
lAS Guide to Writing a 
Command Language Interpreter 

Order Number: AA-D120D-TC 

This gives programmers detailed instructions on how _to write their own ells. 

Operating System and Version: lAS Version 3.4 



May 1990 

The Information In this document Is subject to change without notice and should not be construed as a 
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for 
any errors that may appear in this document. 

The software described In this document is furnished under a license and may be used or copied only In 
accordance with the terms of such license. 

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth In 
subparagraph (c)(1)(1I) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013. 

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital 
Equipment Corporation or its affiliated companies. 

Copyright ©1990 by Digital Equipment Corporation 

All Rights Reserved. 
Printed In U.S.A. 

The postpaid READER'S COMMENTS form on the last page of this document requests the user's critical 
evaluation to assist in preparing future documentation. 

The following are trademarks of Digital Equipment Corporation: 

DDIF 
DEC 
DEC/CMS 
DECIMMS 
DECnet 
DECUS 
o ECwindows 
o ECwrlte 
DIBOL 

lAS 
MASSBUS 
PDP 
PDT 
RSTS 
RSX 
ULTRIX 
UNIBUS 
VAX 

VAXC 
VAXcluster 
VAXstation 
VMS 
VR150/160 
VT 

This document was prepared using VAX DOCUMENT, Version 1.2 



Contents 

PREFACE Ix 

CHAPTER 1 INTRODUCTION 1-1 

1.1 COMMAND LANGUAGE INTERPRETERS 1-1 

1.2 TIMESHARING CONTROL SERVICES 1-1 
1.2.1 Subtasks 1-2 
1.2.2 Task Events 1-2 
1.2.3 Ictllcl Events 1-2 
1.2.4 Chaining 1-2 
1.2.5 Communication Between Tasks 1-2 

1.3 TYPES OF TCS MACROS 1-2 

1.3.1 Data Definition Macros (Assembly Time) 1-3 
1.3.2 Data Definition Macros (Run Time) 1-3 
1.3.3 Imperative Macros 1-3 

CHAPTER 2 WRITING A Cli 2-1 

2.1 THE REQUIREMENT FOR USER-WRITTEN CLiS 2-1 

2.2 TYPES OF CLI 2-1 

2.3 SPECIAL FACILITIES AVAILABLE TO A CLI 2-1 
2.3.1 System Shutdown 2-2 
2.3.2 Limiting Subtasklng 2-3 

2.4 GUIDELINES FOR WRITING AND RUNNING CLiS 2-4 

III 



Contents 

CHAPTER 3 THE CREATION AND CONTROL OF SUBTASKS 

3.1 CONTROL OF SUBTASKS 
3.1.1 Initiation of Subtasks 

3.1.1.1 Reading the Command Line • 3-1 
3.1.2 Suspending Subtasks 
3.1.3 Setting the Subtask's Local Event Flags 
3.1.4 Aborting the Subtask 
3.1.5 Checking the State of the Subtask 
3.1.6 Waiting for Task Completion 

3.2 CREATION OF SUBTASKS 
3.2.1 Contents of a Task Descriptor Block 

3.2.1.1 Command Line Section • 3-4 
3.2.1.2 Privilege Section • 3-5 
3.2.1.3 Attribute Section • 3-5 
3.2.1.4 Event Information Section • 3-6 
3.2.1.5 Error Status Block Section • 3-7 

3.2.2 Internal Fields 

3.3 TASK ACCOUNTING 

CHAPTER 4 COMMUNICATION BETWEEN TASKS 

4.1 SETTING UP THE MESSAGE 
4.1.1 Contents of a Send/Receive Data Block (SOB) 

4.2 SENDING MESSAGES 

4.3 RECEIVING MESSAGES 

CHAPTER 5 I erAue I EVENTS 

Iv 

3-1 

3-1 
3-1 

3-2 
3-2 
3-2 
3-2 
3-3 

3-3 
3-3 

3-7 

3-7 

4-1 

4-1 
4-1 

4-2 

4-3 

5-1 



Contents 

CHAPTER 6 CHAINING 6-1 

6.1 TCSINTERFACE 6-1 

6.2 CONTENTS OF A CHAIN TASK DESCRIPTOR BLOCK 6-1 

CtiAPTER 7 USING THE TIMESHARING CONTROL SERVICES (TCS) 7-1 

7.1 INCLUDING TIMESHARING CONTROL SERVICES IN A PROGRAM 

7.2 INITIALIZATION OF TIME.SHARING CONTROL SERVICES 

7.3 PRIVILEGE 
7.3.1 Allocation of Privilege 
7.3.2 Privileged Term inals 

7.4 ERROR HANDLING 
7.4.1 Error Handling Subroutines 

7.5 EVENT FLAG USAGE 

7.6 MACRO CHARACTERISTICS 
7.6.1 Imperative Macros 

7.6.1.1 Parameters • 7-4 
7.6.1.2 Register Usage • 7-5 

7.6.2 Data Definition Macros (Assembly Time) 
7.6.2.1 Parameters • 7-5 
7.6.2.2 Offset Definitions • 7-5 

7.6.3 Data Definition Macros (Run Time) 
7.6.3.1 Register Usage • 7-5 
7.6.3.2 Error Handling • 7-6 
7.6.3.3 Parameters • 7-6 

7-1 

7-1 

7-2 
7-:;':' 

7-3 

7-3 
7-4 

7-4 

7-4 
7-4 

7-5 

7-5 

v 



Contents 

CHAPTER 8 TCS MACRO DESCRIPTIONS 
ABRT$T 
COBOF$ 
COOF$R 
CHN$T 
CKEV$T 
CTC$T 
ESBOF$ 
JNOO$T 
RCV$T 
ROEV$T 
RSAS$T 
RSUM$T 
RUN$T 
SOBOF$ 
SOOF$R 
SENO$T 
SETF$T 
SHUT$T 
SPNO$T 
TCOFF$ 
TCSMC$ 
TOBOF$ 
TOBO$T 
TOBR$T 
TOCM$A 
TOCM$R 
TOEB$A 
TOOFF$ 
TOPR$A 
TOPR$R 
TOTA$A 
TOTA$R 
TEOFF$ 
TINIT$ 
TKST$T 
TSOFF$ 

APPENDIX A DATA BLOCK LAYOUTS 

A.1 TASK DESCRIPTOR BLOCK 
A.1.1 T.EVBF-Termination Information 

A.2 CHAIN TASK DESCRIPTOR BLOCK 

A.3 SEND/RECEIVE DATA BLOCK 

vi 

8-2 
8-4 
8-5 
8-6 
8-8 

8-11 
8-13 
8-14 
8-16 
8-18 
8-20 
8-22 
8-24 
8-27 
8-29 
8-31 
8-33 
8-35 
8-37 
8-39 
8-40 
8-41 
8-42 
8-44 
8-46 
8-47 
8-48 
8-49 
8-50 
8-52 
8-54 
8-56 
8-58 
8-59 
8-61 
8-63 

8-1 

A-1 

A-1 
A-2 

A-2 

A-3 



A.3.1 Message Format 

A.4 ERROR STATUS BLOCK 

APPENDIX B ERROR CODES 

B.1 TASK TERMINATION CODES 

8.2 RESULT CODES 

APPENDIX C EXAMPLES OF TCS MACROS 

INDEX 

FIGURES 
2-1 

2-2 
2-3 
5-1 
A-1 

A-2 
A-3 

A-4 

A-5 
A-6 

TABLES 
7-1 
8-1 
B-2 

A Typical System Plan 
A Simple CLI 
A Complex CLI 
A Task Hierarchy 

Task Descriptor Block 
T.EVBF 

Chain Task Descriptor Block 

Send/Receive Data Block 

Message Format 
Error Status Block 

Error Status Block 
Task Termination Codes 
Imperative Macro Return Codes 

Contents 

A-3 

A-3 

B-1 

B-1 

8--2 

C-1 

_t 

2-2 
2-3 
2-3 
5-1 
A-1 
A-2 

A-2 

A-3 

A-3 
A-4 

7-3 
8-1 
8-2 

vII 





Preface 

Purpose of the Manual 
The lAS operating system provides two standard Command Language Interpreters (CLls): the 
Program Development System (PDS) and the Monitor Console Routine (MCR). This manual is 
intended for users who require nonstandard CLls. The manual will enable system programmers to 
write and run their own nonstandard CLls on lAS. 

In addition, the manual describes the lAS timesharing facilities. 

Document Structure 
Chapters 1 to 7 are descriptive and should be read sequentailly. 

• Chapter 1 introduces CLls and timesharing control services (TCS). 

• Chapter 2 contains guidelines for writing CLls. 

• Chapters 3 to Chapter 7 describe TCS. 

• Chapter 8 contains TCS macro descriptions and is designed for ease of reference. 

• Appendix A shows the layouts and offset names for the various data blocks you need to write 
CLls. 

• Appendix B lists task termination codes and result codes. 

• Appendix C contains examples of TCS. 

Associated Documents 
You should be acquainted with the lAS System Management Guide, the lAS PDS User's Guide, and 
the PDP-11 MACRO-11 Reference Manual. 

All lAS manuals are detailed in the lAS Master Index and Documentation Directory. 

Ix 





1 Introduction 

1.1 Command Language Interpreters 
A Command Language Interpreter (CLI) is a task that enables the outside world to communicate 
with the lAS system. In reference to comrnands, CLls perform the following functions: 

• Receive them. 

• Interpret their meaning. 

• Translate them into statements understandable to the lAS system. 

Typically, the commands are part of an overall language that enables users to specify commands 
and command variations of commands. 

A CLI differs from other timesharing tasks in that it is written to communicate with a single 
input stream (of commands) and is allocated to an input/output device. Typically, this device is 
a keyboard where a human user can type commands. However, the device can be any logical or 
physical device that the CLI task is programmed to communicate with. 

A CLI built as a multiuser task (see Section 2.4), can be allocated to more than one device (for 
example, many terminals) at the same time. In this case, when more than one CLI task is active, 
only one copy of the task's pure area exists for all active CLI tasks and one copy of the impure area 
exists for each active CLI task. This method is generally more efficient and flexible than wri ting a 
single task that services multiple input streams. 

A user-written CLI can use many facilities available in the lAS system; for example, it might 
use the lAS file system, the system directives, and the system utilities. The timesharing control 
services (TCS) is a facility included in the lAS system specifically for use by CLI tasks. 

1.2 Timesharing Control Services 
Timesharing control primitives (TCP) are responsible for monitoring and maintaining all 
timesharing tasks (including CLls). 

For more information on TCP, see the lAS System Management Guide. TCS enables a user 
program to interface with TCP. TCS consists of two parts: 

1 A set of macros 

2 A set of subroutines. 

The required macros are included in the user source program. These macros generate data areas 
and calls to the TCS subroutines that are included in the user task by the Task Builder. 

1-1 



1.2.1 

1.2.2 

1.2.3 

1.2.4 

1.2.5 

Introduction 

Subtasks 
When a CLI is active, it can use TCS to initiate further timesharing tasks. These tasks are known 
as subtasks of the CLI. The CLI owns the subtasks and maintains overall control of them. The 
CLI can abort or suspend the subtask execution, or be notified of subtask events (such as subtask 
exit). By issuing privileges to subtasks, the CLI controls the operation ofa subtask. 

If a subtask has sufficient privilege, it can use TCS to initiate further subtasks. This might lead to 
a hierarchical structure of tasks at a terminal. Subtasks are described in Chapter 3. 

Task Events 
If a task suspends itself, its owner receives a task event (through TCS) to notify it of the 
suspension. Another example of a task event is a task exiting or failing to load after a swap. 
These task events are returned to the task owner (see Section 3.1.5). 

Ictllcl Events 
A Ictvcl event (or terminal event) occurs when you type I etllc I on the tenninal. Only one task in the 
possible hierarchy of tasks at the terminal is notified of the event. ICtvcl events are described in 
Chapter 5. 

Chaining 
A further indirect method of initiating a task is task chaining. In this case a timesharing task 
(the chain task) automatically commences execution when an earlier timesharing task exits. This 
facility is particularly useful in some applications. Chaining is described in Chapter 6. 

NOTE: A eLI is cannot chain. 

Communication Between Tasks 
Related tasks can send messages to each other. This communication might take place between a 
subtask and its owner or between a task and its chain task. Intertask communication is described 
in Chapter 4. 

1 .3 Types of TCS Macros 
The three types of TCS macros are as follows: 

1 Data definition (assembly time). See Section 1.3.1. 

2 Data definition (run time). See Section 1.3.2. 

3 Imperative. See Section 1.3.3. 

1-2 



1.3.1 

1.3.2 

1.3.3 

Introduction 

Data Definition Macros (Assembly Time) 
To implement the facilities described in Sections 1.2.1 through 1.2.5, TCS uses several different 
kinds of data structure. Data definition (assembly time) macros are used for assembly time 
declaration and definition of TCS data structures. 

Data Definition Macros (Run Time) 
These macros are similar to data definition (assembly time) macros, except that you use them at 
run time. 

Imperative Macros 
Tasks use imperative macros to initiate the TCS facilities. 

The TCS macros are described in Chapter 8. Special properties of the different macro types are 
described in Section 7.6. 

1-3 





2 Writing a ell 

This chapter provides guidelines for writing a CLI. 

2.1 The Requirement for User-Written ells 
lAS comes with the Program Development System (PDS) and the Monitor Console Routine (MCR) 
CLls. PDS is the normal user/system interlace used with lAS. It is designed for use by computer 
professionals and programmers. With PDS commands, you can use all the program development 
and execution facilities of the lAS system. 

Specialized applications such as text processing or inventory control might benefit if presented 
as a user-written CLI. The CLI would normally be allocated to a number of dedicated terminals 
and would only respond to a small number of commands. In this way non-technical people can 
have available only those facilities that they need. The application can be presented to them in a 
manner they understand and they need use only a small amount of documentation. 

A typical system plan is shown in Figure 2.--1. 

2.2 Types of ell 
As shown in Figure 2-2, user-written CLls can be simple (in terms of using system resources); for 
example, a BASIC interpreter. 

As shown in Figure 2-3, CLls that use TCS can be more complex in terms of system usage. The 
CLI can accept commands that cause subtasks to be created. 

2.3 Special Facilities Available to a ell 
In most respects, any timesharing task can run as a CLI. The main distinguishing feature is that 
the CLI is the controller (directly or indirectly) of all other tasks running for a particular terminal. 
Consequently, every active tenninal must have a CLI running for it. The functional aspects of the 
CLI are set at designer discretion (within limits set by the system manager). 

Thro facilities unavailable to other timesharing tasks are available to eLls. 

1 Interface with system shutdown, and 

2 Dynamic control over the level of multitasking on a particular terminal. 

2-1 



2.3.1 

Writing a ell 

Figure 2-1 A Typical System Plan 

SYSTEM FACILITIES 

SCI 

CONSOLE 

TIMESHARING 
CONTROL 

PRIMITIVES (TCP) 

PDS 

System Shutdown 

PDS 
USER 
WRITTEN 

PDS 
BATCH 

A CLI can invoke TCS to check if the system manager has declared shutdown. This is perfonned 
using the macro CKEV$T as follows: 

CKEV$T SHUT 

On successful completion, RO contains -2 if shutdown has been declared and -1 if shutdown has 
not been declared. In the former case, the CLI can invoke SHUT$T to interrogate TCS for the 
number of minutes before shutdown. SHUT$T returns the number of minutes in RO. 

2-2 



2.3.2 

Writing a ell 

Figure 2-2 A Simple CLI 

CLI 

[ TERMINAL 

Figure 2-3 A Complex CLI 

TASK A TASKS] 

CLI 

TERMINAL 

Limiting Subtasking 
The system manager limits the maximum number of timesharing tasks for a terminal when 
allocating a eLI to that terminal. The default for user-written eLls is 1. (See the lAS System 
Ma.nagement Guide.) The eLI itself can use the JNOD$T macro dynamically to impose a further 
limit. The eLI can set the limit to any value between the current usage and the allocation imposed 
by the system manager. 

2-3 



Writing a ell 

2.4 Guidelines for Writing and Running ells 
The following conventions apply to user-written CLls: 

1 You can write a CLI in any programming language that lAS supports. For the CLI to use 
TCS, the language must be MACRO-II or support the calling of MACRO-II subroutines (for 
example, FORTRAN IV-PLUS, COBOL, and CORAL). TCS macros can be called from within 
MACRO-II subroutines. 

2 You can install any suitable task in the system as a CLI. The task must always be built as a 
multiuser task. (See the lAS Task Builder Reference Manual.) 

3 A CLI must have the appropriate task privilege. (See the lAS System Management Guide and 
Chapters 3 and Chapter 7 of this manual.) 

4 The CLI must be allocated to each terminal where the CLI is to run. The lAS System 
Management Guide describes how to allocate CLls. 

2-4 



3 The Creation and Control of Subtasks 

A subtask is a timesharing task that has been initiated by another timesharing task. You can run 
a Slubtask, for example, to process a number of background jobs in an application. 

This chapter describes the relationship between a subtask and the owner task, and the mechanism 
that TCS uses to support this relationship. 

