
IAS Device !Handlers
Referenc:e Manual

Order Number: AA-H004B-TC

This manual det:1crlbes the use and characteristics of IAS device handlers.

Operating Systiem and Version: IAS Version 3.4

May 1990

The Information In this document Is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear In this document.

The software described In this document Is furnished under a license and may be used or copied only In
accordance with the terms of such license.

Restricted Rights: Use, dupllcatlon, or disclosure by the U.S. Government Is subject to restrictions as set forth In
subparagraph (c)(1)(11) of the Rights In Technical Data and Computer Software clause at DFARS 252.227*7013.

No responslblllty Is assumed for the use or rellablllty of software on equipment that Is not supplied by Dlgltal
Equipment Corporation or Its affHlated companies.

Copyright ©1990 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist In preparing future documentation.

The following are trademarks of Dlgttal Equipment Corporation:

DDIF
DEC
DEC/CMS
DECIMMS
DECnet
DECUS
DECwlndows
DECwrlte
DIBOL

IAS
MASS BUS
PDP
PDT
RSTS
RSX
ULTRIX
UNIBUS
VAX

VAXC
VAXcluster
VAXstatlon
VMS
VR150/160
VT

This document was prepared using VAX DOCUMENT, Version 1.2

Contents

PREFACE xvii

CHAPTER 1 INTRODUCTION 1-1

1.1 DEVICE HANDLER TASiKS 1-1

1.2 QIO SYSTEM DIRECTIVES 1-1

--1.3 HANDLER TASK/USER TASK INTERACTION 1-1

--1.4 SPECIFYING THE PHYSICAL DEVICE 1-2 ______ , __ ___
1.5 QIO MACROS 1-3 _______ , __ ___
1.6

1.7

1.8

FUNCTION CODES (NON-MASS STORAGE)
1.6.1 Attach/Detach
1.6.2 Read Logical/Head Virtual Block
1.6.3 Write Logical/Write Virtual Block
~ .6.4 Cancel (KILL 1/0)

FUNCTION CODES FOH MASS STORAGE DEVICES

11.1.1 Direct Mode ·---------------
11.1.2 Mounting for C>lrect Mode
ii . 7 .3 Attach/Detach
il.7.4 Read/Write Loi~lcal Block
~ .7.5 Compatlblllty
~. 7 .6 Status Return!~

DEVICES SUPPORTED
~.8.1 Characterlstlcu Words

1-3
1-3
1-4
1-5
1-5

1-5
1-5
1-6

1-7
1-7
1-7
1-8

1-8
1-8

Ill

Contents

CHAPTER 2 TERMINAL HANDLERS 2-1

2.1 TERMINAL SUPPORT 2-1
2.1.1 Interface Support 2-1

2.2 CHARACTER INPUT FROM A TERMINAL 2-1
2.2.1 Speclal Characters 2-1

2.2.2 Type-ahead 2-4

2.3 CHARACTER OUTPUT TO A TERMINAL 2-5
2.3.1 Escape (ALTMODE) 2-5
2.3.2 Form Feed 2-5
2.3.3 Horizontal Tab 2-5
2.3.4 Line Feed 2-6
2.3.5 Lower Case 2-6
2.3.6 Vertical Tab 2-6

2.4 FUNCTION CODES 2-6
2.4.1 Read 2-6
2.4.2 c2_Wrlte 2-9
2.4.3 Set/Get Terminal Characteristics - 2-12

2.5 OTHER FUNCTIONS AFFECTING TERMINALS 2-20

2.6 SUPPORT OF DIALUP LINES 2-26

2.7 AUTO-BAUD DETECTION 2-27
2.7.1 Dlal-ln Interface 2-27
2.7.2 How to Enable Auto-baud Detection 2-27

2.8 ESCAPE SEQUENCE SUPPORT 2-27
2.8.1 Types of Escape Sequence Support 2-28
2.8.2 Valid ANSI escape sequences 2-28
2.8.3 Input of Escape Sequences 2-32
2.8.4 Output of Escape Sequences 2-33

2.9 SUPPORT OF BLOCK-MODE TERMINALS 2-33

Iv

Contents

2.10 LOW SPEED PAPER TAPE READER SUPPORT 2-34

2.11 OTHER SUPPORTED FEATURES 2-34
2.11.1 Parity Suppor1t 2-34
2.11.2 Character Sllo1 Support 2-34
2.11.3 Fiii Character~; 2-35
2.11.4 Support of Otlher Manufacturers' Terminals 2-35
2.11.5 Full Duplex Operation 2-35
2.11.6 Binary Terminals 2-36
2.11.7 Reading Cont1rol Characters 2-36
2.11.8 Remote Terminals 2-36

--
2.1:1!~ 'THE SINGLE· TERMINAL HANDLER (TT01) 2-37

CHAPTER 3 AFC11, AD01 ANALOG TO DIGITAL CONVERTERS 3-1

3.1 INTRODUCTION TO AF'C·11, AD01 3-1

---3.2 FUNCTIONAL CHARAC:TERISTICS
3.2.1 Slngle-SamplEi Mode (Function Code IO.R1C)
3.2.2 Multl·Sample !Mode (Function Code 10.RBC)
3.2.3 QIO System Macro Format
3.2.4 AFC/ AD01 Status Returns

-CHAPTER 4 DISK HANDLERS

4.1 DISK 1/0 HANDLERS
4.1.1 RS03 Flxed~H~~ad Disk
4.1.2 RM02/RM03/RIM05/RM80 Disk Pack
4.1.3 RP04, RP05, FIP06, and RP07 Disks
4.1.4 AK 11 /RK05 or RK05F Cartridge Disks
4.1.5 AL 11 /RL01 or RL02 Cartridge Disk
4.1.6 RK611/RK06 01r RK07 Cartridge Disk
4.1.7 RX11/RX01 FIE~Xlble Disk
4.1.8 RX211 /RX02 Flex Ible Disk
4.1.9 KDA50, UDA510/RA60/RA80/RA81 Disks
4.1.10 RC25 Disk Sulbsystem

3-1
3-1
3-1
3-2
3-3

4--1

4-1
4-3
4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-4
4-5

v

Contents

4.1.11 RD31 Fixed 5.25-lnch Disk
4.1.12 RX33 5.25-lnch Half-Height Disk
4.1.13 RD51 Fixed 5.25 Dlsk/RX50 Flexible 5.25 Disk
4.1.14 RD52 Fixed 5.25-lnch Disk
4.1.15 RD53 Fixed 5.25-lnch Disk
4.1.16 RD54 Fixed 5.25-lnch Disk

4.2 FUNCTION CODES
4.2.1 Standard QIO Functions
4.2.2 Device-Specific QIO Functions

4.3 DISK STATUS RETURNS

4.4 UNIBUS MAPPING REGISTERS

4.5 ERROR RECOVERY IN DB, OM AND DR HANDLERS

4.6 CHARACTERISTICS WORDS FOR DISK DEVICES
4.6.1 Characteristics Word 2
4.6.2 Characteristics Word 3

CHAPTER 5 UDC-11 HANDLER

5.1 INTRODUCTION TO UDC-11

5.2 SOURCE FILE MACROS
5.2.1 Macros Referenced by .MCALL
5.2.2 Creating an Installation-Specific UDC Handler Task

5.3 INTERRUPT/NONINTERRUPT UDC MODULES

5.4 FUNCTION DESCRIPTIONS
5.4.1 Analog Output • A633 Modules
5.4.2 Single-Shot Dlgltal Output· M687 and M807 Modules
5.4.3 Latching Dlgltal Output • M685, M803 and M805 Modules _
5.4.4 Contact Sense Dlgltal Input • W731 and W733 Modules _

vi

4-5
4-5
4-5
4-6
4-6
4-6

4-6
4-6
4-7

4-7

4-8

4-9

4-9
4-9

4-10

5-1

5-1

5-1
5-1
5-2

5-3

5-3
5-3
5-3
5-4
5-5

Contents

5.5 CONTACT INTERRUPT' DIGITAL INPUT • W733 MODULES 5-5
5.5.1 Change of State (COS) Output 5-6
5.5.2 Contact Interrupt Functions Connect/Disconnect 5-6

5.6 TIMER (COUNTER) • W734 MODULE 5-6

5.7 ANALOG/DIGITAL COl\IVERTER • ADU01 5-7

--
5.8 FORTRAN INTERFACE 5-8

5.8.1 ISTS 5-8
5.8.2 ASUDLN 5-8
5.8.3 AOSC 5-8
5.8.4 AO/AOW 5-9
5.8.5 DOSM 5-9
5.8.6 DOM/DO MW 5-9
5.8.7 DOFM 5-9
5.8.8 DOSL 5-9
5.8.9 DOFL 5-10
5.8.10 DOL/DOLW - 5-10
5.8.11 RBCD 5-10
5.8.12 DIFCS 5-10
5.8.13 01/DIW 5-10
5.8.14 RCS PT 5-11
5.8.15 RCIPT 5-11
5.8.16 CDTI 5-11
lS.8.17 RODI 5-11
lS.8.18 DFDI 5-11
5.8.19 SCTI 5-12
5.8.20 RSTI 5-12
5.8.21 CTTI 5-12
5.8.22 RDTI 5-12
5.8.23 DFTI 5-12
5.8.24 ADU01 5-13

--
5.9 SAMPLE FORTRAN PROGRAM 5-13

5.10 UDC STATUS RETURNS 5-19

vii

Contents

CHAPTER 6 DECTAPE HANDLER 6-1

6.1 DECTAPE HANDLER FUNCTIONS 6-1

6.2 FUNCTION CODES 6-1
6.2.1 READ/WRITE Logical Functions 6-1
6.2.2 .ATTACH, DETACH, and REWIND Functions 6-2
6.2.3 DECtape Transfers 6-2
6.2.4 DECtape READ/WRITE 6-2

6.3 UNIBUS MAPPING REGISTERS 6-2

6.4 ERROR HANDLING 6-2

6.5 OT STATUS RETURNS 6-3

6.6 CHARACTERISTICS WORDS FOR DECTAPE 6-3

CHAPTER 7 MAGNETIC TAPE HANDLERS 7-1

7.1 MAGTAPE HANDLER FUNCTIONS 7-1
7.1.1 TE10/TU10/TS03 Magnetic Tape 7-4
7.1.2 TE16/TU16/TU45/TU77 Magnetic Tape 7-4
7.1.3 TS11 /TUBO Mag netlc Tape 7-4
7.1.4 TS05 Magnetic Tape 7-4
7.1.5 TK25 Mag netlc Tape 7-4
7.1.6 TK50 Magnetic Tape 7-4
7.1.7 TU81 Magnetic Tape 7-5

7.2 FUNCTION CODES 7-5
7.2.1 READ/WRITE Logical Functions 7-5
7.2.2 ATTACH, DETACH, REWIND, and EOF Functions 7-5
7.2.3 Read Logical Block 7-5
7.2.4 Write Logical Block 7-6
7.2.5 Rewind and Turn Unit Off Line 7-6
7.2.6 Rewind Magnetic Tape Unit 7-6

viii

Contents

---7.3 DEVICE CONTROL FUNCTION CODES
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6

Skip n Record!;

Skip n Flies ---------------
Set Characterl!;tlcs
Read Characte rlstlcs
Verify Beginning of Tape and Set Characteristics
Logical End-of .. Volume (EOV)

7-6
7-6
7-7
7-7
7-8
7-8
7-8

---7.4 MT STATUS RETURNS 7-9

7.5 UNIBUS MAPPING REGISTERS 7-13

CHAPTER a LABORATORY PERIPHERAL SYSTEM HANDLER (LPS11) 8-1

8.1

8.2

L.PS11 FUNCTIONS
6.1.1 Digital 1/0
6.1.2 Real-Time Cloc:k
6.1.3 12-Blt AID Converter

SYSTEM GENERATION OPTIONS

8-1
8-1
8-2
8-2

8-2

---8.3 QIO MACROS
6.3.1 Standard QIO Function
6.3.2 Device-Specific: QIO Functions (Immediate)
8.3.3 Device-Specific: QIO functions (Synchronous)
8.3.4 Device-Specific: QIO Function (10.STP)

8-2
8-2
8-3
8-5
8-7

---8.4 FORTRAN INTERFACE
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7

8.4.8
8.4.9

The lsb Status Array
Synchronous Subroutines
FORTRAN Sub·routlne Summary
ADC: Reading a Slngle A/D Channel
ADJLPS: Adju~~tlng Buffer Pointers
ASLSLN: Assigning a LUN to LSO:
CVSWG: Conviertlng a Switch Gain AID Value to
Floating-Point
DRS: Initiating Synchronous Dlgltal Input Sampling
HIST: Initiating Histogram Sampling

8-8
8-8
8-8
8-9

8-10
8-11
8-12

8-12
8-13
8-14

Ix

Contents

8.4.10 IDIR: Reading Dlgltal Input 8-15
8.4.11 IDOR: Writing Dlgltal Output 8-15
8.4.12 IRDB: Reading Data from an Input Buffer 8-16
8.4.13 LED: Displaying In LED Lights 8-16
8.4.14 LPSTP: Stopping an In-Progress Synchronous Function - 8-17
8.4.15 PUTD: Putting a Data Item Into an Output Buffer 8-17
8.4.16 RELAY: Latching an Output Relay 8-17
8.4.17 ATS: Initiating Synchronous A/D Sampling 8-18
8.4.18 SDAC: Initiating Synchronous D/A Output 8-19
8.4.19 SDO: Initiating Synchronous Dlgltal Output 8-20

8.5 STATUS RETURNS 8-21
8.5.1 IE.RSU 8-23
8.5.2 Second 1/0 Status Word 8-24
8.5.3 10.ADS and ADC Errors 8-24
8.5.4 FORTRAN Interface Values 8-25

8.6 PROGRAMMING HINTS 8-25
8.6.1 The LPS11 Clock and Sampling Rates 8-25
8.6.2 lmponance of the 1/0 Status Block 8-26

8.6.2.1 Buffer Management • 8-26
8.6.3 Use of ADJLPS for Input and Output 8-27

CHAPTER 9 CARD READER HANDLER TASKS 9-1

9.1 DEVICES SUPPORTED 9-1

9.2 CARD READER FUNCTIONS 9-1

9.3 DATA FORMATS 9-1
9.3.1 Alphanumerlc Format 9-1
9.3.2 Binary Format 9-2

9.4 RUN TIME SERVICE 9-4

9.5 CONTROL CHARACTERS 9-5

9.6 1/0 FUNCTIONS 9-5

x

Contents

---9.7 RECOVERY PROCEDURES
9.7.1 Device Errors
9.7.2 Power Failure Recovery

9-6
9-6
9-6

--9.8 CR STATUS RETURNS 9-6

9.9 UNIBUS MAPPING REGISTER (UMR) ALLOCATION 9-7

___________ ! __ __

CHAPTER 10 LINE PRINTER HANDLER 10-1

10.1 ll'RINTER FUNCTIONS 10-1

--10.2 SYSTEM GENERATION! OPTIONS 10-1

10.3 !FUNCTION CODES 10-2

10.4 lP STATUS RETURNS 10-4
________ , __ _
10.5 CHARACTERISTICS W~DRDS FOR LINE PRINTER 10-4

CHAPTER 11 MESSAGE OUTPu·r HANDLER 11-1

---11.1 MESSAGE OUTPUT H'lNDLER (MO)
·11.1.1 User Task lnte·rface To MO Handler
11.1.2 String Descrlp1tors
11.1.3 Parameter Lls1t

11-1
11-1
11-2
11-2

--
11.2 MO TASK OPERATION

11.3 MESSAGE CONSTRUCTION
"11.3.1 Message Fiie

11-2

11-2
11-5

---11.4 MESSAGE MACRO DESCRIPTIONS
·11.4.1 MOUT$

11-9
11-9

xi

Contents

11.4.2 MOUT$C 11-11
11.4.3 MOUT$S 11-11
11.4.4 User Definition of Action and Destination 11-12
11.4.5 Uses of the MO WAIT FOR Macro 11-13

11.5 MESSAGE DPB FORMAT 11-14

11.6 MESSAGE FORMAT RETURNED TO USER BUFFER 11-14

11.7 ERROR CONDITIONS 11-15

11.8 MO STATUS RETURNS 11-16

CHAPTER 12 PAPER TAPE READER/PUNCH HANDLER 12-1

12.1 DEVICES SUPPORTED 12-1

12.2 FUNCTION CODES 12-1

12.3 TAPE LEADER/TRAILER 12-2
12.3.1 Sequential Fiie Device 12-2

12.4 PT STATUS RETURNS 12-3

CHAPTER 13 CASSETTE HANDLER 13-1

13.1 INTRODUCTION 13-1

13.2 QIO MACRO 13-1
13.2.1 Standard QIO Functions 13-1
13.2.2 Device-Specific QIO Functions 13-2

13.3 STATUS RETURNS 13-2
13.3.1 Cassette Error Recovery Procedures 13-3

xii

Contents

--13.4 STRUCTURE OF CASS;ETTE TAPE 13-3

--13.51 PROGRAMMING INFOHMATION
13.5.1 Importance of Rewinding
13.5.2 End-of-Fiie and 10.SPB
13.5.3 The Space Functions, 10.SPB and 10.SPF
13.5.4 Verification of Write Operations
13.5.5 Block Length
13.5.6 Loglcal End-of-Tape

CHAPTER 14 NULL DEVICE HANDLER

14.11 INTRODUCTION

13-5
13-5
13-5
13-6
13-6
13-6
13-6

14-1

14-1

--14.~~ EXAMPLE 14-1 _____ , __ _
14.~S PREREQUISITES 14-2

CHAPTER 15 DECTAPE II HANDLER 15-1

--15.1 INTRODUCTION
15.1.1 TU58 Hardware
15.1.2 TU58 Handler

15-1
15-1
15-1

--15J? QIO MACRO
15.2.1 Standard QIO Functions
15.2.2 Device-Specific QIO Functions

15-1
15-1
15-2 _____ , __ _

15.3 STATUS RETURNS 15-3

15.4 CHARACTERISTICS WORDS FOR DECTAPE II 15-3

xiii

Contents

APPENDIX A LISTING OF QIOMAC A-1

INDEX

--EXAMPLES
11-1 Example Using Counts In the Format String
11-2 Example Using v In the Format String
11-3 Example of Format From a Disk Fiie

FIGURES
3-1 AID Conversion Control Word
7-1 Set/Sense Characteristics Status Word
7-2 TU10 Parity/Density Determination
7-3 TU16 Parity/Density Determination
7-4 Logical End of Volume (EOV)
8-1 Synchronous Subroutines
9-1 Binary Data Format 48 Bits (3 words, 4 card columns)
13-1 One Possible Structure of Cassette Tape

TABLES
2-1 Venlcal Format Control Characters
2-2 Characteristics and their Names
2-3 Valld Terminal Types
2-4 Valld Terminal Speeds
2-5 110 Function Codes
2-6 Handling of Dlalup Lines
2-7 Encoding of VT52-type Escape Sequences
4-1 Standard Disk Devices
4-2 Device-Specific Functions for Disks
4-3 Characteristics Word 2 (U.C2), Bits 8·15
7-1 Standard Magnetic Tape Devices
8-1 Device-Specific QIO Functions for the LPS11 (Immediate)
8-2 Device-Specific QIO Functions for the LPS11 (Synchronous)
8-3 Device-Specific QIO Function for the LPS11 (10.STP)
8-4 Contents of First Word of lsb
8-5 FORTRAN Interface Subroutines for the LPS11
8-6 LPS11 Status Returns
8-7 Returns to Second Word of 1/0 Status Block
8-8 FORTRAN Interface Values

xiv

11-6
11-7
11-8

3-3
7-9

7-10
7-11
7-12
8-9
9-2

13-4

2-9
2-13
2-16
2-18
2-25
2-26
2-30
4-1
4-7

4-10
7-1
8-3
8-5
8-7
8-8

8-10
8-22
8-24
8-25

Contents

9-1 PDP-11 Punched Card Codes 9-3
10-·1 Line Printer Models - 10-1
10-:2 Vertlcal Format Contro·I Characters 10-2
11-·1 Format String Codes 11-4
13-'1 Standard QIO Functions for the Tape Cassette Handler 13-1
13-2 Device-Specific QIO Functions for the Tape Cassette Handler 13-2
13-3 Tape Cassette Handler Status Returns 13-2
15-'1 Standard QIO Functions for the TU58 15-1
15-!2 Device-Specific QIO Functions for the TU58 15-2
15-:3 TU58 Handler Status R:eturns 15-3

xv

PrefacE~

Manual Objectives and ReadE~r Assumptions
The IAS Device Handlers Reference Manual provides a reference source for users of the device
handler tasks that service the peripheral devices supported by Digital. You should be familiar with
PDP-11 assembler language and with the~ appropriate user's guide.

Structure of the Document
Chapter 1 describes most of the characte:ristics common to each handler task. The remaining
chapters des~cribe either an individual handler task or a set of closely related handler tasks.
Appendix A its a list of QIOMAC.MAC, the macro that defines queue 1/0 directive function values
and status ruturn values. If you want more information about writing a device handler, consult the
IAS Guide to Writing a Device Handler Tl'rJ,sk.

Associatjed Documents
Documents that provide related information are described in the IAS Master Index and
Documentation Directory.

xvii

·1 Introduction

1i .1 Device Handler Tasks
IAS providen a flexible, device-independent, and function-independent 1/0 capability that can
support standard PDP-11 peripherals and special purpose devices. Peripheral device support is
provided by privileged device handler ta:sks and is not an integral part of the Executive. Device
handler tasks can be developed with a minimum knowledge of the Executive code.

Device handlers must be installed with task names of dd , where dd corresponds to the two Jetter
mnemonic of the device(s) that the handler services. The tasks must be resident and initialized
before they c:an be used. This is effected using either of the following commands:

MCR>LOA

or

PDS> RUN/HANDLER

See the IAS MCR User's Guide or the IAS PDS User's Guide for further details.

1.2 QIO System Directives
User tasks make 1/0 requests to device handlers by issuing a QIO system directive. System
directives are discribed in the IAS System Directives Reference Manual. The arguments of the
system directives determine the followinig:

1 The type of 1/0 desired via the function code specified,

2 The phynical device on which the 1/0 request is to be performed via the logical unit number
(LUN) argument, see Section 1.4,

3 The importance of the 1/0 service (via the priority of the request),

4 The execution mode of the 1/0 reques:t relative to the user task: the request is performed either
synchronously or asynchronously with the issuing user task. Execution mode is indicated by
event flag andl asynchronous system trap (AST) arguments.

1.3 Handler Task/User Task Interaction
When a standard QIO directive macro is specified in a user's program, the MACR0-11 assembler
generates a directive parameter block (DPB) that holds the appropriate vaiues, or generates code
that pushes the DPB onto the stack at run time.

When a user task executes a QIO directive, the Executive takes the arguments from the DPB and
creates an 1/0 request node in system common space. The system queues the request node (adds to
a priority structured list of such nodes) to the device handler specified for service. When the user
task's requeeit node is the highest priority node capable of service, the handler task that services
that device dlequeues and processes the 1/0 request specified.

1-1

Introduction

I/O requests are completed only if the DPB contains the proper arguments. After the device
handler completes an 1/0 request, the Executive performs one or more of the following actions for
the user task depending on the arguments in the QIO DPB.

1 Declares a significant event and sets a specified event flag. These functions allow the user
program to perform synchronous 1/0 operations in the following manner:

a. Issue a QIO system directive specifying an event flag (this immediately clears the event
flag).

b. Optionally execute some code within the user program.

· c. Issue a WAITFOR or STOPFOR system directive specifying the same event flag. This
suspends the user program until completion of its 1/0 (allowing lower priority tasks to
run). STOPFOR should be used if the 1/0 request may take a significant amount of time (a
second or more), and the task can safely be checkpointed or swapped during this time.

Alternatively, the user program can issue a QIO AND WAITFOR (QIOW$) system directive
specifing an event flag.

The QIOW$ is to be preferred when the task is waiting only for an 1/0 request which
should complete quickly. The QIOW$ both reduces the number of directives performed and
enables the executive to know why the task is waiting.

2 Saves current user task status, declares an asynchronous system trap (AST), and starts the
user task at the AST address specified in the DPB. These functions allow the user program to
perform asynchronous 1/0 operations in the following manner:

a. Issue a QIO directive specifying the starting address of the AST service routine within the
user task.

b. Execute other instructions (including any further QIO directives).

c. Execute its AST code transparently to the user's normal code when the 1/0 is completed
(similar to an interrupt service routine). This feature permits user task multi-1/0 streams
to occur in parallel with the user task's execution.

3 Returns the status of the 1/0 operation from the device handler to a 2-word user status buffer
defined in the DPB. This status code enables the user task to monitor the success or failure of
its 1/0. The status buffer format is as follows.

• wordl - Byte 0 = 1/0 status code (see Appendix A, Byte 1 = 0 (normally unused)

• word2 - For transfer requests, word2 holds the total number of bytes involved in the
transfer.

• For other requests, some handlers use this word to return status information. See the
descriptions of individual handlers.

1.,4 Specifying the Physical Device
Logical unit numbers have no connection to physical devices until the programmer or operator
makes device assignments for a particular task. Device assignments tell the system that, for
example, logical unit number 1 for user task A is associated with DECtape unit 3.

The system makes a correspondence between physical devices and logical unit numbers by means
of a logical unit table (LUT) in the task's header. The LUT contains a user-specified number of
entries, each of which corresponds to a logical unit number. Each entry contains a pointer to the
Physical Unit Directory (PUD) entry for the device last assigned to that LUN. When a task issues

1-2

Introduction

a QIO directive for a specified LUN, the system locates the physical device using the appropriate
LUT entry. Fior example the physical devi1ce currently assigned to LUN 2 is identified using the
second LUT entry.

Each user task has a set of logical unit assignments that can be created or altered in the following
ways (alteration of logical unit assignments within one user task does not affect any other user
task):

1 Using the MCR REASSIGN function or the DCL ASSIGN command, see the IAS MCR User's
Guide andl the IAS PDS User's Guide.

2 At user task build (link) time via the ASG option.

3 At run time via the ASSIGN LUN sys1tem directive issued by the program.

In the first two cases, the user task is unaware of the physical devices that correspond to its logical
units. The tank issues QIO system directives, specifying appropriate LUNs, while the actual 1/0
takes place interchangeably on a wide variety of system peripherals.

In the third case, t.he user task is aware of its physical device assignments, but not of any
redirection done to the device.

1.5 QIO Macre>s
The QIO syst4;,m directive is usually issued in the form of a system defined macro with fixed
argument fields.

The forms of JAS directive macros are fully described in Section 1.5.1 of the IAS System Directives
Reference Manual. The format of the QIO and QIOW macros is described in Chapter 4 of the same
manual.

1.6 Function Codes (Non-Mass St1orage)
The full rangEi of global function codes avBdlable to a user task is specified in Appendix A. Seven
function codes are common to most 1/0 op1era tions and to almost every non-mass storage device.
This basic subset of function codes is described in the following sections.

A ttach/De,tach

QI0$ IO.ATT,lun,ef,pri,iosb,ast ATTACH

QIO$ IO.DET,lun,ef,pri,iosb,ast DETACH

In a real-time or multi-user system, attach and detach 1/0 requests permit an eligible task to
gain and release exclusive use of a periphHral device. These functions enable input and output to
be processed in an unbroken stream; therefore, they are especially useful on sequential devices
(non-file-strudured devices; for example, terminal, line printer, card reader, paper tape). Attach
causes a device to be dedicated to the task that issued the attach; Detach releases the device for
use by other task.

The only taskn that can ''break through" an attach by a user task are those running under a UIC
of the form [l,n] through [7,n]. Such a UIC is called a "system UIC". A system UIC can have its
requests dequeued, but it cannot take ovel' the attach.

1-3

1.6.2

Introduction

To attach a device, the QIO request is issued with a funct.ion code of 10.ATI. The attach remains
in effect until a detach request code 10.DET is issued by the same task, specifying the LUN
associated with the attach. While an attach is in effect, the I/O handler for the specified device
dequeues only QIO directives issued either by the task that issued the attach or by tasks with
a UIC of [1,n] through [7,n]. Should the task be aborted or exit before doing the detach, the
Executive automatically detaches the device.

The attach/detach facility provides an automatic queueing mechanism for exclusive access to a
device. If one task attempts to gain exclusive access to a device while it is attached to another
task, the attach request will remain in the queue for the device until the currently attached task
detaches. Thus several tasks may have attach requests in the queue at once, and exclusive access
to the device will be granted to each in tum. However, this will not work for tasks running under
a system UIC, because attach requests issued by such tasks will be dequeued immediately and
then rejected by the handler, with a status of IE.DAA (device already attached).

In a timesharing system, devices can be attached in the same manner as described above, but by
real-time tasks only. Further, a device to be attached must not be among those made available to
timesharing users at timesharing start up.

In a timesharing system a device that is available for timesharing can be allocated to an individual
terminal by the PDS> ALLOCATE command (see the IAS PDS User's Guide). Allocation gives the
terminal the exclusive use of the device.

Real-time exclusive use and timesharing exclusive use of devices should be separated as far as
possible. However this is not practical in many cases. Timesharing tasks can use the attach
mechanism if the device is not already attached and not already allocated, or if the device is
already allocated to the terminal for which the task is running. If the device is already attached to
another task or allocated to another terminal, the attach request will remain in the queue for the
device, as previously described.

When a terminal is attached, the opportunity can be taken:

1 In a real-time or multi-user system, to specify a task's response to CT/C, in place of a return to
MCRorPDS.

2 In any type of system, to provide a response to unsolicited input at the terminal.

In these cases the function code 10.ATA is used in place of 10.ATr and either or both of two further
AST entry point parameters are supplied in the QIO call. See Chapter 2, Sections "10.ATA" and
"10.DET".

Read Logical/Read Virtual Block

where:

Parameter

stadd

size

p3

1-4

QIO$ IO.RLB,lun,ef,pri,iosb,ast,<stadd,size,p3> Read Logical

QIO$ IO.RVB,lun,ef,pri,iosb,ast,<stadd,size,p3> Read Virtual

Meaning

Virtual starting address of the user's buffer for data input.

Size of the da·ta buffer in bytes.

Optional parameter(s) to specify special read modes or further arguments for certain devices.

1.6.3

1.6.4

Introduction

The read logical block function reads an absolute block from a device, while read virtual block
reads a relative block within a file. On a sequential device like the terminal or card reader, there
is no difference in the functions.

Write Logical/Write Virtual Bl~ock

where:

Parameter

st add

size

p3

QIO$ IO.WLB,lun,ef,pri,iosb,ast,<stadd,size,p3> ;Write Logical

QIO$ IO.WVB,lun,ef,pri,iosb,ast,<stadd,size,p3> ;Write Virtual

Meaning

Virtual starting address of the user's buffer for data output.

Size of the data buffer in byte:s.

Optional parameter(s) to specify special write modes or further arguments for certain devices.

The write lo~pcal block function writes an absolute block to a device, while write virtual block
writes a rela1tive block within a file. On a sequential device like the terminal or line printer, there
is no difference in the functions.

It is suggest4~d that the write virtual block function (10.WVB) be used for writes to all
non-file-oriented devices because the system performs an access check under 10.WVB, but not
in the case of 10.WLB. With 10.WLB a write can destroy the contents of a disk if output is
accidentally clirected to the wrong device by an executive privileged task.

Cancel (l<:ILL 1/0)

QIO$ IO.KIL,lun,ef,pri,iost,ast

The IO.KIL function is issued in special cases where a user task cancels all of its requests (pending,
active and attach) for a particular device. This function is useful in releasing devices from which
responses arE' overdue.

1.7 Function codes for Mass Storage Devices

1.7.1

Mass storage devices (that is, DECtape, magnetic tape and disks) are used in two modes of
operation: Files-11 and direct. The use of Files-11 in a user task is described in the IAS I /0
Operations Rt~ference Manual. The following sections describe the use of the direct mode in a user
task.

Use of direct mode 1/0 on a device that has a Files-11 volume mounted can result in destruction of
information or coriruption of the Files-11 directories on that volume.

Direct Mode
Direct mode operation of a mass storage device is used for either of the following situations:

1 The mass: storage device has a non-F:iles-11 format (for example, DOS format handled by
FILEX),

1-5

·1.1.2

Introduction

2 The mass storage device is unformatted (for example, device used to dump data acquired by an
AID converter).

When the MOUNT command (described below) is used to mount the device as FOREIGN, a user
task may perform 1/0 operations directly to any logical block on the device. The concept of a
virtual block no longer exists, since the system does not recognize the existence of files on the
device. When this mode of operation is entered, the 1/0 functions described in Section 1.7.3 and
Section 1. 7.4 are available for use by a task.

For real-time or multi-user systems, any task has this access to a volume mounted as FOREIGN.
In t~mesharing systems, a user who mounts a volume as FOREIGN gains sole access.

Mounting for Direct Mode
In both of the cases mentioned above, the mass storage unit must be mounted as a foreign volume
before use, and dismounted after use by employing one of the following sets of commands. See also
the IAS PDS User's Guide and the IAS MCR User's Guide.

DCL Commands

To mount a volume:

PDS> MOUNT/FOREIGN xxn: volume

where:

• MOUNT - Is the DCL MOUNT command

• /FOREIGN - Specifies that the volume is foreign and does not have Files-11 file structure

• xx - Is the device name (for example, DT, DK,)

• n - Is the device unit number in the range 0 through 7

• volume - Is the volume identification

To dismount a volume:

PDS> DISMOUNT xxn: volume

where:

• DISMOUNT - Is the PDS DISMOUNT command

• xx - Is the device name (for example D~,DK,)

• n - Is the device unit number (0-7)

• volume - Is the volume identification

MCA Commands

To mount a volume:

MCR>MOU xxn:/CHA=[FOR]

where:

• MOU - Is the MCR MOUNT command

• xx - Is the Device name (for example DT, DK)

1-6

1.'7.3

1.'7.4

Introduction

• n - ls the Device unit number (0-7)

• CHA - Is the characteristics option

• [FOR] - Specifies that the volume is foreign and does not have Files-11 - file structure. The
brackets are mandatory.

To dismount a volume:

MCR>DMO xxn:

where:

• DMO - Is the MCR DISMOUNT Command

• xx - Is the Device name (for example DT, DK)

• n - Is the Device unit number (0-7)

A ttach/De·tach
These functions are identical to the functions described in Section 1.6.1.

Read/Write Logical Block
1/0 requests for mass storage devices in direct mode are issued via the QIO$ system macros whose
formats are:

where:

Parameter

stadd

size

comp

blkh, blkl

QIO$ IO.RLB,lun,ef,pri.,iosb,ast,<stadd,size,comp,blkh,blkl>

QIO$ IO.WLB,lun,ef,pri,iosb,ast,<stadd,size,comp,blkh,blkl>

Meaning

Virtual starting address of user's buffer for data input or output. (This parameter must be on a
word boundary and in some ca:ses (for example RP03) an even word boundary.)

Size of the data buffer in bytes. The size must be even. For some peripherals It must also be a
multiple of 4 bytes, or of 1000 bytes (256 words).

0 (retains compatibility with non-mass storage logical read/write functions)

Block-high, block-low. Double precision number indicating the first logical block on the mass
storage device on which the transfer is to take place; this forces block structure on word-oriented
mass storage devices. The maximum value of each parameter depends upon the mass storage
capacity of the unit.

CompatibUity
Direct mode operation of mass storage devices promotes system compatibility and device
independence. The QIO system macro format for the logical write function is similar for both
the disk and the line printer. Therefore, a user task that dumps large streams of text to a disk via
a logical write: function would not be affected by the reassignment of its LUN to the line printer
if some condition makes this transfer of devices necessary. The parameters stadd and size are the
same for the clisk and line printer; however, the parameter, comp=O, implies no carnage control

1-7

Introduction

on the line printer (above that already imbedded in the text). The parameters, blkh and hlkl are
ignored by the line printer handler task.

Status Returns
The symbolic status return codes are used to determine the success or failure of a QIO system
macro. The symbolic codes are compared with the value returned in the low order byte of the 1/0
status block. Status return codes have a two letter prefix of either IE or IS, a period and a three
letter suffix. For example, IE.DNR is the symbolic code for the status return that means Device
Not Ready. Each device handler chapter contains a list of the symbolic status return codes for the
handler. Appendix A contains a complete list of the symbolic codes and their definitions.

1.8 Devices Supported

1.8,.1

The chapters that follow in this manual explain in detail the 1/0 support provided for the standard
IAS devices listed below:

• Terminals

• AFC-11 and ADOl analog/digital converters

• Disk

• UDC-11

• DECtape

• DECtape II

• Magnetic tape

• LPS-11

• Card Reader

• Line Printer

• MO pseudo device

• Paper Tape Reader/Punch

• Cassette Tape

• Null Device

Characteristics Words
Each device unit in IAS has four characteristics words that are set or implied at system generation
by the DEV directive. These words are stored in the system's Physical Unit Directory (PUD) with
offsets U.Cl, U.C2, U.C3 and U.C4 from the address of the PUD entry for the particular unit. For
task access to the PUD, PUD layout and the layout of words 1 and 4 (offsets U.Cl and U.C4) see
the IAS Guide to Writing a Device Handler Task, Chapter 2 and Appendix B.

The layout of words 2 and 3 (offsets U.C2 and U.C3) depends on the nature of the device, for
example whether the device is random-access or not. Words 2 and 3 are described in the relevant
chapters of this manual for devices for which they are defined. For devices for which words 2 and
3 are not described these words are reserved for use by the IAS system.

1-8

2 Terminal Handlers

2.1 Terminal Support

2.1.1

2.2

2.2.1

Terminal sup]>ort is provided by the follo"'ring handlers:

1 The single-terminal handler (TTOl) supports one Teletype®-compatible terminal on a DL-11
line mth very limited features. (It has no typeahead, no ICtrllOL no ICtrVRL no XON/XOFF). It
should be used only on minimum confligurations where space is at a premium.

The singlE"9terminal handler TTOl is NOT supported in multiuser and timesharing systems.

2 The multiple-terminal handler (TT) supports many terminals on all types of interface and has
a large nmnbe1· of additional features.

TTOl is descri1bed in Section 2.12.

Where more than one terminal is required TT must be used (See sections 2.2 through 2.10).

The terminal handler is installed with TT as the task name.

Interface Support
The following standard Communication Line Interfaces are supported:

• KLll (at aoo baud or less)

• DLll-A,-H,-C,-D,-E

• DJll

• DHll

• DHll/DMll-BB

• DCll (at :300 baud or less)

• DZll, DZC~ll, 1DZV11

• DHV-11, DHVll, DHQll, DHFll

Character Input From A Termiinal

Special Characters
Most characters are passed directly to the program performing input. Control characters and
certain others are used for special purposes and are described below (see Section 1Ctrl/B r to
Section"Other Special Characters" together mth Section "Lower Case Characters").

To input a control character, for example [ctrVC~ press~ and while this key is still down press the
key indicated, in this case §.

® Registered Trademark of the Teletype Corporation.

2-1

Terminal Handlers

lctrVBI (Start Paper Tape Input)

On a terminal set with low-speed paper tape reader support, ICtrVBI signals to the computer to start
reading the tape.

lctrvcl

The general function of[CtrVCI is to alert the operating system.

The effect of ICtrVCI depends upon the CLI (Command Language Interpreter) allocated to the
terminal, and upon the application tasks running at that terminal.

In a real-time or multi-user system, if MCR is allocated to the terminal, MCR will prompt for
command input. If DCL (PDS) is allocated to the terminal, it will be activated or, if it is already
active, it will prompt for further input.

In a timesharing system, on an inactive (logged-out) terminal, ICtrVC I activates the Command
Language Interpreter (CLI) allocated to the terminal, for example, PDS. On an active terminal the
effect is CLI-dependent. Typically, any currently active task is suspended and the CLI will prompt
for command input.

In either case, a task running at the terminal may claim ICtrVCI using either the attach-with-ABTS
QIO (see Section "10.ATA"), in real-time or multi-user systems, or the facilities of the Timesharing
Control Services (TCS), in timesharing systems. The IAS Guide to Writing Command Language
Interpreters describes the TCS facilities.

I CtrVC I can affect type ahead in one of two ways:

1 There is no effect. Type-ahead (see Section 2.2.2) remains intact and any read currently under
way is unaffected.

2 All type-ahead is flushed. If there is a read under way all characters typed so far are discarded.
The read is terminated with a status of IS.CC. If output has been suspended bylCtrVSI it is
resumed as though @trVO I had been typed.

Method (1) is normal for real-time and multi-user systems and method (2) for timesharing systems.
However, this may be changed for each terminal either at system generation, or dynamically using
the appropriate command (see the IAS PDS User's Guide or the IAS MCR User's Guide.

ICtrVKI, ICtrVLj JCtrvq

These characters may be used in place of vertical tab, form feed and horizontal tab respectively, on
terminals which do not have the corresponding keys.

ICtrllOI

While terminal output is in progress, typing ICtrl!OI suppresses further output from the same task
until one of the following occurs:

1 Another lctrl!OI is typed. Alternate lctrl!OI have the effect of suppressing and enabling output.

2 Another task performs a write to the terminal.

3 A successful attach or detach QIO is performed.

4 A write and cancel ~tr~ (10.CCO) is performed.

ICtrllOI (XON)

To be used to resume output after it has been suspended by ICtrllSI (see Section '1Ctrl!Sr>,

2-2

Terminal Handlers

ICtrllRI

The effect of ICtrVR] depends on whether o:r not a read is currently being processed.

If a read is being processed, a "clean copy" is printed of all that has been typed on the line so far
with no trac•;, of erased characters. This is particularly useful on hardcopy terminals after many
erasures have been made. On timesharing systems, the retyped line is preceded by the prompt, if
any.

If there is no read under way, ICtrVRI may be used to check the current line of type-ahead. If
"immediate-processing" type ahead is in use (See Section 2.2.2, mode 3), the line currently being
typed will bei printed.

There is no limit to the number of times llCtrllRI may be typed for a single line.

lctrllsl (XOFF)

Typing ICtrVSll at any time will temporarily suspend output from the terminal. UnlikelCtrVOL ICtrVSI
does not result in the loss of any output. Output is resumed by typinglCtrllOI (or ICtrl/CL see Section
'1 Ctrl/Z r>,

lctrVTI (Terminate Paper Tape Input)

See Section ~~.10.

ICtrllUI

Typing lctrVUj will cancel all characters typed on the line so far while a read is in progress. On
timesharing systems, the prompt (if any) is repeated. The line may then be started again.

ICtrllVI

Typing lctrVVI will flush all type-ahead. There is no other effect. If there is a read in progresslCtrVVI
has no effect.

ICtrllXI

On only real-time and multi-user systems typing ICtrVXI will invoke a terminal-specific task called
'ITYNxx, where xx is the terminal number. If a task of this name is not installed there is no effect.
Any read or type-ahead remains unaffected.

lctrVZI

This character terminates the current input line with a status of IE.EOF (end-of-file), and echoes
as "AZ". Any characters already typed in the line are passed to the program doing the read.

lctrV?I

On a VT61 set in escape sequence mode, Ctrl/? has the effect of ALTMODE (see Section "Altmode").

Carriage Re1turn

This character terminates the current line of input, with a status of IS.CR.

ALTMODE (Escape)

This character also terminates the current line of input, but with a status of IS.ESC. Some older
Teletype* devices produce a non-standard character when the "ALTMODE" key is pressed. For this
to be recognized the terminal must have been set up appropriately (at system generation or by the
TER (MCR) or SET TERMINAL (DCL) commands).

2-3

Terminal Handlers

Normally this character is echoed as"$" followed by carriage-return. However, when t.hP handler
is built as part of the system generation process it is possible to specify that no echo at all be
produced.

This gives compatibility with earlier versions of IAS and RSX-llD, and RSX-UM.

A terminal may be set up as an "escape sequence" terminal. In this case the effect of escape is as
described in Section 2.8. See also Section '1CtrV?f'.

Rubout

This character erases the last character typed on the cu1Tent input line. Each time it is typed, a
further character is erased, until all characters on the line have been removed. On a hard-copy
terminal, the characters erased are enclosed between backslashes (a horizontal tab is printed as
backslashes two spaces). On a VDU, the character is physically removed, and the cursor is left
where it was before the character was typed.

Other Special Characters

All remaining special characters can be divided into two groups:

1 Characters that are echoed (as themselves) and passed to the program that requested the read.
This group consists of I CtrVG I (bell), form feed, vertical tab and line feed.

2 Characters that are ignored. This group includes all other characters whose ASCII code is less
than 40 (octal).

Lower Case Characters

Lower case characters in this context are those that are in the 96-character ASCII set, but not in
the 64-character set. This includes not only the lower case letters but also'"","{","}"," I", and"-".

If the terminal is set as "NOLOWERCASEKEYBOARD", all lower case characters are converted to
their upper case counterparts (the non-alphabetic characters become"@","'","[","]","\", and"'"",)
as they are read.

If the terminal is set as "LOWERCASEKEYBOARD", and "NOLOWERCASEINPUT", characters
are normally converted to upper case as they are read. If type-aheadlCtrVRI is used, the characters
will be printed in lower case even though they will be seen as upper case by the reading program.
If a read with no case conversion (TF.RNC) is used, lower case characters will be passed.

