
lAS Indirect Command Processor
Manual

Order Number: AA-PAXUA-TC

Operating System and Version: lAS Version 3.4

May 1990

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such license.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(i)(ii) of the Rights in Technicai Data and Computer Software ciause at DFARS 252.227-70;3.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital
Equipment Corporation or its affiliated companies.

Copyright ©1990 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DDIF
DEC
o EC/CMS
DECIMMS
DECnet
DECUS
DECwindows
DECwrite
DIBOL

lAS
MASS BUS
PDP
PDT
RSTS
RSX
ULTRIX
UNIBUS
VAX

VAXC
VAXcluster
VAXstation
VMS
VR150/160
VT

This document was prepared using VAX DOCUMENT, Version 1.2

Contents

PREFACE vii

CHAPTER 1 INTRODUCTION TO INDIRECT 1-1

1.1 INDIRECT COMMAND PROCESSING 1-1

1.2 SUBSTITUTION MODE 1-1

1.3 WRITING PROGRAMS WITH INDIRECT 1-2
1.3.1 Directives 1-2
1.3.2 Special Symbols 1-3
1.3.3 Labels 1-3

1.4 EXPLANATION OF THE COMMAND FILE 1-4

1.5 EXAMPLES 1-5

CHAPTER 2 THE INDIRECT COMMAND PROCESSOR (REFERENCE

2.1

2.2

2.3

2.4

SECTION) 2-1

INDIRECT COMMAND FILES
2.1.1 Indirect Task Command Files
2.1.2 Indirect MCR Command Files

THE INDIRECT COMMAND PROCESSOR

SUMMARY OF INDIRECT DIRECTIVES

SYMBOLS
2.4.1 Special Symbols

2.4.1.1 Special Logical Symbols -2-7
2.4.1.2 Special Numeric Symbols - 2-8

2-1
2-1
2-2

2-2

2-4

2-6
2-7

iii

Contents

2.4.2 Numeric Symbols and Expressions 2-9
2.4.3 String Symbols, Substrings, and Expressions 2-10
2.4.4 Logical Symbols and Expressions 2-11
2.4.5 Reserved Symbols 2-12
2.4.6 Symbol Value Substitution 2-12

2.5 SWITCHES 2-13

2.6 DESCRIPTION OF INDIRECT DIRECTIVES 2-14
.LABEL: 2-15
.ASK 2-16
.ASKN 2-18
.ASKS 2-21
.CHAIN 2-23
.CLOSE 2-24
.DATA 2-25
.DEC 2-27
.DELAY 2-28
.DISABLE 2-29
.ENABLE 2-30
.EXIT 2-33
.GOSUB 2-34
.GOTO 2-35
.IF 2-36
.lFACT/.lFNACT 2-38
.lFDEV/.lFNDEV 2-39
.lFDFIIFNDF 2-41
.IFFILEI.iFNFILE 2-42
.lFINS/.lFNINS 2-44
.lFLOAl.lFNLOA 2-45
.lFMOU/.lFNMOU 2-46
.lFPAR/.lFNPAR 2-47
.lFT/.lFF 2-48
.lFREADY I.lFNREADY 2-49
.INC 2-51

2-52
.ONERR 2-53
.ONFAIL 2-56
.OPEN 2-58
.OPENA 2-59
.OPENR 2-60
.PARSE 2-61
.PAUSE 2-62
.READ 2-63
.RETURN 2-64
.SEARCH 2-65
.SETT/.SETF 2-66
.SETN 2-67
.SETS 2-68
.TASK 2-71

Iv

2.7

.TEST

.WAIT

.XQT

2-72
2-75
2-76

EXAMPLES
2.7.1
2.7.2
2.7.3

2.7.4

Using an Indirect Command File
Asking for a Device Specification
Initializing and Mounting a Volume, and Copying Files to
That Volume
Editing, Purging, Printing, and Formatting Files

APPENDIX A INDIRECT MESSAGES

A.1

A.2

INDEX

TABLES
2-1

INFORMATION-ONLY MESSAGES

ERROR MESSAGES

Indirect Switches

Contents

2-n
2-n
2-n

2-78
2-79

A-1

A-1

A-1

2-13

v

Preface

Manual Objectives
The lAS Indirect Command Processor Manual describes Indirect, the task used to run indirect
MeR command files and to perform other programming and system-control functions. The manual
discusses the different kinds of indirect command files and their uses, and describes Indirect's
directives and special symbols and how to use them.

Intended Audience
This manual is intended for anyone who is interested in learning about the Indirect Command
Processor and how to use it.

Document Structure
Chapter 1 is an introduction to Indirect. It explains what Indirect is and gives an overview of the
various features of Indirect. Examples at the end of the chapter illustrate different ways in which
to use Indirect.

Chapter 2 is a reference section on Indirect. It explains in more detail the functions of Indirect and
its directives and symbols. More examples appear at the end of this chapter.

Appendix A lists and explains all of the Indirect messages.

Associated Documents
The lAS MCR Operations Manual supplements this manual in the following ways:

• It gives more detail about the way the system operates.

• It describes the commands mentioned in this manual.

Documentation Conventions
Convention Meaning

The vertical ellipsis shows where elements of command input have been omitted because they
are not relevant to the point being discussed or where elements of command point are being
discussed.

[parameter] Any command parameter enclosed in square brackets is optional. If the brackets include
syntactical elements, such as periods (.) or slashes (I), those elements are required for the
parameter. If the parameter appears in lowercase, you are to substitute a valid command
element if you include the parameter.

vii

Preface

Convention

[g,m]

UPPERCASE

lowercase

Iswitch

parameter

filespec

I CTRUa I

viii

Meaning

This signifies a User Identification Code (UIC). The g is a group number and m is a member
number. The UIC identifies a user and is used mainly for controlling access to files and privileged
system functions.

This sometimes also signifies a User File Directory (UFO), commonly called a directory. Where
a directory name is required, only one set of brackets is shown, as in [g,m]. Where the directory
is optional, two sets of brackets are shown, as in [[g,m]]. Other notations for directories are
[ggg,mmm], [gggmmm], [ufd] , [name], and [directory].

Any command paiametei in uppeicase indicates the valid fCim of the command. If you tipe it in
that form, it will work as described.

Any command parameter in lowercase is to be substituted for. Usually, the lowercase word
identifies the kind of substitution expected, such as filespec, which indicates that you should fill in
a file specification.

Switches alter the action of the directive to which they are attached.

Required command fields are generally called parameters. The most common parameters are
file specifications.

A full file specification includes device, directory, file name, file type, and version number, as in
this example:

DL2 : [46, 63] IND lRECT • TXT; 3 Full file specifications are rarely needed. If you do not provide
a version number, the highest numbered version is used. If you do not provide a directory, the
default directory is used. Some system functions default to particular file types.

A rectangular symbol with a 2- to 6-character abbreviation indicates that you are to press the
corresponding key on your terminal. For example, IRETI indicates that you are to press the
RETURN key and IDELI means that you are to press the DELETE key.

The rectuangular symbol CTRUa means that you are to press the key marked CTRL while
pressing another key. Thus, CTRUZ indicates that you are to press the CTRL key and the Z key
simultaneously. I CTRUZ I is echoed on your terminal as "Z, but not all control characters echo.

1 Introduction to Indirect

'What is Indirect? Indirect is a command processor that saves you time and energy by doing a lot
of work on the system for you. It also reduces the frustration that results from inevitable typing
mistakes.

'Why is it called "Indirect"? Because it changes the way you interact with the system from one of
immediate user action/system reaction - you type out and enter a command, the system executes
it and waits for another one - to an indirect interaction between you and the system. The Indirect
Command Processor allows you to put the commands in a file and tell the system to execute them
while you do something else. Instead of entering commands directly to the system, you provide an
indirect reference to the file that has all the commands in it.

Indirect also has its own directives and symbols with which you can create programs to do a
variety of tasks. Indirect runs from a logged-in terminal and always runs at the same priority.

The following sections describe more about Indirect.

1.1 Indirect Command Processing
You create a file and put the MCR commands you want to execute into the file in the order you
want them processed. To execute this command file, type an at sign (@) and the name of the file.
Then Indirect and MCR do all the work.

For example, the command file EXAMPLE.CMD contains the following MCR command lines:

TIME
PIP WORKLIST.TSK;*/LI
RUN WORKLIST
QUE WORKLIST.MAP,WORKLIST.LST
TIME

To execute this command file, type the following command line:

MeR> @EXAMPLE ~

Indirect (invoked by the at sign) reads the command lines in the file one line at a time, waiting
until each command has been executed before going on to the next one.

Use an editor (such as EDT) to create your command file. Because Indirect looks for CMD file
types by default, you should create your file with this file type. If you name it something else, you
must specify the different file type when you execute the file.

Indirect accepts input in both uppercase and lowercase characters. 'When it prompts you for
information, it displays the question exactly as it was put into the file.

1.2 Substitution Mode
You may need to change indirect command files often to make them do exactly what you want to
do each time. For example, you might use a command file to do a backup procedure, but find that
you have to edit the file to change the name of the device drive or its unit number. For such cases,
Indirect has substitution mode.

1-1

Introduction to Indirect

Substitution mode allows you to place a special word - called a symbol - in the command line.
When you run the command file, it will ask you (through a special Indirect command line you
include in the file) for the information that is to be substituted for the symbol. An Indirect directi,
(or command), .ENABLE SUBSTITUTION, allows you to use substitution mode.

The following command file shows substitution mode being used:

.ENABLE SUBSTITUTION

.ASKS DEVICE Device to mount?
MOUNT 'DEVICE'

These command Tines (which can be part of a larger command file) perform the following actions:
they enable substitution mode, ask you which device is going to be mounted (DEVICE), and then
mount that device. The apostrophes around DEVICE tell Indirect to take your answer to the
system's question and substitute that value for DEVICE before it processes the command line.
When you run the file, this is what you see on your terminal:

>* Device to mount? [S]: DUl: ~
>MOUNT DUl:

When you see "* Device to mount? [S]:" prompting you on your terminal, type in the name of
the device to be mounted and then press the RETURN key. After you have answered the question,
Indirect displays the MOUNT command line on your terminal, with the specific device name
substituted for 'DEVICE,' and the system mounts the device.

For MeR commands and for questions displayed by the .ASKx directives, the first character
displayed is the right angle bracket (>).

The asterisk (*) at the beginning of the line indicates that the question is being asked by Indirec
.ASKS means "ask for a string," so the "[S]:" at the end of the question indicates that Indirect
expects a string answer, that is, an answer containing a string of alphabetic and/or numeric
characters. Indirect also accepts other types of answers, depending on the question being asked.

When the command file is executed, Indirect substitutes your answer to the question (DUl:) for
the symbol 'DEVICE' in the MOUNT command line following the question. That is why you see
"MOUNT DUl:" displayed on your terminal instead of ''MOUNT 'DEVICE'." Using substitution
mode lets you name any device with your command file.

1.3 Writing Programs with Indirect

1.3.1

Many common programming techniques are available in Indirect. These techniques include
looping, counters, variables, arithmetic and logical operations, and testing system conditions.
The techniques are performed through the use of Indirect directives, symbols, and labels.

Directives
.ENABLE SUBSTITUTION and .ASKS are only two of the many Indirect directives. This chaptE:
will not describe all of the directives, but will acquaint you with a few that you are most likely t~
use and to use frequently. The .ASKS directive has two comparion directives, .~A...sK (for true/fals
- or logical- questions) and .ASKN (for numeric questions). You can use .ENABLE and its
companion directive, .DISABLE, to set and change several other modes in Indirect.

All Indirect directives begin with a period, except for the logical end-of-file directive, which is a
slash (/).

1-2

1.3.2

1.3.3

Introduction to Indirect

For a complete list of the directives, see Chapter 2.

Special Symbols
Indirect has special symbols that it defines automatically. The symbols are dependent upon specific
system characteristics and the replies to queries given during command file execution. Special
symbols can be compared, tested, or substituted and are of three types: logical, numeric, or string.
All special symbols have a common format: angle brackets «» enclose the special symbol name.

For a complete list of the special symbols, see Chapter 2.

Labels
You can also use labels in command files. Labels allow you to organize your file more coherently
and to jump to other lines in the file, depending on the results of conditional statements. For
example, the following command file asks for the values of two variables and then compares them .

. ENABLE SUBSTITUTION

.ASKN A Enter value for A

.ASKN B Enter value for B

.IF A > B .GOTO TEST2

.EXIT
.TEST2: .SETN A B

Depending on the result of the comparison (performed by the .IF directive), the command file either
exits (.EXIT) or proceeds to the section of the file labeled .TEST2:.

Notice that the label begins in the first column of the command file while the directives begin in
the ninth column (one tab stop over). Formatting your command files in this way makes them
consistent and easy to read.

Labels are one to six characters in length, begin with a period (.), and end with a colon (:). (The
period and colon are not included in the six characters.) When you use labels in command lines
within the command file, however, you only need to use the name; you do not need to include the
period and colon. The .GOTO directive allows you to go to the different sections of the file marked
by different labels.

The .IF and .SET directives, like .ASKS, have companion directives. The other .IF directives allow
you to make tests for certain specific conditions. The other .sET directives allow you to set values
as true, false, logical, numeric, string, octal, or decimal.

The following command file uses one of the other .sET directives, .SETS, and also the .ENABLE
and .GOTO directives. A more detailed explanation follows the text of the file .

• i The following file prints a message on the terminal,
.i depending on the time of day .
. ENABLE SUBSTITUTION
.SETS TIME "'<TIME>'"
.i <TIME> has the format hh:mm:ss .
. SETS SAYING TlME[8.:8.]
.i Sets SAYING equal to last digit of <TIME> (l's column
oi for seconds) 0

.GOTO 'SAYING'OO
oi Makes a label based on the second <TIME> is checked.

1-3

Introduction to Indirect

.000:

.100:

.200:

.300:

.400:

.500:

.600:

.700:

.800:

.900:

.END:

What else can go wrong?
.GOTO END

Bicycles don't have doors .
. GOTO END

Ours is not to reason why .
. GOTO END

Where were YOU when the lights went out?
.GOTO END

Why are you here?
.GOTO END

Everything is relative .
. GOTO END

It will be a good experience for you!
.GOTO END

Don't panic .
. GOTO END

One lousy driver can ruin your whole day .
. GOTO END

Curiosity killed the cat .
. GOTO END

.EXIT

1.4 Explanation of the Command File
In addition to the directives and special symbol, this command file illustrates other features of
Indirect. The first feature is the use of comments. Comments can be used to describe what thE
file is supposed to do, and to explain what the command lines do or to give additional informati
about them. Comments that begin with a period and semicolon (.;) do not display on the termir
when the file is executed. Comments that begin with only a semicolon (;) display.

This file, as the introductory comment explains, displays a message on the terminal when the f
is run. The message displayed depends when the file is executed.

When the file begins to execute, substitution mode is enabled and the symbol TIME is set with
.SETS directive to be equal to the contents of the special symbol <TIME>. <TIME> contains tb
current time in the fonnat hh:mm:ss. The second .sETS command line sets the symbol SAYINj
to be equal to the last digit contained in <TIME>. The range [8.:8.] tells Indirect to look for th
last character in the string of eight characters; in other words, the second digit of seconds (ss).
example, if <TIME> contains 11:37:56, the symbol SAYING is set to 6. That means that Indire
will display the message:

It will be a good experience for you!

The .GOTO command line creates a label, using the second from <TIME>, so that Indirect will
know which label to go to and which message to display. (In the above example, Indirect brancl
to label .600:.) The remainder of the file lists the labels and the messages to be displayed, and
then branches to the .END: label after the message has been displayed. In that way, Indirect g

1-4

Introduction to Indirect

directly to the end of the file and exits (.EXIT) without first displaying any messages following the
one that was displayed.

The following examples will give you more of an idea of the usefulness and versatility of Indirect.
A brief commentary follows each example. For more information on Indirect (directives, symbols,
switches, and so on), see Chapter 2.

1.5 Examples
An explanation of the example follows each one.

• The following MCR command file prepares a new diskette for use on your system:

; Place the new diskette in one of the drives before
; answering the question .
. ENABLE SUBSTITUTION
; Diskette drives are named DU1: and DU2: .
. ASKS DISK Which diskette drive
; Labels can have up to 12 letters and numbers .
. ASKS LABEL What label do you want
MOUNT'DISK'/FOR/ATCH
BAD 'DISK'
INITIALIZE 'DISK' 'LABEL'
DMO 'DISK'
MOUNT 'DISK' 'LABEL'
; Diskette in 'DISK' is ready for use.

