
IAS System Directives Reference Manual

Order Number: AA-H002C-TC

This document describes the system directives that allow experienced MACR0-11 and FORTRAN
programmers to use IAS Executive services to control the execution and Interaction of tasks.

Operating System Version: IAS Version 3.4

May 1990

The Information In this document Is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responslblllty for
any errors that may appear In this document.

The software described In this document is furnished under a license and may be used or copied only In
accordance with the terms of such license.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government Is subject to restrictions as set forth In
subparagraph (c)(1)(11) of the Rights In Technical Data and Computer Software clause at DFARS 252.227-7013.

No responsibility Is assumed for the use or rellablllty of software on equipment that Is not supplied by Digital
Equipment Corporation or Its afflllated companies.

Copyright ©1990 by Digital Equipment Corporation

All Rights Reserved.
Printed In U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist In preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DDIF
DEC
DEC/CMS
DEC/MMS
DECnet
DEC US
DECwlndows
DECwrlte
DIBOL

IAS
MASS BUS
PDP
PDT
RSTS
RSX
ULTRIX
UNIBUS
VAX

VAXC
VAXcluster
VAXstatlon
VMS
VR150/160
VT

This document was prepared using VAX DOCUMENT, Version 1.2

Contents

PREFACE Ix

CHAPTER 1 USING SYSTEM DIRECTIVES 1-1

1.1 INTRODUCTION 1-1

1.2 DIRECTIVE PROCESSING 1-1

1.3 CONVENTIONS 1-3

1.4 ERROR RETURNS 1-3

1.5 USING THE DIRECTIVE MACROS 1-3
1.5.1 Macro Name Conventions 1-6
1.5.2 Predefined DPB 1-8
1.5.3 Optional Flnal Argument 1-8
1.5.4 Symbolic Offsets 1-8
1.5.5 Examples of Macro Calls and Corresponding Expansions 1-9
1.5.6 Testing the Directive Status Word 1-10

1.6 FORTRAN SUBROUTINES 1-10

1.7 SUBROUTINE USAGE 1-11
1.7.1 Subroutine Categories 1-13
1.7.2 Error Conditions 1-15

1.8 SYSTEM CLOCKS 1-16

1.9 USE OF THE SYSTEM NODE POOL 1-16

Ill

Contents

CHAPTER 2 MEMORY MANAGEMENT DIRECTIVES 2-1

2.1 ADDRESSING CAPABILITIES OF AN IAS TASK 2-1
2.1.1 Address Mapping 2-1
2.1.2 Virtual and Logical Address Space 2-3

2.2 VIRTUAL ADDRESS WINDOWS 2-3

2.3 REGIONS 2-4
2.3.1 Shared Reg~ons 2-6
2.3.2 Attaching to Regions 2-7
2.3.3 Region Protection 2-7

2.4 DIRECTIVE SUMMARY 2-8

2.5 USER DATA STRUCTURES 2-8
2.5.1 Region Definition Block (ROB) 2-9
2.5.2 Window Definition Block (WDB) 2-12
2.5.3 Assigned Values or Settings 2-16

2.6 EXECUTIVE PRIVILEGED TASKS 2-16

,_
CHAPTER 3 SYSTEM DIRECTIVE CATEGORIES 3-1

3.1 TASK EXECUTION CONTROL DIRECTIVES 3-1

3.2 INFORMATIONAL DIRECTIVES 3-2

3.3 EVENT-ASSOCIATED DIRECTIVES 3-3

3.4 TRAP-ASSOCIATED DIRECTIVES 3-4

3.5 110 AND INTERTASK COMMUNICATIONS-RELATED DIRECTIVES 3-4

3.6 TASK STATUS CONTROL DIRECTIVES 3-5

Iv

Contents

3.7 MEMORY MANAGEMENT DIRECTIVES 3-6

CHAPTER 4 SYSTEM DIRECTIVE DESCRIPTIONS 4-1

4.1 DIRECTIVE PRIVILEGE 4-1

4.2 EXECUTIVE PRIVILEGE 4-1

4.3 TASK UIC 4-2

4.4 Tl INDICATOR 4-2

4.5 SYSTEM DIRECTIVE DESCRIPTIONS 4-3
ABRT$ 4-4
ALTP$ 4-6
ALUN$ 4-8
ASTX$ 4-10
ATRG$ 4-12
CLEF$ 4-15
CMKT$ 4-17
CMTA$ 4-19
CNCT$ 4-21
CRAW$ 4-23
CRAG$ 4-26
CSRQ$ 4-30
DECL$ 4-32
DSBL$ 4-34
DSCP$ 4-36
DTRG$ 4-37
ELAW$ 4-39
EMST$$ 4-42
ENAR$ 4-44
ENBL$ 4-45
ENCP$ 4-47
EXEC$ 4-48
EXIF$ 4-51
EXIT$ 4-53
EXST$ 4-55
EXTK$ 4-57
FIX$ 4-60
GCOM$ 4-62
GLUN$ 4-65
GMCR$ 4-68
GMCX$ 4-70
GPRT$ 4-73

v

Contents

GREG$ 4-75
GSSW$ 4-78
GTIM$ 4-80
GTSK$ 4-82
IHAR$ 4-86
MAP$ 4-87
MRKT$ 4-91
QIO$ 4-95
QIOW$ 4-99
ROAF$ 4-100
RDEF$ 4-102
RZST$ 4-104
RAEF$ 4-108
RSUM$ 4-113
RSUS$ 4-115
RUN$ 4-117
SCHD$ 4-121
SETF$ 4-125
SFPA$ 4-127
SPND$ 4-130
SPRA$ 4-132
SPWN$ 4-135
SADA$ 4-140
SREF$ 4-143
SRFR$ 4-146
SARA$ 4-150
STLO$ 4-153
STOPS 4-155
STSE$ 4-157
SVOB$ 4-159
SVTK$ 4-161
SYNC 4-163
UFIX$ 4-166
UMAP$ 4-168
USTPS 4-170
VRCD$/RCVD$ 4-173
VRCS$/RCVS$ 4-177
VRCT$/RCST$ 4-182
VRCX$/RCVX$ 4-185
VSDA$/SDAT$ 4-190
VSDR$/SDRQ$ 4-193
WSIG$ 4-198
WTLO$ 4-199
WRSE$ 4-201

APPENDIX A DIRECTIVE STATUS ERROR RETURNS A-1

vi

APPENDIX B DIRECTIVE STATUS ERROR RETURNS

INDEX

FIGURES
1-1
1-2
2-1
2-2
2-3
2-4
2-5

TABLES
1-1
3-1
3-2
3-3
3-4
3-5
3-6
3-7

Directive Parameter Block (DPB) Pointer on the Stack
Directive Parameter Block (DPB) on the Stack
Vlrtural Address Windows
Logical Address SpacE~
Mapping Windows to Regions
Region Definition Block
Window Definition Block

Using System Directives
Task Execution Control Directives
Informational Directives
Event-associated Directives
Trap-associated Directives
110 and Intertask Communications-Related Directives
Task Status Control Directives
Memory Management Directives

Contents

B-1

1-4
1-5
2-4
2-5
2-6

2-10
2-13

1-13
3-1
3-2
3-3
3-4
3-5
3-6
3-6

vii

Preface

Purpose of the Manual
The IAS System Directives Reference Manual describes the system directives that allow experienced
MACR0-11 and FORTRAN programmers to use IAS Executive services to control the execution
and interaction of tasks.

Document Structure
Chapter 1 defines the system directives and describes their use in both MACR0-11 and FORTRAN
programs.

Chapter 2 introduces the concept of extended logical address space and describes the associated
memory management directives.

Chapter 3 contains a brief summary of all directives, grouped according to category.

Chapter 4 contains detailed descriptions of each directive, arranged alphabetically according to
macro call.

Appendix A lists the standard Error Returns of the Directive Status Word (DSW).

Associated Documents
The following manuals are prerequisite sources of information for readers of this manual:

• IAS Tusk Builder Reference Manual

• IAS Executive Facilities Reference Manual

• PDP-11 MACR0-11 Reference Manual

• PDP-11 FORTRAN Language Reference Manual

Other documents related to the contents of this manual are described briefly in the IAS Master
Index and Documentation Directory. The directory defines the intended readership of each manual
in the IAS manual set and provides a brief summary of the contents of each document.

Manual Conventions
Macro calls with corresponding expansions and examples of macro source code are printed in red
throughout the manual.

Ix

1 Using System Directives

This chapter describes the use of system directives and how they are processed.

1.1 Introduction
A system directive is a request from a task to the Executive to perform an indicated operation. The
programmer uses the directives to control the execution and interaction of tasks. The MACR0-11
programmer usually invokes directives through macros defined in the system macro library. The
FORTRAN programmer invokes system directives through calls to subroutines contained in the
system object module library.

System directives enable tasks to perform the following functions:

1 Obtain task and system information

2 Measure time intervals

3 Perform 1/0 functions

4 Communicate with other tasks

5 Manipulate a task's logical and virtual address space

6 Suspend and resume execution, and

7 Exit

Directives are implemented by means of the EMT (Emulator Trap) 377 instruction. EMT 0 through
EMT 376 are considered to be non-IAS EMT synchronous system traps. The Executive aborts the
task unless the task specifies that it wants to receive control when such traps occur. Note that IAS
reserves EMT 370 and above for possible use as special system traps in the future.

To issue system directives, a MACR0-11 programmer uses the calls supplied in the system macro
library for directive calls, rather than hand-coding calls to directives. Then the programmer only
needs to re-assemble the program to incorporate any changes in the directive specifications.

Section 1.2, 1.3, and 1.4 pertain to all users. Section 1.5 describes the use of macros. Section 1.6
describes the use of FORTRAN subroutine calls. Programmers using another supported language
must refer to the appropriate language reference manual.

1.2 Directive Processing
Directive processing consists of the following parts:

1 The user task issues a directive (by issuing an EMT 377). The directive identifier and the
directive parameters must be in a Directive Parameter Block (DPB). The DPB itself can be
either on the user task's stack or in a user task's data section.

2 The Executive traps the instruction and checks to see if it is an EMT 377 instruction. If
so, control transfers to the directive processor and the Executive processes the directive and
returns to the user task with the directive status information. If the EMT is not an EMT 377,
the Executive determines whether the user task is capable of handling the trap. If so, the
task's SST service routine is entered.][f not, the task is aborted.

1-1

Using System Directives

The Executive preserves a11 task registers fRO-R5) when a task issues a direct.ive. The user task
issues an EMT 377 with the address of a Directive Parameter Block, or a DPB itself, on the top of
its stack. When the stack contains a DPB pointer (address), the pointer is removed (popped) when
the directive is processed. In this case, the DPB does not alter when the directive is processed.
When the stack contains a DPB, the entire DPB is removed as the directive is processed.

The first word of each DPB contains a Directive Identification Code (DIC) byte, and a DPB size
byte. The DIC indicates which directive is to be performed; the size byte indicates the DPB length
in words. The DIC is in the low-order byte of the word, and the size is in the high-order byte.

ThE! DIC is always odd; thus the Executive can determine whether the word on the top of the stack
(before EMT 377 was issued) was the address of the DPB (even word) or the first word of the DPB
(odcl word).

With the exception of the AST SERVICE EXIT, EXIT, EXITIF, RECEIVE DATA OR EXIT, and
certain RECEIVE BY REFERENCE directives, the Executive returns control to the instruction
following the EMT. The exceptional RECEIVE BY REFERENCE directives are those that
specify the receive-or-exit option. The Executive also clears or sets the carry condition code in
the Processor Status word (PS) to indicate acceptance or rejection, respectively, of the directive.
Further, the Directive Status Word (DSW) is set to indicate a more specific cause for acceptance or
rejection of the directive. The DSW usually has a value of IS.SUC (+1) for acceptance and a range
of negative values for rejection (exceptions are success return codes for the directives CLEF$,
SETF$, GPRT$, among others). IAS defines the DSW values symbolically, using mnemonics that
reflect either successful completion or the cause of an error (see Section 1.4). The ISA FORTRAN
calls CALL START and CALL WAIT are exceptions; ISA requires positive numeric error codes.
The detailed return values are listed with each directive.

In the case of successful EXIT directives, the Executive does not return control to the task. If an
EXIT directive fails, control returns with an error status in the DSW. On EXIT for any reason
(including task abort), the Executive frees task resources as follows:

1 Detaches all attached devices.

2 Flushes the Asynchronous System Trap (AST) queue.

3 Flushes the clock queue for outstanding Mark Time requests for the task.

4 Flushes the receiver queue (unless you have built the task with the 'do not flush receive queues'
attribute).

5 Closes and locks all open files as appropriate.

6 Flushes I/O queues.

7 Detaches all attached region:s.

8 Frees task's memory, if the task is not fixed.

If the Executive rejects a directive, it usual1y does not clear or set any specified event flag. Thus,
the task can wait forever if it indiscriminately executes a WAITFOR directive corresponding to a
previously issued MARK TIME directive that the Executive has rejected. You must always take
care to determine whether a directive has successfully completed.

1-2

Using System Directives

1.3 Conventions
The following conventions and assumptions are standard for all directives:

1 Unless a decimal point follows a number (.), the system assumes the number to be octal.

In FORTRAN programs, use INTEG1t~R*2 type unless the directive description states
otherwise.

2 In MACR0-11 programs, task and partition names can be from 1 to 6 characters long and are
represented as two words in Radix-50 form.

In FORTRAN programs, specify task and partition names by a variable of type REAL (single
precision) that contains the task or partition name in Radix-50 form. 'lb establish Radix-50
representation, either use the DATA statement at compile time, or use the IRAD50 subprogram
or RAD50 function at run time.

3 Device names are 2 characters long and represented by one word in ASCII code.

4 In the directive descriptions, square brackets ([]) enclose optional parameters or arguments.
'lb omit optional items, either use an empty (null) field in the parameter list, or omit a trailing
optional parameter.

5 Logical Unit Numbers (LUNs) can range from 1 to 255(10).

6 Event flag numbers range from 1 to 64(10). Numbers from 1 to 32(10) denote local flags.
Numbers from 33 to 64 denote global flags, common to all tasks.

1 .. 4 Error Returns
Directive rejections are divided into two classes: those where a programmed recovery is likely,
and those where it is unlikely. The error code, always negative, returns in the DSW. The DSW
is located at symbolic address $DSW. Rejections with expected programmed recoveries have
values ranging from -1 to -19. Error codes indicating errors for which programmed recoveries are
not feasible are in the range -20 to -99. 'l~he Task Builder resolves the address of $DSW. Users
addressing the DSW with a physical address are not guaranteed compatibility with RSX-llM or
future IAS releases.

The individual directive descriptions contain lists of the error codes that the system can return.
The symbols have the form IS.xxx for success and IE.xxx for error. Use these symbols for testing
the DSW in user programs.

1.5 Using 'the Directive Macros
Issuing a directive requires supplying the system with a directive code and parameters (called the
Directive Parameter Block) and issuing an EMT 377 instruction.

Formation of the Directive Parameter Block (DPB) can be done in two ways:

1 Dynamically on the stack at run time.

2 At assembly time.

The first method requires the use of the *S form of the directive and always generates the EMT
377 code (see Section "$8 Form").

1-3

Using System Directives

The second method requires that the programmer create the DPB as a block of data, generate code
which supplies the DPB address to the Executive, and issues an EMT 377 when the directive is
required to execute. This can be done in two ways:

1 F1orming the DPB and the code using separate macros. The DPB is formed by using the $ form
of the appropriate macro (see Section"$ Form"). The program then invokes the directive by
means of a DIR$ macro (see Section 1.5.2) that specifies the address of the DPB.

2 Forming the DPB and code using a single macro. This is done by using the $C form of the
macro (see Section "$C Form"). Because the DPB is generated in a separate PSECT (program
siection), the code and DPB are physically separated at link time.

Figure 1-1 and 1-2 illustrate the alternatives for issuing directives and also show the relationship
between the stack pointer and the DPB.

Figure 1-1 Directive Parameter Block (DPB) Pointer on the Stack

SP -

1-4

STACK'
GROWTH

ADDRESS OF DPB

MOV #ADDA, -(SP)
EMT 377

-- SIZE I DIC

DPB
ITEMS ! INCREASING

MEMORY
ADDRESS

DPB

Using System Directives

Figure 1-2 Directive Parameter Block (DPB) on the Stack

MOV XX, -(SP) SP

PUSH
REQUIRED
DPB ITEMS ON THE
STACK IN
REVERSE ORDER

• • •
MOV (PC) + , -(SP)
.BYTE DIC, SIZE
EMT an

--
t

STJ\CK GROWTH

SIZE I DIC

DPB
ITEMS ! INCREASING

MEMORY
ADDRESS

DPB

1-5

1.5.1

Using System Directives

Macro Name Conventions
You issue directives by including appropriate macro calls in the program. The System Macro
Library contains the macros that generate system directives. To make the macros available to
a program, the programmer issues the .MCALL directive. The .MCALL arguments are all the
directive macros used in the program. For example:

;CALLING DIRECTIVES FROM THE SYSTEM MACRO LIBRARY
;AND INVOKING THEM

.MCALL MRKT$S,WTSE$S

Additional .MCALLs or code

MRKT$S #1,#1,#2,,ERR ;MARK TIME FOR 1 SECOND
WTSE$S #1 ;WAIT FOR MARK TIME TO COMPLETE

Macro names consist of up to four letters, followed by a dollar ($) sign and, optionally, one letter.
The optional letter specifies which of three possible expansions of the macro you want.

Examples of each form are given in Section 1.5.5.

$Form

The $form (omission of the optional letter) is useful for a directive operation that you want to
issue several times from different locations in a non re-entrant program. This form produces only
the directive's DPB, and must be issued from a data section of the program. The code for actually
executing a directive that is in the$ form is produced by a special macro, DIR$ (described in
Section 1.5.3).

Because execution of the directive is separate from the creation of the directive's DPB:

1 You need issue a$ form of a given directive only once (to produce its DPB).

2 You can issue a DIR$ macro associated with a given directive several times, without incurring
the overhead of generating a DPB each time you issue it.

When issuing the $ form of macro call, specifying the generation of a DPB at assemb]y time,
it is assumed that the parameters you need for DPB constructions are vaJid expressions to
be used in MACR0-11 data storage directives (for example, .BYTE, .WORD, .RAD50). See
Section 1.5.5.

NOTE: Because space will not have been reserved in the DPB, parameters not specified
at assembly time cannot later be specified at run time, despite the offsets to the
parameters being defined.

$C Form

Programmers use the $C form when a directive is on]y issued once, and the program segment
does not need to be re-entrant, and the directive arguments are known at assembly time. The $C
form eliminates the need to push the DPB (created at assembly time) onto the stack at run time.
Other parts of the program, however, cannot access the DPB because the DPB address is unknown.
(Note, that in the $C form macro expansion of Section 1.5.5, the DPB address$$$ is redefined by
the new value of the assembler's location counter each time you issue an additional $C directive.)

1-6

Using System Directives

The $C form generates a DPB in a separate PSECT (program section) called $DPB$$. The DPB
is followed by a return to the original PSECT, an instruction to push the DPB address onto the
stack, and an EMT 377. 1b ensure that the correct program section is re-entered, you must specify
its name in the argument list immediately following the required DPB parameters. If you do not
specify the argument, the system assumes the blank (un-named) program section.

The $C form also accepts an optional final argument which specifies a routine to be called if an
error occurs during the execution of the directive (see Section 1.5.3).

Wten issuing the $C form of macro call, specifying the generation of a DPB at assembly time, it
is assumed that the parameters required for DPB construction are valid expressions to be used in
MACR0-11 data storage directives (for example, .BYTE, .WORD, .RAD50). See Section 1.5.5.

$S Form

If the optional letter is S, the macro produces code to push a DPB onto the stack, followed by an
EMT 377. In this case the parameters must be valid source operands to be placed directly in MOV
type instructions. Compare Example 3 in Section 1.5.5 with Examples 1 and 2.

Also, where the macro involves a Radix-f;O string (for example a task name, a common block
name), you specify the appropriate parameter differently in the $S form from the$ or $C form.
In this case, it must be the address of a two-word buffer containing the required Radix-50 string.
For example, to get details of the common block SYSRES into a user's buffer the programmer can
write:

.PSECT DATA,D
BUFFER: .BLKW 8.
DPB: GCOM$ SYSRES,BUFFER

.PSECT
DIR$ #DPB

or

.PSECT DATA,D
BUFFER: .BLKW 8 .

. PSECT
GCOM$C SYSRES,BUFFER

But with the $8 form, the Radix-50 parameter must be specified as the address of a two-word
buffer containing the Radix-50 string, for example:

.PSECT DATA,D
SYSBUF: .RADSO /SYSRES/
BUFFER: .BLKW 8 .

. PSECT
GCOM$S #SYSBUF,#BUFFER

The $8 form, like the $C, accepts an optional final argument which specifies a routine to be called
if an error occurs during the execution of the directive (see Section 1.5.3 below).

Only the $S form produces the DPB at run time. The other two forms produce the DPB at
assembly time. Programs that need to be re-entrant must use the $S form. See Section 1.5.5.

Note that you must not use the stack pointer (SP) to address the parameters. Subroutines or macro
calls can use SP for temporary storage, thereby destroying the positional relationship between the
stack pointer and the parameters.

1-7

·1.s.2

1.5.3

1.5.4

Using System Directives

Predefined DPB
You can predefine a DPB by using the $ and $C forms of a macro. A predefined DPB is very useful
if you want to perform the same directive operation several times. Also, with the$ form, you can
modify the individual parameters later, for instance when you use the same directive many times
with varying parameters.

If you have a predefined DPB, for example if you have used the $ form of the macro, and want to
avoid creating another copy of the same DPB, use the DIR$ macro. This macro pushes the DPB
address onto the stack and issues an EMT 377.

Macro call:

DIR$ adr,err

adr and err are optional

• adr - is the address of the DPB. If you do not specify this address, the DPB, or its address must
be on the stack. If you use either the$ or $C form of the macro, the address must be on the
stack. If you use the $S form, the DPB must be on the stack.)

• err - is the address of the error return. If you do not specify this error, any error simply results
in the C bit being set in the Processor Status word.

NOTE: Dm.$ is not a "$ form macro," and does not behave as one. There are no
variations in the spelling of this macro.

Optional Final Argument
The $C and $8 forms of macro calls and the DIR$ macro accept an optional final argument. If
included, the argument must be a valid assembler destination operand to call a user error routine.
The argument generates the following code:

Macro call:

DIR$ #DPB,ERROR

Macro expansion:

MOV #DPB,-(SP)
EMT 377
BCC .+6
JSR PC,ERROR

This argument is ignored and causes an assembly error if it is used in the $ form, in which the
user specifies the generation of the DPB only.

Symbolic Offsets
Most system directive macro calls generate local symbolic offsets. The symbols are unique to each
directive and are assigned the values of the byte offset in the DPB.

Because the offsets are defined symbolically, you can refer to or modify DPB elements without
knowing the offset values. Symbolic offsets also make it unnecessary to rewrite programs to
accommodate changes in DPB specifications.

1-8

1.5.5

Using System Directives

All $ and $C forms of macros that generate DPBs longer than one word, generate local offsets. All
informational directives (see Chapter 3, Section 3.2) including the $8 form, generate local symbolic
offsets for the parameter block returned.

If you invoke either the $ or the $C form of a macro and the symbol $$$GLB has been defined in
the program (for example $$$GLB=0), the macro generates the symbolic offsets as global symbols
and does not generate the DPB itself. This allows one module to use a DPB defined in another
module. $$$GLB has no effect on the expansion of $8 macros.

Examples of Macro Calls and Corresponding Expansions

1 The$ form

Call:

MT:

Expansion:

2 The $C form

Call:

Expansion:

3 The $8 form

Call:

Expansion:

MRKT$ 1,5,2,MTRAP GENERATE DPB ONLY IN CURRENT PSECT

.BYTE 23., 5 ; "MARK·-TIME" DIC & DPB SIZE

.WORD 1 EVENT FLAG NUMBER

.WORD 5 TIME INTERVAL MAGNITUDE (5)

.WORD 2 TIME INTl!!RVAL UNIT (SECONDS)

.WORD MTRAP ; AST ENTRY POINT

MRKT$C 1,5,2,MTRAP,PROGl,ERR ;GENERATE DPB IN SEPARATE PSECT

.PSECT $DPB$$
$$$=. DEFINE TEMPORARY SYMBOL
.BYTE 23.,5 ; "MARK··TIME" DIC & DPB SIZE
. WORD 1 EVENT FLl\G NUMBER
.WORD 5 TIME INTERVAL MAGNITUDE
.WORD 2 TIME INTERVAL UNIT
.WORD MTRAP ; AST ENTRY POINT
.PSECT PROGl ; RETURN TO THE ORIGINAL PSECT
MOV #$$$,-(SP) ; PUSH DPB ADDRESS ON STACK
EMT 377 TRAP TO THE EXECUTIVE
BCC .+6 BRANCH ON DIRECTIVE ACCEPTANCE
JSR PC,ERR ; ELSE, CALL ERROR SERVICE ROUTINE

MRKT$S U,#5,#2,R2,ERR ;PUSH DPB ON STACK

1-9

1.5.6

Using System Directives

MOV R2,-(SP) PUSH AST ENTRY POINT
MOV #2,-(SP) TIME INTERVAL UNIT
MOV #5,-(SP) TIME INTERVAL MAGNITUDE
MOV #1,-(SP) EVENT FLAG NUMBER
MOV (PC)+,-(SP) ; AND "MARK-TIME" DIC & DPB SIZE
.BYTE 23.,5 ; ON THE STACK
EMT 377 TRAP TO THE EXECUTIVE
BCC .+6 BRANCH ON DIRECTIVE ACCEPTANCE
JSR PC,ERR ; ELSE, CALL ERROR SERVICE ROUTINE

4 The DIR$ macro

.Call:

DIR$ #MT, ERR DPB ALREADY DEFINED. DPB ADDRESS MT.

Expansion:

MOV #MT,-(SP) ; PUSH DPB ADDRESS ON STACK
EMT 377 TRAP TO THE EXECUTIVE
BCC .+6 BRANCH ON DIRECTIVE ACCEPTANCE
JSR PC,ERR ; ELSE, CALL ERROR SERVICE ROUTINE

Testing the Directive Status Word
It is often convenient to test the C condition code for success. If the C condition code is set, you can
test individual error returns. For example:

and so on.

BCC SUCCES ; SUCCESS IF (C) CLEAR
CMPB @#$DSW, #IE.UPN NOT ENOUGH POOL NODES?
BNE NONODE
CMPB @#$DSW, fIE.LUN ; UNASSIGNED LUN?
BNE NOLUN

The symbol $DSW is reso1ved by the Task Bui1der. If you address the DSW with a physical
address, you are not guaranteed compatibility with RSX-UM or future IAS releases.

1.6 FORTRAN Subroutines
IAS provides a set of subroutines designed to be used by FORTRAN programs for performing
process control and IAS system directive operations. These subroutines fall into three basic
groups:

1 Subroutines based on the Instrument Standard of America (ISA), Standard ISA 62.1. These
subroutines are inc1uded in the subroutine descriptions associated with the macro ca1ls. See
Chapter 4 for details.

2 Subroutines designed to use and contro1 specific process control interface devices, supp1ied by
Digital and supported by the IAS operating system.

3 Subroutines for using the AFC-11 AID Converter, the ADOl-D AID Converter, and the UDC-11
Universal Digital Contro1ler are described in the !AS FORTRAN Special Subroutines Reference
Manual.

4 Subroutines for performing IAS system directive operations. In general, one subroutine is
available for each directive.

1-10

Using System Directives

All of the subroutines described in this manual can be called hy FORTRAN programs compiled by
either of the FORTRAN compilers supplied for use with IAS (that is, the FORTRAN IV compiler
and the FORTRAN IV PLUS compiler).

Equivalent subroutines can be called by COBOL, BASIC and CORAL programs (see the
appropriate language manual).

These subroutines can also be called from programs written in the MACR0-11 assembly language
by using PDP-11 FORTRAN calling sequence conventions described in the IAS/RSX-11 FORTRAN
IV User's Guide and in the FORTRAN IV-PLUS User's Guide.

For categories 1 and 3, this manual gives the FORTRAN call after describing the macro call.

1.7 Subroutine Usage
The IAS System Library includes all the subroutines described in this manual. When linking a
task for execution, after ascertaining that the specified routine does not already exist (that is, is
user defined), the Task Builder automatically searches the System Library.

To use one of these routines, the programmer must include the appropriate CALL statement in the
FORTRAN program. The subroutine is selected by the Task Builder and automatically included in
the task image during standard linking procedures.

Optional Arguments

Many of the subroutines described in thi~ manual have optional arguments. If you omit an optional
argument, you must keep the comma following it if you specify further arguments in the list. You
do not need to keep the comma if you omit one or more arguments at the end of the list. For
example, the format of a call to SUB could be the following:

CALL SUB (AA, [BB], [CC], DD, [EE], [FF])

Then the BB, CC, EE and FF arguments can be left unspecified, as in

CALL SUB (AA,,,DD,,)

or

CALL SUB (AA,,,DD)

In. some cases, a subroutine will use a default value for an unspecified optional argument. Each
subroutine description notes such default values.

Task Name Arguments

In these subroutines, task names can be up to six characters long. Characters permitted in a task
name are the letters A through Z, the numerals 0 through 9 and the special characters dollar sign
($) and period (.). Task names are stored lin Radix-50 representation, which permits up to three
characters from the above set to be encoded in one PDP-11 word. (Radix-50 is described in detail
in the /AS FORTRAN IV Language Reference Manual and the FORTRAN IV-PLUS User's Guide.)

In the subroutine calls, a task name is defined as a variable of type REAL which contains the task
name in Radix-50 representation. This value can be defined at program compilation time by a
DATA statement, which gives the real variable an initial value (a Radix-50 constant).

1-11

Using System Directives

For example, if a task named TNAME is to be used in a system directive call, the task name could
be defined and used as follows:

DATA TNAME/SRTNAME/

CALL REQUES (TNAME)

You can also define task names during execution by using the IRAD50 subroutine or the RAD50
function as described in the IAS I RSX-11 FORTRAN IV User's Guide and FORTRAN IV-PLUS
User's Guide.

Integer Arguments

Many of the arguments used to communicate a value to system subroutines or to receive values
from these routines are described as Integer Arguments. All of the subroutines described in this
manual assume that integer arguments are, specifically, INTEGER*2 type arguments.

Both the FORTRAN IV and FORTRAN IV-PLUS systems normally treat an integer variable as
one PDP-11 storage word, provided that its value is within the range -32768 to +32767. However,
if you use the /14 compile-time option, you must take particular care to ensure that all the integer
arguments you use in these subroutines are explicitly specified to be of type INTEGER*2.

GETADR Subroutine

Some subroutines contain an argument in the subroutine call described as an integer array
containing some values which are the addresses of other variables or arrays. The FORTRAN
language does not provide a means of assigning such an address as a value. This capability is
provided by the GETAD~ subroutine, described below.

Calling Sequence:

CALL GETADR(ipm, [argl], [arg2], ••• , [argn])

• ipm - is an array of dimension n.

• argl , ... argn - are arguments whose addresses are to be inserted in ipm. Arguments are
inserted in the order specified. If you specify a null argument then the corresponding entry in
ipm is left unchanged.

Example:

DIMENSION IBUF(80),IOSB(2),IPARAM(6)

CALL GETADR (IPARAM(l),IBUF(l))

IPARAM(2)=80

CALL QIO (IREAD,LUN,IEFLAG,IOSB,IPARAM,IDSW)

In thiEJ example, CALL GETADR enables the programmer to specify a buffer address in the CALL
QIO directive.

1-12

1.7.1

Using System Directives

Subroutine Categories
This section contains a list of the FORTRAN subroutines associated with system directives (see
Chapter 4 of this manual for detailed descriptions).

Some subroutines, notably MARK TIME (CALL MARK), permit both the standard FORTRAN-IV
subroutine call and the ISA standard call. Other directives, however, are not available to
FORTRAN tasks, [for example, Specify Floating Point Exception AST (SFPA$) and Specify SST
Vector Table For Task (SVTK$)].

The subroutines GETADR and MNLOAD are specialized subroutines and are not associated with
any one particular directive. These subroutines are described in the IAS FORTRAN Special
Subroutines Reference Manual.

Table 1-1 Using System Directives

Directive MACRO Call FORTRAN Subroutine

ABORT TASK ABRT$ CALL ABORT

ALTER PRIORITY ALTP$ CALL ALTPRI

ASSIGN LUN ALU NS CALL ASNLUN

AST SERVICE EXIT ASTX$ Not available

ATTACH REGION ATRG$ CALL ATRG

CLEAR EVENT FLAG CLEF$ CALL CLREF

CANCEL MARK TIME REQUESTS CMKT$ CALL CANMT

CANCEL MARK TIME AST CMTA$ Not available
REQUESTS

CANCEL SCHEDULED REQUESTS CSRQ$ CALL CANALL (for indicated task)
CALL CANOBY (for Indicated task but made by
another task)

CONNECT TO TASK CNCT$ CALL CNCT

CREATE ADDRESS WINDOW CRAW$ CALL CRAW

CREATE REGION CRAG$ CALL CRAG

DECLARE SIGNIFICANT EVENT DECL$ CALL DECLAR

DISABLE DSBL$ CALL DISABL

DISABLE CHECKPOINTING DSCP$ CALL DISCKP

DETACH REGION DTRG$ CALL DTRG

ELIMINATE ADDRESS WINDOW ELAW$ CALL ELAW

EMIT STATUS EMST$ CALL EMST

ENABLE AST RECOGNITION ENAR$ CALL ENASTR

EXTEND TASK EXTK$ CALL EXTTSK

ENABLE CHECKPOINTING ENCP$ CALL ENACKP

EXECUTE EXEC$ CALL EXECUT

EXITIF EXIF$ CALL EXITIF

TASK EXIT EXIT$ CALL EXIT

EXIT WITH STATUS EXST$ Not available

1-13

Us~ng System Directives

Table 1-1 (Cont.) Using System Directives

Directive MACRO Call FORTRAN Subroutine

FIX FIX$ CALL FIXMEM

GET COMMON BLOCK GCOM$ CALL GETCMN
PARAMETERS

GET LlJN INFORMATION GLUN$ CALL GETLUN

GET MAPPING CONTEXT GMCX$ CALL GMCX

GET MCR COMMAND LINE GMCR$ CALL GETMCR

GET PARTITION PARAMETERS GPRT$ CALL GETPAR

GET REGION PARAMETERS GREG$ CALL GETREG

GET SENSE SWITCHES GSSW$ CALL READSW
CALL SSWTCH

GET TIME PARAMETERS GTIM$ Several subroutines available (see the
IASIRSX-11 FORTRAN IV Users Guide or
the FORTRAN IV-PLUS User's Guide)

GET TASK PARAMETERS GTSK$ CALL GETTSK

INHIBIT AST RECOGNITION IHAR$ CALLINASTR

MAF1 ADDRESS WINDOW MAP$ CALL MAP

MAFlKTIME MRKT$ CALL MARK
CALL WAIT (ISA Standard call)

QUEUE 1/0 REQUEST 010$ CALL 010

QUEUE 1/0 REQUEST AND WAIT QIOW$ CALL QIOW

READ ALL FLAGS ROAF$ Only a single event flag may be read

READ EVENT FLAG RDEF$ CALL READEF

RECEIVE BY REFERENCE RREF$ CALL RREF

REQUEST ROST$ CALL REQUES

RESUME RSUM$ CALL RESUME

RUN RUN$ CALL RUN
CALL START (ISA standard call)

SCHEDULE SCH0$ CALL TANON (ISA standard call)

SET EVENT FLAG SETF$ CALL SETEF

SPECIFY FLOATING POINT SFPA$ Not available
EXCEPTION AST

SUSPEND SPND$ CALL SUSPND

SPECIFY POWER RECOVERY AST SPRA$ EXTERNAL SUBNAM
CALL PWRUP (SUBNAM) (to establish an AST
Service routine)
CALL PWRUP (to remove an AST Service
routine)

SPAWN SPWN$ CALL SPAWN

SPECIFY RECEIVE DATA AST SRDA$ Not available

SEND BY REFERENCE SREF$ CALL SRRF

1-14

1.,7.2

Using System Directives

Table 1-1 (Cont.) Using System Directives

Directive MACRO Call FORTRAN Subroutine

SEND BY REFERENCE AND SAFA$ CALL SAFA
REQUEST OR RESUME

SPECIFY RECEIVE BY SARA$ Not available
REFERENCE AST

SPECIFY SST VECTOR TABLE SVOB$ Not available
FOR DEBUGGING AID

STOP FOR LOGICAL OR OF STLO$ CALL STOPOR
EVENT FLAGS

STOP FOR SINGLE EVENT FLAG STSE$ CALL STOPFR

STOP STOP$ CALL STOPTK

SPECIFY SST VECTOR TABLE SVTK$ Not available
FOR TASK

SYNCHRONIZE SYNC$ CALL SYNC

UNFIX UFIX$ CALL UNFIX

UNSTOP TASK USTP$ CALL UNSTOP

UNMAP ADDRESS WINDOW UMAP$ CALL UNMAP

RECEIVE DATA VRCD$/IRCVD$ CALL VRECEV/RECEIV

RECEIVE DATA OR SUSPEND VRCS$/RCVS$ CALL VRECSP/RECOSP

RECEIVE DATA OR STOP VRCT$/f:tCST$ CALL VRECST /RECOST

RECEIVE DATA OR EXIT VRCX$/l~CVX$ CALL VRECEX/RECOEX

SEND DATA VSDA$/SDAT$ CALL VSEND/SEND

SEND DATA AND REQUEST OR VSDR$/SDRQ$ CALL VSNDRR/SNDROR
RESUME RECEIVER

WAIT FOR SIGNIFICANT EVENT WSIG$ CALL WFSNE

WAIT FOR LOGICAL OR OF FLAGS WTL0$ CALL WFLOR

WAIT FOR SINGLE EVENT FLAG WTSE$ CALL WAITFR

Error Conditions
Each subroutine provides a means whereby the calling program can determine whether the
requested operation was successfully performed or whether an error condition was detected. This
is provided by means of an (optional) argument (ids), the value of which is set by the subroutine.
In the case of an error, the value will also include the type of error detected.

In addition, two types of error are reported by means of the FORTRAN Object Time System
diagnostic messages described in the IASlRSX-11 FORTRAN N Users Guide or the FORTRAN
IV-PLUS User's Guide. Both of these errors result in the termination of the task. The error
conditions are:

. 1 "SYSTEM DIRECTIVE: MISSING AR.GUMENT(S)" This message indicates one or more
necessary arguments were missing from a call to a system directive subroutine. (OTS error
number 100).

1-15

Using System Directives

2 "SYSTEM DIRECTIVE: INVALID EVENT FT .AG NUMBER" This message indicates an event
flag number in a system directive call was not in the range 1 to 64. (OTS error number 101).

1 ~8 System Clocks
In many of the macro calls and subroutine calls described, you must specify time intervals and the
units to measure as arguments. You can specify time units as hours, minutes, seconds, milliseconds
(ISA calls only), or basic counts (ticks) of the system clock.

IAS supports two system clocks for scheduling purposes; the KWll-L and the KWll-P. Although
you can specify all time intervals in milliseconds in ISA-standard calls, scheduling precision can be
limited by the resolution of the system clock.

The KWll-L is a line frequency clock; maximum resolution is 16.7 milliseconds at 60 Hz line
frequency and 20 milliseconds at 50 Hz line frequency.

The KWll-P is a programmable crystal-contro1led clock. The clock rate is selected at System
Generation, therefore, scheduling accuracy depends on the individual installation's particular clock
rate.

1.9 Use of the System Node Pool
Many of the system directives require space to be allocated from the system node pool. This is
indicated in the descriptions of the individual directives.

Normally, nodes are charged against the issuing task's node pool allocation, as specified when the
task was built or overidden when it was installed. This provides a protection mechanism to stop a
single task from picking all the nodes in the pool and hence interfering with the progress of other
tasks. Node pool accounting is fully described in the IAS Executive Facilities Reference Manual.