If the terminal is set as "LOWERCASEINPUT", lower case characters will be echoed and passed
on as such to tasks doing input, even if they do not specify TF.RNC.

Type-ahead
The name "type-ahead" refers to characters that are typed while there is no read in progress from
the terminal. The terminal handler can be set, for each terminal, to process type-ahead in one of
three ways:

1 Ignore type-ahead. Any typed-ahead characters result in a "BELL" code being sent to
the terminal, but are otherwise ignored. This mode of operation is the most suitable for
inexperienced users who may find other modes confusing.

2 Store type-ahead exactly as typed and process it only when it is obtained by a read request
("deferred processing" mode). This is the simplest mode to understand. It means, for example,
that if rubouts or ICtrVU] are typed ahead, they are echoed exactly as though they had been
typed in response to the prompt. 'fype-ahead jctrVRI is ineffective since the ICtrVRI character

2-4

Terminal Handlers

is not processed until the read is under way. A maximum of 80 (decimal) characters may be
typed-ahead.

3 Perform some processing as characteirs are typed, but echo only when they are read by a
task ("immediate processing, deferred echo" mode). Characters such as ICtrVUI and rubout
are prOCE!ssed immediately, so that when the line is echoed a "clean copy" is seen. This mode
produces the cleanest, most legible lo:g of console operation and makes it clear which type-ahead
has been read and which is still in the handler's buffer. If a user believes that a typing mistake
may have been made, the type-ahead. ICtrVRI facility can be used to inspect the current line.

ProblemEJ may arise in connection with programs such as ODT which use read-pass-all (Section
"TF.RAV') to perform their own non-1:1tandard character processing. When the handler detects
a read-pass-all request, it temporarily switches to "deferred processing" mode. If characters are
typed ahead before the program runs1, then I CtrVU I and rubout, in particular, will be processed in
"immediate p1·ocessing" mode. This situation is unlikely to arise a great deal in practice, but if
it does, "deferred processing" mode may be more appropriate.

The normal default mode is (3), "immediate processing", but this may be changed during system
generation.

Regardless of read-ahead type, the charBtcters ICtrVCI, jCtrVO~ ICtrVSI (XOFF) and ICtrVOI (XON) are
effective as s1oon as they are typed. Sectfon 2.11. 7 describes additional ways of processing these
characters.

2.3 Character Output to a Terminal

2.3.1

2~.3.2

2.3.3

Most characters are simply copied directly from the user's buffer to the output device or from
the user's input in the case of echo. Some characters are treated specially by the handler as
described below. For a "write pass all" request (Section ''TF.WAL") all characters are passed with
no interpretation.

Escape {ALTMODE)
Escape, character code 33 (octal), is passed unchanged to the terminal.

Form Feed
This character is :normally replaced by six line feeds. However, a terminal may be set to simulate
form feed so that the effect is as it would be on a lineprinter. It is also possible to specify that the
device has hardware form feed, in which case no interpretation is provided.

Horizontal Tab
For terminals whlch do not have hardware horizontal tab, this character is simulated to provide
tab stops evE!ry eight character positions across the page. Rubout after horizontal tab causes the
handler to rE!move the necessary number of spaces on a scope.

If a terminal is specified as having hardware horizontal tabs, the handler assumes that tab stops
are at every eight spaces, unless the terminal is also specified as having non-standard tabs.

2-5

2.3.4

2.3.5

2.3.6

2.4
2.4.1

Terminal Handlers

The VT05 and VT5x show rubout over tnh correctly on the screen except when the tnh is in one of
the last eight character positions in the line. On VDUs with non-standard hardware tabs, rub out
removes one space. If true cursor positioning is essential in such cases the terminal should be set
as having no hardware tabs, so that the tabs are simulated by software.

Line Feed
This character normally has an implicit Carriage Return associated with it. 'Th advance the paper
without returning the print position to the left hand margin the character must be output in
write-pass-all mode (see Section "TF.WAL").

Lower Case
As described in Section "Carriage Return", ''lower case" includes certain non-alphabetic characters
as well. If the terminal is set as "LOWERCASEOUTPUT", lower case characters are passed intact
but otherwise they are translated to their upper-case counterparts.

Vertical Tab
This character is normally replaced by four line feeds. If form feed simulation is in effect the
number of linefeeds necessary to reach the next vertical tab stop is output. Vertical tab stops are
assumed to be every six lines, except at the bottom of the page.

Function Codes

Read
The basic read function is IO.RLB (Read Logical Block). The general format of a read request is:

QIO$ fc,lun,ef,pri,iosb,ast,<stadd,size,tmo>

where:

• "stadd" - is the start address of the user buffer and may be odd or even.

• "size" - is the buffer size in bytes, which must be non-zero and less than 8128 (decimal).

• "tmo" - is the timeout for the read, in units of approximately ten seconds (with TF.TMO only).

The IO.RLB function may be modified by "or"ing it with one or more of the following sub-function
codes using the logical "or" operator ("!").

TF.RAL (Read pass all)

All characters, including control characters, null and rubout, will be placed in the user buffer.
Since no characters are recognised as terminators the read will only complete when the buffer is
full or if an error condition arises. For most purposes therefore the buffer size should be just one
byte. If all eight bits of the characters are to be passed in the buffer, the terminal characteristic
"P8B" should be set, otherwise the parity bit will be removed. The characters ICtrllCL lctr11ol, ICtrl/O~
ICtrVS I and I Ctrl/X I will not however be passed to the requesting task, but will have their usual effect.
This may be altered by setting the terminal as "BINARY", see Section 2.11.6.

2-6

Terminal Handlers

TF.RNE (Read with No Echo)

No charactere1 are echoed, not even carrfage return. Rubout and ICtrVU I have their usual effect
but produce no output. lctrl/RI has no effect. This function may be used when a program wishes
to perform ite1 own echoing (normally in c:onjunction with read-pass-all, above), or where the
information being ilnput must be kept secure, for example, passwords.

TF.RNC (Read with No Case Conversion)

If the terminal is set to LOWERCASEKEYBOARD and NOLOWERCASEINPUT, lower-case
characters wi1ll normally be converted to upper case. This function code overrides the conversion so
that lower-cae1e characters may be read.

TF.TMO (Read with Timeout)

"TMO" is the time, in units of approximately ten seconds (plus or minus 0.5 seconds), which may
be allowed to elapse between successive characters being typed. If this time is exceeded the read is
terminated wi:th a status of IS.TMO. All characters previously typed are passed in the buffer. Only
the low byte of "tmo" is significant. The high byte is reserved for future use and must be zero.

If a task issut~s a read request with "tmo''' set to zero, the request will always be completed
immediately. If one or more completed records of type-ahead are available, the first will be read
in the usual way. Otherwise, all availabfo characters will be read, with a status ofIS.TMO.
This facility may be used, for example, to ascertain whether input is available without waiting
if it is not, or, by using it repeatedly until no more characters are returned, to flush and ignore
type-ahead.

Features of Read Function Codes

The function <:ode 10.RVB (read virtual block) may be used instead of IO.RLB.

With IO.RLB any of the modifiers may be combined, using the logical "or" operator ("!"), except
that if TF.RAJ~ is specified the only other values permitted are TF.RNE and TF.TMO.

A read request is terminated by one of thE~ following events:

1 The user buffer· is filled. The status in the first word of the I/O status block is IS.SUC.

2 One of thE! terminator characters cani,age-retum or altmode is typed. The status values are
IS.CR and. IS.ESC, respectively.

3 An escape sequence is typed. See Section 2. 7 for a discussion of escape sequences.

4 The timeout limit is reached between 4~haracters (TF.TMO only). The status return is IS.TMO.

5 One of thEi erro:r conditions described in Section "Read Error Conditions" is detected.

The second word of the I/O status block a]ways contains the number of bytes transferred into the
user buffer, even after an error condition.

If the number of characters input before a terminator is exactly equal to the buffer size, the request
will be terminated with a status of IS.SUC. A subsequent read will receive a status corresponding
to the termimiltor, with a character count of zero.

Read Error C<>ndltlons

The following error conditions may arise for a read request:

• IE.ABO - 'rhe handler was unloaded while the request was pending or the request was aborted
by IO.KIL.

2-7

Terminal Handlers

• IE.BCC - A framing error occurred. IE.BCC will be returned if:

1 the line becomes disconnected from the terminal

2 the "break" key is depressed

3 the line connecting the terminal to the computer is faulty

4 the terminal speed is set incorrectly

• IE.DAO - A data overrun error occurred, that is the characters were received from the terminal
more quickly than the computer could handle them. IE.DAO normally indicates that the
processor is severely overloaded.

• IE.DNR - The request was made to a dialup line which is not connected.

• IE.EOF - This is not strictly an error. It means that jctrVZI has been typed at the terminal.

• IE.FHE - An internal buffering error has occurred in the handler. This may occur if the
handler has been built with too small a node pool.

• IE.OFL - The terminal was specified in System Generation Phase 1 and has a PUD entry, but
its interface is not physically present in this configuration.

• IE.SPC -·The specified buffer (or prompt string) is wholly or partially outside the user's address
space or is longer than 8128 (decimal) bytes.

• IE.VER - A character had incorrect parity. The offending character is lost.

Read with Prompt (10.RPR)

The basic read-with-prompt function code is 10.RPR. The general format is:

QIO$ fc,lun,ef,pri,iosb,ast,<stadd,size,tmo,pradd,prsize>

where:

• stadd - is the start address of the user buffer and may be odd or even.

• size - is the buffer size in bytes, which must be non-zero and less than 8128.

• tmo - is the timeout for the read, in units of approximately ten seconds.

• pradd - is the start address of a user buffer containing a prompt string. It may be odd or even.

• prsize - is the length, in bytes, of the prompt string. It must be non-zero and less than 8128.

All the subfunctions and error returns noted in Sections 'TF.RAL" through "Read Error Conditions"
apply equally to 10.RPR as to 10.RLB. For example, to issue a read-with-prompt and timeout, you
specify the TF.TMO subfunction (See Section "TF.TMO").

The function 10.RPR performs a read immediately preceded by a prompt. It has the following
advantages over performing a separate write before the read:

1 Only a single QIO is needed, reducing both the complexity of the program and the system
overhead.

2 There is no possibility of two tasks simultaneously prompting and trying to read, leaving the
user unsure which task is receiving the input, since the prompt and the read are not separable.

3 If the user types ICtrVUI or ICtrl/RI the prompt will be repeated. It will also be repeated if the read
is interrupted by a write (see Section "TF.WBT").

2-8

2 .. 4.2

Terminal Handlers

There is no implidt carriage control in the prompt. In particular, if the prompt is to appear on a
new line, it must include the characters carriage return and line feed.

10.RPR is NOT equivalent to a write (10.WLB) followed by a read (10.RLB).

1 The handler assumes that the prompt string will be fairly short and does not take the same
precautions against running out of in1ternal buffer space as it does for a write.

2 The prompt will be repeated under the circumstances noted above.

3 There is no provision for a vertical foimat character in the prompt.

The following· example will perform a read-with-prompt (INPUT:). If no input is received in ten
minutes, the ·read will be terminated.

PROMPT: .ASCII < 15 >
< 12 > /INPUT: I ;PROMPT

PRSIZE=.-PROMPT
.:EVEN

TMO==l0.*6
IOSB: .BLKW 2
BUF: .BLKW 100.
BS:IZ==.-BUF
S'l.'ART:

;TIMEOUT 10 MINUTES

QIOW$S #IO.RPR!TF.TM0,#5,#1,,#IOSB,,<#BUF,tBSIZ,fTMO,fPROMPT,tPRSIZE>

c2 Write
The basic write function is 10.WLB (writE~ logical block). The format of a write request is:

QIO$ fc,lun,ef,pri,iosb,ast,<stadd,size,vfc>

• "stadd" - i:s the start address of the blllffer (which may be odd)

• "size" - is the buffer size in bytes, whi1ch must be less than 8128 (decimal)

• "vfc" - is the vertical format character·, which specifies the paper spacing action to be taken
for this write. The legal values are de:scribed in Table 2-1. It may also be an escape sequence
identifier; see Section 2. 7 .2.

The 10.WLB :function may be modified by "or"ing it with one or more of the sub-function codes that
follow in Sect:ions "TF.WAL" to "TF.SYN".

Table 2-1 Vertical Format Control Characters

Octal
Value Character

040 blank

060 Qi (zero)

Meaning

SINGLE SPACE: - Output a line feed, print the contents of the buffer, and output a
carriage return.

DOUBLE SPACE - Output two line feeds, print the contents of the buffer, and
output a carriag1e return. The buffer contents are printed two lines below the
previously printe1d line.

All other vertical! format characters are interpreted as space (octal 040).

2-9

Terminal Handlers

Table 2-1 (Cont.) Vertical Format Control Characters

Octal
Value

061

053

044

000

Character Meaning

1 (one) PAGE EJECT - Output a form feed, print the contents of the buffer and output a
carriage return normally. The contents of the buffer are printed on the first line of
the next page. See Section 2.3.2.

+(plus) OVERPRINT - Print the contents of the buffer and perform a carriage return,
normally overprinting the previous line.

$(dollar sign) PROMPTING OUTPUT - Output a line feed and print the contents of the buffer.
This mode of output is intended for use with a terminal where a prompting
message is output and input is then read on the same llne. However It is
recommended that the 10.RPR function be used to perform a read where a
prompt is required.

null INTERNAL VERTICAL FORMAT - The buffer contents are printed without addition
of vertical control characters. In this mode, more than one line of guaranteed
contiguous output can be printed per 1/0 request queued.

All other vertical format characters are interpreted as space (octal 040).

TF.WAL (Write Pass All)

All characters in the buffer are passed directly to the terminal. It is the user's responsibility to
provide filler characters where required, to simulate tab functions and so on. This function must be
used to output cursor control sequences where the characters do not have their usual significance.
After a write-pass-all request, the handler loses track of the horizontal and vertical position. Also,
if a read follows and is to start on a newline, a line feed must be output explicitly. If the terminal
is set for parity generation, bit 8 of the character will be replaced by the parity bit for bits 0··7.
Otherwise, all eight bits are passed to the terminal.

TF.CCO (Cancel lctrVOD

If ICtrVOI is in effect it is cleared before the write is commenced. This ensures that the output will
appear on the terminal.

TF. WMS (Write Message)

Normally a task running under [1,1] can perform a write to another terminal even if it is set in
"NOMESSAGES" mode (see Section "Features of Write Function Codes". By using this variant of
the write function the request is treated as though it came from a task not running under [1,1].

TF.SYN (Synchronous Mode)

Normally, "1/0 done" is performed for a write request as soon as it is queued (see below). However,
for some applications it is important to know when the final character has been output, for
example, so that the time at which a following read begins can be known accurately. If the
subfunction code TF.SYN is set, 1/0 completion will not occur until the last character has
been output. The IO.KIL function issued before completion has occurred will abort the write
immediately.

2-10

Terminal Handlers

TF.WBT (Wrlt1e Break Through)

The subfuncti.on TF.WBT causes a write t.o be processed even if a read is under way and some
characters have been typed. The action is:

1 "R is printed at the end of the characters typed so far.

2 The write is performed.

3 The previously typed characters are r1epeated (unless the read specified no echo), preceded by
the prompt, if any.

·If output at the terminal has been suspelllded by lCtrllSL TF.WBT will not cause it to be resumed.
Only I Ctrl/Q I typed at the terminal has this effect.

Features of Write !Function Codes

The function code IO.WVB (Write virtual block) may be used instead of IO.WLB.

More than one modifier may be combined on a single request, using the logical "or" operator.

The handler normally buffers the characters to be written internally, and is able to complete the
request as soon as it is issued. This means that the event flag (if any) specified in the QIO will be
set as soon ae~ the directive is issued, and the AST (if any) will be obeyed as the next instruction
after the dire~ctive, A user task must not depend on a delay between issuing the request and
being notifiedl of its completion. Exceptionally, if the handler is heavily loaded and buffer space
is limited, th~ere may be a delay. On timE,sharing systems only, checks are made before a write
request is pe1rformed. If the terminal is set in "NOMESSAGES" mode, only write requests from
a task running on that terminal or from 1~asks running under [1,1] will be accepted. Other write
requests will be rejected with a status of IE.PRI.

If a read request is outstanding on a terminal when a write is issued, the read may be suspended
while the write is performed. This will only occur if nothing has been typed on the keyboard for
this read. If the read was a read-with-prompt (10.RPR), the prompt will be repeated when the
write is complete.

On the operator's terminal, that is, the tierminal to which Console Output (CO) is redirected,
a write will break through a read at any time. This will also happen if the write specified the
subfunction 1rF.WBT (Write Break Throui~h) (see Section ''TF.WBT'').

When a writ4~ request is completed, the first word of the I/O status block contains the success or
failure code (see Section "Write Error Conditions"), and the second word contains the number of
bytes transferred.

Write Error Conditions

The followin~~ error codes may be returned for a write request:

• IE.ABO, IE.DNR, IE.OFL, IE.SPC - 1rhese have the same meaning as for a read (see Section
"Read Error Conditions")

• IE.PRI - 'The terminal was set in "NOMESSAGES" mode.

2-11

:2.4.3

Terminal Handlers

Set/Get Terminal Characteristics
This group of functions allows a user task to discover the characteristics of a terminal or to change
them dynamically. There are a number of different functions which are discussed separately below.
The general format is:

QIO$ fc,lun,efn,pri,iosb,ast,<pl,p2,p3,p4,p5,p6>

Features of Set/Get Chall'acterlstlcs

To avoid the proliferation of highly specific function codes, the names of these functions are of
the form SF.:xxx. These symbols and all others specific to this section are defined in the module
TTSYM which is automatically extracted from SYSLIB, if required. These symbols may also be
defined locally using the macro TTSYM$ which may be defined using the .MCALL directive.

When a set characteristics (as distinct from get characteristics) is performed, the current state of
the terminal characteristics will be saved by the handler, unless this has already been done. This
means that a user can change the terminal characteristics hut they can subsequently be restored,
for example on logout, by the function SF.RDF (Section "SF.RDF").

It may be necessary to make a permanent change in characteristics, for example, if a terminal is
replaced with a different model. This is done by "OR"ing the value SF.DEF and the function code.
There is an implicit restore defaults (SF.RDF) before the change is made, in this case.

Only a task running on a terminal, or one running under a UIC of a [1,1], is a11owed to set
the characteristics of that terminal. Only a task running under [1,1] may change the default
characteristics.

The set of characteristics is listed in Table 2-2. Each has a name of the form TC.xxx by which
it is always referenced. Many characteristics are binary valued, that is their value must be 0
or 1. Others may take a value in a range. The terminal type (TC.TTP) and line speed (TC.RSP
and TC.XSP) must have values selected from the symbolic names in Table 2-3 and Table 2-4
respectively.

Some characteristics can be read but cannot be changed dynamically. These are indicated as "fixed"
in Table 2-2.

A set or get characteristics function is always performed immediately, even if the terminal has a
read or a write in progress. If a set characteristics request immediately follows a write request,
the write should normally include the function qualifier TF.SYN (''TF.SYN'') to ensure that all
characters have been output before any change is made.

2-12

Terminal Handlers

Table 2-2 Characteristics and their Names

Max. Val. Depends on
Name llescr~ptlon (Note 1) Fixed? (Note 2) Note

TC.ABO Autobaud detection B N $$ABO

TC.ACR An automatic carriage return/line B N
feed is to be supplied when a
c:haracter to be printed would go
beyond the end of the physical line.

TC.EDT Terminal performs edit functions. B N

TC.ALT Terminal requires recognition of tine N
alternative altmode characters 17'5
and 176 (octal). B

TC.ANI ANSI CRT terminal B N

TC.ANS Terminal is to operate in ANSI B N 15
•:.scape sequence mode. If ANS is
not set then VT52 escape sequence
mode is used.

TC.AVO VT-100-famlly terminal display B N

TC.BIN llf terminal is set in deferred B N 14
processing mode, all characters
1:are passed for a read-pass-all.

TC.BLK The terminal is a VT61 and is to B N B$$LCK 11
1:>perate in block mode.

TC.BSP Terminal recognizes and Is able to B N 8$$SP 8
Interpret the "back space" charac:ter

TC.CEO llf ESQ is specified and CEO is B N E$$SEQ
set, escape sequences are to be
linput in compatible mode (see
Section 2.7.1).

TC.CCF ICtrVC flushes all input (see Sectiion B N
"' Ctrl/B)'')

TC.CSQ ~f terminal is set in deferred B N 14
!Processing mode, all characters
1except I CtrVS I and I CtrVO I are passed
for a read-pass-all.

TC.CTC If terminal is set in deferred B N 14
1Processing mode, all characters
1except I Ctrl/C I. I CtrVS I and I CtrVO I .are
passed for a read-pass-all.

TC.DEC Digital CRT terminal B N

TC.DLU Line i~; a dialup line B y D$$1AL

TC.EDT Terminal performs editting functioins. B N

TC.EPA If PAR is specified and EPA is sut, B N
parity should be even, otherwise it
should be odd.

TC.ESQ Terminal requires escape sequence B N E$$SEQ
support (see Section 2.7).

2-13

Terminal Handlers

Table 2-2 (Cont.) Characteristics and their Names

Max. Val. Depends on
Name Description (Note 1) Fixed? (Note 2) Note

TC.FOX Terminal is to operate in full duplex B N
mode (see Section 2.11.5).

TC.FAM The terminal is a VT61 and is to B N 8$$LCK 11
operate in forms mode.

TC.HFF Terminal recognizes and is able to B N
interpret form feed and vertical tab.

TC.HFL Horizontal fill requirement. 7 N 7

TC.HHT Terminal recognizes and Is able to B N 8
interpret horizontal tab, and does not
require software simulation.

TC.HLD The terminal is a VT5x or a VT61 B N E$$SEQ or 11
and is to operate in hold screen H$$0LD
mode.

TC.IMG Messages sent from a task running B N 12
at another terminal are to be
rejected.

TC.ISL Subllne on interface. 15 y

TC.LCP Device has local copy, I.e. echoes B N
every character Itself as typed.

TC.LPP Length of page in lines. 255 N S$$FF

TC.LVF Terminal is an LA36 with vertical B N
format option. Form feed and
vertical tab will be followed by 66
null fillers.

TC.NEC Echo suppressed B N

TC.NKB Terminal Is not enabled for input; B N
read requests will be rejected.

TC.NL Terminal generates "newline" instead 8 N N$$l
of "carriage return".

TC.NPR Terminal is not enabled for output; B N
write requests will be rejected.

TC.NST Terminal has the "HHT" attribute 8 N
but does not provide the standard
interpretation (tab stops every 8
spaces).

TC.PAR Line requires parity checking on 8 N 10
input and parity generation on
output.

TC.PSS All 8 bits of the character will be 8 N
passed for a read- pass-all request.
The terminal should also be set to
"deferred processing" read ahead
mode

TC.RAT Read-ahead type. 2 N 5

2-14

Table 2-2 (Cont.) Characteristics and th1elr Names

Max. Val.
Name C1escrlptlon (Note 1) Fixed?

TC.RGS Terminal supports REGIS B N
Instructions

TC.REM Line Is remote. B y

TC.ASP Receiver speed (keyboard speed 1of N
tEtrminal).

TC.SCP Scope (rubout can physically erase B N
clharacters).

TC.SFF Full simulation of form feed and B N
v1ertical tab should be provided
Instead of providing just a "token".

TC.SMO Enable lower-case output. B N

TC.SMP Force lower-case input. B N

TC.SMR E:nable lower-case Input. B N

TC.TAP lhe terminal has a low speed papier B N
t11pe reader. See Section 2.9.

TC.STB Extra stop bit required. B N

TC.TTP lerminal type. N

TC.UCO User-definable characteristics B N
through
TC.UC9

TC.VFL Vertical fill (6 nulls) required after line B N
f~9ed, form feed or vertical tab.

TC.WID Width of page or screen in 255 N
characters.

TC.XSP Transmitter speed (receiver speed of N
tiermlnal).

TC.SBC Pass eight bits on input, even if not B N
binary input mode.

Notes referred to by number in columns 3., 5 and 6 of Table 2--2.

Terminal Handlers

Depends on
(Note 2) Note

0$$1AL

S$$FF

T$$APE

4

9

9

6

13

3

4

1 The minimum value of every characte~ristic is 0. "B" indicates that the characteristic is binary
with a value of 0 or 1.

2 If the assembly parameter specified in column 5 is zero, this characteristic is not available and
any attempt to reference it will return an error of SE.NIH.

3 The valm~ specified or returned is actually one greater than the width in characters of the
device, fo:r example, 81 for an LA30.

4 The value of a line speed characteristilc must be one of the values in Table 2-4.

5 The value specified or returned corree1ponds to one of the three read-ahead types described in
Section 2 .. 2.2, that is:

• 0 - ignore type-ahead

• 1 - deferred processing

2-15

Terminal Handlers

• 2 - immediate processing

6 The value specified or returned corresponds to the values in Table 2-3. Note that simply
setting this characteristic, by SF.SSC or SF.SMC, will not perform the implicit changes
described in Section "SF.STT, SF.STS".

7 If this value is in the range 1-6, it specifies the number of null fillers to be supplied after a
carriage return. If it is zero, no fill is supplied. If it is 7, the fill is suitable for an LA30S,
provided the assembly parameter L$$30S is non-zero. See also note 8.

8 If TC.HFL, the horizontal fill count, is non-zero, a single null fill will be supplied after the
character.

9 TC.SMR corresponds to "LOWERCASEKEYBOARD" and TC.SMP to "LOWERCASEINPUT".
See Section "Lower Case Characters".

10 This characteristic is only available on interfaces which perform hardware parity checking and
generation.

11 If a terminal which is not of one of the stated types has this characteristic set to 1, no en·or
will be returned but there will be no effect.

12 This corresponds to NOMESSAGES mode. See Section "Features of Write Function Codes".

13 These characteristics are available for user modifications to the terminal handler. In the
Digital-supplied version, they are not given specific meanings.

14 See Section 2.11. 7 for description of effects of reading control characters from terminals with
these characteristics.

15 The terminal must also be set to have escape sequence support (TC.ESQ set) and the terminal
handler parameter E$$SEQ must be non-zero. See also Section 2.8.

Table 2-3 Valld Terminal Types

Term Ina I Implicit Characteristics Speed
Name Type (Note 1) Width Length (baud)

T.AS33 ASR33 TC.HFL-1, TC.STB 72 66 110

T.KS33 KSR33 TC.HFL-1, TC.STB 72 66 110

T.AS35 ASR35 TC.HFL-1, TC.STB 72 66 110

T.L30S LA30S TC.HFL-7 80 66 300

T.L30P LA30P none 80 66 300

T.LA36 LA36 TC.ACR, TC.BSP, TC.LVF, TC.SMO, 132 66 300
TC.SMR

T.LA34 LA34 TC.HFL, TC.BSP, TC.SMO, TC.SMR, 132 66 300
TC.ACR

T.LA38 LA38 TC.HFL, TC.BSP, TC.SMO, TC.SMR, 132 66 300
TC.ACR

T.LA100 TA100 TC.HFL, TC.HFF, TC.BSP, TC.SMO 132 66 1200
lC.SMR, TC.ACR

T.VT05 VT05 TC.ACR, TC.BSP, TC.HHT, TC.SCP, 72 20 2400
TC.VFL

T.VT50 VT50 TC.ACR, TC.BSP, TC.HHT, TC.SCP 80 12 9600

2-16

Terminal Handlers

Table 2-3 (Cont.) Valld Terminal Types

l"ermlnal lmpllclt Characteristics Speed
Name l"ype (Note 1) Width Length (baud)

T.VT52 VT52 TC.ACR, TC.BSP, TC.HHT, TC.SCP, 80 24 9600
TC.SMO, TC.SMR

T.VT55 VT55 TC.ACR, TC.BSP, TC.HHT, TC.SCP, 80 24 9600
TC.SMO, TC.SMR

T.VT61 VT61 TC.ACR ,TC.BSP ,TC.HHT ,TC.SCP, 80 24 9600
TC.SMO, TC.SMR

T.L180 LA180S TC.HFF, TC.HFL•E>, TC.SMO 132 66 2400

T.L120 LA120 TC.ACR, TC.BSP, TC.LVF, TC.SMO, 132 66 1200
TC.SMR

T.V100 VT100 TC.ACR, TC.BSP, TC.HHT, TC.SCP, 80 24 9600
TC.SMO, TC.SMR,, TC.ANI, TC.DEC

T.V101 VT101 TC.SCP, TC.HHT, TC.BSP, TC.ACR, 80 24 9600
TC.SMR, TC.SMO., TC.ANI, TC.DEC

T.V102 VT102 TC.SCP, TC.HHT, TC.BSP, TC.ACR, 80 24 9600
TC.SMR, TC.SMO, TC.ANI, TC.DEC,
TC.EDT

T.V105 VT105 TC.SCP, TC.HHT, TC.BSP, TC.ACR, 80 24 9600
TC.SMR, TC.SMO, TC.ANI, TC.DEC,
TC.RGS

T.V125 VT125 TC.SCP, TC.HHT, TC.BSP, TC.ACR, 80 24 9600
TC.SMR, TC.SMO, TC.ANI, TC.DEC

T.V131 VT131 TC.SCP, TC.HHT, TC.BSP, TC.ACR, 80 24 9600
TC.SMR, TC.SMO, TC.ANI, TC.DEC

T.V132 VT132 TC.SCP, TC.HHT, TC.BSP, TC.ACR, 80 24 9600
TC.SMR, TC.SMO, TC.ANI, TC.DEC,
TC.BLK

T.V2XX VT2XX TC.SCP, TC.HHT, TC.BSP, TC.ACR, 80 24 9600
TC.SMR, TC.SMO, TC.ANI, TC.DEC,
TC.AVO, TC.EDT

T.USRO (Note 2)
through
T.USR4

Notes on Table 2riJ:

1 Unless otherwiise stated, the followin1~ characteristics are set to 0 (or "NO") whenever an
SF.STr or SF.STS request is made:

2 TC.BSP, ~re.ESQ, TC.HFF, TC.HFL, 'rC.HHT, TC.LCP, TC.LVF, TC.NL, TC.NST, TC.SCP,
TC.SFF, TC.SMO, TC.SMR, TC.STB, TC.VFL.

3 These names correspond to user-defined terminal types which may be included when the
terminal lhandler is built (see the !AS Installation and System Generation Guide).

2-17

Terminal Handlers

The value for the TC.RSP and TC.XSP characteristics must be one of the following symbols.

Table 2-4 Valld Terminal Speeds

Name Speed (baud)

s.o 0 (line disabled)

S.50 50

S.75 75

S.100 100

sj10 110

S.134 134.5

S.150 150

S.200 200

S.300 300

S.600 600

S.1200 1200

S.2000 2000

S.2400 2400

S.3600 3600

S.4800 4800

S.7200 7200

S.9600 9600

S.EXTA DH 11 External speed rate A

S.EXTB DH 11 External speed rate B

SF.SSC (Set Single Characteristic)

This sets a single characteristic to a specified value. The parameters are:

• pl - characteristic name

• p2 - value to which it should be set

SF.SMC (Set Multiple Characteristics)

This sets several characteristics in a single operation. It is essential where two or more
characteristics must be changed simultaneously. For example it must be used to change the
line speed, represented as the two separate characteristics transmit speed and receive speed, on an
interface that cannot handle split-speed lines. The parameters are:

• pl - address of a buffer containing a list of characteristic/value pairs (see below)

• p2 - length in bytes of buffer (must be even, non-zero and less than 8128 (decimal)).

The buffer is a list of byte pairs of the form:

• .BYTE - characteristic name

• .BYTE - new value

2-18

Terminal Handlers

SF.STT, SF.SlrS (Set Terminal Type)

This sets the terminal type (name TC.TTP) and also sets all other characteristics to the appropriate
value for that terminal type, for example width, length and fill requirements. SF.STS also sets the
line speed to the default value for that tenninal type, for example 300 baud for an LA30. SF.STT
does not affect the line speed. The parameters are:

• pl - terminal type (see Table 2-4)

SF.GSC (Get Single Characteristic)

This function is complementary to SF.SSC. It enables a program to sense the value of a single
characteristic:. The parameters are:

• pl - namt;, of characteristic to sense

The current value of the specified characteristic is returned in the second word of the 1/0 status
block.

SF.GMC (Get Multiple Characteristics)

This function. is complementary to SF.SMC. It enables a program to sense the values of several
characteristi<:s simultaneously. The parameters are:

• pl - addriess of a buffer in the format described below

• p2 - length, in bytes, of buffer (must be even, non-zero and less than 8128 (decimal).

The buffer fonnat is a list of byte pairs of the form:

• .BYTE - c~haracteristic name

• .BYTE - Hpace to receive value

SF.GAC (Get All Characteristics)

This functiorn dumps all the characteristiic settings for a terminal into a specified 16 word
buffer. It is intended to be used in conjwriction with SF.SAC (below) for programs which modify
characteristics and want to reset them ont exit even though their value may not be the default. The
characteristics are returned in their internal binary format which cannot be interpreted by a user
program; the significance of the individual bits varies depending upon the parameters used when
the handler is built. The parameters are:

• pl - addr·ess of 16 word buffer to receive characteristics

SF.SAC (Set All Characteristics)

This function takes a buffer filled by SF.GAC (above) and sets all characteristics (except those
which cannot be changed) accordingly. The parameter is:

• pl - address of 16 word buffer

Restore Default Characteristics

This function, which takes no parameters, restores the default values of the characteristics saved
· when the first "set characteristic" was performed. If no default value has been saved, because no

changes havE~ been made, this function has no effect.

2-19

Terminal Handlers

Error Conditions of Set/Get Characteristics

Some errors may occur which are common to those reported for other functions. These are:

• IE.IFC - The handler has been built without the specified function (see the IAS System
Generation and Startup Guide).

• IE.PRI - The requesting task is not running on the same terminal or not running under [1,1].

• IE.OFL - The terminal was specified in system generation phase 1 and has a PUD entry, but
its interface is not physically present in this configuration.

• IE.SPC - The specified buffer is wholly or partially outside the user's address space, is zero
bytes long or is larger than 8128 (decimal) bytes.

Other errors are specific to this set/get group of functions. These are distinguished by an error
code of IE.ABO in the low byte of 1/0 status block word 1, with an error qualifier in the high byte.
These qualifiers are:

• SE.ICN - Illegal characteristic name. A characteristic name was not one of the symbols
"TC.xxx" specified in Table 2--2.

• SE.FIX - Attempt to change one of the characteristics specified in Table 2--2 as being fixed.

• SE.BIN - The value specified for a binary characteristic is not 0 or 1.

• SE.VAL - The value specified for a non-binary characteristic is outside the permitted range.

• SE.TER - The terminal type specified in an SF.STT or SF.STS function is not one of the
"T.xxxx" symbols specified in Table 2--3.

• SE.SPD - An attempt has been made to set the speed of a line to a value which is not available
on the interface to which it is connected.

• SE.SPL - An attempt has been made to set a different value for the receive and transmit
speeds on an interface which does not support split-speed lines.

• SE.PAR - An attempt has been made to set a parity-checking type that is not supported by the
line interface involved.

• SE.LPR - Some other parameter has been changed which cannot be supported by the interface
for a line.

• SE.NBC - A line parameter change (for example, speed) has been specified but the interface
does not have settable characteristics.

• SE.UPN - The handler does not have enough internal buffer space to save the default
characteristic settings.

• SE.NIH - The specified characteristic does not exist in this handler. The parameter file used
when the handler was built indicated that this characteristic was not required.

After one of the "multiple characteristic" functions (SF.SMC and SF.GMC) 1/0 status block word 2
contains the offset in the user's buffer of the name of the offending characteristic. If the handler is
unable to detect which characteristic caused the error, a value of -1 will appear instead.

2.5 Other Functions Affecting Terminals
The functions Attach Terminal, Detach Terminal, Get Terminal Support, Kill Outstanding
Requests, and Disconnect Dialup Line are also supported.

2-20

Terminal Handlers

10.ATT and 110.ATA (Attach Terminal with AST Notification)

This is an A~rrACH function and specifies asynchronous system traps (ASTs) to process unsolicited
TT input. Control passes to the AST. When the task receives an unsolicited character (other than
lctrVOL ICtrVSL ICtrVX1 or lctrVOI). When speciifying a ICtrVCI AST on a timesharing system, the AST will
be checked for the required privileges before the AST address is passed to the TCP (Timesharing
Control Primatives). Thus, it is not nece~;sary to include the CTC$T call to TCP in your application
task. when you detach your terminal, TCP will cancel the I CtrVC I AST.

This QIO is]presented in two formats. The first format, Unsolicited Input Line AST, provides only
notification of completed, unsolicited lines. The second format, Unsolicited Character AST, passes
each character as it received.

The format for Unsolicited Input Line is:

QIO$ IO.ATA,lun,ef,pri,iosb,ast,<ccae,uiae>

where:

• ccae - is the address of the AST entry point to be entered iflCtrVCI is typed at the terminal.
In this case the ICtrllCI will riot re-activate the command level program. Therefore, this facility
should hie used with extreme caution, since if the program loops, it will not be possible to
use commands to abort it from the same terminal. For timesharing systems, this parameter
requires ICtrVCI privileges.

• uiae - is the address of the AST entry point to be entered if a line of unsolicited input is typed,
such that a read request will be completed immediately.

When a ICtrVC'~ or unsolicited input AST 0 1ccurs, the task's stack will contain the following values:

• SP+ 14 - :Event flag mask word for flags 1 to 16

• SP+ 12 - Event flag mask word for flags 17 to 32

• SP+lO - Event flag mask word for flags 33 to 48

• SP+06 - Event flag mask word for flags 49 to 64

• SP+04 - PS of task prior to AST

• SP+02 - PC of' task prior to AST

• SP+OO - Task's Directive Status wordl

No extra parameters are put onto the task's stack, and an ASTX$ directive is sufficient to return
control to the task. See the IAS Executive Facilities Reference Manual for a description of AST
service routines.

The validity of the AST entry points is not checked when the attach request is made. If an AST
entry point i.s odd or not in the address i;pace of the program, the program will fail when the AST
occurs. IO.ATA can be used to change the AST entry point address even though a task is already
attached. An AST entry point address of zero means that no AST is required.

The "unsolicited input AST'' facility works only if the terminal is in "immediate processing
type-ahead" mode (Section 2.2.2, mode 3:). Programs that use "read-pass-all" (including tasks
linked with ODT) temporarily disable "immediate processing" so that unsolicited input ASTs will
not occur until a normal read has been performed.

2-21

Terminal Handlers

The format for Unsolicited Character AST is:

QIO IO .AT'.r, ••• <[AST], [PARAMETER2] [, [AST2] >

where:

• AST - specifies the entry point for a routine that is entered when an unsolicited character other
than jctrl/OL lctrl/SL lctrl/XL or lctrVOI is received.

• PARAMETER2 - identifies a terminal in a multi-terminal environment. It is placed into the
high byte of the first word on the stack (sp+OO) when the trap occurs. The low byte contains
the unsolicited character.

• AST2 - specifies the entry point for a routine that is entered when an unsolicited ICtrVCI is
received.

When a [ctrllCI or unsolicited input AST occurs, the task's stack will contain the following values:

• SP+16 - Event flag mask word for flags 1to16

• SP+14 - Event flag mask word for flags 17 to 32

• SP+ 12 - Event flag mask word for flags 33 to 48

• SP+OS - Event flag mask word for flags 49 to 64

• SP+06 - PS of task prior to AST

• SP+04 - PC of task prior to AST

• SP+02 - Task's Directive Status word

• SP+OO - Low byte = data;High byte = parameter

One extra parameter is put onto the task's stack, and must be removed before exiting the AST
routine. See the IAS Executive Facilities Reference Manual for a description of AST service
routines.

The validity of the AST entry points is not checked when the attach request is made. If an AST
entry point is odd or not in the address space of the program, the program will fail when the AST
occurs. 10.ATA can be used to change the AST entry point address even though a task is already
attached. An AST entry point address of zero means that no AST is required.

The "unsolicited input AST" facility works only if the terminal is in "immediate processing
type-ahead" mode (Section 2.2.2, mode 3). Programs that use "read-pass-all" (including tasks
linked with ODT) temporarily disable "immediate processing" so that unsolicited input ASTs will
not occur until a normal read has been performed.

If one or more parameters are omitted, the function reverts to that of Unsolicited Input Line. See
Section 1.6.1 on attaching a peripheral in general. Using QIO ATT will provide the same function
as QIO ATA, Unsolicited Input Line version. In timesharing systems, a terminal is not actually
attached although the 10.ATT function will succeed.

If the TF.NOT subfunction is used, the function is treated as above.

This support is a conditional assembly specified by setting the parameter U$$CHA in
[311,114JPARAMS.MAC.

2-22

Terminal Handlers

10.ATT (Attach Terminal)

See Section 1.6.lon attaching a peripheral in general. In timesharing systems, a terminal is not
actually attached although the IO.ATT function will succeed.

When attaching to a terminal you can specify at the same time an AST (asynchronous system
trap) to be entered when a complete line of unsolicited input (that is type-ahead) is entered, or,
for real-timE~ and multi-user systems onlly, when ICtrVCI is typed. This is done by using the function
code I 0 .AT.A instead of I 0 .ATT.

10.DET (Detach Terminal)

See Section 1.6.1. Any jctrVCI or unsolicited input AST entry point specified in Attach QIO (see
above) is discarded.

10.KIL (Kiii Outstanding Requests)

All outstandling requests for this task on this terminal are aborted. The effect upon any requests
depends on the terminal handler assembly parameter D$$KIL (see IAS Installation and System
Generation Guide):

• D$$KIL:=0 The request is terminated in the usual way, with a status of IE.ABO. If the request
is for a read, any characters read so far are placed in the buffer and the number of characters
read is placed in the second word of the I/O status block. Note however that no notification is
given if the request has not yet been dequeued by the terminal. Thus, a program should not
depend on the event flag being set or the AST occurring. For a task running at a priority less
than the terminal handler (normally 248 decimal) notification will have occurred as soon as
execution resumes after the directive is issued.

• D$$KIL:=l No notification is given of request termination, i.e. the I/O status block remains
clear, the event flag is not set and the AST does not occur.

The former method (D$$KIL=0) is the default and is compatible with RSX-llM. The latter method
(D$$KIL=l) is included for compatibility with earlier versions of RSX-11D and IAS.

Buffered output that is the result of a write request which has already been marked as done will
not be affected.

10.HNG (Disconnect (hangup) Dlalup Line)

This function may be used to force a connected dialup line to disconnect.

NOTE: In uome countries the line will not become free until the caller hangs up.

There are three possible error conditions:

• IE.DNR - Line not connected

• IE.IFC - Line is not a dialup line

• IE.OFL ·- Interface not present for line

10.GTS (Get Terminal Support)

This functioltl can be used to determine the facilities available in the terminal handler in use in the
current system. It is fully compatible with the same function in RSX-11M.

10.GTS takes a single parameter, which is the address of a 4-word buffer. These words are bit
significant, and are set as follows:

2-23

Terminal Handlers

word 1:

F1.ACR automatic carriage-return/line feed may be always 1
supplied (TC.ACR is available)

F1.BTW (provided 'for compatibility with RSX-11 M) always 0

F1.BUF intermediate buffering available always 1

F1.UIA unsolicited input AST available always 1

F1.CCO "cancel @:trvq· subfunction (TF.GCO) always 1

F1.ESQ escape sequence recognition available depends on E$$SEQ

F1.HLD terminal hold mode support available depends on H$$0LD or E$$SEQ

F1.LWC lower case conversion available always 1

F1 .RNE read-no-echo (subfunction TF.RNE) always 1
available

F1.RPR read-with-prompt available always 1

F1.RST read-with-special terminators available always 0

F1 .RUB character-deleting rubout on scope available always 1

F1 .SYN terminal synchronisation support always 1
(XON/XOFF) available

F1.TRW (Provided 'for compatibility with RSX-11 M) always 1

F1 .UTB (provided for compatibility with RSX-11 M) always 0

F1 .VBF (provided for compatibility with RSX-11 M) always 1

word 2:

F2.SCH set characteristics functions available depends on S$$CHR
(SF.SSC, SF.SMC, SF.STT, SF.STS)

F2.GCH get characteristics functions available depends on G$$CHR
(SG.GSC, SG.GMC)

F2.DCH dump characteristics functions available depends on D$$CHR
(SF.SAC, SF.GAC)

F2.DKL set if 1/0 kill aborts the current request depends on D$$Kll
without providing any status information

F2.ALT set if altmode is echoed as "$"<CR> depends on E$$AL T

F2.SFF form feed can be fully simulated depends on S$$FF

F2.CUP (provided for compatibility with RSX-11 M) always 0

F2.FDX (provided for compatibility with RSX-11 M) always 1

words 3 and 4 are reserved.

10.RST (Read with Special Terminator)

This function reads characters from a TT until the input buffer is filled or any character in the
ranges 0-037 or 171-177 base 8 is received.

