
DATATRIEVE-11
User's Guide

Order No. AA-X023B-TK

November 1987

This document tells how to use DATATRIEVE-I1.

OPERATING SYSTEMS: RSX-IIM
RSXIIM-PLUS
RSTS/E
MicrolRSX
MicrolRSTS
VMS with VAX-II RSX

SOFTWARE VERSION: DATATRIEVE-II V3.2

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1983,1987 by Digital Equipment Corporation. All Rights Reserved.

The postage-paid Reader's Comments forms at the end of this document request
your critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

~DmDDmD ™
ACMS
CDD
DATATRIEVE
DEC
DECnet
DECUS
Micro/RSTS
Micro/RSX

MicroVAX
MicroVMS
PDP
RALLY
Rdb/ELN
Rdb/VMS
ReGIS
RSTS
RSX
TDMS

TEAMDATA
UNIBUS
VAX
VAXc1uster
VAXinfo
VAX Information Architecture
VAXNMS
VMS
VT

How to Use This Manual

1 Introduction to DATATRIEVE-11

1.1 Description ofDATATRIEVE-ll
1.2 DATATRIEVE Concepts and Terms

1.2.1 Files
1.2.2 Record Definitions
1.2.3 Domains
1.2.4 Data Dictionaries
1.2.5 Commands and Statements
1.2.6 Procedures
1.2.7 Command Files
1.2.8 DATATRIEVE Tables

1.3 Components ofDATATRIEVE-ll

1.3.1 Interactive DATATRIEVE
1.3.2 The DATATRIEVE Distributed Server
1.3.3 The DATATRIEVE-ll Call Interface .
1.3.4 The DATATRIEVE-ll Remote Terminal Interface

2 Getting Started with DATATRIEVE

2.1 Invoking DATATRIEVE-ll
2.2 Sample Domains, Records, and Data Files .
2.3 QUERY.INI Startup File
2.4 Using READY, PRINT, and REPORT to Retrieve Data
2.5 DATATRIEVE Input Line Prompts
2.6 DATATRIEVE Syntax Line Prompts
2.7 DATATRIEVE Prompts for Storing and Modifying Values
2.8 DATATRIEVE Error Messages . . .
2.9 Ending Your DATATRIEVE Session

2.9.1 Using the EXIT Command
2.9.2 Exiting from DATATRIEVE with CTRL/Z
2.9.3 Exiting from DATATRIEVE by Pressing CTRL/C Two Times

2.10 Using Help

2.10.1 Using Advanced Help

2.11 Guide Mode

3 Creating Data Dictionaries

3.1 Contents of a Data Dictionary.
3.2 Creating a Data Dictionary
3.3 Changing Dictionaries

Contents

Page

Xl·

· 1-1
· 1-1

· 1-2
· 1-2
· 1-2
· 1-3
· 1-3
· 1-4
· 1-4
· 1-4

· 1-5

· 1-5
· 1-5
· 1-6
· 1-6

· 2-1
~ 2-2
· 2-2
· 2-3
· 2-4
· 2-5
· 2-5
· 2-5
· 2-6

· 2-6
· 2-6
· 2-6

· 2-6

· 2-7

· 2-8

· 3-1
· 3-2
· 3-2

iii

iv

4 Defining Domains

4.1 Specifying Domain Names
4.2 Defining a Simple RMS Domain.
4.3 U sing the SHOW Command with Domains

5 Defining Records

5.1 Planning a Record Definition
5.2 Getting Started and Naming a Record ..
5.3 Defining the Parts of a Record Definition

5.3.1
5.3.2

5.3.3
5.3.4
5.3.5

Specifying Level Numbers . . .
Naming Fields

5.3.2.1 Restrictions for Field Names .
5.3.2.2 Using Duplicate Field Names
5.3.2.3 Using the Field Name FILLER

U sing Field Definition Clauses
Specifying Query Names
Specifying Word Boundary Alignment with the ALLOCATION Clause

5.4 U sing the OCCURS Clause to Define Hierarchical Records

5.4.1 Defining Lists with a Fixed Number of Occurrences ..
5.4.2 Defining Lists with a Variable Number of Occurrences
5.4.3 Nesting Lists Within Lists to Form Sublists .
5.4.4 Changing the Length of a List

6 Defining Files

6.1 Choosing a Sequential or an Indexed File

6.1.1 Modifying and Deleting Records
6.1.2 Summary of Differences

6.2 Defining a File Using the DEFINE FILE Command

6.2.1 Defining a Sequential File
6.2.2 Defining an Indexed File

6.2.2.1 Using a Group Field as the Primary Key
6.2.2.2 Defining Alternate Keys
6.2.2.3 Summary of Rules for Defining Key Fields

6.2.3 Optional Clauses with the DEFINE FILE Command

7 Limiting Record Streams with Record Selection Expressions

7.1 Accessing All the Records in a Domain
7.2 Specifying the Number of Records in the Record Stream
7.3 Identifying Records with Conditional Expressions . . .

7.3.1
7.3.2
7.3.3

Comparing Records by Pattern Recognition . .
Grouping Records When Values Fall Within a Range
Grouping Records by Reference to a Table

· 4-1
· 4-2
· 4-3

· 5-1
· 5-2
· 5-3

· 5-4
· 5-6

· 5-6
· 5-7
· 5-8

5-10
5-12
5-13

5-13

5-15
5-16
5-17
5-18

· 6-1

· 6-2
· 6-2

· 6-3

· 6-3
· 6-4

· 6-5
· 6-5
· 6-6

· 6-6

· 7-2
· 7-3
· 7-4

· 7-4
· 7-6
· 7-7

7.4

7.3.4
7.3.5

Summary of the Relational Operators
Setting Up Multiple Tests with Compound Booleans

Sorting the Record Stream by Field Values

8 Using Compound Statements

8.1 Using REPEAT to Combine Statements
8.2 Using the FOR Statement
8.3 Using BEGIN-END Blocks to Combine Statements

8.3.1 BEGIN-END Blocks in FOR Statements .
8.3.2 IF-THEN-ELSE Statements in BEGIN-END Blocks
8.3.3 Using BEGIN-END Blocks in STORE Statements
8.3.4 BEGIN-END Blocks in REPEAT Statements

9 Using DATATRIEVE Procedures

9.1 Defining a Procedure
9.2 Invoking a Procedure.
9.3 Contents of a Procedure .

9.3.1 Commands and Statements in Procedures
9.3.2 Arguments and Clauses
9.3.3 Comments in Procedures .

9.4 Using Procedures to Locate Errors
9.5 A Sample Procedure
9.6 Nesting Procedures .
9.7 U sing a Procedure in a Compound Statement
9.8 Aborting Procedures
9.9 Maintaining Procedures

9.9.1 Displaying Procedure Names .
9.9.2 Displaying Complete Procedures

9.10 Editing Procedures

9.10.1 Deleting Procedures

10 Using DATATRIEVE COl!1mand Files

10.1 Creating a Command File
10.2 Contents of a Command File ..

10.2.1 ADT, EDIT, SET GUIDE
10.2.2 Comments....

10.3 Invoking a Command File

10.3.1 Invocation Command Lines
10.3.2 Invoking a Command File from a Procedure

10.4 Aborting Command Files
10.5 Editing a Command File
10.6 Sample Command File
10.7 Nesting Command Files Within Command Files.
10.8 Using a Command File in a FOR or REPEAT Statement .
10.9 Maintaining Command Files

· 7-7
· 7-8

· 7-9

· 8-1
· 8-3
· 8-4

· 8-4
· 8-5
· 8-5
· 8-6

· 9-1
· 9-2
· 9-3

· 9-4
· 9-4
· 9-5

· 9-6
· 9-7
· 9-9
9-10
9-12
9-13

9-14
9-14

9-14

9-15

10-2
10-3

10-3
10-3

10-3

10-4
10-4

10-5
10-5
10-6
10-7
10-8
10-9

v

11 Using DATATRIEVE Variables

11.1 Declaring Variables.
11.2 Assigning Values to Variables.
11.3 Local and Global Variables

11.3.1
11.3.2

Global Variables . . .
Local Variables ...

11.4 Using Variables to Assign Values to Fields
11.5 Using Variables as Counters to Control Record Streams

12 Using DATATRIEVE Tables

12.1
12.2
12.3
12.4

A Sample Dictionary Table . .
Creating Dictionary Tables \

Sample Dictionary Tables .
Using the IN Relational Operator with DATATRIEVE Tables

12.4.1 Using a Table in a Record Selection Expression .

12.4.1.1 Using a Table to Set Conditions in an
IF-THEN-ELSE Statement

12.4.1.2 Using a VALID IF Clause with a Table to Validate Data

12.4.2 Using the Keyword VIA with DATATRIEVE Tables

12.5 DATATRIEVE Tables and Workspace
12.6 Displaying Table Information .

12.6.1
12.6.2
12.6.3

Displaying Tables
Editing Tables ...
Deleting Tables . .

12.7 Protecting Dictionary Tables

13 Defining and Using Views

13.1

13.2

Defining Views

13.1.1
13.1.2
13.1.3

Views Using Subsets of Records
Views Using Subsets of Fields .
Views Using More Than One Domain .

U sing a View Domain.

13.2.1 Using a View That Contains a List

14 USing Hierarchies

14.1 Retrieving Repeating Field Values with FIND and SELECT Statements
14.2 Retrieving Repeating Field Values with Nested FOR Loops
14.3 Retrieving Repeating Field Values with Inner Print Lists
14.4 Retrieving List Items with Nested RSEs - Eliminating Empty Print Lines .
14.5 Retrieving Values from Sublists

vi

11-1
11-2
11-3

11-4
11-4

11-5
11-6

12-1
12-3
12-4
12-5

12-5

12-5
12-6

12-6

12-7
12-7

12-7
12-8
12-9

12-9

13-2

13-3
13-3
13-4

13-6

13-7

14-3
14-4
14-5
14-9
14-11

15 Restructuring Domains

16

17

15.1 A Sample Domain
15.2 Changing Record and File Definitions and Using New Names

15.2.1 Storing Data from All the Records in the Old Domain
15.2.2 Storing Data from a Subset of the Records in the Old Domain
15.2.3 Deleting References to the Old Domain

15.3 Changing Record and File Definitions and Using Old Names.
15.4 Changing the Organization of a Data File

Using the DATATRIEVE Editor

16.1 Invoking the Editor .
16.2 Editor Modes
16.3 Line Pointer
16.4 Range Specification .
16.5 Editor Commands

16.5.1 DELETE Command
16.5.2 EXIT Command ..
16.5.3 INSERT Command
16.5.4 QUIT Command . .
16.5.5 REPLACE Command
16.5.6 SUBSTITUTE Command
16.5.7 TYPE Command .

16.6 Sample Editing Session

Optimizing Workspace and Response Time

17.1 Using Workspace
17.2 Effect of READY and FINISH on Workspace.
17.3 Techniques to Optimize Workspace
17.4 Techniques to Optimize Response Time . . .

17.4.1 Using the ALLOCATION Option of the DEFINE FILE Command
17.4.2 Using Keyed Access Efficiently

17.4.2.1 Using EQUAL Rather Than CONTAINING
17.4.2.2 Choosing Domains or Collections as Record Sources
17.4.2.3 Ordering the Domains in Nested FOR Loops
17.4.2.4 Restoring Indexed Files That Are Often Modified . .

17.4.3 Avoiding Nested FOR Loops Followed by a Conditional Statement

18 Controlling Output

18.1 Changing the Columns-Page Setting

18.1.1 Increasing the Columns-Page Setting.
18.1.2 Decreasing the Columns-Page Setting
18.1.3 Determining the Number of Columns You Need for a Print Line.

18.2 Using the SET ABORT Statement .
18.3 U sing the SET PROMPT Statement.

15-2
15-3

15-4
15-5
15-5

15-5
15-8

16-1
16-2
16-2
16-3
16-4

16-5
16-6
16-6
16-8
16-9
16-10
16-11

16-13

17-1
17-1
17-5
17-6

17-6
17-6

17-7
17-8
17-8
17-8

17-9

18-1

18-1
18-2
18-3

18-4
18-4

vii

19

20

Controlling Access to Dictionary Objects

19.1 Contents of an Access Control List

19.1.1 Sequence Numbers .
19.1.2 Lock Types
19.1.3 Keys

19.1.3.1 Password Keys
19.1.3.2 UIC Keys

19.1.4 Access Privileges

19.2 Creating Access Control Lists .
19.3 Processing Access Control Lists in DATATRIEVE
19.4 Maintaining an Access Control List . . .

19.4.1 Guidelines for Ordering Entries
19.4.2 Assigning Privileges
19.4.3 Displaying an Access Control List
19.4.4 Adding Entries to an Access Control List
19.4.5 Deleting Entries from an Access Control List

Maintaining Data Dictionaries

20.1 Displaying Dictionary Objects
20.2 Modifying Dictionary Objects .
20.3 Deleting Dictionary Objects . .
20.4 Optimizing Disk Storage of Data Dictionaries with QCPRS
20.5 Extracting Dictionary Content with the QXTR Utility .

A Name Recognition and Single Record Context

A.l Establishing the Context for Name Recognition.

A.1.1 The Right Context Stack
A.1.1.1 The Content of a Context Block .
A.1.1.2 Global Variables
A.1.1.3 Collections .
A.1.1.4 Record Streams
A.1.1.5 Local Variables
A.1.1.6 VERIFY Clause in the STORE Statement
A.1.1.7 VALID IF Clause in a Record Definition

A.1.2 Using Context Variables and Qualified Field Names .

A.1.2.1 Context Variables as Field Name Qualifiers .
A.1.2.2 Other Field Name Qualifiers

A.1.3 The Left Context Stack for Assignment Statements
A.1.4 Examples of Context Variables in STORE and MODIFY Statements

viii

19-1

19-2
19-2
19-2

19-2
19-3

19-4

19-6
19-7
19-9

19-9
19-10
19-10
19-11
19-11

20-2
20-2
20-4
20-4
20-6

A-I

A-2

A-2
A-4
A-4
A-5
A-7
A-8
A-8

A-8

A-8
A-9

A-II
A-13

A.2 Single Record Context .

A.2.1 The SELECT Statement and the Single Record Context
A.2.2 The CURRENT Collection as Target Record Stream
A.2.3 The OF rse Clause and Target Record Streams
A.2.4 FOR Statements and Target Record Streams. . . .

Index
Figures

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
9-1
12-1
17-1
17-2
17-3
17-4
19-1
A-1

Data Items in a Personnel Record
PERSONNEL_REC Record Definition
Four Parts of the SALARY Field . . .
Level Numbers in the PERSONNEL Record Definition
Valid Field Names for EMPLOYEE_REC
U sing FILLER as a Group Field Name
Query Names for PERSONNEL_REC .
A Flat Record
A Hierarchical Record
Sample Procedure
Code and Translation Pairs in a Dictionary Table
Empty DATATRIEVE Workspace . . .
Workspace with One Readied Domain
Workspace with Two Readied Domains
Workspace When You Finish First Readied Domain
Sample Access Control List
Duplicate Field Names in YACHTS and OWNERS

Tables

5-1
6-1
7-1
16-1
16-2
19-1
19-2
19-3

FieldClasses
A Comparison of Sequential and Indexed Files
Conditional Comparisons for an RSE
Examples of Range Specifiers
Summary ofDATATRIEVE Editor Commands
Access Privileges
Commands/Statements by Privilege.
Privilege Requirements by Command/Statement

A-14

A-14
A-20
A-21
A-23

· 5-2
· 5-2
· 5-4
· 5-4
· 5-7
· 5-9
5-12
5-14
5-14
· 9-7
12-1
17-2
17-3
17-3
17-4
19-2
A-2

5-12
· 6-2
· 7-7
16-3
16-4
19-4
19-5

19-10

ix

How to Use This Manual

This manual is a guide to the interactive use ofDATATRIEVE-l1. It explains
how to define dictionaries and dictionary objects (domains, records, tables, and
procedures), and gives examples of using compound statements, command files,
views, and hierarchies. It also discusses the restructuring of domains and the
control of input and output.

In this manual, the DATATRIEVE-l1 software is referred to as DATATRIEVE.

Intended Audience

Structure

This manual is intended for people who:

• Have read and tried the examples in the Introduction toDATATRIEVE-ll

• Have experience using DATATRIEVE

• Have experience in applications programming but are unfamiliar with
DATATRIEVE

For people who have no experience with DATATRIEVE, the Introduction to
DATATRIEVE-ll provides a tutorial to the basic DATATRIEVE-l1 tasks.

This manual is divided into 20 chapters, an appendix, and an index:

Chapter 1

Chapter 2

Chapter 3

Introduces the basic concepts ofDATATRIEVE-l1.

Describes how to enter and exit DATATRIEVE, display data, use
various prompts, and how to use DATATRIEVE Help and Guide
mode.

Describes data dictionaries and how to create or change them.

xi

xii·

Chapter 4 Describes how to name and define domains.

Chapter 5 Describes how to plan a record definition, the rules governing the
definition, the optional clauses you can use to specify certain con
ditions, and the use of lists to define hierarchical records.

Chapter 6 Describes the difference between indexed and sequential data
files, compares their advantages, and explains how to define them.

Chapter 7 Discusses record selection expressions (RSEs) and how to use them
to select particular records from your database.

Chapter 8 Describes the use of REPEAT, FOR, and BEGIN-END blocks to
combine statements into compound statements.

Chapter 9 Describes how to define and use DATATRIEVE procedures.

Chapter 10 Describes how to create and use DATATRIEVE command files.

Chapter 11 Discusses DATATRIEVE variables, the differences between local
and global variables, and how to use them.

Chapter 12 Describes the creation and use ofDATATRIEVE tables.

Chapter 13 Describes how to define and use view domains to examine only
part of one domain or to combine information from more than one
domain.

Chapter 14 Discusses how to use lists to retrieve data.

Chapter 15 Explains how to change record and file definitions to restructure a
domain.

Chapter 16 Explains how to use the DATATRIEVE Editor.

Chapter 17 Discusses the most effective ways of using your allotted work
space.

Chapter 18 Describes ways to control the format of your output and how to use
the SET ABORT and SET PROMPT commands.

Chapter 19 Describes how to create, use, and maintain access control lists.

Chapter 20 Describes how to modify and delete data dictionaries, optimize the
disk storage space they use, and extract their contents.

Appendix A Explains in detail the way DATATRIEVE establishes context, the
context stacks, context variables, and single record context.

Related Manuals

For further information on the topics covered in this manual, see:

• Introduction to DATATRIEVE-ll

• DATATRIEVE-ll Call Interface Manual

• DATATRIEVE-ll Reference Manual

Conventions

This section explains the special symbols used in this book:

>

Color

WORD

word

{ }

[]

This symbol indicates the RETURN key.

This symbol indicates the TAB key.

The right angle bracket symbol at the beginning of a new line, or by
itself, represents the system prompt.

Color in examples shows user input.

Uppercase words represent DATATRIEVE keywords.

Lowercase words are generic terms that indicate entries you must
provide.

Braces enclose clauses from which you must choose one alternative.

Square brackets enclose optional clauses from which you can choose
one or none.

Horizontal ellipsis means you can repeat the previous item.

Vertical ellipsis in an example means that information not directly
related to the example has been omitted.

xiii

Introduction to DATATRIEVE-11 1

This chapter gives an overview ofDATATRIEVE-11 and explains its basic con
cepts and terms.

1.1 Description of DATATRIEVE-11

DATATRIEVE-II is an interactive tool for inquiry, update, and maintenance of
information stored in data files. DATATRIEVE-II runs on any PDP-II com
puter with an RSX-IIM, RSX-IIM-PLUS, RSTS/E, Micro/RSX, or Micro/RSTS
operating system.

The commands and statements you use are common English words that have
specific meaning within DATATRIEVE. With these commands and statements
you can manipulate the information in selected data files.

1.2 DATATRIEVE Concepts and Terms

DATATRIEVE-II uses concepts and terms that may not be familiar to you.
These include:

• Files, records, and domains

• Data dictionaries

• Commands and statements

• Procedures

1-1

• Command files

• Tables

1.2.1 Files

A data file contains ordered data. The DATATRIEVE DEFINE FILE command
creates a data file and allows you to specify some of the characteristics of the file.
You can use your record definition to control the way DATATRIEVE handles the
data in other data files. You can also use a number of different record definitions
to work with the information stored in one data file.

1.2.2 Record Definitions

The record is the basic unit of information management. It describes the rela
tionship between logically connected data items and consists of one or more
subunits called fields. DATATRIEVE uses both elementary and group fields. An
elementary field contains an item of data. A group field contains group and ele
mentary fields that are logically related. Thus, you might have an
EMPLOYEE-NAME group field that contains the elementary fields
FIRST-N"AME, MIDDLE_INITIAL, and LAST-N"AME.

DATATRIEVE enables you to interpret the data in the fields ofa data record.
The DATATRIEVE record definition controls the way you look at and interpret
the information coded in your data files.

In the field definition clauses in a DEFINE RECORD command, you specify the
type offield, the length of each field, and the content of the fields - character
strings, numbers, or dates. You can also control the format DATATRIEVE uses
to display values from those fields.

Note that in field names (like FIRST_NAME), this manual uses underscores (_).
When you are using DATATRIEVE, you may use either underscores or hyphens
(-) in record or field definitions. DATATRIEVE accepts hyphens as input but con
verts them to underscores before analyzing user input. To use a hyphen as a
minus sign, put spaces before and after it. Otherwise, DATATRIEVE converts
the minus sign to an underscore and issues an error message.

Be consistent in your own practice. To avoid confusion when using the manuals,
you may want to use underscores instead of hyphens. Whichever you use,
Chapter 5 of this manual explains record definitions and field definition clauses.

1.2.3 Domains

To manage the data in a file, you must explicitly connect that data file to a record
definition. DATATRIEVE makes this connection with a domain. You use the
DEFINE DOMAIN command to create a domain definition and to store that defi
nition in your current data dictionary.

1-2 Introduction to DATATRIEVE-11

The domain definition establishes a name for the domain and associates that
name with the names ofa record definition and a data file. When you use the
name of the domain, you tell DATATRIEVE to use a particular record definition
to interpret the data stored in a specific file.

Do not confuse a domain with the data you want to manage. The data stored in
the data file does not constitute the domain. You can erase old records and add
new ones without disturbing the relationship between the data file and the
record definition, which remains fixed.

1.2.4 Data Dictionaries

A data dictionary is an RMS file that DATATRIEVE creates to store definitions.
It stores tables, procedures, and the definitions of domains and records.

1.2.5 Commands and Statements

You manage information with commands and statements based on the
DATATRIEVE keywords described in this manual.

Commands deal with the data dictionary and enable you to:

o Create, change, and display definitions in the dictionary (DEFINE, SHOW,
EDIT, DELETE, and EXTRACT)

o Maintain the access control lists associated with those definitions (DEFINEP,
SHOWP, and DELETEP)

o Get access to domains (READY)

• Release access to domains, variables, collections, and DATATRIEVE tables
(RELEASE and FINISH)

• Determine the way DATATRIEVE displays data on your terminal (SET)

• Get online information about DATATRIEVE (HELP)

• End your DATATRIEVE sessions (EXIT)

Statements deal with data and enable you to:

• Store records (STORE)

• Form and manipulate groups of records (FIND, SELECT, DROP, and SORT)

• Display data (PRINT, REPORT, and SUM)

• Modify records (MODIFY)

• Erase records (ERASE)

• Declare variables and assign values (DECLARE and assignment)

Introduction to DATATRIEVE-11 1-3

You can join statements to form compound statements in the BEGIN-END, FOR,
IF-THEN-ELSE, REPEAT, and THEN statements. You cannot join commands
with other commands or with statements. Furthermore, only statements may
contain DATATRIEVE value expressions and record selection expressions.

You can enter statements at other levels than command level (indicated by the
DTR> prompt), but you can enter commands only at command level.

If you are not sure whether a given keyword is a command or a statement, refer
to the table showing an alphabetical summary of commands and statements in
the DATATRIEVE-ll Reference Manual.

1.2.6 Procedures

Most DATATRIEVE-11 applications involve sequences of commands and state
ments that you use again and again. To avoid retyping such a sequence, you can
store it in your dictionary as a procedure. You can also use procedures within
commands or statements. With the DEFINE PROCEDURE command, you give
the sequence a name and enter both the name and the sequence into your dic
tionary. You invoke the procedure by entering a colon (:) and the procedure
name. DATATRIEVE then interprets the content of the procedure just as though
you had entered it at your terminal.

1.2.7 Command Files

You can use command files in DATATRIEVE in much the way you use
DATATRIEVE procedures. The primary difference between the two is that you
store command files in your operating system directory and procedures in a
DATATRIEVE dictionary.

When you invoke a command file, DATATRIEVE displays the text of the file on
your terminal. When you invoke a procedure, however, the procedure definition
is not displayed on your terminal.

1.2.8 DATATRIEVE Tables

DATATRIEVE tables perform two functions. They let you:

• Specify one value and retrieve another that you have associated with the first

• Validate data according to the presence or absence ofa data item in the table

A table contains pairs of character strings. The first member of each pair is the
code string and the second is the translation string. The last entry in the table
can be an ELSE clause that specifies a default translation string. Thus your
table might match department codes (such as A01) with department names (such
as Accounting). If you enter a code not in the table, for example, the ELSE clause
can specify a message to be displayed on your terminal telling you the code is not
valid.

1-4 Introduction to DATATRIEVE-11

1.3 Components of DATATRIEVE-11

DATATRIEVE-II consists of four components on your PDP-II system:

• Interactive DATATRIEVE-II

The DTR.TSK task image allows you to access DATATRIEVE at your
terminal.

• The DATATRIEVE-II Distributed Server

DDMF.TSK allows users on other DECnet nodes to use DATATRIEVE for
accessing data files and data dictionaries on your node.

• The DATATRIEVE-II Call Interface

The DTCLIB.OLB object module library allows application programs in other
high-level languages to call DATATRIEVE subroutines. The calls, through a
local or remote server, give you access to DATATRIEVE data files and
dictionaries.

• The DATATRIEVE-II Remote Terminal Interface

REMDTR.TSK is an interactive program that uses the Call Interface and the
remote server. When you run REMDTR as a program, it looks as though you
are running interactive DATATRIEVE on a remote node.

The following sections describe these four components and tell you where to find
information on each one.

1.3.1 Interactive DATATRIEVE

When you invoke DATATRIEVE-II on a PDP-II system, yo~ are running
DTR.TSK, the interactive DATATRIEVE task image. This program accepts
DATATRIEVE commands and statements from the terminal and uses the termi
nal as the default output device. DTR.TSK allows you to access data stored in
disk files as well as definitions stored in one of the data dictionaries on your sys
tem, usingDATATRIEVE commands and statements. The Introduction to
DATATRIEVE-ll , the DATATRIEVE-ll Reference Manual, and this manual
describe how to use interactive DATATRIEVE.

1.3.2 The DATATRIEVE Distributed Server

The Distributed Data Manipulation Facility (DDMF), is also called the
DATATRIEVE Distributed Server. It is a "slave" program. Another
DATATRIEVE component sends it commands to execute, and it passes the
results back to that component. DDMF can perform all the DATATRIEVE func
tions that DTR. TSK can perform, with the exception of the Application Design
Tool (ADT) and Guide Mode.

Introduction to DATATRIEVE-11 1-5

You use the Distributed Server in three ways:

• VAX DATATRIEVE uses the Distributed Server on a PDP-II or VAX node to
perform distributed operations. For example, when you type READY YACHTS
AT FRODO in VAX DATATRIEVE, DATATRIEVE starts up DDMF on the
node named FRODO and uses it to access definitions and data files on that
node.

• The DATATRIEVE-II Call Interface uses DDMF to give you access to data
dictionaries and data files, allowing you to write application programs that
call DATATRIEVE.

• The DATATRIEVE-II Remote Terminal Interface uses DDMF through the
Call Interface, allowing you to use your terminal to access DATATRIEVE on
other nodes.

1.3.3 The DATATRIEVE-11 Callinteriace

The Call Interface allows you to write high-level language programs that call
DATATRIEVE, either on your own system or on another DECnet node. To use
the Call Interface, you include calls to external DATATRIEVE subroutines in
your program. When you build the task image, you link the program to the
object module library DTCLIB.OLB. The subroutines pass information between
the calling program and a local or remote DATATRIEVE Distributed Server.
When you are running such a program, there are actually two task images
active:

• Your program linked to DTCLIB.OLB

• DDMF, the DATATRIEVE Distributed Server that has been activated to serve
your program

----------- Note -----------

You must have the DECnet software installed on your system
before you can access DATATRIEVE on a remote node.

The DATATRIEVE-ll Call Interface Manual tells you how to write programs
that use the Call Interface.

1.3.4 The DATATRIEVE-11 Remote Terminallnteriace

The DATATRIEVE-II Remote Terminal Interface (REMDTR) gives you interac
tive access to DATATRIEVE on other nodes.

----------- Note -----------

You must have the DECnet software installed on your system
before you can use REMDTR.

1-6 Introduction to DATATRIEVE-11

To use the Remote Terminal Interface on both RSTS and RSX-IIM/M-PLUS
systems, type RUN $REMDTR. If an error message is displayed, check with your
system manager to make sure the program is installed.

When REMDTR prompts you for a node name, you can type either a node name
or a complete network address specification. The address specification includes a
user name or account number and a password:

Enter node naMe: MYVAX

Ente r node nalTle: MYVAXIIMYNAME PASWRD II

Enter node naMe: MYRSTS II 130,34 PASWRD II

If you specify only the node name, you are logged in to the default DECnet
account and may not have access to the data files or dictionaries you want. When
you type the complete form of the specification, DECnet logs you into that
account.

After you have logged in successfully, you can use DATATRIEVE interactively
on that node as if you were using DATATRIEVE on your own node, except that
Guide Mode and ADT are not available.

You can use the Remote Terminal Interface for copying dictionary definitions
and data files across DECnet. It is also useful for testing a network path and
determining the default characteristics ofDDMF, the DATATRIEVE Distributed
Server, on a remote node.

For more information on using the Remote Terminal Interface, see the
DATATRIEVE-ll Call Interface Manual.

Introduction to DATATRIEVE-11 1-7

Getting Started with DATATRIEVE 2

This chapter tells you how to start and stop DATATRIEVE. It also tells you how
to:

• Work with sample domains, records, and files included in the
DATATRIEVE-ll installation kit

• Use the PRINT and REPORT statements

• Understand DATATRIEVE prompts

• Interpret DATATRIEVE error messages

• Use Help and Guide mode

2.1 Invoking DATATRIEVE-11

The way you start DATATRIEVE can vary from one system to another. If you
cannot invoke DATATRIEVE using the method discussed in this section, contact
the person in charge ofDATATRIEVE on your system.

See your system manager for the exact invocation line for your system. Here is
how to start the system if your invocation line is RUN $DTR:

> RUN $DTRCffi)
PDP-II DATATRIEVE, DEC Query and Report SYsteM
I)ersion: 1)3.2, 13-NOI.J-87
Type HELP for help
DTR>

The startup banner in the previous example shows you that you have success
fully invoked DATATRIEVE.

2-1

2.2 Sample Domains, Records, and Data Files

The DATATRIEVE-II installation kit includes four sample domains: YACHTS,
OWNERS, PERSONNEL, and FAMILIES. The domain definitions and the
record definitions are in the system data dictionary.

The following command creates a private dictionary for you called SAMPLE.DIC
which resides in your current default directory. The command enters the domain
and record definitions into the dictionary, and copies the data files into your
directory.

For RSTS/E and Micro/RSTS systems type:

DTR> @LB:SETUP.DTRlliIT)
DTR>

For RSX, Micro/RSX, and VAX-II RSX systems type:

D T R > @LB: [1 ,2] SET UP. D T RlliIT)
DTR>

To see that the sample domain and record definitions are in place, use the SHOW
command:

DTR> SHOW DOMAINS, RECORDSlliIT)
DOITlains:

FAMILIES KETCHES
PERSONNEL PERSONNEL_SEQ
YACHTS_SEQUENTIAL

Records:
OWNER_RECORD PERSONNEL_REC
YACHT

DTR>

OWNERS OWNERS_SEQUENTIAL
SAILBOATS YACHTS

The results of this command vary from one system to another, but you should be
sure that DATATRIEVE lists the needed domain and record definitions on your
terminal. If you have difficulty, see the person responsible for DATATRIEVE-II
on your system.

2.3 QUERY.lNI Startup File

If you frequently start your DATATRIEVE session with the same series of com
mands and statements, you can use a command file to execute the commands and
statements automatically each time you invoke DATATRIEVE. DATATRIEVE
recognizes QUERY.INI as the default startup file. However, you can specify a dif
ferent startup file at installation time if you choose.

2-2 Getting Started with DATATRIEVE

2.4

DATATRIEVE first looks for a QUERY.INI file in your default directory. If one is
there, DATATRIEVE executes the commands and statements it contains before
it accepts any other input. If you would like to be in Guide mode as soon as you
invoke DATATRIEVE, for instance, you can include the SET GUIDE command
at the end of your QUERY.INI file. You can put a SET DICTIONARY command
in the QUERY.INI file to automatically change your default data dictionary. You
can ready domains you use frequently. Your QUERY.INI file, then, might include
these lines:

SET DICTIONARY MYDIC.DIC
SET GUIDE
READY YACHTS

When you type your command to invoke DATATRIEVE, you are placed in your
own dictionary and in Guide mode, and the YACHTS domain is readied.

Using READY, PRINT, and REPORT to Retrieve Data

The basic keywords used to retrieve data are the READY command and the
PRINT and REPORT statements. To display a complete domain, for example,
first ready the domain. Then type PRINT followed by the domain name:

DTR) READY PERSONNEL(6TI)
OTR) PRINT PERSONNEL(6TI)

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

00012 EXPERIENCED CHARLOTTE SPIVA TOP 12-Sep-72 $75,882 00012
00881 E}-{ PER I ENCED FRED HOWL F11 8-Apr-78 $58,584 00012
02843 E}{PER I ENCED CASS TERRY D88 2-Jan-80 $28,808 38485
12843 TRAINEE JEFF TASHKENT C82 4-Apr-81 $32,818 87485
32432 TRAINEE THOMAS SCHWEIK F11 7-NOIJ-81 $28,723 00881
34458 TRAINEE HANK MORRISON T32 1-Mar-82 $30,000 87288
38482 E}{PER I ENCED BILL SWAY T32 5-Ma}'-80 $54,000 00012
38485 E}{ PER I ENCED JOANNE FREIBURG E48 20-Feb-80 $23,808 48475
38485 EXPERIENCED DEE TERRICK D88 2-Ma}'-77 $55,828 00012
48475 E}{PER I ENCED GAIL CASSIDY E48 2-Ma}'-78 $55,407 00012
48573 TRAINEE SY KELLER T32 2-Au!1-81 $31 1548 87288
48001 E}-{ PER I ENCED DAN ROBERTS C82 7-Jul-78 $41 1385 87485
48843 TRAINEE BART HAMMER D88 4-AU!1-81 $28,382 38485
78823 E}-{ PER I ENCED LYDIA HARRISON F11 18-Jun-78 $40,747 00881
83784 E}{ PER I ENCED JIM MEADER T32 4-Apr-80 $41 1028 87288
84375 E}{PER I ENCED MARY NALEIJO D88 3-Jan-78 $58,847 38485
87288 E}{PER I ENCED LOUISE DEPALMA G20 28-Feb-78 $57,588 00012
87485 E}-{ PER I ENCED ANTHONY IACOBONE C82 2-Jan-73 $58,482 00012
87701 TRAINEE NATHANIEL CHONTZ F11 28-Jan-82 $24,502 00881
88001 E}{ PER I ENCED DAVID LITELLA G20 11-NoIJ-80 $34,833 87288
80342 E}-{PER I ENCED BRUNO DONCH IKOIJ C82 8-AU!1-78 $35,852 87485
81023 TRAINEE STAN WITTGEN G20 23-Dec-81 $25,023 87288
88028 EXPERIENCED RANDY PODERESIAN C82 24-Ma}'-78 $33,738 87485

DTR)

Getting Started with DATATRIEVE 2-3

For an explanation of the various forms of the PRINT statement, see the Intro
duction toDATATRIEVE-ll and theDATATRIEVE-ll Reference Manual. To
retrieve information in a report format, use the REPORT statement. This can
provide you with a report title, a date, page numbers, and various statistical
functions. In its simplest form, the report specification consists of a REPORT
statement, followed by a PRINT statement specifying the fields you want to
report, and an END_REPORT statement to conclude the specification:

DTR) REPORT YACHTS WITH BUILDER = "ALBERG"(BTIJ
RW) PRINT BOAT(BTIJ
RW) END_REPORT(BTIJ

15-Nov-87
Page 1

MANUFACTURER MODEL RIG

LENGTH
OI.'ER

ALL WEIGHT BEAM PRICE

ALBERG

DTR)

37 MK II KETCH 37 20tOOO 12 $38t951

For a complete explanation of the DATATRIEVE-ll Report Writer, see the
DATATRIEVE-ll Guide to Writing Reports.

2.5 DATATRIEVE Input Line Prompts

Several types of prompts provide you with information during your interactive
DATATRIEVE session. There are four types of input line prompts:

DTR> Marks the beginning of input lines and shows that DATATRIEVE is
ready for your input

CON> Prompts you to continue incomplete commands or statements and
shows what DATATRIEVE expects next

DFN> Prompts you to continue a partially complete DEFINE command

RW> Prompts you to complete unfinished Report Writer statements and
enter additional statements

2-4 Getting Started with DATATRIEVE

2.6 DATATRIEVE Syntax Line Prompts

When you press RETURN before completing a command or statement,
DATATRIEVE prompts you with a phrase in square brackets telling you what
sort of input it expects to satisfy the syntax of the command or statement. This
example shows several of DATATRIEVE's syntax prompts:

DTR> READY(illJ
[Looking for Dictionary EleMent]
CON> YACHTS(illJ
DTR> FINDm
[Loo~~ing for IIFIRST II t dOfrlain nafrle t or collection nafrle]
CON> YACHTS WITH(illJ
[Looking for Boolean expression]
CON> LOA(illJ
[Looking for relational operator (eqt gtt etc.)]
CON> BETWEENm
[Looking for a value expression]
CON> 20(illJ
[Looking for upper value of between]
CON> AND(illJ
[Looking for a value expression]
CON> 30(illJ
[5a records found]
DTR>

2.7 DATATRIEVE Prompts for Storing and Modifying Values

When you enter a STORE or MODIFY statement, DATATRIEVE usually
prompts you to enter new information to be stored in the record, or to replace
what was stored there previously. Unless the statement contains a USING
clause, you are prompted to enter information for each field receiving a new
value. The prompt is made up of the word "Enter" followed by the name of the
field. It takes the following general form:

Enter field-naMe:

2.8 DATATRIEVE Error Messages

Error messages are DATATRIEVE responses to faulty syntax or an error in
logic. When it detects an error, DATATRIEVE displays an error message and
returns you to DATATRIEVE command level. All data items remain the same as
they were before you made the error. The messages describe the error. For
instance, when you use an undefined name in a PRINT command,
DATATRIEVE responds with an error message:

DTR) PRINT RUBINS(illJ
Field IIRUBINS II is undefined or used out of context
DTR)

Getting Started with DATATRIEVE 2-5

2.9 Ending Your DATATRIEVE Session

You can exit from DATATRIEVE by:

• Entering the EXIT command

• Pressing CTRL/Z

• Pressing CTRL/C two times

2.9.1 Using the EXIT Command

To end your DATATRIEVE session and return to the operating system command
level, you can respond to the DTR> prompt with an EXIT command:

DTR> E}<IT(lli)
:>

Entering the EXIT command at any other DATATRIEVE prompt is a syntax
error.

2.9.2 Exiting from DATATRIEVE with CTRL/Z

You can also end your DATATRIEVE session by entering CTRL/Z in response to
the DTR> prompt:

DTR> "2
>

Entering CTRL/Z in response to any prompt other than DTR> returns you to
DATATRIEVE command level (DTR».

2.9.3 Exiting from DATATRIEVE by Pressing CTRL/C Two Times

If you enter one CTRL/C when DATATRIEVE is executing a command,
DATATRIEVE aborts its operation. If you enter CTRL/C two consecutive times,
the second aborts the task and returns you to your operating system command
level. Either the EXIT command or CTRL/Z is a better way to exit than two
CTRL/Cs, because EXIT and CTRL/Z do not abort the task.

2.10 Using Help

DATATRIEVE offers two levels of help - basic and advanced. Basic help is infor
mation about elementary DATATRIEVE statements. Advanced help provides
instructions on statements that you are likely to use after some experience with
DATATRIEVE. To get information on the help topic itself, type HELP in
response to the DTR> prompt.

DTR> HELP(lli)

2-6 Getting Started with DATATRIEVE

For a listing of the topics for which help is available, type:

DTR> HELP HELPffilij

The topics of greatest interest to the beginning user are
the follolAJing:

GUIDE READY FIND SORT
PRINT MODIFY STORE E}<I T

Help is al.lailable for the follolAJing topics:

ABORT ADT ASSIGNMENT BEGIN
COMPUTED CONDITION DATE DECLARE
DEFINE DEFINEP DELETE DELETEP
DICTIONARY DISPLAY DOMAIN DROP
EDIT EDIT-STRING ERASE E}<IT
E}<TRACT FILE FIND FINISH
FOR GUIDE HELP IF
MODIFY OCCURS PIC PRINT
PROCEDURE RANGE READY RECORD
RELEASE REPEAT REPORT RSE
SELECT SET SHOW SHOWP
SORT STORE SUM TABLE
THEN USAGE I.IALUE I.JI EW
DBMS OWNER WITHIN

DTR>

To get help on one of these topics, type HELP followed by the name of the topic
and press the RETURN key.

2.10.1 Using Advanced Help

For a listing of topics for which advanced help is available, type:

DTR> HELP ADI.IANCED HELPffilij
Advanced help is available for the following topics:

CONDITION DICTIONARY DOMAIN DBMS
EDIT EDIT-STRING FILE FIND
MODIFY OCCURS PRINT PROCEDURE
RANGE RECORD RSE SELECT
SORT STORE TABLE USAGE
I.IALUE I.JI EW

DTR>

To get advanced help on one of these subjects, type HELP ADVANCED followed
by the name of the subject.

Getting Started with DATATRIEVE 2-7

2.11 Guide Mode

The self-explanatory Guide mode feature helps you:

• While you are learning to use DATATRIEVE

• Whenever you are unsure of the sequence of commands you need to accomplish
your task

----------------------- Note -----------------------

To use Guide mode, you must have a video display terminal. It will
not work on any hardcopy terminal.

To get into Guide mode, type:

DTR) SET GUIDE(ffi)

DATATRIEVE then prompts you, step-by-step, for every operation you want to
perform. If you need help, type a question mark (?). DATATRIEVE shows you a
list of the possible commands and statements you can use to complete your task:

DTR) SET GUIDE(ffi)
Enter cOMMand, type? for help

If you type?, the DATATRIEVE displays the following information:

Enter cOMMand, type? for help

The possible responses are:
READY Make dOMain available
SHOW Display status inforMation

Return to norMal Datatrieve

Notice that Guide mode automatically spells out entire words and phrases imme
diately after you type only one or two letters. You may find this somewhat star
tling at first, but you soon get used to it. Guide mode fills in the word as soon as
you enter characters it recognizes. If you type R, it completes the word as
READY. If you type RE, REA, and so on, it also echoes the word READY.

You can get unexpected results with Guide mode if you are not careful, however.
For example, suppose you want to ready a domain called EASELS. If you
type REA, Guide mode does not expand the R to READY and the EA to
EASELS. Rather, it interprets the EA as part of a READY command with
no domain name supplied. To get the results you want, you could instead
type REA EA, which would be expanded to READY EASELS.

When you are ready to exit from Guide mode and return to regular
DATATRIEVE, type LEAVE. The DTR> prompt means you are out of Guide
mode.

2-8 Getting Started with DATATRIEVE

Creating Data Dictionaries 3

Each time you invoke it, DATATRIEVE automatically connects you to a data
dictionary - an RMS file that DATATRIEVE creates to store definitions and pro
tection information. This chapter shows how to create a data dictionary.

3.1 Contents of a Data Dictionary

A data dictionary contains the definitions and protection information for the fol
lowing DATATRIEVE data structures:

• Domains

• Records

• Procedures

• Description tables

Each definition describes the contents of the data structure:

• A domain definition contains the name of the domain, the name of the record
definition associated with the domain, and the file specification of the file con
taining the data for the domain.

• A record definition contains the name of the record and a definition for each
field in the record.

• A procedure definition is the procedure itself, including the procedure name
and all commands and statements in the procedure.

• A table definition is the table itself, including its name and all code and
description pairs.

3-1

Associated with each of these definitions is an access control list (ACL). It pro
tects the one definition with which it is associated and restricts its use. Access
control lists supplement the protection features of your operating system.

3.2 Creating a Data Dictionary

You create a data dictionary using the DEFINE DICTIONARY command. The
format of this command is:

DEFINE DICTIONARY file-spec

DEFINE DICTIONARY creates an empty indexed sequential RMS file that is
suitable for use as a data dictionary. You supply the file specification, and the
operating system creates an entry for it in your directory. You can choose any file
extension when you create it. If you use the default file extension .DIC, you do
not have to specify the file extension when referring to your dictionary file from
DATATRIEVE command level. In addition, if you use the standard file exten
sion, you can easily identify your dictionary files when you list your directory.

When you enter a DEFINE DICTIONARY command, DATATRIEVE creates a
file and establishes the new dictionary as your current data dictionary,just as if
you had entered a SET DICTIONARY command:

DTR> SHOW DICTIONARYffiITj
The current dictionary is 5'1':[1 ,3JNEWQ.DIC
DTR> DEFINE DICTIONARY MYDICffiITj
DTR> SHOW DICTIONARYffiITj
The current dictionary is SY:[1 ,37JMYDIC.DIC

Note that because you did not specify any extension for the dictionary,
DATATRIEVEassigned .DIC by default.

You can begin entering definitions immediately. IfDATATRIEVE cannot create
a file because, for example, you do not have write access to the disk, or the disk is
not mounted, it prints a message on your terminal and leaves you connected to
your current dictionary.

3.3 Changing Dictionaries

When you invoke it, DATATRIEVE automatically connects you to a default data
dictionary. At the time of installation, your system manager determines what
the default dictionary will be for your system. At the beginning of your
DATATRIEVE session, that dictionary is your current dictionary.

To find out the name of your current dictionary, use the following command:

DTR> SHOW DICTIONARYffiITj
The current dictionary is 5'1':[1 ,37JMYDIC.DIC

SHOW DICTIONARY prints the file specification of the current data dictionary.

3-2 Creating Data Dictionaries

If you want to use a different dictionary, use the following format of the SET
command:

SET DICTIONARY file-spec

To change from the default dictionary to another dictionary, you must specify at
least one element of the file specification of the other data dictionary. For exam
ple, if you specify only the device name, DATATRIEVE searches that device for a
directory with your project-programmer number (PPN) or user identification
code (UIC) and a file named QUERY.DIC. IfDATATRIEVE does not find the file
you specify, it prints an error message on your terminal and leaves you in your
current dictionary. (At no time are you in DATATRIEVE without being in a data
dictionary.)

If you have readied a domain in your current dictionary and you change diction
aries, that domain is still available when you are in the new dictionary. This fea
ture allows you to move records from that readied domain into another domain
in the new current dictionary.

If you want to return to the default data dictionary, issue the SET DICTIONARY
command without a file specification:

DTR> SET DICTIONARYm

The following dialogue illustrates the setting and displaying of data dictionaries.
Note that if you try to set a dictionary that you have not defined, DATATRIEVE
prints an error message on your terminal. You must first define the dictionary
with a DEFINE DICTIONARY command. Note also that DATATRIEVE returns
the DFN> prompt when you omit the file specification from the DEFINE
DICTIONARY command. In this example, DR1: represents the name of the
device on which the default DATATRIEVE system dictionary resides. DR2: is
the name of the device on which your file directory is stored:

DTR> SHOW DICTIONARYm
The current dictionary is DR1:[1 tZJQUERY.DIC
DTR> SET DICTIONARY NEWDICm
File "NEWDIC" not found
DTR> DEFINE DICTIONARYm
DFN> NEWDICm
DTR> SHOW DICTIONARYm
The current dictionary is DRZ:[ZOOt200JNEWDIC.DIC
DTR> SET DICTIONARYm
DTR> SHOW DICTIONARYm
The current dictionary is DR1:[1 tZJQUERY.DIC
DTR>

Note that you do not need an explicit SET DICTIONARY command after enter
ing DEFINE DICTIONARY NEWDIC, because that DEFINE sets the dictionary
to NEWDIC automatically.

