

WRITE (I I);
Column := 1;
WRITE(' '(27)' ['. Line:1,';', Column:!, 'H#');

END;
END;

BEGIN (* Process Car *)
Column := 1;
WHILE TRUE DO

Move_Car_Right;
END;

BEGIN
Clear_Screen;
Car (Line := 10);

END.

5.3. 1 Procedures

(* create one car on line 10 *)

As in CARSl, this program uses the Clear_Screen and Move_Car_Right procedures.

5.3.2 Processes
The program declares one process: CAR. Since Move_Car-Right is invoked only by the process
CAR, the procedure can be declared within the process.

The variable COLUMN is a local variable declared within CAR. Column is used in cursor
positioning.

The purpose of this process is to move the "car" across the terminal screen by calling the
procedure Move_Car__Right. This car "runs" on line 10 of the terminal screen. The process has
a priority of 2.

5-4 Application Development: Designing the Source Code

5.3.3 Execution
The main program's code is the static process. The main program invokes the procedure
Clear_Screen. The main program then invokes (creates) the process CAR. The result is one
"car" traveling across the terminal screen on line 10.

When CAR is invoked (created), its priority is compared with that of the currently running static
process (Program CARS2). Since the dynamic process CAR has a higher priority, the process
CAR runs.

Figure 5-1 shows the logic of this program.

Figure 5-1: Program CARS2 Flowchart

Clear_Screen

Column:= 1

Move_Car_Right

Program CARS2 Process Car

ML0-758-87

5.4 Third CARS Program Example: CARS3
Example 5-3 expands the program to include two dynamically created processes. Process CAR
is created twice, to allow two cars to race across the screen. This program uses the following
real-time features: binary semaphores and the SIGNAL and WAIT primitives. The processes
use the se~aphores to implement a handshake mechanism that coordinates their concurrent
execution. The effect on your terminal is two cars traveling across the screen, one on line 10
and the other on line 12.

Application Development: Designing the Source Code 5-5

Example 5-3: Program CARS3

[SYSTEM(MICROPOWER), PRIORITY(1),
DATA_SPACE(2000), STACK_SIZE(400)] PROGRAM CARS3;

VAR
S1, S2 : SEMAPHORE_DESC; (* Semaphores for the "handshake" mechanism *)
OK : BOOLEAN; (* Indicates successful semaphore creation *)

[INITIALIZE] PROCEDURE Setup;
BEGIN

OK := CREATE_BINARY_SEMAPHORE (DESC := S1, VALUE := 0) AND
CREATE_BINARY_SEMAPHORE (DESC := S2, VALUE:= 0);

END;

PROCEDURE Clear_Screen;
BEGIN

WRITE (''(27)'[2J');
END;

[STACK_SIZE(400)] PROCESS Car (Line INTEGER; VAR Start, Done SEMAPHORE_DESC);

VAR
Column : INTEGER;

PROCEDURE Move_Car_Right;
BEGIN

WRITE(' '(27) '[', Line:1, ';', Column:1, 'H');
IF Column < 77

THEN
BEGIN

WRITE (I #I) ;
Column :=Column+ 1;

END
ELSE

END;

BEGIN
WRITE (I I);
Column := 1;
WRITE(' '(27)'[', Line:1, ';', Column:1, 'H#');

END;

5-6 Application Development: Designing the Source Code

BEGIN (* Process Car *)
Column := 1;
WHILE TRUE DO

BEGIN
WAIT (DESC :=Start);
Move_Car_Right;
SIGNAL (DESC :=Done);

END;
END; (* Process Car *)

BEGIN
IF OK

THEN
BEGIN

Clear_Screen;
(* create first car on line 10 *)

END.

Car (Line := 10, Start := Si, Done := S2,
PRIORITY:= 2, NAME := 'LANE10');

(* create second car on line 12 *)
Car (Line := 12, Start := S2, Done := S1,

PRIORITY:= 3, NAME := 'LANE12');
SIGNAL (DESC :=Si);

END;

5.4. 1 Global Variable Declarations
This program declares three variables: two binary semaphores and a Boolean. The binary
semaphores 51 and 52 are used to implement a "handshake mechanism" between the two
dynamic processes. OK, a Boolean variable, is used to indicate the successful creation of the
binary semaphores. The Boolean variable OK receives the value TRUE when the semaphores
are successfully created.

5.4.2 Procedures
In addition to the procedures declared in CAR52, CARS3 contains the Setup procedure. Setup
is the initialization procedure, identified by the attribute [INITIALIZE]. Setup is invoked by the
system startup routine and executes first, before any other part of the program. The INITIALIZE
procedure typically creates any structures needed by the program. During initialization, the
INITIALIZE procedure creates both semaphores and designates 51 and 52 as the program's
structure descriptor variables that hold the names and identification numbers of the semaphores.

The semaphores are created with an initial value of 0. (The semaphore value is specified for
clarity; if no value is specified, 0 is also the default value.) Thus, the semaphores are closed.
The CREATE_BINARY_SEMAPHORE functions are part of an assignment statement to the
Boolean variable OK. The assignment statement returns a value of TRUE if the semaphores are
successfully created and a value of FALSE if they are not.

Application Development: Designing the Source Code 5-7

5.4.3 Processes
As in CARS2, one dynamic process, CAR, is declared. The semaphores are passed as VAR
parameters.

The process CAR first initializes Column to 1, then enters a WAIT/SIGNAL loop. When
it performs a WAIT, the process blocks itself and joins the wait queue if the semaphore is
closed. (That happens the first time the instruction executes for each invocation of the process.)
However, if the process performs a WAIT and the semaphore is open, the process continues
executing. When the process performs the SIGNAL, it opens the semaphore. That causes the
scheduler to compare the priority of the currently running process with that of the first waiting
process.

This WAIT/SIGNAL loop uses the two semaphores passed as parameters. A WAIT is performed
on the semaphore passed to the parameter Start, and a SIGNAL is performed on the semaphore
passed to Done.

5.4.4 Execution
The following steps describe the execution of CARS3:

1. The INITIALIZE procedure (Setup) is invoked by the system startup routine, and the two
binary semaphores are created.

2. The Boolean variable OK is checked to make sure the semaphore creation was successful.

3. If the semaphore creation was successful, program execution begins with a call to the
Clear_Screen procedure.

4. Next, the process CAR is created, with the run-time name LANElO and a process priority
of 2.

5. Since the priority of the newly created process is higher than that of the presently running
(static) process, LANElO now runs. LANElO initializes its Column variable and does a
WAIT on semaphore Sl. Finding the semaphore closed, the process blocks.

6. Execution returns to the static process (main program). The process CAR is again created,
this time with the run-time name LANE12. LANE12 runs, initializes its Column variable,
and WAITs on semaphore S2. Finding the semaphore closed, the process blocks.

7. Execution again returns to the static process (main program). The static process SIGNALs
semaphore Sl. That signal opens Sl, and LANElO, which is waiting on Sl, now runs. (The
priority of LANElO is higher than that of the currently running (static) process.)

8. LANElO invokes Move_Car-Right, then SIGNALs S2. That signal allows LANE12, which
is waiting on S2, to run. (LANE12 has a higher priority than LANElO.)

9. LANE12 invokes Move_Car-Right, then SIGNALs Sl, making LANElO eligible to run.
Because LANE 12 has a higher priority than LANElO, LANE12 continues to run. However,
on its next instruction LANE12 WAITs on S2 and blocks itself on the wait, having found the
semaphore closed. This gives LANElO. a chance to run. LANElO moves a car and signals
52, unblocking LANE12. This handshake mechanism permits each process to move its
car one space. Using this mechanism overrides the effects that priority assignments would
otherwise have.

Figure 5-2 shows the logic of this program.

5-8 Application Development: Designing the Source Code

Figure 5-2: Program CARS3 Flowchart

Setup

Clear_Screen

SIGNAL

(S1)

Program CARS3

Column:= 1

WAIT

(S1)

Move_Car_Right

SIGNAL

Process Car
(LANE 10)

(S2)

Column:= 1

WAIT

(S2)

Move_Car_Right

SIGNAL

(S1)

Process Car
(LANE 12) ML0-759-87

Application Development: Designing the Source Code 5-9

Chapter 6
Development Cycle Overview

The steps needed to prepare a MicroPower/Pascal application to run on your target system are:

1. Design and code source programs.

2. Compile or assemble source code.

3. Build the application image.

4. Load the application into the target.

5. Test and debug the application.

6. Rebuild the debugged application.

Figure 6-1 shows the development cycle of a MicroPower /Pascal application. Shaded areas
indicate steps that are typically performed by the automatic command file generator, MPBUILD.
The dotted line indicates that invoking the build utilities is an iterative procedure to be repeated
several times during a typical application build. The following sections describe these steps in
greater detail.

