IAS Task Builder
Reference Manual

Order Number: AA-2533E-TC

This manual introduces and describes the IAS Task Builder.

Operating System and Version: IAS Version 3.4

May 1990

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital
Equipment Corporation or its affiliated companies.

Copyright ©1990 by Digital Equipment Corporation
All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the user’s critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DDIF IAS VAX C

DEC MASSBUS VAXcluster
DEC/CMS PDP VAXstation
DEC/MMS PDT VMS
DECnet RSTS VR150/160
DECUS RSX vT
DECwindows ULTRIX

DECwrite UNIBUS ™
DIBOL VAX dliolilt]al1

This document was prepared using VAX DOCUMENT, Version 1.2

Contents

PREFACE Xv
CHAPTER 1 INTRODUCTION 1-1
CHAPTER 2 PDS COMMANDS 2-1

21 INTRODUCTION 2-1

2.2 PDS COMMANDS 2-1

‘ 221 LINK Command Formats 2-1
222 LINK Command 2-2

223 Multiple Line Input 2-3

224 Options 2-3

225 Indirect Command File Facility 2-4

226 Comments 2-6

227 File Specification 2-6

23 EXAMPLE: VERSION 1 OF CALC 2-7
2.3.1 Entering the Source Language 2-7

2.3.2 Compiling the FORTRAN Programs 2-8

233 Building the Task 2-9

24 SUMMARY OF SYNTAX RULES 2-9
241 Syntax Rules 2-10
CHAPTER3 MCR COMMANDS 3-1
3.1 INTRODUCTION 31
3.1.1 Task Command Line 3-1

3.1.2 Multiple Line Input 3-2

3.1.3 Options 3-2

3.1.4 Multiple Task Specification 34

Contents

3.1.5 Indirect Command File Facility 3-4

3.1.6 Comments 3-6

3.1.7 File Specification 3-6

3.2 EXAMPLE: VERSION 1 OF CALC 3-7
3.2.1 Entering the Source Language 3-8

322 Compiling the FORTRAN Programs 3-9

32,3 Building the Task 3-8

3.3 SUMMARY OF SYNTAX RULES 3-9
3.3.1 Syntax Rules 3-10
CHAPTER 4 QUALIFIERS AND SWITCHES 4-1
4.1 INTRODUCTION 4-1
4.2 PDS QUALIFIERS 4-1
4.2.1 Command Quaiifiers 4-1

4.2.2 Examples 4-1

4.3 MCR SWITCHES 4-2
4.3.1 Task Builder Switches 4-3

v

/ABORT (/AB)
/CHECKPOINT (/CP)
/CONCATENATED
/CROSS_REFERENCE (/CR)
/DEBUG[:FILESPEC] (/DA)
/DEFAULT_LIBRARY:FILESPEC (/DL)
/DISABLE (/DS)

JEXIT:N (/XT:N)

IFIX (/FX)

/FLOATING_POINT (/FP)
/FLUSH_RECEIVE_QUEUES (/FR)
/FULL_SEARCH (/FU)

/HEADER (HD)
/LARGE_SYMBOL_TABLE

/LIBRARY (/LB)

/MAP (/MA)

/MAP[:FILESPEC] OR /MAP:(FILESPEC/QUALIFIERS)

/MULTIUSER (/MU)

/OPTIONS

/OVERLAY_DESCRIPTION:FILESPEC (/MP)

/POSITION_INDEPENDENT (/PI)
/PRIVILEGED (/PR)

4-7

4-9
4-10
4-1
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-23
4-24
4-26
4-27
4-28
4-29
4-30

Contents

/READ_WRITE (/RW) 4-31
/RECEIVE (/SE) 4-32
/REQUEST (/SR) 4-33
/RESIDENT_OVERLAYS (/RO) 4-34
/RUN_TIME_SYSTEM (/OR) 4-35
ISELECT (/SS) 4-36
/SEQUENTIAL (/SQ) 4-37
/SYMBOLS[:FILESPEC] 4-38
/SYMBOLS:(FILESPEC[/NOJUNDEFINED_SYMBOLS)
(/UN) 4-39
ITASK[:FILESPEC] 4-40
/TRACE (/TR) 4-41
/WAIT_FOR_NODES (/WN) 4-42
CHAPTER 5 TASK BUILDER OPTIONS 5-1
5.1 IDENTIFICATION OPTIONS 54
CMPRT (COMPLETION ROUTINE) 5-5
ALVC (AUTO-LOAD VECTOR) 5-6
IDENT (TASK IDENTIFICATION) 5-7
PAR (PARTITION) 5-8
PRI (PRIORITY) 5-9
TASK (TASK NAME) 5-10
UIC (USER IDENTIFICATION CODE) 5-11
5.2 ALLOCATION OPTIONS 5-12
ACTFIL (NUMBER OF ACTIVE FILES) 5-13
ATRG (ATTACHMENT DESCRIPTORS) 5-14
BASE (BASE ADDRESS) 5-15
EXTSCT (PROGRAM SECTION EXTENSION) 5-16
EXTTSK (EXTEND TASK SPACE) 5-17
FMTBUF (FORMAT BUFFER SIZE) 5-18
MAXBUF (MAXIMUM RECORD BUFFER SIZE) 5-19
MAXEXT (MAXIMUM EXTENSION) 5-20
POOL (POOL LIMIT) 5-21
RESAPR (RESERVE APRS) 5-22
STACK (STACK SIZE) 5-23
TOP (TOP ADDRESS) 5-24
VSECT (VIRTUAL PROGRAM SECTION) 5-25
5.2.1 Example of Aliocation Options 5-26
5.3 STORAGE-SHARING OPTIONS 5-26
RESSGA (SHAREABLE GLOBAL AREA) 5-27
RESSUP (RESIDENT SUPERVISOR-MODE LIBRARY) 5-28
SGA (SHAREABLE GLOBAL AREA) 5-29

SUPLIB (SUPERVISOR-MODE LIBRARY) 5-30

Contents

5.3.1 Example of Storage Sharing Options 5-31
5.4 DEVICE SPECIFYING OPTIONS 5-31
ASG (DEVICE ASSIGNMENT) 5-32
UNITS (LOGICAL UNIT USAGE) 5-33
5.4.1 Example of Device Specifying Options 5-34
5.5 STORAGE ALTERING OPTIONS 5-34
ABSPAT (ABSOLUTE PATCH) 5-35
GBLDEF (GLOBAL SYMBOL DEFINITION) 5-36
GBLINC (INCLUDE GLOBAL SYMBOLS) 5-37
GBLPAT (GLOBAL RELATIVE PATCH) 5-38
GBLREF (GLOBAL SYMBOL REFERENCE) 5-39
GBLXCL (EXCLUDE GLOBAL SYMBOLS) 5-40
SYMPAT (SYMBOLIC PATCH) 5-41
5.5.1 Example of Storage Altering Options 5-42
5.6 SYNCHRONOQUS TRAP OPTIONS 5-42
ODTV (ODT SST VECTOR) 5-43
TSKV (TASK SST VECTOR) 5-44
5.7 EXAMPLE: CALC.TSK;2 5-45
5.7.1 Correcting the Errors in Program Logic 5-45
5.7.2 Bullding the Task 5-45
CHAPTER 6 MEMORY ALLOCATION 6-1
6.1 TASK MEMORY 6-1
6.1.1 Task Header 6-2
6.1.2 Directive Status Word (DSW) 6-2
6.1.3 Impure Area Pointers 6-2
6.1.4 Stack 6-2
6.1.5 Read/Write Task Code (and Data) 6-2
6.1.6 Task Extension 6-2
6.1.7 Resident Overlays 6-3
6.1.8 Read-Only Task Code (and Data) 6-3
6.1.9 Program Sections (P-sections) 6-3
6.1.10 Aliocation of P-sections 6-4
6.1.11 The Resolution of Giobai Symbois 6-7
6.2 SYSTEM MEMORY 6-7

vi

Contents

6.2.1 Executive Privileged Tasks 6-8

6.3 TASK IMAGE FILE 6-9
6.4 MEMORY Al L OCATION FILE 6-9
6.4.1 Contents of the Memory Allocation File 6-13

6.4.2 Control of Memory Allocation File Contents and Format _ 6-16

6.5 EXAMPLES: CALC;1 AND CALC;2 MAPS 6-17

R

CHAPTER 7 OVERLAY CAPABILITY 7-1
71 OVERLAY DESCRIPTION 7-1
7.1.1 Disk-Resident Overlay Structure 7-1

7.1.2 Memory-Resident Overlay Structure 7-3

7.1.3 Overlay Tree 7-4

7.1.4 Overlay Description Language (ODL) 7-9

715 Multiple Tree Structures 7-13

7.1.6 Overlay Core Image 7-16

71.7 Overlaying Programs Written in a High-level Language __ 7-17

7.2 EXAMPLE: CALC.TSK;3 7-18
7.2 Creating the ODL File 7-18

7.2.2 Building the Task 7-18

7.23 Memory Allocation File for CALC.TSK;3 7-19

7.3 EXAMPLE CALC.TSK;4 7-27
7.4 SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE 7-35
CHAPTER 8 LOADING MECHANISMS 81
8.1 AUTOLOAD 8-1
8.1.1 Autoload Indicator 8-1

8.1.2 Path-loading 8-3

8.1.3 Autoload Vectors 84

vii

Contents

8.14 Autoload Summary 8-5
8.2 MANUAL LOAD 8-6
8.2.1 Manual Load Calling Sequence 8-6
8.2.2 FORTRAN Subroutine for Manual Load Request 8-7
8.3 ERROR HANDLING 8-8
8.4 EXAMPLE: CALC.TSK;5 8-8
8.5 USING THE QIO DIRECTIVE TO LOAD FROM THE TASK IMAGE
FILE 8-17
CHAPTER 9 SHAREABLE GLOBAL AREAS 9-1
9.1 SUMMARY OF SGA INFORMATION 9-1
9.1.1 Sharing Memory 9-1
9.1.2 Location of SGAs on Disk 94
9.1.3 SGAs and Library Files 94
9.2 USING AN EXISTING SHAREABLE GLOBAL AREA 9-4
9.3 CREATING A SHAREABLE GLOBAL AREA 9-5
9.4 POSITION INDEPENDENT AND ABSOLUTE SHAREABLE GLOBAL
AREAS 9-5
9.5 EXAMPLE: CALC.TSK;6 BUILDING AND USING A SHAREABLE
GLOBAL AREA 9-6
9.5.1 Building the Shareable Global Area 9-6
9.5.2 Modifying the Task to Use the Shareable Global Area __ 9-7
9.5.3 The Memory Allocation Files 9-8
9.5.4 Shared Global Areas with Memory-Resident Overlays ____ 9-18

viii

Contents

CHAPTER 10 SUPERVISOR-MODE LIBRARIES 10-1
10.1 INTRODUCTION 10-1
10.2 MODE-SWITCHING VECTORS 10-1
10.3 COMPLETION ROUTINES 10-1
10.4 RESTRICTIONS ON THE CONTENTS OF SUPERVISOR-MODE

LIBRARIES 10-2
10.5 SUPERVISOR-MODE LIBRARY MAPPING 10-2
10.6 BUILDING AND LINKING TO SUPERVISOR-MODE LIBRARIES 10-2
10.6.1 Relevant TKB Options 10-2
10.6.2 Building The Library 104
10.6.3 Building the Referencing Task 10-4
10.6.4 Mode Switching Instruction 10-4
10.7 CSM LIBRARIES 10-4
10.7.1 Building A CSM Library 10-5
10.7.2 Linking To A CSM Library 10-6
10.7.3 Example CSM Library And Linking Task 10-6
10.7.4 The CSM Library Dispatching Process 10-16
10.8 USING SUPERVISOR-MODE LIBRARIES AS RESIDENT LIBRARIES 10-17
10.9 MULTIPLE SUPERVISOR-MODE LIBRARIES 10-17
10.10 LINKING A RESIDENT LIBRARY TO A SUPERVISOR-MODE
LIBRARY 10-17
10.11 LINKING SUPERVISOR-MODE LIBRARIES 10-18
10.12 WRITING YOUR OWN VECTORS AND COMPLETION ROUTINES 10-18
10.13 OVERLAID SUPERVISOR-MODE LIBRARIES 10-18

Contents

APPENDIX A ERROR MESSAGES A-1
APPENDIX B TASK BUILDER DATA FORMATS B-1
B.1 GLOBAL SYMBOL DIRECTORY (GSD) B-1
B.1.1 Module Name B-3

B.1.2 Control Section Name B4

B.1.3 Internal Symbol Name B-4

B.1.4 Transfer Address B-5

B.1.5 Global Symbol Name B-5

B.2 PROGRAM SECTION NAME B-6
B.3 PROGRAM VERSION IDENTIFICATION B-8
B.4 MAPPED ARRAY DECLARATION B-8
B.5 END OF GLOBAL SYMBOL DIRECTORY B-9
B.6 TEXT INFORMATION B-9
B.7 RELOCATION DIRECTORY B-9
B.8 INTERNAL RELOCATION B-12
B.8.1 Global Relocation B-12

B.8.2 Internal Displaced Relocation B-13

B.8.3 Global Displaced Relocation B-13

B.8.4 Global Additive Relocation B-14

B.8.5 Giobal Additive Displaced Relocation B-i4

B.8.6 Location Counter Definition B-15

B.8.7 Location Counter Modification B-15

B9 PROGRAM LIMITS B-16
B.9.1 P-section Relocation B-16

B.10 P-SECTION DISPLACED RELOCATION B-17

Contents

B.10.1 P-section Additive Relocation B-17

B.10.2 P-section Additive Displaced Relocation B-18

B.10.3 Complex Relocation B-19

B.10.4 Shareable Global Area Additive Relocation B-20

B.11 INTERNAL SYMBOL DIRECTORY B-21
B.12 END OF MODULE B-21
APPENDIX C TASK IMAGE FILE STRUCTURE C-1
CA1 LABEL BLOCK GROUP Cc-2
C.1.1 Label Block Details Cc-3

C.2 HEADER C-5
C3 LOW MEMORY POINTERS Cc-10
C4 TASK R/W ROOT SEGMENT c-12
C5 READ/WRITE OVERLAYS Cc-12
C.6 READ-ONLY REGION C-12
Cc.7 SEGMENT TABLE C-12
C.7.1 Status C-13

C.7.2 Relative Disk Address C-14

C.7.3 Load Address C-14

C.74 Segment Length Cc-14

C.75 Link-Up c-14

C.7.6 Link-Down C-14

C.7.7 Link-Next Cc-14

C.7.8 Segment Name C-15

C.7.9 Window Descriptor Address C-15

cs8 AUTOLOAD VECTORS C-15

Xi

Contents

C.8.1 Window Descriptor C-16
C.8.2 Region Descriptor Cc-17
APPENDIX D RESERVED SYMBOLS D-1
APPENDIX E INCLUDING A DEBUGGING AID E-1
APPENDIXF IMPROVING TASK BUILDER PERFORMANCE F—1
F.1 EVALUATING AND IMPROVING TASK BUILDER PERFORMANCE F-1
F.1.1 Table Storage F-1
F.1.2 input File Processing F-3
F.2 MODIFYING COMMAND LEVEL DEFAULTS F-3
F.3 THE SLOW TASK BUILDER F-7
IAS TASK BUILDER GLOSSARY Glossary-1
INDEX
EXAMPLES
6-1 Memory Allocation File for IMG1.TSK;1 6-10
6-2 Memory Allocation File for CALK.TSK;1 (Default Qutput Format) __ 6-18
6-3 Memory Allocation File for CALC.TSK;1 (Part
Printout/FULL/FILES) 6-20
6-4 Memory Allocation for CALC.TSK;2 6-29
7-1 Memory Allocation File for CALC.TSK;3 7-20
7-2 Memory Allocation File for CALC.TSK;4 7-28
81 Meiriory Allocation File for CALC.TSK;5 8-10
9-1 Memory Allocation File for SGA DTA 9-10
9-2 Memory Allocation File for CALC.TSK;6 9-11
10-1 Code for SUPER.MAC 10-6
10-2 Memory Allocation Map for SUPER 10-8
10-3 Completion Routine, $CMPCS, from SYSLIB.OLD 10-8

xii

Contents

10-4 Code for TSUP.MAC 10-12
10-5 Memory Allocation Map for TSUP 10-14
C-1 Label Block Group Cc-2
c-2 Task Header Fixed Part c-5
FIGURES
6-1 Task Memory Layout 6-1
7-1 Mapping Memory-Resident Overlays 7-5
9-1 SGA as a Common Data Area 9-2
9-2 Tasks Using the Same Routines 9-3
10-1 Mapping of a 24K Conventional User Task That Links to a 16K
Supervisor-Mode Library 10-3
10-2 Overlay Configuration Allowed for Supervisor-Mode Libraries ____ 10-18
B-1 General Object Module Format B-2
B-2 GSD Record and Entry Format B-3
B-3 Module Name Entry Format B-3
B4 Control Section Name Entry Form:~t B-4
B-5 Internal Symbol Name Entry Format B-5
B-6 Transfer Address Entry Format B-5
B-7 Giobal Symbol Entry Format B-6
B-8 P-section Name Entry Format B-7
B-9 Program Version Identification Entry Format B-8
B-10 Mapped Array Declaration Format B-8
B-11 End of GSD Record Format B-9
B-12 Text Information Record Format B-10
B-13 Relocation Directory Record Format B-11
B-14 Internal Relocation Command Format B-12
B-15 Global Relocation B-12
B-16 Internal Displaced Relocation B-13
B-17 Global Displaced Relocation B-13
B-18 Global Additive Relocation B-14
B-19 Global Additive Displaced Relocation B-15
B-20 Location Counter Definition B-15
B-21 Location Counter Modification B-15
B-22 Program Limits B-16
B-23 P-section Relocation B-17
B-24 P-section Displaced Relocation B-17
B-25 P-section Additive Relocation B-18
B-26 P-section Additive Displaced Relocation B-19
B-27 Complex Relocation B-20
B-28 Resident Library Additive Relocation B-21
B-29 Internal Symbol Directory Record Format B-21
B-30 End-Of-Module Record Format B-21
C-1 Task Image on Disk C-1

xiii

Contents

C-2 Vector Extension Area Format C-11
Cc-3 Segment Descriptor C-13
C-4 Autoload Vector Entry C-16
Cc-5 Window Descriptor C-16
cC-6 Region Descriptor Cc-17
TABLES
2-1 Typical LINK Command Formats 2-2
2-2 File Specification Defaults 2-11
3-1 Output Fllename Defaults in the Task Command Line 3-2
3-2 File Specification Defaults 3-12
4-1 MCR Switches and PDS Qualifiers 4-4
5-1 Task Builder Options 5-3
6-1 P-section Attributes 6-4
D-1 Reserved Global Symbols D-1
D-2 Reserved P-sections D-1
D-3 Reserved P-sections and Symbols D-2
F-1 Task File Defaults F-5
F-2 Map File Defaults F-6
F-3 Symbol Table File Defaults F-7
F-4 Input File Defaults F-7

xiv

Preface

Purpose of This Manual

This manual introduces you to the concepts and capabilities of IAS task building. It expands on
the summaries of the PDS LINK command and the MCR TKB command given in the IAS PDS
User’s Guide and the IAS MCR User’s Guide, respectively.

Examples are used to introduce and describe features of the Task Builder. These examples proceed
throughout the manual from the simplest case to the most complex. You might want to try out
some sequences to test your understanding of the Task Builder.

You should be familiar with the PDP-11 computer, its peripheral devices, and the software supplied
with the IAS system.

This manual is organized and written as a reference manual, assuming a system programmer level
of expertise. Data processing terms and concepts familiar at such a level are therefore not defined.

Structure of This Document

This manual has ten chapters.

¢ Chapter 1 outlines the capabilities of the Task Builder.

¢ Chapter 2 describes the command sequences used for building tasks under PDS.
* Chapter 3 describes the command sequences used for building tasks under MCR.
¢ Chapter 4 defines qualifiers and switches.

¢ Chapter 5 defines options.

* Chapter 6 describes memory allocation for the task and for the system and gives examples of
the memory allocation file.

* Chapter 7 describes the overlay capability and the language used to define an overlay
structure.

¢ Chapter 8 describes the two methods used for loading overlay segments.
* Chapter 9 introduces shareable global areas.
¢ Chapter 10 presents supervisor-mode libraries.

* The appendixes list error messages and give detailed descriptions of the structures used by the
Task Builder.

® Appendix G ig a glogsary of terms.

Associated Documents

The following manuals are prerequisite sources of information for readers of this manual:
e JAS Executive Facilities Reference Manual

e JAS PDS User’s Guide

e JAS MCR User’s Guide

XV

Preface

Other documents related to the contents of this manual are described briefly in the IAS Master
Index and Documentation Directory. The directory defines the intended readership of each
document in the IAS documentation set and provides a brief summary of the contents of each
manual.

xvi

INTRODUCTION

This chapter introduces the IAS Task Builder and describes the role of the Task Builder in the IAS
operating system.

The fundamental executable unit in the IAS system is the task. A routine becomes an executable
task image, according to the following sequence:

1 The routine is written in a source language supported by the IAS system.

2 The routine is entered as a source file, through an editor.

3 The routine is translated to an object module, using the appropriate language translator.
4 The object module is converted to a task image using the Task Builder.

5 Finally, the task is run.

If errors are found in the routine as a result of translating or executing the task, you edit the text
file created in step 2 to correct the errors, then repeats steps 3 through 5.

If a single routine is to be executed, you provide the object module file name to be used as Task
Builder input.

In typical applications, several routines are run rather than a single module. In this case the user
names each of the object module files. The Task Builder then links the object modules, resolves
any references to any shareable global areas, and produces a single task image that is ready for
execution.

The Task Builder makes a set of assumptions (defaults) about the task image based on typical
usage and storage requirements. These assumptions can be changed by including qualifiers or
switches and options in the task-building command sequence.

The Task Builder can also produce a memory allocation file. This file gives information about how
the task is mapped into memory. The user can examine the memory allocation file to identify
what support routines and storage reservations are included in the task image. Further, the Task
Builder can produce a symbol table file suitable for input to the Task Builder during the build of
another task. For example, such a procedure is used in binding tasks to shareable global areas.

To reduce the amount of memory required by the task, the overlay capability can be used to divide
the task into overlay segments.

Overlaying a task enables more code and/or data to be fitted into the available 32K of virtual
address space. Overlays may be either disk resident, in which case they are reloaded from disk
each time they are required, or memory resident. Memory resident overlays remain resident in
memory once loaded and are mapped as required using the Memory Management directives (see
the IAS System Directives Reference Manual). Disk resident overlays save physical as well as
virtual memory.

If the task is configured as an overlay structure (that is, a multi-segment task), overlay segments
are loaded using either the autoload or manual method.

The autoload method makes the loading of overlays transparent to the user. Loading of the overlay
segments is accomplished automatically by the Overlay Runtime System according to the structure
defined by the user at the time the task was built.

INTRODUCTION

The manual load method requires that explicit calls to the Overlay Runtime System be included in
the coding of the task, and gives the user full control over the loading process.

If the task communicates with another task or makes use of common subroutines to save memory,
the Task Builder enables you to link to existing shareable global areas and to create new shareable
global areas for future reference.

You can become familiar with the capabilities of the Task Builder by degrees. Chapter 2 and
Chapter 3 give basic information about task building commands for PDS and MCR users. This
information is sufficient to handle many applications. The remaining chapters deal with special
features and capabilities for handling complex applications and tailoring the task image to suit
the application. The appendixes include detailed information about the structure of the input and
output files processed by the Task Builder, details of non-standard versions of the Task Builder,
lists of error messages and reserved symbols and a glossary of terms used in this manual.

This manual describes the handling of an example application, CALC. In the first treatment of
CALC, you build a task using all the default assumptions. Successive treatments illustrate the
main points of each chapter in a realistic manner. Qualifiers and options are added as they are
required, an overlay structure is defined when the task increases in size, the loading of overlays is
optimized, and finally a shareable global area is added.

The memory allocation (MAP) files for the various stages of task development are included. The
effect of a change can be observed by examining the map for the previous example and the map for
the example in which the change is made.

2.1

2.2

2.2.1

PDS Commands

Introduction

This chapter describes PDS command sequences used to build tasks. Each command sequence
is presented (using examples) from the simplest case to the most complex. The commands are
then summarized as a set of syntactic rules. The example at the end of this chapter illustrates a
task-building sequence for a typical application.

PDS Commands

If you write a FORTRAN program that you enter through a text editor as file CALC.FTN, you
should then type the following commands in response to the program development system (PDS)
prompt for input:

PDS> FORTRAN CALC
PDS> LINK CALC
PDS> RUN CALC

The first command (FORTRAN) causes the default FORTRAN compiler to translate the source
language of the file CALC.FTN into a relocatable object module in the file CALC.OBJ. The second
command (LINK) causes the Task Builder to process the file CALC.OBJ to produce the task image
file CALC.TSK. Finally, the third command (RUN) causes the task to execute.

This example includes the command:

PDS> LINK CALC
This command illustrates the simplest LINK command sequence. It produces a task file,
CALC.TSK, and is equivalent to the following command sequence:

PDS> LINK/TASK:CALC
FILE? CALC

LINK Command Formats
Typical LINK command formats are presented below:

PDS> LINK[command qualifiers] parameters
or:

PDS> LINK[command qualifiers]
FILE? parameters

or:

SLINK[command qualifiers] parameters

2.2.2

PDS Commands

where:

* [command qualifiers] = task attributes and optional Task Builder output files. See Chapter 4
for a complete description of command qualifiers.

* parameters = one or more input file specifications.

LINK Command

A LINK command contains up to three different output files {a task image file, a memory allocation
(MAP) file, and a symbol definition file) that you specify by command qualifiers. One or more input
file specifications must also be included as parameters in a LINK command. Input and output files
are identified using standard IAS file specifications.

When input file specifications are entered on the same line as the command qualifiers, at least one
space is required between the last command qualifier and the first input file specification. If an
input file specification is not entered on the same line as the qualifiers, PDS prompts FILE? and
waits for input. When more than one input file specification is entered, the file specifications must
be separated with one or more spaces, or tabs and/or a comma.

The Task Builder combines the input files to create a single executable task image and produces
the output files as determined by the command qualifiers. A task image file is produced either
by default or by the explicit use of the /TASK qualifier. Generation of the task image file can
be inhibited by prefixing the TASK keyword with the letters NO, that is, /NOTASK inhibits the
generation of a task image file. A memory allocation file, which identifies the size and location
of the components within the task, is produced on the line printer by explicit use of the /MAP
qualifier. Explicit use of the /MAP:filespec qualifier also produces a memory allocation file.

The /SYMBOLS qualifier must be specified to produce a symbol definition file, which contains the
global symbol definitions in the task and their virtual or relocatable addresses in a format suitable
for reprocessing by the Task Builder.

Output files assume the file name of the first input file unless a file specification is included with
their respective qualifiers. The default file types are .TSK for the task image file, MAP for the
memory allocation file, and .STB for the symbol definition file.

Typical LINK commands and their interpretations are presented in Table 2-1 to illustrate the
various LINK command formats.

Table 2-1 Typical LINK Command Formats

Command Interpretation

PDS> LINK/TASK:IMG1/MAP:MP1/SYMBOLS:SF1 The task image file is IMG1.TSK, the memory

FILE? IN1 MP1.MAP, allocation file is the symbol definition file
is SF1.STB. and the input file is IN1.0BJ.

PDS> LINK/TASK:IMG1 IN1,IN2 The task image file is IMG1.TSK, and the input files are
IN1.0BJ and IN2.OBJ.

PDS> LINK/MAP:MP1 IN1,IN2 The task image file is IN1.TSK, the memory allocation
file is MP1.MAP, and the input files are IN1.OBJ and
IN2.0OBJ.

PDS> LINK/SUMBOLS:SF1 IN1 The task image file is IN1.TSK, the symbol definition

file is SF1.STB, and the input file is IN1.OBJ.

2.2.3

2.2.4

PDS Commands

Table 2-1 (Cont.) Typical LINK Command Formats

Command Interpretation
PDS> LINK/NOTASK/MAP:MP1 This is a diagnostic run with no output files other than
FILE? IN1 a map. However, any errors encountered will produce

relevant error messages. Such a run is useful when a
task has been found to exceed its memory limits. The
input file is IN1.0OBJ.

Multiple Line Input

The LINK command can contain any number of command qualifiers to designate the desired task
attributes and one or more input file specifications. If the command is too long to be entered on a
single line (greater than 70 characters) or you wish to use more than one line, type a hyphen (-) as
the last character in a line and continue the command on the next line.

For example, the sequence:

PDS> LINK/TASK:IMG1l/MAP-
/SYMBOLS:SF1 IN1,IN2,IN3

produces the same results as the following command line:

PDS> LINK/TASK:IMG1/MAP/SYMBOLS:SF1 IN1,IN2, IN3

This sequence causes the Task Builder to process input files IN1.OBJ, IN2.0BJ. and IN3.0BJ,
producing task image file IMG1.TSK and symbol definition file SF1.STB. The memory allocation
file is output by default to the line printer, but it is not retained.

Options

Options specify the characteristics of the task being built. If you type the command qualifier
/OPTIONS with the LINK command, PDS prompts for input by displaying OPTIONS? on the
line following the last line of the command. You should enter one of the task builder options and
terminate the line. Prompting continues on successive lines until you type a slash (/) as the first
character after an OPTIONS? prompt to end the option input sequence. For example:

PDS> LINK/OPTIONS
FILE? IN1,IN2,IN3
OPTIONS? PRI=100
OPTIONS? SGA=JRNAL:RO
OPTIONS? /

In this sequence, the PRI=100 and SGA=JRNAL:RO are entered. The syntax and interpretation of
each IAS Task Builder option is presented in Chapter 4.

The general form of an option is a keyword followed by an equal sign (=) and an argument list.
The arguments in the list are separated from one another by colons. In the example given, the
first option consists of the keyword PRI and a single argument 100 indicating that the task is to
be assigned the priority 100. The second option consists of the keyword SGA and an argument
list JRNAL:RO, indicating that the task accesses a shareable global area named JRNAL and the
access is read-only.

2-3

PDS Commands

Some options have argument lists that can be repeated. The symbol comma (,) separates the ‘
argument lists. For example:
OPTIONS? SGA=JRNAL:RO, RFIL:RW

In this command, the first argument list indicates that the task has requested read-only access
to the shareable global area (SGA) JRNAL. The second argument list indicates that the task has
requested read-write access to the shareable global area RFIL.

The following two sequences are equivalent:

OPTIONS? SGA=JRNAL:RO,RFIL:RW
and

OPTIONS? SGA=JRNAL:RO
OPTIONS? SGA=RFIL:RW

2.2.5 Indirect Command File Facility

You can enter the LINK command and any options directly or as a text file to be invoked later
through the indirect command file facility.

To use the indirect command file facility, you first prepare a file that contains the required
commands. Then, the contents of the indirect command file are processed by typing @ followed
by the file specification.

If you prepare the text file AFIL.CMD as follows:

LINK/TASK:IMG1/MAP :MP1/OPTIONS
IN1, IN2, IN3

PRI=100

SGA=JRNAL:RO

/

Later, you can type:

PDS> QAFIL

When the symbol @ is encountered, search for commands is directed to the file specified following (
the @ symbol. While PDS is accepting input from an indirect file, prompting messages are not
displayed on the terminal. The one-line command that references the indirect file AFIL.CMD is
equivalent to the following keyboard sequence:

PDS> LINK/TASK:IMG1/MAP:MP1/OPTIONS
FILE? IN1,IN2,IN3

OPTIONS? PRI=100

OPTIONS? SGA=JRNAL:RO

OPTIONS? /

When PDS encounters a slash in the indirect file, the link command input is terminated. The
Task Builder is invoked to build the task and, upon completion, the Task Builder exits to PDS.
However, if PDS encounters an end-of-file in the indirect file before a slash, it returns its search for
commands to the terminal and prompts for input.

Three levels of nesting are permitted in file references, that is, the indirect file referenced in a
command sequence can contain a reference to another indirect file, which in turn references a third
indirect file. {

2-4

PDS Commands

Suppose the file BFIL.CMD contains all the standard options that are used by a particular group
of users at an installation. That is, every programmer in the group uses the options in BFIL.CMD.
To include these standard options in a task building file, modify AFIL.CMD to include an indirect
file reference to BFIL.CMD as a separate line in the option sequence.

Then the contents of AFIL.CMD are:

LINK/TASK: IMG1/MAP:MP1/OPTIONS
IN1, IN2, IN3

PRI=100

SGA=JRNAL:RO

@BFIL

/

Suppose the contents of BFIL.CMD are:

STACK=100
UNITS=5
ASG=DT1:5

The terminal equivalent of the command:

PDS> @AFIL

is then:

PDS> LINK/TASK:IMG1/MAP:MP1/OPTIONS
FILE? IN1, IN2,IN3

OPTIONS? PRI=100

OPTIONS? SGA=JRNAL:RO

OPTIONS? STACK=100

OPTIONS? UNITS=5

OPTIONS? ASG=DT1l:5

OPTIONS? /

PDS>

An indirect file reference within an indirect command file must appear as a separate line. For
example, if AFIL.CMD were modified by adding the @BFIL reference on the same line as the
SGA=JRNAL:RO option, the substitution would not take place and an error would be reported.

A command file that contains only the command qualifiers and parameters for a LINK command
can be used as an indirect command file. In this case, the LINK command must be stated explicitly
before the indirect reference. For example, if file AFIL.CMD contains the following:

/TASK:IMG1/MAP :LPO:
IN1, IN2

then the command file is invoked indirectly by typing:

PDS> LINK @QAFIL

This sequence is equivalent to:

PDS> LINK/TASK:IMG1/MAP:LPO:
FILE? IN1,IN2

2-5

PDS Commands

2.2.6 Comments

Comment lines can be included at any point in the sequence. A comment line begins with an
exclamation mark (!) and is terminated by a carriage return. All text on such a line is a comment.
Comments can be included in an option line. In this case, the text between the exclamation mark
and the carriage return is a comment.

Consider the annotation of the file described in Section 2.2.5; you add comments to provide more
information about the purpose and the status of the task. Specifically, some identifying lines are
added along with notes on the function of the input files and the shareable global area. Then, a

comment on the current status of the task is added at the end of the file. The content of the file is
as follows:

!
task 33a
!
data from group e-46 weekly

in2 contains statistical tables
in3 contains additional controls
link/task:imgl/map:mpl/options -
inl, in2,in3
pri=ioo
sga=jrnal:ro !rate tables
! task still in development

/

!
!
! inl contains processing routines
!
!

2.2.7 File Specification

The examples so far have been illustrated in terms of filenames. The standard IAS conventions for
file specifications are used for all task building. For any file, you can specify the device, the User
File Directory (UFD), the filename, the filetype, and the version number.

The file specification has the form:

device: [ufd]lfilename.filetype;version

For example:

PDS> LINK/TASK:IMG1/MAP:MP1
FILE? IN1,IN2,IN3

when the files are specified by name only, the default assumptions for device:,[ufd], filename,
filetype, and version are applied. For example, if the user’s default UFD which was specified at

authorization time (or changed for the session by SET DEFAULT) is [200,200] and the user’s
default device is SYO:, the task image file specification of the example is assumed to be:

SY0:[200,200]IMG1.TSK;1

That is, the task image file is produced on the user’s default device under UFD [200,200]. The
default filetype for a task image file is .TSK and if the name IMG1.TSK is new, the version number
is 1. The default settings for all the command qualifiers also apply. Qualifier defaults are described
in full in Chapter 4.

2-6

2.3

2.3.1

PDS Commands

Consider the following commands:

PDS> LINK/CHECKPOINT/DEBUG/TASK: [20,23]IMG1/MAP:TI:
FILE? IN1,IN2.0BJ;3,IN3

This sequence of commands produces the task image file IMG1.TSK under UFD [20,23] on the
user’s default device. The task image is checkpointable and contains the standard debugging aid
(ODT). The memory allocation file is produced on the user’s terminal. The task is built from the
latest versions of IN1.OBJ and IN3.OBJ and an early version, number 3, of IN2.0BJ. The input
files are all found in the user’s default UFD on the user’s default device.

For some files, a device specification is sufficient. In the above example, the memory allocation file
is fully specified by the device TI:. The memory allocation file is produced on the terminal, but it is
not retained.

In this example, CHECKPOINT and DEBUG qualifiers are used. The format and meaning for
each qualifier are given in Chapter 4.

EXAMPLE: VERSION 1 OF CALC

An example task, CALC, is developed in this manual from the simple case given here through
successive refinements and increasing complexity. The successive versions of CALC are designed

to summarize the major points of each chapter and to illustrate possible uses for the facilities
described.

As the first step in the development of the task CALC, three separate FORTRAN routines are
entered by means of a text editor, translated by the FORTRAN IV compiler, and built into a task
by the Task Builder.

All example tasks in this manual assume that FORTRAN IV is the default FORTRAN compiler.
The routines are:

* RDIN - which reads and analyzes input data and selects a data processing routine on the basis
of the analysis

¢ PROCI1 - which processes the input according to a specified set of rules
* RPRT - which outputs the results as series of reports

The three routines communicate with each other through a common block named DTA.

In these examples, all files are in the user’s default directory unless otherwise specified. See the
IAS PDS User’s Guide.

Entering the Source Language

Enter and save the source for the FORTRAN programs of the example CALC with the text editor
EDIT. Invoke EDIT and type in the source for the FORTRAN programs. The relevant parts of the
programs are shown below:

2-7

2.3.2

PDS Commands

PDS> EDIT

FILE? RDIN.FTN

[EDI -- CREATING NEW FILE]

INPUT

READ AND ANALYZE INPUT DATA,

SELECT A PROCESSING ROUTINE

ESTABLISH COMMON DATA BASE

[eNeNe e e Re!

COMMON /DTA/ A(200), I
READ IN RAW DATA

READ (6,1) A

1 FORMAT (200F6.2)

C CALL DATA PROCESSING ROUTINE
CALL PROC1

C GENERATE REPORT
CALL RPRT

END

(¢]

*EX
[EXIT]

PDS> EDIT
FILE? PROC1.FTN
[EDI -- CREATING NEW FILE]
INPUT
SUBROUTINE PROC1
C FIRST DATA PROCESSING ROUTINE
Cc COMMUNICATION REGION
COMMON /DTA/A(200),I
RETURN
END

*EX
[EXIT]

PDS> EDIT
FILE? RPRT.FTN
[EDI -- CREATING NEW FILE]
INPUT
SUBROUTINE RPRT
C INTERIM REPORT PROGRAM
C COMMUNICATION REGION
COMMON /DTA/ A(200),I
RETURN
END

*EX
[EXIT]

PDS> FORTRAN RDIN
PDS> FORTRAN PROG1
PDS> FORTRAN RPRT

2.3.3

2.4

PDS Commands

The first command directs the FORTRAN IV compiler to take source input from RDIN.FTN and
place the relocatable object code in RDIN.OBJ. The remaining commands perform similar actions
for the source files PROG1.FTN and RPRT.FTN.

Building the Task
The task image for the three programs is built as follows:

PDS> LINK/TASK:CALC.TSK;1/MAP:MP1
FILE? RDIN,PROG1,RPRT

The task building command specifies the name of the task image file (CALC.TSK;1), the name of
the memory allocation file (MP1. MAP), and the names of the input files (RDIN.OBJ, PROG1.0BJ
and RPRT.OBJ). The task makes use of all the default assumptions for qualifiers and opticns.

Summary of Syntax Rules
In the syntax rules that follow, the symbol ... indicates repetition. For example,

input~filespec, ...
means one or more input-filespec items separated by spaces, tabs and/or commas; that is, one of
the following forms:

input-filespec

input-filespec, input-filespec

input-filespec, input-filespec, input-filespec

As another example,

arg: ...
means one or more arguments separated by colons.

Another example,
OPTIONS? option
means one or more options.
As a final example, an item in brackets:

{command qualifiers]

means the entry is optional and the brackets are not a part of the command. This rule has one
exception: brackets must be used to enclose a [UFD] specification, see Rule 6 in Section 2.4.1,
below.

2-9

PDS Commands

2.4.1 Syntax Rules
The syntax rules are as follows:

1 A task-building command can have one of several forms. The first form is a single line:

PDS> LINK [command qualifiers] parameters
or:
SLINK[command qualifiers] parameters

The second form has additional lines for input file names:

PDS> LINK[command qualifiers]
FILES? parameters

The third form allows the specification of options:

PDS> LINK[command qualifiers]/OPTIONS
FILES? parameters
OPTIONS? option-line

The terminating symbol is a single slash (/).

The fourth form allows the use of indirect command files in one of the following formats:

PDS> @indirect-filespec
or:
PDS> LINK @indirect-filespec
where indirect-filespec is a file specification following standard IAS conventions.

2 The [command qualifiers] list contains one or more command qualifiers in the following format:

/keyword
or:
/NOkeyword
The keywords for the command qualifiers are presented in Chapter 4.

3 The parameter list contains one or more input file specifications following the standard IAS
conventions (see 6. below).

4 An option-line can be one of the following:

option
or:
@indirect-filespec

where indirect-filespec is a file specification.

2-10

PDS Commands

5 An option has the form:

keyword = argument-list,

where the argument-list is

arg: ...

The syntax for each of the options is given in Chapter 5.

6 A file specification conforms to standard IAS conventions and has the following form:

device: [ufd]filename.filetype;version

The components are defined as follows:

device = name of the physical device where the volume containing the desired file is
mounted. The name consists of two ASCII characters followed by a 1- or 2-digit octal unit
number and a colon (:); for example, LP0: or DT1:. A logical device name can also be used.

ufd = UFD where the file is recorded. [ufd] has the form

[group, member]

where group and member are both in the range 1 through 377 (octal).
For example, member 220 of group 200 would require the following entry:

[200,220]

filename = name of the desired file. The file name can be from 1 to 9 alphanumeric
characters, for example, CALC.

filetype = 3-character filetype identification. Filename and filetype are always separated by
a period (.). Files with the same name but a different function are distinguished from one
another by the filetype; for example, CALC.TSK and CALC.OBJ might be the task file and
object file, respectively, for the program CALC.

version = octal version number of the file in the range 1 through 77777 (octal). Filetype
and version are always separated by a semicolon (;). Various versions of the same

file are distinguished from each other by this number; for example, CALC.OBJ;1 and
CALC.OBJ;2.

The device, the UFD code, the filetype, and the version specifications are all optional.

Table 2—2 shows the default assumptions applied to missing components of a file specification.

Table 2-2 File Specification Detfaults

ltem Default

device User’s current default device

ufd User’s current default [ufd]

filetype Task image TSK
Memory allocation MAP
Symbol definition STB

2-1

PDS Commands

Table 2-2 (Cont.) File Specification Defaults

Item Default
Object module oBJ
Object module library oL
Overlay description ODL
Command CMD
version For an input file, the highest-numbered existing version.

For an output file, one greater than the highest-numbered existing version.

2-12

3.1

3.1.1

MCR COMMANDS

Introduction

This chapter describes MCR command sequences that can be used to build tasks. Each command
sequence is presented (using examples), from the simplest case to the most complex. All commands
are then summarized by a set of syntactic rules. The example at the end of this chapter illustrates
a task building sequence for a typical application.

If you enter a FORTRAN program through a text editor as file PROG, type the following commands
in response to the monitor console routine (MCR) prompt for input:

MCR>FOR CALC=PROG
MCR>TKB IMG=CALC
MCR>INS IMG
MCR>RUN IMG

The first command (FOR) causes the FORTRAN compiler to translate the source language of the
file PROG.FTN into a relocatable object module in the file CALC.OBJ. The second command (TKB)
causes the Task Builder to process the file CALC.OBJ to produce the task image file IMG.TSK. The
third command (INS) causes Install to add the task to the directory of executable tasks. Finally,
the fourth command (RUN) causes the task to execute.

The example just given includes the command:

MCR>TKB IMG=CALC

This command illustrates the simplest use of the Task Builder. It gives the name of a single file as
output and the name of a singie file as input. This chapter describes, first by example and then by
syntactic definition, the complete facility for the specification of input and output files to the Task
Builder. :

Task Command Line

The task command line contains the output file specifications followed by an equal sign and the
input file specifications. The task command line can have up to three output files and any number
of input files.

The ouput files must be given in a specific order. The first file named is the task image file, the
second is the memory allocation file, and the third is the symbol definition file. The memory
allocation file contains information about the size and iocation of components within the task.
The symbol definition file contains the global symbol definitions in the task and their virtual or
relocatable addresses in a format suitable for re-processing by the Task Builder. The Task Builder
combines the input files to create a single executable task image.

Any of the output file specifications can be omitted. When all three output files are given, the
task-command line has the form:

task-image, mem-allocation, symbol-definition=input,

3-1

MCR COMMANDS

The following commands show the way the output filenames are interpreted.

Table 3-1 Output Filename Defaults in the Task Command Line

Command Output Files

MCR>TKB IMG1,MP1,SF1=IN1 The task image file is IMG1.TSK, the memory allocation file is MP1.MAP,
and the symbol definition file is SF1.STB.

MCR>TKB IMG1=IN1 The task image file is IMG1.TSK.

MCR>TKB ,MP1=IN1 The memory allocation file is MP1.MAP.

MCR>TKB ,,SF1=IN1 The symbol definition file is SF1.STB.

MCR>TKB IMG1,,SF1=IN1 The task image file is IMG1.TSK and the symbol definition file is SF1.STB.

MCR>TKB =IN1 This is a diagnostic run with no output files. However, any errors

encountered will produce a relevant error message.

3.1.2 Multiple Line Input

Although you can have only three output files, you can have any number of input files. When
several input files are used, a more flexible format, consisting of several lines, is necessary. This
multiline format is also required for the inclusion of options, as discussed in the next section.

If you type TKB alone, MCR invokes the Task Builder. The Task Builder then prompts for input
until it receives a line consisting of only the terminating sequence (//).

The sequence:
MCR>TKB
TKB>IMG1,MP1=IN1

TKB>IN2, IN3
TRB>//

produces the same result as the single line command:

MCR>TKB IMG1,MP1=IN1,IN2,IN3

This sequence produces the task image file IMG1.TSK and the memeory allocation file MP1 MAP
from the input files IN1.0BJ, IN2.0BJ, and IN3.0BJ.

The output file specifications and the separator (=) must appear on the first TKB command line.
Input file specifications can begin or continue on subsequent lines.

The terminating symbol (/) directs the Task Builder to stop accepting input, build the task, and
return to the MCR level.

3.1.3 Options

Use options to specify the characteristics of the task being built. If you type a single slash (/),
the Task Builder requests option information by displaying ENTER OPTIONS: and prompting for
input.

3-2

MCR COMMANDS

MCR>TKB
TKB>IMG1,MP1=IN1
TKB>IN2, IN3
TKB>/

ENTER OPTIONS:
TKB>PRI=100
TKB>SGA=JRNAL:RO
TKB>//

MCR>

In the above sequence, the user entered the options PRI=100 and SGA=JRNAL:RO, then typed a
double slash to end option input.

WARNING: For an overlaid task, where the input file has the /MP switch (see the MA
command in Chapter 4), Task Builder automatically expects options. The single slash
must not be entered if options are required. For example:

MCR>TKB

TKB>OVTSK, OVTSK=0VODL/MP
ENTER OPTIONS:
TKB>TASK=. ..OVT
TRB>ASG=TI:1:2

TRB>//

The syntax and interpretation of each Task Builder option are given in Chapter 5.

The general form of an option is a keyword followed by an equal sign (=) and an argument list.
The arguments in the list are separated from one another by colons. In the example given, the
first option consists of the keyword PRI and a single argument 100 indicating that the task is to
be assigned the priority 100. The second option consists of the keyword SGA and an argument list
JRNAL:RO, indicating that the task accesses a shareable global area (SGA) named JRNAL and the
access is read-only.

More than one option can be given on a line. The symbol exclamation mark (!) is used to separate
options on a single line. For example:
TKB>PRI=100 ! SGA=JRNAL:RO

is equivalent to the two separate lines

TKB>PRI=100
TKB>SGA=JRNAL:RO

Some options have argument lists that can be repeated. The symbol comma (,) is used to separate
the argument lists. For example:
TKB>SGA=JRNAL:RO, RFIL:RW

In this command, the first argument list indicates that the task has requested read-only access to
the shareable global area JRNAL. The second argument list indicates that the task has requested
read-write access to the shareable global area RFIL.

The following sequences are equivalent:
¢ Sequence 1:

TKB>SGA=JRNAL :RO, RFIL:RW
* Sequence 2:

TEKB>SGA=JRNAL:RO ! SGA=RFIL:RW

3-3

MCR COMMANDS

* Sequence 3: ‘

TKB>SGA=JRNAL :RO
TKB>SGA=RFIL:RW

3.1.4 Multiple Task Specification

If more than one task is to be built, the symbol,(/) (slash), can be used to direct the Task Builder
to stop accepting input, build the task, and request information for the next task build.

Consider the sequence:
MCR>TKB

TKB>IMG1=IN1
TKB>IN2, IN3

TKB>/

ENTER OPTIONS:

TKB>PRI=100 ‘
TKB>SGA=JRNAL:RO

TKB>/

TKB>IMG2=SUR1

TKB>//

MCR>

The Task Builder accepts the output and input file specifications and the option input, then stops
accepting input when it encounters the (/) during option input. The Task Builder builds IMG1.TSK
and returns to accept more input.

3.1.5 Indirect Command File Facility

Enter the sequence of commands to the Task Builder directly or entered as a text file and later
invoked through the indirect command file facility.

To use the indirect command file facility, first prepare a file that contains the user command input
for the desired interaction with the Task Builder. Then, the contents of the indirect command file
are invoked by typing @ followed by the file specification.

For example, the text file AFIL can be prepared as follows: ‘

IMG1,MP1=IN1
IN2, IN3

/

PRI=100
SGA=JRNAL: RO
//

Later, you can type:

MCR>TKB @AFIL

When the Task Builder encounters the symbol @, it directs its search for commands to the file
specified following the @ symbol. When the Task Builder is accepting input from an indirect file,
it does not display prompting messages on the terminal. The one-line command that enables
the Task Builder to accept commands from the indirect file AFIL is equivalent to the keyboard
sequence:

3-4

MCR COMMANDS

MCR>TKB
TKB>IMG1,MP1=IN1
TKB>IN2, IN3
TKR>/

ENTER OPTIONS:
TKB>PRI=100
TKB>SGA=JRNAL: RO
TKB>//

When the Task Builder encounters a double-slash in the indirect file, it terminates indirect file
processing, builds the task, and exits to MCR upon completion.

However, if the Task Builder encounters an end-of-file in the indirect file before a double slash, it
returns its search for commands to the terminal and prompts for input.

The Task Builder permits three levels of nesting in file references, that is, the indirect file
referenced in a terminal sequence can contain a reference to another indirect file, which in turn
references a third indirect file.

Suppose the file BFIL.CMD contains all the standard options that are used by a particular group
at an installation. That is, every programmer in the group uses the options in BFIL.CMD. To
include these standard options in a task building file, you modify AFIL to include an indirect file
reference to BFIL.CMD as a separate line in the option sequence.

Then the contents of AFIL.CMD are:

IMG1,MP1=IN1
IN2, IN3

/

PRI=100
SGA=JRNAL: RO
@BFIL

/7

Suppose the contents of BFIL.CMD are:

STACK=100
UNITS=5 ! ASG=DT1:5

The terminal equivalent of the command

MCR>TKB @AFIL

is then:

MCR>TKB
TKB>IMG1,MP1=IN1
TKB>IN2, IN3
TKB>/

ENTER OPTIONS:
TKB>PRI=100
TKB>SGA=JRNAL: RO
TKB>STACK=100
TKB>UNITS=5 ! ASG=DT1:5
TRB>//

MCR>

The indirect file reference must appear as a separate line. For example, if AFIL.CMD were
modified by adding the @BFIL reference on the same line as the SGA=JRNAL:RO option, the
substitution would not take place and an error would be reported.

3-5

MCR COMMANDS

3.1.6 Comments

Comment lines can be included at any point in the sequence. A comment line begins with a
semicolon (;) and is terminated by a carriage return. All text on such a line is a comment.
Comments can be included in option lines. In this case, the text between the semicolon and
the carriage return is a comment.

Consider the annotation of the file just described; the user adds comments to provide more
information about the purpose and the status of the task. Specifically, some identifying lines
are added along with notes on the function of the input files and ghareable global area. Then a

< Al «Aai012 1532 R1OCs O11 VAT TRAAACRAOIL O LA 2AAPRL 2AI1GS Al SAAalIesDit gi0Aal aIta. pat~ 0N

comment on the current status of the task is added at the end of the file. The content of the file is

as follows:

; TASK 33A

; DATA FROM GROUP E-46 WEEKLY

IMG1,MP1=

;

; PROCESSING ROUTINES

7

IN1

’

; STATISTICAL TABLES
IN2

? ADDITIONAL CONTROLS
IN3

/

PRI=100

SGA=JRNAL:RO ; RATE TABLES

; TASK STILL IN DEVELOPMENT

7/

3.1.7 File Specification

The examples so far have been illustrated in terms of filenames. The Task Builder adheres to the
standard conventions for file specifications. For any file, you can specify the device, the user file
directory (UFD), the filename, the type, the version number, and any number of switches.

Thus, the file specification has the form:

device: [ufd] filename.type;version/sw...
For example:

MCR>TKB

TKB>IMG1,MP1=IN1

TKB>IN2, IN3
TKB>//

3-6

3.2

MCR COMMANDS

when the files are specified by name only, the default assumptions for device:,[ufd], filename, type,
version and switch settings are applied. For example, if the user identification code under which
you logged in was [200,200], the task image file specification of the example is assumed to be:

SY0:[{200,200]IMG1.TSK;1

That is, the task image file is produced on the system device (SY0) under user file directory
[200,200]. The default type for a task image file is TSK and since the name IMG1.TSK is new,
the version number is 1. The default settings for all the task image switches also apply. Switch
defaults are described in full in Chapter 4.

Consider the following commands:

MCR>TKB ,
TKB>[20,23] IMG1/CP /DA, LP :=IN1
TKB>IN2; 3, IN3

TKB>//

This sequence of commands produces the task image file IMG1.TSK under user file directory
[20,23] on the system device. The task image is checkpointable and contains the standard
debugging aid. The memory allocation file is produced on the line printer. The task is built

from the latest versions of IN1.OBJ and IN3.0OBJ and an early version, number 3, of IN2.0BJ. The
input files are all found on the system device.

For some files, a device specification is sufficient. In the above example, the memory allocation file
is fully specified by the device LP. The memory allocation file is produced on the line printer, but is
not retained as a file.

In this example, switches CP and DA are used. The code, syntax and meaning for each switch are
given in Chapter 4.

EXAMPLE: VERSION 1 OF CALC

An example task, CALC, is developed in this manual from the simple case given here through
successive refinements and increasing complexity. The successive versions of CALC are designed
to summarize the major points of each chapter and to illustrate possible uses for the facilities
described.

As the first step in the development of the task CALC, three separate FORTRAN routines are
entered by means of a text editor, translated by the FORTRAN compiler, and built into a task by
the Task Builder.