In this file, you instruct the system to tell you to place the new diskette in the drive that you
will be using. To have the system display this kind of information, include comments beginning
with a semicolon (;) at the appropriate places in the command file. Comments that begin with
a semicolon are always displayed. Comments that begin with a period and a semicolon (.;) are
not displayed.

The first command line in the file enables substitution mode. When you enable substitution
mode, Indirect can substitute the value of a symbol in a command line or directive statement.
The next line displays information about the diskette drives on the system. The .ASKS
command line asks you which drive you will be using. In this example, you name the drive
with the new diskette in it. Once you have answered the question, Indirect substitutes the
name of the drive you specified wherever 'DISK' appears in a command line. (Remember that
the apostrophes are required for the substitution operation to take place.) Although Indirect
allows you to check for correct syntax, this sample command file does not take advantage of
that option.

The next line displays information about labels, and the succeeding .ASKS command line
asks you for the label of the diskette. The label is an identifier for the diskette volume and a
password for using the diskette. No one can mount the diskette without knowing the label.

The MOUNT command mounts the diskette so that the system can work with it. The
/FOREIGN qualifier is used because the volume is not yet formatted properly for use on an
lAS system.

The BAD command line tells the system to look for bad blocks on the diskette. Bad blocks are
areas on the diskette volume that cannot be used for reading or writing data. If the system
determines beforehand where the bad blocks are, it can avoid them during read and write
operations to the diskette.

1-5

Introduction to Indirect

The INITIALIZE command writes a new file structure on the diskette so that the diskette is
in FILES-11 format. FILES-l1 is the standard lAS format for disk volumes. The DMO and
second MOUNT commands are necessary after the diskette has been initialized because they
infonn the system that it can now treat the diskette as a standard FILES-1! volume.

The last line of the command file displays the statement that the specified diskette is now
ready for you to use.

• The following command file can help you delete unnecessary files from your directory:

.ENABLE SUBSTITUTION
.BEGIN:

.ASKS FILE Which file?
PIP TI: = 'FILE'
.ASK DEL Delete this file
.IFT DEL PIP 'FILE';*
.GOTO BEGIN

With this file, substitution mode is enabled and Indirect asks for the name of a file to be
deleted. However, before the file is deleted, PIP displays the file on the terminal and Indirect
asks whether the file should be deleted. This verification ensures that you do not delete a file
that you really want to keep.

If you answer "Yes" (Y) to the question, PIP deletes the file. After the file is deleted, Indirect
loops back up to the beginning and asks for the name of the next file to be deleted. If you have
no more files to be deleted, press CTRUZ in response to the "* Which file?" question.

• The following command file gets information about the system, your account, and your
terminal, and writes the information into another file:

1-6

.ENABLE SUBSTITUTION

.OPEN INFO.DAT

.ENABLE DATA
'<DATE>'
, <TIME>'
, <Ule>'
'<SYDISK>"<SYUNIT>'
.DISABLE DATA
. CLOSE INFO. D.fl.T
PIP Tl: = INFO.DAT

This is today"s date.
This is the current time.
This is your current UlC.

! This is your login device.

With this file, substitution mode is enabled, a new file called INFO.DAT is opened so that the
infonnation can be written into it (if the file already exists, Indirect will create a new version),
and then data mode is enabled. Data mode allows several lines of text to be written into a file.

Next, Indirect gets the contents of the various special symbols and writes the information into
INFO.DAT. After the last symbol is read, data mode is disabled, and INFO.DAT is closed and
then displayed on the terminal. For example:

MCR> @ INFORM ~
MCR> PIP Tl: = INFO.DAT
14-JUL-87
10:14:37
[303,23]

DUO
MeR>
MCR>

This is
This is
This is
This is

today'~ date.
the current time.
your current UIC.
your login device.

Introduction to Indirect

AB you can see, the appropriate information has been written into the new file.

NOTE: In the command file, there are two apostrophes in "today"s," but only one
apostrophe appears in the display. When substitution mode is enabled, you must
use two apostrophes in any comments so that the text that contains one apostrophe
shows up correctly. When you use only one apostrophe, Indirect assumes the text
following the apostrophe to be a string symbol. See Chapter 2 for more information.

1-7

2 The Indirect Command Processor (Reference Section)

This chapter describes indirect command files and the Indirect Command Processor (Indirect).
Also included are descriptions of the processor directives and symbols that control the execution of
Indirect.

2.1 Indirect Command Files

2.1.1

Indirect command files can be used to execute many different things-from simple tasks to complex
system-control and programming functions.

Indirect command files are of two different types:

• Indirect task command files

• Indirect MCR command files

Sections 2.1.1 and 2.1.2 describe these files.

Indirect Task Command Files
An indirect task command file is a text file containing a list of task-specific command lines. Rather
than typing and retyping a commonly used sequence of commands and responding to the task's
prompts, you can type the sequence once, store it in a file, and direct the task to read the file for
its commands. Tasks respond to command lines contained in an indirect command file as if they
were entered directly from the terminal. Most system-supplied tasks on the lAS operating system,
such as MACRO-II or the Task Builder, accept indirect task command files.

To initiate indirect task command files, replace the command line for a task with a file specification
for the command file, preceded by an at sign (@). The task requesting input then accesses the
specified file and starts to read and respond to the command lines contained within it. For
example, to initiate a file of MACRO-II command lines from MCR, type the following:

MCR>MAC @INPUT.CMD ~

The MACRO-II Relocatable Assembler accesses the file INPUT.CMD and executes the command
lines contained in it.

The default file type for indirect task command files is CMD. Thus, the command line in the
previous example could also be input as follows:

MCR>MAC @INPUT ~

Some tasks use nested command files (one file invokes another). See the appropriate task
documentation for the maximum nesting depth permissible.

Note that indirect task command files can contain valid task-specific command lines only. The
Indirect directives (which are described later in this chapter) cannot be used for such command
files.

2-1

2.1.2

The Indirect Command Processor (Reference Section)

Indirect MCR Command Files
An indirect MCR command file is a text file containing MCR command lines and special directive
that enable you to control command file processing. The Indirect Command Processor (which
usually runs under the task name .. AT.) reads the indirect command file, interprets the directive:
and passes the MCR commands to MCR.

For example, an indirect command file could contain the following command lines:

.ENABLE SUBSTITUTION

.ASKS COMMAN Enter file to delete
PIP 'COMMAN' ;O/DE/LD

With this file, Indirect processes the first two command lines and PIP does the following:

• Deletes the current version of the specified file

• Displays its action

To initiate an indirect command file, type in the file specification preceded by an at sign (@). For
example:

MCR> @COMMANDS. CMD [§!]

The default file type for indirect MCR command files is also CMD. Thus, the command line in thE
previous example could also be input as follows:

MCR> @COMMANDS B

Indirect MCR command files can also be nested. To illustrate1 a nesting level of four means that
you can run one command file, which can run another file, which can run a third file, which can
run a fourth file.

For example, the following command file executes an MCR command line and then invokes anoth~
command file (COOKIE.CMD). Vlhen Indirect is finished with COOKIE.CMD, it returns to the fir:
file, which executes more MCR commands.

TER TI: /VTIOO
@COOKIE
DEV
DEV/LOG
TIME

For MCR commands and for questions displayed by the .ASKx directives, the first character
displayed is the right angle bracket (>).

The Indirect directives described in Section 2.6 can be used in indirect MCR command files. All
further references in this chapter to indirect command files apply to indirect MeR command files.

2.2 The Indirect Command Processor
When processing an indirect command file, Indirect first reads the command file and interprets
each command line either as a command to be passed directly to MCR or as a request for action 1
Indirect. The directives for Indirect are distinguished by a period (.) as their beginning charactel

The Indirect directives enable you to perform the following functions:

• Define and assign values to logical, numeric, and string symbols (see Section 2.4 for more
information on symbols)

• Substitute a symbols's value into any line of the command file

2-2

The Indirect Command Processor (Reference Section)

• Perform arithmetic symbol operations

• Manipulate strings

• Display teA-t on the user's tenninal

• Ask questions of a user

• Control the sequence of execution of a command file

• Call subroutines

• Detect error conditions

• Test symbols and conditions

• Crea te and access data files

• Parse commands and data

• Enable or disable any of several operating modes

• Control time-based and parallel task execution

• Expand logical name assignments

These functions are described throughout Section 2.6.

When you define a symbol, Indirect creates an entry for the definition in an internal symbol table.
Normally, symbol table entries retain their definitions under the following conditions:

• If defined locally, throughout the execution of the command file.

• If defined globally, throughout the execution of all levels of nested command files (a dollar sign
($) at the beginning of the symbol indicates a global symbol).

One Indirect directive, .ENABLE GLOBAL (see the .ENABLE directive), and a switch, !La (see
Section 2.5), allow the definition of some symbols as global to all file levels. If symbols are not
global, each time Indirect enters a deeper level, it masks out of the symbol table all symbols
defined by the previous level so that only the symbols defined in the current level are available
for use by that level. When control returns to a previous level, the symbols defined in that level
become available once again and the ones from the lower level or levels are lost.

When Indirect reaches the end of the highest-level indirect command file, it displays the message

@ EOF

and then exits. (The message is not displayed if the .DISABLE DISPLAY directive is in effect.)

Indirect displays on the requesting terminal every MCR command line as it is executed. However,
if Indirect is activated by @filenameINOMCR, the MCR command lines are displayed but not
executed. (See Section 2.5 for information on the I[NO]MCR switch.)

A command file can also include comments. Comments can be placed at different locations in the
file and require different preceding characters depending on how you want Indirect and the MeR
to treat them. Following are the three formats for comments:

;comment

!comment

.;comment

Comments at beginning of line to be displayed by the MCR

Comments after the start of a MCR command line

Comments that are not displayed

NOTE: Command and comment lines are not displayed if .ENABLE QUIET is in effect.

2-3

The Indirect Command Processor (Reference Section)

References to task names in an indirect command file follow the rules used for MCR. If the task
was started as an external MCR task (for example, MAC, PIP, DMO), it can be referenced by its
full 6-character name (. .. xxx or $$$xxx).

2.3 Summary of Indirect Directives
The Indirect directives described later in this chapter are listed here by category. A detailed
description of each directive is given in alphabetical order in Section 2.6.

Category

Label Definition

.Iabel:

Symbol Definition

.ASK

. ASKN

. ASKS

. SETT

.SETF

. SETN

. SETS

File Access

.CHAIN

. CLOSE

. DATA

. OPEN

.OPENA

.OPENR

. PARSE

. READ

. SEARCH

. TASK

2-4

Function

Assigns a name to a line in the command file so the line can be referenced elsewher
within the file by a .GOTO or .GOSUB directive.

Prompts for user input to define or redefine a logical symbol and assign the symbol s
true or false value .

Prompts for user input to define or redefine a numeric symbol and assign the symbol
numeric value .

Prompts for user input to define or redefine a string symbol and assign the symbol a
character string value.

Defines or redefines a logical symbol and assigns the symbol a true or false value .

Defines or redefines a numeric symbol and assigns the symbol a numeric value .

Defines or redefines a string symbol and assigns the symbol a character string value .

Closes the current indirect command file and begins executing commands from anot~
file .

Closes a user data file .

Specifies a single line of data to be output to a data file that is already open .

Creates and opens an output data file. (If the file exists, creates a new version and
opens it.)

Opens an existing data file and appends subsequent text to it (but does not create a
new version). Defaults to .OPEN if the file does not exist.

Opens a data file for reading with the .READ directive .

Parses (divides) strings into substrings.

Reads a line from a file into a specified string variable .

Determines the position of a substring within a given string .

Opens a task image file and reads task image size from label block .

Category

Logical Control

.EXIT

. GOSUB

. GOTO

/

. ONERR

. ONFAIL

.RETURN

Logical Tests

.IF

. IFACT

.IFNACT

.IFDEV

.lFNDEV

.IFDF

.IFNDF

.IFFILE

. IFNFILE

.IFINS

.IFNINS

. IFLOA

.I FN LOA

.IFMOU

.IFNMOU

.lFREADY

. IFNREADY

. IFT

.IFF

. TEST

The Indirect Command Processor (Reference Section)

Function

Terminates processing of either indirect or the current command fHe, returns control to
the invoking terminal or to the previous Indirect file level, and optionally sets the value
for the special symbol EXSTAT.

Calls a subroutine within the command file .

Branches to a label within the command file .

Defines logical end-of-file. Terminates file processing and exits. This directive is
equivalent to the .STOP directive. It is the only directive that does not begin with a
period and does not consist of alphabetic characters.

Branches to a label upon detecting a specific Indirect error condition .

Branches to a label upon detecting an error return status from MCR commands .

Effects an exit from a subroutine and returns to the line immediately following the
subroutine call.

Determines whether or not a symbol satisfies a condition .

Determines whether or not a task is active .

Tests whether or not a PUD exists for a device in the system .

Determines whether or not a symbol is defined .

Determines whether or not a file exists .

Determines whether or not a task is installed in the system .

Determines whether or not a device handler is loaded .

Tests whether or not a device is mounted .

Determines whether or not a disk is online .

Determines whether a logical symbol is true or false .

Tests the length of a string symbol or locates a substring .

2-5

The Indirect Command Processor (Reference Section)

Category

Enable or Disable an
Operating Mode

.ENABLE

. DISABLE

Increment or
Decrement Numeric
Symbols

. DEC

. INC

Execution Control

. DELAY

. PAUSE

.WAIT

.XQT

2.4 Symbols

Function

Enables or disables control of the following modes:

Substitution (SUBSTITUTION)
Statistics (STATISTICS)
Output of data to data files (DATA)
Global symbols (GLOBAL)
Symboi radix (DECiMAL)
Command line echo (QUIET)
Field display (DISPLAY)
Case sensitivity (LOWERCASE)
Passing commands to MCR (MCR)
Command-display (UST)
Collecting direct-access labels in a table (LRU)
Providing time stamp with MCR> prompts (TIME)
Escape recognition (ESCAPE)

Decrements the value of a numeric symbol by 1 .

Increments the value of a numeric symbol by 1 .

Delays the execution of an indirect command file for a specified period of time .

Temporarily suspends the execution of an indirect command file to enable user action .

Waits for a specified task to complete execution and sets the special symbol EXSTAT
with the completed task's exit status.

initiates a task, passes a command line to it, and continues Indirect processing without
waiting for the task to complete.

Indirect enables you to define symbols. These symbols can then be tested or compared to control
flow through the indirect command file. Their values can also be inserted into MeR commands,
data records for data files, or comments to be displayed on the terminal.

Symbol names are ASCII strings from one to six characters in length. They must start with a
letter (A to Z) or a dollar sign ($). The remaining characters must be alphanumeric or a dollar
sign.

There are three symbol types:

• Logical

• Numeric

• String

A logical symbol has a value of either true or false.

2--6

2.4.1

The Indirect Command Processor (Reference Section)

A numeric symbol can have a numeric value in the range of 0 to 1777778 (65,53510)' The symbol
can be defined to have either a decimal or octal radix. The radix is relevant only when the symbol
is substituted (see Section 2.4.2).

A string symbol has as its value a string of ASCII characters. The string can be 0 to 13210

characters in length.

A symbol type (logical, numeric, or string) is defined by the first directive that assigns a value to
the symbol. Assignment directives can assign

• A true or false value to define a logical symbol (defined by ASK, .SETT, or .SETF)

• An octal or decimal number to define a numeric symbol (defined by .ASKN or .SETN)

• A character string to define a string symbol (defined by .ASKS, .READ, or .SETS)

Special Symbols
Indirect defines certain special symbols automatically. These symbols are dependent on specific
system characteristics and the replies to queries given during command file execution. Special
symbols can be compared, tested, or substituted, and can be one of three types: logical, numeric, or
string. All special symbols have a common format: angle brackets (<>) enclose the special symbol
name.

Sections 2.4.1.1 to 2.4.4 give brief descriptions of the special logical, numeric, and string symbols,
and discuss the use of numeric, string, and logical symbols and expressions. Section 2.4.5 explains
reserved symbols, and Section 2.4.6 discusses symbol-value substitution.

2.4.1.1 Special Logical Symbols
The special logical symbols are assigned a true or false value based on the following conditions:

Symbol Value

<ALPHAN> Set to true if last string entered in response to a .ASKS directive or tested with a .TEST directive
contains only alphanumeric characters. An empty string also sets ALPHAN to true.

<ALTMOD> Set to true if last question was answered with an ALTMODE or ESCAPE. Otherwise, ALTMOD is set
to false.