It may not be possible to allocate the nodes required for the successful exeeution of a directive.
This can be for one of two reasons:

1 The task has used its entire allocation of nodes. In this case, although there may be sufficient
nodes in the system pool, no more nodes can be allocated to this task. The nodes will be
available when the task releases some nodes which are currently allocated (for example,
because of an 1/0 completion). Note also that for multiuser tasks, nodes can become available
when another invocation of the task releases nodes.

2 The system node pool does not contain enough free nodes. This can occur if the system is
temporarily overloaded, for example because a large number of events requiring space from the
node pool have occurred simultaneously. In this case, space normally becomes available within
a short period of time, as the overload peak passes. This condition only persists if the system
is grossly overloaded.

Whatever the reason for failing to obtain nodes, the Executive normally stalls the task and does
not allow the directive to complete Wltil sufficient nodes have been obtained. Exceptionally, an
error return can be given to the task if:

1 The task was built with the /NOWAIT_FOR_NODES (/-WN) attribute. In this case, the return
will be immediate.

2 After a certain period (normally 500 clock ticks) it was impossible to find sufficient nodes.

The Executive normally returns an error status in the DSW of IE.UPN (-01) if insufficient pool
nodes are available. A status of IE.UNS (-04) is returned if one of the SEND DATA directives fails
to send the data because of a lack of nodes.

1-16

2 Memory Management Directives

This chapter describes the concepts of extended logical address space, regions, and virtual address
windows. The chapter also introduces the related memory management directives.

2.1 Addressing Capabilities of an ~AS Task

2.1.1

An I.AS task cannot explicitly refer to a location with an address greater than 32,768 words,
commonly called 32K words. The 16-bit word size of the PDP-11 computers imposes this restriction
on a task's addressing capability. 1b avoid limiting the size of a task to its addressing capability,
IAS allows tasks to be overlaid. An overlaild task is divided into segments: a single root segment,
which is always in memory when the task is running, and any number of segments, which can
be loaded into memory as required. UnlesB an IAS task uses the memory management directives
described in this chapter, the combined size of the task segments concurrently in memory cannot
exceed 32K words.

When resident task segments cannot excee!d 32K words, a task requiring large amounts of data
must access data residing on disk. Data is disk-based because of limited memory space and also
because transmission of large amounts of data between tasks is only practical by means of disks. A
task that has disk overlays or a task that needs to access or transfer large amounts of data incurs
a considerable amount of transfer activity over and above that caused by the task's function.

Task execution could obviously be faster if all or a greater portion of the task were simultaneously
resident in memory. IAS includes a group of memory management directives that provide the task
with this capability. The directives overcome the 32K word addressing restriction by allowing the
task to change dynamically the physical memory referred to by a range of addresses. With these
directives, a task can increase its execution speed by reducing its disk 1/0 requirements, at the
expense of increased memory requirements.

A task that needs to be overlaid can be built using memory resident overlays. These use the
memory management directives, although this is transparent to the user. See the IAS Tusk
Builder Reference Manual for details.

Address Mapping
Mapping is the process by which a 16-bit task address (called a Virtual Address) is translated
into an 18 or 22-bit physical memory addrt,ss. (16 bits allow 64K bytes to be addressed, although
the actual number of bits required dependEJ on the processor.) The 32K words of task addressable
space are divided into eight segments of 4K words. Corresponding with these segments and
included within the mapping hardware are eight Active Page Registers (APRs). An APR is selected
according to the high-order 3-bits of the virtual address as shown below.

2-1

Memory Management Directives

Address Range APR#

000000-017777 0

020000-037777 1

040000-057777 2

060000-077777 3

100000-117777 4

120000-137777 5

140000-157777 6

160000-177777 7

An APR consists of two component registers:

a Page Address Register

a Page Descriptor Register

Page Address Register (PAR)

The PAR contains a physical memory address divided by 64. When six zero bits are appended to
the right hand end this can be considered as a 22-bit value. For example:

• PAR #3 contains 2437

• Thus, 2437 corresponds to a Physical Memory Address of 243700.

The physical memory address to which the PAR corresponds is known as the Base Address of the
segment and must lie on a 64-byt~ (32-word) boundary.

You obtain a complete physical memory address from a virtual address by using the high order
3-bits of the virtual address to select the APR (as explained earlier). Once you have obtained the
base address, from the associated PAR, the value of the remaining low-order 13-bits of virtual
address is added. For example:

• A virtual address of 073432 causes APR #3 to be selected.

• The PAR of APR #3 contains 2437

• Thus the corresponding physical address is: 243700 + 013432 = 257332.

PAGE DESCRIPTOR REGISTER (PDR)

The PDR contains the access rights and the size of the segment mapped from 0 to 4K words
in 32-word steps. The size (important for memory protection purposes) means that although a
complete 4K words of address space can be mapped per APR, the memory management software
can limit access to a smaller number of words (for example, 3K words).

Any attempt to exceed the permitted range gives rise to a memory protect violation trap. This trap
will also occur if modification is attempted where write access is not permitted.

NOTE: Although virtual addresses run sequentially from 0 through 177777, there is no
resbiction on APR contents. Thus, at each 4K word (8K byte) boundary, the task can be
mapped to a completely different part of physical memory (either above or below the
previous segment). This is the basic feature upon which memory management directives
rely.

See the PDP-11 Processor Handbook for a full description of memory management hardware and
its operations.

2-.2

2.1.2

Memory Management Directives

Virtual and Logical Address Space
The two concepts defined below, virtual address space and logical address space, provide a basis for
understanding the functions performed by the memory management directives:

1 Virtual Address Space - A task's virtual address space corresponds to the 32K word address
range imposed by the PDP-ll's architucture. The task can divide its virtual address space into
segments called virtual address windows.

2 Logical Address Space - A task's logical address space is the total amount of physical memory
to which the task has access rights. The task can divide its logical address space into various
areas called regions. Each region resides in a contiguous block of memory.

If the capabilities supplied by the IAS memory management directives were not available, a task's
virtual address space and logical address :space would directly correspond; a single virtual address
would always correspond to the same logical location. Both types of address space would have a
maximum size of 32K words. However, the ability of the memory management directives to assign
or map a range of virtual addresses (a wi111dow) to different logical areas (regions) enables you to
extend a task's logical address space beyo111d 32K words.

2a2 Virtual Address Windows
In order to manipulate the mapping of virtual addresses to various logical areas, you must first
divide a task's 32K words of virtual address space into parts called virtual address windows. Each
window encompasses a contiguous range of virtual addresses, which must begin on a 4K-word
boundary (that is, the first address must be a multiple of 4K words). The number of windows
defined by a task can vary from 1 to 8. the size of each window can range from a minimum of 32
words to a maximum of 32K minus 32 words.

As there are only eight APRs available, (see Section 2.1.1) the number of windows available and
the size of each window are interdependent. For each window, each 4K words (or part thereoO
requires one APR. All APRs for a window are allocated consecutively to allow contiguous virtual
addresses throughout. Therefore, a window 5K words in length requires two consective APRs, in
this case the upper 3K words of address space in the second APR are inaccessible to the task.

A window's identification is a number from 0 to 7, which is an index to the window's corresponding
window block. The Executive uses window blocks to identify and describe each currently existing
window. The address window identified by 0 is the window that always maps the task's root
segment. The Task Builder automatically creates window 0, which is mapped by the Executive and
cannot be specified in any directive.

Figure 2--1 shows the virtual address space of a task divided into four address windows (windows
0, 1, 2, and 3). The shaded areas indicatti portions of the address space that are not included in
any window (9K to 12K and 23K to 24K). Addresses that fall within the ranges corresponding to
the shaded areas cannot be used.

When a task uses memory management directives, the Executive views the relationship between
the task's virtual and logical address space in terms of windows and regions. Unless a virtual
address is part of an existing address window, the address does not refer to anything. Similarly,
a window can be mapped only to an area that is all or part of an existing region within the task's
logical address space.

2-3

Memory Management Directives

Figure 2-1 Vlrtural Address Windows

WINDOW3

WINDOW2

WINDOW1

WINDOWO

----- 32K

3 (SK)
1-- 2SK

1-- 20K

2 (11 K) 1-- 16K

12K

1 (SK)
1-- SK

too-__ ..,.__ 4K

0 (4K) ..__ __ __,_ OK

D

•
=VIRTUAL ADDRESS

WNOON

=UNUSED VIRTUAL
ADDRESS SPACE

Once a task has defined the necessary windows and regions, the task can issue memory
management directives to perform operations such as the following:

1 Map a window to all or part of a region

2 Unmap a window from one region in order to map it to another region, or

3 Unmap a window from one part of a region in order to map it to another part of the same
region.

2.3 Regions
The current window-to-region mapping context determines the part of a task's logical address space
that the task can access at one time. A task's logical address space can consist of various types of
region:

1 Resident Libraries - These are pure and are never written back to disk. They are loaded from
the installed task image file.

2 Common Areas - These are loaded from and swapped to and from the installed task image file.

3 Installed Regions - These are initially loaded from the installed task image file and
subsequently swapped to and from the swap files.

4 Dynamic Regions - A dynamic region is a region created dynamically at run time by issuing the
memory management directives.

Tasks refer to a region with a region ID returned to the task by the Executive. Region IDs are
the attachment descriptor number in the task header and are always a number between 1 and
255. If a task has resident overlays, separate regions are allocated for the task itself, its read/write
resident overlays and its read-only overlays. Region IDs for such fixed attachments are allocated
in the following order:

2-4

1 Read/write resident overlays

2 Read-only resident overlays

3 Libraries and common areas.

Figure 2-2 Logical Address Space

-

Memory Management Directives

Figure 2-2 shows a sample collection of regions that could comprise a task's logical address space
at a given time. (A task's logical address space can enlarge or contract dynamically.) The header
and root segment are always part of the task region. Because a region resides in a contiguous area
of memory, each region is shown as a separate block. .

Figure 2-3 illustrates a possible mapping relationship between the windows and regions shown in
the first two figures.

2-5

2.3.1

Memory Management Directives

Figure 2-3 Mapping Windows to Regions

VIRTUAL

ADDRESS
SPACE
---.... - 32K

WINDOW3 3 (SK)
1-- 2SK

WINDOW2

WINDOW1 1 (SK)
i-- SK

.,._ __ ,...__ 4K

WINDOWO 0 (4K)

D

[II

•

.....__ __ __,__ OK

= VIRTIJAL ADDRESS
WINrx:J.N

= UNUSED VIRTUAL
ADDRESS SPACE

= MAPPED AREAS OF
LOGICAL ADDRESS
SPACE

= UNMAPPED PORTIONS
OF LOGICAL ADDRESS
SPACE

____... =POINTER TO AREA MAPPED BY A WINDOW

Shared Regions

LOGICAL ADDRESS SPACE

- 12K

SK

11:{111111\1\\11111
17K

Address mapping not only extends a task's logical address space beyond 32K words; it also allows
the space to extend to regions that have not been linked to the task at task build. one result is an
increased potential for task interaction by means of shared regions.

2-6

2.3.2

2.3.3

Memory Management Directives

For example, a task can create a dynamic region to contain large amounts of data; any number of
tasks can then access that data by mapping to the region. Another result is the ability of tasks to
use a greater number of common routines; tasks can map to required routines at runtime, rather
than link to them at task build.

Attaching to Regions
Attaching is the means by which a region becomes part of a task's logical address space. A task
can map only to a region that is part of the task's logical address space. There are three ways to
~ttach a region to a task:

1 All regions that are linked to a task a"t task build are automatically attached.

2 A task can issue a directive to attach itself to a named common region or a named dynamic
region.

3 A task can request the Executive to attach any region within its own logical address space
(other than its task region) to another specified task.

Attaching identifies a task as a user of a region and prevents the system from deleting a region
until all user tasks have been detached.

For each region to which a task is attached, the executive requires a data structure called an
Attachment Descriptor Block (ADB). These are created automatically for regions linked to a task
at build time, and for the two possible resident overlay regions (read-only and read/write). You
must use the ATRG task builder option to create additional ADBs needed for dynamically attached
regions. See the IAS Tusk Builder Reference Manual for details of the ATRG option.

Region Protection
A task cannnot indiscriminately attach to any region. The following criteria determine how tasks
can attach to regions outside their logical address space:

· • Each region has a protection mask to prevent unauthorized access. The mask indicates the
types of access (read, write, extend, d1:!lete) allowed for each category of user (system, owner,
group, world). The Executive checks that the requesting task's User Identification Code (UIC)
allows it to make the attempted access. The attempt fails if the protection mask denies that
task the access it wants.

• When a task creates a dynamic region, it may or may not give that region a name. If it does
not give a name, other tasks can attach to the region only if its identity is sent to them by the
creating task, using one of the SEND BY REFERENCE directives (see Chapter 3, Section 3.7).
If it gives a name, it can be made global or terminal-sensitive. If the name is global, any task
may attach to it as long as it knows the name and there is no protection violation. If the name
is terminal-sensitive, any task running on the same terminal as the creating task may attach
to the region, as long as there is no protection violation.

• Any task can issue a SEND BY REFERENCE directive to attach any region (except the task
region) to another task. The referencE' sent includes the access rights with which the receiving
task attaches to the region. The sending task can only grant access rights that it has itself.

• Any task can map to a named common region as long as there is no protection violation.

2-7

Memory Management Directives

2.4 Directive Summary
The following memory management directives are available:

• CREATE REGION (CRRG$)

• A'ITACH REGION (ATRG$)

• DETACH REGION (DTRG$)

• CREATE ADDRESS WINDOW (CRAW$)

• ELIMINATE ADDRESS WINDON (ELAW$)

• MAP ADDRESS WINDOW (MAP$)

• UNMAP ADDRESS WINDOW (UMAP$)

• SEND BY REFERENCE (SREF$)

• SEND BY REFERENCE AND REQUEST OR RESUME (SRFR$)

• RECEIVE BY REFERENCE (RREF$)

• GET MAPPING CONTEXT (GMCX$)

• GET REGION PARAMETERS (GREG$)

You cannot issue the CREATE REGION, A'ITACH REGION, or DETACH REGION directives
without special privilege. See Chapter 3, Section 3. 7 for brief descriptions of the function and use
of each directive. See Chapter 4 for detailed descriptions.

2.5 User Data Structures
Most memory management directives are individually capable of performing a number of separate
actions. For example, a single CREATE ADDRESS WINDOW directive can unmap and eliminate
up to seven conflicting address windows, create a new window, then map the new window to
a specified region. The complexity of the directives requires a special means of communication
between the user task and the Executive. The communication is achieved through data structures
that:

1 Allow the task to specify which directive options it wants the Executive to perform, and

2 Permit the Executive to provide the task with details about the outcome of the requested
actions.

There are two types of user data structures that correspond to the two key elements (regions and
address windows) manipulated by the directives. The structures are called:

1 The Region Definition Block (RDB)

2 The Window Definition Block (WDB)

Every memory management directive (except GET REGION PARAMETERS) uses one of these
structures as its communications area between the task and the Executive. Each directive issued
includes in the Directive Parameter Block (DPB) a pointer to the appropriate definition block.
Values assigned by the task to offsets within an RDB or a WDB define or modify the directive
operation. After the Executive has carried out the specified operatjon, it assigns values to various
locations within the block to describe the actions taken and to provide the task with information
useful for subsequent operations.

2-8

2.5.1

Memory Management Directives

Region Definition Block (ROB)
Figure 2-4 illustrates the format of an RDB. In addition to the symbolic offsets defined in the
diagram, the region status word, R.GSTS, contains defined bits that can be set or cleared by the
Executive or the task. (IAS reserves undefined bits for future expansion.) The defined bits are:

Bit

RS.CAR

RS.UNM

RS.TSK -
RS.TIS -
RS.NPL -
RS.MDL

RS.NOL

RS.ATT

RS.CON

RS.NEX

RS.DEL

RS.EXT

RS.WAT

RS.RED

100000

40000

2000

1000

400

200

100

40

20

20

10

4

2

Definition

Region was successfully created.

One 1or more regions were unmapped on a detach.

Reserved.

Region is terminal sensitive.

Reserved.

Mark region for deletion on last detach.

Created region Is not to be marked for deletion on last detach.

Attaclh to created region.

Reserved.

Rese1rved.

Delet19 access desired on attach.

Extenid access desired on attach.

Write access desired on attach.

Read access desired on attach.

The three memory management directive13 that require a pointer to an RDB are:

• CREATE REGION (CRRG$)

• ATTACH REGION (ATRG$)

• DETACH REGION (DTRG$)

When a task issues one of these directiveis, the Executive clears the four high order bits in
the region status word of the appropriate RDB. After completing the directive operation, the
Executive sets the RS.CRR and/or RS.UNM bit to indicate to the task what actions were taken.
The Executive never modifies the other bits.

Using Macros to Generate an ROB

IAS provides two macros, RDBDF$ and RDBBK$, to generate and define an RDB. RDBDF$
defines the offsets and status word bits for a region definition block; RDBBK$ then creates the
actual region definition block. The format of RDBDF$ is:

RDBDF$

Since RDBBK$ automatically invokes RDBDF$, the programmer need only specify RDBBK$ in a
module that creates an RDB. The format of the call to RDBBK$ is:

2-9

Memory Management Directives

Figure 2-4 Region Definition Block

Array Symbolic
Element Offset Block Fonnat

lrdb (1) R.GID REGION ID

lrdb (2) R.GSIZ SIZE OF REGION (32W BLOCKS)

lrdb (3)

R.GNAM NAME OF REGION (RAD50)

lrdb (4)

lrdb (5)

R.GPAR
REGION'S MAIN PARTITION NAME

lrdb (6) (RAD50)

t--

irdb (7) R.GSTS REGION STATUS WORD

lrdb (8) R.GPRO REGION PROTECTION WORD

RDBBK$ siz,nam,par,sts,pro

where:

• siz - is the region size in 32-word blocks

• nam - is the region name (Radix-50)

-
-

Byte
Offset

0

2

4

6

10

12

14

16

•1 par - is the name of the partition in which to create the region (Radix-50)

•1 sts - is the region status word bit definitions

•1 pro - is the region's default protection word

The argument "sts" sets specified bits in the status word R.GSTS. The argument normally has the
following format:

<bitl[! ... !bitn]>

where "bit" is a defined bit to be set.

The argument pro is an octal number. The 16-bit binary equivalent specifies the region's default
protection as follows:

2-10

Memory Management Directives

Bits 15 12 11 8 7 43 0

I WORLD I GROUP I OWNF.R I SYSTEM I
Each of the four categories above has four bits; each bit represents a type of access:

Bit 3 2 1 0

I DELEIB I EXIBNDI WRfIB I READ I
A bit value of zero (0) indicates that the 1·espective type of access is to be allowed; a bit value of
one (1) indicates that the respective type of access is to be denied.

The macro call:

RDBBK$ 102.,ALPHA,GEN,<RS.NDL!RS.ATT!RS.WRT!RS.RED>,167000

expands to:

.WORD 0
• WORD
.RADSO
.RADSO
.WORD
.WORD
.WORD

102 •
/ALPHA/
/GEN/

0
<RS.NDL!RS.ATT!R:S.WRT!RS.RED>
167000

If a CREATE REGION directive points to the RDB defined by the macro call expansion above, the
Executive creates a region 102 (decimal) :32-word blocks in length, named ALPHA, in a partition
named GEN. The defined bits specified in the sts argument inform the Executive:

1 Not to mark the region for deletion on the last detach,

2 'lb attach region ALPHA to the task i:ssuing the directive macro call, and

3 'lb grant read and write access to the attached task.

The protection word specified as 167000 (octal) assigns the protection mask to the region. The octal
number, which has a binary equivalent of 1110111000000000, grants all types of access to system
and owner tasks, and read access only to group and world tasks.

If no protection word is specified, the Executive treats this as a value of zero (that is, unrestricted
access for all categories of user).

If the CREATE REGION directive is successful, the Executive returns to the issuing task the
region ID in the symbolic offset R.GID and sets the defined bit RS.CRR in the status word R.GSTS.

2-11

2.5.2

Memory Management Directives

Using FORTRAN to Generate an ROB

FORTRAN programmers must create an 8-word, single-precision integer array as the RDB to be
supplied in the subroutine calls:

• CALL ATRG- (ATTACH REGION directive)

• CALL CRRG- (CREATE REGION directive)

• CALL DTRG- (DETACH REGION directive)

(See the PDP-11 FORTRAN Language Reference Manual for information on the creation of arrays.)
An RDB array has the following format:

Word

lrdb(1)

lrdb(2)

lrdb(3)
lrdb(4)

lrdb(S)
irdb(6)

lrdb(7)

lrdb(8)

Contents

Region ID

Size of the region in 32-word blocks

Region name (2 words in Radix-SO format)

Name of the partition that contains the region
(2 words in Radix-50 format)

Region status word (see paragraph below)

Region protection code

The FORTRAN programmer modifies the region status word, irdb(7), by setting or clearing the
appropriate bits. See the list in Section 2.5.1 that describes the defined lbits. The bit values are
listed alongside the symbolic offsets.

Note that Hollerith text strings can be converted to Radix-50 values by calls to IRAD50 (see the
appropriate IAS FORTRAN User's Guide).

Window Definition Block (WDB)
Figure 2-5 illustrates the format of the WDB. The b1ock consists of a number of symbolic offsets.
Orie of the offsets is the window status word, W.NSTS, which contains defined bits that the
Executive or the task can set or clear. (IAS reserves all undefined bits for future expansion.) The
defined bits are:

Bit Definition

WS.CRW 100000 Address window was successfully created.

WS.UNM 40000 One or more windows were unmapped by a CREATE ADDRESS
WINDOW, MAP ADDRESS WINDOW, or UNMAP ADDRESS
WINDOW directive.

WS.ELW 20000 One or more windows were eliminated In a CREATE ADDRESS
WINDOW or ELIMINATE ADDRESS WINDOW directive.

WS.RRF - 10000 Reference was successfully received.

WS.RST 2000 Stop task If no references to receive.

WS.RSU - 1000 Suspend task if no references to receive.

2-12

Memory Management Directives

Bit Definition

WS.648 400 Defines the task's permitted alignment boundaries: 0 for 256-word
(512-byte) alignment, 1 for 32-word (64-byte) alignment.

WS.MAP 200 Window is to be mapped In a CREATE ADDRESS WINDOW or
RECEIVE BY REFERENCE directive.

WS.RCX -
WS.CON -
WS.DEL

WS.EXT -

100

20

10

4

Exit if no references to receive.

Res1erved.

Send with delete access.

Send with extend access.

WS.WRT -
WS.RED -

2

1

Send with write access or map with write access.

Send with read access.

Figure 2-5 Window Definition Block

Array Symbolic
Element Offset Block Format

lwdb (1)
W.NID
W.NAPR BASE.APR WINDOW ID

lwdb (2) W.NBAS VIRTUAL BASE ADDRESS (BYTES)

iwdb (3) W.NSIZ WINDOW SIZE (32W BLOCKS)

lwdb (4) W.NRID REGIONI ID

lwdb (5) W.NOFF OFFSET IN REGION (32W BLOCKS)

lwdb (6) W.NLEN LENGTl-I TO MAP (32W BLOCKS)

lwdb (7) W.NSTS WINDOW STATUS WORD

iwdb (8) W.NSRB SEND/RECEIVE BUFFER ADDRESS (BYTES)

The following directives need a pointer to a WDB:

• CREATE ADDRESS WINDOW (CRAW$)

• ELIMINATE ADDRESS WINDOW (ELAW$)

• MAP ADDRESS WINDOW (MAP$)

• UNMAP ADDRESS WINDOW (UMAP$)

Byte
Offset

0

2

4

6

10

12

14

16

2-13

Memory Management Directives

• SEND BY REFERENCE (SREF$)

• SEND BY REFERENCE AND REQUEST OR RESUME (SRFR$)

• RECEIVE BY REFERENCE (RREF$)

When a task issues one of these directives, the Executive clears the four high order bits in the
window status word of the appropriate WDB. The Executive can then set any of these bits after
completing the directive operation to tell the task what actions were taken. The Executive never
modifies the other bits.

Using Macros to Generate a woe
IAS provides two macros, WDBDF$ and WDBBK$, to generate and define a WDB. WDBDF$
defines the offsets and status word bits for a window definition block; WDBBK$ then creates the
actual window definition block. The format of WDBDF$ is:

WDBDF$

Since WDBBK$ automatically invokes WDBDF$, the programmer need only specify WDBBK$ in a
module that generates a WDB. The format of the call to WDBBK$ is:

WDBBK$ apr,siz,rid,off,len,sts,srb

where:

• apr - is a number from 0 to 7 that specifies the window's base Active Page Register (APR).
The APR determines the 4K word boundary on which the window is to begin. APR 0
corresponds to virtual address 0, APR 1 to 4K, APR 2 to SK, and so on. (See Section 2.1.1.)

• siz - is the size of the window in 32-word blocks.

• rid - is a region ID

• off - is the offset within the region to be mapped in 32-word blocks

• len - is the length within region to be mapped, in 32-word blocks

• sts - is the window status word bit definitions

• srb - is a send/receive buffer virtual address

The argument "sts" sets specified bits in the status word W.NSTS. The argument normally has the
following format:

<bitl[! ... !bitn]>

where "bit" is a defined bit to be set.

'rhe macro call:

WDBBK$ 5,76.,0,50.,,<WS.MAP!WS.WRT>

expands to:

2-14

Memory Management Directives

.BYTE o,s

.WORD 0

. WORD 76 .

.WORD 0

. WORD 50 •

.WORD 0

.WORD <WS.MAP!WS.WRT>

.WORD 0

If a CREATE ADDRESS WINDOW directive points to the WDB defined by the macro call expanded
above, the Executive:

1 Creates a window 76 (decimal) 32-word blocks in length, beginning at APR 5 (virtual address
20K or 120000 octal).

2 Maps the window with write access (<WS.MAP!WS.WRT>) to the issuing task's task region
(because the macro call specified 0 fo:r the region ID).

3 Starts to map 50 (decimal) blocks from the base of the region and maps an area either equal to
the length of the window (76 [decimal] blocks) or the length remaining in the region, whichever
is smaller (because the macro call defaulted the len argument).

4 Returns values to the symbolic offsets W.NID (the window's ID) and W.NBAS (the window's
virtual base address).

Using FORTRAN to Generate a WDB

FORTRAN programmers must create an 8-word, single-precision integer array as the WDB to be
supplied in the subroutine calls:

• CALL CRAW - (CREATE ADDRESS WINDOW directive)

• CALL ELAW - (ELIMINATE ADDRESS WINDOW directive)

• CALL MAP - (MAP ADDRESS WINDOW directive)

• CALL UNMAP - (UNMAP ADDRESS WINDOW directive)

• CALL SREF - (SEND BY REFERENCE directive)

• CALL RREF - (RECEIVE BY REFEB~ENCE directive)

(See the PDP-11 FORTRAN Language Reference Manual for information on the creation of arrays.)
A WDB array has the following format:

Word

iwdb(1)

iwdb(2)

iwdb(3)

lwdb(4)

iwdb(5)

iwdb(6)

. iwdb(7)

iwdb(S)

Contents

Bits 0 to 7 contain the window ID; bits 8 to 15 contain the window's base APR

Base virtual address off the window

Size of the window in ~~2-word blocks

Region ID

Offset length within the, region at which map begins, in 32-word blocks.

Length mapped within the region in 32-word blocks.

Window status word (see paragraph immediately below)

Address of send/receive buff er

The FORTRAN programmer modifies the window status word, iwdb(7), by setting or clearing the
appropriate bits. See the list above in Section 2.5.2 that describes the defined bits. The bit values
are listed alongside the symbolic offsets.

2-15

2.5.3

Memory Management Directives

Notes:

1 The contents of bits 8 to 15 of iwdb(1) must normally be set without destroying the value in
bits 0 to 7 for any directive other than CREATE ADDRESS WINDOW.

2 A call to GETADR can be used to set up the address of the SEND/RECEIVE buffer. For
example:

3 CALL GETADR(IWDB,,,,,,,,IRCVB)

4 This call places the address of buffer IRCVB in array element 8. The remaining elements are
unchanged. The subroutines SREF and RREF also set up this value.

Assigned Values or Settings
The exact values or settings assigned to individual fields within the RDB or the WDB vary
according to each directive. Fields that are not needed as input can have any value when you
issue the directive. Chapter 4 describes which offsets and settings are relevant for each memory
management directive. The values that the task assigns are called input parameters, those that
the Executive assigns are ca11ed output parameters.

2.6 Executive Privileged Tasks
All Executive privileged tasks map to SCOM and the External page. The system dedicates APRs 4,
5, 6 and 7 to this mapping. A privileged task can issue memory management directives to remap
any number of these APRs to regions. You must take care when using the directives in this way;
such remapping can cause obscure bugs to occur. When a directive unmaps a window that formerly
mapped SCOM or the External page, the Executive restores the former mapping.

2-16

3 System Directive Categories

This chapter groups the directives by fw1ction and gives a brief description of each. See Chapter 4
for detailed descriptions of each system directive, presented alphabetically according to the
directive macro calls.

The system directives are grouped into the following categories:

1 Task execution control directives

2 Information directives

3 Event-associated directives

4 Trap-associated directives

5 1/0 and intertask communications-related directives

6 Task status control directives

7 Memory management directives

Note that in the following tables those d:irectives flagged (R) require real-time directive privilege
and those marked (M) require memory management directive privilege for timesharing tasks run
in a timesharing IAS system. If a directlive is not flagged as such, then you need no privilege for
issuing that directive.

On a multi-user system, or for real-time tasks in a timesharing system, you do not need these
privileges.

3.1 Task Execution Control Direc:tives
The task execution control directives deal principally with starting and stopping tasks. Each of
these requests results in a change of the task's state (unless the task is already in the state being
requested).

Table 3-1 Task Execution Control Directives

Directive MACRO Call

REQUEST (R) ROST$

SPAWN (R) SPWN$

EXECUTE (R) EXEC$

SCHEDULE (R) SCHD$

Function

Runs a task contingent upon priority and memory availability. H
memory is not available, the request is queued and the task Is
run as soon as possible.

Requests a specified task for execution, optionally establishing
exit events and supplying a command line.

Executes a task only if sufficient memory Is available at the time
involved. If the task cannot be run immediately, the request is
rejected.

Requests a task using the ROST$ directive at a specific time
and, optionally, repeats the request periodically (for example, the
task can be scheduled.to run at 09.35 a.m.)

3-1

System Directive Categories

Table 3-1 (Cont.) Task Execution Control Directives

Directive MACRO Call

RUN (R) RUN$

SYNCHRONIZE (R) SYNC$

CANCEL CSRQ$
SCHEDULED
REQUESTS (R)

CANCEL MARK CMKT$
TIME
REQUESTS

SUSPEND SPND$

RESUME (R) RSUM$

TASK EXIT EXIT$

TASK EXIT WITH STATUS EXST$

ABORT TASK (R) ABRT$

EXTEND TASK EXTK$

3.2 Informational Directives

Function

Requests a task using the ROST$ directive at a specified
interval from the current time and, optionally, repeats the request
periodically.

Requests a task using the ROST$ directive at a specific interval
from a specified future time and, optionally, repeats the request
periodically.

Cancels scheduled requests for task execution.

Cancels all MARK TIME requests that have been made by the
issuing task.

Suspends execution of the task issuing the suspend.

Resumes the execution of a task that has suspended itself.

Terminates execution of the Issuing task.

Terminates execution of the issuing task and returns status
information.

Terminates execution of the indicated task.

Instructs the system to modify the size of the issuing task by a
positive or negative increment of 32-word blocks.

Several informational directives provide the issuing task with data retained by the system. These
directives provide the time of day, the task parameters, the console switch settings and partition or
region parameters.

Table 3-2 Informational Directives

Directive MACRO Call

GET PARTITION GPRT$
PARAMETERS

GET SENSE GSSW$
SWITCHES

GET TIME GTIM$
PARAMETERS

GET COMMON BLOCK GCOM$
PARAMETERS

GET TASK GTSK$
PARAMETERS

3-2

Function

Fills an indicated 3-word buffer with Information for a specific
partition.

Obtains the status of the console sense and stores it In the
issuing task's directive status word.

Fills an indicated 8-word buffer with current time and date
information.

Fills an indicated 8-word buffer with information for a specific
common block.

Fills an indicated 16-word buffer vvith information about the task
issuing the directive.

System Directive Categories

3'"3 Event-Associated Directives
The event and event flag directives are the means provided in the system for inter-task and
intra-task synchronization and signalling. You must use these directives carefully because software
faults resulting from erroneous signalling and synchronization are often obscure and difficult-to
isolate. See the IAS Executive Faciliti.es Reference Manual for a description of events and event
flags.

Table 3-3 Event-associated Directives

·Directive MACRO Call

CONNECT TO TASK CNCT$

EMIT STATUS EMST$

DECLARE SIGNIFICANT DECL$
EVENT (R)

WAIT FOR SIGNIFICANT WSIG$
EVENT

SET EVENT FLAG SETF$

CLEAR EVENT FLAG CLEF$

READ EVENT FLAG RDEF$

READ ALL EVENT FLAGS ROAF$

WAIT FOR SINGLE EVENT WTSE$
FLAG

WAIT FOR LOGICAL OR OF WTL0$
EVENT FLAG

STOP FOR SINGLE EVENT STSE$
FLAG

STOP FOR LOGICAL OR OF STLO$
EVENT FLAGS

STOP STOP$

UNSTOP USTP$

EXITIF EXIF$

MARK TIME MRKT$

CANCEL MARK TIME AST CMTA$
REQUESTS

Function

Synchronizes the Issuing task with the exit or emit status of an
active task.

Returns a specified 16-blt value to the the specified comected
task and disconnects from the parent task.

Declares a significant event and, optionally, sets an event flag
and reports the status of the flag before It was set.

Suspends execution of the Issuing task until the next significant
event occurs.

Sets an indicated event flag and reports the status of the flag
before it was set. SETF$ does not cause a significant event to
occur.

Clears an indicated event flag and reports the flag's status
before clearing. CLEF$ does not cause a significant event to
occur.

Reads a specified event flag and Indicates by the return code In
the directive status word whether the flag Is set or cleared.

Reads all 64 event flags and records their status by setting or
clearing corresponding bits in a 64-blt (4-word) buffer.

Suspend execution of the issuing task until the Indicated event
flag is set.

Suspends execution of the Issuing task until an Indicated event
flag in one of a number of flags is set.

Stops execution of the issuing task until the indicated event flag
is set.

Stops execution of the Issuing task until and Indicated event flag
in one of a number of flags Is set.

Stops the issuing task.

Unstops a task which has been stopped via either a STOP or
RECEIVE OR STOP directive

Terminates the execution of the issuing task if an indicated event
flag is not set.

Declares an event after an indicated time Interval starting from
when the directive is issued. An event flag can be set or an AST
routine entered when the event occurs.

Cancels any unserviced mark time AST requests for the issuing
task.

3-3

System Directive Categories

·3.4 Trap-Associated Directives
The trap-associated directives provide you with the same facilities inherent in the PDP-11
hardware trap system. These directives allow transfers of control (software interrupts) to the
executing tasks. See the IAS Executive Facilities Reference Manual for a description of system
traps.

Table 3-4 Trap-associated Directives

Directive MACRO Call

AST SERVICE EXIT ASTX$

SPECIFY SST VECTOR SVTK$
TABLE FOR TASK

INHIBIT AST RECOGNITION IHAR$

ENABLE AST ENAR$
RECOGNITION

SPECIFY POWER SPRA$
RECOVERY AST

SPECIFY FLOATING POINT SFPA$
AST

SPECIFY RECEIVE DATA SADA$
AST

SPECIFY SARA$
RECEIVE-BY-REFERENCE
AST

SPECIFY SST VECTOR SVOB$
TABLE FOR DEBUGGING
AID

Function

Terminates execution of an asynchronous system trap service
routine.

Specifies the address of a table containing the addresses of
synchronous system trap service routines.

Inhibits recognition of ASTs for the Issuing task.

Enables recognition of ASTs for the Issuing task.

Informs the system whether or not power recovery ASTs are
desired for the issuing task. If desired, this directive Indicates
where control Is to be transferred when the AST occurs.

Informs the system whether or not PDP-11/70 or PDP-11/45
floating point exception ASTs are desired for the task. If desired,
the directive indicates where control Is to be transferred for the
AST.

Allows the programmer to specify the AST service routine which
is to be executed when any data Is sent to this task.

Allows the programmer to specify the AST service routine which
is to be executed when any references are sent to the task.

Specifies the virtual address of a table of synchronous system
trap service routine entry points for use by ODT or other
debugging aids. SVOB$ takes precedence over SVTK$ (see
above).

3.5 1/0 and Intertask Communications-Related Directive.s
The 1/0 and intertask communications-related directives allow tasks to access 1/0 devices at the
device handler level, to communicate with other tasks in the system and to retrieve command lines
sent by MCR to the task.

3-4

System Directive Categories

Table 3-5 1/0 and Intertask Communications-Related Directives

Directive

GET LUN INFORMATION

GET MCR COMMAND LINE

QUEUE 1/0

QUEUE 1/0 AND WAIT

ASSIGN LUN

SEND DATA

SEND DATA AND RESUME
OR REQUEST RECEIVER

RECEIVE DATA

RECEIVE DATA OR EXIT

RECEIVE DATA OR
SUSPEND (R)

RECEIVE DATA OR STOP

MACRO Call

GLUN$

GMCR$

010$

QIOW$

ALUN$

VSDA$/SDAT$

VSDR$/SDRQ$

Function

Fills a 6-word buffer with information about a physical device
unit to which the logical unit number is assigned.

Transfers an 80-byte command line to the issuing task.

Places an 1/0 request for an indicated device In a
priority-ordered queue of requests for that unit.

Performs the functions of 010$ (see above) and waits for the
event flag specified in the 010 to become set (see WTSE$,
Table 3-3).

Assigns a Logical Unit Number (LUN) to a physical device unit.

VSDA$ queues a variable-length data block by priority for a task
to receive. SDAT$ sends a 13-word data block.

VSDR$ queues a variable length data block by priority for a task
to receive and resumes or requests execution of the receiving
task. SORO$ sends a 13-word data block. The Issuing task
needs to be real-time privileged unless the receiver is built to
receive from any task.

VRCD$/RCVD$ VRCD$ receives a variable-length data block that was queued
by another task. RCVD$ receives a 13-word data block.

VRCX$/RCVX$ VRCX$ receives a variable-length data block that has been
queued by another task or exits if none Is queued. RCVX$
receives a 13-word data block or exits.

VRCS$/RCVS$ VRCS$ receives a variable-length data block If one Is queued
for the task or suspends the task. RCVS$ receives a 13-word
data block or suspends.

VRCT$/RCST$ VRCT$ attempts to dequeue a send data packet from the
specified task (or any task). RCST$ receives a 13-word data
block or stops.

3.6 Task Status Control Directives
The task status control directives are used for fixing and unfixing tasks, disabling and enabling
tasks, disabling and enabling checkpointing of tasks and altering a task's priority.

3-5

System Directive Categories

Table 3-6 Task Status Control Directives

Directive MACRO Call

FIX-IN-MEMORY (R) FIX$

UNFIX (R) UFIX$

DISABLE (R) DSBL$

ENABLE (R) ENBL$

DISABLE (R) DSCP$
CHECKPOINTING

ENABLE (R) ENCP$
CHECKPOINTING

ALTER PRIORITY (R) ALTP$

Function

Fixes in memory (makes permanently resident) an inactive,
installed task.

Reverses a FIX$ directive and frees the memory allocated to the
task.

Rejects future attempts to execute or fix an indicated task using
any of the following directives: ROST$, EXEC$, SCHD$, RUN$,
SYNC$, FIX$, SPWN$.

Instructs the system to make an Indicated disabled task runnable
(that is, reverses the DSBL$ directive).

Instructs the system to make the issuing task
non-checkpointable.

Makes the issuing task checkpointable if checkpointing for the
task was previously disabled.

Alters the priority of a specified active task to the new priority
indicated in the directive.

3.7 Memory Management Directives
The memory management directives allow a task to manipulate its virtual and logical address
space and to set up and control dynamically the window-to-region mapping assignments. The
directives also provide the means by which tasks can share and pass references to data and
routines. See Chapter 2 for a detailed description of memory management in the context of system
directives. Note also that those directives flagged (M) require memory management privilege.

