
IAS Guide to
Program Development

Order Number: AA-PAXVA-TC

Operating System and Version: IAS Version 3.4

May 1990

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such license.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital
Equipment Corporation or its affiliated companies.

Copyright ©1990 by Digital Equipment Corporation

All Rigrts Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DDIF
DEC
DEC/CMS
DEC/MMS
DECnet
DECUS
DECwindows
DECwrite
DIBOL

IAS
MASS BUS
PDP
PDT
RSTS
RSX
ULTRIX
UNIBUS
VAX

VAXC
VAX cluster
VAXstation
VMS
VR150/160
VT

This document was prepared using VAX DOCUMENT, Version 1.2

Contents

PREFACE

CHAPTER 1 THE PROGRAM DEVELOPMENT ENVIRONMENT

1.1 SOFTWARE TOOLS
1.1.1 Command Line Interpreters
1.1.2 Text Editors
1.1.3 Assembly Language
1.1.4 Task Creation
1.1.5 Debugging Aids

1.1.5.1 On-Line Debugging Tool (ODT) • 1-5
1.1.6 General Utilities

1.1.6.1 Cross-Reference Processor • 1-6
1.1.6.2 Peripheral Interchange Program • 1-6
1.1.6.3 Queuing and Spooling • 1-6
1.1 . 6.4 Librarian Operations • 1-6

1.2 DIGITAL-SUPPLIED SYSTEM SOFTWARE
1.2.1 System Directives-Macro Libraries
1.2.2 System Subroutines-Object Libraries

1.3 HARDWARE FOR PROGRAM DEVELOPMENT
1.3.1 Disks
1.3.2 Terminals
1.3.3 Printers

1.4 THE PROGRAM DEVELOPMENT PROCESS-OVERVIEW

CHAPTER 2 CREATING MACR0-11 SOURCE FILES

2.1 MACR0-11 SKELETON SOURCE FILE FORMAT

2.2 CREATING A SOURCE FILE FROM A SKELETON FILE
2.2.1 Performing the Initial Input

2.2. 1. 1 Inserting Blank Lines in Text • 2-9
2.2.1.2 Terminating the Input and the EDI Program • 2-9

Ix

1-1

1-1
1-1
1-2
1-3
1-4
1-5

1-6

1-7
1-7
1-8

1-9
1-9
1-9
1-9

1-9

2-1

2-1

2-8
2-8

Ill

Contents

2.2.2 Creating a Source Fiie from the Skeleton 2-11

2.3 EDITING THE SOURCE FILE 2-11
2.3.1 Dlsplaylng Text 2-12

2.3.1.1 TYPE Command• 2-12
2.3.1.2 LIST Command • 2-12 ,, ., ,, I "'"~•In"" TAv• ~nr.1 o ~l•l...,.nln"" •h"' I In.a D ln•ft• ,, .. .,

'·""·' L.V\,PUll~ l'l:'A' PllU r V~IUUlllll~ Ul'l:r L.lllC. r UllU'l:rl ... - . ..,
2.3.2.1 BEGIN and END Commands • 2-13
2.3.2.2 LOCATE Command • 2-13
2.3.2.3 PLOCATE Command• 2-14
2.3.2.4 RENEW Command • 2-14

2.3.3 Changing Text and Exiting from EDI 2-15
2.3.3.1 CHANGE Command • 2-15
2.3.3.2 APPEND Command • 2-16
2.3.3.3 DELETE & PRINT Command• 2-16
2.3.3.4 EXIT Command • 2-16

2.3.4 Inserting Code In the Source Fiie 2-17

CHAPTER 3 ASSEMBLING AND CORRECTING A PROGRAM MODULE 3-1

3.1 PERFORMING A DIAGNOSTIC RUN ON A SOURCE FILE 3-1

3.2 TYPICAL ERRORS ENCOUNTERED DURING ASSEMBLY 3-2
3.2.1 The MACR0-11 Error Code A 3-2
3.2.2 The MACR0-11 Error Code U 3-3
3.2.3 The MACR0-11 Error Code Q 3-3
3.2.4 The MACR0-11 Error Code E 3-3

3.3 GENERATING A PROGRAM MODULE AND A LISTING 3-4

3.4 EXAMINING A LISTING AT THE TERMINAL 3-5

3.5 GENERATING A CROSS-REFERENCE LISTING 3-6

'J I:
"'""

conn1 1tJr. A rnov ns: 1 1c::T1tJr.c:::
""'' 'W"'-" ... 11 ."' r-. ~ I I,.. ._,......,I II.""' 3-7

3.7 CLEANING UP THE DISK DIRECTORY 3-8

Iv

CHAPTER 4 BUILDING AND TESTING A TASK

4.1

4.2

4.3

4.4

CHAPTER 5

5.1

CREATING A TASK IMAGE
4.1.1
4.1.2
4.1.3

Supplying a Single Object Module
Supplying Multiple Object Modules
Using the Fast Task Builder

TASK BUILDER DEFAULTS

GENERATING A MAP AND A GLOBAL CROSS-REFERENCE
LISTING
4.3.1
4.3.2
4.3.3

Requesting a Map and a Global Cross-Reference Listing _
Examining the Map at the Terminal
Requesting a Full Map

RUNNING THE TASK AND CORRECTING TYPICAL ERRORS

USING DEBUGGING AIDS

USING THE ON-LINE DEBUGGING TOOL
5.1.1 Including ODT in a Task
5.1.2 Preparing to Use ODT
5.1.3 Setting Up the Task
5.1.4 Relocation Registers
5.1.5 Examining Locations
5.1.6 Setting Breakpoints Within the Task
5.1.7 Changing the Contents of Locations with ODT
5.1.8 Error Conditions and Terminating Task Execution

CHAPTER 6 CREATING AND USING PROGRAM LIBRARIES

6.1

6.2

CREATING AND USING A MACRO SOURCE LIBRARY
6.1.1 Creating the Macro Library
6.1.2 Using the Macro Definitions from the Library

CREATING AND USING AN OBJECT MODULE LIBRARY

Contents

4-1

4-1
4-1
4-2
4-3

4-4

4-4
4-4
4-5
4-6

4-6

5-1

5-1
5-1
5-2
5-2
5-2
5-4
5-5
5-6
5-7

6-1

6-1
6-1
6-3

6-3

v

Contents

6.3

6.4

CHAPTER 7

7.1

7.2

INDEX

EXAMPLES
2-1
2-2
2-3
2-4
2-5
5-1
5-2
6-1
7-1

vi

6.2.1
6.2.2
6.2.3
6.2.4

Creating the Object Module Library
Using the Object Modules from the Library
Using the Library to Resolve Undefined Global Symbols _
Dual Use of the Library

MAINTAINING USER LIBRARIES
6.3.1
6.3.2
6.3.3

Adding Modules to a Library
Replacing a Module in a Library
Obtaining Information About a Library

GUIDE TO FURTHER READING

FORTRAN IV PROCEDURES

OVERVIEW OF PDP-11 FORTRAN IV

FORTRAN IV PROGRAM DEVELOPMENT PROCEDURES
7.2.1 Creating the Source Fiie
7.2.2 Performing a Diagnostic Run
7.2.3 Creating an Object Module
7.2.4 Creating a Task Image
7.2.5 Running and Debugging a Task

Sample Source File Skeleton
Creating the Skeleton File SKEL.MAC
Source Code for FILE.MAC
Source Code for FILEA.MAC
Source Code for FILES.MAC
Memory Allocation Synopsis from Task BUG Map
Portion of Assembly Listing for NUMA
MACR0-11 Library Source Definitions
FORTRAN IV Sample Source Code AVERAGE.FTN

6-4
6-5
6-7
6-7

6-8
6-8
6-9
6-9

6-10

7-1

7-1

7-2
7-2
7-3
7-4
7-5
7-6

2-4
2-10
2-17
2-19
2-21

5-2
5-4
6-2
7-3

FIGURES
1-1
2-1
2-2

TABLES
1-1
1-2
3-1

The Program Development Process
MACR0-11 Source File Format
MACR0-11 Source Statement Format

DIGITAL-Supplied Macro Libraries
DIGITAL-Supplied Object Libraries
Terminal Output Control Commands

Contents

1-11

2-2
2-3

1-7
1-8
3-6

vii

Preface

Manual Objectives
The !AS Program Development Guide introduces the program development environment on the IAS
operating system. It provides a synopsis of the information immediately useful in getting started
in the program development process. The book also gives an overview of the software environment
and some guidelines on program design.

Intended Audience
This book is intended for the person who is already familiar with the general, basic operations
of an IAS system: gaining access to the system, using the terminal and related devices, and
requesting simple Executive services through the command interface. The greater part of the
book addresses assembly language programming, because that language is the one provided
with all systems. Included is one chapter summarizing the program development procedures
for a high-level language, PDP-11 FORTRAN IV However, most of the topics covered for the
assembly language programmer-using a text editor, creating an executable image, using library
facilities-apply to programmers using any computer language.

If you are not familiar with the general, basic operations of the system, you should first read
the !AS V3.4 Release Notes and the !AS Installation and System Generation Guide. These books
describe how to access the system, use a terminal, and use the system command interface.

Structure of This Document
This guide is meant to be read as you use the system. For this reason, the examples are presented
in an order that you can follow at the terminal. Rather than demonstrate the complexity of the
system, these examples are designed to demonstrate practical program development operations.

This guide is also meant to be used with other manuals in your documentation set. 'Ibward this
end, a selection of further reading material is listed in the last section of each chapter. By using
this guide, then, you can become increasingly familiar with other, more advanced manuals until
you need not refer to this introductory text except as a refresher.

The information in this book is organized into seven chapters:

• Chapter 1 introduces the software and hardware on which you develop programs.

• Chapter 2 describes how to create an assembly language source program using a skeleton file
and text editor.

• Chapter 3 describes how to use the MACR0-11 Assembler to generate an object module.

• Chapter 4 describes how to use the task builder (TKB) to link object modules to create a
loadable task image.

• Chapter 5 introduces debugging aids and discusses how to use them.

• Chapter 6 describes how to create and maintain a library of macro source statements and a
library of object module subroutines.

• Chapter 7 briefly introduces the FORTRAN IV program development process.

Ix

Preface

Associated Documents
As mentioned above, documents recommended for further reading are listed at the end of each
chapter. In addition, the IAS Master Index and Documentation Directory lists and describes all the
documents in the documentation sets for each system.

The following conventions are used in this manual:

Convention

MCA>

PDS>

XXX>

UPPERCASE

command abbreviations

lowercase

/keyword,
/qualifier,
or
/switch

parameter

[option]

[, ...]

{}

x

Meaning

This is the explicit prompt of the monitor console routine (MCR).

This is the explicit prompt of the program development system (POS).

Three characters followed by a right angle bracket indicate the explicit prompt for
a task, utility, or program on the system.

Uppercase letters in a command line indicate letters that must be entered as they
are shown. For example, utility switches must always be entered as they are
shov1n in format specifications.

Where short forms of commands are allowed, the shortest form acceptable is
represented by uppercase letters. The following example shows the minimum
abbreviation allowed for the PDS command DIRECTORY:

PDS> DIR

Any command in lowercase must be substituted for. Usually the lowercase word
identifies the kind of substitution expected, such as a filespec, which indicates that
you should fill in a file specification. For example:

filename. filetype;versionThis command indicates the values that
compose a file specification; values are substituted for each of these variables
as appropriate.

A command element preceded by a slash (I) is an MCA keyword; a OCL qualifier;
or a task, utility, or program switch.

Keywords, qualifiers, and switches alter the action of the command they follow.

Required command fields are generally called parameters. The most common
parameters are file specifications.

Square brackets indicate optional entries in a command line or a file specification.
If the brackets include syntactical elements, such as periods (.) or slashes (I),
those elements are required for the field. If the field appears in lowercase, you are
to substitute a valid command element if you include the field. Note that when an
option is entered, the brackets are not included in the command line.

Square brackets around a comma and an ellipsis mark indicate that you
can use a series of optional elements separated by commas. For example,
(argument[, ...]) means that you can specify a sades cf optional arguments by
enclosing the arguments in parentheses and by separating them with commas.

Braces indicate a choice of required options. You are to choose from one of the
options listed.

Convention

:argument

()

(g,m]
[directory]

filespec

@

Preface

Meaning

Some parameters and qualifiers can be altered by the inclusion of arguments
preceded by a colon. An argument can be either numerical (COPIES:3) or
alphabetical (NAME:OIX). In OCL, the equal sign (•)can be substituted for the
coion to introduce arguments. COPIES::s3 and COPIES:3 are the same.

Parentheses enclose more than one argument in a command line.

SET PROT = (S:RWED,O:RWED)

Commas are used as separators for command line parameters and to indicate
positional entries on a command line. Positional entries are those elements that
must be in a certain place in the command line. Although you might omit elements
that come before the desired element, the commas that separate them must still
be included.

The convention (g,m] signifies a user identification code (UIC). The g is a group
number and the m is a member number. The UIC identifies a user and is used
mainly for controlling access to files and privileged system functions.

This might also signify a user file directory (UFO), commonly called a directory. A
directory is the location of files.

Other notations for directories are: (ggg,mmm], (gggmmm], (ufd], and (directory].

The convention [directory] signifies a directory in the same [g,m] form as the UIC.

Where a UIC, UFO, or directory is required, only one set of brackets is shown
(for example, [g,m]). Where the UIC, UFO, or directory is optional, two sets of
brackets are shown (for example, [(g,m]]).

A full file specification includes device, directory, file name, file type, and version
number, as shown in the following example:

DL2: [46,63]INDIRECT.TXT;3

Full file specifications are rarely needed. if you do not provide a version number,
the highest numbered version is used. If you do not provide a directory, the
default directory is used. Some system functions default to particular file types.
Many commands accept a wildcard character (*) in place of the file name, file
type, or version number.

A period in a file specification separates the file name and file type. When the file
type is not specified, the period may be omitted from the file specification.

A semicolon in a file specification separates the file type from the file version.
If the version is not specified, the semicolon may be omitted from the file
specification.

The at sign invokes an indirect command file. The at sign immediately precedes
the file specification for the indirect command file, as follows:

@filename[.filetype;version]

A horizontal ellipsis indicates the following:

Additional, optional arguments in a statement have been omitted.

The preceding item or items can be repeated one or more times.

Additional parameters, values, or other information can be entered.

A vertical ellipsis shows where elements of command input or statements in an
example or figure have been omitted because they are irrelevant to the point being
discussed.

xi

Preface

Convention

I KEYNAME]

"print" and "type"

§]

xii

Meaning

This typeface denotes one of the keys on the terminal keyboard; for example, the
I RETURN I key.

As these words are used in the text, the system prints and the user types.

A symbol with a one- to three-character abbreviation, such as~ or IRETI, indicates
that you press a key on the terminal. For example, IRETI indicates the RETURN
key,~ indicates the LiNE FEED key, and IDELj indicates the DELETE key.

The symbol ICtrVal means that you are to press the key marked Ctrl while pressing
another key. Thus, CtrVZ indicates that you are to press the Ctrl key and the Z key
together in this fashion. Ctrl/Z is echoed on some terminals as "Z. However, not
all control characters echo.

1 The Program Development Environment

This chapter introduces the software and hardware that you typically need to develop programs on
an IAS multiprogramming system. Its aim is to orient you to the environment in which you will be
working. The remaining chapters in the guide further describe and illustrate how to use the tools
and facilities introduced in the following sections.

1.1 Software Tools

1.1.1

IAS makes software tools available as executable entities called system tasks. The system tasks
include one or more editors, the MACR0-11 Assembler, the IAS task builder (TKB), several aids
to debugging, and a number of utility tasks. Your system may also include one or more high-level
language compilers or interpreters. These elements combined form the program development
environment. In general, the system manager makes these tasks accessible to you by installing
them on the system.1

To invoke a task, you need not know where the task resides. The IAS operating system offers
two command line interpreters (CLis) for communicating with the system and invoking system
services. These are the Monitor Console Routine (MCR) and the program development system
(PDS). MCR is included in all IAS systems, whereas PDS is optional. Each terminal is set to
recognize either MCR or PDS upon logging in.

Command Line Interpreters
IAS systems can have one or more CLis. All systems include MCR. Many systems include PDS,
and some systems include user-written CLis. Both MCR and PDS include commands to invoke
most system tasks and utilities to set and display certain system characteristics. In general, MCR
commands invoke tasks such as PIP, a utility used to manipulate files (for example, copying them).
PDS commands specify actions directly, as in the COPY command or the TYPE command.

The prompts for PDS are as follows:

PDS>

MCR is the fundamental CLI for the IAS operating system. From an MCR terminal, tasks installed
with names in the form ... abc can be invoked simply by typing the abc portion of the task
name. Most system tasks and utilities are installed with names of that form. MCR also provides
commands to set and display certain system and device characteristics. MCR provides the most
direct interface with the operating system.

The prompt for MCR is as follows:

MCR>

PDS is an optional CLI included in most systems with heavy terminal use. Commands in PDS are
English-like words and follow well-defined syntax rules.

1 On systems with fewer resources, some tasks might not be permanently installed. Such systems might require you to use
some form of the RUN command to install system tasks temporarily. See your system manager for further information.
This manual assumes that all tasks are installed.

1-1

1.1.2

The Program Development Environment

You are not required to use the fu11 form of PDS commands, however. Usually, you need type only
the command elements required to form a unique command. Most examples in this manual are
in full format for clarity, but you should keep in mind that unless you are keeping a copy of your
terminal activity for possible future reference, you can use much shorter forms than those in the
examples. You will always be able to shorten any command or qualifier to four characters. Most
commands and qualifiers can be entered with even fewer characters.

PDS prompts you for all required command elements. If you do not understand a prompt, type a
question mark (?). PDS will print HELP text explaining the format and function of the command
and then reprompt you for required input.

PDS is actually a CLI task that translates PDS commands into MCR commands for execution by
the system. Depending on the kind of use you make of your system and the nature of your system,
you may find it more convenient to use one CLI or the other, or both. All nonprivileged system
functions are available directly from PDS, but some privileged functions are not. All program
development facilities and all common utility functions are available from PDS.

The IAS Guide to Program Development concentrates on the actual program development process
and not on PDS or MCR. However, some of the program development facilities require different
commands in PDS and MCR. In particular, the commands for the MACR0-11 Assembler, the
Librarian Utility Program (LBR), and the IAS task builder (TKB) are different. While this wi11
probably not interfere with your use of the system, it may be confusing at first. The programming
demonstrations in this manual are documented first using PDS commands, and then once again
using MCR commands. This duplication enables you to see the differences between PDS and MCR.

Text Editors
A text editor is the means by which you create a source code file. Most IAS systems include the
line text editor (EDI) and the DEC standard editor (EDT). Both of these editors are interactive
editing programs that enable you to enter American Standard Code for Information Interchange
(ASCII) text at a terminal and store the text in a disk file. They also let you access text in a disk
file; examine, delete, and change text; and insert new text. The disk file is then used as input to
other tasks in further steps of the program development process.

EDT is documented in the EDT Editor Manual.

You can use EDI or EDT or some other editor found at your installation with the examples in this
book. PDS users invoke an editor in the following manner:

PDS> EDIT/EDI filespec ~

MCR users invoke an editor in the following manner:

MCR> EDI filespec ~

In both PDS and MCR, the EDT command line can include other command elements to invoke
special features of EDT.

EDI may be the only editor available on smaller systems.

EDI is a single-pass, line-oriented editor. In its typical mode of operation, called block mode, it
reads from a disk file a block of text-as much text as will fit in its text buffer. You perform editing
operations on text in the EDI buffer. After editing text in the buffer, you request the editor to
renew the buffer with the next block of text. To change text in a previously edited buffer, you
must close the current editing session, open the file again by reinvoking EDI, and read from the
beginning of the file to the block of text.

1-2

1.1.3

The Program Development Environment

Editing functions are on a line-by-line basis. New text is inserted into the buffer one line at a time.
Cu..rrent text in the buffer is changed by your locating the line or lines on which EDI must make
the change.

To preserve currently existing text, EDI performs all processing on a temporary copy of the file
being edited. As you renew text in the buffer, EDI writes the edited text to a temporary file. This
action has two advantages and one drawback. First, the current version of your text file is always
left intact. Second, when you exit from the editing session, you have the option of storing the
edited file in a new version of the old file or of creating an entirely new file (that is, one with a
different name and version number). The drawback of the temporary file is that, in the event of a
system crash, edits you are making are lost. After a crash, the new version of the file has a zero
length because EDI did not have time to preserve the edits from the temporary file.

Assembly Language
IAS systems support many programming languages. However, the one language distributed on
all systems is the PDP-11 assembly language, MACR0-11. MAC is the task that assembles
MACR0-11 language files. It accepts a disk source input file in ASCII format and can create a
relocatable object module and a listing file of the source language. The object module contains all
the object records and relocation information needed to link with other object modules. All symbol
definition done by the assembler has a base address of zero. The allocation of virtual addresses
and relocation is left for the task-building process.

PDS users invoke MAC with the MACRO command. MCR users invoke MAC with the MAC
command.

Source input to MACR0-11 consists of free-format statements, and each line of input contains
a single statement. Input statements are either PDP-11 instructions, MACR0-11 Assembler
directives, macro calls, comments, or direct assignments. Statements can contain labels to allow
control to change locally (within the module) or to enable control to be passed between modules
(globally).

Source input usually contains user-defined symbols, which are either local or global. A local symbol
is defined in the current source file and is referenced only within the current file. A global symbol
is defined in one source file but can be referenced in one or more other source files.

The assembler allows you to use both local and global symbols as labels for statements. When a
global symbol appears as a label, the related statement is referred to as an entry point (that is, a
point at which other modules can transfer control to the current object module). You can use local
symbols as statement labels to define points to which control transfers within an object module.

The assembler evaluates all local symbol definitions in a source file. Any symbols remaining
undefined are classified as global. Thus, after an assembly, all local symbols are assigned relative
locations, but the module may contain references for which definitions must be supplied. Tne
resolution of these references is left for the task-building process.

Assembler directives in a source file allow you to perform operations such as the following:

• Program sectioning

• Listing control

• Conditional assembly

• Data storage

1-3

1.1.4

The Program Development Environment

Program sectioning allows code or data within an object module to he overlaid by, or concatenated
with, code or data in other object modules or in noncontiguous locations within the same module.
Program sectioning is especially useful where convenient physical ordering differs from logical
reference ordering (for example, in table-generating macro statements). Listing control directives
enable documentation features such as listing-heading lines, listing-page formatting, and table of
contents generation. Conditional assembly directives allow optional omission or inclusion of lines
of code or user-defined symbols. You can control the size and contents of data areas by using data
storage directives.

Special statements called macro directives allow you to reference a predefined symbol that causes
the assembler to expand a single line source statement into multiple lines of code or data and
insert the assembled result in the object module. Such macro symbols are typically used for
recurring coding sequences. The insertion of the code sequence occurs at each point where you
refer to the macro symbol. Definitions for such macro symbols can occur in the source file itself
or can reside in a macro library. Generally, you place infrequently used macro definitions in the
source file that invokes them, and you store frequently used macro definitions in a macro library.
The Executive and file-processing services are made available to the program through macro
symbols that are defined in a DIGITAL-supplied macro library.

MACR0-11 is a 2-pass assembler. During the first pass, the assembler groups all symbols as either
local or global, performs statement generation, locates all macro symbols, and, if necessary, reads
the macro definitions from libraries. At the end of pass 1, the assembler must have processed all
local references (such as all undefined global symbols) that are to be resolved by TKB.

During the second pass, the assembler actually generates the object module and listing files, and
it flags with an error code in the listing file those source statements that contain errors. If you
requested a cross-reference listing of symbols, the assembler also generates a request for the
Cross-Reference Processor (CRF) to create the proper information. (CRF is introduced in Section
1.1.6.)