Creating Data Dictionaries 3-3

Defining Domains 4

When you define a DATATRIEVE domain, the domain associates the names of a
record definition and a data file with each other. When you use a domain name,
you tell DATATRIEVE to use a particular record definition to interpret the data
stored in a specific file.

Do not confuse the domain with the data you want to manage using the domain.
You can erase old records or add new ones to a data file without disturbing the
relationship between the file and a record definition. That relationship is estab
lished when you define a domain and it remains fixed.

This chapter explains how to define simple RMS domains. You can also use the
Application Design Tool (ADT) to define domains, records, and files. For informa
tion on using ADT, see the Introduction to DATATRIEVE-ll.

4.1 Specifying Domain Names

In the DEFINE DOMAIN command, you specify the name of a domain, the name
of the record definition associated with the domain, and the file specification of
the file containing the data for the domain. The domain name must:

• Begin with a letter (A-Z)

• Contain 31 characters or less

• End with a letter (A-Z) or a digit (0-9)

• Contain only letters, digits, dollar signs, hyphens, or underscores
(A-Z, 0-9, $, -, or _)

4-1

DATATRIEVE enters the domain definition in your current dictionary directory.

----------------------- Note -----------------------

DATATRIEVE treats hyphens and underscores as identical char
acters. You may use either underscores or hyphens in the names
you assign. When processing, DATATRIEVE automatically con
verts hyphens to underscores. When it returns the output, it shows
underscores whether you have entered hyphens or underscores. To
use a hyphen as a minus sign, put spaces before and after it.

4.2 Defining a Simple RMS Domain

To define a domain, you associate the name of the domain with a record defini
tion and file specification. The format for the DEFINE DOMAIN command
follows:

DEFINE DOMAIN domain-name USING record-name [(pa~;Wd)] ON file-spec

The domain name cannot duplicate a DATATRIEVE keyword or the name of any
other element in the current data dictionary. The record name refers to the
record definition to be associated with the domain. You can define the domain
before you define the record. (See Chapter 5 for information on defining records.)

An optional password can be used to check for E (execute) privilege for the record
definition. If an asterisk prompt (*) is specified, DATATRIEVE prompts you for
the password.

Be sure to end the definition with a semicolon (;). If you omit the semicolon,
DATATRIEVE prompts you for one with DFN>.

The following rules apply to the DEFINE DOMAIN command:

• It must be preceded by a DATATRIEVE command level prompt DTR>.

• You cannot include a domain definition in a procedure.

• You cannot invoke a procedure in a domain definition.

• You cannot include a DEFINE DOMAIN command in a DATATRIEVE
statement.

Here is an example of the DEFINE DOMAIN command:

DTR> DEFINE DOMAIN SCHEDULE USING SCHED_REC ON SCHEDi(@j
DTR>

This command enters the definition for SCHEDULE in your current dictionary.
The domain uses a record definition called SCHED_REC and a data file called
SCHED.DAT. The file extension .DAT is assigned to the data file by default.

4-2 Defining Domains

4.3 Using the SHOW Command with Domains

You can use the SHOW command to see how a domain is defined. If you enter
SHOW followed by the domain name, the text you used in the DEFINE
DOMAIN command is displayed on your terminal. For example, you enter
SHOW SCHEDULE, as follows, to see how the domain SCHEDULE is defined:

DTR> SHOW SCHEDULE@ill
DOMAIN SCHEDULE

USING SCHED_REC ON SCHED;
DTR>

Note that the domain must be defined in your current default dictionary. (See
Chapter 3 for information on dictionaries.)

To see if a domain is in your dictionary, enter the SHOW DOMAINS command.
This displays a listing of all domains in your default dictionary, as follows:

DTR> SHOW DOMAINS@ill
DOITlains:

FAMILIES KETCHES OWNERS
OWNERS_SEQUENTIAL SAILBOATS SCHEDULE
YACHTS YACHTS_SEQUENTIAL

DTR>

Defining Domains 4-3

Defining Records 5

There are two ways to define a record in DATATRIEVE-l1. You can use the
interactive Application Design Tool (ADT), and DATATRIEVE creates the
record for you based on your responses to a series of questions. You can also
define the record yourself with the DEFINE RECORD command.

For simple records, the Application Design Tool is often an efficient way to com
plete your definition. See the Introduction to DATATRIEVE-ll for a sample
ADT session. The DEFINE RECORD command, on the other hand, lets you use
options not available through ADT. For instance, it lets you include clauses such
as the COMPUTED BY clause, which asks DATATRIEVE to calculate the value
of a field from the values of other fields or value expressions.

This chapter explains how to set up a record definition using the DEFINE
RECORD command. TheDATATRIEVE-ll Reference Manual contains addi
tional information on defining records, including alphabetical listings of all
clauses you can use in your record definitions.

5.1 Planning a Record Definition

The first step in writing a DATATRIEVE record definition is to analyze your
data. Decide what data items you need to manage, their relative importance, and
ways to group related items.

You might want to maintain your personnel files with DATATRIEVE, for exam
ple. As you analyze the information, you find that for each employee you want to
include an identification number, status (experienced or trainee), name, depart
ment, starting ~ate, salary, and supervisor identification number. Your list of
data items might look like that in Figure 5-1.

5-1

IDENTIFICATION NUMBER
STATUS
EMPLOYEE NAME
DEPARTMENT
START DATE
SALARY
SUPERVISOR'S IDENTIFICATION NUMBER

Figure 5-1: Data Items in a Personnel Record

With your DATATRIEVE installation kit, you receive a record called
PERSONNEL_REC made up of the data items listed in Figure 5-1. The
DATATRIEVE definition for that record appears in Figure 5-2.

DTR> SHOW PERSONNEL_RECCBTIl
RECORD PERSONNEL_REC
USING
01 PERSON.

05ID PIC IS 9(5).

DTR>

05 EMPLOYEE_STATUS PIC IS X(ll)
QUERY_NAME IS STATUS

05 EMPLOYEE_NAME
10 FIRST_NAME

10 LAST_NAME

05 DEPT
05 START_DATE
05 SALARY

05 SUP_ID

QUERY_HEADER IS "STATUS"
I.JALID IF STATUS EQ "TRAINEE" tIE}-{PERIENCED" t

QUERY_NAME IS NAME.
PIC IS }-«10)
QUERY_NAME IS F_NAME.
PIC IS }-{(10)
QUERY_NAME IS L_NAME.

PIC IS >nce
USAGE IS DATE.
PIC IS 9(5)
EDIT_STRING IS $$$t$$$.
PIC IS 9(5).

Figure 5-2: PERSONNEL_REC Record Definition

To write a DATATRIEVE record definition yourself, you provide the elements to
transform a list of data items like that in Figure 5-1 into a formal record defini
tion like that in Figure 5-2. The rest of this chapter tells you how to make such a
change.

5.2 Getting Started and Naming a Record

When you define a record, you begin by specifying the name of a record. You can
define the record interactively by entering the DEFINE RECORD command
at the DTR> prompt followed by the complete record definition. If you make
a mistake, DATATRIEVE displays an error message and returns you to the
DATATRIEVE command level without saving the definition. You must then
retype it.

5-2 Defining Records

To avoid retyping, you can define the record in a procedure (see Chapter 9) or a
command file (see Chapter 10). You can define your record, or only a few fields of
the record, complete the definition (remember the semicolon), and then revise it
later. You can use your text editor or the DATATRIEVE Editor to add additional
fields or make whatever other changes you would like.

To make the changes with your text editor:

1. Copy the record definition to a file, using the following statement:

EXTRACT ON file-spec record-name

2. EXIT from DATATRIEVE

3. Use your text editor to make corrections in the record definition

Notice the file begins with the commands DELETE record-name and
DEFINE record-name. DATATRIEVE inserts these commands into the com
mand file when you use the EXTRACT command. When you invoke the file,
DATATRIEVE deletes the incorrect record definition and creates the cor
rected one.

4. Return to DATATRIEVE

5. Execute the command file just created by typing the at sign (@) and the file
name

See Chapter 16 for a description of the DATATRIEVE Editor.

When you name the record, the name must:

• Begin with a letter (A-Z)

• Contain 31 characters or less

• Contain only letters, digits, dollar signs, hyphens, or underscores
(A-Z, 0-9, $, -, or _)

• Not duplicate a DATATRIEVE keyword

• Not duplicate the name of an existing dictionary object

5.3 Defining the Parts of a Record Definition

Having named the record, you can define its parts. The complete record
definition consists of one or more field definitions for fields like PERSON,
EMPLOYEE_STATUS, and EMPLOYEE--NAME in Figure 5-2. Each field defi
nition describes the field itself, with a name and a field definition clause. It also
describes the field's relationship to other fields, with a level number. Follow the
definition with a period. Figure 5-3 shows the four parts of the SALARY field in
PERSONNEL-REC.

Defining Records 5-3

Level Field
Number Name

05 SALARY PIC IS 8(5)
IS $$$t$$$f. EDIT - STRING

- Two Field Definition Clauses
- Period (.)

Figure 5-3: Four Parts of the SALARY Field

These are required parts of the field definition:

• A level number specifying the field's relationship to other fields in the record

• A field name identifying the field

• A period (.) signifying the end of the field definition

In addition, most field definitions contain clauses describing the information
stored in the field. Among other things, field definitions can describe the size of a
field, the type of information stored in it, and how the information will be
displayed.

In Figure 5-3, for example, the PIC (or PICTURE) clause describes the size of
the SALARY field and the type of information which can be stored there, in this
case a number with no more than five digits. The EDIT_STRING clause specifies
that information in the SALARY field will be displayed in monetary format with
a leading dollar sign ($) and a comma (,) in the appropriate place.

Level numbers, field names, and field definition clauses are discussed in the fol
lowing sections.

5.3.1 Specifying Level Numbers

DATATRIEVE recognizes the levels offields in the record definition according to
the level numbers you assign. The level number is the first element of a field
definition. Level numbers are one- or two-digit numbers, ranging from the high
est possible level, 1, to the lowest possible level, 65. Leading zeros, as in 01 or 05,
do not affect the value of the level number.

Figure 5-4 shows the level numbers for fields in the PERSONNEL record
definition.

01 PERSON
05 ID
05 EMPLOYEE_STATUS
05 EMPLOYEE_NAME

10 FIRST_NAME
10 LAST_NAME

05 DEPT
05 START_DATE
05 SALARY
05 SUP_ID

Figure 5-4: Level Numbers in the PERSONNEL Record Definition

5-4 Defining Records

The level numbers apply to each group and elementary field:

o Group fields contairi one or mote group or elementary fields.

o Elementary fields contain one item of data and no other fields.

The group field PERSON is the top-level field and the only field with the level
number 01. Every record must have a top-level field. The group field
EMPLOYEE_NAME, numbered 05, contains the elementary fields
FIRST_NAME and LAST_NAME, numbered 10. The remaining fields, num
bered 05 like the group field EMPLOYEE_NAME, are elementary fields at the
same level as EMPLOYEE_NAME.

If one of the elementary fields numbered 05 (DEPT, for example), were numbered
06, then that field would no longer be at the same level as the group field preced
ing it. If DEPT were numbered 06, then it would become a part of the group field
EMPLOYEE_NAME.

A group field is not just a marker of record structure and relationships among
data items. A group field also gives you a way of using one name to refer to more
than one field. You can access all the data in the PERSONNEL_REC record, for
example, by using the group field PERSON. The following example shows how
you can display all the data in a selected record in the PERSONNEL domain
using the PERSON group field in aPRINT statement:

DTR> READY PERSONNEL(@)
DTR> FIND PERSONNEL(@)
[23 records found]
DTR> SELECT 3(@)
DTR> PRINT PERSON(@)

ID STATUS
FIRST

NAME
LAST
NAME DEPT

START
DATE SALARY

SUP
ID

02843 EXPERIENCED CASS TERRY D88 2-Jan-80 $28t808 38485

DTR>

When you develop a record structure, keep in mind these four guidelines for
using group and elementary fields:

• A record definition must define at least one elementary field.

• A record definition with more than one field definition must define a top-level
group field that includes all other fields in the record.

• A group field must contain at least one elementary field.

• A group field can contain both elementary and group fields.

Defining Records 5-5

Following are several rules for level numbers:

• Level numbers need not be consecutive.

Only the relative value of level numbers determines the relationship between
fields. For example, the structure of the record would be no different from its
present form if the fields numbered 05 had level numbers 02, and
FIRST_NAME and LAST-N"AME had level numbers 47. Using similar incre
ments in the numbers of successive levels is convenient but arbitrary. You do
not have to use the same increment between levels.

• Only the level numbers determine the relationships among fields.

The examples of records in this book indent field names to show the relation
ships among levels of fields. Although indenting fields can make a record defi
nition easy to read, it has no effect on the levels of fields and no effect on the
relationships between fields.

• You must use one number for all the fields at the same level in a group field,
like FIRST_NAME and LAST-N"AME in PERSONNEL-REC.

• The level number for a group field must be lower than the number for any field
it contains.

5.3.2 Naming Fields

You must name every field you define. You use field names to control the way
DATATRIEVE retrieves, modifies, and stores data. If you do not specify a column
header different from the field name, DATATRIEVE uses the field name as the
column header when displaying data.

5.3.2.1 Restrictions for Field Names - The names you choose for fields must con
form to the general restrictions for DATATRIEVE names, described in the
DATATRIEVE-ll Reference Manual. In summary, the name:

• Can consist of letters, digits, hyphens, dollar signs, and underscores

• Must begin with a letter

• Must not duplicate a DATATRIEVE keyword

• Must be from 1 to 31 characters long

• Must not duplicate the name of another dictionary object, domain, procedure,
or table

In most cases, DATATRIEVE displays an error message if you violate these
rules. However, if you duplicate dictionary object names, you may not receive an
error message or you may get unexpected results. For example, suppose you
want to display the contents ofa field with the same name as a readied domain
in your workspace. If you enter PRINT and the field name, DATATRIEVE asso
ciates the name with the domain rather than the field and displays the contents
of the domain. DATATRIEVE associates the name with the field only ifit is the
second name in a print list.

5-6 Defining Records

You can continue a name from one input line to another by typing a hyphen at
the end of the input line, pressing RETURN, and completing the name on the
next line. To make the original information for the PERSONNEL record (Figure
5-1) conform to the rules for field names, change some of them. None of the
names in the original information exceeds 30 characters, but several contain
spaces, which are illegal characters in DATATRIEVE names. Figure 5-5 shows
the necessary changes.

IDENTIFICATION - 10
STATUS - EMPLOYEE_STATUS
EMPLOYEE NAME - EMPLOYEE_NAME

FIRST_NAME
LAST_NAME

DEPARTMENT - DEPT
START DATE - START_DATE
SUPERVISOR'S IDENTIFICATION NUMBER - SUP_ID

Figure 5-5: Valid Field Names for EMPLOVEE_REC

5.3.2.2 Using Duplicate Field Names - DATATRIEVE does not require field
names to be unique. You can have several fields in one record that have the same
name. However, fields that share one name must be in different group fields. To
refer to a field name that is a duplicate, prefix it with its group field name. The
record is a field tree, not a simple linear list. No other field is equivalent to the
top-level field. All other fields are at lower levels of the structure. The levels of
the field tree define the relationships among group and elementary fields and
determine the sequence DATATRIEVE follows in searching for the names of
fields. In PERSONNEL-REC, the fields ID, EMPLOYEE_STATUS,
EMPLOYEE-N"AME, DEPT, START-DATE, SALARY, and SUP --ID are at the
same level, one level below the top-level PERSON. FIRST_NAME and
LAST-N"AME are on the third level in the field tree.

The following examples show some consequences of this structure:

• If you specify EMPLOYEE_NAME.LAST-N"AME, DATATRIEVE looks at the
field names in the group field EMPLOYEE-N"AME until it finds the desired
field. When DATATRIEVE searches for the specified field, it finds the first field
named EMPLOYEE-N"AME. Then it looks at the next level lower for the first
field named L.aST -N" AME.

DTR> FIND PERSONNELOO)
[23 records found]
DTR> SELECT 3(0)
DTR> PRINT IDt EMPLOYEE_NAME.LAST_NAMEt SALARYOO)

ID
LAST
NAME

02843 TERRY

DTR>

SALARY

$28t80B

Defining Records 5-7

If you had a duplicate field called LAST_NAME, perhaps under a group field
SUP_NAME, you could use the tree structure to tell DATATRIEVE whether
you wanted to print EMPLOYEE_NAME.LAST_NAME or
SUP _NAME.LAST_NAME.

• LAST_NAME, without any qualification, is also a valid and unique field name
in PERSONNEL_REC because there is no duplicate for it in the present
record.

• If you tell DATATRIEVE to store a value in ID.FIRST_NAME, it does not find
the field FIRST_NAME and does not store the value. It displays an error mes
sage that says:

Field IIID.FIRST_NAME Il is undefined or used out of context

In general, though you can have duplicate and even multiple field names, it is
best to avoid duplicates. Unless you provide a qualified field name when refer
ring to a duplicate field, DATATRIEVE retrieves the value of the first instance of
the duplicate field name. If you intend to refer to an instance other than the first
but do not specify it, you will receive the output of the first instance instead of
what you intend. If you do choose to use duplicate or multiple field names, you
should be careful to use qualified names when necessary.

, 5.3.2.3 Using the Field Name FILLER - Sometimes you want to preserve fields in
a data file without using them, usually for one of these reasons:

• You may not need those fields for a particular application.

• You may want to control the display of records so that you do not display cer
tain data.

• You may want to reserve space in the physical record of the data file.

For these purposes, you can specify the keyword FILLER as the name of an ele
mentary or group field. Like other fields, a field named FILLER must have a
level number, and it can contain field definition clauses. Unlike other fields, the
field name FILLER can belong to more than one field at the same"level in a
group field. When you use the PRINT, LIST, MODIFY, STORE, REPORT, and
SUM statements, DATATRIEVE ignores values in FILLER fields. When you use
the DISPLAY statement, DATATRIEVE does display the values in FILLER
fields.

You cannot retrieve whole records or group fields containing a group field named
FILLER. You can, however, retrieve values from the elementary and group fields
included in a group field named FILLER. Each of those fields has its own valid
name, and you can retrieve the value by specifying that name in a record selec
tion expression, a print list, or a field list.

Figure 5-6 shows a part of the YACHT record definition with FILLER in place of
TYPE, the group field that contains MANUFACTURER and MODEL. It also
shows the result of a SHOW FIELDS and two PRINT statements, one of the top
level group field and one of an elementary field (MODEL) in the group field
FILLER.

5-8 Defining Records

Level numbers and field names of YACHT record with filler as group field

01 BOAT
03 FILLER

06 MANUFACTURER
06 MODEL

03 SPECIFICATIONS
06 RIG
06 LENGTH_OVER_ALL
06 DISPLACEMENT
06 BEAM
06 PRICE

The effect of FILLER on SHOW FIELDS

DTR> SHOW FIELDS(ffij
YACHTS

BOAT
SPECIFICATIONS (SPECS)

RIG [Character string]
LENGTH_OVER_ALL (LOA) [Character string]
DISPLACEMENT (DISP) [NuMber]
BEAM [NUfrlb e r]
PRICE [Nufrlber]

DTR>

The effect of FILLER as a group field on two PRINT statements

DTR> FIND YACHTS; SELECT; PRINT(BTI)

LENGTH
OI.IER

RIG ALL WEIGHT BEAM PRICE

KETCH 37 20,000 12 $36,851

DTR) PRINT MODEL(ffij

MODEL

37 MK II

DTR>

Figure 5-6: Using FILLER as a Group Field Name

Defining Records 5-9

5.3.3 Using Field Definition Clauses

DATATRIEVE handles the information in a field according to the type of data in
the field definition. DATATRIEVE recognizes the following field definition
clauses:

• COMPUTED BY

• EDIT_STRING

• OCCURS

• PICTURE

• QUERY_HEADER

• QUERY_NAME

• REDEFINES

• SIGN

• USAGE

• VALID IF

When you write a DATATRIEVE record definition, use a PICTURE, USAGE, or
COMPUTED BY clause to specify the type of data each elementary field
contains.

You can specify these classes of fields:

• Alphanumeric

Define an alphanumeric field with a PICTURE clause of the form PIC X(n),
where n is an integer value describing the field width. The
EMPLOYEE_STATUS field in the record PERSONNEL_REC, for instance,
looks like this:

05 EMPLOYEE_STATUS PIC IS }-{(11).

You can store any combination of characters in alphanumeric fields: letters,
digits, and the special characters that are part of the DATATRIEVE character
set. See the DATATRIEVE-ll Reference Manual for a definition of the
DATATRIEVE character set.

5-10 Defining Records

• Numeric

You can store digits and an optional sign (+ or -) in numeric fields.
DATATRIEVE assumes unsigned numbers to be positive in computations. In
the YACHT record, DISPLACEMENT, BEAM, and PRICE are numeric fields.
Define a numeric field with a PICTURE clause of the form PIC (n), where n is
an integer value representing the field width, or with any of these USAGE
clauses:

- COMP (or INTEGER)

- COMP-l (or REAL)

- COMP-2 (or DOUBLE)

- COMP-3 (or PACKED)

- COMP-5 (or ZONED)

USAGE clauses follow a field definition in the format:

08 EMPLOYEE_SALARY PIC IS 8(8) USAGE IS INTEGER.

See the DATATRIEVE-ll Reference Manual for explanations of the internal
storage for USAGE clauses.

• Date

Define a date field with the USAGE clause in the form USAGE IS DATE. You
can store dates between 17-Nov-1858 and 28-Feb-2100 in a date field. You can
use the values in date fields in some kinds of computations. For example, you
can subtract one date from another to get the number of days elapsed between
the two dates.

• Computed by

Define a computed by field with the COMPUTED BY clause. A computed by
field in a record definition does not correspond to a field in the physical record
stored in the data file and does not occupy space in a record. It specifies a value
expression. For example, you can define a field named SALARY computed by
multiplying the hourly pay of an employee (the WAGE field of the same record)
by the number of hours worked (the HOURS field of the record). The field defi
nition would be:

05 SALARY
EDIT_STRING $$$8.88
COMPUTED BY WAGE * HOURS.

DATATRIEVE computes the value of the field when you refer to it in a
statement.

Defining Records 5-11

An elementary field can belong to anyone of the four classes of fields - alphanu
meric, numeric, date, or computed by. You do not need to use a clause to specify
the data type for a group field. A group field is always alphanumeric. If you have
stored only digits in a group field, you can use it in arithmetic computations.

Table 5-1 summarizes the field classes and their content.

Table 5-1 : Field Classes

Field Type Class Content

Elementary field Alphanumeric Any combination of characters

Numeric Any combination of digits and optional plus (+) or
minus (-) sign

DATE A date

COMPUTED BY None; the field definition specifies a value expres-
sion, but no value is stored in the record

Group-field Alphanumeric The values of the fields contained in the group field

5.3.4 Specifying Query Names

You can use the QUERY_NAME field definition clause to specify an alternative
name for any field in your record definition. When you name a field, it is good to
select a field name that is short enough to use easily but long enough to be mean
ingful, especially to other people who may use the record. At times, however, you
may want to use an abbreviation or a memorable short name in place of the for
mal field name. For example, the YACHT record contains one field named
LENGTH_OVER-ALL that is fifteen characters long. The name suggests the
meaning of the data stored in that field and is therefore helpful to a person unfa
miliar with the YACHTS domain. The field has a query name as well, LOA, to
save you from having to type the complete name each time you refer to the field.

You can use a query name in any DATATRIEVE statement where you can use
the corresponding field name. Figure 5-7 shows a set of query names for
PERSONNEL-REC.

EMPLOYEE_STATUS
EMPLOYEE_NAME
FIRST_NAME
LAST_NAME

QUERY_NAME IS STATUS.
QUERY_NAME IS NAME.
QUERY_NAME IS F _NAME.
QUERY_NAME IS L_NAME.

Figure 5-7: Query Names for PERSONNEL_REC

5-12 Defining Records

5.3.5 Specifying Word Boundary Alignment with the ALLOCATION
Clause

The ALLOCATION clause determines which word boundary alignment
DATATRIEVE uses when storing records in the data file. You can specify one of
three kinds of alignment:

• LEFT_RIGHT

• MAJOR_MINOR

• ALIGNED_MAJOILMINOR

For explanations of the three word boundary alignments, see the
DATATRIEVE-ll Reference Manual. If you do not specify otherwise,
DATATRIEVE-ll uses LEFT-RIGHT alignment.

If you attempt to use DATATRIEVE-ll on a data file created with an alignment
other than LEFT_RIGHT, be sure to specify the matching alignment in the
DATATRIEVE-ll record definition. VAX DATATRIEVE, for instance, uses
MAJOR_MINOR as the default alignment. You must specify MAJOR-MINOR
in your DATATRIEVE-l1 record definition if you wish to use a data file created
on VAX DATATRIEVE. If the alignment in the record definition does not match
the alignment in the data file, you receive this message:

File and dOMain record len~ths don't Match (D=57)

5.4 Using the OCCURS Clause to Define Hierarchical Records

At times, to save space in your record definition, you may want to define one or
more fields as list fields. Compare, for instance, the following two sample output
lines from the domain FAMILIES. The first does not use a list field but instead
includes a separate field in the record for each child. The second does use a list
field:

DTR> PRINT FIRST 1 FAMILIES@)

FATHER MOTHER

JIM ANN

DTR>

KID
NAME

URSULA

AGE
KID
NAME

7 RALPH

DTR> PRINT FIRST 1 FAMILIES@)

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
RALPH 3

DTR>

AGE

3

Defining Records 5-13

Records without lists are flat records, because the elementary fields in them are
logically equivalent to each other. When you print a flat record, all the elemen
tary fields display on the same line.

Without an OCCURS clause, the record for FAMILIES can look like the one
shown in Figure 5-8.

01 FAMILY_REC.
03

03

PARENTS.
06 FATHER PIC }-{ (10) •
06 MOTHER PIC X (10) •
KIDS.
06 FIRST_KID.

08 KID_NAME PIC X(10).
08 AGE PIC 88 EDIT_STRING IS Z8.

06 SECOND_KID.
08 KID_NAME PIC X(10).
08 AGE PIC 88 EDIT_STRING IS Z8.

Figure 5-8: A Flat Record

When using an OCCURS clause, however, you can define a record with fields
that are lists. A record containing a list or lists is not a flat record, but a
hierarchical record. In hierarchical records, elementary fields are not alllogi
cally equivalent to each other. The list field displays on the same line as the ele
mentary fields with the same number, but the list items display on additional
lines beneath the list field. With an OCCURS clause for KIDS, the record
FAMILY-REC can look like the one in Figure 5-9, a sample record installed
wi th your system.

DTR> SHOW FAMILY_RECCBIfl
RECORD FAMILY_REC
01 FAMILY.

03 PARENTS.
06 FATHER PIC X(10).
06 MOTHER PIC X(10).

03 NUMBER_KIDS PIC 88 EDIT_STRING IS Z8.
03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER_KIDS.

06 EACH_KID.

DTR>

08 KID_NAME PIC X(10) QUERY_NAME IS KID.
08 AGE PIC 88 EDIT_STRING IS Z8.

Figure 5-9: A Hierarchical Record

The OCCURS clause in the record definition creates the hierarchical structure.
The clause can define a variable-length or a fixed-length list. The following two
sections discuss fixed-length and variable-length lists for hierarchical records.

5-14 Defining Records

5.4.1 Defining Lists with a Fixed Number of Occurrences

The OCCURS clause format for fixed length lists is OCCURS n TIMES, where n
is the number of occurrences. If you define the record for FAMILIES using
OCCURS 2 TIMES, the record definition looks like this:

03 KIDS_NAMES OCCURS 2 TIMES.
05 FIRST_NAME PIC X(10).
05 AGE PIC 99 EDIT_STRING IS Z9.

The definition specifies that the group field KIDS_NAMES occurs twice. Each
occurrence of KIDS -NAMES contains two fields, FIRST-NAME and AGE.

When DATATRIEVE displays the fixed record, the output looks like this:

DTR> PRINT FIRST 2 FAMILIES(@)

FIRST
NAME

FATHER MOTHER AGE

JIM ANN URSULA 7
RALPH 3

JIM LOUISE ANN 31
JIM 29

DTR>

You can use OCCURS n TIMES with an elementary or group field, and a record
definition can contain any number of OCCURS clauses in this format. That is, an
OCCURS clause can contain another fixed-length OCCURS clause.

03 KIDS_NAMES OCCURS 2 TIMES
05 FIRST_NAME PIC X(10).
05 AGE PIC 99 EDIT_STRING IS Z9.
05 NICKNAME PIC X(10)

OCCURS 3 TIMES.

If you define a hierarchical record with a list that occurs a fixed number of times,
every record in the domain contains enough space to store the same number of
list items. If the first two families had only one child, for instance, the FAMILIES
domain with a fixed number of occurrences would print a blank line for the sec
ond child:

DTR> PRINT FAMILIES(@)

FIRST
NAME

FATHER MOTHER AGE

JIM ANN URSULA 7
0

JIM LOUISE ANNE 31
0

DTR>

Defining Records 5-15

A field definition cannot contain both an OCCURS and a COMPUTED BY
clause. That is, you cannot specify multiple occurrences of a COMPUTED BY
field.

5.4.2 Defining Lists with a Variable Number of Occurrences

Using the OCCURS clause in a field definition defines a hierarchical record that
allows a variable number of list items from one record to another. This format
lets you vary the number of list items in the records of a domain:

OCCURS min TO max TIMES DEPENDING ON field-name

The record definition for FAMILIES uses the OCCURS clause to define KIDS as
a variable-length list. The KIDS variable-length list for FAMILY-REC is shown
in Figure 5-9. The output of the PRINT command shows the relationship
between NUMBER_KIDS and the fields KID_NAME and AGE. The values of
KID-NAME and AGE appear as a list in records with more than one kid:

DTR> PRINT FAMILIESffiITj

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
RALPH 3

JIM LOUISE 5 ANNE 31
JIM 28
ELLEN 26
DA1.JID 24
ROBERT 16

JOHN JULIE 2 ANN 28
JEAN 26

JOHN ELLEN CHRISTOPHR 0
ARNIE ANNE 2 SCOTT 2

BRIAN 0
SHEARMAN SARAH DA1.JID 0
TOM ANNE 2 PATRICK 4

SUZIE 6
BASIL MERIDETH 6 BEAU 28

BROOKS 26
ROBIN 24
JAY 22
WREN 17
JILL 20

ROB DIDI 0
JEROME RUTH 4 ERIC 32

CISSY 24
NANCY '?'? .:.....:....

MICHAEL 20
TOM BETTY 2 MARTHA 30

TOM 27
GEORGE LOIS 3 JEFF 23

FRED 26
LAURA 21

HAROLD SARAH 3 CHARLIE 31
HAROLD 35
SARAH 27

EDWIN TRINITA 2 ERIC 16
SCOTT 11

DTR>

5-16 Defining Records

When you define a record with a variable-length list in it, you must put the list
at the end of the record definition. You can use only one field with an OCCURS
clause. That is, you cannot have an OCCURS clause within an OCCURS clause.
If you attempt to define another field after an OCCURS clause and at the same
level, you receive the following error message:

ONLY Subordinate fields allowed after OCCURS DEPENDING ON

5.4.3 Nesting Lists Within Lists to Form Sublists

Although you can use only one OCCURS clause in a record definition, you can
define fixed-length lists within a variable-length list. In fact, you can include
any number of OCCURS n TIMES clauses within a field defined with an
OCCURS clause. This sample record definition with a sublist is an extension of
the FAMILY record. The list PET occurs twice for each kid, so each kid in each
family can record the data for two pets:

DTR> SHOW PETS®0
DOMAIN PETS
USING PET_REC ON PET.DAT;

DTR> SHOW PET_REC®0
RECORD PET_REC
01 FAMILY.

03 PARENTS.
06 FATHER PIC X(10).
06 MOTHER PIC X(10).

03 NUMBER_KIDS PIC 88 EDIT_STRING IS Z8.
03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER_KIDS.

DTR>
DTR>

06 EACH_KID.
08 KID_NAME PIC X(10) QUERY_NAME IS KID.
08 KID_AGE PIC 88 EDIT_STRING IS Z8.
08 PET OCCURS 2 TIMES.

13 PET_NAME PIC X(10).
13 PET_AGE PIC 88.

READY PETS®0
PRINT FIRST 2 PETS®0

NUMBER KID KID PET
FATHER MOTHER KIDS NAME AGE NAME

JIM LORAINE 2 GARY 24 POP
SODA

SUE 23 MOUSE
SHORTY

JIM ANN 2 URSULA 7 SQUEEKY
FRANK

RALPH 3

PET
AGE

03
04
03
08
03
07
00
00

Defining Records 5-17

5.4.4 Changing the Length of a List

If you define -a record-with the OCCURS clause, you can change the number of
occurrences in a list. If you specify the MAX clause when defining the data file,
all records have enough space for the maximum number of occurrences, and you
can always change the number of occurrences up to the limit you have set:

DTR) DEFINE FILE FOR FAMILIES MAX

If you do not specify the MAX clause when you define a sequential file,
DATATRIEVE sets the length of each record when you store it. In that case, you
cannot add examples to the list. You can always decrease the number of occur
rences, though, and you can increase the number of occurrences back to the orig
inal number.

If you do not specify the MAX clause and the file organization is indexed, you can
still change the number of occurrences.

The following example shows how to add items to a list. Because you are modify
ing an existing record, you use MODIFY rather than STORE to add items to the
list:

DTR> READY INDEXED_FAMILIES WRITE(@)
DTR> FIND FIRST 1 INDE){ED_FAMILIESffiIT)
[1 Record found]
DTR> SELECT; PRINTffiIT)

NUMBER KID
FATHER MOTHER KIDS NAME

JIM ANN

DTR> MODIFY NUMBER_KIDS(@)
Enter NUMBER_KIDS: llffiIT)
DTR> FIND KIDSffiIT)
[ll records found]
DTR> SELECT 3(@)
DTR> MODIFY(@)
Enter KID_NAME: NICKY(@)
Enter AGE: 2ffiIT)
DTR> SELECT llffiIT)
DTR > ~10D I FY(@)
Enter KID_NAME: TAM(@)
Enter AGE: lffiIT)

2 URSULA
RALPH

DTR> PRINT FIRST 1 INDE>~ED_FAMILIESffiIT)

NUMBER KID
FATHER MOTHER KIDS NAME

JIM ANN II URSULA
RALPH

AGE

7
3

AGE

7
3

NICKY 2
TAM

DTR>

For information on retrieving data from hierarchical records, see Chapter 14 in
this manual. .

5-18 Defining Records

Defining Files 6

The way you define a data file determines how much storage space the file occu
pies, how quickly you can retrieve data from the file, and whether you can
change or duplicate data fields in that file.

DATATRIEVE is based on RMS, the standard DIGITAL record and file manage
ment software facility. Based on how you define your data files, DATATRIEVE
uses RMS to create, define, store, manipulate, and maintain information within
your files. Your operating system documentation will give you more information
onRMS.

You can define two types of files in DATATRIEVE:

• Sequential files, which store records in the order you enter them

• Indexed files, which store records according to the order of a specified key field

This chapter discusses the DEFINE FILE command, the choices you have when
deciding whether to use sequential or indexed files, and other options available
to you when you define a file in DATATRIEVE.

6.1 Choosing a Sequential or an Indexed File

Sequential files require less storage space than indexed files but it often takes
longer to retrieve data from sequential files.

To retrieve records from a sequential file, DATATRIEVE searches records one by
one according to their order in the file. To retrieve records from an indexed file,
DATATRIEVE searches the file according to specified key fields. The key fields
are searched first, regardless of their order in the data file.

6-1

Sequential organization is useful in certain applications. For example, if your
records contain a date field and you frequently retrieve them in chronological
order, it is often best to arrange the records in the order you stored them. You are
likely to want sequential access to banking transactions, for example.

D se sequential files for accessing large groups of records in the order you stored
them.

In other cases, sequential organization may be unnecessarily slow. When you
use a record selection expression (RSE) to form a record stream or collection of
records from a sequential file, DATATRIEVE has to start at the beginning of the
file and read every record until it finds the ones that you request.

If you use an RSE to form a record stream based on key fields, RMS searches
through the index it maintains without having to read every record. If you need
to access a small number of records distributed throughout a file, use an indexed
file.

6.1.1 Modifying and Deleting Records

Because of differences in file organization, you modify and delete records differ
ently for sequential and indexed files. In a sequential file, you can use the
MODIFY statement to change any field, but in an indexed file, you cannot mod
ify the primary key field. You also cannot modify secondary key fields defined
with the NO CHANGE clause explained in the section on optional clauses later
in this chapter.

RMS does not allow you to use the ERASE statement in a sequential file where
sequence is the basis of the file organization. If you need to erase records from
your data file, use an indexed file. You can, however, use the MODIFY statement
on records in sequential files and change every field to zero or spaces depending
on the data type.

6.1.2 Summary of Differences

Table 6-1 summarizes the differences between sequential and indexed files.

Table 6-1: A Comparison of Sequential and Indexed Files

SEQUENTIAL FILE INDEXED FILE

Stores records in the order you create them Stores records according to the values in the
primary key field

Takes up less storage space than an indexed Allows you to retrieve certain data faster
file than a sequential file does

Allows you to modify any field Does not allow you to modify primary key
field or any key field that has NO CHANGE
attribute

Requires you to use MODIFY instead of Lets you use ERASE statement
ERASE

6-2 Defining Files

6.2 Defining a File Using the DEFINE FILE Command

DATATRIEVE can store and retrieve data using existing RMS data files, so it is
compatible with other languages or utilities that use RMS. It can also create
RMS files, including sequential files and multi key indexed files. The DEFINE
FILE command forms an RMS data file for the domain you specify. It uses the
format:

DEFINE FILE [FOR] domain-name [,]

L
ALLOCATION = n]
SUPERCEDE [, ...]
MAX

{ KEY = field-name-1 [([NO]CHANGE[,] [NO] DUP)]} [, ...]

The DATATRIEVE-ll Reference Manual also discusses the DEFINE FILE
command.

6.2.1 Defining a Sequential File

If you decide you want your data file to be sequential, follow these steps:

1. Before you define a data file, the associated domain and record definitions
must be in your dictionary. You can use the SHOW command to be sure that
they are in place:

DTR> SHOW YACHTS_SEQUENTIAL, YACHTffiITj
DOMAIN YACHTS_SEQUENTIAL

USING YACHT ON YACHT.SEQ ;
RECORD YACHT
USING
01 BOAT.

03 TYPE.
06 MANUFACTURER PIC X(10)

QUERY_NAME IS BUILDER.
06 MODEL PIC X(10).

03 SPECIFICATIONS
QUERY_NAME SPECS.
06 RIG PIC ~«6)

1.IALID IF RIG EQ "SLOOP" ,"KETCH" ,"MS" ,"YAWL".
06 LENGTH_OVER_ALL PIC XXX

DTR>

VALID IF LOA BETWEEN 15 AND 50
QUERY_NAME IS LOA.

06 DISPLACEMENT PIC 99999
QUERY_HEADER IS· II WE I GHT II

EDIT_STRING IS ZZ,ZZ9
QUERY_NAME IS DISP.

06 BEAM PIC 99.
06 PRICE PIC 99999

VALID IF PRICE>DISP*I.3 OR PRICE EQ 0
EDIT_STRING IS $$$,$$$.

Defining Files 6-3

2. Use the DEFINE FILE command to define the file. For a sequential file, you
need specify only the domain name in the DEFINE FILE command:

DTR> DEFINE FILE FOR YACHTS_SECJlliill
DTR>

3. Select the options you want to use with the file, as explained in the later sec
tion on optional clauses.

6.2.2 Defining an Indexed File

You use the KEY clause in the DEFINE FILE command to create an indexed file.
The clause creates an indexed file and specifies a field in the record definition to
be an index key for the domain's data file. The first key field you name in the
DEFINE FILE command is the primary key. All subsequent keys are alternate
keys.

If you decide you want your file to be indexed, first analyze your record definition
to decide which field or fields you want to be key fields.

You can designate only one primary key field, but you can name as many
alternate key fields as you wish from the remaining fields in the record.
DATATRIEVE searches the primary and alternate fields independently, so defin
ing alternate keys does not slow performance for queries based on the primary
key.

To choose a primary key, decide which field of the record you are likely to name
most often in queries. Make certain you will not want to change that field,
because DATATRIEVE does not allow you to change the values in primary keys.

Finally, look for a field that has a unique value for each record. Unless you spec
ify otherwise, DATATRIEVE does not allow you to have the same value in more
than one primary key field. For instance, you could not have two records in
PERSONNEL with the ID 99883. You can use the DUP option to allow dupli
cates, as explained later in this chapter, but duplicate values slow performance.

If you were setting up a PERSONNEL domain, you might predict that most
users seeking information on an employee would base their search on the ID.
You would not want to change identification numbers, and no two employees
should have the same identification number. Consequently, ID uniquely identi
fies a record and is a good primary key for your PERSONNEL domain. This
DEFINE FILE command would make ID the primary key for the indexed file
PERSONNEL:

DTR> DEFINE FILE FOR PERSONNEL, KEY=IDlliill
DTR>

6-4 Defining Files

6.2.2.1 Using a Group Field as the Primary Key - If the field you use most often
does not uniquely identify each record, you can find another field that, together
with the first, does identify the record. Then designate a group field made up of
the two fields as the primary key. In the domain YACHTS the elementary field
MANUFACTURER does not uniquely identify a record. ALBIN, for instance, is
the builder of three of the first five YACHTS:

DTR) PRINT FIRST 5 YACHTS(@)

LENGTH
OI.JER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK I I KETCH 37 20,000 12 $38,951
ALBIN 79 SLODP 28 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,278 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,800
AMERICAN 28 SLOOP 28 4,000 08 $9,895

DTR)

The combination of MANUFACTURER and MODEL, however, is unique for
each record. These two fields are defined as the group field TYPE in the YACHT
record definition. Therefore, TYPE, which has no duplicate values, makes a suit
able primary key.

Note that when you use a group field as a primary key, you cannot modify any of
the elementary fields in the group. In addition, note that BUILDER has been
defined as a query name for MANUFACTURER in the YACHT record definition.
This means you can use the shorter name BUILDER in place of
MANUFACTURER in queries.

If a group field is the primary key, list the field most commonly used in queries as
the first elementary field in the group field. The field MANUFACTURER
(BUILDER) appears in queries more frequently than MODEL, for example.

When a group field such as TYPE is defined as a key field, keyed access will work
only for queries involving the group field itself or the first elementary field in the
group. With TYPE as the key field, DATATRIEVE conducts an indexed search
for TYPE or BUILDER but a sequential search for the second elementary field,
MODEL.

If you want DATATRIEVE to use the first elementary field in a group field as a
key, you must define that first field as either PIC X or PIC 9 in the group field
definition. When you ready the domain, DATATRIEVE uses the group field as
the key. If the first elementary field is anything but a simple numeric or charac
ter string, it is not treated as a key when the domain is readied.

6.2.2.2 Defining Alternate Keys - If there are additional fields that you often use
in queries, you can define them as alternate keys. DATATRIEVE performs an
indexed search when you refer to an alternate key in a query.

Defining Files 6-5

You could make LENGTH_OVER-ALL an alternate key for YACHTS. Use this
form of the DEFINE FILE command:

DTR> DEFINE FILE FOR YACHTS KEY = TYPE. KEY = LOAm
DTR>

DATATRIEVE allows duplicate values for the alternate keys unless you specify
otherwise with the NO DUP option explained in a later section on options.

Chapter 17 in this manual tells how to use key fields for optimum processing.

6.2.2.3 Summary of Rules for Defining Key Fields - To set up key fields that
DATATRIEVE can process most efficiently, use these guidelines:

• When defining data, make the field most commonly used in queries the pri
mary key.

• If the most commonly used field does not uniquely identify a record, combine it
with another field in a field group so that the group field identifies the record.

• Avoid duplicate values of a primary key when possible because duplications
slow performance.

• If you decide to make a group field the primary key, list the field most com
monly used in queries as the first elementary field.

• If your record has other fields you often use with the primary key in queries,
designate them as alternate keys.

6.2.3 Optional Clauses with the DEFINE FILE Command

You can use the following options in your DEFINE FILE command for both
sequential and indexed files:

• ALLOCATION = n

ALLOCATION in the DEFINE FILE command refers to the allocation of disk
blocks to a file. If you do not specify an allocation for a sequential file that you
create, DATATRIEVE allots zero blocks to the file and then assigns space as
needed. For an indexed file, it allots a small space when you create the file and
addi tional space as needed.

If you know your file is going to be large, however, you can use the
ALLOCATION == n clause to reserve storage space for the file and increase the
speed at which you can store records:

OTR> DEFINE FILE FOR YACHTS ALLOCATION = 2000m
DTR>

See Chapter 17 for a discussion of techniques for optimizing response time and
workspace.

6-6 Defining Files

• SUPERSEDE

If you specify SUPERSEDE in your DEFINE FILE command, DATATRIEVE
deletes the existing file with the same name and replaces it with the new one.

Because RSTS/E systems keep only one version of a file, you must specify
SUPERSEDE on RSTS/E systems when defining a file to replace one that
already exists. If you do not, DATATRIEVE sends you an error message and
does not create the new file:

DrR) DEFINE FILE FOR YACHTSffiIfl
File IIYACHT.DAT II alread}' exists
DTR)

On RSX systems, be sure that the complete file specification, including version
number, duplicates the one you want to replace. Otherwise, DATATRIEVE
keeps both the old and the new files. If the file you want to replace is
YACHT.DAT;l, you would specify the replacement file as follows:

DTR) DEFINE DOMAIN YACHTS USING YACHT ON YACHT.DAT;lffiIfl
DTR) DEFINE FILE FOR YACHTS SUPERSEDEffiIfl
DTR)

• MAX

As explained in Chapter 5, a record defined with the OCCURS clause allows
you to vary the number of occurrences in a list.

For a record with an OCCURS clause, use the MAX clause when defining the
file. This reserves space in every record for the maximum possible number of
list items. The record for FAMILIES, for instance, has this OCCURS clause:

03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER_KIDS.

If you request the MAX option when defining a file for FAMILIES, you reserve
space for 10 kids in each record. Use this form of the command:

DTR> DEF I NE FILE FOR FAM I LIES MM-{(8TI)
DTR)

If you do not specify the MAX clause when you define a sequential file,
DATATRIEVE sets the length of each record when you store it. In that case,
you cannot add additional elements to the list. You can decrease the number of
occurrences and you can also increase the number of occurrences back to the
original number.

If you specify more than one option in the DEFINE FILE command, separate
each from the next with a comma. You do not have to specify the options in any
particular order.

DTR> DEFINE FILE FOR FAMILIES SUPERSEDEt ALLOCATION
DTR>

2000 t MA>~ffiIfl

Defining Files 6-7

You can use these optional clauses with indexed files:

• CHANGE or NO CHANGE

The CHANGE or NO CHANGE clause determines whether or not you can
modify the contents of the key field associated with the clause. To specify the
CHANGE or NO CHANGE option, put the clause in parentheses after the
name of the key field:

DTR> DEFINE FILE FOR YACHTS KEY = TYPE (NO CHANGE)OO
DTR>

You cannot specify CHANGE for a primary key. CHANGE is in effect for alter
nate keys unless you specify otherwise .

• DUP or NO DUP

The DUP or NO DUP clause determines whether or not you can assign the
same value to the specified key field in more than one record. Can more than
one YACHTS record, for instance, have the value ALBIN for the key field
BUILDER?

NO DUP is the default for primary keys. However, DATATRIEVE allows you
to specify DUP for primary keys. You may slow performance in retrieving
records if you do so, because DATATRIEVE performs an indexed search to find
the primary key and then a sequential search through the duplicates when it
finds them.

For alternate keys you can, by default, use duplicate values. You can specify
NO DUP if you like, but eliminating duplicates from an alternate key field
can limit the number of records you can store successfully. If you assigned RIG
as an alternate key and specified the NO DUP option, for instance, you
could store only four records in YACHTS: one sloop, one ketch, one yawl,
and one MS.

If you do not want duplicates and you do not want the alternate key values to
change, put both sets of keywords in parentheses and separate them with a
comma: KEY = field-name (NO DUP, NO CHANGE).

This example defines an indexed file for YACHTS. It uses the group field TYPE
as the primary key with the DUP option in effect, and RIG as an alternate key
with the NO CHANGE option in effect:

DTR> DEFINE FILE FOR YACHTS KEY = TYPE (DUP) tOO
DFN> KEY = RIG (NO CHANGE)OO
DTR>

6-8 Defining Files

Limiting Record Streams with Record 7
Selection Expressions

You define and store data so you can retrieve information in whatever form is
most useful. You may want to perform any of these activities:

• Display a group of records (PRINT or REPORT statements)

• Form a temporary collection of records (FIND statement)

• Update a group of records (MODIFY statement)

To carry out any of these tasks, you must identify a record stream, that is, a
group of records from a domain or collection. You form record streams with
DATATRIEVE by specifying a record selection expression (RSE).