Before a subtask can be initiated, an appropriate task descriptor block (TDB) must exist. The TDB 
contains all the details concerning the subtask that TCS and the owner task require. The TDB is 
therefore the interface between the owner task and the subtask. TDBs are described in Section 3.2. 

The TCS macros introduced throughout this chapter are fully specified in Chapter 8 .. 

3.1 Control of Subtasks 

3.1.1 

The subtask owner controls the subtask as follows: 

1 By initiating the subtask 

2 By enabling the subtask to read a comlnand line 

3 By suspending the subtask 

4 By setting the subtask event flags 

5 By aborting the subtask 

6 By checking the subtask status 

Initiation of Subtasks 
The subtask owner is the task that initiates the subtask. To initiate a subtask, a task uses the 
RUN$T macro. This macro passes the address of a TDB to TCS. For example: 

RUN$T iTDBl,iBUFl,iLENGTH,iFORM 

would initiate the subtask described by TDBl. The subtask's name and a command line are 
contained in the buffer, BUFl. LENGTH is the length of the buffer and FORM is the format of the 
buffer. 

3.1.1.1 Reading the Command Line 
A subtask that has been initiated can read its associated command line by using the GMCR$ 
directive. This is a system directive and not a TCS macro. (See the lAS System Directives 
Reference Manual. 

3-1 



3.1.2 

3.1.3 

3.1.4 

3.1.5 

The Creation and Control of Subtasks 

Suspending Subtasks 
A subtask owner can suspend the subtask by means of the SPND$T macro. For example: 

SPND$T :/tTDBl 

would suspend the subtask TDBI initiated in Section 3.1.1. Only the owner has the right to 
suspend a subtask (although a subtask can be automatically suspended bylCtrVCI; see Chapter 5). 

A suspended subtask can be resumed by means of the RSUM$T macro. For example: 

RSUM$T :/tTDBl 

would enable a previously suspended subtask to resume executing. 

Setting the Subtask's Local Event Flags 
A subtask owner can set the subtask's local event flags (see the lAS Executive Facilities Reference 
Manual for a description of event flags). This can be useful for synchronizing the activities of the 
subtask. For example: 

SETF$T :/tTDB1,:/t2 

would set local event flag 2 for the subtask initiated. 

Aborting the Subtask 
A subtask owner can abort the subtask by means of the ABRT$T macro. For example: 

ABRT$T :/tTDBl 

would abort the subtask indicated (plus any subtasks of that subtask). 

The system manager can also abort a subtask by using the SCI command, ABORT/JOB (see the 
lAS System Management Guide for further details). The subtask's job-id (which you can determine 
by using the SHOW TASKS command) must be specified as a parameter. You can close down a CLI 
in an orderly way by using the STOP/CLI command; you can abort a CLI by using the ABORT/CLI 
command. 

Checking the State of the Subtask 
An event occurs when any of the following things occur: 

• Subtask terminates 

• Subtask suspends itself 

• Subtask sends a message to its owner 

• Shutdown is requested 

• I Ctrl/C] occurs 

The owner can check these events by using the CKEV$T macro. For example: 

CKEV$T ,:/tTDBl 

3-2 



3.1.6 

The Creation and Control of Subtasks 

checks for task related events and sets RO equal to -1 if no events have occurred, and equal to 
#TDB1 if an event has occurred. 

The task event type can be detected by means of RDEV$T. For example: 

RDEV$T 

causes the type of event that has occurred to be placed in the TDB of the subtask, in addition, the 
local event flag, which TCS uses to signify the event, is cleared. Section 7.5 details TCS event flag 
usage. 

The status of a subtask can be checked by means of TKST$T, the information provided is task size 
and CPU time. 

Waiting for Task Completion 
On subtask initiation, the owner task can specify that it wants to suspend execution until the 
subtask causes a task event. The initiation call would be of the following form: 

RUN$T #TDB1"",WAIT 

or: 

RUN$T #TDB1"",STOP 

In the first case, the owner task enters a WAITFOR state until the subtask causes a task event, at 
which point the owner task resumes execution immediately following the RUN$T. Next, the owner 
task normally uses RDEV$T to find the cause of the task event. 

In the second case, the owner task enters a STOP state until the subtask causes a task event. The 
owner task then resumes execution as for the first case. 

3.2 Creation of Subtasks 

3.2.1 

Use the TDBDF$ macro to reserve the data space required for a TDB. You use the macros 
TDCM$A, TDPR$A, TDTA$A, and TDEB$A to insert data into the TDB. These macros define 
the data at assembly time. The runtime equivalents are TDCM$R, TDPR$R and TDTA$R. 

Before a TDB can be used to control a subtask, it must be declared to TCS. TCS then assumes that 
it can access the TDB whenever TCS is invoked. This feature simplifies the TCS housekeeping 
procedures. The user program can load data values into the TDB at any time, but cannot initiate 
a task until its TDB is declared. The TDB declaration is accomplished using the TDBD$T macro. 
The TDBR$T macro is used to release a TDB. TDBR$T need only be used if the user wishes to 
prevent TCS accessing the TDB, for example, because TCS is to be invoked from an overlay that is 
not coresident with the overlay containing the TDB. 

Contents of a Task Descriptor Block 
The format of a TDB is given in Section A.!, To safeguard user programs against the effect of 
possible format changes in later versions of TCS, access TDB fields using offset names. 

The individual fields are as follows: 

1 Command Line Section. 

2 Privilege Section. 

3-3 



The Creation and Control of Subtasks 

3 Attribute Section. 

4 Event Information Section. 

5 Error Status Block Section. 

6 Internal Fields. 

3.2.1.1 Command Line Section 
Normaly, you set up thses fields by using TDCM$A, TDCM$R or RUN$T. 

1 T.CMDA 

Address of a buffer containing an ASCII command line. When you initiate a subtask, the 
command line is inspected to find the task (or file) name, and, in some cases, a command line. 
This field must contain a valid buffer address when you invoke RUN$T. The command line has 
four legal formats: 

a. A user file specification preceded by a space; for example: 

DKO: [200,40)MYTASK.TSK;2 

The defaults for each field are: 

Device-Terminal sytem device 
UFD-Initiating task's UIC 
Filename-None, the file name must be specified 
Filetype-.TSK 
Version-Latest version 

The maximum length is 67 characters. 

A task invoked in this way is automatically installed (this is also called auto-installed) and 
automatically removed on exit. 

b. A 1- to 3-character name (for example, XYZ) that corresponds to a task instal1ed with the 
name ... XYZ. This can optionally be followed by a space and a command: for example: 

PIP FRED.MAC=JIM.MAC 

The maximum length is 79 characters. 

c. The same format as b. but the installed task name is $$$XYZ. 

d. A 1- to 6-character installed task name. 

When a subtask that was initiated using methods b. or c. has a command specified, 
the subtask must read the command using either GMCR$ or GCML$. See either the lAS 
System Directives Reference Manual or the lAS / RSX-ll I/O Operations Reference Manual. 

2 T.CMDL 

Length of the buffer specified in T.CMDA. This field must contain a valid length when invoking 
RUN$T. 

3 T.TTYP 

3--4 

Used to specify the format of the buffer specified in T.CMDA. When you invoke RUN$T, 
this field must contain one of the four values (TS. USE, TS.DOT. TS.DOL, or TS.lNS) that 
correspond to the formats given above. 



The Creation and Control of Subtasks 

3.2.1.2 Privilege Section 
Nonnally, you set up these fields by using TDPR$A or TDPR$R. 

1 T.TP2 

Defines which TCP functions the subtask can access. It can contain the logical OR of any of 
the following: 

PR.RST-Enabled to initiate subtasks. 
PR.CTC-Enabled to be the ICtrllCI task (see Chapter 5). 
PR.TEV-Enabled to be notified of events. 
PR.CHN-Enabled to chain and send/receive messages. 

If the subtask is to have PR.CTC privilege, it should also be given PR.TEV privilege. If a 
subtask has any of these privileges, it must also be TCP-privileged. Note that at subtask's 
privileges can never exceed its owner's privileges. 

2 T.TPl 

Defines four classes of privilege for the subtask. It can contain the logical OR of any of the 
following: 

JP.PP-Memory management directive privileged. 
JP.PI-TCP privileged. 
JP.PD-Realtime directive privileged. 
JP.PT-Enabled to be an executive privileged task that has been initiated by method a. See 
the description ofT.CMDA in Section 3.2.1.1. 

For a definition of these privileges see the lAS System Management Guide. 

3 T.JNA 

Maximum number of related subtasks that can exist simultaneously below the subtask 
corresponding to this TDB. It can contain any value between 0 and 255. 

3.2.1.3 Attribute Section 
Nonnally, you set up these fields by using ~rDTA$A or TDTA$R. 

1 T.UIC 

mc under which the subtask is to run. It is stored as a word whose high byte i.s the group 
code and whose low byte is the member code. TCS defaults a zero value to the UIC of the 
initiating task. 

2 T.SCHL 

Is the scheduling level at which the task is to be initially queued. TCS defaults to scheduling 
level one. 

3 T.FLGl 

Can contain flags to give the subtask special attributes. The two possible attributes are as 
follows: 

• FB.BT-The task is to run in the batch scheduling level. 

• FB.NC-The task is to be non-auto-suspendable. In other words, the task is not to be 
automatically suspended when ICtrIlC] is typed on the tenninal. This flag has no effect if the 
owner task itself is auto-suspendable. 

3-5 



The Creation and Control of Subtasks 

3.2.1.4 Event Information Section 
These fields are described below: 

1 T.EVNT 

Every time a RDEV$T is issued for the TDB, this field is loaded with a set of task event 
indicators which have been collected since the previous RDEV$T. The field is zeroed by RVN$T 
and TDBD$T. The event indicators are bit flags with the following meanings: 

IF.J&--Successfully terminated. 
IF.JA-Aborted. 
IF.NL-Initiation failure (task aborted). 
IF.SU-Suspended. 
IF.CH-Successfully terminated and successfully chained (possibly more than once). 
IF.SD-Subtask has sent one or more messages. 

In addition to containing each of these bit flags singly, T.EVNT can contain combinations. 

However, in all cases, if IF.JS, IF.JA or IF.NL is set, the task has terminated. If IF.SU is set 
the task will be suspended unless it has been explicitly resumed by the owner (using RSUM$T). 

2 T.EVBF 

3-6 

30-byte (decimal) buffer that contains termination information for the subtask. The 
infonnation is placed into the buffer as soon as TCS has it available (which could be at any 
time that TCS is invoked). However, the user should not interrogate the buffer until after a 
RDEV$T has shown the task has terminated. If RDEV$T does not show task termination, the 
contents of the buffer are meaningless. 

The fo]]owing fields exist in the buffer (the offsets are relative to the start of the buffer). The 
layout is given in Appendix A. 

• E.SIZ-Task size in 32-word blocks (decimal). 

• E.TIM-Task CPU time (ticks and double-length). 

• E.TR-Contains three items: 

Bit flag EV.ST-Task exited with status 
Bit flag EV.AB-Task terminated abnormally 
Low-order byte-Termination code. (These are listed in Appendix B. 

• E.TS-Exit status (only meaningful if EVST is set in E.TR). 

• E.TPS-Task's PS. 

• E.TPC-Task's PC. 

• E.TRO-Task's RO. 

• E.TRI-Task's Rl. 

• E.TR2-Task's R2. 

• E.TR3-Task's R3. 

• E.TR4-Task's R4. 

• E.TR5-Task's R5. 

• E.TSP-Task's SP. 



3.2.2 

3.2.1.5 

T.TESB 

Error Status Block Section 

The Creation and Control of Subtasks 

Address of the error status block. It is nonnally set up using TDEB$A or TDBD$T. A zero 
value means no error codes are to be returned to the user. 

Internal Fields 
All fields not described in the previous sections are for TCS use only. 

3.3 Task Accounting 
To account for the subtasks run by a given task, TC8 automatically charges the owner for the 
resources used by its subtasks. TC8 assumes that task charging is based on the product of size 
and CPU time (that is, its total number of core ticks). 

If a task of size 81 owns a subtask of size 82, when the subtask tenninates the total CPU time 
is T2. TCS then adds the following quantity to the owner task's current CPU, time: T2x(82/81) 
giving a total of T1+(T2x(S2/S1». The owner's total CPU usage calculated from the product of size 
and time is: 

Slx(Tl+T2x(S2/S1» 

= (SlxTl)+(S2xT2) 

This is the total utilization of the owner and its subtask. This enables a CLI to account not only 
for each of its subtasks as they terminate but also to account automatically for all of their subtasks 
and descendents. 

The description of macro TKST$T in Chapter 8 describes how to obtain accounting statistics. 

3-7 





4 Communication Between Tasks 

In a system of subtasks, when a task requires a set of results from another task the task can 
transmit this data as a message. 

4.1 Setting up the Message 

4.1.1 

Before a message can be sent and received successfully, the following must occur: 

• The characters that compose the message must exist in a message buffer. 

• A send data block (SDB) must exist to describe the message. 

First, use the SDBDF$ macro at assembly time to reserve space for the SDB. You can also use this 
macro to specify the contents of the SDB. You can specify the contents of the SDB at run time by 
using SDDF$R (a data definition macro) or by using SEND$T OR RCV$T (see Section 4.2). 

Contents of a Send/Receive Data Block (SOB) 
The layout of an SDB is given in Section A.3. The layout shows fixed positions of fields within 
an SDB. However, these fields should always be accessed via offset names. This protects the user 
program against possible changes in later versions of TCS. 

The send/receive data block contains the following fields: 

1 T.SNDA 

This is the address of a send/receive buffer, which comprises a one-word message-length in 
characters followed by the message itself. A message can be 0-253 (decimal) characters long. 
When a message is sent, TCS determines the message length from this field. When a message 
is received, TCS places the number of characters received into this field. The message buffer 
must be on a word boundary. 

2 T.SNDL 

This is the total length in characters of the send/receive buffer. This field is used only by 
RCV$T, to prevent buffer overrun. If a received message is too long for the buffer, a warning of 
PS.SUCIPS.RBS will be returned. The buffer should never be less than two bytes. This field is 
ignored by SEND$T. 

3 T.SESB 

Is the address of the error status block. A zero-value indicates that no error codes are to be 
returned to the user. 

4 T.SNDT 

Describes which task is to receive a send message or which user has sent a received message. 
In the first case, the field should contain one of the following: 

• -I-Message to be sent to owner. 

• O-Message to be sent to successor. 

• Other-TDB address of a subtask that is to receive the message. 

4-1 



Communication Between Tasks 

If the send message is being made via a RUN$T or CHN$T, this field is ignored and need not 
be initialized. 

In the case of message receives, RCV$T will place one of the following into T.SNDT: 

• -2-Message sent by an unidentifiable subtask. This occurs because the TDB has been 
reused or released. 

• -I-Message sent by owner. 

• O--Message sent by predecessor. 

• Other-TDB address of a subtask that sent the message. 

All fields not described above are internal fields for TCS use only. 

4.2 Sending Messages 

1 A message can be sent to a subtask (by its owner) when it is initiated. 1b do this, include an 
SDB address as parameter to the RUN$T macro. For example: 

RUN$T #TDB1",,#SDBl 

would place the subtask described by TDBI onto one of the scheduler queues. Also, a message 
described by the SDB would be queued to be sent to the subtask. When the subtask starts to 
execute, the message becomes available. The name of the recipient is located from the TDB. It 
is in the command buffer pointed to by T.CMDA. T.SNDT, in the SDB, is ignored. RUN$T is 
described in Chapter 8. 

2 A message can be sent by an owner task to a subtask at any time. 1b do this, use the SEND$T 
macro. For example: 

SEND$T #SDB1,#TDBl 

would send a message described by SDBI to the subtask described by TDBl. SEND$T is 
described in Chapter 8. 

3 A message can be sent to a chain task by its predecessor. 1b do this, use CHN$T or SEND$T. 
For example: 

CHN$T #CTDB1",,#SDB2 

would declare a chain task described by CTDBl. Also, a message described by SDB2 would be 
queued to be sent to the chain task. 

The name of the recipient is located from the chain descriptor block. It is in the command 
buffer pointed to by C.CHNA. T.SNDT, in the SDB, is ignored. 

SEND$T #SDB2,#O 

would queue a message described by SDB2 to be sent to the chain task of the current task. 

4 A subtask can send a message to its owner by using SEND$T. For example: 

SEND$T #SDB3,#-1 

would send a message described by SDB3 to the owner of the current task. 

4-2 



Communication Between Tasks 

4 .. 3 Receiving Messages 
l\1:essages are always received by means of the RCV$T macro. For example: 

RCV$T #SDB4 

would attempt to receive a message described by SDB4. RCV$T is described in Chapter 8. 

4-3 





5 @trllCI Events 

A ICtrllCI event occurs when you type I Ctri/C I at a terminal. TCS notifies the appropriate task when a 
@trl/CI event occurs. The TCS facility enables tasks to be interrupted by the terminal user. 

The task that is notified oflCtrl/CI events is called the '1Ctr1/CI task" for that tenninal. Once the 
system manager has assigned the CLI to a terminal, it is initially the ICtrVCI task. The CLI can 
then pass this attribute to one of its subtasks, which can then pass the attribute to one of its 
own subtasks, and so on. When a ICtrVCI event occurs, the descendants of the ICtrVCI task can be 
automatically suspended. These tasks can then be resumed by the ICtrV~ task. Figure 5-1 shows 
this task hierarchy for a particular tenninal. 