The MACR0-11 listing file provides both documentation for the module and a tool for debugging
the code. As a reference aid, the assembler generates and includes line numbers in the listing for
each statement in the source file. It also maintains a current location counter for each program
section defined in the source file. In addition, the listing includes a symbol table showing symbols,
their attributes, and their values if known at assembly time.

The location counter value given in the listing file is important in debugging because it provides the
offsets into the module for each program section. An offset, combined with the base load address
for a program section (from the TKB map), allows you to access locations in the memory-resident
task image during debugging.

Task Creation
The task builder (TKB) on IAS systems is a multipurpose tool. It allows you to create a loadable
entity (called a task image), define and structure a shared area of memory (called a resident
common), and arrange shareable routines to reside in memory (called resident libraries). TKB
has many complex aspects but this guide introduces only its most frequent usage: building a task
image.

PDS users invoke TKB with the LINK command. MCR users invoke TKB with the TKB command.

To build a task image, TKB accepts, as basic input, the output of a language processor: an object
module or multiple object modules. TKB can optionally generate a file of executable code (the task
image), a file of memory allocation information (a map), and a special file of symbol definitions
used in constructing the task (the symbol definition file). The task image, residing on disk, is in a

1-4

1.1.5

The Program Development Environment

format suitable to be loaded into memory and executed. If you generate a cross-reference listing,
the listing itself contains only global symbols and is appended to the map file.

In creating a task image, TKB's primary functions are linking, address binding, and building
system data structures. Linking involves resolving global references in all object modules and
resolving program section references among all object modules. Address binding is assigning
virtual address space within the task. Building system data structures involves creating elements
that the system requires to load the task image into memory and to execute the task. 'lb resolve
global symbols that are not defined in any of the input object modules, TKB searches any object
libraries you specify and, as a default condition, searches the system object library.

Because the PDP-11 processor can address only 32K words (the address limit of 16 bits) at any
one time, a task cannot reference more than 32K words at a time. However, if you use certain
advanced programming techniques, TKB allows a task to access more code or data than can fit
within the address limits. Techniques to overcome the addressing limits include the following:

• Overlaying segments of a task with either disk-resident or memory-resident code

• Mapping to different regions of memory outside the physical limits of the current task space

Because these are advanced techniques, they are not shown in the examples in this guide. For
more information on them, refer to the !AS Tusk Builder Reference Manual.

The memory allocation information, or map, produced by TKB shows you how program sections
are arranged in task memory (their starting virtual addresses and extents on mapped systems
and physical addresses and extents on unmapped systems), what contributions are in a program
section, any undefined symbols, and the optional cross-reference listing of global symbols. You can
use the starting virtual addresses, combined with the current location counter values (provided by
the assembler), as offsets to access locations within the memory-resident task during debugging.

Debugging Aids
This section introduces the debugging aids provided with IAS systems to assist in identifying faulty
code.

1.1.5.1 On-Line Debugging Tool (ODT)
The On-Line Debugging 'lbol (ODT) allows interactive control of task execution. You specify to TKB
that you want a debugging aid included in a task. TKB then inserts the module LB:[l,l]ODT.OBJ
into the task.

When using the separate instruction and data space capabilities found in some IAS operating
systems, TKB inserts the module LB:[l,l]ODTID.OBJ into the task.

When you. run a task that includes ODT1 execution begins at the ODT transfer address rather
than at the task starting address. Therefore, ODT gains control and allows you to type special
commands that establish base addresses and that set breakpoint locations within the task. After
you tell ODT to begin task execution, ODT saves the instructions at breakpoint locations you
specified and replaces them with PDP-11 breakpoint (BPT) instructions. Upon encountering a BPT
instruction in the task, the Executive passes control to ODT at its breakpoint routine. ODT saves
task registers in special locations, restores instructions to the breakpoint locations, and transfers
control to the user task terminal. By typing ODT commands, you can examine and alter any
instructions or data within task memory.

1-5

1.1.6

The Program Development Environment

ODT also enables the BPT synchronous system trap (SST) entry point in the task. If a task
generates an SST error, ODT gains control at its SST entry point, prints a notice at the user
terminal, and passes control to the terminal. You can use the ODT commands to discover the
cause of the error, correct it, and perhaps continue executing the task.

To succP.ssfully modify instructions, you must have a thorough understanding of the PDP-11
instruction set. If you are programming in a high-level language, you should avoid interactive
debugging whenever possible.

General Utilities
This section introduces the general-purpose utility programs that are mentioned in this guide.

1.1.6.1 Cross-Reference Processor
The Cross-Reference Processor (CRF) is an installed task that receives requests from MACR0-11
and TKB to generate cross-reference listings of symbols. CRF generates a specially formatted file
containing the cross-reference data and appends that file to the assembler listing or the task map
file. Therefore, if you request a cross-reference listing of symbols, it always appears at the end of a
listing or map file.

A request for the services of the CRF is included in your command line to the MACR0-11
Assembler and TKB. From PDS, use the /CROSS_REFERENCE qualifier to the MACRO and
LINK commands. From MCR, use the /CR switch on the proper file specification in the MAC and
TKB command lines.

1.1.6.2 Peripheral Interchange Program
The Peripheral Interchange Program (PIP) is the standard DIGITAL program for performing file
and device-related functions: transferring files from one medium or directory to another, obtaining
directory listings, renaming files, deleting files, and changing file protection codes. PIP handles all
Files-11 file-structured devices and is used for almost all file operations. The noteworthy exception
to PIP capabilities is certain PDP-11 Record Management Services (RMS-11) file operations, for
which DIGITAL supplies special RMS-11 utilities.

MCR users access PIP services through various PIP commands. PDS includes the DIRECTORY,
DELETE, PURGE, COPY, RENAME, TYPE, APPEND, and SET PROTECTION commands, which
give you transparent access to PIP services.

1.1.6.3 Queuing and Spooling
In IAS systems, almost all program development tasks automatically generate requests to the
proper queuing tasks to print an ASCII output file on the system's default printer. If your
installation has the proper tasks installed, the spooling task dequeues such requests and prints
the requested output file on the proper device. You should consult the system manager at your
installation for the exact details.

1.1.6.4 Librarian Operations
The Librarian Utility Program (LBR) can create and maintain specially formatted library files
on disk: one for macro call definitions and one for object module subroutines.2 The MACR0-11
Assembler and TKB can access these library files and extract the proper code from them. Libraries
are convenient to use because they encourage sharing of code, provide faster access to multiple
modules (only one file need be opened and closed), occupy less space than the equivalent number of
separate modules, and impose a coding standard. The library files you create using LBR are in the

2 The Librarian can also create a universal library file to contain any of one file type you prefer.

1-6

The Program Development Environment

same format as those that DIGITAL supplies with the operating system. For more information,
refer to the !AS Utilities Manual.

PDS includes a series of LIBRARY commands that give you access to LBR services. MCR users
access LBR services through various LBR commands.

1.2 DIGITAL-Supplied System Software

1.2.1

DIGITAL supplies system software in two standard library formats: macro call definitions and
object module subroutines. You use macro libraries as input to the assembler, and you use object
libraries as input to TKB. The following two subsections describe these system libraries.

System Directives-Macro Libraries
DIGITAL makes available system directives and system-related features through calls; definitions
for these calls reside in macro libraries. The libraries are stored in a predefined file area known
as a directory. The directory is [1,1] on the system library device (referenced explicitly by the
device-independent designation LB).

Table 1-1 DIGITAL-Supplied Macro Libraries

Fiie Name and Type

IASMAC.SML

EXEMC.MLB

RMSMAC.MLB

Description of Contents

System Macro Library. Contains the macro definitions for all IAS system directives and
file control service (FCS) file-processing calls. Default library for the assembler.

Executive Macro Library. Contains the symbol and offset definitions for the Executive
data structures.

PDP-11 Record Management Services (RMS-11) Library. Contains the definitions for
the RMS-11 calls for sequential, relative, and indexed file 1/0. If your system has the
optional RMS-11 K software, this library will also contain calls for indexed file operations.

To use these libraries, you should follow the specific procedures described in the system
documentation. Typically, you supply in the source code the appropriate names of the modules
as parameters of a .MCALL MACR0-11 directive. This action tells the assembler to generate an
entry for that call in its macro symbol table and to search the appropriate library for the definition
of the macro symbol.

In translating source code, the assembler first checks for macro symbols. When the assembler
finds an operator on a source line, it searches its macro symbol table to see whether the operator
is a macro symbol. An operator is any PDP-11 operation code, MACR0-11 Assembler directive,
or macro symbol. If the operator is a macro symbol, the assembler applies the local definition for
the macro symbol or extracts the definition from a library you specified or from the system library.
By searching the user-supplied library first, the assembler allows you to tailor the definitions of
system macro calls or PDP-11 instructions. MACR0-11 assembles the macro definition with any
accompanying parameters and includes the assembled code in the object module. As a result, the
proper code is included from a library.

Through the use of the System Macro Library, you are provided with the code that enables a task
to issue system directives and to obtain the File Control Services (FCS). These services enable a
task to obtain run-time and system information, perform input/output functions, communicate with
other tasks, manipulate logical and virtual address space, control execution, and properly exit. In
general, most IAS features are made available to a task through macro calls to the System Macro

1-7

1.2.2

The Program Development Environment

Library. For the system macro library RSXMAC, you nef'd not designate the lihrary name to the
assembler. As a default condition, the assembler automatically searches the System Macro Library.

Through the use of the Executive macro library EXEMC.MLB, you are provided with code to allow
software to refer to offsets within the Executive and system definitions of the Executive data
structures. This library is provided for assembling privileged tasks and for incorporating specially
written device drivers into the system.

The Record Management Services library RMSlV'"..AC.MLB is provided to support file and record
access to RMS-11 data. RMS-11 is an upward-compatible extension of FCS and offers more
functions such as indexed sequential (keyed) access to data. You include the RMS-11 macro
symbols in the source code and supply to the assembler the name of the RMS-11 library to use.
The assembler extracts the definitions from the library and includes the RMS-11 code in the object
module.

System Subroutines-Object Libraries
On IAS systems, system object libraries provide general utility functions and special-purpose
Executive features. These libraries, like the macro libraries, reside in directory [1,1] on the system
library device (LB). Table 1-2 lists and describes the object libraries that DIGITAL supplies.

Table 1-2 DIGITAL-Supplied Object Libraries

Fiie Name and Type

SYSLIB.OLB

VMLIB.OLB

EXEC.OLB

RMSUB.OLB

Description of Contents

System Library. Contains register handling, arithmetic, data conversion, output
formatting, File Control Services (FCS), and FCS command line processing subroutines.
Optionally contains a set of real-time data acquisition routines. Default library for TKB.

Virtual Memory Management Library. Contains dynamic memory, core allocation, virtual
memory, and page management subroutines.

Executive Library. Contains the definitions of the Executive symbols.

Record Management Services Library. Contains the routines for RMS-11 sequential,
relative, and indexed file 1/0.

You typically include system object routines in a task by specifying the routine name as the
operand of a CALL macro or Jump To Subroutine (JSR) instruction in the source code. The
language processor, at the point of the reference, generates the instructions to transfer control
to the external subroutine. The name of the subroutine is left as an externally defined global
symbol for TKB to resolve.

To ensure that subroutines are placed in the task image, TKB, as a default operation, searches the
library SYSLIB.OLB for routine names that remain undefined after the search of any user-specified
libraries. TKB attempts to match the undefined global reference (the subroutine name in a module)
with an entry point name in the SYSLIB library. When it finds a match, TKB extracts a copy of
the module that defines the symbol from SYSLIB and inserts the subroutine in the task image.
Any further references to that symbol in the task are defined by the subroutine, and T!<"R need not
add any code to resolve further references.

If a module references routines that are in an object library other than SYSLIB.OLB, you
must specify that library when you build the task. TKB performs the same search operations
on user-supplied libraries as it does on the default search of SYSLIB. TKB also searches any
user-specified libraries in the order in which you specify them before it searches the system library.

1-8

The Program Development Environment

1.3 Hardware for Program Development

1.3.1

1.3.2

1.3.3

Basically, you need three types of devices for program development: disks, terminals, and printers.
This section briefly introduces these devices and tells where you can find further information. In
general, each hardware unit on the system is delivered with relevant hardware docu...mentation that
provides programming information in addition to operational instructions. Your installation should
have a library of such hardware documentation. If you are not writing any specially tailored code
for these devices, the system software handles them transparently through such mechanisms as
the print spooler and PIP.

Disks
Disks are the main storage media on IAS systems. Disk drives are either public (that is, accessible
to all users) or private (that is, accessible to a restricted set of users). Almost all utility programs
work with disks as their default device. You can share public disk resources to create source
program files and, as needed, allocate your own private drive to store reserved copies of source and
documentation files.

Terminals
Terminals are the means by which you communicate with the system. DIGITAL terminals handle
7-bit ASCII characters, and system software usua1ly ignores any eighth, or parity, bit. You
perform input to the system through a typewriter-like keyboard; the system returns output to you
either on a screen at a video-display terminal or on paper at a hardcopy terminal. Video-display
terminals are more convenient because they typically operate at faster rates than hardcopy devices.
Hardcopy terminals, however, have the advantage of providing a record of what transpired during
a session on the system.

Terminals are connected to the computer through either a direct line or a modem unit over a
dial-up telephone line. The !AS MCR User's Guide explains how to access the system and basic
system functions using MCR.

Printers
Printers provide hardcopy output of data. MCR provides a QUE command and PDS provides
a PRINT command on systems with the QMG. On smaller systems, you may have to specify
explicitly that output is to go to a line printer. All systems have a terminal or other output device
serving as a line printer. All listings from the MACR0-11 Assembler or TKB are queued to the
system line printer.

1.4 The Program Development Process-Overview
Figure 1-1 illustrates the steps in the program development process. The following paragraphs
briefly describe these steps, which are treated in greater detail in Chapters 2 to 7.

The steps normally taken to prepare a program to run on the system are as follows:

1 Create a source program in a file on disk.

2 Submit the source file to a language processor (assembler or compiler) to produce an object
module.

1-9

The Program Development Environment

3 Submit the file (or files) containing the object or modules to TKB to create a file containing a
loadable task image.

4 Request the Executive to execute the task.

You use a text editor to create the source file. For MACR0-11 programmers, this guide suggests
a skeleton format for source files and shows how to replicate and modify the skeleton file. The
skeleton file becomes a common base from which you create each new source file.

A language processor creates the file of relocatable object code. For assembly language processing,
MACR0-11 also accesses the System Macro Library to include code for system directives in the
object file. For compilers, system directives are invoked by calls to subroutines in the system object
library SYSLIB.

TKB creates the file of loadable code, which assumes certain default conditions about the run-time
environment and builds these characteristics into the task. TKB also accesses system and
user-specified libraries to resolve references in the task.

Once you have a task image, you request the Executive to run the program. If any errors occur,
recompile, build a new task image file, and try again.

1-10

The Program Development Environment

Figure 1-1 The Program Development Process

(START]

r-------1111111 Text Editor 1---....

Correct
Source
File

(EDI)

Language
Processor

(MAC)

Task
Builder
(TKB)

Run
and

Debug

Task Image
File (.TSK)

Dump File (.PMD)
in UFO 1,4

Macro
Library
File

MAC.SML

Creating and
formatting
MACR0-11
source
files

]

ssembling
and correcting
a program
module

Symbol
Definition
File (.STB)

Building
and testing
a task

}

Running and
debugging a
task

1-11

2 Creating MACR0-11 Source Files

Your first step in program development is to create a file that contains MACR0-11 source
statements. One way to do this is to create a skeleton source file that you can use as a framework
for all your source programs. This chapter performs the following functions:

• Describes a source file format you can use as a guideline to create your own skeleton file.

• Presents some MACR0-11 statements to include in the file.

• E~plains some elementary editing commands that you can use to create and modify source
files.

Digital has established a coding standard to enhance the readability and maintainability of its
MACR0-11 source programs. That standard is outlined in an appendix of the PDP-11 MACR0-11
Language Reference Manual.

2.1 MACR0-11 Skeleton Source File Format
This section presents the ske1eton and source statement formats and discusses each of the elements
in the skeleton. Figure 2-1 illustrates the basic elements of the skeleton: a preface, definitions,
functional descriptions, and the code itself.

2-1

Creating MACR0-11 Source Files

Figure 2-1 MACR0-11 Source Fiie Format

Title
Identification

Statement of
Ownership

Authorship

Change History

Module Function
(General)

Local Symbol
Definitions

Local Macro
Definitions

Local Data Blocks

Module Function
(Detailed)

Inputs, Outputs,
and Side Effects

Module Code

l

J

Module Preface
on first page

The source file preface, or preamble, should be on the first page. The preface essentially describes
the code, states its ownership, identifies the author, defines the changes to the code, and gives a
brief description of the module's function.

2-2

Creating MACR0-11 Source Files

After the preface oft.he module comes the detail of the code. Declarations (such as local symbol,
macro, and data definitions) that appear toward the beginning of the code make reading the code
easier. Preceding the routines in the module, you should place detailed descriptions of what the
routines do and define what is required for input to the routines, what the routines produce, and
what effects result from execution.

Each statement line in a source file should follow a consistent format, as shown in Figure 2-2.

Figure 2-2 MACR0-11 Source Statement Format

Label:

Tab Position 0
Column 1

Operator

Tab Position 1
Column 9

Operand(s)

Tab Position 2
Column 17

;Comments

Tab Position 4
Column 33

Although the assembler enables free formatting of statements, you should follow the recommended
format because it is easy to follow and creates readable, consistent code.

In the source statement format shown in Figure 2-2, the label is any user-defined symbol that
identifies a reference location in the code. An operator is any PDP-11 operation code, MACR0-11
Assembler directive, or macro symbol. An operand is any argument(s) or parameter(s) of an
operator. Comments consist of information you provide to describe what effect you desire from the
execution of the instruction. Comments do not affect program execution; the assembler merely
transfers them to the listing file produced during the assembly.

Comments, accompanied by selected MACR0-11 Assembler directives, constitute the source file
skeleton. This skeleton provides the structure on which you build the source file. Directives in the
source file skeleton identify the code and control the format of the listing. Example 2-1 shows a
sample skeleton.

Notes on Example 2-1:

0 .TITLE Directive

The .TITLE directive enables you to name the module. The assembler takes the first six
nonblank (alphanumeric) characters, up to the first blank or horizontal tab character; as the
module name. Following the name in the .TITLE directive, you can use up to 24 characters to
describe the function of the module. The name and the description appear as the first entry
in the header line of each page in the assembly listing. For example, consider the following
.TITLE directive:

.TITLE SKELTN SOURCE FILE SKELETON

2-3

Creating MACR0-11 Source Files

Example 2-1 Sample Source Fiie Skeleton

.TITLE SKELTN SOURCE FILE SKELETON Ct

.!DENT /01/ @

AUTHOR: Z @)

CHANGES: 0

MODULE FUNCTION GENERAL: ~

.PAGE ; BREAK PAGE FOR

.SBTTL SYMBOL, MACRO, DATA DEFINITIONS

.LIST TTM 0

PREFACE
0

.NLIST BEX ;SUPPRESS BIN EXTENSION

.MCALL EXIT$S ;EXEC'S EXIT MACRO G>

LOCAL SYMBOL DEFINITIONS: CD

LOCAL MACROS : C8

LOCAL DATA BLOCKS: 48

.PSECT DATA,D,RW CE)

MODULE FUNCTION DETAILED: (9

INPUTS:

OUTPUTS:

SIDE EFFECTS:

START CODE HERE

.PAGE

.SBTTL

.PSECT
START:
END: EXIT$S ;EXIT CLEANLY TO EXEC

0

0

.END ;TELL ASSEMBLER END OF CODE 4I!)

2-4

The assembler takes the characters SKELTN as the module name. The remaining characters
up to the 30th character are taken as the description. Any remaining characters after the 30th
character would be discarded.

The assembler does not relate the name you specify in the .TITLE directive to the name you
specify for the source or object files. To minimize confusion, however, it is helpful to apply
the name specified in the .TITLE directive to the source file. (Note that the sample code and
commands shown in this guide use different names to help you distinguish their usage.)

Creating MACR0-11 Source Files

The name the assembler extracts from the .TITLE directive is a]so important in subsequent
steps of program development. The task builder (TK.B) lists this name in its memory a1location
synopsis to show which object modu1es made contributions to each program section in the task
image. In addition, if the LIBRARY command is used to insert the object module in an object
library, this name is kept in the directory of the library to refer to the object module.

8 .IDENT Directive

The .IDENT directive records the version of the modu1e. You can establish your own version
identification conventions. The identification follows the module into the task image and is
displayed in the map. Knowing whether the correct version of the modu1e was linked into the
task image helps in the debugging and maintenance process.

0 Author Line

The author line identifies the originator of the code.

8 Changes

This section of the source file describes any modifications that have been made to the module.
You can develop a convention whereby the author's initials and a number can indicate a
change. The author of the modification can identify the change in this section and flag each
line of code with an additional comment, such as the fo1lowing:

; TOM JONES
; TJOOl

8-AUG-90 1.01
ADD STATE TAX TO TOTAL

A changed or added line in the code can be flagged with the notation TJOOl as fo1lows:

ADD A,B ;TOTAL WITH TAX ;TJOOl

This procedure helps the author recall what changes were made to the module and assists
others in determining the extent of changes.

0 Module Function General

In the modu1e function part of the source file, you can describe the general processing
operations that the code performs. This description can include how the module relates to
the system or specific application, that is, what type of processing precedes and follows the
execution of this modu1e.

0 .PAGE Directive

The .PAGE general-purpose directive causes a page break in the assembly listing. It appears
as shown to keep the preamble alone on the first page of the listing (after the table of contents).
You can use the .PAGE directive throughout the module to generate page breaks for different
subroutines.

@ .SBTTL Directive

The .SBTTL general-purpose directive creates an entry for the assembly listing table of
contents printed at the front of the listing. A table of contents is helpful in summarizing
the subroutines in a large module. Therefore, the text you supply with the directive shou1d
describe what the related subroutine does. In addition to appearing in the table of contents,
the text appears on the second line of the heading at the top of each listing page. If your
rnodu1es typica1ly contain only a small number of subroutines, you might not find the table of
contents feature very useful.

0 .LIST TTM Directive

2-5

Creating MACR0-11 Source Files

The .LIST TTM: general-purpose directive creates a listing formatted more conveniently for
output on a terminal. (Chapter 3 shows how to display a listing at a terminal.) You can
include the directive during the early stages of program development and later remove it from
the stabilized code.

0 .NLIST BEX Directive

The .NLIST BEX general-purpose directive suppresses the binary extension of statements
beyond what can fit on one source statement line. Using this directive saves excess printing
in the assembly listing. For example, only the binary value of the first characters of an ASCII
string would appear in the listing. The directive simply makes the listing more readable, and
it saves paper.

G> .MCALL Directive

Use the .MCALL general-purpose directive to tell the assembler the names of the externally
defined macro calls that appear in the source file. The directive causes the assembler to
create entries in its macro symbol table for the macro names and to look up the definitions
of the related calls in either a user or a System Macro Library. The assembler includes the
definitions from the library in the module where the calls themselves appear.1

The EXIT$S directive (shown in the .MCALL statement) should be in every user program for a
clean exit. It is the last statement the program (task) executes before it returns control to the
Executive. (The EXIT$S directive performs important system housekeeping operations for the
task.) The related definition for EXIT$S resides in the file IASMAC.SML in system directory
[1,1] on the library device (LB). Digital recommends that user tasks exit by using the EXIT$S
directive. (An alternative form of exiting enables a task to exit and post status.)