<DEFAUL> Set to true if the answer to the last query was defaulted (the RETURN key was pressed once) or a
timeout occurred.

<EOF> Set to true if the last .READ or .ASKx directive resulted in reading past the end of the file.
Otherwise, <EOF> is set to false.

<EOF> is also set to true if the last .TRANSLATE directive resulted in a final logical translation
assignment.

<ESCAPE> Set to true if last question was answered with an <ALTMODE> or <ESCAPE>. Otherwise,
<ESCAPE> is set to false. <ESCAPE> is a read-oniy symbol.

<FALSE> Logical constant used for comparisons with the .IF directive or as a default for the .ASK directive.

<lAS> Always TRUE on lAS systems.

<MAPPED> Always true on lAS systems.

<OCTAL> Set to true if the answer to the last .ASKN directive or the radix of the numeric symbol tested in the
last .TEST directive is octal, or if the last string tested with a .TEST directive contained all numeric
characters in the range 0 to 7.

2-7

The Indirect Command Processor (Reference Section)

Symbol Value

<RAD50> Set to true if the last string entered in response to a .ASKS directive or tested with a .TEST directive
contains only Radix-50 characters. Radix-50 characters are the uppercase alphanumeric characters
plus period (.) and dollar sign ($). A blank is not a Radix-50 character in this context. An empty
string also sets <RAD50> to true.

<RSX11 D> Always TRUE on lAS systems.

<TRUE> Logical constant used for comparisons with the .IF directive or as a default for the .ASK directive.

2.4.1.2 Special Numeric Symbols
The special numeric symbols are assigned the following values:

Symbol Value

<ERROR> Value of the exit status code returned by a task that has issued error messages.

< EXSTAT> Assigned the value of 0, 1,2,4, or 17, depending on the exit status from the last MCR command
line executed or from the last" .WAIT taskname" directive, where taskname was activated by the
.XQT directive. <EXSTAT> is modified at the completion of a synchronous MCR command line or at
the completion of a .WAIT directive. The .EXIT directive can also modify <EXSTAT>. The value is
returned from a task that has completed if the task exits with status. Otherwise, the value is returned
from the MCR. The values 0, 1, 2, 4, and 17 and their corresponding special symbols indicate:

O-WARNIN Warning

1-SUCCES

2-ERROR

4-SEVERE

17-NOSTAT

Success

Error

Severe error

The task could not return exit status.

<MEMSIZ> Assigned the value of the current system memory size in K words (K is 102410).

<SEVERE> Value of the exit status code returned by a task that has issued error messages.

<STRLEN> Assigned the length, in octal, of the string entered in response to the last .ASKS directive or the
string tested by the last .TEST directive. The symbol is also set when a command file is invoked.
<STRLEN> contains the octal number of variables used in the command line and as the result of a
.PARSE statement <STRLEN> contains the octal number of substrings produced by the directive

.)
<SUCCES>

<SYSTEM>

<SYUNIT>

<TSKTSZ>

<WARNIN>

<CLI>

<DATE>

<LlBUIC>

<NETUIC>

2-8

Value of the exit status code returned by a successfully executed task.

Assigned an octal number to represent the operating system on which Indirect is running. For an
lAS system, the value is always 3.

Assigned the unit number of the user's default device (SY).

Value returned by the .TASK directive that represents the size, in bytes, of a task image file.

Value of the exit status code returned by a task that has issued warning diagnostic messages.

Always assigned the acronym MCR.

Assigned the current date; format is dd-mmm-yy.

Assigned the UIC of the current nonprivileged task library; format is [ggg,mmm), where ggg is
the group number of the UIC and mmm is the member number of the UIC (leading zeros are not
included).

If the system has DECnet, assigned the UIC in which DECnet-related tasks are stored on the system
volume; format is [ggg,mmmj. <NETUIC> is used with <SYSUIC> and <UBUIC> to separate the
components of the system.

2.4.2

The Indirect Command Processor (Reference Section)

Symbol Value

<SYDISK> Assigned the device mnemonic (two letters) of the user's default device (SY); format is dd (for
example. DU).

<SYSUIC> Assigned the system UIC; format is [ggg,mmm].

<TIME> Assigned the current time; format is hh:mm:ss.

<UiC> Assigned the current UIC.

On lAS systems, <UIC> always contains your default UIC in the form [ggg,mmm].

<VERSN> Contains a string consisting of up to four ASCII characters that identifies the version number of the
system; format is n.n (for example, 3.4).

Numeric Symbols and Expressions
A numeric symbol is a string of digits representing a value in the range of 0 to 1777778 (0
to 65,53510), if immediately followed by a period or if decimal mode has been enabled. If an
arithmetic operation yields a result outside of this range, or one that crosses the boundaries, a
fatal error occurs and the following message displays:

AT. -- Numeric under- or overflow

A numeric symbol or constant can be combined with another numeric symbol or constant by a
logical or arithmetic operator to form a numeric expression. Arithmetic operators are used to add
(+), subtract (-), multiply (*), and divide (/). Logical operators are the inclusive OR (!), logical
AND (&), and NOT (#). Embedded spaces and tabs are not permitted in front of operators. If a
space precedes an operator, particuarly the plus sign (+), the operator does not function correctly.

Numeric expressions are evaluated from left to right unless parentheses are used to form
subexpressions, which are evaluated first. For example, the directive statements

.SETN Nl 2

.SETN N2 3

.SETN N3 Nl+N2*4

assign numeric symbol N3 the value 248, whereas the directive statements

.SETN Nl 2

.SETN N2 3

.SETN N3 Nl+(N2*4)

assign numeric symbol N3 the value 168.

Numeric expressions are permitted as second operands in numeric .IF and .SETN directives. They
are also permitted as range and default arguments in .ASKN and .ASKS directives. The .EXIT
directive enables numeric expressions to represent exit status.

Indirect associates a radix, either octal or decimal, with each numeric symbol. The radix of a
numeric symbol changes each time the symbol is assigned a new value. If you use a numeric
expression to assign a new value to a symbol and all operands in the expression are octal, then the
symbol is set to octal. If any operand in the expression is decimal, the symbol is set to decimal.
For example:

.SETN Nl 2 ! Nl is octal

.SETN N2 3. N2 is decimal

.SETN N3 Nl+3 ! N3 is octal

.SETN N3 Nl+3. N3 is decimal

.SETN N3 Nl+N2 ! N3 is decimal

2-9

2.4.3

The Indirect Command Processor (Reference Section)

You can also assign a new value to a symbol with the .ASKN directive.

The radix of a numeric symbol does not affect arithmetic operations or comparisons. The radix
is important only when substituting a numeric symbol into a string. If the radix of the symbol
is octal, the value of the symbol is substituted into the string as an octal number. If the radix is
decimal, the value is substituted as a decimal number. For example:

.SETN N1 10.
; N1 = 'N1'
.SETO N1
; N1 = 'N1'

N1 = 10 decimal
Displayed as ; N1
Make N1 octal
Displayed as ; N1

10

12

If you substitute a numeric symbol into a string and the substituted number is decimal, a period
(.) following the symbol name causes a trailing period to be included in the string (following the
substituted number). For example:

.SETN N1 10.
; N1 = 'N1'
; N1 = 'N1.'
.SETO N1
; N1 + 'Nl.'

N1 = decimal
Displayed as ; N1 = 10
Displayed as ; N1 10.

! Make N1 octal
! Displayed as ; N1 12

You can also force a numeric symbol to be substituted as an octal or decimal number by using a
substitution format control string. For example:

.SETN Nl 10.
; N1 = 'N1%D'
; N1 = 'N1%O'

Nl = 10 decimal
! Displayed as ; N1 = 10
! Displayed as ; N1 = 12

Octal is the default radix for symbols substituted using format control strings.

String Symbols, Substrings, and Expressions
A string constant is a string of any printable characters enclosed by quotation marks (n). When yOl
begin a string with a delimiter, you must end it with the same delimiter. You can also use empty
strings. The number of characters cannot exceed 8010. For example:

"ABCDEF"

String symbols can have the value of any string constant. The value is assigned by a .sETS or
.ASKS directive. For example, the directive statements

.SETS Sl

.SETS S2
"ABCDEF"
Sl

assign string symbol 82 the value of string symbol 81 (that is, ABCDEF).

A substring facilitates the extraction of a segment from the value of a string symbol. You can use
substrings only in second operands of .SETS, .IF, and .TEST directives (Format 2). For example,
the directive statements

.SETS Sl

.SETS S2
"ABCDEF"
Sl[1:3]

assign siring symbol 82 the value of string symbol 81 beginning at character one and ending at
character three (that is, ABC).

2-10

2.4.4

The Indirect Command Processor (Reference Section)

You can also use the syntax [n:*] to extract the characters from position n to the end of the string.
For example, the directive statements

.SETS S1 "ABCDEF"

.SETS S2 S1[3:*]

assign string symbol 82 the value CDEF.

You can combine a string constant, symbol, or substring with another string constant, symbol, or
substring by the string concatenation operator (+) to form a string expression.

String expressions are permitted as second operands in .sETS and .IF directives where the first
operand is a string symbol. For example, the directive statements

.SETS S1

.SETS S2

.SETS S3

"A"
"CDEF"
S1+"B"+S2[1:3]

assign string symbol 83 the value of the concatenation of string symbol S1, string constant "B,"
and the first three characters of string symbol S2 (that is, ABCDE).

Logical Symbols and Expressions
A logical symbol is a variable that has a value of true or false. A logical constant is one of the
following special symbols:

• <TRUE>

• <FALSE>

A logical symbol or constant can be combined with another logical symbol or constant by a logical
operator to form a logical expression. Logical operators are the inclusive OR (!), logical AND (&),
and NOT (#). Embedded spaces and tabs are not permitted in front of operators.

Logical expressions are evaluated from left to right unless parentheses are used to form
subexpressions, which are evaluated first. For example, the directive statement

. SETL TEST A! (B&C)

sets the logical symbol TEST to true if A is true or if both Band C are true.

Logical symbols can be directly assigned true or false values with the .8ETT and .SETF directives.
For example, the directive statement

.SETT Sl

sets the symbol S1 to true.

The .SETL directive uses logical operators to evaluate an expression and then sets a logical symbol
to true or false. For example, the directive statement

.SETL SAMPLE EXA&EXB

sets the logical symbol SAMPLE to true if both EXA and EXB are true.

By using the .ASK directive, logical symbols can also be set to true or false, depending on user
input. The .ASK directive displays a question on the terminal, waits for a reply, and then sets a
specified logical symbol to true or false, depending on the reply. For example:

.ASK DISPLY Do you want to display the file?

displays the following question on the terminal:

2-11

2.4.5

2.4.6

The Indirect Command Processor (Reference Section)

* Do you want to display the file? [YiN]

The symbol DISPLY is set to true or false after you type Y or N or press the RETURN key or the
ESCAPE key (if escape recognition is enabled).

Logical operators used in an arithmetic expression affect the specified logical operation on the
numeric operand or operands on a bit-by-bit basis. For example:

.SETN N1 146314

.SETN N2 125252

.SETN N3 N1!N2
; N3 = :N3:

.SETN N4 #N1
; N4 = 'N4'

Reserved Symbols

Binary pattern 1100110011001100
Binary pattern 1010101010101010
Inclusive OR operator
Displayed as : N3 = 167356, which is
binary pattern 1110111011101110
NOT operator
Displayed as ; N4 = 31463, which is
binary pattern 0011001100110011

Parameters for a command file can be passed to Indirect for processing. (This is not true for
a .CHAIN command line, however.) The parameters are stored in the following reserved local
symbols:

PO,Pl,P2,P3,P4,P5,P6,P7,P8,P9,CO~

The symbol CO~ contains everything in the issuing command line, including the specificatiOl
for the command file.

The symbols PO to P9 contain individual elements of the command line. The elements are
delimited by a single space or tab character in between each one. Two delimiting characters
between elements represent a null parameter. (See the description of the .PARSE directive for an
example of this behavior.)

With the .GOSUB directive, any parameters to the right of the label and to the left of a comment
are transferred to the symbol CO~. The value of CO~ can then be parsed to obtain
formal call parameters.

Symbol Value Substitution
Substitution can occur in any line. Indirect uses the values assigned to logical, numeric, string,
or special symbols by replacing a normal parameter (for example, a device unit) with the symbol
name enclosed in apostrophes (for example, 'DEVICE'). When a previous directive has enabled
substitution mode (.ENABLE SUBSTITUTION), Indirect replaces the symbol name enclosed in
apostrophes with the value assigned to the symbol.

When Indirect encounters an apostrophe, it treats the subsequent text, up to a second apostrophe,
as a symbol name. Indirect then searches the table of symbols for the corresponding symbol and
substitutes the value of the symbol in place of the symbol name and surrounding delimiters in thE
command line.

The first three lines in the following example appear in an indirect command file. 'When Indirect
executes these lines, it displays the last two lines at the entering terminal.

2-12

The Indirect Command Processor (Reference Section)

.ENABLE SUBSTITUTION

.ASKS DEVICE Device to mount?
MOUNT 'DEVICE'

>* Device to mount? [S]: DOl: ~
>MOUNT DU1:

DUl: was entered in response to the displayed question. This reply assigned the string value DUl:
to string symbol DEVICE. Then, when Indirect read

MOUNT 'DEVICE'

it substituted for 'DEVICE' the value assigned to DEVICE (that is, DUl:). If substitution mode
had not been enabled, Indirect would simply have passed the line to the MCR as it appeared in the
command file (that is, MOUNT 'DEVICE'). '

To include an apostrophe as text within a command line rather than as the start of a symbol, you
must replace the single apostrophe with two contiguous apostrophes ("). If substitution mode is
enabled, Indirect displays the command file line

;DON"T PANIC

as:

;DON'T PANIC

2.5 Switches
Indirect accepts the switches listed in Table 2-1. You can use any combination of switches in the
command line @filespedswitch(es) or in the .CHAIN filespec/switch(es).

These switches can be prefixed with a minus sigh (-) or "NO" to negate the action of the switch (for
example, !NOMCR suppresses sending commands to MCR for execution).

The switches specified in command line @filespedswitch(es) are used as defaults within the
@filespec command or .CHAIN directive. This default-processing does not apply to the IDE switch;
for that switch, the default is always INODE.

Table 2-1 Indirect Switches

Switch

ITR

IMCR

IDE

III

Default Function

INOTR Trace-Displays a trace of the indirect command file on the terminal from which the file
is being executed. This function is useful for debugging an indirect command file. Each
command line, including Indirect directive statements, is displayed. As each command line
is processed, a number representing the nesting depth of the command file is displayed,
followed by an exclamation point and the command line. If the command line causes some
action to occur, the next displayed line indicates the action; usually, this line consists of the
MCR commands issued as a result of the previous directive. The default is INOTR.

(MCR MeR-indicates that commands are to be passed to MCR.

INODE Delete-Indicates that the executing command file is to be deleted when processing is
complete.

ILl List-Indicates that MCR commands and Indirect comments are displayed on the terminal.
This switch does not override the .ENABLE/.DISABLE LIST directive.

You can use any combination of the switches in the command line @filespedswitch(es) or in the
directive statement .CHAIN filespeclswitchCes).

2-13

The Indirect Command Processor (Reference Section)

2.6 Description of Indirect Directives
Directives must be separated from their arguments and from MeR-specific commands by at least
one space. Unless you are using the .IF directives, only one directive is permissible on each
command line.

You can insert any number of blanks and horizontal tabs in three places in a command line:

• At the start of the command line

• Tmmedi~t.elv followinu t.'hp r.olon (~) of ~ hhpl ---------., ------.0---0 ---- ------ ,." -- -- --~--

• At the end of the command line

This enables you to format the command files so that they can be read easily. The recommended
procedure is to begin labels in the first column and everything else in the ninth column (after one
horizontal tab).

An important exception are the lines processed between .ENABLE and .DISABLE DATA directives;
no blanks or tabs are removed from these lines. For example:

.IFT Z .GOTO 10

.10: .OPEN DATFIL
.DATA XXXXX

.ENABLE DATA
This is data
that goes into
the data file .
. DISABLE DATA

.GOTO 20

NOTE: The .DISABLE DATA statement must begin in the first column or Indirect places
it in the data file. You can also use the .CLOSE directive in place of .DISABLE DATA. It
too must be~...n in the first column.

2-14

.label:

.Iabel:-Define a label

Labels always appear at the beginning of the line. They can be on a line with additional directives
and/or a MCR command, on a line with a comment, or on a line by themselves, When control passes
to a line with a label, the line is processed from the first character after the colon.