By including various clauses in the RSE, you can determine the content of the
record stream in several ways:

• By specifying the number of records in the record stream (FIRST n clause)

• By limiting the record stream to records that meet a conditional test (WITH
clause)

• By sorting the records according to the values of one or more fields (SORTED
BY clause)

This chapter presents many examples to teach you how to use RSEs. The exam
ples use RSEs with the PRINT statement, but you may use them with FIND,
REPORT, or other DATATRIEVE statements.

In addition, see Chapter 14 for information about another form ofRSE that lets
you access list items from hierarchical records.

7-1

7.1 Accessing All the Records in a Domain

If a domain does not contain many records, you may be satisfied to display all of
the records. You form one type of PRINT statement by typing PRINT followed by
an RSE; for example:

DTR> READY YACHTStllil
DTR> PRINT YACHTStllil

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK I I KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN I.JEGA SLOOP 27 5,070 08 $18,600
AMERICAN 26 SLOOP 26 4,000 08 $9,895
AMERICAN 26-MS MS 26 5,500 08 $18,895
BAYFIELD 30/32 SLOOP 32 9,500 10 $32,875
BLOCK I • 40 SLOOP 39 18,500 12
BOMBAY CLIPPER SLOOP 31 9,400 11 $23,950
BUCCANEER 270 SLOOP 27 5,000 08
BUCCANEER 320 SLOOP 32 12,500 10
CB:C CORI,IETTE SLOOP 31 8,650 09

VENTURE 222 SLOOP 22 2,000 07 $3,564
WESTERLY CENTAUR SLOOP 26 6,700 08 $15,245
WESTSAIL 32 SLOOP 32 19,500 11
WINDPOWER IMPULSE SLOOP 16 650 07 $3,500
WRIGHT SEAWIND I I SLOOP 32 14,900 00 $34,480

DTR>

The PRINT YACHTS statement gives a display of all the records in the YACHTS
domain. The source for the RSE is YACHTS, the name of the domain. Each RSE
must include a source for the records, either a domain name, collection name, or
list name.

For clarity, you may want to specify the keyword ALL when you want a record
stream to include all the records in a domain. The keyword ALL is optional. For
example, PRINT ALL YACHTS and PRINT YACHTS are equivalent.

7-2 Limiting Record Streams with Record Selection Expressions

7.2 Specifying the Number of Records in the Record Stream

The keywords ALL and FIRST let you indicate the number of records in the
record stream. To specify the number of records in the record stream, type FIRST
followed by a number before typing the source for the RSE. For example:

DTR> PRINT FIRST 5 YACHTS(@:)

LENGTH
OI.IER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK I I KETCH 37 20,000 12 $36,851
ALBIN 78 SLOOP 26 a,200 10 $17,800
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN I)EGA SLOOP 27 5,070 08 $18,600
AMERICAN 26 SLOOP 26 a,ooo 08 $8,885

DTR>

In this case FIRST 5 YACHTS is the RSE. DATATRIEVE displays the first five
records in YACHTS according to their order in the data file. An RSE can have
either form:

FIRST n domain-name -
FIRST n collection-name -

for a domain
for a collection

where n is any number less than or equal to the total number of records in the
domain or collection.

Ifn is greater than the number of records in the source, DATATRIEVE gives you
all the records that fulfill the RSE and does not display a message on your
terminal.

Limiting the record stream can be useful when you are testing procedures, com
plex RSEs, or report specifications. You can conduct your tests without having to
wait for DATATRIEVE to display the complete set of records.

Specifying the number of records can be useful, too, when you want to display a
fixed number of those records that meet the requirements of the RSE:

DTR> PRINT FIRST 5 YACHTS WITH PRICE NE O(@:)

LENGTH
OI.IER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK I I KETCH 37 20,000 12 $36,851
ALBIN 78 SLOOP 26 a,200 10 $17,800
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN 1.IEGA SLOOP 27 5,070 08 $18,600
AMERICAN 26 SLOOP 26 a,ooo 08 $8,885

DTR>

Limiting Record Streams with Record Selection Expressions 7-3

7.3 Identifying Records with Conditional Expressions

There are several ways to limit the number of records in the record stream.
Often you are interested in grouping similar records together, regardless of their
position in the domain or record stream. You can restrict the record stream to
those records that satisfy a specified condition by using the WITH clause of the
RSE. Different forms of the WITH clause specify different types of relationships
between the values of the same field for different records. You can form record
streams based on:

• Patterns among the field values (EQUAL, NOT EQUAL, CONTAINING)

• Field values that fall within a specified range (BETWEEN ... AND ... , LESS
THAN, GREATER THAN)

• Field values you can or cannot find in a table

7.3.1 Comparing Records by Pattern Recognition

You can group records if the characters of a field value are equal or not equal to a
specified value; for example:

DTR> PRINT YACHTS WITH BUILDER = IIALBINII([IT)

LENGTH
OI.JER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN 78 SLOOP 26 4t200 10 $17t800
ALBIN BALLAD SLOOP 30 7t276 10 $27t500
ALBIN IJEGA SLOOP 27 5t070 08 $18t600

DTR>

This statement asks DATATRIEVE to examine each record of the YACHTS
domain and display only those records with the value "ALBIN" for the
BUILDER field. After testing each record of YACHTS, DATATRIEVE identifies
and then displays each record that meets the specified condition. WITH
BUILDER = "ALBIN" lets you limit the record stream to the records you wish
to access.

The expression, BUILDER = "ALBIN", is a Boolean expression. A Boolean
expression controls a comparison between value expressions. A Boolean expres
sion is either true or false depending on the values of the field and the value
expression specified. The term that relates the value expressions is called a
relational operator. In this example the relational operator is the equal
sign (=).

When you use EQUAL (=) or NOT EQUAL, you can list more than one value
expression in the same Boolean expression. The following queries specify a group
of value expressions for DATATRIEVE to compare with each field value. The

7-4 Limiting Record Streams with Record Selection Expressions

comma here is equivalent to saying AND BUILDER =, so that the statement
tells DATATRIEVE to print all yachts by Albin and all yachts by Alberg:

DTR> PRINT YACHTS WITH BUILDER = "ALBIN" t "ALBERG"

LENGTH
OI.IER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN 78 SLOOP 28 4t200 10 $17t800
ALBIN BALLAD SLOOP 30 7t278 10 $27t500
ALBIN I)EGA SLOOP 27 5t070 08 $18t800
ALBERG 37 MK I I KETCH 37 20tOOO 12 $38t851

DTR> PRINT YACHTS WITH RIG NOT EQUAL "SLOOP" t "KETCH"

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

AMERICAN 28-MS MS 28 5t500 08 $18t885
EASTWARD HO MS 24 7tOOO 08 $15t900
FJORD MS 33 MS 33 14tOOO 11
LINDSEY 39 MS 39 14t500 12 $35t900
ROGGER FD MIS MS 35 17t800 11

DTR>

Note that the EQUAL (=) and NOT EQUAL operators are case sensitive. They
see uppercase and lowercase letters as different:

DTR> FIND YACHTS WITH BUILDER
[0 records found]
DTR> FIND YACHTS WITH BUILDER
[3 records found]

"AI bin "ffiTI)

"ALBIN"ffiTI)

Because the builders' names are in uppercase letters in the data file but lower
case letters in the first query, DATATRIEVE did not find any record for a builder
named "Albin". However, for "ALBIN", it found three records.

On the other hand, the CONTAINING operator is indifferent to the case of the
letters. It finds matches if there is agreement with all of the letters in the field
value or with a substring derived from the field value. Thus the CONToperator
finds the "ALBIN" record if you specify either "Albin" or "bin", a three letter
substring:

DTR> FIND YACHTS WITH BUILDER CONT "AIbin"ffiTI)
[3 records found]
DTR> PRINT YACHTS WITH BUILDER CONT "bin"ffiTI)

LENGTH
OI.IER

MANUFACTURER MODEL RIG ALL WEIGHT

ALBIN 79 SLOOP 28 4t200
ALBIN BALLAD SLOOP 30 7t278
ALBIN VEGA SLOOP 27 5t070

DTR>

BEAM PRICE

10 $17t900
10 $27t500
08 $18t800

Limiting Record Streams with Record Selection Expressions 7-5

DATATRIEVE finds and displays each record that contains the substring "bin"
in the value for BUILDER.

Note that another difference between EQUALS and CONTAINING is that
DATATRIEVE can optimize EQUALS if the field is an RMS key, but it cannot
optimize for CONTAINING. The CONTAINING operator always reads every
record in the file. The EQUALS operator does not have to read each record if the
field is a key.

7.3.2 Grouping Records When Values Fall Within a Range

DATATRIEVE allows you to use a variety of relational operators to test whether
a field value for a record falls within a specified range. These operators are
GREATER_THAN (> or GT), GREATEILEQUAL (GE), LESS_THAN « or
LT), LESS_EQUAL (LE), and BETWEEN (BT):

DTR> PRINT YACHTS WITH PRICE GREATER_THAN 50000(@)

MANUFACTURER MODEL RIG

CHALLENGER £11 KETCH
ISLANDER FREEPORT KETCH
OLYMPIC ADVENTURE KETCH

DTR> PRINT YACHTS WITH PRICE

MANUFACTURER MODEL RIG

CHALLENGER £11 KETCH
ISLANDER FREEPORT KETCH
NORTHERN 37 KETCH
OLYMPIC ADt.JENTURE KETCH

DTR>

LENGTH
Ot.JER
ALL WEIGHT BEAM PRICE

£11 26,700 13 $51 ,228
£11 22,000 13 $5£1,870
£12 2£1,250 13 $80,500

GREATER_EQUAL 50000(@)

LENGTH
Ot.JER
ALL WEIGHT BEAM PRICE

£11 26,700 13 $51 ,228
£11 22,000 13 $5£1,870
37 111,OOO 11 $50,000
£12 2£1,250 13 $80,500

Note the difference between the two record streams. Northern, priced at exactly
$50,000, appears when the Boolean expression is PRICE GREATER-EQUAL
50000, but it does not appear when you use the GREATER-THAN operator.

The LESS_THAN and LESS-EQU AL operators work in a similar manner. The
LESS_EQUAL operator includes a record if its field is either less than or equal to
the value expression specified.

The BETWEEN operator is the equivalent of the GREATER-EQUAL and
LESS-EQUAL operators combined. It searches for records with field values that
are within the range specified or equal to either of the value expressions that
determine the range. For the BETWEEN operator to work, the range must go
from a smaller value to a larger one. In the following example, the Boolean

7-6 Limiting Record Streams with Record Selection Expressions

expression identifies a record stream that includes records with values for
PRICE between $50,000 and $90,000:

DTR> PRINT YACHTS WITH PRICE BETWEEN 50000 AND 80000CBIf)

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER 41 KETCH 41 26,700 13 $51 ,228
ISLANDER FREEPORT KETCH 41 22,000 13 $54,870
NORTHERN 37 KETCH 37 14,000 11 $50,000
OLYMPIC ADtJENTURE KETCH 42 24,250 13 $80,500

DTR>

7.3.3 Grouping Records by Reference to a Table

Some domains are associated with dictionary tables containing code strings that
correspond to values in a field in the record. You can form an RSE that causes
DATATRIEVE to look up the field value in the table. You can use the relational
operator IN to compare the contents of a field with the code strings in a diction
ary table or domain table. If there is a match on the code string in the table,
DATATRIEVE includes the record in the record stream. Two queries using
table-based RSEs are FIND YACHTS WITH RIG IN RIG_TABLE and FIND
YACHTS WITH RIG NOT IN RIG_TABLE.

See Chapter 12 for a discussion of tables.

7.3.4 Summary of the Relational Operators

Table 7-1 summarizes all of the relational operators available to form Boolean
expressions in the WITH clause of an RSE.

Table 7-1: Conditional Comparisons for an RSE

Type of Relationship of Relational Boolean Expression
Comparison Values in Boolean Operator

Pattern Exact match (case = BUILDER = "ALBIN"
recognition sensitive) EQUAL "ALBIN" = BUILDER

EQ

No match (case NE BUILDER NE "ALBIN"
sensitive) NOT_EQUAL "ALBIN" NE BUILDER

NOTE QUAL

Substring matches CaNT BUILDER CaNT "bin"
(not case CONTAINING
sensitive)

Substring does not NOT CaNT BUILDER NOT CaNT
match (not case NOT CONTAINING "bin"
sensitive)

(continued on next page)

Limiting Record Streams with Record Selection Expressions 7-7

Table 7-1: Conditional Comparisons for an RSE (Cont.)

Type of Relationship of Relational Boolean Expression
Comparison Values in Boolean Operator

Value within Value is > PRICE> 50000
a range greater than GT 50000 > PRICE

GREATER_THAN

Value is GE PRICE GE 50000
greater than or = GREATER-EQUAL 50000 GE PRICE

Value is < PRICE < 20000
less than LT 20000 < PRICE

LESS_THAN

Value is LE PRICE LE 20000
less than or = LESS-EQUAL

Value is BT PRICE BETWEEN
between the two BETWEEN 30000 AND 54000
values or = to one

Look up in Field value is in IN table-name RIG IN RIG_TABLE
table the table

Field value is not NOT IN table-name RIG NOT IN
in the table RIG_TABLE

Record stream Record stream is ANYrse FAMILIES WITH ANY
empty not empty KIDS

Record stream is NOTANYrse FAMILIES WITH NOT
empty ANY KIDS

7.3.5 Setting Up Multiple Tests with Compound Booleans

Thus far, each Boolean expression imposed just one test for records to be included
in the record stream. To set up multiple or complex tests for records, you can join
two or more Boolean expressions together. Expressions that join Booleans are
Boolean operators.

There are four Boolean operators: AND, OR, NOT, and BUT. With AND, OR, and
BUT you canjoin two or more Boolean expressions together to form a single
Boolean expression. NOT allows you to reverse the value of a Boolean
expression.

If you link Boolean expressions with AND or BUT, the resulting Boolean expres
sion is true only if all the Booleans linked with AND or BUT are true.

If you link Boolean expressions with OR, the resulting Boolean expression is
true if any one of the Booleans linked with OR is true.

If you precede a Boolean expression with NOT, the resulting Boolean expression
is true if the Boolean expression following NOT is false.

7-8 Limiting Record Streams with Record Selection Expressions

The following example shows the use of the Boolean operator:

DTR> PRINT YACHTS WITH RIG = MS OR LOA = 3800

LENGTH
OIJER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

AMERICAN 28-MS MS 28 5,500 08 $18,885
BLOCK I • 40 SLOOP 38 18,500 12
EASTWARD HO MS 24 7,000 08 $15,800
FJORD MS 33 MS 33 14,000 11
LINDSEY 38 MS .38 14,500 12 $35,800
PEARSON 38 SLOOP 38 17,000 12
ROGGER FD MIS MS 35 17,800 11

DTR>

The query displays data on all yachts that have a RIG that is MS or an LOA
equal to 39. For DATATRIEVE to include a record in the record stream, it must
find that the record from YACHTS satisfies either condition or both.

7.4 Sorting the Record Stream by Field Values

When you use a PRINT statement to display a record stream, the primary key
defined for the data file determines the order of the records. However, you can
use the SORTED BY clause of the RSE to sort the record stream in a different
order. For example, the records in YACHTS are already sorted by BUILDER, the
first part of the primary key (TYPE) for the data file.

If you are interested in the length of the boats, you can sort the records by LOA.
To break down each length yacht by weight, specify DISP, the query name for
displacement, as an additional sort key. The following query first sorts the
YACHTS records according to LOA and DISP, then limits the record stream to
the first five records:

DTR> FIND YACHTS SORTED BY LOA, DISP(@j
[113 records found]
DTR> PRINT FIRST 5 CURRENToo

LENGTH
OI.JER

MANUFACTURER MODEL RIG ALL

WINDPOWER IMPULSE SLOOP 18
CAPE DORY TYPHOON SLOOP 18
ENCHILADA 20 SLOOP 20
SAN JUAN 21 SLOOP 21
IJENTURE 21 SLOOP 21

DTR>

WEIGHT BEAM PRICE

850 07 $3,500
1 ,800 08 $4,285
2,300 07
1 ,250 07
1 ,500 07 $2,823

Limiting Record Streams with Record Selection Expressions 7-9

The SORTED BY clause takes precedence over the original sort order for the
record stream. It does not change the file organization of the records. The
SORTED BY clause enables you to produce reports with data records organized
into groups. Certain fields will control how the organization of these reports
takes place. For more information on control group reports, see the
DATATRIEVE-ll Guide to Writing Reports.

7-10 Limiting Record Streams with Record Selection Expressions

Using Compound Statements 8

When you want to do something in DATATRIEVE that involves definitions in a
data dictionary, you usually need to use a DATATRIEVE command. When you
want to manipulate data in a dictionary, you usually use DATATRIEVE state
ments, such as STORE, MODIFY, PRINT, and FIND.

You can enter individual statements or combine them into compound state
ments. You can enter statements at DATATRIEVE command level (the DTR>
prompt), in procedures, or in command files.

You can also enter individual commands at DATATRIEVE command level, in
procedures, or command files. However, you cannot combine DATATRIEVE com
mands into compound commands, mix commands and statements to form com
pound statements, or include commands in BEGIN-END blocks.

Table 5-1 in the DATATRIEVE-ll Reference Manual tells you whether a
DATATRIEVE keyword is used in commands or statements.

This chapter describes the use of compound statements, REPEAT and FOR
statements, and BEGIN-END blocks.

8.1 Using REPEAT to Combine Statements

Often you want to use the same DATATRIEVE statement over and over. For
instance, if you are storing five new boats into the domain YACHTS, you could
ready the domain for WRITE access and then repeat the instruction STORE
YACHTS five times.

8-1

By using a compound statement, however, you can combine the STORE state
ment with a REPEAT statement and then type the STORE statement only once
for the five records. The following example shows a frequent use of a compound
statement - combining STORE with REPEAT:

DTR> READY YACHTS WRITEm
DTR> REPEAT 3 STORE YACHTSm
Enter MANUFACTURER: HOBIEm
Enter MODEL: CATm
Enter RIG: SLOOpm
En t e r LENGTH OIJER ALL: 22m
Enter DISPLACEMENT: llOOOm
Enter BEAM: 8m
Enter PRICE: 6500m
Enter MANUFACTURER: RIDGEm
Enter MODEL: ACTm
Enter RIG: SLOOpm
En t e r LENGTH OI.JER ALL: 22m
Enter DISPLACEMENT: 3500m
Enter BEAM:@ID m
Enter PRICE:(ffiID m
Enter MANUFACTURER: ROBERTSm
Enter MODEL: Zllm
Enter RIG: SLOOpm
En t e r LENGTH OIJER ALL: 25m
Enter DISPLACEMENT: ll500m
En t e r BEAM: 10m
Enter PRICE: 7500m
DTR>

Prompts are repeated for each field in the record until data is stored in the speci
fied number of records or until you end the operation by entering CTRL/Z.

When you use a REPEAT statement with MODIFY, PRINT, and REPORT state
ments, you may also want to use a prompting value expression (*.prompt). You
probably do not want to PRINT, MODIFY, or REPORT on a single record more
than once. However, you can use a prompting value expression to supply new
information each time a statement is repeated.

The following example uses the prompting value expression with a REPEAT
loop:

DTR> SET NO PROMPTm
DTR> READY YACHTSm
DTR) REPEAT *.IINUMBER OF TIMES TO REPORTllm
CON> BEGINm
CON> REPORT FIRST 1 YACHTS WITH LOA = *.IITHE LOAllm
RW> PRINT BOATm
RW> END REPORTm
CON> ENDm
Enter NUMBER OF TIMES TO REPORT: 2m
Enter THE LOA: 37m

8-2 Using Compound Statements

(continued on next page)

23-0ct-S7
Page 1

LENGTH
OIJER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK I I KETCH 37 20tOOO 12 $36t851

Enter THE LOA: 36ru

MANUFACTURER

CABOT

DTR>

23-0ct-S7
Page 1

LENGTH
OIJER

MODEL RIG ALL WEIGHT BEAM PRICE

36 SLOOP 36 15tOOO 12

A compound statement can include any DATATRIEVE statement except FIND,
SELECT, DROP, RELEASE, or SORT.

Note that if you follow the REPEAT statement with a procedure, DATATRIEVE
repeats only the first statement in the procedure. To repeat the complete proce
dure, you must use a BEGIN-END block, described in a later section in this
chapter. Note also that a procedure in a REPEAT statement cannot include
DATATRIEVE commands.

8.2 Using the FOR Statement

You can use a FOR statement when you want to access individual fields more
than once. Suppose you want to supply a price for yachts with no price listed. You
do not want to change all the fields in the target records. You want to change
only the price field for specific yachts. First, form a collection of the boats you
want to modify. Then, use a FOR statement to modify the target records:

DTR> SET NO PROMPTru
DTR> READY YACHTS MODIFYru
DTR> FIND FIRST 3 YACHTS WITH PRICE Oru
[3 records found]
DTR> PRINT ALLru

LENGTH
OIJER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

BLOCK I • 40 SLOOP 38 lSt500 12
BUCCANEER 270 SLOOP 27 5tOOO OS
BUCCANEER 320 SLOOP 32 12t500 10

DTR> FOR CURRENTru
CON> MODIFY USING PRICE = DISP * 1 .3 + 5000ru
DTR> PRINT CURRENTru

(continued on next page)

Using Compound Statements 8-3

LENGTH
OI.IER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

BLOCK I • ao SLOOP 38 18t500 12 $28t050
BUCCANEER 270 SLOOP 27 5tOOO 08 $11t500
BUCCANEER 320 SLOOP 32 12t500 10 $21 t250

DTR>

8.3 Using BEGIN-END Blocks to Combine Statements

Another way to combine statements is the BEGIN-END block, which causes
DATATRIEVE to treat several statements as one statement. BEGIN-END
blocks are especially useful within FOR, STORE, and REPEAT statements.

8.3.1 BEGIN-END Blocks in FOR Statements

You can, for instance, use a BEGIN-END block in a FOR statement to modify the
price field in specific records. The BEGIN-END block lets you include two PRINT
statements within the MODIFY statement - the first to display the unchanged
records, the second to show the records after DATATRIEVE has modified them:

DTR> SET NO PROMPT([IT)
DTR> READY YACHTS WRITE([IT)
DTR> FOR YACHTS WITH PRICE O([IT)
CON> MODIFY USING([IT)
CON> BEGIN@)
CON> PRINT([IT)
CON> PRICE = *."NEW PRICE"([IT)
CON> PRINT([IT)
CON> END([IT)

LENGTH
OI.IER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

BLOCK I. ao SLOOP 38 18t500 12
Enter NEW PRICE: 28050([IT)

LENGTH
OI.IER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

BLOCK I. ao SLOOP 38 18t500 12 $28t050
BUCCANEER 270 SLOOP 27 5,000 08

Enter NEW PRICE: az
Execution terMinated by operator
DTR>

8-4 Using Compound Statements

8.3.2 IF-THEN-ELSE Statements in BEGIN-END Blocks

You can include an IF-THEN-ELSE statement with a prompting expression
within the block to allow you to decide whether or not to modify each record
stream:

DTR> SET NO PROMPTffiITj
DTR> FOR FIRST 3 YACHTS WITH PRICE = OffiITj
CON> BEGINffiITj
CON> IF *."'1' TO MODIFY PRICE, N TO SKIP" CONT "Y"ffiITj
CON> THEN MODIFY PRICE ELSEffiITj
CON> PRINT "NO CHANGE"ffiITj
CON> ENDffiITj
Enter Y TO MODIFY PRICE, N TO SKIP: Y ffiITj
Enter PRICE: 23a58 ffiITj
Enter Y TO MODIFY PRICE, N TO SKIP: N ffiITj
NO CHANGE
Enter Y TO MODIFY PRICE, N TO SKIP: N ffiITj
NO CHANGE

DTR.>

Conversely, if there are several DATATRIEVE statements required in the THEN
and ELSE clauses, include them in BEGIN-END blocks.

8.3.3 Using BEGIN-END Blocks in STORE Statements

Often you may want to include a number of lines in the BEGIN-END block. The
following example shows how to use:

• A BEGIN-END block within the STORE statement

• A prompting value expression to request user response

• A BEGIN-END block in a VERIFY clause

• A VERIFY clause with a USING clause to allow you to decide whether or not
to store the record displayed in the PRINT statement

• A context variable (A) to establish DATATRIEVE context

See Appendix A for more information on DATATRIEVE context.

DTR> READY YACHTS WRITEffiITj
DTR> STORE A IN YACHTS USINGffiITj
CON> BEGINffiITj
CON> BUILDER = *.BUILDERffiITj
CON> MODEL = *.MODELffiITj
CON> RIG = *.RIGffiITj
CON> LOA = *.LENGTHffiITj
CON> DISP = *. \.>JEI GHTffiITj
CON> BEAM = *.BEAMffiITj
CON> PRICE = DISP * 1.3 + BEAM * 100ffiITj
CON> END t.IER I FY US I NGffiITj
CON> BEGINffiITj
CON> PRINT A.BOAT, SKIPffiITj
CON> IF *.CONFIRMATION CONT "N" THENffiITj
CON> ABORT "BAD RECORD"ffiITj
CON>, ENDffiITj
DTR>

Using Compound Statements 8-5

When you press RETURN to enter the compound statement, DATATRIEVE
prompts for each of the fields in the YACHT record, then requests a confirmation:

Enter BUILDER: CRIS-CRAFT(@)
Enter MDDEL: (ffiID (@)
Enter RIG: KETCH(@)
Enter LENGTH: 32(@)
Enter WEIGHT: 8t725(@)
En t e r BEAM: 10(@)

MANUFACTURER MDDEL

CRIS-CRAFT

Enter CONFIRMATION: N(@)
ABORT: BAD RECORD

RIG

KETCH

DTR> FIND YACHTS WITH BUILDER
[0 records found]

LENGTH
DI.JER
ALL WEIGHT BEAM PRICE MANUFACTURER

32 8t725 10 $12t3a3 CRIS-CRAFT

CRIS-CRAFT(@)

8.3.4 BEGIN-END Blocks in REPEAT Statements

If you want to repeat a sequence of statements, use a BEGIN-END block inside a
REPEAT" statement. Suppose you wanted to store 50 new yachts using the
MANUFACTURER, LOA, DISPLACEMENT, and PRICE fields. You could use
the following BEGIN-END block to repeat the sequence of prompting
statements:

DTR> SET NO PROMPT(@)
DTR> READY YACHTS WRITE(@)
DTR> REPEAT 50 STORE YACHTS USING(@)
CON> BEGINffiIT)
CON> MANUFACTURER
CON> LOA
CON> DISPLACEMENT
CON> PRICE
CON> END(@)

*.MANUFACTURER(@)
*.LOA(@)
*.DISPLACEMENT(@)
*.PRICE(@)

Enter MANUFACTURER: GRAMPIAN(@)
Enter LOA: aO(@)
Enter DISPLACEMENT: laOO(@)
Enter PRICE: 23a56(@)
Enter MANUFACTURER: HIGGINS(@)
Enter LOA: 37(@)
En t e r DISPLACEMENT: 1375(@)
Enter PRICE: la765(@)

DTR>

For information on invoking a procedure in a REPEAT statement, see Chapter 9.

Because statements that use BEGIN-END blocks can be quite long, it is often
useful to put them into DATATRIEVE procedures so that you can edit and reuse
them without having to retype them. The next chapter explains how to use
procedures.

8-6 Using Compound Statements

Using DATATRIEVE Procedures 9

Often you want to execute the same series of commands and statements over and
over again, and you may want to have other users execute those same commands
and statements. Unless you use procedures, you have to retype the input each
time. By using procedures, however, you can develop the series of steps once and
then simply invoke the procedure each time you want to do the same steps over
again.

A procedure is a fixed sequence ofDATATRIEVE commands and statements you
create, name, and store in your data dictionary. A procedure can also contain
portions of a command or statement, such as a complex value expression.

9.1 Defining a Procedure

For almost any series of statements you use over and over again, you can save
yourself time by defining a single procedure. For example, you repeatedly per
form a simple query to display information about the manufacturers of large
yachts:

DTR) READY YACHTSlliD)
DTR) FIND BIGGIES IN YACHTS WITH LOA GT ao SORTED BY BUILDERlliD)
[8 records found]
DTR) PRINT ALLlliD)

(continued on next page)

9-1

LENGTH
OI)ER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER Lll KETCH Lll 26,700 13 $51 ,228
COLUMBIA Lll SLOOP Lll 20,700 11 $Ll8,LlBO
GULFSTAR Lll KETCH Lll 22,000 12 $LI 1 ,350
ISLANDER FREEPORT KETCH Lll 22,000 13 $5L1,B70
NAUTOR SWAN Lll SLOOP Lll 17,750 12
NEWPORT Lll S SLOOP Lll 18,000 11
OLYMPIC ADI.IENTURE KETCH Ll2 2L1,250 13 $80,500
PEARSON LllB KETCH Ll2 21 ,000 13

DTR>

Rather than type this query repeatedly, you can put it into a procedure. To define
a procedure, enter the DEFINE PROCEDURE command at DATATRIEVE com
mand level. After typing the keywords DEFINE PROCEDURE, enter a name for
the procedure and press RETURN.

DTR> DEFINE PROCEDURE BUILDERSillITl

DATATRIEVE then prompts with DFN> to indicate that it expects a procedure
definition. Enter the commands or statements that form the procedure defini
tion. DATATRIEVE continues to prompt with DFN> until you enter the
keyword END_PROCEDURE on a line by itself.

DTR> DEFINE PROCEDURE BUILDERSillITl
DFN>
DFN>
DFN>
DFN> END_PROCEDUREillITl
DTR>

As soon as you enter END_PROCEDURE, DATATRIEVE stores the procedure
definition in your current dictionary. It checks the syntax of the DEFINE
PROCEDURE statement, not that of the statements the procedure contains.
DATATRIEVE checks for syntax errors in those statements only when you
invoke the procedure.

9.2 Invoking a Procedure·

You invoke a procedure by preceding its name with a colon:

:procedure-name

The content of a procedure determines where you can invoke it. In general, you
can invoke a procedure anywhere you can use the commands or statements con
tained in the procedure. For example, if the procedure contains only complete
DATATRIEVE commands and statements, you can invoke it at the
DATATRIEVE command level.

DTR> :BUILDERSillITl

Note that you cannot invoke a procedure during an ADT, EDIT, or GUIDE mode
session or in a domain, record, or table definition.

9-2 Using DATATRIEVE Procedures

In addition, when DATATRIEVE executes a procedure, you do not see the com
mands and statements in the procedure or the system messages that are nor
mally displayed. You see only the output that follows the last statement or
command in the procedure. In the following example, the only output is in
response to FIND YACHTS SORTED BY DESC PRICE, the last statement in
the procedure EXPENSIVE:

DTR> SHOW E}< PENS !l.JE~
PROCEDURE EXPENSIVE
READY YACHTS
FIND YACHTS SORTED BY DESC PRICE
END_PROCEDURE
DTR> : E}< PENS !l.JE~
[113 records found]
DTR>

If you follow the FIND statement with another statement, you no longer receive
the message about the number of records found:

DTR> SHOW E}< PENS I l,JE~
PROCEDURE EXPENSIVE
READY YACHTS
FIND YACHTS SORTED BY DESC PRICE
PRINT FIRST 5 CURRENT
END_PROCEDURE
DTR> : E}< PENS I l,JE~

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

OLYMPIC
ISLANDER
CHALLENGER
NORTHERN
COLUMBIA

DTR>

ADVENTURE
FREEPORT
al
37
al

9.3 Contents of a Procedure

KETCH
KETCH
KETCH
KETCH
SLOOP

a2
al
al
37
al

2a,250
22,000
28,700
la,OOO
20,700

13
13
13
11
11

$80,500
$5a,870
$51 ,228
$50,000
$a8,a80

A procedure can contain any number of the following DATATRIEVE elements:

• Full DATATRIEVE commands and statements

• Command and statement clauses and arguments

• Comments

Using DATATRIEVE Procedures 9-3

9.3.1 Commands and Statements in Procedures

You might define a procedure containing complete DATATRIEVE commands
and statements. This one, for instance, finds and displays the biggest yachts in
the domain:

DTR> DEFINE PROCEDURE BIG_YACHTS(5ill
DFN> FIND BIGGIES IN YACHTS WITH LOA GT ao SORTED BY BUILDER(5ill
DFN> PRINT ALL(5ill
DFN> END_PROCEDURE(5ill
DTR>

When you execute the procedure BIG_YACHTS, the results are the same as
entering the FIND and PRINT statements at the DATATRIEVE command level,
indicated by the DTR> prompt:

DTR> READY YACHTS(5ill
DTR> :BIG_YACHTS(5ill

LENGTH
OI.IER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER al KETCH al 28,700 13 $51,22S
COLUMBIA al SLOOP al 20,700 11 $aS,a80
GULFSTAR al KETCH al 22,000 12 $al,350
ISLANDER FREEPORT KETCH al 22,000 13 $5a,870
NAUTOR SWAN al SLOOP al 17,750 12
NEWPORT al S SLOOP al lS,OOO 11
OLYMPIC ADVENTURE KETCH a2 2a,250 13 $SO,500
PEARSON a18 KETCH a2 21,000 13

DTR>

9.3.2 Arguments and Clauses

Besides full commands and statements, a procedure can contain fragments of
statements or commands. It can contain an argument or clause from a command
or statement. For example, a procedure can contain a record selection
expression:

DTR> DEFINE PROCEDURE BIG_YACHTS_RSE(5ill
DFN> BIGGIES IN YACHTS WITH LOA GT ao SORTED BY BUILDER(5ill
DFN> END_PROCEDURE(5ill
DTR>

Having separated the record selection expression from the FIND statement, you
can use the procedure name as the argument of a FIND statement:

DTR> FIND :BIG_YACHTS_RSEru
[S records found]
DTR>

9-4 Using DATATRIEVE Procedures

In fact, you can use this procedure in any command or statement containing an
RSE argument, such as the PRINT statement:

DTR> PRINT ALL :BIG_YACHTS_RSE(BTI)

LENGTH
DI.IER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER al KETCH al 2Gt700 13 $51 t22S
COLUMBIA al SLOOP al 20t700 11 $aSta90
GULFSTAR al KETCH al 22tOOO 12 $alt350
ISLANDER FREEPORT KETCH al 22tOOO 13 $5at970
NAUToR SWAN al SLOOP al 17t750 12
NEWPORT al S SLOOP al lStOOO 11
OLYMPIC ADI.IENTURE KETCH a2 2at250 13 $SOt500
PEARSON a19 KETCH a2 21 tOOO 13

You can begin a procedure with the end fragment of a command or statement
and include other whole commands or statements. You can also end a procedure
with the beginning fragment of a command or statement after a series of com
plete commands and statements.

9.3.3 Comments in Procedures

A comment contains explanatory information for you or other users that
DATATRIEVE does not interpret as input. To put a comment in a procedure, put
an exclamation point (I) before the information that you want to include.

When you invoke a procedure, DATATRIEVE processes it without displaying
the contents of the procedure. To display the comments, use the SHOW command
with the procedure name. You could, for instance, put a comment into the proce
dure BIG_ YACHTS_QUERY. The results of the procedure are the same as with
out the comment. But when you use a SHOW command, you can see the
explanatory comment:

DTR> SHOW BIG_YACHTS_QUERY
SET ABORT
DECLARE LENGTH PIC 99
VALID IF LENGTH GT 35.

!THIS PROCEDURE SHOWS YACHTS GE SPECIFIED LENGTH

LENGTH = *.IIMIN LoA II
IF LENGTH GT a2
THEN ABORT liND BOATS THAT BIG II
FIND BIGGIES IN YACHTS WITH LOA GE LENGTH SORTED BY BUILDER
PRINT BUILDERt RIGt LoAt PRICE OF BIGGIES
END_PROCEDURE
DTR>

Using DATATRIEVE Procedures 9-5

9.4 Using Procedures to Locate Errors

When you invoke a procedure, DATATRIEVE processes the contents of the pro
cedure. Ifit finds an error, it issues a message. Suppose, for instance, you created
the following long procedure:

DTR) DEFINE PROCEDURE WAGE_REPORT
DFN) REPORT WAGES
DFN) SET REPORT_NAME = WEEKLY WAGE REPORT
DFN) SET COLUMNS_PAGE = 70
DFN) PRINT LAST_NAMEt GROSS_PAYt FICAt
DFN) FEDERAL_TAXt STATE_TAXt
DFN) GROSS_PAY - (FICA + FEDERAL_TA~< + STATE_TA~O*("NET PAY JI

) USING
DFN) $$t$$$.99
DFN) AT BOTTOM OF REPORT PRINT SKIP 2t COL 1 t IITOTAL: II t
DFN) TOTAL GROSS_PAY USING $$$t$$$.99t
DFN) TOTAL FICA USING $$$t$$$.99t
DFN) TOTAL FEDERAL_TAX USING $$$t$$$.99t
DFN) TOTAL STATE_TAX USING $$$t$$$.99t
DFN) TOTAL (GROSS_PAY - (FICA + FEDERAL_TAX + STATE_TAX» USING
$$$t$$$.99
DFN) END_REPORT
DFN) END_PROCEDURE
DTR)

If you have made any errors, DATATRIEVE stops executing when it finds the
first error and sends you an error message, as in this example:

DTR) :WAGE_REPORTm
Invalid coluMn header or report naMe (WEEKLY)
DTR) EDIT WAGE_REPORTm

Edit the procedure to place quotation marks around "WEEKLY WAGE
REPORT". Then try the procedure again:

DTR) :WAGE_REPORTm
Field IIWAGES" is undefined or used out of context
DTR) EDIT WAGE_REPORTm

To correct this second error, edit the procedure to place the READY WAGES com- .
mand before the REPORT statement. Then invoke the procedure again:

DTR> :WAGE_REPORTm
Enter COLUMNS PER PAGE: 80m

(continued on next page)

9-6 Using DATATRIEVE Procedures

LAST
NAME

BLAKE
DUNN
HILL
CHONTZ
MOONY
STARK

TOTAL:

DTR>

GROSS
PAY

$1 tOOO. 00
$1 t500.00

$500.00
$999.99

$1 t900.98
$9t500.00

$15t400.97

WEEKLY WAGE REPORT

FEDERAL
FICA TM~

$103.86 $204.77
$145.87 $297.98

$52.93 $79.75
$103.85 $204.76
$145.87 $375.98
$145.87 $999.84

$698.25 $2t163.08

STATE
TA}<

$.01
$54.32
$32.98
$57.90
$75.90

$106.90

$328.01

23-0ct-87
Pa!1e 1

NET PAY

$691.36
$lt001.83

$334.34
$633.48

$1 t303.23
$8t247.39

$12t211.63

9.5 A Sample Procedure

You can create your own procedures now using the example in Figure 9-1 as a
model. The following is a procedure that uses the Report Writer to write a sum
mary report of yacht data:

DTR> DEFINE PROCEDURE YACHT_SUMMARym
DFN> SET ABORTm
DFN> PRINT "THIS REPORT REQUIRES AN ESTABLISHED COLLECTIONt"m
DFN> PRINT "SORTED BY LOA AND BEAM."oo
DFN> PRINT "HAI,IE YOU ESTABLISHED A COLLECTION?"oo
DFN> IF *."YES OR NO" CONTAINING "N" THEN ABORT "COLLECTION NEEDED."oo
DFN> REPORT ON *. "OUTPUT DEI,IICE OR FILE"m
DFN> SET REPORT _NAME=" E}<AMPLE: REPORT FROM A PROCEDURE "001
DFN> SET LINES_PAGE=55t COLUMNS_PAGE=60oo
DFN> PRINT BUILDERt MODELt LOAt BEAMt PRICEoo
DFN> AT BOTTOM OF LOA PR I NT SK I P t COL 30 "AI)ERAGE PR I CE =" tOO
DFN> AI,IERAGE (PR I CE) t SK I Poo
DFN> AT BOTTOM OF REPORT PRINT COL 17t"NUMBER OF BOATS = "tOO
DFN> COL 35 t COUNT t SKIP t "AI,IERAGE PRICE OF ALL BOATS =" tOO
DFN> AI,IERAGE (PR I CE) 001
DFN> END_REPORToo
DFN> END_PROCEDUREm
DTR>

Figure 9-1: Sample Procedure

This example illustrates some statements that are particularly useful in
procedures:

• Use the PRINT statement to display a message when the procedure is invoked .

• The prompting value expression *."YES OR NO" requires a response to the
question: HAVE YOU ESTABLISHED A COLLECTION? The Boolean expres
sion CONTAINING checks the user's response to the question. If the response
is N or NO, the procedure aborts.

Using DATATRIEVE Procedures 9-7

DTR> :YACHT_SUMMARYffiill
THIS REPORT REQUIRES AN ESTABLISHED COLLECTION,
SORTED BY LOA AND BEAM.
HAVE YOU ESTABLISHED A COLLECTION?
Enter YES OR NO: NOffiill
ABORT: COLLECTION NEEDED
DTR>

• If you answer YES to the first prompt, but you do not actually have a current
collection, the Report Writer aborts the procedure and prints an error message:

DTR> :YACHT_SUMMARYffiill
THIS REPORT REQUIRES AN ESTABLISHED COLLECTION,
SORTED BY LOA AND BEAM.
HAVE YOU ESTABLISHED A COLLECTION?
Enter YES OR NO: YESffiill
A current collection has not been established.
DTR>

• The prompting value expression *. "OUTPUT DEVICE OR FILE" allows you to
select the device or file to contain the report when DATATRIEVE executes the
procedure.

• If you make a collection of YACHTS with LOA between (and including) 36 and
37 and price not equal to zero, DATATRIEVE displays the following report on
your terminal:

DTR> READY YACHTSffiill
DTR> FIND YACHTS WITH LOA BETWEEN 36 37 AND PRICE NE Offiill
[5 records found]
DTR> SORT CURRENT BY LOA, BEAMffiill
DTR> :YACHT_SUMMARYffiill
THIS REPORT REQUIRES AN ESTABLISHED COLLECTION,
SORTED BY LOA AND BEAM.
HAVE YOU ESTABLISHED A COLLECTION?
Enter YES OR NO: YESffiill
Ente r OUTPUT DEtJICE OR FILE: TI:ffiill

EXAMPLE: REPORT FROM A PROCEDURE

LENGTH
Ot.JER

MANUFACTURER MODEL ALL

ISLANDER 36 36
I • TRADER 37 36

AVERAGE PRICE

IRWIN 37 MARK I I 37
NORTHERN 37 37
ALBERG 37 MK I I 37

9-8 Using DATATRIEVE Procedures

01-Apr-1987
Pa!1e 1

BEAM PRICE

11 $31 ,730
12 $39,500

$35,615

11 $36,950
11 $50,000
12 $36,951

(continued on next page)

AVERAGE PRICE

9.6 Nesting Procedures

NUMBER OF BOATS = 5
AVERAGE PRICE OF ALL BOATS

$a 1 ,300

$38,028

A nested procedure is a procedure within another procedure.

The following procedure calculates the price per pound of a boat and assigns a
column header and edit string for that value expression:

DTR> DEFINE PROCEDURE PRICE_PER_POUND@]
DFN> PRICE/DISPLACEMENT ("PRICE"/"PER"/"POUND") USING $$8.88@]
DFN> END_PROCEDURE@]
DTR>

You cannot invoke this procedure by itself, but you can invoke the
PRICE_PER-POUND procedure in another procedure that prints the builder,
model, and price per pound of all boats in the CURRENT collection, as follows:

DTR> DEFINE PROCEDURE PRICE_REPORT®]
DFN> PR I NT ALL BU I LDER, MODEL, : PR I CE_PER_ POUNDru
DFN> END_PROCEDURE@]
DTR>

When you invoke the procedure PRICE-REPORT, DATATRIEVE displays three
fields for each YACHTS record. First the builder and model are displayed as a
result of the procedure's PRINT statement. Then the PRICE-PER-POUND pro
cedure is called to compute and format the price/displacement before it is
displayed.

The following example uses the BIG_YACHTS procedure to establish the
CURRENT collection and PRICE-REPORT to print a short report:

DTR> :BIG_YACHTS; :PRICE_REPORTru

LENGTH
OI.JER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER al KETCH al 28,700 13 $51 ,228
COLUMBIA al SLOOP al 20,700 11 $a8,a80
GULFSTAR al KETCH al 22,000 12 $a 1 ,350
ISLANDER FREEPORT KETCH al 22,000 13 $5a,870
NAUTOR SWAN al SLOOP al 17,750 12
NEWPORT al S SLOOP al 18,000 11
OLYMPIC ADVENTURE KETCH a2 2a,250 13 $80,500
PEARSON a18 KETCH a2 21 ,000 13

(continued on next page)

Using DATATRIEVE Procedures 9-9

PRICE
PER

MANUFACTURER MODEL POUND

CHALLENGER al $1.92
COLUMBIA al $2.3a
GULFSTAR al $1. 88
ISLANDER FREEPORT $2.50
NAUTOR SWAN al $0.00
NEWPORT al S $0.00
OLYMPIC ADI.IENTURE $3.32
PEARSON a19 $0.00

DTR> E~n T(@)

When nesting procedures, do not let a procedure invoke itself. You can create an
infinite loop. (Should you create such a loop, press CTRL/C two times to stop your
process.)

9.7 Using a Procedure in a Compound Statement

To execute a procedure a number of times, you can invoke it in a REPEAT or
FOR statement. You should be careful when invoking a procedure in these state
ments, however. For example, the following procedure appears to be correct but
produces unexpected results:

DTR;:' SHOW E~< 1(@)
PROCEDURE E~< 1
FOR

YACHTS WITH PRICE = 0 AND LOA BT 16 AND 23
PRINT BUILDERt MODELt LOA

PRINT IIPrinting Test Record ll

END_PROCEDURE

DTR> REPEAT 3 :EXl

LENGTH
OI.IER

MANUFACTURER MODEL ALL

ENCHILADA 20 20
ERICSON 23/ SPECIA 23
SAN JUAN 21 21
ENCHILADA 20 20
ERICSON 23/ SPECIA 23
SAN JUAN 21 21
ENCHILADA 20 20
ERICSON 23/ SPECIA 23
SAN JUAN 21 21

Printing Test Record

Only the FOR statement in the EXl procedure is repeated. The PRINT state
ment is executed only once at the very end. When DATATRIEVE encounters the
first complete statement in a procedure, it assumes that the REPEAT statement
is also complete. Therefore, it repeats only the first statement in the procedure
and executes each of the remaining statements once.

9-10 Using DATATRIEVE Procedures

To repeat the entire procedure, enclose the procedure call or the procedure defini
tion in a BEGIN-END block. For example, the following sequence of statements
puts a procedure in a BEGIN-END block and repeats the procedure three times:

DTR> REPEAT 3 BEGIN(BQ)
[LooKing for stateMent]
CON> : E}<1(BQ)
CON> END(BQ)

MANUFACTURER MODEL

LENGTH
OI.IER
ALL

ENCHILADA 20 20
ERICSON 23/ SPECIA 23
SAN JUAN 21 21

Printing Test Record
ENCHILADA 20 20
ERICSON 23/ SPECIA 23
SAN JUAN 21 21

Printing Test Record
ENCHILADA 20 20
ERICSON 23/ SPECIA 23
SAN JUAN 21 21

Printing Test Record

The following example uses a FOR statement, includes a BEGIN-END block in
the procedure, and invokes the procedure in a REPEAT statement:

DTR> SHOW E}-(3(BQ)
PROCEDURE E}{3
FOR

YACHTS WITH PRICE = 0 AND LOA BT 16 AND 23
BEGIN

PRINT BUILDER, MODEL, LOA
PRINT IIPrint Test Record ll

END
END_PROCEDURE

DTR> REPEAT 3 : EX3(BQ)

LENGTH
OI.IER

MANUFACTURER MODEL ALL

ENCHILADA 20 20
Print Test Record

ERICSON 23/ SPECIA 23
Print Test Record

SAN JUAN 21 21
Print Test Record

ENCHILADA 20 20
Print Test Record

ERICSON 23/ SPECIA 23
P r i n t Test Record

SAN JUAN 21 21
Print Test Record

ENCHILADA 20 20
Print Test Record

(continued on next page)

Using DATATRIEVE Procedures 9-11

ERICSON 23/ SPECIA 23
Print Test Record

SAN JUAN 21 21
Print Test Record

DTR>

If you invoke a procedure in a FOR statement, you must use the same technique.
Enclose the call or the procedure definition in a BEGIN-END block as in the fol
lowing example:

DTR> SHOW PRICE_REPORT2@]
PROCEDURE PRICE_REPORT2
PRINT BUILDER, MODEL, :PRICE_PER_POUND
END_PROCEDURE

DTR>

DTR> FOR YACHTS WITH PRICE GT 20000 AND LOA LT 29@]
[LooKin~ for stateMent]
CON> BEGIN@]
[LooKin~ for stateMent]
CON> :PRICE_REPORT2@]
[LooKin~ for statelTlent or IIENDII]
CON> END@]

MANUFACTURER

CAPE DORY
SABRE

DTR>

MODEL

28
28

PRICE
PER
POUND

$2.aa
$2.97

Remember that if you use a procedure in a loop, do not include a FIND, SELECT,
DROP, or RELEASE statement. These statements cannot appear in BEGIN
END blocks.