Figure 5-1 A Task Hierarchy 

TASKl 

/~ 
TASK2 TASK3 

/~ 
TASK4 TASK5 

I 
TASK6 

As illustrated in Figure 5-1, TASK1 is the CLI for the terminal. The following situation now 
exists: 

1 TASK1 has initiated subtasks TASK2 and TASK3. 

2 TASK2 has initiated subtasks TASK4 and TASK5. 

3 TASK5 has initiated TASK6. 

4 TASK2 has claimed the ICtrVCI attribute. 

When you type ICtrVC ~ three actions are taken: 

1 An internal flag is set and TASK2 can check the state of this flag, by means of the CKEV$T 
macro. For example: 

CKEV$T TERM"WAIT 

would stop execution of the task until a I CtrVC I event occurred. 

2 TASK4, TASK5, and TASK6 are automatically suspended unless they are marked 
"non-auto-suspendable." This attribute is conferred on a task when it is initiated. The default 
is a uto-suspendable. 

5-1 



ICtrl/CI Events 

3 If TASK2 specified a ICtrVCI AST entry point when it claimed the ICtrVCI attribute (CTC$T macro), 
the AST routine is executed. 

When ICtrVCI is detected, TASK2 takes any required action; this might include resuming all the 
auto-suspended tasks using the RSAS$T macro. RSAS$T sets the auto-suspended tasks back to 
the state they were in before I CtrVC I occurred (unless some other change of state has occurred (for 
example, TASK2 aborting TASK4 between ICtrVCI being typed and RSAS$T being invoked). To use 
RSAS$T, a task must have the same privileges as for subtasking. In addition: 

1 ICtrl/CI is completely transparent to TASK1 and TASK3. 

2 Checking for ICtrl/CI automatically resets the ICtrllCI flag, which enables further ICtrl/CI to be 
detected. 

3 If TASK2 does not detect a I CtrllC I and then another task becomes the I CtrVC I task, the original 
I CtrllC I is not detected by the new I CtrVC I task. 

When a terminal becomes active, the CLI is automatically thelCtrVCI task. To designate any other 
task than the ICtrl/CI task, invoke the CTC$T macro with CLAIM as the first parameter. 

The conditions for success are as follows: 

1 The task owner must be the current ICtrl/CI task. 

2 The task must be TCP-privileged and have the privilege PR.CTC. 

A task relinquishes the ICtrVCI attribute by either invoking CTC$T with RELINQ as the first 
parameter or by exiting. In either case, the owner reverts to being the ICtrllCI task. 

If a CLI is the current ICtrllCI task and it claims or relinquishes I CtrllC I, the effect is a null operation. 

To check for ICtrllCI events, a task invokes the CKEV$T macro with TERM as the first parameter. 
Ignoring task events, this macro returns with RO set to -1 iflCtrVCI has not occurred and RO set to 
o iflCtrVCI has occurred. An additional parameter specifies whether the task wishes to wait or stop 
until a ICtrl/CI occurs. The call would be: 

CKEV$T TERM"WAIT 

or 

CKEV$T TERM"STOP 

To use this macro successfully, the task must be TCP-privileged and have the privilege PR.TEV. 

5-2 



6 Chaining 

Chaining is the process of passing control to another task (a chain or successor task) from the 
current task when it terminates. Chaining minimizes the overhead on system resources. A task 
declares that a chain or successor task is to be initiated when it (the predecessor task) terminates. 
The chain task reuses the timesharing data structures that were previously being used by the 
predecessor task and has the same privileges and attributes. Chaining occurs automatically when 
the predecessor task terminates successfully. An event notifies the owner task that chaining has 
occurred. 

NOTE: A eLI cannot chain. 

6.1 TCS Interface 
Before a chain task can exist, a chain task descriptor block (CTDB) must be set up. Use the 
CDBDF$ macro at assembly time to reserve data space for the CTDB. You can also use the 
CDBDF$ macro, the CDDF$R macro, or CHN$T to define the contents of the CTDB .. 

A task uses the CHN$T macro to declare its chain task to TCS, as follows: 

CHN$T tCTDBl 

This would declare a chain task with CTDBl. 

To chain successfully, a task must be TCP-privileged and have the privilege PR.CHN. 

6.2 Contents of a Chain Task Descriptor Block 
The layout of a CTDB is given in Section A.2. Although absolute positions of fields within a CTDB 
are shown, they are variable. Always access fields via offset names. Normally, you use either 
CDBDF$, CDDF$R, or CHN$T to set up the fields. 

The individual fields are used as follows: 

Description 

Address of a buffer containing an ASCII command line. 

length of the buffer given in T.CHNA. 

Format of the buffer (TS.USE,TS.DOT,TS.DOl or TS.INS). 

T.CHNA 

T.CHNl 

T.CTYP 

T.CESB Address of the error status block. A zero value means no error codes are to be returned to the user. 

The first three fields are used in an identical fashion to T.CMDA, T.CMDL, and T.TrYP in TDBs 
(see Chapter 3). All fields not described above are internal fields for TCS use only. 

NOTE: If more than one task is likely to chain to the same successor task concurrently, 
do not use the TS. USE format of the command line. Instead, pre-INSTALL the successor 
task and use the TS.DOL,TS.DOT, or TS.INS format. If you do not, the autoinstall for one 
copy of the successor task might fail if the autoinstall for another copy is in progress. 

6-1 





7 Using the Timesharing Control Services (TCS) 

This chapter describes the properties and features of TCS that you should understand before you 
use the TCS macros. 

7.1 Including Timesharing Control Services in a Program 
All TCS macros are defined in the system macro library RSXMAC.SML. The TCS subroutines 
are included in the system object module library SYSLIB.OLB. All symbols used in the macros 
(except offset names) are defined in SYSLIB.OLB. Both of these files are normally available during 
assembly and task building of the user program. 

You must use the .MCALL directive to include each TCS macro to be used in a MACRO program. 
(See the JAS/RSX-II MACRO-II Reference Manual. You can use the TCS mar-ro TCSMC$ to 
accomplish this. TCSMC$ causes a .MCALL to be issued for each TCS macro (except itselO. 
Consequently, the following sequence is required at the beginning of a MACRO program: 

.MCALL TCSMC$ 
TCSMC$ 

In general, the LUN required for communication with the Timesharing Control Primitives (TCP) is 
automatically set up by the task builder when any of the runtime macros are called. However, if 
all rWltime TCS macros are issued in an overlay segment then the SYSLIB module PILUN must 
be included in the root of the task in order for .PILUN to be correctly assigned. 

For example: 

.ROOT MAIN-LB: [l,l]SYSLIB/LB:PILUN-*(OVERLAY) 

7.2 Initialization of Timesharing Control Services 
Initialization of TCS in a program involves the clearing of all TCS data structures. This process 
occurs automatically when the task is built. Consequently, at the start of the task there is no need 
for explicit initialization. However, when you restart a program, you should initialize TCS. Use the 
TINIT$ macro (see Chapter 8) to perfonn initialization. For example: 

TINIT$ #EBLCK1,#ERRH 

would initialize TCS where EBLCKI is the name of an error status block and ERRH is an error 
handling routine, see Section 7.3. 

7-1 



Using the Timesharing Control Services (TCS) 

7.3 Privilege 

7.3.1 

Tasks that use TCS need the following privileges: 

Task Privilege 

JP.PI TCP 
privilege. 

JP.PD Real-time 
directive 
privilege. 

JP.PT Executive 
privilege. 

JP.PP Memory 
management 
directive 
privilege. 

Explanation 

TCS indirectly uses TCP facilities; therefore, any task that uses TCS must have this 
privilege. Use of individual TCS facilities Is further controlled by additional privileges 
(prefixed PR) 

Certain directives can be used only by tasks with this privilege. These directives are 
defined in the lAS System Directives Reference Manual. 

This is defined in the lAS Executive Facilities Reference Manual. Any task that is 
auto-installed and built as executive privileged must have this privilege. 

Memory management directives can be used only by tasks with this privilege. 

The following privileges are required for controlling individual TCS facilities. 

Task 

PRRST 

PRCTC 

PRTEV 

PRCHN 

Privilege 

Subtasking. 

I CtrVC I task. 

Event 
occurrence. 

Chaining 
and 

Explanation 

A task needs this privilege to perform and subtask initiation or control functions. 

A task needs this privilege to be the I Ctri/C I task. 

A task needs this privilege to be notified of events. 

A task needs this privilege to declare a chain task or to send or receive messages. 

Sending/Receiving. 

Allocation of Privilege 
A CLI is given privileges at install time (see the lAS System Management Guide. The privileges 
are specified as a 20-bit mask. The correspondence between these privileges and the bits in the 
privilege mask is as follows: 

JP.PI 0200000 
JP.PD 0400000 
JP.PT 1000000 
JP.PP 2000000 
PR.RST 0000222 
PR.CTC 0040000 
PR.TEV 0000200 
PR.CHN 0000400 

A subtask is given privileges by its owner at subtask initiation (see Section 7.3). An owner cannot 
confer privileges that it does not have itself. 

7-2 



7.3.2 

Using the Timesharing Control Services (TCS) 

Privileged Termi nals 
When a CLI begins execution on a tenninal, the tenninal is marked as nonprivileged, unless the 
CLI was installed with bit 0 set in its ATTRIBUTES mask. See the lAS System Management 
Guide. 

7.4 Error Handling 
Errors that occur during the execution of imperative macro expansions are returned from TCS in 
an error status block (ESB). Runtime data definition macros never return errors. TCS does not 
deal with errors that might be caused by a.ssembly time macros. They are flagged in the nonnal 
way by the MACRO-11 assembler. 

AI] imperative macros have an associated ESB. Macros that use a task descriptor block or a 
chain task descriptor block use the ESB address contained in the descriptor block. For all other 
imperative macros, you can specify the ESB as a parameter to the macro call. The fonnat of the 
en'or status block is shown in Table 7-1. 

Talble 7-1 Error Status Block 

Byte Name Byte Value C Bit 

T.ERR Result code 0 or 1 

T.ERR+1 

T.ERR+2 

o or -1 

Error qualifier 

On exit from the code generated by a TCS macro, the following indicate the result: 

1 The carry bit in the Processor Status word. If the carry bit is set to one an error has occurred 
during the execution of the macro code. If the carry bit is clear the macro code has completed 
execution successfully. 

2 T.ERR in the error status block contains a result code that indicates either that the macro code 
has completed successfully (PS.SUC) or one of the following error conditions has occurred: 

• Bad parameters, PE.BAD 

• Operation aborted, PE.ABO 

• Privilege violation, PE.PRI 

• Job node pool exhausted, PE.UPN. 

3 T.ERR+1 contains either zero, which indicates errors for TCP or TCS (in this case a result code 
will be given in T.ERR), or -1, which indicates an error in system directive usage. (In practice 
the only error of this type is "handler not resident," which occurs when a task using TCS is run 
from MCR or in a non-timesharing system.) 

4 T.ERR+2 might contain an error or success qualifier, depending on the particular macro that 
has been called. Qualifiers for each macro are given with each macro description in Chapter 8. 

7-3 



7.4.1 

Using the Timesharing Control Services (leS) 

Error Handling Subroutines 
Each imperative macro call enables an error handling subroutine to be specified. Such a subroutine 
must be written by the user. If specified, it is automatically entered on exit from the macro code if 
the carry bit is set to one. 

If an error handling subroutine is specified, it has the effect of generating the following code at the 
end of the macro expansion: 

BCC .+6 
JSR PC,err 

where err is the name given as the TCS macro parameter. 

7.5 Event Flag Usage 
TCS uses local event flags 2, 3, and 25 (decimal) to signify ICtrVCI, shutdown, and task events, 
respectively. Therefore, user programs that use TCS should not change the state of any of these 
flags. 

7.6 Macro Characteristics 

7.6.1 

This section describes the conventions and characteristics of each class of macro. The three types 
of TCS macro are as follows: 

1 Imperative macros-Used by tasks for perfonning TCS operations. 

2 Data Definition (assembly time) macros-Used for assembly time declaration and definition of 
TCS data structures. 

3 Data Definition (run time) macros-Similar to data definition (assembly time), but used at run 
time. 

Imperative Macros 
Imperative macros are used by tasks for perfonning TCS operations. Their parameters and 
register usage are described in this section. -

7.6.1.1 Parameters 
Unless otherwise stated, parameters are optional. The defaults are as follows: 

1 For TDBs the default is RO. 

2 For quantities that can be obtained from the data structure, the default is the existing 
contents. 

3 If no error status block is defined, none will be assumed. 

4 If no error handling subroutine is defined, none will be assumed. 

5 Unless otherwise stated, all parameters must be of a fonn that can be directly substituted into 
the following: 

a. MOV param,destination 

b. MOVB param,destination 

7-4 



7.6.2 

7.6.3 

Using the Timesharing Control Services (TCS) 

where param represents the parameter exactly as specified by the caller. 

7.6.1.2 Register Usage 
AU registers except RO are saved and restored by the macros. RO is used in one of two ways: 

1 Those macros that specifically relate to a data structure such as a TDB or SDB always have 
the address of this structure as the first parameter. If this parameter is omitted, TCS assumes 
that the address is in RO. In any event, on exit from the macro, RO will contain the address. 

2 Some macros need to return a word of information; RO is always used for this purpose. 

Data Definition Macros (Assembly Time) 
Data definition macros (assembly time) are used for assembly time declaration and definition 
of TCS data structures. Their parameters and the use of offset definitions are described in this 
section. 

7.6.2.1 Parameters 
Parameters are optional (unless otherwise stated). An omitted parameter means that the 
corresponding field of the data structure will be untouched. This means that the field will contain 
nothing unless its contents are (or have been) changed by some other means. All parameters must 
be of a form that can be directly substituted into the following: 

1 .WORD param 

2 .BYTE param 

where param represents the parameter exactly as specified by the caller. 

7.6.2.2 Offset Definitions 
To define the offset names for TCS data structures, use the macros TCOFF$, TDOFF$, TSOFF$, 
and TEOFF$. Any TCS data definition macros that need offset names invoke these macros 
internally to define the offset names as local symbols. Once invoked, the macros redefine 
themselves to null. The effect of this is that a user program rarely has to invoke these macros 
explicitly. The exception is when a module tries to access TCS data structures that are defined in 
another module. Also, if you want to define the offsets as global names, invoke the above offset 
definition macros with a DEF$G parameter and before any TCS definition macros are invoked. 

Data Definition Macros (Run Time) 
Data definition macros (run time) are used for run time declaration and definition of TCS data 
structures. Their register usage, error handling procedures, and parameters are described in this 
section. 

7.6.3.1 Register Usage / 
All registers except RO are saved and restored by the macros. Each macro has, as its first 
parameter, the address of the data structure where it is to operate. If this parameter is omitted, 
TCS assumes that the address is in RO. In any event, on exit from the macro, RO will contain the 
address. 

7-5 



Using the Timesharing Control Services (TCS) 

7.6.3.2 Error Handling 
None of these macros causes errors in use. The value of the C-bit is undefined on exit. 

7.6.3.3 Parameters 
All parameters are optional. If any parameter (other than the first) is omitted, the corresponding 
field in the data structure is untouched. 

All parameters must be of a form that can be directly substituted into the following: 

1 MOV param,destination 

2 MOVB param,destination 

where param represents the parameter exactly as specified by the caller. 

7-6 



8 TCS Macro Descriptions 

This chapter contains a descliption of each TCS macro. The general format of each description is: 

1 Macro name 

2 Type 

3 Function 

4 Macro call 

5 Parameter descriptions 

6 Implementation notes 

7 Return data 

8 Result codes 

If any of these sections do not apply to a macro, it is omitted from the description. 

8-1 



ABRT$T 

ABRT$T 

TYPE 

Imperative. 

FUNCTION 

U sed by a task to abort a subtask. 

MACRO CALL 
ABRT$T tdb,err 

parameter 
definitions 
tdb 
Address of the subtask's task descriptor block. Default: Contents of RO. 

err 
Address of an error handling subroutine. This is entered if TCS detects an error while executing 
this macro code. Default: Error handling routine is not entered. 

IMPLEMENTATION 
NOTES 

1 On exit from the macro code, use the RDEV$T macro to obtain information about the aborted 
task. 

2 Any subtasks of an aborted subtask are also aborted. 

3 '1b use this macro, the task must be TCP-privileged and have the PR.RST TCS privilege. 

4 The invoking task enters a STOP state until the aborted subtask exits. 

RETURN DATA 

RO contains the address of the aborted subtask's task descriptor block. 

8-2 



ABRT$T 

RESULT CODES 

General result codes are given in Appendix B. 

The meaning of the following result code relates only to this macro. 

Sytename: T.ERR T.ERR+2 Meaning 

Va~ue: PE.ASO PE.NTA Task not active. 

8-3 



CDBDF$ 

CDBDF$ 

TYPE 

Data definition-assembly time. 

FUNCTION 

To reserve data space for a chain task descriptor block and optionally to specify the contents of the 
block. 