Development Cycle Overview 6-1

Figure 6-1: MlcroPower/Pascal Application Development

Use a text editor to create Pascal and/or
MACR0-11 source files, and edit hardware
configuration file and driver prefix files.

Create object modules (and optional
listings) from Pascal or MACR0-11
source code.

Input to the build utilities are the kernel,
DIGITAL-supplied static processes, and
user static processes. MERGE resolves
library and intermodule references and
combines individual object modules into
a single, merged object module. RELOC
sorts programs into read-only and
read/write sections, transforms virtual
addresses into actual memory addresses,
and allocates memory. MIB creates the
final memory image.

The build utilities issue diagnostic
messages. You may need to correct the
configuration or prefix file or correct
source code.

Transfer application to target:

1. Down-line load with PASDBG.
2. Place into PROM chips.
3. Copy to bootable disk or tape.

A serial communications line connecting
host and target computers allows you to
use PASDBG, the symbolic debugger
running in the host. to debug the
application running in the target system
under control of its own software.

Rebuild to eliminate debug information.
Run completed application in target system.

6-2 Development Cycle Overview

Create
Source
Code

Edit
Config­
uration
File

Compile
or

Assemble

no

Invoke
Build
Utilities

Load and Run
Application
in Target

Done

Edit
Prefix
File

Correct the
Source Program

--or --

yes Correct the
Configuration File

yes

- - or - -

Correct the
Prefix File

Debug
Application

Eliminate
Debug Information

I May be performed
using command file
generator, MPBUILD.

ML0-761-87

6.1 Design and Code Source Programs
You may design your application by dividing your problem into individual tasks and coding
a separate process for each task, using the techniques introduced in Chapter 4 for process
synchronization and communication. Designing your program corresponds to the state reached
by the Bottle Corking example (see Chapter 4), in which the job requirements were divided into
separate tasks and a separate process was designed to perform each task. Flowcharts, as used
in Chapter 5 for the CARS examples, can be useful in creating your concurrent design. You can
use the editor available on your host system to create source programs.

You can use both the Pascal and MACR0-11 languages to write parts of a MicroPower/Pascal
application. The MicroPower /Pascal Language Guide contains information for Pascal program­
mers. The MicroPower/Pascal Run-Time Services Manual and the MicroPower/Pascal 1/0 Services
Manual cover MACR0-11 programming.

6.2 Compile or Assemble Source Code
Each Pascal program statement expands into one or more machine instructions. The
MicroPower/Pascal compiler translates your Pascal source code into machine language and
checks for program syntax errors and improperly declared or misused program variables. Any
errors are reported to you for corrective action. If your program is error-free, the compiler
produces an optimized object module.

The MACR0-11 assembler translates the MACR0-11 program into machine language.
Compilation or assembly produces an object module. The automatic command procedure,
MPBUILD, may perform this step for you. Note that MPBUILD accepts source or object code.

6.3 Build the Application Image
You use MPBUILD and the MicroPower/Pascal utility programs to build the application image.
But, before you can use these programs, you need to define your system configuration.

6. 3. 1 Conftguration File

The configuration file, consisting of a series of MACR0-11 instructions, provides information
describing the hardware of the target system and its memory characteristics. That information
is needed by the build utilities. The configuration file is assembled, and the resulting object file
is input to the build utilities. The utilities use the resulting object module to tailor both the
memory image in general and the kernel in particular to your specifications.

Your MicroPower/Pascal distribution kit contains several versions of a configuration file. You
select the one that most closely matches your target system characteristics and, if necessary,
edit that file to conform to your target requirements.

As in the compile step, this step may be accomplished during the MPBUILD process. The
configuration file is described in detail in the Micro Power /Pascal Run-Time Services Manual.

Development Cycle Overview 6-3

6.3.2 MPBUILD

This section introduces the command file generator, MPBUILD, which you use for most
application building. MPBUILD generates a command file that, when run, invokes the individual
build utilities.

MicroPower/Pascal provides a command file generator, MPBUILD (abbreviated to MPBLD for
RT-11 users), that facilitates the application-building process. Through a question-and-answer
dialog, MPBUILD solicits information that enables it to create a command file containing all
MACRO, Pascal, and build utility (MERGE, RELOC, and MIB) command lines needed to build
your application. MPBUILD automatically includes the DIGITAL-supplied system macro and
object libraries your application needs.

MPBUILD provides a fast, efficient way to build most applications. By using MPBUILD, you
do not need to invoke each build utility iildependently. MPBUILD provides the most widely
needed capabilities of the build utilities, allowing you to use it to build most applications. By
executing the command file produced by MPBUILD, you create the memory image (.MIM) file
that you load into your target system. (See Chapter 2 of the appropriate system user's guide
for more information on MPBUILD's capabilities and limitations.)

MPBUILD is a versatile tool. It can perform an entire application build cycle or part of a build
cycle. How you answer a question determines the next question you are asked. An MPBUILD
cycle may include these four sections corresponding to the steps needed to build a complete
application:

1. Kernel and global information

2. System processes

3. User processes

4. Optional bootstrap

6.3.3 MicroPower/Pascal Build Utilities
The MicroPower /Pascal build utilities (MERGE, RELOC, and MIB) perform the same function
as a linker in a traditional development system. In most of your application building, you do
not invoke these utilities directly. The command file that MPBUILD generated for you invokes
them.

MicroPower/Pascal utilities accept as input object modules of compiled or assembled source
code contained in files. You specify these files as prompted by MPBUILD or in command lines
when invoking the utility programs yourself.

MicroPower /Pascal utilities perform the following functions:

• Resolve references from one input module to another or to program modules contained in
module libraries

• Combine the object modules into an executable unit

• Relocate the addresses of separate sections of code in the object modules, and allocate
sufficient target system memory to each part of the application

• Set up debugging information (names, addresses, and relationships of program variables) in
the host and target for later use

• Produce listings and maps

6-4 Development Cycle Overview

Figure 6..:.2 follows the path of four object files as they are processed by the build utilities and
become part of the target application. A description of each build utility follows.

Figure 6-2: MlcroPower/Pascal Utilities
From a module library

CBC ACD c

ABCD.MOB

ABCD.PIM

~ = Reference to another module

r---------,
I I
I I

ABCD Data Area

Kernel

ABCD Code

Kernel

Memory Image

RAM
ROM

ML0-762-87

Development Cycle Overview 6-5

6.3.3. 1 MERGE

The MERGE utility accepts multiple object modules containing compiled/ assembled source
code and data as input. Each object module contains program sections (p-sects) created by the
MicroPower/Pascal compiler or specified by the MACR0-11 programmer. MERGE combines
p-sects of identical names from all input object modules, producing a merged object module
(.MOB).

MERGE also uses the symbol tables created in each object module during compilation to resolve
intermodule references. For every reference to a declared external name, MERGE looks for a
declared global definition in the other object modules. MERGE flags references that cannot be
resolved because the referenced symbol is not defined.

The first component of the application constructed by MERGE is the kernel of basic services
required to support your processes. In this case, inputs to MERGE are the object module
containing the configuration information and the kernel system library of object modules.
References to these modules made in the configuration file are resolved, and the selected kernel
becomes ready for relocating.

6.3.3.2 RELOC

The RELOC utility assigns addresses to program sections within a merged object module. The
result is a process image module (.PIM). RELOC may be used to assign base addresses to
individual program sections.

RELOC separates program sections according to their read-only /read-write attributes and
modifies the p-sects to execute properly at their assigned addresses. RELOC optionally creates
a symbol table file containing debugging information.

6.3.3.3 MIB

The MIB (memory image builder) utility creates the executable application by placing all its
components into one structure, called the memory image file. MIB inserts each process image
module-kernel, system, and user-into the memory image.

MIB first creates a memory image file and installs the kernel process image (.PIM) file in it.
Once the new memory image is created with the kernel in place, MIB is invoked to include
each successive process image module in the application.

MIB lets you control the placement of process images in memory. MIB can also create an
optional symbol file used by the debugger program and/ or include a bootstrap program for
installing the application into the target system.

6.4 Load the Application into the Target
You can transfer the application to the target system in three ways:

• Down-line load if a communication link exists between the two systems

• Media and hardware-boot on the target system

• Program into a PROM chip for installation on the target

6-6 Development Cycle Overview

ML0-763-87

6.5 Test and Debug the Application
The MicroPower /Pascal debugger, P ASDBG, is an interactive debugging tool that allows you

'to monitor application execution on the target system from your host system terminal. To use
P ASDBG, specify the DEBUG = YES option in your configuration file. This adds the debugger
service module (DSM) to your application. You must also answer YES to the debug question in
the MPBUILD dialog.

MicroPower /Pascal allows you to create the application one piece at a time, debugging each
portion separately in the target system, then re-creating the entire application as each piece is
tested.

