
IAS Task Builder
Reference Manual

Order Number: AA-2533E-TC

This manual introduces and describes the IAS Task Builder.

Operating System and Version: IAS Version 3.4

May 1990

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only In
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital
Equipment Corporation or its affiliated companies.

Copyright ©1990 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DDIF
DEC
DEC/CMS
DEC/MMS
DECnet
DEC US
DECwindows
DECwrite
DIBOL

IAS
MASSBUS
PDP
PDT
RSTS
RSX
ULTRIX
UNIBUS
VAX

VAXC
VAXcluster
VAXstation
VMS
VR150/160
VT

This document was prepared using VAX DOCUMENT, Version 1.2

Contents

PREFACE xv

CHAPTER 1 INTRODUCTION 1-1

CHAPTER 2 PDS COMMANDS 2-1

2.1 INTRODUCTION 2-1

2.2 PDS COMMANDS 2-1
2.2.1 LINK Command Formats 2-1
2.2.2 LINK Command 2-2
2.2.3 Multiple Line Input 2-3
2.2.4 Options 2-3
2.2.5 Indirect Command File Facility 2-4
2.2.6 Comments 2-6
2.2.7 Fiie Specification 2-6

2.3 EXAMPLE: VERSION 1 OF CALC 2-7
2.3.1 Entering the Source Language 2-7
2.3.2 Compiling the FORTRAN Programs 2-8
2.3.3 Building the Task 2-9

2.4 SUMMARY OF SYNTAX RULES 2-9
2.4.1 Syntax Rules 2-10

CHAPTER 3 MCR COMMANDS 3-1

3.1 INTRODUCTION 3-1
3.1.1 Task Command Line 3-1
3.1.2 Multiple Line Input 3-2
3.1.3 Options 3-2

3.1.4 Multiple Task Specification 3-4

Ill

Contents

3.1.5 Indirect Command File Facility
3.1.6 Comments
3.1.7 File Specification

3.2 EXAMPLE: VERSION 1 OF CALC
3.2.1 Entering the Source Language
3.2.2 Complllng the FORTRAN Programs
3.2.3 A11lll'lln,, tho Taiolr

...,-..••"911 ·~ "' '""' '"""~"

3.3 SUMMARY OF SYNTAX RULES
3.3.1 Syntax Rules

CHAPTER 4 QUALIFIERS AND SWITCHES

4.1

4.2

4.3

Iv

INTRODUCTION

PDS QUALIFIERS
4.2.1
4.2.2

Command Qualifiers
Examples

MCR SWITCHES
4.3.1 Task Builder Switches

/ABORT (/AB)
/CHECKPOINT (/CP)
/CONCATENATED
/CROSS_REFERENCE (/CR)
/DEBUG[:FILESPEC] (/DA)
/DEFAULT_LIBRARY:FILESPEC (/DL)
/DISABLE (/OS)
/EXIT:N (/XT:N)
/FIX (/FX)
/FLOATING_POINT (/FP)
/FLUSH_RECEIVE_ QUEUES (/FR)
/FULL_SEARCH (/FU)
/HEADER (HD)
/LARGE_ SYMBOL_ TABLE
/LIBRARY (/LB)
/MAP (/MA)
/MAP[:FILESPEC] OR /MAP:(FILESPEC/QUALIFIERS)
/MULTIUSER (/MUj
/OPTIONS
/OVERLAY _DESCRIPTION:FILESPEC (/MP)
/POSITION_INDEPENDENT (/Pl)
/PRIVILEGED (/PR)

4-7
4-8
4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-23
4-24
4-26
4-27
4-28
4-29
4-30

3-4
3-6
3-6

3-7
3-8
3-9
'2_0
..,-~

3-9
3-10

4-1

4-1

4-1
4-1
4-1

4-2
4-3

Contents

/READ_ WRITE (/RW) 4-31
/RECEIVE (/SE) 4-32
/REQUEST (/SR) 4-33
/RESIDENT_ OVERLAYS (/RO) 4-34
/RUN_TIME_SYSTEM (/OR) 4-35
/SELECT (/SS) 4-36
/SEQUENT!Al (/SQ) 4-37
/SYMBOLS[:FILESPEC] 4-38
/SYMBOLS:(FILESPEC[/NO]UNDEFINED _SYMBOLS)
(/UN) 4-39
/TASK[:FILESPEC] 4-40
/TRACE (/TR) 4-41
/WAIT_FOR_NODES (/WN) 4-42

CHAPTER 5 TASK BUILDER OPTIONS 5-1

5.1 IDENTIFICATION OPTIONS 5-4
CMPRT (COMPLETION ROUTINE) 5-5
ALVC (AUTO-LOAD VECTOR) 5-6
IDENT (TASK IDENTIFICATION) 5-7
PAR (PARTITION) 5-8
PRI (PRIORITY) 5-9
TASK (TASK NAME) 5-10
UIC (USER IDENTIFICATION CODE) 5-11

5.2 ALLOCATION OPTIONS 5-12
ACTFIL (NUMBER OF ACTIVE FILES) 5-13
ATRG (ATTACHMENT DESCRIPTORS) 5-14
BASE (BASE ADDRESS) 5-15
EXTSCT (PROGRAM SECTION EXTENSION) 5-16
EXTTSK (EXTEND TASK SPACE) 5-17
FMTBUF (FORMAT BUFFER SIZE) 5-18
MAXBUF (MAXIMUM RECORD BUFFER SIZE) 5-19
MAXEXT (MAXIMUM EXTENSION) 5-20
POOL (POOL LIMIT) 5-21
RESAPR (RESERVE APRS) 5-22
STACK (STACK SIZE) 5-23
TOP (TOP ADDRESS) 5-24
VSECT (VIRTUAL PROGRAM SECTION) 5-25

5.2.1 Example of Allocation Options 5-26

5.3 STORAGE-SHARING OPTIONS 5-26
RESSGA (SHAREABLE GLOBAL AREA) 5-27
RESSUP (RESIDENT SUPERVISOR-MODE LIBRARY) 5-28
SGA (SHAREABLE GLOBAL AREA) 5-29
SUPLIB (SUPERVISOR-MODE LIBRARY) 5-30

v

Contents

5.3.1 Example of Storage Sharing Options 5-31

5.4 DEVICE SPECIFYING OPTIONS 5-31
ASG (DEVICE ASSIGNMENT) 5-32
UNITS (LOGICAL UNIT USAGE) 5-33

5.4.1 Example of Device Specifying Options 5-34

5.5 STORAGE ALTERING OPTIONS 5-34
ABSPAT (ABSOLUTE PATCH) 5-35
GBLDEF (GLOBAL SYMBOL DEFINITION) 5-36
GBLINC (INCLUDE GLOBAL SYMBOLS) 5-37
GBLPAT (GLOBAL RELATIVE PATCH) 5-38
GBLREF (GLOBAL SYMBOL REFERENCE) 5-39
GBLXCL (EXCLUDE GLOBAL SYMBOLS) 5-40
SVMPAT (SYMBOLIC PATCH) 5-41

5.5.1 Example of Storage Altering Options 5-42

5.6 SYNCHRONOUS TRAP OPTIONS 5-42
ODTV (ODT SST VECTOR) 5-43
TSKV (TASK SST VECTOR) 5-44

5.7 EXAMPLE: CALC.TSK;2 5-45
5.7.1 Correcting the Errors In Program Logic 5-45
5.7.2 Bulldlng the Task 5-45

CHAPTER 6 MEMORY ALLOCATION 6-1

6.1 TASK MEMORY 6-1
6.1.1 Task Header 6-2
6.1.2 Directive Status Word (DSW) 6-2
6.1.3 Impure Area Pointers 6-2
6.1.4 Stack 6....;2
6.1.5 Read/Write Task Code (and Data) 6-2
6.1.6 Task Extension 6-2
6.1.7 Resident Overlays 6-3
6.1.8 Read-Only Task Code (and Data) 6-3
6.1.9 Program Sections (P-sections) 6-3
6.i.10 Aiiocation of P-sections 6-4
~
0.1.11 The Resolution oi Giobai Symbois 6-7

6.2 SYSTEM MEMORY 6-7

vi

6.2.1 Executive Privileged Tasks

6.3 TASK IMAGE FILE

6.4 MEMORY ALLOCATION FILE

6.4.1 Contents of the Memory Allocation File
6.4.2 Control of Memory Allocation File Contents and Format

6.5 EXAMPLES: CALC;1 AND CALC;2 MAPS

CHAPTER 7 OVERLAY CAPABILITY

7.1 OVERLAY DESCRIPTION
7.1.1 Disk-Resident Overlay Structure
7.1.2 Memory-Resident Overlay Structure
7.1.3 Overlay Tree
7.1.4 Overlay Description Language (ODL)
7.1.5 Multiple Tree Structures
7.1.6 Overlay Core Image
7.1.7 Overlaying Programs Written in a High-level Language

7.2 EXAMPLE: CALC.TSK;3
7.2.1 Creating the ODL File
7.2.2 Building the Task
7.2.3 Memory Allocation Fiie for CALC.TSK;3

7.3 EXAMPLE CALC.TSK;4

7.4 SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE

CHAPTER 8 LOADING MECHANISMS

8.1 AUTOLOAD
8.1.1
8.1.2
8.1.3

Autoload Indicator
Path-loading
Autoload Vectors

Contents

6-8

6-9

6-9
6-13
6-16

6-17

7-1

7-1
7-1
7-3
7-4
7-9

7-13
7-16
7-17

7-18
7-18
7-18
7-19

7-27

7-35

8-1

8-1
8-1
8-3
8-4

vii

Contents

8.2

8.3

8.4

8.5

8.1.4 Autoload Summary

MANUAL LOAD
8.2.1 Manual Load Calling Sequence
8.2.2 FORTRAN Subroutine for Manual Load Request

ERROR HANDLING

EXAMPLE: CALC.TSK;5

USING THE QIO DIRECTIVE TO LOAD FROM THE TASK IMAGE
FILE

CHAPTER 9 SHAREABLE GLOBAL AREAS

9.1

9.2

9.3

9.4

9.5

viii

SUMMARY OF SGA INFORMATION
9.1.1 Sharing Memory
9.1.2 Location of SGAs on Disk
9.1.3 SGAs and Library Flies

USING AN EXISTING SHAREABLE GLOBAL AREA

CREATING A SHAREABLE GLOBAL AREA

POSITION INDEPENDENT AND ABSOLUTE SHAREABLE GLOBAL
AREAS

EXAMPLE: CALC.TSK;6 BUILDING AND USING A SHAREABLE
GLOBAL AREA
9.5.1 Building the Shareable Global Area
9.5.2 Modifying the Task to Use the Shareable Global Area
9.5.3 The Memory Allocation Files
9.5.4 Shared Global Areas with Memory-Resident Overlays

8-5

8-6
8-6
8-7

8-8

8-8

8-17

9-1

9-1
9-1
9-4
9-4

9-4

9-5

9-5

9-6
9-6
9-7
9-8

9-18

Contents

CHAPTER10 SUPERVISOR-MODE LIBRARIES 10-1

10.1 INTRODUCTION 10-1

10.2 MODE-SWITCHING VECTORS 10-1

10.3 COMPLETION ROUTINES 10-1

10.4 RESTRICTIONS ON THE CONTENTS OF SUPERVISOR-MODE
LIBRARIES 10-2

10.5 SUPERVISOR-MODE LIBRARY MAPPING 10-2

10.6 BUILDING AND LINKING TO SUPERVISOR-MODE LIBRARIES 10-2
10.6.1 Relevant TKB Options 10-2
10.6.2 Building The Library 10-4
10.6.3 Bulldlng the Referencing Task 10-4
10.6.4 Mode Switching Instruction 10-4

10.7 CSM LIBRARIES 10-4
10.7.1 Building A CSM Library 10-5
10.7.2 Linking To A CSM Library 10-6
10.7.3 Example CSM Library And Linking Task 10-6
10.7.4 The CSM Library Dispatching Process 10-16

10.8 USING SUPERVISOR-MODE LIBRARIES AS RESIDENT LIBRARIES 10-17

10.9 MULTIPLE SUPERVISOR-MODE LIBRARIES 10-17

10.10 LINKING A RESIDENT LIBRARY TO A SUPERVISOR-MODE
LiBRARY .. ft

IU-11

10.11 LINKING SUPERVISOR-MODE LIBRARIES 10-18

10.12 WRITING YOUR OWN VECTORS AND COMPLETION ROUTINES 10-18

10.13 OVERLAID SUPERVISOR-MODE LIBRARIES 10-18

Ix

Contents

APPENDIX A ERROR MESSAGES A-1

APPENDIX B TASK BUILDER DATA FORMATS B-1

B.1 GLOBAL SYMBOL DIRECTORY (GSD) B-1
B.1.1 Module Name B-3
B.1.2 Control Section Name B-4
B.1.3 Internal Symbol Name 8-4
B.1.4 Transfer Address 8-5
B.1.5 Global Symbol Name B-5

8.2 PROGRAM SECTION NAME B-6

8.3 PROGRAM VERSION IDENTIFICATION B-8

8.4 MAPPED ARRAY DECLARATION B-8

8.5 END OF GLOBAL SYMBOL DIRECTORY B-9

8.6 TEXT INFORMATION 8-9

8.7 RELOCATION DIRECTORY B-9

8.8 INTERNAL RELOCATION B-12
B.8.1 Global Relocation B-12
B.8.2 Internal Displaced Relocation B-13
B.8.3 Global Displaced Relocation B-13
B.8.4 Global Additive Relocation B-14
B.8.5 Global Additive Displaced Relocation B-14
B.8.6 Location Counter Definition B-15
B.8.7 Location Counter Modification B-15

B.9 PROGRAM UM!TS B-16
B.9.1 P-section Relocation B-16

8.10 P·SECTION DISPLACED RELOCATION B-17

x

B.10.1 P-sectlon Additive Relocation
B.10.2 P-sectlon Additive Displaced Relocation
B.10.3 Complex Relocation
B.10.4 Shareable Global Area Additive Relocation

B.11 INTERNAL SYMBOL DIRECTORY

B.12 END OF MODULE

APPENDIX C TASK IMAGE FILE STRUCTURE

C.1 LABEL BLOCK GROUP
C.1.1 Label Block Details

C.2 HEADER

C.3 LOW MEMORY POINTERS

C.4 TASK R/W ROOT SEGMENT

C.5 READ/WRITE OVERLAYS

C.6 READ-ONLY REGION

C.7 SEGMENT TABLE
C.7.1 Status
C.7.2 Relatlve Disk Address
C.7.3 Load Address
C.7.4 Segment Length
C.7.5 Link-Up
C.7.6 Link-Down
C.7.7 Link-Next
C.7.8 Segment Name
C.7.9 Window Descriptor Address

C.8 AUTOLOAD VECTORS

Contents

B-17
B-18
B-19
B-20

B-21

B-21

C-1

C-2
C-3

C-5

C-10

C-12

C-12

C-12

C-12
C-13
C-14
C-14
C-14
C-14
C-14
C-14
C-15
C-15

C-15

xi

Contents

C.8.1 Window Descriptor
C.8.2 Region Descriptor

APPENDIX D RESERVED SYMBOLS

APPENDIX E INCLUDING A DEBUGGING AID

APPENDIX F IMPROVING TASK BUILDER PERFORMANCE

F.1 EVALUATING AND IMPROVING TASK BUILDER PERFORMANCE
F.1.1 Table Storage
F.1.2 Input File Processing

F.2 MODIFYING COMMAND LEVEL DEFAULTS

F.3 THE SLOW TASK BUILDER

IAS TASK BUILDER GLOSSARY

INDEX

EXAMPLES
6-1 Memory Allocation Fiie for IMG1 .TSK;1
6-2 Memory Allocation Fiie for CALK.TSK;1 (Default Output Format)
6-3 Memory Allocation Fiie for CALC.TSK;1 (Part

Printout/FULL/FILES)
6-4 Memory Allocation for CALC.TSK;2
7-1 Memory Allocation File for CALC.TSK;3
7-2 Memory Allocation Fiie for CALC.TSK;4
8-1 Memory Allocatlon Fiie fOi CALC.TSK;5
9-1 Memory A!!ocat!on F!!e for SGA OTA
9-2 Memory Allocation Fiie for CALC.TSK;6
10-1 Code for SUPER.MAC
10-2 Memory Allocation Map for SUPER
10-3 Completion Routine, $CMPCS, fiOm SYSUB.OLD

xii

C-16
C-17

D-1

E-1

F-1

F-1
F-1
F-3

F-3

F-7

Glossary-1

6-10
6-18

6-20
6-29
7-20
7-28
8-10
9-10
9-11
10-6
10-8
~n o
IV-0

10-4 Code for TSUP.MAC
10-5 Memory Allocation Map for TSUP
C-1 Label Block Group
C-2 Task Header Fixed Part

FIGURES
6-1 Task Memory Layout
7-1 Mapping Memory-Resident Overlays
9-1 SGA as a Common Data Area
9-2 Tasks Using the Same Routines
10-1 Mapping of a 24K Conventional User Task That Links to a 16K

Supervisor-Mode Library
10-2 Overlay Configuration Allowed for Supervisor-Mode libraries
B-1 General Object Module Format
B-2 GSD Record and Entry Format
B-3 Module Name Entry Format
B-4 Control Section Name Entry Fonr:t
B-5 Internal Symbol Name Entry Format
B-6 Transfer Address Entry Format
B-7 Global Symbol Entry Format
B-8 P-sectlon Name Entry Format
B-9 Program Version Identification Entry Format
B-10 Mapped Array Declaration Format
B-11 End of GSD Record Format
B-12 Text Information Record Format
B-13 Relocation Directory Record Format
B-14 Internal Relocation Command Format
B-15 Global Relocation
B-16 Internal Displaced Relocation
B-17 Global Displaced Relocation
B-18 Global Additive Relocation
B-19 Global Additive Displaced Relocation
B-20 Location Counter Definition
B-21 Location Counter Modification
B-22 Program Limits
B-23 P-sectlon Relocation
B-24 P-section Displaced Relocation
B-25 P-section Additive Relocation
B-26 P-section Additive Displaced Relocation
B-27 Complex Relocation
B-28 Resident Library Additive Relocation
B-29 Internal Symbol Directory Record Format
B-30 End-Of-Module Record Format
C-1 Task Image on Disk

Contents

10-12
10-14

C-2
C-5

6-1
7-5
9-2
9-3

10-3
10-18

8-2
B-3
B-3
B-4
B-5
B-5
B-6
B-7
B-8
B-8
B-9

B-10
B-11
B-12
B-12
B-13
B-13
B-14
B-15
B-15
B-15
B-16
B-17
B-17
B-18
B-19
B-20
B-21
B-21
B-21
C-1

xiii

Contents

C-2 Vector Extension Area Format C-11
C-3 Segment Descriptor C-13
C-4 Autoload Vector Entry C-16
C-5 Window Descriptor C-16
C-6 Region Descriptor C-17

"T"Anl r""~
IADLCi:>

2-1 Typical LINK Command Formats 2-2
2-2 Fiie Specification Defaults 2-11
3-1 Output Fiiename Defaults In the Task Command Line 3-2
3-2 Fiie Specification Defaults 3-12
4-1 MCR Switches and PDS Qualifiers 4-4
5-1 Task Builder Options 5-3
6-1 P-sectlon Attributes 6-4
D-1 Reserved Global Symbols D-1
D-2 Reserved P-sectlons D-1
D-3 Reserved P-sectlons and Symbols D-2
F-1 Task Fiie Defaults F-5
F-2 Map Fiie Defaults F-6
F-3 Symbol Table Fiie Defaults F-7
F-4 Input Fiie Defaults F-7

xiv

Preface

Purpose of This Manual
This manual introduces you to the concepts and capabilities of IAS task building. It expands on
the summaries of the PDS LINK command and the MCR TKB command given in the IAS PDS
User's Guide and the IAS MCR User's Guide, respectively.

Examples are used to introduce and describe features of the Task Builder. These examples proceed
throughout the manual from the simplest case to the most complex. You might want to try out
some sequences to test your understanding of the Task Builder.

You should be familiar with the PDP-11 computer, its peripheral devices, and the software supplied
with the IAS system.

This manual is organized and written as a reference manual, assuming a system programmer level
of expertise. Data processing terms and concepts familiar at such a level are therefore not defined.

Structure of This Document
This manual has ten chapters.

• Chapter 1 outlines the capabilities of the Task Builder.

• Chapter 2 describes the command sequences used for building tasks under PDS.

• Chapter 3 describes the command sequences used for building tasks under MCR.

• Chapter 4 defines qualifiers and switches.

• Chapter 5 defines options.

• Chapter 6 describes memory allocation for the task and for the system and gives examples of
the memory allocation file.

• Chapter 7 describes the overlay capability and the language used to define an overlay
structure.

• Chapter 8 describes the two methods used for loading overlay segments.

• Chapter 9 introduces shareable global areas.

• Chapter 10 presents supervisor-mode libraries.

• The appendixes list error messages and give detailed descriptions of the structures used by the
Task Builder.

• Appendix G is a glossary of terms.

Associated Documents
The following manuals are prerequisite sources of information for readers of this manual:

• IAS Executive Facilities Reference Manual

• IAS PDS User's Guide

• IAS MCR User's Guide

xv

Preface

Other documents related to the contents of this manual are described briefly in the IAS Master
Index and Documentation Directory. The directory defines the intended readership of each
document in the IAS documentation set and provides a brief summary of the contents of each
manual.

xvi

1 INTRODUCTION

This chapter introduces the IAS Task Builder and describes the role of the Task Builder in the IAS
operating system.

The fundamental executable unit in the IAS system is the task. A routine becomes an executable
task image, according to the following sequence:

1 The routine is written in a source language supported by the IAS system.

2 The routine is entered as a source file, through an editor.

3 The routine is translated to an object module, using the appropriate language translator.

4 The object module is converted to a task image using the Task Builder.

5 Finally, the task is run.

If errors are found in the routine as a result of translating or executing the task, you edit the text
file created in step 2 to correct the errors, then repeats steps 3 through 5.

If a single routine is to be executed, you provide the object module file name to be used as Task
Builder input.

In typical applications, several routines are run rather than a single module. In this case the user
names each of the object module files. The Task Builder then links the object modules, resolves
any references to any shareable global areas, and produces a single task image that is ready for
execution.

The Task Builder makes a set of assumptions (defaults) about the task image based on typical
usage and storage requirements. These assumptions can be changed by including qualifiers or
switches and options in the task-building command sequence.

The Task Builder can also produce a memory allocation file. This file gives information about how
the task is mapped into memory. The user can examine the memory allocation file to identify
what support routines and storage reservations are included in the task image. Further, the Task
Builder can produce a symbol table file suitable for input to the Task Builder during the build of
another task. For example, such a procedure is used in binding tasks to shareable global areas.

To reduce the amount of memory required by the task, the overlay capability can be used to divide
the task into overlay segments.

Overlaying a task enables more code and/or data to be fitted into the available 32K of virtual
address space. Overlays may be either disk resident, in which case they are reloaded from disk
each time they are required, or memory resident. Memory resident overlays remain resident in
memory once loaded and are mapped as required using the Memory Management directives (see
the IAS System Directives Reference Manual). Disk resident overlays save physical as well as
virtual memory.

If the task is configured as an overlay structure (that is, a multi-segment task), overlay segments
are loaded using either the autoload or manual method.

The autoload method makes the loading of overlays transparent to the user. Loading of the overlay
segments is accomplished automatically by the Overlay Runtime System according to the structure
defined by the user at the time the task was built.

1-1

INTRODUCTION

The manual load method requires that explicit calls to the Overlay Runtime System be included in
the coding of the task, and gives the user full control over the loading process.

If the task communicates with another task or makes use of common subroutines to save memory,
the Task Builder enables you to link to existing shareable global areas and to create new shareable
global areas for future reference.

You can become familiar with the capabilities of the Task Builder by degrees. Chapter 2 and
Chapter 3 give basic information about task building commands for PDS and MCR users. This
information is sufficient to handle many applications. The remaining chapters deal with special
features and capabilities for handling complex applications and taiioring the task image to suit
the application. The appendixes include detailed information about the structure of the input and
output files processed by the Task Builder, details of non-standard versions of the Task Builder,
lists of error messages and reserved symbols and a glossary of terms used in this manual.

This manual describes the handling of an example application, CALC. In the first treatment of
CALC, you build a task using all the default assumptions. Successive treatments illustrate the
main points of each chapter in a realistic manner. Qualifiers and options are added as they are
required, an overlay structure is defined when the task increases in size, the loading of overlays is
optimized, and finally a shareable global area is added.

The memory allocation (MAP) files for the various stages of task development are included. The
effect of a change can be observed by examining the map for the previous example and the map for
the exampie in which the change is made.

1-2

2 PDS Commands

2.1 Introduction
This chapter describes PDS command sequences used to build tasks. Each command sequence
is presented (using examples) from the simplest case to the most complex. The commands are
then summarized as a set of syntactic rules. The example at the end of this chapter illustrates a
task-building sequence for a typical application.

2.2 PDS Commands

2.2.1

If you write a FORTRAN program that you enter through a text editor as file CALC.FIN, you
should then type the following commands in response to the program development system (PDS)
prompt for input:

PDS> FORTRAN CALC
PDS> LINK CALC
PDS> RUN CALC

The first command (FORTRAN) causes the default FORTRAN compiler to translate the source
language of the file CALC.FIN into a relocatable object module in the file CALC.OBJ. The second
command (LINK) causes the Task Builder to process the file CALC.OBJ to produce the task image
file CALC.TSK. Finally, the third command (RUN) causes the task to execute.

This example includes the command:

PDS> LINK CALC

This command illustrates the simplest LINK command sequence. It produces a task file,
CALC.TSK, and is equivalent to the following command sequence:

PDS> LINK/TASK:CALC
FILE? CALC

LINK Command Formats
Typical LINK command formats are presented below:

or:

or:

PDS> LINK[command qualifiers] parameters

PDS> LINK[command qualifiers]
FILE? parameters

$LINK[command qualifiers] parameters

2-1

2.2.2

PDS Commands

where:

• [command qualifiers]= task attributes and optional Task Builder output files. See Chapter 4
for a complete description of command qualifiers.

• parameters = one or more input file specifications.

LINK Command
A Lm.l{ command contains up to three different output files (a task image file, a memor,Y allocation
(MAP) file, and a symbol definition file) that you specify by command qualifiers. One or more input
file specifications must also be included as parameters in a LINK command. Input and output files
are identified using standard IAS file specifications.

When input file specifications are entered on the same line as the command qualifiers, at least one
space is required between the last command qualifier and the first input file specification. If an
input file specification is not entered on the same line as the qualifiers, PDS prompts FILE? and
waits for input. When more than one input file specification is entered, the file specifications must
be separated with one or more spaces, or tabs and/or a comma.

The Task Builder combines the input files to create a single executable task image and produces
the output files as determined by the command qualifiers. A task image file is produced either
by default or by the explicit use of the /TASK qualifier. Generation of the task image file can
be inhibited by prefixing the TASK keyword with the letters NO, that is, /NOTASK inhibits the
generation of a task image file. A memory allocation file, which identifies the size and location
of the components within the task, is produced on the line printer by explicit use of the IMAP
qualifier. Explicit use of the /MAP:filespec qualifier also produces a memory allocation file.

The /SYMBOLS qualifier must be specified to produce a symbol definition file, which contains the
global symbol definitions in the task and their virtual or relocatable addresses in a format suitable
for reprocessing by the Task Builder.

Output files assume the file name of the first input file unless a file specification is included with
their respective qualifiers. The default file types are .TSK for the task image file, .MAP for the
memory allocation file, and .STB for the symbol definition file.

Typical LINK commands and their interpretations are presented in Table 2-1 to illustrate the
various LINK command formats.

Table 2-1 Typical LINK Command Formats

Command Interpretation

PDS> LINK/TASK:IMG1 /MAP:MP1 /SYMBOLS:SF1
FILE? IN1

PDS> LINK/TASK:IMG1 IN1 ,IN2

PDS> LINK/MAP:MP1 IN1 ,IN2

PDS> LINK/SUMBOLS:SF1 IN1

2-2

The task image file is IMG1 .TSK, the memory
MP1 .MAP, allocation file is the symbol definition file
is SF1 .STB. and the input file is IN1 .OBJ.

The task image file is IMG1 .TSK, and the input files are
IN1 .OBJ and IN2.0BJ.

The task image file is IN1 .TSK, the memory allocation
file is MP1 .MAP, and the input files are IN1 .OBJ and
IN2.0BJ.

The task image file is IN1 .TSK, the symbol definition
file is SF1 .STB, and the input file is !N1 .OBJ,

2.2.3

2.2.4

PDS Commands

Table 2-1 (Cont.) Typical LINK Command Formats

Command

PDS> LINK/NOTASK/MAP:MP1
FILE? IN1

Multiple Line Input

Interpretation

This is a diagnostic run with no output files other than
a map. However, any errors encountered will produce
relevant error messages. Such a run is useful when a
task has been found to exceed its memory limits. The
input file is IN1 .OBJ.

The LINK command can contain any number of command qualifiers to designate the desired task
attributes and one or more input file specifications. If the command is too long to be entered on a
single line (greater than 70 characters) or you wish to use more than one line, type a hyphen(-) as
the last character in a line and continue the command on the next line.

For example, the sequence:

PDS> LINK/TASK:IMGl/MAP­
/SYMBOLS:SFl IN1,IN2,IN3

produces the same results as the following command line:

PDS> LINK/TASK:IMGl/MAP/SYMBOLS:SFl IN1,IN2,IN3

This sequence causes the Task Builder to process input files INl.OBJ, IN2.0BJ. and IN3.0BJ,
producing task image file IMGl.TSK and symbol definition file SFl.STB. The memory allocation
file is output by default to the line printer, but it is not retained.

Options
Options specify the characteristics of the task being built. If you type the command qualifier
/OPTIONS with the LINK command, PDS prompts for input by displaying OPTIONS? on the
line following the last line of the command. You should enter one of the task builder options and
terminate the line. Prompting continues on successive lines until you type a slash (I) as the first
character after an OPrIONS? prompt to end the option input sequence. For example:

PDS> LINK/OPTIONS
FILE? IN1,IN2,IN3
OPTIONS? PRI=lOO
OPTIONS? SGA=JRNAL:RO
OPTIONS? /

In this sequence, the PRI=lOO and SGA=JRNAL:RO are entered. The syntax and interpretation of
each IAS Task Builder option is presented in Chapter 4.

The general form of an option is a keyword followed by an equal sign (=) and an argument list.
The arguments in the list are separated from one another by colons. In the example given, the
first option consists of the keyword PRI and a single argument 100 indicating that the task is to
be assigned the priority 100. The second option consists of the keyword SGA and an argument
list JRNAL:RO, indicating that the task accesses a shareable global area named JRNAL and the
access is read-only.

2-3

2.2.5

PDS Commands

Some options have argument lists that can be repeated. The symbol comma (,) separates the
argwnent lists. For example:

OPTIONS? SGA=JRNAL:RO,RFIL:RW

In this command, the first argument list indicates that the task has requested read-only access
to the shareable global area (SGA) JRNAL. The second argument list indicates that the task has
requested read-write access to the shareable global area RFIL.

The following two sequences are equivalent:

and

OPTIONS? SGA=JRNAL:RO,RFIL:RW

OPTIONS? SGA=JRNAL:RO
OPTIONS? SGA=RFIL:RW

Indirect Command File Facility
You can enter the LINK command and any options directly or as a text file to be invoked later
through the indirect command file facility.

To use the indirect command file facility, you first prepare a file that contains the required
commands. Then, the contents of the indirect command file are processed by typing @ followed
by the file specification.

If you prepare the text file AFIL.CMD as follows:

LINK/TASK:IMGl/MAP:MPl/OPTIONS
INl, IN2, IN3
PRI=lOO
SGA=JRNAL:RO
I

Later, you can type:

PDS> @AFIL

When the symbol @ is encountered, search for commands is directed to the file specified following
the @ symbol. While PDS is accepting input from an indirect file, prompting messages are not
displayed on the terminal. The one-line command that references the indirect file AFIL.CMD is
equivalent to the following keyboard sequence:

PDS> LINK/TASK:IMGl/MAP:MPl/OPTIONS
FILE? IN1,IN2,IN3
OPTIONS? PRI=lOO
OPTIONS? SGA=JRNAL:RO
OPTIONS? /

When PDS encounters a slash in the indirect file, the link command input is terminated. The
Task Builder is invoked to build the task and, upon completion, the Task Builder exits to PDS.
However, if PDS encounters an end-of-file in the indirect file before a slash, it returns its search for
commands to the terminal and prompts for input.

Three levels of nesting are permitted in file references, that is, the indirect file referenced in a
command sequence can contain a reference to another indirect file, which in tum references a third
indirect file. ~

2-4

PDS Commands

Suppose the file BFIL.CMD contains all the standard options that are used by a particular group
of users at an installation. That is, every programmer in the group uses the options in BFIL.CMD.
To include these standard options in a task building file, modify AFIL.CMD to include an indirect
file reference to BFIL. CMD as a separate line in the option sequence.

Then the contents of AFIL.CMD are:

LINK/TASK:IMGl/MAP:MPl/OPTIONS
IN1,IN2,IN3
PRI=lOO
SGA=JRNAL:RO
@BFIL
I

Suppose the contents of BFIL.CMD are:

STACK=lOO
UNITS=S
ASG=DTl:S

The terminal equivalent of the command:

is then:

PDS> @AFIL

PDS> LINK/TASK:IMGl/MAP:MPl/OPTIONS
FILE? IN1,IN2,IN3
OPTIONS? PRI=lOO
OPTIONS? SGA=JRNAL:RO
OPTIONS? STACK=lOO
OPTIONS? UNITS=S
OPTIONS? ASG=DTl:S
OPTIONS? /
PDS>

An indirect file reference within an indirect command file must appear as a separate line. For
example, if AFIL. CMD were modified by adding the @BFIL reference on the same line as the
SGA::JRNAL:RO option, the substitution would not take place and an error would be reported.

A command file that contains only the command qualifiers and parameters for a LINK command
can be used as an indirect command file. In this case, the LINK command must be stated explicitly
before the indirect reference. For example, if file AFIL.CMD contains the following:

/TASK:IMGl/MAP:LPO:
INl, IN2

then the command file is invoked indirectly by typing:

PDS> LINK @AFIL

This sequence is equivalent to:

PDS> LINK/TASK:IMGl/MAP:LPO:
FILE? IN1,IN2

2-5

2.2.6

2.2.7

PDS Commands

Comments
Comment lines can be included at any point in the sequence. A comment line begins with an
exclamation mark (!) and is terminated by a carriage return. All text on such a line is a comment.
Comments can be included in an option line. In this case, the text between the exclamation mark
and the carriage return is a comment.

Consider the annotation of the file described in Section 2.2.5; you add comments to provide more
information about the purpose and the status of the task. Specifically, some identifying lines are
added along with notes on the fu_nction of the input files and the shareable global area. Then~ a
comment on the current status of the task is added at the end of the file. The content of the file is
as follows:

task 33a

data from group e-46 weekly

inl contains processing routines
in2 contains statistical tables
in3 contains additional controls

link/task:imgl/map:mpl/options -
inl,in2,in3
pri=lOO
sga=jrnal:ro !rate tables

task still in development
I

File Specification
The examples so far have been illustrated in terms of filenames. The standard IAS conventions for
file specifications are used for all task building. For any file, you can specify the device, the User
File Directory (UFO), the filename, the filetype, and the version number.

The file specification has the form:

device:[ufd]filename.filetype;version

For example:

PDS> LINK/TASK:IMGl/MAP:MPl
FILE? IN1,IN2,IN3

when the files are specified by name only, the default assumptions for device:,[ufd], filename,
filetype, and version are applied. For example, if the user's default UFD which was specified at
authorization time (or changed for the session by SET DEFAULT) is [200,200] and the user's
default device is SYO:, the task image file specification of the example is assumed to be:

SYO: [200,200]IMG1.TSK;l

That is~ the task image file is produced on the user's default device under UFD (200,200]. The
default filetype for a task image file is .TSK and if the name IMG 1. TSK is new, the version number
is 1. The default settings for all the command qualifiers also apply. Qualifier defaults are described
in fuli in Chapter 4.

2-6

PDS Commands

Consider the following commands:

PDS> LINK/CHECKPOINT/DEBUG/TASK: [20,23]IMG1/MAP:TI:
FILE? IN1,IN2.0BJ;3,IN3

This sequence of commands produces the task image file IMGl.TSK under UFD [20,23] on the
user's default device. The task image is checkpointable and contains the standard debugging aid
(ODT). The memory allocation file is produced on the user's terminal. The task is built from the
latest versions of INl.OBJ and IN3.0BJ and an early version, number 3, of IN2.0BJ. The input
files are all found in the user's default UFD on the user's default device.

For some files, a device specification is sufficient. In the above example, the memory allocation file
is fully specified by the device TI:. The memory allocation file is produced on the terminal, but it is
not retained.

In this example, CHECKPOINT and DEBUG qualifiers are used. The format and meaning for
each qualifier are given in Chapter 4.

2.3 EXAMPLE: VERSION 1 OF CALC

2.3.1

An example task, CALC, is developed in this manual from the simple case given here through
successive refinements and increasing complexity. The successive versions of CALC are designed
to summarize the major points of each chapter and to illustrate possible uses for the facilities
described.

As the first step in the development of the task CALC, three separate FORTRAN routines are
entered by means of a text editor, translated by the FORTRAN IV compiler, and built into a task
by the Task Builder.

All example tasks in this manual assume that FORTRAN IV is the default FORTRAN compiler.

The routines are:

• RDIN - which reads and analyzes input data and selects a data processing routine on the basis
of the analysis

• PROCl - which processes the input according to a specified set of rules

• RPRT - which outputs the results as series of reports

The three routines communicate with each other through a common block named DTA.

In these examples, all files are in the user's default directory unless otherwise specified. See the
!AS PDS User's Guide.

Entering the Source Language
Enter and save the source for the FORTRAN programs of the example CALC with the text editor
EDIT. Invoke EDIT and type in the source for the FORTRAN programs. The relevant parts of the
programs are shown below:

2-7

2.3.2

PDS Commands

PDS> EDIT
FILE? RDIN .FTN
[EDI -- CREATING NEW FILE]
INPUT
C READ AND ANALYZE INPUT DATA,
c
C SELECT A PROCESSING ROUTINE
c
C ESTABLISH COMMON DATA BASE
c

COMMON /DTA/ A(200), I
C READ IN RAW DATA

READ (6,1) A
1 FORMAT (200F6.2)

C CALL DATA PROCESSING ROUTINE
CALL PROCl

C GENERATE REPORT
CALL RPRT

END

*EX
[EXIT]

PDS> EDIT
FILE? PROC!. FTN
[EDI -- CREATING NEW FILE]
INPUT

SUBROUTINE PROCl
C FIRST DATA PROCESSING ROUTINE
C COMMUNICATION REGION

*EX

COMMON /DTA/A(200),I

RETURN
END

[EXIT]

PDS> EDIT
FILE? RPRT.FTN
[EDI -- CREATING NEW FILE]
INPUT

SUBROUTINE RPRT
C INTERIM REPORT PROGRAM
C COMMUNICATION REGION

COMMON /DTA/ A(200),I

*EX

RETURN
END

[EXIT]

Comoilina the FORTRAN Proarams . - -
The FORTRAN programs are compiled by the following sequence:

2-8

PDS> FORTRAN RDIN
PDS> FORTRAN PROGl
PDS> FORTRAN RPRT

2.3.3

PDS Commands

The first command directs the FORTRAN IV compiler to take source input from RDIN.FTN and
place the relocatable object code in RDIN.OBJ. The remaining commands perform similar actions
for the source files PROG 1.FTN and RPRT.FTN.

Building the Task
The task image for the three programs is built as follows:

PDS> LINK/TASK:CALC.TSK;l/MAP:MPl
FILE? RDIN,PROGl,RPRT

The task building command specifies the name of the task image file (CALC.TSK;l), the name of
the memory allocation file (MPl.MAP), and the names of the input files (RDIN.OBJ, PROG 1.0BJ
and RPRT.OBJ). The task makes use of all the default assumptions for qualifiers and options.

2.4 Summary of Syntax Rules
In the syntax rules that follow, the symbol ... indicates repetition. For example,

input-filespec, •..

means one or more input-filespec items separated by spaces, tabs and/or commas; that is, one of
the following forms:

input-filespec

input-filespec, input-filespec

input-filespec, input-filespec, input-f ilespec

As another example,

arg: ...

means one or more arguments separated by colons.

Another example,

OPTIONS? option

means one or more options.

As a final example, an item in brackets:

[cof!U'i'iand qualifiers]

means the entry is optional and the brackets are not a part of the command. This rule has one
exception: brackets must be used to enclose a [UFD] specification, see Rule 6 in Section 2.4.1,
below.

2-9

2.4.1

PDS Commands

Syntax Rules
The syntax rules are as follows:

1 A task-building command can have one of several forms. The first form is a single line:

PDS> LINK[comrnand qualifiers] parameters

or:

$LINK[comrnand qualifiers] parameters

The second form has additional lines for input file names:

PDS> LINK[comrnand qualifiers]
FILES? parameters

The third form allows the specification of options:

PDS> LINK[comrnand qualifiers]/OPTIONS
FILES? parameters
OPTIONS? option-line

OPTIONS? terminating-symbol

The terminating symbol is a single slash (I).

The fourth form allows the use of indirect command files in one of the following formats:

PDS> @indirect-filespec

or:

PDS> LINK @indirect-f ilespec

where indirect-filespec is a file specification following standard IAS conventions.

2 The [command qualifiers] list contains one or more command qualifiers in the following format:

/keyword

or:

/NO keyword

The keywords for the command qualifiers are presented in Chapter 4.

3 The parameter list contains one or more input file specifications following the standard IAS
conventions (see 6. below).

4 An option-line can be one of the following:

option

or:

@indirect-filespec

where indirect-filespec is a file specification.

2-10

PDS Commands

5 An option has the form:

keyword = argument-list,

where the argument-list is

arg: ...

The syntax for each of the options is given in Chapter 5.

6 A file specification conforms to standard IAS conventions and has the following form:

device: [ufd]filename.filetype;version

The components are defined as follows:

• device= name of the physical device where the volume containing the desired file is
mounted. The name consists of two ASCII characters followed by a 1- or 2-digit octal unit
number and a colon (:); for example, LPO: or DTl:. A logical device name can also be used.

• ufd = UFD where the file is recorded. [ufd] has the form

[group, member]

where group and member are both in the range 1 through 377 (octal).

For example, member 220 of group 200 would require the following entry:

[200,220]

• :filename = name of the desired file. The file name can be from 1 to 9 alphanumeric
characters, for example, CALC.

• :filetype = 3-character filetype identification. Filename and filetype are always separated by
a period (.). Files with the same name but a different function are distinguished from one
another by the filetype; for example, CALC.TSK and CALC.OBJ might be the task file and
object file, respectively, for the program CALC.

• version = octal version number of the file in the range 1 through 77777 (octal). Filetype
and version are always separated by a semicolon (;). Various versions of the same
file are distinguished from each other by this number; for example, CALC.OBJ;l and
CALC.OBJ;2.

The device, the UFD code, the :filetype, and the version specifications are all optional.

Table 2--2 shows the default assumptions applied to missing components of a file specification.

Table 2-2 Fiie Specification Defaults

Item Default

device User's current default device

ufd User's current default [ufd]

filetype Task image TSK

Memory allocation MAP

Symbol definition STB

2-11

PDS Commands

Table 2-2 (Cont.) Fiie Specification Defaults

Item

version

2-12

Default

Object module

Object module library

Overlay description

Command

OBJ

OLB

ODL

CMD

For an input file; the highest-numbered existing version.

For an output file, one greater than the highest-numbered existing version.

3 MCR COMMANDS

3.1 Introduction

3.1.1

This chapter describes MCR command sequences that can be used to build tasks. Each command
sequence is presented (using examples), from the simplest case to the most complex. All commands
are then summarized by a set of syntactic rules. The example at the end of this chapter illustrates
a task building sequence for a typical application.

If you enter a FORTRAN program through a text editor as file PROG, type the following commands
in response to the monitor console routine (MCR) prompt for input:

MCR>FOR CALC=PROG
MCR>TKB IMG=CALC
MCR>INS !MG
MCR>RUN !MG

The first command (FOR) causes the FORTRAN compiler to translate the source language of the
file PROG.FTN into a relocatable object module in the file CALC.OBJ. The second command (TKB)
causes the Task Builder to process the file CALC.OBJ to produce the task image file IMG.TSK. The
third command (INS) causes Install to add the task to the directory of executable tasks. Finally,
the fourth command (RUN) causes the task to execute.

The example just given includes the command:

MCR>TKB IMG=CALC

This command illustrates the simplest use of the Task Builder. It gives the name of a single file as
output and the name of a single file as input. This chapter describes, first by example and then by
syntactic definition, the complete facility for the specification of input and output files to the Task
Builder.

Task Command Line
The task command line contains the output file specifications followed by an equal sign and the
input file specifications. The task command line can have up to three output files and any number
of input files.

The ouput files must be given in a specific order. The first file named is the task image file, the
second is the memory allocation file, and the third is the symbol definition file. The memory
allocation file contains information about the size and location of components within the task.
The symbol definition file contains the global symbol definitions in the task and their virtual or
relocatable addresses in a format suitable for re-processing by the Task Builder. The Task Builder
combines the input files to create a single executable task image.

Any of the output file specifications can be omitted. When all three output files are given, the
task-command line has the form:

task-image, mem-allocation, symbol-definition=input, ...

3-1

3.1.2

3.1.3

MCR COMMANDS

The following commands show the way the output filenames are interpreted.

Table 3-1 Output Fiiename Defaults In the Task Command Line

Command

MCR> TKB IMG1 ,MP1 ,SF1 ==IN1

MCR> TKB IMG1 =IN1

MCR> TKB ,MP1-IN1

MCR> TKB ,,SF1 ·IN1

MCR> TKB IMG1 ,,SF1 =IN1

MCR>TKB =IN1

Multiple Line Input

Output Flies

The task image file is IMG1 .TSK, the memory allocation file is MP1 .MAP,
and the symbol definition file is SF1 .STB.

The task image file is IMG1 .TSK.

The memory allocation file is MP1 .MAP.

The symbol definition file is SF1 .STB.

The task image file is IMG1 .TSK and the symbol definition file is SF1 .STB.

This is a diagnostic run with no output files. However, any errors
encountered will produce a relevant error message.

Although you can have only three output files, you can have any number of input files. When
several input files are used, a more flexible format, consisting of several lines, is necessary. This
multiline format is also required for the inclusion of options, as discussed in the next section.

If you type TKB alone, MCR invokes the Task Builder. The Task Builder then prompts for input
until it receives a line consisting of only the terminating sequence (//).

The sequence:

MCR>TKB
TKB>IMGl,MPl=INl
TKB>IN2,IN3
TKB>//

produces the same result as the single line command:

MCR>TKB IMG1,MPl=INl,IN2,IN3

This sequence produces the task image file IMG 1.TSK and the memory allocation file MPl.l\if...AP
from the input files INl.OBJ, IN2.0BJ, and IN3.0BJ.

The output file specifications and the separator(=) must appear on the first TKB command line.
Input file specifications can begin or continue on subsequent lines.

The terminating symbol (II) directs the Task Builder to stop accepting input, build the task, and
return to the MCR level.

Options
Use options to specify the characteristics of the task being built. If you type a single slash (I),
the Task Builder requests option information by displaying ENTER OPrIONS: and prompting for
input.

3-2

MCR>TKB
TKB>IMGl,MPl=INl
TKB>IN2,IN3
TKB>/
ENTER OPTIONS:
TKB>PRI=lOO
TKB>SGA=JRNAL:RO
TKB>//
MCR>

MCR COMMANDS

In the above sequence, the user entered the options PRI=lOO and SGA::JRNAL:RO, then typed a
double slash to end option input.

WARNING: For an overlaid task, where the input file has the IMP switch (see the MA
command in Chapter 4), Task Builder automatically expects options. The single slash
must not be entered if options are required. For example:

MCR>TKB
TKB>OVTSK,OVTSK=OVODL/MP
ENTER OPTIONS:
TKB>TASK= ... OVT
TKB>ASG=TI:1:2
TKB>//

The syntax and interpretation of each Task Builder option are given in Chapter 5.

The general form of an option is a keyword followed by an equal sign (=) and an argument list.
The arguments in the list are separated from one another by colons. In the example given, the
first option consists of the keyword PRI and a single argument 100 indicating that the task is to
be assigned the priority 100. The second option consists of the keyword SGA and an argument list
JRNAL:RO, indicating that the task accesses a shareable global area (SGA) named JRNAL and the
access is read-only.

More than one option can be given on a line. The symbol exclamation mark (!) is used to separate
options on a single line. For example:

TKB>PRI=lOO ! SGA=JRNAL:RO

is equivalent to the two separate lines

TKB>PRI=lOO
TKB>SGA=JRNAL:RO

Some options have argument lists that can be repeated. The symbol comma (,) is used to separate
the argument lists. For example:

TKB>SGA=JRNAL:RO,RFIL:RW

In this command, the :first argument list indicates that fhe task has requested read-only access to
the shareable global area JRNAL. The second argument list indicates that the task has requested
read-write access to the shareable global area RFIL.

The following sequences are equivalent:

• Sequence 1:

TKB>SGA=JRNAL:RO,RFIL:RW

• Sequence 2:

TKB>SGA=JRNAL:RO SGA=RFIL:RW

3-3

3.1.4

3.1.5

MCA COMMANDS

• Sequence 3:

TKB>SGA=JRNAL:RO
TKB>SGA=RFIL:RW

Multiple Task Specification
If more than one task is to be built, the symbol,(I) (slash), can be used to direct the Task Builder
to stop accepting input, build the task, and request information for the next task build.

Consider the sequence:

MCR>TKB
TKB>IMGl=INl
TKB>IN2, IN3
TKB>I
ENTER OPTIONS:
TKB>PRI=lOO
TKB>SGA=JRNAL:RO
TKB>I
TKB>IMG2=SUB1
TKB>ll
MCR>

The Task Builder accepts the output and input file specifications and the option input, then stops
accepting input when it encounters the(/) during option input. The Task Builder builds IMGl.TSK
and returns to accept more input.

Indirect Command File Facility
Enter the sequence of commands to the Task Builder directly or entered as a text file and later
invoked through the indirect command file facility.

To use the indirect command file facility, first prepare a file that contains the user command input
for the desired interaction with the Task Builder. Then, the contents of the indirect command file
are invoked by typing @ followed by the file specification.

For example, the text file AFIL can be prepared as follows:

IMGl,MPl=INl
IN2,IN3
I
PRI=lOO
SGA=JRNAL:RO
II

Later, you can type:

MCR>TKB @AFIL

When the Task Builder encounters the symbol @, it directs its search for commands to the file
specified following the @ symbol. ·when the Task Builder is accepting input from an indirect file,
it does not display prompting messages on the terminal. The one-line command that enables
the Task Builder to accept commands from the indirect file AFIL is equivalent to the keyboard
sequence:

3-4

MCR COMMANDS

MCR>TKB
TKB>IMGl,MPl=INl
TKB>IN2,IN3
TKB>/
ENTER OPTIONS:
TKB>PRI=lOO
TKB>SGA=JRNAL:RO
TKB>ll

When the Task Builder encounters a double-slash in the indirect file, it terminates indirect file
processing, builds the task, and exits to MCR upon completion.

However, if the Task Builder encounters an end-of-file in the indirect file before a double slash, it
returns its search for commands to the terminal and prompts for input.

The Task Builder permits three levels of nesting in file references, that is, the indirect file
referenced in a terminal sequence can contain a reference to another indirect file, which in tum
references . a third indirect file.

Suppose the file BFIL.CMD contains all the standard options that are used by a particular group
at an installation. That is, every programmer in the group uses the options in BFIL.CMD. To
include these standard options in a task building file, you modify AFIL to include an indirect file
reference to BFIL.CMD as a separate line in the option sequence.

Then the contents of AFIL.CMD are:

IMGl,MPl=INl
IN2,IN3
I
PRI=lOO
SGA=JRNAL:RO
@BFIL
II

Suppose the contents of BFIL.CMD are:

STACK=lOO
UNITS=S ! ASG=DT1:5

The terminal equivalent of the command

is then:

MCR>TKB @AFIL

MCR>TKB
TKB>IMGl,MPl=INl
TKB>IN2,IN3
TKB>I
ENTER OPTIONS:
TKB>PRI=lOO
TKB>SGA=JRNAL:RO
TKB>STACK=lOO
TKB>UNITS=S ! ASG=DT1:5
TKB>I/
MCR>

The indirect file reference must appear as a separate line. For example, if AFIL.CMD were
modified by adding the @BFIL reference on the same line as the SGA~AL:RO option, the
substitution would not take place and an error would be reported.

3-5

3.1.6

3.1.7

MCA COMMANDS

Comments
Comment lines can be included at any point in the sequence. A comment line begins with a
semicolon (;)and is terminated by a carriage return. All text on such a line is a comment.
Comments can be included in option lines. In this case, the text between the semicolon and
the carriage return is a comment.

Consider the annotation of the file just described; the user adds comments to provide more
information about the purpose and the status of the task. Specifically, some identifying lines
are added along with notes on the f!m.ction of the input files and shareable global area. Then, a
comment on the current status of the task is added at the end of the file. The content of the file is
as follows:

TASK 33A

DATA FROM GROUP E-46 WEEKLY

IMGl,MPl=

INl

I
PRI=lOO

PROCESSING ROUTINES

STATISTICAL TABLES

IN2

ADDITIONAL CONTROLS

IN3

SGA=JRNAL:RO ; RATE TABLES

; TASK STILL IN DEVELOPMENT
,
II

File Specification
The examples so far have been illustrated in terms of filenames. The Task Builder adheres to the
standard conventions for file specifications. For any file, you can specify the device, the user file
directory (UFD), the filename, the type, the version nwnber, and any nwnber of switches.

Thus, the file specification has the form:

device: [ufd] filename.type;versionlsw ...

For example:

3-6

MCR>TKB
TKB>IMGl,MPl=INl
TKB>!N2, IN3
TKB>ll

MCA COMMANDS

when the files are specified by name only, the default assumptions for device:,[ufdl, filename, type,
version and switch settings are applied. For example, if the user identification code under which
you logged in was [200,200], the task image file specification of the example is assumed to be:

SYO: [200,200]IMG1.TSK;l

That is, the task image file is produced on the system device (SYO) under user file directory
[200,200]. The default type for a task image file is TSK and since the name !MGl.TSK is new,
the version number is 1. The default settings for all the task image switches also apply. Switch
defaults are described in full in Chapter 4.

Consider the following commands:

MCR>TKB
TKB>[20,23]IMG1/CP/DA,LP:=IN1
TKB>IN2;3,IN3
TKB>//

This sequence of commands produces the task image file IMGl.TSK under user file directory
[20,23] on the system device. The task image is checkpointable and contains the standard
debugging aid. The memory allocation file is produced on the line printer. The task is built
from the latest versions of INl.OBJ and IN3.0BJ and an early version, number 3, of IN2.0BJ. The
input files are all found on the system device.

For some files, a device specification is sufficient. In the above example, the memory allocation file
is fully specified by the device LP. The memory allocation file is produced on the line printer, but is
not retained as a file.

In this example, switches CP and DA are used. The code, syntax and meaning for each switch are
given in Chapter 4.

3.2 EXAMPLE: VERSION 1 OF CALC
An example task, CALC, is developed in this manual from the simple case given here through
successive refinements and increasing complexity. The successive versions of CALC are designed
to summarize the major points of each chapter and to illustrate possible uses for the facilities
described.

As the first step in the development of the task CALC, three separate FORTRAN routines are
entered by means of a text editor, translated by the FORTRAN compiler, and built into a task by
the Task Builder.

The routines are:

• RDIN - which reads and analyzes input data and selects a data processing routine on the basis
of the analysis.

• PROCI - which processes the input according to a specified set of rules.

• RPRT - which outputs the results as a series of reports.

The three routines communicate with each other through a common block named DTA.

In these examples, all files are in the UFD under which the user logged in to the system via the
MCR>HEL[LO] command (see the IAS MCR User's Guide) unless otherwise specified.

3-7

3.2.1

MCA COMMANDS

Entering the Source Language
Enter and file the source for the FORTRAN programs of the example CALC by means of the
text editor EDI. The user invokes EDI and types in the source for the FORTRAN programs. The
relevant parts of the programs are shown below:

3-8

MCR>EDI RDIN.FTN
[EDI -- CREATING NEW FILE]
INPUT
C READ AND ~_NYLZE INPUT DATA;
c
C SELECT A PROCESSING ROUTINE
c
C ESTABLISH COMMON DATA BASE
c

COMMON /DTA/ A(200), I
C READ IN RAW DATA

READ (6,1) A
1 FORMAT (200F6.2)

C CALL DATA PROCESSING ROUTINE
CALL PROCl

C GENERATE REPORT
CALL RPRT

END

*EX
[EXIT]

MCR>EDI PROCl.FTN
[EDI -- CREATING NEW FILE]
INPUT

SUBROUTINE PROCl
C FIRST DATA PROCESSING ROUTINE
C COMMUNICATION REGION

COMMON /DTA/A(200),I

RETURN
END

*EX
[EXIT]

MCR>EDI RPRT. FTN
[EDI -- CREATING NEW FILE]
INPUT

SUBROUTINE RPRT
C INTERIM REPORT PROGRAM
C COMMUNICATION REGION

COMMON /DTA/ A(200),I

RETURN
END

*EX
[EDI -- EXIT]

3.2.2

3.2.3

Compiling the FORTRAN Programs
Compile the FORTRAN programs by the following sequence:

MCR>FOR
FOR>RDIN,LRDIN=RDIN
FOR>PROCl,LPROCl=PROCl
FOR>RPRT,LRPRT=RPRT

MCR COMMANDS

The first command invokes the FORTRAN compiler. The second command directs the compiler
to take source input from RDIN.FTN, place the relocatable object code in RDIN.OBJ and write
the listing in LRDIN.LST. The remaining commands perform similar actions for the source files
PROCl and RPRT.

Building the Task
The task image for the three programs is built in the following way:

MCR>TKB CALC;l,LP:=RDIN,PROCl,RPRT

The task building command specifies the name of the task image file (CALC.TSK;l), The device
for the memory allocation file (LP) and the names of the input files (RDIN.OBJ, PROCl.OBJ and
RPRT.OBJ). The task makes use of all the default assumptions for switches and options.

3.3 Summary of Syntax Rules
In the syntax rules, the symbol ... indicates repetition. For example,

input-spec, ...

means one or more input-spec items separated by commas, that is, one of the following forms:

input-spec
input-spec, input-spec
input-spec, input-spec, input-spec

Examples:

arg: ...

means one or more arg items separated by colons.

TKB>input-line

means one or more of the indicated TKB input-line items.

3-9

3.3.1

MCR COMMANDS

Syntax Rules
The syntax rules are as follows:

1 A task-building-command can have one of several forms. The first form is a single line:

MCR>TKB task-command-line

The second form has additional lines for input file names:

MCR>TKB
TKB>task-command-line
TKB>input-line

TKB>terminating-symbol

The third form allows the specification of options:

MCR>TKB
TKB>task-command-line
TKB>/
ENTER OPTIONS:
TKB>option-line

TKB>terminating=s~-rnbol

The fourth form has both input lines and option lines:

MCR>TKB
TKB>task-command-line
TKB>input-line

TKB>/
ENTER OPTIONS:
TKB>option-line

TKB>terminating-symbol

The terminating symbol can be:

I if more than one task is to be built, or
II if control is to return to MCR.

2 A task-command-line has one of the three forms:

output-file-list = input-file,.

=input-file, ...

@indirect-file

where indirect-file is a file specification as defined in Rule 7.

3 An output-file-list has one of the three forms:

task-file, mem-allocation~file,

task-file, mem-alloeation-file,

task-file

3-10

___ ,__,_.I:.!, -
1:1_y11UJv.J..-.L.J...J..'C

MCR COMMANDS

where task-file is the file specification for the task image file; mem-allocation-file is the file
specification for the memory allocation file; and symbol-file is the file specification for the
symbol definition file. Any of the specifications can be omitted, so that, for example, the form:

task-file,,symbol-file

is permitted.

4 An input-line has either of the forms:

input-file, ••.

@indirect-file

where input-file and indirect-file are file specifications.

5 An option-line has either of the forms:

option ! ...

@indirect-file

where indirect-file is a file specification.

6 An option has the form:

keyword= argument-list, •..

where the argument-list is

arg: ...

The syntax for each of the options is given in Chapter 4.

7 A file specification conforms to standard conventions. It has the form

device: [ufd]filename.type;version/sw ..•

The components are defined as follows:

• device - is the name of the physical device on which the volume containing the file is
mounted. The name consists of two ASCII characters followed by an optional 1- or 2-digit
octal unit number; for example, 'LP' or 'DTl'.

• ufd - is the user file directory number consisting of two octal numbers each of which is
in the range of 1 through 377 (octal). These numbers must be enclosed in brackets and
separated by a comma, and must be in the following format:

[group, member]

For example, member 220 of group 200 would use the following entry:

[200 I 220]

• filename - is the name of the file. The file name can be from 1 to 9 alphanumeric
characters, for example, CALC.

• type - is the 3-character type identification. Files with the same name but different
function are distinguished from one another by the file type; for example, CALC.TSK
and CALC.OBJ.

• version - is the octal version number of the file in the range 1 through 77777 (octal).

3-11

MCA COMMANDS

Versions of the same file are distinguished from each other by this number; for example,
CALC;l and CALC;2.

• sw - is a switch specification. More than one switch can be used, each separated from the
previous one by a 'f. The switch is a 2-character alphabetic name which identifies the
switch option. The permissible switch options and their syntax are given in Chapter 4.

The device, the user file directory code, the type, the version, and the switch specifications are all
optional.

Table 3-2 applies to missing components oi a file specification.

Table 3-2 File Specification Defaults

Item

device

group

member

type

version

switch

Default

SYO, the system device

The group number currently in effect1

The member number currently in effect1

Task image TSK

Memory allocation MAP

Symbol definition STB

Object module OBJ

Object module library OLB

Overlay description ODL

Indirect command CMD

For an input file, the highest-numbered existing version.

For an output file, one greater than the highest-numbered existing version.

(The default for each switch is given in Chapter 4.)

1 If an explicit device or [ufd] is given, it becomes the default for subsequent files separated by commas on the
same side of the equal (•) sign. For example: DT1 :IMG1 ,MP1-IN1 ,DF:IN2,IN3

Fiie Device

IMG1.TSK DT1

MP1.MAP DT1

IN1.0BJ SYO

IN2.0BJ DFO

IN3.0BJ DFO

3-12

4 Qualifiers and Switches

4.1 Introduction
This chapter describes how you can modify the actions of the Task Builder (TKB) by using:

MCR switches
PDS qualifiers

When you use the PDS LINK command, you can include qualifiers that control Task Builder output
by specifying simple task attributes, optional task builder output files, and so on. PDS qualifiers
are described in Section 4.2.

MCR switches are equivalent to PDS qualifiers. MCR switches are described in Section 4.3.

4.2 PDS Qualifiers

4.2.1

4.2.2

With PDS, qualifiers are applied to either the LINK command or to file specifications within the
command. These are called command qualifiers and file qualifiers.

Command Qualifiers
When entered in a LINK command, each qualifier is preceded by a slash, and either the complete
keyword or a unique abbreviation of the keyword is typed following the slash. If a qualifier is not
specified, default assumptions are made; therefore, you must negate a positive default assumption
by typing the letters NO before the keyword (or abbreviation) if the corresponding function is not
desired. For example, the command qualifier /NOTASK inhibits the generation of the task image
file.

Examples
The following command sequences illustrate the use of qualifiers and file specifications, and the
resulting interpretation.

4-1

Qualifiers and Switches

Terminal Sequence

PDS> LINK/TASK:IMG1 /CHE/DEB-/NOMAP
IN1/NOCON

PDS> LINK/TASK:IMG2/PRl/MAP:
(MP1 /SHO)FILE? IN2 [1, 1]EXEC.STB

PDS> UNK/TASK:!MG3/DEB:DBG1 FILE?
IN3 LB1/LIB:(SUB1 :SUB2) LB1/LIB

PDS>
LINK/TASK:IMG4/EXIT:5-/0VERLA Y:TREE

4.3 MCA Switches

Interpretation

The task IMG1 .TSK is checkpointable and includes the
LB0:[1,1)0DT.OBJ debugging aid. Use the first object module
in input file IN1.

The task IMG2.TSK is an executive privileged task. The short
form of the memory allocation file MP1 .MAP is requested. The
inputs for the task are the file IN2.0BJ and the symbol definition file
SY0:[1, 1)EXEC.STB that links the task to the subroutines and data
base of the Executive.