Commands do not have to be separated from the label by a space. Only one label is permitted on each
line. Labels are one to six characters in length and must be preceded by a period and terminated with
a colon. A label can contain only alphanumeric characters and/or dollar signs ($).

It is also possible to define a label as a direct-access label; once the label is found, its position in the
command file is saved. This enables subsequent jumps to frequently called labels or subroutines to be
effected quickly. The first statement processed after a jump to a direct-access label is the one on the
next line.

The maximum number of direct-access labels you can define within an indirect command file depends
on the version of the Indirect task you are using. (The maximum number is specified in the task-build
file.) If you define more than the maximum number of labels allowed, the subsequent direct-access
labels replace the earliest, and so on. The smaller the number of direct-access labels, the larger the
amount of free space in the symbol table.

If you have a large command file that branches from a line to a label before that line, using
direct-access labels can result in a substantial saving of processing time. Normally, Indirect searches
for the label in every line below the one where the branch occurred. If the label is not found, Indirect
wraps around to the top of the file to continue the search. With direct-access labels, however, Indirect
can go immediately to the label.

To declare a label for direct access, use the .ENABLE LRU directive and leave the line following the
colon blank.

EXAMPLE(S)

.100: .ASK A Do you want to continue

.IFT A .GOSUB 200

.200:

.;THIS IS THE START OF A SUBROUTINE

. RETURN

In this example, .200: is a direct-access label while .100: is not.

2-15

.ASK

.ASK-Ask a question and wait for a reply.

The .ASK directive displays a question on the terminal, waits for a reply, and sets a specified logical
symbol to the value of true or false, depending on the reply. If the symbol has not already been defined,
Indirect makes an entry in the symbol table. If the symbol has been defined, Indirect resets its value
(true or false) in accordance with the reply. Indirect exits with a fatal error if the symbol was previously
defined as a string or numeric symboL

FORMAT

.ASK ssssss txt-strng

.ASK [default:] ssssss txt-strng

PARAMETERS

ssssss
The 1- to 6-character symbol to be assigned a true or false value.

txt-strng
The question or prompt that Indirect displays.

default
The default response; used if the question is answered with an empty line (null) or if timeout
occurs. The default can be TRUE or FALSE or another logical variable or expression.

The entire .ASK statement must fit on one command line.

"Then executing a .ASK directive, Indirect displays (unless .DISABLE DISPLAY is in effect)
txt-strng prefixed by an asterisk (*) and suffixed with "? [YIN]:". Indirect recognizes five answers:

Set sym bol ssssss to true.

Set symbol ssssss to false.

Set symbol to false or to user-specified default value. The IRETI symbol indicates the RETURN key.

Set symbol ssssss to true and set the special logical symbol <ESCAPE> to true only if escape
recognition has been enabled. The I Escl symbol indicates the ESCAPE or ALTMODE key.

EXAMPLE{S)

The directive statement:

.ASK PRINT Do you want to print the file

displays the following text:

* Do you want to print the file? [YIN]:

2-16

.ASK

on the terminal. Symbol PRINT is set to true or false after you type Y or N, or press the RETURN

key or the ESCAPE key (if escape recognition is enabled).

2-17

.ASKN

.ASKN~Ask for definition of a numeric symbol.

The .ASKN directive displays on the terminal a request for a numeric value, waits for it to be entered,
optionally tests the range for the numeric response and/or applies a default value, and sets the specified
symbol accordingly. If the symbol has not previously been defined, Indirect makes an entry in the
symbol table. If the symbol has already been defined, Indirect resets its value in accordance with the
reply. Indirect exits with a fatal error if the symbol \.",as previously defined as a logical or string symbol.

FORMAT
.ASKN 555555 txt-strng

.ASKN [/ow:high:default] 555555 txt-strng

PARAMETERS

SSSSSS
The 1- to 6-character symbol to be assigned a numeric value.

txt-strng
The question or prompt that Indirect displays.

low:high
A numeric expression or symbol giving the value range for the response.

default
A numeric expression or symbol giving the default value by enabling it to time out or by pressing
the RETURN key.

The entire .ASKN statement must fit on one command line.

NOTE: If you omit any of the parameters within the square brackets, any preceding
colons are required for positonal identification.

The command line cannot exceed 8010 characters in length. When executing a .ASKN directive,
Indirect displays (unless .DISABLE DISPLAY is in effect) txt-strng prefixed by an asterisk (*) and
suffixed with [0]: to indicate that the response is to be taken as octal or with [D]: to indicate that
the response is to be taken as decimal. The reply must be a number either within the specified
range or in the range 0 to 1777778 (by default) or 0 to 65,53510.

If the response is outside the specified range, the following message is displayed:

AT. -- Value or string is out of range

Indirect then repeats the query.

2-18

.ASKN

If an arithmetic operation yields a result greater than 1777778 when computing the actual value
of any of the arguments low, high, or default, a fatal error occurs and the following message is
displayed:

AT. -- Numeric under- or overflow

If the response is an empty line (null) and a default value (default) was not specified, Indirect
applies a default of O. Note that in this case, the range, if specified, must include O.

The response can be either octal or decimal; a leading number sign (#) forces octal, a trailing
period (.) forces decimal. In the absence of either, Indirect applies a default radix. The default
radix is decimal if either the range or default values are decimal expressions (followed by a period).
Otherwise, the default radix is octal (unless decimal mode has been enabled). Indirect displays the
default type as either [0] or [D].

To force a default decimal radix without specifying a range argument, use the following
construction:

.ASKN [::0.] A Enter value

or

.ASKN A Enter value

EXAMPLE(S)

The directive statement:

.ASKN SYM Define numeric symbol A

displays the following on the terminal:

* Define numeric symbol A [0]:

In tl-.cis example, [0] is the default radix (octal).

Indirect then defines symbol SYM according to the reply entered.

In this next example, the directive statement:

.ASKN [2:35:16:] NUMSYM Define numeric symbol A

displays the following on the terminal:

* Define numeric symbol A [0 R:2-35 D:16]:

The format used in this display is as follows:

[x R:low-high D:default],

where:

x

R:low-high

D:default

o if the default radix is octal or D if it is decimal.

The specified range.

The specified default.

Indirect then checks whether the response string is in the specified range.

In the next example, the directive statement:

.ASKN [NUMSYM+10:45:NUMSYM+10] SYM Define nwueric symbol B

2-19

.ASKN

displays the following on the terminal (assuming the value of 168 for NUMSYM):

* Define numeric symbol B [0 R:26-45 D:26j:

2-20

.ASKS

.ASKS-Ask for a string symbol definition.

The .ASKS directive displays on the terminal a request for a string value to define a specified symbol
and optionally tests whether the number of characters in the response string falls within the specified
range. If the symbol has not previously been defined, Indirect makes an entry in the symbol table. If the
symbol has already been defined, Indirect resets its value in accordance with the reply. Indirect exits
with a fatal error if the symbol was defined previously as a logical or numeric symbol. If the number of
characters is out of the specified range, the following message displays:

AT. -- Value or string is out of range

Indirect then repeats the query.

FORMAT
.ASKS ssssss txt-strng

.ASKS [/ow:high] ssssss txt-strng

PARAMETERS

ssssss
The 1- to 6-character symbol to be assigned a string value.

txt-strng
The prompt that Indirect displays.

low:high
A numeric expression giving the range for the number of characters permitted in the response
string.

default
A string expression or symbol giving the default value.

The entire .ASKS statement must fit on one command line.

Note that if you omit any of the parameters within the square brackets, any preceding colons are
required for positional identification.

,\\
T1nen executing a .ASKS directive, Indirect displays (urJess .DISABLE DISPLA;a.Y is in effect)

txt-strng prefixed by an asterisk (*) and suffixes it with [8]:. The reply must be an ASCII
character string.

EXAMPLE(S)

The directive statement:

.ASKS NAME Please enter your name

2-21

.ASKS

displays the following on the terminal:

* Please enter your name [S]:

Indirect then defines symbol NAME according to the string reply entered.

In the next example, the directive statement:

.ASKS [1:15] MIDNAM Please enter your middle name

displays the following on the terminal:

* Please enter your middle name [S :8.:1-15]:

The format used in this display is as follows:

[8 R:low-high]

where:

8

R:low-high

2-22

The symbol type (string).

The specified range for the number of characters.

.CHAIN

.CHAIN-Continue processing using another file.

The .CHAIN directive, which must be the last command in the file, closes the current file, erases all
local symbols, clears any .ONERR and .ONFAIL arguments. empties the direct-access labe! cache, and
continues processing using command lines from another file. The .CHAIN directive does not close data
files, pass parameters, or change the nested file level.

FORMAT
.CHAIN filespec[/switch(es)]

PARAMETERS

filespec
The specification (including a directory, if desired) of the file that contains the new command lines.

This parameter can also be a logical name assignment that translates into a valid FCS file
specification.

/switch(es)
Any of the optional switches described in Section 2.5.

EXAMPLE(S)

.CHAIN OUTPUT

This directive statement transfers control to the file OUTPUT.CMD .

. CHAIN TEMP

This directive statement transfers control to the command file specified by the logical translation
of TEMP.

.CHAIN OUTPUT

2-23

.CLOSE

.CLOSE-Close. secondary file.
The .CLOSE directive closes the secondary file opened by an .OPEN directive.

FORMAT
.CLOSE [#n]

PARAMETERS

n
An optional file number in the range 0 to 3. The default is #0. You can substitute a numeric
symbol for the value n by enclosing the symbol in apostrophes.

2-24

• DATA

.DATA-Output data to secondary file.

The .DATA directive specifies text that is to be output to a secondary file previously opened by an
.OPEN directive.

When Indirect processes the text string that follows the. DATA directive, it ignores the leading space
(if present), assuming it to be a separator between the directive and the text string. Any other spaces
are transferred to the data file. If a tab follows the directive, it is transferred to the file. If no other
characters follow the directive, a blank line is transferred to the file. This processing has the following
results:

Command File

.DATA f~

.DATA fo~RETI

.DATAlTAB~~

.DATA ITAB~oq RETI

.DATA/RETI

Open File

fo~RETI

fo~RETI

ITAB~o~RETI

ITAB~o~RETI

null line

Note that if a comment follows a .DATA statement (that is, .DATA data !comment), Indirect also outputs
the comment to the secondary file because it cannot tell if the comment pertains to the .DATA statement
itself or to the data being output to the file.

FORMAT
.DATA [#n] txt-strng

PARAMETERS

n
An optional file number in the range 0 to 3. The default is #0. You can substitute a numeric
symbol for the value n by enclosing the symbol in apostrophes.

txt-strng
The text to be output to the secondary file.

The command line cannot exceed 13210 characters and the specified text string cannot continue
onto the next line. If a secondary file is not open, an error condition exists; Indirect issues an error
message and begins error processing.

EXAMPLE(S)

2-25

• DATA

.SETS SEND "This is data"

.OPEN TEMP

.DATA 'SEND'

. CLOSE

These directives output TEnS IS DATA to the secondary file TEMP.DAT (DAT is the default file
type for a data file).

2-26

.DEC

.DEC-Decrement numeric symbol.

The .DEC directive decrements a numeric symbol by 1. Indirect exits with a fatal error if the symbol
was defined previously as a logical or string symbol.

FOR-MAT
.DEC ssssss

PARAMETERS

SSSSSS
The 1- to 6-character numeric symbol.

EXAMPLE(S)

.DEC X

This directive decrements by 1 the value assigned to the numeric symbol X. If X crosses the zero
boundary (goes from positive to negative), decrementing it causes an underflow error.

2-27

.DELAY

.DELAY-Delay execution for a specified period of
time.

The .DELAY directive delays further processing of the file for a specified period of time.

!::nCIIAT
1 "'..-.IVII"'"\ I

.DELAY nnu

PARAMETERS

nn
The decimal number of time units to delay.

u

T Ticks

S Seconds

M Minutes

H Hours

The parameter nn is decimal by default, or octal if preceded by a number sign (#). For example:

10S 10'0 seconds

#1 as 10e seconds

If quiet mode is disabled when the .DELAY directive is executed, Indirect issues the following
message:

AT. -- Delaying

When the time period expires and the task resumes, Indirect issues this message:

AT. -- Continuing

The maximum amount of time you can specify for the .DELAY directive is 24 hours.

EXAMPLE(S)

.DELAY 20M

This directive statement delays processing for 2010 minutes.

2-28

.DISABLE

.DISABLE-Disable optionB

The .DISABLE directive disables a specified operating mode previously activated by a .ENABLE
directive.

FORMAT
.DISABLE option[,option ... j

PARAMETERS

option
One or more of the operating modes described with the .ENABLE directive.

The following is a list of the operating modes that can be disabled:

DATA

GLOBAL

QUIET

DECIMAL DISPLAY ESCAPE

LIST LOWERCASE LRU

STATISTICS SUBSTITUTION TIME

2-29

.ENABLE

.ENABLE-Enable option.

You can use the . ENABLE directive to invoke several operating modes. Each mode is independent of
the others; all of them can be active simultaneously. When Indirect starts to process the highest-level
command file, the initial settings are as follows:

DATA disabled (I)

DECIMAL disabled (R)

DISPLAY enabled (R)

ESCAPE disabled (I)

GLOBAL disabled (I)

LOWERCASE enabled (I)

QUIET disabled (R)

SUBSTITUTION disabled (I)

However, when Indirect passes control to a lower-level command file by means of a .CHAIN filename or
@filename statement, only the following modes are reset to their initial (denoted by "I" in the previous
list) settings: DATA, ESCAPE, GLOBAL, LOWERCASE, and SUBSTITUTION. The remaining operating
modes retain (denoted by "R" in the previous list) their new settings in the lower-level file.

In DATA mode, Indirect outputs lines that follow an .ENABLE DATA directive statement to a secondary
file. (In contrast, the .DATA directive sends a single line of text to a secondary file.) To disable
data mode, the .DISABLE DATA (or .CLOSE) statement must begin in the first column. Otherwise,
Indirect copies the statement itself into the data file. The .ENABLE DATA directive also has an optional
argument (#n) that specifies which file the data is to go into. See the description of the .DATA directive
for more information.

In GLOBAL symbol mode, symbol names that begin with a dollar sign ($) are defined as global to all
levels of indirect files; once such a symbol has been defined, all levels recognize it. Symbols that do
not begin with a dollar sign are recognized only within the level that defines them.

In DECIMAL mode, all numeric symbols are created or redefined by default as decimal instead of octal.

In DISPLAY mode, Indirect displays the current fields for the .ASKx directive and @ <EOF>. If display
mode is disabled, Indirect displays only the text string for the .ASKx directive and suppresses @
<EOF>.

In LOWERCASE mode, characters read from the terminal in response to .ASKS directives are stored
in the string symbol without lowercase-to-uppercase conversion. The representation of characters is
significant when comparing strings because the .IF directive distinguishes between lowercase and
uppercase characters.

In SUBSTITUTION mode, Indirect substitutes a string for a symbol. The symbol must begin and end
in apostrophes ('symbol'). For example, if the symbol A has been assigned the string value THIS IS
A TEST, every 'P\ will be replaced by TH IS IS A TEST. When substitution mode is enabled, Indirect
performs substitutions in each line before scanning the line for directives and MCR commands. (While
obeying a .GOTO label directive, however, Indirect ignores any undefined symbols encountered before
the target line, that is, the line containing the specified labeL) You can also type the shorter SUB in
place of SUBSTITUTION.

2-30

.ENABLE

ESCAPE recognition permits the response to a .ASK, .ASKN, or .ASKS directive to be an escape
character. A question answered with a single escape character sets the special logical symbol
<ESCAPE> to true. The escape character must be used only as an immediate terminator to the
question; if one or more characters precede the escape character, an error condition exists. In this
case, the following message is displayed:

AT. -- Invalid answer or terminator

Indirect then repeats the question. Note that if you press the ESCAPE key in response to a .ASK
directive, the specified logical symbol (ssssss of .ASK ssssss txt-strng) is also set to true.

In LIST mode, commands display on the terminal. The list option can be used to override the III or I-LI
switches.

In LRU mode, Indirect collects direct-access labels in a table for efficient access. This option requires
that such labels be unique within a file. (See the .label: section for details about direct-access labels.)

In QUIET mode, Indirect does not echo MCR command lines or comments. The command lines are
executed normally and, if they return a message or display, the message or display is shown on the
terminal.

In STATISTICS mode, Indirect collects certain statistics and displays them when it exits.