A serial communication line connects the host system to the application running in the target
system. The debugger in the host system communicates with the DSM residing in the target
system. Using the debugger program residing on your host system, you can down-line load
the application into the target, then using P ASDBG commands, control its execution. The
MicroPower /Pascal Debugger User's Guide includes a tutorial debugging session that features
basic debugging commands.

The MicroPower /Pascal debugger is symbolic; it recognizes the names of entities in the
application. P ASDBG uses a symbol table created by the MIB utility. The symbol table
contains the names defined in the original MicroPower /Pascal code for the application. That
table represents the relationships among all symbols as well as their addresses. You determine
the mode of data interpretation and the scope of symbols.

Development Cycle Overview 6-7

You can enter and/ or display memory contents in any of the following representations:

• ASCII

• Binary

• Decimal

• Hexadecimal

• Octal

• PDP-11 instruction

• RAD SO

Your choice determines the mode of the debugger's presentation of memory contents. In
addition, P ASDBG can interpret data in bytes, words, records, or arrays.

Any symbol used in the source code can potentially apply to more than one location in memory,
because of duplicate naming or multiple uses of the same section of code during execution. As
a result, for debugging, you use a path name to distinguish each instance of a symbol from all
other references to that name. A· typical path name may look like the following:

program \ { ~:~~:ure } ... \ symbol
function

Each part of the path name leads to the next part, narrowing the scope, until the symbol has
been identified. (Path names may contain more than one process, procedure, or function.)
When the scope of symbols and the mode of data interpretation are clear, you can easily use
the P ASDBG commands to check on the progress of your application.

P ASDBG gives you a range of tools to use in testing your application for errors. When P ASDBG
is running, you can use specific debugging commands to:

• Examine/modify memory locations

• Determine the scope of a process or a variable

• Reveal the location and value of named data structures

• Set breakpoints, tracepoints, or watchpoints throughout the program

• Set different mapping modes so you can access the entire memory space used by your
application (mapped systems)

• Step through program execution one Pascal statement or one MACR0-11 instruction at a
time

• Create DO lists-groups of commands that execute in sequence at breakpoints or tracepoints
or as you step through an application

• Display lines of source code and display source code corresponding to the current instruction

Figure 6-3 shows MicroPower /Pascal debugger features.

6-8 Development Cycle Overview

Figure 6-3: MlcroPower/Pascol Debugger Features

PROCESS "COUNTRY"

PROCEDURE "STATE"

PROCEDURE "TOWN"

BREAK-
POINT

VAR
l:PERSON

TRACE-
POINT

8 ' RT·
REpO

WATCH-
POINT

(sJJ

(A) Set Scope

(B) Control Execution

(C) Examine by Address
or Variable Name

ML0-764-87

Development Cycle Overview 6-9

6.6 Rebuild the Debugged Application
An application constructed for debugging does not contain optimized code and does contain
information required for debugging. When you are satisfied with the application, you may
rebuild it to obtain an application of greater efficiency and smaller size. You do so by editing
the configuration and prefix files to eliminate debugging information and then rebuilding your
application, using MPBUILD.

If you choose to transfer your application to the target system by means of bootable media, add
the bootstrap option (/BS or /B) to the MIB command line.

6-10 Development Cycle Overoiew

Chapter 7

Building and Running the CARS Program Examples

This chapter guides you through two examples that use the MPBUILD command procedure to
build, down-line load, and run the CARS program examples. The first example steps through
a complete build cycle. The second example is a partial build using an existing kernel: the one
built for the first example. This example shows the use of the build command file generator for
both a complete and a partial build. The programs selected for these examples are CARS2 and
CARS3, the same program development examples described in Chapter 5.

7. 1 Sample Build Session: CARS2 Program
To create the memory image (.MIM) and optional debug information (.DBG) files needed to run
the application on your targ.et, follow these steps:

1. Prepare source files.

2. Configure hostjtarget and know target characteristics.

3. Invoke MPBUILD dialog.

4. Run resulting command file.

5. Use P ASDBG to load resulting .MIM file into your target.

7. 1. l Prepare Source Files

Use the file CARS2.PAS contained in your MicroPower/Pascal distribution kit. On RSX systems,
copy that file from directory [2,10] to your working directory. On MicroRSX systems, copy that
file from directory [MPPKIT] to your working directory. On VAX/VMS systems, copy that file
from MICROPOWER$LIB to your working directory. On RT-11 systems, copy that file from
the LB: area to DK:.

Copy the configuration file (CFDUNM.MAC) and the prefix file (TTPFX.MAC, located in the
same directory as CARS2.P AS) to your working directory. Rename the configuration file you
copied to KERNUM.MAC. That unique name identifies the specific configuration file for this
particular application and leaves the original configuration file intact.

Building and Running the CARS Program Examples 7-1

7. 1. 2 Configure the Hardware
The host and target hardware must be configured to use P ASDBG, the symbolic debugger,
for down-line loading the application examples. P ASDBG uses a serial line to communicate
between the host and target systems. P ASDBG down-line loads your application through this
serial line.

The target system must include a DIGITAL VTl00/200 terminal with a baud rate set to 9600
as console device and 16K words of RAM. See your MicroPower /Pascal installation guide
for detailed information on using the P ASDBG symbolic debugger to configure your system's
hardware for down-line loading.

7. 1.3 Invoke the Automatic Build Command Procedure
The MPBUILD dialog question sequence is partially determined by your answers. Y or N is
sufficient to answer YES or NO questions, and bracketed answers indicate the default. You may
press the RETURN key to accept the default response. A long form of dialog, providing help
information for each question, is available; alternatively, you may get help on a specific question
by typing a question mark (?). The examples in this chapter use the short form of dialog, since
necessary explanations are provided in the accompanying text as you go along. The MPBUILD
dialog questions are printed in bold type to distinguish them from the explanatory text.

Depending on which host system you use, type the appropriate command at your system-level
prompt:

RSX users: >MPBUILD

RT-11 users: .IND LB:NPBLD

VAX/VMS users: $ MPBUILD

LB: is the RT-11 logical disk device containing MPBLD.COM.

Note
Device:[directory] represents your default VMS or RSX device and directory. If
you are working in an RT-11 environment, you should see DK:, the default
RT-11 logical disk. This book indicates device:[directory].

MPBUILD responds with messages similar to the following:
'

MicroPower/Pascal-VMS Vx.xx Build Command Procedure Generator

Type 11 ? 11 for help at any question.

Do you want the long form of dialog ? [no] :

Since this example uses the short form, press the RETURN key.

Do you wish to build a kernel ? [yes] :

Press the RETURN key, since you are building a complete application, which includes the kernel
image file as well as the application image file.

Kernel memory image file name ? :

7-2 Building and Running the CARS Program Examples

Type the name of a file that identifies the kernel for this application. MPBUILD lets you
choose any name you like. Assume you are building an unmapped kernel and want to name
it KERNUM.MIM. Do not specify a file type in your answer. Type KERNUM.

System config file spec? [device:[directory]KERNUM.MAC;]:

The system configuration file is indicated in the default response. Press the RETURN key.

Do you wish to modify device:[directory]KERNUM.MAC; ? [no]:

Do not modify the existing kernel/ driver configuration file; that is, you do not want to add
any DIGITAL-supplied system processes (device drivers and/or file system processes). Press
the RETURN key.

Do you wish to build only the kernel/drivers ? [no]:

Press the RETURN key.

Application memory image file name ?

Type the name of the application source file. Type CARS2. (The file type is supplied by
default.)

Output command file spec ? [device: [directory]CARS2.COM;]:

When executed, that command file produces the desired .MIM file needed for down-line loading.
Press the RETURN key.

Mapped image ? [no] :

You are building an unmapped image. Press the RETURN key.

Debug support required ? [yes] :

You want debug support. Press the RETURN key.

Optimize the kernel ? [no] :

You do not need to optimize the kernel. Press the RETURN key.

Instruction set hardware ? {NHD,FPP,EIS,FIS} [NHD]:

Press the RETURN key.

Build a shared library ? [no] :

This application does not use shared libraries. Press the RETURN key.

Beginning system process section.

Driver prefix file spec ?

This application requires the terminal driver. Specify the TTPFX prefix file by typing TTPFX.

Do you wish to modify device:[directory]TTPFX.MAC; ? [no]:

Press the RETURN key.

Driver prefix file spec ?

Building and Running the CARS Program Examples 7-3

The question is repeated in case other drivers are to be built. Press the RETURN key to indicate
a null response and terminate this single-question loop.

User process build phase.

Beginning user process section.

User process file spec? [device:[directory]CARS2.PAS;]:

MPBUILD assumes that the Pascal process you want to build is called CARS2.PAS. You can
press the RETURN key or, if you want to produce a listing file, type /LIST and then press the
RETURN key.

Additional ,module or library ? :

No additional modules or libraries are required. Press the RETURN key to indicate a null
response and terminate this single-question loop.