The routines are:

¢ RDIN - which reads and analyzes input data and selects a data processing routine on the basis
of the analysis.

¢ PROCI - which processes the input according to a specified set of rules.
* RPRT - which outputs the results as a series of reports.

The three routines communicate with each other through a common block named DTA.

In these examples, all files are in the UFD under which the user logged in to the system via the
MCR>HEL[LO] command (see the IAS MCR User’s Guide) unless otherwise specified.

3-7

MCR COMMANDS

3.2.1 Entering the Source Language

Enter and file the source for the FORTRAN programs of the example CALC by means of the
text editor EDI. The user invokes EDI and types in the source for the FORTRAN programs. The
relevant parts of the programs are shown below:

MCR>EDI RDIN.FTN
[EDI -- CREATING NEW FILE]

INPUT
c READ AND ANYL.ZE INPUT DATA,
C
C SELECT A PROCESSING ROUTINE
Cc
c ESTABLISH COMMON DATA BASE
C
COMMON /DTA/ A(200), I
c READ IN RAW DATA

READ (6,1) A
1 FORMAT (200F6.2)

C CALL DATA PROCESSING ROUTINE

CALL PROC1
c GENERATE REPORT
CALL RPRT
END
*EX
[EXIT]

MCR>EDI PROC1.FTN
[EDI =-- CREATING NEW FILE]
INPUT
SUBROUTINE PROC1

C FIRST DATA PROCESSING ROUTINE
C COMMUNICATION REGION

CCMMON /DTA/A(200),1

RETURN

END

*EX
[EXIT]

MCR>EDI RPRT.FTN
[EDI -- CREATING NEW FILE]
INPUT
SUBROUTINE RPRT
c INTERIM REPORT PROGRAM
c COMMUNICATION REGION
COMMON /DTA/ A(200),1I
RETURN
END
*EX
[EDI -- EXIT]

3-8

3.2.2

3.2.3

3.3

MCR COMMANDS

Compiling the FORTRAN Programs
Compile the FORTRAN programs by the following sequence:

MCR>FOR

FOR>RDIN, LRDIN=RDIN
FOR>PROC1, LPROC1=PROC1
FOR>RPRT, LRPRT=RPRT

The first command invokes the FORTRAN compiler. The second command directs the compiler
to take source input from RDIN.FTN, place the relocatable object code in RDIN.OBJ and write
the listing in LRDIN.LST. The remaining commands perform similar actions for the source files
PROC1 and RPRT.

Building the Task
The task image for the three programs is built in the following way:

MCR>TKB CAILC;1,LP:=RDIN, PROC1, RPRT

The task building command specifies the name of the task image file (CALC.TSK;1), The device
for the memory allocation file (LP) and the names of the input files (RDIN.OBJ, PROC1.0BJ and
RPRT.OBJ). The task makes use of all the default assumptions for switches and options.

Summary of Syntax Rules
In the syntax rules, the symbol . . . indicates repetition. For example,

input-spec,

means one or more input-spec items separated by commas, that is, one of the following forms:

input-spec
input-spec, input-spec
input-spec, input-spec, input-spec

Examples:

arg: ...

means one or more arg items separated by colons.

TKB>input-line

means one or more of the indicated TKB input-line items.

3-9

MCR COMMANDS

3.3.1 Syntax Rules
The syntax rules are as follows:

1 A task-building-command can have one of several forms. The first form is a single line:

MCR>TKB task-command-line
The second form has additional lines for input file names:
MCR>TKB

TKB>task-command-line
TKB>input-line

TKB>terminating-symbol

The third form allows the specification of options:
MCR>TKB
TKB>task-command-line
TKB>/
ENTER OPTIONS:
TKB>option-line
TKB>terminating-symbol

The fourth form has both input lines and option lines:
MCR>TKB

TKB>task-command-line
TKB>input-line

TRB>/

ENTER OPTIONS:

TKB>option-line

TKB>terminating-symbol
The terminating symbol can be:

/ if more than one task is to be built, or
// if control is to return to MCR.

2 A task-command-line has one of the three forms:

output-file-list = input-file, ...
= input-file,
@indirect-file

where indirect-file is a file specification as defined in Rule 7.

3 An output-file-list has one of the three forms:

task-file, mem—allocation-file, symbol-file
task-file, mem-allocation-file,

task~-£file

3-10

MCR COMMANDS

where task-file is the file specification for the task image file; mem-allocation-file is the file
specification for the memory allocation file; and symbol-file is the file specification for the

symbol definition file. Any of the specifications can be omitted, so that, for example, the form:

task-file,, symbol-file

is permitted.

An input-line has either of the forms:

input~-file,

@indirect-file

where input-file and indirect-file are file specifications.

An option-line has either of the forms:

option ! ...

@indirect-file

where indirect-file is a file specification.

An option has the form:

keyword = argument-list,

where the argument-list is

arg: ...

The syntax for each of the options is given in Chapter 4.

A file specification conforms to standard conventions. It has the form

device: [ufd]filename.type;version/sw...

The components are defined as follows:

device - is the name of the physical device on which the volume containing the file is
mounted. The name consists of two ASCII characters followed by an optional 1- or 2-digit
octal unit number; for example, 'LP’ or 'DTY’.

ufd - is the user file directory number consisting of two octal numbers each of which is
in the range of 1 through 377 (octal). These numbers must be enclosed in brackets and
separated by a comma, and must be in the following format:

[group, member]

For example, member 220 of group 200 would use the following entry:

[200,220]

filename - is the name of the file. The file name can be from 1 to 9 alphanumeric
characters, for example, CALC.

type - is the 3-character type identification. Files with the same name but different
function are distinguished from one another by the file type; for example, CALC.TSK
and CALC.OBJ.

version - is the octal version number of the file in the range 1 through 77777 (octal).

3-11

MCR COMMANDS

Versions of the same file are distinguished from each other by this number; for example,
CALC;1 and CALC;2.

* sw - is a switch specification. More than one switch can be used, each separated from the
previous one by a /. The switch is a 2-character alphabetic name which identifies the
switch option. The permissible switch options and their syntax are given in Chapter 4.

The device, the user file directory code, the type, the version, and the switch specifications are all

optional.

Tabie 3-2 applies to missing components of a file specification.

Table 3-2 File Specification Defaults

item Default
device SYO, the system device
group The group number currently in effect’
member The member number currently in effect’
type Task image TSK
Memory allocation MAP
Symbol definition STB
Object module OBJ
Object module library oLB
Overlay description OoDL
Indirect command CMD
version For an input file, the highest-numbered existing version.
For an output file, one greater than the highest-numbered existing version.
switch (The default for each switch is given in Chapter 4.)

'If an explicit device or [ufd] is given, it becomes the default for subsequent files separated by commas on the
same side of the equal (=) sign. For example: DT1:IMG1,MP1=iN1,DF:IN2,IN3

File Device
IMG1.TSK DTt
MP1.MAP DT
IN1.0BJ SYO0
IN2.OBJ DFo
IN3.OBJ DFO

3-12

4.1

4.2

4.2.1

4.2.2

Qualifiers and Switches

Introduction
This chapter describes how you can modify the actions of the Task Builder (TKB) by using:

MCR switches
PDS qualifiers

When you use the PDS LINK command, you can include qualifiers that control Task Builder output
by specifying simple task attributes, optional task builder output files, and so on. PDS qualifiers
are described in Section 4.2.

MCR switches are equivalent to PDS qualifiers. MCR switches are described in Section 4.3.

PDS Qualifiers

With PDS, qualifiers are applied to either the LINK command or to file specifications within the
command. These are called command qualifiers and file qualifiers.

Command Qualifiers

When entered in a LINK command, each qualifier is preceded by a slash, and either the complete
keyword or a unique abbreviation of the keyword is typed following the slash. If a qualifier is not
specified, default assumptions are made; therefore, you must negate a positive default assumption
by typing the letters NO before the keyword (or abbreviation) if the corresponding function is not

desired. For example, the command qualifier NOTASK inhibits the generation of the task image

file.

Examples

The following command sequences illustrate the use of qualifiers and file specifications, and the
resulting interpretation.

4-1

4.3

Qualifiers and Switches

Terminal Sequence

Interpretation

PDS> LINK/TASK:IMG1/CHE/DEB-/NOMAP
IN1/NOCON

PDS> LINK/TASK:IMG2/PRI/MAP:
(MP1/SHO)FILE? IN2 [1,1]EXEC.STB

PDS> LINK/TASK:IMG3/DEB:DBG1FILE?
IN3 LB1/LIB:(SUB1:SUB2) LB1/LIB

PDS>
LINK/TASK:IMG4/EXIT:5-/OVERLAY:TREE

The task IMG1.TSK is checkpointable and includes the
LBO:[1,1JODT.OBJ debugging aid. Use the first object module
in input file IN1.

The task IMG2.TSK is an executive privileged task. The short
form of the memory allocation file MP1.MAP is requested. The
inputs for the task are the file IN2.OBJ and the symbol definition file
SYO:[1,1]EXEC.STB that links the task to the subroutines and data
base of the Executive.

The task IMG3.TSK contains the input file IN3.OBJ, the modules
SUB1 and SUB2 from the library file LB1, and the debugging aid
DBG1.0BJ. The library file LB1.OLB is specified a second time
without arguments so that the Task Builder will search the file for
undefined global references.

The Task IMG4.TSK is built from the overlay description contained
in the file TREE.ODL. If more than five diagnostics occur, the Task
Builder aborts the run.

MCR Switches

The syntax for a file specification in an MCR command, as given in Section 3.1.7, is:

dev:[ufd]filename.type;version/sw-1/sw-2.../sw-n

The file specification concludes with optional switches: sw-1, sw-2, ..., sw-n.

When a switch is not specified, the Task Builder establishes a setting for the switch, called a

default assumption.

A switch is designated by a two-character code. The code is an indication that the switch applies
or does not apply. For example, if the switch code is CP (task can be checkpointed), the recognized

switch settings are:

/ICP The task is checkpointable.
/-CP The task is not checkpointable.
/NOCP The task is not checkpointable.

Switches are used primarily for the following purposes:

* To designate the task attributes recorded in the task image file during task build and in the
System Task Directory (STD) entry on Instali.

* To instruct TKB to interpret the input file in a special way (for example, /DA is used when the

task contains a debugging aid).

¢ To control the listing of the memory allocation file (for example, /SH is used to request the

short memory allocation file).

4-2

1.3.1

Qualifiers and Switches

Task Builder Switches

This section describes the switches recognized by the Task Builder. For each switch, the following
information is given:

The MCR switch mnemonic.

The defauit assumption made if the MCR switch is not present.
The PDS qualifier mnemonic.

The default assumption made if the PDS qualifier is not present.
The file(s) to which the switch or qualifier can be applied.

A description of the effect of the switch on the Task Builder.

D N W N =

4-3

Qualifiers and Switches

Table 4—1 gives an alphabetical listing and summary information about the switch codes enabled
by the Task Builder. The subsections that follow the table give a more detailed description for each

switch.

Table 4-1 MCR Switches and PDS Qualifiers

Applic-
able

MCR MCR File

Switch Default PDS Qualifier PDS Default Type Effect on Task Builder

/AB /AB /ABORT /ABOR T Task can be aborted.

/1CC /CC /CONCATENATED /CONCATENATED | Input file can contain more than one
object module.

/CO /-CO none none T Causes task builder to build a
shared global area.

/ICP /CP /CHECKPOINT /CHEC T Task can be checkpointed.

/CR /-CR /CROSS_REFERENCE /NOCRO M Memory allocation is to include
a global symbol cross reference
listing.

/DA /-DA /DEBUG /NODE Tl Task contains a debugging aid.

/DL /-DL /DEFAULT LiBRARY none i Specified iibrary fiie is a
replacement for the default system

v object module library.

/DS /DS /DISABLE /DISA T Task can be disabled.

/FP /FP /FLOATING_POINT /FLOA T Task used the floating point
processor.

/FR /FR /FLUSH_RECEIVE_ /FLUSH T Task receive queues are flushed

QUEUES each time it exits.

/FU /-FU /FULL_SEARCH /NOFULL T Search all co-tree overlay segments
for matching definition or reference
when processing modules from the
default object module library.

IFX /-FX /FIX /NOFIX T Task can be fixed in memory.

/HD MD /HEADER /HEAD TS Task can be fixed in memory.

/LB /-LB /LIBRARY /NOLIBRARY ! Input file is an object module.

/Ll /-LI none none T Instructs TKB to build a shared
library.

/MA MA /MAP /MAP M Include all modules in the memory
allocation file.

/-MA /MA none none | Exclude all modules in this input file
from the memory allocation file.

/MP /-MP /OVERLAY_DESCRIPTION /NOOV | Input file contains an overlay

description.

Key te Applicable Flle Type

T—Task image file
S—Symbol definition file
M—Memory allocation file
I—Input file

4-4

Table 4-1 (Cont.) MCR Switches and PDS Qualifiers

Qualifiers and Switches

Applic-
abie

MCR MCR File

Switch Default PDS Qualifier PDS Default Type Effect on Task Builder

MU U MULTIUSER NOML T Task is multiuser.

/NM /-NM none none .TSK Tells TKB to inhibit two diagnostic
messages.

/OR /OR /RUN_TIME_SYSTEM /RUN T Runtime system is included in
overlaid task.

/Pl /-Pl /POSITION_INDEPENDENT /NOPO TS Task code is position independent.

/PR /-PR /PRIVILEGED /NOPR T Task has privileged access rights.

/RO /-RO /RESIDENT_OVERLAYS /NORES T Memory-resident overlay operator
(1) is enabled so task can be built
with memory-resident overlays.

/RW /-RW /READ_WRITE /NOREA T Task has read-write access to
read-only code.

/SE /SE /RECEIVE /RECE T Send data can be received.

/SP /SP none none M Memory allocation file is spooled.

/1SQ /-8Q /SEQUENTIAL /NOSEQ T Task p-sections are allocated
sequentially.

/SR /-SR /REQUEST /NOREQ T Send [by reference] and request/
resume accepted from non real-time
directive privileged tasks.

/SS /-88 /SELECT /NOSELECT | Selective Symbol Search.

/TR /-TR /TRACE /NOTR T Task is to be traced.

J/UN /UN /SYMBOLS:(filespec/[NO] /UNDEF S include references to undefined

UNDEFINED_SYMBOLS) symbols in symbol table file.

/UR /JR none none M Print undefined references on
initiating terminal.

/WN /WN /WAIT_FOR_NODES /WAIT T System walits a certain period of
time for nodes to become available.

/XTn /-XT /EXIT:n JEXITA T Task Builder exits after n errors,
where n is a decimal number.

none none /LARGE_SYMBOL_TABLE /NOLAR none Task Builder will have a large

) internal symbol table.

none none /MAP /NOMAP M Produces memory allocation file.

/Fi /Fl /FILES /NOFIL M Include file-by-file analysis of
allocation.

/FU /FU /FULL /NOFULL M Include all modules in map.

Key to Applicable File Type

T—Task image file
S—Symbol definition file
M—Memory allocation fite

I—Input file

4-5

Qualifiers and Switches

Table 4-1 {Cont.) MCR Switches and PDS Qualifiers

Applic-

able
MCR MCR File
Switch Default PDS Qualifier PDS Defauit Type Effect on Task Builder
/NA /NA /NARROW /WIDE M Make map in 72-column format.
/SH /SH /SHORT /SHORT M Make summary map.
/W1 Wi /WIDE /WIDE M Make map in 132-column format.
/UR /UR /UNDEFINED_ /UNDEF M Print undefined references on

REFERENCES initiating terminal.
none none /OPTIONS /NOOP none Apply Task Builder options specified
after command string.

none none /SYMBOLS /NOSY S Produces a symbol table file.
none none /TASK(:filespec}] /TASK T Produces a task image file.

Key to Applicable File Type

T—Task image file
S—Symbol definition file
M—Memory allocation file
l—Input file

4-6

/ABORT (/AB)

/ABORT (/AB)

PDS QUALIFIER

/ABORT
/ABOR (Default)

MCR SWITCH

/AB
/AB (Default)

file

task image

effect

The Task Builder clears the nonabortable flag in the task label block flag word.

meaning

The task can be aborted when it is running.

Note: A task running under the control of the IAS scheduler can always be aborted,
even if it is built non-abortable.

4-7

/CHECKPOINT (/CP)

/CHECKPOINT (/CP)

PDS QUALIFIER

/CHECKPOINT

/CHECKPOINT (De

MCR SWITCH

/CP
/CP (Default)

file

task image

effect

The Task Builder clears the noncheckpointable flag in the task label block flags word.

meaning

Task can be checkpointed.

/ICONCATENATED

/CONCATENATED

PDS QUALIFIER

/CONCATENATED
/CONCATENATED

MCR SWITCH

/CC
/CC

file

input

effect

The Task Builder includes in the task image all the modules in the file. If this switch is negated,
the Task Builder includes in the task image only the first module in the file.

meaning

The file can contain one or more than one object module.

4-9

/CROSS_REFERENCE (/CR)

/CROSS_REFERENCE (/CR)

PDS QUALIFIER

/CROSS_REFERENCE
/NOCRO (Default)

MCR SWITCH

/CR
/-CR (Default)

file

memory allocation

effect

A cross reference listing, as described in Section 6.4, is appended to the memory allocation file.
PDS users must have privileges that enable use of TCP and chaining. The system manager sets
such privileges when authorizing a PDS user. For further details see the IAS System Management
Guide.

meaning

A global symbol cross reference listing is to be produced.

/DEBUG]:filespec] (/DA)

/DEBUG][:filespec] (/DA)

PDS QUALIFIER

/DEBUG(:filespec]
/NODEBUG (Default)

MCR SWITCH

/DA
/-DA (Default)

file

task image or input

effect

If filespec is not specified, the Task Builder links the task with the system’s debugging aid (ODT)
contained in the file LB0:[1,1]JODT.OBJ.

If filespec is specified the Task Builder links the task with the debugging aid contained in the
specified file. The user-generated debugging aid must be in object format. See Appendix E for
information on including a debugging aid.

meaning

The task image file is to include a debugging aid.

4-1

/DEFAULT_LIBRARY:filespec (/DL)

/DEFAULT_LIBRARY:filespec (/DL)

PDS QUALIFIER

/DEFAULT_LIBRARY:filespec

TD.r1 Py o
1]SYSLIB.CLB {Default)

LD L1 X0

MCR SWITCH

/DL
LB:[1,1]1SYSLIB.OLB (Default)

file

input

effect

This file, which must be an object module library, will be searched instead of the system library
LBO:[1,1]SYSLIB.OLB when Task Builder is resolving undefined global symbol references.

If the specified library is empty (that is, nc modules have been inserted into it) the effect is as
though there were no default library. The DL switch can be applied only to a single input file.

meaning

The specified file is used in place of the system object module library.
* If /DL is specified—Use filespec as Default Library

¢ If /-DL is specified—Use No Default Library

* If nothing is specified—Use LB0:[1,1}SYSLIB.OLB

4-12

/DISABLE (/DS)

/DISABLE (/DS)

PDS QUALIFIER

/DISABLE
/DISABLE (Default)

MCR SWITCH

/DS
/DS (Default)

file

task image

effect

The Task Builder clears the non-disable flag in the task label flags word.

meaning

The task can be disabled.

/EXIT:n (/XT:n)

JEXIT:n (/XT:n)

PDS QUALIFIER

MCR SWITCH

XT:n
/-XT (Default)

file

task image

effect

The Task Builder exits after n (decimal) error diagnostics have been produced. If n is not specified,
it is assumed to be 1.

meaning

The Task Builder exits after n error diagnostics have been produced. The number of diagnostics
can be specified as a decimal or octal number, using the convention:

¢ For MCR:

— n. = A decimal number

— #n or n = An octal number
* For PDS:

— n = A decimal number (always)

If n is not specified, it is assumed to be 1.

4-14

IFIX (/FX)

/FIX (/FX)

PDS QUALIFIER

/FIX
/NOFIX (Default)

MCR SWITCH

/FX
/-FX (Default)

file

task image

effect

The Task Builder clears the non-fixable flag in the task label block flags word. Note that a fixed
task cannot be checkpointed even when built as checkpointable.

meaning

The task can be fixed in memory.

4-15

/[FLOATING_POINT (/FP)

/FLOATING_POINT (/FP)

PDS QUALIFIER

/FLOATING_POINT
/FLOATING_POINT (Default)

MCR SWITCH

/FP
/FP (Default)

file

task image

effect

The Task Builder allocates 25 words in the task header for the floating point save area.

meaning

The task used the Floating Point Processor.

4-16

/FLUSH_RECEIVE_QUEUES (/FR)

/FLUSH_RECEIVE_QUEUES (/FR)

PDS QUALIFIER

/FLUSH_RECEIVE_QUEUES
/FLUSH (Default)

MCR SWITCH

/FR
/FR (Default)

file

task image

effect

N/A

meaning

The task is to have its receive queues (data and references) flushed each time it exits. If this
qualifier is negated, information in the receive queues will be retained until it is received.

417

/FULL_SEARCH (/FU)

/FULL_SEARCH (/FU)

PDS QUALIFIER

/FULL_SEARCH
R

MNORTITT, SEA

TANNIR U Aird WIRILAAY

CH (D

MCR SWITCH

/FU
/-FU (Default)

file

task image

effect

If the switch is negated, unintended global references between co-tree overlay segments are
eliminated. Global Definitions from the default library are restricted in scope to references in the
main root and the current tree. Use of this switch is described in Chapter 7, Section “Resolution of
Global Symbols from the Default Library”.

meaning

The Task Builder searches all co-tree overlay segments for a matching definition or reference when
processing modules from the default object module library.

/HEADER (HD)

/HEADER (HD)

PDS QUALIFIER

/HEADER
/HEADER (Default)

MCR SWITCH

/HD
/HD (Default)

file

task image or symbol definition

effect

The Task Builder constructs a header in the task image. The contents of the header are described
in Section C.2. If you are using the RUN command to run or install a task, you must build the
task with a header.

meaning

A header is to be included in the task image. You must use the negated form of this qualifier
(/NOHEADER) when building a shareable global area.

/LARGE_SYMBOL_TABLE

/LARGE_SYMBOL_TABLE

PDS QUALIFIER

/LARGE_SYMBOL_TABLE

TNT A .e
/NOLARGE_SYMBOCL_TABLE (Default)

MCR SWITCH

Specify the Slow Task Builder; by specifying STB at the prompt.

file

None

effect

Invokes the task ... STB instead of the usual task ... TKB.

meaning

Select a version of the Task Builder that has a large internal symbol table (that is, the slow Task
Builder (see Section F.3).

4-20

/LIBRARY (/LB)

/LIBRARY (/LB)

PDS QUALIFIER

/LIBRARY
/NOLIBRARY (Default)

MCR SWITCH

/LB
/-LB (Default)

file

input

effect

—r

If no arguments are specified, the Task Builder searches the file to resolve undefined global
references and extracts from the library for inclusion in the task image any modules that
contain definitions for such references.

N

If arguments are specified, the Task Builder includes only the named modules in the task
image.

Note: If you want the Task Builder to search a library file both to resolve global
references and to select named modules for inclusion in the task image, the library
file must be named twice. The first time it must be specified with the LB switch and no
arguments to direct the Task Builder to search the file for undefined global references,
and a second time with the desired modules to direct the Task Builder to include those
modules in the task image being built.

4-21

/LIBRARY (/LB)

meaning

This switch has two forms:
1 Without arguments: LB
2 With arguments: LB:mod-1:mod-2 . . . :mod-8

The interpretation of the switch depends on the form.

1 If the switch is applied without arguments, the input file is agsumed to be a library file of
reclocatable object modules (created by the Librarian) that is to be searched for the resolution
of undefined global references.

2 If the switch is applied with arguments, the input file is assumed to be a library file of
relocatable object modules from which the modules named in the argument list are to be taken
for inclusion in the task image. The module names are those defined at assembly time by the
TITLE directive (or if no .TITLE directive, the filename (first 6 characters) when inserted by
the Librarian). Up to a maximum of eight modules can be specified.

4-22

/MAP (/MA)

/MAP (/MA)

PDS QUALIFIER

/MAP
/MAP (Default)

Note: /NOMAP, implicitly or explicitly qualifying an input file, is overridden by the
memory allocation file qualifier /FULL (see Table 4-1 and Section “MAP [:filespec] or
MAP:(filespec/qualifers)”.

MCR SWITCH

/MA switch on input file.
/MA (Default)

file

input

effect

All modules are included in the memory allocation file.

meaning

The input file is to be included in the memory allocation map.

4-23

/MAP[:filespec] or /MAP:(filespec/qualifiers)

/MAP[:filespec] or /MAP:(filespec/qualifiers)

PDS QUALIFIER

/MAPIfilespec]
/NOMAP (Default)

MCR SWITCH

Include a MAP file specification.

file

memory allocation

effect

If you specify the filespec, you can omit the file. This this case, the Task Builder assumes the MAP
filetype.

If filespec is not specified, the memory allocation file is printed on the line printer.

The following qualifiers can be applied to filespec:

/FILES Include file-by-file analysis of memory allocation and symbol definition. This produces
a separate section for each input module showing the PSECT allocations and symbols
defined in the module.

MCR equivalent: /-SH

/FULL Include all modules in the memory allocation file, even those that explicitly or by default
have the /NOMAP input file qualifier.

MCR equivalent: /MA

/NARROW Produce a map 72 characters wide, suitable for printing on a terminal.
MCR equivalent: /-WI
/SHORT Produce summary map, equivalent to /NOFILES/NOFULL.

MCR equivalent: /SH /-MA

/UNDEFIN Print any undefined references on the terminal that initiated the task build.

[l =i =l ol ad $ Ta)
A\

-~
Y =d g =d g ied)

ES

MCR equivalent: /JUR

4-24

/MAP[:filespec] or /MAP:(filespec/qualifiers)

/WIDE Produce a map 132 characters wide, suitable for printing on a line printer.
MCR equivalent: /Wi

Defauit filespec qualifiers: /SHORT /WIDE /UNDEF

meaning

Produce a memory allocation file.

4-25

/MULTIUSER (/MU)

/MULTIUSER (/MU)

PDS QUALIFIER

/MULTIUSER
/NOMULTIUSER (Default)

MCR SWITCH

/MU
/-MU (Default)

file

task image

effect

The multi-user is set in the task label block flags word and any read-only section of the root
segment is aligned on a disk boundary.

meaning

Multiple versions of the task can run simultaneously. Note that only read-write parts of the task
will be duplicated in memory.

/OPTIONS

/OPTIONS

PDS QUALIFIER

/OPTIONS
/NOOPTIONS (Default)

MCR SWITCH

/ (slash in a line by itself)
No default

file

None

effect

In interactive (PDS>) mode, the Task Builder issues an "OPTIONS?" prompt after the input files
have been specified. The user enters an option specification and after each option specification is
received, another prompt is issued. To terminate the list of options, the user types a slash (/) as
the first character following the prompt.

In batch mode or when using an indirect command file, one or more options are expected to be
specified in the LINK command. In MCR mode one or more options are expected to be specified in
the lines following the switch. A slash (/) in the first character position of a line terminates the
list of options.

meaning

Apply Task Builder options following options qualifier or switches in the LINK command.

4-27

/OVERLAY_DESCRIPTION:filespec (/MP)

JOVERLAY DESCRIPTION:filespec (/MP)

PDS QUALIFIER

/OVERLAY_DESCRIPTION:filespec
/NOOVERLAY_DESCRIPTION (Default)

MCR SWITCH

/MP
/-MP (Default)

file

input

effect

The Task Builder receives all the input file specifications from this file and allocates memory as
directed by the overlay description.

Note:

1 After /MP the Task Builder automatically prompts for options. If options are
required they must be entered straight away, not preceded by the input consisting of
a single slash.

2 When an overlay description file is specified as the input file for a task, it must be
the last input file specified. Other input files are automatically assigned to the ROOT
segment of the task.

meaning

Link the task according to the overlay structure defined in the file identified by filespec. Overlay
descriptions are discussed in Chapter 7, Section "Resolution of Global Symbols from the Default
Library."

/POSITION_INDEPENDENT (/PI)

/POSITION_INDEPENDENT (/P1)

PDS QUALIFIER

/POSITION_INDEPENDENT
/NOPOSITION_INDEPENDENT (Default)

MCR SWITCH

/P1
/-PI (Default)

file

task image or symbol definition

effect

The Task Builder sets the Position Independent Code (PIC) attribute flag in the task label block
flag word.

meaning

The task contains only position independent code or data. This qualifier should only be used
in conjunction with /NOHEADER when building a shareable global area. Position independent
shareable global areas are described in Section 9.4.

/PRIVILEGED (/PR)

/PRIVILEGED (/PR)

PDS QUALIFIER

/PRIVILEGED
/NOPRIVILEGED (Default)

MCR SWITCH

/PR
/-PR (Default)

file

task image

effect

The Task Builder sets the Privileged Attribute flag in the task label block flag word.

meaning

The task is executive privileged with respect to memory access rights. The task can access the
external page, and the SCOM data area (including node pool) in addition to its own task space.
Executive privileged tasks are described in Section 6.2.1.

/READ_WRITE (/RW)

/READ_WRITE (/RW)

PDS QUALIFIER

/READ_WRITE
/NOREAD_WRITE (Default)

MCR SWITCH

/RW
/-RW(Default)

file

task image

effect

This enables you to debug read-only code online.

meaning

Task is to have read-write access to code specified as read-only.

4-31

/RECEIVE (/SE)

/RECEIVE (/SE)

PDS QUALIFIER

MCR SWITCH

/SE
/SE (Default)

file

task image

effect

None

meaning

The task is able to receive data sent to it by the SEND DATA and SEND BY REFERENCE
directives. If the qualifier is negated, any attempt to send data or send data by reference to the
task will fail as though it was not installed.

4-32

/REQUEST (/SR)

/REQUEST (/SR)

PDS QUALIFIER

/REQUEST
/NOREQUEST (Default)

MCR SWITCH

/SR
/-SR (Default)

file

task image

effect

None

meaning

The task is to be built so that the Executive allows the following directives to be issued to the task
from non-real-time directive privileged tasks:

VSDR$/SDRQ$ Send data and request or resume receiver.
SRFR$ Send data by reference and request or resume receiver.

4-33

/RESIDENT_OVERLAYS (/RO)

/RESIDENT_OVERLAYS (/RO)

PDS QUALIFIER

/RESIDENT_OVERLAYS

ATADECG (Y.L]
/NORES (Default)

MCR SWITCH

/RO
/-RO (Default)

file

task image

effect

The memory-resident overlay operator (!) is enabled, and is used to construct a task image that
contains one or more memory-resident overlay segments. If this switch is negated, the operator is
checked for correct syntactical usage, but no memory-resident overlay segments are created.

meaning

The memory-resident overlays, as described in Section 7.1.2.

/RUN_TIME_SYSTEM (/OR)

/RUN_TIME_SYSTEM (/OR)

PDS QUALIFIER

/RUN_TIME_SYSTEM
/RUN_TIME (Default)

MCR SWITCH

/OR
/OR (Default)

file

task image

effect

None

meaning

If this switch is negated, the overlay run-time system and its associated control area will not be
included in an overlaid task. This type of task cannot be run in the normal way but might be
useful for special applications.

/SELECT (/SS)

ISELECT (/SS)

PDS QUALIFIER

/SELECT

/NOCSELECT (Default)

MCR SWITCH

/SS
/-SS (Default)

file

input

effect

The Task Builder includes only the required symbol definitions from the specified file as distinct
from all global symbols of that file. This qualifier is useful when an input file is the symbol table
output (.STB file) of another task build, because it reduces the size of symbol table searches.

meaning

The input file is to be used only to define the required symbols.

4-36

/SEQUENTIAL (/SQ)

/SEQUENTIAL (/SQ)

PDS QUALIFIER

/SEQUENTIAL
/NOSEQUENTIAL (Default)

MCR SWITCH

/8Q
/-SQ (Default)

file

task image

effect

The Task Builder does not re-order the program sections alphabetically. This qualifier must not
be used for modules that rely upon alphabetical program section allocation; in IAS such modules
inciude FORTRAN I/O handling and File Control System modules from SYSLIB.

meaning

The task image is constructed from the specified program sections in the order stated in the
LINK command. Chapter 6, Section “Sequential Allocation of P-sections” describes the allocation
of the task image and gives an example that shows the allocation performed under the default
assumption and the allocation performed when the /SSEQUENTIAL qualifier is specified.

/ISYMBOLS[:filespec]

/ISYMBOLSI:filespec]

PDS QUALIFIER

/SYMBOLS] :filespec]

MNOSVMROICQ (Nofanlt)
AT \AS LA ALY S

TANNIWT & dvaas

MCR SWITCH

Include a symbol table file specification.

file

None

effect
If you specify filespec, you can omit the file type field. In this case, the Task Builder assumes it is
.STB.

If filespec is not specified, the first input file name becomes the symbol definition file name and
.STB becomes the file type.

meaning

Produce a symbol definition file.

/SYMBOLS:(filespec/NOJUNDEFINED_SYMBOLS) (/UN)

/SYMBOLS:(filespec[/NOJUNDEFINED_SYMBOLS)
(/UN)

PDS QUALIFIER

/SYMBOLS:(filespec/NOJUNDEFINED_SYMBOLS
/UNDEF (Default)

MCR SWITCH

/UN
/UN (Default)

file

symbol table

effect

None

meaning

The symbol table (STB) file is used to include references for symbols that were undefined in the
task. If this qualifier is negated, undefined symbols will be ignored when the STB file is generated.

4-39

ITASK[:filespec]

ITASK]:filespec]

PDS QUALIFIER

[TASK(:filespec]
/TASK (Default)

MCR SWITCH

Include a Task File specification.

file

None

effect

If you specify filespec, you can omit the file type. In this case, the Task Builder assumes the .TSK
filetype.

meaning

Produce a task image file.

4-40

/TRACE (/TR)

/TRACE (/TR)

PDS QUALIFIER

/TRACE
/NOTRACE (Default)

MCR SWITCH

/TR
/-TR (Default)

file

symbol table

effect

The Task Builder sets the T bit in the initial processor status (PS) word of the task. When the task
is executed, a trace trap occurs on the completion of each instruction.

meaning

The task is to be traced.

4-41

/WAIT_FOR_NODES (/WN)

/WAIT_FOR_NODES (/WN)

PDS QUALIFIER

/WAIT_FOR_NODES

TXITATY /T A PR Y
/WN (Default)

MCR SWITCH

/WN
/WN (Default)

file

task image

effect

Executive will stall the task and not allow the directive to complete until either sufficient nodes
have been obtained or a certain period (normally 500 clock ticks) has elapsed without finding
sufficient nodes. In the latter case an error return will be made to the task.

meaning

Many system directives require space to be allocated from the system node pool. If there is
insufficient space available, the use of this qualifier will cause the directive to wait a short time
for nodes to become available. If WAIT_FOR_NODES is not specified, and insufficient nodes are
available, an immediately error return will be made to the task.

4-42

Task Builder Options

Where more complex specifications are needed to describe a modification (for example, numeric
values, names or lists) you must use Task Builder options. The Task Builder options are identical
for both MCR and PDS users and are summarized in Table 5-1.

The task builder user includes options to supply task characteristics that require a more complex
specification than can be included using a qualifier (PDS) or switch (MCR).

You always input options as a result of a prompt. In PDS, you get the prompt “OPTIONS?” by
including the qualifier “/OPTIONS” in the command (see Section 2.2.5). In MCR, you get the
prompt “ENTER OPTIONS:” by typing a single slash (/) in response to a “TKB>" prompt (see
Section 3.1.3).

Options fall into six categories, each of which is identified by the following mnemonics:
1 ident

Identification options identify task characteristics. The task name, priority, (UIC), and
partition can be specified by the use of options in this category.

2 alloc

Allocation options modify the task memory allocation. The size of the stack, program-sections
in the task, and FORTRAN work areas and buffers can be adjusted by the use of options in
this category.

3 share
Storage sharing options indicate the task’s intention to access a shareable global area.
4 device

Device specifying options specify the number of units required by the task and the assignment
of physical devices to logical unit numbers (LUNSs).

5 alter
Content altering options define a global symbol and value or introduce patches in the task
image.

6 synch

Synchronous trap options define synchronous trap vectors.

Table 5-1 lists all the options alphabetically, including a brief description and interest range for

v ST

each. Some of these options are of interest to all users of the system, some only to the FORTRAN
programmer, and some primarily to the MACRO-11 programmer. The interest range is indicated
by the following codes:

e F—Of interest to FORTRAN programmers only.
¢ M—Of interest to MACRO-11 programmers only.
¢ FM—Of interest to both FORTRAN and MACRO-11 programmers.

5-1

Task Builder Options

The table also lists the mnemonic for the category to which the option belongs. The remainder of
the chapter gives more detailed descriptions of each option by category.

5-2

Task Builder Options

Note: Real-time users can override many of these options when the task is explicitly
installed. See the IAS PDS User’s Guide or IAS MCR User’s Guide.

If /NOOPTIONS is specified explicitly or by default in a PDS LINK command, the task
is linked to the system SGA SYSRES,; see Chapter 9, Section 9.1.2.

Table 5-1 Task Builder Options

Option Meaning Interest Category
ABSPAT Declare absolute patch values. M alter
ACTFIL Declare number of files open simultaneously. FM alloc
ALVC Provide the user with ABSolute (default) and DEFerred FM alter
auto-load vectors.
ASG Declare device assignment to logical units. M device
ATRG Declare the number of attachment descriptor blocks to be M alloc
created in the task header.
BASE Define lowest virtual address. FM alloc
CMPRT Declares completion routine for supervisor-mode library. FM ident
EXTSCT Declare extension of a program section. M alloc
EXTTSK Extend task memory allocation at install time. M alloc
FMTBUF Declare extension of buffer used for processing format F alloc
strings at run-time.
GBLDEF Declare a global symbol definition. M alter
GBLINC Includes symbols in the .STB file M alter
GBLPAT Declare a series of patch values relative to a global symbol. M alter
GBLREF Declare a global symbol reference. FM alter
GBLXCL Declares global symbols to be excluded from the .STB file. ~H,M alter
IDENT Declares the identification of the task. HM ident
MAXBUF Declare an extension to the FORTRAN record buffer. F alloc
MAXEXT Declare maximum task extension. FM alloc
oDTV Declare the address and size of the debugging aid M synch
synchronous system trap (SST) vector.
PAR Declare partition name and dimensions. FM ident
POOL Declare pool usage limit. M alloc
PRI Declare priority. M ident
RESAPR Reserve APRs for use by memory management directives. FM alloc
RESSGA Declare task’s intention to access a shareable global area. FM share
RESSUP Declares task’s intention to access a resident H,M share
supervisor-mode library.
SGA Declare task’s intention to access a shareable global area FM share
STACK Declare the size of the stack. FM alloc
SUPLIB Declares task’s intention to access a system-owned HM share
supervisor-mode library.
SYMPAT Declare a series of symbolic patch values. M alter

5-3

5.1

Task Builder Options

Table 5-1 (Cont.) Task Builder Options

Option Meaning Interest Category
TASK Declare the name of the task. FM ident
TOP Define highest virtual address. M alloc
TSKV Declare the address of the task SST vector. M synch
uUic Declare the user identification code under which the task M ident
runs.
UNITS Declare the highest logical unit number. M device
VSECT Declare the virtual base address and size of a program M alloc
section.

Identification Options

The identification options are used to specify task identifying information. These options are of
interest to all real-time users.

The identification options specify the name of the task, the UIC, the priority, and the partition for
real-time tasks. The UIC can be specified by a real-time user when the tagk is explicitly installed
or when it is run. If such a specification is not made, the system uses the UIC established when

the task was built. The task runs under the most recently specified UIC.

These options have no effect if the task is run under timesharing.

The identification options are as follows:

5-4

CMPRT (Completion Routine)
ALVC (Auto-Load Vector)
IDENT (Task Identification)
PAR (Partition)

PRI (Priority)

TASK (Task Name)

UIC (User Identification Code)

CMPRT (Completion Routine)

CMPRT (Completion Routine)

Use this option to identify a shared global area as a supervisor-mode library. The CMPRT option
requires an argument ihai specifies the eniry point of the compleiion routine in the library. The
completion routine switches the processor from supervisor to user mode and returns program control
to the user task after the supervisor-mode library subroutine that was called from the user task has
executed.

Two completion routines are available in SYSLIB:
+ $CMPCS restores only the carry bit in the user-mode PS.
+ $CMPAL restores all the condition code bits in the user-mode PS.

These routines perform all the necessary overhead to switch the processor from supervisor to
user mode and return program control to the user task at the instruction following the call to a
supervisor-mode library subroutine.

Although you can write your own completion routines, it is best to use either §CMPCS or $CMPAL
whenever possible.

SYNTAX
CMPRT=name
where:

°* name = 1- to 6-character Radix-50 name identifying the completion routine.

default

None

5-5

ALVC (Auto-Load Vector)

ALVC (Auto-Load Vector)

The ALVC option selects either node access to ABSolute (default) or DEFerred auto-load vectors.

SYNTAX

ALVC= ABS

ALVC=DEF

where:
¢ ABS = Absolute addressing mode
* DEF = Deferred option

NOTE: To replace $AUTO with your own auto-load routine, insert the name of the
user-suppled auto-load routine in .NAUTO and specify ALVC=DEF option at tagskbuild
time. The RMS-11 V2.0 mapping routines use this method extensively. To intercept
references that require auto-load services, RMS-11 temporarily swaps the $AUTO
entry-point in .NAUTO with its own mapping routine. RMS-11 then sets the necessary
segments and window descriptors before it transfers control to the $AUTO routine.

default

ABS

5-6

IDENT (Task ldentification)

IDENT (Task Identification)

The IDENT option changes the identification of the task from the one originally specified in the .IDENT
MACRO-11 statement in the firsi .MAC fiie io the one speciiied in the option.

If you do not use the IDENT option, the Task Builder uses the identification of the first input .MAC file
that it encounters.

SYNTAX
IDENT= name
where:

* name = Any 1- to 6-character Radix-50 name for use as task identification. You can use
any Radix-50 character that is correct for use in the MACRO-11 .IDENT statement.

default

TKB supplies no default name. If you use the IDENT option, you must specify a name.

5-7

PAR (Partition)

PAR (Partition)

Unless it is explicitly overridden when a task is installed or run, for real-time tasks, the PAR option
identifies the partition where the task runs.

NOTE: For timesharing tasks, the task runs in the timesharing partition irrespective of

this option.

SYNTAX
PAR=pname
where:

¢ pname = Name of the partition

default

Timesharing partition for tasks running under control of the timesharing scheduler.

The default partition (specified during system generation) for real-time tasks.

5-8

PRI (Priority)

PRI (Priority)

For real-time tasks, the PRI option declares the priority at which the task executes. If priority is not
specified when the task is instailed, the priority deciared in the PRi opiion is used.

NOTE: For timesharing tasks, the task runs at the timesharing priority irrespective of
this option.

SYNTAX
PRI= priority-number
where:

® priority-number = Decimal integer in the range 1 - 250

default

System default priority.

5-9

TASK (Task Name)

TASK (Task Name)

The TASK option specifies the installed task name.

SYNTAX
TASK = fask-name

where:

* task-name = 1- to 6-character alphanumeric name identifying the task.

default

For tasks run using the PDS RUN filename command, the task is run with a task name in the
following form:

* JOBnnn—For timesharing systems

¢ TTnnx—For multiuser systems, where nn = terminal unit number

For real-time tasks and tasks run using the MCR RUN filename command, the default taskname
is the first six characters of the task image file name.

5-10

UIC (User Identification Code)

UIC (User Identification Code)

For real-time tasks, the UIC option declares the UIC under which the task will run if no UIC was
specified at execution request or when the task was instalied.

NOTE: On timesharing systems, the task runs under the UIC allocated when the user
logged in, irrespective of specification of the UIC option.

SYNTAX
UIC= [group,member]
where:
* group = Octal number in the range 1 - 377 that specifies the group.

¢ member = Octal number in the range 1 - 377 that specifies the member number.

default

The UIC determined from the user name at login time.

5-11

5.2

Task Builder Options

Allocation Options

The allocation options direct the Task Builder to change allocations affecting memory.

The allocation options are as follows:

ACTFIL (Number of Active Files)
ATRG (Attachment Descriptors)
BASE (Base Address)

EXTSCT (Program Section Extension)
EXTTSK (Extend Task Space)
FMTBUF (Format Buffer Size)
MAXBUF (Maximum Record Buffer Size)
MAXEXT (Maximum Extension)
POOL (Pool Limit)

RESAPR (Reserve APRs)

STACK (Stack Size)

TOP (Top Address)

VSECT (Virtual Program Section)

5-12

ACTFIL (Number of Active Files)

ACTFIL (Number of Active Files)

The ACTFIL option declares the number of files that the task can have open simultaneously. For each
active file, an allocation of 520 bytes (or, if MAXBUF is specified, MAXBUF +8) is made.

it the number of aciive files used by a task is less than the default assumption of four, you can uss the
ACTFIL option to save space. If the number of active files is more than the default assumption, you
must use the ACTFIL option to direct the Task Builder to make the additional allocation so that the task
can run. If you use double buffered file control services (FCS), the ACTFIL specification must also be
doubled.

The FORTRAN object time system (OTS) and file control services (FCS) must be included in the
task image for the extension to take place. The p-section that is extended has the reserved name
“$$FSR1”.

.- -]
SYNTAX
ACTFIL = file-max

where:

* filemax = Decimal integer indicating the maximum number of files that can be open at the
same time.

default

ACTFIL =4

5-13

ATRG (Attachment Descriptors)

ATRG (Attachment Descriptors)

The ATRG option declares the number of attachment descriptors blocks to be created in the task
header.

SYNTAX
ATRG= max-regions
where:

* max-regions = Decimal integer in the range 0 to 240 that declares the maximum number
of regions to which the task can simultaneously attach. Attachment descriptor blocks are
automatically generated for resident overlays and SGAs.

defauit

ATRG =0

5-14

BASE (Base Address)

BASE (Base Address)

The BASE opfion specifies the base address of the task to be at a particular 4K boundary.

Use the BASE option when you create SGA images that are not position-independent. The BASE (and
TOP) options are primarily used o locate SGAs and must not be used when building normal tasks.

Task image addresses are normally allocated upward from zero. A non-position-independent library file
must appear in the same virtual address range of each task that shares it. To avoid conflicts with task
addresses, you can allocate the library toward the top of the virtual address range (that is, 140000 to
177776), by using a base address declaration (see also Section “TOP”).

The BASE option overrides any previous TOP specification.

SYNTAX
BASE = bound:high

BASE = bound:low

where:

¢ bound = Decimal number between 0 and 28 that specifies the lowest 4K boundary of the
image.

default

0

5-15

EXTSCT (Program Section Extension)

EXTSCT (Program Section Extension)

The EXTSCT option declares an extension in size for a p-section. P-sections and their attributes are
described in Chapter 6, Section 6.1.9.

If the p-section has the attribute CON (concatenated), the section is extended by the specified number
of bytes. If the p-section has the attribute OVR (overlay), the section is extended only if the length of
the extension is greater than the length of the p-section.

For example, suppose that p-section BUFF is 200 bytes long and the option below is given:
EXTSCT = BUFF:250

The extension specified for the p-section depends on the CON/OVR attribute; specifically:

« CON—The extension is 250 bytes.

< OVR—The extension is 50 bytes.

The extension occurs when the p-section name is encountered in an input object file or in the overlay
description file.

SYNTAX
EXTSCT= p-sect-name:extension
where:

* p-sect-name = 1- to 6-character alphanumeric name that specifies the p-section to be
extended.

* extension = Octal integer that specifies the number of bytes by which to extend the
p-section.

default

None

5-16

EXTTSK (Extend Task Space)

EXTTSK (Extend Task Space)

The size of the read/write space of the task is to be extended at Install time.

This parameter can be overridden by the Install or Run qualifier INCREASE. If the EXTTSK option has
been overridden, the task must be removed and reinstalled without the /INCREASE qualifier to revert
back to the EXTTSK option.

This option is used in conjunction with the .LIMIT directive to the assembler and the system directive
Get Task Parameters. It is useful in saving disk space that would otherwise be allocated (for example,
for initially empty buffers). The Install INCREASE qualifier provides the ability to vary the size of such
buffers.

SYNTAX
EXTTSK = task-extension
where:

* task-extension = Decimal number of words by which Install extends the upper read/write
area of the task. The value is rounded up to the next 32-word block boundary.

default

0

5-17

FMTBUF (Format Buffer Size)

FMTBUF (Format Buffer Size)

The FMTBUF option declares the length of internal working storage allocated for the parsing of format
specifications at run-time. The length of this area must equal or exceed the number of characters in the
longest format string to be processed.

Run-time processing occurs whenever an array is referenced as the source of formatting informati
within a FORTRAN /O Statement. The program section to be extended has the reserved name
“$$OBF1”.

SYNTAX
FMTBUF= max-format
where:

* max-format = Decimal integer larger than the default that specifies the number of
characters in the longest format specification.

default

FMTBUF = 132

5-18

MAXBUF (Maximum Record Buffer Size)

MAXBUF (Maximum Record Buffer Size)

The MAXBUF option declares the maximum record buffer size required for all files used by the task.

Use this option whenever you process a file where the maximum record size exceeds the default buffer
iengii specified during system generation.

The FORTRAN Object Time System must be included in the task image for the extension to take place.
The p-section that is extended has the reserved name “$$10B1”.

SYNTAX
MAXBUF= max-record
where:

* max-record = A decimal integer, larger than the default, that specifies the maximum record
size in bytes.

defauit

MAXBUF = 132

5-19

MAXEXT (Maximum Extension)

MAXEXT (Maximum Extension)

The MAXEXT option declares the maximum number of 32-word blocks by which the task can extend
itself. To perform this extension, use the Extend Task directive (EXTK$) or the EXTTSK FORTRAN
subroutine. The IAS System Directives Reference Manual describes the EXTK$ directive fully.

SYNTAX
MAXEXT= maximum-extension
where:

* maximum-extension = Octal number of 32-word blocks in the range 0—2000.

default

MAXEXT = 2000

5-20

POOL (Pool Limit)

POOL (Pool Limit)

The POOL option declares the maximum number of 8-word pool nodes that the task can use
simultaneously. Use these pool nodes for forming I/O request nodes and to process certain system
directives. For a full description of system node pocl usage, see the IAS Execulive Facilities Refersnce
Manual. If the task POOL allocation is too small, directives might fail with the error IE.UPN (unavailable
pool node).

SYNTAX
POOL = pool-limit
where:

¢ pool-limit = Decimal number of 8-word nodes in the range 1 to 255. For multiuser tasks
this indicates the pool limit for each version.

default

POOL=40

5-21

RESAPR (Reserve APRSs)

RESAPR (Reserve APRs)

The RESAPR option reserves APRs for use at runtime by the Memory Management directives.

The task builder does not allocate the APRs specified in the directive Builder for resident overlays,
global areas, or the task pure area.

SYNTAX
RESAPR=a1[a2..]
where:

¢ al:a2:... = APRs (in the range 1 to 7) to be reserved

default

None

5-22

STACK (Stack Size)

STACK (Stack Size)

The STACK option declares the maximum size of the stack required by the task.

The stack is an area of memory used for temporary storage, subroutine calls, and interrupt service
linkages. The stack is referenced by hardware register SP (the stack pointer).

SYNTAX
STACK = stack-size
where:

* stack-size = Decimal integer that specifies the number of words required for the stack.

default

STACK = 256

5-23

TOP (Top Address)

TOP (Top Address)

The TOP option declares the ending address of a task to be within a 4K boundary.

This option is the same as the BASE option except that it allows definition of the last 4K boundary
rather than the first 4K boundary.

The TOP option overrides any previous BASE specification.

SYNTAX
TOP= bound:high

TOP= bound:low

where:

* bound = Decimal number between 0 and 28 that specifies the highest 4K boundary of the
image.

default

None

5-24

VSECT (Virtual Program Section)

VSECT (Virtual Program Section)

The VSECT option enables you to specify the virtual base address, virtual length, and physical memory
allocated to the p-section.

SYNTAX

VSECT= p-section name:base:window:[:physical-length]
where:
* p-sect-name = 1- to 6-character program section name.

¢ base = Octal value specifying the virtual base address of the program section in the range
0-177777. This value must be a multiple of 4K if used with the mapping directives.

¢ window = Octal value specifying the amount of virtual address space allocated to the
p-section. Base plus window size must not exceed 177777 (octal).

¢ physical length = Octal value specifying the amount of physical memory to be allocated to
the section in units of 64-byte blocks. This value, when added to the task image size (and
any previous allocation) must not cause the total to exceed 2.2 million bytes. If unspecified,
zero is assumed. :

defauit

Window defaults to the value allocated; physical length defaults to zero.

5-25

5.2.1

5.3

Task Builder Options

Example of Aliocation Options

If the FORTRAN routines contained in file GRP1 use eight files simultaneously, and the maximum
record length in one of these files is 160 characters, you can use the following terminal sequence to
build the task:

PDS> LINK/TASK:IMG1/MAP:MP1/OPTIONS
FILE? GRP1

OPTIONS? ACTFIL=8

OPTIONS? MAXBUF=160

OPTIONS? /

or:

TKB>IMG1l, MP1=GRP1
TKB>/

ENTER OPTIONS:
TKB>ACTFIL=8
TKB>MAXBUF=160
TKB>/

Storage-Sharing Options
You can use two options to indicate a task’s intention to access an SGA.
1 SGA option

Use the SGA option to access public SGAs that contain commonly used routines or data. The
task and symbol table files are expected to reside in UFD[1,1] on the pseudo device LBO:
(normally the system disk).

2 RESSGA option

Use the RESSGA option to specify a device and UFD. You can also use this option to access
SGAs that are private to a single user or group of users.

It is sometimes necessary to control access by non-owners to a data area or to enable writing to

a code area. The access required by a particular task (read-only or read/write) and declared in
either the SGA or RESSGA option is always subject to the access granted to non-owners by the
SGA itself. The latter (read-only, read/write or no access) is determined when the SGA is installed.
See the IAS PDS User’s Guide or the IAS MCR User’s Guide for a description of the appropriate
INSTALL command.

The IAS Executive Facilities Reference Manual describes the different types of SGAs you can use.

Note: If /NOOPTIONS was specified explicitly or by default in a PDS LINK command,
the task is automatically linked to the public SGA SYSRES. See Chapter 9, Section 9.1.2.

The storage-sharing options are as follows:
e RESSGA (Shareable Global Area)
= RESSUP (Resident Supervisor-Mode Library)

e SGA (Shareablie Giobal Area)

5-26

RESSGA (Shareable Global Area)

RESSGA (Shareable Giobal Area)

The RESSGA option declares a shareable global area for use by the task. RESSGA enables a full
file-specification.

NOTE: The RESSGA option supersedes the RESCOM and RESLIB options in previous
versions of IAS. RESCOM and RESLIB are still recognized by the Task Builder for
compatibility. Their effect is identical to that of specifying RESSGA.