Table 3-7 Memory Management Directives

Directive MACRO Call Function

CREATE REGION (M)

ATTACH REGION (M)

DETACH REGION (M)

CREATE ADDRESS
WINDOW

ELIMINATE ADDRESS
WINDOW

MAP ADDRESS WINDOW

3-6

CRAG$

ATRG$

DTRG$

CRAW$

ELAW$

MAP$

Creates a dynamic region in a system- controlled partition and
attaches system-controlled partition and attaches It to the Issuing
task.

Attaches the issuing task to a common region or to a named
dynamic region.

Detaches the issuing task from a specified region. Any of the
task's address windows that are mapped to the region are
automatically unmapped.

Creates an address window, establishes Its virtual address
size and optionally maps the window. Any other windows that
overlap with the range of addresses of the new window are first
unmapped, if necessary, and then eliminated.

Eliminates an existing address window, unmapplng it first, If
necessary.

Maps an existing window to a specified offset and length within
a region attached to the issuing task. If the window Is already
mapped elsewhere, the Executive unmaps It before carrying out
the map assignment described in the directive.

System Directive Categories

Table 3-7 (Cont.) Memory Management Directives

Directive MACRO Call Function

UNMAP ADDRESS UMAP$
WINDOW

SEND BY REFERENCE SREF$

SEND BY REFERENCE AND SAFA$
REQUEST OR RESUME

RECEIVE BY REFERENCE RAEF$

GET MAPPING CONTEXT GMCX$

GET REGION GREG$
PARAMETERS

Unmaps a specified window. After the window has been
unmapped, the corresponding virtual address range cannot be
referenced until the task issues another mapping directive.

Inserts a packet containing a reference to a region Into
the receive queue of a specified task. The receiver task Is
automatically attached to the region to which it refers.

Inserts a packet containing a reference to a region Into the
receive queue of a specified task and requests or resumes the
task if it was inactive or suspended when the reference was
sent.

Causes the Executive to dequeue the next receive-by-reference
packet in the receive-by-reference queue of the issuing task.
Optionally, the directive can map a window to the referenced
region, or cause the task to exit, be suspended or be stopped If
the queue does not contain a receive-by-reference packet.

Causes the Executive to return to the issuing task a description
of the current window-to-region mapping assignments. The
description is in a form that enables the user to restore the
mapping context by a series of CREATE ADDRESS WINDOW
directives.

Causes the Executive to supply the issuing task with Information
about a specified region.

3-7

4 System Directive Descriptions

This chapter provides a detailed description of the system directives.

Each directive description consists of an ~~xplanation of the directive's function and use, the names
of the corresponding macro and FORTRAN calls, the associated parameters, and possible return
values of the Directive Status Word (DSW).

The descriptions show only the $ form of the macro name, although the $C and $S forms are also
available, unless otherwise specified. The $S form is recommended for directives which take no
parameters and generate a single word DPB; for example: ASTX$S, EXIT$S.

In addition to the directive macros themselves, the DIR$ macro also allows the programmer to
execute a directive by means of a predefined DPB (see Chapter 1, Section 1.5.2 for details).

4.1 Directive Privilege
There are two categories of directive privilleges:

1 Real-time directive privilege

2 Memory management directive privilege

In the individual descriptions for each directive, those directives marked (R) alongside the
heading need real-time privilege and tho1;;e marked (M) need memory management privilege.
Some directives, however, do not need any special privilege. All real-time tasks and all tasks in
a multi-user system are granted both sets of privileges and can, therefore, issue any directive.
Timesharing tasks, however, must have the appropriate privilege to perform the cotTesponding
directives. The system manager normally allocates such privilege to each individual user.

If a timesharing task attempts to issue a directive without having been granted the necessary
privilege, the system returns an error code of IE.AST in the DSW.

Some directives need real-time directive privilege for the cases where a global event flag is to be
set or cleared. Reading a global event fla1~ does not need any directive privilege.

Any task that has executive privilege (see Section 4.2, below) can issue any directives, irrespective
of other privileges.

4.2 Executive Privilege
In IAS, executive privilege is defined as the linking of a task to SCOM and to the External Page
by means of the LINK/PRIVILEGED qualifier or the /PR switch to Task Builder. See the IAS Tusk
Builder Reference Manual for fw-ther details of the LINK and Task Builder commands. See the
IAS Executive Facilities Reference Manual for information regarding SCOM and the External Page.

Executive privileged tasks can only be run by users with the required privilege assigned, except in
the case of system tasks installed by the system manager (where no privilege is required).

4-1

System Directive Descriptions

In connection with system directives, executive privilege is required when:

1 Issuing a QUEUE 1/0 (Q10$) or QUEUE 1/0 AND WAIT (QIOW$) directive to read or write
logical blocks to a device that has:

a. A volume mounted as a Files-11 directory volume.

b. A volume that is mountable, but is not currently mounted.

2 Issuing an EXECUTE (EXEC$), REQUEST (RQST$), RUN (RUN$) or SYNCHRONIZE
(SYNC$) directive by which another task is run under a changed UIC (see Section 4.3, below).

4.3 Task UIC
Normally, tasks are run under the (default) UIC indicated in the task's header. The default can be
set when a task is linked or installed. If no default is specified, the task is run under the terminal
user's own UIC.

A task must be executive privileged if it needs to issue a directive that will cause another task to
run under a UIC different from its default UIC. See Section 4.2.

If a task is run using the Timesharing Control Services (TCS), the UIC of the terminal is always
used. Refer to the IAS Guide to Writing a Command Language Interp·reter manual for further
information.

4.4 Ti Indicator
The Terminal Interface Input device (Tl:) is the device for which a task was invoked. The TI is
normally the terminal at which you typed the command that resulted in the task being activated.
When you use the TI indicator in a directive parameter list, the TI is the PUD address of the
device for which the task was activated. This facility provides identification of a specific copy of a
multiuser task, provided there is only one copy of the task invoked for a particular device.

4-2

System Directive Descriptions

4.5 System Directive Descriptions
Each directive description includes most or all of the following elements:

Name:

A description of the f'Q.llction of the directive.

Macro Call:

The macro call is shown, each parameter is defined, and the defaults for optional parameters are
·given in parentheses following the definition of the parameter. Since zero is supplied for most
defaulted parameters, only non-zero default values are shown. Note also that square brackets ([])
denote optional arguments.

Local Symbol Definitions:

Macro expansions usually generate local Bymbol definitions with an assigned value equal to the
byte offset from the start of the DPB to the respective DPB element. There is a list of these
symbols. The length in bytes of the datum pointed to by the symbol appears in parentheses
following the symbol's description.

Thus:

• A.BTTN - (length 4 bytes) Task name in Radix-50

defines A.BTTN as pointing to a task name in the Abort Task DPB; the task name datum has a
length of 4 bytes.

Definition Block Parameters:

These parameters are given only in the memory management directive descriptions. This section
describes all the relevant input and output parameters in the region or window definition block
(see Chapter 2, Section 2.5).

DSW Return Codes:

A list of all valid return codes.

Macro Expansion:

The $ form of the macro is expanded. The $8 and $C forms are normally also available, except
where otherwise indicated in the directive description.

FORTRAN Call:

The FORTRAN subroutine call is shown, and each parameter is defined. As for the macro calls,
square brackets ([]) denote all optional arguments.

4-3

ABRT$

ABRT$

The ABORT TASK directive terminates the execution of the indicated task. Termination Information Is
printed on the terminal used to invoke the task. A task can abort any task. If the task being aborted is
a multi-user task, it is aborted only if its Tl matches that of the task Issuing the ABORT directive.

MACRO CALL

ABRT$ tsk

where:

t» tsk - is the name of the task to be aborted.

LOCAL
SVIMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

1
• A.BTTN - (Length 4 bytes) Task name in Radix-50

DSW RETURN
CODIES

Value
Codo Returned

is.sue +1

IS.SPD +2

IE.INS -02

IE.ACT -07

IE.ITS -08

IE.CKP -10

IE.PAI -16

IE.ADP -98

IE.SOP -99

4-4

Exp la nation

Successful completion

Task aborted before execution commenced

Task not installed

Task not active

Task loading or exiting

Task is not abortable

Directive privilege violation

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

MACRO
EXPANSION

'FORTRAN
CALL

where:

ABRT$ ALPHA
.BYTE 83.,3
.RADSO /ALPHA/

;ABRT$ MACRO DIC,DPB SIZE=3 WORDS
;TASK 'ALPHA'

CALL ABORT (tsk[,ids])

• tsk - is a two-word 1- to 6- character task name in Radix-50 form.

• ids - is an integer variable to receive the Directive Status Word.

ABRT$

4-5

AL'TP$

ALTP$

The Al.TEA PRIORITY directive alters the priority of the specified active task to the new priority
Indicated In the directive. If the task Is multi-user, Its priority is altered only If Its Tl matches that of the
calling ·task. The Executive declares a significant event.

MACRO CALL

ALTP$ [tsk] [,pri]

where:

1
• tsk - is the name of the task whose priority is to be changed. If you do not specify the task,

the calling task's priority is changed.

• pri - is the new priority (in the range 1 through 250) for the task. If you do not specify pri,
the new priority is the priority specified at link or installation time. If you did not specify a
priority during linking or installation, a system default of 50 (decimal) is used.

LOCAL
SYMBOL
DEFINITIONS

The following symbols are locally defined with their assigned values equal to the byte offset from
the start of the DPB to the respective DPB elements:

• A.I.Tl'N - (Length 4 bytes) Task name in Radix-50

• A.I.TPR - (2) Priority

DSWRETURN
CODES

Value
Code Returned

is.sue +1

IE.INS -02

IE.ACT -07

IE.ITS -08

IE.PAI -16

IE.IPR -95

IE.ILU -96

IE.ADP -98

4-6

Exp la nation

Successful completion

Task not Installed

Task not active

Task loading or exiting

Directive privilege violation

Invalid priority specified (<0 or >250)

Task under scheduler control

Part of DPB Is out of issuing task's address space

Code

IE.SOP

Value
Returned

-99

MACRO
EXPANSION

FORTRAN
CALL

ALTP$
.BYTE
.RAD SO
.WORD

Exp la nation

DIC or DPB size is invalid

TASKl0,100
9.,4
/TASKlO/
100

;ALTP$ MACRO DIC, DPB SIZE • 4 WORDS
;'rASK 'TASKlO'
;NEW PRIORITY

CALL ALTPRI ([tsk], [ipri] [,ids])

where:

ALTP$

• tsk - is a 2-word Radix-50 name of the task whose priority is to be altered. If you omit this
argument, the default is the calling task.

• ipri - is a 1-word integer value fo1'.' the new priority (in the range 1 through 250) for
the task. If you do not specify ipri, the new priority is the priority specified at link or
installation time. If you did not specify a priority during linking or installation, a system
default of 50 (decimal) is used.

• ids - is a 1-word integer variable for the directive status. If you omit this argument, status
information is not provided.

4-7

ALUN$

ALUN$

The ASSIGN LUN directive assigns a Logical Unit Number (LUN) to a physical device unit. You
can subsequently reassign LU Ns if necessary by issuing further assigns for the same logical unit to
a different physical device. On successful reassignment, all 1/0 requests for the issuing task In the
previous device queue are cancelled. You can also use this directive to deassign a LUN if you do not
specify a physical device in the request.

MACRO CALL

ALUN$ lun[,dev,unt]

where:

• lun - is a logical unit number

• dev - is a physical device name (two characters)

• unt - is a physical device unit number

NOTE: If you omit dev and unt, the LUN is deassigned. Future attempts to use
the LUN will fail with the error "unassigned LUN" (IE.LUN). The LUN may have
previously been assigned by means of an ASSIGN LUN directive, or by means of
default or specific assignment at task build time.

LOCAL
SYMBOL
DEFINITIONS

The following symbols are locally defined with their assigned values equal to the byte offset from
the start of the DPB to the respective DPB elements:

• A.LULU - (Length 2 bytes) Logical unit number

• A.LUNA - (2) Physical device name

• A.LUNU - (2) Physical device unit number

4-8

DSWRETURN
CODES

Value
Code Returned

is.sue +1

ALUN$

Exp la nation

Successful completion

IE.LNL -90 LUN usage interlocked (LUN is already assigned to a device and a file Is currently
open on that d1:.vlce for the specified LUN or the device Is attached to the Issuing
task)

IE.IOU -92

IE.ILU -96

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

FORTRAN
CALL

ALUN$
.BYTE
.WORD
.ASCII
.ASCII
.WORD

Invalid device Eand/or unit

Invalid logical unit number

Part of DPB is out of Issuing task's address space

DIC or DPB size Is Invalid

7,TT,O
7,4
7
/T/
/T/
0

;ALUN$ MACRO DIC,DPB SIZE=4 WORDS
;LOGICAL UNIT NUMBER 7
;DEVICE NAME IS
; TT (T'ERMINAL)
;DEVICE UNIT NUMBER=O

CALL ASNLUN (ilun, ide1v, iunt [,ids])

where:

• ilun - is an integer containing a Logical Unit Number.

• idev - is an integer (format: 1A2) containing a device name.

• iunt - is an integer containing a device unit number.

• ids - is an integer variable to receive the Directive Status Word.

4-9

ASTX$

ASTX$

The AST SERVICE EXIT directive terminates execution of an asynchronous system trap service
routine. See the /AS Executive Facilities Reference Manual for a description of ASTs.

On completion of the ASTX$, if another AST is queued, and ASTs are not inhibited, the next AST Is
immediately executed. Otherwise, the task's pre-AST state is restored.

NOTE: An AST routine may not be executed immediately the AST occurs if, for example,
a higher priority process is running. In this case, one or more other ASTs can occur
before the first AST routine is executed. This can occasionally cause synchronization
problems if the AST routines are interdependent.

When an AST service routine is entered, the stack contains certain information. Those portions of
control areas that can be used to effect requests from AST service routines are saved on the stack.
ThEt following information is always put on the user stack:

SP+ 14+x - Event flag mask word for flags 1-16

SP+12+x - Event flag mask word for flags 17-32

SP+ 1 O+x - Event flag mask word for flags 33-48

SP+06+x - Event flag mask word for flags 49-64

SP+04+x - The pre-AST task's processor status (PS)

SP+02+x - The pre-AST task's program counter (PC)

SP+x - The pre-AST directive status word ($DSW)

SP+x-2 to SP+OO - Additional information, if appropriate.

x here depends on the amount of additional information.

The stack can contain additional information as follows:

1 For power recovery ASTs, receive ASTs or receive-by-reference ASTs, no additional information is
added.

2 For 1/0 completion, the stack additionally contains the address of the 1/0 status block.

3 For Mark-time ASTs, the stack additionally contains the event flag number.

4 For an 11 /45 or 11170 floating point exception, the stack additionally contains the exception code,
and the exception address.

5 For a spawn AST, the stack additionally contains the address of the exit status block.

Before issuing the AST SERVICE EXIT directive, the AST service routine must remove any information
on the stack that is additional to the first seven words shown above. The following example shows how
this might be done when an AST routine is entered on a clock interrupt after the specified time of one
minute.

4-rn

;MAIN BODY OF PROGRAM
START: ;PROCESS

MRKT$S ,#1,#3,#ASTSER
;PROCESS

EXIT$S ;EXIT FROM TASK
;AST SERVICE
ASTSER:

MACRO CALL

ASTX$

DSWRETURN
CODES

Value
Code Returned

is.sue +1

IE.AST -80

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

FORTRAN
CALL

ASTX$
.BYTE

TST (SP)+

ASTX$S

Explanation

;REMOVE THE EVENT FLAG NUMBER
; (THE SINGLE ADDITIONAL WORD)
;AST EXIT MACRO

Successful completion

Directive not issued from an AST service routine

Part of DPB or table is out of issuing task's address space

DIC or DPB size Is invalid

115.,1

ASTX$

Neither the FORTRAN IV language nor the ISA standard permits direct linking to system trapping
mechanisms. Therefore, this directive is ltlot available to FORTRAN tasks.

4-11

ATRG$

ATRG$

The ATrACH REGION directive attaches the issuing task to a common region or to a named dynamic
region. (You can not attached any other type of region to the task by means of this directive.) The
Executive checks the desired access specified in the region status word against the owner U IC and the
protection word of the region. If there is no protection violation, you are granted the access you need.
If the region is successfully attached to the task, the Executive returns a 16-blt region ID (in R.GID),
which the task uses in subsequent mapping directives.

You can also use this directive to determine the ID of a region already attached to the task. In this
case, the task specifies the name of the attached region In A. GNAM and clears all four bits described
below In the region status word R.GSTS. When the Executive processes the directive, It checks that
the named region Is attached. If the region Is attached to the Issuing task, the Executive returns the
region ID, as well as the region size, for the task's first attachment to the region. You may wish to use
the ATTACH REGION directive In this way to determine the region ID of a common block attached to
the task at task build.

For this directive to succeed, there must be an Attachment Descriptor Block (ADB) available in the task
header. These blocks are allocated by the ATRG Task Builder option (see Chapter 2, Section 2.3.2).

MACRO CALL

ATRG$ rdb

where:

• rdb - is the region definition block address

REGION
DEFINITION
BLOCK
PARAMETERS

Input Parameters

Array
Element

irdb(3)(4)

irdb(7)

4-12

Offset

R.GNAM

R.GSTS

Name of the region to be attached

Bit settings in the region status word (specifying desired access to the region):

RS.RED - 1 if read access is desired

RS.WAT - 1 if write access is desired

Input Parameters

Array
Element Offset

Output Parameters

Array
Element

lrdb(1)

lrdb(2)

Offset

R.GID

R.GSIZ

LOCAL
SYMBOL
DEFINITIONS

RS.EXT - 1 if extend access is desired

RS.DEL - 1 if delete access is desired

ATRG$

Clear all four bits to request the region ID of the named region If it Is already
attached to the issuing task.

ID assigned to the region

Size In 32-word blocks of the attached region

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• A.TRBA - (Length 2 bytes) Region definition block address

DSWRETURN
CODES

Value
Code Returned

is.sue +01

IE.PAI -16

IE.WOV -85

IE.PNS -94

IE.ADP -98

IE.SOP -99

Exp la nation

Successful completion

Privilege violatic)n

No attachment descriptors available in task header

The specified rngion name does not exist

Part of the DPB or ROB is out of the issuing task's address space

DIC or DPB size is invalid

4-13

ATRG$

MACRO
EXPANSION

ATRG$
.BYTE
.WORD

RDBADR
57. '2
RDBADR

;ATRG$ MACRO DIC, DPB SIZE=2 WORDS
;ROB ADDRESS

...
FORTRAN
CALL.

where:

CALL ATRG (irdb[,ids])

• irdb - is an 8-word integer array containing a region definition block

• ids - is an integer variable to receive the Directive Status Word

4-14

CLEF$

CLEF$

The CLEAR EVENT FLAG directive clears a specified event flag and reports the flag's status In the
DSW before clearing. Clearing an event flag does not cause a significant event to occur. A task that
does not have real-time directive privnege can clear only local event flags (1-32).

'MACRO CALL

CLEF$ efn

where:

• efn - is an event flag number

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined wi1th its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• C.LEEF - (Length 2 bytes) Event flag number

DSWRETURN
CODES

Value
Code Returned

IS.CLR +O

IS.SET +2

IE.PRI -16

IE.IEF -97

IE.ADP -98

IE.SOP -99

Exp la nation

Flag was already clear

Flag was set

Privileged function (global flag cannot be cleared by a task that does not have
real-time directive privilege).

Invalid event flag number (event flag number <1 or > 64).

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid.

4-15

CLEF$

MACRO
EXPANSION

FORTRAN
CALL

where:

CLEF$ 1
.BYTE 31.,2
.WORD 1

;CLEF$ MACRO DIC,DPB=2 WORDS
;EVENT FLAG NUMBER 1

CALL CLREF (iefn[,ids])

•
1 iefn - is an integer containing an Event Flag Number.

• ids - is an integer variable to receive the Directive Status Word.

4-16

CMKT$

CMKT$

The CANCEL MARK TIME REQUESTS directive cancels one or more MARK TIME requests that have
been made by the Issuing task. If no parameters are supplied with the macro call, all MARK TIME
requests made by the Issuing task are cancelled. You specify parameters to cancel either those mark
time requests that set an Indicated event flag, or those that cause an AST at a specified location, or
both.

Note that this directive has no effect on MJ\RK TIME requests which have come due but have not yet
notified the task. In particular, if the original request specified an AST entry point, but the AST has not
been serviced yet (for example, because ASTs have been Inhibited) this AST will still occur.

Refer also to the CANCEL MARK TIME AST REQUESTS (CMTA$) directive.

MACRO CALL

CMKT$ [efn] [,ast)

where:

• efn - is an event flag number (0 implies no event flag)

• ast - is an AST service routine entry address

LOCAL
SYMBOL
DEFINITIONS

The following symbols are locally defined with their assigned values equal to the byte offset from
the start of the DPB to respective DPB elements:

• C.MKEF - (Length 2 bytes) Event flag number

• C.MKAE - (2) AST service routine entry address

4-17

CMKT$

DSW RETURN
CODES

Value
Code Returned

is.sue +1

IE.LNL -90

IE.IEF -97

IE.ADP -98

IE.SDP -99

Explanation

Successful completion

EFN or AST entry implied by syntax but missing (for example, CMKT$ 5, or
CMKT$,).

Invalid event flag number (event flag number <1 or >64)

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

MACRO
EXPANSION

CMKT$ 5,CMTAST ;CMKT MACRO DIC;DPB=3 WORDS
.BYTE 27.,3
.WORD 5 ;EVENT FLAG NUMBER 5
.WORD CMTAST ;AST SERVICE ROUTINE

FORTRAN
CALL

CALL CANMT ([iefn] [,ids])

whe:re:

• iefn - is an integer containing an Event Flag number.

,. ids - is an integer variable to receive the Directive Status Word.

4-1B

When an event flag number is specified, MARK TIME requests (made by the issuing task)
to set that event flag are cancelled.

When no event flag is specified, all MARK TIME requests (made by the issuing task) are
cancelled.

CMTA$

CMTA$

The CANCEL MARK TIME AST REQUESTS directive instructs the system to cancel Mark Time
requests that have been made by the issuing task. In addition, the directive allows the cancellation
of pending ASTs which have not yet been serviced but for which the corresponding MARK TIME has
come due. If you do not supply any paramEtters with the macro call, all MARK TIME requests made by
the Issuing task are cancelled. You can spetcify parameters to cancel either those mark time requests
·that set an Indicated event flag, or those that cause an AST at a specified location, or both.

MACRO CALL

CMTA$ [efn], [ast] [, fl9]

where:

• efn - is an event flag number (0 implies no event flag)

• ast - is an AST service routine entry address

• fig - is a flag for the cancellation of unserviced ASTs (0 means do not cancel unserviced
ASTs, < 0 means also cancel unse1'"Viced ASTs).

LOCAL
SYMBOL
DEFINITIONS

The following symbols are defined with the assigned values equal to the byte offset from the start
of the DPB to the DPB elements:

• C.MKEF - (Length 2 bytes) Event flag number

• C.MKAE - (2) AST service routine entry address

• C.MKFL - (2) Cancel unserviced ASTh flag

4-19

CMTA$

DSWRETURN
CODES

Value
Code Returned Exp la nation

is.sue +1

IE.UNL -90

IE.IEF -97

IE.ADP -98

IE.SDP -99

MACRO
EXPANSION

FORTRAN
CALL

Successful completion

EFN or AST entry implied by syntax but missing (for example, CMTA$ 5, or
CMTA$,).

Invalid event flag number (event flag number <1 or>64)

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

CMTA$ EFN,AST,FLG
.BYTE 27.,4 ;CMTA$ MACRO DIC,DPB SIZE 4 WORDS
.WORD EFN ;EVENT FLAG NUMBER
.WORD AST ;AST SERVICE ROUTINE
.WORD FLG ;UNSERVICED AST FLAG

Neither the FORTRAN language not the ISA standard permits direct linking to system trapping
mechanisms; therefore, this directive is not available to FORTRAN tasks.

4-20

CNCT$

CNCT$

The CONNECT TO TASK directive synchro1nizes the task Issuing the directive with the exit or emit
status of another task (offspprlng that is already active. Execution of this directive creates an STL for
the connector pair and Increments the spawned task count In the Issuing task's header. The optional
exit AST routine Is called when the offspring exits or emits status with the address of the associated exit
status block on the stack. This directive sh<>uld not be Issued to connect to Command Line Interpreter
(CU) tasks; It Is Illegal to connect to a CU task.

MACRO CALL

CNCT$ tname, [efn], [•3!ast], [esb]

where:

• tnam - is the radix-50 name of thE! offspring to be connected.

• efn - is the event flag to be cleared on issuance and set when the offspring task exits or
emits status.

• east - is the address of an ast routine to be called when the offspring task exits or emits
status.

• esb - is the address of a one-word status block to be written when the offspring task exits
or emits status.

LOCAL
SYMBOL
DEFINITIONS

The following symbols are defined with the assigned values equal to the byte offset from the start
of the DPB to the DPB elements:

• C.NCTN - (Length 4 bytes) Task namt~

• C.NCEF - (Length 2 bytes) Event flag

• C.NCEA - (Length 2 bytes) AST routine address

• C.NCES - (Length 2 bytes) Exit statm; block address

4-21

CNCT$

DSW RETURN
CODES

Value
Code Returned

is.sue +1

IE.UPN -01

IE.INS -02

IE.ACT -07

IE.IEF -97

IE.ADP -98

IE.SOP -99

Explanation

Successful completion

Insufficient dynamic memory to allocate an offspring control block.

The specified task was a command line interpreter.

The specified task was not active.

Invalid event flag number (EFN<O, or EFN>96 IF GROUP FLOBAL EVENT
FLAGS EXIST FOR THE TASK'S GROUP; OR EFN>64 if not).

Part of the DPB or exit status block is not in the issuing task's address space.

DIC or DPB size is invalid.

MACRO
EXPANSION

CNCT$ TNAM,EFN,AST,ESB
.BYTE 143.,6 ;CNCMT$ MACRO DIC,DPB SIZE= 6 WORDS
.RADSO TNAM ;OFFSPRING TASK NAME
.BYTE EFN ;EVENT FLAG NUMBER
.BYTE 16. ;EXIT STATUS BLOCK CONSTANT
.WORD AST ;AST SERVICE ROUTINE
.WORD ESB ;EXIT STATUS BLOCK ADDRESS

FORTRAN
CALL

where:

•

•
•
•

•
•

4-22

CALL CNCT(rtname, [iefn], [iast], [iesb], [iparm] [,ids])

rtname - is a single-precision, floating-point variable containing the offspring task name in
radix-50 format.

iefn - is the event flag to be set when the offspring task exits or emits status .

iast - is the name of an AST to be called when the offspring task exits or emits status .

iesb - is the name of a status block to be written when the offspring task exits or emits
status.

iparm - is the name of a word to receive the status block address when an AST occurs .

ids - is an integer to receive the Directive Status Word .

CRAW$

CRAW$

The CREATE ADDRESS WINDOW directive creates a new virtual address window by establishing
its virtual address base and size. Any existing windows that overlap the specified range of virtual
addresses are unmapped, if necessary, and then eliminated. If the window is successfully created, the
Executive returns an 8-bit window ID to the task. (The 8-bit window ID returned to the task Is a number
from 1 to 7.)

If WS.MAP in the window status word is set, the Executive proceeds to map the window according to
the window definition block input parameter~s.

A task can specify any length for the mapping assignment that is less than or equal to both:

1 The window size specified when the window was created

2 The length remaining between the specified offset within the region and the end of the region.

If W.NLEN Is set to 0, the length defaults to either the window size or the length remaining In the region,
whichever Is smaller. (Since the Executive returns the actual length mapped as an output parameter,
the task must clear that offset before issuing the directive each time It wants to default the length of the
map.)

The values that can be assigned to W.NOFF depend on the setting of bit WS.648 in the window status
word (W.NSTS):

1 If WS.648 = 0, the offset specified in W.NOFF must represent a multiple of 256 words (512 bytes).
Because the value of W. NOFF is expressed in units of 32-word blocks, the value must be a multiple
of 8.

2 If WS.648 = 1, the task can align on 3~~-word boundaries; the programmer can therefore specify
any offset within the region.

NOTE: Applications dependent on 32-word or 64-byte alignment (WS.64B • 1) may not be
compatible with future software products. To avoid future incompatibility, programmers
should write applications adaptable to either alignment requirement. The bit setting of
WS.64B could be a parameter chosen at assembly (by means of a prefix file), at task build
(as input to the GBLDEF option), or at runtime (by means of command input).

MACRO CALL

CRAW$ wdb

where:

• wdb - is the window definition block address

4-23

CRAW$

WINDOW
DEFINITION
BLOCK
PARAMETERS

.
Input Parameters

Array
Element

iwdb(1),bits
8-15

iwdb(3)

iwdb(4)

iwdb(!i)

lwdb(6)

iwdb(7)

Offset

W.NAPR

W.NSIZ

W.NRID

W.NOFF

W.NLEN

W.NSTS

Output Parameters

Array
Element

iwdb(1),bits
0-7

iwdb(2)

lwdb(E>)

iwdb(7)

Offset

W.NID

W.NBAS

W.NLEN

W.NSTS

Base APR of the address window to be created

Desired size, in 32-word blocks, of the address window

ID of the region to which the new window is to be mapped, or 0 for task region (to
be specified only if WS.MAP-1)

Offset in 32-word blocks from the start of the region at which the window is to start
mapping (to be specified only if WS.MAP-1). Note that If WS.64B in the window
status word equals 0, the value specified must be a multiple of 8.

Length in 32-word blocks to be mapped, or 0 if the length is to default to either the
size of the window or the space remaining in the region, whichever is smaller (to
be specified only if WS.MAP-1)

Bit settings in the window status word:

WS.MAP - 1 if the new window is to be mapped

WS.WRT - 1 if the mapping assignment is to occur with write access

WS.64B - 0 for 256-word (512-byte) alignment, or 1 for 32-word (64-byte)
alignment ·

ID assigned to the window

Virtual address base of the new window

Length, in 32-word blocks, actually mapped by the window

Bit settings in the window status word:

WS.CRW - 1 if the address window was successfully created

WS.ELW - 1 if any address windows were eliminated

WS.UNM - 1 if any address windows were unmapped

This directive will fail if a conflicting address window is mapped and the task has 1/0 in progress.

4-24

LOCAL
SYMBOL
DEFINITIONS

CRAW$

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• C.RABA - (Length 2 bytes) Window definition block address

DSWRETURN
CODES

Value
Code Returned

is.sue +01

IE.PAI -16

IE.IOP -83

Exp la nation

Successful completion

Requested access denied at mapping stage

Conflicting window has 110 In progress

IE.ALG -84 Window confic1:s with window 0 or window start APR and length are Inconsistent;
or WS.648 - O and the value of W.NOFF is not a multiple of 8.

IE.NVR -86

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

FORTRAN
CALL

where:

CRAW$
.BYTE
.WORD

Invalid region llD

Part of the DPB or WDB is out of the issuing task's address space

DIC or DPB si2:e Is invalid

WDBADR
117. ,2
WDBADR

;CRAW$ MACRO DIC, DPB SIZE=2 WORDS
;WDB ADDRESS

CALL CRAW (iwdb[,ids])

• iwdb - is an 8-word integer array containing a window definition block

• ids - is an integer variable to reCE!ive the Directive Status Word.

4-25

CRRG$

CRRG$

The CREATE REGION directive creates a dynamic region in a system-controlled partition and optionally
attaches it to the issuing task.

If RS.ATI is set in the region status word, the Executive attempts to attach the task to the newly created
region. No access protection checking is done when attaching the task. If no region name is specified,
you must set RS.ATT. See the description of the ATTACH REGION directive.

By default, the Executive automatically marks a dynamically created region for deletion when the
last task detaches from it. To override this default condition, you can set RS.NOL in the region
status word as an Input parameter. Note that programmers must take great care when overriding
the delete-on-last-detach option. Uncontrolled creation of regions which are not subsequently deleted
would seriously deplete system resources (in particular, swap space and the node pool).

If the region is not given a name, the Executive effectively ignores the state of RS.NOL. All unnamed
regions are deleted when the last task detaches from them.

If a name is specified and another region exists with the same name, a new region is not created but
the directive does not fail. RS.CAR is cleared in the ROB upon completion. If RS.ATT is set, the task
is attached to the existing region, subject to it having the appropriate access rights.

Exceptionally, the directive will fail if the region being created has a global name (RS.TIS not set) and
another region exists with the same name, created locally (RS.TIS set) at another terminal. In this case
an error status of IE.PNS is returned.

The Ex1ecutive returns an error if there is not enough space to contain the region in the specified
partition.

This directive requires three nodes from the system node pool. These nodes are not charged to the
requesting task. They are returned to the pool when the region is deleted.

In order to prevent the creation of common blocks that are not easily deleted, the system and owner
categories are always forced to have delete access, regardless of the value actually specified in the
protection word.

MACRO CALL

CRRG$ rdb

where:

.. rdb - is the region definition block address

4-26

REGION
DEFINITION
BLOCK
PARAMETERS

Input Parameters

Array
Element

lrdb(2)

lrdb(3)(4)

lrdb(5)(6)

irdb(7)

irdb(S)

Offset

R.GSIZ

R.GNAM

R.GPAR

R.GSTS

R.GPRO

Output Parameters

Array
Element Offset

irdb(1) R.GID

irdb(2) R.GSIZ

irdb(7) R.GSTS

Size, in 32-word blocks, of the region to be created

Name of the region to be created, or 0 for no name

CRRG$

Name of the system-controlled partition in which the region Is to be allocated, or 0
for the partition in which the task is running

Bit settings in the region status word:

RS.NOL - 1 if the region should not be deleted on last detach

RS.ATT - 1 if cmated region should be attached

RS.RED - 1 if read access is desired on attach

RS.WAT - 1 if write access is desired on attach

RS.EXT - 1 if e>1:tend access is desired on attach

RS.DEL - 1 if deilete access is desired on attach

RS.TIS - 1 if a region name is to be local to the terminal on which the task Is
running

Protection word for the region (DEWR,DEWR,DEWR,DEWR)

ID assigned to the created region (returned if RS.ATT-1)

Size in 32-word blocks of the attached region (returned if RS.ATT ·1)

Bit settings in region status word:

RS.CAR - 1 if region was successfully created

4-27

CRRG$

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
sta.rt of the DPB to the DPB element:

• C.RRBA - (Length 2 bytes) Region definition block address

4-28

DSW RETURN
CODES

Value
Code Returned

is.sue
IE.UPN

IE.PTS

IE.PAI

IE.NSW

IE.WOV

IE.PNS

IE.ADP

IE.SOP

+01

-01

-03

-16

-18

-85

-94

-98

-99

MACRO
EXPANSION

FORTRAN
CALL

CRRG$
.BYTE
.WORD

Exp I a nation

Successful completion

No nodes available for region descriptor (GCD) node

Zero size specifi1ed or specified size larger than partition

Attach failed because desired access was not allowed.

No swap space available for region.

No attachment descriptors available in task header

CRAG$

Specified partition in which the region was to be allocated does not exist; or no
region name was specified and RS.ATT • O; or a global region was to be allocated
(RS.TIS not set) when a local region (RS.TIS set) of the same name already
exists.

Part of the DPB or ROB is out of issuing task's address space

DIC or ROB size is invalid

RDBADR
55., 2
RDBADR

;CRRG$ MACRO DIC, DPB SIZE 2 WORDS
;ROB ADDRESS

CALL CRRG (irdb[,ids])

where:

• irdb - is an 8-word integer array containing a region definition block

• ids - is an integer variable to receive the Directive Status Word

4-29

CSRQ$

CSRQ$

The CANCEL SCHEDULED REQUESTS directive cancels scheduled requests for task executions.
Either all requests to run a specified task can be cancelled, or only those Issued for a specified task by
another specified task. If the requests to be cancelled are for a multi-user task, they are cancelled only
if their Tl matches that of the scheduling task.

MACRO CALL

CSRQ$ ttsk[,rtsk]

where:

• ttsk - is the scheduled (requested) task name

• rtsk - is the task name of the schedule requestor. If "rtsk" is omitted, all requests for "ttsk"
are cancelled.

LOCAL
SYMBOL
DEFINITIONS

The following symbols are locally defined with their assigned values equal to the byte offset from
the start of the DPB to the respective DPB elements:

• C.SRTN - (Length 4 bytes) Target task name in Radix-50

• C.SRRN - (4) Requestor task name in Radix-50

DSW RETURN
CODES

Value
Code Returned

is.sue +1

IE.INS -02

IE.AST -80

IE.ADP -98

IE.SOP -99

4-30

Explanation

Successful completion

Task not installed

Directive privilege violation

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

CSRQ$

MACRO
EXPANSION

FORTRAN
CALL

CSRQ$ ALPHA
.BYTE 25. / 3 ; CSRQ~~ MACRO DIC, DPB SIZE=3 WORDS
.RAD50 /ALPHA/ ;REQUBSTED TASK 'ALPHA'

or

CSRQ$ ALPHA,BETA
.BYTE 25. / 5 ; CSRQ$ MACRO DIC, DPB S.IZE=5 WORDS
.RADSO /ALPHA/ ;REQUBSTED TASK 'ALPHA'
.RAD50 /BETA/ ;REQUBSTOR TASK 'BETA'

Subroutine to issue a CANCEL SCHEDULED REQUESTS directive to cancel all scheduled
requests for an indicated task:

CALL CANALL (tsk[,ids])

where:

• tsk - is a 2-word, 1- to 6- characte1r task name in Radix-50 form.

• ids - is an integer variable to receive the Directive Status Word.

Subroutine to issue a CANCEL SCHEDULED REQUESTS directive to cancel only scheduled
requests for an indicated task made by another indicated task:

CALL CANOBY (schled, [~3Chler] [,ids])

where:

• schled - is the task name (Radix-50) of the scheduled task.

• schler - is the task name (Radix-50) of the scheduler task.

• ids - is an integer variable to receive the Directive Status Word.

When a scheduler task is not specified, the issuing task is taken as the scheduler.

4-31

DECL$

DECL$

The DECLARE SIGNIFICANT EVENT directive declares a significant event and, optionally, sets an
event flag and reports Its state before It was set. Declaring a significant event causes the Executive to
scan the llst of active tasks and possibly reschedule them. The directive performs four functions:

1 Tests the event flag (if specified)

2 Sets the event flag (if specified)

3 Dedares an event

4 Reports in the task's DSW the event flag's polarity prior to being set.

See the /AS Executive Facilities Reference Manual for details of events and event flags.

MACRO CALL

DECL$ [efn]

where:

• efn - is an event flag nwnber (an event flag number of 0 implies no event flag nwnber)

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• D.CLEF - (Length 2 bytes) Event ·flag number

4-32

DECL$

DSWRETURN
CODES

Value
Code Returned Explanation

is.sue +1

IS.CLR +O

IS.SET +2

IE.PAI -16

IE.IEF -97

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

Declaration successful, no event flag specified

Specified flag was previously cleared

Specified flag w.as previously set

Significant event cannot be declared because of directive privilege violation

Event flag number is Invalid (event flag number <0 or >64)

Part of DPB is 01ut of issuing task's address space

DIC or DPB siw is invalid

DECL$ 40
.BYTE 35.,2
.WORD 40

;DECL$ MACRO DIC DPB SIZE=2 WORDS
; EVEN'l~ FLAG 4 0

or

DECL$

FORTRAN
CALL

where:

.BYTE 35.,1 ;DECL$ MACRO DIC ;·DPB SIZE=l WORD

CALL DECLAR ([iefn] [,ids])

• iefn - is an integer containing an E:vent Flag Number.

• ids - is an integer variable to receive the Directive Status Word.

4-33

DSBL$

DSBL$

The DISABLE directive instructs the system to reject future attempts to run or fix an Indicated
task (REQUEST, EXECUTE, SCHEDULE, SPAWN, RUN, SYNCHRONIZE, and FIX-IN-MEMORY
directives). Along with ENABLE, you can use It to temporarily disallow a task's execution without
removing it from the system. Any versions of the task which may already be active are unaffected by
this directive.

