IAS System Library Routines Reference
Manual

Qrtier Number: AA-SS80C-TC
Qperating Systam and Version: IAS Version 3.4

The irnfermaition in Tiis documient i3 subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibiiity for
any efrors that may appear in this document.

The software deacribed in, thig_documant is fumished under a ficense and may be used or copied only in
accordance with the terms of such license.

Restricted Rights: Use. dupiication, or disciosure by the U.S. Govemment is subject to restrictions as set forth in
subparegraph (¢)(1)(l) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

NG résportaibility s assuried for the use or reliability of software on equipment that is not supplied by Digitai
- Equipment Corporation or its aiffiiaied companies. - -

Capyright ©1990 by Digital Equipment Corporation

All Rights- Reserved.
Primed in U.S.A.

W@”&'éﬁﬁm form on the last-page - of this document requests the User's critical
" ‘wmmﬂhgmmununmm R :

ﬁ

e

The M aro trademarks of Olgikal Exuipmeri S imdniind °

o]0l 1AS VAX C
DEC MASSBUS VAXciuster

o, DECICMS ..POP VAXstation
Bm POT .. NMS.
~OEChet RSTS SR~ (Y V2T Mty
DECuUs RSX vT

e ECwirvdiOwS -~~~ LLTRIX e e e

i - DECwrito UNIBUS 27 5 vl B e - U
DIBOL VAX dlilaliftiall

L Sy HEHZ VAL T

ﬂﬁdaum«nw-pnpadum VAX DOCUMENT, Vorsion 12

e }?s'v)‘;"‘: "iww‘w
fab

P

Contents

PREFACE vil
CHAPTER1 INTRODUCTION L BT 1-1
CHAPTER 2 REGISTER HANDLING nounugs A .- 2

$SAVAL 2-3 :
$SAVRG - R «:
$SAVVR FHATIE R W TRRPERUT D WO C&-‘Wz yt'*’wu

.SAVR1 evamed=8-api s -ihé

Uil ey s 53
RO N < |

CHAPTER 3 ARITHMETIC ROUTINES" e
SMUL
$oIv

DOUBLE-PRECISIQN MULTIPLY ROUTINE. . et wn P -

$ODIvV

e st g e
ey ALY @ b T deed B & 1
ERTE R S i St s bl O T n,f?:muwmwai
3-3
S R “'
L_»-d’

CHAPTER 4 INPUT DATA convsnsngﬂuﬁ}gpﬁwmes
41 ASCIITO BINARY DOUBLE:WO “ﬁonvensaous o,
42 ASCI TO BINARY CONVERSIONS 4-1
DBV VAR ST A e e el guiet RSRETIGSA) ware Tl
43 ASCli TO RADIX-50 CONVERSIONS 4-1
.DD2CT 4-3 '
.0D2CT 4-5
SCDTB a-7
. $COTB 4-9
$CATS 4-11
$CATSB 4-13

Cénitents

CHAPTER 5 OUTPUT DATA CONVERSION ROUTINES 5-1
SCBODAT 5-3
SCBDMG 5-§
$CBDSG 5-7
$CDDMG - 5-9
$CBOMG 5-12
$CBOSG 5-14
$CBTMG 5-16
e e oMo BTA - we 5-18
$CSTA e 5-20
T T PR SRR F ST
CHAPTER 6 OUTPUT FORMATTING.BQUTINES.. - 6-1
$CVTUC 6-2
$DAT 6—4
- ARAL - . 6-6
$TIM 6-9
SEDMSG 6-11
CHAPTER 7._ DYNAMIC MEMORY MANAGEMENT ROUTINES 7-1
oS e scria i et B ‘ﬂN'DM 4 T HUary Toorgs 7-2
- T $AacB L 7-4
- T TSRLCB ’ ’ 7-6
CHAPTEH 8 VIHTU"AL MEMORY“MANAGEMENT{ F}?UTINES 8-1
wie Y R
i LR I TR D LA PP R | SIS TR
3 8.1 m.,,“,-U_SJN.G.,T!,'l,ENVIHTUAL:MEMORYAMAN:A@EMENT ROUTINES 81
AR ...8.1.1_ . .User Error=-Handlirig: Requirements 8-2
e .. _.8.1,2._.. Task-Bullding Requirements . 8-3
e BINIVM oniianm w0 DE @t to i 8-6
- f’APBLK aruaR JFVUOD e to ik 8-11
ke "w_,_m,,_m_,‘,_m,f'ssrco:gm33;;0."4: ‘.&4';'»?'* &7 4T :_':;
- S——ve VR B S G AU SR 8-20
g 3 e e SWRPAG ¥ 1 3F DO AWE e 10 8-23
R - B enityos DSoT AL et o ’
el - el
8.2 VIRTUAL MEMORY ALLOCATION ROUTINES 8-26
SALVRT 8-27
$SALSVB 8-30
$RQvCB 8-34
$CVLOK 8-37
SCVRAL 8-40
SRDPAG 8-43
$SFNDPG 8-46

Contents. .

SWRMPG . 8-48 A
$LCKPG ‘ . 8-51 :
SUNLPG 8-54
CHAPTER 9 SUMMARY PROCEDURES 19—1
APPENDIX A SYSTEM REFERENCE BIBLIOGRAPHY A-1
APPENDIX B UNIVERSAL LIBRARY ACCESS T T~ T omiw(C & P B-1 -
STV D
"
INDEX fo
FIGURES J— e wenmdon sl R
2-1- Control Swapping of ma Feglswe Handllng Routings” i ui’ i ° F3THE2T
8-1 General Block Diagram of the $INIVM Routine ______ 8-8
8-2 General Block Diagram of the $ALBLK Routine 8-13
8-3 General Block Diagram of the $SGTCOR Routine (Nonstatistical
Module GTCOR) 8—15
8-4 General Block Dlagram‘ppg the $GTCQ§;§ _ﬁqutmg gStgmgucg Mpﬁgl@mm R
GTCOS) s g T e 5 @19,
85 General Block Diagram of ihe SEXTSK Routine 8-21
8-6 General Block Diagram of the SWRPAG Rouiine. i 828
8-7 General Block Diagratn of'thie SALVET Houtine - ‘ RO Tt 8-28
8-8 General Block Diagram-of the: $ALSVE Routling ..o S 8-32
8-9 General Block Diagram of the-$RQVCB Routine ~_iv 5 ‘o 8-35
8-10 General Block Diagram of the $CVLOK Routine 'l é_-38
8-11 General Block Diagram of the SCVRL Routine . 8-41
8-12 General Block Diagram of the $RDPAG Routine, _..._. 8-44
8-13 General Block Diagram of the $SFNDPG Routine ,, __i}»_{i, 8-47
8-14 General Block Diagram of the SWRMPG Routine : uisi. 8-49
8-15 General Block Diagram of the SLCKPG Routine 8-52
8-16 General Block Diagram of trw ML% Nwzmg ;, S R P é--ss
S e

PP P

Contents

TABLES
1-1 Program Section Names for SYSLIB Routines 1-3
6-1 $EDMSG Routine Editing Directives 6-13
8-1 Contents of the Virtual Memory Management Library Flle 8-3
9-1 Register Handling Routines Summary 9--1
9-2 Arithmetic Routines Summary 9-1
9-3 input Data Conversion Routines Summary 9-2
9-4 Output Pata Conversion Routines Summary 9-3
9-5 Output Formatting Routines Summary 9-4
9-6 - Dynamic Memory Management Routines Summary 9-6
9-7 Virtual Memory Management Routines Summary 9-7
5o L0y Tl rsInve o Qe a0t nTBE il i
ad J1iTy - h
['s 3 [H 1
CURAGT LBENERVIOT KDL m®u ey K0y e
AL BpEL Ch 0WRZORT TG IT0 T GOTYL IGO0 REIYL Ok
D RITULIG IR, TOT THET L RS DOL el o

viv

Preface

Manual Objectives

The IAS System Library Routines Reference Manual describes the use and function of the system
library routines that may be called from MACRO-11 assembly Ianguage prugrams |

A0

Intended Audience

This manual is intended for use by experienced MACRO-11 assembly language programmers, iAS
system managers, and applications programmers. S s .

Document Structure i

|
Chapter 1 presents a general description of the services provided by the system library routines
and their functional relationships. i

Chapter 2 describes the use and function of the register handling routines.

Chapter 3 describes the use and function of the arithmetic routines.

Chapter 4 describes the use and function of the input data conversion routines.

Chapter 5 describes the use and function of the output data conversion routines.

Chapter 6 describes the use and function of the output formatting routines. l
Chapter 7 describes the use and function of the dynamic memeory management routines. |
Chapter 8 describes the use and function of the virtual memory management routines. |
Chapter 9 summarizes the calling sequences of the system library routines.

Appendix A presents a cross-reference system bibliography of other manuals that describe routmes
available to IAS system users,

Appendix B describes a routine that enables a program to access modules in a universal hbrary as
if they were files.

Associated Documents

The following manuals are prerequisite sources of information for readers of this manual:
* The PDP-11 MACRO-11 Language Reference Manual

* The IAS Task Builder Manual

¢ The manuals referred to in Appendix A

Readers should also refer to the IAS Documentation Directory and Master Index for desmptlons of
other documents associated with this manual. .

vik,

Introduction

The routines described in this manual were written to provide commonly needed capabilities for
DIGITAL-supplied utilities. We supply documentation for them because the routines are general
enough to be used regularly by most MACRO-11 programmers. Note, however, that the basic
functionality of the routines described in this manual cannot be changed because of the potentially
widespread effect it might have on our system utilities.

The system library routines can be called by MACRO-11 assembly language programs ta perform
the following services:

* Save and restore register contents to enable transfers of control between the calhng prog'ram
and called subroutines

* Perform integer and double-precision multiplication and division

¢ Convert ASCII input data to internal binary and Radix-50 format

¢ Convert internal binary and Radix-50 data to ASCII output data

* Convert and format output data to produce text for a readable printout or display

¢ Manage the dynamic memory space available to the task that requires a small-t.o-nwdemte
amount of resident memory for data

* Manage memory and disk file storage to accommodate tasks that require large amml‘rnts of
memory for data that must be transferred between memory and a disk work file

This manual describes the procedures for calling the library routines from within the source
program, the output that is returned to the executing task, and the interaction between the library
routines and the executing task.

The system library routines interface with each other to perform their various services. For
example, the data conversion routines call the arithmetic routines to perform the requ:red
multiplication and division. All library routines preserve the contents of the calling task’ s registers,
generally by calling the appropriate register handling routine to do the following: |

¢ Save register contents on the stack
¢ Subsequently restore the contents of the registers
e Return control to the calling task

The data conversion and format control functions performed by the Edit Message Routme require
calls to the output data conversion routines, which in turn call other routines.

The virtual memory management routines function as an automatic control system to al]ccate and
deallocate memory, maintain page addresscs and status, and swap pages between memory and disk
storage to accommodate large amounts of data in a limited amount of physical (dynamic) memory.

The system library routines communicate with the calling task by means of registers where output
is returned or by settings of the C bit in the Condition Code of the Processor Status Word. The
.calling task can usually determine whether a requested service was successfully performed by
examining the output register or registers or by testing the C bit setting when control is returned
from the library routine. Exceptions to this procedure are described in the detailed d:scussmns of
given routines. i

" 1-1

lntroducﬂon

The system library routines are supplied to users as object code in the following files:
¢ The system library file (SYSLIB.OLB), which contains the following routines:

— Register handling routines (described in Chapter 2)

— Arithmetic routines (described in Chapter 3)

— Input and output data conversion routines (described in Chapters 4 and 5)

— Output formatting routines (described in Chapter 6)

— Dynamic memory allocation and release routines (described in Chapter 7)

— Universal library access routines (described in Appendix B)

¢ The memory management routines file (VMLIB.OLB), which contains the dynamic and virtual
memory management routines.

At task-build time, the Task Builder will automatically search the system library file for any
referenced routines. However, the VMLIB.OLB file must be specified at task-build time if a task
has referenced the dynamic memory initialization routine (described in Chapter 7) or any of the
virtual memory management routines (described in Chapter 8 of this manual).

A summary of each procedure for using the system library routines is given in Chapter 9. This
is quick-reference material provided for the MACRO-11 assembly language programmer who has
become familiar with the detailed procedures that are explained in Chapters 2 through 8.

Additional Executive and I/O routines available to IAS system users are described in other
manuals. See the IAS Documentation Directory and Master Index for more information.

If the task that includes system library routines also references a position-independent resident
library, it is possible that program section names might conflict. Routines included in a task
cannot reside in the same program section as routines referenced in the position-independent
resident library. Table 1-1 lists the program section names and the system library routines that
reside in each program section. If your task includes a routine that uses a program section listed
in Table 1-1 and the task also references a position-independent resident library routine that uses
the same program section, the Task Builder generates a fatal error. To determine how to include
the code in your task and avoid a conflict of program section names, refer to the JAS Tusk Builder
Manuals e e e . ,

1-2 "

Table 1-1 Program Section Names for SYSLIB Routines

Introduct

lon

SYSLIB Routines

Program Section
Name

Module Name

Routine Name(s)

.BLK.

PURS$D
PURSI
$$RESL

$SRESM

CATB

CATS
CBTA

CDDMG
cvTuC
CSTA
EDDAT

oD2CT

SAVAL
SAVVR

CAT5B (data)
EDTMG (data)

CAT5B (instruction)
EDTMG (instruction)

SAVRG
SAVR1

ARITH

DARITH

$CDTB
$COTB
$CATS
$CBDAT
$CBOMG
$CBDSG
$CBOMG
$CBOSG
$CBTA
$CBTMG
$CDOMG

. $CVTUC .

$CSTA
$DAT

- $TIM

.DD2CT
.002CT
$SAVAL
$SAVVR

$CATSB
$EDTMG

$CATSB
$SEDTMG

$SAVRG
.SAVR1

$DIvV
$MUL
$DDIv
$OMUL

AN

brop kATt

-3, .

Register Handling Routines

The system library contains the following register handling routines:

Save All Registers Routine ($SAVAL), which saves and subsequently restores Registers 0
through 5

Save Registers 3-5 Routine (3SAVRG), which saves and subsequently restores Regmters 3
through 5

Save Registers 0-2 Routine ($SAVVR), which saves and subsequently restores Reglsters 0
through 2

Save Registers 1-5 Routine (.SAVR1), which saves and subsequently restores Regsters 1
through 5 !

The register handling routines function as coroutines to enable control swapping between
themselves, a subroutine, and the original caller of the subroutine. The register handlingi routines
are also called by other routines in the system library, as noted throughout this manual.

To illustrate the effect of using the register handling routines, assume the following mtuahon

1
2
3

4

An original caller calls a subroutine.

The subroutine calls a register handling coroutine.

The coroutine preserves (pushes onto the stack) the contents of the specified reg'lsters and

issues a coroutine call back to the subroutine. }

The subroutine executes to completion, then a return instruction is executed to swap control
back to the coroutine.

The coroutine restores (pops from the stack) the initial contents of the registers and rqietums to
the original caller. !

Figure 2-1 illustrates the control swapping function performed by the register handling r(;utines

The register handhng routines are called by other routines in the system library, as notad in this
manual.

2-1

Register Handling Routines

Figure 2-1 Control Swapping of the Register Handling Routines

ORIGINAL CALLER
START Legend
o CALL (subroutine) = JSR PC, subroutine
o RETURN =RTSPC
o
o

CALL (Subroutine) ———n(Subroutine) '
JSA r,$SAVxX = $SAVXX (Save registers)

o
o)

o]
{ (Issue coroutine call

to subroutine)

L

f
|

»
(restore registers)
o
o
o

RETURN (to original caller)

0 C 00000

REETURN

§ooooooo00o000

m

2-2

$SAVAL -

$SAVAL

The $SAVAL routine saves and subsequently restores Registers 0 through 5 for a subroutine. The
$SAVAL routine functions as a coroutine that swaps control between itseif, a subroutine, and the
original caller.

To call the $SAVAL routine, include the following Jump to Subroutine instruction in your subroutine: ;
JSR PC, $SAVAL ‘
The subroutine must return control to the $SAVAL routine with a RETURN source statement.

On entry to the $SAVAL routine, the program stack contains the return address to the original callergand
the return address of the subroutine. The $SAVAL routine pushes the contents of registers 4 through 0
to the stack. |

The $SAVAL routine moves the subroutine return address to the position following the contents of |
Register 0 and moves the current contents of R5 to the stack above the contents of R4.

The $SAVAL routine issues a coroutine call, in the form CALL @(SP)+, to swap control back to the
subroutine. The coroutine call replaces the subroutine return address with the return address to the
$SAVAL routine. When control returns to the subroutine the stack pointer points to $SAVAL's return
address. The stack contains the following:

2-3

$SAVAL

Return Address to Original Caller

Register 5

Register 4

Register 3

Register 2

Register 1

Register 0

Return Address to $SAVAL

The subroutine executes until a RETURN (RTS PC) instruction is executed, which swaps control back
to the $SAVAL routine. Tha contents of RO through RS are restored (popped from the stack) and the
$SAVAL routine returns, by means of an RST PC instruction, to the original caller.

NOTE: For $SAVAL to work properly (that is, return control to the original caller), the
routine that calls $SAVAL must itself have been invoked by the CALL instruction (that
is, JSR PC, subroutine).

2-4

$SAVRG

$SAVRG—Save registers 3-5

The $SAVRG routine saves and subsequently restores Registers 3 through 5 for a subroutine. The
$SAVRG routine functions as a coroutine that swaps control between itself, a subroutine, and the
original caller. |

To call the $SAVRG routine, the subroutine must contain the following Jump to Subroutine instruc{ion:

JSR RS, $SAVRG '

!

The subroutine must return control to the $SAVRG routine with a RETURN source statement. |
On entry to the $SAVRG routine, the program stack contains the return address to the original caller

and the contents of R5 of the original caller. The $SAVRG routine pushes the contents of registers 4
and 3 to the stack, then pushes the current contents of R5 (return address to the subroutine) to the

stack.

DESCRIPTION

The $SAVRG routine copies the original contents back into R5 and issues a coroutine call in:
the form CALL @(SP)+, to swap control back to the subroutine. The coroutine call replaces the
subroutine’s return address with the return address to the $SAVRG routine. When control returns
to the subroutine, the stack pointer points to $SAVRG’s return address. The stack contains the
following:

Return Address to Original Caller

Register 5 contents of Original Caller

Register 4

Register 3

Return Address to $SAVRG

The subroutine executes until a RETURN (RTS PC) instruction is executed; this swaps control
back to the $SAVRG routine. The contents of Registers 3 through 5 are restored (popped from the
stack) and the $SAVRG routine RETURNS via an RTS PC instruction to the original caller.

| 2-5

$SAVRG

NOTE: For $SAVRG to work properly (that is, return control to the original caller), the
routine that calls $SAVRG must itself have been invoked by the CALL instruction (that
is, JSR PC, subroutine).

2-6

$SAVVR

$SAVVR—Save registers 0-2

The $SAVVR routine saves and subsequently restores Registers 0 through 2 for a subroutine. The
$SAVVR routine functions as a coroutine that swaps control between itself, a subroutine, and the
original caller.

To call the $SAVVR routine, the subroutine must contain the following Jump to Subroutine instruction:

JSR R2, $SAVVR

DESCRIPTION '

On entry to the $SAVVR routine, the program stack contains the return address to the ongmal
caller and the contents of Register 2 of the original caller. The $SAVVR routine pushes the contents
of Registers 1 and 0 to the stack, then pushes the current contents of Register 2 (the return address
to the subroutine) to the stack.

The $SAVVR routine copies the original contents back into Register 2 and issues a coroutine icall.
in the form CALL @(SP)+, to swap control back to the subroutine. The coroutine call replaces the
subroutine’s return address with the return address to the $SAVVR routine. When control returns

to the subroutine, the stack pointer points to $SAVVR'’s return address. The stack contains the
following information:

Return Address to Original Caller

Register 2 contents of Original Caller

Register 1

Register 0

Return Address to $SAVVR

The subroutine executes until a return instruction (RTS PC) is executed; this swaps control biack
to the $SAVVR routine. The contents of Registers 0 through 2 are restored (popped from the stack)
and the $SAVVR routine returns, by means of the RTS PC instruction, to the original caller.

.SAVR1

SAVR1—Save registers 1-5

The .SAVR1 routine saves and subsequently restores Registers 1 through 5 for a subroutine. The
.SAVR1 routine functions as a coroutine that swaps control between itself, a subroutine, and the original
caller.

To call the .SAVR1 routine, the subroutine must contain the foilowing Jump to Subroutine instruction:
JSR RS, .SAVR1

The subroutine must return control to the .SAVR1 routine with a RETURN source statement.

DESCRIPTION

On entry to the .SAVR1 routine, the program stack contains the return address to the original
caller and the contents of Register 5 of the original caller. The .SAVRI1 routine pushes the contents
of Registers 4, 3, 2, and 1, and the current contents of Register 5 (the return address to the
subroutine) to the stack.

The .SAVR1 routine copies the original contents back into Register 5 and issues a coroutine call,
in the form CALL @SP)+, to swap control back to the subroutine. The coroutine call replaces the
subroutine return address with the return address to the .SAVRI1 routine. When control returns
to the subroutine, the stack pointer points to .SAVR1’s return address. The stack contains the
following information:

2-8

SAVR1

Return Address to Original Caller

Register 5 contents of Original Caller

Register 4

Register 3

Register 2

Register 1

Return Address to .SAVR1

The subroutine executes until a return instruction (RTS PC) is executed; this swaps control back
to the .SAVR1 routine. The contents of Registers 1 through 5 are restored (popped from the stack)
and the .SAVRI1 routine returns, by means of the RTS PC instruction, to the original caller.

NOTE: For .SAVRI1 to work properly (that is, return control to the original caller), the
routine that calls .SAVR1 must itself have been invoked by the CALL instruction (that is,
'JSR PC, subroutine).

2-9

Arithmetic Routines

The system library contains four arithmetic routines that perform unsigned integer multiplication
and division. This chapter describes the use and function of the following types of arithmetic
routines: |

1 Integer Arithmetic Routines |
The following routines perform arithmetic operations on 16-bit unsigned integer valut;as:
¢ The Integer Multiply Routine (SMUL), which multiplies integer values
* The Integer Divide Routine ($DIV), which divides integer values

2 Double-Precision Arithmetic Routines

The following routines perform double-precision arithmetic operations:

¢ The Double-Precision Multiply Routine ($DMUL), which multiplies an unsigned
double-precision value by a single-precision multiplier to produce a double-precision product

¢ The Double-Precision Divide Routine ($DDIV), which divides an unsigned double-'fprecision
dividend by an unsigned single-precision divisor to produce a double-precision result

3-1

$MUL

$MUL—Integer Multiply Routine

The $MUL routine muitipiies two single-word unsigned integer input values to produce an unsigned
double-word product.

FORMAT

CALL $MUL

INPUT

multiplier
In Register 0: a single-word unsigned integer

muitiplicand
In Register 1: a single-word unsigned integer

OUTPUT
product (high-order)
In Register 0: the high-order part of the result

product (low-order)
In Register 1: the low-order part of the result

DESCRIPTION

The $MUL routine preserves Registers 2 through 5 of the calling task. It does not return any error
indications to the caller.

EXAMPLE

The following source statements call the $MUL routine to perform multiplication and store the
results in the buffer WORK:

WORK: .BLKW 2 ; OUTPUT BUFFER

MOV #1200,R0 ; PUTS MULTIPLIER IN REGISTER O

MoV #36,R1 ; PUTS THE MULTIPLICAND IN REGISTER 1
CALL $MUL ; CALLS SMUL ROUTINE

MOV RO, WORK ; SAVES HIGH-ORDER PART OF RESULT
MOV R1, WORK+2 ; SAVES LOW-ORDER PART OF RESULT

3-2

$DIV—Integer divide routine

The $DIV routine performs unsigned integer division.