L...___]
SYNTAX
RESSGA = filespec/access-code[:apr]

where:

* filespec = Form dev:[ufdlfilnam. No filetype can be specified and “filnam” must be six
characters or less, since it is also the name of the shareable global area.

* access-code = As for the SGA option.
* apr = As for the SGA option.

default

dev: and [ufd] default to the user default device and UFD.

5-27

RESSUP (Resident Supervisor-Mode Library)

RESSUP (Resident Supervisor-Mode Library)

The RESSUP option declares that your task intends to access a user-owned, supervisor-mode library.
The term user-owned means that the library and the symbol definition file associated with it can
reside under any UFD that you choose. You can specify the UFD and remaining portions of the file
specification. You must not place comments on the line with RESSUP.

SYNTAX
RESSUP = file-specification/[-]SV[:apr]
where:
* file-specification = Memory image file of the supervisor-mode library.

* /[-ISV = Code /SV or /-SV to indicate whether TKB inciudes mode-switching vectors within
the user task. If you specify /SV, TKB includes a 4-word, mode-switching vector within
the address space of the user task for each call to a supervisor-mode library subroutine. If
you specify /-SV, you must provide your own mode-switching vector. Providing your own
mode-switching vectors is useful if your library contains threaded code. It is best to use the
system-supplied vectors whenever possible.

* apr = Integer in the range 0 through 7 that specifies the first Supervisor Active Page
Register that you want TKB to reserve for your supervisor-mode library. You can specify
an APR only for position-independent, supervisor-mode libraries. The default is the lowest
available APR.

The library at virtual 0 must have the CSM dispatcher present in the system-supplied
completion routine described in Chapter 9.

NOTE: TKB expects to find a symbol definition file with the same name as that of the
memory image file but with a file type of .STB, on the same device and under the same
UFD as that of the memory image file.

Regardless of the version number you give in the file specification, TEB uses the latest
version of the .STB file.

default

When you omit portions of the file specification, the following defaults apply:
¢ Terminal default directory

* Device—SYO0:

¢ File type—TSK

* File version—Latest

5-28

SGA (Shareable Global Area)

SGA (Shareable Global Area)

The SGA option declares a shareable global area residing on LB0O: under [1,1] for use by the task.

NOTE: The SGA option supersedes the COMMON and LIBR options in previous versions
of IAS. COMMON and LIBR are still recognized by the Task Builder for compatibility.
Their effect is identical to specifying SGA.

SYNTAX
SGA= SGA-name:access-code[.apr]
where:
¢ SGA-name = 1- to 6-character alphanumeric name of the SGA.

* access-code = Either RW (read/write) or RO (read-only) to indicate the type of access
required for the task.

* apr = Integer in the range 1 to 7 that specifies the first Active Page Register to be
reserved for the common block. The apr is optional but must not be specified for
non-position-independent common areas.

default

None

5-29

SUPLIB (Supervisor-Mode Library)

SUPLIB (Supervisor-Mode Library)

This option declares that your task intends to access a system-owned, supervisor-mode library. The
term system-owned means that TKB expects to find the supervisor-mode library and the symbol
definition file associated with it in UFD [1,1] on device LB..

SYNTAX
SUPLIB= name:[-]SV[:apr]

where:

name = 1- to 6-character Radix-50 name specifying the system-owned, supervisor-mode
library. TKB expects to find a symbol definition file having the same name as that of the
library with a file version of .STB under [1,1] of device LB:.

:[-1SV = Code /SV or /-SV to indicate whether TKB includes mode-switching vectors within
the user task. If you specify /SV, TKB includes a 4-word mode-switching vector within the
address space of the user task for each call to a supervisor-mode library subroutine. If
you specify /-SV, you must provide your own mode-switching vector. Providing your own
mode-switching vectors is useful if your library contains threaded code. It is best to use the
system-supplied vectors whenever possible.

apr = Integer in the range of 0 through 7 that specifies the first Supervisor Active
Page Register that TKB is to reserve for the library. You can specify an APR only for
position-independent, supervisor-mode libraries. The default is the lowest available APR.
The library at virtual 0 must have the CSM dispatcher present in the system-supplied
completion routine described in Chapter 9.

default

None

5-30

5.3.1

5.4

Task Builder Options

Example of Storage Sharing Options

If the task composed of the MACRO-11 programs TST1 and TST2 accesses a shareable common
area DTST that contains data, and a shareable library area STST that contains code, both held in
LB0:[1,1], you can use the following terminal sequence to build the task:

PD8> LINK/TASK:CHK/MAP/OPTIONS
FILE? TST1,TST2

OPTIONS? SGA=DTST:RW

OPTIONS? SGA=STST:RO

OPTIONS? /

or:

TKB>CHK, LP : =TST1, TST2
TKB>/

ENTER OPTIONS:
TKB>SGA=DTST:RW
TKB>SGA=STST:RO

TKB>/

If the shareable global areas are not in LB0:[1,1]:, you can use the following sequencé for the same
task:

PDS> LINK/TASK:CHK/MAP/OPTIONS
FILE? TST1, TST2

OPTIONS? RESSGA=([200,30]DTST/RW
OPTIONS? RESSGA=DB1l:[200,30]STST/RO
OPTIONS? /

or:

TKB>CHK, LP : =TST1, TST2

TKB>/

ENTER OPTIONS:
TKB>RESSGA=[200,30]DTST/RW
TKB>RESSGA=DB1: [200, 30] STST/RO
TKB>/

Device Specifying Options

The two options in this category are of interest to all system users. The UNITS option declares
the maximum logical input/output unit number (LUN) that the task uses. All integers from one
through the declared maximum are then made available to the task. The ASG option declares the
devices that are assigned to these LUNSs.

The maximum LUN declared cannot be less than the highest unit assigned.

Since the options are processed as they are encountered, to increase the number of LUNs and
assign devices to these LUNs you should enter the UNITS option first, then the ASG option.
Entering the options in the reverse order can produce an error message.

The device specifying options are as follows:
¢ ASG (Device Assignment)
¢ UNITS (Logical Unit Usage)

5-31

ASG (Device Assignment)

ASG (Device Assignment)

The ASG option declares the physical device that is assigned to one or more units.

SYNTAX

where:

* device-name = 2-character alphabetic device name followed by a 1 or 2-digit decimal unit
number.

* unit-num-1 = Decimal integers indicating the unit-num-2 logical unit numbers.

* unit=num-n

default

ASG = SY0:1:2:3:4, TI10:5, CL0:6

5-32

UNITS (Logical Unit Usage)

UNITS (Logical Unit Usage)

The UNITS option declares the maximum logical unit number used by the task.

SYNTAX
UNITS= max-units

where:

* max-units = Decimal integer in the range 0 to 250 which specifies the maximum logical
unit number.

default

UNITS =6

5-33

Task Builder Options

5.4.1 Example of Device Specifying Options

Suppose the FORTRAN programs specified in the file GRP1 require nine logical units. The device
assignments for units 1 through 6 agree with the default assumptions and logical units 7,8 and
9 are assigned to DECtape 1 (DT1). The command sequence of the example shown in Section
“MAXEXT” is changed to include device assignment options, as follows:

PDS> LINK/TASK:IMG1/MAP:MP1/OPTIONS
FILE? GRP1

OPTICONS? UNITS=9

OPTIONS? ASG=DT1:7:8:9

OPTIONS? /

or:

TKB>IMG1l,MP1=GRP1
TKB>/

ENTER OPTIONS:
TKB>UNITS=9
TKB>ASG=DT1:7:8:9
TEB>/

15
N

Storage Altering Options

These options alter the task image and are of interest primarily to the MACRO-11 programmer.
The GBLDEF option declares a global symbol and value. The options ABSPAT, GBLPAT and
SYMPAT introduce patches into the task image.

The storage altering options are as follows:
¢ ABSPAT (Absolute Patch)

¢ GBLDEF (Global Symbol Definition)

® GBLINC (Include Global Symbols)

* GBLPAT (Global Relative Patch)

* GBLREF (Global Symbol Reference)

* GBLXCL (Exclude Global Symbols)

e SYMPAT (Symbolic Patch)

5-34

ABSPAT (Absolute Patch)

ABSPAT (Absolute Patch)

The ABSPAT option declares a series of patches starting at the specified base address. Up to eight
patch values can be given.

NOTE: All ABSPAT paiches must be within the segment memory lmits or a fatal ervor
is generated.

SYNTAX

where:
* seg-name = 1- to 6-character alphanumeric name of the segment.

* address = Octal address of the first patch. The address can be on a byte boundary, but two
bytes are always modified for each patch.

¢ val-1 = Octal number in the range 0 to 177777 to be assigned to address.
* val-2 = Octal number in the range 0 to 177777 to be assigned to address+2.

¢ val-8 = Octal number in the range 0 to 177777 to be assigned to address+16(octal).

default

None

5-35

GBLDEF (Global Symbol Definition)

GBLDEF (Global Symbol Definition)

The GBLDEF option declares the definition of a global symbol.

The symbol definition is considered absolute.

SYNTAX
GBLDEF= symbol-name:symbol-value
where:
* gymbol-name = 1- to 6-character alphanumeric name of the defined symbol.

¢ gymbol-value = Octal number in the range 0 to 177777 that is assigned to the defined
symbol.

default

Ncne

5-36

GBLINC (include Global Symbols)

GBLINC (Include Global Symbols)

The GBLINC option directs TKB to include the symbol or symbols specified in this option in the .stb
file being generated by the link operation where this option appears. This option is intended for use
when you create shared global areas, in particular shared libraries, when you want to force particular
modules to be linked to your task that reference this library. The global symboli references specified by
this option must be satisfied by some module or GBLDEF specification when you build the task.

L. - - -]
SYNTAX
GBLINC= symbol-name,symbol=name,...,symbol-name

where:

* symbol-name = Symbol to be included.

default

None:

5-37

GBLPAT (Global Relative Patch)

GBLPAT (Global Relative Patch)

The GBLPAT option declares a series of patch values starting at an offset relative to a global symbol.
Up to eight patch values can be given.

SYNTAX

where:

* sym-name = 1- to 6-character alphanumeric name that specifies the global symbol.
* offset = Octal number used to specify the offset from the global symbol.

* seg-name = Identical to that defined for ABSPAT

* val-l

¢ val-2

e val-8

default

None

5-38

GBLREF (Global Symbol Reference)

GBLREF (Global Symbol Reference)

The GBLREF option declares a global symbol reference. The reference originates in the root segment
of the task.

SYNTAX
GBLREF= symbol-name
where:

¢ symbol name = 1- to 6-character name of a global symbol reference

default

None

5-39

GBLXCL (Exclude Global Symbols)

GBLXCL (Exclude Global Symbols)

The GBLXCL option keyword directs TKB to exclude from the symbol definition file of a shared global
area the symbol(s) specified in the option.

SYNTAX
GBLXCL = symbol-name,symbol-name...,symbol-name
where:

¢ symbol-name = Symbol(s) to be excluded.

default

None

5-40

SYMPAT (Symbolic Patch)

SYMPAT (Symbolic Patch)

The SYMPAT option declares a series of symbolic patch values starting at an offset relative to a global
symbol. Up to three patch values can be given.

Al paiches miust be within the segment address limits. if they are nol, of if a segment does ot sxist,
or if a specified symbol can not be found in the segment, a diagnostic error is generated.

All symbols used in the value specification must already be defined or referenced within the segment
being patched. The SYMPAT directive cannot be used to create a new reference from one segment to
a symbol defined in another.

SYNTAX
SYMPAT = seg-name:sym-name[+/-offset]:val-1[.val-2[:val-3]]

seg-name

where: [sym-name } [are identical to those defined for GBLPAT |
offset

¢ val-n = One of the following formats:

sym-name
sym-name-+offset
gym-name-offset
literal

-literal

where:

¢ gsym-name = 1- to 6-character name of a symbol defined or referenced in the segment.
¢ offset = Octal number in the range 0 to 177777.

¢ literal = Octal number in the range 0 to 177777.

5-41

Task Builder Options

5.5.1 Example of Storage Altering Options

Suppose that in the example composed of the MACRO-11 programs TST1 and TST2, GAMMA is
a referenced symbol whose value is to be specified when the task is built. The user defines the
symbol GAMMA to have the value 25 and introduces 10 numerical patch values at addresses
relative to the global symbol DELTA. The user also introduces patch values at addresses relative
to the global symbols ALPHA and BETA. Some of these values are themselves in symbolic form.

The terminal sequence of the example shown in Section “SUBLIB” is modified to include the
options GBLPAT, GBLDEF and SYMPAT as follows:

PDS> LINK/TASK:CHK/MAP:LPO:/OPTIONS

FILE? TST1,TST2

OPTIONS? SGA=DTST:RW:5,STST:RO

OPTIONS? GBLDEF=GAMMA:25

OPTIONS? GBLPAT=TST1:DELTA:1:5:10:15:20:25:30:35
OPTIONS? GBLPAT=TST1:DELTA+20:40:45

OPTIONS? SYMPAT=TST1:ALPHA:PSI:EPSLON-20:30
OPTIONS? SYMPAT=TST1:BETA+20:12737:PSI+1:MU
OPTIONS? /

or:

TKB>CHK, LP :=TST1, TST2

TRKB>/

ENTER OPTIONS:

TKB>SGA=DTST:RW:5, STST:RO
TKB>GBLDEF=GAMMA: 25
TKB>GBLPAT=TST1:DELTA:1:5:10:15:20:25:30:35
TKB>GBLPAT=TST1 :DELTA+20:40:45
TKB>SYMPAT=TST1 :ALPHA:PSI:EPSLON-20:30
TKB>SYMPAT=TST1 :BETA+20:12737:PSI+1:MU
TKB>/

5.6 Synchronous Trap Options

Two options are available to declare that the specified vector address is to be preloaded into the
task header, thus enabling the task to receive control on the occurrence of synchronous traps.
These options are of interest primarily to the MACRO-11 programmer.

The synchronous trap options are as follows:
e ODTV (ODT SST Vector)
¢ TSKV (Task SST Vector) [list-element]...

5-42

ODTV (ODT SST Vector)

ODTV (ODT SST Vector)

The ODTYV option declares a global symbol to be the address of the ODT SST vector. The defined
global symbol must exist in the part of the task that is always in memory.

SYNTAX
ODTV=symbol-name:vector-length
where:
¢ gymbol-name = 1- to 6-character alphanumeric name of a global symbol.

¢ vector-length = Decimal integer in the range of 1 to 32 that specifies the length of the SST
vector in words.

defauit

None

TSKV (Task SST Vector)

TSKV (Task SST Vector)

The TSKV option declares a global symbol as the address of the task SST vector. The defined symbol
must exist in the part of the task that is always in memory.

SYNTAX
TSKV= symbol-name:vector-length
where:
¢ symbol-name = As defined for ODTV vector-length

default

None

5-44

5.7

5.7.1

5.7.2

Task Builder Options

Example: CALC.TSK;2

Suppose that in the first execution of the task CALC, several logical errors are found. The user
corrects the program and is now ready to make the changes in the program and some adjustments
in the task image file based on the information obtained about the size of the task in the first task

build.

In this example, the user modifies the text file for the program, recompiles the program, and
rebuilds the task so that only one active file buffer is reserved.

Correcting the Errors in Program Logic
The FORTRAN source language for the program “RDIN.FTN” is corrected as follows:

C READ AND ANALYZE INPUT DATA
C SELECT A PROCESSING ROUTINE
c

C ESTABLISH COMMON DATA BASE

(@]

COMMON /DTA/ A(200), I
C READ IN RAW DATA
READ (6,1) A

1 FORMAT (200 F6.2)

CALL PROC1
CALL RD1
CALL RPRT

END
SUBROUTINE RD1

RETURN
END
Next, the program “RDIN.FTN” is recompiled as follows:

PDS> FORTRAN RDIN

or:
MCR>FOR RDIN,RDIN=RDIN

Observe that the corrections to “RDIN.FTN” included the addition of a subroutine “RD1”. The
object file produced by the FORTRAN compiler as a result of the above terminal sequence now
contains two object modules.

Building the Task

The user knows from the program logic that only one file is open at a time, but the Task Builder
assumes that four files are open simultaneously. Therefore, the user can use the ACTFIL option to
reduce the space required for the task.

5-45

Task Builder Options

The task is built with the following terminal sequence:

PDS> LINK/TASK:CALC.TSK;2/MAP: (/SHORT) /OPTIONS
FILE? RDIN,PROC1,RPRT

OPTIONS? PAR=GEN

OPTIONS? ACTFIL=1

OPTIONS? /

or:

TKB>CALC; 2, LP :=RDIN,PROC1l,RPRT
TKB>/

ENTER OPTIONS:

TKB>PAR=GEN

TKB>ACTFIL=1

TKB>/

The effect of these options on the memory allocation is seen in Chapter 6, Section 6.5. After the
description of the task and memory allocation files, the memory allocation files for the first two
examples are given.

5-46

6.1

Memory Allocation

This chapter describes the allocation of task and system memory. The memory aliocation file is
described in detail and examples of memory allocation files are given. The memory allocation
files for the example CALC.TSK;1 of Chapter 2 and CALC.TSK;2 of Chapter 3 are included and
analyzed. The effect of the options used in CALC.TSK;2 can be observed by comparing the two
memory allocation files.

TASK MEMORY

Task memory in IAS consists of a header, a stack, and a set of areas called program sections
(p-sections). Each p-section has attributes from which the Task Builder can determine its base and
length.

Task memory layout for a single-segment task is shown in Figure 6-1.

Figure 6-1 Task Memory Layout

R/O AREA

4K BOUNDARY

RESIDENT OVERLAYS
— 4K BOUNDARY
TASK EXTENSION
RWCODE
STACK IMPURE AREA
POINTERS
LOW CORE VECTORS /

TASK HEADER DIRECTIVE STATUS WORD

TASK VIRTUAL 0

6-1

6.1.1

(o]
-

6.1.3

6.1.4

6.1.5

6.1.6

Memory Allocation

Task Header

The task header contains task parameters and data required by the Executive for controlling
execution of a task. It also provides an area for saving information about the task when a switch is
made to another task. It is resident at all times when the task is resident, but is not a part of the
task’s virtual address space. Further details about the task header can be found in Appendix C,
Section C.2 and in the IAS Executive Facilities Reference Manual.

Directive Status Word (DSW)
Virtual location zero of every IAS task is a word reserved for the Executive to report the status of
all executive directives issued by the task. This is known as the Directive Status Word (DSW).

Impure Area Pointers

The words following the directive status word are used as pointers to the following areas of the
task.

Address Use

2 Address of FCS data siorage area

4 Address of FORTRAN-OTS work area

6 Address of overlay run time system work area
10 Address of the vector extension area

Like the Directive Status Word, these parameters occupy the low address end of the task stack.

Stack

A default stack of 256(decimal) words is allocated for each task. The STACK= option may be used
to override this allocation. A STACK=0 specification is useful in building shareable global areas
which do not require a stack.

Read/Write Task Code (and Data)

The R/W p-sections of a task are concatenated after the end of the stack. The memory allocation is
rounded up to a 32(decimal) word boundary by the addition of dead space.

Task Extension

Task extension is the extension to the task requested when the task is built (with the EXTTSK
option), or installed or run (with the INCREMENT or /INC qualifier).

6.1.7

6.1.8

6.1.9

Memory Allocation

Resident Overlays

Each resident overlay segment, whether read/write or read-only, beging on a 4K virtual address
boundary. Parallei branches of the overlay tree are allocated the same virtual addresses. The
addresses allocated are placed high in the task’s address space, in order to leave sufficient room for
task extension.

Read-Only Task Code (and Data)

If there are p-sections in the task which have the read-only attribute (read/write is the default), the
Task Builder concatenates them, and allocates them separately from R/W p-sections. Memory for
read-only p-sections is allocated at the highest possible virtual address (starting at a 4K boundary).
This allows as much room as possible for the task to be extended.

Note that ODT cannot be used to modify read-only parts of a task. This also means that
breakpoints cannot be set in such code. The PDS qualifier /READ_WRITE (MCR switch /RW)
can be used when debugging such tasks to inhibit the generation of read-only code.

Program Sections (P-sections)

A program section (p-section) is the basic unit of memory allocation for the task. A source language
program is transiated into an object module consisting of p-sections. For example, the object
module produced by compiling a typical FORTRAN program consists of a p-section containing

the code generated by the compiler, a p-section for each common block defined in the FORTRAN
program, and a set of p-sections required by the FORTRAN Object Time System.

A name and a set of attributes are associated with each p-section. The p-section attributes are
given in Figure 6-1.

The scope-code and type-code are only meaningful when an overlay structure is defined for the
task. The scope-code is described in connection with the resolution of p-sections in Chapter 7,
Section “Resolution of Global Symbols in a Multi-segment Task”. The type-code is described in
connection with the generation of autoload vectors in Chapter 8, Section 8.1.3. The memory-code is
not used by the Task Builder.

The access-code and alloc-code are used by the Task Builder to determine the placement and the
size of the p-section in task memory.

The Task Builder divides storage into read/write and read-only memory and places the p-sections
in the appropriate area according to access-code.

The alloc-code is used to determine the starting address and length of p-sections with the same
name. If the alloc-code indicates that p-sections with the same name are to be overlaid, the Task
Builder places each reference at the same position in task memory and determines the total
allocation from the length of the longest reference. If the alloc-code indicates that p-sections with
the same name are to be concatenated, the Task Builder places each reference one after another in
task memory and determines the total allocation from the sum of the lengths of each reference.

When a p-section has the concatenate attribute, all references to that p-section are placed one after
another in task memory. If any of these references ends on a byte boundary, the next reference to
that p-section is not word-aligned.

6-3

Memory Allocation

Table 6-1 P-section Attributes

Attribute Value Meaning
access-code RW* (read/write). Data can be read from and written into the p-section.
RO (read-only). Data can be read from, but cannot be written into the

p-section. This atiribute is overridden if the task is built with the
/READ-WRITE PDS qualifier (MCR switch /RW).

type-code™* D (data). The p-section contains data.
it (instruction). The p-section contains instructions.

scope-code GBL (global). The p-section name is considered to cross segment
boundaries. The Task Builder allocates storage for the p-section from
references outside the defining segment.

LCL* (local). The p-section name is considered only within the defining
segment. The Task Builder allocates storage for the p-section from
references within the defining segment only.

alloc-code CON* {concatenate). P-sections with the same name are concatenated. The
total allocation is the sum of the individual allocations.
OVR (overlay). P-sections with the same name overlay each other. The total
allocation is the length of the longest individual allocation.
reloc-code REL* (relocatable). Storage in the p-section is allocated relativs to the start of
the p-section.
ABS (absolute). Storage in the p-section is always allocated relative to the
program’s virtual zero.
memory-code*** HIGH ({high). The p-section is to be loaded into high speed memory.
LOW* (low). The p-section is to be loaded into core.

* —lIndicates the default attribute
** —Not to be confused with the | and D space hardware on the PDP 11/44, 11/45, 11/55 and 11/70.
*** —Not implemented

6.1.10 Allocation of P-sections

Suppose you enter the following command:

PDS> LINK/TASK:IMG1/MAP:MP1
FILE? IN1,IN2,IN3,LBR1/LB

or

MCR>TKB IMG1,MP1=IN1, IN2, IN3, LBR1/LB
You are directing the Task Builder to build a task image file, IMG1.TSK, and a memory allocation
file, MP1.MAP, from the input files IN1.OBJ, IN2.0BJ, and IN3.0BJ, and to search the library file

LBR1.0LB for any undefined global references. Suppose the input files are composed of p-sections
with the following access-codes, alloc-codes, and sizes:

6-4

Memory Allocation

P-section Access Alloc Size
File-name Name Code Code (octal)
IN1 B RW CON 100

A RW OVR 300

o] RO CON 150
iN2 A RW OVR 250

B RW CON 120
IN3 C RO CON 50

First, the Task Builder collects all p-sections with the same name to determine the allocation for
each uniquely named p-section.

In this example, there are two occurrences of the p-section named B with attributes RW and CON.
The total allocation for B is the sum of the lengths of each reference; that is, 100 + 120 = 220.
There are two occurrences of the p-section named A with attribute OVR; therefore the allocation
for A is equal to the larger of the two references, that is, the 300 required for p-section A of file

IN1 is used. The allocation for each uniquely named p-section then is:

P-section Total
Name Allocation
B 220

A 300

C 200

The Task Builder then re-organizes the p-sections alphabetically and places them in memory
according to their access-code, as follows:

C (200)

B(220)

A (300)

stack

header

Read only

Read/Write

Sequential Allocation of P-sections

The /SSEQUENTIAL PDS qualifier (/SQ MCR switch) affects only the placement of p-sections
in task memory. P-sections with the same name and attributes are collected as described; then

task memory

6-5

Memory Allocation

uniquely named p-sections are placed in memory in the order of input sequence according to the
access-code.

Suppose you add the /SSEQUENTIAL PDS qualifier (/SQ MCR switch) to the previous example:

PDS> LINK/TASK:IMG1/SEQ/MAP:MP1
FILE? IN1, IN2,IN3,LIBR1/LIB

or:
MCR>TKB IMG1/SQ,MP1/-SP,MP1=IN1, IN2, IN3,LIBR1/LB

The Task Builder collects the p-sections and places them in memory in the input sequence, as
follows:

C(200) Read only
A (300)
Read/Write task memory
B220)
stack
header

The Task Builder concatenates or overlays the storage requirements of a .PSECT into one
allocatable piece of storage. This allocatable piece is currently word aligned by default. This
feature was purposely built into the Task Builder so that alignment could be supported at a later
date. The user has three alternatives:

1 Allocate all byte aligned data in a separate concatenated .PSECT.
2 Put all data at the front of a program so that the assembler can flag any misalignment.
3 Use .EVEN statements when appropriate.

Note: The SEQUENTIAL PDS qualifier (/SQ MCR switch) is intended primarily for use
with programs written for other systems, such as RT11, that normally allocate tasks in
this way. Newly written tasks should not use this facility. If a particular ordering is
required, it should be obtained via the alphabetical ordering feature (see Section 6.1.10).
Some system components, in particular the FORTRAN OTS, will not operate correctly if
they are built into a task linked with the /SSEQUENTIAL qualifier. If a task references

a position-independent shareable global area, both the task and the SGA must be built
with /SEQUENTIAL (or /SQ) specified.

6-6

6.1.11

6.2

Memory Allocation

The Resolution of Global Symbols

When creating the task image file, the Task Builder resolves global references. Suppose the global
symbols are defined and referenced in the p-sections in the following way:

File P-section Globai Global
Name Name Definition Referance
IN1 B B1 Al

A B2 L1

Cc C1

XXX

IN2 A Al B2

B B1
IN3 o] Bt

In processing the first file, IN1, the Task Builder finds definitions for B1 and B2 and references
to Al, L1, C1 and XXX. Since no definition exists for these references, the Task Builder defers
the resolution of these global symbols. In processing the next file, IN2, the Task Builder finds
a definition for Al, which resolves the previous reference, and a reference to B2, which can be
immediately resolved.

When all the input object files have been processed, the Task Builder has three unresolved global
references, namely: C1, L1, and XXX, A search of the library file LBR1 resolves L1 and the Task
Builder includes the defining module in the task image. A search of the default library resolves
XXX. The default library is LB0:[1,11SYSLIB.CLB. The global symbol C1 remains unresolved and
is, therefore, listed as an undefined global symbol.

The relocatable global symbol B1 is defined twice and is listed as a multiply-defined global symbol
on the terminal. The first definition of a multiply-defined symbol is used by the Task Builder. An
absolute global symbol can be defined more than once without being lisied as multiply defined as
long as each occurrence of the symbol has the same value. The results of these resolutions are
shown in Figure 6-2.

System Memory

In IAS, system memory consists of the resident executive and a set of named contiguous areas
which are defined at system generation time. These named areas are partitions, each of which has
parameters of base and length.

A typical system memory layout can be represented by the following diagram:

6-7

Memory Allocation

external page

UNIBUS map area
(PDP-11/70 and 11/44)

nenexistent memory

User Defined
partition n Partitions

All Boundaries

Are 32 (decimal) -
Word Aligned < partition 1 £

system common subroutines

system communications

fegion > scom
system tables, lists Permanently
Resident
IAS System

\. node pool /
A Kemel
Virtual 0

bootstrap
Real 0 —

6.2.1 Executive Privileged Tasks

An executive privileged task has special memory access rights. A task which is not executive
privileged can access only its own partition and any referenced shareable global areas, but a
privileged task can also access SCOM and the external page.

The following diagram illustrates typical privileged and non-privileged tasks. Note that APR
boundaries are aligned at 4K virtual addresses and 32 (decimal) word real addresses when in
memory.

6-8

6.3

6.4

Memory Allocation

APR
shar 1 external page
| 7
global 2
6 U a—
common (SCOM)
areas 3
5 - —]
and pool
task 4
————— shareable 1
read-only global
————— 3 — - - -]
areas 2
area
2
task read/write task read-only area
— - — — — 1
task read/write
area and stack area and stack
0
Nonprivileged Task Mapping Executive Privileged Task Mapping

Task Image File

In addition to the task memory, or core image, the task image file contains a label block (occupying
one, two or three disk blocks). The label block contains data that is used when the task is installed
(explicitly or by the RUN timesharing command) to create an entry for the task in the system task
directory. The label block and task image structure is described in detail in Appendix C.

Memory Allocation File

The memory allocation file lists information about the allocation of task memory and the resolution
of global symbols. A global cross-reference list can be appended to the file by means of the
/CROSS_REFERENCE PDS command qualifier (/CR MCR switch).

6-9

Memory Allocation

Example 6-1 Memory Allocation File for IMG1.TSK;1

IMG1.TSK;1 MEMORY ALLOCATION MAP TKB D28 PAGE 1
3-JUL-78 18:49

ICENTIFICATION : 83

STACK LIMITS: 000000 000777 601000 00512,
PRG XFR ALCDRESS: 001570

TOTAL ATTACHMENT DESCRIPTORS: 3
TASK IMAGE SIZE : 486. WORDS
TASK HEADER SIZE: 168. WORDS
R-O REGION SIZE: 96. WORDS

TASK ADDRESS LIMITS: 600008 001777

R-W DISK BLK LIMITS: 0000G3 006005 000003 00003.
R-C DISK BLK LINITS: 000066 000006 000001 00001.

.

*** ROOT SEGMENT: INI

R/W MEM LIMITS: 006060 081777 602000 01024.
R-O MEM LIMITS: 140666 140277 000300 00192.
CISK BELK LIMITS: 0p00@3 0D00E4 000002 00002,

MEMORY ALLOCATION SYNOPSIS:

SECTICN TITLE ILCENT FILE
BRLK.: (RW,I,LCL,REL,CON) 001000 G00020 9081€.

Yoleo0 PGOO20 BPP16. LIBL LEE1.0LB;1
A :(RW,I,LCL,REL,OVR) 601020 000250 00168.

001020 0PB1P8 @PO64. INL IN1.0OBJ;1

001626 0POZ50 PP168. IN2 INZ.0BJ;1
B :(RW,I,LCL,REL,CCN) 601270 600420 00272,

¢e1270 600360 09192. INL IN1.ORJ;1

A01579 0PG120 POG8BA. IN2 IN2.0BJ;1
C : (RO, I,LCL,REL,CON) 140000 000220 00144.

140000 000150 90104. IN1 IN1.OBJ;1

140150 000050 @0040. IN3 IN3.0BJ;1

SAUTO: (RW,I,LCL,REL,CON) 160000 000130 60088.
$SLOAD: (Rw,I,LCL,REL,CON) 1608130 00617¢ 90120.
$SMRKS: (RW,I,LCL,REL,OVR) 160320 0600166 00118.
$SOVRS: (RW,I,LCL,AB5,CON) 000000 CO00OCE 00000.
$SRDSG: (KW, I,LCL,REL,OVR) 160506 060312 00202.
$SRESL: (RW,I,ILCL,REL,CON} 161020 016216 67310.
SSRESM: (RW,I,LCL,REL,CON) 601710 000070 60056.

GLOBAL SYMBOLS:

Al 091020-P Bl pP1570-R B2 §91276-R L1 6poB22

FILE: IN1.OBJ;1 TITLE: INl IDENT:
<. ABS.>: 000009 0COPO0O 000000 000UD.

>>>>>>>>>>>> UNCEFINEL REFERENCE: Cl
<A >: 001020 0601117 0001006 00864.

6-10

Example 6-1 Memory Allocation File for IMG1.TSK;1 (continued)

IMG1.TSK;1 MEMORY ALLOCATION MAP TKB D28
INL 3-JUL-78 10:4S
: 001270 091567 908300 60192.
Bl 801570-R B2 p81270-R
<C >: 1408000 149147 006150 00104.
FILE: IN2.0BJ;1 TITLE: IN2 IDENT:
<A >: 001020 0061267 060250 BULE8.
Al 061620-R
: ©B€1570 001767 0060126 0008E.
Bl 061578-R
FILE: IN3.0BJ;1 TITLE: IN3 IDENT:
<C >: 149150 146217 €060650 C0046.
FILE: LBR1.0OLB;1 TITLE: LIBI1 IDENT:
<. ABS.>: 00P000 20000 0V0BV0L VESOO.
Ll peBO22
<. BLK.>: 001006 ©6081017 0¢6@20 00G1l6E.

dkkkkhkkkkkkkk

UNDEFINEC REFERENCES:

Cl

*** TASK BUILLCEE STATISTICS:

TOTAL WOKK FILE REFERENCES: 5448,

WORK FILE READS: g.

WORK FILE WRITES: 0.

SIZE OF CORE POOL: 16810. WORDS (€2. PAGES)
SIZE CF WORK FILE: 153€. WCORLCS (€. PAGES)

ELAPSED TIME:00:08:85

PAGE 2

Memory Allocation

6-11

Memory Allocation

Example 6-1 Memory Allocation File for IMG1.TSK;1 (continued)

MPO CREATED BY TKB ON 3-JUL-78 AT 10:49 PAGE 1
GLOBAL CROSS REFERENCE CREF Vg2
SYMBOL VALUE REFERENCES...

Al 001020-R IN1 # IN2

Bl g@1578-R # IN1 # IN2 IN3

B2 PP1276-R # IN1 IN2

Cl 000800 INL

L1 090022 IN1 # LIR1

SHUL 901710 IN1

6-12

Memory Allocation

6.4.1 Contents of the Memory Allocation File
The memory allocation file consists of the following items:

Page Header

Task Attributes

Overlay Description (if applicabie)

Segment Description

Memeory Allocation Synopsis

Global Symbols

File Contents

Summary of Undefined Global Symbols

Task Builder Statistics

W O ~N & O W N -

If the /CROSS_REFERENCE PDS command qualifier (/CR MCR switch) is used to request a global
cross-reference, then the following items are also included:

1 Cross-Reference Page Header
2 Global Cross-Reference
3 Segment Cross-Reference

A sample of the memory allocation file produced by the command

PDS> LINK/MAP: (MPO/NARROW/FILES) /TASK:IMG1l/CROSS_REFERENCE-
IN1, IN2, IN3, LIBRI/LIBRARY

oxr
MCR>TKB IMG1,MPO/-SP/-WI/-SH/CR=IN1, IN2, IN3, LIBR/LB

is shown in Figure 6-2, where each item is identified. The overlay description does not apply to
this task, and is therefore not shown.

These items are described in the following paragraphs.

1 The page header shows the name of the task image file and the overlay segment name, along
with the date, time, and version of the Task Builder that was used.

2 The task attribute section contains the following information. Each item is printed only if a
non-default value has been specified.

* Task name

¢ Tagk partition

¢ Identification (task version)
e Task UIC

¢ Tagk priority

¢ Stack limits—consisting of the low and high addresses, followed by the length in octal and
decimal bytes

¢ ODT transfer address—starting address of the debugging aid

6-13

Memory Allocation

* Program transfer address
¢ Task attributes—shown only if they differ from the defaults. One or more of the following
may be displayed:
-AB Task cannot be aborted
-CP Task is not checkpointable
DA Task contains debugging aid
-DS Task cannot be disabled
FP Task uses fioating-poini processor
-FR Task will not have its receive queues flushed
-FX Task cannot be fixed
Pl Task contains position-independent code and data
PR Task is executive privileged
-SE Task cannot have data sent to it
TR Task initial PS has T-bit set
¢ Number of ADBS—number of attachment descriptors allocated in the task header,

including those requested by the ATRG option and those allocated automatically by the
Task Builder

¢ Mapped array area—amount of space allocated for VSECTs

* Task extension—the increment of physical memory allocated through the EXTTSK keyword
¢ Task image—the amount of memory required to contain task code, including the header

* Task header size (in words)

* Size of read/write resident overlay region, including VSECTs

* Size of read-only region, including task pure area and read-only resident overlays

* Tagk address limits—the lowest and highest virtual addresses allocated to the task

* Read/write disk block limits, for all segments

* Read-only disk block limits

3 The overlay description shows the address limits, length, and name of each overlay segment.
Indenting is used to illustrate the overlay structure. The overlay description is printed only
when a multi-segment task is created. An example of overlay description output is shown in
Figure 6-2.

4 The segment description gives the name of the segment together with the segment address and
disk space limits. A read-only resident segment does not have its disk block limitg displayed.
See Appendix C, Section C.1.1.

5 The memory allocation synopsis gives information about the p-sections that make up the
memory allocated to each overlay segment. The information shown consists of the p-section
name, attributes, starting address, and length in bytes (octal and decimal values), followed by
a list of modules that contributed storage to the section. The entry for each module shows the
starting address and length of the allocation, the module name, module identification, and file
name.

6 If the /SEQUENTIAL PDS command qualfier (/SQ MCR switch) is applied, the p-sections are
listed in the order of input; otherwise they appear in alphabetical order.

6-14

7

8

10
1

12

13

14

Memory Allocation

The following p-section information is omitted:

a. The absolute section, . ABS. is not shown because it appears in every module and always
has a length of 0.

b. The unnamed relocatable section, shown as . BLK,, is not displayed if its length is 0,
because it appears in every module.

QGlobal symbols that are defined in the segment are listed along with their octal values. A “R”
is appended to the value if the symbol is relocatable. The list is alphabetized in columns.

The file contents section lists the module name, file name, p-sections, and global definitions
occurring in the module. Any undefined global references made by the module are also
displayed. This section only appears if the /FILES or /FU map file specification qualifier
was used.

A summary of undefined global references is printed after the listing of file contents.

The display of Task Builder statistics lists the following information, which may be used to
evaluate Task Builder performance.

a. Work File References—The number of times that the Task Builder accessed data stored in
its work file.

b. Work File Reads—The number of times that the work file device was accessed to read work
file data.

c. Work File Writes—The number of times that the work file device was accessed to write
work file data.

d. Size of Core Pool—The amount of memory that was available for work file data and table
storage.

e. Size of Work File—The amount of device storage that was required to contain the work file.

f. Elapsed Time—The amount of wall-clock time required to construct the task image and
produce the memory allocation file. Elapsed time is measured from the completion of option
input to the completion of map output. This value excludes the time required to process
the overlay description, parse the list of input file names, and create the cross-reference
listing (if specified).

Appendix F should be consulted for a more detailed discussion of the work file.

The cross-reference page header gives the name of the memory allocation file, the originating
task (TKB), the date and time the memory allocation file was created, and the cross-reference
page number, in the following format:

map file name CREATED BY TKB ON date AT time PAGE n
GLOBAL CROSS REFERENCE CREF Vn
SYMBOL VALUE REFERENCES. ..

The cross-reference list contains an alphabetic listing of each global symbol along with its
value and the name of each referencing module. When a symbol is defined in several segments
within an overlay structure, the last defined value is printed.

The suffix -R is appended to the value if the symbdl is relocatable.

6-15

6.4.2

Memory Allocation

15 Prefix symbols accompanying each module name define the type of reference as follows:

Prefix Symbol Reference Type

blank Module contains a reference that is resolved in the same segment or in a
segment toward the root.

Module contains a reference that is resolved directly in a segment away from
the root or in a co-tree.

@ Module contains a reference that is resolved through an autoload vector.

I

Module contains a non-autoloadable definition.
Module contains an autoloadable definition.

16 The segment cross-reference lists the name of each non-empty overlay segment and the
modules that compose it.

Control of Memory Allocation File Contents and Format

By using the memory allocation and input file switches or qualifiers described below, you can
eliminate non-essential information from the output, improve Task Builder throughput, and obtain
output in a format that is more compatible with the hard copy device.

The amount of information presented in the memory allocation file is controlled by the /FILES and
/FULL PDS qualifiers (/-SH and /MA MCR switches respectively). When the /FILES PDS qualifier
(/-SH MCR switch) is included in the map file specification, the Task Builder includes the file
contents section of the allocation listing. By default, this information is omitted as the most useful
parts can be found from the memory allocation synopsis.

In general, the short format provides sufficient information for debugging, while reducing
task-build time considerably. Listings that contain a full description of file contents can be obtained
at less frequent intervals and kept for later reference. The contents of individual input files can be
excluded from the listing by the /NOMAP PDS input file qualifier (/-MA MCR switch). Suppressing
such output eliminates the following information from the allocation and cross-reference output for
the excluded file:

1 P-section contributions as shown in the memory allocation synopsis.
2 Global symbol definitions.
3 File contents.

4 Global definitions or references, and module names as shown in the cross-reference listing.

To disable map output for individual files, you include the /NOMAP PDS qualifier (or MCR switch
/-MA) in the input file specification. To include such output for the default system object module
library and all memory-resident library files, you include PDS qualifier /FULL (or MCR switch
/MA) in the memory allocation file specification.

The width of the listing is controlled by the /NARROW and /WIDE PDS qualifiers (/~-WI and /W1
MCR switches respectively). /NARROW (/-WI) indicates that the listing format can occupy 72

columns, suitable for output to a terminal. /WIDE (/WI) indicaies that 132 columns can be used.

6-16

6.5

Memory Allocation

Examples: CALC;1 and CALC;2 Maps

The firat run of CALC, described in Chapter 2, Section 2.3 produces the memory allocation file
shown in Figure 6-3. This is the default memory allocation output, including all the parts described
in this chapter except the file contents section.

The task attributes section lists the principal characteristics of interest, such as task size in words,
and task address limits. Items such as task name and task attributes, that are not specified, or
that do not differ from the default, have been omitted.

The segment description lists the memory and disk block limits for the root segment.

The Memory Allocation Synopsis displays the storage allocated to each p-section. The first line
adjacent to the name, shows the total allocation. Subsequent lines show the contribution made by
individual modules. The values displayed are: base address, and length in bytes (octal and decimal
values).

Because the /FULL qualifier was not in force, all information about modules from the system
library has been omitted.

The second example (see Figure 6-4) shows a map of CALC;1 with the /FULL and /FILES
qualifiers.

In the example CALC.TSK;2 in Chapter 5, Section 5.7, the user added some code to RDIN.FIN,
and entered two options during option input:

1 ACTFIL=1 - to eliminate the three active file buffers not needed by CALC.TSK,

2 PAR=GEN - to direct the Task Builder to use a larger partition for CALC.TSK. However, this
has no affect on task building other than to set up a partition in which the task is to execute.

The memory allocation file shown in Figure 6-5 reflects these changes.

Because the ACTFIL keyword was used, the File Storage Region Buffer pool decreased from 4100
in CALC.TSK;1 to 1020 in CALC.TSK;2.

The use of the ACTFIL keyword saved 3060 bytes.

The remainder of this chapter contains Figure 6-3, Figure 6-4, and Figure 6-5 showing the memory
allocation files described above.

6-17

Memory Allocation

Example 6-2 Memory Allocation File for CALK.TSK;1 (Default Output Format)

CALC.TSK;1 MEMORY ALLOCATION MAP TKB D2E PAGE 1
3-JUL-78 10:49

IDENTIFICATION : FORV@2
STACK LIMITS: 000000 P0@8777 001006 06512,
PRG XFR ADDRESS: 020246

TOTAL ATTACHMENT DESCRIPTCRS: 3.

TASK IMAGE SIZE : 6976. WORD

TASK HEADER SIZE: 160. WORDS

TASK ADDRESS LIMITS: 000000 833247

R-W DISK BLK LIMITS: 000003 000635 008033 006027.

*** ROOT SEGMENT: RLIN

R/W MEM LIMITS: 9000060 033247 033250 13992.
DISK BLK LIMITS: 000803 ©000036 006834 00028.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE ICENT FILE
. BLK.: (RW,I,LCL,REL,CON) 001000 000002 6060B2.
CTA : (RW,D,GBL,REL,OVR} 001002 601442 08E02.
PElo02 001442 968082, .MAIN. FORVOZ RUIN.OEJ;1
PP1002 001442 0P8B2. PRCC1 FCGRVEZ2 PPCCl.0BJ;1
Po1002 061442 P008O2. RPPT FORVbz RPRT.CEJ:1
oTsSsSI : (RW,I,LCL,REL,CON) 802444 815544 67012.
002444 000000 BGCOPL. .MAIN. FCFVE2 FLIN.OBRJ;1
OTS$P : (Rw,C,G3L,REL,OVR) £20210 000836 ¥0036.
SCODE : (RW,I,LCL,REL,CON) £20246 000162 00114.
020246 0LOOPO GOPOO. .MAIN. FORVUZ FLIN.CEJ:l
020246 000Q00 00AGO. .MAIN. FORV@Z PLIN.GEJ:1
029246 GLPBT72 B0658. .MAIN. FCPVG2 RCIN.OEJ;1
020340 0000860 ©6RELEO. FROC1 FORVOZ PROC1.CEJ;1
020340 060000 POBEO. PROC1 FCRVEZ2 PROC1.0RJ;1
020340 00POS54 A¥M44. PRCC1 FOERV@Z PRGC1.0RJ;1
B20414 0QbOGOO 6OOCGE. RPET FCRVEZ RPRT.ORJ;1
020414 0000GO 006EG0. RPRT FORVEZ PPRT.ORJ;1
0260414 000014 P0B1Z2. KRPET FOEVWbZ2 RPRT.ORJ;1
$DATA : (Rw,D,LCL,REL,CON) 020436 003722 0§2002.
020430 000060 00000, .MAIN. FOFVU2 FLIN.CEJ;l
020430 001750 01060. .MAIN. FORVO2 RLIN.CEJ;1
022400 060006 @POBO. PROC1 FCRVE2 PROC1.CEJ;1
022400 000PE2 QBVWOZ. PROC1 FORV@2 PFCC1l.CLJ;l
022462 0Q0000 0U0VO. RPRT FCRVB2 RERT.OPJ;1
022492 V01750 01@668. RPRT FORVEZ RPRT.ORJ;1
SDATAP: (RW,C,LCL,REL,CON) 024352 £08042 00634.
024352 (000000 00£00. .MAIN. FCRVO2 RLCIN.OEJ;1
224352 @g6¢@22 ggele. .MAIN, FORV@Z RLIN.CEJ;1
¥24374 000000 PpOBOV@. PRCC1 FORVE2 PRUCI.CRJ;1
024374 000010 bDOOPE. PROC1 FOFVBD2 PRCC1.CEJ:;1
#24404 000000 ©00€0. PPFT FORV@2 PPPT.ORJ;1
024404 000010 POOEL8. RPRT FCORVUZ RPRT.OEJ;1
$SAOTS: (RW,C,LCL,REL,CON) 024414 00G764 00452,
$SAUTO: (RW,I,LCL,REL,CON) 160000 0060130 #0088.

6-18

Memory Allocation

Example 6-2 Memory Allocation File for CALC.TSK;1 (Defauit Output Format) (continued)

CALC.TSK;1 MEMCRY ALLGCCATION MAP TXB [C28 PACE 2
RDIN 3-JUL-78 16:49

$SDEVT: {(Rw,D,iCL,REL,OVR) 025326 061219 ¢0648.

$SFSR1: (RW,D,GRL,REL,OVR) 026530 064100 ©82112.

$SFSR2: (RW,D,GBL,REL,CON) 032630 000104 00068.

$SIOBl: (RW,C,LCL,REL,OVR) ©32734 000204 06132.

$SIOB2: (RW,D,LCL,REL,OVR) ©33149 000000 00000.

S$SLOAD: (RW,I,LCL,REL,CON) 160130 060176 08120.

S$SMRKS: (RW,I,LCL,REL,OVR) 160320 000166 ©98118.

SSOBFl: (RW,D,LCL,REL,CON) ©33140 006110 06£72.

$SOBF2: (RW,I,LCL,REL,CON) §33250 (G0000G 00004.

SSOVRS: (RW,I,LCL,ABS,CON) 000000 000000 00080.

SSRDSG: (RW,I,LCL,REL,OVR) 160506 080312 08282.

SSRESL: (RW,I,LCL,REL,CON) 1618208 816216 087310.

.SSS.: (RW,C,GBL,REL,OVR) 033250 00000C 00000.
33250 PCPY00 0POGE. .MAIN. FORVG2 RDIN.CBJ;1
933250 000000 0P00QY. .MAIN. FORVE2 RDIN.OBRJ;1
33250 ¢QPGO6 00d6@. PROC1 FORVA2 PROC1.OBJ;1l
33250 000060 09G00. PROC1 FORVG2 PROC1.CRJ;1
33250 000060 0Q0G6. RPRT FORV@2 RPRT.ORJ;1
§33250 000000 080GO. RPRT FORV@2 RPRT.OBJ;1

GLOBAL SYMBOLS:

PROC1 ©20340-R SRF2A1 6GEO0PB-R S$SCTSI 802444-R
RPRT 920414-R $SOTSC 020246-R

*** TASK BUILCER STATISTICS:

TOTAL WORK FILE REFERENCES: 14413.

WORK FILE READS: 9.

WORK FILE WRITES: 8.

SIZE OF CORE POOL: 16810, WORDS (62. PAGES)
SIZE OF WORK FILE: 3672. WORDS (12. PAGES)

ELAPSED TIME:00:00:13

6-19

Memory Aliocation

Example 6-3 Memory Allocation File for CALC.TSK;1 (Part Printout/FULL/FILES)

MEMORY ALLOCATION MAP TKB D28
3-JUL-78 10:49

CALC.TSK;1

IDENTIFICATION :
STACK LIMITS:
PRG XFR ADDRESS:
TOTAL ATTACHMENT DESCRIPTOR 3.
TASK IMAGE SIZE : 6976. WORDS
TASK HEADER SIZE: 160. WORDS

TASK ADDRESS LIMITS: 00¢000 033247
R-W DISK BLK LIMITS:

FORV@2
geopeo 990777 001000 €0512.
g20246

ﬁﬁf\‘l’ﬂml‘.hs= 2
.

*** ROOT SEGMENT: RDIN

000000 ©33247 033250 13992,
0pGP0R3 0vPP36 P0OU34 00028.

R/ MEM LIMITS:
DISK BLK LIMITS:

MEMORY ALLOCATION SYNOPSIS:

SECTION

BLK.: (RW,I,LCL,REL,CON) 001000
. 661000
: (RW,D,GBL,REL,OVR) 001002
001002
901062
901082
062444
062444
902444
002600
002636
602770
G04746
905050
065064
905166
605242
805312
205356
#65636
206119
066232
906232
006640
307020
907056
916752

21137

211466
011554
812029
913720
014124
814420

00B002
000062
001442
061442
001442
p061442
815544
gopooo
poe134
000036
908132
801756
000102
600014
960102
peeBS4
060650
pu0o44
vop260
0vB252
000122
000000
000406
gooled
008036
061674
popg4le
608076
000oES
600244
8617060
800204
060274
6000749

pogez2.
o002,
poeoz2.
6o8p2.
poeB2.
0g8n2.
07012.
gocee.
geeoz2.
00306,
nee9e.
plece.
6066 .
0e012.
6BO66
pog44.
0o040.
0uB36.
Bo17€.
ppl7e.
P82,
00000.
00262,
00112.
66030,
PB956.
pB278.
0E662.
ppes4.
gol64.
g0960.
pg132.
ggl8e.
90056.

CTA

0TS$I : (RW,I,LCL,REL,CON)

.

6-20

PAGE 1

000003 00B0635 CPBO33 0BB27.

ICENT

SNVINI
FCORVE2

FOERVO2
FORVE2

MAIN.
PROC1
RPRT

FOFVOZ
F40602
F406062
F42G02
Fa0602
F40602
F400061
Fa6602
F40062
F46662
F40602
F4C0062
F406b2
F46e02
Fag¢onl
F490U0U2
F48602
F4@0u1l
F40002
F4006G2

DAY
ravduL

Fdduvp2
F44001
F4goel
Fapon2
F46001
F4e601

.MAIN.
SALLM
SCALL
SEOL
SCONVF
SIFR
SISNLS
$IMOVS
SBRAS
SKETS
SFVEC
STRARY
SOTI
SSUER
socTV
SCCONVI
SSAVERE
SFCHNL
SFIO
SOFEN
SGETRE
SINITI
S$STPPA
SERRPT
SFPERR
SERQIO
SCLOSE

FILE

FLCIN.CEJ;1
PPOC1.CRJ;1
FPRT.ORJ;1

RCIN.OBJ;1

SYSLIB.OLE;1
SYSLIB.OLE;1
SYSLIE.CLB;1
SYSIIR.OLB;1
SYSLIB.OLE;1
SYSLIE.CLE;1
SYSLIB.OLE;1
SYSLIR.CLP;1
SYSLIE.OLB;1
SYSLIB.OLB;1
SYSLIB.OLE;1
SYSLIE.OLE;1
SYSLIE.OLE;1
SYSLIF.OLB;1
SYSLIR.OLB;1
SYSLIB.OLF;1
SYSLIF.CLE;1
SYSLIE.CLE;1
SYSTUIB.OLE;1
SYSILIB.OLE;!
SYSLIE.CLPE;1
SYSLIB.OLP;1
SYSLIB.GLB;1
SYSLIB.OLBE;1
SYSLIE.OLPR;1
SYSLIB.OLR;1

Memory Allocation

Example 6-3 Memory Allocation File for CALC.TSK;1 (Part Printout/FULL/FILES) (continued)

CALC.TSK;1 MEMORY ALLOCATION MAP TKB D28 PAGE 2
RDIN 3-JUL-78 18:49

014519 603364 31788. SERTXT F440084 SYSLIB.OLB;l

n20674 000114 09B76. SRSH F40001 SYSLIB.OLB;1
0TSSP : (RW,D.GBL.REL,OVR) 820210 00063€ 00030.

02021¢ 000036 00@38. SCONVF F40802 SYSLIB.OLB;1l

20210 000436 00830. SCONVI F40082 SYSLIR.OLB;1

20210 000936 00836. SFIQ F40002 SYSLIB.OLB;1
SCODE : (RW,I,LCL,REL,CON) 020246 008162 40114,

20246 000000 BBOAB. .MAIN. FORV@2 RDIN.OBJ;1

920246 0000008 00800. .MAIN. FORVB2 RPIN.OBJ;1l

920246 000972 69858. .MAIN. FORV@2 RDIN.OBJ;1

020340 000000 00609. PROC1 FORV@2 PROC1.OBJ;1

020340 900000 00888. PROC1 FORV@2 PROC1l.0BJ;1

#20340 #0054 080G44. PROC1 FORV@Z PROC1.0BJ;1l

§20414 090000 00096. RPRT FORV@2 RPRT.OBJ:1

020414 000000 0PPOB. RPRT FORV@2 RPRT.OBJ;1

p20414 0620014 00812. RPRT FORV@2 RPRT.OBJ;1
SDATA : (RW,D,LCL,REL,CON) 0208430 £83722 82002.