MACRO CALL 
CDBDF$' cmda,cmdl,cmdt,esb 

parameter 
definitions 
cmda 
Address of a command buffer containing the name of the chain task and a command line. This 
value is placed into the chain task descriptor block at offset T.CHNA. Default: T.CHNA is left 
blank. 

cmdl 
Length, in bytes, of the command buffer specified. This value is placed in the chain task descriptor 
block at offset T.CHNL. Default: T.CHNL is left blank. 

cmdt 
Buffer fonnat. This is either TS.USE, TS.DOT, TS.DOL, or TS.lNS. Value specified is placed in the 
chain task descriptor block at offset T.CTYP. Default: T.CTYP is left blank. 

esb 
Address of an error status block to receive result codes that occur when you use this chain task 
descriptor block. This value is placed into the chain task descriptor block at offset T.CESB. Default: 
T.CESB is left blank. 

IMPLEMENTATION 
NOTES 

1 ,Contents of the chain task descriptor block can also be defined by 'means of CDDF$R or 
CHN$T. 

2 Layout the block is given in Section A.2. 

8-4 



CDDF$R 

TYPE 

Data definition-run time. 

FUNCTION 

To specify the contents of a chain task desc:riptor block. 

-
MACRO CALL 
CDDF$R ctdb,cmda,cmdl,cmdt,esb 

parameter 
defin itions 

ctdb 
Address of a chain task descriptor block. Default: Contents of RO. 

cmda 

CDDF$R 

Address of a buffer that contains the task name and a command Hne. This address is copied into 
the chain task descriptor block at offset T.CHNA. Default: Contents of T.CHNA is unchanged. 

cmdl 
Length, in bytes, of the buffer specified in cmda. This value is copied into the chain task descriptor 
block at offset T.CHNL. Default: Contents of T.CHNL is unchanged. 

cmdt 
Format of the buffer. This is either TS.USE, TS.DOT, TS.DOL, or TS.INS. Default: Contents of 
T.CTYP is unchanged. 

esb 
Address of an error status block to receive result codes that occur when you use this chain task 
descriptor block. This value is copied into the chain task descriptor block at offset T.CESB. Default: 
Contents ofT.CESB is unchanged. 

IMPLEMENTATION 
NOTES 

1 Contents of the chain task descriptor block can also be specified by means of CDBDF$ and 
CHN$T. 

2 Layout of the block is described in Section A.2. 

8-5 



CHN$T 

CHN$T 

TYPE 

Imperative. 

FUNCTION 

Used by a task to declare a chain (successor) task and, optionally, to send a message to that task. 

MACRO CALL 
CHN$T ctdb, cmda, cmdl, cmdt, sdb, esb, err 

parameter 
definitions 
ctdb 
Address of the chain task descriptor block for the chain task. Default: Contents of RO. 

cmda 
Address of a buffer (the command buffer) that contains the name of the chain task and a command 
line. This address is copied into the chain task descriptor block at offset T.CHNA. Default: The 
existing contents of T. CHNA. 

cmdl 
Length of the command buffer in bytes. This value is copied into the chain task descriptor block at 
offset T.CHNL. Default: The existing contents of T.CHNL. 

cmdt 
Value that indicates the format of the command buffer. This is either TS.USE, TS.DOT, TS.DOL, 
or TS.INS. 

sdb 
Address of a send/receive data block that describes a message to be sent to the chain task. Default: 
No message is sent. 

esb 
Address of an error status block to receive result codes that occur when the task uses this chain 
task descriptor block. This address is copied into the chain task descriptor block at offset T.CESB. 
Default: Existing contents of T.CESB. 

err 
Address of an error handling subroutine. This is entered if errors occur during the macro code 
execution. Default: None. 

8-6 



IMPLEMENTATION 
NOTES 

CHN$T 

1 A task can issue this macro an indefinite number of times. Each call supersedes the previous 
one. However, send messages are not removed from the queue. 

2 The layout of the chain task descriptor block is given in Section A.2. 

3 T.SNDT, in the SDB, is ignored. The chain task name is the command buffer. 

4 Sending data uses SCOM nodes for the data. 

5 To use this macro, the task must be TCP-privileged and have the TCS privilege PR.CHN. 

RETURN DATA 

RO contains the address of the chain task descriptor block. 

RESULT CODES 

General result codes are given in Appendix B. 

The following result codes relate only to this macro. 

Bytename: T.ERR Meaning 

Value: PE.ABO Error in command line; for example, zero-length or space-filled. 

PE.ABO 

T.ERR+2 

PE.TSE 

PE.BUF No command line specified or command too long (>79 characters for system 
library tasks and >67 characters for user filename tasks). 

PE.ABO PE.ADR Command line not in user's address space. 

PE.ABO PE.lLL Illegal command line format type. 

PE.ABO PE.TNI Nonexistent system or library task. 

PE.ABO PE.UPN SCOM node pool exhausted. 

PE.ABO PE.lBS Send message >253 (decimal) characters. 

PE.ABO PE.BUF Unavailable buffer space. 

PE.ABO PE.ADR Send message not all in user's address space. 

8-7 



CKEV$T 

CKEV$T 

TYPE 

Imperative. 

FUNCTION 

1 Check for task events or cause the invoking task to wait or stop until a task event occurs. 

2 Check for a ICtrVCI event or cause the invoking task to wait or stop until a ICtrVCI event occurs. 

3 Check for a shutdown event or cause the invoking task to wait or stop until a shutdown event 
occurs. 

MACRO CALL 
CKEV$T trm, tasks, wt,esb,err 

parameter 
definitions 
trm 
Indicates that the invoking task wants to be infonned oflCtrVCI and/or shutdown events. Only CLls 
are informed of a shutdown event. 

Parameter Value Action Taken 

SHUT The task is to be informed if a shutdown event occurs. 

TERM The task is to be informed if a ICtrVCI (terminal) event occurs. 

<SHUT,TERM> The task is to be informed if either a shutdown or ICtrVCI event occurs. 

Default: ICtrVCI events and shutdown events are not checked. 

tasks 
A list of task descriptor block addresses that indicate subtasks that are to be checked for task 
events. The list is of the form: 

<address 1,address2, ... ,address n> 

Default: Subtask events are not checked. 

wt 
Indicates whether to stop or wait until an event, as specified in the tnn and task parameters, 
occurs. 

8-8 



CKEV$T 

Parameter 
Value 

STOP 

WAIT 

Action Taken 

The host task stops-until-event. 

The host task waits-until-event. 

Default: Task does not stop or wait. 

esb 
Address of an error status block to be used for storing result codes detected by the code generated 
by this macro. Default: Result codes are not returned. 

err 
Address of an error handling subroutine. This is entered if errors occur during the macro code 
execution. Default: None. 

IMPLEMENTATION 
NOTES 

1 Subtask addresses must not be specified as RO but any other register can be used. 

2 trm and tasks parameters must not both be blank. 

3 If 1 or 2 are contravened, an assembly error is given. 

4 Events are checked in the order shutdown, ICtrVCI, and task. 

5 Only one event is returned at a time. 

6 Minutes before shutdown can be obtained by using SHUT$T. 

7 Only CLls are informed of shutdown events. If any other task specifies SHUT in the first 
parameter, this has no effect. 

8 1b use this macro, the task must be TCP-privileged and have the TCS privilege PR.TEV. 

RETURN DATA 

RO contains information as follows: 

Value Meaning 

-2 A shutdown event has been detected. 

-1 No events have been detected. 

o A ICtrVCI event has been detected. 

address Address of the task descriptor block that relates to a subtask that has caused a task event. The type 
of task event can be determined by using RDEV$T. 

RESULT CODES 

8-9 



CKEV$T 

These are given in Appendix B. 

8-10 



CTC$T 

TYPE 

Imperative. 

FUNCTION 

Used by a task either to claim or relinquish the attribute of being the ICtrl/CI task. 

MACRO CALL 
CTC$T c/m, esb, err,ast 

parameter 
definitions 
elm 
Indicates whether to claim or relinquish the attribute. 

Parameter 
Value 

CLAIM 

RELlNQ 

Action Taken 

The attribute is passed to the invoking task. 

The attribute is passed to the owner task. 

CTC$T 

Default: This parameter is mandatory. The macro causes an assembly error if it is omitted. 

esb 
The address of an error status block (to receive result codes from the code generated by the macro). 

err 
The address of an error handling subroutine. This is entered if errors occur during the execution 
of the macro code. Default: None. 

ast 
The address of an AST routine within the program that is entered whenever a ICtrl/CJ is typed on 
the terminal. It is valid only when parameter clm is set to CLAIM. Default: Any existing AST 
entry point is canceled. 

IMPLEMENTATION 
NOTES 

1 If a eLI attempts to claim the attribute of being the I CtrVC I task while it is already the I CtrVC I 
task, the macro acts only on the ast parameter. If the parameter is supplied, the AST entry 
point is declared. If not, any existing AST entry point is canceled. 

8-11 



CTC$T 

2 If the task attempting t.o reqlinquish the attribute is a CLI that is the ICtrVC I task, the macro 
code takes no action and exits successfully. 

3 If the ast parameter is specified for a request to relinquish the attribute of being thelCtrVCI 
task, an assembly error results. 

4 'lb use this macro, the task must be TCP-privileged and have the TCS privilege PR.CTC. 

RETURN DATA 

None. 

RESULT CODES 

General result codes are given in Appendix B. 

The following result codes relate only to this macro. 

Bytename: T. ERR 

Value: PE.ABO 

PE.ABO 

8-12 

T.ERR+2 

PE.CTC 

PE.lLL 

Meaning 

On claim, owner is not the ! CtrVC I task. 

On relinquish, caller is not the !CtrVCI task. 



ESBDF$ 

TYPE 

Data definition-assembly time. 

FUNCTION 

Reserve data space for an error status block. 

MACRO CALL 
ESBDF$ 

parameter 
definitions 
No parameters. 

IMPLEMENTATION 
NOTES 

ESBDF$ 

The offset names for error status blocks are automatically defined locally by this macro. 

8-13 



JNOD$T 

JNOD$T 

TYPE 

Imperative. 

FUNCTION 

Used by a CLI to set a limit on the total nwnber of concurrently active timesharing tasks 
(including the CLI) that can be initiated from the terminal where the CLI is allocated. 

MACRO CALL 
JNOD$T al/oc,esb,err 

parameter 
definitions 
al/oc 
The limit to be set. Default: This parameter is mandatory. If the parameter is not given, the 
macro causes an assembly error. 

esb 
Address of an error status block to be used for returning result codes. Default: Result codes are 
not returned. 

err 
Address of an error subroutine. This is entered if an error occurs. Default: None. 

IMPLEMENTATION 
NOTES 

1 This macro is available only to CLls. 

2 The system manager has overall control by setting a limit when allocating a CLI to a terminal 
(the ALLOCATEITERMINAL command). The CLI can decrease but not increase this limit. 

3 A CLI is given an initial allocation of 1 when it begins execution. 

4 1b use this macro, the CLI must be TCP-privileged and have the TCS privilege PR.RST. 

RETURN DATA 

RO contains the limit set. 

8-14 



JNOD$T 

RESULT CODES 

General result codes are given in Appendix B. 

The following result codes relate only to this macro. 

Bytename: T. ERR 

Value: PS.SUC 

PS.SUC 

PE.ABO 

T.ERR+2 

PS.JAE 

PS.NOE 

PE.PRI 

Meaning 

Attempt to set allocation limit above the system-manager-Imposed limit. The 
allocation is set to the system manager's limit. 

Attempt to set allocation limit to less than current allocation. The allocation limit 
is unchanged. 

Attempt by a task that is not a CLI to change its allocation limit 

8-15 



RCV$T 

RCV$T 

TYPE 

Imperative. 

FUNCTION 

Used by a task to receive a message from a related task; that is, the owner, a subtask, or a 
predecessor task. 

MACRO CALL 
RCV$T sdb,buff, length, esb, err 

parameter 
definitions 
sdb 
Address of a send/receive data block. Default: Contents of RO. 

buff 
Address of a buffer where the message is to be placed. This value is copied into the send/receive 
data block at offset T.SNDA. Default: Existing contents of T.SNDA. 

length 
Length in bytes of the buffer specified by buff. This parameter is copied into the send/receive data 
block at offset, T.SNDL. Default: The existing contents of T.SNDL. 

esb 
Address of an error status block to be used for result codes relating to the use of this send/receive 
block. This parameter is copied into the send/receive data block at offset, T.SESB. Default: 
Existing contents of T.SESB. 

err 
Address of an error subroutine. This is entered if the macro fails. Default: None. 

IMPLEMENTATION 
NOTES 

1 The message to be received could have been sent by a subtask, the owner task, or the 
predecessor task. The sender can be identified by the contents of the send/receive data block at 
offset T.SNDT as follows: 

8-16 



RCV$T 

-2 A subtask whose TOB has been released or reused and cannot, therefore, be identified. 

-1 The owner task. 

o The predecessor task. 

address Address of the task descriptor block of the sending subtask. 

2 Fonn of send/receive data blocks is given in Section A.3. 

3 '1b use this macro, the task must be TCP-privileged and have the TCS privileges PR.CHN and 
PR.TEV. 

RETURN DATA 

As above. 

RESULT CODES 

General result codes are given in Appendix B. 

The following result codes relate only to this macro. 

Bytename: T.ERR 

Value: PE.ABO 

PE.ABO 

PE.ABO 

PS.SUC 

PS.SUC 

T.ERR+2 

PE.lLL 

PE.AOR 

PE.NOO 

PS.RBS 

PS.TOB 

Meaning 

Buffer length >2 bytes. 

Buffer not all in user's space. 

No messages queued. 

Buffer too short-message truncated. 

Sending subtask's TOB has been released or reused. 

8-17 



RDEV$T 

RDEV$T 

TYPE 

Imperative. 

FUNCTION 

Used by a task when one of its subtasks has caused a task event to read information concerning 
that task event. 

MACRO CALL 
RDEV$T tdb,err 

parameter 
definitions 
tdb 
Address of the task descriptor block for the subtask that has caused the task event. Default: 
Contents of RO. 

err 
Address of an error subroutine. This is entered if the macro code fails. Default: None. 

IMPLEMENTATION 
NOTES 

1 Event information is returned in the subtask's task descriptor block.. 

2 Normally, RDEV$T is used immediately after CKEV$T when RO was set up with the tdb 
address. Consequently, the tdb parameter need not be supplied. 

3 1b use this macro, the task must be TCP-privileged and have the TCS privilege PR.TEV. 

RETURN DATA 

1 Byte T.EVNT of the task descriptor block indicates which task events have occurred since the 
previous call of RDEV$T. The following table indicates the meaning of bits set in T.EVNT. 

8-18 



RDEV$T 

Bit 
Name 

IEJS 

IEJA 

IENL 

IESU 

IECH 

IESD 

Meaning 

Successfully terminated. 

Aborted. 

Load failure. 

Suspended itself. 

Successfully terminated and successfully chained. 

Task has sent a message. 

2 A buffer in the task descriptor block starting at byte T.EVBF contains task tennination 
infonnation. This is described in Section 3.2 .. 

RESULT CODES 

General result codes are given in Appendix B. 

The following result code relates only to this macro. 

Bytename: T.ERR T.ERR+2 Meaning 

Value: PS.SUC PS.NOE The task has not caused any events. 

8-19 



RSAS$T 

RSAS$T 

TYPE 

Imperative. 

FUNCTION 

Used by a task to resume its descendants that were automatically suspended on the occurrence of 
ICtrVcl. 

MACRO CALL 
RSAS$T esb,err 

parameter 
definitions 
esb 
Address of an error status block to be used for returning result codes. Default: None. 

err 
Address of an error handling subroutine. This is entered if errors occur during execution of the 
macro code. Default: None. 

IMPLEMENTATION 
NOTES 

To use this macro, the task must be TCP-privileged and have the TCS privilege PR.RST. 

RETURN DATA 

None. 

RESULT CODES 

General result codes are given in Appendix B. 

8-20 



The following result code relates only to this macro. 

Bytename: T. ERR 

Value: PE.ABO 

T.ERR+2 

PE.NTA 

Meaning 

The invoking task has no active subtasks. 

RSAS$T 

8-21 



RSUM$T 

RSUM$T 

TYPE 

Imperative. 

FUNCTION 

Used by a task to resume a suspended subtask. 

MACRO CALL 
RSUM$T tdb,err,subtsk 

parameter 
definitions 
tdb 
Address of the subtask's task descriptor block. Default: Contents of RO. 

err 
Address of an error subroutine. This is entered if the macro code fails. Default: None. 

subtsk 
Indicates whether the subtask alone or the subtask and its descendants are to be resumed. 

Parameter 
Value 

SUBTSK 

Action Taken 

Subtask and descendants are resumed. 

Default: Only the subtask is resumed. 

IMPLEMENTATION 
NOTES 

1 If the macro is used to try to resume a subtask that is already running, the macro has no effect 
and indicates successful completion. 

2 1b use this macro, the task must be TCP-privileged and have the TCS privilege PR.RST. 

RETURN DATA 

RO contains the address of the subtask's task descriptor block. 

8-22 



RSUM$T 

RESULT CODES 

General result codes are given in Appendix B. 

The following result codes relate only to this macro: 

Bytename: T.ERR T.ERR+2 Meaning 

Value: PE.ABO PE.NTA The subtask is not active. 