FORMAT

CALL $DIV

INPUT
dividend

In Register 0: an unsigned integer

divisor
In Register 1. an unsigned integer

OUTPUT

quotient
In Register 0: the quotient

remainder
In Register 1: the remainder

DESCRIPTION

The $DIV routine preserves Registers 2 through 5 of the calling task. It does not return any
indications to the caller.

error

EXAMPLE

The following source statements call the $DIV routine to perform division and store the results in

Registers 0 and 1:

FRACTN: .WORD 1 ; BUFFER FOR REMAINDER
MoV #36.,R0O ; SET DIVIDEND
MOV #8.,R1 ;s SET DIVISOR
CALL SDIV ; DIVIDE
MOV R1l, FRACTN ; SAVE REMAINDER

3-3

Double-Precision Muitiply Routine

Double-Precision Multiply Routine—$DMUL

The $DMUL routine multiplies an unsigned double-precision value by an unsigned single-precision
value to produce an unsigned double-precision product.

FORMAT
CALL $DMUL
- o R
INPUT
multiplier

In Register 0: an unsigned single-precision magnitude value

multiplicand (high-order)
In Register 2: the high-order part of an unsigned double-precision magnitude value

multiplicand (low-order)

In Register 3: the low-order part of the unsigned double-precision magnitude value

OUTPUT

product (high-order)
In Register 0: the high-order part of the product

product (low-order)
In Register 1: the low-order part of the product

DESCRIPTION

The $DMUL routine preserves Registers 4 and 5 of the calling task, clears the C bit, and destroys
the contents of Registers 2 and 3 upon return to the caller. The $DMUL routine does not return
any error indications to the caller.

EXAMPLE

The following source statements call the $DMUL routine to multiply the number stored in
Registers 2 and 3 by 127, and store the result in Registers 0 and 1:

MOV R5,R2 ; HIGH-ORDER PART OF MULTIPLICAND
MoV R4, R3 ; LOW-ORDER PART OF MULTIPLICAND
MOV #127.,R0 ; MULTIPLIER

CALL $DMUL MULTIPLY BY 127.

3-4

$DDIV—Double-precision divide routine

The $DDIV routine divides an unsigned double-precision integer dividend by an unsigned
single-precision (15-bit) divisor to produce an unsigned double-precision resuit.

FORMAT

CALL $DDIV

INPUT

divisor
In Register 0: an unsigned double-precision integer

dividend (high-order)

In Register 1. the high-order part of an unsigned single-precision integer
dividend (low-order)

In Register 2: the low-order part of an unsigned single-precision integer

OUTPUT

remainder

In Register 0: the remainder

quotient (high-order)
In Register 1: the high-order part of the quotient

quotient (low-order)
In Register 2: the low-order part of the quotient

DESCRIPTION

The $DDIV routine preserves the contents of Registers 3 through 5 of the calling task. The $DDIV
routine does not return any error conditions to the caller.

EXAMPLE

The following source statements call the $DDIV routine to perform division and store the results
in Registers 0, 1, and 2. -

3-

(4.}

$DDIV

3-6

DVD:
QUOT:
RMAIN:

.BLKW 2

+BLKW 2

.BLKW 1

MOV #150,R0
MOV DVD,R1
MOV DVD+2, R2
CALL $DDIV
MOV R1, QUOT
MOV RZ, QUOT-+2
MOV RO, RMAIN

Ns Ne N N6 Na Se e 2 e g

BUFFER TO STORE HIGH-ORDER OF DIVIDEND
BUFFER TO STORE HIGH-ORDER OF QUOTIENT
BUFFER FOR REMAINDER

PUT DIVISOR IN REGISTER O

SET UP HIGH-QORDER PART OF DIVIDEND

SET UP LOW-ORDER PART OF DIVIDEND

CALL SDDIV ROUTINE

PUT HIGH-ORDER PART OF QUOTIENT IN BUFFER
PUT LOW-QRDER PART OF QUOTIENT IN BUFFER
PUT REMAINDER IN RMAIN

4.1

4.2

4.3

Input Data Conversion Routines

The input data conversion routines accept ASCII data as input and convert it to the specified
numeric representation. The following three types of routines perform input data conversion:

¢ ASCII to binary double-word conversion routines, which accept ASCII decimal or octal input
numbers and convert them to double-word binary numbers

* ASCII to binary conversion routines, which accept ASCII decimal or octal input numpers and
convert them to single-word binary numbers

e ASCII to Radix-50 conversion routines, which accept the Radix-60 set of ASCII characters as
input and convert them to Radix-50 internal format

ASCII to Binary Double-Word Conversions

The following system library routines convert ASCII input numbers to double-word bmary
numbers:

* The Decimal to Binary Double-Word Routine ((DD2CT), which accepts ASCII decimal numbers
as input and converts them to double-word binary format

* The Octal to Binary Double-Word Routine (.OD2CT), which accepts ASCII octal numbers as
input and converts them to double-word binary format |

ASCII to Binary Conversions

The following routines convert unsigned ASCII input numbers to single-word unsigned binary
numbers:

¢ The Decimal to Binary Conversion Routine ($CDTB), which accepts ASCII decimal numbers as
input and converts them to single-word binary format !

¢ The Octal to Binary Conversion Routine ($COTB), which accepts ASCII octal numbers as input
and converts them to single-word binary format i

These routines call the Integer Multiply Routine ($SMUL) to perform the multiplication reqmred for
the conversion. i

ASCIl to Radix-50 Conversions

The following routines convert ASCII alphanumeric input characters to 16-bit Radix-50 v‘alueS'

¢ The ASCII to Radix-50 Conversion Routine ($CATS), which accepts mput characters from the
ASCII character Radix-50 subset and converts them to Radix-50 format! !

! See the PDP-11 MACRO-11 Language Reference Manual for a complete listing of the Rudlx-EO character ut‘, and ASCII
equivalents.

4-1

Input Data Conversion Routines

¢ The ASCII with Blanks to Radix-50 Conversion Routine (3CATS5B), which accepts input
characters from the ASCII character Radix-50 subset and blank characters and converts
them to Radix-30 format!

Both routines call the Integer Multiply Routine ($MUL) to perform the multiplication required for
the conversion.

4-2

.DD2CT

.DD2CT—Decimal to binary double-word routine

The .DD2CT routine converts a signed ASCII decimai number string to a double-length (2-word) éigned
binary number. ,

FORMAT

CALL .DD2CT

INPUT

output address
In Register 3: the address of the 2-word output field where the converted number is to be stored

number input characters

In Register 4: the number of characters in the string to be converted

input string address .
In Register 5: the address of the character string to be converted

OUTPUT

binary result (high-order)
In word 1 of the output field: the high-order 16 bits of the converted number

binary result (low-order)
In word 2 of the output field: the low-order 16 bits of the converted number

Condition code

Cbit = Clear if conversion was successful
Cbit = Setif an illegal character was found and conversion was incomplete

DESCRIPTION

The .DD2CT routine accepts leading plus (+) or minus (~) signs and a trailing period (.) in the
string to be converted. A preceding pound sign (#) forces octal conversion; a pound sign and a
period in the same input string is invalid. The numbers 0 to 9 are acceptable characters in the
decimal number string itself. Any other characters in the string will cause the .DD2CT routine to
tenn;glate the conversion procedure. The value range of a decimal number to be converted is —231
to + - 1.

The .DD2CT routine saves and restores all of the calling task’s registers.

4-3

.DD2CT

EXAMPLE

The following source statements call the .DD2CT routine to convert an ASCII decimal number
string (pointed to by buffer ICHR), store the binary result in the address pointed to by buffer
BOUT, and check the results upon return:

ICHR: JASCII /12345€7./

.EVEN
BOUT: .BLKW 2
MoV #BOUT, R3 ; GET ADDRESS OF THE 2~WORD OUTPUT FIELD
MoV #10,R4 ; GET THE NUMBER OF INPUT CHARACTERS
MoV #ICHR,RS ; GET ADDRESS OF THE INPUT CHARACTER STRING
CALL .DD2CT ; CONVERT THE STRING
BCS 1008 ; BRANCH IF C BIT SET (CONVERSION WAS NOT SUCCESSFUL)

. ; PROGRAM CONTINUES

1008: CALL ERR CALL ROUTINE TO QUTPUT ERROR MESSAGE

~e

.0D2CT

.OD2CT—Octal to binary double-word routine

The .OD2CT routine converts an ASCII octal number string to a double-length (2-word) binary nu‘rnber.
w“

FORMAT

CALL .0D2CT

INPUT

output address !
In Register 3: the address of the 2-word output field in which the converted number is to be stored

number input characters

In Register 4: the number of characters in the string to be converted

input string address
In Register 5: the address of the character string to be converted

|
“

OUTPUT

binary result (high-order)
In word 1 of the output field: the high-order 16 bits of the converted number

binary result (low-order)
In word 2 of the output field: the low-order 16 bits of the converted number

Condition Code

Cbit = Clear if conversion was successful
Cbhit = Setif anillegal character was found and conversion was incomplete

DESCRIPTION

The .OD2CT routine accepts leading plus (+) or minus (-) signs and a trailing period (.) in
the string to be converted. A preceding pound sign (#) is accepted but unnecessary; a pound: sign
and a period in the same input string is invalid. A trailing period forces decimal conversion. (This
is because the .OD2CT routine is an entry point in the .DD2CT routine, which converts decimal
number strings to binary double-word values.) Acceptable characters in the octal number string
itself are the numbers 0 to 7.

The .OD2CT routine terminates the conversion process if you use any other characters in th‘e
ASCII octal number string. |

The value range of an octal number you can convert is —231 to +231 — 1.

4-5

.0D2CT

The .OD2CT routine saves and restores all of the calling task’s registers.

EXAMPLE

The following source statements call the .OD2CT routine to convert an ASCII octal number string
(pointed to by buffer ICHR), store the binary result in the address pointed to by buffer BOUT, and

check the results upon return:

ICHR: .ASCII /2461357/
.EVEN

BOUT: .BLKW 2
MOV #BOUT, R3
MOV #7,R4
MOV #ICHR, RS
CALL .0D2CT
BCS 100%

1008: CALL ERR

4-6

~e v N

Se Se Sa Ne e N

GET ADDRESS OF THE 2-WORD OUTPUT

GET THE NUMBER OF INPUT CHARACTERS

GET ADDRESS OF THE INPUT CHARACTER STRING

CONVERT THE STRING

BRANCH IF C BIT SET (INPUT STRING
CONVERSION WAS NOT SUCCESSFUL)

IF C BIT CLEAR, CONVERSION WAS SUCCESSFUL
AND THE PROGRAM CONTINUES

CALL ROUTINE TO QUTPUT ERROR MESSAGE

$CDTB

$CDTB—Decimal to binary conversion routine

The $CDTB routine converts an unsigned ASCII decimal number to binary format.

FORMAT

CALL $CDTB

INPUT

input buffer address
In Register 0: the address of the first byte of the ASCII decimal character string to be converted

OUTPUT

next byte address
In Register 0: the address of the next byte of the input buffer

binary number

In Register 1: the converted number

terminator
In Register 2: the terminating character of the input buffer

DESCRIPTION

The numbers 0 to 9 are valid characters in the input decimal number. All other input charac‘ters
are invalid and are not converted by this routine. The end of a string of numbers must be |
marked by a terminating character, which can be any ASCII character except the numbers 0

to 9. Examples of terminating characters are a blank, tab character, alphabetic character, and
special symbol. Leading blanks and tab characters are ignored.

The maximum value of a decimal number that can be converted by the $CDTB routine is 65,535.
Numbers of greater value will cause indeterminate results since the $CDTB routine does not check
the value range of an input number. Also, the routine does not return a significant Condition Code
setting to the calling task. :

Because the $CDTB routine returns the address of the next byte in the input buffer to the cal]mg
task, you can convert successive strings by setting up a processing loop back to the CALL $CIDTB
statement (see the example for this routine). ;

4-7

$CDTB

$CDTB calls the $SAVRG routine to save and restore Registers 3 through 5 of the calling task.

NOTE: You can determine, in the task, whether an input string was successfully
converted by testing the contents of Register 2. If the contents are other than the
expected terminating character, the conversion was incomplete because the routine
found an invalid character in the input string.

EXAMPLE

The following source statements define a processing loop, using the $CDTB routine, to convert a
series of ASCII decimal character strings to binary numbers. This exampie uses the tab character
as the terminating character of each string and the space character as the terminating character of
the input buffer. If converted successfully, the binary numbers will be stored in the buffer BNUM:

IBUF: +ASCII /123/<11>/4567/<11>/89/<11>/87654/<40>
.EVEN

BNUM: .3LKW 4 : BUFFER FOR CONVERTED NUMBERS

MoV #BNUM, R4
MoV #IBUF, RO
LOOP : CALL SCDTB
MoV R1l, (R4)+
cMP #11,R2

GET THE OUTPUT BUFFER ADDRESS

SET UP INPUT BUFFER ADDRESS

CONVERT THE STRING

SAVE CONVERTED STRING

COMPARE ASCII TAB (HT) VALUE TO TERMINATING
CHARACTER RETURNED IN REGISTER 2

IF EQUAL, STRING SUCCESSFULLY CONVERTED,
GO BACK THROUGH LOOP TO CONVERT NEXT INPUT

STRING POINTED TO BY REGISTER O

COMPARE SPACE VALUE (40) WITH TERMINATING

CHARACTER IN REGISTER 2

Ss Se Se S Ny Ne

BEQ Loop

cMP #40,R2

Se Ne Ne Se Ne N

BEQ 108 IF EQUAL, CONTINUE PROGRAM (ALL INPUT
HAS BEEN CONVERTED SUCCESSFULLY)
JMP ERR IF NOT EQUAL, ILLEGAL CHARACTER IN INPUT

STRING CAUSED CONVERSION TO TERMINATE; HENCE
INPUT IS ERRONEOQUS; GO TO ERROR ROUTINE
PROGRAM CONTINUES

Ne Ne Na N e

10$:

$COTB

$COTB—Octal To Binary Conversion Routine

The $COTB routine converts an unsigned ASCI!I octal number to binary format.

FORMAT

CALL $COTB

INPUT

input buffer address
In Register 0: the address of the first byte of the ASCII octal character string to be converted

OUTPUT

next byte address
In Register 0: the address of the next byte of the input buffer

binary number
In Register 1: the converted number

terminator
In Register 2: the terminating character of the input buffer

DESCRIPTION

1
The characters 0 to 7 are valid in the input octal number. The maximum value of an octal number
that can be converted by the $COTB routine is 177777. The end of a string must be marked by
a terminating character, which can be any ASCII character except the numbers 0 to 7. Examples

of terminating characters are a blank, tab character, alphabetic character, and special symbol.

Leading blanks and tab characters are ignored.

$COTB calls the $SAVRG routine to save and restore Registers 3 through 5 of the calling task.

NOTE: You can determine, in the task, whether an input string was successfully
converted by testing the contents of Register 2. If the contents are other than the
expected terminating character, the conversion was incomplete because the routme
found an invalid character in the input string.

a9

$COTB

EXAMPLE

The following source statements define a processing loop, using the $3COTB routine, to convert a

series of ASCII octal character strings to binary numbers. The example uses the tab character as
the terminating character of each string and the space character as the terminating character of
the input buffer. If converted successfully, the binary numbers will be stored in the buffer BNUM:

IBUF: LASCII /012/<11:»/3456/<11>/76/<11>/54321/<40>
.EVEN .
BNUM: .BLKW 4 ; BUFFER FOR CONVERTED STRING3

MOV #BNUM, R4
MOV #IBUF, RO
LOOP: CALL $COTB
MOV R1l, (R4)+
cMpP #11,R2

GET OUTPUT BUFFER ADDRESS

SET UP INPUT BUFFER ADDRESS

CONVERT THE STRING

SAVE CONVERTED STRING

COMPARE ASCII TAB (HT) VALUE TO TERMINATING
CHARACTER RETURNED IN REGISTER 2

IF EQUAL, STRING SUCCESSFULLY CONVERTED,
GOES BACK THROUGH LOOP TO CONVERT NEXT INPOUT

STRING POINTED TO BY REGISTER O

COMPARES SPACE VALUE (40) WITH TERMINATING

CHARACTER IN REGISTER 2

Se N8 Ne Se Ss w

BEQ Loor

e N N S

cMP #40,R2

BEQ 10$; IF EQUAL, CONTINUES PROGRAM (ALL INPUT
; HAS BEEN CONVERTED SUCCESSFULLY)
JMP ERR IF NOT EQUAL, ILLEGAL CHARACTER IN INPUT

STRING CAUSED CONVERSION TO TERMINATE; HENCE
INPUT IS ERRONEOUS; GOES TO ERROR ROUTINE
PROGRAM CONTINUES

~e Ny we

108$:

~

4-10

$CAT5

$CAT5—ASCII to Radix-50 Conversion Routine

The $CATS routine converts up to three ASCII characters to a 16-bit Radix-50 value.

|
m
|

FORMAT

CALL 5CATS

INPUT

input buffer address
In Register 0: the address of the first character in the ASCII string you want to convert

period disposition flag
In Register 1, one of the following values:

R1 = 0if the period is a terminating character
R1 = 1 to specify that the period is a valid character to be converted to Radix-50

OUTPUT

next input character
In Register 0: the address of the next character of the input string

Radix-50 value
In Register 1: the converted Radix-50 value

terminator

In Register 2: the terminating character or the invalid character that caused termination

Condition Code

Cbit = Clearif conversion was complete
Chit = Setif conversion was incomplete

DESCRIPTION

The following characters are valid in the ASCII string to be converted:
¢ The alphabetic characters A to Z

* The numeric characters 0 to 9

e The dollar sign ($) and period (.)

$CAT5

For complete conversion, the string must contain three valid characters. If the string contains
fewer than three valid characters, the $CAT5 routine will convert them but will set the C bit

to indicate an incomplete conversion. Invalid characters cause the $CAT5 routine to terminate
conversion. In this case, the output will be the valid character or characters and trailing blank or
blanks, in binary format.

A blank character (space) in the ASCI! character string causes the $CAT5 routine to terminate. If
you include blanks as valid characters in the string, call the $CAT5B routine to do the conversion.

Since the address of the next character in the input string is returned in Register 0, you can
convert successive strings by resetting Register 1 and setting up a processing loop back to the
CALL $CAT5 statement.

The $CAT5 routine calls the $SAVRG routine to save and restore Registers 3 through 5 of the
calling task.

NOTE: You can determine, in the task, whether conversion was complete by testing the
C bit in the Condition Code or the contents of Register 2.

EXAMPLE

The following source statements define a subroutine that calls the $CATS routine to convert ASCII
input data to Radix-50 format:

ASDAT: .ASCII /ABC.DEF.HIJ./ ; STRINGS TO BE CONVERTED

.EVEN

RADS: .BLKW 3. : OUTPUT BUFFER
.EVEN
MOV ¥RADS, R4 > GET OUTPUT ADDRESS

MOV ¥3,R5 ; SET LIMIT TO LOOP

MOV #ASDAT, RO : SET UOP THE ADDRESS OF THE FIRST ASCII CHARACTER
18: CLR R1 ; SPECIFY THAT PERIOD IS CONVERSION TERMINATOR

CALL S$CATS ; CONVERT ASCII RADIX-S50

BCC 23 ; BRANCH IF C BIT IS CLEAR (CONVERSION COMPLETE)

JMP INER ; JUMP TO INPUT ERROR ROUTINE IF
; C BIT IS SET (CONVERSION INCOMPLETE)
28: MOV R1l, (R4)+ ; STORE CONVERTED CHARACTER
DEC RS
BGT 13 : PROCESS NEXT STRING

4-12

$CATSB

$CAT5B—ASCII with Blanks to Radix-50 Conversion
Routine |

The $CATSB routine converts an ASCII 3-character string, including blank characters, to a 16-bit
Radix-50 value.

FORMAT

CALL $CAT5B

INPUT

input buffer address

In Register 0: the address of the first character in the ASCII string you want to convert

period disposition flag

In Register 1, one of the following values:

R1 = 0if the period is a terminating character
R1 = 1 to specify that the period is a valid character to be converted to Radix-50

OUTPUT

next input character
In Register 0: the next character of the input string

Radix-50 value
In Register 1: the converted Radix-50 value, one to three characters in length

terminator

In Register 2: the terminating character or the invalid character that caused termination

Condition Code

C bit = Clear if conversion was compiete

Cbit = Setif conversion was incomplete

DESCRIPTION

The following characters are valid in the ASCII string to be converted:
¢ The alphabetic characters A to Z

¢ The numeric characters 0 to 9

4-13

$CAT5B

¢ The dollar sign ($), period (.), and blank (space)

For compiete conversion, the string must contain three valid characters. If the string contains
fewer than three valid characters, the $CAT5B routine will convert them but will set the C bit
to indicate an incomplete conversiori. Invalid characters cause the $CAT5B routine to terminate
conversion. In this case, the output will be the valid character or characters and trailing blank or
blanks, in binary format.

Since the address of the next character in the input string is returned in Register 0, you can
convert successive strings by resetting Register 1 and setting up a processing loop back to the
CALL $CAT5B statement.

$CATS5B calls the $SAVRG routine to save and restore Registers 3 through 5 of the calling task.

NOTE: You can determine, in the task, whether conversion was compiete by testing the
C bit in the Condition Code or the contents of Register 2.

EXAMPLE

The following source statements call the $CAT5B routine to convert a 3-character ASCII string to
Radix-50 format:

INSTR: .ASCII /IND/ ; ASCII INPUT STRING
.BYTE 15 ; STRING TERMINATOR
.EVEN
MOV INSTR, RO ; POINT TO THE ASCII INPUT STRING
MOV #1,R1 ; SPECIFY PERIOD IS VALID CHARACTER
CALL $CATSB ; CONVERT IT TO RADIX-50
BCC 108 ; WERE CHARACTERS CONVERTED?
CMPB #15,R2 NO == WAS TERMINATOR A <CR> ?
BEQ 10$ EQ -- YES

CALL SERR NO, CALL SYNTAX ERROR ROUTINE

PROGRAM CONTINUES

Ne Ne Se “e

10$:

4-14

Output Data Conversion Routines

The output data conversion routines convert internally stored numeric data to ASCII characters
The following four groups of routines convert output data: !

Binary to decimal conversion routines, which convert binary data to one of the fo]lowfing
formats:

- 2-digit day date, in the range 01 to 31

- b-digit unsigned decimal magnitude number
- b5-digit signed decimal number

— Decimal number up to nine digits in length

Binary to octal conversion routines, which convert binary numbers to one of the following octal
numbers:

~ 6-digit unsigned octal magnitude number
~ 6-digit signed octal number
- 3-digit octal number

A general-purpose binary conversion routine that converts binary data to ASCII format. Note
that the preceding conversion routines format their output according to internally-defined
conversion parameters. The $CBTA routine allows you to determine the format of the output
by specifying the conversion parameters. You can call this routine directly, or you can call it
indirectly when you use the binary to decimal or octal routines. These routines pass predefined
conversion parameters to the $CBTA routine. ‘

A Radix-50 to ASCII conversion routine, which converts a Radix-50 value to a 3-character
ASCII string .

The output data routines described in this chapter are called by the Edit Message Rouhﬁe
($EDMSG; described in Chapter 6) to convert data to be formatted for output to printers or dmplay‘
devices.