020430 000000 00000. .MAIN. FORV@2 RCIN.OBJ;l

020439 901750 01l9@0. .MAIN. FORVG2 RCIN.OBJ;1

322400 000000 00068. PROC1 FORV@2 PROC1.OEJ;1

922400 900002 96662. PROC1 FORVA2 PROC1.OBJ;1

022402 900000 00@00. RPRT FORV@2 RPRT.OBJ;1

p22402 0091750 61660. RPRT FORV@2 RPRT.OBJ;1
SDATAP: (RW,D,LCL,REL,CON), 024352, 006042 00634.

24352 000000 0BPGS. .MAIN. FORV@Z2 RLCIN.CRJ;1

p24352 ABPG22 POH18. .MAIN. FORVEA2 RDIN.OBJ;1l

024374 ¢000P00 60866. PROC1 FORVG2 PROC1.0BJ;1

24374 200019 96068. PROC1 FORVB2 PROC1.0RJ;1

§24404 000000 000BO. RPRT FORV@2 RPRT.OBRJ;1

$24404 000010 @0008. RPRT FORV@2 RPRT.OBJ;1
SSAOTS: (RW,D,LCL,REL,CON) 824414 000704 008452,

@24414 000704 08452, SOTV F40@061 SYSLIB.OLB;1l
$SAUTO: (RW,I,LCL,REL,CON) 160000 000130 006@88.

160000 090130 06988. SYSRES 12 SYSRES.STB;1
$SDEVT: (RW,D,LCL,REL,OVR) 025320 0£01210 08648.

925320 0000006 00668. SOTV F406061 SYSLIB.OLB;l
$SFSR1: (RW,D,GBL,REL,OVR) $26530 004108 82112.

$2653¢ 000000 PBOGAA. SOTV F40091 SYSLIB.OLB;1

926530 00000¢ 00000. FCSFSR @303MS SYSLIB.OLB;l
SFSR2: (RW,D,GBL,REL,CON) ©32630 000104 00068.

932630 0090104 POP68. FCSFSR 9303MS SYSLIB.OLB;l
$$IOBl: (RW,D,LCL,REL,OVR) @32734 (600204 06132.

032734 060204 86132. SOTV F46081 SYSLIR.OLB;l
$SIOBZ: (RW,C,LCL,REL,OVR) 933148 02004600 00000.

933140 000000 60800. $SOTV F40@881 SYSLIB.OLB;l
$SLOAD: (RW,I,LCL,REL,CON) 160130 860170 601206.

166130 000170 90126. SYSRES 12 SYSRES.STB;1
$$MRKS: (RW,I,LCL,REL,OVR) 1606326 000166 90118.
160320 ¢06166 68118. SYSRES 12 SYSRES.STB;1

$$OBF1l: (RW,D,LCL,REL,CON) 033140 0088110 00672.
933140 9001190 08672. SOTV F40661 SYSLIEB.OLB;l

$SOBF2: (RW,I,LCL,REL,CON) ©£33250 0800006 06600.
33250 000000 20680. SOTV F400801 SYSLIE.OLB;1

$$OVRS: (RW,I,LCL,ABS,CON) 000000 000008 00800.
200000 600G00 00BOB. SYSRES 12 SYSRES.STB;1

6-21

Memory Allocation

Example 6-3 Memory Allocation File for CALC.TSK;1 (Part Printout/FULL/FILES) (continued)

CALC.TSK;1 MEMORY ALLOCATION MAP TKB D28 PAGE 3
RDIN 3-JUL-78 19:49

$SRDSG: (RW,I,LCL,REL,OVR) 160506 000312 00202.

1606506 000312 66282. SYSRES 12 SYSRES.STB;1
$SRESL: (RW,I,LCL,REL,CON) 161820 016216 £7310.
161620 616216 87318. SYSRES 12 SYSRES.STB;1

.$$S$.: (RW,C,CBL,REL,OVR) £33252 %0829¢ 000¢9d.
33259 000000 000PG. .MAIN. FORVO2 RCIN.OBJ;1
933250 000060 0000@. .MAIN. FORVEB2 RDIN.OBJ;l
§332590 000000 $06AA. PROC1 FORVE2 PROC1l.0BJ;l
933250 990008 900G0. PROC1 FORVE2 PROC1.CRBJ;1
@33250 000000 600008. RPRT FORV@2 RPRT.ORJ;1
933250 000000 00000. RPRT FORVG2 RPRT.ORJ;1

GLOBAL SYMBOLS:

ADFSIM 0@2444-R MOISOS 985130-R. SVFSSM $U5326-R SNAMC 024466-R
ADFS$SMM 602476-R MOIS1A P@85160-R TALS ppS4p6~R SOFEN (01B8752-R
ADFS$PM P02462-R MOIS1IM @65152-R TAFS 0P5414-R SOTI d0563€6-R
ADFS$SM 002510-R MOIS1S 9@05144-R TAIS 6085356-R $OTIS #HE110-R
BAHS §11656-R MOLSIS 005190-R TALS 885364-R $OTE 206924

BEQS @@5212-R MOLSSS 085664-R TAFPS PB54006-R SOTSVA (244€4-F
BGES @@5222-R NMIS1I 985208-R TAQS §05372-R S$PSE 011€2€-R
BGTS #@5228-R NMISIM P@5166-R THRDS @67816-R SPSES 011660-R
BLES §95218-R N.ALER 000010 vee7a 066000 SRF2A1 006LG6-R
BLTS PP5232-R N.IOST 000004 SALBP1l 160016-R SRLCB 17€544-R
BNES 985236~-R N.MRKS 0808016 SALBP2 160114-R SRQCB 17€646-R
BRAS p95224-R N,OVLY 000000 SATT 214124-R S$R52 p200@74-p
CAIS 0B2609-R N.OVPT 0000806 SAUTO 166966-R SSAVRG 177¢04-F
CALS p@2606-R N.RDSG 800014 SBINAS £13212-R S$SSEQC @24464-F
DCOS$ @B4024-R N.STBL 0008082 SCLOSE 014420-R S$SST 825306-R
ECOS pB4016~R N.SZSG 008612 SCET #1423¢-R $SSTA 012020-R
EOLS$ #02666-R OCIS #86232-R SECI pB6254-F $SST1 @1282€-1
EXIT$S ©811732-R 0COS$ pPe434-R SEOL pB2664-R $SST2 01284A-R

FCO$ §04012-R OSVEF 000037 SERRAA B122806-R $SST3 @120646-~R
FOOS$ P11722-R PROC1 ©28340-R SERRTR 613538-R $SST4 §12054-R
F.BFHD 000020 PSES §11622-R SERRTE 0137280-F $SSTS 012062-R

F.FDB 000154 RCIS @02778-R SERRWT 014314-R $SST6 £12146-F
GCOS §040B84-R RELS §95186-R SERRZA §13150-R $SST7 @12072-R
ICIS 0p6240-R RETS 905256-R SERTXT 014516-R SSTP g11716-R
ICOS §06442-R RETSF ©@05246-R SERXIT £#1243€-R $STPS @11710-RK
IFRS @04746-R RETSI 0085254-R SEXIT 011732-R $SVTKS (13522-R
ISNS @05050-R RETSL 005242-R S$EXITS £12124-FR STAD 0054¢6-R
LSNS$ §P5856-R RPRT 020414-R SFCHNL @07820-R TAF 9905414-n
MOISIA @95110-R SAFSIM 0@5312-R SFILL @13266-R S$TAI A0S356-K
MOISIM @P5184-R SAFS$SMM @05346-R SFIO g87614-R STAL P053€4-P
MOISIS POS519f-R SAFSSM 0@05314-R SFLDEF @1127€-R STAP 0B5400-F
MOISMA @85124-R SAVRGS 006649-R S$FPERR 813720-R STAQ ABS372-R
MOISMM 085126~R STPS #11716-R S$SGETRE 011370-R SVIRIN 001006-F
MOISMS 845114-R SUFSIM @@2522-R SIFR pA4752~-R SSFIC 007€2@-R
MOIS$SAa @905874-R SUFSMM @£2554-R S$SINITI 81146€6-R SSIFR @04756-R
MOISSM @85678-R SUFSPM 082548-R $SICEXI @22636-R S$S$0TI @05€406-R
MOISSS 005064-R SUFS$SM 002566~R SLOAD 16013@-R $SOTIS @06112-R
MOISQA 085148-R SVFSIM 005324-R S$MARKR 160320-R S$SOTSC 020246-R
MOIS@M @85134-R SVFSMM 065352-R SMARKS 16@328-R $SOTSI @002444-R

6-22

Memory

Allocation

Example 6-3 Memory Allocation File for CALC.TSK;1 (Part Printout/FULL/FILES) (continued)

CALC.TSK;1

RPIN

176426-R
179754-R
161626-R
174348-R
177834-R
166532-R
172120-R
832636-R
0000062

161666-R
161666-R
162640-R
832738~R
024472-R
024470-R
177630-R
162656-R
162666-R
172436-R
173372-R
167678-R
176140-R

LASCPP
.ASLUN
.CLOSE
.CTRL
.DCCVT
.FATAL
LFINIT
.FSRCB
.FSRPT
.GET
.GETSQ
.GTDID
.MBFCT
.MOLUN
.NLUNS
. ODCVT
.OPEN
.OPFNB
.PAKSE
.POSIT
.POSRC
.PPASC
FILE: SYSRES.ST
<$SAUTO>:

MEMORY ALLOCATION

3-JUL-78

.PPREZ
. PRSDI
.PRSDV
. PRSFN
.PUT

.PUTSQ
+.SAVR1
. .ALC1
. .ALOC
. .ALUN
. .ANSP
.BDRC
.BKRG
. .CREA
. .CTRL
.DEL1
..DIC

..CIDF
..CID1
. .DIRF
. .EFCK
. .EFC1

B;1l

TITLE:
160060 160127 000130 00088.

176254~R
174666-R
175112-R
175366-R
1658066-R
165866-R
166418-R
172552-R
172582-R
1787€0-R
166444-R
171422-R
166588-R
171504-R
174344-R
171758-R
174376-R
174654-R
174372-R
176314-R
167366-R
167366-R

SYSRE

SALBPl 168616-R SALBP2

<SSLOAD>:
$LOAD
<SSMRKS>:

166136-R

18:43

. . ENTR
.. EXTD
. .EXT1
. .FCsSX
..FIND
. .FINI
..GTLI
..1DPB
. MKDL
. .MVR1
. . PARS
.PDI
.PDID
.PGCR
.PNT1
.PSDI
. PSDV
.PSFN
.PSIT
.PSRC
. .PSR1
.QIOW

.
.
.
.

S IDENT:

166114-R

160136 168317 @¢@170 00120,
168326 160585 pggglee 80118,

SMARKR 160326-R $MARKS 168320-R

<$SOVRS>:

N.ALER

N.RDSG
<SSRDSG>:
<$SRESL>:
SRLCR

ASLUN

FATAL

.GTDIC

. PARSE

.PPR50
.PUT

. .ALOC

. .BKRG
..CID

..EFCK

..EXT1

..GTDI

.. PARS

..PNT1

..PSIT

. .RBLK

. .RTAC

.SGR5

0000108
000014

176544-R
170754-R
166532-R
162640-R
172436-R
176854-R
165666-R
172502-R
1665008-R
174376-R
167360-R
172656-R
17¢578-R
1724506-R
173136-R
173416-R
173830-R
172242-R
174534-R

N.IOST
N.STBL

SRQCB
.CLOSE
LFINIT
. OLCVT
. POSIT
. PRSDI
. PUTSQ
. .ALUN
. .CREA
. .DIDF
..EFC1
. FCSX
.IDPB
..PDI
..PSDI
.. PSRC
. .RDRN
. -RWAC
.STFN

00PE00 POPEOD PO0O00 D0000.

000004
0000062

160506 161017 @g00312 082082,
1610206 177235 016216 07318,

176646-R
161828-R
1721208-R
177838-R
173372-R
174666-R
165866-R
178768-R
171584-R
174054-R
167366-R
166520-R
166632-R
174118-R
174780-R
167726-R
167742-R
178016-R
172376-R

MAP TKB D28

17281¢-R
172682-R
172656-R
1665208~R
172624-R
172136-R
170578-R
166632-R
172224-R
167534-R
172450-R
174110-R
178742-R
16757€-R
173136-R
174706-R
175124-R
175328-R
173416-R
167726-R
167712-R
166672-R

12

SAUTO

N.MRKS
N.SZSG

$SAVRG
.CTRL
.CGET

. OPEN
. POSRC
.PRSDV
.SAVR1
. .ANSP
..CTRL
..DID1
.ENTR
.FIND
.MKDL
. .PDID
.PSDV
.PSR1
.RFDB
.RWAT
.WAEF

.

PACGE 4

.- RBLK
.. RDRN
. .RFDB
. « RMOV
. «RTAD
. .RWAC
. «-RWAT
..SEFB
. .SGR5
. .STFN
. .WAEF
. .WAIT
. .WAND
. .WAST
. .WBLK
. WTWA
. .WTWD
. JHWIWL
. . XQIO
..XQIl

1600086-R

peeole
6o0oB12

177604-R
174346-R
161666-R
162656-R
167670-R
175112-R
166418-R
166444~-R
174344-R
174372-R
172018-R
172024-R
172224-R
178742-R
175124-R
167712-R
167812-R
167774-R
166742-R

173838-R
167742-R
167012-R
172616-R
172242-R
176016-R
167774-R
167436-R
174534-R
172376-R
166742-R
166722-R
173066-R
1746816-R
173636-R
167146-R
167146-R
167152-R
166534-R
166552-R

N.OVLY

.ASCPP
.DCCVT
.GETSQ
.OPFNB
.PPASC
.PRSFN
. .ALC1
. .BDRC
. .DEL1
. .DIRF
. .EXTD
..FINI
. .MVR1
. .PGCR
..PSFN
. .QIOW
. « RMOV
..SEFB
. .WAIT

poo00o

176426-R
177834-R
161666-R
1626€6-R
176148-R
175306-R
172552-R
171422-R
171758-R
176314-R
1726082-R
172130-k
167534-R
167576-R
175328-R
16€672-R
172816-R
167436-R
166722-R

6-23

Memory Allocation

Example 6-3 Memory Allocation File for CALC.TSK;1 (Part Printout/FULL/FILES) (continued)

CALC.TSK;1
RDIN

..WAND 173806-R
..WTWD 167146-R

MEMORY ALLOCATION MAP TKB D28

3-JuL-78 1

. .WAST 1740616-R
. .WTWl 167152-R

£:49

..WBLK 173836~R

<. ABS.>: 000000 900000 000000 0Q0060.
N.OVPT 0000806 OSVEF 008037
FILE: RDIN.OBJ;l1 TITLE: .MAIN. IDENT: FORV@2
<SCODE >: 020246 020246 000000 00000.
<SDATAP>: 024352 024352 000000 00000.
<SCATA >: 020430 020430 000090 00000.
<.$$S$.>: 833250 633250 000000 p0000.
$SRF2A1 00Q00B-R
<OTSST >: 002444 002444 000000 00000.
$$SOTSI AB2444-R
<SCODE >: 020246 020246 000000 00000.
$SOTSC ©20246-R
<.$$§$.>: 033250 033250 000000 00000.
<DTA >: 0019002 002443 001442 00802,
<SDATAP>: ©24352 0924373 080622 00018.
<SCODE >: 920246 020337 000072 00058.
<SDATA >: 020430 922377 0801750 £1000.
FILE: PROC1.0BJ;1 TITLE: PROCI IDENT: FCRVE2
<SCODE >: 020340 020340 000000 00000.
<SCATAP>: ©24374 024374 000000 00000.
<SCATA >: 022400 022400 000000 00000.
<.$$$S.>: 033250 833250 000000 RO00O.
<SCODE >: 020348 020340 €00000 00000.
PROC1 220348-R
<.$$$$.>: 833250 833250 000000 02000.
<DTA >: 001002 002443 0081442 008B2.
<SDATAP>: 924374 0244403 000010 00008.
<SCODE >: 020340 020413 000054 00R44.
<SDATA >: 022400 022401 000002 00002.
FILE: RPRT.OBJ;1 TITLE: RPRT IDENT: FCRVO2
<$CODE >: 020414 (020414 Q00000 AA004
<SCATAP>: 024404 024404 000000 00000
<SDATA >: 0224062 022402 000000 00000.
<.$$$$.>: 833250 ©933250 000000 0000O.
<SCODE >: 020414 020414 000000 00000.
RPRT 020414-R
<.$$$$.>: 033250 ©3325¢ 000000 00000
<DTA >: 001002 002443 001442 00802
<SDATAP>: 024404 024413 000010 00008
<SCODE >: 020414 020427 000014 00012.
<SDATA >: 022402 024351 981750 01000
FILE: SYSLIB.OLB;l TITLE: SADDM ICENT: F40002
<OTSSI >: 202444 902577 000134 000892.

ADFSIM 002444-R ADFS$SMM 002476-R
SUF$IM 082522-R

6-24

SUFSMM £802554-R

SUFSPM 902540-R

PAGE 5

. .XQIO 166534-R

. .WTWA 167146-R
..XQI1 166552-R

ACFSPM 002462-R ADFS$SSM 00251¢-R

SUF$SSM 0025€6-R

Memory Allocation

Example 6-3 Memory Allocation File for CALC.TSK;1 (Part Printout/FULL/FILES) (continued)

CALC.TSK:;1 MEMORY ALLOCATION MAP TKB D28 PAGE 6
RDIN 3-JUL-78 18:49

FILE: SYSLIR.OLB;l1 TITLE: S$CALL IDENT: F40082
<OTSSI >: 002600 062635 000636 B0G36.
CAIS 062698-R CALS 002606-R

FILE: SYSLIB.OLB;l TITLE: SEOL IDENT: F406002
<OTSSI >: 002636 002767 066132 G00949.
EOLS 682666-R SEOL P02664-R SIOEXI 002636-R

FILE: SYSLIB.OLB;1 TITLE: $CONVF IDENT: F44602
<OTSSI >: 0062770 08084745 001756 01066.
LCOs 004024-R ECOS$ #04016-R FCO$ g24812-R GCOS 804004-R
RCIS 002770-R
<OTSS$P >: 020210 020245 000036 00030.

FILE: SYSLIB.OLB;l1 TITLE: $IFR IDENT: F469062
<OTS$I >: 004746 005047 000182 Q0066.
IFRS §04746-R SIFR PB4752-R S$SIFR 004756-R

FILE: SYSLIB.OLB;l1 TITLE: SISNLS, IDENT: F42061
<OTSSI >: 995050 005063 0000614 €0012.
ISNS §05050-R LSNS p65056-R

FILE: SYSLIB.OLB;l1 TITLE: $IMOVS IDENT: F408082
<OTSSI >: 605064 005165 000192 GBU66.
MOISIA 085110-R MOISIM 865104-R MOISIS 005166~-R MOISMA @85124-R
MOISMM @@5120-R MOISMS @@5114-R MOISSA 965874-R MOISSM @850676-R
MOISSS 0#95064-R MOISOA 005140-R MOISOM P65134-R MOISOS @65138-R
MOIS1A 065160-R MOISIM 685152-R MOIS1S @65144-R MOLSIS @@85100-R
MOLS$SS #@5864-R RELS 8051088-R

FILE: SYSLIB.OLB;1 TITLE: $BRAS IDENT: F40682
<OTSSI >: 005166 805241 000054 00044.
BEQS 9@5212-R BCES 905222-R BGTS §@5220-R BLES 805218-R
BLTS 085232-R BNES 985230-R BRAS $05224-R NMIS1I 065280-R
NMISIM 985166-R

FILE: SYSLIB.OLB;l TITLE: S$RETS IDENT: F40082
<OTSS$I >: ©85242 065311 600050 006640,
RETS §@5256-R RETSF 005246-R RETSI ©065254-R RETSL @8524Z-R

FILE: SYSLIB.OLB;l TITLE: $FVEC IDENT: F40602
<OTSSI >: ©05312 905355 90@P44 06036,
SAF$IM 08065312-R SAFS$SMM 0@5246-R SAFSSM 005314-R SVFS$IM £05324-R
SVF$MM B#05352-R SVF$SM 085326-R

FILE: SYSLIB.OLB;l1 TITLE: STRARY IDENT: F40002

6-25

Memory Allocation

Example 6-3 Memory Aliocation Flle for CALC.TSK;1 (Part Printout/FULL/FILES) (continued)

CALC.TSK:;1
RDIN

<OTSSI >:
TADS
TAPS
STAI

19:49

#B5356 095635 600260 @A176.

#085406-R TAFS
085469-R TAQS
#B5356-R STAL

FILE: SYSLIB.OLB;l
000000 000000 000000 000060.

<. ABS.>:
Veg7a
<OTSSI >:

poocee

TITLE:

$OTI

#85414-R
#B5372-R
PB5364-R

IDENT:

905636 006107 600252 60170.

FILE: SYSLIB.OLB;l

<OTSSI >:
SOTIS

066110

TITLE:

pB6231

$SUBR

g80122

IDENT:
pege2.

806118-R $SOTIS @GO6112-R

FILE: SYSLIB.OLB;1
gp0000 UOPOO0 000000 0OOBBA.

<. ABS.>:

F.BFHD 000020

<OTSSI >:
<$SAOTS>:
SNAMC

.MOLUN B824472-R

<SSDEVT>:
<SSFSR1>:
<SSIOB1>:
<SSIOR2>:
<SSOBF1>:
<SSOBF2>:

TITLE:

F.FDB

$OTV

IDENT:

082154

006232 606232 PBOD00 POOOO.
024414 925317 000784 0B452.
#24466-R SOTSVA 024464-R

025329
026538
032734
#33140
833140
833258

FILE: SYSLIB.OLB;l
000000 000000 0000BO

<. ABS.>:
$OTSV

ppnog4

FILE: SYSLIB.OLB;1
826232 886637 000406

KOTSSI >:
ICIS
$ECI

<OTSSP >:

6P6240-R

825320
026530
833137
033140
833247
833258

TITLE:

TITLE:

606254-R
020219 020245 000036 GGO30.

FILE: SYSLIB.OLB;l
pP6640 007017 000160 0B112.

<OTSSI >:

SAVRCS 006640-R THRDS

or T

FILE: S5YSLIB.CLB;1

<OTSSI >:

807020

mTm
441

TITLE:

687855

SFCHNL 007028-R

FILE: SYSLIB.OLB;1l

6-26

TITLE:

ICOS

0p0000
p00000
000204
pe0000
po0116
0e0B20

SOTSV

S$SCONVI

$SAVRE

S$FIO

.NLUNS 824478-R

0o000.
poe00.
#8132,
0oese.
pRo72.
pogen.

ICENT:
20000.

ICENT:
23262

PP6442-R

IDENT:

pB7816-R

IDENT:

i O

60030.

IDENT:

MEMORY ALLOCATION MAP TKB D28
3-JUL-78

TAIS
$TAD
$TAP

F490002

F40002

F4g0€1

$SEQC

valela

F40002

OCIS

F4£00B2

T LT 4

F4p062

PAGE 7

@@5356-R TALS
#95406-R S$TAF
085460-R S$TAQ

P24464-R $SST

#06232-R 0OCGCS$S

095364-R
065414-R
@05372-R

625366-R

806434-R

Memory Allocation

Example 6-3 Memory Allocation File for CALC.TSK;1 (Part Printout/FULL/FILES) (continued)

CALC.TSK;1 MEMORY ALLCCATION MAP TKB D28 PAGE 8
RDIN 3-JUL-78 18:49

<OTSS$I >: 087056 910751 061674 86956.
$FIO 687614-R S$SFIO 8687628-R
<OTSS$P >: Q20210 020245 00PB36 POG36.

FILE: SYSLIB.OLB;l1 TITLE: S$OPEN IDENT: F40@82
<OTSS$I >: 018752 011367 008416 088279.
SFLDEF 9811276-R SOPEN @18752-R

FILE: SYSLIB.OLB;l TITLE: S$GETRE IDENT: F446061
<OTSSI >: 811379 811465 000076 00062,
SGETRE 0811378-R

FILE: SYSLIR.OLB;1 TITLE: S$INITI IDENT: F40002
<OTS$I >: @11466 011553 B00G66 BLE54.
SINITI 811466-R

FILE: SYSLIB.OLB;l1 TITLE: $STPPA IDENT: F4@601
<OTSSI >: ©11554 012917 000244 00164.
BAHS 81165@-R EXITS @11732-R FOCOS 011722-R PSES 011622-R
STPS #11716-R S$EXIT ©611732-R S$PSE 011626-R S$SPSES (@1l1668-R
SSTP 611716-R S$STPS 0Q117160-R

FILE: SYSLIB.OLB;l TITLE: $ERRPT IDENT: F40001
<OTSSI >: 912020 013717 901706 089€0.
SBRINAS 013212-R S$ERRAA 012206-R SERRTR @13530-R S$SERRTE @13720-R
SERRZA @1315¢-R S$SERXIT #12436-R SEXITS P12124-R SFILL ©613266-R
$SSTH B12026-R $SST1 012026-R $SST2 012648-R $SST3 (@12046-R
$SST4 @12054-R $SSTS5 ©012062-R $SST6 B12146-R $SST7 612072-R
$SVTKS @13522~-R

FILE: SYSLIB.OLB;l TITLE: $FPERR ILENT: F49002
<OTSSI >: 913720 014123 006264 9P132.
SFPERR 813728-R

FILE: SYSLIB.OLB;l TITLE: SNVINI IDENT:
<. BLK.>: 0§0100¢ 001001 000002 00082.
SVIRIN 001868-R

FILE: SYSLIB.OLB;l1 TITLE: FCSFSR IDENT: 8363MS
<. ABS.>: 000000 000000 000000 000G0.
.FSRPT 000802
<$$FSR1>: B26530 026539 000000 00000.
<$$FSR2>: 032630 ©32733 000164 0£06068.
.FSRCB ©32636-R .MBFCT ©632738-R

FILE: SYSLIB.OLB;l TITLE: S$SERQIQO IDENT: F40001

6-27

Memory Allocation

Example 6-3 Memory Allocation File for CALC.TSK;1 (Part Printout/FULL/FILES) (continued)

CALC.TSK;1 MEMORY ALLOCATION MAP TKB D28 PAGE 9
RDIN 3-JUL-78 10:49

<OTSS$I >: 014124 014417 090274 00188.
SATT 814124-R S$DET 914230-R SERRWT 014314-R

FILE: SYSLIB.OLB;l1 TITLE: SCLOSE 1IDENT: F40081
<OTSSI >: 014420 ©14507 006070 000856.
SCLOSE #144206-R

FILE: SYSLIB.OLB;l TITLE: $ERTXT IDENT: F40004
<OTS$I >: 014510 020073 903364 01780,
$ERTXT 214510-R

FILE: SYSLIB.OLB;l TITLE: S$R50 ICENT: F40001
<OTSSI >: 020074 020207 009114 @0076.
SR50 020874-R

**% TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 19€16.

WORK FILE REALS: 0.

WORK FILE WRITES: 8.

SIZE OF CORE POOL: 16010. WORLCS (62. PACES)
SIZE OF WORK FILE: 3072. WORDS (l12. PAGES)

ELAPSED TIME:00:00:17

6-28

Memory Allocation

Example 6-4 Memory Allocation for CALC.TSK;2

CALC.TSK;2 MEMORY ALLOCATION MAP TKB D28 PAGE 1
3-JUL-78 18:59

PARTITION NAME : GEN

IDENTIFICATION : FORVS2

STACK LIMITS: 000066 028777 0010086 €8512.

PRG XFR ALDRESS: 828246

TOTAL ATTACHEHMENT CESCRIPTORS: 3.

TASK IMAGE SIZE : 6176. WORLS

TASK HEALCER SIZE: 168. WORDS

TASK ALCDRESS LIMITS: 900000 636167

R-W CISK BLK LIMITS: 000003 000032 0060030 00024.

**%* ROOT SEGMENT: RDIN

R/W MEM LIMITS: 000060 038167 030170 1246¢8.
DISK BLK LIMITS: 000003 000033 000031 00025.

MEMCRY ALLOCATION SYNOPSIS:

SECTION TITLE ILENT FILE

BLK.:(RW,I,LCL,REL,CON) 021000 000002 008Q2.
DTA :(RW,C,GBL,REL,OVR) 001002 0601442 00802.
001602 061442 66802, .MAIN. FORVSZ2 RDIN.OBJ;1
£21002 €01442 66882. PROC1 FORV@2 PROCL.CEJ;1
931002 061442 0U8B2. RPRT FORV@2 RPRT.ORJ;1
OTSS$I :(RW,I,LCL,REL,CON) 062444 815544 98701z.
002444 000000 00086¢c. .MAIN. FORVO2 RCIN.OBJ;l
OTsS$pP : (RW,C,GBL,REL,OVR) 920210 00003€¢ 090036.
$COCE : (RwW,I,LCL,REL,CON) 020246 0606162 00114.
020246 000000 0006O. .MAIN. FORVO2 RCIN.OEJ;l
920246 000000 00000. .MAIN. FORVPZ RCIN.CBJ;1
920246 000P72 90BS8. .MAIN. FORV@2 RDIN.OBJ;1l
920340 000000 00B08. PROC1 FORVE2 PROC1.0BJ;l
§20340 P0P0GAY €0080. PROC1 FORV@8Z PROCLl.CBJ;l
920340 000054 00B44. PROC1 FORVG2 PRCC1.0BJ;1
020414 PvEO0O 60PGO. RPRT FORV@GZ RPERT.OBJ;1
020414 000090 0B0GO. RPRT FORV@Z2 RPRT.O0BJ;1
020414 000014 00012. RPRT FORV@2 RPRT.OBJ;1
SDATA : (RW,D,LCL,REL,CON) 0204390 803722 02482.
020430 000000 00GGO. .MAIN. FORVB2 RCIN.OBJ;1
020430 901750 01060. .MAIN. FORVE2 RCIN.ORJ;1
022400 ©60E8C 68888. PRCC1 FORVEB2 PRCC1.OBJ;1
022460 000662 00PA2. PROC1 FORVE2 PROC1.ORJ;1
022402 000060 00BBO. RPET FORV@2 RPRT.OBJ;1
022402 0017506 ©1820. RPRT FORV@2 RPRT.ORJ;1
SCATAP: (RW,D,LCL,REL,CON) ©24352 000642 06034.
024352 00V0GVO PPPBO. .MAIN. FORVYZ ROIN.OBJ:;l
824352 000P@22 00018. .MAIN. FORV@2 RCIN.OBJ;1
924374 000000 PPBBO. PROC1 FORV@2 PROCL1.0BJ;1
024374 (000010 60098. PROC1 FORVE2 PRCC1.CBRJ;1
024404 0000OO BGY0C. RPRT FORV@2 RPRT.OBJ;1
©24404 000010 00088. RPRT FORV@2 RPRT.OBJ;1
$SAOTS: (RW,C,LCL,REL,CON) 024414 600704 00452.

6-29

Memory Allocation

Example 6-4 Memory Allocation File for CALC.TSK;2 (continued)

CALC.TSK;2 MEMORY ALLOCATION MAP TKB D28 PAGE 2
RCIN 3-JUL-78 16:59

$SAUTO: (RW,I,LCL,REL,CON) 160000 000130 00688.

$$DEVT: (RW,D,LCL,REL,OVR) 025320 001210 00648.

$$FSR1: (RW,D,GBL,REL,OVR) @26530 901620 0@52¢.

$SFSR2: (RW,D,GBL,REL,CON) §27550 000104 00068.

$$I0B1: (RW,D,LCL,REL,OVR) $27654 9002064 006132.

$$IOB2: (RW,D,LCL,REL,OVR) 030060 000060 000006.

$SLOAD: (RW,I,LCL,REL,CON) 16613¢ 000170 606120.

$SMRKS: (RW,I,LCL,REL,OVR) 160320 800166 £60118.

$$OBF1l: (RW,D,LCL,REL,CON) 0306060 600110 00072.

$SOBF2: (RW,I,LCL,REL,CON) 830170 000000 00000.

$SOVRS: (RW,I,LCL,ABS,CON) 000000 000000 0$0000.

$SRDSG: (RW,I,LCL,REL,OVR) 160506 800312 £9282.

$SRESL: (RW,I,LCL,REL,CON) 161020 616216 87310.

.$$$$.: (RW,D,GBL,REL,OVR) 030170 0006000 00000.
03017¢ 0000009 00PAO. .MAIN. FORVEZ FDIN.OBJ;l
030170 000000 090PB. .MAIN., FORVOZ RCIN.ORJ;1
p30179 00g00P 0OOMAB. PROC1 FORVO2 PROC1.CRJ;1
930170 0090000 ¢6000. PROC1 FOERV82 PROC1.OEBJ;1
938170 000000 Q0OOP. RPRT FORV@2 RPRT.ORJ;1
p30170 00€000 00000. RPRT FORV@2Z RPRT.OBJ;1

GLOBAL SYMBOLS:

PROC1 ©20349-R SRF2A1 0000B0-R S$SOTSI 002444-R
RPRT 028414-R $SOTSC 820246-R

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES: 14413.

WORK FILE READS: 0@.

WORK FILE WRITES: @.

SIZE OF CORE POOL: 16818. WORDS (62. PAGES)
SIZE OF WORK FILE: 3@72. WORDS (l12. PAGES)

ELAPSED TIME:00:00:13

6-30

7.1

711

OVERLAY CAPABILITY

The Task Builder provides you with a means of reducing the memory and/or virtual address
space requirements of a task by means of overlay structures created with the aid of the Overlay
Description Language (ODL). Two kinds of overlay segments can be specified: those that reside on
disk, and those that reside permanently in memory.

Overlay Description
To create an overlay structure, you divide a task into a series of segments:
1 A single root segment, which is always in memory.

2 Any number of overlay segments, which either reside on disk and share virtual address space
and memory with one another; or which reside in memory but share virtual address space.

A segment consists of a set of modules and p-sections. Segments that overlay each other must be
logically independent; that is, the components of one segment cannot reference the components of a
segment with which it shares virtual address space. In addition to the logical independence of the
overlay segments, you must consider the general flow of control within the task.

You must also consider what kind of overlay segment is most suitable, and how it will be
constructed. Dividing a task into disk-resident overlays saves physical space, but introduces
the overhead activity of loading these segments each time they are needed, but not present in
memory. Memory-resident overlays, on the other hand, are loaded from disk only the first time
they are referenced. Thereafter, they remain in memory and are referenced by re-mapping.

There are several large classes of tagks that can be handled effectively by an overlay structure.
For example, a task that moves sequentially through a set of modules is well-suited to the use of
an overlay structure. A task that selects one of a set of modules according to the value of an item
of input data is also well-suited to an overlay structure.

Disk-Resident Overiay Structure

Disk-resident overlays conserve memory by sharing it. Segments that are logically independent
need not be present in memory at the same time. They can therefore occupy a common physical
area in memory whenever either needs to be used.

Consider a task, TK1, which consists of four input files. Each input file consists of a single module
of the same name as the file. The task is built by the following command:

PDS> LINK/TASK:TK1
FILE? CNTRL,A,B,C
Suppose you know that the modules A, B, and C are logically independent. In this example:

A does not call B or C and does not use the data of B or C
B does not call A or C and does not use the data of A or C
C does not call A or B and does not use the data of A or B.

7-1

OVERLAY CAPABILITY

You can define an overlay structure in which A, B, and C are overlay segments that occupy the
same storage. Suppose further that the flow of control for the task is as follows:

CNTRL calls A and A returns to CNTRL
CNTRL calls B and B returns to CNTRL
CNTRL calls C and C returns to CNTRL
CNTRL calls A and A returns to CNTRL

The loading of overlays occurs only four times during the execution of the task. Therefore, the user
can reduce the memory requirements of the task without unduly increasing the overhead activity.

y 1k

Consider the effect of introducing an overlay structure on the allocation of memory for the task.
Suppose the lengths of the modules are as follows:

CNTRL 10,000 bytes
A 6,000 bytes
B 5,000 bytes
C 1,200 bytes

The memory allocation produced as a result of building the task as a single segment on a system
with memory mapping hardware is as follows:

— 24200
c
— 23000
B
— 16000
A
‘ — 10000
CNTRL
-0

The memory allocation for a single-segment task requires 24200 bytes.

The memory allocation produced as a result of using the overlay capability and building a
multi-segment task is as follows:

— 16000
Al
€1 — 10000
ONTRL .

The multi-segment task requires 16,000 bytes. In addition to the module storage, additional
gtorage ig required for overhead connected with handling the overlay structure. This overhead is
described later and illustrated in the example CALC.

The amount of storage required for the task is determined by the length of the root segment
and the length of the longest overlay segment. Overlay segments A and B in this representation
are much longer than overlay segment C. If the user can divide A and B into sets of logically
independent modules, further reduction can be made in the storage requirements for the task.

7-2

7.1.2

OVERLAY CAPABILITY

Segment A is divided into a control program, A0, and two overlays, Al and A2. Then, A2 is further
divided into a main part ,A2, and two overlays ,A21 and A22. Similarly, segment B is divided into
a control module, B0, and two overlays, B1 and B2.

The memory allocation for the task produced by the additional overlays defined for A and B is
given in the following diagram:

— 13600
A21 | A22
Al Bi
B2
A2 c
A0 BO
— 10000
CNTRL
-0

As a single-segment task, TK1 required 24,200 bytes of storage. The first overlay structure
reduced the requirement by 6,200 bytes. The second overlay structure further reduced the storage
requirement by 2,200 bytes.

A vertical line drawn through the memory diagram indicates a state of memory at some point

in time during the execution of the task. In the diagram given here, the leftmost such line gives
memory when CNTRL, A0, and Al are loaded: the next such line gives memory when CNTRL, A0,
A2, and A21 are loaded: and so on.

A horizontal line can be drawn through the memory diagram to indicate segments that share the
same storage. In the given diagram, the uppermost such line indicates Al, A21, A22, B1, B2 and
C, all of which can use the same memory; the next such line gives Al, A2, B1, B2, and C; and so
on.

Memory-Resident Overlay Structure

The Task Builder provides for the creation of overlay segments that are loaded from disk only

the first time they are referenced. Thereafter, they are permanently resident in memory, sharing
virtual address space in the same way as disk-resident overlays. Unlike disk-resident overlays,
however, memory-resident overlays do not share physical memory. Instead, they reside in separate
areas of memory, each one aligned on a 32-word boundary. Memory-resident overlays save time for
a running task because they do not need to be copied from a secondary storage device each time
they are to overlay other segments.

“Loading” a memory-resident overlay reduces to mapping a set of shared virtual addresses to the
unique permanent physical area of memory containing the overlaying segment. This process is

shown in Figure 7-1. -

It is important that you exercise discretion in choosing whether to have memory-resident overlays
in a structure. Indiscriminate use of these segments can result in inefficient allocation of
virtual memory. This is because virtual memory is allocated in blocks that are 4K words long.
Consequently, the length of each overlay segment should approach that limit if you are to minimize
waste. (A segment that was one word longer than 4K, for example, would be allocated 8K of virtual
memory. All but one word of the second 4K would be unusable.)

7-3

py
w

OVERLAY CAPABILITY

You should also maintain control over the contents of each segment in order to prevent wasted
physical memory. The inclusion of a module in several memory-resident segments that overlay
one another, causes storage to be reserved for each extra copy of the module. Common modules,
including those from the system object module library, should be placed in a segment that can be
accessed from all referencing segments.

The criterion for choosing to have memory-resident overlays is the need to save virtual address
space when one of the following conditions exists:

1 Disk-resident overlays are undesirable

(because they would slow down the system to a point that is unacceptable),

or

2 Disk-resident overlays are impossible

(because the segments are portions of a shareable global area or other shared region, and must
be permanently resident in memory).

Large systems can be utilized to better advantage because of the ability to save time when a large
amount of physical memory is available. Shareable global areas can benefit especially, from the
virtual-memory-saving attribute, by being divided into memory-resident segments.

If all the code in a resident overlay is contained in read-only p-sections, the overlay segment is
marked as read-only. Such a segment is shared between all active versions of the task, in the same
way as the task pure area.

Where there are commonly several versions of a task active, use of read-only resident overlays can
save a significant amount of physical memory.

When a task has resident overlays, the physical memory for all of them is allocated when the
task is loaded, and normally remains allocated until the task exits. The resident overlays can be
removed from memory (by checkpointing or swapping) only when the task itself is so removed.
This also applies to overlays which are not currently mapped.

Overlay Tree

The Task Builder provides a language for representing an overlay structure consisting of one or
more trees.

The memory allocation for the previous example can be represented by the single overlay tree
shown below:

7-4

Figure 7-1 Mapping Memory-Resident Overlays

OVERLAY CAPABILITY

o | 4
TIME 1 c
B
120000 === = = = = = ==
1 1
: T | A
40000 __ _ _' __ _ _ __
) . CNTRL
' 1 ————f | (Root
0 L . :_ ______ Begment)
Virtual Physical
Address Mermory
Space
D | 4
/] C
TIME 2 /
/ B
100000 ~ =-=q/ /
]
: e A
1]
a0000r ___ ./ _ _ . _.
: . CNTRL
' ' —= | (Root
Ot e e ol omm e - [Segment)
Virtual Physica!
Address Memory
Space
AZ1 Azz

|_F—J

A0
I

Al f2 BY jz

7-5

OVERLAY CAPABILITY

The tree has a root, CNTRL, and three main branches, A0, B0, and C. The tree has six leaves, Al,
A21, A22 B1, B2, and C.

The tree has as many paths as it has leaves. The path down is defined from the leaf to the root,
for example:

A21-32-A0-CNTRL
The path up is defined from the root to the leaf, for example:
CNTRL-BO-B1.

Understanding the tree and its paths is important to the understanding of the overlay loading
mechanism and the resolution of global symbols.
Loading Mechanism

Modules can call other modules that exist on the same path. The module CNTRL is common to
every path of the tree and, therefore, can call and be called by every module in the tree. The
module A2 can call the modules A21, A22, A0, and CNTRL; but A2 can not call Al, Bl, B2, BO or
C.

When a module calls a module in another overlay segment, the overlay segment must be in
memory or must be brought into memory. The methods for loading overlays are described in
Chapter 8, Section 8.1 and Section 8.2.

Resolution of Global Symbols in a Multi-segment Task

The Task Builder performs the same activities in resolving global symbols for a multi-segment
task as it does for a single segment task. The rules defined in Chapter 6, Section 6.1.11 for the
resolution of global symbols in a single segment task still apply, but the scope of the global symbols
is altered by the overlay structure.

In a single segment task, any global definition can be referenced by any module. In a
multi-segment task, a module can only reference a global symbol that is defined on a path that
passes through the segment to which the module belongs.

In a single segment task, if two global symbols with the same name are defined, the symbols are
multiply-defined and (if the values differ) an error message is produced.

In a multi-segment task:
1 Two global symbols with the same name can be defined if they are on separate paths, and not

referenced from a segment that is common to both.

2 If a global symbol is defined more than once on separate paths, but referenced from a segment
that is common to both, the symbol is ambiguously defined.

3 If a global symbol is defined more than once on a single path, it is multiply-defined.

The procedure for resolving global symbols can be summarized as follows:
1 The Task Builder selects an overlay segment for processing.
Each module in the segment is scanned for global definitions and references.

3 If the symbol is a definition, the Task Builder searches all segments on paths that pass through
the segment being processed, and looks for references that must be resolved.

4 If the symbol is a reference, the Task Builder performs the tree search as described in step 3,
looking for an existing definition.

7-6

OVERLAY CAPABILITY

5 If the symbol is new, it is entered in a list of global symbols associated with the segment.

Overlay segments are selected for processing in an order corresponding to their distance from the
root. That is, the Task Builder considers a segment farther away from the root, before processing
an adjoining segment.

When a segment is being processed, the search for global symbols proceeds in the following order:
The segment being processed.

All segments toward the root.

All segments away from the root.

Hh W N -

All co-trees (see Section “Resolution of P-sections in a Multi-segment Task”).

Consider the task TK1 and the global symbols Q, R, S, and T.

A21 A22
R (ref)

T (def) Qimf)

0?10 A2
re
R (ref) R (de) o o B2

A0

Q (deh Bo

S (def) Q (def)

T (def) R (def) c

CNTRL
S (ref)

The symbols shown in the diagram are described below:

Q The global symbol Q is defined in the segment A0 and in the segment BO. The reference to Q in
segment A22 and the reference to Q in segment A1 are resolved to the definition in A0. The reference
to Q in B1 is resolved to the definition in BO. The two definitions of Q are distinct in all respects and
occupy different memory allocations.

R The global symbol R is defined in the segment A2. The reference to R in A22 is resolved to the definition
in A2 because there is a path to the reference from the definition (CNTRL-A0-A2-A22). The reference to
R in A1, however, is undefined because there is no definition for R on a path through A1.

S The global symbol S is defined in AC and B0. References to S from Ai, AZ1, or A22 are resoived to
the definition in AQ, and references to S in B1 and B2 are resolved to the definition in BO. However, the
reference to S in CNTRL cannot be resolved because there are two definitions of S on separate paths
through CNTRL. S is ambiguously defined.

T The global symbol T is defined in A21 and AQ. Since there is a single path through the two definitions
(CNTRL-A0-A2-A21), the global symbol T is multiply-defined.

7-7

OVERLAY CAPABILITY

Resolution of Global Symbols from the Default Library

The process of resolving global symbols may require two passes over the tree structure. The global
symbols described in the previous section are included in user-specified input modules that are
scanned by the Task Builder in the first pass. If any undefined symbols remain, the Task Builder
initiates a second pass over the structure in an attempt to resolve such symbols by searching the
default object module library (normally LB0:[1,1]SYSLIB.OLB). Any undefined symbols remaining
after the second pass are reported to you.

When multiple tree structures (co-trees) are defined, any resolution of global symbols across tree
structures during a second pass can result in multiple or ambiguous definitions. In addition, such
references can cause overlay segments to be inadvertently displaced from memory by the overlay
loading routines, thereby causing run-time failures to occur. To eliminate these conditions, the tree
search on the second pass is restricted to:

1 The segment in which the undefined reference has occurred
2 All segments in the current tree that are on a path through the segment
3 The root segment

When the current segment is the main root, the tree search is extended to all segments. You can
unconditionally extend the tree search to all segments by including the /FULL_SEARCH PDS
qualifier (/FU MCR switch).

Resolution of P-sections in a Multi-segment Task

Each p-section has an attribute that indicates whether the p-section is local (LCL) to the segment
in which it is defined or of global (GBL) extent.

Local p-sections with the same name can appear in any number of segments. Storage is allocated
for each local p-section in the segment in which it is declared. Global p-sections of the same name,
however, must be resolved by the Task Builder.

When a global p-section is defined in several overlay segments along a common path, the Task
Builder allocates all storage for the p-section in the overlay segment closest to the root.

FORTRAN common blocks are translated into global p-sections with the overlay (OVR) attribute.
Suppose that in the task TK1, the common block COMA is defined in modules A2 and A21. The
Task Builder allocates the storage for COMA in A2 because that segment is closer to the root than
the segment which contains A21.

However, if the segments A0 and B0 use 2 common block COMAR the Tagk Builder allocates the
storage for COMAB in both the segment which contains A0 and the segment which contains BO.
A0 and B0 can not communicate through COMAB. When the overlay segment containing B0 is

loaded, any data stored in COMAB by A0 is lost.
The tree for the task TK1 including the allocation of the common blocks COMA and COMAB is:

7-8

7.1.4

OVERLAY CAPABILITY

A21 A2
Al A2 COMA B1 t?z

A0 COMAB B0 COMAB Cc

CNTRL

You can specify the allocation of p-sections. If A0 and B0 need to share the contents of COMAB,
you can force the allocation of this p-section into the root segment by the use of the .PSECT
directive, described in Section “ PSECT Directive”.

Misalignment between a global tag within the .PSECT and the resulting task image in a
multi-segment task can occur if you reference a global .PSECT that is also defined in a module
in the default library. This condition can be corrected by:

1 Explicitly specifying the default library as the last module in the ODL, or
2 Including the referenced library modules directly in the ODL specification.

Overlay Description Language (ODL)

The Task Builder provides a language that allows you to describe the overlay structure. The
overlay description language (ODL) contains five directives by which you can describe the overlay
structure of a task.

An overlay description consists of a series of ODL directives. There must be one .ROOT directive
and one .END directive. The .ROOT directive tells the Task Builder where to start building the
tree and the .END directive tells the Task Builder where the input ends.

.ROOT and .END Directives

The arguments of the .ROOT directive make use of two operators to express concatenation and
overlaying. A pair of parentheses delimits a group of segments that start at the same location in
memory. The number of nested parentheses cannot exceed 16.

1 The operator dash (-) indicates the concatenation of storage. For example, X-Y means that the
memory allocation must contain X and Y simultaneously. So X and Y are allocated in sequence.

2 The operator comma (,) appearing within parentheses indicates the overlaying of storage.
For example, Y7 meang that memeory can contain either Y or Z. Therefore Y and Z can share
storage.

This operator is also used to define multiple tree structures, as described in Section 7.1.5.

3 The operator exclamation mark (!) indicates memory residency of overlays. See Section 7.1.2.

The following ODL directives:

.ROOT X-(Y,Z~-(21,%2))
.END

7-9

OVERLAY CAPABILITY

describe the following tree and its corresponding memory diagram:

Z1 Z2
l_l_—l Z1 72
Z Y
T__r_J z
X X

To create the overlay description for the task TK1 described earlier in this chapter, the user creates
a file TFIL.ODL that contains the directives:

.ROOT CNTRL- (AO-(Al,A2-(A21,A22)),B0-(B1,B2),C)
.END

To build the task with that overlay structure, the user types:

PDS> LINK/TASK:TK1/OVERLAY:TFIL
or

MCR>TKB TK1=TFIL/MP

The OVERLAY qualifier tells the Task Builder that the file TFIL.ODL contains an overlay
description for the task.

The qualifiers on input file specifications in the ODL files are always given in the MCR form.

.FCTR Directive

The tree that represents the overlay structure can be complicated. The ODL includes another
directive, .FCTR, which allows you to build large trees and represent them systematically.

The .FCTR directive allows you to extend the tree description beyond a single line. Since there can
be only one .ROOT directive, the .FCTR directive must be used if the tree definition exceeds one
line. The .FCTR directive, however, can also be used to introduce clarity in the representation of
the tree.

The maximum number of nested .FCTR levels is 32.

TG ﬁ.ll.llll.lll.] uh!: t.l. GU sl vc.u J.ll DhG ﬁle Tn"r ‘L" FCTR d]rect:"’e -IP J.I.lv& Vnd“ﬂ°’l ":tc t“e OnL ng
follows:

.ROOT CNTRL- (AFCTR,BFCTR,C)

AFCTR: .FCTR A0~ (Al,A2- (A21,A22))
BFCTR: .FCTR BO-(Bl,B2)
.END

The label BFCTR, is used in the .ROOT directive to designate the argument of the .FCTR directive,
B0-(B1,B2). The resulting overlay description is easier to interpret than the original description.
The tree congists of a root, CNTRL, and three main hranches. Two of the main branches have
sub-branches.

7-10

OVERLAY CAPABILITY

The .FCTR directive can be nested. You can modify file TFIL.ODL as follows:

.ROOT CNTRL- (AFCTR,BFCTR,C)

AFCTR: .FCTR AO-(Al,A2FCTR)

A2FCTR: .FCTR A2-(A21,222)

BFCTR: .FCTR BO-(B1,B2)
.END

The decision to use the .FCTR directive is based on considerations of space, style, and readability
of a complex ODL file.

Exclamation Point Operator

The exclamation point operator allows you to specify overlay segments that will permanently reside
in memory rather than on disk. Memory residency is specified by placing an exclamation point (!)
immediately before the left parenthesis enclosing the segments to be affected:

.ROOT A-!(B,C)

In the example above, segments B and C are declared resident in separate areas of memory. The
single starting virtual address for both B and C is determined by the Task Builder, by rounding the
octal length of segment A up to the next 4K boundary. The physical memory allocated to segments
B and C is determined by rounding the actual length of each segment to the next 32-word boundary
and adding this value to the total memory required by the task.

The exclamation point operator applies only to segments at the first level inside a pair of
parentheses; segments in parentheses nested within that level are not affected. It is therefore
possible to define an overlay structure that combines the space-saving attributes of disk-resident
overlays, with the speed of memory-resident overlays.

The following example shows this:
.ROOT A-!(Bl-(B2,B3),C)
.END
In this example above B1 and C are declared memory-resident by the exclamation point operator.

B2 and B3 are declared disk-resident because no exclamation point operator is present before the
parentheses enclosing them.

While it is perfectly valid for a memory-resident overlay to call a disk-resident overlay, it is illegal
to build the following type of structure; that is, an exclamation point cannot be used for segments
emanating from a disk-resident segment (in this case, B1):

.ROOT A-(B1-!(B2,B3),C
.END

The exclamation point operator will be ignored unless the task has been built using the
/RESIDENT_OVERLAYS PDS qualifier (/RO MCR switch)
.NAME Directive

The .NAME directive allows you to specify a name for a segment, and in so doing, to attach
attributes to the segment. The name must be unique with respect to filenames, p-section names,
.FCTR labels and other segment names that are used in the overlay description.

The chief uses of this directive are:
1 To name uniquely a segment that is to be loaded through the manual load facility, and

7-11

OVERLAY CAPABILITY

2 To permit a segment, that does not contain executable code, to be loaded through the autoload
mechanism.

(Loading mechanisms are described in Chapter 8.)
The format of the NAME directive is

.NAME segname [,attr][,attr]
where:
* gegname - is a 1- to 6-character name composed from the character set A-Z, 0-9 and $.

e _attr - denotes an optional attribute.

attr is one of the following:

GBL The name is entered in the segment’s global symbol table.

GBL makes it possible to load non-executable overlay segments by means of the autoload
mechanism (see Chapter 8, Section 8.1).

NODSK No disk space is allocated to the named segment.

If a data overlay segment has no initial values, but will have its contents established by the
running task, no space for the task image on disk need be reserved. If NODSK has been
specified, an attempt to initialize the segment with data at task-build time results in a fatal error,

NOGBL The name is not entered in the segment’s global symbol table. If GBL is not present NOGBL is
assumed.

DSK Disk storage is allocated to the named segment. if NODSK is not present, DSK is assumed.

NOPHY No memory is allocated to the segment. Addresses are allocated in the segment starting at

relative zero, but the segment cannot be loaded by the overlay run-time system.

NOPHY allows data other than the task itself to be included in the task image file, for example,
error messages. The I0.LOV QIO function code can be used to load all or part of the segment
into a specified buffer, as described in Chapter 8, Section 8.1.

The attributes described are not attached to a segment until the name is used in a .ROOT or
.FCTR statement that defines an overlay segment. When multiple segment names are applied to a
segment, the attributes of the last name given take effect.