If a call for an externally defined macro statement appears in the source file but is not preceded
by a .MCALL directive and the macro name, the assembler treats the unrecognized macro call
as an implicit .WORD data storage directive. (If the macro call has parameters, the assembler
might generate an error because of illegal syntax for a .WORD directive.) Later, when you
build the task with the related object module and the macro name is not a valid symbol, TKB
flags the name as an undefined reference. Thus, without the .MCALL directive, the assembler
does not know that it must search libraries to resolve the macro symbol.

(I) Local Symbol Definitions

In this section of your source file, you collect symbols in direct assignment statements. Because
symbols in MACR0-11 can be defined as expressions of other symbols, having the definitions in
one place is an advantage. In addition, good programming practice encourages using symbols
instead of simply supplying a numeric constant.

For example, in defining a 10-byte buffer, the best method is to define a symbol, then use the
symbol in the buffer definition, as follows:

1 If you do not include the directive .LIST :ME {list macro expansions) or .LIST MEB (list macro expansion lines that
generate object code) in the source file, the assembler does not insert in the listing the expanded source code of the macros
it assembles.

2-6

Creating MACR0-11 Source Files

LOCAL DEFINITIONS

SIZB = 10.

LOCAL DATA BLOCKS

BUFB: .BLKB SIZB

This method has the following advantages:

• If a single constant that is referred to in numerous places in the code must be altered, you
need perform only one edit (to the symbol definition) to effect the change.

• If all the symbols are gathered in one place in alphabetical order, reading the code is
simplified.

• You can find all references to a symbol in a cross-reference listing. The cross-reference
capability allows you to examine all the references to a symbol and confidently assess the
effects of altering the symbol definition.

These advantages are lost if you use constants. Thus, the symbol list would contain such local
symbol definitions as SIZB = 10. The symbols themselves would appear in the module code.

0 Local Macro Definitions

The definition of a macro statement can appear anywhere in the source file as long as the
definition appears before the first occurrence of the macro statement. It is better programming
practice to place all macro definitions in a standard place near the front of the source file.

G> Local Data Blocks

This section of the source file defines such data as buffers, status words, and status bytes.
Generally, it describes the local storage that the module references. It is good programming
practice to use a separate .PSECT directive for data.

CD .PSECT Directive

The .PSECT directive establishes a name and attributes for a program section. A program
section is a unit allocation of memory reserved for either code or data. For example, you can
establish a program section to contain data for your program as follows:

.PSECT DATA,D,RW

The .PSECT directive creates the program section named DATA with the attributes data (D)
and read/write (RW). You can give a program section for data either the read-only (RO) or the
readiwrite (RW) attribute. (The assembler appiies other defauit attributes not relevant to this
discussion.) Consult the IAS Task Builder Reference Guide for a discussion of program section
allocation in multiuser tasks.

The three most important aspects of the .PSECT directive are as follows:

• Contributions defined for a specific program section can be in separate places in a source
file or in separate source files.

• Attributes of the program section are passed to TKB.

• Contributions for a specific program section with the same attributes are collected in one
continuous allocation of memory space by TKB.

2-7

Creating MACR0-11 Source Files

In the skeleton file, it is useful to define one program section to contain the data elements
referenced in the task and to define another program section to contain the code.

Q Module Function Detailed

This section of the source file can be as general or specific as necessary to describe the functions
of the module. A complex module should have a lengthy discussion; a simple module need not
have as much. At the minimum, this section should state the register usage on input to and
~ -" ... ,,.9"" •J....,. 9"".nrln lo
V\.Llll}IU.11.1 J...L V.U . .1. '1.1.1.~ .l..1..l.V'\..1.1.

~ .END Directive

The .END directive in a module signals the logical end of source input and optionally specifies
the task transfer address. The transfer address is the location where program execution
begins. Although each source file should contain an .END directive, only one source file should
define the transfer address. The assembler does not process lines beyond the one where the
.END directive appears.

2.2 Creating a Source File from a Skeleton File

2.2.1

This section describes how to use the line text editor (EDI) to create a skeleton file, then to create a
source file from the skeleton. If you are using the DEC standard editor (EDT) or some other editor,
follow the text. for EDI and perform the functions using your editor.

Performing the Initial Input
To create the skeleton file using MCR, type EDI and the specification of a new file (that is, one not
in your directory). For DCL, use the command EDIT/EDI and the specification of a new file.

The sequence from a DCL terminal is as follows:

DCL> EDIT/EDI SKEL .MAC ~
[CREATING NEW FILE]
INPUT

The sequence from an MCR terminal is as follows:

MCR> EDI SKEL.MAC ~
[CREATING NEW FILE]
INPUT

The editor performs the following functions:

• Runs.

• Determines that the file does not exist.

• Creates the file.

• Tells you to begin typing the input.

Type the input as in Example 2-2. Leave any typographical errors until after you have become
familiar with the editing commands described in Section 2.3. The notation conventions for the
figure are described in the Preface at the front of this guide.

2-8

Creating MACR0-11 Source Files

2.2.1.1 Inserting Blank Lines in Text
To insert a blank line in the source file as shown in Example 2--2, press the space bar or ITABI key on
a new line followed by the I RETURN I key. If you press the <BPX>(RETURN) key twice in succession
(that is, press the I RETURN I key to enter a line of text and immediately press the I RETURN I key again
on the new line, EDI terminates the input. Thus, to enter a blank line, p:ress only one nonprinting
character, such as the ITABI, on a new line.

2.2.1.2 Terminating the Input and the EDI Program
To terminate the input, press the I RETURN I key twice in succession. EDI prints the asterisk (*) to
request a command. Type the EXIT command to close the file and terminate EDI. For example:

last line of text ~

~
*EXIT
[EXIT]

MCR>

When EDI exits, it prints the message [EXIT] and returns control to the operating system. The
implicit prompt (>)indicates that the command line interpreter (CLI) is ready to accept a new
command. The remainder of this chapter makes changes in the source file SKEL.MAC and
demonstrates EDI commands at the same time. If you are using EDT or some other editor, follow
the changes as demonstrated and make them in your file using your editor. If you are using DCL,
remember to use the EDIT/EDI or EDIT/EDT command.

2-9

Creating MACR0-11 Source Files

Example 2-2 Creating the Skeleton File SKEL.MAC

$ EDT SKEL. MAC IRETI
Input file does not exist
[EOB]

*c ~
l!O@
ITABI

• TITLE ~ SKELTN SOURCE FILE SKELETON ~
.!DENT ~ /01/ ~

·~~~· ~
; [@j)
; AUTHOR: Z ~
; [@j)
ITABI~
; [@j)
; CHANGES: ~
; [@O!J
ITABI~

[@j)
; MODULE FUNCTION GENERAL: IBf!}
; [@O!J
ITABI~
; [@j)
ITABI
ITABI
~
ITABI
@OJ
ITABI~
; [@O!J

• PAGE ITABI jTABI ~
.SBTTL ~ ~@]
.LIST @) TTM ~ ~
.NLIST ~ BEX ~~
.MCALL ~ EXIT$S ~~

; LOCAL SYMBOL DEFINITIONS: ~
; [@O!J
@]~
; [@j)
; LOCAL MACROS: ~
; [@j)
lTABI~
; lt!!l
; LOCAL DATA BLOCKS: ~

.PSECT ~ DATA,D,RW ~

FUNCTION DETAILED: ~

INPUTS: ~

OUTPUTS : IRETI

SIDE EFFECTS: ~

.PAGE [RET]

.SBTTL ~

.PSECT ~

Example 2-2 Cont'd on next page

2-10

: BREAK PAGE FOR PREFACE ~
; SYMBOL, MACRO, DATA DEFINITIONS ~
;TERMINAL LISTING MODE ~
; SUPPRESS BIN EXTENSION ~
;EXEC'S EXIT MACRO ~

2.2.2

Creating MACR0-11 Source Files

Example 2-2 (Cont.) Creating the Skeleton File SKEL.MAC

; .START CODE HERE ~
START: ~
ITABI~
END: ITABI EXIT$S ~ ~ ~
ITABI .END ~ ~ ~
IRETI
IGOLDll COMMAND I
Command: EXIT
I ENTER I
$

;EXIT CLEANLY TO EXEC ~
;TELL ASSEMBLER END OF CODE IRETI

Creating a Source File from the Skeleton
After you create the skeleton file, you can use it many times to create different source files by
running the editor again as described in Section 2.2.1. For example:

MCR> EDI SKEL.MAC ~
[00054 LINES READ IN]
[PAGE 1]

*

This time EDI finds the file you just created, reads it into memory, and prints an asterisk to
request a command.

The EXIT command with a file specification creates a new file that has that name and contains all
the text in your skeleton. For example:

*EXIT FILE.MAC~
[EXIT]

MCR>

EDI creates either the new file FILE.MAC;! in your directory or, if the file already exists, a new
version of the file. It retains the input file SKEL.MAC. You can repeat this process to create as
many new source files as you need.

At this point, the contents of SKEL.MAC and your new file are exactly the same-typographical
errors and all. Now you must use editing commands to change your new file to make it unique.
Section 2.3 describes some of these commands and gives examples of their usage to enable you to
perform the most common editing functions.

By using the same skeleton file each time you want to create a new source file, you save typing
time and have a better chance of creating consistent, easily readable, and well-documented code.
After you have gone through Section 2.3 and have learned the editing commands, you can correct
the errors in the skeleton file.

2.3 Editing the Source File
This section describes how to use a subset of EDI commands to edit a source file. By following the
examples in this section, you create three source files that you can use in subsequent stages of the
program development cycle.

2-11

2.3.1

Creating MACR0-11 Source Files

You can abbreviate most of the commands in EDI. For example, the EXIT command can be
abbreviated EX. The descriptions of each command include (within parentheses) the accepted
abbreviation, if one exists.

Displaying Text
Use the EDI command to access a source file to edit. For example:

MCR> EDI FILE.MAC ~
[00054 LINES REJW IN]
[PAGE 1]

*
Two keys, I RETURN I and I ESCAPE I. cause EDI to move forward and backward respectively, one line,
and to display the new line. By using these two keys, you can step line by line through a file. For
example:

* ~
.TITLE SKELTN SOURCE FILE SKELETON

* IRETI
. IDENT /01/

* L=J
.TITLE SKELTN SOURCE FILE SKELETON

*

Pressing the I RETURN I key twice advances the pointer twice and displays each line. Pressing the
I ESCAPE I key moves the pointer back to the previous line and displays the line.

The following sections describe several of the EDI commands used to display text.

2.3.1.1 TYPE Command
The TYPE command (TY n) displays n lines at a time but does not alter the line position. For
example:

*TY 2

*

.TITLE SKELTN SOURCE FILE SKELETON

. IDENT /01/

The 2 in the TYPE command causes EDI to display the current line and the next line. If you give
the TYPE command without a number, EDI displays the current line (that is, one line).

2.3.1.2 UST Command
The LIST command (LI) displays all lines in the buffer starting at the current line and stopping at
the last line in the buffer (that is, end-of-buffer). For example:

* LI (@Of!
(all lines are listed)

* TY (@Of!

[*BOB*]
*EX~
[EXIT)

MCR>

The LIST command positions the line pointer at the beginning of the buffer. The TYPE command
shows the position of the line pointer. EDI prints the blank line it maintains at the beginning of
the buffer and the message (*BOB*] to remind you that the line pointer is at the beginning of the

2-12

2~3~2

Creating MACR0-11 Source Files

buffer. EDI always keeps a blank line at the beginning of the buffer to allow you to insert lines
before the first line of text in the buffer.

Locating Text and Positioning the Line Pointer
Editing a file requires you to locate a line of text in the buffer and to position the pointer to that
line. The following sections describe several of the commands used in editing files.

2.3.2.1 BEGIN and END Commands
The BEGIN command (B) and END command (E) position the pointer to fixed lines in the
buffer-the beginning and ending lines. The END command also prints the last line of the buffer.
For example:

MCR> EDI FILE.MAC ~
[00054 LINES READ IN]
[PAGE 1)

*E ~
[TAB] • END ~ ~ ~; TELL ASSEMBLER END OF CODE

*

The END command is useful for quickly assessing what the last line in the buffer is. The BEGIN
command is helpful in quickly positioning the pointer at the beginning (or top) line of the buffer,
thus enabling you to make multiple passes over a buffer. For example:

*B ~
*TY~

[*BOB*]
*

Because the BEGIN command does not display any text, you can use the TYPE command to
display the first line in the buffer. The command in the example shows the blank line at the
beginning of the buffer. EDI prints [*BOB*] to show you that it is positioned at the beginning of
the buffer. For example:

* ~
~ .TITLE ~ SKELTN ~ SOURCE FILE SKELETON

*

Pressing the RETURN key advances the pointer and displays the line, as follows:

*~
~ .TITLE ~ SKELTN ~ SOURCE FILE SKELETON

* ~
4

*

2.3.2.2 LOCATE Command
If the text you want to examine is within the buffer, you can type the LOCATE command (L) with
a string to be located, as follows:

* L MODULE ~
; MODULE FUNCTION:

*
A space should separate the command and the search string to be located. EDI displays the line
where it found the first occurrence of the string. If EDI does not find the string, it prints a message
indicating that the end-of-buffer has been reached. For example:

2-13

Creating MACR0-11 Source Files

* L MODULE ~
[*EOB*]

*
After an unsuccessful search, EDI leaves the line pointer at the last line of the buffer.

2.3.2.3 PLOCATE Command
If the string you want is not in the buffer, you can use the PLOCATE command (PL) to tell EDI to
search successive bu..'fers until it locates the string. For example:

*B ~
*PL .END ~

• END ~ ~ ~; TELL AS SEMBLER END OF CODE

*

EDI searches the buffer starting at the current line. If the string is not found in the buffer, EDI
preserves the contents of the buffer and reads in more lines from the input file to fill the buffer
again. It prints a message telling the number of lines searched. When EDI finds the string, it
displays the line where the string occurs. If EDI does not find the string, it prints a message
indicating that the end-of-file has been reached. For example:

*PL .ENDR ~
[*EOF*]

*
At the end-of-file (signaled by [*EOF*]), EDI leaves an empty buffer where you can either insert
new text (which follows all the text currently in the file) or exit to preserve any changes made and
to start at the beginning of the file again. Note that, once EDI has preserved a buffer, you cannot
go back to it except by starting at the beginning of the file again. For example:

*EX~
[EXIT]

MCR>

You can also use the PLOCATE command with a string known not to exist in the file to position
EDI after the last line of the file.

2.3.2.4 RENEW Command
The RENEW command (REN) enables you to read new lines from the input file. For example:

*EDI FILE .MAC ~
[00054 LINES READ IN]
[PAGE 1]
*REN~
[*EOF*]
[PAGE 2]

*EX~
[EXIT]

MCR>

The RENEW command writes the lines in the buffer to the temporary output file before it reads in
new Hnes from the input file. ff there are no more lines ieft in the fiie, EDi signais the end-of-fiie.
Th~ .. ,.,.,...,,.....,,...an.rl ;a nC!ofnl r,.,. ,.<::>C!nalhr ;nC!nort;na tho rnntontC! nf a ~lo
.&..1..1..1.ICJ "'V.1...1..1..1..&.&.""'.1..A.'4 ..l.U "6.UL'L6.& .&.V.L 'w'""V,.,,.....,....A..LJ .&.&..& f" ""'.&.a..ao ..,.._ VV.&.a..., &.LVU V.L llLA. JI..&.&'""•

2-14

2.3.3

Creating MACR0-11 Source Files

Changing Text and Exiting from EDI
While editing a file, you can alter text by replacing, adding, or deleting stringso The following
sections describe several of the commands most commonly used in changing text.

2.3.3.i CHANGE Command
The CHANGE command (C) alters text on the current line and enables you to perform the
following tasks:

1 Replace an old string with a new string.

2 Add a string at the start of a line.

3 Delete a string from a line.

The command requires that you type, within character delimiters, the old string (the text to be
altered) followed by the new string. The only requirement for the delimiting character is that it
does not appear in either the old or the new string.2

A convenient character to use as a delimiter is the slash character (I). For example:

MCR> EDI FILE.MAC ~
[00054 LINES READ IN]
[PAGE 1)

* ~
.TITLE SKELTN SOURCE FILE SKELETON

* C /SKELTN/NUMA/ ~
.TITLE NUMA SOURCE FILE SKELETON

After you enter the C command, EDI searches the line for the old string (SKELTN) and replaces it
with the new string (NUMA). EDI then prints the changed line to allow you to verify the operation.
If EDI cannot locate the old string, it prints the message [NO MATCH] and reprints the prompt.

To save typing long strings, EDI enables you to include an ellipsis (...) in the old string, as
follows:

* C /SO ••• ON/COUNT NUMBER OF A'S/~
.TITLE ~NUMA ~ COUNT NUMBER OF A'S

*

EDI takes the characters SO, all intervening characters, and the characters ON as the old string.
The ellipsis, used in this manner, reduces the amount of typing required to specify a string to be
changed. Three other forms of the ellipsis enable variations of the abbreviation:

I ... I

/old string ... I

I ... old string/

By itself, the ellipsis means the entire line.

From old string to the end of the line.

From the beginning of the line to old string.

The slash characters shown as delimiters with the ellipsis can be any unique character. 'lb place a
string at the beginning of a line, specify the null string as the old string. For example:

* C //OLD STRING/ ~
OLD STRING ~ .TITLE ~NUMA ~ COUNT NUMBER OF A'S

*

EDI replaces the null string at the beginning of the line with OLD STRING and prints the changed
line.

2 The ampersand character(&) should not be m~ed as a delimiter because EDI treats it as a concatenation character. If you
must use it as a delimiter, follow the special procedures presented in the EDI chapter in the RSX-11M IM-PLUS Utilities
Manual for using the CONCATENATION CHARACTER command (CC).

2-15

Creating MACR0-11 Source Files

To delete a string from the line, specify the null string as the new string, as follows:

* C /OLD STRING// ~
ITABI. TITLE jTABI NUMA ('!'.@ COUNT NUMBER OF A'S

*

EDI replaces OLD STRING with the null string; that is, it deletes OLD STRING and prints the
changed line.

2.3.3.2 APPEND Command
The APPEND command (AP) adds a string at the end of a line. The command does not need
delimiting characters, since only one string can be specified; simply specify a space to separate the
command and the string. For example:

*AP~

*

.!DENT /01/
IDENTIFY MODULE VERSION ~

.!DENT /01/ ~ ; IDENTIFY MODULE VERSION

After adding the text at the end of the line, EDI displays the changed line.

2.3.3.3 DELETE & PRINT Command
Specify the DELETE & PRINT command (DP n) to remove a line or lines from the text in the
buffer, where n is the number of lines to be deleted. You can use the TYPE n command with the
DP n command to display the lines to be deleted, as follows:

*TY 3 ~

;AUTHOR:Z
* DP 2 jRETI
;AUTHOR:Z

*
The TY 3 command displays the current line and two succeeding lines (the pointer remains
positioned at the current line). The DP 2 command deletes the current line and one succeeding
line. EDI moves the pointer to the line after the last one deleted and prints that line.

2.3.3.4 EXIT Command
Use the EXIT command (EX), after changing text in the file, to close the editing session. For
example:

*EX~
[EXIT]

MCR>

The EXIT command without a file name creates a new version of the current file and copies the
remainder of the file to the new version. Because exiting preserves the edits you have made to that
point, you should exit fairly often from a lengthy editing session. If a system crash occurs, EDI
retains the old version of your file (that is, it retains the edits up until you last exited) but does not
retain the changes you are making. Frequent exits minimize the amount of editing that can be lost
if a system crash occurs.

2-16

2.3.4

Creating MACR0-11 Source Files

Inserting Code in the Source File
Use the INSERT command (I) to add multiple lines of text in the source file. To insert code in the
source file FILE.MAC, use positioning commands to locate the line preceding where you want to
place the new material. The INSERT command places new lines in the buffer after the current
line. For example:

MCR> EDI FILE.MAC ~
[00052 LINES READ IN]
[PAGE 1]
* L FUNCTION: ~
; MODULE FUNCTION:
*I~

THIS MODULE LOADS A BUFFER, ~
COUNTS THE NUMBER OF A'S (UPPER) ~
CASE ONLY IN THE BUFFER, CONVERTS IRETI)
THE NUMBER TO OCTAL, AND REPORTS ~
THE NUMBER OF A'S FOUND. ~

The LOCATE command positions EDI to the line preceding where you want to place the new lines.
Typing the I command followed by pressing the RETURN key places EDI in insert mode. After you
type the lines, press the RETURN key twice in succession to leave insert mode.

Continue using positioning and editing commands to type in the remainder of the source program
shown in Example 2--3.

Example 2-3 Source Code for FILE.MAC

.TITLE NUMA

.IDENT /01/
COUNT NUMBER OF A'S

; IDENTIFY MODULE VERSION

AUTHOR: Z

CHANGES:

MODULE FUNCTION GENERAL:
THIS MODULE LOADS BUFFER,
COUNTS THE NUMBER OF A'S (UPPER
CASE ONLY) IN THE BUFFER, CONVERTS
THE NUMBER TO OCTAL, AND REPORTS
THE NUMBER OF A'S FOUND .

. PAGE ; BREAK PAGE FOR PREFACE

.SBTTL SYMBOL, MACRO, DATA DEFINITIONS

.LIST TTM TERMINAL LISTING MODE

.NLIST BEX

.MCALL EXIT$S

Example 2-3 Cont'd on next page

SUPPRESS BIN EXTENSION
EXEC'S EXIT MACRO

2-17

Creating MACR0-11 Source Files

Example 2-3 (Cont.) Source Code for FILE.MAC

LOCAL SYMBOL DEFINITIONS:
MS GLEN
SIZ
SIZA

NUMEND-MSG
80.
6.

LOCAL MACROS: NONE

LOCAL DATA BLOCKS:

.PSECT DATA,D,RW

A: .ASCII /A/
BUFl: .BLKB SIZ
MSG: .ASCII /THE NUMBER OF
NUMA: .BLKB SIZA
NUMEND
NUMC: .BLKW 1

MODULE FUNCTION DETAILED:

INPUTS:

; DEFINE AN A
; DEFINE BUFFER

A'S IS I
DEFINE OCTAL COUNT
END OF MESSAGE
NUMBER OF CHARS TYPED

BUFl IS LOADED WITH CHARACTERS

OUTPUTS:
NUMA HOLDS THE NUMBER OF A'S

SIDE EFFECTS: NONE

START CODE HERE

START:

10$:

20$:

.PAGE

.SBTTL ROUTINE TO COUNT A'S

.PSECT

MOV #BUFl,RO LOAD BUFFER ADDR
MOV #SIZ,Rl LOAD BUFFER SIZE
CALL READ READ FROM TTY
TST R2 ANY CHARS IN BUFFER?
BEQ END IF NONE, FINISH UP
CLR Rl INIT #OF A'S COUNTER
MOV R2,NUMC SAVE # OF CHARS TYPED

CMPB (RO)+,A IS CHAR = A?
BNE 20$ IF NO, GET NEXT CHAR
INC Rl COUNT AN A

DEC R2 ONE LESS CHAR
BNE 1 "' ... IF MORE, ,...,."..._,.., 1\ T")T:'I 't..1T:'IVrn

.1.V.;> \..-Vl"l.C- tt.l:'\.C:.. L'fL.l'\.i.