The following four system library routines convert internally formatted binary numbers to external

ASCII decimal format:

Binary Date Conversion Routine ($CBDAT), which converts an internally stored binary date to
a 2-digit decimal number

Convert Binary to Decimal Magnitude Routine ($CBDMG), which converts an intemally stored
binary number to a 5-digit unsigned ASCII decimal magnitude value

Convert Binary to Signed Decimal Routine ($CBDSG), which converts an internally stored
binary number to a 5-digit signed ASCII decimal number

Convert Double-Precision Binary to Decimal Routine (§CDDMG), which converts a
double-precision, unsigned binary number to an ASCII decimal number of nine or fewer
digits

These routines use predefined conversion parameters that are passed to the general-purpose
conversion routine ($CBTA), which performs the actual binary to ASCII conversion.

5-1

| Output Data Conversion Routines

Note that these routines do not add an extra space for the minus sign (~) to the predefined
field-width parameter. If you are converting a negative number, expect that one of the spaces
in the output area will be used for the minus sign.

§-2

$CBDAT

$CBDAT—Binary date conversion routine

The $CBDAT routine converts an internally stored binary date to a 2-digit unsigned decimal number.

FORMAT

CALL $CBDAT

The $CBDAT routine uses the following predefined conversion parameters:

Radix = 10
Field width = 2 characters
Sign flag = UNSIGNED

INPUT

output address |
In Register 0: the starting address of the output area that will store the converted 2-byte date

input date
In Register 1: the date (a binary value in the range 01 to 31)

zero suppression indicator
In Register 2, one of the following values:

R2 = 0 to specify suppression of leading zeros in the converted date (the date will be left-justified)
R2 = Nonzero to specity no suppression of leading zeros

“‘

OUTPUT

converted date
In the specified output area: the converted day date (in ASCII decimal format)

next output address
In Register 0: the next available address (the pointer to the location following the last digit gtored)

DESCRIPTION

The $CBDAT routine pushes the predefined conversion parameters on the stack. It then passes the
conversion parameters in Register 2 to the General Purpose Binary to ASCII Conversion Routine
($CBTA), which performs the actual conversion of the binary number.

The $CBDAT routine calls the $SAVRG routine to save and restore Registers 3 through 5 of the
calling task, and destroys the contents of Registers 1 and 2. The $CBDAT routine does not return
any error conditions to the caller. ‘

5-3

$CBDAT

EXAMPLE

The following source statements call the $CBDAT routine to convert a binary date in the buffer
BDAT and store the converted date in the buffer ASDAT:

ASDAT: .BLKB
.EVEN

BDAT: .WORD
MOV
MOV
CLR

CALL

2

1
#ASDAT, RO
BDAT, R1
R2

$CBDAT

]
’

Se N5 N Se e Se

OUTPUT BUFFER

INPUT ~- BINARY DATE :

PUTS THE ADDRESS OF OUTPUT AREA IN REGISTER 0

PUTS THE BINARY DATE, AT BDAT, IN REGISTER 1

CLEARS REGISTER 2 TO ZERO TO SPECIFY THAT LEADING
ZEROS ARE TO BE SUPPRESSED

CALLS THE S$CBDAT ROUTINE

$CBDMG

$CBDMG—Convert binary to decimal magnitude
routine

The $CBDMG routine converts an internally stored binary number to a 5-digit unsigned ASCII decimal
magnitude number.

FORMAT

CALL $CBDMG

The $CBDMG routine uses the following predefined conversion parameters:
Radix = 10

Fleld width = 5 characters

Sign flag = UNSIGNED

INPUT

output address

In Register 0: the starting address of the output area that will contain the converted 5-digit
number

input number
In Register 1: the unsigned binary number you want to convert

Zero suppression indicator

In Register 2, one of the following values:

R2 = 0 to specify suppression of leading zeros in the converted number (the number will be left-justified)
R2 = Nonzero to specify no suppression of leading zeros

OUTPUT

result |

In the apecified output area: the converted number, a maximum of five digits in length

next output address
In Register 0: the next available address in the output area (the pointer to the location foﬂowmg
the last digit stored)

5-5

$CBDMG

DESCRIPTION

The $CBDMG routine pushes the predefined conversion parameters on the stack. It then passes
the conversion parameters in Register 2 to the General Purpose Binary to ASCII Conversion
Routine ($CBTA), which performs the actual conversion of the binary number.

The $CBDMG routine calls the $SAVRG routine to save and restore Registers 3 through 5 of the
calling task. It destroys the contents of Registers 1 and 2. The $CBDMG routine does not return
error conditions to the caller.

EXAMPLE

The following source statements call the §CBDMG routine to convert a binary number stored in
the buffer $IEXT and store the converted 5-digit ASCII decimal magnitude number in the buffer
.TEXT:

.TEXT: .BLKB 5 ; OUTPUT BUFFER
.EVEN
SIEXT: .WORD 2765, ; INPUT VALUE
MoV #.TEXT, RO ; GET OUTPUT BUFFER
MOV $IEXT,R1 ; GET BINARY VALUE
CLR R2 ; SUPPRESS ZEROS
z

CALL $CBDMG CONVERT TO ASCII (DECIMAL)

$CBDSG

|
$CBDSG—Convert binary to signed decimal routine

The $CBDSG routine converts an internally stored binary number to a 5-digit signed ASCII decimal
number.

FORMAT
CALL $CBDsSG

The $CBDSG routine uses the following predefined conversion parameters:
Radix - 10

Field width = 5 characters

Sign flag = SIGNED

INPUT

output address
In Register 0: the starting address of the output area that will store the converted 5-digit number

input number
In Register 1: the binary number to be converted

Zero suppression indicator
In Register 2, one of the following values:

R2 = 0 to suppress leading zeros in the converted number (the outpdt number will be left-justified)

R2 = Nonzero to specify no suppression of leading zeros |
|
.

OUTPUT

resulit

In the specified output area: the converted number a maximum of five digits in length

next output address

In Register 0: the next available address in the output area (the pointer to the location followmg
the last digit stored)

DESCRIPTION

The $CBDSG routine automatically pushes the predefined conversion parameters on the stack.:
It then passes the conversion parameters in Register 2 to the General Purpose Binary to ASCI]
Conversion Routine ($CBTA), which performs the actual conversion of the binary number.

5-7

$CBDSG

The $CBDSG routine calls the $SAVRG routine to save and restore Registers 3 through 5 of the
calling task, and does not save the contents of Registers 1 or 2. The $CBDSG routine does not
return error conditions to the caller.

EXAMPLE

The following source statements call the $CBDSG routine to convert a binary value stored in the
buffer F.ERR and store the converted 5-digit ASCII decimal number in the buffer ER2NUM:

ER2: .ASCII $I/0 ERROR CODE:$; ERROR MESSAGE

ERZNUM: .BLKB 5 ; QUTPUT BUFFER
.EVEN

FILERR: MOVB F.ERR(RO),R1 ; GET ERROR CODE TO CONVERT
Mov #ER2NUM, RO POINT TO QUTPUT BUFFER

SUPPRESS LEADING ZEROS
CONVERT ERROR CODE
PUT IN DECIMAL POINT

CLR R2
CALL $CBDSG
MOVB # ., (RO)+

~e Se e N

$CDDMG

$CDDMG—Convert double-precision binary to
decimal routine

The $CDDMG routine converts a double-precision, unsigned bmar;y number to an unsigned ASGlI
decimai number, up to nine digits, less than or equal to 65,.536x10%. If the number contains more than
nine digits, the routine inserts a string of five ASCII asterisk symbols in the output area.

FORMAT
CALL $CDDMG

INPUT

output address
In Register 0: the starting address of the output area

input address

In Register 1: the address of the 2-word input area containing the double-precision number

Zero suppress:on indicator
In Register 2, one of the following values:

R2 = Oto specily suppression of leading zeros in the converted date (the date will be left-justified)
R2 = Nonzero to specify no suppression of leading zeros

NOTE: If the five most significant digits are zeros, they will be suppressed automaticaily,
regardless of the setting of the suppression indicator.

“

OUTPUT

result

In the output area: the converted ASCII number

next output address
In Register 0: the pointer to the next available address in the output storage area

NOTE: If the number was converted successfully, the output area will contain fro:ix
four to nine digits. If the conversion attempt results in a decimal number greater than
66,536x10* or longer than nine digits, the $CDDMG routine prints a string of five A$CII

asterisks in the output area. 1

_:
DESCRIPTION |

The $CDDMG routine performs the following actic;ns:
¢ Calls the $SAVRG routine to save and restore Registers 3 through 5 of the calling task

5-9

$CDDMG

¢ (Calls the $DDIV routine to perform the double-precision division
¢ (Calls the $CBTA routine to perform the actual ASCII conversion

¢ Destroys the contents of Registers 1 and 2

EXAMPLE

The following source statements call the 3CDDMG routine to convert a double-precision number,
pointed to by the buffer DPWRD, and store the converted ASCII decimal number in the buffer
ASDN:

ASDN: .BLKB 9.
.EVEN

DPWRD: .BLKW 2
MOV #ASDN, RO
MoV #DPWRD, R1

QUTPUT BUFFER

~

INPUT BUFFER
PUTS ADDRESS OF OUTPUT AREA IN REGISTER O
PUTS STARTING ADDRESS OF DOUBLE-

PRECISION INPUT WORD IN REGISTER 1
PUTS NONZERO IN REGISTER 2 (SETS THE ZERO

INDICATOR FLAG TO 1) TO SPECIFY

THAT LEADING ZEROS ARE NOT TO
BE SUPPRESSED

CALLS THE $CDDMG ROUTINE
COMPARES AN ASCII ASTERISK SYMBOL WITH

A BYTE OF THE CONVERTED NUMBER

~e o Se e

MoV "¥4.,R2

Na Ne Ne v

CALL $CDDMG
CMPB #’ *, ASDN

BNE 108 IF NOT EQUAL, CONVERSION WAS SUCCESSFUL
AND PROGRAM CONTINUES
JMP ERR IF EQUAL, JUMP TO ERROR ROUTINE ERR (MORE

THAN NINE DIGITS WERE CONVERTED AND THE
QUTPUT DATA IS INVALID)

Ne e Ne o Se N N Ne

108$:

NOTE: The source statements also check the results and call an error routine if
$CDDMG was not successful.

5-10

Output Data Conversion Boutﬁnes

The following three routines convert internally formatted binary numbers to external ASCII obtal
format:

¢ Convert Binary to Octal Magnitude Routine ($CBOMG), which converts an internally stored
binary number to a 6-digit unsigned ASCII octal magnitude number

* Convert Binary to Signed Octal Routine (§CBOSG), which converts an internally stored bmary
number to a 6-digit signed ASCII octal number

¢ Convert Binary Byte to Octal Magnitude Routine ($CBTMG), which converts an mtema]ly

stored binary byte to a 3-digit unsigned ASCII octal number |
These routines pass predefined conversion parameters to the general-purpose conversion routine
($CBTA), which performs the actual binary to ASCII conversion.

Note that these routines do not add an extra space for the minus sign (=) to the predefined
field-width parameter. If you are converting a negative number, expect that one of the spaces
in the output area will be used for the minus sign. |

5-11

$CBOMG

$CBOMG—Convert binary to octal magnitude
routine

The $CBOMG routine converts an internally stored binary number to a 6-digit unsigned ASCHl octal
magnitude number.

FORMAT

CALL $CBOMG

The $CBOMG routine uses the following predefined conversion parameters:
Radix - 8

Field width = 6 characters

Signflag = UNSIGNED

INPUT

output address
In Register 0: the starting address of the output area in which the converted 6-digit number is to
be stored

input number
In Register 1: the binary number you want to convert

Zero suppression indicator
In Register 2, one of the following values:

R2 « 0 to specify suppression of leadirig zeros in the converted number (the number will be left-justified)
R2 = Nonzero to specify no suppression of leading zeros

OUTPUT

result

In the specified output area: the converted number, a maximum of six digits in length

next output address
In Register 0: the next available address in the output area (the pointer to the location following
the last digit stored)

The $CBOMG routine does not return any error conditions to the caller.

$CBOMG

DESCRIPTION

The $CBOMG routine pushes the predefined conversion parameters on the stack. It then passes
the conversion parameters in Register 2 to the General Purpose Binary to ASCII Conversion
Routine ($CBTA), which performs the actual conversion of the binary number.

The $CBOMG routine calls the $SAVRG routine to save and restore Registers 3 through & of the
calling task, and destroys the contents of Registers 1 and 2.

EXAMPLE

The following source statements call the $CBOMG routine to convert a binary number stored in
the buffer BNUM and store the converted 6-digit ASCII octal magnitude number in the buffer
OCOUT:

OCOUT: .BLKB 6
.EVEN

BNUM: .WORD 162710
MoV #0COUT, RO
MoV BNUM, R1
MOV #1,R2

QUTPUT BUFFER

~

INPUT VALUE
PUTS THE STARTING ADDRESS OF THE OUTPUT AREA IN REGIS'
PUTS THE BINARY NUMBER TO BE CONVERTED IN REGISTER 1
PUTS THE VALUE 1 IN REGISTER 2 (SETS THE ZERO !
INDICATOR FLAG TO 1) TO SPECIFY THAT
LEADING ZEROS ARE NOT TO BE SUPPRESSED
CALLS THE $CBOMG ROUTINE

Se Se No Ve e ve e

CALL $CBOMG

$CBOSG

$CBOSG—Convert binary to sighed octal routine

The $CBOSG routine converts an internally stored binary number to a 6-digit signed ASCII octal
number.

R |
FORMAT
CALL $CBOSG
The $CBOSG routine uses the following predefined conversion parameters:
Radix - 8

Field width = 8 characters
Sign flag = SIGNED

INPUT

oulput address
In Register 0: the starting address of the output area in which the converted 6-digit number will
be stored

input number
In Register 1: the binary number to be converted

zero suppression indicator
In Register 2, one of the following values:

R2 = 0 to specify suppression of leacling zeros in the converted number (the output number will be left-justified)
R2 = Nonzero to specify no suppression of leading zeros

OUTPUT

result .
In the specified output area: the converted signed number, a maximum of six digits in length

next output address
In Register 0: the next available address in the output area (the pointer to the location following
the last digit stored)

The $CBOSG routine does not return error conditions to the caller.

5-14

$CBPSG

DESCRIPTION

The $CBOSG routine pushes the predefined conversion parameters on the stack. It then passes the
conversion parameters in Register 2 to the General Purpose Binary to ASCII Conversion Routine
($CBTA), which performs the actual conversion of the binary number. i

The $CBOSG routine calls the $SAVRG routine to save and restore Registers 3 through 5 of the
calling task, and destroys the contents of Registers 1 and 2.

5-15

$CBTMG

$CBTMG—Convert binary byte to octal magnitude
routine

The $CBTMG routine converts an internally stored binary byte to a 3-digit ASCII unsigned octal number.

FORMAT

CALL $CBTMG

The $CBTMG routine uses the following predefined conversion parameters:

Radix - 8
Field width = 3 characters
Sign flag = UNSIGNED

.

INPUT

output address
In Register 0: the starting address of the output area in which the converted 3-digit number will
be stored

input binary byte
In Register 1 (low-order byte): the binary byte to be converted

zero suppression indicator
In Register 2, one of the following values:

R2 = 0 to specify suppression of leadirg zeros in the converted number (the number will be left-justified)
A2 « Nonzero to specify no suppression of leading zeros

OUTPUT

resulit
In the specified output ares: the converted number, a maximum of three digits in length

next oulput address
In Register 0: the next available address in the output area (the pointer to the location following
the last digit stored

The $CBTMG routine does not return error conditions to the caller.

$-16

$CBTMG

DESCRIPTION

The $CBTMG routine pushes the predefined conversion parameters on the stack. It then passes
the conversion parameters in Register 2 to the General Purpose Binary to ASCII Conversion
Routine (3CBTA), which performs the actual conversion of the binary byte.

The $CBTMG routine calls the $SAVRG routine to save and restore Registers 3 through 5 of the
calling task, and destroys the contents of Register 2. In addition, §CBTMG clears the hlgh-orcier
byte of Register 1 (the low-order byte is unchanged).

EXAMPLE

The following source statements call the $CBTMG routine to convert a binary number stored in
the buffer TBUF and store the converted 3-digit ASCII octal number in the buffer BOUT:

BOUT: .BLKB 3 ; OUTPUT BUFFER
.EVEN
TBUF: .BYTE 177 ¢ INPUT BUFFER
.EVEN
MOV ¥BOUT, RO ADDRESS OUTPUT BUFFER

MOVB TBUF, R1
MOVB #1,R2
CALL $CBTMG

GET BINARY CODE
SPECIFY NO ZERO SUPPRESSION
CONVERT THE BINARY NUMBER TO OCTAL

Ne N e e

5-17

$CBTA

$CBTA—General purpose binary to ASCII
conversion routine

The $CBTA routine convenrts internally stored binary numbers to ASCIl decimal or octal numbers when
called by the binary-to-decimai and binary-to-octal conversion routines.

EQBMTBTA |
INPUT
output address

In Register 0: the starting address of the output area in which the converted ASCII number will
be stored

input value
In Register 1: the binary value to be converted

conversion parameters
In Register 2, the following options:
Bits0 -7 (Low byte.) Must contain the conversion radix (2 to 16 decimal).

Bit 8 Must contain the unsigned flag (= 0) if unsigned value to be converted: or must contain the sign
flag (= 1) if signed value tc be converted.

(The minus sign is not counted in the output field width when you convert a negative signed
number. The $CTBTA routine will use a space in the output buffer for the minus sign.)

Bit 9 Zsro suppression flag = 0; or nonzero suppression flag = 1.
Bit 10 Blank fill flag = 1 to specify replacement of leading zeros with blanks (only if nonzero suppression
flag = 1).

Blank fill flag = 0 to specify no replacement of leading zeros (if bit 9 = 1).
{(When the zerc suppression flag = 0, the blank fill flag is ignored.)

Bits 11 =15 Must contain a numeric value from 1 to 32 specifying the fleld width. If you convert a negative
signed number, remember to add a space in the field width for the minus sign.

OQUTPUT

result
In the specified output area: the converted number, from 1 to 32 digits in length

next output address
In Register 0: the next available address in the output area (the pointer to the location following
the last digit stored)

The $CBTA routine does nct return any error conditions to the caller.

$CBTA

DESCRIPTION |

The $CBTA routine converts internally stored values according to the user-defined conversion
parameters, which the calling routine passes as an input argument in Register 2.

Note that the $CBTA routine does not add an extra space for the minus sign (=) to the predeﬁned
field-width parameter. If you are converting a negatwe number, expect that one of the characters
in the output area will be used for the minus sign.

The $CBTA routine calls the $SAVRG routine to save and restore Registers 3 through 5 of the
caller, and calls the $DIV routine to perform the required division. The $CBTA routine also
destroys the contents of Registers 1 and 2. |

EXAMPLE

The following source statements set the conversion parameters, expressed in the number 1501523,
which will determine the format of the output by $CBTA. The statements call the $CBTA routine
to convert a binary value in Register 3 and store the ASCII result in buffer CASTR:

CASTR: .BLKB 3z. ; OUTPUT BUFFER
.EVEN
MOV . RO, -(SP) ; SAVE REGS FOR CONVERT CALL
MOV R1l, - (SP)
MOV R2, - (SsP)
MoV #CASTR, RO ; ADDRESS TO CONVERT INTO

MOV R3,R1 ; VALUE TO CONVERT
MOV #15012,R2 ; 3=-DIGIT, NO ZERO SUPPRESSION
CALL SCBTA ; CONVERT BINARY TO ASCII

In this example, the binary expression of the value in Register 2 (0001101000001010) speciﬁes that
the output will have the the following conversion parameters:

Convarsion = 10y

radix

Sign flag = 0 (unsigned value)
NOSUP flag = 1 (no zero suppression)

Blank fill flag = 0 (no replacement of leading zeros with blanks)

Field width = 3

5-19

$C5TA

$C5TA—Radix-50 to ASCIl conversion routine

The $CSTA routine converts an internally stored 16-bit Radix-50 value to an ASCII character string.

FORMAT

CALL $C5TA

INPUT

output address

In Register 0: the address that will point to the first byte of t_:he converted string
Radix-50 word

In Register i: the Radix-50 value you want to convert

OUTPUT

next output address
In Register 0: the address of the next byte after the last character stored in the output area

result

In the specified output area: the converted ASCII 3-character string, stored in a maximum of three
consecutive bytes

The $C5TA routine does not return error conditions to the caller. It destroys the contents of
Registers 1 and 2 and does not use Registers 3 through 5.

EXAMPLE

The following source statements call the $C5TA routine to convert a Radix-50 number stored in the
buffer CRNTS and store the ASCII string result in the buffer SCRPTR:

CRNTS: .RADSC /GEN/ ; RADIX VALUE
SCRPTR: .BLKB 3 ; OUTPUT BUFFER
.EVEN
MOV #SCRPTR, RO ; SET OUTPUT BUFFER ADDRESS
MOV CRNTS,R1 ; GET RADIX VALUE
CALL $CSTA ; CONVERT IT

5-20

Output Formatting Routines

The output formatting routines convert internally stored data to external ASCII characters and
format the converted characters to produce readable output. The five output formatting routines

are as follows:

L]

The Uppercase Text Conversion Routine (SCVTUC), which converts lowercase ASC
uppercase

The Date String Conversion Routine ($DAT), which converts a 3-word binary date

9-character ASCII output string

11 text to

to a

The Alternate Date String Conversion Routine ($DAT), which converts a date to a user-defined

ASCII format up to 25 characters long

The Time Conversion Routine ($TIM), which converts the binary time to an ASCII
string

The Edit Message Routine (SEDMSG), which converts internally stored data to the

output

user-specified type of ASCII data (alphanumeric, octal, decimal) and formats the cnnverted

data to produce meaningful output for printing or display

6-1

$CVTUC

$CVTUC—Uppercase text conversion routine

The $CVTUC routine converts lowercase ASCII text to uppercase. The routine performs a byte-by-byte
transtfer of the input ASCII character string, converting all lowercase alphabetic characters to uppercase,
and transferring all uppercase characters unchanged to the output string.

FORMAT

CALL $CVTUC

s
INPUT

input address
In Register 0: the address of the text string to be converted

output address
In Register 1: the address of the output area for the uppercase string

number input bytes
In Register 2: the number of bytes in the string to be converted

NOTE: The number of bytes cannot be stated as 0. A statement of 0 will cause $CVTUC
to fail.

OUTPUT

result
In the output area: the converted string

next input address
In Register 0: a pointer to the next available address in the input area

next output address
In Register 1: a pointer to the next available address in the output area

DESCRIPTION

The $CVTUC routine converts all ASCII alphabetic characters in the input string to uppercase.
Any other characters are moved from the input area to the output area in their sequential
positions. You can specify the input area address as the output area address (RO = R1) when
the $CVTUC routine is called. If you specify this at the outset, Register 0 and Register 1 will
be left pointing to the character following the string. The $CVTUC routine converts lowercase
alphabetic characters to uppercase where they occur in the input area. The original lowercase
contents of the input area are destroyed.

6-2

$SCVTUC

$CVTUC destroys the contents of Register 2 and does not use Registers 3 through 5 of the c"alling
task. '

EXAMPLE
The following source statements call the §CVTUC routine to convert an ASCII string to uppercase:
MACNAM: .BLKW 3 ; WORK BUFFER
MOV #MACNAM, RO ; POINT TO WORK BUFFER
MoV #6,R2 ; SAVE STRING COUNTER
MOV RO, R1 ; POINT TO OUTPUT ADDRESS
CALL $cvTUC ; DO THE CONVERSION

(In this example, the converted string will be stored in the buffer MACNAM because RO = R'}.)