In the following modified tree for TK1, you give names to the three main branches, A0, B0 and

C, by specifying them in the NAME directive, and using them in the .ROOT directive. The
default attributes NOGBL and DSK are in effect for BRNCH1 and BRNCH3. BRNCH2 has the
complement attributes GBL and NODSK which will cause the name BRNCH2 to be entered into
its segment’s global symbol table, and the allocation of disk space for the segment to be suppressed.
B0, Bl and B2 can contain either data or executable code; the other two branches must contain
executable code.

.NAME BRNCH1

.NAME BRNCH2, GBL, NODSK

.NAME BRNCH3

.ROOT CNTRL- (BRNCH1-AFCTR, BRNCH2-BFCTR, BRNCH3~C)
AFCTR: .FCTR AO-(Al,A2-(A21,A22))
BFCTR: .FCTR BO-*(B1,B2)

.END

(* is the autoload indicator, see Chapter 8, Section 8.1.)

7-12

7.1.5

OVERLAY CAPABILITY

The data overlay segment BRNCH2 is loaded by including the following statement in the user’s
program.

CALL BRNCH2
This action is immediately followed by an automatic return to the next instruction in the program.

Segment names are aiso used in making patches with the options ABSFPAT, GBLPAT and SYMFAT
(see Section 5.5 onwards).

If no segment name is specified the Task Builder establishes a segment name, using the first
.PSECT or module name occurring in the segment.

.PSECT Directive

The .PSECT directive allows the placement of a global p-section to be specified directly. The
name of the p-section and its attributes are given in the .PSECT directive. The name can then be
used explicitly in the definition of the tree to indicate the segment in which the p-section is to be
allocated. It can also be used to force a p-section to be shared (see Section “Resolution of P-sections
in a Multi-segment Task”).

A problem could be encountered in communication resulting from the overlay description for TK1
if you were careful about the logical independence of the modules in the overlay segment, but
failed to take into account the logical independence requirement of multiple executions of the same
overlay segment.

The flow of the task TK1, as described earlier in this chapter, is summarized in the following way.
CNTRL calls each of the overlay segments and the overlay segment returns to CNTRL in the
following order: A,B,C,A. The module A is executed twice. The overlay segment containing A must
be reloaded for the second execution of A.

The module A uses the common block DATA3 and the Task Builder allocates DATAS in the overlay
segment containing A. The first execution of A stores some resuits in DATA3. The second execution
of A requires these values. In the present overlay description, however, the values calculated by
the first execution of A are overlaid. When the segment containing A is read in for the second
execution, the common block is in its initial state.

The use of a .PSECT directive forces the allocation of DATAS3 into the root segment to permit the
two executions of A to communicate. File TFIL.ODL is modified as follows:

.PSECT DATA3,RW, D, GBL, REL, OVR
.ROOT CNTRL-DATA3- (AFCTR, BFCTR, C)

AFCTR: .FCTR AO-(Al,A2-(A21,A22))
BFCTR: .FCTR BO-(B1,B2)
.END

The attributes RW,D,GBL,REL and OVR are described in Table 6-1.

Multiple Tree Structures

The Task Builder allows the specification of more than one tree within the overlay structure. A
structure containing multiple trees has the following properties:

1 Storage is not shared among trees. The total storage required is the sum of the longest path
on each tree.

2 Each path in a tree is common to all paths on every other tree.

7-13

OVERLAY CAPABILITY

These properties allow modules, that would otherwise have to reside in the root segment, to be
contained in an overlay tree.

Such overlay trees within the structure consist of a main tree and one or more co-trees. The

root segment of the main tree is loaded by the Executive when the task is made active, while
segments within each co-tree are loaded through calls to the overlay runtime system. Except for
this distinction, all overlay trees have identical characteristics. That is, each tree must have a root
segment and possibly one or more overlay segments.

The following sections describe the procedure for specifying multiple trees in the overlay
description language and illustrate the use of co-trees to reduce the memory required by a task.

Defining a Multiple Tree Structure

Multiple tree structures are specified within the ODL by extending the function of the comma
(,) operator. As previously described, this operator, when included within parentheses, defines a
pair of segments that share storage. The inclusion of the comma operator outside all parentheses
delimits overlay trees. The first overlay tree thus defined is the main tree. Subsequent trees are
co-trees.

Consider the following:

.ROOT X, Y
X: .FCTR X0- (X1, X2, X3)
Y: .FCTR Yo~ (Y1, Y2)
.END

Two overlay trees are specified. A main tree containing the root segment X0 and three overlay
segments and a co-tree consisting of root segment Y0 and two overlay segments. The Executive
loads segment X0 into memory when the task is activated. The task then loads the remaining

segments through calls to the overlay runtime system.

A co-tree must have a root segment to establish linkages to the overlay segments within the
co-tree. Logically, these root segments need not contain code or data. (Such modules can be
resident in the main root). A segment of this type termed a 'null segment’, may be created by
means of the NAME directive. The previous example is modified as shown below to include a null
segment.

.ROOT X, Y
X: .FCTR X0-Y0- (X1, X2, X3)
.NAME YNUL
Y: .FCTR YNUL- (Y1, Y2)
.END

The null segment 'YNUL’ is created, using the NAME directive, and replaces the co-tree root that
formerly contained Y0.0OBJ. YO now resides in the main root.

Multiple Tree Example

The following example illustrates the use of multiple trees to reduce the size of the task.

Suppose that in the task TK1 the root segment CNTRL consists of a small dispatching routine
and two long moduies, CNTRLX and CNTRLY. CNTRLX and CNTRLY are logically independent
of nan‘\ nt]-\or ara annravimataly equal in lonoth anﬂ must access mndunlas an all tha naﬂ-\a of ﬂ'\e

Vi Taalii Uuiili, QiU appivaiiiaviiy 411 I0iiglady 1i%4 WDV ALVLTOEE 1iUUWULTS Vil Qii VAl paviis Ui ovis

main tree.

7-14

OVERLAY CAPABILITY

You can define a co-tree for CNTRLX and CNTRLY and effect a saving in the storage required for
the task. You modify the overlay description in file TFIL.ODL as follows:

.NAME CNTRL2
.ROOT CNTRL- (AFCTR,BFCTR, C) , CNTRL2~ {CNTRLX, CNTRLY)

.END
The co-tree is defined at zero parenthesis level in the .ROOT directive. A co-tree must have a

root segment, to establish links to the overlay segments within the co-tree. When no code or data
logically belong in the root, the NAME directive can be used to create a null root segment.

The tree for the task TK1 now is:

A21 A22
Al fz B1 32 CNTRLX CNTRLY
A0 BO c |

l

CNTRL2

CNTRL

The corresponding memory diagram is:

— 6200
CNTRLX CNTRLY
CNTRL2
—_ 2200
A22
B1
A2 B2 c
A0 BO
— 1000
-_— 0

The specification of the co-tree decreases the storage allocation by 4,000 bytes. CNTRLX and
CNTRLY can still access modules on all the paths of the main tree. The only requirement imposed
by the introduction of the co-tree is the logical independence of CNTRLX and CNTRLY.

Any number of co-trees can be defined. Additional co-trees can access all the modules in the main
tree and in the other co-trees.

7-15

OVERLAY CAPABILITY

7.1.6 Overlay Core Image

The contents of the core image for a task with an overlay structure are described briefly in the
following paragraphs.

The root segment of the main tree contains modules that are resident in memory throughout the
execution of the task, along with the following data required by the overlay loading routines.

1 Segment tables
Autoload vectors

Window descriptors

W N

Region descriptors

Code and data . ‘

Window descriptors
Region descriptors MAIN TREE
Segment descriptors ROOT SEGMENT

Autoload vectors
Code and data

The segment table contains a segment descriptor for every segment in the task. The descriptor |
contains information about the load address, the length of the segment, and the tree linkage.

Autoload vectors appear in every segment that calls modules in another segment located farther
away from the root of the tree.

Window descriptors are allocated whenever a memory-resident overlay structure is defined for the
task. The descriptor contains information required by the Create Address Window system directive
(CRAWS). One descriptor is allocated for each memory-resident overlay segment. For further
information on IAS System directives, see the IAS System Directives Reference Manual.

Region descriptors are allocated whenever a task is linked to a shared region containing ‘
memory-resident overlays. The descriptor contains information required by the Attach Region
svstem directive (ATRG$).

The main tree overlay region consists of memory allocated for the overlay segments of the main
tree. The overlays are read into this area of memory as they are needed.

7-16

7.1.7

OVERLAY CAPABILITY

Autoioad vectors Overiay
Segment
Code and Data
Overlay
Autoload vectors Overlay
Segment
Code and Data

The co-tree overlay region consists of memory allocated for co-tree overlay segments.

The co-tree root segment contains modules that, once loaded, must remain resident in memory.

Overlaying Programs Written in a High-level Language

Programs written in a higher-level language usually require a large number of library routines in
order to execute. Unless care is taken when overlaying such programs, the following problems can

occur:

1 Task Builder speed can be drastically reduced because of the number of library references in
each overlay segment.

2 Library references from the default object module library, that are resolved across tree
boundaries, can result in unintentional displacement of segments from memory at run-time.

3 Attempts to task build such programs can result in multiple and ambiguous symbol definitions

when a co-tree structure is defined.

The following procedure is effective in solving these problems:

1

Task Builder speed can be increased by linking commonly used library routines into the main
root segment.

Ambiguous and multiple definitions and cross-tree references can be eliminated by using the
/NOFULL_SEARCH PDS qualifier (/-FU MCR switch) to restrict the scope of the default library
search.

With the default PDS qualifier /NOFULL_SEARCH (MCR switch/-FU), when a reference to a
symbol is found in a co-tree, only the root segment of the main tree and of other co-trees is
searched. The full search forces the Task Builder to search all segments of all trees to resolve
global symbol references.

If sufficient mapping registers are available, the object time system can, in effect, be placed in the
root segment by building a memory-resident library as described in Section 6.1.2. This also reduces
total system memory requirements if other tasks are currently using the library.

7-17

7.2

7.2.1

7.2.2

OVERLAY CAPABILITY

If a memory-resident library cannot be built, the user can force library modules into the root by
preparing a list of the appropriate global references, and linking an object module derived from the
list into the root segment.

For other ways to reduce task size consult the appropriate language user’s guide.

EXAMPLE: CALC.TSK;3

The version of CALC introduced earlier is now ready for the addition of two more data processing
routines, PROC2.0BJ and PROC3.0BJ. These new algorithms are logically independent of each
other and of PROC1.0BJ. The third algorithm, PROC3.0BJ, contains two independent routines
SUB1.0BJ and SUB2.0BJ.

You define an overlay structure for CALC as follows:

suBi SuBt

PROC1 PROC2 PROC3

RDIN
RPRT

Creating the ODL File
You construct a file, CALTR.ODL, of ODL directives to represent the tree for CALC, as follows:

PDS> EDIT
FILE? CALTR.ODL
[EDI -- CREATING NEW FILE]
INPUT
.ROOT RDIN-RPRT-* (PROC1,PROC2,P3FCTR)
P3FCTR: .FCTR PROC3~-(SUB1, SUB2)
.END

*EX

The “*” in the ODL description is the autoload indicator and is described in Chapter 8,
Section 8.1.1. :

Building the Task
You build the task with the same options as in the example of Chapter 5, Section 5.7.2. The names

of the input files are replaced by a single filename that designates the file containing the overlay

description:

7-18

OVERLAY CAPABILITY

PDS> LINK/TASK:CALC.TSK;3/MAP: (/SHORT) /OPTIONS~
/OVERLAY_ DESCRIPTION:CALTR

OPTIONS? PAR=GEN

OPTIONS? ACTFIl=1

OPTIONS? /

oxr

TKB>CALC; 3, CALC=CALTR/MP
ENTER OPTIONS:

TKB>PAR = GEN
TKB>ACTFIL =1

TKB>/

7.2.3 Memory Allocation File for CALC.TSK;3

The short memory allocation file for this multi-segment task consists of one page per segment. For
convenience the pages are compressed in this manual. See Figure 7-2.

The memory diagram for CALC.TSK;3 is:

suB2

sSuB1

PROC2
PROC1

FORTRAN Buffers, Library Routines,
Segment Tables, and Autoload Vectors

DTA

RPRI
RDIN

Stack

7-19

OVERLAY CAPABILITY

Example 7-1 Memory Allocation File for CALC.TSK;3

CALC.TSK;3 MEMORY ALLOCATION MAP TKE D28
3-JUL-78 10:56

IDENTIFICATION : FORV®2

STACK LIMITS: 000000 000777 0061860 90512,
PRG XFR ADDRESS: ©17772

TOTAL ATTACHMENT DESCRIPTORS: 3.

TASK IMAGE SIZE : 8544. WORCS

TASK HEALDER SIZE: 160. WORLCS

TASK ADDRESS LIMITS: 6006060 841347

R-W DISK BLK LIMITS: 020003 008@56 000054 00044.

CALC.TSK;3 OVERLAY DESCRIPTION:

BASE TOP LENGTH

00000C 633143 033144 13924. FCIN
033144 035767 002624 01428. PRGC1
33144 037727 004564 £2420. PROC2
933144 040307 0Q@¢5144 02660. PRCC3
449310 041157 0OR@ESA 608424, SUGB1
040310 041347 001940 0E544. cCe2

7-20

PAGE 1

Example 7-1 Memory Allocation File for CALC.TSK;3 (continued)

CALC.TSK;3

RDIN

*** ROOT SEGMENT:

R/W MEM

CISK BLK LIMITS:

3-JUL-78

RDIN

LIMITS:

MEMORY ALLOCATION SYNOPSIS:

SECTION

N
(@]
O
!
m

SCATA

SCATAP:

SSALER:
SSALVC:
SSAQTS:
SSAUTO:
SSDEVT:
SSFSR1:

$SFSR2:
S§SICBI:
SSIOBRZ:
SSLOAD:
SSMRKS :
SSOBF1:
SSCBFZ:
SSCYDT:
SSCVRS:
SSRLCEG:
SSRESL:
SSRGDS:
SSRTS

:(RW,I,LCL

.:(Rw,I,LCL,REL,CON)
: (RW,D,GBL,REL,OVR)

(REL,CON)

: (RW,D,CRL,REL,OVR)
: (RW,I,LCL,REL,CON)

:(Rw,C,LCL,REL,CON)

(FW,D,LCL,REL,CON)

(RW,I,LCL,REL,CON)
(RW,D,LCL,REL,CON)
(R¥,D,LCL,REL,CON)
(RW,I,LCL,REL,CON)
(W, D,LCL,REL,OVR)
(RW,D,GBL,REL,OVR)
(RW,T,GBL,REL,CON)
(RW,T,LCL,REL,OVR)
(RW,C,LCL,REL,CVR)
(’Rw,I,LCL,REL,CON)
(RW, 1,LCL,REL,OVR)
(RW,D,LCL,REL,CON)
(’RW, I,LCL,REL,CON)
(’W,D,LCL,REL,OVR)
(RW, I1,LCL,ABRS,CON)
(RW,I,LCL,REL,OVR)
(RW,I,LCL,REL,CON)
(Rw,C,LCL,REL,CON)

:{(RW,I,GBL,REL,QOVR)

£01008
901602
0616902
g6loa2
002444
0z444
17734
817772
217772
917772
817772
6281106
220110
201189
020124
g20124
928124
622874
22074
024044
024044
024044
724066
824066
924076
p24122
24152
16600680
825056
026266
032472
32676
1601386
160320
932676
233986
022006
gooeeo
160586
161628
233026
633826

18:58

000002
981442
g01442
p01442
0152749
p00000
200036
pooe132
000000
00008088
200116
000000
000000
820014
693720
0300600
601750
000000
201750
pooo32
000000
000922
0600090
000812
£00024
06B030
600704
200130
001212
g04109
202124
000204
000009
008178
gpB1l66
000110
006000
000020
000000
808312
816216
poeo9e
000602

MEMORY ALLOCATION MAP TKB D28

p00006 033143 033144 13924.
000003 00PP36 0DOB34 00B28.

gopo2.
0@eB2.
00802.
po8o2.
6840,
20000.
26936.
60GSH.
g0008.
20800.
2007¢8.
pogea.
20000.
0@1z.
0280¢.
00060.
gledo.
00000 .
010900.
gog2e.
20000.
geole.
000089 .
66968.
00020.
pop24.
pa4s52.
2008¢.
00648.

82112.
geges.
90132,
20608.
90120.
pB118.
poB72.
00008.
90016.
apeee.
90202.
87313,
g00080.
00602.

OVERLAY CAPABILITY

PAGE 2
TITLE IDENT
.MAIN. FORVE2
RPRT FORVB2
.MAIN. FOEVB2
.MAIN. FORV@2
LMAIN. FORVE2
.MAIN., FORVO2
RPRT FORV@2
RPRT FORVE2
RPRT FORVOZ
.MAIN. FORVEG2
.MAIN. FORVD2
RPRT FORV®2
RPRT FORVO2
.MAIN. FORVO2
.MAIN. FORVO2
RPRT FORV#@2
RPRT FORVO2

FILE

RDIN.OBJ; 2
RPRT.ORJ;1

RDIN.ORJ;2

RCIN.ORJ;?2
RDIN.CBJ;2
RCIN.OBJ;2
RPRT.OBJ;1
RPRT.ORJ;1
RPRT.OEJ;1

RDIN.OBJ;2
RDIN.OBRJ; 2
RPRT.OBJ;1
RPRT.OBJ;1

RDIN.OEBJ;2
RDIN.OBJ;2
RPRT.OBJ;1
RPRT.CEJ;1

7-21

OVERLAY CAPABILITY

Example 7-1 Memory Allocation File for CALC.TSK;3 (continued)

CALC.TSK;3
RDIN

MEMORY ALLOCATION MAP TKB L[28
3-JUL-78 18:5¢

933030 000000
033030 000110

$$SGD@: (RW,D,LCL,REL,OVR)
$$SGD1: (RW,D,LCL,REL,CON)
$$SGD2: (RW,D,LCL,REL,OVR)
SSWNDS: (RW,D,LCL,REL,CON)
.8S.: (RW,D,GBL,REL,QOVR)

033142 000000

833142 000000
633142 000000
933142 0600000

GLOBAL SYMBOLS:

PROC1
PROC2

@24122-R PROC3
624132-R RPRT

024142-R
620110-R

CALC.TSK;3
PROC1

MEMORY ALLOCATION MAP TKE L28
3-JUL-78 16:50

*** SEGMENT: PROC1

R/W MEM LIMITS:
DISK BLK LIMITS:

MEMORY ALLOCATION SYNOPSIS:
SECTION

. BLK.: (RW,I,LCL,REL,CON)
ADTA :(RW,D,CBL,REL,OVR)

633144 000000

DTA :(RW,D,GBL,REL,OVR)

OTSST
SCODE

: (RW,I.LCL,REL,CON)
:(RW,I,LCL,REL,CON) @35700 006054
035700 0000060
835700 000000
$DATA : (RW,D,LCL,REL,CON)

935754

35754
S$DATAP: (RW,D,LCL,REL,CON)
935756 0QR0G000Q

VC: (RW,D,LCL,REL,CON)
$.:(RW,D,GBL,REL,OVR)

§33142 060006
GLOBAL SYMBOLS:

PROC1
7-22

@35700-R

000060.
08e72.
033140 006002 000B2.
66o00.
033142 000000 POOOD.
033142 000000 000Q0.
pooeg.
noeee.
00000 .

SRF2A1 000000-R
$$CTSC B17772-R

033144 0835767 0902624 01428.
p00B37 0GbOG4)l 000G03 000B3.

pooogd.
033144 002266 01200.
033144 0602260 B120¢€.
001002 801442 090802.
001002 661442 00E02.
035424 080254 00172,
poo44.
00000.
goege.
0357060 000054 00044.
035754 Coovp2 00002,
000000 0000O.
00000A2 90002.
@35756 000010 0O0BE.
poooo.
835756 000010 0006¢E.
A35766 000P0Y G00Q0.
033142 000000 000060.
00000,
933142 2099000 90000,

PAGE 3

.MAIN.
.MAIN.
RPRT
RPRT

PACE 4
TITLE ICENT FILE

PROC1 FORV®2 PROC1.ORJ;?2
PROC1 FORVE2 PROC1.CRJ;?2
PROC1 FCRV02 PROC1.ORJ;?2
PROC1 FORVG2 PROCL.ORJ;2
PRCC1 FORVE2 PROC1.0BJ;?2
PROC1 FORV@2 PROCL1.0OEJ;2
PROC1 FORV@2 PROC1.ORJ;
PROC1 FORVE@2 PRGC1l.CRJ;2
PROC1 FORVO2 PROC1.ORJ;2
PROC1 FORVE2 PROCL.OBEJ;
PROC1 FORV82 PROCL.OFJ;2

FORVO2 RCIN.OEJ;?2
FORV@2 RLCIN.OBJ;2
FORVE2 RPRT.OEJ;1
FORV@2 RPRT.ORJ;1

$SSOTSI 002444-R

OVERLAY CAPABILITY

Example 7-1 Memory Allocation File for CALC.TSK;3 (continued)

CALC.TSK;3 MEMORY ALLOCATION MAP TKB D28 PAGE 5
PROC2 3-JUL-78 18:50

*** SEGMENT: PROC2

R/W MEM LIMITS: 033144 037727 004564 024240.
CISK BLK LIMITS: 000042 000046 000005 06000S.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE

ADTA :(RW,D,GBL,REL,OVR) 833144 0022608 01268.
033144 002260 ©81200. PROC2 FORVB2 PROC2.0BJ;1l
$CODE : (RW,I,LCL,REL,CON) ©35424 000014 006812.
35424 000006 Q6606. PROC2 FORVE2Z PROC2.0BJ;1
935424 000000 00PGO. PROC2 FORVH2 PROC2.0BJ;1l
035424 0900014 90912. PROC2 FCRV@2 PRCC2.0BJ;1l
SCATA : (RW,D,LCL,REL,CON) ©35440 00622608 91200.
035440 00P000 000QP. PROC2 FORVOZ PROC2.0BJ;1
935440 0022€6 ©1209. PROC2 FCRVA2 PROC2.0BJ;1
$CATAP: (RW,D,LCL,REL,CON) 037720 000010 00008.
037720 000000 02680. PROC2 FORVEZ PROC2.0BJ;l
037720 000010 60688. PROC2 FORV@2 PROC2.0BJ;l
$SALVC: (RW,D,LCL,REL,CON) 037730 000000 000060.
.$$$S.: (RW,C,GBL,REL,OVR) 033142 0000060 00000.
033142 000090 Q6608. PROC2 FORVO2 PROC2.0RJ;1
233142 0900000 GPPPO. PRCC2 FORVG2 PROC2.0BJ;1l

GLOEAL SYMBOLS:

PROC2 @35424-R

7-23

OVERLAY CAPABILITY

Example 7-1 Memory Allocation File for CALC.TSK;3 (continued)

K;3 MEMORY ALLOCATION MAP TKB D28
3-JuL-78

CALC.TS
PROC3

*** SEGMENT: PROC3

R/W MEM
DISK BL

M
1

L
KL

MEMORY ALLOCATION SYNOPSIS:

SECTION

SDATA

SDATAP:

SSALVC:
.$885.:

GLOBAL

PROC3

7-24

: (R%,C,GBL,REL,OVR)
:(RW,D,GBL,REL,OVR)

:(RW,I,LCL,REL,CON)

:{RW,D,LCL,REL,CON)

({RW,D,LCL,REL,CON)

(RW,D,LCL,REL,CON)
(RwW,D,GEL,REL,OVR)

SYMBOLS:

933144
033144
g01002
001002
635424
035424
35424
935424
354760
03547¢
235470
40260
046269
040269
940270
g33142
933142
933142

@35424-rR SUB1 240300-R

18:50

002260
002260
001442
001442
0000844
0000060
popooo
000044
002579
poenog
902570
000010
goooeo
npoela
000020
260000
goeeao
200000

SUR?2

IMITS: ©33144 0493047 005144 026680.
IMITS: 000047 0800C4 Q00PO6 BOBO6.

TITLE
01200.
01260. PROC3
0686 2.
0gg8ez. PROC2
BoB36.
00ege. PROC3
60066. PROC3
¥6036. PROC3
61400.
g00ce. PROC3
01466. PRCCZ
6poas.
gee0A. PROC3
6p08g. PFROC3
00B16.
20000.
0geo8. PRCC3
$g088. PROC3
€4927@-F

PAGE 6

ICENT

FORVDZ
FORV@2
FORVO Z
FORV@2

FCRV@2

FORVO2
FORVBZ

FORV@2Z
FCRVE2

FORVQ2
FORV@2

FILE

PROC3.

PROC3
PRCC3

PROC3.

PROC3
PROC2

PROC3.
.0BJ;1

PRGC3

PROC3
PROC3

.0RJ;1

OBJ;1

.OEJ;1
.CeJ;1

CRJ:1

.0OEJ;1
.OBJ;1

CRJ;1

.CBJ;1
.OEJ;1

OVERLAY CAPABILITY

Example 7-1 Memory Allocation File for CALC.TSK;3 (continued)

CALC.TSK;3 MEMORY ALLOCATION MAP TKB D28 PAGE 7
SyUBl 3-JUL-78 10:59

**x% SEGMENT: SUB1

R/W MEM LIMITS: 040310 041157 000650 006424.
DISK BLK LIMITS: 600655 000855 000081 00061.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE

ADTA : (RW,D,GBL,REL,OVR) 033144 002260 ©¥12080.
033144 09062260 61260. SUB2 FORV@2 SUE1.0BJ;1
$CODE : (RW,I,LCL,REL,CON) 048310 000014 06812.
040319 000000 QB0OGG. SUB2 FORV@2 SUBR1.OEJ;1
640319 90000 0POBO. SUR2 FORV02 SUR1.0BJ;1
p4031¢ 6000814 @0812. SURBR2Z FORV@2 SCE1.CRJ;1
$DATA : (RwW,D,LCL,REL,CON) 048324 002624 004064.
040324 00OBBEC C0OBOB. SUB2 FORV@2 SUB1.ORBJ;1
040324 000624 00464, SUE2 FORV@2 SUE1.CBJ;1
SDATAP: (RW,D,LCL,REL,CON) 041150 0006010 00008.
041150 006000 000PB. SUR2 FORVEZ SUB1.0ORJ;1
41150 000010 00008. SUB2 FORVE2 SUB1.0BJ;1
$SALVC: (RW,D,LCL,REL,CON) 041160 000000 00060.
.$38$$.: (RW,D,GBL,REL,OVR) £33142 006000 00006E.
833142 000000 6£09088. SUE2 FORVB2 SUR1.0RJ;1
833142 060000 900GO. SUR2 FCEVEZ SUE1.CEJ;1

GLOBAL SYMEOLS:

SUB2 P40310-R

7-25

OVERLAY CAPABILITY

Example 7-1 Memory Allocation File for CALC.TSK;3 (continued)

.TSK;3 MEMORY ALLOCATION MAP TKB D28
3-JUL-78 19:58

CALC
SUB2

* %k k

R/W
DISK

SEGMENT: SUB2

MEM LIMITS: 0403160 041347 001040 00544.
BLK LIMITS: 900056 000057 000002 00002,

MEMORY ALLOCATION SYNOPSIS:

SECT

DTA

OTSS
scop

SCAT
SDAT

$SAL
.SS

GLOB

SUB1

ION

K.:(RW,I,LCL,REL,CON)
:(RW,D,GBL,REL,OVR)

:(Rw,C,GBL,REL,OVR)

I :{RW,I,LCL,REL,CON)
E :(Rw,I,LCL,REL,CCN)

A :(RwW,D,LCL,REL,CON)

AP: (RW,D,LCL,REL,CON)

vC: (RW,C,LCL,REL,CCN)
$.:(RW,D,GEL,REL.OVR)

AL SYMBOLS:

040464-R

040310 060082 ©89€3.
033144 002260 01200.
033144 002260 01200.
001002 001442 GOBA2.
001002 901442 00802.
040310 BU0154 @¢0188.
040464 N00G32 00B26.
040464 000000 00000.
040464 000000 00000.
040464 000032 00026.

‘940516000622 90402.

0408516 000000 000O0O.
040516 0600622 90402,
641340 608010 €poeL.
041340 000000 00000,
041340 000010 00008.
341350 00000C0 00000.
833142 000006 000BQ.
033142 060000 60G00.
033142 000000 06000.

*** TASK BUILCER STATISTICS:

7-26

TOTAL WORK FILE REFERENCES: 21731.

WORK FILE REACS: 0.
WORK FILE WRITES: @.

SIZE OF CORE POOL: 16@18. WORDS (62. PAGES)
SIZE OF WORK FILE: 7€80. WORDS (30. PAGES)

e naoa 21
ELAPSED TIME:08:80:21

SUB1
SURBR1
SUBL

suel
SUB1

SuBl
SUB1

SUBL
SUBL

PAGE 8

IDENT

FORV@Z
FORVY?2
FORV@?2
FORV@2
FORV@2

FORVEG 2
FORVO2

FORV@2
FORV@2

FORV@2
FORVB2

FILE

SUB2.0BJ;1
SUB2.0BJ;1
SUB2.0BJ;1
SUB2.0BJ;1
SUB2.0RJ;1

SUR2.0BJ;1
SUB2.0BJ;1

SUBR2,0BJ;1
SUBR2.0EJ;1

SUB2.0BJ;1
SUB2.0BJ;1

7.3

OVERLAY CAPABILITY

EXAMPLE CALC.TSK;4

After examining the memory allocation file for CALC.TSK;3, you observe that the Task Builder has
allocated ADTA in the overlay segments PROC1.0BJ, PROC2.0BJ, and PROC3.0BJ, since all of
these segments are equidistant from the root.

These segments need to communicate with each other through ADTA In the existing allocation,
any values placed in ADTA by PROC1.0BJ are lost when PROC2.0BJ is loaded. Similarly, any
values stored in ADTA by PROC2.0BJ are lost when PROC3.0BJJ is loaded.

A PSECT directive is added fo the overlay description to force ADTA into the root segment.
PROC1.0BJ, PROC2.0BJ, and PROC3.0BJ can then communicate with each other. CALTR.ODL
needs to be modified as follows:

.ROOT RDIN-RPRT-ADTA-* (PROC1,PROC2,P3FCTR)
P3FCTR: .FCTR PROC3-(SUB1, SUB2)

.PSECT ADTA, RW, D, GBL, REL, OVR

.END

The task is built as in CALC.TSK;3.

7-27

OVERLAY CAPABILITY

Example 7-2 Memory Allocation File for CALC.TSK;4

CALC.TSK;4 MEMORY ALLOCATION MAP TKB D28
3-JuL-78 19:51

ICENTIFICATION : FORV@2

3TACK LIMITS: 000000 0606777 001600 00512.
PRG XFR ADDRESS: 022252

TOTAL ATTACHMENT DESCRIPTORS: 3.

TASK IMAGE SIZE : 8544. WORDS

TASK HEATCER SIZE: 160. WORDS

TASK ADDRESS LIMITS: 000008 641347

R-W CISK BLK LIMITS: 008083 00@0S2 600050 €0040.

CALC.TSK;4 OVERLAY DESCRIPTION:

BASE TOP LENGTH

200000 035423 935424 15124, RDIN
035424 935767 090344 80228, PROC1
35424 037727 002384 @91226. PROC?2
35424 249307 002664 014€0. PROC3
40310 941157 000658 00424, SUR1
040219 041347 ©610640 00544, SUB2

7-28

PAGE 1

Example 7-2 Memory Allocation File for CALC.TSK;4 (continued)

CALC.TSK; 4

RCIN

TrIT _7
3‘\)'.) | PR

*** ROOT SEGMENT: RDIN

R/W. MEM

DISK BLK LIMITS:

16:51

MEMORY ALLCCATION MAP TKB D28

LIMITS: £00060 035423 £35424 15124.

MEMORY ALLOCATION SYNOPSIS:

SECTION
. BLK.:
ADTA
DTA

OTSSI

OTSSP :
SCOLE

SCATA

SCATAP:

$SALER:
SSALVC:
S$SSAQTS:
$SAUTO:
SSDEVT:
SSFSR1:
SSFSR2:
SSIORB1:
$SIOB2:
SSLOALD:
SSMRKS:
SSCRBF1:
SSCBFZ:
SSOVDLT:
SSOVRS:
SSRESG:
SSRESL:
SSRGLS:

(RW,I,LCL,REL,CON)

: (Rw,D,GBL,REL,OVR)
: (Rw,D,GBL,REL,QOVR)

:(RW,I,LCL,REL,CON})

(RW,D,GBL,REL,OVR)

:(RW,I,LCL,REL,CON)

: (RW,D,LCL,REL,CON)

(RwW,D5,LCL,REL,CON)

(RW,I,LCL,REL,CON)
(RW,D,LCL,REL,CON)
(Rw,D,LCL,REL,CON)
(RW,I,LCL,REL,CON)
(RV,D,LCL,REL,OVR)
(RW,D,GBL,REL ,OVR)
{RW,LC,GBL,REL,CCHN)
(RW,C,LCL,REL,OVR)
(RW,C,LCL,REL,OVR)
(RW,I,LCL,REL,CON)
(RW,I,LCL,REL,OVR)
(RW,D,LCL,REL,CON)
(Rw,I,LCL,REL,CCN)
(RW,D,LCL,REL,OVR)
(RW,I,LCL,ABS,CON)
(RW,I,LCL,REL,CVR)
(RW,I,LCL,REL,CON)
(RW,D,LCL,REL,CON)

201000
861802
003262
03262
003262
064724
604724
g22214
322252
g22282
022252
22252
822370
822370
02237¢
0622464
022404
022404
624354
024354
626324
926324
026324
026346
826346
§263%6
26402
926432
160000
827336
930546
934646
834752
835156
16013¢
160320
35156
835266
835266
$epoee
162506
161029
835306

pa00B2
002260
001442
001442
gB1442
915278@
p000800
0BeD36
gea132
Geocoo
290000
900116
go00a0
000060
ge0014
803720
200000
961756
200000
081750
006832
000000
peReo22
pcReRe
000018
906024
200030
gop7p4
goegl3e
0612106
cgolo4d
bop2p4
be0ocen
Lepl179
200166
660119
000608
¢epoze
006006
906312
2l6216
08eeen

900003 00P040 060036 0PE630.

g0g82

01209,
nego2.
60802,
pogsz.
66846.
00000 .

26030

00690@.
86000.

20000

gee7e.
20002.
00008.
02012,

22000
66008
01600

.

03000 .
0loGe.
oo 26.

npeoo
oople

02p00.
0po08.
00020,
£0024.
no4c2.
opoes.

vp648

52112,
29e68.
00132,
geoen.
gglze.
colle.
bLB7z2.
£g069.
90e1ls.
copoe.
g2ZB2.
97314,
0oe08n.

OVERLAY CAPABILITY

PAGE 2
TITLE ILENT
-MAIN. FORVE2
RPRT FORV{Z
LMAIN., FOPVH2
.MAIN. FORVE2
.MAIN. FORVO2Z
.MAIN, FORVG2
RPRT FOFVE2
RPRT FORV@2
RPRT FORVO2
LMAIN. FORV@Z
.MAIN. FORVGZ
EPRT FORV@2
RPRT FORVE?2
.MAIN., FCRVO2
.MAIN, FORVOZ
RPRT FOPVE 2
REPRT FORVE2

FILE

RCIN

RPRT.

RCIN

RCIN.
RDIN.
.ORJ; 2
RPRT.
RPPRT.
RPRT.

RDIN

RCIN
RDIN

RLIN
ROIN

RPRT.
RPRT.

.CRJ;2

OBRJ:1

.0BJ;2

OBJ;2
OBJ; 2

ORrJ;1
OEBJ;1
QEJ;1

.OPJ; 2
.OBRJ;2
RPRT.
RPRT.

CRJ;1
CRJ;1

.ORJ; 2
.CEJ;Z

OBEJ;1
CRJ;1

7-29

OVERLAY CAPABILITY

Example 7-2 Memory Allocation File for CALC.TSK;4 (continued)

CALC.TSK:;4 MEMORY ALLOCATION MAP TKB D28

RDIN 3-JCL-78

$SRTS :(RW,I,GBL,REL,OVR) 835306
$$SGD@: (RW,D,LCL,REL,OVR) ©35318
$SSGD1: (RW,D,LCL,REL,CON) 835318
$$SGD2: (RW,D,LCL,REL,OVR) ©35428
$SWNDS: (RW,D,LCL,REL,CON) 035422
.8S$.: (RW,D,GBL,REL,OVR) 835422
835422
35422
935422
$35422

GLOBAL SYMBOLS:

PROC1 ©26482-R PROC3 026422-R
PROC2 ©26412-R RPRT p22378-R

18:51

060082
200000
6p0110
ppoRO2
300000
000000
600000
ceo000
000000
0000092

SRF2A1 000000-R

poBo2.
gopo0.
poB72.
goe6o2.
00009.
00G00.
po0006.
60000,
00000.
00000 .

.MAIN.
.MAIN.

RPRT
RPRT

$SOTSC 922252-P

CALC.TSK;4 MEMORY ALLOCATION MAP TKB D28

PROC1 3-JuL-78

*** SEGMENT: PROC1

19:51

R/W MEM LIMITS: 835424 ©9357€¢7 000344 00228.
CISK BLK LIMITS: 000042 000042 000001 00001.

MEMORY ALLOCATION SYNOPSIS:
SECTION

. BLK.: (RW,I,LCL,REL,CON) 835424
ADTA : (RW,D,GBL,REL,OVR) 001002
001602
DTA :(RW,D,GBL,REL,OVR) 083262
363262
OTSSI : (RW,I,LCL,REL,CON) 835424
$CODE : (RW,I,LCL,REL,CON) 035700
$35700
835768
835700
SCATA : (RW,D,LCL,REL,CON) 835754
935754
935754
SDATAP: (RW,D,LCL,REL,CON) 835756
935756
935756
SALVC: (RW,D,LCL,REL,CON) 835766
.$$S$S.: (RW,D,GBL,REL,OVR) ©£35422

3
235422

935422

GLOBAL SYMBEOLS:

PROC1 @35780-R
7-30

00000
682260
602268
pR1442
pEe1442
000254
pOvVs54
000000
poesgo
gopos54
£o0oo2
p0pBoo
000082
poon1e
6oR0o00
008010
000000
gogoge

gaamam
Uuvoow

2000080

0pooe.
pl1200.
81208@.
0o8p2.
pe8p2.
6o172.
vov44.
o060 .
goaoe.
00044,
gpeo2.
00600 .
gogez.
ppess.
00000 .
000es.
nooeo.
00000 .
gpeee.

poR0o.

PROC1
PROC1
PROC1

PROC1
PROC1

PROC1
PROC1

PROC1
PROC1

PAGE 3

FORV@2 RDIN.ORJ;?2
FORV@2 RDIN.OBJ;2

FORV@2 RPRT.OBJ;1
FORV@2 RPRT.OBJ;1

PAGE 4

IDENT
FORVE?2
FORV@2
FORV@2
FORV@ 2
FORV@?2

FORV@ 2
FORVO2

FORVO2
FORV@?2

FORVA2
FORV@2

$SOTSI ©@24724-R

FILE

PROC1
PROC1
PRCC1
PEOC1
PROC1

PROC1
PROC1

PROC1
PROC1

PROC1
PROC1

.0BJ:?2
.OBJ; 2
.0OBJ; 2
.OBJ:2
.ORJ:; 2

.OBJ;?2
.OBJ: 2

LOBJ;2
.0BJ; 2

.0BJ;2
.OBJ; 2

OVERLAY CAPABILITY

Example 7-2 Memory Allocation File for CALC.TSK:4 (continued)

CALC.TSK;4 MEMORY ALLOCATION MAP TKB L28 PAGE 5
PROC2 3-JUL-78 18:51

*** SEGMENT: PROC2

R/W MEM LIMITS: 035424 937727 0602324 01229.
CISK BLK LIMITS: 000043 0008045 000003 600063.

MEMORY ALLOCATION SYNCPSIS:

SECTION TITLE IDENT FILE

ADTA :(RW,D,GBL,REL,OVR) 001062 002268 01200.
991902 602260 @1206. PROC2 FORVEZ2 PROC2.0RJ;1
SCODE :(RW,I,LCL,REL,CON) ©35424 0000614 g0@12.
035424 000000 90ABG. PROC2 FCRV@2 PROC2.0BJ;1
#35424 000000 9000G. PROC2 FORVA2 PRCC2.0EJ;1
35424 906014 Q6612. PROC2 FORV@O2 PROC2.0EJ;1
SDATA : (RW,D,LCL,REL,CON) ©35440 002260 @¢l200.
35440 0000UO 0BGRG. PRCC2 FURVOZ PROCZ.0RJ;1
035440 902260 ©61206. PROC2 FORVA2 PROC2.0BEJ;1
SCATAP: (RW,D,LCL,REL,CON) £37720 00060108 00008.
637720 0000600 00@PO. PRPOC2 FCFV@2 PROC2.0BJ
837720 00P01P OBOBR. PROC2 FCRV@2 PFCC2.CBJ
S$SSALVC: (RW,D,LCL,REL,CON) 037730 00C000 00060.
.$$$$.: (R%W,D,GBL,REL,OVR) 035422 (000LY 0G000.
035422 Q0GGO0 Q00GE. PROC2 FCRVE@2 PROC2.CEJ;1
§35422 (002060 ©PPPG. PROC2 FORVEZ PROC2.0BJ:l

i1
1

~e

GLOBAL SYMBOLS:

PROC2 @35424-R

7-31

OVERLAY CAPABILITY

Example 7-2 Memory Allocation Flle for CALC.TSK;4 (continued)

CALC.TSK; 4

PROC3

3-JUL-78

***x SEGMENT: PROC3

19:51

MEMORY ALLOCATION MAP TKB D28

R/W MEM LIMITS: 835424 040307 002664 01460.

DISK BLK LIMITS:

MEMORY ALLOCATION SYNOPSIS:

SECTION
ADTA :(RW,D,GBL,REL,OVR) 601602
001002
CTA : (RW,D,GRL,REL,OVR) 003262
0093262
SCOCE : (RW,I,LCL,REL,CON) 835424
035424
835424
635424
SDATA : (RW,D,LCL,REL,CON) 835470
035478
35470
SDATAP: (RW,D,LCL,REL,CON) 048260
040260
840260
SSALVC: (RW,D,LCL,REL,CON) 849278
.$$S$S.: (RW,D,GBL,REL,OVR) 035422
335422
35422
GLOBAL SYMBROLS:
PROC3 @35424-R SUBI 948300-R

7-32

002260
p02260
001442
001442
00644
000000
goo00e
006044
002570
00000
002570
boBE10
ggoeoe
pgoole
2000206
0oooo0
000000
peo000

SUR2

000046 0000SO 000083 00003.

TITLE
61200.
#12868. PROC3
06882,
#P802. PROC3
go@B36.
00060. PROC3
00080. PROC3
¥Gv36. PROC3
21400.
pB0BE. PROC3
#1406, PROC3
pooes.
@0668. PROC3
¢@gas8. PROC3
pogle.
00006,
gopeg. PROC3
#60080. PROC3
040270-R

PAGE 6

FORVE2
FORV@2
FORVO?2
FORV@2
FORV@ 2

FORVE2
FORVO2

FORVE2
FORVD?2

FORVB2
FORV@2

FILE

PROC3.

PROC3

PROC3

CBJ:1

.OBJ;1

.ORJ;1
.OBJ;1
.OBJ;1

.OBJ;1
.OBRJ;1

.0BJ;1
.0BJ;1

.0BJ;1
.0BJ;1

OVERLAY CAPABILITY

Example 7-2 Memory Allocation File for CALC.TSK;4 (continued)

CALC,.TSK; 4 MEMORY ALLOCATION MAP TKB D28 PAGE 7
SUB1 3-JUL-78 lg:51

*** SEGMENT: SUB1

R/W MEM LIMITS: 046310 641157 0006650 60424,
DISK BLK LIMITS: 0600651 009851 000601 00001,

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE

ADTA :(RW,D,GBL,REL,OVR) 001062 ¥02260 612060.
001062 0622608 61200. SUB2 FORVG2 SUR1.0OBJ;1

$SCODE : (RW,I,LCL,REL,CON) £4031¢ 008014 00612,
046310 000000 VPOBHP. SUEB2 FORVOZ SUB1.ORJ;1
40319 000060 ©6060QG. SUR2 FORV#2 SUE1.CBJ;1
040310 000014 00B12. SURB2 FORV@G2 SUB1.CEJ;1

$DATA : (RW,C,LCL,REL,CON) 048324 000624 00404.
040324 0000P0 0000O. SUB2 FORVZ2 SUEL1.0PRJ;1
740324 0CG624 00404. SUB2 FORV@2 SUE1l.CEJ;1

SCATAP: (RW,D,LCL,REL,CON) 04115¢ G0GCO10 0068,
‘ 041150 P0POBY CBBOZ. SUB2 FORVL2 SUBLl.OEJ;1
041150 000010 ©00B8. SUB2 FORVO2 SUBRL1.CEJ;1

$SALVC: (RW,D,LCL,REL,CON) 0€41166 000000 000C@a.

.$8$$.: (RW,D,GBL,REL,OVR) 0835422 0060680 080C3.
G35422 006000 PEEGE. SUB2 FORV@2 SUP1.CRJ;1
035422 000000 00@EG. SUR2 FORVE¢2 SUE1.CEJ;1

GLOBAL SYMBOLS:

SUB2 040316-R

7-33

OVERLAY CAPABILITY

Example 7-2 Memory Allocation File for CALC.TSK;4 (continued)

CALC.TSK;4 MEMORY ALI.OCATION MAP TKB D28
SuUB2 3-JuL-78

*** SEGMENT: SUBZ

R/W MEM LIMITS: @4@G319 041347

MEMOERY ALLOCATION SYNOPSIS:

SECTION

. BLK.:(RW,I,LCL,REL,CON)
ADTA :(RwW,D,GEL,REL,OVR)

CTA :(RW,0,GEL,REL,OVR)

oTs$I : (Rw,I,LCL,REL,CON)
$CODE :(Rw,I,LCL,REL,CON)

$SDATA : (RW,C,LCL,REL,CON)
S$DATAP: (RW,D,LCL,REL,CON)

$SALVC: (RW,D,LCL,REL,CON)
.$$$S$.: (RW,D,;CBL,PEL,OVR)

GLOBAL SYMBCLS:

AUR1 A40464-R

040310
001002
001862
083262
003262
640310
040464
040464
040464
040464
p4¢516
24Pc51¢€
840516
0413490
413449
41340
641358
035422
035422
35422

**%* TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCEES:

WORK FILE REALCS: 0.
WORK FILE WRITES: 8

SIZE OF CORE PCOL: lé@‘ﬂ» WORDS (62. PAGES)
V.ORDS (38.

4L VT SN L

SIZE CF WORK FILE: 7684.

ELAPSED TIME:04:00:20

7-34

16:51

G144

1040 00544.
DISK BLK LIMITS: @606052 000053 (06002 00602.

000060
02260
002260
6el1442
001442
6eols4
0epB32
0000008
po0060
6000832
0a0e22
000000
000622
pecole
000000
0p0Bo10
poBo0aC
pooooe
po0oRo
06o000

22127.

00000.
612080,
01200.
gogoz.
¢gee2.
Pplo8.
060 26.
pegeo.
pneea.
boB26.
06402,
000006.
pe4p2.
Npees.
00000,
6peoe.
poone.
poooa.
¢ooo0.
00000,

PACES)

SCR1
SUB1
SUB1

SUB1
SUBR1

SUR1
SUR1

SUR1
SUB1

PAGE 8

ICENT

FORV@2
FORV@2
FORVE2
FORVE2
FORVB2

FORV@2
FCRVEB?2

FCRV@2
FORV@2

FORVE2
FORVO2

FILE

SUB2.0BJ;1
SUB2.0BRJ;1
SUB2.0BJ;1
SUR2.0BJ;1
SUB2.0BJ;1

SUCB2.0BJ;1
SUB2.0BJ;1

SUBR2.0BJ;1
SUB2.0BRJ;1

SUB2.0BJ;1
SUB2.0BJ;1

OVERLAY CAPABILITY

7.4 Summary of the Overlay Description Language

1

An overlay structure consists of one or more trees. Each tree contains at least one segment. A
segment is a set of modules and p-sections that can be loaded by a single disk access.

A tree can have only one root segment, but it can have any number of overlay segments.

The ODL provides five directives for specifying the tree representation of the overlay structure,
namely:

.ROOT
.END
.PSECT
.FCTR
-NAME

These directives can appear in any order in the overlay description, subject to the following
restrictions:

a. There can be only one .ROOT and one .END directive.

b. The .END directive must be the last directive, since it terminates input.

“|»

The tree structure is defined by the operators “-” (hyphen), “,” (comma), “I” (exclamation mark)

and by the use of parentheses.

indicates that its arguments are to be concatenated and thus co-exist in memory.

within parentheses, indicates that is arguments are to be overlaid and thus share memory. The
parentheses group segments that begin at the same point in memory.

not within parentheses, separates trees (main tree and each co-tree, see item 10 below).

immediately before a left parenthesis indicates that the immediately enclosed segments are memory
resident. Segments enclosed in further parentheses are not allowed.

For example,

.ROOT A-B-(C,D-(E,F))

defines an overlay structure with a root segment consisting of the modules A and B. In this
structure, there are four overlay segments, C, D, E, and F. The outer parenthesis pair indicates
that the overlay segments C and D start at the same location in memory.

4 The simplest overlay description consists of two directives, as follows:

.ROOT A-B-(C,D-(E,F))
.END

Any number of the optional directives (FCTR, PSECT, and NAME) can be included,

The .ROOT directive defines the overlay structure. The arguments of the .ROOT directive are
one or more of the following:

a. File specifications as described in Chapter 2, Section 2.4.1 (PDS) or Chapter 3, Section 3.3.1
(MCR)

b. Factor labels
Segment names

P-section names

7-35

OVERLAY CAPABILITY

The .END directive is required to terminate input.

The .FCTR directive provides a means for replacing text by a symbolic reference (the factor
label). This replacement is useful for two reasons:

a. The .FCTR directive effectively extends the text of the .ROOT directive to more than one
line and thus allows complex trees to be represented.

b. The .FCTR directive allows the overlay description to be written in a form that makes the
structure of the tree more apparent.

For example:

.ROOT A-(B-(C,D),E-(F,G),H)
.END

can be expressed, using the .FCTR directive, as follows:

.ROOT A-(F1,F2,H)

Fl: .FCTR B-(C,D)
F2: .FCTR E-(F,G)
-END

The second representation makes it clear that the tree has three main branches.

[~

A PSECT directive is required when a .ROOT or a .FCTR specifies the segment in which a
p-section is placed.

The .PSECT directive gives the name of the p-section and its attributes. For example:

.PSECT ALPHA, CON, GBL,RW, I,REL

ALPHA is the p-section name and the remaining arguments are attributes. P-section attributes
are described in Table 5-1. The p-section name must appear first on the .PSECT directive, but
the attributes can appear in any order or can be omitted. If an attribute is omitted, a default
assumption is made. For p-section attributes the default assumptions are:

RW, I, LCL, REL, CON
In the above example, therefore, it is only necessary to specify the attributes that do not
correspond to the default assumption:

.PSECT ALPHA, GBL

9 The .NAME directive provides a means for defining a segment name for use in the overlay
description and for specifying segment attributes. This directive is useful for creating a null
segment or naming a segment that is to be loaded manually or naming a non-executable
segment that is to be autoloadable. If the .NAME directive is not used, the name of the first
file, or p-section in the segment is used to identify the segment.

The .NAME directive defines a name, as follows:

.NAME segname [,attr][,attr]
where:
* segname - is the defined name, composed from the character set A-Z, 0-9 and $.

* attr - is an optional attribute, taken from GBL, NODSK, NOGBL, DKS, NOPHY. Defaults:
NOGBL, DSK.

7-36

10

1"

12
13

OVERLAY CAPABILITY

The defined name must be unique with respect to the names of p-sections, segments, files, and
factor labels.

A co-tree can be defined by specifying an additional tree siructure in the .ROOT directive.
The first overlay tree description in the .ROOT directive is the main tree. Subsequent overlay
descriptions are co-trees. For example:

.ROOT A-B-(C,D-(E,F)),X~(Y,2),0~(R,S,T)

The main tree in this example has the root segment consisting of files A.OBJ and B.OBJ; two
co-trees are defined; the first co-tree has the root segment X and the second co-tree has the root
segment Q.

Qualifiers for file specifications in ODL files always use the MCR switch form. The list below
indicates the form for each qualifier:

PDS form MCR form

/ [NO] CONCATENATED / [NoJcc
/LIBRARY /LB
/LIBRARY:model[:...] /LB:modlf{:...]
/ [NO]MAP / [NOIMAP
/SELECT /8s

Comments are prefixed by “;” (semicolon).

File specifications on a single ODL command line adopt the device and ufd specification
defaults from the file specifications to their left, see the IAS MCR User’s Guide.

7-37

8.1

8.1.1

LOADING MECHANISMS

There are two methods for loading both disk-resident and memory- resident overlays:

Autoload in which the Overlay Runtime System is automatically called upon to load those segments that
are marked by you, and

Manual Load in which you include in the task explicit calls to the Overlay Runtime System.
You must decide which of these methods to use, because both cannot be used in the same task.
The loading process depends on the kind of overlay:

1 Disk-Resident - A segment is loaded from disk into a shared area of physical memory, writing
over whatever was present.

2 Memory-Resident - A segment is made available by mapping a set of shared virtual addresses
to a unique unshared area of physical memory, where the segment has been made permanently
resident (after having been initially brought in from the disk).

The term “load”, as used in this manual, refers to both processes.

In the autoload method, loading and error recovery are handled by the Overlay Runtime System.
Overlays are automatically loaded by being referenced through a transfer-of-control instruction
(CALL, JMP, or JSR). No explicit calls to the Overlay Runtime System are needed.

In the manual load method, the user handles loading and error recovery explicitly. Manual loading
saves space and gives the user full control over the loading process, including the ability to specify
whether loading is to be done synchronously or asynchronously.

Provision must be made for loading the overlay segments of the main tree and the root segments,
as well as the overlay segments of the co-trees. Once loaded, the root segment of a co-tree remains
in memory.

Autoload

When using the autoload method you place the autoload indicator “*” in the ODL description of the
task at the points where loading must take place. The execution of a transfer of control instruction
to an autoloadable segment up-tree automatically initiates the autoload process.

Autoload Indicator

The autoload indicator, “*”, is placed in the overlay description at the points where autoloading

is required. If the autoload indicator is inserted before parentheses (and before an exclamation
point operator if used) then every name within the parentheses is marked autoloadable. Applying
the autoload indicator at the outermost parentheses level of the ODL tree description marks every
module in the overlay segments autoloadable.