PE.ABO PE.ILL The subtask is not owned by the task that Issued the RSUM$T directive. 

8-23 



RUN$T 

RUN$T 

TYPE 

Imperative. 

FUNCTION 

Used by a task to place one of its subtasks on one of the queues maintained by the timesharing 
scheduler. The scheduler is described in the lAS System Management Guide. 

Additionally, a message can be sent to the subtask that would be available to the subtask at 
startup time. The invoking task can also wait or stop until a task event from the subtask occurs. 

MACRO CALL 
RUN$T tdb, cmda, cmdl, cmdt,sdb, wt, err 

parameter 
definitions 
tdb 
Address of the subtask's task descriptor block. Default: Contents of RO. 

cmda 
Address of a command buffer that contains the name of the subtask and a command line. This 
address is copied into the task descriptor block for the subtask at offset T.CMDA. Default: Existing 
contents of T.CMDA. 

cmdl 
Length, in bytes, of the buffer specified by cmda. This value is copied into the task descriptor block 
for the subtask at offset T.CMDL. Default: Existing contents of T.CMDL. 

cmdt 
Format of the command buffer. This can take the following values: TS. USE, TS.DOT, TS.DOL, 
or TS.INS. The specified value is copied into the task descriptor block at offset T.TTYP. Default: 
Existing contents of the TDB. 

sdb 
Address of a send/receive data block that describes a message to be sent to the subtask. Default: 
No message is sent. 

wt 
Indicates whether to stop or wait until the subtask causes a task event. 

8-24 



RUN$T 

Parameter 
Value 

STOP 

WAIT 

Action Taken 

Host task stops-until-task-event. 

Host task waits-until-task-event. 

Default: The invoking task continues execution in parallel with the subtask. 

err 
Address of an error handling subroutine. This is entered if errors occur during execution of the 
macro code. Default: None. 

IMPLEMENTATION 
NOTES 

1 Name of the subtask to run is contained in the command buffer specified in the TDB. T.SNDT, 
in the SDB, is ignored. 

2 Parameter wt must be either blank, WAIT, or STOP. 

3 If the subtask is to be autoinstalled, using SETF$T to attempt to set a flag will return 
PE.ABOIPE.INS until the task is installed and active. 

4 To use this macro, the task must be TCP-privileged and have the TCS privilege PR.RST (and 
the TCS privilege PR.CHN if sending messages). 

5 The macro clears the event indicators (T.EVNT) in the TDB. 

RETURN DATA 

RO contains the address of the subtask's task descriptor block. 

RESULT CODES 

General result codes are given in Appendix B. 

The following result codes relate only to this macro. 

Bytename: T.ERR 

Va,lue: PE.ABO 

PE.ABO 

PE.ABO 

PE.ABO 

T.ERR+2 

PE.MJA 

PE.TOB 

PE.TSE 

0 

Meaning 

Attempt to exceed the maximum number of active tasks for this terminal. 

TOB not declared or already being used for an active task. 

Error in command line-for example, zero length or space-filled. 

Error in command line-invalid file name or task name. 

PE.ABO PE.BUF No command line specified or greater than 79 characters (system or library 
tasks) or greater than 67 characters (user filename tasks). 

PE.ABO PE.AOR Command line not in user's address space. 

8-25 



RUN$T 

PE.ABO 

PE.ABO 

PE.ABO 

PE.ABO 

PE.ABO 

PE.ABO 

PE.ABO 

PE.ABO 

PE.BAD 

PE.BAD 

PE.ABO 

8-26 

PE.ILL 

PE.TNI 

PE.MJN 

PE.NOB 

PE.UPN 

PE.lBS 

PE.BUF 

PE.ADR 

0 

PE.PRI 

PE.TAA 

Illegal command line format-type. 

Nonexistent system task or library task. 

Attempt to exceed the maximum number of active tasks for the system. 

Attempt to run the task as a batch task when no batch level exists. 

SCOM node pool exhausted. 

Send message >253 (decimal) characters. 

Unavailable buffer space for send message. 

Send message not all in user's address space. 

Invalid scheduling level. 

Attempt to confer privileges that are greater than the caller's. 

Subtask is already active. 



SDBDF$ 

SDBDF$ 

= 
TYPE 

Data definition-assembly time. 

FUNCTION 

Reserve data space for a send/receive data block and define its contents. 

MACRO CALL 
SDBDF$ mess,length,tdb,esb 

parameter 
definitions 
mess 
Address of a message buffer.The first word of the buffer must contain the message length; the 
remainder of the buffer contains the message itself. This parameter value is placed in word 
T.SNDA of the send/receive data block. The buffer must begin on a word boundary. Default: 
T.SNDA is left blank. 

length 
Length of the message in bytes. This value is placed in word T.SNDL of the send/receive data 
block. Default: T. SNDL is left blank. 

tdb 
Indicates the destination for the message. The parameter value is placed in word T.SNDT of the 
send/receive data block. 

Parameter 
Value 

-1 

Meaning 

The message is to be sent to the owner task. 

The message is to be sent to the successor task. o 
address The message is to be sent to a subtask whose task descriptor block has the address specified. 

Default: T.SNDT is left blank. 

e.sb 
Address of an error status block to be used for result codes that relate to the use of this 
send/receive data block. This is placed into word T.SESB of the send/receive block .. Default: 
T.SESB is left blank. 

8-27 



SDBDF$ 

IMPLEMENTATION 
NOTES 

1 If the contents of the send/receive data block are not defined by this macro, a block is created 
but the contents are blank. 

2 The contents of a send/receive data block can also be set up by the macros SDDF$R, SEND$T, 
and RCV$T. 

3 The macro defines local offsets for SDBs and ESBs. 

8-28 



SDDF$R 

TYPE 

Data definition-run time. 

FUNCTION 

Define the contents of a send/receive data block. 

MACRO CALL 
SDDF$R sdb,mess,length,tdb,esb 

parameter 
definitions 
sdb 
Address of the send/receive data block. Default: Contents of RO. 

mess 

SDDF$R 

Address of a message buffer. This value is copied into the send/receive data block at offset T.SNDA. 
Default: Existing contents of T.SNDA. 

length 
Length in bytes of the buffer specified by mess. This value is copied into the send/receive data 
block at offset T.SNDL. Default: Existing contents of T.SNDL. 

tdb 
Indicates the destination of a message to be sent. 

Parameter 
Value 

-1 

o 
address 

Action Taken 

Message is to be sent to the owner task. 

Message is to be sent to successor task. 

Message is to be sent to the subtask whose task descriptor block address is specified. 

This parameter value is copied into the send/receive data block at offset T.SNDT. Default: Existing 
contents of T.SNDT. 

esb 
Address of an error status block to be used for result codes that relate to the use of this 
send/receive data block. This value is copied into the send/receive data block at offset T.SESB. 
Default: Existing contens of T.SESB. 

8-29 



SDDF$R 

IMPLEMENTATION 
NOTES 

1 Contents of a send/receive data block can also be defined by means of SDBDF$, SEND$T, and 
RCV$T. 

2 The format of the send/receive data block is given in Section A.3. 

8-30 



SEND$T 

SEND$T 

TYPE 

Im.perative. 

FUNCTION 

Used by a task to send a message to a realted task (either a subtask, the task's owner, or a chained 
successor task). 

MACRO CALL 
SEND$T sdb,dest,mess,esb,err 

parameter 
definitions 
sdb 
Address of the send/receive data block that describes the message to be sent. Default: Contents of 
RO. 

dest 
Indicates the destination of the message. 

Parameter 
Value 

-1 

o 
address 

Action Taken 

Message is sent to the task's owner. 

Message is sent to the chained successor task. 

Message is sent to the subtask whose task descriptor block address is given. 

The value specified is copied into the send/receive data block at offset T.SNDT. 

Default: Existing contents of T.SNDT. 

mess 
Address of the message buffer. This is copied into the send/receive data block at offset T.SNDA. 
Default: Existing contents of T.SNDA. 

esb 
Address of an error status block. This is copied into the send/receive data block at offset T.SESB. 
Default: Exsiting contents of T.SESB. 

err 
Address of an error handling subroutine. Default: None. 

8-31 



SEND$T 

IMPLEMENTATION 
NOTES 

1 When data is sent, it is queued for the receiving task. The data is intermediately stored in the 
SCOM node pool. 

2 '1b use this macro, the task must be TCP·privileged and have the TCS privileges PR.CHN and 
PR.TEV. 

RETURN DATA 

RO contains the address of the send/receive data block. 

RESULT CODES 

General result codes are given in Appendix B. 

The following result codes relate only to this macro. 

Bytename: T.ERR T.ERR+2 Meaning 

Value: PE.ABO PE.NTA Receiver not active. 

PE.ABO PE.BUF Failed to claim a buffer. 

PE.ABO PE.ADR Message not all in user's space. 

PE.ABO PE.lBS Message length >253 (decimal) characters. 

PE.ABO PE.lLL eLi sending to owner. 

8-32 



SETF$T 

TYPE 

Imperative. 

FUNCTION 

Used by a task to set a subtask's local event flag. 

MACRO CALL 
SETF$T tdb, ef, err 

parameter 
definitions 
tdb 
Address of the task descriptor block for the subtask. Default: Contents of RO. 

ef 
Number of a local event flag. Default: No default. This parameter is mandatory. 

err 
Address of an error handling subroutine. Default: None. 

IMPLEMENTATION 
NOTES 

SETF$T 

1 This macro cannot be used to set a global event flag (the system directive SETF$ can be used 
for this. See the lAS System Directives Reference Manual. 

2 1b use this macro, the task must be TCP-privileged and have the TCS privilege PR.RST. 

RETURN DATA 

RO contains the address of the subtask's task. descriptor block. 

RESULT CODES 

General result codes are given in Appendix B. 

8-33 



SETF$T 

The following result codes relate only to this macro. 

Bytename: T.ERR T.ERR+2 Meaning 

Value: PE.ABO PE.NTA Subtask not active. 

PE.ABO PE.GEF Global event flag specified. 

PE.ABO PE.lNS User filename task not yeat installed. 

PE.ABO PE.lLL Task issuing the SETF$T directive does not own the subtask. 

8-34 



SHUT$T 

SHUT$T 

TYPE 

Imperative. 

FUNCTION 

Used by a CLI to obtain the number of minutes before shutdown. An error indication is returned if 
shutdown has not been declared at the SCI console. 

MACRO CALL 
SHUT$T esb,err 

parameter 
definitions 
esb 
Address of an error status block to be used by TCS to return error codes. Default: None. 

err 
Address of an error handling subroutine. This is entered if errors occur during execution of the 
macro code. Default: None. 

IMPLEMENTATION 
NOTES 

1 This macro is available only to CLls. 

2 To use this macro, the task must be TCP-privileged and have the TCS privilege PR.TEV. 

RETURN DATA 

RO contains the number of minutes before shutdown. 

RESULT CODES 

General result codes are given in Appendix B. 

8-35 



SHUT$T 

The following result code relates only to this macro. 

Bytename: T.ERR T.ERR+2 Meaning 

Value: PE.ABO PE.NOS No shutdown outstanding. 

8-36 



SPND$T 

TYPE 

Imperative. 

FUNCTION 

Used by a task to suspend one of its subtasks. 

SPND$T 
tdb,err 

parameter 
definitions 
tdb 

SPND$T 

Address of the task descriptor block for the subtask to be suspended. Default: Contents of RO. 

err 
Address of an error handling subroutine. Default: None. 

IMPLEMENTATION 
NOTES 

1 If the subtask specified has already been suspended, no action is taken and the macro code 
exi ts nonnally. 

2 An event is not caused by the suspension. 

3 1b use this macro, the task must be TCP-privileged and have the TCS privilege PR.RST. 

RETURN DATA 

RO contains the address of the subtask's task descriptor block. 

RESULT CODES 

General result codes are given in Appendix B. 

8-37 



SPND$T 

The following result codes relate only to this macro. 

Bytename: T.ERR T.ERR+2 Meaning 

Value: PE.ABO PE.NTA Subtask not active. 

PE.ABO PE.lLL Task issuing the SPND$T directive does not own the subtask. 

8-38 



TCOFF$ 

TCOFF$ 

TYPE 

Data definition-assembly time. 

FUNCTION 

Define all offset names for chain task descriptor blocks. They can be defined to be either local or 
global. 

MACRO CALL 
TCOFF$ offset 

parameter 
definitions 
offset 
Indica tes whether the offsets are local or global. 

Parameter 
Value 

DEF$L 

DEF$G 

Action Taken 

Offset names are defined as local. 

Offset names are defined as global. 

Default: DEF$L. 

IMPLEMENTATION 
NOTES 

1 TCOFF$ is called by the macros TDOFF$ and CDBDF$ to define local offset names. 

2 Mter one invocation, the macro redefines itself to null. 

8-39 



TCSMC$ 

TCSMC$ 

TYPE 

Not applicable. 

FUNCTION 

Used by a task to MCALL all the other TCS macros. 

MACRO CALL 
TCSMC$ 

parameter 
definitions 
This call has no parameters. 

IMPLEMENTATION 
NOTES 

1 If this macro is not used, a program must individually MCALL each TCS macro it invokes. 

8-40 



TDBDF$ 

TYPE 

Data definition-assembly time. 

FUNCTION 

Reserve data space for a task descriptor block. 

MACRO CALL 
TDBDF$ 

parameter 
definitions 
This call has no parameters. 

IMPLEMENTATION 
NOTES 

TDBDF$ 

1 The contents of a task descriptor block can be set up by means of the following macros: 
TDCM$A, TDPR$A, TDTA$A, TDEB$A, TDCM$R, TDPR$R, TDTA$R, RUN$T, and TDBD$T. 

2 This macro invokes TDOFF$ to define local offset names. 

8-41 



T080$T 

TDBD$T 

TYPE 

Imperative. 

FUNCTION 

Used by a task to declare a task descriptor block. 

MACRO CALL 
T080$T tdb,esb,err 

parameter 
definitions 
tdb 
Address of the task descriptor block. Default: Contents of RO. 

esb 
Address of an error status block. This parameter is copied into the task descriptor block at offset 
T.TESB. Default: Existing contents of T.TESB. 

err 
Address of an error handling subroutine. Default: None. 

IMPLEMENTATION 
NOTES 

1 A subtask cannot be run until it has a declared task descriptor block associated with it. 

2 The error status block associated with a task descriptor block is used for all reporting of errors 
concerning the task. 

3 The macro clears the task event indicators (T.EVNT) in the TDB. 

RETURN OATA 

RO contains the address of the task descriptor block. 

8-42 



T080$T 

-
RESULT CODES 

General result codes are given in Appendix B. 

The following result codes relate only to this macro. 

Bytename: T.ERR T.ERR+2 Meaning 

Value: PE.ABO PE.TDB Task descriptor block already declared. 

8-43 



TDBR$T 

TDBR$T 

TYPE 

Imperative. 

FUNCTION 

Release a task descriptor block. 

MACRO CALL 
TDBR$T tdb,err 

parameter 
definitions 
tdb 
Address of the task descriptor block that is no longer required. Default: Contents of RO. 

err 
Address of an error handling subroutine. This is entered if the macro code fails. Default: None. 

IMPLEMENTATION 
NOTES 

1 When the task descriptor block is released, it is ready for declaration. 

2 To use this macro, the task must be TCP-privileged. Depending on the current state of the 
task, TCS might have to perform some event-related housekeeping activities. For this reason, 
the task must also have the TCS privilege PR.TEV. 

RETURN DATA 

RO contains the address of the task descriptor block. 

RESULT CODES 

8-44 



Bytename: T. ERR 

Value: PE.ABO 

Value: PE.ABO 

T.ERR+2 

PE.TDB 

PE.TAA 

TDBR$T 

Meaning 

Task descriptor block not declared. 

Task descriptor block represents an active task. 

8-45 



TDCM$A 

TDCM$A 

TYPE 

Data definition-assembly time. 

FUNCTION 

Specify the name of the task. to which a task descriptor block relates. Also, in the case of system 
and library tasks, specify a command line. See Section 3.2. 

MACRO CALL 
TDCM$A cmda, cmdl, cmdt 

parameter 
definitions 
cmda 
Address of a command buffer that contains the name of the subtask and, optionally, a command 
line. This address is placed in the task descriptor block for the subtask at offset T.CMDA. Default: 
T.CMDA is left blank. 

cmdl 
Length, in bytes, of the buffer specified by cmda. This value is copied into the task descriptor block 
at offset T.CMDL. Default: T.CMDL is left blank. 

cmdt 
Fonnat of the buffer. This can take the following values: TS.USE, TS.DOT, TS.DOL, or TS.INS. 
The specified value is placed in the task descriptor block at offset T.TTYP. Default: T.TTYP is left 
blank. 

IMPLEMENTATION 
NOTES 

1 This macro relates to the msot recently defined task descriptor block. 

2 The macro can be used at any point in a program. 

3 The layout of the task descriptor block is given in Section A.l. 

4 The macro invokes the TDOFF$ macro to define local offset names. 

8-46 



TOCM$R 

TDCM$R 

TYPE 

Data definition-runtime. 

FUNCTION 

Define (in a task descriptor block) the task name and, in the case of system tasks and library tasks, 
a command line. 

