
MU BASIC/RT-11
User's- Manual

DEC-11-LlBRA-A-D

MU BASIC/RT-ll V~l-~l

Order additional copies as directed on the Software
Information page at the back of this document.

digital equipment corporation · maynard. massachusetts

First Printing, May 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright 0 1975 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAlO QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS
DDT FLIP CHIP LAB-K RSX
DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 OS/8 RT-ll
DECTAPE IDAC PDP SABR
OIBOL IDACS PHA TYPESET 8

UNIBUS

ii

PREFACE

CHAPTER 1

1.1

1.1.1

1.1.2

1.1.3

1.2

1.3

1.4

CHAPTER 2

2.1

2.2
') ') 1
L.. • L. • .J..

2.2.2

2.3

2.4

2.5

2.5.1

2.5.1.1

2.5.1.2

2.5.2

2.5.3

2.5.4

CHAPTER 3

3.1

3.2

3.3

3.3.1

3.3. 2

3.3.3

3.4

3.4.1

3.4.2

CONTENTS

INTRODUCTION

GETTING STARTED

Getting Started on Systems With the HELLO
Feature

Getting Started on Systems Without the
HELLO Feature

Terminating the Session - the BYE Command

RESTRICTED OPERATIONS

ENHANCEMENTS TO BASIC-II

ASSEMBLY LANGUAGE ROUTINES

INPUT AND OUTPUT

MU BASIC/RT-ll FILES

FILE DESCRIPTOR

File Classes

Filename and Extension

FILE PROTECTION SYSTEM

BASIC PROGRAMS IN FILES -- UNSAVE CON~1AND

DATA FILES

Sequential Data Files

Sequential Files on Magtape and Cassette

Nonfile-Structured OPEN Statement

Virtual Array Files

File Deletion and Renaming

Sirultaneous File Updati~g Restrictions

SYSTEM COMMANDS AND FUNCTIONS

ASSIGNING DEVICES

LENGTH COMMAND

TEP~INAL CEARACTERISTICS

Stopping Output to Terminal

Using the Low-Speed Paper Tape Reader/Punc~

SET TTY Command

SYSTEM FUNCTION CALLS

System Function ~ - Disabling CTRL/O

System Functions 1, 2, and 3 - Using the
Low-Speed Paper Tape Reader/Punch

iii

vii

1-1

1-1

1-1

1-3
1-3

1-3

1-4

1-5

1-7

2-1

2-1

2-2

2-3

2-4

2-8

2-10

2-11

2-11

2-16

2-19

2-19

2-25

2-26

3-1

3-1

3-3

3-5

3-6

3-7

3-8

3-9

3-11

3-11

3.4.3

3.4.4

3.4.5

3.4.6

3.4.7

3.4.8

3.4.9

3.4.10

CHAPTER 4

APPENDIX A

APPENDIX B

APPENDIX

APPENDIX

INDEX

B.l

B.2

B.3

B.4

C

C.l

C.2

C.3

C.4

D

System Function 4 - Single Character
Input Mode

System Function 5 - Return to READY

System Function 6 - Terminal Margin

System Functions 7 and 8 - CTRL/C Disable

System Function -1 - Set User ID

System Function -2 - Clear Privileged Status

System Function -3 - Return to RT-ll Monitor

System Function -4 - Return Privilege Status

ERROR MESSAGES

ASCII CHARACTER SET

SUMMARY OF BASIC STATEMENTS, FUNCTIONS, AND
COMMANDS

DOCUMENTATION CONVENTIONS

SUMMARY OF BASIC STATEMENTS

SUMMARY OF BASIC FUNCTIONS

SUMMARY OF BASIC COMMANDS

3-12

3-13

3-14

3-16

3-16

3-17

3-17
3-18

4-1

A-I

B-1

B-1

B-3

B-6

B-8

VIRTUAL ARRAY FACILITY C-l

ARRAY STORAGE C-2

TRANSLATION OF ARRAY SUBSCRIPTS INTO FILE
ADDRESSES C-3

ACCESS TO DATA IN VIRTUAL ARRAYS C-4

ALLOCATING DISK STORAGE TO VIRTUAL FILES C-4

MU BASIC/RT-ll PROGRAH STRUCTURE D-l

INDEX-l

iv

Table
Number

1-1

1-2

1-3

2-1

2-2

3-1

4-1

4-2

A-I

B-1

B-2

C-l

D-l

D-2

Figure
Number

3-1

C-l

TABLES

Enhancements to BASIC-II Commands

Enhancements to BASIC-II Statements

Enhancements to BASIC-II Functions

Device Name Abbreviations

Storage Requirements of Virtual Arrays

Summary of System Function Calls

BASIC Error Messages

Error Conditions in BASIC Functions

ASCII Character Set

Documentation Conventions

Lower Case Words Used in Format Descriptions

Virtual Array Storage Capabilities

Parameters in Memory Storage of BASIC
Programs

Standard File Buffer Sizes

FIGURES

possible States for Nonpublic Devices

Virtual Array Accessing Algorithm

v

Page

1-6

1-7

1-7

2-3

2-22

3-10

4-2

4-11

A-2

B-1

B-2

C-3

D-2

D-5

Page

3-2

C-5

PREFACE

This manual describes the features of the MU BASIC/RT-ll system and

the enhancements made to the BASIC-ll language for this system.

BASIC-ll is DIGITAL's name for a family of BASIC l systems on the

PDP-ll. The reader is assumed to be familiar with the BASIC-II

Language Reference Manual (DEC-ll-LIBBA-A-D), which describes the

features common to all versions of BASIC-ll.

All users of an MU BASIC/RT-ll system should read this manual. Chap­

ter 1 provides an introduction to the system and summarizes the

enhancements of BASIC-ll. Chapter 2 describes file manipulation and

the input and output features available. Special system functions and

commands are described in Chapter 3. Error messages are listed in

Chapter 4. Appendix A lists the standard ASCII (kTLerican Standard

Code for Information Interchange) characters. Appendix B contains

a complete summary of all statements, functions, and commands.

Appendix C describes the virtual array capability. The documentation

conventions used in this manual are described in Appendix B.

This manual assumes that the MU BASIC/RT-ll system is operational.

The information to start and maintain an MU BASIC/RT-ll system can be

found in the MU BASIC/RT-ll System Installation Guide (DEC-II-LIBMA-A-D),

but users who interface only with a working MU BASIC/RT-ll system do

not need access to this guide.

IBASIC is a registered trademark of the Trustees of Dartmouth College.

vii

CHAPTER 1

INTRODUCTION

MU BASIC/RT-ll is a multiuser BASIC-II system, capable of accommodat­

ing up to eight users simultaneously. Each user independently creates

and executes BASIC-II programs. All the features of the MU BASIC/RT-ll

system, including statements, commands, functions, and immediate mode,

are available to all users.

MU BASIC/RT-ll runs under the RT-ll monitor. Users can access any

RT-ll-supported device, including disk, DECtape, magtape, cassette,

card reader, high-speed paper tape reader/punch, and line printer.

Throughout this manual the term BASIC refers to both the BASIC-II lan­

guage and to the MU BASIC/RT-ll System.

1.1 GETTING STARTED

To get started on an MU BASIC/RT-ll system it is first necessary to

determine whether the system includes the HELLO feature. The HELLO

feature restricts access to the system to authorized users.

See the system manager of your installation to determine whether the

HELLO feature is present. If the HELLO feature is not present, go to

section 1.1.2.

1.1.1 Getting Started on Systems with the HELLO Feature

To get started with BASIC, it is necessary to get a user 1D and a pass­

word from the system manager. Without a user 1D and a password, it is

1-1

Introduction

impossible to run any BASIC programs. The user ID is a 2-character

alphanumeric code. For example:

F7

A password can be up to six characters long. For example:

PASED

The combination of valid user ID and password allows access to the

system.

When the BASIC system has been started by the system manager, it prints

on all terminals:

MU BASIC/RT-ll IS ON THE AIR:

PLEASE SAY HELLO

The log-on procedure is the method by which a user gains access to the

BASIC system. To log on, type HELLO and press the RETURN key. If

anything not beginning with the letter "H" is typed, BASIC prints:

PLEASE SAY HELLO

After HELLO has been typed, BASIC prints:

USERID:

Type your user ID and press the RETURN key. BASIC then prints:

PASSWORD:

Type the password assigned and press the RETURN key. The characters

that are typed are not displayed on the terminal. This ensures the

privacy of the user ID-password combination.

If the user ID and password entered are not valid, BASIC prints:

INVALID ENTRY -- TRY AGAIN

USERID:

1-2

Introduction

If this message appears, the user ID and password must be reentered.

This message is often caused by typing errors.

If the user ID and password are valid, BASIC prints an informational

message. For example:

WELCOME TO MU BASIC/RT-ll

Then BASIC prints:

READY

This indicates that the user may enter any BASIC command, immediate

mode statement, or program line. To terminate the session, use the

BYE command (see section 1.1.3) .

The CTRL/O key command terminates output
to the terminal and can be used during
the log-on procedure to avoid the print­
ing of the informational message.

1.1.2 Getting Started on Systems Without the HELLO Feature

When the BASIC system has been started by the system manager, it prints

on all terminals:

READY

This indicates that the user may enter any BASIC command, immediate

mode statement, or program line. The user ID of all users is AS and

all users are privileged (see section 1.2). The HELLO command is not

recognized and produces a ?SYN (SYNTAX) error message.

To terminate the session, use the BYE command (see section 1.1.3).

1.1.3 Terminating the Session - the BYE Command

To terminate a session at the terminal, type

BYE

1-3

Introduction

and press the RETURN key. The BYE command deletes the current user's

program and deassigns all devices assigned to the current user.

On systems with the HELLO feature, BYE prints a message and then ini­

tiates the log-on procedure. The message is:

USERID xx LOGGED OFF ~- GOODBYE

PLEASE SAY HELLO

where xx is the user ID of the current user.

On systems without the HELLO feature, BYE causes BASIC to print the

READY message.

1.2 RESTRICTED OPERATIONS

Certain operations are restricted, to prevent one user from interfer­

ing with other users' programs and files. Some operations are not

allowed for any user, while other operations allowed for a privileged

user are not allowed for a nonprivileged user. The system manager

determines which users are privileged and which are nonprivileged.

The following lists the operations that are restricted to privileged

and nonprivileged users. Nonprivileged users can temporarily execute

any operation allowed to privileged users when running a privileged

program. See Section 2.3 for more information on privileged programs.

Operation

File Access

Maximum nu~ber
of simultaneously
open files

Maximum size of
output data file

Nonprivileged User

Restricted by file
protection system
(see section 2.3)

Restricted by sys­
tem manager

Restricted by sys­
tem manager

1-4

Privileged User

Unrestricted

Restricted only by
system's resources

Restricted only by
available free
space on the de­
vice

Operation

Nonfile-structured
open of a file­
structured device
(see section 2.5.1.2)

Execution of sys­
tem functions
(see section 3.4)

Introduction

Nonprivileged User

Not allowed

Certain functions
are not allowed

1.3 ENHANCEMENTS TO BASIC-II

Privileged User

Only prohibited when
a public device is
opened for output
in a nonfile-struc­
tured manner

Unrestricted

There are several features in MU BASIC/RT-ll that are not described in

the BASIC-II Language Reference Manual. All new and changed features

are summarized in Tables 1-1, 1-2, and 1-3.

The precedence of arithmetic operators is slightly different than that

described in the BASIC-II Language Reference Manual. Specifically,

in the absence of parentheses MU BASIC/RT-il has this order of

priority:

a. Exponentiation (proceeds from left to right)

b. Unary minus

For example,

X=3 \ PRINT -2~2,-X~2Y2~-2
-4 -9

READY

The priority described in the BASIC-II Language Reference Manual pro­

duces values of +4 and +9 for the first two operations. The third

operation (2+-2) produces the same values under both sets of

priorities. Operations involving both exponentiation and unary minus

should, in general, be enclosed in parentheses to avoid confusion.

The immediate mode statement should be rewritten as:

x:::: 3 \ F' F< I NT· .. , (2 .", 2) p (X"" 2) ~ 2"" (· .. ·2)
· .. ·4 ··-9

REAllY

1-5

Command

CTRL/C

CTRL/Q

CTRL/S

CTRL/U

T_.L.. __ ..:I ... _.L.': __
..L 11 '-.I. VI..I.U ~ '-..1. Vll

Table 1-1

Enhancements to BASIC-II Commands

Meaning

Key command; stops execution of the BASIC-II state­
ment or command, prints the following:

tc
STOP AT LINE xxxxx

READY

If a command or immediate mode statement is inter­
rupted, the AT LINE is not included. CTRL/C can
be disabled by special system function calls (see
section 3.4.6). The response to CTRL/C may not be
immediate if input or output is in progress.

Key command; continues output to terminal after
CTRL/S. May be labeled XON on some terminals.

Key command; suspends all output to terminal until
CTRL/Q, CTRL/O or CTRL/C is typed. May be labeled
XOFF on some terminals.

Deletes the entire line currently being entered.
BASIC prints:

tu

ASSIGN device: Assigns specified device to user if it is avail­
able.

BYE Terminates the user's session.

DEASSIGN [device:] Deassigns specified device or all devices if none
is specified.

HELLO Special command to gain access to the MU BASIC/
RT-II system. Not available on all systems.

KEY

LENGTH

SET TTY type

TAPE

UNSAVE file
descriptor

Enables echoing after TAPE command or SYS(l) or
SYS(3) system function call.

Displays the amount of memory used by the current
program, expressed as number of words.

Sets system to allow different terminals; type may
be VT05, ASR33, or LA30.

Disables echoing and enters special mode to allow
use of the low-speed paper tape reader.

Deletes specified file.

1-6

Statement

KILL string

LET VF int
(exprl)=expr2

NAME stringl TO
string2

OPEN

Function

SYS

TAB

Introduction

Table 1-2
Enhancements to BASIC-ll Statements

Meaning

Deletes specified file.

Special form of LET statement for use with virtual
array files.

Renames specified file.

Opens data files; has new keywords for device op­
timization and special form for virtual arrays.

Table 1-3
Enhancements to BASIC-II Functions

System function calls; to control output to ter­
minal and perform system operations.

Causes the terminal head to move to specified
column. If the column number specified is less
than the current position, a carriage return with­
out a line feed is printed and printing starts at
the specified position on the same line (instead
of resuming printing at the current position as
described in the BASIC-ll Language Reference Manual

1.4 ASSEMBLY LANGUAGE ROUTINES

Any assembly language routines that the system manager has included

with MU BASIC/RT-ll can be executed by the BASIC-ll CALL statement.

The CALL statement, including the implied call format, is described

in the BASIC-ll Language Reference Manual. The system manager can

provide further information on assembly language routines included
(if any).

1-7

CHAPTER 2

INPUT AND OUTPUT

2.1 £;10 BASIC/RT-ll FILES

The MU BASIC/RT-ll file capability allows data and BASIC programs to

be stored for future use. Programs that access files can manipulate

data much faster and in larger amounts than programs that perform

terminal input and output only. Saving programs in files makes it

possible to restore them at a later time. Another program can run a

saved program by means of the CHAIN or OVERLAY statement.

Data is' stored either in sequential files or in random-access, virtual

array files. Sequential files are treated in the same way as terminal

input/output -- data is read by an INPUT statement and written by a

PRINT statement. Sequential files are useful for storing data that is

to be processed serially. Virtual array files are similar to arrays

stored in memory. An element of data in a virtual array can be part

of any BASIC expression just the same as an element of a normal array.

An element of a virtual array file can be assigned a value by a special

form of the LET statement. virtual array files allow data to be ac­

cessed in a random, non-serial manner and are the only BASIC files in

which existing data can be updated without rewritin~ the entire file.

Each user creates and accesses files independently. A user creating

a file can allow others to access the file or can restrict access to

it. A privileged user can create a public or group library file that

can be conveniently accessed by many users. All users can access pub­

lic files whereas group files are only available to a specific group

of users.

2-1

Input and Output

BASIC files can be created and accessed on any device supported by the

RT-ll Monitor and included by the system manager in the BASIC system.

Among the devices that may be included in the system are disk, DECtape,

cassette, industry-compatible magtape, card reader, line printer, and

high-speed paper tape reader/punch.

Files can only be created on cassettes,
disks, DECtapes, and magtapes that have
been previously zeroed by the RT-ll PIP
program. See your system manager or the
RT-ll System Reference Ma.nual for informa­
tlon on PIP.

2.2 FILE DESCRIPTOR

BASIC files are created and accessed by file control commands and state­

ments. A file is specified by means of a file descriptor in the gen­

eral form:

[device:] [0 [f ilename] [. [extension]]

where:

device:

$

@

filename

extension

is a legal aobreviation representing a device and
may be any abbreviation listed in Table 2-1.

denotes a public file.

denotes a group file.

denotes a private file (default).

is the 1- to 6-character name of the file.

is the 1- to 3-character extension of the file.

2-2

Input and Output

Table 2-1
Device Name Abbreviations

Abbreviation Represents

CR: Card reader.

CT[digit] : Cassette (unit number specified by digit) .

I DK [digit] : I System device (unit specified by digit) .