User process file spec :

No additional user processes are to be built and installed in this memory image. Press the
RETURN key to terminate this single-question loop and conclude this MPBUILD session.

MPBUILD informs you of successful completion with this message to VMS users:

%MPBUILD-S-Command procedure generated - DEVICE:[DIRECTORY]CARS2.COM;

RSX users receive this message:

MPBUILD-I-Command procedure generated - DEVICE: [DIRECTORY]CARS2.CMD

RT-11 users receive this message:

?MPBLD-I-Command procedure generated - DK:CARS2.COM
GEOF

7. 1.4 Execute the Command File
Your directory now contains CARS2.COM, the command file that, when executed, produces the
files needed to run your application. The VMS version of that file is reproduced here:

$
$! MicroPower/Pascal V2.4 Build Command Procedure
$! Application: CARS2
$! Created on 9-AUG-1987 10:16:55.55 by USER
$
$!Command file: DISK:[USER]CARS2.COM;
$! Kernel build: Yes
$! Application build: Yes
$! Optimize kernel: No
$! Debug support Yes
$! Code type: NHD
$! Shared library: None
$! Unmapped Ram application
$

7-4 Building and Running the CARS Program Examples

$ verify$ = f$verify(O)
$ OMICROPOWER$LIB:MPSETUP
$ if verify$.eq. 1 then set verify
$
$ set on
$ on warning then goto abort$
$ on control_y then goto exit$
$ old$dir = f$logical("sys$disk") + f$dir()
$set default DISK:[USER]
$
$assign 1f$logical(11 MICROPOWER$LIB 11

)
1 LB$

$ assign DISK: [USER] DF$
$
$! Build kernel and create memory image
$
$ RUN SYS$SYSTEM:MAC

KERNUM = LB$:COMU/ML,DF$:KERNUM.MAC;
$ MPMERGE

KERNUM.KMO = KERNUM/DE,LB$:PAXU/LB/DE
$ MPRELOC

KERNUM, ,KERNUM = KERNUM.KMO
,,KERNUM.DST = KERNUM.KMO/DE

$ MPMIB
KERNUM,,KERNUM = KERNUM, ,KERNUM.DST/KI/SM

$ DELETE KERNUM.OBJ;*
$ DELETE KERNUM.KMO;*
$ DELETE KERNUM.PIM;*
$ DELETE KERNUM.DST;*
$
$! Build and install device drivers
$
$ RUN SYS$SYSTEM:MAC

TTPFX = LB$:COMU/ML,DF$:TTPFX.MAC;
$ MPMERGE

TTPFX = TTPFX,DF$:KERNUM.STB,LB$:DRVU/LB
$ MPRELOC

TTPFX = TTPFX,KERNUM
$ MPMIB

KERNUM = TTPFX,KERNUM/SM
$ DELETE TTPFX.OBJ;*
$ DELETE TTPFX.MOB;*
$ DELETE TTPFX.PIM;*
$
$! Create application memory image
$
$ COPY KERNUM.MIM CARS2.MIM
$ COPY KERNUM.STB CARS2.STB
$ COPY KERNUM.DaG CARS2.DBG
$ if f$search("KERNUM.MIM;-1") .nes. "" then -

PURGE/KEEP=1 KERNUM.MIM
$ if f$search("KERNUM.STB;-1") .nes. "" then -

PURGE/KEEP=1 KERNUM.STB
$ if f$search("KERNUM.DBG;-1") .nes. "" then -

PURGE/KEEP=1 KERNUM.DBG
$
$ Build and install user processes
$
$ MPPASCAL/INSTRUCTION=(NHD)/OBJECT=CARS2/LIST=CARS2 DF$:CARS2.PAS;/DEBUG
$ MPMERGE

Building and Running the CARS Program Examples 7-5

CARS2 = DF$:CARS2.0BJ/DE,DF$:CARS2.STB,LB$:FILSYS/LB,LB$:LIBNHD/LB
$ MPRELOC

CARS2,,CARS2.PST = CARS2/DE,CARS2
$ MPMIB

CARS2,,CARS2 = CARS21CARS2,CARS2.PST/SM
$ DELETE CARS2.PST;*
$ DELETE CARS2.MOB;*
$ DELETE CARS2.PIM;*
$ DELETE CARS2.0BJ;*
$ if f $search (11 CARS2. MIM; -1 11) • nes. 1111 then -

PURGE/KEEP=! CARS2.MIM
$if f$search(11 CARS2.STB;-1") .nes. 1111 then -

PURGE/KEEP=! CARS2.STB
$ if f$search(11 CARS.DBG;-1 11) .nes. 1111 then -

PURGE/KEEP=! CARS2.DBG
$
$exit$:
$
$ set noon
$ set default 1 old$dir 1

$ deassign LB$
$ deassign DF$
$ exit 1 .or. %x10000000
$
$abort$:
$
$ set noon
$ write sys$output 1111

$ write sys$output 11%CARS2.COM-F-Build error; build cycle aborted"
$ write sys$output 1111

$ set default 1 old$dir 1

$ deassign LB$
$ deassign DF$
$ exit 2 .or. %x10000000

At your system prompt, type the command @CARS2 to invoke the command file and produce
the .MIM and .DBG files you need to down-line load and debug your application.

7. 1.5 Load and Run the Application
Depending on which host system you use, type the following command to run the symbolic
debugger, P ASDBG:

RSX:

RT-11:

VAX/VMS:

>PDB

.RUN LB:PASDBG

$ PASDBG

P ASDBG responds with a debugger version number, a message reporting the state of the target
system, and the following prompt:

PASDBG>

Down-line load the program into the target by typing the following command:

PASDBG>LOAD CAl\82

7-6 Building and Running the CARS Program Examples

Start program execution by typing the following command:

PASDBG>GO

You should see the following message, which indicates that the program has started:

[Target execution resumed - type RETIJRN to stop target]

To stop the application, press the RETURN key. To restart the application after stopping it,
type the following lines on the host terminal:

PASDBG>INIT/RESTART
PASDBG>GO

7 .2 Sample Build Session: CARS3 Program
To build CARS3, you may repeat the build procedure as previously described, substituting
CARS3 each time CARS2 is indicated. (CARS3.PAS may be copied from the same directory
as CARS2.P AS. See Section 7.1.1 for the location of these files.) However, rather than the
complete build performed in the previous build, you need only perform a partial build by using
the kernel you built for the previous application.

At your system prompt, invoke MPBUILD with the appropriate command as previously
described. You should see the identical system messages as before:

MicroPower/Pascal-VMS Vx.xx Build Command Procedure Generator

Type 11 ? 11 for help at any question.

Do you want the long form of dialog? [no]:

Press the RETURN key.

Do you wish to build a kernel ? [yes] :

Type NO, since you are using KERNUM.MIM, which is already built.

Input memory image file name 1 :

Type KERNUM to identify the kernel for this application. Do not specify a file type in your
answer.

Application memory image file name ? :

Type CARS3. (The file type is supplied by default.)

Output command file spec 1 [device:[directory]CARS3.COM;]:

Press the RETURN key.

Mapped image 1 [no] :

Press the RETURN key.

Debug support required 1 [yes] :

Press the RETURN key.

Instruction set hardware ? {NHD,FPP,EIS,FIS} [NHD]:

Building and Running the CARS Program Examples 7-7

Press the RETURN key.

Build a shared library ? [no] :

This application does not use shared libraries. Press the RETURN key.

Beginning system process section.

Additional driver prefix file spec ?

Press the RETURN key.

User process build phase.

Beginning Shared Library section.

Beginning user process section.

User process file spec

You must supply the file specification to this question. Type CARS3. Add the /LIST option if
you want to produce a listing file.

Additional module or library ?

Press the RETURN key.

User process file spec :

Press the RETURN key to terminate this single-question loop and conclude this MPBUILD
session.

MPBUILD informs you of successful completion with the appropriate message.

At your system prompt, type the command @CARS3 to invoke the command file and produce
the .MIM and .DBG files needed to down-line load and debug this application.

To down-line load and run this application, use the procedures described in Section 7.1.5.

7 .3 Future Use of MPBUILD
When using MPBUILD again on your own, you may want to refer to the appropriate host
system user's guide for information about the capabilities and limitations of MPBUILD.

7-8 Building and Running the CARS Program Examples

Glossary

Terms in the Glossary are used throughout the documentation set.

Absolute section (A-sect)
A section of code that must reside in specific memory locations; not relocatable.

Application
A MicroPower/Pascal memory image consisting of the kernel, system processes, and one or
more application programs.

Application program
In MicroPower/Pascal, a MACR0-11 or Pascal program that was developed by the user under
a host operating system and that runs on a stand-alone target system. Compare with System
process.

A-sect
See Absolute section

Asynchronous
Not operating in exact time coincidence.