MACRO CALL

DSBL$ tsk

where:

• tsk - is the name of the task to be disabled.

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• D.SBTN - (Length 4 bytes) Task name in Radix-50

DSW RETURN
CODES

Value
Code Returned

is.sue +1

IE.INS -02

IE.ITS -08

IE.CKP -10

IE.PAI -16

IE.ADP -98

IE.SOP -99

4-34

Explanation

Successful completion

Task not installed

Task is already disabled

Task is not to be disabled

Directive privilege violation

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

MACRO
EXPANSION

FORTRAN
CALL

DSBL$ MART
.BYTE 91.,3 ;DSBL$ MACRO DIC, DPB SIZE=3 WORDS
.RADSO /MART/ ;TASK 'MART'

CALL DISABL (tsk[,ids])

where:

• tsk - is a 2-word, 1- to 6- character receiver-task name in Radix-50 form.

• ids - is an integer variable to receive the Directive Status Word.

DSBL$

4-35

DSCP$

DSCP$

The DISABLE CHECKPOINTING directive makes the issuing task temporarily non-checkpolntable.
When a checkpointable task's execution Is started, checkpointing is not disabled (that Is, the task can
be checkpolnted).

You can, for example, use this directive to prevent a task from being checkpolnted while It performs
some tlme-critlcal activity.

This directive has no effect upon a task running under the control of the IAS Scheduler.

MACRO CALL

DSCP$

...
DSW RETURN
CC>DES

Value
Code Returned

is.sue +1

IE.ITS -08

IE.CKP -10

IE.PAI -16

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

DSCP$

Explanation

Successful completion

Task checkpointing already disabled

Issuing task not checkpolntable

Directive privilege violation

Part of DPB is out of Issuing task's address space

DIC or DPB size Is invalid

.BYTE 95.,1 ;DSCP$ MACRO DIC, DPB LENGTH=l WORD

...
FORTRAN
CALL

4-36

CALL DISCKP

DTRG$

DTRG$

The DETACH REGION directive detaches the issuing task from a specified, previously attached region.
Any of the task's windows that are currently mapped to the region are automatically unmapped.

If RS.MDL Is set In the region status word when you Issue the directive, the task marks the region for
deletion on the last detach. A task must bE~ attached with delete access to mark a region for deletion.

This directive fails if any windows are mapped to the region and the task has 110 in progress.

MACRO CALL

DTRG$ rdb

where:

• rdb - is the region definition block address

REGION
DEFINITION
BLOCK
PARAMETERS

Input Parameters

Array
Element

irdb(1)

irdb(7)

Offset

R.GID

R.GSTS

Output Parameters

Array
Element

irdb(7)

Offset

R.GSTS

ID of the region to be detached

Bit settings in the region status word:

RS.MDL - 1 if the region should be marked for deletion when the last task
detaches from it

Bit settings in the region status word:

RS.UNM - 1 if any windows were unmapped

4-37

DTRG$

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• D.TRBA - (Length 2 bytes) Region definition block address

DSW RETURN
CODES

Value
Code Returned

is.sue +1

IE.PAI -16

IE.IOP -83

IE.NVR -86

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

FORTRAN
CALL

DTRG$
.BYTE
.WORD

Exp la nation

Successful completion

The task, which is not attached with delete access, has attempted to mark the
region for deletion on the last detach.

Task has 1/0 in progress

The task specified an invalid region ID or attempted to detach a permanently
attached region

Part of the DPD or ROB is out of the issuing task's address space

DIC or DPB size is invalid

RDBADR
59, I 2
RDBADR

;DTRG$ MACRO DIC, DPB SIZE=2 WORDS
;RDB ADDRESS

CALL DTRG (irdb[,ids])

where:

•
•

4-38

irdb - is an 8-word integer array containing a region definition block

ids - is an integer variable to receive the Directive Status Word

ELAW$

ELAW$

The ELIMINATE ADDRESS WINDOW directive deletes an existing address window, unmapplng It first
If necessary. Subsequent use of the eliminated window's ID is invalid.

This directive fails if the window is currently mapped and the task has 110 In progress.

MACRO CALL

ELAW$ wdb

where:

• wdb - is the window definition block address

WINDOW
DEFINITION
BLOCK
PARAMETERS

--1 n put Parameters

Array
Element Off set

iwdb(1)
bits 0-7

W.NID

Output Parameters

Array
Element Offset

iwdb(7) W.NSTS

ID of the addres;s window to be eliminated

Bit settings in the window status word:

WS.ELW - 1 if the address window was successfully eliminated

WS.UNM - 1 if the address window was unmapped

4-39

ELAW$

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:
1
• E.LABA - (Length 2 bytes) Window definition block address

4-40

DSWRETURN
CODES

Value
Code Returned

is.sue +1

IE.IOP -83

IE.NVW -87

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

FORTRAN
CALL

ELAW$
.BYTE
.WORD

Exp la nation

Successful completion

Task has VO In progress

Invalid address window ID

Part of the DPB or WDB Is out of the Issuing task's address space

DIC or DPB size is Invalid

WDBADR
119.,2
WDBADR

;ELAW$ MACRO DIC, DPB SIZE=2 WORDS
;WDB ADDRESS

CALL ELAW (i wdb [, ids])

where:

• iwdb - is an 8-word integer array comprising a window definition block

• ids - is an integer variable to receive the Directive Status Word

ELAW$

4-41

EMST$$

EMST$$

The EMIT STATUS directive returns the specified 16-bit quantity to the specified connected task. It
sets an event flag or declares an AST if previously specified by the connected task In a SPAWN or a
CONNECT directive. In any case, whenever status Is emitted to one or more tasks, those tasks no
longer remain connected to the task issuing the Emit Status directive.

MACRO CALL

EMST$ (tname],status

where:

• tname - is the name of a task connected to the issuing task to which the status is to be
emitted. the default is all.

411 status - is a 16-bit quantity to be returned to the connected task.

LOCAL
SYMBOL
DEFINITIONS

The following symbols are defined with the assigned values equal to the byte offset from the start
of the DPB to the DPB elements:

• E.MSTN - (Length 4 bytes) Task name

• E.MSST - (Length 2 bytes) Status to be returned

• C.MK.FL - (Length 2 bytes) Cancel unserviced ASTs flag

..
DSWRETURN
CODES

Value
Code Returned

is.sue +1

IE.ITS -08

IE.ADP -98

IE.SOP -99

4-42

Explanation

Successful completion

The specified task is not connected to the issuing task.

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

MACRO
EXPANSION

FORTRAN
CALL

where:

EMST$$

EMST$ tname,status
.BYTE 147.,4 ;EMST$ MACRO DIC,DPB SIZE• 4 WORDS

.WORD STATUS ; VAL,UE OF STATUS TO BE RETURNED

CALL EMST([RTNAME], STATUS, [IDS])

• tname - is the name of a task connected to the issuing task to which the status is to be
emitted. The default is all.

• status - is a 16-bit quantity to be returned to the connected task.

• ids - is an integer to receive the directive status word

4-43

EN.AR$

ENAR$

The ENABLE AST RECOGNITION directive allows recognition of asynchronous system traps for the
issuing task (that is, reverses an INHIBIT AST RECOGNITION directive). ASTs that have occurred
while recognition was inhibited are initiated as soon as the AST recognition Is enabled. (AST
recognition cannot be enabled while the task is in an AST service routine.) See the /AS Executive
Facilities Reference Manual for a description of ASTs.

MACRO CALL

ENAR$

DSWRETURN
CODES

Value
Codo Returned

IS.SUC +1

IE.ITS -08

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

ENAR$

Exp la nation

Successful completion

AST recognition not inhibited

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

.BYTE 101.,1

FORTRAN
CALL

4-44

CALL ENASTR

ENBL$

ENBL$

The ENABLE directive instructs the system to· make a disabled task runnable, that ts, to reverse the
effect of a DISABLE directive.

MACRO CALL

ENBL$ tsk

where:

• tsk - is the name of the task to be enabled

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• E.NBTN - (Length 4 bytes) Task nam«~ in Radix-50

DSWRETURN
CODES

Value
Code Returned

is.sue +1

IE.INS -02

IE.ITS -08

IE.PAI -16

IE.ADP -98

IE.SOP -99

Exp la nation

Successful completion

Task not installed

Task is not disabled

Directive privilege violation

Part of DPB is oiut of issuing task's address space

DIC or DPB siw is invalid

4-45

ENBL$

MACRO
EXPANSION

FORTRAN
CALL

ENBL$ LOL09
.BYTE 93.,3 ;ENBL$ MACRO DIC, DPB LENGTH=3 WORDS
.RADSO /LOL09/ ;TASK 'LOL09'

CALL ENABLE (tsk[,ids])

whe:re:

• tsk - is a 2-word, 1- to 6- character receiver task name in Radix-50 form.

•• ids - is an integer variable to receive the Directive Status Word.

4-4U

ENCP$

ENCP$

The ENABLE CHECKPOINTING directive reverses the effect of the DISABLE CHECKPOINTING
(DSCP$) directive (that is, it allows the task. to be checkpointed again). The directive Is only valid
for a task that was built checkpointable and you cannot use it to make a non-checkpolntable task
checkpointable.

MACRO CALL

ENCP$

DSWRETURN
CODES

Value
Code Returned

is.sue +1

IE.ITS -08

IE.PAI -16

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

ENCP$

Exp la nation

Successful completion

Checkpointing nc:>t disabled

Directive privilege violation

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

.BYTE 97.,1 ;ENCP$ MACRO DIC, DPB SIZE=l WORD

FORTRAN
CALL

CALL ENACKP

4-47

EXEC$

EXEC$

The EXECUTE directive activates a task only if the memory required for its execution is presently
available.

If sufficient memory cannot be immediately found for the task and any associated SGAs without having
to checkpoint any other tasks, the directive fails. Thus, upon completion of this directive, the requested
task has all memory allocated and will start to run (subject to its priority) as soon as It has been loaded.

Note that it may take a significant amount of time for this directive to be completed. This is because
the requested task must be loaded before it can be known how much memory is required for its
associated SGAs (if any). While the requested task is being loaded, the task which issued the directive
is effectively suspended and cannot run. In particular, ASTs will not be serviced while completion of the
directive is pending.

This directive requires either three or four nodes from the system node pool, which are charged to the
issuing task. The nodes are released when the executed task exits.

This directive can specify a partition name to override the task's default partition and a priority to
override the task's default priority. If the issuing task is executive privileged, the directive can specify a
UIC to override the task's default UIC. If the issuing task is non-privileged, the directive can specify a
UIC under which the task will be run, provided that the UIC is:

1 The UIC of the executing task, or

2 The logged-in UIC for the terminal.

MACRO CALL

EXEC$ tsk, [prt], [pri] [,ugc,umc]

where:

• tsk - is the task name

• prt - is the partition name

• pri - is the priority

• ugc - is the UIC group code

• umc - is the UIC member code

4-48

A partition cannot be specified for a multi-user task; that is, the task must be requested to
execute in its default partition.

LOCAL
SYMBOL
DEFINITIONS

EXEC$

The following symbols are locally defined with their assigned values equal to the byte offset from
the start of the DPB to the respective DPB elements:

• E.XCTN - (Length 4 bytes) Task name in Radix-50

• E.XCPN - (4) Partition name

• E.XCPR - (2) Priority

• E.XCGC - (1) UIC group name

• E.XCPC - (1) UIC member code

DSWRETURN
CODES

Value
Code Returned

is.sue +1

IE.UPN -01

IE.INS -02

IE.PTS -03

IE.HWA -06

IE.ACT -07

IE.ITS -08

IE.PAI -16

Explanation

Successful completion

Insufficient pool nodes available to requester

Task not installed

No memory for ,execution

Handler task not resident to load task

Task Is active

Task is disabled

Directive privilege violation

IE.IUI -91 Invalid UIC. Executive privilege is required to cause another task to execute under
a changed UIC

IE.PNS -94

IE.IPR -95

IE.ADP -98

IE.SOP -99

Partition not in system

Invalid priority specified(<0 or >250)

Part of DPB is e>ut of issuing task's address space

DIC or DPB siz4~ is invalid

4-49

EXEC$

MA CIRO
EXPANSION

EXEC$ LEEDSU,PART,30,200,200
.BYTE 13.,7 ;EXEC$ MACRO DIC, DPB SIZE=? WORDS
.RADSO /LEEDSU/ ;TASK 'LEEDSU'
.RADSO /PART/ ;PARTITION 'PART'
.WORD 30 ;PRIORITY 30
.BYTE 200,200 ;UIC [200,200]

FORTRAN
CALL

CALL EXECUT (tsk, [iop] [,ids])

whe:re:

• tsk - is a 2-word, 1- to 6- character task name in Radix-50 form.

• iop - is a 6-word integer array containing optional parameters

where:

iop(l) - Radix-50 partition name (1st HalO

iop(2) - Radix-50 partition name (2nd HalO

iop(3) - Run priority

iop(4) - UIC (User Identification Code). High byte=group code, low byte=member code.

NOTE: The iop arguments (1), (2), (3) and (4) default to zero when none
specified.

• ids - is an integer to receive the Directive Status Word.

4-50

EXIF$

EXIF$

The EXITIF directive terminates the execution of the issuing task if an indicated event flag is NOT set.
Control is returned if the specified event flag is set. If the exit is taken, a significant event Is declared.

The EXITIF directive is useful in avoiding a possible "race condition" that can occur between tasks
communicating by means of global event flags. The race condition occurs when one task tests an
.event flag and finds the flag clear, but before the task can EXIT the other task sets the global flag.
Since the first task is in the process of exiting, the event flag Is not recognized. This condition can be
avoided if the task executes an EXITIF spe~cifying the same common event flag.

If the exit is taken, task resources are freed, in particular:

1 All attached devices are detached

2 The Asynchronous System Trap (AST) queue is flushed

3 The clock queue is flushed for outstanding Mark Time requests for the task

4 The receive and receive-by-reference queues are flushed (unless the task has been built with the
"do not flush receive queues" attribute}

5 All open files are closed, and those op~~ned for write left in a locked state

6 1/0 queues are flushed

7 All attached regions are detached, and

8 If the task is not fixed, its memory is froed.

If the task exits, the Executive declares an event.

MACRO CALL

EXIF$ efn

where:

• efn - is an event flag number

4-51

EXIF$

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• E.XFEF - (length 2 bytes) Event flag number

DSW RETURN
CODES

Value
Code Returned Exp la nation

~S.SET +2

~E.IEF -97

IE.ADP -98

IE.SOP -99

Indicated event flag set, task not exited

No event flag specified in mask word(s), or Invalid event flag number (event flag
number <1 or >64)

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

! ,

MACRO
EXPANSION

FORTRAN
CALL

wheire:

EXIF$ 40
.BYTE 53.,2
.WORD 40

;EXIF$ MACRO DIC, DPB SIZE 2 WORDS
;EVENT FLAG NUMBER 40

CALL EXITIF (iefn[,ids])

·• iefn - is an integer containing an Event Flag Number.

•• ids - is an integer variable to receive the Directive Status Word.

4-52

EXIT$

EXIT$

The TASK EXIT directive terminates the execution of the issuing task. If the exit is taken, the Executive
declares a significant event.

A return to the task occurs if (and only if) the directive is rejected. On EXIT, the Executive frees task
resources; in particular:

1 All attached devices are detached

2 The Asynchronous System Trap (AST) queue is flushed

3 The clock queue is flushed for outstanding Mark Time requests for the task

4 The receive and receive-by-reference queues are flushed (unless the task has been built with the
"do not flush receive queues" attribute)

5 All open files are closed, and those opened for write are left in a locked state

6 1/0 queues are flushed

7 All attached regions are detached, and

8 If the task is not fixed, its memory is freed.

MACRO CALL

EXIT$

DSW RETURN
CODES

The DSW Return Codes can be tested only if the EXIT$ directive fails.

Code

IE.ADP

IE.SOP

Value
Returned

-98

-99

Explanation

Part of DPB is out of issuing task's address space

DIC or DPB siw is invalid

4-53

EXIT$

MACRO
EXPANSION

FORTRAN
CALL .

EXIT$
.BYTE 51.,1

STOP

or

CALL EXIT

Note that either the STOP statement or CALL EXIT subroutine is used to terminate a task.

4-54

EXST$

EXST$

The TASK EXIT WITH STATUS INDICATION directive terminates the execution of the issuing task and
enables it to return a success or failure indication to the system. The status returned by EXST$ can be
used by the ON command in an indirect or batch command file to take steps conditional on the status .

. See the /AS PDS User's Guide for details of the ON command .

. For a real-time task Initiated by the SPAWN directive, the status is returned to the requesting task via
Its exit status block.

The status given must be one of the four values EXSUC, EXWAR, EX$ERR and EX$SEV, which are
defined by all the different forms of the EXST$ macro. They should be used as follows:

EX$SUC - program has succeeded. All the results (for example, output files) will be as expected.)

• EX$WAR - program has succeeded but diagnostic errors have occurred. The results have been
generated but may not be as expected ..)

EX$ERR - program has succeeded but errors have occurred. The results have been generated but
probably will not be as expected.

• EX$SEV - program has failed, that is, fatal errors have occurred. The results have not been
generated. This status is also given if the task is aborted for any reason.)

If the task exits, the Executive declares a signifcant event.

When a task exits, the Executive frees task resources; in particular:

1 All attached devices are detached

2 The Asynchronous System Trap (AST) queue is flushed

3 The clock queue is flushed for outstanding Mark Time requests for the task

4 The receive and receive-by-reference queues are flushed (unless the task has been built with the
'do not flush receive queues' attribute)

5 All open files are closed and those opened for write left in a locked state

6 1/0 queues are flushed

7 All attached regions are detached, and

8 If the task is not fixed, its memory is freed.

MACRO CALL

EXST$ stat

where:

• stat - is one of the status values defined above.

4-55

EXST$

... 1

LOCAL
SYMBOL
DEIFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• F~.X.STS - (length 2 bytes) Exit status

DSW RETURN
CODES

The DSW return codes can be tested only if the EXST$ directive fails.

Code
Value
Returned Exp la nation

~E.ADP

~E.SDP

-98

-99

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

MACRO
EXPANSION

EXST$ EX$SUC
.BYTE 29 .. 2
.WORD EX$SUC

EXST$ MACRO DIC, DPB SIZE = 2 WORDS
STATUS

.... 1

FORTRAN
CAILL

Not implemented.

4-56

EXTK$

EXTK$

The EXTEND TASK directive instructs the system to modify the size of the read/write root segment of
the issuing task by a positive or negative increment of 32-word blocks. If the directive does not specify
an Increment value, the Executive makes the issuing task equal in size to the installed task size. A
real-time task must be checkpointable to modify its size. If necessary, the Executive will checkpoint the
task, returning It to memory after modifying the size as directed.

If the task is still performing 110 and an attempt is made to reduce its size, the directive falls. Failure
also occurs if the directive is issued by a scheduler-controlled task and there Is not enough additional
space in a swap file.

The EXTEND TASK directive limits the siw to which a task can extend itself as follows:

1 No task can extend itself beyond any of the following:

The maximum size set by the SCI command SET EXTENDED_TASK_SIZE/MAXIMUM.

• The maximum size set by the MCR command SET /MAXEXT.

The maximum extension set by the task builder keyword MAXEXT =.
The size of the partition in which the task is running.

See the /AS System Management Guide, the /AS MCR User's Guide and the /AS Task Builder
Reference Manual for more details.

2 The availability of consecutive APRs determines the limit of a task's extension. Eight APRs, each
covering 4K words, map the 32K words of address space. Each region mapped by the task
(Including task read-only areas and memory-resident overlays) needs an APR for each 4K (or part
4K) words. AP Rs for read-only areas, memory-resident- overlays and position-independent libraries
(such as SYSRES) are, by default, allocated by the task builder at the high end of the task's virtual
address space.

MACRO CALL

EXTK$ [inc]

where:

• inc is a positive or negative nwnber equal to the number of 32-word blocks by which the
task size is to be extended or reduced. The default value of zero causes the task to revert
to its installed size.

4-57

EXTK$

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• E.XTIN - (Length 2 bytes) Extend increment

DSW RETURN
CODES

Code

is.sue
IE.NSW

IE.ALG

IE.ADP

IE.SOP

IE.CKP

IE.IOP

Value
Returned

+1

-18

-84

-98

-99

-10

-83

MACRO
EXPANSION

Explanation

Successful completion

There is insufficient swap space for a scheduler controlled task or a real-time task
that has to be checkpointed.

The issuing task attempted one of the following:

1 To reduce its size to less than that of its task header plus 32-words.

2 To increase its size beyond 32K words.
3 To increase its size beyond the maximum set by the SCI SET

EXTENDED_ TASK_SIZE/MAXIMUM or MCA SET /MAXEXT command.

4 To increase its size in excess of the limit set by the task builder MAXEXT
option.

5 To Increase its size so that one virtual address window would overlap another.

Part of the DPB is out of the issuing task's address space.

DIC or DPB space is invalid.

Task not checkpointable, or checkpointing is disabled. (Real-time tasks only.)

Task with 1/0 in progress is trying to reduce its size.

EXTK$ 40

4-58

.BYTE

.WORD

.WORD

89., 3
40
0

;EXTK$ MACRO DIC,DPB SIZE=3 WORDS
;EXTEND INCREMENT, 40 (8) BLOCKS (of 32 words each)
;RESERVED WORD

FORTRAN
CALL

where:

EXTK$

CALL EXTTSK (inc[, ids])

• inc - is a positive or negative number equal to the number of 32-word blocks by which the
task is to be extended or reduced. A value of zero causes the task to revert to its installed
size.

• ids - is an integer variable to receive the Directive Status Word.

4-59

FIX$

FIX$

The Fl.X-IN-MEMORY directive fixes an inactive, installed task in memory. Once fixed in memory,
it does not relinquish its memory space until removed by the UNFIX directive. Only tasks built as
non-checkpointable may be fixed.

This directive is particularly useful when the speed of task execution is critical, or when execution is
frequently requested. A fixed task does not have to be reloaded from disk every time it is requested.
Further, there is no need to find space in memory, by checkpointing other task's, to load it. See the /AS
Executive Facilities Reference Manual for further details of fixed tasks. For this directive to succeed,
the specified task must have been built so that it can be fixed and checkpointed.

Make sure there is task code to reset variable data areas to their initial values when executing a fixed
task. This Is necessary because the values will have been modified by the previous execution. Fixing a
task will not stop it being shuffled in memory.

This directive requires three nodes from the system node pool. These nodes are charged to the issuing
task and are released when the task is unfixed.

MACRO CALL

FIX$ tsk

where:

• tsk - is the name of the task to be fixed in memory

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• FJXTN - (Length 4 bytes) Task name in Radix-50

4-60

DSW RETURN
CODES

Value
Code Returned Explanation

is.sue +1

IE.UPN -01

IE.INS -02

IE.PTS -03

IE.HWA -06

IE.ACT -07

IE.ITS -08

IE.FIX -09

IE.CKP -10

IE.TCH -11

IE.PAI -16

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

FORTRAN
CALL

where:

Successful completion

Insufficient pool nodes available to requester

Task not installEtd

Partition too small for task

Handler task not resident to load task

Task is active

Task is disabled

Task is already fixed

Task not fixable

Task is checkpointable

Directive privilege violation

Part of DPB is clut of issuing task's address space

DIC or DPB size is invalid

FIX$ TASK2
.BYTE 85.,3 ;FIX$ MACRO DIC, DPB SIZE=3 WORDS
.RADSO /TASK2/ ;TASK 'TASK2'

CALL FIXMEM (tsk[,ids])

• tsk - is a 2-word, 1- to 6- character task name in Radix-50 form.

• ids - is an integer variable to receive the Directive Status Word.

FIX$

4-61

GCOM$

GCOM$

The GET COMMON BLOCK PARAMETERS directive fills an indicated 8-word buffer with parameters
giving information in a named SGA. The SGA can be a global library or global common area.

The 8-word buffer is filled as follows:

WD. 00 - Base address of common block (SGA) in 32-word blocks

WO. 01 - Size of common block in 32-word blocks

WO. 02 - Creation year

WO. 03 - Creation month (low byte) and day (high byte)

WO. 04 - Global Common Directory status (low byte) and Active Page Register number (high byte)

WO. 05 - User Identification Code (UIC). High byte = group code, low byte = member code.

WO. 06 - Task Partition Directory address

WO. 07 - Common block flags word

MACRO CALL

GCOM$ blk,buf

where:

• blk - is the name of the common block

• buf - is an address of the 8-word buffer

LC>CAL
SYMBOL
DEFINITIONS

The following symbols are locally defined with their assigned value equal to the byte offset from
the start of the DPB to the respective DPB element. The length of the element in bytes is in round
brackets.

• G.COBN - (Lenth 4 bytes) Common block (SGA) name

• G.COBA - (2) Buffer address (see below)

The following offsets are assigned relative to the start of the common block parameters buffer:

• G.COBB - (2) Common block base address

• G.COBS - (2) Common block size

• G.COYR - (2) Creation year

4-E>2

GCOM$

• G.COMO - (1) Creation month

• G.CODA - (1) Creation day

• G.COST - (1) Global Common Directory (GCD) status byte

• G.COSA - (1) Starting Active Page Register (APR)

• G.COUI - (2) User Identification Code (UIC)

• G.COTP - (2) Task Partition Directory address

• G.COFW - (2) Common block flags word address

The following bits are defined for the flags word:

Symbol Bit Meaning When Set

GF.SG 0 SGA flag (set when region must be loaded from task Image flle).

GF.LI 1 • library, 0 • common area.

GF.RI 2 library relocatability indicator (set for position-independent code).

3 (Reserved).

GF.FT 4 Region not yet loaded - do not read from swap file.

GF.PA 5 Region is task's pure area.

GF.IR 6 Region is installed region.

GF.DE 7 Region is marked for delete.

GF.TI 8 .. Region's name is Tl dependent.

GF.RW 9 Region is task's read/write resident overlay region.

GF.PS 10 Region has permanently allocated swap space.

The following values are defined for the status byte:

Symbol Meaning

GS.NUL Global area not In use

GS.LAO Load request queued

GS.LAS Load request succeeded

GS.LRF Load request failed

GS.RAF Record request queued

GS.RAS Record request succeeded

GS.RAF Record request failed

The symbols beginning GF. and GS. (above) may be defined in a user task by including the
definition file [l,l]EXEC.STB/SS when tht:i task is built.

4-63

GCOM$

DSW RETURN
CODES

Code
Value
Returned

is.sue
IE.INS

IE.ADP

+1

-02

-98

MACRO
EXPANSION

FORTRAN
CALL

GCOM$
.BYTE
.RADSO
.WORD

Explanatlon

Successful completion

Indicated SGA not in system

Part of DPB or buffer is out of issuing task's address space

SYSRES,COMBUF
67.,4 ;GCOM$ MACRO DIC,DPB SIZE =4 WORDS
/SYSRES/ ;COMMON BLOCK NAME
COMBUF ;ADDRESS OF 8-WORD BUFFER

CALL GETCMN (cmn,ibuf[,ids])

whe:re:

• cmn - is a 1- to 6- character SGA name in Radix-50 form.

• ibuf - is an 8-word integer array to receive Common Block Parameters.

• ids - is an integer variable to receive the Directive Status Word.

4-64

GLUN$

GLUN$

Use the GET LUN INFORMATION directive to obtain information about the device to which a logical
unit Is assigned. A specified 6-word buffer is filled as described below. The device to which the LUN Is
assigned may have been redirected to another device. In this case, the Information returned wlll refer
to the device to which 1/0 requests would actually be queued.

The buffer Is filled as follows:

• WD.00 - Name of Assigned Device (2 ASCII characters)

• WD.01 - Unit Number of Assigned Device and flags byte

WD.02 - First Device Characteristics Word

UC.REC - Bit 0 - Record Oriented Device (1 =yes)

UC.CCL - Bit 1 - Carriage Control Device (1 =yes)

UC.ITV - Bit 2 - Terminal Device (1 =yes)

UC.DIR - Bit 3 - Directory Device p =yes)

UC.SDI - Bit 4 - Single Directory Dovice (1 =yes)

UC.SOD - Bit 5 - Sequential Device (1 =yes)

UC.IAS - Bit 6 - Interactive IAS terminal (1=yes)

UC.IEX - Bit 7 - IAS exclusive device (1=yes)

UC.INS - Bit 8 - Intermediate buffered (1 =yes)

UC.SWL - Bit 9 - Software write locked O =yes)

UC.ISP- Bit 10- Input spooled (1=yes)

UC.OSP - Bit 11 - Output spooled (1 =yes)

UC.PSE - Bit 12 - Pseudo Device ('l=yes)

UC.COM - Bit 13 - Device mountable as a Communications Channel (1 =yes)

UC.F11 - Bit 14 - Device mountable as a Files-11 device (1=yes)

UC.MNT - Bit 15 - Device mountable (1 =yes)

WD.03 - Second Device Characteristics Word (See the /AS Device Handlers Reference Manua~

WD.04 - Third Device Characteristics Word (See the /AS Device Handlers Reference Manua~.

WO .05 - Standard device buffer size

The second and third Device Characteristic Words are specific to the device handler.

If the device to which the LUN is assigned is set output spooled, or if this device is redirected to a
spooled device, the buffer is filled as follows:

WD.00 - Name of assigned device

WD.01 - Unit number of assigned device, and flags byte for spooler temporary device (SPO).

• WD.02 - First device characteristics word for spooler temporary device, with UC.OSP set

4-65

GLUN$

WD.03 - Second device characteristics word for spooler temporary device.

WD.04 - Standard buffer size for assigned device

WD.05 - Standard buffer size for spooler temporary device.

MACRO CALL

GLUN$ lun,buf

where:

., lun - is a logical unit number

• buf- is the address of a 6-word buffer which holds LUN information

LOCAL
SYMBOL
DEFINITIONS

The following symbols are locally defined with their assigned values equal to the byte offset from
the start of the DPB to the respective DPB elements:

• G.LULU - (Length 2 bytes) Logical unit number

• G.LUBA - (2) Buffer address (see below)

The following offsets are assigned relative to the start of the GET LUN information buffer:

• G.LUNA - (2) Name of assigned device

• G.LUNU - (1) Unit number of assigned device

• G.LUFB - (1) Flags byte

• G.LUCW - (8) Device characteristics word

The following bits are defined for the flags byte:

Symbol Bit Meaning If set
·~------------~~---~---------~------~~~~~~~~---~~~~~---------------~

UF.OFL 5

UF.TL 6

UF.RH 7

4-66

Device is off-line

Handler task recognizes load and record

Handler task is declared resident

DSWRETURN
CODES

Value
Code Returned Exp la nation

is.sue +1

IE.ULN -05

IE.ILU -96

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

FORTRAN
CALL

where:

Successful completion

Unassigned LUN

Invalid logical unit number

Part of DPB or buffer is out of issuing task's address space

DIC or DPB size is invalid

GLUN$ 7,LUNBUF
.BYTE S,3
.WORD 7
.WORD LUNBUF

;GLUN$ MACRO DIC,DPB SIZE = 3 WORDS
; :LOG I CAL UN IT NUMBER 7
;;M>DRESS OF 6-WORD BUFFER

CALL GETLUN (ilun,idata[,ids])

• ilun - is an integer containing a Logical Unit Number.

• idata - is a 6-word integer array to receive LUN information.

• ids is an integer variable to receive the Directive Status Word.

GLUN$

4-67

GMCR$

GMCR$

The GET MCA COMMAND LINE directive instructs the system to transfer an 80-byte command line to
the issuing task.

A command line can be present in the following circumstances:

1 The task was requested by the MCA dispatcher.

2 The task was initiated by another task by means of the SPAWN TASK (SPWN$) directive.

3 The task was initiated by a timesharing task using the RUN$T macro of TCS (see the /AS Guide to
Writing Command a Language Interpreter.

The command line is copied into the DPB itself and there is, therefore, no $Sor $C form of the macro.

The length of the command line is returned in the task's Directive Status Word (DSW). The line will also
be terminated, usually with a carriage return (octal code 15), but possibly with an escape (octal code
33). The count does not include this terminator.

MACRO CALL

GMCR$

..
LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

0 G.MCRB - (Length 80 bytes) MCR line buffer

4-68

DSWRETURN
CODES

Code
Value
Returned

+n

IE.AST

IE.ADP

IE.SOP

-80

-98

-99

MACRO
EXPANSION

FORTRAN
CALL

GMCR$
. BYTE
. BLKW

GMCR$

Explanation

Successful completion; n is the number of data bytes transferred (excluding the
termination character). The termination character is, however, in the buffer.

No command line exists for the issuing task or the command line has already
been read by a previous MCA COMMAND LINE directive.

Part of the DPB is out of the issuing task's address space.

DIC or DPB size is invalid.

127.,41 .
40 .

;GMCR$ MACRO DIC, DPB SIZE=41.WORDS
;BO. CHARACTER MCR COMMAND LINE BUFFER

CALL GETMCR (buf[,ids])

where:

• buf - is an 80-byte array to receive the command line

• ids - is an integer variable to receiive the Directive Status word

4-69

GMCX$

GMCX$

The GET MAPPING CONTEXT directive causes the Executive to return a description of the current
window-to-region mapping assignments. The returned description is in a form that enables you to
restore the mapping context described by a series of CREATE ADDRESS WINDOW directives. The
macro argument specifies the address of a vector that contains one 8-word window definition block
(WDB) for each currently valid window, plus a terminator word. Thus, the maximum space required for
the vector is 8 *8+ 1 =65 words.

For each valid window the Executive fills in an 8-word WDB in the vector as follows:

1 If window is currently unmapped, the Executive fills in the offsets W.NID, W.NAPR, W.NBAS, and
W.NSIZ with information sufficient to recreate the window. The window status word W.NSTS is
cleared.

2 If a window is currently mapped, the Executive fills in the offsets W.NAPR, W.NBAS, W.NSIZ,
W.NRID, W.NOFF, W.NLEN, and W.NSTS with information sufficient to create and map the address
wijndow. WS.MAP is set in the status word (W.NSTS), and if the window is mapped with write
access, the bit WS.WRT is set as well.

3 For window zero, (task window), the Executive fills in the offsets as for an unmapped window, plus
the mapped length W.NLEN. The window status word, W.NSTS, is left clear.

Note that, in all cases, the word at offset W.NSRB is cleared

The tem1inator word, which follows the last WDB filled in, is set negative. Because the first word of a
WDB is positive, a "TST" instruction can be used to detect the last WDB in the vector.

When you use CREATE ADDRESS WINDOW (CRAW$) directives to restore the mapping context,
there is no guarantee that the same address window IDs will be used. You must, therefore, be careful
to use the latest window IDs returned from the CREATE ADDRESS WINDOW directives.

For compatibility with other operating systems, the first WDB in the vector always describes window
zero (that is, the task window). This window cannot be unmapped, eliminated or re-created. The
CREATE ADDRESS WINDOW directive will fail when applied to this WDB, but the error should be
ignomd.

MACRO CALL

GMCX$ vec

where:

• vec - is the address of a vector of up to 8 window definition blocks, each of 8 words, followed
by a terminator word.

4-70

WINDOW
DEFINITION
BLOCK
PARAMETERS

Input Parameters

'NONE

Output Parameters

Array
Element Offset

iwdb(1) W.NID

iwdb(1) W.NAPR

iwdb(2) W.NBAS

iwdb(3) W.NSIZ

iwdb(4) W.NRID

iwdb(5) W.NOFF

iwdb(6) W.NLEN

iwdb(7) W.NSTS

iwdb(S) W.NSRB

ID of address window bits 0-7

Base APR of the window bits 8-15

Base virtual address of the window

Size, in 32-word blocks, of the window

GMCX$

ID of the mapp,ed region, or no change if the window is unmapped or Is window
zero

Offset, in 32-word blocks, from the start of the region at which mapping begins, or
no change if the window is unmapped or is window zero

Length, in 32-word blocks, of the area currently mapped within the region, or no
change if the window is unmapped

Bit settings in the window status word (all 0 if the window is not mapped or is
window zero):

WS.MAP - 1 if the window is mapped

WS.WRT - 1 if the window is mapped with write access

WS.64B - 1 if the window is not aligned on a 256 word boundary

Address of Send/Receive by Reference buffer. (This directive always clears the
Send/Receive by Reference buffer)

Note that the length mapped (W.NLEN) can be less than the size of the window (W.NSIZ) if the
area from W.NOFF to the end of the partition is smaller than the window size.

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• G.MCVA - (Length 2 bytes) Address of the vector (wvec) containing the window definition
blocks and terminator word

4-71

GMCX$

DSW RETURN
CODES

Value
Code Returned

is.sue +01

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

FORTRAN
CALL.

GMCX$
.BYTE
.WORD

Exp la nation

Successful completion

Address check of the DPB or the vector (wvec) failed

DIC or DPB size is invalid

VECADR
113., 2
VECADR

;GMCX$ MACRO DIC, DPB SIZE=2 WORDS
;WDB VECTOR ADDRESS

CALL GMCX (imcx[,ids])

where:

• imcx - is an integer array to receive the mapping context. The size of the array is 8*n+l
where n is the number of window blocks in the task's header. The maximum size is
8*8*+1=65 words.

• ids - is an integer variable to receive the Directive Status Word.

4-72

GPRT$

GPRT$

The GET PARTITION PARAMETERS directive fills a specified 3-word buffer with information about
a specified partition. If you do not specify a partition name, the partition in which the Issuing task is
running Is assumed.

The 3-word buffer is filled as follows:

WO. 00 - Base address of partition in 32-word blocks

• WO. 01 - Size of partition in 32-word blocks

WO. 02 - partition flags byte

This directive indicates success by returning a value of zero in the Directive Status Word (DSW) rather
than is.sue.

MACRO CALL

GPRT$ [prt], buf

where:

• prt - is the partition name

• buf - is the address of the buffer

LOCAL
SYMBOL
DEFINITIONS

The following symbols are locally defined with their assigned values equal to the byte offsets from
the start of the DPB to the respective DPB elements:

• G.PRPN - (Length 4 bytes) Partition name in Radix-50

• G.PRBA - (2) Buffer address

The following offsets are assigned relative to the start of the partition parameters buffer:

• G.PRPB - (2) Partition base address

• G.PRPS - (2) Partition size

• G.PRFW - (2) Partition flags word

4-73

GPRT$

The following bits are defined for the flags word:

-·----~--~--~·--------------------~
Symbol Bit Meaning When Set

---~---------------------~--
T F. UC 0 User controlled partition

TF.OU 1 Occupied user-controlled partition

TF.IA

TF.SG

2 Reserved

3 Reserved

4

5

Timesharing partition

(Used by system generation)

DSW RETURN
CODES

Successful completion is indicated by carry clear. The Directive Status Word (DSW) is set to zero
in this case, rather than IS.SUC. Unsuccesful completion is indicated by carry set and one of the
following codes in the DSW:

Code

IE.INS

IE.ADP

IE.SDP

Value
Returned

-02

-98

-99

Exp la nation

Indicated partition not in system

Part of DPB or buffer is out of task's address space

DIC or DPB size is invalid

MACRO
EXPANSION

GPRT$ ALPHA, DATBUF
.BYTE 65.,4 ;GPRT$ DIC, DPB SIZE= 4 WORDS
.RADSO /ALPHA/ ;PARTITION 'ALPHA'
.WORD DATBUF ;ADDRESS OF 3-WORD BUFFER

FORTRAN
CALL

where:

4-74

CALL GETPAR ([prt],ibuf[,ids])

prt - is a 2-word, 1 to 6 character partition name in Radix-50 form.

ibuf - is a 3-word integer array to receive partition parameters.

ids - is an integer variable to receive the Directive Stat:us Word.

GREG$

GREG$

The GET REGION PARAMETERS directive instructs the Executive to fill an indicated 3-word buffer
with information about the specified region, to which the task must be attached.

MACRO CALL

GREG$ rid,buf

where:

• rid - is the region ID

• buf - is the address of a 3-word buffer

BUFFER
FORMAT

• WD.O - Region base address expressed as a multiple of 32 words (regions are always aligned on
32-word boundaries). Thus, a region starting at 1000(8) will have 10(8) returned in this word.

• WD.1 - Region size expressed as a multiple of 32-words.