DT[digit] : DECtape (unit specified by digit) .

KB: User's terminal.

LP: Line printer.

MT[digit] : Magtape (unit specified by digit] .

PP: High-speed paper tape punch.

PR: High-speed paper tape reader.

RF: Fixed-head disk.

RK[digit] : RKII cartridge disk (unit specified by digit) .

SY[digit] : System device (unit specified by digit) .

In addition to the devices listed in Table 2-1 any permanent device

names added to the RT-ll Monitor can be used from BASIC. See the

system manager for the devices and device name abbreviations that are

available.

It is not necessary to specify the device. When the device is not

specified the system device is assumed. The system device can only

be disk or DECtape.

The optional digit in the device specifi­
cation represents the device unit number.
If the optional digit is omitted from SY
or DK, the system device (unit from which
system was bootstrapped) is assumed. If
the optional digit is omitted from any
other device name, unit ~ is assumed.

2.2.1 File Classes

There are three classes of files~

Public library files
Group library files
Private files

2-3

Input and Output

Public library files are accessible to all users. Programs that will

be accessed by many users may be placed in the public library. In­

cluding a dollar sign ($) in a file descriptor specifies a file in the

public library. Public library files are stored internally as files

with only one-character extensions.

Group library files are accessible to a group of all users having the

same first character in their user IO. For example, users with the

user IO's H9, HF, HO, and HZ belong to the same group (H is the group

character). A group library file is specified by including a number

sign (#) in the file descriptor. Group library files are stored in­

ternally with a two-character extension. The second character of the

extension is the group character.

A private file is accessible only to the user who has created it. A

private library file can be specified by including the at sign (@) or

by not including any of the special file class symbols ($, # and @).

A private file is stored internally as a file with a three-character

extension. The second and third characters of the extension are the

characters in the user IO of the user who created the file.

2.2.2 Filename and Extension

When the specified device supports named files (disk, OECtape, cassette,

and magtape support named files) the filename and extension specify

the individual file on the device. Only one permanent file with a

particular filename and extension can exist on a given device. If a

new file is created on a device with the same filename and extension

as a file already existing on that device, the old file is deleted

when the new file is made permanent (closed). But files with the same

filename and extension can exist on different devices; they are com­

pletely independent.

For the line printer, high-speed paper tape reader/punch, card reader,

or terminal, which do not support named files, any specified filename

and extension are ignored.

If a filename is not specified, in a SAVE, REPLACE, or UNSAVE command,

the current program name is the assumed filename. If any of the file

descriptors in a KILL or NAME TO statement are missing tile filename,

the current program name is also assumed. The OPEN statement does not

have a default filename. If neither a filename nor an extension is

2-4

Input and Output

specified, then a nonfile-structured OPEN is attempted (see section

2.5.1.2). All other statements and commands (APPEND, NEW, OLD, RENAME,

CHAIN, and OVERLAY) assume the default filename "NONAME" when none is

sPecified.

An extension specification is necessary only when accessing a private

file of another user, a group file of another group, or a file that has

a nonstandard extension.

The first character of the extension depends on the type of file. If

the file is a BASIC program (OVERLAY and CHAIN statements and APPEND,

OLD, REPLACE, RUN, SAVE, and UNSAVE commands) the first character of

the standard extension is B. If it is a data file (OPEN, NAME TO, and

KILL statements) the first character of the standard extension is D.

The extension actually used by BASIC is dependent on:

the type of operation involved

the user ID of the current user

the extension specified (if any)

the class of the file (determined by $, #,

The type of operation involved determines whether the first character

of the extension is D (for data file operations) or B (for BASIC pro­

gram operations) unless an extension is specified.

The user ID of the current user becomes the second and third characters

of the extension actually used unless an extension is specified or a $

or # is specified.

If an extension is specified, then that is the actual extension used

unless a $, #, or @ is specified.

If a file class is specified by a $, #, or @, then it determines the

second and third characters of the actual extension used. If $ is

specified (public library file), then the second and third characters

are nulls. If # is specified (group library file), then the third

character is a null. And if @ is specified (private file), then the

second and third characters of the extension actually used are the

user ID of the current user (see examples below).

2-5

Input and Output

The following list contains file statements and commands and the de­

vice, file name, and extension they will attempt to access. The access

may be restricted by the file protection system (see section 2.3).

These examples assume the current user ID is B9, and the current pro­

gram name is EVENT.

File Statement or
Command

OPEN "DATA" AS FILE #1

SAVE DT1:

OLD $PROGRM

OPEN "#MONEY.G" AS
FILE #2

OLD PR:

File Specified

SY:DATA.DB9

DTl:EVENT.BB9

SY :PROGRM. B

SY:MONEY.GB

PR:

2-6

Comment

The system device is as­
sumed, the file name is
specified, the first char­
acter of the extension is
D because OPEN is a data
file statement and the
last two characters are
the current user ID.

The device is specified,
the program name is the
file name, the first char­
acter of the extension is
B because SAVE is a BASIC
program file command, and
the last two characters
are the current user ID.

The system device is as­
sumed, the file name is
specified, the first char­
acter of the extension is
B because it is a program
file statement, and there
are no second and third
characters because it is
a public library file.
The program name becomes
PROGRM.

The system device is as­
sumed, the filename is
specified, the first char­
acter of the extension is
specified, and because #
specifies a group file,
the second character is
the group character and
there is no third char­
acter.

The papertape reader does
not need a filename or ex­
tension. The program
name becomes the default
NONA.\1E.

Input and Output

File Statement or
Command File Specified

OPEN "DT1:ABC.HB9" AS FILE 1
OPEN "DT1:@ABC.H" AS FILE 1
OPEN "DTl:@ABC.HHH" AS FILE 1

DT1:ABC.HB9

OPEN "STORE.R" AS FILE #1 SY:STORE.R

OPEN "STORE" AS FILE #1 SY:STORE.DB9

OPEN ;;STORE." AS FILE #1 SY:STORE.

OLD DT~:77GAME.B7R DT~:77GAME.B7R

2-7

Comment

These statements are equi­
valent. The first state­
ment specifies the file
descriptor exactly. Tne
second specifies the @,
filename, and first char­
acter of the extension;
the @ causes the second
and third characters of
the extension to be the
current user ID. The
third is the same as the
second except that a three
character extension is
specified, but the second
and third characters speci­
fied are ignored because
of the presence of @.

The system device is as­
sumed and the filename and
extension are specified
exactly. This is a pub­
lic library file because
the second and third char­
acters of the extension
are nulls.

The system device is as­
sumed and the filename is
specified. The first char­
acter of the extension is
D because OPEN is a data
file statement, and the
last two characters of the
extension are the current
user ID because a private
file is assumed.

The system device is as­
sumed and the filename
(STORE) and extension (the
null extension) are speci­
fied.

Another user's private
file can be accessed only
by specifying the exten-
,.::J..LV~.L •

Input and Output

When the user ID is AS the default exten­
sion for data files is ".DAT" not ".DASH.
AT are the last two characters of the ex­
tension in a data file statement only
when neither the extension nor the file
class is specified. The last two charac­
ters of the extension in a BASIC program
operation or when @ is specified are the
normal AS. This feature allows compati­
bility with the default extensions in
the single user BASIC/RT-II.

2.3 FILE PROTECTION SYSTEM

There are several degrees of file access allowed:

J Run

2- Read

3 Update

i Complete

allows access by the RUN command or CHAIN state­
ment.

allows access by the OLD or APPEND command or the
OPEN FOR INPUT or OVERLAY statement or use of the
value of an element of a virtual array.

allows access by the LET VF statement
be done to virtual array files.

can only

allows access by all of the above and by the SAVE,
REPLACE, or UNSAVE command or the OPEN FOR OUTPUT,
NAME TO, or KILL statement.

A nonprivileged user is allowed complete access only to the user's OW?

private files. A nonprivileged user can have Run and Read access to
)

files in the public library and the user's own group library, No ac--cess is allowed (for a nonprivileged user) to other users' private

files and files in other groups' libraries. The access allowed a non­

privileged user to all files other than the user's own private files

can be modified by the inclusion of a protection code in the filename.

A privileged user has complete access to all files. Group library and

public library files can only be created by a privileged user.

When one of the four digits, 6, 7, 8, and 9, occurs in the first or

~econd character position of a filename it has a special file access

meaning. The ~irst characteE determines the access allowed all users

in the groury specified by the second character of the extension of

the file. Thetsecond character of the filename determines the access

allowed for all other users~ In public library files, the first char~

acter position determines the access allowed for all users. The

2-8

Input and Output

following list describes the meaning of the digit 6, 7, 8, or 9 in the

first or second character position.

6

7

8

9

Meaning

Run, read, and update access. Allows all access except
creating. 6 is only useful for virtual array files.

Run and read access.

Run access only. Program erases the user's storage
area when it terminates execution (except when run by a
privileged user).

Run access only. Program erases the user's storage area
when it terminates execution (except when run by a
privileged user). Same as 8 except that the program
can perform any privileged file operation or system
function even when run by a nonprivileged user.

Any other character in the first or second character position of a

filename of a private file specifies no access allowed for users other

than the file's creator.

Any other character in the first character position of a filename for

a group file specifies read and run access (equivalent to specifying 7)

to users in the group. Any other character in the second position

specifies no access for all users not in the group.

Any other character in the first character position of a filename of

a public library file specifies read and run access (equivalent to

specifying 7).

A 9 in the first or second character position of a filename allows a

nonprivileged user executing the program to perform any operation that

a privileged user can. Only a privileged user can create a file with a

9 in the first or second position. It is important that any such pro­

grams be carefully coded to ensure privacy of confidential information.

Because the program deletes itself on any program termination, includ­

ing the CTRL/C key command and error conditions, there is no danger

that a nonprivileged user can alter it.

2-9

Input and Output

NOTE

A privileged user can run, read, update,
or create any file. Only a privileged
user can create group and public library
files (with the exception that a non­
privileged user with a one-character
user ID can create group library files).

Examples:

Filename

File can be read, run,_____ ~7ABC.DAl ~private file created by
and updated by users ~ C-c..--- user with user ID AI.
in Group A.

File can only be read Data file.
or run by other users.

Program can only be ~DIR.B~BASIC program in public
run; while it is exe- library.
cuting any privileged
operation can be per-
formed.

All users in group 5 _____ 78ACNT.B5~Group

can read or run file. ~ I I ~ group

Other users can not read ~ ~BASIC
file; they can only run
it. Program will erase
itself when it terminates
execution.

FILES -- UNSAVE COMMAND

library file for
5.

program.

BASIC program files are stored or updated with the SAVE or REPLACE

command, respectively. These files can then be restored by the APPEND,

OLD, or RUN command or the CHAIN or OVERLAY statement. These commands

and statements are described in the BASIC-II Language Reference Manual.

Files containing BASIC programs can be deleted by the UNSAVE command.

The form of the command is:

UNSAVE f-ile descriptor

where

file descriptor is described in section 2.2.

A file can be deleted only by a user who has complete access to it

(see section 2.3).

2-10

Input and Output

Examples:

These examples assume the current user ID is

UNSAVE TEST

UNSAVE FILE2.DGR

2. 5 @'A FILED

Deletes the file TEST.BGR from the system
device.

Deletes the data file FILE2.DGR from the
system device.

2.5.1 Sequential Data Files

Sequential files are treated in a manner similar to terminal input/

output; however, sequential file data can be manipulated in larger

amounts and much more quickly than the equivalent terminal data.

Data in sequential files must be accessed serially -- to get to the

last data item in a sequential file it is necessary to read the en­

tire file.

The OPEN statement associates a physical file, specified by the file --descriptor, with an internal logical unit number (also called channel

number). A sequential file can be ,opened for output or input. not

for both., To update an existing sequential file, it is necessary to

open it for input and open a new file for output. Then all of the

data must be read from the input file and written, including the up-

dates, to the output file.

The,PRINT #expr,statement outputs data to a sequential file opened

for output. The expression after the number sign (#) must have the

same value as the logical unit number of the file specified in the

OPEN statement. The data stored in the file is the same data that

would be printed on the terminal by an equivalent PRINT statement

this includes space, carriage return, and line feed data.

The iNPUT #expr,statement reads data from a sequential file opened

for input. The value of the expression following # must be the same

as the logical unit number specified in the OPEN statement. Data is

read from the file in the same way that it is input from the terminal~

The INPUT #expr statement reads an entire line of data (up to a car­

riage return). If only one variable is specified in the INPUT #

statement one data item is read from the file data line -- any excess

data is ignored. If more than one variable is specified, BASIC reads

2-11

Input and Output

as many data items from the line as needed. If there is insufficient

data, BASIC reads the next data line from the file to get more data.

If there is more than one numeric data item on a data line, they must

be separated by commas -- spaces alone can not be used to separate

data items.

String data is always read to the end of the line so there can only be

one string data item on a data line.

NOTE

When creating a sequential file that is
to be read later by the INPUT #expr
statement, it is necessary to insert the
separators required. Commas and carriage
returns are valid separators. If there
is more than one numeric data item on a
file data line, the INPUT #expr must speci­
fy a number of variables equal to the num­
ber of data items. For example, the data
written by:

OPEN "DATA" FOR OUTPUT AS FILE #1
PRINT #1, 5, ",", l~
CLOSE

would be correctly read by:

OPEN "DATA" FOR INPUT AS FILE #2
INPUT #2, A, B
CLOSE

Commas must be printed as strings (as in
the above example) but carriage returns
are output by BASIC after every PRINT
#expr statement (unless the list is ter­
minated by a comma or semicolon).

Once a data file has been opened for inp~t, the end-of-file condition

can be tested by the~F END #expr statement4 An input file can be re­

stored to the beginning (the first data item in the file is read next)

by the ,RESTORE #exprJstatement.

output files are made permanent \vhen they are closed. « Files are closed

by the execution of the CLOSE, CHAIN, or EN~statement or the execution

of the physical end of program (the highest numbered program line).

Files are not closed when program execution is terminated by execution

of a CTRL/C key command or STOP statement or the occurrence of a fatal

program error.

2-12

Input and Output

,An output file which has been opened but not yet closed is purged by

the execution of the SCR, BYE, RUN, OLD. or NEW cornrnapd.1 If an out­

put file is purged, all data output to the file is lost and the cur-

rent contents of the file buffer are discarded.

Sequential files opened for input can be closed or purged. The data

stored in the file is unaffected.

NOTE

The contents of a file buffer are not ac­
tually output to the device until the buf­
fer is filled or the file is closed. For
example, all output to the line printer
is not completed until the file is closed.

The PRINT #, INPUT #, IF END #, RESTORE #, CLOSE, and OPEN statements

are described in the BASIC-II Language Reference Manual. Some addi­

tional features of the OPEN statement are described in this section.

The format of the OPEN statement for sequential files is:

OPE~: stringITg: ~~~~~TJ AS FILE [it] exprl [DOUBLE BUFj [,FILESIZE expr2J [, RECORDSIZE expr3] [,MODE expr4]

where:

string

FOR INPUT

FOR OUTPUT

exprl

DOUBLE BUF

,FILESIZE expr2

is a file descriptor as described in section
2.2. It can be any string expression.

specifies that an existing file is opened for
input. FOR INPUT is assumed if neither FOR
INPUT nor FOR OUTPUT is specified.

specifies that a new file is created. Any
existing file r,;,ith the same file descriptor
will be deleted when the new file is closed.

is optional.

is the logical unit number, an integer in the
range 1-127. Other statements access the file
by specifying the logical unit number associ­
ated with it. The logical unit number is also
known as the channel number.

specifies that a second I/O buffer is allo­
cated to the file if there is room in memory.

determines the area allocated for an output
file on disk or DECtape. It is ignored on
other devices and for input files.

2-13

,RECORDSIZE expr3

,MODE expr4

Input and Output

determines the buffer size for nonfile­
structured devices or specifies a system
buffer and channel (the latter is only
available to privileged users) •

specifies special handling of magtape or
cassette file. See section 2.5.1.1. Any
specified MODE is ignored for other devices.

The FILESIZE option specifies the maximum number of 256-word blocks

that the file can occupy. If FILESIZE is not specified, then a

default maximum file size is provided by the system manager. The

?IFL (Illegal File Length) error message is printed if a nonprivileged

user specifies a FILESIZE less than or equal to zero or greater than

the maximum size allowed by the system manager.

For a privileged user a FILESIZE ~ gives the standard RT-ll file size

allocation (which is either the larger of the second largest free area

or half of the largest free area), a FILESIZE -1 gives the absolute

largest free area, and a FILESIZE of less than -1 causes the ?IFL

error message.

When a file is closed, the size of the tile is reduced to the number

of blocks that have actually been used. If output is attempted past

the file size allocated, the ?FTS (File Too Short) error message is

produced and all data is lost.

When calculating the number of blocks to allocate to a sequential

file, the following facts should be considered: there are 512 char­

acters per block, spaces are valid characters, and each line output

has two characters (carriage return and line feed) added to it. Once

a file has been created it can not be extended.