Attribute
A MicroPower/Pascal language feature that facilitates control over certain aspects of a program.
For example, attributes allow you to determine allocation characteristics of data structures and
describ~ the real-time properties of processes.

Binary semaphore
A variable whose value may be 0 or 1. Binary semaphores are managed by the kernel in
response to requests from processes and interrupt service routines. Each binary semaphore can
have a queue of waiting processes. See also Semaphore, Counting semaphore, Queue semaphore.

Glossary-1

Block
• A predefined extent of data. On mass storage devices, a block is a group of logically adjacent

words or bytes. The block size for most DIGITAL mass storage devices is 512 bytes. A
block of data is normally the smallest system-addressable segment of a mass storage device
involved in I/O.

• In Pascal, a statement sequence delimited by the reserved words BEGIN and END; can be
used anywhere a statement is used.

• In MicroPower /Pascal, to inhibit the execution of a process until some condition is met.

Blocked (process)
A process waiting for an event to occur (for example, a specific semaphore to be signaled) before
continuing execution. A blocked process is in the wait-active, wait-suspended, exception-wait­
active, or exception-wait-suspended state.

Block 1/0
The transfer of a predefined amount (block) of data to or from a peripheral device. In block
data transfers, bytes are loaded into consecutive storage locations. Only the address of the first
byte needs to be specified.

Bootstrap
A short program or routine whose first instructions are sufficient to start a more complex system
of programs. Bootstraps are generally used to load programs into memory from I/O devices.

Breakpoint
A location in a MicroPower /Pascal program marked for debugging with the P ASDBG symbolic
debugger. When a breakpoint is· reached, program execution stops, and the debugger displays
a program status message and may optionally execute a DO list.

Build utilities
A set of three utility programs that transform an object module produced by either the compiler
or assembler into a loadable memory image and optionally create symbolic information files for
debugging. See MERGE, MIB, RELOC.

Compilation unit
Pascal source code that is either a program or a module. See Module, Program.

Communication link
A physical connection between two or more processors used for transferring data. For example,
a serial I/O interface is a communication link through which data is sent one bit at a time. The
bit sequence is organized by prearranged protocol rules.

Concurrent
Occurring at the same time. In MicroPower /Pascal, concurrency indicates the sharing of the
CPU resource by cooperating processes whose lifespans overlap. Process~s appear to execute
simultaneously.

Glossary-2

Configuration ftle
A sequence of MACR0-11 instructions that describes the hardware of the target system and its
memory characteristics.

Context
The set of data defining the environment, both hardware and software, in which a process or
other code entity executes. Hardware context may include the contents of the general registers,
memory-mapping registers, floating-point registers, and a processor status word. Software
contE7xt includes the contents of various flags and pointers maintained by the kernel.

Context switching
Saving the hardware and software environment of a process that has lost control of the CPU
and establishing similar information for a new process.

Control and status register (CSR)
A single interface register that monitors the status of an 1/0 device and controls its operation.
Some devices have more than one CSR.

COPYB
A MicroPower/Pascal utility program that prepares a memory image for bootstrapping into the

. target system memory.

Counting semaphore
A variable whose value varies between 0 and 65535. Counting semaphores are managed by
the kernel in response to requests from processes. Each counting semaphore can have a. queue
of waiting processes. See also Semaphore, Binary semaphore, Queue semaphore

Crltlcal section

CSR

A portion of a process that must complete before a specific portion of another process can
execute.

See Control and status register

Deadlock
The condition of two or more processes preventing each other from accessing needed resources.
Deadlocked processes block each other, waiting for resources that are never available.

Debugger
See PASDBG

Declaration (section/ entry)
A code fragment that describes a subprogram, process, or data item. In MicroPower/Pascal,
labels and identifiers for constants, functions, procedures, processes, types, and variables must
be declared. The part of a program or subprogram block that contains the declarations is called
the declaration section.

Device driver
A process that drives or services an 1/0 device and controls the operation of the device.
Synonymous with device handler.

Glossary-3

Device register
A register associated with a hardware device. Device registers store information about the status
and control of the associated device or exchange data with a device.

Down-line loading
Loading a program into the target processor's memory over a serial-line communications link
from the host operating system.

Dynamic allocation
The granting of a resource to a process during execution. In dynamic allocation, the needed
resource comes from a pool and may not be available when requested. In static allocation,
access is established during system startup.

Dynamic process
A process not defined during target system initialization but created by the action of another
process during operation of the application.

EPROM (Eraseable programmable read-only memory)
A kind of PROM that can be erased, thereby returning the device to a blank state. See also
PROM, ROM

Ethernet
A local area network component that provides a high-speed communications channel, optimized
to "connect information-processing equipment in a limited geographic area.

Exception condition
An event detected by hardware or software that alters the normal flow of instruction
execution. An exception condition is associated with the execution of an instruction and
occurs synchronously with process execution. Examples are arithmetic overflow or underflow,
illegal address references, and insufficient stack space.

Executable Image
See Memory image

Extended address
Memory or device addresses in excess of 16 bits. Mapped memory systems use extended
addresses in order to access more than 64KB of address space.

External symbol

Flag

A link between independently compiled or assembled programs or modules. An external symbol
in one module represents a symbol globally defined in another module.

A variable or register used to record the status of a program or device.

Function
A Pascal program unit that returns a value when executed. A function consists of a heading,
which includes the function's name and result variable type, and a block.

Glossary-4

General process
In mapped target systems, a process without special mapping to kernel or device register areas
of memory.

Global symbol
A link between independently compiled or assembled program or module. A global symbol is
defined in one module and can be referenced from other modules.

Handler
See Device driver

Heap
An area of memory in a Pascal-implemented MicroPower/Pascal application program for
dynamic allocation of pointer objects. Dynamic processes' stacks are allocated from the heap.

Host processor
A computer running an RSX, RT-11, or VMS operating system on which MicroPower/Pascal
application programs are developed.

Intermodule reference
A reference made in one module or program to a symbol defined in another module or program.

Interrupt
A signal from a device to the processor that changes the flow of instruction execution on
the interrupted processor. Interrupts occur asynchronously with respect to the execution of
processes.

Interrupt service routine (ISR)

ISR

A routine designed to execute at a CPU priority level greater than 0 when a particular device
signals the processor with an interrupt. The processor locates ISRs in memory, using an address
vector triggered by the interrupting device. ISRs are also called interrupt-handling routines or
interrupt handlers.

See Interrupt service routine

Kernel
The processor-specific portion of the MicroPower /Pascal run-time support software that
manages the processor state, handles interrupts, and provides interprocess synchronization
and communication services. The kernel provides basic, real-time control and service functions
for all processes in the target system. Kernel components include the system scheduler and
dispatcher and many service functions that can be invoked by the user. Categories of kernel
services include:

Creating/ deleting processes
Dispatching exceptions
Dispatching interrupts to the appropriate interrupt service routines
Managing (allocating)· resources
Scheduling processes
Synchronizing processes

Glossary-5

Library flle
A file containing one or more relocatable object modules used to incorporate other programs.
These program modules might be used repeatedly in a program or by more than one program.
Library file modules are merged with user-program modules during MicroPower/Pascal
development.

Library module
A module from a library file.

Linking
Converting object modules to a format suitable for loading and executing. Linking object
modules:

• Assigns absolute addresses

• Produces a load map and creates a symbol table

• Relocates the program sections within the object modules

• Resolves global symbols that are defined in one module and referenced by external symbols
in another

• Searches library files to locate unresolved global symbols

In MicroPower /Pascal development, the linking functions are performed by executing the
MERGE, RELOC, and MIB utilities.

Load map
A table produced during creation of a MicroPower /Pascal application program that provides
information about the load module's (memory image's) characteristics; for example, the transfer
address, the global symbol values, and the low and high address limits of the relocated code.

Load module
A program in a format for loading and execution (relocated, with references to labels
and identifiers resolved). A completed memory image file is the load module for a
MicroPower /Pascal application.

Mapped memory
Memory that is divided into virtual segments, or pages, each located separately in (mapped
into) physical storage. Mapping translates the 16-bit virtual addresses used with LSI family
processors into 18-bit or 22-bit physical memory addresses. Specifically in the LSI-11/23, up
to four 64K-byte virtual address spaces can be mapped into noncontiguous SK-byte segments
(18-bit mode) or 64 different spaces (22-bit mode).

Memory Image
The file resulting from running the MIB utility that contains the image of the application program
as it appears in the target system memory. This file can be down-line loaded, bootstrapped
from bootable media, or placed in ROM for execution in the target. The memory image file
name has the extension .MIM.

Glossary-6

Memory Image builder (MIB) ·
The MicroPower/Pascal utility program that combines the following components into a memory
image file:

• Bootstrap loader· (if needed)

• Kernel

• Relocated process image file (file containing an image of the program as it appears in its
portion of the target system memory)

This memory image file is loaded into the target processor. MIB optionally creates a debug
symbol table file (.DBG).