The format of the request is:

QI0$ IO.RST, ... ,<stadd, size [,tmo]>

where:

• stadd - is the address of the receiving buffer.

2-24

Terminal Handlers

• size - is the buffer length in bytes.

• tmo - is an optional time-out count in 10-second intervals for the full-duplex driver. If 0 is
specified, no time-out can occur. Time-out is the maximum time allowed between two input
characters before the read is aborted.

This support is a conditional assembly :specified by setting the parameter 1$$RST in
[311,114JPAH.AMS.MAC.

10.RTT (Read with Terminator Table)

This function reads characters from a tt until the input buffer is filled or a user-specified character
(in the rangE' 0-377) is received.

The format of the request is:

QIO$ IO.RTT, ... ,<stadd, size [,tmo], table>

• stadd - h; the address of the receiving buffer.

• size - is the buffer length in bytes.

• tmo - is an optional time-out count in 10-second intervals for the full-duplex driver. If 0 is
specified,, no time-out can occur. Time-out is the maximum time allowed between two input
characteirs before the read is aborted.

Table is the address of a sixteen-word t:ible that specifies the end-of-read characters. Each bit in
the table represents an ASCII character. The first word represents the ASCII character codes 0-17.
the bits of the second word represent the ASCII codes 20-37, and so forth.

This support is a conditional assembly specified by setting the parameter 1$$RST in
[311,114JPARAMS.MAC.

1/0 FUNCTION CODES

The 1/0 function codes in the table below are also available. These function codes are the "logical
OR" of system macros (either the standard read logical block (10.RLB) or the write logical block
(10.WLB)) and function codes.

Table 2-5 1/0 Function Codes

1/0 Function Code System Macrn Function Code

10.CCO 10.WLB TF.CCO

10.RAL 10.RLB TF.RAL

10.RNE 10.RLB TF.RNE

10.WAL 10.WLB TF.WAL

10.WBT 10.WLB TF.WBT

10.WMS 10.WLB TF.WMS

10.RNC 10.RLB TRF.RNC

2-25

Terminal Handlers

2.6 Support of Dialup Lines
Whether a terminal is connected via a dialup line is not usually apparent to a program. The
handler establishes the line and disconnects it when the caller hangs up. There are however a few
special features of dialup lines on which a program can take action.

1 If a read or write request is made to a line which is disconnected or if the line becomes
disconnected while a request is in progress an error status of IE.DNR is returned.

2 It is possible to force the disconnection of a dialup line by the 10.HNG function (see Section
"10.HNG (Disconnect (Hang up) Dialup Line)".

3 When a line is connected, the handler behaves as though I CtrVC I had been typed. The CLI
allocated to the terminal is started, or a ICtrL'C I event is declared if the CLI is already active.

4 In timesharing systems only, if a CLI is active when a line is disconnected, a ICtrVCI event is
declared.

The entire process of answering a telephone line and disconnecting from it at the end of the call is
controlled by the terminal handler. However it may be useful to know the exact steps involved in
terms of events on the telephone line. These are summarized in Table 2-6.

Table 2-6 Handling of Dlalup Lines

Event Action

Telephone rings Handler enters a wait period of M$$ANS seconds (note 1) during which time
further ring signals are ignored. See also note 2.

End of M$$ANS time Handler waits for another ring. If this is not seen in M$$RNG seconds, the line is
dropped since the caller is assumed to have hung up.

Ring seen The phone is answered. After a pause of M$$CAR seconds carrier is applied.
The handler then waits for M$$WIC seconds for the caller to apply carrier. If this
period expires the line is dropped.

Caller applies carrier The line has been established. Transfer requests will be accepted.

Carrier is lost ICtrl!SI (XOFF) is simulated to minimize the amount of data lost on output. The
handler will wait for M$$WCR seconds for carrier to be recovered. If it is, lctrVal
(XON) is simulated to resume output and the carrier loss is transparent to the rest
of the system except possibly for a few garbled characters. See also note 3.

Carrier recovery time expires The connection has been lost. The line becomes "not ready" again.

2-26

Terminal Handlers

Notes on Table ~.

1 Names of the form "M$$x:xx" refer to assembly parameters defined in the file PARAMS.MAC.
See IAS Installation and System Generation Guide.

2 Lines connected via DZll interfaces are answered as soon as the first ring signal is seen.

3 Certain 1countries (for example, the UK) require that a line be dropped within a very short time
of carrier loss. If the assembly parameter M$$UK is non-zero, M$$WCR is the time to wait in
ticks.

:!. 7 Auto-Baud Detection

2.7.1

2.7.2

The Terminal Handler now can automatically detect the line speed of a terminal connected to a
dial-in line.

The Terminal Handler samples the line's: input character, determines the incoming caller's baud
rate, and sets the interface speed accordingly.

Dial-in Interface
When you dial into the system, you will 1r10t receive the customary PDS WELCOME (time Sharing)
message or the customary MCR display. Your terminal will display nothing at first: you must
press ~!!] several times so your baud rate can be determined. The system will then send you
the customary log in banner. Note that you no longer may presslCtrVCI when you dial into a system:
you must press ~ETURN ~

Previously, if the response to the USER NAME prompt was blank, PDS would hang up the dial-in
line. Now if you type too many I RETURN F:s PDS will redisplay the USER NAME prompt.

How to Enable Auto-baud De1tection
The TER command allows a user logged in under [1,1] to change the characteristics of a specified
terminal. Auto-baud detection can be enabled with MCR with the command

MCR>TER /AUTO

or under PDS with the commmand

PDS> SET TERM:TTN AUTOBAUD

If you attempt to set a line to auto-baud that is not a dial-in line, you will receive the following
error messa~,e:

<Characteristic cannot be modified for this line>

2.8 Escape Sequence Support
If a termina] has characteristic TC.ESQ Bet Table 2-2, then "escape" (octal code 33) wiH be treated
not as a read terminator but as the start of an "escape sequence". In this case characters have
special meanings. Escape sequences are used to extend the number of terminal control functions
and special characters available without increasing the number of character codes.

2-27

2..8.1

2.8.2

Terminal Handlers

Terminals can only be set for escape sequence recognition if the terminal handler is configured
to include support for the escape sequence type required. Section 2.8.1 describes the types of
escape sequence support which can conditionally be included in the terminal handler by setting the
parameter E$$SEQ. The IAS Installation and System Generation Guide describes how to configure
the handler.

Types of Escape Sequence Support
The effect of setting characteristics TC.ESQ and TC.ANS for a terminal depend on the type of
escape sequence supported by the active terminal handler as follows:

1 No escape sequence supported by terminal handler (E$$SEQ=0)

• Terminals cannot be set to pass escape sequences.

2 VT52-type sequences only supported by terminal handler (E$$SEQ=l)

• If TC.ESQ is set for a terminal then, on input,

• escape sequence characters in Table 2-7 are translated by the handler into a single
negative byte to form part of status return to a task. The codes for the negative byte
values are given in column 1 of Table 2-7. If the terminal handler does not recognise the
sequence, the input characters are placed exactly as issued in the user's buffer, preceded by
the byte "33". The value of TC.ANS is ignored.

3 ANSI sequences only supported by terminal handler (E$$SEQ=2)

• If TC.ESQ is set for a terminal then, on input, valid ANSI sequences are passed for the
terminal but are not translated. The whole input sequence is simply placed exactly as
issued in the user's buffer preceded by the byte "33". The value of TC.ANS is ignored.

4 Both sequence types supported by terminal handler (E$$SEQ=3)

• If TC.ESQ is set and TC.ANS is zero the action is as described for TC.ESQ in 2 above, If
both TC.ESQ and TC.ANS are set the action is as described in 3 above.

5 Both sequence types supported by terminal handler with no translation (E$$SEQ=4)

• If TC.ESQ is set and TC.ANS is zero then VT52-type sequences are passed but are not
translated. The sequence is simply placed exactly as issued in the user's buffer preceded by
the byte "33". If both TC.ESQ and TC.ANS are set the action is as 3 above.

Valid ANSI escape sequences
The handler allows the following valid sequences for a terminal with characteristic TC.ANS:

1 Escape sequences

ESC (IC) ••• (IC) (FC)

where:

• (IC) - is a character in the range 40 to 57 (octal) inclusive.

• (FC) - is a character in the range 60 to 176 (octal) inclusive.

2 Control sequences

ESC [P (1) ••• P (n) I (1) •.• I (m) (FC)

2-28

where:

• [- is the bit combination 133 (octal)

• P(i) - is a character in the range 60 to 77 (octal) inclusive.

• l(j) - is a character in the range 40 to 57 (octal) inclusive.

• (FC) - is a character in the range 100 to 176 (octal) inclusive.

3 Graphic charactere1

ESC N (FC)

where:

• N - is the bit combination 116(octal).

• (FC) - is a character in the range 41 to 176 (octal) inclusive.

4 Further graphic characters

ESC 0 (FC)

where:

• 0 - is the bit CCJ•mbination 117 (octal).

• (FC) - is a character in the range 41 to 176 (octal) inclusive.

Terminal Handlers

2-29

Terminal Handlers

Table 2-7 Encoding of VT52-type Escape Sequences

Name of
Code Description Sequence Notes

ES.CUP Cursor up A

ES.CON Cursor down B

ES.CRT Cursor right c
ES.CLF Cursor left D

ES.EGA Enter graphics mode F

ES.XGR Exit graphics mode G

ES.HOM Cursor home H,PQ

ES.DES Erase (delete) to end of screen J,PZ

ES.DEL Erase (delete) to end of line K,PX

ES.FFD Forward field R

ES.BFD Backward field a
ES.EHS Enter hold screen [,PU

ES.XHS Exit hold screen \,Pu

ES.EKL Enter keyboard lock OE

ES.XKL Exit keyboard lock Oe

ES.EAL Enter alarm mode OG

ES.XAL Exit alarm mode Og

ES.ERV Enter reverse video OJ

ES.XRV Exit reverse video Oj

ES.OLD Delete line down ON

ES.ILU Insert line up 00

ES.SSA Start selected area OP

ES.ESA End selected area 00
ES.TSA Transmit selected area OS

ES.TAL Transmit all ov
ES.TCC Transmit cursor character ow
ES.TOB Terminal overflow buffer ox
ES.SON Terminal switched on O{

ES.ATS Request to scroll 01
ES.SOV Screen overflow O}

ES.POL Paragraph delimiter PA 2
ES.TCL Transmit cursor line PB 2
ES.WRU Write the ruler PC 2
ES.DLU Delete line up PD 2

ES.CEM Change emphasis PE 2
ES.ILD Insert line down PF 2
ES.EIM Enter insert mode Pl

2-30

Terminal Handlers

Table 2-7 (Cont.) Enc:odlng of VT52-type Escape Sequences

Name of
Code Description Sequence Notes

ES.XIM Exit inse1rt mode Pi

ES.TMS Transmit message PM 2

ES.TOT Transmit data PN 2

ES.CJF Clear and justify PR 2

ES.OCH Delete character PS,?p 1,2

ES.CMD Command delimiter PT 2

ES.JFY Justify PV,?q 1,2

ES.ETX Cursor tc1 end of text PW 2

IES.TCM Transmit command ?s

!ES.USO User sequence 0 0 3

IES.US1 User sequence 1 3

IES.US2 User sequence 2 2,?w 1,3

ES.US3 User sequence 3 3,?x 1,3

l::S.US4 User sequence 4 4,?t 1,3

ES.USS User sequence 5 5,?u 1,3

ES.USS User sequence 6 6 3

ES.US7 User sequence 7 7 3

1:s.usa User sequence 8 8 3

ES.US9 User sequence 9 9 3

ES.CLN Copy line V,Pb 1,2

ES.EPC Enter printer control w
ES.XPC Exit printer control x
1:s.csc Copy semen

l:S.EAC Enter autiocopy I\

l:S.XAC Exit autocopy

l:S.PSC Print screen PH 2

l:S.PLN Print cursor line PJ 2

l:S.EAP Enter aut10 print PY

l:S.XAP Exit auto print Py

ES.ELA Enter linear addressing oc
ES.XLA Exit linea1r addressing Oc

ES.EAT Enter auto-tab mode 01

ES.XAT Exit auto-tab mode Oi

E:S.EAK Enter alternate keypad PK

E:S.XAK Exit alternate keypad Pk

E:S.KRC Clear rec1~ive checksum O[

E:S.KTC Clear transmit checksum 0\

2-31

2.8.~I

Terminal Handlers

Table 2-7 (Cont.) Encoding of VT52·type Escape Sequences

Name of
Code Description Sequence Notes

ES.KAT Transmit receive checksum OJ

ES.KTT Transmit transmit checksum 0"'

ES.AIN Initialize abort flag 0 -
ES.ATR Transmit abort flag o·
ES.ANO No output aborted Ox

ES.ACO Copier aborted Oy

ES.APR Printer aborted Oz

ES.ENT Enter ?M

Notes referred to by number in last column of Table 2-7:

1 Alternative sequences are shown separated by a comma. Either sequence will be accepted and
will produce the corresponding translation. The first mentioned sequence will be produced on
output.

2 The final letter may be in either upper or lower case.

3 The meaning of these sequences is not defined. User.;.written software is free to use them for
any purpose.

Input of Escape Sequences
This section describes how the terminal handler processes escape sequence translation, on input,
for non-block mode terminals. The handler translates escape sequences either when E$$SEQ=l or
when E$$SEQ=3 with TC.ANS=O (see Section 2.8.1). The handler's actions are as follows:

1 If the sequence has a single-byte translation the request is terminated. The low byte of the
first word of the 1/0 status block contains IS.SUC. The hlgh byte contains the code for the
escape sequence. The second word contains the number of characters placed in the buffer.

2 If there is no single-byte translation, the byte "33" is placed in the buffer followed by the
characters comprising the escape sequence. The termination code IS.ESQ is placed in the first
word of the 1/0 status block. The byte count placed in the second word includes the escape
sequence.

3 If there is not enough space in the buffer to hold an escape sequence as described in (2), the
current request is terminated with a status of IS.SUC. The handler starts to pass the sequence
on the next read. If the buffer is still too small the sequence will be returned in sections, each
of which except the last will have a status of 18.PES (partial escape sequence). The last read
has a status of IS.ESQ.

4 If an invalid escape sequence is received, it is passed to the user as in (2), but the termination
code is IE.IES. If the sequence has to be split as in (3) only the last section will have thls error
return.

For compatibility with RSX-llM and earlier versions of IAS, it is possible to force all escape
sequences to be treated as in (2) (or (3) if necessary) above. If the terminal characteristic TC.CEQ
("COMPATIBLE" to the TER (MCR) or SET TERMINAL (DCL) commands) is set to 1, an escape
sequence is never translated into a single byte even if such a translation exists.

2-32

~~.8.4

Terminal Handlers

Output of Escape Sequences.
To output esicape sequences you place th1e escape character (octal 33), followed by the constituent
characters, in the buffer of a write reque!st. Additionally, if the terminal handler is configured to
support translation of VT52-type escape sequences, you can output the sequences which have a
single-byte tiranslation by using the translation as the "vertical format character" of a write QIO.
In this case 1~he escape sequence will be output after all the characters in the write buffer. If you
wish to output just an escape sequence you should issue the write QIO with a buffer size of zero,
but the buffer address must still be a valid address in the user's task (for example, 0).

2:.9 Support of Block-Mode Termiinals
This section assumes familiarity with the facilities provided by the VT61, and should be read in
conjunction with the VT61 User's Manual. If a VT61 terminal is set in block mode (TC.BLK, or the
BLOCKMODE option to TER or SET TERMINAL), the terminal transmits data a block at a time.
A typical application for this would be a text editor, where a page of data is sent to the terminal,
edited locally without involving the computer, then retransmitted to the computer, at an operator
command, when editing is complete.

Programming for such a block-mode tenninal is very similar to programming for a normal
terminal. Output is performed in exactly the same way. Input is performed in the same way,
one "line" at a time into a record-sized buffer. The handler breaks up the block of input supplied
by the terminal into these sma1ler records, which are terminated in the usual way by carriage
return or an escape sequence. A block-mode terminal must be set in escape sequence mode to
function properly.

The single major programming difference! occurs because a VT61 is operated in "transmit request"
mode. This means that when the operator depresses one of the "enter" or "transmit" keys the
terminal merely sends the corresponding escape sequence, rather than actually transmitting a
block of data .. It is up to the application :program to detect this escape sequence (which is one of
the translatable subset described in Section 2. 7), by keeping a read QIO permanently in progress.
The same esc:ape sequence should then be transmitted back to the terminal, and further read QIOs
issued to read the block of data. The first read will always be terminated with a status of IS.EOT,
and will contain no characters. This should be ignored. The last record of the block will also be
terminated with a status of IS.EQT, after which no further reads should be issued except to wait
for the next "request to transmit".

It is possible, depending upon the application, that an escape sequence will occur in the middle of
a "line", for example "enter reverse video mode". In this case the escape sequence will terminate a
read and the remainder of the line must he read by a subsequent QIO. A particular example of this
is an application which uses the "transmit command" facility of the VT61. Such a command will be
prefixed by the "command delimiter" escape sequence (ES.CMD) which will result in the first read
obtaining a zero length record with this tierminator.

As an alternative to using normal read Q.IOs to read single records, the "read-pass-all" function
(10.RAL) may be used to read the entire block in one operation. In this case the specified buffer
should be lar1ge enough to contain an entire block of input. If it is not, the block will be returned
in sections, each of which except the last will have a termination code of IS.SUC. The last, or only,
section will have a termination code of IS.EOT. For 10.RAL to work correctly, the handler must be
built with a large enough node pool to contain an entire block at one time. See the description of
assembly parameter N$$0DS in the !AS Installation and System Generation Guide.

Operation of a VT61 in forms mode (TC.FRM, FORMSMODE option) differs from the above only in
the respect that the horizontal tab character will also terminate a read, with a status of IS.TAB.

2-33

2 .. 10

Terminal Handlers

There is no support for the checksum faci1ity of the VT61. Block mode terminals made by other
manufacturers are not supported unless they are compatible with the VT61. In particular:

1 They must respond to the characters XOFF and XON (octal codes 21 and 23 respectively) to
suspend and resume transmission.

2 A block of data, unless it is a single escape sequence, must be preceded by STX (octal 2) and
terminated by EOT (octal 4).

3 The terminal must expect every transmission from the computer (correponding to a single
write QIO) to be bracketed as in 2.

4 · The syntax of valid escape sequences (see Table 2-7) must be the same.

Low Speed Paper Tape Reader Support
If the assembly parameter T$$APE is non-zero, the terminal handler will support low speed
paper-tape reader attachments to terminals. The paper-tape reader must respond to the characters
XON (ICtrVQ~ start reading tape) and XOFF QCtrVSI, stop reading tape). The terminal must have
been set in TAPE mode using the TER trAPE (MCR) or SET TERMINAL TAPE (DCL) commands.
If there is a tape in the reader, which must be switched on, typinglCtrltBI will start reading the tape.

The character ICtrVT~ either punched on the tape or entered by turning the reader off and typing,
will stop reading the tape and resume input from the keyboard. No characters read from the tape
will be echoed. Prompts supplied as part of a read request (using the 10.RPR subfunction) will not
be printed.

2"11 Other Supported Features

2~ 11.1

This section covers support of Parity, Character Silo, Fill Character, Other Manufacturers'
Terminals, Full Duplex operation, Binary Terminals and Remote Terminals.

Parity Support
The terminal handler supports the hardware parity generation and detection feature of the DHll,
DJll, DLll and DZll interfaces. For interfaces with settable line parameters (DHll and DZll),
parity type (odd, even or none) is a settable characteristic. On DJll and DLll interfaces, parity
type is determined by jumpers or switches on the interface.

Parity generation on output for such terminals is automatic. On input, an error status of IE.VER
is returned if a parity error is reported by the interface.

There is no parity support for the DCll, DLllA, DLllB or KLll interfaces.

2.11.2 Character Silo Support
Some multiplexer interfaces (DHll, DZll) have a dynamically variable silo alarm level. This
means that they can be set to cause an interrupt only after a certain number of characters have
been received. The Terminals and Communications Handbook contains a full description of this
facility under the appropriate interfaces.

2-34

Terminal Handlers

The termina] handler uses this facility to reduce the number of read int.errupts, and their
associated overhead, when a large volume of input is being received (unless the assembly
parameter Rl~$INT is zero). This process is normally transparent to the user and the programmer
alike. However, if the input rate drops sharply, for example at the end of a transmission from a
high-speed Mock mode terminal, a short JPause, never more than one second, may occur between
typing characters and their being echoed. This is a normal and unavoidable part of handler
operation and should be ignored.

2.11.3 Fill Characters
Some terminals, particularly older hard-copy terminals, require that some characters that require
an exceptional amount of time to process:, for example carriage return, be followed by "fill"
characters which do not require any action. The terminal handler offers the following support
for fill charac:ters.

1 Fill after carriage return. If the characteristic TC.HFL is in the range 1-6, that same number
of null fill characters will be supplied after a carriage return. If TC.HFL is equal to 7, the
number c1f fill characters is designed 1~0 be suitable for the LA30S DECwriter, and depends on
the current horizontal position.

NOTE: A flll value of 7 must NOT be used with any terminal other than an LA30S.

2 Fill after backspace and horizontal tab. If the characteristic TC.HFL is non-zero, each of these
character·s will be followed by a single null fill character.

3 Fill after line :feed. If the characteristic TC.VFL is equal to 1, line feed will be followed by 6
null characters. This is intended to be used with VT05 terminals at 2400 baud.

4 LA36 forms feed option fill. If the characteristic TC.LVF is equal to 1, the characters vertical
tab and form feed are followed by 66 null fill characters. This is intended to be used with the
LA36-KV forms feed option.

2.11.4 Support of Other ManufacturE~rs' Terminals
The terminal handler fully supports all t,erminals mentioned as supported in the IAS Software
Product Description. The handler has be1en designed to be as flexible as is reasonably practical in
other respects, but with the many hundreds of terminal products on the market it is not possible
to provide the facilities necessary to support all of them. This applies particularly to fill character
requiremente1 (see Section 2.11.3. Further, the handler will not cope with terminals which use
control characters other than in the way defined by the ASCII and ISO standards.

2:.11.5 Full Dupl1ex Operation
It is possible to operate a terminal in "foll duplex" mode, in which input and output operate
completely independently. This is likely to be useful, for example, if the terminal handler is used
to interface to an intelligent terminal or fo another computer. Full Duplex is enabled at task level
by setting to 1 the characteristic TC.FDX. The corresponding terminal commands are

MCR>TER /FULLDUPLEX

or

PDS> SET TERMINAL FULLDUPLEX

2-35

Terminal Handlers

In this mode, reads and writes can he performed simultaneously on the same terminal, either by
the same task or by different tasks. There is no interaction at all between reading and writing,
except for certain control characters (see below). Also, no echoing is performed.

In full duplex operation, the five characters jctrVCI, ICtrVOL lctrl!Oj (XON), ICtrVSI (XOFF) and ICtrltXI
continue to have their usual significance on input. In particular, ICtrVSI and ICtrllOI can be used by
the terminal to control output from the computer in the case of buffer overflow.

2.11.6 Binary Terminals
It may be necessary to receive all characters sent by a terminal, including the special control
characters ICtrl/CL ICtrVOL jctrVOL ICtrVSI and ICtrllXI. This may be done by setting the terminal in
"binary" mode (characteristic TC.BIN set to 1). In this case these characters will be passed to any
task which performs a read-pass-all request (sub-function TF.RAL). The terminal must also be set
to "defered processing" read-ahead mode.

2.11.7 Reading Control Characters
Normally the terminal handler does not pass the control characterslCtrVCL lCtrVOL ICtrVSI and lCtrVOI
to a program which reads from a terminal even if the terminal is set in deferred processing mode
(see Section 2.2.2).

A program can be passed some or all of these control characters when all the following conditions
are satisfied:

• The terminal is set in deferred processing mode (see Section 2.2.2).

• The program performs a read-pass-all (see Section "TF.RAL ").

• One (and only one) of the terminal characteristics TC.BIN, TC.CSQ or TC.CTC is set for the
terminal.

The three characteristics have the following effect:

Terminal Characteristic

TC.BIN
TC.CSQ

TC.CTC

2.11.8 Remote Terminals

Characters Passed

All characters.
All characters except ICtrVSl and ICtrVOI (this is useful for applications such as
terminal synchronization on a VT100 with smooth scrolling).

All characters except I CtrVC I. I Ctrl/S I and I Ctrl/O I.

When a terminal is connected via moderns through a private line (as opposed to a switched
network), it can be specified as "REMOTE" when the terminal handler is configured (see the !AS
Installation and System Generation Guide). If the terminal is specified as "REMOTE", "Request to
Send" and "Data Terminal Ready" will be set for the line when the terminal handler is loaded. The
line can then be used as if it were a directly connected line.

NOTE: The special support for dialup lines described in Section 2.6 does not apply to
remote lines.

2-36

2.12

Terminal Handlers

The Sin~11e-Terminal Handler· (TT01)
This handler supports only a single tenninal (normally the console) on a DLll line, and has very
limited features.

Only the following special characters ar•e recognized on input:

ICtrllCI

lctrl!UI

lctr11xl

ICtrVZI

ALTMODE

RUBOUT

(see below)

(see Section '1 CtrVU t')

(see Section '1 Ctrl/X t')
(see Section '1 Ctrl/Z t')

(see Section "ALTMODE")

(see below)

ICtrllCI is always processed as in method Jl of Section '1Ctrl/Cf', that is, any current input is unaffected.
MCR is alw:ays invoked; there is no facility for specifying a ICtrltCI AST.

RUBOUT is. always echoed as a single backslash "\,, if there is a character to be rubbed out.

There is no read-ahead support. No fill icharacters are supplied.

Only the following function codes are supported:

IO.RLB, IO.RVB, IO.RPR, IO.WLB, IO.HAL, IO.RNE, IO.ATT, IO.DET, IO.KIL

There is no "set characteristics" function in TTOl.

2-37

:~ AFC11, AD01 Analog to1 Digital Converters

3.1 Introduction To AFC-11, AD01
The AFC-11 and ADOl devices are used for industrial and laboratory analog data acquisition. The
A.FC-11 is a flying multi-channel, multi-gain analog to digital (AID) multiplexer. Under program
control, the .AFC-11 performs a 13-bit A/I> conversion at a rate of 200 samples per second, with
a maximum 1rate of 20 samples per second per channel. The AFC-11 is capable of multiplexing a
maximum of 1024 differential input analog signals.

The ADOl is also a multi-channel AID converter. It differs from the AFC-11 in the following
respects:

• It is capable of much higher sampling· rates.

• It performs lO··bit AID conversions.

• It can multiplex up to 64 analog signals.

3,.2 Functional Characteristics

3,.2.1

3 .. 2.2

The AFC-11 and ADOl handlers have two modes of operation: single-sample, or multi-sample.

Single-Sample Mode (Function Code IO.R1 C)
In single-sample mode, both the gain and the channel number are obtained from a control word
in the QIO request node. See Table 3-1. 'rhe AID value is placed in the second word of the 1/0
status block. Single-mode allows quick reference to the current analog value of a given channel
and eliminatEis the need for validating buffers.

Multi-Sa1r1ple Mode (Function Code 10.RBC)
To function in multi-sample mode, the usHr must define two buffers of equal size. The first is the
control buffer:, which contains the control words needed to perform an AID conversion per channel
specified. See Figure 3-1.

The second buffer is used to store the results of the conversion. These results are placed in the
corresponding location of the data buffer.

In multi-sample mode the user can sampfo many channels at approximately the same time without
having to queue multiple 1/0 requests.

NOTE: Identical channel numbers should not be specified in the multi-sample mode
when using 'the AFC-11. Otherwise, ti:ming problems may result.

3-1

3,.2.3

AFC11, AD01 Analog to Digital Converters

QIO System Macro Format
To initiate an AID conversion, the user task issues a QIO request through a QIO system macro in
the following format:

Single-Sample

QIO$ IO.RlC,lun,ef,pri,iosb,ast,<cntw>

Multi-Sample

QI0$ IO.RBC,lun,ef,pri,iosb,ast,<stadd,size,stcnta>

For Single-sample mode, cntw specifies the control word (see Figure 3-1. For Multi-sample mode,
the parameter words have the following significance.

• stadd -Address of the start of the data buffer, relative to the user task. The address must start
on a word boundary.

• size - The size of both the data buffer and the control buffer in bytes. The size must be an even
number of bytes.

• stcnta - Address of the start of the control buffer relative to the user task. Each word of the
control buffer must be set up as shown in Figure 3-1. The address must start on a word
boundary.

The control word specifies the channel to be sampled and the gain value to be applied.

As shown in Figure 3-1, this control word is provided either as a parameter in the DPB of the QIO
request or in a control buffer depending on whether single-sample mode or multi-sample mode is
being used.

The maximum number of channels present on the configuration is specified at system generation.
This value is specified in the AFC-11 or ADOl entry in the physical unit directory (PUD). If the
value specified for the channel number in the control word is greater than that stored in the
physical unit directory, the AFC-11 or ADOl handler terminates the 1/0 request and returns an
appropriate error status.

User requests for time based sampling of a particular channel(s) should be made as follows.

1 The user task queues a sample request to be performed for one or a series of channels. The
channel number(s) and gain(s) must be specified in the control word, as indicated in Figure 3-1.

2 The user task then issues a Mark Time directive for at least three clock ticks to avoid skewing
effects before queuing another sample request. Thus, there is a 20 sample per second per
channel restriction on the sampling rate.

3 If an AID error occurs, the 1/0 request is terminated and the appropriate error code is placed
in the first word of the user status buffer. The second word in the status buffer contains the
number of valid samples taken prior to the error. Values for prior samples will be found in the
data buffer, as expected.

Note that the AID gain ranges overlap. The key to successful use of the AID converters is to
change to a higher gain whenever a positive full scale reading is imminent and to change to
a lower gain whenever the last AID value recorded was less than half full scale. This method
maintains maximum resolution while avoiding saturation.

3-2

3 .. 2.4

AFC11, AD01 Analog to Dlgltal Converters

Figure 3-1 AID Conversion Control Wc>rd

Bit

0 -10

Meaning

Cbannel nwnber: 0 - 1023 (AFC)
0-63 (AD01)

12-15 Gain value for this sample, expressed in the bit patte~
shown as follows:

I-•

Bits AFC Gain ADOl Gain

15 14 13 12
I-•

0 0 0 0 1 1
0 0 0 1 1 2
0 0 1 0 Illegal 4
0 0 I 1 Illegal 8
0 1 0 0 10 Illegal
0 1 0 1 20 Illegal
0 1 1 0 Illegal Illegal
0 1 1 1 Illegal Illegal
1 0 0 0 50 Illegal
1 0 0 1 100 Illegal
1 0 1 0 Illegal Illegal
1 0 1 1 Illegal Illegal
1 1 0 0 200 Illegal
1 1 0 1 1000 Illegal
1 1 1 0 Illegal Illegal
1 1 1 1 Illegal Illegal

AFC/AD0·1 Status Returns
The lowest byte of the 1/0 status block contains a code indicating the disposition of the QIO
request. TheEJe status return codes for thu AFC/ADOl handler are shown below.

3-3

AFC11, AD01 Analog to Digital Converters

Symbol

is.sue
IE.BAD

IE.IFC

IE.DNA

IE.SPC

IE.PAI

Meaning

Successful completion

Bad parameter (illegal channel)

1/0 function not recognized

AID timeout on sample

Illegal buffer address or count

Privilege violation

See Appendix A for a complete list of 1/0 status returns.

3-4

4 Disk Handlers

4.1 Disk 1/0 Handlers
Table 4-1 contains a brief summary of the characteristics of the disks supported by the disk
handler tasks and relates the devices to the handler tasks that service them. A complete
description of each disk is provided in the PDP-11 Peripherals Handbook.

Table 4-1 ~3tandard Disk Devices

Installed
Controller/ Task
Drive Name RPM Secs Tr ks Cyls

RF11/RS11 OF 1800 128

RHxx/RS03 OS 3600 641 64

RHxx/RS04 OS 3600 641 64

RP11 E/RP02 DP 2400 10 20 200

RP11C/RP03 DP 2400 10 20 400

RH11/RM02 DR 2400 32 5 823

RHxx/RM03 DR. ... 3600 32 5 823

RHxx/RP04,RP05 DB 3600 22 19 411

RHxx/RP06 DB 3600 22 19 815

RP07 DB 3600 50 32 6305

RM80 DR. ... 3600 31 14 5595

RH70/RM05 DR 3600 32 19 823

RK11/RK05 DK 1500 12 2 200

RL11/RL01 DL.. .. 2400 402 2 256

RL11/RL02 DL.. .. 2400 402 2 512

RK611/RK06 OM 2400 22 3 411

RK611/RK07 OM 2400 22 3 815

RX11/RX01 DX 360 263 77

RX211/RX02 DY 360 264 77

RAGO DU 3600 42 4 2382

1 The RS03 has 64 words per sector; the RS04 has 128 words per sector.
2 The RL01 and RL02 each have 128 words pE1r sector .

. 3 The RX01 has 64 words per sector.

Bytes/ Dec Ima I
Drive Blocks

524,288 1024

524,288 1024

1,048,576 2048

20,480,000 40,000

40,960,000 80,000

67,420,160 131,6808

67,420,160 131,6808

87,960,576 171,798

174,423,040 340,670

516,096,000 1,008,000

124,214,272 242,606

256,196,608 500,384

2,457,600 4800

5,242,880 10,2408

10,485,760 20,4806

13,888,512 27,1268

27,810,800 53,7908

256,256 494

512,5124 9884

204,890,112 400,176

4 These numbers are for a double-density diske,tte. The RX02 has 128 words per sector when formatted as double
density and ~34 words per sector when formatted as single density.

5 The RP07 and the RM80 each have two additional CE cylinders.
6 The last phy:sical track on the pack is reserved for recording bad sector locations. Thus the number of blocks

available to the user is reduced by the numbe1r of sectors in a track.

4-1

Disk Handlers

Table 4-1 (Cont.) Standard Disk Devices

Installed
Controller/ Task
Drive Name RPM Secs Tr ks Cyls

RA70 DU 4000

RASO DU 3600 31 14 546

RA81 DU 3600 51 14 1248

RA82 OU 3600

RA90 DU 3600

RC25 DU 2850 31 2 796

RD31 DU

RD32 DU

R051 DU 3600 16 4 306

RD52 DU

RD53 DU

R054 DU

RX50 DU 300 10 80

RX33 DU 360 15 160 615

1 The RS03 has 64 words per sector; the RS04 has 128 words per sector.
2 The Rl01 and RL02 each have 128 words per sector.
3 The RX01 has 64 words per sector.

Bytes/ Dec Im al
Drive Blocks

280,084,992 547,041

121,325,568 236,964

456,228,864 891,072

622,932,480 1,216,665

1,216,590,336 2,376,153

26,061,824 50,902

21,278,720 41,560

42,600,448 83,204

10,027,008 19,584

30,965,760 60,480

71,000,064 138,672

159,334,400 311,200

409,600 800

1,228,800 2,400

4 These numbers are for a double-density diskette. The RX02 has 128 words per sector when formatted as double
density and 64 words per sector when formatted as single density.

5 The RP07 and the RMBO each have two additional CE cylinders.
6 The last physical track on the pack is reserved for recording bad sector locations. Thus the number of blocks

available to the user Is reduced by the number of sectors In a track.

To optimize the moving head disk handler operations, nondata transfer QIOs and data transfer
QIOs are dequeued according to priority, but they are processed differently. The nondata transfer
QIOs are dequeued, processed and returned immediately to the user task, while data transfer
QIOs are dequeued but are not necessarily processed immediately.

When the disk is ready to perform a data transfer, the disk handler selectively processes the list of
dequeued data requests according to the following rules.

1 The highest priority request at that moment is processed first regardless of the current disk
head position.

2 Requests with the same priority and from the same task are not always processed in the order
which they were queued. For example the DB and DR handlers do not process requests on
a first-in/first-out (FIFO) basis. You should not rely on any specific order of processing 1/0
requests of the same priority.

3 Requests with the same priority, but requested by different tasks are selectively processed
according to the relative destination of the disk head for the requests as compared to the
current disk head position. Rule 2 above is also considered in this section.

Nondata and data QIOs are processed asynchronously.

4-2

4.1.1

4.1.2

4.1.3

4.1.4

4.1.5

Disk Handlers

The followi111g techniques can be used to control processing in a program containing both data and
non-data QIOs.

1 If the order of processing is important to the program, WAITFOR or STOPFOR directives can
be used to ensure that the desired Q:IO is processed before further QIOs are issued.

2 Nondata transfer QIOs should use an event flag different from the event flag used by data
transfer QIOs when both are contained in the same program. This ensures that a WAITFOR
directivEi associated with a data transfer QIO is not affected by the setting of an event flag from
a nonda1~a transfer QI 0.

RS03 Fixed-Head Disk
The RS03 (RH11-RH70 controller/RS03 fixed-head disk) is a fixed-head disk that offers speed and
efficiency. With 64 tracks per platter and recording on one surface, the RS03 has a capacity of
262, 144 words.

The RS04 (RH11-RH70 controller/RS04 fixed-head disk) is similar to the RS03 disk and interfaces
to the same controller, but the RS04 provides twice the nwnber of words per track by recording on
both surfaces of the platter, and thus ha:s twice the capacity.

The RPll controller/RP02 or RP03 disk pack consists of 20 data surfaces and a moving read/write
head. The RP03 has twice as many cylinders, and thus double the capacity of the RP02. Only an
even number of words can be transferred in a read/write operation.

RM02/RM03/RM05/RM80 Disk Pack
The RM02/RM03, RM05, and RM80 are MASSBUS disk drives and adapters that use the existing
MASSBUS controller. With a single head per surface, they provide a 1.2-Mb/s data transfer rate.
PDP-11/70 systems use the RM03, RM06, and RM80 with the RH70 controller on PDP-11/70
systems. All other systems use the RM0'.2 with the RHU controller.

RP04, RP05, RP06, and RP07 Disks
The RP04 or RP05 (RH11-RH70 controller/RP04 or RP05 disk packs) disk packs consist of 19
data surface:s and. a moving read/write head. Both offer large storage capacity with rapid access
time. The RP06 disk pack has approximately twice the capacity of the RP04 or RP05. The RP07
fixed-media disk has approximately three times the capacity of the RP06.

RK11/RK05 or RKOSF Cartridge Disks
The RKll controller/RK05 DECpack cartridge disk is for medium-volwne, random-access storage.
The removable disk cartridge offers the ilexibility of large offiine capacity with rapid transfers of
files between onliltle and ofHine units without necessitating copying operations. The RK05F has
twice the storage capacity of the RK05 and has a fixed (nonremovable) disk cartridge.

RL 11/RL01 or RL02 Cartridge Disk
The RLOl is a low-cost, single-head-per-surface disk with a burst data transfer rate of 512-Kh/s.
The storage capacity of the RL02 is twice that of the RLOl.

4-3

4.1.6

4 .. 1.8

4 .. 1.9

Disk Handlers

RK611/RK06 or RK07 Cartridge Disk
The RK611 controller/RK06 catridge disk is a removable, random-access, bulk-storage system
with three data surfaces. The storage capacity is 6,944,256 words per disk pack. The system,
expandable to eight drives, is suitable for medium to large systems.

The RK611 controller/RK07 cartridge disk is generally similar to the RK611/RK06, except storage
capacity is increased to approximately 13,905,400 words per disk pack. Both RK06 and RK07
disks can use the same RK611 controller; mixing RK06 and RK07 disks on the same controller is
permitted.

RX11 /RX01 Flexible Disk
The RXll controller/RXO 1 flexible disk is for low-volume, random-access storage. Data is stored
in twenty-six 64-word sectors per track; there are 77 tracks per disk. Data may be accessed by
physical sector or logical block. If logical or virtual block I/O is selected, the driver reads four
physical sectors. These sectors ar interleaved to optimize data transfer. The next logical sector
that falls on a new track is skewed by six sectors to allow for track-to-track switch time. Physical
block I\ 0 provides no interleaving or skewing and provides access to all 2002 sectors on the disk.
Logical or virtual I\ 0 starts on track 1 and provides access to 494 logical blocks.

RX211/RX02 Flexible Disk
The RX211 controller/RX02 flexible disk is for low-volume, random-access storage. It is capable
of operating in either an industry- standard, single-density mode (as stated for the RXll/RXOl
flexible disk), or a double-density mode (not industry standard). In the single- density mode,
each drive can store data exactly as stated in Section 4.1.7. In the double-density mode, data is
stored in twenty-six 128-word sectors per track; there are 77 tracks per disk. The RX211/RX02
operating in the single-density mode can read disks written by an RXll/RXOl flexible disk system.
In addition, disks written by the RX211/RX02 operating in the single-density mode can be read by
the RXll/RXOl flexible disk system.

KDA50, UDA50/RA60/RA80/RA81 Disks
The KDA50 or UDA50 controller is an intelligent disk controller that contains a high-speed
microprogrammed processor capable of performing all disk functions, including data handling·,
error detection and correction, and optimization of disk drive activity and data transfers. The
controller optimizers disk activity by reording QIO$s. Therefore, QIO$ macros may not complete
in the order in which they were issued. The types of drives that can be connected to the KDA50 or
UDA50 controllers are the RA60 disk drive, which has a removable disk pack, and the RASO, RA81,
RA82, and RA90 all of which are fixed media drives. (For data capacities and rates, see Table 4-1.)
Up to four of these drives can be connected to a KDA/UDA, in any desired combinaation.

The KDA/UDA controller can perform an extensive self-test on power-up or initialization.

4-4

Disk Handlers

4,.1.10 RC25 Dislk Subsystem

4 .. 1.11

The RC25 die1k subsystem consists of a fixed-media drive and a removable-media drive, both of
which revolvE~ on the same spindle and share the same head mechanics. Each drive is a logical
unit, so each RC25 disk subsystem consis1ts of two logical units.

The RC25 Subsystem combines, in one package, a controller and a single disk drive that has a
removable dil3k and a fixed disk. These disks reside in the drive as two separate logical units
on a single SJ>indle. Their size is the same. Both are single 8-inch disks with two surfaces, and
both disks have the same data capacity. But mechanically they are different: One is a removable
~ront-loading cartridge disk, while the other cannot be removed from the drive. The drive contains
loadable Winchester heads.

RC25 subsystems are available in two types: a master drive that contains its own controller, and
a slave drive, which must be connected to an RC25 master drive. Each RC25 master drive can
support one UC25 slave drive. The added-on disk drive is a slave to the disk subsystem that has
the controller. A master-slave configuration would contain four logical units.

RD31 Fixt!d 5.25-lnch Disk
The RD31 disk drive is a 5.25-inch fixed disk with Winchester-type heads. The RD31 is soft
sectored and field formattable. The maximum capacity of the RD31 is 20 Mb.

4.1.12 RX33 5.2f;-lnch Half-Height Disk
The RX33 disk drive is a half-height, 5.2f>-inch single flexible disk. It operates as a dual speed,
double-sided, diskc3tte drive and has a maximum capacity of 1.2 Mb. The RX33 requires the
RQDX3 disk 1controller, supports RX33 formatting, and can perform read/write operations for both
RX33 and RX50 diskettes.

4.1.13 RD51 FiXt!d 5.25 Disk/RX50 Fl1exible 5.25 Disk
This subsystem consists of a hard disk (UD51) and flexible disk (RX50) combination, and a
RQDX1/RQDX2 controller. In combination, they are a mass-storage medium for small systems.
The basic configuration for this subsystem is an RD51 fixed-disk drive and an RX50 flexible,
dual-disk drive, or both. The RX50 dual disk is addressed as two separate units resulting in
a basic configuration of three disk units. Also, you can add another RD51 to increase storage
capacity. Some of the characteristics of the RD/RX drives are given in Table 4-1 and in the
following paragraphs.

The RD51 di13k drive is a 5.25-inch fixed disk with Winchester-type heads. It has two disks with
four data surfaces. The RD51 is soft sectored and field formattable. The headers for each sector
contain the s·ectoes cylinder number, head number, and sector number. The sector number is the
logical sector number (0-15) that reflects the sector interleave of the disk.

The RX50 du.al diskette drive is a compact, mass-storage drive with two access slots. Each slot
can hold a single-sided 5.25-inch flexible disk. These diskettes are firm sectored and are not field
formattable. Every track has sectors numbered from 1 to 10. The two diskettes share the same
head transport mechanism.

4-5

Disk Handlers

4.1.14 RD52 Fixed 5.25-lnch Disk
The RD52 disk drive is a 5.25-inch fixed disk with Winchester-type heads. The RD52 is soft
sectored and field formattable. The maximum capacity of the RD52 is 31 Mb.

4.1.·15 RD53 Fixed 5.25-lnch Disk
The RD53 disk drive is a 5.25-inch fixed disk with Winchester-type heads. The RD53 is soft
sectored and field formattable. The maximum capacity of the RD53 is 71 Mb.

4.1.·1& RD54 Fixed 5.25-lnch Disk
The RD54 disk drive is a 5.25-inch fixed disk with Winchester-type heads. The RD54 is soft
sectored and field formattable. The maximum capacity of the RD54 is 159 Mb.