The task IMG3.TSK contains the input file IN3.0BJ, the modules
SUB1 and SUB2 from the library file LB1, and the debugging aid
DBG1 .OBJ. The library file LB1 .OLB is specified a second time
without arguments so that the Task Builder will search the file for
undefined global references.

The Task IMG4.TSK is built from the overlay description contained
in the file TREE.COL. If more than five diagnostics occur, the Task
Builder aborts the run.

The syntax for a file specification in an MCR command, as given in Section 3.1.7, is:

dev: [ufd]filename.type;version/sw-l/sw-2 ... /sw-n

The file specification concludes with optional switches: sw-1, sw-2, ... , sw-n.

When a switch is not specified, the Task Builder establishes a setting for the switch, called a
default assumption.

A switch is designated by a two-character code. The code is an indication that the switch applies
or does not apply. For example, if the switch code is CP (task can be checkpointed), the recognized
switch settings are:

/CP The task is checkpointable.

/-CP The task is not checkpointable.

/NOCP The task is not checkpointable.

Switches are used primarily for the following purposes:

• 1b designate the task attributes recorded in the task image file during task build and in the
System Task Directory (STD) entry on Install.

• 1b instruct TKB to interpret the input file in a special way (for example, /DA is used when the
task contains a debugging aid).

• 1b control the listing of the memory allocation file (for example, /SH is used to request the
short memory allocation file).

4-2

Qualifiers and Switches

i.3.1 Task Builder Switches
This section describes the switches recognized by the Task Builder. For each switch, the following
information is given:

1 The MCR switch mnemonic.

2 The default assumption made if the MCR switch is not present.

3 The PDS qualifier mnemonic.

4 The default assumption made if the PDS qualifier is not present.

5 The file(s) to which the switch or qualifier can be applied.

6 A description of the effect of the switch on the Task Builder.

4-3

Qualifiers and Switches

Table 4-1 gives an alphabetical listing and summary information about the switch codes enabled
by the Task Builder. The subsections that follow the table give a more detailed description for each
switch.

Table 4-1 MCA Switches and PDS Qualifiers

Appllc-
able

MCA MCA Fiie
Switch Default PDS Qualifier PDS Default Type Effect on Task Builder

/AB /AB /ABORT /ABOR T Task can be aborted.

/CC /CC /CONCATENATED /CONCATENATED Input file can contain more than one
object module.

/CO /-CO none none T Causes task builder to build a
shared global area.

/CP /CP /CHECKPOINT /CHEC T Task can be checkpointed.

/CR /-CR /CROSS_REFERENCE /NOC RO M Memory allocation is to Include
a global symbol cross reference
listing.

/DA /-DA /DEBUG /NODE T,I Task contains a debugging aid.

iDL i-DL iDEFAULT LiBRARY none Specified library fiie is a
replacement for the default system
object module library.

/OS /OS /DISABLE /DISA T Task can be disabled.

/FP /FP /FLOATING_POINT /FLOA T Task used the floating point
processor.

/FR /FR /FLUSH_RECEIVE_ /FLUSH T Task receive queues are flushed
QUEUES each time it exits.

/FU /-FU /FULL_ SEARCH /NO FULL T Search all co-tree overlay segments
for matching definition or reference
when processing modules from the
default object module library.

/FX /-FX /FIX /NOFIX T Task can be fixed in memory.

/HD /HD /HEADER /HEAD T,S Task can be fixed in memory.

/LB /-LB /LIBRARY /NOLIBRARY I Input file is an object module.

/LI /-LI none none T Instructs TKB to build a shared
library.

/MA /MA /MAP /MAP M Include all modules in the memory
allocation file.

/-MA /MA none none Exclude all modules in this input file
from the memory allocation file.

/MP /-MP /OVERLAY _DESCRIPTION /NOOV Input file contains an overlay
description.

Key to Applicable Fiie Type

T-Task image file
$-Symbol definition file
M-Memory allocation file
I-Input file

4-4

Qualifiers and Switches

Table 4-1 (Cont.) MCR Switches and PDS QualHiers

Appllc-
able

MCR MCR Fiie
Switch Default PDS QualHler PDS Default Type Effect on Task Builder

/MU /-MU /MULTIUSER /NOMU T Task is multiuser.

/NM /-NM none none .TSK Tells TKB to inhibit two diagnostic
messages.

/OR /OR /RUN_ TIME_ SYSTEM /RUN T Runtime system is included in
overlaid task.

/Pl /-Pl /POSITION_INDEPENDENT /NOPO T,S Task code is position independent.

/PR /-PR /PRIVILEGED /NOPR T Task has privileged access rights.

/RO /-RO /RESIDENT_ OVERLAYS /NOR ES T Memory-resident overlay operator
(I) is enabled so task can be built
with memory-resident overlays.

/RW /-RW /READ_WRITE /NOR EA T Task has read-write access to
read-only code.

/SE /SE /RECEIVE /RECE T Send data can be received.

/SP /SP none none M Memory allocation file is spooled.

!SQ /-SQ /SEQUENTIAL /NOSEQ T Task p-sections are allocated
sequentially.

/SR /-SR /REQUEST /NOREQ T Send [by reference] and request/
resume accepted from non real-time
directive privileged tasks.

/SS /-SS /SELECT /NOSELECT Selective Symbol Search.

/TR /-TR /TRACE /NOTR T Task is to be traced.

/UN /UN /SYMBOLS:(filespec/[NO] /UNDEF s Include references to undefined
UNDEFINED_SYMBOLS) symbols in symbol table file.

/UR /UR none none M Print undefined references on
initiating terminal.

/WN NIN /WAIT _FOR_NODES /WAIT T System waits a certain period of
time for nodes to become available.

/XT:n 1-XT /EXIT:n /EXIT:1 T Task Builder exits after n errors,
where n is a decimal number.

none none /LARGE_ SYMBOL_ TABLE /NOLAR none Task Builder will have a large
internal symbol table.

none none /MAP /NOMAP M Produces memory allocation file.

/Fl /Fl /FILES /NOFIL M Include file-by-file analysis of
allocation.

/FU /FU /FULL /NOFULL M Include all modules in map.

Key to Applicable Fiie Type

T-Task image file
S-Symbol definition file
M-Memory allocation file
I-Input file

4-5

Qualifiers and Switches

Table 4-1 (Cont.) MCR Switches and PDS Qualifiers

Appllc-
able

MCR MCR Fiie
Switch Default PDS Qualifier PDS Default Type Effect on Task Builder

/NA /NA /NARROW /WIDE M Make map in 72-column format.

/SH /SH /SHORT /SHORT M Make summary map.

/WI /WI /WIDE /WIDE M Make map in 132-column format.

/UR /UR /UNDEFINED_ /UN DEF M Print undefined references on
REFERENCES initiating terminal.

none none /OPTIONS /NOOP none Apply Task Builder options specified
after command string.

none none /SYMBOLS /NOSY s Produces a symbol table file.

none none /TASK[:filespec] /TASK T Produces a task image file.

Key to Applicable Fiie Type

T-Task image file
S-Sym bol definition file
M-Memory allocation file
I-Input file

4-6

/ABORT (/AB)

I ABORT (/AB)

PDS QUALIFIER

/ABORT
/ABOR (Default)

MCRSWITCH

/AB
/AB (Default)

file

task image

effect

The Task Builder clears the nonabortable flag in the task label block flag word.

meaning

The task can be aborted when it is running.

Note: A task running under the control of the IAS scheduler can always be aborted,
even if it is built non-abortable.

4-7

/CHECKPOINT (/CP)

/CHECKPOINT (/CP)

PDS QUALIFIER

/CHECKPOINT
//"'lll1i'/"'l'UDf'\T1'.TTJ'l tnr ... nh \
I V.L.L.L:IV.LJU. '-IJU&. \.L.l'OJ.LQYU"/

MCRSWITCH

/CP
/CP (Default)

file

task image

effect

The Task Builder clears the noncheckpointable flag in the task label block flags word.

meaning

Task can be checkpointed.

4-8

/CONCATENATED

PDS QUALIFIER

/CONCATENATED
/CONCATENATED

MCRSWITCH

file

ICC
/CC

input

effect

/CONCATENATED

The Task Builder includes in the task image all the modules in the file. If this switch is negated,
the Task Builder includes in the task image only the first module in the file.

meaning

The file can contain one or more than one object module.

4-9

/CROSS_REFERENCE (/CR)

/CROSS_REFERENCE (/CR)

PDS QUALIFIER

/CROSS_REFERENCE
/NOCRO (Default)

MCRSWITCH

/CR
/-CR (Default)

file

memory allocation

effect

A cross reference listing, as described in Section 6.4, is appended to the memory allocation file.
PDS users must have privileges that enable use of TCP and chaining. The system manager sets
such privileges when authorizing a PDS user. For fw'ther details see the lAS System Management
Guide.

meaning

A global symbol cross reference listing is to be produced.

4-10

/DEBUG[:filespec] (/DA)

PDS QUALIFIER

/DEBUG[:filespec]
/NODEBUG (Default)

MCRSWITCH

!DA
/-DA (Default)

file

task image or input

effect

/DEBUG[:filespec] (/DA)

If filespec is not specified, the Task Builder links the task with the system's debugging aid (ODT)
contained in the file LBO:[l,l]ODT.OBJ.

If filespec is specified the Task Builder links the task with the debugging aid contained in the
specified file. The user-generated debugging aid must be in object format. See Appendix E for
information on including a debugging aid.

meaning

The task image file is to include a debugging aid.

4-11

/DEFAULT_LIBRARY:filespec (/DL)

/DEFAULT _LIBRARY:filespec (/DL)

PDS QUALIFIER

/DEFAULT_LIBRARY:filespec
T D,1'"1 11C!VOT TD AT D IT\-.t'~ •• 14-\
J.JD,L.1.,.1.JO .1....:7.UJ..U.V.U.U \JJ~J.Qu.tllJ

MCRSWITCH

/DL
LB:[l,l]SYSLIB.OLB (Default)

file

input

effect

This file, which must be an object module library, will be searched instead of the system library
LBO:[l,l]SYSLIB.OLB when Task Builder is resolving undefined global symbol references.

If the specified library is empty (that is, no modules have been inserted into it) the effect is as
though there were no default library. The DL switch can be applied only to a single input file.

meaning

The specified file is used in place of the system object module library.

• If /DL is specified-Use filespec as Default Library

• If /-DL is specified-Use No Default Library

• If nothing is specified-Use LBO:[l,l]SYSLIB.OLB

4-12

/DISABLE (/OS)

PDS QUALIFIER

/DISABLE
/DISABLE (Default)

MCRSWITCH

IDS
IDS (Default)

file

task image

effect

The Task Builder clears the non-disable flag in the task label flags word.

meaning

The task can be disabled.

/DISABLE (/DS)

4-13

/EXIT:n (/XT:n)

/EXIT:n (/XT:n)

PDS QUALIFIER

/EXIT:n
/EXIT: 1 (Default)

MCRSWITCH

/XT:n
/-XT (Default)

file

task image

effect

The Task Builder exits after n (decimal) error diagnostics have been produced. If n is not specified,
it is assumed to be 1.

meaning

The Task Builder exits after n error diagnostics have been produced. The number of diagnostics
can be specified as a decimal or octal number, using the convention:

• For MCR:

- n. = A decimal number

- #n or n = An octal number

• For PDS:

- n =A decimal number (always)

If n is not specified, it is assumed to be 1.

4-14

/FIX (/FX)

iFIX (/FX)

PDS QUALIFIER

/FIX
/NOFIX (Default)

MCRSWITCH

IFX
1-FX (Default)

file

task image

effect

The Task Builder clears the non-fixable flag in the task label block flags word. Note that a fixed
task cannot be checkpointed even when built as checkpointable.

meaning

The task can be fixed in memory.

4-15

/FLOATING_POINT (/FP)

/FLOATING_POINT (/FP)

PDS QUALIFIER

/FLOATING_POINT
/FLOATING=POINT (Default)

MCRSWITCH

/FP
/FP (Default)

file

task image

effect

The Task Builder allocates 25 words in the task header for the floating point save area.

meaning

The task used the Floating Point Processor.

4-16

/FLUSH_RECEIVE_QUEUES (/FR)

/FLUSH_RECEIVE_ QUEUES (/FR)

PDS QUALIFIER

/FLUSH_RECEIVE_QUEUES
/FLUSH (Default)

MCRSWITCH

/FR
/FR (Default)

file

task image

effect

NIA

meaning

The task is to have its receive queues (data and references) flushed each time it exits. If this
qualifier is negated, information in the receive queues will be retained until it is received.

4-17

/FULL_SEARCH (/FU)

/FULL_SEARCH (/FU)

PDS QUALIFIER

/FULL_SEARCH
/NOFULL_SE .. AJ?CH (Default)

MCRSWITCH

/FU
/-FU (Default)

file

task image

effect

If the switch is negated, unintended global references between co-tree overlay segments are
eliminated. Global Definitions from the default library are restricted in scope to references in the
main root and the current tree. Use of this switch is described in Chapter 7, Section "Resolution of
Global Symbols from the Default Library".

meaning

The Task Builder searches all co-tree overlay segments for a matching definition or reference when
processing modules from the default object module library.

4-18

/HEADER (HD)

PDS QUALIFIER

/HEADER
/HEADER (Default)

MCRSWITCH

/HD
/HD (Default)

file

task image or symbol definition

effect

/HEADER {HD)

The Task Builder constructs a header in the task image. The contents of the header are described
in Section C.2. If you are using the RUN command to run or install a task, you must build the
task with a header.

meaning

A header is to be included in the task image. You must use the negated form of this qualifier
(/NOHEADER) when building a shareable global area.

4-19

/LARGE_ SYMBOL_ TABLE

/LARGE SYMBOL TABLE

PDS QUALIFIER

/LARGE_SYMBOL_TABLE
/NOLARGE_SYMBOL_TABLE (Default)

MCRSWITCH

Specify the Slow Task Builder; by specifying STB at the I MCR> I prompt.

file

None

effect

Invokes the task ... STB instead of the usual task ... TKB.

meaning

Select a version of the Task Builder that has a large internal symbol table (that is, the slow Task
Builder (see Section F.3).

4-20

/LIBRARY (/LB)

PDS QUALIFIER

/LIBRARY
/NOLIBRARY (Default)

MCRSWITCH

/LB
/-LB (Default)

file

input

effect

/LIBRARY (/LB)

1 If no arguments are specified, the Task Builder searches the file to resolve undefined global
references and extracts from the library for inclusion in the task image any modules that
contain definitions for such references.

2 If arguments are specified, the Task Builder includes only the named modules in the task
image.

Note: If you want the Task Builder to search a library file both to resolve global
references and to select named modules for inclusion in the task image, the library
file must be named twice. The first time it must be specified with the LB switch and no
arguments to direct the Task Builder to search the file for undefined global references,
and a second time with the desired modules to direct the Task Builder to include those
modules in the task image being built.

4-21

/LIBRARY (/LB)

meaning

This switch has two forms:

1 Without arguments:

2 With arguments:

LB

LB:mod-l:mod-2 ... :mod-8

The interpretation of the switch depends on the form.

1 If the switch is applied without arguments, the input file is assumed to be a library file of
reclocatable object modules (created by the Librarian) that is to be searched for the resolution
of undefined global references.

2 If the switch is applied with arguments, the input file is assumed to be a library file of
relocatable object modules from which the modules named in the argument list are to be taken
for inclusion in the task image. The module names are those defined at assembly time by the
.TITLE directive (or if no .TITLE directive, the filename (first 6 characters) when inserted by
the Librarian). Up to a maximum of eight modules can be specified.

4-22

/MAP (/MA)

/MAP (/MA)

PDS QUALIFIER

IMAP
IMAP (Default)

Note: /NOMAP, implicitly or explicitly qualifying an input file, is overridden by the
memory allocation file qualifier /FULL (see Table 4-1 and Section "MAP [:ftlespec] or
MAP:(filespec/qualifers)".

MCRSWITCH

file

/MA switch on input file.
/MA (Default)

input

effect

All modules are included in the memory allocation file.

meaning

The input file is to be included in the memory allocation map.

4-23

/MAP[:filespec] or /MAP:(filespec/qualifiers)

/MAP[:filespec] or /MAP:(filespec/qualifiers)

PDS QUALIFIER

IMAP[:filespec]
/NOMAP (Default)

MCRSWITCH

Include a MAP file specification.

file

memory allocation

effect

If you specify the filespec, you can omit the file. This this case, the Task Builder assumes the .MAP
filetype.

If filespec is not specified, the memory allocation file is printed on the line printer.

The following qualifiers can be applied to filespec:

/FILES

/FULL

/NARROW

/SHORT

/UNDEFINED_
REFERENCES

4-24

Include file-by-file analysis of memory allocation and symbol definition. This produces
a separate section for each input module showing the PSECT allocations and symbols
defined in the module.

MCA equivalent: /-SH

Include all modules in the memory allocation file, even those that explicitly or by default
have the /NOMAP input file qualifier.

MCA equivalent: /MA

Produce a map 72 characters wide, suitable for printing on a terminal.

MCA equivalent: /-WI

Produce summary map, equivalent to /NOFILES/NOFULL.

MCA equivalent: /SH /-MA

Print any undefined references on the terminal that initiated the task build.

MCR equivalent: /UR

iWIDE

Default

meaning

/MAP[:filespec] or /MAP:(filespec/qualifiers)

Produce a map 132 characters wide, suitable for printing on a line printer.

MCR equivalent: /WI

filespec qualifiers: iSHORT iWIDE /UNDEF

Produce a memory allocation file.

4-25

/MULTIUSER {/MU)

/MULTIUSER (/MU)

PDS QUALIFIER

/MULTIUSER
/NOMULTIUSER (Default)

MCRSWITCH

/MU
/-MU (Default)

file

task image

effect

The multi-user is set in the task label block flags word and any read-only section of the root
segment is aligned on a disk boundary.

meaning

Multiple versions of the task can run simultaneously. Note that only read-write parts of the task
will be duplicated in memory.

4-26

/OPTIONS

PDS QUALIFIER

/OPTIONS
/NOOPI'IONS (Default)

MCRSWITCH

file

I (slash in a line by itself)
No default

None

effect

/OPTIONS

In interactive (PDS>) mode, the Task Builder issues an "OPTIONS?" prompt after the input files
have been specified. The user enters an option specification and after each option specification is
received, another prompt is issued. To terminate the list of options, the user types a slash (I) as
the first character following the prompt.

In batch mode or when using an indirect command file, one or more options are expected to be
specified in the LINK command. In MCR mode one or more options are expected to be specified in
the lines following the switch. A slash (I) in the first character position of a line terminates the
list of options.

meaning

Apply Task Builder options following options qualifier or switches in the LINK command.

4-27

/OVERLAV _DESCRIPTION:filespec (/MP)

/OVERLAY _DESCRIPTION:filespec (/MP)

PDS QUALIFIER

/OVERLAY_DESCRIPTION:filespec
/NOOVERLAY=DESCRIPTION (Default)

MCRSWITCH

/MP
/-MP (Default)

file

input

effect

The Task Builder receives all the input file specifications from this file and allocates memory as
directed by the overlay description.

Note:

1 After IMP the Task Builder automatically prompts for options. If options are
required they must be entered straight away, not preceded by the input consisting of
a single slash.

2 When an overlay description file is specified as the input file for a task, it must be
the last input file specified. Other input files are automatically assigned to the ROOT
segment of the task.

meaning

Link the task according to the overlay structure defined in the file identified by filespec. Over1ay
descriptions are discussed in Chapter 7, Section "Resolution of Global Symbols from the Default
Library."

4-28

/POSITION_INDEPENDENT (/Pl)

/POSITION_INDEPENDENT (/Pl)

PDS QUALIFIER

/POSITION_INDEPENDENT
/NOPOSITION_INDEPENDENT (Default)

MCRSWITCH

/PI
/-PI (Default)

file

task image or symbol definition

effect

The Task Builder sets the Position Independent Code (PIC) attribute flag in the task label block
flag word.

meaning

The task contains only position independent code or data. This qualifier should only be used
in conjunction with /NOHEADER when building a shareable global area. Position independent
shareable global areas are described in Section 9.4.

4-29

/PRIVILEGED (/PR)

/PRIVILEGED (/PR)

PDS QUALIFIER

/PRIVILEGED
/NOPRMLEGED (Default)

MCRSWITCH

/PR
/-PR (Default)

file

task image

effect

The Task Builder sets the Privileged Attribute flag in the task label block flag word.

meaning

The task is executive privileged with respect to memory access rights. The task can access the
external page, and the SCOM data area (including node pool) in addition to its own task space.
Executive privileged tasks are described in Section 6.2.1.

4-30

/READ_ WRITE (/RW)

PDS QUALIFIER

/READ_ WRITE
/NOREAD_ WRITE (Default)

MCRSWITCH

file

/RW
/-RW(Default)

task image

effect

This enables you to debug read-only code online.

meaning

Task is to have read-write access to code specified as read-only.

/READ_WRITE (/RW)

4-31

/RECEIVE (/SE)

/RECEIVE (/SE)

PDS QUALIFIER

/RECEIVE
/RECEIVE (Default)

MCRSWITCH

/SE
/SE (Default)

file

task image

effect

None

meaning

The task is able to receive data sent to it by the SEND DATA and SEND BY REFERENCE
directives. If the qualifier is negated, any attempt to send data or send data by reference to the
task will fail as though it was not installed.

4-32

/REQUEST (/SR)

PDS QUALIFIER

/REQUEST
/NOREQUEST (Default)

MCRSWITCH

/SR
/-SR (Default)

file

task image

effect

None

meaning

/REQUEST (/SR)

The task is to be built so that the Executive allows the following directives to be issued to the task
from non-real-time directive privileged tasks:

VSDR$/SDRQ$

SRFR$

Send data and request or resume receiver.

Send data by reference and request or resume receiver.

4-33

/RESIDENT_OVERLAYS (/RO)

/RESIDENT_ OVERLAYS (/RO)

PDS QUALIFIER

/RESIDENT_ OVERLAYS
,'t~ORES (Default)

MCRSWITCH

/RO
/-RO (Default)

file

task image

effect

The memory-resident overlay operator (!)is enabled, and is used to construct a task image that
contains one or more memory-resident overlay segments. If this switch is negated, the operator is
checked for correct syntactical usage, but no memory-resident overlay segments are created.

meaning

The memory-resident overlays, as described in Section 7.1.2.

4-34

iRUN_TIME_SYSTEM (iOR)

PDS QUALIFIER

/RUN_TIME_SYSTEM
/RUN_TIME (Default)

MCRSWITCH

/OR
/OR (Default)

file

task image

effect

None

meaning

/RUN_TIME_SYSTEM (/OR)

If this switch is negated, the overlay run-time system and its associated control area will not be
included in an overlaid task. This type of task cannot be run in the normal way but might be
useful for special applications.

4-35

/SELECT (/SS)

/SELECT (/SS)

PDS QUALIFIER

/SELECT
/NOSELECT (Default)

MCRSWITCH

/SS
!-SS (Default)

file

input

effect

The Task Builder includes only the required symbol definitions from the specified :file as distinct
from all global symbols of that file. This qualifier is useful when an input :file is the symbol table
output (.STB file) of another task build, because it reduces the size of symbol table searches.

meaning

The input file is to be used only to define the required symbols.

4-36

/SEQUENTIAL (/SQ)

PDS QUALIFIER

/SEQUENTIAL
/NOSEQUENTIAL (Default)

MCRSWITCH

/SQ
/-SQ (Default)

file

task image

effect

/SEQUENTIAL (/SQ)

The Task Builder does not re-order the program sections alphabetically. This qualifier must not
be used for modules that rely upon alphabetical program section allocation; in IAS such modules
include FORTRAN 1/0 handling and File Control System modules from SYSLIB.

meaning

The task image is constructed from the specified program sections in the order stated in the
LINK command. Chapter 6, Section "Sequential Allocation of P-sections" describes the allocation
of the task image and gives an example that shows the allocation performed under the default
assumption and the allocation performed when the /SEQUENTIAL qualifier is specified.

4-37

/SYMBOLS[:filespec]

/SYMBOLS[:f ilespec]

PDS QUALIFIER

/SYMBOLS[:filespec]
11\.TO.QV'l\Jflt{)T _Q tn~.r.,. ... H'i
I .A.,'-'"'-".&. ..L'f.a."'-' '-".&.lfo..J \.&J,,;,.&.Q\.Ll.V/

MCRSWITCH

Include a symbol table file specification.

file

None

effect

If you specify filespec, you can omit the file type field. In this case, the Task Builder assumes it is
.STB.

If filespec is not specified, the first input file name becomes the symbol definition file name and
.STB becomes the file type.

meaning

Produce a symbol definition file.

4-38

/SYMBOLS:(filespec[/NO]UNDEFINED_SYMBOLS) (/UN)

/SYMBOLS:(filespec[/NO]UNDEFINED_SYMBOLS)
(/UN)

PDS QUALIFIER

/SYMBOLS:(filespec[/NO]UNDEFINED_SYMBOLS
/UNDEF (Default)

MCRSWITCH

/UN
/UN (Default)

file

symbol table

effect

None

meaning

The symbol table (STB) file is used to include references for symbols that were undefined in the
task. If this qualifier is negated, undefined symbols will be ignored when the STB file is generated.

4-39

/TASK[:filespec]

/TASK[:filespec]

PDS QUALIFIER

/TASK[:filespec]
/TASK (Default)

MCRSWITCH

Include a Task File specification.

file

None

effect

If you specify filespec, you can omit the file type. In this case, the Task Builder assumes the .TSK
filetype.

meaning

Produce a task image file.

4-40

/TRACE (/TR)

iTRACE (iTR)

PDS QUALIFIER

trRACE
/NOTRACE (Default)

MCRSWITCH

trR
/-TR (Default)

file

symbol table

effect

The Task Builder sets the T bit in the initial processor status (PS) word of the task. When the task
is executed, a trace trap occurs on the completion of each instruction.

meaning

The task is to be traced.

4-41

/WAIT_FOR_NODES (/WN)

/WAIT _FOR_NODES (/WN)

PDS QUALIFIER

/WAIT_FOR_NODES
r·l·lN (Default)

MCRSWITCH

/WN
/WN (Default)

file

task image

effect

Executive will stall the task and not allow the directive to complete until either sufficient nodes
have been obtained or a certain period (normally 500 clock ticks) has elapsed without finding
sufficient nodes. In the latter case an error return will be made to the task.

meaning

Many system directives require space to be allocated from the system node pool. If there is
insufficient space available, the use of this qualifier will cause the directive to wait a short time
for nodes to become available. If WAIT_FOR_NODES is not specified, and insufficient nodes are
available, an immediately error return will be made to the task.

4-42

5 Task Builder Options

Where more complex specifications are needed to describe a modification (for example, numeric
values, names or lists) you must use Task Builder options. The Task Builder options are identical
for both MCR and PDS users and are summarized in Table 5-1.

The task builder user includes options to supply task characteristics that require a more complex
specification than can be included using a qualifier (PDS) or switch (MCR).

You always input options as a result of a prompt. In PDS, you get the prompt "OPTIONS?" by
including the qualifier "/OPTIONS" in the command (see Section 2.2.5). In MCR, you get the
prompt "ENTER OPTIONS:" by typing a single slash (/) in response to a "TKB>" prompt (see
Section 3.1.3).

Options fall into six categories, each of which is identified by the following mnemonics:

1 ident

Identification options identify task characteristics. The task name, priority, (UIC), and
partition can be specified by the use of options in this category.

2 alloc

Allocation options modify the task memory allocation. The size of the stack, program-sections
in the task, and FORTRAN work areas and buffers can be adjusted by the use of options in
this category.

3 share

Storage sharing options indicate the task's intention to access a shareable global area.

4 device

Device specifying options specify the number of units required by the task and the assignment
of physical devices to logical unit numbers (LUNs).

5 alter

Content altering options define a global symbol and value or introduce patches in the task
image.

6 synch

Synchronous trap options define synchronous trap vectors.

Table 5-1 lists all the options alphabetically, including a brief description and interest range for
each. Some of these options are of interest to all users of the system, some only to the FORTRAN
programmer, and some primarily to the MACR0-11 programmer. The interest range is indicated
by the following codes:

• F-Of interest to FORTRAN programmers only.

• M-Of interest to MACR0-11 programmers only.

• FM-Of interest to both FORTRAN and MACR0-11 programmers.

5-1

Task Builder Options

The table also lists the mnemonic for the category to which the option belongs. The remainder of
the chapter gives more detailed descriptions of each option by category.

5-2

Task Builder Options

Note: Real-time users can override many of these options when the task is explicitly
installed. See the lAS PDS User's Guide or lAS MCR User's Guide.

If /NOOPTIONS is specified explicitly or by default in a PDS LINK command, the task
is linked to the system SGA SYSRES; see Chapter 9, Section 9.1.2.

Table 5-1 Task Builder Options

Option Meaning Interest Category

ABS PAT Declare absolute patch values. M alter

ACTFIL Declare number of files open simultaneously. FM alloc

ALVC Provide the user with ABSolute (default) and DEFerred FM alter
auto-load vectors.

ASG Declare device assignment to logical units. FM device

ATRG Declare the number of attachment descriptor blocks to be FM alloc
created in the task header.

BASE Define lowest virtual address. FM alloc

CMPRT Declares completion routine for supervisor-mode library. FM ident

EXTSCT Declare extension of a program section. M alloc

EXTTSK Extend task memory allocation at install time. M alloc

FMTBUF Declare extension of buffer used for processing format F alloc
strings at run-time.

GBLDEF Declare a global symbol definition. M alter

GBLINC Includes symbols in the .STB file M alter

GBLPAT Declare a series of patch values relative to a global symbol. M alter

GBLREF Declare a global symbol reference. FM alter

GBLXCL Declares global symbols to be excluded from the .STB file. H,M alter

IDENT Declares the identification of the task. H,M ident

MAXBUF Declare an extension to the FORTRAN record buffer. F alloc

MAX EXT Declare maximum task extension. FM alloc

ODTV Declare the address and size of the debugging aid M synch
synchronous system trap (SST) vector.

PAR Declare partition name and dimensions. FM ident

POOL Declare pool usage limit. FM alloc

PRI Declare priority. FM ident

RESAPR Reserve APRs for use by memory management directives. FM alloc

RESSGA Declare task's intention to access a shareable global area. FM share

RESSUP Declares task's intention to access a resident H,M share
supervisor-mode library.

SGA Declare task's intention to access a shareable global area FM share

STACK Declare the size of the stack. FM alloc

SUPLIB Declares task's intention to access a system-owned H,M share
supervisor-mode library.

SYMPAT Declare a series of symbolic patch values. M alter

5-3

Task Builder Options

Table 5-1 (Cont.) Task Builder Options

Option Meaning Interest category

TASK Declare the name of the task. FM ident

TOP Define highest virtual address. FM alloc

TSKV Declare the address of the task SST vector. M synch

UIC Declare the user identification code under which the task FM ldent
runs.

UNITS Declare the highest logical unit number. FM device

VSECT Declare the virtual base address and size of a program FM alloc
section.

5.1 Identification Options
The identification options are used to specify task identifying information. These options are of
interest to all real-time users.

The identification options specify the name of the task, the UIC, the priority, and the partition for
real-time tasks. The U1C can be specified by a real-time user when the task is explicitly installed
or when it is run. If such a specification is not made, the system uses the UIC established when
the task was built. The task runs under the most recently specified UIC.

These options have no effect if the task is run under timesharing.

The identification options are as follows:

• CMPRT (Completion Routine)

• ALVC (Auto-Load Vector)

• !DENT (Task Identification)

• PAR (Partition)

• PRI (Priority)

• TASK (Task Name)

• UIC (User Identification Code)

5-4

CMPRT (Completion Routine)

CMPRT (Completion Routine)

Use this option to identify a shared global area as a supervisor-mode library. The CMPRT option
requires an argument that specifies the entry point of the completion routine in the library. The
completion routine switches the processor from supervisor to user mode and returns program control
to the user task after the supervisor-mode library subroutine that was called from the user task has
executed.

Two completion routines are available in SYSLIB:

• $CMPCS restores only the carry bit in the user-mode PS.

$CMPAL restores all the condition code bits in the user-mode PS.

These routines per1orm all the necessary overhead to switch the processor from supervisor to
user mode and return program control to the user task at the instruction following the call to a
supervisor-mode library subroutine.

Although you can write your own completion routines, it is best to use either $CMPCS or $CMPAL
whenever possible.

SYNTAX
CMPRT=name

where:

• name= 1- to 6-character Radix-50 name identifying the completion routine.

default

None

5-5

ALVC (Auto-Load Vector)

ALVC (Auto-Load Vector)

The ALVC option selects either node access to ABSolute (default) or DEFerred auto-load vectors.

SYNTAX
A I''"" A""' ALY\,= fiO~

ALVC=DEF
where:

• ABS= Absolute addressing mode

• DEF = Deferred option

NOTE: 'lb replace $AUTO with your own auto-load routine, insert the name of the
user-suppled auto-load routine in .NAUTO and specify ALVC·DEF option at taskbuild
time. The RMS-11 V2.0 mapping routines use this method extensively. To intercept
references that require auto-load services, RMS-11 temporarily swaps the $AUTO
entry-point in .NAUTO with its own mapping routine. RMS-11 then sets the necessary
segments and window descriptors before it transfers control to the $AUTO routine.

default

ABS

5-6

IDENT (Task Identification)

IDENT (Task Identification)

The IDENT option changes the identification of the task from the one originally specified in the .IDENT
MACR0-11 statement in the first .MAC file to the one specified in the option.

If you do not use the IDENT option, the Task Builder uses the identification of the first input .MAC file
that it encounters.

SYNTAX
IDENT=name

where:

• name = Any 1- to 6-character Radix-50 name for use as task identification. You can use
any Radix-50 character that is correct for use in the MACR0-11 .IDENT statement.

default

TKB supplies no default name. If you use the IDENT option, you must specify a name.

5-7

PAR (Partition)

PAR (Partition)

Unless it is explicitly overridden when a task is installed or run, for real-time tasks, the PAR option
identifies the partition where the task runs.

NOTE: For timesharing tasks, the task runs in the timesharing partition irrespective of
this option.

SYNTAX
PAR=pname

where:

• pname =Name of the partition

default

Timesharing partition for tasks running under control of the timesharing scheduler.

The default partition (specified during system generation) for real-time tasks.

5-8

PRI (Priority)

PRI (Priority)

For real-time tasks, the PRI option declares the priority at which the task executes. If priority is not
specified when the task is installed, the priority deciared in the PRI option is used.

NOTE: For timesharing tasks, the task runs at the timesharing priority irrespective of
this option.

SYNTAX
PRI= priority-number

where:

• priority-number = Decimal integer in the range 1 - 250

default

System default priority.

5-9

TASK (Task Name)

TASK (Task Name)

The TASK option specifies the installed task name.

SYNTAX
TASK= task-name

where:

• task-name = 1- to 6-character alphanumeric name identifying the task.

default

For tasks run using the PDS RUN filename command, the task is run with a task name in the
following form:

• JOBnnn-For timesharing systems

• TTnnx-For multiuser systems, where nn = terminal unit number

For real-time tasks and tasks run using the MCR RUN filename command, the default taskname
is the first six characters of the task image file name.

5-10

UIC (User Identification Code)

UIC (User Identification Code)

For real-time tasks, the UIC option declares the UIC under which the task will run if no UIC was
specified at execution request or when the task was installed.

NOTE: On timesharing systems, the task runs under the UIC allocated when the user
logged in, irrespective of specification of the UIC option.

SYNTAX
UIC= [group,member]

where:

• group= Octal number in the range 1 - 377 that specifies the group.

• member = Octal number in the range 1 - 377 that specifies the member number.

default

The UIC determined from the user name at login time.

5-11

Task Builder Options

5.2 Allocation Options
The allocation options direct the Task Builder to change allocations affecting memory.

The allocation options are as follows:

• ACTFIL (Number of Active Files)

• ATRG (Attachment Descriptors)

• BASE (Base Address)

• EXTSCT (Program Section Extension)

• EXTTSK (Extend Task Space)

• FMTBUF (Format Buffer Size)

• MAXBUF (Maximum Record Buffer Size)

• MAXEXT (Maximum Extension)

• POOL (Pool Limit)

• RESAPR (Reserve APRs)

• STACK (Stack Size)

• TOP ('lbp Address)

• VSECT (Virtual Program Section)

5-12

ACTFIL (Number of Active Files)

ACTFIL (Number of Active Files)

The ACTFIL option declares the number of files that the task can have open simultaneously. For each
active file, an allocation of 520 bytes (or, if MAXBUF is specified, MAXBUF+S) is made.

if the number of active files used by a task is less than the default assumption of foui, you can use the
ACTFIL option to save space. If the number of active files is more than the default assumption, you
must use the ACTFIL option to direct the Task Builder to make the additional allocation so that the task
can run. If you use double buffered file control services (FCS), the ACTFIL specification must also be
doubled.

The FORTRAN object time system (OTS) and file control services (FCS) must be included in the
task image for the extension to take place. The p-section that is extended has the reserved name
"$$FSR1".

SYNTAX
ACTFIL= file-max

where:

• file-max = Decimal integer indicating the maximum number of files that can be open at the
same time.

default

ACTFIL = 4

5-13

ATRG (Attachment Descriptors)

ATRG (Attachment Descriptors)

The ATRG option declares the number of attachment descriptors blocks to be created in the task
header.

SYNTAX
ATRG= max-regions

where:

• max-regions= Decimal integer in the range 0 to 240 that declares the maximwn nwnber
of regions to which the task can simultaneously attach. Attachment descriptor blocks are
automatically generated for resident overlays and SGAs.

deiauit

ATRG=O

5-14

BASE (Base Address)

BASE (Base Address)

The BASE option specifies the base address of the task to be at a particular 4K boundary.

Use the BASE option when you create SGA images that are not position-independent. The BASE (and
TOP) options are primarily used to locate SGAs and must not be used when building normal tasks.

Task image addresses are normally allocated upward from zero. A non-position-independent library file
must appear in the same virtual address range of each task that shares it. To avoid conflicts with task
addresses, you can allocate the library toward the top of the virtual address range (that is, 140000 to
17n76), by using a base address declaration (see also Section "TOP").

The BASE option overrides any previous TOP specification.

SYNTAX
BASE= bound:high

BASE= bound:low
where:

• bound = Decimal number between 0 and 28 that specifies the lowest 4K boundary of the
image.

default

0

5-15

EXTSCT {Program Section Extension)

EXTSCT (Program Section Extension)

The EXTSCT option declares an extension in size for a p-section. P-sections and their attributes are
described in Chapter 6, Section 6.1 .9.

If the p-section has the attribute CON (concatenated), the section is extended by the specified number
of bytes. If the p-section has the attribute OVA (over1ay), the section is extended only if the length of
the extension is greater than the length of the p-section.

For example, suppose that p-section BUFF is 200 bytes long and the option below is given:

EXTSCT = BUFF:250

The extension specified for the p-section depends on the CON/OVA attribute; specifically:

CON-The extension is 250 bytes.

OVA-The extension is 50 bytes.

The extension occurs when the p-section name is encountered in an input object file or in the overlay
description file.

SYNTAX
EXTSCT = p-sect-name:extension

where:

• p-sect-name = 1- to 6-character alphanumeric name that specifies the p-section to be
extended.

• extension = Octal integer that specifies the nu..Tiber of bytes by which to extend the
p-section.

default

None

5-16

EXTTSK (Extend Task Space)

EXTTSK (Extend Task Space)

The size of the read/write space of the task is to be extended at Install time.

This parameter can be overridden by the Install or Run qualifier /INCREASE. If the EXTTSK option has
been overridden, the task must be removed and reinstalled without the /INCREASE qualifier to revert
back to the EXTTSK option.

This option is used in conjunction with the .LIMIT directive to the assembler and the system directive
Get Task Parameters. It is useful in saving disk space that would otherwise be allocated (for example,
for initially empty buffers). The Install /INCREASE qualifier provides the ability to vary the size of such
buffers.

SYNTAX
EXTTSK= task-extension

where:

• task-extension = Decimal nwnber of words by which Install extends the upper read/write
area of the task. The value is rounded up to the next 32-word block boundary.

default

0

5-17

FMTBUF (Format Buffer Size)

FMTBUF (Format Buffer Size)

The FMTBU F option declares the length of internal working storage allocated for the parsing of format
specifications at run-time. The length of this area must equal or exceed the number of characters in the
longest format string to be processed.

Run-time piOcessing occurs whenever an array is referenced as the source of formatting information
within a FORTRAN 1/0 Statement. The program section to be extended has the reserved name
"$$0BF1".

SYNTAX
FMTBUF= max-format

where:

• max-format= Decimal integer larger than the default that specifies the number of
characters in the longest format specification.

default

FMTBUF = 132

5-18

MAXBUF (Maximum Record Buffer Size)

MAXBUF (Maximum Record Buffer Size)

The MAXBUF option declares the maximum record buffer size required for all files used by the task.

Use this option whenever you process a file where the maximum record size exceeds the default buffer
iength specified during system generation.

The FORTRAN Object Time System must be included in the task image for the extension to take place.
The p-section that is extended has the reserved name "$$1081".

SYNTAX
MAXBUF= max-record

where:

• max-record = A decimal integer, larger than the default, that specifies the maximum record
size in bytes.

default

MAXBUF = 132

5-19

MAXEXT (Maximum Extension)

MAXEXT (Maximum Extension)

The MAXEXT option declares the maximum number of 32-word blocks by which the task can extend
itself. To perform this extension, use the Extend Task directive (EXTK$) or the EXTTSK FORTRAN
subroutine. The /AS System Directives Reference Manual describes the EXTK$ directive fully.

SYNTAX
MAXEXT = maximum-extension

where:

• maximum-extension= Octal number of 32-word blocks in the range 0-2000.

default

MAXEXT = 2000

5-20

POOL (Pool Limit)

POOL (Pool Limit)

The POOL option declares the maximum number of 8-word pool nodes that the task can use
simultaneously. Use these pool nodes for forming 110 request nodes and to process certain system
directives. For a full description of system node pool usage, see the IAS Executive Facilities Reference
Manual. If the task POOL allocation is too small, directives might fail with the error IE.UPN (unavailable
pool node).

SYNTAX
POOL= pool-limit

where:

• pool-limit = Decimal number of 8-word nodes in the range 1 to 255. For multiuser tasks
this indicates the pool limit for each version.

default

POOL=40

5-21

RESAPR (Reserve APRs)

RESAPR (Reserve APRs)

The RESAPR option reserves APRs for use at runtime by the Memory Management directives.

The task builder does not allocate the APRs specified in the directive Builder for resident overlays,
global areas, or the task pure area.

SYNTAX
RESAPR= a 1 [:a2 ...]

where:

• al:a2: ... = APRs (in the range 1 to 7) to be reserved

default

None

5-22

STACK (Stack Size)

STACK (Stack Size)

The STACK option dedares the maximum size of the stack required by the task.

The stack is an area of memory used for temporary storage, subroutine calls, and interrupt service
linkages. The stack is referenced by hardware register SP (the stack pointer).

SYNTAX
STACK= stack-size
where:

• stack-size = Decimal integer that specifies the number of words required for the stack.

default

STACK=256

5-23

TOP (Top Address)

TOP (Top Address)

The TOP option declares the ending address of a task to be within a 4K boundary.

This option is the same as the BASE option except that it allows definition of the last 4K boundary
rather than the first 4K boundary.

The TOP option overrides any previous BASE specification.

SYNTAX
TOP= bound:high

TOP= bound:low
where:

• bound = Decimal number between 0 and 28 that specifies the highest 4K boundary of the
image.

default

None

5-24

VSECT (Virtual Program Section)

VSECT (Virtual Program Section)

The VSECT option enables you to specify the virtual base address, virtual length, and physical memory
allocated to the p-section.

SYNTAX
VSECT = p-section name:base:window:[:physical-length]

where:

• p-sect-name = 1- to 6-character program section name.

• base = Octal value specifying the virtual base address of the program section in the range
0-177777. This value must be a multiple of 4K if used with the mapping directives.

• window = Octal value specifying the amount of virtual address space allocated to the
p-section. Base plus window size must not exceed 177777 (octal).

• physical length = Octal value specifying the amount of physical memory to be allocated to
the section in units of 64-byte blocks. This value, when added to the task image size (and
any previous allocation) must not cause the total to exceed 2.2 million bytes. If unspecified,
zero is asswned.

default

Window defaults to the value allocated; physical length defaults to zero.

5-25

5.2.1

Task Builder Options

Example of Allocation Options
If the FORTRAN routines contained in file GRPl use eight files simultaneously, and the maximum
record length in one of these files is 160 characters, you can use the following terminal sequence to
build the task:

or:

PDS> LINK/TASK:IMGl/MAP:MPl/OPTIONS
FILE? GRPl
OPTIONS? ACTFIL=B
OPTIONS? MAXBUF=160
OPTIONS? /

TKB>IMGl,MPl=GRPl
TKB>/
ENTER OPTIONS:
TKB>ACTFIL=B
TKB>MAXBUF=160
TKB>/

5.3 Storage-Sharing Options
You can use two options to indicate a task's intention to access an SGA.

1 SGA option

Use the SGA option to access public SGAs that contain commonly used routines or data. The
task and symbol table files are expected to reside in UFD[l,1] on the pseudo device LBO:
(normally the system disk).

2 RESSGA option

Use the RESSGA option to specify a device and UFD. You can also use this option to access
SGAs that are private to a single user or group of users.

It is sometimes necessary to control access by non-owners to a data area or to enable writing to
a code area. The access required by a particular task (read-only or read/write) and declared in
either the SGA or RESSGA option is always subject to the access granted to non-owners by the
SGA itself. The latter (read-only, read/write or no access) is determined when the SGA is installed.
See the IAS PDS User's Guide or the IAS MCR User's Guide for a description of the appropriate
INSTALL command.

The IAS Executive Facilities Reference Manual describes the different types of SGAs you can use.

Note: H /NOOPTIONS was specified explicitly or by default in a PDS LINK command,
the task is automatically linked to the public SGA SYSRES. See Chapter 9, Section 9.1.2.

The storage-sharing options are as follows:

• RESSGA (Shareable Global Area)

• RESSlJP (Resident Supervisor-Mode Library)

• SGA (Shareable Global Area)

5-26

RESSGA (Shareable Global Area)

RESSGA (Shareable Global Area)

The RESSGA option declares a shareable global area for use by the task. RESSGA enables a full
file-specification.

NOTE: The RESSGA option supersedes the RESCOM and RESLIB options in previous
versions of IAS. RESCOM and RESLIB are still recognized by the Task Builder for
compatibility. Their effect is identical to that of specifying RESSGA.

SYNTAX
RESSGA = tilespeclaccess-code[:apr]

where:

• filespec = Form dev:[ufd]filnam. No filetype can be specified and "filnam" must be six
characters or less, since it is also the name of the shareable global area.

• access-code = As for the SGA option.

• apr =As for the SGA option.

default

dev: and [ufd] default to the user default device and UFD.

5-27

RESSUP (Resident Supervisor-Mode Library)

RESSUP (Resident Supervisor-Mode Library)

The RESSUP option declares that your task intends to access a user-owned, supervisor-mode library.
The term user-owned means that the library and the symbol definition file associated with it can
reside under any UFO that you choose. You can specify the UFO and remaining portions of the file
specification. You must not place comments on the line with RESSUP.

SYNTAX
RESS UP= file-specificationl{-]S V[:apr]

where:

•
•

•

file-specification = Memory image file of the supervisor-mode library .

/[-]SV = Code /SV or /-SV to indicate whether TKB includes mode-switching vectors within
the user task. If you specify /SV, TKB includes a 4-word, mode-switching vector within
the address space of the user task for each call to a supervisor-mode library subroutine. If
you specify /-SV, you must provide your own mode-switching vector. Providing your own
mode-switching vectors is useful if your library contains threaded code. It is best to use the
system-supplied vectors whenever possible.

apr =Integer in the range 0 through 7 that specifies the first Supervisor Active Page
Register that you want TKB to reserve for your supervisor-mode library. You can specify
an APR only for position-independent, supervisor-mode libraries. The default is the lowest
available APR.

The library at virtual 0 must have the CSM dispatcher present in the system-supplied
completion routine described in Chapter 9.

NOTE: TKB expects to find a symbol definition file with the same name as that of the
memory image file but with a file type of .STB, on the same device and under the same
UFD as that of the memory image file.

Regardless of the version number you give in the file specification, TKB uses the latest
version of the .STB file.

default

When you omit portions of the file specification, the following defaults apply:

$ Tem1inal default directori

• Device--SYO:

• File type--.TSK

• File version-La test

5-28

SGA (Shareable Global Area)

SGA (Shareable Global Area)

The SGA option declares a shareable global area residing on LBO: under [1, 1] for use by the task.

NOTE: The SGA option supersedes the COMMON and LIBR options in previous versions
of IAS. COMMON and LIBR are still recognized by the Task Builder for compatibility.
Their effect is identical to specifying SGA..

SYNTAX
SGA= SGA-name:access-code[:apr]

where:

• SGA-name = 1- to 6-character alphanumeric name of the SGA.

• access-code= Either RW (read/write) or RO (read-only) to indicate the type of access
required for the task.

• apr =Integer in the range 1 to 7 that specifies the first Active Page Register to be
reserved for the common block. The apr is optional but must not be specified for
non-position-independent common areas.

default

None

5-29

SUPLIB (Supervisor-Mode Library)

SUPLIB (Supervisor-Mode Library)

This option declares that your task intends to access a system-owned, supervisor-mode library. The
term system-owned means that TKB expects to find the supervisor-mode library and the symbol
definition file associated with it in UFO [1, 1] on device LB:.

SYNTAX
SUPLIB= name:[-]SV[:apr]

where:

• name= 1- to 6-character Radix-50 name specifying the system-owned, supervisor-mode
library. TKB expects to find a symbol definition file having the same name as that of the
library with a file version of .STB under [1,1] of device LB:.

• :[-JSV =Code /SV or /-SV to indicate whether TKB includes mode-switching vectors within
the user task. If you specify /SV, TKB includes a 4-word mode-switching vector within the
address space of the user task for each call to a supervisor-mode library subroutine. If
you specify /-SV, you must provide your own mode-switching vector. Providing your own
mode-switching vectors is useful if your library contains threaded code. It is best to use the
system-supplied vectors whenever possible.

• apr = Integer in the range of 0 through 7 that specifies the first Supervisor Active
Page Register that TKB is to reserve for the library. You can specify an APR only for
position-independent, supervisor-mode libraries. The default is the lowest available APR.
The library at virtual 0 must have the CSM dispatcher present in the system-supplied
completion routine described in Chapter 9.

default

None

5-30

5.3.1

Task Builder Options

Example of Storage Sharing Options
If the task composed of the MACR0-11 programs TSTl and TST2 accesses a shareable common
area DTST that contains data, and a shareable library area STST that contains code, both held in
LBO:[l,l], you can use the following terminal sequence to build the task:

or:

PDS> LINK/TASK:CHK/MAP/OPTIONS
FILE? TST1,TST2
OPTIONS? SGA=DTST:RW
OPTIONS? SGA=STST:RO
OPTIONS? /

TKB>CHK,LP:=TST1,TST2
TKB>/
ENTER OPTIONS:
TKB>SGA=DTST:RW
TKB>SGA=STST:RO
TKB>/

If the shareable global areas are not in LBO:[l,1]:, you can use the following sequence for the same
task:

or:

PDS> LINK/TASK:CHK/MAP/OPTIONS
FILE? TSTl, TST2
OPTIONS? RESSGA=[200,30]DTST/RW
OPTIONS? RESSGA=DBl: [200,30]STST/RO
OPTIONS? /

TKB>CHK,LP:=TST1,TST2
TKB>/
ENTER OPTIONS:
TKB>RESSGA=[200,30]DTST/RW
TKB>RESSGA=DBl: [200,30]STST/RO
TKB>/

5.4 Device Specifying Options
The two options in this category are of interest to all system users. The UNITS option declares
the maximum logical input/output unit number (LUN) that the task uses. All integers from one
through the declared maximum are then made available to the task. The ASG option declares the
devices that are assigned to these LUNs.

The maximum LUN declared cannot be less than the highest unit assigned.

Since the options are processed as they are encountered, to increase the number of LUN s and
assign devices to these LUNs you should enter the UNITS option first, then the ASG option.
Entering the options in the reverse order can produce an error message.

The device specifying options are as follows:

• ASG (Device Assignment)

• UNITS (Logical Unit Usage)

5-31

ASG (Device Assignment)

ASG (Device Assignment)

The ASG option declares the physical device that is assigned to one or more units.

SYNTAX
ASG= device-name:unit-num-1 :unit-num-2: ... :unit-num-n

where:

• device-name= 2-character alphabetic device name followed by a 1or2-digit decimal unit
number.

• unit-num-1 =Decimal integers indicating the unit-num-2 logical unit numbers .

•
• unit=num-n

default

ASG = SY0:1:2:3:4, TI0:5, CL0:6

5-32

UNITS (Logical Unit Usage)

UNITS (Logical Unit Usage)

The UNITS option declares the maximum logical unit number used by the task.

SYNTAX
UNITS= max-units

where:

• max-units= Decimal integer in the range 0 to 250 which specifies the maximum logical
unit number.

default

UNITS= 6

5-33

5.4.1

Task Builder Options

Example of Device Specifying Options
Suppose the FORTRAN programs specified in the file GRPl require nine logical units. The device
assignments for units 1 through 6 agree with the default assumptions and logical units 7,8 and
9 are assigned to DECtape 1 (DTl). The command sequence of the example shown in Section
"MAXEXT" is changed to include device assignment options, as follows:

or:

PDS> LINK/TASK:IMGl/MAP:MPl/OPTIONS
FILE? GRPl

OPTIONS? ASG=DT1:7:8:9
OPTIONS? /

TKB>IMGl,MPl=GRPl
TKB>/
ENTER OPTIONS:
TKB>UNITS=9
TKB>ASG=DT1:7:8:9
TKB>/

5 .. 5 Storage Altering Options
These options alter the task image and are of interest primarily to the MACR0-11 programmer.
The GBLDEF option declares a global symbol and value. The options ABSPAT, GBLPAT and
SYMPAT introduce patches into the task image.

The storage altering options are as follows:

• ABSPAT (Absolute Patch)

• GBLDEF (Global Symbol Definition)

• GBLINC (Include Global Symbols)

• GBLPAT (Global Relative Patch)

• GBLREF (Global Symbol Reference)

• GBLXCL (Exclude Global Symbols)

• SYMPAT (Symbolic Patch)

5-34

ABSPAT (Absolute Patch)

ABSPAT (Absolute Patch)

The ABSPAT option declares a series of patches starting at the specified base address. Up to eight
patch values can be given.

NOTE: All ABSPAT patches must he within the segment memory limits or a fatal error
is generated.

SYNTAX
ABSPAT = seg-name:address:va/-1 :val-2: ... :val-8

where:

• seg-name = 1- to 6-character alphanumeric name of the segment.

• address = Octal address of the first patch. The address can be on a byte boundary, but two
bytes are always modified for each patch.

• val-1 = Octal number in the range 0 to 177777 to be assigned to address.

• val-2 = Octal number in the range 0 to 177777 to be assigned to address+2.

• val-8 = Octal number in the range 0 to 177777 to be assigned to address+16(octal).

default

None

5-35

GBLDEF (Global Symbol Definition)

GBLDEF (Global Symbol Definition)

The GBLDEF option declares the definition of a global symbol.

The symbol definition is considered absolute.

SYNTAX
GBLDEF= symbol-name:symbol-value

where:

• symbol-name = 1- to 6-character alphanumeric name of the defined symbol.

• symbol-value = Octal number in the range 0 to 177777 that is assigned to the defined
symbol.

default

None

5-36

GBLINC (Include Global Symbols)

GBLINC (Include Global Symbols)

The GBLINC option directs TKB to include the symbol or symbols specified in this option in the .stb
file being generated by the link operation where this option appears. This option is intended for use
when you create shared global areas, in particular shared libraries, when you want to force particular
modules to be linked to your task that reference this library. The global symbol references specified by
this option must be satisfied by some module or GBLDEF specification when you build the task.

SYNTAX
GB LINC= symbol-name,symbol=name, ... , symbol-name

where:

• symbol-name= Symbol to be included.

default

None·

5-37

GBLPAT (Global Relative Patch)

GBLPAT (Global Relative Patch)

The GBLPAT option declares a series of patch values starting at an offset relative to a global symbol.
Up to eight patch values can be given.

SYNTAX
GBLPAT = seg-name:sym-name[+l-offset]:val-1 :val-2: ... :val-8

where:

• sym-name = 1- to 6-character alphanumeric name that specifies the global symbol.

• offset = Octal number used to specify the offset from the global symbol.

• seg-name = Identical to that defined for ABSPAT

• val-1

• val-2

•
• val-8

default

None

5-38

GBLREF {Global Symbol Reference)

GBLREF (Global Symbol Reference)

The GBLREF option declares a global symbol reference. The reference originates in the root segment
of the task.

SYNTAX
GBLREF= symbol-name

where:

• symbol name = 1- to 6-character name of a global symbol reference

default

None

5-39

GBLXCL (Exclude Global Symbols)

GBLXCL (Exclude Global Symbols)

The GBLXCL option keyword directs TKB to exclude from the symbol definition file of a shared global
area the symbol(s) specified in the option.

SYNTAX
GBLXCL= symbol-name,symbol-name ... ,symbol-name

where:

• symbol-name= Symbol(s) to be excluded.

default

None

5-40

SYMPAT (Symbolic Patch)

SYMPAT (Symbolic Patch)

The SYMPAT option declares a series of symbolic patch values starting at an offset relative to a global
symbol. Up to three patch values can be given.

All patches must be within the segment address limits. if they are not, or if a segment does not exist,
or if a specified symbol can not be found in the segment, a diagnostic error is generated.

All symbols used in the value specification must already be defined or referenced within the segment
being patched. The SYMPAT directive cannot be used to create a new reference from one segment to
a symbol defined in another.

SYNTAX
SYMPAT = seg-name:sym-name{+l-offset]:val-1 [:val-2[:val-3]]

where: [::~:=e] [are identical to those defined for GBLPAT
offset

• val-n = One of the following formats:

sym-name
sym-name+o:ffset
sym-name-offset
literal
-literal

where:

• sym-name = 1- to 6-character name of a symbol defined or referenced in the segment.

• offset = Octal number in the range 0 to 177777.

• literal = Octal number in the range 0 to 177777.

5-41

5.5.1

Task Builder Options

Example of Storage Altering Options
Suppose that in the example composed of the MACR0-11 programs TSTl and TST2, GAMMA is
a referenced symbol whose value is to be specified when the task is built. The user defines the
symbol GAMMA to have the value 25 and introduces 10 numerical patch values at addresses
relative to the global symbol DELTA. The user also introduces patch values at addresses relative
to the global symbols ALPHA and BETA. Some of these values are themselves in symbolic form.

The terminal sequence of the example shown in Section "SUBLIB" is modified to include the
options GBLPAT, GBLDEF and SYMPAT as follows:

or:

PDS> LINK/TASK:CHK/MAP:LPO:/OPTIONS
FILE? TST1,TST2
OPTIONS? SGA=DTST:RW:S,STST:RO
OPTIONS? GBLDEF=GAMMA:25
OPTIONS? GBLPAT=TST1:DELTA:l:5:10:15:20:25:30:35
OPTIONS? GBLPAT=TSTl:DELTA+20:40:45
OPTIONS? SYMPAT=TSTl:ALPHA:PSI:EPSLON-20:30
OPTIONS? SYMPAT=TSTl:BETA+20:12737:PSI+l:MU
OPTIONS? /

TKB>CHK,LP:=TST1,TST2
TKB>/
ENTER OPTIONS:
TKB>SGA=DTST:RW:S,STST:RO
TKB>GBLDEF=GAMMA:25
TKB>GBLPAT=TSTl:DELTA:1:5:10:15:20:25:30:35
TKB>GBLPAT=TSTl:DELTA+20:40:45
TKB>SYMPAT=TSTl:ALPHA:PSI:EPSLON-20:30
TKB>SYMPAT=TST1:BETA+20:12737:PSI+l:MU
TKB>/

5.6 Synchronous Trap Options
Two options are available to declare that the specified vector address is to be preloaded into the
task header, thus enabling the task to receive control on the occurrence of synchronous traps.
These options are of interest primarily to the MACR0-11 programmer.

The synchronous trap options are as follows:

• ODTV (ODT SST Vector)

• TSKV (Task SST Vector) [list-element] ...

5-42

ODTV (ODT SST Vector)

ODTV (ODT SST Vector)

The ODTV option declares a global symbol to be the address of the ODT SST vector. The defined
global symbol must exist in the part of the task that is always in memory.

SYNTAX
ODTV = symbol-name.-vector-length

where:

• symbol-name = 1- to 6-character alphanumeric name of a global symbol.

• vector-length = Decimal integer in the range of 1 to 32 that specifies the length of the SST
vector in words.

default

None

5-43

TSKV (Task SST Vector)

TSKV (Task SST Vector)

The TSKV option declares a global symbol as the address of the task SST vector. The defined symbol
must exist in the part of the task that is always in memory.

SYNTAX
TSKV = symbol-name:vector-length

where:

• symbol-name = As defined for ODTV vector-length

default

None

5-44

Task Builder Options

5.7 Example: CALC.TSK;2

5.7.1

5.7.2

Suppose that in the first execution of the task CALC, several logical eITors are found. The user
corrects the program and is now ready to make the changes in the program and some adjustments
in the task image file based on the information obtained about the size of the task in the first task
build.

In this example, the user modifies the text file for the program, recompiles the program, and
rebuilds the task so that only one active file buffer is reserved.

Correcting the Errors in Program Logic
The FORTRAN source language for the program "RDIN.FTN" is corrected as follows:

C READ AND A."'1ALYZE INPUT DATA
C SELECT A PROCESSING ROUTINE
c
C ESTABLISH COMMON DATA BASE
c
COMMON /DTA/ A(200), I
C READ IN RAW DATA
READ (6,1) A
1 FORMAT (200 F6.2)

CALL PROCl

CALL RDl

CALL RPRT
END
SUBROUTINE RDl

RETURN
END

Next, the program "RDIN.FTN" is recompiled as follows:

PDS> FORTRAN RDIN

or:

MCR>FOR RDIN,RDIN=RDIN

Observe that the corrections to "RDIN.FTN" included the addition of a subroutine "RDl". The
object file produced by the FORTRAN compiler as a result of the above terminal sequence now
contains two object modules.

Building the Task
The user knows from the program logic that only one file is open at a time, but the Task Builder
assumes that four files are open simultaneously. Therefore, the user can use the ACTFIL option to
reduce the space required for the task.

5-45

Task Builder Options

The task is built with the following terminal sequence:

or:

PDS> LINK/TASK: CALC. TSK; 2/MAP: (/SHORT) /OPTIONS
FILE? RDIN,PROCl,RPRT
OPTIONS? PAR=GEN
OPTIONS? ACTFIL=l
OPTIONS? /

TKB>CALC;2,LP:=RDIN,PROC1,RPRT
TKB>/
ENTER OPTIONS:
TKB>PAR=GEN
TKB>ACTFIL=l
TKB>/

The effect of these options on the memory allocation is seen in Chapter 6, Section 6.5. After the
description of the task and memory allocation files, the memory allocation :files for the first two
examples are given.

5-46

6 Memory Allocation

This chapter describes the allocation of task and system memory. The memory allocation file is
described in detail and examples of memory allocation files are given. The memory allocation
files for the example CALC.TSK;l of Chapter 2 and CALC.TSK;2 of Chapter 3 are included and
analyzed. The effect of the options used in CALC.TSK;2 can be observed by comparing the two
memory allocation files.

6.1 TASK MEMORY
Task memory in IAS consists of a header, a stack, and a set of areas called program sections
(p-sections). Each p-section has attributes from which the Task Builder can determine its base and
length.

Task memory layout for a single-segment task is shown in Figure 6-1.