MERGE

MIB

The MicroPower /Pascal utility program that combines two or more object modules, resolving
intermodule references, if possible, and updating the relocation directories.

See Memory image builder

Modular programming
A method of constructing a program from several programming units called modules. Modular
programming helps organize the program concepts. Code sections can be written either as
separate parts of one source program (procedures in MicroPower /Pascal) or as distinct modules
compiled into separate, cross-referenced object modules to be linked into one load module.

Module
In MicroPower /Pascal, a compilation unit with a header containing the reserved word
"MODULE" and one or more declarations. Compare with Program.

MPBUILD
A tool that you use to build most applications. A command file generator that uses a
question/ answer dialog to build a command file that, when invoked, builds your application.
May perform an entire build cycle or part of a build cycle.

Multlprocesslng
The simultaneous execution of two or more parts of the same program by two or more processors.

Multlprogrammlng
Apparently simultaneous execution of two or more programs or portions of a program by a
single processor. Since these programs execute instructions alternately in the processor, more
than one program is in progress at one time.

Mutex
In MicroPower /Pascal, a mechanism to enable efficient mutual exclusion in the same program.
A Mutex is an optimization of a binary semaphore.

Mutual exclusion
A mechanism that protects the integrity of shared resources, preventing simultaneous access.

Glossary-7

Object module
The primary output of an assembler or compiler, which can be linked with other modules and
loaded into memory as part of an executable program. The object module is composed of
the relocatable machine language code, relocation information, and a global symbol table that
defines the labels and identifiers meant to be referenced by other parts of the program. The
object module may also contain optional debug symbol information.

Object time system COTS)
The MicroPower /Pascal library of object modules that is called by compiled or assembled code
to perform predefined operations.

Option

OTS

An element of a command or command string that enables the user to select alternatives
associated with the command. In MicroPower /Pascal, an option consists of a slash charact~r
(/) followed by the option name and, optionally, a colon and an option value. Synonymous
with "qualifier" anq "switch."

See Object time system

OVERLAID attribute
In MicroPower/Pascal language, an attribute applied to a program data area or module data
area to be shared with another program or module during execution.

Packet
A communication message that is passed between processes.

Packet Queue
A synchronization mechanism for serializing the arrival of packets for a process. The process
pulls one packet at a time from the queue.

Page address register (PAR)
A register containing the base address of one of eight SK-byte blocks of physical memory.

Page descriptor register (PDR)

PAR

A register containing access information about each SK-bytes memory page whose base is
described by the corresponding PAR (length, R/O versus R/W, etc.).

See Page address register

PASDBG

PCB

The symbolic debugger for MicroPower /Pascal applications. P ASDBG allows symbolic,
interactive access and control of a target system. PASDBG recognizes Pascal data types,
user-defined data types, kernel structures and can report the target system state.

See Process control block

Glossary-8

PDR
See Page descriptor register

Physical address
The hardware address of a main memory loca~~on. Physical addresses in the ,LSI-11 /23 are
from 0 to 4M bytes (in 22-bit mode with optional MSV-llL). Virtual addresses of up to 16 bits
(64K bytes) can be relocated into the larger physical address space hy memory mapping. See
also Virtual address

Primitive
A fundamental operation performed by the kernel when requested by a process in the application.
Primitive operations are indivisible and must complete; they do not block themselves. In the
MicroPower/Pascal language, primitives are invoked implicitly by calls to predefined real-time
procedures.

Privileged process
In mapped target systems, a process with access to both kernel and device-register areas of
memory.

Procedure
A Pascal program unit that consists of a procedure heading and a block. When called, the
procedure is executed as a unit.

Process
A program unit that may operate in parallel (concurrently) with other program units. Processes
may be implemented on multiprocessors or, through interleaved execution, on a single processor.
Specifically, a process is an independent scheduling unit that represents an asynchronous
CPU activity relative to other processes for the purposes of the MicroPower/Pascal kernel.
Synchronization among processes is achieved by primitive operations provided by the kernel.
A process is similar to a task in other programming contexts.

Processes are the basic, logical entities of the MicroPower/Pascal application. Rates of progress
may vary, since processes execute cooperatively in the target processor, affecting one another's
execution by operations on semaphores. A process is defined by hardware and software
context information stored in process control blocks. Four.types of processes exist in a mapped
environment: general, p.evice-access, driver, and privileged.

Process control block (PCB)
The activation record of a MicroPower /Pascal process. The PCB preserves the software and
hardware context of the process and reflects the state of the process (see Process state). The
PCB contains:

•

•
•

•
•

Hardware context of the process (including the contents of the general registers, the FPU
registers, and the PSW.)

Process priority

Software context of the process (contents of associated flags and pointers maintained by
kernel operations)

State code and substates

State queue pointers

Glossary-9

Process name
A 6-character alphanumeric string that identifies a process. When a process is created, the user
specifies its name, which is stored in the kernel's system name table. The process name can
also be kept in a process descriptor block allocated from the address space where that process
resides.

Process state
Every process exists in one of the possible process states at any time. These states are:

E . . { Active } • xcept1on-wa1t S d d uspen e

• R d { Active }
ea Y Suspended

• Run

• Wait { Active }
Suspended

Process synchronization
In MicroPower /Pascal, coordinating the execution of interrelated processes. Semaphores and
ring buffers ~re basic mechanisms that synchronize MicroPower /Pascal processes.

Program
In MicroPower /Pascal, a compilation unit composed of a header containing the reserved
word "PROGRAM," a declaration section, and an executable section. When acted on by
the MicroPower /Pascal utilities, a program results in a static process within the application.
Compare with Module.

Program section (P-sect)
One of four named units created by the MicroPower/Pascal compiler from Pascal source code.
These units are used to apportion the target system memory into sections for:

• Executable code

• Memory space for stack and heap

• Storage for constants

• Storage for global variables

The memory for the stack is dynamically allocated during execution and has the read/write
(R/W) attribute. Others are read only (RO).

Programmable read-only memory (PROM)
A type of read-only memory on a silicon chip that is manufactured in the blank state (zeros or
ones). You give the bit pattern for your application program by formatting the chip in a PROM
formatter. The bit pattern is permanent. See also ROM, EPROM

PROM
See Programmable read-only memory

Glossary-10

P-sect
See Program section

Queue elements
Areas of data managed by the kernel, allocated from the kernel pool, and used for communication
between processes.

Queue semaphore
An extension of a counting semaphore. In addition to its own integer value, a queue semaphore
has queue elements associated with it. The number of queue elements equals the value of
the semaphore. When a process signals the queue semaphore, it increments the semaphore
by 1 and adds one element to the queue. When a process waits on the queue semaphore, it
removes one queue element and decrements the semaphore. If the semaphore is 0 (and the
associated queue is empty), the waiting process blocks itself and cannot resume until another
process signals the semaphore and adds an element to the queue. See also Semaphore, Binary
semaphore, Counting semaphore

Radlal-serlal protocol

RAM

A prearranged sequence of signals on a communication line. The TU58 device communicates
with its device driver process, using radial-serial protocol over the serial line that connects it to
the processor.

See Random-access memory

Random-access memory (RAM)
A read/write memory device. Application programs that require storage space for variables
and buffers can write data into RAM locations and can read the contents of RAM locations.
Compare with ROM.

Read-only memory (ROM)
A memory device manufactured with binary values placed in each addressable location. The
contents of ROM locations cannot be changed after they are manufactured. (ROM chips are
purchased from an integrated circuit manufacturer who has placed a purchaser-supplied program
on the chips.) Compare with RAM. See also PROM, EPROM

RELOC
A utility that produces a process image file by associating each program section in a merged
object module to a specific set of virtual addresses. This is one step in the process of linking a
Micro Power /Pascal application program.

Ring buffer

ROM

A system data structure designed primarily for character-oriented data communication between
processes. Both input and output operations can be performed simultaneously on the same ring
buffer.

See Read-only memory

Glossary-11

Scheduling
Determining which process is allocated control of the processor after a significant event. In
MicroPower /Pascal applications, scheduling is performed by the kernel, based on the priorities
of the currently eligible (ready-active) processes and the running process.

Scope
The portion of the program in which an identifier has a particular meaning.

Semaphore
A nonnegative integer variable on which two types of operations, wait and signal, are defined.
For the semaphore variable S, the operations are:

• Signal(S): S is incremented by 1.

• Wait(S): If S is greater than 0, S is decremented by 1, and the process continues execution.
If S is 0, the process is blocked until S is greater than 0. S is then decremented by 1, and
the process continues execution.

The previously defined operations are indivisible. Processes use semaphores to coordinate their
concurrent execution and to protect shared resources from destructive alteration. A process
waiting on a semaphore is able to resume execution only after the semaphore has been signaled
to a nonzero value by another process.