4.2 Function Codes

4.2:1

1/0 requests· serviced by disk handlers are issued using the QIO$ system macro. This section
describes standard and device specific QIO functions for disk handlers.

Standard QIO Functions
Section 1. 7 discusses standard function codes for mass storage devices in general. The following
sections provide details of these functions codes when used for disk devices.

READ/WRITE Loglcal Functions

QIO$ fc,lun,ef,pri,iosb,ast,<stadd,size,comp,blkh,blkl>

fc can have one of the following values:

• 10.WLB - Write logical block

• 10.RLB - Read logical block

The five parameter words bracketed by left and right angle brackets must be specified and must be
delimited by the angle brackets. They have the following meanings:

Parameter

st add

size

comp

blkh,blkl

4-6

Meaning

Virtual starting address in memory of user's buffer for data input or output (must be on a word
boundary and in some cases (for example, RP03) an even word boundary).

Size of the data buffer in bytes. The size must be even and non-zero. For RP03 disks It must
also be a multiple of 4 bytes.

O (retains compatibility with non-mass storage carriage control logical read/write functions).

Block-high, block-low. Double precision number indicating the first logical block address on the
disk specifying where the transfer starts. The value of the block number is multiplied by 256 to
locate the proper disk word (for example, block number 3 means disk word 768).

4.2.2

Disk Handlers

ATTACH/DETACH! Functions

QIO$ fc,lun,ef,pri,iosb,ast

fc can have one of the following values:

• IO .ATT ·· Attach disk unit

• 10.DET ··Detach disk unit

Device-Specific QIO Functions
Additional function codes are provided by some disk handlers to support functions available for
specific disk types. Table 4-3 lists these functions and shows the disks for which each is available.

Table 4-2 Device-Specific Functions fctr Disks

Format

Ql0$C 10.RPB, ... ,<stadd,size,,,pbn>

QIO$C 10.SEC, ...

Ql0$C 10.SMD, ... ,<denslty,,>

QIO$C 10.WDD, ... ,<stadd,size,,,pbn>

Ql0$C 10.WPB, ... ,<stadd,size,,,pbn>

where:

Function

Read physical block

Sense diskette
characteristics

Set media density
(format diskette)

Write physical block
(with deleted data
mark)

Write physical block

Disk

RX01,RX02
RL01,RL02

RX02

RX02

RX01, RX02

RX01,RX02
RL01,RL02

• stadd - is the starting address of the data buffer (must be on a word boundary).

• size - is the data buffer size in bytes (must be even and greater than zero).

• pbn - is the physical block number where the transfer starts (no validation will occur).

• density - is the media density as follows:

0 = sitngle (RXOl-compatible) dem;ity

2 = double density

4.3 Disk Statius Returns
The lowest byte of the 1/0 status block contains a code indicating the disposition of the QIO
request. These status return codes for the disk handlers are symbolized as shown below:

Symbol

IE.BBE

IE.BLK

Meaning

Bad sector flag set in sector header.

Logical block number too largt~.

4-7

Disk Handlers

Symbol

IE.DAA

IE.DNA

IE.DNR

IE.FHE

IE.DNR

IE.IFC

IE.OVA

IE.PAI

IE.SPC

IE.SAE

IE.VER

IE.WLK

Meaning

Device already attached.

Device not attached (detach failed).

Device not ready.

Fatal hardware error.

Device not ready.

Invalid function code (access violation).

Illegal overlay request.

Privilege violation.

One of:

Part of buffer out of user's address space.
User buffer for AP02/03 disk transfer is not on an even word boundary.

No UMRs available.

Send/receive failure.

Parity error on device (irrecoverable error).

Device write protected.

See Appendix Afor a complete list of 1/0 status returns.

4.4 UNIBUS Mapping Registers
All DMA devices on the UNIBUS of a PDP-11/44, a PDP-11/84, or a PDP-11170 use UNIBUS
mapping registers (UMRs) to perform DMA transfer if the machine is running in 22-bit mode.
Refer to the appropriate PDP-11 Processor Handbook.

All disk handlers use the standard handler library routines to allocate, load, and deallocate UMRs.
UMRs can either be statically preallocated during the initialization (that is, initial handler loading)
or dynamically allocated when a transfer is requested.

The overlapped seek version of the DK disk handler (DKOVL) statically preallocates eight UMRs
during initialization and keeps them until the handler exits. This handler requests eight UMRs to
enable a maximum data transfer of 32K words.

All other disk handlers do not attempt to preallocate the maximum number of UMRs at
initialization. Each handler preallocates only one UMR. This enables all transfers of up to 4K
words to occur with no dynamic allocation overhead and does not tie up UMRs unnecessarily. If
a transfer of more than 4K words is required, the handler attempts to allocate sufficient UMRs
for the transfer and releases them after the transfer. If sufficient UMRs are not available for a
transfer, the transfer will not occur and an error will be returned to the calling task.

Handlers which use this dynamic mechanism are:

4-8

DB when running on a PDP-11/44 processor
DK. ... non overlapped seek version
DL
DM
DP. .. .
DR.... when running on a PDP-11/44 processor
DS when running on a PDP-11/44 processor

Disk Handlers

DY

Since you can SAVE a system with handlers loaded which are not using UMRs and transport the
system to a processor where UMRs are :required, the handlers also attempt to acquire UMRs at
system start up and at power recovery.

In both caSE!S, if the handler fails to acquire sufficient UMRs, it declares itself nonresident and
exits.

4.5 Error Recovery in DB, DM and DR Handlers
Disks serviced by the DB, DM and DR handlers have Error Correction Code (ECC) facilities
which are u1sed by the handlers when neicessary on disk reads. If a read error cannot be corrected
through ECC or the error is on a write to disk, the handlers go through a process of trying again.
This involves several attempts with the head in its current position, and if necessary recalibration
and further tries. On read errors, the handlers will attempt the read by using the track offset
facility of the drives. Track offset is the movement of the read heads to a given distance from the
cylinder center line, which is the optimum position adopted by the heads after a seek. In the DB
and DM handlers, three offset positions are tried on each side of the center line; in the DR handler,
one offset position is tried on each side of the center line. At each offset position, two attempts are
made to read the data. If all read attempts fail, a ''hard" error is declared. The DB handler tries
the read a maximum of 6+(6*2) or 18 times. The DM handler tries a maximum of 16+(6*2) or 28
times. The DR handler tries a maximum of 16+(2*2) or 20 times.

4.6 Characteristics Words for Disk Devices

4.6.1

Section 1.8.l. describes the general use of the four characteristics words in the PUD.

The format of U.C2 and U.C3 for disks iB described in the following sections.

Characteristics Word 2
Word 2 (U.C2) has four fields:

1 Bits 0-3 Settable Flags

2 Bits 4-7 Fixed Flags

3 Bits 8-rn Device Type

4 Bits 13-15 Device Dependant Information

The "settabl1e flags" field is reserved for Hags which may be changed dynamically while the system
is running. 'rhese are:

bit 0

bits 1-3

U2.WCK unit is to have re1:1d-after-write checking performed

reserved

The "fixed flag1s" field is reserved for flags which are set up as part of System Generation and do not vary. These
are:

bit 4

bit 5

bit 6

U2.MOH

U2.RMV

U2.BAD

device has movin9 heads

device has removable volumes

device has factory-supplied bad block information in the last track

4-9

4.6.2

Disk Handlers

bit 7 reserved

The "device type" field is a 5-bit field whose defined values are given in Table 4-3, column 1.

The "device dependant information" field is reserved for use by device handlers. Its layout depends
on the device type. See Table 4-3, colwnn 3.

The symbolic names above are defined in the file [1,l]EXEC.STB.

Table 4-3 Characteristics Word 2 (U.C2), Bits 8·15

Bits 8·12 Device Type Meaning of Bits 13·15

0 unspecified

1 RF (number of platters)-1

2 RK11 0 unit is RKOS
1 unit Is RK03
2 unit Is RKOSF

3 RP11 2 controller Is RP11 C
4 unit Is RP03

4 RP04/5/6 1 unit Is RP04 or RPOS
2 unit Is RP06
(changed dynamically by handler).

5 RS O unit Is RS03
1 unit Is RS04

6 RK06/7 0 unit Is RK06
1 unit Is RK07

7 RX01 reserved

10 DECtape reserved

11 RM03/02/05 O unit is RM02
1 unit is RM03
2 unit Is AMOS

12 RL01/2 O unit Is RL01
1 unit is RL02

13 TU58 reserved

14 RX02 reserved

Characteristics Word 3
For all disk devices except RX02, word 3 (U.C3) has two fields:

• Low byte - nwnber of sectors per track.

• High byte - For moving head disks, nwnber of tracks per cylinder. For fixed head disks this
byte is zero.

For RX02 disk devices word U.C3 contains the maximwn logical block nwnber.

4-10

5 UDC-11 Handler

5.1 Introduction to UDC-11
The UDC-11 handler task provides an interface to the PDP-11 Universal Digital Controller
(UDC-11) front-end devices. The UDC-lll is a single-unit device whose name is UD.

Due to the generality of this device, a][>rebuilt handler task is not supplied to customers. A
descriptor program (source file) describilng a particular UDC-11 module configuration must be
prepared, assembled, and the resultant OBJ file included in the task builder input to produce a
UDC handl1er task for a given installatil()n .

.5.2 Source File Macros

5.2.1

The source file consists of a series of macros, one for each module type to be supported. Each
macro takeEJ two arguments:

1 the relative module number of the flirst module of a type, and

2 the number of modules of the type.

The module! number specifies a hardware module position, and effectively defines an external page
address. Module number n corresponds to address 171000+2n for n=O through n=251. All modules
of a type must have consecutive module addresses. The macro names for each module type are as
follows:

• UDC$AO - Analog Output

• UDC$C:C - Contact Interrupt

• UDC$CS - Contact Sense

• UDC$UL - Latching Digital Output

• UDC$SB - Single Shot Digital Output

• UDC$TC - Timer or Counter Modulc~s

• UDC$AJD - ADUOl AID Converter

In addition to the above macros, a macro called UD$END must be included as the last macro in
the source to mark the end of the moduJle definition table being assembled.

Macros Referenced by .MCALL
Two additioinal macros named UD$DST (dispatch table) and UD$MDT (module description table)
must be referred to by the .MCALL asse:mbler declaration.

For example, the following module description program (file UDTB.MAC;n) is assembled to produce
the object module UDTB.OBJ;n.

5-1

5.2.2

UDC-11 Handler

"PROGRAM" TO CONFIGURE AN !AS HANDLER TASK TO
SUPPORT THE FOLLOWING UDC MODULES.

ADR

171000
171002
171004
171006
171010
171012
171014
171016
1.71020
171022
171024

.MCALL

UDC$CI
UDC$CS
UDC$DL

UDC$SS

UDC$TC
UDC$AO
UD$END

.END

TYPE FUNCTION

W733 CONTACT INTERRUPT POINTS 0-15
W733 CONTACT INTERRUPT POINTS 16-31
W731 CONTACT SENSE POINTS 0-15
W731 CONTACT SENSE POINTS 16-31
M803 DIGITAL OUTPUT LATCHING POINTS
M805 DIGITAL OUTPUT LATCHING POINTS
M685 DIGITAL OUTPUT LATCHING POINTS
M807 SINGLE SHOT DIGITAL OUTPUT PTS
M687 SINGLE SHOT DIGITAL OUTPUT PTS
W734 TIMER MODULE
A633 ANALOG OUTPUT CHANNELS 0-3

UDDST,UDMDT

00.,2 ;TWO CONTACT INTERRUPT MODULES
02.,2 ;TWO CONTACT SENSE MODULES
04.,3 ;THREE DIGITAL OUTPUT

;LATCHING MODULES

07.,2 ;TWO SINGLE SHOT DIGITAL
;OUTPUT MODULES

09.,1 ;ONE TIMER/CLOCK MODULE
10.,1 ;ONE ANALOG OUTPUT MODULE

;END OF MODULE DEFINITION TABLE

;END OF ASSEMBLY

0-15
16-31
32-47
0-15
16-31

Creating an Installation-Specific UDC Handler Task
The object module UDTB.OBJ;n is created by assembling [11,14]UDSYMBOLS.MAC,
[11,14]UDMACDEFS.MAC, and UDTB.MAC.

UDTB.MAC is the user module description file, and the other files contain system symbol and
macro definitions (stored on UIC (11, 14] of the system disk delivered).

It is linked with appropriate library modules using the task builder to create an
installation-specific UDC handler task. The following task builder commands are used to build
an image of a task named UD.TSK;n.

5-2

[11,l]UD.TSK/PR/-AB/-FP/-FX,LP:=UDTB
[l,l]UDLIB.OLB/LB, [l,l]EXEC.STB
I
TASK=UD
STACK=l
PAR=GEN
PRI=246
UIC=[l,1]
II

lnterrupt/Noninterrupt UDC Modules
Noninterrupiting UDC modules can be se~t and/or sensed by any task.

Interrupting UDC modules are divided into three classes:

1 digital point (contact interrupt) modules,

2 timer modules, and

3 AID modules (ADUOl).

All interrupts of the first two classes are serviced by a single task.

UDC-11 Handler

NOTE: Fwictional separation of dig:ital points and time measurements is application
dependent. Therefore, the UDC handler task allows interrupts to be handled by a
non-privileiged user-written task.

A task can connect to either (or both) ofthe first two classes of interrupts by providing a circular
buffer to rec4~ive interrupt information, and an event flag number to allow triggering of the task
whenever a buffer entry is made. The third class is synchronous (demand only) and so can be
handled in a manner similar to the noninterrupt modules.

5;_4 Function Descriptions

S:.4.1

5.4.2

The followin1~ paragraphs describe the functions supported by the UDC-11 handler task in terms of
an assembly language interface.

Analog Output - A633 Modules
There are four analog output channels per A633 module. The channels are numbered from zero
starting with the first channel on the first analog output module.

To set an indicated channel to the indicated voltage, issue the following QIO macro:

QIO$ IO.SAO,lun,ef,pri,iosb,ast,<ocn,ovr>

where:

• ocn - Output channel number

• ovr - Output voltage representation.

The output voltage varies linearly with the binary output to the channel where values from zero to
plus ten volts (+lOv.) may be represented by integers from 0 to 1023.

Single-Shot Digital Output - M687 and M807 Modules
There are six:teen 1-shot digital output points per module. The points are numbered from zero
starting with the first point on the first module.

·To pulse an indicated output point, issue the following QIO macro:

QIO$ IO.SSO,lun,ef,pri,iosb,ast,<opn>

5-3

5.4.3

UDC-11 Handler

where:

• opn - Digital output point number.

To pulse a set of up to sixteen points, issue the following QIO macro:

QIO$ IO.MSO,lun,ef,pri,iosb,ast,<opn,mas>

whe:re:

• opn - First digital output point number

• mas - 16-bit mask

Bit n of the mask corresponds to point number (opn) +n, (n=0-15). For every bit in the mask that
is set, the corresponding point is pulsed.

Latching Digital Output - M685, M803 and M805 Modules
There are sixteen latching digital output points per module. The points are numbered from zero
starting with the first point on the first module.

To set an indicated digital output point to an indicated logical value, issue the following QIO
macro:

QIO$ IO.SLO,lun,ef,pri,iosb,ast,<opn,pp>

where:

• opn - Digital output point number

• pp - Logical value (point polarity)

A logical value of .TRUE. implies that contacts are closed and is represented by a word with all
bits set (-1). A logical value of .FALSE. implies that contacts are open and is represented by a word
with all bits cleared (+0).

To open or close a set of up to sixteen points, issue the following QIO macro:

QIO$ IO.MLO,lun,ef,pri,iosb,ast,<opn,pp,dp>

where:

• opn - First digital output point number

• pp - 16-bit mask

• dp - Data pattern

Bit n of the mask/data pattern corresponds to point number (opn) +n (n=0-15). If a bit in the mask
is set, the corresponding point is opened/closed depending on the corresponding bit in the data
pattern being clear/set. If a bit in the mask is clear, the corresponding point is left unaltered.

5-4

5.4.4

UDC-11 Handler

Contact Sense Digital Input - W731 and W733 Modules
There are sixteen digital input points PE'r module. The points are numbered from zero starting
with the first point on the first module.

To read an indicated digital input point and return the data in the second word of a specified 1/0
status block1, issue the following QIO macro:

QIO$ IO.SCS,lun,ef,pri,iosb,ast,<ipn>

where:

• ipn - Di&rital input point number

The second word of the 1/0 status block iis set to -1 if the indicated point is .TRUE. (contact closed),
or to zero if the point is .FALSE. (contact open).

To read a field of sixteen digital input points and return the data in the second word of an 1/0
status block specified in the QIO DPB issue the following QIO macro:

• Q10$ 10.MCS,lun,ef,pri,iosb,ast

5.5 Contact Interrupt Digital Input - W733 Modules
Digital inpu1t from contact interrupt modules is reported in a requester-provided circular buffer.
Each buffer 1entry is five words long and is of the following format:

• word 00 - Entry existence indicator

• word 01 - Change of state (COS) indication

• word 02 - Module data (current point values)

• word 03 - Module number (module illlterrupted)

• word 04 - Generic code (interrupting module)

The entry existence indicator is sei nonzero when a buffer entry is made. When a requester has
removed or processed an entry, it must dear its existence indicator in order to free the buffer entry
position. Entries are made in a circular fashion, starting at the top (low address), filling in order
of increasing· memory addresses to the bottom (high address), and wrapping around from bottom to
top. If input data occurs in a burst sufficient to overrun the buffer, data is discarded and a count
of data ovenuns is incremented. The nonzero entry existence indicator also serves as an overrun
indicator.

A positive value (+1) indicates no overruns between entries, and a negative value is the two's
complement of the number of times data has been discarded between entries. Word zero of the
buffer is used by the handler task as a pointer into the buffer where the next set of interrupt
information :is to lbe entered. It is expected that the connected task will maintain its own pointer
to that locatlion in the buffer where it is to next retrieve contact interrupt data. When a task is
triggered by the handler, it should process data in the buffer starting at the location indicated
by its pointer and continuing in a circular fashion until the two pointers are equal or a zero
entry existence indicator is encountered. Equality of pointers means that the connected task has
retrieved all the contact interrupt information that the handler has entered into the buffer. The
pointer maintained by the handler is to he thought of as a FORTRAN index into the buffer, i.e., the
first location of the buffer is associated with the number (index) 1. The second location associated
with the module number indicates a module on which a change of state in the direction of interest
has been recognized for one or more discrete points.

5-5

5.5.2

UDC-11 Handler

Change of State (COS) Output
The change of state (COS) output indicates which point(s) of the module have changed state. The
bit position of an on-bit in the COS output word provides the low order bits (3-0) of a point number
and the module number, word 3, provides the high order bits (15-4).

The module data bits indicate the logical value (polarity) of each point of the module.

Contact Interrupt Functions Connect/Disconnect
Co~tact interrupt input is reported only to one task. This interrupt is controlled by two UDC
handler task functions:

1 CONNECT a buffer for contact interrupt digital input, and

2 DISCONNECT a buffer from contact interrupt digital input.

To connect a buffer for contact interrupt digital input, issue the following QIO macro:

QIO$ IO.CCI,lun,ef,pri,iosb,ast,<buf,size,tevf>

• buf - Virtual address of top of buffer

• size - Length of buffer in bytes

• tevf- Trigger event flag number

If the connection is successful, the second word of the 1/0 status block contains .BYTE a,b where
a is the number of words passed per interrupt and b is the initial FORTRAN index into the top of
the buffer.

To disconnect a buffer from contact interrupt digital input, issue the following QIO macro:

QIO$ IO.DCI,lun,ef,pri,iosb,ast

To read contact interrupts statically, issue the following QIO macro:

QIO$ IO.RCI,lun,ef,pri,iosb,ast,<mn>

where:

• mn - Relative point number.

:5.6 Timer (Counter) - W734 Module
Counter modules are treated in a manner similar to contact interrupts. They can be read,
connected to, and disconnected from interrupts. Counter interrupt information is reported in a
requester provided circular buffer which is handled in a similar manner to the contact interrupt
buffer. Each entry is four words long and is of the following format:

• word 00 - Entry existence indicator

• word 01 - Module data

• word 02 - Module number

• word 03 - Generic code

5-6

UDC-11 Handler

To connect a timer, issue the following QIO macro:

QIO$ IO.CTI,lun,ef,pri,iosb,ast,<buf,size,tev,arv>

where:

• buf - Virtual address of top of buffer

• size - Length of buffer in bytes

• tev - Tri1gger event flag number

• arv - Adr of table of initiaVreset values.

The buffer of initiaVreset values is used to load the timers or to connect and reload them on
interrupt (overflow). The buffer contains1 one word for each timer module. The contents of the first
word (negative count) is used for the fire1t module, etc. If a timer has a nonzero value at interrupt
time, it is not reloaded, so that self-clocldng modules and modules that interrupt on half count can
continue incrementing from the initial value.

To disconnect a timer, issue the followin1~ QIO macro:

QIO$ IO.DTI,lun,ef,pri,iosb,ast

To read a timer, issue the following QIO macro:

QIO$ IO.RTI,lun,ef,pri,iosb,ast,<mn>

where:

• mn - Module number

To initialize a timer, issue the following QIO macro:

QIO$ IO.ITI,lun,ef,pri,iosb,ast,<mn,ic>

where:

• mn - Module number

• ic - Initial count

The value of the counter module is retw~ned in the second word of the 1/0 status block.

:5.7 Analog/Digital Converter - ADU01
There are eight analog input channels per ADUOl module. The channels are numbered from
zero starting with the first channel on the first module. Except for timer and contact interrupt
processing, no other UDC function is processed during AID sampling.

The QIO calls for ADUOl service are id1entical to those used for AFC-11. See Chapter 3 for the
macro forms of the READ SINGLE AID POINT (IO.RlB) and the READ MULTI-CHANNEL
BUFFER (IO.RBC).

5-7

U DC-11 Handler

5.a FORTRAN Interface

5.a.1

5.8.2

5.8.3

The following set of FORTRAN callable subroutines allow FORTRAN programs access to the
UDC-11. Handler tasks are normally of a higher priority than tasks requesting handler service,
thus there is no delay in reading or writing to the UDC-11. There are implied waits in all
subroutines that issue QIO directives. These WAITFOR directives are NOPs except when the
requesting task is of a higher priority than the UDC handler task.

ISTS
In the following description, ISTS is a 2-word integer array to receive the results of the call.

Word one of this array always contains a status value that is returned in accordance with the ISA
convention as follows:

• ISTS(l) .EQ. 1 - Successful completion

• ISTS(l) .GE. 3 - Request failed.

A failure may occur because either the QIO directive was rejected or the handler detected an error
in the request. The following convention is used to distinguish between these conditions.

• For ISTS(l) 300, the Queue 1/0 directive was rejected and the directive status word DSW = -
ISTS(l).

• For ISTS(l) .GT. 300, the request was rejected by the handler task and the handler status word
HSW = - (ISTS(l)-300).

The special case of a +3 error return indicates that the subroutine was unable to generate the QIO
directive.

ISTS(l) is cw-rently set via an 1/0 AST internal to the called subroutine. Hence, as a temporary
measure, ISTS(l) should not be tested if AST's were disabled when the subroutine was called.

ISTS(2) contains the second word of I/O status returned by the handler.

For a complete description of the UDC FORTRAN calls, the reader is referred to the IAS
FORTRAN Special Subroutines Reference Manual.

ASUDLN
FORTRAN call:

CALL ASUDLN (LUN, [ISTS])

Assigns the specified LUN to UDO and records it as the logical unit number to be used whenever
the logical unit number is unspecified.

AOSC
FORTRAN call:

CALL AOSC(ICHN,IVOLTS, [ISTS], [LUN])

Sets a given channel to a specified voltage. Voltage is an integer between zero (Ov) and 1023
(+lOv).

5-8

5.8.4

:5.8.5

5.8.6

~5.8. 7

5.8.8

UDC-11 Handler

AO/AOW
ISA standard FORTRAN call:

CALL AO (INM,ICONT,IDJ~TA, [ISTS], [LUN])
CALL AOW (INM, !CONT, II>ATA, [ISTS], [LUN])

Performs analog output (without or with a WAIT) on several channels. The number of channels is
specified in INM. Channel number and output data are contained in 1-dimensional arrays ICONT
and IDATA respectively.

DOSM
FORTRAN call:

CJU,L DOSM(IPT, [ISTS], [LUN])

Pulses a single momentary output point. IPT is an integer variable specifying the point number.

DOM/DO MW
FORTRAN 1call:

CALL DOM (INM, ICONT, !DATA, [IDX], [ISTS], [LUN])
CALL DOMW (INM, !CONT, IDATA, [IDX], [ISTS], [LUN])

Pulses several 16-point fields. INM specifies the number of fields. ICONT is an integer array
containing initia] point numbers. The corresponding bit pattern in IDATA specifies which points in
a field are to be pulsed.

IDX is a dummy variable retained for compatibility with existing implementations of this call.

DOFM
FORTRAN ~call:

CALL DOFM (IPT,IMSK, [ISTS], [LUN])

Pulses one 16-bit string of points. One point is pulsed at each bit position set in IMSK. Bit N
corresponds to point IPT+N.

DOSL
FORTRAN eall:

CALL DOSL (IPT,ISWTCH, [ISTS], [LUN])

Activates a latching digital output point (IPT). The point is latched if ISWTCH is .TRUE. (-1) and
unlatched otherwise.

5-9

UDC-11 Handler

DOFL
FORTRAN call:

CALL DOFL (IPT,IDATA,IMSK, [ISTS], [LUN])

Latches or unlatches a field of 16 points. IPT is an integer variable specifying the initial point in
the field. IDATA is an integer variable specifying the points to be latched/unlatched. To change the
state of a point, the corresponding bit in IMSK must be set.

5~8.10 DOL/DOLW

5,.8.11

FORTRAN call:

CALL DOL (INM,ICONT,IDATA,IMSK, [ISTS], [LUN])
CALL DOLW (INM,ICONT,IDATA,IMSK, [ISTS], [LUN])

Controls more than one field of latching outputs. The number of fields designated by INM, ICONT,
IDATA, and IMSK are single dimension integer arrays that contain the number of entries in the
output arrays, initial point number, data, and mask.

RBCD
FORTRAN call:

CALL RBCD (IPT,IMSK,ISTS, [LUN])

Reads 16 bits of BCD encoded contact sense input under a mask. IPT is an integer variable
specifying the initial point in the field. Only those points set in the mask word (IMSK) are read.
All other points are input as 0. The result after masking is converted to binary and placed in
ISTS(2).

5,.8.12 DIFCS
FORTRAN call:

CALL DIFCS (IPT,IMSK,ISTS, [LUN])

Reads a field of contact sense inputs under a mask. Points not masked are set to zero. The result
is in ISTS(2).

5.8.13 01/DIW
FORTRAN call:

CALL DI (INM,ICONT,IDATA,ISTS, [LUN])
CALL DIW (INM,ICONT,IDATA,ISTS, [LUN])

Reads several 16-point contact sense fields. The number of fields to be read is specified in INM:.
The resultant data is placed in IDATA.

ICONT and IDATA are 1-dirnensional arrays. ICON~ entries specify initial point number. IDATA
entries contain the resultant data.

5-10

UDC-11 Handler

5 .. 8.14 RCSPT
FORTRAN call:

CALL RCSPT (IPT, ISTS, [LUN])

Reads the state of a single contact sense point into ISTS(2). IPT is an integer specifying the point
number to be read. The result is set to .FALSE. (0) if the point is open or .TRUE. (-1) if the point
is closed.

5,,8.15 RCIPT
FORTRAN call:

CALL RCIPT (IPT,ISTS, [L1JN])

Reads the state of a single contact interrupt point. IPT is an integer specifying the point number
to be read. ISTS(2) is set .TRUE. (-1) if the point is closed or .FAI.SE. (0) if the point is open.

5 .. 8.16 CDTI
FORTRAN call:

CALL CDTI (IBUF I ISZ, IEV,. [ISTS] I [LUN])

Connects a circular buffer (IBUF) to receive contact interrupt data. ISZ is the length of the buffer,
which must e:xceed fourteen words. The buffer size required to contain N entries follows:

ISZ=(l0+5*N)

IEV is a trigger event variable to be set whenever the handler attempts to place an entry in the
buffer.

5 .. 8.17 RODI
FORTRAN call:

CALI, RODI (IPT, IVAL, [IVRN])

Reads the contents of the circular buffer. One point is read for each call. IPT is set< 0 if a
valid entry is not found. If the en.try is valid, IPT contains the point number and IVAL contains
the state. IVJRN is an optional integer to receive the overrun count. This count is supplied as a
positive nonzero value.

5,.8.18 DFDI
FORTRAN call:

CAL:L DFDI ([ISTS], [LUN])

Disconnects a buffer.

5-11

U DC-11 Handler

:5.8.19 SCTI
FORTRAN call:

CALL SCTI (IMOD,ITM, [ISTS], [LUN])

Sets timer module IMOD to an initial value (ITM).

:5.8.20 RSTI
FORTRAN call:

CALL RSTI (IMOD,ISTS, [LUN])

Reads a single timer module (IMOD). The value is placed in ISTS(2).

5.8.21 CTTI
FORTRAN call:

CALL CTTI (IBUF,ISZ,IEV,IV, [ISTS], [LUN])

Connects a circular buffer (IBUF) to receive timer inputs dynamically. ISZ is the length of the
buffer which must exceed eleven. The buffer size required to contain N entries follows:

ISZ= (8+4 *N)

IEV is a trigger event flag to be set whenever the handler attempts to place an entry in the buffer.
IV is an array of initial timer values. One entry is required for each timer module in the system.

JS.8.22 RDTI
FORTRAN call:

CALL RDTI (IMOO,ITM, [IVRN])

Reads the contents of the circular buffer. One entry is read for each call. IMOD is set < 0 if the
entry is not valid. If the entry is valid, IMOD contains the module number and ITM contains the
module number value. IVRN is an optional integer to receive the overrun count. Count is supplied
as a positive nonzero value. ·

5.8.23 DFTI
FORTRAN call:

CALL DFTI ([ISTS], [LUN])

Disconnects a buffer from timer inputs.

5-12

UDC-11 Handler

5.8.24 ADU01
For the ADUOl, the FORTRAN calls are identical to those for the AFC-11 and ADOl. However,
when the FORTRAN AID sample subroutines AIW,Al,AIRD and AISQ are used for ADUOl
sampling, thE~ following conditions are required:

1 A LUN must be assigned specifically to the UDC,

2 That LUN must also be specified in the LUN argument of the FORTRAN call.

See the IAS FORTRAN Special Subroutines Reference Manual.

5"9 Sample Fortran Program
The following FORTRAN program was written to drive a Demo Panel that implemented the
CANCEL an<l SYNC directives via illumi1nated switch buttons and ten-position thumbwheel
switches.

C TDS -- TASK DISPATCHER TASK FOR SCHEDULE SECTION OF DEMO PANEL.
c
c
c
c
C MCR FUNCTION: "TDS"
C FILE NAME: "TDS .N"
C TASK NAME: " ... TDS"
c
C THE FOLLOWING LATCHING DIGITAL OUTPUT (DOL) AND CONTACT
C INTERRUPT (CI) POINTS ~RE USED TO ILLUMINATE AND DETECT
C CLOSURES ON THE BUTTONS
C OF THE SCHEDULE SECTION OF THE PANEL.
c
C TASK NUMBER SELECTION
c
C "SELECT" LAMP. DOL #15, SWITCH. CI #15
c
C CANCEL/ SCHEDULE SELECTION
c
C "CANCEL" LAMP. DOL U4, SWITCH. CI #14
C "SCHEDULE" LAMP. DOL #13, SWITCH. CI #13
c
C SYNCHRONIZATION UNIT SE:LECTION
c
C "NOW" LAMP. DOL #12, SWITCH. CI #12
C "SECOND" LAMP. DOL #11, SWITCH. CI #11
C "MINUTE" LAMP. DOL #10, SWITCH. CI #10
C "HOUR" LAMP. DOL #09, SWITCH. CI #09
c
C PERIODIC RESCHEDULING SELECTION
c
C "NO" LAMP. DOL #08, SWITCH. CI #08
C "YES" LAMP. DOL #07, SWITCH. CI #07
c
C RESCHEDULE UNITS SELECTION
c
C "TICKS" LAMP. DOL #06, SWITCH. CI #06
C "SECONDS" LAMP. DOL #05, SWITCH. CI #05
C "MINUTES" LAMP. DOL #04, SWITCH. CI #04
C "HOURS" LAMP. DOL #03, SWITCH. CI #03
c

5-13

UDC-11 Handler

5-14

C EXECUTE-DISPLAYED-SCHEDULING SELECTION
c
C "EXECUTE" LAMP. DOL :#02, SWITCH. CI :#02
c
C THE TASK NUMBER IS READ FROM THUMBWHEEL
C DECADES VIA CONTACT SENSE POINTS 00-11
C (THREE BCD CHARACTERS).
c
C THE TASK NUMBER IS DISPLAYED ON 7-SEGMENT BCD UNITS
C WIRED TO THE FOLLOWING LATCHING DIGITAL OUTPUT POINTS:
c
c
c
c
c

32-35
36-39
40-43

ONE'S DIGIT,
TEN'S DIGIT.
HUNDRED'S DIGIT.

C THE RESCHEDULE INTERVAL MAGNITUDE IS READ FROM THUMBWHEEL DECADES VIA
C CONTACT SENSE POINTS 16-27 (THREE BCD CHARACTERS).
c

c

c

c

c

INTEGER TICKS, SECS, MINS, HOURS
INTEGER CEFG
INTEGER TEFG
INTEGER WEFG
INTEGER ISTS
INTEGER DSW
INTEGER POINT
INTEGER TSKNUM
INTEGER TBUF
INTEGER TSET
LOGICAL LV

DIMENSION IBUF(40),TASK(10),ISTS(2),TBUF(20),TSET(4)

DATA TICKS,SECS,MINS,HOURS/l,2,3,4/
DATA CEFG/3/
DATA TSET (l) /-140/
DATA TEFG/1/
DATA WEFG/2/

DATA TASK(Ol)/RSET/
DATA TASK(02)/RCHON/
DATA TASK(03)/RCHREC/
DATA TASK(04)/RCHOFF/
DATA TASK(OS)/RTIMO/
DATA TASK(06)/RREGX/
DATA TASK(07)/RTEMP/
DATA TASK(08)/RTASK08/
DATA TASK(09)/RTASK09/
DATA TASK(lO)/RTASKlO/

C INITIAL ENTRY -- GET MCR COMMAND LINE (NO PARAMETERS ARE
C TAKEN, THIS CALL JUST FREES THE MCR COMMAND LINE BUFFER)
c

CALL GETMCR (IBUF)
c
C ASSIGN AND RECORD LUN-10 AS UDC
c

CALL ASUDLN (10)
c
C CONNECT CIRCULAR BUFFER "IBUF" TO RECEIVE CONTACT INTERRUPT INFO.
C IF FAILURE TO CONNECT (OTHER TASK CONNECTED). "STOP 1".
c

CALL CTDI (IBUF,36,TEFG,ISTS)
IF (ISTS(l) .GE. 3) STOP 1

UDC-11 Handler

c
c
C CONNECT CIRCULAR BUFFE~R "TBUF" TO RECEIVE TIMER INFO.
C II~ FAILURE TO CONNECT (OTHER TASK CONNECTED) • "STOP 2".
c

c
c

CALL CTTI (TBUF,20,WEPG,TSET,ISTS)
IJr (ISTS (1) .GE. 3) STOP 2

C 100 -- START OF SCHEDULING SEQUENCE.
c
C (l) TURN OFF 7-SEGMEm? (LED) TASK NUMBER DISPLAY, BY SETTING
C BCD DIGITS FIFTEEN
C (2) TURN OFF ALL BUTTON LAMPS ON SCHEDULE SECTION
C OF PANEL (DOL POINTS 2-25)
C (3) FLASH "SELECT" BU~?TON LAMP (DOL #15) UNTIL BUTTON IS
C PRESSED (CONTACT CLOSURE ON CI #15)
c
100 CALL DOL (1,32,15,"17)

CALL DOL (1 ' 3 6' 15' II 1 7)
CALL DOL (1 ' 4 0' 15' II 1 7)

c
C 110 -- RE-START AFTER SUCCESSFUL SCHEDULE OR CANCEL -- LEAVE
C TASK NUMBER DISPLJWED IN 7-SEG LED'S.
c
110 DO 112 J=2,15
112 CALL DOSL (J, .FALSE.)

CALL CLREF (TEFG)

c

CALL CLREF (WEFG)
ITGL=.TRUE.

115 CALL DOSL (15,ITGL)
ITGL=IEOR(.TRUE.,ITGL)

116 CALL WFLOR (TEFG, WEFG)
CJU,L READEF (TEFG, DSW)
IF (DSW.EQ.2) GO TO 132

11 7 CALL RDTI (NTM, !TIM)
IF(NTM)ll6,115,117

c
C CHECK FOR CONTACT CLOSURE ON "SELECT" BUTTON.
c
c
132 CALL RODI (POINT,LV)

c

IF (POINT .LT. 0) GO ~?0 110
IF (POINT .NE. 15) GO TO 132
II~ (LV . EQ. . FALSE.) GO TO 132

C 140 -- A CONTACT CLOSURE HAS BEEN DETECTED ON THE "SELECT" SWITCH.
C WAIT FOR CONTACT BOUNCE TO STOP ("SELECT" BUTTON IS USED AS A
C "RESET" KEY THROUGHOU~? SCHEDULING SEQUENCE, AND THEREFORE,
C CONTACT BOUNCE IS UNDESIRABLE) .
140 CALL RODI (POINT,LV)

c

IF (POINT .GE. 0) GO TO 140
CALL MARK (CEFG,5,TICKS)
CALL WFLOR (TEFG,CEFG)
CALL READEF (TEFG,DSW)
I I~ (D SW . EQ . 2) GO TO 14 0

C A TASK NUMBER HAS BEEN SELECTED (VIA "SELECT" BUTTON AND THUMBWHEEL
c ogcADES), TURN "SELECT" BUTTON LAMP ON, AND USE "SELECT" BUTTON
C AS A "RESET" KEY. I.E., IF PRESSED DURING SCHEDULE SELECTION
C sgQUENCE; THE SEQUENCE: IS RESTARTED (AT STATEMENT #100).
c

5-15

UDC-11 Handler

5-16

CALL DOSL (15, .TRUE.)
c
C READ TASK NUMBER FROM THUMBWHEEL DECADE SWITCHES & DISPLAY
C TASK NUMBER IN 7-SEGMENT LED DISPLAY UNITS.
c

c

CALL RBCD (00,"007777,ISTS)
TSKNUM=ISTS(2)

C "TSKNUM" CONTAINS THE TASK NUMBER THRUOUT SCHEDULING SEQUENCE
c

c

NUM=ISTS(2)
N=NUM/100
CALL DOL (1,40,N,"17)
NUM=NUM-lOO*N
N=NUM/10
CALL DOL (1,36,N,"17)
NUM=NUM-lO*N
CALL DOL (1,32,NUM,"17)

C SPECIAL CASE: IF TASK NUMBER 000, EXIT TASK DISPATCHER
c

IF (TSKNUM .EQ. 000) GO TO 900
c
C SELECT TASK SCHEDULING OR CANCELING BY:
c
C (1) TURNING ON BOTH THE "CANCEL" & "SCHEDULE" BUTTON LAMPS AND
C (2) WAITING FOR A CONTACT CLOSURE FROM EITHER "CANCEL", "SCHEDULE",
C OR "SELECT" BUTTON SWITCHES.
c

CALL DOSL (13, .TRUE.)
CALL DOSL (14, .TRUE.)

c
202 CALL WAITFR (TEFG)
204 CALL RODI (POINT,LV)

c

IF (POINT .LT. 0) GO TO 202
IF (LV .EQ .. FALSE.) GO TO 204
IF (POINT .EQ. 13) GO TO 250
IF (POINT .EQ. 14) GO TO 240
IF (POINT .EQ. 15) GO TO 100
GO TO 204

C 240 -- A CONTACT CLOSURE HAS BEEN DETECTED ON THE "CANCEL"
C BUTTON SWITCH
c
C (1) TURN OFF THE "SCHEDULE" BUTTON LAMP
C (2) TURN ON THE "EXECUTE" BUTTON LAMP
C (3) WAIT FOR A CONTACT CLOSURE ON EITHER "EXECUTE" OR "SELECT".
c
240 CALL DOSI, (13, .FALSE.)

CALL DOSL (02, .TRUE.)
c
242 CALL WAITFR (TEFG)
244 CALL RODI (POINT,LV)

c

IF (POINT .LT. 0) GO TO 242
IF (LV .EQ .. FALSE.) GO TO 244
IF (POINT .EQ. 15) GO TO 100
IF (POINT .NE. 02) GO TO 244

C A CONTACT CLOSURE HAS BEEN DETECTED ON THE "EXECUTE" BUTTON SWITCH.
c
C (1) TURN OFF "EXECUTE" BUTTON LAMP
C (2) CANCEL TASK PER "TSKNUM"
C (3) RESTART SCHEDULING SEQUENCE.

c

c

CALL DOSL (2, .FALSE.)
CALL CANALL (TASK(TSKNUM),DSW)
IF (DSW .GT. 0) GO TO 110
GO TO 100

UDC-11 Handler

C 2!>0 -- A CONTACT CLOSURE HAS BEEN DETECTED ON THE "SCHEDULE"
C BUTTON SWITCH. SELECT SYNCHRONIZATION UNITS AS FOLLOWS.
c
C (1) TURN OFF THE "CANCEL" BUTTON LAMP
C (2) TURN ON "HOUR", "MINUTE", "SECOND", & "NOW" BUTTON LAMPS
C (3) WAIT FOR A CONTAC~r CLOSURE ON EITHER "HOUR", "MINUTE", "SECOND",
C "NOT", OR "SELECT" BU~rTON SWITCHES.
c
250 CALL DOSL (14, .FALSE ..)

CALL DOSL (09, .TRUE.)
CALL DOSL (10, .TRUE.)
CALL DOSL (11, .TRUE.)
CALL DOSL (12, .TRUE.)

c
252 CALL WAITFR (TEFG)
254 CALL RODI (POINT,LV)

c

IP (POINT .LT. 09) GO TO 252
!Ir (LV .EQ •. FALSE.) GO TO 254
IF (POINT .EQ. 15) GO TO 100
IF (POINT .LT. 09) GO TO 254
IF (POINT .GT. 12) GO TO 254

C A CONTACT CLOSURE HAS BEEN DETECTED ON A POINT BETWEEN f 9 AND
C #12 ("HOUR", "MINUTE", "SECOND", OR "NOW" BUTTON SWITCHES) .
C CONVERT POINT NUMBER ~m SYNC UNITS ("ISYU"), AND TURN OFF
C BUTTON LAMPS FOR SYNC UNITS NOT SELECTED.
c

c
!8YU=13-POINT

DO 256 J=9,12
IF (J .EQ. POINT) GO TO 256
CJU.L DOSL (J, .FALSE.)

256 CONTINUE
c
C SELECT PERIODIC RE-SCHEDULING BY:
c
C (1) TURNING ON BOTH "YES" & "NO" BUTTON LAMPS, AND
c (2) WAITING FOR A comrACT CLOSURE ON EITHER "YES"' "NO"' OR
C "SELECT".
c

CALL DOSL (7, .TRUE.)
CALL DOSL (8, .TRUE.)

c
262 CALL WAITFR (TEFG)
264 CALL RODI (POINT, LV)

c

Ilr (POINT . LT. 0) GO ~m 262
IF (LV .EQ .. FALSE.) GO TO 264
IF (POINT .EQ. 07) GO TO 270
IF (POINT .EQ. 08) GO TO 268
IF (POINT .EQ. 15) GO TO 100
GO TO 264

C 268 -- A CONTACT CLOSURE HAS BEEN DETECTED ON THE "NO"
C BUTTON SWITCH.
c
C (1) TURN OFF "YES" BU~rTON LAMP
C (2) INDICATE NO RE-SCHEDULING ("IRI"="IRU"=O)

5-17

UDC-11 Handler

5-18

c (3) ILLUMINATE AND WAIT FOR "EXECUTE"
c
268 CALL DOSL (7, .FALSE.)
c

IRI=O
IRU=O

c
GO TO 300

c
C 270 -- A CONTACT CLOSURE HAS BEEN DETECTED ON THE "YES" BUTTON
C SWITCH. SELECT RE-SCHEDULING INTERVAL UNITS BY:
c
C (1) TURN OFF "NO" BUTTON LAMP
C (2) TURN ON "HOURS", "MINUTES", "SECONDS", & "TICKS" BUTTON LAMPS
C (3) WAIT FOR A CONTACT CLOSURE ON EITHER "HOURS", "MINUTES",
C "SECONDS", OR "SELECT" BUTTON SWITCHES
c
270 CALL DOSL (8, .FALSE.)