In TIME mode, Indirect provides a time stamp with MCR> prompts.

FORMAT
.ENABLE option

.ENABLE DATA [#n]

PARAMETERS

option
One of the operating modes described previously:

#n

DATA
DECIMAL
DISPLAY
ESCAPE
GLOBAL
LIST
LOWERCASE
LRU
QUIET
STATISTICS
SUBSTITUTION
TIME

An optional file number in the range 0 to 3. The default is #0. You can substitute a numeric
symbol for the value n by enclosing the symbol in apostrophes.

2-31

.ENABLE

EXAMPLE(S)

o SUBSTITUTION mode:

.ENABLE SUBSTITUTION

.ASKS FILE Specify next file
PRINT 'FILE'

While the command file is executing, the corresponding lines displayed at the terminal are:

$ * Specify next file [S]: SOURCES I Return I
$ PRINT SOURCES

@ GLOBAL symbol mode:

The following two lines appear in an indirect command file called TEST1:

. ENABLE GLOBAL

.SETS $X "TEST"

A file called TEST2. CMD contains the following lines:

. ENABLE GLOBAL

.ENABLE SUBSTITUTION
@TESTl
RON ' $X'

The MCR (in this case, MCR) displays the following lines when the file TEST2.CMD is run:

>RUN TEST
>@ <EOF>

6) QUIET mode (MCR is the CLI for the terminal):

.ASK QUIET Do you want command lines suppressed

.IFT QUIET .ENABLE QUIET

.IFF QUIET .DISABLE QUIET
ACT IALL

If the response is affinnative, Indirect displays the active tasks but not the ACT fALL
command. For example:

> * Do you want command lines suppressed? [YIN]: (Y)

2-32

.EXIT

.EXIT-Exit from current command fileli
The .EXIT directive terminates processing of the current command file and returns control to the
previous-level command file. If the directive is encountered at the uppennost indirect nesting level,
Indirect exits and passes control to MCR.

The .EXIT directive also enables you optionally to specify a value to copy into the special symbol
<EXSTAT>.

FORMAT
.EXIT

PARAMETERS

value
An optional numeric expression to be copied to the special symbol <EXSTAT>.

EXAMPLE{S)

The following line appears in an indirect command file called TEST1:

@TEST2

The file TEST2.CMD contains the following line:

.EXIT

When Indirect encounters the .EXIT directive in TEST2, control returns to TESTl.CMD.

If the .EXIT directive in TEST2.CMD includes a numeric expression (for example, .EXIT N+2),
Indirect evaluates the expression and copies the value into <EXSTAT>.

2-33

.GOSUB

.GOSUB-Call a subroutine.
The .GOSUB directive saves the current position in an indirect command file and then branches
to a label. The label identifies an entry point to a subroutine that is terminated by a .RETURN
directive.

The maximum nesting depth for a subroutine call is eight.

FORMAT
.GOSUB label parameters

PARAMETERS

label
The label that designates the first line of a subroutine, but without the leading period and trailing
colon. Any parameters to the right of the label and to the left of a comment are transferred to the
reserved local symbol COMMAN. The value of COMMAN can then be parsed with the .PARSE
directive to obtain formal call parameters.

EXAMPLE(S)

.GOSUB EVAL

This directive statement transfers control to the subroutine labeled .EVAL:.

2-34

.GOTO

.GOTO-Branch to a label.
The .GOTO directive causes a branch from one line in an indirect command file to another line.
All commands between the .GOTO directive and the specified label are ignored. Branches can go
forward or backward in the file.

See the .label: section for more information on labels and direct-access labels.

FORMAT
.GOTO label

PARAMETERS

label
The name of the label, but without the leading period and trailing colon.

EXAMPLE{S)

.GOTO 100

This directive statement transfers control to the line containing the label .100:.

2-35

.IF

.IF-Test if symbol meets specified condition.
A number of directives make tests. If the result of the test is true, Indirect processes the remainder
of the command line. Logical tests can be combined into a compound logical test by using the .AND
and . OR directives.

The .IF directive compares a numeric or string symbol with another expression of the same type to
determine if one of several possible conditions is true. If the condition is satisfied, Indirect executes
the remainder of the command line.

When comparing a string symbol with a string expression, Indirect compares the ASCII values of
each operand's characters (from left to right) one by one. An operand is considered greater if the
first nonequal character has a greater value than the corresponding character in the other operand.

Numeric symbols are compared strictly on the basis of magnitude.

FORMAT
.IF symbol relop expr directive-statement

PARAMETERS

symbol
The 1- to 6-character logical, numeric, or string symbol.

relop
One of the following relational opera tors:

EQ or = Equal to

NE or <> Not equal to

GE or >= Greater than or equal to

LE or <= Less than or equal to

GT or> Greater than

LT or < Less than

expr
An expression of the same type as symbol.

directive-statement
The Indirect command line to be processed if the condition is satisfied.

2-36

EXAMPLE(S)

.SETS X "A"

.SETS Y "a"

.IF X LT Y .GOTO 200

.IF

The ASCII value of string symbol X is less than the ASCII value of string symbol Y, which satisfies
the less-than condition. Thus, control passes to the line containing the label .200: .

. SETN N1 2

.SETN N2 7

.IF N1 <= N2 DIR

With the condition satisfied (numeric symbol N1less than or equal to numeric symbol N2), the
(DCL) DIRECTORY command is executed .

. SETS Sl "AAb"

.SETS S2 "AA"

.SETS S3 "BBBB"

.IF Sl >= S2+S3[1:1] .INC A

Because string symbol 81 is greater than or equal to string symbol 82 concatenated with the first
character of string symbol 83 (AAb >= AAB), that condition is satisfied and Indirect increments
numeric symbol A.

2-37

.IFACT/.IFNACT

.I FACT/.IFNACT ~ Test if task is active or dormant.
The .IFACT and .IFNACT directives test whether a task is active (.IFACT) or dormant (.IFNACT).
If the result of the test is true, the remainder of the command line is processed. If the specified
task is not installed, Indirect assumes the dormant condition.

FORMAT
.IFACT taskname directive-statement

.IFNACT taskname directive-statement

PARAMETERS

taskname
A 1- to 6-character valid task name.

directive-statement
The Indirect command line to be processed if the condition is satisfied.

EXAMPLE(S)

2-38

. IFACT REPORT .GOTO 350

.IFNACT REPORT RUN REPORT

.IFDEV/.lFNDEV

.lFDEV/.lFNDEV-Test if device is present in the
system.

The .IFDEVand .IFNDEV directives test whether a PUD exists (.IFDEV) or does not exist
(.IFNDEV) for a device in the system. If the results of the test is true, the remainder of the
command line is processed.

If an IH switch is appended to the <DEVICE> parameter, an additional check is made to see if the
device physically exists by testing for the presence of the device's control status register (CSR).

FORMAT
.lFDEV <DEVICE> command-line

.IFNDEV <DEVICE> command-line

.IFDEV <DEVICE>IH command-line

.lFNDEV <DEVICE>IH command-line

EXAMPLE{S)

A command file IFDEV.CMD contains the following commands:

.ENABLE SUBSTITUTION

.ENABLE LOWERCASE

.sets Sl "A PUD for"

.sets s2 "is defined in the system."

.sets s3 "The Controller for"

.sets s4 "is found in the system."

Show the actual states of the MU devices.
Note: Device MU2: has been generated into this system

(created a PUD) but the device does not physically exist.

DEV MU

. IFDEV MUO: ' Sl' MUO: ' S2'

.IFDEV MU1: ' Sl' MU1: ' S2'

.IFDEV MU2: ' Sl' MU2: ' S2'

;
.IFDEV "ATT". I T'T '53' ..,'T"T" _ ! 34 { ,L:"J,UV'; / n J..YlVV;

.IFDEV MU1:/H ' S3' MU1: ' S4'

.IFDEV MU2:/H ' S3' MU2: ' S4'
/

When the file is executed, Indirect displays the following information:

2-39

.lFDEV/.lFNDEV

2-40

MCR>@IFDEV
>;
>; Show the actual states of the MU devices.
>; Note: Device MU2: has been generated into this system
>; (created a PUD) but the device does not physically exist.
>;
>DEV MO

M02

MOl **
MOO **

>;
>; A PUD
>; A PUD
>; A PUD
>;
>;

for
for
for

MOO:
MOl:
MU2:

is defined in the system.
is defined in the system.
is defined in the system.

>; The Controller for MUO: is found in the system.
>; The Controller for MOl: is found in the system.
>/
@ <EOF>

.IFDF/IFNDF

.lFDF/IFNDF-Test if symbol is defined or not
definedli

The .IFDF and .IFNDF directives test whether a logical, numeric, or string symbol has been
defined (.IFDF) or not defined (.IFNDF). If the result of the test is true, the remainder of the
command line is processed. These directives do not test the value of the symbol.

The directives .1FT symb, .IFF symb, and .IF symb should not be used on the same line as the
.IFDF symb directive. Because the .IFDF symb directive evaluates to false, Indirect processes the
remainder of the command line looking for a .OR directive. Instead, it encounters .IFT symb, .IFF
symb, or .IF symb, but because the symbol is undefined, an error message is generated.

The following example shows how to test whether a symbol is defined and how to then use that
symbol:

.IFNDF symbol .GOTO 10$

.IFT symbol <action .•• >

.10$:
.IFNDF symbol .SETF symbol

FORMAT
.IFDF ssssss directive-statement

.lFNDF ssssss directive-statement

PARAMETERS

ssssss
The 1- to 6-character symbol being tested. The symbol can be local, global, or an Indirect special
symbol.

directive-statement
The Indirect command line to be processed if the condition is satisfied.

EXAMPLE(S)

.IFDF A .GOTO 100

.IFNDF A .ASK A Do you want to set the time

2-41

.lFFILE/.lFNFILE

.lFFILE/.lFNFILE-Test for the existence of a file.
The .IFFILE and .IFNFILE directives determine whether a file exists (.IFFILE) or does not exist
(.IFNFILE). If the result of the test is true, the remainder of the command line is processed.

FORMAT
.IFFILI= <file specification> comma.nd-line

.lFNFILE <file specification> command-line
Restriction:

Both directives fail when the directory for a specified file does not exist and does not generate an
"AT.-Syntax error" message. Perform a separate test for the directory before you use this directive
when you are not certain that the directory exists.

EXAMPLE(S)

A command file IFFILE.CMD contains the following commands:

.ENABLE SUBSTITUTION

.ENABLE LOWERCASE

.SETS FILE1 n[l,l]STARTUP.CMD"

.SETS FILE2 n[377,300]HOT.TUB"

Show .IFFILE behavior when files do and do not exist.

.IFFILE 'FILE1'

.IFFILE 'FILE2'
'FILE1' is found
'FILE2' is found

; Show .IFNFILE behavior when files do and do not exist
(but directory does exist) .

. IFNFILE 'FILE1'

.IFNFILE 'FILE3'
i 'FILE1' is not found
; 'FILE3' is not found

; Show how to use .IFNFILE when a directory might not exist .

2-42

. ; Call subroutine to build a MFD specification .

. GOSUB MUNG

.IFNFILE 'FINAL' .GOTO 10:

.IFNFILE 'FILE2'

.10 ;

.EXIT:
I

'FILE2' is not found

Directory for does not exist

.lFFILE/.IFNFILE

--. ,
.f Subroutine MUNG

Create a MFD file specification from a file specifcation.

Input: FILE2 containing file specification, including u~D.
Output: FINAL contains MFD specification for UFD in FILE2

;---. ,
.MUNG:

. , Convert the UFD from the file specification into a MFD
* Set up the constant portions of the final string
* Locate the comma in the UFD (eg: [xxx,yyy])
* Extract the group and member code
* Build the final MFD file syntax

.SETS MFD "[0,0]"

.SETS EXT ".DIR"

.SEARCH "'FILE2'" "," COMMA

.SETS DIRl FILE2[2:'COMMA'-1]

.SETS DIR2 FILE2['COMMA'+1:10]

.SETS FINAL MFD+DIR1+DIR2+EXT

. RETURN

When the file is executed Indirect displays the following information:

MCR>@X
>;
>;
>;
>; Show .IFFILE behavior when files do and do not exist.
>;
>; [l,l]STARTUP.CMD is found
>;
>; Show .IFNFILE behavior when files do and do not exist
>;
>; [l,l]WATER.BED is not found
>;

file name .

>; Show how to use directive when a directory might not exist.
>;
>; Directory for [377,300]HOT.TUB does not exist
@ <EOF>

And if the directory did exist the last >; line would read

>i [377,300]HOT.TUB is not found

2-43

.lFINS/.lFNINS

.lFINS/.lFNINS-Test if task is installed or not
installed.

(.IFINS/.lFNINS))

The .IFINS and .IFNINS directives test whether a task is installed (.IFINS) or not installed
(.IFNINS) in the system. If the result of the test is true, the remainder of the command line is
processed.

FORMAT
.IFINS taskname directive-statement

.lFNINS taskname directive-statement

PARAMETERS

taskname
A 1- to 6-character task name.

directive-statement
The Indirect command line to be processed if the condition is satisfied.

EXAMPLE(S)

2-44

.IFINS PIP .GOTO 250

.IFNINS PIP INS[ll,l]PIP

.lFLOA/.lFNLOA

.I FLOAl.1FN-LOA-Test if handler is loaded or not
loaded.

The .IFLOA and .IFNLOA directives test whether a handler is loaded (.IFLOA) or not loaded
(.IFNLOA) in the system. If the result of the test is true, the remainder of the command line is
processed.

FORMAT
.lFLOA <device>directive-statement

.lFNLOA <device>directive-statement

PARAMETERS

<device>
A device handler

directive-statement
The Indirect command line to be processed if the condition is satisfied.

EXAMPLE(S)

.IFLOA DU: .GOTO 250

.IFNLOA DU: LOA DU:

2-45

.lFMOU/.lFNMOU

.IFMOU/.lFNMOU-Test if device is mounted or not
mounted.

The .IFMOU and .IFNMOU directives test whether a device is mounted (.IFMOU) or not mounted
(.IFNMOU) either FILES-II or foreign. If the result of the test is true, the remainder of the
command line is processed.

FORMAT
.lFMOU <device>command line

.lFNMOU <de vice>comma nd-line

EXAMPLE{S)

A command file IFMOU.CMD contains the foliowing commands:

Show the actual states of the MU devices

DEV MU

.IFMOU MUO: Device MUO: is mounted.

.IFMOU MUl: Device MUl: is mounted

. IFNMOU MUO: Device MUO: is not mounted

.IFNMOU MOl: Device M"ul: is not mounted
/

When the file is executed Indirect displays the following information:

2-46

MCR>@IFMOU
>; Show the actual states of the MU devices
>i
>DEV MU

MUl **
MUO **

>i

Mounted Global

>; Device MUl: is mounted
>;
>;
>; Device MUO: is not mounted
@ <EOF>

.I FPAR/.lFNPAR

.I FPAR/.I FN PAR-Test for memory partition.
The .IFPAR and .IThTAR directives test whether a memory partition exists (.IFPAR) or does not
exist (.IFNPAR). If the result of the test is true, the remainder of the command line is processed.

FORMAT
.lFPAR<partition_name> command line

.lFNPAR <partition_name> command line

EXAMPLE(S)

A command file IFPAR contains the following commands:

.IFPAR GEN

.IFPAR REAL

.IFNPAR GEN

. IFNP AR REAL

Partition GEN is found in the system
Partition REAL is found in the system

Partition GEN is *not* found in the system
Partition REAL is *not* found in the system

When the file is executed, Indirect displays the following information:

MCR>@IFPAR
>; Partition GEN is found in the system
>; Partition REAL is *not* found in the system
@ <EOF>

2-47

.lFT/.lFF

.lFT/.lFF-Test if symbol is true or false.
The .1FT and .IFF directives test whether a logical symbol is true (.IFT) or false (.IFF). If the result
of the test is true, Indirect processes the remainder of the command line.

Indirect exits with a fatal error if the symbol being tested was previously defined as a numeric or
string symbol.

FORMAT
.1FT ssssss directive-statement

.IFF ssssss directive-statement

PARAMETERS

ssssss
The 1- to 6-character logical symbol being tested.

directive-statement
The Indirect command line to be processed if the condition is satisfied.

EXAMPLE(S)

.IFT A . GOTO 100

.IFF B .GOTO 200

2-48

.lFREADY I.lFNREADY

.lFREADY/.lFNREADY-Test if specified disk is on or
off.