The RECORDSIZE option can be used to specify the buffer size for a

nonfile-structured device. The buffer size is specified in bytes

(two bytes equal one word of memory). Output speed can be increased

by specifying a buffer size larger than the default. The standard

default buffer sizes are given in Appendix D. The ?IRS (Illegal

Record Size) error message is produced when a nonprivileged user

specifies a buffer size less than 1.

The RECORDSIZE option can be used by a privileged user to request a

system buffer and channel. If a RECORDSIZE -1 is specified and no

area is available for a buffer in either the system I/O area (a buffer

2-14

Input and Output

area co~uon to all users) or the user area, the file uses a system

buffer. If no system buffer is currently available, the program waits

for one to become free. A RECORDSIZE -1 also causes a system channel

to be used if no user channel is available. If no system channel is

available, the program waits for one. The effect of a RECORDSIZE -1

is that the OPEN statement never fails because, if the channel pool

is empty or because no memory is available for a buffer, BASIC waits

for a system channel and/or buffer instead of issuing a fatal error

message. If a privileged user specifies a RECORDSIZE of 0 or less

than -1 the ?IRS error message is printed.

Example:

NOTE

If neither filename nor extension is speci­
fied in the file descriptor a ?FPV (File
Protection Violation) error message is pro­
duced for nonprivileged users; but, for
privileged users, the device is opened in
a nonfile-structured manner. This can hap­
pen if a string variable specifying the file
descriptor is null. See section 2.5.1.2.

This example program creates a data file, closes the file, reads it

back, and prints the sum on the line printer.

10 REM PROGRAM DEMONSTRATING THE OPEN STATEMENT
20 OPEN "DATAD FOR OUTPUT AS FILE 11
25 REM CREATES OUTPUT FILE
30 FOR 1=1 TO 100
40 PRINT t1YI;R,";I~2
50 REM THIS PRINTS I AND I-SQUARED
60 REM TO THE FILE
70 REM NOTE THE STRING CONSTANT ","
1:50 NEXT I
100 CL.OSE l
11 0 Cl PEN II [101 T (.1 II F 0 F: I N P 1...1 T (1 S F I L E :/1: ::?
of "'l\
.1. I.":" \.!

1:3(1
IF END 12 THEN 200
INPUT :":2~ .. I v 12

140 S=8+1 \ 82=82+12
150 GO TO 120
200 CL.OSE :~

210 OPEN HLP!" FOR OUTPUT AS FIL.E 11
220 PRINT 11v R THE SUM OF THE NUMBERS";
230 PRINT i1," :I. THROUGH 100 IS";S
240 PRINT 11v"THE SUM OF THEIR SQUARES IS ";82
2~SO CLOSE

2-15

Input and Output

2.5.1.1 Sequential Files on Magtape and Cassette - _BASIC operations

involving cassette and magtape devices are handled somewhat differ­

ently from those involving other devices, because of the sequential

nature of cassette and magtape. It is possible to have only one file

open at a time on any given cassette or magtape unit. If an attempt

is made to open a file on a unit which already has a file open on it,

the ?NER (Not Enough Room) error message is produced.

The last file on a cassette or magtape is specially formatted. It

marks the end of the existing data and is where new output normally

begins. After a new file is created on the device a new specially

formatted file is written after it. This file marks the new logical

end-of-tape. This specially formatted file is called a double end­

of-file on magtape and the sentinel file on cassette.

When a file is opened, the device (CT or MT) is first rewound and then

the tape is read until the file specified in the file descriptor is

found or the logical end-of-tape is reached. If the file is opened

for input, the operation is finished if the file is found, or the ?FNF

(File Not Found) error message is produced if the file is not found.

If the file is opened for output and the file specified is found, a

special empty file descriptor is written there (the old file is de­

leted) and then the tape is read until the logical end-of-tape is

found. In any case, once the logical end-of-tape is reached a file

header is written and the operation is completed. This search proce­

dure is employed because there is no inclusive directory at the begin­

ning of the tape and the only way to access a file is to search the

tape from the beginning until the file is found.

NOTE

An existing file on a cassette or magtape
is deleted when a new output file with the
same filename and extension is opened on
the device, not when the file is made per­
manent.

In conditions when files on disk or DEC tape are normally purged (see

section 2.5.1), files on cassette or magtape are closed. This is done

because it is not possible to create new files on a cassette or mag­

tape if the last output file was not closed. If the tape is physi­

cally removed from the drive before the CLOSE operation, there is no

logical end-of-tape and it is not possible to create new files on the

tape. The MODE option or the RT-ll PIP program (see your system

manager) can be used to put a new logical end-of-tape on the device.

2-16

Input and Output

When a file on cassette or magtape is deleted a special file header

is written to signify that the file is empty. When files are only

written after the logical end-of-tape (the normal method of operation) ,

the space freed by the file deletion is not reused. Two methods are

available to reuse the empty space. One is to use RT-ll PIP to copy

the entire tape and then zero the old tape. The other method is to

copy all the files after the empty file to a new tape and then use

the mode option to create a logical end-of-tape before the empty file.

MU BASIC/RT-II does not support mUltiple volume files on cassette or

magtape. If the physical end-of-tape is reached while BASIC is writ­

ing a file, the ?DHE (Device Hardware Error) error message is produced

and the operation is terminated without being completed. The portion

of the file that has been written as well as all the other files on

the device can be read but no new files can be created on the device.

When reading the last block written on the tape BASIC prints a ?DHE

or an ?OOD (Out Of Data) error message, depending on whether the last

block was incomplete.

The MODE option in the OPEN statement allows files to be specified by

position as well as by the filename and extension. The MODE option

can be used when it is not necessary or desirable to rewind the tape

before each operation or when the file to be accessed is known to be

in a certain position. The MODE option also allows new output to

begin before the logical end-of-tape (or when there is no logical

end-of-tape) .

In an OPEN FOR INPUT statement, the MODE option limits the number of

files to be searched and, if the file specified by the file descriptor

is not found during the search, causes the last file in the search to

be opened for input. If a positive expression is specified after

MODE, the tape is not rewound and the search is limited to the in-

teger value of the expression. For example, if the present position

is after the 5th file on the tape and a MODE 3 is specified, the file

specified by the file descriptor is opened if it is the 6th, 7th, or

8th file on the tape - otherwise the 8th file on the tape is opened.

A negative value for the expression following MODE has the same

effect except that a rewind operation is done on the tape and then

the absolute value of the expression is used to limit the search.

For example, a MODE -5 causes the file specified by the file descrip­

tor to be opened if it is the 1st, 2nd, 3rd, 4th, or 5th file on the

tape - otherwise it causes the 5th file to be opened. If the logical

end-of-tape is reached before the specified number of files have been

searched, the ?FNF (File Not Found) error message is produced.

2-17

Input and Output

NOTE

The use of MODE in the OPEN FOR INPUT statement is
not restricted by the BASIC file protection system.
Any file can be accessed by position including files
that have been deleted and files with extensions
different from the current user ID. To assure privacy
of data on cassettes or magtapes, access to the tape
must be restricted and the cassette or magtape unit
assigned by the ASSIGN command (see Section 3.1)
before the tape is mounted.

The MODE option in an OPEN FOR OUTPUT statement causes output to

begin at the position specified by MODE. If MODE is followed by a

positive expression, no rewind operation is done and output starts

at the file position specified by the integer value of the expression.

For example, if the present position on the tape is after the 3rd

file, a MODE2 causes the new file to be created as the 5th file. All

existing files after the fourth file are lost. If a MODE is followed

by a negative expression, a rewind operation is done and output

starts the position specified by the absolute value of the expression.

If the logical end-of-tape is reached before the specified file

position has been reached, output begins at the logical end-of-tape.

All empty as well as active files on cassette and magtape are counted.

RT-ll PIP can be used to create a magtape or cassette directory that

lists all active and empty files. Magtape sometimes have an empty

file inserted by the system at the beginning of the magtape. See

your system manager or the RT-ll System Reference Manual (DEC-ll-ORUGA­

B-D) for more information on PIP and magtape and cassette handling.

Care must be employed when using the MODE option in an OPEN FOR

OUTPUT statement. One reason is that if the rewind operation is

inhibited (by a positive value of the expression) any file with the

same filename and extension before the current position is not

deleted. In this case, two files exist on the same device with the

same filename and extension. In a subsequent OPEN FOR INPUT state­

ment only the first file is seen unless the MODE option is used and

the search begins after the first file. A second danger involving

use of the MODE option in an OPEN FOR OUTPUT statement is that all

files after the output file are lost. No check of file protection

is made on these files; consequently, to prevent the loss of informa­

tion stored on cassette, the cassette must be WRITE-PROTECTED (by

uncovering the hole on the cassette) or access to the cassette must

be restricted.

2-18

Input and Output

NOTE

All files on cassette are written in
groups of four 64-word blocks. The
file header and sentinel file are
written in special 32-word blocks~

2.5.1.2 Nonfile-Structured OPEN Statement - A privileged user can

open a disk, DECtape, cassette, or magtape in a nonfile-structured

manner by not specifying the filename and extension. A disk or DEC-

tape can be opened as either a sequential file or a virtual file (see

section 2.5.2). In both cases the entire device is treated as though

it were a normal BASIC file. To preserve the integrity of the system,

public devices (see section 3.1) cannot be opened for output in a

nonfile-structured manner, even by a privileged user. Nonpublic de­

vices can be opened for output but this should not be done to a device

that contains any RT-ll files to be preserved because any existing

files will be lost.

Care must be employed when opening a cassette in a nonfile­

structured manner. Only a cassette that has been written in a

nonfile-structured manner can be read in a nonfile-structured manner.

Normal RT-ll cassettes can not be read in a nonfile-structured man­

ner and cassettes created in a nonfile-structured manner cannot be

read in a normal file-structured manner.

In general, devices opened for output in a nonfile-structured manner

will be nonstandard and will not be readable by all RT-II system pro­

grams and should only be used if the maximum data storage capability

of a medium is necessary.

2.5.2 Virtual Array Files

Virtual array files are special random-access binary files. There

are three data types for virtual array files: integer, floating

point, and string. A file can only contain one data type.

Virtual array files have several advantages over sequential files:

They can be accessed in a random, nonsequential
manner. The last element of a virtual array file
can be accessed as quickly as any other element
whereas it is necessary to read an entire sequen­
tial file before accessing the last element.

2-19

Input and Output

Data conversions are not required because numbers
are stored in binary; consequently there is no
loss of accuracy in writing a number out to a vir­
tual file and then reading it back. The data con­
version required by sequential files causes some
loss of precision.

Virtual array files are the only BASIC files that
can be updated without copying the entire file.

virtual array files are treated like normal arrays stored in memory

with the following differences:

Virtual array files allow the processing of much
larger arrays than could fit in available memory.

They also allow data to be saved from one execu­
tion of a program to another.

Elements of a virtual array file are not initial­
ized to zero when a program is run.

Integer virtual files are restricted to integer
values; no similar restriction applies to any ar­
ray in memory.

Strings in virtual files have a fixed maximum
length which is determined when the file is opened;
elements of string arrays in memory can be any
length (up to 255 characters). Elements of string
virtual arrays that are shorter than the maximum
length have null characters appended to them until
they are the maximum size. When an element is re­
trieved it is stripped of its trailing null char­
acters.

Elements of a virtual array file can be assigned
values only by a special form of the LET state­
ment while elements of normal arrays can be as­
signed values by the LET, READ, INPUT, or CALL
statements.

virtual arrays can only have a single subscript
(dimension); arrays in memory can have one or two
dimensions.

The special form of the OPEN statement for virtual files is:

r:,
OPEN string I FOR INPUT \1 AS FILE VF int [~] [(exprl)] [=expr2] [,FILESIZE expr3]

FOR OUTPUT '5
'--J

where:

string

FOR INPUT

is a file descriptor as described in sec­
tion 2.2 and can be any string expression.

an existing virtual array file is opened.
Both output and input are allowed. If neither
FOR INPUT nor FOR OUTPUT is specified, FOR
INPUT is assumed.

2-20

FOR OUTPUT

int

%

$

exprl

=expr2

Input and Output

specifies the creation of a new virtual array
file. Any previous file with the same file
descriptor is deleted when the new file is
closed. Both output and input are allowed.

is the virtual array logical unit number, an
integer in the range 1 to 127. Elements of
the array are accessed by specifying this
virtual array logical unit number. This
logical unit number is completely independent
from sequential file logical unit numbers.

indicates an integer virtual array file.

indicates a string virtual array file.

When neither % nor $ is specified, the vir­
tual array file is floating point.

is the dimension of the file. It is the maxi­
mum subscript that can be used in accessing
the array. This is not true when FILESIZE is
also specified.

is the fixed maximum string length in the
range 1 to 255. This should be specified only
when $ is also specified. Default value is 32.

FILESIZE expr3 has the same meaning as in the normal OPEN
statement (see section 2.5.1). The maximum
legal subscript is determined by the number
of elements that can fit in the file. When
FILESIZE is specified it supersedes the di­
mension specified in expr2.

When a virtual file is first created,
FOR OUTPUT must be specified but to up­
date the data in the file FOR OUTPUT
must not be specified. One consequence
of this is that the program to create a
new virtual file must be changed to up­
date the file.

The actual size of the permanent virtual file is determined only by

the OPEN FOR OUTPUT statement that created it. When the file is

closed the file size is not reduced. Nor can the file be extended

once it has been opened. The only way to extend a virtual array is

to open a new, larger virtual array file and then copy all the data

from the old file to the new one.

2-21

Input and Output

To save the data in a virtual file, the file must be made permanent

(closed). Virtual files are made permanent or purged (lost) under

the same conditions as sequential files (see section 2.5.1).

Once a virtual array file has been opened its elements can be used

the same as any other variables in a BASIC program with one exception:

an element of a virtual array can only have a value assigned by a

special form of the LET statement:

[LET] VF integer(exprl)=expr2

where:

integer

exprl

expr2

must be an integer constant (not an expression)
and specifies the virtual array logical unit
number.

specifies the element in the array.

must be the same data type as the array.

If an integer virtual file element is assigned a value greater than

32767 or less than -32768, the ?IDT (Illegal Data Type) error message

is producedc

Table 2-2 describes the number of elements of each data type that can

be stored in one 256-word (512-byte) block.

Table 2-2
Storage Requirements of Virtual Arrays

Bytes per Elements per
Data Type Element Block

Floating point 4 128

Integer (%) 2 256

String ($) string length 5l2/string length

String ($) - default
length 32

The number of string elements per block can be fractional.

Virtual files can exist only on disk or
DECtape.

2-22

16

Input and Output

Examples:

The following examples assume the current user ID is B9.

OPEN "TEST" AS FILE VFl$ (2000) = 10

Opens the existing file SY:TEST.DB9 as virtual array
file 1 containing 2001 string elements; each one 10
characters long. This file is now available for
input and output operations. A reference to file
element 2001 or greater causes an error.

OPEN ITEST2" FOR OUTPUT AS FILE VF2$ (500)

Creates a new file SY:TEST2.DB9 as virtual array file
2 with 501 string elements, each 32 characters long.

OPEN "TEST3" FOR INPUT AS FILE VF3

Opens the existing file SY:TEST3.DB9 as virtual array
file 3. It consists of floating point numbers because
neither $ nor % is specified. Both input and output
operations are legal.

LET A$="TEST4"
OPEN AS FOR OUTPUT AS FILE VF4% (50) ,F1LESIZE (10)

Creates the file SY:TEST4.DB9 and opens it for input
or output as virtual array file 4 with 10 blocks. The
F1LES1ZE specified overrides the dimension (50) i conse­
quently, elements 0 to 2559 can be accessed.

These files can then be used in BASIC operations as follows:

LET A B + VF3(I)/2

Uses the \"'alue of T.Jirtual array file element VF3 (I) in
computing an expression.

PRINT HVARIABLE II ,N,VF4 (N)

Uses the value of integer virtual array file element
VF4(N) in a print list.

LET VF3(2*N+l) = (A + B)/2

Sets the value of virtual array file element VF3(2*N+l)
to the value of the expression (A+B)/2.

2-23

Input and Output

LET VFl(lOl) = "ABCD"

Sets the value of string virtual memory file element
VFl(lOl) to "ABCD" followed by six null characters.
When VFl (101) is evaluated the trailing nulls will
be automatically deleted.

Any virtual file opened should be closed by the CLOSE statement.

CLOSE [VF integer I [,VFinteger2,VFinteger3, ...]]

Examples:

CLOSE VF3 closes virtual file 3

CLOSE

Example:

closes all files including virtual files

There may be problems when two users attempt
to simultaneously assign values to elements
of the same virtual array file. See section
2.5.4.