CALL DOSL (3, .TRUE.)
CALL DOSL (4, .TRUE.)
CALL DOSL (5, .TRUE.)
CALL DOSL (6, .TRUE.)

c
282 CALL WAITFR (TEFG)
284 CALL RODI (POINT,LV)

c

IF (POINT .LT. 0) GO TO 282
IF (LV .EQ .. FALSE.) GO TO 204
IF (POINT .EQ. 15) GO TO 100
IF (POINT .LT. 3) GO TO 284
IF (POINT .GT. 6) GO TO 204

C A CONTACT CLOSURE HAS BEEN DETECTED ON A CONTACT INTERRUPT POINT
C BETWEEN #3 AND #6 ("HOURS", "MINUTES", "SECONDS", OR "TICKS").
c

C (1) TURN OFF BUTTON LAMPS FOR RE-SCHEDULE UNITS NOT SELECTED
C (2) CONVERT POINT NUMBER TO TIME UNIT INDICATOR
C (3) READ RE-SCHEDULE INTERVAL MAGNITUDE FROM THUMBWHEEL SWITCHES
c

DO 286 J=3,6
IF (J .EQ. POINT) GO TO 286
CALL DOSL (J, .FALSE.)

286 CONTINUE
c

c

c

IRU=7-POINT

CALL RBCD (16,"007777,ISTS)
IRI=ISTS(2)

C 300 -- TASK SCHEDULING PARAMETERS ARE DISPLAYED ON PANEL.
C PERFORM OR REJECT BY:
c
C (1) TURNING ON "EXECUTE" LAMP, AND
C (2) WAITING FOR A CONTACT CLOSURE ON EITHER "EXECUTE" OR "SELECT".
c
300 CALL DOSL (02, .TRUE.)
c
302 CALL WAITFR (TEFG)
304 CALL RODI (POINT.LV)

c

IF (POINT .LT. 0) GO TO 302
IF (LV .EQ .. FALSE.) GO TO 304
IF (POINT .EQ. 15) GO TO 100
IF (POINT .NE. 02) GO TO 304

5.10

C A CONTACT CLOSURE HAS BE:EN DETECTED ON "EXECUTE" BUTTON
C SWITCH, SYNC TASK.
c

c

IF (TSKNUM .LT. 1) GO TO 100
IF (TSKNUM .GT. 10) GO 'l~O 100
CALL SYNC (TASK(TSKNUM),9,SECS,ISYU,IRI,IRU,DSW)
IF (DSW .GT. 0) GO TO ll.O
GO '.rO 100

C 900 -- SPECIAL CASE: TA~lK #000 -- EXIT DISPATCHER.
c
900 CALL DFDI

CALL DFTI
c

DO 910 J=2,15
910 CALL DOSL (J, .TRUE.)
c

CALL EXIT
c

END

UDC STATUS RETURNS

UDC-11 Handler

IOST contains a codle indicating the disposiition of the QIO request. These status return codes for
the UDC-11 handler are symbolized as shown below.

Symbol Meaning
-----------~ --~
IS.SUC Successful completion

IE.BAD Bad parameters

IE.PAI Privilege violation

IE.MOD Invalid UDC module

IE.CON UDC connect error

IE.SPC Part of buffer is out of address s;pace

IE.IFC Invalid function code

See Appendix A for a complete list of 1/0 sfatus returns.

5-19

6 DECtape Handler

6.1 DECtape Handler Functions
The TC-11/TU56 DECtape system is controlled by the DECtape handler task. The handler task
supports the TC-11 DECtape controller and up to 4 TU56 DECtape units (that is, 8 DECtape
drives). The handler is a single controller handler, but multiple copies can service additional TC-11
controllers for systems with more than 8 DECtape drives.

The DECtape handler is installed with rnr as the task name.

6.2 Function Codes

6.2.1

1/0 requests e1erviced by the DECtape handler are issued using the Q10$ system macro. See
Section 1. 7 foir a detailed discussion of fuitction codes for mass storage devices. The Q10$ macro
calls follow.

READ/WRITE Logical Functions

QI0$ fc,lun,ef,pri,iosb,ast,<stadd,size,wd3,wd4,lbn>

fc can have one of the following values.

• 10.RLB - :Read logical block (forward)

• 10.RLV - 1Read logical block (reverse)

• 10.WLB - Write logical block (forward)

• 10.WLV - Write logical block (reverse)

The five parameter words bracketed by left and right angle brackets (<>) must be specified and
must be delimited by the angle brackets.

They have thEi following meaning:

• stadd - Addrese1 of 1/0 buffer in user's virtual space (this value must be even).

• size - Len1~th of transfer in bytes (this value must be even and nonzero).

• wd3 - Ignored (this value must be represented by a zero).

• wd4 - Ignored (this value must be represented by a zero).

• lbn - Logical block number (0-577. indusive).

6-1

6.2.2

6.2.3

6.2.4

DECtape Handler

ATTACH, DETACH, and REWIND Functions

QIO$ fc,lun,ef,pri,iosb,ast

fc can have one of the following values.

• 10.RWD - Rewind DECtape unit

• 10.RWU - Rewind and unload DECtape unit

• 10.ATT - Attach DECtape unit

• . 10.DET - Detach DECtape unit

DECtape Transfers
PDP-11 DECtapes are divided into 256-word blocks. If, on a WRITE, the transfer length is less
than 256 words, a partial block is transferred with zero fill for the rest of the physical block. If,
on a READ, the transfer length is less than 256 words, only the nwnber of words specified are
transferred. If the transfer length is greater than 256 words, more than one physical block is
transfeITed.

DECtape READ/WRITE
The DECtape handler supports READ/WRITE in reverse direction as well as forward. Normally
a block should be read in the same direction as it was written. If a block is read in the opposite
direction from which it was written, it is reversed in memory; that is, word 255 becomes word 0
and word 254 becomes word 1.

6.3 UNIBUS Mapping Registers
All DMA devices on the UNIBUS of a PDP-11/44 or a PDP-11/70 use UNIBUS mapping registers
(UMRs) to perform DMA transfers if the machine is running in 22-bit mode (See the appropriate
PDP-11 Processor Handbook). The DECtape handler attempts to allocate only one UMR because
all transfers are buffered in the handler. If the handler cannot allocate a UMR on initialization, it
exits.

e;.4 Error Handling
The DECtape handler performs special handling for the select eITor condition. If a select error
occurs during the execution of a READ, WRITE, or REWIND, the message

*** SELECT ERROR ON DTn
n =unit number

is printed on the command output (CO) device (logical unit 2 for the driver). The DECtape handler
then does not dequeue normal user requests for that unit until the eITor is remedied by the
operator. The only user request it will dequeue for that unit is Cancel (see Section 1.6.4). Other
errors simply return a negative value in the low byte of the I/O status block.

The specific errors that can be returned by the DECtape handler are listed below.

6-2

DECtape Handler

61.5 OT Status Returns
IOST contains a code indicating the disposition of the QIO request. These status return codes for
the DECtapE' handler are symbolized as Bhown below.

Symbol

IE.BAD

IE.IFC

. IE.DNA

IE.VER

IE.SPC

IE.DNA

IE.DAA

IE.WLK

IE.SAE

IE.ABO

IE.PAI

IE.BYT

IE.BLK

IE.BBE

Meaning

Bad parameters.

Invalid function code.

Select error (only occurs if thE• handler fails to send its select error messages) .

Fatal error in READ or WRITE (other than Mark Track Error). IOST +2 contains DECtape error
flat~s. This is normally a parity error; however, the error may also be caused by performing a
mlJllti-block transfer past bloc~; 1101 (577.), or in reverse direction past block zero, In which case
the1 end zone (ENDZ) error flE1g is set in IOST +2. The operation is tried 5 times by the handler
be1fore an error is reported to the user. See the PDP-11 Pheriphera/s Handbook.

Part of the user's buffer is ou1t of user's virtual space, a byte count of zero was specified, or on
the PDP-11170, insufficient UMRs are available to handle the transfer.

Detach failed.

Attach failed (device already attached).

Write lock error

SEND/REQUEST failure when passing information to FILES-11 interfaces.

Operation aborted (while in Mark Time Wait). Either a handler exit or 1/0 rundown forced
operation to abort.

Access privilege violation.

Odd transfer address or byte count.

Logical block number greater than 1101 octal (577 decimal).

Bad block error (mark track eirror on read or write). IOST +2 contains the number of bytes
transferred at the point of the error so the actual bad block number may be determined. The
operation is tried 5 times by tlhe handler before an error is reported to the user.

E;.6 Characteristics Words for DECtape
See Section 1.8 for the four characteristics words set or implied at System Generation and stored
in the system's PUD entry for each individual unit. DECtape is a random-access device so that
words 2 and 3 are laid out in the same way as for disks (See Section 4.6). DECtape is analogous to
a disk with one block per cylinder and having to seek in order to access any block. The settings for
words 2 and 3 are as follows:

word 2 (offset U.C2 from the PUD entry):

bit 0 U2.WCK lgno·red by the DECtape handler

bits 1-3 reserved

bit 4 U2.MOH set

bit 5 U2.RMV set

bit 6 U2.BAD clear

bit 7 reserved

6-3

DECtape Handler

bits 8-12

bits 13-15

word 3 (offset U.C3 from the PUD entry):

low byte

high byte

10 (octal)

reserved

The normal setting for words 2 and 3 is thus 4060,401 for a DECtape unit.

6-4

7 Magnetic Tape Handlers

~r.1 Magtape Handler Functions
The magtap1e handlers provide the user with access to the TUl0/16, TEl0/16, TU77, and TU45
industry-compatible magnetic tape units:. Table 7-1 relates the devices to the handler tasks that
reference thiem.

Table 7-1 Standard Magnetic Tape De,1lces

Installed
Device Task
Driver Name

TE10 MT
TU10

· TE16,TU16 MM

TU45 MM

1 Phase •mcoded
2 Low sp1:ted
3 High speed
4 Serial serpentine
5 In streaming mode

Flecordlng
Density
(:Frames/

Channels Inch)

9 7'-channel:
7 or 9 ~'.00, 556

cir 800

91-channel:
e100

9 e:oo11600

9 S:00/1600

Tape
Speed
(Inches/
Second)

45

45

75

Maximum
Data
Rate
Units

36,000

800 bpi:
36,000

1600 bpi:
72,000

800 bpi:
60,000

1600 bpi:
120,000

Recording
Transfer
Method
(Bytes/
Second)

NRZI

NRZI or PE 1

NRZI or PE 1

7-1

Magnetic Tape Handlers

Table 7-1 (Cont.) Standard Magnetic Tape Devices

Installed
Device Task
Driver Name

TU77 MM

TS03 MT

TS11 MS

TUBO MS

TU81 MU

TS05 MS

TK25 MS

1 Phase encoded
2 Low speed
3 High speed
4 Serial serpentine
5 In streaming mode

7-2

Recording
Density
(Frames/

Channels Inch)

9 800/1600

9 800

9 1600

9 1600

9 1600/6250

9 1600

s.s.4 8000

Tape
Speed
(Inches/
Second)

125

15

45

252

1003

252

753

252

753

25

55

Maximum
Data
Rate
Units

800 bpi:
100,000

1600 bpi:
200,000

12,000

72,000

40,0002

160,0003

40,000
120,000
156,000
469,000

40,000

55,000
bit-serial
data tracks
recorded
serial
serpentine

Recording
Transfer
Method
(Bytes/
Second)

NAZI or PE 1

NAZI

PE1

PE1

PE1

PE1

GCA
GCA

PE1

Modified
GCA

Magnetic Tape Handlers

Table 7-1 (Ce>nt.) Standard Magnetic Tape Devices

lns·talled
Device Task
Driver Name

TK50 MU

1 Phase eincoded
2 Low spe1ed
3 High spe1ed
4 Serial se1rpentlne
5 In streaming mode

REtcordlng
Dunslty
(Fir a mes/

Channels ln1ch)

s.s.4 66i67

Recording
Tape Maximum Transfer
Speed Data Method
(Inches/ Rate (Bytes/
Second) Units Second)

755 45,000 Modified
bit-serial FM
data tracks
recorded
serial
serpentine

The requesting task can perform reads, writes, and positioning operations at a selectable density
and parity setting. The handlers also provide error recovery facilities that will automatically retry
tape operations a number of times before reporting error status. The handlers can execute any of
the following functions:

1 Read logical r•~cord

2 Write logical record

3 Attach w:iit

4 Detach unit

5 Device Control Functions

a. Rewind magtape

b. Skip n records (forward or reverse)

c. Skip n files (forward or reverse)

d. Set tape characteristics (parity/de1nsity, etc.)

e. Read tape characteristics

f. Rewind and tum unit off line

g. Verif:y tape is at load point and set characteristics

6 Write End-of-File character

• An End-of-File character (EOF) iB a special mark used to separate data sets. ANSI uses
the equivalent term "Tape Mark" ..

. When a request fails because the desired unit is off line, the magtape handler prints:

***MAG'rAPE SELECT ERROR ON MTn
n =unit number

on the operator console. Operations on other units are allowed to proceed while one unit is held up
due to this sielect error condition.

7-3

7.1.1

7.1.:2

7.1.3

7.1.4

7.1.5

Magnetic Tape Handlers

TE1 O/TU1 O/TS03 Magnetic Tape
The TE10/TU10trS03 consists of a TMU controller with a TElO, TUlO, or TS03 transport. It is a
low-cost, high-performance system for serial storage of large volumes of data and programs in an
industry- compatible format. All recording is non-return to zero inverted (NRZI) format.

TE16/TU16/TU45/TU77 Magnetic Tape
The TE16trU16trU45/TU77 consists of an RHU/RH70 controller, a TM02 or TM03 formatter, and
a TE16trU16trU45/TU77 transport. They are quite similar to the TElOtrUlO but are MASSBUS
devices, with a common controller, a specialized formatter, and drives. Recording is either 800 bits
per inch (bpi) NRZI or 1600 bpi phase encoded (PE).

TS11/TU80 Magnetic Tape
The TSU and TU80 are integrated subsystems. Each has a drive, a controller, and a formatter.
The hardware is microprocessor controlled for all operations, including 1/0 transfers and tape
motion, and -it has comprehensive (internal) diagnostic test execution. Recording is 1600 bpi PE.

The TSU operates in conventional start and stop mode while the TU80 operates at either low
speed (start and stop mode) or high speed (streaming mode). Tape speed is microprocessor
controlled.

TS05 Magnetic Tape
The TS05 tape subsystem runs on UNIBUS or Q-bus subsystems. It is an intergrated subsystem
with a drive, a controller, and a formatter. The hardware is microprocessor controlled for all
operations, including 1/0 transfers tape motion, and it has comprehensive (internal) diagnostic test
execution. Recording is 1600 bpi PE. The TS05 operates at 25 inches per second.

TK25 Magnetic Tape
The TK25 consists of a TKQ25 controller for the Q-bus and a TK25 streaming tape drive. The
integrated subsystem consists of a tape drive and controller/ formatter. The TK25 uses a DC600A
1/4-inch tape cartridge and stores data on serial data tracks in a serial serpentine recording
method. The TK25 has storage capacity of 60 megabytes (Mb) for 8-kilobyte (Kb) data records.
Data recording is an 8000 bpi, modified GCR (group cyclical recording) method.

TK50 Magnetic Tape
The TK50 is an integrated subsystem that consists of a controller for the Q-bus (TQK50) or a
controller for the UNIBUS (TUK50), and a TK50 streaming tape drive. The controller handles all
error recovery and correction, and internally buffers multiple outstanding commands. The tape
drive and writes data on 1 1/2-inch tape cartridge that is records at 6667 bpi on serial data tracks
in a serial serpentine recording (Modified Frequency Modulation) method. The tape speedis 75
inches per second in streaming mode and the storage capacity is approximately 94 Mb irrespective
of record size. There is one drive for each controller.

7-4

7'.1.7

Magnetic Tape Handlers

TU81 Magnetic Tape
The TU81 is a 9-track streaming tape drive that reads and writes data at either 6250 bpi (GCR) or
1600 bpi (PE) on l/2-inch tape. The TU81 internally buffers multiple outstanding commands. The
tape transport speed is 25 or 75 inches per second and is microprocessor controlled. At 6250-bpi
density, the drive can store up to 140 Mb on a standard 2400-foot reel. The TU81 has its own
UNIBUS controller (one drive per controller).

7'.2 Function Codes

7.2.1

7'.2.2

7'.2.3

1/0 requests serviced by the magtape handler are issued using the Q10$ system macro. See
Section 1. 7 for a detailed discussion of function codes for mass storage devices. The Q10$ macro
calls follow.

READ/WRITE Logical Functicms

QIO$ fc,lun,ef,pri,iosb,ast,<stadd,size>

fc can have cme of the following values:

• 10.RLB -· Read logical block (see Section 7.2.3)

• 10.WLB - Write logical block (see Sec:tion 7.2.4)

The two parameter words stadd and size, must be specified and delimited by the angle brackets
(<>). Param4~ters follow:

• stadd - Address of 1/0 buffer in user'B virtual space (this value must be even)

• size - Length of transfer in bytes (this value must be even and non-zero)

ATTACH, DETACH, REWIND, and EOF Functions

QIO$ fc,lun,ef,pri,iosb,ast

fc can have one of the following values:

• 10.ATT - Attach magtape unit

• 10.DET -· Detach magtape unit

• 10.RWD - Rewind magtape unit (see Section 7.2.6)

• 10.RWU - Rewind and tum unit offlilrle (see Section 7.2.5)

• 10.EOF -· Write an end-of-file (EOF) character on the tape to mark the· end of a data file.

For Skip, Set Characteristics and Verify Functions see Section 7.3.

Read Lo~1ical Block
The read function causes the next record on the magtape to be read into the requesting task's input
buffer. On completion, IOST+2 contains 1Ghe length, in bytes, of the record that was read.

7-5

7.2 .. 4

'7.2.5

i'.2.6

Magnetic Tape Handlers

Note that read returns an error, IE.DAO. if the physical record size exceeds the specified byte count
for the transfer. If this occurs, the first n bytes (where n is the specified byte count) are actually
transferred into memory and the remainder of the record is checked for parity but not transferred.
If the physical record size is less than the size of the specified byte count, only data for that record
is transferred. The byte count is in IOST+2 and a success condition is returned.

Write Logical Block
The write function causes the contents of the 1/0 buffer to be written as a single physical record
on .the magtape. Note the restriction that the record size (that is, buffer length) must be at least
14 bytes. The maximum record size is 65535 bytes; however, it is not suggested that such large
records be used. A more reasonable upper limit would be 2K bytes.

If the handler detects a parity error when writing a record, the handler backspaces and retries
the write automatically. If the error persists after five retries, the handler attempts to write with
extended interrecord gap. This enables the record to be placed three inches farther down the tape,
past the (presumed) bad spot on the tape. The write with extended interrecord gap operation is
also attempted five times before an error is reported to the requesting task. If, for some reason,
the requesting task wishes to prohibit write with extended interrecord gap from occurring, it may
do so by utilizing the set characteristics functions. (See Section 7 .3)

Rewind and Turn Unit Off Line
This command ensures that the unit is turned off line. It is normally used when operator
intervention is necessary (for example, when loading a new tape is required). The operator will
have to tum the unit manually on line before subsequent operations proceed.

Rewind Magnetic Tape Unit
This command causes the magnetic tape unit to rewind. When the rewind is initiated, the handler
immediately issues an 1/0 done status, (IS.SUC) to the user task.

The immediate return of 1/0 done allows the user task to continue processing without having to
wait for the rewind to complete.

Additional QIO functions issued to the unit being rewound will not execute until the rewind is
completed.

·1.3 Device Control Function Codes

'7'.3 .. 1

The Skip, Set Characteristics and Verify function codes are described in the following separate
paragraphs with figures and charts for clarity.

Skip n Records
For this function 1/0 requests serviced by the magtape handler are issued by the QIO$ macro with
the following format:

QI0$ IO.SPB,lun,ef,pri,iosb,ast,<nrs>

7-6

7.3.2

i' .3.3

Magnetic Tape Handlers

The parameter word must be specified anid enclosed by left and right angle brackets (<>). It has
the following meaning:

• nrs - Number of records to skip

The skip-records function causes the tape unit to skip forward or reverse over a number of physical
blocks on the tape. If nrs is greater than zero, it is taken as the number of records to skip in the
forward direc:tion; if nrs is less than zero, then the tape is backspaced nrs records. See Section 7.3.6
for end of volume considerations. If nrs equals zero, the handler task returns a status of IS.SUC.

IOSB+2 contains the actual number of records skipped (counting the EOF character as one record).
Note that attempting to backspace over the Beginning-of-Tape (BOT) is not considered an error;
however, backspacing stops at load point on encountering BOT and the actual number of records
skipped is returned in IOST+2.

Skip n Files
For this function 1/0 requests serviced by the magtape handler are issued by the QIO$ macro with
the following format:

QI0$ IO.SPF,lun,ef,pri,iost,ast,<ncs>

The parameter word must be specified and enclosed with left and right angle brackets(<>). It has
the following· meaning:

• ncs - Number of EOF characters to skip

The skip files function causes the tape unit to skip forward or reverse until encountering the
specified number of EOF characters. If 11tcs is greater than zero, it specifies the number of EOF
characters to skip in the forward direction; if ncs is less than zero, the tape is backspaced over
ncs EOF characters. See Section 7.3.6. for end of volume considerations. If ncs is zero, success is
returned in IOST.

Set Characteristics
For this function, 1/0 requests serviced by the magtape handler are issued by the QIO$ macro.
The macro has the following format:

QIO$ IO.STC,lun,ef,pri,iosb,ast,<cb>

The parameter word must be specified and enclosed with left and right angle brackets (<>). It has
the followin~~ meaning:

• ch - characteristics bits to set

This function allows a task to set certain characteristics bits. These bits are defined in Figure 7-1.

A task which uses magtape should always set the tape characteristics to the proper value since
it cannot be certain what state they were left in by the previous task. (See Figure 7-2 and
Figure 7-3.)

7-7

7.3.4

7.3.5

7~3.6

Magnetic Tape Handlers

Read Characteristics
For this function, 1/0 requests serviced by the magtape handler are issued by the QIO$ macro.
The macro has the following format:

QI0$ IO.SEC,lun,ef,pri,iosb,ast

This function returns the tape characteristics word in IOST+2.

Note that this function always succeeds and never causes the MAGTAPE SELECT ERROR
message to be issued. The fact that the unit is off-line (select error) or is rewinding is reported
in the bits defined in Figure 7-1.

Verify Beginning of Tape and Set Characteristics
The 1/0 requests serviced by the magtape handler to verify that the tape is at load point and to set
its characteristics are issued by the Q10$ macro in the following format:

QI0$ IO.SMO,lun,ef,pri,iost,ast,<cb>

The parameter word must be specified and enclosed with left and right angle brackets(<>). It has
the following meaning:

• ch - Characteristics bit to set

This function first selects the unit to ensure that it is on line and positioned at load point and then
sets the characteristics bits. See Section 7 .1 for a description of the tape characteristics bits.

If the tape is not at load point, an error (IE.FHE) is returned to the requesting task (the
characteristics bits are not set).

Logical End-of-Volume {EOV)
EOV is defined as two EOF characters in immediate succession. See Figure 7-4 for an illustrated
description of how this works.

The EOV state applies to the IO.SPB (Section 7.3.1) and IO.SPF (Section 7.3.2) functions only.
The IE.EOV status return can be used to locate the logical end-of-volume so that a new file can
be added to the tape. In this case, the requesting task executes an IO.SPF where parameter ncs
is greater than the actual number of files on the tape. When logical end-of-volume is detected, an
IO.EOV is returned in JOST and IOST+2 contains a count of the actual number of files skipped.

In special case B Figure 7--4, use the Read characteristics function, IO.SEC, to determine if the
tape is situated at logical end-of-volume or actually at physical end-of-volume (EOT).

7-8

-~ 4 I.

Magnetic Tape Handlers

Figure 7-1 Set/Sense Characteristics Status Word

Key

lllllllllllllllllllllllllllllllllll~llllllllll

BIT MEANING

15 i!illlilllilllilillllillllllilllillll]llllllli Tapie is past logical EOV

!l!l!:!!l!!:l:lllllllllllllll!l!l!l!llllll:!l! Tape is at logical EOV

!lllll!lllllllllllll!l!lllllllllllll!lll!lllll Tape is at BOT (Load Point)

lllilllllililllililllllllilil!l!l!l!l!l!lilill Uni1t is 7-Channel(1)

Set to specify 1600 bpi PE(2) (TU16/TE16 only)

illlllllllllllllllllil!lllllllllllllllll!lllll Tape is write locked

:lll Uni1t is rewinding

8 lll:ll Seh~ct error on unit

Read Onl)f 7 Set to inhibit write-with-extended lnterrecord gap

Set to prohibit writing on unit

Write Only

Las1t command encountered EOF record(3)

Tap1e is past EOT marker(3)

Set to specify even parity operation(4)

Set 1to specify core-dump-mode(5)(6)

Set to specify 200 bpi NRZ(7) recording denslty(5)

0
Set to specify 556 bpi NRZ recording denslty(5)

(11) TU~ 6 available in 9-channel (>nly.
(~?) Phase encoded.
(~i) Cleared by set characteristics.
(4) A unit with even parity set cannot write characters of all zeros so the null

set is translated to 020.
(!i) 7-channel drives only. See Figure 7-2. The default status is 000004,

core dump mode. This is thet initial setting when the driver is loaded.
(E>) For 7-track units, the use of normal mode results in the loss of the

upper 2 bits of each byte.
(7) Non-return-to-zero.

MT Status Returns
IOST contains a code indicating the disposition of the QIO request. These status return codes for
the magtape· handler are symbolized as shown below.

7-9

Magnetic Tape Handlers

Figure 7-2 TU1 O Parity/Density Determination

set800BPI
9-channel
for command

7-10

Set even parity
for command

Set .5.56 BPI
7-channel
for command

Yes

Yes

Yes

No

Set odd parity
for command

Set 800 BPI
7-channel
for command

Yes

Yes

Set 200BPI
7-channel
for command

Set800 BPI
7-channel
core dump mode
for comma

Figure 7-3 ·ru16 Parity/Density Determlinatlon

-~ SET EVEN
PARITY

FOR COMMAND

YES

SET ODD
PARITY

FOR COl1VIMAND

YES

SET1600BPI I

Magnetic Tape Handlers

NO SET 800 BPI

FOR COMMAND

7-11

Magnetic Tape Handlers

Figure 7-4 Logical End of Volume (EOV)

EOT
--D-~-T-~----TM-----1--DA--TA _____ TM ____ :J1_D_~-T-~-----TM----1-TM--------~\

---------------.. -~------------~~l-------------,~-------------

SPECIAL CASE A: TM AT BOT
:ear

1 ff a space forward
past this point is
attempted, the tape
stops at this point
and an EOV error
is returned.

In this case, space forward halts at the first interrecord-gap past EOT.

Key: I TM I Indicat.es tape mark, which is an EOF character writt.en on the tape. This
is sometimes referred to as an EOF record. Tape marks are used to separate
two sets of data or to separate sets of data from labels.

7-12

Symbol

is.sue
IE.ABO

IE.BBE

IE.BYT

IE.DAA

IE.DAO

IE.DNA

IE.DNR

IE.EOF

IE.EOV

IE.EQT

IE.FHE

IE.IFC

IE.PRI

IE.SPC

IE.SRE

IE.VER

IE.WLK

Meaning

Operation successfully completed.

Operation aborted.

Tape format error.

Oddi virtual address or odd byt1e count.

Device is already attached.

Magnetic Tape Handlers

Record length error on read. F\ecord exceeded stated buffer size in which case the final portion
of the record is not read.

Device was not attached (Deta.ch failed).

Device went off-line in the middle of READ/WRITE/WRITE-END-OF-FILE/SKIP functions. This
can be the result of a power fa.ilure In the middle of an operation or the operator manually turning
the unit to off line. This is a Stnlous error as the program cannot be certain that the tape Is
correctly positioned for subsequent commands.

An End-of-File character was detected in READ or SKIP function. The tape Is left positioned In
the gap following the EOF cha1racter (or preceding it In the case of backspace).

Logical end-of-volume (that is, two EOF characters in immediate succession; see Figure 7-4
EOV Handling).

The unit has sensed the End-c1f-Tape (EOT) marker while moving In the forward direction. This
error will persist until the EOT marker is passed in the reverse direction. (Note that after EOT, 10
feet of tape is provided for writing necessary volume trailer labels.)

Fatal hardware error. Indicates; that the unit may be malfunctioning. IOST +2 contains the actual
magtape status register bits at the time of the error.

Invalid function code specification.

User task did not have proper access rights.

Validation error in Read/Write functions.

Send/request failed.

Parity error in Read/Write or Write end-of-file functions.

Hardware (or software) write loick error in Write or Write-end-of-file functions.

7.,5 UNIBUS Mapping Registers
When runnin1g on an 11/44, the MM.... handler uses the mechanism of dynamic UMR allocation
that is described in Section 4.4.

When used for controlling UNIBUS magnetic tape subsystems (for example, TUlO), the MT
handler initially requests eight UMRs. If it cannot obtain eight, the handler takes as many as are
available. Both read and write operationB will be rejected if insufficient UMRs are available to
cover the transfer length.

7-13

8 Laboratory Peripheral System Handler (LPS11)

8.1 LPS11 Functions

8.1.1

The LPSll Laboratory Peripheral System is a modular, real-time subsystem that includes the
.following:

• 12 bit al1lalog-to-digital converter, with sample and hold circuitry and an 8-channel multiplexer

• Programmable real-time clock for me:asuring and counting intervals or events

• Display •~ontroller to display data in a 4096 by 4096 dot matrix

• Digital iinput/output option (16 digita.l points and programmable relays)

Built in a compact size and designed for easy interfacing with outside instrumentation, the LPSll
is suited to a variety of applications, inclluding biomedical research, analytical instrumentation,
data collection and reduction, monitorin1g, data logging, industrial testing, engineering, and
technical education.

The LPSll handler allows many users to share access to the basic LPSll facilities listed below;
therefore, the LPSll device cannot be attached to an individual task. The LPSll handler allows
time-based sampling to be initiated on one channel while sampling is in progress on other
channels. Thus, experiments can be started at any time, independent of the cuITent laboratory
work load.

Digital I/()
To support the LPSll Digital 1/0 module (LPSDR) a bit mask word is initialized in the LPS PUD
entry during system generation. Each bit in the mask corresponds to a bit in the digital 1/0 word,
which in turn coITesponds to one of sixteen channels.

A mask bit value of 0 specifies that the digital 1/0 word bit is never to be set to 1 by the LPSll
handler. A mask bit value of 1 specifies that the digital 1/0 word bit is set only when sampling is
being done cm the corresponding channell as the result of a user request. That is, a value of 1 in
mask bit 4 means that bit 4 of the output word is set only when sampling is in progress on LPS-11
channel 4.

A digital 1/0 bit set to 1 is a signal to an external device that the LPSll is ready to accept data
on the channel. For this reason, all extemal devices sending data to the LPSll must be under the
control of the central processor that tells the devices when to start and stop.

When a mask bit is equal to 1, sampling of data on the coITesponding channel is restricted to one
user program to prevent random change::; from being made to the bit. When the bit is 0, multiple
users are allowed to read data from the channel since it is impossible for a user program to damage
any other simply by reading data.

NOTE: If tlh.e Digital 1/0 option (LPSDR) is not present on an LPS configuration, the
mask word in the PUD must be 0.

8-1

8.1.2

8.1.3

Laboratory Peripheral System Handler (LPS11)

Real-Time Clock
The Real-Time Clock module (LPSKW) is set to mode 1 (repeated interval mode) with intetTupts
enabled and a base rate of lOkHz. A preset value of-10 remains constant in the buffer throughout
LPSll handler operation, which means that once every millisecond the handler receives an
intetTUpt from the clock. Therefore, the highest sampling rate on any channel is 1000 points
per second.

12-Bit A/D Converter
Sampling of channels through the 12-bit AID Converter (LPSAD-12) is permitted on any channel
whose channel number is less than or equal to the maximum number of channels in the LPS
configuration. This value is stored in the PUD entry created by system generation.

When an intetTUpt occurs for the real-time clock module, the internal LPS clock queue is examined.
If any samples are due to be taken, the AID conversion is initiated on the appropriate channel.

When the clock node has been completely processed, the AID status word is read. If the error bit is
set, a value of -2 is put into the user's buffer for that sample. If the DONE bit is not set, an AID
timeout is indicated, and a value of-1 is put into the user's buffer. If the DONE bit is set, the AID
value is put into the user's buffer and the clock queue is again examined for more samples to be
taken.

8.2 System Generation Options
At system generation, the user can specify the following characteristics which result in bit settings
in the device PUD:

1 The number of AID channels in the low-order byte of characteristics word 2.

2 Whether the gain ranging option (LPSAM-SG) is present (bit 15 in characteristics word 2 is set
if present).

3 Whether the DIA option (LPSVC or LPSDA) is present (bit 14 of characteristics word 2) and
how many DIA channels (low 5 bits of the high-order byte of characteristics word 2).

4 The polarity of each AID channel (unipolar or bipolar). For each channel, the coJTesponding bit
is set in characteristics word 3 of the PUD if the channel is unipolar; for example, setting bit 0
indicates that channel 0 is unipolar.

Multiple controllers are not supported.

8.3 QIO MACROS
This section summarizes standard and device-specific QIO functions for the L.PSll handler.

a.3.,1 Standard QIO Function
The only device independent QIO macro that is valid for the LPSll is as follows:

QIO$ IO.KIL

This QIO cancels all queued and in-progress 110 requests.

8-2

8.3.2

Laboratory Peripheral System Handler (LPS11)

Device-Specific QIO Functions (Immediate)
All device-specific functions of the QIO macro that are valid for the LPSll are either immediate or
synchronous except for 10.STP (see Section 8.3.4). Each immediate function performs a complete
operation, whereas each synchronous fulllction simply initiates an operation. Table 8-1 lists the
immediate functions.

Table 8-1 Device-Specific QIQ Functions for the LPS11 (Immediate)

Format !Function

Ql0$C 10.LED, ... ,<int,num>

QIO$C 10.REL, ... ,<rel,pol>

Ql0$C 10.SDl, ... ,<mask>

QIO$C 10.SDO, ... ,<mask,data>

where:

Display number in LED lights

Latch output relay

Head digital input register

Write digital output register

• int - is the 16-hit signed binary integer to display.

• num - is the LED digit number wheru the decimal point is to be placed.

• rel - is the relay number (zero or one).

• pol - is the polarity (zero for open, nonzero for closed).

• mask - is the mask word.

• data - is the data word.

The following~ subsections describe the fw1ctions listed above.

IQ.LED

This function displlays a 16-bit signed binary integer in the light-emitting diode (LED) lights. The
number is die1played as five nonzero-suppiressed decimal digits that represent the magnitude of the
number. A minus sign precedes a negative number. LED digits are numbered from right to left,
starting at 1.

The number 4::an be displayed with or without a decimal point. If the parameter num is a number
from 1 to 5, the corresponding LED digit is displayed with a decimal point to the right of the digit;
otherwise, no decimal point is displayed.

IQ.REL

This function opens or closes the programmable relays in the digital 1/0 status register.
Approximately 300 milliseconds are required to open or close a relay. The handler imposes no
delays when executing this function. Thus, it is the responsibility of the user to ensure that
adequate tim1e has elapsed between the opening and closing of a relay.

IQ.SDI

This function reads data qualified by a mask word from the digital input register. The mask word
contains a 1 in each bit position from which data is to be read. All other bits are zero-filled. The
resulting value is returned in the second word of the 1/0 status word.

8-3

Laboratory Peripheral System Handler (LPS11)

The operation performed is:

RETURN VALUE•MASK.AND.INPUT REGISTER

10.SDO

This function writes data qualified by a mask word into the digital output register. The mask
word contains a 1 in each bit position that is to be written. The data word specifies the data to be
written in coITesponding bit positions.

The operation performed is:

8-4

NEW REGISTER=<MASK.AND.DATA>.OR.<<.NOT.MASK>.AND.OLD
REGISTER>

8,.3.3

Laboratory Peripheral System Handler (LPS11)

Device-Specific QIO functions (Synchronous)
Table 8-2 lists the synchronous, device-specific functions of the QIO macro that are valid for the
LPSll.

Table 8-2 Device-Specific QIO Functions for the LPS11 (Synchronous)

Format F:unctlon

QIO$C 10.ADS., ... ,<stadd,size,pnt, Initiate AID sampling
ticks,bufs,chna::i•

QIO$C 10.HIS, ... ,<stadd,size,pnt, ticks,bufs> Initiate histogram sampling

QIO$C 10.MDA., ... ,<stadd,size,pnt, Initiate DIA output
ticks,bufs,chnd::i·

Ql0$C 10.MDl, ... ,<stadd,slze,pnt, Initiate digital input sampling
ticks,bufs,mask:>

QIO$C 10.MDO, ... ,<stadd,size,pnt, Initiate digital output
ticks,bufs,mask:>

where:

• stadd - is the starting address of the data buffer (must be on a word boundary).

• size - is the data buffer size in bytes (must be greater than zero and a multiple of four bytes).

• pnt - is the digital point nwnbers (byte 0 - starting input/output point number; byte 1 - input
point number to stop the function).

• ticks - is the number of LPSll clock tilcks between samples or data transfers, as appropriate.

• bufs - is the number of data buffers tCJt transfer.

• chna - is the AID conversion specification (byte 0 - starting AID channel number, which must
be in the range 0-63. If the gain ranging option is present the channel number must be in the
range 0-15 and bits 4 and 5 specify the gain code. Byte 1 - number of consecutive AID channels
to be sampled, which must be in the range 1-64).

• chnd - is 'the DIA output channel specification (byte 0 - starting DIA channel nwnber, which
must be in the range 0-9; byte 1 - number of consecutive channels to output, which must be in
the range 1-10).

• mask - is the mask word.

The following subsections describe the functions listed above.

10.ADS

This function reads one or more AID channels at precisely timed intervals, with or without auto
gain-ranging. If two or more channels are specified, all are sampled at approximately the same
time, once peir interval. The auto gain-ranging algorithm causes a channel to be sampled at the
highest gain at which saturation does not occur.

·Sampling can. be started when the request is dequeued or when a specified digital input point
is set. A digital output point may optionally be set when sampling is started. Sampling may be
terminated by a program request (IO.STP or IO.KIL), by the clearing of a digital input point, or by
the collection of a specified nwnber of buffers of data.

8-5

Laboratory Peripheral System Handler (LPS11)

AH input is double-buffered with respect. tot.he user task. Each t.ime a half buffer of dat.a has been
collected, the user task is notified via the setting of an event flag. That data is available to be
processed while the handler fills the other half of the buffer.

The subfunction modifier bits are identical to those described in "IO.HIS"; in addition, setting bit 3
to 1 requests auto gain-ranging. If bits 7 and 6 are both set to 1, the digital input point and digital
output point number are assumed to be the same.

If auto gain-ranging is used, the LPSAM-SG hardware option must be present and specified at
system generation. If the gain-ranging option is present and auto gain-ranging is not specified in
bit 3 of the subfunction code, bits 4 and 5 of the starting channel number specify the gain at which
samples are to be converted. Gain codes are as follows:

Code

00

01

10

11

Gain

4

16

64

Data words written into the user buffer contain the converted value in bits 0 through 11 and the
gain code, as shown below :in bits 12 through 15:

Code

0000

0001

0010

0011

Gain

1

4

16

64

If the LPSAM-SG option is present, the baud pass filter jumpers must not be clipped. Also,
each channel must have been defined as unipolar or bipolar at system generation by defining the
corresponding bit (for example, bit 0 for channel 0) in characteristics word 3. Setting a bit indicates
that the channel is unipolar.

IQ.HIS

This function measures the elapsed time between a series of events by means of Schmitt trigger
one. Each time a sample is to be taken, a counter is increased and Schmitt trigger one is tested.
If it has fired, the counter is written into the user buffer and reset to zero. Thus, the data item
returned to the user is the number of sample intervals between Schmitt trigger firings.

If the counter overflows before Schmitt trigger one fires, then a zero value is written into the user
buffer. Sampling can be started and stopped as described in "IO.ADS". All iriput is double-buffered
with respect to the user task. The subfunction modifier bits appear below. A setting of 1 indicates
the action listed in the right-hand column.

Bit

0-3

4

8-6

Meaning

Unused

Stop on number of buffers

8.3.4

Laboratory Peripheral System Handler (LPS11)

Bit

5

6

7

10.MDA

Meaning

Stop on digital input point clear

Set digital output point at start of operation

Start on digital input point set (a zero specification means start immediately)

This function writes data into one or more external DIA converters at precisely timed intervals.
If two or more channels are specified, all are written at approximately the same time, once per
interval. Out.put can be started or stopped as described in "IO.ADS". All output is double-buffered
with respect 1to the user task.

DIA converters 0 and 1 coITespond to the X and Y registers of the LPSVC option. DIA converters 2
through 9 co1Tespond to the LPSDA external DI A option.

The subfunction modifier bits are identical to those described in "IO.HIS".

IC.MDI

This function. provides the capability to read data that is qualified by a mask word from the digital
input registe1r at precisely timed intervafa. Sampling can be started and stopped as described in
"IO.ADS". Alli input is double-buffered wUh respect to the user task.

The mask word contains a 1 in each bit position from which data is to be read. All other bits are
zero.

The subfunction modifier bits are identical to those described in "IO.HIS".

10.MDO

This function. writes data qualified by a mask word into the digital output register at precisely
timed intervals. Output can be started a.nd stopped as described in "IO.ADS". All output is
double-buffered with respect to the user task.

The subfunction modifier bits are identical to those described in "IO.HIS".

Device-Specific QIO Function (10.STP)
Table 8-3 lists the device-specific IO.STP function of the QIO macro, which is valid for the LPSll.

Table 8-3 Device-Specific QIO Function for the LPS11 (10.STP)

Format Function

010$C 10.STP, ... ,<stadd> Stop in-progress request

where:

• stadd - is the buffer address of the function to stop (must be the same as the address specified
in the initiating request).

10.STP

10.STP stops a single synchronous reque:st that is in progress. It is unlike IO.KIL in that it only
cancels the BJPecified request. IO.KIL cancels all requests.

8-7

Laboratory Peripheral System Handler (LPS11)

a.4 FORTRAN Interface

a.4 .. 1

8.4.2

The FORTRAN-callable subroutines, described in this section provide FORTRAN programs with
access to the LPSll. Some of these routines can be called from FORTRAN as either subroutines or
functions. All are reentrant and can be placed in a resident library. They are included in SYSLIB
in the distributed version of IAS.

The isb Status Array
The isb (I/O status block) parameter is a 2-word integer array that contains the status of the
FORTRAN call, in accordance with ISA convention. This array serves two purposes:

1 It is the 2-word 1/0 status block to which the handler returns an 1/0 status code on completion
of an 1/0 operation.

2 The first word of isb receives a status code from the FORTRAN interface in ISA-compatible
format, with the exception of the 1/0 pending condition, which is indicated by a status of zero.
The ISA standard code for this condition is +2.

The meaning of its contents varies depending on the FORTRAN call that has been executed.
Table 8-4 lists certain general principles that apply. The sections describing individual subroutines
provide more details.

Table 8-4 Contents of First Word of lsb

Contents

isb(1) - O

lsb(1) - 1

lsb(1) • 3

3 < lsb(1) < 300

lsb(1) > 300

Meaning

Operation pending; 1/0 in progress

Successful completion

Interface subroutine unable to generate 010 directive or Illegal time or buffer value

010 directive rejected and actual error code • -(isb(1) - 3)

Driver rejected request and actual error code• -(lsb(1) - 300)

FORTRAN interface routines depend on asynchronous system traps to set their status. Thus, if
the trap mechanism is disabled, proper status cannot be set.

Synchronous Subroutines
RTS, DRS, HIST, SDO, and SDAC are FORTRAN subroutines that initiate synchronous functions.
When they are used, the LPSll handler and the FORTRAN program communicate by means of a
caller-specified data buffer of the following format:

The buffer header is initialized when the synchronous function initiation routine is called. The
length of the buffer must be an even number of words and no smaller than six words. An even
length is required so that the buffer is exactly divisible into half buffers.

The LPSll handler performs double buffering within the half buffers. Each time the handler fills
or empties a half buffer, it sets a user-specified event flag to notify the user task that more data is
available or needed. The user task responds by putting more data into the buffer or by removing
the data now available.

8-8

8.4.3

Laboratory Peripheral System Handler (LPS11)

Figure 8-1 Synchronous Subroutines

Buffer HeadEtr

Start of Data

Half Buffer

End of Buffe,r

Current Buffer Pointer

Address of 2nd 1/0 Status Word

Address of End of Buffer + 1

Address of Start of Data

If the user task does not respond quickly enough, a data oveITun may result. This occurs if the
handler attempts to put another data item in the user buffer when no space is available (that is,
the buffer is full of data) or if the handle1r attempts to obtain the next data item from the user
buffer when none is available (that is, the buffer is empty).

AU synchronous functions may be initiated immediately or when a specified digital input point is
set (that is, a start button is pushed).

They can be terminated by any combination of a program request, the processing of the required
number of fuU buffers of data, or the cleatring of a specified digital input point (that is, a stop
button is pushed). A digital output point can optionally be set at the start of a synchronous
function. It can be used, for example, as a signal to start a test instrument.