The .IFREADYand .IFNREADY directives determine if a disk is online (.IFREADY) or offline
(.IFNREADY) .. IFREADYexecutes <command> if the tested condition is true. (These directives
apply only to disk devices.)

Synonym directives are .IFNOFF (for .IFREADy) and .IF OFF (for .IFNREADY).

FORMAT
.lFREADY <device:> <command>

.lFNOFF <device:> <command>

.IFNREADY <device:> <command>

.IFOFF <device:> <command>

EXAMPLE(S)

A command file IFREADY.CMD contains the following commands:

. ENABLE SUBSTITUTION

.ENABLE LOWERCASE

.IFREADY DUO: DUO: is on-line

.IFREADY DU4: DU4: is on-line

. IFNREADY DUO: DUO: is *not* on-line

. IFNREADY DU 4 : DU4: is *not* on-line

This shows the IFOFF/IFNOFF synonyms

.IFOFF DUO: DUO: is *not* on-line

.IFOFF DU4: DU4: is *not* on-line

.IFNOFF DUO: DUO: is on-line

.IFNOFF DU4: DU4: is on-line

When the file is executed Indirect displays the following information:

2--49

.lFREADV/.lFNREADV

MCR>@IFREADY
>; DUO: is on-line
>; DU4: is *not* on-line
>;
>; This shows the IFOFF/IFNOFF synonyms
>;
>; DU4: is *not* on-line
>: DUO: is on-line
@ <EOF>

COMPOUND TESTS::

You can combine .IF tests by using the.AND and .OR directives. In addition, an
implied .AND is effected when more than one .IF appears on the same line without
being separated by a .AND directive. The compound operators .AND and .OR must be
preceded and followed by at least one blank space.

The .AND directive takes precedence over the .OR directive as shown in the following
example:

.IFT A .OR .IFT B .AND .IFT C .GOTO 0

That is, Indirect reads the line as:

.IFT A .OR (.IFT B .AND .IFT C) .GOTO 0

EXAMPLE{S)

.IFT A .AND .IFF B .GOTO HELP

If the logical symbol A is true and the logical symbol B is false, control passes to the line containing
the label .HELP: .

. 1FT A .IFF B .GOTO HELP

This has the same effect as the previous directive (.AND implied) .

. 1FT A .OR .IFF B RUN PIP

If the logical symbol A is true or if the logical symbol B is false, the RUN command is issued .

. IF x EQ 3 .OR .IF Y LE Z .GOTO NEXT

Execute the .GOTO directive when X equals 3 or when Y is less than Z. If neither condition exists,
do not execute the directive.

2-50

.INC

.INC-Increment numeric symbol.
The .INC directive increments a numeric symbol by 1. Indirect exits with a fatal error if the
symbol was previously defined as a logical or string symbol.

FORMAT
.INC ssssss

PARAMETERS

SSSSSS
The 1- to 6-character numeric symbol being incremented.

EXAMPLE(S)

.INC B

This directive increments by 1 the value assigned to the numeric symbol B. If B crosses the zero
boundary (goes from negative to positive), incrementing it causes an overflow error.

2-51

I-Define logical end-af-file.
The logical end-of-file directive (/) terminates file processing at all levels, closes all open data files,
and exits. Indirect then displays (if display mode has not been disabled) the following message:

@ <EOF>

FORMAT
I
The directive is the first nonblank character of the line.

You can use this directive at any location in the command file to quickly terminate file processing,
but care should be taken to avoid an inadvertent exit.

EXAMPLE(S)

2-52

.ASK CONT Do you wish to continue

.IFT CONT .GOTO 100
I
.100~

.ONERR

.ONERR-Detect directive errors and branch to a
label.

The .ONERR directive detects errors such as syntax errors in the Indirect command file and
branches to a specified label.

Error trapping remains in effect until .ONERR is disabled. To disable .ONERR, specify the
.ONERR directive without a label.

If Indirect detects one of the following errors, control passes to the line containing the label
specified with the .ONERR directive:

• Task not installed in system (.XQT, .W AIT)

• Undefined symbol

• Bad syntax (XQT, .WAIT, .DELAY)

• Unrecognized command

• String substitution error

• Symbol type error (.IF, .1FT, .IFF, .INC, .DEC)

• Redefinition of a symbol to a different type (.ASK, .ASKN, .ASKS, .SETT, .SETF, .SETN,
.sETS)

• Data file error (.OPEN, .OPENA, .OPENR, . DATA, .CLOSE, or .READ between .ENABLE
DATA and .DISABLE DATA)

This feature provides you with a means of gaining control to terminate command file processing in
an orderly manner.

Note that the .Ol\l~RR directive applies only to the error conditions listed; errors returned from
a task external to Indirect (for example, a PIP syntax error) are not processed by the .ONERR
directive.

FORMAT
.ONERR [label]

PARAMETERS

label
The name of the label, but without the leading period and trailing colon.

Upon detecting an error, Indirect passes control to the line starting with .label:. The .ONERR
directive must be issued before Indirect encounters the error condition. If the directive is executed
(one of the listed errors is encountered), error processing passes to the specified label. If the label
specified by the .ONERR directive does not exist and an error condition has occurred, command
processing terminates.

If you do not specify the optional label, Indirect disables processing for the previous .ONERR
directive.

2-53

.ONERR

Once a .ONERR condition has occurred, another .ONERR directive must be issued to trap a future
error.

See Appendix A for a list of error messages and their assigned class values.

EXAMPLE(S)

The ONERR.CMD command file contains the following commands:

2-54

.ENABLE SUBSTITUTION

.ENABLE LOWERCASE

.i Define a lable for an error branch

.ONERR SERR

i This .SETS directive generates a syntax error .
. , The correct syntax is .SETS TEXT "This is a test" .

. SETS TEXT THIS IS A TEST

; This should never be executed .

. 10:

.ONERR EERR

i This .ENABLE generates an error .

. ENABLE MAGIC

i This should never be executed .

. 20:

.; Disable ONERR error traps

.ONERR

This directive generates an error and Indirect terminates
because ONERR error trapping is disabled .

. SETS TEST THIS IS ANOTHER TEST

; This line is NOT executed because error trapping is disabled .

. GOTO EXIT

.SERR:

A .SETS error is detected .

. GOTO 10

.EERR:

i The .ENABLE directive specified an undefined function .

. GOTO 20

.EXIT:

When the file is executed, Indirect displays the following information:

MCR>@ONERR
>i
>i This .SETS directive generates a syntax error.
>i
>i
AT. -- UNDEF SYM=THIS
.SETS TEXT THIS IS A TEST
>i
>i A .SETS error is detected.
>i
>i
>i This .ENABLE generates an error.
>i
AT. -- SYNTAX ERR
.ENABLE MAGIC
>i
>i The .ENABLE directive specified an undefined function.
>i
>i
>i This directive generates an error and Indirect terminates
>i because ONERR error-trapping is disabled.
>i
AT. -- UNDEF SYM=THIS
.SETS TEST THIS IS ANOTHER TEST

NOTE: Indirect did not signal the end of the command file with @<EOF>.

.ONERR

2-55

.ONFAIL

.ONFAIL-Detect any MeR command that returns an
error status.

The .ONFAIL directive detects any MCR command that returns an error status (such as a MACRO
command that has assembly errors) and branches to a specified label.

Error-trapping remains in effect until disabled. To disable .ONFAIL error detection specify the
.ONFAIL directive without a label.

The .ONFAIL directive function is simular to the .ONERR directive, which detects Indirect
Command File directive errors.

FORMAT
.ONFAIL<label>

.ONFAIL

EXAMPLE(S)

A command file ONFAIL. CMD contains the following commands:

2-56

.ENABLE LOWERCASE

.; Trap assembly errors to the MACERR routine .

. ONFAIL MACERR

MAC TEST,TEST/-SP=TEST

.10 :

.; Trap task build errors to the TKBERR routine .

. ONFAIL TKBERR

TKB TEST,TEST/-SP=TEST

.20:

., The RUN command generates an error.

RUN TEST

This line shows that error traping is disabled because the above
RUN command generated an error and the command file did not branch .

. GOTO EXIT

.MACERR:

.ONFAIL

Macro assembly error detected. Resetting the error trap branch .

. ; Perform the Task build to show how to change the error trap branch

.GOTO 10

.TKBERR:

Task Builder error detected. Disable error trapping .

• ONFAIL
.GOTO 20

.EXIT:

When the file is executed Indirect displays the following information:

>MAC TEST,TEST/-SP=TEST
MAC -- Open failure on input file
TEST,TEST/-SP=TEST
>;
>; Macro assembly error detected. Resetting the error trap branch.
>;
>TKB TEST,TEST/-SP=TEST
TKB -- *FATAL*-File TEST.OBJ;23 has illegal format

>;
>; Task Builder error detected. Disable error trapping.
>;
>RUN TEST
>;
>;
>;
>;
INS -- OPEN FAILURE FILE TEST.TSK
>; This line shows that error traping is disabled because the above
>; RUN command generated an error and the command file did not branch.
>;
@ <EOF>

2-57

.OPEN

.OPEN-Open secondary file.
The .OPEN directive opens a specified secondary file as an output file. The .DATA directive is used
to place data in the secondary file opened by the .OPEN directive.

FORMAT
nca::N ._. _ ...

PARAMETERS

#n
An optional file number in the range 0 to 3. The default is #0. To substitute a numeric symbol for
the value n, enclose the symbol in apostrophes.

filespec
A file to be opened as an output file. The default file type is DAT.

Indirect sets the owner {JIC of the file being opened to be the ~~ent protection LTJC of the user.
All FCS protection and privilege checks are still in effect.

For nonprivileged users, the protection mc is always the same as their login me.
NOTE: You cannot include comments in an .OPEN statement. Doing so results in a
syntax: error.

EXAMPLE(S)

.OPEN SECOUT

This directive opens the file SECOUT.DAT as an output file .

. OPEN TEMP

This directive opens the file specified by the logical translation of TEMP.

2-58

.OPENA

.OPENA-Open secondary file for append.
The .OPENA directive opens a secondary file and appends all subsequent data to the file.

FORMAT
.OPENA [#n] filespec

PARAMETERS

n
An optional file number in the range 0 to 3. The default is #0. You can substitute a numeric
symbol for the value n by enclosing the symbol in apostrophes.

filespec
A secondary file to be opened with subsequent data appended to it. The default file type is DAT.

Indirect sets the owner UIC of the file being opened to the current protection UIC of the user. See
the description of the .OPEN directive for more information.

NOTE: You cannot include comments in an .OPENA statement. Doing so results in a
syntax error.

If the specified file does not already exist, .OPENA becomes the .OPEN directive by default.

EXAMPLE(S)

.OPENA SECOUT

This directive opens the file SECOUT.DAT as an output file and appends subsequent data to it .

• OPENA TEMP

This directive opens the file specified by the logical translation of TEMP as an output file and
appends subsequent data to it.

2-59

.OPENR

.OPENR-Open file for reading.
The .OPENR directive opens a file for reading with the .READ directive.

FORMAT
.OPENR [#n] filespec

PARAMETERS

n
An optional file number in the range 0 to 3. The default is #0. You can substitute a numeric
symbol for the value n by enclosing the symbol in apostrophes.

filespec
A file to be opened for reading. The default file type is DAT.

Indirect sets the owner VIC of the file being opened to the current protection mc of the user. See
the description of the .OPEN directive for more information.

NOTE: You cannot include comments in an .OPENR statement. Doing so results in a
syntax error.

EXAMPLE(S)

.OPENR INDADD

This directive opens the file INDADD.DAT for reading with the .READ directive .

. OPENR DATLIB.ULB/LB:DATINP

This directive opens for reading the library module DATINP that is contained in the universal
library DATLIB .

. OPENR TEMP

This directive opens for reading the file specified by the logical translation of TE~IP.

2-60

.PARSE

.PARSE-Parse strings into substrings.
The .PARSE directive parses strings in a command line into substrings.

FORMAT
.PARSE <string> <contro/string> <var1> <var2> ... <varn>
The string is broken up into substrings as specified by the control string. The substrings are stored
in the specified variables. The first character of the control string delimits the first substring, the
second character of the control string delimits the second substring, and so on. The last character
of the control string is repeated if the number of variables exceeds the length of the control string.
If you specify more variables than substrings, the additional variables are set to null strings. If
you specify fewer variables than the number of substrings that can be parsed, the last variable
contains the unparsed fragment of <string>.

If you specify only one variable, Indirect discards all characters following, and including, the
delimiter (for example, a comma or a right angle bracket). All null substrings are also discarded.
If you specify more than one variable and the last character of <string> is a delimiter, Indirect
assumes that a null substring comes after it. If you do not specify a symbol for this substring to be
parsed into, the delimiter and the substring are parsed into the last symbol specified.

The symbol <STRLEN> contains the actual number of substrings that Indirect processed (including
explicit null substrings).

EXAMPLE(S)

A command file, PARSE. CMD, contains the following command lines:

.ENABLE SUBSTITUTION

.PARSE COMMAN " Ii FILE Al A2 A3 A4 AS

COMMAN 'FILE'
Al ' Al'
A2 ' A2'
A3 'A3'
A4 ' A4'
AS ' AS'
<STRLEN> = '<STRLEN>'

When the file is executed Indirect displays the following information:

MCR>@PARSE THIS IS A TEST OF THE EMERGENCY BROADCASTING SYSTEM.
>i
>i COMMAN = PARSE
>i Al = THIS
>i A2 = IS
>i A3 = A
>i A4 TEST
>i AS OF THE EMERGENCY BROADCASTING SYSTEM.
>i <STRLEN> = 6
@ <EOF>

2-61

.PAUSE

.PAUSE-Pause for operator action.
The .PAUSE directive interrupts processing of an indirect command file to wait for user action. A
.PAUSE directive causes Indirect to stop itself, after which you can perlorm some operations and
subsequently cause the task to resume.

FORMAT
.PAUSE
When Indirect stops itself, it displays the following message on the entering terminal:

AT. -- Pausing, 2 cntnue type "RES ••. AT.'<ALTMODE>

command
The command line to be issued to resume the task.

task name
The name of the Indirect task.

You then type the appropriate command line to resume the task. Indirect displays the following
message and continues processing where it left off:

AT. -- Continuing

2-62

.READ

.READ-Read next record.
The .RE-AD directive reads the next record into a specified string variable. The entire record is
read into the variable. If the record is longer than 11710 characters, an error occurs .

. READ does not detect End of File.

FORMAT
.READ [#n] ssssss

PARAMETERS

n
An optional file number that specifies the file from which the record is to be read. The file number
must be one of the numbers used in a previous .OPENR statement.

SSSSSS
The string variable into which the record is to be read.

EXAMPLE(S)

These directives open the file FILE.DAT for reading, read each record into the string variable
RECORD, display each record on the terminal, and close the file.

2-63

.RETURN

.RETURN-Return from a subroutine.
The .RETURN directive signifies the end of a subroutine and returns control to the line
immediately following the .GOSUB directive that initiated the subroutine.

FORMAT
.RI=TURN

2-64

·SEARCH

.SEARCH-Search a string for location of substring.
The .SEARCH directive determines the position of a substring within a given string.

FORMAT
.SEARCH <string> <substring> <variable>
The directive searches the string for the specified substring. A character count specifying the
starting location of the substring is returned in the numeric <variable>.

If <variable> is not yet defined, it is defined according the the current radix. A zero (0) is returned
in <variable> if the substring is not found.

The SEARCH directive is case-sensitive.

EXAMPLE(S)

A command file SEARCH.CMD contains the following command lines:

.ENABLE SUBSTITUTION

.ENABLE LOWERCASE
• ENABLE DECIMAL

.SETS STRING "This is a test of the Emergency Broadcasting System"

.SETS SUBSTR "Emergency"

The full text string is:
, STRING'

The search string is:
, SUBSTR'

., Now performing the search ..• START is a previously undefined variable

.SEARCH STRING SUBSTR START

i The word 'SUBSTR' starts at character # 'START'.

The result of executing the file is:

MCR>@SEARCH
>i
>i The full tej..t string is:
>; This is a test of the Emergency Broadcasting
>;
>; The search s>; Emergency
>i
>; The word Emergency starts at character # 23.
>;
@ <EOF>

System

2-05

.SETT/.SETF

.SETT/.SETF-Set symbol to true or false.
The .SETT, .SETF, and .SETL directives define or change the value of a specified logical symbol. If
the symbol has not been defined, Indirect makes an entry in the symbol table and sets the logical
symbol to the value specified. If the symbol has already been defined, Indirect resets the symbol
accordingly. Indirect exits with a fatal error if the logical symbol was defined previously as a
numeric or string symbol.