Figure 6-1 Task Memory Layout

RIO AREA
~~~~~~~~.,,,._~4KBOUNDARY 

::: } RESIDEITTOVER~YS 
TASK EXTENSION 

RJVl/CODE 

I ~i------------4} IMPURE AREA v I POIITTERS 
i--~~~~~~~----

STACK 

LOW CORE VECTORS 

l~l DIRECTIVESTATIJSWORD I' 
-- , TASKVIRTUALO 

--~~~~~~~-

TASK HEADER 

6-1 



6~ 1~1 

~ .. ,.,. o. 1.11:. 

6.1.3 

6.1.6 

Memory Allocation 

Task Header 
The task header contains task parameters and data required by the Executive for controlling 
execution of a task. It also provides an area for saving information about the task when a switch is 
made to another task. It is resident at all times when the task is resident, but is not a part of the 
task's virtual address space. Further details about the task header can be found in Appendix C, 
Section C.2 and in the IAS Executive Facilities Reference Manual. 

Directive Status "Vord (DS"V) 
Virtual location zero of every IAS task is a word reserved for the Executive to report the status of 
all executive directives issued by the task. This is known as the Directive Status Word (DSW). 

Impure Area Pointers 
The words following the directive status word are used as pointers to the following areas of the 
task. 

Address 

2 

4 

6 

10 

Use 

Address of FCS data storage area 

Address of FORTRAN-OT$ work area 

Address of overlay run time system work area 

Address of the vector extension area 

Like the Directive Status Word, these parameters occupy the low address end of the task stack. 

Stack 
A default stack of 256(decimal) words is allocated for each task. The STACK= option may be used 
to override this allocation. A STACK=O specification is useful in building shareable global areas 
which do not require a stack. 

Read/Write Task Code (and Data) 
The WW p-sections of a task are concatenated after the end of the stack. The memory allocation is 
rounded up to a 32(decimal) word boundary by the addition of dead space. 

Task Extension 
Task extension is the extension to the task requested when the task is built (with the EXTTSK 
option), or installed or run (with the /INCREMENT or /INC qualifier). 

6-2 



6.1.7 

6.1.8 

6.1.9 

Memory Allocation 

Resident Overlays 
Each resident overlay segment, whether read/write or read-only, begins on a 4K virtual address 
boundary. Parallel branches of the overlay tree are allocated the same virtual addresses. The 
addresses allocated are placed high in the task's address space, in order to leave sufficient room for 
task extension. 

Read-Only Task Code (and Data) 
If there are p-sections in the task which have the read-only attribute (read/write is the default), the 
Task Builder concatenates them, and allocates them separately from R/W p-sections. Memory for 
read-only p-sections is allocated at the highest possible virtual address (starting at a 4K boundary). 
This allows as much room as possible for the task to be extended. 

Note that ODT cannot be used to modify read-only parts of a task. This also means that 
breakpoints cannot be set in such code. The PDS qualifier /READ_ WRITE (MCR switch /RW) 
can be used when debugging such tasks to inhibit the generation of read-only code. 

Program Sections (P-sections) 
A program section (p-section) is the basic unit of memory allocation for the task. A source language 
program is translated into an object module consisting of p-sections. For example, the object 
module produced by compiling a typical FORTRAN program consists of a p-section containing 
the code generated by the compiler, a p-section for each common block defined in the FORTRAN 
program, and a set of p-sections required by the FORTRAN Object Time System. 

A name and a set of attributes are associated with each p-section. The p-section attributes are 
given in Figure 6-1. 

The scope-code and type-code are only meaningful when an overlay structure is defined for the 
task. The scope-code is described in connection with the resolution of p-sections in Chapter 7, 
Section ''Resolution of Global Symbols in a Multi-segment Task". The type-code is described in 
connection with the generation of autoload vectors in Chapter 8, Section 8.1.3. The memory-code is 
not used by the Task Builder. 

The access-code and alloc-code are used by the Task Builder to determine the placement and the 
size of the p-section in task memory. 

The Task Builder divides storage into read/write and read-only memory and places the p-sections 
in the appropriate area according to access-code. 

The alloc-code is used to determine the starting address and length of p-sections with the same 
name. If the alloc-code indicates that p-sections with the same name are to be overlaid, the Task 
Builder places each reference at the same position in task memory and determines the total 
allocation from the length of the longest reference. If the alloc-code indicates that p-sections with 
the same name are to be concatenated, the Task Builder places each reference one after another in 
task memory and determines the total allocation from the sum of the lengths of each reference. 

When a p-section has the concatenate attribute, all references to that p-section are placed one after 
another in task memory. If any of these references ends on a byte boundary, the next reference to 
that p-section is not word-aligned. 

6-3 



Memory Allocation 

Table 6-1 P-sectlon Attributes 

Attribute 

access-code 

type-code** 

scope-code 

alloc-code 

reloc-code 

memory-code*** 

Value Meaning 

RW* (read/write). Data can be read from and written into the p-section. 

RO (read-only). Data can be read from, but cannot be written into the 
p-section. This attribute is overridden if the task is built with the 
/READ-WRITE PDS qualifier (MCR switch /RW). 

D 
i~ 

GBL 

LCL* 

CON* 

(data). The p-section contains data. 

(instruction). The p-section contains instructions. 

(global). The p-section name is considered to cross segment 
boundaries. The Task Builder allocates storage for the p-section from 
references outside the defining segment. 

{local). The p-section name is considered only within the defining 
segment. The Task Builder allocates storage for the p-section from 
references within the defining segment only. 

(concatenate). P-sections with the same name are concatenated. The 
total allocation is the sum of the individual allocations. 

OVA {overlay). P-sections with the same name overlay each other. The total 
allocation is the length of the longest individual allocation. 

REL* 

ABS 

HIGH 

(re!ocatab!e). Storage in the p-section is allocated relative to the start of 
the p-section. 

(absolute). Storage in the p-section is always allocated relative to the 
program's virtual zero. 

(high). The p-section is to be loaded into high speed memory. 

LOW* (low). The p-section is to be loaded into core. 

-Indicates the default attribute 
-Not to be confused with the I and D space hardware on the PDP 11 /44, 11 /45, 11 /55 and 11170. 

*** -Not implemented 

6.1.1 O Allocation of P-sections 
Suppose you enter the following command: 

PDS> LINK/TASK:IMGl/MAP:MPl 
FILE? IN1,IN2,IN3,LBR1/LB 

or 

MCR>TKB IMG1,MP1=IN1,IN2,IN3,LBR1/LB 

You are directing the Task Builder to bui1d a task image file, IMGl.TSK, and a memory allocation 
file, MPl.MAP, from the input files INl.OBJ, IN2.0BJ, and IN3.0BJ, and to search the library file 
LBRl.OLB for any undefined global references. Suppose the input files are composed of p-sections 
with the foiiowing access-codes, alloc-codes, and sizes: 

6-4 



Memory Allocation 

P-section Access Alloc Size 
File-name Name Code Code (octal) 

!N1 B RW CON 100 

A RW OVR 300 

c RO CON 150 

IN2 A RW OVR 250 

B RW CON 120 

IN3 c RO CON 50 

First, the Task Builder collects all p-sections with the same name to determine the allocation for 
each uniquely named p-section. 

In this example, there are two occurrences of the p-section named B with attributes RW and CON. 
The total allocation for B is the sum of the lengths of each reference; that is, 100 + 120 = 220. 
There are two occurrences of the p-section named A with attribute OVR; therefore the allocation 
for A is equal to the larger of the two references, that is, the 300 required for p-section A of file 
INl is used. The allocation for each uniquely named p-section then is: 

P-sectlon 
Name 

B 

A 

c 

Total 
Allocation 

220 

300 

200 

The Task Builder then re-organizes the p-sections alphabetically and places them in memory 
according to their access-code, as follows: 

C(200) ~ Readonly 

B(220) 

Read/Write task memory 
A(300) 

stack 

header _J 
Sequential Allocation of P-sections 

The /SEQUE~"TIAL PDS qualifier (/SQ MCR switch) affects only the placement of p-sections 
in task memory. P-sections with the same name and attributes are collected as described; then 

6-5 



Memory Allocation 

uniquely named p-sections are placed in memory in the order of input sequence according to the 
access-code. 

Suppose you add the /SEQUENTIAL PDS qualifier (/SQ MCR switch) to the previous example: 

or: 

PDS> LINK/TASK:IMGl/SEQ/MAP:MPl 
FILE? IN1,IN2,IN3,LIBR1/LIB 

MCR>TKB IMGl/SQ,MP1/-SP,MPl=IN1,IN2,IN3,LIBR1/LB 

The Task Builder collects the p-sections and places them in memory in the input sequence, as 
follows: 

C(200) ~ Read only 

A(300) l Read/Write taskmemocy 
B(220) _J 

stack 

header 

The Task Builder concatenates or overlays the storage requirements of a .PSECT into one 
allocatable piece of storage. This allocatable piece is currently word aligned by default. This 
feature was purposely built into the Task Builder so that alignment could be supported at a later 
date. The user has three alternatives: 

1 Allocate all byte aligned data in a separate concatenated .PSECT. 

2 Put all data at the front of a program so that the assembler can flag any misalignment. 

3 Use .EVEN statements when appropriate. 

Note: The SEQUENTIAL PDS qualifier (/SQ MCR switch) is intended primarily for use 
with programs written for other systems, such as RTll, that normally allocate tasks in 
this way. Newly written tasks should not use this facility. If a particular ordering is 
required, it should be obtained via the alphabetical ordering feature (see Section 6.1.10). 
Some system components, in particular the FORTRAN OTS, will not operate correctly if 
they are built into a task linked with the /SEQl,,"E:r-,TJ.AL qualifier. If a task references 
a position-independent shareable global area, both the task and the SGA must be built 
with /SEQUENTIAL (or /SQ) specified. 

6-6 



Memory Allocation 

6.1.11 The Resolution of Global Symbols 
When creating the task image file, the Task Builder resolves global references. Suppose the global 
symbols are defined and referenced in the p-sections in the fullowing way: 

File 
Name 

IN1 

IN2 

IN3 

P-sectlon 
Name 

8 

A 

c 

A 

8 

c 

Global 
Definition 

81 

82 

A1 

81 

Global 
Reference 

A1 

L1 

C1 

xxx 

82 

81 

In processing the first file, INl, the Task Builder finds definitions for Bl and B2 and references 
to Al, Ll, Cl and XXX. Since no definition exists for these references, the Task Builder defers 
the resolution of these global symbols. In processing the next file, IN2, the Task Builder finds 
a definition for Al, which resolves the previous reference, and a reference to B2, which can he 
immediately resolved. 

When all the input object files have been processed, the Task Builder has three unresolved global 
references, namely: Cl, Ll, and XXX. A search of the library file LBRl resolves Ll and the Task 
Builder includes the defining module in the task image. A search of the default library resolves 
X:XX. The default library is LBO:[l,l]SYSLIB.OLB. The global symbol Cl remains unresolved and 
is, therefore, listed as an undefined global symbol. 

The relocatable global symbol Bl is defined twice and is listed as a multiply-defined global symbol 
on the terminal. The first definition of a multiply-defined symbol is used by the Task Builder. An 
absolute global symbol can be defined more than once without being listed as multiply defined as 
long as each occurrence of the symbol has the same value. The results of these resolutions are 
shown in Figure 6-2. 

6.2 System Memory 
In IAS, system memory consists of the resident executive and a set of named contiguous areas 
which are defined at system generation time. These named areas are partitions, each of which has 
parameters of base and length. 

A typical system memory layout can be represented by the following diagram: 

6-7 



6.2.1 

Memory Allocation 

All Boundaries 
Are 32 (decimal) 
Word Aligned 

external page 

UNIBUS map area 
(PDP-11/70 and 11/44) 

nonexistent memory 

partition n 

... 

partition 1 

system oommon sl.broutines 

system oommunications 
19.tl.im 

system tables, lists 

node pool 

' I bootstrap 
RealO- ---------"""' 

Executive Privileged Tasks 

SCOM 

Kernel ) 
Virtual O 

User Defined 
Partitions 

Permanently 
Resident 
IASSystem 

An executive privileged task has special memory access rights. A task which is not executive 
privileged can access only its own partition and any referenced shareable global areas, but a 
privileged task can also access SCOM and the external page. 

The following diagram illustrates typical privileged and non-privileged tasks. Note that APR 
boundaries are aligned at 4K virtual addresses and 32 (decimal) word real addresses when in 
memory. 

6-8 



Memory Allocation 

APR 

[sh:-_ ~1 7 

global 2 
6 

external page 

system 

I- - - - -
areas 3 

5 

common (SCOM) 
I- - - - -

and pool 
task 4 

shareable 1 

read-only global 
3 1-- - - - -

areas 2 
area 

2 

task read/write task read-only area 

- - -
area and stack 

task read/write 
area and stack 

0 

Nonprivileged Task Mapping Executive Privileged Task Mapping 

6.3 Task Image File 
In addition to the task memory, or core image, the task image file contains a label block (occupying 
one, two or three disk blocks). The label block contains data that is used when the task is installed 
(explicitly or by the RUN timesharing command) to create an entry for the task in the system task 
directory. The label block and task image structure is described in detail in Appendix C. 

6.4 Memory Allocation File 
The memory allocation file lists information about the allocation of task memory and the resolution 
of global symbols. A global cross-reference list can be appended to the file by means of the 
/CROSS_REFERENCE PDS command qualifier (/CR MCR switch). 

6-9 



Memory Allocation 

Example 6-1 Memory Allocation Fiie for IMG1.TSK;1 

IMGl.TSK;l MEMORY ALLOCATION MAP TKB 028 
3-JUL-78 10:49 

IDENTIFICATION : 03 
STACK LIMITS: 000000 000777 001000 00512. 
PRG XFR ADDRESS: 001570 
TOTAL ATTACHMENT DESCRIPTORS: 3. 
TASK IMAGE SIZE : 480. WORDS 
TASK HEADER SIZE: 160. WORDS 
R-0 REGION SIZE: 96. WORDS 
TASK ADDRESS LIMITS: 000000 001777 
R-W DISK BLK LIMITS: 000003 000005 000003 00003. 
R-0 DISK BLK LIMITS: 000006 000006 000001 00001. 

*** ROOT SEGMENT: INl 

R/W ME:M LIMITS: 000000 001777 002000 01024. 
R-0 r1EM LIMITS: 140000 140277 000300 00192. 
CISK BLK LIMITS: 000003 000004 000002 00002. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION 
-------

ELK . : ( Rw , I , Lc L , REL , cmn 001000 (Hl0020 00016. 
fHJ1000 000020 00016. 

A : ( RW I I , LC L I REL , 0 v R ) 001020 0~HJ250 00168. 
00HJ20 000100 00064. 
001020 000250 00168. 

E : (RW,I,LCL,REL,CON) 001270 600420 00272. 
001270 000300 00192. 
001570 000120 00080. 

c : ( R 0 I I , LC L I R EL , c 0 N ) 140000 000220 00144. 
140000 000150 00HJ4. 
140150 000050 00040. 

$$AUTO: (RW,I,LCL,REL,CON) 160000 '"'0130 00088. 
$$LOAD: (RW,I,LCL,REL,CON) 160130 000170 00120. 
$$MRKS: (RW,I,LCL,PEL,OVR) 160320 000166 00118. 
$$0VRS: (RW,I,LCL,AB3,CON) 000000 000000 00000. 
$$RDSG: (RW,I,LCL,REL,OVR) 160506 000312 00202. 
$ $RE s L : ( RW I I , LC L I REL I c 0 N } 161020 016216 07310. 
$$RE SM : ( RW I I , LC L , REL , c ON ) 001710 000070 00056. 

GLOBAL SYMBOLS: 

TI'I'LE 

LIBl 

INl 
IN2 

INl 
IN2 

INl 
IN3 

PAGE 1 

IC ENT FILE 

LBRl.OLB;l 

INl .OBJ; l 
IN 2. OBJ; 1 

INl.OEJ;l 
IN2.OBJ;1 

INl.OEJ;l 
IN3. OBJ; 1 

Al 00Hl20-P. Bl 001570-R B2 001270-R Ll 000022 

FILE: INl.OBJ;l TITLE: INl !DENT: 
<. ABS.>: 000000 000000 000000 00000. 

>>>>>>>>>>>> UNCEFINEC REFERENCE: Cl 
<A >: 001020 001117 000100 00064. 

6-10 



Example 6-1 Memory Allocatlon Fiie for IMG1.TSK;1 (continued) 

IMGl. TSK; 1 
INl 

MEMORY ALLOCATION MAP TKB 028 
3-JUL-78 Hl:49 

<B >: 001270 001567 000300 00192. 
Bl 001570-R 82 00i270-R 

<C >: 140000 140147 000150 00104. 

FILE: IN2.0BJ;l TITLE: IN2 !DENT: 
<A >: 001020 001267 000250 00168. 

Al 001020-R 
<B >: 001570 001707 000120 00080. 

Bl 001570-F 

FILE: IN3.0BJ;l TITLE: IN3 !DENT: 
<C >: 140150 140217 000050 00040. 

FILE: LBRl.OLB;l TITI·E: LIBl IC'ENT: 
<. ABS.>: 000000 000000 000000 00300. 

Ll 000022 
<. BLK.>: 001000 001017 000020 00016. 

************ 

UNDEFINEC REFERENCES: 

Cl 

*** TASK BUILrEF STATISTICS: 

TOTAL WORK FILE REFERENCES: 5448. 
WORK FILE REArS: 0. 
WORK FILE WRITES: 0. 
SIZE OF CORE POOL: 16010. WORDS (62. PAGES) 
SIZE OF WORK FILE: 1536. WORCS ((. PAGES) 

ELAPSED TIME:00:00:05 

Memory Allocation 

PAGE 2 

6-11 



Memory Allocation 

Example 6·1 Memory Allocation Fiie for IMG1 .TSK;1 (continued) 

MP0 CREATED BY TKB ON 3-JUL-78 AT 10:49 PAGE 1 

GLOBAL CRGSS REFERENCE CREF V02 

SYMBOL VALUE REFERENCES ... 

Al 001020-R INl # IN2 
Bl 001570-R # INl # IN2 IN3 
B'2 001270-R # INl IN2 
Cl 000000 INl 
Ll 000022 INl # LIBl 
$l-!UL 001710 INl 

6-12 



6.4.1 Contents of the Memory Allocation File 
The memory allocation file consists of the following items: 

1 Page Header 

2 Task Attributes 

3 Overlay Description (if applicable) 

4 Segment Description 

5 Memory Allocation Synopsis 

6 Global Symbols 

7 File Contents 

8 Summary of Undefined Global Symbols 

9 Task Builder Statistics 

Memory Allocation 

If the /CROSS_REFERENCE PDS command qualifier (/CR MCR switch) is used to request a global 
cross-reference, then the following items are also included: 

1 Cross-Reference Page Header 

2 Global Cross-Reference 

3 Segment Cross-Reference 

A sample of the memory allocation file produced by the command 

PDS> LINK/MAP: (MPO/NARROW/FILES)/TASK:IMGl/CROSS REFERENCE-
INl, IN2, IN3, LIBRI/LIBRARY -

or 

MCR>TKB IMG1,MPO/-SP/-WI/-SH/CR=IN1,IN2,IN3,LIBR/LB 

is shown in Figure 6-2, where each item is identified. The overlay description does not apply to 
this task, and is therefore not shown. 

These items are described in the following paragraphs. 

1 The page header shows the name of the task image file and the overlay segment name, along 
with the date, time, and version of the Task Builder that was used. 

2 The task attribute section contains the following information. Each item is printed only if a 
non-default value has been specified. 

• Task name 

• Task partition 

• Identification (task version) 

• Task UIC 

• Task priority 

• Stack limits--consisting of the low and high addresses, followed by the length in octal and 
decimal bytes 

• ODT transfer address-starting address of the debugging aid 

6-13 



Memory Allocation 

• Program transfer address 

• Task attributes-shown only if they differ from the defaults. One or more of the following 
may be displayed: 

-AB Task cannot be aborted 

-CP Task is not checkpointable 

DA Task contains debugging aid 

-OS Task cannot be disabled 

FP Task uses iloating-point processor 

-FR Task will not have its receive queues flushed 

-FX Task cannot be fixed 

Pl Task contains position-independent code and data 

PR Task is executive privileged 

-SE Task cannot have data sent to it 

TR Task initial PS has T-bit set 

• Number of ADBS-number of attachment descriptors allocated in the task header, 
including those requested by the ATRG option and those allocated automatically by the 
Task Builder 

• Mapped array area-amount of space allocated for VSECTs 

• Task extension-the increment of physical memory allocated through the EXTTSK keyword 

• Task image-the amount of memory required to contain task code, including the header 

• Task header size (in words) 

• Size of read/write resident overlay region, including VSECTs 

• Size of read-only region, including task pure area and read-only resident overlays 

• Task address limits-the lowest and highest virtual addresses allocated to the task 

• Read/write disk block limits, for all segments 

• Read-only disk block limits 

3 The overlay description shows the address limits, length, and name of each overlay segment. 
Indenting is used to illustrate the overlay structure. The overlay description is printed only 
when a multi-segment task is created. An example of overlay description output is shown in 
Figure 6-2. 

4 The segment description gives the name of the segment together with the segment address and 
disk space limits. A read-only resident segment does not have its disk block limits displayed. 
See Appendix C, Section C.1.1. 

5 The memory allocation synopsis gives information about the p-sections that make up the 
memory allocated to each overlay segment. The information shown consists of the p-section 
name, attributes, starting address, and length in bytes (octal and decimal values), followed by 
a list of modules that contributed storage to the section. The entry for each module shows the 
starting address and length of the allocation, the module name, module identification, and file 
name. 

6 If the /SEQUENTIAL PDS command qualfier (/SQ MCR switch) is applied, the p-sections are 
listed in the order of input; otherwise they appear in alphabetical order. 

6-14 



Memory Allocation 

7 The following p-section information is omitted: 

a. The absolute section, . ABS. is not shown because it appears in every module and always 
has a length of 0. 

b. The unnamed relocatable section, shown as . BLK., is not displayed if its length is 0, 
because it appears in every module. 

8 Global symbols that are defined in the segment are listed along with their octal values. A "-R" 
is appended to the value if the symbol is relocatable. The list is alphabetized in columns. 

9 The file contents section lists the module name, file name, p-sections, and global definitions 
occurring in the module. Any undefined global references made by the module are also 
displayed. This section only appears if the /FILES or /FU map file specification qualifier 
was used. 

10 A summary of undefined global references is printed after the listing of file contents. 

11 The display of Task Builder statistics lists the following information, which may be used to 
evaluate Task Builder performance. 

a. Work File References--The number of times that the Task Builder accessed data stored in 
its work file. 

b. Work File Reads--The number of times that the work file device was accessed to read work 
file data. 

c. Work File Writes--The number of times that the work file device was accessed to write 
work file data. 

d. Size of Core Pool-The amount of memory that was available for work file data and table 
storage. 

e. Size of Work File-The amount of device storage that was required to contain the work file. 

f. Elapsed Time-The amount of wall-clock time required to construct the task image and 
produce the memory allocation file. Elapsed time is measured from the completion of option 
input to the completion of map output. This value excludes the time required to process 
the overlay description, parse the list of input file names, and create the cross-reference 
listing (if specified). 

Appendix F should be consulted for a more detailed discussion of the work file. 

12 The cross-reference page header gives the name of the memory allocation file, the originating 
task (TKB), the date and time the memory allocation file was created, and the cross-reference 
page number, in the following format: 

map file name CREATED BY TKB ON date AT time PAGE n 

GLOBAL CROSS REFERENCE CREF Vn 

SYMBOL VALUE REFERENCES ... 

13 The cross-reference list contains an alphabetic listing of each global symbol along with its 
value and the name of each referencing module. When a symbol is defined in several segments 
within an overlay structure, the last defined value is printed. 

14 The suffix -R is appended to the value if the symbol is relocatable. 

6-15 



6.4.2 

Memory Allocation 

15 Prefix symbols accompanying each module name define the type of reference as follows: 

Prefix Symbol 

blank 

/\ 

@ 

# 

Reference Type 

Module contains a reference that is resolved in the same segment or in a 
segment toward the root. 

Module contains a reference that is resolved directly in a segment away from 
the root or in a co-tree. 

Module contains a reference that is resolved through an autoload vector. 

Module contains a non-autoloadable definition. 

Module contains an autoloadable definition. 

16 The segment cross-reference lists the name of each non-empty overlay segment and the 
modules that compose it. 

Control of Memory Allocation File Contents and Format 
By using the memory allocation and input file switches or qualifiers described below, you can 
eliminate non-essential information from the output, improve Task Builder throughput, and obtain 
output in a format that is more compatible with the hard copy device. 

The amount of information presented in the memory allocation file is controlled by the /FILES and 
/FULL PDS qualifiers (/-SH and /MA MCR switches respectively). When the /FILES PDS qualifier 
(/-SH MCR switch) is included in the map file specification, the Task Builder includes the file 
contents section of the allocation listing. By default, this information is omitted as the most useful 
parts can be found from the memory allocation synopsis. 

In general, the short format provides sufficient information for debugging, while reducing 
task-build time considerably. Listings that contain a full description of file contents can be obtained 
at less frequent intervals and kept for later reference. The contents of individual input files can be 
excluded from the listing by the /NOMAP PDS input file qualifier (/-MA MCR switch). Suppressing 
such output eliminates the following information from the allocation and cross-reference output for 
the excluded file: 

1 P-section contributions as shown in the memory allocation synopsis. 

2 Global symbol definitions. 

3 File contents. 

4 Global definitions or references, and module names as shown in the cross-reference listing. 

To disable map output for individual files, you include the /NOMAP PDS qualifier (or MCR switch 
/-MA) in the input file specification. To include such output for the default system object module 
library and all memory-resident library files, you include PDS qualifier /FULL (or MCR switch 
/MA) in the memory allocation file specification. 

The width of the listing is controlled by the /NARROW and /WIDE PDS qualifiers (/-WI and /WI 
MCR switches respectively). /NARROW (/-WI) indicates that the listing format can occupy 72 
columns, suitable for output to a terminal. /vVIDE (/Vfi) indicates that 132 coiumns can be used. 

6-16 



Memory Allocatl<m 

6.5 Examples: CALC;1 and CALC;2 Maps 
The first run of CALC, described in Chapter 2, Section 2.3 produces the memory allocation file 
shown in Figure 6-3. This is the default memory allocation output, including all the parts described 
in this chapter except the file contents section. 

The task attributes section lists the principal characteristics of interest, such as task size in words, 
and task address limits. Items such as task name and task attributes, that are not specified, or 
that do not differ from the default, have been omitted. 

The segment description lists the memory and disk block limits for the root segment. 

The Memory Allocation Synopsis displays the storage allocated to each p-section. The first line 
adjacent to the name, shows the total allocation. Subsequent lines show the contribution made by 
individual modules. The values displayed are: base address, and length in bytes (octal and decimal 
values). 

Because the /FULL qualifier was not in force, all information about modules from the system 
library has been omitted. 

The second example (see Figure 6-4) shows a map of CALC;l with the /FULL and /FILES 
qualifiers. 

In the example CALC.TSK;2 in Chapter 5, Section 5.7, the user added some code to RDIN.FIN, 
and entered two options during option input: 

1 ACTFIL=l - to eliminate the three active file buffers not needed by CALC.TSK, 

2 PAR=GEN - to direct the Task Builder to use a larger partition for CALC.TSK. However, this 
has no affect on task building other than to set up a partition in which the task is to execute. 

The memory allocation file shown in Figure 6-5 reflects these changes. 

Because the ACTFIL keyword was used, the File Storage Region Buffer pool decreased from 4100 
in CALC.TSK;l to 1020 in CALC.TSK;2. 

The use of the ACTFIL keyword saved 3060 bytes. 

The remainder of this chapter contains Figure 6-3, Figure 6-4, and Figure 6-5 showing the memory 
allocation files described above. 

6-17 



Memory Allocation 

Example 6-2 Memory Allocation Fiie for CALK.TSK;1 (Default Output Format) 

CALC.TSK;l MEMORY ALLOCATION MAP TKB 028 
3-JUL-78 10:49 

IDENTIFICATION : FORV02 
STACK LIMITS: 000000 000777 001000 00512. 
PRG XFR ADDRESS: 020246 
TOTAL ATTACHMENT DESCRIPTORS: 3. 
TASK IMAGE SIZE : 6976. WORDS 
TASK HEADER SIZE: 160. ~OROS 
TASK ADDRESS LIMITS: 000000 033247 

PAGE l 

R-W DISK BLK LIMITS: 000003 000035 000033 00027. 

*** ROOT SEGMENT: FGIN 

R/W MEM LIMITS: 000000 033247 033250 13992. 
DISK BLK LIMITS: 000003 000036 000034 00028. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION 
-------. ELK.: (RW,I,LCL,REL,CON) 001000 000002 00002. 
DTA : (RW,D,GBL,REL;·ovR) 001002 r101442 00602. 

00HHJ2 001442 00802. 
001002 001442 00802. 
001002 001.142 00802. 

OTS$I : (RW, I, LCL ,REL ,CON) 002444 015544 07012. 
002444 000000 00000. 

OTS$P : (R"W,C,GBL,REL,OVR) 020210 000036 00030. 
$CODE : ( RW , I I LC L I REL I c 0 N ) 020246 000162 00114. 

020246 000fHJ0 0,HHHJ. 
020246 000000 00000. 
020246 000072 0CHJ58. 
020340 000000 ~0000. 
020340 000000 fHHHHJ. 
020340 000054 00044. 
020414 0~0000 00000. 
020414 000000 00000. 
020414 000014 00012. 

$DATA : (R~,:C,LCL,REL,CON) 020430 003722 02002. 
020430 000000 00000. 
020430 001750 01000. 
022400 000000 00000. 
022400 000002 00002. 
022Hi2 0~0000 00000. 
022402 001750 01000. 

$DA TA p : ( RW , D , LC L I REL I c 0 N ) 024352 fHHHJ42 00034. 
024352 000000 0(Hi00. 
024352 00~022 00018. 
024374 000000 00000. 
024374 000010 00008. 
024404 000000 00000, 
024404 000010 00008. 

$$AOTS: (RW,D,LCL,REL,CON) 024414 000704 0~) 4 5 2. 
$ $Au TO : ( RW , I , LC L I REL , c 0 N ) 160000 000130 ~HH'88. 

6-18 

TITLE ICEN? 

.MAIN. FORV02 
PROCl FOPV02 
FPPT FORVfJL 

.~:AIN. FOFV02 

• t-:A IN. FORV~2 
.MAHJ. FORV02 
.MAIN. FCPV02 
PROCl FORV02 
PROCl FORV02 
PP.CCI FOfV02 
RP.RT FORVf·~ 

RPRT FORV02 
RPf.T FOP.V02 

.MA rn. F0f'V02 

.t-~AH1. FOHV02 
Pl10Cl FORn2 
PROCl FORV02 
FPI\'I' FUHV02 
RPR'I FOFVC2 

.MAIN. FOPV02 

. t1A IN. FOPV0.2 
PROCl FOI\V0 2 
PROCl FOF.V02 
PPF'l' FORV02 
RPRT FOh.V0:: 

FII.£ 

RC g .OBJ; 1 
PPCCl.OBJ;l 
FPRT.OEJ;l 

PfIN.OBJ;l 

FTIN.CEJ:l 
P.rIN. OEJ; 1 
RCIN. OEJ; 1 
PROCl.OEJ;l 
PROCl. OPJ; 1 
PROCl.OPJ;l 
RPF'I'. OEJ; 1 
PPRT.OPJ;l 
RPI<T.OBJ;l 

PC Ii'l. OE J; l 
RC IN .OEJ; 1 
PFOCl.OBJ;l 
PPOCl.O[J;l 
PPR'!.OPJ;l 
RPR'I. oe.J i l 

RCIN .OBJ; 1 
er Tl\.1 r.c,.. 1 
.l'L 4.1.• e ""''-VI ..1.. 

PROCl. CEJ; l 
J?f\CCl.CJEJ;l 
PPPT.OPJ;l 
RPRT.OEJ;l 



Memory Allocation 

Example 6-2 Memory Allocation Fiie for CALC.TSK;1 (Default Output Format) (continued) 

CALC.TSK;l 
RDIN 

ME~CRY ALLOCATION MAP TKB C28 
3-JUL-78 H1:49 

PAGE 2 

$$DEVT: (RW,D,0CL,REL,OVR) 02532fj 001210 00648. 
$$FSR1: (RW,D,GBL,REL,OVR) 026530 004H7'0 02112. 
$$FSR2: (RW,D,GBL,REL,CON) 032630 000104 00068. 
$$I0Bl: (RW,C,LCL,REL,OVR) 032734 000204 00132. 
$$IOB2: (RW,D,LCL,REL,OVR) 033140 000000 00000. 
$$LOAC: (RW, I I LCL ,REL ,CON) 160130 000170 00120. 
$$MRKS: {RW,I,LCL,REL,OVR) 160320 000166 00118. 
$$0BF1: (RW,D,LCL,REL,CON) 033140 000110 00072. 
$ $0BF 2: ( RW I I, LC LI REL I CON) 033250 000000 00000. 
$$0VRS: (RW,I,LCL,ABS,CON) 000000 000000 00000. 
$$RDSG: (RW, I, LCL, REL ,OVR) 160506 000312 00202. 
$ $RES L : ( RW , I , LC L , REL , C 0 N ) 161020 016216 07310 • 
. $$$$.: (RW,C,GBL,REL,OVR) 033250 000000 00000. 

033250 000000 00000. . MAIN. 
033250 000000 00000. .MAIN. 
~33250 000000 00000. PROCl 
033250 000000 00000. PROCl 
033250 000000 00000. RPR7 
033250 000000 00000. RPRT 

GLOBAL SYMBOLS: 

PROCl 020340-R $RF2Al 000000-R $$0TSI 002444-R 
RPRT 020414-R $$0TSC 020246-R 

*** TASK BUILDER STATISTICS: 

TOTAL WORK FILE REFERENCES: 14413. 
WORK FILE READS: 0. 
WORK FILL WRITES: 0. 
SIZE OF CORE POOL: 16010. WORDS (62. PAGES) 
SIZE OF WORK FILE: 3072. WORDS (12. PAGES) 

ELAPSED TIME:00:00:13 

FORV02 
FORV02 
FORV02 
FORV02 
FORV02 
FORV02 

RDIN .OBJ; 1 
RDIN.OBJ;l 
PROC 1. OBJ; 1 
PROCl.OBJ;l 
RPRT.OBJ;l 
RPRT.OBJ;l 

6-19 



Memory Allocation 

Example 6-3 Memory Allocatlon Fiie for CALC.TSK;1 (Part Printout/FULL/FILES) 

CALC.TSK;l MEMORY ALLOCATION MAP TKB D28 
3-JUL-78 10:49 

IDENTIFICATION : FORV02 
STACK LIMITS: 000000 000777 001000 00512. 
PRG XFR ADDRESS: 020246 
TOTAL ATTACHMENT 
TASK IMAGE SIZE : 6976. WORDS 
TASK HEADER SIZE: 160. WORDS 
TASK ADDRESS LIMITS: 000000 033247 

PAGE 1 

R-W DISK BLK LIMITS: 000003 000035 000033 00027. 

*** ROOT SEGMENT: RDIN 

R/W MEM LIMITS: 000000 033247 033250 13992. 
DISK BLK LIMITS: 000003 000036 000034 00028. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION 

BL K . : ( RW I I I LC L I REL I c 0 N ) 

DTA : (RW,D,GBL,REL,OVR) 

OT s $ I : { RW , I , LC L , REL I c 0 N ) 

6-20 

001000 
001000 

'001002 
001002 
001002 
001002 
002444 
002444 
002444 
002600 
002636 
002770 
004746 
005050 
005064 
005166 
005242 
005312 
005356 
005636 
006110 
006232 
006232 
006640 
007020 
007056 
010752 

000002 
l:HHHHJ2 
001442 
001442 
001442 
001442 
015544 
000000 
000134 
000036 
000132 
001756 
000102 
000014 
000102 
000054 
000050 
fHJ0044 
~00260 

000252 
000122 
000000 
000406 
000160 
000036 
001674 
000416 

00002. 
fHJ002. 
erne02. 
00802. 
00ee2. 
00802. 
07012. 
00000. 
00092. 
00030. 
00090. 
0Hrn6. 
00066. 
00012. 
00066. 
00044. 
00040. 
00036. 
0017£. 
00170. 
00082. 
00000. 
00262. 
00112. 
OC030. 
00956. 
00270. 

TITLE IDENT FILE 

$NVINI SYSIIB. OLE; l 

.MAIN. FORV02 FCI~.CEJ;l 
PROCl FOflV02 PPOCl.OEJ;l 
RP~T F08V02 FPPT.OEJ;l 

.~AIN. 

$Ar::CM 
$CALL 
$EOL 
$CON VF 
$IF'R 
$ISNLS 
$IMOVS 
$BRAS 
$RETS 
$FVEC 
$TRARY 
$0TI 
$SUER 
$0TV 
$CONVI 
$SAVFE 
$FCHNL 
$FIO 
$0.E-EN 

FOFV02 
F40G.02 
F40002 
F40002 
F40002 
F40002 
F40001 
F40002 
F400b2 
F4fHi02 
F4fHHi2 
F4C002 
F40~u2 

F4G002 
F40001 
F40lH.l2 
p4g~o2 

F4~HJ01 
F40~HJ2 

F40002 

RrIN .OEJ; l 
SYSLIB. OLD; 1 
SYSLIB.OLE';l 
SYS LIE. OI..B; l 
SYS[IB.OLB;l 
SYSI-IB. OLE; 1 
SYSLIP.OLE;l 
SYSI.IB.OLE;l 
SYSLI8.0LB;l 
SYSLI8.0LB;l 
SYSIIB.OLB;l 
SYSLIB. or E; 1 
SYSLIE.0113;1 
SYSLIE.OLE;l 
SYS LIL or.B; 1 
SYSLIB.OI.B;l 
SYSLIB. OI.P; 1 
SYS LIP. OLE:'; 1 
SYSLIP.OLE;l 
SYS[ I8. OLB; 1 

011370 000076 00062. $GETRE F40001 SYSLIB.OLB;l 
0114 6 6 0 0 0 0 E 6 0 0 0 5 4 . $ IN IT I F 4 0 0 0 2 SYS[. I E . 0 I P ; 1 
011554 000244 00164. $ST.?PA F4~HHJ1 SYSLIB.OI.I?;l 
012020 001700 00960. $ERfPT F40G01 SYSLIB.OLB;l 
013720 000204 00132. $FPERR F400U2 SYSLIB.OLB;l 
014124 000274 00188. $ERQIO F40001 SYSLIF.01£;1 
014420 000070 00056. $CLOSE F40001 SYSLIE.OLB;l 



Memory Allocation 

Example 6-3 Memory Allocation Fiie for CALC.TSK;1 (Part Prlntout/FULUFILES) (continued) 

CALC.TSK;l MEMORY ALLOCATION MAP TKB D28 PAGE 2 
RDIN 3-JUL-78 10:49 

014510 003364 01780. $ERTXT f 40004 SYSLIB.OLB;l 
020074 000114 00 076. $R50 F40001 SYSLIB.OLB;l 

OTS$P : (RW,DrGBLFREL,OVR) 020210 000036 00030. 
020210 000036 00030. $CONVF F40002 SYSLIB.OLB;l 
020210 000036 00030. $CONVI F40002 SYSLIB.OLB;l 
020210 000036 00030. $FIO F40002 SYSLIB.OLB;l 

$CODE : (RW,I,LCL,REL,CON) 020246 000162 00114. 
020246 000000 00000. .MAIN. FORV02 RDIN.OBJ;l 
020246 000000 00000. • MAIN. FORV02 Rl:'IN. OBJ; 1 
020246 000072 00058. .MAIN. FORV02 RDIN .OBJ; 1 
020340 000000 00000. PROCl FORV02 PROCl.OBJ;l 
020340 000000 00000. PROCl FORV02 PROCl.OBJ;l 
020340 000054 00044. PROCl FORV02 PROCl.OBJ;l 
020414 000000 00000. RPRT FORV02 RPRT.OEJ:1 
020414 000000 00000. RPRT FORV02 RPRT.OBJ;l 
020414 000014 00012. RPRT FORV02 RPRT.OBJ;l 

$DA TA : ( RW , D , LC L , REL , CON ) 020430 003722 02002. 
020430 000000 00000. . MAIN. FORV02 RDIN .OBJ; 1 
020430 001750 01000. . MAIN. FORV02 RCIN .OBJ; 1 
022400 000000 00000. PROCl FORV02 PROCl. OBJ; 1 
022400 000002 00002. PROCl FORV02 PROCl.OBJ;l 
022402 000000 00000. RPRT FORV02 RPRT.OBJ;l 
022402 001750 01000. RPRT FORV02 RPRT.OBJ;l 

$CA TAP : ( RW , D , LC L , REL , C 0 N ) , 0 2 4 3 5 2, 0 0 0 0 4 2 00034. 
024352 000000 00000. . MA IN. FORV02 RDIN .OBJ; 1 
024352 000022 00018. . MAIN. FORV02 RDIN .OBJ; 1 
024374 000000 00000. PROCl FORV02 PROCl.OBJ;l 
024374 000010 00008. PROCl FORV02 PROCl.OBJ;l 
024404 000000 00000. RPRT FORV02 RPRT.OBJ;l 
024404 000010 00008. RPRT FORV02 RPRT.OBJ;l 

$$AOTS: (RW,D,LCL,REL,CON) 024414 000704 00452. 
024414 000704 00452.· $0TV F40001 SYSLIB.OLB;l 

$$AUTO: (RW,I,LCL,REL,CON} 160000 000130 00088. 
160000 000130 00088. SYS RES 12 SYSRES.STB;l 

$$DEVT: (RW,D,LCL,REL,OVR) 025320 0012HJ 00648. 
025320 000000 00000. $0TV F40001 SYSLIB.OLB;l 

$$FSR1: (RW,D,GBL,REL,OVR) 026530 004100 0 2112. 
026530 000000 00000. $0TV F40001 SYSLIB. OLB; 1 
026530 000000 00000. FCSFSR 0303MS SYSLIB. OLB; 1 

$$FSR2: (RW,D,GBL,REL,CON) 032630 000104 00068. 
032630 000104 00068. FCSFSR 0303MS SYSLIB. OLB; 1 

$$IOB1: (RW,D,LCL,FEL,OVR} 032734 000204 00132. 
032734 000204 00132. $0TV F40001 SYSLIE.OLB;l 

$$IOB2: (RW,C,LCL,REL,OVR) 033140 000000 00000. 
033140 000000 00000. $0TV F40001 SYS LIB. OLB; 1 

$$LOAD: (RW, I, LCL ,REL,CON) 160130 000170 00120. 
160130 000170 00120. SYS RES 12 SYSRES.STB;l 

$$MRKS: (RW,I,LCL,REL,OVR) 160320 000166 00118. 
160320 000166 00118. SYS RES 12 SYSRES.STB;l 

$ $OB F 1 : ( RW , D , LC L , REL I c 0 N ) 033140 000110 00072. 
033140 000110 00072. $0TV F40001 SYSLIE.OLB;l 

$$0BF2: (RW,I,LCL,REL,CON) 033250 000000 00000. 
033250 000000 00000. $0TV F40001 SYSLIB.OLB;l 

$$0VRS: (RW,I,LCL,ABS,CON) 000000 000000 00000. 
000000 000000 00000. SYS RES 12 SYSRES.STB;l 

6-21 



Memory Allocation 

Example 6-3 Memory Allocation Fiie for CALC.TSK;1 (Part Printout/FULL/FILES) (continued) 

CALC.TSK;l MEMORY ALLOCATION MAP TKB 028 PAGE 3 
RDIN 3-JUL-78 10:49 

$$RDSG: (RW,I,LCL,REL,OVR) 160506 000312 00202. 
160506 000312 00202. SYS RES 12 SYSRES.STB;l 

$$RESL: (RW,I,LCL,REL,CON) 161020 016216 07310. 
161020 016216 07310. SYS RES 12 SYSRES.STE;l 

• $ $ $ $. : ( RW ID I GBL, REL I OVR) 
,.,...,..,..,C:f,I fACICl(j\(j\(;1 00000. V.:JJL.JV LIUlJ'UUU 

033250 000000 00000. . MAIN. FORV02 R['IN .OBJ; 1 
033250 000000 00000. . MAIN. FORV02 RDIN .OBJ; 1 
033250 000000 00000. PROCl FORVC2 PROC l. OBJ; 1 
033250 000000 00000. PROCl FORV02 PROCl.OEJ; 1 
033250 000000 00000. RPRT FORV02 RPFT.OBJ;l 
033250 000000 00000. RPPT FORV02 RPRT.OBJ;l 

GLOBAL SYMBOLS: 

ADF~IM 002444-R MOI$0S 005130-R SVF$SM 005326-R $NAMC 024466-R 
ADF$MM 002476-R MOI$1A 005160-R TAD$ ~Hl5406-R $Of EN 010752-R 
ADF$PM 002462-R MOI$1M 005152-R TAF$ 005414-R $0TI 005636-R 
ADFSSM 002510-R MOI$1S 005144-R TAI$ 005356-R $OTIS 006110-R 
BAH$ 011650-R MOL$IS 005100-R TAL$ 005364-R $0TSV 000004 
BEQ$ 005212-R MOL$SS 005064-R 'I'AP$ 005400-R $0'I'SVA 024464-R 
BGE$ 005222-R NMI·$1I 005200-R TAQ$ 005372-R $PSE 011626-R 
BGT$ 005220-R NMI$1M 005166-R THRO$ 007016-R $PSES 011660-R 
BLE$ 005210-R N.ALER 000010 V007A 000000 $RF2Al 0fHHJ00-R 
BLT$ 005232-R N. IOST 000004 $ALBP1 160016-R $RLCB 17€544-R 
BNE$ 005230-R N.MRKS 000016 $ALBP2 160114-R $RQCE 176646-R 
~RA$ 005224-R N.OVLY 000000 $ATT 014124-R $R50 020074-P 
CAI$ 002600-R N.OVPT 000006 $AUTO 1UHHJ0-R $SAVRG 1 77004-F 
CAL$ 002606-R N.RDSG 000014 $BINAS 013212-R $SEQC 024464-R 
DCO$ 004024-R N.STBL 000002 $CLOSE 014420-R $SST 025300-I< 
ECO$ 004016-R N.SZSG 000012 $CET 014230-R $SST0 012020-R 
EOL$ 002666-R OCI$ 006232-R $ECI 006254-R $SST1 01202E-P 
EXIT$ 011732-R OCO$ 006434-R $EOL 002664-E $SST2 012040-R 
FCO$ 004012-R 0$VEF 000037 $EF.RAA 012206-R $SST3 012046-n 
FOO$ 011722-R PROCl 020340-R $ERRTB 013530-R $SS'f 4 012054-R 
F .. BFHD 000020 PSE$ 011622-R $ERRTE 013720-R $SST5 012062-R 
F.FDB 000154 RCI$ 002770-R $ERRWT 014314-R $SST6 ~12146-P 

GCO$ 004004-R REL$ 005100-R $ERRZA 013150-R $SS1'7 @12072-P 
ICI$ 006240-R RET$ 005256-R $ER'I'XT 0145HJ-R $STP 011716-R 
IC0$ 006442-R RET$F 005246-R $ERXIT 012436-R $STPS 011710-R 
IFR$ 004746-R RET$I 005254-R $EXIT 011732-R $SVTK$ 013522-R 
ISN$ 005050-R RET$L 005242-R $EXIT$ 012124-R $TAD 005406-R 
LSN$ 005056-R RPRT 020414-R $FCHNL 007020-R $TA.F 005414-R 
MOI$IA 005110-R SAF$IM 005312-R $FILL 013266-R $TAI 005356-R 
MOI$IM 005104-R SAF$MM 005346-R $FIO 007614-R $TAL 005364-P 
MOI$IS 005100-R SAF$SM 005314-R $FLDEF 011276-R $TAP 005400-P 
MOI$MA 005124-R SAVRG$ 006640-R $FPERR 013720-R $T,~Q ~05372-R 

MOI$MM 005120-R STP$ 011716-R SGETRE 011370-R $VIRIN 001000-P 
MOI$MS 005114-R SUF$rn 002522-R $IFR 004752-R $SFIO 007620-P 
MOI$SA 005074-R SUF$MM 002554-R $INITI 011466-R $$IFR 004756-R 
MOI$SM 005070-R SUF$PM 002540-R $ IOEXI 002636-R $$0TI 005f:40-R 
MOI$SS 005064-R SUF$SM 002566-R SLOAD 160130-R $$OTIS 006112-R 
MOI$0A 005140-R SVF$IM 005324-R $MARKR 160320-R $$0TSC 020246-P 
MOI$0M 005134-R SVF$MM 005352-R $MARKS 160320-R $$0TSI 082444-R 

6-22 



Memory Allocation 

Example 6·3 Memory Allocation Fiie for CALC.TSK;1 (Part Printout/FULL/FILES) (continued) 

CALC.TSK;l 
RDIN 

MEMORY ALLOCATION MAP TKB D28 PAGE 4 
3-JUL-78 HJ: 49 

.ASCPP 176426-R .PPR50 176054-F •• ENTR 172010-R e. RBLK 

.ASLUN 170754-R .PRSDI 174666-R .• EXTD 172602-R •. RDRN 

.CLOSE 161020-R .PRSDV 175112-R •. EXTl 172656-R .. RFDB 

.CTRL 174340-R .PRSFN 175306-R •• FCSX 166520-R •• RMOV 

. DCCVT 177034-R .PUT 165066-R •• FIND 172024-R •. RTAD 

. FATAL 166532-R .PUTSQ 165066-R •• FINI 172130-R •. RWAC 

. FIN IT 172120-R .SAVRl 166410-R .• GTDI 170570-R •• RWAT 

.FSRCB 032630-R .. ALCl 172552-R .. IDPB 166632-R .• SEFB 

.FSRPT 000002 .. ALOC 172502-R •. MKDL 172224-R •. SGR5 

.GET 161666-R .. ALUN 170760-R •• MVRl 167534-R •. STFN 

.GETSQ 161666-R .. ANSP 166444-R .. PARS 172450-R · .• WAEF 

.GTDID 162640-R .. BDRC 171422-R •. PDI 174110-R •• WAIT 

.MBFCT 032730-R •. BKRG 166500-R •. PDID 170742-R •. WAND 

.MOLUN 024472-R .. CREA 171504-R •. PGCR 167576-R •• WAST 

.NLUNS 024470-R .. CTRL 174344-R .• PNTl 173136-R .• WELK 

.ODCVT 177030-R .. DELl 171750-R .. PSDI 174700-R •. WTWA 

.OPEN 162656-R •• DIC 174376-R .. PSDV 175124-R •. WTWD 

.OPFNB 162666-R .. DIDF 174054-R .. PSFN 175320-R .. WTWl 

.PARSE 172436-R •• CIDl 174372-R •. PSIT 173416-R .• XQIO 

.POSIT 173372-R •. DIRF 176314-R •• PSRC 167726-R .. XQil 

. POSRC 167670-R .. EFCK 167360-R .. PSRl 167712-R 

.PPA.SC 176140-R .. EFCl 167 366-P .. QIOW 166672-R 

FILE: SYSRES.STB;l TITLE: SYSRES !DENT: 12 
<$$AUTO>: 160000 160127 000130 00088. 

$ALBP1 160616-R $ALBP2 160114-R $AUTO 160000-R 
<$$LOAD>: 160130 160317 000170 00120. 

$LOAC 160130-R 
<$$MRKS>: 160320 160505 000166 00118. 

$MARKR 160320-R $MARKS 160320-R 
<$$0VRS>: 000000 000000 000000 00000. 

N.ALER 000010 N. IOST 000004 N.MRKS 000016 
N.RDSG 000014 N.STBL 000002 N.SZSG 000012 

<$$RDSG>: 160506 161017 000312 00202. 
<$$RESL>: 161020 177235 016216 07310. 

$RLCB 176544-R $RQCB 176646-R $SAVRG 177004-R 
.ASLUN 170754-R . CLOSE 161020-R .CTRL 174340-R 
. FATAL 1665 32-R .FINIT 172120-R .GET 161666-R 
.GTDID 162640-R . ODCVT 177030-R .OPEN 162656-R 
.PARSE 172436-R .POSIT 173372-R .POSRC 167670-R 
.PPR50 176054-R .PRSDI 174666-R .PRSDV 175112-R 
.PUT 165066-R .PUTSQ 165066-R .SAVRl 166410-R 
.. ALOC 172502-R •• ALUN 170760-R .. ANSP 166444-R 
.. BKRG 166500-R .. CREA 171504-R •. CTRL 174344-R 
•• CID 174376-R .. DIDF 174054-R .. DIDl 174372-R 
.. EFCK 167360-R .. EFCl 167366-R .. ENTR 172010-R 
.. EXTl 172656-R .. FCSX 166520-R .. FIND 172024-R 
.. GTDI 170570-R .. IDPB 166632-R .. MKDL 172224-R 
.. PARS 172450-R •• pr:;,r 174110-R .. PDID 170742-R 
.. PNTl 173136-R .. PSDI 174700-R .. PSDV 175124-R 
.. PSIT 173416-R .. PSRC 167726-R .. PSRl 167712-R 
.. RBLK 173030-R .. RDRN 167742-R .. RFDB 167012-R 
.. RTAC 172242-R .. RWAC 170kJ16-R .. RWAT 167774-R 
.. SGR5 174534-R .. STFN 172376-R .. WAEF 166742-R 

173030-R 
167742-R 
167012-R 
1 72016-R 
172242-R 
170016-R 
167774-R 
167436-R 
174534-R 
172376-R 
166742-R 
166722-R 
1730~6-R 
174016-R 
173036-R 
167146-R 
167146-R 
167152-R 
166534-R 
166552-R 

N.OVLY 000000 

.ASCPP 176426-R 

.DCCVT 177034-R 

.GETSQ 161666-R 

.OPFNB 162666-R 

.PPASC 176140-R 

.PRSFN 175306-R 
•. ALCl 172552-R 
•. BDRC 171422-R 
.• DELl 171750-R 
.. DIRF 176314-R 
.. EXTD 172602-R 
•. FINI 172130-R 
.. MVRl 167534-R 
.. PGCR 167576-R 
.. PSFN 175320-R 
.. QIOW 166672-R 
.• RMOV 172016-R 
.• SEFB 167436-R 
.. WAIT 166722-R 

6-23 



Memory Allocation 

Example 6-3 Memory Allocation Fiie for CALC.TSK;1 (Part Printout/FULL/FILES) (continued) 

CALC.TSK;l MEMORY ALLOCATION MAP TKB 028 PAGE 5 
RDIN 3-JUL-78 le: 49 

•. WAND 173006-R .. WAST 174016-R •• WELK 173036-R •. WTWA 167146-R 
.. WTWD 167146-R •• WTWl 167152-R .. XQIO 166534-R .. XQil 166552-R 

<. ABS.>: 000000 000000 000000 00000. 
N.OVPT 000006 0$VEF 000037 

FILE: RDIN.OBJ;l TITLE: .MAIN. IDENT: FORV02 
<$CODE >: 020246 020246 000000 00000. 
<$DATAP>: 024352 024352 000000 00000. 
<$CATA >: 020430 020430 000000 00000. 
<.$$$$.>: 033250 033250 000000 00000. 

$RF2Al 000000-R 
<OTS$T >: 002444 002444 000000 00000. 

$$0TSI 002444-R 
<$CODE >: 020246 020246 000000 00000. 

$$0TSC 020246-R 
<.$$$$.>: 033250 033250 000000 00000. 
<DTA >: 00HHJ2 002443 001442 00802. 
<$DATAP>: 024352 024373 000022 00018. 
<SCODE >: 020246 020337 000072 00058. 
<$DATA >: 020430 022377 001750 01000. 

FILE: PROC 1. OBJ; 1 TITLE: PROCl ID ENT: FORV02 
<$CODE >: 020340 020340 000000 00000. 
<$DATAP>: 024374 024374 000000 00000. 
<$CATA >: 022400 022400 000000 00000. 
<.$$$$.>: 033250 033250 000000 00000. 
<$CODE >: 020340 020340 000000 00000. 

PROCl 020340-R 
<.$$$$.>: 033250 033250 000000 00000. 
<DTA >: 00HJ02 002443 001442 00802. 
<$DATAP>: 024374 024403 000010 00008. 
<$CODE >: 020340 020413 000054 00044. 
<$DATA >: 022400 022401 000002 00002. 

FILE: RPRT.OBJ;l TITLE: RPRT !DENT: FORV02 
<$COSE >: 020414 020414 000000 00000. 
<$CATAP>: 024404 024404 000000 00000. 
<$DATA >: 022402 022402 000000 00000. 
<.$$$$.>: 033250 033250 000000 00000. 
<$CODE >: 020414 020414 000000 00000. 

RPRT 020414-R 
<.$$$$.>: 033250 033250 000000 00000. 
<DTA >: 001002 002443 001442 00802. 
<SDATAP>: 024404 024413 000010 00008. 
<$CODE >: 020414 020427 000014 00012. 
<$DATA >: 022402 024351 001750 01000. 

FILE: SYSLIB. OLB; 1 TITLE: $ADDM I DENT: F400fi 2 
<OTS$I >: 002444 002577 000134 00092. 

ADF$IM 002444-R ADF$MM 002476-R ADFSPM 002462-R ADFSSM 00251C-R 
SUF$IM 002522-R SUF$MM 002554-R SUFSPM 002540-R SUF$SM 002566-R 

6-24 



Memory Allocation 

Example 6·3 Memory Allocation Fiie for CALC.TSK;1 (Pan Printout/FULL/FILES) (continued) 

CALC.TSK;l MEMORY ALLOCATION MAP TKB D28 
RDIN 3-JUL-78 10:49 

FILE: SYSLIB.OLB;l TITLE: $CALL IDENT: F40002 
<OTS$I >: 002600 002635 000036 00030. 

CAI$ 002600-R CAL$ 002606-R 

FILE: SYSLIB.OLB;l TITLE: $EOL IDENT: F40002 
<OTS$I >: 002636 002767 000132 00090. 

EOL$ 002666-R $EOL 002664-R $IOEXI 

FILE: SYS LIB. OLB; l TITLE: $CONVF IDENT: F40002 
<OTS$I >: 002770 004745 001756 01006. 

DCO$ 004024-R ECO$ 004016-R FCO$ 
RCI$ 002770-R 

<OTS$P >: 020210 020245 000036 00030. 

FILE: SYSLIB.OLB;l TITLE: $IFR !DENT: F40002 
<OTS$I >: 004746 005047 000102 00066. 

IFR$ 004746-R $IFR 004752-R $$IFR 

FILE: SYSLIB.OLB;l TITLE:. $ISNLS, IDENT: F40001 
<OTS$I >: 005050 005063 00001°4 00012. 

ISN$ 005050-R LSN$ 005056-R 

FILE: SYSLIB. OLB; 1 TITLE: $IMOVS I DENT: F40002 
<OTS$I >: 005064 005165 000102 00066. 

MOI$IA 005110-R MOI$IM 005104-R MOI$IS 
MOI$MM 005120-R MOI$MS 005114-R MOI$SA 
MOI$SS 005064-R MOI$0A 005140-R MOI$0M 
MOI$1A 005160-R MOI$1M 005152-R MOI$1S 
MOL$SS 005064-R REL$ 005100-R 

FILE: SYSLIB.OLB;l TITLE: $BRAS ID ENT: F40002 
<OTS$I >: 005166 005241 000054 00044. 

BEQ$ 005212-R BCE$ 005222-R BGT$ 
BLT$ 005232-R BNE$ 005230-R BRA$ 
NMI$1M 005166-R 

FILE: SYSLIB.OLB;l TITLE: $RETS !DENT: F40002 
<OTS$I >: 005242 005311 000050 00040. 

RET$ 005256-R RET$F 005246-R RET$I 

FILE: SYSLIB.OLB;l TITLE: $FVEC !DENT: F40002 
<OTS$I >: 005312 005355 000044 00036. 

PAGE 6 

002636-R 

004012-R GC0$ 004004-R 

004756-R 

005100-R MOI$MA 005124-R 
005074-R MOI$SM 005070-R 
005134-R MOI$0S 005130-R. 
005144-R MOL$IS 005100-R 

005220-R BLE$ 005210-R 
005224-R NMI$1I 005200-R 

005254-R RET$L 005242-R 

SAF$IM 005312-R SAF$MM 005346-R SAF$SM 005314-R SVF$IM 005324-R 
SVF$MM 005352-R SVF$SM 005326-R 

FILE: SYSLIB.OLB;l TITLE: $TRARY !DENT: F40002 

6-25 



Memory Allocation 

Example 6-3 Memory Allocation Fiie for CALC.TSK;1 (Part Printout/FULL/FILES) (continued) 

CALC.TSK;l 
RDIN 

MEMORY ALLOCATION MAP TKB 028 
3-JUL-78 10:49 

<OTS$I >: 005356 005635 000260 00176. 
TAD$ 005406-R TAF$ 005414-R 
TAP$ 005400-R TAQ$ 005372-R 
$TAI 005356-R $TAL 005364-R 

TAI$ 
$TAD 
$TAP 

FILE: SYSLIB.OLB;l TITLE: $0TI IDENT: F40002 
<. ABS.>: 000000 000000 000000 00000. 

V007A 000000 
<OTS$I >: 005636 006107 000252 00170. 

FILE: SYSLIB.OLB;l TITLE: $SUBR IDENT: F40002 
<OTS$I >: 006110 006231 000122 00082. 

$OTIS 006110-R $$OTIS 006112-R 

FILE: SYSLIB.OLB;l TITLE: $0TV IDENT: F40001 
<. ABS.>: 000000 000000 000000 00000. 

F.BFHD 000020 F.FDB 000154 
<OTS$I >: 006232 006232 000000 00000. 
<$$AOTS>: 024414 025317 000704 00452. 

PAGE 7 

005356-R TAL$ 
005406-R $TAF 
005400-R $TAQ 

$NAMC 024466-R $0TSVA 024464-R $SEQC 024464-R $SST 
.MOLUN 024472-R .NLUNS 024470-R 

<$$DEVT>: 025320 025320 000000 00000. 
<$$FSR1>: 026530 026530 000000 00000. 
<$$IOB1>: 032734 033137 000204 00132. 
<$$IOB2>: 033140 033140 000000 00000. 
<$$0BF1>: 033140 033247 000110 00072. 
<$$0BF2>: 033250 033250 000000 00000. 

FILE: SYSLIB.OLB;l TITLE: $0TSV IDENT: V0101A 
<. ABS.>: 000000 000000 000000 00000. 

$0TSV 000004 

FILE: SYSLIB.OLB;l TITLE: $CONVI ICENT: F40002 
<OTS$I >: 006232 006637 000406 002620 

ICI$ 006240-R ICO$ 006442-R OCI$ 
$ECI 006254-R 

<OTS$P >: 02~210 020245 000036 00030. 

FILE: SYSLIB.OLB;l TITLE: $SAVRE IDENT: F40002 
<OTS$I >: 006640 007017 000160 00112. 

SAVRC$ 006640-R THRD$ 007016-R 

FILE: SYSLIB.OLB;l TITLE: $FCHNL IDENT: F40001 
<OTS$I >: 007020 007055 000036 00030. 

$FCHNL 007020-R 

FILE: SYSLIB.OLB;l TITLE: $FIO IDENT: F400~ 2 

6-26 

006232-R OCO$ 

005364-R 
005414-R 
005372-R 

025300-R 

006434-R 



Memory Allocation 

Example 6-3 Memory- Allocation Fiie for CALC.TSK;1 (Part Prlntout/FULUFILES) (continued) 

CALC.TSK;l 
RDIN 

MEMORY ALLOCATION MAP TKB D28 
3-JUL-78 10:49 

<OTS$I >: 007056 010751 001674 00956. 
$FIO 007614-R $$FIO 007620-R 

<OTS$P >: 020210 020245 000036 00030. 

FILE: SYSLIB.OLB;l TITLE: $OPEN !DENT: F40002 
<OTS$I >: 010752 011367 000416 00270. 

$FLDEF 011276-R $OPEN 010752-R 

FILE: SYSLIB.OLB;l TITLE: $GETRE !DENT: F40001 
<OTS$I >: 011370 011465 000076 00062. 

$GETRE 011370-R 

FILE: SYSLIB.OLB;l TITLE: $INITI !DENT: F40002 
<OTS$I >: 011466 011553 000066 00054. 

$INITI 011466-R 

FILE: SYSLIB.OLE;l TITLE: $STPPA IDENT: F40001 
<OTS$I >: 011554 012017 000244 00164. 

PAGE 8 

BAH$ 011650-R EXIT$ 011732-R FOO$ 011722-R PSE$ 011622-R 
STP$ 011716-R ~EXIT 011732-R $PSE 011626-R $PSES 011660-R 
$STP 011716-R $STPS 011710-R 

FILE: SYSLIB.OLB;l TITLE: $ERRPT !DENT: F40001 
<OTS$I >: 012020 013717 001700 00960. 

$EINAS 013212-R $ERRAA 012206-R 
$ERRZA 013150-R $ERXIT 012436-R 
$SST0 012020-R $SST1 012026-R 
$SST4 012054-R $SST5 012062-R 
$SVTK$ 013522-R 

$ERRTB 013530-R 
$EXIT$ 012124-R 
$SST2 012040-R 
$SST6 012146-R 

FILE: SYSLIB.OLB;l TITLE: $FPERR !DENT: F40002 
<OTS$I >: 013720 014123 000204 00132. 

$FPERR 013720-R 

FILE: SYSLIB.OLB;l TITLE: $NVINI !DENT: 
<. BLK.>: 001000 001001 000002 00002. 

$VIRIN 001000-R 

FILE: SYSLIB.OLB;l TITLE: FCSFSR !DENT: 0303MS 
<. ABS.>: 000000 000000 000000 00000 . 

. FSRPT 000002 
<$$FSR1>: 026530 026530 000000 00000. 
<$$FSR2>: 032630 032733 000104 00068 . 

. FSRCB 032630-R .MBFCT 032730-R 

FILE: SYSLIB.OLB;l TITLE: $ERQIO !CENT: F40001 

$ERRTE 013720-R 
$FILL 013266-R 
$SST3 012046-R 
$SST7 012072-R 

6-27 



Memory Allocation 

Example 6-3 Memory Allocation Fiie for CALC.TSK;1 (Part Prlntout/FULUFILES) (continued) 

CALC.TSK;l 
RDIN 

MEMORY ALLOCATION MAP TKB 028 
3-JUL-78 10:49 

<OTS$I >: 014124 014417 000274 00188. 

PAGE 9 

$ATT 014124-R $DET 014230-R $ERRWT 014314-R 

FILE: SYSLIB.OLB;l TITLE: $CLOSE IDENT: F40001 
<OTS$I >: 014420 014507 000070 00056. 

$CLOSE 014420-R 

?ILE: SYSLIB.OLB;l TITLE: $ERTXT IDENT: F40004 
<OTS$I >: 014510 020073 003364 01780. 

$ERTXT 014510-R 

FILE: SYSLIB.OLB;l TITLE: $R50 rrENT: F40001 
<OTS$I >: 020074 020207 000114 0~076. 

$R50 020074-R 

*** TASK BUILDER STATISTICS: 

6-28 

TOTAL WORK FILE REFERENCES: 19016. 
WORK FILE READS: 0. 
WORK FILE WRITES: 0. 
SIZE OF CORE POOL: 16010. WORDS (62. PACES) 
SIZE OF WORK FILE: 3072. WORDS (12. PAGES) 

ELAPSED TIME:0~:00:17 



Memory Allocation 

Example 6-4 Memory Allocation for CALC.TSK;2 

CALC.TSK:2 MEMORY ALLOCATION MAP TKB 028 
3-JUL-78 10:50 

PAGE 1 

PARTITION NAME : GEN 
IDENTIFICATION : FORV02 
STACK LIMITS: 000000 000777 001000 00512. 
PRG XFR ACDRESS: 020246 
TOTAL ATTACHMENT DESCRIPTORS: 3. 
TASK IMAGE SIZE : 6176. WORCS 
TASK HEACER SIZE: 160. WORDS 
TASK ADDRESS LIMITS: 000000 030167 
R-W CISK BLK LIMITS: 000003 000032 000030 00024. 

*** FOOT SEGMENT: RDIN 

R/W MEM LIMITS: 000000 030167 030170 12408. 
DISK BLK LIMITS: 000003 000033 000031 00025. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION TITLE ICENT FILE 

BL K • : ( RW , I , LC L , PEL , C 0 N ) 
DTA : (RW,D,GBL,REL,OVR) 

OT S $ I : { RW , I , LC L , REL , C 0 N ) 

OTS$P : (RW,D,GBL,REL,OVR) 
$COCE : (RW,I,LCL,RBL,CON) 

$DA TA : ( RW I D ' LC L 1 REL , c 0 N ) 

$DA TAP : ( RW , C , LC L , REL , C 0 N ) 

$$AOTS: (RW,C,LCL,REL,CON) 

~01000 ~00002 00002. 
001002 001442 00802. 
001002 001442 00802 . 
001002 001442 00802. 
001002 001442 0~802. 
002444 015544 07012. 
002444 000000 00000. 
020210 000036 00030. 
020246 0~0162 00114. 
020246 000000 00000 . 
020246 000000 00000. 
020246 000072 00058 . 
020340 000000 00000. 
020340 000000 00000. 
020340 000054 00044. 
020414 000000 00000. 
020414 000000 00000. 
020414 000014 00012. 
020430 003722 02002. 
020430 000000 00000 . 
020430 001750 01060. 

. MAIN. FORV02 RDIN.OBJ;l 
PROCl FORV02 PROCl.OBJ;l 
RPRT FORV02 RPRT.OBJ;l 

. MAIN. FORV0 2 RCI!L OBJ; l 

. MAIN. 

.MAIN. 

. MAIN. 
PROCl 
PROCl 
PFOCl 
RPRT 
RPRT 
RPRT 

FORV02 RCIN.OBJ;l 
FORV02 RDIN.OBJ;l 
FOF.V02 RDIN.OBJ;l 
FORV02 PROCl.OBJ;l 
FORV02 PROCl.OBJ;l 
FORV02 PROCl.OBJ;l 
FORV02 RP~T.OBJ;l 
FORV02 RPRT.OBJ;l 
FORV02 RPRT.OBJ;l 

.MAIN. FORV02 RCIN.OBJ;l 

. MAIN. FORV02 RCIN.OBJ;l 
022400 000000 00000. PRCCl 
022400 000002 00002. PROCl 
022402 000000 00000. RPFT 
022402 001750 010C0. RPRT 
024352 000042 00034. 
0 2 4 3 5 2 0 0 0 0 0 0 0 0 0 0 0 • • MA IN . 
024352 000022 00018 .. MAIN. 
024374 000000 00000. PROCl 
024374 000010 00008. PROCl 
024404 000000 00000. RPRT 
024404 000010 00008. RPRT 
024414 000704 00452. 

FORV02 PROCl.OBJ;l 
FORV02 PROCl.OBJ;l 
FORV02 RPRT.OBJ;l 
FORV02 RPRT.OBJ;l 

FORV02 RCIN.OBJ;l 
FORV02 FCIN.OBJ;l 
FORV02 PROCl.OBJ;l 