FORTRAN Subroutine Summary
Table S-5 lists the FORTRAN interface s1L1broutines for the LPSll. Sand F indicate whether they
can be called as subroutines or functions.

8-9

8.4 .. 4

Laboratory Peripheral System Handler (LPS11)

Table 8-5 FORTRAN Interface Subroutines for the LPS11

Subroutine

ADC

ADJLPS

ASLSLN

CVSWG

DRS

HIST

IDIR

IDOR

IRDB

LED

LPSTP

PUTD

RELAY

ATS

SDAC

SDO

Function

Read a single AID channel (F,S)

Adjust buffer pointers (S)

Assign a LUN to LSO: (S)

Convert a switch gain AID value to floating-point (F)

Initiate synchronous digital input sampling (S)

Initiate histogram sampling (S)

Read digital input (F,S)

Write digital output (F,S)

Read data from a synchronous function Input buffer (F,S)

Display number In LED lights (S)

Stop an In-progress synchronous function (S)

Put data into a synchronous function output buffer (S)

Latch an output relay (S)

Initiate synchronous AID sampling (S)

Initiate synchronous DIA output (S)

Initiate synchronous digital output (S)

The following subsections briefly describe the function format of each FORTRAN subroutine call.

ADC: Reading a Single A/D Channel
The ADC FORTRAN subroutine or function reads a single converted value from an AID channel.
If the gain-ranging option is present in the LPSll hardware, the channel can be converted at
a specific gain or the handler can select the best gain; that is, the gain providing the most
significance. The converted value is returned as a normalized floating-point number. The call
is issued as follows:

CALL ADC (ichan, [var], [igain], [isb])

where:

• ichan - specifies the AID channel to be converted.

• var - is a floating-point variable that receives the converted value in floating-point format.

• igain - specifies the gain at which the specified AID channel is to be converted. The default is
1. If specified, igain may have the following values:

where:

• ichan - specifies the AID channel to be converted.

• var - is a floating-point variable that receives the converted value in floating-point format.

8-10

8.4.5

Laboratory Peripheral System Handler {LPS11)

• igain - specifies the gain at which t.he specified AID channel is to be converted. The default is
1. If spec:ified, igain may have the following values:

lgaln

0

1

2

3

4

Gain

Autogain-mnging (handler selects gain that provides most significance)

1

4

16

64

• isb - is a 2-woird integer array to which the subroutine status is returned.

The isb array has the standard meaning described in Section 8.4.1.

When the fw1ction form of the call is usecl, the value of the function is the same as that returned in
var. If this value :is negative, an error has occurred during the AID conversion (see Section 8.5.3).
Otherwise, this value is a floating-point number calculated from the following formula:

var = (64 * converted value) I conversion gain

ADJLPS: Adjusting Buffer Po1inters
The ADJLPS FORTRAN subroutine adjtllsts buffer pointers for a buffer that the LPSll handler is
either synch1ronously filling or emptying.

It is usually called when indexing is being used for direct access to the data in a buffer.

When data in a buffer is to be processed only once, the IRDB and PUTD routines can be used. In
some cases, however, it is useful to leave data in the buffer until processing is complete. The user
program can process the data directly and then call ADJLPS to free half the buffer. Use of the
routine for synchronous output functions: is quite similar. When a half buffer of data is ready for
output, ADJLPS is called to make the hatlf buffer available.

When ADJLPS is used for either input or output, care must be taken to enswre that the program
stays in synchronization with the LPSll handler. If the program loses its position with respect to
the handler, the function must be stopped and restarted. An attempt to overadjust causes a 3 to be
retwrned in iisb (1) and no adjustment to take place.

The call is ie1sued as follows:

CALL ADJLPS (ibuf,iadj, [isb])

where:

• ibuf - is an integer array which was previously specified in a synchronous input or output
function ..

• iadj - spiecifies the adjustment to be applied to the buffer pointers. For an input function
this specifies the nwnber of data values that have been removed from the data buffer. For
an output function this specifies the nwnber of data values that have been put into the data
buffer.

• isb - is a 2-word integer array to whkh the subroutine status is returned.

The isb array has the standard meaning described in Section 8.4.1.

8-11

8.4.6

8.4.7

Laboratory Peripheral System Handler (LPS11)

ASLSLN: Assigning a LUN to LSO:
The ASLSLN FORTRAN subroutine assigns a logical unit number (LUN) to the LPSll. It must be
called before execution of any other LPSll FORTRAN function or subroutine. Subsequent calls to
other interface routines then implicitly refer to the LPSll via the LUN assigned.

The call is issued as follows:

CALL ASLSLN (lun, [isb])

where:

• lun - is the number of the LUN to be assigned to the LSO:

• isb - is a 2-word integer array to which the subroutine status is returned.

The isb array has the standard meaning described in Section 8.4.1.

CVSWG: Converting a Switch Gain A/D Value to Floating-Point
The CVSWG FORTRAN function converts an AID value from a synchronous AID sampling function
to a floating-point number. Each data item returned by the LPSll handler consists of a gain code
and converted value packed in a single word (see "IO.ADS"). This form is not readily usable by
FORTRAN, but is much more efficient than converting each value to floating-point in the LPSll
handler. This routine unpacks the gain code and value, then converts the result to a floating-point
number. It can be conveniently used in conjunction with the IRDB routine (see Section 8.4.12).

The call is issued as follows:

CVSWG (ival)

where:

• ival - is the value to be converted to floating point. Its format must be that returned by a
synchronous AID sampling function. The conversion is performed according to the following
formula:

var= (64 *converted value) I conversion gain

For the various gain codes,

var= x *converted value

as shown below:

Gain

4

16

64

8-12

x

64

16

4

8.4.8

!Laboratory Peripheral System Handler (LPS11)

DRS: Initiating Synchronous Digital Input Sampling
The DRS FORTRAN subroutine reads data qualified by a mask word from the digital input register
at precisely timed intervals. Sampling can be started or stopped as for RTS (see Section 8.4.17) and
all input is double-buffered with respect to the user task. Data can be sequentially retrieved from
the data buffer via the IRDB routine (see Section 8.4.11), or the ADJLPS routine (see Section 8.4.5
can be used in conjunction with direct acCE!SS to the input data. The call is issued as follows:

where:

CALL DRS (ibuf,ilen,imode,irate,iefn,imask,isb, [nbuf],
[istart], [istop])

• ibuf - is a11t integer array that is to recuive the input data values.

• ilen - specifies the length of ibuf (must be even and greater than or equal to six).

• imode - sp1ecifies the start, stop, and sampling mode. Its value is encoded by adding together
the approp,riate function selection values shown below:

Function
Selection Value

128

64

32

16

Meaning

Start on digital input point set

Set digital output point at start

Stop on digital input point clear

Stop on number or buffers

Thus a value of 192 for imode specifies:

• The sampling is to be started when a specified digital input point is set.

• A digital output point is to be set when sampling is started.

• Sampling iwill be stopped via a program request.

• irate - is a 2-word integer array that specifies the time interval between digital input samples.
The first word specifies the interval units as follows:

lrate(1) Unit

1 LPS11 clock ticks

2 Milliseconds

3 Seconds

4 Minutes

The second word specifies the interval magnitude as a 16-bit unsigned integer.

• iefn - specifies the number of the event flag that is to be set each time a half buffer of data has
been collected.

• imask - sp1ecifies the digital input points to be read.

• isb - is a 2·-word integer array to which the subroutine status is returned.

. 8-13

8.4.9

Laboratory Peripheral System Handler (LPS11)

• nbuf- specifies the number of buffers of data to be collected. It is needed only if a function
selection value of 16 has been added into imode.

• istart - specifies the digital input point number to be used to trigger sampling and/or the
digital output point number to be set when sampling is started. It is needed only if a function
selection value of 128 or 64 has been added into imode.

• istop - specifies the digital input point number to be used to stop sampling. It is needed only if
a function selection value of 32 has been added into imode.

When sampling is in progress, the first word of the isb array is zero and the second word contains
the number of data values currently in the buffer.

HIST: Initiating Histogram Sampling
The HIST FORTRAN subroutine measures the elapsed time between a series of events via Schmitt
trigger one.

Each time a sample is to be taken, a counter is incremented and Schmitt trigger one is tested.
If it has fired, then the counter is written into the user buffer and the counter is reset to zero.
Thus, the data returned to the user is the number of sample intervals between Schmitt trigger
firings. If the counter overflows before Schmitt trigger one fires, a zero value is written into the
user buffer. Sampling can be started and stopped as for RTS (see Section 8.4.17) and all input is
double-buffered with respect to the user task. The call is issued as follows:

CALL HIST (ibuf,ilen,imode,irate,iefn,isb, [nbuf], [!start],
[istop])

where:

• ibuf - is an integer array that is to receive the input data values.

• ilen - specifies the length of ibuf (must be even and greater than or equal to six).

• imode - specifies the start, stop and sampling mode. Its value is encoded by adding the
appropriate function selection values shown below:

Function
Selection Value

128

64

32

16

Meaning

Start on digital input point set

Set digital output point at start

Stop on digital input point clear

Stop on number of buffers

• irate - is a 2-word integer array that specifies the time interval between samples. The first
word specifies the interval units as follows:

lrate(1)

1

2

3

8-14

Unit

LPS11 clock ticks

Milliseconds

Seconds

lrate(1)

4

Unit

Minutes

!Laboratory Peripheral System Handler (LPS11)

The second. word specifies the interval magnitude as a 16-bit signed integer.

• iefn - specifies the number of the event flag that is to be set each time a half buffer of data has
been collected.

• isb - is a 2-·word integer array to which the subroutine status is returned.

• nbuf - specifies the number of buffers of data to be collected. It is needed only if a function
selection value of 16 has been added into imode.

• istart - spe:cifies the digital input point number to be used to trigger sampling and/or the
digital output point number to be set when sampling is started. It is needed only if a function
selection value of 128 or 64 has been added into imode.

• istop - spec:ifies the digital input point :number to be used to stop sampling. It is needed only if
a function selection value of 32 has bee:n added into imode.

The isb array has the standard meaning d•~scribed in Section 8.4.1.

When sampling is in progress, the first wo1rd of the isb array is zero and the second word contains
the number of data values currently in the buffer.

, 8.4.10 IDIR: Reading Digital Input

8.4.11

The IDIR FORTRA.ril subroutine or function reads the digital input register as an unsigned binary
integer or as four binary-coded decimal (BCD) digits. In the latter case, the BCD digits are
converted to a binary integer before the value is returned to the caller. The call is issued as
follows:

CALL !DIR (imode, [ival], [isb])

where:

• imode - sp•~cifies the mode in which the digital input register is to be read. If imode equals
zero, then the digital input register is read as four BCD digits and converted to a binary
integer. Ot.herwise it is read as a 16-bit unsigned binary integer.

• ival - is a Yariable that receives the va]ue read.

• isb - is a 2 .. word integer array to which the subroutine status is returned.

The isb array has the standard meaning described in Section 8.4.1.

When the function form of the call is used, the value of the function is the same as that returned
in ival.

IDOR: Writing Digital Output
The IDOR FORTRAN subroutine or function clears or sets bits in the digital output register. The
caller provides a mask word and output mode. Bits in the digital output registers corresponding to
the bits specified in the mask word are either set or cleared according to the specified mode. The
call is issued as follows:

8-15

Laboratory Peripheral System Handler (LPS11)

CALL IDOR (imode,imask, [newval], [isb])

where:

• imode - specifies whether the bits specified by imask are to be cleared or set in the digital
output register. If imode equals zero, then the bits are to be cleared. Otherwise they are to be
set.

• imask - specifies the bits to be cleared or set in the digital output register. It may be
conveniently specified as an octal constant.

• newval - is a variable that receives the updated (actual) value written into the digital output
·register.

• isb - is a 2-word integer array to which the subroutine status is returned.

The isb array has the standard meaning described in Section 8.4.1.

When the function form of the call is used, the value of the function is the same as that returned
in newval.

8.4.12 IRDB: Reading Data from an Input Buffer
The IRDB FORTRAN subroutine or function retrieves data sequentially from a buffer that the
LPSll handler is synchronously filling. If no data is available when the call is executed, the
contents of the next location in the data buffer are returned without updating the buffer pointers.
The call is issued as follows:

CALL IRDB (ibuf, [ival])

where:

• ibuf - is an integer array which was previously specified in a synchronous input sampling
request (i.e., DRS, HIST, or RTS).

• ival - is a variable that receives the next value in the data buffer.

When the function form of the call is used, the value of the function is the same as that returned
in ival.

8.4.13 LED: Displaying in LED Lights
The LED FORTRAN subroutine displays a 16-bit signed binary integer in the LED lights. The
number is displayed with a leading blank (positive number) or minus (negative number), followed
by five nonzero-suppressed decimal digits that represent the magnitude of the number. LED digits
are numbered right to left starting at 1 and continuing to 5. The number can be displayed with or
without a decimal point. The call is issued as follows:

CALL LED (ival, [idec], [isb])

where:

• ival - is the variable whose value is to be displayed.

• idec - specifies the position of the decimal point. A value of 1 to 5 specifies that a decimal point
is to be displayed. All other values specify that no decimal point is to be displayed.

8-16

Laboratory Peripheral System Handler (LPS11)

• isb - is a ~~-word integer array to which the subroutine status is returned.

The isb array has the standard meaning described in Section 8.4.1.

For example, the following call

CALL LED (-55,2)

would cause -0005.5 to be displayed in the LED lights.

8'"4.14 LPSTP: Stopping an ln-Progn~ss Synchronous Function
The LPSTP F,ORTRAN subroutine selectively stops a single synchronous request. The call is
issued as follows:

CALL LPSTP (ibuf)

where:

• ibuf - is an integer array that apecifies a buffer that was previously specified in a synchronous
initiation request.

8.4.15 PUTD: Putting a Data Item intc> an Output Buffer
The PUTD FORTRAN subroutine puts data sequentially into a buffer that the LPSll handler is
synchronously emptying. If no free space is available, no operation is performed. The call is issued
as follows:

CALL PUTD (ibuf,ival)

where:

• ibuf - is a.n integer array which was pireviously specified in a synchronous output request (SDO
orSDAC)I.

• ival - is a variable whose value is to be placed in the next free location in the data buffer.

8.4.16 RELAY: Latching an Output Relay
The RELAY l~ORTRAN subroutine opens or closes the LPSll relays. The call is issued as follows:

CALL RELAY (irel,istate, [isb])

where:

• irel - spec~ifies which relay is to be opEmed or closed (0 for relay one, 1 for relay two).

• istate - specifies whether the relay is to be opened or closed. If istate equals zero, the relay is
to be opened. Otherwise, it is to be closed.

• isb - is a 2-word integer array to which the subroutine status is returned.

The isb array has the standard meaning described in Section 8.4.1.

8-17

Laboratory Peripheral System Handler (LPS11)

8.4.17 RTS: Initiating Synchronous AID Sampling
The RTS FORTRAN subroutine reads one or more AID channels at precisely timed intervals, with
or without auto gain-ranging. The auto gain-ranging algorithm causes the channels to be sampled
at the highest gain at which saturation does not occur.

Sampling can be started when the interface subroutine is called or when a specified digital input
point is set. A digital output point can optionally be set when sampling is started. Sampling can
be terminated by a program request (stop in-progress request or kill 1/0), the clearing of a digital
input point, or the collection of a specified number of buffers of data.

All input is double-buffered with respect to the user task. Each time a half buffer of data has
been collected, the user task is notified via the setting of an event flag that data is available to be
processed while the handler fills the other half of the buffer. Data can be retrieved sequentially
from the data buffer via the IRDB routine (see Section 8.4.11), or the ADJLPS routine (see
Section 8.4.5) can be used in conjunction with direct access to the input data.

The call is issued as follows:

CALL RTS (ibuf,ilen,irnode,irate,iefn,ichan,nchan,
isb, [nbuf], [istart], [istop])

where:

• ibuf - is an integer array that is to receive the converted data values.

• ilen - specifies the length of ibuf (must be even and greater than or equal to six).

• imode - specifies the start, stop, and sampling mode. Its value is encoded by adding together
the appropriate function selection values as shown below:

Function
Selection Value

128

64

32

16

8

Meaning

Start on digital Input point set

Set digital output point at start

Stop on digital input point clear

Stop on number of buffers

Auto gain-ranging

• irate - is a 2-word integer array that specifies the time interval between AID samples. The first
word specifies the interval unit as follows:

lrate(1) Unit

1 LPS 11 clock ticks

2 Milliseconds

3 Seconds

4 Minutes

The second word specifies the interval magnitude as a 16-bit unsigned integer.

• iefn - specifies the number of the event flag that is to be set each time a half buffer of data has
been collected.

8-18

Laboratory Peripheral System Handler (LPS11)

• ichan - specifies the starting AID channel of the block of channels to be sampled synchronous1y
(must be between 0 and 63).

• nchan - specifies the number of AID channels to be sampled (must be between 1 and 64).

• isb - is a 2-woird integer array to which the subroutine status is returned.

• nbuf - sp,ecifies the number of buffern of data that are to be collected. It is needed only if a
function 1selection value of 16 has been added into imode.

• istart - SJPecifies the digital input point number to be used to trigger sampling and/or the
digital output point number to be set when sampling is started. It is needed only if a function
selection value of 128 or 64 has been added into imode.

• istop - specifies the digital input point number to be used to stop sampling. It is needed only if
a functioin selection value of 32 has been added into imode.

The isb parameter has the standard meaning described in Section 8.4.1.

When sampling is in progress, the first word of the isb array is zero and the second word contains
the number of data values currently in the buffer.

8.4.18 SDAC: Initiating Synchronous D/A Output
The SDAC FORTRAN subroutine writes data into one or more external DIA converters at precisely
timed intervals. Output can be started and stopped as for RTS (see Section 8.4.17 and all input
is double-buffered with respect to the usE~r task. One full buffer of data must be available when
synchronous output is initiated.

After SDAC lllas initiated output and the specified event flag has been set to notify the task that
free buffer space is available, the PUTD 1routine (see Section 8.4.15) can be used to put data values
sequentially into the output data buffer. The ADJLPS routine (see Section 8.4.5) can be used in
conjunction with direct access to the output data buffer. The SDAC call is issued as follows:

where:

CAI,L SDAC (ibuf, ilen, imode, irate, iefn, ichan,
nchan, isb, [nbuf], [istart], [istop])

• ibuf - is an integer array that containis the output data values.

• ilen - specifies the length of ibuf (mm1t be even and greater than or equal to six).

• imode - specifies the start, stop, and 13ampling mode. Its value is encoded by adding together
the appmpriate function selection values as shown below:

Function
Selection Value

128

64

32

16

Meaning

Start on di!~ital input point set

Set digital 'output point at start

Stop on di~}ital input point clear

Stop on number of buffers

• irate - is a 2-word integer array that specifies the time interval between DIA outputs. The first
word specifies the interval units as fol1ows:

8-19

Laboratory Peripheral System Handler (LPS11)

lrate(1) Unit

LPS11 clock ticks

2 Milliseconds

3 Seconds

4 Minutes

The second word specifies the interval magnitude as a 16-bit unsigned integer.

• iefn - specifies the number of the event flag that is to be set each time a half buffer of data has
been output.

• ichan - specifies the starting DIA channel of the block of channels to be written into
synchronously (must be between 0 and 9).

• nchan - specifies the number of DIA channels to be written into (must be between 1and10).

• isb - is a 2-word integer array to which the subroutine status is returned.

• nbuf - specifies the number of buffers of data to be output. It is needed only if function selection
value of 16 has been added into imode.

• istart - specifies the digital input point number to be used to trigger sampling and/or the
digital output point number to be set when sampling is started. It is needed only if a function
selection value of 128 or 64 has been added into imode.

• istop - specifies the digital input point number to be used to stop sampling. It is needed only if
a function selection value of 32 has been added into imode.

The isb array has the standard meaning described in Section 8.4.1.

When sampling is in progress, the first word of the isb array is zero and the second word contains
the number of free positions in the buffer.

8.4.19 SDO: Initiating Synchronous Digital Output
The SDO FORTRAN subroutine writes data qualified by a mask word into the digital output
register at precisely timed intervals. Sampling may be started and stopped as for RTS (see
Section 8.4.17) and all input is double-buffered with respect to the user task. One full buffer
of data must be available when output is initiated.

After SDO has initiated output and the specified event flag has been set to notify the task that
free buffer space is available, the PUTD routine (see Section 8.4.15) can be used to put data values
sequentially into the output data buffer. The ADJLPS routine (see Section 8.4.5) can be used in
conjunction with direct access to the output data buffer. The SDO call is issued as follows:

CALL SDO (ibuf,ilen,imode,irate,iefn,imask,isb,
[nbuf], [istart], [istop])

where:

• ibuf - is an integer array that contains the digital output values .

• ilen - specifies the length of ibuf (must be even and greater than or equal to six) .

8-20

Laboratory Peripheral System Handler (LPS11)

• imode - specifies the start, stop, and sampling mode. Its value is encoded by adding together
the appropriate function selection values as shown below:

Function
Selection Value

128

64

32

16

Meaning

Start on digital input point set

Set digital output point at start

Stop on digl1tal input point clear

Stop on number of buffers

• irate - is a 2-word integer array that specifies the time interval between digital outputs. The
first word specifies the interval units a.s follows:

•

•

•
•

•

•

lrate(1) Unit

1 LPS11 cloc~; ticks

2 Milliseconds

3 Seconds

4 Minutes

The second word specifies the interval magnitude as a 16-bit unsigned integer.

iefn - specifies the number of the event flag that is to be set each time a half buffer of data has
been output.

imask - specifies the digital output points that are to be written. It may be conveniently
specified Bts an octal constant.

isb - is a ~~-word integer array to which the subroutine status is returned .

nbuf - specifies the number of buffers of data to be output. It is needed only if a function
selection value of 16 has been added into imode.

istart - specifies the digital input point number to be used to trigger sampling and/or the
digital oui~put point number to be set when sampling is started. It is needed only if a function
selection value of 128 or 64 has been added into imode.

istop - spEicifies the digital input point number to be used to stop sampling. It is needed only if
a function selection value of 32 has been added into imode.

The isb parameter has the standard meaning described in Section 8.4.1.

When sampling is :in progress, the first word of the isb array is zero and the second word contains
the number of free positions in the buffer.

8.,5 Status Returns
The error andl status conditions listed in 'I'able 8-6 are returned by the LPSll handler described in

. this chapter.

8-21

Laboratory Peripheral System Handler (LPS11)

Table 8-6 LPS11 Status Returns

Code

is.sue

IS.PND

IE.ABO

IE.BAD

IE.BYT

IE.DAO

IE.DNA

IE.IEF

IE.IFC

IE.NOD

IE.OFL

IE.CNP

IE.PAI

IE.RSU

8-22

Reason

Successful completion

The operation specified in the 010 directive was completed successfully. The second word of the
1/0 status block can be examined to determine the number of data values processed.

1/0 request pending

The operation specified in the 010 directive has not yet been completed.

Operation aborted

The specified 1/0 operation was cancelled (via IQ.KIL or 10.STP) while In progress.

Bad parameter

An illegal specification was supplied for one or more of the device-dependent 010 parameters
(words 6-11). The second 1/0 status word is filled with zeros.

Byte-aligned buffer specified

Byte alignment was specified for a data buffer but only word alignment is legal for the LPS11.
Alternately, the length of a buffer is not an even number of bytes.

Data overrun

For the LPS11, the handler attempted to get a value from the user buffer when none was
available or attempted to put a value in the user buffer when no space was available.

Device not ready

The physical device unit specified in the 010 directive was not ready to perform the desired 1/0
operation. For the LPS11, this code is returned if a device timeout occurs while a function Is
In progress. The second 1/0 status word contains the number of free positions In the buffer, as
appropriate.

Invalid event flag number

An Invalid event flag number was specified in a synchronous function (that Is, an event flag
number that was not in the range 1 to 64).

Illegal function

A function code was included in an 1/0 request that is illegal for the LPS11 .

Insufficient buffer space

Dynamic storage space has been depleted, and there is insufficient buffer space available to
allocate a secondary control block for a synchronous function.

Device off-line

The physical device unit associated with the LUN specified in the 010 directive was not on-line.
When the system was booted, a device check indicated that this physical device unit was not in
the configuration.

Option not present

An option dependent subfunction was requested, and the required feature was not specified
at system generation. For example the gain-ranging option or DIA option is not present. The
second 1/0 status word contains zeros.

Privilege violation

The task which issued the request was not privileged to execute that request. For the LPS11 , a
checkpointable task attempted to execute a synchronous sampling function.

Resource in use

8.5.1

Laboratory Peripheral System Handler (LPS11)

Table 8-6 (Cont.) LPS11 Status Returns

Code

IE.SPC

Reason

A resource needed by the function requested in the 010 directive was being used (see
Section 8.5.1).

Illegal address space

The buffer specified for a read ior write request was partially or totally outside the address space
of the issuing task. Alternately a byte count of zero was specified. The second 1/0 status word
contains zeros.

FORTRAN interface values for these stat1.lls returns are presented in Section 8.5.4.

IE.RSU
IE.RSU is returned if a function requests a resource that is currently being used. The requesting
task can repeat the request at a later timEi or take any alternative action required.

Because certa]ln functions do not need such resources, they never cause this code to be returned.
Other functions return this code under thE! following conditions:

Function

10.SDO

10.ADS

10.HIS

10.MDA

10.MDI

10.MDO

When IE.RSU Is Returned

One or more specified digital output bits are in use

Digital output point (if specified) is in use

Digital output point (if specified) is in use

Digital output point (if specified) is in use

Digital output point (if specified) or digital input points to be sampled are in use

Digital output point (if specified) or output bits to be written are in use

The following components of the LPSll are each considered a single resource:

Resource

The AID converter and clock

Each bit in the digital output
register

When Shareabh:t

Always shareabl10.

Never shareable.

Each bit in the digital input
register

Always shareabl19 when used by 10.SDI or for start/stop conditions (specified in
subfunction modifier bits), even when in use by another function; when specified
by a synchronous digital input function, not shareable with another such function.

Each resource is allocated on a first-come-first-served basis (that is, when a conflict arises, the
most recent re:quest is rejected with a status of IE.RSU).

8-23

8.5.2

8.5.3

Laboratory Peripheral System Handler (LPS11)

Second 1/0 Status Word
On successful completion of a function specified in a QIO macro call, the IS.SUC code is returned
to the first word of the 1/0 status block.

Table 8-7 lists the contents of the second word of the status block, on successful completion for
each LPSll function.

Table 8-7 Returns to Second Word of 110 Status Block

Successful
Function

10.KIL

10.LED

10.REL

10.SDI

10.SDO

10.ADS

10.HIS

10.MDA

10.MDI

10.MDO

10.STP

Contents of Second Word

Number of data values before 1/0 was cancelled

Zero

Zero

Masked value read from digital input register

Updated value written into digital output register

Number of data values remaining in buffer

Number of data values remaining in buffer

Number of free positions in buffer

Number of data values remaining in buffer

Number of free positions In buffer

Zero

When IE.BAD is returned, the second 1/0 status word contains zero. LPSll handler functions
return the IE.BAD code under the following conditions:

Function

10.REL

10.ADS

10.MDA

10.HIS

10.MDI

10.MDO

When IE. BAD Is Returned

Relay number not 0 or 1 .

No 1/0 status block, illegal digital

1/0 point number, or illegal channel number.

No 110 status block or illegal

digital 1/0 point number.

10.ADS and ADC Errors
While IO.ADS or the ADC FORTRAN subroutine is converting a sample, two error conditions
can arise. Both of these conditions are reported to the user by placing illegal values in the data
buffer. A -1 (177777 octal) is placed in the buffer if an AID conversion does not complete within
30 microseconds. A -2 (177776 octal) is placed in the buffer if an error occurs during an AID
conversion.

8-24

Laboratory Peripheral System Handler (LPS11)

8 .. 5.4 FORTRAN Interface Values
The values lii:ited in Table 8--8 are returnud in FORTRAN subroutine calls.

Table 8-8 FORTRAN Interface Values

Status FORTRAN
Return Value

is.sue +01

IS.PND +00

IE.ABO +315

IE.ADP +101

IE.BAD +301

IE.BYT +319

IE.DAO +313

IE.DNA +303

IE.IEF +100

IE.IFC +302

IE.ILU +99

IE.NOD +323

IE.ONP +305

IE.PAI +316

IE.ASU +317

IE.SOP +102

IE.SPC +306

IE.ULN +08

IE.UPN +04

8 .. 6 Programrning Hints
This section contains information on important programming considerations relevant to users of
the LPSll handler described in this chapter.

The LPS11 Clock and Sampling Rates
The basic LPSll dock frequency (count rate) for all synchronous functions is always 10 KHZ.

The ticks parameter in a synchronous function specifies the number of ticks between samples or
data transfers. The value of ticks is a 16-bit number. Thus 65,536 discrete sampling frequencies
are possible. This provides a maximum 1:1ingle-channel sample rate of 1 sample every 100
microseconds (possible in hardware but impractical in software) and a minimum of 1 sample every

· 429,495 secornds. A single-channel rate greater than 2 KHZ is possible, but not recommended.

8-25

Laboratory Peripheral System Handler (LPS11)

Importance of the 1/0 Status Block
An I/O status block must be specified with every synchronous function. If the first I/O status word
is nonzero, the request has been terminated and the value indicates the reason for termination.
Otherwise, the request is in progress, and the second I/0 status word contains the number of
data values remaining in the buffer (or the number of free positions in the buffer for IO.MDA and
IO.MDO).

8.6.2.1 Buffer Management
The buffer unload protocol for synchronous input functions is described below. The user constructs
a 5-word block that contains the following:

IOSB:
CURPT:
LSTPT:
FSTPT:

.BLKW 2

.WORD BUFFER

.WORD BUFFER+n

.WORD BUFFER

I/O STATUS DOUBLE-WORD
; ADDRESS OF BUFFER

; ADDRESS OF END OF BUFFER
; ADDRESS OF BUFFER

'l\vo of these words are required for the I/O status block and the remaining three by the user to
unload data values from the buffer.

The user then issues the I/O request with the appropriate parameters and the address of the above
block as the 1/0 status block. The QIO directive zeros both 1/0 status words to initialize them.

If the handler accepts the request, it sets up a write pointer to the first word in the user buffer.
Thus the user has a buffer read pointer and the handler has a buffer write pointer. The user and
the handler share the second 1/0 status word, which is the number of data words in the buffer that
contain data.

Each time the handler attempts to put a sample value into the buffer, it increments the contents
of the second 1/0 status word and compares the result with the size of the buffer. If the result
is greater, buffer overrun has occUITed and the request is terminated. Otherwise, the value is
stored in the buffer at the address specified by the handler's write pointer and the writer pointer is
updated.

If the value stored in the user buffer fills half of the buffer, the event flag specified in the I/O
request is set in order to notify the user that a half buffer of data is available to be processed.
Each time the user task is activated, it executes the following code:

5$: Clear efn
10$: TST IOSB+2 ;ANY DATA IN BUFFER?

BEQ 30$;IF EQ NO
MOV @CURPT,RO ;GET NEXT VALUE FROM BUFFER
DEC IOSB+2 ;REDUCE NUMBER OF ENTRIES
ADD #2,CURPT ;UPDATE BUFFER READ POINTER
CMP CURPT,LSTPT ;END OF BUFFER?
BLOS 20$;IF LOS NO
MOV FSTPT,CURPT ;RESET BUFFER READ POINTER

20$: Process data value
BR 10$;TRY AGAIN

30$: TST I0$B ;REQUEST TERMINATED?
BNE 40$;IF NE YES
Waitfor efn
BR 5$

40$: Determine reason for termination

For IO.MDA and IO.MDO, this protocol differs slightly. The user task maintains a write pointer
and the handler a read pointer. The entire buffer must be full when the request is executed.

8-26

8.6.3

Laboratory Peripheral System Handler (LPS11)

Use of ADJLPS for Input and Output
The followin~' FORTRAN example illustrates the proper protocol for using ADJLPS for synchronous
input and output.

Synchronous input:

DIMENSION IBF (1004),IERR(2),INTVL(2)
c
C INITIATE SYNCHRONOUS A/D SAMPLING,
c

c

INTVL (1)=2
INTVL (2)=5
CALL RTS(IBF,1004,160,INTVL,IEFN,6,6,IERR,50,16,15)

C INITIALIZE HALF BUFFE:R INDEX
c

INDX=4
c
C WAITFOR HALF BUFFER OF DATA
c
10 CALL WAITFR(IEFN)
c
C CLEAR EVENT FLAG
c
15 CALL CLREF(IEFN)
c
C PROCESS HALF BUFFER OF DATA
c

SUM=O
DO 20 I=l,500
SUM=SUM+CVSWG (IBF (I+INDX))

20 CONTINUE
AVERG=SUM/500

c
C FREE HALF BUFFER FOR MORE DATA
c

CALL ADJLPS(IBF,500)
c
C ADJUST BUFFER INDEX
c

c

INDX=INDX+500
IF(INDX.GE.1004) INDX=4

C CHECK IF ANOTHER HALF' BUFFER OF DATA IS AVAILABLE
c

IF(IERR(2) .GE.500) GO TO 15
IF(IERR(l) .NE.0) GO TO end of sampling
GO TO 10

Synchronous output:

8-27

Laboratory Peripheral System Handler (LPS11)

DIMENSION IBF(1004),IERR(2),INTVL(2)
c
C FIRST BUFFER OF DATA MUST BE AVAILABLE AT START
c
C THIS EXAMPLE ASSUMES FIRST BUFFER IS FULL AT START
c
C START SYNCHRONOUS DIGITAL OUTPUT FUNCTION
c

c

INTVL(1)=2
INTVL(2)=5
CALL SDO(IBF,1004,160,INTVL,IEFN,MASK,IERR,50,16,15)

C INITIALIZE HALF BUFFER INDEX
c

INDX=4
c
C WAITFOR ROOM IN BUFFER
c
10 CALL WAITFR(IEFN)
c
C CLEAR EVENT FLAG
c
15 CALL CLREF(IEFN)
c
C CALCULATE VALUES TO PUT IN BUFFER
c

X•(Y+2)*Z
DO 20 I=l,500
IBF(I+INDX)•X**5/A

20 CONTINUE
c
C SIGNIFY ANOTHER HALF BUFFER IS FULL
c

CALL ADJLPS(IBF.500)
c
C ADJUST BUFFER INDEX
c

c

INDX=INDX+SOO
IF(INDX.GE.1004) INDX=4

C CHECK IF ANOTHER HALF BUFFER IS EMPTY
c

IF(IERR(2) .GE.500) GO TO 15
IF(IERR(l).NE.O) GO TO end of sampling
GO TO 10

In both the above examples, care is taken to ensure that the program stays in synchronlization
with the LPSll handler, the function must be stopped and restarted since this is the only way to
recover. Caution should a be exercised to ensure that the above program sequence is used to avoid
a possible loss of data.

8-28

g Card RE~ader Handler Taisks

9.1 Devices Supported
The card readier handler tasks support the CRll or the CDll punched card readers or the CMll
mark sense rE~ader. There is a device handler task for the CDll hardware (file CRNP.TSK) and
another device handler task to handle either the CR or CM hardware (file CRBR.TSK). The
selection of hardware to be supported by the CR/CM handler is determined at assembly time by
specifying the hardware type in an assembly statement. The CD handler task services the CDll
hardware only. The card reader handler task is a single controller handler supporting any card
reader assigned to CRn (where n is in the range 0 - 7). A copy of the card reader handler task is
required for each card reader supported.

9.2 Card Reader Functions
The card reader handler provides the following types of service to the user:

1 Read cards in DEC026 format and translate to ASCII,

2 Read cards in DEC029 format and translate to ASCII,

3 Read cards in the binary format descrilbed in Section 9.3.2.

The user has ·the option of specifying which of the functions he desires at assembly time.

Specifically, with a conditional assembly he can specify the types of translation to be allowed,
namely:

1 Read only 026 codes,

2 Read only 029 codes,

3 Read both types of code with 026 as default,

4 Read both types of code with 029 as dE,fault.

If no assembly time specification is made, the handler is built to do the following:

1 Read both 026 and 029 code with 029 as default.

2 Prohibit binary reads.

9.3 Data Formats
Data is interpreted as being in either alphanumeric or binary format.

9.3.1 ·Alphanumeric Format
The translation from 026 or 029 card code:~ to ASCII is performed as specified in Table 9-1.

9-1

9.3.2

Card Reader Handler Tasks

Binary Format
Binary data is not translated. After data is first converted to a packed form, it is transfeITed to the
user exactly as read; that is, each four columns = three words. Figure 9-1 below shows only the
first 4 columns on the card. This pattern is repeated for each set of 4 columns read.

Card Column

1

2

3

4

Word 1

bits 15-4

bits 3-0

Word 2

bits 15-8

bits 7-0

Word 3

bits 15-12

bits 11-0

Figure 9-1 Binary Data Format 48 Bits (3 words, 4 card columns)

15

9-2

WORD1

CARD
COLUMN

1

4 3

WORD2

CARD
COLUMN

2

CARD
COLUMN

3

WORD3

CARD
COLUMN

4

8 7 015 12 11 0

Card Reader Handler Tasks

Table 9-1 PDP-11 Punched Card Codes

Non
Parity

Character ASCII DEC029 DEC026

173 12 0 12 0

175 11 0 11 0

SPACE 040 NONE NONE

041 12 8 7 12 8 7

" 042 87 08

043 83 08

$ 044 11 8 3 11 8 3

% 045 084 087

AND 046 12 11 8 7

047 85 86

050 12 8 5 084

051 11 8 5 12 8 4

052 11 8 4 1184

+ 053 12 8 6 12

054 083 083

055 11 11

056 12 8 3 12 8 3

I 057 0 1 0 1

0 060 0 0
1 061 1 1

2 062 2 2
3 063 3 3
4 064 4 4

5 065 5 5

6 066 6 6
7 067 7 7
8 070 8 8
9 071 9 9

072 82 11 8 2

073 11 8 6 082

< 074 12 8 4 12 8 6

075 86 83

> 076 086 11 8 6
? 077 087 12 8 2
@ 100 84 84
A 101 12 1 12 1

9-3

Card Reader Handler Tasks

Table 9-1 (Cont.) PDP-11 Punched Card Codes

Non
Parity

Character ASCII DEC029 DEC026

B 102 12 2 12 2

c 103 12 3 12 3

D 104 12 4 12 4

E 105 12 5 12 5

F 106 12 6 12 6

G 107 12 7 12 7

H 110 12 8 12 8

111 12 9 12 9

J 112 11 1 11 1

K 113 11 2 11 2

L 114 11 3 11 3

M 115 11 4 11 4

N 116 11 5 11 5

0 117 11 6 11 6

p 120 11 7 11 7

a 121 11 8 11 8

R 122 11 9 11 9

s 123 02 02

T 124 03 03

u 125 04 04

v 126 05 05

w 127 06 06

x 130 07 07
y 131 08 08

z 132 09 09

[133 12 8 2 11 8 5

134 082 87

135 11 8 2 12 8 5

110R11 136 11 8 7 85

<OR 137 085 82

9.4 Run Time Service
The user can invoke either alphanumeric or binary service via the QIO Directive. The specific type
of alphanumeric translation, 026 or 029, may be defined by the code in the control card that the
user must place in front of each deck of cards (for example, 029 control card for an 029 deck, 026
control card for an 026 deck), and an end of file card.

9-4

Card Reader Handler Tasks

If the READ 1BINARY function code is not issued, the handler assumes alphanumeric mode. In
cases where the handler is assembled for both 026 and 029 cards, the type of translation shall be
the last mode invoked, unless the handler is directed otherwise by a special punch in card column
1 of the control card.

Requesting a binary read causes an error return, IE.IFC, if this capability was not incorporated at
assembly timt~.

9.5 Control Characters
.The card read.er handler task is sensitive to certain control characters. Control characters, when
recognized, are never transferred to the w~er's buffer nor are they included in the word count. The
control set consists of the following multi punches:

Punches In card column 1 Mleanlng

12-11-0-1-6-7-8··9 End of file ASCII mode. In binary mode these punches must be In
c;:ird columns 1 through 8.

12-0-2-4-6-8

12-2-4-8

9.6 1/0 Functions

0:29 codes follow.

0:26 codes follow.

110 requests e1erviced by the card reader handler are issued via the QIO$ system macro with
arguments sp1ecified in the following format:

QIO$ fc,lun,ef,pri,iosb,ast, [<stadd,size>]

where fc can have one of the following values:

Symbol Meaning

10.ATT Attach

10.DET Detach

10.RLB Read Logical Block

10.RVB Read Virtual Block

10.RDB Read Binary

The two parameter words bracketed by left and right angle (<>) brackets apply only to Read
Virtual Block and :Read Logical Block. They are optional; however, if the parameter words are
specified they must be delimited by the angle brackets. They have the following meanings:

• stadd - starting address of the buffer

• size - size of the buffer

9-5

Card Reader Handler Tasks

9.7 Recovery Procedures

9.7.1

9.7.2

Recovery procedures fall into two categories:

1 Device errors,

2 Power fail.

Device Errors
No attempt is made to flag errors on incoming data, that is, on illegal punching. There are two
forms of hardware error message, which are output to the operator's console.

Hardware error message

***CRn-NOT READY

***CRn-READ ERROR,
CHECK HARDWARE
STATUS

Action

Place cards in the input hopper and press the reset switch.

If the only error Indicated Is PICK CHECK, press the RESET switch. If the only
error Indicated is READ check and the CRBR handler Is being used, retrieve the
last two cards read and place them In front of the cards remaining In the Input
hopper. Press the RESET switch.

Otherwise, place the last card read immediately In front of remaining cards In Input
hopper. Press RESET switch.

When the CRNP handler (see Section 9.1) Is being used, pressing the STOP
switch while a card read order Is In progress causes this error message. Refeed
last card read as just described, and press RESET switch. The error message Is
repeated. Now press the STOP switch and then the RESET switch.

The request remains pending unless the system indicates that the operator cannot be notified. In
this case, the request is terminated with a status of IE.DNR.

Power Failure Recovery
If power fails, the program checks to see if a card read is in progress. If so, a hardware (device)
error is simulated.

For either device error recovery or power failure recovery the operator must reinsert the last card
read and press reset to restart the reader.

9.8 CR Status Returns
IOST contains a code indicating the disposition of the QIO request. These codes are symbolized as
shown below.

Symbol

is.sue
IE.BAD

IE.IFC

IE.DNA

9-6

Meaning

Successful completion

Invalid parameters

Invalid function code (returned only when handler was not assembled to process
binary data and a binary read was requested)

Device not ready

Symbol

IE.SPC

IE.EOF

IE.PAI

IE.DNA

IE.DAA

See Appendfa~ A.

Meaning

Part of buffer out of user space

End of file or read

User does not have directive privilege

Device not attached

Device already attached

9.9 UNIBUS Mapping Register {UMR) Allocation

Card Reader Handler Tasks

On PDP-11/70 processor systems with more than 124K of memory, the handler requests allocation
of one UMR for DMA access. The UMR i1!!1 allocated when the handler is loaded into memory and
deallocated when the handler exits. If none is available, the handler declares itself nonresident
and exits.

9-7

10

10.1

10.2

Line Printer Handler

Printer Functions
The line printer handler task is a single controller handler, supporting any line printer assigned to
LPn, where n is in the range 0-7. The line printer models supported are listed in Table 10-1.

Table 10-1 Line Printer Models

Column
Model Width Characters

LA180 132 96 (medium speed)

LP11-F 80 64

LP11-H 80 96

LP11-J 132 64

LP11-K 132 96

LP11-R 132 64 (heavy duty, high speed)

LP11-S 132 96 (heavy duty, high speed)

LP11-V 132 64

LP11-W 132 96

LS11 130 62 (medium speed)

LV11 132 96 (electrostatic printer-plotter)

The line printer handler task does not support the special features of the LVll plotter mode.

The line printer handler task LP.... is written as a multi-user task. This means that a separate
copy of the ta13k runs for each printer in the system. The read-only part of the handler code is
shared betweem all copies.

System G~eneration Options
Some types of line printer (for example, LPll-V) need their buffer be cleared before they can
be turned off-lline. In these cases, a carriage return code must be explicitly output when one is
implied; there is no wasted print cycle. These types of printer must be specified as LS-types at
system generation (See the description of the DEV directive in the IAS System Generation and
Startup Guide for more detail).

Other types (for example, LPll-R) clear their own buffer when they are turned off-line. In
these cases, a carriage r~turn code need be output only when overprinting is required. Further,
redundant carriage return codes cause wasted print cycles on these types of printer, and they
should be specified as LP-types at system generation.

For line printers specified as upper case on]y at system generation, the handler converts any lower
case characte1·s to their upper case equiva]ents.

10-1

10.3

Line Printer Handler

If an upper case only printer is specified as upper and lower case at system generation, the handler
will not perform this case conversion. Typically, lower case characters will appear as blanks on the
printer.