.PAGE

.SBTTL TRANSLATE COUNT TO OCTAL
MOV #NUMA+6,RO SET PTR TO OCTAL #
MOV #5,R2 ; SET COUNT OF DIGITS

Example 2-3 Cont'd on next page

2-18

Creating MACR0-11 Source Files

Example 2-3 (Cont.) Source Code for FILE.MAC

30$:
MOV Rl,-(SP) STACK IS TEMP AREA
BIC U77770,@SP STRIP LOW 3 BITS
ADD #60,@SP MAKE OCTAL DIGIT
MOVB (SP)+,-(RO) STORE OCTAL DIGIT
ASR Rl SHIFT TO
ASR Rl NEXT
ASR Rl 3 BITS
DEC R2 ONE LESS DIGIT
BNE 30$ IF MORE, REPEAT
MOV #MSG, RO LOAD ADDR OF BUFFER
MOV #MSGLEN,Rl LOAD SIZ OF MESSAGE
CALL WRITE REPORT THE RESULTS

END: EXIT$S EXIT CLEANLY TO EXEC
.END TELL ASSEMBLER END OF CODE

After you have typed in the code 1 use the techniques described previously to create two new source
files, FILEA.MAC and FILEB.MAC, from the skeleton file. The code for these two files is shown in
Examples 2-4 and 2-5. These two files and the file FILE.MAC are used in Chapter 4 to build and
test a task. You might want to edit the skeleton file before you create the two new source files.

Example 2-4 Source Code for FILEA.MAC

.TITLE TTREAD TERMINAL READ SUBROUTINE

.IDENT /01/

AUTHOR: DEF 8-AUG-90

CHANGES: NONE

MODULE FUNCTION GENERAL:
THIS MODULE READS A LINE FROM A
TERMINAL INTO A BUFFER

.PAGE ; BREAK PAGE FOR PREFACE

.SBTTL SYMBOL, MACRO, DATA DEFINITIONS

.LIST TTM TERMINAL LISTING MODE

.NLIST BEX ; SUPPRESS BIN EXTENSION

.MCALL QIO$S, WTSE$S

LOCAL SYMBOL DEFINITIONS:
EFNl 1
LUNS = 5

LOCAL MACROS: NONE

Example 2-4 Cont'd on next page

2-19

Creating MACR0-11 Source Files

Example 2-4 (Cont.) Source Code for FILEA.MAC

LOCAL DATA BLOCKS:

.PSECT DATA,D,RW

!OST: .BLKW 2 DEF IO STATUS WDS

MODULE FUNCTION DETAILED:

INPUTS: RO ADDRESS OF BUFFER TO LOAD
Rl LENGTH IN BYTES OF BUFFER

OUTPUTS: R2 = NUMBER OF CHARS (BYTES) READ

SIDE EFFECTS: !OT IF ERROR

START CODE HERE:

READ::

10$:

2-20

.PAGE

.SBTTL START OF CODE

QI0$S

BCS
WTSE$S
TSTB
BLT
MOV
RETURN

MOV
MOVB
IOT
.END

; DEFINE ENTRY POINT
#IO.RLB,#LUNS,#EFNl, ,#IOST,,<RO,Rl>

10$
iEFNl
!OST
10$
IOST+2,R2

$DSW,RO
IOST,Rl

QIO DIR PARAMETERS:
RLB IS READ LOG BLOCK
LUNS = TKB DEFAULT
EFNl IS EVENT FLAG il
!OST = STATUS AREA
<> = PARAMETER LIST

RO = START OF BUFFER
Rl = SIZE OF BUFFER

IF SET, DIR ACCEPT ERROR
WAIT FOR IO COMPLETE,EF 1
CHECK IO STATUS
IF LT, IO ERROR
SAVE # OF BYTES READ
GO BACK TO CALLER

SAVE DIR STAT WD
SAVE IO STAT BYTE
FORCE SST EXIT
TELL ASSEMBLER END OF CODE

Creating MACR0-11 Source Files

Example 2-5 Source Code for FILEB.MAC

.TITLE TTWRIT TERMINAL WRITE SUBROUTINE

.!DENT /01/

AUTHOR: DEF 8-AUG-90

CHANGES: NONE

MODULE FUNCTION GENERAL:

THIS MODULE WRITES A
LINE FROM A BUFFER TO
A TERMINAL

.PAGE ; BREAK PAGE FOR PREFACE

.SBTTL SYMBOL, MACRO, DATA DEFINITIONS

.LIST TTM TERMINAL LISTING MODE

.NLIST BEX ; SUPPRESS BIN EXTENSION

.MCALL QIO$S,WTSE$S

LOCAL SYMBOL DEFINITIONS:
EFNl 1
LUNS = 5

LOCAL MACROS: NONE

LOCAL DATA BLOCKS:

.PSECT DATA,D,RW

!OST: .BLKW 2 DEF IO STATUS WDS

MODULE FUNCTION DETAILED:

INPUTS:

RO ADDR OF BUFFER TO WRITE
Rl LENGTH IN BYTES OF BUFFER

OUTPUTS:

SUCCESS IN !OST
SIDE EFFECTS: IOT IF ERROR

START CODE HERE:

Example 2-5 Cont'd on next page

2-21

Creating MACR0-11 Source Files

Example 2-5 (Cont.) Source Code for FILEB.MAC

WRITE::

10$:

2-22

.PAGE

.SBTTL START OF CODE

.PSECT

QIO$S
; DEF ENTRY POINT

#IO.WLB,#LUNS,#EFNl,,#IOST,,<RO,Rl,#40>

BCS 10$
WTSE$S #EFNl
TSTB IOST
BLT 10$
RETURN

MOV $DSW;RO
MOVB IOST,Rl
IOT
.END

QIO$S PARAMETERS:
IO.w"LB FUNCTION CODE
LUNS (TKB DEFAULT)
EFNl IS EVENT FLAG 1
STATUS AREA = IOST
PARAMETER LIST <>

RO START OF BUFFER
Rl = # OF CHARS TO WRITE
40 =OUTPUT <CR>,<LF>

IF SET, DIR ACCEPT ERROR
WAIT FOR IO COMPLETE
CHECK IO STATUS
IF LT, IO ERROR
GO BACK TO CALLER

SAW. DIR STAT WD
SAVE IO STAT VALUE
SST DUMPS TASK REGS
TELL ASSEMBLER END OF CODE

3 Assembling and Correcting a Program Module

This chapter describes the following functions:

1 Some uses of the MACR0-11 Assembler.

2 Some common types of coding errors.

3 Some ways to trouble-shoot and correct errors.

4 The way to generate a cross-reference listing.

The material in this chapter assumes that you have created the three source files described in
Chapter 2.

3.1 Performing a Diagnostic Run on a Source File
Your first use of the MACR0-11 Assembler on a source file should be to perform a diagnostic run.
You run the assembler only to check for general errors, not to produce an object module or a listing
file.

'lb perform a diagnostic run from a program development system (PDS) terminal, type the following
command line:

PD S> MACRO /NOOBJECT /D S: GBL FILE ~

(any error messages appear)

PDS>

The source file is named FILE.MAC, but because the MACRO command defaults to a file type of
MAC, the file type need not be specified. Normally, the MACRO command is used to create an
object module, so that the /NOOBJECT qualifier is necessary to override this standard function.
The MACRO command does not produce a listing file unless you request one with the /LIST
qualifier. When you do not make a listing file, any errors that result from assembly are listed
directly on your terminal.

The /DS:GBL qualifier causes MACR0-11 to disable the setting of undefined symbols to global
and external. Ordinarily, when MACR0-11 finds a symbol that is not defined in the source file,
it assumes that the reference is to a symbol defined externally (that is, in another module). By
disabling this feature for your diagnostic run, you tell the assembler to flag any potential global
references as an undefined symbol error. Since you already know which symbols in your source file
are global, this disabling method is a convenient way to catch typographical errors in other symbol
names.

To perform a diagnostic run from a monitor console routine (MCR) terminal, type the following
command line:

MCR> MAC /OS :GBL=FILE E)

(any error messages appear)

MCR>

3-1

Assembling and Correcting a Program Module

The right side of the equal sign (=) gives the specification of the source file. The assembler
searches for the file named FILE.MAC in your directory. The assembler applies the type MAC as
a default. Because no file specifications occur on the left side of the equal sign, MACR0-11 does
not produce any object module or listing file. When you do not specify a listing file in the command
line, the assembler prints on the input terminal the lines that generated errors and reports the
total number of errors found.

The left. part of the command line (/DS:GBL) causes MACR0-11 to disable the setting of undefined
symbois to giobai and externai. Ordinariiy, when MACR0-11 finds a symboi that is not defined in
the source file, it assumes that the reference is to a symbol that is defined external to the module
(in another module). (The notation GX in the listing symbol table denotes a global and externally
defined symbol.) By disabling this feature in the diagnostic run, you tell the assembler to flag any
potential global reference with an undefined symbol error. This disabling method is a convenient
way to catch typographical errors in symbol names at assembly time rather than later when you
link your object modules together.

The appearance of MACR0-11 messages at the terminal during the diagnostic run indicates
that your module contains errors. If the assembler does not. find any errors, it simply returns
control to the Executive and MCR prints its prompt. Errors in the assembly are denoted by
single-letter codes printed at the beginning of the fau1ty statement. These errors are summarized
in an appendix of the PDP-11 MACR0-11 Language Reference Manual.

Only the following errors should appear from the diagnostic run following:

u 71 000010
u 99 000110
ERRORS DETECTED:
/DS:GBL=FILE

004767
004767

2

CALL
CALL

READ
WRITE

READ FROM TTY
; REPORT THE RESULTS

The two undefined symbols READ and WRITE are the entry points defined in the source files
FILEA.MAC and FILEB.MAC. These symbols are to be resolved by the task builder (TKB). (Note
that this example was generated by the MCR command MAC/DS:GBL=FILE.)

3.2 Typical Errors Encountered During Assembly

3.2.1

Four error codes cover the majority of errors made in an assembly language source file. The
following sections describe some of the most common conditions under which these error codes are
generated.

The MACR0-11 Error Code A
Error code A indicates a general assembly error. Most of these errors are caused by typing
mistakes such as the following:

• Omitting the semicolon (;) from a comment

The semicolon separates your comment from the portion of the statement that the assembler
evaluates. If you omit the semicolon, MACR0-11 attempts to evaluate your comment as part of
the rest of the statement line.

• Omitting the period (.)from a MACR0-11 directive

3-2

The leading period in the operator field tells the assembler that the statement contains a
MACR0-11 directive. If you forget to include the period on a directive, the assembler cannot
evaluate the operator as a directive. As a result, error code A is generated; the directive and
its arguments are given a value of 0, and they are designated as global symbols.

3.2.2

3.2.3

3.2.4

Assembling and Correcting a Program Module

• Misspelling a PDP-11 instruction mnemonic

If you misspelled a PDP-11 instruction mnemonic (for example, MOVE instead of MOV),
the assembler can evaluate the operands but not the operator. The PDP-11 MACR0-11
Language Reference Manual lists all the mnemonics alphabetically. (These mnemonics make
up the permanent symbol table (PST)). The PDP-11 Programming Card also contains all the
instruction mnemonics.

• Forming an illegal symbol

The first character of a symbol must not be a numeral.

• Delimiting a directive argument improperly

Many MACR0-11 directives require a character or argument string to begin and end with a
certain delimiting character. If you use the wrong character or omit one of the delimiters, the
assembler cannot properly match the delimiters and therefore cannot evaluate the directive.
For example, the .ASCII directive requires the character string to begin and end with the same
delimiting character.

Another type of general assembly error involves general addressing errors. The typical addressing
error is to exceed the range of a branch instruction (that is, branching more than 128 words
backwards or 127 words forwards). To correct this type of error, replace the branch instruction
with code to test the proper condition, and with the JMP instruction to transfer control.

Also common as general assembly errors are illegal forward references. If you define a symbol
based on another symbol defined by a forward reference, the assembler cannot evaluate the
reference. For example:

A = B + 10.
C = A + 10.

The assembler cannot evaluate the symbol A because Bis not yet defined.

The MACR0-11 Error Code U
Error code U signals an undefined symbol error. This error usually occurs because (1) a symbol
name on the .MCALL directive was misspelled or (2) reference was made to a local label that does
not exist in the current local symbol block.

The MACR0-11 Error Code Q
Error code Q indicates questionable syntax. This error usually results from either including too
many (or too few) arguments in a directive or specifying an incorrect number of operands on an
instruction. In addition, this error occurs when you omit the semicolon from a comment and the
assembler attempts to evaluate the comment as part of the statement.

The MACR0-11 Error Code E
Error code E means that you have omitted the .END directive from the assembly language source
file. If the assembler does not find the .END directive, it generates error code E with a line number
of 0 after the last statement in the listing file.

3-3

Assembling and Correcting a Program Module

Error code E also might also indicate an expression overflow. If the assembler encounters a nested
expression that is too complex, it generates error code E and denotes the point of the overflow with
a question mark (?). Th clear the error condition, either simplify the expression or ask your system
manager to build MACR0-11 with a larger stack.

3.3 Generating a Program Module and a Listing
After you correct the errors uncovered in the diagnostic run, you are ready to produce an object
module and a listing file. The following PDS command line produces an object module and a listing
file:

PDS> MACRO FILE/LIST ~

(error summary printed)

This command line, like the command line for the diagnostic run, assumes default file types for the
object file and the listing file. The assembler creates an object module called FILE.OBJ. The /LIST
qualifier causes the assembler to create a file called FILE.LST. It is good programming practice to
use the assembler defaults for file types and file names. Using the defaults helps you differentiate
file types, and groups associated files under the same name. If you want to use other names and
file types, you can override the defaults by supplying complete file specifications as arguments to
the /LIST and /OBJECT qualifiers.

NOTE: The /LIST qualifier is added to the file specification rather than to the MACRO
command in the example. This placement of the qualifier causes a listing file to be
created in your directory, but the file is not printed on the line printer. A MACRO
command line in the following format still causes the listing fl.le FILE.LST to be created
in your directory, but the file is also printed on your system's line printer:

PDS> MACRO/LIST FILE ~

(error summary printed)

For the time being, you should use the /LIST qualifier as a file specification qualifier, to keep from
printing too many copies. During the program development cycle, you create many files for which
you do not need a permanent copy. It is easier and less wasteful to examine a listing file at your
terminal than to generate numerous printed copies of listing files that must be discarded because
of minor errors. After you attain an error-free assembly, you can print a copy of the latest version
of the listing file.

When you request a listing file, the errors are printed in the file, not on your terminal. All you
see on your terminal is a message giving the total number of errors found. If no message appears,
there are no errors. Note, however, that freedom from assembly errors does not guarantee that the
program will run properly.

The following command line performs the same functions from an MCR terminal:

MCR> MAC FILE, FILE/-SP=FILE ~

This command line, like the command line for the diagnostic run, depends on default file types that
MACR0-11 automaticaiiy assigns. The ieftmost fiie specification creates an object module called
FILE.OBJ. The file type OBJ denotes that the file is an object module.

The comma (,)following the object file specification in the command line is a separating character
that is required to distinguish different file specifications in command lines.

Following the comma in the command line is the listing file specification that creates the file
called FILE.LST. The file type LST denotes that the file is a listing of source code produced by an
assembler or compiler.

3-4

Assembling and Correcting a Program Module

It is good programming practice to use the assembler defaults for file types and to apply the name
of the source file to both the object and listing files. Using the defaults helps you io differentiate
types of files, and keeping the same name helps relate different types of files to the proper source
file.

The /-SP qualifier following the listing file specification in the command line inhibits automatic
spooling of the listing to the line printer. During the program development cycle, you create many
files for which you do not need a permanent copy. It is easier and less wasteful to examine a listing
file at your terminal than to generate numerous copies of listing files that must be discarded
because of minor errors. After you attain an error-free assembly, you can spool a copy of the latest
version of the listing file retained on your disk.

When you request a listing file in the assembly, MACR0-11 does not print error lines on the
terminal. Instead, if the assembler detects any errors, it prints a message giving the total
number found. If the assembler finds no errors, it simply exits. The absence of a summary of
error messages from the assembler means an error-free assembly. If errors occur, you can examine
the listing file at the terminal. However, an error-free B.;Ssembly does not guarantee that the
program will run properly.

You can issue the following command lines to assemble the two other source files, FILEA.MAC and
FILEB.MAC, which you created by using the procedures described in Chapter 2:

or:

PDS> MACRO FILEA/LIST ~
PDS> MACRO FILEB/LIST ~

MCR> MAC FILEA, FILEA/-SP=FILEA ~
MCR> MAC FILEB, FILEB/-SP=FILEB ~

The two command lines create the object modules FILEA.OBJ and FILEB.OBJ that you need to
link into your task in Chapter 4.

3.4 Examining a Listing at the Terminal
Use the TYPE command to display the listing file at your terminal, as follows:

PDS> TYPE FILE. LST ~

(file appears on screen)

From an MCR terminal, you can run the peripheral interchange program (PIP) to transfer a copy
of your listing from your disk to your terminal. The following command line starts the transfer:

MCR> PIP TI:=FILE.LST ~

(file appears on screen)

In the part of the command line to the left of the equal sign, the designation TI specifies your
terminal (that is, the terminal initiating the request) as the output device.

NOTE: If you omit the colon (:) from TI, PIP creates a new file called TI in your
directory and copies the input file to it.

To the right of the equal sign is the input file specification with both a name and type. For PIP,
you must specify a file type because it does not apply a default file type for you. (Without a file
type, PIP looks for a file with no type (that is, a file with a null type).)

3-5

Assembling and Correcting a Program Module

You can use control commands to stop and restart the display temporarily, and alternately to
suppress and resume the output request.

Table 3-1 Terminal Output Control Commands

Command Effect

lctrVSI Temporarily stops the display

HOLD SCREEN

NO SCROLL
ICtrltSI

ICtrVOl

Alternately stops and restarts the display (VT200-series terminals only)

Alternately stops and restarts the display (VT100-series terminals only)

Alternately suppresses and resumes the output to the terminal

Use the ICtrVSl and ICtrVOI commands together to freeze the display on the screen and to request
more lines to be displayed. While the ICtrVSI command is in effect, you can read what is on the
screen. The lctrVOl command tells the system to restart the display where it left off when it sensed
the ICtrVSl command.

The ICtrVOI command is used to suppress unwanted output. The command tells the system to stop
sending characters to the terminal. The program 1 however, continues processing but simply omits
displaying the output. (While the jCtrVOl command is in effect, the system disables keyboard input
and does not echo any characters typed at the terminal.) By typinglCtrVOl again, you teJl the system
to resume output to the terminal. By typing successive ICtrltOIS, you can skip unnecessary portions
of the output until the program reaches the correct part. If the program finishes processing the
output request while the ICtrVOI command is in effect, the system automatically reenables keyboard
input and a prompt appears on the terminal.

3.5 Generating a Cross-Reference Listing
Worthwhile additions to the assembly listing are the symbol and macro cross-reference listings.
These listings give, in alphabetical order, each symbol and macro name defined or referred to and
the number of the page and line in the listing where the definition or reference occurs. From a
PDS terminal, type the follo\\'ing command line:

PDS> MACRO/NOOBJECT FILE/CROSS_REFERENCE ~

(any errors cause total number to be printed)

NOTE: The command line does not include the /LIST qualifier. The
/CROSS_REFERENCE qualifier implies the /LIST qualifier since the cross-reference
listing is attached to the assembly listing. If you want to print the listing, use
/CROSS_REFERENCE as a command qualifier rather than a file qualifier.

Remember, you can abbreviate the command unless you are keeping a record of terminal activity.
The following command line has the same effect as that of the one above:

PDS> MAC/NOOB FILE/CROSS_REFERENCE ~

From an MCR terminal, you generate the cross-reference listing by typing the following:

MCR> MAC , FILE/CR/-SP=FILE ~

(any errors cause total number to be printed)

3-6

Assembling and Correcting a Program Module

Because no file specification precedes the comma in the command, MACR0-11 omits creating the
object module and produces only a listing file. The /CR switch tells the assembler to generate
a request for the Cross-Reference Processor (CRF) task to produce a cross-reference listing.
(Omitting the comma from the command causes an error because the command then requests
an object module only. With an object module specification, the /CR and /-SP switches are illegal)

NOTE: If, after you request a cross-reference listing, you discover that the information
is missing from your listing, the CRF task is either not installed on your system or it is
still processing the request. Ask your system manager to install the CRF task.

The CRF task appends the cross-reference listing to the end of the listing file, denoting the
cross-references by the titles SYMBOL CROSS REFERENCE and MACRO CROSS REFERENCE.

3.6 Spooling a Copy of Listings
Once you have developed an error-free assembly, you can obtain a hard copy of the listing for
reference. From a PDS terminal, type one of the following command lines:

PDS> PRINT FILE.LST ~

or:

PDS> MCR PIP FILE.LST/SP ~

The command lines create a request to the spooling task to print the file you specify. (You can
specify more than one file at a time by listing more than one file specification in the command line,
separating each with a comma.) Your request is placed in a queue of requests.

If your system does not have spooling, you can list the file directly on the printer, as follows:

PDS> MCR PIP LP:=FILE.LST ~

If the printer is not busy or allocated by another user, PIP outputs the file to LPO.

The process for obtaining a hardcopy listing is very similar from an MCR terminal.

From an MCR terminal, type one of the following command lines:

MCR> PRINT FILE.LST ~

or:

MCR> PIP FILE.LST/SP ~

The command lines create a request to the spooling task to print the file you specify. (You can
specify more than one file at a time by listing more than one file specification in the command,
separating each with a comma.) Your request is placed in a queue of requests.

If your system does not have spooling, you can list the file directly on the printer, as follows:

MCR> PIP LP:=FILE.LST ~

If the printer is not busy and is not allocated by another user, PIP outputs the file to LPO.

3-7

Assembling and Correcting a Program Module

3.7 Cleaning Up the Disk Directory
After you edit and reassemble the source files several times, your directory becomes cluttered with
multiple versions of the same files. PDS includes a DIRECTORY command for listing information
about files. The following command lists all the files in your directory:

PDS> DIRECTORY ~

(the directory listing appears)

The directory is going to contain a number of files with the same name and type, but different
version numbers. Use the following command to purge all but the most recent version of these
files:

PDS> PURGE *.MAC,* .LST, *.OBJ ~

From an MCR terminal, you can list the name, types, version numbers, and sizes of the files stored
in your directory by typing the following command line:

MCR> PIP /LI ~

(the directory listing appears)

The /LI switch causes PIP to list the directory information at your terminal. By default, the
command line requests all names, types, and versions of files in your directory.

By examining the directory information, you notice that files with the same name and type have
multiple versions. Use the following command line to the PIP program to purge all but the most
recent version of the files:

MCR> PIP *.MAC,* .LST, *.OBJ/PU ~

The /PU switch purges all but the latest version of the files specified. The asterisk character (*)in
the command denotes all file names.

3-8

4 Building and Testing a Task

This chapter describes ways to use the task builder (TKB) program to create a task image from
program object modules. The procedures described in this chapter asswne that you have created
three error-free object modules, as described in Chapter 3.

4.1 Creating a Task Image

4.1.1

The TKB program creates a task image file that can be loaded into memory. You can supply as
input to TKB either a single object module or multiple object modules. In most cases, however,
your programs will consist of multiple object modules. The following sections describe the
procedures and the way TKB reports error conditions. ·

Supplying a Single Object Module
Use the program development system (PDS) command LINK to create a task image file from a
single object module. For example:

PDS> LINK FILE ~

(any error messages appear)

Once again, aII defaults are applied automatica1ly. The LINK command defaults to an object
module in a file named FILE.OBJ and causes TKB to produce a file named FILE.TSK that contains
the task image.

To perform the same function from a monitor console routine (MCR) terminal, enter the following
command line:

MCR> TKB FILE=FILE ~

(any error messages appear)
MCR>

The right side of the equal sign (=)specifies the file that contains the object module. TKB asswnes
that the type in the file specification is OBJ. The left side of the equal sign gives the specification
of the task image file to which TKB assigns the file type TSK. Again, as with the assembler, it is
convenient to apply the same name to both the output file and the input file and to let TKB apply
the default type specifications.

TKB tries to resolve all global references in the object module. If undefined references remain after
the module has been processed, TKB searches the system object library SYSLIB.OLB in directory
(1,1] on the library device (LB). If no errors are encountered in the process, TKB exits and the
command prompt (>) appears.