9.8 Aborting Procedures

You can abort a procedure by including a SET ABORT statement in the proce
dure definition. If the abort conditions arise and SET ABORT is in effect,
DATATRIEVE aborts the procedure and prints a message on your terminal. If
SET NO ABORT is in effect, DATATRIEVE aborts the command or statement
that contains the ABORT but continues to execute the other commands and
statements in the procedure.

9-12 Using DATATRIEVE Procedures

9.9

The default setting in DATATRIEVE is SET ABORT. You can ensure that SET
ABORT is in effect by including that statement in the procedure definition:

DTR) DEFINE PROCEDURE BIG_YACHTS_QUERY®)
DFN) SET ABORT®)
DFN) DECLARE LENGTH PIC 88®)
DFN) 1.IALID IF LENGTH GT 35.®)
DFN) LENGTH = *."MIN LoA"®)
DFN) IF LENGTH GT 42®]
DFN) THEN ABORT liND BOATS THAT BIG"ffiill
DFN) FIND BIGGIES IN YACHTS WITH LOA GE LENGTH®]
DFN) SORTED BY BUILDERffiill
D F N) P R I NT B U I L 0 E R, RIG., LOA, P RIC E 0 FBI G G I E S®]
DFN) END_PROCEDURE®]
DTR)

If you invoke BIG_ YACHTS_QUERY and supply a length of 35 or smaller,
DATATRIEVE reprompts you for a valid length. If you supply a length greater
than 42, the procedure aborts, prints the specified abort message, and returns
you to DATATRIEVE command level:

DTR) :BIG_YACHTS_QUERY®]
Enter MIN LOA: 35®]
Validation error for LENGTH
Re-enter MIN LOA: 43®]
ABORT: NO BOATS THAT BIG
ExeclItion terlrlinated b}' IABoRT" statelrlent
DTR)

If you assign a value between 36 and 42 to length, DATATRIEVE prints the
appropriate collection:

DTR) :BIG_YACHTS_QUERYffiill
Enter MIN LOA: 38®]

LENGTH
ol.IER

MANUFACTURER RIG ALL PRICE

BLOCK I • SLOOP 38
CHALLENGER KETCH 41 $51,228
COLUMBIA SLOOP 41 $48,480
GULFSTAR KETCH 41 $41 ,350
ISLANDER KETCH 41 $54,870
LINDSEY MS 38 $35,800
NAUToR SLOOP 41
NEWPORT SLOOP 41
OLYMPIC KETCH 42 $80,500
PEARSON SLOOP 38
PEARSON KETCH 42

Maintaining Procedures

You can maintain the procedures stored in your default dictionary directory with
the SHOW, EDIT, and DELETE commands.

Using DATATRIEVE Procedures 9-13

9.9.1 Displaying Procedure Names

You can list the names of all procedures in your default directory with the SHOW
command:

DTR} SHOW PROCEDURES(@)
Procedures:

DTR>

BIG
MS_SEARCH

BIG_YACHTS_QUERY
PHONE_REP TEST

9.9.2 Displaying Complete Procedures

CHEAP
YACHT_SUMMARY

If you want to display a procedure on your terminal, you can use the SHOW com
mand and specify the name of the procedure to be displayed:

DTR} SHOW MS_SEARCH(@)
PROCEDURE MS_SEARCH
READY YACHTS
FIND YACHTS WITH RIG = "MS"
FOR CURRENT PRINT BUILDER,
(BU I LDER I..JI A COM PANY _ TABLE) (" ADDRESS II)

END_PROCEDURE

DTR}

9.10 Editing Procedures

You can correct an error with the DATATRIEVE Editor. Invoke the Editor with
the following command at the DTR> prompt:

EDIT procedure-name

When you find the error, use the DATATRIEVE Editor to correct it or follow this
sequence:

1. EXTRACT the procedure from DATATRIEVE to a command file on your sys
tem using the following statement:

EXTRACT ON file-spec procedure-name

Use the file extension .CMD in the file specification to distinguish the
extracted file as a command file.

2. Exit from DATATRIEVE.

3. Use the text editor you normally use on your system to revise the command
file containing the procedure.

4. Return to DATATRIEVE.

5. ·Invoke the command file by typing the at sign (@) and the name of the file to
bring the corrected procedure into DATATRIEVE.

9-14 Using DATATRIEVE Procedures

See the following chapter for information on DATATRIEVE command files and
Chapter 16 in this manual for information on DATATRIEVE Editor commands.

9.10.1 Deleting Procedures

You can delete a procedure from your dictionary with the DELETE command:

DTR> SHOW PROCEDURES@m
Procedures:

BIG BIG_YACHTS_QUERY CHEAP
MS_SEARCH PHONE_REP YACHT_SUMMARY

DTR> DELETE BIG HBTIl
DTR> SHOW PROCEDURES@m
Procedures:

BIG_YACHTS_QUERY CHEAP MS_SEARCH
PHONE_REP YACHT_SUMMARY

DTR>

Note that the DELETE command must end with a semicolon C;).

You should maintain a backup copy of your procedure, especially ifit is a long
one. Use the DATATRIEVE EXTRACT command to copy your procedure to a
command file for backup. Once you have a backup copy, you can always recover
the procedure if you happen to delete it accidentally.

The following example illustrates how you can create a backup file, delete a pro
cedure, and replace it without ever leaving DATATRIEVE:

DTR> SET COLUMNS_PAGE = BO@m
DTR> SHOW PROCEDURES@m
Procedures:

BIG_YACHTS BIG_YACHTS_QUERY
BREAK_REP CTRL EXPENSIVE
FAM_REC INFLATION_REPORT
MULTIPLE_PRINT MULTIPLE_STORE NEW_YACHTS
P PAGE_HEADER PICKBOATS
R SALARY_REPORT SALARY_REPORTl
SALARY_TOTALS SUM TAB_TEST
TITLE_PAGE V WAGE_REPORT
XP YACHTS_REPORT YACHT_PER_LB

DTR>- E}<TRACT ON SAI,)B 1GB I G_ YACHTS_QUERY@m
DTR> DELETE BIG_YACHTS_QUERY;@m
DTR>- SHOW PROCEDURES@m
Procedures:

BIG_YACHTS
E}<PENS I liE
JOB_HISTORY
NME
PRICE_INCREASE
SALARY_REPORT2
TEST_WAGE
WP
YACHT_PRICE

BP
F
MULTIPLE_PRINT
P
R
SALARY_TOTALS
TITLE_PAGE
XP

BREAK_REP
FAM_REC
MULTIPLE_STORE
PAGE_HEADER
SALARY_REPORT
SUM
I,)

YACHTS_REPORT

BP
F
JOB_HISTORY
NME
PRICE_INCREASE
SALARY_REPORT2
TEST_WAGE
WP
YACHT_PRICE

CTRL
INFLATION_REPORT
NEW_YACHTS
PICKBOATS
SALARY_REPORTl
TAB_TEST
WAGE_REPORT
YACHT_PER_LB

(continued on next page)

Using DATATRIEVE Procedures 9-15

DTR> @SAI.JB I G
DELETE BIG_YACHTS_OUERY;
IIBIG_YACHTS_OUERY II has not been defined in the dictionary
DEFINE PRDCEDURE BIG_YACHTS_OUERY
SET ABORT
DECLARE LENGTH PIC 88
VALID IF LENGTH GT 35.
LENGTH = *.IIMIN LOA II
I F LENGTH. GT 42
THEN ABORT liND BOATS THAT BIG II
FIND BIGGIES IN YACHTS WITH LOA GE LENGTH SORTED BY BUILDER
PRINT BUILDER, RIG, LOA, PRICE OF BIGGIES
END_PROCEDURE
DTR> SHOW PROCEDURES@0
Procedures:

BIG_YACHTS BIG_YACHTS_OUERY
BREAK_REP CTRL
FAM_REC INFLATION_REPORT
MULTIPLE_PRINT MULTIPLE_STORE
P PAGE_HEADER
R SALARY_REPORT
SALARY_TOTALS SUM
TITLE_PAGE V
XP YACHTS_REPORT

DTR> :BIG_YACHTS_OUERYffiITj
Enter MIN LOA: ···z
Execution terMinated by operator
DTR>

9-16 Using DATATRIEVE Procedures

EX PENS I IJE

NEW_YACHTS
PICKBOATS
SALARY_REPORTl
TAB_TEST
WAGE_REPORT
YACHT_PER_LB

BP
F
JOB_HISTORY
NME
PRICE_INCREASE
SALARY_REPORT2
TEST_WAGE
WP
YACHT_PRICE

Using DATATRIEVE Command Files 10

Many people use DATATRIEVE by typing in single commands in the form
@ENTERC or :MONTHLY_REPORT and then watching the results scroll on
their screens. Someone else has prepared a command file or procedure for them.
Within the command file or procedure are the DATATRIEVE commands and
statements to carry out a given task.

Command files are much like procedures. Both contain fixed sequences of
DATATRIEVE commands and statements and both allow you to execute fre
quently used operations. They have the following differences:

• You invoke a command file by typing the at sign (@) before the file specifica
tion, a procedure by typing a colon (:) before the procedure name.

• You store the procedures in your dictionary. You can see your procedures with
a SHOW PROCEDURES command from within DATATRIEVE. Your com
mand files, on the other hand, reside outside DATATRIEVE in your operating
system directory. You must exit from DATATRIEVE and use operating system
commands to display them.

• You edit procedures with the DATATRIEVE Editor, command files with your
operating system editor.

• When you invoke command files, you see the command statements and com
ments echo on your terminal.

You can use command files for the following purposes:

• To create a startup command file that will automatically execute certain com
mands and statements each time you invoke DATATRIEVE. Default name for
the file is QUERY.INI. See Chapter 2.

• To create and then invoke command files to add definitions of dictionary
objects to your dictionary.

10-1

• To use as backup files of your dictionary. If something happens to corrupt the
dictionary and you need to restore the definitions it previously contained, you
can use your backup files of domain, record, table, and procedure definitions.

DATATRIEVE executes the command file and returns to your operating sys
tem's command level.

• To process files in batch mode. You can include invocation command lines to
execute DATATRIEVE commands and statements.

• To develop and test a procedure you want to store in your dictionary:

1. Put the steps of the procedure into a command file. Do not yet include the
DEFINE PROCEDURE command.

2. Execute the command file from your operating system's command level.

3. The steps in the command file will appear on the screen and stop at the
point where an error occurs. Use the message to help you decide what is
wrong with the series of statements you have entered.

4. When you have eliminated all errors from the command file, insert a
DEFINE PROCEDURE statement at the beginning of the file and an
END_PROCEDURE statement at the end of the file. If you have an earlier
version of the procedure or another element with the same name that you
do not need any more, insert a DELETE command and the file name before
the DEFINE PROCEDURE statement. Be careful not to delete anything
important, however.

5. Execute the command file by typing an at sign (@) and the file name to load
the procedure into your dictionary.

10.1 Creating a Command File

You create a command file at the operating system level with a text editor.
Invoke an editor and enter the sequence ofDATATRIEVE commands and state
ments just as you would in DATATRIEVE. Do not include DATATRIEVE
prompts such as DTR>, CON>, DFN>, or RW> , only the commands and state
ments you enter following a prompt. When you complete the sequence of com
mands and statements and exit from the editor, your operating system stores the
command file in your system directory.

It is usually a good idea to specify .CMD as the file extension of a DATATRIEVE
command file. Because it is the default file extension, you do not have to type the
.CMD extension when you invoke the command file in DATATRIEVE. For exam
ple, to invoke the command file HELLO.CMD in DATATRIEVE, you can type
the following:

DTR> @HELLO

10-2 Using DATATRIEVE Command Files

10.2 Contents of a Command File

A command file can contain any DATATRIEVE command or statement.

10.2.1 ADT, EDIT, SET GUIDE

You can include ADT, EDIT, or SET GUIDE commands in a command file.
DATATRIEVE places you in ADT, edit, or Guide mode and displays an ADT,
edit, or Guide prompt. You cannot include a response to the Guide prompt in
your command file, however. The file can contain only commands or statements.

DATATRIEVE executes the next line in the command file only after you exit
from the DATATRIEVE Editor, Guide mode, or ADT. Even if that line is a valid
response to an ADT, edit, or Guide mode prompt, DATATRIEVE displays an
error message and returns you to DATATRIEVE command level unless it is a
valid DATATRIEVE command or statement.

10.2.2 Comments

You can include comments in a command file by placing an exclamation point (!)
before each comment line. Comments echo on your terminal when you invoke
the file.

If your command file defines a procedure and you put comments into the proce
dure definition, DATATRIEVE stores the comments in the dictionary along with
the rest of the definition. DATATRIEVE displays those comments when you
invoke the command file. When you invoke the procedure, however,
DATATRIEVE does not display the comments on your terminal.

10.3 Invoking a Command File

To invoke a command file that you have catalogued in your directory, precede the
file specification with an at sign (@). To invoke a command file, enter the invoca
tion on a line by itself. For RSTS systems, use this format:

@device:[PPN]filename.cmd

For RSX systems, use this format:

@device:[UIC]filename.cmd;version

If the file extension is .CMD and the file is in your default directory, you need
enter only the file name:

@filename

Using DATATRIEVE Command Files 10-3

10.3.1 Invocation Command Lines

You need not eJ.1ter DATATRIEVE to invoke a command file. You can invoke a
command file from the system level. For example, to invoke PRT.CMD in your
operating system directory, type this in response to the system level prompt (>):

> DTR @PRT@

Invoking a command file in this way differs from invoking one in response to the
DTR> prompt. DATATRIEVE executes all the commands and statements in the
command file as though you had entered them interactively. However, it does not
print the DTR> prompt on your terminal and after executing the last command
or statement in the file, it automatically exits from DATATRIEVE. If the com
mand file is in another user's directory, you invoke it by specifying all the neces
sary information in the following format:

@device:[UIC]filename.extension

For RSX systems, you can also specify a version number after the extension.

10.3.2 Invoking a Command File from a Procedure

You can invoke a command file from a procedure you define with the DEFINE
PROCEDURE command. For example, suppose you create a procedure
PICKBOATS to form a collection of boats that cost more than $10,000. Invoke a
command file SAMPLE.CMD containing report-generating statements within
PICKBOATS to produce a report:

DTR> DEFINE PROCEDURE PICKBoATSOO
DFN> READY YACHTS@
DFN> FIND YACHTS WITH PRICE GT 10000 SORTED BY LoAt BEAMOO
DFN> @SAMPLEOO
SET ABORT
!THIS REPORT REQUIRES AN ESTABLISHED COLLECTIONt
!SORTED BY LOA AND BEAM.

!HAVE YOU ESTABLISHED A COLLECTION?
IF *.IIYES OR NOli CONTAINING IINII THEN ABORT IISORRYt NO COLLECTION. II
REPORT ON *.IIOUTPUT DEI,IICE OR FILEII
SET REPoRT_NAME=IISAMPLE REPORTII/IIFROM A PROCEDURE II
SET LINES_PAGE=55t CoLUMNS_PAGE=60
PRINT BUILDER, MODEL, LOAt BEAMI PRICE
AT BOTTOM OF LOA PR I NT SK I P I II AI,IERAGE PR I CE = II t

AI,IERAGE (PR I CE) I SK I P
AT BOTTOM OF REPORT PRINT COL 171 IINUMBER OF BOATS = II

COL 40 I COUNT I SK I P I II AI,IERAGE PR I CE OF ALL BOATS = II I AI)ERAGE (PR I CE)
END_REPORT
DFN> END_PRoCEDUREOO
DTR> :PICKBOATSOO
Enter YES OR NO: YOO
Enter OUTPUT DEVICE OR FILE: TI:OO

DTR>

10-4 Using DATATRIEVE Command Files

(continued on next page)

SAMPLE REPORT 25-Aug-82
FROM A PROCEDURE Page 1

LENGTH
ot.IER

MANUFACTURER MODEL ALL BEAM PRICE

EASTWARD Ho 2a 09 $15,900

AI.IERAGE PRICE $15,900

IRWIN 25 25 12 $10,950

AI.IERAGE PRICE $10,950

AMERICAN 26-MS 26 08 $18,895
GRAMPIAN 26 26 08 $11,495
WESTERLY CENTAUR 26 08 $15,245
TANZER 26 26 09 $11,750
ALBIN 79 26 10 $17,900

DTR>

You cannot invoke command files while you are in ADT or Guide Mode.

You can invoke a command file in response to the RW> prompt of the Report
Writer. The file must begin with valid report statements. If you complete the
report specification in the file with an END_REPORT statement, you can follow
the specification with other valid DATATRIEVE commands or statements. When
you invoke a command file, DATATRIEVE prints each command or statement on
your terminal and executes it as if you had entered it directly from your key
board. If an error occurs, DATATRIEVE prints an error message and stops exe
cuting the command file.

10.4 Aborting Command Files

To abort a command file that may contain an error, include an ABORT state
ment in the file. If the responses meet the abort conditions and SET ABORT is in
effect, DATATRIEVE aborts the command file and prints the message specified
for the ABORT command. If SET NO ABORT is in effect, DATATRIEVE aborts
the command or statement that contains the ABORT but continues to execute
the commands and statements that follow in the file.

10.5 Editing a Command File

To edit a command file you must exit from DATATRIEVE and use a text editor.
When you correct any error, return to DATATRIEVE, ready the necessary
domains, establish any appropriate collections, and execute the command file
again.

Using DATATRIEVE Command Files 10-5

10.6 Sample Command File

In contrast to the sample procedure, the sample command file prints each state
ment and command in the file as DATATRIEVE executes it.

When DATATRIEVE encounters the statement with the *."YES OR NO"
prompting value expression, it pauses to wait for your response to the question:
HAVE YOU ESTABLISHED A COLLECTION? The Boolean expression
CONTAINING checks your response to the question. If the response contains a
letter N anywhere, the command file aborts.

When DATATRIEVE encounters the *."OUTPUT DEVICE OR FILE" prompt, it
pauses again for you to select the device or file for output of the report.

Note that, except for the report name, the report the command file produces
is the same as the one produced by the procedure YACHT_SUMMARY in
Chapter 9.

The file YSUM.CMD contains the following sequence of commands and
statements:

SET ABORT
!THIS REPORT REQUIRES AN ESTABLISHED COLLECTION,
!SORTED BY LOA AND BEAM.

!HAVE YOU ESTABLISHED A COLLECTION?
IF *.IIYES OR NOli CONTAINING liN II THEN ABORT IIS0RRY, NO COLLECTION. II
REPORT ON *. II OUTPUT DEIJI CE OR FILE II
SET REPORT_NAME=IISAMPLE REPORTlljllFROM A COMMAND FILEII
SET LINES_PAGE=55, COLUMNS_PAGE=60
PRINT BUILDER, MODEL, LOA, BEAM, PRICE
AT BOTTOM OF LOA PRINT SKIP, "AI)ERAGE PRICE =",

AI.IERAGE (PR I CE), SK I P
AT BOTTOM OF REPORT PRINT COL 13,IINUMBER OF BOATS = II

COL 33, COUNT, SK I p, II AI.IERAGE PR I CE OF ALL BOATS = ", AI.IERAGE (PR I CE)
END_REPORT

When you have readied the domain and established the appropriate collection,
you invoke the command file with an at sign (@). You do not have to include the
.CMD extension. DATATRIEVE prints each command and statement as it exe
cutes them:

DTR> READY YACHTS(@)
DTR> FIND FIRST 5 YAC"HTS WITH LOA BETWEEN 36 37 AND PRICE NE O(@)
[5 records found]
DTR> SORT BY LOA, BEAM(@)
DTR> @YSUMffiill
SET ABORT
!THIS REPORT REQUIRES AN ESTABLISHED COLLECTION,
!SORTED BY LOA AND BEAM.
!
!HAVE YOU ESTABLISHED A COLLECTION?
IF *.IIYES OR NOli CONTAINING liN II THEN ABORT IIS0RRY, NO COLLECTION. II
En t e r YES OR NO: YES(@)
REPORT ON *.1I0UTPUT DEVICE OR FILE"
SET REPORT_NAME=IISAMPLE REPORTlljllFROM A COMMAND FILEII
SET LINES_PAGE=55, COLUMNS_PAGE=60

(continued on next page)

10-6 Using DATATRIEVE Command Files

PRINT BUILDER, MODEL, LOA, BEAM, PRICE
AT BOTTOM OF LOA PRINT SKIP, IIAVERAGE PRICE =11,

AI.IERAGE (PR ICE), SK I P
AT BOTTOM OF REPORT PRINT COL 17,IINUMBER OF BOATS = II,

COL 40, COUNT, SK I P, II A1.lERAGE PR I CE OF ALL BOATS = II, A1.lERAGE (PR I CE)
END_REPORT
Enter OUTPUT DE1.lICE OR FILE: TI:tBTI)

MANUFACTURER

ISLANDER
I. TRADER

AVERAGE PRICE

IRWIN
NORTHERN
ALBERG

SAMPLE REPORT
FROM A COMMAND FILE

36
37

MODEL

37 MARK II
37
37 MK I I

LENGTH
OVER
ALL

36
36

37
37
37

01-Apr-S7
Pa9'e 1

BEAM PRICE

11
12

11
11
12

$31 ,730
$38,500

$35,615

$36,850
$50,000
$36,851

AVERAGE PRICE $41 ,300

NUMBER OF BOATS = 5
AVERAGE PRICE OF ALL BOATS = $38,026

10.7 Nesting Command Files Within Command Files

You can invoke both procedures and command files from within a command file.
For example, the command file MSMOD creates a loop with a FOR statement
and then invokes the command file MOD. MOD contains a BEGIN-END block of
statements that allows you to modify prices interactively:

DTR> @MSMODtBTI)
READY YACHTS WRITE
FOR YACHTS WITH RIG IIMS II
@MOD

BEGIN
PRINT
IF *.IIY TO MODIFY, N TO SKIp ll CONTAINING lIylI

THEN MODIFY PRICE ELSE
PRINT IINO CHANGEII
IF *.IIY TO CONTINUE, N TO ABORT II CONTAINING IINII
ABORT IIEND OF PRICE CHANGES II

END

LENGTH
OI.lER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

AMERICAN - ~6-MS MS 26
Enter Y TO MODIFY, N TO SKIP: ytBTI)
Enter PRICE: 18350tBTI)
Enter Y TO CONTINUE, N TO ABORT: ytBTI)

EASTWARD HO MS 24

5,500 OS $lS,850

7,000 08 $15,800
(continued on next page)

Using DATATRIEVE Command Files 10-7

Enter Y TO MODIFY, N TO SKIP: NOO
NO CHANGE
Enter Y TO CONTINUE, N TO ABORT: NOO
ABORT: END OF PRICE CHANGES
DTR> FIND YACHTS WITH RIG = IIMS II OO
[5 records found]
DTR> SELECTm
DTR> PRINTCBill

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

AMERICAN 28-MS MS 28 5,500 08 $18,350

DTR>

When nesting command files, do not allow a command file to invoke itself, either
directly or indirectly. If you do, you receive this message:

COMMand file nestin~ liMit exceeded

10.8 Using a Command File in a FOR or REPEAT Statement

You can invoke a command file in a loop you create with the FOR or REPEAT
statements. As the following example shows,You must be sure to invoke the
command file on a separate line, and you must include its statements within a
BEGIN-END block:

DTR> SET NO PROMPTOO
DTR> READY YACHTS WRITEOO
DTR> FIND YACHTS WITH RIG = IIKETCH II OO
[13 records found]
DTR> FOR CURRENT @MODOO
Expected statefrlent, encounte red II@II.
DTR> FOR CURRENTOO
CON> @MODOO
BEGIN

PRINT
IF *.IIY TO MODIFY, N TO SKIp lI CONTAINING lIylI

THEN MODIFY PRICE ELSE
PRINT liND CHANGE II
IF *.IIY TO CONTINUE, N TO ABORT II CONTAINING IINII
ABORT IIEND OF PRICE CHANGES II

END

LENGTH
OI.JER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37
Enter Y TO MODIFY, N TO SKIP: hZ
Execution terMinated by operator
DTR>

10-8 Using DATATRIEVE Command Files

20,000 12 $38,851

10.9 Maintaining Command Files

Your operating system directories, not the dictionary, store the command files. If
you adopt the convention of using .CMD as the extension for command files, you
can display the names of the command files on your terminal by requesting a
directory listing of*.CMD at the command level. You can adopt any other con
vention you wish and use the wildcard in the same manner:

READY

>DIR *.CMD;lliIT)
Nalrle .T}'p

BLDllM.CMD
CLASSE.CMD
SAMPLE.CMD

Size
2
3
a

Prot Date
< GO> za-Sep-8Z
< GO> za-Sep-8Z
< GO> za-Sep-8Z

SY: [1 t 37]

You can display the contents of a command file with the TYPE command at the
system level:

>TYPE SAMPLE.CMD;lliIT)
SET ABORT
!THIS REPORT REQUIRES AN ESTABLISHED CoLLECTIoNt
!SoRTED BY LOA AND BEAM.

!HAVE YOU ESTABLISHED A COLLECTION?
IF *."'(ES OR NO" CONTAINING "N" THEN ABORT "SoRRYt NO COLLECTION."
REPORT ON *. "OUTPUT DE1nCE OR FILE"
SET REPoRT_NAME="SAMPLE REPoRT"/"FRoM A COMMAND FILE"
SET LINES_PAGE=55t CoLUMNS_PAGE=GO
PRINT BUILDERt MODELt LOAt BEAMt PRICE
AT BOTTOM OF LOA PRINT SKIP t "AI.JERAGE PRICE =" t

AI.JERAGE (PR I CE) t SK I P
AT BOTTOM OF REPORT PRINT COL 17t "NUMBER OF BOATS = "t

COL ao t COUNT t SK I P t "AI.JERAGE PR I CE OF ALL BOATS =" t AVERAGE (PR I CE)
END_REPORT

You can delete a command file from your directory with the operating system
command level DELETE command.

>DELETE SAMPLE.CMD;lliIT)

Using DATATRIEVE Command Files 10-9

Using DATATRIEVE Variables 11

A variable is a symbol whose value can change as you execute a program. You
can use the letter A as a variable, for instance. The name of the variable stays
the same, but its value can change during a DATATRIEVE session.

You use variables in DATATRIEVE:

• To assign values to fields in STORE and MODIFY statements

• As counters in FOR, REPEAT, and WHILE loops

• As conditional values in Boolean expressions

11.1 Declaring Variables

You declare a variable with a statement in this form:

DECLARE variable-name variable-definition

The variable name is the name you give to the variable. The variable definition
consists of field definition clauses.

The following is an example of a DECLARE statement. Notice the similarity
between the DECLARE statement and the definition of a field in a record:

DTR> DECLARE X PIC 8(7)V88 EDIT_STRING IS $$t$$$t$$$.88.

When you declare a variable, you can use any of the DATATRIEVE field
definition clauses except OCCURS and REDEFINES. You must include at
least one PIC, COMPUTED BY or USAGE clause. You can also use the
QUERY_HEADER, QUERY_NAME, EDIT_STRING, VALID IF, and SIGN
clauses.

11-1

11.2 Assigning Values to Variables

DATATRIEVE assigns a starting value to, or initializes, variables at the time
you create them. Numeric variables are initialized to the value o. Alphabetic or
alphanumeric string variables are initialized to a blank field (spaces). You can
assign an initial value of 0 to numeric fields or space to string fields, but it is not
necessary to do this. Of course, you must always initialize a variable when you
want the starting value to be other than the DATATRIEVE default.

In most cases, you use the assignment statement (=) to give a value to a varia
ble. The assignment statement takes the following form:

variable-name = value-expression

Variable name is the name you gave the variable in the DECLARE statement.
Value expression can be anyone of the following:

• A literal

• A field name

• Another variable

• A prompting value expression

• Values from a table

• A statistical function

• An arithmetic expression

• A concatenated expression

Remember, however, to assign a value that is consistent with the definition of
the variable. If you assign a value that is larger or a different data type than you
specified in the PIC or USAGE clauses, your results might not be what you
intended.

You can also use the assignment statement to change the value ofa variable at
any time after initialization. The following example declares a variable, prints
its initial value, then changes its value using two methods:

DTR)- DECLARE}-{ PIC 999 EDIT_STRING ZZ9.(ffi)
DTR)- PR I NT }{(ffi)

I)

DTR)- X 23; PRINT }{(ffi)

23

11-2 Using DATATRIEVE Variables

(continued on next page)

DTR>)-{ = *. "1.IALUE FOR)-{"~

En t e r VALUE FOR ~-{: Ll5G~
DTR> PRINT ~-{ (-)~

Ll5G

DTR>

The minus sign (-) in the preceding example suppresses the/heading, in this
case the name of the variable (X), in a PRINT statement.

The following example illustrates another way of assigning values to a variable.
In the example, the procedure NAME-LIST creates a variable (NEAT-N"AME).
The values of the variable are supplied from the PERSONNEL domain and com
puted by two fields (FIRST_NAME and LAST-N"AME) in the record definition
for that domain. The values for the variable change as the values for the
COMPUTED BY fields change.

The procedure uses the variable both to restrict the print display to the two
name fields in the record and to improve the appearance of each name by elimi
nating extra spaces between the first and last names:

DTR> SHOW NAME_LIST~
PROCEDURE NAME_LIST
DECLARE NEAT_NAME COMPUTED BY FIRST_NAME::" ":LAST_NAME

QUERY_HEADER IS "EMPLOYEE NAMES".
READY PERSONNEL
PRINT NEAT_NAME OF FIRST 2 PERSONNEL
END_PROCEDURE
DTR> :NAME_LIST~

EMPLOYEE NAMES

CHARLOTTE SP I 1.1 A
FRED HOWL

DTR>

11.3 Local and Global Variables

You can define two kinds of variables in DATATRIEVE:

• Global

• Local

You use the DECLARE statement to define both local and global variables. A
variable you define with a BEGIN-END block is a local variable, and you can use
it only within that block. A variable you define at DATATRIEVE command level
is a global variable. It remains in your workspace until you release it or exit
from DATATRIEVE. Use the assignment statement (variable = value) to set the
variable equal to a particular value.

Using DATATRIEVE Variables 11-3

11.3.1 Global Variables

You can use a global variable to change values in every record in a domain. Sup
pose you want to assign to each boat in YACHTS a new price that is two-thirds of
the present price. By using a COMPUTED BY clause in a global variable, you
can apply a single formula to every yacht, as in the example that follows:

DTR> READY YACHTS MODIFY(BTI)
DTR> DECLARE SALE_PRICE COMPUTED BY PRICE/1.5(BTI)
CON> EDIT_STRING IS $Z8,888.88.(BTI)
DTR> SALE_PRICE = O(BTI)
DTR> FOR FIRST 5 YACHTS PRINT BOAT, SALE_PRICE(BTI)

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM

ALBERG 37 MK I I KETCH 37 20,000 12
ALBIN 78 SLOOP 28 4,200 10
ALBIN BALLAD SLOOP 30 7,278 10
ALBIN I.JEGA SLOOP 27 5,070 08
AMERICAN 28 SLOOP 28 4,000 08

DTR>

SALE
PRICE PRICE

$38,851 $24,834.00
$17,800 $11 ,833.33
$27,500 $18,333.33
$18,800 $12,400.00
$8,885 $ 8,588.87

The variable SALE-PRICE declared at DATATRIEVE command level remains
in the workspace throughout the session. It changes its value whenever the
value of PRICE changes. The variable remains in your workspace until you
release it with the RELEASE command or declare another variable with the
same name.

11.3.2 Local Variables

You define local variables with DECLARE statements entered in BEGIN-END
blocks and THEN statements. The local variable has an effect only within the
clause or statement in which you declare it.

In the following example, the local variable declared in the inner statement
supersedes one with the same name declared in an outer statement. Notice that
the different value or different data type assigned to the inner variable has no
effect on the value of the variable in the outer statement. Note also that neither
local variable exists when DATATRIEVE finishes executing the compound state-
ments containing them both: .

DTR> SET NO PROMPT (BTI)
DTR> BEGIN(BTI)
CON> DECLARE ~< PIC }ODD<.(BTI)
CON> }o{ = IITOPII(BTI)
CON> PRINT H(BTI)
CON> BEG I N(BTI)
CON> DECLARE ~< PIC 8.88. (BTI)
CON > ~< = 1. 23(BTI)
CON> PR I NT ~<(BTI)

CON> END(BTI)

11-4 Using DATATRIEVE Variables

(continued on next page)

CON> PR I NT ~<lliIT)

CON> ENDlliIT)

}.{

TOP

V
1\

1.23

TOP

DTR> PR I NT ~<lliIT)
Field "}-{" is undefined or used out of context

DTR>

If you declare a global variable and then use the same name for local variables,
the value of the global variable is not affected by value assignments and changes
made to its local counterpart(s).

11.4 Using Variables to Assign Values to Fields

You can use variables to assign values to fields in the USING clauses of STORE
and MODIFY statements. You cannot, however, use a variable to respond to a
prompt for a field value, whether the prompt is the result of the syntax of the
STORE or MODIFY statement or of a prompting value expression.

In USING clauses of STORE and MODIFY statements, you can use value
expressions on the right side of assignment statements to supply values for
fields. In some circumstances, you can use variables in those assignments to con
trol the uniformity of input data.

In this example, WORK is a domain you want to contain uniform names. The
data file is indexed on WHO and allows duplicates:

DTR> SHOW WORK_REClliIT)
RECORD WORK_REC

USING
01 TOP.

DTR>

03 JOB PIC X(15).
03 RESPONSIBLE_PERSON PIC x(a)

QUERY_NAME WHO.

Using DATATRIEVE Variables 11-5

NAME_TABLE translates the varying inputs into uniform values to store in the
work domain:

DTR> SHOW NAME_TABLEoo
TABLE NAME_TABLE
E
ED
EM
M
F
FH
FRED
H
L
R
RBL
RICK
RL
ELSE II????II
END_TABLE

EDt
ED t

ED t

EDt
FRED t
FRED t
FREDt
FRED t
RICK t
RICK t
RICK t
RICK t
RICK t

In the following STORE statement, the USING clause uses the variable
PERSON with a prompting value expression for the responsible person. The
table translates the value supplied to that prompt and stores the uniform results
in the field WHO.

DTR> SET NO PROMPToo
DTR> DECLARE PERSON PIC }{(S) .00
DTR> READY WORK WRITEoo
DTR> REPEAT 3 STORE WORK USINGoo
CON> BEGINoo
CON> JOB = *.JOBOO
CON> PERSON = *.WHOOO
CON> WHO = PERSON I.' I A NAME_TABLEoo
CON> ENDoo
Enter JOB: CLEANINGoo
Enter WHO: Eoo
Enter JOB: DRYINGoo
Enter WHO: FRoo
Enter JOB: SELLINGoo
Enter WHO: ROO
DTR> PRINT WORKoo

JOB
RESPONSIBLE

PERSON

CLEANING
DRYING
SELLING

DTR>

ED
????
RICK

11.5 Using Variables as Counters to Control Record Streams

You can use a counter to keep track of how many times DATATRIEVE performs
a task. When you use a counter to control a record stream, however, it can also
limit the number of times DATATRIEVE executes FOR and WHILE statements.

11-6 Using DATATRIEVE Variables

Suppose you want to keep a running count of the yachts you are repricing. You
can use the following global variable:

DTR) DECLARE A PIC 999.@W
DTR) A = O@W
DTR> PRINT A@W

A

000

DTR> SET NO PROMPT@W
DTR> FOR YACHTS@W
CON) BEGIN@W
CON> A = A + 1@W
CON> PRINT A, BOAT@W
CON> END

A MANUFACTURER MODEL

001 ALBERG 37 MK I I
002 ALBIN 79
003 ALBIN BALLAD
004 ALBIN VEGA
005 AMERICAN 26
006 AMERICAN 26-MS
007 BAYFIELD 30/32

RIG

KETCH
SLOOP
SLOOP
SLOOP
SLOOP
MS
SLOOP

113 WRIGHT SEAWIND II SLOOP

DTR)

LENGTH
OVER
ALL WEIGHT BEAM PRICE

37 20,000 12 $36,951
26 4,200 10 $17,900
30 7,276 10 $27,500
27 5,070 08 $18,600
26 4,000 08 $9,895
26 5,500 08 $18,895
32 9,500 10 $32,875

32 14,900 00 $34,480

In this example, you use the variable as a counter. Each time DATATRIEVE
prints the corresponding record, it increases A by one.

When you use a global variable as a counter in FOR and WHILE statements,
you must initialize the variable to ensure that DATATRIEVE executes the loop
the number of times you intend. If you use the same variable to control two
loops, you must reinitialize the variable before DATATRIEVE executes the sec
ond loop. If you do not, DATATRIEVE may execute the loop fewer times than
you intend. It may not execute the loop at all if the value of the variable is
greater than the value specified in the IF-THEN-ELSE statement in the second
loop.

Either at the beginning or the end of the loop, you can use an IF-THEN-ELSE
statement to evaluate the variable against a set of conditions. Depending on the
evaluation, DATATRIEVE will continue the looping or execute an ABORT state
ment to end the loop. This example shows the use of a global variable to control a
FOR statement and force an end to the loop:

DTR> SET NO PROMPT@W
DTR) READY YACHTS@W
DTR> DECLARE B PIC 9.@W
DTR) B = 000

(continued on next page)

Using DATATRIEVE Variables 11-7

DTR> FOR YACHTSOO)
CON> BEGINOO)
CON> B = B + 1(0)
CON> PRINT Bt BOATOO)
CON> IF B = 7 THEN ABORT "END OF LOOPIlOO)
CON> ENDOO)

LENGTH
OI.'ER

B MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK I I KETCH 37 20tOOO 12 $38t951
2 ALBIN 79 SLOOP 28 at200 10 $17t900
3 ALBIN BALLAD SLOOP 30 7t278 10 $27t500
a ALBIN VEGA SLOOP 27 5,070 08 $18t800
5 AMERICAN 28 SLOOP 28 a,ooo 08 $9t895
8 AMERICAN 28-MS MS 28 5,500 08 $18t895
7 BAYFIELD 30/32 SLOOP 32 9,500 10 $32,875
ABORT: END OF LOOP
Execution te rlrlinated b }' "ABORT" 5 tat elrlen t
DTR)

You can also assign a value greater than zero to the variable and use it as a
decremental counter, as in this example:

DTR> DECLARE A PIC 9.
DTR> A=8
DTR> PRINT AOO)

A

8

DTR> SET NO PROMPTOO)
DTR> FOR YACHTSOO)
CON> BEGINlBTI)
CON> PRINT At BOATOO)
CON> A = A - 1(0)
CON> IF A = 0 THEN ABORT "END OF LOOPIlOO)
CON> ENDCBTI)

LENGTH
OI)ER

A MANUFACTURER MODEL RIG ALL WEIGHT

8 ALBERG 37 MK I I KETCH 37 20,000
7 ALBIN 79 SLOOP 28 at200
8 ALBIN BALLAD SLOOP 30 7,278
5 ALBIN I)EGA SLOOP 27 5,070
a AMERICAN 28 SLOOP 28 a,ooo
3 AMERICAN 28-MS MS 28 5,500
2 BAYFIELD 30/32 SLOOP 32 9,500
1 BLOCK I • ao SLOOP 39 18,500
ABORT: END OF LOOP
Execution t e rlrl ina ted b }' "ABORT" statelrlent
DTR>

11-8 Using DATATRIEVE Variables

BEAM PRICE

12 $38t951
10 $21 1859
10 $27t500
08 $18,800
08 $9,895
08 $18t895
10 $32,875
12 $29t050

The WHILE statement causes DATATRIEVE to repeat a statement as long as
the condition specified in the Boolean expression is "true." The command file
(WH.CMD) in this example uses a variable in a WHILE statement.

DTR) @WH(@)
DECLARE A USAGE INTEGER.
A = 0
PRINT A

A

o

FOR YACHTS
WHILE A < 5

BEGIN
A = A + 1
PRINT At BOAT

END

A MANUFACTURER MODEL

ALBERG 37 MK I I
2 ALBERG 37 MK I I
3 ALBERG 37 MK I I
a ALBERG 37 MK I I
5 ALBERG 37 MK I I

DTR)

LENGTH
Ot.IER

RIG ALL WEIGHT BEAM PRICE

KETCH 37 20tOOO 12 $38t951
KETCH 37 20tOOO 12 $38t951
KETCH 37 20tOOO 12 $38t951
KETCH 37 20tOOO 12 $38t951
KETCH 37 20tOOO 12 $38t951

The variable in the next example changes with the value expression
PRICE/LOA and stops the FOR loop when the value expression meets the condi
tion specified in the IF-THEN-ELSE statement:

DTR> SET NO PROMPT@]
DTR) FIND FIRST 15 YACHTS(@)
[15 records found]
DTR> DECLARE ~{ PIC 9999 EDIT_STRING IS $$ t$$$.99.(@)
DTR) ~{ = O@]
DTR) FOR CURRENT@0
CON) BEGIN@]
CON)){ = P RIC E / LOA@]
CON)
CON)
CON)

PRINT TYPE t ~{ (IIPRICEII/IIPER FOOTII)(@)
IF }-(GE 1000 THEN ABORT 11 TOO SHORT FOR THE MONEY II(@)

END(@)

PRICE
MANUFACTURER MODEL PER FOOT

ALBERG 37 MK I I $998.00
ALBIN 79 $888.00
ALBIN BALLAD $918.00
ALBIN t.IEGA $888.00
AMERICAN 28 $380.00
AMERICAN 28-MS $728.00
BAYFIELD 30/32 $1 t027. 00

ABORT: TOO SHORT FOR THE MONEY
Execution terlTlinated b}' IIABORT II statelrlent
DTR)

Using DATATRIEVE Variables 11-9

Using DATATRIEVE Tables 12

Tables save space. They save space in record definitions and data files. They also
save space when you type in commands and statements. With a DATATRIEVE
table, you can associate codes with corresponding translations - for example,
area codes with states and products with price codes.

One advantage to such code and translation pairs is that you can substitute a
short field for a long one. For instance, you can have a list of codes for job titles
such that you can put E01 into the definition and have a table that translates the
code into Tax Assessor First Class. A dictionary table looks like the sample in
Figure 12-1.

DICTIONARY TABLE

Code Translation

C "Customer Services"

E Engineering

Figure 12-1: Code and Translation Pairs in a Dictionary Table

12.1 A Sample Dictionary Table

Suppose, for example, that you are a manufacturer who needs to order various
items from clerks around the country. With the help of a DATATRIEVE table,
you can use one command to find out which products have reached zero inven
tory, which clerks are responsible for the parts, and the phone numbers for those
clerks.

12-1

You can use a dictionary table, in this case a table called ORDER_TABLE, to
pair clerks and phone numbers with the products you need to track. You can
define a procedure to determine which items are out of stock, then invoke a table
producing a list of clerks responsible for those parts.

The following example uses the domain PRODUCTS and a procedure TAB,
which finds the items no longer in stock and uses ORDER_TABLE to list the
clerks you need to call:

DTR> READY PRODUCTSffiITl
DTR> PRINT ALL PRODUCTSffiITl

I.IENDOR

ACME ASPHALT &: SHINGLE
ACME ASPHALT &: SHINGLE
ACME ASPHALT &: SHINGLE
PURGE SYSTEMS
PURGE SYSTEMS
PURGE SYSTEMS
PURGE SYSTEMS
QUERY ENTERPRISES
QUERY ENTERPRISES

DTR> SHOW ORDER_TABLEffiITl
TABLE ORDER_TABLE

PARTS
PART IN

ITEM NUMBER STOCK

ASPHALT 1001 3
SHINGLES 1002 0
CUBE WALLS 1003 8888
ERASER-CHALK 3001 3
ERASER-PENCIL 3002 1
WHITE-OUT 3003 86a5
MAGNETS-20 oz. 300a 0
LISTINGS 2001 a
REPORTS 2002 0

II ACME ASPHALT &: SH I NGLE II

"QUERY ENTERPRISES"
"PURGE SYSTEMS II

ilL.
liT.
liT.

LANDF I LL (888) 555-123a II ,

ABMOW (111) 555-a321" t

SKWAIRDEE (123) 555-8876" t

ELSE "S0METHING ELSE"
END_TABLE
DTR> SHOW TABffiITl
PROCEDURE TAB
FIND PRODUCTS WITH STOCK = 0 SORTED BY PART
FOR CURRENT PRINT ITEM, PART,
VENDOR 1)1 A ORDER_TABLE (" CALL ") US I NG }-{ (30)
END_PROCEDURE
DTR> : TABffiITl

ITEM

SHINGLES
REPORTS
MAGNETS-20 oz.

DTR>

12-2 Using DATATRIEVE Tables

PART
NUMBER CALL

1002 L. LANDFILL (888) 555-123a .
2002 T. ABMOW (111) 555-a321
300a T. SKWAIRDEE (123) 555-8876

12.2 Creating Dictionary Tables

To create a dictionary table, enter the DEFINE TABLE command:

DEFINE TABLE table-name

Then enter the pairs of codes and their translations on separate lines, separating
them by a colon (:). Make sure to place a comma after each pair at the end of the
line.

If the code or the translation contains more than one word, enclose it in quota
tion marks. For example, the translation "New Hampshire" must be placed in
quotation marks so DATATRIEVE will recognize the two words as one transla
tion entry. You must also use quotation marks to preserve lowercase letters in a
code or translation.

If you use quotation marks, the rules for character string literals apply. That is,
neither the code nor the translation can exceed 132 characters, and neither can
contain a RETURN, line feed, space, or control character.

After the last code and translation pair, you can enter an optional ELSE clause.
DATATRIEVE substitutes the translation in the ELSE clause for any values not
found in the table. If your dictionary table does not contain an ELSE clause,
DATATRIEVE prints an error message when it cannot find a value in the table.

Translations included in an ELSE clause are also enclosed in quotation marks.
Apply the same rules as with character string literals, except do not place a
comma after an ELSE clause.

To end a dictionary table definition, enter the keyword END_TABLE. The
END_TABLE statement must follow the ELSE clause, if specified, or the last
code and translation pair if there is no ELSE clause. If you omit the ELSE
clause, do not put a comma after the last code and translation pair.

After you enter the END_TABLE statement, DATATRIEVE stores the defini
tion in your current dictionary and creates an access control list for the diction
ary table.

When you first refer to a table, DATATRIEVE searches the current data diction
ary for the table and loads it into your DATATRIEVE workspace. DATATRIEVE
evaluates the value expression in your statement and compares the value with
the codes in the table. The comparison is case sensitive and proceeds character
by-character. Thus, a value expression of 5 does not match a code of 05, and a
value expression of Rig does not match a code of RIG.

As you define a dictionary table, DATATRIEVE checks for syntax errors. For
example, if you use a semicolon in place of the required colon, DATATRIEVE
prints an error message and aborts the DEFINE TABLE command.

DATATRIEVE does not store anything in the dictionary until you complete the
table definition without a syntax error. You can use the DATATRIEVE Editor to
change a table once it is in the dictionary.

Using DATATRIEVE Tables 12-3

If you want to edit the table as you create it, you can:

• Enter one co4e and translation pair, finish the definition with END_TABLE,
then use the DATATRIEVE Editor to extend the table to include additional
code and tranlation pairs .

• Leave DATATRIEVE and use the editor you usually use on your operating sys
tem to define the table in a command file. Then enter DATATRIEVE again and
invoke the command file at the DTR> prompt. DATATRIEVE checks the syn
tax, and if the definition contains an error you can leave DATATRIEVE again
and edit the command file.

See Chapter 10 for more information about command files.

12.3 Sample Dictionary Tables

This section show ways you can define and use dictionary tables.

For example, suppose you are a sales manager with a list of names and phone
numbers of potential customers, and you want to know where they live. You can
enter telephone area codes and their corresponding state names in a dictionary
table, then refer to the table in a PRINT statement.