Function Codes
1/0 requests serviced by the line printer handler are issued via the QIO$ system macro with
arguments specified in the following format:

QI0$[S] fc,lun,ef,pri,iosb,ast[,<stadd,size,vfc>]

Function codes are:

• 10.WVB - Write Virtual Block (print buffer contents)

• 10.WLB - Write Logical Block (print buffer contents)

• IOATI' -Attach Printer for Reserved usage

• 10.DET- Detach Printer

The three parameter words bracketed by left and right angle brackets(<>) apply only to Write
Virtual Block and Write Logical Block. When used with these functions, the parameter words must
be delimited by the angle brackets. They have the following meanings:

• stadd - starting address of the buffer

• size - size of the buffer

• vfc - vertical format control character. This has one of the values shown in Table 10-2. Note
that the IAS spooler will always translate line feeds into null buffer writes to ensure that the
line feed appears correctly whatever the printer type.

Table 10-2 Vertical Format Control Characters

Octal
Value

040

060

061

053

044

Character Meaning

blank SINGLE-SPACE - The handler outputs a line feed, outputs the contents of the
buffer, and (for an LS-type printer) outputs a carriage return. Normally, printing
immediately follows the previously printed line.

0 (zero) DOUBLE SPACE - The handler outputs two line feeds, outputs the contents
of the buffer, and outputs a carriage return. Normally, a blank line Is output
followed by buffer contents printed two lines below the previously printed line.

1 (one) PAGE EJECT - The handler outputs a form feed, outputs the contents of the
buffer, and outputs a carriage return. Normally, the contents of the buffer are
printed on the first line of the next page.

+ (plus) OVERPRINT - The handler outputs a carriage return, and outputs the contents
of the buffer. Normally, the contents of the buffer are printed on the same line
as the previously printed line.

$(dollar sign) PROMPTING OUTPUT - The handler outputs a line feed (except for an LS-type
printer), and outputs the contents of the buffer. This mode of output is intended
for use with a teleprinter, where a prompting message is output, and input is
read (echoed) on the same line. Note that the line printer hardware treats a
line feed as a carriage return, line feed (except for LS11).

All other vertical format characters are interpreted as blanks (octal 040).

10-2

Line Printer Handler

Table 10-2 (Cont.) Vertical Format Control Charac:ters
------------------Octa I
Value Characte1·

000 null

Meaning

INTERNAL VERTICAL FORMAT - The handler outputs the contents of the
buffer, and does not output a vertical control character. In this mode, more
than one line of guaranteied contiguous output may be printed per 1/0 request
queued.

All other vertical format characters are Interpreted as blanks (octal 040).

10-3

'10.4

·10.s

Line Printer Handler

LP Status Returns
JOST contains a code indicating the disposition of the QIO request. These status return codes for
the line printer handler task are symbolized as shown below.

Symbol

is.sue
IE.IFC

IE.SPC

IE.DNA

IE.DAA

IE.DAO

Meaning

Successful completion

Invalid function code

Part of buffer is out of address space

Device not attached

Device already attached

Output truncated (line too long)

See Appendix A for a complete list of 1/0 status returns.

Characteristics Words for Line Printer
Section 1.8.1 describes the general use of the four characteristics words in the PUD. For
lineprinters the following bits are significant in characteristics word 2:

bit 0

bit 1

H1.LC

H1.LS

if set printer has lower case

If set printer is an LS11

These bits are set during system generation and do not vary.

10-4

11

1·1.1

1·1.1.1

Message Output Handler

Message Output Handler (MO)
IAS provides a facility for all outputting user-defined messages. Its goals are:

1 'lb provid1e a system-wide standard for message output with emphasis on error reporting.

2 'lb keep the code per task as small as possible and still provide coherent information.

After issuing a message (error or otherwine), the task that requests the message handler can:

1 Continue

2 Be immediately suspended until the operator continues or aborts the task

3 Do further processing, then be suspended as in b

4 Be immediately aborted

The MO handler (task name= MO), has two message destinations:

1 SYLOG - the system logging device

2 USBUF - a user specified buffer

You can specify one or both.

User Task Interface To MO Haindler
Message output is initiated via a QIO Diriective to the device MO. The MO task is a device handler,
and as such U is a privileged task, with an entry in the PUD called MO. The user commonly issues
the QIO directive implicitly via one of thE~ macros MOUT$, MOUT$C or MOUT$S described in
Section 11.4.

As with all handlers, a requesting task must assign a LUN to device MO in order to use it. The
LUN can be assigned in three ways:

1 The user task can execute the ASSIGN directive to device MO.

2 The user task can reserve a global memory location using the instruction:

.MOLUN:: .BLKW 1

In this irn3tance, the task builder will put an extra slot in the task's logical unit table, store its
number in .MOLUN, and assign the LUN to MO.

3 The user can assign the LUN via the task builder command, as:

ASG=MO:n

where n is specified as the LUN value.

The macros which can replace explicit use of a QJO to MO are supplied in the system macro file
RSXMAC.SML.

11-1

Message Output Handler

·11.-1.2 String Descriptors
The first parameter of the macros that issue a message using MO is the address of a string
descriptor (see Section 11.4). When the message is in the user program, the string descriptor is
a pointer to a format string; however, if the message is in a disk file, the string descriptor i.s a
pointer to a filename string.

The string descriptor is two words long. The first word is the length of the format string or
the filename string. The second word is the address of the format string or the filename string.
Example 11-1 and Example 11-2 show the string descriptor for message format strings included in
the user program. Example 11-3 shows the string descriptor pointing to a filename string.

·11.-1.3 Parameter List

~11.2

11.3

The message handler has the capability of inserting user arguments into a predefined message.
A pointer to the parameter list is the second parameter in the macro calls and is the address of a
table of sequential arguments to be inserted in the message. The format of the table depends on
the code used for constructing the message. See Section 11.3.

MO Task Operation
After the MO task has dequeued the request node set up by the user QIO Directive, message
processing proceeds as follows.

1 The format string is moved from the user task or specified file to the MO task area.

2 The message string is created (see Section 11.3).

3 If a user buffer is specified, a copy of the message is moved there. (See Section 11.5 for format.)

4 The request node is released declaring I/O done. Event flag 30 (decimal) is set only if the user
task specified CONTINUE as the following action. Event flag 30 (decimal) is not set if the user
task specified SUSPEND in the macro.

If ABORT was specified, the requesting task is terminated by the ABORT directive.

5 If SYLOG was specified as the destination, the message is sent to the system logging device.

Note that the output of a message to the system logging device on behalf of a user task is
always asynchronous to that task's execution. If the using task specifies an I/O status block, a
return code is placed in it. A positive value in the status block indicates a successful return.
A negative value indicates an error return. A successful return to the user means that all
processing up to but not including the output to the system logging device was correct. Status
returns are defined in Section 11.8.

Message Construction
Messages are constructed from formatted strings that can be stored either in the user task space
or in a disk file, with a fixed length of 64-byte records. The format string consists of fixed and
variable characters. In order to construct a message, the user must supply values to be substituted
for the variables. An example of a format string is:

ALPHA:%8A

11-2

Message Output Handler

The format string is scanned and each character is copied into the message buffer unt.il a%
character is encountered. This triggers an interpretation of the next few characters according to
the followinig syntax:

% count code

or

% V code

or

% %

where:

• count - is a numeric ASCII string that is converted into a positive decimal integer indicating
how many times the action indicated by the code character is to be performed. If not specified,
1 is ass1Jlmed.

• V - is used to indicate that the count is variable and the next word in the parameter list is
interpreted as the count.

• code - is a single letter indicating the action to be performed. The code values are summarized
in Table 11-1.

• % - is used to output % to the message text.

In the exam1ple, %8A is interpreted to miean:

Move 8 c:haracters from the buffer whose address is the next item in the parameter list.

In the exam]ple %VA, the interpretation]is:

Get the •~ount, a variable number, from the current position of the parameter list pointer.
Increment the pointer and move the variable number of bytes or characters as stated above.

In the examiple below, the first word of the string descriptor STRl, contains the format string
length and the second word contains thE! format string address. PAR! is the address of the
parameter list.

To pass format string information to MO the user task proceeds as follows:

1 Assume 1the formatted message was assembled as:

STRl: . WORD LNU!-LNl ; LENGTH OF FORMAT STRING
.WORD LNl ;ADDRESS OF FORMAT STRING

LNl: .ASCIZ /ALPHA: %8A/
LNlE:

2 During program execution a paramet.er list contains the pointer to the ASCII string.

PARl: .WORD ASTR

ASTR: .ASCII /ABCDEFGH/

3 The user task issues a macro call:

MOUT$S #STRl,#PARl

11-3

Message Output Handler

4 MO responds to the macro call and outputs the following message to the system Jogging device:

****taskname - CONTINUED
ALPHA:ABCDEFGH

In Table 11-1, the %nT command (FORTRAN Trace-back Chain) takes two arguments: the
trace-back chain listhead and the current statement number. The trace-back chain listhead is
the contents of location $NAMC; the current statement number is the contents of location $SEQC.

The steps corresponding to 2 and 3 above are (with n=20):

2 Set up parameter list:

PARAM : .BLKW 2
STRING: .ASCIZ /%20T/

3 Code and macro call:

MOV $NAMC, PARAM
MOV $SEQC, PARAM+2
MOUT$S f STRING, tPARAM

Example 11-1 and Example 11-2 show more complex format strings, the macro calls to format
them, and the resulting output string. Section 11.5 describes default values that are used to
construct the DPB when parameters are omitted.

Table 11-1 Format String Codes

Code Meaning

%nA Move n bytes from the buffer whose pointer Is taken from the current location of the parameter
list.

%nB Print n bytes as 3-digit octal numbers. The current Item in the parameter list gives the address of
the address of the first byte. The bytes are separated by spaces.

%n0 Convert n words beginning at the current location In the parameter list. Each word produces a
signed zero-suppressed ASCII string (maximum, five digits) that is a decimal representation of
the word.

%n0

%nP

%nR

%nF

%nl

%nN

11-4

Each converted digit string Is delimited by a tab. If the sign is omitted,+ is Implied.

Convert n words beginning at the current location in the parameter list. Each word produces a
signed, zero-suppressed ASCII string (maximum, five digits) that is an octal representation of the
word.

Each converted digit string is separated by a tab. Omitting the sign implies+.

Same as %n0 except that each word converts to an unsigned 6-digit octal string.

Convert n words beginning at current location in the parameter list. Each word is interpreted
as a RADIX-50 word and converts to three ASCII characters. No spaces are Inserted between
converted 3-character strings.

Insert n form feed characters into the output string. Insertion of form feeds does not imply start
of a new record.

Start a new record in the output buffer. This code implies carriage return, line feed (a CR,LF)
when output is to the system logging device. If n is greater than 1, additional O byte records are
inserted in the output buffer.

Insert n line terminators (CR,LF) in the output string. The current record is not terminated.

111.3.1

Message Output Handler

Table 11-1 (C•::mt.) Format String Codes

Code

o/onT

o/onX

Meaning

Trace the FORTRAN traceback: chain through n links or until the link pointer Is 0, whichever
comes first.

Insert n filename strings in the output buffer beginning at the current location In the parameter
list. A filename is described by five parameter words:

Words 0-2 - Radix-SO filename;
Word 3 - Radix-SO file type1;
Word 4 - Binary version nuimber.

The filename is printed in standard syntax and trailing blanks are suppressed. If the version
number is 0, It is not printed. Each converted filename is delimited by a space.

Message IFile
EITor messag1es can be stored in a file. In this case the string descriptor in the macro call refers
to a filename string instead of a format string. The default filename type is .MSG. In the example
below, Rl contains the address of the parameter list. R2 contains the record number of the format
string within the file.

11-5

Message Output Handler

Example 11-1 Example Using Counts In the Format String

MOUT$S fSTRl,#PARl

STRING DESCRIPTOR

STRl: .WORD LNlE-LNl ;LENGTH OF FORMAT STRING
.WORD LNl ;ADDRESS OF FORMAT STRING

FORMAT STRING

LNl: .ASCIZ /ALPHA:%10A,DEC:%3D,OCT:%40/
LNlE:

; PARAMETER LIST

PARl: .WORD ASTR ;POINTER TO ASCII STRING

;ARGUMENTS TO BE USED IN
;DECIMAL CONVERSION

. WORD

. WORD

. WORD

.WORD

.WORD

.WORD

.WORD

123 .
456 .
789 .

111
222
333
444

;ARGUMENTS TO BE USED IN
;OCTAL CONVERSION

ASTR: .ASCII /ABCDEFGHIJ/

.MOLUN::.BLKW 1 ;LUN WILL BE ASSIGNED BY
: TH:E: TASK BUILDER

The resulting message is as follows:

****task name - CONTINUED
ALPHA:ABCDEFGHIJ,DEC:l23 456 789,0CT:lll 222 333 444

11-6

Example 11-2 Example Using v In the Format String

MOUT$,S iS'l,R2, iPAR2

STRING DESCRIPTOR

STR2: .WORD LN2E-LN2 ;LENGTH OF FORMAT STRING
• WORD LN2 ; ADDRESS OF :E'ORMAT STRING

FORMAT :STRING

LN2: .ASICIZ /ALPHA:%VA,DEC:%VD,O<:T:%VO/
LN2E:

; PARAMETER LIST

PAR2: .WORD 10.
.WORD ASTR

.WORD 3

.WORD 123.

. WORD 456 •

. WORD 789 .

.WORD 4

.WORD 111

.WORD 222

.WORD 333

.WORD 444

; POINTER TO Jl,SCII STRING

;ARGUMENTS TCJ BE USED IN
;DECIMAL CONVERSION

;ARGUMENTS TO BE USED IN
;OCTAL CONVERSION

ASTR: .ASCII /ABCDEFGHIJ/

.MOLUN::.BLKW 1 ;LUN WILL BE ASSIGNED BY
;THE TASK BUILDER

The resulting message is as follows:

****task name - CONTINUED
ALPHA:ABCDEFGHIJ,DEC:123 456 789,C•CT:lll 222 333 444

Message Output Handler

11-7

Message Output Handler

Example 11-3 Example of Format From a Disk Fiie

MOUT$S tFILDES,Rl,R2

;STRING DESCRIPTOR
;
FILDES: .WORD ENDFIL-FILNAM ;LENGTH OF FILENAME STRING

.WORD FILNAM ;ADDRESS OF FILENAME STRING

FILENAME STRING

FILNAM: .ASCIZ /DKl: (100,lOO]SAMPLE.MSG;l/
ENDFIL:

11-8

1 ·1.4

11.4.1

Message Output Handler

Message Macro Descriptions
This section c:ontains an explanation for each of the macros that are supplied for the users of MO.
The macros are listed below.

MOUT$
MOUT$C
MOUT$S
MODF$
MOWA$S

The argumen1t des<,Tiptions for MOUT$ (Section 11.4.1) apply also to MOUT$C (Section 11.4.2) and
MOUT$S (Section 11.4.3). mout$c and MOUT$S have three additional arguments.

Where a suspension is required, whether immediate or deferred, the parameter "act" must be set
to SUSPD. SEie Section 11.4.5 for details c:onceming suspension. The operator can reply to the
suspension by typing the MCR commands

CON'.l'INUE tsknam or ABOR~~ tsknam

or the DCL commands

CON'.l'INUE/MESSAGE tsknam or ABORT/REALTIME tsknam

MOUT$
This macro gEmerates the proper Queue 1/0 DPB for accessing the MO task.

Macro call:

Argument

str

prm

num

act

MOUT$ str, prm, num, act, d~Jt, buf, siz, iost, lun

Meaning

Address of a string descriptor In the user area that In turn points to a format string In the user
area or to the dataset specificsition of the user's file where the record (format string) Is found.
See "num".

Prm is a pointer to the parameter list. The parameter list is a sequential list of arguments that are
used in formatting the messagE1 format string.

The value of num determines how str is interpreted. If num is less than or equal to 0, the value
of str is a pointer to a format string in the task's address space. If num is positive, str is a pointer
to an ASCII filename, and num"s value is a record number Index to the format string In the named
file. If num is not specified zero is used by default.

The value specified for act dictates what action is to be taken after the error message Is
formatted. You can specify one1 of the following string variables:

11-9

Message Output Handler

Argument

dst

buf

siz

lost

lun

11-10

Meaning

CONT-Continue the task that is requesting the error message, Immediately or after further
processing.

SUSPD-Suspend, immediately or after further processing, the requesting task until the
operator responds (see Section 11.4). The requesting task must also generate a wait on the
special event flag (30 decimal) in order to cause the suspension (see Section 11.4.5).

ABORT-Abort the requesting task.

If the action is not specified, CONT is used by default. An action value not matching one of those
above Is assumed to be described in a user-specified action bit pattern. (See Section 11.4.4.)

One of the following string variables is specified to designate the destination of the error
message.

SYLOG-System logging device

USBUF-User buffer

SYABUF-System logging device and user buffer

If the destination Is not specified, SYLOG is used by default.

Output to the system logging device is preceded by a taskname/actlon header llne if the user
specifies the string SYLOG as the destination argument in the macro call. To suppress the
header the user modifies the destination argument by specifying SY$STM In the bit pattern. See
Section 11 .4.4. USBUF or SYABUF designates that the message wlll be sent to a user buffer,
lndentified In the buf parameter (see below). The header line Is never returned to the user buffer.

A destination value not matching one of those above is assumed to be described in a
user-specified destination bit pattern.

Note that If act was CONT, output to SYLOG is performed simultaneously with task operation.

Buf points to the user buffer, where the message is sent when destination requires transfer back
to the user task.

The size, in bytes, of the user buffer pointed to by buf. (Maximum - 256/mlnimum - 6 (decimal).)

This parameter contains a pointer to the user task's 1/0 status block, which is set on 010
completion, to indicate success or failure.

This parameter defines the logical unit number to be used for the message. If the task \has
defined the global symbol .MOLUN, the task builder initializes the LUN to incorporate the
message output LUN by placing the value of the LUN in location .MOLUN. If the user then
invokes the MOUT$S macro, .MOLUN is the default LUN parameter. Otherwise, lun must be
specified In the macro call.

Message Output Handler

The following symbols are generated for accessing the DPB at run time. They are logically defined
values equal to byte offsets from the start of the DPB to the respective elements:

• M.OLUN--(Length 2 bytes) Logical Unit

• M.OIST-(2) Address of 1/0 status block

• M.ODST--(1) Destination

• M.OACT--(1) Action

• M.ONUM-(2) Record number

• M.OSTR--(2) F,ormat string descripto1r pointer

• M.OPRM--(2) Parameter list pointer

• M.OBUF--(2) User buffer pointer

• M.OSIZ-(2) User buffer size

111.4.2 MOUT$C
The MOUT$C macro generates a Queue L'O DPB in a separate program section named $DPB$$. A
monitor call and, if specified, a wait for event flag 30 are generated in the original program section.

Macro call:

MOUT$C str,prm,num,act,dst,buf,siz,iost,lun,cs,err,now

In addition to the macro arguments described in Section 11.4.1, MOUT$C uses the three arguments
described befow.

Argument

cs

err

now

1.4.3 MOUT$S

Meaning

This parameter only appears with MOUT$C. It should specify the name of the current program
section. (Refer to the IAS Systiem Directives Reference Manual for an explanation of the $C form
of system directives.)

If a value is given for err, it spe·cifies a location to be called if the Queue 1/0 directive falls.

If this parameter is null, the WAIT FOR event flag 30 Is generated. If NWAIT Is specified, the
WAIT FOR is not generated.

The MOUT$S macro generates the code to construct a DPB on the user stack and issue the Queue
1/0 directive to the message output task (MO). Provision is included for specifying an error address,
in case the Queue KIO directive is unsuccessful, and a WAIT FOR on the special event flag.

Macro call:

MOUT$S str,prm,num,act,dst,buf,siz,iost,lun,err,now

All argumentEJ, with the following exceptions, are expected to be proper symbols for use in MOV
and MOVB source fields: act and dst are string variables for which a good comparison with the
predefined symbols listed in Section 11.4.l will cause the proper code generation. The argument
for the WAIT FOR (now) expects the string NWAIT if the user does not want a special WAIT FOR

11-11

Message Output Handler

generated after the QIO. The argument err is a m~er defined address to be called if the QIO fails.
See Section 11.4.1 and Section 11.4.2 for argument definitions. %RUNOFF-W-IIF, "[ignored

11.4.4 User Definition of Action and Destination
It might be desirable to use a DPB that has been defined by one of the MOUT$ macros, and then
to change action codes and destinations for different messages at run time. The macro MODF$ is
provided to define locally the symbols used to achieve this change.

For example, in the following subroutine assume that on entry, RO contains the DPB address. Rl
contains a flag which, if negative, means that the task is aborted and that the header line (i.e.,
taskname and action) is printed. If Rl is positive, the task continues and the header line is not
printed.

.MCALL
MODF$

ERRA: TST
BMI
MOVB

MOVB
BR

FATAL: MOVB

MOVB

ERRTN: RTS

MODF$

Rl ;ENTRY POINT
FATAL ;IS THIS A BAD ERROR

IC$0NT,M.OACT(R0) ;NO SO JUST
;CONTINUE WITH WARNING

#SY$STM,M.ODST(RO) ;ON SYSTEM
ERRTN ;LOGGING DEVICE

IA$BRT,M.OACT(RO) ;BAD ERROR SO ABORT
;THE TASK AND ALSO

tSY$STMIHE$ADR,M.ODST(RO) ;PRINT THE
;HEADER LINE ON
;SYSTEM LOG

PC

The MODF$ macro does not have parameters in the call. All the macro does is define the following
symbols locaJ'

act

C$0NT

S$USP

A$BRT

dst

SY$STM

BU$FFR

HE$ADR

Continue the requesting task

Suspend the requesting task

Abort the requesting task

System logging device

User buffer

Include taskname/action header line with output.

Note that, as shown in the example, the destination codes can be combined by the logical OR
operator (!).

As was stated in Section 11.4.1, it is possible to suppress the taskname header line. The example
above shows how to suppress the header at run time by moving the destination code SY$STM into
the DPB using the offset M.ODST. The header can also be suppressed by using MODF$ symbols at
assembly time, for example,

11-12

Message Output Handler

.MCALL MODF$,MOUT$

MODF$
MESDST = SY$STM!BU$FFR

MOUT$ str,prm,nurn,act,MESDST,buf,siz,iost,lun

The macro MOUT$ sets the destination cocie of the DPB to the value of the user defined symbol
MESDST (since it is not one of the codes l:isted in Section 11.4.1 and checked for by MOUT$).
However, in the example we have defined MESDST to be the inclusive OR of SY$STM and
BU$FFR, thus omitting the code for taskname header printing. Hence the message goes to the
system logging device and the user buffer without the header line.

11,.4.5 Uses of the MO WAIT FOR Macro
The macro MOWA$S (no parameters) is used with MOUT$ to generate an immediate wait tiJI the
operator acts i1n response to the message.][tis also used with MOUT$, MOUT$C and MOUT$S
when the wait is deferred.

For immediate suspension, use

MOOT$

MOWA$S

or

MOUT$C with "now" set to null

or

MOUT$S with "now" set t<> null

For deferred suspension, use

MOUT$

processing

MOWA$S

or

MOUT$C with "now" set te> NWAIT

processing

MOWA$S

or

MOUT$S with "now" set tc> NWAIT

processing

MOWA$S

11-13

11.5

11.6

Message Output Handler

Message DPB Format
The DPB format for Message Output is shown below with its relation to the MOUT$ macro call.
The macro call argument definition has been arranged so that the arguments used most appear
first. Note that macro invocation fixes certain values in the DPB.

WORD 1: DIRECTIVE AND DPB SIZE ;THE SIZE OF THE DPB WILL VARY
FROM 9-12 WORDS DEPENDING ON

; SPECIFICATION OF PRM, BUF,
; AND SIZ

WORD 2: I/O FUNCTION ;FIXED TO "WRITE" FUNCTION CODE
WORD 3: LUN ;DEFAULT TO 0 IF EXPANDED BY

; MOUT$ or MOUT$C, DEFAULT TO
; ".MOLON" IF EXPANDED BY MOUT$S.

WORD 4: EFN,PRIORITY ;FIXED TO EVENT FLAG 30 (DECIMAL),

WORD 5: IOST
WORD 6: AST
WORD 7: ACT,DST

WORD 8: NUM

WORD 9: STR

WORD 10: PRM

WORD 11: BUF

WORD 12: SIZ

PRIORITY O.

;DEFAULT TO 0 (NO STATUS BLOCK)
; FIXED TO "NO AST ENTRY"

; ACTION DEFAULTS TO CONT[INUE]
DESTINATION DEFAULTS TO SYLOG

; MESSAGE NUMBER DEFAULTS TO 0

;FORMAT STRING POINTER IF NUM
IS NEGATIVE OR ZERO. FILENAME
POINTER TO SYSTEM MESSAGE
FILE IF NUM IS POSITIVE

;PARAMETER LIST POINTER DEFAULTS
TO 0 (NO PARAMETER LIST) - FOR-
MAT STRING IS THE MESSAGE)

;USER BUFFER POINTER - DEFAULTS
TO SMALLER DPB SIZE

;USER BUFFER SIZE - DEFAULTS TO
0 IF BUF IS SPECIFIED.

If the macro is invoked with the symbol $$$GLB defined, the DPB is not generated, and the
symbolic offsets are defined globally.

Message Format Returned to User Buffer
The message buffer returned to the user is a single transfer of a maximum 512 bytes. The format
of the data is:

11-14

Message Output Handler

WORD1 NUMBER OF RECORDS THAT FOLLOW

WORD2 BYTE COUNT OF RECORD #1

RECORD#1

BYTE COUNT OF RECORD #2

RECORD#2

The L code in the format string is a record terminator and causes the byte count of the current
record to be stored as the first word of that record. When necessary, the record is padded with a
zero to ensur«! an even byte count. Each lL code in the action string causes an implied CR,LF on
the system logging device.

If the repeat count for the code Lis great•er than 1, then additional records of no bytes are created.
The CR,LF is implicit and is not stored in the user buffer. For e?Cample, %3L causes the current
record to be t4erminated plus two zero words indicating two records of length zero.

Error Conditions
The MO task is designed to output messages in spite of error conditions that might arise. Error
conditions an' accommodated as follows:

1 If destination is not specified, SYLOG is assumed.

2 If a user buffer is specified in destination, but the DPB size indicates that none was specified,
or if the size of the buffer was less than six bytes, output is forced to SYLOG.

3 The maximum output buffer size is 2156 (decimal) bytes, or the user buffer size (if specified),
whichever is smaller. The maximum input buffer size is 64 (decimal) bytes, or the format
string size, whichever is smaller.

4 Errors detected during the reading of a format string from a file (CSI, OPEN, GET, CLOSE)
cause an 1error code to be set in the user status block. The contents of the input buffer are
printed an is.

5 Errors detected during the processing· of a format string cause three question marks to be
appended to the message at the point of the error. An error code is set in the user status block.
Possible eirrors are:

a. Illegal access to user parameter list,

b. Message buffer overflow,

11-15

·11.a

Message Output Handler

c. Illegal format directive.

6 The following message is printed on the operator's console if the MO task was unsuccessful in
declaring itself a handler task.

****MO - EXIT****
"DECLARE AND SET" ERROR

MO STATUS RETURNS
The following 1/0 status :returns are made by MO:

• IS.SUC-Successful MO request

• IE.BAD-Invalid format directive encountered, or buffer size less than established minimum,
or invalid destination code.

• IE.IFC--Invalid 1/0 function code.

• IE.SPC--Argument out of user address space.

• IE.DAO...;...Data overrun (buffer too small for formatted message).

• IE.PRI-110 privilege error.

• IE.BNM-Bad filename specified.

In addition, error codes can be generated by the File Control Services Routines during an attempt
to access a message file.

11-16

12

1:2.1

1:2.2

Paper Tape Reader/Punch Handler

Devices Supported
The high speE~d paper tape reader and punch handler tasks support the following devices:

Device

PC11 paper tape reader/punch

PR11 paper tape re~der

Read Speed

300 char/sec

300 char'/sec

(image mode only: no interpretation of data codn)

Function Codes

Punch Speed

50 char/sec

The 1/0 reqm~sts serviced by the paper tape reader/punch handler task are issued via the QIO$
system macrCJ• with arguments specified in the following format:

QIO$ fc,lun,ef,pri,iosb,ast

fc can have one of the following values.

Symbol

10.KIL

10.AlT

10.DET

10.RLB

10.WLB

Meaning

Cancel Request

Attach

Detach

Read Logical Block (paper tap•9 reader only)

Write Logical Block (paper tap•~ punch only) Read/Write Logical Block passes the tape Image to
and from the devices, thus the user task will be able to convert between IAS/RSX format and
foreign formats as described.

12-1

12.3

Paper Tape Reader/Punch Handler

Tape Leader/Trailer
The paper tape reader handler task attempts to read leaders (nulls) from the paper tape when the
device is attached via the QIO function 10.ATT. The paper tape punch handler attempts to punch
100 leaders (nulls) when the device is attached via the QIO function 10.ATT, or punch 100 trailers
(nulls) when the device is detached by the QIO function 10.DET. The handler task returns an
end-of-tape condition (IE.EOF) with the byte count if a punch failure occurs during a write logical
function or if a device not ready condition occurs during a read logical function. Such a condition
can be caused by any of the following:

• No tape,

• Reader off line,

• Power low,

• Malfunction after read begins.

12.:1.1 Sequential File Device
The high speed paper tape reader and punch handlers distributed with the IAS system process
data as sequential block 1/0 when using FCS or PIP.

You can reconfigure the handlers to use sequential record 1/0 with ASCII carriage control when
performing read and write virtual functions. The paper tape reader/punch is then treated as
a sequential file device by the file control services (FCS). All Files-11 files carry the record
structure: start of record in word 1, byte count plus 4 in word 2, the actual data· records, and
the checksum. The checksum is not included in the byte count; however, it is used to verify the
calculated checksum of the stripped byte count when the data is read back from the reader handler.

To reconfigure the handlers, edit the source code to include a definition of the symbol ASCFMT for
ASCII format 1/0. 1b enable sequential block 1/0, define the symbol FILSYS. Both symbols can be
defined in the same handler.

The handler source code is supplied on the binaries distribution under UFD [311,14]. The source
code also contains instructions for assembling and building the handlers.

If you require ASCII processing for read and write virtual functions you must also ensure that the
device characteristics in the handlers' PUD entries are set correctly. Bits 0 and 1 (carriage control
and record-oriented device) must be set in characteristics word one. Set these during System
Generation or use the MCR OPE command.

12-2

12.4

Paper Tape Reader/Punch Handler

PT Status Returns
IOST contains a code indicating the disposition of the QIO request. These status return codes for
the paper tape reader/punch handler tasks are symbolized as shown below. (See Appendix A.)

Symbol

IE.IFC

IE.SPC

IE.DAA

IE.DNA

IE.PAI

IE.EOF

IE.ABO

IE.VER

Meaning

Invalid function code

Part of buffer is out of address space

Device already attached

Device not attached

Privilege violation

End of file

Request terminated

Check sum error (This code occurs only if the device is treated as a sequential file device.)

12-3

13

13.1

13.2

Cassett•~ Handler

lntroductic>n
The cassette handler supports the TAU magnetic tape cassette (a TAll controller with a TU60
dual transport). Programming for cassette is quite similar to programming for magnetic tape. The
TAll system ie1 a dual-drive, reel-to-reel unit which uses Philips-type cassettes.

The maximum capacity of a cassette, in bytes, is 92,000 (minus 300 per file gap and 40 per
interrecord gap). It can transfer data at speeds of up to 562 bytes per second. Recording density is
from 350 to 700 bits per inch, depending on tape position.

QIOMACRO
This section summarizes standard and dev~ice-specific QIO functions for the cassette handler.

13.2.1 Standard C~IO Functions
Table 13-1 list.s the standard functions of the QIO macro that are valid for the tape cassette
handler.

Table 13-1 S1tandard QIO Functions for tine Tape Cassette Handler

Format

Ql0$C 10.ATT, ...

010$C 10.DET, .. .

Ql0$C 10.KIL, .. .

Ql0$C 10.ALB, ,<stadd,size>

010$C 10.AVB, ,<stadd,size>

010$C 10. WLB, ... ,<stadd,size>

QIO$C 10.WVB, ,<stadd,size>

where:

Function

Attach device

De1tach device

Ca1ncel 1/0 requests

Read logical block (read tape into buffer)

Ae·ad virtual block (read tape Into buffer)

Write logical block (write buffer contents to tape)

Write virtual block (write buffer contents to tape)

• stadd - is tlhe starting address of the data buffer (may be on a byte boundary).

• size - is thEi data buffer size in bytes (must be greater than zero).

13-1

Cassette Handler

113.2.2 Device-Specific QIO Functions

'113.3

Table 13-2 lists the device-specific functions of the QIO macro that are valid for cassette. The
section on programming hints below provides more detailed information about certain functions.

Table 13-2 Device-Specific 010 Functions for the Tape Cassette Handler

Format Function

010$C 10.EOF, .. .

010$C 10.RWD, .. .

Write end-of-file gap

Rewind unit

010$C 10.SPB, ... ,<nbs> Space blocks

010$C 10.SPF, ... ,<nes> Space files

where:

• nbs - is the number of blocks to space past (positive if forward, negative if reverse).

• nes - is the number of EOF gaps to space past (positive if forward, negative if reverse).

Status Returns
The error and status conditions listed in Table 13-3 are returned by the cassette handler described
in this chapter.

Table 13-3 Tape Cassette Handler Status Returns

Code

is.sue

IE.ABO

IE.DAA

IE.DAO

IE.DNA

IE.DNA

IE.EOF

13-2

Reason

Successful completion

The operation specified in the 010 directive was completed successfully. The second word of the
1/0 status block can be examined to determine the number of bytes processed, if the operation
involved reading or writing; or the number of blocks or files spaced, if the operation involved
spacing blocks or files.

Operation aborted

The specified 1/0 operation was cancelled via 10.KIL while still in the 1/0 queue.

Device already attached

The physical device unit specified in an 10.ATI function was already attached by the issuing task.
This code indicates that the issuing task has already attached the desired physical device unit,
not that the unit was attached by another task.

Data overrun.

The handler was not able to sustain the data rate required by the TA 11 ·controller.

Device not attached

The physical device unit specified by an 10.DET function was not attached by the issuing task.
This code has no bearing on the attachment status of other tasks.

Device not ready

The physical device unit specified in the 010 directive was not ready to perform the desired 1/0
operation. This code is returned to indicate that the unit is off line.

End-of-file encountered

13.3.1

13.4

Cassette Handler

Table 13-3 (C:ont.) Tape Cassette Handller Status Returns

Code

IE.EQT

IE.IFC

IE.SPC

IE.VER

IE.WLK

Reason

An end-of-file gap was recognized on the cassette tape. This code is returned if an EQF gap is
encountered during a read or iif the cassette is physically removed during an l/Q operation.

End-of-tape encountered

While reading or writing, clear trailer at end-of-tape (EQT) was encountered. Unlike Magtape,
writing beyond EQT is not permitted on cassettes. This condition is always sensed on a write
before it would be sensed on .a read of the same section of tape. If IE.EQT Is returned during
a write, the cassette head encountered EQT before the last block was completely written. It is
recommended that the user rewrite the block, in its entirety, on another cassette.

Illegal function

A function code was specified in an l/Q request that is illegal for cassette.

Illegal address space

The buffer specified for a read or write request was partially or totally outside the address space
of tlhe issuing task. Alternately, a byte count of zero was specified on a transfer.

Unrecoverable error

This code Is returned when a block check error occurs. The cyclic redundancy check (CRC),
a two-byte value located at th•:t end of each block, is a checksum that Is tested during all read
operations to ensure that data is read correctly. If an unrecoverable error is returned, the user
may attempt recovery by spacing backward one block and retrying the read operation.

Write-locked device

The task attempted to write on a cassette unit that was physically write-locked. This code may
be returned after an IQ.WLB, 10.WVB, or IQ.EQF function.

Cassette Error Recovery Proc:edures
If an etTor oc:curs during a read or write operation, the operation should be retried several times.
The recommEinded maximum number of retries is nine for a read and three for a write because
each retry involves backspacing, which does not always position the tape in the same place. More
than three reitries of a write operation may destroy previously written data. For example, to retry
a write, it is best to space two blocks in rnverse, then space one block forward. This ensures the
tape is in thei proper position to rewrite the block that encountered the etTor.

After read and write functions, the second 1/0 status word contains the number of bytes actually
processed by the function. After spacing fU.nctions, it contains the number of blocks or files actually
spaced.

Structure, of Cassette Tape
Figure 13-1 illustrates a general structure for cassette tape. A different structure can be employed
if the user desires to do so.

Here the tap•~ consists of blocks of data interspersed with sections of clear tape that serve as leader,
trailer, inten·ecord gaps (IRGs), and end-of-file gaps.

The logical end-of-tape in this case consists of a sentinel label record, rather than the conventional
group of end-of-file gaps. Each file must contain at least one block. The size of each block depends
upon the number of bytes the user specifies when writing the block.

13-3

Cassette Handler

Figure 13-1 One Possible Structure of Cassette Tape

IRGs

BOT

I cL!PG ILRfual:REc{ IREc!Eoi2LRjREcl JREcl Eof.IS@i
EOT

fcTI
'---........ ------/ '-----____ / ~

v LEOT
FILE2 F~LE 1 ______ ,__/

150 FEET

13-4

1:3.5

1 :3.5.1

Cassette Handler

Abbreviation Meaning

Clear leader

Physical beginning-of-tape

CL

BOT
LPG

LR

REC

EOF
IRG

SLR

LEOT
EOT
CT

Load point gap (blank tape written by driver before the first retrievable record)

File label record

Fixed-length record (data)

End-of-file gap

lnterrecord gap

Sentinel label record

Logical end-of-tape

Physical end-of-tape

Clear trailer

Program11ning Information
This section c:ontains important programming considerations of which users of the cassette handler
described in this chapter should be aware.

lmportanc:e of Rewinding
The first cassette operation performed on a tape must always be a rewind to ensure that the tape
is positioned 'to a known place. When it i:9 positioned in clear tape there is no way to determine
whether it is in leader at the beginning-of-tape (BOT) or in trailer at the end-of-tape (EOT).

1 :3.5.2 End-of-FHe and 10.SPB
The hardwar~~ senses end-of-file (EOF) as a timeout. When IO.SPF is issued in the forward
direction (nes is positive), the tape is positioned two-thirds of the way from the beginning of the
final file gap. In effect, this is all the way through the file gap. When IO.SPF is issued in the
reverse direction (nes is negative), the tape is positioned one-third of the way from the beginning
of the final file gap (that is, two thirds of the way from the beginning of the last file spaced).
Therefore to c:orrectly position the tape for a read or write after issuing IO.SPF in reverse, the user
should issue IO.SPB forward for one block, followed by 10.SPB in reverse for one block.

13-5

Cassette Handler

13.5,.3 The Space Functions, 10.SPB and IQ.SPF
10.SPB always stops in an IRG, IO.SPF in an EOF gap. Neither space function actually takes
effect until data are encountered. For example, suppose the tape is positioned in clear leader at
BOT and the user requests that one block be spaced forward. The drive passes over the remaining
leader until it reaches data, passes one block, and stops in the IRG. Similarly, if the same command
is issued when the tape is at BOT on a blank tape or a tape containing only EOF gaps, the function
does not terminate until EOT.

13.5.4 Verification of Write Operations
Certain etTors, such as cyclic redundancy check, are detected on read but not write operations.
Therefore, to ensure reliability of recording, it is recommended that the user perform a read as
verification of every write operation.

13.5.5 Block Length
The user must specify the exact number of bytes per block when requesting read or write
operations. An attempt to read a block with an incorrect byte count causes an unrecoverable
etTor to occur.

13.5.6 Logical End-of-Tape
The conventional method of signalling logical end-of-tape by multiple EOF gaps is inadequate
for cassettes. This is because multiple EOF gaps are not distinguishable from each other. For
example, two sequential EOF gaps would be read as three instead of two. Also spacing functions,
since they are triggered by encountering data, can not recognize multiple EOF gaps. Consequently,
the use of a sentinel or key record to signal logical end-of-tape is recommended.

13-6

14

14.1

14.2

Null Device Handler

Introduction
IAS provides the facility for input from and output to a "null device". QIOs to the null device have
the following· results:

QIO

Read functions.

Write functions

Attach

Detach

All others

1/0 Status Returned

IE.EOF

is.sue

IS.sue (if successful!)' attached)

IE.DAA (If already attached)

IS.sue (if successful!)' detached)

IE.DNA (If not attached)

is.sue

The null device is particularly useful for program testing. A program which is written to do 1/0 to
a real device can temporarily be assigned to the null device (pseudo device NL:) while other parts
of the program are being tested.

Example
Consider a program TESTPROG which, when tested and run with live data, produces:

• a listing report on lineprinter using LUN 7

• an output data file on magnetic tape using LUN 8

For test purposes the program has debugging dialogue which uses LUN 9 to communicate with the
terminal, TI.

During initfal testing the listing report and output data file are not required and the debugging
dialogue only is used:

ASSIGN NL: 7

ASSIGN NL: 8

ASSIGN TI: 9

RUN TESTPROG

14-1

14.3

Null Device Handler

During final testing the output files are being checked and the debugging dialogue is disabled:

ASSIGN LPO: 7

ASSIGN MTl: 8

ASSIGN NL: 9

RUN TESTPROG

Prerequisites
Before the null device facility can be used, the null device handler (NL) must be installed and
loaded and the pseudo device NL: must have been defined during system generation.

14-2

15

15.1

DECtape II Handler

lntroductic•n
The DECTAPE: II (TU58) driver supports 1TU58 system hardware, providing low-cost,
block-replaceable mass storage.

15.1.1 TU58 Hardware
Each TU58 DECTAPE II system consists of one or two TU58 cartridge drives, one tape drive
controller, and one DLll-type serial line interface. Each TU58 drive functions as a random access,
block-formatted mass storage device. Each tape cartridge is capable of storing 512 blocks of 512
bytes each. Ac1cess time is 10 seconds, average. All 1/0 transfers (commands and data) are via the
serial line inte1rface at serial transmission rates of 9600 baud. All read and write check operations
are performed by the controller hardware using a 16-bit checksum. The controller performs up to
8 attempts to read a block, as necessary, before aborting the read operation and returning a hard
error; however, whenever more than one read attempt is required for a successful read, the handler
is notified in order to report a soft error mE!Ssage to the error logger.

15.1.2 TU58 Handler

15.2

The TU58 handler communicates with the TU58 hardware via a serial line interface (DLll); no
other interface is required. All data and command transfers between the PDP-11 system and the
TU58 are via :programmed 1/0 and interru]pt-driven routines; non-processor (NPR) data transfers
are not supported.

The TU58 handler is installed with DD as the task name.

QIOMACRO
This section summarizes standard and device-specific QIO functions for the TU58.

15.2.1 Standard <~10 Functions
Table 15-1 list.s the standard QIO system directive functions of the QIO macro that are valid for
the TU58.

Table 15-1 S1tandard QIO Functions for tlhe TU58

Format

010$C 10.ATI, .. .

. 010$C 10.DET,

QIO$C IQ.KIL, .. .

010$C 10.RLB, ... ,<stadd,size,,,lbn>

Function

Attach device

Detach device

Cancel 1/0 requests*

Read logical block

15-1

DECtape II Handler

Table 15-1 (Cont.) Standard 010 Functions for the TU58

Format Function

QIO$C 10.WLB, ... ,<stadd,size,,,lbn> Write logical block

* I/O operations that are in progress when IO.KIL is received are allowed to complete. I/O requests
that are queued when IO.KILL is received are killed.

where:

• stadd - is the starting address of the data buffer (must be on a word boundary)

• size - is the data buffer size in bytes (must be even and greater than zero)

• lbn - is the logical block number on the cartridge tape where the data transfer starts (must be
in the range of 0-777)

·1 s.2.2 Device-Specific QIO Functions
The device-specific QIO functions for the TU58 are summarized in Table 15-2 and described in the
following sections.

Table 15-2 Device-Specific 010 Functions for the TU58

Format

QIO$C 10. WLC, ... ,<stadd,size,,,lbn>

QIO$C 10.RLC, ... ,<stadd,size,,,lbn>

Ql0$C 10.BLS, ... ,<lbn>

QIO$C 10.DGN, .. .

where:

Function

Write logical block with check

Read logical block with check

Position tape

Run internal diagnostics

• stadd - is the starting address of the data buffer (must be on a word boundary)

• size - is the data buffer size in bytes (must be even and greater than zero)

• lbn - is the logical block number on the cartridge tape where the data transfer starts (must be
in the range of 0-777)

10.WLC

The IO.WLC function writes the specified data onto the tape cartridge. A checksum verification
is then performed by reading the data just written; data is not returned to the task issuing the
function. An appropriate status, based on the checksum verification, is returned to the issuing
task.

10.RLC

The IO.RLC function reads the tape with an increased threshold in the TU58's data recovery
circuit. This is done as a check to insure data read reliability.

10.BLS

The 10.BLS function is used for diagnostic purposes to position the tape to the specified logical
block number.