• WD.2 - Region flags word.

LOCAL
SYMBOL
DEFINITIONS

The following symbols are locally defined with their assigned values equal to the byte offsets from
the start of the DPB to the respective DPB elements:

• G.RGID - (Length 2 bytes) Region ID

• G.RGBA - (length 2 bytes) Buffer address

The following offsets are assigned relative to the start of the region parameters buffer:

• G.RGRB - Region base address expressed as an absolute 32-word block nwnber (2)

• G.RGRS - Region size expressed as a multiple of 32-word blocks (2)

• G.RGFW - Region flags word (2)

4-75

GREG$

The following bits are defined for the flags word:

Symbol Bit Meaning When Set

GF.SG 0 Region must be loaded from task image file

GF.U 1 Region is a library (0-common)

GF.RI 2 Library is position independent

3 Reserved

GF.FT 4 Region not yet loaded

GF.PA 5 Region is task's pure area

GF.IR 6 Region is "installed region"

GF.OE 7 Region is marked for delete

GF.TI 8 Region's name is Tl dependent

GF.IRW 9 Region is task's RW resident overlay region

GF.PS 10 Region has permanently allocated swap space

DSWRETURN
CODES

Successful completion is indicated by carry clear. The Directive Status Word (DSW) is set to zero
in this case, rather than IS.SUC. Unsuccessful completion is indicated by carry set and one of the
following codes in the DSW:

Value
Code Returned

IE.NVFl -86

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

4-76

GREG$
.BYTE
.WORD

.WORD

.WORD

Explanation

Invalid region ID

Part of the DPB or buffer is out of the issuing task's address space

DIC or DPB size is invalid

RID,DATBUF
65.,4 ;GREG$ MACRO DIC,DPB SIZE=4 WORDS
0 ;WORD THAT DISTINGUISHES GREG$

;FROM GPRT$
RID ; REGION ID
DATBUF ;ADDRESS OF 3-WORD BUFFER

FORTRAN
CALL

where:

CALL GETREG (rid,buf[,ids])

• rid - is the region id

• buf - is a 3-word integer array to receive region parameters

• ids - is an integer variable to receive the Directive Status Word.

GREG$

4-77

GSSW$

GSSW$

The GET SENSE SWITCHES directive instructs the system to get the status of the console sense
switches and store the value in the issuing task's Directive Status Word. For processors which
do not have console sense switches, this will be the value set by using the SET/SWR (MCA) or
SET SWITCH_REGISTER (SCI) command. See the /AS MCR User's Guide for details of the SET
/SWR command or the /AS System Management Guide for details of the SET SWITCH_REGISTER
command. The presence or absence of a hardware switch register Is determined when the system Is
bootstrapped.

MACRO CALL

GSSW$

DSWRETURN
CODES

Successful completion is indicated if the carry condition code is clear. Switch values will be found
in the DSW. Unsuccessful completion is indicated by the carry condition code set and one of the
following codes in the DSW:

Code

IE.SOP

IE.ADP

Value
Returned

-98

-99

MACRO
EXPANSION

GSSW$

Exp la nation

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

.BYTE 125.,1 ;GSSW$ MACRO DIC, DPB SIZE=l WORD

4-78

FORTRAN
CALL

CALL READSW

or

CALL SSWTCH

GSSW$

·See READSW (Read Sense Switches) and SSWTCH (Test a Sense Switch) Subroutine calls as
described in the IAS FORTRAN Special Subroutines Reference Manual.

4-79

GTIM$

GTIM$

The GET TIME PARAMETERS directive fills an Indicated 8-word buffer with current time and date
parameters. All values are in binary. The 8-word buffer Is filled as follows:

WO. O - Year (since 1900)

WO. 1 - Month of year

WO. 2 - Day of month

WO. 3 - Hour of day

• WO. 4 - Minute of hour

WO. 5 - Second of minute

WO. 6 - Tick of second

WO. 7 - Ticks per second (depends on frequency of clock)

MACRO CALL

GTIM$ buf

where:

• buf - is the address of an 8-word buffer

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• G.TIBA - (Length 2 bytes) Buffer address (see below)'

The following offsets are assigned relative to the start of the time parameters buffer:

• G.TIYR - (2) Year

• G.TIMO - (2) Month

• G.TIDA - (2) Day

• G.TIHR - (2) Hour

• G.TIMI - (2) Minute

• G.TISC - (2) Second

• G.TICT - (2) Clock tick

4-80

• G.TICP - (2) Clock ticks per second

DSW RETURN
CODES

Value
Code Returned Explanation

is.sue +1 Successful completion

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

FORTRAN
CALL

Part of DPB or buffer is out of issuing task's address space

DIC or DPB size is invalid

GTIM$ DATBUF
.BYTE 61.,2
.WORD DATBUF

;GTIM$ DIC, DPB SIZE = 2 WORDS
; ;WDRESS OF 8-WORD BUFFER

GTIM$

FORTRAN IV provides several subroutines for obtaining the time in a number of formats. See the
IAS I RSX-11 Fortran IV User's Guide or the FORTRAN IV-PLUS User's Guide.

4-81

GTSK$

GTSK$

The GET TASK PARAMETERS directive fills an indicated 16-word buffer with parameters relating to
the issuing task.

The 16-word buffer is filled as follows:

WO. 00 - Issuing task's name (first half) (Radix-50)

WO. 01 - Issuing task's name (second half) (Radix-50)

WO. 02 - Partition name (first half) (Radix-50)

WO .. 03 - Partition name (second half) (Radix-50)

WO .. 04 - Name of requestor (first half) (Radix-SO)

WO .. 05 - Name of requestor (second half) (Radix-50)

WO .. 06 - Run priority

WO .. 07 - Default UFO for file access. For a real-time task, this is always the same as the task UIC
(WD.17). For a timesharing task (a task run using PDS or the Timesharing Control Services, this is
the default UFO set by the SET DEFAULT command.

WO. 1 O - Number of logical 1/0 units (LUNs)

WO. 11 - Machine type indicator (for example, 60. for PDP-11/60, 70. for PDP-11/70)

WO. 12 - System Task Directory (STD) flag word

WO. 13 - Address of task SST vector tables, or zero if word 14 is zero

WO. 14 - Size of task SST vector table (in words), or zero if none specified

WO. 15 - Task size. This is the address of the first byte above the task's main read/write area
(1that is, the first byte which will cause a memory management violation if an attempt is made to
access that byte). This value takes no account of the task's read-only area, of shareable libraries
and common areas, of dynamically mapped address windows or of Task Builder allocated resident
overrlays.

The value reflects any alteration of the read/write area size resulting from use of the Extend Task
directive.

WO. 16 - System identification (see below, G.TSSY)

WO. 17 - User Identification Code. High byte = group code, low byte = member code. This is the
UIC which will be used, for instance, to determine the task's access to files, regions. Note that it is
not affected by the SET DEFAULT command command for a timesharing task.

4-82

MACRO CALL

GTSK$ buf

where:

• buf- is the address of a 16-word buffer

LOCAL
SYMBOL
DEFINITIONS

GTSK$

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• G.TSBA - (Length 2-bytes) Buffer Address (see below)

The following offsets are assigned relativie to the start of the task parameters buffer:

• G.TSTN - (4) Task name

• G.TSPN - (4) Partition name

• G.TSRN - (4) Name of task's request£!r

• G.TSPR - (2) Priority

• G.TSPC - (1) Default UFD Member code

• G.TSGC - (1) Default UFD Group code

• G.TSNL - (2) Number of logical units

• G.TSMT - (2) Machine type

• G.TSFW - (2) System Task Directory (STD) flags word

• G.TSVA - (2) Task's SST vector address

• G.TSVL - (2) Task's SST vector (word) length

• G.TSTS - (2) Task size (in bytes)

• G.TSSY - (2) System identification (see below)

• G.TSDU - (2) User Identification Code

The following bits are defined for the System Task Directory Flags Word (G.TSFW):

Symbol

SF.FX

SF.RM

Bit

2

Meaning When Set

Task is fixed in memory

STD entry is to be removed

4-83

GTSK$

Symbol

SF.TD

SF.BF

SF.XT

SF.MU

SF.PT

SF.NT

SF.R1

SF.XS

SF.XA

SF.XO

SF.XF

SF.XC

SF.SR

Bit

3

4

5

6

7

8

9

10

11

12

13

14

15

Meaning When Set

Task is disabled

Task Is being fixed in memory

Task Is to be removed on Exit

Task is multiuser

Task is privileged

Network attribute bit

Task does not have directive privilege

Task cannot be sent data or references

Task cannot be aborted

Task cannot be disabled

Task cannot be fixed in memory

Task cannot be checkpolnted.

Task can be requested/resumed by SFFR$, VSDR$ or SORO$ directives Issued by any
task.

The following bits are defined for the System Identification (G.TSSY):

• 1 for RSX-UM

• 2 for RSX-US

• 3 for IAS

• 4 for RSTS

• 5 for VAXNMS

• 6 for RSX-UM-PLUS

DSWRETURN
CODES

Code

is.sue
IE.ADP

IE.SOP

Value
Returned

+1

-98

-99

MACRO
EXPANSION

Exp la nation

Successful completion

Part of DPB or buffer is out of Issuing task's address space

DIC or DPB size is invalid

GTSK$ DATBUF
.BYTE 63.,2
.WORD DATBUF

;GTSK$ DIC, DPB=2-WORDS
;ADDRESS OF 16-WORD BUFFER

4-84

FORTRAN
CALL

where:

CALL GETTSK (idata[,ids])

• idata - is a 16-word integer array to receive task parameters.

• ids - is an integer variable to receive the Directive Status Word.

GTSK$

4-85

IHAR$

IHAR$

The INHIBIT AST RECOGNITION directive inhibits recognition of asynchronous system traps for the
Issuing task. The ASTs are queued as they occur and are effected when AST recognition Is re-enabled
(ENAR$)o AST recognition is inhibited whenever an AST service routine Is executing. ASTs are
described in the IAS Executive Facilities Reference Manual.

It is only the recognition of ASTs which is inhibited. The ASTs are still queued by the system. They are
queued on a First In/first out (FIFO) basis and occur in that order when AST recognition Is re-enabled .

..
MACRO CALL

!HAR$

DSWRETURN
CODES

Value
Code Returned

is.sue +1

IE.ITS -08

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

!HAR$

Explanation

Successful completion

AST recognition already inhibited

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

.BYTE 99.,1 ;!HAR$ MACRO DIC,DPB SIZE=l WORD

FORTRAN
CALL

4-86

CALL INASTR

MAP$

MAP$

The MAP ADDRESS WINDOW directive maps an existing window onto an attached region. The
mapping begins at a specified offset from the start of the region. If the window is already mapped
elsewhere, the Executive unmaps it before· carrying out the mapping assignment described In the
directive .

.For the mapping assignment, a task can specify any length that is less than or equal to both:
·»·F •.

1 The window size specified when the window was created

2 The length remaining between the specified offset within the region and the end of the region.

A task must be attached with write access to a region in order to map to It with write access. To map to
a region with read-only access, the task must be attached with either read or write access.

If W.NLEN is set to 0, the length defaults tc1 either the window size or the length remaining In the region,
whichever Is smaller. Because the Executive returns the actual length mapped as an output parameter
in W.NLEN, the task must clear that parameter in the WDB before issuing the directive each time It
wants to default the length of the map.

The values that can be assigned to W.NOFF depend on the setting of bit WS.64B in the window status
word (W.NSTS):

1 If WS.64B = 0, the offset specified in W.NOFF must represent a multiple of 256 words (512 bytes).
Because the value of W. NOFF is expressed in units of 32-word blocks, the value must be a multiple
of 8.

2 If WS.648 = 1, the task can align on 3:2-word boundaries; the programmer can therefore specify
any offset within the region.

NOTE: Applications dependent on 32-word or 64-byte alignment (WS.64B • 1) may not be
compatible with future software products. To avoid future incompatibility, programmers
should write applications adaptable 'to either alignment requirement. The bit setting of
WS.64B could be a parameter chosen at assembly (by means of a prefix file), at task build
(as input to the GBLDEF option), or at runtime (by means of command input).

This directive will fail if the window is already mapped and the task has 1/0 in progress.

4-87

MAP$

MACRO CALL

MAP$ wdb

where:

• wdb - is the window definition block address

WINDOW
DEFINITION
BLOCK
PARAMETERS

Input Parameters

Array
Element Offset

iwdb(1) W.NID

iwdb(4) W.NRID

iwdb(5) W.NOFF

lwdb(6) W.NLEN

iwdb(7) W.NSTS

Output Parameters

Array
Element

iwdb(6)

iwdb(7)

4-88

Offset

W.NLEN

W.NSTS

ID of the window to be mapped bits 0-7

ID of the region to which the window is to be mapped.

Offset, in 32-word blocks, within the region at which mapping Is to begin. Note
that if WS.64B in the window status word equals 0, the value specified must be a
multiple of 8.

Length, in 32-word blocks, within the region to be mapped, or 0 if the length is to
default to either the size of the window or the space remaining In the region from
the specified offset, whichever is smaller

Bit settings in the window status word:

WS.WRT - 1 if write access is desired

WS.64B - 0 for 256-word (512-byte) alignment, or 1 for 32-word (64-byte)
alignment.

Length of the area within the region actually mapped by the window

Bit settings in the window status word:

WS.UNM - 1 if the window was unmapped first

LOCAL
SYMBOL
DEFINITIONS

MAP$

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• M.APBA - (Length 2 bytes) Window definition block address

4-89

MAP$

DSWRETURN
CODES

Value
Code Returned

is.sue +01

IE.PAI -16

IE.IOP -83

IE.ALG -84

IE.NIVR -86

IE.NVW -87

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

Explanation

Successful completion

Privilege violation

Task has 1/0 in progress

Task specified an invalid region offset and length combination in the window
definition block parameters; or WS.648 - 0 and the value of W.NOFF is not a
multiple of 8.

Invalid region ID

Invalid address window ID

Part of the DPB or WDB is out of the issuing task's address space.

DIC or DPB size is invalid

MAP$ WDBADR

FORTRAN
CALL

where:

.BYTE

.WORD
121. t 2
WDBADR

;MAP$ MACRO DIC, DPB SIZE=2 WORDS
;WDB ADDRESS

CALL MAP (iwdb[,ids])

• iwdb - is an 8-word integer array containing a window definition block

• ids - is an integer variable to receive the Directive Status Word

4-90

MRKT$

MRKT$

The MARK TIME directive declares a significant event after an indicated time interval. The Interval
begins when you issue the directive. If you specify an event flag, it is cleared when you Issue the
directive and set at the time of the significant event. If you specify an AST service entry point, an
asynchronous system trap is queued at the time of the significant event. If you specify neither an event
flag number nor an AST service entry point, the significant event Is still declared after the Indicated time
·interval.

If an AST entry point address is specified in the DPB, the AST routine is entered (when the Indicated
time Interval has elapsed) with the task's stack in the following state:

• SP+ 16 Event flag mask word for flags 1··16

SP+14 Event flag mask word for flags 1"7-32

SP+ 12 Event flag mask word for flags 3:3-48

SP+ 10 Event flag mask word for flags 49-64

SP+06 PS of task prior to AST

SP+04 PC of task prior to AST

SP+02 DSW of task prior to AST

SP+OO Event flag number, or zero if none was specified in the MARK TIME directive.

The event flag number must be removed from the task's stack before an EXIT AST (ASTX$) directive
is executed.

If the directive is rejected, the specified event flag is not guaranteed to be cleared or set. Thus, if the
task indiscriminately executes a WAITFOR directive after the MARK TIME directive Is rejected, then the
task may wait for ever. You must always make sure that the directive has successfully completed.

A task must have real-time directive privilege to issue a MARK TIME directive specifying a global event
flag.

If you issue a MARK TIME directive with no AST entry address and the task needs to know of the
event, the task should issue a WAITFOR directive specifying the same event flag as for the MARK
TIME. ASTs are described in the IAS Executive Facilities Reference Manual.

This directive requires two nodes from the system node pool. These nodes are charged to the issuing
task and are released when the Mark Time becomes due.

MACRO CALL

MR.KT$ [efn],tmg,tnt[,ast]

where:

• efn - is an event flag number (0 implies no event flag)

• tmg - is a time interval magnitude; that 1s, how many time interval units

4-91

MRKT$

" tnt - is a time interval unit

1 = clock ticks

2 =seconds

3 =minutes

4 =hours

0 ast - is an AST entry address

LOCAL
SYMBOL
DEFINITIONS

The following symbols are locally defined with their assigned values equal to the byte offset from
the start of the DPB to the respective DPB elements:

• M.KTEF - (Length 2 bytes) Event ·flag number

• M.KTMG - (2) Time interval magnitude

• M.KTUN - (2) Time interval unit

• M.KTAE - (2) AST entry address

DSW RETURN
CODES

Value
Code Returned

ts.sue +1

IE.UPN -01

IE.m -93

IE.IEF -97

IE.PAI -16

IE.ADP -98

IE.SOP -99

4-92~

Explanation

Successful completion

Unavailable pool node

Invalid time specified

Invalid event flag number (event flag number <0 or >64)

Privileged function (global flag cannot be set or cleared by a task that does not
have real-time directive privilege).

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

MACRO
EXPANSION

FORTRAN
CALL

where:

MRKT$ 24,30,2,MRKAST
.BYTE 23.,5 ;MRKT$ MACRO DIC, DPB SIZE=5 WORDS
.WORD 24 ;E:VENT FLAG NUMBER 24
.WORD 30 ;TIME MAGNITUDE=30
.WORD 2 ;TIME UNIT=SECONDS
.WORD MRKAST ;ADDRESS OF MARK TIME AST ROUTINE

CALL MARK (iefn,idm,iclu[,ids])

• iefn - is an integer containing an }!~vent Flag Number.

• idm - is an integer containing the time interval magnitude.

• idu - is an integer containing the time interval units (1-4)

• ids - is an integer variable to receive the Directive Status Word.

The time interval magnitude can be set to a maximum of 24 hours.

MRKT$

The FORTRAN ISA standard call for delaying a task for a specified time interval is also provided.

A task can relinquish control of the system for a specified length of time by means of the WAIT
call. After expiration of the specified delay, the subroutine resumes execution of the requesting
task at the first execution statement following the WAIT call.

The form of the call is:

CALL WAIT (tmg,tnt,ids)

where:

• tmg - specifies the length of time, in units of tnt, to delay before continuing execution in
the requesting program. If the value is zero or negative no delay will occur.

• tnt - specifies units of time as follows:

0 - basic counts of the system'8 clock

1 - Milliseconds (to the nearest clock tick)

2 - Seconds

3 - Minutes

4 - Hours

• ids - is set on return to the calling program to indicate the disposition of the request as
follows:

4-93

MRKT$

The routine executes a MARK TIME direct.ivP. followed, if succeRsful, hy a WAITFOR. using Event
Flag 29. An error return indicates that the MARK TIME Directive failed. Subtract one from the
status variable and negate to obtain the standard IAS error code.

4-94

QIO$

QIO$

The QUEUE 1/0 directive places an 1/0 request for an indicated device in a queue of priority-ordered
requests for that device unit. The device is indicated by specifying a Logical Unit Number (LUN)
assigned to the device.

A significant event is declared upon completion of an 1/0 request. If you specify an event flag In the
.010 request, it is cleared when the request is queued, and set at the occurrence of the event. The 1/0
Status block is also cleared when the request is queued and contains the final 1/0 status when the 1/0
request is completed.

If you specify an AST service routine address, the AST occurs upon 1/0 completion with the task's PS,
PC, Directive Status Word (DSW) and the address of the 1/0 status block pushed onto the task's (user)
stack. The service routine is entered with the stack in the following state:

SP + 16 Event flag mask word for flags 1-16

SP+ 14 Event flag mask word for flags 17-32

SP + 12 Event flag mask word for flags 33-48

SP + 1 O Event flag mask word for flags 49-64

SP+ 06 PS of task prior to AST

SP + 04 PC of task prior to AST

SP + 02 DSW of task prior to AST in the QIO directive

SP+ 00 Address of 1/0 Status block or zero if none was specified in the QIO directive.

The address of the 1/0 status block, which is a trap-dependent parameter, must be removed from the
task's stack before an exit AST is executed.

NOTE: You cannot use the contents of the 1/0 status block as an indication of 1/0
completion. The only legal ways of determining 1/0 completion are the setting of the
associated event flag (if any), and/or the occurrence of the associated AST.

If the directive is rejected, the specified event flag is not guaranteed to be cleared or set. Thus, If the
task indiscriminately executes a WAITFOR directive after the QIO directive was rejected, then the task
may wait forever. You must always make sure that the directive has successfully completed.

The QUEUE 1/0 AND WAIT (QIOW$) directive should be used rather than QUEUE 1/0 followed by a
WAITFOR whenever it is simply required te> perform 1/0 and wait until it is complete. Use of QIOW$
enables the Executive to know why it is waiting and therefore to make better use of the processor.
Also, you only need a single system directive.

Three error indicators are used in conjunction with QIO$:

1 The C bit

2 The Directive Status Word

3 The 1/0 status block

4-95

QIO$

The programmer should check the C bit and the DSW immediately aftP.r the macro call.. The C bit is
set to indicate that the format of the macro call was incorrect or that the 1/0 request was not queued to
the handler. The DSW can be examined to determine the reason for rejection. If the C bit is clear, the
format of the macro call is correct and the request has been queued.

The 1/0 status block can be tested upon 1/0 completion to determine the success or failure of the 1/0
operation. The low byte of the first word is set as follows:

positive - operation was successful. Normally only the value IS.SUC is used, but some handlers
may use other values.

negative - operation failed. The actual code used indicates why the operation failed.

zero - the 1/0 status block is set to zero when the 010 directive is issued and remains zero until 1/0
completion occurs. Thus a value of zero indicates that the operation has not yet been completed.

The second word of the 1/0 status block is used for transfer (read or write) requests to contain
the number of bytes actually transferred. The high byte of the first word, and the second word for
non-transfer requests, may be used in a handler-dependent way.

For a full description of the use of the 1/0 status block see the /AS Device Handlers Reference Manual.

If an illegal 1/0 status block is specified (that is, the address Is odd, or one or both words cannot be
written to), the directive will fail with a status of IE.ADP. However a task may issue a 010$ directive with
a valid 1/0 status block address and then use the memory management directives to make the address
invalid. In this case, the task will be aborted by the Executive when the 1/0 operation Is completed. The
termination message for the task will be "INVALID STATUS BLOCK".

This directive requires three nodes from the system node pool. These nodes are charged to the issuing
task and released when the 1/0 request is completed.

MACRO CALL

QIO$ fnc, lun, [efn], [pri], [iosb], [ast] [,prm]

where:

• 1fnc - is an 1/0 function code

NOTE: If the function is read/write logical block to a device that has a volume
mounted as a Files-11 directory volume, the issuing task must have executive
privilege (LINK/PRIVILEGED or /PR switch).

• lun - is a logical unit number

• •efn - is the event flag number (0 implies no event flag). It can be either global or local but
to specify a global efn in a QIO macro the issuing task must have directive privilege.

• JPri - is the priority

• iiosb - is an address for the 2-word 1/0 status block

• ast - is an address for the 1/0 done AST service routine entry point

4-96

010$

• pnn - is a parameter Hst of the form <Pl, ,P6>. The parameters required for each device
are listed in the corresponding chapter of the IAS Device Handlers Reference Manual.

LOCAL
SYMBOL
DEFINITIONS

On the first call of this macro the following symbols are locally defined with their assigned values
equal to the byte offsets from the start of the DPB to the respective DPB elements:

• Q.IOFN - (Length 2 bytes) 1/0 function

• Q.IOLU - (2) Logical unit number

• Q.IOEF - (1) Event flag number

• Q.IOPR - (1) Priority

• Q.IOSB - (2) Address of 1/0 status block

• Q.IOAE - (2) Address of 1/0 done AST entry point

• Q.IOPL - (12) Parameter list (up to 6 words)

DSWRETURN
CODES

Value
Code Returned

is.sue +1

IE.UPN -01

IE.ULN -05

IE.HWA -06

IE.PAI -16

IE.IPR -95

IE.ILU -96

IE.IEF -97

IE.ADP -98

IE.SOP -99

Exp la nation

Successful completion

Insufficient pool nodes available to requester

Unassigned LUN

Handler task not resident

Global event flag cannot be specified because of directive privilege violation

Invalid Priority (>250)

Invalid LUN

Invalid event flag number (<0 or > 64)

Part of DPB or 1/0 status block is out of issuing task's address space

DIC or DPB size is invalid

4-97

010$

MACRO
EXPANSION

QIO$
.BYTE
.WORD
.WORD
.BYTE
.WORD
.WORD
.WORD
.WORD
.WORD

IO.WVB,3,5,50,IOSB,QIOAST,<BUF,SIZ,40>
1,$$$ARG ;QIO$ MACRO DIC, DPB SIZE=VARIABLE (6-12)
IO.WVB ;I/O FUNCTION CODE=WRITE VIRTUAL BLOCK
3 ;LUN 3
5,50 ;EVENT FLAG 5, PRIORITY 50
IOSB ;ADDRESS OF I/O STATUS BLOCK
QIOAST ;ADDRESS OF I/O DONE AST ENTRY POINT
BUF ;PARAMETER WORD 1
SIZ ;PARAMETER WORD 2
40 ;PARAMETER WORD 3

FORTRAN
CALL

where:

•
•
•
•
•
•

•

CALL QIO (ifnc, ilun, [iefn], [ipri], [istat], [iprm] [,ids])

ifnc - is an integer specifying the device function code .

ilun - is an integer specifying device Logical Unit Number .

iefn - is an integer specifying Event Flag Number .

ipri - is an integer specifying QIO request priority .

istat - is a 2-word integer array to receive device status .

iprm - is a 6-word integer array containing device dependent parameters to be placed in
parameter words 1-6 of the Directive Parameter Block (DPB).

ids - is an integer variable to receive the Directive Status Word .

The subroutine GETADR can be called to insert addresses in selected elements of the iprm array.
(See the IAS FORTRAN Special Subroutines Reference Manual).

4-98

QIOW$

QIOW$

The QUEUE 1/0 AND WAIT directive performs the functions of both QUEUE 1/0 (010$) and WAIT FOR
SINGLE EVENT FLAG (WTSE$). The format of the call and other related information is identical to that
of 010$. If event flag O is specified, or the cfn parameter is omitted, the queue 1/0 is performed, but
the wait is not performed.

The programmer should check the C bit and DSW immediately after the macro call (see 010$).

MACRO CALL

QIOW$ (parameters as for QI0$)

DSW RETURN
CODES

All those returned for QIO$.

MACRO
EXPANSION

FORTRAN
CALL

QIOW$ IO.RLB,5,3,200,IOSBl,RDAST,<INBUF,SIZE>
.BYTE 3,$$$ARG ;QIOW!$ MACRO DIC, DPB SIZE=VARIABLE (6-12)
.WORD IO.RLB ;I/O FUNCTION CODE=READ LOGICAL BLOCK
.WORD 5 ;LUN=5
.BYTE 3,200 ;EVENT FLAG=3, PRIORITY=200
.WORD IOSBl ;ADDRESS OF I/O STATUS BLOCK
.WORD ROAST ;ADDRESS OF I/O DONE AST ENTRY POINT
.WORD INBUF ;PARAMETER WORD 1
.WORD SIZE ;PARAMETER WORD 2

CALL WTQIO (same parameters as QIO)

See under the QIO$ directive for a list of argument descriptions.

4-99

ROAF$

ROAF$

The READ ALL FLAGS directive reads all 64 event flags for the issuing task and records their polarities
in a 64-bit (4-word) buffer. The 4-word buffer is filled as follows:

• WD - 00 Task Local Flags 1-16

• WD - 01 Task Local Flags 17-32

• WD - 02 Global Flags 33-48

• WD - 03 Global Flags 49-64

MACRO CALL

ROAF$ buf

where:

•• buf - is an address of a 4-word buffer

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• R.DABA- (Length 2 bytes) Buffer address

DSW RETURN
CODES

Code

is.sue
IE.ADP

IE.SOP

4-100

Value
Returned

+1

-98

-99

Exp I a nation

Successful completion

Part of DPB or buffer is out of issuing task's address space

DIC or DPB size is invalid

MACRO
EXPANSION

FORTRAN
CALL

ROAF$ FLGBUF
.BYTE 39.,2
.WORD FLGBUF

;~.OAF$ MACRO DIC, DPB SIZE•2 WORDS
;ADDRESS OF 4-WORD BUFFER

Only a single event flag can be read (see READ EVENT FLAG [RDEF$]).

ROAF$

4-101

RDEF$

RDEF$

The READ EVENT FLAG directive tests an indicated event flag and reports Its polarity in the DSW.

MACRO CALL

RDEF$ efn

where:

• efn - is an event flag number

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• R.DEEF - (Length 2 bytes) Event flag number

DSWRETURN
CODES

Value
Code Returned

IS.CLR +O

IS.SET +2

IE.IEF -97

IE.ADP -98

IE.SOP -99

4-102

Explanation

Flag was clear

Flag was set

Invalid event flag number (event flag number <1 or >64)

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

MACRO
EXPANSION

FORTRAN
CALL

where:

RDEF$ 6
.BYTE 37., 2
.WORD 6

CALL READEF (iefn [, ids1])

• iefn - is an integer containing an E~vent Flag Number.

• ids - is an integer variable to receive the Directive Status Word.

RDEF$

4-103

RZST$

RZST$

The REQUEST directive activates a task. The task is initiated and subsequently run contingent upon
priority and memory availability. The requested task must be Installed in the system. If the task cannot
run immediately, the request is queued so that the task executes when sufficient memory Is available.

A real-time task Is loaded Into a partition if it Is of sufficiently high priority and there Is sufficient memory
available. If the task cannot be loaded It Is queued In a llst of tasks waiting for memory and runs
when memory becomes free. When a task requests memory space, checkpolntlng can occur. If a
checkpolntable task of lower priority than the requesting task Is currently resident, It will be checkpolnted
onto a checkpoint file and the requesting task will be loaded. Timesharing tasks of lower priority (as
is normally the case) will also be swapped out of memory. See the /AS Executive Facilities Reference
Manual for details of checkpointing.

This directive can specify a partition to override the task's default partition and a priority to override the
task's default execution priority. If the issuing task is executive privileged, this directive can specify a
UIC to override the task's default execution UIC. If the issuing task is non-privileged, tthis directive can
specify a UIC under which the task will be run, providing that the UIC is:

1 The UIC of the requesting task, or

2 The logged-in UIC for the terminal.

The terminal identification (Tl) of the requested task is always the same as the Tl of the task issuing
the REQUEST directive.

Successful completion means that the task has been queued to run and not necessarily that it is
actually running.

This directive requires either three or four nodes from the system node pool. These nodes are charged
to the issuing task and are released when the requested task exits.

MACRO CALL

where:

•
•
•
•
•

4-104

RQST$ tsk, [prt], [pri] [, ugc, umc]

tsk - is the task name

prt - is the partition name

pri - is the priority

ugc - is the UIC group code

umc - is the UIC member code

LOCAL
SYMBOL
DEFINITIONS

RZST$

The following symbols are locally defined with their assigned values equal to the byte offsets from
the start of the DPB to the respective DPB elements:

• R.QSTN - (Length 4 bytes) Task name in Radix-50

• R.QSPN - (4) Partition name in Radix-50

• R.QSPR - (2) Priority

• R. QSGC - (1) UIC group

• R.QSPC - (1) UIC member

DSWRETURN
CODES

Value
Code Returned

is.sue +1

IE.UPN -01

IE.INS -02

IE.PTS -03

IE.HWR -06

IE.ACT -07

IE.ITS -08

IE.PAI -16

Exp la nation

Successful completion

Insufficient pool nodes available to requester

Task not installed

Partition too small for task

Handler task not resident to load task

Task is already active

Task is disabled

Directive privile~Je violation

IE.IUI -91 Invalid UIC. ExEtcutive privilege is required to request a task to run under a
changed UIC.

IE.PNS -94

IE.IPR -95

IE.ADP -98

IE.SOP -99

Partition not in system

Invalid priority specified (<0 or > 250)

Part of DPB is out of issuing task's address space

DIC or DPB sizo invalid

4-105

RZST$

MACRO
EXPANSION

4-106

RQST$ ALPHA, ,,20,10
.BYTE 11.,7 ;RQST$ MACRO DIC, DPB SIZE=? WORDS
.RADSO /ALPHA/ ;TASK 'ALPHA'
.WORD 0,0 ;DEFAULT PARTITION
.WORD 0 ;DEFAULT PRIORITY
.BYTE 10,20 ;UIC (20,10] UNDER WHICH TO RUN TASK

FORTRAN
CALL

CALL REQUES (tsk, [iop] [,ids])

where:

• tsk - is a 2-word, 1- to 6- character task name in Radix-50 form.

• iop - is a 6-word integer array containing optional parameters

where:

iop(l) - Radix-50 partition name (1st half)

iop(2) - Radix-50 partition name (2nd half)

iop(3) - Run priority

iop(4) - UIC (User Identification Code)

RZST$

NOTE: The iop arguments (1), (2), (3) and (4) default to zero when none is
specified.

• ids - is an integer variable to receive the Directive Status Word (DSW).

4-107

RAEF$

RREF$

The RECEIVE BY REFERENCE directive causes the Executive to dequeue the next reference in the
receive-by-reference queue of the issuing (receiver) task. Optionally, the task will exit, suspend or stop
If there are no references In the queue. The directive can also specify that the Executive proceed to
map the region referred.

The detailed action, if there are no references to receive, is as follows:

WS. RSX set - task will exit.

WS.RSX clear, WS.RSU set - task will be suspended. When it is resumed, the status will be
IS.SPD. No reference will have been received.

WS.RSX, WS.RSU clear - task will be stopped. When it is resumed, the WS.RST set status will be
IS.SPD. No reference will have been received.

WS .. RSX, WS.RSU, WS.RST all clear - task will receive an error status of IE.ITS.

If the directive is successful and the sending task specified an event flag to be set upon receipt of a
reference, an event is declared.

If the Executive finds a reference, it writes the information provided to the corresponding words In the
window definition block. This information provides sufficient information to map the reference, according
to the sender task's specifications, with a previously created address window.

If the address of a 10-word receive buffer has been specified (W. NSRB in the window definition block),
then the sender task name and the eight additional words (specified by the sender task) are placed in
the specified buffer. If the sender task did not pass any additional Information, the Executive writes in
the sender task name and eight words of zero.

If the WS.MAP bit in the window status word has been set, the Executive attempts to map the reference
as though a MAP ADDRESS WINDOW (MAP$) directive had been issued.

When a task that has unreceived references in its receive-by-reference queue exits or Is removed, the
Executive removes the references from the queue and deallocates them. Any related event flags are
not set.

When a reference is received, the corresponding region Is attached to the receiving task. Therefore, an
Attachment Descriptor Block (ADB) is required in the task header, in the same way as for an ATTACH
REGION (ATRG$) directive.

If the issuing task is multiuser, references will only be received if the n specified in the corresponding
SEND BY REFERENCE (SREF$) directive is equal to that for which it is running. If no Tl was specified,
the sending task must have been running with the same Tl.

An additional 8-word buffer can be specified in the directive. The first word of this buffer will be filled
with the Tl of the sending task or the Tl used in the SREF$ directive which sent this reference if this
parameter was used. Such information can be used to return a reference or data to the sending task,
by specifying it in a SREF$ or SEND DATA (VSDA$/SDAT$) directive. This information is only useful if
the issuing task is not multiuser.

4-108

RREF$

MACRO CALL

RREF$ wdb[,tibuf]

where:

• wdb - is the window definition block address

• tibuf - is the address of an 8-word buffer. The first word is filled with the terminal
identification of the sending task. The remaining 7 words are reserved for future use.

WINDOW
DEFINITION
BLOCK
PARAMETERS

Input Parameters

Array
Element

iwdb(1)
bits 0-7

iwdb(7)

iwdb(8)

Offset

W.NID

W.NSTS

W.NSRB

Output Parameters

Array
Element

iwdb(4)

iwdb(5)

iwdb(6)

iwdb(7)

Offset

W.NRID

W.NOFF

W.NLEN

W.NSTS

ID of an existing window if region is to be mapped

Bit settings in the window status word:

WS.MAP - 1 if received reference is to be mapped

WS.RCX - 1 if task exit desired If no reference is found in the queue

WS.RSU - 1 if task is to be suspended if no reference is found in the queue

WS.RST - 1 if task is to be stopped if no reference is found in the queue.

Optional address of a 10-word buffer, to contain the sender task name and
additional information.

Region ID (pointer to attachment description)

Offset word spe1cified by sender task

Length word specified by sender task

Bit settings in the window status word:

WS.RED - 1 if attached with read access

WS.WRT - 1 if attached with write access

WS.EXT - 1 if attached with extend access

WS.DEL - 1 if attached with delete access

4-109

RAEF$

Output Parameters

Array
Element

4-110

Offset

WS.RRF - 1 if receive was successful

WS.UNM - 1 if a region has to be unmapped before the region referred to by the
RAEF$ directive can be mapped. The Executive clears the remaining bits.

LOCAL
SYMBOL
DEFINITIONS

RREF$

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• R.REBA - (Length 2 bytes) Window definition block address

DSWRETURN
CODES

Value
Code Returned

is.sue +01

IS.SPD +02

IE.ITS -08

IE.ALG -84

IE.WOY -85

IE.NVW -87

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

RREF$
.BYTE
.WORD
.WORD

Exp la nation

Successful completion.

No reference was received and task was suspended or stopped as indicated by
WS.RSU or WS.RST.

No reference found in the receive-by-reference queue

Task specified an invalid region offset and length combination In the window
definition block parameters; or WS.648 -o and the value of W.NOFF Is not a
multiple of 8.

No attachment descriptors available in task header.

Invalid address window ID.

Invalid DPB, WDB, or receive buffer (W.NSRB) address.

DIC or DPB size is invalid

WDBADR
81.' 3
WDBADR
TIBUF

;RREF$ MACRO DIC, DPB SIZE=2 WORDS
;WDB ADDRESS

4-111

RREIF$

FORTRAN
CALL

where:

CALL RREF (iwdb, [isrb], [itibuf] [,ids])

• iwdb - is an 8-word integer array containing a window definition block

• isrb - is a 10-word integer array to be used as the receive buffer. If the call omits this
parameter, the contents of iwdb(8) are unchanged.

• itibuf - is an 8-word integer array. The first word is filled with the terminal identification
of the sending task. The remaining 7 words are reserved for future use.

• ids - is an integer variable to receive the Directive Status Word.

4-112

RSUM$

RSUM$

The RESUME directive instructs the system to resume the execution of a task that has been suspended
as a result of issuing a SUSPEND (SPND$), RECEIVE DATA OR SUSPEND (VRCS$/RCVS$), or
RECEIVE BY REFERENCE (RAEF$) directive. If the task being resumed is a multiuser task, it Is
resumed only if its Tl matches that of the task issuing the resume directive.

It Is possible for a task to RESUME itself using the asynchronous trap feature. That Is, the AST service
routine can issue a RESUME directive specifying its own taskname.

MACRO CALL

RSUM$ tsk

where:

• tsk - is the task name

LOCAL
SYMBOL
DEFINITIONS

The following symbol is defined locally with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• R.SUTN - (Length 4 bytes) Task name in Radix-50

DSW RETURN
CODES

Value
Code Returned

is.sue +1

IE.INS -02

IE.ACT -07

IE.ITS -08

IE.PAI -16

IE.ADP -98

IE.SOP -99

Explanation

Successful completion

Task not installed

Task not active

Task not suspended

Directive privilege violation

Part of DPB is out of issuing task's address space

DIC or DPB siz.e is invalid

4-113

RSUM$

MACRO
EXPANSION

FORTRAN
CAL.L

RSUM$ ALPHA
.BYTE 47., 3
.RADSO /ALPHA/

;RSUM$ MACRO DIC, DPB SIZE=3 WORDS
;TASK 'ALPHA'

CALL RESUME (tsk[,ids])

where:

• tsk - is a 2-word, 1- to 6- character task name in Radix-50 form.

• ids - is an integer variable to receive the Directive Status Word.