If TKB detects an error during processing, it prints a message in one of the following forms for
PDS users:

LINK -- *DIAG* - error message

or:

LINK -- *FATAL* - error message

4-1

4.1.2

Building and Testing a Task

If TKB detects an error during processing, it prints a message at the terminal in one of the
following forms for MCR users:

TKB -- *DIAG* - error message

or

TKB -- *FATAL* - error message

If an error message appears and the error condition described is not operational (fo:r example, lack
of space for the task image file) or is not a fatal error, TKB creates the task image file anyway.
Depending on the error condition, you might have to remove the cause of the error from the source
file, reassemble the source file, and repeat the TKB procedure. In some instances, the diagnostic
condition is merely a warning and has no ill effect when the task runs. (For guidelines on typical
error conditions, see Section 4.4.)

When you create the task image from the single object module FILE.OBJ (refer to Section 3.3),
TKB prints the following error message:

TKB -- *DIAG-*2 Undefined symbols segment FILE

READ
WRITE

The undefined symbols READ and WRITE are the entry points of the two routines defined by the
object modules FILEA.OBJ and FILES.OBJ. TKB searches the system object library to resolve
global references left undefined in your input. Because TKB failed to find modules that defined
these symbols, it reported the error condition. You can eliminate the error condition by following
the procedures described in the following section.

Supplying Multiple Object Modules
TKB accepts multiple object modules as input to the LINK command. At a PDS terminal, type the
names of the object files, separated by commas, as fo1lows:

PDS> LINK FILE, FILEA, FILEB ~

(any error messages appear)

The LINK command defaults to the fi1e type OBJ for the three input files. The resulting task
image file is named FILE.TSK. The LINK command defaults to the name of the first object file
named to derive the name of the TSK file.

From an MCR terminal, specify the names of the multiple object files, separated by commas, on
the right side of the equal sign in your TKB command line, as follows:

MCR> TKB FILE=FILE, FILEA, FILEB ~

(any error messages appear)
MCR>

TKB performs the same actions as those described in Section 4.1.1 for one object module from a
PDS or MCR terminal. Only one of the object modules specified must have been assembled with
an .END directive giving the starting address of the task. If one of the modules does not contain
the starting address, TKB assigns the default transfer address of 1, which causes an error when
you run the task. See Section 4.4.

4-2

4.1.3

Building and Testing a Task

TKB can also accept as input a concatenated ohject module, which is merely a file containing
multiple object modules. To create a concatenated file, use the PDS command COPY, as follows:

or

PDS> COPY ~
From? FILE.OBJ,FILEA,FILEB ~
To? FIL CON . OBJ fRET]

PDS> COPY FILE.OBJ,FILEA,FILEB FILCON.OBJ ~

The response to the "From?" prompt lists the files to be concatenated. Note that you specify the
file type only on the first file listed. This type becomes the default file type for subsequent files.
The COPY command automatically concatenates these files into a single output file.

The single concatenated object file can then be the sole input to the LINK command, as shown in
the following command line:

PDS> LINK/TASK:FILE FILCON ~

(any error messages appear)

This operation saves file-processing overhead for TKB. As a result, building a task from a
concatenated file is faster than listing the object modules separately.

Use the following peripheral interchange program (PIP) command line to create a concatenated file
from an MCR terminal:

MCR> PIP FILCON.OBJ=FILE.OBJ,FILEA,FILEB/ME ~
MCR>

The right side of the command specifies the files to be concatenated. Specify the file type (OBJ)
only on the first file because PIP applies it as the default :filetype for subsequent names.

The /ME switch tells PIP to merge (concatenate) all the files into the one file specified on the
left side of the equal sign. When you supply multiple file specifications on the right side of the
command line, PIP uses the /ME switch as a default condition. The command line includes the
/ME switch merely to emphasize the concatenate, or merge, operation.

The single concatenated object file can then be the sole input to TKB, as shown in the following
command line:

MCR> TKB FILE=FILCON ~

(any error messages appear)
MCR>

This operation saves :file-processing overhead for the TKB program and is faster than supplying
the object modules separately.

Using the Fast Task Builder
Often you are performing repetitive, straightforward task-building functions where speed is
preferable to versatility. In such circwnstances, you can use the fast task builder (FTB). From
a PDS terminal, use the LINK command with the /FAST qualifier to specify the FTB. For example:

PDS> LINK/FAST/MAP FILE, FILEA, FILEB ~

To invoke the FTB from an MCR terminal, use the following command:

MCR> FTB FILE, FILE/-SP=FILE, FILEA, FILEB ~
MCR>

4-3

Building and Testing a Task

FTB runs three to four times faster than TKB but is Jess versatile than TKB. For example, FTB
does not create a global cross-reference listing or a symbol definition file. In addition, the FTB map
has less information than the TKB map.

4.2 Task Builder Defaults
When you build a task image, TKB applies certain default conditions to your program, including
ihe partiiion where your task runs, the host system memory managemeni characierisiics, ihe
task's checkpointability, and the number of logical units your task can access. If your program does
not use the default conditions, the process of building a task becomes more complex.

TKB assigns your program to be run in the default partition, called GEN. If you are building a
task to run in another partition, you can either supply the correct partition name at run time or
rebuild the task and specify the correct partition name then.

TKB applies memory management characteristics depending on the system on which you build
the task. If your system has memory management hardware, TKB allocates memory starting at
virtual address 0 and assumes that the task will be relocated by memory management hardware.
Therefore, the task can be run in any partition large enough to contain the image. If your system
does not have memory management hardware, TKB assumes that the task runs at a fixed physical
address that the system rnust supply.

TKB establishes the maximum number of logical units (six) the task can access and supplies the
assignments for these logical units. The default assignments are: logical units 1 to 4, which are
assigned to the system device (SY); unit 5, which is the task-initiating terminal (Tl); and unit 6,
which is the console listing device (CL). These defaults mean that the task can simultaneously
refer to at most four files on the system device, one file on the task-initiating terminal, and one file
on the system console listing device.

4.3 Generating a Map and a Global Cross-Reference Listing

4.3.1

Before you run the task and correct simple errors, you can produce a memory allocation file (called
a map) and a cross-reference listing of global symbols. The map and global cross-reference file are
useful in later stages of program development and for program documentation.

Requesting a Map and a Global Cross-Reference Listing
In most situations, you need a standard map and a global cross-reference listing for debugging a
task. 'lb create a map with a global cross-reference listing from a PDS terminal, type the following
command line:

PDS> LINK/CROSS_REFERENCE/NOWIDE/NOTASK FILE,FILEA,FILEB (@ii

The /NOTASK qualifier suppresses the creation of a task image file. You request a cross-reference
listing with the /CROSS_REFERENCE qualifier. The /NOWIDE qualifier reduces the width of the
listing from 132 columns to 80 columns for display on a terminal. Since /CROSS_REFERENCE
implies a map, you do not have to specify the IMAP quaiifier.

If you want to create both the task image file and the map with the cross-reference listing at the
same time, use the following command line:

PDS> LINK/CROSS_REFERENCE/NOWIDE FILE,FILEA,FILEB ~

TKB creates both FILE.TSK and FILE.l\1AP. The map includes a cross-reference listing.

4-4

4.3.2

Building and Testing a Task

The following command line performs the same procedure from an MCR terminal:

MCR> TKB ,FILE/CR/-SP/-WI=FILE,FILEA,FILEB ~
MCR>

The right side of the equal sign is the input object module (or concatenated object module or
multiple object modules). The left side of the equal sign in the command line specifies ihe map
file name, to which TKB appends the file type MAP. The comma preceding the map file name
suppresses the creation of the task image file. 1

To create a new version of the task image file when you request the map and global cross-reference
listing, type the command as follows:

MCR>TKB FILE,FILE/CR/-SP/-WI=FILE,FILEA,FILEB ~
MCR>

TKB creates both files.

The /CR switch tells TKB to generate a request for the cross-reference processor (CRF) task to
produce a global cross-reference listing. The /-WI switch ·reduces the width of the listing from 132
columns to 80 columns for display on a terminal. The CRF task executes the request from TKB
and appends the global symbol cross-reference listing file to the end of the map file. The global
cross-reference in the map listing is denoted by the title GLOBAL CROSS REFERENCE.

NOTE: If, after you request a global cross-reference listing, you discover that the map
does not have one, the CRF task is either not installed on the system or is still processing
the request. Consult the system manager to have the CRF task installed.

Examining the Map at the Terminal
Use the PDS command TYPE, as described in Section 3.4, to examine the map at your terminal
The command line is as follows:

PDS> TYPE FILE .MAP ~

(file appears on screen)

From an MCR terminal, use the following PIP command line, as described in Section 3.4, to
examine the map at your terminal:

MCR> PIP TI:=FILE.MAP ~

(file appears on screen)

MCR>

Use the control commands lctrl!SI, lctrl!OI, and lctrltOL summarized in Table 3-1, to control the
terminal output.

1 The task image specification is null when a comma appears first in the command line. If you omit the comma, TKB treats
the file name for the map as a task image and generates a syntax error because the /CRl-SP switch is illegal with a task
image file.

4-5

4.3.3

Building and Testing a Task

Requesting a Full Map
The map file produced, as described in Section 4.3.1, is a short form of the map that contains
most of the information needed for debugging tasks. To generate a full form of the map, use the
following command line from a PDS terminal:

PDS>
LINK/LONG/MAP:FULL/CROSS_REFERENCE/SYSTEM_LIBRARY_DISPLAY/NOTASK FILE,FILEA,FILEB ~

The /LONG qualifier indicates that you want the LONG form of the map, and it causes TKB to
add a "File Contents" section to the map. The /LONG qualifier implies the /MAP qualifier, but
IMAP is used here to give the map file the name FULL.MAP so that you can distinguish the
maps you have made for this demonstration session. The /SYSTEM_LIBRARY_DISPLAY qualifier
(usually abbreviated to /SYS) tells TKB to include system library contributions to the task in the
file contents section of the map. System symbols are also included in the global cross-reference
listing.

To generate a full form of the map from an MCR terminal, specify the command line to TKB as
follows:

MCR> TKB ,FULL/-SP/-SH/MA/CR=FILE,FILEA,FILEB ~
MCR>

The comma without a task image file name indicates you do not want TKB to build a task. The
name FULL for the map file is used here to give that file the name FULL.MAP so that you can
distinguish it from other maps you have created as part of these demonstrations. The /-SH switch
indicates that you do not want the short form of the standard map. TKB therefore includes the file
contents information in the map. The /MA switch tells TKB to include system library contributions
to the task in the file contents section of the map. System symbols are also included in the global
cross-reference listing.

4.4 Running the Task and Correcting Typical Errors
To execute your task, use the RUN command and the name of the task image file. 2 The form
shown in the example is perhaps the most widely used form for program development. This form,
which is the same in MCR and PDS, runs a task from a task image file in your directory. For
example:

PDS> RUN FILE ~

Because the task FILE is not installed on the system, the RUN command searches your directory
on device SY for a file named FILE.TSK. RUN installs it temporarily and runs it immediately. The
task will be automatically removed when the task exits.

To run the task FILE, the Executive transfers control to the task starting (or transfer) address. If
your task encounters an error condition, the Executive must decide whether to abort the task.

Errors that can cause the Executive to abort a task are either hardware-related or software-related.
If the error is hardware related, such as a memory parity error or a load failure, the Executive
begins aborting the task. In contrast, a synchronous system trap (SST) error condition, such as an
illegal instruction, causes the Executive to attempt. to transfer control to an SST routine, A_n SST
routine is a routine within a task that services a particular type of SST condition. If your task
defines a routine to service the type of trap, the Executive transfers control to it. If your task does
not have the routine defined, the Executive aborts the task.

2 Both MCR and PDS include a RUN command, each of which has many formats.

4-6

Building and Testing a Task

Aborting a task forces an orderly termination of the task. Included in the termination is a request
for the task termination and notification (TKTN) program to display a message on your terminal.
The program display includes the cause of the abort and a list of the task registers and the
processor status word (PSW). For example:

14:16:26 Task "TT30 " terminated
Odd address or other trap four
RO=OOOOOO
Rl=100103
R2=147100
R3=140130
R4=000000
RS=OOOOOO
SP=OOll 72
PC=000003
PS=l70017
MCR>

The information can help you ascertain the cause of the abort. If the cause of the error is hardware
related, report the occurrence to your system manager, who can consult the error-logging data to
find where the problem originated. If the cause of the error was an SST condition, you can use the
data displayed by TKTN to find the problem.

The value of the program counter (PC) (minus 2) shown in the display tells you the address of
the instruction that was being executed when the error was encountered. In the example shown
above, the PC is at an odd address (000003). By examining the task map, you can ascertain that
the PC address is not within the task code. This condition demonstrates one of the more common
error conditions. The main module NUMA source file FILE.MAC does not define a task transfer
address. The .END directive in a source file, used to define the starting address of a task, does not
have the address symbol of the first instruction. If you omit the starting address definition, TKB
supplies a default transfer address of 1. When you run the task, it causes an odd address trap
and terminates. (Note that the PC has been incremented to 000003 because it is pointing to the
next instruction in the code.) Therefore, you should ensure that the source file defines a starting
address and that the address is even (on a word boundary).

To correct any errors in your task, you must edit the source file(s) concerned, reassemble the
corrected file(s), and rebuild the task. For example:

MCR> EDI FILE. MAC ~
[00103 LINES READ IN]
[PAGE 1]
* L ~ .END ~

.END ; TELL ASSEMBLER END
* c /D ~ /D ~ START/ ~

.END START ; TELL ASSEMBLER END
*EX ~
[EXIT]

MCR> MAC FILE, FILE/-SP=FILE [g
MCR> TKB FILE, FILE/-SP=FILE, FILEA, FILEB ~
MCR> RUN FILE ~
ABCABCABAB ~
THE NUMBER OF A'S IS 0004
MCR>

OF CODE

OF CODE

After you correct the errors and rebuild the task, you can run the task again. The task reads the
line of text that you type, counts the nwnber of As, displays the result, and exits.

4-7

Building and Testing a Task

The typical errors made in programming result in an SST condition. The common conditions
are either an odd address or a memory-protection trap. Most of these errors occur when you use
relative mode addressing instead of immediate mode. For example:

MOV #BUFl,RO
MOV OFFSET(RO),Rl

The immediate mode reference #BUFl moves the address of BUFl into register 0. If you omit the
number sign (#), however, you incorrectly specify relative mode addressing, as follows:

MOV BUFl,RO
MOV OFFSET(RO),Rl

This instruction moves the contents of BUFl and not the address of BUFl into RO. The subsequent
indexed mode reference generates either an odd address or memory-protection trap. (Your task is
attempting illegally either to reference an odd address or to reference a location outside task
memory). This type of error occurs often when you are using system directives that require
parameters as immediate mode references, and when you omit the number sign from a parameter
that makes the reference relative.

4-8

5 Using Debugging Aids

This chapter introduces three debugging aids that are helpful in the program development process:
the on-line debugging tool (ODT), the postmortem dump (PMD), and the snapshot dump ($SNAP).

5.1 Using the On-Line Debugging Tool

5.1.1

The on-line debugging tool (ODT) is a special code that you include in your task image to assist
you during debugging. ODT gives you interactive control of task execution, and it enables you
to set breakpoints and to examine and change data and instructions within the memory-resident
task. The ODT module links into your task image and tl?-ereby increases the size of the task image.
Therefore, you remove ODT from your task when you finish debugging by rebuilding the task and
omitting the ODT module. For more information, refer to the !AS ODT Reference Manual.

ODT commands differ from commands in other utility programs. Most programs have
multicharacter commands that require a line terminator before they are executed. ODT commands,
however, are single characters and require no line terminator. That is, ODT interprets input on a
character-per-character basis rather than on a line-by-line basis. Therefore, as soon as you type
a character that ODT recognizes as a command, ODT interprets it and performs the specified
function. This difference in commands means that you must be careful when you are debugging
your task with ODT.

Including ODT in a Task
Use the /DEBUG qualifier to the LINK command to include ODT in a task. (Refer to Section 3.3
for information on generating an object module.) For example:

PDS>LINK/DEBUG/TASK:BUG/MAP:BUG/CROSS_REFERENCE FILE,FILEA,FILEB ~

The /DEBUG qualifier specifies that you want to include ODT in the task. The /TASK:BUG
qualifier specifies that you want the task image file to be named BUG.TSK. The /MAP:BUG
qualifier specifies that you want the map to be named BUG.MAP. In this way, you can tell the
difference between the versions of the task-built file with and without ODT. The task builder
(TKB) accesses the file LB:[l,l]ODT.OBJ and links it into the task. The /CROSS_REFERENCE
qualifier implies a IMAP qualifier. An accurate map of the task is necessary for use with ODT.

When using the separate instruction and data space capabilities found in some IAS operating
systems, TKB inserts the module LB:[l,l]ODTID.OBJ into the task.

To include ODT in a task from a monitor console routine (MCR) terminal, type a command line
similar to the following:

MCR> TKB BUG/DA, BUG/CR=FILE, FILEA, FILEB ~
MCR>

The /DA switch accompanying the task image file specification tells TKB to include ODT. TKB
accesses the file ODT.OBJ in directory [1,1] on the library device and links it into the task BUG.
You should request a map of the task because an accurate map is necessary for use with ODT.

5-1

5.1.2

5.1.3

5.1.4

Using Debugging Aids

Preparing to Use ODT
Before you run a task containing ODT, ensure that accurate listings of the assembled source files
are available. These listings show the offsets into the modules in your task. The map of the
task and the assembled source listings provide the data you need to set breakpoints and examine
locations within the task.

Setting Up the Task
When you run a task containing ODT, ODT gains control, identifies itself (and the task it controls),
and prints its command prompt. The following lines show the sequence:

>RUN BUG ~
ODT:TT30

The notation TT30 is the name that the system dispatcher assigned to the task. Such a name
consists of the letters TT followed by the unit number of the terminal that requested the task. The
task shown here was run from terminal number 308 .

The underline character (_) is ODT's prompt. It indicates that ODT is ready to accept commands.

Relocation Registers
To access locations within the task, you should establish one or more relocation registers. This set
of eight registers, numbered $RO to $R7, enables you to specify locations within the task in terms
of offsets from the start of modules in the task image.

To establish the proper addressing using offsets, you must first consult the location information
in the task map. On the map listing, the portion titled memory allocation synopsis contains the
location information for each program section and for each contribution to the program sections
from different modules. A sample of the relevant portion of the map for the program BUG is shown
in Example 5-1.

Example 5-1 Memory Allocation Synopsis from Task BUG Map

Memory allocation synopsis:
Section Title !dent File

BLK.: (RW,I,LCL,REL,CON) 001202 000340 00224.
001202 000122 00082. NUMA 01 FILCON.OBJ;l
001324 000110 00072. TTREAD 01 FILCON.OBJ;l
001434 000106 00070. TTWRIT 01 FILCON.OBJ;l

DATA : (RW,D,LCL,REL,CON) 001542 000166 00118.
001542 000156 00110. NUMA 01 FILCON .OBJ; 1
001720 000004 00004. TTREAD 01 FILCON.OBJ;l
001724 000004 00004. TTWRIT 01 FILCON.OBJ;l

$$$ODT: (RW,l,GBL,REL,OVR) 001730 005654 02 98 8.
001730 005654 02 98 8. ODTRSX M06 ODT.OBJ:l21

5-2

Using Debugging Aids

The location information for a program section is the octal starting address of the program section
and its extent in bytes (both octal and decimal values). For example, for the blank program section,
the starting location is 1202s and the extent is 340s, or 22410, bytes. Under the program section
location information are the octal starting addresses and extents in bytes for the contributions
from each object module. For example, the contribution from TTREAD in the blank program
section starts at location 1324s and extends for llOg, or 7210, bytes.

The following example shows how to place the starting addresses of the modules in relocation
registers:

1202;0R
1324;1R
1434;2R
1542;3R
1720;4R
1724;5R

The R commands place the addresses in relocation registers 0 to 5. The addresses are octal; ODT
accepts only octal numbers. As soon as you type the R iri the command line, ODT generates a line
feed and carriage return and prints another prompt. This action indicates that ODT has executed
the command as soon as it was typed. Therefore, before typing the R (or any command), ensure
that the command line is correct.

If you notice a typographical error in the line before you type the command itself, simply type
ICtrllUL enter the number 8 or 9, or press the I DELETE I key, as shown in the following example:

1272;08?

ODT considers the decimal number 8 an illegal character. It discards the input line, displays
a question mark (?) to signal an error, and prints the prompt on a new line. You must retype
the entire line. If you do enter an incorrect address in the relocation register, simply retype the
command, as follows:

1272; OR
1202;0R

ODT stores the most recently entered value in the register.

To access a location within a task most conveniently, you must create an address made up of the
values stored in the relocation register and a value showing the distance of the location from the
relocation register value.

The relocation register provides the base address of a module; the location counter value supplies
an offset to the location within the program section for the module. The command 1202;0R places
the starting address of the NUMA contribution to the blank program section in relocation register
0. Location counter value 20 in the assembly listing for NUMA is 20 bytes from the start of the
address in relocation register 0. You use the two values to form the address of the location. The
address is formed by typing the number of the relocation register, a comma (,), and the octal offset
value. For example:

0,20

ODT adds the base value in relocation register 0 (1202 in this case) and the offset typed after the
comma (20). This creates an effective address of 12228 . You use this syntax with various ODT
commands to access locations within the task address space.

5-3

5.1.5

Using Debugging Aids

Example 5-2 Portion of Assembly Listing for NUMA

NUMA COUNT NUMBER OF A'S
ROUTINE TO COUNT A'S

MACRO Ml200 8-AUG-86 12:39 PAGE 3

66
67 000000

.SBTTL ROUTINE TO COUNT A'S

.PSECT
68 000000 START:
69 000000 012700 MOV
70 000004 012701 MOV
71 000010 004767 CALL
72 000014 005702 TST
73 000016 001436 BEQ
74 000020 005001 CLR
75 000022 010267 MOV
76 000026 10$:
77 000026 122067 CMPB
78 000032 001001 BNE
79 000034 005201 INC
80 000036 20$:
81 000036 005302 DEC
82 000040 001372 BNE

#BUFl,RO
#SIZ,Rl
READ
R2
END
Rl
R2,NUMC

(RO)+,A
20$
Rl

R2
10$

LOAD BUFFER ADDR
LOAD BUFFER SIZE
READ FROM TTY
ANY CHARS IN BUFFER?
IF NONE, FINISH UP
INIT #OF A'S COUNTER
SAVE # OF CHARS TYPED

IS CHAR = A?
IF NO, BET NEXT CHAR
COUNT AN A

ONE LESS CHAR
IF MORE, COMPARE NEXT

Example 5-2 shows a portion of the assembly listing for the blank program section in the module
NUMA.

Examining Locations
To examine words within a module, type the address followed by the slash character (I), as follows:

O, 20/ 005001

The slash character causes ODT to open the designated location as a word and display its contents.

To close the cu_rrently open location, press either the RETURN key or the LINE FEED key. Pressing the
RETURN key closes the location, as shown in the following example:

_0,20/005001 ~

ODT closes the location and prints its prompt on a new line.

Once you have opened a location, pressing the I LINE FEED I key enables you to examine successive
words in the task image. The follo\\';ng example shows the procedure:

o, 32/ 001001 ~
0,000034/005201 ~

In response to the I LINE FEED I key, ODT closes the current location; opens the next sequential
location in the task image; and displays the address of the location, a space, the slash character,
and the contents of the location. The slash character signals that the location is open as a word.