6-3

$DAT

$DAT—Date string conversion routine

The $DAT routine converts the 3-word internal binary date to the standard 8- or 9-character ASCII
output format. $DAT formats the date for output as follows:

day-month-year

FORMAT

CALL SDAT

INPUT

output address
In Register 0: the address of the output area that will store the converted date

input address
In Register 1. the address of the 3-word input area that will store the binary date

date values

The input area must contain the following values:
Word1 = Last two digits of year

Word2 = A 2-digit number from 01 to 12 (month of year)
Word 3 = A 2-digit number from 01 to 31 (day of month)

OUTPUT

date

In the output area: the 8- or 9-character date string in the following format:
dd-mmm-yy

dd Day (one character for 1 to 9 and two characters for 10 to 31)
mmm Month (first three letters)
vy Year (last two digits)

next output address

In Register 0: the address of the next available location in the output area

next input address
In Register 1: the next address (input R1 + 6) of the input area

6-4

DESCRIPTION

The $DAT routine uses and might destroy the contents of Register 2. The calling task should fsave
any critical value contained in Register 2 before calling the $DAT routine. j

$DAT calls the $SAVRG routine to save and restore the contents of Registers 3 through 5 of the
calling task.

EXAMPLE

The following source statements call the $DAT routine to convert the binary date stored in buffer
DATBUF and store the formatted ASCII output in the buffer EDTBUF:

DATBUF: .WORD 87, : YEAR
.WORD 11. ; MONTH
.WORD O01. ; DAY
EDTBUF: .BLKB 9. ; OUTPUT BUFFER
.EVEN : |
START: ;
MOV #EDTBUF, RO ' ; QUTPUT FROM CONVERSION
MOV #DATBUF, R1 ; GET INPUT BUFFER
CALL $DAT ; CONVERT DATE TO STANDARD ASCII FORMAT

After execution, the output buffer contains the following information:

1-NOV=-87

6-5

$SDAT

$DAT—AIlternate date string conversion routine

The Alternate Date Routine ($DAT), accessed by the SYSLIB module INTDAS, converts the binary date
in a format not dependent upon the DIGITAL-standard date format (dd-mmm-yy). The calling sequence
is the same as for the standard format $DAT routine.

FORMAT

CALL $DAT

INPUT

output address

In Register 0: the address of the output area that will store the converted date

input address
In Register 1: the address of the 3-word input area that will store the binary date

date values

In the input area, the following definitions:

Word1 = Last two digits of year
Word2 = A 2-digit number from 01 to 12 (month of year)
Word3 = A 2-digit number from 01 to 31 (day of month)

OQUTPUT

date
In the output buffer: the converted and formatted string (up to 25 characters), determined by your
definitions of the logical names SYS$DATE_FORMAT and SYS$MONTH_nn

next output address

In Register 0: the address of the next available location in the output area

next input address
In Register 1: the next address (input R1 + 6) of the input area

DESCRIPTION

The alternate $DAT routine is contained in the module INTDAS, which has been inserted into
SYSLIB with entry points deleted. To include the INTDAS module in your task image, you must
explicitly request it in one of the following ways:

66

S$DAT

¢ Before building the task, invoke the Librarian Utility (LBR) and enter the following command
line to include the module INTDAS in the task: 5

LB:[1,1]SYSLIB/LB:INTDAS

¢ Insert the module EDDAT without entry points, and INTDAS with entry points, into SYSLIB
by entering the following command sequence:

> LBR

LBR> EDDAT=LB: [1,1)SYSLIB.OLB/EX:EDDAT ;
LBR> INTDAS=LB: {1, 1]SYSLIB.OLB/EX:INTDAS !
LBR> LB: [(1,1]SYSLIB.OLB/RP/-EP=EDDAT :
LBR> LB:[1,1]SYSLIB.OLB/RP=INTDAS
LBR>

> PIP INTDAS.OBJ;*/DE,ZDDAT.OBJ; *

The alternate $DAT routine’s calling sequence remains the same as for the standard $DAT routine,
but the logical name SYS$DATE_FORMAT contains the following character formats:

Argument Effect

0D Print 2-digit day of month with leading zero

ZD Print 2-digit day of month with leading zero suppressed

MM Print 2-digit month number with leading zero

™ Print 2-digit month number with leading zero suppressed

YY Print 2-digit year with leading zero

Y Print 2-digit year with leading zero suppressed

MMM Print alphabetic month (not necessarily three characters long)

You can use additional characters (other than the uppercase letters D, Z, M, and Y) in
SYSSDATE_FORMAT as delimiters. If SYS$DATE_FORMAT is not defined, you get the
DIGITAL-standard date format (dd-mmm-yy) by default. SYS$DATE_FORMAT can have a
maximum length of 16 characters.

The logical SYS$MONTH_nn (where nn is 01 to 12) provides the alphabetic month to be
printed when the mmm attribute is used. If SYS$MONTH _nn is not defined, you get the
DIGITAL-standard 3-letter month abbreviations (mmm) by default. SYS$MONTH_nn can have a
maximum length of 12 characters.

Logical translation is done in standard order. A local terminal assignment can override a .
system-wxde assignment, which permits the same program to produce output in the 1nd1v1dual

user's own language or preferred format. 5
I

There are two limitations to the alternate date routine. First, using it necessitates more output
buffer space than the traditional format because the output produced can be as long as 25 |
characters. The standard $DAT routine, however, produces eight or nine characters. Second, the
new module can be linked with many, but not all, existing programs. An example of a program'that
cannot use this routine is one that performs operations on the resulting output string, expectn}g it
to be in the format produced by the standard routine.

The INTDAS module contains the routines $DAT and $TIM. The $TIM routine has not been
modified; it produces the standard time format, as described in Time Conversion Routine ($TIM)

The $DAT routine uses and might destroy the contents of Register 2. The calling task should gave
any critical value contained in Register 2 before calling the $DAT routine.

$DAT

$DAT calls the $SAVRG routine to save and restore the contents of Registers 3 through 5 of the
calling task.

EXAMPLE

Assume that you have replaced the SYSLIB module INTDAS into your library with entry points
and are ready to run a program that calls the $DAT routine. Your definition, at the system prompt,
of the logical names SYS$DATE_FORMAT and SYS$MONTH_nn will determine the output of the
$DAT routine when it executes, as shown in the following examples:

DEFINE SYSSDATE_FORMAT = "MMM 2D, 19YY"
DEFINE SYSSMONTH_ll = "November"
Qutput: November 1,1987
DEFINE SYSSDATE_FORMAT = "DD.MMM.YY"
DEFINE SYSSMONTH_11 = "XI"
Qutput: 01.XI.87

SYSSDATE_FORMAT = "ID/MM/YY"
Qutput: 1/11/87

6-8

$TIM—Time conversion routine

The $TIM routine converts the binary time, in a standard format, to an ASCII output string in the form:
HH:MM:SS.S
The $TIM routine converts and formats the time for output in one of the following forms:

hour

hour:minute
hour:minute:second
hour:minute:second.fraction

FORMAT

;I
!
CALL $TIM
INPUT
The standard format for $TIM input values is shown in the following table:
Output)
Word Significance Format Value Range
wD1 Hour-of-Day HH 0to23
wbD2 Minute-of-Hour MM 0 to 59
wD3 Second-of-Minute Ss 0 to 59
wD4 Tick-of-Second S Depends on clock frequency »
wDs Ticks-per-Second 8 Depends on clock frequency ‘
output address
In Register 0: the address of the output area that will store the converted time
input address
In Register 1: the starting address of the input area that stores the time values i
parameter count

In Register 2, the parameter count, where:
R2 = 0 or1, to specify that the hour (word 1) is to be converted in the format HH

R2 = 2, to specify that the hour and minute (words 1 and 2) are to be converted in the format HH:MM

R2 = 3, to specify that the hour, minute, and second (words 1, 2, and 3) are to be converted in the format
HH:MM:SS '

R2 « 4 or 5, to specify that the hour, minute, second, and tick are to be converted in the format HH:MM:SS.S
(where .S = tenth.of second) i

NOTE: For HH, the $TIM routine always returns two characters for all values specified.

6-9

$TIM

OuUTPUT

next output address
In Register 0: the address of the next available location in the output area

next input address

In Register 1: the address of the next word in the input area

time string

In the specified output area: the converted time string

DESCRIPTION

The $TIM routine calls the $SAVRG routine to preserve Registers 3 through 5 of the calling task.
The contents of Registers 0 and 1 are updated and returned to the calling task. The $TIM routine
destroys the contents of Register 2 (the parameter count). It also calls the following routines:

¢ The $DIV routine, which performs the division required to convert binary values to ASCII
format

¢ The $CBDAT routine, which actually performs the time conversion, two digits at a time

The $TIM routine does not check the validity of the input data.

EXAMPLE

The following source statements call the $DAT and $TIM routines to convert time values to the
standard formats:

Assume a program contains an input block, an output block, and source statements. For example:

BDBLK: .WORD 87, ; YEAR
WORD 11, ; MONTH
.WORD O1. ; DAY
.WORD 10. ; HOUR
.WORD 15, ; MINUTES
.WORD 35. ; SECONDS
.WORD x=x
HWORD =
DTBLK: .BLKB 20. -
MOV #DTBLK, RO ; PUTS ADDRESS OF OUTPUT AREA IN REGISTER O
MOV #BDBLK, R1 ; PUTS ADDRESS OF INPUT BINARY DATE AREA IN REGISTER
CALL SDAT ; CALLS THE S$DAT ROUTINE

PUTS TAB AFTER DATE IN QUTPUT BUFFER
REGISTER O NOW CONTAINS NEXT ADDRESS IN DTBLK FR!
REGISTER 1 NOW CONTAINS ADDRESS OF NEXT WORD
HOUR 10) IN BDBLK FROM S$SDAT
SPECIFIES THE HH:MM:SS FORMAT FOR CONVERTED TIME
CALLS THE $TIM ROUTINE

MOVB #11, (RO)+

MOV #3.,R2
CALL STIM

Ne Ne N4 Ne e N

After execution, the output buffer will contain the following information:
1-NOV-87 10:15:35
The time and date fields are left-justified.

6-10

$SEDMSG

$SEDMSG—Edit message routine

The $EDMSG routine converts internally stored data to ASCIi decimal, octal, or alphanumeric
characters, and controls the layout of the converted characters. You can use the $EDMSG routine
to produce printed or displayed text in meaningiful, readable formats. !

FORMAT

CALL SEDMSG

INPUT |

oulput address
In Register 0: the starting address of the output block

input address
In Register 1: the address of the input string

argument block address |
In Register 2: the starting address of the argument block {

l
lnpu t stri ing ’
The input string contains the editing directives and ASCII text that determine data convers:op and
format control for the $EDMSG routine. The directives must be in one of the following formaﬁs

o 9]
e %nl
LAY |

i
|
|
!
i

The directives have the following effects:

Directive Effect

% A delimiter that identifies an editing directive to the SEDMSG routine. ;

n An optional repeat count (decimal number) specifying the number of times the editing oporétlon
is to be repeated by the SEDMSG routine. If n = 0 or is not specified, a repeat count of 1 |s
assumed. ,

v Specities that the repeat count is a value in the next word in the task’'s argument biock. If the

value is 0, a repeat count of 1 is assumed.

An alphabetic letter specifying one of the editing operations to be performed by the EDMG
routine, as shown in Table 6-1.

Input strings can contain ASCII text as well as edxtmg directives. Any number of dlrectxves qan
appear in an input string. Input strings must be in ASCIZ format.

6-11

SEDMSG

argument block (ARGBLK)

The argument block contains the binary data to be converted, the addresses of ASCII and extended
ASCII characters, or the address of a double-precision value.

Prior to calling the $EDMSG routine, set up the appropriate argument block, as follows:

* For $EDMSG to move ASCII or extended ASCII characters to the output block, the argument
block must contain the address of the ASCII characters.

» For $SEDMSG to convert a binary byte to octal format, the argument block must contain the
address of the binary byte.

s For $EDMSG to convert binary values, the argument block must contain the values.

» For $SEDMSG to perform filename string conversion, the argument block must contain the
following information:

Word 1 = Radix-50 file name
Word 2 = Radix-50 file name
Word 3 = Radix-50 file name
Word 4 = Radix-50 file type
Word 5 = Binary version number

» For $EDMSG to convert a binary date, the argument block must contain the following
information:

Word 1 = Year (last two digits)
Word2 = Number (01 to 12) of month
Word 3 = Day of month (01 to 31)

NOTE: $SEDMSG does not check the validity of the date values. If you specify
erroneous date values, output results will be unpredictable.

* For $EDMSG to convert binary time, the argument block must contain the following
information:

Word1 = Hour-of-day (0 to 23)

Word2 = Minute-of-hour (0 to 59)

Word3 = Second-of-minute (0 to £9)

Word4 = Tick-of-second (depends on clock frequency)
Word 5§ = Ticks-per-second (depends on clock frequency)

output block (OUTBLK)
The output block in which SEDMSG is to store output

QUTPUT
converted data
In the output block: the converted/formatted data

next byte :
In Register 0: the address of the next available byte in the output block (the SEDMSG routine
clears this byte to provide a null-terminated (ASCIZ) string)

6-12

SEDMSG

output length |

In Register 1: the number of bytes transferred to the output block (the count does not mclude the
null-terminating byte) _

next argument address
In Register 2: the address of the next argument in the argument block g

Table 6—1 describes the editing directives for the $EDMSG routine.

Table 6-1 $EDMSG Routine Editing Directives
Directive Form Operation
A (ASCII' string) YA Move the ASCII character from address in ARGBLK to OUTBLK.

%nA Move the next n ASCIl characters from address in ARGBLK to OUTBLK“

%VA Use the value in the next word in ARGBLK as repeat count and move the
specified number of ASCII characters from address in ARGBLK to OUTBLK

B (binary byte to %B Convert the next binary byte from address in ARGBLK to unsigned octal number
octal conversion) and store resuit in QUTBLK.

%nB Convert the next n binary bytes from address in ARGBLK to octal numbers and
store resuits in OUTBLK; insert space between numbers.

%VB Use the value in the next word in ARGBLK as the repeat count. convert|the
specified number of binary bytes from address in ARGBLK to octal numbars and
store resuits in OUTBLK; insert space between numbers.

D (binary to signed %D Convert the binary value in the next word in ARGBLK to signed decimai and
decimal conversion, 0 store result in QUTBLK.
suppress)

|
%nD Convert the next n binary values in ARGBLK to signed decimal and store
results in OUTBLK; insert tab between numbers. i

%VD Use the value in the next word in ARGBLK as repeat count, convert the specmed
number of binary values to signed decimal, and store resuits in OUTBLK, insert
tab between numbers. i

E (extended %E Move the extended ASCII character from the address in ARGBLK to the

ASCHl') OUTBLK. l

%nE Move n extended ASCI! characters from the address in ARGBLK to OUTBLK.

%VE Use the value in the next word in ARGBLK as repeat count and move tl‘:\e
specified number of ASCII characters from the address in ARGBLK to Ol.ilTBLK

F (form feed) %F Insert a form-feed character in OUTBLK.
%nF Insert n form-feed characters in OUTBLK.

%VF Use the value in the next word in ARGBLK as repeat count and insert specified
number of form-feed characters in OUTBLK.

I (include ASCIZ %ol Use the next vaiue in ARGBLK as the address of an ASCIZ string to be logicaily
string) included in the format string at this point.

'Extended ASCI! characters consist of the printable characters in the 7-bit ASCII code. If nonprintable characters
appear in an ASCII input string, the E directive replaces them with a space, while the A directive transfers the
nonprintable characters to the output block.

- 6-13

$EDMSG

Table 6-1 (Cont.) $EDMSG Routine Editing Directives

Diractive Form Operation

M (binary to %M Convert the binary value in the next word in ARGBLK to dscimal magnitude with
decimal magnitude leading zeros suppressed and store the resuit in QUTBLK.

conversion,

0 suppress) Convert the next n binary values in ARGBLK to decimal magnitude with leading

%nM zeros suppressed and store the results in OUTBLK; insert tab between numbers.

%VM Use the value in the next word in ARGBLK as repeat count, convert the specified
number of binary values to decimal magnitude with leading zeros suppressed,
and store the resuits in OUTBLK; insert tab between numbers.

N (new line- %M Insert CR and LF characters in OUTBLK.
carriage returrv
line feed) %nN Insert n CR and LF characters in QUTBLK.

%VN Use the value in the next word in ARGBLK as repeat count and insert the
specified number of CR and LF characters in OUTBLK.

O (binary to %0 Convert the binary value in the next word in ARGBLK to signed octal and store
signed octal the result in OUTBLK.
conversion)

%nQO Convert the next n binary vaiues in ARGBLK to signed octai and store the
resuits in OUTBLK; insert tab between numbers.

%VO Use the value in the next word in ARGBLK as repeat count, convert the specified
number of binary values to signed octal, and store the results in QUTBLK; insert
tab between numbers,

P (binary to %F Convert the binary value in the next word in ARGBLK to octal magnitude with no
unsigned octal leading zeros suppressed and store the resuit in OUTBLK.

magnitude

conversion, Convert the next n binary values in ARGBLK to octal magnitude with no leading
no O suppress) %nP zeros suppressed and store the results in QUTBLK; insert tab between numbers.

%VP Use the value in the next word in ARGBLK as repeat count, convert the specified
number of binary values to octal magnitude with no leading zeros suppressed,
and store the resuits in OUTBLK: insert tab between numbers.

Q (binary to %Q Convert the binary value in the next word in ARGBLK to octal magnitude with
octal leading zeros suppressed and store the resuit in OUTBLK.

magnitude

conversion, Convart the next n binary values in ARGBLK to octal magnitude with leading

0 suppress) %nQ zeros suppressed and store the results in QUTBLK; insert tab between numbers.

%VQ Use the value in the next word in ARGBLK as repeat count, convert the soecified
number of binary values to octal magnitude with leading zeros suppressed, and
store the results in OUTBLK; insert tab between numbers.

R (Radix-50 %F Convert the Radix-50 value in the next word in ARGBLK to ASCil and store the
to ASCII) resuit in OUTBLK.

%nR Convert the next n Radix-50 values in ARGBLK to ASCI!l and store the results in
OUTBLK.

%VR Use the value in the next word in ARGBLK as repeat count, convert the specified
number of Radix-50 values to ASCII, and store the results in OUTBLK.

S (space) %S Insert a space in OUTBLK.

%nS Insert n spaces in OUTBLK.

6-14

SEDMSG

Table 6-1 (Cont.) $EDMSG Routine Editing Directives

Directive Form Operation ‘

%VS Use the value in the next word in ARGBLK as repeat count and insert the
specified number of spaces in OUTBLK.

T (double- %l Convert the double-precision unsigned binary value at the address in ARGBLK

precision binary to decimal and store result in OUTBLK.

to decimal

conversion) %nT Convert the next n double-pracision binary values starting at the address in
ARGBLK to decimal and store resuits in OUTBLK; insert tab between numbers.

%VT Use the value in the next word in ARGBLK as repeat count, convert the specified
number of double-precision binary values starting at the address in ARGBLK to
decimal, and store the results in OUTBLK; insert tab between numbers.

U (binary to %U Convert the binary value in ARGBLK to decimal magnitude with no leading zeros

decimal magnitude suppressed and store resuit in OUTBLK. |

conversion, |

no O suppress) %nl Convert the next n binary values in ARGBLK to decimal magnitude with ho
leading zeros suppressed and store resuits in QUTBLK; insert tab between
numbers. ;

%VU Use the value in the next word in ARGBLK as repeat count, convert the specified
number of binary values to decimal magnitude with no ieading zeros supgressed
and store results in QUTBLK; insert tab between numbers.

X (filename %X Convert Radix-50 filename string in ARGBLK to ASCII string in format name.typ;
string conversion) convert octal version number, if present, to ASCHl and store results in OUTBLK.
Convert next n Radix-50 filename strings in ARGBLK to ASCI! strings in fbrmat

%nX name.typ; convert octal version numbers, if present, to ASCIl and store resuits in
QUTBLK; insert tab between strings.

%VX Use the value in the next word in ARGBLK as repeat count, convert specified
number of Radix-50 filename strings to ASCII strings in format name.typ; convert
octal version numbers, if present, to ASCII and store resuits in OUTBLK; insert
tab between strings.

Y (date %Y Convert the next three binary words in ARGBLK to ASCII date in format

conversion) dd-mmm-yy and store in OUTBLK. For this directive, a repeat is acceptable
but will be ignored.

Z (binary time %0Z Convert binary hour-of-day in the next word of ARGBLK to ASCIl and store in

conversion) or OUTBLK in format HH.

%12
Convert the binary hour-of-day and minute-of-hour in the next two words ‘of

%2Z ARGBLK to ASCIl and store in QUTBLK in format HH:MM.

%3Z Convert the binary hour-of-day, minute-of-hour, and second-of-minute in tHe next
three words of ARGBLK to ASCII and store in OUTBLK in format HH:MM:SS.

%4Z Convert the binary hour-of-day, minute-of-hour, second-of-minute, and

or ticks-of-second or ticks-per-second in the next five words of ARGBLK to ASCII

%52 and store in OUTBLK in format HH:MM:SS.S, where .S = tenth of second,

< (define <stack>byte %n< Insert n ASCIl spaces followed by a field mark (NUL) in OUTBLK to definie a
field) fixed-length byte field. The output pointer will point to the first space. |

> (locate Y%n> Increment the OUTBLK pointer until a field mark (NUL) is located or the n repeat
field mark) count is exceeded. !

DESCRIPTION

6-15

SEDMSG

The $EDMSG routine converts internally formatted data, in an argument block, to external format
and stores it in the calling task's output block. The editing performed by the $EDMSG routine is
specified by user directives within an input string. Any nonediting directive characters are simply
copied into the output block. Output strings are in ASCIZ format.

The $EDMSG routine calls the output data conversion routines (also described in Chapter 5) to
convert binary data to the specified external format. See the detailed descriptions of mdlvxdual
conversion routines for specific output formats.

The $SEDMSG routine scans the input string, character-by-character. If it encounters nondirective
(or “unknown” directive) characters, it transmits them directly to the task’s output block. When
the SEDMSG routine finds a percent sign (%) delimiter, it interprets the character(s) following the
delimiter. If it encounters a data conversion directive, the 3EDMSG routine accesses the argument
block, converts the specified data, and transmits it to the output block. If a format control directive
is encountered, the routine generates the specified control(s) and transmits the data to the output
block. If the percent sign delimiter is not followed by a valid operator, or if multiple delimiters
are found, the $EDMSG routine transmits the first delimiter (and any subsequent delimiters not
followed by a valid directive character) to the output block.

NOTE: You can call an appropriate output routine to output the converted/formatted
data.

$EDMSG calls the $SAVRG routine to save and restore Registers 3 through 5 of the calling task.

EXAMPLE

1 The following source statements call the $EDMSG routine to format the data stored in
ARGBLK, as specified by the directives in buffer ISTRING:

MOV #ISTRING,R1
MOV #ARGBLK, R2
CALL S$EDMSG

SET UP ADDRESS OF INPUT
SET UP ARGUMENT BLOCK
DO THE FORMATTING

ISTRING: LASCIZ /SF%12S** *TEXT***43N¥8SIVDI2NIL2S ¥ ¥ *END****/
.EVEN

ARGBLK: +WORD 3. ; NUMBER OF VALUES TO CONVERT
.WORD 99. ; VALUES
+WORD =37. ; TO
.WORD 137. ; FORMAT

OUTBLK: .BLKB 100. ; QUTPUT BLOCK

START: MOV #OUTBLK, RO ; SET UP ADDRESS OF OUTPUT

The editing directives shown in this example have the following effects:

Directive Etfect
%F Insert a form feed in OUTBLK (start a new page).
%128 Insert 12 spaces in OUTBLK and move the ASCIl string to OUTBLK (indent the first line 12
spaces and insert the hesader **"TEXT"**).
%3N Insert three pairs of CR-LF characters in OUTBLK (generate two blank lines).
%8S Insert eight spaces in CUTBLK {indent the next line eight spaces).