You can define a dictionary table as follows:

TABLE AREA_CODE_TABLE
207 MAINEt
603 "NEW HAMPSHIRE" t

802 1.IERMoNT t

617 "EASTERN MASSACHUSETTS" t

a13 "WESTERN MASSACHUSETTS" t

a01 "RHODE ISLAND" t

203 CoNNECTICUTt
ELSE "NOT A I.IAL I 0 AREA CODE"
END_TABLE

Then you can prompt for an area code and print the corresponding state in a sin
gle statement:

DTR> PR I NT *." AREA CODE" In A AREA_CoDE_ TABLE US I NG }{ (21) ffiIT)
Enter AREA CODE: 203ffiIT)
CONNECTICUT
DTR>

Suppose you also want to create a table of abbreviations for RIG, KETCH,
SLOOP, and MS from the YACHTS domain. You can create the following diction
ary table, RIG_TABLE, and store it in the data dictionary for YACHTS:

DTR> DEFINE TABLE RIG_TABLEffiIT)
DFN> "SLOOP" "ONE-MAST" tffiIT)
DFN> "KETCH" : "TWO MASTS t BIG ONE IN FRONT" tffiIT)
DFN> "YAWL" : "SIMILAR TO KETCH" tffiIT)
DFN> "MS" : "SAILS AND BIG MOTOR" tffiIT)
DFN> ELSE "SOMETHING ELSE"ffiIT)
DFN> END_TABLEffiIT)
DTR>

12-4 Using DATATRIEVE Tables

12.4 Using the IN Relational Operator with DATATRIEVE Tables

You can use tables with the relational operators IN and NOT IN to set conditions
in IF-THEN-ELSE statements and to validate data. The following is the general
format for using IN and NOT IN with a DATATRIEVE table:

field-name
*.prompt [NOn IN table-name
variable-name

12.4.1 Using a Table in a Record Selection Expression

In a record selection expression, you can use a Boolean expression that refers to a
dictionary table:

DTR> FDR YACHTS WITH RIG NOT IN RIG_TABLE PRINT BOAT®)

LENGTH
OI.JER

MANUFACTURER MODEL RIG ALL WEIGHT

AMERICAN 26-MS MS 26 5t500
EASTWARD HO MS 2a 7tOOO
FJORD MS 33 MS 33 latOOO
LINDSEY 39 MS 39 lat500
ROGGER FD MIS MS 35 17t600

DTR> FIND YACHTS WITH RIG IN RIG_TABLE®)
[108 records found]
DTR>

BEAM PRICE

08 $18t895
09 $15t900
11
12 $35t900
11

12.4.1.1 Using a Table to Set Conditions in an IF-THEN-ELSE Statement - You can
combine IN with a table reference to set the conditions of an IF-THEN-ELSE
statement:

DTR> SET NO PROMPT®)
DTR> FOR YACHTS WITH LOA = 26®)
CON> BEGIN®)
CON> PRINT®)
CON> IF RIG NOT IN RIG_TABLE®)
CON> THEN ABORT "Does not frleet reqUirefrlents"®)
CON> END®)

LENGTH
OI.JER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN
AMERICAN
AMERICAN

79
26
26-MS

SLOOP
SLOOP
MS

26 at200
26 atOOO
26 5t500

ABORT: Doe~ not Meet reqUireMents
Execution terfrlinated b}' "ABORT" statefrlent
DTR>

10
08
08

$17t900
$9t895

$18t895

Using DATATRIEVE Tables 12-5

12.4.1.2 Using a VALID IF Clause with a Table to Validate Data - By referring to a
dictionary table in a VALID IF clause, you can validate data in a field before
storing the data. The VALID IF clause must be part of the record definition. The
following definition of PHONE_REC illustrates this method of automatic data
validation:

DTR> DEFINE RECORD PHONE_REC USINGoo
DFN> 01 PHONE.oo
DFN> 02 NAME PIC }-{ (20) .00
DFN> 02 NUMBER PIC 9(7) EDIT_STRING IS }on-{-}oon<.oo
DFN> 02 LOCATION PIC }-{(9).(@l
DFN> 02 DE PARTMENT PIC }o< I.JAL I D I Foo
DFN> DEPARTMENT IN DEPT_TABLE.ffiITl
DFN> ;00
DTR>

The table DEPT_TABLE looks like this:

DTR> SHOW DEPT_TABLEoo
TABLE DEPT_TABLE
IIT3 11 IITYPESETTING II ,
IID5 11 IIFINANCE II ,
IIR9 11 : IIHOUSEKEEPING II ,
1I}-{711 : IIGROUNDSKEEPING II ,
IIR711 : IIBEEKEEPING II ,
ELSE IINOT A DEPARTMENT HEREII
END_TABLE
DTR>

If you try to enter a department number that is not in the table, DATATRIEVE
rejects the entry and prompts you for a correct one:

DTR> READY PHONE WRITEffiITl
DTR> STORE PHONEoo
Enter NAME: IIBENJAMIN PAUL"ffi(!)
Enter NUMBER: 75aS769ffiITl
Enter LOCATION: POLE_SffiITl
Enter DEPARTMENT: TaffiITl
Validation error for DEPARTMENT
Re-enter DEPARTMENT: T3ffiITl
DTR>

12.4.2 Using the Keyword VIA with DATATRIEVE Tables

To refer to tables in value expressions, combine the table name with the keyword
VIA. DATATRIEVE compares the codes in the table with the value you supply. If
the value matches one of the codes, DATATRIEVE uses the corresponding trans
lation in the table. Use the following format to refer to a dictionary table in a
value expression:

field-name
* .prompt VIA table-name
variable-name

12-6 Using DATATRIEVE Tables

You can refer to an entry in the dictionary table RIG_TABLE by using a prompt
ing value expression, as shown in the following PRINT statement:

DTR> PRINT *."TYPE OF BOAT" I,IIA RIG_TABLE USING){<30)ffiTI)
Enter TYPE OF BOAT: KETCHffiTI)
TWO MASTS, BIG ONE IN FRONT

If you refer to a dictionary table in a PRINT statement, include an"edit string to
specify the number of characters to be printed. If you omit the edit string,
DATATRIEVE uses an edit string that is 10 characters long.

12.5 DATATRIEVE Tables and Workspace

Once you have referred to a table, it remains in your DATATRIEVE workspace
until you either relinquish it with the RELEASE command or end your
DATATRIEVE session. If you are redefining a table, you must release the old
version before the new table takes effect. Note that DATATRIEVE does not
release tables when you switch data dictionaries.

You cannot have two tables with the same name in your workspace at the same
time. Use the SHOW READY command to display the names of tables in your
DATATRIEVE workspace. It is helpful for optimization to see the tables in your
workspace so you can release tables you do not need.

For a complete discussion ofDATATRIEVE workspace, see Chapter 17 in this
manual.

12.6 Displaying Table Information

You can use the SHOW TABLES command to list the names of all dictionary
tables in your default dictionary.

DTR> SHOW TABLESffiTI)

Tables:
DEPT_TABLE JOB_TITLE NAME_TABLE RIG_TABLE

DTR>

12.6.1 Displaying Tables

To display a dictionary table on your terminal, use the SHOW command and
specify the name of the table. Use the following format to display a table:

SHOW table-name [(pa~;Wd)]

Using DATATRIEVE Tables 12-7

Here is an example:

DTR> SHOW AREA_CODE_TABLEID
TABLE AREA_CODE_TABLE
207 MAINE,
603 "NEW HAMPSHIRE",
802 I.IERMONT,
617 "EASTERN MASSACHUSETTS II ,

413 "WESTERN MASSACHUSETTS II ,

401 II RHODE I SLAND II ,

203 CONNECTICUT,
ELSE II NOT A I.IAL I D AREA CODE II

END_TABLE
DTR>

12.6.2 Editing Tables

You can modify a table in the current data dictionary with the DATATRIEVE
Editor. Type EDIT and the table name, then use the Editor to make the desired
changes. Remember to end a new table entry with a comma. When you EXIT
from the Editor, DATATRIEVE places the modified table in your workspace.

See Chapter 16 for more information on the DATATRIEVE Editor.

The following example illustrates how to use the Editor to add a new entry to an
existing table:

DTR> SHOW NUM_LISTID
TABLE NUM_LIST
1: "ONE" ,
2: "TWO" ,
3: I THREE",
ELSE "NUMBER OUT OF TABLE RANGE"
END_TABLE
DTR> EDIT NUM_LISTID
OED> IELSE"ffiD)

ELSE "NUMBER OUT OF TABLE RANGE"
OED> lID
IN> 4: "FOUR" ,ID
IN> ,. z
OED> WHID

OED> '·z
DTR>

1: "DNE" ,
2: "TWO" ,
3: "THREE" ,
4: "FOUR II ,

ELSE "NUMBER OUT OF TABLE RANGE"
END_TABLE

12-8 Using DATATRIEVE Tables

12.6.3 Deleting Tables

You can delete a table from your current data dictionary with the DELETE com
mand. Use the following format:

DELETE table-name [(pa~~Wd)]

The following example deletes AREA_CODE_TABLE from the default data
dictionary:

DTR> SHOW TABLES@]
Tables:

AREA_CODE_TABLE JOB_TITLE
DTR> DELETE AREA_CODE_TABLEj@]
DTR> SHOW TABLES@]
Tables:

JOB_TITLE NAME_TABLE
DTR>

12.7 Protecting Dictionary Tables

NAME_TABLE

When you create a dictionary table, DATATRIEVE stores its definition in the
current data dictionary and creates an access control list (ACL) for it.
DATATRIEVE automatically stores one project-programmer number (PPN) or
user identification code (UIC) in the ACL with full access privileges. An account
number is called a PPN under RSTS/E systems and a UIC under other operating
systems.

Your individual installation determines the actual PPN/UIC that is stored in the
ACL. Any user logged in under that PPN/UIC and the creator of the table have
R (Read), W (Write), E (Execute), M (Modify), and C (Control) access to the dic
tionary table. Depending on the PPN/UIC in the ACL, other users in the instal
lation may be able to delete, modify, or print the dictionary table.

If you want to grant additional privileges to other users or further restrict the
use of the dictionary table, you must modify its ACL. For more information
on protecting dictionary tables and on modifying access control lists, refer to
Chapter 19.

To guard against accidental deletion of your dictionary table, you can maintain a
backup copy of it by using the DATATRIEVE EXTRACT command to copy your
table to a disk file or tape file. For example:

DTR > E~{TRACT ON NAMTAB t BK P NAME_TABLE@]

DTR>

Using DATATRIEVE Tables 12-9

Defining and Using Views 13

A view is a special type of domain that lets you select some or all fields in some
(or all) records from one or more domains. Using a view, you can refer to fields
and field values in different domains without duplicating their records and data.
You can use views to do the following:

• Work with subsets of records

• Refer to subsets of fields in records

• Change the apparent order of the fields in records

• Combine subsets of records from more than one domain

• Modify the values in the fields you select

A view does not actually change the way fields are organized in records or the
way records are combined into data files. A view only changes how existing data
appears to you. You can modify values in the fields selected by the view, but you
cannot store or erase any records accessed by the view.

A view is like a window in a house. Just as a window might let you look into
more than one room, a view can let you look into more than one domain. A win
dow might give you a complete look at everything in one or more rooms, restrict
what you can see to a few items of furniture, or only let you see the back of one
chair. Similarly, a view can let you look at all records, a few records, or parts of
records.

Each window in a house gives you a different picture of what is inside, but the
actual locations of the items you see are the same no matter how you look at
them. In the same way, when you define a view, you do not affect the way infor
mation is actually stored.

13-1

13.1 Defining Views

You define a view by creating a domain definition in your data dictionary with
the DEFINE DOMAIN command:

DEFINE DOMAIN view-name OF domain-name [, ...] USING
level-number-1 field-na'me-1 OCCURS FOR rse-1 .

level-number-2 field-name-2 {OCCURS FOR rse-2 }
FROM domain-name-2

After the keyword OF, you must list each domain that the view uses. The
domains you list cannot be views themselves. You may specify the domains in
any order, separating them with commas. You must end each field definition
with a period and ena the view definition with a semicolon.

You can use two clauses to define the fields in a view:

• OCCURS FOR

• FROM

The top-level field must be defined with an OCCURS FOR clause. The record
selection expression in the first OCCURS FOR clause determines the number of
records in the view. Each subsequent OCCURS FOR clause creates a list within
the view. Consequently, a view that contains more than one OCCURS FOR
clause is always a hierarchy. (The first OCCURS FOR clause does not make the
view a hierarchy. It only establishes the source record stream for the view.)

See Chapter 14 for more information about hierarchies.

You establish the fields of data for the view with the FROM clause. It specifies
the name of the field and the domain from which it derives. The domain must be
the same domain named in the preceding OCCURS FOR clause. The field name
must be either a field name or a query name from that domain.

If two or more fields have the same name, you might have to qualify those field
names to avoid ambiguity. See Appendix A for more information about qualified
field names.

13-2 Defining and Using Views

13.1.1 Views Using Subsets of Records

A view lets you work with a specific subset of records from another domain. For
instance, you may want to work with the records for ketches only and no other
rig type. The following example shows a view definition that allows you to work
with four fields of the yachts that are ketches:

DTR DEFINE DOMAIN KETCHES@]
DFN OF YACHTS USING@]
DFN 01 KETCH OCCURS FOR YACHTS WITH RIG EQ "KETCH".@]
DFN 03 TYPE FROM YACHTS.@]
DFN 03 LOA FROM YACHTS.@]
DFN 03 PRICE FROM YACHTS.@]
DFN ;@]
DTR READY KETCHES@]
DTR PRINT FIRST 4 KETCHES@]

LENGTH
OI.JER

MANUFACTURER MODEL ALL PRICE

ALBERG 37 MK I I 37 $36t951
CHALLENGER 41 41 $51 t228
FISHER 30 30
FISHER 37 37

DTR>

The view domain KETCHES, which is based on the single domain YACHTS, is
not hierarchical because there is only one OCCURS FOR clause.

You cannot store or erase records in a view. Otherwise, you can use a view just as
you would any other domain.

13.1.2 Views Using Subsets of Fields

Another type of view lets you refer to a subset of fields from the records of
another domain. For example, the record definition for YACHTS contains seven
elementary fields and three group fields:

DTR> READY YACHTS@]
DTR> SHOW FIELDS@]
YACHTS

BOAT
TYPE [Indexed field]

MANUFACTURER (BUILDER) [Character stringt indexed Key]
MODEL [Character stringt indexed Key]

SPECIFICATIONS (SPECS)
RIG [Character string]
LENGTH_OVER_ALL (LOA) [Character string]
DISPLACEMENT (DISP) [NuMber]
BEAM [NuMber]
PR I CE [NUfrlb e r]

Defining and Using Views 13-3

If you want to work with only a few fields of the record, you can create a record
definition for those fields and then create a domain and a data file containing one
record for each record in YACHTS. The result is a data file that duplicates some
field values in an existing data file (YACHT.DAT). Maintaining these two files so
that they always contain the same field values would be difficult.

You can define a view, however, that lets you look at just the fields in YACHTS
that you need without duplicating field values. You also avoid the additional
time and overhead of creating another record definition and creating and updat
ing two data files:

DTR> DEFINE DOMAIN MAKERS(@)
DFN> OF YACHTS USING(@)
DFN> 01 BOAT OCCURS FOR YACHTS.(@)
DFN> 03 TYPE FROM YACHTS.(@)
DFN> 03 RIG FROM YACHTS.(@)
DFN>
DTR> READY MAKERS(@)
DTR> PRINT FIRST 6 MAKERS(@)

MANUFACTURER MODEL RIG

ALBERG 37 MK I I KETCH
ALBIN 79 SLOOP
ALBIN BALLAD SLOOP
ALBIN VEGA SLOOP
AMERICAN 26 SLOOP
AMERICAN 26-MS MS

13.1.3 Views Using More Than One Domain

The preceding sections showed how to use view domains to define a subset of
records or fields from a single domain. You can also use field values from more
than one domain.

The domain OWNERS, for example, contains records of yacht owners. Each
record contains the owner's name and the name, builder, and model of the
owner's yacht:

DTR> SHOW OWNER_RECORD(@)
RECORD OWNER_RECORD
ALLOCATION IS LEFT_RIGHT
01 OWNER.

03 NAME PIC }-{ (10) QUERY _HEADER I S II OWNER II / II NAME II

EDIT_STRING IS X(5).
03 BOAT _NAME PIC }-{ (17) QUERY _HEADER I S II BOAT NAME II •

03 TYPE.
06 BUILDER PIC X(10).
06 MODEL PIC X(10).

DTR> READY OWNERS(@)
DTR> PRINT FIRST 1 OWNERS(@)

OWNER
NAME BOAT -NAME BUILDER

SHERM MILLENNIUM FALCON ALBERG 35

DTR>

13-4 Defining and Using Views

MODEL

If you define a view that refers to both the OWNERS domain and the YACHTS
domain, you can use any combination of fields and records in those domains. For
example, you can include the name and yacht fields from the OWNERS domain
and the price field from the YACHTS domain.

The view SAILBOATS in the following example uses every field and every record
in the YACHTS domain to match owners with the boats they own. It uses records
from the OWNERS domain and matches those records by boat type with records
in the YACHTS domain. It requests only the NAME field from those records.

After the first OCCURS FOR clause, each OCCURS FOR creates a list within
the view. A domain that contains a list is a hierarchy. The view SAILBOATS,
therefore, is a hierarchical view:

DTR> SHOW SAILBOATS(@)
DOMAIN SAILBOATS

OF YACHTSt OWNERS USING
01 SAILBOAT OCCURS FOR YACHTS.

03 BOAT FROM YACHTS.
03 SKIPPERS OCCURS FOR OWNERS WITH TYPE EO BOAT.TYPE.

05 NAME FROM OWNERS.

DTR>

The field SKIPPERS is a list of owner names. Each record in SAILBOATS can
contain a NAME field for each of several owners. This view allows you to com
bine all the information on each yacht with the names of all its skippers.

DTR> READY SAILBOATS(@)
DTR> PRINT FIRST" 2 SAILBOATS WITH ANY SKIPPERS(@)

LENGTH
OI.IER OWNER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE NAME

ALBIN I.IEGA KETCH 35 17tOOO 12 $33tOOO STEI.IE
HUGH

CB:C CORVETTE SLOOP 31 BtG50 01 JIM
ANN

DTR>

Printing the values of list fields is illustrated later in this chapter. Hierarchies
are discussed in greater detail in Chapter 14.

In general, if you define a view that uses only one domain, use an OCCURS FOR
clause to define the top-level field and then use FROM clauses to specify which
fields the view contains. If you define a view using more than one domain, group
the field definitions by the domain they refer to, putting the field definition with
an OCCURS FOR clause first in each group.

Defining and Using Views 13-5

13.2 Using a View Domain

You use a view as you do any other domain. To ready a view" you must have R
(Read) access privilege to the view, and you must also have the same access priv
ilege to each domain the view uses. You must have E (Execute) access privilege
to the record definition associated with each domain.

You cannot store or erase records in a view, but you can modify values of fields.
For example, here is how to modify a field in the view KETCHES:

OTR> READY KETCHESCffi)
OTR> SHOW KETCHESCffi)
OOMAIN KETCHES

OF YACHTS USING
01 KETCH OCCURS FOR YACHTS WITH RIG EO "KETCH".

03 TYPE FROM YACHTS.
03 LOA FROM YACHTS.
03 PRICE FROM YACHTS.

OTR> READY KETCHES MODIFYCffi)
OTR> FIND KETCHES WITH PRICE EO OCffi)
[a records found]
OTR> PRINT ALLCffi)

LENGTH
OI.IER

MANUFACTURER MOOEL ALL PRICE

FISHER 30 30
FISHER 37 37
PEARSON 385 38
PEARSON alB az

OTR> FOR CURRENT PRINT THEN MOOIFY PRICECffi)

MANUFACTURER MODEL

FISHER 30
Enter PRICE: 30000Cffi)

LENGTH
OI.IER
ALL

30

FISHER 37 37
Enter PRICE: a5000Cffi)

PEARSON 385 38
Enter PRICE: 3Z000Cffi)

PEARSON alB az
Enter PRICE: 5aOOOCffi)

OTR> PRINT ALL

LENGTH
OI.JER

MANUFACTURER MOOEL ALL

FISHER 30 30
FISHER 37 37
PEARSON 385 38
PEARSON alB az

OTR>

13-6 Defining and Using Views

PRICE

PRICE

$30tOOO
$a5tOOO
$3ZtOOO
$5atOOO

13.2.1 Using a View That Contains a List

To refer to field values contained in a list, use one of the methods described in
Chapter 14. For example:

DTR> SHOW SAILBOATSOO
DOMAIN SAILBOATS

OF YACHTSt OWNERS USING
01 SAILBOAT OCCURS FOR YACHTS.

03 BOAT FROM YACHTS.
03 SKIPPERS OCCURS FOR OWNERS WITH TYPE EQ BOAT.TYPE.

05 NAME FROM OWNERS.

DTR> READY SAILBOATS WRITEOO
DTR> FIND OWNED IN SAILBOATS WITH ANY SKIPPERSOO
[6 records found]

DTR> PRINT ALLOO

MANUFACTURER MODEL

ALBIN I.IEGA

C~:C CORI.IETTE

ISLANDER BAHAMA

PEARSON 10M
PEARSON 26
RHODES SWIFTSURE

DTR> SELECT 300
DTR> FIND SKIPPERSOO
[a records found]
DTR> PRINT ALLOO

OWNER
NAME

JIM
ANN
STEI.IE
HARI.lE

DTR> SELECT 200
DTR> MODIFY NAMEOO
Enter NAME: ANNEOO

LENGTH
OI.lER

RIG ALL WEIGHT BEAM

SLOOP 27 5t070 08

SLOOP 31 8t650 08

SLOOP 2a at200 08

SLOOP 33 12taa1 11
SLOOP 26 5taOO 08
SLOOP 33 1atOOO 10

PRICE

$18t600

$6t500

DTR> PRINT BOATt ALL SKIPPERS SORTED BY NAME OF OWNEDOO

OWNER
NAME

STEI.IE
HUGH
JIM
ANN
JIM
ANN
STEI.IE
HARI.IE
TOM
DICK
JOHN

(continued on next page)

Defining and Using Views 13-7

LENGTH
OVER OWNER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE NAME

ALBIN t.IEGA SLOOP 27 5,070 08 $18,600 HUGH
STEt.IE

C&:C CORt.IETTE SLOOP 31 8,650 08 ANN
JIM

ISLANDER BAHAMA SLOOP 24 4,200 08 $6,500 ANNE
HARt.IE
JIM
STEt.IE

PEARSON 10M SLOOP 33 12,441 11 TOM
PEARSON 26 SLOOP 26 5,400 08 DICK
RHODES SWIFTSURE SLOOP 33 14,000 10 JOHN

DTR>

13-8 Defining and Using Views

Using Hierarchies 14

In DATATRIEVE, the term hierarchy refers to a one-to-many relationship
between record sources.

With hierarchies, you can nest record streams to see a single record from one
record source displayed with a combination of records from another record
source. This nesting established a parent-child relationship between the two
record streams. For each record in the outer, parent record stream, you see all
records in the inner, child record stream. Parent records are displayed even if
there are no corresponding child records in the inner record stream. Some exam
ples of how this can be useful are:

o One team with several players

• One project with several workers

• One employee with several previous jobs

• One library with many books

• One computer with several users

Hierarchies let you define records with fields that are lists. Items in a list can
contain more than one field, and the list itself may contain more than one item.
Therefore, a list lets you store more than one value for a field or group of fields in
one record. Lists are also called repeating fields.

When you retrieve a value from a record containing a repeating field, you cannot
always apply the same statements you do for other records. The following

14-1

sequence of statements shows what can happen when you try to print the repeat
ing field KIDS from the hierarchical record FAMILIES:

DTR> READY FAMILIESm
DTR> SHOW FAMILY_RECm
RECORD FAMILY_REC
01 FAMILY.

03 PARENTS.
08 FATHER PIC X(10).
08 MOTHER PIC X(10).

03 NUMBER_KIDS PIC 88 EDIT_STRING IS Z8.
03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER_KIDS.

08 EACH_KID.
08 KID_NAME PIC X(10) QUERY_NAME IS KID.
08 AGE PIC 88 EDIT_STRING IS Z8.

DTR> PRINT FATHER OF FAMILIESm

FATHER

JIM
JIM

DTR> PRINT MOTHER OF FAMILIESm

MOTHER

ANN
LOUISE

DTR> PRINT KIDS OF FAMILIESm
Expected end of staterrlent t encounte red 1I0F II

DTR>

You can print the names of fathers and mothers, but you get an error message
when you try to print the list field KIDS. If you form a collection, you can again
print information on fathers and mothers but not kids:

DTR> FIND FAMILIESm
[13 records found]
DTR> PRINT ALL FATHERm

FATHER

JIM
JIM

14-2 Using Hierarchies

(continued on next page)

DTR> PRINT ALL MOTHER@)

MOTHER

ANN
LOUISE

DTR> PRINT ALL EACH_KID@)
Field "EACH_KID" is undefined or used out of context
DTR> PRINT ALL KIDS@)
Field "KIDS" is undefined or used out of context
DTR> PRINT ALL KIDS OF FAMILIES@)
Expected end of statelTlent t encountered "OF"

In the first two examples, you get a message stating that the field name is unde
fined or used out of context. The third example results in the same message you
got in the previous example. To retrieve the information, you can apply one of
the following methods to set up a DATATRIEVE context:

• Use a FIND statement to establish a context for the list. Then use a SELECT
statement to identify one record in the collection.

• Use nested FOR RSE loops. The outer FOR loop forms a target stream of hier
archical records and the inner FOR loop forms a stream of list items within a
hierarchical record.

• Use inner print lists (ALL print-list OF rse) to form a stream of list items
within a record stream.

The following sections describe these methods for retrieving items from lists. For
more information about DATATRIEVE context, see Appendix A in this manual.

14.1 Retrieving Repeating Field Values with FIND and SELECT
Statements

You use the FIND statement to find all the records in the file that meet your
specifications. Then you can use the SELECT statement to request anyone of
these records:

DTR> READY FAMILIES@)
DTR> FIND FAMILIES@)
[1a records found]
DTR> SELECT 3; PRINT@)

FATHER MOTHER

JOHN JULIE

NUMBER KID
KIDS NAME

2 ANN
JEAN

AGE

29
26

Using Hierarchies 14-3

When you have selected a record that contains a list, you can treat the list as
though it were a source of records like a domain or collection. You can continue
as follows:

DTR> PRINT KIDS(@)

KID
NAME AGE

ANN 29
JEAN 26
DTR>

You can also combine the FIND and SELECT statements to single out one list
item. Then the context of the selected list item allows you to use the list item
name by itself in a PRINT statement. Continue the previous example by forming
a collection of the KIDS list field and selecting a list item from the collection:

DTR> FIND KIDS(@)
[2 records found]
DTR> SELECT 2; PRINT(@)

KID
NAME AGE

JEAN 26

DTR> PRINT AGE(@)

AGE

26

DTR>

14.2 Retrieving Repeating Field Values with Nested FOR Loops

To retrieve values from list items by nesting FOR loops, start from the top of the
hierarchy and work toward the list items you want to retrieve. In the following
example, the source for the RSE in the first or outer FOR loop is the hierarchical
domain FAMILIES. The source in the second loop is the list item KIDS:

DTR> FOR FAMILIES(@)
[LooKin~ for statement]
CON> FOR KIDS WITH AGE < 10(@)
[LooKin~ for statement]
CON> PRINT KID_NAME(@)

14-4 Using Hierarchies

(continued on next page)

KID
NAME

URSULA
RALPH
CHRISTOPHR
SCOTT
BRIAN
DAVID
PATRICK
SUZIE

DTR>

The FOR statement preceding the PRINT statement in the following example
loops through all the records in FAMILIES. For each of those records, the RSE in
the PRINT statement retrieves only the first kid whose ag~ is less than 10:

DTR> FOR FAMILIESlBTI)
[Looking for stateMent]
CON> PRINT KID_NAME OF FIRST 1 KIDS WITH AGE <: 10lBTI)

KID
NAME

URSULA
CHRISTOPHR
SCOTT
DAt.JID
PATRICK

DTR>

The OF rse clause in the PRINT statement serves the same purpose as a nested
FOR RSE statement. The inner RSE (FIRST 1 KIDS WITH AGE < 10) identifies
items from the list field KIDS that are included with a FAMILIES record identi
fied by the outer FOR RSE statement.

You get the same results using the following nested FOR rse statements:

DTR) FOR FAMILIES FOR FIRST 1 KIDS WITH AGE <: 10 PRINT KID_NAME

14.3 Retrieving Repeating Field Values with Inner Print Lists

The simplest way to print a repeating field is to print the entire record contain
ing the repeating field:

DTR) READY FAMILIESlBTI)
DTR> PRINT FIRST 1 FAMILIESlBTI)

FATHER

JIM

DTR>

MOTHER

ANN 2

NUMBER
KIDS

URSULA
RALPH

KID
NAME AGE

7
3

Using Hierarchies 14-5

To print selected fields from the record, you must specify a print list in the
PRINT statement. (Print lists consist offield names or other value expressions
and modifiers.) To specify a list item in a print list, you must use an inner print
list, which has the format:

ALL print-list OF rse

In the print list clause of the inner print list, include the list items you want to
display. The OF rse of the inner print list creates a context for the item in the
hierarchical list.

You can nest an inner print list in a PRINT statement using any of the following
formats. The arrows under each format show where the inner print list begins
and ends. A sample PRINT statement for the FAMILIES domain illustrates each
format:

1. PRINT ALL ALL print-list OF rse OF rse
t t

DTR> PRINT ALL ALL KID_NAME OF KIDS OF FIRST 1 FAMILIES(8ffi

KID
NAME

URSULA
RALPH

DTR>

2. PRINT [ALL] value-exp, ALL print-list OF rse OF rse
t t

DTR> PRINT ALL MOTHER, FATHER, ALL KID_NAME OF(8ffi
CON> FIRST KIDS OF FIRST 1 FAMILIES(8ffi

MOTHER

ANN

DTR>

FATHER

JIM

KID
NAME

URSULA

3. PRINT ALL ALL print-list OF rse, value-exp OF rse
t t

DTR> PRINT ALL ALL KID_NAME OF FIRST 1 KIDS, FATHER OF(8ffi
CON> FIRST FAMILIES(8ffi

KID
NAME

URSULA

DTR>

14-6 Using Hierarchies

FATHER

JIM

There are two important points to remember when working with inner print
lists:

• To DATATRIEVE, an inner print list is just another print list element in the
outer print list .

• An inner print list establishes context for items in a list. See Appendix A for
more information about context.

While inner print lists can complicate statements, they allow you to control com
pletely how DATATRIEVE displays repeating fields. By using the repeating field
as the source for an RSE in an inner print list, you can specify which occurrences
of the repeating field DATATRIEVE displays.

As a rule of thumb, you can think of embedding an inner print list in a PRINT
statement the same way you think of nesting parentheses in an arithmetic
expression. Just as you put a matching left parenthesis for every right parenthe
sis in an arithmetic expression, there must be a matching ALL for every RSE in
a PRINT statement. In the second format the first ALL is optional, but it is eas
ier to remember the rule of thumb than to remember when ALL is optional.

The remainder of this section presents more examples to help you use inner print
lists effectively.

By limiting the RSEs in a PRINT statement, you can tailor a record stream to
suit your needs. These next three examples show the results of limiting one or
both of the RSEs in a PRINT statement that includes an inner print list using
the second format:

DTR> PRINT ALL MOTHER t ALL EACH_KID OF KIDS OF FIRST 1 FAMILIES(BTI)

KID
MOTHER NAME AGE

ANN URSULA 7
RALPH 3

DTR> PRINT ALL MOTHERt ALL EACH_KID OF FIRST 1 KIDS OF FAMILIES(BTI)

KID
MOTHER NAME AGE

ANN URSULA 7
LOUISE ANNE 31
JULIE ANN 29
ELLEN CHRISTOPHR 0
ANNE SCOTT 2
SARAH DAI.! 10 (I

ANNE PATRICK 4
MERIDETH BEAU 28
0101
RUTH ERIC 32
BETTY MARTHA 30
LOIS JEFF 23
SARAH CHARLIE 31
TRINITA ERIC 16

(continued on next page)

Using Hierarchies 14-7

DTR> PRINT ALL MOTHERt ALL EACH_KID OF(ill)
CON> FIRST 1 KIDS OF FIRST 1 FAMILIES(ill)

MOTHER

ANN
DTR>

KID
NAME

URSULA

AGE

7

If you want to display only items from the list field, you must precede the inner
print list with two ALL keywords, one for each RSE you define. In the following
examples, the first ALL matches the RSE, FIRST 1 FAMILIES WITH
NUMBER_KIDS = 3. The second ALL matches the RSE, KIDS:

DTR> PRINT ALL ALL EACH_KID OF KIDS OF(ill)
[Loo~~ing for IIFIRST ll t dOfrlain nafrlet or collection nafrle]
CON> FIRST 1 FAMILIES WITH NUMBER_KIDS = 3(ill)

KID
NAME AGE

JEFF 23
FRED 26
LAURA 21

DTR> PRINT ALL ALL KID_NAME OF KIDS WITH(ill)
[LooKing for Boolean expression]
CON> AGE GT 25 OF FAMILIES(ill)

KID
NAME

ANNE
JIM
ELLEN
ANN
JEAN

BEAU
BROOKS

ERIC
MARTHA
TOM
FRED
CHARLIE
HAROLD
SARAH

DTR>

The last display contains blank lines that you would probably want to eliminate.
Eliminating empty print lines is discussed in the next section.

14-8 Using Hierarchies

Note that when you include a list field in a print list, you should specify the list
field as the last item. The following example shows what happens when you spec
ify some other field after the list. The display of that field begins on the same line
as the last item in the list:

DTR> PRINT ALL ALL EACH_KID OF KIDS, MOTHER OF FIRST 2 FAMILIES(@)

KID
NAME AGE MOTHER

URSULA 7
RALPH 3 ANN
ANNE 31
JIM 29
ELLEN 26
DA1.JID 2L1
ROBERT 16 LOUISE

DTR>

14.4 Retrieving List Items with Nested RSEs - Eliminating Empty Print
Lines

You can use Boolean expressions in the outer RSE to eliminate empty print
lines. Empty print lines occur when the outer RSE includes records that do not
satisfy the inner RSE. When DATATRIEVE processes a record that does not con
tain information needed by the inner RSE, it generates a carriage return and
line feed. The following example illustrates empty print lines that result from an
outer RSE (FAMILIES) that forces DATATRIEVE to include records that do not
match inner RSE requirements:

DTR> PRINT ALL ALL EACH_KID OF KIDS WITH(@)
[LooKin~ for Boolean expression]
CON> AGE GT 25 OF FAt1 I LIES(@)

KID
NAME AGE

ANNE 31
JIM 29
ELLEN 26
ANN 29
JEAN 26

BEAU 28
BROOKS 26

ERIC 32
MARTHA 30
TOM 27
FRED 26
CHARLIE 31
HAROLD 35
SARAH 27

DTR>

Using Hierarchies 14-9

14-10

In the following statement, the clause WITH ANY KIDS eliminates the blank
line caused by the record of the family without children:

DTR> PRINT ALL ALL EACH_KID OF KIDS WITH(BIf)
[LooKing for Boolean expression]
CON> AGE GT 25 OF FAMILIES WITH ANY KIDS(BIf)

KID
NAME AGE

ANNE 31
JIM 29
ELLEN 26
ANN 29
JEAN 26

BEAU 28
BROOKS 26
ERIC 32
MARTHA 30
TOM 27
FRED 26
CHARLIE 31
HAROLD 35
SARAH 27

DTR>

The four blank lines in the preceding print display represent the records offami
lies who have kids, but whose kids have ages less than or equal to 25. The follow
ing statement excludes those records from the record stream and therefore
eliminates the blank lines:

DTR> PRINT ALL ALL EACH_KID OF KIDS WITH(BIf)
[LooKing for Boolean expression]
CON> AGE GT 25 OF FAMILIES WITH ANY KIDS WITH(BIf)
[LooKing for Boolean expression]
CON> AGE GT 25(BIf)

KID
NAME AGE

ANNE 31
JIM 29
ELLEN 26
ANN 29
JEAN 26
BEAU 28
BROOKS 26
ERIC 32
MARTHA 30
TOM 27
FRED 26
CHARLIE 31
HAROLD 35
SARAH 27

DTR>

Using Hierarchies

You do not have to use an extra ALL before inner print lists if you put the PRINT
statement in a FOR statement:

DTR> FOR FAMILIES PRINT ALL EACH_KID OF KIDS WITH(ill)
[Looking for Boolean expression]
CON> KID_NAME CaNT "Y"(ill)

KID
NAME AGE

JAY 22
CISSY 2a
NANCY 22

DTR>

14.5 Retrieving Values from Sublists

You can use collections, nested FOR loops, or inner print lists to retrieve values
from sublists (lists within lists).

When you work with sublists, you must remember to create a context for each
level of the hierarchy. The outermost context establishes the target record or tar
get record stream (source = FAMILIES); the second establishes the context for
the list (source = KIDS); and the third establishes the context for the sublist
(source = PET); and so on.

This series of FIND and SELECT statements uses collections to retrieve one list
item from PET:

DTR> READY PETS(ill)
DTR> FIND PETS(ill)
[3 records found]
DTR> SELECT; FIND KIDS@]
[2 records found]
DTR> SELECT; FIND PET(ill)
[2 records found]
DTR> SELECT; PRINT PET_NAMEt PET_AGE(ill)

PET PET
NAME AGE

POP 03

DTR>

Using Hierarchies 14-11

14-12

You can also use nested FOR loops for dealing with a sublist:

DTR> FOR PETS WITH ANY KIDS(§]
[LooKing for stateMent]
CON> FOR KIDS WITH ANY PET(§]
[LooKing for stateMent]
CON> FOR PET WITH PET_AGE GT O(§]
[LooKing for stateMent]
CON> PRINT PET_NAMEt PET_AGE(§]

PET PET
NAME AGE

POP 03
SODA oa
MOUSE 03
SHORTY 08
SQUEEKY 03
FRANK 07
FRANK la

DTR>

You can also use inner print lists to get at all three levels of the hierarchy:

DTR> PRINT ALL ALL ALL PET_NAME OF PET OF(§]
[Loo~\ing for IIFIRST II t dOlrlain nalrle t or collection nalrle]
CON> KIDS WITH ANY PET WITH PET_AGE NE 0 OF(§]
[Loo~\ing for IIFIRST II

t dOlrlain nalrle t or collection nalrle]
CON> PETS WITH ANY K IDS WITH ANY PET t~ I TH PET _AGE NE O(§]

PET
NAME

POP
SODA
MOUSE
SHORTY
SQUEEKY
FRANK
FRANK

DTR>

Using Hierarchies

Restructuring Domains 15

This chapter describes how to create new domains with data from existing ones.
You might do this to:

• Add new fields to the record definition associated with the domain

• Change field definitions to affect the values stored in the data file

• Create a copy of a domain for testing

• Change the file organization

• Change the index structure (key fields)

• Create a domain that contains a subset of records contained in another domain

How you create the new domain depends on whether you want to keep the old
domain. If you want to keep the old domain, follow these steps when creating the
new domain:

1. Define a new domain, its record, and its data file.

2. Ready the new domain for WRITE or EXTEND access and the old domain
for READ access.

3. Use a statement with the following format to transfer field values from the
old data file to the new one:

FOR rse-FROM-old-domain-name
STORE new-domain-name USING

new-record-name = old-record-name

15-1

If you want to use old procedures on the new domain, you must edit them if they
refer to fields not included in the new domain. See Chapter 9 for information
about editing procedures.

If the old procedures refer only to fields included in the new domain, you need
not change the procedures. You can ready the new domain with the old domain
name as an alias (READY NEW AS OLD) and execute the old procedures.

If you do not want to keep the old domain, you can still use the old procedures if
you follow these steps:

1. Define the new domain (NEW), record (NEW_REC), and file (NEW.DAT).

2. Use a statement with the following format to transfer the data from the old
domain (OLD) to the new one (NEW):

FOR rse-FROM-ald-damain-name
STORE new-domain-name USING

new-record-name = old-record-name

3. Use the REDEFINE command, which deletes the old domain and creates a
new domain with the same name as the old domain. The new domain uses
the old domain name (OLD), the new record definition (NEWREC), and the
new data file (NEW.DAT):

DTR> REDEFINE DOMAIN OLD USING NEJ..JREC ON NEJ...l.DATj(ffi)
DTR>

4. Check the old procedures for any references to field names not included in
the new record definition and edit where necessary.

The following sections provide examples to help you restructure your own
domains.

15.1 A Sample Domain

PROJECTS is a sample domain you can create to practice restructuring:

DTR> SHOW PROJECTS,
DOMAIN PROJECTS

USING PRoJECTS_REC
RECORD PRoJECTS_REC

USING
01 PROJECT.

03 PRoJ_CoDE
03 PRoJ_NAME
03 MANAGER_NUM

DTR>

15-2 Restructuring Domains

PRoJECTS_REC(ffi)

ON PRoJEC.DATj

PIC 9(3) QUERY_NAME IS CODE.
PIC X(10) QUERY_NAME IS NAME.
PIC 9(5) QUERY_NAME IS NUM.

The data file PROJEC.DAT is a sequential file and contains these records:

DTR> PRINT PROJECTS~

PROJ PROJ MANAGER
CODE NAME NUM

002 GROUNDS 00006
005 BUILDING 2 00003
008 SHED 00002
018 RESEARCH 00006
037 PUB REL 00008
073 MATERIALS 00002

DTR>

15.2 Changing Record and File Definitions and Using New Names

This section shows you how to change record and file definitions using new
names for the record and data file.

To create a new domain with two fields added to PROJECTS_REC, follow these
steps:

1. Define a new domain:

DTR> DEF I NE DOMA I N NEI-L PROJECTS@)
DFN> USING NEI-LPROJECTS_REC ON NWPROJ. DAT;~
DTR>

2. Use the EXTRACT command to copy the old record definition to a command
file:

DTR> EHTRACT ON TEMP PROJECTS_REC~

DTR>

3. Exit DATATRIEVE and edit the command file TEMP.CMD. Remove the
DELETE command from the first line of the file, change the name of the
record, add the new fields, and include any other changes you want.

4. Enter DATATRIEVE again and invoke the modified command file to enter
the new record definition in the data dictionary:

DTR> @TEMP~
DEFINE RECORD NEW_PROJECTS_REC

USING
01 NEW_PROJECT.

;

03 PROJ_CODE
03 PROJ_NAME
03 PROJ_COST
03 MANAGER_NUM
03 MANAGER_NAME

PIC 9(3) QUERY_NAME IS CODE.
PIC H(10) QUERY_NAME IS NAME.
PIC 9(6)V99 EDIT_STRING IS $$$t$$9.99.
PIC 9(5).
PIC X(15).

[Record NEW_PROJECTS_REC is al bytes long]
DTR)

Restructuring Domains 15-3

5. Define a data file for NEW_PROJECTS. This example creates an indexed
file to replace the sequential file associated with PROJECTS:

DTR> DEFINE FILE FOR NEW_PROJECTS KEY=CODE(illj
DTR>

You are now ready to transfer the data from the old domain to the new one.

15.2.1 Storing Data from All the Records in the Old Domain

This section tells you how to transfer data from all the records in the old domain.
The next section explains how to transfer data from a subset of the records in the
old domain.

You must first ready both domains. Ready the new domain for WRITE or
EXTEND access and ready the old domain for READ access. Use the STORE
statement in a FOR loop to transfer the data:

DTR> READY NEW_PROJECTS WRITE(illj
DTR> READY PROJECTSffiIj)
DTR> FOR PROJECTSffiIj)
[LooKing for stateMent]
CON> STORE NEW_PROJECTS USING(illj
[LooKing for assignMent stateMent(s)]
CON> NEW_PROJECTS_REC = PROJECTS_REC(illj
DTR>

For each field name in NEW J>ROJECTS-REC that matches a field name
in PROJECTS_REC, the STORE statement transfers field values from
the record in PROJECTS to a record in NEW_PROJECTS. If a field in
NEW _PROJECTS_REC does not match a field in PROJECTS_REC,
DATATRIEVE initializes the field according to its data type and field definition
(zero for numeric fields; spaces for alphabetic and alphanumeric ones).

The data file associated with NEW_PROJECTS now has records in it. When you
display its contents on the terminal, you can see the values transferred from the
PROJECTS domain, as well as initial values for the two new fields, PROJ_COST
and MANAGER_NAME:

DTR> PRINT NEW_PROJECTS(illj

PROJ PROJ PROJ MANAGER MANAGER
CODE NAME COST NUM NAME

002 GROUNDS $0.00 00006
005 BUILDING 2 $0.00 00003
008 SHED $0.00 00002
018 RESEARCH $0.00 00006
037 PUB REL $0.00 00008
073 MATERIALS $0.00 00002

DTR>

15-4 Restructuring Domains

15.2.2 Storing Data from a Subset of the Records in the Old Domain

You can create the new domain from a subset of the old domain records. You
specify the limiting conditions in the RSE following the FOR statement. For
example, you could have limited NEW_PROJECTS to the projects of only two
managers:

DTR> FOR PROJECTS WITH MANAGER_NUM EQ 2t 6ffiDj
[LooKing for stateMent]
CON> STORE NEW_PROJECTS USINGffiDj
[LooKing for aSSignMent stateMent(s)]
CON> NEW_PROJECTS_REC = PROJECTS_RECffiDj
DTR> PRINT NEW_PROJECTSffiDj

PROJ PROJ PROJ MANAGER
CODE NAME COST NUM

002 GROUNDS $0.00 00006
008 SHED $0.00 00002
(118 RESEARCH $(1.00 00006
073 MATERIALS $0.00 00002

DTR>

MANAGER
NAME

15.2.3 Deleting References to the Old Domain

After you store records from the old domain in your new one, you can delete the
old data file from your directory. You can continue to use your old procedures
with the new record definition and data file, however, by using the REDEFINE
command. As described earlier in this chapter, the REDEFINE command deletes
the old domain and creates a new domain with the same name as the old domain.
The domain is now defined with the new record definition and data file:

DTR> REDEFINE DOMAIN PROJECTS USINGffiDj
DFN> NEW_PROJECTS_REC ON NWPROJ. DAT H~
DTR>

15.3 Changing Record and File Definitions and Using Old Names

This section explains how to restructure domains when you do not want to access
old data, but you want to keep the domain, record, and file names you created for
the old domain. The sample statements use the domain PROJECTS.

Using an alias is the easiest way to change data structures without changing the
names you use for them.

----------------------- Note -----------------------

Notice that the changes made to the PROJECTS record and file
definitions are not associated with the names you want until you
use the FINISH command and ready the PROJECTS domain
again.

Restructuring Domains 15-5

The following list explains how to restructure domains. Steps preceded by
(RSTS/E only) are necessary only if you are working on a RSTS/E system:

1. (RSTS/E only) At the system command level, rename the data file associated
with the domain you are restructuring. The examples in the following steps
assume that PROJEC.DAT has been renamed OLDPRO.DAT.

2. At the DATATRIEVE command level, use the EXTRACT command to copy
the old record definition to a command file:

DTR> E}-{TRACT ON TEM P PRoJECTS_REC(@)
DTR>

3. At the system command level, edit the command file TEMP.CMD to add the
desired field definitions. Do not remove the DELETE command from the first
line of the file.

4. (RSTS/E only) At the DATATRIEVE command level, redefine the domain
specifying the renamed data file:

DTR> REDEFINE DOMAIN PROJECTS USING(@)
DFN> PRO,JECTS_REC ON oLDPRo. DAT;(@)
DTR>

5. At the DATATRIEVE command level, ready the domain as an alias:

DTR> READY PROJECTS AS OLD_PROJECTS(@)
DTR> SHOW READY(@)
Read}' dOlrlains:

OLD_PROJECTS: RMS SEQUENTIAL, PROTECTED READ
DTR>

6. Invoke the modified command file to enter the revised record definition in
the data dictionary:

DTR> @TEMP(@)
DELETE PRoJECTS_REC;
DEFINE RECORD PRoJECTS_REC

USING
01 PROJECT.

03 PRoJ_CoDE
03 PRoJ_NAME
03 PRoJ_CoST
03 MANAGER_NUM
03 MANAGER_NAME

PIC 8(3) QUERY_NAME IS CODE.
PIC X(10) QUERY_NAME IS NAME.
PIC 8(G)V88 EDIT_STRING IS $$$,$$8.88.
PIC 8(5).
PIC }-«(15).