4-114

RSUS$

RSUS$

The RESUME OR UNSTOP directive instiruGts the system to continue the execution of a task that has
issued a SUSPEND (SPND$), STOP (STOP$), RECEIVE DATA OR SUSPEND (VRCS$/RCVS$), or
RECEIVE DATA OR STOP (VRCT$/RCST$), or RECEIVE BY REFERENCE (RREF$) directive. If the
task being resumed or unstopped is a multiuser task, it is continued only if its Tl matches that of the
task Issuing the resume or unstop directive.

It Is possible for a task to RESUME OR UNSTOP itself using the asynchronous trap feature. That Is,
the AST service routine can issue a RESUME OR UNSTOP directive specifying its own taskname.

MACRO CALL

RSUS$ tsk

where:

• tsk - is the task name

LOCAL
SYMBOL
DEFINITIONS

The fo11owing symbol is defined locally with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• R.SUTN - Length 4 bytes) Task name in Radix-50

DSW RETURN
CODES

Value
Code Returned

ts.sue +1

IE.INS -02

IE.ACT -07

IE.ITS -08

IE.PAI -16

IE.ADP -98

Explanation

Successful completion

Task not installed

Task not activ1e

Task not suspended

Directive privilege violation

Part of DPB is out of issuing task's address space

4-115

RSUS$

Code
Value
Returned Exp la nation

IE.SOP -99 DIC or DPB size Is Invalid

MACRO
EXPANSION

FORTRAN
CALL

RSUS$ ALPHA
.BYTE 171., 3
.RAD SO /ALPHA/

CALL RESORU (tsk[,ids])

where:

;RSUS$ MACRO DIC, DPB SIZE•3 WORDS
; TASK 'ALPHA'

• tsk - is a 2-word, 1- to 6-character task name in Radix-50 form.

• iids - is an integer variable to receive the Directive Status Word.

4-116

RUN$

RUN$

The RUN directive causes a task to be requested at a specified future time, and optionally repeated
periodically. The schedule time is specified in terms of time after issuance.

A real-time task will be loaded into a partition if it is of sufficiently high priority and there is sufficient
memory available. If the task cannot be loaded it is queued in a list of tasks waiting for memory and will
run when memory becomes free. When e1 task requests memory space, checkpolnting can occur. If a
checkpointable task of lower priority than the requesting task is currently resident, It will be checkpolnted
onto a checkpoint file and the requesting task will be loaded. Also, timesharing tasks of lower priority
(as is normally the case) will be swapped out of memory. See the /AS Executive Facilities Reference
Manual for details of checkpointing.

Successful completion means the task has been queued, not that it is actually running or that It will run
when the specified time becomes due.

If you do not want optional rescheduling of the task, then you must omit the macro arguments rmg and
rmt (see below).

This directive can specify a partition namE~ to override the task's default partition, a priority to override
the task's default execution priority and, if the issuing task is executive privileged, a UIC to override
the task's default execution UIC. To specify a UIC other than that under which the requested task was
Installed, a task must have executive privilege.

The terminal identification (Tl) of the requested task is always the same as the Tl of the task issuing
the REQUEST directive.

This directive requires two nodes from the system node pool. These nodes are charged to the
issuing task and are returned when the request comes due, if a reschedule interval was not specified.
Otherwise, the nodes are returned when the periodic rescheduling request Is cancelled, by a CANCEL
SCHEDULED REQUESTS (CSRQ$) directive or by the CANCEL command. In addition, either three or
four nodes are required each time the taslk is requested.

MACRO CALL

RUN$ tsk, [prt], [pri], [ugc, umc], smg, snt [, rmg, rnt]

where:

• tsk - is the task name

• prt - is the partition name

• pri - is the priority

• ugc - is the UIC group code

• umc - is the UIC member code

• smg - is the time interval magnitude before the task is scheduled, in the units specified as
snt (below)

4-117

RUN$

• :mt - is the time unit used for smg (above)

1 = clock ticks

2 =seconds

3 =minutes

4 =hours

• ·rmg - is the reschedule interval magnitude

• rnt - is the reschedule interval unit

LOCAL
SYMBOL
DEFINITIONS

The following symbols are locally defined with their assigned values equal to the byte offset from
the start of the DPB to the respective DPB elements:

• RU.NTN - (Length 4 bytes) Task name in Radix-50

0 R.UNPN - (4) Partition name in Radix-50

• R.UNPR - (2) Priority

• R.UNGC - (1) UIC group

• R.UNPC - (1) UIC member

• R. UNSM - (2) Schedule magnitude

0 R.UNSU - (2) Schedule unit

• R.UNRM - (2) Reschedule magnitude

0 R.UNRU - (2) Reschedule unit

DSWRETURN
CODES

Value
Code Returned

is.sue +1

IE.UPN -01

IE.INS -02

IE.PTS -03

IE.PAI -16

IE.IUI -91

IE.ITI -93

4-118

Explanation

Successful completion

Insufficient pool nodes available to requester

Task not installed

Partition too small for task

Directive privilege violation

Invalid UIC. Executive privilege is required to run a task under a changed UIC.

Invalid time parameter specified

Value
Code Returned Exp la nation

IE.PNS -94 Partition not in system

IE.IPR -95 Invalid priority specified (<0 or >250)

IE.ADP -98 Part of DPB is out of issuing task's address space

IE.SOP -99 DIC or DPB size is invalid

MACRO
EXPANSION

RUN$
.BYTE
.RAD SO
.WORD
.WORD
.BYTE
.WORD
.WORD
.WORD

ALPHA,,,20,10,20.,3,10.,3
17.,11. ;RUN$ MACRO DIC,DPB SIZE=ll. WORDS
/ALPHA/ ;TASK 'ALPHA'
O,O ;DEFAULT PARTITION
0 ;DEFAULT PRIORITY
10,20 ;UIC [20,10) TO RUN TASK UNDER
20. ;SCHEDULE MAGNITUDE=20
3 ;SCH TIME UNIT=MINUTE(=3)
10. ;RESCH. INTERVAL MAGNITUDE=lO

.WORD 3 ;RESCH. INTERVAL UNIT=MINUTE (=3)

FORTRAN
CALL

CALL RUN (tsk, [iop], [isd], isu, [iri], [iru] [,ids])

where:

• tsk - is a 2-word, 1- to 6- character task name in Radix-50 form.

• iop - is a 6-word integer array containing optional parameters

where:

iop(l) - Radix-50 partition name (1st half)

iop(2) - Radix-50 partition name (2nd half)

iop(3) - run priority

iop(4) - UIC (User Identification Code)

RUN$

NOTE: The iop arguments (1), (2), (3) and (4) default to zero when none is
specified.

• isd - is a schedule delta magnitude.

• isu - is a schedule delta unit (1-4).

• iri - is a reschedule interval.

• iru - is a reschedule unit (1-4).

4-119

RUN$

• ids - is an integer variable to receive the Directive Status Word.

The ISA standard call for initiating a task (CALL START) is also provided.

1'he CALL START call causes the execution of a designated task after a specified time de1ay. The
actual time delay available is subject to the resolution of the real-time clock. Execution of the
designated program will start at its first executable statement.

CALL START (tsk,isd,isu,ids)

where:

• tsk - is a 2-word integer array or a Real variable that specifies the program to be executed
(in Rad.ix-50 representation).

• isd - specifies the length of the time delay, in units as specified by isu, before program
·~xecution. If the value is zero or negative, the requested program will run as soon as
permissible.

• isu - specifies units of time as follows:

0 - Basic counts of the system's clock

1 - Milliseconds (converted to basic counts of the system clock).

2 - Seconds

3 - Minutes

• ids - is an integer set on return to the calling program to indicate the disposition of the
irequest as follows:

1 - Request accepted

2 or greater - Request not accepted

The START call is implemented by using the RUN Directive. An error indication means that the
directive was rejected. Subtract one from the status variable and negate to obtain the standard
IAS error code.

4-120

SCHD$

SCHD$

The SCHEDULE directive causes a task to be requested at a specified future time, and optionally,
repeated periodically. You specify the schedule time in terms of absolute time-of-day. The SCHEDULE,
RUN, and SYNC directives are similar in effect, differing only In the form in which the schedule data is
presented. Refer to the RUN (RUN$) directive for further information.

You specify the time at which the task is to be run in the form hours, minutes, seconds, ticks.

MACRO CALL

SCHD$ tsk, [prt], [pri], [ugc,umc],hrs,min,sec,tck, [mag] [,rnt]

where:

• tsk - is the task name

• prt - is the partition name

• pri - is the priority

• ugc - is a UI C group code

• umc - is a UIC member code

• hrs - is the schedule hours

• min - is the schedule minutes

• sec - is the schedule seconds

• tck - is the schedule clock ticks

• mag - is the reschedule interval magnitude (how many of the units defined by mt)

• rnt - is the reschedule interval unit (1 = clock ticks; 2 = seconds; 3 = minutes; 4 = hours)

LOCAL
SYMBOL
DEFINITIONS

The following symbols are locally defined with their assigned values equal to the byte offset from
the start of the DPB to the respective DPB elements:

• S.CHTN - (Length 4 bytes) Task name in Radix-50

• S.CHPN - (4) Partition name in Radix-50

• S.CHPR - (2) Priority

• S.CHGC - (1) UIC group

• S.CHPC - (1) UIC member

4-121

SCHD:$

• S.CHHR - (2) Hours

• S.CHMI - (2) Minutes

• S.CHSC - (2) Seconds

• S.CHCT - (2) Clock ticks

• S.CHRM - (2) Reschedule magnitude

• S.CHRU - (2) Reschedule unit

DSWRETURN
CODES

Value
Code Returned Exp la nation

is.sue +1

IE.UPN -01

IE.INS -02

IE.PTS -03

IE.Pm -16

IE.IUI -91

IE.ITI -93

IE.PNS -94

IE.IPF\ -95

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

4-122

Successful completion

Insufficient pool nodes available to requester

Task not installed

Partition too small for task

Directive privilege violation

Invalid UIC

Invalid time parameter specified

Partition not in system

Invalid priority specified (<0 or >250)

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

SCHD$ POOL,CORE,200,300,40,10.,30.,00,00,5,3
.BYTE 15.,13. ;SCHD$ MACRO DIC, DPB SIZE=13. WORDS
.RADSO /POOL/ ;TASK 'POOL'
.RADSO /CORE/ ;PARTITION 'CORE'
.WORD 200 ;PRIORITY = 200
.BYTE 40,300 ;UIC [300,40) TO RUN TASK UNDER
.WORD 10. ;SCHEDULE TIME HOURS=lO
.WORD 30. ;SCHEDULE TIME MINUTES=30
.WORD 00 ;SCHEDULE TIME SECONDS=O
.WORD 00
.WORD 5
.WORD 3

;SCHEDULE TIME TICKS=O
;RESCHEDULE INTERVAL MAGNITUDE=S
;RESCHEDULE INTERVAL UNIT=MINUTE(=3)
;SCHEDULED TO RUN AT 10:30:00:00
;THEN EVERY 5 MINUTES

FORTRAN
CALL

CALL SCHE,:D (tsk, [iop] r ih, im, is, it, [iri], [iru] [,ids])

where:

• tsk - is a 2-word, 1- to 6- character task name in Radix-50 form

• iop - is a 6-word integer array containing optional parameters

where:

iop(l) - Radix-50 partition name (1st half)

iop(2) - Radix-50 partition name (2nd half)

iop(3) - Run priority

iop(4) - UIC (User Identification Code)

SCHD$

NOTE: The iop arguments (1), (2), (3) and (4) default to zero when none is
specified.

• ih - schedule hours

• im - schedule minutes

• is - schedule seconds

• it - schedule ticks

• iri - rescheduling interval

• iru - reschedule unit (1-4)

• ids - integer variable to receive the Directive Status Word

The ISA standard call for initiating a task is also provided:

The TRNON call causes a designated task to be executed at a specific time of day. Execution of the
designated task will start at its first executable statement. The form of the call is:

CALL TRNON (tsk,tim,ids)

where:

• tsk - is a 2-word integer array or a real variable that specifies the program to be executed
(in Radix-50)

• tim - designates a 1-dimensiona] integer array of length three; the array contains the
absolute time at which the program is to be executed. The elements of the array are as
follows:

tim (1) - Hours (using a 24-hour clock)

tim (2) - Minutes

tim (3) - Seconds

4-123

SCHD$

1
• ids - is an integer set on return to the caJling program to indicate the disposition of the

request as follows:

1 = request accepted

2 or greater= request not accepted.

The subroutine issues a SCHEDULE directive by building the appropriate Directive Parameter
Block (DPB) on the stack. An error indication means that the directive was rejected. Subtract one
from the status variable and negate to obtain the standard IAS error code.

4-124

SETF$

SETF$

The SET EVENT FLAG directive sets an indicated event flag and reports the flag's polarity, In the DSW,
as It was before setting. Setting an event nag does not cause a significant event to occur, It merely
sets the specified flag. To set global event flags a task must have real-time directive privilege. Event
flags 25 to 32 and 57 to 64 are conventionally reserved for use by IAS and should not be expllcltly
manipulated by the user.

MACRO CALL

SETF$ efn

where:

• efn - is an event flag number

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• S.ETEF - (Length 2 bytes) Event flag number

DSW RETURN
CODES

Value
Code Returned

IS.CLR +O

IS.SET +2

IE.PAI -16

IE.IEF -97

IE.ADP -98

IE.SOP -99

Explanation

Flag was clear

Flag was already set

Privileged function (global flag cannot be set by a task that does not have real-time
directive privilege).

Invalid event flag number (event flag number <:1 or >64)

Part of DPB is out of issuing task's address space

DIC or DPB si2'.e is invalid

4-125

SETF$

MACRO
EXPANSION

FORTRAN
CALL

SETF$ 1
.BYTE 33., 2
.WORD 1

SETF$ MACRO DIC, DPB SIZE 2 WORDS
EVENT FLAG NUMBER 1

CALL SETEF (iefn[,ids])

where:

1• iefn - is an integer containing an event flag number.

• ids - is an integer variable to receive the Directive Status Word.

4-126

SFPA$

SFPA$

The SPECIFY FLOATING POINT EXCEPTION AST directive instructs the system to record one of the
following two items:

1 That floating point exception ASTs for the issuing task are desired and where control is to be
transferred when a floating point exception AST occurs.

2 That floating point exception ASTs for the issuing task are no longer desired.

When the directive is issued with an AST service routine entry point specified, the Issuing task will be
notified of future floating point exceptions via an AST at the specified location. See the IAS Executive
Facilities Reference Manual for further details of ASTs.

When the directive is issued without an AST service routine entry point, the Issuing task will not be
notified of any future floating point exceptions until the directive is issued again with an AST service
routine entry point specified.

Floating point exception ASTs are queued when a floating point exception trap occurs. No further
floating point exception ASTs will be queue~d for the task until the first one queued has actually been
effected.

The floating point exception AST service routine is entered with the task stack in the following state:

SP+20 Event flag mask word for flags 1-16

SP+16 Event flag mask word for flags 17-32

SP+ 14 Event flag mask word for flags 33-48

SP+ 12 Event flag mask word for flags 49-64

SP+ 10 PS of task prior to AST

SP+06 PC of task prior to AST

SP+04 DSW of task prior to AST

SP+02 Floating exception code

SP+OO Floating exception address

The floating exception code and address must be removed from the task's stack before an AST
SERVICE EXIT directive is executed.

This directive cannot be issued when AST recognition is inhibited or from an AST service routine.

The directive requires nodes from the system node pool, which are charged to the issuing task. If
the directive is used to specify a floating point exception AST where none currently exists, two nodes
are required. These are returned when the task cancels its floating point exception AST by using a
SPECIFY FLOATING POINT EXCEPTION AST (SFPA$) directive with a parameter of zero. Should the
directive be used to change an existing floating point exception AST entry point, no additional nodes
are needed.

4-127

SFPA$

.... 1

MACRO CALL

SFPA$ [ast]

where:

• ast - is an AST service routine entry address, or zero if notification of floating point
exception ASTs is no longer desired.

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• S.FPAE - (Length 2 bytes) AST service routine entry address

DSWRETURN
COIDES

Code

is.sue
IE.UPN

IE.ITS

IE.AST

IE.ADP

IE.SOP

Value
Returned

+1

-01

-08

-80

-98

-99

Explanation

Successful completion

Unavailable pool node

AST entry is already null

Directive issued during AST service or while AST recognition is nnhibited

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

MACRO CALL

4-128

SFPA$ FLTAST
.BYTE 111. I 2
.WORD FLTAST

;SFPA$ MACRO DIC,DPB SIZE=2 WORDS
;ADDRESS OF FLOATING POINT AST

FORTRAN
CALL

SFPA$

Neither the FORTRAN IV language nor t.he ISA standard permits direct linking to system trapping
mechanisms. Therefore, this directive is not available to FORTRAN tasks.

4-129

SPND$

SPND$

The SUSPEND directive suspends the execution of the issuing task. A task can suspend only itself and
not another task. A suspended task:

1 Remains on the Active Task List (ATL) but with a task status of "suspended".

2 Retains control of the system resources allocated to that task. No attempt is made to free the
rnsources. ·

3 Can receive notification of events via the AST mechanism. In particular it can resume execution
following a RESUME (RSUM$) directive issued from an AST service routine.

4 May resume execution following the PDS CONTINUE/REALTIME or MCA RESUME command.
See the appropriate User's Guide for further details.

A suspended real-time task can be checkpointed if it was built checkpolntable and has not disabled
checkpointing. However, it is no more eligible for checkpolnting than any other task of the same priority.
In particular, It will never be checkpotnted to make space for a task of lower priority. The description
of the STOP (STOP$) directive explains how a task can suspend execution and temporarily release its
memory.

If a timesharing task issues a SUSPEND (SPND$) directive, its owner will be informed. For example, a
task running under the control of PDS in a timesharing IAS system will result in a "TASK SUSPENDED"
message and PDS will prompt for command input.

If the SUSPEND directive succeeds, it returns a directive status of IS.SPD, not IS.SUC.

MACRO CALL

SPND$

DSW RETURN
CODES

Value
Code Returned

IS.SPD +2

IE.ADP -98

IE.SOP -99

4-130

Exp la nation

Task successfully suspended

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

MACRO
EXPANSION

FORTRAN
CALL

SPND$
.BYTE 45.,1

CALL SUSPND

SPND$

;SPND$ MACRO DIC, DPB SIZE=l WORD

4-131

SPRA$

SPRA$

The SPECIFY POWER RECOVERY AST directive instructs the system to record either of the following:

1 That power recovery ASTs for the issuing task are desired, and where control ls to be transferred
when a power recovery AST occurs.

2 That power recovery ASTs for the issuing task are no longer desired.

When the directive is issued with an AST entry point specified, the Issuing task will be notified of any
future power recovery by means of an AST to the specified location. See the /AS Executive Facilities
Reference Manual for a detailed description of ASTs.

When the directive is Issued without an AST service routine entry point, the issuing task will not be
notified of any future power recovery until the directive is issued again with an AST service routine entry
point specified.

Power recovery ASTs are queued when the power-up interrupt occurs following a power failure.
Subsequent occurrences of powerfail will be ignored (no AST will occur) until the first AST has been
effected.

The power recovery AST service routine is entered with the task stack in the following state:

SP+ 14 Event flag mask word for flags 1-16

SP+12 Event flag mask word for flags 17-32

SP+ 10 Event flag mask word for flags 33-48

SP+06 Event flag mask word for flags 49-64

SP+04 PS of task prior to AST

SP+02 PC of task prior to AST

SP+OO DSW of task prior to AST

No trap-dependent parameters accompany a powerfail AST, and thus the AST SERVICE EXIT (ASTX$)
directive must be executed with the stack in the same state as when the AST was effected.

If a power recovery AST entry point is specified and the power fails while the task is not resident in
memory, the AST is not effected or queued. A checkpointable task should disable checkpointing over
critical regions where power recovery ASTs are essential.

This directive requires nodes from the system node pool which are charged to the issuing task. If the
directive is used to specify a power recovery AST where none currently exists, two nodes are needed.
These are returned when the task cancels its power recovery AST by using a SPECIFY POWER
RECOVERY AST (SPRA$) directive with a parameter of zero. Should the directive be used to change
an existing power recovery AST entry point, no additional nodes are needed.

An error is returned if the directive is issued when AST recognition is inhibited or from an AST service
routine.

4-1:-12

SPRA$

MACRO CALL

SPRA$ [ast]

where:

• ast - is an AST service routine entry address or zero if no longer desired.

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• S.PRAE - (Length 2 bytes) AST service routine entry address

DSW RETURN
CODES

Value
Code Returned

is.sue +1

IE.UPN -01

IE.ITS -08

IE.AST -80

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

Exp la nation

Successful completion

Unavailable pool node

AST entry is already null

Directive issued during AST service or while AST recognition is inhibited

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

SPRA$ PWRAST
.BYTE 109.,2
.WORD PWRAST

;SPRA$ MACRO DIC,DPB SIZE=2 WORDS
;ADDRESS OF POWER RECOVERY AST

4-133

SPRA$

FORTRAN
CALL

Task~resident subroutine PWRUP to call another subroutine upon recovery from a power failure.

where:

EXTERNAL subnam
CALL PWRUP (subnam)

• subnam - is the name of a subroutine to be executed upon power recovery. The PWRUP
subroutine will effect a CALL SUBNAM (no arguments). SUBNAM is called as a result of
a power recovery AST and therefore may be controlled at critical points by using INHIBIT
·and ENABLE AST recognition Directives.

Subroutine call of PWRUP to remove a power fail AST:

CALL PWRUP

4-134

SPWN$

SPWN$

The SPAWN directive requests the specified task for execution, optionally establishing exit events and
queueing a command line. The effect of this directive is similar to the REQUEST (ROST$) directive,
but has the following exceptions:

1 The issuing task can request notification of the termination of the spawned task (via an event flag
or an AST).

2 The Issuing task may determine the exit status of the spawned task via an exit status block.

3 A command line may be passed to the spawned task for subsequent retrieval by means of the GET
MCA COMMAND LINE (GMCR$) directive, or the FCS Macro GCML$.

If an event flag is specified it will be cleared when the directive Is Issued and set when the spawned
task exits or terminates for any reason.

If an AST address is specified an AST will be queued for the specified service routine when the
spawned task exits. One additional word is placed on the stack: the address of the exit status block.
The state of the stack on entry to the AST service routine is as follows:

SP+ 16 Event flag mask word for flags 1-16

• SP+14 Event flag mask word for flags 17-32

SP+ 12 Event flag mask word for flags 33-48

SP+ 10 Event flag mask word for flags 49-64

SP+06 PS of task prior to AST

• SP+04 PC of task prior to AST

SP+02 DSW of task prior to AST

SP+OO Address of exit status block (zero if none specified)

Thus, one word must be removed from the stack before the AST SERVICE EXIT (ASTX$) directive Is
issued.

If an Exit Status Block (ESB) is specified, its first word will be cleared when the directive is Issued and
set to the exit status of the spawned task when the latter exits. The exit status Is determined as follows:

1 If the task exits by means of the EXIT WITH STATUS INFORMATION (EXST$) directive, the exit
status is the argument supplied to this directive.

2 If the task exits using the EXIT (EXIT$]1 or EXITIF (EXIF$) directive, a success status (EX$SUC) is
returned.

3 If the task is aborted or terminates bec:ause of any fault condition (for example, segment fault,
memory parity error), a severe error status (EX$SEV) is returned .

. If you specify a command line, it must not exceed 79 characters in length (it may have a length of zero
characters). The address of the command line specified in the directive must be an even address (that
is, the command line must start on a word boundary). The command line must contain only ASCII
characters in the range 40 to 176 (octal). The line will be passed as specified to the spawned task
(when the latter issues a GET MCA COMMAND LINE directive), except that a termination carriage
return (octal code 015) will be appended to the line. The character count returned to the GET MCA

4-135

SPWN$

COMMAND LINE directive will be equal to that specified in the SPAWN directive and will not include a
carria~Je return.

For standard system tasks (for example, MACRO, TKB) the command line should be pirefixed by the
task name and a space, in the same format as an MCA command line.

If the exit status block is invalid (that is, its address is odd or cannot be written to), the SPAWN directive
will fail with a status of IE.ADP. However, a task can issue a SPAWN directive with a valid exit status
block address and then use the memory management directives to make that address Invalid. In this
case, when the spawned task exits, the requesting task will be aborted by the Executive, with an error
message "INVALID STATUS BLOCK".

The Issuing task can exit before the spawned task exits. In this case, the spawned task will continue
to run but no notification will occur when it exits. In particular, if a global event flag was specified In the
SPAWN directive, the flag will not be set.

The SPAWN directive allows the specification of:

1 A partition in which the task is to run, other than that in which it was installed

2 A priority at which the task is to run, other than that at which it was installed

3 A UIC under which the task is to run, other than that under which it was installed. To do this, the
issuing task must have executive privilege.

If the issuing task is non-privileged, this directive can specify a UIC under which the task is to run,
provided that the UIC is:

1 The IUIC of the spawning task, or

2 The logged-in U IC for the terminal.

A real-time task will be loaded into a partition if it is of sufficiently high priority and there is sufficient
memory available. If the task cannot be loaded it is queued in a list of tasks waiting for memory and will
run when memory becomes free. When a task requests memory space, checkpolntlng can occur. If a
checkpolntable task of lower priority than the requesting task Is currently resident, It will be checkpolnted
onto a checkpoint file and the requesting task will be loaded. Additionally, timesharing tasks of lower
priority (the normal case) will be swapped out of memory. See the /AS Executive Facilities Reference
Manual for further details of checkpointing.

You can Issue a SPAWN directive without specifying an event flag, AST, exit status block, or command
line. In this case it is equivalent to a REQUEST (ROST$) directive. If a spawned task issues a SPAWN
directive of this form, its requestor will not be notified when it exits. Instead, its requestor will be notified
when the task spawned by this directive exits. Hence, this provides a chaining mechanism for spawned
tasks such that the original requestor is notified only when the last task of the chain exits.

Before using the SPAWN directive in this way, a task must issue a GET MCA COMMAND LINE
(GMCR$) directive to clear its command line.

The SPAWN directive requires up to 10 nodes from the system node pool, depending on the arguments
specified in the macro call and upon the task being successfully spawned. These nodes are charged to
the issuing task.

4-136

SPWN$

MACRO CALL

where:

SPWN$ tsk, [prt], [pri], [ugc,umc], [efn],
[east], [esb], [cmdlin], [cmdlen] [,vtun]

• tsk - is the name of task to be spawned

• prt - is the partition name

• pri - is the priority

• ugc - is the group code number for the UIC of the spawned task.

• umc - is the member code number for the UIC of the spawned task.

• efn - is the event flag number to be cleared on issuance and set upon the termination of the
spawned task.

• east - is the address of an AST routine to be entered when the spawned task exits

• esb - is the address of an eight-word exit status block to be written upon spawned task
exit:

WD.00 - offspring task exit status

WD.01 to WD.07 - reserved

• cmdlin - is the address of a command line to be queued for the spawned task. The address
must be even (that is, aligned on a word boundary).

• cmdlen - is the length of the command line. The maximum length is 79 characters.

• vtun - reserved.

LOCAL
SYMBOL
DEFINITIONS

The following symbols are locally defined with their assigned values equal to the byte offsets from
the start of the DPB to the respective DPB elements: .

• S.PWTN - (Length 4 bytes) Task name in Radix-50

• S.PWPN - (4) Partition name

• S.PWPR - (2) Priority

• S.PWPC - (1) UIC member code

• S.PWGC - (1) UIC group code

• S.PWEF - (2) Event flag number

• S.PWEA - (2) Address of AST routine

• S.PWES - (2) Address of exit status block

4-137

SPWN$

• S.PWCA - (2) Address of command line

• S.PWCL - (2) Length of command line

• S.PWVT - (2) Reserved

DSWRETURN
CODES

Value
Code Returned

is.sue +1

IE.UPN 01

IE.INS -02

IE.PTS -03

IE.HWA -06

IE.ACT -07

IE.ITS -08

IE.PAI -16

IE.IUI -91

IE.PNS -94

IE.IPR -95

IE.IEF -97

IE.ADP -98

IE.SOP -99

4-138

Exp la nation

Successful completion

Unavailable pool node.

Task not installed.

Partition too small for task.

Handler task not resident to load task.

The specified task was already active

Task is disabled.

Directive privilege violation.

Invalid UIC. Executive privilege is required to spawn a task to run under a changed
UIC.

Partition not in system

Invalid priority specified (<0 or >250).

An invalid event flag number was specified.

Either:

1 Part of the DPB is out of the issuing task's address space.
2 The Exit Status Block has an odd address or cannot be written to.

3 The command line buffer has an odd address or cannot be accessed.

DIC or DPB size is invalid.

SPWN$

MACRO
EXPANSION

FORTRAN
CALL

where:

SPWN$ TSKNAM,PRTNAM,PRI,UGC,UMC,EFN,EAST,ESB,CMDLIN,CMDLEN,VTUN
.BYTE 11.,13. ;SPWN$ MACRO DIC,DPB SIZE=13 WORDS
.RADSO /TSKNAM/ ;TASK 'TSKNAM'
.RAD50 /PRTNAM/ ;PARTITION 'PRTNAM'
.WORD PRI ;PRIORITY
.BYTE UMC,UGC
.WORD EFN
.WORD EAST
.WORD ESB
.WORD CMDLIN
.WORD CMDLEN
.WORD VTUN

;UIC CODES
;EVENT FLAG NUMBER
;ADDRESS OF AST ON SPAWN EXIT
;EXIT STATUS BLOCK ADDRESS
;COMMAND LINE ADDRESS
;COMMAND LINE LENGTH
;RESERVED

CALL SPAWN (tsk, [iop], [iefn], [iesb], [icmd], [icmdl], [ivtun] [,ids])

• tsk - is a 2-word, 1- to 6- character task name in Radix-50 form.

• iop - is a 6-word integer array containing optional parameters

where:

iop(1) - Radix-50 partition name (first halO

iop(2) - Radix-50 partition name (second half)

iop(3) - run priority

iop(4) - UIC (User Identification Code)

NOTE: The iop arguments (1), (2), (3) and (4) default to zero when none is
specified.

• iefn - is an integer array event flag.

• iesb - is an 8-element integer for the exit status block.

• icmd - is a byte or integer array for the command line.

• icmdl - is an integer length for the command line.

• ivtun - reserved

• ids - is an integer variable to receive the Directive Status Word.

4-139

SRDA$

SRDA$

The SPECIFY RECEIVE DATA AST directive allows the specification of an AST service routine which
will be executed when any data is sent to the issuing task by another task.

Subsequently, a receive AST occurs at the specified address when any task Issues a SEND DATA
(VSDA$/SDAT$) or SEND BY REFERENCE (SREF$) directive which results In data being sent to the
receiving task. Only one receive AST is ever queued at a time; thus, If a delay occurs before the AST
Is effected, further sends to the task can occur without an AST being queued. This means that a task
which waits for data being sent and then processes the data when a receive AST occurs must Issue
RECEIVE DATA directives until the directive Indicates that no more data Is present. Such a task must
not assume that it will receive a separate AST for each packet of data sent.

The receive AST service routine is entered with the task stack in the following state:

• SP+14 Event flag mask word for flags 1-16

SP+12 Event flag mask word for flags 17-32

• SP+ 10 Event flag mask word for flags 33-48

SP+06 Event flag mask word for flags 49-64

• SP+04 PS of task prior to AST

SP+02 PC of task prior to AST

SP+OO DSW of task prior to AST

You cannot Issue this directive when AST recognition is inhibited or from an AST service routine.

If datta Is sent to a task while it is checkpointed, the receive AST will occur the next time the task Is run,
after It has been reloaded.

This directive uses nodes from the system node pool, which are charged to the Issuing task. If you use
the directive to specify a receive AST when none currently exists, two nodes are needed. These nodes
are returned to the pool when the task cancels its receive AST by Issuing a SPECIFY RECEIVE AST
directive with a parameter of zero. If you use the directive to change the existing receive AST entry
point, no additional nodes are needed.

4-140

SRDA$

MACRO CALL

SRDA$ [ast]

where:

• ast - is an AST service entry point address. Receives occuring for the issuing task cause
control to be transferred to the AST entry point. Alternatively, if this parameter is zero,
receive ASTs will no longer occur for the task.

LOCAL
SYMBOL
DEFINITIONS

The following symbol is defined locally with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• S.RDAE - (Length 2 bytes) AST entry address

DSW RETURN
CODES

Value
Code Returned

is.sue +1

IE.UPN -01

IE.ITS -08

IE.AST -80

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

Explanation

Successful completion

Insufficient pool nodes available to requester

AST entry already unspecified

Directive issued during AST service or while AST is inhibited

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

SRDA$ RECAST
.BYTE 107.,2
.WORD RECAST

;~SRDA$ MACRO DIC,DPB SIZE=2 WORDS
;~ADDRESS OF RECEIVE AST

4-141

SRDA$

FORTRAN
CALL

NeitheT the FORTRAN IV language nor the ISA standard permits direct linking to system trapping
mechanisms. Therefore, this directive is not available to FORTRAN tasks.

4-142

SREF$

SREF$

The SEND BY REFERENCE directive inserts a reference to a region into the receive-by-reference
queue of a specified (receiver) task. The Executive effectively attaches the region referred (the region
Identified In W.NRID of the window definition block) to the receiver task. (In practice, no Attachment
Descriptor Block is required until the receiving task issues a RECEIVE BY REFERENCE [RAEF$]
directive.) The successful execution of this directive causes a significant event to occur.

The reference contains:

1 The identity of the region being sent

2 The offset and length words specified in W.NOFF and W.NLEN of the window definition block
(which the Executive passes without checking)

3 The receiver task's permitted access tc> the region, specified in the window status word W.NSTS

4 The sender task name

5 Optionally, the address of an 8-word buffer that contains additional information. If the packet does
not include a buffer address, the Executive sends 8 words of 0.

The receiver task automatically has access to the entire region as specified In W.NSTS. The sender
task must be attached to the region with at least the same types of access. By setting all the bits In
W.NSTS to 0, the permitted access can be defaulted to that of the sender task.

If the directive specifies an event flag, the Executive clears the flag when the directive is Issued.
The flag is set for the sender task when the receiver task acknowledges the reference by issuing
the RECEIVE BY REFERENCE directive. When the sender task exits, the system searches for any
unreceived references that specify event flags and prevents any invalid attempts to set the flags. The
references themselves remain in the receiver task's receive-by-reference queues.

If the specified event flag is global, it will be set when the reference is received, even if the sender task
has exited.

The Tl parameter can be used to send a reference to a particular invocation of a multi-user task. The
value to use is that placed in the Tl buffer when data or a reference was received from the task.

This directive needs three nodes from the system node pool. These nodes are charged to the issuing
task and are returned when the reference is received.

The ordering of the SREF$ macro arguments does not directly correspond to the format of the DPB.
The arguments have been arranged so that the optional arguments efn and ti are at the end of the
macro call. This arrangement is also compatible with the SDAT$ macro.

MACRO CALL

SREF$ tsk,wdb, [efn] [,ti]

where:

• tsk - is the name of the receiver task

4-143

SREF$

• wdb - is the window definition block address

• efn - is the event flag number

• ti - is the terminal identification (Tl) of the task to which a reference is to be sent.

WINDOW
DEFINITION
BLOCK
PARAMETERS

Input Parameters

Array
Element

lwdb(4)

lwdb(!S)

iwdb(6)

iwdb(7)

lwdb(IB)

Offset

W.NRID

W.NOFF

W.NLEN

W.NSTS

W.NSAB

Output Parameters

NONE

LOCAL
SYMBOL
DEFINITIONS

ID of the region to be sent by reference

Offset word, passed without checking

Length word, passed without checking

Bit settings in window status word (the receiver task's permitted access):

WS.RED - 1 if read access is permitted

WS.WRT - 1 if write access is permitted

WS.EXT - 1 if extend access is permitted

WS.DEL - 1 if delete access is permitted

Optional address of an 8-word buffer containing additional information

The following symbols are locally defined with their assigned values equal to the byte offsets from
the start of the DPB to the respective DPB elements:

• S.RETN - (Length 4 bytes) Receiver task name

• S.REBA - Window definition block base address (2)

• S.REEF - Event flag number (2)

• S.RETI - TI for SEND (2)

4-144

DSWRETURN
CODES

Value
Code Returned

is.sue +01

IE.UPN -01

IE.INS -02

IE.PAI -16

IE.NVR -86

IE.IEF -97

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

FORTRAN
CALL

SREF$
.BYTE
.RAD50
.WORD
.WORD

SREF$

Explanation

Successful completion

A node could not be picked for a reference

The sender tasl< attempted to send a reference to a task which was not installed

Specified access not allowed to sender task itself

Invalid region ID

Invalid event flag number

The DPB, WDB or send buffer is wholly or partially outside the task's address
space, or the WDB cannot be written to.

DIC or DPB size is invalid

ALPHA,WDBADR,48.
69.,5 ;SREF$ MACRO DIC,DPB SIZE=5 WORDS
/ALPHA/ ;RECEIVER TASK NAME
48. ;EVENT FLAG NUMBER
WDBADR ;WDB ADDRESS

CALL SREF (tsk, [efn],iwdb, [isrb], [iti] [,ids])

where:

• tsk - is a single precision, floating point variable containing the name of the receiving task
in Radix-50 format.

• efn - is an event flag number

• iwdb - is an 8-word integer array containing a window definition block

• isrb - is an 8-word integer array containing additional information. If specified, the address
of isrb is placed in iwdb(8). If isrb is omitted, the contents of iwdb(8) remain unchanged.

• iti - is the terminal identification (Tl) of the task to which a reference is to be sent.

• ids - is an integer variable to receive the Directive Status Word

4-145

SRFR$

·SRFR$

The SEND BY REFERENCE AND REQUEST OR RESUME directive inserts a reference to a region
into the receive-by-reference queue of a specified (receiver) task; then requests, resumes, or unstops
the execution of the receiver task. You cannot successfully issue this directive unless:

1 You have real-time directive privilege, or

2 You have built the task you are trying to request or resume using the /SR switch (MCA TKB) or
/REQUEST qualifier (PDS LINK).

This directive is equivalent to the SEND BY REFERENCE (SREF$) directive when followed by one of:

1 The REQUEST (ROST$) directive, if the receiver task is inactive.

2 The RESUME (RSUM$) directive, if the receiver task is active and suspended.

3 The UNSTOP (USTP$) directive, if the receiver task is active and stopped.

Real-time directive privilege is needed to specify a global event flag.

For the significance of the Window Definition Block (wdb), event flag number (efn) and terminal
identification (ti) parameters, refer to the SEND BY REFERENCE (SREF$) directive.

For the significance of the partition (prt), priority (pri) and UIC group codes (ugc and umc), refer to the
REQUEST (ROST$) directive.

If the receiver task is multi-user, the ti parameter can be used to specify which invocation of the task
is to receive the data. If the receiver task is not active with the specified Tl, it will be requested with
that Tl irrespective of other invocations which can be active with different Tl assignments. If the task is
active with the specified Tl, this is the invocation which will be resumed or unstopped.

If the receiver task is already active, the prt, pri, ugc and umc parameters are ignored ..