Consider the example TK1 of Chapter 7, “Resolution of Global Symbols in a Multi-segment Task”,
and suppose further that segment C consists of a set of modules C1, C2, C3, C4 and C5. The tree
diagram for TK1 then is:

8-1

LOADING MECHANISMS

A1 A22
| cs
Al Bl 2 c4
c3
c2
A0 COMAB elo c1
CNTRL

If you introduce the autoload indicator at the outermost parentheses level, regardless of the flow of
control within the task, a module is always properly loaded when it is called. The ODL description
for the task with this provision then is:

.ROOT CNTRL-* (AFCTR, BCTR, CFCTR)

AFCTR: .FCTR AO0-(Al,A2-(A21,A22))
BFCTR: .FCTR BO-(Bl,B2)
CFCTR: .FCTR C1-C2-C3-C4-C5

.END

To be assured that all modules of a co-tree are properly loaded, the user must mark the root
segment as well as the outermost parentheses level of the co-tree, as follows:

.ROOT CNTRL-* (AFCTR, BFTCR, CFCTR} , *CNTRL2-* (CNTRLX, CNTRLY)

The above example assumes that one or more modules containing executable code reside in
CNTRL2.

The autoload indicator can be applied to the following constructs:
1 Filenames - to make all the components of the file autoloadable.

2 Parenthesized ODL tree descriptions - to make all the names within the parentheses
autoloadable.

3 P-section names - to make the p-section autoloadable. The p-section must have the I
(instruction) attribute.

4 Segment names introduced by the NAME directive - to make all components of the segment to
which the name applies autoloadable.

5 Factor label names - to make the first component of the factor autoloadable. If the entire factor
is enclosed in parentheses, then all the components are made autoloadable.

Suppose you introduce two .PSECT directives and a .NAME directive into the ODL description for
TK1 and then apply autoload indicators in the following way:

8-2

LOADING MECHANISMS

.ROOT CNTRL- (*AFCTR, *BFCTR, *CFCTR)

AFCTR: .FCTR AO-*ASUB1-ASUB2-* (Al,A2-(A21,A22))
BFCTR: .FCTR (BO-(B1,B2))
CFCTR: .FCTR CNAM-C1-C2-C3-C4-C5

-NAME CNAM

.PSECT ASUB1, I,GBL,OVR
.PSECT ASUB2,I,GBL,OVR
.END

The interpretation for each autoload indicator in the overlay description is as follows:

(*AFCTR, *BFCTR, *CFCTR)
The autoload indicator is applied to each factor name:

*AFCTR=*A0
*BFCTR=*BO-(B1-B2))
*CFCTR=*CNAM

CNAM, however, is an element defined by a NAME directive; therefore, all the components
of the segment to which the name applies are made autoloadable; that is, C1, C2, C3, C4,
and C5.

*ASUBI - The autoload indicator is applied to the name of a p-section having the I attribute,
so the p-section ASUB1 is made autoloadable, That is, all symbols defined in the p-section will
be autoloadable.

*(A1,A2-(A21,A22)) - The autoload indicator is applied to a portion of the ODL description
enclosed in parentheses, so every element within the parentheses is made autoloadable, that
is, files Al, A2, A21, and A22.

The effect of this ODL description is to make every element except p-section ASUB2 autoloadable.

8.1.2 Path-loading

Autoload uses the technique of path-loading. That is, whenever a segment is loaded all segments
between it and the root are also loaded.

Consider again the example TK1 and the tree diagram:

A21 A22

| cs

Al B{ 2 c4
l i c3

c2

A0 COMAB BO C1

CNTRL

8-3

8.1.3

LOADING MECHANISMS

If CNTRL calls A2, then all the modules between the calling module CNTRL and the called module
A2 are loaded. In this case modules AQ and A2 are loaded.

The Overlay Runtime System keeps track of the segments in memory and only issues load requests
for those segments not in memory. If, in the above example, CNTRL called Al and then called A2,
A0 and Al are loaded first and then A2 is loaded. A0 is not loaded when A2 is loaded because it is
already in memory.

A reference from one segment to another segment down-tree (closer to the root) is resolved directly.
For example, if A2 calls A0, then the reference is resolved directly because A0 is known to be in
memory as a result of the path-loading that took place in the call to A2,

Autoload Vectors

When the Task Builder sees a reference from a segment to an autoloadable segment up-tree, it
generates an autoload vector in the segment for the referenced global symbol. The definition of the '
symbol is changed to an autoload vector table entry. The autoload vector has the following format:

JSR PC

$AUTO

Segment Descriptor Address

Entry Point Address

A “transfer of control” instruction to the referenced global symbol executes the call to the autoload
routine $AUTO contained in the autoload vector.

An exception is made in the case of a p-section with the D (data) attribute. References from a
segment to a global symbol up-tree in a p-section with the D attribute are resolved directly.

Since the Task Builder has no information about the flow of control within the task, it often
generates more autoload vectora than are necessary. You can, however, apply vour knowledge of
the flow of control of your task and your knowledge of path-loading to determine the placement of
autoload indicators. By placing the autoload indicators only at the points where loading is actually
required, you can minimize the number of autoload vectors generated for the task.

If in TK1 all the calls to overlays originate in the root segment, (that is, no module in an overlay
segment calls outside its overlay segment) and if the root segment CNTRL has the following
contents:

PROGRAM CNTRL
CALL A1

CALL A21

CALL A2

CALL A0

CALL A22

CALL BO

CALL B1

8-4

8.1.4

LOADING MECHANISMS

CALL B2
CALL C1
CALL C2
CALL C3
CALL C4
CALL C5
END

If the autoload indicator is placed at the outermost parentheses level, 13 autoload vectors are
generated for this task.

Since A2 and AQ are loaded by path loading to A21, the autoload vectors for A2 and A0 are
unnecessary. The call to C1 loads the segment that contains C2, C3, C4 and C5; therefore autoload
vectors for C2 through C5 are unnecessary.

You eliminate the unnecessary autoload vectors by placing the autoload indicator only at the points
where loading is required, as follows:

.ROOT CNTRL- (AFCTR, *BFCTR, CFCTR}

AFCTR: .FCTR AO-(*Al,A2-*(A21,A22))
BFCTR: .FCTR (BO-(B1,B2))
CFCTR: .FCTR *C1-C2-C3-C4-C5

.END

With this ODL description, the Task Builder generates only seven autoload vectors, namely those
for A1, A21, A22, B0, B1, B2, and C1.

The autoload vectors for each segment are placed in the p-section $$ALVC, which is generated
automatically by TKB. This p-section is read/write, so if a resident overlay segment which

is otherwise read-only contains autoload references, it will become read/write and will not be
shareable between multiple copies of the task.

This may be avoided by including a GBLREF option specifying each symbol for which there is an
up-tree reference from the resident segment. This forces the autoload vector to be placed in the
root segment.

Autoload Summary

1 Autoload is almost totally transparent to the user task. In particular, all registers are
preserved across an autoloadable transfer of control. However, the condition code settings
are not preserved across such a call.

2 Autoload can work only where the reference to another segment is explicit at task-build time.
In particular, a segment can never be autoloaded as a result of a return from a subroutine.

w

Autoload shouid not be used in conjunction with the use of the .PSECT directive to move
p-sections further from the root. When a global symbol is defined in a module, the symbol is
associated with the segment containing the module. This is true even if the symbol is defined
in a p-section which has been moved further away from the root. Thus if a segment closer to
the root refers to the symbol, the segment which will be autoloaded will be the one containing
the defining module, not the one containing the p-section. The effect of this is that the code
labelled by the symbol will not be loaded before control is transferred.

8-5

8.2

8.2.1

LOADING MECHANISMS

Manual Load

If you decide to use the manual load method of loading segments, explicit calls to the $LOAD
system routine must be included in the programs. These load requests give the name of the
segment to be loaded and optionally give information necessary to perform asynchronous load
requests and to handle unsuccessful load requests.

The $LOAD routine does not path-load. A call to $LOAD always results in the segment named in
the load request being loaded and only that segment being loaded.

The MACRO-11 programmer calls the $LOAD routine directly. The FORTRAN programmer is
provided with the subroutine “MINLOAD”.

Manual Load Calling Sequence

The MACRO-11 programmer calls $LOAD, as follows:
MOV #PBLK, RO
CALL $LOAD
where PBLK labels a parameter block with the following format:
PBLK: .BYTE length, event-flag
.RAD50 /seg-name/

.WORD I/0-status
.WORD AST-trp

You must specify the following parameters:
¢ length - the length of the parameter block (3-5 words).

¢ event-flag - the event flag number, used for asynchronous loading. If the event-flag number is
zero, synchronous loading is performed.

* seg-name - the name of the segment to be loaded, a 1- to 6-character alphanumeric (Radix-50)
name, occupying two words.
The following parameters are optional:

¢ I/O-status - the address of the I/0 status block as described for the QIO directive in the IAS
System Directive Reference Manual.

* AST-trp - the address of an AST routine to which control is transferred at the completion of the
load request.

The condition code C is set or cleared on return, as follows:

If C = 0, the load request was successfully executed.
If C = 1, the load request was unsuccessful.

For a synchronous load request, the return of the condition code 0 means that the desired segment
has been loaded and is ready tc be executed. For an asynchronous load request, the return of the
code 0 means that the load request has been successfully queued to the device, but the segment is
not necessarily in memory. You must ensure that loading has been completed by waiting for the
specified event flag before calling any routines or accessing any data in the segment.

8-6

8.2.2

LOADING MECHANISMS

FORTRAN Subroutine for Manual Load Request
To use manual load in a FORTRAN program, the program makes explicit reference to the $LOAD

routine by means of the “MINLOAD” subroutine. The subroutine call has the following form:
CALL MNLOAD (seg-name,event-flag,I/O-status,ast-trp,ld-ind)
where:

* seg-name - is a 2-word real variable containing the segment name in alphanumeric (Radix-50)
format.

* event-flag - is an optional integer event flag number, to be used for an asynchronous load
request. If the event flag number is zero, the load request is considered synchronous.

* 1/O-status - is an optional 2-word integer array to contain the I/0 status doubleword, as
described for the QIO directive in the IAS System Directives Reference Manual.

¢ ast-trp - is an optional asynchronous trap subroutine to be entered at the completion of a
request. MNLOAD requires that all pending traps specify the same subroutine.

* 1d-ind - is an optional integer variable to contain the results of the subroutine call. One of the
following values is returned:

+1 request was successfully executed.
-1 request had bad parameters or was not executed successfully.

Optional arguments can be omitted. The following calls are all legal:

Call Effect

CALL MNLOAD (SEGAT1) Load the segment named in SEGA1 synchronously.

CALL MNLOAD (SEGA1,0,,,LDIND) Load the segment named in SEGA1 synchronously. and return
success indicator to LDIND.

CALL MNLOAD (SEGA1,1,I0OSTAT, Load the segment named in SEGA1 asynchronously, transferring

ASTSUB,LDIND) control to ASTSUB upon completion of the load request, storing
the /O-status doubleword in IOSTAT and the success indicator in
LDIND.

Consider the program CNTRL described in connection with the autoload method, and suppose that
between the calls to the overlay segments there is sufficient processing to make asynchronous
loading effective. The user removes the autoload indicators from the ODL description and
recompiles the FORTRAN programs with explicit calls to the MNLOAD subroutine, as follows:

8-7

8.3

8.4

LOADING MECHANISMS

PROGRAM CNTRL

EXTERNAL ASTSUB
INTEGER IOSTAT (2)
COMMON /IOSTAT/ IOSTAT
DATA SEGAl /6RAl /
DATA SEGA21 /6RA21 /

CALL MNLOAD (SEGAl,1l,IOSTAT,ASTSUB,LDIND)
CALL Al
CALL MNLOAD (SEGA21,1,IOSTAT,ASTSUB,LDIND)

CALL A21

END

The AST subroutine, (“ASTSUB” in the example), should normally be written in MACRO-11. It
may access the I/O status block using the p-section IOSTAT, with attributes RW, OVR, GBL, D.

Error Handling

if the manual load method is selected, you must provide error handling routines which diagnose
load errors and provide appropriate recovery.

If the autoload method is selected, a simple recovery procedure is provided, which checks the
Directive Status Word (DSW) for the presence of an error indication. If the DSW indicates that ne
system dynamic storage is available, the routine issues a “wait for significant event” directive and
tries again; if the problem is not dynamic storage, the recovery procedure generates a breakpoint
synchronous trap. If the program is set to service the trap and returns without altering the state
of the program, the request can be retried.

A more comprehensive user-written error recovery subroutine can be substituted for the
system-provided routine if the following conventions are observed:

1 The error recovery routine must have the entry point name $ALERR.

2 The contents of all registers must be saved and restored.

On entry to $ALERR, R2 contains the address of the descriptor for the segment that could not be

4+ A b temn tlen mmvema AL AL e L
loaded. Rafore recovery action can be taken, the routine must determine the cause of the sivor by

examining the following words in the sequence indicated:

1 $DSW - The Directive Status Word may contain an error status code, indicating that the 1/0
request to load the overlay segment was rejected by the Executive.

2 .NIOST - This is a 2-word I/O Status block containing the results of the load overlay request
returned by the device handler. The status code occupies the low-order byte of word 0.

Example: CALC.TSK;5

Suppose the task CALC is now complete and error-free and you want to adjust the autoload vectors
to minimize the amount of storage required. Your knowledge of the flow of control of the task
determines that PROC3.0BJ is always in memory as a result of path-loading when it is called and

therefore, the autoload vector for PROC3.0BJ can be eliminated.

8-8

LOADING MECHANISMS

The ODL description in CALTR.ODL is modified as follows:

.ROOT RDIN~RPRT-ADTA-(*PROC1, *PROC2, P3FCTR)
P3FCTR: .FCTR PROC3-*(SUB1, SUB2)
.END

The task is built and the resulting memory allocation file in Figure 8-1 shows that the repositioning
of the autoload indicator saved 10 bytes.

8-9

LOADING MECHANISMS

Example 8-1 Memory Allocation File for CALC.TSK;5

-CALC.TSK; % MEMORY ALLOCATION MAP TKE D28 PAGE 1
3-JUL-78 109:51

ICENTIFICATION : FORVO2

STACK LIMITS: 000000 006777 001000 0051Z.

PRG XFR ALCDRESS: 622252

TOTAL ATTACHMENT CESCRIPTCRS: 3.

TASK IMAGE SIZE : 8544. WORLS

TASK HEALCER SIZE: 166. WORDS

TASK ACDRESS LIMITS: 0860000 041327

R-ii CISK BLK LIMITS: 000663 066652 GCeOSE 00640.

CALC.TSK;5 OVERLAY CESCRIPTION:

BASE TCP LENCTH

G0C0Ge 835413 ©35414 15116, RCIN
35414 ©35757 000344 60228. PKRUC1
$235414 ©37717 662384 612206, PRCC2
435414 040277 062664 ©£1460. PROC3
¥403e0 L41l47 0LO656 BO4Z4. SUBR1
p4e3uc 041337 001946 00544, SCEB2

8-10

LOADING MECHANISMS

Example 8-1 Memory Allocation File for CALC.TSK;5 (continued)

CALC.TSK;5 MEMORY ALLOCATION MAP TKB D28 PAGE 2
RDIN 3-JUL-78 19:51

**%x ROOT SEGMENT: RDIN

R/W MEM LIMITS: 0c0000 0635413 035414 15116.
DISK BLK LIMITS: 600003 600040 00003€ 0806030.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE ICENT FILE

. BLK.:(RW,I,LCL,REL,CON) 8010€00 000602 00002.

ADTA :(RW,LC,GBL,REL,OVR) 801862 0622606 812060.

CTA : (RW,D,GBL,REL,OVR) 003262 081442 00882,
$@3262 Q01442 ¢0€G2. .MAIN. FORVBZ RDIN.ORJ;?2
P03262 001442 6e802. RPRT FCRV@Z RPRT.ORJ;1

OTSSI :(RwW,I,LCL,REL,CON) 004724 ¢15270 £6840.
gp4724 000000 €0006. .MAIN. FOFVEZ RCIN.OBJ;2

OTSS$P : (RW,D,CBL,REL,OVR) 022214 (600436 60630.

SCOCE :(RW,I,LCL,REL,CON) 022252 020132 96090.
922252 000A00 ©GOOOP@. .MAIN. FORVE2 PCIN.OEJ;2
22252 000900 9OQZ8. .MAIN. FORVEZ RDIK.OEJ;Z
022252 GEBlle a@p78. .MAIN. FCRVGZ RCIN.OBJ;Z
g22370 00Q0C6 ©OOOH. FPRT FOPVO2 RPRT.CRJ;1
922376 ©0gOCEG £BOO0E. RPET FORVE2 RPRT.CBJ;1
¢22379 £66014 @a6@1l2. RPRT FCRVE2 RFRT.ORJ;1

SDATA : (RW,C,LCL,REL,CON) 022404 663720 €2000.
922404 200000 208082. .MAIN. FORVE2 RICIN.CEJ;2
$22404 001750 @01000. .MAIN. FORV@2 RCIN.OBJ;?2
24354 00006 600060. RPPT FORV@UZ2 RFRT.OBJ;1
@24354 §01750 01664. KPRT FORVEZ RPRT.ORJ;1

$CATAP: (RW,C,LCL,REL,CON) 826324 0006€32 200626.
26324 0GOGOE ¢6RO0PA. .MAIN. FORVEZ RDIS.OBJ;2
26324 @GEOA22 ApGle. .MAIN. FORVO2 RCIN.CBJ;Z
#26346 00CO0C C60OO. RPFRY FORV@QZ RPRT.OPJ;1
026346 DE0O19 ©BPBE. RPRT FORVG2 RPRT.OEJ;1

SSALER: (RW,I,LCL,REL,CON) 826356 £6€624 600620.

SSALVC: (RW,D,LCL,REL,CON) 626462 0C082¢ 0GElE.

S$SAQOTS: (RW,[,LCL,REL,CON) £2€422 0800704 N0A452.

$SAUTO: (RW,I,LCL,REL,CON) 160020 066136 #0@8¢E.

$SDEVT: (RV,C,LCL,REL,OVR) 027326 Col215 00648.

$SFSR1: (RW,D,GBL,REL,CVR) 036536 6641¢6 62112,

$SFSR2: (RW,D,GBRL,REL,CCN) 034636 0bulod 40068,

$SIOB1l: (RW,D,LCL,REL,OVR) 034742 0060204 6G13Z.

$SICBZ2: (R%,D,LCL,REL,GVR) 035146 600000 6006466.

S$SSLOALC: (RW,I,LCL,REL,CON) 16£1230 080170 60120.

SSMRKS: (RW,I,LCL,FEL,OVR) 160320 0001€6 @C11%2.

$SOBF1l: (RW,D,LCL,REL,CON) 835146 0€2116 €0@72.

$SOBF2: (RW,I,LCL,REL,CON) £35256 @C0BGE GeUac.

$SOVDT: (RW,D,ICL,REL,OVR) 835256 0EpC20 @dble.

$SOVRS: (RW,I,LCL,AES,CCN) BOE2C0 0U606COEL 06O66.

SSRDSG: (RW,I,LCL,REL,OVR) 1l€@%506 £€€312 €0202.

SSFESL: (RW,I,LCL,EEL,CON) 1l€1628 01621€ 67318.

SSRCGLCS: (RW,C,LCL,REL,CON) 35276 @€e6el 066000.

8-11

LOADING MECHANISMS

Example 8-1 Memory Allocation File for CALC.TSK:5 (continued)

CALC.TSK;5 MEMORY ALLOCATION MAP TKB D28 PAGE 3
RDIN 3-JUL-78 19:51

S$RTS :(RW,I,GBL,REL,OVR) ©35276 000062 60002.

$$SGD@: (RW,D,LCL,REL,OVR) 635300 000000 60020.

$$SGD1: (RW,D,LCL,REL,CON) 035300 000116 00872,

$$SCD2: (RW,D,LCL,REL,OVR) 035410 000002 000602,

$SWNDS: (RW,D,LCL,REL,CON) 835412 006000 00000.

.$$$$.: (RW,D,GBL,REL,OVR) 035412 000000 00000.
035412 p000PG 0POQA. .MAIN. FORVO2 RDIN.OBJ;2
035412 000PP00 @0OGO. .MAIN. FORVO2 RDIN.OBJ;2
035412 000000 00B00. RPRT FORVO2 RPRT.OBJ;1l
035412 000000 00908. RPRT FORVO2 RPRT.ORJ;1

GLOBAL SYMBOLS:

PROC1 @2€402-R RPRT #22379-R $$SOTSC ©22252-R
PROC2 #26412-R SRF2Al P0@RAG-R S$SOTSI 004724-R

CALC.TSK;5 MEMORY ALLOCATION MAP TKE 028 PAGE 4
PROC1 3-J0L-78 19:51

x SEGMENT: PROC1

R/W MEM LIMITS: 835414 035757 800344 9@228.
CISK BLK LIMITS: 060G42 006042 000GB1 00001,

MEMORY ALLOCATION SYNOPSIS:
SECTION TITLE IDENT FILE

. BLK.: (Rv,I,LCL,REL,CON) 035414 000000 00060.
ACTA :(RW,D,GBL,REL,OVR) 001662 902260 01260.
¢@10A2 ¢62260 61280. PROC1 FORVB2 PROC1.0BJ;2
CTA : (RW,D,GBL,REL,OVR) 063262 901442 00882.
§P3262 001442 4P802. PROC1 FORV@2 PROCL.CRJ;?2
0vrsSS$I : (RW,I,LCL,REL,CON) 035414 906254 090172.
SCOCE : (RW,l,LCL,REL,CON) 835670 082854 0GG44,
035670 00P0P0 ©0@PO. PROC1 FORV@2 PRCC1.0RJ;2
35670 00A000 GEOPE. PROC1 FORV@2 PROCL1.ORJ;2
35670 00PPS4 9BP44. PROC1 FCRV@2 PROCL.ORJ;2
$DATA : (RW,D,LCL,REL,CON) 935744 000002 90002,
¥35744 000000 0PAPM. PROC1 FORVA2 PROC1.ORJ;?2
035744 00@P02 PPOB2. PROC1 FORVP2 PROC1.ORBRJ;?2
SCATAP: (RW,D,LCL,REL,CON) @3574¢ 000010 06008.
035746 00P000 P00GS. PROC1 FORVA2 PROC1.0OBJ;?2
935746 000010 0#@QE8. PROC1 FORVO2 PROC1.OBJ;2
$SALVC: (RW,D,LCL,REL,CON) 035756 0606000 00CZ0O.
.$$S8$.: (RW,D,GBL,RCL,OVR) 035412 G0000C 808086.
35412 P0GOCO B@PPS. PROC1 FORVE2 PROC1.OBJ;?2
35412 009000 @0GGEO. PROC1 FORV@2 PROCLl.OBRJ;2

GLOBAL SYMBOLS:

PROC1 ©@35670-R
8-12

LOADING MECHANISMS

Example 8-1 Memory Allocation File for CALC.TSK;5 (continued)

CALC.TSK;5 MEMORY ALLOCATION MAP TKR LD2§ PAGE 5
PROC2 3-JUL-78 18:51

*** SEGMENT: PROC2

R/W MEM LIMITS: @35414 037717 002304 01220.
DISK BLK LIMITS: 000043 000045 000003 0006a3.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE ICENT FILE

ACTA : (RW,C,GBL,REL,OVR) £91002 662260 01290.
901002 062260 P1200. PROC2 FOFV@2 prOCZ.0HJ;1
$CODE : (RW,I,LCL,REL,CON) £35414 6000614 0€012.
035414 000600 PAOBG. PRCC2 FORVEZ PROCZ.CRJ;1
$35414 00Q00¢ APEGE. PFOC2 FCUEVE2 PRCC2.CEJ;1
035414 060614 ©88012. PRCC2 FCRVE2 PROC2.0BJ;!I
$CATA : (RW,D,LCL,REL,CON) 835430 062260 0120C.
035430 000¢eH 0086G. PRCC2 FORVE2 PROCZ.CEJS;1
#35430 002260 @¢1206. PROCZz FCPVE2 PPQC2,.0RJ;1
SDATAP: (RW,D,LCL,REL,CON) 0637710 006018 ¢6008.
237710 60e@A6H 00LEE. PPOC2 FOFVOZz PRCCZ.CEJ:]
837710 @06C1l0 60088. PROC2 FOPVE2 PRCCZ.CEJ;1
$$ALVC: (FW,D,LCL,REL,CON) 837720 600000 00600.
.$$$$.: (RW,D,GBL,REL,OVR) £3541Z 660600 Go@e0.
035412 00060R ©PAGO. PROC2 FOPVOZ PPCC2.CEJ;]
035412 060Q0R0 @0eBE. PROC2 FORVOZ PRCC2.CPRJ;1

GLOBAL SYMBOLS:

PROC2 @35414-R

8-13

LOADING MECHANISMS

Example 8-1 Memory Allocation File for CALC.TSK;5 (continued)

CALC.TSK;5 MEMORY ALLOCATION MAP TKB D28 PAGE 6
PROC3 3-JUL-78 1@8:51

*** SEGMENT: PROC3

R/W MEM LIMITS: ©35414 9498277 082664 021468,

DISK BLK LIMITS: 000046 000050 000003 080083.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE

ACTA :(RwW,D,CBL,REL,OVR) 001002 002260 01200.

001002 £02260 01200. PROC3 FCRV@2 PPCC3.

CT2 : (RW,2,CEL,REL,OVR) ©032€2 001442 008G2.

063262 061442 @pPeB2. PROC3 FORVE2 PROC3.

SCOLE : (FRW,I,LCL,REL,CON) 035414 0066044 00036.

935414 Qo@eege $O00G68. PRCC3 FCORVE@Z PROC3.
@35414 090004 @OAOE@. PRGC3 FORVHZ PROC3.
035414 pORO44 6OB36. PRCC3 FCRVOZ PROC3.

SCATA : (RW,L,LCL,REL,CON) 0835460 902570 ¢1400.

£35469 0v00A2 CPPPE. PROC3 FORVO2 PROC3.
035460 062570 01466, PROC3 FCORVO2Z2 PRCC3.{

SDATAP: (RW,D,LCL,REL,CON) 940250 060610 00808.

640250 000000 GPOEO. PRCC3 FORVO2 PROC3.
940250 0000910 GOGE8. PROC3 FORV@2 PRCC:.

$$ALVC: (RW,LC,LCL,REL,CON) 040260 006520 BE9216.
.$$8S.: (RW,D,CBL,REL,OVR) 035412 0000800 00060.

935412 090008 98000. PROC3 FORVA2 PROC3.
135412 006002 d0PGP. PRCC3 FCRVE2 PROCS.

GLOBAL SYMBCLS:

PROC3 ©835414-R SUBL 840270-R SUBR2 p402€0-17

8-14

Example 8-1 Memory Allocation File for CALC.TSK;5 (continued)

CALC.TSK;5 MEMORY ALLOCATION MAP TKB D28
SUB1 3-JUL-78

%%* SEGMENT: SUB1

ig:51

R/W MEM LIMITS: 040300 041147 000650 ©606424.
DISK BLK LIMITS: 000051 600651 000001 00001.

MEMORY ALLOCATION SYNOPSIS:

SECTION

ADTA : (RW,D,CBL,REL,OVR})

SCODE : (RW,I,LCL,REL,CON)

SDATA : (RW,D,LCL,REL,CON)

SDATAP: (RW,D,LCL,REL,CON)

$SALVC: (RW,D,LCL,REL,CON)
.$$8SS.: (RW,D,GBL,REL,QVR)

GLOBAL SYMBOLS:

SUB2 P463060-R

001002
661062
040300
640360
640300
040300
640314
040314
046314
041140
641140
041140
841150
035412
635412
635412

062266
602268
600014
060000
060000
000014
000624
0006000
000624
900010
000000
0000610
000200
006000
000600
000006

812080,
01206.
pgBl12.
000009 .
0060 .
peoL2.
p0494.
00000.
00404.
2006s8.
00000.
00008.
peoeo.
goeoe.
00020,
b0e00.

SCR2
SUR2

SUB2
sSUB2

LOADING MECHANISMS

PAGE 7

FORVE2Z

FORVE?2
FORVE2
FORV@2

FORV@2Z
FOPV@2

FORVG?2
FORVE2

FORVY?2
FORVE?2

FILE

SUCEB1.0BJ;1

SUR1.0BJ;1
SUB1.0ORJ;1
SUB1.CBJ;1

SUB1.ORJ;1
SUCB1.0BJ;1

SUB1.0OEJ;1
SUB1.0BJ;1

SUB1.0BJ;1
SUR1.0BJ;1

8-15

LOADING MECHANISMS

Example 8-1 Memory Allocation File for CALC.TSK;5 (continued)

CALC.TSK;5 MEMORY ALLOCATION MAP TKB D28
SUR2 3-JUL-78 19:51

*** SEGMENT: SUB2

R/W MEM LIMITS: 0443008 041337 001040 008544.

DISK BLK LIMITS:

MEMORY ALLOCATION SYNGPSIS:

SECTION

. BLK.
ACTA

CTA

OTSSI
$SCOLE

SDATA

SCATAFP

$$ALVC
.SSS.

GLOBAL

SUR1

: (RW,I,LCL,REL,CON)
:(RW,C,GBL,REL,OVR)

:(RwW,0,GBL,REL,OVR)

: (RW,I,LCL,REL,CON)
:(RW,I,LCL,PEL,CON)

: (RW,D,LCL,REL,CON)

: (RW,D,LCL,REL,CCN)

:(RW,LD,LCL,REL,CON)
:(RW,D,GBL,REL;0VR)

SYMBOLS:

040454-R

04063060
001002
6016062
063262
003262
040300
649454
040454
040454
040454
040506
646506
048506
041330
641330
041330
041340
835412
035412
035412

*** TASK BUILDER STATISTICS:

TOTAL WORK FILE REFERENCES:
WORK FILE READS: 0.

WORK FILE WRITES: @

8-16

SIZE OF CORE POCL:

SIZE OF WORK FILE:

ELAPSEC TIME:00G:00:20

16010. WORDS
7680 . WORDS

6p0060
602260
002260
pB1442
001442
60154
peoB32
000660
pocooo
goBP32
000622
600000
PB0622
boople
ocooee
po00190
ooveng
gocaoe
po0o0ge
008200

22122.

(
(3

62.
a.

600052 000053 000002 0AGB2.

pocVe.
G1200.
g1200.
ne8o2.
06862.
g61a8.
00026.
P0RRO.
06000 .
goe26.
p0422.
00000 .
00402,
poooe.
00000.
60008.
p0000.
poQaeEn.
#0660.
00020 .

PAGES)
PAGES)

SUB1
SUBl
SUB1

SUr1
SUB1

SUR1
SUR1

SuBl
SUB1

PAGE 8

ICENT
FORVE2
FORV@ 2
FORVO2
FORVE2
FORV@2

FORVE2
FOEVE2

FORVO2
FORV@2

FORV@2
FORVO2

FILE

SUE2.0BJ;1
SUB2.0RBRJ;1
SUB2.0BJ;1
SUB2.0BJ;1
SUR2.0RJ;1

SUB2.0EJ;1
SUR2.0BJ;1

SUB2.0BJ;1
SUB2.0BJ;1

SUB2.0BJ;1
SUB2.0BJ;1

8.5

LOADING MECHANISMS

Using the QIO Directive to Load from the Task Image File

It is sometimes required to load part of the task image file into a location other than that allocated
by Task Builder. This can be the case, for example, if a segment containing error messages has
been generated and given the NOPHY attribute so that no task address space is allocated to it.

The QIO function code I0.LOV can be used to load one or more blocks from the task image file into
a specified buffer. The format is:

QIO(S] I0.LOV, lun,efn, pri, iosb, ast,<bufadr,buflen,,,block>
QIOW([S]

where:

¢ Jun - is the LUN to be used for the function. This must be the LUN whose number is at
location NOVLY in the overlay control block, which is inserted automatically into an overlaid
task.

* efn - is an optional event flag. The flag will be set when the function has been completed and
either the overlay has been successfully completed or an error has occurred.

® pri - is the priority of the request. This parameter should normally be omitted, in which case
the task’s priority will be used.

* josb - is the address of the 2-word I/O status block. If this parameter is supplied, the first word
of the status block will contain the status of the request on completion. This will normally be
one of:

IS.SUC - request successfully completed

IE.OVR - request issued on the wrong LUN or specified block number not in the task image
file

IE.VER - device parity error

For other error statuses see the IAS Device Handlers Reference Manual, Chapter 4.

* ast - (optional) is the address of an AST routine to be executed when the request has been
completed.

¢ bufadr - is the even address of the buffer which is to receive the data.
¢ buflen - is the even length in bytes of the buffer.
e ,, - the two additional commas are mandatory and indicate two null parameters.

* block - is the block number of the first block to be read. This is the relative block number in
the task image file. The starting block of an overlay segment can be found from the segment
table, whose location and format is described in Appendix C, Section C.7.

Example:

QIOWSS #I0.LOV, .NOVLY, #EFN, , #I0SB, , <#BUFF, #512,, ,R1>

which will read the block, specified in R1, of the image file of the issuing task into the buffer at
BUFF.

8-17

9.1

9.1.1

SHAREABLE GLOBAL AREAS

IAS provides the facility for dynamic Shareabie Giobai Areas (SGAs). This chapier describes the
use and creation of SGAs in so far as they are related to task building.

Summary OF SGA Information

This summary lists all the important information about SGAs and provides references to further
information about each item.

1 SGAs are created using the Task Builder. They do not have task headers or stacks (see
Chapter 5, Sections “Header” (PDS) or “FX” (MCR) and “Stack”).

2 An SGA must be installed before any task that uses it can be installed or run. See either the
IAS MCR User’s Guide or the IAS PDS User’s Guide.

3 Access permissions are established when the SGA is installed. Read, write, extend and delete
access to the SGA can be allowed or denied for tasks that are not owned by the owner of
the SGA. See either the IAS MCR User’s Guide or the IAS PDS User’s Guide for further
information.

4 SGAs occupy memory only when one or more referencing tasks are active. When all referencing
tasks become inactive, the space occupied by shareable global areas is freed. The executive’s
treatment of the SGA at this point depends on whether it is a resident library, a common area
or an installed region. See the IAS Executive Facilities Reference Manual for further details.

5 When a task which uses an SGA is built, the SGA must exist in the form of a task image and
symbol table file (see Section 9.3).

6 When a task is built the SGAs it uses are named using the SGA or RESSGA option. In
addition the access it requires to these SGAs is declared (see Chapter 5, Section 5.3). This
access is always subject to that granted by the SGA and specified when installing the SGA (see
3. above).

Sharing Memory

Consider first the case in which two tasks, Task A and Task B, need to communicate a large
amount of data. A convenient method of transmitting this data is using a read/write common area
or installed region. Tasks can communicate independently of their time of execution. This case is
illustrated in Figure 9-1.

SHAREABLE GLOBAL AREAS

Figure 9-1 SGA as a Common Data Area

Shareable Shareable
Gilobal Area Gilobal Area
S S
Task A
TaskB
Resident Resident
Executive Executive
System Memory System Memory

(TmeT) (Time t+n)

Task A and Task B communicate through the shareable global area, to which any number of tasks
can be linked.

Changes to the SGA are retained throughout any swapping (or checkpointing) operations because
the SGA is a common area or installed region and is written to disk at these times. The SGA is
also written to disk if Task A exits before Tasks B begins.

Next, consider the case where tasks A and B use common code routines. The routines can be
included in a read-only shareable global area so that a single copy is accessible to all tasks.
Figure 9-2 illustrates this case.

SHAREABLE GLOBAL AREAS

Figure 9-2 Tasks Using the Same Routines

VIRTUAL
éggggss PHYSICAL MEMORY
3K 256K
USER ~ ~y
D-SPACE e v
oK
22K
24K
2
user 2 USER TASK
I-SPACE USER
TASK 4-
3 -
0K 2-
APRs
0-5
COPIED 7-
a2K s-
24K 3
SUPERVISOR 3_
D_SPACE USER 2
-SPA TASK 1=
(COPIED) 0
oK 16K
SUPERVISOR
2K LIBRARY
SUPERVISOR {gK
I-SPACE SUPER-
VISOR - 30K
ok |LIBRARY
~y ~y
~y ~y
oK
UNUSED APR MAPPING
USER D-SPACE UNUSED
USER |-SPACE 0-5 map entire user task

SUPERVISOR D-SPACE 0-5 map entire user task
SUPERVISOR I-SPACE 0-3 map lbrary

In thig case, the SGA could be a resident library because the deletion of the memory version and
reloading of task image file is of no consequence. The deletion and reloading are irrelevant because
the SGA contains static, read-only information.

A task can link to a maximum of seven shareable global areas depending on the size of the task
and the SGAs. If, however, the task is multi-user and has read-only sections in the root, this pure
area of the root is considered as an SGA, and the number of external SGAs which can be linked to
the task is reduced to six. Further, each SGA must begin in a separate APR.

A shareable global area has associated with it a task image file and a symbol definition file. When
a task links to a shareable global area the Task Builder uses the symbol definition file of the
shareable global area to establish the linkages between the task and the shareable global area.

9-3

SHAREABLE GLOBAL AREAS

9.1.2 Location of SGAs on Disk
SGAs for general (public) use are stored in LB0:[1,1]. They include the library SGA SYSRES.

SYSRES contains commonly used routines for the IAS file services, for automatic overlay loading
and for data format conversion. SYSRES is linked to a task by default if no options are specified to
the LINK command.

If a task requests access to an SGA via the SGA task builder option (see Chapter 5, Section “SGA”)
the SGA must be in LB0:[1,1].

SGAs can be stored by the user in other file areas as appropriate to a particular user or group of
users. Such SGAs must be requested by the RESSGA option (see Chapter 5, Section “RESSGA”).

9.1.3 SGAs and Library Files

A resident library SGA is not the same as a library file of object modules.

When routines are built into an SGA, an accessing task maps on to the SGA and only one copy is
loaded into memory for all such tasks, as shown in Figure 9-2.

When routines are extracted from a library file, a copy of the necessary object modules is loaded
for each task requiring the routines (see Figure 9-2).

Either method can be used depending on the time and memory requirements of the particular
application. For example, the routines in the SGA SYSRES are also among those supplied in the
library file LB0:[1,1]SYSLIB.OLB.

9.2 Using an Existing Shareable Global Area

The user can link a task to any of the system SGAs by specifying the SGA keyword option along
with the name of the SGA and the type of access required.

If the user wants to link task IMG1 to a system SGA named JRNAL so that data can be examined
but not overwritten, the SGA keyword can be used to specify the name JRNAL and the read-only
attribute.

PDS> LINK/TASK:IMG1/MAP/OPTIONS
FILE? IN1,IN2, IN3
OPTIONS? SGA=JRNAT.:RO
OPTIONS? /
or

TKB>IMGl,LP:= IN1,IN2,IN3
TKB>/

ENTER OPTIONS:
TKB>SGA=JRNAL: RO

TKB>//

A task can link to any SGA on the disk. However, before the task can be activated, all SGAs it
uses must be installed.

9-4

9.3

9.4

SHAREABLE GLOBAL AREAS

Creating a Shareable Global Area
To create a shareable global area, the task image and symbol definition files must be built.

Runnable tasks were described in Chapter 6, Section 6.1.1. An SGA differs from a runnable task

in that it does not have a header or a stack. Therefore, the user must specify that the header and
stack are not to be nroduced for the task image file when an SGA is created. The task image and

symbol table of an SGA must have the same filename and the (default) types .TSK and .STB. This
set of conditions is necessary and sufficient to identify the entity as an SGA.

In summary, to create an SGA the following steps are taken:

1 The task image file is built, specifying also a symbol definition file.

2 The task image file has the /NOHEADER (/-HD) qualifier, indicating that no header is required.
3 The option STACK=0 is entered during option input to eliminate the stack.

4 Although it is not mandatory, the user can save disk space by setting UNITS=0.

Suppose the user wants to create a resident library, ZETA, from the files Z1, Z2, and Z3. Suppose
that it is to be accessed via the task builder option SGA, and so must be held in LB0:[1,1]. The
SGA is built as follows:

PDS> LINK/TASK:LBO:[1,1]ZETA/NOHEADER/MAP-
/SYMBOLS:LBO: [1, 1] ZETA/OPTIONS

FILE? Z1,22,23

OPTIONS? STACK=0

OPTIONS? UNITS=0

OPTIONS? /

or

TKB>LBO: [1,1]ZETA/-HD, ZETA,LBO: [1, 1] ZETA=21,22,Z3

TKB>/
ENTER OPTIONS:
TKB>STACK = 0
TKB>UNITS = O
TKB>/

A task can now link to the SGA. However, before a task can be installed and activated, the SGA
must be made known to the Executive via Install, defining the owner, non-owner access and the
type of SGA. The following example illustrates a typical installation procedure for a library SGA.
See the INSTALL command in either the IAS MCR User’s Guide or PDS User’s Guide.

PDS> INSTALL/LIBRARY:ZETA/UIC:[1,1]/ACCESS:RO [1,1]ZETA
or

MCR>INS [1,1]ZETA/LI/TASK=ZETA/ACC=RO/UIC=[1,1]

Position Independent and Absolute Shareable Global Areas

A shareable global area can be either position independent or absolute. Position independent SGAs
can be placed anywhere in the task’s virtual address space. Absolute areas must be placed at a
fixed position in the virtual address space.

9.5

SHAREABLE GLOBAL AREAS

The user must ensure that an area is in fact position independent if the
POSITION_INDEPENDENT qualifier is specified. The qualifier directs the Task Builder to treat
the area as position independent even though the Task Builder cannot determine the position
independence of the area. If it is not truly position independent, the execution of a task linked to
that area is unpredictable.

Data is always position independent unless it contains internal pointers. Code can be position
independent, but the code produced as a result of compiling a FORTRAN program is not position
independent. Furthermore, FORTRAN subroutines cannot be used as SGAs because these
programs do not satisfy the re-entrancy requirements necessary for SGAs. Refer to the IAS/RSX-11
MACRO-11 Reference Manual for a further description of position independent coding (PIC).

FORTRAN common blocks can be included in SGAs. The only way FORTRAN programs can
communicate through the use of common blocks is by the common block name; to retain this name,
the SGA must be declared position independent. If the area is not declared position independent,
the name is not retained and no FORTRAN program can link to the common block.

Absolute SGAs are used for code or data that is not position- independent. The BASE or TOP Task |
Builder options are used to build such SGAs.

It is possible for an SGA to reference another SGA, using the SGA or RESSGA options. In this
case, symbols are resolved from the reference SGA when the referencing SGA is built. Any task
which binds to the referencing SGA is also automatically bound to the referenced SGA with the
access specified when the SGA was built. A non-PI SGA may reference any SGA, whether or not
that area is built position-independent, however, a PI SGA may not reference another SGA.

Example: CALC.TSK;6 Building and Using a Shareable Global Area

Suppose the task CALC has been completely debugged and the user wants to replace the dummy
reporting routine RPRT by a generalized reporting program that operates as a separate task. This
generalized reporting program GPRT was developed by another programmer in parallel with the
development of CALC. Now both routines are ready and the user wants to create an SGA so that
the two tasks can communicate.

In addition to creating the SGA, the user must modify the FORTRAN routine to replace the call to
the dummy reporting routine by a call to REQUEST for the task GPRT; the user must also remove

the dummy routine from the ODL description for the task. ‘

Buiiding the Shareabie Giobai Area
The common block into which CALC places its results and from which GPRT takes its input is

named DTA. The user wants to make DTA into a shareable global area so that the two tasks can
communicate.

The user first creates a separate input file for DTA FTN:

9.5.2

SHAREABLE GLOBAL AREAS

PDS> EDIT

FILE? DTA.FTN

[EDI -~ CREATING NEW FILE]

INPUT

c

c GLOBAL COMMON AREA FOR ’CALC’ AND

(o] REPORTING TASK ’GPRT’
BLOCK DATA
COMMON /DTA/ A(200),I
END

*EX

The user then compiles DTA.FTN:

PDS>FORTRAN/LIST DTA
Then the user builds the task image and symbol definition file for the SGA DTA.OBJ:

PDS> LINK/TASK:LBO:[1,1]DTA/POS/MAP-
/SYMBOLS:LBO:[1, 1]DTA/NOHEADER/OPTIONS
FILE? DTA

OPTIONS? STACK=0

OPTIONS? UNITS=0

OPTIONS? /

or

TKB>LBO: [1,1]DTA/PI/~-HD,LPO:,LBO:[1, 1]DTA=DTA

TKB>/
ENTER OPTIONS:
TKB>STACK = 0
TKB>UNITS = O
TKB>/

The task image file DTA.TSK is marked as position independent in order to retain the name of the
referenced common block, DTA.

The task image and symbol definition files are created on LBO: under the UFD [1,1]. The
/NOHEADER command qualifier (PDS) or /-HD switch (MCR) is applied to the symbol definition
file to specify that the task has no header, the option STACK=0 is entered to eliminate the stack,
and 0 logical units are specified.

The SGA DTA now exists on LB0: as a candidate for inclusion in an active system. The user can
now modify the task to link to that SGA. However, before the task can be executed, the SGA must
be installed.

Modifying the Task to Use the Shareable Global Area

The user now modifies the task CALC. The file containing the program RDIN is edited to include
the name of the reporting task in alphanumeric (Radix-50) format:

DATA RPTSK/6RGPRT /
And the call to the dummy reporting routine RPRT is replaced by the call:

CALL REQUES (RPTSK)

SHAREABLE GLOBAL AREAS

The relevant part of the program RDIN is shown below:

C READ AND ANALYZE INPUT DATA

C ESTABLISH COMMON DATA BASE
COMMON /DTA/ A(200), I

C SET UP NAME OF REPORTING TASK IN RADIX 50
DATA RPTSK /6RGPRT /

c READ IN RAW DATA

CALL REQUES (RPTSK)

END
The user now modifies the ODL description of the task CALC to remove the file RPRT.OBJ. The
.ROOT directive is changed from:

.ROOT RDIN-RPRT-ADTA- (*PROC1, *PROC2, P3FCTR)

.ROOT RDIN-ADTA- (*PROC1, *PROC2, P3FCTR)
An indirect command file is then built to include the SGA keyword:

PDS> EDIT

FILE? CALCBLD.CMD

[EDI -~ CREATING NEW FILE]
INPUT
LINK/TASK:CALC/MAP-
/OVERLAY : CALTR/OPTIONS
PAR=GEN

ACTFIL=1

SGA=DTA:RW

/

*EX

or

CALC, CALC=CALTR/MP
PAR=GEN

ACTFIL=1
SGA=DTA:RW

/

And the task is built with the single command referencing the indirect file:

PDS> @CALCBLD
or

MCR>TKB @QCALCBLD

The communication between the two tasks, CALC and GPRT, is now established. When the SGA
DTA is made resident, the two tasks can run.

The Memory Aiiocation Files

Example 9-1 shows the memory allocation file for the SGA DTA. The attribute list indicates that
the task image is position independent (PI).

9-8

SHAREABLE GLOBAL AREAS

Example 9-2 shows the memory allocation file for the task CALC.TSK;6 after the SGA DTA was
created and the dummy reporting routine removed from the task. The read-write memory limits
for the root segment code have increased due to the call to REQUES. The read-write memory
limits for the entire task have decreased because the common block DTA is now an SGA allocated
at 140,000 and no longer part of the task code.

9-9

SHAREABLE GLOBAL AREAS

Example 9-1 Memory Allocation File for SGA DTA

DTA,.TSK;1 MEMOKRY ALLOCATION MAP TKB D28

3-J0L-78 i0:51

ICENTIFICATION : FORV@2

TASK ATTRIBUTES: PI

TOTAL ATTACHMENT DESCRIPTORS: 4.

TASK IMAGE SIZE 384. WORECS

TASK ADDRESS LIMITS: Q00R00 001443

R-W CISK BLK LIMITS: 000002 00001 000000 00600.
R-O DISK BLK LIMITS: 0£0603 908681 177777 65535.

* % *

ROQT SEGMENT: LTA

R/¥ MEM LIMITS:
CISK BLK LIMITS:

000000 VL4433 VUL444 BHBEGBL,
¢oA0N2 000002 00C002 V0B02.

MEMORY ALLCCATION SYNGOPSIS:

SECTION

360000
0v0000
9014472
501442
961442
201442
#p1442
0B1442
$ol1442
081442
01442

pol4d4z
001442
00oopo
goepect
LY
000008
Loooee
bboeno
0p0g6o
000000
5000089

0a802.
ppeo2.
00000.
20000.
go000.
geguo.
aocoo.
600009,
gCceve.
go000.
$o000e.

: (RW,D,CGEL,REL,OVR)

SCODE : (RW,I,LCL,REL,CON)

$CATA : (RW,D,LCL,REL,CON)

SCATAP: (PW,C,LCL,PEL,CCN)

.$$$S.: (BRw,0,GEL,REL,CVR)

=% TASK BUILCER STATISTICS:

TOTAL WORK FILE REFERENCES: 471.

WCRK FILE REALS: 2.

wWORK FILE WRITES: 0.

SIZE CF CORE PCCL: 16616. WORDS (62. PAGES)
SIZE OF WORK FILE: 512Z. wORDS (2. PACES)
ELAPSELC TIME:06:00:€2

9-10

PAGE 1

.CATA,

.CATA.

~am
.p‘AiA.

FILE

CTA.OBJ; 1

CTA.OBJ;1

> TTA.ORJ;1

Example 9-2 Memory Allocation File for CALC.TSK;6

SHAREABLE GLOBAL AREAS

CALC.TSK:6 MEMORY ALLOCATION MAP TKB D28
3-JUL-78 1e:52

ICENTIFICATION FORV@2

STACK LIMITS: 000600 660777 €01600 008512,

PRG XFR ADDRESS: 141442

TOTAL ATTACHMENT DESCRIPTORS: 4.
TASK IMAGE SIZE : 7872. WORDS
TASK HEADER SIZE: 16@. WORDS

TASK ADDRESS LIMITS: 00006068 833567

PACE 1

R-W DISK BLK LIMITS: 0000@3 0060044 GOQ0G42 GL024.

CALC.TSK;6 OVERLAY DESCRIPTION:

BASE TOP LENGTH

000008 827643 Q27644 12196. RDIN
P27644 030207 000344 ©00228. PROC1
27644 032147 002384 081220, PRCCZ
027644 032527 002664 0l460. PRCC3
932538 0833377 008650 08424. sUB1
$32530 033567 001040 00544. StBR2

9-11

SHAREABLE GLOBAL AREAS

Example 9-2 Memory Allocation File for CALC.TSK;6 (continued)

CALC.TSK;6

RDIN

*** ROOT SEGMENT: RLCIN
R/W MEM LIMITS: 668068 2
DISK BLK LIMITS: 000003 €

3-JUL-78

= PO

=2 ~J
=
N W
= o

MEMORY ALLOCATION SYNOPSIS:

SECTION

OTSSI

OTSSP
$COLCE

SDATA

SCATAP:

SS3ALER:
SSALVC:
SSAQTS:
SSAUTO:
SSCDEVT:
SSFSR1:
SSFSR2:
SSI0B1:
SSIOB2:
$SLOAD:
$SSMRKS:
$$OBF1:
SSOBF2:
SSOVDT:
SSOVRS:
SSRDSG:
SSRESL:
SSRGDS:

9-12

.:(RwW,I,LCL,REL,CON)
: (RW,LC,GBL,REL,OVR)
: (RW,D,GBL,REL,OVR)
:(RW,I,LCL,REL,CON)

: (RW,D,GBL,REL,OVR)
: (RW,I,LCL,REL,CON)

:(RW,D,LCL,REL,CCON)

(RW,C,LCL,REL,CON)

{RWw,I,LCL,REL,COHN)
(RW,D,LCL,REL,CON)
(RW,D,LCL,REL,CON)
(RW,I,LCL,REL,CCN)
(RW,D,LCL,REL,QOVR)
(RW,C,GBL,REL,OVR)
(Rw,LC,GBL,REL,CON)
(RW,D,LCL,REL,QOVR)
(RW,C,LCL,REL,OVR)
(RW,I,LCL,REL,CON)
({RW,I,LCL,REL,OQOVR)
(RW,LC,LCL,REL,CON)
(RW,I,LCL,REL,CON)
(RW,D,LCL,REL,OVR)
(RW,I1,LCL,ABS,CON)
(RW,I,LCL,REL,QOVR)
(RW,I,LCL,REL,CON)
(RW,D,LCL,REL,CON)

001000
g01602
140090
140006
140000
go3262
003262
p20552
141442

141442

141442
141442
141442
141442
141442
141442
141442
141442
141442
141442
141442
141442
141442
141442

p29634
020654
1660060
021560
022770
027670
g27174
02740660
166130
160320

$2742¢

27518
27518
800064
1608506
161028
27538

= o

19:52

= ;M
W o
o
= =

PoB062
062260
061442
0091442
pol1442
15270
pRo000
pooeG36
poogoee

000000

goeaon
goBlle
poeeoo
poo00e
poeol4
0opoeo
0gooe0
201750
000000
801758
pBo0Eo
0peo00
poBB22
000000

300810
agua24
poBo20
boB704
600136
pp1210
0p4100
000104
goe2p4
0opeBo
000170
0g0166
ggella
000000
0go026
20060¢
pRB312
pil6216
poooGe

= o

MEMORY ALLOCATION MAP TKB D28

=
N O
SO
-

00002,
01200.
00882,
00802,
o802,
668460.
08000.
00630.
00008.
00000.
00608 .
pee78.
0B000.
popoe.
peB12.
0o000.
pagec.
01660.
0poooo.
p1660.
00000 .
popeo.
geele.
pagen.
0o0ae.
aanzao.
peple.
pa4s52.
00088.
0B648.
¥2112.
poo6s.
0132.
epoesd.
60120.
0p118.
28272,
bpooe.
0pole.
00¢08.
pezez2.
p7310.
000006,

PAGE 2
TITLE IDENT
.MAIN. FORVE2
RPRT FORVO2
.MAIN. FORVE2
.MAIN. FORVS2
.MAIN. FORVO2
.MAIN. FORV@2
RPRT FORV@2
RPRT FORVB2
RPRT FORV@2
.MAIN. FORV@2
.MAIN. FORV@2
RPRT FORVO2
RPRT FORV@2
.MAIN. FORVE@2
.MAIN. FORVOZ
RPRT FORVB?Z2
RPRT FORVOZ

FILE

RDIN.OBJ; 2
RPRT.OBJ;1

RDIN.OBJ; 2

RDIN.OBJ; 2
RDIN.QEJ;2
RCIN.OBJ;2
RPRT.OBJ;1
RPRT.OBJ;1
RPRT.OBJ;1

RDIN.OBJ; 2
RDIN.OBJ; 2
RPRT.OBJ;1
RPRT.ORJ;1

RCIN.OBJ; 2
RDIN.CBJ:Z
RPRT.ORJ;1
RPRT.OBJ;1

SHAREABLE GLOBAL AREAS

Example 9-2 Memory Allocation File for CALC.TSK;6 (continued)

CALC.TSK;6 MEMORY ALLOCATION MAP TKB D28 PAGE 3
RDIN 3-JUL-78 18:52

$SRTS :(RW,I,GBL,REL,OVR) 027530 0000602 066802.

$$SGDB: {RW,D,LCL,REL,OVR) 827532 0084894 006000,

$$SGD1: (RW,D,LCL,REL,CON) 827532 000110 00072.

$$SGD2: (RW,D,LCL,REL,OVR) 827642 0000902 20002.