NI"\~. v,,.n'l.n....,,tto 4-'l.o ,.n....,.fo...,.4-C! n~ 4-"ho ,..,....,...o....,.4-lu n,..,.o....,. ln.1>0~,,.....,. '°"',. l..u fu,..,..:....,.nr f"ho ... ,'-'.&.&.;.I• ... "" ""u.Jl.& "".&&~.&&l§i"" ..,.... ""'",&,,'7 '-'&.& ""' &. J "I'"""&& ... ",..... ... ",,. V"-' .&& 141J "J y.a.a.a.1;&

octal number n before pressing the I RETURN I or I LINE FEED I key. See Section 5.1.7.

To examine bytes instead of words within a task, type· the address followed by the backslash
character(\), as follows:

0, 32\ 001

5-4

5.1.6

Using Debugging Aids

The backslash character causes ODT to open the designated location as a byte and display its
contents. You can examine successive bytes by pressing the I LINE FEED I key, after which ODT
closes the currently open byte location, opens the next sequential byte location, and displays its
contents. For example:

32\001 fg]
0,000033\002 ~

The backslash character preceding the contents signals that the location is open as a byte.

Before you proceed in the debugging session, you should verify the relocation register values by
examining a location in each module and by comparing its contents with the values shown in the
assembly listing. The following sequence shows the procedure:

1, 66/ 002403 ~ = 2, 72/ 000207 ~
3,121\ 124 ~
4' 0/ 000000 ~
5' 0/ 000000 ~

As you examine each location, compare the contents ODT displays with the assembly listing. If the
values do not match, either you have an incorrect listing or the relocation register value is wrong.

Setting Breakpoints Within the Task
To enable you to stop (or break) task execution, ODT provides eight registers called breakpoint
registers. These registers, numbered $OB to $7B, enable you to specify locations of instructions
where execution should stop.

To establish breakpoints in the task, specify the location of the instruction with the B command in
the format a;nB, as shown in the following example:

O, lO;OB ~ = 1, 74;1B ~

The command places the designated addresses in breakpoint registers 0 and 1.

NOTE: In specifying the address of an instruction, ensure that the location is the first
word of the instruction.

As soon as you type the Bin the command line, ODT generates a carriage return and line feed
and prints a prompt. Changing a breakpoint register is similar to changing a relocation register;
simply retype the command line and give the altered contents.

After setting up the breakpoint registers, you can issue the G (Go) command to begin task
execution. For example:

_G ~
OB:0,000010

When you type the G command, ODT swaps a BPT instruction into each breakpoint location.1

ODT passes control to the starting address of the task. The task executes until it reaches a BPT
instruction, at which point ODT regains control. When ODT regains control, the task has not yet

1 The eight breakpoint instruction registers, with register names $01 to $71, contain the actual instructions during task
execution.

5-5

5.1.7

Using Debugging Aids

executed the instruction at the location where the breakpoint is set. ODT swaps the instnictions
back into the locations at which breakpoints are set, and prints a message with the following
information:

• The breakpoint register designation

• The relocation address at which execution stopped

In the example above, the message shows breakpoint register 0 and its contents (offset 10 from the
base address in relocation register 0).

Changing the Contents of Locations with ODT
When execution stops at a breakpoint, you can examine and change data within the task image
address space. When execution stops at a breakpoint location, the task's general registers are
stored in ODT locations accessed by the names $0 to $7. The following sequence shows a way to
display general registers 0, 1, and 2: ·

$0/ 001543 ~

$1/000120 ~

$2/135600 IRETI

The slash character opens the general register as a word location and prints its contents. Pressing
the I LINE FEED I key closes the current location and opens the next sequential location.

To change data, simply type a new value while the current location is open. The following sequence
shows a way you can change register 2:

_$2/135600 100 ~

$3/140130 IRETI

While the location (register 2) is open, you.can type the new value to replace the current contents.
ODT writes the new value lOOs into the currently open location before closing it and opening the
next sequential location.

Any locations within the task can be examined and changed. The following sequence shows a way
to open a location as a byte and change its contents:

- 3, 0\ 101 102 ~
- 3, 0\ 102 101 ~

The backslash character opens the specified address as a byte location. The new value 1028 is
written to the open location as a byte value. Pressing the I RETURN I key closes the location. The
next command line examines offset 0 to verify that it contains 102s, then changes the contents
back to 101.

After you examine and change locations, resume execution with the P (Proceed) command; as
follows:

5-6

PABCABCABAB [RET]
lB:l,000074

5.1.8

Using Debugging Aids

The P command causes ODT to swap in the BPT instructions, restore the task general registers,
and continue with the instruction where the break occurred.

NOTE: ODT does not supply a carriage return and line feed after you type the P.
Therefore, the data that you type in response to the READ routine will follow the P
on the same line.

Execution stops at the location contained in breakpoint register 1.

Use the G command to transfer control to another address and to continue execution. For example:

1,76G

ODT transfers control to offset 76 and continues execution there. This command purposely
transfers control to the error routine to show what occurs when an error is encountered. See
Section 5.1.8.

Error Conditions and Terminating Task Execution
If the task generates an error condition, the Executive handles the processing as a synchronous
system trap (SST). Control is passed to ODT, which prints a message similar to the following one:

I0:2,000000

This message gives a code that describes the reasons for the trap and tells the address following
the location that generated the trap. In the message above, IO means the IOT instruction. If you
can discover the cause of the trap, make the appropriate changes in the task and proceed. If you
cannot isolate the cause of the trap, you should exit from ODT and start a new debugging session.

To help ascertain the cause of the trap, you can examine the task registers and stack before you
start a new debugging session. Use the register name-the dollar sign ($)followed by the register
number-to access the task registers as described in Section 5.1.7. 'lb examine the stack, examine
register 6 (the stack pointer) and use the at sign (@) character to open the location pointed to by
the stack pointer. For example:

$6/ 001200 @

001200/001216 ~

The slash character opens the stack pointer as a word and displays the address of the top of the
stack. The at sign character takes the contents of the currently open location (that is, the stack
pointer) as the address of the next location to be opened, opens it, and displays its contents, which
is the top word on the stack.

To examine the stack, press the I LINE FEED I key to open and display each successive word on
the stack. You can ascertain the highest address the stack can have by consulting the line labeled
stack limits in the task attributes section of the map. The Hne gives four numbers: the low address
of the stack area, the high address of the stack area, and the octal and decimal extent of the stack
area. The high address tells you the last available location (that is, the bottom) of the stack. After
you have examined the highest address, you have looked at all the items on the stack and can
press the I RETURN I key to close the last available location.

To exit from the task by means of ODT, use the X command as follows:

x

ODT performs the exit task directive and returns control to the Executive.

5-7

6 Creating and Using Program Libraries

This chapter describes the procedures to create and maintain a library of macro source statements
and a library of object module subroutines. It also shows how to include in your task image the
macro call definitions and the object subroutines from user-created libraries.

The decision about whether to implement specific code as a macro call or as an object module
subroutine is left to the designer. In general, the difference between implementations is a tradeoff
of assembly time versus linking time and, secondarily, convenience versus size. Each time your
source file invokes a specific macro call, the assembler must include the macro expansion in the
object module. However, when your program ca11s an external subroutine, the resolution of the call
is done during linking. Moreover, using the macro call tq generate in-line code is convenient, but
each invocation of the call increases the size of the resulting task image. However, if your program
calls a specific external subroutine more than once, the subsequent invocations do not include that
code in the task.

6.1 Creating and Using a Macro Source Library

6.1.1

The librarian utility program (LBR) creates and maintains library files that can contain macro
definitions, object modules, or other elements. Program development system (PDS) users can
invoke LBR functions through the LIBRARY command. Monitor console routine (MCR) users can
invoke LBR functions through the LBR command. This section discusses creating a library file of
macro definitions. Such a file has the default type MLB and contains only macro definitions.

Creating the Macro Library
The following example shows how you create a macro library from one input file of source
definitions by using the PDS command LIBRARY:

or:

PDS> LIBRARY /CREATE: (BLOCKS: 25, MODULES: 128) /MACRO ~
Library? USRMAC ~
Module (s)? USRMAC ~

PDS> LIBRARY /CREATE: (BLOCKS: 25, MODULES: 128) /MACRO USRMAC USRMAC ~

The /CREATE qualifier identifies the LBR function you want to invoke. The arguments to
the /CREATE qualifier specify features of the library you are creating. Because there is more
than one argument, they are enclosed in parentheses and are separated by commas. The
argument BLOCKS:25 gives the length in blocks for the library file. (PDS uses the decimal value
automatically for all LIBRARY command arguments.) If you omit this argument, LBR creates
a file 100 blocks long by default. The argument MODULES:l28 indicates the number of module
name table entries to allocate for this library. (Each macro definition in the library requires an
entry in the module name table.) The &IACRO qualifier identifies the type of library you wish to
create. The default qualifier is /OBJECT (to create an object module library).

The "Library?" prompt requests that you name the library to be created. For macro libraries, the
default file type is MLB. The ''Module(s)?" prompt requests you to name the file or files containing
the macro definitions. The default file type for this parameter is MAC. (If you do not name a file
here, LBR creates an empty file.)

6-1

Creating and Using Program Libraries

The MCR command description contains more detailed information on how LBR creates a library.
The following MCR command line creates a macro library:

MCR> LBR USRMAC/CR:25.:: 128. :MAC=USRMAC ~
MCR>

The /CR switch tells LBR to create a library file. LBR creates the library file USRMAC.MLB. For
input to the library file, LBR uses the file or files specified to the right of the equal sign (=). In
Example 6-1, the input file is USRMAC.MAC.

Example 6-1 MACR0-11 Library Source Definitions

SAVE - STORES REGISTER ON STACK

.MACRO SAVE,REG PUSH REG ONTO STACK
MOV REG,-(SP)
.ENDM

RESTOR - POPS REGISTER VALUE OFF STACK

.MACRO RESTOR,REG
MOV (SP)+,REG POP REG OFF STACK
.ENDM
.END

Following the /CR switch in the command line are parameters, separated by colons, that LBR
uses to create the library.1 The first parameter, 2510, gives the length in blocks for the library
file. If you omit this parameter, LBR uses 10010 blocks as the default length. When creating the
library file, you can allow for some future additions to the library by making the size larger than
necessary. (LBR expands a library file as needed if you add modules that cause the file to exceed
its original size. However, the library is no longer contiguous.) The second parameter is blank
because it applies only to object libraries. The third parameter, 12810, is the number of module
name table entries to allocate for this library. (An entry in the module name table is required for
each macro definition.) Following the third parameter is the type of library to create (MAC for
macro definition). You must specify this parameter because the default is an object library.

In creating the macro library, LBR allocates the requested amount of contiguous file space. If
sufficient contiguous space is not available, LBR generates the OPEN FAILURE error and
terminates. To have the library created, you must either free up some space on the volume or
try a smaller library size.

When the library file is created, LBR attempts to insert into the library the macro definitions
from the input file. LBR searches the input file for .MACRO directives and .ENDM directives.
If the macro definitions are nested, only the outermost directives are directly callable from the
library. From each macro definition, LBR extracts the name and creates an entry in the module
name table. The entry in the module name table is the means by which the assembler finds
the associated macro definition in the library. Any code or comments outside the directives are
discarded and all trailing blank and tab characters, blank lines, and comments are eliminated
from the macro text itself. (This action, called squeezing, conserves memory for the assembler an<l
reduces the space required to hold the macro definitions.) Errors that occur du..~ng the insertion of
definitions usually indicate improper definitions, such as a missing .ENDM directive.

1 The numeric parameters are followed by decimal points to force LBR to interpret them as decimal numbers. If you omit
the decimal points, LBR treats the numbers as octal.

6-2

6.1.2

Creating and Using Program Libraries

Using the Macro Definitions from the Library
Once the macro definitions are in the library, you need perform only three actions to have the
assembler include the macro expansions in your code:

1 Include the name of the macro in a .MCALL directive in your program source file.

2 Invoke the macro call within the source file.

3 Specify the name of the library file in the command line to the assembler.

Thus, to invoke the two macro library definitions SAVE and RESTOR in your program, precede the
macro calls themselves with a statement such as the following:

.MCALL SAVE,RESTOR ; CALL DEFINITIONS FROM USRMAC

This statement should preferably occur at the start of the source file. When you assemble a source
file that refers to a library file, you must name both files using the PDS command MACRO. For
example:

PDS> MACRO USRMAC/LIBRARY, USRTST/LIST ~

The name of the macro library can appear anywhere but last in the list of input files and must be
marked with the /LIBRARY qualifier. The next file named is the first source file.

There is further discussion of how LBR creates a library. Use the following MCR command line to
include a library in an assembly:

MCR> MAC USRTST, USRTST/-SP=USRMAC/ML, USRTST ~
MCR>

To the right of the equal sign in the command line, specify the name of the macro library and the
/ML switch. The comma (,) separates the macro library file name and the source file name. The
/ML switch indicates to the assembler that the file is a macro library. The name of the macro
library must precede the source file that refers to the macro definitions.

NOTE: If the library specification follows the source file name in the command and the
corresponding definitions are not in the System Macro Library RSXMAC, MACR0-11
does not recognize the library file and generates assembly errors in the lines that
contain calls to library definitions.

To process the macro calls in the source file, the assembler uses the names given in the .MCALL
directive to generate symbols for the macro symbol table.2 To expand the macro calls not defined
in the source file, the assembler searches the library you specified before it searches the system
default macro library. MACR0-11 does not search the system macro library for definitions that are
found in the user library file.

6.2 Creating and Using an Object Module Library
You can use LBR to create a library file containing object modules. Such a file has the file type
OLB (object library) as a default and can contain only object modules.

2 If you omit the name of the macro call from the .MCALL directive, the assembler cannot recognize the call itself in the
code. <A corresponding entry is not in its macro symbol table.) It treats an unrecognized macro call as an implicit .WORD
directive. If the macro name is not a valid symbol, its usage is flagged as an undefined reference by the task builder
(TKB).

6-3

6.2.1

Creating and Using Program Libraries

Creating the Object Module Library
To create an object module library, you must have a file or files that contain the object modules to
be inserted into the library. The following command line creates the object library and inserts the
modules FILEA.OBJ and FILEB.OBJ. This PDS command line creates an object module library
consisting of the object modules in FILEA.OBJ and FILEB.OBJ:

or:

PDS> LIBRARY /CREATE: (BLOCKS: 25, GLOBALS: 128, MODULES: 64} /OBJECT ~
Library? USROBJ ~
Module (s)? FILEA, FILEB ~

PDS> LIBR/CREATE: (BLO: 25, GLOB: 128, MOD: 64) /OBJ USROBJ FILEA, FILEB ~

Because it is the default, the /OBJECT qualifier is not required, hut it is a good idea to include it.
The default file type for an object module library is OLB. The default file type for the object module
files is OBJ. The arguments to the /CREATE qualifier are the same as those used in creating a
macro library with the addition of the GLOBALS argument; which applies to object libraries only.
The GLOBALS argument specifies the number of entry point table slots to reserve. (An entry point
is any global symbol in a module by which your program refers to the associated module.) If you
do not supply a value, LBR defaults to GLOBALS:512.

A good estimate for the number of GLOBALS is twice the number of modules the library is to
contain. The value should be a multiple of 64. If not, LBR raises the number to the next multiple
of 64. Again, all these numbers are automatically decimal numbers in PDS.

If you supply a value of 0, you must access the module by its name. You can then maintain
modules with duplicate entry points in the same library. The names of the modules must still be
unique. When building a library with GLOBALS:O, you must specify the correct module names to
TKB when you build your task. See Section 6.2.2.

The following MCR command line creates an object module library:

MCR> LBR USROBJ/CR:25.: 128.: 64 .=FILEA, FILEB ~
MCR>

There is further discussion of how LBR creates an object module library in the RSX Utilities
Manual.

The /CR switch tells LBR to create a library file. LBR uses the name preceding the /CR switch
as the name of the library and applies the default file type OLB. Following the /CR switch in the
command line are parameters, separated by colons, used in creating the file. 3

The first parameter, 2510, gives the size in blocks at which to create the library file. If you omit
the parameter, LBR supplies 10010 blocks as the default size. When creating the library, you can
allow for future additions by making the size larger than necessary. (LBR will expand a library
file as needed if you add modules that will cause the file to exceed its original size. However, the
library will no longer be contiguous.)

The second parameter, 12810, in the command gives the number of entry point table slots to
reserve.4 A good estimate for the number of entry points is twice the number of modules the
library will contain (that is, two entry points per module). If you omit this parameter, LBR

3 The numeric parameters are followed by decimal points to force LBR to interpret them as decimal numbers. If you omit
the decimal points, LBR treats the numbers as octal.

4 LBR aJlows you to build an object library having zero entry points. This feature allows you to maintain modules with
duplicate entry points in the same library. (The names of the modules must still be unique.) When using such a library,
you must specify the correct module name(s) to TKB when you build your task. See Section 6.2.2.

6-4

6.2.2

Creating and Using Program Libraries

supplies 51210 as the default number. If the value you supply is not an integral multiple of 6410,

LBR raises the number to the next highest multiple of 6410·

The third parameter, 6410, is the number of module name table entries to create for the library.
(The module name is the means by which LBR refers to the module code in the library.) If you
omit this parameter from the command line, LBR supplies 25610 as the default number. If the
value you specify is not an integral multiple of 6410, LBR raises the number to the next highest
multiple of 6410·

The last parameter (omitted from the command line above) specifies the type of library to build.
LBR supplies OBJ as the default type.

In creating the object library file, LBR allocates the requested amount of contiguous space. You can
estimate the number of contiguous blocks that LBR requires by using the Peripheral Interchange
Program (PIP). Request a directory listing of all the files to be inserted in the library and use
the total number of blocks PIP calculates. If sufficient contiguous space is not available, LBR
generates the OPEN FAILURE error and terminates. To have the library created, you must either
free up some space on the volume or try to build a smaller object library.

When the object library is created, LBR attempts to insert into the library the object modules from
the input file(s). It arranges the entries in the module name table in alphabetical order by module
name. The module name that LBR uses is the one you specified in the .TITLE directive when you
assembled the object module. The module names and entry points must be unique.5 LBR finds
the global symbols in each object module and enters them in the entry point table. If LBR finds a
module name or an entry point that duplicates one already used, it prints an error message and
stops processing.

If LBR finds an error, it does not insert any modules in the library from the file containing the
error. You must eliminate the error condition and insert the modules from the corrected file again.
If LBR does not find any errors, it enters all the modules in the library. To ascertain what modules
were inserted, obtain a listing of the library, as described in Section 6.2.3.

Using the Object Modules from the Library
When the object modules are in the library, you need perform only two actions to have TKB include
the routines in your task:

1 Include the CALL x statement in the calling module (where xis an entry point to the called
module). (It is assumed that the called module has a global statement to define the entry
point.)6

2 Specify the name of the library file and the names of the called modules in the command line
to TKB.

Thus, to invoke subroutines from the library, ensure that the CALL statements are in your
program.

5 If you suppress including entry points in the library entry point table, LBR allows you to insert, in the library, object
modules having duplicate entry points. This feature enables you to maintain slightly different modules of the same
general type in the same library. You select the correct module by specifying the unique module name to TKB when you
build your task. See Section 6.2.2.

6 CALL is a macro statement that is a permanent symbol in the MACR0-11 Assembler. It standardizes subroutine calling
conventions. CALL x translates to JSR PC,x (Jump to Subroutine program counter, where xis the subroutine entry
point).

6-5

Creating and Using Program Libraries

When you build a task, use the PDS command LINK, as follows:

PDS> LINK/TASK: SUP LIB/MAP: SUPLIB @f!I
File(s)? FILE,USROBJ/INCLUDE: (TTREAD,TTWRIT) ~

or

PDS>LINK/TA:SUPLIB/MAP:SUPLIB FILE, USROBJ/INCLUDE: (TTREAD,TTWRIT) ~

By including file specifications as arguments to the /TASK and /MAP qualifiers, you cause the
outfiles from the LINK command to be named SUPLIB.TSK and SUPLIB.MAP, respectively. The
/INCLUDE qualifier identifies the file USROBJ.OBJ as an object library. The names appearing in
parentheses, after /INCLUDE, are the names of the modules to be extracted from the library and
placed in the task. (Remember that these module names are derived from the names given in the
.TITLE directive in the MACRO source files, and not from the file from which these modules were
assembled.)

This method of specifying an object library search is more direct and faster than the method
described in Section 6.2.3. If you are using a large library, TKB need only search the module name
table for those object modules you specify. The disadvantage is that you have the responsibility to
specify the names of all the modules that your task requires. If, however, you are using a library
with zero entry points, the /INCLUDE qualifier is the only method of telling TKB which modules
t.o include from that. library

The following command line is the MCR equivalent for including specific object modules from a
library in your task:

MCR> TKB SUPLIB,SUPLIB/-SP=FILE,USROBJ/LB:TTREAD:TTWRIT ~
MCR>

The /LB switch after a name in the command line indicates to TKB that the file is an object
library. TKB accesses the file USROBJ.OLB in the directory that is the same as the current User
Identification Code (UIC). The names appearing after the /LB switch in the command line are the
names of the modules to be extracted from the library and placed in the task. TKB searches the
module name table of the library for these modules. (Remember that these module names are
derived from the name given in the .TITLE directive, and not from the file names from which the
modules were created.)

Note that the module names in the command line are preceded by colons, which are necessary to
distinguish the names as library module names. Placing a comma before a name tells TKB to treat
the name as an object module and to search your directory for a file with that name and a type of
OBJ. That is, the colon tells TKB to process what follows as an argument of the /LB switch, and
the comma tells TKB to treat what follows as a file name.

This method of specifying an object library search is more direct and faster than the method
described in Section 6.2.3. If you are using a large library, TKB need search only the module name
table for those object modules you specify. The disadvantage is that the responsibility is yours to
specify the names of all the modules that your task requires. In one situation, this is the only
method by which to use a library: If you are using a library with zero entry points, this is the sole
method of telling TKB which modules to include from that library.

6-6

6.2.3

6.2.4

Creating and Using Program Libraries

Using the Library to Resolve Undefined Global Symbols
Often the modules in a task refer to global symbols that are defined in other modules. If the
modules that define the global symbols reside in a library, you can have TKB search the library.
In PDS, the /LIBRARY qualifier on an input file specification for a LINK command indicates that
the entire library is to be searched. The /LIBRARY qualifier replaces the /INCLUDE qualifier. The
following example shows the form of the command line:

PDS> LINK/TASK:LB/MAP:LB FILE, USROBJ/LIBRARY ~

The /LIBRARY qualifier tells TKB to search the library entry point table for symbols that are
referred to but not defined. When TKB finds a symbol in the table that is unresolved in the task,
TKB extracts the defining module and places it in the task. If any symbols remain unresolved
after the user library search, TKB searches the system library.

This method requires less effort on your part than using the /INCLUDE qualifier, but if you are
using a large library, the task build may take considerable time.

The following command line is the MCR equivalent for using the TKB switch /LB to search an
entire library:

MCR> TKB LB, LB/-SP=FILE, USROBJ/LB ~
MCR>

The /LB switch with no module names tells TKB to search the library entry point table for symbols
that are referred to but not defined. When TKB finds a symbol in the table that is unresolved
in the task, TKB extracts the defining module and places it in the task. If ~my symbols remain
unresolved after the user library search, TKB searches the system library.

This method of specifying an object library search requires less effort on your part than the method
described in Section 6.2.2, because TKB searches the entry point table to resolve any global
references undefined at that point in the processing. If you are using a large library, TKB may
take longer in searching the entry point table than if you had specified the names of the modules
to include in your task.