MACRO CALL

SRFR$ tsk, [prt], [pri], [ugc, umc], wdb, [efn] [,ti]

where:

• tsk - is the name of the receiver task

• prt - is the partition name

• pri - is the priority

• ugc - is the UIC group code

• umc ,. is the UIC member code

• wdb - is the window definition block address

• efn - is the event flag number

• ti - is the terminal identification

4-146

WINDOW
DEFINITION
BLOCK
PARAMETERS

Input Parameter

·Array
Element Offset

lwdb(4) W.NRID

lwdb(S) W.NOFF

iwdb(6) W.NLEN

ID of the region to be sent by reference

Offset word, passed without checking

Length word, passed without checking

SRFR$

iwdb(7) W.NSTS Bit settings in window status word (the receiver task's permitted access):

iwdb(8) W.NSRB

Output Parameters

NONE

LOCAL
SYMBOL
DEFINITIONS

WS.RED - 1 if r·ead access is permitted

WS.WRT - 1 if write access is permitted

WS.EXT - 1 if extend access is permitted

WS.DEL - 1 if delete access is permitted

Optional addres.s of an 8-word buffer containing additional information

The fo11owing symbols are local1y defined with their assigned values equal to the byte offsets from
the start of the DPB to the respective DPJB elements:

• S.RRTN - (Length 4 bytes) Receiver task name

• S.RRPN - Partition name (4)

• S.RRPR - Priority (2)

• S.RRUG - UIC Group code (1)

• S.RRUP - UIC Member code (1)

• S.RRBA - Window definition block base address (2)

• S.RREF - Event flag number (2)

• S.RRTI - Terminal Identification (2)

4-147

SRFR$

DSW RETURN
CODES

Value
Code Returned Exp la nation

+03

+02

IS.SUC +01

IE.UPN -01

IE.INS -02

IE.PTS -03

IE.UNS -04

IE.HWA -06

IE.ITS -08

IE.FIX -09

IE.PAI -16

IE.NVR -86

IE.ITP -88

IE.IUI -91

IE.PNS -94

IE.IEF -97

IE.ADP -98

IE.SDP -99

MACRO
EXPANSION

4-148

Reference sent and task already active and not suspended

Reference sent and task resumed

Reference sent and task requested

Unavailable pool node to run receiver task

The sender task tried to send a reference to a task which was not installed

Partition to small for receiver task

Unavailable pool node for send packet

Handler task not resident to load receiver task

Receiver task is disabled

Receiver task is irrevocably exiting

Sender task not allowed specified access

Invalid region ID

Invalid Tl parameter

Invalid UIC

Partition not in system

Invalid event flag number

The address check of the DPB, the WDB, or the send buffer failed

DIC or DPB size is invalid

SRFR$ ALPHA,PART,40,200,200,WDBADR,48.,TIADR
.BYTE 153.,$$;SRFR$ MACRO DIC, DPB SIZE=$$ WORDS
.RADSO /ALPHA/ ;RECEIVER TASK NAME
.WORD /PART/ ;PARTITION NAME
.WORD 40 ;PRIORITY
.BYTE 200,200
.WORD 48.
.WORD WDRADR
.WORD TIADR

;UIC
;EVENT FLAG NUMBER
;WDB ADDRESS
;TI ADDRESS

FORTRAN
CALL

where:

SRFR$

CALL SRRF (tsk, [iop], [efn], iwdb, [isrb], [iti] [,ids])

• tsk - is a single precision, floating point variable containing the name of the receiving task
in Radix-50 format.

• iop - is a 4-word integer array containing optional parameters where:

iop(l) - Partition name (1st half) (Radix-50)

iop(2) - Partition name (2nd half) (Radix-50)

iop(3) - Run priority

iop(4) - UIC User identification code

• efn - is an event flag number

• iwdb - is a window descriptor block address

• isrb - is an 8-word integer array containing additional information. If specified, the
address of the isrb is placed in iwdb(8). If isrb is omitted, the contents of iwdb(8) remain
unchanged.

• iti - is the terminal identification (Tl) of the task to which a reference is to be sent.

• ids - is an integer variable to receive the Directive Status Word.

4-149

SARA$

SRRA$

The SPECIFY RECEIVE-BY-REFERENCE AST directive instructs the system to record either of the
following:

1 That receive-by-reference ASTs for the issuing task are needed, and the address to which the
Executive transfers control when a receive-by-reference AST occurs.

2 That receive-by-reference ASTs for the issuing task are no longer needed.

Whein the directive specifies an AST service routine entry point, receive-by-reference ASTs for the task
will occur; the Executive will transfer control to the specified address whenever a reference is sent to
the task.

Only a single receive-by-reference AST can be queued at one time. If further references are sent to the
task before an AST has been effected, only a single AST occurs. This means that a task which waits
for ASTs, and then r'eceives the reference and performs some action, must be prepared to receive more
than one reference for each AST.

When the directive omits an entry point address, the Executive stops the occurrence of
receive··by-reference ASTs for the issuing task. Receive-by-reference ASTs will not occur until the
task issues another SPECIFY RECEIVE-BY-REFERENCE AST directive that specifies an entry point
address.

The task enters the receive-by-reference AST service routine with the task stack in the following state:

SP+ 14 - Event flag mask word for flags 1-16

SP+ 12 - Event flag mask word for flags 17-32

SP+ 10 - Event flag mask word for flags 33-48

SP+06 - Event flag mask word for flags 49-64

SP+04 - PS of task prior to AST

SP+02 - PC of task prior to AST

SP+OO - DSW of task prior to AST

No trap-dependent parameters accompany a receive-by-reference AST; therefore, the AST SERVICE
EXIT (ASTX$) directive must be executed with the stack in the same state as when the AST was
effected.

This directive cannot be issued from an AST service routine or when AST recognition is inhibited.

If a task is checkpointed when a reference is sent, the AST occurs when the task is next run, after
being reloaded into memory. If the task is stopped, it will be temporarily unstopped for the duration of
the AST and therefore will be reloaded if it is checkpointed as a result of being stopped.

This directive requires nodes from the system node pool, which are charged to the issuing task. If
you use the directive to specify a receive-by-reference AST when none currently exists, two nodes are
required. These nodes are returned when the task cancels its receive-by-reference AST by using a
SPECIFY RECEIVE BY REFERENCE AST (SARA$) directive with a parameter of zero. If you use the
directive to change an existing receive-by-reference AST entry point, no additional nodes are required.

4-150

SARA$

MACRO CALL

SRRA$ [ast]

where:

• ast - is the AST service routine point address entry (0)

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with the assigned value equal to the byte offset from the
start of the DPB to the respective DPB element:

• S.RRAE - (Length 2 bytes) AST entry address

DSW RETURN
CODES

Value
Code Returned

is.sue +01

IE.UPN -01

IE.ITS -08

IE.AST -80

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

SRRA$
.BYTE
.WORD

Explanation

Successful completion

Unavailable pool node

AST entry is already null

Directive issued during AST service or while AST recognition is inhibited

Part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid receive-by-reference ASTs.

RECAST
21., 2 ; SRRA~; MACRO DIC, DPB SIZE=2 WORDS
RECAST ; ADDRF:ss OF RECEIVE AST

4-151

SARA$

FORTRAN
CALL

Neither the FORTRAN language nor the ISA standard permits direct linking to system trapping
mechanisms; therefore, this directive is not available to FORTRAN tasks.

4-152

STLO$

STLO$

The STOP FOR LOGICAL OR OF EVENT FLAGS directive stops the execution of the Issuing task
until an indicated event flag of one of the following groups Is set:

GR 0 - Flags 1-16

GR 1 - Flags 17-32

• GR 2 - Flags 33-48

GR 3 - Flags 49-64

GR 4 - Flags 1-64

If one of the indicated flags is set when the• directive is Issued, task execution Is not affected.

Mask word bits from right-to-left represent increasing event flag numbers. A set mask word bit Indicates
that the task Is to wait for the corresponding event flag.

A task which is stopped has indicated that it does not require to be in memory. A stopped task will be
checkpolnted or swapped in favour of any other task which requires memory, Irrespective of priority.
When the task is no longer stopped (in this case, because one or more of the specified event flags has
been set), it will be reloaded Into memory according to Its priority. A stopped task can also be reloaded
Into memory to allow an AST routine to be serviced. When the AST routine exits, the task becomes
stopped again and is removed from memory to make room for any other tasks, unless It was unstopped
while the AST was serviced.

The order In which stopped tasks are remc>ved from memory to allow another task to be loaded Is not
defined. In particular, it is not related to task priority.

A task will normally use the stop facility, rather than the WAITFOR or SUSPEND, when It does not
expect to be able to run for a relatively long period, and time Is not critical when It Is able to run. For
example, the use of the stop facility would normally be appropriate while a spawned task was executing,
or for a task which remained active while waiting for data to be sent, but not during a fast 110 transfer
(for example, to disk).

MACRO CALL

STLO$ grp,msk

where:

• grp - is the desired group of event flags

• mask - If 'grp' is 0, 1,2 or 3, 'mask' is a 16 bit (16-flag) mask word.

If 'grp' is 4, mask provides a list of four mask words in the form: <Ml, M2, M3, M4>.

If zero is specified in the $8 form of the macro, do not use a number sign (#) preceding it.

4-153

STLO$

LOCAL
SYMBOL
DEFINITIONS

The following symbols are locally defined with their assigned values equal to the byte offset from
the start of the DPB to the respective DPB elements:

• S.TLGR - (Length 2 bytes) Event flag group

• S.TLMS - '(2) 16-bit mask word

DSW RETURN
CODES

Value
Code Returned

is.sue +1

IE.IEF -97

IE.ADP -98

IE.SOP -99

Explanation

Successful completion

No event flag specified in mask word(s) or; flag set Indicator other than 0, 1, 2, 3,
or 4.

Part of the DPB is out of the issuing task's address space.

DIC or DPB size is invalid.

..... 1

MACRO
EXPANSION

FORTRAN
CALL

STLO$
.BYTE
.WORD
.WORD

1,MSK
137 •I 3
1
MSK

;STLO$ MACRO DIC, DPB SIZE=3 WORDS
;EVENT FLAG GROUP 1
;MASK WORD

CALL STOPOR (iefl,ief2, ... iefn)

where:

• iefl, .. .iefn - is a list of event flag numbers to be taken as the set of event flags to be specified
in the directive.

NOTE: The argument list specified in the FORTRAN call must contain only event flag
numbers that lie with one event flag group. If event flag numbers are specified that lie
in more than one group (that is, 0-3) or an invalid event flag number is specified, a fatal
FORTRAN error is generated.

4-154

STOP$

STOP$

The STOP directive instructs the system to stop the execution of the issuing task. The task can
subsequently be unstopped by the UNSTOP (USTP$) directive, Issued by one of the following:

1 Itself, at AST level, or by another task.

2 By means of a SEND DATA AND RESUME OR REQUEST RECEIVER (VSDR$/SDRQ$) directive.

3 By means of a SEND BY REFERENCE AND REQUEST OR RESUME (SAFA$) directive.

A task which Is stopped has indicated that It does not require to be In memory. A stopped task will be
checkpolnted or swapped In favour of any c>ther task which requires memory, Irrespective of priority.
When the task Is no longer stopped it will be reloaded Into memory according to Its priority. A stopped
task can also be reloaded into memory to allow an AST routine to be serviced. When the AST routine
exits, the task becomes stopped again and will be removed from memory to make room for any other
tasks, unless it was unstopped while the AST was serviced.

The order in which stopped tasks are removed from memory to allow another task to be loaded Is not
defined. In particular, it is not related to task priority.

A task will normally use the stop facility, rather than WAITFOR or SUSPEND, when It does not expect
to be able to run for a relatively long period, and time is not critical when it is able to run. For example,
the use of the stop facility would normally be appropriate while a spawned task was executing, or for
a task which remained active whilst waiting for data to be sent, but not during a fast 1/0 transfer (for
example, to disk).

MACRO CALL

STOP$

DSWRETURN
CODES

Value
Code Returned

IS.SPD +02

IE.ADP -98

IE.SOP -99

Exp la nation

Successful completion.

Part of the DPB is out-of the issuing task's address space.

DIC or DPB size is invalid.

4-155

STOP$

MACRO
EXPANSION

FORTRAN
CALL

STOP$
.BYTE 131.,1

CALL STOPTK

4-156

STSE$

STSE$

The STOP FOR SINGLE EVENT FLAG directive instructs the system to stop the execution of the
Issuing task until the indicated event flag is set.

A task which Is stopped has indicated that it does not require to be In memory. A stopped task wlll be
checkpointed or swapped In favour of any other task which requires memory, Irrespective of priority.
When the task Is no longer stopped (in this case, by the setting of the specified event flag), It will be
reloaded Into memory according to its priority. A stopped task can also be reloaded Into memory to
allow an AST routine to be serviced. When the AST routine exits, the task becomes stopped again and
will be removed from memory to make room for any other tasks.

The order In which stopped tasks are removed from memory to allow another task to be loaded Is not
defined. In particular, it is not necessarily related to task priority.

A task normally uses the stop facility, rather than WAITFOR or SUSPEND, when It does not expect to
be able to run for a relatively long period, and time Is not critical when it Is able to run. For example,
the use of the stop facility would normally be appropriate while a spawned task was executing, or for
a task which remained active whilst waiting for data to be sent, but not during a fast 1/0 transfer (for
example, to disk).

MACRO CALL

STSE$ ef n

where:

• efn - is the event flag number

LOCAL
SYMBOL
DEFINITIONS

The fo11owing symbol is defined with the assigned value equal to the byte offset from the start of
the DPB to the DPB element:

• S.TSEF - (Length 2 bytes) Event flag number

4-157

STSE$

DSW RETURN
CODES

Code
Value
Returned Exp la nation

is.sue
IE.IE:F

IE.ADP

IE.SOP

+1

-97

-98

-99

MACRO
EXPANSION

FORTRAN
CALL

where:

Successful completion

An event flag number other than a local event flag was specified (not in the range
1-32).

Part of the DPB is out of the issuing task's address space.

DIC or DPB size is invalid.

STSE$ EFN
.BYTE 135.,2
.WORD EFN

;STSE$ MACRO DIC, DPB SIZE=2 WORDS
;EVENT FLAG NUMBER

CALL STOPFR (iefn[,ids])

• iefn - is an integer containing an event flag number.

• ids - is an integer variable to receive the Directive Status Word.

4-158

SVOB$

SVOB$

The SPECIFY SST VECTOR TABLE FOR DEBUGGING AID directive specifies the address within the
task's virtual address space of a table of entry points for synchronous system trap service routines for
use by an Intra-task debugging aid (for example, OOT uses SVOB$).

When the issuing task contains both a task: SST vector (from SVTK$) and a debugging SST vector
.(from SVOB$) and both contain an entry for a particular trap, then the debugging vector takes
precedence.

The table can contain up to nine entry points. Each entry point or trap-type Instruction corresponds to
a type of error or trap-type instruction that could occur. The table need only be long enough to Include
the entries of interest to the program. The table is of the following format:

WO. 00 - Odd address error or other trap through 4

WO. 01 - Segment fault

WD. 02 - T-bit trap or execution of a BPT instruction

WO. 03 - Execution of an IOT instruction

WO. 04 - Execution of a reserved instruction

WO. 05 - Execution of a non-IAS EMT

WO. 06 - Execution of a TRAP instruction

• WO. 07 - POP-11/40 floating point exception

WO. 1 O - Memory parity error

The way in which a particular trap is serviced is determined by the following sequence of checks, made
in order of decreasing priority:

1 If the debugging SST vector exists (SVOB$) and the corresponding entry is non-zero, the trap Is
serviced by the debugging aid.

2 If the task SST vector exists (SVTK$) and the corresponding entry Is non-zero, the trap Is serviced
by the task.

3 The task is aborted.

The vector exists if the directive was issued successfully. The vector can be eliminated by re-Issuing
the directive with a length parameter of zero.

MACRO CALL

SVOB$ [adr,len]

where:

• adr - is the address of the SST vector table

4-159

SVDB$

• len - is the number of entries in table

LOCAL
SYMBOL
DEFINITIONS

The following symbols are locally defined with their assigned values equal to the byte offset from
the start of the DPB to the respective DPB elements:

• S.VDTA - (Length 2 bytes) SST vector table address

• S.VDTL - (2) Table length

DSW RETURN
CODES

Code
Value
Returned Explanation

is.sue
IE.ADP

+1

-98

Successful completion

IE.SOP -99

MACRO
EXPANSION

FORTRAN
CALL

Part of DPB or table is out of task's address space, or table address not specified
(zero address)

DIC or DPB size is invalid

SVOB$ SSTTBL.,4
.BYTE 103.,3
.WORD SSTTBL
.WORD 4

;SVOB$ MACRO DIC,DPB SIZE=3 WORDS
;ADDRESS OF SST TABLE
;SST TABLE LENGTH=4 WORDS

Neither the FORTRAN IV language nor the ISA standard permits direct linking to system trapping
mechanisms. Therefore, this directive is not available to FORTRAN tasks.

4-160

SVTK$

SVTK$

The SPECIFY SST VECTOR TABLE FOR TASK directive specifies the address within the task's virtual
address space of a table of entry points for synchronous system trap service routines for use by the
issuing task. SSTs are described in the IAS Executive Facilities Reference Manual.

When the issuing task contains both a task SST vector (from SVfK$) and a debugging SST vector
(from SVOB$) and both contain an entry for a particular trap, then the debugging vector takes
precedence.

The table can contain up to nine entry points. Each entry point corresponds to a type of error or
trap-type instruction that could occur. The table need only be long enough to Include the entries of
Interest to the program. The table is of the following format:

W0.00 - Odd address error or other trap through 4

W0.01 - Segment fault

W0.02 - T-Bit trap or execution of a BPT instruction

W0.03 - Execution of an IOT instruction

W0.04 - Execution of a reserved instruction

W0.05 - Execution of a non-IAS EMT

W0.06 - Execution of a TRAP instruction

W0.07 - POP-11/40 floating point exception

WO .10 - Memory parity error

The way in which a particular trap is serviced is determined by the following sequence of checks, made
in order of decreasing priority:

1 If the debugging SST vector exists (SVOB$) and the corresponding entry Is non-zero, the trap Is
serviced by the debugging aid.

2 If the task SST vector exists (SVfK$) and the corresponding entry is non-zero, the trap Is serviced
by the task.

3 The task is aborted.

The vector exists if the directive was issued successfully. The vector can be eliminated by re-Issuing
the directive with a length parameter of zero.

MACRO CALL

SVTK,.$ [adr, len]

where:

• adr - is the address of SST vector table

4-161

SVTK$

• len - is the length (number of entries) in the table

LOCAL
SYMBOL
DEFINITIONS

The following symbols are locally defined with their assigned values equal to the byte offset from
the start of the DPB to the respective DPB elements:

• S.V'rTA - (Length 2 bytes) SST vector table address

• S.vrTL - (2) Table length

DSW RETURN
CODES

Code
Value
Returned Explanation

is.sue
IE.ADP

+1

-98

Successful completion

IE.SOP -99

MACRO
EXPANSION

FORTRAN
CALL

Part of DPB or table is out of task's address space, or table address is not
specified (zero address)

DIC or DPB size is invalid

SVTK$ SSTTBL,4
.BYTE 105.,3
.WORD SSTTBL
.WORD 4

;SVTK$ MACRO DIC,DPB SIZE=3 WORDS
;ADDRESS OF SST TABLE
;SET TABLE LENGTH=4 WORDS

Neither the FORTRAN IV language nor the ISA standard permits linking to system trapping
mechanisms. Therefore, this directive is not available to FORTRAN tasks. The FORTRAN OTS
has its own SST vector table that traps these errors.

4-162

SYNC

SYNC

The SYNCHRONIZE directive requests a task at a specified future time, and optionally, repeats It
periodically. The directive allows the execution of a task to be synchronized with respect to a given
clock unit. For example, a task can cause another task to run at 30 seconds past the next minute
without needing to know about the current time .

.The directive allows the specification of the time unit to be synchronized with and a delay after the
synchronization, which can be specified in hours, minutes, seconds and ticks. In addition, the task can
optionally be rescheduled to run periodically at a specified interval.

This directive requires two nodes from the system node pool. These nodes are charged to the Issuing
task and are released when the request comes due, if a reschedule Interval was not specified, or
otherwise when the periodic scheduling request is cancelled (by either the CSRQ$ directive or by the
CANCEL command). In addition, either three or four nodes are required each time the task Is requested
(see the ROST$ directive).

MACRO CALL

SYNC$ tsk, [prt], [pri], [ugc, umc], [smg], [snt], sync, [rmg] [, rnt]

where:

• tsk - is the task name

• prt - is the partition name

• pri - is the priority

• ugc - is the group code

• umc - is the member code

• smg - is the time interval after synchronization, in the units specified as snt (below).

• snt - is the time unit used for smg (above)

1 = clock ticks

2 =seconds

3 =minutes

4 =hours

• sync - is a synchronization unit. The task will be requested at the specified interval after
the indicated synchronization unit. For example, if sync is 4, snt is 3 and smg is 12, the
task is requested 12 minutes after the next hour.

• rmg - is the reschedule interval magnitude

• rnt - is a reschedule interval unit

4-163

SYNC

LOCAL
SYMBOL
DEFINITIONS

The fo1lowing symbols are locally defined with their assigned values equal to the byte offsets from
the s1tart of the DPB to the respective DPB elements:

•• S.YNTN - (Length 4 bytes) Task name in Radix-50

• S.YNPN - (4) Partition name in Radix-50

o S.YNPR - (2) Priority

•• S.YNGC - (1) UIC group

•• S.YNPC - (1) UIC member

• S.YNSM - (2) Schedule magnitude

• S.YN'SU - (2) Schedule unit

• S.YNSY - (2) Synchronization

•• S.YNRM - (2) Reschedule magnitude

•• S.YNRU - (2) Reschedule unit

DSWRETURN
CODES

Value
Code Returned

is.sue +1

IE.UPN -01

IE.INS -02

IE.PTS -03

IE.PAI -16

IE.IUI -91

IE.ITI -93

IE.PNS -94

IE.IPR -95

IE.ADP -98

IE.SOP -99

4-164

Explanation

Successful completion

Insufficient pool nodes available to requester

Task not installed

Partition too small for task

Directive privilege violation

Invalid UIC. Executive privilege is required to "run synchronized" a task under a
changed UIC.

Invalid time parameter specified

Partition not in system

Invalid priority specified (<0 or >250)

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

MACRO
EXPANSION

FORTRAN
CALL

where:

SYNC$
.BYTE
.RAD50
.RAD50
.WORD
.BYTE
.WORD
.WORD
.WORD
.WORD
.WORD

THIS,MART0,55,300,40,6,2,3,10.,2
19.,12. ;SYNC$ MACRO DIC, DPB SIZE=12 WORDS
/THIS/ ;TASR: 'THIS'
/MARTO/ ;PARTITION 'MARTO'
55 ;PRIORITY = 55
40,300 ;UIC TO RUN TASK UNDER
6 ;SCHEDULE MAGNITUDE = 6
2 ;SCHEDULE UNIT = SECONDS (=2)
3 ;SYNCHRONISATION UNIT = MINUTE (=3)
10. ;RESCHEDULE MAGNITUDE = 10
2 ;RESCHEDULE UNIT = SECONDS (=2)

CALL SYNC (tsk, [iop], iom, iou, isyu, [iri], [iru] [,ids])

• tsk - is a 2-word, 1- to 6- character task name in Radix-50 form.

• iop - is a 6-word integer array containing optional parameters

where:

iop(l) - Radix-50 partition name (1st halO

iop(2) - Radix-50 partition name (2nd halO

iop(3) - Run priority

iop(4) - User Identification Code

SYNC

NOTE: The iop arguments (1), (2), (3) and (4) default to zero when none is
specified.

• iom - is a synchronization offset magnitude

• iou - is a synchronization offset unit (1-4)

• isyu - is a synchronization unit (1-4)

• iri - is a reschedule interval

• iru - is a reschedule unit (1-4)

• ids - is an integer variable to receive the Directive Status Word

4-165

UFIX$

UFIX$

The UNFIX directive nullifies the effect of a FIX directive, allowing the memory occupied by a fixed task
to be freed for other users. The previously fixed task can now be removed from memory.

The UNFIX directive will only work for a task which was fixed with the same Tl as the issuing task .

...
MACRO CALL

UFIX$ tsk

where:

•· tsk - is the task name

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• U.FXTN - (Length 4 bytes) Task name in Radix-50

DSWRETURN
CODES

Value
Code Returned

is.sue +1

IE.INS -02

IE.FIX -09

IE.PAI -16

IE.ADP -98

IE.SOP -99

4-166

Exp la nation

Successful completion

Task not installed

Task is not fixed

Directive privilege violation

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

MACRO
EXPANSION

·FORTRAN
CALL

where:

UFIX$ POOL
.BYTE 87.,3 ;UFIX$ MACRO DIC, DPB SIZE=3 WORDS
.RADSO /POOL/ ;TASK 'POOL'

CALL UNFIX (tsk[,ids])

• tsk - is a 2-word, 1- to 6- character task name in Radix-50 form.

• ids - is an integer variable to receive the Directive Status Word.

UFIX$

4-167

UMAP$

UMAP$

The lJNMAP ADDRESS WINDOW directive unmaps a specified window. After the window has been
unmapped, references to the corresponding virtual addresses are invalid and cause a processor trap to
occur. This directive will fail if the directive is issued when the task has 1/0 In progress.

MACRO CALL

UMAP$ wdb

where:

• wdb - is the window definition b1ock address

...
WINDOW
DEFINITION
BLOCK
PARAMETERS

Input Parameters

Array
Element

iwdb(1)
bits Q •. 7

Offset

W.NID

Output Parameters

Array
Element

iwdb(7)

4-168

Offset

W.NSTS

ID of the window to be unmapped

Bit settings in the window status word:

WS.UNM - 1 if the window was successfully unmapped

LOCAL
SYMBOL
DEFINITIONS

UMAP$

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the respective DPB element:

• U.MABA - (Length 2 bytes) Window definition block address

DSWRETURN
CODES

Value
Code Returned

is.sue +01

IE.ITS -08

IE.NVW -87

IE.IOP -83

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION

FORTRAN
CALL

UMAP$
.BYTE
.WORD

Exp la nation

Successful completion

The specified address window is not mapped

Invalid address window ID

Task has 1/0 in progress

DPB or WDB out of range

DIC or DPB siz,~ is invalid

WDBADR
123 •I 2
WDBADR

.; UMAP MACRO DIC, DPB SIZE=2 WORDS
;WDB ADDRESS

CALL UNMAP (iwdb[,ids])

where:

• iwdb - is an 8-word integer array containing a window definition block

• ids - is an integer variable to receive the Directive Status Word

4-169

USTP$

USTP$

The UNSTOP directive instructs the system to unstop a task which has been stopped by either a
STOP (STOP$), RECEIVE DATA OR STOP (VRCT$/RCST$) or RECEIVE BY REFERENCE (RAEF$)
directive.

The task will be returned to the runnable state and, if it has been checkpointed or swapped, it will be
reloaded according to its priority.

The directive cannot be used to resume the execution of a task which is stopped and is currently
waiting for event flags, having issued a STLO$ or STSE$ directive.

If the specified task is not stopped because it is executing an AST, but is stopped at non-AST level, it
will be unstopped at the non-AST level. In particular, a task can issue the UNSTOP directive at AST
level, specifying itself, so as to cause the main task to continue execution.

MACRO CALL

USTP$ tsk

where:

" tsk - is the name of the task to be unstopped.

LOCAL
SYMBOL
DEFINITIONS

The following symbol is 1oca1ly defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• U.STTN - (Length 4 bytes) Taskname

4-170

DSWRETURN
CODES

Value
Code Returned

is.sue +1

IE.INS -02

IE.ACT -07

IE.ITS -08

IE.ADP -98

IE.SOP -99

Exp la nation

Successful completion

The specified task is not installed In the system.

The specified task is not active.

The specified task Is not stopped, or It Is stopped for event flag(s)

Part of the DPB is out of the issuing task's address space.

DIC or DPB size is invalid.

USTP$

4-171

USTP$

MACRO
EXPANSION

FORTRAN
CAL.L

USTP$ TSKNAM
.BYTE 133., 3 ;USTP$ MACRO DIC, DPB SIZE=3 WORDS
.RADSO /~SKNAM/ ;TASK 'TSKNAM'

CALL UNSTOP (tsk[,ids])

where:

• tsk - is a 2-word, 1- to 6- character task name in Radix-50 form.

• ids - is an integer variable to receive the Directive Status Word.

4-1n

VRCD$/RCVD$

VRCD$/RCVD$

The RECEIVE DATA (VRCD$) directive receives a variable-length data block that has been queued
for it In priority order. An alternative macro call is RCVD$ which receives a 13-word data block (see
below). The SEND DATA (VSDA$/SDAT$) or SEND DATA AND RESUME OR REQUEST RECEIVER
(VSDR$/SDRQ$) directives queue data for a receiver.

The directive allows a sender task name to be specified. In this case, only data sent by the Indicated
task is received. When a sender task is not specified, data sent by any task ts received.

If the buffer size is not specified, a default size of 13 words is used (see RCVD$, below). A 2-word
sending task name and the data block are placed in the indicated buffer. The task name Is In the first
two words. The receive buffer must be long enough to include these two words. The buffer length
specified in the directive should not includei these words.

If the location to store the Tl is specified, a Tl indicator is placed in this location. This can then be used
to Identify the sender if the receiving task wishes to communicate back to the sender, by specifying It
as the "ti" parameter in a SEND DATA directive.

If the receiver task is multi-user, only data with the same Tl assignment is received. The Tl assignment
of sent data is equal to the Tl assignment of the sending task, unless the "ti" parameter Is used when
sending the data.

Data is transferred from the sending task to the receiving task by means of nodes picked from the
system node pool which are charged to the sender. When the data is received, the nodes are returned
and subtracted from the sender's node usage count. The number of nodes required depends on the
length of the data block. The first three words require a single node; subsequently, one node Is required
for each eight words.

The condition code "V" (CC-V) is set upon successful completion of this directive, if the sender task
had executive privilege.

MACRO CALL
FORVRCD$

VRCD$ [tsk],adr,len[,ti]

• tis - the sender task name

• adr - is the buffer address

•]en - is the data length in words

• ti - is the address to store sender's TI

4-173

VRCD$/RCVD$

LOCAL
SYMBOL
DEFINITIONS

1,he following symbols are locally defined with their assigned values equal to the byte offset from
the start of the DPB to the respective DPB elements:

• R.VDTN - (Length 4 bytes) Task name in Radix-50

• R.VDBA -·(2) Buffer address

• R.VDBL - (2) Data length

• R.VDTI - (2) Address in which to store TI

CONDITION
CODES

• CC-C - cleared to indicate successful completion.

• CC-C - set (with CC-V unaltered) if rejection occurs.

• CC-V - set if sender task is executive privileged.

DSWRETURN
CODES

Value
Code Returned

is.sue +1

IE.INS -02

IE.ITS -08

~E.RBS -15

IE.IBS -89

IE.ADP -98

IE.SOP -99

4-174

Explanation

Successful completion

Sender task not installed

No data queued (sent)

Receiver's buffer too small, data truncated

Invalid buffer size (>255)

Part of DPB or buffer is out of task's address space

DIC or DPB size is invalid

VRCD$/RCVD$

MACRO
EXPANSION OF
VRCD$

FORTRAN
CALL FOR
VRCD$

VRCD$
.BYTE
.RAD50
.WORD
. !IF GE
• !IF EQ

OTHER,DATAIN,25.,TIADDR
75.,$$$T9 ;VRCD$ MACRO DIC, DPB SIZE=VARIABLE (4-6)
/OTHER/ ;SENDER TASK 'OTHER'
DATAIN ;RECEIVE BUFFER
$$$T9-5, .WORD 25. ;DATA LENGTH
$$$T9-6, .WORD TIADDR ;ADDRESS TO STORE TI

CALL VRECEV ([tsk], idata, [bufsz], [ti], [iprv] (,ids])

where:

• tsk - is a two-word, 1- to 6- character sender task name in Radix-50 form

• idata - is an integer array for data received (1-255 words)

• bufsz - is the size in words, to rect:dve

• ti - is the variable in which to recE,ive the Tl of the sender

• iprv - is a full-word logical variable set as follows:

Directive failed: iprv unchanged

Sender task executive privileged: iprv set to .TRUE. (-1)

Sender task not executive privileged: iprv set to .FALSE. (0)

• ids - is an integer to receive the directive status word.

An alternative macro call is RCVD$ which receives a 13-word data block.

MACRO CALL
FORRCVD$

RCVD$ (tsk],bufadr

4-175

VRCD$/RCVD$

FORTRAN
CALL FOR
RCVD$

where:

CALL RECEIV ([tsk],idata, [iprv] [,ids])

•
1 tsk - is a 2-word, 1- to 6- character sender task name in Radix-50 form.

•
1 idata - is a 15-word integer array for data received.

•
1 iprv - is a full-word logical variable set as follows:

Directive failed: iprv unchanged

Sender task not executive privileged: iprv set to .TRUE. (-1)

Sender task not executive privileged: iprv set to .FALSE. (0)

• ids - is an integer variable to receive the Directive Status Word.

4-1715

VRCS$/RCVS$

VRCS$/RCVS$

The RECEIVE DATA OR SUSPEND (VRCS$) directive receives a variable-length data block that has
been queued according to priority for it or suspends if no data blocks can be received. An alternative
macro call is RCVS$ which receives a 13-word data block (see below). Use the SEND DATA and the
SEND DATA AND RESUME OR REQUEST RECEIVER directives to queue data for a receiver.

The RECEIVE DATA OR SUSPEND directive is useful in avoiding a possible "race condition" that can
occur between two tasks communicating by means of the SEND and RECEIVE directives. The race
condition occurs when one task executes a RECEIVE directive and finds its receive queue empty, but
before the task can SUSPEND, the other task sends it a message. Since the first task has already
decided to suspend, it will not receive the message until another message causes it to be resumed,
which may be much later. This condition can be avoided by using the combined RECEIVE DATA OR
SUSPEND directive rather than specifying separate RECEIVE and SUSPEND directives.

The directive allows a sender task name to be specified. In this case, only data sent by the Indicated
task Is received. When a sender Is not specified, data sent by any task Is received.

If the buffer size is not specified, a default size of 13 words is used (see RCVS$, below). A 2-word
sending task name and the data block are returned in the Indicated buffer. The task name Is In the
first two words. The receive buffer must be long enough to include these two words. The buffer length
specified In the directive should not include these words.

If the location at which to store Tl is specified, the Tl indicator is transferred from the SEND/RECEIVE
node to this specified location.

If the receiving task is multi-user, only data with the same Tl assignment is received. The Tl assignment
of sent data is equal to the Tl assignment of the sending task, unless the 'ti' parameter is used when
sending the data.

Data Is transferred from the sending task to the receiving task by means of nodes picked from the pool
which are charged to the sender. When the data is received, the nodes are returned and subtracted
from the sender's node usage count. The number of nodes required depends on the length of the data
block. The first three words require a single node; subsequently, one node Is required for each eight
words.

The condition code "V" (CC-V) is set upon successful completion of this directive, if the sender task
had executive privilege.

If no data is received, the task is suspended. When the task is subsequently resumed, a RECEIVE
DATA directive is issued to receive any data. The task can check whether it was suspended (and hence
that no data was received) by examining its Directive Status Word (DSW). If this word has a value of
IS.SUC, data was received. Otherwise, a value of IS.SPD indicates that the task was suspended and
no data was received.

4-177

VRCS$/RCVS$

MACRO CALL
FORVRCS$

VRCS$ (tsk],bufadr,buflen[,ti]

where:

'' tsk - is the sender task name

• bufadr - is the buffer address

•• buflen - is the data length in words

• ti - is the address in which to store the sender's TI indicator

..... 1

LOCAL
SYMBOL
DEFINITIONS

The following symbols are defined 1oca1ly with their assigned values equal to the byte offset from
the 1~tart of the DPB to the respective DPB elements:

• R.VSTN - (Length 4 bytes) Task name in Radix-50

• 1R.VSBA - (2) Buffer address

• R.VSBL - (2) Data length

• R.VSTI - (2) Address in which to store the TI indicator

CONDITION
CODES

• CC-C - cleared to indicate successful completion.

• CC-C - set (with CC-V unaltered) if rejection occurs.

• CC-V - set if sender task is executive privileged.

4-178

DSW RETURN
CODES

Code

is.sue
IS.SPD

IE.INS

IE.RBS

IE.IBS

IE.ADP

IE.SOP

Value
Returned

+01

+02

-02

-15

-89

-98

-99

VRCS$/RCVS$

Exp la nation

Successful completion of the receive

Successful suspension of the task. No data has been received. The task has
since been resumed. A receive directive is now needed to receive any data sent
meanwhile.

Sender task not installed

Receiver's buffer too small, data truncated

Invalid buffer size (>255)

Part of DPB or buffer is out of task's address space

DIC or DPB size is invalid

4-179

VRCS$/RCVS$

MACRO
EXPANSION
FORVRCS$

VRCS$ TASK2,DATAIN,10.,TIADDR
.BYTE 79.,$$$T9 ;VRCS$ MACRO DIC, DPB SIZE=VARIABLE

; (4-6)
.RADSO /TASK2/ ;SENDER TASK 'TASK2'
.WORD DATAIN ;RECEIVE BUFFER
.IIF GE $$$T9-5, .WORD 10. ;DATA LENGTH
.IIF EQ $$$T9-6, .WORD TIADDR ;ADDRESS TO STORE TI

FORTRAN
CALL FOR
VRCS$

CALL VRECSP ([tsk],idata, [bufsz], [ti], [iprv] [,ids])

where:

• tsk - is a two-word, 1- to 6- character sender task name in Radix-50 format

• idata - is an integer array for data received (1-255 words)

• bufsz - is the size, in words, of the data to be received

• ti - is the variable into which the TI of the sender is received

• iprv - is a full-word logical variable set as follows:

Directive failed: iprv unchanged

Receiving task suspended: iprv unchanged

Sender task executive privileged: iprv set to .TRUE. (-1)

Sender task not executive privileged: iprv set to .FALSE. (0)

• ids - is an integer to receive the Directive Status Word

An alternative macro call is RCVS$, which receives a 13-word data block.

MACRO CALL
FOR RCVS$

RCVS$ [tsk],bufadr

4-180

FORTRAN
CALL FOR
RCVS$

where:

VRCS$/RCVS$

CALL RECOSP ([tsk], idata, [iprv] [,ids])

• tsk - is a 2-word, 1- to 6- character sender task name in Radix-50 form.

• idata - is a 15-word integer array for data received.

• iprv - is a full-word logical variable, set as follows:

Directive failed: iprv unchanged

Receiving task suspended: iprv unchanged

Sender task executive privileged: iprv set to .TRUE. (-1)

Sender task not executive privileged: iprv set to .FALSE. (0)

• ids - is an integer variable to receive the Directive Status Word.

4-181

VRCT$/RCST$

VRCT$/RCST$

The RECEIVE DATA OR STOP (VRCT$) directive receives a variable-length data block that has been
queued according to the specified priority or stops if no data can be received. An alternative macro
call is RCST$ which receives a 13-word data block. Use the SEND DATA and the SEND DATA AND
RESUME OR REQUEST RECEIVER directives to queue data for a receiver.

The function of this directive is similar to that of the RECEIVE DATA OR SUSPEND (VRCS$) directive,
except that if no data is present, the issuing task is stopped, rather than suspended. This allows the
task to be removed from memory irrespective of priority. Use this directive in preference to VRCS$
when It Is likely that there will be a long wait (that is, several seconds or more) before further data Is
available and it is not essential that the data be received in the fastest possible time.

MACRO CALL
FORVRCT$

VRCT$ [tsk],bufadr,buflen[,ti]

• tsk - is the name of the task from which data is to be received. If the task name is not specified,
data may be received from any task.

• bufadr - is the address of a 15-word buffer to receive the sender task name and data

• buflen - is the data length in words

• ti ·· is the address in which to store the sender's TI indicator

LOCAL
SYMBOL
DEFINITIONS

The fol1owing symbols are defined with the assigned values equal to the byte offset from the start
of the DPB to the DPB element:

• R.CSTN - (Length 4 bytes) Task name

• R.CSBF - (2) Buffer address

• R.CSBL - (2) Buffer length

• R.CSTI - (2) Terminal identification

4-182

VRCT$/RCST$

DSW RETURN
CODES

Value
Code Returned Exp la nation

IS.SUC +01

IS.SPD +02

IE.INS -02

IE.RBS -15

IE.IBS -89

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION
FORVRCT$

FORTRAN
CALL FOR
VRCT$

where:

Successful completion.

No data was received and task was stopped. (Naturally the task must be
unstopped before it will see this status.)

Sender task not installed

Receiver's buffer too small, data truncated

Invalid buffer size (>255)

Part of the DPB is out of the issuing task's address space.

DIC or DPB size is invalid.