6-16

$EDMSG

Directive Effect » '

%VD Use the first value (3) in ARGBLK as the repeat count and convert the next three binary values
in ARGBLK to signed decimal; store each value, followed by a tab, in OUTBLK (output three
signed decimal numbers set up in columns).

%2N Insert two pairs of CR-LF characters In OUTBLK (generate one blank line).

%128

Insert 12 spaces at the beginning of a line in OUTBLK and move the ASCII string to OUT! BLK
(indent 12 spaces and insert the text ***END****). :

The example produces the following output:

XX R TEXT***
99 =37 137

HRREND* %k %

The following example calls the $EDMSG routine to convert the data stored in IBLK, as
specified by the formatting directives in the buffer INSTR:

INSTR: JASCIZ /%F%5S***F, TREVISANI WORK REPORT FROM %Y TO %Y**x/

.EVEN
IBLK: .WORD 87. : YEAR

.WORD 8. ; 8TH MONTH (AUG)

.WORD 22. ; DAY

.WORD 87. : YEAR

.WORD 9. : 9TH MONTH (SEP)

.WORD 16. ; DAY
PRBELK: .BLKB 100. ; OQUTPUT BLOCK i
BEGIN: MOV #PRBLK, RO SET UP ADDRESS OF OUTPUT |

MOV #IBLK, R2 ; SET UP ARGUMENT BLOCK

MOV #INSTR,R1 ; SET UP ADDRESS OF INPUT
CALL $EDMSG ; DO THE CONVERSION

The editing directives in the example have the following effects:

Directive Effect

%F Insert a form feed in PRBLK (start a new page). |

%58 Insert five spaces in PRBLK and move ASCII string to PRBLK (indent the line five spaces #nd
output the header ***F. TREVISANI WORK REPORT FROM). !

%Y Convert the next three words in IBLK to formatted date and store in PRBLK followed by ASCII
text (insert 22-AUG-89 TO in header line).

%Y Convert next three words in IBLK to formatted date and store in PRBLK followed by ASC!I tex!

(insert 16-SEP-89""" in header lina).

1

The above example produces the following output:

***F, TREVISANI WORK REPORT FROM 22-AUG-89 TO 16-SEP—-89%*x*

6-17

Dynamic Memory Management Routines

The dynamic memory management routines enable manual management of the space in a task’s
free dynamic memory. The free dynamic memory consists of all memory extending from the

assembled code of the task to the highest virtual address owned by the task, excluding resident
libraries.

Initially, these routines allocate free dynamic memory as one large block, from the highedt available
memory address downward. Subsequent memory block allocations are made within the avaiiabie
memory blocks. Available memory blocks are maintained as a linked list of blocks in ascending
or}t‘ier, pointed to by a 2-word listhead. Each free memory block contains a 2-word contrpl field,
where:

¢ The first word contains the address of the next available block, or 0 if there is not 4nother
block

® The second word contains the size of the current block |

Memory allocation is either on a first-fit or best-fit basis. Allocation is always made from the top
of the selected available dynamic memory block. The second word of the block is adjusted to reflect
the new size of the current block of available dynamic memory. As memory blocks are qllocated
completely, they are removed from the free memory list.

When memory blocks are deallocated (released), they are returned to the free memory Hst. The
released memory blocks are relinked to the free memory list in ascending address order. If possible,
released memory blocks are merged with adjacent memory blocks to form a single, larg block of
free dynamic memory.

The following three routines perform dynamic memory management functions:

¢ Initialize Dynamic Memory Routine (3INIDM), which initializes the task’s free dynamic
memory

¢ Request Core Block Routine ($SRQCB), which allocates blocks of memory in the free dynamic
memory

¢ Release Core Block Routine (SRLCB), which releases (deallocates) previously allocated memory
blocks in the executing task’s free dynamic memory !

To use the dynamic memory management routines, provide the following information in the source
program:

¢ A 2-word free memory listhead in the following format:
FREEHD: .BLKW 2

¢ The appropriate call and argument(s) for the given routine.

Before building the task, invoke the Librarian Utility (LBR) and enter the following corﬂmand line
to include the modules INIDM and EXTSK in the task: :

LB:[1,1]VMLIB/LB:INIDM:EXTSK . |

7-1

$INIDM

$INIDM—Initialize dynamic memory routine

The $INIDM routine establishes the initial state of the free dynamic memory available to the executing
task. The free dynamic mernory consists of all memory extending from the end of the task code to the
highest virtual address usec by the task, excluding resident libraries.

FORMAT

CALL $INIDM

INPUT

free memory listhead

In the program’s data section: a 2-word memory listhead

free memory listhead address
In Register 0: the address of the free memory listhead

OUTPUT

first address
In Register 0: the first address in the task

last address

In Register 1: the address following the task image (last available address in the free dynamic
memory)

memory size
In Register 2: the size of the free dynamic memory

DESCRIPTION

The $INIDM routine performs the following actions:

* Rounds the free dynarnic memory base address to the next 4-byte boundary
¢ Initializes the free dynamic memory as a single large block of memory

* Computes the total size of the free dynamic memory

* Sets the outputs in Registers 0 and 1 and returns to the calling task

Registers 3 through 5§ are not used.

=2

|
$mupm

After initializing dynamic memory, your task can call the Request Core Block Routine ($RQCB§ to
allocate memory blocks in the dynamic memory and the Release Core Block Routine ($RLCB) to
release the allocated blocks.

EXAMPLE | .

The following source statements call the $INIDM routine to initialize a block of free dynamic

memory and save the first address of the task in Register 0: |

SFREEHD: : .BLKW 2 ; FREE MEMORY LISTHEAD
|
MOV #SFREEHD, RO ; SET ARG FOR FREE MEM HEAD -
CALL $INIDM ; INITIALIZE MEMORY |
|

o

$RQCB

$RQCB—Request core block routine

The $RQCB system library routine determines whether there is enough space available in the free
dynamic memory to satisfy an executing task’'s memory allocation request. If memory Is available, the
$RQCB routine allocates the requested memory block.

FORMAT
CALL $RQCB
INPUT

free memory listhead address
In Register 0: the address of the free memory listhead

block size
In Register 1: the size (nurnber of bytes) of the memory block to be allocated, where:

R1 = A value greater than or equal to 0, to specify best-fit allocation
R1 = A value less than 0, to specify first-fit allocation (the value is negated to determine block size)

OUTPUT

block address
in Register 0: the dynamic memory address of the allocated block

block size

In Register 1: the actual size of the allocated block (requested size rounded to next 2-word
boundary)

Condition Code

C bit = Clear if allocation is successful
 bit = Set if allocation is not successful

The $RQCB routine calls the $SAVRG routine to save and restore Registers 3 through 5 of the
calling task. Register 2 is destroyed.

EXAMPLE

The following source statements call the $RQCB routine to allocate a block of dynamic memory
and store the memory address in Register 0:

7-4

$FREEHD: ¢

©

MOV
MOV
NEG
CALL

.BLKW 2

#SFREEHD, RO
#512.,R1

R1

$RQCB

~

e e S N

FREE MEMORY LISTHEAD

GET ADDRESS OF FREE CORE POOL
SIZE OF BLOCK TO BE ALLOCATED
NEGATE TO SPECIFY FIRST FIT
REQUEST CORE BLOCK

$RQCB

7-5

$RLCB

$RLCB—Release core block routine

The $RLCB system library routine releases a block of previously allocated dynamic memory to the
free memory list. The memory addresses determine the order of the memory list.

FORMAT
CALL SRLCSB
INPUT

free memory listhead address
In Register 0: the address of the free memory listhead

block size
In Register 1: the size (number of bytes) of the block to be released

output address |
In Register 2: the memory address of the block to be released

OUTPUT

released block

In the free memory list: the released dynamic memory block

DESCRIPTION

The $RLCB routine searches the free memory list until it finds the proper address slot and then
merges the released block into the list. If possible, the released memory block is merged with
adjacent blocks already in the free rnemory list.

The $RLCB routine calls the $SAVRG routine to save and subsequently restore Registers 3
through 5 of the calling task. Register 0 is unchanged, while the contents of Registers 1 and 2
are destroyed.

EXAMPLE

The following source statements call the $RLCB routine to release a block of memory, stored in
buffer FREEHD, to the free memory listhead:

7-6

FREEHD : : .BLKW

REFHD:

. WORD

MOV
MOV
MOV
CALL

2
0

REFHD, R2
#4,R1
#FREEHD, RO
$RLCB

LY N

Ns o we N

FREE MEMORY LISTHEAD
REFERENCE LISTHEAD

GET ADDRESS OF ENTRY
GET SIZE OF ENTRY

SET ADDRESS OF LISTHEAD
RELEASE CORE BLOCK

$RLCB

Virtual Memory Management Routines

The virtual memory management routines perform memory allocation and deallocation by paging
to and from disk file storage to accommodate tasks that require more memory than that available
in the task’s free dynamic memory at any given time. That is, the routines allow you to bring
pages into memory when they are needed, hold them there until they are no longer needed, swap
the pages out, and reallocate their memory space to other pages. These routines do not require the
memory management hardware and are not related to memory management directives. |

The virtual memory management routines perform the following major functions:
¢ Virtual memory initialization

¢ Dynamic memory allocation

¢ Virtual memory allocation

¢ Page management

Although you can call the individual virtual memory management routines, it is more efficient to
use them as automatic control systems by calling only the following key routines:

¢ The Initialize Virtual Memory Routine ($INIVM), which initializes the task’s dynamld memory
and the disk work file ,

* The virtual memory allocation routines Allocate Virtual Memory Routine (JALVRT) and
Allocate Small Virtual Block Routine (JALSVB), which manage the allocation of larg; and
small page blocks to enable page swapping to and from dynamic memory

¢ The following page management routines:

— The Convert and Lock Page Routine ($CVLOK), which converts a virtual address to a
dynamic memory address and sets a lock byte in the memory page to prevent its being
swapped out of memory until it is no longer needed

— The Unlock Page Routine (§UNLPG), which clears the lock byte in a memory-resident page
so that it can be released and its memory space reallocated to another page

— The Convert Virtual to Real Address Routine (§CVRL), which converts a virtual address to
a dynamic memory address
— The Write-Marked Page Routine (SWRMPG), which sets the “written into” flag of memory
pages

Using the Virtual Memory Management Routines

To call the virtual memory management routines, provide the appropriate call arguments and
statements in the source program.

Your task should contain an error-handling routine and symbolic error codes.

At task-build time, specify the file and the virtual memory mauagement modules required by the
task.

8-1

8.1.1

 Virtual Memory Management Routines

User Error—Handling Requirements

Four virtual memory management routines detect fatal error conditions. These routines require a
user-written error-handling routine, entitled $ERMSG. In conjunction with the $SERMSG routine,
you should include definitions of three global error codes and one global severity code in the task.
The symbolic error codes are as follows:

Global Error

ESR4 Used by the SALBLK routine when there is no dynamic memory available for allocation

ES$R73 Used by the SRDPAG and $WRPAG routines when a work file I/O error occurs during an attempt to
swap pages between resident memory and disk storage

E$R76 Used by the $ALVRT routine when there is no virtual storage available for allocation

ss$v2 (Severity code) Used by the four routines cited above to denote a fatal error that must be corrected
before task execution can resume

When a fatal error occurs, the detecting routine sets up the following input arguments:

Register 1 = low byte: error code
High byte: severity code (always S$V2)

Register 2 = Argument block address
and issues the following call:
CALL SERMSG

Note that most of the virtual memory management routines interact, directly or indirectly, with
one of the four routines that call $ERMSG (see the General Block Diagram for each routine). The
only exceptions, which do not result in a call to $ERMSG, are the following routines:

$EXTSK
$FNDPG
$WRMPG
$LCKPG
$UNLPG

These five routines indicate error conditions by setting the Condition Code C bit. Your
error-handling operations for these routines should respond to the Condition Code C bit. However,
these routines might have to link with the error routine $ERMSG. Therefore, you must define
the global symbcls and an $SERMSG routine in your task whenever you use a virtual memory
management routine. If you have not defined the error-handling routine within the task, the
undefined global symbol dingnostic message will be generated at task-build time.

A typical error-handling routine would print a message to indicate the specific error condition,
close all files (including the work file), and exit.

Example

The following source statements illustrate a user-written error-handling routine that can be called
by a virtual memory management routine:

8-2

1.2

ER60:
ER61:
FILOPN:
GENFLG:
;1

3 2
SERMSG::

ERM2:
ERM?:
EXI&:
108:

153:

ERROR:

Virtual Memory Management Routines

.ASCIZ <15>/ACNT--Workfile - dynamic memory exhausted/
.ASCIZ <15>/ACNT--Workfile - I0 error or ADDR past EOF/

.BYTE
.EVEN
.WORD

Q

0

; FILE OPEN FLAG. 0 = NO, 1 = YES

; GENERAL FLAG WORD

BIT 0 - VIRTUAL FILE OPEN. 1 = OPEN, 0 = CLOSED
BIT 1 - ALLOCATE VIRTUAL BLOCK ERROR FLAG, 1 = ERROR

BIS
CMPB
BNE
MOV
BR
CMPB
BNE
MoV
BR

TSTB
BLE
CALL

BIT
BEQ
CALL

#2, GENFLG
#ESR4,R1
ERM2
#ER60, RO
ERROR
#ESR73,R1

" ERM3

#ER61,RO
ERROR

FILOPN
105
CLOSE

%1, GENFLG
153
CLOSEV

SET ALLOCATE BLOCK ERROR
DYNAMIC MEMORY ERROR?

NO

YES, GET MESSAGE

Se Ne Ne N

; I/0 ERROR QR ADDRESS PAST EOQF?
: NO
; YES, GET MESSAGE

; ERROR-HANDLING ROUTINE

.2 I8 ACCOUNT FILE OPEN?

; NO

; ROUTINE TO CLOSE ACCOUNT FILE
; WORK FILE OPEN?

; NO

; ROUTINE TO CLOSE VIRTUAL FILE

; ERROR MESSAGE OUTPUT ROUTINE

NOTE: Generally, the error-handling routine should not attempt to return to the virtual
memory management routine that detected the fatal error because no meaningful output

would result.

Task-Building Requirements

There are two versions of the virtual memory management routines: the statistical version and
the nonstatistical version. Each version consists of 12 program modules, each containing one br

more routines, and a data storage module. Individual routines in the virtual memory management

routines library can reference other routines. The relationship of the modules and routines in

library is shown in Table 8-1.

Table 8-1 Contents of the Virtual Memory Management Library File

the

Moduie Name

Routine
Statistical Nonstatistical Name Routines Referenced
ALBLK ALBLK $ALBLK $GTCOR, $EXTSK, SWRPAG -|
ALSVB ALSVB $ALSVB $ALVRT, $WRMPG, $CVRL, $ALBLK, $RQVCB, $FNDFG,
$RDPAG
CVRS CVRL $CVRL $FNDPG, $ALBLK, $RDPAG
EXTSK EXTSK $EXTSK (none)

|8-3

Virtual Memory Management Routines

Table 8-1 (Cont.) Contents of the Virtual Memory Management Library File

Module Name

Routine
Statistical Nonstatisticai Name Routines Referenced
FNDPG FNDPG $FNDPG (none)
GTCOS GTCOR $GTCOHR $EXTSK,'SWRPAG
INIDM? INIDM? $iINIDM $EXTSK
INIVS INIVM $INIVM $ALBLK, SGTCOR, SEXTSK, 3WRPAG
MRKPG MRKPG SLCKPG $FNDPG
SUNLPG $FNDPG
$SWRMPG $FNDPG
RDPAS RDPAG $RDPAG "~ (none)
SWRPAG
RGQVCS RQvCB $RQvCH (none)
VMUTL VMUTL $CVLOK $CVRL, $LCKPG, $FNDPG, $ALBLK, 3RDPAG
VMDAS VMDAT Global data storage moduie

'The Extend Task Routine (3EXTSK) is cailed by the $GTCOR routine, but oniy if GTCOS, the statistical version of
$GTCOR, has been defined and initialized in your source program at task-build time.

2The INIDM meodule is a dynamic memory management module (see Chapter 7) that is normally used with the
virtual memory management routines.

Four modules in the statistical version of the routines set up or maintain statistics of the use of
the work file and memory. These modules and their associated statistical data fields are as follows:

¢ The INIVS module, which initializes the following three double-word fields:
— The total work file access field (§WRKAC)
— The work file read count field (§WRKRD)
— The work file write count field (FWRKWR)

Each of these fields is a double-word integer contained in the global data storage module
(VMDAS) for the statistical version of the routines.

» The CVRS module, which maintains the count of total work file accesses in the $WRKAC field.

¢ The RDPAS module, which maintains a total of the work file reads in the $WRKRD field and a
total of the work file writes in the $WRKWR field.

* The GTCOS module, which maintains a count of the total amount of free dynamic memory in
the $FRSIZ single-word field. This field must be defined and initialized in the source program.

The statistical version of the virtual memory management routines does not automatically report
these statistics. It is your responsibility to provide for the output of the statistical data in the fields
described above if the statistical version of the routines is used.

To use the statistical routines, specify at task-build time the virtual memory management routines
library file, the names of all statistical modules whose routines will be used at task-execution
time, and the name of the global data storage module. The only optional modules are ALSVB and
INIDM.

8-4

Virtual Memory Management Routines
i
|

The following specifications identify all modules of the statistical version of the routines: |

LB:[{1,1]VMLIB/LB:ALBLK:ALSVB:ALVRT:CVRS :EXTSK:FNDPG:GTCOS !
LB:{1,1]VMLIB/LB:INIVS:MRKPG:RDPAS:RQVCB:VMUTL: INIDM: VMDAS '

The nonstatistical routines use the global data storage module VMDAT. To use the nonstatisti¢al
routines, you specify at task-build time the virtual memory management routines library file, the
names of all nonstatistical modules whose routines will be used at task-execution time, and the
name of the global data storage module. The only optional modules are ALSVB and INIDM.

The following specifications identify all modules of the nonstatistical version of the routines:

LB:(1,1)VMLIB/LB:ALBLK:ALSVB:ALVRT :CVRL:EXTSK:FNDPG:GTCOR
LB: (1,1]VMLIB/LB: INIVM:MRKPG:RDPAG:RQVCB: VMUTL: INIDM: VMDAT

8-5

$INIVM

SINIVM—Virtual mermory initialization routine

The $INIVM routine initializes the task’s free dynamic memory, sets up the page address control list,
and Initializes your disk work file to enable memory-to-disk page swapping. Disk work file capacity is
64K words.

FORMAT

CALL $INIVM

INPUT

SFRHD block

In your source program: define and initialize a 2-word field named $FRHD. To define the fieid,
include the following code in your source program:

$FRHD:: .BLKW 2.
To initialize the field, store the starting address of the free dynamic memory in $FRHD.

globals
In your source program: four global symbols as follows:
WSKLUN Logical unit number (LUN) to be used for the work file. You must assign this LUN to a disk device.

WSKEXT Work file extension size (in blocks). A negative number indicates that the extend shouid first be
requested as a contiguous allocation of disk biocks. A positive number indicates that the extend need
not be contiguous.

NSMPAG Fast page search page count. If there is sufficient dynamic memory to ailocate the number of pages
spacitied, NSMPAG will set aside 512 words of dynamic memory to speed up the searching of
memory-resident pages.

SWRKPT Store the address of the FDB in the word SWRKPT before calling $INIVM.

memory address
In Register 1: the highest address of the task’s free dynamic memory

OUTPUT

Condition Code

Initialization succeeded if both of the following conditions exist:

C bit = Clear
Register 0 = 0

SINIVM

Initialization failed if the following conditions exist:
C bit = Set
Register 0 = One of the following values:
-2 to indicate work file open failure
-1 to indicate work file mark-for-deletion failure
NOTE: Before calling the $INIVM routine, the task can call the $INIDM routine (see

Chapter 7), which returns the last address of dynamic memory and the total size of
dynamic memory.

Also, you can examine the FCS error code at offset FERR in the work file FDB. Thre
address of the FDB is stored in the word $WREPT. ‘

DESCRIPTION

|
Starting at the high address of the calling task’s free dynamic memory, the $INIVM routine clears
control fields and the page address control listhead. The $INIVM routine then sets up the heading
for a new page address control list and calls the Allocate Block Routine (SBALBLK) to allocate a
memory page block for the control list. The $INIVM routine calls the $ALBLK routine to allocate
a page block for the first memory page for the calling task, and links the first allocated page w the
page control list. \

The $INIVM routine initializes (opens) your disk work file. If the file is opened successfully, |
the $INIVM routine attempts to mark it for deletion. This ensures that the file will be deleted

automatically when it is closed, or if the task terminates abnormally or exits. 1

NOTE: The work file can be closed by the operation CLOSE$ $WRKPT. 1
The $INIVM routine destroys the contents of Registers 0 through 2. Whether or not the

initialization is successful, it transfers control to the $SAVRG routine, which restores Reglsters
3 through 5 and returns to the calling task. ‘

The interaction of the $INIVM routine with your task and the Allocate Block Routine ($ALBLK) is
shown in Figure 8-1.

8-7

SINIVM

Figure 8-1 General Block Dlagrar of the $INIVM Routine

'

Call $SAVRG to
save task\s R3-RS P> $SAVRG

<

y

Set new high SSAVRG

synamic memory
address

'

Clear memory Slenr R?f: clear C

| fields and it; transfer to
b $SAVRG to
restore R3-RS
and retumn

lists: force old
pages out of

memory

'

Set C bit; transfer
to $SAVRG to
restore R3-RS
and return

Set up new address
control list; call
SALBLK to
allocate control
list page block

l‘ Set RO =1

A

Caill SALBLK to Mark file for
allocate block for [==————8» SALBLK deletion after

close
first memory page

l Yes
No

Link memory page Open disk work ‘ File
to control list |} file » Open? ™ SetRO=-2

$INIVM

EXAMPLE

The following source statements call the $INIVM routine to initialize free dynamic memory and
then call $WRKPT to close the work file. In this example, the $INIDM routine provides the

required free memory address in Register 1:

ESR4 = 4

ESR73 = 73

E$SR76 - 76

ssv2 - 302

WSKLUN == 4

NSMPAG == 20

WSKEXT == 24

SWRKPT: .WORD O

$FRHD:: .BLKW 2

$FRSIZ:: .BLKW 1

GENFLG: .WORD O
;1 BIT 0 - VIRTUAL
MOV #3FRHD, RO
CALL SINIDM
MOV R2, SFRSIZ
CALL S$INIVM
CLOSES$ S$SWRKPT
BIC #1, GENFLG
RTS PC

~e

Se Se Ne v v

) Se e Ne Yo No

~s we Se

~

~s No

INSUFFICIENT WORK FILE DYNAMIC MEMORY
WORK FILE I/O ERROR

WORK FILE EXCEEDED

SEVERITY 2

WORK FILE LUN

FAST PAGE SEARCH PAGE COUNT

WORK FILE EXTENSION SIZE (BLOCKS)

ADDRESS OF FDB

FREE MEMORY LISTHEAD

SIZE COUNT FOR FREE MEMORY
GENERAL WORD FLAG

ILE OPEN - 1 = OPEN, O = CLOSED

SET ARG FOR FREE MEMORY HEAD
INITIALIZE MEMORY

SET ARG FOR SIZE

INITIALIZE WORK FILE SUBSYSTEM

CLOSE VIRTUAL WORK FILE
CLEAR WORK FILE OPEN FLAG

Virtual Memory Management Routines

The core allocation routines manage the allocation and deallocation of space in the free dynamic
memory of the executing task. The core allocation routines are as follows:

The Allocate Block Routine (JALBLK), which provides the interface between the executing task
and the other core allocation routines. That is, the executing task is provided all the services of
the core allocation routines by simply calling the $ALBLK routine, or those routines that call
the $ALBLK routine.