FORV02 PROCl.OBJ;l 
FORV02 RPRT.OBJ;l 
FORV02 RPFT.OBJ;l 

6-29 



Memory Allocation 

Example 6-4 Memory Allocation Fiie for CALC.TSK;2 (continued) 

CALC.TSK;2 
RDIN 

MEMORY ALLOCATION MAP TKB 028 
3-JUL-78 10:50 

PAGE 2 

$$AUTO: (RW,I,LCL,REL,CON) 160000 000130 00088. 
$$DEVT: (RW,D,LCL,REL,OVR) 025320 001210 00648. 
$$FSR1: (RW,D,GBL,REL,OVR) 026530 001020 00528. 
$$FSR2: (RW,D,GBL,REL,CON) 027550 000104 00068. 
$$IOBi: (RW,D,LCL,REL,OVR) 027654 000204 00132. 
$$IOB2: (RW,D,LCL,REL,OVR) 030060 000000 00000. 
$$LOAD: (RW,I,LCL,REL,CON} 160130 000170 00120. 
$$MRKS: (RW,I,LCL,REL,OVR) 160320 000166 00118. 
$$0BF1: (RW,D,LCL,REL,CON} 030060 000110 00072. 
$$0BF2: (RW,I,LCL,REL,CON) 030170 000000 00000. 
$$0VRS: (RW,I,LCL,ABS,CON) 000000 000000 00000. 
$$RDSG: (RW,I,LCL,REL,OVR) 160506 000312 00202. 
$$RESL: (RW,I,LCL,REL,CON) 161020 016216 07310. 
• $$$$.: (RW,D,GBL,REL,OVR) 030170 000000 00000 . 

030170 000000 00000. .MAIN. 
030170 000000 00000. .MAIN. 
030170 000000 00000. PROCl 
030170 000000 00000. PFOCl 
030170 000000 00000. RPRT 
030170 000000 00000. PPRT 

GLOBAL SYMBOLS: 

PROCl 020340-R $RF2Al 000000-R $$0TSI 002444-R 
RPRT 020414-R $$0TSC 020246-R 

*** TASK BUILDER STATISTICS: 

6-30 

TOTAL WORK FILE REFERENCES: 14413. 
WORK FILE READS: 0. 
WORK FILE WRITES: 0. 
SIZE OF CORE POOL: 16010. WORDS (62. PAGES) 
SIZE OF WORK FILE: 3072. WORDS (12. PAGES) 

ELAPSED TIME:00:00:13 

FORV02 
FORV02 
FORV02 
FOFV02 
FORV02 
FORV02 

FDIN .OBJ; 1 
RCIN. OBJ; 1 
PROCl.OP.J;l 
PROCl. OEJ; 1 
RPRT.OEJ;l 
T"'\T"'l,T"'\1Ti nn T ... 1 
rt.t"!\.l.oVOIJj..1. 



7 OVERLAY CAPABILITY 

The Task Builder provides you with a means of reducing the memory and/or virtual address 
space requirements of a task by means of overlay structures created with the aid of the Overlay 
Description Language (ODL). Two kinds of overlay segments can be specified: those that reside on 
disk, and those that reside permanently in memory. 

7 .1 Overlay Description 

7.1.1 

To create an overlay structure, you divide a task into a series of segments: 

1 A single root segment, which is always in memory. 

2 Any number of overlay segments, which either reside on disk and share virtual address space 
and memory with one another; or which reside in memory but share virtual address space. 

A segment consists of a set of modules and p-sections. Segments that overlay each other must be 
logically independent; that is, the components of one segment cannot reference the components of a 
segment with which it shares virtual address space. In addition to the logical independence of the 
overlay segments, you must consider the general flow of control within the task. 

You must also consider what kind of overlay segment is most suitable, and how it will be 
constructed. Dividing a task into disk-resident overlays saves physical space, but introduces 
the overhead activity of loading these segments each time they are needed, but not present in 
memory. Memory-resident overlays, on the other hand, are loaded from disk only the first time 
they are referenced. Thereafter, they remain in memory and are referenced by re-mapping. 

There are several large classes of tasks that can be handled effectively by an overlay structure. 
For example, a task that moves sequentially through a set of modules is well-suited to the use of 
an overlay structure. A task that selects one of a set of modules according to the value of an item 
of input data is also well-suited to an overlay structure. 

Disk-Resident Overlay Structure 
Disk-resident overlays conserve memory by sharing it. Segments that are logically independent 
need not be present in memory at the same time. They can therefore occupy a common physical 
area in memory whenever either needs to be used. 

Consider a task, TKl, which consists of four input files. Each input file consists of a single module 
oi the same name as the fiie. T'he task is buiit by the foiiowing command: 

PDS> LINK/TASK:TKl 
FILE? CNTRL,A,B,C 

Suppose you know that the modules A, B, and Care logically independent. In this example: 

A does not call B or C and does not use the data of B or C 
B does not call A or C and does not use the data of A or C 
C does not call A or Band does not use the data of A or B. 

7-1 



OVERLAY CAPABILITY 

You can define an overlay structure in which A, B, and Care overlay segments that occupy the 
same storage. Suppose further that the flow of control for the task is as follows: 

CNTRL calls A and A returns to CNTRL 
CNTRL calls B and B returns to CNTRL 
CNTRL calls C and C returns to CNTRL 
CNTRL calls A and A returns to CNTRL 

The loading of overlays occurs only four times during the execution of the task. Therefore, the user 
can reduce the memory requirements of the task without unduly increasing the overhead activity. 

Consider the effect of introducing an overlay structure on the allocation of memory for the task. 
Suppose the lengths of the modules are as follows: 

CNTRL 

A 

B 

c 

10,000 bytes 

6,000 bytes 

5,000 bytes 

1,200 bytes 

The memory allocation produced as a result of building the task as a single segment on a system 
with memory mapping hardware is as follows: 

24200 
c 

23000 

B 
16000 

A 
10000 

CNTRL 
0 

The memory allocation for a single-segment task requires 24200 bytes. 

The memory allocation produced as a result of using the overlay capability and building a 
multi-segment task is as follows: 

------- - 16000 

A 
B 

CNTRL 

c 10000 

0 

The multi-segment task requires 16,000 bytes. In addition to the module storage, additional 
st-orage is required for overhead connected 'vith handling the overlay structure. This overhead is 
described later and illustrated in the example CALC. 

The amount of storage required for the task is determined by the length of the root segment 
and the length of the longest overlay segment. Overlay segments A and B in this representation 
are much longer than overlay segment C. If the user can divide A and B into sets of logically 
independent modules, further reduction can be made in the storage requirements for the task. 

7-2 



7.1.2 

OVERLAY CAPABILITY 

Segment A is divided into a control program, AO, and two overlays, Al and A2. Then, A2 is further 
divided into a main part ,A2, and two overlays ,A21 and A22. Similarly, segment Bis divided into 
a control module, BO, and two overlays, Bl and B2. 

The memory allocation for the task produced by the additional overlays defined for A and Bis 
given in the following diagram: 

- 13600 
~ 
~ 

A21 A22 
A1 81 t-----i 

82 c 
A2 

AO BO 
10000 

CNTRL 
0 

As a single-segment task, TKl required 24,200 bytes of storage. The first overlay structure 
reduced the requirement by 6,200 bytes. The second overlay structure further reduced the storage 
requirement by 2,200 bytes. 

A vertical line drawn through the memory diagram indicates a state of memory at some point 
in time during the execution of the task. In the diagram given here, the leftmost such line gives 
memory when CNTRL, AO, and Al are loaded: the next such line gives memory when CNTRL, AO, 
A2, and A21 are loaded: and so on. 

A horizontal line can be drawn through the memory diagram to indicate segments that share the 
same storage. In the given diagram, the uppermost such line indicates Al, A21, A22, Bl, B2 and 
C, all of which can use the same memory; the next such line gives Al, A2, Bl, B2, and C; and so 
on. 

Memory-Resident Overlay Structure 
The Task Builder provides for the creation of overlay segments that are loaded from disk only 
the first time they are referenced. Thereafter, they are permanently resident in memory, sharing 
virtual address space in the same way as disk-resident overlays. Unlike disk-resident overlays, 
however, memory-resident overlays do not share physical memory. Instead, they reside in separate 
areas of memory, each one aligned on a 32-word boundary. Memory-resident overlays save time for 
a running task because they do not need to be copied from a secondary storage device each time 
they are to overlay other segments. 

"Loading" a memory-resident overlay reduces to mapping a set of shared virtual addresses to the 
u..Ylique permanent physical area of memory contaiPing the overlaying segment. This process is 
shown in Figure 7-1. 

It is important that you exercise discretion in choosing whether to have memory-resident overlays 
in a structure. Indiscriminate use of these segments can result in inefficient allocation of 
virtual memory. This is because virtual memory is allocated in blocks that are 4K words long. 
Consequently, the length of each overlay segment should approach that limit if you are to minimize 
waste. (A segment that was one word longer than 4K, for example, would be allocated SK of virtual 
memory. All but one word of the second 4K would be unusable.) 

7-3 



7 1 '2 
r • I •"' 

OVERLAY CAPABILITY 

You should also maintain control over the contents of each segment in order to prevent wasted 
physical memory. The inclusion of a module in several memory-resident segments that overlay 
one another, causes storage to be reserved for each extra copy of the module. Common modules, 
including those from the system object module library, should be placed in a segment that can be 
accessed from all referencing segments. 

The criterion for choosing to have memory-resident overlays is the need to save virtual address 
space when one of the following conditions exists: 

1 Disk-resident overlays are undesirable 

(because they would slow down the system to a point that is unacceptable), 

or 

2 Disk-resident overlays are impossible 

(because the segments are portions of a shareable global area or other shared region, and must 
be permanently resident in memory). 

Large systems can be utilized to better advantage because of the ability to save time when a large 
amount of physical memory is available. Shareable global areas can benefit especially, from the 
virtual-memory-saving attribute, by being divided into memory-resident segments. 

If all the code in a resident overlay is contained in read-only p-sections, the overlay segment is 
marked as read-only. Such a segment is shared between all active versions of the task, in the same 
way as the task pure area. 

Where there are commonly several versions of a task active, use of read-only resident overlays can 
save a significant amount of physical memory. 

When a task has resident overlays, the physical memory for all of them is allocated when the 
task is loaded, and normally remains allocated until the task exits. The resident overlays can be 
removed from memory (by checkpointing or swapping) only when the task itself is so removed. 
This also applies to overlays which are not currently mapped. 

Overlay Tree 
The Task Builder provides a language for representing an overlay structure consisting of one or 
more trees. 

The memory allocation for the previous example can be represented by the single overlay tree 
shown below: 

7-4 



Figure 7-1 Mapping Memory-Resident Overlays 

Al 
I 

c 

B 

120000 ,. -- - - ,. - - - - - -

A 

40000 !... - - - - !... - - - - - -
I I 

CNTRL 
I 

I I .. (Root 
I I 

0 L -- - - L - - - - - -
l>egment) 

Virtual 
Address 
Space 

-

/ 

Physical 
Memory 

D 

c I -e2I /.. 
100000,.. __ - ... / / r 

' '~/ 
B 

I I 

I I 

40000 !.. - - - - ~- - - - - -
I I 

I 

I .. 
I I 

0 1- -- - - L - - - - - -

A21 

I 

I 
AO 

I 

Virtual 
Address 
Space 

I 
f 

A22. 
I 

A 

CNTRL 
(Root 

!Segment) 

Physical 
Memory 

CNTRL 

B1 
I 

OVERLAY CAPABILITY 

,2 
I 

BO c 
I I 

7-5 



OVERLAY CAPABILITY 

The tree has a root, CNTRL, and three main branches, AO, BO, and C. The tree has six leaves, Al, 
A21, A22, Bl, B2, and C. 

The tree has as many paths as it has leaves. The path down is defined from the leaf to the root, 
for example: 

A21-A2-AO-CNTRL 

The path up is defined from the root to the leaf, for example: 

CNTRL-BO-Bl. 

Understanding the tree and its paths is important to the understanding of the overlay loading 
mechanism and the resolution of global symbols. 

Loading Mechanism 

Modules can call other modules that exist on the same path. The module CNTRL is common to 
every path of the tree and, therefore, can call and be called by every module in the tree. The 
module A2 can call the modules A21, A22, AO, and CNTRL; but A2 can not call Al, Bl, B2, BO or 
c. 
When a module calls a module in another overlay segment, the overlay segment must be in 
memory or must be brought into memory. The methods for loading overlays are described in 
Chapter 8, Section 8.1 and Section 8.2. 

Resolution of Global Symbols In a Multi-segment Task 

The Task Builder performs the same activities in resolving global symbols for a multi-segment 
task as it does for a single segment task. The rules defined in Chapter 6, Section 6.1.11 for the 
resolution of global symbols in a single segment task still apply, but the scope of the global symbols 
is altered by the overlay structure. 

In a single segment task, any global definition can be referenced by any module. In a 
multi-segment task, a module can only reference a global symbol that is defined on a path that 
passes through the segment to which the module belongs. 

In a single segment task, if two global symbols with the same name are defined, the symbols are 
multiply-defined and (if the values differ) an error message is produced. 

In a multi-segment task: 

1 Two global symbols with the same name can be defined if they are on separate paths, and not 
referenced from a R~gm~nt. t.h.!:l.t. i~ ~Q!!!!!!O!! fo bf}th. 

2 If a global symbol is defined more than once on separate paths, but referenced from a segment 
that is common to both, the symbol is ambiguously defined. 

3 If a global symbol is defined more than once on a single path, it is multiply-defined. 

The procedure for resolving global symbols can be summarized as follows: 

1 The Task Builder selects an overlay segment for processing. 

2 Each module in the segment is scanned for global definitions and references. 

3 If the symbol is a definition, the Task Builder searches all segments on paths that pass through 
the segment being processed, and looks for references that must be resolved. 

4 If the symbol is a reference, the Task Builder performs the tree search as described in step 3, 
looking for an existing definition. 

7-6 



OVERLAY CAPABILITY 

5 If the symbol is new, it is entered in a list of global symbols associated with the segment. 

Overlay segments are selected for processing in an order corresponding to their distance from the 
root. That is, the Task Builder considers a segment farther away from the root, before processing 
an adjoining segment. 

When a segment is being processed, the search for global symbols proceeds in the following order: 

1 The segment being processed. 

2 All segments toward the root. 

3 All segments away from the root. 

4 All co-trees (see Section "Resolution of P-sections in a Multi-segment Task"). 

Consider the task TKl and the global symbols Q, R, S, and T. 

A1 

a (ref) 
R (ref) 

I 

A21 /J.22. 

R (ref) 

T ,_<d_ef) ____ a__,rf) 

AO 
a (def) 
S (def) 
T (def) 

I 

A2 

R (def) 

I 

CITTRL 
S (ref) 

B1 
a (ref) 

I 

BO 
a (def) 
R (def) 

I 

The symbols shown in the diagram are described below: 

B2 

c 

I 

Q The global symbol Q is defined in the segment AO and in the segment BO. The reference to Qin 
segment A22 and the reference to Qin segment A1 are resolved to the definition in AO. The reference 
to Qin 81 is resolved to the definition in BO. The two definitions of Qare distinct in all respects and 
occupy different memory allocations. 

R The global symbol R is defined in the segment A2. The reference to R in A22 is resolved to the definition 
in A2 because there is a path to the reference from the definition (CNTRL-AO-A2-A22). The reference to 
R in A 1 , however, is undefined because there is no definition for R on a path through A 1 . 

S The global symbol S ls defined in AO and 80. References to S from A1, A21, or A22 are resoived to 
the definition in AO, and references to Sin B1 and B2 are resolved to the definition in BO. However, the 
reference to S in CNTRL cannot be resolved because there are two definitions of S on separate paths 
through CNTRL. S is ambiguously defined. 

T The global symbol Tis defined in A21 and AO. Since there is a single path through the two definitions 
(CNTRL-AO-A2-A21 ), the global symbol T is multiply-defined. 

7-7 



OVERLAY CAPABILITY 

Resolution of Global Symbols from the Default Library 

The process of resolving global symbols may require two passes over the tree structure. The global 
symbols described in the previous section are included in user-specified input modules that are 
scanned by the Task Builder in the first pass. If any undefined symbols remain, the Task Builder 
initiates a second pass over the structure in an attempt to resolve such symbols by searching the 
default object module library (normally LBO:[l,l]SYSLIB.OLB). Any undefined symbols remaining 
after the second pass are reported to you. 

When multiple tree structures (co-trees) are defined, any resolution of global symbols across tree 
structures during a second pass can result in multiple or ambiguous definitions. In addition, such 
references can cause overlay segments to be inadvertently displaced from memory by the overlay 
loading routines, thereby causing run-time failures to occur. To eliminate these conditions, the tree 
search on the second pass is restricted to: 

1 The segment in which the undefined reference has occurred 

2 All segments in the current tree that are on a path through the segment 

3 The root segment 

When the current segment is the main root, the tree search is extended to all segments. You can 
unconditionally extend the tree search to all segments by including the /FULL_SEARCH PDS 
qualifier (/FU MCR switch). 

Resolution of P-sectlons In a Multi-segment Task 

Each p-section has an attribute that indicates whether the p-section is local (LCL) to the segment 
in which it is defined or of global (GBL) extent. 

Local p-sections with the same name can appear in any number of segments. Storage is allocated 
for each local p-section in the segment in which it is declared. Global p-sections of the same name, 
however, must be resolved by the Task Builder. 

When a global p-section is defined in several overlay segments along a common path, the Task 
Builder allocates all storage for the p-section in the overlay segment closest to the root. 

FORTRAN common blocks are translated into global p-sections with the overlay (OVR) attribute. 
Suppose that in the task TKl, the common block COMA is defined in modules A2 and A21. The 
Task Builder allocates the storage for COMA in A2 because that segment is closer to the root than 
the segment which contains A21. 

i.:1'1nrrouo .... ~.f fho cu:orrmonfa AO on..:I RO noo o rnn\Tnnn hln,..lr ~()MAR +ho Toalr Rn~l..:l.o ... alln,..of.oa +ho -•v """"" ....., ... , .a.a. V&&""" ..., ...... 0 ..................... .,..., .,_" ...,.. ...... """ ,_,v ,.a..,"" - ...,_.., ............... - ...... _ ... __ .... - --·--, .., ...... _ ---.-.- - -·--- _ ... ____ .., __ ., ..... ..., 

storage for COMAB in both the segment which contains AO and the segment which contains BO. 
AO and BO can not communicate through COMAB. When the overlay segment containing BO is 
loaded, any data stored in COMAB by AO is lost. 

The tree for the task TKl including the allocation of the common blocks COMA and COMAB is: 

7-8 



7.1.4 

OVERLAY CAPABILITY 

A21 A22 
I I 

I 
Al r COMA 81 ,2 
I 

I 
I 

I 
AO COM AB BO COMAS c 
I I I 

CNTRL 

You can specify the allocation of p-sections. If AO and BO need to share the contents of COMAB, 
you can force the allocation of this p-section into the root segment by the use of the .PSECT 
directive, described in Section ".PSECT Directive". 

Misalignment between a global tag within the .PSECT and the resulting task image in a 
multi-segment task can occur if you reference a global .PSECT that is also defined in a module 
in the default library. This condition can be corrected by: 

1 Explicitly specifying the default library as the last module in the ODL, or 

2 Including the referenced library modules directly in the ODL specification. 

Overlay Description Language (ODL) 
The Task Builder provides a language that allows you to describe the overlay structure. The 
overlay description language (ODL) contains five directives by which you can describe the overlay 
structure of a task. 

An overlay description consists of a series of ODL directives. There must be one .ROOT directive 
and one .END directive. The .ROOT directive tells the Task Builder where to start building the 
tree and the .END directive tells the Task Builder where the input ends . 

. ROOT and .END Directives 

The arguments of the .ROOT directive make use of two operators to express concatenation and 
overlaying. A pair of parentheses delimits a group of segments that start at the same location in 
memory. The number of nested parentheses cannot exceed 16. 

1 The operator dash(-) indicates the concatenation of storage. For example, X-Y means that the 
memory allocation must contain X and Y simultaneously. So X and Y are allocated in sequence. 

2 The operator comma (, ) appearing within parentheses indicates the overlaying of storage. 
For example; Y;Z means that memory can contain either Y or Z. Therefore Y and Z can share 
storage. 

This operator is also used to define multiple tree structures, as described in Section 7.1.5. 

3 The operator exclamation mark (!)indicates memory residency of overlays. See Section 7.1.2. 

The following ODL directives: 

.ROOT X-(Y,Z-(Zl,Z2)) 

.END 

7-9 



OVERLAY CAPABILITY 

describe the following tree and its corresponding memory diagram: 

Z1 Z2 

I I l 
Z1 l Z2 

y 

z 
y 

I 
z 

x Y. 

To create the overlay description for the task TKl described earlier in this chapter, the user creates 
a file TFIL.ODL that contains the directives: 

.ROOT CNTRL-(A0-(Al,A2-(A21,A22)),BO-(Bl,B2),C) 

.END 

To build the task with that overlay structure, the user types: 

PDS> LINK/TASK:TKl/OVERLAY:TFIL 
or 

MCR>TKB TKl=TFIL/MP 

The OVERLAY qualifier tells the Task Builder that the file TFIL. ODL contains an overlay 
description for the task. 

The qualifiers on input file specifications in the ODL files are always given in the MCR form . 

. FCTR Directive 

The tree that represents the overlay structure can be complicated. The ODL includes another 
directive, .FCTR, which allows you to build large trees and represent them systematically. 

The .FCTR directive allows you to extend the tree description beyond a single line. Since there can 
be only one .ROOT directive, the .FCTR directive must be used if the tree definition exceeds one 
line. The .FCTR directive, however, can also be used to introduce clarity in the representation of 
the tree. 

The maximum number of nested .FCTR levels is 32. 

IT'- -.!--1.!l' •• •L- •--- ...: •• -- .:- •L- .t:l.1- 11".._,TT +L- .._,f"llT''D .J.:-........ +..: ...... .:.,. ..:-+-.......:1 ..... ..,..;1 .: ... +,. +'he AnT ,...,. 
.LV C.1.1.l...l}".L.l.J.J' "J.J..:;; tll."fi;;'fi;i 6.1.'Y~.l..l .1..1..1. ".l.J."O .LJ..l."Ci .L.&:.&..LJ \f.l..U:; • .&. '-'.I.£ .. U.l..L"""'".1.y-.;,, .1.g .l..&.&".&.V'\.&W.""'-''-A .&.&&""' V&.&"" .._,,.._,,._. "4t.;J 

follows: 

AFCTR: 
BFCTR: 

.ROOT CNTRL-(AFCTR,BFCTR,C) 

.FCTR AO-(Al,A2-(A21,A22)) 

.FCTR BO-(Bl,B2) 

.END 

The label BFCTR, is used in the .ROOT directive to designate the argument of the .FCTR directive, 
BO-(Bl,B2). The resulting overlay description is easier to interpret than the original description. 
The tree consists of a root, CNTRL, and three main branches, Two of the main branches have 
sub-branches. 

7-10 



OVERLAY CAPABILITY 

The .FCTR directive can be nested. You can modify file TFIL.ODL as follows: 

AFCTR: 
A2FCTR: 
BFCTR: 

.ROOT CNTRL-(AFCTR,BFCTR,C) 

.FCTR AO-(Al,A2FCTR) 

.FCTR A2-(A21,A22) 

.FCTR BO-(Bl,B2) 

.END 

The decision to use the .FCTR directive is based on considerations of space, style, and readability 
of a complex ODL file. 

Exclamation Point Operator 

The exclamation point operator allows you to specify overlay segments that will permanently reside 
in memory rather than on disk. Memory residency is specified by placing an exclamation point ( ! ) 
immediately before the left parenthesis enclosing the segments to be affected: 

.ROOT A-! (B, C) 

In the example above, segments B and C are declared resident in separate areas of memory. The 
single starting virtual address for both B and C is determined by the Task Builder, by rounding the 
octal length of segment A up to the next 4K boundary. The physical memory allocated to segments 
B and C is determined by rounding the actual length of each segment to the next 32-word boundary 
and adding this value to the total memory required by the task. 

The exclamation point operator applies only to segments at the first level inside a pair of 
parentheses; segments in parentheses nested within that level are not affected. It is therefore 
possible to define an overlay structure that combines the space-saving attributes of disk-resident 
overlays, with the speed of memory-resident overlays. 

The following example shows this: 

.ROOT A-! (Bl-(B2,B3),C) 

.END 

In this example above Bl and C are declared memory-resident by the exclamation point operator. 

B2 and B3 are declared disk-resident because no exclamation point operator is present before the 
parentheses enclosing them. 

While it is perfectly valid for a memory-resident overlay to call a disk-resident overlay, it is illegal 
to build the following type of structure; that is, an exclamation point cannot be used for segments 
emanating from a disk-resident segment (in this case, Bl): 

.ROOT A-(Bl-! (B2,B3),C 

.END 

The exclamation point operator will be ignored unless the task has been built using the 
iRESIDEN1."'_ OVERLAYS PDS quaii:fier (/RO MCR switch) 

.NAME Directive 

The .NAME directive allows you to specify a name for a segment, and in so doing, to attach 
attributes to the segment. The name must be unique with respect to filenames, p-section names, 
.FCTR labels and other segment names that are used in the overlay description. 

The chief uses of this directive are: 

1 To name uniquely a segment that is to be loaded through the manual load facility, and 

7-11 



OVERLAY CAPABILITY 

2 'lb permit a segment, that does not contain executable code, to be loaded through the autoload 
mechanism. 

(Loading mechanisms are described in Chapter 8.) 

The format of the .NAME directive is 

.NAME segname [,attr] [,attr] 

where: 

• segname - is a 1- to 6-character name composed from the character set A-Z, 0-9 and$. 

• ,attr - denotes an optional attribute. 

attr is one of the following: 

GBL 

NO OSK 

NOGBL 

OSK 

NOPHY 

The name is entered in the segment's global symbol table. 

GBL makes it possible to load non-executable overlay segments by means of the autoload 
mechanism (see Chapter 8, Section 8.1 ). 

No disk space is allocated to the named segment. 

If a data overlay segment has no initial values, but will have its contents established by the 
running task, no space for the task image on disk need be reserved. If NODSK has been 
specified, an attempt to initialize the segment with data et task-build time results in e feta! error. 

The name is not entered in the segment's global symbol table. If GBL is not present NOGBL is 
assumed. 

Disk storage is allocated to the named segment. if NODSK is not present, OSK is assumed. 

No memory is allocated to the segment. Addresses are allocated in the segment starting at 
relative zero, but the segment cannot be loaded by the overlay run-time system. 

NOPHY allows data other than the task itself to be included in the task image file, for example, 
error messages. The 10.LOV 010 function code can be used to load all or part of the segment 
into a specified buffer, as described in Chapter 8, Section 8.1 . 

The attributes described are not attached to a segment until the name is used in a .ROOT or 
.FCTR statement that defines an overlay segment. When multiple segment names are applied to a 
segment, the attributes of the last name given take effect. 

In the following modified tree for Tl{l, you give names to the three main branches, AO, BO and 
C, by specifying them in the .NAME directive, and using them in the .ROOT directive. The 
default attributes NOGBL and DSK are in effect for BRNCHl and BRNCH3. BRNCH2 has the 
complement attributes GBL and NODSK which will cause the name BRNCH2 to be entered into 
its segment's global symbol table, and the allocation of disk space for the segment to be suppressed. 
BO, Bl and B2 can contain either data or executable code; the other two branches must contain 
executable code. 

AFCTR: 
BFCTR: 

.NAME BRNCHl 

.NAME BRNCH2,GBL,NODSK 

.NAME BRNCH3 

.ROOT CNTRL-(BRNCH1-AFCTR,BRNCH2-BFCTR,BRNCH3-C) 

.FCTR AO-(Al,A2-(A21,A22)) 

.FCTR BO-*(Bl,B2) 

.END 

(* is the autoload indicator, see Chapter 8, Section 8.1.) 

7-12 



7.1.5 

OVERLAY CAPABILITY 

The data overlay segment BRNCH2 is loaded by including the following statement in the user's 
program. 

CALL BRNCH2 

This action is immediately followed by an automatic return to the next instruction in the program. 

Segment names are also used in making patches with the options ABSPAT, GBLPAT and SYMPAT 
(see Section 5.5 onwards). 

If no segment name is specified the Task Builder establishes a segment name, using the first 
.PSECT or module name occurring in the segment . 

. PSECT Directive 

The .PSECT directive allows the placement of a global p-section to be specified directly. The 
name of the p-section and its attributes are given in the .PSECT directive. The name can then be 
used explicitly in the definition of the tree to indicate the segment in which the p-section is to be 
allocated. It can also be used to force a p-section to be shared (see Section "Resolution of P-sections 
in a Multi-segment Task"). 

A problem could be encountered in communication resulting from the overlay description for TKl 
if you were careful about the logical independence of the modules in the overlay segment, but 
failed to take into account the logical independence requirement of multiple executions of the same 
overlay segment. 

The flow of the task TKl, as described earlier in this chapter, is summarized in the following way. 
CNTRL calls each of the overlay segments and the overlay segment returns to CNTRL in the 
following order: A,B,C,A. The module A is executed twice. The overlay segment containing A must 
be reloaded for the second execution of A. 

The module A uses the common block DATA3 and the Task Builder allocates DATA3 in the overlay 
segment containing A. The first execution of A stores some results in DATA3. The second execution 
of A requires these values. In the present overlay description, however, the values calculated by 
the first execution of A are overlaid. When the segment containing A is read in for the second 
execution, the common block is in its initial state. 

The use of a .PSECT directive forces the allocation of DATA3 into the root segment to permit the 
two executions of A to communicate. File TFIL.ODL is modified as follows: 

AFCTR: 
BFCTR: 

.PSECT DATA3,RW,D,GBL,REL,OVR 

.ROOT CNTRL-DATA3-(AFCTR,BFCTR,C) 

.FCTR AO-(Al,A2-(A21,A22)) 

.FCTR BO-(Bl,B2) 

.END 

The attributes RW,D,GBL,REL and OVR are described in Table 6-1. 

Multiple Tree Structures 
The Task Builder allows the specification of more than one tree within the overlay structure. A 
structure containing multiple trees has the following properties: 

1 Storage is not shared among trees. The total storage required is the sum of the longest path 
on each tree. 

2 Each path in a tree is common to all paths on every other tree. 

7-13 



OVERLAY CAPABILITY 

These properties allow modules, that would otherwise have to reside in the root segment, to be 
contained in an overlay tree. 

Such overlay trees within the structure consist of a main tree and one or more co-trees. The 
root segment of the main tree is loaded by the Executive when the task is made active, while 
segments within each co-tree are loaded through calls to the overlay runtime system. Except for 
this distinction, all overlay trees have identical characteristics. That is, each tree must have a root 
segment and possibly one or more overlay segments. 

The following sections describe the procedure for specifying multiple trees in the over]ay 
description language and illustrate the use of co-trees to reduce the memory required by a task. 

Defining a Multiple Tree Structure 

Multiple tree structures are specified within the ODL by extending the function of the comma 
(,)operator. As previously described, this operator, when included within parentheses, defines a 
pair of segments that share storage. The inclusion of the comma operator outside all parentheses 
delimits overlay trees. The first overlay tree thus defined is the main tree. Subsequent trees are 
co-trees. 

Consider the following: 

X: 
Y: 

.ROOT 

.FCTR 

.FCTR 

.END 

X,Y 
XO-(Xl,X2,X3) 
YO-(Yl,Y2) 

Two overlay trees are specified. A main tree containing the root segment XO and three overlay 
segments and a co-tree consisting of root segment YO and two overlay segments. The Executive 
loads segment XO into memory when the task is activated. The task then loads the remaining 
segments through calls to the overlay runtime system. 

A co-tree must have a root segment to establish linkages to the overlay segments within the 
co-tree. Logically, these root segments need not contain code or data. (Such modules can be 
resident in the main root). A segment of this type termed a 'null segment', may be created by 
means of the .NAME directive. The previous example is modified as shown below to include a null 
segment. 

.ROOT X,Y 
X: .FCTR XO-YO-(Xl,X2,X3) 

.NAME YNUL 
Y: .FCTR YNUL-(Yl,Y2) 

.END 

The null segment 'YNUU is created, using the .NAME directive, and replaces the co-tree root that 
formerly contained YO.OBJ. YO now resides in the main root. 

Multiple Tree Example 

The following example illustrates the use of multiple trees to reduce the size of the task. 

Suppose that in the task TK.1 the root segment CNTRL consists of a small dispatching routine 
and two long modules, CNTRLX and CNT.ttLY. CNTRLX and CNTRLY are logically independent 
nf' Ao,.'h nf'h.:a? O?A onn?nv-i'n'\o+.:.lu .:annol ~ .... 1.:.ntrl-'h onrl Tnna+ o,.,..:aaa TY\nrlnl.:aa nn oll +'he not'he1 nf +'he ...., ... ""'"'°'"'.&..& '-'".&...I.'"'"".&.' L4.L"" ~.t'.t'..l.'IJ~.L..1...1.'-A.V""".LJ ""'1\A.~.I. ..l..L.L .a.""'.A...1.,e,u.a..1., ~.l..LU. .&..1..L'4UU """''""""""..,-...,. .l..L.l.V'\,&W..&.""'U V.A..& "4.L.L "1.LA""" .t''°""".&.a..._., U'.L V.L.&"" 

main tree. 

7-14 



OVERLAY CAPABILITY 

You can define a co-tree for CNTRLX and CNTRLY and effect a saving in the storage required for 
the task. You modify the overlay description in file TFIL.ODL as follows: 

.NAME CNTRL2 

.ROOT CNTRL-(AFCTR,BFCTR,C),CNTRL2-(CNTRLX,CNTRLY) 

.END 

The co-tree is defined at zero parenthesis level in the .ROOT directive. A co-tree must have a 
root segment, to establish links to the overlay segments within the co-tree. When no code or data 
logically belong in the root, the .NAME directive can be used to create a null root segment. 

The tree for the task TKl now is: 

A21 A22 
I I 

I 
Al f I 

I 
81 
I 

CNTRLX 
I 

CNTRLY 

I 
I 

AO BO c 
I I I CNTRL2 

CNTRL 

The corresponding memory diagram is: 

- 6200 

CNTRLX CNTRLY 

CNTRL2 

- 2200 

A21 
A22 

A1 
81 

A2 82 c 

AO BO 
1000 

- 0 

The specification of the co-tree decreases the storage allocation by 4,000 bytes. CNTRLX and 
CNTRLY can still access modules on all the paths of the main tree. The only requirement imposed 
by the introduction of the co-tree is the logical independence of CNTRLX and CNTRLY. 

Any number of co-trees can be defined. Additional co-trees can access all the modules in the main 
tree and in the other co-trees. 

7-15 



7.1.6 

OVERLAY CAPABILITY 

Overlay Core Image 
The contents of the core image for a task with an overlay structure are described briefly in the 
following paragraphs. 

The root segment of the main tree contains modules that are resident in memory throughout the 
execution of the task, along with the following data required by the overlay loading routines. 

1 Segment tables 

2 Autoload vectors 

3 Window descriptors 

4 Region descriptors 

Code and data 

Window descriptors 

Region descriptors 

Segment descriptors 

Autoioad vectors 

Code and data 

MAIN TREE 
ROOT SEGMENT 

The segment table contains a segment descriptor for every segment in the task. The descriptor 
contains information about the load address, the length of the segment, and the tree linkage. 

Autoload vectors appear in every segment that calls modules in another segment located farther 
away from the root of the tree. 

Window descriptors are allocated whenever a memory-resident overlay structure is defined for the 
task. The descriptor contains information required by the Create Address Window system directive 
(CRAWS). One descriptor is allocated for each memory-resident overlay segment. For further 
information on IAS System directives, see the I.AS System Directives Reference Manual. 

Region descriptors are allocated whenever a task is linked to a shared region containing 
memory-resident overlays. The descriptor contains information required by the Attach Region 
system directive (ATRG$). 

The main tree overlay region consists of memory allocated for the overlay segments of the main 
tree. The overlays are read into this area of memory as they are needed. 

7-16 



7.1.7 

OVERLAY CAPABILITY 

Autoioad vectors 

Code and Data 

I 
Overiay 

I 

J Segment 

Overlay 

Autoload vectors 

Code and Data J Overlay 
Segment 

The co-tree overlay region consists of memory allocated for co-tree overlay segments. 

The co-tree root segment contains modules that, once loaded, must remain resident in memory. 

Overlaying Programs Written in a High-level Language 
Programs written in a higher-level language usually require a large number of library routines in 
order to execute. Unless care is taken when overlaying such programs, the following problems can 
occur: 

1 Task Builder speed can be drastically reduced because of the number of library references in 
each overlay segment. 

2 Library references from the default object module library, that are resolved across tree 
boundaries, can result in unintentional displacement of segments from memory at run-time. 

3 Attempts to task build such programs can result in multiple and ambiguous symbol definitions 
when a co-tree structure is defined. 

The following procedure is effective in solving these problems: 

1 Task Builder speed can be increased by linking commonly used library routines into the main 
root segment. 

2 Ambiguous and multiple definitions and cross-tree references can be eliminated by using the 
/NOFULL_SEARCH PDS qualifier (/-FU MCR switch) to restrict the scope of the default library 
search. 

With the default PDS qualifier /NOFULL_SEARCH (MCR switch/-FU), when a reference to a 
symbol is found in a co-tree, only the root segment of the main tree and of other co-trees is 
searched. The full search forces the Task Builder to search all segments of all trees to resolve 
global symbol references. 

If sufficient mapping registers are available, the object time system can, in effect, be placed in the 
root segment by building a memory-resident library as described in Section 6.1.2. This also reduces 
total system memory requirements if other tasks are currently using the library. 

7-17 



OVERLAY CAPABILITY 

If a memory-resident library cannot be built, the user can force library modules into the root by 
preparing a list of the appropriate global references, and linking an object module derived from the 
list into the root segment. 

For other ways to reduce task size consult the appropriate language user's guide. 

7.2 EXAMPLE: CALC.TSK;3 

7.2.1 

7.2.2 

The version of CALC introduced earlier is now ready for the addition of two more data processing 
routines, PROC2.0BJ and PROC3.0BJ. These new algorithms are logically independent of each 
other and of PROCl.OBJ. The third algorithm, PROC3.0BJ, contains two independent routines 
SUBl.OBJ and SUB2.0BJ. 

You define an overlay structure for CALC as follows: 

PROC1 
I 

Creating the ODL File 

PROC2 

-- J 
I 

RDIN 
RPRT 

SUB1 SUB1 

I I 

PROC3 

You construct a file, CALTR.ODL, of ODL directives to represent the tree for CALC, as follows: 

PDS> EDIT 
FILE? CALTR.ODL 
[EDI -- CREATING NEW FILE] 
INPUT 

*EX 

.ROOT RDIN-RPRT-*(PROC1,PROC2,P3FCTR) 
P3FCTR: .FCTR PROC3-(SUB1,SUB2) 

.END 

The"*" in the ODL description is the autoload indicator and is described in Chapter 8, 
Section 8.1.1. 

Building the Task 
You build the task with the same options as in the example of Chapter 5, Section 5.7.2. The names 
of the input files are replaced by a single filename that designates the file contairJng the overlay 
description: 

7-18 



7.2.3 

OVERLAY CAPABILITY 

or 

PDS> LINK/TASK:CALC.TSK;3/MAP: (/SHORT)/OPTIONS­
/OVERLAY_DESCRIPTION:CALTR 
OPTIONS? PAR=GEN 
OPTIONS? ACTFIL=l 
OPTIONS? / 

TKB>CALC;3,CALC=CALTR/MP 
ENTER OPTIONS: 
TKB>PAR = GEN 
TKB>ACTFIL =1 
TKB>/ 

Memory Allocation File for CALC.TSK;3 
The short memory allocation file for this multi-segment task consists of one page per segment. For 
convenience the pages are compressed in this manual. See Figure 7-2. 

The memory diagram for CALC.TSK;3 is: 

SUB2 
SUB1 

PROC2 
PROC1 

FORTRAN Buffers, L.brary Routines, 

Segment Tables, and Autoload Vectors 

OTA 

RPRI 
RDIN 

Stack 

7-19 



OVERLAY CAPABILITY 

Example 7-1 Memory Allocation Fiie for CALC.TSK;3 

CALC.TSK;3 MEMORY ALLOCATION MAP TKE 028 
3-JUL-78 10:50 

IDENTIFICATION : FORV02 
STACK LIMITS: 000000 000777 001000 00512. 
PRG XFR ADDRESS: 017772 
TOTAL ATTACH~ENT DESCRIPTORS: 3. 
TASK IMAGE SIZE : 8544. WORDS 
TASK HEACER SIZE: 160. wORCS 
TASK ADDRESS LIMITS: 000000 041347 
R-W DISK BLK LIMITS: 000003 000056 000054 00044. 

CALC.TSK;3 OVERLAY DESCRIPTION: 

BASE TOP LENG~H 

------
000000 033143 033144 13924. FCIN 
033144 035767 002624 01428. PROCl 
033144 037727 0 04 56 4 02420. PROC2 
033144 040307 005144 02660. PRCC3 
~40310 041157 000650 00424. SU Bl 
040 310 041347 001040 0Q544. SCE2 

7-20 

PAGE. 1 



OVERLAY CAPABILITY 

Example 7-1 Memory Allocation Fiie for CALC.TSK;3 (continued) 

CALC.TSK;3 
RDIN 

MEMORY ALLOCATION MAP TKB D28 
3-JUL-78 10: 50 

*** ROOT SEGMENT: RDIN 

R/W MEM LIMITS: 000000 033143 033144 13924. 
CISK BLK LIMITS: 000003 000036 000034 00028. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION 
-------. BLK.: (RW,I,LCL,REL,CON) 001000 000002 00002. 
DTA : (RW,D,GBL,REL,OVR) 001002 001442 00802. 

fl0HJ02 001442 00802. 
001002 001442 00802. 

OTS$I : (RW,I,LCL,REL,CON) 002444 015270 06840. 
002444 000000 00000. 

OTSSP : (RW,D,GBL,REL,OVR) 017734 000036 00030. 
$CODE : (RW,I,LCL,REL,CON) 017772 000132 00090. 

017772 000000 00000. 
017772 000000 00000 . 
017772 000116 00072. 
020110 000000 00000. 
020110 000000 00000. 
020110 030014 00012. 

$J:ATA : (R~'l,C,LCL,REL,CON) 020124 003720 02000. 
020124 000000 00000 . 
020124 001750 0HJ00. 
022074 000000 00000. 
022074 001750 01000. 

$CAT AP : ( PW , D , LC L , REL , C 0 N ) 024044 000032 00026. 
024044 000000 00000. 
024044 000022 00018. 
024066 000000 00000. 
024066 000010 00008. 

$$Al:,ER: (RW,I,LCL,REL,CON) 024076 000024 00020. 
$ $ALVC: ( RW, D, LC L, PEL, CCN) 024122 000030 00024. 
$$AOTS: (RW,D,LCL,REL,CON) 024152 000704 00452. 
$$AUTO: (RW,I,LCL,REL,CON) 160000 000130 00088. 
$$DEVT: (RW,D,LCL,PEL,OVR) 025056 001210 00648. 
$$FSR1: (RW,D,GBL,REL,OVR) 026266 004100 02112. 
$ $ F s R 2 : ( RW , c , G 2 L I REL , c 0 N ) 032366 000104 00068. 
S$I0Bl: (RW,C,LCL,PEL,OVR) 032472 000204 00132. 
$SIOB2: (RW,C,LCL,REL,OVR) 032676 000fHHJ 00000. 
$$LOAD: (R~, I ,LCL,REL,CON) 160130 IJ00170 00120. 
$ $MR KS : ( RW , I , LC L , REL , OV P ) 160320 000166 00118. 
S$0BF1: (RW,D,LCL,REL,CON) 032676 000110 00072. 
$$06F2: ( RW, I, LCL ,REL ,CmJ) 033006 000000 00000. 
$SOVDT: (RW,D,LCL,PEL,OVR) 033006 000020 00016. 
$$0VRS: (RW,I,LCL,ABS,CON) 000000 000000 00000. 
~$RCSG: (RW,I,LCL,REL,OVR) 160506 000312 00202. 
s $RE s L : ( :m , I , sc L , REL , co N ) 161C20 016216 073la. 
$$RGDS: (RW,D,LCL,REL,CON) 033026 000000 00000. 
$$RTS : (FW,I,GBL,REL,OVR) 033026 000002 00002. 

PAGE 2 

TITLE I DENT FILE 

. MA IN. FORVC2 RDIN .OBJ; 2 
RPRT FORV02 RPRT.OBJ;l 

.(-'.AI~. FOFV02 RDIN .OBJ; 2 

. :'1A IN. FORV02 RDIN.OP.J;2 

. MAIN. FORV02 RDIN.OBJ;2 

. ~1A IN. FORV02 RrIN.OBJ;2 
RPR.T FORV02 RPRT.OBJ;l 
FPRT FORV02 RPRT.OEJ;l 
RPRT FORV02 RPRT.OEJ;l 

. MAIN. FORV02 RDIN.OBJ;2 

.MAIN. FORV02 RDIN .OBJ; 2 
RPRT FORV02 F.PRT.OEJ;l 
RPRT FORV02 RPRT.OBJ;l 

• MA IN. FORV02 RDIN .OBJ; 2 
.MAIN. FORV02 RDIN.OBJ;2 
RPRT FORV02 RPRT.OBJ;l 
RPRT FORV02 RPRT.OEJ:l 

7-21 



OVERLAY CAPABILITY 

Example 7·1 Memory Allocatlon Fiie for CALC.TSK;3 (continued) 

CALC.TSK;3 
RDIN 

MEMORY ALLOCATION MAP TKB D28 
3-JUL-78 10:50 

$$SGD0: (RW,D,LCL,REL,OVR) 033030 000000 00000. 
$$SGD1: (RW,D,LCL,REL,CON} 033030 000110 00072. 
$$SGD2: (RW,D,LCL,REL,OVR) 033140 000002 00002. 
$$WNDS: (RW,D,LCL,REL,CON) 033142 000000 00000 . 
• $$$$.: (RW;D;GBL;RELrOVR) 033142 000000 00000. 

033142 000000 00000. 
033142 000000 00000. 
033142 000000 00000. 
033142 000000 00000. 

GLOBAL SYMBOLS: 

PAGE 3 

. MAIN. FORV02 

. MAIN. FORV02 
RPRT FORV02 
RPRT FORV~2 

RCIN .OEJ; 2 
Rr.IN.OBJ;2 
RPRT.OEJ;l 
RPRT.OEJ;l 

PROCl 024122-R PROC3 024142-R $FF2Al 000000-R $$0TSI 002444-R 
PROC2 024132-R RPRT 020110-R $$CTSC 017772-R 

CALC.TSK;3 
PROCl 

~EMORY ALLOCATION MAP TKE D28 
3 -,JUL - 7 8 H1 : 5 0 

*** SEGMENT: PROCl 

R/W MEM LIMITS: 033144 035767 002624 01428. 
DISK BLK LIMITS: 000037 000041 000003 00003. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION 
-------

BL K . : ( RW , I , LC L , HE L , CON ) 
ADTA : (RW,D,GBL,REL,OVR) 

DTA : ( RW, D, GBL, REL, OVR) 

OTS$I : (RW!I!LCL~REL.CON) 
$CODE : (RW,I,LCL,REL,CON) 

$DATA : (RW,D,LCL,REL,CON) 

$DATAP: (RW,D,LCL,REL,CON) 

$$ALVC: (RW;D,LCL,REL;CON) 
. $$$$.: (RW,D,GBL,REL,OVR) 

GLOBAL SYMBOLS: 

PROCl 035700-R 

7-22 

033144 
033144 
033144 
001002 
001002 
035424 
035700 
035700 
035700 
035700 
035754 
035754 
035754 
035756 
035756 
035756 
035766 
033142 
033142 
033142 

000000 00000. 
002260 01200. 
002260 01200. 
001442 00802. 
001442 00802. 
000254 00172. 
000054 00044. 
000000 00000. 
000000 00000. 
000054 00044. 
000002 00002. 
000000 00000. 
000002 00002. 
000010 00008. 
000000 00000. 
000010 00008. 
00000'1 00000 . 
000000 0000'1. 
000000 00000. 
000000 00000. 

PAGE 4 

TITLE I CENT FILE 

PI<OC l FORV02 PFOC l. OBJ; 2 

PROCl FORV0 2 PPOC1.0EJ;2 

PROCl FORV02 PR0Cl.OEJ;2 
PROCl F08.V0 2 PROCl. OBJ; 2 
PP.CC 1 FORV02 PROC1.0BJ;2 

PROCl FOP.V02 PROC1.0EJ;2 
PROCl FOP.V02 PP.0Cl.OEJ;2 

PROCl FORV02 PROC1.CBJ;2 
PROCl FOF.V0 2 PROC1.0BJ;2 

.... T""ll.l"'\f""I , 

.t'~U'- .l FORV0 2 nrr'\I"' l ("\~I•") 
.t'C\U\....~ •Vl.JU / J:... 

PROCl FORV02 PP0Cl.OFJ;2 



Example 7-1 Memory Allocation Fiie for CALC.TSK;3 (continued) 

CALC.TSK;3 
PROC2 

MEMORY ALLOCATION MAP TKB 028 
3-JCL-78 10:50 

*** SEGMENT: PROC2 

R/W MEM LIMITS: 033144 037727 004564 02420. 
DISK BLK LIMITS: 000042 000046 000005 00005. 

MEMORY ALLOCATION SYNOPSIS: 

SI: CT ION 
-------
ADTA : ( RW, D, GBL, REL, OVR) 033144 002260 01200. 

033144 002260 01200. 
$CODE : (RW,I,LCL,REL,CON) 035424 000014 00012. 

035424 000000 00000. 
035424 000000 00000. 
035424 000014 00012. 

$DATA : ( RW , D , LC L , REL , C 0 N ) 035440 002260 01200. 
035440 000000 00000. 
035440 002260 01200. 

$DATAP: (RW,D,LC:,REL,CON) 037720 000010 00008. 
. '037720 000000 00000. 

03 7720 000010 00008. 
$$ALVC: (RW,D,LCL,REL,CON) 037730 000000 00000. 
. $$$$.: (RW,C,GBL,REL,OVR) 033142 000000 00000. 

033142 000000 00000. 
033142 000000 00000. 

GLOBAL SY~1EOLS: 

PROC 2 0 3 5 4 2 4 -R 

TITLE 

PROC2 

PROC2 
PROC2 
PROC2 

PROC2 
PROC2 

PROC2 
PROC2 

PROC2 
PROC2 

OVERLAY CAPABILITY 

PAGE 5 

ID ENT FILE 

FORV02 PROC2.OBJ;1 

FORV02 PROC2.0BJ;l 
FORV02 PROC2.0BJ;l 
FORV02 PROC2.0BJ;l 

FORV02 PROC2.0BJ;l 
FORV02 PROC2.0BJ;l 

FORV02 PROC2.0BJ;l 
FORV02 PROC 2. OBJ; 1 

FORV02 PROC2.0EJ;l 
FOFV02 PROC 2. OBJ; l 

7-23 



OVERLAY CAPABILITY 

Example 7·1 Memory Allocation Fiie for CALC.TSK;3 (continued) 

CALC.TSK;3 
PROC3 

MEMORY ALLOCATION MAP TKB 028 
3-JUL-78 10:50 

*** SEGMENT: PROC3 

R/W MEM LIMITS: 033144 040307 005144 02660. 
DISK BLK LIMITS: 000047 000054 000006 00006. 

MEMORY ALLOCATION SYNOPSIS: 

PAGE 6 

SECTION TITLE IfEN7 FILE 

ADTA : (Rvi,C,GBL,REL,OVR) 033144 002260 01200. 
033144 002260 01200. PPOC3 FORV02 PRGC3.0EJ;l 

DTA : (RW,D,GBL,REL,OVR) 001002 001442 00802. 
001002 001442 00802. PROC3 FORV02 PROC3.0BJ;l 

$CODE : (RW,I,LCL,REL,CON) 035424 000044 00036. 
035424 000000 00000. PPOC3 FOPV02 PROC3.0EJ;l 
035424 000000 00000. PROC3 FORV02 PROC3.0EJ;l 
035424 000044 00036. PROC3 FCRV02 PROC3.0SJ;l 

$DAT A : ( RW , D , LC L , PEL , C 0 N ) 0 3 5 4 7 0 0 0 2 5 7 0 0 1 4 0 0 • 
035470 000000 000C0. PROC3 FORV02 PROC3.0EJ;l 
035470 0~2570 01400. PROC3 FORV02 PROC3.0BJ;l 

$DA ·r AP : ( RW , D , LC L , REL , C 0 N ) 0 4 0 2 6 0 0 0 0 0 10 0 0 0 0 8 • 
040260 000000 00000. PPOC3 FORV02 PROC3.0EJ;l 
040260 0.00010 00008. PFOC3 FCRV02 PROC3.0BJ;l 

$$ALVC: (RW,D,LCL,REL,CON) 040270 000020 00016 . 
• $ $ $ $ • : ( RW , D , GEL , R EL , 0 V H ) 0 3 3 l 4 2 0 0 0 0 0 0 0 0 0 0 0 • 

GLOBAL SYMBOLS: 

PROC3 035424-R SCBl 

7-24 

033142 0~0000 00000. PROC3 FORV02 PROC3.CBJ:l 
033142 000000 00000. PROC3 FORV02 P80C3.0BJ;l 

040300-R SUE2 e40270-R 



OVERLAY CAPABILITY 

Example 7-1 Memory Allocatlon Fiie for CALC.TSK;3 (continued) 

CALC.TSK;3 
SUBl 

MEMORY ALLOCATION MAP TKB 028 
3-JUL-78 10:50 

*** SEGMENT: SUBl 

R/W MEM LIMITS: 040310 041157 000650 00424. 
DISK BLK LIMITS: 000055 000055 000001 00001. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION 

ADTA : (RW,D,GBL,REL,OVR) 

$CODE : (RW,I,LCL,REL,CON) 

$DATA : (RW,D,LCL,REL,CON) 

$DATAP: {RW,D,LCL,REL,CON) 

$$ALVC: (RW,D,LCL,REL,CON) 
• $ $ $ $ • : ( RW , D , GB L , REL , 0 V R ) 

GLOBAL SYMBOLS: 

SUB2 040310-R 

033144 
033144 
040310 
040310 
040310 
040310 
040324 
040324 
040324 
041150 

'041150 
041150 
041160 
033142 
033142 
033142 

002260 
002260 
000014 
000000 
000000 
000014 
000624 
000000 
0{)0624 
000010 
000000 
000010 
000000 
000000 
000000 
000000 

01200. 
01200. 
00012. 
00000. 
00000. 
00012. 
00404. 
00000. 
00404. 
00008. 
00000. 
00008. 
00000. 
00000. 
00000. 
00000. 

PAGE 7 

TITLE !DENT FILE 

SUB2 

SUB2 
SUE2 
SUB2 

SUB2 
sue2 

SUB2 
SUB2 

SUE2 
SUB2 

FOPV02 SUBl.OBJ;l 

FORV02 SUBl.OEJ;l 
FORV02 SUBl.OBJ;l 
FORV02 SGEl.OBJ;l 

FORV02 SUBl.OEJ;l 
FORV02 SUEl.OBJ;l 

FOFV02 SUBl.OBJ;l 
FORV02 SUBl.OBJ;l 

FORV02 SUPl.OBJ;l 
FOFV02 SUEl.OFJ;l 

7-25 



OVERLAY CAPABILITY 

Example 7-1 Memory Allocatlon Fiie for CALC.TSK;3 (continued) 

CALC.TSK;3 
SUB2 

MEMORY ALLOCATION MAP TKB 028 
3-JUL-78 10:50 

*** SEGMENT: SUB2 

R/W MEM LIMITS: 040310 041347 001040 00544. 
DISK BLK LIMITS: 000056 000057 000002 00002. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION 
-------

BLK. : ( RW, I, LCL, REL, CON) 040310 000000 
ADTA : ( RW , D , GEL , REL , OV R ) 033144 002260 

033144 002260 
OTA : ( RW , C , GB L , REL , 0 V R ) 001002 001442 

001002 001442 
OTSSI : (RW,I,LCL,REL,CON) 040310 000154 
SCOCE : ( RW, I, LC L, REL, CON) 040464 000032 

040464 000000 
040464 000000 
040464 000032 

$DATA : (RW,D,LCL,REL,CON) '040516 '000622 
040516 000000 
040516 000622 

$DAT AP : ( RW , D , LC L , REL , C 0 N ) 041340 000010 
041340 000000 
041340 000010 

$$ALVC: (RW, C, LCL ,REL ,CON) 041350 000000 
.$$$$.: (RW,D,GEL,REL.OVF.) 033142 000000 

033142 060000 
033142 000000 

GLOBAL SYMBOLS: 

SUBl 040464-R 

*** TASK BUlLCER STATISTICS: 

TOTAL WORK FILE REFERENCES: 21731. 
WORK FILE REACS: 0. 
WORK FILE WRITES: 0. 

00000. 
01200. 
01200. 
00802. 
00802. 
00108. 
00026. 
00000. 
00000. 
00026. 
00402. 
00000. 
00402. 
00008. 
00000. 
00008. 
00000. 
00000. 
00000. 
00000. 

SIZE OF CORE POOL: 16010. WORDS (62. PAGES) 
SIZE OF WORK FILE: 7680. WORDS (30. PAGES) 

ELAPSED TIME:00:00:21 

7-26 

TITLE 

SU Bl 

SU Bl 

SuBl 
SU Bl 
SUBl 

SU Bl 
SU Bl 

SU Bl 
SUBl 

SUEl 
SU Bl 

PAGE 8 

I DENT FILE 

FORV02 SUB2.0BJ;l 

FORV02 SUB2.0BJ;l 

FORV02 SUB2.0BJ;l 
FORV02 SUB2.0BJ;l 
FORV02 SUB2.0BJ;l 

FORV02 SUB2.0BJ;l 
FORV02 SUB2.0BJ;l 

FORV02 SUB2.0BJ;l 
FORV02 SUB2.0EJ;l 

FORV02 SUB2.0BJ;l 
FORV02 SUB2.0BJ;l 



OVERLAY CAPABILITY 

7.3 EXAMPLE CALC.TSK;4 
After examining the memory allocation file for CALC.TSK;3, you observe that the Task Builder has 
allocated ADTA in the overlay segments PROCl.OBJ, PROC2.0BJ, and PROC3.0BJ, since all of 
these segments are equidistant from the root. 

These segments need to communicate with each other through ADTA. In the existing allocation, 
any values placed in ADTA by PROCl.OBJ are lost when PROC2.0BJ is loaded. Similarly, any 
values stored in ADTA by PROC2.0BJ are lost when PROC3.0BJ is loaded. 

A .PSECT directive is added to the overlay description to force ADTA into the root segment. 
PROCl.OBJ, PROC2.0BJ, and PROC3.0BJ can then communicate with each other. CALTR.ODL 
needs to be modified as follows: 

P3FCTR: 
.ROOT RDIN-RPRT-ADTA-*(PROC1,PROC2,P3FCTR) 
.FCTR PROC3-(SUB1,SUB2) 
.PSECT ADTA,RW,D,GBL,REL,OVR 
.END 

The task is built as in CALC.TSK;3. 

7-27 



OVERLAY CAPABILITY 

Example 7-2 Memory Allocation Fiie for CALC.TSK;4 

CALC.TSK;4 MEMORY ALLOCATION MAP TKB D28 
3-JUL-78 10:51 

IDENTIFICATION : FORV02 
STACK LIMITS: 000000 000777 001000 00512. 
PRG XFR ADDRESS: 022252 
TOTAL ATTACHMENT DESCRIPTORS: 3. 
TASK IMAGE SIZE : 8544. WORDS 
TASK HEACER SIZE: 160. WORDS 
TASK ADDRESS LIMITS: 000000 041347 
R-W CISK BLK LIMITS: 000003 000052 000050 00040. 

CALC.TSK;4 OVERLAY DESCRIPTION: 

BASE TOP LENGTH 
------

000000 035423 035424 15124. RDIN 

035424 035767 000344 00228. PROCl 
035424 037727 002304 01220. PROC2 
035424 040307 002664 01460. PROC3 
040310 041157 000650 00424. SUBl 
040310 041347 001040 00.544. SUB2 

7-28 

PA.GE 1 



OVERLAY CAPABILITY 

Example 7-2 Memory Allocation Fiie for CALC.TSK;4 (continued) 

CALC.TSK;4 
RDIN 

MEMORY ALLOCATION MAP TKB D28 
lG ! 51 

*** ROOT SEGMENT: RDIN 

R/W MEM LIMITS: 000000 035423 035424 15124. 
DISK BLK LIMITS: 000003 000040 000036 00030. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION 
-------
. BLK.: (RW,I,LCL,FEL,CON) 001000 000002 00002 . 
ADTA : (RW,D,GBL,REL,OVR} 001002 002260 01200. 
DTA : (FW,D,GEL,REL,OVR} 003262 001442 00802. 

003262 001442 00802. 
003262 001442 00802. 

OTS$I : (RW, I, LCL ,FEL ,COt-J} 004724 015270 06840. 
004724 000000 00000. 

OTS$P : ( RW ' D I GEL ' R EL , 0 v R ) 022214 000036 00030. 
$COCE : ( RW , I , LC L , P. EL , C 0 N ) 022252 000132 00090. 

022252 000000 ~HHHHJ. 

022252 0t10000 00000. 
022252 000116 0007e. 
022370 000000 fHHHHL 
022370 000000 00000. 
022370 000014 00012. 

$DATA : ( RW, D, LC L, F EL, CON) 022404 003720 02000. 
022404 000000 00000. 
022404 001750 01'HJ0. 
024354 000000 00000.. 
024354 001750 01000. 

$DATAP: (RW,D,LCL,REL,CON) 02fi324 000032 00026. 
026324 000000 00000. 
026324 000022 0 0018 . 
026346 000000 00000. 
026346 000010 00008. 