Shared Library
A library of subroutines or OTS routines that exist once in physical memory but can be shared
(called) by different processes in different address spaces.

Significant event
Any event that causes a process to move into the ready-active state or out of the run state, thus
invoking the kernel scheduler to determine which process controls the CPU. A significant event
may occur synchronously with process execution (a primitive operation) or asynchronously (an
external interrupt). Examples are:

• Creating or deleting a process

• Occurrence of clock interrupt

• A process blocking itself by waiting on a semaphore

• Resuming a suspended process

• Signaling a semaphore on which a process is waiting

• Suspending a running or ready-active process

Stack
For MicroPower/Pascal application programs, the area of memory within the heap that is
allocated for each dynamic process within the program to hold nonstatic process variables.

Static allocation
Dedicating a resource to the process that allocated it. Static allocation occurs during application
building (compiling and linking).

Glossary-12

Static process
A process that exists in the application after initialization. (The process is always present
after power is on or system-reset processing is completed.) A static process corresponds to a
MicroPower /Pascal program. In MACR0-11, a static process is defined by the DFSPC$ macro.

Stepping
A debugging technique in which a process stops after executing each statement or instruction.

Stopped
A process can be forced to reenter itself at its termination entry point when it or another process
executes the STOP procedure or STPC$ macro. Either action stops the process. Exceptions for
which no exception-handler request exists and which are not handled by the process also stop
the process.

Structure ID
A 48-bit value assigned to a structure when the structure is created. This value consists of the
structure index and structure serial number.

Suspend, suspended
A process is suspended when it is placed in suspend state by the Pascal SUSPEND function
or the MACR0-11 SPND$ macro. A suspended process can resume only after another process
has performed the RESUME primitive operation.

Symbol ftle
A file containing a symbol table. The Debugger Symbol Table (.DBG) file contains
the information that P ASDBG needs to reference addresses and modify program variables
symbolically rather than by virtual or physical addresses.

Symbol table
A list of names that can be referenced in a module. Symbol tables link calls from other sources
to the named entities within a module.

System data structures
Data structures dynamically allocated by the kernel in system-common memory to service
process requests. Examples of system data structures include message packets, process. control
blocks, ring buffers, semaphores, and system queues.

System process
A process supplied as part of the MicroPower/Pascal package for inclusion in user-created
applications. System processes furnish commonly needed services and are usually privileged in
mapped targets.

Target processor
A microcomputer in which the MicroPower/Pascal application is intended to run, once developed
on the host processor.

Glossary-13

Termination point
The location in a process where execution begins when that process is stopped. A termination
point is not required for every process. The END statement of the process is the default. A
procedure can be declared as the termination point of a process by using the TERMINATE
attribute.

Tracepoint

Trap

Reports when a certain program statement is executed but does not cause P ASDBG to halt the
application.

An exception condition caused by executing a trap instruction such as .the EMT, TRAP, BPT,
and IOT instructions. Trace traps (T-bit traps) are also included. The exception, which occurs
after execution of the trap instruction, is therefore synchronous with process execution.

Unmapped memory
Contiguous physical memory that is not managed by memory-management hardware; unmapped
virtual and physical addresses are identical.

Virtual address
An octal value from 0 to 177777; a 16-bit address in a program's (maximum) 64K-byte address
space. In unmapped systems, virtual addresses and physical addresses have a one-to-one
relationship. In mapped systems with multiple address spaces, virtual addresses· and physical
addresses have a one-to-many relationship.

Walt, waiting
A process in the wait state. A process waits on a ring buffer or semaphore, unable to change
states or to resume execution until the ring buffer or semaphore has been signaled by another
process.

Watchpolnt
Stops execution when a certain memory location is modified.

Word
Two bytes; 16 bits.

Glossary-14

Index

A
ACP

See Ancillary Control Process
(ACP)

Ancillary Control Process (ACP)
system process, 1-5

Application
building, 6-4
development

build utilities, 1-4
host system, 1-2, 2-1
overview, 1-5, 6-1
target system, 1-2, 2-1

execution
PASDBG, 6-7

loading
down-line, 7-6
PASDBG, 7-6

referencing processes, 3-12
Asynchronous serial line

down-line loading, 2-2
Attributes

B

DATA_SP ACE, 3-10, 5-3
EXTERNAL, 3-12
GLOBAL, 3-12
INITIALIZE, S-7
NAME, 3-11, 3-13
PRIORITY, 3-11, 5-3
STACK_SIZE, 3-10, 5-3
SYSTEM, 5-3

Binary semaphores
creation, 4-3
handshake mechanism, 5-1,

5-5, 5-7
mutex, 4-2

Binary semaphores (cont'd.)
mutual exclusion, 4-2
SIGNAL procedure, 4-3

Blocked process, 3-6, 4-4
Bootstrap

option
MIB command line, 6-10

progam
application installation, 6-6

Build cycle, 2-7
example, 7-1

Build utilities, 6-4
application development, 1-4

. functions, 6-4
MERGE, 6-6
MIB, 6-6
RELOC, 6-6

c
CARS program examples, 5-2 to

5-7
Central Processing Unit (CPU)

concurrent processes, 3-1
target system, 4-1

Communication, interprocess, 1-4
Compiler, 1-4, 6-3
Concurrent design

example,. 4-12
flowcharts, 6-3
parallel tasks, 4-14
process synchronization, 4-12
separate tasks, 6-3

Concurrent execution
advantages, 1-2
multiple processes, 1-2

Concurrent processes
advantages, 4-1

Index-1

Concurrent processes (cont'd.)
Central Processing Unit (CPU),

3-1
conditions, 4-1

COND_GET_ELEMENT function,
4-6

COND_pUT-ELEMENT function,
4-6

COND_RECEIVE function, 4-9
COND_SEND function, 4-8
COND_SIGNAL function, 4-4
COND_WAIT function, 4-4
Configuration file, 2-7, 3-3, 6-3,

6-10
DEBUG option, 6-7
distribution kit, 6-3
hardware characteristics, 2-7

CONNECT-EXCEPTION
procedure, 4-11

CONNECT-1NTERRUPT
procedure, 4-10

CONNECT_SEMAPHORE
procedure, 4-10

Counting semaphores
creating, 4-3
multiple processes, 4-2
SIGNAL procedure, 4-4

CREATE_BINARY_SEMAPHORE
function, 4-3, 5-7

CREATE_COUNTING_SEMAPHORE
function, 4-3

CREATE_QUEUE_SEMAPHORE
function, 4-8

CREATE_RING_BUFFER
function, 4-6

D
DATA_SPACE attribute, 3-10, 5-3
Data structures

global, 3-3
kernel, 3-3
local, 3-3
ring buffers, 4-6
semaphore, 1-3, 4-2

Data transfers, asynchronous, 4-6
.DBG, 7-1
Debugger

See PASDBG
Debugger Service Module (DSM),

6-7
target system, 6-7

Index-2

Debugging information, 6-10
Debug information file

See :DBG
DEBUG option

configuration file, 6-7
DESC parameter, 4-3
Device driver, 1-3, 2-5, 4-14

See also Device handler
CONNECT-1NTERRUPT

procedure, 4-10
system process, 1-5, 3-2

Device handler
See also Device driver
Interrupt Service Routine (ISR),

4-10
Dialog

MPBUILD, 7-2
Distribution kit

configuration file,. 6-3
Down-line loading, 6-6

asynchronous serial line, 2-2
DSM

See Debugger Service Module
(DSM)

Dynamic process, 3-1
program example, 5-3, 5-5

E
Escape sequence, 5-3
ESTABLISH procedure, 4-12
Event, 3-6

real-time, 1-3
significant, 3-6

Example
build cycle, 7-1
CARS program, 5-2
dynamic process, 5-3, 5-5
partial build, 7-7

Exception condition
defined, 4-10
generation, 4-10
types, 4-10, 4-12

Exception handler, 4-11
procedure, 4-12
process, 4-11
REPORT statement, 4-12

Exception handling
Process Control Block (PCB),

4-11
Execution

concurrent, 1-2

Execution, concurrent
advantages, 1-2

EXTERNAL attribute, 3-12

F
File

command, 7-4
configuration, 6-3, 6-10
memory image, 6-6
object, 6-3, 6-5, 6-6
prefix, 6-10
source, 7-1