[Record PRoJECTS_REC is 41 bytes long]
DTR>

7. (RSTS/E only) Redefine the domain PROJECTS using your original name
for the data file:

DTR> REDEFINE DOMAIN PROJECTS USING(@)
DFN> PRoJECTS_REC ON PRoJEC.DAT;(@)
DTR>

15-6 Restructuring Domains

8. Define a new data file for the domain. When you ready a domain' with an
alias, as in Step 5, defining a new file does not interfere with the link
between that readied domain and the file containing the old data. Do not use
the SUPERSEDE option of the DEFINE FILE command. The following
example changes the file organization from sequential to indexed:

DTR> DEFINE FILE FOR PROJECTS KEY = NUM(@)
DTR>

9. Ready the domain as a different alias and specify WRITE access mode. This
READY command uses the new record definition and opens the new data file
created by the DEFINE FILE command:

DTR> READY PROJECTS AS NEW_PROJECTS WRITE(@)
DTR> SHOW READY(@)
Read}' dOITlains:

NEW_PROJECTS: RMS INDEXED, PROTECTED WRITE
OLD_PROJECTS: RMS SEQUENTIAL, PROTECTED READ

DTR>

10. Use the STORE statement in a FOR loop to move the data from the original
domain to the new one.

If you plan to use all the records in the domain, you simply specify the alias
of the old domain in the FOR statement:

DTR> FOR OLD_PROJECTS(@)
[Looking for stateMent]
CON> STORE NEW_PROJECTS USING(@)
[Looking for assignMent stateMent(s)]
CON> PROJECTS_REC = PROJECTS_REC(@)
DTR>

If you plan to use a subset of the records in the old domain, specify a more
restrictive RSE including the alias of the old domain. The following example
limits the record stream to the projects of two managers:

DTR> FOR OLD_PROJECTS WITH MANAGER_NUM EQ 2, G(@)
[Looking for stateMent]
CON> STORE NEW_PROJECTS USING(@)
[Looking for assignMent stateMent(s)]
CON> PROJECTS_REC = PROJECTS_REC(@)
DTR>

Restructuring Domains 15-7

11. When you type FINISH and ready the domain again, you can access data as
you restructured it. DATATRIEVE no longer recognizes either alias. The fol
lowing example assumes that the RSE specified in the FOR loop included all
the records from the domain:

DTR> FINISHOO
DTR> READY PROJECTSOO
DTR> SHOW READYOO
Read}' dOlllains:

PROJECTS: RMS INDEXED, PROTECTED READ
DTR> PRINT PROJECTSOO

PROJ PROJ PROJ MANAGER MANAGER
CODE NAME COST NUM NAME

002 GROUNDS $0.00 00006
005 BUILDING 2 $0.00 00003
008 SHED $0.00 00002
018 RESEARCH $0.00 00006
037 PUB REL $0.00 00008
073 MATERIALS $0.00 00002

DTR>

12. (RSTS/E only) At the system command level, delete the data file associated
with your domain before you changed the file organization. Using the
PROJECTS domain as an example, you would delete the file OLDPRO.DAT.

15.4 Changing the Organization of a Data File

You can also use an alias with the READY command to change only the organi
zation of a data file associated with a domain.

The following steps make the indexed file created for PROJECTS a sequential
file again:

1. (RSTS/E only) At the system command level, rename the data file associated
with PROJECTS. The examples in the following steps assume that
PROJEC.DAT has been renamed IDXPRJ.DAT.

2. (RSTS/E only) At the DATATRIEVE command level, redefine the
PROJECTS domain specifying the renamed data file:

DTR> REDEFINE DOMAIN PROJECTS USINGillli)
DFN> PROJECTS_REC ON ID}-(PRJ.DAT;illli)
DTR>

3. Ready the domain using an alias:

DTR:> READY PROJECT S AS I m-(_ PROJECTSillli)
DTR > SHm~ READYillli)
Read}' dOlllains:

lOX_PROJECTS: RMS INDEXED, PROTECTED READ
DTR>

15-8 Restructuring Domains

4. (RSTS/E only) Redefine PROJECTS again, using the original name of the
data file:

DTR> REDEFINE DOMAIN PROJECTS USING(ffi)
DFN> PROJECTS_REC ON PROJEC.DATi(ffi)
DTR>

5. Define for the domain a data file that has the organization you want. The
following example defines a sequential file:

DTR> DEFINE FILE FOR PROJECTS(ffi)
DTR>

6. Ready the domain for WRITE access using another alias:

DTR> READY PROJECTS AS SEQ_PROJECTS WRITE(ffi)
DTR>

7. Using a STORE statement in a FOR loop, transfer records from the old
domain to the new on~:

DT R > FO RID >~ _ PRO JE C T S(ffi)
[Lookin~ for stateMent]
CON> STORE SEQ_PROJECTS USING(ffi)
[Lookin~ for assi~nMent stateMent(s)]
CON> PROJECTS_REC = PROJECTS_REC(ffi)
DTR>

8. Type FINISH. When you ready the domain again, access records in the reor
ganized file:

DTR> FINISH(ffi)
DTR> READY PROJECTS(ffi)
DTR> SHOW READY(ffi)
Readied dOMains:

PROJECTS: RMS SEQUENTIALt PROTECTED READ
DTR>

9. (RSTS/E only) You may want to print some records to ensure that records
were successfully copied to your reorganized file. Then, at the system com
mand level, delete the data file with the organization you no longer want.
Using the PROJECTS domain as an example, you would delete
IDXPRJ.DAT from your directory.

Restructuring Domains 15-9

Using the DATATRIEVE Editor 16

U sing a command file is probably the easiest way to make changes to your
DATATRIEVE work. You can edit a command file using the editor you already
know from your own operating system, rather than learning a new editor. Chap
ter 10 explains how to use command files. The rest of this chapter explains how
to use the DATATRIEVE Editor.

You can use the DATATRIEVE Editor only to modify dictionary objects that are
defined in your current data dictionary. You can edit commands and statements
only when they are stored as a procedure.

Edit with caution, especially when changing record definitions. The
DATATRIEVE Editor does not check for syntax errors as you edit dictionary
objects. Any errors show up only when you use the modified dictionary object.

The changes you make with the DATATRIEVE Editor do not affect domains that
you currently have readied in your workspace. For example, if you ready the
domain PERSONNEL and then edit its record definition, you are not changing
the record definition currently being used by the PERSONNEL domain. For the
new record definition to take effect, you must finish the PERSONNEL domain
and ready it again. Similarly, edits do not change a dictionary table loaded into
your DATATRIEVE workspace until you release the table and refer to it again.

16.1 Invoking the Editor

You invoke the DATATRIEVE Editor at the DATATRIEVE command level with
the following command:

EDIT object-name [(pa~;Wd)] [ADVANCED]

16-1

Arguments

object-name

(passwd)
(*)

ADVANCED

Is the name of the dictionary object in the current data diction
ary you want to edit.

Is an asterisk enclosed in parentheses (*) or the password neces
sary to gain C (control) access to the dictionary object. If you
specify a password, you must enclose it in parentheses. If you
specify (*), DATATRIEVE prompts you for the password but
does not print the response on your terminal. If you omit this
argument, DATATRIEVE uses your login UIC/PPN to verify
that you have C (control) access privilege to the dictionary
object you want to edit.

Must be included in the EDIT command if you want to edit a
domain definition or a record definition.

When you invoke the DATATRIEVE Editor, it responds with the QED> prompt.

16.2 Editor Modes

When you first invoke the Editor, you are at the Editor's command level in edit
mode. In this mode, the Editor interprets all your input as commands, and you
can display and alter the text of the dictionary object. The QED> prompt indi
cates that you are in edit mode.

The second Editor mode, insert mode, allows you to enter text directly into the
dictionary object. You enter insert mode with the INSERT and REPLACE com
mands and leave it by pressing CTRL/Z. The Editor uses the IN> prompt to indi
cate that you are in insert mode. In this mode, the Editor interprets all your
input as new text to be entered into the dictionary object.

16.3 Line Pointer

Some commands move you through the text from one line to another. Other com
mands display or alter lines at various places in the text but leave the current
line unchanged. The Editor uses a line pointer to keep track of the current line.

The line pointer points to the entire current line, not to any part of the line. You
can display the current line by typing a period (.) and pressing RETURN in
response to the QED> prompt. The maximum line size you can edit is 132
characters.

The line pointer can also point to the end of the text buffer, where you can add
text to the end of the dictionary object. The symbol [EOB] marks the end of the
text buffer.

16-2 Using the DATATRIEVE Editor

16.4 Range Specification

The Editor commands for deleting, inserting, replacing, and typing lines,' and for
substituting strings all contain an optional argument that specifies the range of
lines on which the command operates. The range may be a single line, a series of
consecutive lines, or a group of nonsequential lines. For a complete listing of all
the range specifiers you can use with the DATATRIEVE Editor, refer to the sec
tion on the EDIT command in the DATATRIEVE-ll Reference Manual. Table
16-1 shows several examples of these ranges using the TYPE command. TYPE
displays specified lines on your terminal, and it searches for specified strings.

If you want to display the rest of a dictionary object, the following commands all
work:

TYPE REST

TYPE R

REST

T R

%R

Note the percent sign before the R in the last example. The Editor assumes R by
itself is the abbreviated form of the REPLACE command. Entering R without
the percent sign in response to the QED> prompt does not display the rest of the
dictionary object; it deletes the current line and puts you in insert mode.

Table 16-1: Examples of Range Specifiers

You Type: Editor Displays:

TY PE ALL II BEAM" All lines containing the string BEAM.

TY PE BEG I N AND END The first line of the dictionary object and the end-of-buffer
marker ([EOB]).

TYPE BEGIN t "BEAM" The first line of the dictionary object and the first line containing
the string "BEAM". If the current line is the first line of the dic-
tionary object and contains the string "BEAM", this command
displays the current line twice.

TYPE BEFORE All lines before the current line and the current line.

TYPE BEGIN The first line of the dictionary object.

TYPE END The end-of-buffer marker ([EOB]).

TYPE. FOR 5 The current line and the four lines following it.

TYPE REST The current line and all remaining lines in the dictionary object.

TYPE "BEAM" The next line containing the string "BEAM". If the current line
contains "BEAM", the Editor displays the current line.

(continued on next page)

Using the DATATRIEVE Editor 16-3

Table 16-1: Examples of Range Specifiers (Cont.)

You Type: Editor Displays:

TYPE WH All lines in the dictionary object.

TYPE BE+5 The sixth line of the dictionary object.

TYPE IIBEAMII+B The sixth line following the next line containing the string
"BEAM". If the current line contains the string "BEAM", the
Editor displays the sixth line following the current line.

TYPE t The current line.

16.5 Editor Commands

Table 16-2 summarizes the DATATRIEVE Editor commands in alphabetical
order. The following section contains a sample editing session illustrating some
common uses of these commands.

Table 16-2: Summary of DATATRIEVE Editor Commands

Command Format Function

CTRL/Z CTRUZ In edit mode, works like the EXIT command. In
insert mode, returns control to edit mode.

DELETE D[ELETE] [range] Deletes the specified range or the current line if
you omit the range. After deletion, the current
line is the line following the last line deleted.

EXIT EX[IT] Returns you to DATATRIEVE command level.
The edited dictionary object replaces the previous
version in the data dictionary.

INSERT I[NSERT] [range] Enters insert mode. The Editor inserts lines
before the line specified by range or before the
current line if you omit the range. CTRLlZ ends
insert mode and returns you to the Editor com-
mand level. If you omit the range, the current line
does not change when you leave insert mode; if
you specify a range, the line specified by the range
becomes the current line. Do not use ALL, AND, a
comma (,), BEFORE, FOR, a semicolon (;), REST,
or WHOLE when specifying the range in this
command.

QUIT QUIT Returns you to DATATRIEVE command level and
leaves the dictionary object unchanged by the
editing session.

REPLACE R[EPLACE] [range] Deletes the specified range or the current line if
you omit the range and puts you in insert mode.
CTRLlZ ends insert mode and returns you to the
Editor command level. The current line is the line
following the last line deleted. None of the restric-
tions on specifying ranges in the INSERT com-
mand apply to REPLACE.

(continued on next page)

16-4 Using the DATATRIEVE Editor

Table 16-2: Summary of DATATRIEVE Editor Commands (Cont.)

Command Format Function

SUBSTITUTE S/str-1/[str-2][/[range]] Substitutes string 2 for all occurrences of string 1
in the specified range or in the current line if you
omit the range. The line in which the last substi-
tution occurred becomes the current line. If you
omit the range, you can also omit the third delim-
iter. If you omit string 2, the Editor deletes the
specified string from the range you specify or from
the current line if you omit the range. The search
for the first occurrence of string 1 starts with the
current line and proceeds toward the end of the
text buffer. Do not use END to specify the range in
this command.

TYPE [T[YPE]] [range] Displays the specified range oflines or the line fol-
lowing the current line if you omit the range. The
first line displayed becomes the current line, with
one exception: if E[ND] plays any part in the
range of this command, the line pointer points at
the end-of-buffer marker ([EOB]).

16.5.1 DELETE Command

Function

Deletes one or more lines from the dictionary object.

Format

O[ELETE] [range]

Argument

range Specifies the range of lines to be deleted. If you omit the range, only the
current line is deleted.

Position of Line Pointer

Current line is the line following the last line deleted.

Examples

Delete the current line only:

QED> DffiIT)

Delete all lines containing the string PHD:

QED> D ALL "PHD "ffiIT)

Using the DATATRIEVE Editor 16-5

Delete all lines containing the string "PHD" from the current line and the seven
lines following it:

QED> D II PHD II FOR 7ffiIT)

Delete all lines from the beginning of the dictionary object up to and including
the current line:

QED> D BEFOREffiIT)

16.5.2 EXIT Command

Function

Ends an editing session, and returns you to DATATRIEVE command level.
The edited dictionary object replaces the previous version in the data diction
ary.

Format

EX[IT]
CTRUZ

Argument

None.

Position of the Line Pointer

Not applicable.

Examples

End the current editing session with the EXIT command:

QED> E}<ffiIT)
DTR>

End the current editing session with CTRL/Z:

QED> .'. Z
DTR>

16.5.3 INSERT Command

Function

Enters insert mode, which allows you to enter text directly into the diction
ary object. The inserted lines are added before the line specified in the range
or before the current line if you omit the range.

Format

I[NSERT] [range]

16-6 Using the DATATRIEVE Editor

Argument

range Is the line or group of lines that will follow the inserted lines. If you omit
the range, DATATRIEVE adds the inserted lines before the current line.

Position of the Line Pointer

If you omit the range, the current line does not change when you leave insert
mode. If you specify a range, the line that the range specifies becomes the cur
rent line.

Notes

• When you issue the INSERT command, the Editor prompts with IN> to show
that you are in insert mode.

• Remember to press RETURN after each line you want to insert. If you enter
CTRL/Z after a line, that line is not entered into the procedure or table. In the
following example, only the words READY YACHTS are inserted in the dic
tionary object:

QED> I NSERTffiIT)
IN> READY YACHTSffiIT)
IN> FIND TINIES IN YACHTS WITH LOA < 25 AZ
QED>

• Do not use the following range specifiers in the INSERT command:

- [%]ALL

- [%]AND (,)

[%]BEFORE

- [%]FOR (;)

- [%]R[EST]

- [%]WH[OLE]

• To leave insert mode and return to edit mode, enter CTRL/Z.

Examples

Insert lines before the current line:

QED> IffiIT)
IN> READY YACHTSffiIT)

IN> PRINT ALL TINIESffiIT)
IN> .'. Z
QED>

Using the DATATRIEVE Editor 16-7

Insert lines before the first line of the dictionary object:

OED> I BEGINffiD)
IN> READY YACHTSffiD)

Insert lines after the last line of the dictionary object:

OED> I ENDffiIT)
[EOBJ
IN> PRINT ALL TINIESffiD)

Insert lines before the next line containing the string "BEAM":

OED> I I BEAM 'ffiD)
IN> PRINT ALL TINIES SORTED BY BEAMffiD)

Insert lines between the fourth and fifth lines from the current line:

OED> I .+5ffiIT)
IN> PRINT BUILDER OF TINIESffiD)

16.5.4 QUIT Command

Function

Returns you to the DATATRIEVE command level and leaves the dictionary
object unchanged by the editing session.

Format

QUIT

Argument

None.

Position of the Line Pointer

Not applicable.

Notes·

• QUIT aborts an editing session. Any changes made during the session do not
affect the dictionary object .

• You cannot abbreviate the QUIT command.

Example

Abort the current editing session:

OED> OUITffiD)
DTR>

16-8 Using the DATATRIEVE Editor

16.5.5 REPLACE Command

Function

Deletes the specified range of lines in a dictionary object or deletes the cur
rent line if you omit the range and enters insert mode, which allows you to
enter text directly into the dictionary object.

Format

R[EPLACE] [range]

Argument

range Specifies the range of lines to be deleted. If you omit the range,
DATATRIEVE deletes only the current line.

Position of the Line Pointer

After you leave insert mode, the current line is the line following the last line
deleted. If you have inserted lines, the current line is the line after the inserted
lines.

Notes

• W:hen you issue the REPLACE command, the Editor deletes the lines you
specify in the range and then prompts with IN> to show that you are in insert
mode.

• To leave insert mode and return to edit mode, enter CTRL/Z .

• The restrictions on specifying ranges in the INSERT command do not apply to
REPLACE.

Examples

Replace the current line with a single line:

OED> FIND YACHTS WITH LOA BETWEEN 36 AND 37(BID
OED> R(BID
IN> FIND YACHTS WITH LOA > 38ffiTI)
IN> .'. Z
OED> .(BID

REPORT CURRENT SORTED BY BEAMt LOAt RIG ON .WHERE

Delete the first line of a dictionary object and enter insert mode:

OED> R BE(BID
IN>

Delete all lines containing the string "PRICE" and enter insert mode at the line
following the last line deleted:

OED> R ALL "PRICE"(BID
IN>

Using the DATATRIEVE Editor 16-9

16-10

Delete all lines in the dictionary object and enter insert mode:

QED> R WHOLECBTI)
IN>

16.5.6 SUBSTITUTE Command

Function

Substitutes a character string for all instances of another character string in
the specified range or in the current line if you omit the range.

Format

S[UBSTITUTE] /string-1 /[string-2][/[range]]

Arguments

string-1 Is the string of characters to be replaced.

/ Is the delimiter that separates string 1, string 2, and the range. The
delimiter can be any printing character not in string 1 or string 2. In
any given SUBSTITUTE command, you must use the same character
as a delimiter. You need only specify the first two delimiters if you
omit the range.

string-2 Is the string of characters to replace string 1. If you omit string 2, then
string 1 is deleted from the specified line.

range Specifies the range of lines within' which DATATRIEVE will make the
substitution. If you specify a range, DATATRIEVE replaces all occur
rences of string 1 in that range with string 2. If you omit the range,
DATATRIEVE replaces only the first occurrence of string 1. That first
occurrence of string 1 need not be in the current line.

Position of the Line Pointer

If a substitution takes place, the current line is the last line in which the substi
tution occurred. If there is no match for string 1 within the range, or if there is
no match for it in the current line or any line from that point to the end of the
dictionary object, no substitution takes place. The current line remains
unchanged.

Notes

• The Editor prints each line in which a substitution occurs.

• Do not use END to specify the range in this command.

• The search for the first occurrence of string 1 starts with the current line and
moves toward the end of the text buffer.

Using the DATATRIEVE Editor

Examples

Substitute the string YACHT for the first occurrence of the string YAHCT in the
current line only:

QED> S IYAHCT/YACHTI .ffiTI)

Substitute the string YACHT for every occurrence ofYAHCT in the entire dic
tionaryobject:

QED>S *YAHCT*YACHT* WHffiTI)

This WHOLE range is in effect regardless of the current line's position in the
text buffer. Substitute the string YACHT for the next occurrence ofYAHCT:

QED> S IYAHCT/YACHT

If there is no occurrence of string 1 between the current line and the end of the
text buffer, then DATATRIEVE does not change the current line.

Substitute the string YACHT for every occurrence ofYAHCT from the current
line to the end of the dictionary object:

QED> S "YAHCT" YACHT" RESTffiTI)

16.5.7 TYPE Command

Function

Displays the specified range of lines or the line following the current line if
you omit the range.

Format

[T[YPE]] [range]

Argument

range Specifies the range of lines to be displayed. If you omit the range, the
Editor displays only the line following the current line.

Position of the Line Pointer

The first line displayed becomes the current line, with one exception. If the range
of this command contains E[ND], the line pointer points to the end-of-buffer
marker ([EOB]).

Using the DATATRIEVE Editor 16-11

16-12

Notes

• Both the command name and range are optional. If you press the RETURN
key, the Editor prints the line following the current line, which then becomes
the current line. You can also enter the range specifiers without the command
name .

• The TYPE command performs the searches in the DATATRIEVE Editor. You
can search for text strings in dictionary objects by enclosing the string you
seek in pairs of single or double quotation marks.

Examples

The following commands all work as alternative ways of displaying lines during
an editing session~

Commands for displaying the current line only:

QED> TYPE .ffiD)

QED> .ffiD)

Commands for displaying the next line (the line following the current line):

QED> TYPE .+1lliIT)

QED> .+1ffiD)

QED> Tru

QED> ru

Commands for displaying the entire dictionary object:

QED> T WHlliIT)

QED> WHlliIT)

Commands for displaying the first and last lines of the dictionary object:

QED> T BEGIN tENDlliIT)

QED> BEGIN tENDru

QED> BE AND ElliIT)

Commands for displaying all lines from the current line to the end of the diction
aryobject:

QED> T RESTru

QED> RESTffiD)

QED> I..Rru

Using the DATATRIEVE Editor

16.6 Sample Editing Session

DTR> ED I T CTRLffiIT)
OED> WHffiIT)

OED>

OED>

OED>
IN>
IN>
OED>

OED>

OED>

OED>

READY YACHTS
FIND YACHTS WITH LOA BETWEEN 36 AND 37
REPORT CURRENT SORTED BY BEAM, LOA, RIG ON .WHERE
SET REPORT-NAME = "YACHTS WITH LENGTH-OI.IER-ALL"1

"OF 36 AND 37 FEET"
AT TOP OF BEAM PRINT COL 1, "BEAM = ", COL 7, BEAM
AT TOP OF LOA PRINT COL 12, "LENGTH = ", COL 20, LOA, SKIP
PRINT BUILDER, RIG, DISP
AT BOTTOM OF RIG PRINT SKIP, COL 4, "NUMBER OF ", COL 14,

LOA (" "), COL 1 7 t "FOOT ", COL 22, RIG t COL 28,
"W I TH BEAM OF ", COL 40 t BEAM, COL 43, " = ", COL 46,
COUNT USING ZSt SKIP

AT BOTTOM OF REPORT PRINT SKIP, "LIGHTEST = ", MIN (DISP),
SKIP, "HEA1.lIEST = ", MA}{ (DISP), SKIP t
"AI.IERAGE WEIGHT OF ALL BOATS = ", AI.IERAGE (DISP)

SET DATE = "DD-MMM-YY"
SET COLUMNS-PAGE = 60
END-REPORT

.ffiIT)
READY YACHTS

ffiIT)
FIND YACHTS WITH LOA BETWEEN 36 AND 37

RffiIT)
FIND YACHTS WITH LOA > 38ffiIT)
.'."7

i...

.ffiIT)
REPORT CURRENT SORTED BY BEAM, LOA, RIG ON .WHERE

S/ON • WHERE/ffiIT)
REPORT CURRENT SORTED BY BEAM, LOA, RIG

ffiIT)
SET REPORT-NAME = "YACHTS WITH LENGTH-OI.IER-ALL"1

ffiIT)
"OF 36 AND 37 FEET"

OED> RffiIT)
IN> "GREATER THAN 38 FEET "ffiIT)
IN> .'. Z
OED> .ffiIT)

AT TOP OF BEAM PRINT COL 1, "BEAM = ", COL 7 t BEAM
OED> ALL "AT BOTTOM"ffiIT)

AT BOTTOM OF RIG PRINT SKIP, COL 4, "NUMBER OF ", COL 14 t
AT BOTTOM OF REPORT PRINT SKIP, "LIGHTEST =" MIN (DISP),

OED> .ffiIT)
AT BOTTOM OF RIG PRINT SKIP t COL 4, "NUMBER OF ", COL 14,

OED> "BOTTOM "ffiIT)
AT BOTTOM OF RIG PR I NT SK I p, COL 4, "NUMBER OF ", COL 1 4 t

OED> ffiIT)
LOA (" "), COL 1 7 t "FOOT ", COL 22, RIG t COL 28,

OED> "BOTTOM" ffiIT)
AT BOTTOM OF REPORT PRINT SKIPt "LIGHTEST MIN (DISP) t

OED> • ;3ffiIT)
AT BOTTOM OF REPORT PRINT SKIP, "LIGHTEST ,MIN (DISP),

SKIP t "HEA1.lIEST = ", MA}-((DISP), SKIP,
"AI.IERAGE WE I GHT OF ALL BOATS = ", A1.lERAGE (D I SP)

OED> .ffiIT)
AT BOTTOM OF REPORT PRINT SKIP, "LIGHTEST = "t MIN (DISP) t

OED> D • ;3ffiIT)
OED> .ffiIT)

SET DATE "DD-MMM-YY"

(continued on next page)

Using the DATATRIEVE Editor 16-13

OED> Iru
IN> SET MA}-(- PAGES = LlOru
IN> .'. Z
OED> .ru

SET DATE = IIDD-MMM-yylI
OED> ru

SET COLUMNS-PAGE = GO
OED> ru

END-REPORT
OED> ru

[EOBJ
OED> BEru

READY YACHTS
OED> S/RIG/PRICE/WHru

REPORT CURRENT SORTED BY BEAM. LOA. PRICE
PRINT BUILDER. PRICE. DISP
AT BOTTOM OF PRICE PRINT SKIP. COL Ll. IINUMBER OF II. COL 1Ll.

LOA (II II). COL 17. II FOOT II. COL 22. PR I CE. COL 28.
OED> WHru

READY YACHTS
FIND YACHTS WITH LOA > 38
REPORT CURRENT SORTED BY BEAM. LOA. PRICE
SET REPORT_NAME = II YACHTS WITH LENGTH_OI.1ER_ALL II I
IIGREATER THAN 38 FEETII
AT TOP OF BEAM PRINT COL 1. "BEAM = ". COL 7. BEAM
AT TOP OF LOA PRINT COL 12. "LENGTH = ". COL 20. LOA. SKIP
PRINT BUILDER. PRICE. DISP
AT BOTTOM OF PRICE PRINT SKIP. COL Ll. "NUMBER OF ". COL 1Ll.

LOA (" "). COL 1 7. "FOOT ". COL 22. PR I CE. COL 28.
"WITH BEAM OF ". COL LlO. BEAM. COL Ll3. " = ". COL LlG.
COUNT USING Z9. SKIP

SET MAX_PAGES = LlO
SET DATE = "DD-MMM-YY"
SET COLUMNS_PAGE = GO
END_REPORT

OED > E>~ru
DTR>

16-14 Using the DATATRIEVE Editor

Optimizing Workspace and Response Time 17

This chapter explains the concept ofDATATRIEVE workspace. It shows you how
to use memory space efficiently during a DATATRIEVE session and suggests
ways to optimize DATATRIEVE performance.

17.1 Using Workspace

Your DATATRIEVE workspace is the area in physical memory that is available
to you during your DATATRIEVE session. Sometimes referred to as "pool space,"
the workspace is not the same as disk space. Workspace refers instead to the
size of the current DATATRIEVE task you are performing. The maximum work
space allowed for each DATATRIEVE session is 32K words. If the task you per
form requires DATATRIEVE to use more than 32K words of memory, you receive
an error message, such as "Compiler storage pool exhausted," and are unable to
complete your task.

17.2 Effect of READY and FINISH on Workspace

Before you ready any domains, the workspace looks like that in Figure 17-1. All
the workspace is available, some of it for carrying out tasks related to Record
Management Services (RMS), some for tasks related to DATATRIEVE domains,
and some for sorting the records as you issue DATATRIEVE commands and
statements.

17-1

RMS WORKSPACE

SORT WORKSPACE

SMALL BLOCK WORKSPACE

Figure 17-1: Empty DATATRIEVE Workspace

The dashed lines indicate temporary boundaries. DATATRIEVE takes space
from the sort workspace and allocates it to the RMS workspace and the small
block workspace when they need more space. A readied domain uses space in
both the RMS workspace and the small block workspace. Collections, variables,
and tables all use space in the small block workspace.

If you use the SHOWSPACE command, you see that the proportions of space
used are comparable to those in the diagram. The numbers you see for your sys
tem will not be identical with those in the following example:

DTR> SHOW SPACEffiD)

RMS pool
Slrlall blod, pool
Sort pool
Total

***Current MelrlO f)'

Allocated
4384

312
14024
18720

Usage***
Used F re e "* of Frag'rlents
4148 236 3

312 0 0
0 14024 0

4460 14260 3

When using the SHOW SPACE command, pay particular attention to the total
used space and the total free space. As you take up more workspace, the used
space increases and free space decreases.

When you ready a domain, you begin to use up the available workspace, as
shown in Figure 17-2.

17-2 Optimizing Workspace and Response Time

YACHTS BUFFERS

FREE SORT WORKSPACE

~--
YACHTS BLOCKS

Figure 17-2: Workspace with One Readied Domain

If you type SHOW SPACE, you can see how the values change for current use of
memory:

DTR> READY YACHTSffiIT)
DTR> SHOW S PACE(8li)

RMS pool
SITlall blod~ pool
Sort pool
Total

Current MeMOry Usa~e
Allocated Used Free

4384 4282 220
2300 1588 712

12038 0 12038
18720 5880 12840

:1:1: of Fra~ITlents

1
15
o

18

If you ready a second domain, you use additional space as shown in Figure 17-3.

YACHTS BUFFERS

~--
PERSONNEL BUFFERS

~--
FREE SORT WORKSPACE

~--

PERSONNEL BLOCKS

~--

YACHTS BLOCKS

Figure 17-3: Workspace with Two Readied Domains

Type SHOW SPACE to see values for current memory use after readying two
domains:

DTR> READY PERSONNELffiIT)
DTR> SHOW SPACE(8li)

Optimizing Workspace and Response Time 17-3

Current Meillo f)' Usage
Allocated Used F re e # of Fragillents

RMS pool a8aa a388 220 5
Sill a 11 b 1 od, pool 3a16 2656 760 21
So rt pool 10360 0 10360 0
Total 18720 70aa 11676 26

If you finish a domain, you free the workspace that the domain was occupying.
The sort workspace recovers free space only if the free space is adjacent to the
sort workspace. If you free space in the interior of the RMS workspace or small
block workspace, then it remains in that workspace as a fragment, as shown in
Figure 17-4.

FREE RMS WORKSPACE

~--
PERSONNEL BUFFERS

~--
FREE SORT WORKSPACE

~--

PERSONNEL BLOCKS

FREE SMALL BLOCK WORKSPACE

Figure 17-4: Workspace When You Finish First Readied Domain

The following SHOW SPACE command illustrates that releasing the first read
ied domain does not increase the amount of free sort workspace:

DTR> FINISH YACHTSCffi)
DTR> SHOW SPACECffi)

Current MeMOry Usage

RMS pool
Sill a 1 1 blod, pool
Sort pool
Total
DTR>

Allocated Used Free
a8aa azaa 700
3a16 1380 2036

10360 0 10360
18720 562a 13086

of Fragillents
5

12
o

17

You use the sort workspace each time you specify the order of a record stream
with the SORTED BY clause in an RSE or a collection with the SORT statement.
DATATRIEVE immediately seizes space from the sort workspace and releases it
when it finishes the sort. DATATRIEVE sorts slowly when it has little space to
work with, so keeping the sort workspace as large as possible saves computing
time. If the sort workspace is too small, DATATRIEVE returns the message:

Sort worKspace exhausted
Execution failed

17-4 Optimizing Workspace and Response Time

17.3 Techniques to Optimize Workspace

The following techniques for readying and finishing domains can help you opti
mize your workspace:

• Try to reduce the number of files you have open at a time. If you no longer need
a domain, FINISH it.

• Pay attention to the order in which you open the files. As the illustrations
show, when you finish a domain you do not always free a complete, contiguous
block of workspace. If you finish the first domain before you finish the second,
your workspace looks like that in Figure 17-4. It is best, therefore, first to
ready the domains you plan to use the longest and then ready and finish those
you need for only a short time.

You can save space in the way you define your records too. Each time you define
a field, you add overhead cost in addition to the size of the item being stored.
EDIT-STRINGS, QUERY-HEADERS, and QUERY-NAMES also add to the stor
age space your record requires. Use the following guidelines when defining your
record:

• Keep record definition clauses short, in particular EDIT-STRINGS, QUERY
HEADERS, and QUERY-NAMES. Do not use any of these clauses
unnecessarily.

• Use short names and eliminate unnecessary fields. Unnecessary group fields
are a particular waste of space.

• When you use FILLER, try to combine two or more elementary fields into one
FILLER field.

There are also other techniques you can use to save space:

• Release collections, tables, and variables that you do not need.

• Avoid using long BEGIN-END blocks, and the THEN connector to form com
pound statements. DATATRIEVE compiles the complete statement all at once,
at the cost of workspace.

• Use a small file bucket size. The file bucket size determines the size of the
RMS buffers needed. A bucket size of 8 would use approximately half of
DATATRIEVE workspace and would cause you to run out of space repeatedly.
A bucket size of 1 or 2 reduces the requirements for DATATRIEVE workspace.

• For the REPORT statement, first use the FIND statement to form a collection
and the SORT statement to sort and then report on the sorted collection. Avoid
including the SORTED BY clause in the REPORT statement. The REPORT
and SORT statements both require large amounts of workspace.

Optimizing Workspace and Response Time 17-5

17.4 Techniques to Optimize Response Time

As mentioned earlier, DATATRIEVE performs best when it has adequate space
to work with. Therefore, when you keep the sort pool in your workspace as large
as possible, you improve response time. The following sections suggest other
ways you can improve DATATRIEVE performance.

17.4.1 Using the ALLOCATION Option of the DEFINE FILE Command

If you know approximately how many blocks of storage your data file will
require and you want to enter records quickly, you can use the ALLOCATION
option in the DEFINE FILE command to reserve contiguous storage space for
the file. This option is particularly useful if you know your data file will be large.
The format for the ALLOCATION option is ALLOCATION = n, where n is the
number of blocks you want as the initial allocation for the file.

17.4.2 Using Keyed Access Efficiently

DATATRIEVE allows you to define indexed or sequential files for your data.
Sequential files require less storage, but DATATRIEVE must search records one
by one according to their physical order in the file. This organization may be
optimal in certain cases. For example, a domain's records may contain a field for
the current date, so you may want records physically arranged in the order in
which you stored them. For instance, you are likely to want to have sequential
access to banking transactions. If you access groups of records in chronological
order, you might find sequential organization efficient.

In other cases, your access needs may not be suited to sequential organization.
You may need to access a group of records that are distributed throughout the
file. If you have stored the records in a sequential file, DATATRIEVE may have
to read all the records to find the one or two that you request. In this case,
indexed file organization is probably a better choice. Although indexed files
require more storage, DATATRIEVE can search indexed files quickly to find the
records you want, if you base the search on a key field.

When defining data, try to decide which field of the record you are likely to name
most often in queries. Make that field the primary key if its value is likely to be
unique for each record. For example, if you are setting up a personnel domain,
you might predict that most users seek information based on employee ID. In
that case, make the ID field the primary key.

By default, primary key values are unique. That is, the primary key value by
itself is enough to identify a record. It is legal in DATATRIEVE to specify that
primary keys can have duplicate values. However, allowing duplicate primary
key values is not recommended; having too many duplicate key values slows
DATATRIEVE searches based on key fields.

17-6 Optimizing Workspace and Response Time

If the leading candidate for the primary key does not uniquely identify the
record, find another field such that the two fields combined can uniquely identify
the record. You can then designate a group field, encompassing the two fields, as
the primary key. For example, in the YACHTS domain, the group field TYPE
(consisting of BUILDER and MODEL) is the primary key, uniquely determining
records in YACHTS.

After organizing your indexed file and storing records in the file, you should
structure DATATRIEVE queries to take advantage of keyed access. A query is a
request for DATATRIEVE to identify all the records that satisfy a specified con
dition. Not all the DATATRIEVE queries you can formulate use keyed access to
indexed files. The following sections tell you how to produce queries that give
you the fastest response time.

Avoid using a field defined as USAGE IS DATE as a key field. The value stored
in a date field is larger than the maximum value allowed for a key by RMS.
Therefore, specifying a date field as a key provides no response time advantage
when you base a query on a comparison of the field value and the range of values
(for example, LT, GT, LE, GE, and BETWEEN). If you base your query of an
indexed data field on an equality comparison, DATATRIEVE uses the index and
performs faster than ifit did a sequential search of the records.

17.4.2.1 Using EQUAL Rather Than CONTAINING - A Boolean expression that
tests records with the EQUAL (=) relational operator is more efficient than a
Boolean with CONTAINING (CaNT) when the expression refers to a key field.
For example, compare these two queries:

DTR> PRINT YACHTS WITH BUILDER = IPEARSON"CBTIl

DTR> PRINT YACHTS WITH BUILDER CONT IPEARSON"CBTIl

Although both queries yield the same results, the first query is twice as fast as
the second one.

To resolve the first query, DATATRIEVE conducts a fast search through the
index to retrieve the desired records. In the second case, DATATRIEVE must
search through the values of BUILDER looking for matches with the string fol
lowing CaNT. DATATRIEVE must check all substrings of each BUILDER value
that are equal in length to the string specified in the Boolean.

To take advantage of the increased efficiency of EQUAL (=), you must specify a
value that matches the field value exactly. EQUAL (=) is case sensitive but
CaNT is not. In the last example, if a record had the value "Pearson" for
BUILDER, only the second query would find the record.

To get around the problem of case sensitivity, you might consider using only
uppercase letters when entering data. Otherwise, to use the EQUAL operator,
you must remember the case of each character of a field value.

Optimizing Workspace and Response Time 17-7

17.4.2.2 Choosing Domains or Collections as Record Sources - When you form a
collection, DATATRIEVE can no longer use key-based access for retrieving
records. In most cases, you get the best performance on key-based queries when
you specify a domain rather than a collection in the RSE.

Furthermore, if you form a query that relates to more than one record source, all
but the last source specified is an implied collection. Therefore, you cannot have
key-based access for any but the last record source in a relational query. When
you use nested FOR loops and specify domains and key fields in each loop, for
example, DATATRIEVE can use a key-based index only for evaluating the RSE
in the last FOR loop.

If all other conditions are equal, it is better to use a domain name than a collec
tion name in the last position of a key-based relational query. But there is one
more factor to consider. Collections are efficient to use if you need to refer back to
the same group of records in the same DATATRIEVE session. This is especially
true if the collection is much smaller than the data file from which it is formed.
In such a case, you may get better performance by forming and naming a collec
tion so that DATATRIEVE does not have to retrieve the same group of records
over and over again.

To summarize, you gain efficiency with a domain when you can use keyed
access. You gain efficiency with a collection if you reduce the number of times
DATATRIEVE must isolate the same small group of records from a large body
of records.

17.4.2.3 Ordering the Domains in Nested FOR Loops - If one FOR loop must pro
cess many more records than the others and all have the same key field, include
the larger record stream in the last (inner) FOR loop. Similarly, if only one FOR
loop can use keyed access, make sure that FOR loop is the last, or innermost,
loop you specify.

17.4.2.4 Restoring Indexed Files That Are Often Modified - If you add, erase, or
change many records in an indexed file, that file can degrade DATATRIEVE per
formance. When you have erased many records from an indexed file, records in
the file can occupy many noncontiguous areas of the disk. This slows down record
access. When you add records to a file or change many values in key fields, the
index for the file can be split over many noncontiguous areas of the disk. This
also slows down record access. The more keys you define for each file, the more
quickly DATATRIEVE response time degrades when you make many changes to
the file.

If you have a DATATRIEVE performance problem and you have made many
modifications to your indexed file, restructuring your domain might improve
DATATRIEVE response time. When you restructure a domain, you are recreat
ing the data file. When the new file is created, the records and index are stored as
much as possible on contiguous areas of the disk.

17-8 Optimizing Workspace and Response Time

Follow the same steps given in Chapter 15 for reorganizing a data file. In this
case, however, specify the same organization for your new file rather than a dif
ferent one. If you have defined many different keys for your file, you might want
to eliminate any keys that you seldom use in queries. If you define as keys only
those fields that you often use in queries, modifying your file has less effect on
DATATRIEVE response time.

You can also restructure files and indexes using the RMS-11 utilities CONVERT
and IFL. These utilities are explained in the RMS-11 manuals in your operating
system documentation set. The DATATRIEVE-11 utility program QCPRS,
explained in Chapter 20 of this manual, can be used to restructure files and
indexes.

17.4.3 Avoiding Nested FOR Loops Followed by a Conditional
Statement

Try to avoid using nested FOR loops to control the execution of a conditional
statement. The following example is extremely inefficient:

DTR> FOR A IN OWNERSru
CON> FOR YACHTSru
CON> IF TYPE = A.TYPEffiIT)
CON> THEN PRINT BOAT, A.NAMEru

Wherever possible, include conditional tests as Boolean expressions within one
of the RSEs. This effectively limits the number of records that DATATRIEVE
has to process. The following example works much more efficiently than the pre~
ceding one:

DTR> FOR A IN OWNERSru
CON> FOR YACHTS WITH TYPE A.TYPEffiIT)
CON> PRINT BOAT, A.NAMEffiIT)

Optimizing Workspace and Response Time 17-9

Controlling Output 18

When you invoke DATATRIEVE, several characteristics are set that control
your display of input and output:

• The number of columns in an output display (COLUMNS_PAGE)

o The way DATATRIEVE responds to an ABORT statement ([NO] ABORT)

o The presence or absence of Looking for ... prompts ([NO] PROMPT)

You can change these characteristics at any time during a DATATRIEVE ses
sion by using the forms of the SET command discussed in the following sections.

18.1 Changing the Columns-Page Setting

The default for the columns-page setting is 80 characters, the width of most
video display screens. You can change this setting to fit your application and ter
minal characteristics.

18.1.1 Increasing the Columns-Page Setting

You may want to increase the columns-page setting on your video diplay termi
nal or hardcopy terminal if you want to display detail lines more than 80 charac
ters long. If you have a VT100-family or VT200-family terminal and your
command language is DCL, do the following:

1. Use the DCL SET TERMINAL command to tell your system to increase the
width of lines it can send you:

$ SET TERMINAL/WIDTH=132@]

18-1

Use the SET COLUMNS_PAGE command to increase the length of the line
DATATRIEVE can display on your terminal. The maximum limit on the col
umns-page setting is 255.

DTR> SET CDLUMNS_PAGE = 132ru

Whatever the column setting on your terminal, you can continue a long input
line by using a hyphen (-) continuation character at the end of the line. When
you use a hyphen, DATATRIEVE does not check the syntax of your input until
you press RETURN after a line that does not end in a hyphen. If the line you
want to extend ends with a complete word, separate the hyphen from the word by
entering a space. Otherwise, DATATRIEVE considers the characters at the
beginning of the next line to be part of the same character string.

18.1.2 Decreasing the COlumns-Page Setting

To decrease the number of columns displayed, enter a SET COLUMNS_PAGE
command:

DTR> SET COLUMNS_PAGE = GOru
DTR>

Decreasing the columns-page setting may cause problems when you display your
output, however. If one of the elements in a print line is longer than the columns
page setting, DATATRIEVE displays an error message:

DTR> SET COLUMNS_PAGE = lSru
DTR> PRINT "123aSG7S80123aSG"ru
Print object too large for line width

DTR>

Notice that the columns-page setting does not affect the length of your input
lines or the messages you receive from DATATRIEVE.

Reducing the columns-page setting can also distort the display of a record as in
the following example:

DTR> READY YACHTSru
DTR> PRINT FIRST 1 YACHTSru

MANUFACTURER MODEL RIG

ALBERG 37 MK I I KETCH

DTR> SET COLUMNS-PAGE 12ru
DTR> PRINT FIRST 1 YACHTSru

18-2 Controlling Output

LENGTH
OI.IER
ALL WEIGHT BEAM PRICE

37 20,000 12 $3G,8S1

(continued on next page)

MANUFACTURER

ALBERG
37 MK II
KETCH

37
20,000 12
$36,951

DTR>

18.1.3 Determining the Number of Columns You Need for a Print Line

Several considerations determine the number of spaces, or columns, needed for
each print object in the output line:

• The actual length of the character string literal or numeric literal, or the
length of the field or variable as specified by the record definition or the
DECLARE command

• The length of the field name, query name, query header, or longest segment of
the query header

• The length of the edit string

The longest of these determines how many columns you need.

To prevent crowding, DATATRIEVE also adds one space to the length of all fields
except the last one on a line. To print a record from the YACHTS domain
requires a minimum of 57 columns:

• MANUFACTURER takes 13 columns; the query-header is 12 characters long.

• MODEL takes 11 columns; the field is defined as 10 characters long: PIC
X(10).

• RIG takes 7 columns; the field is defined as 6 characters long: PIC X(6).

• LENGTH_OVER-ALL takes 7 columns; the longest segment of the query
header (LENGTH) is 6 characters long .

•. DISPLACEMENT takes 7 columns; both the query header (WEIGHT) and the
edit string (ZZ,ZZ9) are 6 characters long.

• BEAM takes 5 columns; the query header (BEAM) is 4 characters long.

• PRICE takes 7 columns; the edit string ($$$,$$$) is 7 characters long, but no
column is added because PRICE is the last field in the detail line.

Controlling Output 18-3

If you set the columns to 56, the PRICE field no longer fits on one line.
DATATRIEVE displays the price on the following line and omits the PRICE
header:

OTR> SET COLUMNS_PAGE = 56Cffi)
OTR> PRINT FIRST 1 YACHTSCffi)

LENGTH
OI.IER

MANUFACTURER MOOEL RIG ALL WEIGHT BEAM

ALBERG
$36,851

OTR>

37 MK II KETCH

18.2 Using the SET ABORT Statement

37 20,000 12

When DATATRIEVE executes an ABORT statement in a command file or proce
dure while SET NO ABORT is in effect, it affects only the compound statement
containing the ABORT statement. If SET ABORT is in effect, DATATRIEVE
terminates the remainder of the command file or procedure. The same rules
apply if you enter CTRL/Z in response to a prompt.

IfDATATRIEVE encounters a syntax or logical error in a command file or proce
dure, it returns you to the DTR> prompt whether or not you have used SET
ABORT. SET NO ABORT is the default setting when you invoke DATATRIEVE.

See Chapters 9 and 10 for a discussion of using ABORT and NO ABORT in con
trolling procedures and command files.

18.3 Using the SET PROMPT Statement

When you invoke DATATRIEVE, SET PROMPT is in effect. If you press
RETURN before finishing a command or statement, DATATRIEVE prompts you
for the remaining required elements of that command or statement.

The following sequence of commands and statements shows how DATATRIEVE
responds when SET PROMPT is in effect. After the line of text indicates the next
required element, DATATRIEVE displays the CON> (continuation) prompt. As
long as the syntax of a command or statement is incomplete, DATATRIEVE uses
CON> to tell you it is ready for further input.

OTR> REAOYlliITl
[LooKin~ for Oictionary EleMent]
CON> YACHTSlliITl
OTR> FINOm
[Loo~\in~ for IIFIRST II , dOfrlain nafrle, or collection nafrle]
CON> FIRSTm
[LooKin~ for a value expression]
CON> 1m
[Loo~\in~ for col.lection or dOfrlain nafrle]
CON> YACHTSm
[1 Record found]
OTR>

18-4 Controlling Output

)
Notice that DATATRIEVE stops prompting as soon as you enter elements that
comprise a syntactically complete command or statement. For example, READY
YACHTS is complete, and DATATRIEVE does not prompt for any further ele
ment. Similarly, when you enter FIND FIRST 1 YACHTS, DATATRIEVE does
not prompt you for a Boolean expression or a SORTED BY clause.

When SET NO PROMPT is in effect, DATATRIEVE does not display the text
about the next required element. It does, however, use the CON> prompt when
the syntax is incomplete. The following example is identical to the previous one
but has SET NO PROMPT in effect:

DTR> SET NO PROMPTOO
DTR> FINDOO
CON> FIRSTOO
CON> 100
CON> YACHTSOO
[1 Record found]
DTR>

Note that SET NO PROMPT does not suppress the messages DATATRIEVE dis
plays about the results of commands and statements.

Controlling Output 18-5

)

Controlling Access to Dictionary Objects 19

To supplement your operating system protection, DATATRIEVE uses access con
trollists (ACLs) to protect your data and dictionary definitions. An ACL, stored
in the data dictionary, regulates user access to an object in the data dictionary.

Every dictionary object (domain, record, procedure, and table) has an associated
ACL. This chapter describes the contents of an ACL and the commands you use
to maintain the ACL. It also shows a strategy to help ensure the integrity of your
data.