$SALER: (RW,I,LCL,REL,CON) 026356 006024 00020. 
$$ALVC: (RW,D,LCL,REL,CON) 026402 00003~ HHJ 24. 
$$AOTS: (RW,L',LCL,PEL,CON} 026432 000704 004::2. 
$$AUTO: (RW,I,LCL,REL,CON) 160000 000130 00088. 
S$DEVT: (RW,D,LCL,REL,OVR) 027336 00121fJ 00648. 
$$FSR1: {RW 1 D1 GEL 1 REL 1 0VR) 030546 004100 02112. 
$ $ F SR 2 : ( RW , C , Ga L , REL , CC 't·; ) 034646 000104 00~68. 

S$IOB1: (RW,D,LCL,REL,OVR) 034752 00020.:1 00132. 
$$IOB2: (RW,C,LCL,REL,OVR) 035156 00000~ OfH.J00. 
$$LOfl.C: (RW, I ,LCI.,REL,CON) 160130 000170 00120. 
S$MRKS: (RW,I,LCL,REL,OVR) 160320 0C01G6 00112. 
$SCBF1: (RVi,D,LCL,REL,CON) 035156 000110 0807 2. 
$SOB F 2: ( RW, I, LC L, REL, CON) 035266 0000()0 C000~. 

$ $ OVDT : ( RW , D , LC L , REL , OV R ) 035266 00~HJ20 00016. 
$$0VRS: (RW,I,LCL,ABS,CO~) 000000 r:HHHHJ0 30000. 
SSRDSG: (m-i,I,LCL,REL,OVR) 160506 000312 ~) 0 20 2. 
$$RESL: (RW,I,LCL,REL,CON) 16HJ20 016216 07310. 
~$RGDS: (RW,D,LCL,REL,CON} 035306 ~HHHHHJ 00000. 

P?\GE 2 

TITLE I CENT FILE 

.~AIN. FORV02 RCHJ .OEJ; 2 
FPRT FORV02 RPPT.OPJ;l 

.MAHJ. FOPVG2 RCIN .OBJ; 2 

. ~iA IN. FOF.V02 RCI~~. OBJ; 2 
• ~iAI:-J. FORV02 RDIN.OBJ;2 
. ~:Arn. FORV02 RDrn. OP.J; 2 
RPRT FOFVC2 RPR'T. OBJ; 1 
RPP.T FORV02 RPPT.OBJ;l 
RPRT FORV02 FPFT.OEJ;l 

.MArn. FORV02 RCIN .OPJ; 2 

.~AIN. FOPV02 RC-IN .OEJ; 2 
FPP.T FOI\V02 RPRT.OBJ;l 
RPRT FORV02 RPRT.OBJ;l 

. ~1A IN. FOPV02 Frit\!.OEJ;2 

. MAIN. FORV02 RC IL':;. OEJ; 2 
RPRT FOP.V02 PPPT.OEJ;l 
RPRT FOP.V02 RPRT.OBJ;l 

7-29 



OVERLAY CAPABILITY 

Example 7-2 Memory Allocation Fiie for CALC.TSK;4 (continued) 

CALC.TSK;4 
RDIN 

MEMORY ALLOCATION MAP TKB D28 
3-JCL-78 Hl:51 

$$RTS : (RW,I,GBL,REL,OVR) 035306 000002 00002. 
$$SGD0: (RW,D,LCL,REL,OVR) 035310 000000 00000. 
$$SGD1: (RW,D,LCL,REL,CON) 035310 000110 00072. 
$$SGD2: (RW,D,LCL,REL,OVR) 035420 000002 00002. 
$ $~·mos : ( Rw , D , LC L ; REL , c ON ) 035422 000000 00000. 
.$$$$.: (RW,D,GBL,REL,OVR) 035422 000000 00000. 

035422 000000 00000. 
035422 ~00000 00000. 
035422 000000 00000. 
035422 000000 00000. 

GLOBAL SYMBOLS: 

PAGE 3 

.MAIN. FORV02 

. MAIN. FORV02 
RPRT FORV02 
RPRT FORV02 

RDIN.OEJ;2 
RDIN.OBJ;2 
RPRT.OBJ;l 
RPFT.OBJ;l 

PROCl 026402-R PROC3 026422-R $RF2Al 000000-R $$0TSI 004724-R 
PROC2 026412-R RPRT 022370-R $$0TSC 022252-P 

CALC.TSK;4 
PROCl 

MEMORY ALLOCATION MAP TKB D28 
3-JUL-78 10:51 

*** SEGMENT: PROCl 

R/W MEtv: LIMITS: 035424 035767 000344 00228. 
DISK BLK LIMITS: 000042 000042 000001 00001. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION 

. BLK.: (RW,I,LCL,REL,CON) 
ADTA : (RW,D,GBL,REL,OVR) 

DTA : (PW,D,GBL,P.EL,OVR) 

OT s $ I : ( RW I I ' LC L ' REL , c 0 N ) 
$ C 0 DE : ( RW , I , LC L , REL , C 0 N ) 

$CA TA : ( RW ' D I LC L I REL I c 0 N ) 

$DA TA p : ( RW , D I LC L , REL I c 0 N ) 

$$ALVC~ (RW:D,LCL~REL~CON) 
. $$$$.: (Rw,D,GBL,REL,OVR) 

GLOBAL SYMBOLS: 

PROCl 035700-R 

7-30 

035424 
001002 
001002 
003262 
003262 
035424 
035700 
035700 
035700 
035700 
035754 
035754 
035754 
035756 
035756 
035756 
035766 
035422 
n-, ~A "l ") 
k'.J.JJ't"-"-

035422 

000000 00000 . 
002260 01200. 
002260 01200. 
001442 00802. 
001442 00802. 
000254 001 72. 
0 ~:HH15 4 ~0044. 
000000 00000. 
000000 00000. 
000054 00044. 
000002 00002. 
000000 00000. 
000002 00002. 
000010 00008. 
000000 00000. 
000010 00008. 
000000 00000. 
000000 00000. 
f.U'.:it;ll?IGl?I l?llillil~~ 
I.IUIJI.IIJI.1 UUl.J 1.1 IJ • 

000000 00000. 

PAGE 4 

TITLE ID ENT FILE 

PROCl FORV02 PROC1.0BJ;2 

PROCl FORV02 PROC1.0BJ;2 

PROCl FORV02 PRCC1.0BJ;2 
PROCl FORV02 PFOC1.0BJ;2 
PROCl FORV02 PROC1.0BJ;2 

PROCl FORV02 PROCl. OBJ; 2 
PROCl FORV02 PROC1.0BJ;2 

PROCl FORV02 PR0Cl.OBJ;2 
PROCl FORV02 PROC1.0BJ;2 

PROCl FORV02 PROCl . OBJ; 2 
PROCl FORV02 PROC1.0BJ;2 



Example 7·2 Memory Allocation Fiie for CALC.TSK;4 (continued) 

CALC.TSK;4 
PROC2 

MEMORY ALLOCATION MAP TKB D28 
3-JUL-78 10:51 

*** SEGMENT: PROC2 

R/W MEM LIMITS: 035424 037727 002304 01220. 
DISK BLK LIMITS: 000043 000045 000003 00003. 

MEMORY ALLOCATION SYNOPSIS: 

OVERLAY CAPABILITY 

PAGE 5 

SECTION TITLE IDENT FI!.E 

ADTA : (RW,D,GBL,REL,OVR) 001002 002260 01200. 
001002 002260 01200. PPOC2 

$ c 0 DE : ( RW ' I I LC L I REL I c 0 N ) 0 3 5 4 2 4 0 0 0 0 14 0 0 0 1 2 . 
035424 000000 00000. PROC2 
035424 000000 00000. PROC2 
035424 000014 00012. PROC2 

$DA TA : ( RW , C , LC L , REL , C 0 N ) 0 3 5 4 4 0 0 0 2 2 6 0 01 2 0 0 . 
035440 0000~0 00000. PPOC2 
035440 002260 01200. PROC2 

$CATAP: (RW,D,LCL,REL,CON) 037720 000010 00008. 
0~7720 000000 00000. PPOC2 
037720 000010 00008. PROC2 

$$ALVC:(RW,D,LCL,REL,CON) 037730 000000 00000 . 
. $ $ $ $. : ( RW' D' GBL I REL I OVR) 0 3 5 4 2 2 0 0 0 0 0 0 0 0 0 0 0 . 

035422 000000 00000. PROC2 
035422 000000 00000. PROC2 

GLOBAL SYMBOLS: 

PROC2 035424-R 

FORV02 PROC2.0BJ;l 

FODV02 PROC2.0BJ;l 
FORV02 PRCC2.0EJ;l 
FORV02 PROC2.0EJ;l 

F0RV02 PROC2.0BJ;l 
FORV02 PROC2.0BJ;l 

FOFV02 PROC2.0BJ;l 
FOSV02 PFCC2.0BJ;l 

FOP.V02 PROC2.0EJ;l 
FOPV02 PPOC2.0BJ;l 

7-31 



OVERLAY CAPABILITY 

Example 7-2 Memory Allocation Fiie for CALC.TSK;4 (continued) 

CALC.TSK;4 
PROC3 

MEMORY ALLOCATION MAP TKB D28 
3-JUL-78 10:51 

*** SEGMENT: PROC3 

R/W MEM LIMITS: 035424 040307 002664 01460. 
DISK BLK LIMITS: 000046 000050 000003 00003. 

MEMORY ALLOCATION SYNOPSIS: 

PAGE 6 

SECTION TITLE !DENT FILE 

ADTA : (RW,D,GBL,REL,OVR) 001002 002260 01200. 
001002 002260 01200. PROC3 

CTA : (RW,C,GBL,REL,OVR) 003262 001442 fHJ802. 
003262 001442 00802. PROC3 

~COCE : (RW,I,LCL,REL,CON) 035424 000044 00036. 
035424 000000 00000. PROC3 
035424 000000 00000. PROC3 
035424 000044 00036. PROC3 

$DATA : (RW,C,LCL,REL,CON) 035470 002570 01400. 
03547a 000000 00000. PROC3 
035470 002570 01400. PROC3 

$DATAP: (RW,D,LCL,REL,CON) 040260 000010 00008. 
040260 000000 00000. PROC3 
040260 000010 00008. PROC3 

$$ALVC: (RW,D,LCL,REL,CON) 040270 000020 00016 . 
. $$$$.: (RW,D,GEL,REL,OVR) 035422 000000 000EHJ. 

035422 000000 00000. PROC3 
035422 000000 00000. PROC3 

GLOBAL SYMBOLS: 

PROC3 035424-R SUBl 040300-R SUB2 040270-R 

7-32 

FORV02 PROC3.0BJ;l 

FORV02 PROC3.0BJ;l 

FORV02 PROC3.0BJ;l 
FORV02 PROC3.0BJ;l 
FORV02 PROC3.0BJ;i 

FORV02 PROC3.0BJ;l 
FORV02 PROC3.0BJ;l 

FORV02 PROC3.0BJ;l 
FORV02 PROC3.0BJ;l 

FORV02 PROC3.0BJ;l 
FORV02 PROC3.0BJ;l 



OVERLAY CAPABILITY 

Example 7-2 Memory Allocation Fiie for CALC.TSK;4 (continued) 

CALC.TSK;4 
SU Bl 

MEMORY ALLOCATION MAP TKB D28 
3-JUL-78 10:51 

*** SEGMENT: SUBl 

R/W MEM LIMITS: 040310 041157 000650 00424. 
DISK BLK LIMITS: 000051 000051 000001 00001. 

ME~ORY ALLOCATION SYNOPSIS: 

SECTION 

ADTA : (RW,D,GBL,REL,OVR) 

$CODE : (RW,I,LCL,REL,CON) 

$DATA : (RW,D,LCL,REL,CON) 

$DA TAP : ( RW , D , LC L , REL , C,0 N) 

$$ALVC: (RW,D,LCL,REL,CON) 
. $$$$.: (RW,D,GEL,REL,OVR) 

GLOBAL SYMBOLS: 

SUB2 040310-R 

001002 
001002 
040310 
040310 
040310 
040310 
040324 
040324 
040324 
04115e 
04ll50 
041150 
041160 
035422 
035422 
035422 

'102260 01200. 
002260 01200. 
000014 ·~HHH2. 
000000 00000. 
000000 00000. 
000014 00012. 
000624 00404. 
000000 00000. 
000624 00404. 
000010 01?;008. 
000000 00000. 
000010 00008. 
000000 00000 . 
000000 00000. 
000000 00000. 
000000 00000. 

PAGE 7 

TITLE IDENT FILE 

SUB2 FORV02 SUBl.OBJ;l 

SUB2 FORV02 SllBl.OFJ;l 
SllB2 FORV02 SlJEl. 08,J; l 
SUE2 FOPV02 SUBl.CEJ;l 

SUB2 FOPV02 SU Bl .OP.J; 1 
SCB2 FORV02 SUEl. OBJ; 1 

SCB2 FOF%2 SCBl.OE.J;l 
Sl1B2 FORV0 2 SCBl.OEJ;l 

Sli82 FO.RV02 StPl.OEJ;l 
SUl32 FOfVC2 SCEl.OSJ;l 

7-33 



OVERLAY CAPABILITY 

Example 7=2 Memory Allocation Fiie for CALC.TSK;4 (continued) 

CALC.TSK;4 
SUB2 

MEMORY ALLOCATION MAP TKB D28 
3-JUL-78 10: 51 

*** SEGMENT: SUB2 

R/W MEM LIMITS: 040310 041347 001040 00544. 
DISK BLK LIMITS: 000052 000053 000002 00002. 

MEMORY ALLOCATION SYNOPSIS: 

PAGE 8 

SECTION TITLE ICENT FILE 

. ELK.: (FW,I,LCL,REL,COt'l) 
ADTA : (RW,D,GBL,REL,OVR) 

DTA : (RW,D,GEL,RE~,OVR) 

OTS$I : {RW,I,LCL,REL,CON) 
s coo E : < Rv~ , I , LC L , REL , co N ) 

$DA TA : ( RW , D , LC L , R EL , C 0 N ) 

$DATAP: (RW,D,LCL,REL,CON} 

$ $ALVC: ( RW ID, LC LI F EL, CON) 
• $ $ $ $. : ( RW ID I GBL, p EL, OVR) 

GLOBAL SYMBOLS: 

8fJBl_ ~40464-R 

040310 000000 00000 . 
001002 002260 01200. 
001002 002260 01200. SUBl 
003262 001442 00802. 
003262 001442 00e02. sue1 
040310 00~154 00108. 
040464 000032 00026. 
04~464 000000 00000. SUEl 
040464 000000 00000. SUBl 
040464 000032 00026. SUBl 
040516 000622 0~402. 
040516 000000 00000. SUBl 
040516 000622 00402. SUBl 
041340 00C010 00008. 
041340 000000 00000. SU81 
041340 000010 00008. SURl 
041350 000000 00000. 
035422 000000 0000~ . 
035422 000000 00000. SUBl 
035422 000000 00000. SUBl 

*** TASK BUILDER STATISTICS: 

7-34 

TOTAL WORK FILE REFERENCES: 22127. 
WOPK FILE READS: 0. 
WORK FILE ~lRITES: 0. 
SIZE OF CORE PCOL: 16010, WORDS (62. PAGES) 
SIZE OF WORK FILE: 7680. v;ORDS (30. P.~CES) 

ELAPSED TIME:0~:00:20 

FORV02 SUB2.0BJ;l 

FORV02 SUB2.0BJ;l 

FORV02 SUB2.0BJ;l 
FORV02 SUB2.0BJ;l 
FORV02 SUB2.0BJ;l 

FORV02 SCB2.0BJ;l 
FORV02 SUE2.0BJ;l 

FORV02 SUB2.0BJ;l 
FORV02 SUB2.0BJ;l 

FORV02 SUB2.0BJ;l 
FORV02 SUB2.0BJ;l 



OVERLAY CAPABILITY 

7.4 Summary of the Overlay Description Language 

1 An overlay structure consists of one or more trees. Each tree contains at least one segment. A 
segment is a set of modules and p-sections that can be loaded by a single disk access. 

A tree can have only one root segment, but it can have any number of overlay segments. 

2 The ODL provides five directives for specifying the tree representation of the overlay structure, 
namely: 

.ROOT 

.END 

.PSECT 

.FCTR 

.NAME 

These directives can appear in any order in the overlay description, subject to the following 
restrictions: 

a. There can be only one .ROOT and one .END directive. 

b. The .END directive must be the last directive, since it terminates input. 

3 The tree structure is defined by the operators"-" (hyphen),"," (comma),"!" (exclamation mark) 
and by the use of parentheses. 

indicates that its arguments are to be concatenated and thus co-exist in memory. 

within parentheses, indicates that is arguments are to be overlaid and thus share memory. The 
parentheses group segments that begin at the same point in memory. 

not within parentheses, separates trees (main tree and each co-tree, see item 10 below). 

immediately before a left parenthesis indicates that the immediately enclosed segments are memory 
resident. Segments enclosed in further parentheses are not allowed. 

For example, 

.ROOT A-B-(C,D-(E,F)) 

defines an overlay structure with a root segment consisting of the modules A and B. In this 
structure, there are four overlay segments, C, D, E, and F. The outer parenthesis pair indicates 
that the overlay segments C and D start at the same location in memory. 

4 The simplest overlay description consists of two directives, as follows: 

.ROOT A-B-(C,D-(E,F)) 

.END 

.Any nu.."!lber of the optional directives (.FCTR, .PSECT, and .NA..'J\.!E) can be included. 

5 The .ROOT directive defines the overlay structure. The arguments of the .ROOT directive are 
one or more of the following: 

a. File specifications as described in Chapter 2, Section 2.4.1 (PDS) or Chapter 3, Section 3.3.1 
(MCR) 

b. Factor labels 

c. Segment names 

d. P-section names 

7-35 



OVERLAY CAPABILITY 

6 The .END directive is required to terminate input. 

7 The .FCTR directive provides a means for replacing text by a symbolic reference (the factor 
label). This replacement is useful for two reasons: 

a. The .FCTR directive effectively extends the text of the .ROOT directive to more than one 
line and thus allows complex trees to be represented. 

b. The .FCTR directive allows the overlay description to be written in a form that makes the 
structure of the tree more apparent. 

For example: 

.ROOT A-(B-(C,D),E-(F,G),H) 

.END 

can be expressed, using the .FCTR directive, as follows: 

.ROOT A-(Fl,F2,H) 
Fl: .FCTR B-(C,D) 
F2: .FCTR E-(F,G) 

.END 

The second representation makes it clear that the tree has three main branches. 

8 A .PSECT directive is required when a .ROOT or a .FCTR specifies the segment in which a 
p-section is placed. 

The .PSECT directive gives the name of the p-section and its attributes. For example: 

.PSECT ALPHA,CON,GBL,RW,I,REL 

ALPHA is the p-section name and the remaining argwnents are attributes. P-section attributes 
are described in Table 5-1. The p-section name must appear first on the .PSECT directive, but 
the attributes can appear in any order or can be omitted. If an attribute is omitted, a default 
assumption is made. For p-section attributes the default assumptions are: 

RW,I,LCL,REL,CON 

In the above example, therefore, it is only necessary to specify the attributes that do not 
coITespond to the default assumption: 

.PSECT ALPHA,GBL 

9 The .NAME directive provides a means for defining a segment name for use in the over]ay 
description and for specifying segment attributes. This directive is useful for creating a null 
segment or naming a segment that is to be loaded manually or naming a non-executable 
segment that is to be autoloadable. If the .NAME directive is not used, the name of the first 
file, or p-section in the segment is used to identify the segment. 

The .NAME directive defines a name, as follows: 

.NAME segname [,attr] [,attr] 

where: 

• segname - is the defined name, composed from the character set A~Z, 0-9 and $. 

• attr - is an optional attribute, taken from GBL, NODSK, NOGBL, DKS, NOPHY. Defaults: 
NOGBL, DSK. 

7-36 



OVERLAY CAPABILITY 

The defined name must be unique with respect to the names of p-sections, segments, files, and 
factor labels. 

10 A co-tree can be defh'"led by specifying an additional tree structure in the .ROOT directive. 
The first overlay tree description in the .ROOT directive is the main tree. Subsequent overlay 
descriptions are co-trees. For example: 

.ROOT A-B-(C,D-(E,F)),X-(Y,Z),Q-(R,S,T) 

The main tree in this example has the root segment consisting of files A.OBJ and B.OBJ; two 
co-trees are defined; the first co-tree has the root segment X and the second co-tree has the root 
segment Q. 

11 Qualifiers for file specifications in ODL files always use the MCR switch form. The list below 
indicates the form for each qualifier: 

PDS form 

/[NO]CONCATENATED 
/LIBRARY 
/LIBRARY:model[: ... ] 
/[NO]MAP 
/SELECT 

12 Comments are prefixed by ";" (semicolon). 

MCR form 

/[NO]CC 
/LB 
/LB:modl[: ..• ] 
/[NO]MAP 
/SS 

13 File specifications on a single ODL command line adopt the device and ufd specification 
defaults from the file specifications to their left, see the IAS MCR User's Guide. 

7-37 





8 LOADING MECHANISMS 

There are two methods for loading both disk-resident and memory- resident overlays: 

Autoload 

Manual Load 

in which the Overlay Runtime System is automatically called upon to load those segments that 
are marked by you, and 

in which you include in the task explicit calls to the Overlay Runtime System. 

You must decide which of these methods to use, because both cannot be used in the same task. 

The loading process depends on the kind of overlay: 

1 Disk-Resident - A segment is loaded from disk into a shared area of physical memory, writing 
over whatever was present. 

2 Memory-Resident - A segment is made available by mapping a set of shared virtual addresses 
to a unique unshared area of physical memory, where the segment has been made permanently 
resident (after having been initially brought in from the disk). 

The term "load", as used in this manual, refers to both processes. 

In the autoload method, loading and error recovery are handled by the Overlay Runtime System. 
Overlays are automatically loaded by being referenced through a transfer-of-control instruction 
(CALL, JMP, or JSR). No explicit calls to the Overlay Runtime System are needed. 

In the manual load method, the user handles loading and error recovery explicitly. Manual loading 
saves space and gives the user full control over the loading process, including the ability to specify 
whether loading is to be done synchronously or asynchronously. 

Provision must be made for loading the overlay segments of the main tree and the root segments, 
as well as the overlay segments of the co-trees. Once loaded, the root segment of a co-tree remains 
in memory. 

8.1 Autoload 

8.1.1 

When using the autoload method you place the autoload indicator "*" in the ODL description of the 
task at the points where loading must take place. The execution of a transfer of control instruction 
to an autoloadable segment up-tree automatically initiates the autoload process. 

Autoload Indicator 
The autoioad indicator, "*1', is placed in the overlay description at the points where autoloading 
is required. If the autoload indicator is inserted before parentheses (and before an exclamation 
point operator if used) then every name within the parentheses is marked autoloadable. Applying 
the autoload indicator at the outermost parentheses level of the ODL tree description marks every 
module in the overlay segments autoloadable. 

Consider the example TKl of Chapter 7, "Resolution of Global Symbols in a Multi-segment Task", 
and suppose further that segment C consists of a set of modules Cl, C2, C3, C4 and C5. The tree 
diagram for TKl then is: 

8-1 



LOADING MECHANISMS 

A21 A22. 

I 
I 

I 
C5 

Al r 81 ,2 C4 
I 

I I C3 
I C2 

AO COM AB BO C1 
I I I 

CNTRL 

If you introduce the autoload indicator at the outermost parentheses level, regardless of the flow of 
control within the task, a module is always properly loaded when it is called. The ODL description 
for the task with this provision then is: 

AFCTR: 
BFCTR: 
CFCTR: 

.ROOT CNTRL-*(AFCTR,BCTR,CFCTR) 

.FCTR AO-(Al,A2-(A21,A22)) 

.FCTR BO-(Bl,B2) 

.FCTR Cl-C2-C3-C4-C5 

.END 

To be assured that all modules of a co-tree are properly loaded, the user must mark the root 
segment as well as the outermost parentheses level of the co-tree, as follows: 

.ROOT CNTRL-*(AFCTR,BFTCR,CFCTR),*CNTRL2-*(CNTRLX,CNTRLY) 

The above example assumes that one or more modules containing executable code reside in 
CNTRL2. 

The autoload indicator can be applied to the following constructs: 

1 Filenames - to make all the components of the file autoloadable. 

2 Parenthesized ODL tree descriptions - to make all the names within the parentheses 
autoloadable. 

3 P-section names - to make the p-section autoloadable. The p-section must have the I 
(instruction) attribute. 

4 Segment names introduced by the .NAME directive - to make all components of the segment to 
which the name applies autoloadable. 

5 Factor label names - to make the first component of the factor autoloadable. If the entire factor 
is enclosed in parentheses, then all the components are made autoloadable. 

Suppose you introduce two .PSECT directives and a .NAME directive into the ODL description for 
TKl and then apply autoload indicators in the following way: 

8-2 



8.1.2 

AFCTR: 
BFCTR: 
CFCTR: 

LOADING MECHANISMS 

.ROOT CNTRL-(*AFCTR,*BFCTR,*CFCTR) 

.FCTR AO-*ASUB1-ASUB2-*(Al,A2-(A21,A22)) 

.FCTR (BO-(Bl,B2)) 

.FCTR CNAM-Cl-C2-C3-C4-C5 

.NAME CNAM 

.PSECT ASUBl,I,GBL,OVR 

.PSECT ASUB2,I,GBL,OVR 

.END 

The interpretation for each autoload indicator in the overlay description is as follows: 

(*AFCTR,*BFCTR,*CFCTR) 

The autoload indicator is applied to each factor name: 

*AFCTR=*AO 
*BFCTR=*(B0-(Bl-B2)) 
*CFCTR=*CNAM 

CNAM, however, is an element defined by a .NAME directive; therefore, all the components 
of the segment to which the name applies are made autoloadable; that is, Cl, C2, C3, C4, 
and C5. 

*ASUBl - The autoload indicator is applied to the name of a p-section having the I attribute, 
so the p-section ASUBl is made autoloadable, That is, all symbols defined in the p-section will 
be autoloadable. 

*(Al,A2-(A21,A22)) - The autoload indicator is applied to a portion of the ODL description 
enclosed in parentheses, so every element within the parentheses is made autoloadable, that 
is, files Al, A2, A21, and A22. 

The effect of this ODL description is to make every element except p-section ASUB2 autoloadable. 

Path-loading 
Autoload uses the technique of path-loading. That is, whenever a segment is loaded all segments 
between it and the root are also loaded. 

Consider again the example TKl and the tree diagram: 

A21 A22. 

i 
I 

I 
I 

cs 
Al f 81 ~2 C4 
I 

I I C3 
I C2 

AO CO MAB BO C1 
I I I 

CNTRL 

8-3 



8.1.3 

LOADING MECHANISMS 

If CNTRL calls A2, then all the modu1es between the calling module CNTRL and the called module 
A2 are loaded. In this case modules AO and A2 are loaded. 

The Overlay Runtime System keeps track of the segments in memory and only issues load requests 
for those segments not in memory. If, in the above example, CNTRL called Al and then called A2, 
AO and Al are loaded first and then A2 is loaded. AO is not loaded when A2 is loaded because it is 
already in memory. 

A reference from one segment to another segment down-tree (closer to the root) is resolved directly. 
For example; if A2 calls AO, then the :reference is :resolved directly because AO is known to be in 
memory as a result of the path-loading that took place in the call to A2. 

Autoload Vectors 
When the Task Builder sees a reference from a segment to an autoloadable segment up-tree, it 
generates an autoload vector in the segment for the referenced global symbol. The definition of the~ 
symbol is changed to an autoload vector table entry. The autoload vector has the following format: 

JSR PC 

$AUTO 

Segment Descriptor Address 

Entry Point Address 

A "transfer of control" instruction to the referenced global symbol executes the call to the autoload 
routine $AUTO contained in the autoload vector. 

An exception is made in the case of a p-section with the D (data) attribute. References from a 
segment to a global symbol up-tree in a p-section with the D attribute are resolved directly. 

Since the Task Builder has no information about the flow of control within the task, it often 
uP.nP.ratP.R morP. autoload vP.ct.orR t.han arP. nP.CP.RRarv. You can. however. annlv vour knowledge of 
Q' - - . - - - . - - . - - - - - -- - - . - . .,, , , .&. .&. W' "' "-' 

the flow of control of your task and your knowledge of path-loading to determine the placement of 
autoload indicators. By placing the autoload indicators only at the points where loading is actually 
required, you can minimize the number of autoload vectors generated for the task. 

If in TKl all the calls to overlays originate in the root segment, (that is, no module in an overlay 
segment calls outside its overlay segment) and if the root segment CNTRL has the following 
contents: 

8-4 

PROGRAM CNTRL 
CALL Al 
CALLA21 
CALLA2 
CALLAO 
CALLA22 
CALL BO 
CALL Bl 



8.1.4 

LOADING MECHANISMS 

CALLB2 
CALL Cl 
CALL C2 
CALL C3 
CALL C4 
CALL C5 
END 

If the autoload indicator is placed at the outermost parentheses level, 13 autoload vectors are 
generated for this task. 

Since A2 and AO are loaded by path loading to A21, the autoload vectors for A2 and AO are 
unnecessary. The call to Cl loads the segment that contains C2, C3, C4 and C5; therefore autoload 
vectors for C2 through C5 are unnecessary. 

You eliminate the unnecessary autoload vectors by placing the autoload indicator only at the points 
where loading is required, as follows: 

AFCTR: 
BFCTR: 
CFCTR: 

.ROOT CNTRL-(AFCTR,*BFCTR,CFCTR) 

.FCTR AO-(*Al,A2-*(A21,A22)) 

.FCTR (BO-(Bl,B2)) 

.FCTR *Cl-C2-C3-C4-C5 

.END 

With this ODL description, the Task Builder generates only seven autoload vectors, namely those 
for Al, A21, A22, BO, Bl, B2, and Cl. 

The autoload vectors for each segment are placed in the p-section $$ALVC, which is generated 
automatically by TKB. This p-section is read/write, so if a resident overlay segment which 
is otherwise read-only contains autoload references, it will become read/write and will not be 
shareable between multiple copies of the task. 

This may be avoided by including a GBLREF option specifying each symbol for which there is an 
up-tree reference from the resident segment. This forces the autoload vector to be placed in the 
root segment. 

Autoload Summary 

1 Autoload is almost totally transparent to the user task. In particular, all registers are 
preserved across an autoloadable transfer of control. However, the condition code settings 
are not preserved across such a call. 

2 Autoload can work only where the reference to another segment is explicit at task-build time. 
In particular, a segment can never be autoloaded as a result of a return from a subroutine. 

3 Autoload should not be used in conjunction with the use of the .PSECT directive to move 
p-sections further from the root. When a global symbol is defined in a module, the symbol is 
associated with the segment containing the module. This is true even if the symbol is defined 
in a p-section which has been moved further away from the root. Thus if a segment closer to 
the root refers to the symbol, the segment which will be autoloaded will be the one containing 
the defining module, not the one containing the p-section. The effect of this is that the code 
labelled by the symbol will not be loaded before control iR transferred. 

8-5 



LOADING MECHANISMS 

8.2 Manual Load 

8.2.1 

If you decide to use the manual load method of loading segments, explicit calls to the $LOAD 
system routine must be included in the programs. These load requests give the name of the 
segment to be loaded and optionally give information necessary to perform asynchronous load 
requests and to handle unsuccessful load requests. 

The $LOAD routine does not path-load. A call to $LOAD always results in the segment named in 
the load request being loaded and only that segment being loaded. 

The MACR0-11 programmer calls the $LOAD routine directly. The FORTRAN programmer is 
provided with the subroutine "MNLOAD". 

Manual Load Calling Sequence 
The MACR0-11 programmer calls $LOAD, as follows: 

MOV #PBLK,RO 
CALL $LOAD 

where PBLK labels a parameter block with the following format: 

PBLK: .BYTE length, event-flag 
.RADSO /seg-name/ 
.WORD I/0-status 
.WORD AST-trp 

You must specify the following parameters: 

• length - the length of the parameter block (3-5 words). 

• event-flag - the event flag number, used for asynchronous loading. If the event-flag number is 
zero, synchronous loading is performed. 

• seg~name - the name of the segment to be loaded, a 1- to 6-character alphanumeric (Radix-50) 
name, occupying two words. 

The following parameters are optional: 

• 1/0-status - the address of the 1/0 status block as described for the QIO directive in the IAS 
System Directive Reference Manual. 

• AST-trp - the address of an AST routine to which control is transfeITed at the completion of the 
load request. 

The condition code C is set or cleared on return, as follows: 

If C = 0, the load request was successfully executed. 
If C = 1, the load request was unsuccessful. 

For a synchronous load request, the return of the condition code 0 means that the desired segment 
has been loaded and is ready to be executed. For an asynchronous load request, the return of the 
code 0 means that the load request has been successfully queued to the device, but the segment is 
not necessarily in memory. You must ensure that loading has been completed by waiting for the 
specified event flag before calling any routines or accessing any data in the segment. 

8-6 



8.2.2 

LOADING MECHANISMS 

FORTRAN Subroutine for Manual Load Request 
To use manual load in a FORTRAN program, the program makes explicit reference to the $LOAD 
routine by means of the "MNLOAD" subroutine. The subroutine call has the following form: 

CALL MNLOAD (seg-name,event-flag,I/0-status,ast-trp,ld-ind) 

where: 

• seg-name - is a 2-word real variable containing the segment name in alphanumeric (Radix-50) 
format. 

• event-flag - is an optional integer event flag number, to be used for an asynchronous load 
request. If the event flag number is zero, the load request is considered synchronous. 

• 1/0-status - is an optional 2-word integer array to contain the 1/0 status doubleword, as 
described for the QIO directive in the IAS System Directives Reference Manual. 

• ast-trp - is an optional asynchronous trap subroutine to be entered at the completion of a 
request. MNLOAD requires that all pending traps specify the same subroutine. 

• Id-ind - is an optional integer variable to contain the results of the subroutine call. One of the 
following values is returned: 

+ 1 request was successfully executed. 
-1 request had bad parameters or was not executed successfully. 

Optional arguments can be omitted. The following calls are all legal: 

Call 

CALL MNLOAD (SEGA 1) 

CALL MNLOAD (SEGA 1,0,,,LDIND) 

CALL MNLOAD (SEGA 1, 1,IOSTAT, 
ASTSUB,LDIND) 

Effect 

Load the segment named in SEGA 1 synchronously. 

Load the segment named in SEGA 1 synchronously. and return 
success indicator to LDIND. 

Load the segment named in SEGA 1 asynchronously, transferring 
control to ASTSUB upon completion of the load request, storing 
the 1/0-status doubleword in IOSTAT and the success indicator in 
LDIND. 

Consider the program CNTRL described in connection with the autoload method, and suppose that 
between the calls to the overlay segments there is sufficient processing to make asynchronous 
loading effective. The user removes the autoload indicators from the ODL description and 
recompiles the FORTRAN programs with explicit calls to the MNLOAD subroutine, as follows: 

8-7 



LOADING MECHANISMS 

PROGRAM CNTRL 
EXTERNAL ASTSUB 
INTEGER IOSTAT(2) 
COMMON /IOSTAT/ IOSTAT 
DATA SEGAl /6RA1 / 
DATA SEGA21 /6RA21 / 

CALL MNLOAD (SEGAl,l,IOSTAT,ASTSUB,LDIND) 

CALL Al 

CALL MNLOAD (SEGA21,l,IOSTAT,ASTSUB,LDIND) 

CALL A21 

END 

The AST subroutine, ("ASTSUB" in the example), should normally be written in MACR0-11. It 
may access the 1/0 status block using the p-section IOSTAT, with attributes RW, OVR, GBL, D. 

8.3 Error Handling 
If the manual load method is selected, you must provide error handling routines which diagnose 
load errors and provide appropriate recovery. 

If the autoload method is selected, a simple recovery procedure is provided, which checks the 
Directive Status Word (DSW) for the presence of an error indication. If the DSW indicates that no 
system dynamic storage is available, the routine issues a "wait for significant event" directive and 
tries again; if the problem is not dynamic storage, the recovery procedure generates a breakpoint 
synchronous trap. If the program is set to service the trap and returns without altering the state 
of the program, the request can be retried. 

A more comprehensive user-written error recovery subroutine can be substituted for the 
system-provided routine if the following conventions are observed: 

1 The error recovery routine must have the entry point name $ALERR. 

2 The contents of all registers must be saved and restored. 

On entry to $ALERR, R2 contains the address of the descriptor for the segment that could not be 
!oed~. Before ~ecoYe!j7 .ecticn can be t3.ken, the routine must de~rminc the ~use vf the erru:r hy 
examining the following words in the sequence indicated: 

1 $DSW - The Directive Status Word may contain an error status code, indicating that the 1/0 
request to load the overlay segment was rejected by the Executive. 

2 .NIOST - This is a 2-word 1/0 Status block containing the results of the load overlay request 
returned by the device handler. The status code occupies the low-order byte of word 0. 

8.4 Example: CALC.TSK;5 
Suppose the task CALC is now complete and error-free and you want to adjust the autoload vectors 
to minimize the amount of storage required. Your knowledge of the fl.ow of control of the task 
determines that PROC3.0BJ is always in memory as a result of path-loading when it is called and 
therefore, the autoload vector for PROC3.0BJ can be eliminated. 

8-8 



LOADING MECHANISMS 

The ODL description in CALTR.ODL is modified as follows: 

P3FCTR: 
.ROOT RDIN-RPRT-ADTA-(*PROC1,*PROC2,P3FCTR) 
.FCTR PROC3-*(SUB1,SUB2) 
.END 

The task is built and the resulting memory allocation file in Figure 8-1 shows that the repositioning 
of the autoload indicator saved 10 bytes. 

8-9 



LOADING MECHANISMS 

Example 8-1 Memory Allocation Fiie for CALC.TSK;5 

-CALC. TSK; 5 MEMORY ALLOCATION MAP TKE D28 
3-JUL-78 10:51 

ICENTIFICATION : FORV02 
STACK LIMITS: 000000 000777 0010~0 00512. 
PRG XFR ADDRESS: 022252 
TOTAL ATTACHMENT CESCRIPTORS: 3. 
!ASK IMAGE SIZE : 8544. WORCS 
TASK HLACER SIZE: 160. ~ORDS 
TASK ADDRESS LIMITS: 000000 e41337 
R- ~~ DIS K 5 L K LIM I 'TS : 0 0 0 0 0 3 0 0 0 0 5 2 G kJ 0 0 5 fj 0 0 0 4 0 • 

CALC.TSK;5 OVEFLAY CESCRIPTim;: 

BASE: ·roP LEl-iC'I'n 
------

000000 
,, ""'\ i- ~ , "') r,, c:: I! 1 I! 15116, RC·IN l(J..):J'iJ...) I()..) .J""T. ~ -s: 

~35414 035757 000344 GO 228. PROC 1 

035414 037717 002304 012 2 Cj. PROC2 

035414 840277 002664 ~1460. P:ROC 3 

U4 0 30 (J t141147 0(.06.% 1'.H)424. SU Bl 
04C30G 041337 001040 Oki 544. SUE2 

8-10 

PAGE 1 



LOADING MECHANISMS 

Example 8-1 Memory Allocation Fiie for CALC.TSK;5 (continued) 

CALC.TSK;5 
RDIN 

MEMORY ALLOCATION MAP TKB D28 
3-JUL-78 10: 51 

*** ROOT SEGMENT: RDIN 

R/W MEM LIMITS: 000000 035413 035414 15116. 
DISK BLK LIMITS: 000003 000040 000036 00030. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION 
-------

BL K . : ( RW , I , LC L , REL , C 0 N ) 001000 0000~2 00002. 
ADTA : (RW,C,GBL,REL,OVR) 001002 002260 f:Jl200. 
CTA : (RW,D,GBL,REL,OVR) 003262 001442 00802. 

003262 001442 0fH~02. 

003262 001442 00802. 
OTS$I : ( RW , I , LC L , REL , C 0 N) 004724 015270 C6840. 

004724 000000 00000. 
OTS$P : ( RW ID, CBL, PEL, OVR) 022214 000036 00030. 
$CODE : ( RW , I , LC L , REL , C 0 N ) 022252 000132 00090. 

022252 000000 00000. 
022252 000000 00000. 
022252 000116 00078. 
022370 000000 00000. 
022370 000000 C0000. 
022370 000014 00012. 

$DATA : (RW,C,LCL,REL,CON) 022404 fHjJ 7 20 02000. 
022404 000000 00003. 
022404 001750 0HHHJ. 
024354 !:HHHHJ0 00000. 
024354 001750 01000. 

$DATAP: (RW,C,LCL,REL,CON) 026324 000032 00026. 
026324 000000 00000. 
026324 000022 00018. 
026346 000000 C0000. 
026346 000010 00008. 

$$ALER: (RW,I,LCL,REL,CON) 026356 000024 0()020. 
$$ALVC: (RW,D,LCL,REL,CON) 026402 000020 0001E. 
$$AOTS: (RW,D,LCL,REL,CON) C2E422 000704 00452. 
$$AUTO: (RW,I,LCL,REL,CON) 160000 OG0130 00088. 
$$DEVT: (Rvi,C,LCL,REL,OVR) 027326 G01210 00648. 
$ $ F s R l : ( RW I :c ; GB L i RE I i 0 v R) 030536 0~i l 100 021120 
$$FSR2: (RW,D,GEL,PEL,CON) 034636 000104 00068. 
$$IOB1: (RW,D,LCL,PEL,OVR) 034742 000204 00132. 
$$IOB2: (RW,D,LCL,REL,OVR) 035146 000000 00000. 
$ $LOAC: { RW, I, LC L, REL, CO~!) 160130 000170 00120. 
$$MRKS: (PW, I, LCL, F EL ,OVR) 160320 000H6 0Cll8. 
$$08Fl: (RW,D,LCL,REL,CON) 035146 k:l001 l Cj C0072. 
$ $OB F 2 : ( RW , I , LC L , REL , C 0 N ) 035256 0~00GO 00000. 
$$0VDT: {RW,D,ICL,REL,OVR) 035256 oeoc20 00016. 
$$0VRS: (RW,I,LCL,A£S,CON) 000000 0u000G 00~HHJ. 

$$FI;SG: (RW,I,LCL,REL,OVR) 1£0506 C0C312 [()202. 
S $ F. ESL : ( RW , I , LC L , f £ L , C 0 N ) 1EH20 016216 07310. 
SSRCCS: (RW,C,LCL,REL,CON) 035276 00000G 00000. 

PAGE 2 

TITLE !CENT FILE 

.MAIN. FORV02 PC'IN.OEJ;2 
RPR'I' FCRV02 RPR'T. OEJ; l 

.t-~AIN. FOFVC2 RC HJ. 013J; 2 

. Mii. I !··J. FORV0 2 PCIN.OEJ;2 

. t·~A IN. FOPV02 RDIN .OEJ; 2 

. MAI~~. FCRV02 RC H~ .OBJ; 2 
FPFT FOP.V02 RPR'I'. OBJ; l 
P.PF.'I' FORV02 RPPT.OBJ;l 
RPPT FORV02 RPRT.OBJ;l 

• MA IN. FORV02 Rr'IN .OBJ; 2 
. ~~A IL~. FOPV02 FCIN.OEJ;2 
RPPT FORV02 II ? F 'I' • 0 BJ ; l 
FzPFT F0PV02 RPPT. OP ... 1; l 

.r.!AIN. FORVC2 RCb .OBJ; 2 
• r--~.~_ IN. FORV02 R[IN.OB.J;2 
RPF':' FOPV02 I~PRT. OPJ; 1 
RPRT FOI\.V02 Rl?RT. OBJ; 1 

8-11 



LOADING MECHANISMS 

Example 8·1 Memory Allocation Fiie for CALC.TSK;S (continued) 
CALC.TSK;5 MEMORY ALLOCATION MAP TKB D28 PAGE 3 
RDIN 3-JUL-78 10:51 

$$RTS : (RW,I,GBL,REL,OVR) 035276 000002 00002. 
$$SGD0: (RW,D,LCL,REL,OVR) 035300 000000 00000. 
$$SGD1: (RW,D,LCL,RC:L,CON) 035300 000110 00072. 
$$SGD2: (RW,D,LCL,REL,OVR) 035410 000002 00002. 
$$WNDS: (RW,D,LCL,REL,CON) 035412 000000 00000 . 
• $$$$.: (RW,D,GEL,REL,OVR) 035412 000000 00000. 

035412 000000 00000 .. MAIN. FORV02 RDIN.OBJ;2 
035412 000000 00000 .• MAIN. FORV02 RDIN.OBJ;2 
035412 000000 00000. RPRT FORV02 RPRT.OBJ;l 
035412 000000 00000. RPRT FORV02 RPRT.OBJ;l 

GLOBAL SYMBOLS: 

PROCl 026402-R RPRT 022370-R $$0TSC 022252-R 
PROC2 026412-R $RF2Al 000000-R $$0TSI 004724-R 

CALC. TSK; 5 
PROCl 

MEMORY AI.LOCATION MAP TKB C28 
3-JUL-78 10:51 

*** SEGMENT: PROCl 

R/W MEM LIMITS: 035414 035757 000344 00228. 
CISK BLK LI~ITS: 000042 000042 000001 00001. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION 

. BLK.: (RW,I ,LCL,REL,CON) 
ACTA : (RW,D,GBL,REL,OVR) 

CTA : (RW,D,GBL,REL,OVR) 

O'l'S$I : (RW,I,LCL,REL,CON) 
$ C 0 C E : ( RW , l , LC L , RE I. , C 0 N j 

$DA TA : ( RW , D , LC L , REL , C 0 N ) 

~CATAP: {RW,D,LCL,REL,CON) 

$$ALVC: (RW,D,LCL,REL,CON) 
• $ $ $ $ • : ( FW , D , G BL , RC L , OV R) 

GLOBAL SYMBOLS: 

PROCl 035670-R 

8-12 

035414 
001002 
001002 
003262 
003262 
035414 
,.,-.~r-,n 

k:J.) ;;)0 I ~I 

035670 
035670 
035670 
035744 
035744 
035744 
035746 
035746 
035746 
035756 
035412 
035412 
035412 

000000 00000. 
002260 01200. 
002260 01200. 
001442 00802. 
001442 00802. 
000254 001 72. 
I'll t'll I'll (Ac: A 000 44. 'l.J'l.J'(Jf.J..J"7 

000000 00000. 
000000 00000. 
000054 00 0 44. 
000002 00002. 
000000 CHHl00. 
000002 00002. 
000010 00008. 
000000 00000. 
000010 00008. 
0~HHHH3 00000. 
0vHHHH1 r.'C/"11".'\flr. 

tJtJt:n:.1v. 

000000 00000. 
000000 00000. 

TITLE 

PF.OCl 

PROCl 

PROCl 
PROCl 
PROCl 

PROCl 
PROCl 

PROCl 
PROCl 

PROCl 
PROCl 

PAGE 4 

ID ENT FILE 

FORV02 PROC1.0BJ;2 

FORV02 PROC1.0BJ;2 

FORV02 PROC 1. OBJ; 2 
FORV02 PROC 1. OBJ; 2 
FORV02 PROC 1. OBJ; 2 

FORV02 PROC 1. OB.J; 2 
FOFV02 PROC1.0BJ;2 

FORV02 PROC 1. OBJ; 2 
FORV02 PROC1.0BJ;2 

FORV02 PROC1.0EJ;2 
FOF.V02 PROC l. OBJ; 2 



LOADING MECHANISMS 

Example 8-1 Memory Allocation Fiie for CALC.TSK;S (continued) 

CALC.TSK;5 
PROC2 

MEMORY ALLOCATION MAP TKE D28 
3-JUL-78 10:51 

*** SEGMENT: PROC2 

R/W MEM LIMITS: 035414 037717 002304 01220. 
DISK BLK LIMITS: 000043 000045 000003 00003. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION 

ADTA : (RW,C·,GBL,REL,OVR) 

$CODE : (RW,I,LCL,REL,CON} 

$9ATA : (RW,D,LCL,REL,CON) 

$DATAP: (RW,D,LCL,REL,CON) 

$$ALVC: (RW,D,LCL,REL,CON) 
.$$$$.: (RW,D,GBL,REL,OVR) 

GLOBAL SYMBOLS: 

PROC2 035414-R 

001002 
001002 
035414 
035414 
035414 
035414 
035430 
035430 
035430 
0377 HJ 
037710 
0377 Hl 
037720 
035412 
035412 
035412 

002260 01200. 
002260 01200. 
000014 00012. 
000000 00000. 
00000e fHHHH:. 
000014 00012. 
0022H.l l1120C. 
000000 00000. 
002260 01200. 
000010 00008. 
0CfHHi0 000lHJ. 
000c10 00008. 
000000 tHHHHJ. 
000000 00000. 
000fHHl 00000. 
000000 0'HJ0'1. 

PAGE 5 

TITI.E IDE'NT FILE 

PROC2 FOFV02 Pl~OC 2 .Ot:J; l 

PROC2 FGf.V02 PPOC2.0PJ;l 
PFOC2 FCRV02 ?ROC2.0BJ;l 
PROC2 FCRV02 PROC2.0P.J;J 

PPOC2 FOPVC2 PTIOC ;_. CE..J;] 
PROC2 FOPVC2 pr,oc2.on.J;1 

PPOC2 FO.FV02 PF..CC 2. or Ji] 

PPOC2 FOP VO~ P8CC2.C'EJ;l 

PROC2 FGPvo;: PP.OC 2. C·EJ; 1 
PROC2 FGFV02 l?POC2.CF'J;l 

8-13 



LOADING MECHANISMS 

Example 8-1 Memory Allocatlon Fiie for CALC.TSK;5 (continued) 

CALC.TSK;5 
PROC3 

MEMORY ALLOCATION MAP TKB 028 
3-JUL-78 10: 51 

*** SEGMENT: PROC3 

R/W MEM LIMITS: f'J ""'l r" A , A 
~.):J"t.l."t 

r.1Atl")"7"7 
l:l"tl:I.:. /I 

l'.'lf,l"')CCA 
UUL.UV"'! 

(,! , ,., t:: 11 
V~-ZVl.I• 

DISK BLK LIMITS: 000046 000050 000003 00003. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION 
-------
ACTA : (RW,D,CBL,REL,OVR) 001002 002260 01200. 

001002 002260 01200. 
CTP.. : (RW,~ 1 CBL,REL,OVR) 003262 001442 00802. 

003262 0~1442 00802. 
SCOCE : (FW,I,LCL,FEL,CON) 035414 000044 00036. 

035414 000000 00000. 
0.35414 000000 00000. 
035414 000044 00036. 

.SCATA : (RW,f.,LCL,REL,CON) 035460 002570 01400. 
~3546~ 000000 C0000. 
035460 002570 01400. 

SDA'I'AP: ( RW, C, LCL, REL, CON) 040250 0000HJ 00008. 
040250 000000 00000. 
040250 000010 00008. 

$$ALVC: (RW,C,LCL,REL,CON) 040260 000020 0ki016. 
.$$SS.: (RW,D,GEL,REL,OVR) 035412 000000 00~HJ0. 

035412 000000 00000. 
035412 000000 00000. 

GLOBAL SYMBOLS: 

TITLE 

PROC3 

PROC3 

PROC3 
PROC3 
PROC3 

PF.CC 3 
PPOC3 

PRCC3 
PROC3 

PROC3 
PRCC3 

PROC3 035414-R SUBl 040270-R SUE2 040260-?. 

8-14 

PAGE 6 

ID ENT FILE 

FORV02 PPOC 3. OBJ; l 

FORV02 PROC3.0BJ;l 

FORV02 P:S:OC3.0BJ;l 
FORV02 PROC3.CBJ;l 
FORV02 ?EOC3.0BJ;l 

FORV02 PFOC3.0BJ;l 
FORV02 PROC3.0BJ;l 

FORV02 PROC3.0EJ;l 
FORV02 PFCC3.0EJ;l 

FORV02 PROC 3. OBJ; 1 
FORV02 PROC3.0BJ;l 



Example 8-1 Memory Allocation Fiie for CALC.TSK;S (continued) 

CALC.TSK;S 
SUSI 

MEMORY ALLOCATION MAP TKB 028 
3-JUL-7 8 10: 51 

*** SEGMENT: SUBl 

R/W MEM LIMITS: 040300 041147 000650 00424. 
DISK BLK LIMITS: 000051 000051 000001 00001. 

MEMORY ALLOCATION SYNOPSIS: 

LOADING MECHANISMS 

PAGE 7 

SECTION TITLE !CENT FILE 

ADTA : (RW,D,GBL,REL,OVR) '10HHJ2 002260 01200. 
001002 002260 01200. SUE2 

$CODE : (RW,I,LCL,REL,CON) 040300 000014 00012. 
040300 000000 00000. SCE2 
040300 000000 00000. SUB2 
040300 000014 00012. SUB2 

$DA TA : ( RW I D I LC L I REL I c ON) 0 4 0 314 0 0 0 6 2 4 0 0 4 0 4 . 
040314 000000 00000. SUB2 
040314 000624 00404. SUB2 

$DA TA p : ( RW I D I LC L I REL I c 0 N) 0 4114 0 ~ 0 0 010 0 0 0 0 8 • 
041140 000000 00000. SUB2 
041140 000010 00008. SUE2 

$$ALVC: (RW,D,LCL,REL,CON) 041150 000000 00000 . 
. $$$$.: (RW,D,GBL,REL,OVR) 035412 000000 00000. 

035412 000000 00000. SUB2 
035412 000000 00000. SUB2 

GLOBAL SYMBOLS: 

SUB2 040300-R 

FORV02 SUBl.OBJ;l 

FORV02 SUBl.OEJ;l 
FORVe2 SUBl.OBJ;l 
FORV02 SUBl.OBJ;l 

FORV02 SUBl.OBJ;l 
FOPV02 SUBl.OEJ;l 

FORV02 SUBl.OEJ;l 
FORV02 SUBl.OBJ;l 

FORV02 SUBl.OBJ;l 
FOPVC2 surl.OBJ;l 

8-15 



LOADING MECHANISMS 

Example 8-1 Memory Allocation Fiie for CALC.TSK;5 (continued) 

CALC.TSK;5 
SUB2 

MEMORY ALLOCATION MAP TKB D28 
3-JUL-78 10:51 

*** SEGMENT: SUB2 

R/W MEM L!M!'I'S: 040300 041337 001040 00544. 
DISK ELK LIMITS: 000052 000053 000002 00002. 

MEMORY ALLOCATION SYNOPSIS: 

PAGE 8 

SECTION TITLE !CENT FILE 

. BL K • : { RW , I , LC L , REL , C 0 N ) 
ACTA : (RW,C,GBL,REL,OVR) 

DTA : (RW,G,GBL,REL,OVR) 

OTS$I : (RW,I,LCL,REL,CON) 
$CODE : (RW,I,LCL,PEL,CON} 

$DA'I·.n. : {R~v,D,LCL,REL,Cat-J) 

$CA'IAP: (RW ,D,LCL,REL,CON} 

$$ALVC: {RW,D,LCL,REL,CON) 
.$$$$.: (RW,D,GBL,REL,OVR) 

GLOBAL SYMBOLS: 

SIJR1 '140454-R 

040300 000000 00000. 
001002 002260 01200. 
001002 002260 01200. SUBl 
003262 001442 g0802. 
003262 001442 00802. SUBl 
040300 000154 00108. 
040454 000032 00026. 
040454 000000 00000. SUBl 
040454 000000 00000. SUBl 
040454 000032 00026. SUBl 
040506 000622 00402. 
040506 000000 00000. SUBl 
040506 0e0622 00402. SUBl 
04133U 000010 0000e. 
041330 000000 00000. SUEl 
041330 000010 00008. SUBl 
041340 000000 00000. 
035412 000000 00000. 
035412 000000 00000. SUBl 
035412 000000 00000. SUBl 

*** TASK BUILCER STATISTICS: 

8-16 

TOTAL WORK FILE REFERENCES: 22122. 
WORK FILE READS: 0. 
WORK FILE WRITES: 0. 
SIZE OF CORE POOL: 16010. WORDS (62. PAGES) 
SIZE OF WORK FILE: 7680. WORDS (30. PAGES) 

ELAPSEC TIME:00:00:20 

FORV02 SUE2.0BJ;l 

FORV02 SUB2.0BJ;l 

FORV02 SUB2.0BJ;l 
FORV02 SUB2.0BJ;l 
FOFV02 SUP2.0BJ;l 

FORV02 SUB2.0BJ;l 
FOSV02 SUB2.0BJ;l 

FORV02 SUB2.0BJ;l 
FORV02 SUE2.0BJ;l 

FORV02 SUE2.0BJ;l 
FORV02 SUE2.0BJ;l 



LOADING MECHANISMS 

8.5 Using the QIO Directive to Load from the Task Image File 
It is sometimes required to load part of the task image file into a location other than that allocated 
by Task Builder. This can be the case~ for example, if a segment containing error messages has 
been generated and given the NOPHY attribute so that no task address space is allocated to it. 

The QIO function code 10.LOV can be used to load one or more blocks from the task image file into 
a specified buffer. The format is: 

where: 

QIO[$] 
QIOW[$] 

IO.LOV,lun,efn,pri,iosb,ast,<bufadr,buflen,,,block> 

• lun - is the LUN to be used for the function. This must be the LUN whose number is at 
location .NOVLY in the overlay control block, which is inserted automatically into an overlaid 
task. 

• efn - is an optional event flag. The flag will be set when the function has been completed and 
either the overlay has been successfully completed or an error has occurred. 

• pri - is the priority of the request. This parameter should normally be omitted, in which case 
the task's priority will be used. 

• iosb - is the address of the 2-word 1/0 status block. If this parameter is supplied, the first word 
of the status block will contain the status of the request on completion. This will normally be 
one of: 

IS.SUC - request successfully completed 
IE.OVR - request issued on the wrong LUN or specified block number not in the task image 
file 
IE.VER - device parity error 
For other error statuses see the IAS Device Handlers Reference Manual, Chapter 4. 

• ast - (optional) is the address of an AST routine to be executed when the request has been 
completed. 

• bufadr - is the even address of the buffer which is to receive the data. 

• buflen - is the even length in bytes of the buffer. 

• ,, - the two additional commas are mandatory and indicate two null parameters. 

• block - is the block number of the first block to be read. This is the relative block number in 
the task image file. The starting block of an overlay segment can be found from the segment 
table, whose location and format is described in Appendix C, Section C.7. 

Example: 

QIOW$S tIO.LOV, .NOVLY,#EFN,,#IOSB,,<#BUFF,i512,,,Rl> 

which will read the block, specified in Rl, of the image file of the issuing task into the buffer at 
BUFF. 

8-17 





9 SHAREABLEGLOBALAREAS 

IAS provides the facility for dynamic Shareable Global Areas (SGAs). This chapter describes the 
use and creation of SGAs in so far as they are related to task building. 

9.1 Summary OF SGA Information 

9.1.1 

This summary lists all the important information about SGAs and provides references to further 
information about each item. 

1 SGAs are created using the Task Builder. They do not have task headers or stacks (see 
Chapter 5, Sections "Header" (PDS) or "FX" (MCR) and "Stack"). 

2 An SGA must be installed before any task that uses it can be installed or run. See either the 
IAS MCR User's Guide or the IAS PDS User's Guide. 

3 Access permissions are established when the SGA is installed. Read, write, extend and delete 
access to the SGA can be allowed or denied for tasks that are not owned by the owner of 
the SGA. See either the IAS MCR User's Guide or the IAS PDS User's Guide for further 
information. 

4 SGAs occupy memory only when one or more referencing tasks are active. When all referencing 
tasks become inactive, the space occupied by shareable global areas is freed. The executive's 
treatment of the SGA at this point depends on whether it is a resident library, a common area 
or an installed region. See the IAS Executive Facilities Reference Manual for further details. 

5 When a task which uses an SGA is built, the SGA must exist in the form of a task image and 
symbol table file (see Section 9.3). 

6 When a task is built the SGAs it uses are named using the SGA or RESSGA option. In 
addition the access it requires to these SGAs is declared (see Chapter 5, Section 5.3). This 
access is always subject to that granted by the SGA and specified when installing the SGA (see 
3. above). 

Sharing Memory 
Consider first the case in which two tasks, Task A and Task B, need to communicate a large 
amount of data. A convenient method of transmitting this data is using a read/write common area 
or installed region. Tasks can communicate independently of their time of execution. This case is 
illustrated in Figure 9-1. 

9-1 



SHAREABLE GLOBAL AREAS 

Figure 9-1 SGA as a Common Data Area 

Shareable 
Global Area 

s 

Task A 

Resident 
Executive 

System Memory 

(TmeT) 

Shareable 
Global Area 

s 

TaskB 

Resident 
Executive 

System Memory 

(ThTlet+n) 

Task A and Task B communicate through the shareable global area, to which any number of tasks 
can be linked. 

Changes to the SGA are retained throughout any swapping (or checkpointing) operations because 
the SGA is a common area or installed region and is written to disk at these times. The SGA is 
also written to disk if Task A exits before Tasks B begins. 

Next, consider the case where tasks A and Buse common code routines. The routines can be 
included in a read-only shareable global area so that a single copy is accessible to all tasks. 
Figure 9-2 illustrates this case. 

9-2 



SHAREABLE GLOBAL AREAS 

Figure 9-2 Tasks Using the Same Routines 

VIRTUAL 
ADDRESS 
SPACE 

~;::ce 3:: II 
USER 

I-SPACE 

::: l~atlMMllltllllll 
USER 
TASK 

AP Rs 
0-5 
COPIED 

32
:: ll~llln~Itllt@ll~l~Ul 

SUPERVISOR 24 

D-SPACE 
USER 
TASK 

(COPIED) 
OK '-------'~ 

32K---­

SUPERVISOR 16K -
I-SPACE SUPER-

VISOR 
OK LIBRARY 

KEY: 

!~ti 

APR MAPPING 
USER D-SPACE 
USER I-SPACE 
SUPERVISOR D-SPACE 
SUPERVISOR I-SPACE 

PHYSICAL MEMORY 

11256K 

24K 

USER TASK 

16K 
SUPERVISOR 
LIBRARY 

L_JoK 

UNUSED 
0-5 map entire user task 
0-5 map entire user task 
0-3 map library 

In this case, the SGA could be a resident librar.f because the deletion of the memory version and 
reloading of task image file is of no consequence. The deletion and reloading are irrelevant because 
the SGA contains static, read-only information. 

A task can link to a maximum of seven shareable global areas depending on the size of the task 
and the SGAs. If, however, the task is multi-user and has read-only sections in the root, this pure 
area of the root is considered as an SGA, and the number of external SGAs which can be linked to 
the task is reduced to six. Further, each SGA must begin in a separate APR. 

A shareable global area has associated with it a task image file and a symbol definition file. When 
a task links to a shareable global area the Task Builder uses the symbol definition file of the 
shareable global area to establish the linkages between the task and the shareable global area. 

9-3 



9.1.2 

9.1.3 

SHAREABLE GLOBAL AREAS 

Location of SGAs on Disk 
SGAs for general (public) use are stored in LBO:[l,l]. They include the library SGA SYSRES. 

SYSRES contains commonly used routines for the IAS file services, for automatic overlay loading 
and for data format conversion. SYSRES is linked to a task by default if no options are specified to 
the LINK command. 

If a task requests access to an SGA via the SGA task builder option (see Chapter 5, Section "SGA ") 
the SGA must be in LBO:[l,l]. 

SGAs can be stored by the user in other file areas as appropriate to a particular user or group of 
users. Such SGAs must be requested by the RESSGA option (see Chapter 5, Section "RESSGA"). 

SGAs and library Files 
A resident library SGA is not the same as a library file of object modules. 

When routines are built into an SGA, an accessing task maps on to the SGA and only one copy is 
loaded into memory for all such tasks, as shown in Figure 9-2. 

When routines are extracted from a library file, a copy of the necessary object modules is loaded 
for each task requiring the routines (see Figure 9-2). 

Either method can be used depending on the time and memory requirements of the particular 
application. For example, the routines in the SGA SYSRES are also among those supplied in the 
library file LBO:[l, l]SYSLIB.OLB. 

9.2 Using an Existing Shareable Global Area 
The user can link a task to any of the system SGAs by specifying the SGA keyword option along 
with the name of the SGA and the type of access required. 

If the user wants to link task IMG 1 to a system SGA named JRNAL so that data can be examined 
but not overwritten, the SGA keyword can be used to specify the name JRNAL and the read-only 
attribute. 

or 

PDS> LINK/TASK:IMGl/MAP/OPTIONS 
FILE? IN1,IN2,IN3 
OPT!O!JS? SGA=·JRN~..L ~~-0 

OPTIONS? / 

TKB>IMGl,LP:= IN1,IN2,IN3 
TKB>/ 
ENTER OPTIONS: 
TKB>SGA=JRNAL:RO 
TKB>// 

A task can link to any SGA on the disk. However, before the task can be activated, all SGAs it 
uses must be installed. 

9-4 



SHAREABLE GLOBAL AREAS 

9.3 Creating a Shareable Global Area 
To create a shareable global area, the task image and symbol definition files must be built. 

Runnable tasks were described in Chapter 6, Section 6.1.1. An SGA differs from a runnable task 
in that it does not have a header or a stack. Therefore, the user must specify that the header and 
stack are not to be produced for the task image file when an SGA is created. The task image and 
symbol table of an SGA must have the same filename and the (default) types .TSK and .STB. This 
set of conditions is necessary and sufficient to identify the entity as an SGA. 

In summary, to create an SGA the following steps are taken: 

1 The task image file is built, specifying also a symbol definition file. 

2 The task image file has the /NOHEADER (/-HD) qualifier, indicating that no header is required. 

3 The option STACK=O is entered during option input to eliminate the stack. 

4 Although it is not mandatory, the user can save disk space by setting UNITS=O. 

Suppose the user wants to create a resident library, ZETA, from the files Zl, Z2, and Z3. Suppose 
that it is to be accessed via the task builder option SGA, and so must be held in LBO:[l, 1]. The 
SGA is built as follows: 

or 

PDS> LINK/TASK:LBO:[l,l]ZETA/NOHEADER/MAP­
/SYMBOLS:LBO:[l,l]ZETA/OPTIONS 
FILE? Zl,Z2,Z3 
OPTIONS? STACK=O 
OPTIONS? UNITS=O 
OPTIONS? / 

TKB>LBO: [l,l]ZETA/-HD,ZETA,LBO:[l,l]ZETA=Zl,Z2,Z3 
TKB>/ 
ENTER OPTIONS: 
TKB>STACK = 0 
TKB>UNITS = 0 
TKB>/ 

A task can now link to the SGA. However, before a task can be installed and activated, the SGA 
must be made known to the Executive via Install, defining the owner, non-owner access and the 
type of SGA. The following example illustrates a typical installation procedure for a library SGA. 
See the INSTALL command in either the IAS MCR User's Guide or PDS User's Guide. 

PDS> INSTALL/LIBRARY:ZETA/UIC: [1,1]/ACCESS:RO [l,l]ZETA 

or 

MCR>INS [l,l]ZETA/LI/TASK=ZETA/ACC=RO/UIC=[l,1] 

9.4 Position Independent and Absolute Shareable Global Areas 
A shareable global area can be either position independent or absolute. Position independent SGAs 
can be placed anywhere in the task's virtual address space. Absolute areas must be placed at a 
fixed position in the virtual address space. 

9-5 



SHAREABLE GLOBAL AREAS 

The user must ensure that an area is in fact position independent if the 
POSITION_INDEPENDENT qualifier is specified. The qualifier directs the Task Builder to treat 
the area as position independent even though the Task Builder cannot determine the position 
independence of the area. If it is not truly position independent, the execution of a task linked to 
that area is unpredictable. 

Data is always position independent unless it contains internal pointers. Code can be position 
independent, but the code produced as a result of compiling a FORTRAN program is not position 
independent. Furthermore, FORTRAN subroutines cannot be used as SGAs because these 
programs do not satisfy the re-entrancy requirements necessary for SGAs. Refer to the IAS/RSX-11 
MACR0-11 Reference Manual for a further description of position independent coding (PIC). 

FORTRAN common blocks can be included in SGAs. The only way FORTRAN programs can 