Flowcharts
concurrent design, 6-3

G
GEL.ELEMENT procedure, 4-6

conditional, 4-6
GLOBAL attribute, 3-12

H
Handshake mechanism

binary semaphore, 5-1, 5-5, 5-7
dynamic process, 5-7
static process, 5-8

Hardware characteristics
configuration file, 2-7

Host system, 1-2
application development, 1-2,

2-1
features, 2-2 to 2-4
hardware requirements, 2-2 to

2-4
Micro/RSX, 2-2
PASDBG, 6-7
RSX-1 lM/M-PLUS, 2-2
RT-11, 2-3
VAX/VMS, 2-4

INITIALIZE attribute, 3-3, 5-7
Instruction sequence

process component, 3-2, 3-3
Interactive debugging

PASDBG, 6-7
Interprocess communication, 1-4
Interrupt handling, 1-3, 4-10

Interrupt Service Routine (ISR),
4-10

kernel, 3-4

Interrupt Service Routine (ISR)
device driver, 4-15
device handlers, 4-10
interrupt handling, 4-10
interrupt vector, 4-10
process priority, 4-15

Interrupt vector
Interrupt Service Routine (ISR),

4-10
semaphore, 4-10

ISR

K

See Interrupt Service Routine
(ISR)

Kernel, 1-5
data structures, 3-3
interrupt handling, 3-4
process scheduler, 3-4 to 3-6
process synchronization, 4-2
system services, 1-2, 3-4

Key event, 4-2

L
LSI-11 bus, 2-6

M
Memory image, 2-7
Memory Image Builder

See MIB utility
Memory image module

See .MIM
Memory management

target system, 2-5
Merged object module

See .MOB
MERGE utility, 6-6
Message packet

RECEIVE procedure, 4-9
SEND procedure, 4-9

Message packets
data area, 4-7
header, 4-7
queue semaphore, 4-7

Message transfers
by reference, 4-7
by value, 4-7
ring buffers, 4-6
synchronization, 4-7

MIB utility, 6-6

Index-3

MIB utility (cont'd.)
command line

bootstrap option, 6-10
.MIM, 7-1
.MOB, 6-6
MPBUILD I 1-4, 6-1, 6-3

command file generator, 6-4
dialog, 7-2
invoking, 7-2
versatile tool, 6-4

Mutex
binary semaphores, 4-2

Mutual exclusion, 1-3, 4-2
binary semaphores, 4-2
mechanism, WAIT procedure,

4-4

N
NAME attribute, 3-11, 3-13
NAME parameter, 4-3
Names

compile-time
process, 3-11

run-time, 4-3
process, 3-11

Network Service Process (NSP)
system process, 1-5

NSP

0

See Network Service Process
(NSP)

Object modules, 6-3, 6-5, 6-6
system library, 6-6

Optimized code, 6-10

p
Parameters

DESC, 4-3
NAME, 3-11, 4-3
PRIORITY, 3-11
process descriptor, 3-11
STACK_SIZE, 3-11
structure descriptor, 4-3
VAL-LENGTH, 4-10
VALUE, 4-3

Partial build
example, 7-7

PASDBG, 1-4, 2-1
application execution, 6-7
application loading, 7-6

Index-4

PASDBG (cont'd.)
commands, 6-8
communications line, 7-2
host sytem, 6-7
symbol table, 6-7

Path name
debugging, 6-8

PCB
See Process Control Block

(PCB)
.PIM, 6-6
Prefix file, 6-10
PRIORITY attribute, 3-11, 5-3
Procedure

exception-handling, 4-12
Process components, 3-2

data structures, 3-3
instruction sequence, 3-3

Process Control Block (PCB)
exception-handling, 4-11
process component, 3-2

Process descriptors, 3~ 11, 3-13
Processes

blocked, 3-6, 4-4
communication, 4-1
compile-time name, 3-11
concurrent, 3-1, 4-1
creation, 3-11
creation, example, 3-12
declaration, 3-10, 3-11
declaration, example, 3-12
definition, 3-1
device driver, 4-14
dynamic, 3-1
exception-handling, 4-11
initialization, 3-3
priority, 3-11, 4-1, 4-10, 4-16
referencing, 3-12, 3-13

by descriptor, 3-12
by run-time name, 3-12

run-time name, 3-11, 3-13
static, 3-1, 5-5
suspended, 4-5
synchronization, 4-1, 4-2
synchronization, concurrent

design, 4-12
synchronization, WAIT

procedure, 4-4
system, 3..:2
termination, 3-3

Process image module
See .PIM

Process priority
process scheduler, 3-5

Process scheduler
kernel, 3-4
process priority, 3-5

Process stack, 3-10
process component, 3-2

Process states
exception-wait active, 3-5
exception-wait suspended, 3-5
ready-active, 3-5, 3-6
ready suspended, 3-5
ready-to-run, 3-4
run, 3-4 to 3-6
wait, 3-4
wait active, 3-5
wait suspended, 3-5

Process types
device-access, 3-2
driver, 3-2
general, 3-2
privileged, 3-2

Programmable Read-Only
Memory

See PROM
Program section

See P-sect
PROM, 2-1
P-sect, 6-6
PUT-ELEMENT procedure, 4-6

conditional, 4-6

Q
Queue semaphores, 4-7

creation, 4-8
message packet, 4-7

R

process communication, 4-14
RECEIVE-ANY function, 4-16
RECEIVE procedure, 4-9
SEND procedure, 4-8

RECEIVE-ANY function, 4-16
RECEIVE procedure, 4-9, 4-10

conditional, 4-9
message packet, 4-9

RELOC utility, 6-6
,symbol table file, 6-6

REPORT procedure, 4-12
RESUME function, 3-12, 4-6

Ring buffers
creation, 4-6
data structures, 4-6
GET-ELEMENT procedure, 4-6
message transfers, 4-6
process communication, 4-15
PUT-ELEMENT procedure, 4-6

Run-time system, 1-5

s
Scheduling

priority-based, 1-3
Semaphore, 4-2

binary, 1-3, 4-2, 4-3, 5-7
counting, 1-3, 4-2, 4-4
data structures, 1-3
interrupt vector, 4-10
queue, 1-3, 4-2, 4-7, 4-14

SEND procedure, 4-8, 4-10
conditional, 4-8
message packet, 4-9

Serial line, 7-2
SIGNAL procedure, 4-3, 5-8

actions, 4-4
conditional, 4-4

Significant event, 3-6
Source code

syntax errors, 6-3
STACK_SIZE attribute, 3-10, 5-3
State changes, 3-6
Static process, 3-1, 5-5
STOP procedure, 3-12, 3-13
Suspended process, 4-5, 4-6

state, 4-5
SUSPEND function, 3-12, 4-5
Symbolic debugger

See PASDBG
Symbol table

PASDBG, 6-7
Symbol table file

RELOC utility, 6-6
Synchronization, 1-3, 1-4
Syntax errors

source code, 6-3
SYSTEM attribute, 5-3
System libraries

object modules, 6-6
System processes

Ancillary Control Process
(ACP), 1-5

device driver, 1-5, 3-2

lndex-5

System processes (cont'd.)
Network Service Process (NSP),

1-5
System services

kernel, 1-2

T
Target system, 1-2

application development, 1-2,
2-1

Central Processing Unit (CPU),
4-1

Debugger Service Module
(DSM), 6-7

functions, 2-4
hardware requirements, 2-4
memory management, 2-5
supported devices, 2-5

TERMINATE attribute, 3-3

v
VAL_LENGTH parameter, 4-10
VALUE parameter, 4-3

w
WAIT-EXCEPTION statement,

4-11
WAIT procedure, 4-4, 5-8

conditional, 4-4
mutual-exclusion mechanism,

4-4
process synchronization, 4-4

lndex-6

HOW TO ORDER

ADDITIONAL DOCUMENTATION

From Call

Alaska, Hawaii, 603-884-6660
or New Hampshire

Rest of U.S.A. 800-258-1710
and Puerto Rico•

Write

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

• Prepaid orders from Puerto Rico must be placed with DIGITAL's local subsidiary (809-754-
7575)

Canada

Internal orders
(for software
documentation)

Internal orders
(for hardware
documentation)

800-267-6219
(for software
documentation)

613-592-5111
(for hardware
documentation)

617-234-4323

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: Direct Order desk

Software Distribution Center (SOC)
Digital Equipment Corporation
Westminster, MA 01473

Publishing & Circulation Serv. (P&CS)
NR03-1/W3
Digital Equipment Corporation
Northboro, MA 01532

Introduction to MicroPower /Pascal
AA-M388C-TK

READER'S
COMMENTS

Note: This form is for document comments only. DIGIT AL will use comments
submitted on this form at the company's discretion. If you require a written
reply and are eligible to receive one under Software Performance Report (SPR)
service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user /reader that you most nearly represent:

0 Assembly language programmer

Name

0 Higher-level language programmer
0 Occasional programmer (experienced)
0 User with little programming experience
0 Student programmer
0 Other (please specify)

Organization

Street

City

Date

State Zip Code
or Country

Do Not Tear - Fold Here and Tape -------------------

Do Not Tear - Fold Here

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS
MLOS-5/E45
146 MAIN STREET
MAYNARD, MA 01754-2571

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