FORMAT
.SETT ssssss
.SETF ssssss

PARAMETERS

SSSSSS
The 1- to 6-character logical symbol to be assigned a true or false value.

EXAMPLE(S)

.SETT X

This directive sets the logical symbol X to true .

. SETF ABCDE

This directive sets the logical symbol ABCDE to false.

2-66

.SETN

.SETN-Set symbol to numeric value.
The .SETN directive defines or changes the value of a specified numeric symbol. If the symbol has
not been defined, Indirect makes an entry in the symbol table and sets the symbol to the numeric
value specified. If the symbol has already been defined, Indirect resets the symbol accordingly.
Indirect exits with a fatal error if the numeric symbol was previously defined as a logical or string
symbol.

FORMAT
.SETN ssssss numexp

PARAMETERS

SSSSSS
The 1- to 6-character numeric symbol.

numexp
A numeric expression. (See Section 2.4.2.)

When specifying a numeric value to assign to a symbol, you can combine a numeric symbol or
constant with another numeric symbol or constant to form a numeric expression. If numeric
expressions are used, no embedded blanks or tabs are permitted. Evaluation is done from left to
right unless parentheses are used to form. subexpressions, which are evaluated first. The radix
of an expression is octal if all the operands are octal and decimal mode has not been enabled;
otherwise, the radix is decimal.

EXAMPLE{S)

.SETN NUMBER 27

This directive assigns to the numeric symbol NUMBER the value 278 .

. SETN A2 10 .

. SETN A1 3* (A2-S)

This directive assigns the numeric symbol A1 the value of symbol A2 minus 5, multiplied by 3.

2--67

·SETS

.SETS-Set symbol to string value.
The .SETS directive defines or changes the string value of a specified string symbol. If the symbol
has not been defined, Indirect makes an entry in the symbol table and sets the symbol to the
specified string value. If the symbol has been defined, Indirect resets the symbol accordingly.
Indirect exits with a fatal error if the symbol was defined previously as a logical or numeric
symbol.

FORMAT
.SETS ssssss strexp

PARAMETERS

ssssss
The 1- to 6-character string symbol.

strexp
Any string expression. (See Section 2.4.3.)

Indirect assigns to the specified symbol the string value represented by the string expression
strexp. If a string constant is used in strexp, the constant must be enclosed by quotation marks
("constant").

You can combine a string symbol, constant, or substring with another string symbol or substring
by the string concatenation operator (+) to form a string expression.

EXAMPLE(S)

.SETS A "ABCDEF"

This directive assigns to string symbol A the string value ABCDEF .

. SETS STR2 "ZZZ"

This directive assigns to string symbol STR2 the value ZZZ .

. SETS x STR2+"ABC"

This directive assigns to string symbol X the value of symbol STR2 plus ABC (that is, ZZZABC) .

. SETS x STR2+A[1:3]

This directive is equivalent to the previous directive. It assigns to string symbol X the string value
of STR2 plus the first three characters of string A (that is, ZZZABC) .

. SETS MYFILE <UIC>+ "lvfi.'F ILE • TXT'!

This directive assigns the string symbol MYFILE the string value of the CWTent directory and
the string contained within the quotation marks (for example, if the current directory is [303,23],
MYFILE is assigned the string value [303,23]MYFILE.TXT).

2-68

.SETS

A command file SETS1.CMD contains the following commands:

.ENABLE SUBSTITUTION

.SETS A "ABCDEF" ASSIGN QUOTED STRING TO VARIABLE A

.SETS STR2

.SETS x

.SETS Z

"ZZZZ"
STR2+"ABC"
STR2+A[4: 6]

ASSIGN QUOTED STRING TO VARIABLE STR2
APPEND QUOTED STRING TO VARIABLE STR2
APPEND LAST THREE CHRACTERS OF VARIABLE A

TO THE END OF VARIABLE STR2
.SETS MYFILE <UIC>+"MYFILE.TXT" PREFIX THE QUOTED STRING WITH THE CURRENT

USER IDENTIFICATION CODE

HERE ARE THE RESULTS

VARIABLE
NAME

VARIABLE
CONTENTS

------------------------------,

A ' A'
STR2 ' STR2'

X ' X,
Z ' Z'

MYFILE 'MYFILE'

When the file.is executed, Indirect displays the following information:

MCR>@SETS
>i
>i HERE ARE THE RESULTS
>;
>i VARIABLE
>i NAME

VARIABLE
CONTENTS

>;-----------------------------
>i
>i
>;
>i

A
STR2

x
>i Z
>i MYFILE
>;
@ <EOF>

ABCDEF
ZZZZ
ZZZZABC
ZZZZDEF
[l,l]MYFILE.TXT

A command file SETS2.CMD contains the following commands:

.ENABLE SUBSTITUTION

_, Convert the UFD from the file specification into a MFD file name .

. , First, set up the constant portions of the MFD string

., Second, locate the comma in the UFD (eg: [xxx,yyy])

., Third, extract the group and member code
;; Fourth build the complete MFD file syntax

.SETS FILESPEC "[377,300]HOT.TUB"

.SETS MFD "[0,0]"

.SETS EXT ".DIR"

.SEARCH "'FILESPEC'" "," COMMA

.SETS DIRI FILESPEC[2:'COMMA'-1]

.SETS DIR2 FILESPEC['COMMA'+l:lO]

.SETS MFDSPEC MFD+DIRl+DIR2+EXT

2-69

.SETS

The MFD file specification for ['dirl' ,'dir2'] is 'MFDSPEC'

When the file is executed, Indirect displays the following information:

2-70

>;
>; The MFD file specification for [377,300] is [0,0]377300.DIR
>;
@ <EOF>

.TASK

.TASK-Read task file and store size.
The .TASK directive determines the size of a task image file and stores the size in the numeric
variable <TSKTSZ>.

Indirect exits if the specifed file does not exist. However, you can use the .ONERR directive to
continue processing.

FORMAT
.TASK <Task image file specification>

EXAMPLE(S)

A command file TASK.CMD contains the following commands:

.ENABLE SUBSTITUTION

.ENABLE LOWERCASE

.i Trap "File not found errors" else IND will exit •

. ONERR RETRY

. PROMPT:

.ASKS FILE Specify a task image

.TASK 'FILE'

The size of 'FILE' is '<TSKTSZ>' decimal bytes.

/

.RETRY:

i Unable to open 'FILE'. Please enter a different file specifcation

.GOTO PROMPT:

When the file is executed Indirect displays the following information:

MCR>@TASK
>* Specify a task image [S]: [ll,l]TKB.TSK
>i
>i The size of [ll,l]TKB.TSK is 16832 decimal bytes.
>i
>/
@ <EOF>

2-71

.TEST

.TEST-Test symbol.
The . TEST directive determines the length of a string symbol and stores the length of the string
in the special numeric symbol <STRLEN>. It also tests the characters of the string and sets the
special logical symbols <ALPHAN>, <RAD50>, and <OCTAL> accordingly.

FORMAT
.TEST <string_symbol>

PARAMETERS

<STRING SYMBOL>
The 1- to 6-character symbol to be tested.

The results of the test are as follows:

• If variable is a string, <STRLEN> contains the length of the string. Also, the special symbols
<.ALPHAN> and <RAD50> are set based on a scan of the characters of variable.

• If variable is an octal value, <OCTAL> is set to TRUE.

FORMAT
.TEST string substring

PARAMETERS

string
A string symbol or constant.

substring
A string expression.

In this case, the substring is searched for in the specified string. If the substring is present,
<STRLEN> is set to the position of the starting character of the substring within the string. If
substring is not present, <STRLEN> is set to O.

If a string constant is used in string or substring, the constant must be enclosed by quotation
marks ("constant").

EXAMPLE{S)

If SUM is a string symbol, the directive statement

.TEST SUM

places the number of characters represented by the symbol SUM into <STRLEN>.

2-72

A command file TEST.CMD contains the following commands:

.ENABLE SUBSTITUTION

.SETS A "THIS IS A TEST"

.TEST A

.GOSUB SHOW

Note~ The string 'A' contains a blank space which is
neither an alphanumeric nor RAD50 value .

. SETS A "$.$.$.$."

.TEST A

.GOSUB SHOW

.SETS A "12345"

.TEST A

.GOSUB SHOW

.SETS A "!@'$%A&*() +"

.TEST A

.GOSUB SHOW

I

• SHOW:

Test string 'A'

Special symbol Special symbol value
;--

STRLEN
i ALPHAN
i RAD50

• RETURN

'<STRLEN>'
, <ALP HAN> ,
, <RAD50>'

When the file is executed Indirect displays the following information:

MCR>@test2
>;
>i Test string
>i
>i
>; Special symbol

THIS IS A TEST

Special symbol value
>i--
>i STRLEN 16
>i ALPHAN
>i RAD50
>i

FALSE
FALSE

>i Note: The string THIS IS A TEST contains a blank space which is
>i neither an alphanumeric nor RAD50 value.
>i
>i
>i Test string
>i
>i

$.$.$.$.

>i Special symbol Special symbol value
>i--
>i STRLEN 10
> i ALPHAN FALSE
>i RAD50 TRUE

.TEST

2-73

.TEST

2-74

>;
>; Test string
>;
>;

12345

>; Special symbol Special symbol value

>;--
>; STRLEN 5
>; ALP HAN TRUE
>; RAD50 TRUE
>;
>; Test string !@#$%"'&* () +
...... , ,
>;
>; Special symbol Special symbol value

>;--
>; STRLEN 14
>; ALPHAN
>; RAD50
>/
>@ <EOF>

FALSE
FALSE

.WAIT

.WAIT-Wait for a task to finish execution.
The .WAIT directive suspends processing of an indirect command file until a particular task has
terminated.

FORMAT
.WAIT taskname

PARAMETERS

taskname
A 1- to 6-character valid task name.

The .WAIT directive also sets the symbol <EXSTAT> with the exit status of the completed task.

If the specified (or default) task is not installed, Indirect ignores the .WAIT directive. The .WAIT
directive performs no function if the !NOMe switch is in effect.

EXAMPLE(S)

.WAIT xxx

This directive discontinues processing of the command file until the terminal-initiated task xxx
exits.

2-75

.XQT

.XQT -Initiate parallel task execution.
Indirect usually passes a command to MCR and waits until the command's execution has
completed. However, it is possible for Indirect to initiate a task and not wait for it to complete
before executing the next directive. The .XQT directive enables you to start a task, to pass a
command line to it, and to continue processing in parallel with the initiated task. The maximum
number of successive XQT directives allowed is 10 (decimal).

FORMAT
.XQT taskname commandline

PARAMETERS

taskname
The name of the task (for example, MAC or TKB).

commandline
The command line to be executed.

The .XQT directive enables you to initiate parallel processing of tasks. The .WAIT directive is used
to synchronize their execution.

A problem could occur if XQT is used to run a task, as in the following command:

.XQT RUN Faa

A subsequent .WAIT directive cannot specify Faa in its task-name parameter because only RUN
is valid. The .WAIT directive would proceed as soon as FOa started execution (as soon as RUN
completed).

This problem can be avoided by using the following sequence of commands:

2-76

INS FOO/TASK= ... DRY
.XQT DRY
.WAIT DRY

The Indirect Command Processor (Reference Section)

2.7 Examples

2.7.1

2.7.2

The following sections contain examples showing different uses for Indirect. The longer examples
are followed by detailed explanations.

Using an Indirect Command File
A file named PRINTER.CMD contains the following command lines:

.ENABLE SUBSTITUTION
i' <TIME>'
QUE LISTINGS.MEM
.EXIT

To execute the command file, use the following command line:

> @PRINTER ~

Asking for a Device Specification

., This command file asks for a device specification •

. , You can enter the device name with or without a colon

., and the unit number does not have to be entered for

., unit o. The output produced is the proper device name

., with a unit number and a colon.

.ENABLE SUBSTITUTION

.DISABLE LOWERCASE

.ASKS DEVICE What is the device name?

. SETN TEMPN 2

o
@
o o

.SETS TEMPS":" 0

.TEST DEVICE 0

.IF TEMPN EQ <STRLEN> .SETS DEVICE DEVICE+"O" 8

. IF TEMPS NE DEVICE [<STRLEN>:<STRLEN>] . SETS DEVICE DEVICE+":" 0 o
CD>

; The full device specification is 'DEVICE'
.EXIT

When you execute this command file, Indirect asks for the name of a device and then displays the
complete device specification on the terminal. For example:

> @DEVICE B
>* What is the device name? [S:]: dul ~
;The full device specification is DU1:
>@ <EOF>
>

The following commentary gives a line-by-line explanation of the command file:

o Substitution mode enabled.

@ Lowercase mode disabled, which means that all input characters are converted to uppercase
regardless of how they were typed in.

o Asks for the device name (that is, the mnemonic and unit number) and assigns it to the string
symbol DEVICE.

o Sets numeric symbol TEMPN to the value 2, which is the number of characters for the device
mnemonic.

2-77

2.7.3

The Indirect Command Processor (Reference Section)

" Sets string symbol TEMPS to contain a colon. The colon is a string constant, so it must be
enclosed in quotation marks.

o Tests the symbol DEVICE (which contains the specified device name). As a result, the follO\"in~
special symbols are set:

<STRLEN> The length of the string (the number of characters typed in response to the question)

f) Performs a conditional test. If the value of TEMPN (2) equals the value of <STRLEN>, set
DEVICE to be the current contents of DEVICE plus O. That is, if <STRLEN> equals 2, that
means the user typed in the device mnemonic without a unit number. Therefore, the unit
number of the device should be O. DEVICE becomes ddO.

o Performs another conditional test. If the value of TEMPS (:) does not equal the last character
of DEVICE, add a colon to DEVICE (set the string symbol DEVICE to be equal to DEVICE
plus colon; DEVICE becomes ddn:).

CD Displays this text, with the full device name substituted for 'DEVICE,' on the terminal.

Initializing and Mounting a Volume, and Copying Files to That Volume
.ENABLE SUBSTITUTION

.GETDEV:

.INIT:

.COPY:

.END:

.ASKS DEVICE Enter device (DU1 or DU2)

.IF DEVICE EQ "DUO" .GOTO GETDEV

.ASKS DIR What directory (include square brackets)?

.ASK INIT Initialize device

.IFF INIT .GOTO COPY
ALLOCATE 'DEVICE':
MOUNT/FOREIGN 'DEVICE'
.ASKS LABEL What volume label?
INITIALIZE 'DEVICE' :'LABEL'
DISMOUNT/NOUNLOAD 'DEVICE':
MOUNT/NOSHAREABLE 'DEVICE' :'LABEL'
CREATE/DIRECTORY 'DEVICE' :'DIR'

.ASKS FILES Enter names of files (file1,file2, ...)
COPY 'FILES' 'DEVICE' :'DIR'
.ASK MORE More files
.IFT MORE .GOTO COpy
.ASK LIST List directory
.IFF LIST .GOTO END
DIRECTORY 'DEVICE' :'DIR'

DISMOUNT ; DEVICE' :
DEALLOCATE 'DEVICE':
.EXIT

The following commentary gives a line-by-line explanation of the command file:

o Substitution mode enabled.

o
f)
8
o

" o
8
(:)
o
G>
(D
(f)
G)
m
C9
(l)
(i)
«i)
~
~
~
9
@)
~
~
~
~

@ Line for .GETDEV: label. It is a direct-access label, so it is the only element on the command
line.

€) Asks for the name of the device to which the files are to be copied.

e Performs a conditional test. If DEVICE = DUO (an invalid device), returns to .GETDEV: and
asks the question again.

Cit Asks for the nirectory to which the files are to be copied.

2-78

2.7.4

The Indirect Command Processor (Reference Section)

CD Line for the .INIT: label (also a direct-access label).

8 Asks if the device should be initialized.

o If the device should not be initialized, proceeds with the copy operation.

o Allocates the specified device.

G> Mounts the device foreign, which is necessary for initializing a device.

CD Asks for the label for the volume.

C8 Initializes the volume and gives it the specified label.

e Dismounts the device without spinning it down.

CD Remounts the device as a private, Files-ll volume.

~ Creates the specified directory on the volume.

4D Line for the .COPY: label (also a direct-access label).

CD Asks for the specifications of the files to be copied.

CD Copies the files to the device.

G> Asks if there are more files to be copied.

@) If there are more files, returns to the .COPY: label.