communicate through the use of common blocks is by the common block name; to retain this name, 
the SGA must be declared position independent. If the area is not declared position independent, 
the name is not retained and no FORTRAN program can link to the common block. 

Absolute SGAs are used for code or data that is not position- independent. The BASE or TOP Task I 
Builder options are used to build such SGAs. 

It is possible for an SGA to reference another SGA, using the SGA or RESSGA options. In this 
case, symbols are resolved from the reference SGA when the referencing SGA is built. Any task 
which binds to the referencing SGA is also automatically bound to the referenced SGA with the 
access specified when the SGA was built. A non-PI SGA may reference any SGA, whether or not 
that area is built position-independent, however, a PI SGA may not reference another SGA. 

9.5 Example: CALC.TSK;6 Building and Using a Shareable Global Area 

"" ,. ... 
~.O. I 

Suppose the task CALC has been completely debugged and the user wants to replace the dummy 
reporting routine RPRT by a generalized reporting program that operates as a separate task. This 
generalized reporting program GPRT was developed by another programmer in parallel with the 
development of CALC. Now both routines are ready and the user wants to create an SGA so that 
the two tasks can communicate. 

In addition to creating the SGA, the user must modify the FORTRAN routine to replace the call to 
the dummy reporting routine by a call to REQUEST for the task GPRT; the user must also remove 
the dummy routine from the ODL description for the task. 

1 

Buiiding ihe Shareabie Giobai Area 
The common block into which CALC places its results and from which GPRT takes its input is 
named DTA. The user wants to make DTA into a shareable global area so that the two tasks can 
communicate. 

The user first creates a separate input file for DTA.FTN: 

9-6 



9.5.2 

SHAREABLE GLOBAL AREAS 

PDS> EDIT 
FILE? DTA.FTN 
[EDI -- CREATING NEW FILE] 
INPUT 
c 
C GLOBAL COMMON AREA FOR 'CALC' AND 
C REPORTING TASK 'GPRT' 

BLOCK DATA 
COMMON /OTA/ A(200),I 
END 

*EX 

The user then compiles DTA.FIN: 

PDS>FORTRAN/LIST DTA 

Then the user builds the task image and symbol definition file for the SGA DTA.OBJ: 

or 

PDS> LINK/TASK:LBO:[l,l]DTA/POS/MAP­
/SYMBOLS:LBO:[l,l]DTA/NOHEADER/OPTIONS 
FILE? DTA 
OPTIONS? STACK=O 
OPTIONS? UNITS=O 
OPTIONS? / 

TKB>LBO:[l,l]DTA/PI/-HD,LPO:,LBO:[l,l]DTA=DTA 
TKB>/ 
ENTER OPTIONS: 
TKB>STACK = 0 
TKB>UNITS = 0 
TKB>/ 

The task image file DTA.TSK is marked as position independent in order to retain the name of the 
referenced common block, DTA. 

The task image and symbol definition files are created on LBO: under the UFD [1,1]. The 
/NOHEADER command qualifier (PDS) or /-HD switch (MCR) is applied to the symbol definition 
file to specify that the task has no header, the option STACK=O is entered to eliminate the stack, 
and 0 logical units are specified. 

The SGA DTA now exists on LBO: as a candidate for inclusion in an active system. The user can 
now modify the task to link to that SGA. However, before the task can be executed, the SGA must 
be installed. 

Modifying the Task to Use the Shareable Global Area 
The user now modifies the task CALC. The file containing the program RDIN is edited to include 
the name of the reporting task in alphanumeric (Radix-50) format: 

DATA RPTSK/6RGPRT / 

And the call to the dummy reporting routine RPRT is replaced by the call: 

CALL REQUES (RPTSK) 

9-7 



-...... 
~.:>.~ 

SHAREABLE GLOBAL AREAS 

The relevant part of the program RDIN is shown below: 

C READ AND ANALYZE INPUT DATA 
C ESTABLISH COMMON DATA BASE 

COMMON /OTA/ A(200), I 
C SET UP NAME OF REPORTING TASK IN RADIX 50 

DATA RPTSK /6RGPRT / 
C READ IN RAW DATA 

CALL REQUES (RPTSK) 

END 

The user now modifies the ODL description of the task CALC to remove the file RPRT.OBJ. The 
.ROOT directive is changed from: 

.ROOT RDIN-RPRT-ADTA-(*PROC1,*PROC2,P3FCTR) 

to: 

.ROOT RDIN-ADTA-(*PROC1,*PROC2,P3FCTR) 

An indirect command file is then built to include the SGA keyword: 

or 

PDS> EDIT 
FILE? CALCBLD.CMD 
[EDI -- CREATING NEW FILE] 
INPUT 
LINK/TASK:CALC/MAP­
/OVERLAY: CALTR/OPTIONS 
PAR=GEN 
ACTFIL=l 
SGA=DTA:RW 
I 
*EX 

CALC,CALC=CALTR/MP 
PAR=GEN 
ACTFIL=l 
SGA=DTA:RW 
I 

And the task is built with the single command referencing the indirect file: 

PDS> @CALCBLD 

or 

MCR>TKB @CALCBLD 

The communication between the two tasks, CALC and GPRT, is now established. When the SGA 
DTA is made resident, the two tasks can run. 

ihe Memory Ailocation Files 
Example 9-1 shows the memory allocation file for the SGA DTA. The attribute list indicates that 
the task image is position independent (Pl). 

9-8 



SHAREABLE GLOBAL AREAS 

Example 9-2 shows the memory allocation file for the task CALC.TSK;6 after the SGA DTA was 
created and the dummy reporting routine removed from the task. The read-write memory limits 
for the root segment code have increased due to the call to REQUES. The read-write memory 
limits for the entire task have decreased because the common block DTA is now an SGA allocated 
at 140,000 and no longer part of the task code. 

9-9 



SHAREABLE GLOBAL AREAS 

Example 9-1 Memory Allocation Fiie for SGA OTA 

DTA.TSK;l MEMORY ALLOCATION MAP TKB D28 
3-JliL-78 Hl:Sl 

ICENTIFICATION : FORV02 
TASK ATTRIBUTES: PI 
~OTAL ATTACHMENT DESCRIPTORS: 0. 
TASK IMAGE SIZE 384. WORDS 
TASK ADDRESS LIMITS: 000000 001443 
R-W CISK BLK LIMITS: 000002 000001 000000 00000. 
R-0 DISK ELK LIMITS: 000003 000001 177777 65535. 

*** ROOT SEGMENT: CTA 

R/1i1 ME rI L HI I TS : 0 0 0 0 0 0 l:HH 4 4 3 l:HH 4 4 4 0 0 8 0 4 • 
CISK BLK LIMITS: 000002 000003 0oe002 00002. 

MEMORY ALLOCATION SYNOPSIS: 

PAGE l 

SEC'I'ION TITLE !CENT FILE 

CTA : (RW,D,GEL,.REL,OVR) 000000 001442 00802. 
000000 001442 00802. 

scor.E : ( Rw, I, LC L, REL, co~n 0 014 4'2 000000 00000. 
001442 000000 ~0000. 

$DATA : ( R w , C , LC [. , P. IL , C 0 N ) 001442 ~HHHHJC 00000. 
00140 000000 00000. 

s [:A'I' A p : ( PW , c I LC L , p EL ' cc N ) 0.01442 ~j 0 0 0 0 0 00000. 
001442 000000 00000. 

.$$$$.: (Ph,[?,GEL,REL,OVR) Mil442 000000 0~Ct:ifi. 

001442 00000C 00000. 
001442 000000 00000. 

*~* TASK BUILCEF STATISTICS: 

TOTAL WORK FILE REFERENCES: 471. 
~iCRE< FILE FE.i\CS: 0. 
~ORK FILE ~RITES: 0. 
SIZE CF CORE PGGL: 16010. WOPCS (62. PAGES) 
S I Z E 0 F 1-; 0 R K F I LE, : 5 l 2 • ~..; 0 F CS ( 2 • PAGES ) 

ELAPSEC TI~E:00:00:~2 

9-10 

• Cfl..':"h. FOFV02 CTA.OBJ;l 

.CATA. FORVC2 r'l'A • OBJ ; l 

.f-.A'!"A. FOFV02 L'T~-. OBJ; l 

• CA:'~ .• FOF.Ve 2 LTA. OBJ; 1 

• DA':l\. FOFVfJ2 rTA.OBJ;l 
. DAT.A.. FORV02 C'IA.OBJ~l 



Example 9-2 Memory Allocation Fiie for CALC.TSK;6 

CALC.TSK;6 ~EMORY ALLOCATION MAP TKB D28 
3-JUL-78 10:52 

ICENTIFICATION : FORV02 
STACK LIMITS: 000000 000777 001000 00512. 
PRG XFR ADDRESS: 141442 
TOTAL ATTACHMENT DESCRIPTORS: 4. 
TASK IMAGE SIZE : 7072. WORDS 
TASK HEADER SIZE: 160. WORDS 
TASK ADDRESS LIMITS: 000000 033567 

SHAREABLE GLOBAL AREAS 

PACE l 

?-W DISK BLK LIMITS: 000003 000044 000042 00034. 

CALC.TSK;6 OVERLAY DESCRIPTION: 

BASE TOP LENGTH 
------

000000 027643 027644 12196. RI::IN 
027644 030207 000344 00228. PROC 1 
027644 032147 0'i2304 01220. PROC2 
027644 032527 002664 01460. PROC3 
032530 033377 000650 00424. SU Bl 
032530 033567 00104~ 0054~. Su82 

9-11 



SHAREABLE GLOBAL AREAS 

Example 9·2 Memory Allocation Fiie for CALC.TSK;6 (continued) 

CALC.TSK;6 
RDIN 

MEMORY ALLOCATION MAP TKB 028 
3-JUL-78 10:52 

*** ROOT SEGMENT: RCIN 

R/W McM LIMITS: 000000 027643 027644 12196. 
DISK BLK LIMITS: 000003 000032 000030 00024. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION 
-------

BLK.: (RW,I,LCL,REL,CON) 001000 00~002 00002. 
ADTA : (RW, D ,GBL, REL ,OVR) 001002 002260 01200. 
OTA : (RW,D,GBL,REL,OVR) 140000 001442 00802. 

140000 001442 00802. 
140000 001442 00802. 

OTS$I : ( RW I I ' LC L , REL ' c 0 N ) 003262 015270 06840. 
003262 000000 00000. 

OTS$P : (RW,D,GBL,REL,OVR) 020552 000036 00030. 
$COCE : ( RW, I, LC L, REL, CON) 141442 000000 00000. 

.141442 ,000000 00000. 
141442 000000 00000. 
141442 000116 00078. 
141442 000000 00000. 
141442 000000 00000. 
141442 000014 00012. 

$DATA : (RW,D,LCL,REL,CON) 141442 000000 00000. 
141442 000000 00000. 
141442 001750 01000. 
1414 42 000000 00000. 
141442 001750 01000. 

$DATAP: (RW,D,LCL,REL,CON) 141442 000000 00000. 
141442 fHHHJ00 00000. 
141442 000022 00018. 
141442 000000 00000. 
141442 000010 00008. 

,...,..":ti. T' r-"IT"'\ ~ /T""l'f."T T Tr"'T O'C'T rnfi\ 
vvf-1.l.JwI:\~ \l."\V~f.l.f.L..l~.UfL'.._.~,.._..._,,\I 020610 00~1024 carn20. 
$$ALVC: (RW,D,LCL,REL,CON) 020634 000020 00016. 
$$AOTS: (RW,D,LCL,REL,CON) 020654 000704 00452. 
$$AUTO: (RW,I,LCL,REL,CON) 160000 000130 00088. 
$$DEVT: (RW,D,LCL,REL,OVR) 021560 001210 00648. 
$$FSR1: (RW,C,GBL,REL,OVR) 022770 004100 02112. 
$$FSR2: {RV~,C,GBL,REL,CON) 027070 000104 00068. 
$$IOB1: (RW,D,LCL,REL,OVR) 027174 000204 00132. 
$$IOB2: (RW,D,LCL,REL,OVR) 027400 000000 00000. 
$$LOAD: (RW,I,LCL,REL,COi'l) 160130 000170 00120. 
$$MRKS: (RW,I,LCL,REL,OVR) 160320 000166 00118. 
$$0BF1: (RW,C,LCL,REL,CON) 027400 000110 00072. 
$$0BF2: (RW,I,LCL,REL,CON) 027510 000000 00000. 
$$0VDT: (RW,D,LCL,REL,OVR) 027510 000020 00016. 
$$0VRS: (RW,I,LCL,ABS,CON) 000000 000000 00000. 
$$RDSG: (RW,I,LCL,REL,OVR) 160506 000312 00202. 
$ $RE s L : ( RW , I , LC L , R EL I c 0 N ) 161020 016216 07310. 
S$RGDS: (RW,D,LCL,REL,CON) 027530 000000 00000. 

9-12 

PAGE 2 

TITLE ID ENT 

.MAIN. FOFV02 
RPRT FORV02 

. MAIN. FORV02 

.MAIN. FORV02 

. MA IN. FORV02 

.MAIN. FORV02 
RPRT FORV02 
RPRT FORV02 
RPRT FORV02 

.MAIN. FORV02 

.MAIN. FORV02 
RPRT FORV02 
RPRT FOF.V02 

.MAIN. FORV02 

.MAIN. FOPV02 
RPRT FOF.V02 
RPRT FORV02 

FILE 

RDIN .OBJ; 2 
RPRT.OBJ;l 

RDIN .OBJ; 2 

RDIN.OBJ;2 
RDIN.OBJ;2 
RCIN .OBJ; 2 
RPRT.OBJ;l 
RPRT.OBJ;l 
RPRT.OBJ;l 

RDIN .OBJ; 2 
RDIN .OBJ; 2 
RPRT.OBJ;l 
RPRT.OBJ;l 

RDIN. OBJ; 2 
RL'IN. OBJ; 2 
RPPT.OBJ;l 
RPRT.OBJ;l 



SHAREABLE GLOBAL AREAS 

Example 9-2 Memory Allocation Fiie for CALC.TSK;6 (continued) 

CALC.TSK;6 
RDIN 

MEMORY ALLOCATION MAP TKB D28 
3-JUL-78 10:52 

$$RTS : (RW,I,GBL,REL,OVR) 027530 000002 00002. 
$$SGD0: (RW,D,LCL,REL,OVR) 027532 000000 00000. 
$$SGD1: (RW,D,LCL,REL,CON) 027532 000110 00072. 
$$SGD2: {RW,D,LCL,REL,OVR) 027642 000002 00002. 
$$WNDS: (RW,D,LCL,REL,CON) 027644 000000 00000 . 
• $$$$.: (RW,D,GBL,REL,OVR) 141442 000000 00000. 

PAGE 3 

141442 000000 00000 .. ~AIN. FORV02 RDIN.OBJ:2 
141442 000000 00000 .. MAIN. FOP.V02 RCIN.OPJ;2 
141442 000000 00000. RPRT FORV02 RPRT.OBJ;l 
141442 000000 00000. RPRT FORV02 RPFT.OBJ;l 

GLOBAL SYMBOLS: 

PROCl 020634-R RPPT 141442-R $$0TSC 141442-R 
PROC2 020644-R $RF2Al 000000-R $$0TSI 003262-P 

CALC.TSK;6 
PROCl 

MEMORY ALLOCATION MAP TKB D28 
3-JUL-78 10:52 

*** SEGMENT: PROCl 

R/W MEM LIMITS: 027644 030207 000344 00228. 
DISK BLK LIMITS: 000034 000034 000001 00001. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION 
-------

BLK.: (RW,I,LCL,REL,CCN) 027644 000000 00000. 
ADTA : (RW,D,GBL,REL,OVR) 001002 002260 01200. 

fH:ll 00 2 002260 01200. 
DTA : (RW,D,GBL,REL,OVR) 14fHHHJ 001442 00802. 

140000 001442 00802. 
OTS$I : ( RW, I, LC L, REL, CON) 027644 000254 00172. 
$CODE : ( RW, I, LCL, REL, CON) 030120 000054 00044. 

030120 000000 00000. 
030120 000000 00000. 
030120 000054 00 0 44. 

$CATA : ( RW, D, IC L, REL, CON) 030174 0000C2 00002. 
030174 000000 00000. 
030174 000002 0000 2. 

$DATAP: (RW,D,LCL,R£L,CON) 030176 000010 00008. 
030176 000000 000fHJ. 
030176 000010 0000e. 

<:; $ALVC: ( RW, D, LC L, REL, CON) 030206 000000 00000. 
.$$$$.: (RW,D,GBL,REL,OVR) 141442 fHHl000 GG~HHi. 

141442 000000 000~HJ. 
141442 000000 00000. 

GLOBAL SYMBOLS: 

PROCl 030120-R 

TITLE 

PROCl 

PRCCl 

PROCl 
PROCl 
PROCl 

PROCl 
PRCC 1 

PPOCl 
PROCl 

PROCl 
PFOCl 

PAGE .1 

IC ENT FILE 

FORV02 PROCl. OBJ; 2 

FCPV02 PFOC 1. OBJ; 2 

FOFV02 PROC1.0EJ;2 
FORV02 PROC1.0BJ;2 
rnr.v0 z Pl~OC1.0BJ;2 
FO F.V0 2 PP.OC 1. (JPJ; 2 
FORVfl 2 PROC1.0EJ;2 

f'ORV0 2 PFOCl .OPJ; 2 
FOI<V0 2 PROC1.0BJ;2 

FCFV02 PROC1.0EJ;2 
FORVC2 PHOC 1 . OBJ; 2 

9-13 



SHAREABLE GLOBAL AREAS 

Example 9-2 Memory Allocatlon Fiie for CALC.TSK;6 (continued) 

CALC .'l'SK;6 
PROC2 

MEMORY ALLOCATION MAP TKB D28 
3-JUL-78 10:52 

*** SEGMENT: PROC2 

R/W MEM LIMITS: 027644 032147 002304 01220. 
DISK ELK LIMITS: 0U0E35 000037 000003 00003. 

MEMORY ALLOCATION SYNOPSIS: 

PAGE 5 

SECTION TITLE !CENT FILE 

ADTA : (RW,C,GBL,FEL,OVR) 001002 002260 012000 
001002 002260 01200. PROC2 

$COCE : (RW,I,LCL,REL,CmJ) 027644 000014 00012. 
027644 000000 00000. PROC2 
027644 000000 00000. PROC2 
027644 000014 00012. PFOC2 

$CATA : (RW,C,LCL,REI.,CON) 027660 002260 01200. 
027660 000000 00000. PROC2 
027660 002260 01200. PROC2 

$ t AT A p : ( RW ' r:: , LC L , REL , c 0 N ) 0 3 214 0 0 0 e 010 0 0 0 0 e . 
03214~ 000000 00000. P?OC2 
032140 000010 00008. PROC2 

$ $AL V C : ( RW , C , LC L , REL , C 0 N ) 0 3 21 5 0 0 0 0 0 0 0 0 0 0 0 0 . 
. $$$$.: (Rv~,C·,GBL,REL,OVP) 141442 00fHHHJ 00000. 

141442 000000 00000. PFOC2 
141442 000000 00000. PROC2 

GLOBAL SYMBOLS: 

PROC2 027644-F 

9-14 

FORV02 PROC2.0BJ;l 

FCRV02 PROC2.0EJ;l 
FORV02 PROC2.0BJ;l 
FORV02 PROC2.0BJ;l 

FORV02 PROC2.0BJ;l 
FORV02 PROC2.0EJ;l 

FORV02 PROC2.0BJ;l 
FORV02 PROC2.0BJ;l 

FORV02 PROC2.0BJ:l 
FORV02 PROC2.0EJ;l 



SHAREABLE GLOBAL AREAS 

Example 9·2 Memory Allocation Fiie for CALC.TSK;6 (continued) 

2ALC.TSK;6 
PROC3 

MEMORY ALLOCATION MAP TKE D28 
3-JUL-78 10:52 

*** SEGMENT: PROC3 

R/W MEM LIMITS: 027644 032527 002664 01460. 
DISK BLK LIMITS: 000040 000042 000003 00003. 

MEMORY ALLOCATION SYNOPSIS: 

PAGE 6 

SECTION TITLE IDENT FILE 

ADTA : (RW,D,GBL,REL,OVR} 001002 002260 01200. 
001002 002260 01200. PROC3 

DTA : (RW,D,GBL,REL,OVR) 140000 001442 00802. 
140000 001442 00802. PROC3 

$CODE : (RW,I,LCL,REL,CO~~) 027644 000044 00036. 
027644 000000 00000. PPOC3 
027644 000000 00000. PROC3 
027644 000044 00036. PROC3 

$DAT A : ( RW , C , LC L , REL , C 0 N ) 0 2 77 1 0 0 0 2 5 7 0 Q 14 0 C • 
027710 000000 00000. PROC3 
027710 002570 01400. PPOC3 

$DA TAP : ( RW , D , LC L , REL , C 0 N ) 0 3 2 5 0 0 0 0 0 0 10 0 0 0 0 8 • 
032500 000000 00000. PROC3 
032500 000010 00008. PROC3 

$$ALVC: (RW,D,LCL,REL,CON} 032510 000020 00016 . 
• $$$$.: (RW,C',GBL,REL,OVR} 141442 000000 C000(i. 

141442 000000 00000. PFOCJ 
141442 000000 00000. PROC3 

GLOBAL SYMBOLS: 

PROC3 027644-R SUBl 032520-R Sl~B2 

FOPV02 PROC3.0BJ;l 

FORV02 PROC3.0EJ;l 

FOPV02 PROC3.0BJ;l 
FC~VG2 PPOC3.0EJ:l 
FCRV02 PROC3.0EJ;l 

FORV02 PFGC3.0FJ;l 
FOFV02 PRCCJ.OBJ;l 

FO~V02 Pf0C3.0EJ;l 
FORV02 PROC3.0BJ:l 

FORV02 PPOC3.0RJ;l 
F'OEV02 PRCC3.0EJ;l 

9-15 



SHAREABLE GLOBAL AREAS 

Example 9·2 Memory Allocation Fiie for CALC.TSK;6 (continued) 

CALC.TSK;6 
SU Bl 

MEMORY ALLOCATION MAP TKB D28 
3-JUL-78 10:52 

*** SEGMENT: SUBl 

R/W MEM LIMITS: 032530 033377 000650 00424. 
CISK BLK LIMITS: 000043 000043 000001 00001. 

MEMORY ALLOCATION SYNOPSIS: 

SECTION 
-------
ACTA : (RW,D,GBL,REL,OVR) 00HHJ2 002260 01200. 

001002 002260 01200. 
$CCCE : (mJ,I,LCL,REL,CON) 032530 00fHll4 00012. 

032530 000000 00000. 
032530 000000 00000. 
032530 000014 00012. 

$CATA : (RW,D,LCL,REL,CON) 032544 000624 00404. 
032544 000000 00000. 
032544 000624 00404. 

$DA TAP : ( m·1 , C , LC L , REL , C 0 N ) . 0 3 3 3 7 0. 000010 00008 •. 
033370 000000 00000. 
033370 000010 000~8. 

$$ALVC: (RW,C,LCL,REL,CON) 033400 000000 00000. 
.$$$$.: (P.W,C,GBL,PEL,OVR) 141442 000000 00000. 

141442 000000 00000. 
141442 000000 00000. 

GLOBAL SYMBOLS: 

SUB2 032530-R 

9-16 

TITLE 

SUB2 

SUB2 
SUB2 
SUB2 

SUB2 
SUB2 

SUB2 
SGB2 

SUB2 
SUB2 

PAGE 7 

I CENT FILE 

FORV02 SUBl.OBJ;l 

FORV02 SUBl.OBJ; 1 
FORV02 SUBl.OBJ;l 
FORV02 SUBl.CBJ; 1 

FORV02 SUBl. OBJ; 1 
FORV02 SUBl. OBJ; l 

FORV02 SUBl.OBJ;l 
FORV02 SGBl.OBJ;l 

FORV02 SUBl. OBJ; 1 
FOPV02 SUEl.OBJ; 1 



SHAREABLE GLOBAL AREAS 

Example 9-2 Memory Allocation Fiie for CALC.TSK;& (continued) 

CALC.TSK;6 
SUB2 

MEMORY ALLOCATION MAP TKB 028 
3-JUL-78 10:52 

*** SEGMENT: SUB2 

R/W MEM LIMITS: 032530 033567 001040 00544. 
DISK BLK LIMITS: 000044 000045 000002 00002. 

MEMORY ALLOCATION SYNOPSIS: 

PAGE 8 

SECTION TITLE IDENT FILE 

• BLK. : ( RW' I I LCL, REL I CON) 
ADTA : (RW,D,GBL,REL,OVR) 

DTA : (RW,D,GBL,REL,OVR) 

OTS$I : {RW,I,LCL,REL,CON) 
$CODE : {RW,I,LCL,REL,CON) 

$ DAT A : ( RW , D / LC L / REL , C, 0 N ) 

$DATAP: (RW,D,LCL,REL,CON) 

$$ALVC: (RW,D,LCL,REL,CON) 
• $ $ $ $ • : ( RW, D , GBL , REL , OVR) 

GLOBAL SYMBOLS: 

SUBl 032704-R 

032530 000000 00000. 
001002 002260 01200. 
001002 002260 01200. SUBl 
140000 001442 00802. 
140000 001442 00802. sue1 
032530 000154 00108. 
032704 000032 00026. 
032704 000000 00000. SUBl 
032704 000000 00000. SUBl 
032704 000032 00026. SuPl 
032736 000622 00402. 
032736 000000 00000. SUBl 
032736 000622 00402. SUBl 
033560 000010 00008. 
033560 000000 00000. SUEl 
033560 000010 00008. SUBl 
033570 000000 00000. 
141442 000000 00000 . 
141442 000000 00000. SUBl 
141442 000000 00000. SUBl 

*** TASK BUIL~ER STATISTICS: 

TOTAL WORK FILE REFERENCES: 22392. 
WORK FILE READS: 0. 
WORK FILE WRITES: 0. 
SIZE OF CORE POOL: 16010. WORCS (62. PAGES) 
SIZE OF WORK FILE: 7680. WORrs (36. PAGES) 

ELAPSED TIME:00:00:20 

F0hV02 SUB2.0EJ;l 

FORV02 SCE2.0BJ;l 

FORV02 SUE2.0BJ;l 
FORV02 SUB2.0BJ;l 
FORV02 SUE2.0EJ;l 

FORV02 SUE2.0BJ;l 
FORV02 SUE2.0PJ;l 

FOF.V02 SCB2.0BJ;l 
FORV02 SCP2.0BJ;l 

FORV02 SUB2.0EJ;l 
FORV02 SUD2.0RJ;l 

9-17 



9.5.4 

SHAREABLE GLOBAL AREAS 

Shared Global Areas with Memory-Resident Overlays 
It is possible for an SGA to contain memory-resident overlays. The whole SGA will be loaded, but 
each task which binds to it will be mapped only to the parts which that task currently requires. 

Note: 'lb run a task which uses an SGA that contains overlays you must have memory 
management privilege (see the IAS System Management Guide). 

If it is to contain memory-resident overlays, the SGA must be built using the LINK qualifier 
RESIDENT_OVERLAYS or the TKB switch /RO. The user must define the overlay structure 
through an ODL file prepared in the conventional manner. The Task Builder does not include the 
overlay data base (segment descriptors, autoload vectors) or Overlay Runtime System within the 
region image. Instead, this data base becomes a part of the symbol definition file that is linked to 
the referencing task. This means that routines within an overlay segment of an SGA cannot be 
called from within the SGA using the autoload mechanism, although the manual load mechanism 
can be used. 

When the referencing task is built, the following is automatically included in its root segment: 

1 The data base. 

2 Global references to overlay support routines residing in the system object module library. 

The symbol table file contains global definitions for only those symbols that are defined or 
referenced in the root segment of the shared region. Such symbols can consist of: 

1 Actual entry points to routines and data elements that are in the root. 

2 Autoload vector addresses that point to real definitions within a memory-resident overlay. 

3 Actual definitions of symbols defined in a memory-resident overlay and referenced in the root. 

The user can force the inclusion of global references in the root segment of the SGA by means of 
the GBLREF option. In this way, the necessary autoload vectors and definitions can be generated 
without explicitly including such references in an object module. The syntax of the option is: 

GBLREF=name 

where "name" consists of 1 to 6 characters selected from the Radix-50 character set. If the 
definition resides within an autoloadable segment, then an autoload vector will be built and 
included in the symbol table file. If the definition is not autoloadable, the real value is obtained 
and defined in the root segment. 

No global symbol appears in the symbol table file unless: 

1 It is defined in the root segment. 

2 It is referenced in the root segment and defined elsewhere in the overlay structure. 

The procedure for creating the overlaid SGA can be summarized as follows: 

1 Define an overlay structure containing only memory-resident overlays. 

2 Include a GBLREF option, or provide in the root segment~ a module containing the appropriate 
global references for defining entry points within those overlay segments for which autoload 
vectors and giobal definitions will be generated. 

9-18 



SHAREABLE GLOBAL AREAS 

These processes are illustrated in the following example. The SGA to be constructed consists of 
shareable code that resides within the overlay structure defined below: 

.ROOT A-! (*B,C-*D) 

.NAME A 

.END 

Root segment A contains no code or data and has a length of 0. All executable code exists within 
memory-resident overlay segments composed of files B.OBJ, C.OBJ, and D.OBJ, containing global 
entry points B, C, and D. 

The task image, map, and symbol table files are generated using the following Task Builder 
commands: 

or 

PDS>LINK/NOHEAD/MAP/SYMBOL/OVERLAY:A/OPTIONS/RESID 
OPTIONS?GBLREF=B,C,D 
OPTIONS?UNITS = 0 
OPTIONS?STACK = 0 
OPTIONS? / 

TKB>A/RO/-HD,A,SY:A=A/MP 
ENTER OPTIONS: 
TKB>GBLREF=B,C,D 
TKB>STACK = 0 
TKB>UNITS = 0 
TKB>/ 

References to entry points B, C, and Dare inserted in the root segment, and subsequently appear 
in the symbol table file as definitions. 

The definition for symbol C is resolved directly to the actual entry point. The definitions for 
symbols Band Dare resolved to autoload vectors that are included in each referencing task. 
Unlike overlays that reside in the task image, each autoload vector in the SGA is allocated in 
every referencing task, whether or not such entry points are called during task execution. Only 
those global symbols defined or referenced in the root segment of the SGA appear in the symbol 
table file. 

The symbol table file also contains the data base required by the Overlay Runtime System, in 
relocatable object module format. This data base includes: 

1 All autoload vectors 

2 Segment tables linked as described in Appendix C, Section C.7 

3 Window descriptors 

4 A single region descriptor 

The overlay structure, as reflect.ed in the segment table linkage, is preserved, and conveyed to the 
referencing task by the STB file; thus path-loading for the SGA can occur exactly as it does within 
a task. Aside from address space restrictions, there is no limitation on the overlay structures that 
can be defined for an SGA. 

The following restrictions apply to shared regions existing as memory- resident overlays: 

1 An SGA cannot use the autoload facility to reference memory-resident overlays within itself 
or any other region. If each segment is uniquely named, overlays can be mapped through the 
manual load facility. 

9-19 



SHAREABLE GLOBAL AREAS 

2 Named p-sections in an SGA overlay cannot be referenced by the task. If reference to the 
storage is required, such sections must be included in the root segment of the region (with 
resultant loss of virtual address space). 

3 Unlike task-resident overlays, the number of autoload vectors is independent of the entry 
points actually referenced. The maximum number of vectors will be allocated within each 
referencing task. In some cases the size of the allocation may be large. 

4 There is an overhead of six instructions per autoload call, even when the segment is mapped. 

5 Overlaid SGAs cannot be position independent. 

As implied by the previous items, great care must be exercised if an efficient memory-resident 
overlay structure for library routines such as the FORTRAN IV OTS is to be implemented. 

9-20 



10 Supervisor .. Mode Libraries 

A supervisor-mode library is a resident library that doubles a user task's virtual address space by 
mapping the instruction space of the processor's supervisor mode. Supervisor-mode libraries are 
available only on PDP-11/44 and PDP-nno systems. 

10.1 Introduction 

10.2 

10.3 

A call from within a user task to a subroutine within a supervisor-mode library causes 
the processor to switch from user to supervisor mode. The user task transfers control to a 
mode-switching vector that TK.B includes within the task. The mode-switching vector performs 
the mode switch and then transfers control to the called subroutine within the supervisor-mode 
library. The library routine executes with the processor in supervisor mode. When the library 
routine finishes executing, it transfers control to a completion routine within the library. The 
completion routine mode switches the processor back to user mode. The user task continues 
executing with the processor in user mode at the return address on the stack. This process recurs 
whenever the user task calls a subroutine in the supervisor-mode library. 

Mode-Switching Vectors 
In a task that links to a supervisor-mode library, TKB includes a four-word, mode-switching vector 
in the user task's address space for each entry point referenced of a subroutine in the library. 

The following shows the contents of a mode-switching vector: 

MOV #COMPLETION-ROUTINE,-(SP} 
CSM #SUPERVISOR-MODE-ROUTINE ADDRESS 

NOTE: When mode switching from user to supervisor mode, all registers of the 
referencing task are preserved. All condition codes in the PS saved on the stack are 
cleared and must be restored by the completion routine. 

Completion Routines 
After the subroutine finishes executing, its RETURN statement transfers control to a completion 
routine that mode-switches from the supervisor to user mode. The completion routine returns 
program control back to the referencing task at the instruction after the call to the subroutine. 
SYSLIB has two completion routines. 

• $CMPCS restores only the carry bit in the user-mode PS. 

0 $CMPAL restores all the condition code bits in the user-mode PS. 

10-1 



10.4 

10.5 

10.6 

Supervisor-Mode Libraries 

Restrictions on the Contents of Supervisor-Mode Libraries 
The following restrictions are placed on the contents of a supervisor-mode library: 

• Only subroutines using the form JSR PC, x should be used within the library. 

• The library must not contain subroutines that use the stack to pass parameters. 

• If both the library and the referencing task link to a subroutine from SYSLIB, then the entry 
point name of the subroutine must be excluded from the .STB file for the library. 

• The library must not contain data of any kind (even RIO) because the user supervisor D-space 
APRs map the user task by default. This includes user data, buffers, 1/0 status blocks, and 
directive parameter blocks (only the $S directive form can be used, because the DPB for this 
form is pushed onto the user stack at run time). 

Supervisor-Mode Library Mapping 
Supervisor-mode libraries are mapped with the supervisor I-space APRs. Supervisor D-space APRs 
map the user task. 

Supervisor D-space APRs are copies of user I-space APRs, which map the entire user task. This 
gives the library access to data within the user task. Figure 10-1 illustrates this mapping. 

Building and Linking to Supervisor-Mode Libraries 
Building and linking to a supervisor-mode library is essentially the same as building and linking to 
a conventional resident library (discussed in Chapter 6). When you build a supervisor-mode library 
using the TKB command line, you suppress the header by attaching /-HD to the task image file. If 
you use LINK, you use the /NOHEAD qualifier in the LINK command line. During option input, 
you suppress the stack area by specifying STACK=O. You specify the partition where the library is 
to reside and, optionally, the base address and length of the library with the PAR option. 

10.6.1 Relevant TKB Options 
Use the following options to build and reference supervisor-mode libraries: 

10-2 



Supervisor-Mode Libraries 

Figure 10-1 Mapping of a 24K Conventional User Task That Links to a 16K Supervisor-Mode 
Library 

USER 
I-SPACE USER 

TASK 

AP Rs 
0-5 
COPIED 

USER 
TASK 

(COPIED) 

SUPERVISOR ::: ll:tl 
I-SPACE SUPER-

VISOR 
OK LIBRARY 

KEY: 

APR MAPPING 
USER D-SPACE 
USER I-SPACE 
SUPERVISOR D-SPACE 
SUPERVISOR I-SPACE 

PHYSICAL MEMORY 

1256K 

24K 

USER TASK 

16K 
SUPERVISOR 
LIBRARY 

I 30K 

,,,,,,., ,,,,,,., ,,,,,,., ,,,,,,., 

L_JoK 

UNUSED 
0-5 map entire user task 
0-5 map entire user task 
0-3 map library 

10-3 



Supervisor-Mode Libraries 

CMPRT Indicates that you are building supervisor~mode library and specifies the name of the 
completion routine. 

RESSUP (SUPLIB) Indicates that your task references a supervisor-mode library. 

GBLXCL Excludes a global symbol from the .STB file of the supervisor-mode library. 

These options are discussed briefly below and are fully documented in Chapter 5. 

1 n ~ ? R11iltiinn ThA I ihr~uv • V•V'•-- _. ............. ·::1 ••• .._... _ ............ I 

You indicate to the TKB that you are building a supervisor-mode library with the CMPRT option. 
The argument for this option identifies the entry symbol of the completion routine. When the TKB 
processes this option, it places the completion routine entry point in the library's STB file. 'lb 
exclude a global symbol from the library's .STB file, you specify the name of the global symbol as 
the argument of the GBLXCL option. You must exclude from the .STB file of a supervisor-mode 
library any symbol defined in the library that represents the following: 

• An entry point to a subroutine that uses the stack to pass parameters 

• An entry point to a subroutine mapped in user mode that the referencing user task calls 

10.6.3 Building the Referencing Task 
When you build a task that references a supervisor-mode library, use the RESSUP option if 
you are referencing a user-owned, supervisor-mode library and SUPLIB if you are referencing 
a system-owned, supervisor-mode library. (Like the RESLIB and LIBR options for linking to 
conventional libraries, RESSUP and SUPLIB are functionally the same.) The arguments for these 
options are: 

• The filespec (RESSUP option) or name (SUPLIB) of the library to be referenced 

• A switch that tells TKB whether to use system-supplied vectors to perform mode switching 
from user to supervisor mode. 

• For position-independent libraries, the first available supervisor-mode I-space APR that you 
want to map the library. 

10.6.4 Mode Switching Instruction 

10.7 

Mode switching occurs with a new instruction available on the 11/44 and emulated by the 
Executive on the 11no. Throughout the remainder of the chapter, supervisor-mode libraries 
are referred to as CSM (change supervisor mode) libraries. 

CSM Libraries 
This section discusses how you build and link to CSM libraries. It also shows an extended example 
of building and linking to a CSM library and explains the context-switching vectors and completion 
:routines for CSM libraries. 

10-4 



10.7~ 1 

Supervisor-Mode Libraries 

Building A CSM Library 
You indicate to the Task Builder that you are building a CSM library by specifying the name of 
the completion routine as the argument for the CMPRT option. This option places the name of 
the completion routine into the library's .STB file. Link the completion routine, either $CMPAL or 
$CMPCS, located in LB:[l,2]SYSLIB.OLB, as the first input file. Although the completion routines 
are located in SYSLIB (which is ordinarily referenced by default), you must explicitly indicate it 
and link it as the first input file. You must also specify in the PAR option a 0 base for the partition 
where the library resides. These two steps locate the completion routine at virtual 0 of the library's 
virtual address space. 

You specify the name of any global symbols that you would like to exclude from the library's 
.STB file as the argument to the GBLXCL option. You must exclude from the .STB file of a 
supervisor-mode library any symbol defined in the library that represents the following: 

• An entry point to a subroutine that uses the stack to pass parameters 

• An entry point to a subroutine mapped in user mode that the referencing user task calls 

A sample TKB command sequence for building a CSM library in UFD [301,55] on SY: follows: 

TKB>CSMl-HD/LIIPI,CSMIMA,CSM= 
TKB> LB: [ [1, 2]] SYSLIB/LB:CMPAL, SY: [ [301, 55]] CSM 
TKB> I 
Enter Options: 
TKB> STACK=O 
TKB> PAR=GEN:O :2000 
TKB> CMPRT=$CMPCS 
TKB> GBLXCL=$SAVAL 
TKB> 11 
> 

Or, you can use the following LINK command sequence to build the same library: 

> LINKITAS:CSMINOHISHARE:LIBICODE:PICIMAP:CSMISYSISYM:CSMIOPT -
-> LB: [ 1, 2] SYSLIBI INCLUDE: CMPAL, SY: [ 301, 55] CSM 
Option? STACK=O 
Option? PAR=GEN:0:2000 
Option? CMPRT=CMPCS 
Option? GBLXCL=$SAVAL 
Option? ~ 
> 

The library is built without a header or stack, like all shared regions. It is position independent 
and has only one program section named .ABS. The /LI switch in TKB or the /CODE:PIC qualifier 
in LINK switch accomplishes this, eliminating program section name conflicts between the library 
and the referencing task. The completion routine module of SYSLIB, CMPAL, is specified first in 
the input line. The library runs in partition GEN at 0 and is not more than lK. These are two 
aspects of building supervisor-mode libraries specific to CSM libraries: the completion routine 
must be linked first, and must reside at virtual 0. Why the CSM library must reside at virtual 0 is 
discussed in Section 9.5. 

The CMPRT option specifies the global symbol $CMPCS, which is the entry point of the completion 
routine. Note that the SYSLIB module name is "CMPCS" and its corresponding global symbol is 
"$CMPCS". 

The GBLXCL option excludes $SAVAL from the library's .STB file because the user task must 
reference a copy of $SAVAL that is mapped with user mode APRs. 

10-5 



Supervisor-Mode Libraries 

10.7.2 Linking To A CSM library 
If your task links to a user-owned CSM library, you use the RESSUP option. If your task links to 
a system-owned CSM library, you use the SUPLIB option. These options tell TKB that the task is 
to link to a supervisor-mode library. The option takes up to three arguments: 

• The filespec (RESSUP option) or name (SUPLIB option) of the library 

• A switch that tells the TKB whether to use system-supplied, mode-switching vectors 

• For position-independent libraries, an .APR must be .APR 0 so that ths library's completion 
routine is mapped at virtual 0. 

This information enables the TKB to find the .STB file for the CSM library, include a four-word, 
mode-switching vector within the user task for each call to a subroutine within the library, and 
correctly map the library at virtual 0 in the library image. 

The following examples of TKB and LINK command sequences build a task named REF, which 
references the library SUPER that you built in the previous section: 

TKB> REF, REF=REF 
TKB> I 
Enter Options: 
TKB> RES SUP= SUPER/ SV: 0 
TKB> // 
> 

> LINK/TAS/MAP /OPT REF 
Option? RESSUP=SUPER/SV:O 
Option? ~ 
> 

This sequence tells TKB to include in the logical address space of REF a user-owned, 
supervisor-mode library named SUPER. TKB includes a four-word, mode switching vector 
within the user task for each call to a subroutine within the library. The CSM library is position 
independent and is mapped with APR 0. 

10. 7 .3 Example CSM Library And Linking Task 
This example shows you the code and maps and the TKB and LINK command sequences for 
building and linking to a CSM library that contains no data in a system without user data space. 
Example lV--1 shows i.he code for the library S'UPER, and Exampie 10-2 shows its accompanying 
map. Example 10-3 shows the code for the completion routine $CMPCS that is linked in to SUPER 
from SYSLIB. Example 10-4 shows the code for referencing task TSUP, and Example 10-5 shows 
its accompanying map. 

Example 10-1 Code for SUPER.MAC 

.TITLE SUPER 
• !DENT /01/ 

Example 10-1 Cont'd on next page 

10-6 



Example 10-1 (Cont.) Code for SUPER.MAC 

SORT:: 
CALL $SAVAL ; SAVE ALL REGISTERS 
TST (RS)+ SKIP OVER NUMBER OF ARGUMENTS 
MOV (RS)+,RO GET ADDRESS OF LIST 
MOV (RS)+,R4 GET ADDRESS OF LENGTH OF LIST 
MOV (R4),R4 GET LENGTH OF LIST 
BEQ 40$ IF NO ARGUMENTS 
MOV RO,RS 
DEC R4 

10$: 
MOV RS,RO COPY 
MOV R4,R3 COPY LENGTH OF LIST 

20$: 
TST 
CMP 
BLE 
MOV 
MOV 

(RO)+ MOVE POINTER TO NEXT ITEM 
(RS), (RO) ; COMPARE ITEMS 
30$ ; IF LE IN CORRECT ORDER 
(RS),R2 ; SWAP ITEMS 
(RO), (RS) 

MOV R2, (RO) 
30$: 

DEC R3 
BGE 20$ 
DEC R4 
BLE 40$ 
TST (RS)+ 
BR 10$ 

DECREMENT LOOP COUNT 
; IF NE LOOP 

; DECREMENT 
; IF EQ SORT COMPLETED 

40$: 
RETURN 

SEARCH:: 
CALL $SAVAL 
CMP t4, (RS)+ 
BNE 20$ 
MOV (RS)+,RO 
MOV (RS)+,Rl 
MOV (RS)+,R2 
MOV (R2) I R2 
BEQ 20$ 
MOV (RS),RS 
MOV R2,R3 

10$: 

; GET POINTER TO NEXT ITEM TO BE COMPARED 

; SAVE ALL THE REGISTERS 
FOUR ARGUMENTS? 

IF NE NO 
GET ADDRESS OF NUMBER TO LOCATE 
ADDRESS OF LIST SEARCHING 
GET ADDRESS OF LENGTH OF LIST 
GET LENGTH OF LIST 

IF NO ARGUMENTS 
ADDRESS OF RETURNED VALUE 

; COPY LENGTH 

CMP 
BEQ 
BM! 
DEC 

(RO), (Rl)+ ; IS THIS THE NUMBER? 
30$ ; IF EQ YES 
20$ ; IF MI NUMBER NOT THERE 
R2 ; DECREMENT LOOP COUNT 

BNE 
20$: 

10$ IF NE NOT AT END OF LIST 

MOV #-1, (RS) 
RETURN 

30$: 
SUB R2,R3 
INC R3 
MOV R3, (RS) 
RETURN 
.END 

END OF LIST PASS BACK ERROR 

NUMBER FOUND - GET INDEX INTO LIST 

; RETURN INDEX 

Supervisor-Mode Libraries 

10-7 



Supervisor-Mode Libraries 

Example 10-2 Memory Allocation Map for SUPER 

SUPER.TSK;l Memory allocation map TKB M40.10 Page 1 
29-DEC-82 15:04 

Partition name : GEN 
Identification : 0203 
Task UIC : [301,55] 
Task attributes: -HD,PI 
Total address windows: i. 
Task image size : 160. words 
Task address limits: 000000 000473 
R-W disk blk limits: 000002 000002 000001 00001. 

*** Root segment: CMPAL 

R/W mem limits: 000000 000473 000474 00316. 
Disk blk limits: 000002 000002 000001 00001. 

Memory allocation synopsis: 

Section Title !dent File 

. BLK.: (RW,I,LCL,REL,CON) 000000 000474 00316. 
000000 000136 00094. CMPAL 0203 SYSLIB.OLB;6 
000136 000136 00094. CMPAL 0203 SYSLIB;OLB;6 
000274 000136 00094. SUPER 01 SUPER.OBJ;3 
000432 000042 00034. SAVAL 00 SYSLIB.OLB;6 

Global symbols: 

SEARCH 000352-R SORT 000274-R $CMPAL 000022-R $CMPCS 000110-R $SAVAL 000432-R 

*** Task builder statistics: 

Total work file references~ 320. 
Work file reads: 0. 
Work file writes: 0. 
Size of core pool: 6988. words (27. pages) 
Size of work file: 1024. words (4. pages) 

Elapsed time:00:00:04 

Example 10-3 Comp1et1on Routine, $CiVif'CS, from SYSLiB.OLD 

.TITLE CMPAL 

. !DENT /0204/ 

Example 10-3 Cont'd on next page 

10-8 



Supervisor-Mode Libraries 

Example 10-3 (Cont.) Completion Routine, $CMPCS, from SVSLIB.OLD 

COPYRIGHT (c} 1983 BY 
DIGITAL EQUIPMENT CORPORATION, MAYNARD 
MASSACHUSETTS. ALL RIGHTS RESERVED. 

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED 
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE 
AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS 
SOFTWARE OR ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR 
OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND 
OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERED. 

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT 
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL 
EQUIPMENT CORPORATION. 

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF 
ITS SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL . 

. ENABL LC 

This module supports the "new" transfer vector format generated by 
the taskbuilder for entering super mode libraries. This format 
optimized for speed and size and supports user data space tasks. 

The CSM dispatcher routine and the standard completion routines, 
$CMPAL and $CMPCS are included in this module due to the close 
interaction between them. 

**-CSM Dispatcher-Dispatch CSM entry 

This module must be linked at virtual zero in the supervisor mode 
library. It is entered via a four word transfer vector of the form: 

MOV icompletion-routine,-(SP) 
CSM iroutine 

Note: Immediate mode emulation of the CSM instruction is required 
in the executive. 

The CSM instruction transfers control to the address contained in 
supervisor mode virtual 10. At this point the stack is the following: 

(SP) routine address 
2(SP) PC (past end of transfer vector} 
4(SP) PS with condition codes cleared 
6(SP) Completion-routine address 
lO(SP) Return address 

A routine address of 0 is special cased to support return to 
supervisor mode from a user mode debugging aid {ODT) . In this case 
stack is the following: 

Example 10-3 Cont'd on next page 

10-9 



Supervisor-Mode Libraries 

Example 10-3 (Cont.) Completion Routine, $CMPCS, from SYSLIB.OLD 

(SP) zero 
2(SP) PC from CSM to be discarded 
4(SP) PS from CSM to be discarded 
6(SP) Super mode PC supplied by debugger 
lO(SP) Super mode PS supplied by debugger 

To allow positioning at virtual zero, this code must be in the blank 
PSECT that is first in the TKBs PSECT ordering . 

. PSECT 

.ENABL LSB 

Debugger return to super mode entry. Must start at virtual zero 

CMP (SP)+, (SP)+ Clean off PS and PC from CSM 

**-$SRTI-SUPER mode RT! 

This entry point performs the necessary stack management to allow 
an RTI from super mode to either super mode or user mode. 
The is as required for an RT!: 

(SP) Super mode PC 
2(SP) Super mode PS 

$SRTI:: TST 2(SP~ ; Returning to user mode? 
BR 70$ ; Join common code 

CSM transfer address, this word must be at virtual 10 in super mode 

.WORD CSMSVR ; CSM dispatcher entry 

Dispatch CSM entry 

CSMSVR: MOV 6(SP),2(SP) ; Set completion routine address for RETURN 
JMP @(SP)+ ; Transfer to super mode library routine 

**-$CMPAL-Completion routine that sets up NZVC in the PS 

Copy all condition codes to stacked PS. Current stack: 

(SP) PS with condtion codes cleared 
2(SP) Completion routine address (to be discarded) 
4 (SP·, Return address 

Example 10-3 Cont'd on next page 

10-10 



Supervisor-Mode Libraries 

Example 10-3 (Cont.) Completion Routine, $CMPCS, from SVSLIB.OLD 

$CMPAL: :BPL 40$ 
BNE 20$ 
BVC 10$ 
BIS U6, (SP) Set NZV 
BR $CMPCS 

10$: BIS U4' (SP) ; Set NZ 
BR $CMPCS 

20$: BVC 30$ 
BIS U2, (SP) Set NV 
BR $CMPCS 

30$: BIS UO, (SP) ; Set N 
BR $CMPCS 

40$: BNE 60$ 
BVC 50$ 
BIS i6, (SP) Set ZV 
BR $CMPCS 

50$: BIS f4, (SP) Set z 
BR $CMPCS 

60$: BVC $CMPCS 
BIS #2, (SP) Set v 

**-$CMPCS-Completion routine that sets up only C in the PS 

Copy only carry to stacked PS. Current stack: 

(SP) PS with condtion codes cleared 
2(SP) Completion routine address (to be discarded) 
4(SP) Return address 

$CMPCS::ADC (SP) Set up carry 
MOV 4(SP),2(SP) Setup return address for RTT 
MOV (SP)+,2(SP) And PS. Returning to super mode? 

70$: BPL 80$ If PL yes 
MOV f6,-(SP) Number of bytes for (SP), PS, and PC 
ADD SP, (SP) Compute clean stack value 
MTPI SP ; Set up previous stack pointer 

80$: RTT ; Return to previous mode and caller 

.DSABL LSB 

.END 

10-11 



Supervisor-Mode Libraries 

Example 10-4 Code for TSUP.MAC 

.TITLE TSUP 

. !DENT /01/ 

.MCALL QIOW$,DIR$,QIOW$S 
WRITE: QIOW$ IO.WVB,S,l,,,,<OUT,,40> 
READIN: QIOW$ IO.RVB,S,1,,,,<0UT,S> 

!ARRAY: .BLKW 12. 
LEN: .BLKW 1 
!ART: .BLKW 1 
INDEX: .WORD 0 
OUT: .BLKW 100. 
ARGBLK: 
EDBUF: .BLKW 10. 

FMTl: .ASCIZ /%2SARRAY(%D}=/ 
FMT2: .ASCIZ /%N%2SNUMBER TO SEARCH FOR?/ 
FMT3: .ASCIZ /%N%2S%D WAS FOUND IN ARRAY(%D)/ 
FMT4: .ASCIZ /%N%2S%D WAS NOT IN ARRAY/ 
FMTS: .ASCIZ /%2SARRAY(%D)=%D/ 

.EVEN 
START: 

MOV 
MOV 

S$: 
CLR 
DEC 
BNE 
MOV 
MOV 

10$: 
MOV 

MOV 
INC 

tIARRAY,RO ; GET ADDRESS OF ARRAY 
tlO,Rl SET LENGTH OF ARRAY 

(RO)+ ; INITIALIZE ARRAY 
Rl LOOP 
S$ 
tIARRAY,RO 
#INDEX, R2 

tFMTl,Rl FORMAT SPECIFICATION (ADDRESS 
; OF INPUT STRING) 

(R2),EDBUF ; GET INDEX 
EDBUF 

CALL PRINT ; PRINT MESSAGE 
CALL READ ; READ INPUT 
MOV IART, (RO)+ PUT BINARY KEYBOARD INPUT INTO ARRAY 
BEQ 20$ ; ZERO MARKS END OF INPUT 
INC (R2) 
CMP (R2), UO. 
BNE 

20$: 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
CALL 

;+ 

10$ !F NE YES 

(R2),LEN CALCULATE LENGTH OF ARRAY 
iARGBLK,RS ; GET ADDRESS OF ARGUMENT BLOCK 
i2, (RS)+ NUMBER OF ARGUMENTS 
UARRAY, (RS)+ ; PUT ADDRESS OF ARRAY 
tLEN, (RS) 
JARGBLK,RS 
SORT ; SORT ARRAY 

;Task Builder replaced call to SORT subroutine in SUPLIB with 4-word 
;context switching vector. Flow of control switches to SUPLIB via 
;the vector and back via the completion routine $CMPCS. TSUP 
;continues excuting at the next instruction. 

CLR R2 

Example 10-4 Cont'd on next page 

10-12 



Example 10-4 (Cont.) Code for TSUP.MAC 

MOV fIARRAY,RO ; GET ARRAY ADDRESS 
30$: 

INC R2 ; INCREMENT INDEX 
MOV R2,EDBUF ; GET INDEX FOR PRINT 
MOV (RO)+,EDBUF+2 ; GET CONTENTS OF ARRAY 
MOV #FMTS,Rl ; GET ADDRESS OF FOR:.~AT SPECIFICATION 
CALL PRINT 
CMP R2,LEN ; MORE TO PRINT? 
BLT 30$ ; IF LE YES 
MOV #FMT2,Rl ; GET ADDRESS OF FORMAT SPECIFICATION 
CALL PRINT ; OUTPUT MESSAGE 
CALL READ ; READ RESPONSE 
MOV #ARGBLK,RS 
MOV #4, (RS)+ ; SET NUMBER OF ARGUMENTS 
MOV #IART, (RS)+ ; SET ADDRESS OF NUMBER LOOKING FOR 
MOV UARRAY, (RS)+ ; SET ADDRESS OF ARRAY 
MOV #LEN, {RS}+ ; SET ADDRESS OF LEN OF ARRAY 
MOV #INDEX, (RS) ; ADDRESS OF RESULT 
MOV :fl:ARGBLK,RS 
CALL SEARCH ; SEARCH FOR NUMBER IN IART 

;Call to SUPLIB for SEARCH subroutine. 

TST INDEX ; WAS NUMBER FOUND? 
BLT 40$ ; IF LT NO 
MOV IART,EDBUF ; GET NUMBER LOOKING FOR 
MOV INDEX 1 EOBUF+2 ; GET ARRAY NUMBER 
MOV #FMT3,Rl ; GET FORMAT ADDRESS 
CALL PRINT 
BR 100$ ; DONE 

40$: 
MOV #FMT4,Rl GET FORMAT ADDRESS 
MOV IART,EDBUF ; GET NUMBER 
CALL PRINT 

100$: 
CALL $EXST EXIT WITH STATUS 

PRINT: 
CALL $SAVAL SAVE ALL REGISTERS 
MOV #OUT,RO ; ADDRESS OF OUTPUT BLOCK 
MOV #EDBUF,R2 ; START ADDRESS OF ARGUMENT BLOCK 
CALL $EDMSG ; FORMAT MESSAGE 
MOV Rl,WRITE+Q.IOPL+2 ; PUT LENGTH OF OUTPUT 

; BLOCK INTO PARAMETER BLOCK 
DIR$ #WRITE ; WRITE OUTPUT BLOCK 
RETURN 

READ: 
CALL $SAVAL 
DIR$ #READIN 
MOV #OUT,RO 
CALL $CDTB 
MOV Rl,IART 
RETURN 

.END START 

; SAVE ALL REGISTERS 
READ REQUEST 
GET KEYBOARD INPUT 
CONVERT KEYBOARD INPUT TO BINARY 
; PUT INPUT INTO BUFFER 

Supervisor-Mode Libraries 

10-13 



Supervisor-Mode Libraries 

Example 10-5 Memory Allocation Map for TSUP 

TSUP.TSK;l Memory allocation map TKB M40.10 Page 1 
29-DEC-82 15:01 

Partition name : GEN 
Identification : 01 
Task UIC : [301,55] 
Stack limits: 000274 001273 001000 00512. 
PRG xfr address: 002130 
Total address windows: 2. 
Task image size : 1344. words 
Task address limits: 000000 005133 
R-W disk blk limits: 000002 000007 000006 00006. 

*** Root segment: TSUP 

R/W mem limits: 000000 005133 005134 02652. 
Disk blk limits: 000002 000007 000006 00006. 

Memory allocation synopsis: 

Section Title Ident File 

. BLK.: (RW,I,LCL,REL,CON) 001274 002334 01244. 
001274 001234 00668. TSUP 01 TSUP.OBJ;22 

CMPAL :(RW,I,LCL,REL,CON) 000000 000474 00316. 
PUR$0 : (RO,I,LCL,REL,CON) 003630 000076 00062. 
PUR$I : (RO,I,LCL,REL,CON) 003726 000752 00490. 
$$RESL: (RO,I,LCL,REL,CON) 004700 000212 00138. 
$$SLVC: (RO,I,LCL,REL,CON) 005112 000020 00016. 

TSUP.TSK;l Memory allocation map TKB M40.10 Page 2 
29-DEC-82 15:01 

*** Task builder statistics: 

Total work file references: 2477. 
Work file reads: 0. 
Work file writes: O. 
Size of core pool: 6988. words (27. pages) 
Size of work file: 1024. words (4. pages) 

Elapsed time:00:00:05 

TSUP prompts you to enter numbers at your terminal. It calls a subroutine in SUPER to sort the 
numbers. Then it displays the numbers you entered as array entries and prompts you to request 
a number to search for. TSUP calls a subroutine in SUPERLIB to search for the number. Finally, 
TSUP indicates at your terminal either that the number was not found or the array location where 
the number is stored. 

10-14 



Supervisor-Mode Libraries 

Building SUPER 

To build SUPER in UFD [301,55] on SY:, use the following TKB or LINK command sequence: 

TKB> SUPER/-HD/LI/PI, SUPER/MA, SUPER= 
TKB>LB:[[l,2]]SYSLIB/LB:CMPAL,SY: [[301,55]]SUPER 
TKB> I 
Enter Options: 
TKB> STACK=O 
TKB> PAR=GEN: 0: 2000 
TKB> CMPRT=$CMPCS 
TKB> GBLXCL=$SAVAL 
TKB> // 
> 
>LINK/TAS:SUPER/NOH/SHARE:LIB/CODE:PIC/MAP:SUPER/SYS/SYM:SUPER/OPT 

->LB: [1,2]SYSLIB/INC:CMPAL, SY: [301, 55]SUPER 
Option? STACK=O 
Option? PAR=GEN:0:2000 
Option? CMPRT=$CMPCS 
Option? GBLXCL=$SAVAL 
Option? ~ 
> 

SUPER is built without a header or stack. It is position independent and has only one program 
section, named .BLK. The /LI switch or /SHARE:LIB qualifier eliminates program section name 
conflicts between the library and the referencing task. 

The completion routine module of SYSLIB, CMPAL, is specified :first in the input line. The library 
runs in partition GEN at 0 and is not more than lK. 

The GBLXCL option excludes $SAVAL from the library's .STB file. You exclude $SAVAL from the 
.STB file because the referencing task, TSUP, also calls $SAVAL. If TSUP finds $SAVAL in the 
.STB file of SUPER, it does not link a separate copy of $SAVAL into its task image from SYSLIB. 
IfTSUP cannot link to a copy of $SAVAL that is mapped through user APRs, the TSUP would call 
$SAVAL as a subroutine residing within the supervisor-mode library, but without the necessary 
mode-switching vector and completion routine support. This option forces TKB to link $SAVAL 
from SYSLIB into the task image for TSUP. 

The memory allocation map shows the following: 

• SUPER begins at virtual 0. 

• The completion routine, $CMPAL, is linked into the library from SYSLIB at virtual 0. 

• The entry point $CMPAL is located at virtual 22, SEARCH is located at 35, and sort is located 
at 274. All of these entry points are relocatable. 

Building TSUP 

Use the following TKB or LINK command sequence to build a task, TSUP, that links to SUPER: 

TKB> TSUP, TSUP=TSUP 
TKB> I 
Enter Options: 
TKB> RES SUP= SUPER/ SV: 0 
TKB> // 

> LINK/TAS/MAP /OPT SUPER 
Option? RESSUP=SUPER/SV:O 
Option? ~ 
> 

10-15 



Supervisor-Mode Libraries 

These two command sequences tell TKB to include in the logical address space of TSUP a 
user-owned, supervisor-mode library named SUPER. TKB includes a four-word, mode-switching 
vector within the task image for each call to a subroutine within the library. The library is position 
independent and is mapped with supervisor I-space APRO. This is a requirement for CSM libraries 
because the CSM expects to find the entry point of the completion routine at location 10. 

The memory allocation map for TSUP (Example 10-5) shows: 

• $CMPAL is linked from the .STB file of the library and begins at location 0. 

• The mode-switching vectors begin at 005136 and are 16. bytes. That means that TSUP calls 
subroutines within the library 2 times (4 words per vector). 

• The initiation routine $SUPL is located at 4700. 

• The SEARCH and SORT subroutines that were located at virtual 112 and 32, respectively, in 
the virtual address space of SUPER have been relocated to the mode-switching vectors residing 
at 5136 and 5146 respectively, in TSUP. 

• The SAVAL module from SYSLIB containing $SAVAL has been linked into the task image 
instead of including $SAVAL from the library's .STB file. 

Running TSUP 

After building SUPER and TSUP as indicated in the task-build command sequence discussed 
previously, you install SUPER and run TSUP. TSUP prompts you for a number: 

ARRAY (x) 

x The position in which to store the number in the array. 

You enter a number. TSUP stores the number in the array and prompts you again for a number. 
This continues until you either have entered a 0, an illegal number, or 10 numbers. Then TSUP 
calls the SORT routine in SUPER. 

You enter a number. TSUP calls the SEARCH routine in SUPER. Then TSUP outputs a message 
indicating whether the number was in the array. 

10 .. 7 .. 4 The CSM Library Dispatching Process 
When you build the referencing task, if you specify the SV argument to the RESSUP or SUPLIB 
option, then TKB includes a four-word context-switching vector for each call to a subroutine in the 
library. This is very generaliy discussed in Section 9 . .2. Tnis section discusses the CSM library 
vector in detail. 

CSM mode switching occurs as follows: 

1 The vector is entered with the return address on top of the stack (TOS). 

2 The vector pushes the completion routine address on the stack. 

3 A CSM instruction is executed with the supervisor-mode entry point as the immediate 
addressing mode parameter. The CSM instruction: 

a. Evaluates the source parameter and stores the entry point address in a temporary register 

b. Copies the user stack pointer to the supervisor stack pointer 

c. Places the current PS and PC on the supervisor stack clearing the condition codes in the 
PS 

10-16 



10.8 

10.9 

10.10 

Supervisor-Mode Libraries 

d. Pushes the entry point address on the supervisor stack 

e. Places the contents of location 10 in supervisor I-space into the PC 

The stack looks like this when the processor begins to execute at the contents of virtual 10 in 
supervisor mode: 

user sp ----> return address 
completion routine address 

PS 
PC 

super sp ----> entry point address 

The most important aspect of how the CSM library mode-switching vector works is that the 
processor begins executing at the contents of virtual 10 in supervisor mode. This is why the 
completion routine must be located at virtual 0, so that virtual location 10 is within the completion 
routine. 

Using Supervisor-Mode Libraries as Resident libraries 
Supervisor-mode libraries can double as conventional resident libraries. For position-independent, 
supervisor-mode libraries, you rebuild the referencing task using the RESLIB option instead of the 
RESSUP option. Indicate the first available user-mode APR that you want to map the library. For 
CSM libraries this always changes, because you cannot map a shared region with APR 0. You do 
not have to rebuild the library. 

For absolute supervisor-mode libraries, rebuild the referencing task using the RESLIB option 
instead of the RESSUP option. Rebuild the library only if the beginning partition address in the 
PAR option is incompatible with the address limits of your referencing task. 

Multiple Supervisor-Mode Libraries 
A user task can reference multiple supervisor-mode CSM libraries. However, all the CSM libraries 
must use the completion routine that begins at virtual zero in supervisor-mode instruction space. 

Linking a Resident Library to a Supervisor-Mode Library 
You can link a conventional resident library to a supervisor-mode library using the following TKB 
or LINK command sequence: 

TKB> F4PRESl-HD,F4PRES,LB: [ [1, 1] ]F4PRES= 
TKB> F4PRESILB 
TKB> I 
Enter Options: 
TKB> S TACK""O 
TKB> SUPLIB=FCSFSL: SV 
TKB> PAR=F4PRES: 14 0000: 20000 
TKB> I I 
> 
>LINKITAS:F4PRES/NOH/MAP:F4PRES/SYM:LB: [1,l]F4PRES/OPT­
-> F4PRESILIB 
Option? 
Option? 
Option? 
Option? 
> 

STACK=O 
SUPLIB=FCSFSL:SV 
PAR=F4PRES:l40000:20000 

~ 

10-17 



10.11 

10.12 

10.13 

Supervisor-Mode Libraries 

These two command sequences show you how to link F4PRES to FCSFSL. 

Linking Supervisor-Mode Libraries 
You cannot link supervisor-mode libraries together, and you cannot link a supervisor-mode library 
to a resident user-mode library. Calling a user-mode library is not possible because its code is not 
mapped through the I-space APRs while in the supervisor-mode library. However, you can link 
user-mode libraries to a supervisor-mode library. 

Writing Your Own Vectors and Completion Routines 
You can write your own mode-switching vectors and completion routines. This might be necessary 
for threaded code. If you use your own vectors, build them into the task and use the -SV switch 