The Get Core Routine ($GTCOR), which is always called by the SALBLK routine to perform the
necessary processing to allocate the requested memory space from the free dynamic memory.

The Request Core Block Routine ($RQCB), which is called by the $GTCOR routine to allocate
the requested memory space if it is available in the free dynamic memory.

The Write Page Routine ($WRPAG), which is called by the $GTCOR routine to transfer memory
pages to your disk work file to free enough memory space to satisfy the memory allocation
request.

The Release Core Block Routine ($RLCB), which is called by the $GTCOR routine to release
space previously allocated to a memory page that has been transferred to the disk work file.

In addition to the five core allocation routines mentioned above, there is a sixth routine called the
Extend Task Routine ($EXTSK), which is accessed by the statistical module GTCOS. The $EXTSK
routine is called by the $GTCOR routine to extend the size of the task region, thus making enough
memory available in the free dynamic memory to satisfy the allocation request.

Do not confuse the statistical module GTCOS with the nonstatistical module GTCOR. Both of these
modules are called by references to the entry point $§GTCOR. $GTCOR calls $EXTSK only when
you include the statistical module GTCOS at task-build time. If you do not include GTCOS, the
$GTCOR routine uses the nonstatistical module GTCOR by default.

8-10

$ALBLK

$ALBLK—AIllocate block routine

The $ALBLK routine determines whether a block of memory storage can be ailocated from the free
dynamic memory. If so, the $ALBLK routine clears (zeros) the allocated block and returns the resident
memory address of the block to the calling task. If there is insufficient space in the free dynamlc
mermory, the requested block cannot be allocated. |

\

FORMAT

CALL $ALBLK ;

INPUT

block size

In Register 1: the size (number of bytes less than or equal to 512,9) of the memory storage block
to be allocated

error code
In the task: the definitions for the following global symbols:

E$R4
S$v2

OUTPUT §

block address
In Register 0: the dynamic memory address of the allocated, cleared block

error response
If allocation is unsuccessful, $ALBLK produces the following output:

In Register 1: sets the error/severity codes E$R4 and S$V2
In Register 2: saves the address of the argument block $FRHD (free memory header)

The $ALBLK routine then calls the user $ERMSG routine.

DESCRIPTION

The $ALBLK routine calls the Get Core Routine (§GTCOR) to allocate the requested memory
block, as follows:

* Request allocation from the free dynamic memory

* If the request is not met, attempt to extend the task region to increase the size of the free
dynamic memory

8-11

SALBLK

¢ If the task cannot be extended, swap unlocked pages from memory storage to disk to deallocate
memory space for reallocation

In addition to being called by the user task, the $ALBLK routine is called by the following virtual

memory management routines:

¢ Initialize Virtual Memory Routine ($INIVM), which calls $ALBLK to allocate initial blocks of
dynamic memory to enable page swapping between disk and memory storage

¢ Convert Virtual to Real Address Routine ($CVRL), which calls $ALBLK to allocate a block of
dynamic memory for a virtual page block

¢ Allocate Virtual Memory Routine (3ALVRT), which calls $ALBLK to allocate a memory page
block for a virtual page block that is to be swapped from memory to disk storage

Figure 8-2 shows the interaction of the $ALBLK routine with a user task and other virtual
memory management routines.

8-12

SALBLK

Figure 8-2 General Block Diagram of the SALBLK Routine f

Task
Call SINTVM routine '
ater { $CVRL routine i
SALVRT routine
SALBLK

Get SGTCOR t0
request memory $GTCOR
block

Clear block: Yes

set block address

in RO: returm

No
Call user’s
$ERMSG
routine
EXAMPLE

The following source statements call the $ALBLK routine to allocate a 4-byte block of memory Bnd
store the address of the block in buffer REFHD:

ESR4 == 4 ; INSUFFICIENT WORK FILE DYNAMIC MEMORY |
ESR73 - 73 ; WORK FILE I/O ERROR ;
ESR76 - 76 ; WORK FILE EXCEEDED |
ssv2 - 2 ; SEVERITY 2 5
REFHD: .BLKW 2 ; REFERENCE LISTHEAD !
MOV R1l, -(SP) ; SAVE VIRTUAL ADDRESS OF REFERENCE
MOV #4,R1 ; GET SIZE OF BLOCK
CALL = S$ALBLK ; ALLOCATE CORE BLOCK
MOV RO, QREFHD+2 ; LINK REAL ADDRESS TO OLD LAST BLOCK ADDRESS
MOV RO, REFHD+2 ; SET NEW LAST BLOCK ADDRESS |
MOV (SP)+,2(RO) ; RECORD VIRTUAL ADDRESS OF REFERENCE

813

$GTCOR

$GTCOR—Get core routine—nonstatistical module
GTCOR

The $GTCOR routine (defined in the nonstatistical module GTCOR) attempts to allocate requested
dynamic memory blocks In the following ways:

« Aliocate memory from the currently available space in the free dynamic memory

+ Swap uniocked page blocks from dynamic memory to disk, freeing previously allocated memory
space for reallocation

FORMAT

CALL SGTCOR

INPUT

block size
In Register 1: the size (number of bytes less than or equal to 512;9) of the dynamic memory block
to be allocated

OUTPUT

block address
In Register 0: the memory address of the dynamic memory block, if allocated

Condition Code

C bit = Clear if the allocation was successful
C bit = Set if the allocaticn failed

< .

DESCRIPTION

$GTCOR calls the Request Core Block Routine (SRQCB; described in Chapter 7) to determine
whether enough free dynamic memory space is currently available to satisfy the allocation request.
If 30, the $GTCOR routine returns the memory address of the resident block to the caller.

If the $RQCB routine canrnot allocate the requested block from the current free dynamic memory,
the $GTCOR routine searches for the unlocked pages currently resident in memory. If any
unlocked pages are found, the least recently used (LRU) page is released and its memory space is
allocated to the new page. If an unlocked page cannot be found, $GTCOR sets the C bit, indicating
that it failed to find an unlocked page, and returns control to the caller.

8-14

$GTCOR

When an LRU page is found, the $GTCOR routine checks the page to see if it has been written
into. If so, the Write Page Routine (§WRPAGQG) is called to write the page to the disk work file.; The
Release Core Block Routine (SRLCB; described in Chapter 7) is called to release the page and the
Request Core Block Routine (SRQCB) is called to allocate the page. The memory address of the
allocated page returns in Register 0 to the caller. If the $GTCOR routine does not obtain sufficient
memory for the requested block, it sets the C bit in the Condition Code and returns control to the
caller. $GTCOR calls the $SAVRG routine to save and restore Registers 3 through 5 of the caller.

The $GTCOR routine is always called by the Allocate Block Routine ($ALBLK). ";

|
Figure 8-3 shows the interaction of the $§GTCOR routine with other system library and virtual
memory management routines.

Figure 8-3 General Biock Diagram of the SGTCOR Routine (Nonstatisticai Moduie GTCOR).

$SAVRG

(Cailer —_H $GTCOR

Call SRQC8 to
)1 request $RQCS8
memory blodk

Clear C bit;
Comnvme o] o, (oot
$SAVRG address in RO;
returmn
No
Check for
Task
$ALBLK unlocked
Set C bit; No

return

Yas

Call SWRPAG
' $SWRPAG l‘— to write pages
out to disk

Delete pages from

list; link remaining _—@ »
pages; call $RLCB
to release page

blocks

|
3;"'1 5

$GTCOR

EXAMPLE

The following source statements call the $GTCOR routine to allocate a memory block of one byte

plus the length of the header:

ESR4 -
ESR73 ==
ESR76 =
s3v2 -
LENGTH: .BLKW
HDSZ: . BLKW
.EVEN
MoV
MOV
ADD
ADD
CALL

816

4
73
76
302
1

1

#1,RO

RO, LENGTH
#HDSZ,R1
RO,R1
$GTCOR

e

Ne e N Ne

INSUFFICIENT WORK FILE DYNAMIC MEMORY
WORK FILE I/O ERROR

WORK FILE EXCEEDED

SEVERITY 2

LENGTH OF RECORD JUST READ

LENGTH OF HEADER

SET LENGTH TO ONE BYTE

REMEMBER THE LENGTH

ADD HEADER LENGTH

ADD ALLOWANCE FOR MODIFICATIONS
ALLOCATE SPACE

$GTCOR

$GTCOR—Get core routine—statistical module
GTCOS

The $GTCOR routine (accessed by the statistical module GTCOS) attempts to allocate requeste'
dynamic memory blocks in one of the following ways:

+ Aliocate memory from the currently available space in the free dynamic memory

- Extend the task region, increasing the size of the free dynamic memory to accommodate th@
ailocation request

space for reallocation

o

Swap unlocked page blocks from dynamic memory to disk, which frees previously allocated mémory

FORMAT

CALL $GTCOR

INPUT

block size

In Register 1: the size (number of bytes less than or equal to 512;¢) of the dynamic block meinory

to be allocated

OUTPUT

address
In Register 0: the memory address of the dynamic block, if allocated

Condition Code

C bit = Clear if the allocation was successful
C bit = Set if the allocation failed

DESCRIPTION

The Request Core Block Routine (SRQCB; described in Chapter 7) is called to determine whe

enough free dynamic memory space is currently available to satisfy the allocation request. If

the $GTCOR routine returns the memory address of the resident block to the caller.

If the requested block cannot be allocated from the current free dynamic memory, the $GTC(C
routine calls the Extend Task Routine (SEXTSK) to determine whether the task region can be
extended to make available the requested space in the free dynamic memory. If so, the $GTOOR

routine returns the memory address to the caller.

ther
so,

)R

8-17

$GTCOR

If the task region cannot be extended, the $GTCOR routine searches for unlocked pages currently _
resident in memory. If any unlocked pages are found, the least recently used (LRU) page is
released and its memory space is allocated to the new page.

When an LRU page is found, the $GTCOR routine checks the page to see if it has been written
into. If so, the Write Page Routine (§WRPAG) is called to write the page to the disk work file. The
Release Core Block Routine (SRLCB; described in Chapter 7) is called to release the page and the
Request Core Block Routine (SRQCB) is called to allocate the page. The memory address of the
allocated page is returned in Register 0 to the caller. If the $GTCOR routine is not able to obtain
sufficient memory for the requested block, it sets the C bit in the Condition Code and returns
control to the caller. The $GTCOR routine calls the $SAVRG routine to save and subsequently
restore Registers 3 through 5 of the caller.

The $GTCOR routine is always called by the Allocate Block Routine (SALBLK).

Figure 8—4 shows the interaction of the $GTCOR routine with other system library and virtual
memory management routines.

8-18

$GTCOR

Figure 8-4 General Block Diagram of the $§GTCOR Routine (Statistical Module GTCOS)
$SAVRG
r 3
Call SRQC8 to
[calr |—{ satcon request $RQCB
memory block
Clear C bit;
set memory
address in RO;
return
Task See # task can
$ALBLK be extended
Inhibit Yeos .
further Maximum
extensions sze?
i No
Check for Call $EXTSK
unlocked pages to extend $EXTSK
r > task
Set C bit; No Get
return Extension
1
- Yes
Call SWRPAG Update free mem-—
SWRPAG to write pages ory; update top of
out to disk memory; call $RLCB
to release block
Delete pages from -
list; link remaining $RLCB »
pages; call $RLCB tof
release page blocks

d;-=19

$EXTSK

SEXTSK—EXxtend task routine

The $EXTSK routine extends the current region of the task to increase the amount of available memory
for allocation. It extends the task region by the specified size rounded to the next 32-word boundary.

FORMAT

CALL $SEXTSK

INPUT

block size
In Register 1: the size (number of bytes less than or equal to 512,p) of the memory storage block
to be allocated

OUTPUT

extension size
In Register 1: the actual extension size (requested size rounded to next 32-word boundary)

Condition Code

C bit = Clear if extension was successful
C bit = Set if extension failed

DESCRIPTION

The $EXTSK routine is called by the Get Core Routine (§GTCOR) when there is insufficient space
in the current free dynamic memory to satisfy a memory block allocation request. The $EXTSK
routine rounds the requested extension size to the next 32-word boundary. If there is enough
memory space available, $EXTSK extends the task region, returning the total amount of the
extension, in Register 1, to the 3GTCOR routine. It preserves all other registers of the caller. If
it cannot extend the task region, the $EXTSK routine sets the C bit in the Condition Code and
returns to the $GTCOR routine.

While you can call the $EXTSK routine directly, the routine is also called by the Initialize Dynamic
Memory Routine ($INIDM), described in Chapter 7.

Figure 8—5 shows the interaction of the $EXTSK routine with the $GTCOR routine (in statistical
module GTCOS).

8-20

$EXTSK

Figure 8-5 General Block Diagram of the $EXTSK Routine

Task
SGTCOR 2

SEXTSK
y
Round extension
to 32-word
boundary
Convert to
Yes 32-word blocks:
set ex t s
size inR1:
return to caller
No
Set C bit:
o

return to caller

8-21

$EXTSK

EXAMPLE

The following source statements call the $EXTSK routine to extend the amount of memory

available to the task:

TSKINC ==
TSKMAX ==
PSTADDR: .WORD
FRHD: «BLKW

CALL
108:
MOV
MOV
CALL
BCC
MOV
MOV
cMP
BHIS
MOV

- -
o, re)

BCS

ADD

ADD

BR
178:

478:
MOV
CALL
MOV
BR
605
INC
RTS

8-22

256.
0
0
2

$SAVRG

R1l, = (SP)
¥FRHD, RO
SRQCB

€05
#PSTADDR, R3
(R3),R2
R2, #TSKMAX
178
#TSKINC,R1
SEXTSK
ERRS

R1, FRHD
R1l, (R3)
478)

#-1, (R3)

#FRHD, RO
SRLCB
(SP)+,R1
108

(SP)+
PC

Ne No ve

~.

Se Ne Ne %o S Ne N

~s Se Ne e

~e ~a e N

~e N v

~

TASK INCREMENT
MAXIMUM SIZE OF TASK
NEXT FREE ADDRESS
FREE MEMORY LISTHEAD

SAVE NONVOLATILE REGISTERS

SAVE BYTE COUNT

GET ADDRESS OF FREE CORE POOL
REQUEST CORE BLOCK

IF C BIT CLEAR, SPACE IS ALLOCATED
GET POINTER TO NEXT FREE ADDRESS
GET NEXT FREE ADDRESS

IS TASK AT MAXIMUM ALLOWABLE SIZE?
IF TASK HIGHER OR SAME, YES

GET TASK INCREMENT (IN BYTES)
EXTEND THE TASK

IF C BIT SET. EXTENSION FAILED

ADD INCREMENT TO POOL

UPDATE TOP OF MEMORY

RELEASE BLOCK TO POOL

BLOCK FURTHER ATTEMPTS TO EXTEND TASK
GET ADDRESS OF FREE CORE POOL

RELEASE MEMORY

RESTORE BYTE COUNT

BEGIN AGAIN

CLEAN STACK, LEAVE C BITS INTACT

$WRPAG

SWRPAG—Write page routine

The $WRPAG routine transfers a memory page to the disk work file. g

FORMAT

CALL SWRPAG

INPUT

page address
In Register 2: the dynamic memory address of the page to be transferred to disk

error code
In the task: the definitions for the following giobal symbois:

E$R73
S$vz

OUTPUT

Condition Code

C bit = Clear if transfer succeeded
C bit = Set if transfer failed

error response
If transfer is not successful, $WRPAG produces the following output:

In Register 1: sets the error/severity codes EJR73 and S$V2
The $WRPAG routine then calls the user SERMSG routine.

DESCRIPTION

The $WRPAG routine is called by the Get Core Routine ($GTCOR) to transfer to your disk work
file a resident memory page that has been written into.

The $WRPAG routine calls the $SAVVR routine to save and subsequently restore Registers 0
through 2 of the caller. The routine then performs the following actions:

* Sets up the disk work file address of the page to be transferred
¢ Initiates the page-writing operation
* Checks the status of the write operation

B-23

$WRPAG

¢ Indicates a successful transfer (clears the C bit in the Condition Code) and returns control to
the $SAVVR routine, or calls your $ERMSG routine if a fatal work file I/O error prevented the
page transfer

Figure 8-6 shows the interaction of the $WRPAG routine with the $GTCOR routine.
Figure 8-6 General Block Diagram of the SWRPAG Routine

Tank
SGTCOR Caller >-]

SWRPAG $SAVVR

y

Set up disk
address for page
to be transferred

l

Initiate page
writing
operation

l

Check status
of write
operation

>__.Y” Clear C bit: $SAVVR
Success? retumn

No

Call user's
SERMSG ——->< SERMSG
routine

8--24

$WRPAG

EXAMPLE

The following source statements call the $WRPAG routine to transfer a memory page from buﬂ‘er

PHGNXT to the disk work file:

ESR4 - 4

ESR73 - 73

ESR76 == 76

ssv2 - 302

PSGNXT: .WORD O

“ MOV R4, RS

MOV PSGNXT, R4
MOV R4, R2

CALL $WRPAG

~e w

~

~e ~e

LYSRE 99

INSUFFICIENT WORK FILE DYNAMIC MEMORY
WORK FILE I/0 ERROR

WORK FILE EXCEEDED

SEVERITY 2

NEXT PAGE WORK FILE

SAVE PREDECESSOR
GET NEXT PAGE

SET UP BUFFER FOR TRANSFER
WRITE OUT PAGE INTO DISK WORK FILE

8-25

8.2

Virtual Memory Management Routines

Virtual Memory Allocation Routines

Virtual memory allocation routines manage the allocation of disk and memory storage to enable

page swapping from the free dynamic memory to your disk work file. The three virtual memory
allocation routines are as follows:

e Allocate Virtual Memory Routine (SALVRT), which allocates disk and memory page blocks,
maintains page control and address tables, and interfaces with the executing task and the cor
allocation and page management routines.

¢ Allocate Small Virtual Block Routine ($ALSVB), which allocates small page blocks of disk
and memory storage within large page blocks to enable efficient use of storage. The $ALSVB
routine interfaces with the $ALVRT routine and page management routines to ensure address
and status control of small pages in memory and disk storage.

¢ Request Virtual Core Block Routine ($RQVCB), which manages page-block allocation on your
disk work file when it is called by the $ALVRT routine.

8-26

SALVRT

$ALVRT—AIllocate virtual memory routine

The $ALVRT routine determines whether a page block of virtual storage can be allocated on your
disk work file. If so, the $ALVRT routine allocates an equal amount of memory storage, updates page
control and address tables, and returns the disk and memory addresses of the allocated page blocks

to the caller. If the SALVRT routine cannot allocate the requested storage, the arror and severity codes
E$R76 and S$V2 are stored in Register 1 and the user’'s SERMSG routine is called.

FORMAT

CALL $SALVRT

INPUT

block size
In Register 1: the number of bytes to be allocated

NOTE: The maximum size of a page block is 512y bytes.

OUTPUT

memory address

In Register 0: the memory address of the allocated page block
In Register 1: the virtual address of the allocated page block

DESCRIPTION

The $ALVRT routine calls the Request Virtual Core Block Routine (SRQVCB) to determine whether
the requested storage can be allocated on the disk work file. If not, a fatal error is signalled and
the $ALVRT routine calls your $ERMSG routine. If it can allocate the disk storage, the SRQVCB
routine returns the disk page block address to the SALVRT routine, which determines whether a
page block of space is available in memory. If not, the Allocate Block Routine (JALBLK) is called to
allocate a page block. The $ALVRT routine then calls the Convert Virtual to Real Address Routine
($CVRL) to convert the virtual address to a memory address. |

The $ALVRT routine calls the Write-Marked Page Routine (SWRMPG) to set the “written into”
flag of the memory page. It also calls the $SAVRG routine to save and restore Registers 3 |
through 6 of the calling routine. Although you can call the $ALVRT routine directly, it is also!
called automatically by the Allocate Small Virtual Block Routine (JALSVB). Figure 8-7 shows
the interaction of the $ALVRT routine with your task and other virtual memory management
routines,

$ALVRT

Figure 8-7 General Block Diagram of the $ALVRT Routine

Task] Caller $ALVRT
SALSVB
k4
Call $SAVRG
tosave R3-RS
P
.
Call SRQVCB to
$SAVRG request ditk SRQVCB
storage block
No Call user's
SERMSQG
ROUTINE
Yes
S e i et
RO; se::ifsgm ® core page block
address of page in available
RI: transer to
$SAVRG to
restore R3 - RS
4 Page Call SALBLK to
block in allocate core | { SALBLK
core? page block
Updae
I —— .
SWRMPG > i,
tables
I Call SWRMPG Cail SCVRL to
' convert virtual
:rri‘l:n!'npi:ﬁs = accles:a to real

8-28

$ALVFT
|

EXAMPLE

The following source statements call the SALVRT routine to allocate a page block of virtual menﬁxory
on a disk file. In this example, the statements save the contents of Registers 0 and 2 before calling

$ALVRT:

ESR4
ESR73
ESR76
ssv2
TEMP1:
TEMP2:
A.LEN:

4
73
76
302
0

0

1

RO, TEMP1
R2, TEMP2
A.LEN,R1
$ALVRT

~e Ne

e

~e

Se v

Se N

INSUFFICIENT WORK FILE DYNAMIC MEMORY
WORK FILE I/O ERROR

WORK FILE EXCEEDED

SEVERITY 2

TEMPORARY BUFFER FOR VIRTUAL MEMORY
TEMPORARY BUFFER FOR VIRTUAL MEMORY
LENGTH OF VIRTUAL ELEMENT

SAVE POINTER IN INPUT BUFFER

SAVE NUMBER OF BYTES IN BUFFER

LENGTH OF VIRTUAL ELEMENT TO REGISTER 1
ALLOCATE VIRTUAL BLOCK

8-29

SALSVB

$ALSVB—Allocate small virtual block routine

The $SALSVB routine allocates small page blocks within large page blocks of disk and memory storage.
Thus, the routine accommodates variable user allocation size requirements and minimizes wasted
storage space.

The $ALSVB routine initially allocates a large page block, then performs suballocation of requested
small blocks within the large block. When the space within a large block is exhausted, a new large
block is allocated by the $ALSVB routine.

1 R

FORMAT

CALL SALSVE

INPUT

memory block

In the source program: a large memory block defined as follows:

NSDLGH == 512,

NOTE: Normally, 512 is the size of a large memory block. In any case, it must be less
than or equal to 51249.

page block size
In Register 1: the size of the page block to be allocated, where:

R1 « Zsro (0) to force the allocation of a large virtual page block on the first call to SALSVB
R1 = A value less than or equal to 512,, specifying the size, in bytes, of the smali page to be ailocated

OUTPUT

In Register 0: the dynamic memory address of the allocated page block

virtual address
In Register 1: the virtual address of the allocated block

DESCRIPTION

When a small page block is to be allocated within an existing large page block, the $ALSVB routine
calls the Convert Virtual to Real Address Routine (§CVRL) to do the following:

» Locate the allocated large page, if it is memory-resident (if it is not resident, read the page
from disk to memory)

¢ Convert the virtual page address to a memory page address

8-30

SALSVB

* Transfer the large page block from disk into the large memory page block

The $ALSVB routine calls the Write-Marked Page Routine ($WRMPQG) to set the “written into” flag
of the allocated memory page. *

When a large page block is to be allocated, the Allocate Virtual Memory Routine (SALVRT) is called
to do the following:

¢ Allocate the disk and dynamic memory of the requested large page block
* Convert the virtual address to a memory address
* Transfer the large block, if necessary, from disk to dynamic memory

* Set the “written into” flag of the allocated page block

The $ALSVB routine destroys the contents of Register 2 and preserves the contents of Registers 3
through 5. !