Dual Use of the Library
In certain circumstances, you might want TKB to include specific modules from the library and
also to search the same library to resolve any undefined references. For example, you might have
conditional code in the main part of a task and not know what global symbols are referenced. TKB
enables you to specify the two forms of the library search. In PDS, you can do this by combining
the /INCLUDE and /LIBRARY qualifiers in the same command line:

PDS> LINK/TASK: LBOPT /MAP: LBOPT IPETI
File(s)? FILE, USROBJ/INCLUDE:TTREAD, USROBJ/LIBRARY ~

or:

PDS> LINK/TASK:LBOPT/MAP:LBOPT FILE, USROBJ/INC:TTREAD, USROBJ/LIBRARY ~

Once again, the arguments to the ffASK and IMAP qualifiers change the names of the associated
output files. The /INCLUDE qualifier on the file specification for USROBJ.OLB instructs TKB
to extract the named module. Notice that since only one module is named, the parentheses are
unnecessary. The /LIBRARY qualifier on the file specification for USROBJ.OLB tells TKB to search
that library for any unresolved global symbols. TKB includes in the task any modules from the
library that are unresolved at that point in the building of the task. If any unresolved symbols
remain after the search of the user library, TKB searches the system library.

6-7

Creating and Using Program Libraries

The following command line shows the MCR procedure for specifying two forms of library search to
TKB:

MCR> TKB LBOPT,LBOPT/-SP=FILE,USROBJ/LB:TTREAD,USROBJ/LB ~
MCR>

The first appearance of the /LB switch tells TKB to extract the named module. The second
occurrence tells TKB to search the library for any unresolved global symbols. TKB includes in
the task any modules from the library that define the global symbols that are u..Tlreso!ved at that
point in the building of the task. If any unresolved symbols remain after the user library search,
TKB searches the system library.

6.3 Maintaining User Libraries

" " .. O·°"'• I

This section decribes three simple operations used to maintain a user library: adding modules
to, replacing a module in, and obtaining information about the library. In MCR, you can
accomplish this with various commands to the library utility program (LBR). From PDS, use
the LIBRARY/INSERT, LIBRARY/REPLACE, and LIBRARY/LIST commands.

Adding Modules to a library
Add modules to a library with the LIBRARY/INSERT command. For example:

or:

PDS> LIBRARY/INSERT ~
Library? USRMAC .MLB ~
Module (s)? MAC1,MAC2 ~

PDS> LIBRARY/INSERT USRMAC.MLB MAC1,MAC2 ~

Give the name and type of the library in response to the "Library?" prompt. Give the names of the
files containing the library modules in response to the ''Module(s)?" prompt. The default file type
for files containing library modules is the same as for the type of library that you specify.

You cannot add modules to a library that has no remaining entries in the module name table. (If
you are creating an object module library, sufficient entry point table slots must exist as well.)
When LBR inserts a module in a library, it checks to be sure that a module of the same name does
not currently reside in the library. If such a module is found, LBR reports an error and exits. (For
inserting object modules, LBR also checks for duplicate entry point names.) To add modules with
duplication, see the discussion of the PDS command LIBRARY/REPLACE in Section 6.3.2.

From an MCR terminal, modules can be added to a library with an LBR command line such as the
following:

MCR> LBR USRMAC.MLB/IN=MAC1,MAC2 ~
MCR>

To add modules to a library, specify the name and type of the library file and the /IN switch to the
left of the equal sign in the LBR command line. To the right of the equal sign, give the name of the
modules, separated by a comma. You need not supply a file type because LBR applies the correct
type as a default according to the type of the library you specify.

The library must have a sufficient number of name table entries available (and, for object modules,
entry point table slots). Each global symbol in an object module requires an available entry
point table slot. A module name table entry must be available for each object module and macro
definition added. When inserting a module, LBR checks to ensure that a module of the same name
does not currently reside in the library. If a duplicate name is found, the program reports the

6-8

6.3.2

6.3.3

Creating and Using Program Libraries

duplicate name and terminates. For object modules being inserted, LBR also checks for duplicate
entry point names. To add modules with duplication, you must either eliminate the duplicate
names or change the /IN switch to the /RP switch. See Section 6.3.2.

Replacing a Module in a Library
After you create a library, a typical maintenance function is changing and updating modules in
the library. Because a module of the same name (and, for object modules, the same entry points)
already exists, you must perform a replace operation.

In PDS, use the following LIBRARY/REPLACE command to accomplish the replacement operation:

or:

PDS> LIBRARY/REPLACE ~
Library? USROBJ ~
Module (s)? FILEA ~
Module "TTREAD" replaced

PDS> LIBRARY/REPLACE USROBJ FILEA ~
Module "TTREAD" replaced

This command line causes LBR logica1ly to delete the module TTREAD and all associated entry
points for that name from USROBJ.OLB. LBR then inserts the new version of module TTREAD
from FILEA.OBJ and prints a message. If a module to be replaced is not found in the library, LBR
performs an insertion but prints no message.

Note that LIBRARY/REPLACE causes a logical deletion and does not reclaim the space
occupied by the module you replace. To reclaim this lost space, you should occasionally use the
LIBRARY/COMPRESS command.

The following command line is the MCR equivalent for performing the replace operation:

MCR> LBR USROBJ/RP=FILEA ~
Module "TTREAD" replaced

MCR>

LBR accesses the library file USROBJ.OLB, logically deletes the module TTREAD and all of
the entry points for that name, and inserts the new version of module TTREAD from the file
FILEA.OBJ. LBR prints a)nessage telling you the name of each module it replaced. If a module
to be replaced does not exist in the library file, LBR assumes that the module is to be inserted,
automatically inserts it, but does not print the message.

LBR does not automatically reclaim the space occupied by a module that you replaced. Therefore,
to reclaim this lost space, you should occasionally run LBR and compress the library file.

Obtaining Information About a Library
To obtain information about a library from a PDS terminal, type a LIBRARY/LIST command in the
following format:

or:

PDS> LIBRARY/LIST:LBLIST/NAMES/FULL ~
Library? DD. OLB ~

PDS> LIB/LIS :LBLIST/NAMES/FULL DD. OLB ~

6-9

Creating and Using Program Libraries

This command line causes LBR to access the lihrary file DD.OLB. The list appears in the file in
your directory called LBLIST.LST. The /FULL qualifier lists entry points and full information (size,
date of creation, and, for object modules, identification).

To list the information on the terminal instead of a file, use the LIBRARY/LIST command without
a file specification argument to the /LIST qualifier:

PDS> LIBRARY/LIST/FULL USRMAC.MLB ~

(LBR lists information)

To obtain information about a library from an MCR terminal, type a command line to LBR similar
to the following:

MCR> LBR DD .OLB, LBLIST/LE/FU/-SP ~
MCR>

This command line causes LBR to access the library file DD.OLB in the default directory. The
comma separates the library file name from the listing file specification. The /LE and /FU switches
cause LBR to list entry points and full information (size, date of creation, and, for object modules,
identification) in the file LBLIST.LST in the default directory. The /-SP switch inhibits automatic
spooling of the listing to the line printer.

To list information at the terminal, simply omit the file name from the command line, as follows:

MCR> LBR USRMAC.MLB/FU ~

(LBR lists information)

MCR>

Because a macro library does not have entry points, you can omit the /LE switch from the
command line.

MCR> LBR [1, 1] USROBJ .OLB, [303, 10] LBLIST/LE/FU ~
MCR>

This command line causes LBR to access the library file USROBJ.OLB in directory [1,1]. The
comma separates the library file name from the listing file specification. The /LE and /FU switches
tell LBR to list entry points and full information (size, date of creation, and, for object modules,
identification) in the file LBLIST.LST in directory [303,10]. If you omit the directory specification
from the listing file, LBR creates the listing file in the directory of the library.

To list information at the terminal, simply omit the file name from the command line, as follows:

MCR> LBR [l, l]USRMAC.MLB/FU ~
MCR>

Because a macro library does not have entry points, you can omit the /LE switch from the
command line.

6.4 Guide to Further Reading
The following manuals and chapters contain additional information on the subjects des"'1 ~bed in
this chapter:

IAS Task Builder Reference Manual

Chapter 4, "Qualifiers, Switches, and Options"

PDP-11 /i.'\,fACR0-11 Language Reference 1•.fanual

Chapter 7, Macro Directives

6-10

Chapter 8, Operating Procedures

!AS Utilities Manual

Chapter 10, Librarian Utility Program (LBR)

Creating and Using Program Libraries

6-11

7 FORTRAN IV Procedures

PDP-11 FORTRAN IV is one of several high-level languages optionally available on the IAS
operating system. This chapter briefly introduces the product and swnmarizes its program
development procedures.

7.1 Overview of PDP-11 FORTRAN IV
The FORTRAN IV language processor on IAS consists of the following elements:

• The compiler task FOR

• The PDS command FORTRAN

• The MCR command FOR

• An Object Time System (OTS) library

• An optional resident library

The FORTRAN IV compiler accepts an American Standard Code for Information Interchange
(ASCII) disk file containing source statements and generates a disk file in object module format
and, optionally, a listing file suitable for printing. The user interface to the compiler is similar
to that of the MACR0-11 Assembler. The program development procedures are like those for
assembly language modules: you supply the object file to the Task Builder (TKB) to obtain an
executable program.

The DIGITAL Command Language (PDS) command FORTRAN parallels in function the PDS
command MACRO, and the Monitor Console Routine (MCR) command FOR parallels in function
the MCR command MAC. The FORTRAN and FOR commands pass an ASCII source file to the
FORTRAN compiler, and the compiler generates an object module and, if desired, a listing file.
The program development procedures are very similar to those for assembly language modules:
you pass the object module to TKB using a LINK command to obtain a file containing an executable
task image.

The FORTRAN IV Object Time System (OTS) is a collection of object module subroutines the
system uses as needed in creating an executable program. On systems with more than one
high-level language, the OTS routines for FORTRAN IV must be segregated from those of other
languages. Sometimes, the OTS routines reside in the system object library SYSLIB. Regardless
of their location, however, the OTS routines must be accessible to TKB. The difference to you is
whether the library containing the OTS routines must be explicitly named. If the OTS routines are
in SYSLIB, TKB can locate them without an explicit specification because, as a default condition,
it automatically searches the system library.

The FORTRAN IV compiler does not generate all of the machine code required by a task at run
time. Common sequences of code reside in the OTS library. During compilation, FORTRAN IV
flags these common sequences as undefined global symbols. TKB must then resolve the undefined
references by selecting from the OTS those modules that resolve the symbols in the object module.

In a narrow sense, the OTS contains the routines that the compiler has previously designated to be
linked into your task. In practice, however, the OTS can contain various routines, callable by the
user, in addition to the routines required by the compiler-assigned references.

7-1

FORTRAN IV Procedures

As an option, a system installation can have a common area containing shareable FORTRAN IV
OTS routines. This common area, called a resident library, contains the most frequently used
routines, taken from the OTS and made available for user tasks to link to and share at run time.
Thus, with a resident library, TKB generates references to the routines in the resident library that
you specify when you build the task. TKB does not include those routines in your task image.
The routines use virtual address space in the task but do not require additional physical memory
in the task image. The resident library, tailored to the needs and requirements of a particular
system; saves task-build time and memory by the amount of code that need not be repeated in
each memory-resident FORTRAN IV task.

7.2 FORTRAN IV Program Development Procedures
The program development procedures for FORTRAN IV are quite similar to those for MACR0-11.
Therefore, this chapter does not include the level of detail found in previous chapters of this
manual. To edit a FORTRAN IV source file, use the same commands you used to edit the
MACR0-11 files shown in Chapter 2. If you are using an editor other than the Line Text Editor
(EDI), perform the same operations using your editor.

1"' .. -".·1n- "'"'es-· ... Ce F=1e vn::al •y ll 1 UUI I

To create a sample FORTRAN IV source file, invoke the editor task EDI and use the following
commands to insert the lines of code shown in Example 7-1:

MCR> EDI AVERAGE .FTN ~
[CREATING NEW FILE]
INPUT

~
~
*EXIT ~
[EXIT]

MCR>

insert the lines here and
type the RETURN key twice to exit from
insert mode

Because EDI cannot insert a blank line in the text (EDI requires at least one nonprinting character
such as a space or tab character; see Section 2.2.1.1), be sure to use the C (comment line) in column
1 of the source file in place of the blank line, for readability. If you insert a line with a space or tab
character in it, the FORTRAN IV compiler generates an error because it expects a valid label on a
nonblank line.

You can use the TAB character to facilitate line formatting. The FORTRAN IV compiler positions
the character following an initial TAB character to the proper column. That is, a digit following
an initial TAB is considered a continuation character (column 6), and a nondigit is considered the
beginning of the statement (column 7).

7-2

7.2.2

FORTRAN IV Procedures

Example 7-1 FORTRAN IV Sample Source Code AVERAGE.FTN

PROGRAM AVERAGE
C PROGRAM TO COMPUTE AVERAGE OF NUMBERS ENTERED AT TERMINAL
C THE NUMBER 'O' INDICATES END OF INPUT
c

TOTAL 0 INITIALIZE ACCUMULATOR
N = 0 INITIALIZE COUNTER

5 N = N + 1
WRITE (5, 10) PROMPT TO ENTER NUMBER

10 FORMAT (' ENTER NUMBER, END WITH 0')
READ (5, 20) K READ NUMBER FROM TERMINAL

20 FORMAT 110
IF (K .EQ. 0) GOTO 4 0 MEANS NO MORE INPUT
TOTAL TOTAL + K COMPUTE TOTAL WITH NUMBER
GO TO 5

c
C NOW, COMPUTE TOTAL BY DIVIDING IT BY THE NUMBER OF TIMES
C THROUGH THE LOOP
c
40 TOTAL = TOTAL/N

WRITE (5,50) TOTAL ! DISPLAY THE RESULT
50 FORMAT ('AVERAGE IS ',Fl0.2)

STOP
END

Performing a Diagnostic Run
To determine whether there are any syntax or grammar errors in a source file, you can perform a
diagnostic run using the PDS command FORTRAN, as follows:

PDS> FORTRAN/NOOBJECT AVERAGE/LIST ~
AVERAG
FOR -- [AVERAG] ERRORS: 1, WARNINGS: 0

This command line requests FORTRAN IV to compile the file AVERAGE.FTN and create a
listing file, AVERAGE.LST, but no object file. By default, the listing file contains source code
and diagnostic messages only.

When you request a listing file in a compilation, FORTRAN IV reports at the terminal the name
of the program unit being compiled and a summary of any errors. Th discover what caused any
errors, you must examine the section of the listing entitled FORTRAN IV DIAGNOSTICS. List the
file on your terminal with the PDS command TYPE, as follows:

PDS> TYPE AVERAGE. LST ~

(PIP displays listing)

See the following discussion of the MCR format for information on reading the listing file.

To perform the diagnostic run from an MCR terminal, issue the following command line:

MCR> FOR , AVERAGE/ -SP=AVERAGE ~
AVERAG
FOR -- [AVERAG] ERRORS: 1, WARNINGS: 0
MCR>

This command line requests FORTRAN IV to compile the file AVERAGE.FTN, which resides in
your directory. The compiler creates a listing file, AVERAGE.LST, but no object module. (The
leading comma in the command means a null file specification for the object file. If you omit the

7-3

7.2.3

FORTRAN IV Procedures

comma, FORTRAN IV creates the object file but not the listing file.) As a default condition, the
listing file contains source code and diagnostic messages only.

When you request a listing file in a compilation, FORTRAN IV reports at the terminal the name
of the program unit being compiled and a summary of errors found. To discover what caused any
errors, you must examine the section of the listing entitled FORTRAN IV DIAGNOSTICS. Display
the listing file by typing the following MCR command line:

MCR> PIP TI :=Av'"ERAGE .LST ~

(PIP displays listing)

MCR>

On a video display terminal, use the CTRUS and CTRL/Q commands to stop and resume output.

The following line appears in the diagnostic section of the listing:

IN LINE 0008, ERROR: SYNTAX ERROR

Line 0008 refers to the statement number 0008 assigned by the compiler. The error referred to is
described in an appendix of the language user's guide. In the source code part of the listing, line
0008 is shown as follows:

0008 20 FORMAT IlO

The compiler detected missing parentheses on the field descriptor in the FORMAT statement. To
correct the error, you must edit the source file, as shown in the following example:

MCR> EDI AVERAGE .FTN ~
[00023 LINES READ IN]
[PAGE 1]

* L !10 ~
20 FORMAT IlO
* C /!10/(IlO)/ ~
20 FORMAT (IlO)
* EXIT IRETI
[EXIT]

MCR>

The L command locates the line containing the string 110 and prints the entire line. The C
command replaces the string 110 with (110) and prints the line so that you can verify the change.
The EXIT command terminates the editing session and creates the new, edited version of the file.
Next, you can use the edited version to create an object module.

Creating an Object Module
To create an object module, simply omit the /NOOBJECT qualifier from the PDS command line you
entered previously, as follows:

PDS> FORTRAN AVERAGE/LIST ~
AVERAG

This command line requests FORTRAN IV to compile file AVERAGE.FTN and to create listing
file AVERAGE.LST and object file AVERAGE.OBJ. If FORTRAN IV detects any errors, it prints
a summary at the terminal (see Section 7 .2.1. If no errors occur, FORTRAN IV returns control to
PDS, which prints the "PDS>" prompt.

7-4

7.2.4

FORTRAN IV Procedures

The same procedure from an MCR terminal is as follows:

MCR> FOR AVERAGE,Av"ERAGE/-SP=AVERAGE ~
AVERAG
MCR>

This command line requests FORTR.A_N IV to compile file AVERAGE.FTN and to create object file
AVERAGE.OBJ and listing file AVERAGE.LST. If FORTRAN IV detects any errors, it prints a
summary at the terminal as described in Section 7 .2.1. If no errors occur, FORTRAN IV returns
control to MCR, which prints the ">" prompt.

Creating a Task Image
FORTRAN IV object modules do not contain all the object code required at run time. Therefore,
when you run TKB, either from MCR or with the PDS command LINK, you must specify as input
both the name of the object module and the name of the library containing the FORTRAN IV OTS
routines. The commands for both PDS and MCR users follow:

PDS> LINK AVERAGE, LB: [1, l]FOROTS/LIBRARY ~

or

MCR> TKB AVERAGE=AVERAGE,LB: [1, l]FOROTS/LB ~

These command lines request TKB to resolve any undefined references by searching the library
FOROTS.OLB in directory [1,1] on the system library device and by linking compiler-designated
routines to module AVERAGE.OBJ. 1 You can add, as input to TKB, file names of any external
object modules that the main module calls. As a result of the command line, TKB creates a task
image file AVERAGE.TSK. (A memory allocation file is not needed.) If TKB detects any errors,
it proceeds according to whether the error is fatal or diagnostic. Refer to the !AS Task Builder
Reference Manual for guidelines on error processing.

When building a iask image, the library FOROTS.OLB might contain routines that support the
FP-11 Floating Point Processor. If this is the case, the commands for PDS and MCR users are as
follows:

PDS> LINK/CODE:FPP AVERAGE, LB: [l, l]FOROTS/LIBRARY ~

MCR> TKB AVERAGE /FP=AVERAGE, LB: [1, 1] FOROTS /LB ~

You also must use these commands when you rebuild your task after debugging it.

The task image created by TKB has certain default conditions. The task AVERAGE can be built to
run successfully without having to override these default conditions. When you build a task from
a FORTRAN IV module, you might have to specify special switches in the command line or supply
options to TKB. Refer to the specific language's user's guide for information regarding TKB default
FORTF.._A_'l\T IV conditions and FORTF-L\...N-specific options and sv..ritches.

1 In the command line, the name shown for the FORTRAN IV Object Time System (FOROTS) is only a convention
recommended by DIGITAL. Consult the system manager at your installation because the FORTRAN IV OTS routines
can reside in another library or in the system library SYSLIB. (If the OTS routines do reside in SYSLIB, you need not
specify the name of the OTS in the command line to TKB because TKB automatically searches the system library.)

7-5

7.2.5

FORTRAN IV Procedures

Running and Debugging a Task
To execute the task AVERAGE, type the following PDS or MCR command line:

> RUN AVERAGE ~

The program then displays the following lines on your terminal:

ENTER NUMBER, END WITH 0
66 ~
ENTER NUMBER, END WITH 0
66 ~
ENTER NUMBER, END WITH 0
0 IRETI
AVERAGE IS 44.00
TT30 STOP
>

Obviously, 44 is not the average of 66 and 66; therefore, the program must contain an error. If you
cannot locate the error by looking at the program listing, you can attempt to locate the error by
placing debugging statements in the code.

To add debugging statements to the program, simply edit the source file with lines of code
beginning ·with D in column 1. For example, you can include statements to print values of variables
before and after the loop, as follows:

MCR> EDI AVERAG.FTN ~
[00023 LINES READ IN)
[PAGE 1)
*L 5 ~
5 N = N + 1
*I E]

D ~ WRITE (5,6) N,TOTAL ~
D6 ~ FORMAT (' ***DEBUG LINE N
1§!1
*L 50 ~ ~
50 FORMAT (' AVERAGE IS ',Fl0.2)
*I~
D ~ WRITE (5, 51) N ~
D51 ~ FORMAT (' ***DEBUG LINE N

~
*EXIT ~
[EXIT]

MCR>

',IlO,', TOTAL ',FlO.O) ~

',IlO) ~

The L commands locate and print the contents of the lines that precede where debugging
statements are to be placed. The I commands insert the debugging statements. You terminate
the insert operation by pressing the I RETURN I key twice. After the inserts are made, the EXIT
command closes the file and terminates EDI.

Next, recompile the module and request FORTRAN IV to include the debugging statements, as
shown in the following PDS and MCR command lines:

PDS> FOP.TP.A.l\!'/OBJECT: DEBUG/D LINES/LI ST~ DEBUG ~
File (s)? AVERAGE ~ -
AVERAG

or:

MCR> FOR DEBUG, DEBUG=AVERAGE/DE ~

7-6

FORTRAN IV Procedures

The compiler generates the files DEBUG.OB.J and DEBUG.LST. Because of the /D_LINES qualifier
(/DE switch in the MCR line), the compiler includes statements beginning with D in colwnn i. If
you omit this qualification, the debugging lines are treated simply as comment lines.

Now, rebuild the task with debugging lines, using the PDS or MCR command lines as follows:

or:

PDS> LINK DEBUG, LB: (1, l]FOROTS/LIBRARY ~

MCR> TKB DEBUG=DEBUG,LB: (1, l]FOROTS/LB ~
MCR>

Note that this operation has nothing to do with the on-line debugging tool (ODT), which is a
MACR0-11 debugging tool.

Run the task with the following PDS or MCR command line:

>RUN DEBUG ~
***DEBUG LINE N = 1, TOTAL = 0.
ENTER NUMBER, END WITH 0
66 ~
***DEBUG LINE N = 2, TOTAL 66.
ENTEF. NUMBER, END WITH 0
66 ~
***DEBUG LINE N = 3. TOTAL 132.
ENTER NUMBER, END WITH 0
0 ~
AVERAGE IS 44.00
***DEBUG LINE N 3
TT30 -- STOP
>

The debugging statements enable you to inspect the values of variables. As you can see, the loop
counter N is incremented one extra time for the number 0. The value N must be decremented by
1.

To correct the error, edit the source file as follows:

MCR> EDI AVERAGE .FTN ~
(00027 LINES READ IN]
[PAGE 1]
* L TOTAL/ ~
40 TOTAL = TOTAL/N
* C ;N; (N-1); ~
40 TOTAL= TOTAL/(N-1)
* EXIT IRETI
[EXIT]

MCR>

Next, repeat the compile, link, and run operations. From a PDS terminal, use the following
sequence of command lines:

PDS> FORTRAN AVERAGE/LIST ~
AVERAG
PDS> LINK AVERAGE, LB: [1, 1] FOROTS/LIBRARY ~
PDS> RUN AVERAGE ~
ENTER NUMBER, END WITH 0
66 ~
ENTER NUMBER, END WITH 0
66 ~
ENTER NUMBER, END WITH 0

7-7

FORTRAN IV Procedures

0 ~
AVERAGE IS 66.00
TT30 -- STOP

The program is compiled without the debugging statements. The output shows that the correction
eliminated the error.