Carefully maintained ACLs can be effective against unauthorized browsing
through files and accidental corruption of the dictionary or data. Use them to
augment the overall security system for your installation.

19.1 Contents of an Access Control List

An ACL consists of one or more entries. Each entry contains the following
information:

• A sequence number

• A lock type

• A key

• One or more access privileges

Figure 19-1 shows a sample ACL containing three entries that illustrate the
parts and options in an ACL. The table within Figure 19-1 identifies the parts of
each entry.

19-1

DTR> SHOWP SAMPLECBTI)
1 ,UIC, [25a ,203], "RWEMC"
2 ,PW, "SWORDFISH", "RM"
3 ,UIC, [* ,*], "RE"

Se9uence Lad, K e}'
NUITlbe r

UIC [25a,203]

2 PW SWORDFISH

3 UIC [* ,*]

Figure 19-1: Sample Access Control List

19.1.1 Sequence Numbers

Privileges

RWEMC

RM

RE

Sequence numbers are sequential integers beginning with 1 that DATATRIEVE
assigns to identify ACL entries. Use sequence numbers to identify entries you
are adding to or deleting from the ACL.

19.1.2 Lock Types

Each entry in the ACL has a lock type that indicates whether you access the
associated dictionary object by specifying a password or by using a UIC/PPN.
There are two lock types: PW, for password, and UIC, for UIC/PPN. (A UIC/PPN
represents an operating system account number.)

19.1.3 Keys

DATATRIEVE uses keys to identify you when you request access to dictionary
objects. When you attempt to access a dictionary object, you must provide the
correct password for a PW lock or own the correct UIC/PPN for a UIC lock.

19.1.3.1 Password Keys - If the lock type is PW, the key is a 1- to 10-character
password. You can use any character from the ASCII character set except the
dollar sign ($). Examples of legal passwords include: FISH-FRY, SWORDFISH,
1234, and PASSWD-9.

To execute a command or statement that requires access privileges protected by
a password, you include the password directly in the command or statement. For
example, the domain YACHTS might contain only one ACL entry:

PW SWORDFISH RWEMC

To delete the YACHTS domain definition from the dictionary, you can specify the
password enclosed in parentheses in the DELETE command:

DTR> DELETE YACHTS (SWORDFISH);CBTI)

19-2 Controlling Access to Dictionary Objects

)

For security reasons, you can also suppress the display of the password on your
terminal. To do this, type an asterisk enclosed in parentheses ((*» instead of the
password. DATATRIEVE then prompts for the password but does not display the
password when you enter it:

DTR> DELETE YACHTS (*);ffiill
Enter password for YACHTS:

This technique for specifying a password is especially useful if you have a
hardcopy terminal.

19.1.3.2 UIC Keys - If the lock type is UIe (for UIC/PPN), the key is an account
number known to the operating system. Under RSTS/E systems, an account
number is called a project-programmer number, or PPN. Under other operating
systems, the account number is called the user identification code, or UIC. The
UIC/PPN consists of a 3-digit octal group number followed by a 3-digit octal user
number. The numbers are separated by a comma and enclosed in brackets, for
example [253,201].

A UIC/PPN lock can include specific numbers, asterisks, or a combination of an
asterisk and a number. Asterisks allow all users or only users in a specified
group to access a dictionary object. The following are valid ACL lock entries:

o [253,201], allowing only the user with the account number [253,201] to have
access

• [253,*], allowing any user with group number 253 to have access

• [*,*], allowing any user to have access

For the UIC lock type, you do not include a UIC or PPN in a command or state
ment. Rather, DATATRIEVE verifies that you have access by checking the
UIC/PPN you used to log in. For example, if the ACL for the procedure BIG
YACHTS contains just the following entry, then you must log in under [253,201]
in order to access the procedure:

UIC [253,201] RWEMC

If the ACL contains the following entry, you can access the procedure regardless
of your UIC/PPN:

UIC RWEMC

Because you cannot use a password when invoking a procedure, you may want to
use the UIC/PPN lock type to protect procedures.

----------------------- Note ------------------------

On RSX and VAX-II RSX systems, a VIC must be in the range of
[0,0] to [377,377]. On RSTS systems, a UIC must be in the range of
[0,0] to [256,256].

Controlling Access to Dictionary Objects 19-3

19.1.4 Access Privileges

An access privilege determines the access you have to the associated dictionary
object. You designate an access privilege by a single letter, a string of letters, or a
space. Table 19-1 contains a list of access privileges and their description.

Table 19-1: Access Privileges

Access Description
Privilege

R READ. The user can SHOW or EXTRACT the associated dictionary object. For a
domain, the user can ready the domain for READ access only.

W WRITE. The user can ready the domain for READ, EXTEND, MODIFY, or
WRITE access to retrieve, modify, store, or erase records.

E EXTEND or EXECUTE. For a domain, the user can ready the domain for
EXTEND access only to store records. For a procedure, the user can execute the
procedure. For a table, the user can refer to the table (using VIA or IN clauses).
The user must have E access to a record to ready the associated domain.

M MODIFY. The user can ready the domain for READ or MODIFY access to read or
change records in the domain but not to add or delete.

C CONTROL. The user can issue the commands DEFINEP, DELETE, REDEFINE,
DELETEP, EDIT, and SHOWP.

Space(s) No access. The user cannot access the dictionary object.

Each entry in an ACL can include from one to five access privileges or designate
no access. A space indicates that no access is permitted to a user with the corre
sponding key. For example, the single letter R specifies that a user with the cor
responding key has read access only. The letters RW specify that the user has
both read and write access. Full access, designated by RWEMC, allows a user
complete access to the dictionary object. If you specify a space, the user has no
access to the dictionary object.

Each access privilege allows you to issue certain commands and statements. For
example, with R privilege, you can issue an EXTRACT command or ready a
domain for read access. If you ready a domain to READ, you can then use com
mands and statements that display and manipulate the domain database. With
only R privilege, you cannot ready a domain to WRITE, MODIFY, or EXTEND.
Therefore, you cannot add to, delete, or modify data.

Table 19-2 contains a list of commands that you can issue if you are granted the
corresponding access privilege. The table also shows the statements you can use
after issuing the command.

19-4 Controlling Access to Dictionary Objects

Table 19-2: Commands/Statements by Privilege

) Privilege Commands Query
for Domain Permitted Statements Permitted

R EXTRACT

READY. .. READ FIND
PRINT
SELECT
SORT
SUM

SHOW

E READY. .. EXTEND STORE

M READY ... READ FIND
PRINT
SELECT
SORT
SUM

READY ... EXTEND STORE

READY. .. MODIFY FIND
MODIFY
PRINT
SELECT
SORT
SUM

W READY ... READ FIND
PRINT
SELECT
SORT
SUM

READY. .. EXTEND STORE

READY ... MODIFY FIND
MODIFY
PRINT
SELECT
SORT
SUM

READY. .. WRITE ERASE
FIND
MODIFY
PRINT
SELECT
SORT
STORE
SUM

(continued on next page)

Controlling Access to Dictionary Objects 19-5

Table 19-2: Commands/Statements by Privilege (Cont.)

Privilege Commands Query
for Domain Permitted Statements Permitted

C DEFINEP -

DELETE -

REDEFINE -

DELETEP -

EDIT -

SHOWP -

----------------------- Note -----------------------

You must have E access to the associated record definition to ready
a domain.

The meaning ofE privilege differs depending on the dictionary object to which
an ACL corresponds. In an ACL for a domain, E means extend privilege; that is,
the user can store records in a file or extend it. In an ACL for a table, procedure,
or record definition, E means execute privilege. The user can use a table or proce
dure, or ready the domain associated with the record definition.

Only users with C (control) access to a dictionary object can directly access its
associated ACL or edit or delete the dictionary object. However, any user with a
group (or project) code of 1 (that is, a UIC/PPN in the form [1,n]) is automatically
granted C (control) access to all ACLs.

19.2 Creating Access Control Lists

When you define a dictionary object, DATATRIEVE automatically creates an
ACL for that object. The ACL initially contains only one entry, a UIC/PPN that
is granted full access privileges to the dictionary object. The specific UIC/PPN
stored in the ACL is installation-dependent and is determined when the
DATATRIEVE software is installed. The entry can be in one of the following
formats:

[m,n]

Full access privileges are granted to any user with the same UIC/PPN as the
creator of the dictionary definition. For example, if you log in under [253,201]
and create a procedure definition, then an entry for [253,201] is stored in the
access control list for the procedure. Only users with a UIC/PPN of [253,201J
can access the procedure.

19-6 Controlling Access to Dictionary Objects

[m,*]

Full access privileges are granted to any user with the same group (or pro
ject) code (m) as the creator of the definition. For example, if you log in under
[253,201] and create a procedure definition, then an entry for [253, *] is stored
in the access control list for the procedure. Any user with a group (or project)
code of253 (such as [253,222]) also has full access privileges to the procedure.

[*,*]

All DATATRIEVE users, regardless of their UIC/PPN, are granted full
access to the dictionary object.

Regardless of the default UIC/PPN stored in the ACL, the creator of the defini
tion always has full access privileges (RWEMC) to the dictionary object at the
time he or she creates the definition.

If you have C access to a dictionary object, you can grant privileges to additional
users or further restrict the use of the dictionary object by changing its ACL. The
commands you use to change the table are summarized later in this chapter and
described fully in Chapter 5 oftheDATATRIEVE-ll Reference Manual.

19.3 Processing Access Control Lists in DATATRIEVE

DATATRIEVE checks the appropriate access control list to verify that you have
access privilege whenever you use a table, invoke a procedure, or issue one of the
following commands:

• DEFINEP

• DELETE

• DELETEP

• EDIT

• EXTRACT

• READY

• REDEFINE

• SHOW

• SHOWP

Controlling Access to Dictionary Objects 19-7

To verify that you have the correct access privilege, DATATRIEVE searches the
ACL, checking each entry until it finds a match between the ACL key and your
UIC/PPN or between the password you supply and one in the ACL.
DATATRIEVE searches the table in the following sequence:

1. DATATRIEVE stores your UIC/PPN and determines if you are a privileged
user. A privileged user is one with a group (or project) code of 1 (that is, a
UIC/PPN in the form [1,n]). At a minimum, DATATRIEVE grants a privi
leged user C (control) access. It may grant additional privileges, depending
on the results of the following steps.

2. DATATRIEVE checks the first entry in the access control list.

If the lock type is PW, DATATRIEVE checks to see if you specified a pass
word in the command. If you did and the password matches the entry's key,
DATATRIEVE stops searching the access control list and grants you the
privilege or privileges listed in the entry. If the password does not match or
you did not specify a password, DATATRIEVE performs the next step.

If the lock type is UIC, DATATRIEVE checks to see if your UIC/PPN
matches the key. If it does, DATATRIEVE stops searching the list and grants
you the privileges listed in the entry. If the UICs do not match,
DATATRIEVE performs the next step.

3. DATATRIEVE checks the next entry in the list, following the same proce
dure as in the previous step.

When there are no more entries, DATATRIEVE denies access to the diction
ary object and rejects your command or statement.

The following examples show how DATATRIEVE handles some user requests.
The examples use the following ACL for the domain YACHTS:

DTR> SHOWP YACHTS(ffij
l,UIC, [253,201],
2 ,UIC, [214,217], "CW"
3 ,PW, "FISH-FRY", "M"
4,UIC, [*.*] t "R"

A user with UIC/PPN [253,201] enters a SHOW command to look at the defini
tion of the YACHTS domain. DATATRIEVE checks the user's UIC/PPN and
finds it as the first entry. Because no access privilege is granted, access to the
domain is denied to the user.

DTR> SHOW YACHTS
Access denied to dictionar}' resource "YACHTS"
DTR>

A user with UIC/PPN [214,217] readies YACHTS for write access. The first
match in the ACL (at entry 2) grants the user write (and control) privilege. The
READY command executes:

DTR> READY YACHTS WRITE(ffij
DTR>

19-8 Controlling Access to Dictionary Objects

A user with UIC/PPN [253,201] tries to ready YACHTS for modify access by
including a password in the READY command. Because the entry in the ACL
that contains the password FISH-FRY appears after the entry denying all privi
leges to the user, modify access to YACHTS is denied:

DTR> READY YACHTS MODIFY (FISH-FRY)(ffi)
Access denied to dictionar}' resource "YACHTS"
DTR>

A user with UIC/PPN [234,231] issues the same command as in the previous
example. Because the user does not have the UIC/PPN that is denied all access
and has included the correct password key for modify access, the READY com
mand executes:

DTR> READY YACHTS MODIFY (FISH-FRY)(ffi)
DTR>

19.4 Maintaining an Access Control List

To maintain an ACL that implements your security strategy, you must have C
(control) access to the dictionary object associated with the ACL. Control access
allows you to display an ACL and add or delete ACL entries.

19.4.1 Guidelines for Ordering Entries

When you add entries to an ACL, the order of entries in the ACL controls the
access to the dictionary object. Place the most restrictive entries first in an ACL
and the least restrictive entries last. The most restrictive entries completely
deny access to a specific UIC/PPN, while the least restrictive entries allow access
by any UIC/PPN.

The following rules apply when adding entries to the ACL:

• Place entries that deny all privileges first. Use a lock type UIC (instead ofPW)
for these entries.

• Place restrictive entries that limit access to a specific UIC/PPN next.

• Place the less restrictive entries (such as those requiring a password) next.

• If access is allowed for any UIC/PPN (that is, if the key is [*,*]), place its entry
last in the list.

Controlling Access to Dictionary Objects 19-9

19-10

19.4.2 Assigning Privileges

If you know which commands or statements you want to permit a user to issue,
use Table 19-3 to find the privileges you must assign to that user.

Table 19-3: Privilege Requirements by Command/Statement

Command/Statement Privilege Required

DEFINEP C privilege for the dictionary object

DELETE C privilege for the dictionary object

DELETEP C privilege for the dictionary object

EDIT C privilege for the procedure or table

EDIT ADVANCED C privilege for the domain or record

ERASE W privilege for the domain and E privilege for the associated
record

EXTRACT R privilege for the dictionary object

READY ... READ R, W, or M privilege for the domain and E privilege for the associ-
ated record

... WRITE W privilege for the domain and E privilege for the associated
record

... MODIFY M or W privilege for the domain and E privilege for the associated
record

... EXTEND E, W, or M privilege for the domain and E privilege for the associ-
ated record

SHOW domain -name R privilege for the dictionary object
record-name
proc-name
table-name

SHOWP C privilege for the dictionary object associated with the ACL

Use care when assigning the W privilege, particularly if a more restrictive privi
lege (such as R or M) would suffice. The W privilege allows the user to perform
the same functions as the R, M, and E privileges but also allows the user to issue
the ERASE command to delete records.

19.4.3 Displaying an Access Control List

Use the SHOWP command to display an ACL:

. [(passwd)]
SHOWP object-name (*)

Controlling Access to Dictionary Objects

19.4.4 Adding Entries to an Access Control List

Use the DEFINEP command to add an entry to an ACL:

. [(passwd)] { PW, new-passwd }
DEFINEP object-name (*) sequence-no, UIC, [m,n] , priv

Before adding any entry to an ACL, display the ACL using SHOWP. The follow
ing example illustrates adding one entry to an ACL:

DTR> SHOWP YACHTS (FISH-FRY)(ill)

1 ,PW, "FISH-FRY", "RWEMC"

DTR> DEFINEP YACHTS (FISH-FRY) 2, UIC, [201 ,213J, R(ill)

DTR> SHOWP YACHTS (FISH-FRY)(ill)

DTR>

1 ,PW, "FISH-FRY", IIRWEMC"
2 ,UIC, [201 ,213J, IIR"

When you add an entry to an ACL, DATATRIEVE renumbers the entries that
follow it so that their numbers occur in proper sequence.

19.4.5 Deleting Entries from an Access Control List

The DELETEP command deletes one entry from an ACL:

DELETEP object-name [(pa~~Wd)] sequence-number

Use the SHOWP command before deleting an entry to verify that you are delet
ing the correct entry. For example:

DTR> SHOWP YACHTS (FISH-FRY)(ill)

1 ,PW, IIFISH-FRylI, IIRWEMC II

2 ,UIC, [201 ,213J, "RII

DTR> DELETEP YACHTS (FISH-FRY) 2(ill)
DTR> SHOWP YACHTS (FISH-FRY)(ill)

1 ,PW, "FISH-FRY", "RWEMC"
DTR>

After you delete an entry, DATATRIEVE renumbers the entries so that they are
sequential, beginning with 1.

An ACL must have at least one entry. DATATRIEVE does not allow you to
delete an entry wh~n that entry is the only one in the ACL.

If you delete all entries that have C (control) privilege, there is only one way to
change the ACL. Log in using a privileged UIC/PPN, invoke DATATRIEVE, and
use the DEFINEP command to create an entry that gives one or more users the
C privilege.

Controlling Access to Dictionary Objects 19-11

Maintaining Data Dictionaries 20

A data dictionary holds domain, record, procedure, and table definitions. The
items that you define in a data dictionary are called dictionary objects.
DATATRIEVE supplies you with a default dictionary called QUERY.DIC. When
you invoke DATATRIEVE, your current dictionary is QUERY.DIC. You can keep
all your data definitions in QUERY.DIC, but it is orderly and efficient to store
related definitions in separate dictionaries. You can create other data dictiona
ries with the CREATE DICTIONARY command.

You can change from one dictionary to another, and you can display general and
specific information about your current dictionary. You can also display informa
tion about readied domains, established collections, tables currently in memory,
and selected records.

You can transfer definitions stored in one dictionary to another dictionary by
copying the definitions you want to a command file. You then set the destination
dictionary as the current dictionary and execute the command file to store the
definitions.

You can also edit dictionary definitions. If you need to make only a few changes
to an existing procedure or table, use the DATATRIEVE Editor, as described in
Chapter 16. If you need to make extensive modifications to a procedure or table
or want to edit a domain or record definition, you can copy the definition to a
command file, exit from DATATRIEVE, edit the command file with the editor of
your choice, and return to DATATRIEVE to execute the command file and store
the new definition.

The following sections discuss dictionary maintenance in detail.

20-1

20.1 Displaying Dictionary Objects

You can list the names of all domains, records, procedures, and tables defined in
the current data dictionary with the SHOW ALL command. SHOW ALL also
lists the names of any established collections and readied domains:

OrR> SHOW ALLCffi)
DOfrlains:

COMPANIES DDMF_TEST
OLD_FAMILIES OWNERS
YACHTS_SEQUENTIAL

Records:

FAMILIES
PROJECTS

COMPANIES_REC
Procedures:

FAMILY_REC OWNER_RECORD

LOA_REPORT PRICE_PER_POUND TMP
Tables:
The current dictionary is SY:[ZtlJQUERY.DIC
No established collections
No read}' dOlrlains

FOOYAC
YACHTS

PROJECTS_REC

tylER I FY

You can print the definition of any dictionary object to which you have read
access:

DTR> SHOW FAMILIESCffi)
DOMAIN FAMILIES

USING FAMILY_REC ON FAMILY.DAT;
DTR>

The kind of access you have to a dictionary object depends on the access control
list (ACL) associated with that object. The ACL specifies whether you have R
(read), W (write), M (modify), E (execute), C (control) or no privilege for a diction
ary object. You can only display the ACL for a dictionary object if you have C
(control) privileges. The following example prints the ACL for the domains
FAMILIES and PROJECTS:

DTR> SHOWP FAMILIESCffi)
1 tUIC t [* t*J t "RWMEC"

DTR> SHOWP PROJECTSCffi)
1 tUIC t [23 ta5] t "RWMEC"
ZtPWt "SESAME"t "RE"

DTR>

See Chapter 19 for further information on controlling access to dictionary
objects.

20.2 Modifying Dictionary Objects

To modify the definition of a dictionary object, you must have M (modify) access
to the dictionary object. You can modify dictionary objects in the following ways:

• You can use the DATATRIEVE Editor to modify definitions of procedures and
tables. You cannot modify domains or records with the DATATRIEVE Editor,
however.

20-2 Maintaining Data Dictionaries

• You can use the REDEFINE command to create a new definition.
DATATRIEVE deletes the previous version of the object and allows you to
define it a different way. The domain FAMILIES, for example, can be redefined
as follows:

DTR> SHOW FAMILIESOO
DOMAIN FAMILIES

USING FAMILY_REC ON FAMILY.DAT;
DTR> REDEFINE FAMILIES USINGOO
DFN> NEW_FAMILY_REC ON NEW_FAMILY.DAT;OO
DTR> SHOW FAMILIESOO
DOMAIN FAMILIES

USING NEW_FAMILY_REC ON NEW_FAMILY.DAT;
DTR>

----------------------- Note ------------------------

The previous definition of an element will be permanently lost
after a REDEFINE command is entered. If you make a mistake
while entering the definition, you must enter it again from the
beginning .

• The easiest way to modify a dictionary element is probably to copy the defini
tion to a command file using the EXTRACT command:

DTR> E)-(TRACT ON TEM P. CMD PERSON_RECOO
DTR>

Exit DATATRIEVE and edit the command file using the text editor of your
choice. After making the needed changes, return to DATATRIEVE and exe
cute the command file.

The EXTRACT command adds both a DELETE command and a DEFINE
command to the beginning of the indirect command file. When you execute the
command file, the DELETE command removes the old definition of the diction
ary object from the current data dictionary, and the DEFINE command stores ~
the new definition in that dictionary.

----------------------- Note -----------------------

Use extreme caution when changing record definitions. If you
change the record definition so that the record it describes no
longer matches the record stored in your file, you can no longer
access your data. Chapter 15 explains the relationship between
your record definition and data access.

The REDEFINE and EXTRACT commands do not copy the ACL associated with
your record definition. When you redefine your record with the command file,
DATATRIEVE also defines a new ACL for the record. This new ACL specifies the
default privileges that have been set up for your system.

Maintaining Data Dictionaries 20-3

The QXTR utility, discussed later in this chapter, enables you to copy the ACL
associated with your record to a command file.

20.3 Deleting Dictionary Objects

To remove the definition of a dictionary object from the current data dictionary,
you must have C (control) access to the dictionary object. To remove a dictionary
definition, use the DELETE command:

DTR> SHOW DOMAINS(ffij
DOfTlains:

DDMF_TEST FAMILIES
OWNERS PROJECTS

DTR> DELETE FOOYAC;(ffij
DTR> SHOW DOMAINS(ffij
DOITlains:

DTR>

DDMF_TEST
PROJECTS

FAMILIES
YACHTS

FOOYAC
YACHTS

OLD_FAMILIES
YACHTS_SEQUENTIAL

OLD_FAMILIES OWNERS
YACHTS_SEQUENTIAL

Remember to terminate the DELETE command with a semicolon.

DELETE removes from the dictionary both the definition of the dictionary object
and its associated ACL. This command does not delete the data file associated
with a domain. The data file still resides in the directory where it was stored.
Therefore, you can delete a domain definition and redefine it to access the same
data file.

20.4 Optimizing Disk Storage of Data Dictionaries with QCPRS

The data dictionary is an indexed file stored on a disk. When you add and delete
definitions from a dictionary, that file accumulates unused areas of disk space. To
reclaim this wasted disk space, run the utility program QCPRS. QCPRS com
presses the contents of the dictionary, eliminating unused disk space. Com
pressing your dictionary can also improve DATATRIEVE performance.

To compress a data dictionary, you should first determine how many blocks of
storage your dictionary occupies. The following example determines the size of
the dictionary KELLER.DIC that resides in directory [100,120] on the system
disk. The example uses the DCL DIRECTORY command:

$ DIRECTORY/FULL SY:[100t120JKELLER.DIC(ffij

The resulting display tells you the size (in blocks) of the dictionary. Later on,
QCPRS prompts you for the number of blocks it should allocate for the com
pressed file. The number you supply should equal or exceed the number of blocks
the dictionary currently uses.

On a RSTS/E system, you should rename the dictionary before invoking the
QCPRS utility. The easiest way to do this is to change the file extension:

$ RENAME KELLER.DIC KELLER.5AK(ffij
$

20-4 Maintaining Data Dictionaries

Then you invoke QCPRS in response to the operating system prompt. The follow
ing example assumes that you are using DCL to invoke QCPRS, which prints an
identification message and requests a command with the following prompt:

$ RUN $QCPRS
QUERY FILE COPY-COMPRESS UTILITY

CPR>

Use the following format to compress the dictionary:

new-file = old-file

New-file is the file specification for the compressed copy of the dictionary.
Old-file is the file specification of the dictionary to be compressed. If you omit a
field in either file specification, QCPRS uses the following defaults:

Field Default

dev: SY: (the system device)

UIC/PPN Your default UIC/PPN

file name QUERY

extension DIC

Under all operating systems but RSTS/E, the file specifications for new-file and
old-file can be the same. QCPRS merely creates a new copy of the file using the
next higher version number.

Under RSTS/E, the file specifications for new-file and old-file must be different.
Use the renamed dictionary from a previous example:

QCP>KELLER.DIC = KELLER.BAKffiD)

After you have entered the file specifications, QCPRS asks you to specify a num
ber of disk blocks as an allocation for the new version of the dictionary:

ENTER ALLOCATION FOR AREA 0:

Enter the number of disk blocks you want to allocate for the compressed diction
ary. If the number is too low, QCPRS automatically extends the file to hold the
contents of the original file. If the number is too high, the extra blocks remain in
the file and give room for contiguous expansion of the dictionary. A number that
is higher than what the file currently needs can help maintain DATATRIEVE
performance for a longer period of time; however, the higher number wastes disk
space over the short run.

QCPRS then prompts again with CPR>, and you can compress another diction
ary file or terminate QCPRS with CTRL/Z.

Maintaining Data Dictionaries 20-5

Because QCPRS does not alter the contents of the original file, you can save the
file as a backup, or you can delete it.

You can use QCPRS to compress an indexed data file associated with a
DATATRIEVE domain as well as to compress a dictionary. If you have added
many records to the indexed data file since the time you created it, compressing
the file can help reduce DATATRIEVE response time to queries that access the
file. Simply follow the steps you use to compress a dictionary, but specify the
name and extension of the indexed file.

20.5 Extracting Dictionary Content with the QXTR Utility

You might want to transfer dictionary objects from one data dictionary to
another or transport your dictionary objects to VAX DATATRIEVE. You can use
the QXTR utility to create a command file containing all the definitions
extracted from a DATATRIEVE-ll data dictionary. Like QCPRS, QXTR is a dic
tionary maintenance program supplied with the DATATRIEVE-ll installation
kit.

Running the QXTR program is equivalent to specifying all the objects in your
dictionary in an EXTRACT command. However, the QXTR program also allows
you to preserve the access control lists (ACLs) associated with each dictionary
object.

You must invoke QXTR from the system command level. The following example
uses the DCL RUN command:

$ RUN $Q>nROO)

Extract Utility for DTR Dictionaries V02.00

QXTR then prompts you for the following information:

• The file specification of the dictionary to be processed.

• Whether you want to extract the access control list for each dictionary object.

• If you respond with Y to the question on access control lists, whether you want
those lists to use VAX DATATRIEVE syntax.

• The name of the output command file to contain the extracted definitions. (The
default is QXTR.CMD in your default directory.)

When QXTR finishes processing your dictionary, it returns you to system com
mand level. The file QXTR creates an RMS sequential file you can invoke as an
indirect command file for DATATRIEVE.

20-6 Maintaining Data Dictionaries

The following example processes the dictionary KELLER.DIC and copies the dic
tionary object definitions to LESLIE.CMD. The ACLs are extracted along with
the objects. The ACLs remain in DATATRIEVE-ll syntax:

o i c t ion a r}' F i 1 e s p e c toE x t r act fro ITI? K ELL E R • 0 I C(Bill

Should Protection Tables be Extracted (Y or N)? Y(Bill

Ext r act in t.J A}-(- 11 0 A TAT R I E t.J E S}' n t a x ? N(Bill

Filespec to Extract elements to? LESLIE.CMD(Bill

$

Like the EXTRACT command in DATATRIEVE, the QXTR utility precedes each
dictionary object definition with a DELETE command. It also adds an
ALLOCATION LEFT-RIGHT clause ifno ALLOCATION clause is specified for
record definitions.

QXTR checks that you have R (read) privilege for the objects in the dictionary
before extracting them. If you do not, it prints a message that the objects were
not extracted, and the program continues. If you are logged in under a privileged
account (with a UIC/PPN [l,x]), you can extract everything regardless of the
access control list. If the access control list allows only password access and not
UIC/PPN access, you must run QXTR from a privileged account to extract the
element. The program checks your current UIC against the access control list.

QXTR aborts if it encounters a corrupt dictionary object. In this case, the com
mand file contains definitions extracted before QXTR encountered the corrupt
object. It does not contain the definition of the corrupt object or the definitions
that would follow. DATATRIEVE extracts definitions in the following order:
domains, procedures, records, and tables. Definitions of specific objects within
these four types are extracted in alphabetical order according to the name of the
object. Examine the incomplete command file to determine which dictionary
object is corrupt. You must delete the corrupt object from the dictionary before
running QXTR again.

Maintaining Data Dictionaries 20-7

Name Recognition and Single Record Context A

When you use a field name as a value expression and when you display, modify,
or erase one or more records, DATATRIEVE determines exactly which record or
records are the targets of the action you propose.

For each of these actions, DATATRIEVE must first determine the context within
which the action occurs. The context is the set of conditions that govern the way
DATATRIEVE recognizes field names and determines which records are the
targets ofDATATRIEVE statements. Understanding the way DATATRIEVE
manages context is especially important when you begin nesting DATATRIEVE
statements.

A.1 Establishing the Context for Name Recognition

DATATRIEVE does not require that every field name be unique. You can use the
same name in several record definitions. You can even use the same name sev
eral times in the same record definition, as long as the fields with the identical
name do not have the same level number in one group field.

Both the YACHTS and OWNERS domains, for example, have group fields named
TYPE, and both group fields contain elementary fields you can refer to with the
names BUILDER and MODEL. (In YACHTS, DATATRIEVE recognizes the
query name BUILDER as equivalent to MANUFACTURER. Other query names
for YACHTS are SPECS, LOA, and DISP.) Figure A-I shows the fields in both
record definitions and points out the duplicate names.

When you work with several record streams from the same domain, the field
names in all record streams are identical. Whether you form collections or record
streams of records from the YACHTS domain, DATATRIEVE has a mechanism
for identifying which record to act on when you want to retrieve or change data
from only one field of one record.

A-1

+--------+
: OWNERS :
+--------+

OWNER
NAME
BOAT_NAME
TYPE ~

BUILDER ~
MODEL ~

+--------+
: YACHTS :
+--------+

BOAT
TYPE

MANUFACTURER (BUILDER)
MODEL

SPECIFICATIONS (SPECS)
RIG
LENGTH_OVER_ALL (LOA)
DISPLACEMENT (DISP)
BEAM
PRICE

Figure A-1: Duplicate Field Names in YACHTS and OWNERS

When you understand the way DATATRIEVE establishes the context for recog
nizing names, you can use the names of domains, fields, collections, and vari
ables to form both simple and complex relationships among fields. One of the
keys to mastering the use of context is understanding the two DATATRIEVE
context stacks.

A.1.1 The Right Context Stack

When you issue a statement, DATATRIEVE builds a context stack, a linked
list that controls the DATATRIEVE search for names to match the ones you use
in statements. The context stack consists of context blocks, or lists of names.
These context blocks are linked together by pointers that control the sequence of
search by DATATRIEVE for values to associate with the names you use in
statements.

DATATRIEVE searches the right context stack for values to associate with
names you use in print lists, Boolean expressions, and the right side of assign
ment statements such as x = y. The left context stack is discussed later in this
appendix.

A.1.1.1 The Content of a Context Block - When you use a record selection expres
sion, DATATRIEVE creates a context block to establish a context for name rec
ognition. That context block contains, among other things, a list of names.

At the top of the list is a slot for the name of a context variable (see the section on
context variables later in this appendix). Next is the name of the domain
referred to in the record selection expression. The rest of the list contains the
names of fields in the record associated with that domain. Those field names are
arranged according to the field tree associated with the source.

The field tree contains the names of all the group fields, elementary fields,
COMPUTED BY fields, REDEFINES fields, and lists in the record and preserves
the hierarchical relationships among them.

A-2 Name Recognition and Single Record Context

When DATATRIEVE searches for a name in the context stack, it is looking for a
value to associate with that name. The search ends, and DATATRIEVE takes
the associated value when it finds the first name that matches the one in your
statement.

A DATATRIEVE name can consist of several names joined together. They resem
ble dictionary path names in form and function. To be recognized, these com
pound or qualified names must represent a valid path through the hierarchy of a
context block and the field tree it contains.

When DATATRIEVE encounters a name, it begins its search in the context block
on top of the stack. DATATRIEVE first looks at the slot in the context block
reserved for the name of a context variable. For unnamed CURRENT collections,
this slot contains the name CURRENT. For named CURRENT collections, the
name CURRENT and the collection name are equivalent. Named collections
that are not the CURRENT collection have the collection name in this slot.

If the top block on the context stack refers to a record stream, this slot is empty
unless you use a context variable in the RSE that forms the record stream. The
context variable gives a record stream a temporary name; this name fills the first
slot in the context block for these "named" record streams.

If DATATRIEVE finds that the first segment of a qualified name matches the
name in the collection name/context variable slot, it continues its search in that
block for a match for the rest of the name. If the name in your statement does not
match the name in the collection name/context variable slot, or if that slot is
empty, DATATRIEVE continues to look through the first context block to find a
match.

Next in the context block is the name of the source of the records referred to by
that block. For collections and record streams, that source can be the name of a
domain, collection, or list for hierarchical records. The source can also be the
name of a collection if you use the collection as the basis for a record stream in a
FOR statement and you use a context variable.

If the source name does not match the name in your statement, DATATRIEVE
next looks for the name in the slot reserved for names.

Next DATATRIEVE looks at the name of the top-level (the 01 level) field name.
Ifno match occurs, DATATRIEVE looks at each succeeding field name in the
order they are displayed when you enter a SHOW FIELDS command. That order
can take you through the entire hierarchy of the field tree, traversing first the
left branch then the right, wherever there is a branching point in the hierarchy.

IfDATATRIEVE finds no match in the first block on the context stack, it goes to
the next context block on the stack and begins its search there.

DATATRIEVE stops its search as soon as it finds an exact match for the name in
your statement. Then it associates the value assigned to the name on the context
stack with the name of the field in your statement.

Name Recognition and Single Record Context A-3

IfDATATRIEVE finds no match for the name in any of the context blocks, it dis
plays a message on your terminal that the field name is either undefined or used
out of context. The only remedies are to change the context so that the name in
your statement resolves properly or to remove any ambiguity by qualifying the
name further with group field names or context variables.

For the sake of clarity, the following description of the various types of context
blocks starts with the bottom of the context stack, that is, with the context block
that DATATRIEVE checks last.

A.1.1.2 Global Variables - The bottom context block contains the names of any
global variables you have established and have not released. This block is differ
ent from the others on the stack because its content is not determined by a record
selection expression. Nevertheless, DATATRIEVE treats the name ofa global
variable as though it were the name of a field in a simple record. Just as
DATATRIEVE associates the value of a field with the field name, DATATRIEVE
associates the value of a global variable with its name.

DATATRIEVE looks at the global variables last when trying to find a name to
match one in your statement. No two global variables can have the same name.
When you issue a DECLARE statement at command level (indicated by the
DTR> prompt), DATATRIEVE checks the names of the global variables you
have declared. If it finds one with the same name, it releases the old variable and
its value and replaces it with the new one. DATATRIEVE initializes the new
variable with a default value, a zero, or a space depending on the clauses you
include in the DECLARE statement.

A.1.1.3 Collections - The next higher set of blocks in the context stack refers to
existing collections. Each collection with a block on the context stack must have
one record singled out as a selected record. Although a collection can have a
number of records in it, only one of those records can be used in the search for the
context ofa name. DATATRIEVE can assign only one value to the name. Conse
quently, that one value can come from only one of the records in the collection.

Remember, the reason for resolving the context of a name you use in a statement
is to assign a value to the name that can be used in the statement.

For an existing collection, you can designate one record at a time as the selected
record for that collection. The SELECT statement lets you designate the selected
record in a collection by relative reference (FIRST, NEXT, and LAST) or by abso
lute reference to the position number of the record in the collection. A collection
has a block on the context stack only ifit has a selected record.

If you have more than one existing collection with a selected record, the block
immediately above the one for global variables refers to a named collection with
a selected record. That collection is the one you formed with a FIND statement
before you formed any of the other collections that have selected records.

The rest of the context blocks for the collections with selected records are ordered
according to the sequence in which you formed them, not the order in which you
entered the SELECT statement to establish the selected records.

A-4 Name Recognition and Single Record,Context

If the CURRENT collection has a selected record, the context stack contains a
block referring to the CURRENT collection. That block is above the blocks of all
other collections. DATATRIEVE searches for names in the context block of the
CURRENT collection before it searches the context block of any other collection.

The key to understanding the way DATATRIEVE recognizes names is that
except for the global variables, the context stack is ordered on a last-in, first-out
basis. The most recently formed context block is the one DATATRIEVE searches
first.

You do not have to rely on your meIl].ory to recall the order in which you formed
your existing collections. You need only issue a SHOW COLLECTIONS com
mand. DATATRIEVE displays the most recently formed collection (always the
CURRENT collection, whether it has a name or not) at the top of the list and the
"oldest" one at the bottom.

The SHOW COLLECTIONS command, however, lists all the existing collections
whether or not they contain selected records. Remember, only the collections
with selected records are represented on the context stack.

With the SHOW collection-name command, you can inspect each existing collec
tion to see how many records are in the collection, whether it has a selected
record, and, if it does, what the position number of the selected record is in the
collection.

IfDATATRIEVE searches the context stack and does not find a match for the
name in your statement, it displays an error message that may seem puzzling
unless you understand the way DATATRIEVE forms the context stack:

Field IInalTlell is undefined or used out of context

You may know the name has been defined, and that it is the name ofa field in a
record associated with one or more existing collections. If, however, none of the
collections containing that field has selected records, DATATRIEVE cannot tell
if the field is defined or not.

If a collection containing the named field has no selected record, that collection
has no block on the context stack. Consequently, DATATRIEVE neither finds a
match for the field name nor has a way of discovering from the search of the con
text stack if the field name is defined at all.

The order of context blocks at the higher levels of the context stack depends on
the order in which DATATRIEVE encounters the elements containing names
associated with values. The order of the following sections does not imply any
relative position on the stack. Only the order DATATRIEVE encounters those
elements determines their order on the stack.

A.1.1.4 Record Streams - Before DATATRIEVE looks at the context block of
the most recently formed collection with a selected record, it first looks at the
context blocks created explicitly in the statement. One type of context block cre
ated by a statement refers to the field names of a record stream formed by a
statement.

Name Recognition and Single Record Context A-5

Context blocks of record streams act differently from those of collections. The
context block for a collection stays on the stack as long as the collection has a
selected record. The context block of a collection is removed from the stack only if
you release the collection or remove its selected record with a DROP statement.

The context block for a record stream, however, stays on the stack only as long as
the statement containing it is being executed. When DATATRIEVE finishes
processing the statement, the block is removed from the context stack and is not
available when DATATRIEVE rebuilds the stack after it encounters the next
statement.

Only three statements and one command make lasting changes to the context
stack:

• FIND

The FIND statement can remove the CURRENT collection from the context
stack by forming a new CURRENT collection. The new CURRENT collection
releases the old collection but does not put a block on the context stack because
a newly formed collection has no selected record.

• SELECT

The SELECT statement puts a collection on the context stack by establishing
a selected record. SELECT cannot change the relative order of collections on
the stack. That order is determined by the relative order in which you formed
the collections with the FIND statement.

• DROP

The DROP statement removes a collection from the context stack by dropping
the selected record from the collection. The SHOW collection-name command
still notes the position number of the previously selected record, but the record
has been removed from the collection and you cannot retrieve it unless you
form a new collection that contains it.

• RELEASE

The RELEASE command also removes a collection from the context stack. The
released collection no longer exists, thus freeing the space it occupied. Records
and domains associated with a collection named in the RELEASE command
are not affected.

These three statements, however, share a restriction that separates them from
all other statements: you cannot use FIND, SELECT, or DROP statements in
compound statements. They must be entered at command level by themselves.
Furthermore, these statements do not form temporary record streams; they
affect only collections.

A-6 Name Recognition and Single Record Context

You can, however, have several context blocks for record streams on the context
stack at one time. The block for a record stream stays on the context stack until
DATATRIEVE finishes the statement. Because you can nest statements in FOR
loops, BEGIN-END blocks, IF-THEN-ELSE statements, THEN, and WHILE
statements, the inner statements can form record streams before DATATRIEVE
finishes the outermost statement.

DATATRIEVE has to keep the context of outer statements separate from that of
inner ones. It keeps them separate by putting a block on the context stack when
it encounters an element that requires one. DATATRIEVE begins processing
compound statements with the outermost statement and works progressively
toward the innermost one. The context blocks it forms for elements in the inner
most statement are at the top of the stack when the innermost statement is
being processed.

When DATATRIEVE finishes processing the innermost statement, it removes
the blocks created by that statement. DATATRIEVE works its way back out
toward the outermost statement, removing blocks created by statements as soon
as it finishes processing the statement. For example, in the case of nested FOR
loops, the context block for the innermost FOR loop is higher in the stack than
the blocks for the outer loops.

When DATATRIEVE completes the execution of the innermost loop, it removes
the context block of that FOR statement, leaving the blocks of the outer FOR
statement on the stack. As DATATRIEVE completes each loop, the context block
for that loop is removed from the stack. This same pattern applies to statements
in BEGIN-END blocks.

When a statement that forms a record stream is followed by a second statement
that is not contained in the first, DATATRIEVE removes the context block cre
ated for the first statement from the stack and puts a context block for the second
statement in its place. For example, in a BEGIN-END block, one PRINT state
ment containing an OF rse clause follows another. The context block of the first
statement is in effect only during the execution of that first statement. That
block is replaced by the one for the second PRINT statement when
DATATRIEVE begins processing the second statement.

DATATRIEVE handles the context block ofa FOR loop the same as it handles
statements containing an OF rse clause.

DATATRIEVE creates four other types of context blocks that affect the order of
the context stack: those for local variables, VERIFY clauses, VALID IF clauses,
and context variables.

A.1.1.S Local Variables - Local variables are variables defined in compound
statements. A local variable and its effect on the context stack last only from the
DECLARE statement that defines it until DATATRIEVE completes the execu
tion of the statement containing the DECLARE statement.

Name Recognition and Single Record Context A-7

A.1.1.6 VERIFY Clause in the STORE Statement - Like the context for local vari
ables, the context for resolving field names in a VERIFY clause of the STORE
statement is short-lived. The STORE statement does not access or change any
existing record. Consequently, for each STORE statement, DATATRIEVE cre
ates a context block to associate the field names with the values in the new
record. DATATRIEVE executes the VERIFY clause after you have assigned val
ues to all the fields prescribed by the syntax of the statement but before
DATATRIEVE stores the record in the data file.

A.1.1.7 VALID IF Clause in a Record Definition - When you assign a value to a
field name in either a STORE or MODIFY statement, DATATRIEVE looks in
the appropriate record definition for a VALID IF clause. If the value is unaccept
able according to the conditions specified in the VALID IF clause, DATATRIEVE
displays a message on your terminal and reprompts you for an acceptable value.
It uses the same context to associate the field name with your response to the
reprompt.

The context for resolving field names in the VALID IF clause is established by
the context block set up for either:

• The STORE statement

• The MODIFY statement

In either case, the value associated with the field name is the one just assigned to
it by your response to a prompt or by an assignment statement in the USING
clause of the STORE or MODIFY statement.

DATATRIEVE executes the VERIFY clause only after the values you assign
meet the conditions of VALID IF clauses in the record definition. As a result,
there can be no conflict between the context established for these two clauses.
The context for the VALID IF clause no longer exists when DATATRIEVE exe
cutes the VERIFY clause.

A.1.2 Using Context Variables and Qualified Field Names

The ways of establishing context discussed to this point deal with resolving the
connections between names and values by finding the first instance of a valid
field name or variable name. When several context blocks on the stack contain
fields with the same names, you need a way to skip over some instances of the
name to get to the field that contains the value you want to retrieve.

DATATRIEVE gives you two methods of forcing name recognition: context vari
ables and qualified field names. Although they require different actions from
you, these two methods have an underlying similarity.

A.1.2.1 Context Variables as Field Name Qualifiers - A context variable is a
dummy variable specified in a record selection expression for the purpose of
name recognition. When DATATRIEVE encounters a context variable, it puts a
new block on the context stack. That new block connects the name of the context
variable with the field names and values of the records identified by the record
selection expression.

A-8 Name Recognition and Single Record Context

The context established by the context variable lasts until DATATRIEVE com
pletes the execution of the statement containing the record selection expression
in which the context variable occurs. However, that context does not affect any
outer loops or nesting statements that contain the statement in which you use
the context variable.

A context variable, however, does affect all inner statements nested in the state
ment that contains the record selection expression in which the context variable
occurs.

You can use the context variable as a prefix for each field name of the records
identified by the record selection expression. Citing a field name with a context
variable prefix can make a field name unique, even when the domains and field
trees of a record in a record stream are identical.

Putting a prefix on a field name produces a qualified field name. The context
variable must be the first prefix added to a field name.

A.1.2.2 Other Field Name Qualifiers - Using other qualifiers as prefixes to field
names is the second method of overriding the DATATRIEVE default mechanism
of name recognition.

Each fully qualified field name must be unique. The fully qualified field name
consists of the record name, the top-level group field name, the names of any
group field to which the elementary field belongs, and the elementary field
name. You must separate each element of the fully qualified name from the next
with a period. For example, In the domain YACHTS, the fully qualified field
name of MODEL is:

YACHT.BOAT.TYPE.MODEL

You can use these elements in any combination that preserves their hierarchical
order to distinguish the MODEL field in YACHTS from the MODEL field in
another domain such as OWNERS.

When DATATRIEVE encounters a qualified field name, it searches the context
stack for the first match of the name you specify. For example, if you use
BOAT.MODEL in a record selection expression, DATATRIEVE searches the con
text stack for the first valid occurrence of the name BOAT and searches the
branches of the hierarchy under BOAT for the first valid occurrence of the name
MODEL.

The success of the search is not jeopardized because you omit the group field
name TYPE from the qualified name MODEL. DATATRIEVE searches the
entire hierarchy under BOAT until it finds the first valid occurrence of TYPE.
When an intermediary group field name is omitted, DATATRIEVE searches the
hierarchy according to the order in which the fields of the record were defined.

Fully qualified field names are adequate when working with two or more
domains that share elementary or group field names, or both. However, when
you are working with two record streams from the same domain, you must fur
ther qualify the field name with a context variable. This extra qualification is
especially necessary when dealing with lists in hierarchical records.

Name Recognition and Single Record Context A-9

Suppose you want to display information about all builders who build boats with
more than one type of rig. YACHT is the given name of the record associated
with the domain YACHTS. The field tree of YACHT has the structure:

YACHTS
01 BOAT

03 TYPE
06 MANUFACTURER
06 MODEL

03 SPECIFICATIONS
06 RIG
06 LENGTH_OVER_ALL
06 DISPLACEMENT
06 BEAM
06 PRICE

You can print the desired information with nested FOR loops. For each boat from
the outer FOR statement, you want DATATRIEVE to loop through all the boats
and find all the ones with the same builder. For each one it finds, you want it to
compare its rig with the rig of the boat from the outer loop. Then you want to
separate out the ones for which the rigs are not the same. At first, you might be
tempted to use the following statement to produce the desired list:

DTR> SET NO PROMPT@]
DTR> FOR YACHTS@]
CON> FOR YACHTS WITH BUILDER = BUILDER AND@]
CON> RIG NE RIG@]
CON> PRINT BUILDER, RIG, RIG@]
DTR>

After a long search for records, DATATRIEVE displays no records. The problem
is that the preceding syntax asks DATATRIEVE to look for a boat with a rig that
is not equal to itself - an obvious contradiction. Both of the fields named RIG
resolve to the record stream formed by the second FOR statement. The name
BUILDER also resolves to the same record stream.

When you enter this statement, DATATRIEVE takes the first record from
YACHTS but does not look at any of the values in its fields. Then it looks at
every record in YACHTS and discovers that for everyone of them, the name of
the builder equals itself, but that no rig is not equal to itself. Thus every record
in YACHTS fails to meet the condition set by the statement.

DATATRIEVE then takes the second record in YACHTS and once again goes
through all the boats, finding that the two values are always equal to themselves
and thus fail to meet the impossible demands of the statement. And so it goes for
each record: two comparisons for 113 times 113 records, and no records meet the
self-contradictory conditions.