on the RESSUP or RESLIB option when you build the referencing task. If you create your own 
completion routines, write your completion routine to resemble the system-supplied completion 
routines (see Example 10-3) as much as possible. If you do not retain the last three lines of code 
as indicated, then if the Executive processes an interrupt before the mode switch back to user 
mode has completed, your task might crash. 

Overlaid Supervisor-Mode Libraries 
It is possible to use overlaid supervisor-mode libraries. Three restrictions must be noted when 
building these libraries: 

• The completion routine for the library must be in the root. 

• Only one level of overlay is allowed. This is illustrated in Example 10-4. 

• Although the Fast Task Builder (FTB) can link to supervisor-mode libraries, it cannot link to 
overlaid supervisor-mode libraries. 

Figure 10-2 Overlay Configuration Allowed for Supervisor-Mode Libraries 

A~ 
FO:>T I 

ALLOWED 

10-18 

A I BI c I DI 
I 

FkX>T I 
ALLOWED 

l~~l~J 
~ 
NOT ALLOWED 



A ERROR MESSAGES 

The Task Builder produces diagnostic and fatal error messages. Error messages are printed in the 
following forms: 

TKB -- *DIAG*-error-message 

or 

TKB -- *FATAL*-error-message 

After a fatal error, task builder aborts the current operation and returns to PDS (or MCR) 
command level. Diagnostic errors do not have this effect. 

Some errors can be corrected from the terminal. If you are entering text at the terminal, and a 
diagnostic error message is printed, the error can be corrected, and the task building sequence 
continued. If the same error is detected by the Task Builder in an indirect file or in Batch, the 
Task Builder cannot request correction and thus the error is termed fatal and the task build is 
aborted. 

Some diagnostic error messages are simply informative and advise you of an unusual condition. If 
you consider the condition normal to your task, you can run the task image. 

Each error has in addition a status of Warning, Error, or Severe error; which is indicated after 
the code Severity below. When the task builder exits, the status of the worst error or a status 
of success is returned. In an indirect command file the status can be tested. For example, you 
might decide not to continue with a command sequence which runs the task if the task build was 
unsuccessful. See the IAS PDS User's Guide or the IAS MCR User's Guide. 

This appendix tabulates the error messages produced by the Task Builder. The numbers below are 
internal Task Builder error numbers and are given for information purposes only. Most of the error 
messages are self-explanatory. The Task Builder prints the text shown in this manual in upper 
case letters. In some cases, the Task Builder prints the line in which the error occurred, so that 
the user can examine the line which caused the problem and correct it. 

0, ILLEGAL GET COMMAND LINE ERROR CODE 

Severity: Severe 

Explanation: (System error. (No recovery.)) 

1, COMMAND SYNTAX ERROR 
invalid-line 

Severity: Severe 

Explanation: (The invalid-line printed has incorrect syntax.) 

2, REQUIRED INPUT FILE MISSING 

Severity: Severe 

Explanation: (At least one input file is required for a task build.) 

A-1 



ERROR MESSAGES 

3, ILLEGAL SWITCH 
invalid-line 

Severity: Severe 

Explanation: The invalid line printed contains an illegal switch or switch value. 

4, NO DYNAMIC STORAGE AVAILABLE 

Severity: Severe 

Explanation; The Task Builder needs additional storage and cannot obtain it. 
exceeded the Task Builder's capability. See Appendix F, Section F.1.1. 

5, ILLEGAL ERROR/SEVERITY CODE 

Severity: Severe 

Explanation: System error. (No recovery.) 

6, COMMAND 1/0 ERROR 

Severity: Severe 

Explanation: 110 error on command input device. (Device may not be online or possible hardware 
error.) 

7, INDIRECT FILE OPEN FAILURE 
invalid-line 

Severity: Severe 

Explanation: The invalid-line contains a reference to a command input file which could not be 
located. 

8, INDIRECT CO:MMAND SYNTAX ERROR 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains a syntactically incorrect indirect file specification. 

9, INDIRECT FILE DEPTH EXCEEDED 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed gives the file reference that exceeded the permissible 
indirect file depth (3). 

10, 1/0 ERROR ON INPUT FILE file-name 

Severity: Severe 

11, OPEN FAILURE ON FILE file-name 

Severity: Severe 

A-2 



ERROR MESSAGES 

12, SEARCH STACK OVERFLOW ON SEGMENT segment-name 

Severity: Severe 

Explanation: The segment segment-name is more than 16 branch segments from the root 
segment. 

13, PASS CONTROL OVERFLOW AT SEGMENT segment-name 

Severity: Severe 

Explanation: The segment segment-name is more than 16 branch segments from the root 
segment. 

14, FILE file-name HAS ILLEGAL FORMAT 

Severity: Severe 

Explanation: The file file-name contains an object module whose format is not valid. 

15, MODULE module-name AMBIGUOUSLY DEFINES P-SECTION p-sect-name 

Severity: Warning 

Explanation: The p-section p-sect-name has been defined in two modules not on a common path 
and referenced ambiguously. 

16, MODULE module-name MULTIPLY DEFINES P-SECTION p-sect-name 

Severity: Warning 

Explanation: 

1 The p-section p-sect-name has been defined in the same segment with different attributes. 

or 

2 A global p-section has been defined in more than one segment along a common path with 
different attributes. 

17, MODULE module-name MULTIPLY DEFINES XFR ADDR IN SEG segment-name 

Severity: Warning 

Explanation: This error occurs when more than one module comprising the root has a start 
address. 

18, MODULE module-name ILLEGALLY DEFINES XFR ADDRESS p-sect-name addr 

Severity: Warning 

Explanation: The module module-name is in an overlay segment and has a start address. The 
start address must be in the root segment of the main tree. 

19, P-SECTION p-sect-name HAS OVERFLOWED 

Severity: Error 

Explanation: A section greater than 32K has been created. 

A-3 



ERROR MESSAGES 

20, MODULE module-name AMBIGUOUSLY DEFINES SYMBOL sym-name 

Severity: Warning 

Explanation: Module module-name references or defines a symbol sym-name whose definition 
cannot be uniquely resolved. 

21, MODULE module-name MULTIPLY DEFINES SYMBOL sym-name 

Severity: Warning 

Explanation: Two definitions for the relocatable symbol S)T.l-name have occtL--Ted on a common 
path. Or two definitions for an absolute symbol with the same name but different values have 
occurred. 

22, INSUFFICIENT APRS AVAILABLE TO MAP READ ONLY ROOT 

Severity: Severe 

Explanation: No virtual address space can be found to map the read-only portion of a task. 

23, SEGMENT seg-name HAS ADDR OVERFLOW: ALLOCATION DELETED 

Severity: Severe 

Explanation: Within a segment, the program has attempted to allocate more than 32K. A map 
file will be produced if one was requested. 

24, ALLOCATION FAILURE ON FILE file-name 

Severity: Severe 

Explanation: 

1 The Task Builder could not acquire sufficient disk space to store the task image file. 

If possible, delete unnecessary files on disk to make more room available. 

or 

2 An attempt has been made to write the task file into a directory for which the user does not 
have write access. 

25, I/O ERROR ON OUTPUT FILE file-name 

Explanation: This error may occur on any of the three output files. 

26, LOAD ADDR OUT OF RANGE IN MODULE module-name 

Severity: Error 

Explanation: An attempt has been made to store data in the task image outside the address 
limits of the segment. This usually indicates incorrect use of an absolute p-section 

27; TRUNCATION ERROR IN MODULE module-name 

Severity: Warning 

Explanation: An attempt has been made to load a global value greater than +127 or less than 
-128 into a byte. The low-order eight bits are loaded. 

A-4 



ERROR MESSAGES 

28, number UNDEFINED SYMBOLS SEGMENT seg-name 

Severity: Error 

Explanation: The Memory Allocaiion File lists each undefined symbol by segment. 

29, INVALID KEYWORD IDENTIFIER 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains an unrecognizable option keyword. 

30, OPTION SYNTAX ERROR 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains unrecognizable syntax. 

31, TOO ~'l\1Y PARAMETERS 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains a keyword with more parameters than required. 

32, ILLEGAL MULTIPLE PARAMETER SETS 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains multiple parameters for an option keyword which 
only allows a single parameter. 

33, INSUFFICIENT PARAMETERS 
invalid-line 

Severity: Severe 

Explanation: The invalid-line contains a keyword with an insufficient number of parameters to 
complete the keyword meaning. 

34, TASK HAS ILLEGAL MEMORY Lll\.HTS 

Severity: Severe 

Explanation: The highest virtual address of the task is greater than 32K words. Relink the task 
without a task image file to trace the cause. 

35, OVERLAY DIRECTIVE HAS NO OPERANDS 
invalid-line 

Severity: Severe 

Explanation: All overlay directives except .END require operands. 

36, ILLEGAL OVERLAY DIRECTIVE 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains an unrecognizable overlay directive. 

A-5 



ERROR MESSAGES 

37, OVERLAY DIRECTIVE SYNTAX ERROR 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains a syntax error. 

38, ROOT SEGMENT IS MULTIPLY DEFINED 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains the second .ROOT directive encountered. Only 
one .ROOT directive is allowed. 

39, LABEL OR NAME IS MULTIPLY DEFINED 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains a name that has already appeared on a .FCTR, 
.NAME, or .PSECT directive. 

40, 0 ROOT SEGMENT SPECIFIED 

Severity~ Severe 

Explanation: The overlay description did not contain a .ROOT directive. 

41, BLANK P-SECTION NAME IS ILLEGAL 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains a .PSECT directive that does not have a p-section 
name. 

42, ILLEGAL P-SECTION/SEGMENT ATTRIBUTE 
invalid-line 

Severity: Severe 

Explanation: ~e invalid-line printed contains a p-section or segment attribute that is not 
recognized. 

43, ILLEGAL OVERLAY DESCRIPTION OPERATOR 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains an unrecognizable operator in an overlay 
description. 

44, TOO MANY NESTED .ROOT/.FCTR DIRECTIVES 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains a .FCTR directive that exceeds the maximum 
nesting level (32). 

A-6 



ERROR MESSAGES 

45, TOO MANY PARENTHESES LEVELS 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains a parenthesis that exceeds the maximum nesting 
level (32). 

46, UNBALANCED PARENTHESES 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains unbalanced parentheses. 

47, ILLEGAL BASE OR TOP ADDRESS OFFSET 

Severity: Severe 

Explanation: The task is too large to fit into the space allowed by BASE= or TOP= keywords. 

48, ILLEGAL LOGICAL UNIT NUMBER 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains a device assignment to a unit number larger than 
the number of logical units specified by the UNITS keyword or assumed by default if the UNITS 
keyword is not used. 

49, ILLEGAL NUMBER OF LOGICAL UNITS 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains a logical unit number greater than 250. 

50, ILLEGAL MAXIMUM EXTENSION 
invalid line 

Severity: Severe 

Explanation: The argument to the MAXEXT option is outside the range 0-2000 (octal). 

51, ILLEGAL BASE OR TOP BOUNDARY VALUE 
invalid-line 

Severity: Severe 

52, ILLEGAL POOL USAGE NUMBER SPECIFIED 
invaiid-line 

Severity: Severe 

Explanation: The pool request is greater than 255 or it is zero. 

53, ILLEGAL DEFAULT PRIORITY SPECIFIED 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains a priority greater than 250. 

A-7 



ERROR MESSAGES 

54, ILLEGAL ODT OR TASK VECTOR SIZE 

Severity: Severe 

Explanation: SST vector size specified greater than 32 words. 

55, ILLEGAL FILENAME 
invalid-line 

Severity: Severe 

Explanation; The invalid-line printed contains a wild card(*) in a file specification. The use oi 
wild cards is prohibited. 

56, ILLEGAL DEVICENOLUME 
invalid-line 

Severity: Severe 

Explanation: The device/volume string is too long. 

57, LOOKUP FAILURE ON FILE file-name 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains a file name which cannot be located in the 
directory. 

58, ILLEGAL DIRECTORY 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains an illegal UFD. 

59, INCOMPATIBLE REFERENCE TO SGA P-SECTION p-sect-name 

Severity: Error 

Explanation: A task has attempted to reference more storage in a shareable global area than 
exists in the shareable global area definition. 

60, ILLEGAL REFERENCE TO SGA P-SECTION p-sect-name 

Severity: Error 

Explanation: A task has attempted to reference a p-sect-name existing in a shareable global area 
but has not named the SGA in the SGA option. 

61, SGA MEMORY ALLOCATION CONFLICT 
keyword-string 

Severity: Severe 

Explanation: One of the following problems has occurred: 

1 More than seven shareable global areas have been specified. 

2 The same shareabie global area has been specified more than once. 

3 Shareable global areas whose memory allocations overlap have been specified. 

A-8 



ERROR MESSAGES 

4 BASE or TOP specifications conflict. 

62, LOOKUP FAILURE SGA FILE 
invalid-line 

Severity: Severe 

Explanation: No symbol table or task image file found for the shareable global area on SYO under 
UFD [1,1]. 

63, Not used. 

64, ILLEGAL PARTITION/SGA SPECIFIED 
invalid-line 

Severity: Severe 

Explanation: User defined base or length not on 32 word bound or user defined length= 0. 

65, NO MEMORY AVAILABLE FOR SGA library-name 

Severity: Severe 

Explanation: Insufficient virtual memory available to cover total memory needed by referenced 
shareable global areas. 

66, PIC SGAS MAY NOT REFERENCE OTHER SGAS 
invalid-line 

Severity: Severe 

67, ILLEGAL APR RESERVATION 

Severity: Severe 

Explanation: APR specified in SGA option that is outside the range 0-7. 

68, 1/0 ERROR SGA IMAGE FILE 

Severity: Severe 

Explanation: An I/O error has occurred during an attempt to open or read the Task Image File of 
a shareable global area. 

69, Not used. 

70~ Not used. 

71, INVALID APR RESERVATION 

Severi t-i.;: Severe 

Explanation: APR specified in SGA option for an absolute shareable global area. 

72, COMPLEX RELOCATION ERROR - DMDE BY ZERO: MODULE 
module-name 

Severity: Warning 

Explanation: A divisor having the value zero was detected in a complex expression. The result of 
the divide was set to zero. (Probable cause - division by an undefined global symbol.) 

A-9 



ERROR MESSAGES 

73, WORK FILE 1/0 ERROR 

Severity: Severe 

Explanation: 1/0 error during an attempt to reference data stored by the Task Builder in a work 
file. Possibly an attempt to extend the file when no more space is available on the volume. See 
Appendix F, Section F.1.1. 

74, LOOKUP FAILURE ON SYSTEM LIBRARY FILE 

Severity: Error 

Explanation: The Task Builder cannot find the System Library (usually LBO:[l,l]SYSLIB.OLB) 
file to resolve undefined symbols. 

75, UNABLE TO OPEN WORK FILE 

Severity: Severe 

Explanation: Work file device is not mounted or has not been initialized as Files-11, or there is 
no space on the volume. See Appendix F, Section F.1.1. 

76, NO VIRTUAL MEMORY STORAGE AVAILABLE 

Severity: Severe 

Explanation: Maximum permissible size of the work file exceeded (no recovery). See Appendix F, 
Section F.1.1 and Section F.3. 

77, MODULE module-name NOT IN LIBRARY 

Severity: Severe 

Explanation: The Task Builder could not find the module in the library. 

78, INCORRECT LIBRARY MODULE SPECIFICATION 
invalid-line 

Severity: Severe 

Explanation: The invalid-line contains a module name with a non-Radix-50 character. 

79, LIBRARY FILE filename HAS INCORRECT FORMAT 

Severity: Severe 

Explanation: A module has been requested from a library file that has an empty module name 
table. 

80, SGA IMAGE HAS INCORRECT FORMAT 
invalid-line 

Severity: Severe 

Explanation: The invalid-line specifies a shareable global area that has one of the following 
problems: 

1 The SGA task image file has a header. 

2 The shareable global area references another shareable global area with invalid address bounds 
(that is, not on 4K boundary). 

A-10 



ERROR MESSAGES 

3 The shareable global area has invalid address bounds. 

81, PARTITION partition-name HAS ILLEGAL MEMORY LIMITS 

Severity: Severe 

Explanation: The user has attempted to build a privileged task whose length exceeds 16K. 

82, Not used. 

83, ABORTED VIA REQUEST 
input-line 

Severity: Severe 

Explanation: The input-line contains a request from the user to abort the task build. 

84-87, Not 'Used. 

88, SGA REFERENCES OVERLAID SGA 

Severity: Severe 

Explanation: It is illegal to build an SGA which references another overlaid SGA. 

89, TASK IMAGE FILE file-name IS NON-CONTIGUOUS 

Severity: Error 

Explanation: Not enough contiguous disk space could be found to create the task image file. The 
task image is placed in a non-contiguous file, which must be copied with the COPY/CONTIGUOUS 
PDS command (or using the PIP utility under MCR) before it can be installed or run. 

90, VIRTUAL SECTION HAS ILLEGAL ADDRESS LIMITS 
option-line 

Severity: Severe 

Explanation: The option-line printed contains a VSECT keyword whose base address plus 
window size exceeds 177777. 

91, FILE file-name ATTEMP'I'ED TO STORE DATA IN VIRTUAL SECTION 

Severity: Error 

Explanation: The file contains a module that has attempted to initialize a virtual section with 
data. 

92, SGA MAPPED ARRAY ALLOCATION TOO LARGE 
invalid-line 

Severity: Severe 

Explanation: The invalid-line printed contains a reference to an SGA that has allocated too much 
memory in the task's mapped array area. The total allocation exceeds 2.2 million bytes. 

93, INVALID REFERENCE TO MAPPED ARRAY BY MODULE module-name 

Severity: Error 

Explanation: The module has attempted to initialize the mapped array with data. An SPR should 
be submitted if this problem is caused by DIGITAL-supplied software. 

A-11 



ERROR MESSAGES 

94, END OF FILE REACHED BEFORE .END DIRECTIVE IN file-name 

Severity: Severe 

Explanation: The overlay description file named in this message does not contain a .END 
directive as required. 

95, DUPLICATE SGA NAME 
invalid-line 

Severity: Severe 

Explanation: The shareable global area name specified has already appeared. 

96, SYMBOL sym-name NOT FOUND FOR PATCH 

Severity: Warning 

Explanation: A global symbol specified in a GBLPAT or SYMPAT option cannot be found. 

97, SEGMENT seg-name NOT FOUND FOR PATCH 

Severity: Warning 

Explanation: The segment name specified in an ABSPAT, GBLPAT or SYMPAT option cannot be 
found. 

98, ILLEGAL NUMBER OF REGIONS 

Severity: Severe 

Explanation: The argument to the ATRG option is greater than 240. 

99, INSUFFICIENT APRS TO MAP TASK 

Severity: Severe 

Explanation: There is not enough virtual address space, after allocating libraries common areas, 
the task pure area and resident overlays, to map the task root. 

100, Supervisor-mode library reference error 

101, Illegal system size specified 

102, Conflicting base addresses in cluster library 

Explanation: This conflict arises when you specify APRs, for both PIC and non-PIC libraries that 
are included in the cluster. See the APR parameter as described in te CLSTR option. This is a 
fatal error. 

103, Library (library-name) not found in any cluster 

Explanation: All task image and symbol table files to be included as cluster elements must reside 
in lb:[l,1]. 

104, Illegal cluster configuration 

Explanation: Ii the cluster contains a non-overiaid iibrary, that iibrary must be the first library 
in the cluster. check the configuration of the libraries on the cluster. this is a fatal error. 

A-12 



ERROR MESSAGES 

105, Cluster library element does not have null root 

Explanation: This is a fatal error. all libraries, except the first, must be plas-overlaid and have a 
null root. the first library in the group can be non-overlaid or overlaid with a null or non-null root. 

107, Supervisor mode completion routine is undefined 

Explanation: The Task Builder could not locate the symbol x , which was specified in the 
CMPRT=X option. 

108, Library not built as a supervisor-mode library 

Explanation: The library referred to in a ressup or suplib option was built without a completion 
(CMPRT=X) routine and is not a supervisor-mode library 

A-13 





-··· 8 TASK BUILDER DATA FORMATS 

This appendix is of interest mainly to readers who need to understand the object moduie format. 

An object module is the fundamental unit of input to the Task Builder. 

Object modules are created by any of the standard language processors (for example MACR0-11, 
FORTRAN) or the Task Builder itself (symbol definition file). The IAS Librarian provides the 
ability to combine a number of object modules together into a single library file (see the IAS PDS 
User's Guide or IAS MCR User's Guide for a specification of the LIBRARIAN command; for a more 
detailed description see the RSX-llM /M-PLUS Utilities Manual. 

An object module consists of variable length records of information that describe the contents of 
the module. Six record (or block) types are included in the object language. These records guide 
the Task Builder in the translation of the object language into a task image. 

The six record types are: 

Type 1 - Declare Global Symbol Directory (GSD) 
Type 2 - End of Global Symbol Directory 
Type 3 - Text Information (TXT) 
Type 4 - Relocation Directory (RLD) 
Type 5 - Internal Symbol Directory (ISD) 
Type 6 - End of Module 

Each object module must consist of at least five of the record types. The one record type that is 
not mandatory is the internal symbol directory. The appearance of the various record types in an 
object module follows a defined format. See Section B.1. 

An object module must begin with a Declare GSD record and end with an end-of-module record. 
Additional Declare GSD records may occur anywhere in the file but before an end-of-GSD 
record. An end-of-GSD record must appear before the end-of-module record. At least one 
relocation directory record must appear before the first text information record. Additional 
relocation directory and text information records may appear anywhere in the file. The internal 
symbol directory records may appear anywhere in the file between the initial declare GSD and 
end-of-module records. 

Object module records are variable length and are identified by a record type code in the first word 
of the record. The format of additional information in the record is dependent upon the record 
type. 

8.1 Global Symbol Directory (GSD) 
Global symbol directory records contain all the information necessary to assign addresses to global 
symbols and to allocate the memory required by a task. 

GSD records are the only records processed by the Task Builder in the first pass, thus significant 
time can be saved if all GSD records are placed at the beginning of a module (that is, less of the 
file must be read in phase 3). 

B-1 



TASK BUILDER DATA FORMATS 

Figure B-1 General Object Module Format 

I 

Initial GSD 

~-------RLD----------~ Initial relocation directory 
GSD Additional GSD 

~----------------~ TXT Text info:cmation 

GSD 

~-------TXT----------~, Text info:cmation 

RLD Relocation directory 

GSD Additional GSD ---------------------1 END GSD End of GSD 

ISD Internal symbol directory 

ISD Internal symbol directory 

TXT Text info:cmation t---------------------1 
TXT I Text info:cmation 

TXT Text inf o:cmation 
~--------------------END IDDULE END OF M:>DULE __________________ ___. 

GSD records contain seven types of entries: 

Type 0 - Module Name 
Type 1- Control Section Name 
Type 2 - Internal Symbol Name 
Type 3 - Transfer Address 
Type 4 - Global Symbol Name 
Type 5 - Program Section Name 
Type 6 - Program Version Identification 
Type 7 - Mapped Array Declaration 

Each entry type is represented by four words in the GSD record. The first two words contain six 
Radix-50 characters. The third word contains a flag byte and the entry type identification. The 
fourth word contains additional information about the entry. See Figure B-2. 

B-2 



8.1.1 

TASK BUILDER DATA FORMATS 

Figure B-2 GSD Record and Entry Format 
; . 

0 l 1 

RECORDTYPE ' . 

RAD50 
NAME 

TYPE T FLAGS 
VALUE 

RAD SO 
NAME 

TYPE I FLAGS 

VALUE 

RADSO 
NAME 

TYPE I FLAGS 
VALUE 

RAD50 
NAME 

TYPE T FLAGS 

VALUE 

Figure B-3 Module Name Entry Format 

M:>DULE 
NAME 

0 I 0 

0 

Module Name 
The module name entry declares the name of the object module. The name need not be unique 
with respect to other object modules (i.e., modules are identified by file not module name) but only 
one such declaration may occur in any given object module. See Figure B-3. 

B-3 



B.1.2 

B.1.3 

TASK BUILDER DATA FORMATS 

Control Section Name 
Control sections, which include ASECTs, blank-CSECTs, and named-CSECTs are supplanted in 
IAS by PSECTs. For compatibility, the Task Builder processes ASECTs and both forms of CSECTs. 
Section B.2 details the entry generated for a PSECT statement. In terms of a PSECT statement 
we can define ASECT and CSECT statements as follows: 

For a blank CSECT, a PSECT is defined with the following attributes: 

.PSECT fLCLfRELfCON,RW,I,LOW 

For a named CSECT, the PSECT definition is: 

.PSECT name,GBL,REL,OVR,RW,I,LOW 

For an ASECT, the PSECT definition is: 

.PSECT • ABS.,GBL,ABS,I,OVR,RW,LOW 

ASECTs and CSECTs are processed by the Task Builder as PSECTs with the fixed attributes 
defined above. The entry generated for a control section is shown in Figure B-4. 

Figure B-4 Control Section Name Entry Format 

CONTROL SECTION 

NAME 

1 I IGNORED 

MAXIMUM LENGTH 

Internal Symbol Name 
The internal symbol name entry declares the name of an internal symbol (with respect to the 
module). The Task Builder does not support internal symbol tables and therefore the detailed 
format of this entry is not defined (see Figure B-5. If an internal symbol entry is encountered 
while reading the GSD, it is merely ignored. 

B-4 



8.1.4 

8.1.5 

TASK BUILDER DATA FORMATS 

Figure B-5 Internal Symbol Name Entry Format 

SECTION 

I NAME 

3 0 

I OFFSET 

Figure B-6 Transfer Address Entry Format 

Place figure here from page B-6. 

Transfer Address 
The transfer address entry declares the transfer address of a module relative to a P-section. The 
first two words of the entry define the name of th~ P-section and the fourth word the relative offset 
from the beginning of that P-section. If no transfer address is declared in a module, a transfer 
address entry either must not be included in the GSD or a transfer address of 000001 relative to 
the default absolute P-section (. ABS.) must be specified. See Figure B-6. 

Note: If the P-section is absolute, then OFFSET is the actual transfer address if not 
000001. 

Global Symbol Name 
The global symbol name entry (see Figure B-7) declares either a global reference or a definition. 
All definition entries must appear after the declaration of the P-section under which they are 
defined and before the declaration of another P-section. Global references may appear anywhere 
within the GSD. 

The first two words of the entry define the name of the global symbol. The flag byte declares the 
attributes of the symbol and the fourth word the value of the symbol relative to the P-section under 
which it is defined. 

The flag byte of the symbol declaration entry has the following bit assignments: 

B-5 



TASK BUILDER DATA FORMATS 

Bit 

Bit 

Bit 

Bit 

Bit 

Bit 

Bits 

0 -

0 -

1 -

1 -

2 

0 -

1 -

3 

0 -

1 -

4 -

5 -

0 -

1 -
6 to 7 -

Weak Qualifier 

Symbol is a strong definition or reference and is resolved in the normal manner. 

Symbol is a weak definition or reference. A weak reference (Bit 3-0) is ignored. A weak 
definition (Bit 3·1) is ignored unless a previous reference has been made. 

Not used. 

Normal Definition or reference. 

Library definition. tt the symbol is defined in a resident library STB file, the base address of the 
library is added to the value, and the symbol is converted to absolute (bit 5 is reset); otherwise, 
the bit is ignored. 

Global symbol reference. 

Global symbol definition. 

Not used. 

Relocation. 

Absolute symbol value. 

Relative symbol value. 

Not used. 

Figure B-7 Global Symbol Entry Format 

SYMBOL 
NAME 

4 l FLAGS 

VALUE 

8.2 Program Section Name 
The P-section name entry (see Figure B-8) declares the name of a P-section and its maximwn 
length in the module. It also declares the attributes of the P-section via the flag byte. 

GSD records must be constructed such that once a P-section name has been declared all global 
symbol definitions that pertain to that P-section must appear before another P-section name is 
declared. Global symbols are declared via symbol declaration entries. Thus the normal format is a 
P-section name followed by zero or more symbol declarations, the next P-section name followed by 
zero or more symbol declarations, and so on. 

B-6 



TASK BUILDER DATA FORMATS 

The flag byte of the P-section entry has the following bit assignments: 

Bit 

Bit 

Bit 

Bit 

Bit 

Bit 

Bit 

Bit 

0 - Memory Speed 

0 • P-section is to occupy low speed (core) memory. 

1 - P-section is to occupy high speed (that is, MOS/Bipolar) memory. 

1 - library P-section 

0 • Normal P-section 

1 = 
2-

Relocatable P-section that references a shareable global area. 

Allocation 

0 = P-section references are to be concatenated with other references to the same P-section to 
form the total memory allocated to the section. 

1 • P-section references are to be overlaid. The total memory allocated to the P-section is the 
largest request made by individual references to the same P-section. 

3-

4-

Not used but reserved. 

Access 

0 = P-section has read/write access. 

1 -

5-

P-section has read-only access. 

Relocation 

0 • P-section is absolute and requires no relocation. 

1 = 

6-

P-section is relocatable and references to the control section must have a relocation bias added 
before they become absolute. 

Scope 

0 a The scope of the P-section is local. References to the same P-section will be collected only 
within the segment in which the P-section is defined. 

1 -

7-

The scope of the P-section is global. References to the P-section are collected across segment 
boundaries. The segment in which a global P-section is allocated storage is determined either 
by the first module that defines the P-section on a path or by direct placement of a P-section in 
a segment via the Overlay Description language .PSECT directive. 

Type 

0 = The P-section contains instruction (I) references. 

1 = The P-section contains data (D) reference Identification 

Figure B-8 P-sectlon Name Entry Format 

5 

P-SECTION 
NAME 

MAX LENGTH 

FLAGS 

Note: The length of all absolute sections is zero. 

B-7 



TASK BUILDER DATA FORMATS 

B.3 Program Version Identification 
The program version identification entry (see Figure B-9) declares the version of the module. The 
Task Builder saves the version identification of the first module that defines a nonblank version. 
This identification is then included on the memory allocation map and is written in the label block 
of the task image file. 

The first two words of the entry contain the version identification. The flag byte and fourth words 
are not used and contain no meaningful information. 

Figure B-9 Program Version Identification Entry Format 

SYMBOL 
NAME 

6 l 0 

0 

B.4 Mapped Array Declaration 
The Mapped Array Declaration (see Figure B-10) causes space to be allocated within the mapped 
aITay area of task memory. The array name is added to the list of task p-section names and may 
be referenced by subsequent RLD records. The length (in units of 64-byte blocks) is added to the 
task's mapped array allocation. The total memory allocated to each mapped array is rounded up to 
the nearest 512-byte boundary. The contents of the flags byte are reserved and assumed to be zero. 

One additional address window is allocated whenever a mapped array is declared. 

Figure B-10 Mapped Array Declaration Format 

MAPPED ARRAY 

NAME 

7 1 FLAGS 

LENGTH (NUMBER OF 64-BYTE BLOCKS) 

B-8 



TASK BUILDER DATA FORMATS 

8.5 End of Global Symbol Directory 
The end-of-global-symbol-directory record (see Figure B-11) declares that no other GSD records are 
contained further on in the file. Exactly one end-of-GSD-record must appear in every object module 
and is one word in length. 

Figure B-11 End of GSD Record Format 

0 2 

8.6 Text Information 
The text information record (see Figure B-12) contains a byte string of information that is to be 
written directly into the task image file. The record consists of a load address followed by the byte 
string. 

Text records may contain words and/or bytes of information whose final contents are yet to be 
determined. This information will be bound by a relocation directory record that immediately 
follows the text record (see Section B.7). If the text record does not need modification, then no 
relocation directory record is needed. Thus multiple text records may appear in sequence before a 
relocation directory record. 

The load address of the text record is specified as an offset from the cw-rent P-section base. At 
least one relocation directory record must precede the first text record. This directory must declare 
the current P-section. 

The Task Builder writes a text record directly into the task image file and computes the value 
of the load address minus four. This value is stored in anticipation of a subsequent relocation 
directory that modifies words and/or bytes that are contained in the text record. When added to a 
relocation directory displacement byte, this value yields the address of the word and/or byte to be 
modified in the task image. 

B. 7 Relocation Directory 
Relocation directory records (see Figure B-13) contain the information necessary to relocate and 
link a preceding text information record. Every module must have at least one relocation directory 
record that precedes the first text information record. The first record does not modify a preceding 
text record, but defines the current P-section and location. Relocation directory records contain 
13 types of entries. These entries are classified as relocation or location modification entries. The 
following types of entries are defined: 

Type 1 - Internal Relocation 
Type 2 - Global Relocation 
Type 3 - Internal Displaced Relocation 

B-9 



TASK BUILDER DATA FORMATS 

Figure B-12 Text Information Record Format 

0 I RECORD TYPE = 3 

LOAD ADDRESS 

TEXT l TEXT 

- T TEXT 

n n 

n n 

n n 

n n 

n TEXT 

TEXT TEXT 

Type 4 - Global Displaced Relocation 
Type 5 - Global Additive Relocation 
Type 6 - Global Additive Displaced Relocation 
Type 7 - Location Counter Definition 
Type 10 - Location Counter Modification 
Type 11 - Program Limits 
Type 12 - P-Section Relocation 
Type 13 - Not Used 
Type 14 - P-Section Displaced Relocation 
Type 15 - P-Section Additive Relocation 
m_ 1 l':t 'n n ..1..• A 'I 'I• 1_• ""'• .. .. - ,. • • 
.1.y-p6 .LU - r-oeCLIOii .t\.O.WUVe .LJl.Sptacea .ttelOC8tIOn 
Type 17 - Complex Relocation 
Type 20 - Library Relocation 

Each type of entry is represented by a command byte (specifies type of entry and word/byte 
modification), a displacement byte, and the information required for the particular type of entry, 
in that order. The displacement byte, when added to the value calculated from the load address of 
the previous text information record, (see Section B.6) yields the virtual address in the image that 
is to be modified. 

The command byte oi each entry has the foHowing bit assignments: 

B-10 



Bits 0 - 6 

Bit 7 -

TASK BUILDER DATA FORMATS 

Specify the type of entry. Potentially 128 command types may be specified although only 
15(decimal) are implemented. 

Modification 

0 = The command modifies an entire word. 

1 = The command modifies only one byte. The Task Builder checks for truncation errors in 
byte modification commands. If truncation is detected (that is, the modification value has a 
magnitude greater than 255), an error is produced. 

Figure B-13 Relocation Directory Record Format 

0 RECORD TYPE = 4 

DISP TYPE= CMD 

INFO INFO 

n INFO 

n n 

n n 

n n 

n n 

CMD n 

INFO DISP 

n INFO 

n n 

n n 

n n 

n n 

DISP CMD 

INFO INFO 

INFO INFO 

INFO INFO 

B-11 



TASK BUILDER DATA FORMATS 

B.8 Internal Relocation 

B.8.1 

This type of entry (see Figure B-14) relocates a direct pointer to an address within a module. The 
current P-section base address is added to a specified constant and the result is written into the 
task image file at the calculated address (that is, displacement byte added to value calculated from 
the load address of the previous text block). 

Example: 

MOV fA:RO 

or 

.WORD A 

Figure B-14 Internal Relocation Command Format 

DISP B 1 

CONSTANT 

Global Relocation 
This type of entry (see Figure B-15) relocates a direct pointer to a global symbol. The definition 
of the global symbol is obtained and the result is written into the task image file at the calculated 
address. 

Example: 

MOV fGLOBAL,RO 

or 

.WORD GLOBAL 

Figure B-15 Global Relocation 

DISP B 2 

SYMBOL NAME 

B-12 



8.8.2 

8.8.3 

TASK BUILDER DATA FORMATS 

Internal Displaced Relocation 
This type of entry (see Figure B-16) relocates a relative reference to an absolute address from 
within a relocatable control section. The address plus 2 that the relocated value is to be written 
into is subtracted from the specified constant. The result is then written into the task image file at 
the calculated address. 

Example: 

CLR 177550 

or 

MOV 177550,RO 

Figure B-16 Internal Displaced Relocation 

DISP B 3 

CONSTANT 

Global Displaced Relocation 
This type of entry (see Figure B-17) relocates a relative reference to global symbol. The definition 
of the global symbol is obtained and the address plus 2 that the relocated value is to be written 
into is subtracted from the definition value. This value is then written into the task image file at 
the calculated address. 

Example: 

CLR GLOBAL 

or 

MOV GLOBAL, RO 

Figure B-17 Global Displaced Relocation 

DISP B 4 

SYMBOL NAME 

B-13 



B.8.4 

8.8.5 

TASK BUILDER DATA FORMATS 

Global Additive Relocation 
This type of entry (see Figure B-18) relocates a direct pointer to a global symbol with an additive 
constant. The definition of the global symbol is obtained, the specified constant is added, and the 
resultant value is then written into the task image file at the calculated address. 

Example: 

MOV #GLOBAL+2,RO 

or 

.WORD GLOBAL-4 

Figure B-18 Global Additive Relocation 

DISP B 5 

SYMBOL NAME 

CONSTANT 

Global Additive Displaced Relocation 
This type of entry (see Figure B-19) relocates a relative reference to a global symbol with an 
additive constant. The definition of the global symbol is obtained and the specified constant is 
added to the definition value. The address plus 2 that the relocated value is to be written into is 
subtracted from the resultant additive value. The resultant v-alue is then written into the task 
image file at the calculated address. 

Example: 

CLR GLOBAL+2 

or 

MOV GLOBAL-5,RO 

B-14 



B.8.6 

B.8.7 

TASK BUILDER DATA FORMATS 

Figure B-19 Global Additive Displaced Relocation 

DISP B 6 

SYMBOL NAME 

CONSTANT 

Figure B-20 Location Counter Definition 

0 1 B 1 7 

SECTION NAME 

CONSTANT 

Figure B-21 Location Counter Modification 

0 B 10 

CONSTANT 

Location Counter Definition 
This type of entry (see Figure B-20) declares a current P-section and location counter value. The 
control base is stored as the current control section and the current control section base is added to 
the specified constant and stored as the current location counter value. 

Location Counter Modification 
This type of entry (see Figure B-21) modifies the current location counter. The cUITent P-section 
base is added to the specified constant and the result is stored as the current location counter. 

Example: 

.=.+N 

or 

.BLKB N 

B-15 



TASK BUILDER DATA FORMATS 

B.9 Program Limits 

B.9.1 

This type of entry (see Figure B-22) is generated by the .LIMIT assembler directive. The first 
address above the header (normally the beginning of the stack) and highest address allocated to 
the tasks are obtained and written into the task image file at the calculated address and at the 
calculated address plus 2 respectively. 

Example: 

.LIMIT 

Figure B-22 Program Limits 

DISP B 11 

P-section Relocation 
This type of entry (see Figure B-23) relocates a direct pointer to the start address of another 
P-section (other than the P-section in which the reference is made) within a module. The current 
base address of the specified P-section is obtained and written into the task image file at the 
calculated address. 

Example: 

B: 

B-16 

.PSECT A 

PSECT 
MOV 

or 

c 
tB,RO 

.WORD B 



B.10 

TASK BUILDER DATA FORMATS 

Figure 8-23 P-section Relocation 

DISP B 12 

SECTION NAME 

Figure 8-24 P-sectlon Displaced Relocation 

DISP B 14 

SECTION NAME 

P-section Displaced Relocation 
This type of entry (see Figure B-24) relocates a relative reference to the start address of another 
P-section within a module. The current base address of the specified P-section is obtained and the 
address plus 2 that the relocated value is to be written into is subtracted from the base value. This 
value is then written into the task image file at the calculated address. 

Example: 

.PSECT A 
B: 

.PSECT C 
MOV B,RO 

B.10.1 P-section Additive Relocation 
This type of entry (see Figure B-25) relocates a direct pointer to an address in another P-section 
within a module. The current base address of the specified p-section is obtained and added to the 
specified constant. The result is written into the task image file at the calculated address. 

Example: 

B-17 



TASK BUILDER DATA FORMATS 

.PSECT A 
B: 

C: 

.PSECT D 
MOV iB+lO,RO 
MOV #C,RO 

or 

.WORD B+lO 

.WORD C 

Figure B-25 P-sectlon Additive Relocation 

DISP 1 B l 15 

SECTION NAME 

CONSTANT 

8.10.2 P-section Additive Displaced Relocation 
This type of entry (see Figure B-26) relocates a relative reference to an address in another 
P-section within a module. The current base address of the specified P-section is obtained and 
added to the specified constant. The address plus 2 that the relocated value is to be written into is 
subtracted from the resultant additive value. This value is then written into the task image file at 
the calculated address. 

Example: 

.PSECT A 

C: 

.PSECT D 

MOV B+lO,RO 
MOV C,RO 

B-18 



TASK BUILDER DATA FORMATS 

Figure 8-26 P-section Additive Displaced Relocation 

DISP l B l 16 

SECTION NAME 

CONSTANT 

B.10.3 Complex Relocation 
This type of entry (see Figure B-27) resolves a complex relocation expression. Such an expression 
is one in which any of the MACR0-11 binary or unary operations are permitted with any type of 
argument, regardless of whether the argument is unresolved global, relocatable to any P-section 
base, absolute, or a complex relocatable subexpression. 

The RLD command word is followed by a string of numerically-specified operation codes and 
argwnents. All of the operation codes occupy one byte. The entire RLD command must fit in a 
single record. The following operation codes are defined. 

0 - No operation 

1 Addition ( +) 

2 - Subtraction (-) 

3 - Multiplication (*) 

4 - Division (/) 

5 - Logical AND(&) 

6 - Logical inclusive OR (I) 

10 - Negation (-) 

11 - Complement ("C) 

12 - Store result (command termination) 

13 - Store result with displaced relocation (command termination) 

16 - Fetch global symbol. It is followed by four bytes containing the symbol name in RADIX-50 representation. 

17 - Fetch relocatable value. It is followed by one byte containing the sector number, and two bytes containing 
the offset within the sector. 

20 - Fetch constant. It is followed by two bytes containing the constant. 

21 - Fetch resident library base address. If the file is a resident library STB file, the library base address is 
obtained; otherwise, the base address of the Task Image is fetched. 

The STORE commands indicate that the value is to be written into the task image file at the 
calculated address. 

All operands are evaluated as 16-bit signed quantities using two's complement arithmetic. The 
results are equivalent to expressions that are evaluated internally by the assembler. The following 
rules are to be noted. 

1 An attempt to divide by zero yields a zero result. The Task Builder issues a non-fatal 
diagnostic message. 

8-19 



TASK BUILDER DATA FORMATS 

2 All results are truncated from the left in order to fit into 16 bits. No diagnostic is issued if the 
number was too large. If the result modifies a byte, the Task Builder checks for truncation 
errors. 

3 All operations are performed on relocated (additive) or absolute 16-bit quantities. PC 
displacement is applied to the result only. 

Example: 

.PSECT ALPHA 
A: 

.PSECT BETA 
B: 

MOV #A+B-Gl/G2&<~C<l77120!G3>>,Rl 

Figure B-27 Complex Relocation 

DISP B 17 

COMPLEX STRING 

12 

B.10.4 Shareable Global Area Additive Relocation 
This type of entry (see Figure B-28) relocates a direct pointer to address within a shareable global 
area (SGA). 

If t.hP l'UM'P.nt. filP. iR An ~CTA Rvmhnl t~hlP filP (~Tlh t.hP. hARP. AfltlrP.RR nf t.hP. ~CTA ii:z nht~inpfl Anrl -- ---- ---·----- ---- -·- -·-- ·- -·-- ·-..,--·---·--- _____ .. _ ---- ,----,., ---- ------ --------- -- ---- -------- -·--------- -----
added to the specified constant. The result is written into the task image file at the calculated 
address. If the file is not associated with an SGA, the task base address is used. 

Example: 

B-20 



TASK BUILDER DATA FORMATS 

Figure B-28 Resident Library Additive Relocation 

DISP B 20 

CONSTANT 

Figure B-29 Internal Symbol Directory Record Format 

0 6 

NOT SPECIFIED 

Figure B-30 End-Of-Module Record Format 

0 6 

8.11 Internal Symbol Directory 

8.12 

Internal symbol directory records (see Figure B-29) declare definitions of symbols that are local to 
a module. This feature is not supported by the Task Builder and therefore a detailed record format 
is not specified. This type of record, if encountered, will be ignored by the Task Builder. 

' 

End of Module 
The end-of-module record (see Figure B-30) declares the end-of-an object module. Exactly one end 
of module record must appear in each object module and is one word in length. 

B-21 





C TASK IMAGE FILE STRUCTURE 

The task image as it is recorded on the disk appears in Figure C-1. 

Figure C-1 Task Image on Disk 

32Word _ 
Memory Block 

32Word -
Memory Block 

Disk Block-

Disk Block-

Disk Block-

DiskBlock-

Disk Block-

DiskBlock-

Task R-W Root Segment 

Stack 

DiskBlock-1 .F~ed==er I ~ 
;;;-1 .... ----------De-:-:-~-~-B~-:-m_e_nt ________ ---11 } 

Omittedif /-HD 

4N Bytes (N = No. LUNs) 
i.e., 0, 1, 2 Blocks 

Virtual Block 1 

C-1 



TASK IMAGE FILE STRUCTURE 

C.1 Label Block Group 
The label block group (shown in Example C-1) precedes the task on the disk and contains data 
that need not be resident during task execution together with up to two blocks containing device 
assignment data for LUNs 1-255. The task label blocks (first block in group) are read and verified 
by Install. The information in these blocks is used to fill in the task header. 

Example C-1 Label Block Group 

.MACRO . LBLSY$ GEL 

. r-~CALL DEF IN$ 

.IF ICN,<GEL>,<DEF$C> 

... GBL=l 
• IFF 
... GBL=O 
.ENDC 

DEF IN$ 
DE FIN$ 
DE FIN$ 
CEPIN$ 
CCF IN$ 
CEPIN$ 
DEF IN$ 
DEF IN$ 
DEF IN$ 
DEF IN$ 
DEF IN$ 
DEF IN$ 
DEFINS 
DEF INS 
DEF IN$ 
DEF INS 
CEFIN$ 
DEF IN$ 
DEF IN$ 
DEF INS 
DEF IN$ 

L$BTSK,0 
L$BPAR,4 
L$BFLG,1(:1 
L$BPRI, 12 
LSELCZ,14 
LSBr~XZ,16 
L$BPOL,20 
LSBPIC, 22 
L$EDAT 24 
LSBLIB :·32 
LSEHRB,212 
LSBAPP,214 
L$8EXT,21E 
LSBUIC,220 
LSBROZ,222 
LSBR00,224 
LSBROE,226 
LSBPAZ,230 
L$BHSZ,232 
L$BAPM,234 
L$BASG, HHHJ 

FLAG BITS DEFINITIONS 

DEF INS LDSACC, UHHHHJ 
DEFINS LDSRSV,040000 
DEF INS LDSREL,000004 
DEF INS LCSTYP,000002 
DE FINS LCSCF:F': liHHHlCll 

DEFINS LFSPIC,000001 
DEF IN$ LFSNHC,000002 
DE FINS LFSFP ,000C04 

.MACRO LBLSYS GBL 

.ENDM 

.ENDM LBLSY $ 

C-2 

TASK NA~E (RACSO) 
DEFAULT P~.RTITICN (PACSG) 
T.Z\SK FLAGS HO.RC 
C'EfAULT P.RIO.RITY 
LOAD SIZE (32->:r:: BLOCKS) 
I!'JITIAL SPACE -\LLOC\TICN ( 32-;;r ELOCKS) 
~WCE POOL LIMI'.2 
LIERARY FLAGS WORD 
CREATION I:ATE 
.RESIDENT LIBRA.RY PECUCSTS (SF. i>ORCS) 
HEACEP BLOCK NCMBER 
STARTING APR (LIB~AHY) 
GEFAULT TASK EXTENSION 
CEFAC1LT UIC 
PEAD-ONLY AREA SIZE {PYTES) 
DISK OFFSET Of RO APEA 
START AfDRESS OF RO APCA 
TOTAL RO .REGIOt-i SIZE (32-\·iC BLOCKS) 
HEADER SIZE (32-WD BLCCKS) 
APR USAGE BIT~AP 

LUtJ ASSIGME;~T INFOFl'-1ATION 

ACC CSS REQUEST ( l =Pi!, O=RC) 
APP SESERVATION FLAG 
PI C IN r I CA TOR ( 1 =YES ) 
BLOCK TYPE (0=CO~, l=LI~) 
Prnru ~~~T~~n 11-v~r• 
--- ...... -~, _ ............ ~ ....... ~ \...i..-.J..L.l>J/ 

LIA IS POSITION INCE~CNCCNT 
TASK HAS HEACEI< (l=t;O) 
TASK HAS FP SAVE ARLA (l=YES) 



C~1 ;1 

TASK IMAGE FILE STRUCTURE 

Label Block Details 
The information contained in the label block is verified by the Install task in creating a system 
task directory (STD) entry for the task, and in linking the task to shareable global areas. 

The definitions of the symbols used below may be obtained using the macro LBLSY$, which is 
defined in the system macro library. This macro may be given the argument 'DEF$G', in which 
case the definitions are made global. 

• L$BTSK - Task name, consisting of two words in Radix-50 format. The value of this parameter 
is set by the TASK keyword. 

• L$BPAR - Partition name, consisting of two words in Radix-50 format. Its value is set by the 
PAR keyword. 

• L$BFLG - Task flag word containing bit values that are set or cleared depending on defined 
task attributes. Attributes are established by appending the appropriate switches to the task 
image file specification. 

Bit Attribute If Set:1 

SF.MU 6 Task is multi-user (/MU) 

SF.PT 7 Task is privileged (/PR) 

SF.XS 10 Task cannot receive data (/NOSEND) 

SF.XA 11 Task is not abortable (/NOAB) 

SF.XO 12 Task is not disableable (!NODIS) 

SF.XF 13 Task is not fixable (/NOFIX) 

SF.XC 14 Task is not checkpointable (/NOCH) 

SF.SR 15 Task can be sent data and requested (/REQUEST) 

The symbolic names for these flags are not defined by LBLSY$. 

• L$BPRI - Default priority, set by the PRI keyword. 

• L$BLDZ - Load size of the task, expressed in multiples of 32-word blocks. The value of 
L$BLDZ is equal to the size of the root segment, in multi-segment tasks. 

• L$BMXZ - Maximum size of the task, expressed in multiples of 32-word blocks. The header 
size is included. 

• L$BMXZ - is used by Install to verify that the task fits into the specified partition. 

• L$BPOL - Pool usage limit indicating maximum number of pool nodes that can be used 
simultaneously by the task. The default is 40 (decimal), which is overridden by the POOL 
keyword. 

• L$BPIC - Flags for use by INSTALL: 

Flag 

LF$PIC 

LF$NHD 

Interpretation If Set=1 

Image is position independent 

Image has no header 

C-3 



TASK IMAGE FILE STRUCTURE 

Flag 

LF$FP 

LF$RO 

LF$HND 

LF$SUP 

LF.SLB 

Interpretation if Set=1 

Task has floating point save area in its header 

Task has resident overlays 

Task has header (1-no) 

Task linked to supervisor-mode library. 

Task is a supervisor-mode library mode request. 

• L$BD.A'.T - Three words, containing ihe task creation date as 2-digit integer values, as follows: 

YEAR (since 1900) 
MONTH OF YEAR 
DAY OF MONTH 

• L$BHRB - Virtual block number of the task header. Between 2 and 4 depending on number of 
LUNs, as follows: 

UNITS = 0 virtual block 2 
UNITS = 1-128 virtual block 3 
UNITS = 129-255 virtual block 4 

• L$BAPR - Starting APR number if this image is a shareable global area. Calculated from 
BASE or TOP keywords. 

• L$BEXT - The default number of words by which the memory allocated to a task at install 
time will be increased. This value is overridden by the /INC qualifier to INSTALL. Value is set 
with EXTISK option of the Task Builder. 

• L$BUIC - The UIC with which the task is built. Set by UIC keyword. 

• L$BROZ - The size in bytes of the task read-only area. Zero if the task has no read-only area. 

• L$BROO - Relative block number in the task image file of the start of the read-only area. 

• L$BROB - Base virtual address of task read-only area (always on a 4K-word boundary). 

• L$BPAZ - Total size (in 32-word blocks) of the task read-only region, including RO resident 
overlays. 

• L$BHSZ - Task header size (in 32-word blocks). 

• L$BAPM - Task APR usage bitmap. Bits 0-7 are set according to whether the corresponding 
APR is in use. 

The following paragraphs describe components of the Shareable Global Area Name Block. An 
8-word block is generated for each SGA referenced by the task. Because SGAs need not be installed 
in the system when the task is built, the Task Builder builds the block from the area's disk image, 
using information in the label blocks of that image. 

• Library Name - A 2-word Radix-50 name specified in the LIBR or COMMON keyword. 

• Creation Date - Obtained from the creation date in the shareable global area disk image label 
block. 

• Starting Address - First address used to map the Shareable Global Area into the task 
addressing space. 

C-4 



TASK IMAGE FILE STRUCTURE 

The flags are used as follows: 

Flag Meaning 

LD$REL 

LD$ACC 

Global area is PIC. Set if value of LF$PIC in the library image flags word (L$FLG) is •1. 

Global area is absolute. Cleared if LF$PIC in L$LFLG of global area image is 0. 

Read/Write access request. Set if RW specified in SGA option. 

LD$CLS 

LD$SCL 

LD$SUP 

C.2 Header 

Read-only ACCESS request. Cleared if RO specified in SGA option. 

Library is part of a cluster. 

Library is first library in a cluster. (Set in Phase 4 processing.) 

Library is a supervisor-mode library. 

The task is read into main memory starting at the base of the Header. Example C-2 illustrates 
the format of the fixed part. Futher details can be found in the IAS Executive Facilities 
Reference Manual. As shown in Figure C-1, the variable part includes the Logical Unit Table, 
the Attachment Descriptor Blocks and the Floating Point Save Area. The Logical Unit Table 
identifies to the Executive which device is assigned to which LUN. The Attachment Descriptors 
identify currently attached regions. The Floating Point Save Area is storage for the floating point 
registers when this option is requested. There may also be a System Reserved work area. 

The Header is always a multiple of 32-word blocks. This ensures that the root segment code starts 
on a 32~word boundary, a requirement for the allocation of a APR pair of relocation registers. The 
Task Header is not covered by a task relocation register, and is therefore, not part of the virtual 
address space of the task. 

The task header offsets may be defined using the macro HDRSY$, which is defined in the system 
macro library. The optional argument 'DEF$G' may be used to make the definitions global. 

Example C-2 Task Header Fixed Pan 

.MACRO HDRSY$ GBL 

.MCALL DEFIN$ 