SSWNDS: (RW,D,LCL,REL,CON) 027644 0000006 00000.

.$$8S.: (RW,D,GBL,REL,OVR) 141442 000000 00800.
141442 0600000 0000¢. .MAIN. FORVA2 RDIN.OBJ:2
141442 900000 00060¢. .MAIN., FORVG2 RCIN.ORJ;?2
141442 000000 00600. RPRT FORV@B2 RPRT.CBJ:;1l
141442 000000 00688. RPRT FORVG2 RPRT.OBJ:1

GLOBAL SYMBOLS:

PROC1 ©6286634-R RPPT 141442-R $SOTSC 141442-R
PROC2 02§644-R SRF2A1 000006~-R SSOTSI 063262-R

CALC.TSK;6 MEMORY ALLOCATION MAP TKB LC28 PAGE 4
PROC1 3-JUL-78 10:52

*** SEGMENT: PROC1

R/W MEM LIMITS: 027644 030207 008344 00228,
DISK BLK LIMITS: §£0034 0006034 00060801 €0601.

MEMORY ALLOCATION SYNOPSIS:
SECTION TITLE ICENT FILE

. BLK.:(RW,I,LCL,REL,CCN) §27644 000200 00000.
ADTA :(RW,D,GBL,REL,OVR) 001002 0062268 £12080.
01002 $B2260 01206. PROC1 FORVA2 PROC1.OEJ;?2
DTA :(RW,D,GBL,REL,OVR) 140000 061442 ©0€02.
140060 091442 @@8G2. PRCC1 FGPVG2 PPCC1.ORJ;2
OTS$I :(RW,I,LCL,REL,CON) 027644 000254 0G6172.
$CODE : (RW,I,LCL,REL,CON) 036120 006054 00044.
: 030120 00000 00POEO. PROC1 FORVEZ PROCL.GEJ;2
030120 000009 G0086. PROC1 FORVAZ PROCL.OBJ;2
030120 000854 06€044. PROC1 FORV@Z PRCCLl.OEJ;2
SCATA : (RW,D,ICL,REL,CON) 0306174 00080C2 06002.
$36174 2088¢0¢ 986¢90. PROC1 FCEV@2 PROCL.OBJ;2
#30174 000002 06002. PRCC1 FORVEZ PROCL.CEJ;2
SDATAP: (RW,D,LCL,REL,CON) 039176 006010 00208,
930176 @0PPOO BCBES. PROC1 FORVE2 PROCL.ORJ;2
¢30176 000010 BE@GE. PROC1 FORVE2 PROC1.CBJ;2
SSALVC: (RW,D,LCL,REL,CON) 830206 0866000 00000.
.$$$S.: (RW,D,GBL,REL,OVR) 141442 0060680 66060.
141442 000606 60B90. PROC1 FCEVB2 PRCCL.ORJ;2
141442 090066 0APAA. PFOC1 FORVE2 PRGC1.OBJ;2

GLOBAL SYMBOLS:

PROC1 £638120-R
9-13

SHAREABLE GLOBAL AREAS

Example 9-2 Memory Allocation File for CALC.TSK;6 (continued)

CALC.TSK;6 MEMORY ALLOCATION MAP TKB D28
PROC2 3-JUL-78

*** SEGMENT: PROC2

19:52

R/W MEM LIMITS: 027644 632147 062304 01220.

DISK BLK LIMITS: 00P0U35 000037 0060603

MEMORY ALLOCATION SYNOPSIS:

SECTION

ADTA : (Rw,LC,CGBL,REL,OVR)

S$COCE : (RW,I,LCL,REL,CON)

SCATA : (RW,L,TCL,REL,CON)

SCATAP: (RW,[,LCL,REL,CON)

$SALVC: (Rw,C,LCL,REL,CON)
.$$$$.: (RW,D,CBL,REL,OVR)

GLOBAL SYMBOLS:

PROC2 B27644-R

9-14

001692
001662
027€44
027644
027644
027644
227660
827669
027660
032140
032140
032146
932158
141442
141442
141442

992264
202260
pp0014
peoogo
0p0c00p
008014
002260
306098
702260
0Beo1o
poonge
pooo1e
BoLooO
pepeeo
800000
fooooo

~ o~

21204,
pl2pe.
pBB12.
0o600.
009060 .
000812,
gl200.
26828.
91206.
goone.
popeo.
copoe.
Geeeo.
o090,
peoeoe.
00000.

PROC2

PROC2
PROC2
PFOC?2

PROC?2
PROC2

PRGC?2
PROCZ

PROC2
PROC2

PACE 5

FORVO2

FCRV@2
FORV@2
FORVE2

FORVE2
FORVB2

FORVE2
FORVB2

FORV@Z
FORV@2

FILE

PROC2.

PROCZ.
PROC2.
PROC2.

PROC2.
PROC2.

PROC2.
PROC2.

PROC2

PROC2Z2.

OBRJ:;1

.OBJ:1

OEJ;1

SHAREABLE GLOBAL AREAS

Example 9-2 Memory Allocation File for CALC.TSK:6 (continued)

CALC.TSK;6 MEMORY ALLGCCATION MAP TKE LC28 PAGE 6
PROC3 3-JUL-78 19:52

*** SEGMENT: PROC3

R/W MEM LIMITS: 027644 032527 002664 01460.
DISK BLK LIMITS: 0U0040 000042 000003 60003.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE ICENT FILE
ADTA : (RW,D,GBL,REL,OVR) 0081082 062260 £61200.
001062 002269 012608. PROC3 FORV@2 PROC3.0BJ;l
DTA :(RW,C,CRL,REL,OVR) 140000 001442 08802.
140000 001442 00EB2. PROC3 FORVEZ PRCC3.0EJ;1
SCODE : (RW,I,LCL,REL,COJ) 027644 0600044 0GE€36.
027644 000000 060608. PROC3 FORV@2 PROC3.0RJ;1
p27644 000000 0006GH. PRCC3 FCKVH2 PRCC3.0EJ;1
027644 000044 0B8036. PROC3 FCRVEZ2 PROC3.CEJ;1
$DATA : (RW,C,LCL,REL,CON) 827710 002578 £1466.
27710 000000 92600@. PROC3 FOrRVBZ2 PRGC3.0RJ;1
» 927716 9025709 91400. PRCC3 FORV(L2 PRCC3.0BJ;1
$DATAP: (RW,C,LCL,REL,CON) £32500 000010 CC098.
032560 0000E0 @0QOAE. PROC3 FORVG2 PRCC3.CRJ;1
632566 000010 ©6008. PRCC3 FORV(@Z PROC3.0RBRJ:l
$SALVC: (RW,D,LCL,REL,CON) 932510 €¢0020 060016.
.$$$$.: (RW,C,GBL ,REL,OVR) 141442 0000808 C2000.
141442 009900 00002. PROC3 FORVOZ PRCC3.CRJ;1
141442 C90¢060 0POBO. PROC3 FORVEZ2 PRCC3.CEJ;l

GLOBAL SYMBOLS:

PROC3 027644-R SUB1 832520-R SUB2 932510-R

9-15

SHAREABLE GLOBAL AREAS

Example 9-2 Memory Allocation File for CALC.TSK;6 (continued)

CALC.TSK;6 MEMORY ALLOCATION MAP TKB D28
SUB1 3-JUL-78

*** GEGMENT: SUB1

s
S: 858843 292

/8]

MEMORY ALLOCATION SYNOPSIS

SECTICN

ACTA :(RW,D,GBL,REL,OVR)
$CCCE : (RW,I,LCL,REL,CON)
SCATA : (RW,D,LCL,REL,CON)
$DATAP: (RW,C,LCL,REL,CCN).

$$ALVC: (RW,C,LCL,REL,CON)
.$$$S.: (RW,C,CBL,REL,QVR)

GLOBAL SYMBOLS:

SUB2 832536-R

9-16

gg43 000301

O LLL L

.
.

01002
0661002
32530
032536
6325360
832530
032544
032544
932544
033375
833378
833378
233400
141442
141442
141442

19:52

002260
002260
0pB014
pooooe
p00690
0000614
pope24
pooooe
000624
000610
0ppooe
pgoeLg
000000
060200
000006
200600

e TY

61200.
8120¢6.
90812,
poeoo.
000008 .
pegl2.
60404,
00000.
00404,
oooee. -
poooe.
20868.
00000.
0ooEo.
boeoo.
gocoo.

SUB2

sUB2
SUBR2
SUB2

suB2
SUB2

SUR2
sUB2

SUB2
SUB2

PAGE 7

ICENT

FORV@?2

FORV@2
FORVE2
FORVO2

FGRVB2
FORV@2

FORV@2
FORVB 2

FORVE?2
FORVE 2

FILE

SUR1.0BJ;1

SUB1.0OBJ;1
SUB1.0BJ;1
SUB1.CRBJ;1

SUB1.0BJ;1
SUB1.0BJ;1

SUB1.0BJ;1
SUB1.0BJ;1

SGB1.0BRJ;1
SUE1.0BJ;1

SHAREABLE GLOBAL AREAS

Example 9-2 Memory Allocation Flie for CALC.TSK;6 (continued)

CALC.TSK;6 MEMORY ALLOCATION MAP TKB D28 PAGE 8
SUB2 3-JUL-78 19:52

*** SEGMENT: SUB2

R/W MEM LIMITS: 832530 033567 001949 08544,
DISK BLK LIMITS: 000044 000045 000002 68£02.

MEMORY ALLOCATION SYNOPSIS:

SECTION TITLE IDENT FILE

., BLK.:(RW,I,LCL,REL,CON) 932530 000006 00000.
ADTA :(RW,D,GBL,REL,OVR) 8010902 002260 81200,
601062 002260 61206. SUB1 FORV@2 SUEBR2,0EJ;1
DTA : (RW,D,GBL,REL,OVR) 140000 001442 ¢0802.
140000 901442 90862. SUE1 FORVE2 SUE2.0BJ;1
0TsS$I :(RwW,I,LCL,REL,CON) 032530 060154 96108.
$CODE :(RW,I,LCL,REL,CON) £32704 000032 00826.
§32704 000000 699AG. SUBL FORV@2Z SUR2.0RJ;1
032704 000000 PBGGOG. SURI] FORVE2 SUB2.CEJ;1
032704 000€32 80026, SUP1 FORV@Z SUR2.0BJ;1
SDATA :(RW,D,LCL,REL,CON) £32736 000622 00462.
: §32736 000000 66660. SUBI FORV62 SUB2.0RJ;1
032736 000622 96402, SUBI FORVE2 SUE2.CRJ;1
$DATAP: (RW,D,LCL,REL,CON) 833560 600010 006068.
633560 0000P0 00000G. SUEL FGRVE2 SUB2.0BJ;1
933560 000019 60068. SUBIL FORV@A2 SUP2.0RJ;1
$$ALVC: (RW,D,LCL,REL,CON) 033570 (00000 00¢00.
.$$$S$.: (RW,D,GBL,REL,OVR) 141442 000000 0006EC.
141442 000000 00P06. SURL FORV@2 SURZ.CEJ;1
141442 000000 0000G. SURL FORV@2 SUR2.0RJ;1

GLOBAL SYMBOLS:

SuBl 832784-R

*** TASK BUILLDER STATISTICS:

TOTAL WORK FILE REFERENCES: 22392.

WORK FILE READS: 8.

WORK FILE WRITES: 0.

SIZE OF CORE POCL: 16018. WORDS (€2. PAGES)
SIZE OF WORK FILE: 7688. WORDS (36. PACES)

ELAPSED TIME:00:00:20

9-17

9.5.4

SHAREABLE GLOBAL AREAS

Shared Global Areas with Memory-Resident Overlays

It is possible for an SGA to contain memory-resident overlays. The whole SGA will be loaded, but
each task which binds to it will be mapped only to the parts which that task currently requires.

Note: To run a task which uses an SGA that contains overlays you must have memory
management privilege (see the IAS System Management Guide).

If it is to contain memory-resident overlays, the SGA must be built using the LINK qualifier
RESIDENT_OVERLAYS or the TKB switch /RO. The user must define the overlay structure
through an ODL file prepared in the conventional manner. The Task Builder does not include the
overlay data base (segment descriptors, autoload vectors) or Overlay Runtime System within the
region image. Instead, this data base becomes a part of the symbol definition file that is linked to
the referencing task. This means that routines within an overlay segment of an SGA cannot be
called from within the SGA using the autoload mechanism, although the manual load mechanism
can be used.

When the referencing task is built, the following is automatically included in its root segment:

1 The data base.

2 Global references to overlay support routines residing in the system object module library.

The symbol table file contains global definitions for only those symbols that are defined or
referenced in the root segment of the shared region. Such symbols can consist of:

1 Actual entry points to routines and data elements that are in the root.
2 Autoload vector addresses that point to real definitions within a memory-resident overlay.

3 Actual definitions of symbols defined in a memory-resident overlay and referenced in the root.

The user can force the inclusion of global references in the root segment of the SGA by means of
the GBLREF option. In this way, the necessary autoload vectors and definitions can be generated
without explicitly including such references in an object medule. The syntax of the option is:

GBLREF=name

where “name” consists of 1 to 6 characters selected from the Radix-50 character set. If the
definition resides within an autoloadable segment, then an autoload vector will be built and
included in the symbol table file. If the definition is not autoloadable, the real value is obtained
and defined in the root segment.

No global symbol appears in the symbol table file unless:
1 It is defined in the root segment.

2 It is referenced in the root segment and defined elsewhere in the overlay structure.

The procedure for creating the overlaid SGA can be summarized as follows:
1 Define an overlay structure containing only memory-resident overlays.

2 Include a GBLREF option, or provide in the root segment, a module containing the appropriate
global references for defining entry points within those overlay segments for which autoload
vectors and global definitions will be generated.

9-18

SHAREABLE GLOBAL AREAS

These processes are illustrated in the following example. The SGA to be constructed consists of
shareable code that resides within the overlay structure defined below:

.ROOT A-1 (*B,C-*D)
.NAME A
.END

Root segment A contains no code or data and has a length of 0. All executable code exists within
memory-resident overlay segments composed of files B.OBJ, C.OBJ, and D.OBJ, containing global
entry points B, C, and D.

The task image, map, and symbol table files are generated using the following Task Builder
commands:

PDS>LINK/NOHEAD/MAP/SYMBOL/OVERLAY : A/OPTIONS /RESID
OPTIONS?GBLREF=B, C,D

OPTIONS?UNITS = 0

OPTIONS?STACK = 0

OPTIONS? /

or

TKB>A/RO/-HD, A, SY:A=A/MP
ENTER OPTIONS:
TKB>GBLREF=B, C,D

TKB>STACK = 0
TKB>UNITS = O
TKB>/

References to entry points B, C, and D are inserted in the root segment, and subsequently appear
in the symbol table file as definitions.

The definition for symbol C is resolved directly to the actual entry point. The definitions for
symbols B and D are resolved to autoload vectors that are included in each referencing task.
Unlike overiays that reside in the task image, each autoload vector in the SGA is allocated in
every referencing task, whether or not such entry points are called during task execution. Only
those global symbols defined or referenced in the root segment of the SGA appear in the symbol
table file.

The symbol table file also contains the data base required by the Overlay Runtime System, in
relocatable object module format. This data base includes:

1 All autoload vectors

2 Segment tables linked as described in Appendix C, Section C.7

3 Window descriptors

4 A single region descriptor

The overlay structure, as reflected in the segment table linkage, ig preserved, and conveyed to the
referencing task by the STB file; thus path-loading for the SGA can occur exactly as it does within

a task. Aside from address space restrictions, there is no limitation on the overlay structures that
can be defined for an SGA.

The following restrictions apply to shared regions existing as memory- resident overlays:

1 An SGA cannot use the autoload facility to reference memory-resident overlays within itself
or any other region. If each segment is uniquely named, overlays can be mapped through the
manual load facility.

9-19

SHAREABLE GLOBAL AREAS

4
5

Named p-sections in an SGA overlay cannot be referenced by the task. If reference to the
storage is required, such sections must be included in the root segment of the region (with
resultant loss of virtual address space).

Unlike task-resident overlays, the number of autoload vectors is independent of the entry
points actually referenced. The maximum number of vectors will be allocated within each
referencing task. In some cases the size of the allocation may be large.

There is an overhead of six instructions per autoload call, even when the segment is mapped.

Overlaid SGAs cannot be position independent.

As implied by the previous items, great care must be exercised if an efficient memory-resident
overlay structure for library routines such as the FORTRAN IV OTS is to be implemented.

9-20

10

10.1

10.2

10.3

Supervisor-Mode Libraries

A supervisor-mode library is a resident library that doubles a user task’s virtual address space by
mapping the instruction space of the processor’s supervisor mode. Supervisor-mode libraries are
available only on PDP-11/44 and PDP-11/70 systems.

Introduction

A call from within a user task to a subroutine within a supervisor-mode library causes

the processor to switch from user to supervisor mode. The user task transfers control to a
mode-switching vector that TKB includes within the task. The mode-switching vector performs
the mode switch and then transfers control to the called subroutine within the supervisor-mode
library. The library routine executes with the processor in supervisor mode. When the library
routine finishes executing, it transfers control to a completion routine within the library. The
completion routine mode switches the processor back to user mode. The user task continues
executing with the processor in user mode at the return address on the stack. This process recurs
whenever the user task calls a subroutine in the supervisor-mode library.

Mode-Switching Vectors

In a task that links to a supervisor-mode library, TKB includes a four-word, mode-switching vector
in the user task’s address space for each entry point referenced of a subroutine in the library.

The following shows the contents of a mode-switching vector:

MOV #COMPLETION-ROUTINE, - (SP)
CSM #SUPERVISOR-MODE-ROUTINE ADDRESS

NOTE: When mode switching from user to supervisor mode, all registers of the
referencing task are preserved. All condition codes in the PS saved on the stack are
cleared and must be restored by the completion routine.

Completion Routines

After the subroutine finishes executing, its RETURN statement transfers control to a completion
routine that mode-switches from the supervisor to user mode. The completion routine returns
program control back to the referencing task at the instruction after the call to the subroutine.
SYSLIB hag two completion routines.

* $CMPCS restores only the carry bit in the user-mode PS.
e $CMPAL restores all the condition code bits in the user-mode PS.

10.4

10.5

10.6

10.6.1

Supervisor-Mode Libraries

Restrictions on the Contents of Supervisor-Mode Libraries
The following restrictions are placed on the contents of a supervisor-mode library:

¢ Only subroutines using the form JSR PC, x should be used within the library.

¢ The library must not contain subroutines that use the stack to pass parameters.

e If both the library and the referencing task link to a subroutine from SYSLIB, then the entry
point name of the subroutine must be excluded from the .STB file for the library.

* The library must not contain data of any kind (even R/O) because the user supervisor D-space
APRs map the user task by default. This includes user data, buffers, I/O status blocks, and
directive parameter blocks (only the $S directive form can be used, because the DPB for this
form is pushed onto the user stack at run time).

Supervisor-Mode Library Mapping

Supervisor-mode libraries are mapped with the supervisor I-space APRs. Supervisor D-space APRs
map the user task.

Supervisor D-space APRs are copies of user I-space APRs, which map the entire user task. This
gives the library access to data within the user task. Figure 10-1 illustrates this mapping.

Building and Linking to Supervisor-Mode Libraries

Building and linking to a supervisor-mode library is essentially the same as building and linking to
a conventional resident library (discussed in Chapter 6). When you build a supervisor-mode library
using the TKB command line, you suppress the header by attaching /-HD to the task image file. If
you use LINK, you use the /NOHEAD qualifier in the LINK command line. During option input,
you suppress the stack area by specifying STACK=0. You specify the partition where the library is
to regide and, optionally, the base address and length of the library with the PAR optien.

Relevant TKB Options

Use the following options to build and reference supervisor-mode libraries:

Supervisor-Mode Libraries

Figure 10-1 Mapping of a 24K Conventional User Task That Links to a 16K Supervisor-Mode

Library
VIRTUAL
ADDRESS PHYSICAL MEMORY
SPACE 7 256K
6
USER 2
S| ~ ~o
D-SPACE 3 T ind
1
0
32K
24K 24K
USER USER TASK
I-SPACE USER
TASK
0K
APRs
0-5
COPIED
32K
supervisor 24K % crn
D-SPACE TASK
(COPIED)
oK 16K
SUPERVISOR
32K LIBRARY
SUPERVISOR 16K 7
i~SPACE SUP ¢
VISOR - 30K
oK LLIBRARY o
2- ~ ~y
1- ~ ~
KEY: oK
UNUSED APR MAPPING
USER D-SPACE UNUSED
USER I-SPACE 0-5 map entire user task
SUPERVISOR D-SPACE 0-5 map entire user task
SUPERVISOR I-SPACE 0-3 map library

10.6.3

10.6.4

10.7

Supervisor-Mode Libraries

CMPRT Indicates that you are building supervisor-mode library and specifies the name of the
completion routine.

RESSUP (SUPLIB) Indicates that your task references a supervisor-mode library.

GBLXCL Excludes a global symbol from the .STB file of the supervisor-mode library.

These options are discussed briefly below and are fully documented in Chapter 5.

Building The Library
You indicate to the TKB that you are building a supervisor-mode library with the CMPRT option.
The argument for this option identifies the entry symbol of the completion routine. When the TKB
processes this option, it places the completion routine entry point in the library’s STB file. To
exclude a global symbol from the library’s .STB file, you specify the name of the global symbol as
the argument of the GBLXCL option. You must exclude from the .STB file of a supervisor-mode
library any symbol defined in the library that represents the following:

* An entry point to a subroutine that uses the stack to pass parameters

* An entry point to a subroutine mapped in user mode that the referencing user task calls

Building the Referencing Task

When you build a task that references a supervisor-mode library, use the RESSUP option if

you are referencing a user-owned, supervisor-mode library and SUPLIB if you are referencing

a system-owned, supervisor-mode library. (Like the RESLIB and LIBR options for linking to
conventional libraries, RESSUP and SUPLIB are functionally the same.) The arguments for these
options are:

¢ The filespec (RESSUP option) or name (SUPLIB) of the library to be referenced

¢ A switch that tells TKB whether to use system-supplied vectors to perform mode switching
from user to supervisor mode.

¢ For position-independent libraries, the first available supervisor-mode I-space APR that you
want to map the library.

Mode Switching Instruction

Mode switching occurs with a new instruction available on the 11/44 and emulated by the
Executive on the 11/70. Throughout the remainder of the chapter, supervisor-mode libraries
are referred to as CSM (change supervisor mode) libraries.

CSM Libraries

This section discusses how you build and link to CSM libraries. It also shows an extended example
of building and linking to a CSM library and explains the context-switching vectors and completion

routines for CSM libraries.

104

10.7.1

Supervisor-Mode Libraries

Building A CSM Library

You indicate to the Task Builder that you are building a CSM library by specifying the name of
the completion routine as the argument for the CMPRT option. This option places the name of
the completion routine into the library’s .STB file. Link the completion routine, either §CMPAL or
$CMPCS, located in LB:[1,2]SYSLIB.OLB, as the first input file. Although the completion routines
are located in SYSLIB (which is ordinarily referenced by default), you must explicitly indicate it
and link it as the first input file. You must also specify in the PAR option a 0 base for the partition
where the library resides. These two steps locate the completion routine at virtual 0 of the library’s
virtual address space.

You specify the name of any global symbols that you would like to exclude from the library’s
.STB file as the argument to the GBLXCL option. You must exclude from the .STB file of a
supervisor-mode library any symbol defined in the library that represents the following:

* An entry point to a subroutine that uses the stack to pass parameters

* An entry point to a subroutine mapped in user mode that the referencing user task calls

A sample TKB command sequence for building a CSM library in UFD [301,55] on SY: follows:

TKB> CSM/-HD/LI/PI,CSM/MA, CSM=

TKB> LB: [[1,2] 1SYSLIB/LB:CMPAL,SY: [[301,55]]CSM
TKB> /

Enter Options:

TKB> STACK=0

TKB> PAR=GEN:0:2000

TKB> CMPRT=$CMPCS

TKB> GBLXCL=$SAVAL

TKB> //

>

Or, you can use the following LINK command sequence to build the same library:

> LINK/TAS:CSM/NOH/SHARE :LIB/CODE:PIC/MAP :CSM/SYS/SYM: CSM/OPT -
->LB:[1,2]1SYSLIB/INCLUDE : CMPAL, SY: [301, 55]CSM

Option? STACK=0

Option? PAR=GEN:0:2000

Option? CMPRT=CMPCS

Option? GBLXCL=$SAVAL

Option?

>

The library is built without a header or stack, like all shared regions. It is position independent
and has only one program section named .ABS. The /LI switch in TKB or the /CODE:PIC qualifier
in LINK switch accomplishes this, eliminating program section name conflicts between the library
and the referencing task. The completion routine module of SYSLIB, CMPAL, is specified first in
the input line. The library runs in partition GEN at 0 and is not more than 1K. These are two
aspects of building supervisor-mode libraries specific to CSM libraries: the completion routine
must be linked first, and must reside at virtual 0. Why the CSM library must reside at virtual 0 is
discussed in Section 9.5.

The CMPRT option specifies the global symbol $CMPCS, which is the entry point of the completion
routine. Note that the SYSLIB module name is “CMPCS” and its corresponding global symbol is
“$CMPCS”.

The GBLXCL option excludes $SAVAL from the library’s .STB file because the user task must
reference a copy of $SAVAL that is mapped with user mode APRs.

10.7.2

10.7.3

Supervisor-Mode Libraries

Linking To A CSM Library

If your task links to a user-owned CSM library, you use the RESSUP option. If your task links to
a system-owned CSM library, you use the SUPLIB option. These options tell TKB that the task is
to link to a supervisor-mode library. The option takes up to three arguments:

* The filespec (RESSUP option) or name (SUPLIB option) of the library
¢ A switch that tells the TKB whether to use system-supplied, mode-switching vectors

e For position-independent librarieg, an APR must be APR 0 s¢ that the library’s completion

AR E) A B AL i) SO LN S 10) T LA 2V V v e LAULAL Y © VUL pIT

routine is mapped at virtual 0.

This information enables the TKB to find the .STB file for the CSM library, include a four-word,
mode-switching vector within the user task for each call to a subroutine within the library, and
correctly map the library at virtual 0 in the library image.

The following examples of TKB and LINK command sequences build a task named REF, which
references the library SUPER that you built in the previous section:

TKB> REF, REF=REF

TKB> /

Enter Options:

TKB> RESSUP=SUPER/SV:0
TKB> //

>

> LINK/TAS/MAP/OPT REF
Option? RESSUP=SUPER/SV:0
Option?

>

This sequence tells TKB to include in the logical address space of REF a user-owned,
supervisor-mode library named SUPER. TKB includes a four-word, mode switching vector
within the user task for each call to a subroutine within the library. The CSM library is position
independent and is mapped with APR 0.

Example CSM Library And Linking Task

This example shows you the code and maps and the TKB and LINK command sequences for
building and linking to a CSM library that contains no data in a system without user data space.
Example 10—1 shows the code for ithe library SUFER, and Exampie 10—2 shows its accompanying
map. Example 10-3 shows the code for the completion routine $§CMPCS that is linked in to SUPER
from SYSLIB. Example 10— shows the code for referencing task TSUP, and Example 10-5 shows

its accompanying map.

Example 10-1 Code for SUPER.MAC

.TITLE SUPER
.IDENT /01/

Example 10-1 Cont’d on next page

10-6

Example 10-1 (Cont.) Code for SUPER.MAC

Supervisor-Mode Libraries

SORT: :
CALL S$SAVAL ; SAVE ALL REGISTERS
TST (R5)+ ; SKIP OVER NUMBER OF ARGUMENTS
MOV (R5)+,RO ; GET ADDRESS OF LIST
MOV (R5)+,R4 ; GET ADDRESS OF LENGTH OF LIST
MOV (R4j,R4 ; GET LENGTH OF LIST
BEQ 408 ; IF NO ARGUMENTS
MOV RO,R5 ;
DEC R4 H
108:
MOV R5,RO ; COPY
MOV R4,R3 ; COPY LENGTH OF LIST
208%:
TST (RO)+ ; MOVE POINTER TO NEXT ITEM
CMP (R5), (RO) ; COMPARE ITEMS
BLE 30$; IF LE IN CORRECT ORDER
MOV (R5),R2 ; SWAP ITEMS
MOV (RO}, (R5)
MOV R2, (RO) H
308:
DEC R3 ; DECREMENT LOOP COUNT
BGE 20$; IF NE LOOP
DEC R4 ; DECREMENT
BLE 40$; IF EQ SORT COMPLETED
TST (R5)+ ; GET POINTER TO NEXT ITEM TO BE COMPARED
BR 10$
408:
RETURN
SEARCH::
CALL $SAVAL ; SAVE ALL THE REGISTERS
CMP #4, (R5)+ ; FOUR ARGUMENTS?
BNE 208 ; IF NE NO
MOV (R5)+,R0 ; GET ADDRESS OF NUMBER TC LOCATE
MOV (R5)+,R1 ; ADDRESS OF LIST SEARCHING
MOV (R5)+,R2 ; GET ADDRESS OF LENGTH OF LIST
MOV (R2),R2 ; GET LENGTH OF LIST
BEQ 208 ; IF NO ARGUMENTS
MOV (R5),R5 ; ADDRESS OF RETURNED VALUE
MOV R2,R3 ; COPY LENGTH
10$:
CMP (RO), (R1)+ ; IS THIS THE NUMBER?
BEQ 30$; IF EQ YES
BMI 20§ ; IF MI NUMBER NOT THERE
DEC R2 ; DECREMENT LOOP COUNT
BNE 108 ; IF NE NOT AT END OF LIST
20%:
MOV #-1, (R5) ; END OF LIST PASS BACK ERROR
RETURN
30S$:
SUB R2,R3 ; NUMBER FOUND - GET INDEX INTO LIST
INC R3 :
MOV R3, (RS5) ; RETURN INDEX
RETURN
.END

10-7

Supervisor-Mode Libraries

Example 10-2 Memory Allocation Map for SUPER

SUPER.TSK;1 Memory allocation map TKB M40.10 Page 1
29-DEC-82 15:04

Partition name : GEN

Identification : 0203

Task UIC : [301,55]

Task attributes: -HD,PI

Total address windows: 1.

Task image size : 160. words

Task address limits: 000000 000473

R-W disk blk limits: 000002 000002 000001 00001.

¥% Root segment: CMPAL

R/W mem limits: 000000 000473 000474 00316.
Disk blk limits: 000002 000002 000001 000O1.

Memory allocation synopsis:

Section Title Ident File

. BLK.: (RW, I,LCL,REL,CON) 000000 000474 00316.
000000 000136 00094. CMPAL 0203 SYSLIB.OLB;®6
000136 000136 00094. CMPAL 0203 SYSLIB;OLB;6
000274 000136 00094. SUPER 01 SUPER.OBJ:3
000432 000042 00034. SAVAL 00 SYSLIB.OLB:6

Global symbols:
SEARCH 000352-R SORT 000274-R $CMPAL 000022-R $CMPCS 000110-R $SAVAL 000432-R

*** Tagsk builder statistics:

Total work file references: 320,

Work file reads: O.

Work file writes: O.

Size of core pool: 6988. words (27. pages)
Size of work file: 1024. words (4. pages)

Elapsed time:00:00:04

Example 10-3 Completion Routine, $CMPCS, from SYSLiB.OLD

.TITLE CMPAL
.IDENT /0204/

Example 10-3 Cont’d on next page

10-8

Supervisor-Mode Libraries

Example 10-3 (Cont.) Completion Routine, $CMPCS, from SYSLIB.OLD

COPYRIGHT (c) 1983 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD
MASSACHUSETTS. ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE
AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS
SOFTWARE OR ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR
OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND
OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERED.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOQUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

Ne Vs Ne e Ne e Ne Ne N Ne Ne Na Ve Ne Ne Ne e we e

.ENABL LC

This module supports the "new" transfer vector format generated by
the taskbuilder for entering super mode libraries. This format
optimized for speed and size and supports user data space tasks.

The CSM dispatcher routine and the standard completion routines,
SCMPAL and $CMPCS are included in this module due to the close
interaction between them.

Ne Ne Se e Ne Ns Ne N Ne e

**-CSM Dispatcher-Dispatch CSM entry

This module must be linked at virtual zero in the supervisor mode
library. It is entered via a four word transfer vector of the form:

MOV #completion-routine, - (SP)
CSM #routine

Note: Immediate mode emulation of the CSM instruction is required
in the executive.

The CSM instruction transfers control to the address contained in
supervisor mode virtual 10. At this point the stack is the following:

(SP) routine address
2(SP) PC (past end of transfer vector)
4 (SP) PS with condition codes cleared
6 (SP) Completion-routine address
10 (SP) Return address

A routine address of 0 is special cased to support return to
supervisor mode from a user mode debugging aid (ODT). In this case
stack is the following:

Ne Ne Mo e Ne Ne Ne Se e N Ve %o Ve e Na Na Na Ne Ne Ne Ne e Ne ~e N

Example 10-3 Cont’d on next page

Supervisor-Mode Libraries

Example 10-3 (Cont.) Completion Routine, $CMPCS, from SYSLIB.OLD

Ne Yo Ve we N

~o N “e

~e

~e we N

~e N we

(SP) zero
2(SP) PC from CSM to be discarded
4(SP) PS from CSM to be discarded
6(SP) Super mode PC supplied by debugger
10(SP) Super mode PS supplied by debugger

To allow positioning at virtual zero, this code must be in the blank
PSECT that is first in the TKBs PSECT ordering.

.PSECT
.ENABL LSB

Debugger return to super mode entry. Must start at virtual zero

CMP (SP)+,(SP)+ ; Clean off PS and PC from CSM

**-$SRTI-SUPER mode RTI

This entry point performs the necessary stack management to allow
an RTI from super mode to either super mode or user mode.
The is as required for an RTI:

(SP) Super mode PC
2(SP) Super mode PS

$SRTI:: TST 2(SPf ; Returning to user mode?

~e

.
’

BR 70$; Join common code
CSM transfer address, this word must be at virtual 10 in super mode
.WORD CSMSVR ; CSM dispatcher entry

Dispatch CSM entry

CSMSVR: MOV 6(SP),2(SP) ; Set completion routine address for RETURN

we “e e e Ne

~a

e N8 N

JMP Q@Q(SP)+ ; Transfer to super mode library routine

**-$CMPAL-Completion routine that sets up NZVC in the PS
Copy all condition codes to stacked PS. Current stack:
(SP) PS with condtion codes cleared

2(SP) Completion routine address (to be discarded)
4 (SP) Return address

Example 10-3 Cont’d on next page

10-10

Supervisor-Mode Libraries

Example 10-3 (Coni.) Completion Routine, $SCMPCS, from SYSLIB.OLD

$CMPAL: :BPL 403
BNE 20$ H
BVC 108 H

BIS #16,(SP) ;
BR S$CMPCS H
10$: BIs #14, (SP)
BR S$CMPCS H

20%: BVC 308
BIS #12,(SP)
BR S$CMPCS ;

30$: BIS #10, (SP)
BR S$CMPCS H

40%: BNE 608 :
BVC 508 ;
BIS #6, (SP) ;
BR $CMPCS :

50$: BIS #4, (SP)
BR $CMPCS H

603: BVC $CMPCS
BIS #2, (SP) ;

.

’
.
’

Ne Ne Ve Me N Ne Ne Ve e

$CMPCS: :ADC (SP)
MOV 4 (SP),2(SP)
MOV (SP)+,2(SP)

Set NZV

; Set NZ

Set NV

; Set N

Set ZV

; Set 2

.
r

Set V

Copy only carry to stacked PS. Current stack:

(SP) PS with condtion codes cleared
2(SP) Completion routine address (to be discarded)
4 (SP) Return address

Set up carry

Hy “e ~e v

Setup return address for RTT
And PS. Returning to super mode?

70$: BPL 808 ; If PL yes
MOV #6,-(SP) ; Number of bytes for (SP), PS, and PC
ADD SP, (SP) ; Compute clean stack value
MTPI SP ; Set up previous stack pointer

80$: RTT ; Return to previous mode and caller
.DSABL LSB
.END

**~SCMPCS~Completion routine that sets up only C in the PS

10-11

Supervisor-Mode Libraries

Example 10-4 Code for TSUP.MAC

.TITLE TSUP
.IDENT /01/

.MCALL QIOWS$,DIRS,QIOWSS
WRITE: QIOWS IO.WVB,5,1,,,,<0UT,, 40>
READIN: QIOW$ IO.RVB,5,1,,,,<0UT, 5>

IARRAY: .BLKW 12.
LEN: .BLKW 1
IART: .BLKW 1
INDEX: .WORD O
OUT: .BLKW 100.
ARGBLK:

EDBUF: .BLKW 10.

FMT1: .ASCIZ /%$2SARRAY(%D)=/

FMT2: .ASCIZ /%N$2SNUMBER TO SEARCH FOR?/
FMT3: .ASCIZ /%N%2S%D WAS FOUND IN ARRAY (%D)/
FMT4: .ASCIZ /%N%2S%D WAS NOT IN ARRAY/

FMT5: .ASCIZ /%2SARRAY (%D)=%D/

.EVEN

START:
MOV #IARRAY,R0 ; GET ADDRESS OF ARRAY
MOV #10,R1 ; SET LENGTH OF ARRAY

5%:
CLR (RO)+ ; INITIALIZE ARRAY
DEC R1 ; LOOP
BNE 5%
MOV #IARRAY,RO ;
MOV #INDEX, R2
108:
MOV #FMT1,R1 ; FORMAT SPECIFICATION (ADDRESS
; OF INPUT STRING})
MOV (R2),EDBUF ; GET INDEX

INC EDBUF H
CALL PRINT ; PRINT MESSAGE
CALL READ ; READ INPUT
MOV IART, (RO)+ ; PUT BINARY KEYBOARD INPUT INTO ARRAY
BEQ 20$; ZERO MARKS END OF INPUT
INC (R2) H
CMP (R2), #10.
BNE 108 s IF NE VYES
20S$:

MOV (R2),LEN ; CALCULATE LENGTH OF ARRAY

MOV #ARGBLK,R5 ; GET ADDRESS OF ARGUMENT BLOCK

MOV #2, (R5)+ ; NUMBER OF ARGUMENTS

MOV #IARRAY, (R5)+ ; PUT ADDRESS OF ARRAY

MOV #LEN, (R5)

MOV #ARGBLK,R5

CALL SORT : SORT ARRAY
i+
;Task Builder replaced call to SORT subroutine in SUPLIB with 4-word
:context switching vector. Flow of control switches to SUPLIB via
:the vector and back via the completion routine $CMPCS. TSUP
;continues excuting at the next instruction.

CLR R2 H

Example 10-4 Cont’d on next page

10-12

Example 10-4 (Cont.) Code for TSUP.MAC

Supervisor-Mode Libraries

MOV #IARRAY,RO ; GET ARRAY ADDRESS
30%:

INC R2 ; INCREMENT INDEX

MOV R2,EDBUF ; GET INDEX FOR PRINT

MOV (RO)+,EDBUF+2 ; GET CONTENTS OF ARRAY
MOV #FMT5,R1
CALL PRINT H
CMP R2,LEN ; MORE TO PRINT?
BLT 30$; IF LE YES

MOV #FMT2,R1 ; GET ADDRESS OF FORMAT SPECIFICATION

CALL PRINT ; OUTPUT MESSAGE

CALL READ ; READ RESPONSE

MOV #ARGBLK,R5 ;

MOV #4, (R5)+ ; SET NUMBER OF ARGUMENTS

MOV #IART, (R5)+ ; SET ADDRESS OF NUMBER LOOKING FOR

MOV #IARRAY, (R5)+ ; SET ADDRESS OF ARRAY

MOV #LEN, (R5)+ ; SET ADDRESS OF LEN OF ARRAY
MOV #INDEX, (R5) ; ADDRESS OF RESULT

MOV #ARGBLK,R5 ;

CALL SEARCH ; SEARCH FOR NUMBER IN IART

Call to SUPLIB for SEARCH subroutine.

Ne Ne Ne

TST INDEX ; WAS NUMBER FOUND?
BLT 403 ; IF LT NO
MOV IART,EDBUF ; GET NUMBER LOOKING FOR
MOV INDEX; EDBUF+2 ; GET ARRAY NUMBER
MOV #FMT3,R1 ; GET FORMAT ADDRESS
CALL PRINT H
BR 1008 ; DONE

408:
MOV #FMT4,R1 ; GET FORMAT ADDRESS
MOV IART,EDBUF ; GET NUMBER
CALL PRINT

1008$:
CALL SEXST ; EXIT WITH STATUS

PRINT:
CALL $SAVAL ; SAVE ALL REGISTERS
MOV #0OUT, RO ; ADDRESS OF OUTPUT BLOCK
MOV #EDBUF,R2 ; START ADDRESS OF ARGUMENT BLOCK
CALL $EDMSG : FORMAT MESSAGE
MOV R1,WRITE+Q.IOPL+2 ; PUT LENGTH OF OUTPUT
; BLOCK INTO PARAMETER BLOCK
DIRS #WRITE ; WRITE OUTPUT BLOCK
RETURN

READ:
CALL S$SAVAL ; SAVE ALL REGISTERS
DIRS #READIN ; READ REQUEST
MOV #OUT,RO ; GET KEYBOARD INPUT

CALL $CDTB ; CONVERT KEYBOARD INPUT TO BINARY
MOV R1, IART ; PUT INPUT INTO BUFFER

RETURN

.END START

GET ADDRESS OF FORMAT SPECIFICATION

10-13

Supervisor-Mode Libraries

Example 10-5 Memory Allocation Map for TSUP

TSUP.TSK;1 Memory allocation map TKB M40.10 Page 1
29-DEC-82 15:01

Partition name : GEN
Identification : 01

Task UIC : [301,55]

Stack limits: 000274 001273 001000 00512.

PRG xfr address: 002130

Total address windows: 2.

Task image size : 1344. words

Task address limits: 000000 005133

R-W disk blk limits: 000002 000007 000006 00006.

*** Root segment: TSUP

R/W mem limits: 000000 005133 005134 02652.
Disk blk limits: 000002 000007 000006 00006.

Memory allocation synopsis:

Section Title Ident File

. BLK.: (RW, I,LCL,REL,CON) 001274 002334 01244.
001274 001234 00668. TSUP 01 TSUP.OBJ;22
CMPAL : (RW, I, LCL,REL,CON) 000000 000474 00316.
PURSD : (RO, I,LCL,REL,CON) 003630 000076 00062.
PURSI : (RO, I,ILCL,REL,CON) 003726 000752 00490.
$$RESL: (RO, I, LCL, REL,CON) 004700 000212 00138.
$$SLVC: (RO, I, LCL,REL,CON) 005112 000020 00016.

TSUP.TSK;1 Memory allocation map TKB M40.10 Page 2
29-DEC-82 15:01

**% Task builder statistics:

Total work file references: 2477.

Work file reads: O.

Work file writes: O.

Size of core pool: 6988. words (27. pages)
Size of work file: 1024. words (4. pages)

Elapsed time:00:00:05

TSUP prompts you to enter numbers at your terminal. It calls a subroutine in SUPER to sort the
numbers. Then it displays the numbers you entered as array entries and prompts you to request
a number to search for. TSUP calls a subroutine in SUPERLIB to search for the number. Finally,
TSUP indicates at your terminal either that the number was not found or the array location where
the number is stored.

10-14

Supervisor-Mode Libraries

Building SUPER
To build SUPER in UFD [301,55] on SY:, use the following TKB or LINK command sequence:

TKB> SUPER/-HD/LI/PI, SUPER/MA, SUPER=

TKB> LB: [[1, 2]]SYSLIB/LB:CMPAL, SY: [[301, 55]] SUPER
TKB> /

Enter Options:

TKB> STACK=0

TKB> PAR=GEN:0:2000

TKB> CMPRT=$CMPCS

TKB> GBLXCL=S$SAVAL

TKB> //

>

> LINK/TAS : SUPER/NOH/SHARE : LIB/CODE:PIC/MAP : SUPER/SYS/SYM: SUPER/OPT

->LB:[1,2]SYSLIB/INC:CMPAL, SY:[301, 55]SUPER
Option? STACK=0

Option? PAR=GEN:0:2000

Option? CMPRT=$CMPCS

Option? GBLXCL=$SAVAL

Option?

>

SUPER is built without a header or stack. It is position independent and has only one program
section, named .BLK. The /LI switch or /SHARE:LIB qualifier eliminates program section name
conflicts between the library and the referencing task.

The completion routine module of SYSLIB, CMPAL, is specified first in the input line. The library
runs in partition GEN at 0 and is not more than 1K.

The GBLXCL option excludes $SAVAL from the library’s .STB file. You exclude $SAVAL from the
.STB file because the referencing task, TSUP, also calls $SAVAL. If TSUP finds $SAVAL in the
.STB file of SUPER, it does not link a separate copy of $SAVAL into its task image from SYSLIB.
If TSUP cannot link to a copy of $SAVAL that is mapped through user APRs, the TSUP would call
$SAVAL as a subroutine residing within the supervisor-mode library, but without the necessary
mode-switching vector and completion routine support. This option forces TKB to link $SAVAL
from SYSLIB into the task image for TSUP.

The memory allocation map shows the following:

* SUPER begins at virtual 0.

* The completion routine, $CMPAL, is linked into the library from SYSLIB at virtual 0.

» The entry point $CMPAL is located at virtual 22, SEARCH is located at 35, and sort is located
at 274. All of these entry points are relocatable.

Building TSUP
Use the following TKB or LINK command sequence to build a task, TSUP, that links to SUPER:

TKB> TSUP, TSUP=TSUP
TKB> /

Enter Options:

TKB> RESSUP=SUPER/SV:0
TKB> //

> LINK/TAS/MAP/OPT SUPER
Option? RESSUP=SUPER/SV:0
Option?

>

10-15

10.7.4

Supervisor-Mode Libraries

These two command sequences tell TKB to include in the logical address space of TSUP a
user-owned, supervisor-mode library named SUPER. TKB includes a four-word, mode-switching
vector within the task image for each call to a subroutine within the library. The library is position
independent and is mapped with supervisor I-space APRO. This is a requirement for CSM libraries
because the CSM expects to find the entry point of the completion routine at location 10.

The memory allocation map for TSUP (Example 10-5) shows:
e $CMPAL is linked from the .STB file of the library and begins at location 0.

* The mode-switching vectors begin at 005136 and are 16. bytes. That means that TSUP calls
subroutines within the library 2 times (4 words per vector).

¢ The initiation routine $SUPL is located at 4700.

¢ The SEARCH and SORT subroutines that were located at virtual 112 and 32, respectively, in
the virtual address space of SUPER have been relocated to the mode-switching vectors residing
at 5136 and 5146 respectively, in TSUP.

¢ The SAVAL module from SYSLIB containing $SAVAL has been linked into the task image
instead of including $SAVAL from the library’s .STB file.
Running TSUP

After building SUPER and TSUP as indicated in the task-build command sequence discussed
previously, you install SUPER and run TSUP. TSUP prompts you for a number:

ARRAY (x)

X The position in which to store the number in the array.

You enter a number. TSUP stores the number in the array and prompts you again for a number.
This continues until you either have entered a 0, an illegal number, or 10 numbers. Then TSUP
calls the SORT routine in SUPER.

You enter a number. TSUP calls the SEARCH routine in SUPER. Then TSUP outputs a message
indicating whether the number was in the array.

The CSM Library Dispatching Process

When you build the referencing task, if you specify the SV argument to the RESSUP or SUPLIB
option, then TKB includes a four-word context-switching vector for each call to a subroutine in the
library. This is very generaily discussed in Section 3.Z. This section discusses the CSM library
vector in detail.

CSM mode switching occurs as follows:
1 The vector is entered with the return address on top of the stack (TOS).
2 The vector pushes the completion routine address on the stack.

3 A CSM instruction is executed with the supervisor-mode entry point as the immediate
addressing mode parameter. The CSM instruction:

a. Evaluates the source parameter and stores the entry point address in a temporary register
b. Copies the user stack pointer to the supervisor stack pointer

¢. Places the current PS and PC on the supervisor stack clearing the condition codes in the
PS

10-16

10.8

10.9

10.10

Supervisor-Mode Libraries

d. Pushes the entry point address on the supervisor stack

e. Places the contents of location 10 in supervisor I-space into the PC

The stack locks like this when the processor begins to execute at the contents of virtual 10 in
supervisor mode:

user sp ~---> return address
completion routine address
PS
PC
super sp ----> entry point address

The most important aspect of how the CSM library mode-switching vector works is that the
processor begins executing at the contents of virtual 10 in supervisor mode. This is why the
completion routine must be located at virtual 0, so that virtual location 10 is within the completion
routine.

Using Supervisor-Mode Libraries as Resident Libraries

Supervisor-mode libraries can double as conventional resident libraries. For position-independent,
supervisor-mode libraries, you rebuild the referencing task using the RESLIB option instead of the
RESSUP option. Indicate the first available user-mode APR that you want to map the library. For
CSM libraries this always changes, because you cannot map a shared region with APR 0. You do
not have to rebuild the library.

For absolute supervisor-mode libraries, rebuild the referencing task using the RESLIB option
instead of the RESSUP option. Rebuild the library only if the beginning partition address in the
PAR option is incompatible with the address limits of your referencing task.

Multiple Supervisor-Mode Libraries

A user task can reference multiple supervisor-mode CSM libraries. However, all the CSM libraries
must use the completion routine that begins at virtual zero in supervisor-mode instruction space.

Linking a Resident Library to a Supervisor-Mode Library

You can link a conventional resident library to a supervisor-mode library using the following TKB
or LINK command sequence:

TKB> F4PRES/-HD, FAPRES,LB: [[1, 1]]JF4PRES=
TKB> F4PRES/LB

TKB> /

Enter Options:

TKB> STACK=0

TKB> SUPLIB=FCSFSL:SV

TKB> PAR=F4PRES:140000:20000

TKB> //

>

> LINK/TAS:F4PRES/NOH/MAP :F4PRES/SYM:LB: [1,1]F4PRES/OPT-
-> F4PRES/LIB

Option? STACK=0

Option? SUPLIB=FCSFSL:SV

Option? PAR=F4PRES:140000:20000
Option?

>

10-17

Supervisor-Mode Libraries

These two command sequences show you how to link FAPRES to FCSFSL.

10.11 Linking Supervisor-Mode Libraries

You cannot link supervisor-mode libraries together, and you cannot link a supervisor-mode library
to a resident user-mode library. Calling a user-mode library is not possible because its code is not
mapped through the I-space APRs while in the supervisor-mode library. However, you can link
user-mode libraries to a supervisor-mode library.

10.12 Writing Your Own Vectors and Completion Routines

You can write your own mode-switching vectors and completion routines. This might be necessary
for threaded code. If you use your own vectors, build them into the task and use the -SV switch

on the RESSUP or RESLIB option when you build the referencing task. If you create your own
completion routines, write your completion routine to resemble the system-supplied completion
routines (see Example 10-3) as much as possible. If you do not retain the last three lines of code |
as indicated, then if the Executive processes an interrupt before the mode switch back to user
mode has completed, your task might crash.

10.13 Overlaid Supervisor-Mode Libraries

It is possible to use overlaid supervisor-mode libraries. Three restrictions must be noted when
building these libraries:

¢ The completion routine for the library must be in the root.
* Only one level of overlay is allowed. This is illustrated in Example 104.

¢ Although the Fast Task Builder (FTB) can link to supervisor-mode libraries, it cannot link to
overlaid supervisor-mode libraries.

Figure 10-2 Qverlay Configuration Allowed for Supervisor-Mode Libraries

i

o
NOT ALLOWED

10-18

ERROR MESSAGES

The Task Builder produces diagnostic and fatal error messages. Error messages are printed in the
following forms:

TKB -- *DIAG*-error-message
or

TKB -- *FATAL*-error-message

After a fatal error, task builder aborts the current operation and returns to PDS (or MCR)
command level. Diagnostic errors do not have this effect.

Some errors can be corrected from the terminal. If you are entering text at the terminal, and a
diagnostic error message is printed, the error can be corrected, and the task building sequence
continued. If the same error is detected by the Task Builder in an indirect file or in Batch, the
Task Builder cannot request correction and thus the error is termed fatal and the task build is
aborted.

Some diagnostic error messages are simply informative and advise you of an unusual condition. If
you consider the condition normal to your task, you can run the task image.

Each error has in addition a status of Warning, Error, or Severe error; which is indicated after
the code Severity below. When the task builder exits, the status of the worst error or a status
of success is returned. In an indirect command file the status can be tested. For example, you
might decide not to continue with a command sequence which runs the task if the task build was
unsuccessful. See the IAS PDS User’s Guide or the IAS MCR User’s Guide.

This appendix tabulates the error messages produced by the Task Builder. The numbers below are
internal Task Builder error numbers and are given for information purposes only. Most of the error
messages are self-explanatory. The Task Builder prints the text shown in this manual in upper
case letters. In some cases, the Task Builder prints the line in which the error occurred, so that
the user can examine the line which caused the problem and correct it.

0, ILLEGAL GET COMMAND LINE ERROR CODE
Severity: Severe

Explanation: (System error. (No recovery.))

1, COMMAND SYNTAX ERROR
invalid-line

Severity: Severe

Explanation: (The invalid-line printed has incorrect syntax.)
2, REQUIRED INPUT FILE MISSING

Severity: Severe

Explanation: (At least one input file is required for a task build.)

10,

11,

ERROR MESSAGES

ILLEGAL SWITCH
invalid-line

Severity: Severe

Explanation: The invalid line printed contains an illegal switch or switch value.

NO DYNAMIC STORAGE AVAILABLE
Severity: Severe

R o) - . __ . - T » TS . ISRV P 242 cemn] mbainn - in 3 1
Explanation: The Task Builder needs additional storage and cannot obtain it. The input has

exceeded the Task Builder’s capability. See Appendix F, Section F.1.1.
ILLEGAL ERROR/SEVERITY CODE

Severity: Severe

Explanation: System error. (No recovery.)
COMMAND /O ERROR

Severity: Severe

Explanation: I/O error on command input device. (Device may not be online or possible hardware
error.)

INDIRECT FILE OPEN FAILURE
invalid-line

Severity: Severe

Explanation: The invalid-line contains a reference to a command input file which could not be
located.

INDIRECT COMMAND SYNTAX ERROR
invalid-line

Severity: Severe

Explanation: The invalid-line printed contains a syntactically incorrect indirect file specification.

INDIRECT FILE DEPTH EXCEEDED
invalid-line

Severity: Severe

Explanation: The invalid-line printed gives the file reference that exceeded the permissible
indirect file depth (3).

I/0 ERROR ON INPUT FILE file-name

Severity: Severe

OPEN FAILURE ON FILE file-name

Severity: Severe

A-2

12,

13,

14,

15,

16,

17,

18,

19,

ERROR MESSAGES

SEARCH STACK OVERFLOW ON SEGMENT segment-name
Severity: Severe

Explanation: The segment segment-name is more than 16 branch segments from the root
segment.

PASS CONTROL OVERFLOW AT SEGMENT segment-name
Severity: Severe

Explanation: The segment segment-name is more than 16 branch segments from the root
segment.