MACRO CALL 
TOCM$R tdb, cmda, cmdl, cmdt 

parameter 
definitions 
tdb 
Address of a task descriptor block. Default: Contents of RO. 

cmda 
Address of a buffer that contains a tasknalne and, optionally, a command line. This value is copied 
into the task descriptor block at offset T.CMDA. Default: Existing contents of T.CMDA. 

cmdl 
Length, in bytes, of the specified buffer. TIlls value is copied into the task descriptor block at offset 
T.CMDL. Default: Existing contents of T.CMDL. 

cmdt 
Format of the specified buffer. This can take the following values: TS.USE, TS.DOT, TS.DOL, 
or TS.INS. The specified value is copied into the task descriptor block at offset T.TTYP. Default: 
Current contents of T.TTYP. 

IMPLEMENTATION 
NOTES 
Layout of the task descriptor block is described in Section A.I. 

8-47 



TDE8$A 

TDEB$A 

TYPE 

Data definition-assembly time. 

FUNCTION 

Set a pointer in a task descriptor block to an error status block. 

MACRO CALL 
TDEB$A esb 

parameter 
definitions 
esb 
Address of an error status block. This is written into the task descriptor block at offset T.TESB. 
Default: T. TESB is left blank. 

IMPLEMENTATION 
NOTES 

1 This macro relates to the most recently defined task descriptor block. 

2 The macro can be used at any point within a program. 

3 The macro invokes the TDOFF$ macro to define local offset names. 

8-48 



TDOFF$ 

TDOFF$ 

TYPE 

Data definition-assembly time. 

FUNCTION 

Define all offset names for task descriptor blocks, chain task descriptor blocks, send/receive data 
blocks, and error status blocks. 

MACRO CALL 
TDOFF$ offset 

parameter 
definitions 
offset 
Indicates whether the offset names are to be defined as global or local. 

Parameter 
Value 

DEF$l 

DEF$G 

Action Taken 

Offset names are defined as local. 

Offset names are defined as global. 

Default: DEF$L. 

IMPLEMENTATION 
NOTES 

1 TDOFF$ is called by TDCM$A, TDPR~~A, TDTA$A, and TDEB$A to define local names. 

2 The macro redefines itself to null after it has been invoked. 

8-49 



TDPR$A 

TDPR$A 

TYPE 

Data definition-assembly time. 

FUNCTION 

Define whether or not a task has the following privileges: 

1 Auto-installed task with executive privilege. 

2 Real-time directive privilege. 

3 TCP privilege. 

4 Memory management privilege. 

5 Maximum number of descendants of this task that can be active simultaneously. 

MACRO CALL 
TDPR$A tp1,tp2,jnod 

parameter 
definitions 

tp1 
A set of bit flags that specifies task privileges as follows: 

JP.PI 

JP.PD 

JP.PT 

JP.PP 

Privilege to issue TCP requests. 

Privilege to issue real-time directive privileged directives. 

Privilege to be an executive-privileged task that is auto-installed. 

Privilege to issue memory management directives. JP.PP must be set for tasks that use resident 
overlaid libraries (for example, RMSRES). 

The parameter can take the value JP.PI, JP.PD, JP.Pr, or JP.PP or the logical OR of any of these 
values. For example, JP.PI!JP.PD!JP.PT!JP.PP specifies all the task privileges. 

The parameter value is copied into the task descriptor block at offset T.TPl. Default: The existing 
value of T.TPl. 

tp2 
A set of bit flags that specifies which TCS facailities can be used by the task. The flags are as 
follows: 

PR.RST Privilege to initiate and control subtasks. 

PR.CTC Privilege to be the [Ctrl/CI task. 

8-50 



TDPR$A 

PR.TEV Privilege to be notified of the occurrence of task events. 

pR.eHN Privilege to chain and send or receive messages. 

The parameter can take the value PR.RST, PR.CTC, PR.TEV, or PR.CHN or the logical OR of any 
of these values. For example, PR.RST!PR.CTC!PR.TEV!PR.CHN as parameter value specifies that 
the task can use all the TCS facilities. 

The parameter value is copied into the task descriptor block at offset T.TP2. Default: Existing 
contents of T.TP2. 

jnod 
Maximum number of descendants of this task that can be simultaneously active. This parameter 
value is copied into the task descriptor block at offset T.JNA. Default: Existing contents of T.JNA. 

IMPLEMENTATION 
NOTES 
This macro invokes TDOFF$ to define local offset names. 

8-51 



TDPR$R 

TDPR$R 

TYPE 

Data definition-runtime. 

FUNCTION 

To define whether or not a task has the following privileges: 

1 Executive-privilege that is auto-installed. 

2 Real-time directive privilege. 

3 TCP privilege. 

4 Memory ·management privilege. 

5 Maximum number of descendants of this task that can be simultaneously active. 

MACRO CALL 
TDPR$R tdb, tp 1, tp2,jnod 

parameter 
definitions 
tdb 
Default: Contents of RO. 

tp1 
A set of bit flags that specifies task privileges as follows: 

JP.PI 

JP.PD 

JP.PT 

JP.PP 

Privilege to issue TCP requests. 

Privilege to issue real-time directive privileged directives. 

Privilege to be an executive-privileged task that is auto-installed. 

Privilege to issue memory management directives. JP.PP must be set for tasks that use resident 
overlaid libraries (for example, RMSRES). 

The parameter can take the value JP.PI, JP.PD, JP.PT, or JP.PP or the logical OR of any of these 
values. For example, JP.PI!JP.PD!JP.PT!JP.PP specifies all the task privileges. 

The parameter value is copied into the task descriptor block at offset T.TPl. Default: The existing 
value of T. TPl. 

tp2 
A set of bit flags that specifies which TCS facailities can be used by the task. The flags are as 
follows: 

8-52 



TDPR$R 

PRRST Privilege to Initiate and control subtasks. 

PR.CTC Privilege to be the ICtrl/CI task. 

PRTEV Privilege to be notified of the occurrence of task events. 

PR.CHN Privilege to chain and send or receive messages. 

The parameter can take the value PR.RST, PR.CTC, PR.TEV, or PR.CHN or the logical OR of any 
of these values. For example, PR.RST!PR.CTC!PR.TEV!PR.CHN as parameter value specifies that 
the task can use all the TCS facilities. 

The parameter value is copied into the task descriptor block at offset T.TP2. Default: Existing 
contents of T.TP2. 

jnod 
Maximum number of descendants of this task that can be simultaneously active. This parameter 
value is copied into the task descriptor block at offset T.JNA. Default: Existing contents of T.JNA. 

IMPLEMENTATION 
NOTES 
None. 

8-53 



TDTA$A 

TDTA$A 

TYPE 

Data definition-assembly time. 

FUNCTION 

To define task attributes. 

MACRO CALL 
TDTA$A level,attrib 

parameter 
definitions 
level 
Scheduling leve. This value is assembled into the most recently defined task descriptor block at 
offset T.SCHL. The permissible values are 0 (which defaults to 1) or 1 to n, where n is the number 
of scheduling levels in the system. Default: None. 

attrib 
This parameter indicates whether or not the task is to be run in the batch scheduling level and 
whether or not the task is to be automatically suspended when ICtrVCI occurs. (See Section 3.2.1.3.) 

Parameter 
Value 

FB.BT 

FB.NC 

FB.BTIFB.NC 

Action Taken 

Run task in the batch scheduling level. In this case, the value specified in level is ignored. 

Do not suspend task automatically when I CtrVC I occurs. 

Run task at the batch scheduling level; do not suspend task automatically when I CtrVC I occurs. 

The value specified is written into the most recently defined task descriptor block at offset T.FLG 1. 
Default: The task is automatically suspended on ICtrVCI and is not run in the batch scheduling level. 

IMPLEMENTATION 
NOTES 

1 This macro call can be written at any point in the program. It always relates to the most 
recently defined task descriptor block. 

2 Scheduling levels are described in the lAS System Management Guide. 

3 The macro invokes the TDOFF$ macro to define local offsets. 

8-54 



TDTA$A 

4 Tasks defined with this macro are rtln under the same UIe as the requestor. For PDS 
terminals, the UIC is the user's logged-in UIC. For terminals running with other CLls, the 
UIC is that specified when the CLI is allocated (with the ALLOCATEtrERMINAL command). 
Default is [1,1]. 

8-55 



TDTA$R 

TDTA$R 

TYPE 

Data definition-runtime. 

FUNCTION 

Defines the following task attributes: 

1 Initial scheduling level. 

2 Whether or not it is to be run at the batch level. 

3 Whether or not it is to be automatically suspended when I Ctri/C I occurs. 

MACRO CALL 
TDTA$R tdb,level,attrib 

parameter 
definitions 
tdb 
Address of a task descriptor block. Default: Contents of RO. 

level 
Scheduling level. This has the value 0 (which defaults to 1) or 1 to n where n is the number 
of scheduling levels in the system. It is copied into the task descriptor block at offset T.SCHL. 
Default: Existing contents of T.SCHL. 

attrib 
This parameter indicates the following: 

1 Whether or not the task is to be run in the batch scheduling level. 

2 Whether or not the task is to be automatically suspended on ICtrllCJ occurrence. See also 
Section 3.2.1.3. 

Parameter 
Value Action Taken 

FB.BT Task Is to be run in batch scheduling level. 

FB.NC Task is not to be suspended automatically on ICtrllC I occurrence. 

FB.BTIFB.NC Both of the above apply. 

Parameter value specified is copied into the task descriptor block offset T.FLG 1. Default: Existing 
contents of T.FLG 1. 

8-56 



IMPLEMENTATION 
NOTES 

1 Scheduling levels are described in the lAS System Management Guide. 

TDTA$R 

2 Tasks defined with this macro are run under the same UIC as the requestor's. For PDS 
terminals, the UIS is the user's logged-in UIC. For terminals that run with other CLls, the 
UIC is that specified when the CLI is allocated (with the ALLOCATEtrERMINAL command). 
Default is [1,1]. 

8-57 



TEOFF$ 

TEOFF$ 

TYPE 

Data definition-assembly time. 

FUNCTION 

Define all offset names for error status blocks. 

MACRO CALL 
TEOFF$ offset 

parameter 
definitions 
offset 
Indicates whether the offset names are to be defined as local or global. 

Parameter 
Value 

DEF$l 

DEF$G 

Action Taken 

Offset names defined as local. 

Offset names defined as global. 

Default: DEF$L. 

IMPLEMENTATION 
NOTES 

1 TEOFF$ is used by TDOFF$, CDBDF$, SDBDF$, and ESBDF$ to define local names. 

2 Mter invocation, the macro redefines itself to null. 

8-58 



TINIT$ 

TYPE 

Imperative. 

FUNCTION 

Initialize the timesharing control services. 

MACRO CALL 
TINIT$ esb, err 

parameter 
definitions 
esb 

TINIT$ 

Address of an error status block used by the macro to return result codes. Default: No result codes 
ret.urned. 

err 
Ad.dress of an error handling subroutine. Default: None. 

IMPLEMENTATION 
NOTES 

1 This macro initializes TCS and releases all task descriptor blocks. It should be used if it is 
necessary for a program to restart without being reloaded. 

2 This macro is not required for the initial start of a program (that is, immediately after loading). 

3 To use this macro, a task must be TCP-privileged. Depending on the current state of the task, 
TCS might have to perform some event-related housekeeping activities. For this reason, the 
task must also have the TCS privilege PRo TEV. 

RETURN DATA 

None. 

8-59 



TINIT$ 

RESULT CODES 

General result codes are given in Appendix B. 

The following result codes relate only to this macro. 

Bytename: T.ERR T.ERR+2 Meaning 

Value: PE.ABO PE.TAA Active subtasks. 

8-60 



TKST$T 

TKST$T 

TYPE 

Imperative. 

FUNCTION 

Used by a task to obtain the size and CPU tirne of one of its subtasks. The size and CPU time 
information is returned at offsets E.SIZ and E.TIM in the subtask's TDB. 

MACRO CALL 
TKST$T tdb, err 

parameter 
definitions 
tdb 
Address of the task descriptor block of the subtask for which information is required. Default: 
Contents of RO. 

err 
Address of an error handling subroutine. Default: None. 

IMPLEMENTATION 
NOTES 
To use this macro, the task must be TCP-privileged and have the TCS privilege PR.RST. 

RETURN DATA 

RO contains the address of the subtask's task descriptor block. 

RESULT CODES 

General result codes are given in Appendix B, 

The following result codes relate only to this macro. 

Bytename: T.ERR T.ERR+2 Meaning 

8-61 



TKST$T 

Value: 

Value: 

8-62 

PE.ABO 

PE.ABO 

PE.NTA 

PE.lLL 

Subtask is not active. 

Task issuing the TKST$T directive does not own the subtask. 



TSOFF$ 

TYPE 

Data definition-assembly time. 

FUNCTION 

Define all offset names for send/receive data blocks. 

MACRO CALL 
TSOFF$ offset 

parameter 
definitions 
offset 
Indica tes whether the offset names are to be defined as local or global. 

Parameter 
Value 

DEF$l 

DEF$G 

Action Taken 

The offset names are defined as local. 

The offset names are defined as global. 

Default: DEF$L. 

IMPLEMENTATION 
NOTES 

1 'fDOFF$ and SDBDF$ use TSOFF$ to define local names. 

2 After invocation, the macro redefines itself to null. 

TSOFF$ 

8-63 





A Data Block Layouts 

Address data block fields only by their offset names. This protects your programs against the effect 
of possible changes in future versions of TCS. 

A.1 Task Descriptor Block 

Figure A-1 Task Descriptor Block 

T.LlNK 
T"CMDA 
T,CMDL 
T.TTYP 
T"TP2 
T"TP1 
T.JNA 
T.UIC 
T"SCHL 
T.FLG1 
T.TSND 
T.TESB 
T .. AST 
T .. JID 
T.FLG2 
T.ERF 
T.EFN 
T.SPR1 
T.EVRS 
T.EVNT 
T.EVBF 

Housekeeping pOinter 
Command buffer address 
Command buffer length 
Command buffer format 
TCP privilege 
General privilege 
Max. number subtasks (all levels) 
User identification code 
Initial scheduling level 
Attributes 
Data used by TCS 
Error status block address 

Data used by TCS 

Event indicators 
Buffer containing termination info. 

T.EVFB 

A-1 



Data Block Layouts 

T.EVBF-Termination Information 

Figure A-2 T.EVBF 

E.SIZ 
E.TIM 
E.TR 
E.TS 
E.TPS 
E.TPC 
E.TRO 
E.TR1 
E.TR2 
E.TR3 
E.TR4 
E.TRS 
E.TSP 

Task size (32. word blocks) 
Task CPU time (ticks) 
Bit flags, termination code 
Exit status 
Processor status word on termination 
Program counter on termination 

Registers on termination 

E.TIM 

~-----''''''''-----

E.TSP 

Task descriptor blocks are fully described in Section 3.2.1. 

A~.2 Chain Task Descriptor Block 

Figure A-3 Chain Task Descriptor Block 

T.CHNA 
T.CHNL 
T.CTYP 
T.CSND} 
T.SPR3 
T.CESB 

A-2 

Command buffer address 
Command buffer length 
Command buffer format 

Internal TCS data 

Error status block address 



A.3 Send/Receive Data Block 

Figure A-4 Send/Receive Data Block 

T.SNDA 
T.SNDL 
T.SPR2 
T.SESB 
T.SNDT 

Message buffer address 
Message buffer length 
Internal TCS data 
Error status block address 
Sender or recipient name 

A.3.1 Message Format 

Figure A-5 Message Format 

T.SNDA} Message length in bytes 
Message (0-253 bytes) 

A.4 Error Status Block 

Data Block Layouts 

I ~SNDI I 

message 

A-3 



Data Block Layouts 

Figure A-6 Error Status Block 

T.ERR} 

A-4 

Main error code 
Error qualifier 1- T.ERR 



B Error Codes 

B.1 Task Termination Codes 
As shown in Table B-1, if the event indicator EV.AB is set in the high order byte of E.TR, one of 
the following codes is returned in the low byte of E.TR in the task descriptor block. 

Table B-1 Task Termination Codes 

Code Meaning 

o Odd address or other trap 4 

2 Segment fault 

4 Execution of "8PT" or T-bit trap 

6 Execution of "lOT" 

10 Execution of reserved instruction 

12 Execution of non lAS "EMT" instruction 

14 Execution of "TRAP" 

16 11/45 FPP exception 

20 Reserved 

22 Reserved 

24 Reserved 

26 Reserved 

30 SST aborted (bad stack) 

32 AST aborted (bad stack) 

34 Task aborted 

36 Unused 

40 Task load failure 

42 Task swap failure 

44 IOS8 fault 

46 Task failed to install 

50 Task not loaded because handler not resident 

52 Task too large 

54 Executive-privileged task but not allowed 

56 Non-multiuser task already active 

60 No swap space available 

62 Unavailable pool node for ATL 

64 Task fixed 

66 Task disabled 

8-1 



Error Codes 

B.2 Result Codes 
As shown in Table B-2, the following codes can be returned from any imperative macro. 

Table B-2 Imperative Macro Return Codes 

Byte 
Name T.ERR T.ERR+1 T.ERR+2 Meaning 

PS.SUC 0 0 Complete success. 