~ If there are no more files, asks if you would like a directory of the copied files.

o If you do not want a directory, goes to the end of the file (.END:).

e If you do want a directory, displays the names of the copied files on the terminal.

~ Line for the .END: label (also a direct-access label).

~ Dismounts the device.

~ Deallocates the device.

9 Exits from the file and Indirect.

Editing, Purging, Printing, and Formatting Files
.ENABLE QUIET 0
.ENABLE SUBSTITUTION ~

.ASKS FILNAM What is the file name? ~

.ASKS FILTYP What is the file type? ()
EDIT 'FILNAM' .'FILTYP' ~

.ASK A Do you want to purge this file? 0

.IFT A PIP ;FILNAM' .;FILTYP'/QU:2 tI
PIP 'FILNAM' .'FILTYP' ;*/TR 0
.ASK DSR Do you want to invoke DSR? 0
.IFT DSR .GOSUB PROC G>
.ASK B Do you want a listing? CD
. IFF B . GOTO 100 C8
.GOSUB LIST e
QUE 'FILNAM' .'FILTYP'/CO:'C'/CO:'D' CD

2-79

The Indirect Command Processor (Reference Section)

.100: CD
.EXIT CD

.PROC: f)
DSR 'FILNAM'='FILNAM' ~
. SETS FILTYF "MEM" ~
.ASK F Do you want to purge the .MEM files? ~
.IFT F PIP 'FILNAM' .MEM/PU:2 ~
PIP 'FILNAM' .MEM;*/TR @&
. RETURN ~

.LIST: e
.ASKN C What form number? ~
.ASKN [::1.] D How many copies? ~
. RETURN 6D

The following commentary gives a line-by-line explanation of the command file:

o Quiet mode enabled, which means that Indirect does not echo (display on the terminal) MCR
command lines or comments. The command lines are executed normally and, if they return a
message or display, those are shown on the terminal.

& Substitution mode enabled.

@) Asks for the name of the file (for example, MYFILE).

e Asks for the type of the file (for example, CMD).

o Invokes EDT so that you can edit the specified :file.

o 'When you are done with EDT (using the EXIT or QUIT command), asks if you want to purge
the versions of the file.

S If you want to purge the files, PIP does so, keeping the two latest versions of the file.

(3 Truncates the files to free up blocks that are allocated to the files but not used.

o Asks if you want to use DIGITAL Standard Runoff (DSR) to format the file.

G) If you do want to use DSR, Indirect goes to the subroutine for file processing (.PROC:).

CD Mter returning from the processing subroutine, asks if you want a listing of the file.

~ If you do not want a listing, exits from the file and Indirect.

e If you do want a listing, goes to the subroutine for listing files (.LIST:).

(D After returning from the listing subroutine, prints the specified number of copies of the file on
the designated printer.

CD Line for label .100: (a direct-access label).

CD) Exits from the file and Indirect.

f) Line for .PROC: label (label for the processing subroutine).

C9 DSR formats the file (which must be a RNO file) and creates (by default) a MEM file.

~ Sets string symbol FILTYP equal to type MEM.

e Asks if you want to purge the MEM files.

~ If you do want to purge the files~ PIP does so~ keeping the two latest versions of the file.

e Truncates the files to free up blocks that are allocated to the files but not u.sed.

@) Returns to the line after .GOSUB PROC (.ASK B Do you want a listing).

~ Line for .LIST: label (label for the listing subroutine).

2-80

The Indirect Command Processor (Reference Section)

e Asks for the form number for the line printer. Sets the numeric symbol C to this value, which
is used in the QUE command line.

~ Asks for the number of copies to be printed (the default is 1). Sets numeric symbol D to this
value, which is also used in the QUE command line.

iI Returns to the line after .GOSUB LIST (the QUE command line).

2-81

A Indirect Messages

\Vhen Indirect encoWlters an error, it displays the appropriate elTor message and the command
line in which the elTor occurred. If the line contained a substitution, the line as it appeared before
the substitution took place is also displayed. Indirect also closes all open data files before exiting.

Section A.I explains the information-only messages and Section A.2 explains the elTor messages.
The error messages are divided into four classes, depending on the level of severity. Class 2 errors
can be handled with the <ERRCTL> symbol (see Section 2.4.1.2), and class 1 errors can be handled
with the .ONERR directive. Class 0 errors must be corrected outside of Indirect. The remaining
messages are only for your information.

A.1 Information-Only Messages
@<EOF>

Explanation: (Class 0) Indirect has reached the end-of-file for the outermost command file and is
terminating execution.

AT. - Continuing

Explanation: Indirect is resuming execution after a .PAUSE or .DELAY directive.

AT. - Delaying

Explanation: A .DELAY directive was just executed, halting the processing of an indirect
command file for a specified period of time.

AT. - Invalid answer or terminator

Explanation: In response to a question from .ASK, you entered something other than Y, N,
or null, followed by a RETURN; or you did not enter a numeric value in response to a .ASKN
question; or you pressed the ESCAPE key either without escape recognition enabled or as a character
other than the first one following the question. The question will be repeated.

AT. - Pausing. To continue type "command taskname"

Explanation: Indirect just executed a .PAUSE directive, interrupting processing of an indirect
command file to wait for user action.

AT. - Value not in range

Explanation: The response to a .ASKl~ or ASKS question was not within the specified range.
Indirect repeats the question. Or, the time specified for a .DELAY directive exceeded 24 hours.

A.2 Error Messages
AT. - Bad range or default specification

Explanation: An illegal character was specified as a range or default argument. Only numeric
expressions are permitted.

A-1

Indirect Messages

AT - Command file open error

Explanation: The file being invoked in an @file or @fileILB:module command line cannot be found
or opened.

AT. - Data file error, code x.

Explanation: Indirect encountered an error while processing a .OPEN, .OPENA, .CLOSE, or
.DATA directive, or a data-mode access to the secondary file. See the description of <FILERR>
(Section 2.4.1.2) for a definition of the numeric code x.

AT. - .EXIT without .END

Explanation: After executing a .EXIT directive from within a Begin-End block, Indirect
encountered an end-of-file before finding a .END directive. /'

AT. - File already open

Explanation: A .OPEN or .OPENA directive specified a file that was already open.

AT. - File attributes not available

Explanation: An attempt was made to obtain file-attribute information with the <FILATR>
symbol before any files were opened.

AT. - File not found

Explanation: An @filename or .CHAIN directive specified an incorrect file name or nonexistent
file.

AT. - File not open

Explanation: Indirect encountered a .DATA or .CLOSE directive that did not reference an open
file.

AT. - File read error

Explanation: An error was detected in reading the indirect command file. This error is usually
caused by records that are more than 13210 bytes long.

AT. - Illegal file number

Explanation: The file number in a .OPEN, .OPENA, .OPENR, .DATA, .ENABLE DATA, .READ,
or .CLOSE directive is not in the range of 0 to 3.

AT. - Illegal nesting

Explanation: Too many Begin-End blocks have been nested in the indirect command file. The
maximum nesting depth is limited to the size of the symbol table.

AT. - Invalid keyword

Explanation: An unrecognized keyword (preceded by a period) was specified.

AT. - Label not at beginning of line

Explanation: The specified label does not start in the first column of the line. All labels must do
so.

A-2

Indirect Messages

AT. - Maximum indirect file depth exceeded

Explanation: An attempt was made to reference an indirect command file at a nested depth
greater than the maximum specified in the build file for the Indirect task.

AT. - Numeric under- or overflow

Explanation: The evaluation of a numeric expression yielded a value outside the range 0 to
1777778. This means that the value crossed the zero boundary from positive to negative or
negative to positive.

AT. - Redefining symbol to different type <SSSSSS>

Explanation: A .ASK, .ASKN, .ASKS, .READ, .SETr, .SETF, .SETL, .SETN, or .SETS directive
was used in an attempt to set the specified, already defined symbol to a different type. The
first definition of a symbol determines its type (logical, numeric, or string); subsequent value
assignments must conform to the original type.

AT. - .RETURN without .GOSUB

Explanation: A .RETURN directive was specified without a previous call to a subroutine
(.GOSUB).

AT. - Spawn failure

Explanation: Indirect could not initiate the execution of a user command task.

AT. - String expression larger than 132. bytes

Explanation: An attempt was made to generate a string expression longer than 13210 characters.

AT. - String substitution error

Explanation: Indirect encountered an error during a substitution operation. A probable cause for
the error is either the omission of a second apostrophe or the specification of a symbol that is not
defined.

AT. - Subroutine nesting too deep

Explanation: The maximum subroutine nesting level was exceeded. The maximum level is
specified in the build file for the Indirect task.

AT. - Symbol table overflow <SSSSSS>

Explanation: The symbol table was full and there was no space for symbol ssssss.

AT. - Symbol type error <SSSSSS>

Explanation: The symbol ssssss was used out of context for its type; for example, a numeric
expression referenced a logical symbol. Only symbols of the same type can be compared.

AT. - Syntax error

Explanation: The format of the specified command line is incorrect.

AT. - Too many concurrent .XQTs

Explanation: More than the maximum number of successive XQT directives allowed by the build
file for the Indirect task were issued.

A-3

Indirect Messages

AT. - Undefined label <.label:>

Explanation: The label .label: specified with a .GOTO, .GOSUB, or .ONERR directive could not
be found.

AT. - Undefined symbol <SSSSSS>

Explanation: The symbol ssssss was referenced, but it had not been defined.

A-4

Index

A
<ALPHAN> symbol • 2-7
<AL TMOD> symbol • 2-7
Arithmetic operator • 2-9
.ASK directive· 2-16
.ASKN directive· 2-18

.ASKS directive • 2--21

... AT. -2-2
At sign (@) ·1-1,2-1,2-2

B
Begin-End block processing

terminating· 2-33

c
.CHAIN directive • 2-23
<eLI> symbol • 2-8
.CLOSE directive • 2-24
Command line

parsing • 2-61
COMMAN sym bol • 2-12
Comment ·1-5,2-3

Compound test • 2-50

D
.DATA directive • 2-25
Data mode • 2-30
<DATE> symbol e 2-8
.DEC directive - 2-27
Decimal mode • 2-30
<DEFAUL> symbol • 2-7
.DELAY directive - 2-28
IDE switch • 2-13
Device handler

testing • 2-45, 2-46
Direct-access label • 2-15

Directive ·1-2, 2--2

functions • 2-2
summary • 2-4 to 2-6

Directives

description of • 2-14
.DISABLE directive • 2-29
Display mode • 2-30

E
.ENABLE directive • 2-30
.ENABLE GLOBAL directive • 2-3
<EOF> symbol • 2-7
<ERROR> symbol • 2-8
Error messages • A-1 to A-4
Error processing • 2-53
<ESCAPE> symbol • 2-7
Escape mode • 2-31
Examples ·1-5,2-77 to 2-81
.EXIT directive • 2-33
Exit status • 2-8

value -2-8

< EXSTAT > symbol • 2-8

F
<FALSE> symbol • 2-7
File

opening for reading • 2-60

G
Global mode - 2-30
.GOSUB directive • 2-34
.GOTO directive • 2-35

I
<lAS> symbol • 2-7
.IFACT directive • 2-38

Index-1

Index

.lFDEV directive • 2-39

.IFDF directive • 2-41

.IF directive • 2-36

.IFF directive • 2-48

.IFFILE directive • 2-42

.IFINS directive· 2-44

.IFLOA directive • 2-45

.lFMOU directive • 2-46

.IFNACT directive • 2-38

.IFNDEV directive • 2-39

.lFNDF directive • 2-41

.IFNFILE directive • 2-42

.IFNINS directive • 2-44

.IFNLOA directive • 2-45

.IFNMOU directive • 2-46

.IFNPAR directive· 2-47

.IFNREADY directive • 2-49

.IFPAR directive· 2-47

.IFREADY directive • 2-49

.1FT directive· 2-48

.INC directive • 2-51
Indirect ·1-1, 2-1
Indirect command file· 2-1

chaining • 2-23
CLI

nesting • 2-2
formatting • 2-14
MCR-2-2

default file type • 2-2
task· 2-1

default file type • 2-1
nesting • 2-1

tracing • 2-13
using task name· 2-4

Indirect command file processing
delaying • 2-28
interrupting • 2~2
suspending • 2-75
terminating· 2-33,2-52

Indirect Command Processor
See Indirect

L
Label" 1-3

branching to • 2-35
defining • 2-15
direct-access· 2-15

<UBUIC> symbol • 2--8

Index-2

List mode· 2-31
ILl switch - 2-13
Logical end-of-file directive - 2-52
Logical operator· 2-9,2-11
Logical symbol- 2~

defining • 2-16
setting • 2~6
testing· 2-41,2-42,2-47,2-48,2-49

Logical test • 2-36
ILO switch • 2-3
Lowercase mode - 2-30
LRU mode - 2-31

M
<MAPPED> symbol • 2-7
/MCR switch· 2-3, 2-13
<MEMSIZ> symbol· 2--8

N
<NETUIC> symbol • 2--8
Numeric expression • 2-9
Numeric symbol- 2-7,2-9

comparing· 2-36
decrementing • 2-27
defining • 2-1 8
incrementing • 2-51
radix· 2-9
setting • 2~7
substituting • 2-1 0
testing • 2-41 , 2-42

o
<OCTAL> symbol • 2-7
.ONERR directive· 2-53
.OPENA directive • 2-59
.OPEN directive· 2-58
.OPENR directive • 2-60
Operating mode

defaults • 2-30
disabling - 2-29
enabling • 2-30
list· 2-30

p
.PARSE directive· 2--61
.PAUSE directive· 2--62

Q
Quiet mode • 2-31

R
<RAD50> symbol • 2-8
.READ directive • 2--63
Record

reading • 2--63
Reserved symbol· 2-12
.RETURN directive· 2--64
<RSX11 D> symbol· 2-8

s
Secondary file

closing • 2--24
opening • 2-58

for appending • 2-59
outputting data to • 2-25

.SETF directive • 2--66

.SETN directive· 2--67

.SETS directive • 2--68

.SETT directive • 2--66
<SEVERE> symbol • 2-8
Special symbol· 1-3, 2-7

format· 2-7
logical • 2-7
numeric • 2-8
type .. 2-7

Statistics mode· 2-31
String constant· 2-1 0
String expression· 2-11
String symbol • 2-7, 2-10

comparing • 2-36
defining· 2-21
setting· 2--68
testing • 2-41 , 2-42

<STRLEN> symbol • 2-8
Subroutine

calling· 2-34
returning from • 2--64

Substitution mode • 1--2, 2-30
Substring

searching • 2-72
<SUCCESS> symbol • 2-8
Switches • 2-13
<SYDISK> symbol • 2-9
Symbol· 1-2

defining • 2-3
substituting • 2-12, 2-30
using· 2--6

Symbol name • 2--6
Symbol table • 2-3, 2-12
Symbol type • 2~

defining • 2-7
logical • 2--6
numeric • 2-7
string ·2-7

<SYSTEM> symbol • 2-8
<SYSUIC> symbol • 2-9
<SYUNIT> symbol • 2-8

T
Task

executing in paraile! • 2-76
testing • 2-38, 2-39, 2-44

.TEST directive • 2-72
Text

displaying on terminal· 2-16,2-18,2-21
<TIME> symbol • 2-9
lime mode • 2-31
ITR switch • 2-13
<TRUE> symbol • 2-8
< TSKTSZ> symbol • 2-8

u
<UIC> symbol • 2-9

v
Variable

Index

Index-3

Index

Variable (Cont.)

testing • 2-72
<VERSN> sym bol • 2-9

Index~

w
.WAIT directive • 2-75
<WARN IN> symbol • 2-8

x
.XQT directive • 2-76

lAS
Indirect Command Processor Reference Manual

AA-PAXUA-TC

Reader's
Comments

This form is for document comments only. Digital will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible
to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for

improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Other (please specify), _____________________ _

Name, __ Date, ____________ _

Organization, __ _

Street~ __ _

City __________________ State, ______ Zip Code, ______ _

or Country

________________ I)() N()! Tear - F()ld Here and Tape ------------------------

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 33 MA YNf.,RD MASS

POSTAGE WILL BE PAID BY ADDRESSEE

lAS Engineering/Documentation
Digital Equipment Corporation
5 Wentworth Drive GSF/L20
Hudson, NH 03051-4929

III ••• 1111.1111' .1.1"11111.1 •• 1.111 .1 •• 11.1 •• 11 ••• 1

No Postage

Necessary

if Mailed in the

United States

--------------------, D() :'\i()! Tear - "'()Id Here ---------------------