Figure 8-8 shows the interaction of the $ALSVB routine with other virtual memory management
routines.

.

$ALSVB

Figure 8-8 General Block Diagram of the SALSVB Routine

Task

Round requested
block size to
word boundary:
check to see if
this is first call

Call SALVRT ¢
allocate large SALVRT
disk page block
Rleturn memory
address in RO;
virtual address
Get virtual inRI
address of A
available small
block
Call SCVRL to
convert virtual Call SWRMPG
address to memory to mark page an $WRMPG
ildciess and read written into
into page

8-32

SALSVB

EXAMPLE

The following source statements call the $ALSVB routine to allocate a block of memory within a
larger block:

ESR4 == 4 ; INSUFFICIENT WORK FILE DYNAMIC MEMORY
ESR73 == 73 ; WORK FILE I/0 ERRCR
ESR76 il 76 ; WORK FILE EXCEEDED
ssv2 - 302 ; SEVERITY 2
NSDLGH == 512. ; LARGE BLOCK SIZE
P3GSIZ == 24 ; SIZE OF CURRENT PAGE
MoV #PSGSIZ, RS ; GET PAGE SIZE
MOV R5,R1 ; COPY SIZE OF TABLE
ASL Rl ; CONVERT TO BYTES
CALL SALSVB ; ALLOCATE VIRTUAL MEMORY !
MOV R1l, (R4) + ; SAVE VIRTUAL ADDRESS

8-33

$RQVCB

$RQVCB—Request virtual core block routine

The $RQVCB routine manages page-block allocation on your disk work file. The $RQVCB routine is
called by the Allocate Virtual Memory Routine ($ALVRT) when your task has requested allocation of a
page block of a maximum of 512, bytes in length.

The $RQVCBS routine is not a user-called routine,

DESCRIPTION

The $RQVCB routine rounds the requested number of bytes up to the nearest word. If the rounded

value crosses a disk block boundary, the $RQVCB routine allocates the page block beginning at the
next disk block.

If allocation is successful, the RQVCB routine clears the C bit in the Condition Code and returns
the disk address of the allocated page to the $ALVRT routine.

If allocation is not successful, the SRQVCB routine sets the C bit in the Condition Code and
returns control to the 3ALVRT routine. The following conditions can prevent allocation:

¢ There is no more disk storage space available.

¢ A page block size greater than 512, bytes has been requested.

8-34

Figure 8-9 General Block Diagram of the $RQVCB Routine

$RQVCB

Task

Y

o
k4
A 4

Check available
disk storage

No Set C bit:
return to caller »
Yes

Clear C bit:
round request;
check size

Allocate page Put disk page
space within address in R1: —
disk block ™ ciear Cbit;

boundary retumn

8-35

Virtual Memory Management Routines

The page management routines perform the processing required to control page swapping between
dynamic memory and disk file storage. This processing includes address conversion; page location;
page transfer from disk to memory; and page status handling such as timestamping, flagging as
“written into,” and locking and unlocking memory pages.

The page management routines are as follows:

The Convert and Lock Page Routine ($SCVLOK), which converts a virtual address to a dynamic
memory address and locks the page in memory when called by your task

The Convert Virtual to Real Address Routine (3CVRI,), which converts a virtual address to a
dynamic memory address when called by one of the following:

— User task
~ Allocate Virtual Memory Routine (SALVRT) when a new disk page has been allocated

— Convert and Lock Page Routine ($SCVLOK) when a page address is to be converted and the
page is to be locked in memory

Read Page Routine (8RDPAG), which is called by the ‘SCV'RL routine to transfer a page from
your disk work file to dynamic memory

Find Page Routine (SFNDPGQG), which determines whether a virtual page is resident in dynamic
memory when called by one of the following:

- $CVRL routine

Lock Page Routine ($LCKPG)

Unlock Page Routine ($UNLPG)

- Write-Marked Page Routine ($WRMPGQG)

Write-Marked Page Routine (SWRMPG), which sets the “written into” flag of memory pages
when called by a user or by the $ALVRT and $ALSVB virtual memory allocation routines

Lock Page Routine ($LCKPG), which is called by the $CVLOK routine and a user task to set a
lock byte in a memory page to prevent its being swapped from memory to the disk file

Unlock Page Routine (S UNLPQG), which is called by a user task to clear a lock byte in a memory
page to allow it to be swapped to disk storage to free memory space for reallocation

8-36

$CVLOK

$CVLOK—Convert and lock page routine

The $CVLOK routine performs the following functions:
« Converts a virtual address to a memory address
e Locks the page in memory

FORMAT

CALL $CVLOK

INPUT

virtual address

In Register 1: the virtual address you want to convert

OUTPUT

converted memory address
In Register 0

virtual address
In Register 1

Condition Code

Cbit = Clearif the address was converted and the page locked
Chit = Setif address conversion or page locking failed

DESCRIPTION

The $CVLOK routine calls the following routines:

¢ The Convert Virtual to Real Address Routine ($CVRL) to convert the virtual address to a
memory address :

* $CVRL to preserve the contents of Registers 3 through 5
* The Lock Page Routine (S LCKPG) to lock the page in memory

$CVLOK also preserves the contents of Register 2.

$CVLOK

Figure 8-10 General Block Diagram of the $CVLOK Routine

Call SCVRL o

convert virtual

to ——— $SVRL

address

e
k4

Cail SLCKPG

to lock page o SLCKPG

in core
Set C bit:
return

Clear C bit: set
RO = memory
address: set

R1 = virtual
address; retum

' ,

8-38

$CVLOK

EXAMPLE

The following source statements call the $CVLOK routine to convert a virtual address from the

listhead to a dynamic memory address in TEMP1 and then an error routine in case the conversion

fails:

ESR4
ESR73
ESR76

' 8sv2
TEMP1:
LISTHD:

LCKERR:

4
73
76
302
0

1

LISTHD, Rl
$CVLOK
LCKERR
RO, TEMP1

#ERRS5, RO
ERROR

e Ne

Ne “e Ne e

Ne Na N N

v

INSUFFICIENT WORK FILE DYNAMIC MEMORY

WORK FILE I/Q ERROR
WORK FILE EXCEEDED
SEVERITY 2

*TEMPORARY STORAGE FOR VIRTUAL MEMORY

LISTHEAD LOCATION
MOVE VIRTUAL ADDRESS

CONVERT, STORE REAL ADDRESS IN REGISTER: 0

ERROR
SAVE IN TEMPORARY BUFFER

GET ERROR MESSAGE
GET ERROR ROUTINE

8-39

$CVRL

$CVRL—Convert virtual to real address routine

The $CVRL routine converts a virtual address to a dynamic memory address. Virtual address units are
words and dynamic memory addresses are bytes.

FORMAT

CALL SCVRL

INPUT

virtual address

In Register 1: the virtual address you want to convert

S0 O
.

OUTPUT

memory address
In Register 0: the converted memory address

DESCRIPTION

The $CVRL routine can be called directly in the task or indirectly by the following routines:
¢ Allocate Virtual Memory Routine (JALVRT) when a new disk page has been allocated

¢ Convert and Lock Page Routine ($CVLOK) when the executing task has specified that a virtual
address is to be converted to a memory address and the page is to be locked in memory

The $CVRL routine calls the Find Page Routine ($SFNDPG) to determine whether the specified
page is resident in memory. If so, the virtual address is converted to a memory address, which

is returned to the caller. If the page is not in memory, $CVRL calls the Allocate Block Routine
($ALBLK) to allocate a memory page block. The $CVRL routine then calls the Read Page Routine
(3RDPAG) to transfer the disk page into dynamic memory. The page address is then converted to a
memory address. The memory address of the specified word in the page is stored in Register 0, and
control is transferred to the $SAVRG routine, which restores Registers 3 through 5 and returns to
the caller.

The $CVRL routine leaves Register 1 unchanged. It destroys the contents of Register 2.

‘Figure 8-11

General Block Diagram of the $CVRL Routine

SCVAL

$SAVRG

Call $SFNDPG
to find page

Call SALBLK
to allocate
memory page
block

SALBLX

Convert address:

set RO = memory
address; retum

Call SRDPAG
to read disk
page into
memory page

8-41

$CVRL

EXAMPLE

The following source statements call the $CVRL routine to convert a virtual address in Register 1
to a dynamic memory address and store the result in Register 0:

ESR4 -
ES$R73 ==
ESR76 -
s$v2 =
PSGSIZ i
PSGADR: .BLKW
MOV
MoV
TST
BNE
MoV
CALL
MoV
208: CALL

4
73
76
302
24
1

$PSGADR,R1
R1,R5

Rl

20%
#PSGSIZ,R1
SALBLK
RS5,R1
$CVRL

Ne Se Ne Ne ve N

Ne Ne e “e Ne S N N

INSUFFICIENT WORK FILE DYNAMIC MEMORY
WORK FILE I/0 ERROR

WORK FILE EXCEEDED

SEVERITY 2

SIZE OF CURRENT PAGE

ADDRESS OF CURRENT PAGE

GET PAGE ADDRESS

SAVE VIRTUAL ADDRESS

IS REQUEST ON BLOCK BOUNDARY?
IF NO, BLOCK ALREADY EXISTS
CREATE A PAGE BUFFER
ALLOCATE STORAGE SPACE
RESTORE VIRTUAL ADDRESS
CONVERT TO REAL ADDRESS

$RDPAG

SRDPAG—Read page routine

The $RDPAG routine transfers a disk page from the work file to the dynamic memory.

FORMAT

CALL SRDPAG

INPUT

page address

In Register 0: the disk address of the page you want to transfer

OUTPUT

Condition Code

C bit = Clear if transfer succeeds i
Cbit = Setif transfer fails |

DESCRIPTION

The $RDPAG routine is called by the Convert Virtual to Real Address Routine ($CVRL) when :a
disk page is to be transferred to dynamic memory. The SRDPAG routine then does the follomdg

¢ Sets up the address of the page to be transferred ‘
¢ Initiates the page-reading operation :
\

¢ Checks the status of the read operation
* (Calls the $SAVVR routine to save and subsequently restore the caller's Registers 0 through 2

The interaction of the SRDPAG routine with the task and the $CVRL routine is shown in
Figure 8-12.

$RDPAG

Figure 8-12 General Block Diagram of the SRDPAG Routine

r Cailer CgexaL

SRDPAG $SAWD

y

L

Initiate read
operation

y

Check swatus
of read

Set C bit: .
No call user's

SERMSG

routine

Yes

Clear C bit;
transfer to
$SAVVR to
restore R0 - R2
and retumn

$RDPAG

EXAMPLE

The following source statements allocate a page in buffer PSGSIZ and call the $RDPAG routine to
read the virtual page address into core memory: |

INSUFFICIENT WORK FILE DYNAMIC MEMOR?

ESR4 = 4 3

BESR73 = 73 ; WORK FILE I/0O ERROR

ESR76 - 76 ; WORK FILE EXCEEDED

s$Vv2 = 302 ; SEVERITY 2

P$SGSIZ = 24 : SIZE OF PAGE

PSGBLK: .BLKW 100. ; RELATIVE BLOCK NUMBER

LISTHD: .BLKW 1. ; LISTHEAD LOCATION

PAGLS: .BLKW 1. ; ADDRESS OF PAGE LIST

SCVRT: SAVRG : SAVE NONVOLATILE REGISTERS
MOV R1,RS ; COPY VIRTUAL ADDRESS
SWAB RS ; POSITION BLOCK NUMBER TO LOW BYTE
CALL SFNDPG s SEARCH FOR PAGE
BCC 108 ;s IF C BIT CLEAR, PAGE IN CORE.
MOV #¥PSGSIZ,R1 ; GET SIZE OF PAGE BUFFER
CALL $ALBLK ; ALLOCATE MEMORY
MOV PAGLS, R4 s GET ADDRESS OF PAGE LIST
BEQ 58 ; IF EQ NONE
CLR R2 ; SET FOR MOVB WITH NO EXTEND
BISB RS, R2 : GET RELATIVE BLOCK NUMBER
ASL R2 ; CONVERT TO WORD OFFSET
ADD R2,R4 ; COMPUTE LIST ADDRESS
MOV RO, (R4) ; STORE ADDRESS OF PAGE

5% :

MOVB RS, P$SGBLK (RO)
CALL SRDPAG

SET RELATIVE BLOCK NUMBER
READ PAGE INTO CORE

~e N

$FNDPG

SFNDPG—Find page routine

The $FNDPG routine searches an internal page address list to determine whether a virtual page has
already been transferred into an allocated memory page block.

FORMAT

CALL $FNDPG
INPUT

virtual page address

In Register 1: the address of the page being searched for

OUTPUT

block address
In Register 0: the memory page block address where the page is resident

Condition Code

Cbit = Clearif page is resident
Cbhit = Setif page was not found

DESCRIPTION

The $FNDPG routine is called by the following virtual memory management routines:

o Convert Virtual to Real Address Routine (§CVRL) when a virtual address is to be converted to
a memory address

¢ Lock Page Routine ($LL.CKPG) when a memory page is to be locked in core memory
¢ Unlock Page Routine (JUNLPG) when a locked memory page is to be unlocked

* Write-Marked Page Routine (WRMPG) when the “written into” flag is to be set in a memory
page

The $FNDPG routine determines whether the specified page is resident in the task’s dynamic
memory. If so, the page is timestamped, its page block address is set in Register 0, the C bit in
the Condition Code is cleared, and control returns to the caller. If the page is not resident in
memory, the $FNDPG routine sets the C bit in the Condition Code and returns control to the
caller. $FNDPG does not change the contents of Register 1.

$FNDPG

The interaction of the $FNDPG routine with a user task and the page management routines is
shown in Figure 8-13.

Figure 8-13 Generai Block Diagram of the SFNDPG Routine

Task
SCVRL
SLCKPG
SUNLPG

SWRMPG
Check page

address list to
see if page
in core

No Set C bit:
retum

Yes

Time-stamp
page: clear C bit;
set RO = page
address; return

. v y

|

EXAMPLE

The following source statements call the $FNDPG routine to verify that a page address, stored in
buffer PSGADR, exists in core memory. The example then calls SALBLK to allocate the page block:

PSGADR: .WORD 0 ; VIRTUAL PAGE ADDRESS
PSGSIZ == 24 : SIZE OF PAGE
CALL $SAVRG ; SAVE NONVOLATILE REGISTERS
MOV PS$SGADR, R1 ; GET PAGE ADDRESS
CALL SFNDPG ; SEARCH FOR PAGE
BCC 108 : IF CLEAR, PAGE IN CORE
MoV #PSGSIZ,R1 : GET SIZE OF PAGE BUFFER

CALL $SALBLK ; ALLOCATE MEMORY

10$:

8-47

$WRMPG

SWRMPG—Write-marked page routine

The $WRMPG routine sets the “written into” flag of the specified page in dynamic memory.

FORMAT

CALL SWRMPG

INPUT

virtual page address
In Register 1: the address of the page for which the flag is being set

OUTPUT

Condition Code

Cbit = Clearif the page was write-marked successfully
Cbhit = Setif the specified memory page was not resident in the task's free dynamic memory

DESCRIPTION

The $SWRMPG routine is called by the following virtual memory management routines:

o Allocate Virtual Memory Routine (SALVRT) when a disk page has been allocated in dynamic
memory

o Allocate Small Virtual Block Routine (JALSVB) when a small page block has been allocated
within a large page block

$WRMPG calls the Find Page Routine ($FNDPQG) to debermine whether the specified page is
resident in the task’s memory. If not, the C bit in the Condition Code is set and control is
transferred to the $SAVVR routine to restore Registers 0 through 2 and return to the caller. If
the page is resident in memory, its “written into” flag is set, the C bit in the Condition Code is
cleared, and control is transferred to the $SAVVR routine to restore Registers 0 through 2 and
return to the caller.

The interaction of the SWRMPG routine with the caller and virtual memory management routines
is shown in Figure 8-14.

$WRMPG

Figure 8-14 General Block Diagram of the $WRMPG Routine
Task
.@ [Sbver
SALSVB
y

- |
4

Call SFNDPG)
to find page /

Set C bit; return

Find it? 0 SSAVVR

Set write-mark
flag: clear C bit:
return to
$SAVVR

8—49

$WRMPG

EXAMPLE

The following source statements call the $WRMPG routine to mark a page and then call an error
routine in case $WRMPG is not successful:

TEMPl: .WORD 0 ; TEMPORARY STORAGE FOR VIRTUAL MEMORY
FREECT: .BLEKW 1 ; NUMBER OF AVAILABLE PAGE ENTRIES
ERS8: .ASCIZ <15>/ACNT--Work file - page mark /
.EVEN
Mov TEMP1,R1 ; SET SWRMPG ARGUMENT
MoV R5, TEMP1l ; MOVE PREV PAGE ADDRESS TO VIRTUAL MEMCRY
Mov @RO, @R3 ; UPDATE PREV VIRTUAL ADDRESS PAGE POINTER
INC FREECT ; INCREMENT NUMBER OF PAGES AVAILABLE
CALL SWRMPG ; MARK PAGE "WRITTEN INTO"
BCS WRMERR ; ERROR
WRMERR: MOV #ERS58, RO ; GET ERROR MESSAGE
BR ERROR ; GET ERROR ROUTINE

8-50

$LCli(PG

$LCKPG—Lock page routine

The $LCKPG routine sets a lock byte in a memory-resident page to prevent its being swapped from

dynamic memory to the disk work file.

FORMAT @

CALL SLCKPG

INPUT

virtual page address

In Register 1: a virtual address in the page to be locked in dynamic memory

OUTPUT
Condition Code

Cbit = Clearif the page was locked in memory
Cbhit = Setif the page was not found

DESCRIPTION

The $LCKPG routine can be called by a user task or by the Convert and Lock Page Routine
($CVLOK).

$LCKPG calls the Find Page Routine ($FNDPG) to determine whether the memory page is
resident. If so, the page lock byte is set, the C bit in the Condition Code is cleared, and contrt
transferred to the $SAVVR routine to restore Registers 0 through 2 and return to the caller.

bl is

If the specified page is not in memory, the LCKPG routine sets the C bit in the Condition Code

and returns control, by means of the $SAVVR routine, to the caller.

The interaction of the SLCKPG routine with the task and page management routines is show
Figure 8-15.

n in

$LCKPG

Figure 8-15 General Block Diagram of the $LCKPG Routine

Call SFNDPG
w0 find page

i, 1’

CoO

Set C hit; transfer
Pasg No » to $SAVVR to

in Coore? restore RO - R2
and exit to caller

Yes
1

Lock it: clear

C bit: transfer

o $SAVVR 10
restore RO - R2
and exit to caller

! Y

8-52

$LCKPG

W
EXAMPLE

|
The following source statements call the $LCKPG routine to lock a page in dynamic memory if the
listhead contains more than one element:

TEMPl: .WORD 0 ; TEMPORARY STORAGE FOR VIRTUAL MEMORY i
LISTHD: .BLKW 1 > LISTHEAD LOCATION i
ERS5: .ASCIZ <15>/ACNT ~--Work file - page lock / !
.EVEN i
MOV LISTHD,R1 ; MOVE 18T VIRTUAL ADDRESS :
CALL $CVLOK ; 1ST PAGE REAL ADDRESS IN REGISTER 90
BCs LCKERR ; ERROR
TST (RO) ; ONLY 1 ELEMENT?
BNE 408 ; NO, MORE THAN ONE
CALL SUNLPG ; YES, ONLY ONE, UNLOCK IT
- 408: MOV TEMP1,R1 SET UP VIRTUAL ADDRESS FOR S$SLCKPG

CALL $CVRL SAVE REAL ADDRESS OF NEXT PAGZ IN REGISTER

L e)

CALL SLCKPG LOCK g
BCs LCKERR ERROR

LCKERR: MOV #ERRS5, RO ; GET ERROR MESSAGE
BR ERROR ; ERROR ROUTINE

8-53

$UNLPG

SUNLPG—Unlock page routine

The $UNLPG routine clears a lock byte in a memory-resident page to allow the page to be swapped
from dynamic memory to the disk work file.

FORMAT
CALL SUNLPG
INPUT

virtual page address
In Register 1: the virtual address of the page you want to unlock

N _mv

OUTPUT

Condition Code

Cbit = Clear if the page was unlocked
Chit = Setif the page was not found

DESCRIPTION

$UNLPG calls the Find Page Routine ($FNDPG) to determine whether the memory page is
resident. If so, the page lock byte and the C bit in the Condition Code are cleared and control is
transferred to the $SAVVR routine to restore Registers 0 through 2 and return to the caller.

If the specified page is not in memory, the C bit in the Condition Code is set and control is
returned, by means of the $SAVVR routine, to the caller.

The interaction of the $§UNLPG routine with the task is shown in Figure 8-16.

8-54

$UNLPG

Figure 8-16 General Block Diagram of the $UNLPG Routine

Cali SFNDPG
to find page
1
st
$SAVVR SFNDPG
Set C bit; transfer
Page No to SSAVVR 1o
in Core? restore RO - R2
and exit to caller
Yes
Lock it; clear
C bit; transfer
to SSAVVR to
restore RO - R2
and exit to caller
. y !

8-55

SUNLPG

EXAMPLE

The following source statements call the $UNLPG routine to allow pages to be swapped from real

memory to virtual memory:

TEMPl: .WORD
TEMP2: .WORD
FREECT: .BLKW
LISTHD: .BLKW
ER56: .ASCIZ

.EVEN

10%: MOV
MoV
MOV
CLR
CALL
BCS
TST
BNE
CALL
BCS

208: .

8-56

A r oo

#LISTHD, TEMP2
LISTHD,R1

R1l, TEMP1
FREECT

CVLOK

LCKERR

(RO)

208

SUNLPG
UNLERR

P

Ne Ne Ne e

ALER Y]

; TEMPORARY STORAGE FOR VIRTUAL MEMORY
; TEMPORARY STORAGE FOR VIRTUAL MEMORY
; NUMBER OF AVAILABLE PAGE ENTRIES
; LISTHEAD LOCATION

15>/ACNT =-Work file =~ page unlock /

GET FIRST REAL ADDRESS POINTER

MOVE FIRST VIRTUAL ADDRESS

SAVE IN SECOND VIRTUAL ADDRESS BUFFER
CLEAR NUMBER OF SWAPS PER PASS

PUT REAL ADDRESS IN REGISTER O

ERROR, PAGE LOCK FAILED

LINK = 0, ONLY ONE ELEMENT?