PE.PRI 0 0 Caller is not TCP-privileged. 

Value PE.PRI 0 PE.ILL Caller is not privileged enough to perform this function. 

PE.PRI 0 PE.NTS Caller is not a timesharing task. 

PE.ABO 0 PE.BUF Unavailable buffer for event reporting. 

PE.ABO 0 PE.MJN Calling task failed to initiate because system maximum task limit has 
been reached. 

B-2 



C Examples of TCS Macros 

User BOB UIC [200,140J BAOO: 13:58:49 26-MAY-78 

$ ! 
$ON ERROR CONTINUE 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$. 
$! 
$! 
$' 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

THIS BATCH JOB DEMONSTRATES THE USE OF SOME TCS MACROS. 
THE EXAMPLES ARE COMPLETELY ARTIFICIAL, THEIR ONLY GOAl. 
BEING TO SHOW AS Mlrny MACROS AS POSSIBLE IN AS SHORT 
SPACE AS POSSIBLE. THE JOB HAS TWO SEPARATE EXAMPLES: 

1. SUBTASKING 
2. CHAINING AND SENDING/RECEIVING. 

THIS BATCH STREAM WAS ALLOCATED USING: 
SCI> ALLOCATE/TERMINAL BAON PDS (RUN BATCH MAX:3) 

USER 'BOB' HAS A UPF ENTRY CONTAINING (INTER ALIA): 
TPl 1 
TP2 
MTS 

622 
3 

SUB T ASK I N G 

$ 
$ 
$ 
$ 
$ 
$! 
$! 

IN THIS EXAMPLE, , EXAMPLE1' INITIATES A SUBTASK CALLED 'SUBTASK1'. 
'SUBTASK1' FIRST SUSPENDS ITSELF THEN WAITS FOR EVENT FLAG #1 
BEFORE EXITING. 'EXAMPLE1' DETECTS THE SUSPENSION, RESUMES 
'SUBTASK1' AND SETS ITS EVENT FLAG #1. IT THEN WAITS FOR THE 
EXIT EVENT. 

$! 
$! FIRST ASSEMBLE AND BUILD THE TASKS 
$! 
$MAC/LI/SW: (/LI:TTM/NL:BIN) EXAMPLE1 
13:59:15 Size: 27K CPU: 10.22 Status: SUCCESS 
$MAC/LI/SW: (/LI:TTM/NL:BIN) SUBTASK1 
13:59:24 Size: 27K CPU: 2.00 Status: SUCCESS 
$LINK EXAMPLE1 
13:59:44 Size: 20K CPU: 11.12 Status: SUCCESS 
$LINK SUBTASK1 
13:59:57 Size: 20K CPU: 7.84 Status: SUCCESS 
$! 
$! 
$! NOW RUN EXAMPLE1 
$! 
$RUN EXAMPLE1 
13:59:57 
SUBTASK SUSPENDED 
SUBTASK RESUMED 
SUBTASK TERMINATED 
13:59:59 Size: 1K CPU: 0.04 
$! 
$! 
$! 

C-1 



Examples of TeS Macros 

C-2 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

C H A I N I N G & SEN DIN G / R E C E I V I N G 

IN THIS EXAMPLE, 'EXAMPLE2' INITIATES A SUBTASK CALLED 'SUBTASK2' 
AND DECLARES A CHAIN TASK CALLED 'CHAIN'. 'EXAMPLE2' SENDS 
MESSAGES TO BOTH OTHER TASKS. 'SUBTASK2' SENDS THE MESSAGE BACK. 

$ FIRST ASSEMBLE AND BUILD THE TASKS 
$ 
$MAC/LI/SW: (/LI:TTM/NL:BIN) EXAMPLE2 
14:00:27 Size: 27K CPU: 12.78 Status: SUCCESS 
$MAC/LI/SW: (/LI:TTM/NL:BIN) SUBTASK2 
14:00:45 Size: 27K CPU: 6.10 Status: SUCCESS 
$MAC/LI/SW:(/LI:TTM/NL:BIN) CHAIN 
14:01:02 Size: 27K CPU: 5.88 Status: SUCCESS 
$LINK EXAMPLE2 
14:01:22 Size: 20K CPU: 11.50 Status: SUCCESS 
$LINK SUBTASK2 
14:01:39 Size: 20K CPU: 10.40 Status: SUCCESS 
$LINK CHAIN 
14:01:57 Size: 20K CPU: 10.56 Status: SUCCESS 
$ ! 
$! 
$! NOW RUN EXAMPLE2 
$! 
$RUN EXAMPLE2 
14:01:57 
SENDING "FGHI" TO CHAIN TASK 
RUNNING SUBTASK -- SENDING "ABCDE" 
SUBTASK EXITING 
MESSAGE RECEIVED FROM SUBTASK = "ABCDE" 
EXAMPLE2 CHAINING 
14:01:59 Size: 1K CPU: 0.10 (Chaining) 
CHAIN MESSAGE RECEIVED = "FGHI" 
14:02:00 Size: 1K CPU: 0.02 
$ ! 
$! 
$EOJ 
User BOB UIC [200,140] BAOO: 14:02:00 26-MAY-78 
CONNECT TIME 04 M SYSTEM UTILIZATION 101 MCTS 
EXAMPLE 1 MACRO D1110 26-MAY-78 13:58 PAGE 1 



Examples of TCS Macros 

. TITLE EXAMPLE 1 1 
2 
3 
4 
5 
6 

E X AMP L E 1 

.MCALL TCSMC$,QIOW$S,EXIT$S 
7 000000 
9 

TCSMC$ ; MCALL ALL TCS MACROS 

TDB: 9 000000 
10 000074 

TDBDF$ 
TDCM$A BUFF, LENGTH, TS.USE 

11 
12 
13 
14 000074 BUFF: .ASCII / SUBTASK1/ 
15 
16 

LENGTH=.-BUFF 
. EVEN 

17 

THIS AUTOMATICALLY REFERS 
TO TDB 

THIS IS THE SUBTASK FILENAME 

19 000106 MES1: .ASCII <15><12>/SUBTASK SUSPENDED/ 
19 
20 
21 

MES1L=.-MES1 
. EVEN 

22 000132 MES2: .ASCII <15><12>/SUBTASK TERMINATED/ 
23 
24 
25 

MES2L=.-MES2 
. EVEN 

26 000156 MES3: .ASCII <15><12>/ERROR/ 
27 MES3L=.-MES3 
29 . EVEN 
29 
30 
31 000166 START: 
32 000166 TDBD$T #TDB 
33 000176 
34 000200 
35 
36 
37 000216 
39 000220 
39 
40 
41 

000224 

BCS ERR 
RUN$T "",WAIT 

BCS ERR 
RDEV$T 

BCS ERR 

; DECLARE THE TDB 

INITIATE THE SUBTASK ... 
RO WAS SET UP BY TDBD$T ... 
WAIT FOR SUBTASK EVENT 

GE T THE EVENT ... 
NO NEED TO CKEV$T BECAUSE .. . 
RUN$T WITH WAIT GUARANTEES .. . 
AN EVENT HAS HAPPENED 

42 
43 
44 
45 
46 
47 
49 

000226 BITB #IF.SU,T.EVNT(RO) ; IS IT A SUSPENSION? 
000234 BEQ ERR ERROR IF NOT 
000236 QIOW$S 
000276 BCS 

#IO.WLB,#5,#1",,<#MES1,#MES1L> 
ERR 

000300 RSUM$T #TDB ; RESUME THE SUBTASK ... 

49 
50 
51 000310 BCS ERR 
52 000312 SETF$T ,#1 
53 000324 BCS ERR 
54 000326 CKEV$T ,#TDB,WAIT 
55 
56 
57 

EXAMPLE 1 MACRO 01110 26-MAY-79 13:59 
59 000370 BCS ERR 
59 000372 RDEV$T 
60 
61 
62 

STRICTLY SPEAKING #TDB ... 
NEED NOT BE SPECIFIED ... 
BECAUSE RO IS STILL SET UP 

SET ITS EVENT FLAG 

WAIT FOR TASK EVENT ... 
IN THIS CASE tTDB HAS 

; TO BE SPECIFIED BECAUSE ... 
; USE OF RO IS PROHIBITED 

PAGE 1-1 

READ THE EVENT ... 
BUT ONCE AGAIN RO IS SET .. . 
BECAUSE THIS IS THE ONLY .. . 
EVENT THAT WE ARE WAITING FOR 

C-3 



Examples of TCS Macros 

C-4 

63 000376 BCS ERR 
64 000400 BITB iIF.JS,T.EVNT(RO) ; SUCCESSFUL TERMINATION? 
65 000406 BEQ ERR 
66 000410 QIOW$S iIO.WLB,i5,i1",,<iMES2,iMES2L> 
67 000450 EXIT$S 
68 
69 
70 000456 ERR: 
71 000456 QIOW$S iIO.WLB,i5,i1",,<iMES3,iMES3L> 
72 000516 EXIT$S 
73 
74 .END START 

EXAMPLES OF TCS MACROS 
EXAMPLE 1 MACRO 01110 26-MAY-78 13:58 
SYMBOL TABLE 

BUFF 000074R T.CESB= 000010 
ERR 000456R T.CHNA= 000000 
IF.JS ****** GX T.CHNL= 000002 
IF.SU ****** GX T.CMDA= 000002 
IO.WLB= ****** GX T.CMDL= 000004 
LENGTH= 000011 T.CSND= 000004 
MES1 000106R T.CTYP= 000003 
MESIL 000023 T.EFN 000031 
MES2 000132R T.ERF = 000030 
MES2L 000024 T.ERR = 000000 
MES3 000156R T.EVBF= 000036 
MES3L == 000007 T.EVNT= 000035 
START 000166R T.EVRS= 000034 
S.CTDB== 000012 T.FLG1= 000015 
S.ESB 000004 T.FLG2= 000026 
S.SDB 000012 T.JID = 000024 
S.TDB 000074 T.JNA = 000011 
TDB OOOOOOR T.LINK= 000000 
TD.WT ****** GX T.SCHL= 000014 
TS.USE= ****** GX T.SESB= 000006 
TW.TAS= ****** GX T.SNDA= 000000 
TW.WT = ****** GX T.SNDL= 000002 
T.AST = 000022 T.SNDT= 000010 

ABS. 000000 000 
000524 001 

ERRORS DETECTED: 0 

VIRTUAL MEMORY USED: 5729 WORDS (23 PAGES) 
DYNAMIC MEMORY: 16016 WORDS (61 PAGES) 
ELAPSED TIME: 00:00:22 

PAGE 1-2 

T.SPR1= 000032 
T.SPR2= 000003 
T.SPR3= 000006 
T.TESB= 000020 
T.TP1 = 000010 
T.TP2 = 000006 
T.TSND= 000016 
T.TTYP= 000005 
T.UlC = 000012 
$$$ARG= 000002 
$$$M == 000006 
$$$TYP= 000027 
$$$T1 000010 
.CKEV ****** 
.RDEV ****** 
.RSUM ****** 
.RUN ****** 
.SETF ****** 
.TDBD ****** 
... PC1= OOOOOOR 
... PC2= 000074R 
... TPC= 000074 

Page A-6 

G 
G 
G 
G 
G 
G 

SYO: [200, 140]EXAMPLE1, SPO: [l,4]EXAMPLE1/LI:TTM/NL:BIN=SYO: [200, 140]EXAMPLE1 
SUBTASK1 MACRO D1110 26-MAY-78 13:59 PAGE 1 



Examples of TCS Macros 

1 
2 
3 
4 
5 
6 
7 
8 000000 MES: 

.TITLE SUBTASK1 

SUB T ASK 1 

. MCALL SPND$S,WTSE$S,QIOW$S,EXIT$S,CLEF$S 

.ASCII <15><12>/SUBTASK RESUMED/ 
9 MESL=.-MES 

10 . EVEN 
11 
12 000022 START: 

#1 ;ENSURE FLAG IS CLEAR 
; SUSPEND 

13 000022 
14 000034 
15 000042 
16 000102 
17 000114 
18 

CLEF$S 
SPND$S 
QIOW$S 
WTSE$S 
EXIT$S 

#IO.WLB,#5,#4",,<#MES,#MESL> 
#1 ;WAIT UNTIL FLAG IS SET 

19 .END START 
SUBTASK1 
SYMBOL TABLE 

MACRO D1110 26-MAY-78 13:59 PAGE 1-1 

IO.WLB= ****** GX 
MES OOOOOOR 

. ABS. 000000 000 
000122 001 

ERRORS DETECTED: 0 

MESL 
START 

000021 
000022R 

VIRTUAL MEMORY USED: 1223 WORDS (5 PAGES) 
DYNAMIC MEMORY: 16016 WORDS (61 PAGES) 
ELAPSED TIME: 00:00:05 

$$$ARG= 000002 
$$$T1 = 000010 

SYO: [200, 140]SUBTASK1, SPO: [1,4]SUBTASK1/LI:TTM/NL:BIN=SYO: [200, 140]SUBTASK1 
EXAMPLE2 MACRO D1110 26-MAY-78 14:00 PAGE 1 

1 
2 
3 
4 
5 
6 
7 
8 000000 
9 

10 000000 CTDB: 
11 
12 000012 TDB: 
13 000106 
14 
15 000106 SDB1: 
16 
17 
18 000120 SDB2: 
19 
20 000132 SDB3: 
21 
22 
23 
24 000144 ESB: 
25 
26 

. TITLE EXAMPLE2 

E X AMP L E 2 

.MCALL TCSMC$,EXIT$S,QIOW$S 
TCSMC$ 

CDBDF$ BUFF1,LEN1,TS.USE 

TDBDF$ 
TDCM$A BUFF2,LEN2,TS.USE 

SDBDF$ 

SDBDF$ MESS2 

SDBDF$ MESS3,MESS3L 

ESBDF$ 

DEFINE THE CTDB 

DEFINE AN SDB. THIS .. . 
WILL BE FILLED IN .. . 
DURING SEND$T 
USED FOR SENDING BY RUN$T ... 
NO DESTINATION NEEDED 
USED FOR RECEIVING ... 
BUFFER LENGTH MUST BE ... 
SPECIFIED 

DEFINE ERROR STATUS BLOCK 

27 000150 BUFF1: .ASCII / CHAIN.TSK/ FILENAME OF CHAIN TASK 
28 LEN1=.-BUFF1 
29 

C-5 



Examples of TCS Macros 

C-6 

30 000162 BUFF2: .ASCII / SUBTASK2/ FILENAME OF SUBTASK 
31 LEN2=.-BUFF2 
32 
33 

. EVEN 

34000174 MESS1: . WORD 4 LENGTH OF MESSAGE 
35 000176 .ASCII /FGHI/ 
36 
37 

. EVEN 

38 000202 MESS2: . WORD 5 LENGTH OF MESSAGE 
39 000204 .ASCII /ABCDE/ 
40 
41 

. EVEN 

42 000212 MESS4: .ASCII <15><12>/MESSAGE RECEIVED FROM SUBTASK =/ 
43 000254 MESS3: .ASCII / / 
44 MESS3L=.-MESS3 
45 
46 
47 

MESS4L=.-MESS4 
. EVEN 

48 000264 MESS5: .ASCII <15><12>/RUNNING SUBTASK -- SENDING "ABCDE"/ 
49 MESS5L=.-MESS5 
50 000330 MESS6: .ASCII <15><12>/EXAMPLE2 CHAINING/ 
51 MESS6L=.-MESS6 
52 . EVEN 
53 
54 000354 MESS7: .ASCII <15><12>/SENDING "FGHI" TO CHAIN TASK/ 
55 
56 
57 

MESS7L=.-MESS7 
. EVEN 

EXAMPLE2 MACRO D1110 26-MAY-78 14:00 PAGE 1-1 

58 000412 START: 
59 000412 
60 000452 
61 
62 
63 000474 
64 000476 
65 000512 
66 
67 000514 
68 
69 
70 
71 000534 
72 
73 
74 000546 
75 000550 
76 000610 
77 000622 
78 
79 000624 
80 000666 
81 000670 
82 000674 
83 000676 
84 000704 
85 000706 
86 000716 
87 000720 
88 000726 
89 000730 
90 000736 

QIOW$S 
SEND$T 

BCS 
CHN$T 
BCS 

TDPR$R 

TDBD$T 

BCS 
QIOW$S 
RUN$T 
BCS 

#IO.WLB,#5,#1",,<#MESS7,#MESS7L> 
#SDB1,#0,#MESS1 SEND TO CHAIN ... 

ERRl 
#CTDB 
ERR1 

DEFINING SDB CONTENTS ... 
AT SAME TIME 

i DECLARE CHAIN TASK 

#TDB,#JP.PI,#PR.CHN iSET UP PRIVILEGE .. . 
FOR SUBTASK TO SEND .. . 

i AND RECEIVE. NOTE USE .. . 
i OF RUN-TIME MACRO. 

,#ESB i DECLARE THE TDB ... 