~j0 PfUNT "OCTAL OU~lP" \, ~:Er'l THIS PROG~:At1 P~:INTS FiN OCTAL
:ttl PF.:INT "FILE NAME",; \ ~:Er1 CdJt1P OF THE SPECIFIE[) FILE
20 INPUT F$
](1 P~:: NT "STA~:T BLOCK, #E:LOCKS";
40 INPUT 81.. F.: 2
90 OPEN F$ FOR INPUT AS FILE VF1%
~3t1 OPEN ., LP . II FO~: OUTPUT liS FILE #1
10 F·F.:INT #1: "OCTAL DUNF' OF FIl.E ".; FS
20 FOR 8=81 TO 81+B2-1
:~:tl PfU NT #1
40 P~:! NT #1 If E:LOCK If.; 8
SO FOR L=0 TO OCT~17~

60 LET '· ... =L:+:16
7(1 GOSUB 1000
::: tl P F.: r N T # '1. . S E G $ (' $. 4, 6).; ", ",;
90 FOF.: ::'=(1 TO 7
0(1 LEl V=VF1(8*256+L*8+S}
:1B Ci05UE; 100(1
:-20 F'RINT #1:" "; ' $.;

:~: (1 N E ;:.:: 1 5
4tl PF.:INT #1
S(1 NE::-::T L
6~j PF.: I NT #1
? 0 NE i< T 1::
SB CLOSE #1
:1~j STOP
00B LET V1=V \, REM
(105 F.:EN
01tl LET 1/$="11 ~:Et'1

2-24

INTEGER ','"

Input and Output

1020 LET Vl~=/0/ \ REM
1030 IF V)=0 THEN 1060 \ REM
1049 LET Vl=Vl+2-15 \ REM
105€t LET \/1$="1"
1060 FOR 1=1 TO 5
1970 Ltl VJ=INT(Vl!8)
1080 LET V2$=5TR$(Vl-VJ*8)
1099 LET V$=V2$&V$
119~3 LET V1=1/1:
1110 NF.:::<T I
1120 LET l·l$=V1$·~~V$

IS THE OCTAL VALUE OF V
USES Vi, Y2, VJ, ViS, V2$
V I S F' ft~ ESE ft~ V E [,

For more information on virtual files see Appendix C.

2.5.3 File Deletion and Renaming

,The NAME TO statement changes the name of a file on disk or DECtape;l

it does not alter the contents of the file. The form of the NAME TO

statement is:

NAME stringl TO string2

where:

stringl

string2

is a file descriptor as described in section 2.2
that specifies the file to be renamed.

is a file descriptor that specifies the new name
and extension. No device should be specified.

BASIC programs can be renamed by the NAME TO statement by explicitly

specifying the extension. A NAME TO is illegal on cassette and mag­

tape and is ignored on devices which do not support named files.

Examples:

These examples assume the current user ID is B9.

NAME "DATA" TO "OLDDAT"

NAME "@PROG.B" TO "@PROG2.B"

F$=iIPROG ii

NAME "@"+F$+n.B" TO n@n+F$+n.A"

2-25

Changes file SY:DATA.DB9 to
SY:OLDDAT.DB9.

Changes file SY:PROG.BB9 to
SY:PROG2.BB9.

Changes file SY:PROG.BB9 to
SY:PROG.AB9.

Input and Output

LThe KILL statement deletes a file1 It is similar in effect to the

UNSAVE command except that,KILL assumes a data file.) The form of

the KILL statement is:

KILL string

where:

string is a file descriptor as described in section 2.2.

Examples:

These examples assume the current user ID is BS.

KILL IFILEl" Deletes the file SY:FILEl.DBS.

KILL "PROG.BBS" Deletes the file SY:PROG.BBS.

2.5.4 Simultaneous File Updating Restrictions

BASIC does not place any restriction on more than one user opening

the same file. A user can be prohibited access to a file by the

file protection system, but there is no mechanism to restrict access

to a file only when another user has opened it. There is no conflict

when only one user is writing to a file and all other users are

reading it. There are two conditions in which conflict occurs:

Two or more users have opened a file for output with the
same filename and extension (on the same device) .

Two or more users are updating an existing virtual array
file.

If two or more files are opened on a device with the same filename

and extension, only the last file closed remains permanent. Ordinarily

this problem should not occur since nonprivileged users do not have

the ability to create files with extensions whose second and third

characters are different from the user ID. It could occur if two or

more users have logged into BASIC with the same user ID; consequently,

this practice is not recommended. Privileged users do have the ability

to creat~ files with any extension and should take care that they do

not create files with the same extension used by a nonprivileged user.

The same restriction applies to replacing BASIC programs.

2-26

Input and Output

The virtual file facility provides a means for maintaining a data base.

This data base can be read by more than one user simultaneously. It

is important to note' that BASIC does not provide any record-locking

facility. If two users attempt to write values into the same record,

the user who accesses another record (or closes the file) last has

the values written. The values written by all other users are lost.

2-27

CHAPTER 3

SYSTEM CO~ll~NDS AND FUNCTIONS

3.1 ASSIGNING DEVICES

BASIC ensures that each user can independently access devices. Some

devices, disk and DECtape units, can be accessed safely by more than

one user simultaneously. These devices are called public devices.

Other devices, cassette, magtape, card reader, high-speed paper tape

punch, high-speed paper tape reader, and line printer, can be accessed

by only one user at a time. These are called nonpublic or assignable

devices. In addition, the system manager can designate any disk or

DECtape unit as nonpublic.

Each separate unit of a device is con­
sidered unique, for example, CT~: (Cas­
sette unit ~) and CT1: (Cassette unit 1)
are considered separate devices.

Only one user can access a nonpublic device at anyone time. The de­

vice becomes available to other users only when the user currently

accessing the device releases it. There are two ways to obtain access

to a device:

1) By means of the ASSIGN command.

2) By means of a file-related co~mand or stateffient.

When a user enters an ASSIGN command for an available device, BASIC as­

signs the device to that user. No other user can access the device

until the user who has obtained assignment enters a DEASSIGN or BYE

command to deassign the device. When a user enters an ASSIGN command

3-1

System Commands and Functions

for a public or unavailable device, the ?DNA (Device Not Available)

error message is produced.

If a user accesses an unassigned device by means of a file-related

statement or command, the device is made unavailable to other users

until the operation is completed.

File-related statements and commands are the OPEN, KILL, NAME TO,

OVERLAY, and CHAIN statements and the SAVE, UNSAVE, OLD, APPEND, and

RUN file descriptor commands. (For all statements and commands except

the OPEN statement the device is unavailable until the operation is

finished.) After the execution of an OPEN statement the device is un­

available to other users until all the user's open files on that de­

vice are closed.

Figure 3-1 illustrates the possible states for a nonpublic device.

~LOSE

~

Figure 3-1
possible States for Nonpublic Devices

3-2

System Commands and Functions

ASSIGNED signifies exclusive use and IN USE signifies temporary use.

Both conditions can exist concurrently for the same user. OPEN sig­

nifies execution of the OPEN statement or the beginning of any

other file related command or statement. CLOSE indicates the execu-

tion of the CLOSE statement (or of any statement or command that

closes files) or the completion of any file related command or state­

ment (other than OPEN). A public device is always AVAILABLE, even

when it is being used.

Every file on a device must be closed before the device becomes avail­

able. For example, if a user has not assigned a device but has opened

two files on it, both files must be closed before the device becomes

available to other users.

The form of the coromand to assign a device is:

ASSIGN device:

where device: is one of the device symbols described in Table 2-1. If

an attempt is made to ASSIGN a device that is already assigned to the

same user the command is ignored and no error message is produced.

The form of the command to deassign a device is:

DEASSIGN [device:]

where device: has the same meaning as in the ASSIGN command.

If no device is specified in the DEASSIGN command, all devices as­

signed to the user are deassigned. The BYE command also deassigns

all devices.

3.2 LENGTH COMMAND

The LENGTH command displays on the terminal the amount of storage re­

quired by the BASIC program in memory. This information is useful in

determining the minimum user area in which a specific program can run.

The system manager can use this information in determining the size of

the user areas (see MU BASIC/RT-Il System Installation Notes). The

form of the command is:

LENGTH

3-3

System Commands and Functions

The LENGTH command produces this message:

mmm WORDS USED, nnn FREE

where:

mmm is the number of words currently occupied by the user's
program

nnn is the number of words remaining free in the user's area

The number of words in use includes memory currently needed by the BASIC

program itself, arrays, string variables, and file buffers in the user's

area. To determine the size of the program alone, enter the LENGTH com­

mand immediately after an OLD or CLEAR command. Arrays are created

after the RUN command and file buffers are created when the OPEN state­

ment is executed. The memory required for string variables and string

arrays varies with the current values of the strings; consequently, the

LENGTH command returns the current memory requirements, which may be

smaller than the maximum memory requirements.

Several error messages can be produced when the program exceeds the

amount of memory available. These errors are ?ATL (Array Too Large),

?BSO (Buffer Storage Overflow), ?PTB (Program Too Big), and ?SSO (String

Storage Overflow). Program size can be reduced by several procedures:

Eliminate or reduce unnecessary items such as REMark
statements, long printed messages, and optional key­
words such as LET.

Make maximum use of multiple statement lines.

Make efficient use of program loops, subroutines,
user-defined functions, and computed GO TO state­
ments.

Split up large programs into several smaller pro­
grams by use of CHAIN or OVERLAY statements.

Reduce the size of arrays in memory to the size
required (DIMension statement).

Use virtual array files for arrays that are too
large to fit into memory.

Reduce the number of variables and arrays in a pro­
gram by reusing them when their contents are no
longer needed, instead of creating new variables or
arrays.

3-4

System Commands and Functions

Reduce the number of simultaneously open files by
opening a file just before it is needed and clos­
ing it immediately after the last use.

After program lines are deleted, the program can be stored by the SAVE

command and restored by the OLD command to further optimize program

memory requirements.

File buffers are stored in a system I/O area common to all users if

there is no room in the user area. If there is no room in either the

user's area or the system I/O area, a ?BSO (Buffer Storage Overflow)

error message is printed, except when a privileged user has specified

the RECORDSIZE -1 option in the OPEN statement. See section 2.5.1 for

a description of the RECORDSIZE option.

For more information on program storage see Appendix D.

3.3 TERMINAL CHARACTERISTICS

Many different terminals can be used with BASIC. Several system func­

tions and commands allow use of specific characteristics of the termi­

nals. The SET TTY command specifies the class of terminal; system

function 6 sets the width of the terminal; CTRL/S and CTRL/Q key com­

mands stop and then restart output to the terminal, the TAPE and KEY

commands, and system functions 1, 2, and 3 facilitate the use of the

low-speed paper tape reader on the ASR33 terminal. The system func­

tions are described in section 3.4.

BASIC has a type-ahead feature which allows terminal input to be

entered before BASIC is actually ready to process it. For example:

LIST

4.

0;" "'';: '.:> , ! .• P

3-5

System Commands and Functions

While the paper tape is being read the LIST and RUN commands and the

data 4 have been entered. The first READY indicates that the OLD com­

mand has finished. The program is then listed and run. The question

mark is produced by the INPUT statement; however, because the data has

already been entered BASIC prints the values on the same line as the

question mark.

If the CTRL/C key command is typed at any time, however, it is seen

first and any unprocessed type-ahead is discarded.

If type-ahead exceeds thirty characters, the next character is accepted

but is not echoed until the type-ahead is processed. If still more

characters are entered BASIC rings the terminal bell to indicate that

no more characters can be accepted.

NOTE

Extreme care should be used with the type­
ahead feature. The printing on the termi­
nal may become difficult to read. This
does not affect the processing of the type­
ahead.

3.3.1 Stopping Output to Terminal

The CTRL/S key command (may be labeled XOFF on some terminals) temporar­

ily suspends all output to the terminal. This allows an alphanumeric

display terminal (VTOS, VTSO, etc.) to be photographed, copied or read

without the information on the screen being lost. The CTRL/S key com­

mand itself does not cause any character to be printed on the screen

(it is not echoed) .

The CTRL/Q key command (may be labeled XON on some terminals) causes

output to the terminal to resume. The CTRL/Q command itself does not

cause any character to be printed (it is not echoed). No characters

are lost in a CTRL/S - CTRL/Q combination. In addition to its normal

functions, the CTRL/C command also causes output to the terminal to

resume after a CTRL/S command.

NOTE

While both the CTRL/O and CTRL/S key com­
mands stop output to the terminal, they
are not equivalent. The CTRL/O key com­
mand causes all output to the terminal to
be lost - the program continues executing

3-6

System Commands and Functions

but does not print anything on the termi­
nal. The CTRL/S command stops output to
the terminal and program execution. When
program execution ~s resumed (by the CTRL/
o command) output resumes. No proqram
~utput is· lost-during this CTRLjs and
CTRL/Q combination.

3.3.2 Using the Low-Speed Paper Tape Reader/Punch

BASIC usually prints on the terminal's printer every character input

by the low-speed paper tape reader or the keyboard. This process,

called "echoing", provides a visual confirmation of what has been

typed; however, when reading tapes from the low-speed reader echoing

is often undesirable, because tapes often cont.ain data that is fre­

quently reused.

The TAPE command stops the echoing process. It also causes the RUB­

OUT key command to be ignored. This allows paper tapes to be input

on the low-speed reader without printing the contents of the tape on

the terminal. When creating a papertape to be input using the TAPE

command, an erroneous character should be deleted by physically back­

spacing the tape and then typing the RUBOUT key.

The form of the command is:

TAPE

The 'rAPE command has the same effect as the system function 1.

After the TAPE command has been executed the echoing process may be

resumed by typing the KEY command.

The form of the KEY command is:

KEY

If the TAPE command has been executed the KEY command itself is not

echoed but all following characters typed at the terminal are echoed.

The KEY command also causes RUBOUT to have its usual effect.

Echoing is also resumed after a CTRL/C key command or the execution

of system function 2.

3-7

System Commands and Functions

NOTE

When creating binary tapes or tapes of
BASIC programs (whose lines are longer
than the terminal width) on the low-speed
paper tape punch use the SYS(6,0) system
function to prevent automatic printing of
carriage return/line feed combinations.
During its normal operation, BASIC occa­
sionally outputs a null character to the
low-speed punch. This is ignored when
BASIC reads the tape.

3.3.3 SET TTY Command

The terminal type for all local terminals should be set by the system

manager when the system is initialized; the SET TTY command should not

be used on these terminals. However, to allow any type of dial-up

terminal to be used, a user can set the correct number of fill charac­

ters with the SET TTY command. In this respect, there are three

classes of terminals:

1. ASR33

KSR33

ASR35

KSR35

LA3~-P

VT~5

LA36

VT5~

2. LA3~-C

LA3~-E

3. VT~5

Teletype l with low-speed paper tape reader/punch

Teletype

Teletype with low-speed paper tape reader/punch

Teletype

Parallel DECwriter

Alphanumeric display with a data rate less than or
equal to 300 baud.

DECwriter II

Alphanumeric display

Serial DECwriter

Serial DECwriter

Alphanumeric display with a data rate greater than
300 baud.

For all terminals in the first class the appropriate SET TTY command

is:

SET TTY ASR33

For serial LA3~ DECwriters the appropriate command is:

SET TTY LA3~

ITeletype is a registered trademark of the Teletype Corporation.

3-8

System Commands and Functions

For a VT~5 alphanumeric display with a data rate greater than 300 baud,

the appropriate command is:

SET TTY VT~5

The SET TTY command has no effect on the terminal margin. See section

3.4.5 for information on setting the terminal margin.

3.4 SYSTEM FUNCTION CALLS

System function calls perform a variety of operations. Certain system

functions are available to all users. These cancel a CTRL/O typed at

the user's terminal, disable echoing, reenable echoing, enter a special

single-character input mode, scratch the user's program in memory and

then return to the READY message, and return the current user ID. Cer­

tain other system function calls can be executed only by a privileged

user. These disable the CTRL/C interrupt, set the user 10, terminate

the privileged user status, and cause BASIC to exit and return control

to the RT-ll monitor.

The system functions can be used in any arithmetic expression, but for

reasons of simplicity and compatibility it is recommended that system

functions only be used in the LET statement.

The format of the system function call in the LET statement is:

where

[LET] var=SYS (exprl[,expr2])

var

exprl

expr2

is the target variable. The value returned by
the system function is stored in the target
variable.

determines the system function to be performed.

is an optional argument used in some SYS func­
tion calls.

Table 3-1 describes the system functions that are performed when exprl

is in the range -4 to +8. If the value of exprl is less than -4 or

greater than 8 the ?ARG (Argument Error) message is printed. If expr2

is specified and not expected the ?SYN error message is printed.

3-9

Value of exprl

o

1

2

3

4

5

6

System Commands and Functions

Table 3-1
Summary of System Function Calls

Function Executed by the SYS Call

Cancel effect of CTRL/O typed on terminal.

Enter special mode for inputting tapes on the low­
speed reader.

Enable echoing. Cancels effects of SYS(l) and
SYS(3) .

Disables echoing.

Single character input mode. Target variable con­
tains the ASCII value of the next character typed
at terminal. Optional argument, expr2, specifies
logical unit number of file.

Delete current program, change program name to
NONAME, and print the READY message.

Set the terminal margin to the value of expr2.

7

8

Re-enable CTRL/C as an interrupt. I
Privileged function call; disable CTRL/C as an in- I
terrupt. Causes BASIC to ignore any CTRL/C typed I
at terminal. I

-1

-3

-4

Privileged function call; sets the user ID to the
value specified by ASCII value in expr2. If expr2
is negative return the current user ID as the value
of the function.

Clear privileged user status. User will not be
able to execute any privileged functions or file
operation.