.IF IDN,<GBL>,<DEF$G> 

... GBL=l 

.!FF 

... GBL=O 

.ENDC 

DEF IN$ H.CRl 
DEF IN$ H.PDO 
DEF!N$ H.PDl 
DEF IN$ H.PD2 
DEF IN$ H.PD3 
DEF IN$ H.PD4 
DEF IN$ H.PDS 
DEF IN$ H.PD6 
DEF IN$ H.PD7 

,O 
,2 
,4 
,6 
,10 
'12 
,14 
,16 
,20 

CONTEXT REFERENCE 1 (FP SAVE AREA POINTER) 
PAGE DESCRIPTOR REGISTER 0 
PAGE DESCRIPTOR REGISTER 1 
PAGE DESCRIPTOR REGISTER 2 

PAGE DESCRIPTOR REGISTER 3 
PAGE DESCRIPTOR REGISTER 4 
PAGE DESCRIPTOR REGISTER 5 
PAGE DESCRIPTOR REGISTER 6 
PAGE DESCRIPTOR REGISTER 7 

Example C-2 Cont'd on next page 

C-5 



TASK IMAGE FILE STRUCTURE 

Example C-2 (Cont.) Task Header Fixed Part 

DEFIN$ H.PAO ,22 
DEFIN$ H.PAl ,24 
DEFIN$ H.PA2 ,26 
DEFIN$ H.PA3 ,30 
DEFIN$ H.PA4 ,32 
DEFIN$ H.PAS ,34 
DEFIN$ H.PA6 ,36 
DEFIN$ H.PA7 ,40 

DEFIN$ H.PFO ,42 
DEFIN$ H.PFl ,44 
DEFIN$ H.PF2 ,46 
DEFIN$ H.PF3 ,SO 
DEFIN$ H.PF4 ,52 
DEFIN$ H.PFS ,54 
DEFIN$ H.PF6 ,56 
DEFIN$ H.PF7 ,60 
DEFIN$ H.PF8 ,62 

DEFIN$ H.PLO, 64 
DEFIN$ H.PLl ,66 
DEFIN$ H.PL2 ,70 
DEFIN$ H.PL3 ,72 
DEFIN$ H.PL4 ,74 
DEFIN$ H.PLS ,76 
DEFIN$ H.PL6 ,100 
DEFIN$ H.PL7 ,102 

DEFIN$ H.POO ,104 
DEFIN$ H.POl ,106 
DEFIN$ H.P02 ,110 
DEFIN$ H.P03 ,112 
DEFIN$ H.P04 ,114 
DEFIN$ H.POS ,116 
DEFIN$ H.P06 ,120 
DEFIN$ H.P07 ,122 

DEFIN$ H.TPS ,124 
DEFIN$ H.TPC ,126 
DEFIN$ H.TRO ,130 
DEFIN$ H.TRl ,132 
DEFIN$ H.TR2 ,134 
DEFIN$ H.TR3 ,136 
DEFIN$ H.TR4 ,140 
DEFIN$ H.TRS ,142 
DEFIN$ H.TSP ,144 
DEFIN$ H.CR2 ,144 

DEFIN$ H.IPS ,146 
DEFIN$ H.IPC ,150 
DEFIN$ H.ISP ,152 

DEFIN$ H.DSV ,154 
DEFIN$ H.TSV ,156 
DEFIN$ H.DVZ ,160 
DEFIN$ H.TVZ ;161 

PAGE ADDRESS REGISTER 0 
PAGE ADDRESS REGISTER 1 
PAGE ADDRESS REGISTER 2 
PAGE ADDRESS REGISTER 3 
PAGE ADDRESS REGISTER 4 
PAGE ADDRESS REGISTER 5 

; PAGE ADDRESS REGISTER 6 
; PAGE ADDRESS REGISTER 7 

PAGE FLAGS REGISTER 0 
PAGE FLAGS REGISTER 1 
PAGE FLAGS REGISTER 2 
PAGE FLAGS REGISTER 3 
PAGE FLAGS REGISTER 4 
PAGE FLAGS REGISTER 5 
PAGE FLAGS REGISTER 6 
PAGE FLAGS REGISTER 7 
DUMMY PAGE FLAGS REGISTER TO STOP SCANS 

PAGE LENGTH REGISTER 0 
PAGE LENGTH REGISTER 1 
PAGE LENGTH REGISTER 2 
PAGE LENGTH REGISTER 3 
PAGE LENGTH REGISTER 4 
PAGE LENGTH REGISTER 5 

PAGE LENGTH REGISTER 6 
PAGE LENGTH REGISTER 7 

PAGE OFFSET REGISTER 0 
PAGE OFFSET REGISTER 1 
PAGE OFFSET REGISTER 2 
PAGE OFFSET REGISTER 3 
PAGE OFFSET REGISTER 4 
PAGE OFFSET REGISTER 5 
PAGE OFFSET REGISTER 6 
PAGE OFFSET REGISTER 7 

TASK PROGRAM STATUS WORD 
TASK PROGRAM COUNTER 
TASK RO 
TASK Rl 
TASK R2 
TASK R3 
TASK R4 
TASK RS 
TASK SP 
CONTEXT REFERENCE POINT 2 (NO STORAGE ALLOCATED) 

INITIAL PROGRAM STATUS WORD 
INITIAL PROGRAM COUNTER 
INITIAL STACK POINTER 

DEBUGGING SST VECTOR ADDRESS 
TASK SST VECTOR ADDRESS 
DEBUGGING SST VECTOR SIZE 
TASK SST VECTOR SIZE 

Example C-2 Cont'd on next page 

C-6 



TASK IMAGE FILE STRUCTURE 

Example C-2 (Cont.) Task Header Fixed Part 

POWERFAIL AST NODE ADDRESS DEFIN$ H.PUN ,162 
DEFIN$ H.FEN ,164 
DEFIN$ H.DUI ,166 
DEFIN$ H.UIC ,170 
DEFIN$ H.HSZ ,172 
DEFIN$ H.FZI ,174 
DEFIN$ H.REC ,176 
DEFIN$ H.RRA ,200 
DEFIN$ H.ADB ,202 
DEFIN$ H.NADB,204 
DEFIN$ H.TAT ,206 
DEFIN$ H.RWZ ,210 
DEFIN$ H.IOQ ,212 
DEFIN$ H.EAF ,216 
DEFIN$ H.WNCT,220 
DEFIN$ H.NML ,222 ; 
DEFIN$ H.ULC ,223 

FLOATING POINT EXCEPTION AST NODE ADDRESS 
DEFAULT UIC 
RUN UIC 
HEADER SIZE (BLOCKS) 
FILE SIZE INDICATOR (OFFSET TO FIRST BLOCK PAST IMAGE) 
RECEIVE AST NODE ADDRESS 
RECEIVE BY REF AST NODE ADDRESS 
OFFSET TO ATTACHMENT DESCRIPTOR BLOCKS 

(NOT YET IMPLEMENTED) 

NUMBER OF ATTACHMENT DESCRIPTORS 
TASK ATTRIBUTES 
SIZE OF READ/WRITE RESIDENT OVERLAY 
I/O REQUEST QUEUE, USED BY HANDLERS 
TASK HEADER FLAGS WORD 
WAIT-FOR-NODES RETRY COUNT 
NETWORK MAILBOX LON (USED BY DECNET) 
UNLOAD LOCK COUNT, FOR HANDLERS 

DEFIN$ H.PVDI,224 ; TASK DIRECTIVE PRIVILEGE (BYTE) 
DEFIN$ H.VNUM,225 ;++003 SYSTEM VERSION NUMBER 
DEFIN$ H.TAC,226 ; ++001 TASK ACCOUNTING INFO 

++001 (2 WORDS) 
++001 3RD WORD RESERVED 

DEFIN$ H.STLN,234 STL NODE ADDRESS FOR THIS TASK 

REGION 
(2 WORDS) 

DEFIN$ H.SPCT,236 COUNT OF TASKS SPAWNED BY THIS ONE (BYTE) 
DEFIN$ H.PADB,240 ADB ADDRESS FOR TASK PURE AREA (USED AT 

FIRST TIME LOAD) 
DEFIN$ H.CKSM,242 HEADER CHECKSUM, SET BEFORE MOVING 

A TASK OUT OF MEMORY AND CHECKED ON 
RELOADING IT 

DEFIN$ H.AC ,244 ; ACCOUNTING AREA POINTER 
DEFIN$ H.PTSM,246 ; PRIVILEGED TASK SEMAPHORE MASK 
DEFIN$ H.CHK,250 ; HEADER CHECK WORD (=S.DL+2) 
DEFIN$ H.RWAP,252 ; APR TO USE TO LOAD RW RESIDENT REGION 
DEFIN$ H.FXTK,254 ; STD ADDRESS OF TASK WHICH ISSUED THE FIX$ 

DIRECTIVE WHICH FIXED A TASK, WHILE IT 
IS ACTIVE 

DEFIN$ H.MEX,256 ; ++001 MAXIMUM EXTENSION (SET BY TASK BUILDER) 
DEFIN$ H.LUT ,260 ; TASK'S LOGICAL UNIT TABLE 

FLAG BIT DEFINTIONS: 

PAGE FLAGS REGISTER (H.PFN): 

DEFIN$ PF.WIN,001 
DEFIN$ PF.WN0,002 
DEFIN$ PF.CON,004 
DEFIN$ PF.RAC,010 
DEFIN$ PF.MAP,020 

GCD NODE ADDRESS) 

THIS IS FIRST APR OF A WINDOW 
THIS IS FIRST APR OF WINDOW ZERO 
THIS IS A CONTINUATION OF PREVIOUS APR 
REGION HAS BEEN ACCESSED 
APR IS MAPPED ONTO REGION (H.PAN CONTAINS 

DEFIN$ PF.RID,177400 ; HI BYTE CONTAINS REGION ID OF MAPPED REGION, 
OR ZERO IF THE REGION WAS SET UP AT INSTALL 
TIME (I.E. NOT DYNAMICALLY MAPPED) 

TASK ATTRIBUTES (H.TAT): 

Example C-2 Cont'd on next page 

C-7 



TASK IMAGE FILE STRUCTURE 

Example C-2 (Cont.) Task Header Fixed Part 

DEFIN$ HT.FRQ,000001 ; TASK REQUIRES RECEIVE QUEUES TO BE FLUSHED 
DEFIN$ HT.NWD,000002 ; DON'T WAIT FOR NODES 
DEFIN$ HT.PR0,000004 ;++005 PRIVILEGED TASK DOESN'T MAP TO SCOMM 
DEFIN$ HT.SUP,000010 ;++006 Task has Supervisor mode save area 

TASK FLAGS (H.EAF): 

DEFIN$ HF.RMC,000001 ; MCR TO BE RECALLED ON TASK EXIT 
DEFIN$ HF.LPA,000002 ; LUNS PARTIALLY ASSIGNED, MUST BE COMPLETED 
DEFIN$ HF.SAV,000004 ;++002 SET IF TASK SAVED IN SYSTEM 

DIRECTIVE PRIVILEGE FLAGS (H.PVDI). BITS ARE SET TO DISALLOW 
PARTICULAR DIRECTIVES (SEE EMlO) 

DEFIN$ SF.RT ,001 TASK CANNOT ISSUE REAL-TIME DIRECTIVES 
DEFIN$ SF.PLS,002 TASK CANNOT ISSUE REGION-RELATED DIRECTIVES 

SYSTEM VERSION NUMBER. USED TO PREVENT PRIVILEGED TASK IMAGES BUILT ON 
EARLIER SYSTEMS, FROM BEING INSTALLED. 

DEFIN$ HV.NUM,3 ;++004/003 SYSTEM VERSION NUMBER 

AFTER THIS, THERE ARE FOUR AREAS WHOSE SIZE DEPENDS ON THE TASK. 
THEY ARE DESCRIBED TOGETHER WITH ANY APPROPRIATE DEFINTIONS. 

LOGICAL UNIT TABLE (LUT) : 

THIS CONTAINS INFORMATION ABOUT THE TASK'S LOGICAL UNIT 
ASSIGNMENTS. THE FIRST WORD IS THE NUMBER OF ENTRIES 
IN THE TABLE. THE REST OF THE LUT CONTAINS TWO WORDS PER ENTRY: 

W0.00 PUD ADDRESS OF DEVICE TO WHICH LUN IS ASSIGNED 
W0.01 OPEN FILE INFORMATION (USED BY ACP TASK) 

ATTACHMENT DESCRIPTOR BLOCKS: 

THESE CONTAIN INFORMATION ABOUT REGIONS TO WHICH THE TASK IS 
ATTACHED. THERE ARE TWO WORDS FOR EACH POSSIBLE REGION: 

WD.00 RDL ADDRESS OF ATTACHED REGION 
WD.01 LO BYTE - FLAGS 

HI BYTE - RESERVED 

THE FLAG BITS ARE: 

DEF IN$ RF.RED,001 TASK HAS READ ACCESS 
DEF IN$ RF.WRT,002 TASK HAS WRITE ACCESS 
DEF IN$ RF.EXT,004 TASK HAS EXTEND ACCESS 
DEF IN$ RF.DEL,010 TASK HAS DELETE ACCESS 
DEF IN$ RF.XDT,020 TASK NOT ALLOWED TO DETACH 
DEF IN$ RF.ITA,040 ATTACH DONE AT INSTALL TIME 

ALL OTHER BITS RESERVED 

FLOATING POINT SAVE AREA: 

THIS 25 WORD AREA IS USED TO STORE THE TASK'S FLOATING POINT 
CONTEXT, IF IT WAS SPECIFIED AT BUILD TIME THAT THE TASK USES 

Example C-2 Cont'd on next page 

C-8 



TASK IMAGE FILE STRUCTURE 

Example C-2 (Cont.) Task Header Fixed Part 

THE FPll FLOATING POINT UNIT. THE FIRST WORD CONTAINS THE 
SAVED FP STATUS WORD. THE REMAINING 24 WORDS CONTAINS EACH 
OF THE 6 64-BIT FLOATING POINT REGISTERS. 

Supervisor mode APR save area: 

Allocated by TKB when the task maps to supervisor mode libraries. The 
task's supervisor mode PAR's and PDR's are stored here during a context 
switch. This area is 8.*4 words (64. bytes) in length. 

TASK ACCOUNTING AREA: 

(NOT YET DEFINED) 

.MACRO HDRSY$ GBL 

.ENDM HDRSY$ 

.ENDM HDRSY$ 

.MACRO LBLSY$ GBL 

.MCALL DEFIN$ 

.IF IDN,<GBL>,<DEF$G> 

... GBL=l 

.!FF 

.•• GBL=O 

.ENDC 

DEF IN$ 
DEFIN$ 
DEF IN$ 
DEF IN$ 
DEF IN$ 
DEF IN$ 
DEF IN$ 
DEF IN$ 
DEF IN$ 
DEF IN$ 
DEF IN$ 
DEF IN$ 
DEF IN$ 
DEF IN$ 
DEF IN$ 
DEFIN$ 
DEF IN$ 
DEF IN$ 
DEF IN$ 
DEF IN$ 
DEF IN$ 

L$BTSK,O ; TASK NAME (RADSO) 
L$BPAR,4 ; DEFAULT PARTITION (RADSO) 
L$BFLG,10 TASK FLAGS WORD 
L$BPRI,12 
L$BLDZ,14 
L$BMXZ,16 
L$BPOL,20 
L$BPIC,22 
L$BDAT,24 
L$BLIB,32 
L$BHRB,212 
L$BAPR,214 
L$BEXT,216 
L$BUIC,220 
L$BROZ,222 
L$BR00,224 
L$BROB,226 
L$BPAZ,230 
L$BHSZ,232 
L$BAPM,234 

DEFAULT PRIORITY 
LOAD SIZE (32-WD BLOCKS) 
INITIAL SPACE ALLOCATION (32-WD BLOCKS) 
NODE POOL LIMIT 
LIBRARY FLAGS WORD 
CREATION DATE 
RESIDENT LIBRARY REQUESTS (56. WORDS) 

HEADER BLOCK NUMBER 
STARTING APR (LIBRARY) 
DEFAULT TASK EXTENSION 
DEFAULT UIC 
READ-ONLY AREA SIZE (BYTES) 
DISK OFFSET OF RO AREA 
START ADDRESS OF RO AREA 
TOTAL RO REGION SIZE (32-WD BLOCKS) 
HEADER SIZE (32-WD BLOCKS) 
APR USAGE BITMAP 

L$BASG,l000 ; LON ASSIGMENT INFORMATION 

Example C-2 Cont'd on next page 

C-9 



TASK IMAGE FILE STRUCTURE 

Example C-2 (Cont.) Task Header Fixed Part 

************************* 
DEFIN$ L$BXLN,26 ; 8.*<1$BLIB-L$BPAR> - Length of extra 

; library descriptors (used only when 
; linking to a supervisor mode library 
************************* 

FLAG BITS DEFINITIONS 

DEF!N$ LD$ACC,100000 
DEFIN$ LD$RSV,040000 
DEFIN$ LD$CLS,020000 
DEFIN$ LD$SCL,000200 
DEFIN$ LD$SUP,000010 
DEFIN$ LD$REL,000004 
DEFIN$ LD$TYP,000002 
DEFIN$ LD$DEF,000001 
DEFIN$ LD$AMK,000060 

DEFIN$ LF$PIC,000001 
DEFIN$ LF$NHD,000002 
DEFIN$ LF$FP ,000004 
DEFIN$ LF$RO ,000010 
DEFIN$ LF$SUP,000020 
DEFIN$ LF$SLB,000040 
.MACRO LBLSY$ GBL 
.ENDM 

.ENDM LBLSY$ 

l\l"'l"''C'C!C! 'D'C'l"ITT'C'a'T' 11 ...,'DTJ n~'Dl"I\ .5A __ ....,__ ..,,...,.li'_....,...,.., \..,-..,,. .. ,I v-,.,.._, I 

APR RESERVATION FLAG 
Library is part of a cluster 
Saved cluster attribute 
Supervisor mode library 
PIC INDICATOR (l=YES) 
BLOCK TYPE (O=COM, l=LIB) 
BLOCK DEFINED (l=YES) 
APR mask bits 

LIB IS POSITION INDEPENDENT 
TASK HAS HEADER (l=NO) 
TASK HAS FP SAVE AREA (l=YES) 
TASK HAS RESIDENT OVERLAYS (l=YES) 
Task linked to supervisor library 
Task is a supervisor mode library 

C.3 Low Memory Pointers 
Several locations at the beginning of a task's virtual address space are reserved for system 
dependent information. These locations are as follows: 

Address 
(Vlrtual} 

0 $DSW 

2 . FSRPT 

4 $0TSV 

6 N.OVPT 

10 $VEXT 

Usage 

Directive Status Word. The Executive returns the completion code in this word for 
every system directive issued by the task . 

File Control Services work area and buffer pointer. 

FORTRAN OTS work area pointer (that is, address of $0TSVA). 

Overlay Run Time system work area pointer. 

Vector extension area pointer. 

The last four of these locations contain addresses of work areas. These addresses are needed to 
provide re-entrancy capability to the associated system routines when these routines are placed in 
Shareable Global Areas. 

Note that it is possible for a task to destroy these pointers if a stack overflow occurs. 

The vector extension pointer ($VEXT) points to the vector extension area which contains addresses 
of impure work areas in the task. 

C-10 



TASK IMAGE FILE STRUCTURE 

Figure C-2 illustrates the format of the vector extension area. Each location within this region 
contains the address of an impure storage area that is referred to by subroutines; these subroutines 
must be re-entrant. Addresses below $VEXTA, referred to by negative offsets, are reserved for 
DIGITAL applications. Addresses above $VEXTA, referred to by positive offsets, are allocated for 
user applications. 

Figure C-2 Vector Extension Area Format 

$VEXT ~1 
• • 
• • • 

.PSECT $$VEXO } Reserved for 
Digital use 

~ 

$ VEXTA .PSECT $$VEX1 } Reserved for 
user applications 

The program sections $$VEXO and $$VEX1 have the attributes D, GBL, RW, REL, and OVR. 

The program section attribute OVR facilitates the definition of the offset to the vector and the 
initialization of the vector location at link time. For example: 

.GLOBL $VEXTA MAKE SURE VECTOR AREA IS LINKED 

.PSECT $$VEX1,D,GBL,RO,REL,OVR 

BEG=. POINT TO BASE OF POINTER TABLE 

.BLKW N 

LABEL: . WORD IMPURE 

OFFSET==LABEL-BEG 

.PSECT 

IMPURE: 

OFFSET TO CORRECT LOCATION 
IN VECTOR AREA 

SET IMPURE AREA ADDRESS 
DEFINE OFFSET 

You should centralize all offset definitions within a single module from which the actual vector 
space allocation is made. Also, you should conditionalize the source to create two object modules: 
one that reserves the vector storage and, one that defines the global offsets which will be referred 
to by your resident library's subroutines. 

C-11 



TASK IMAGE FILE STRUCTURE 

Note that the sequence of instructions above intentionally redefines the global symbol. The Task 
Builder will report an error if this value differs from the centralized definition. 

You can locate your vector through a sequence of instructions similar to the following: 

MOV @#VEXT,RO 

MOV OFFSET(RO),RO 

.END 

C.4 Task R/W Root Segment 

GET ADDRESS OF VECTOR EXTENSIONS 

POINT TO IMPURE AREA 

The low memory pointers, stack space and all WW p-sections of the task root segment are 
concatenated by the Task Builder to form the WW part of the root segment. 

C.5 READ/WRITE Overlays 
Each read/write overlay segment (whether resident or not) is aligned on a disk block boundary. 

C.6 READ-ONLY Region 
All read-only code, including the task pure area and any read-only resident overlays, is placed 
last in the task image file, starting on a disk block boundary. Each overlay starts on a 32-word 
boundary so that it can be mapped by the Memory Management Directives. Read-only resident 
overlays are not aligned to start on disk block boundaries, since thay are all loaded at the same 
time. 

C. 7 Segment Table 
) The Segment Table contains a segment descriptor for every segment in the task. The segment 
descriptor is formatted as shown in Figure C-3. If the autoload method is used, the segment 
descriptor is six words in length. The table occupies a separate p-section called $$SGD1. A task 
may obtain the base and end addresses of the table as follows: 

SEGTBL: .PSECT $$SGDO,OVR,D 
SEGEND: .PSECT $$SGD2,0VR,D 

Thie -will tle:fi!!e the SY!!!bol 'SEGTBL' to t.he h~u:ie AddTP.RR of the segment table and 'SEGEND' 
to the first address beyond the segment table. If the manual load method is used, the segment 
descriptors are expanded to be eight words in length to include the segment names. If any overlays 
are resident, the descriptors are expanded to nine words to include the window pointers. 

The offset names used below may be defined using the macro SEGDF$, which is defined in the 
system macro library. The optional argument 'DEF$G' may be used to make the definitions 
global. 

C-12 



C.7.1 

Figure C-3 Segment Descriptor 

WORD 15 

T$RBLK O 

T$RLDA 

T$RLNG 2 

T$RUP 3 

T$RDWN 4 

T$RNXT 5 

T$RNME 6 

7 

STATUS 

12 11 

REL. DISK ADDRESS 

LOAD ADDRESS 

LENGTH IN BYTES 

LINK UP 

LINK DOWN 

LINK NEXT 

SEGMENT 

NAME 

0 

T$RWOP 8 -' ___ wi_N_oo_w_D_E_sc_R_IPr_o_R_AD_D_R_E_ss ___ _ 

Status 

TASK IMAGE FILE STRUCTURE 

FIXED 
PART 

The status bits are used in the autoload method to determine if an overlay is in memory, that is: 

C-13 



C.7.2 

C.7.3 

C.7.4 

C.7.5 

C.7.6 

C.7.7 

TASK IMAGE FILE STRUCTURE 

bit 12 

o- segment is in memory. 

1 .... segment is not in memory. 

bit 13 

o- segment is not loaded 

1 - segment is loaded 

bit 14 

o- segment has disk allocation 

1 = segment has no disk allocation (/NODSK) 

bit 15 

1 - {fixed setting) 

Relative Disk Address 
Each segment begins on a block boundary and occupies a contiguous disk area to allow an overlay 
to be loaded by a single device access. The relative disk address is the relative block number of the 
overlay segment from the start of the task image. The maximum relative block number can not 
exceed 4096 since twelve bits are allocated for the relative disk address. 

Load Address 
The load address contains the address into which the loading of the overlay segment starts. 

Segment Length 
Segment length The segment length contains the length of the overlay segment in bytes and is 
used to construct the disk read. 

Link-Up 
The link-up is a pointer to a segment descriptor away from the root. 

Link-Down 
The link-down is a pointer to a segment descriptor nearer the root. 

Link-Next 
The link-next is a pointer to the adjoining segment descriptor. When a segment is loaded, the 
loading routine follows the link-next to determine if a segment in memory is being overlaid and 
should therefore be marked out-of-memory. 

The link-next pointers are linked in a circular fashion: 

C-14 



C.7.8 

C.7.9 

Consider the tree: 

Al 
I 

A21 
I 

I 
f ------

AO 

A22, 

I 

The segment descriptors are linked in the following way: 

A21 A21 A22 A22 

t, ~~ A2 
Al Al A2 

l, ~~ AO 
LINK UP AO 

LINK DOWN 

TASK IMAGE FILE STRUCTURE 

~ 
A21 ~A22 

Al 
~ 

A2 
~ 

R 
LINK NEXT 

If there is a co-tree, the link-next of the segment descriptor for the root points to the segment 
descriptor for the root segment of the co-tree. 

Segment Name 
This field contains the 2-word radix-50 segment name. It is present only if the global symbol 
$LOAD is defined or referenced in the task. 

Window Descriptor Address 
This field contains the address of the window descriptor for this overlay. It is present only if the 
task contains resident overlays. 

C.8 Autoload Vectors 
Autoload vectors appear in every segment that references autoload entry points in segments that 
are farther from the root than the referencing segment. 

The autoload vector table consists of one entry per autoload entry point in the form shown in 
Figure C-4. 

C-15 



C.8.1 

TASK IMAGE FILE STRUCTURE 

Figure C-4 Autoload Vector Entry 

JSR PC 

$AUTO 

Segment descriptor address 

Entry point address 

Figure C-5 Window Descriptor 

WORD 

0 BASE APR l WINDOW 

VIRTUAL BASE ADDRESS 

ID 

1 

2 

3 

4 

WINDOW SIZE IN 64-BYTE BLOCKS 

5 

6 

7 

8 

REGION ID 

OFFSET IN PARTITION 

LENGTH TO MAP 

STATUS WORD 

SEND/RECEIVE BUFFER ADDRESS (0) 

FLAGS WORD 

9 ADDRESS OF REGION DESCRIPTOR 

Window Descriptor 
Window descriptors are allocated only if a structure containing memory-resident overlays is 
defined. Window descriptors are shown in Figure C-5. 

Words 0 through 7 constitute a window descriptor in the format required by the mapping 
directives. The region ID is set by TKB unless the memory-resident overlay is part of a shared 
global area. 

Words 8 and 9 contain additional data that is referenced by the overlay routines. Bit 15 of the 
flag's word, if set, indicates that the window is currently mapped into the task's address space. 
Word 9 contains the address of the associated region descriptor. 

C-16 



C.8.2 

TASK IMAGE FILE STRUCTURE 

If the memory-resident overlay is not part of a shareable global area, this value is zero. 

Region Descriptor 
The Region Descriptor is allocated only when the memory-resident overlay structure is part of a 
shared region. Region descriptors are shown in Figure C-6. 

Figure C-6 Region Descriptor 

WORD 

0 

1 

2 

3 

4 

5 

6 

7 

8 

REGION ID 

SIZE OF REGION 

REGION 

NAME 

REGION 

PARTITION 

REGION STATUS 

PROTECTION CODES (ALWAYS 

FLAGS 

0) 

Words 0 through 7 constitute a region descriptor in the format required by the mapping directives. 
The flag's word is referenced by the overlay load routine. Bit 15 of the flag's word, when set, 
indicates that a valid region identification is in word 0. If this bit is clear, the overlay load routine 
issues an Attach Region directive (with protection code set to zero) to obtain the identification. 

C-17 



D RESERVEDSYMBOLS 

Several global symbol and p-section names are reserved fur use by the Task Builder. Special 
handling occurs when a definition of one of these names is encountered in a task image. This 
happens, for example, when a system library module containing the definition is built into a task 
for a particular purpose. 

The definition of a reserved global symbol in the root segment causes a word in the Task Image 
to be modified with a value calculated by the Task Builder. The relocated value of the symbol is 
taken as the modification address. 

The following global symbols are reserved by the Task Builder: 

Table D-1 

Global 
Symbol 

.MOLUN 

.NIOST 

.NLUNS 

. NOVLY 

. NSTBL 

. TRLUN 

. ODTL1 

. ODTL2 

$0TSV 

. PILUN 

Reserved Global Symbols 

Modification Value 

Error message output device. 

Two word 1/0 status block containing the results of the load overlay request. 

The number of logical units explicitly used by the task, not including the Message Output and 
Overlay units. 

The overlay logical unit number . 

Reserved . 

The trace subroutine output logical unit number . 

Logical unit number for the ODT terminal 1/0 device . 

Logicai unit number for the ODT listing device . 

The address in low memory of the FORTRAN OTS work area ($0TSVA defined by the 
FORTRAN OTS). 

location containing LUN for communication with the Timesharing Control Primitives . 

The definition of one of the following reserved p-sections causes the task builder to extend that 
p-section if the appropriate option input is specified (see Chapter 5, Section "EXTSCT"). 

Table D-2 Reserved P-sections 

Section 
Name 

$$DEVT 

$$FSR1 

$$1081 

Extension Length 

The extension length (in bytes) is calculated from the formula 

EXT"" <S.FDB+52>*UNITS 

where the definition of S.FDB is obtained from the root segment symbol table and UNITS is the 
number of logical units used by the task, excluding the Message Output, Overlay, and ODT units. 

The extension of this section is specified by the ACTFIL option input. 

The extension of this section is specified by the MAXBUF option input. 

D-1 



RESERVED SYMBOLS 

Table D-2 (Cont.) Reserved P-sections 

Section 
Name 

$$0BF1 

Extension Length 

FORTRAN OTS uses this area to parse array type format specifications. May be extended by 
FMTBUF keyword. 

The following p-section names and symbols are also reserved: 

Table D-3 Reserved P-sections and Symbols 

Section Name 
or Symbol Contents 

$$ALVC P-section containing the auto load vectors. Exists in every segment of an overlaid task. 

$$FSR2 Contains the first free location after the file storage region p-section $$FSR1. 

$$RESL P-section of the system resident library SYSRES. 

$$RESM P-section of the system resident library SYSRES. 

$$RGDS Contains region descriptions for overlaid shareable global areas. 

$$RTS P-section containing the RETURN instruction used when referencing segments with the GBL 
attribute. 

$$SGDO Defines the start of the segment table p-section $$SGD1 . 

$$SGD1 P-section containing the segment table (see Appendix C, Section C.7.) 

$$SGD2 Contains the first free location after $$SGD1. 

$$WNDS Contains window descriptions for resident overlays. 

$$$0DT P-section containing the system debugging aid. 

D-2 



E INCLUDING A DEBUGGING AID 

To include a program which controls the execution of a task, you name the appropriate object 
module as an input file and apply the /DEBUG PDS qualifier (/DA MCR switch). 

When a debugging aid program is input, the Task Builder causes control to be passed to the 
program when the task execution is initiated. 

Such control programs might trace a task, printing out relevant debugging information, or monitor 
the task's performance for analysis. 

The switch has the following effect: 

1 The transfer address in the debugging aid ovenides the task transfer address. 

2 On initial task load, the following registers have the indicated value: 

RO - Transfer address of task 
Rl - Task name in Radix-50 format (word #1) 
R2 - Task name (word #2) 

The following points must be taken into consideration when using debugging aids on a task 
(particularly ODT): 

1 Breakpoints cannot be set in R-0 p-sections. If such program sections are to be debugged, the 
task should be re-linked with the /READ_ WRITE PDS qualifier (/RW MCR switch). 

2 Care must be used if setting breakpoints in overlay branches. 

3 Control always passes to $ALBP2 immediately before returning to the users program after an 
autoload of an overlay. 

Examples: 

1. PDS> LINK/DEBUG/READ_WRITE FAULTY 

or 

MCR> TKB 
TKB> FAULTY/DA/RW=FAULTY 
TKB>/ 
ENTER OPTIONS: 
TKB> SGA=SYSRES:RO 
TKB>// 

Use the default debugging and ODT, to debug task, including 
its read-only areas. 

2. PDS> LINK/DEBUG:[l,l]DDT/SYMBOLS/READ_WRITE BADPRG 

or 

MCR> TKB 
TKB> BADPRG/RW,,BADPRG=BADPRG, [1,l]DDT/DA 
TKB>/ 
ENTER OPTIONS: 
TKB> SGA=SYSRES:RO 
TKB>// 

E-1 



INCLUDING A DEBUGGING AID 

E-2 

Use the debugging aid [1,l]DDT to debug task, including its 
read-only areas, also create a task symbol table to be used 
during the debugging dialogue. 



F IMPROVING TASK BUILDER PERFORMANCE 

This appendix contains procedures and suggestions to assist in maximizing Task Builder 
performance. Procedures are given for: 

1 Evaluating and improving Task Builder throughput 

2 Modifying command switch defaults to provide a more efficient user interface 

The procedures given here may require relinking the Task Builder. Modifications to the Task 
Builder build file imply using one or more of the following files located under UFD [11,11]: 

TKBBLD.CMD 
SLOTKBBLD.CMD 

These files are on the object distribution medium, together with the library and ODL files required 
for building TKB. 

F.1 Evaluating and Improving Task Builder Performance 

F.1.1 

'Task Builder throughput is determined by two factors: 

1 The amount of memory available for table storage 

2 The amount of disk latency due to input file processing 

The discussion in the following paragraphs outlines methods for improving throughput in these 
two cases. The methods approach their goals through judicious use of system resources and Task 
Builder features. 

Table Storage 
The principal factor governing Task Builder performance is the amount of memory available for 
table storage. To reduce memory requirements, a work file is used to store symbol definitions 
and other tables. As long as the size of these tables is within the limits of available memory, the 
contents of this file are kept in core and the disk is not accessed. If the tables exceed this limit, 
some information must be displaced and moved to the disk, degrading performance accordingly. 

Work file performance can be gauged by consulting the statistics portion of the Task Builder Map. 
The following parameters are displayed: 

Number of work file references: 

Total number of times that work file data was referenced. 

Work file reads: 

Number of work file references that resulted in disk accesses to read work file data. 

Work file writes: 

Number of work file references that resulted in disk accesses to write work file data. 

Size of core pool: 

F-1 



IMPROVING TASK BUILDER PERFORMANCE 

amount of in-core table storage in words. this value is also expressed in units of 256-word pages 
(information is read from and written to disk in blocks of 256 words). 

Size of work file: 

Amount of work file storage in words. If this value is less than the core pool size, the number of 
work file reads and writes is zero. That is, no work file pages are removed to the disk. This value 
is also expressed in pages (256-word blocks). 

Elapsed time: 

Amount ot time required to buiid the task image, and output the map. '!'his vaiue exciudes odi 
processing, option processing, and the time required to produce the global cross-reference. 

The overhead for accessing the work file can be reduced in one or more of the following ways: 

1 By increasing the amount of memory available for table storage 

2 By placing the work file on the fastest random access device 

3 By decreasing system overhead required to access the file 

4 By reducing the number of work file references 

The task builder extends itself as necessary (using the EXTK$ directive) up to the limit set by the 
MAXEXT option when the task builder is linked or by the SET EXTENDED_TASK.....SIZE PDS 
command or the SET /MAXEXT MCR command. 

As distributed, the maximum extension for the task builder is 2000 (the default value). 

The work file resides on the device WKO. It may be possible to improve performance by redirecting 
this device to a faster disk at System Generation or system startup. 

System overhead for work file accesses is incurred in translating a relative block number in the 
file to a physical disk address. To minimize this overhead, the Task Builder requests disk space 
in contiguous increments. The size of each increment is equal to the value of symbol W$KEXT 
defined in the Task Builder build file. A larger positive value causes the file to be extended in 
larger contiguous increments and reduces the overhead required to access the file. 

The increment should be set to a reasonable value because the Task Builder resorts to 
noncontiguous allocation whenever contiguous allocation fails. 

The size of the work file can be reduced by: 

1 Linking the user's task to a core-resident library containing commonly used routines (for 
example, FORTRAN Object Time System) whenever possible. 

2 Including common modules, such as components of an object time system, in the root segment 
of an overlaid task. 

3 Reducing to one the number of times the library and symbol definition modules appear in the 
task, by moving them nearer the root. 

4 Using the /SELECT qualifier on symbol table files that describe absolute symbol definitions. 

5 Using an object library or file of concatenated object modules if many modules are to be linked. 

In the last two cases, system overhead is also significantly reduced because fewer files must be 
opened to process the same number of modules. 

F-2 



F.1.2 

IMPROVING TASK BUILDER PERFORMANCE 

The number of work file references can be reduced by eliminating unnecessary output files and 
cross-reference processing, or by obtaining the short map. In addition, selected files such as the 
default system object module library, can usually be excluded from the map using the /NOMAP 
qualifier. In this case, a full map can be obtained at less frequent intervals and retained. 

The following procedures summarize the above suggestions for improving work file performance: 

1 Use the MAXEXT option so that the t.a.sk builder can extend automatically to obtain more table 
space. 

2 Reduce disk latency by placing the work file on the fastest random access device. 

3 Reduce system overhead by modifying the command file to allocate work file space in larger 
contiguous increments. 

4 Decrease work file size by using resident libraries, concatenated object files, and object 
libraries. 

5 Decrease work file size by moving common modules into the root segment of an overlaid task. 

6 Decrease the number of work file references by eliminating the map and global cross-reference, 
obtaining the short map, or excluding files from the map. 

Input File Processing 
The suggestions for minimizing the size of the work file and number of work file accesses also 
drastically reduce the amount of input file processing. 

A given module can be read up to four times when building the task: 

1 'lb build the symbol table 

2 'lb produce the task image 

3 'lb produce the long map 

4 'lb produce the global cross-reference 

Files that are excluded from the long map are read only twice. The third and fourth passes 
are completely eliminated for all modules when a short map is requested without a global 
cross-reference. 

F.2 Modifying Command Level Defaults 
The task builder contains internal switches which represent the default characteristics which 
it applies to a task when qualifiers (PDS) or switches (MCR) are not included in the command. 
The defaults in the released version of the Task Builder may not suit the requirements of all 
installations. For example, the default /FLOATING_POINT (/FP) (Floating Point Processor) would 
be unsatisfactory at an installation that did not have this hardware. 

The user can tailor many of the defaults by altering the contents of the words that contain initial 
switch states. Modifying the Task Builder in this way is a three-step process as follows: 

1 Consult the tables below to determine the switch word and bit to be altered. 

2 Edit the appropriate Task Builder command file to include the switch word modification 
through a GBLPAT option referencing the global symbol switch word name. 

3 Relink the Task Builder using the modified command file. 

F-3 



IMPROVING TASK BUILDER PERFORMANCE 

The command files for system tasks as provided with the released system require the standard set 
of Task Builder defaults; therefore, it is necessary to retain and use an unmodified copy of the Task 
Builder whenever such tasks are relinked. 

The tables given are used to alter the defaults as follows: 

1 Identify the qualifier (PDS) or command switch (MCR) and, if using MCR, the file to which it 
applies. 

2 If using MCR, consult the file entry in each table to locate the applicable switch words. 

3 Scan the entries untii the switch mnemonic is found. Only those switches which may be 
changed are included in the tables. 

4 OR the desired state of the associated bit with the initial contents to obtain the new set of 
defaults. 

5 Supply the revised value and switch word name as arguments in a GBLPAT option. The switch 
words are in the TASKB segment. 

6 Relink the Task Builder to produce a version containing the appropriate defaults. 

Example: 

To change the Task Builder Floating Point Processor default to /NOFLOATING_POINT (/-FP), the 
steps described below are performed. 

By consulting Table F-1 the user determines that two qualifier words, $DFSWT and 
$DFTSK contain task file qualifiers. Of these, $DFTSK contains the default setting for the 
/FLOATING_POINT (/FP) switch in bit 14. Setting this bit to 0 changes the initial state to 
/NOFLOATING_POINT (/-FP). This new value is combined with the initial contents to yield 
the revised setting 4040. The required keyword input is: 

OPTIONS? GBLPAT=TASKB:$DFTSK:4040 

or 

TKB>GBLPAT=TASKB:$DFTSK:4040 

Note: The state of bit positions not listed in the table must not be altered. 

F-4 



Table F-1 Task File Defaults 

For time-sharing systems only: 

File: Task File 

Switch Word: $DFSWT 

Initial Contents: 1 O 

Bit Settings: 

Bit Condition if Set to 1 

15 EXIT (XT) 

11 SEQUENTIAL (SQ) 

7 NORUN (-OR) 

4 FULL_ SEARCH (FU) 

3 NORES (-RO) 

2 REQUEST (SR) 

For time-sharing systems only: 

File: Task file 

Switch Word: $DFTSK 

Initial Contents: 44040 

Bit Settings: 

Bit Condition if Set to 1 

15 NOCHECKPOINT (-CP) 

14 FLOATING (FP) 

13 NOWAIT (-WN) 

12 NOHEADER (-HD) 

11 NOFIXABLE (-FX) 

10 DEBUG (DA) 

9 POSITION_INDEPENDENT (Pl) 

8 PRIVILEGED (PR) 

7 TRACE (TR) 

6 NOABORTABLE (-AB) 

5 FLUSH (FR) 

4 NORECEV (-SE) 

3 MULTIUSER (MU) 

2 NODISABLABLE (-OS) 

READ _WRITE (RW) 

IMPROVING TASK BUILDER PERFORMANCE 

Task Builder exits after errors 

Sequential .PSECT allocation 

No run-time system 

Full overlay tree search 

No resident overlays in task 

All send and request/resume accepted 

Not checkpointable 

Floating Point Processor 

No waiting for nodes 

No header 

Not fixable 

Debugging Aid 

Position-Independent 

Privileged 

Trace 

Not abortable 

Fiush receive queues on exit 

Cannot receive sent data 

Multiuser 

Cannot be disabled 

Read-only attribute ignored 

F-5 



IMPROVING TASK BUILDER PERFORMANCE 

Table F-2 Map Fiie Defaults 

F-6 

For time-sharing systems only: 

Fiie: Map file 

Switch Word: $DFLBS 

lnltlal Contents: 120000 

Bit Settings: 

Bit Condition If Set to 1 

15 NOFULL (-MA) 

For time-sharing systems only: 

Fiie: Map file 

Switch Word: $DFMAP 

Initial Contents: 2040 

Bit Settings: 

Bit Condition If Set to 1 

10 

6 

5 

NOFILES (SH) 

CROSS_REFERENCE(CR) 

WIDE (WI) 

NOUNDEFINED_REFERENCES 
(-UR) 

Do not include system library and STB files in map 

Short map 

CREF 

Wide format 

Do not print undefined references 



Table F-3 Symbol Table Fiie Defaults 

For time-sharing systems only: 

File: Symbol table 

Switch Word: $DFSTB 

Initial Contents: o 
Bit Settings: 

Bit Condition if Set to 1 

12 

9 

0 

NOHEADER (-HD) 

POSITION_INDEPENDENT (Pl) 

NOUNDEFINED _SYMBOLS (-UN) 

Table F-4 Input Fiie Defaults 

For time-sharing systems only: 

File: Input file 

Switch Word: $DFINP 

Initial Contents: 100 

Bit Settings: 

Bit Condition if Set to 1 

15 

6 

NOMAP (-MA) 

CONCATENATED (CC) 

F.3 The Slow Task Builder 

IMPROVING TASK BUILDER PERFORMANCE 

Build task without header 

Task is position-independent 

Do not reference undefined symbols 

Do not include file contents in map 

File may contain two or more concatenated object modules 

TKB.TSK uses a symbol table structure that can be searched quickly, but which requires more 
work file space than previous versions. If the message 

NO VIRTUAL MEMORY STORAGE AVAILABLE 

F-7 



IMPROVING TASK BUILDER PERFORMANCE 

is issued, the user should attempt to reduce work file size as described previously. Assuming these 
methods fail, another version of the Task Builder can be linked, which requires less storage but 
runs considerably slower. The build file is SLOTKBBLD.CMD, which resides on the same device 
and UFD as the other Task Builder command files. 

F-8 



IAS Task Builder Glossary 

AUTOLOAD: The method of loading overlay segments, in which the Overlay 
Runtime System automatically loads overlay segments when they are needed 
and handles any unsuccessful load requests. 

CO-TREE: An overlay tree whose segments, including the root segment, are made 
resident in memory through calls to the Overlay Runtime System. 

EXECUTIVE PRIVILEGED TASK: A task that has privileged memory access rights. 
An executive privileged task can access the Executive and the external page in 
addition to its own partition and referenced shareable global areas. 

GLOBAL SYMBOL: A symbol whose definition is know outside the defining module. 

MAIN TREE: An overlay tree whose root segment is loaded by the Executive when 
the task is made active. 

MANUAL LOAD: The method of loading overlay segments in which the user includes 
explicit calls in his routines to load overlays and handles unsuccessful load 
requests. 

MEMORY ALLOCATION FILE: The output file created by the Task Builder that 
describes the allocation of task memory. 

OVERLAY DESCRIPTION LANGUAGE: A language that describes the overlay 
structure of a task. 

OVERLAY RUNTIME SYSTEM: A set of subroutines linked as part of an overlaid 
task that are called to load segments into memory. 

OVERLAY SEGMENT: A segment that shares storage with other segments an is 
loaded when it is needed. 

OVERLAY STRUCTURE: A structure containing a main tree and optionally one or 
more co-trees. 

OVERLAY TREE: A tree structure consisting of a root segment and optionally one or 
more overlay segments. 

PATH: A route that is traced from one segment in the overlay tree to another 
segment in that tree. 

PATH-DOWN: A path toward the root of the tree. 

PATH-UP: A path away from the root of the tree. 

PATH-LOADING: The technique used by the autoload method to load all segments 
on the path between a calling segment an a called segment. 

Glossary-1 



IAS Task Builder Glossary 

Glossary-2 

P·SECTION: A section of memory that is a unit of the total allocation. A source 
program is translated into object modules that consist of p-sections with 
attributes describing access, allocation and relocatability. (See Chapter 6, 
Section 6.1.9 for a complete description). 

ROOT SEGMENT: The segment of an overlay tree that, once loaded, remains in 
memory during the execution of the task. 

RUNNABLE TASK: A task that has a header and stack and that can be installed 
and executed. 

SHAREABLE GLOBAL AREA: A code and/or data area which can be shared by 
many tasks. The area is resident only when one or more referencing tasks are 
active. An SGA is linked using the Task Builder. SGAs used by a task are linked 
to it using the Task Builder. See the IAS Executive Facilities Reference Manual 
for a full definition of SGAs. 

SEGMENT: A group of modules and/or p-section that occupy memory simultaneously 
and that can be loaded by a single disk access. 

SYMBOL DEFINITION FILE: The output file created by the Task Builder that 
contains the global symbol definitions and values in a format suitable for 
reprocessing by the Task Builder. Symbol definition files are used to link tasks 
to shareable global areas. 

TASK IMAGE FILE: The output file created by the Task Builder that contains the 
executable portion of the task. It may contain a task or a shareable global area. 



Index 

A 
ABORT command qualifier• 4-7 
ABS PAT 

default • 5-35 
ABSPAT option • 5-35 

syntax • 5-35 
ACTFIL option •5-13 

default • 5-13 
syntax • 5-13 

Allocation options • 5-1 
alloc option • 5-1 
alter option • 5-1 
ALVC option • 5-6 

syntax•S-6 
Argument list • 2-3 
ASG option • 5-32 

default • 5-32 
syntax • 5-32 

ATRG option• 5-14 
default • 5-14 
syntax • 5-14 

Autoload indicator• 8-1, 8-2, 8-3 
Autoioad method • 1-1 
Autoload method for overlays • 8-1 ~ 8-5 

autoload indicator• 8-1, 8-2, 8-3 
autoload vectors • 8-4, 8-5 
error handling • 8-8 
path-loading • 8-3, 8-4 

Autoload vectors• 8-4, 8-5, C-15 

B 
BASE option • 5-15 

default • 5-15 
syntax • 5-15 

c 
CHECKPOINT command qualifier• 4-8 
CMPRT option • 5-5 

default • 5-6 

CMPRT option (Cont.) 

syntax•S-6 
Command qualifier 

OVERLAY _DESCRIPTION • 4-28 
command qualifiers 

OPTIONS • 4-27 
Command qualifiers• 4-1 

ABORT•4-7 
CHECKPOINT• 4-8 
CONCATENATED• 4-9 
CROSS _REFERENCE • 4-10 
DEBUG•4-11 
DEFAULT_LIBRARY •4-12 
DISABLE• 4-13 
EXIT•4-14 
FIX•4-15 
FLOATING_POINT • 4-16 
FLUSH_RECEIVE_QUEUES • 4-17 
FULL_ SEARCH • 4-18 
HEADER • 4-19 
LARGE_SYMBOL_TABLE•4-20 
LIBRARY • 4-21, 4-22 
MAP• 4-23, 4-24, 4-25 
MULTIUSER• 4-26 
POSITION_INDEPENDENT • 4-29 
PRIVILEGED • 4-30 
READ_WRITE •4-31 
RECEIVE • 4-32 
REQUEST• 4-33 
RESIDENT_ OVERLAY • 4-34 
RUN_ TIME_ SYSTEM • 4-35 
SELECT• 4-36 
SEQUENTIAL• 4-37 
SYMBOLS• 4-38, 4-39 
TASK•4-40 
TRACE•4-41 
WAIT_FOR_NODES•4-42 

Command sequence • 3-7 
Command sequences 

MCR•3-1 
PDS•2-1 

Comment lines • 2--6, 3--6 
Completion routine 

linking • 10-5 
Completion routine option • 5-5 
Completion routines 

user-written • 10-18 

lndex-1 



Index 

Complex relocation• B-19, B-20 
Components of a file specification • 3-11 
CONCATENATED command qualifier• 4-9 
Content altering options• 5-1 
Control section • B-4 
Co-trees• 7-8, 7-14, 7-15, 7-17, C-15 
CROSS_REFERENCE command qualifier• 4-1 O 
CSM libraries 

completion routines for • 10-4 
context-switching vectors for • 10-4 

D 
DEBUG command qualifier• 4-11 
Debugging aid programs 

including • E-1 , E-2 
Default file types • 2-2 
DEFAULT_LIBRARY command qualifier• 4-12 
device option • 5-1 
Device specifying options • 5-1 
Directive Status Word • 6-2 
DISABLE command qualifier• 4-13 
Disk-resident overlay structure• 7-1, 7-2, 7....:3 
Double-slash 

encountered by Task Builder ,. 3-5 
DSW 

See Directive Status Word 

E 
End of global symbol directory • B-9 
End of module• B-21 
Entering source 

Ut"C. ":2_1 ... ....... . ""' . 
Entering the LINK command • 2-4 
Example task• 2-7 
Exclamation point operator• 7-11 
Executable task image • 1-1 , 2-2 
Executive privileged task • 6-8 
EXIT command qualifier• 4-14 
EXTSCT option • 5-16 

default • 5-16 
syntax • 5-16 

EXlTSK option • 5-17 
default• 5-17 
syntax • 5-1 7 

lndex-2 

F 
File qualifiers • 4-1 
File references 

nesting levels for • 2-4 
Files 

annotation of • 3-6 
Fils specification 

IAS conventions • 2-11 
File specification components 

optional • 3-12 
FIX command qualifier• 4-15 
FLOATING_POINT command qualifier• 4-16 
FLUSH_RECEIVE_ OUEUES command qualifier• 

4-17 
FMTBUF option •5-18 

default • 5-18 
syntax • 5-18 

FULL_ SEARCH command qualifier• 4-18 

G 
GBLDEF 

syntax• 5-36 
GBLDEF option • 5-36 

default • 5-36 
GBLINC option • 5-37 

default • 5-37 
syntax • 5-37 

GBLPAT option • 5-38 
default • 5-38 
syntax • 5-38 

GBLREF option • 5-39 
default • 5-39 
syntax • 5-39 

GBLXCL option • 5-40, 10-5 
default • 5-40 
syntax • 5-40 

Global additive displaced relocation • B-14 
Global additive relocation • B-14 
Global displaced relocation • B-13 
Global relocation • B-12 
Global symbol directory• B-1, B-2 
Global symbol name • 8-5, B-6 
Global symbols • 6-7 
GSD 

See global symbol directory 

See Global symbol directory 



H 
Header•C-5 
HEADER command qualifier• 4-19 

I 
IAS conventions 

file specifications • 2-6 
Identification options • 5-1 

interest• 5-4 
purpose • 5-4 
use of •5-4 

ident option • 5-1 
IDENT option •5-7 

default • 5-7 
syntax •5-7 

Impure area pointers • 6-2 
Indirect command file facility 

using •3-4 
Internal displaced relocation • B-13 
Internal relocation • B-12 
Internal symbol directory • B-21 
Internal symbol name • 8-4 
Introduction to TKB • 1-1 

L 
Label block details • C-3, C-4 
Label block group • C-2, C-3 
LARGE_ SYMBOL_ TABLE command qualifier· 4-20 
LIBRARY command qualifier • 4-21, 4-22 
LINK command 

command qualifiers to • 2-3 
/OPTIONS qualifier • 2-3 
parameters • 2-2 
qualifiers • 4-1 

LINK command sequence 
example of • 10-6 

Link-down• C-14 
Linking libraries • 10-17 
Link-next • C-14, C-15 
Link-up • C-14 
Load address • C-14 
Loading disk-resident overlays • 8-1 

Index 

Loading from the task image file using the 010 
directive • 8-17 

Loading memory-resident overlayd • 8-1 
Loading methods for overlays • 8-1 
Location counter definition• B-15 
Location counter modification • B-15 
Low memory pointers • C-i 0, C-i; 

M 
Manual load method • 1-2 
Manual load method for overlays • 8-1, 8-6 

calling sequence • 8-6 
error handling • 8-8 
using in a FORTRAN program • 8-7, 8-8 

MAP command qualifier• 4-23, 4-24, 4-25 
Mapped array declaration • B-8 
MAXBUF option •5-19 

default • 5-19 
syntax • 5-19 

MAXEXT option • 5-20 
default• 5-20 
format • 5-20 

MCR switches • 4-2 
Memory allocation file• 1-1, 6-9, 6-13, 6-15, f:r-16 
Memory-resident overlays 

with Shared Global Areas• 9-18, 9-19, 9-20 
Memory-resident overlay structure• 7-3, 7-4 
Mode-switching • 10-4 
Mode-switching vectors 

user-written• 10-18 
Modification description 

specifications • 5-1 
Module name • B-3 
Multiline format• 3-2 
Multiple tree structures• 7-8, 7-14, 7-15 
MULTIUSER command qualifier• 4-26 

0 
Object modules • B-1 

complex relocation • 8-19, B-20 
control section• 8-4 
end of global symbol directory• B-9 
end of module • B-21 
global additive displaced relocation • B-14 
global additive relocation • B-14 
global displaced relocation • B-13 

lndex-3 



Index 

Object modules (Cont.) 

global relocation • 8-12 
global symbol directory• B-1, B-2 
global symbol name • 8-5, ~ 
internal displaced relocation • B-13 
internal relocation• B-12 
internal symbol directory• B-21 
internal symbol name • B-4 
location counter definition • 8-15 
location counter modification • B-15 
mapped array declaration • 8-8 
module name • er-3 
program limits• 8-16 
program version identification • 8-8 
progrm limits • B-16 
P-section • ~. 8-7 
P-section additive displaced relocation • 8-18, 

8-19 
P-section additive relocation •B-17, B-18 
P-section displaced relocation • B-17 
P-section relocation • B-16 
relocation directory• B-9, 8-10, B-11 
shareable global area additive relocation • 8-20 
text information • B-9 
transfer address • 8-5 

ODL 

See Overlay Description language 
ODTV option • 5-43 

default• 5-43 
syntax • 5-43 

Option 
format of • 2-3 

Optionai entry • 2-9 
Option arguments • 10-4 
Options • 3-2, 10-4 

argument lists for • 3-3 
interest range for• 5-1 
overriding • 5-S 
task builder • 5-1 

OPTIONS command qualifier • 4-27 
Output files 

restrictions • 3-2 
Overlay core image• 7-16, 7-17 
Overlay Description language• 7-1, 7-9, 7-10, 

7-11, 7-13, 7-35, 7-37 
creating files • 7-18 

Overlay directives 
.END• 7-9, 7-10 
.FCTR • 7-10, 7-11 
.NAME•7-11, 7-13 
.PSECT • 7-13, 8-5 
.ROOT• 7-9, 7-10, 7-13 

lndex-4 

Overlays 
memory resident • 6-3 

Overlay structures 
description of • 7-1 
disk resident• 7-1, 7-2, 7-3, 7-4 
memory resident• 7-3 
multiple tree structures• 7-13, 7-15 
overlay core images• 7-16, 7-17 
Overlay Description language• 7-9, 7-10, 7-11, 

7-13 
overlaying high-level-language programs• 7-17, 

7-18 
overlay tree• 7-4, 7-6, 7-7, 7-a, 7-9 

Overlay tree• 7-4, 7-6, 7-7, 7-8, 7-9 
OVERLAY _DESCRIPTION command qualifier• 4-28 

p 
PAR option • 5-8 

default • 5-8 
syntax• 5-8 

Path-loading • 8-3, 8-4 
POOL option • 5-21 

default • 5-21 
syntax• 5-21 

POSITION_INDEPENDENT command qualifier• 
4-29 

PRI option• 5-9 
default • 5-9 
syntax• 5-9 

PRIVILEGED command quaiifier • 4--30 
Program limits• 8-16 
Program section 

See P-section 
Program version identification • 8-8 
P-section • 6-3, 6-4, 6-5, 6-6, B-5, B-6, B-7 
P-section additive displaced relocation • B-18, B-19 
P-section additive relocation • B-17, B-18 
P-section displaced relocation • B-17 
P-section relocation • B-16 

R 
READ/WRITE overlays• C-12 
READ/WRITE task code (and data) • 6-2 
READ-ONLY region• C-12 
READ-ONLY task code (and data) • 6-3 
READ-WRITE task code (and data) • 6-3 



READ_WRITE command qualifiers• 4-31 
RECEIVE command qualifier• 4-32 
Referencing task 

building • 10-4 
Region descriptor • C-17 
Relative disk address • C-14 
Relocation directory " 8-9, 8-10, B-11 
REQUEST command qualifier • 4-33 
RESAPR option • 5--22 

default• 5--22 
syntax • 5--22 

Reserved symbols• D-1, D-2 
Resident library• 10-1 
RESIDENT_OVERLAY command qualifier •4-34 
RESSGA option • 5--27 

default • 5--27 
syntax • 5--27 

RESSUP option • 5--28, 1 ~ 
default• 5--28 
syntax • 5--28 

RETURN statement• 10-1 
RUN_TIME_SYSTEM command qualifier •4-35 

s 
Segment name • C-15 
Segment Table• C-12 
SELECT command qualifier• 4-36 
Sequence of commands 

entering • 3-4 
SEQUENTIAL command qualifier • 4-37 
SGA option • 5--29 

default • 5--29 
syntax • 5--29 

SGAs 
See Shareable Global Areas 

Shareable global area additive relocation • E?-20 
Shareable Global Areas 

absolute • 9-5, ~ 
and memory allocatin files • 9-18 
and memory allocation files• 9-8, 9-18 
and symbol definition files • 9-3 
and task image files • 9-3 
building•~. 9-7 
compared to library files • 9-4 
creating • 9-5 
linking a task to • 9-3 
location of on disk • 9-4 
modifying a task to use an SGA • 9-7, 9-8 

Shareable Global Areas (Cont.) 

position independent•~. 9-6 
sharing memory • 9-1, 9-2, 9-3 
summary of information about• ~1 
swapping • 9-2 
using an existing one • 9-4 

Index 

with memory-resident overlays • 9-18, 9-19, 9-20 
share option • 5--1 
Sharing options • 5--1 
Slash (/) • 2-4 
Source 

entering and filing • 3-8 
Source language 

entering and saving of • 2-7 
Stack•S-2 
STACK option • 5--23 

default • 5--23 
syntax • 5--23 

Standard debugging aid 
ODT•2-7 

Status• C-13, C-14 
Supervisor D-space APRs • 10-2 
Supervisor I-space AP Rs • 10-2 
Supervisor-mode libraries 

as conventional resident libraries • 10-17 
building• 10-2 
referencing • 10-2 
restrictions • 10-1 

Supervisor-mode library• 10-1 
restrictions on • 1 0-2 

SUPUB option • 5--30 
default • 5--30 
syntax • 5--30 

Switches 
MCR•4-2 
Task Builder • 4-3 

Switching from user to supervisor mode• 10-1 
Symbol @ • 3-4 
Symbol definition • 5--36 
Symbol definition files 

with Shareable Global Areas • 9-3 
SYMBOLS command qualifier• 4-38, 4-39 
/SYMBOLS. qualifier 

specification of • 2-2 
SYMPAT option• 5-41 

syntax • 5-41 
synch option • 5--1 
Synchronous trap options • 5--1 
Syntactic rules• 2-1 
SYSLIB completion routines• 10-1 
System memory 

lndex-5 



Index 

System memory (Cont.) 

allocating• 6--1, 6--7, 6--8, 6--9, 6--13, 6--15, 6--16 

T 
Taks image file • 6--9 
Task• 1-1 

errors from executing• 1-1 
errors from translating• 1-1 

Task builder 
improving performance• F-1, F-2, F-3, F-4, F-5, 

F-6, F-7, F-8 
Task Builder 

file specification requirements • 3-6 
nesting levels for file references • 3-5 
simplest use of• 3-1 

Task Builder assumptions• 1-1 
Task builder options 

categories of • 5-1 
Task Builder options 

interpretation and syntax • 2-3 
syntax and interpretation of • 3-3 

Task Builder switches• 4-3 
Task building command 

components of • 2-9 
task image file name specification • 3-9 

Task command line 
format of • 3-1 
requirements for • 3-1 

TASK command qualifier • 4-40 
Task header • 6-2 
Task image file 

default type for • 3-7 
Task image files 

with Shareable Global Areas • 9-3 
Task image file structure• C-1 

autoload vectors • C-15 
header•C-5 
label block details • C-3, C-4 
label block group • C-2, C-3 
link-down• C-14 

link-next • C-14, C-15 
link-up• C-14 
load address • C-14 
low memory pointers • C-10, C-11 
READ/WRITE overlays • C-12 
READ-ONLY region· C-12 
region descriptor .. C= 17 
relative disk address • C-14 
segment length• C-14 

lndex-6 

Task image file structure (Cont.) 

segment name • C-15 
Segment Table• C-12 
status• C-13, C-14 
task RIW root segment • C-12 
window descriptor • C-16 
window descriptor address • C-15 

Task memory 
allocating• 6--1, 6-2, 6-3, 6-4, 6-5, 6-6, 6-7 

TASK option • 5-10 
default • 5-10 

syntax• 5-10 
Task options • 2-3 
Task overlaying• 1-1 
Task R/W root segment• C-12 
Tasks 

mapping into memory• 1-1 
more than one to be built • 3-4 

Text information• 8-9 
TKB command line 

format• 3-2 
TKB command sequence 

example of • 10-6 
TOP option • 5-24 

default • 5-24 
syntax • 5-24 

TRACE command qualifier • 4-41 
Transfer address• 8-5 
TSKV option • 5-44 

default • 5-44 
syntax • 5-44 

TSUP • 10-14 
Typical applications 

running• 1-1 

u 
UIC option• 5-11 

default • 5-11 
syntax • 5-11 

UNITS option • 5-33 
default • 5-33 

syntax • 5-33 

v 
Vectors 

mode_switching • 10-1 



VSECT option • 5-25 
default • 5-25 
syntax • 5-25 

w 
WAIT _FOR_NODES command qualifier• 4-42 
Window descriptor • C-16 
Window descriptor address • C-15 

Index 

lndex-7 



I 

----------------- Do Not Tear - Fold Here and Tape ------------------------1 
I 

BUSINESS REPLY MAIL 
F!RST CLASS PERMIT NO 33 MA YNf>RD MASS 

POSTAGE WILL BE PAID BY ADDRESSEE 

IAS Engineering/Documentation 
Digital Equipment Corporation 
5 Wentworth Drive GSF /L20 
Hudson, NH 03051-4929 

Ill 11111II1 II 1111I1I1 •• • 111.1 .. 1.1 ••• 1 •• 11.1 •• 11 ••• 1 

No Postage 

Necessary 

if Mailed in the 

United States 

--------------------·Do Sot Tear - Fold Here ---------------------

I 
I 
I 
I 
I 



IAS 
Task Builder Reference Manual 

AA-2533E-TC 

Reader's 
Comments 

This form is for document comments only. Digital will use comments submitted on 
this form at the company's discretion. If you require a written reply and are eligible 
to receive one under Software Performance Report (SPR) service, submit your 
comments on an SPR form. 

Did you find this manual understandable, usable, and well organized? Please make suggestions for 

improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of user/reader that you most nearly represent: 

D Assembly language programmer 
D Higher-level language programmer 
D Occasional programmer (experienced) 
D User with little programming experience 
D Student programmer 
D Other (please specify) ______________________ _ 

Organization, ________________________________ _ 

Stree ___________________________________ __ 

City __________________ State ______ ,Zip Code, _____ _ 

or Country 