15-2

15.3

15.4

DECtape II Handler

10.DGN

The 10.DGN function is used for diagnostic purposes to execute the 'J;U58's internal (firmware)
diagnostics . .Appropriate status information is returned to the issuing task via the 1/0 status block.

Status Returns
Table 15-3 lists the error and status conditions that are returned by the TU58 handler.

Table 15-3 TU58 Handler Status Returnis

Code

IS.SUC

IE.DNA

IE.IFC

IE.FHE

IE.TMO

IE.VER

IE.WLK

Reason
------------~~~-~----~--~----------------------------------

Succ:essf ul completion

The operation specified in the ()10 directive was completed successfully. The second word of the
1/0 status block can be examined to determine the number of bytes processed, If the operation
involved reading or writing.

Device not ready

The physical device unit specified in the 010 directive was not ready to perform the desired 1/0
operation.

Illegal function

A function code was specified l1n an 110 request that is Illegal for the TU58.

Fatal hardware error

The motor has stopped.

Timeout error

The TU58 failed to respond to a function within the normal time specified by the handler.

Unrecoverable error

The controller made its standard number of retries (8) after an error, but could not complete the
operation successfully.

Cartridge write-locked

The task attempted to write on a tape cartridge that is physically write-locked.

Characternstics Words for DECTAPE II
The format of 1characteristics words is the Harne as for disc devices. Chapter 4, Section 4.6 describes
the format fully.

15-3

A Listing ~of QIOMAC

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

;+

.TITLE QIOMAC - QIOSYM MACRO DEFINITION

DATE OF LAST MODIFICATION:

J.A. KASSON 5-FEB-80

***** ALWAYS UPDJ~TE THE FOLLOWING TWO LINES TOGETHER
. !DENT /0~140/
QI.VER=0340

COPYRIGHT (C) 1900
DIGITAL EQUIPMEN~r CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A
SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR
ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH
SYSTEM AND TO ONB WHO AGREES TO THESE LICENSE TERMS. TITLE
TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN
IN DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPOR1'.\.TION.

DEC ASSUMES NO RJ~SPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON gQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

PETER H. LIPMAN l-OCT-73

MACRO TO DEFINE STANDARD QUEUE I/O DIRECTIVE FUNCTION VALUES
AND IOSB RETURN VALUES. TO INVOKE AT ASSEMBLY TIME (WITH LOCAL
DEFINITION) USE:

QIOSY$; DEFINE SYMBOLS

TO OBTAIN GLOBAL DEFINITION OF THESE SYMBOLS USE:

QIOSY$ DEF!~G ;SYMBOLS DEFINED GLOBALLY

THE MACRO CAN BE CALLED ONCE ONLY AND THEN
REDEFINES ITSELF AS NULL.

.MACRO QIOSY$ $$$GBL,$$$MSG

.IIF IDN,<$$$GBL>,<DEF$G>, .GLOBL QI. VER

.IF IDN,<$$$MSG>,<DEF$S>
$$$MAX=O
$$MSG=l
.!FF

A-1

Listing of QIOMAC

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

'~-2

$$MSG=O
.ENDC
.MCALL
IOERR$
.MCALL
DRERR$
.IF
.MCALL
FIL IO$
.MCALL
SPCIO$
.MACRO
.ENDM
.ENDC
.ENDM

IOERR$
$$$GBL
DRERR$

;I/O ERROR CODES FROM HANDLERS, FCP, FCS

$$$GBL ;DIRECTIVE STATUS WORD ERROR CODES
DIF,<$$$MSG>,<DEF$S>
FIL IO$
$$$GBL
SPCI0$
$$$GBL
QIOSY$
QIOSY$

QIOSY$

;DEFINE GENERAL I/O FUNCTION CODES

;DEVICE DEPENDENT I/O FUNCTION CODES
ARG,ARG1,ARG2 ;RECLAIM MACRO STORAGE

DEFINE THE ERROR CODES RETURNED BY DEVICE HANDLER AND FILE PRIMITIVES
IN THE FIRST WORD OF THE I/O STATUS BLOCK
THESE CODES ARE ALSO RETURNED BY FILE CONTROL SERVICES (FCS) IN THE
BYTE F.ERR IN THE FILE DESCRIPTOR BLOCK (FOB)

THE BYTE F.ERR+l IS 0 IF F.ERR CONTAINS A HANDLER OR FCP ERROR COi

.MACRO IOERR$ $$$GBL

.MCALL .IOER.,DEFIN$
• IE' ION, <$$$GBL>, <DEF$G>
••. GBL=l
.!FF
••• GBL=O
.ENDC
.IIF NDF,$$MSG,$$MSG=O

SYSTEM STANDARD CODES, USED BY EXECUTIVE AND DRIVERS

• IOER.
. IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.

IE.BAD,-01.,<BAD PARAMETERS>
IE.IFC,-02.,<INVALID FUNCTION CODE>
IE.DNR,-03.,<DEVICE NOT READY>
IE.VER,-04.,<PARITY ERROR ON DEVICE>
IE.ONP,-05.,<HARDWARE OPTION NOT PRESENT>
IE.SPC,-06.,<ILLEGAL USER BUFFER>
IE.DNA,-07.,<DEVICE NOT ATTACHED>
IE.DAA,-08.,<DEVICE ALREADY ATTACHED>
IE.DUN,-09.,<DEVICE NOT ATTACHABLE>
IE.EOF,-10.,<END OF FILE DETECTED>
IE.EOV,-11.,<END OF VOLUME DETECTED>
IE.WLK,-12.,<WRITE ATTEMPTED TO LOCKED UNIT>
IE.DA0,-13.,<DATA OVERRUN>
IE.SRE,-14.,<SEND/RECEIVE FAILURE>
IE.AB0,-15.,<REQUEST TERMINATED>
IE.PRI,-16.,<PRIVILEGE VIOLATION>
IE.RSU,-17.,<SHARABLE RESOURCE IN USE>
IE.OVR,-18.,<ILLEGAL OVERLAY REQUEST>
IE.BYT,-19.,<0DD BYTE COUNT (OR VIRTUAL ADDRESS)>
IE.BLK,-20.,<LOGICAL BLOCK NUMBER TOO LARGE>
IE.MOD,-21.,<INVALID UDC MODULE #>
IE.CON,-22.,<UDC CONNECT ERROR>
IE.BBE,-56.,<BAD BLOCK ON DEVICE>
IE.STK,-58.,<NOT ENOUGH STACK SPACE (FCS OR FCP)>
IE.FHE,-59.,<FATAL HARDWARE ERROR ON DEVICE>

119
120
.121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

Listing of QIOMAC

.IOER. IE.EOT,-62.,<END OF TAPE DETECTED>

.IOER. IE.OFL,-65.,<DEVICE OFF LINE>

.IOER. IE.BCC,-66.,<BLOCK CHECK, CRC, OR FRAMING ERROR>

FILE PRIMITIVE CODES

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

IE.NOD,-23.,<CALLER'S NODES EXHAUSTED>
IE.DFU,-24.,<DEVICE FULL>
IE.IFU,-25.,<INDEX FILE FULL>
IE.NSF,-26.,<NO SUCH FILE>
IE.LCK,-27.,<LOCKED FROM READ/WRITE ACCESS>
IE.HFU,-28.,<FILE HEADER FULL>
IE.WAC,-29.,<ACCESSED FOR WRITE>
IE.CKS,-30.,<FILE HEADER CHECKSUM FAILURE>
IE.WAT,-31.,<ATTRIBUTE CONTROL LIST FORMAT ERROR>
IE.RER,-32.,<FILE PROCESSOR DEVICE READ ERROR>
IE.WER,-33.,<FILE PROCESSOR DEVICE WRITE ERROR>
IE.ALN,-34.,<FILE ALREADY ACCESSED ON LUN>
IE.SNC,-35.,<FILE ID, FILE NUMBER CHECK>
IE.SQC,-36.,<FILE ID, SEQUENCE NUMBER CHECK>
IE.NLN,-37.,<NO FILE ACCESSED ON LUN>
IE.CL0,-38.,<FILE WAS NOT PROPERLY CLOSED>
IE.DUP,-57.,<ENTER - DUPLICATE ENTRY IN DIRECTORY>
IE.BVR,-63.,<BAD VERSION NUMBER>
IE.BHD,, -64., <BAD FILE HEADER>
IE. EXP,, -7 5., <FILE EXPIRATION DATE NOT REACHED>
IE .BTF,, -76., <BAD TAPE FORMAT>
IE.ALC,,-84.,<ALLOCATION FAILURE>
IE.ULK,,-85.,<UNLOCK ERROR>
IE. WCK,, -8 6., <WRITE CHECK FAILURE>
IE. DSQ,, -90., <DISK QUOTA EXCEEDED>

FILE CONTROL SERVICES CODES

. IOER. IE. NBF ,. -3 9., <OPEN - NO BUFFER SPACE AVAILABLE FOR FILE>

.IOER. IE.RBG,.-40.,<ILLEGAL RECORD SIZE> .

. IOER. IE. NBK,. -41. , <FILE EXCEEDS SPACE ALLOCATED~ NO BLOCKS>

.IOER. IE.ILL,,-42.,<ILLEGAL OPERATION ON FILE DESCRIPTOR BLOCK>

. IOER. IE. BTP ,, -43., <BAD RECORD TYPE>

.IOER. IE.RAC,.-44.,<ILLEGAL RECORD ACCESS BITS SET>

. IOER. IE. RAT,. -4 5., <ILLEGAL RECORD ATTRIBUTES BITS SET>

.IOER. IE.RCN,.-46.,<ILLEGAL RECORD NUMBER - TOO LARGE>

. IOER. IE. 2DV,, -4 8., <RENAME - 2 DIFFERENT DEVICES>

.IOER. IE.FEX,.-49.,<RENAME - NEW FILE NAME ALREADY IN USE>

. IOER. IE. BDR,, -50., <BAD DIRECTORY FILE>

.IOER. IE.RNM,.-51.,<CAN'T RENAME OLD FILE SYSTEM>

.IOER. IE.BDI,.-52.,<BAD DIRECTORY SYNTAX>

. IOER. IE. FOP,, -53., <FILE ALREADY OPEN>

.IOER. IE.BNMr-54.,<BAD FILE NAME>

.IOER. IE.BDV,,-55.,<BAD DEVICE NAME>

. IOER. IE. NF!,, -60., <FILE ID WAS NOT SPECIFIED>

. IOER. IE. ISQ,, -61., <ILLEGAL SEQUENTIAL OPERATION>

.IOER. IE.NNC,.-77.,<NOT ANSI "D" FORMAT BYTE COUNT>

179 NETWORK ACP CODES
180
181

A-3

Listing of QIOMAC

182
183
184
195
196
187
188
189
190
191
192
193
194
195
196
197
199
199
200
201
202
203
204
205
206
207
208 ;
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

A-4

. IO:ER. IE. AST, -80., <NO AST SPECIFIED IN CONNECT>

.IOER. IE.NNN,-68.,<NO SUCH NODE>

.IOER. IE.NFW,-69.,<PATH LOST TO PARTNER> ;THIS CODE MUST BE ODD

.IOER. IE.BLB,-70.,<BAD LOGICAL BUFFER>

.IOER. IE.TMM,-71.,<TOO MANY OUTSTANDING MESSAGES>

.IOER. IE.NDR,-72.,<NO DYNAMIC SPACE AVAILABLE>

.IOER. IE.CNR,-73.,<CONNECTION REJECTED>

.IOER. IE.TM0,-74.,<TIMEOUT ON REQUEST>

.IOER. IE.NNL,-78.,<NOT A NETWORK LUN>

ICS/ICR ERROR CODES

.IOER. IE.NLK,-79.,<TASK NOT LINKED TO SPECIFIED ICS/ICR INTERRUl

.IOER. IE.NST,-80.,<SPECIFIED TASK NOT INSTALLED>

.IOER. IE.FLN,-81.,<DEVICE OFFLINE WHEN OFFLINE REQUEST WAS ISSUl

TTY ERROR CODES

.IOER. IE.IES,-82.,<INVALID ESCAPE SEQUENCE>

.IOER. IE.PES,-83.,<PARTIAL ESCAPE SEQUENCE>

RECONFIGURATION CODES

.IOER. IE.ICE,-47.,<INTERNAL CONSISTANCY ERROR>

.IOER. IE.ONL,-67.,<DEVICE ONLINE>

PCL ERROR CODES

.IOER. IE.NTR,-87.,<TASK NOT TRIGGERED>

. IOER. IE
1

.REJ, -ea.' <TRANSFER REJECTED BY RECEIVING CPU>
.IOER. IE.FLG,-89.,<EVENT FLAG ALREADY SPECIFIED>

SUCCESSFUL RETURN CODES---

DEFIN$
DEFIN$
DEF IN$

DEF IN$

DEF IN$

IS.PND,+00.
IS.SUC,+01.
IS.RDD,+02.

IS.TNC,+02.

IS.BV,+05.

TTY SUCCESS CODES

;OPERATION PENDING
;OPERATION COMPLETE, SUCCESS
;FLOPPY DISK SUCCESSFUL COMPLETION
;OF A READ PHYSICAL, AND DELETED
;DATA MARK WAS SEEN IN SECTOR HEADER
; (PCL) SUCCESSFUL TRANSFER BUT MESSAGE
;TRUNCATED (RECEIVE BUFFER TOO SMALL).
; (A/D READ) AT LEAST ONE BAD VALUE
;WAS READ (REMAINDER MAY BE GOOD).
;BAD CHANNEL IS INDICATED BY A
;NEGATIVE VALUE IN THE BUFFER.

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
26:2
263
26:4
26:5
26:6
26:7
268
269
270
271
272
273
274
275
276
277
278
279
28:0
281
20:2
283
284
285
28:6
28:7
288
289
2910
2911
2912
293
2914
2915
296
2917
2918
299
300
301
302
303
3Ct4
305
306
307

DEF IN$
DEF IN$
DEFIN$
DEF IN$
DEF IN$
DEF IN$
DEF IN$
DEF IN$

Listing of QIOMAC

IS.CR,<15*400+1> ;CARRIAGE RETURN WAS TERMINATOR
IS.BSC,<33*400+1> ;ESCAPE (ALTMODE) WAS TERMINATOR
IS.CC,<3*400+1> ;CONTROL-C WAS TERMINATOR
IS.BSQ,<233*400+1> ;ESCAPE SEQUENCE WAS TERMINATOR
IS.PES,<200*400+1> ;PARTIAL ESCAPE SEQUENCE TERMINATOR
IS.BOT, <4*400+1> ;EOT WAS TERMINATOR (BLOCK MODE INPUT)
IS.TAB,<11*400+1> ;TAB WAS TERMINATOR (FORMS MODE INPUT)
IS. ~~MO, +2 . ; REQUEST TIMED OUT

THE NEXT AVAILABLI~ ERROR NUMBER IS: - 90 .
ALL LOWER NUMBERS ARE IN USE ! I

.IF EQ,$$MSG
.MACRO IOERR$ A
.ENDM IOERR$
.ENDC
.ENDM IOERR$

DEFINE THE DIRECTIVE ERROR CODES RETURNED IN THE DIRECTIVE STATUS WORD

FILE CONTROJ~ SERVICES (FCS) RETURNS THESE CODES IN THE BYTE F .ERR
OF THE FILE DESCRIPTOR BLOCK (FOB). TO DISTINGUISH THEM FROM THE
OVERLAPPING CODES FROM HANDLER AND FILE PRIMITIVES, THE BYTE
F.ERR+l IN THE FOB WILL BE NEGATIVE FOR A DIRECTIVE ERROR CODE.

.MACRO DRERR$ $$$GBL

.MCALL . QIOE., DEFIN$

.IF IDN,<$$$GBL>,<DEF$G>

... GBL=l

.IFF
••. GBL=O
.ENDC
.IIF NDF,$$MSG,$$MSG=O

STANDARD ERROR CODES RETURNED BY DIRECTIVES IN THE DIRECTIVE STATUS WORJ

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

IE.UPN,-01.,<INSUFFICIENT DYNAMIC STORAGE>
IE.:CNS,-02.,<SPECIFIED TASK NOT INSTALLED>
IE.l?TS,-03.,<PARTITION TOO SMALL FOR TASK>
IE.UNS,-04.,<INSUFFICIENT DYNAMIC STORAGE FOR SEND>
IE.tJLN,-05.,<UN-ASSIGNED LUN>
IE.HWR,-06.,<DEVICE HANDLER NOT RESIDENT>
IE . .l\CT, -07., <TASK NOT ACTIVE>
IE.ITS,-08.,<DIRECTIVE INCONSISTENT WITH TASK STATE>
IE. J!'IX, -09., <TASK ALREADY FIXED/UNFIXED>
IE.CKP,-10.,<ISSUING TASK NOT CHECKPOINTABLE>
IE. '.rCH, -11., <TASK IS CHECKPOINTABLE>
IE.RBS,-15.,<RECEIVE BUFFER IS TOO SMALL>
IE.PRI,-16.,<PRIVILEGE VIOLATION>
IE.RSU,-17.,<RESOURCE IN USE>
IE.NSW,-18.,<NO SWAP SPACE AVAILABLE>
IE.ILV,-19.,<ILLEGAL VECTOR SPECIFIED>

IE .1\ST' -80. '<DIRECTIVE ISSUED/NOT ISSUED FROM AST>
IE.MAP,-81.,<ILLEGAL MAPPING SPECIFIED>
IE.IOP,-83.,<WINDOW HAS I/O IN PROGRESS>

A-5

Listing of QIOMAC

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

A-6

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

IE.ALG,-84.,<ALIGNMENT ERROR>
IE.WOV,-85.,<ADDRESS WINDOW ALLOCATION OVERFLOW>
IE.NVR,-86.,<INVALID REGION ID>
IE.NVW,-87.,<INVALID ADDRESS WINDOW ID>
IE.ITP,-88.,<INVALID TI PARAMETER>
IE.IBS,-89.,<INVALID SEND BUFFER SIZE (.GT. 255.)>
IE.LNL,-90.,<LUN LOCKED IN USE>
IE.IUI,-91.,<INVALID UIC>
IE.IDU,-92.,<INVALID DEVICE OR UNIT>
IE.ITI,-93.,<INVALID TIME PARAMETERS>
IE.PNS,-94.,<PARTITION/REGION NOT IN SYSTEM>
IE.IPR,-95.,<INVALID PRIORITY (.GT. 250.)>
IE.ILU,-96.,<INVALID LON>
IE.IEF,-97.,<INVALID EVENT FLAG (.GT. 64.)>
IE.ADP,-98.,<PART OF DPB OUT OF USER'S SPACE>
IE.SDP,-99.,<DIC OR DPB SIZE INVALID>

SUCCESS CODES FROM DIRECTIVES - PLACED IN THE DIRECTIVE STATUS WORD

DEF IN$ IS.CLR,O ;EVENT FLAG WAS CLEAR
;FROM CLEAR EVENT FLAG DIRECTIVE

DEF IN$ IS.SET,2 ;EVENT FLAG WAS SET
;FROM SET EVENT FLAG DIRECTIVE

DEF IN$ IS.SPD,2 ;TASK WAS SUSPENDED

.IF EQ,$$MSG

.MACRO DRERR$ A

.ENDM DRERR$

.ENDC

.ENDM DRERR$

DEFINE THE GENERAL I/O FUNCTION CODES - DEVICE INDEPENDENT

.MACRO FILI0$ $$$GBL

.MCALL .WORD.,DEFIN$

.IF IDN,<$$$GBL>,<DEF$G>
•.. GBL=l
.IFF
••. GBL=O
.ENDC

GENERAL I/O QUALIFIER BYTE DEFINITIONS

.WORD.

.WORD.

.WORD.

.WORD.

IQ.X,001,000
IQ.Q,002,000
IQ.S,004,000
IQ.UMD,004,000

EXPRESS QUEUE COMMANDS

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

IO.KIL,012,000
IO.RDN,022,000
IO.UNL,042,000
IO.LTK,050,000
IO.RTK,060,000
IO.SET,030,000

GENERAL DEVICE HANDLER CODES

;NO ERROR RECOVERY
;QUEUE REQUEST IN EXPRESS QUEUE
;SYNONYM FOR IQ.UMD
;USER MODE DIAGNOSTIC STATUS REQUIRED

;KILL CURRENT REQUEST
;I/O RUNDOWN
;UNLOAD I/O HANDLER TASK
;LOAD A TASK IMAGE FILE
;RECORD A TASK IMAGE FILE
;SET CHARACTERISTICS FUNCTION

.WORD. IO.WLB,000,001 ;WRITE LOGICAL BLOCK

371
372
373
374
375

.WORD.

.WORD.

.WORD.

.WORD.

IO.RLB,000,002
IO.LOV,010,002
IO.ATT,000,003
IO.DET,000,004

376 DIRECTORY PRIMITIVE CODES
377
378
379
380
381

.WORD.

.WORD.

.WORD.

IO.FNA,000,011
IO.RNA,000,013
IO.ENA,000,014

382 FILE PRIMITIVE CODES
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

IO.CLN,000,007
IO.ULK,000,012
IO.ACR,000,015
IO.ACW,000,016
IO.ACE,000,017
IO.DAC,000,020
IO.RVB,000,021
IO.WVB,000,022
IO.EXT,000,023
IO.CRE,000,024
IO.DEL,000,025
IO.RAT,000,026
IO.WAT,000,027
IO.APV, 010, 030
IO.APC,000,030

.MACRO FILIO$ A

.ENDM FILIO$

.ENDM FILIO$

Listing of QIOMAC

;READ LOGICAL BLOCK
;LOAD OVERLAY (DISK DRIVER)
;ATTACH A DEVICE TO A TASK
;DETACH A DEVICE FROM A TASK

;FIND FILE NAME IN DIRECTORY
;REMOVE FILE NAME FROM DIRECTORY
;ENTER FILE NAME IN DIRECTORY

;CLOSE OUT LUN
;UNLOCK BLOCK
;ACCESS FOR READ
;ACCESS FOR WRITE
;ACCESS FOR EXTEND
;DE-ACCESS FILE
;READ VIRITUAL BLOCK
;WRITE VIRITUAL BLOCK
;EXTEND FILE
;CREATE FILE
;DELETE FILE
;READ FILE ATTRIBUTES
;WRITE FILE ATTRIBUTES
;PRIVILEGED ACP CONTROL
;ACP CONTROL

406 DEFINE THE I/O FUNCTION CODES THAT ARE SPECIFIC TO INDIVIDUAL DEVICES
407
408
409
410
411
412
413
414
415

.MACRO SPCIO$ $$$GBL

.MCALL .WORD.,DEFIN$

.IF IDN,<$$$GBL>,<DEF$G>

... GBL=l

.IFF

... GBL=O

.ENDC

416 I/O FUNCTION CODES FOR SPECIFIC DEVICE DEPENDENT FUNCTIONS
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

IO.WIN, 100, 001
IO.WLS,010,001
IO.WNS,020,001
IO.WAL,010,001
IO.WMS,020,001
IO.CC0,040,001
IO.WBT,100,001
IO.WLT,010,001
IO.WLC,020,001
IO.WPB,040,001
IO.WDD,140,001
IO.RLV,100,002
IO.RST,001,002
IO.RAL,010,002
IO.RNE,020,002
IO.RNC,040,002

; (DECTAPE) WRITE LOGICAL REVERSE
; (COMM.) WRITE PRECEDED BY SYNC TRAIN
; (COMM.) WRITE, NO SYNC TRAIN
; (TTY) WRITE PASSING ALL CHARACTERS
; (TTY) WRITE SUPPRESSIBLE MESSAGE
; (TTY) WRITE WITH CANCEL CONTROL-0
; (TTY) WRITE WITH BREAKTHROUGH
; (DISK) WRITE LAST TRACK
; (DISK) WRITE LOGICAL W/ WRITECHECK
; (DISK) WRITE PHYSICAL BLOCK
; (FLOPPY DISK) WRITE PHYSICAL W/ DELETED
; (MAGTAPE,DECTAPE) READ REVERSE
; (TTY) READ WITH SPECIAL TERMINATOR
; (TTY) READ PASSING ALL CHARACTERS
; (TTY) READ WITHOUT ECHO
; (TTY) READ - NO LOWER CASE CONVERT

A-7

Listing of QIOMAC

434
435
436
437
438
439
440
441
442
443
444
445
446
447
449
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
479
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

IO.RTM,200,002
IO.RDB,200,002
IO.SCF,200,002
IO.RHD,010,002
IO.RNS,020,002
IO.CRC,040,002
IO.RPB,040,002
IO.RLC,020,002
IO.ATA,010,003
IO.GTS,000,005
IO.RlC,000,005
IO.INL,000,005
IO.TRM,010,005
IO.RWD,000,005
IO.SPB,020,005
IO.SPF,040,005
IO.STC,100,005
IO. SMD, 110, 005
IO.SEC,120,005
IO.RWU,140,005
IO.SM0,160,005
IO.HNG,000,006
IO.RBC,000,006
IO.MOD,000,006
IO.HDX,010,006
IO.FDX,020,006
IO.SYN,040,006
IO.EOF,000,006
IO.ERS,020,006
IO.DSE,040,006
IO.RTC,000,007
IO.SA0,000,010
IO.SS0,000,011
IO.RPR,000,011
IO.MS0,000,012
IO.RTT,001,012
IO.SL0,000,013
IO.ML0,000,014
IO.LED,000,024
IO.SD0,000,025
IO.SDI,000,026
IO.SCS,000,026
IO.REL,000,027
IO.MCS,000,027
IO.ADS,000,030
IO.CCI,000,030
IO.LOD,000,030
IO.MDI,000,031
IO.DCI,000,031
IO.XMT,000,031
IO.XNA,010,031
IO.INI,000,031
IO.HIS,000,032
IO.RCI,000,032
IO.RCV,000,032
IO.CLK,000,032
IO.CSR,000,032
IO.MD0,000,033
IO.CTI,000,033
IO.CON,000,033

IO.STA,000,033

; (TTY) READ WITH TIME OUT
; (CARD READER) READ BINARY MODE
; (DISK) SHADOW COPY FUNCTION
; (COMM.) READ, STRIP SYNC
; (COMM.) READ, DON'T STRIP SYNC
; (COMM.) READ, DON'T CLEAR CRC
; (DISK) READ PHYSICAL BLOCK
; (DISK,MAGTAPE) READ LOGICAL W/ READCHECK
; (TTY) ATTACH WITH AST'S
; (TTY) GET TERMINAL SUPPORT CHARACTERISTI•
; (AFC,ADOl,UDC) READ SINGLE CHANNEL
; (COMM.) INITIALIZATION FUNCTION
; (COMM.) TERMINATION FUNCTION
; (MAGTAPE,DECTAPE) REWIND
; (MAGTAPE) SPACE "N" BLOCKS
; (MAGTAPE) SPACE "N" EOF MARKS
;SET CHARACTERISTIC
; (FLOPPY DISK) SET MEDIA DENSITY
;SENSE CHARACTERISTIC
; (MAGTAPE,DECTAPE) REWIND AND UNLOAD
; (MAGTAPE) MOUNT & SET CHARACTERISTICS
; (TTY) HANGUP DIAL-UP LINE
;READ MULTICHANNELS (BUFFER DEFINES CHANNJ
; (COMM.) SETMODE FUNCTION FAMILY
; (COMM.) SET UNIT HALF DUPLEX
; (COMM.) SET UNIT FULL DUPLEX
; (COMM.) SPECIFY SYNC CHARACTER
; (MAGTAPE) WRITE EOF
; (MAGTAPE) ERASE TAPE
; (MAGTAPE) DATA SECUR~TY ERASE
;READ CHANNEL - TIME BASED
; (UDC) SINGLE CHANNEL ANALOG OUTPUT
; (UDC) SINGLE SHOT, SINGLE POINT
; (TTY) READ WITH PROMPT
; (UDC) SINGLE SHOT, MULTI-POINT
; (TTY) READ WITH TERMINATOR TABLE
; (UDC) LATCHING, SINGLE POINT
; (UDC) LATCHING, MULTI-POINT
; (LPSll) WRITE LED DISPLAY LIGHTS
; (LPSll) WRITE DIGITAL OUTPUT REGISTER
; (LPSll) READ DIGITAL INPUT REGISTER
; (UDC) CONTACT SENSE, SINGLE POINT
; (LPSll) WRITE RELAY
; (UDC) CONTACT SENSE, MULTI-POINT
; (LPSll) SYNCHRONOUS A/D SAMPLING
; (UDC) CONTACT INT - CONNECT
; (LPAll) LOAD MICROCODE
; (LPSll) SYNCHRONOUS DIGITAL INPUT
; (UDC) CONTACT INT - DISCONNECT
; (COMM.) TRANSMIT SPECIFIED BLOCK WITH ACJ
; (COMM.) TRANSMIT WITHOUT ACK
; (LPAll) INITIALIZE
; (LPSll) SYNCHRONOUS HISTOGRAM SAMPLING
; (UDC) CONTACT INT - READ
; (COMM.) RECEIVE DATA IN BUFFER SPECIFIED
; (LPAll) START CLOCK
; (BUS SWITCH) READ CSR REGISTER
; (LPSll) SYNCHRONOUS DIGITAL OUTPUT
; (UDC) TIMER - CONNECT
; (COMM.) CONNECT FUNCTION
; (VTll) - CONNECT TASK TO DISPLAY PROCESS<
; (BUS SWITCH) CONNECT TO SPECIFIED BUS
; (LPAll) START DATA TRANSFER

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559

.WORD. IO.DTI,000,034

.WORD. IO.DIS,000,034

. WORD. IO. MDA, 000, 034

.WORD. IO.DPT, 010, 034

.WORD. IO.RT!, 000, 035
• WORD. IO. CTL, 000, 035
• WORD. IO. STP, 000, 035

. WORD. IO. SWI, 000, 035

.WORD. IO.CNT, 000, 036

.WORD. IO.ITI,000,036

COMMUNICATIONS FUNCTIONS

.WORD. IO.CPR,010,033

.WORD. IO.CAS,020,033

.WORD. IO.CRJ,040,033

.WORD. IO.CB0,110,033

.WORD. IO.CTR,210,033

.WORD. IO.GNI,010,035

.WORD. IO.GLI,020,035

.WORD. IO.GLC,030,035

.WORD. IO.GRI,040,035

.WORD. IO.GRC,050,035

.WORD. IO.GRN,060,035

.WORD. IO.CSM,070,035

.WORD. IO.CIN,100,035

.WORD. IO.SPW,110,035

.WORD. IO.CPW,120,035

.WORD. IO.NLB,130,035

.WORD. IO.DLB,140,035

ICS/ICR I/O FUNCTIONS

.WORD. IO.CTY,000,007

.WORD. IO.DTY,000,015

.WORD. IO.LDI,000,016

.WORD. IO.UDI,010,023

.WORD. IO.LTI,000,017

.WORD. IO.UTI,020,023

.WORD. IO.LTY,000,020

.WORD. IO.UTY,030,023

.WORD. IO.LKE,000,024

.WORD. IO.UER,040,023

.WORD. IO.NLK,000,023

.WORD. IO.ONL,000,037

.WORD. IO.FLN,000,025

.WORD. IO.RAD,000,021

IPll I/O FUNCTIONS

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

IO.MA0,010,007
IO.LEI,010,017
IO.RDD,010,020
IO.RMT,020,020
IO.LSI,000,022

Listing of QIOMAC

;(UDC) TIMER - DISCONNECT
;(COMM.) DISCONNECT FUNCTION
; (VTll) - DISCONNECT TASK FROM DISPLAY PR<
; (BUS SWITCH) SWITCHED BUS DISCONNECT
; (LPSll) SYNCHRONOUS D/A OUTPUT
; (BUS SWITCH) DISCONNECT TO SPECIF PORT Ne
;(UDC) TIMER - READ
; (COMM.) NETWORK CONTROL FUNCTION
; (LPSll,LPAll) STOP IN PROGRESS FUNCTION
; (VTll) - STOP DISPLAY PROCESSOR
;(BUS SWITCH) SWITCH SUSSES
;(VTll) - CONTINUE DISPLAY PROCESSOR
;(UDC) TIMER - INITIALIZE

;CONNECT NO TIMEOUTS
;CONNECT WITH AST
;CONNECT REJECT
;BOOT CONNECT
;TRANSPARENT CONNECT
;GET NODE INFORMATION
;GET LINK INFORMATION
;GET LINK INFO CLEAR COUNTERS
;GET REMOTE NODE INFORMATION
;GET REMOTE NODE ERROR COUNTS
;GET REMOTE NODE NAME
;CHANGE SOLO MODE
;CHANGE CONNECTION INHIBIT
;SPECIFY NETWORK PASSWORD
;CHECK NETWORK PASSWORD.
;NSP LOOPBACK
;DDCMP LOOPBACK

;CONNECT TO TERMINAL INTERRUPTS
;DISCONNECT FROM TERMINAL INTERRUPTS
;LINK TO DIGITAL INTERRUPTS
;UNLINK FROM DIGITAL INTERRUPTS
;LINK TO COUNTER MODULE INTERRUPTS
;UNLINK FROM COUNTER MODULE INTERRUPTS
;LINK TO REMOTE TERMINAL INTERRUPTS
;UNLINK FROM REMOTE TERMINAL INTERRUPTS
;LINK TO ERROR INTERRUPTS
;UNLINK FROM ERROR INTERRUPTS
;UNLINK FROM ALL INTERRUPTS
;UNIT ONLINE
;UNIT OFFLINE
;READ ACTIVATING DATA

;MULTIPLE ANALOG OUTPUTS
;LINK EVENT FLAGS TO INTERRUPT
;READ DIGITAL DATA
;READ MAPPING TABLE
;LINK TO OSI INTERRUPTS

A-9

listing of QIOMAC

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

A-10

.WORD ..

.WORD ..

.WORD ..

.WORD ..

IO.UEI,050,023
IO.USI,060,023
IO.CSI,000,026
IO.DSI,000,027

PCLU I/O FUNCTIONS

.WORD ..

.WORD ..

.WORD ..

.WORD ..

.WORD.

IO.ATX,000,001
IO.ATF,000,002
IO.CRX,000,031
IO.DRX,000,032
IO.RTF,000,033

.MACRO SPCIO$ A

.ENDM SPCIO$

.ENDM SPCIO$

;UNLINK EVENT FLAGS
;UNLINK FROM OSI INTERRUPTS
;CONNECT TO OSI INTERRUPTS
;DISCONNECT FROM OSI INTERRUPTS

;ATTEMPT TRANSMISSION
;ACCEPT TRANSFER
;CONNECT FOR RECEPTION
;DISCONNECT FROM RECEPTION
;REJECT TRANSFER

DEFINE THE I/O CODES FOR USER-MODE DIAGNOSITCS. ALL DIAGNOSTIC
FUNCTION ARE IMPLEMENTED AS A SUBFUNCTION OF I/O CODE 10 (OCTAL).

••• GBL=l

.MACRO UMDI0$ $$$GBL

.MCALL .WORD.,DEFIN$

.IF ION <$$$GBL>,<DEF$G>

.IFF
••• GBL=O

.ENDC

DEFINE THE GENERAL USER-MODE I/O QUALIFIER BIT.

.WORD.. IQ.UMD,004,000 ;USER MODE DIAGNOSTIC REQUEST

DEFINE USER-MODE DIAGNOSTIC FUNCTIONS.

.WORD .. IO.HMS,000,010

.WORD .. IO.BLS,010,010

.WORD .. IO.OFF,020,010

.WORD .. IO.RDH,030,010

.WORD .. IO.WDH,040,010

.WORD .. IO.WCK,050,010

.WORD. IO.RNF,060,010

.WORD .. IO.RNR,070,010

.WORD .. IO.LPC,100,010

.WORD .. IO.RTD,120,010

.WORD .. IO.WTD,130,010

.WORD .. IO.TDD,140,010

.WORD .. IO.DGN,150,010

.WORD .. IO.WPD,160,010

.WORD .. IO.RPD,170,010

.WORD .. IO.CER,200,010

.WORD .. IO.CEW,210,010

MACRO REDEFINITION TO NULL

;(DISK) HOME SEEK OR RECALIBRATE
;(DISK) BLOCK SEEK
;(DISK) OFFSET POSITION
;(DISK) READ DISK HEADER
;(DISK) WRITE DISK HEADER
;(DISK) WRITECHECK (NON-TRANSFER)
;(DECTAPE) READ BLOCK NUMBER FORWARD
;(DECTAPE) READ BLOCK NUMBER REVERSE
; (MAGTAPE) READ LONGITUDINAL PARITY CHAR
;(DISK) READ TRACK DESCRIPTOR
;(DISK) WRITE TRACK DESCRIPTOR
;(DISK) WRITE TRACK DESCRIPTOR DISPLACED
;DIAGNOSE MICRO PROCESSOR FIRMWARE
;(DISK) WRITE PHYSICAL BLOCK
;(DISK) READ PHYSICAL BLOCK
;(DISK) READ CE BLOCK
;(DISK) WRITE CE BLOCK

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
6,60
661
6 162
6163
6 164

.MACRO UMDIO$ A

.ENDM

• ENDM UMIHO$

Listing of QIOMAC

HANDLER ERROR CODES RETURNED IN I/O STATUS BLOCK ARE DEFINED THROUGH TH
MACRO WHICH THEN CONDITIONALLY INVOKES THE MESSAGE GENERATING MACRO
FOR THE QIOSYM.MSG FILE

.MACRO
DEF IN$
.IF
.MCALL
.IOMG.
.ENDC
. ENDM

.IOER. SYM,LO,MSG
SYM,LO
GT,$$MSG
. IOMG.
SYM,LO,<MSG>

. IOER .

I/O ERROR CODES JffiE DEFINED THOUGH THIS MACRO WHICH THEN INVOKES THE
ERROR MESSAGE GENERATING MACRO, ERROR CODES -129 THROUGH -256
ARE USED IN THE ~2IOSYM.MSG FILE

.MACRO
DEF IN$
.IF
• MCALL
.IOMG.
.ENDC
. ENDM

.QJ:OE. SYM,LO,MSG
SYM,LO
GT,$$MSG
.IOMG .
SYM,<L0-128.>,<MSG>

.QJ:OE .

CONDITIONALLY GE~fERATE DATA FOR WRITING A MESSAGE FILE

. MACRO . ICIMG. SYM, LO, MSG

. WORD - "C1<LO>

.ASCIZ "MSG"

.EVEN

.IIF LT,"O<$$$MAX+<LO>>,$$$MAX•-"O<LO>

. ENDM • IOMG.

6 165 DEFINE THE SYMBOI, SYM WHERE LO IS IS THE LOW ORDER BYTE, HI IS THE HIGH

.MACRO .WORD. SYM,LO,HI
DEFIN$ Snil, <HI*400+LO>
. ENDM . WORD .

A-11

Index

A
AD01 analog to digital converter

See Analog to digital c:onverter
AFC11 analog to digital converter

See Analog to digital c:onverter
Analog to digital converteir

status returns • 3-3
Attach/detach facility• 1--:3

c
Card reader handler • 9-'I

control characters • 9-5
devices supported• 9--1
error messages • 9-6
functions• 9-1
power failure recover~, • 9-6
punched card codes • 9-4
status returns • 9-6
UMR allocation •9-7

Cassette handler • 13-1
error and status conditions " 13-2
010 functions • 13-2

Cassette tape
EOF• 13-5
first cassette operatlo1n • 13--5
10.SPB • 13-5
structure • 13-3

Characateristlcs words• 1-8
Characteristics word 2 • 4-9
Characteristics word 3 • ~1-1 O
Characteristic words

DECtape II • 15-3
disk handlers • 4-9
line printer handler • 10-4

Control characters
card reader handler • 19-5
line printer handler • 10-2

D
DECtape handler • 6-1

status returns • 6-3
UMR allocation • 6-2

DECtape II handler• 15-1
characteristic words • 15-3
error and status conditions • 15-3

Device handler
null• 14-1

Direct mode operation• 1-5
Disk handler

U.C3 •4-10
Disk handlers • 4-1

characteristic words • 4-9
010 functions • 4-7
status conditions • 4-7
U.C2 •4-9

E
Error and status conditions

cassette handler • 13-2
DECtape II handler • 15-3
laboratory peripheral system handler • 8-21

Error conditions
message output handler • 11-15

Error messages
Card reader handler • 9-6

Error recover In DB,DM,DR disk handlers •4-9

F
Function codes (mass storage)

attach/detach• 1-7
direct mode• 1-5
read/write logical block• 1-7

Function codes (non-mass storage)
attach/detach • 1-3
kill 1/0. 1-5
Read logical/read virtual block • 1-4
write logical/write virtual block • 1-5

lndex-1

Index

I
Initializing device handler tasks • 1-1

K
KDASO disk

description • 4-4

L
Laboratory peripheral system handler• 8-1

error and status conditions• 8-21, 8-24
010 functions (immediate) • 8-3
010 functions (synch)• 8-5

Line printer handler • 10-1
characteristic words • 10-4
control characters • 1 0-2
functions• 10-1
status returns • 1 0-4

Logical unit numbers• 1-2
Logical unit table • 1-3
LPS11

See Laboratory peripheral system handler
LUT • 1-3

M
Magnetic tape cassette handler

See cassette handler
Magnetic tape handlers

See tape handlers
Mass storage devices

direct mode operation • 1-5
Message output handler • 11-1

error conditions • 11-15
status returns • 11-16

N
Null device handler• 14-1

lndex-2

p
Paper tape reader/punch handler • 12-1
Physical unit directory • 1-3
PUD • 1-3
Punched card codes(PDP-11) • 9-4

Q
010 functions

cassette handler • 13-2
DECtape 11 handler • 15-2
disk handlers• 4-7

010 functions (immediate)
laboratory peripheral system handler • 8-3

010 functions (synch)
laboratory peripheral system handler • 8-5

010 functions for disk handlers • 4-6
010 system directives • 1-1

R
RC25 disk subsystem

description• 4-5
RD31 fixed 5.25-inch disk

description • 4-5
RD51 fixed 5.25-inch disk

description • 4-5
RD52 fixed 5.25-inch disk

description• 4-6
RD53 fixed 5.25-inch disk

description• 4-6
RD54 fixed 5.25-inch disk

description • 4-6
Read logical block function• 1-4
Read virtual block function • 1-4
RK11,RK05,RK05F cartridge disk

description• 4-3
RK611,RK06,RK07 cartridge disk

description • 4-4
RL 11,RL01,RL02 cartridge disk

cartridge disk • 4-3
RM02,RM03,RM05,RM80 disk pack

description• 4-3
RP04,RP05,RP06,RP07 disk pack

description• 4-3

RS03 fixed-head disk
description • ~3

RX11 ,RX01 iflexiblc:t disk
description • 4-4

RX211,RX02. flexible disk
description • 4-4

RX33 5.25-inch half-height disk
description • 4-!i

RX50 flexibht 5.25·-inch disk
description • 4-S

s
Status condlitlons

cassette handler • 13-2
DECtape II handler • 15-3
disk handler • 4--7
laboratory peripheral system handler • a-2·1, 8-24
message outputt handler• 11-16
UDC-11 handler • 5-19

Status returns
analog to digital converter • 3--3
card readier handler • 9-6
DECtape handler • 6-3
line printer handler • 1 0-4

System UIC •• 1-3

T
TA11 magneitic tape cassette• 13-1
Tape devlces1

specifications • 7-1
Tape handlers• 7-'I
TC-11•6-1
Terminal handlers., 2-1
TU56 •6-1
TU58 device driver

See DECtape II handler

u
U.C1•1-8
U.C2 • 1-8, 4-9
U.C3 • 1-8, 4-10
U.C4•1-8
UDA50 disk

UDA50 disk (Cont.)

description• 4--4

UDC-11 handler• 5-1
status conditions • 5-19

UMR allocation
card reader handler • 9-7
DECtape handler • 6-2
disk handlers • 4-8

w
Write logical block function• 1-5
Write virtual block function• 1-5

Index

lndex-3

IAS
Device Handler Reference Manual

AA-H004B-TC

Reader':s
Comme1r1ts

This form is for document comments only. Digital will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible
to receive one under Software Performance Report (SPA) service, submit your
comments on an SPFl form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicato the type of user /reader that you most nearly represent:

D Assembly language programmer
D Higher-level language programmer
0 Occasional programmer (experienced)
0 UsE~r with little programming experience
D Student programmer
0 Other (please specify)'----·------------------

Name, __ _

Organization ·---------------------------------
Street.._ __ _

City ________________ , ___ State, ______ Zip Code, _____ _

or Country

I

-------------------- l>c, Nc,t l'ear - l'ctld Here and Tape --------1---------------1
'l'ID'D TM No Postage " ~ (ii Necessary

1f Mailed 1n the

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 33 MAYNARD MASS

POST AGE WILL BE PAID BY ADDRESSEE

IAS Engineering/Documentation
Digital Equipment Corporation
5 Wentworth Drive GSF /L20
Hudson, NH 03051-4929

111 11.11 1.1 111.1 .. 1.1 ... 1 .. 11.1 .. 11 ... 1

United States

-------·---------------· l>c, :'lctt Tear - l'ctld Here ---------------------

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	12-01
	12-02
	12-03
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	14-01
	14-02
	15-01
	15-02
	15-03
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	Index-1
	Index-2
	Index-3
	replyA
	replyB