A-10 Name Recognition and Single Record Context

The problem is how to get DATATRIEVE to look at the builder and rig of the
outer FOR statement when making the comparison. The context variable pro
vides one solution:

DTR> FOR A IN YACHTStlli)
CON> FOR YACHTS WITH BUILDER = A.BUILDER AND RIG NE A.RIGtlli)
CON> PRINT BUILDERt A.RIGt RIGtlli)

MANUFACTURER

AMERICAN
AMERICAN
CHALLENGER

PEARSON
PEARSON

DTR>

RIG

SLOOP
MS
SLOOP

KETCH
KETCH

RIG

MS
SLOOP
KETCH

SLOOP
SLOOP

In this case, the use of the context variable A forces DATATRIEVE to look to the
record stream formed by the outer FOR statement. At the same time,
DATATRIEVE recognizes the unqualified names, RIG and BUILDER, in the
context established by the most recent RSE: the one in the second FOR state
ment. The conditions in the second FOR statement are no longer impossible, and
information from 62 records is displayed.

The way DATATRIEVE treats the unqualified names in this example illustrates
another rule for context resolution: the left-hand member of a Boolean expres
sion must resolve to the record selection expression of which it is a part. If you
start the Boolean expression in the second FOR statement with A.BUILDER,
DATATRIEVE tells you that A.BUILDER is undefined or used out of context.

You can add a second context variable in the previous example to make sure the
resolution of the names is explicitly stated:

DTR> FOR A IN YACHTStlli)
CON> FOR B IN YACHTS WITH B.BUILDER = A.BUILDER AND B.RIG NE A.RIGtlli)
CON> PRINT B.BUILDERt A.RIGt B.RIGtlli)

You gain two advantages by specifying the second context variable: clarity of
representation and certainty that DATATRIEVE will display an error message
if you make a syntax error. Using the second context variable, however, does not
allow you to violate the rule for resolving field names on the left side of Boolean
expressions.

A.1.3 The Left Context Stack for Assignment Statements

When you make assignment statements at DATATRIEVE command level or as
part of STORE or MODIFY statements, DATATRIEVE must assign values to
the field or variable you intend. It uses the left context stack to associate the val
ues you supply with the fields and variables you want the values assigned to.
Blocks on the left context stack are for records and variables that you can
update.

Name Recognition and Single Record Context A-11

Whenever DATATRIEVE begins to process a statement, the left context stack
contains the global variables you have declared and not released. Any local vari
ables you declare in compound statements are also on the left context stack. The
local variables are removed when the statement in which you declared them
ends.

Local and global variables are on both stacks. Each type of variable has a value
that can be assigned to a field or another variable; hence, they are on the right
context stack. Both can be updated with new values you assign them; hence,
they are on the left context stack.

Context blocks for a record you want to modify is also on both context stacks. The
record has a value you can use in Boolean expressions and assignment state
ments. You can update that value in a MODIFY statement. Because a field is on
both stacks at the same time, you can use the old value of the field to calculate
the newvalue. You can use the following form of assignment statement:

DTR> MODIFY USING PRICE = PRICE * 1.100
DTR>

DATATRIEVE retrieves the old value of PRICE associated with the name on the
right context stack and multiplies the old PRICE by a constant. It then associ
ates that value with the name PRICE on the left context stack and updates the
value of the PRICE field.

When you enter a STORE statement, the only context block for the new record is
on the left context stack. No record exists yet, and, of course, no values are asso
ciated with fields of a record. The fields can only receive values.

However, as soon as DATATRIEVE associates a value with a field, you can move
that value to the right context stack and use it on the right side of assignment
statements. You can make this shift before you finish assigning values to all the
fields of the new record. In fact, you can use the values of new fields to calculate
the values DATATRIEVE stores in other new fields in the same record.

To shift newly stored values to the right context stack, include a context variable
with the domain name when you enter the STORE statement:

DTR> STORE A IN YACHTS USING • • •

Then in the USING clause, you use the context variable to qualify the names of
any field whose value you want to use on the right side of an assignment
statement:

DTR> STORE A IN YACHTS USINGOO
CON> BEGIN(BITJ
CON> F1 = l.Ialue-expressionOO
CON> F2 = l.Ialue-expressionOO
CON) F3 A.F1+A.F2ru
CON> ENOru
DTR>

A-12 Name Recognition and Single Record Context

The context variable allows you to associate a field name on the right context
stack with its new value as soon as you assign the value to the field. You cannot,
however, use a field name on the right side of an assignment statement until you
have assigned a value to the field.

A.1.4 Examples of Context Variables in STORE and MODIFY
Statements

You can combine STORE and MODIFY statements to keep an audit trail of mod
ifications made to records in a domain and to change statistical records when you
store new records.

To form an audit trail you need a domain for the audit records. This domain can
use the same record definition as the original domain, but it must have its own
domain definition and its own data file. Here is a simple example:

DTR> SHOW AUDIT_YACHTSru
DOMAIN AUDIT_YACHTS USING

YACHT ON AUD_YACHT;
DTR> FOR A IN YACHTS MODIFY USINGru
CON> BEGINru
CON> BUILDER *.BUILDERru
CON> MODEL *.MODELru
CON> RIG = *.RIGru
CON> LOA = *.LOAru
CON> DISP = *.WEIGHTru
CON> BEAM = *.BEAMru
CON> PRICE = *.PRICEru
CON> STORE B IN AUDIT_YACHTS USINGru
CON> B.BOAT = A.BOATru
CON>ENDru
Enter BUILDER:

If you have a VERIFY USING clause in the MODIFY statement, put the STORE
statement as the last statement in the VERIFY clause. If you put the VERIFY
clause after the STORE statement and the VERIFY clause aborts the change,
you have a record of the change, but you have not changed the record.

You can also embed a MODIFY statement in a STORE statement. In this exam
ple, the embedded MODIFY statement updates a record of the last date a new
record was added to the data file and records the TYPE field of the record stored.
The file LAST.DAT is a sequential file with one record in it.

DTR> SHOW LAST_ENTRYru
DOMAIN LAST_ENTRY USING LAST_REC ON LAST.DAT;
DTR> SHOW LAST_RECru
RECORD LAST_REC USING
01 TOP.
03 LAST_DATE USAGE DATE.
03 TYPE PIC X(20).

DTR> STORE YACHTS USINGru
CON> BEGINru
CON> BUILDER
CON> MODEL
CON> RIG =

*.BUILDERru
*.MODELru
*.RIGru

(continued on next page)

Name Recognition and Single Record Context A-13

CON> LOA = *.LOA@]
CON> DISP = *.WEIGHT@]
CON> BEAM = *.BEAM@]
CON> PRICE = *.PRICE@]
CON> MODIFY LAST_ENTRY USING@]
CON> BEGIN
CON> LAST_DATE = "TODAY"@]
CON> B.TYPE = A.TYPE@]
CON> END
CON>END@]
Enter BUILDER:

With the proper 'Use of context variables, you can also store or change data in
fields shared by two or more domains.

A.2 Single Record Context

The DATATRIEVE statements PRINT, MODIFY, and ERASE can act on one
record at a time or on an entire record stream or collection. The records on which
they act are called target records. You can identify target records for these
statements in four ways:

• A SELECT statement identifies one target record in a collection.

• The keyword ALL in the statement without an OF rse clause makes all records
in a collection the targets of the statement.

• An OF rse clause in the statement forms a target record stream.

• The RSE clause in a FOR statement forms a stream of target records for the
statement contained in the FOR loop.

A.2.1 The SELECT Statement and the Single Record Context

Before discussing the SELECT statement and context, a short review of facts
about collections is in order.

DATATRIEVE keeps a list of the collections you form with the FIND statement.
The most recent one formed is always at the top of the list and is called the
CURRENT collection. The only other collections on the list are the ones to which
you assigned a name when you formed them. The next collection you form then
becomes the new CURRENT collection. DATATRIEVE discards the old
CURRENT collection unless you give it a name when you form it.

With the RELEASE command, you can remove a collection from that list. If you
release the CURRENT collection, the next one on the list becomes the
CURRENT collection.

No collection on this list, however, is represented by a block on the context stack
unless you use the SELECT statement to single out one record in the collection.
When you select a record in a collection, DATATRIEVE puts a block for that col
lection on the context stack. If every existing collection has a selected record,
then DATATRIEVE keeps a block on the context stack for each of those
collections.

A-14 Name Recognition and Single Record Context

The relative ages of the collections with selected records determine the order of
context blocks for collections. The "oldest" collection with a selected record is
nearest the bottom of the context stack. Because the CURRENT collection is
always the "youngest," its context block, ifit has one, is nearest the top.

This order of context blocks for collections establishes the order DATATRIEVE
uses not only for recognizing field names as described previously, but also for
identifying single target records. When you enter the most abbreviated forms of
the PRINT, MODIFY, and ERASE statements, DATATRIEVE looks on the con
text stack for the first valid single record context to carry out the specified action.
It looks for the youngest collection with a selected record and either prints the
record, erases it, or changes it.

The following sequence of examples illustrates the effect of the SELECT and
DROP statements on single record context and the subsequent actions of the
PRINT, MODIFY, and ERASE statements.

Form a collection of records from the YACHTS domain, call it BIGGIES, select
the third record as the target record, and display it:

DTR) READY YACHTS WRITEoo
DTR) FIND BIGGIES IN YACHTS WITH LOA > aooo
[8 records found]
DTR) SELECT 300
DTR) PRINToo

MANUFACTURER MODEL

GULFSTAR al

DTR>

RIG

KETCH

LENGTH
Ot.IER
ALL WEIGHT BEAM PRICE

al 22,000 12 $al,350

Store a new record in the YACHTS domain and form a collection that consists of
that one record. Later you can modify and erase this record:

DTR> STORE YACHTSoo
Enter MANUFACTURER: HINKLEYoo
Enter MODEL: BERMUDA aOOO
Enter RIG: YAWLoo
En t e r LENGTH_Ot.IER_ALL: aOOO
Enter DISPLACEMENT: 2000000
En t e r BEAM: 1200
Enter PRICE: 82,00000
DTR> FIND YACHTS WITH BUILDER
[1 record found]
DTR)

"HINKLEY"oo

Name Recognition and Single Record Context A-15

You now have two collections, CURRENT (the younger) and BIGGIES (the
older):

DTR> SHOW COLLECTIONS®]
Collections:

CURRENT
BIGGIES

DTR> SHOW CURRENT®]
Collection CURRENT

DOlrlai n: YACHTS
NUMber of Records:
No Selected Record

DTR> SHOW BIGGIES®]
Collection BIGGIES

DTR>

DOlrlain: YACHTS
NUMber of Records: 8
Selected Record: 3

The CURRENT collection has no selected record, but BIGGIES still does.
Consequently, when you type PRINT and press the RETURN key again,
DATATRIEVE prints the record in the first valid single record context, that is,
the selected record in BIGGIES:

DTR> PRINT®]

MANUFACTURER MODEL

GULFS TAR Lll

DTR>

RIG

KETCH

LENGTH
OVER
ALL WEIGHT BEAM PRICE

Lll 22,000 12 SLll,350

When you type SELECT and press the RETURN key, DATATRIEVE selects the
first and only record in the CURRENT collection. Now when you type PRINT
and press the RETURN key, the single record context has changed. Now the
selected record in the CURRENT collection is the target record of the PRINT
statement:

DTR> SELECT®]
DTR> PRINT®]

MANUFACTURER MODEL RIG

HINKLEY BERMUDA LlO YAWL

DTR> SHOW CURRENT®]
Collection CURRENT

DTR>

DOlrlain: YACHTS
NUMber of Records:
Selected Record: 1

A-16 Name Recognition and Single Record Context

LENGTH
OI.lER
ALL WEIGHT BEAM PRICE

LlO 20,000 12 S82,OOO

Now modify the PRICE of the target record and display the result. The MODIFY
and PRINT statements both act on the record in the first valid single record con
text, that is, the selected record in the CURRENT collection:

OTR> MOOIFY PRICE(ffi)
Enter PRICE: 75tOOO(ffi)
OTR> PRINTOO

MANUFACTURER MOOEL RIG

HINKLEY BERMUOA ao YAWL

OTR>

LENGTH
OI.IER
ALL WEIGHT BEAM PRICE

ao 20 tOOO 12, $75 tOOO

Now type ERASE and press the RETURN key. The ERASE statement also acts
on the record in the first valid single record context, and the record for the
HINKLEY boat is removed from the data file YACHT.DAT. Even though you
erase the only record in the collection, DATATRIEVE does not discard the collec
tion. It takes note that you have erased the selected record and removes the con
text block for the CURRENT collection from the context stack. You can verify
the change in single record context by typing PRINT and pressing RETURN.
The selected record from BIGGIES is again in the first valid single record
context:

OTR> ERASEOO
OTR> SHOW CURRENT(ffi)
Collection CURRENT

OOfrlai n: YACHTS
NUMber of Records: 1
Selected Record: 1

OTR> PRINTOO

MANUFACTURER MODEL RIG

GULFSTAR a1 KETCH

OTR>

LENGTH
OI.IER
ALL WEIGHT BEAM PRICE

a1 22tOOO 12 $a1 t350

If you type MODIFY or ERASE and press the RETURN key, and no existing col
lection has a selected record, DATATRIEVE displays a message that there is no
target record for the action you propose:

OTR> ERASEOO
No target record for ERASE.
OTR> MODIFYOO
No selected record for Modify
DTR>

Name Recognition and Single Record Context A-17

However, if you type PRINT and press the RETURN key, and no existing collec
tion has a selected record, DATATRIEVE displays a message that there is no
selected record and then prints out the whole collection:

DTR> FIND YACHTS WITH BUILDER = IALBIN"lliIT)
[3 records found]
DTR> PRINT@)
No record selectedt printing whole collection

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT

ALBIN 78 SLOOP 28 4t200
ALBIN BALLAD SLOOP 30 7t278
ALBIN 1.,1 EGA SLOOP 27 5t070

DTR>

BEAM PRICE

10 $17t800
10 $27t500
08 $18t800

You can change the single record context with the DROP statement. The DROP
statement removes the selected record from a collection but does not erase the
record from the data file. When you type DROP and press the RETURN key, and
the CURRENT collection has no selected record, DATATRIEVE displays a mes
sage on your terminal:

DTR> FIND BIGGIES IN YACHTS WITH LOA > 40lliIT)
[8 records found]
DTR> DROPlliIT)
No collection with selected record for DROP.
DTR>

If the CURRENT collection has a selected record, the DROP statement removes
that record from the collection when you type DROP and press the RETURN key.
If other collections have selected records, you must specify the collection name in
the DROP statement.

The CURRENT collection is BIGGIES. Select and display the first record in
BIGGIES and form a new CURRENT collection of boats built by Albin:

DTR> SELECT; PRINTlliIT)

MANUFACTURER MODEL

CHALLENGER 41

LENGTH
OI.IER

RIG ALL WEIGHT BEAM PRICE

KETCH '41 28t700 13 $51 t228

DTR> FIND YACHTS WITH BUILDER = IALBIN"lliIT)
[3 records found]
DTR>

A-18 Name Recognition and Single Record Context

Now select, display, and drop the first record of the CURRENT collection. Then
enter a SHOW CURRENT command to see how DATATRIEVE records the
results of your actions. The SELECT statement creates a single record context
for the current collection, thus the target record of the PRINT statement is the
selected record in the CURRENT collection, not in BIGGIES:

DTR> SELECTfBIT)
DTR> PRINTfBIT)

MANUFACTURER

ALBIN

DTR> DROPfBIT)

MODEL

79

DTR> SHOW CURRENT@]
Collection CURRENT

Domain: YACHTS

RIG

SLOOP

Number of Records: 3
Selected Record: 1

DTR>

LENGTH
OI.IER
ALL WEIGHT BEAM PRICE

26 at200 10 $17t900

When you drop a selected record from a collection, you change the single record
context. The context block for that collection is removed from the context stack.

Consequently, when you type PRINT and press the RETURN key again,
DATATRIEVE displays the selected record in BIGGIES, the record in the first
valid single record context:

DTR> PRINTfBIT)

MANUFACTURER MODEL RIG

CHALLENGER al KETCH

DTR>

LENGTH
OI.IER
ALL WEIGHT BEAM PRICE

al 26t700 13 $51 t228

Like PRINT, MODIFY, and ERASE, the DROP statement acts on the record in
the first valid single record context.

If you type PRINT and press RETURN when you have no valid single record con
text, DATATRIEVE displays the whole CURRENT collection because there is no
selected record in either of the two existing collections. Because you dropped one
record from the CURRENT collection, it contains only two records now:

DTR> PRINTfBIT)
No record selectedt printing whole collection

LENGTH
OI.IER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN BALLAD SLOOP 30 7t276 10 $27t500
ALBIN 1.IEGA SLOOP 27 5t070 08 $18t600

DTR>

Name Recognition and Single Record Context A-19

To show that you have not erased the record dropped from the CURRENT collec
tion, form and display a new CURRENT collection of boats by Albin:

DTR> FIND YACHTS WITH BUILDER = IALBIN"tBTI)
[3 records found]
DTR> PRINT ALLtBTI)

LENGTH
OI.IER

MANUFACTURER MODEL RIG ALL WEIGHT

ALBIN 78 SLOOP 26 at200
ALBIN BALLAD SLOOP 30 7t276
ALBIN VEGA SLOOP 27 5t070

DTR>

BEAM PRICE

10 $17t800
10 $27t500
08 $18t600

A.2.2 The CURRENT Collection as Target Record Stream

The preceding example shows the effect of the keyword ALL on a PRINT state
ment that does not contain an OF rse clause.

Although DATATRIEVE acts on only one record at a time, you can identify more
than one record for a single DATATRIEVE statement to act on. With the
keyword ALL, you can make every record in the CURRENT collection the target
of a single PRINT, MODIFY, or ERASE statement. Such a statement, however,
cannot also contain an OF rse clause.

If you have a CURRENT collection and type PRINT ALL and press the
RETURN key, DATATRIEVE displays the whole CURRENT collection. If you
have no CURRENT collection, DATATRIEVE displays a message on your termi
nal. To illustrate this effect, release all collections and enter the statement
PRINT ALL:

DTR> SHOW COLLECTIONStBTI)
Collections:

CURRENT
BIGGIES

DTR> RELEASE CURRENTt BIGGIEStBTI)
DTR> SHOW COLLECTIONStBTI)
No established collections.
DTR> PRINT ALLtBTI)
A current collection has not been established.
DTR>

DATATRIEVE displays the same message on your terminal when you have no
CURRENT collection and you enter an ERASE ALL or MODIFY ALL
statement.

When you have a CURRENT collection and enter an ERASE ALL statement,
DATATRIEVE removes every record in the CURRENT collection from the data
file. Although frequently useful, this operation can jeopardize valuable data if
you use it carelessly.

A-20 Name Recognition and Single Record Context

Note that if your collection contains many records and you mistakenly enter an
ERASE ALL or MODIFY ALL statement, you can enter CTRL/C to prevent all
the records in the CURRENT collection from being erased or changed. How
many records get erased or changed under such circumstances depends on the
speed with which you enter CTRL/C, the processing load on your system, and the
priority of your process.

The various forms of the MODIFY ALL statement change the data in each
record of the CURRENT collection (see theDATATRIEVE-ll Reference
Manual). Make a collection of the first three yachts with no listed price. Display
the CURRENT collection, modify the PRICE to $30,000, display the results of
the change, and change the price back to zero using a different form of the
MODIFY ALL statement:

DTR> FIND FIRST 3 YACHTS WITH PRICE om
[3 reeD rds found]
DTR> PRINT ALLm

LENGTH
Ot.IER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

BLOCK I + ao SLOOP 38 18,500 12
BUCCANEER 270 SLOOP 27 5,000 08
BUCCANEER 320 SLOOP 32 12,500 10

DTR> MODIFY ALL PRICEm
Enter PRICE: 30,00000
DTR> PRINT ALLm

LENGTH
Ot.lER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

BLOCK I + ao SLOOP 38 18,500 12 $30,000
BUCCANEER 270 SLOOP 27 5,000 08 $30,000
BUCCANEER 320 SLOOP 32 12,500 10 $30,000

DTR> MODIFY ALL USING PRICE = 0; PRINT ALLm

LENGTH
Ot.IER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

BLOCK I + ao SLOOP 38 18,500 12
BUCCANEER 270 SLOOP 27 5,000 08
BUCCANEER 320 SLOOP 32 12,500 10

DTR>

A.2.3 The OF rse Clause and Target Record Streams

The OF rse clause in a PRINT, ERASE, or MODIFY statement lets you create a
new context for that statement. The OF rse clause specifies a target record
stream that overrides any context established for your existing collections. For
each such clause, DATATRIEVE puts a new block on the context stack. When
DATATRIEVE completes execution of the statement, it removes that block from
the context stack.

Name Recognition and Single Record Context A-21

The following example contrasts the effect of PRINT, PRINT ALL, and PRINT
OF rse. (When the PRINT statement does not include a list of fields, you can
omit the OF from the statement.) The record selection expression here is FIRST
3 YACHTS WITH PRICE = O. This RSE identifies a new target record stream
for the PRINT statement that overrides the CURRENT collection as a target "
record stream. It also overrides the single record context of the selected record in
the CURRENT collection:

DTR> FIND FIRST 3 YACHTS(BTIJ
[3 records found]
DTR> SELECT; PRINT(BTIJ

LENGTH
OIJER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK I I KETCH 37 20,000 12 $36,851

DTR> PRINT ALL(BTIJ

LENGTH
OI.'ER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK I I KETCH 37 20,000 12 $36,851
ALBIN 78 SLOOP 26 a,200 10 $17,800
ALBIN BALLAD SLOOP 30 7,276 10 $27,500

DTR> PRINT FIRST 3 YACHTS WITH PRICE O(BTIJ

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

BLOCK I • ao SLOOP 38 18,500 12
BUCCANEER 270 SLOOP 27 5,000 08
BUCCANEER 320 SLOOP 32 12,500 10

DTR>

To reduce the risk to your data, DATATRIEVE forces you to include both
keywords ALL and OF when using the OF rse clause in MODIFY and ERASE
statements. Although the results are not shown here, you must type MODIFY
and ERASE statements to resemble the following examples. The record selection
expression used in these statements is PHONES WITH DEPT = "32T":

DTR> MODIFY ALL OF PHONES WITH DEPT = 132T"

DTR> MODIFY ALL DEPT OF PHONES WITH DEPT = 132T"

DTR> MODIFY ALL USING DEPT = _*."NEW DEPT" OF PHONES WITH DEPT 132T"

DTR> ERASE ALL OF PHONES WITH DEPT = 132T"

A-22 Name Recognition and Single Record Context

Unless you include an assignment statement in the USING clause ofa MODIFY
statement, DATATRIEVE prompts you once to supply a value for each elemen
tary field specified or implied in the statement. After you respond to the last of
the prompts, DATATRIEVE begins to change each of the records in the
CURRENT collection to correspond to the values you supplied to the prompts.
You can prevent any changes from taking effect by entering CTRL/Z when
responding to any of the prompts.

A.2.4 FOR Statements and Target Record Streams

You can use FOR statements to create target record streams for the
DATATRIEVE statements that use single record context. Using FOR loops has
an advantage over using target record streams formed by the OF rse clause and
the target record stream formed of the CURRENT collection by the keyword
ALL. The FOR statement lets you work with each record individually; you do not
have to perform the same operation on all target records. By putting STORE and
MODIFY statements and prompting value expressions in a FOR loop, you can
act on each member of a record stream or collection one at a time.

When you put a MODIFY statement in a FOR statement, DATATRIEVE
prompts you once for each field in the record if you do not specify a field list or a
USING clause in the MODIFY statement.

This FOR statement creates a record stream of boats that have no price listed.
The MODIFY statement prompts you to supply a price for each record in the
record stream. You can put a unique value in the PRICE field for each boat:

DTR>READY YACHTS MODIFY(@)
DTR>FOR YACHTS WITH PRICE 0 MODIFY PRICE(@)
En t e r PR I CE: i2900(@)
En t e r PR I CE: i5S00(@)
Enter PRICE:

DTR>

Another valuable feature of FOR loops is the complex relationships you create
between record streams when you include one FOR loop inside another. Each
FOR statement puts a block on the context stack. As a result, you can use the·
context mechanism to transfer values between records.

By putting a MODIFY statement inside two FOR statements, you can automati
cally update master records with the data from periodic transaction records:

DTR> FOR A IN DAILY_TRANSACTIONS(@)
CON> FOR B IN MASTER_DATA WITH B.ACCOUNT = A.ACCOUNT(@)
CON>
CON>
CON>
CON>
CON>
CON>
DTR>

MODIFY USING(@)
BEGIN(@)

MASTER_BAL
TOT_WITHDRAW
TOT_DEPOSIT

END(@)

MASTER_BAL WITHDRAW + DEPOSIT(@)
TOT_WITHDRAW + WITHDRAW(@)
TOT_DEPOSIT + DEPOSIT(@)

Name Recognition and Single Record Context A-23

The Boolean expression in this example limits the record stream for the inner
FOR statement to one record.

You can also create nested FOR statements in which DATATRIEVE executes a
series of statements at each level of nesting. For each owner record in the next
example, DATATRIEVE asks you if you want to modify the SPECS of every boat
in the YACHTS inventory built by the manufacturer of the the owner's boat. The
third time through the outer loop, DATATRIEVE again begins the cycle of
prompting for the boats by Albin because the third person in the OWNERS
domain also owns a boat by Albin. Notice that the record changed during the
second loop appears during the third:

DTR>SET NO PROMPT®m
DTR>FOR OWNERS®m
CON>BEGIN®m
CON> PRINT SKIPt BUILDERt SKIP®m
CON> FOR YACHTS WITH BOAT.BUILDER = OWNER.BUILDER®m
CON> BEGIN®m
CON> PRINT SPECS®m
CON> IF *."DO YOU WANT TO CHANGE THIS" CONT lIylI®m
CON> THEN MODIFY SPECS®m
CON> END®m
CON>END

BUILDER

ALBERG

LENGTH
Ot..IER

RIG ALL WEIGHT BEAM PRICE

KETCH 37 20tOOO 12 $36tOOO
Enter DO YOU WANT TO CHANGE THIS: N®m

ALBIN

SLOOP 26 at200 10 $17t800
Enter DO YOU WANT TO CHANGE THIS: N®m
SLOOP 30 7t276 10 $27t500
Enter DO YOU WANT TO CHANGE THIS: N®m
SLOOP 27 5t070 08 $18t600
Enter DO YOU WANT TO CHANGE THIS: y®m
Enter RIG: KETCH®m
Enter LENGTH_OI.IER_ALL: 35®m It

Enter DISPLACEMENT: 17000®m
Enter BEAM: 12®m
Enter PRICE: 33000®m

A-24 Name Recognition and Single Record Context

(continued on next page)

ALBIN

SLOOP 26 at200 10 $17t800
Enter DO YOU WANT TO CHANGE THIS: N(@)
SLOOP 30 7t276 10 $27t500
Enter DO YOU WANT TO CHANGE THIS: N(@)
KETCH 35 17tOOO 12 $33tOOO
Enter DO YOU WANT TO CHANGE THIS: N(@)

C&C

SLOOP 31 8t650 08
Enter DO YOU WANT TO CHANGE THIS: ..• ...,

L..

Execution terlrlinated b }' operator
DTR)

Name Recognition and Single Record Context A-25

A
ABORT statement

in command file, 10-5
Aborting procedures, 9-12 to 9-13
Access control list

adding entries to, 19-11
contents, 19-1 to 19-6
control (C) privilege, 20-2
creating, 19-6 to 19-7
deleting entries, 19-11
displaying, 19-10,20-2
execute (E) privilege, 20-2
key, 19-1 to 19-6
lock type, 19-1 to 19-6
maintaining, 19-9 to 19-11, 20-6
modify (M) privilege, 20-2
privileges, 19-4 to 19-6
processing, 19-7 to 19-9
protecting data, 19-1
read (R) privilege, 20-2
sample, 19-1F
sequence number, 19-1 to 19-6
write (W) privilege, 20-2

ACL
See Access control list

ADT
See Application Design Tool

ADT command, 10-3
ADVANCED HELP command, 2-7
ALLOCATION clause, 6-6
Alphanumeric fields, 5-10
AND Boolean operator, 7-8
Application Design Tool, 4-1

defining records, 5-1

Arguments
in procedures, 9-4 to 9-5

Assignment statement, 11-2
AT (@) sign

executing command files, 5-3

B
BEGIN-END statement, 8-3 to 8-6
BETWEEN relational operator, 7-6
Boolean expressions

compound, 7-8 to 7-9
Boolean operators, 7-8
Brackets []

used as syntax prompts, 2-5
BUT Boolean operator, 7-8

c
Call Interface, 1-6
Case sensitivity

with relational operators, 7-5
CHANGE, 6-8
Clauses

in procedures, 9-4 to 9-5
Colon (:)

using to invoke procedures, 1-4
Column-page setting

See SET COLUMNSYAGE command
Command files, 1-4, 10-1 to 10-9

aborting, 10-5
comments, 10-3
compared with procedures, 10-1
contents, 10-3

Index

Index-1

Command files (cont.)
creating, 10-2
editing, 10-5
editing with, 16-1
in FOR and REPEAT statements, 10-8
invocation command lines, 10-4
invoking, 10-3 to 10-5
maintaining, 10-8 to 10-9
nesting, 10-7 to 10-8
restrictions on invoking, 10-4 to 10-5
sample, 10-6 to 10-7
SET ABORT/SET NO ABORT, 10-5
uses, 10-1

Commands and statements, 1-3 to 1-4
in procedures, 9-4
in QUERY.INI file, 2-2

Compound statements, 1-4,8-1 to 8-6
BEGIN-END, 8-4 to 8-6

IF-THEN-ELSE in, 8-5
in REPEAT, 8-6
in STORE, 8-5 to 8-6

FOR in, 8-3 to 8-4
BEGIN-END, 8-4

REPEAT in, 8-1 to 8-3
Compressing data dictionary, 20-4 to 20-6
COMPUTED BY clause, 5-1
Computed by clause, 5-11
CON> prompt, 2-4
Conserving memory

See Optimizing workspace
CONTAINING relational operator, 7-5
Context, A-I

establishing, A-I to A-14
Context block

content of, A-2 to A-4
existing collections, A-4 to A-6
global variables, A-4
record streams, A-5 to A-7

Context stack, A-2 to A-8
lasting changes, A-6
left

assignment statements, A-II
Context variables, A-8 to A-II

field name qualifiers, A-8
with MODIFY statement, A-13
with STORE statement, A-13

Controlling output, 18-1 to 18-5
column width, 18-1 to 18-4

Corruption of data
protection against, 19-1

CREATE DICTIONARY command, 20-1
CTRL/C, 2-6
CTRL/Z

exiting from DATATRIEVE, 2-6

Index-2

CURRENT
as target record stream, A-20 to A-21

D
Data dictionary, 1-3

access privileges, 20-2
changing, 3-2 to 3-3
contents, 3-1 to 3-2
creating, 2-2, 3-2
default extension (.DIC), 3-2
deleting definitions in, 20-4
determining size of, 20-4
displaying, 3-3, 20-2
editing definitions, 20-1
extracting from, 20-6 to 20-7
function, 3-1
maintaining, 20-1 to 20-7
modifying, 20-2 to 20-4
objects, 20-1
optimizing disk storage, 20-4 to 20-6
QCPRS utility, 20-4
security, 19-1 to 19-11
setting, 3-3
transferring definitions, 20-1

DATATRIEVE
components, 1-5 to 1-7
concepts and terms, 1-1 to 1-4

Date fields, 5-11
DDMF

See Distributed Server
DECLARE statement, 1-3

variable-name, 11-1
Declaring variables, 11-1
Default dictionary

QUERY.DIC, 20-1
DEFINE command, 1-3
DEFINE DICTIONARY command, 3-2 to 3-3
DEFINE DOMAIN command, 1-2,4-1 to 4-2

entered interactively, 5-2
optional password, 4-2
syntax, 4-2
terminated by semicolon, 4-2
usage rules, 4-2

DEFINE FILE command, 1-2,6-3 to 6-8
optional clauses, 6-6 to 6-8
syntax, 6-3
used with sequential files, 6-4

DEFINE PROCEDURE command, 1-4,9-2
DEFINE RECORD command

advantage over ADT, 5-1
DEFINE TABLE command, 12-3
DEFINEP command, 1-3

Defining
alternate keys, 6-5
domains, 1-2,4-1 to 4-3
records, 5-1 to 5-18

DELETE command, 1-3, 16-5 to 16-6
removing data dictionary definition, 20-4
terminated by semicolon, 20-4

DELETEP command, 1-3
DFN> prompt, 2-4
Dictionary

See Data dictionary
Dictionary objects

controlling access to, 19-1 to 19-11
Dictionary tables

See Tables
Disk space

conserving with QCPRS utility, 20-4 to 20-6
Displaying

established collections, 20-2
readied domains, 20-2

Distributed Server
function and use of, 1-5 to 1-7

Domains
access all records, 7-2
defining, 1-2,3-1,4-1 to 4-3
restructuring, 15-1 to 15-9

examples, 15-2 to 15-9
rules for naming, 4-1
sample, 2-2
views, 13-1 to 13-9

defining, 13-2
DROP statement, 1-3
DTR. TSK, 1-5
DTR> prompt, 2-4
DUP, 6-8

E
EDIT command, 1-3, 10-3
EDIT_STRING clause

in field definition, 5-4
Editor, 16-1 to 16-14

changing record definitions, 5-3
commands, 16-4 to 16-12
DELETE command, 16-5 to 16-6
editing procedures, 9-14
EXIT command, 16-6
INSERT command, 16-6 to 16-8
invoking, 16-1 to 16-2
line pointer, 16-2
modes, 16-2
QED> prompt, 16-3 to 16-14
QUIT command, 16-8
range specifiers, 16-3 to 16-4

Editor (cont.)
REPLACE command, 16-9 to 16-10
sample editing session, 16-13 to 16-14
SUBSTITUTE command, 16-10 to 16-11
TYPE command, 16-11 to 16-12

Elementary fields
defined, 5-5 to 5-6

EMPLOYEE_REC
valid field names, 5-7F

END-PROCEDURE clause, 9-2
END-REPORTstatement (Report Writer), 2-4
END_TABLE clause, 12-3
EQUAL relational operator, 7-4
ERASE statement, 1-3

restrictions, 6-2
Error messages, 2-5

incorrectly named fields, 5-6
located by a procedure, 9-6 to 9-7

EXIT command, 1-3,2-6,16-6
Exiting DATATRIEVE, 2-6
EXTRACT command, 1-3, 9-14, 20-3

copying record definitions, 5-3

F
FAMILIES sample domain, 2-2

using list field, 5-13
using SHOWP, 20-2

Field definitions, 5-3 to 5-12
clauses, 5-10 to 5-12
clauses in, 1-2
EDIT_STRING clause, 5-4
elementary fields, 5-5 to 5-6
group fields, 5-5 to 5-6
level numbers, 5-4 to 5-6
naming fields, 5-6
PICTURE clause, 5-4
rules for writing, 5-3 to 5-12
terminated by period (.),5-4
valid field names, 5-7F

Field names
duplicate, 5-7 to 5-8
FILLER, 5-8 to 5-9
restrictions, 5-6 to 5-7
use of hyphens or underscores, 1-2

Fields
alphanumeric, 5-10
Computed by, 5-11
date, 5-11
definition clauses, 5-10 to 5-12

PICTURE, 5-10
USAGE, 5-11 to 5-12

elementary and group, 1-2
list, 5-13

Index-3

Fields (cont.)
naming, 5-6
numeric, 5-11
specifying types of data, 5-10 to 5-12

Files
changing structure of, 15-1 to 15-9
comparison of sequential and indexed, 6-2T
defining, 1-2,6-1 to 6-8
indexed, 6-1 to 6-8

criteria for using, 6-2
defining, 6-4

sequential, 6-1 to 6-7
criteria for using, 6-2
defining, 6-3 to 6-4

FILLER fields
as group field name, 5-9

FIND statement, 1-3
FINISH command, 1-3
FIRST n clause

in RSE, 7-3
Flat records, 5-14F
FOR statement, 8-3

creating target record streams, A-23 to A-25
FROM clause, 13-2

G
Global variables, 11-4

named in context block, A-4
GREATER~QUAL relational operator, 7-6
GREATER_THAN relational operator, 7-6
Group fields

as primary key, 6-5
defined, 5-5 to 5-6
using FILLER field, 5-9

Guide mode, 2-3, 2-8
invoking, 2-8
using a question mark (?), 2-8

H
HELP command, 1-3, 2-6 to 2-7

ADVANCED HELP, 2-7
Hierarchies, 14-1 to 14-12

defining, 5-13 to 5-18
eliminating empty print lines, 14-9
retrieving values

sublists, 14-11 to 14-12
using ALL in nested print lists, 14-5
using FIND and SELECT statements,

14-3
using nested RSEs, 14-9
using OF rse clause, 14-5
with nested FOR loops, 14-9

Index-4

Hierarchies (cont.)
saving space, 5-13
using, 5-14 to 5-18

Hyphen (-)
continuation character, 5-6
conversion to underscore (_), 1-2,4-1
in record name, 5-3

IF-THEN-ELSE statement, 8-5
IN relational operator, 12-5
Indexed files, 6-1 to 6-8

compared with sequential, 6-2T
compressing, 20-6
defining, 6-4
multi key, 6-3
optimizing storage, 20-6

Input line prompt, 2-4
INSERT command, 16-6 to 16-8
Installation kit, 2-2
Interactive DATATRIEVE, 1-5
Invoking

DATATRIEVE, 2-1 to 2-2

K
KEY clause, 6-4
Keys

L

accessing dictionary objects, 19-2
defining alternate keys, 6-5
defining key fields

rules for, 6-6

LESS~QUAL relational operator, 7-6
LESS_THAN relational operator, 7-6
Line pointer, 16-2
Lists

changing length of, 5-18
defining fixed occurrences, 5-15 to 5-16
defining variable occurrences, 5-16 to 5-17
defining with OCCURS clause, 5-13 to 5-18
nesting to form sublists, 5-17

Lists, in records
See Hierarchies

Local variables, 11-4 to 11-5
effect on context stack, A-7

Lock types, 19-2

M
MAX clause, 5-18, 6-7
Memory, conserving

See Optimizing workspace
MODIFY statement, 1-3, 2-5

changing fields, 6-2

N
NO CHANGE, 6-8
NO DUP, 6-8
NOT Boolean operator, 7-8
NOT EQUAL relational operator, 7-4
NOT IN relational operator, 12-5
Numeric fields, 5-11

o
OCCURS clause, 5-13 to 5-18

changing list length, 5-18
defining hierarchical records, 5-14
fixed number of occurrences, 5-15 to 5-16
variable number of occurrences, 5-16 to 5-17

OCCURS FOR clause, 13-2
OF rse clause

targeting record streams, A-2l to A-23
Operating systems

for DATATRIEVE, 1-1
Optimizing

response time, 17-6 to 17-9
with keyed access, 17-6 to 17-9
workspace, 17-5

OR Boolean operator, 7-8
Output

controlling, 18-1 to 18-5
default settings, 18-1

OWNERS sample domain, 2-2

p
Passwords

keys, 19-2
Period

in field definition, 5-4
PERSONNEL sample domain, 2-2, 2-3

record data items, 5-2F
PERSONNEL-REC

record level numbers, 5-4
sample record definition, 5-2F

PICTURE clause, 5-10
in field definition, 5-4

Pool space
See Workspace

PRINT statement, 1-3
lists, 14-9
retrieving data, 2-3

Privileges
assigning, 19-10

Procedures, 1-4, 9-1 to 9-16
aborting, 9-12 to 9-13
comments in, 9-5
compared with command files, 10-1
contents, 3-1,9-3 to 9-5
defining, 9-1 to 9-2
deleting, 9-15 to 9-16
displaying, 9-14
editing, 9-14 to 9-15
in compound statements, 9-10 to 9-12
invoking, 9-2 to 9-3
locating errors, 9-5 to 9-7
maintaining, 9-13 to 9-16
nesting, 9-8 to 9-10
samples, 9-7 to 9-8
SET ABORT/SET NO ABORT, 9-12 to 9-13

Prompting value expressions
for storing and modifying values, 2-5

Prompts
CON>, 2-4
DFN>, 2-4
DTR>,2-4
RW>, 2-4
syntax, 2-5

Protecting dictionary tables, 12-9

Q
QCPRS utility

conserving disk space, 20-4 to 20-6
data dictionary compression, 20-4
defaults, 20-5
improving performance, 20-4
invoked by Digital Command Language,

20-5
QED> prompt, 16-3 to 16-14
Query names

specifying, 5-12
QUERY.DIC default dictionary, 20-1
QUERY.INI file, 2-2

sample, 2-3
SET DICTIONARY in, 2-3
SET GUIDE in, 2-3

QUERY -HEADER clause, 5-10
QUERY~AME clause, 5-10
Question mark (?)

used in Guide mode, 2-8
QUIT command, 16-8

Index-5

QXTR utility, 20-6 to 20-7

R

creating command files, 20-6
transferring data dictionary objects, 20-6

READY command
gaining access to domains, 1-3
retrieving data, 2-3

Record definition
changing, 15-1 to 15-9
contents, 3-1
field definitions within, 5-3 to 5-12
steps in writing, 5-1 to 5-18
using OCCURS clause, 5-14
VALID IF clause, A-8

Record selection expression, 7-1 to 7-10
accessing records, 7-2
ALL clause, 7-2
Boolean expressions, 7-4 to 7-6
definition, 7-1
FIRST n clause, 7-1 to 7-3
limiting the number, 7-3
retrieving field values, 5-8
SORTED BY clause, 7-1, 7-9 to 7-10
tables, 7-7
WITH clause, 7-1, 7-4 to 7-9

record selection expression
tables, 12-5

Record stream, 7-1
sorting

by field values, 7-9 to 7-10
Record streams

context block, A-5 to A-7
Records

comparing, 7-4 to 7-6
defining, 1-2, 5-1 to 5-18

field definitions within, 5-3 to 5-12
field level numbers, 5-4 to 5-6
specifying names, 5-2 to 5-3
with variable length list, 5-16 to 5-17

deleting, 6-2
example data items, 5-2F
fiat,5-14F
grouping

by table reference, 7-7
in range of values, 7-6 to 7-7

hierarchical, 5-14 to 5-18
limiting access, 13-3
limiting fields in a, 13-3
modifying, 6-2
rules for naming, 5-3
sample definition, 5-2F

Index-6

Records (cont.)
selecting

conditional expressions, 7-4
REDEFINE command

changing domain definitions, 15-2 to 15-9
REDEFINES clause, 5-10
Relational operators, 7-4 to 7-8

summary of, 7 -7T
RELEASE command, 1-3
Remote Terminal Interface, 1-6 to 1-7
REPEAT statement, 8-1 to 8-3
REPLACE command, 16-9 to 16-10
REPORT statement, 1-3

retrieving data, 2-3 to 2-4
Response time

reducing with QCPRS utility, 20-4
Restructuring domains

examples, 15-1 to 15-9
Retrieving data, 2-3 to 2-4
RMS facility

capabilities, 6-1 to 6-3
RSE

See Record selection expression
RW> prompt, 2-4

s
Sample editing session, 16-13 to 16-14
Security

dictionary definitions, 19-1 to 19-11
Semicolon

with DEFINE DOMAIN command, 4-2
with DELETE command, 20-4

Sequence numbers, 19-2
Sequential files, 6-1 to 6-7

compared with indexed, 6-2T
defining, 6-3 to 6-4

SET ABORT command, 10-5, 18-4
effect on ABORT statement, 18-4

SET COLUMNS_PAGE command, 18-1 to
18-4

SET command
terminal control, 1-3

SET DICTIONARY command, 3-3
in QUERY.INI file, 2-3

SET GUIDE command, 2-8, 10-3
in QUERY.INI file, 2-3

SET NO ABORT command, 10-5
SET PROMPT command, 18-4 to 18-5
SET TERMINAL command, 18-1
SHOW ALL command, 20-2
SHOW command, 1-3,2-2

with domains, 4-3

SHOW DICTIONARY command, 3-2 to 3-3
SHOW TABLES command, 12-7
SHOWP command, 1-3
SIGN clause, 5-10
Single record context, A-14
SORT statement, 1-3
SORTED BY clause, 7-9 to 7-10
Specifying domain names

DEFIN.E DOMAIN command, 4-1 to 4-2
Startup banner, 2-1
Statements

See Commands and statements
STORE statement, 1-3,2-5
Sub lists , 5-17
. retrieving values, 14-11 to 14-12
SUBSTITUTE command, 16-10 to 16-11
SUM statement, 1-3
SUPERSEDE clause, 6-7
System security

using access control lists, 19-1 to 19-11

T
Tables, 12-1 to 12-9

and workspace, 12-7
code/translation strings, 1-4, 12-1 to 12-6
creating, 12-3 to 12-4
defining, 3-1
defining and using, 12-4
deleting, 12-9
displaying, 12-7
displaying contents, 12-7 to 12-8
editing, 12-3 to 12-4, 12-8
functions and uses of, 1-4
!F-THEN-ELSE statement, 12-5 to 12-6
In a record selection expression, 12-5
maintaining, 12-9
protecting, 12-9
sample, 12-1 to 12-2
using IN relational operator, 12-4
VALID IF clause, 12-6
validating data, 12-6
VIA value expression, 12-6 to 12-7
WITH in, 12-5

Task size, reducing
See Optimizing workspace

TYPE command, 16-11 to 16-12

U
UIC

See User identification code
Underscore (_), 1~2, 4-1

in record name, 5-3
USAGE clause, 5-10, 5-11 to 5-12
User identification code, 3-3

keys, 19-2 to 19-3

v
VALID IF clause, 5-10

in record definition, A-8
Variables, 11-1 to 11-9

as counters, 11-6 to 11-9
declaring, 11-1
global, 11-4
local, 11-4 to 11-5
storing values, 11-2 to 11-6

VERIFY clause
in STORE statement, A-8

VIA value expression, 12-6 to 12-7
View domains, 13-1 to 13-9

combining data, 13-4 to 13-5
containing a list, 13-7 to 13-9
defining, 13-2
limiting record access, 13-3
using, 13-6 to 13-9

w
WHILE statement, 11-9
Workspace, 12-7

v

defined, 17-1
optimizing use of, 17-5

YACHTS sample domain, 2-2, 2-4
access all records, 7-2
comparing records, 7-4 to 7-6
SET COLUMNS-PAGE command

18-2 to 18-4 '

Index-7

How to Order Additional Documentation

If you live in:

New Hampshire,
Alaska

Continental USA,
Puerto Rico, Hawaii

Canada
(Ottawa-Hull)

Canada
(British Columbia)

Canada
(All other)

All other areas

Call:

603-884-6660

1-800-258-1710

613-234-7726

1-800-267-6146

112-800-267 -6146

or Write:

Digital Equipment Corp.
P.O. Box CS2008
Nashua, NH 03061-2698

Same as above.

Digital Equipment Corp.
940 Belfast Road
Ottawa, Ontario K1G 4C2
Attn: P&SG Business
Manager or approved
distributor

Same as above.

Same as above.

Digital Equipment Corp.
Peripherals & Supplies
Centers
P&SG Business Manager
c/o DIGITAL's local
subsidiary

Note: Place prepaid orders from Puerto Rico with the local DIGITAL subsid
iary (phone 809-754-7575).

Place internal orders with the Software Distribution Center, Digital Drive,
Westminster, MA 01473-0471.

Reader's Comments DATATRIEVE-11
User's Guide

AA-X023B-TK

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) 0
Completeness (enough information) 0
Clarity (easy to understand) 0
Organization (structure of subject matter) 0
Figures (useful) 0
Examples (useful) 0
Index (ability to find topic) 0
Page layout (easy to find information) 0

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Dept.

Date

Phone

- Do Not Tear - Fold Here and Tape

-------------------n-llr-------;~;;~---

- Do Not Tear - Fold Here

II if Mailed

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

11111. 1111. 11.11 .11 •• 111.11.111 1.111 1 •• 1. 1 ••• 1.1111 I

in the
United States

;

Reader's Comments DATATRIEVE-11
User's Guide

AA-X023B-TK

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) 0
Completeness (enough information) 0
Clarity (easy to understand) 0
Organization (structure of subject matter) 0
Figures (useful) 0
Examples (useful) 0
Index (ability to find topic) 0
Page layout (easy to find information) 0

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Dept.

Date

Phone

- Do Not Tear - Fold Here and Tape

-------------------n-llr-------;~;;~---

- Do Not Tear - Fold Here

II if Mailed

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

11111.1111.1111 •• 11111.1.11.1 .. 1.1111 •• 1. 1 ••• 1.1111 I

in the
United States