Privileged function call; return to RT-ll monitor.
A SYS(-3) function call should be executed by a
privileged user only if he has notified all other
users that the system will be taken down and that
they should terminate their jobs.

Return privileged status (+1 for privileged or ~
for nonprivileged) .

It is possible to combine two or more system function calls in one

statement, for example, the statement:

LET A ~*SYS(3) + SYS(4) + ~*SYS(2)

turns off echoing, inputs a character from the terminal, and turns

echoing back on. The system functions are executed in order of the

normal BASIC-II precedence of operations.

3-10

I

System Commands and Functions

3.4.1 System Function ~ - Disabling CTRLjO

The CTRLjO key command stops output to the terminal; execution of the

system function call ~ causes output to resume.

Example:

In the following example, data is input from a file. Each value is

printed on the terminal and then a sum is printed. A CTRLjO key com­

mand typed any time before line 100 is executed suppresses printing

of all further data items but does not suppress the printing of the

final sum.

':; PEt'l PPOG~:Aj'1 TO I NPUT [:tAlA
-,:' P E !'1 A N [) F' f<~ I N T S U t'1
:1 f1 0 ;.:' E r·~ " f-' In II FOP I N F-' UTA S F I L E # 1
2 fi H;': nn "D A TAl NFl L E : II

30 IF END #1 THEN 100
.:(. ~; 1 N F' U T # L [)

~e T=T+D \ GO TO 30

i 1 ij f' ~: I N T \, F-' PIN T 11 S U 1'1 =- " T

3.4.2 System Functions 1, 2, and 3 - Using the Low-Speed Paper Tape
Reader/Punch

BASIC usually echoes every character input by the low-speed reader or

the keyboard. This provides visual confirmation of what has been

typed; however, echoing is undesirable in certain cases. System func~

tions 1 and 3 disable echoing. System function 2 enables echoing.

System function 1 allows compatibility with paper tapes produced by

other systems when they are read by the low-speed reader. System

function 1 disables echoing and causes all RUBOUTs to be ignored.

RUBOUT is the character normally used in BASIC to delete the previous

character typed. Some other systems correct an error on paper tape by

physically backing up the tape and then typing a RUBOUT to erase a

character. System function 1 should only be used to read tapes pre­

pared in this manner. System function 3 should be used for reading

all other paper tapes on the low-speed reader. System function 2

cancels the effect of system function 1 or 3. Echoing is resumed

and RUBOUT resumes its usual meaning.

3-11

Example

System Commands and Functions

1 !j r;:: E 1'1 P 0 G F.: A t'l T (I r r·~ F' U T [:, A T H
2CJ ~:EI'l F 01'1 THE.. LOl,l ~;F'EE[) F-.:EA[:.EF:
2~5 DH1 F; 1(0)
i0 Z=SYS ~) REM DISA8LE ECHOING
4 ((0 r::' EN' 1< E: ." F 0 F: r 1·W U T Fl':: F I L E # 6
45 FOR 1=1 TO 100
6 Cj I N F' U T # 6.' R':: I::' \, F: E !'1 I N F' U T F F: 0 1'1 1": E A [) E F::

100 Z=SYS(2) \ REM RESUME ECHOING

Turning off the echoing does not affect
printing caused by PRINT statements and
BASIC-II messages.

3.4.3 System Function 4 - Single-Character Input Mode

System function 4 returns the decimal ASCII value of the next charac­

ter input from the terminal or from a file. (See Appendix A for a

list of the ASCII values.) System function 4 is the only method for

BASIC programs to process terminal input without waiting for a car­

riage return to be typed. This allows interactive programs to use

single character response and not require a carriage return.

Any key or key combination on the terminal is a valid response to a

system function 4 input request except CTRL/S or CTRL/Q. CTRL/C

is only valid if the CTRL/C command is disabled.

Example

l £1 F' F.: I N -r "F CI F.: HE L.~' -:' '/ F' ~: H - -. n .:

? [1 P = ~, 'r' S .:: 4::' ". , f: E i"1 S 1 r-J Ci L E c: H R F: i":j c: T E ~: I N F' U T
~:: ~i F'~: I ,.J T
:< D I F R = R ~, c: .:: " H "::' ThE. /.J ~: (1 [1

'~f1 S -j C; F'

? tl 0 F' F:: :. r·~ -i' "I N F (I F.: f'1 !":j OJ' ! (I NTH A T 'I' 0 U :;; H 0 U L. [) K N [I l~ n

To input a single character from a sequential file, specify the logical

unit number of the file as the second argument in the system function

4 call. System function 4 then returns in the target variable the

ASCII value of the next character in the file. All characters includ­

ing nulls are returned. This allows data in any file to be read with

no need for separating commas or carriage returns. Binary files can be

copied exactly by use of system function 4. When the end of the file

is reached system function 4 returns a value of -1. (Successive calls

also return -I.)

3-12

System Commands and Functions

The file must be opened for input as a sequential file, not as a vir­

tual file.

Example

NOTE

If a file is opened on the terminal (KB:)
a system function 4 acting on the terminal
file is the same as a system function 4
with no file specified. CTRL/S and CTRL/Q
are not valid responses on a terminal to a
system function 4 input request.

This example will copy any RT-ll file exactly.

11!:1 p~: I NT II I N PUT F I LEI; ;
21!:1 I NPUT 1$
]:0 P~: I NT II OUTPUT FILE II.;
40 INPUT 0$
50 OPEN 1$ FOR INPUT AS FILE #1
60 OPEN 0$ FOR OUTPUT AS FILE #2
?€1 A=5 I

T
1S (4J 1::'

80 IF A=-1 THEN 200
90 PRINT #2, CHR$(A);
100 GO TO ·?f1
2tH3 CLOSE
210 GO TO 1ft

This program is less efficient and slower than a copy program that uses

string variables to copy files. But a copy program using string vari­

ables does not copy some characters and requires that carriage returns

separate strings.

3.4.4 System Function 5 - Return to READY

Execution of a SYS(5) system function call deletes the program in mem­

ory, changes the program name to NONAME, and returns to READY. This is

a useful method of terminating programs that are not to be rerun.

3-13

Example:

System Commands and Functions

LIST

DELETE 17-MAR-75 MU BASIC/RT-11 Y01-06

10 REM THIS PROGRAM WILL DELETE ITSELF
20 A=SYS(S)

READY

RUNNH

READY

LIST

NONAME 17-MAR-75 MU BASIC/RT-ll Y01-06

READY

System function 5 is equivalent in effect to the SCR command.

See the BASIC-II Language Reference Manual for a description of the

SCR command.

3.4.5 System Function 6 - Terminal Margin

System function 6 sets the maximum number of characters that can be

printed on one line. BASIC initially assumes a terminal margin of 72

and outputs a carriage return/line feed combination after printing 72

characters on a line. Execution of system function 6 with a nonzero

second expression (between 1 and 255) causes BASIC to output a car­

riage return/line feed after printing the number of characters speci­

fied in the second expression. The margin also affects echoing - if

more characters are entered than fit on a line, a carriage return/

line feed is printed and the excess characters are echoed on the next

line.

If a line is partially full and there is not enough room for an

output string (or number), a carriage return/line feed combination

is printed and the string (or number) is printed on the next line.

An output string (or number) longer than a complete single line is

continued on the next line~ The process is repeated as many times as

3-14

System Commands and Functions

necessary to print the entire string (or number). Even if a line is

partially filled when a system function 6 is executed, the margin is

changed for that line.

Example:

NOTE

BASIC outputs characters to a terminal buffer and
continues program execution without waiting for
the characters to actually be printed on the ter­
minal. If a system function 6 changes the margin
while there are characters in the buffer, a
carriage return will be printed when the new
margin is reached or exceeded. But BASIC tests
if a string or number will fit on a partially
filled line before outputting the characters to
the buffer and this test is not affected by a
later margin change.

10 A=SYSC6,10) \ REM SETS MARGIN TO 10
20 PRINT 11234567 8 ;18901.
30 PRINT -THIS LINE WON'T FIT'­
RUNNH

1234567
8901
THIS LINE
WON'T FIT'

READY

with a margin of ten, the string "8901" does not fit on the first line

of output, so it is printed on the second line. The string to be

printed by line 120 will not fit on one line, so it is printed ten

characters per line until the string is exhausted.

A system function 6 with a second expression equal to zero suppresses

printing of any automatic carriage return/line feed combinations.

This suppression is useful when preparing binary tapes or tapes of

BASIC progrfuus (whose lines are longer than the terminal width) on

the low-speed paper tape punch or when using special cursor control

characters available on some alphanumeric video display terminals.

(Cursor control characters determine where on the video display

screen the next printed character will appear.)

To set BASIC to use the full width of an LA36 DECwriter II (l32

columns) type:

A = SYS(6,132)

3-15

System Commands and Functions

To set BASIC to use the full width of a VT50 alphanumeric display

terminal or LA30 (80 columns) type:

A = SYS(6,80)

To set BASIC to use the full width of a VT05 or ASR33 (72 columns)

type:

A SYS(6,72)

This returns BASIC to the initial default state.

3.4.6 System Functions 7 and 8 - CTRL/C Disable

The system function call 8 is a privileged function call that causes

the CTRL/C key command to be ignored. If a nonprivileged user at­

tempts to execute SYS(8), the ?PSF (Privileged System Function) error

message is produced. A program should be thoroughly debugged before

the SYS(8) function call is inserted.

The system function 7 can be executed by any user and it returns

CTRL/C to its normal meaning. If CTRL/C is already enabled, a SYS(7)

is ignored.

NOTE

If a program executes a SYS(8) function
call and then enters a closed loop, it is
not possible to halt the program. All
other users are unaffected but it is not
possible to use the terminal at which the
error has occurred until the MU BASIC/
RT-ll system is taken down and then
brought up again.

3.4.7 System Function -1 - Set User ID

The SYS(-l, ex?r2) function sets the user ID to the letters specified

by a positive ASCII value in expr2. This is a privileged system fu~c­

tion call. To set the user ID to a value "AB" the following system

function call could be executed:

A SYS{-l, ASC("A")+256*ASC("B"))

3-16

System Commands and Functions

Only the ASCII values of the characters A through Z and the digits 0

through 9 should be used for the user ID. The second character, how-

ever, can be a null. Use of any other values results in illegal RT-ll

file descriptors.

If the value of expr2 is negative, the system function call can be

executed by any user and it returns the current user ID.

Example:

1 (1 A = 5 'T' 5 (- L - 1 ::.
2(1 U$=CHR$(A)+CHR$(A/256)
3~1 PF.~ I NT "CUF:~~~ENT USEF.~ l(;. 15 ".; US

3.4.8 System Function -2 - Clear Privileged Status

A SYS(-2) function call clears the privileged status indicator for the

current user. After execution of a SYS(-2) function it is impossible

to execute a privileged system function or a privileged file operation.

It is possible to regain the privileged status only by typing the BYE

command and then logging on under a privileged user ID (see Chapter 1).

3.4.9 System Function -3 - Return to RT-ll Monitor

SYS(-3) is a privileged system function. It allows BASIC to

down to return control to the RT-ll monitor. SYS{-3) causes all users'

programs to be terminated and erased and all files open for output to

be deleted. After a SYS(-3) function call it is not possible to enter

any commands or program lines to BASIC until BASIC is reloaded by the

system manager. Consequently, all users should be notified, if pos­

sible, before execution of a SYS(-3) function call.

3-17

System Commands and Fl1n~tjO!l~

3.4.10 System Function -4 - Return Privilege Status

System function -4 returns the privilege status of the current user.

This allows a privileged program (see section 2.3) to determine if the

user running the program is privileged or nonprivileged. If the user

is privileged a value of +1 is returned, but if the user is nonprivi­

leged a value of 0 is returned. For example:

10 A = S 'i' S .:: - 4)
20 IF A=l THEN 100
:n1 F' I? I N T II ILL E A LOP E F.: R T ION F [I F.: NON P F:: I \.' I LEG E [) USE F.: II

40 A=SYS'::S) \ EM RETURN TO RERDY
100 REM DO RES RIeTED OP~RRTION HERE

3-18

CHAPTER 4

ERROR MESSAGES

When BASIC encounters an error, execution of the command or statement

is interrupted and an error message is printed. Most errors are fatal

and cause BASIC to print the READY message~ The condition causing the

error must be corrected before execution can be continued.

Certain arithmetic and input errors are nonfatal. BASIC substitutes a

default value for a nonfatal arithmetic error and resumes execution.

When data in an illegal format is entered in response to an INPUT

statement, the request for input is repeated. Nonfatal errors do not

cause BASIC to print the READY message.

BASIC detects errors when it executes commands, immediate mode state­

ments, or program lines. Program lines that are typed are not checked

for syntax errors until executed. No errors are produced when typing

program lines or reading them from a file with these exceptions: ?LTL

(Line Too Long), ?TLT (Too Long to Translate), ?PTB (Program Too Big),

and ?SYN (SYNtax error - caused when program lines in a file contain

illegal characters) .

When a program is interrupted by an error, BASIC includes in the mes­

sage the line number of the statement causing the error. It is often

useful to list this line and examine the values of the variables in

the line by an immediate mode PRINT statement.

The cause of the error can be corrected and execution of the program

continued by the immediate mode GO TO statement. Execution of the

program can also be started at the beginning by the RUN command. This

will initialize all variables and delete any open files. To save the

data in any open files, type an immediate mode CLOSE statement.

4-1

Error Messages

All error messages are printed in one of two formats:

message

or

message AT LINE xxxxx

where xxxxx is the line number of the statement containing the error.

Error messages produced by immediate mode statements or commands are

printed in the first format.

Table 4-1 lists all BASIC error messages. The message produced is in

the abbreviated form unless BASIC has been assembled with longer error

messages specified. All error messages are fatal unless the explana­

tion specifies nonfatal.

Abbreviated
Form

?ADR

?ARG

?ATL

Table 4-1
BASIC Error Messages

Longer Form

ADDRESS CHECK ERROR

ARGUMENT ERROR

ARRAYS TOO LARGE

Explanation

Internal system error. If
error is reproducible, system
manager should submit SPR.

Arguments in a function do not
match, in number, range, or
type, the arguments defined for
the function.

Not enough memory is available

j

I

for the arrays specified in the
DIM statements. If the array can-I
not be made smaller, then reduce :
the size of the program (see Ii

?BDR BAD DATA READ

?BLG BAD LOG

4-2

section 3.2). Alternatively, "
a virtual array file may be
used instead of an array in I
memory.

Illegal characters in data item
input from a file or from a
DATA statement.

Nonfatal, expression in LOG or
LOGIO function is zero or nega­
tive, BASIC returns a value of
zero and continues execution.

!
Abbreviated

Form
t

?BRT

?BSO

?CAO

?CHN

?CNO

?CPE

?DEV

?DHE

?DIR

Error Messages

Table 4-1 (Cont.)
BASIC Error Messages

Longer Form

BAD DATA - RETYPE FROM
ERROR

BUFFER STORAGE OVERFLOW

CHANNEL ALREADY OPEN

CHANNEL NUMBER FAULT

CHANNEL NOT OPEN

CHANNEL POOL EMPTY

NO DEVICE HANDLER

DEVICE HARDWARE ERROR

DIRECTORY I/O ERROR

4-3

Explanation

Nonfatal, item entered in re­
sponse to an INPUT or INPUT #~
statement is in wrong format.
Retype item and program will
continue.

Not enough room available for
file buffer in user area or
system I/O area. Reduce pro­
gram size (see section 3.2).

OPEN statement specifies a
channel (logical unit number)
which is already associated
with an open file.

Internal system error. If
error is reproducible, system
manager should submit SPR.

A PRINT #, PRINT USING #, INPUT
#, IF END #, or CLOSE statement
specifies a channel (logical
unit number) not associated
with an open file.

All device channels are cur­
rently in use. Caused by OPEN
statement. Retry operation
later.

Handler is not currently avail­
able to BASIC users. Notify
the system manager. If the
handler is present on the sys~
tern device and has been loaded
correctly (if in a F/B environ­
ment) and error is reproducible,
submit SPR.

A device hardware error has
been detected. This is often
caused by an off-line or write­
locked device. If error is re­
producible and not caused by
an off-line device or by output
to a write-locked device, no­
tify the system manager.

An error has been detected dur­
ing an RT-II directory opera­
tion. This is often caused by
a write-locked device. If er­
ror is reproducible and not
caused by a write-locked device,
notify the system manager.

I
i

Abbreviated
Form

?DRO

?DNA

?DNE

?ENL

?ETC

?F-EMT
?F-OVL
?F-SYS
?F-TRP

Error Messages

Table 4-1 (Cont.)
BASIC Error Messages

Longer Form

DIRECTORY OVERFLOW

DEVICE NOT AVAILABLE

DEVICE NOT ENABLED

END NOT LAST

EXPRESSION TOO COMPLEX

none
none
none
none

4-4

Explanation

There is no room in directory
for a new file. Delete old
files from device or use another
device.

The device requested is cur­
rently in use by another user
or another job (when the RT-ll
Background/Foreground monitor
is used). Use another device
or try again later. This error
message is also produced by an
attempt to ASSIGN a public de­
vice.