The same procedure from an MCR terminal is as follows:

AVERAG
MCR> TKB AVERAGE=AVERAGE,LB: [1, l]FOROTS/LB ~
MCR> RUN AVERAGE ~
ENTER NUMBER, END WITH 0
66 ~
ENTER NUMBER, END WITH 0
66 ~
ENTER NUMBER, END WITH 0
0 ~
AVERAGE IS 66.00
TT30 -- STOP
MCR>

The program is compiled without the debugging statements. The output shows that the correction
eliminated the error.

7-8

Index

A
AP command

EDI editor • 2-16
APPEND command

See AP command
Assembly

language • 1-3 to 1-4

See also MACR0-11
listing

examining at a terminal • 3-5
formatting • 2-6
generating • 3-4 to 3-5
page break • 2-5
printing • 3-7
spooling • 3-7
table of contents • 2-5
terminal format • 2-6

Asterisk (*)
EDI editor • 2-9
PIP utility·~

At sign(@)
ODT•S-7

AVERAGE.FTN source code • 7-2

B
Backslash (\)

ODT•S-5
B command

ODT•S-5
BEGIN command

EDI editor • 2-13
Block mode

EDI editor • 1-2
Breakpoint

register • 5-5
setting in a task• 5-5

Buffer
text• 1-2

c
CHANGE command

EDI editor • 2-15, 7-4
cu

MCR • 1-1 to 1-2
PDS • 1-1 to 1-2

Command Line Interpreter

See CU
/COMPRESS qualifier

LIBRARY command • 6-9
Concatenating files • 4-3
COPY command • 4-3
/CREATE qualifier

LIBRARY command• 6-1, 6-4
CRF utility• 1-6

assembly cross-reference • 3-6
global cross-reference • 4-4, 4-5

Cross-reference
LINK command • 4-4
listing

assembly • 3-6
global •4-4, 4-5

TKB•4-5
Cross-Reference Processor

See CRF utility
/CROSS_REFERENCE qualifier

LINK command • 4-4
MACRO command• 1-6, 3-6

/CR switch
LBR utility• 6-2, 6-4
MAC command • 3-6
TKB • 1-6, 4-5

lctrVol command• 3-6
I CtrVO I command • 3-6
ICtrVSI command• 3-6
CTRUU command • 5-3

D
/DA switch

TKB •5-1
Data block

local •2-7

lndex-1

Index

Data storage
control in assembly language• 1-3, 1-4
directive • 1-3, 1-4
MACR0-11 definition• 2-7
program section• 2-7

Debugging
introduction• 1-5
MACRO-ii source tiie • 3-2, 3-3
task • 4-7, 5-1, 7-6, 7-7, 7-8
tool

See ODT
using map• 5-2, 5-7

/DEBUG qualifier
LINK command • 5-1

Default
file type

MACR0-11 • 3-4
TKB • 4-1

system library search
MACRO-ii • i-4, 1-7, 2-6
TKB • 1-8, 4-1

transfer (starting) address• 4-6
DELETE & PRINT command

See DP command
Delimiter• 2-15
/DE qualifier

FORTRAN command • 7-6
/DE switch

FOR command• 7-6
Diagnostic run

FORTRAN IV source file• 7-3
MACR0-11 source file• 3--1, 3--2

DIGITAL Standard Editor
See EDT editor

Directive
assembler • 1-4
.END • 2-8, 3-3, 4-2, 4-7
EXIT$S •2-6
general-purpose • 2-5 to 2-6
.IDENT•2-5
. LIST TTM • 2-5
.MCALL• 1-7, 2-6, 3-3, 6-3
.NLIST BEX • 2-6
.PAGE • 2-5
.PSECT ~ 2-7
.SBTTL•2-5
system• 1-7
.TITLE• 2-3, 6-6

Directory
listing • 3-8
purging • 3-8

lndex-2

DIRECTORY command • 3-8
/DISABLE qualifier

MACRO command• 3-1
Disk

private • 1-9
public• 1-9

Dollar sign ($)
ODT • 5-5, 5--6, 5-7

DP command
EDI editor • 2-16

IDS switch
MAC command• 3--1

/D_LINES qualifier
FORTRAN command • 7-6

E
EDi editor • i-3

abbreviating strings • 2-15
altering text• 7-4
block mode • 1-2
commands • 2-11 to 2-17

AP• 2-16
BEGIN •2-13
CHANGE• 2-15, 7-4
DP •2-16
END •2-13
EXIT •2-9

closing file • 7-6
creating new file• 2-11, 2-16, 7-4

INSERT • 2-17, 7-6
LIST • 2-12
LOCATE•2-13, 2-17, 7-4, 7-6
PLOCATE • 2-14
RENEW• 2-14
TYPE •2-12, 2-13, 2-16

correcting
source file error• 7-4
task error• 4-7, 7-8

creating file• 2-8, 2-9, 2-11, 7-2
deleting lines • 2-16
displaying text • 2-12
sl!ipsis (...) =2-15
ESCAPE key • 2-12
input

initial• 2-8, 7-2
terminating • 2-9

inserting
characters • 2-16

EDI editor
inserting (Cont.)

code in source file • 2-17
lines• 2-9, 2-17

insert mode• 2-17
locating text• 2-13, 7--4
positioning line pointer• 2-13, 2-14
RETURN key •2-9, 2-12, 2-17, 7-6

EDI editor >asterisk (•) • 2-9
EDI editor >slash (I) • 2-15
Editor

invoking • 1-2
text• 1-2 to 1-3

See also EDT editor
EDI utility

See EDI editor
EDT editor• 1-2
Ellipsis (...)

EDI editor • 2-15
END command

EDI editor• 2-13
.END directive• 2-8, 3-3, 4-2, 4-7
Entry point • 6-4, 6-5

table • 6-4, 6-8
zero entry points • 6-6

Error code
MACR0-11

A•3-2
E •3-3
0•3-3
U•3-3

Error messages
FORTRAN IV • 7--4
LINK •4-1
MACR0-11 • 3-1, 3--4

ODT•S-3
TKB •4-2
TKTN•4-7

ESCAPE key
EDI editor • 2-12

Executive library
macro• 1-8

EXEMC.MLB (Executive Macro Library)• 1-7
EXIT$S directive • 2-6
EXIT command

EDI editor•2-9, 2-11, 2-16, 7-4, 7-6

F
/FAST qualifier

/FAST qualifier (Cont.)

LINK command • 4-3
Fast Task Builder

See FTB
File

creating source • 2-8, 2-9
directory listing• 3-8
editing

source • 2-8 to 2-16
listing• 3-5
printing• 3-7
purging • 3-8
spooling• 1-6, 3-7

FILE.MAC source code • 2-17 to 2-19
FILEA.MAC source code • 2-19 to 2-20
FILES.MAC source code • 2-20 to 2-22
File types

FTN •7-3
LST • 3--4, 6-10, 7-3
MAP •4-5
MLB • 6-1
OBJ • 3--4, 7-4
OLB •6-3
TSK • 4-1

FOR command• 7-1, 7-3
/DE switch• 7-6

FOR compiler task
creating object module• 7-4
debugging statements e 7-6
diagnostic run• 7-3, 7--4
FOR command• 7-1
FORTRAN command• 7-1, 7-3
FTN file type • 7-3

Format
FORTRAN IV

statement• 7-2
MACR0-11

source file • 2-1 to 2-3
statement • 2-3

FORTRAN command• 7-1
qualifiers

/DE• 7-6
/D_LINES • 7-6
/LIST • 7-3, 7-6
/NOOBJECT • 7-3
/OBJECT • 7-3, 7-6

FORTRAN IV
See also FOR compiler task
compiler task• 7-1
formatting source statements• 7-2
source file

Index

lndex-3

Index

FORTRAN IV
source file (Cont.)

blank line • 7-2
comment line • 7-2

specifying OTS to TKB • 7-5
FTB •4-3
FTN file type • 7-3
/FULL qualifiei

LIBRARY command • 6-9
/FU switch

LBR utility· 6-10

G
G command

ODT • 5-5, 5-7
general-purpose directive • 2-5 to 2-6
Global

cross-reference listing • 4-4, 4-5
default

disabling in MACR0-11 • 3-1, 3-2
symbol

entry point • 6-4, 6-5, 6-8
resolution• 4-2, 6-7, 6-8
undefined• 6-7, 6-8

Global symbol• 1-3, 1-4
entry point• 1-3

H
Hardware

program development • 1-9
HOLD SCREEN command • ~

I
IASMAC.SML file • 2-6
. IDENT directive • 2-5
/INCLUDE qualifier

LiNK command • 6-6, 6-i
INSERT command

EDI editor• 2-17, 7-6
/INSERT qualifier

LIBRARY command • 6-8
/IN switch

LBR utility • 6-8

lndex-4

L
Language

assembly• 1-3 to 1-4

See also MACR0-11
LBR command

See LBR utility
LBR utility • 1-6

See also LIBRARY command
adding a module to a library • 6-8
creating macro library • 6-2
creating object module library • 6-4
efficiency • 1-6
listing information• 6-9, 6-10
macro library• 6-1, 6-2
object module library • 6-4 to 6-5
OLB file type • 6-3
1eplacing a module in a libra1y ~ &-S
switches

/CR • 6-2, 6-4
/FU· 6-10
/IN• 6-8
/LE• 6-10
/RP • 6-8, 6-9
/SP• 6-10

/LB switch
TKB • 6-6, 6-7, 6-8, 7-7

/LE switch
LBR utility • 6-10

/LIBARY qualifier
MACRO command• 6-3

Librarian Utility Program

See LBR utility
Library

default system search• 4-1
Digital-supplied• 1-7
macro • 6-1 to 6-2
maintenance • 6-9
object module • 6-4 to 6-5

designating in TKB • 6-5 to 6-8
using to resolve undefined global symbols •

6-7,6-8
obtaining information about a user • 6-9, 6-10
OTS • 7-1
search

MACR0-11 • 1-4, 1-7, 2-6
TKB • 1-8

squeezing • 6-2
LIBRARY command• 1-0

LIBRARY command (Cont.)

See also LBR utility
qualifiers

/COMPRESS • 6-9
/CREATE• 6-1, 6-4
/FULL• 6-9
/INSERT • 6--8

/LIST•6-9
/MACR0•6-1
/NAMES•6-9
/OBJECT • 6-1 , 6-4
/REPLACE• 6-9

/LIBRARY qualifier
LINK command • 6-7

Line Text Editor
See EDI editor

LINK command• 1-4, 4-1

See also TKB
cross-reference listing• 4-4
error messages • 4-1
fast version • 4-3
generating standard map • 4-4
including ODT in task • 5-1
qualifiers

/CROSS_REFERENCE • 4-4
/DEBUG •5-1
/FAST•4-3
/INCLUDE • 6-6, 6-7
/LIBRARY • 6-7
/MAP •6-6
/SYSTEM_ LIBRARY _DISPLAY•~
/TASK • 6-6, 6-7

LIST command
EDI editor • 2-12

Listing
assembly • 3-4
control• 1-4, 2--G
directory • 3-8
examining at a terminal• 3-5, 7-4
FORTRAN IV • 7-4
global cross-reference • 4-4; 4-..5
printing • 3-7
spooling • 3-7
use in debugging • 5-3

/LIST qualifier
FORTRAN command• 7-3, 7--G
LIBRARY command • 6-9
MACRO command • 3-1, 3-4, 3--G, 6-3

.LIST TTM directive • 2--G
/LI switch

PIP utility• 3-8

Local data block • 2-7
Local macro definitions• 2-7
Local symbol• 1-3, 1-4
Local symbol definitions• 2--G
LOCATE command

EDI editor•2-13, 2-17, 7-4, 7--G
Location counter• 1-4

use in debugging • 5-3
Logical unit number

See LUN
LST file type• 3-4, 6-10, 7-3
LUN

default by TKB • 4-4

M
MAC command• 1-3, 3-4

See also MACR0-11
including a library • 6-3
switches

/CR• 3--G
IDS• 3-1
/ML• 6-3
/SP • 3-4, 3--G, 6-3

MAC file type • 3-1
Macro

call
cross-reference of symbols• 3--G
resolution• 1-3, 1-8, 2--G
unrecognized • 2--G

library • 6-1 , 6-2
creating a user • 6-1 , 6-2
replacing modules • 6-9
search of system• 1-4, 1-7, 2--G

symbol
definition• 1-3, 1-7, 2--G, 6-3

MACR0-11
assembling source file• 3-1, 3-2
cross-reference listing • 1-4, 1-5, ~
data storage

definition • 2-7

Index

default search of system library• 1-4, 1-7, 2--G
defining local symbols • 2--G
directives • 1-3, 1-4
disabling global default• 3-1, 3-2
error • 3-2, 3-3
error code

A•3-2
E•3-3

lndex-5

Index

MACR0-11
error code (Cont.)

0•3-3
U•3-3

error message• 3-2, 3-4
listing• 3-4

generation • 3-5
'""'"""'+;"' ... "'""'& ... 1 _.A IV"c:&LIVI I '-'\JUI 1 .. ig-1 - 1---r

MAC command• 1-3, 3-1, 3-4, 6-3
macro

cross-reference • 3-6
library usage • 6-3
symbol• 1-3, 2-6, 6-3

MACRO command• 1-3, 3-1, 3-4, 3-6, 6-3
object module• 3-4, 3-5
source file • 2-3

format • 2-1 to 2-3
source input• 1-3
statement format • 2-3
symbol

cross-ref ere nee • 3-6
evaluation • 1--3, 3-1, 3-2, 6-3

table of contents generation • 2-5
MACRO command• 1-3, 3-4

See also MACR0-11
qualifiers

/CROSS_REFERENCE • 1-6, 3-6
/DISABLE • 3-1
/LIBRARY • 6-3
/LIST•3-1, 3-4, 3-6, 6-3
/NOOBJECT • 3-1, 3-6

/OBJECT • 3-4
Macro library • fr-2

adding modules • 6-8
definitions • 6-3
DIGITAL-supplied• 1-7
EXEMC.MLB • 1-7
listing information • fr-9, fr-10
replacing modules • 6-9
RMSMAC.MLB • 1-7
RSXMAC.SML • 1-7

/MACRO qualifier
LIBRARY command• fr-1

MAC task • 1-3
See MACR0-11

Map
debugging use• 5-2, 5-7
examining at terminai • 4-5
full• 4-6
generating • 4-4 to 4-5
ieducing width = 4-4, 4-5

!ndex-6

Map (Cont.)

stack limits • 5-7
standard • 4-4, 4-5

MAP file type • 4-5
/MAP qualifier

LINK command • 6--6

/MA switch
TKB •4-6

.MCALL directive • 1-7, 2-6, 3-3
using with user macro library • 6-3

MCA• 1-1, 1-2
Memory allocation file

See Map
/ME switch

PIP utility • 4-3
MLB file type • fr-1

/ML switch
MAC command • 6-3

Module name • 2-3, fr-5, 6--6

tabie • 6-8
macro library • fr-2
object library • 6-6, 6--6

Module version • 2-5
Monitor Console Routine

See MCR

N
/NAMES qualifier

LIBRARY command• fr-9
.NLIST BEX directive .. 2-6
/NOOBJECT qualifier

FORTRAN command • 7-3
MACRO command• 3-1, 3-6

NO SCROLL command• 3-6

0
Object library

adding modules • 6-8
creating a user • 6-4, fr-5
default search of system• 1-8, 4-1
DiGiTAL-suppiied • 1-8
dual use • fr-7 to 6-8
EXEC.OLB • 1-8
listing information• fr-9, 6-10
OTS •7-1

RMSLIB.OLB • 1-8

Object library (Cont.)

SYSUB.OLB • 1-8
using to resolve undefined global symbols• 6-7,

6-8
VMLIB.OLB • 1-8

Object module
concatenated • 4-3
FORTRAN IV• 7-5
input to TKB • 4-1
MACR0-11 • 1-4, 3-4, 3-5

/OBJECT qualifier
FORTRAN command• 7-3, 7~
LIBRARY command• 6-1, 6-4
MACRO command • 3-4

Object Time System

See OTS
OBJ file type • 3-4, 7-4
ODT• 1-5

B command • 5-5
breakpoint register • 5-5
changing location contents • 5-6
correcting input • 5-3
error conditions in task• 5-7
examining locations • 5-4
forming address• 5-3
G command • 5-5, 5-7
including in a task• 5-1, 5-2
LINE FEED key

closing location • 5-4, 5-6
displaying word on stack• 5-7
opening location • 5-4, 5-6

map use• 5-2
ODT.OBJ file• 5-1
P command• 5-7

R command • 5-3
relocation register • 5-2
setting breakpoints • 5-5
setting up a task with• 1-5
source listing use• 5-3
SST within • 5-7
terminating task execution • 5-7
X command• 5-7

ODT >at sign (@) • 5-7
ODT >backslash(\)• 5-5
ODT >dollar sign ($) • 5-5, 5-6, 5-7
ODT >question mark (?) • 5-3
ODT >slash (I) • 5-4
ODT >underline (_) prompt • 5-2
OLB file type • 6-3

See also LBR utility
On-Line Debugging Tool

On-Line Debugging Tool (Cont.)

See ODT
OTS

library• 7-1

p
. PAGE directive • 2-5
PC

See Program counter
P command

ODT•S-7
PDS • 1-1 to 1-2
Peripheral Interchange Program

See PIP utility
PIP utility • 1--6

asterisk (*) • 3-8
cleaning up a directory • 3-8

Index

creating a concatenated object module • 4-3
examining listing at terminal • 3-5, 4-5, 7-4
printing listing• 3-7
spooling listing• 3-7
switches

/LI• 3-8
/ME• 4-3
/PU •3-8
/SP •3-7

PLOCATE command
EDI editor• 2-14

PRINT command• 1-9, 3-7
Printer• 1-9
Program

development
advanced • 1-5

sectioning• 1-4, 2-5, 2-7
user

breakpoints
setting • 5-5

FORTRAN IV• 7-2
library• 6-1
macro symbol• 6-3

definition placement • 1-4
module

name• 2-3
version • 2-5

object library routines • 6-5
overview of development • 1-9 to 1-10
section definiton • 2-7

Program counter
value •4-7

lndex-7

Index

program development system

See PDS
Program development system

See PDS
. PSECT directive • 2-7
PURGE command • 3-8

/PU switch
PIP utility • 3-8

Q
QMG • 1-9
Question mark (?)

ODT•5-3
Queue Manager

See QMG

R
R command

relocation register • 5--3

Record Management Services

See RMS-11
Register

breakpoint • 5-5
relocation • 5-2, 5--3

Relocation register• ~2. 5--3

R command • 5--3

RENEW command
EDI editor • 2-14

/REPLACE qualifier
LIBRARY command • 6--9

RMS-11 object library• 1-7
RMSLIB.OLB (Record Management Services library)

• 1-8
RMSMAC.MLB (PDP-11 Record Management

Services Library) • 1-7
/RP switch

LBR utility • 6--8, 6--9
RSXMAC.SML (System Macro Library)• 1-7
RUN command • ~. 5-2, 7-6

s
.SBTIL directive • 2-5

lndex-8

/SH switch
TKB·~

Slash(/)
EDI editor • 2-15
ODT•S-4

Source file
FORTRAN IV

adding debugging statements• 7-S
blank line • 7-2
comment line • 7-2
creating • 7-2
editing • 7-4, 7-S, 7-8

MACR0-11
assembling• 3-1, 3-2
creating from a skeleton • 2-11
editing• 2-12 to 2-16
error • 3-2, 3-3
format • 2-1 to 2-3
inserting lines • 2-17
introduction• 2-1
listing• 3-4, 3-5
macro library call• 6-3

/SP switch
LBR utility • 6--10
MAC command • 3-4, 3-6, 6-3
PIP utility • 3-7

SST
ODT·~7

role in task termination•~. 4--8
Statement

MACR0-11 • 1-3
format• 2-3

Symbol
cross-reference • 3-6
global• 1-4

entry point • 1-3
resolution • 1-3, 1-4, 4-2
TKB • 1-4

local• 1-3, 1-4, 2-S
definition • 2-S

macro
definition• 1-3, 1-7, 2-S, 6-3

MACR0-11 evaluation • 1-3, 3-1 , 3-2
SYSLIB.OLB {System Macro Library)• 1-8
System

directive • 1-7
library

contributions (in map)•~
task• 1-1

System library
macro (IASMAC.SML) • 1-7

System library (Cont.)

searching
macro·2~

macro (IASMAC.SML) • 1-7
object (SYSLIB.OLB) • 4-1

/SYSTEM_LIBRARY _DISPLAY qualifier
LINK command • 4-G

T
Task

abort •4-G
breakpoints

setting• ~5
building• 4-1, 7-5
correcting • 4-7
creating image • 1-4
debugging • 4-7, 7~. 7-7, 7~
default conditions • 4-4, 4-G
image •7-5

creating• 4-1, 4-2, 7-5
macro calls • 6-3
map •4-4

full• 4-G
standard• 4-4, 4-5

object library routines• 6-5
running• 4-G, 7~
SST •4-G
system• 1-1

library contributions • 4-G
termination • 4-G
transfer (starting) address

default• 4-2, 4-G
defining • 2-8

Task Builder
See TKB command

/TASK qualifier
LINK command • 6--6, 6-7

Terminal
examining a listing • 3-5, 3~
output

controlling • 3~
type• 1-9

Text
buffer• 1-2
editor • 1-2, 1-3

See also EDI editor, EDT editor
.TITLE directive• 2--3, 6--6
TKB • 1-4, 4-1

See also LINK command

TKB (Cont.)

creating task = 1-4
cross-reference listing • 4-5
error• 4-2, 4-7
error messages • 4-2
generating

cross-reference listing • 4-4, 4-5
map

full •4-G
standard·~

including ODT in task• ~1
input• 1-4
object library

designation • 6-4
use • 6-7, 6-8

output• 1-4
search of system library

default • 1-8
switches

/CR· 1~. 4-5
/DA·~1

/LB• 6--6, 6-7, 6-8, 7-7
/MA •4-G
/SH •4-G

symbol
undefined• 4-2

transfer (starting) address
default • 4-2

TKTN
abort message • 4-7

Transfer (starting) address
defining • 2~
system treatment of default• 4-2, 4-G

Trap

See SST
TSK file type • 4-1
TYPE command • 3-5, 4-5, 7-3

EDI editor• 2-12, 2-13, 2-16

u
Underline (_) prompt
ODT·~2

Utility programs· 1~

v

Index

lndex-9

Index

VMLIB.OLB (Virtual memory management library) •
1-8

x
X command

ODT•S-7

lndex-10

IAS
Guide to Program Development

AA-PAXVA-TC

Reader's
Comments

This form is for document comments only. Digital will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible
to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for

improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user /reader that you most nearly represent:

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other(~ease specify)~~~~~~~~~~~~--------~--

Organization ________________________________ _

Stree.__ __________________________________ _

City __________________ State ______ Zip Code, _____ _

or Country

I
----------------- I>•• :'l<•I Tear - h>ld Here and Tape --------.-.--.-.--..--------------!

BUSINESS REPLY MAIL
PER~ ... 11T NO 33 M/\YN.6.RD MASS

POSTAGE WILL BE PAID BY ADDRESSEE

I AS Engineering/Documentation
Digital Equipment Corporation
5 Wentworth Drive GSF /L20
Hudson, NH 03051-4929

lll11111ll.ll,,,,1,1 •••• 111.1,.1.1 ••• 1.,11,1 •• 11.,,1

No Postage

Necessary

11 Mailed 1n the

United States

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

--------------------- llt> ''" h·ar h•hl lkn· --------------------- I
I
I
I
I
I

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	replyA
	replyB