VRCT$ TSKNAM,BUFADR,BUFLEN,TI
.BYTE 139.,$$$T9 ;VRCT$ MACRO DIC,DPB SIZE=VARIABLE (4-6)
.RADSO /TSKNAM/ ;TASK 'TSKNAM'
. WORD BUF.ADR ; BUFFER ADDRESS
.!IF GE $$$T9.5, .WORD ;BUFFER LENGTH
.IIF EQ $$$T9.6, .WORD ;ADDRESS TO STORE TI

CALL VRECST ([tsk], idata, [bufsz], [ti], [iprv] [,ids])

• tsk - is a 2-word, 1- to 6- character :sender task name in Radix-50 format

• idata - is an integer array for data received (1-255 words)

• bufsz - is the size, in words, of the data to be received

• ti - is the variable into which the TI of the sender is received

• iprv - is a full-word logical variable set as follows:

Directive failed: iprv unchanged

Receiving task stopped: iprv unchanged

Sender task executive privileged: iprv set to .TRUE. (-1)

Sender task not executive privileged: iprv set to .FALSE. (0)

4-183

VRCT$/RCST$

• ids - is an integer to receive the Directive Status Word

An alternative macro call is RCST$ which receives a 13-word data block.

MACRO CALL
FOR RCST$

RCST$ [tsk],bufadr

FORTRAN
CALL FOR
RCST$

CALL RECOST ([tsk],idata, [iprv] [,ids])

• tsk - is a 2-word, 1- to 6- character sender taskname in Radix-50 form.

• idata - is a 15-word integer array for data received.

• iprv - is a full-word logical variable set as fo11ows:

Directive failed: iprv unchanged

Receiving task stopped: iprv unchanged

Sender task executive privileged: iprv set to .TRUE. (-1)

Sender task not executive privileged: iprv set to .FALSE. (0)

• ids - is an integer to receive the Directive Status Word

4-184

VRCX$/RCVX$

VRCX$/RCVX$

The RECEIVE DATA OR EXIT (VRCX$) directive receives a variable-length data block that has been
queued for it according to priority or exits if no data block can be received. An alternative macro call ls
RCVX$ which receives a 13-word data block (see below).

The RECEIVE DATA OR EXIT directive is useful In avoiding a possible "race condition" that can occur
between two tasks communicating by means of the SEND and RECEIVE directives. The race condition
can occur when one task executes a RECEIVE directive and finds Its receive queue empty. It then
exits, but before the task can EXIT, the other task sends it a message. Although the first task has
already decided to exit, it is still active and, therefore, a request directive Issued by the second task
will fail. Thus, the data will not be received unless the first task is activated for some other reason. If
the task Is built with the "flush receive queues" option, the send data will be lost altogether when the
receive queues are flushed as the task exits. This condition can be avoided by using the combined
RECEIVE DATA OR EXIT directive rather than specifying separate RECEIVE and EXIT directives.

The SEND DATA and the SEND DATA AND RESUME OR REQUEST directives queue data for a
receiver.

The directive allows a sender task name to be specified. In this case, only data sent by the Indicated
task Is received. When a sender task is not :specified, data sent by any task is received.

If the buffer size Is not specified, a default size of 13 words Is used (see RCVX$, below). A 2-word
sending task name and the data block are returned in the Indicated buffer. The task name Is In the
first two words. The receive buffer must be long enough to Include these two words, the buffer length
specified in the directive should not include these words.

If the location to store Tl is specified, the Tl indicator is transferred from the SEND/RECEIVE node
to this specified location. This can then be used to identify the sender if the receiver task wishes to
communicate bask to the sender, by specifying it as the "ti" parameter in a SEND DATA directive.

If the receiving task is multi-user, only data with the same Tl assignment is received.

Data Is transferred from the sending task to the receiving task by means of nodes picked from the pool
which are charged to the sender. When the data is received, the nodes are returned and subtracted
from the sender's node usage count. The number of nodes required depends on the length of the data
block. The first three words require a single node; subsequently, one node Is required for each eight
words.

The condition code "V" (CC-V) is set upon successful completion of this directive, If the sender task
had executive privilege. If the task exits, the Executive will declare an event.

4-185

VRCX$/RCVX$

..
MACRO
EXPANSION
FORVRCX$

VRCX$ [tsk],bufadr,buflen[,ti]

• tsk - is the sender task name

• bufadr - is the buffer address

• buflen - is the data length in words

• ti - is the address at which to store the TI indicator

LOCAL
SYMBOL
DEFINITIONS

The following symbols are locally defined with their assigned values equal to the byte offset from
the start of the DPB to the respective DPB elements:

• R.VXTN - (Length 4 bytes) Task name

• R.VXBA - (2) Buffer address

• R.VXBL - (2) Data length

• R.VXTI - (2) Address in which to store the TI indicator

... 1

CONDITION
CODES

• CC-C - cleared to indicate successful completion.

• CC-C - set (with CC-V unaltered) if rejection occurs.

• CC-V - set if sender task is executive privileged.

4-186

DSW RETURN
CODES

Value
Code Returned

is.sue +1

IE.INS -02

IE.RBS -15

IE.IBS -89

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION
FORVRCX$

Exp la nation

Successful completion

Sender task not iinstalled

Receiver's buffer too small, data truncated

Invalid buffer size (>255)

Part of DPB or buffer is out of task's address space

DIC or DPB size is invalid

VRCX$ TASK9,BUFIN,8.,TIADDR

VRCX$/RCVX$

.BYTE 77.,$$$T9 ;VRCX$ MACRO DIC, DPB SIZE•

FORTRAN
CALL FOR
VRCX$

;VARIABLE (4-6)
.RAD50 /TASK9/ ;SENDER TASK 'TASK9'
.WORD BUFIN ;RECEIVE BUFFER
.IIF GE $$$T9-5, .WORD 8. ;DATA LENGTH
.IIF EQ $$$T9-6, .WORD TIADDR ;ADDRESS TO STORE TI

CALL VRECEX ([tsk],idate, [bufsz], [ti], [iprv] [,ids])

• tsk - is a 2-word, 1- to 6- character sender task name in Radix-50 form

• idata - is an integer array for data received (1-255 words)

• bufsz - is the size, in words, of the data to be received

• ti - is the variable into which the TI of the sender is received

• iprv - is a full-word logical variable set as follows:

Directive failed: iprv unchanged

Sender task executive privileged: iprv set to .TRUE. (-1)

Sender task not executive privileged: iprv set to .FALSE. (0)

• ids - is an integer to receive the Directive Status Word

An alternative macro call is RCVX$, which receives a 13-word data block.

4-187

VRCX$/RCVX$

MACRO CALL
FOR RCVX$

RCVX$ [tsk],bufadr

4-188

FORTRAN
CALL FOR
RCVX$

where:

VRCX$/RCVX$

CALL RECOEX ([tsk],idata, [iprv] [,ids])

• tsk - is a 2-word, 1- to 6- character sender task name in Radix-50 form.

• idata - is a 15-word integer array for data received.

• iprv - is a full-word logical set as follows:

Directive failed: ipvrv unchanged

Sender task executive privileged: iprv set to .TRUE. (-1)

Sender task not executive privileged: iprv set to .FALSE. (0)

• ids - is an integer variable to receive the Directive Status Word.

4-189

VSDA$/SDAT$

VSDA$/SDAT$

The SEND DATA (VSDA$) directive queues a variable-length data block for a task to receive. An
alternative macro call is SDAT$, which sends a 13-word data block (see below). A maximum of 255
(decimal) words may be sent in one block.

If tho buffer size is not specified, a default of 13 words is always used (see SDAT$ below).

A significant event is declared if the directive is successful. The indicated event flag, if any, is set.
Normally, the event flag is used to trigger the receiver into some action. To be effective, the task must
set a giobal event flag (33 through 64), because the local flags are visible only to the sending task and
will have no effect on the receiving task. Real-time directive privilege is required to specify a global
event flag.

All data sent to a task is queued according to the priority specified in the send request. Thus it will be
received in priority order, not first-in, first-out (FIFO). If no priority is specified, the priority of the task Is
used. If a number of tasks, running at different priorities send related data to the same task, obscure
problems can result if the send priority facility is not taken into account.

If a Tl is specified, this is used to determine which invocation of the receiving task (if it is multi-user) is
to receive the data. If no Tl is specified, the Tl of the sending task is used.

If the receiving task has specified a receive AST service routine, an AST will be queued (unless the
task already has a receive AST queued).

Data is transferred from the sending task to the receiving task by means of nodes picked from the pool.
The number of nodes picked is then charged to the sender. When the data is received, the nodes are
returned and subtracted from the sender's node usage count. The number of nodes roqulred depends
on the amount of data sent. The first three words require a single node. Subsequently, each eight
words require one further node.

MACRO CALL
FORVSDA$

VSDA$ [tsk],bufadr, [buflen], [efn], [sndpri] [,ti)

• tsk. - is the receiver task name

• bufadr - is the address of data block

• buflen - is the length of buffer (1 through 255 words)

• 1efn - is the event flag number (0 implies no event flag)

• sndpri - is the priority of send (1 through 250)

• ti - is the TI indicator

4-190

VSDA$/SDAT$

LOCAL
SYMBOL
DEFINITIONS

The following symbols are defined locally with their assigned values equal to the byte offset from
the start of the DPB to the respective DPB elements:

• S.DATN - (Length 4 bytes) Task name in Radix-50

• S.DABA - (2) buffer address

• S.DAEF - (2) event flag number

• S.DABL - (2) buffer length

• S.DASP - (2) send priority

• S.DATI - (2) TI indicator

DSW RETURN
CODES

Value
Code Returned

is.sue +1

IE.INS -02

IE.UNS -04

IE.PAI -16

IE.ITP -88

IE.IBS -89

IE.IEF -97

IE.ADP -98

IE.SOP -99

MACRO
EXPANSION
FORVSDA$

VSDA$
.BYTE

.RADSO

.WORD

.WORD

.!IF GE

.!IF GE

.IIF EQ

Explanation

Successful completion

Receiver task not installed

Insufficient pool nodes for SEND

Task does not have the privilege to use global event flags

Invalid Tl indicator

Invalid buffer size (size >255)

Invalid event flag number (event flag number< 0 or >64)

Part of DPB or data block is out of task's address space

DIC or DPB size is invalid

TASK4,DATA,24,36,200,TIADDR
71.,$$$T9 ;VSDA$ MACRO DIC, DPB SIZE=VARIABLE

(5-8);
/TASK4/ ;RECEIVER TASK NAME
DATA ;BUFFER ADDRESS OF DATA TO BE SENT
36 ;EVENT FLAG TO BE SET ON SUCCESSFUL SEND
$$$T9-6, .WORD 24 ;LENGTH OF DATA TO BE SENT
$$$T9-7, .WORD 200 ;PRIORITY AT WHICH TO SEND

;DATA
$$$T9-8., .WORD TIADDR ;TI OF RECEIVER TASK

4-191

VSDA$/SDAT$

FORTRAN
CALL FOR
VSC>A$

where:

CALL VSEND (tsk, idata, [iefn], [bufsz], [pri], [ti] [,ids])

• tsk - is a 2 word 1- to 6- character receiver task name in Radix-50 form

• idata - is an integer array of data to be sent (1 to 255 words)

• iefn - is the number of an event flag to be set

• bufsz - is the number of words to send

• pri - is the priority of the send

• ti - is the TI of the task to which data is to be sent

• ids - is an integer to receive the Directive Status Word.

An alternative macro call is SDAT$, which sends a 13-word data ck.

MACRO CALL
FORSDAT$

FORTRAN
CALL FOR
SDAT$

where:

SDAT$ [tsk],bufadr[,efn]

CALL SEND (tsk,idata, [iefn] [,ids])

• 1 tsk - is a 2-word, 1- to 6- character receiver task name in Radix-50 form.

•
1 idata - is a 13-word integer array of data to be sent.

•
1 iefn - is the number of an event flag to be set.

• ids - is an integer variable to receive the Directive Status Word.

4-192

VSDR$/SDRQ$

VSDR$/SDRQ$

The SEND DATA AND REQUEST OR RESUME RECEIVER (VSDR$) queues a variable-length data
block for a task to receive and to request, resume or unstop the receiver. You cannot successfully Issue
these directives unless:

1 You have real-time directive privilege, or

2 You have built the task you are trying to request or resume using the /SR switch (MCA TKB) or
/REQUEST qualifier (PDS LINK).

An alternative macro call is SORO$, which sends a 13-word data block. A maximum of 255 (decimal)
words may be sent in one block.

If the buffer size is not specified, a default buffer size of 13 words Is used (see SORO$, below).

A significant event is declared if the directivE~ is successful. The indicated event flag, If any, Is set. The
event flag Is used commonly to trigger the receiver into some action. To be effective, the task must set
a global event flag (33 through 64), because the local flags are visible only to the sending task and wlll
have no effect on the receiving task. You need real-time directive privilege to specify a global event
flag.

All data sent to a task is queued according 1:0 the priority specified In the send request. Thus it will be
received In priority order, not first-in, first-out (FIFO). If no priority Is specified, the priority of the task Is
used. If a number of tasks, running at different priorities, send related data to the same task, obscure
problems can result If the send priority facility is not taken into account.

If a Tl Is specified, this is used to determine which invocation of the receiving task (If It is multi-user) Is
to receive the data. If no Tl Is specified, the Tl of the sending task is used.

If the receiving task has specified a receive AST service routine, an AST will be queued (unless the
task already has a receive AST queued).

Data Is transferred from the sending task to the receiving task by means of nodes picked from the
pool. The number of nodes picked from the pool is charged to the sender. When the data Is received,
the nodes are returned and subtracted from the sender's usage count. The number of nodes required
depends on the amount of data sent. The first three words require a single node. Subsequently, each
eight words require one further node.

As such, the REQUEST part of this directive is equivalent to the SEND DATA (VSDA$/SDAT$) directive,
followed by one of the following operations:

1 The REQUEST (ROST$) directive, if the receiver task is inactive.

2 The RESUME (RSUM$) directive, if the receiver task is active and suspended.

3 The UNSTOP (USTP$) directive, if the receiver task Is active and stopped.

For the significance of the event flag number (efn) and terminal identification (ti) parameters, refer to
the SEND DATA (VSDA$/SDAT$) directive.

For the significance of the partition (prt), priority (pri) and UIC group codes (ugc and umc), refer to the
REQUEST (ROST$) directive.

4-193

VSDR$/SDRQ$

If the receiver task is multi-user, the ti parameter can be used to specify which invocation of the task
is to receive the data. If the receiver task is not active with the specified Tl, it will be requested with
that Tl irrespective of other invocations which can be active with different Tl assignments. If the task Is
active with the specified Tl, this is the invocation which will be resumed or unstopped.

If the receiver task is already active, the prt, pri, ugc and umc parameters are ignored.

MACRO CALL
FOIAVSDR$

VSDR$ tsk, [prt], [pri], [ugc,umc],bufadr, [buflen], [efn], [sndpri] [,ti]

where:

•
1 tsk - is the receiver task name

•
1 prt - is the partition

•
1 pri - is the priority

•
1 ugc - is the me group code

• umc - is the UIC member code

•
1 bufadr - is an address of data block

., buflen - is the length of data block in words

•
1 efn - is an event flag number (0 implies no event flag)

" sndpri - is the priority of send 0 through 250)

" ti - is a TI indicator

...
LOCAL
SYMBOL
DEIFINITIONS

The following symbols are locally defined with their assigned values equal to their byte offsets from
the start of the DPB to the respective DPB elements:

• S.DRTN - (length 4 bytes) Task name in Radix-50

•
•
•
•

•

•
•
•

S.DRPN - (4) Partition name in Radix-50

S.DRPR - (2) Request priority

S.DRGC - (1) UIC group

S.DRPC - (1) UIC member

S.DRBA- (2) Buffer address

S.DREF - (2) Event flag

S.DRBL - (2) Buffer length

S.DRSP - (2) Send priority

4-194

VSDR$/SDRQ$

• S.DRTI - (2) TI indicator

DSW RETURN
CODES

In the following code descriptions, R indicates that the REQUEST or RESUME was rejected, and
B indicates that both the SEND and REQUEST or RESUME were rejected.

Code

is.sue
IS.SET

IS.ACT

IE.UPN

IE.INS

IE.PTS

IE.UNS

IE.HWA

IE.ITS

IE.FIX

IE.PAI

IE.ITP

IE.IBS

IE.IUI

IE.PNS

IE.IPR

IE.IEF

IE.ADP

IE.SOP

Value
Returned

+1

+02

+03

-01

-02

-03

-04

-06

-08

-09

-16

-88

-89

-91

-94

-95

-97

-98

-99

Explanation

Data sent and ta:sk requested

Data sent and ta:sk resumed

Data sent to a non-suspended task

[R] Insufficient pool nodes available for REQUEST

[B] Receiver task not installed

[R] Partition too small for receiver task

[B] Insufficient pool nodes for SEND

[R] Handler task not resident to load task

[R] Receiver task. is disabled

(R] Receiver task. is in process of exiting

(B] Directive privilege violation

[B] Invalid Tl indicator

[B] Invalid buffer size (>255)

[R] Invalid UIC

[RJ Partition not in system

(RJ Invalid priority specified (<0 or > 250)

[BJ Invalid event flag number (event flag number <0 or >64)

[BJ Part of DPB or data block is out of the task's address space

[BJ DIC or DPB size is invalid

NOTE: The SEND portion of this directive can complete and the REQUEST portion fail.

4-195

VSDR$/SDRQ$

MACRO
EXPANSION
FORVSDR$

FORTRAN
CALL FOR
VSDR$

VSDR$
.BYTE
.RADSO
. IIF LT

YOU,PART,40,200,200,MYDATA,30,60,30,TIADDR
73.,$$$T9 ;VSDR$ MACRO DIC, DPB SIZE=VARIABLE (9-12)
/YOU/ ;RECEIVER TASK NAME
$$$TI-4, .WORD 0 ;FILLER FOR TASK NAME LESS THAN

;4 CHARS
.RADSO /PART/ ;PARTITION IN WHICH TO REQUEST THE RECEIVER
.WORD 40 ;PRIORITY AT WHICH TO REQUEST THE RECEIVER
.BYTE 200,200 ;UIC AT WHICH TO REQUEST THE RECEIVER
.WORD MYDATA ;BUFFER ADDRESS OF DATA TO BE SENT
.WORD 60 ;EVENT FLAG TO BE SET ON SUCCESSFUL SEND
.!IF GE $$$T9-10., .WORD 30 ;LENGTH OF DATA TO BE SENT
.IIF GE $$$T9-11., .WORD 30 ;PRIORITY AT WHICH TO SEND

;DATA
.IIF EQ $$$T9-12., .WORD TIADDR ;TI OF RECEIVER TASK

CALL VSNDRR (tsk, [iop],idata, [iefn], [bufsz], [pri], [ti] [,ids])

where:

t• tsk - is a 2-word, 1- to 6- character receiver task name in Radix-50 form

., iop - is a four-word integer array containing optional parameters

where:

iop(l) - Partition Name (1st Half) (Radix-50)

iop(2) - Partition Name (2nd Half) (Radix-50)

iop(3) - Run Priority

iop(4) - UIC (User Identification Code)-Zero when none specified

ti idata - is an integer array of data to be sent (1 to 255 words)

•
1 iefn - is the number of an event flag to be set

• bufsz - is the size of the send in words

• pri - is the priority of the send

• ti - is the Tl of the task to which data is to be sent

•• ids - is an integer to receive the Directive Status Word

An alternative macro call is SDRQ$ which sends a 13-word data block.

4-196

MACRO CALL
FORSDRQ$

FORTRAN
CALL FOR
SDRQ$

where:

SDRQ$ tsk, [prt], [pri], [ugc,umc],bufadr, [efn]

CALL SNDROR (tsk, [iop] ,idata, [iefn] [,ids])

VSDR$/SDRQ$

• tsk - is a 2-word, 1- to 6- character receiver task name in Radix-50 form

• iop - is a 6-word integer array containing optional parameters

where:

iop(l) - Radix-50 partition name (1st half)

iop(2) - Radix-50 partition name (2nd half)

iop(3) - run priority

iop(4) - UIC (User Identification Code)

NOTE: The iop arguments (1), (2), (3), and (4) default to zero when none is
specified.

• idata - is a 13-word integer array of data to be sent

• iefn - is the number of an event flag to be set

• ids - is an integer variable to receive the Directive Status Word

4-197

WSIG$

WSIG$

The WAIT FOR SIGNIFICANT EVENT directive suspends execution of the Issuing task until the next
significant event occurs in the system. The directive provides a means of suspending execution for a
short time without using a MARK TIME directive, which requires nodes from the system node pool. For
example, it may be used to suspend a task which cannot continue because of lack of pool nodes.

Use this directive with discretion in a system which contains the IAS Scheduler because the scheduler
causes events to occur many times every second .

...
MACRO CALL

WSIG$

...
DSW RETURN
CODES

Code

is.sue
IE.ADP

IE.SOP

Value
Returned

+1

-98

-99

MACRO
EXPANSION

WSIG$

Exp la nation

Successful completion

Part of the DPB is out of the issuing task's address space

DIC or DPB size is invalid

.BYTE 49.,1 ;WSIG$ MACRO DIC, DPB SIZE=l WORD

FORTRAN
CAll.

4-198

CALL WFSNE

WTLO$

WTLO$

The WAIT FOR LOGICAL OR OF FLAGS directive suspends the execution of the issuing task until
any indicated event flag of one of the following groups of event flags is set:

GR 0 - Flags 1-16

GR 1 - Flags 17-32

GR 2 - Flags 33-48

GR 3 - Flags 49-64

GR 4 - Flags 1-64

if the indicated condition is met when the directive is issued, task execution Is not affected.

Mask word bits from right-to-left represent increasing event flag numbers. A set mask word bit Indicates
that the task is to wait for the corresponding event flag.

There is a one to one correspondence between bits in the mask word and the event flags In the
specified group. That is, if group 2 were spE!Cified, then bit 0 in the mask word would correspond to
event flag 17, bit 1 to event flag 18, and so forth.

Event flags are not arbitrarily cleared by the Executive when WAITFOR conditions are met. Some
directives (010, for example) implicitly clear a flag, otherwise they must be explicitly cleared by a
CLEAR EVENT FLAG directive.

MACRO CALL

WTLO$ grp,mask

where:

• grp - is the desired group of event flags

• mask - if "grp" is 0, 1,2 or 3, "mask" is a 16 bit (16-flag) mask word.

If "grp" is 4, mask provides a list of four mask words in the form: <Ml, M2, M3, M4>.

If zero is specified in the $8 form of the macro, do not use a number sign (#) preceding it.

Example: The following macro is used to wait for flag 19, flag 20, flag 21, or flag 32.

WTLO$ 1,100034

Example: This macro can be used to wait for flag 1, 19, 20, 21, 32, or 64.

WTLO$ 4,<00001,100034,0,100000>

4-199

WTLO$

DSW RETURN
CODES

Code
Value
Returned Explanation

is.sue
IE.IEF

IE.ADP

IE.SOP

+1

-97

-98

-99

Successful completion

No event flag specified in mask word(s), or flag group indicator iother than 0, 1,2,3,
or 4

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

...... !

MACRO
EXPANSION

FORTRAN
CALL

WTLO$ 2,160003
.BYTE 43.,3
.WORD 2
. WORD 160003

;WTLO$ MACRO DIC,DPB SIZE=3 WORDS
;FLAGS SET NUMBER 2 (FLAGS 33:48.)
;EVENT FLAGS 33,34,46,47 AND 48 .

CALL WFLOR (iefl,ief2, ... iefn)

where:

•· iefl, .. .iefn - is a list of Event Flag Numbers to be taken as the set of Event Flags to be
specified in the Directive.

NOTE: The FORTRAN call always generates the group 4 form of the directive with four
mask words. Therefore, you can specify any combination of event flags between 1 and
64.

4-200

WRSE$

WRSE$

The WAIT FOR SINGLE EVENT FLAG directive suspends the execution of the issuing task until an
indicated event flag is set. If the flag is set when the directive is issued, task execution Is not affected.

MACRO CALL

WTSE$ efn

where:

• efn - is an event flag number

LOCAL
SYMBOL
DEFINITIONS

The following symbol is locally defined with its assigned value equal to the byte offset from the
start of the DPB to the DPB element:

• W.TSEF - (Length 2 bytes) Event flag number

DSW RETURN
CODES

Code

is.sue
IE.IEF

IE.ADP

IE.SOP

Value
Returned

+1

-97

-98

-99

Exp la nation

Successful completion

Invalid event flag number (event flag number <1 or >64)

Part of DPB is out of issuing task's address space

DIC or DPB size is invalid

4-201

WRSE$

MACRO
EXPANSION

FORTRAN
CALL

WTSE$ 52
.BYTE 41.,2
.WORD 52

;WTSE$ MACRO DIC,DPB SIZE=2 WORDS
;EVENT FLAG NUMBER 52

CALL WAITFR (iefn[,ids])

where:

• iefn - is an integer containing an Event Flag Number.

• ids - is an integer variable to receive the Directive Status Word.

4-202

A Directive Status Error Returns

The symbols listed below are associated with the directive status codes returned by the Executive.
To include these in a MACR0-11 program, the programmer should use the following two lines of
code:

.MCALL DRERR$
DRERR$

STANDARD ERROR CODES RETURNED BY DIRECTIVES IN THE DIRECTIVE STATUS
WORD

IE.UPN
IE.INS
IE.PTS
IE.UNS
IE.ULN
IE.HWR
IE.ACT
IE.ITS
IE.FIX
IE.CKP
IE.TCH
IE.RBS
IE.PR!
IE.RSU
IE.NSW
IE. ILV

IE.AST

IE.MAP
IE.IOP
IE.ALG
IE.WOV
IE.NVR
IE.NVW
IE.ITP
IE.IBS
IE.LNL
IE. IUI
IE. IOU
IE.IT!
IE.PNS
IE.IPR
IE. ILU
IE. IEF
IE.ADP
IE.SOP

-01.
-02.
-03.
-04.
-05.
-06.
-07.
-08.
-09.
-10.
-11.
-15.
-16.
-17.
-18.
-19.

-80.

-81.
-83.
-84.
-85.
-86.
-87.
-88.
-89.
-90.
-91.
-92.
-93.
-94.
-95.
-96.
-97.
-98.
-99.

INSUFFICIENT DYNAMIC STORAGE
SPECIFIED TASK NOT INSTALLED
PARTITION TOO SMALL FOR TASK
INSUFFICIENT DYNAMIC STORAGE FOR SEND
UNJl,S SIGNED LUN
DEVICE HANDLER NOT RESIDENT
TASK NOT ACTIVE
DIRECTIVE INCONSISTENT WITH TASK STATE
TASK ALREADY FIXED/UNFIXED
ISSUING TASK NOT CHECKPOINTABLE
TASK IS CHECKPOINTABLE
RECEIVE BUFFER IS TOO SMALL
PRIVILEGE VIOLATION
RESOURCE IN USE
NO SWAP SPACE AVAILABLE
ILI.EGAL VECTOR SPECIFIED

DIRECTIVE ISSUED/NOT ISSUED FROM AST OR
TASK NOT DIRECTIVE PRIVILEGED
ILLEGAL MAPPING SPECIFIED
WINDOW HAS I/O IN PROGRESS
ALIGNMENT ERROR
ADDRESS WINDOW ALLOCATION OVERFLOW
INVALID REGION ID
INVALID ADDRESS WINDOW ID
INVALID TI PARAMETER
INVALID SEND BUFFER SIZE
LUN LOCKED IN USE
INVALID UIC
INVALID DEVICE OR UNIT
INVALID TIME PARAMETERS
PARTITION/REGION NOT IN SYSTEM
INVALID PRIORITY
INVALID LUN
INVALID EVENT FLAG
PART OF DPB OUT OF USER'S SPACE
DIC OR DPB SIZE INVALID

A-1

B Directive Status Error Returns

The symbols listed below are assoicated with the directive status codes returned by the Executive.
To include these in a MACR0-11 program, use the following two lines of code:

.MCALL DRERR$
DRERR$

Standard Error Codes Returned By Directives in the Directive
Status Word

IE. UPN
IE. INS
IE.PTS
IE.UNS
IE.ULN
IE.HWR
IE.ACT
IE.ITS
IE.FIX
IE.CKP
IE.TCH
IE.RBS
IE.PR!
IE.RSU
IE.NSW
IE. ILV

IE.AST

IE.MAP
IE.IOP
IE.ALG
IE.WOV
IE.NVR
IE.NVW
IE. ITP
IE. IBS
IE.LNL
IE. IUI
IE. IOU
IE.IT!
IE.PNS
IE.IPR
IE. ILU
IE. IEF
IE .ADP
IE.SOP

-01.
-02.
-03.
-04.
-05.
-06.
-07.
-08.
-09.
-10.
-11.
-15.
-16.
-17.
-18.
-19.

-80.

-81.
-83.
-84.
-85.
-86.
-87.
-88.
-89.
-90.
-91.
-92.
-93.
-94.
-95.
-96.
-97.
-98.
-99.

Insufficient dynamic storage
Specified task not installed
Partition too small for task
Insufficient dynamic storage for send
Unassigned LUN
Device handler not resident
Task not active
Dir1:!ctive inconsistent with task state
Task already fixed/unfixed
Issuing task not checkpointable
Task is checkpoint ab le
Rec1:!ive buffer is too small
Privilege violation
Resource in use
No swap space available
Ill,:!gal vector specified

Directive issued/not issued from AST
or task not directive privileged
Illegal mapping specified
Window has I/O in progress
Ali9nment error
Address window allocation overflow
Invalid region ID
Invalid address window ID
Invalid TI parameter
Invalid send buffer size
LUN locked in use
Invalid UIC
Invalid device or unit
Invalid time parameters
Partition/region not in system
Invalid priority
Invalid LUN
Invalid event flag
Part of DPB out of user's space
DIC or DPB size invalid

B-1

Index

$ • 1-6 ._

A
Abort task directive • 4-4
ABRT$•4-4
ADB•2-7
Address mapping • 2-1
Address space

virtual and logical • 2-3
Alter priority directive • 4-6
ALTP$•4-6
ALUN$•4-8
APRs • 2-1
Assign LUN directive • 4-8
AST service exit directive • 4-10
ASTX$ •4-10
ATRG$•4-12
Attaching to regions • 2-7
Attachment descriptor block • 2-7
Attach region directive• 4-12

...

c
$C • 1-6
Cancel mark time AST requests directive• 4-rn
Cancel mark time requests directive• 4-17
Cancel scheduled requests directive • 4-30
Checkpolnting disabled directive • 4-36
Clear event flag directive • 4-15
CLEF$ •4-15
Clocks• 1-16
CMKT$ •4-17
CMTA$•4-19
CNCT$ •4-21
Connect to task directive• 4-21
CRAW$ •4-23
Create address window directive • 4-23
Create region directive• 4-26
CRRG$•4-26
CSRQ$ •4-30

D
DECL$ •4-32
Declare significant event directive • 4-32
Detach region directive • 4-37
Directive

abort task • 4-4
alter priority • 4-6
assign LUN • 4-8
AST service exit • 4-10
attach region • 4-12
cancel mark time AST requests• 4-19
cancel scheduled requests • 4-30
clear event flag • 4-15
connect to task • 4-21
create address window • 4-23
create region • 4-26
declare significant event • 4-32
detach region • 4-37
disable • 4-34
disable checkpointing • 4-36
eliminate address window • 4-39
emit status• 4-42
enable • 4-45
enable AST recognition • 4-44
enable checkpointing • 4-47
execute • 4-48
exitif • 4-51
extend task • 4-57
get LUN information • 4-65
get mapping context • 4-70
get MCA command line •4-68
get partition parameters • 4-73
get region parameters • 4-75
get sense switches • 4-78
get task parameters • 4-82
get time parameters• 4-80
inhibit AST recognition • 4-86
map address window • 4-87
mark time • 4-91
queue 1/0 • 4-95
queue 1/0 and wait • 4-99
read all flags • 4-100
read event flag • 4-102
receive by reference • 4-108
receive data • 4-173

lndex-1

Index

Directive (Cont.)

receive data or exit • 4-185
receive data or stop • 4-182
receive data or suspend • 4-177
request • 4-1 04
resume• 4-113
resume or unstop• 4-115
run •4-117
schedule• 4-121
send by reference • 4-143
send !by reference and request or resume• 4-146
send data • 4-190
send data and request or resume receiver • 4-193
set event flag • 4-125
spawn • 4-135
specify floating point exception AST • 4-127
specify power recover AST • 4-132
spiecify receive-by-reference AST • 4-1 50
specify receive data AST • 4-140
specify SST vector table for debugging aid • 4-159
specify SST vector table for task • 4-161
stop •4-155
stop for logical or of event flags • 4-153
stop for single event flag• 4-157
suspend • 4-130
task exit • 4-53
task exit with status indication • 4-55
unfix .. 4-166
unmap address window• 4-168
unstop• 4-170
wait for logical or of flags • 4-199
wait for significant event • 4-198
wait for single event flag• 4-201

Directive conventions• 1-3, 1~
Directive descriptions • 4-1
Directive privilege • 4-1
Directive processing • 1-1
Directives

cancel mark time requests • 4-17
event-associated • 3-3
FORTRAN subroutines associated with • 1-13
get common block parameters • ~2
1/0 and intertask communications-related • 3-4
informational • 3-2
memory management• 2-1, 3-6
taisk execution control • 3-1
task status control • 3-5
trap-associated • 3-4

Directive status error returns• A-1
Directory

fix-in-memory • ~O

lndex-2

Directory (Cont.)

synchronize • 4-163
Disable checkpolntlng directive • 4-36
Disable directive • 4-34
DPB

predefined • 1-8
DSBL$ •4-34
DSCP$ •4-36
DTRG$•4-37

E
ELAW$•4-39
Eliminate address window directive • 4-39
Emit status directive • 4-42
EMST$$ • 4-42
Enable AST recognition directive • 4-44
Enable checkpointing directive• 4-47
Enable directive • 4-45
ENAR$•4-44
ENBL$ •4-45
ENCP$•4-47
Error conditions • 1-15
Error returns • 1-3

status • A-1
Event-associated directives • 3-3
EXEC$•4-48
Execute directive • 4-48
Executive privilege• 4-1
EXIF$ • 4-51
EXIT$• 4-53
Exitif directive • 4-51
EXST$ •4-55
Extend task directive • 4-57
EXTK$ •4-57

F
FIX$·~0

Fix-in-memory directive • ~O
FORTRAN subroutines associated with system

directives• 1-13

G
GCOM$·~2

Get common block parameters directive • 4-62
Get LUN information directive • 4-65
Get mapping context directive • 4-70
Get MCR command line directive • 4-68
Get partition parameters directive • 4-73
Get region paramters directive• 4-75
Get sense switches directive • 4-78
Get task parameters directive • 4-82
Get time parameters directive • 4-80
GLUN$•4-65
GMCR$•4-68
GMCX$•4-70
GPRT$•4-73
GREG$•4-75
GSSW$•4-78
GTIM$•4-80
GTSK$•4-82

----------------------------------.......... I
110 and intertask communications-related directives •

3-4
IAS system library • 1-11
IHAR$•4-86
Informational directives • 3-2
Inhibit AST recognition directive • 4-86

L
Logical address space • 2-3

--------------------------------------M
MAP$•4-87
Map address window directive • 4-87
Mapping

window-to-region • 2-4
Mark time directive • 4-91
Memory management directives • 2-1 , 3--6
MRKT$ •4-91

--------------------------------------N
Node pool• 1-16

0
Offsets

local symbolic • 1-8

p
Page address register • 2-2
Page descriptor register • 2-2
PAR •2-2
POR•2-2
Protection

region• 2-7

Q
QI0$•4-95
QIOW$•4-99
Queue 1/0 and wait directive • 4-99
Queue 1/0 directive • 4-95

R
RCST$ • 4-182
RCVO$ • 4-173
RCVS$ •4-177
RCVX$ • 4-185
ROAF$• 4-100
ROB• 2-9

generating • 2-9
ROEF$ •4-102
Read all flags directive• 4-100
Read event flag directive • 4-102
Receive by reference directive • 4-108
Receive data directive • 4-173
Receive data or exit directive • 4-185
Receive data or stop directive• 4-182
Receive data or suspend directive• 4-177
Region

protection• 2-7
Region definition block • 2-9
Regions • 2-4

attaching to• 2-7
shared ·2~

Index

lndex-3

Index

Register
page address • 2-2
peige descriptor • 2-2

Request directive• 4-104
Resume directive • 4-113
Resume or unstop directive • 4-115
RREF$ ·• 4-108
RSUIM$ • 4-113
RSUS$ • 4-115
RUN$•4-117
Run directive •4-117
RZST$ • 4-1 04

-s
$S • ·1-7
SCHD$ • 4-121
Schedule directive• 4-121
SDAT$ "4-190
SORO$• 4-193
Send by reference and request or resume directive •

•'-146
Send by reference directive • 4-143
Send data and request or resume receiver directive•

4-193
Send data directive • 4-190
Set event flag directive • 4-125
SETF$ •4-125
SFPA$ •4-127
Spawn directive • 4-135
Specify floating point execption AST directive • 4-127
Specify power recovery AST directive• 4-132
Specify receive-by-reference AST directive • 4-150
Specify receive data AST directive • 4-140
Specify SST vector table for debugging aid directive •

•'-159
Specify SST vector table for task directive • 4-161
SPND$ •4-130
SPRA$ •4-132
SPWN$ • 4-135
SADA$• 4-140
SREF$ ·• 4-143
SRFR$ •4-146
SARA$• 4-150
Status error returns• A-1
STLO$ "4-153
STOP$ ·• 4-155
Stop directive • 4-1 55
Stop for logical or of event flags directive • 4-153

lndex-4

Stop for single event flag directive • 4-157
STSE$ • 4-157
Suspend directive • 4-130
SVOB$• 4-159
SVTK$ • 4-161
SYNC •4-163
Synchronize directory • 4-163
System clocks • 1-16
System directives

See Directives
System library• 1-11

T
Task

address capabilities • 2-1
Task execution control directives• 3-'1
Task exit directive • 4-53
Task exit with status Indication directive• 4-55
Task status control directives• 3-5
Task UIC • 4-2
Terminal interface input device • 4-2
Tl indicator • 4-2
Trap-associated directives • 3-4

u
UFIX$ • 4-166
UIC •4-2
UMAP$ • 4-168
Unfix directive • 4-166
Unmap address window directive • 4-168
Unstop directive• 4-170
USTP$ • 4-170

v
Virtual address windows • 2-3
Virtural address space • 2-3
VRCD$/RCVD$ • 4-173
VRCS$/RCVS$ • 4-177
VRCT$/RCST$ • 4-182
VRCX$/RCVX$ • 4-185
VSDA$/SDAT$ • 4-190
VSDR$/SDRO$ • 4-193

----------------------------------w
Wait for logical or of flags directive • 4-199
Wait for significant event directive • 4-198
Wait for single event flag directive • 4-201

WDB •2-12
generating • 2-14

Window definition block • 2-12
Windows

virtual address • 2-3
Window-to-region mapping • 2-4
WRSE$ • 4-201
WSIG$ •4-198
WTLO$ • 4-199

Index

lndex-5

IAS
System Directives Reference Manual

AA-H002C-TC

Reader's
Comments

This form is for documeint comments only. Digital will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible
to receive one under Software Performance Report (SPA) service, submit your
comments on an SPA form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for

improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user /reader that you most nearly represent:

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other(~easespecijy)._~~~--~~~~~~~~~~~~~~~~~-

Organization ________________________________ _

Stree.__ __ _

City ___________________ _ State ______ Zip Code _____ _
or Country

------------------- l>o :'llt•I Tt·ar l'••ld llt·n· a11t1 ·1·a11t· -------------------------'

I

~amaamaTM

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 33 MA YN/l.RD MASS

POSTAGE WILL BE PAID BY ADDRESSEE

IAS Engineering/Documentation
Digital Equipment Corporation
5 Wentworth Drive GSF /L20
Hudson, NH 03051-4929

I II 111 11II1 II 111 .1.1 111.1 •• 1.1 ... 1 .. 11.1 .. 11 ••• 1

No Postage

Necessary

11 Mailed in the

United States

-----·--------------· I>•• :'lit11 ·i·t·ar · l't1ld llt·n· ---------------------

I
I
I
I