NO, MORE THAN ONE

YES, ONLY ONE, UNLOCK IT

ERROR

Summary Procedures

The procedures for using the system library routines are summarized in the tables in this chapter.
These summaries are presented as quick reference guides for users who are familiar with the
detailed procedures and requirements for using individual routines, as described in the preceding
chapters of this manual. ‘

Table 9-1 Register Handling Routines Summary

Routine Name/
Mnemonic

Function

Call Statement

Save All Registers
$SAVAL

Save Registers 3—5
$SAVRG

Saves/restores RO—RS

Saves/restores R3—R5

CALL $SAVAL

JSR R5,$SAVRG

Save Registers 0—2 Saves/restores R0—R2 JSR R2 $SAVVR
$SAVVR
Save Registers 1—5 Saves/restores R1—RS JSR RS,.SAVR1
.SAVR1
Table 9-2 Arithmetic Routines Summary
Routine Name/ input Arguments and
Mnemonic Call Statement Output
Integer Muitiply RO = Muitiplier RO = Product (high-order part)
$MUL R1 = Muitiplicand R1 = Product (low-order part)
CALL $MUL R2—-RS preserved
Integer Divide RO = Dividend RO = Quotient
$DIv R1 = Divisor R1 = Remainder
CALL $DIV R2-—RS preserved
Double-Precision Muttiply RO = Multiplier RO = Product (high-order part)
$ODMUL Muitiplicand: R1 = Product (low-order part)
R2 = High-order part R4—RS preserved
R3 = Low-order part R2—R3 destroyed
CALL $DMUL C = Cloar
Double-Precision Divide RO « Unsigned divisor RO = Remainder
$DDIV Dividend: R1 = Quotient (high-order part)

R1 = High-order part
R2 = Low-order part
CALL $DoIv

A2 = quotient (low-order part)
R3 preserved

9-1

Summary Procedures

Table 9-3 Input Data Conversion Routines Summary

Routine Name/

Input Arguments and

Mnemonic Call Statement Output
Decimal to R3 = Output address Successiul;
Binary Double R4 « Number input characters Converted number at output
Word RS = Input string address address:
.DD2CT CALL .DD2CT Word 1 = High-order part
Word 2 = Low order part
C = Clear
Unsuccessful:
C = Set
All registers preserved
Octal to R3 = Qutput address Successful:
Binary Double R4 = Number input characters Converted number at output
Word RS = Input string address address:
.0D2CT CALL .002CT Word 1 = High-order part
Word 2 = Low-order part
C = Clear
Unsuccessfui:
C = Set
All registers preserved
Decimal to RO = Address first input byte RO = Address first byte of next string
Binary CALL $CDTB R1 = Converted number
$CDTB R2 = Terminating character
R3—RS preserved
Octal to RO = Address first input byte RO = Address first byte of next string
Binary CALL $COTB R1 = Converted number
$COTB R2 = Terminating character
R3—RS5 preserved
ASCll 1o RO = Address first input Successful:
Radix-50 character RO = Address next input character
$CATS R1 = 0 (period is terminating R1 = Converted Radix-50 value
character) R2 = Terminating character
R1 = 1 (pariod is valid character) C = Clear
CALL $CATS Unsuccesstul:
A2 = lllegal character
C = Set
R3—RS preserved
ASCI with RO = Address first input Successiul:
Blanks to character RO = Address next input character
Radix-50 Rt = O (period is terminating R1 = Converted Radix-50 value
$CATSB character) R2 = Terminating character

R1 = 1 (period is valid character)

CALL $CATSB

C = Clear
Unsuccesstul:
R2 = lllegal character
C = Set
R3—RS5 preserved

9-2

Table 9-4 Output Data Conversion Routines Summary

Summary Procedures

Routine Name/

Input Arguments and

Mnemonic Cail Statement Output

Binary Date RO = Qutput address Converted date at output address
Conversion R1 = Binary date RO = Next available output address
$CBDAT R2 = 0 (zero suppress) R3—RS preserved

Convert Binary
to Decimai
Magnitude
$CBDMG

Convert Binary
to Signed
Decimal
$CBDSG

Convert Doubie-
Precision

Binary to
Decimal
$COOMG

Convert Binary
to Octal
Magnitude
$CBOMG

Convert Binary
to Signed
QOctal
$CBOSG

Convert Binary
Byte to Octal
Magnitude
$CBTMG

R2 = Nonzero (no zero suppress)
CALL $CBDAT

RO = Qutput address

R1 = Binary number

R2 = 0 (zero suppress)

A2 = Nonzero (no zero suppress)
CALL $CBDMG

RO = Qutput address

R1 = Binary number

R2 « 0 (zero suppress)

R2 = Nonzero (no zero suppress)
CALL $CBDSG

RO = Qutput address

R1 = Input address

R2 = 0 (2ero suppress)

R2 = Nonzero (no zero suppress)
CALL $CDDMG

RO = Output address

R1 = Binary number

R2 = 0 (zero suppress)

R2 = Nonzero (no zero suppress)
CALL $CBOMG

RO = Output address

R1 = Binary number

R2 = 0 (zero suppress)

R2 = Nonzero {no zero suppress)
CALL 3CBOsSG

RO = Output address

R1 = Binary byte

R2 = 0 (zero suppress)

R2 = Nonzero (no zero suppress)
CALL $CBTMG

R1—R2 destroyed

Converted number at output address
RO = Next available output address
R3—RS preserved

R1-—R2 destroyed

Converted number at output address
RO = Next available output address
R3—RS preserved

R1—R2 destroyed

Successiui:
Converted number at output
address
Unsuccessful:
String of ASCI| asterisks at
output address
RO = Next available output address
R3—RS preserved
R1—R2 destroyed

Converted number at output address
RO = Next available output address
R3—RS preserved

R1—R2 destroyed

Converted number at output address
RO = Next available output address
R3—RS5 preserved

R1—R2 destroyed

Converted byte at output address
RO = Next available output address
R3-—RS preserved

R1—R2 destroyed

9-3

Summary Procedures

Table 9-4 (Cont.) Output Data Conversion Routines Summary

Routine Name/
Mnemonic

Input Arguments and
Call Statement

Qutput

General Purpose

RO = Qutput address

Converted number at output address

Binary to R1 = Binary value RO = Next available output address
ASCIl A2 = Conversion parameters: R3—RS preserved
$CBTA Bits 0—7: = Radix (2 t0 1644) R1—R2 destroyed
Bit 8: = 0 = Unsigned value
= 1 = Signed value
Bit 9: = 0 = Zero suppress
= 1 = No zero
suppress
Bit 10: = 1, replace leading
zeros with blanks
= 0, do not replace
leading zeros with
blanks
Bits 11—15; = Field width
{value 1—32)
CALL $CBTA
Radix-50 to RO = Output address Converted number at output address
ASCHl R1 = Radix-50 word RO = Next available output address
$C5TA CALL $CSTA R3—RS not used
R1—R2 destroyed
Table 9-5 Output Formatting Routines Summary
Routine Name/ input Arguments and
Mnemonic Call Statement Qutput
Uppercase RO = Input address Converted text at output address
Text R1 = Qutput address R3—RS not used
$CvTUC A2 = Number input bytes R2 destroyed
(cannot be zero) RO—R1 left pointing to the character following the
CALL $CVTUC string
Date String RO = Qutput address Converted date string at output address
Conversion R1 = Input address RO = Next available output address
$DAT CALL $DAT R1 = Address of next input word

9-4

R3—RS preserved
R2 destroyed

Summary Procedures

Table 9-5 (Cont.) OQutput Formatting Routines Summary

Routine Name/
Mnemonic

Input Arguments and
Call Statement

Output

Time Conversion
$TIM

Edit Message
$EDMSG

RO = Qutput address
R1 = Input address
R2 = Parameter count:
= 0 or 1, hour (HH)
= 2, hour:minute
(HH:MM)

= 3, hour:minute:second

{(HH:MM:SS)
=4 0r5,

hour:minute:second.

tenth of second
(HH:MM:SS.9)
CALL $TIM

Define ASCIZ input string
directives in the form:

%l
%nl
%VI

where n = Optional decimal

repeat count; V specifies an

optional value to be used

as a repeat count; and

| = One of the following
characters:

Converted time string at output address
RO = Next available output address

R1 = Address of next input word
R3—RS preserved

RO—R1 updated

R2 destroyed

Converted/formatted data in output biock

RO = Address of last zero byte in output
block

A1 = Number of bytes in output biock

R2 = Address of next argument in
argument block

R3—RS5 preserved

9-5

Summary Procedures

Table -5 (Cont.) Output Formatting Routines Summary

Routine Name/
Mnemonic

Input Arguments and

Call Statement Qutput

A = ASCII string transfer

B = Binary byte to octal conversion

D = Binary to signed decimai conversion

E = Extended ASCIl string transfer

F = Form control insertion 5

| = ASCIZ address

M = Binary to decimal magnitude conversion, zero suppression
N = New line insertion

O = Binary to signed octal conversion

P = Binary to octal magnitude conversion, no zero suppression
Q = Binary to octal magnitude conversion, zero suppression

R = Radix-50 to ASCll conversion

S = Space insertion

T = Double-precision binary to decimal conversion

U = Binary to double-precision decimal conversion, no zero suppression
X = Filename conversion

Y = Date conversion

Z = Time conversion

< = Define fixed-length byte field

> = Locate field mark

Set up argument and output block:
RO = Qutput address
R1 = Input string address
R2 = Argument block address

CALL SEDMSG

Table 9-6 Dynamic Memory Management Routines Summary

Routine Name/

Input Arguments and

Mnemonic Call Statement Output
Initialize Include FREEHD: .BLKW 2 RO = Task’s first address
Dynamic in data saction R1 = Free pool first address
Memory RO = Free memory listhead R2 = Size memory pool
$INIDM address R3—RS not used
CALL SINIDM
Request Core RO = Free memory listhead Successful:
Block address RO = Block memory address
$RQCB R1 = Byte size of block A1 = Actual size of block
CALL $RQCB C = Clear
Unsuccessful:
C = Set
R3—R5 preserved
R2 destroyed

Release Core
Block
$ALCB

RO = Free memory listhead
address

R1 = Byte size of block

R2 = Block memory address

Released biock
R3—R5 preserved
RO unchanged
R1—R2 destroyed

9-6

Summary Procedures

Table 9-7 Virtual Memory Management Routines Summary

Routine Name/

Input Arguments and

Mnemonic Call Statement Output
Initialize Detine $FRHD block with Successful:
Virtual first address of free memory RO=0
Memory Define 4 global symbols: C = Clear
$INIVM WSKLUN (work file LUN) Unsuccessfui:
WSKEXT (work file RO = -2, file not opened
extension size) RO = -1, file not marked
N3SMPAG (fast page search C = Set
page count) R3— RS preserved
$WRKPT (address of FDB) Originai contents R0—R2 destroyed
R1 = Free memory highest
address
CALL $INIVM
Allocate R1 = Byte size of requested Successful:
Block biock RO = Block memory address
$ALBLK CALL $ALBLK Unsuccessful:
User's $ERMSG routire is called
R3—RS preserved
R0O—R2 destroyed
Get Core R1 = Byte size of requested Successful:
$GTCOR block RO = Block memory address
CALL $GTCOR C = Clear
Unsuccessful:
C = Set
R3-—RS5 preserved
Extend R1 « Byte size of requested Successful:
Task block R1 = Actual extension size
$EXTSK CALL $EXTSK C = Clear
Unsuccessful:
C = Set
R2—RS preserved
Write R2 = Memory address of page Successful:
Page CALL $WRPAG C = Clear
SWRPAG Unsuccessful:
User's $ERMSG routine is called
R0—R2 preserved
Allocate R1 = Byte size of requested Successful:
Virtual block RO = Allocated block memory address
Memory CALL $SALVRT R1 = Allocated block disk address
$ALVRT Unsuccessful:

User's SERMSG routine is called
R3—RS preserved
R2 destroyed

9-7

Summary Procedures

Table 9-7 (Cont.) Virtual Memory Management Routines Summary

Routine Name/

Input Arguments and

Mnemonic Call Statement QOutput
Allocate Define NSDLGH = = 5124 RO = Block memory address
Small R1 = Size of requested page R1 = Block virtual address
Virtual block: R3—RS preserved
Block = 0, for large biock R2 destroyed
$ALSVB allocation on first

calil to $ALSVB

= A value less than or

aqual to 5120 bytes

for small page

allocation

CALL $ALSVB

Convert and R1 = Virtual address Successful:
Lock Page CALL $CVLOK RO = Memory address
$CVLOK R1 = Virtual address

Convert Virtual
to Real
Address
$CVRL

Read Page
$RDPAG

Find Page
$FNDPG

Write-Marked
Page
SWRMPG

Lock Page
SLCKPG

Unlock Page
SUNLPG

R1 = Virtual address
CALL $CVRL

RO = Page disk address
CALL $SRDPAG

R1 = Page virtual address
CALL SFNDPG

R1 = Virtual address in page
CALL 3WRMPG

R1 = Virtual address in page
CALL 3LCKPG

R1 = Virtual address in page
CALL SUNLPG

C = Clear
Unsuccessful:

C = Set
R2—R5 preserved

RO = Memory address
R3—RS preserved

R1 unchanged

R2 destroyed

Successiul:

C = Clear
Unsuccessful:

User's SERMSG routine is called
RO—R2 preserved

Page found:
RO = Block memory address
C = Clear

Page not found:
C = Set

C = Clear, page write-marked
C = Set, page not found
R0—R2 preserved

C = Clear, page locked
C = Set, page not found
R0—R2 preserved

C = Clear, page unlocked
C = Set. page not found
R0—R2 preserved

9-8

System Reference Bibliography

This bibliography identifies manuals that contain descriptions of additional routines avallable to
IAS system library users. |

First level entries are manual titles. Second level entries are functional headings that indicate the
types of services described in the respective manuals.

* IAS Executive Facilities Reference Manual
—~ Task execution control directives
- Informational directives
-~ Event-associated directives
- Trap-associated directives
= VO related directives
-~ Task status control directives
¢ JAS Device Handlers Reference Manual
= Laboratory and industrial I/O routines
¢ JAS I/0 Operations Reference Manual
= L/O preparation services
-~ File processing services
-~ File control routines
- File structuring services
- Command line processing services
— Parsing services

- Spooling services

Universal Library Access

On most IAS systems, you can create a universal library to store related groups of files. The LBR
utility creates the universal library file with a file type ULB. By means of the LBR utxhty, you can

subsequently insert files as modules in the library.l

To access a module of a universal library, a program can call the $ULA routine, which estabhshes
the necessary conditions for access (read only). The $ULA routine first calls an initializing
routine, SULAIN, to validate that the library file is in the correct format and to obtain the needed
information from the library header. $ULA then calls a second routine, $ULAFD, to read the
module header, to position libary file pointers to the beginning of the module, and to establish the
necessary FDB locations for the File Control System (FCS).2 Once the necessary FDB locatlons are
established, the program can access the module as if it were a separate file. That is, the program
can perform GETS$ operations in move mode for each record in the module.

To call the $ULA routine, supply the following data:

* In Register 0, the address of the universal library FDB. The library file must already be open
for read access.

® In Register 1, the address of a 423-word buffer. The first two words of the buffer must contain
the name (in Radix-50 format) of the module to be accessed. $ULA will put a copy of the
module header from the library into the remaining 100g (64,¢) bytes Initialize the FDRC$A
arguments urba and urbs (FDB offsets FFURBD and F.URBD+2) in the FDB for the library file.
The $ULA routine saves the arguments, uses the space for storing module header mformatlon,
and restores the values before returning control to the calling program.

The $ULA routine produces the following data:
» Register 0 is unchanged.

o Register 1 is unchanged. The $ULA routine fills in the 40-word buffer with a copy of the
header for the module accessed.

¢ The first seven words of the library file FDB contain the first seven words of the FDB of the
module’s associated input file (as if it were a separate input file).

* The offset FEFBK+2 of the library file FDB contains the last block number of the module

¢ The offset FFFBY of the library file FDB contains the number of the next available byte past
the end of the module.

® The offset F.ERR of the library file FDB has the standard interpretations except for t.he
following special meanings:

— The symbol IE.BHD means either “File not a universal library” or “Bad library header
— The symbol IE.NSF means “No such module.”

¢ The C bit is set to indicate an error.

! See the description of the LBR utility in the JAS Utilities Manual, or see the description of the DCL command LIBRARY
in the IAS Command Language Manual.

2 See the IAS I/0 Operations Reference Manual for information on FCS and the use of FDB locations.

Universal Library Access

To use the $ULA routine properly, use the following coding sequence:

OPENS RO ; OPEN UNIVERSAL LIB FILE

; STORE FIRST SEVEN WORDS OF LIBRARY FDB
CALL SULA

GETS RO ; ACCESS MODULE IN MOVE MODE ONLY

; RESTORE FIRST SEVEN WORDS OF LIBRARY FDB
CLOSES RO or invoke SULA again

NOTE: Note that the program must open the library file for read-only access. (To change
a moduie in the universal library, use the LBR utility.) The program must save the first
seven words of the library file FDB before calling the 3ULA routine for the first time.
The 3ULA routine modifies these words during processing, but their original values are
necessary either to access another module or to ensure that the library file is closed
properly. The program must restore the seven words after accessing a moduie and
before accessing another module or before closing the library file.

B-2

Index

A

$ALBLK (Allocate block) « 8—11
$ALSVB (Allocate smail virtual biock) » 8-30
$ALVRT (Allocate virtual memory) » 8~27
ASCHl number conversion
ASCIHl to Radix-50 ($CATS5) ¢ 4=11
ASCI! with blanks to Radix-50 ($CATSB) » 4-13
decimal to binary
o 47
double-word (.DD2CT) « 4~3
octal to binary
double-word (.OD2CT) « 4-5
octal to binary ($COTB) « 4-9

Conversion
See ASCII number conversion
See Binary conversion
See Date conversion
See Decimal conversion
See Qctal conversion
See Radix-50 conversion
See Time conversion

 $COTB (Octal to binary) « 49

$CVLOK (Page lock) 8-37 -
$CVRL (Virtual to real address) - 8—40
$CVTUC (Uppercase text) « 6—2

D

B

Binary conversion
«5-16
binary date to decimal ($CBDAT) + 5-3
binary to signed decimal ($CBDSG) « 5-7
binary to signed octal ($CBOSG) - 5~14
binary to unsigned decimal $CBDMG « 5-5
binary to unsigned octal ($CBOMG) » 5—-12
double-precision binary to decimai ($CDDMG) «

5-9

general purpose binary to ASCIl ($CBTA) « 5-18

C

$CETA (Radix-50 to ASCIl) « 5-20

$CATS (ASCH to Radix-50) « 4=11

$CATSB (ASCII with blanks to Radix-50) « 413
$CBDAT (Binary date to decimal) « 5-3
$CBDMG (Binary to unsigned decimai) » 5~5
$CBDSG (Binary to signed decimal) « 5-7
$CBOMG (Binary to unsigned octal) » 512
$CBOSG (Binary to signed octal) « 5-14

$CBTA (General purpose binary to ASCIl) - 5-18
$CBTMG (Binary byte to octal) - 5-16

$CDDMG (Double-precision binary to decimal) » 59
$CDTB (Decimal to binary) « 47

$DAT (Date conversion)

alternate format + 66

standard format « 64
Date conversion

alternate format date ($DAT) * 6-6

standard format date ($DAT) « 6—4
Dates, specifying - 68
$DDIV (Double-pracision divide) « 3—-5
Decimal conversion

decimal to binary

47
double-word (.DD2CT) « 4-3

$DIV (Integer divide) « 3-3
Divide routine _

divide ($DIV) « 3-3 '

double-precision divide ($DDIV) + 3-5 ;
$DMUL (Double-precision multiply) « 3—4 :
Double-precision divide ($DDIV) « 3-5 !
Double-precision muttiply ($DMUL) « 3—4 '
Double-precision routine « 3—1

E

$EDMSG (Edit message) * 6—11
$EXTSK (Extend task) - 8—20

Index-1

Index

Message formatting (Cont.)
F general + 6-11
space insertion * 6—14
time conversion ($TIM) - 6-9
$FNDPG (Find page) - 846 uppercase text (JCVTUC) « 6-2
$MUL (Integer multiply) ¢ 32
Muitiply routine
G double-precision muitiply ($DMUL) » 3—4
multiply ($MUL) » 32

$GTCOR (Get.core) * 8~-17

N

SINIDM (Initialize memory) « 7--2
$INIVM (Initialize virtual memory) - 8—6

Numeric to ASCIl « 51
See also ASCIl number conversion
binary byte to octal

. +5-16
Integer routine binary date to decimal
divide ($DIV) + 3-3 oo
multiply (SMUL) - 3-2 binary to signed decimai
57
binary to signed octai
L i
binary to unsigned decimal
$LCKPG (Lock page) * 851 *5-5

Library routine binary to unsigned octal

communicating between ¢ 11 *5-12

placing » 1-2 double-precision binary to decimai

searching * 1-2 *5-9

storing » 1-2 general purpose binary to ASC!l (3CBTA) < 5-18

Radix-50 to ASCII ($C5TA) - 5-20

M o)

Memory management » 7—1
See also Virtual memory management
core biocks release (3RLCB) - 7-6
core blocks request ($RQCB) « 7—4
initialize ($INIDM) « 7-2

Message formatting « 6—1
carriage returmn/line feed insertion «6—-14
date conversion ($DAT)

Octal conversion
octal to binary
double-word (.OD2CT) « 4-5
octal to binary($COTB) » 4—-9
.0D2CT
Octal to binary, double-word « 4-5

alternate format « 66
standard format - 64 P
edit directive (SEDMSG) « 6-11

extended ASCIl < 6-13
field mark « 6=15
filename string « 6—15
form-feed insertion » 6-~13

Paging, memory
See Virtual memory management
Programming conventions '
general * 1-1

Index-2

Index

Virtual memory management (Cont.)
R See also Memory management

address conversion (3CVRL) « 840
allocate ($ALVRT) « 8-27

Radix-50 conversion allocate small virtual block (SALSVB) « 8-30
ASCII to Radix-50 ($CAT5) « 4-11 core blocks request ($RQVCB) - 8-34 '
ASCI! with blanks to Radix-50 ($CATSB) « 4-13 $CVRL routine « 8—40
Radix-30 to ASCHl ($C5TA) « 5-20 error-handling + 8-2

$RDPAG (Read page) < 843 find page (3FNDPG) + 846

Register handiing initialize ($INIVM) + 86
of control swapping function « 2—1 lock page ($LCKPG) » 851
save all Registers ($SAVAL) « 2-3 memory storage
save Registers 0-2 ($SAVVR)+2-7 allocate block ($ALBLK) « 8—11
save Registers 1-5 (.SAVR1) «2-8 extend task (SEXTSK) « 8-20
save Registers 3-5 ($SAVRG) « 2-5 : get core ($GTCOR) «8—14, 8-17

$FLCB (Release core block) « 7-6 page lock (SCVLOK) « 8-37

$RQCB (Request core biocks) « 7—4 read page (SRDPAG) - 8—43

$RQVCE (Request virtual core block) + 8-34 task building requirements + 83

uniock page ($UNLPG) - 8-54
write-marked page (SWRMPG) ¢« 8-48

S write page (SWRPAG) 8-23

$SAVAL (Save all Registers) » 2-3

.SAVR1 (Save Registers 1-5) « 2-8 W

$SAVRG (Save Registers 3-5) « 2-5

$SAVVR (Save Registers 0-2) « 2-7 $WRMPG (Write-marked page) *+ 8—48 :
Single-precision routine $WRPAG (Write page) « 8-23 |

See Integer routine

T

$TIM (Time conversion) « 69
Time conversion !
time ($TIM) < 6-9

U o

$ULA (Universal library) « B—1
Universal library

creating » B—1
SUNLPG (Unlock page) « 8-54

vV

Virtual memory management « 8—1

Incjex-s

IAS*

System Library Routines Reference Manual.

AA-5580C-TC

Reader’s This form is for document comments only. Digital will use comments submitted on
this form at the company's discretion. If you require a written reply and are ¢ligible :
Comments to receive one under Software Performance Report (SPR) service, submit your

comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for

improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

0O Assembly language programmer
O Higher-level language programmer
O Occasional programmer (experienced)
O User with little programming experience ,
0O Student programmer :
O Other (please specify)

Narne Date

Organization

Street_

City State Zip Code,

or Country

Do Nt Tear - Fold Here and Tagpe

dl lalijt/ai U

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 33 MAYNARD MASS

POSTAGE WiLL BE PAID BY ADDRES3EE

IAS Engineering/Documentation
Digital Equipment Corporation
5 Wentworth Drive GSF/L20
Hudson, NH 03051-4929

”ll“ll”l”l“III'IIHIllllll'll“llll“llll“”l'

No Postage
Necessary
f Maneg in the
Urited States

. i teom

|
|
.
|
I
|
i
|
t
&

Do Wt Tear bold Here