Device is in LOCAL mode or not
properly mounted. Enable de­
vice and retry, or use another
device.

END statement is not the high­
est numbered program line.
Caused when END statement is
executed and a program line has
a line number higher than the
END statement line number.

The expression being evaluated
caused stack overflow because
it is too complex. This is usu­
ally caused by user-defined
functions or nested functions.
The degree of complexity that
produces this error varies ac­
cording to the amount of space
available in the stack at the
time. Breaking the statement
up into several simpler ones
eliminates the error.

Illegal EMT coded.
Overlay read error.
Fatal system error.

I Trap to location 4 or l~.

These are four fatal system er­
rors. The message will be
printed on the console terminal
and will not include AT LINE

I xxxxx. Control will return to
I the RT-ll Monitor. The system

I
manager must reload BASIC. If I
the error is reproducible and I

not due to a user progra~ming
error in an assembly language
routine, submit SPR.

Abbreviated
Form

?FAD

?FTC

?FNF

?FOV

?FPV

?FRM

?FSV

?FTS

Error Messages

Table 4-1 (Cont.)
BASIC Error Messages

Longer Form

FUNCTION ALREADY DEFINED

ERROR IN FETCH

FILE NOT FOUND

FLOATING OVERFLOW

FILE PROTECTION VIOLA­
TION

FORMAT ERROR

NESTED FOR STATEMENTS
WITH SAME CONTROL
VARIABLE

FILE TOO SHORT

4-5

Explanation

The user-defined function is
previously defined.

I Device contains a bad block or
is offline. Notify your sys­
tem manager if the device is
not offline. If error is not
due to an offline device or a
bad block and is reproducible,
submit SPR.

The file requested is not on
the specified device.

Nonfatal, the absolute value
of the result of a computation
is greater than the largest
number that may be stored by
BASIC (approximately 1038

). A
value of zero is given to the
expression and BASIC continues
execution.

Restricted file operation has
been attempted.

Format string error occurs in
PRINT USING statement or an
attempt was made to print item
in the wrong type of data
field.

A FOR statement is inside a
FOR-NEXT loop that specifies
the same control variable that
the FO'R statement specifies.

The specified or default FILE­
SIZE in a data file opened for
output is not large enough to
hold the data. The file is not
closed and all data is lost.
Specify larger FILESIZE in OPEN
statement. If this error mes­
sage is produced by a SAVE or
REPLACE command, save the pro­
gram on cassette, magtape, or
paper tape (if available) and
notify system manager.

Abbreviated
Form

?FUN

?FWN

?FZD

?ICN

?1DM

?IDT

?IFL

?IFS

Error Messages

Table 4-1 (Cont.)
BASIC Error Messages

Longer Form

FLOATING UNDERFLOW

FOR WITHOUT NEXT

FLOATING ZERO DIVIDE

ILLEGAL CHANNEL NUMBER

ILLEGAL DIM

ILLEGAL DATA TYPE

ILLEGAL FILE LENGTH

ILLEGAL FILE
SPECIFICATION

4-6

Explanation

Nonfatal; the absolute value
of the result of a computation
is smaller than the smallest
number that BASIC can store
(approximately 10-38). A value
of zero is given to the expres­
sion and BASIC continues exe­
cution.

The program contains a FOR
statement without a correspond­
ing NEXT statement to terminate
the loop.

Nonfatal; computation includes
a division of some quantity by
zero. The expression is given
a value of zero and BASIC con­
tinues execution.

The channel (logical unit num­
ber) specified is not in the
range 1-127 or the IF END state­
ment specifies a file on a ter­
minal.

A subscript in a DIM or COMMON
statement is not an integer
number or an array is dimen­
sioned more than once.

The statement assigns a value
greater than 32,767 or less
than -32,768 to an element in
an integer virtual array file.

The FILESIZE specified in the
OPEN statement exceeds the
maximum size allowed. Error
is also produced when FILESIZE
specified is less than 1 for
nonprivileged users (or less
than -1 for privileged users) .

The file specification does not
conform to the required syntax,
or contains illegal characters.
Legal characters are the letters I

A through Z, the digits ~ through i

I 9, and the special symbols n. II ,

I
n. ", n n (blank), n $ n, n #", and
n@" which must be used as j
descr1bed 1n sect10n 2.2.

Abbreviated I·
I

I Form

?IID

?IIM

?INS

?IRS

?ISL

?LTL

?MSP

Error Messages

Table 4-1 (Cont.)
BASIC Error Messages

Longer Form

ILLEGAL I/O DIRECTION

ILLEGAL IN IMMEDIATE
MODE

ILLEGAL NUMBER OF
SUBSCRIPTS

ILLEGAL RECORD SIZE

ILLEGAL STRING LENGTH

LINE TOO LONG

MISSING SUBPROGRAM

4-7

Explanation

An attempt has been made to
OPEN FOR OUTPUT a read-only de­
vice (high-speed paper tape

I reader) or to OPEN FOR INPUT a
write-only device (line printer,
high-speed paper tape punch).
For example, the statement:
OPEN "LP:" AS FILE 1 will gen­
erate this error message be­
cause FOR INPUT is assumed when
neither is specified.

The INPUT statement has been
entered in immediate mode.

More than two subscripts are
specified in a DIM or COMMON
statement or the array is di­
mensioned with one subscript
and referenced by two or vice
versa.

The OPEN statement specifies a
RECORDSIZE less than one for
unprivileged users or specifies
a RECORDSIZE of zero or less
than minus one for a privileged
user.

String virtual array OPEN state­
ment specifies a string length
outside the range 1-255.

An attempt has been made to
enter a line longer than 132 I

characters; the line is ignored.
If this message occurs when
BASIC is reading a program from
a file, BASIC stops reading the
file.

Occurs when assembly language
routines have been included with
BASIC and a CALL statement
specifies a nonexistent routine
name. This error can also be
caused by a syntax error in the
first element of a line. BASIC
interprets this error as an
implied call statement.

Abbreviated
Form

?NER

?NFS

?NGS

?NOB

?NRH

?NSM

?NVD

?NWF

Error Messages

Table 4-1 (Cont.)
BASIC Error Messages

Longer Form

NOT ENOUGH FILE SPACE

NOT FILE STRUCTURED

NEGATIVE SQUARE ROOT

NUMBER OUT OF BOUNDS

NO ROOM FOR HANDLER

NUMBERS AND STRINGS
MIXED

NOT A VALID DEVICE

NEXT WITHOUT FOR

4-8

I
Explanation Ii

i

The device contains insuffi- II

cient free space to accommodate I

the requested file. Try again,
and specify a smaller FILESIZE
in the OPEN statement or a dif­
ferent device. This error mes­
sage is also produced when one
user attempts to open more than
one file simultaneously on one
cassette or magtape unit. If
this message occurs when access­
ing a public device, notify the
system manager.

An attempt has been made to
open a virtual file on a device
other than DECtape or disk.

Nonfatal, the expression in the
SQR (square root) function has
a negative value. The square
root of the absolute value of
the expression is returned and
BASIC continues execution of
the program.

The absolute value of a numeric
constant specified in a state­
ment or in the VAL function is
less than the smallest number
BA§IC can store (approximately
10 38) or is greater than the
largest number BASIC can store
(approximately 1038) •

Currently the system I/O area
has insufficient space for the
non-resident handler of the re­
quested device. If possible
use another device or retry the
operation again later.

String and numeric values ap­
pear in the same expression or
they are set equal to each
other; for example, A$=2.

The device name is not valid or
is not available to BASIC users.

A NEXT statement has been exe­
cuted without a corresponding
FOR statement.

Abbreviated
Form

?OOD

?PSF

?PTB

?RPL

?RWG

?SOB

?SSO

?STL

Error Messages

Table 4-1 (Cont.}
BASIC Error Messages

Longer Form

OUT OF DATA

PRIVILEGED SYSTEM
FUNCTION

PROGRAM TOO BIG

USE REPLACE

FETU~~ WITHOUT GOSUB

SUBSCRIPT OUT OF BOUNDS

STRING STOP~GE OVERFLOW

STRING TOO LONG

4-9

Explanation

The data list has been exhausted
and a READ statement requests
additional data or the end of a
file has been reached and the
INPUT # statement requests ad­
ditional data.

A nonprivileged user has at­
tempted to execute a privileged
system function call.

The line just entered causes
the program to exceed the user
code area; the line is ignored.
Reduce program size (see sec­
tion 3.2). If this error oc­
curs when BASIC is reading a
program from a file, BASIC
stops reading the file.

An attempt has been made to
save a program in a file that
already exists on the device.
The operation does not occur
and the original file is not
disturbed. Use the REPLACE
command if the operation is
intended.

A RETU~~ is encountered before
execution of a GOSUB statement.

The subscript computed is less
than zero or is outside the I

bounds defined in the DIM
statement or outside of the I

limits of the virtual array file. I
I

Not enough m~mory is available
to store all the strings used
in the program. Reduce program
size (see section 3.2).

The maximum length of a string
in a BASIC statement is 255
characters.

i

I

Abbreviated
Form

?SYN

?TLT

?TMC

?TMG

?UFN

?ULN

?USR

?tER

Error Messages

Table 4-1 (Cont.)
BASIC Error Messages

Longer Form

SYNTAX ERROR

TOO LONG TO TRANSLATE

TOO MANY CHANNELS

TOO MANY GOSUBS

UNDEFINED FUNCTION

UNDEFINED LINE NUMBER

ILLEGAL USR/EXIT CALL

tERROR

4-10

Explanation

BASIC has encountered an unrec­
ognizable element. Common
examples of syntax errors are
misspelled commands, unmatched
parentheses, and other typo­
graphical errors. This mes­
sage can also be produced by
attempting to read in a program
from a file containing illegal
characters in which case BASIC
stops reading the file.

Lines are translated as they
are entered and the line just
entered exceeds the area re­
served for translating; the
line is ignored. If this mes­
sage is produced while BASIC is
reading a program from a file,
BASIC stops reading the file.

OPEN statement exceeds the maxi­
mum number of files that may
be opened simultaneously by a
nonprivileged user.

More than twenty GOSUBs have
been executed without a corre­
sponding RETURN statement.

A user-defined function has
been used and not defined.

The line number specified in
an IF, GO TO, GOSUB, ON GO TO,
ON GOSUB, CHAIN, or OVERLAY
statement does not exist any­
where in the program.

Internal system error. If er­
ror is reproducible, system
manager should submit SPR.

The program has tried to com­
pute AtB, where A is less than
~ and B is not an integer.
This would produce a complex
number which can not be repre­
sented in BASIC. This message
is also produced when A is less
than zero and B is an integer
with an absolute value greater
than 255.

Error Messages

BASIC functions that are called improperly cause error messages to be

printed. Table 4-2 describes under what conditions BASIC functions

produce errors.

Table 4-2
Error Conditions in BASIC Functions

Function

All functions

All functions

ASC(string expr)

expr)

CHR$(expr)

EXP(expr)

FNletter

LOG (expr)

LOGl1J(expr)

OCT (string expr)

PI

SEG$(string expr,
exprl, expr2)

SQR(expr)

condition

The argument used is the wrong
type. For example, the argument
is numeric and the function ex­
pects a string expression.

The wrong number of arguments
has been used in a function, or
the wrong character has been used
to separate them. For example,
PRINT SIN (X,Y) produces a syn­
tax error because the SIN func­
tion has only one argument.

String expr is not a one character
string.

Character other than blank, zero,
or one in strin~ or value is
greater than 21

Expr is not in the range ~-32767.

Expression is greater than 87.

The function FNletter has not
been defined (function cannot be
defined by an immediate mode state­
ment) .

Expression is negative or 1J. BASIC
returns a value of ~.

Expression is negative or 1J. BASIC
returns a value of 1J.

Character other than blank or digits
1J-7 in string or value is greater
than 216.

An argument is included.

No additional error conditions.

Expression is negative; BASIC returns
the square root of the absolute value
of the expression.

4-11

Error
Message

?ARG

?SYN

?ARG

?ARG

?ARG

?tER

?UFN

?BLG

?BLG

?ARG

?ARG

?NGS

Error Messages

Table 4-2 (Cant.)
Error Conditions in BASIC Functions

Function Condition

SYS{exprl[,expr2]) A nonprivileged user has attempted to
execute a privileged system function
call.

TAB

VAL (string expr)

The value of the first expression is
less than -4 or greater than 8 or a
second expression is specified when
none is expected.

Expression is not in the range ~-
32767.

String expr is not a numeric constant.

4-12

Error
Message

?PSF

?ARG

?ARG

?ARG

APPENDIX A

ASCII CHARACTER SET

The following table shows, with the corresponding octal and decimal

codes, the 128-character ASCII (American Standard Code for Information

Interchange) character set. These codes are used to store ASCII data

in files and to store them internally.

The BASIC user can convert an ASCII value to the corresponding string

character with the CHR$ function and can convert a string character to

the corresponding ASCII value with the ASC function. These functions

are described in the BASIC-II Language Reference Manual. A special

system function (see section 3.4.3) returns the ASCII value of charac­

ters input from the terminal or a file.

BASIC also uses the ASCII values string compari-

sons. See the BASIC-II Language Reference Manual for a description of

string relational operators.

BASIC converts to upper case all lower case letters entered at the

terminal. No conversion is done on terminal output or input and

output with any other device.

The octal code is provided for reference. BASIC does not support octal

numbers except through the OCT function (see the BASIC-II Language

Reference Manual) •

ASCII characters are stored internally and ~n files ~n 8 bits. The

eighth (high order) bit is normally zero.

A-I

I

ASCII
Decimal

Code

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

ASCII Character Set

Table A-I
ASCII Character Set

ASCII
7-Bit
Octal
Code Character

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065

A-2

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
NL
VT
FF
RT
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US
SP
!
II

$
%
&
I

(
)

*
+
,
-.
/
0
1
2
3
4
5

(CTRL/@)
(CTRL/A)
(CTRL/B)
(CTRL/C)
(CTRL/D)
(CTRL/E)
(CTRL/F)
(CTRL/G)
(CTRL/H)
(CTRL/I or TAB)
(NEW LINE or LINE
(Vertical TAB)
(Form Feed)
(Return)
(CTRL/N)
(CTRL/O)
(CTRL/P)
(CTRL/Q)
(CTRL/R)
(CTRL/S)
(CTRL/T)
(CTRL/U)
(CTRL/V)
(CTRL/W)
(CTRL/X)
(CTRL/Y)
(CTRL/Z)
(ALTMODE)
(CTRL/ \)
(CTRL/])
(CTRL/ A

)

(CTRL/)
(s pace -bar)

FEED)

ASCII Character Set

Table A-I (Cont.)
ASCII Character Set

ASCII
ASCII 7-Bit

Decimal Octal
Code Code Character

54 066 6
55 067 7
56 ""7" 8 VfV

57 071 9
58 072
59 073
60 074 <
61 075
62 076 >
63 077 ?
64 100 @

65 101 A
66 102 B
67 103 C
68 104 D
69 105 E
70 106 F
71 107 G
72 110 H
73 III I
74 112 J
75 113 K
76 114 L
77 115 M
78 116 N
79 117 0
80 120 P
81 121 Q
82 122 R
83 123 S
84 1,24 T
85 125 U
86 126 V
87 127 W
88 130 X
89 131 y

90 132 Z
91 133 ~ 92 134 \

93 135]
94 136 t or
95 137 +- or
96 140
97 141 a
98 142 b
99 143 c

100 144 d
101 145 e
102 146 f
103 147 g
104 150 h
105 151 i
106 152 j
107 153 k

A-3

ASCII
Decimal

Code

108
109
110
III
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

ASCII Character Set

Table A-I (Cont.)
ASCII Character Set

ASCII
7-Bit
Octal
Code Character

154 1
155 m
156 n
157 0
160 p
161 q
162 r
163 s
164 t
165 u
166 v
167 w
170 x
171 Y
172 z
173 {
174 I
175 }
176 -
177 RUBOUT

A-4

APPENDIX B

SUMMARY OF BASIC STATEMENTS, FUNCTIONS, AND COMMANDS

This appendix summarizes the statements, functions, and commands in

MU BASIC/RT-ll. These summaries supersede the summaries provided in

the BASIC-II Language Reference Manual.

B.l DOCUMENTATION CONVENTIONS

Certain conventions are used to describe the format of the BASIC lan­

guage throughout this document. Tables B-1 and B-2 describe these

conventions. See the BASIC-II Language Reference Manual for a more

complete description of the terms used.

Convention

Items in lower­
case letters

Items in capital
letters and
special symbols

Braces

Table B-1
Documentation Conventions

Meaning

Elements to be supplied by user according
to rules explained in the text. Table B-2
provides a description of some frequently
used elements and abbreviations.

BASIC keywords, must appear exactly as shown
because they form the vocabulary of the
BASIC-II language. For example, LET, IF,
OPEN, RUN, #, and /.

A choice of one element among two or more
possibilities, for example:

{

THEN statement }
THEN line number
GO TO line number

B-1

Summary of BASIC Statements, Functions~ and Commands

Convention

Square brackets []

Ellipsis . . .