ERR2 

AND SET ERROR STATUS ... 
i BLOCK 

#IO.WLB,#5,#1",,<#MESS5,#MESS5L> 
",,#SDB2 i INITIATE AND SEND 
ERR2 

CKEV$T ,#TDB,WAIT i WAIT FOR EVENT 
BCS ERR3 
RDEV$T 
BCS 
BITB 
BEQ 
RCV$T 
BCS 
CMP 
BNE 
CMP 
BNE 

WHAT WAS IT? 
ERR2 
#IF.SD,T.EVNT(RO) i SHOULD BE SEND 
ERR4 
#SDB3 i GET THE MESSAGE 
ERRS 
MESS3,MESS2 
ERR4 
T.SNDT(RO),#TDB 
ERR4 

CHECK MESSAGE LENGTH 

CHECK MESSAGE SENDER 



Examples of TCS Macros 

91 000740 MOV MESS3,R1 MESSAGE LENGTH 
92 000744 MOV t" " ,MESS3 
93 000752 MOVB t''',MESS3+2(R1) 
94 000760 QIOW$S tIO.WLB,t5,t1",,<iMESS4,iMESS4L> 
95 001020 MOV tTDB,R1 
96 001024 BITB tIF.JS!IF.JA!IF.NL,T.EVNT(R1) 
97 THE EXIT EVENT MAY HAVE ... 
98 BEEN DETECTED AT THE ... 
99 SAME TIME AS THE SEND ... 

100 MESSAGE EVENT. CHECK TO ... 
101 SEE IF IT WAS. 
102 001032 BNE EXIT BR IF TASK ALREADY EXITED 
103 001034 CKEV$T , <R1>,WAIT ELSE WAIT FOR IT ... 
104 NOTE USE OF R1 AS PARAM 
105 001066 BCS ERR2 
106 
107 001070 ERR1: 
108 001070 ERR2: 
109 001070 ERR3: 
110 001070 ERR4: 
111 001070 ERR5: 
112 001070 HALT 
113 001072 EXIT: 
114 001072 QIOW$S tIO.WLB,t5,t1",,<tMESS6,iMESS6L> 

EXAMPLE2 MACRO D1110 26-MAY-78 14:00 PAGE 1-2 

115 001132 EXIT$S 
116 
117 .END START 

EXAMPLE2 MACRO D1110 26-MAY-78 14:00 PAGE 1-3 
SYMBOL TABLE 

BUFF1 000150R SDB1 000106R T.LINK= 000000 
BUFF2 000162R SDB2 000120R T.SCHL= 000014 
CTDB OOOOOOR SDB3 000132R T.SESB= 000006 
ERR1 001070R START 000412R T.SNDA= 000000 
ERR2 001070R S.CTDB= 000012 T.SNDL= 000002 
ERR3 001070R S.ESB 000004 T.SNDT= 000010 
ERR4 001070R S.SDB 000012 T.SPR1= 000032 
ERR5 001070R S.TDB 000074 T.SPR2= 000003 
ESB 000144R TDB 000012R T.SPR3= 000006 
EXIT 001072R TD.WT ****** GX T.TESB= 000020 
IF.JA ****** GX TS.USE= ****** GX T.TP1 = 000010 
IF.JS ****** GX TW.TAS= ****** GX T.TP2 = 000006 
IF.NL ****** GX TW.WT = ****** GX T.TSND= 000016 
IF.SD ****** GX T.AST = 000022 T.TTYP= 000005 
IO.WLB= ****** GX T.CESB= 000010 T.UIC = 000012 
JP.PI ****** GX T.CHNA= 000000 $$$ARG= 000002 
LEN1 000012 T.CHNL= 000002 $$$M 000006 
LEN2 000011 T.CMDA= 000002 $$$TYP= 000001 
MESS1 000174R T.CMDL= 000004 $$$T1 000010 
MESS2 000202R T.CSND= 000004 .CHN ****** G 

MESS3 000254R T.CTYP= 000003 .CKEV ****** G 

MESS3L= 000010 T.EFN 000031 .RCV ****** G 

MESS4 000212R T.ERF = 000030 .RDEV ****** G 

MESS4L= 000052 T.ERR = 000000 . RUN ****** G 

MESS5 000264R T.EVBF= 000036 .SEND ****** G 

MESS5L= 000044 T.EVNT= 000035 .TDBD ****** G 

MESS6 000330R T.EVRS= 000034 ... PC1= 000012R 
MESS6L= 000023 T.F:LG1= 000015 ... PC2= 000132R 
MESS7 000354R T.FLG2= 000026 ... PC3= 000012R 
MESS7L= 000036 T.JID 000024 ... TPC= 000074 
PR.CHN= ****** GX T.JNA = 000011 

C-7 



Examples of leS Macros 

C-8 

. ABS. 000000 000 
001140 001 

ERRORS DETECTED: 0 

VIRTUAL MEMORY USED: 5923 WORDS (24 PAGES) 
DYNAMIC MEMORY: 16016 WORDS (61 PAGES) 
ELAPSED TIME: 00:00:25 
SYO: [200, 140]EXAMPLE2, SPO: [1,4]EXAMPLE2/LI:TTM/NL:BIN=SYO: [200, 140]EXAMPLE2 
SUBTASK2 MACRO D1110 26-MAY-78 14:00 PAGE 1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

000000 
000000 SDB: 

.TITLE 

. MCALL 
TCSMC$ 
SDBDF$ 

SUBTASK2 

S U B T A S K 2 
- - - - - -

TCSMC$,EXIT$S,QIOW$S 

BUFF, LENGTH 

10 000012 BUFF: . BLKW 20. 
11 LENGTH=.-BUFF 
12 
13 000062 MESS1: .ASCII <15><12>/SUBTASK EXITING/ 
14 MESS1L=.-MESS1 
15 
16 000103 MESS2: .ASCII <15><12>/SUBTASK ERROR/ 
17 MESS2L=.-MESS2 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

000122 
000122 
000132 
000134 
000142 
000144 

29 000150 
30 000152 
31 000212 

START: 

32 000220 ERR: 
33 000220 
34 000260 
35 
36 

. EVEN 

RCV$T #SDB 
BCS ERR 
CMP T.SNDT(RO),#-l 
BNE ERR 
SEND$T 

BCS ERR 

GET THE MESSAGE 

SHOW IT CAME FROM OWNER 

SEND IT BACK ... 
NOTE THAT ALL FIELDS ... 
WILL HAVE BEEN CORRECTLY ... 
SET UP BY RCV$T 

QIOW$S #IO.WLB,#5,#1",,<#MESS1,#MESS1L> 
EXIT$S 

QIOW$S #IO.WLB,#5,#1",,<#MESS2,#MESS2L> 
EXIT$S 

.END START 
SUBTASK2 
SYMBOL TABLE 

MACRO D1110 26-MAY-78 14:00 PAGE 1-1 

BUFF 000012R START 000122R $$$ARG= 000002 
ERR 000220R S.ESB 000004 $$$TYP= 000027 
IO.WLB= ****** GX S.SDB 000012 $$$Tl 000010 
LENGTH= 000050 T.ERR 000000 .RCV ****** G 
MESSl 000062R T.SESB= 000006 .SEND ****** G 
MESS1L= 000021 T.SNDA= 000000 ... PC1= 000000 
MESS2 000l03R T.SNDL= 000002 ... PC2= OOOOOOR 
MESS2L= 000017 T.SNDT= 000010 ... PC3= 000000 
SDB OOOOOOR T.SPR2= 000003 ... TPC= 000004 

ABS. 000000 000 
000266 001 

ERRORS DETECTED: 0 



Examples of TCS Macros 

VIRTUAL MEMORY USED: 5663 WORDS (23 PAGES) 
DYNAMIC MEMORY: 16016 WORDS (61 PAGES) 
ELAPSED TIME: 00:00:15 
SYO: [200, 140]SUBTASK2,SPO: [1,4]SUBTASK2/LI:TTM/NL:BIN=SYO: [200, 140]SUBTASK2 
CHAIN MACRO D1110 26-MAY-78 14:00 PAGE 1 

1 .TITLE CHAIN 
2 
3 C H A I N 
4 
5 
6 . MCALL TCSMC$,EXIT$S,QIOW$S 
7 000000 TCSMC$ 
8 
9 000000 SDB: SDBDF$ BUFF, LENGTH 

10 
11 000012 MESS: .ASCII <15><12>/CHAIN MESSAGE RECEIVED=/ 
12 000044 BUFF: .ASCII \ \ 
13 LENGTH=.-BUFF 
14 MESSL=.-MESS 
15 . EVEN 
16 
17 000054 ERROR: .ASCII <15><12>/ERROR IN CHAIN TASK/ 
18 ERRORL=.-ERROR 
19 . EVEN 
20 
21 000102 START: 
22 000102 RCV$T #SDB ; GET A MESSAGE 
23 000112 BCS ERR 
24 000114 MOV BUFF,R1 ; GET ITS LENGTH 
25 000120 MOV #" ",BUFF 
26 000126 MOVB #' ",BUFF+2(R1) 
27 000134 QIOW$S #IO.WLB,#5,#1",,<#MESS,#MESSL> 
28 000174 EXIT$S 
29 
30 000202 ERR: 
31 000202 QIOW$S #IO.WLB,#5,#1",,<#ERROR,#ERRORL> 
32 000242 EXIT$S 
33 
34 .END START 

CHAIN MACRO D1110 26-MAY-78 14:00 PAGE 1-1 
SYMBOL TABLE 

BUFF 000044R START 000102R $$$ARG= 000002 
ERR 000202R S.ESB 000004 $$$TYP= 000027 
ERROR 000054R S.SDB 000012 $$$T1 = 000010 
ERRORL= 000025 T.ERR 000000 .RCV ****** G 
IO.WLB= ****** GX T.SESB= 000006 ... PC1= 000000 
LENGTH= 000010 T.SNOA= 000000 ... PC2= OOOOOOR 
MESS 000012R T.SNDL= 000002 ... PC3= 000000 
MESSL = 000042 T.SNDT= 000010 ... TPC= 000004 
SDB OOOOOOR T.SPR2= 000003 

. ABS. 000000 000 
000250 001 

ERRORS DETECTED: 0 

VIRTUAL MEMORY USED: 5703 WORDS (23 PAGES) 
DYNAMIC MEMORY: 16016 WORDS (61 PAGES) 
ELAPSED TIME: 00:00:15 
SYO: [200,140]CHAIN,SPO: [1,4]CHAIN/LI:TTM/NL:BIN=SYO: [200,140]CHAIN 

C-9 





Index 

A 
Aborting subtasks 

by owner • 3-2 
by system manager· 3-2 

ABRT$T·8-1 
Assembly time 

declaration • 1-3 
definition • 1-3 

Assembly time declaration of TCS data structures • 
7-5 

Auto-install • 3-4 
Auto-suspendable 

as default • 5-1 

c 
C DBDF$ macro • 6-1 , 8-4 
CDDF$R macro· 8-5 
Chain task 

attributes of • 6-1 
privileges • 6-1 

Chain task descriptor block (CTDB) • 6-1 
CHN$T macro • 8-6 
CKEV$T macro· 8-8 
CLI· 1-1 

as controller • 2-1 
facilities available to· 2-1 
functional aspects of • 2-1 
guidlines for programming language • 2-4 

CLI characteristics • 1-1 
CLI privileges 

at installation • 7-2 
CLI subtasks • 1-2 
CTC$T macro • 8-11 

CLAIM parameter • 5-2 
[Ctri/C I task • 5-1 

D 
Data block fields 

addressing • A-1 

Data definition TCS macro 
assembly time ·1-2 
run time • 1-2 

E 
Error status block 

address of • 4-1 
ESBDF$ macro • 8-13 
Events· 3-2 

F 
Fields in the buffer • 3-6 

I 
Imperative TCS macro • 1-2 
Interface between owner and subtask· 3-1 

J 
JNOD$T macro • 8-14 

M 
MACRO-11 assembler 

error-flagging • 7-3 
.MCALL directive • 7-1 
Message buffer • 4-1 
Message length • 4-1 

o 
Offset names 

for accessing fields • 6-1 

Index-1 



Index 

p 
Parameters 

optional- 7-4 
Passing control from task to task - 6-1 
Privileges for controlling TCS facilities - 7-2 
Processor status word 

carry bit - 7-3 

R 
RCV$T macro - 4-3,8-16 
RDEV$T macro - 8-18 
Registers 

saved by macros - 7-5 
saving by macros - 7-5 

Required macros -1-1 
Reserving data space - 3-3 
RSAS$T macro - 8-20 
RSUM$T macro - 8-22 
RUN$T macro - 4-2, 8-24 

s 
Safeguarding user programs - 3-3 
Scheduler queue - 4-2 
Scheduling level-3-5 
SDBDF$ macro - 8-27 

use of -4-1 
SDDF$R macro - 4-1,8-29 
SEND$T macro - 8-31 
Send/receive buffer length - 4-1 
Send/receive data block 

fields in - 4-1 
Send data block (SDB) - 4-1 
SETF$T macro - 8-33 
SHUT$T macro • 8-35 
Specialized applications - 2-1 
SPND$T macro - 8-37 
Subtask 

privileges - 3-5 
Subtask owner - 3-1 
Subtasks 

accounting for - 3-7 
relationship to owner tasks - 3-1 

System resources 

Index-2 

System resources (Cont.) 

minimizing • 6-1 

T 
TASK2 

action - 5-2 
Tasks that use TCS 

privileges of - 7-2 
TCOFF$ macro - 8-39 
TCP -1-1 
TCS - 1-1, 7-1 
TCS contents - 1-1 
TCS facilities 

initiating - 1-3 
TCS facility - 5-1 
TCS initialization - 7-1 

automatic - 7-1 
TCS macro 

types of· 7-4 
TCS macro description 

format - 8-1 
TCS macros - 7-1 

CDBDF$ -8-4 
CDDF$R -8-5 
CHN$T-8-6 
CKEV$T-8-8 
CTC$T - 8-11 
ESBDF$ - 8-13 
JNOD$T - 8-14 
RCV$T- 8-16 
RDEV$T - 8-18 
RSAS$T - 8-20 
RSUM$T - 8-22 
RUN$T-8-24 
SDBDF$ - 8-27 
SDDF$R - 8-29 
SEND$T· 8-31 
SETF$T - 8-33 
SHUT$T - 8-35 
SPND$T • 8-37 
TCOFF$ • 8-39 
TCSMC$ - 8-40 
TDBD$T • 8-42 
TDBDF$ • 8-41 
TDBR$T • 8-44 
TDCM$A • 8-46 
TDCM$R • 8-47 
TDEB$A· 8-48 
TDOFF$ • 8-49 



TCS macros (Cont.) 

TDPR$A • 8-50 
TDPR$R • 8-52 
TDTA$A • 8-54 
TDTA$R • 8-56 
TEOFF$ • 8-58 
TINIT$ • 8-59 
TKST$T • 8-61 
TSOFF$ • 8-63 

TCS Macro section • 8-1 
TCSMC$ macro • 8-40 
TDBD$T macro • 8-42 
TDBDF$ macro· 8-41 
TDBR$T macro • S-44 
TDCM$A macro • 8-46 
TDCM$R macro • 8-47 
TDEB$A macro • 8-48 
TDOFF$ macro • 8-49 
TDPR$A macro· 8-50 
TDPR$R macro • 8-52 
TDTA$A macro - 8-54 
TDTA$R macro • 8-56 

TEOFF$ macro • 8-58 
Timesharing control services - 1-1 
Timesharing tasks 

CLis -1-1 
maximum number of· 2-3 

TINIT$ macro • 8-59 
TKST$T macro • 8-61 
TSOFF$ macro • 8-63 

u 
UIC 

for running subtask • 3-5 
Undefined C-bit value • 7-{3 
User/system interface 

MCR ·2-1 
PDS· 2-1 

User subroutines 
error-handling • 7-4 

Index 

Index-3 





-
Reader's 
Comments 

lAS 
Guide to Writing Command Language Interpreters 

AA-D120D-TC 

This form is for document comments only. Digital will use comments submitted on 
this form at the company's discretion. If you require a written reply and are eligible 
to receive one under Software Performance Report (SPR) service, submit your 
comments on an SPR form. 

Did you find this manual understandable, usable, and well organized? Please make suggestions for 
improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of user/reader that you most nearly represent: 

D Assembly language programmer 
D Higher-level language programmer 
D Occasional programmer (experienced) 
D User with little programming experience 
D Student programmer 
D O~~(p~~es~dM' ________________________ ~ 

Name; _______________________________________________________ Date ____________ _ 

Organization, ________________________ -------------------

Street~ _________________________________________________ . ________ __ 

City _________________________ State. __________ Zip Code, ______ _ 

or Country 



-.----.------------ I)() N(~ll'l:ar - 1:()ldlll:rl: and Tapt" ------------------------

mamaamo™ 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO 33 MA YN.A.RD MASS 

POSTAGE WILL BE PAID BY ADDRESSEE 

lAS Engineering/Documentation 
Digital Equipment Corporation 
5 Wentworth Drive GSF/L20 
Hudson, N H 03051-4929 

III ••••• 11.11 •••• 1.1 •••• 111.1 •• I. I ... 1 •• 11.1 .. II ••• I 

No Postage 

Necessary 

If Mailed in the 

United States 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

-----------------------. UII ,,,I Tl"af - !'"Id .It-n" ---------------------1 
1 

1 

1 

1 

1 

1 