Table B-1 (Cont.)
Documentation Conventions

Meaning

Optional element or a choice among optional
elements, for example:

[LET] variable = expression

. [FOR INPUT]
OPEN strlngL:0R OUTPUT AS FILE #expr

Preceding elements may, at the user!s option,
be repeated, for example:

CLOSE #exprl, #expr2, #expr3, ...
DEF FNletter (varl[,var2, ... ,var5])=expr

Lower-case words that appear in a description of the format of a BASIC

statement, function, or command represent elements that must be sup­

plied by the user according to the rules provided. When one of these

words is repeated a number or letter appendage serves to identify each

separate element in the explanations. Table B-2 describes the meaning

and abbreviations used for some elements.

Table B-2
Lower-Case Words Used in Format Descriptions

Word Abbreviation Meaning

expression I expr Any valid BASIC expression. I
string expression string expr Any valid BASIC string expression.

integer int Any positive integer (must be a
numeric constant) .

line number Any legal line number. Must be a
one to five digit number within
the range 1 to 32,767.

relational operator \ rel-op An arithmetic or string relational
operator.

variable var A name representing a numeric
or string variable.

B-2

1
I

Summary of BASIC Statements, Functions, and Commands

B.2 SUMMARY OF BASIC STATEMENTS

The following summary of BASIC statements defines the general format of

each statement and gives a brief explanation of its use, Square brack-

ets [] indicate optional elements.

[~ "] routine name ["] (argument list)

Used to call assembly language routines from a .l::SA::;.lC program. Tne
word CALL and the pair of quotation marks should either both be
excluded or both be included.

CHAIN string [LINE line number]

Terminates execution of the program, loads the program specified
by string, and begins execution at the lowest line number or,
when a line number is present in the CHAIN statement, at the
specified line number. The string may be any string expression
and is a file descriptor as described in section 2.2.

CLOSE [[#]exprl, [#] expr2, [#] expr3, ... ,VFintl,VFint2, ...]

Closes the file{s) associated with the logical unit number{s) and
virtual flle loglcal unit number(s) specified. If no logical unit
number is specified, closes all open files.

COMMON varl [(intI [, int2])], var2 [(intI [, int2])] , ...

Preserves values and names of specified variables and arrays when
the CHAIN statement is executed. Both string and arithmetic~­
abIes and arrays can be passed. The statement also dimensions
the specified arrays.

DATA number [," string" , number, ...]

Used in conjunction with REAR to input listed data into an exe­
cuting program. Can contain any mixture of strings and numbers.

DEF FNletter (varl[,var2, ... ,var5])=expression

Defines a user function. Letter may be any single letter A
through z.

DIM var (intI [, int2]) ,var2 (intI [, int2]) , ...

END -
Reserves space in memory for arrays according to the subscript(s)
specified after the variable name.

Optional, placed at the physical end of the program to terminate
execution.

FOR var..:.. exprl ,!£) expr2 [STEP expr3]

Sets up a loop to be executed the specified number of times.

GOSUB line number -
Unconditionally transfers control to specified line of subroutine.

B-3

Summary of BASIC Statements, Functions, and Commands

GO TO line number -
Unconditionally transfers control to specified line number.

1
THEN statement }

IF exprl rel-op expr2 THEN line number
-- GO TO line number

Conditionally executes the specified statement or transfers con­
trol to specified line number. When the condition ,is not satis­
fied, execution continues at the next sequential line. The ex­
pressions and the relational operator must all be string or all
be numeric.

1
THEN statement I

IF END #expr THEN line number
GO TO line number

Tests for end-of-file condition of input sequential file associ­
ated with logical unit expr.

~ [#expr{;}] varl[,var2, ...]

Inputs data from the file associated with the logical unit speci­
fied by expr or from the user's terminal. Variables may be arith­
metic or string. #expr can be followed by a comma or a colon.

KILL string expr -
Deletes file specified by string expr.

[LET] variable = expression

Assigns value of expression to the specified variable. variable
and expression must be of the same type - either numeric or string.

[LET] VFinteger(exprl) = expr2

Assigns value of expr2 to the exprl element of the virtual file
VF integer. The data type of the virtual file and of expr2
must be the same - either numeric or string.

LINPUT [#expr{;}J varl[,var2, .••]

Equivalent to INPUT (for compatibility only) .

NAME string exprl TO string expr2 - Renames file specified by string exprl to name specified by string
expr2.

NEXT variable

Placed at end of FOR loop to return control to FOR statement.

ON expression GOSUB line numberl [, line number2, line number3, ...] ---Conditionally transfers control to subroutine at one line number
specified in list. Value of expression determines the line num­
ber to which control is transferred.

B-4

Summary of BASIC Statements, Functions, and Commands

ON expression GO TO line numberl [, line number2,line nu~ber3,.w.] -
Conditionally transfers control to one line number in the list.
Value of expression determines the line number to which control
is transferred.

. rFOR INPUT 1
~ str~ngL:0R OUTPU~AS FILE[#]exprl[DOUBLE BUF] [,FILESIZE expr2j [,RECORDSIZE expr3] [,MODE expr4]

Opens a file specified by string for input or output as specified
(assumes input if neither specified) and associates file with the
logical unit exprl~ String expr is a file descriptor as described
in section 2.2.

. [FOR INPUT J . [%] ~ strlng FOR OUTPUT AS FILE VF lnt $ [(exprl)][=expr2] [,FILESIZE expr3]

Opens a virtual array file specified by string. FOR OUTPUT creates
a new file; FOR INPUT (or neither) allows either output or input to
an existing file. Elements may be assigned a value by the LET VF
statement. When % (percent sign) is specified, the data type is
integer; when $ (dollar sign) is specified the data type is string;
and when neither is specified, the data type is floating point.
exprl specifies the dimension and expr2 specifies the string
length (used with $ only).

OVERLAY string expr [LINE line number]

Overlays or merges the program currently in memory with the program
in the file specified by string, and when overlay is completed,
transfers control to either the next sequential BASIC line number
or the line na~ber specified: String expr is a file descriptor
as described in section 2.2

~ [#expr {;}] [exprl,expr2,expr3, •••]

Prints values of expressions on the ter.minal UL, when specified,
to the file associated with logical unit expr. Expressions can
be numeric and string. The TAB function can also be included.
Elements can be separated by either commas or semicolons. #expr
can be followed by a comma or a colon.

~ [#expr {;}] USING string, [exprl,expr2,expr3, •••]

Prints values of expressions on the terminal or, when specified,
to the file associated with logical unit expr in the format deter­
mined by string. Both numeric and string expressions can be
used. Elements must be separated by commas.

RANDOMIZE

Causes the random number generator (RND function) to produce
different random numbers every time the program is run.

READ varl [, var2, var3, .•.] -
Assigns values listed in DATA statements to specified variables.
Variables may be string or numeric.

B-5

Summary of BASIC Statements, Functions, and Commands

REM [cormnent] -- No effect on execution of program. Contains explanatory cormnents
in a BASIC program.

RESET [[#] expr]

Equivalent to RESTORE.

RESTORE [[#] exprl [, [#] expr2, [#] expr3, .••]]

Resets either the data pointer or, when specified, the input
file(s) associated with logical unit number(s) specified to the
beginning. File(s) must be on file structured devices.

RETURN

Terminates a subroutine and returns control to the statement fol­
lowing the last executed GOSUB statement.

STOP -
Terminates execution of the program. Placed at logical end(s) of
the program.

B.3 SUMMARY OF BASIC FUNCTIONS

ARITHMETIC FUNCTIONS

The following functions perform standard mathematical operations in

BASIC.

Name

ABS(expr)

ATN(expr)

COS (expr)

EXP(expr}

INT(expr)

LOG (expr)

LOGlO(expr)

PI

RND [(expr)]

SGN(expr)

Explanation

Returns the absolute value of expr.

Returns the arctangent of expr as an angle in
radians in the range + or - pi/2.

Returns the cosine of expr radians.

Returns the value of etexpr where e is (approxi-
mately) 2.71828.

Returns the greatest integer less than or equal
to expr.

Returns the natural logarithm of expr.

Returns the base 10 logarithm of expr.

Returns the value of pi = 3.141593 (approximately).

Returns a random number between 0 and 1.

Returns a value indicating the sign of expr.

B-6

Summary of BASIC Statements, Functions, and Commands

Name Explanation

SIN (expr) Returns the sine of expr radians.

SQR(expr) Returns the square root of expr.

TAB (expr) Causes the terminal type head to tab to colum
In PRINT statements}.

SYS(exprl[,expr2]) Special system function calls; control terminal
input/output and perform special functions.

When exprl is:

0

1

2

3

4

5

6

7

8

-1

-2

-3

-4

System Function

Cancels effect of a CTRL/O typed at terminal.

Disables echoing and enters special mode for in­
putting tapes on the low speed reader.

Enables echoing; cancels effect of SYS(l) and
SYS (3) •

Disables echoing.

Returns the ASCII value of the next character
typed at the terminal; if specified, expr2 is the
logical unit number associated with the file from
which the next character should be read.

Deletes current program; changes program name to
NONfu~Ei and returns to the READY message.

Set the terminal margin to the value of expr2.

Enables CTRL/C as interrupt.

Privileged; disables CTRL/C as interrupt.

Privileged function; sets the user ID to that
specified by the ASCII value in expr2; if
expr2=ASC ("X") +256*ASC ("Y") then the ID will be
"Xy". Unprivileged if expr2 is negative, in
which case it returns current user ID.

Clears privileged user bit; user will not be
able to execute any privileged functions or
file operations.

Privileged function; returns to RT-ll Monitor.

Returns privilege status; zero for nonprivileged
and one for privileged.

B-7

Summary of BASIC Statements, Functions, and Commands

STRING FUNCTIONS

The string functions are:

ASC(string expr}

BIN (string expr)
~~t"~

CHR$(expr)

DAT$

LEN (string expr}

Returns as a decimal number the 8-bit internal
code (ASCII value) for the I-character string
expr.

Converts a string expression containing a bi­
nary number to a decimal value. Blanks are
ignored.

Generates a I-character string whose ASCII value
is the low-order 8 bits of the integer value of expr.

Returns the date as a string in the form
dd-mon-yr (for example ~7-FEB-75).

Returns the number of characters in the string
expr.

OCT (string expr) Converts a string expression containing an octal
e6/11" 0 (,1' TO'DE.e.- number to a decimal value. Blanks are ignored.

POS (string exprl,
string expr2,
expr)

Searches for and returns the position of the
first occurrence of string expr2 in string
exprl. The search starts at the expr character
position in string exprl.

SEG$(string expr,exprl,expr2)

STR$(expr)

TRM$(string expr)

VAL (string expr)

Returns the string of characters in positions
exprl through expr2 in string expr.

Returns the string which represents the numeric
value of expr.

Returns string expr without trailing blanks.

Returns the value of the decimal number contained
in the string expr.

B.4 SUMMARY OF BASIC COMMANDS

Conunand Explanation

APPEND [file descriptor] Merges the program in core with the program
specified by the file descriptor.

ASSIGN device:

BYE

CLEAR

DEASSIGN[device:]

Assigns specified device to the user if it is
available.

Terminates the session of the user issuing
the conunand; deletes all open output files
and deassigns all devices.

Initializes all variables to zero, and all
string variables to nulls and deletes arrays.

Deassigns the specified device or all assigned
devices.

B-8

Summary of BASIC Statements, Functions, and Commands

Command

HELLO

KEY

LENGTH

LIST[NH] [line number]
[-line number]
-END

NEW [program name]

OLD [file descriptor]

RENAME [program name]

Explanation

Special command to get started with BASIC.

Enables echoing after TAPE command or SYS(l)
or SYS(3) function call.

Displays on the terminal the size of the pro­
gram in memory and the size of the remaining
free memory.

Prints on the terminal the specified line(s)
of the program currently in memory. NH sup­
presses the printing of the header line.

Erases the entire storage area of user and
sets the current program name to the one
specified.

Erases the entire storage area of user and
inputs the program from the specified file.

Changes the current program name to the one
specified.

REPLACE [file descriptor] Replaces the specified file with the current
program.

RUN [NH] Executes the program in memory. NH suppresses
the printing of the header line.

RUN [NH] file descriptor Erases the entire storage area of user, in­
puts the program from the specified file, and
then executes the program. Does not print
header line in any case.

SAVE[file descriptor] Outputs the program in memory as the specified
file (can be used to list a program on the
line printer or punch it on the high-speed
paper tape punch) .

SCR[ATCH] Erases the user's entire storage area, but
preserves the program name.

SET TTY type Sets system to allow different terminals;
type may be VT05, ASR33 , or LA30.

TAPE Disables echoing for entering tapes from the
low-speed reader.

UNSAVE[file descriptor] Deletes specified file.

B-9

Summary of BASIC Statements, Functions, and Commands

Key Commands

CTRL/C

CTRL/O

CTRL/Q

CTRL/S

CTRL/U

RUBOUT

Explanation

Interrupts execution of a command or program and
causes BASIC to print the READY message. The
execution of SYS(8) function call disables CTRL/C.
Echoes as "tc".

Causes all further terminal output to be discarded.
If an INPUT statement is encountered, a SYS(~}
function call is executed, or CTRL/O is retyped,
printing resumes. Occasionally CTRL/O suppresses
the printing of the READY message •. Echoes as "to".

Continues output to the terminal; cancels effect
of CTRL/S. May be XON on some terminals. Does
not echo.

Temporarily suspends all output to terminal until
CTRL/Q is typed; allows alphanumeric display ter­
minals (VT05) to be read or photographed before
data is moved off screen. May be XOFF key on
some terminals. Does not echo.

Deletes the entire current input line (provided
the RETURN key has not been typed). BASIC dis­
plays

tu

at the end of the line. For example:

10 BLET A tu

t
CTRL/U typed here.

Deletes the last character typed and echoes as a
backarrow (underscore on some terminals) on the
terminal. For example,

FOR N 3+1 TO 3

t
RUBOUT typed here.

RUBOUT can be repeated to delete any character
up to the beginning of the line. Spaces are
considered valid characters and are deleted by
RUBOUTs ..

B-IO

APPENDIX C

VIRTUAL ARRAY FACILITY

The virtual array facility allows a BASIC program to operate on data

structures that are too large to be accommodated in memory at one time.

To accomplish this, BASIC uses the disk file system for storage of

data arrays, and maintains only portions of these files in memory at

any given time.

An essential difference between real arrays and their virtual counter­

parts is the time required to reference array elements. In real ar­

rays, the referencing order has no effect on the time required to

reference an element. In virtual arrays, this order can have a signi­

ficant effect on the program execution time. This appendix describes

the algorithms used in the virtual array processor, so that users may

optimize their use of this facility.

Each MU BASIC/RT-II disk file is a contiguous sequence of 256-word

records. Any position in a file can be specified internally with a

2-'component address; the first component is the relative block within

the file, the second is the position of the item within the block.

One of the functions of the virtual array processor is to transform

each virtual array reference into its corresponding file address.

This is called mapping.

Virtual arrays are stored as unformatted binary data. This means that

no I/O conversions need be performed in storing or retrieving elements

in virtual storage. Thus, there is no loss of precision in these ar­

rays, and no time wasted performing conversions.

All references to virtual arrays are ultimately located via file ad­

dresses relative to the start of the file. No symbolic information

C-I

Virtual Array Facility

concerning dimensions or data types is stored within the file. Thus,

different programs may use different data types to refer to the data

contained within a single virtual array file. The user must be

cautious in such operations, since it is the user's responsibility to

ensure that all programs referencing a given set of virtual arrays are

referencing the correct data. Consider the following example:

Program ONE contains

10 OPEN "FILE" AS FILE VFl%

Program TWO contains

10 OPEN "FILE" AS FILE VF2

Whenever program TWO references the array VF2, it is using the data

known to program ONE as array VFl. VF2 contains floating-point data

while VFl contains integer data. These two arrays do not correspond

in data type and the data program ONE creates may be meaningless to

program TWO and vice versa.

NOTE

A virtual file should not be simultaneously
opened under two or more different channels
(by one user or two) and have data changed
on more than one channel. For example:

50 OPEN "VALUES" AS FILE VFl (100)
60 OPEN "VALUES" AS FILE VF2 (100)
70 VFl(l) 10
80 VF2(2) = 20

Only ore of these two assignment statements
is effective. The other value is lost,
because two buffers have been created and
the last buffer to be written out destroys
the changed data in the first buffer writ­
ten out.

C.l ARRAY STORAGE

Strings in virtual storage occupy pre-allocated (determined by OPEN

statement) space in the virtual file, and thus differ from strings in

memory storage, where space is allocated dynaMically. A virtual file

C-2

I

I
I
I

Virtual Array Facility

containing strings can be considered to be a succession of fields,

each of the maximum string length. When a string in a virtual file is

assigned a new value, it is stored left-justified in the appropriate

field. If the new string is shorter than the maximum length, the re­

mainder of the field is filled with null characters. When the string

is retrieved, the trailing null characters are removed.

Table C-l describes the number of elements of each data type that can

be stored in one 256-word (512-byte) block.

Table C-l
Virtual Array Storage Capabilities

Number Number
Data Type Bytes per Element Elements per Block

Floating Point 4 128

Integer (%) 2 256

String ($) I "l,") 16 I "')L.

I

String ($=string length)1 string length 512/string length

The string length must be in the range 1-255. The number of string

elements per block can be fractional.

C.2 TRANSLATION OF ARRAY SUBSCRIPTS INTO FILE ADDRESSES

In order to translate an array subscript into a file address, BASIC

computes the relative distance from the specified item to the first

item in the array. This is computed from the array subscript and the

number of elements per block, as shown in Table C-l. The relative

distance is added to the starting address of the file (determined by

the OPEN statement processor) to find the address of the block con­

taining the item.

Since the OPEN statement contains the only information used to define

the structure of a file, it is possible for the user to specify dif­

ferent accessing arrangements for the same file in one or more pro­

grams. For example, the user can reference the same data as a series

C-3

I
I

i
i

Virtual Array Facility

of either 32-byte strings or l6-byte strings, with the following state­

ments:

10 OPEN "ABC" AS FILE VFl$ (l~~~) = 16

30 OPEN "ABC" AS FILE VF2$ (5~~) = 32

The user should keep in mind that in MU BASIC/RT-ll, as in most BASICs,

array subscripts begin with 0, not 1. An array with dimension n actu­

ally contains n+l elements.

C.3 ACCESS TO DATA IN VIRTUAL ARRAYS

Only a portion of a virtual array is in memory at any given time. This

data is transferred directly between the device and an I/O buffer, cre­

ated when the OPEN statement is executed. This buffer must be 256

words (one block) long, and may not be specified as several blocks with

the RECORDSIZE or DOUBLE BUF option in the OPEN statement. For each

virtual array file, BASIC notes

the block of the file currently in the buffer

whether the data in the buffer has been modified since
it was read into memory

After BASIC translates a virtual array address into a file address, it

checks whether the block that contains the referenced item is currently

in the buffer. If the necessary block is present the reference pro­

ceeds; but if not, another portion of the file is read into the buffer.

If the current data in the buffer has been altered, it is necessary to

rewrite this data on the device prior to reading new data into the

buffer.

The virtual array accessing algorithm is flow chart6~ in Figure C-l.

Users should design the order in which virtual file elements are refer­

enced in their programs to minimize the reading and writing of blocks.

C.4 ALLOCATING DEVICE STORAGE TO VIRTUAL FILES

The FILESIZE or dimensions indicated in an OPEN statement set maximum

allowable values for subscripts and are used to compute the initial

size of the virtual file to be allocated on the device. The contents

are not initialized to zero. The data previously recorded in a block

(when it was part of another file) is available to the new owner of

C-4

Virtual Array Facility

TRANSLATE SUB­
SCRIPT INTO FILE

ADDRESS

REWRITE BLOCK
IN FILE

CLEAR 'MODIFIED'
INDICATOR

READ NEW
FILE BLOCK

Figure C-l

no

yes

Virtual Array Accessing Algorithm

C-5

Virtual Array Facility

the block. Users whose files contain confidential information should

explicitly overwrite all data in such files, prior to file deletion,

in order to protect data contained therein.

C-6

APPENDIX D

MU BASIC/RT-11 PROGRAM STRUCTURE

WJ BASIC/RT-l1 stores each user's program in memory in the following

format:

Arrays high address

Buffers

Strings

Symbol Table

User Code low address

The symbol table and user code area are created when the program is

entered. When the RUN command is given, the user program is scanned

and arrays are set up. The string area is created during program exe­

cution.

The SCRatch command clears all the user cede, s2~bol table, strings;

and arrays from memory. The CLEAR command clears the arrays and

strings but does not affect the user code or symbol table.

A symbol table entry is created for each distinct line number (four

bytes) or variable name (ten bytes) referenced in the program.

These entries are not deleted; however; even when all references in

the program to a particular line number or variable are removed.

Thus, if the program in memory is heavily modified, it may be desir­

able to save it with the SAVE command and then restore the program

with the OLD command to obtain the largest possible user area.

D-1

MU BASIC/RT-11 Program Structure

User-entered blanks that are not in REM statements or string constants

and blanks produced by BASIC when listing or saving a program do not

contribute to the size of the program in memory. The total amount of

memory storage required to store a BASIC program (user code and symbol

table) depends on the parameters (2 bytes = 1 word) listed in Table

0-1.

Parameter

L

T

v

R

II

12

F

N

U

S

Table 0-1
Parameters in Memory Storage of BASIC Programs

Contribution (bytes)

7*L

T

lO*V

2*R

2*11

3*12

5*F

10*N

2*U

2*S

Definition

Total number of lines in the BASIC
program.

Total number of tokens in the pro­
gram (see below for a description
of BASIC tokens) .

Total number of distinct variable
names used in the program (in this
context, a scalar and an array vari­
able with the same name are con­
sidered to be the same variable
name) .

Total number of occurrences of vari­
able names and references to line
numbers in the program (not includ­
ing the line number at the beginning
of each line).

Total number of integer constants
whose absolute value is in the
range O<x<255.

Total number of integer constants
whose absolute value is in the
range 255<x<32767.

Total number of non integer numeric
constants and integer constants not
in above ranges.

Total number of NEXT statements in
the program.

Total number of references to the
name of a user-defined function;
e.g., FNA (including the definition
itself) .

Total number of REM statem~nts, im­
plied CALL statements, and string
constants.

D-2

I
I

Parameter

I C

I
i

I

none

MU BASIC/RT-ll Program Structure

Table D-l (Cont.)
Parameters in Memory Storage of BASIC Programs

Contribution (bytes)

C

1

Definition

I

I Total number of characters in all

I
REM and implied call statements and
string constants (number of charac-

I
ters following REM, number of char-
acters in an assembly language rou-

I t~ne name, nu~~er of characters ne-
tween (but not including) the quotes
in a string constant) •

End of program token.

When programs are entered, BASIC converts certain words and special

symbols (both are called keywords) to 1-byte tokens to conserve memory.

Some BASIC keywords are: PRINT, IF, and THEN, functional references

such as PI, SIN(, and SEG$((the left parenthesis following a func­

tion name is considered to be part of the name), and special charac-

ters such as

+

(
)

"
~

The + or - preceding a numeric constant is considered to be a separat~

entity from the number.

Every character in a REM statement or string constant requires one

byte. To reduce program size minimize the number of characters in

each.

Each use of the multiple statement line saves six bytes. The program:

10 A 3
20 B 4

takes six bytes more memory than the equivalent program

10 A 4

D-3

MU BASIC/RT-ll Program Structure

When the BASIC program is running, the following additional array and

string storage is required. For each numeric array, the number of

bytes allocated is

4* (SSlMAX+2)

for a singly-dimensioned array,

or

4*[(SSlMAX+l) * (SS2MAX+l) +1]

for a doubly-dimensioned array, where SSIMAX and SS2MAX are the maxi­

mum values of the first and second array subscripts, respectively. For

each string array, the number of bytes allocated is

2* (SSlMAX+2)

for a singly-dimensioned array or

2*[(SSlMAX+l) * (SS2MAX+l) +1]

for a doubly-dimensioned array, where SSIMAX and SS2MAX are the maxi­

mum values of the first and second array subscripts, respectively.

For each non-null string scalar or array element of length N currently

defined in the BASIC program, N+4 bytes of string storage are required.

Null strings are not stored. The symbol table or array entry has a

special indicator to specify a null string.

In addition to these parameters, when an OPEN statement is executed

a buffer is allocated from the user area if there is currently room.

If there is no room in the user area, the buffer is allocated from a

system I/O area common to all users (if room is available there) .

Table D-2 contains the standard buffer sizes. A nonstandard buffer

size may be specified on nonfile-structured devices by means of the

RECORDSIZE option in the OPEN statement. Specifying DOUBLE BUF causes

allocation of two equal size buffers.

D-4

MU BASIC/RT-ll Program Structure

Table D-2
Standard File Buffer Sizes

Device Buffer Size (words)

Disk
DECtape
Magtape
Cassette
High-speed paper tape punch
High-speed paper tape reader
Line printer
Card reader

D-5

256
256
256

64
12
12
16

8

INDEX

Abbreviations of device names, 2-3
Accessing devices, 3-1
Access to system, 1-2
Alphanumeric display terminal

margins, 3-8, 3-15
Arithmetic functions, B-6
Arithmetic operators, 1-5
Array storage, C-2, C-3
Array subscripts translated into

file addresses, C-3
ASCII character set, A-I
ASR margins, 3-15
Assembly language routines, 1-8
Assignable devices, 3-1
ASSIGN command, 3-3
ASSIGNED state of device, 3-3
At sign (@) in file descriptor,

2-4, 2-5

Binary files, random-access, 2-19
Braces, B-1
Buffer size, 2-14, D-5
BYE command, 1-3, 2-13

Cassette
nonfi1e-structured, 2-19
sequential files on, 2=16
write-protected, 2-18

CHAIN statement, 2-12
Channel number (logical unit number),

2-11
Characters in file names, 2-9
CLEAR command, D-l
CLOSE statement, 2-12
Commands, 3-1

enhancements 1=6
file, 2-6
summary of, B-1, B-8

Compatibility with single-user
BASIC/RT-ll, 2-8

Conventions of documentation, B-1
Conversion codes, ASCII/octal/

decimal, A-2, A-3, A-4
CTRL/C key command, 2-12, 3-6, 3-16
CTRL/O key corr~and disabled, 3-11
CTRL/Q key command, 3-6

.DAS (default extension), 2-8
Data access in virtual arrays, C-4
Data files, 2-11
Data storage, 2-1
.DAT (default extension), 2-8
DEASSIGN command, 3-3
DECwriter margins, 3-15
Default device, 2-3
Device assignment, 3-1
Device names and abbreviations, 2-3
Devices accessed by file statements

and commands, 2-6
Devices supported by RT-ll, 1-1

Devices, system, 2-2
Device storage allocation for

virtual files, C-4
Dial-up terminals, 3-8
Documentation conventions, B-1
Dollar sign ($) in file

descriptor, 2-4, 2-5
Double end-of-file t 2-16

Echoing of low-speed reader/
punch, 3-11

Ellipsis, B-2
End-of-file condition, 2-12
END statement, 2-12
Enhancements to BASIC-II, 1-5
Error, fatal program, 2-12
Error messages, 4-1
Example program demonstrating

OPEN statement, 2-15
Example program of octal dump, 2-24
expression, B-2
Extension, filename and, 2-4
Extension specification, 2-5

Fatal program error, 2-12
File

classes, 2-3
commands, 2-6
deletion, 2-16, 2-25
descriptor, 2-2
protection, 2-8
renaming, 2-25
searches, 2-18
size, 2-14, 2-21
statements, 2-6

File addresses derived from array
subscripts, C-3

File buffer
sizes, D-5
storage, 3-5

Filename and extension, 2-4
Files, 2-1

closing, 2-12
deletion and renaming, 2-25
purged, 2-13
restrictions to ~imultaneous

access, 2-26
Files

data, 2-11
integer virtual, 2-20, 2-21
mUltiple volume, 2-17
program, 2-10
random access binary, 2-19
sequential data, 2-11
sequential on magtape and

cassette, 2-16
virtual array, 2-19, 2-22

File, sentinel, 2-16
FILESIZE option, 2-14
Fill characters, 3-8
Floating point virtual array file,

2-21
INDEX-l

Function calls, 3-9
summary, 3-10

Functions, 3-1
arithmetic, B-6
enhancements to, 1-7
string, B-8
summary of, B-1, B-6

Group files, 2-1
Group library files, 2-4, 2-8, 2-10

HELLO feature, 1-1

IF END # statement, 2-12
Input and output, 2-1
INPUT # statement, 2-11
integer, B-2
Integer virtual files, 2-20, 2-21
IN USE state of device, 3-3

KEY command, 3-7
KILL statement, 2-26
KSR margins, 3-15

LA3~ and LA36 margins, 3-15, 3-16
LENGTH command, 3-3
LET statement with system function

call, 3-9
Library files, group and public,

2-8, 2-10
line number, B-2
Logical end-of-tape, 2-16
Logical unit number (channel number),

2-11
Log-off procedure, 1-3
Log-on procedure, 1-2
Lower-case letters, B-1, B-2
Low-speed paper tape reader/punch,

3-7
echo enable/disable, 3-11

Magtape, sequential files on, 2-16
Margin setting on terminals,

3-14, 3-15, 3-16
Memory requirements, 3-4
Memory storage, 3-3, D-2
Messages, error, 4-1
MODE option, 2-17, 2-18
Multiple volume files, 2-17

Named files, 2-4
Names of devices (and abbreviations),

2-3
NEW command, 2-13
Nonfile-structured OPEN statement,

2-19
Nonprivi1eged user, 2-8, 2-10
Nonpublic devices, 3-1, 3-2, 3-3
Number sign (#) in file descriptor,

2-4, 2-5

OLD command, 2-13
OPEN statement, 2-11

format, 2-13
OPEN statement for virtual files,2-20
OPEN statement, nonfile-structured,

2-19
Operators, arithmetic, 1-5
Output speed, 2-14
Output to terminal, 3-6

Paper tape reader/punch, low-speed,
3-7

echo enable/disable, 3-11
Password, 1-1, 1-2, 1-8
Possible states for nonpublic

devices, 3-2
PRINT # statement, 2-11
Priority of arithmetic operations,

1-5
Private files, 2-4, 2-8
Privileged status set by system

function, 3-17
Privileged users, 1-4, 2-8, 2-10
Program

error, 2-12
files, 2-10
size, 3-4
structure, D-l

Program example demonstrating
octal dump, 2-24
OPEN statement, 2-15

Programs
memory storage of, D-2
renaming of, 2-25

Public devices, 3-1
Public files, 2-1
Public library files, 2-4, 2-8, 2-10
Punch, low-speed paper tape, 3-7

echo enable/disable, 3-11

Random access files, 2-1, 2-19
Reader, low-speed paper tape, 3-7

echo enable/disable, 3-11
READY message, 1-3, 1-4
READY, return by system function,3-13
Record-locking facility, 2-27
RECORDSIZE option, 2-14
relational operator, B-2
REM statements, D-2
Renaming files or programs, 2-25
Restricted operations, 1-4
Restrictions to simultaneous

file access, 2-26
Return to RT-ll monitor by system

function, 3-17
Rewind operation, 2-17
RUBOUT key command, 3-7

INDEX-2

SCR command, 2-13, D-l
Searches of files, 2-18
Sentinel file, 2-16
Sequential files, 2-1, 2-11

on magtape and cassette, 2-16
SET TTY command, 3-8
Simultaneous file access

restrictions, 2-26
Single-character input mode, 3-12
Size of

buffer, 2-14
file, 2-14
permanent virtual file, 2-21
program, 3-4

Speed of output, 2-14
Square brackets, B-2
Start procedures, 1-1
Statements

enhancements to, 1-7
file, 2-6
summary of, B-1, B-3

Stopping terminal output, 3-6
STOP statement, 2-12
Storage requirements of

BASIC program, 3-3
virtual arrays, 2-22

string expression, B-2
String functions, B-8
Strinas in virtual files, 2-20
String virtual array file, 2-21
Subscripts in virtual arrays, 2-20
Supported devices, 1-1
Symbols, B-1
Symbol table, D-l
System access, 1-2
System buffer, 2-15
System devices, 2-2
Sv~tem device used as default, 2-3
Sy~tem function calls, 3-9

summary, 3-10

TAPE command, 3-7
Tape operations, 2-16, 2-17
Terminal characteristics, 3-5
Terminal, fill characters, 3-8
Terminal margin set by system

function, 3-14
Terminal types, 3-8
Terminating output at terminal, 3-6
Terminating the session, 1-3
Type-ahead feature, 3-5, 3-6

Unprivileged users, 1-4
UNSAVE command, 2-10
Update existing sequential file, 2-11
Upper-case letters, B-1
User code area, D-l
User ID, 1-1, 1-2, 1-8

set by system function, 3-16
Users, privileged or unprivileged,

1-4

variable, B-2
Virtual array facility, C-l

accessing algorithm, C-5
array subscripts translated to file

addresses, C-3
data access, C-4
device storage, C-4

Virtual array files, 2-1, 2-19, 2-20
storage requirements, 2-22

VT05 and VT50 margins, 3-15, 3-16

Words in use, number of, 3-4
Write-protect, 2-18

INDEX-3

MU BASIC/RT-ll User's Manual
DEC-ll-LIBRA-A-D

March, 1975

READERIS COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Softwarp­
Problem Repcrt (SPR) form

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional prograrr~er (experienced)

[] User with little programming experience

[] Student programmer

[] Non-programmer interested in computer concepts and capabilities

Name Date ________________________ __

Organization __________________________________ ~_=_=_= __ ~ ________________ __

Street __ __

City ___________________________ State _____________ Zip Code ____________ __
or

Country

If you do not require a written reply, please check here. []

---Fold lIere--

.--- Do Not Tear - Fold lIere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

DiGITAL EQUIPMENT CORPORATION

MAYNARD, MASSACHUSETTS 01754

	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	D-05
	Index-1
	Index-2
	Index-3
	replyA
	replyB
	xBack