FILE file-name HAS ILLEGAL FORMAT
Severity: Severe

Explanation: The file file-name contains an object module whose format is not valid.

MODULE medule-name AMBIGUOUSLY DEFINES P-SECTION p-sect-name
Severity: Warning

Explanation: The p-section p-sect-name has been defined in two modules not on a common path
and referenced ambiguously.

MODULE module-name MULTIPLY DEFINES P-SECTION p-sect-name
Severity: Warning
Explanation:

1 The p-section p-sect-name has been defined in the same segment with different attributes.

or

2 A global p-section has been defined in more than one segment along a common path with
different attributes.

MODULE module-name MULTIPLY DEFINES XFR ADDR IN SEG segment-name
Severity: Warning

Explanation: This error occurs when more than one module comprising the root has a start
address.

MODULE module-name ILLEGALLY DEFINES XFR ADDRESS p-sect-name addr
Severity: Warning

Explanation: The module module-name is in an overlay segment and has a start address. The
start address must be in the root segment of the main tree.

P-SECTION p-sect-name HAS OVERFLOWED
Severity: Error

Explanation: A section greater than 32K has been created.

A-3

20,

21,

22,

23,

25,

26,

27,

ERROR MESSAGES

MODULE module-name AMBIGUOUSLY DEFINES SYMBOL sym-name
Severity: Warning

Explanation: Module module-name references or defines a symbol sym-name whose definition
cannot be uniquely resolved.

MODULE module-name MULTIPLY DEFINES SYMBOL sym-name
Severity: Warning

Exnlanation: Two definitions for the relocatable syvnkn] svm-name have gcourred on 2 common

graemasssvaCa 2222 VEVIAD AUE viAT AT BRARUL Sy REATAACRRLIT 2k T ULVWLiTUW Uix &4 LwiriaxaUas

path. Or two definitions for an absolute symbol with the same name but different values have
occurred.

INSUFFICIENT APRS AVAILABLE TO MAP READ ONLY ROOT

Severity: Severe

Explanation: No virtual address space can be found to map the read-only portion of a task.
SEGMENT seg-name HAS ADDR OVERFLOW: ALLOCATION DELETED

Severity: Severe

Explanation: Within a segment, the program has attempted to allocate more than 32K. A map
file will be produced if one was requested.

ALLOCATION FAILURE ON FILE file-name

Severity: Severe

Explanation:

1 The Task Builder could not acquire sufficient disk space to store the task image file.
If possible, delete unnecessary files on disk to make more room available.

or

2 An attempt has been made to write the task file into a directory for which the user does not
have write access.

I/0 ERROR ON OUTPUT FILE file-name

Severity: Severe

Explanation: This error may occur on any of the three output files.
LOAD ADDR OUT OF RANGE IN MODULE module-name
Severity: Error

Explanation: An attempt has been made to store data in the task image outside the address
limits of the segment. This usually indicates incorrect use of an absolute p-section

TRUNCATION ERROR IN MODULE module-name
Severity: Warning

Explanation: An attempt has been made to load a global value greater than +127 or less than
-128 into a byte. The low-order eight bits are loaded.

A-4

28,

29,

30,

31,

32,

33,

34,

35,

36,

ERROR MESSAGES

number UNDEFINED SYMBOLS SEGMENT seg-name
Severity: Error

Expianation: The Memory Allocation File lists each undefined symbol by segment.

INVALID KEYWORD IDENTIFIER
invalid-line

Severity: Severe

Explanation: The invalid-line printed contains an unrecognizable option keyword.

OPTION SYNTAX ERROR
invalid-line

Severity: Severe

Explanation: The invalid-line printed contains unrecognizable syntax.

TOO MANY PARAMETERS
invalid-line

Severity: Severe

Explanation: The invalid-line printed contains a keyword with more parameters than required.

ILLEGAL MULTIPLE PARAMETER SETS
invalid-line

Severity: Severe

Explanation: The invalid-line printed contains multiple parameters for an option keyword which
only allows a single parameter.

INSUFFICIENT PARAMETERS
invalid-line

Severity: Severe

Explanation: The invalid-line contains a keyword with an insufficient number of parameters to
complete the keyword meaning.

TASK HAS ILLEGAL MEMORY LIMITS
Severity: Severe

Explanation: The highest virtual address of the task is greater than 32K words. Relink the task
without a task image file to trace the cause.

OVERLAY DIRECTIVE HAS NO OPERANDS
invalid-line

Severity: Severe

Explanation: All overlay directives except .END require operands.

ILLEGAL OVERLAY DIRECTIVE
invalid-line

Severity: Severe

Explanation: The invalid-line printed contains an unrecognizable overlay directive.

A-5

317,

38,

39,

40,

41,

42,

43,

ERROR MESSAGES

OVERLAY DIRECTIVE SYNTAX ERROR
invalid-line

Severity: Severe

Explanation: The invalid-line printed contains a syntax error.

ROOT SEGMENT IS MULTIPLY DEFINED

invalid-line

Severity: Severe

Explanation: The invalid-line printed contains the second .ROOT directive encountered. Only
one .ROOT directive is allowed.

LABEL OR NAME IS MULTIPLY DEFINED

invalid-line

Severity: Severe

Explanation: The invalid-line printed contains a name that has already appeared on a .FCTR,
.NAME, or .PSECT directive.

O ROOT SEGMENT SPECIFIED

Severity: Severe

Explanation: The overlay description did not contain a .ROOT directive.
BLANK P-SECTION NAME IS ILLEGAL

invalid-line

Severity: Severe

Explanation: The invalid-line printed contains a .PSECT directive that does not have a p-section
name.

ILLEGAL P-SECTION/SEGMENT ATTRIBUTE
invalid-line

Severity: Severe

Explanation: The invalid-line printed contains a p-section or segment attribute that is not
recognized.

ILLEGAL OVERLAY DESCRIPTION OPERATOR
invalid-line
Severity: Severe

Explanation: The invalid-line printed contains an unrecognizable operator in an overlay
description.

TOO MANY NESTED .ROOT/.FCTR DIRECTIVES
invalid-line

Severity: Severe

Explanation: The invalid-line printed contains a .FCTR directive that exceeds the maximum
nesting level (32).

A-6

45,

46,

47,

48,

49,

50,

51,

52,

53,

ERROR MESSAGES

TOO MANY PARENTHESES LEVELS
invalid-line

Severity: Severe

Explanation: The invalid-line printed contains a parenthesis that exceeds the maximum nesting
level (32).

UNBALANCED PARENTHESES
invalid-line

Severity: Severe

Explanation: The invalid-line printed contains unbalanced parentheses.

ILLEGAL BASE OR TOP ADDRESS OFFSET
Severity: Severe

Explanation: The task is too large to fit into the space allowed by BASE= or TOP= keywords.

ILLEGAL LOGICAL UNIT NUMBER
invalid-line

Severity: Severe

Explanation: The invalid-line printed contains a device assignment to a unit number larger than
the number of logical units specified by the UNITS keyword or assumed by default if the UNITS
keyword is not used.

ILLEGAL NUMBER OF LOGICAL UNITS
invalid-line

Severity: Severe

Explanation: The invalid-line printed contains a logical unit number greater than 250.

ILLEGAL MAXIMUM EXTENSION
invalid line

Severity: Severe

Explanation: The argument to the MAXEXT option is outside the range 0-2000 (octal).

ILLEGAL BASE OR TOP BOUNDARY VALUE
invalid-line

Severity: Severe

ILLEGAL POOL USAGE NUMBER SPECIFIED
invalid-iine
Severity: Severe

Explanation: The pool request is greater than 255 or it is zero.
ILLEGAL DEFAULT PRIORITY SPECIFIED

invalid-line
Severity: Severe

Explanation: The invalid-line printed contains a priority greater than 250.

A-7

54,

55,

56,

57,

58,

59,

61,

ERROR MESSAGES

ILLEGAL ODT OR TASK VECTOR SIZE
Severity: Severe

Explanation: SST vector size specified greater than 32 words.

ILLEGAL FILENAME
invalid-line

Severity: Severe
Explanation: The invalid-line printed contains a wild card (*) in a file specification. The use of

wild cards is prohibited.

ILLEGAL DEVICE/VOLUME
invalid-line

Severity: Severe

Explanation: The device/volume string is too long.

LOOKUP FAILURE ON FILE file-name
invalid-line

Severity: Severe

Explanation: The invalid-line printed contains a file name which cannot be located in the
directory.

ILLEGAL DIRECTORY
invalid-line

Severity: Severe

Explanation: The invalid-line printed contains an illegal UFD.
INCOMPATIBLE REFERENCE TO SGA P-SECTION p-sect-name

Severity: Error

Explanation: A task has attempted to reference more storage in a shareable global area than
exists in the shareable global area definition.

ILLEGAL REFERENCE TO SGA P-SECTION p-sect-name
Severity: Error

Explanation: A task has attempted to reference a p-sect-name existing in a shareable global area
but has not named the SGA in the SGA option.

SGA MEMORY ALLOCATION CONFLICT
keyword-string

Severity: Severe

Explanation: One of the following problems has occurred:

2o 1 v AIRLT =

1 More than seven shareable global areas have been specified.
2 The same shareable global area has been specified more than once.

3 Shareable global areas whose memory allocations overlap have been specified.

A-8

62,

65,

66,

67,

68,

69,
70,
71,

72,

ERROR MESSAGES

4 BASE or TOP specifications conflict.

LOOKUP FAILURE SGA FILE
invalid-line

Severity: Severe

Explanation: No symbol table or task image file found for the shareable global area on SY0 under
UFD [1,1].

Not used.

ILLEGAL PARTITION/SGA SPECIFIED
invalid-line

Severity: Severe

Explanation: User defined base or length not on 32 word bound or user defined length = 0.
NO MEMORY AVAILABLE FOR SGA library-name

Severity: Severe

Explanation: Insufficient virtual memory available to cover total memory needed by referenced
shareable global areas.

PIC SGAS MAY NOT REFERENCE OTHER SGAS
invalid-line

Severity: Severe

ILLEGAL APR RESERVATION

Severity: Severe

Explanation: APR specified in SGA option that is outside the range 0-7.
I/O ERROR SGA IMAGE FILE

Severity: Severe

Explanation: An I/O error has occurred during an attempt to open or read the Task Image File of
a shareable global area.

Not used.

Not used.

INVALID APR RESERVATION

Severity: Severe

Explanation: APR specified in SGA option for an absolute shareable global area.

COMPLEX RELOCATION ERROR - DIVIDE BY ZERO: MODULE
module-name

Severity: Warning

Explanation: A divisor having the value zero was detected in a complex expression. The result of
the divide was set to zero. (Probable cause - division by an undefined global symbol.)

A-9

73,

74,

75,

76,

71,

78,

79,

80,

ERROR MESSAGES

WORK FILE I/0 ERROR
Severity: Severe

Explanation: I/O error during an attempt to reference data stored by the Task Builder in a work
file. Possibly an attempt to extend the file when no more space is available on the volume. See
Appendix F, Section F.1.1.

LOOKUP FAILURE ON SYSTEM LIBRARY FILE

Severity: Error

Explanation: The Task Builder cannot find the System Library (usually LB0:(1,1]SYSLIB.OLB)
file to resolve undefined symbols.

UNABLE TO OPEN WORK FILE

Severity: Severe

Explanation: Work file device is not mounted or has not been initialized as Files-11, or there is
no space on the volume. See Appendix F, Section F.1.1.

NO VIRTUAL MEMORY STORAGE AVAILABLE
Severity: Severe

Explanation: Maximum permissible size of the work file exceeded (no recovery). See Appendix F,
Section F.1.1 and Section F.3.

MODULE module-name NOT IN LIBRARY
Severity: Severe
Explanation: The Task Builder could not find the module in the library.

INCORRECT LIBRARY MODULE SPECIFICATION
invalid-line

Severity: Severe

Explanation: The invalid-line contains a module name with a non-Radix-50 character.

LIBRARY FILE filename HAS INCORRECT FORMAT
Severity: Severe

Explanation: A module has been requested from a library file that has an empty module name
table.

SGA IMAGE HAS INCORRECT FORMAT
invalid-line

Severity: Severe

Explanation: The invalid-line specifies a shareable global area that has one of the following
problems: :

1 The SGA task image file has a header.

2 The shareable global area references another shareable global area with invalid address bounds
(that is, not on 4K boundary).

A-10

81,

82,

ERROR MESSAGES

3 The shareable global area has invalid address bounds.

PARTITION partition-name HAS ILLEGAL MEMORY LIMITS
Severity: Severe
Explanation: The user has attempted to build a privileged task whose length exceeds 16K.

Not used.

ABORTED VIA REQUEST
input-line
Severity: Severe

Explanation: The input-line contains a request from the user to abort the task build.

84-87, Not used.

88,

89,

90,

91,

92,

93,

SGA REFERENCES OVERLAID SGA
Severity: Severe
Explanation: It is illegal to build an SGA which references another overlaid SGA.

TASK IMAGE FILE file-name IS NON-CONTIGUOUS
Severity: Error

Explanation: Not enough contiguous disk space could be found to create the task image file. The
task image is placed in a non-contiguous file, which must be copied with the COPY/CONTIGUOUS
PDS command (or using the PIP utility under MCR) before it can be installed or run.

VIRTUAL SECTION HAS ILLEGAL ADDRESS LIMITS
option-line
Severity: Severe

Explanation: The option-line printed contains a VSECT keyword whose base address plus
window size exceeds 1777717.

FILE file-name ATTEMPTED TO STORE DATA IN VIRTUAL SECTION
Severity: Error

Explanation: The file contains a module that has attempted to initialize a virtual section with
data.

SGA MAPPED ARRAY ALLOCATION TOO LARGE
invalid-line

Severity: Severe

Explanation: The invalid-line printed contains a reference to an SGA that has allocated too much
memory in the task’s mapped array area. The total allocation exceeds 2.2 million bytes.

INVALID REFERENCE TO MAPPED ARRAY BY MODULE module-name
Severity: Error

Explanation: The module has attempted to initialize the mapped array with data. An SPR should
be submitted if this problem is caused by DIGITAL-supplied software.

A-11

94,

95,

96,

97,

98,

100,
101,
102,

ERROR MESSAGES

END OF FILE REACHED BEFORE .END DIRECTIVE IN file-name

Severity: Severe

Explanation: The overlay description file named in this message does not contain a .END
directive as required.

DUPLICATE SGA NAME
invalid-line

Severity: Severe

Explanation: The shareable global area name specified has already appeared.

SYMBOL sym-name NOT FOUND FOR PATCH

Severity: Warning

Explanation: A global symbol specified in a GBLPAT or SYMPAT option cannot be found.
SEGMENT seg-name NOT FOUND FOR PATCH

Severity: Warning

Explanation: The segment name specified in an ABSPAT, GBLPAT or SYMPAT option cannot be
found.

ILLEGAL NUMBER OF REGIONS

Severity: Severe

Explanation: The argument to the ATRG option is greater than 240.
INSUFFICIENT APRS TO MAP TASK

Severity: Severe

Explanation: There is not encugh virtual address space, after allocating libraries common areas,
the task pure area and resident overlays, tc map the task root.

Supervisor-mode library reference error
Illegal system size specified

Conflicting base addresses in cluster library

Explanation: This conflict arises when you specify APRs, for both PIC and non-PIC libraries that
are included in the cluster. See the APR parameter as described in te CLSTR option. This is a
fatal error.

Library (library-name) not found in any cluster

Explanation: All task image and symbol table files to be included as cluster elements must reside
in 1b:[1,1].

Illegal cluster configuration

in the cluster. check the configuration of the libraries on the cluster. this is a fatal error.

A-12

ERROR MESSAGES

105, Cluster library element does not have null root

Explanation: This is a fatal error. all libraries, except the first, must be plas-overlaid and have a
null root. the first library in the group can be non-overlaid or overlaid with a null or non-null root.

107, Supervisor mode completion routine is undefined

Explanation: The Task Builder could not locate the symbol x , which was specified in the
CMPRT=X option.

108, Library not built as a supervisor-mode library

Explanation: The library referred to in a ressup or suplib option was built without a completion
(CMPRT=X) routine and is not a supervisor-mode library

A-13

B.1

TASK BUILDER DATA FORMATS

This appendix is of interest mainly to readers who need to understand the object module format.
An object module is the fundamental unit of input to the Task Builder.

Object modules are created by any of the standard language processors (for example MACRO-11,
FORTRAN) or the Task Builder itself (symbol definition file). The IAS Librarian provides the
ability to combine a number of object modules together into a single library file (see the IAS PDS
User’s Guide or IAS MCR User’s Guide for a specification of the LIBRARIAN command; for a more
detailed description see the RSX-11M /M-PLUS Utilities Manual.

An object module consists of variable length records of information that describe the contents of
the module. Six record (or block) types are included in the object language. These records guide
the Task Builder in the translation of the object language into a task image.

The six record types are:

Type 1 - Declare Global Symbol Directory (GSD)
Type 2 - End of Global Symbol Directory

Type 3 - Text Information (TXT)

Type 4 - Relocation Directory (RLD)

Type 5 - Internal Symbol Directory (ISD)

Type 6 - End of Module

Each object module must consist of at least five of the record types. The one record type that is
not mandatory is the internal symbol directory. The appearance of the various record types in an
object module follows a defined format. See Section B.1.

An object module must begin with a Declare GSD record and end with an end-of-module record.
Additional Declare GSD records may occur anywhere in the file but before an end-of-GSD
record. An end-of-GSD record must appear before the end-of-module record. At least one
relocation directory record must appear before the first text information record. Additional
relocation directory and text information records may appear anywhere in the file. The internal
symbol directory records may appear anywhere in the file between the initial declare GSD and
end-of-module records.

Object module records are variable length and are identified by a record type code in the first word
of the record. The format of additional information in the record is dependent upon the record

Global Symbol Directbry (GSD)

Global symbol directory records contain all the information necessary to assign addresses to global
symbols and to allocate the memory required by a task.

GSD records are the only records processed by the Task Builder in the first pass, thus significant
time can be saved if all GSD records are placed at the beginning of a module (that is, less of the
file must be read in phase 3).

B-1

TASK BUILDER DATA FORMATS

Figure B—1 General Object Module Format

GSD Initial GSD
RLD Initial relocation directory
GSD Additional GSD
TXT Text information
YT Text information
RLD Relocation directory
GSD Additional GSD
END GSD End of GSD
Isp Internal symbol directory
18D Internal symbol directory
TXT Text information
TXT Text information
TXT Text information
END MODULE END OF MODULE

GSD records contain seven types of entries:

Type 0 - Module Name

Type 1 - Control Section Name

Type 2 - Internal Symbol Name

Type 3 - Transfer Address

Type 4 - Global Symbol Name

Type 5 - Program Section Name

Type 6 - Program Version Identification
Type 7 - Mapped Array Declaration

Each entry type is represented by four words in the GSD record. The first two words contain six

Radix-50 characters. The third word contains a flag byte and the entry type identification. The
fourth word contains additional information about the entry. See Figure B-2.

B-2

B.1.1

Figure B-2 GSD Record and Entry Format

TASK BUILDER DATA FORMATS

i 1

RECORDTYPE

RAD50
NAME

TYPE _

| Frass

VALUE

RAD50
NAME

TYPE

| Fiacs

VALUE

RAD50
NAME

TYPE

FLAGS

VALUE

RADS50
NAME

TYPE

| Fiacs

VALUE

Figure B-3 Module Name Entry Format

MODULE
NAME

Module Name

The module name entry declares the name of the object module. The name need not be unique
with respect to other object modules (i.e., modules are identified by file not module name) but only
one such declaration may occur in any given object module. See Figure B-3.

B-3

B.1.2

B.1.3

TASK BUILDER DATA FORMATS

Control Section Name

Control sections, which include ASECTs, blank-CSECTs, and named-CSECTSs are supplanted in
IAS by PSECTs. For compatibility, the Task Builder processes ASECTs and both forms of CSECTSs.
Section B.2 details the entry generated for a PSECT statement. In terms of a PSECT statement
we can define ASECT and CSECT statements as follows:

For a blank CSECT, a PSECT is defined with the following attributes:

.PSECT ,LCL, REL, CON, RW, I, LOW
For a named CSECT, the PSECT definition is:

.PSECT name, GBL, REL, OVR, RW, I, LOW
For an ASECT, the PSECT definition is:

.PSECT . ABS.,GBL,2BS,I,OVR,RW,LOW

ASECTSs and CSECTs are processed by the Task Builder as PSECTs with the fixed attributes
defined above. The entry generated for a control section is shown in Figure B—4.

Figure B-4 Control Section Name Entry Format

CONTROL SECTION

NAME

1 IGNORED

MAXIMUM LENGTH

Internal Symbol Name

The internal symbol name entry declares the name of an internal symbol (with respect to the
meodule). The Task Builder does not support internal symbol tables and therefore the detailed
format of this entry is not defined (see Figure B-5. If an internal symbol entry is encountered
while reading the GSD, it is merely ignored.

B-4

B.1.4

B.1.5

TASK BUILDER DATA FORMATS

Figure B-5 Internal Symbol Name Entry Format

SECTION
NAME

OFFSET

Figure B-—6 Transfer Address Entry Format

Place figure here from page B-6.

Transfer Address

The transfer address entry declares the transfer address of a module relative to a P-section. The
first two words of the entry define the name of the P-section and the fourth word the relative offset
from the beginning of that P-section. If no transfer address is declared in a module, a transfer
address entry either must not be included in the GSD or a transfer address of 000001 relative to
the default absolute P-section (. ABS.) must be specified. See Figure B—6.

Note: If the P-section is absolute, then OFFSET is the actual transfer address if not
000001.

Global Symbol Name

The global symbol name entry (see Figure B-7) declares either a global reference or a definition.
All definition entries must appear after the declaration of the P-section under which they are
defined and before the declaration of another P-section. Global references may appear anywhere
within the GSD.

The first two words of the entry define the name of the global symbol. The flag byte declares the
atiributes of the symbol and the fourth word the value of the symboi relative to the P-section under
which it is defined.

The flag byte of the symbol declaration entry has the following bit assignments:

B-5

B.2

TASK BUILDER DATA FORMATS

Bit

Bit
Bit

Bit

Bit
Bit

Bits

wh
[]

- O N -

Weak Qualifier
Symbol is a strong definition or reference and is resolved in the normal manner.

Symbol is a weak definition or reference. A weak reference (Bit 3=0) is ignored. A weak
definition (Bit 3=1) is ignored unless a previous reference has been made.

Not used.

Normal Definition or reference.

Library definition. If the symbol is defined in a resident library STB file, the base address of the
library is added to the value, and the symbol is converted to absolute (bit 5 is reset); otherwise,
the bit is ignored.

Global symbol reference.
Global symbol definition.
Not used.

Relocation.

Absolute symbol value.
Relative symbol value.
Not used.

Figure B-7 Global Symbol Entry Format

SYMBOL
NAME

FLAGS

VALUE

Program Section Name

The P-section name entry (see Figure B-8) declares the name of a P-section and its maximum
length in the module. It also declares the attributes of the P-section via the flag byte.

GSD records must be constructed such that once a P-section name has been declared all global
symbol definitions that pertain to that P-section must appear before another P-section name is
declared. Global symbols are declared via symbol declaration entries. Thus the normal format is a
P-section name followed by zero or more symbol declarations, the next P-section name followed by
zero or more symbol declarations, and so on.

B-6

TASK BUILDER DATA FORMATS

The flag byte of the P-section entry has the i:ollowing bit assignments:

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

0-
Om=
1=
q -
0=
1=
2.
0=

1=

3.
4-

0=
1=
5-

0=
1=

6-
0=

1=

7 -
0=
1=

Memory Speed

P-section is to occupy iow speed (core) memory.

P-section is to occupy high speed (that is; MOS/Bipolar) memory.
Library P-section

Normal P-section

Relocatable P-section that references a shareable global area.
Allocation

P-section references are to be concatenated with other references to the same P-section to
form the total memory allocated to the section.

P-section references are to be overlaid. The total memory allocated to the P-section is the
largest request made by individual references to the same P-section.

Not used but reserved.

Access

P-section has read/write access.

P-section has read-only access.

Relocation

P-section is absolute and requires no relocation.

P-section is relocatable and references to the control section must have a relocation bias added
before they become absolute. :

Scope

The scope of the P-section is local. References to the same P-section will be collected only
within the segment in which the P-section is defined.

The scope of the P-section is global. References to the P-section are collected across segment
boundaries. The segment in which a giobal P-section is allocated storage is determined either
by the first module that defines the P-section on a path or by direct placement of a P-section in
a segment via the Overlay Description Language .PSECT directive.

Type
The P-section contains instruction (1) references.
The P-section contains data (D) reference Identification

Figure B-8 P-section Name Entry Format

P-SECTION
NAME
5 FLAGS
MAX LENGTH

Note: The length of all absolute sections is zero.

B-7

TASK BUILDER DATA FORMATS

Program Version Identification

The program version identification entry (see Figure B-9) declares the version of the module. The
Task Builder saves the version identification of the first module that defines a nonblank version.
This identification is then included on the memory allocation map and is written in the label block
of the task image file.

The first two words of the entry contain the version identification. The flag byte and fourth words
are not used and contain no meaningful information.

Figure B-9 Program Version Identification Entry Format

SYMBOL
NAME

Mapped Array Declaration

The Mapped Array Declaration (see Figure B—10) causes space to be allocated within the mapped
array area of task memory. The array name is added to the list of task p-section names and may
be referenced by subsequent RLD records. The length (in units of 64-byte blocks) is added to the
task’s mapped array allocation. The total memory allocated to each mapped array is rounded up to
the nearest 512-byte boundary. The contents of the flags byte are reserved and assumed to be zero.

One additicnal address window is allocated whenever a mapped array is declared.

Figure B-10 Mapped Array Declaration Format

MAPPED ARRAY

NAME

7 FLAGS

LENGTH (NUMBER OF 64-BYTE BLOCKS)

B-8

B.5

B.6

B.7

TASK BUILDER DATA FORMATS

End of Global Symbol Directory

The end-of-global-symbol-directory record (see Figure B—11) declares that no other GSD records are
contained further on in the file. Exactly one end-of-GSD-record must appear in every object module
and is one word in length.

Figure B-11 End of GSD Record Format

Text Information

The text information record (see Figure B—12) contains a byte string of information that is to be
written directly into the task image file. The record consists of a load address followed by the byte
string.

Text records may contain words and/or bytes of information whose final contents are yet to be
determined. This information will be bound by a relocation directory record that immediately
follows the text record (see Section B.7). If the text record does not need modification, then no
relocation directory record is needed. Thus multiple text records may appear in sequence before a
relocation directory record.

The load address of the text record is specified as an offset from the current P-section base. At
least one relocation directory record must precede the first text record. This directory must declare
the current P-section.

The Task Builder writes a text record directly into the task image file and computes the value
of the load address minus four. This value is stored in anticipation of a subsequent relocation
directory that modifies words and/or bytes that are contained in the text record. When added to a
relocation directory displacement byte, this value yields the address of the word and/or byte to be
modified in the task image.

Relocation Directory

Relocation directory records (see Figure B—13) contain the information necessary to relocate and
link a preceding text information record. Every module must have at least one relocation directory
record that precedes the first text information record. The first record does not modify a preceding
text record, but defines the current P-section and location. Relocation directory records contain

13 types of entries. These entries are classified as relocation or location modification entries. The
following types of entries are defined:

Type 1 - Internal Relocation
Type 2 - Global Relocation
Type 3 - Internal Displaced Relocation

B-9

TASK BUILDER DATA FORMATS

Figure B-12 Text Information Record Format

0 RECORD TYPE = 3

LOAD ADDRESS

TEXT TEXT
¥ TEXT
n n
n n
n n
n "
" TEXT
TEXT TEXT

Type 4 - Global Displaced Relocation

Type 5 - Global Additive Relocation

Type 6 - Global Additive Displaced Relocation
Type 7 - Location Counter Definition

Type 10 - Location Counter Modification

Type 11 - Program Limits

Type 12 - P-Section Relocation

Type 13 - Not Used

Type 14 - P-Section Displaced Relocation

Type 15 - P-Section Additive Relocation

Type 16 - P-Section Additive Dispiaced Kelocation
Type 17 - Complex Relocation

Type 20 - Library Relocation

Each type of entry is represented by a command byte (specifies type of entry and word/byte
modification), a displacement byte, and the information required for the particular type of entry,
in that order. The displacement byte, when added to the value calculated from the load address of
the previous text information record, (see Section B.6) yields the virtual address in the image that
is to be modified.

The command byte of each entry has the following bit assignments:

B-10

Biis 0-8

Bit 7-

Figure B-13 Relocation Directory Record Format

TASK BUILDER DATA FORMATS

Specify the type of entry. Potentially 128 command types may be specified although only
15(decimal) are implemented.

Modification

The command modifies an entire word.
The command meodifies only one byte. The Task Builder checks for truncation errors in

byte modification commands. If truncation is detected (that is, the modification value has a

magnitude greater than 255), an error is produced.

0 RECORD TYPE = 4
DISP TYPE= - CMD
INFO INFO

n INFO

n n

" n

" w

w "

CMD n
INFO DISP
n INFO
" n
] n
" "

n n
DISP CMD
INFO INFO
INFO INFO
INFO INFO

B-11

B.8

B.8.1

TASK BUILDER DATA FORMATS

Internal Relocation

This type of entry (see Figure B—14) relocates a direct pointer to an address within a module. The
current P-section base address is added to a specified constant and the result is written into the
task image file at the calculated address (that is, displacement byte added to value calculated from
the load address of the previous text block).

Example:

A: MOV #A.RO
or

.WORD A

Figure B-14 Internal Relocation Command Format

DISP B 1

CONSTANT

Global Relocation

This type of entry (see Figure B—15) relocates a direct pointer to a global symbol. The definition
of the global symbol is obtained and the result is written into the task image file at the calculated
address.

Example:

MOV #GLOBAL, RO
or

.WORD GLOBAL

Figure B-15 Global Relocation

DISP B 2
SYMBOL NAME

B-12

B.8.2

B.8.3

Internal Displaced Relocation

TASK BUILDER DATA FORMATS

This type of entry (see Figure B—16) relocates a relative reference to an absolute address from
within a relocatable control section. The address plus 2 that the relocated value is to be written
into is subtracted from the specified constant. The result is then written into the task image file at

the calculated address.

Example:

CLR 177550
or

MOV 177550, RO

Figure B-16 Internal Displaced Relocation

DISP B 3

CONSTANT

Global Displaced Relocation

This type of entry (see Figure B—17) relocates a relative reference to global symbol. The definition
of the global symbol is obtained and the address plus 2 that the relocated value is to be written
into is subtracted from the definition value. This value is then written into the task image file at

the caicuiated address.

Example:

CLR GLOBAL
or

MoV GLOBAL, RO

Figure B-17 Global Displaced Relocation

DISP B 4

SYMBOL NAME

B-13

B.8.4

B.8.5

TASK BUILDER DATA FORMATS

Global Additive Relocation

This type of entry (see Figure B—18) relocates a direct pointer to a global symbol with an additive
constant. The definition of the global symbol is obtained, the specified constant is added, and the
resultant value is then written into the task image file at the calculated address.

Example:

MOV #GLOBAL+2, RO
or

.WORD GLOBAL-4

Figure B-18 Global Additive Relocation

DISP B 5

SYMBOL NAME

CONSTANT

Global Additive Displaced Relocation

This type of entry (see Figure B—19) relocates a relative reference to a global symbol with an
additive constant. The definition of the global symbol is obtained and the specified constant is
added to the definition value. The address plus 2 that the relocated value is to be written into is
subtracted from the resultant additive value. The resultant value is then written into the task
image file at the calculated address.

Example:

CLR GLOBAL+2
or

MOV GLOBAL-5,R0

B-14

B.8.6

B.8.7

Figure B-19 Global Additive Displaced Relocation

TASK BUILDER DATA FORMATS

DISP

B

SYMBOL NAME

CONSTANT

Figure B-20 Location Counter Definition

B

SECTION NAME

CONSTANT

Figure B-21 Location Counter Modification

B

10

CONSTANT

Location Counter Definition

This type of entry (see Figure B-20) declares a current P-section and location counter value. The
control base is stored as the current control section and the current control section base is added to
the specified constant and stored as the current location counter value.

Location Counter Modification

This type of entry (see Figure B—21) modifies the current location counter. The current P-section
base is added to the specified constant and the result is stored as the current location counter.

Example:

.+N

or

.BLKB N

B-15

B.9

B.9.1

TASK BUILDER DATA FORMATS

Program Limits

This type of entry (see Figure B—22) is generated by the .LIMIT assembler directive. The first
address above the header (normally the beginning of the stack) and highest address allocated to
the tasks are obtained and written into the task image file at the calculated address and at the
calculated address plus 2 respectively.

Example:

.LIMIT

Figure B-22 Program Limits

DISsp B 11

P-section Relocation

This type of entry (see Figure B—23) relocates a direct pointer to the start address of another
P-section (other than the P-section in which the reference is made) within a module. The current
base address of the specified P-section is obtained and written into the task image file at the
calculated address.

Example:
.PSECT A
B:
PSECT c
MOV #B, RO
or
.WORD B

B-16

TASK BUILDER DATA FORMATS

Figure B-23 P-section Relocation

DISP B 12

SECTION NAME

Figure B-24 P-section Displiaced Relocation

DISP B 14

SECTION NAME

B.10 P-section Displaced Relocation

This type of entry (see Figure B—24) relocates a relative reference to the start address of another
P-section within a module. The current base address of the specified P-section is obtained and the
address plus 2 that the relocated value is to be written into is subtracted from the base value. This
value is then written into the task image file at the calculated address.

Example:
.PSECT A
B:
.PSECT C
MOV B, RO

B.10.1 P-section Additive Relocation

This type of entry (see Figure B-25) relocates a direct pointer to an address in another P-section
within a module. The current base address of the specified p-section is obtained and added to the
specified constant. The result is written into the task image file at the calculated address.

Example:

B-17

TASK BUILDER DATA FORMATS

.PSECT A
B:
C:
.PSECT D
MOV #B+10,RO
MOV #C, RO
or

.WORD B+10
.WORD C

Figure B-25 P-section Additive Relocation

DISP B 15

SECTION NAME

CONSTANT

B.10.2 P-section Additive Displaced Relocation

This type of entry (see Figure B—26) relocates a relative reference to an address in another
P-section within a module. The current base address of the specified P-section is obtained and
added to the specified constant. The address plus 2 that the relocated value is to be written into is
subtracted from the resultant additive value. This value is then written into the task image file at

the calculated address.
Example:
.PSECT A
B:
C:
.PSECT D
MOV B+10, RO
MOV c,RO

B-18

TASK BUILDER DATA FORMATS

Figure B-26 P-section Additive Displaced Relocation

DISP B i6

SECTION NAME

CONSTANT

B.10.3 Complex Relocation

This type of entry (see Figure B—27) resolves a complex relocation expression. Such an expression
is one in which any of the MACRO-11 binary or unary operations are permitted with any type of
argument, regardless of whether the argument is unresolved global, relocatable to any P-section
base, absolute, or a complex relocatable subexpression.

The RLD command word is followed by a string of numerically-specified operation codes and
arguments. All of the operation codes occupy one byte. The entire RLD command must fit in a
single record. The following operation codes are defined.
0 - No operation
1 - Addition (+)
2 - Subtraction (-)
3 - Multiplication (%)
4 - Division (/)
5 - Logical AND (&)
8 - Logical inclusive OR (l)
10 - Negation (-)
11 - Complement (*C)
~ 12 - Store result (command termination)
13 - Store result with displaced relocation (command termination)
16 - Fetch global symbol. It is followed by four bytes containing the symbol name in RADIX-50 representation.

17 - Fetch relocatable value. It is followed by one byte containing the sector number, and two bytes containing
the offset within the sector.

20 - Fetch constant. It is followed by two bytes containing the constant.

21 - Fetch resident library base address. If the file is a resident library STB file, the library base address is
obtained; otherwise, the base address of the Task Image is fetched.

The STORE commands indicate that the value is to be written into the task image file at the
calculated address.
All operands are evaluated as 16-bit signed quantities using two’s complement arithmetic. The

results are equivalent to expressions that are evaluated internally by the assembler. The following
rules are to be noted.

1 An attempt to divide by zero yields a zero result. The Task Builder issues a non-fatal
diagnostic message.

B-19

TASK BUILDER DATA FORMATS

2 All results are truncated from the left in order to fit into 16 bits. No diagnostic is issued if the
number was too large. If the result modifies a byte, the Task Builder checks for truncation
errors.

3 All operations are performed on relocated (additive) or absolute 16-bit quantities. PC
displacement is applied to the result only.

Example:

.PSECT ALPHA

-PSECT BETA

MoV #A+B-G1/G2&<"C<177120!G3>>,R1

Figure B-27 Complex Relocation

DISP B 17

COMPLEX STRING

12

B.10.4 Shareable Global Area Additive Relocation

This type of entry (see Figure B—28) relocates a direct pointer to address within a shareable global
area (SGA).

If the current file ig an SGA symbal table file (STR), the hase addreas of the SGA is obtained and

added to the specified constant. The result is written into the task image file at the calculated
address. If the file is not associated with an SGA, the task base address is used.

Example:

B-20

B.11

B.12

TASK BUILDER DATA FORMATS

Figure B-28 Resident Library Additive Relocation

DISP B 20

CONSTANT

Figure B-29 Internal Symbol Directory Record Format

0 - 6

NOT SPECIFIED

Figure B-30 End-Of-Module Record Format

Internal Symbol Directory

Internal symbol directory records (see Figure B—29) declare definitions of symbols that are local to
a module. This feature is not supported by the Task Builder and therefore a detailed record format
is not specified. This type of record, if encountered, will be ignored by the Task Builder.

End of Module

The end-of-module record (see Figure B-30) declares the end-of-an object module. Exactly one end
of module record must appear in each object module and is one word in length.

B-21

C TASKIMAGE FILE STRUCTURE

The task image as it is recorded on the disk appears in Figure C-1.

Figure C-1 Task image on Disk

32Word __ | R-O Resident Overlay

Memory Block [EERETEERGEE] Doad Spaco [t
32 Word R-O Resident Overlay

Disk Block —

Disk Block —

Disk Block —

Co-tree Overlay Data Base

Co-tree Root Segment

Task R-W Root Segment

Stack

Low Memory Pointers

32Wod — Doad Space

Memory Block

AEchment-Ees:r-ipt;s— -

Logical Unit Table

Fix rt of Header

Disk Block |~ — —20ic2 Assignment

Blocks

- Task Virtual Address 0

> Omitted if /~HD

Disk Block Label Block

i.e., 0,1, 2Blocks

j 4N Bytes (N = No. LUNs)

Virtual Block 1

Cc-1

C.1

TASK IMAGE FILE STRUCTURE

Label Block Group

The label block group (shown in Example C-1) precedes the task on the disk and contains dat:a
that need not be resident during task execution together with up to two blocks containing deV}oe
assignment data for LUNs 1-255. The task label blocks (first block in group) are read and verified
by Install. The information in these blocks is used to fill in the task header.

Example C-1 Label Block Group

.MACRO ' LBLSYS$ GEL
-.MCALL C[CEFINS

.IF ICN,<GBL>,<PEFSC>
...GBL=1

.IFF

...GBL=0

.ENDC

DEFINS LS$BTSK,d
DEFINS LS$SBPAR, 4
DEFINS LSBFLG,14
CEFINS LSBPRI,12
CEFINS LSBRLLCZ,14
CEFINS L$BMXZ, 16
DEFINS LS$SBPOL, 26
DEFINS LSBPIC,22
DEFINS LSEDAT, 24
DEFINS LS$BLIB,32
DEFINS LSEHRB,212 .
CEFINS LSBAPR,214
CEFINS LS$BEXT,21€
DEFINS LS$BUIC, 229
CEFINS IL$BROZ,222
DEFINS LS$BRQOO, 224
CEFINS LSBROB, 226
DEFINS LS$BPAZ,230
DEFINS L$BHSZ,232
DEFINS LSBAPM, 234
CEFINS LS$BASG,10¢¢@

FLAG BITS DEFINITIONS

~e ~e we

DEFINS LDSACC,108060
CEFINS LDSRSV, 040000
CEFINS LLDSREL,000004
DEFINS LLCSTYP,000002
DEFINS LCSDRF.AAAA01

DEFINS LF$PIC,0860001
DEFINS LF$NHLC,000082
DEFINS LF$FP ,800004

.MACRO LBLSY$ GBL
.ENCM

-ENDM LBLSYS

R L T T

TASK NAME (RACE:Q)

DEFAULT PARTITICN (RALSG)

TASK FLACS VIORC

CEFAULT PRIORITY

LCAL SIZE (32-iC ELOCKS)

INITIAL SPACE 3ILLCCATICN (32-iil ELOCKS)
NOLE PGOL LIMIT

LIERARY FLACS WOFRD

CREATION LCATE

RESIDENT LIRRARY PECUESTS (S5€. WORLS)
HEACEPR BLOCK NUMEER

STARTING APR (LIBILAKY)

LEFAULT TASK EXTENSION

CEFACGLT UIC

PEAD-ONLY AREA SIZE (2YTES)

CISK OFFSET OF RO AREA

START ATDRESS OF RO APCA

TOTAL RO REGION SIZE (32-WLD BRLOCKS)
HEADER SIZE (32-WD BLCCKES)

APR USAGE BRITMAP

LUN ASSIGMENT INFOFMATION

ACCLSS REQUEST (1=R¥, @=RC)
APR KESERVATION FLAG

PIC INCICATOR (1=YES)

BLCCK TYPE (9=COM, 1=LIR)

QTn{"V_ I‘EDINDH (l:vc‘(‘\

LIB IS POSITICH INDE#CWLENT
TASK HAS HEADER (1=.0)
TASK HAS FP SAVE AREA (1=YES)

C-2

TASK IMAGE FILE STRUCTURE

C.1.1 Label Block Details

The information contained in the label block is verified by the Install task in creating a system
task directory (STD) entry for the task, and in linking the task to shareable global areas.

The definitions of the symbols used below may be obtained using the macro LBLSY$, which is
defined in the system macro library. This macro may be given the argument 'DEF$G’, in which
case the definitions are made global.

e L$BTSK - Task name, consisting of two words in Radix-50 format. The value of this parameter
is set by the TASK keyword.

¢ L$BPAR - Partition name, consisting of two words in Radix-50 format. Its value is set by the
PAR keyword.

¢ L$BFLG - Task flag word containing bit values that are set or cleared depending on defined
task attributes. Attributes are established by appending the appropriate switches to the task
image file specification.

Bit Attribute if Set=1
SFMU 6 Task is multi-user (/MU)
SF.PT 7 Task is privileged (/PR)
SF.XS 10 Task cannot receive data (/NOSEND)
SF.XA 1 Task is not abortable (/NOAB})
SF.XD 12 Task is not disableable (/NODIS)
SF.XF 13 Task is not fixable (/NOFIX)
SF.XC 14 Task is not checkpointable (/NOCH)
SFSR 16 Task can be sent data and requested (/REQUEST)

The symbolic names for these flags are not defined by LBLSY$.

e L$BPRI - Default priority, set by the PRI keyword.

* L$BLDZ - Load size of the task, expressed in multiples of 32-word blocks. The value of
L$BLDZ is equal to the size of the root segment, in multi-segment tasks.

¢ L$BMXZ - Maximum size of the task, expressed in multiples of 32-word blocks. The header
size is included.

* L$BMXZ - is used by Install to verify that the task fits into the specified partition.

¢ L$BPOL - Pool usage limit indicating maximum number of pool nodes that can be used
simultaneously by the task. The default is 40 (decimal), which is overridden by the POOL
keyword.

* L$BPIC - Flags for use by INSTALL:

Flag Interpretation if Set=1
LF$PIC Image is position independent
LF$NHD Image has no header

C-3

TASK IMAGE FILE STRUCTURE

Flag Interpretation if Set=1

LF$FP Task has floating point save area in its header
LF$RO Task has resident overlays

LF$HND Task has header (1=no)

LF$SUP Task linked to supervisor-mode library.

LFSLB Task is a supervisor-mode library mode request.

& s) - o

* L$BDAT - Three words, coniaining the task creation date as 2-digit inieger values, as follows:

YEAR (since 1900)
MONTH OF YEAR
DAY OF MONTH

* L$BHRB - Virtual block number of the task header. Between 2 and 4 depending on number of
LUNs, as follows:

UNITS = O virtual block 2
UNITS = 1-128 virtual block 3
UNITS = 129-255 virtual block 4

e L$BAPR - Starting APR number if this image is a shareable global area. Calculated from
BASE or TOP keywords.

¢ L$BEXT - The default number of words by which the memory allocated to a task at install
time will be increased. This value is overridden by the /INC qualifier to INSTALL. Value is set
with EXTTSK option of the Task Builder.

¢ L$BUIC - The UIC with which the task is built. Set by UIC keyword.

* L$BROZ - The size in bytes of the task read-only area. Zero if the task has no read-only area.
* L$BROO - Relative block number in the task image file of the start of the read-only area.

* L$BROB - Base virtual address of task read-only area (always on a 4K-word boundary).

* L$BPAZ - Total size (in 32-word blocks) of the task read-only region, including RO resident
overlays.

* L$BHSZ - Task header size (in 32-word blocks).

* L$BAPM - Task APR usage bitmap. Bits 0-7 are set according to whether the corresponding
APR is in use.

The following paragraphs describe components of the Shareable Global Area Name Block. An
8-word block is generated for each SGA referenced by the task. Because SGAs need not be installed
in the system when the task is built, the Task Builder builds the block from the area’s disk image,
using information in the label blocks of that image.

® Library Name - A 2-word Radix-50 name specified in the LIBR or COMMON keyword.
¢ Creation Date - Obtained from the creation date in the shareable global area disk image label

lock.
* Starting Address - First address used to map the Shareable Giobal Area into the task
addressing space.

CcC-4

C.2

TASK IMAGE FILE STRUCTURE

The flags are used as follows:

Flag Meaning

LD$REL Global area is PIC. Set if value of LF$PIC in the library image flags word (L$FLG) is =1.
Global area is absolute. Cleared if LF$PIC in L$LFLG of global area image is 0.

LD$ACC Read/Write access request. Set if RW specified in SGA option.
Read-only ACCESS request. Cleared if RO specified in SGA option.

LD$CLS Library is part of a cluster.

LD$SCL Library is first library in a cluster. (Set in Phase 4 processing.)

LD$SUP Library is a supervisor-mode library.

Header

The task is read into main memory starting at the base of the Header. Example C-2 illustrates
the format of the fixed part. Futher details can be found in the IAS Executive Facilities
Reference Manual. As shown in Figure C-1, the variable part includes the Logical Unit Table,
the Attachment Descriptor Blocks and the Floating Point Save Area. The Logical Unit Table
identifies to the Executive which device is assigned to which LUN. The Attachment Descriptors
identify currently attached regions. The Floating Point Save Area is storage for the floating point
registers when this option is requested. There may also be a System Reserved work area.

The Header is always a multiple of 32-word blocks. This ensures that the root segment code starts
on a 32-word boundary, a requirement for the allocation of a APR pair of relocation registers. The
Task Header is not covered by a task relocation register, and is therefore, not part of the virtual
address space of the task.

The task header offsets may be defined using the macro HDRSY$, which is defined in the system
macro library. The optional argument 'DEF$G’ may be used to make the definitions global.

Example C-2 Task Header Fixed Part

.MACRO HDRSY$ GBL
.MCALL DEFINS
.IF IDN,<GBL>,<DEF$G>

...GBL=1

.IFF

.. .GBL=0

.ENDC

DEFINS H.CR1 ,0 ; CONTEXT REFERENCE 1 (FP SAVE AREA POINTER)
DEFINS H.PDO ,2 ; PAGE DESCRIPTOR REGISTER 0O
DEFINS H.PD1 ,4 ; PACE DESCRIPTOR REGISTER 1
DEFIN$ H.PD2 ,6 ; PAGE DESCRIPTOR REGISTER 2
DEFIN$ H.PD3 ,10 ; PAGE DESCRIPTOR REGISTER 3
DEFINS H.PD4 ,12 ; PAGE DESCRIPTOR REGISTER 4
DEFIN$ H.PD5 ,14 ; PAGE DESCRIPTOR REGISTER 5
DEFINS$ H.PD6 ,16 ; PAGE DESCRIPTOR REGISTER 6
DEFIN$ H.PD7 ,20 ; PAGE DESCRIPTOR REGISTER 7

Example C-2 Cont’d on next page

C-5

TASK IMAGE FILE STRUCTURE

Example C-2 (Cont.) Task Header Fixed Part

DEFINS$ H.PAO ,22 ; PAGE ADDRESS REGISTER
DEFINS H.PAl ,24 ; PAGE ADDRESS REGISTER
DEFINS$ H.PA2 ,26 ; PAGE ADDRESS REGISTER
DEFIN$ H.PA3 ,30 ; PAGE ADDRESS REGISTER
DEFINS H.PA4 ,32 ; PAGE ADDRESS REGISTER
DEFINS H.PAS5 ,34 ; PAGE ADDRESS REGISTER
DEFINS H.PA6 ,36 ; PAGE ADDRESS REGISTER 6
DEFINS H.PA7 ,40 ; PAGE ADDRESS REGISTER 7

s WdhKE O

PAGE FLAGS REGISTER
PAGE FLAGS REGISTER
PAGE FLAGS REGISTER
PAGE FLAGS REGISTER
PAGE FLAGS REGISTER
PAGE FLAGS REGISTER
PAGE FLAGS REGISTER
PAGE FLAGS REGISTER
DUMMY PAGE FLAGS REGISTER TO STOP SCANS

DEFINS H.PFO ,42
DEFIN$ H.PF1l ,44
DEFINS H.PF2 ,46
DEFIN$ H.PF3 ,50
DEFINS H.PF4 ,52
DEFINS$ H.PF5 ,54
DEFIN$ H.PFé6 ,56
DEFINS H.PF7 ,60
DEFINS H.PF8 ,62

NJoudbh wiNeE O

Ne e Ve Ne Se N Ne e v

DEFINS H.PLO, 64
DEFINS H.PL1 ,66
DEFINS$ H.PL2 ,70
DEFINS H.PL3 ,72

PAGE LENGTH REGISTER
PAGE LENGTH REGISTER
PAGE LENGTH REGISTER
PAGE LENGTH REGISTER
DEFINS$ H.PL4 ,74 PAGE LENGTH REGISTER
DEFIN$ H.PL5 ,76 PAGE LENGTH REGISTER
DEFINS H.PL6 ,100 ; PAGE LENGTH REGISTER
DEFIN$ H.PL7 ,102 ; PAGE LENGTH REGISTER

“e & No Ne Ne

s WNhPHO

~e

DEFINS H.POO ,104
DEFINS H.POl1 ,106
DEFINS H.PO2 ,110
DEFINS$ H.PO3 ,112
DEFINS H.PO4 ,114
DEFINS H.PO5 ,116
DEFINS$ H.PO6 ,120
DEFINS$ H.P0O7 ,122

PAGE OFFSET REGISTER
PAGE OFFSET REGISTER
PAGE OFFSET REGISTER
PAGE OFFSET REGISTER
PAGE OFFSET REGISTER
PAGE OFFSET REGISTER
PAGE OFFSET REGISTER
PAGE OFFSET REGISTER

Nk WNE=EHO N0

Ne Ne Ne Na Ns Ns N e

TASK PROGRAM STATUS WORD
TASK PROGRAM COUNTER

DEFINS H.TPS ,124
DEFIN$ H.TPC ,126

DEFINS$ H.TRO ,130 ; TASK RO
DEFIN$ H.TR1 ,132 ; TASK Rl
DEFINS H.TR2 ,134 ; TASK R2
DEFINS H.TR3 ,136 ; TASK R3
DEFINS H.TR4 ,140 ; TASK R4
DEFIN$ H.TR5 ,142 TASK R5
DEFINS H.TSP ,144 TASK SP

Ne e N

DEFINS H.CR2 ,144 CONTEXT REFERENCE POINT 2z (NO STORAGE ALLOCATED)

DEFINS H.IPS ,146
DEFIN$ H.IPC ,150
DEFINS H.ISP ,152

INITIAL PROGRAM STATUS WORD
INITIAL PROGRAM COUNTER
INITIAL STACK POINTER

Ne Sa Ne

DEFINS$ H.DSV ,154 ; DEBUGGING SST VECTOR ADDRESS
DEFINS H.TSV ,156 ; TASK SST VECTOR ADDRESS
DEFINS H.DVZ ,160 ; DEBUGGING SST VECTOR SIZE
DEFINS H.TVZ ,161 ; TASK SST VECTOR SIZE

Example C-2 Cont’d on next pbage

C-6

TASK IMAGE FILE STRUCTURE

Example C-2 {Cont.) Task Header Fixed Part

DEFINS
DEFINS
DEFINS
DEFINS
DEFINS
DEFINS
DEFINS
DEFINS
DEFINS
DEFINS
DEFINS
DEFINS
DEFINS
DEFINS
DEFINS
DEFINS
DEFINS

~e

DEFINS

H.PUN
H.FEN
H.DUI
H.UIC
H.HSZ
H.FZI ,174
H.REC ,176
H.RRA ,200
H.ADB ,202
H.NADB, 204
H.TAT ,206
H.RWZ ,210
H.I0Q ,212
H.EAF ,216
H.WNCT, 220
H.NML ,222
H.ULC ,223

,162
,164
,166
,170
,172

(NOT YET IMPLEMENTED)

H.PVDI, 224

R CRE PR PR T T T I PREL TR PR

Ne Ne N2 e v

.
’

POWERFAIL AST NODE ADDRESS

FLOATING PO
DEFAULT UIC
RUN UIC

HEADER SIZE

INT EXCEPTION AST NODE ADDRESS

(BLOCKS)

FILE SIZE INDICATOR (OFFSET TO FIRST BLOCK PAST IMAGE)

RECEIVE AST

NODE ADDRESS

RECEIVE BY REF AST NODE ADDRESS

OFFSET TO ATTACHMENT DESCRIPTOR BLOCKS
NUMBER OF ATTACHMENT DESCRIPTORS

TASK ATTRIBUTES

SIZE OF READ/WRITE RESIDENT OVERLAY REGION

I/0 REQUEST

QUEUE, USED BY HANDLERS (2 WORDS)

TASK HEADER FLAGS WORD
WAIT-FOR-NODES RETRY COUNT
NETWORK MAILBOX LUN (USED BY DECNET)

UNLOAD LOCK

TASK DIRECT

COUNT, FOR HANDLERS

IVE PRIVILEGE (BYTE)

DEFINS$ H.VNUM, 225 ;++003 SYSTEM VERSION NUMBER

DEFINS

“~

~

DEFINS$
DEFINS
DEFINS

~e

DEFINS

~

RELOADING
DEFINS
DEFINS
DEFINS
DEFINS
DEFINS

DIRECTIVE

IS ACTIVE
DEFINS
DEFINS

~e

~

~

Ne e e N

~e

DEFINS
DEFINS
DEFINS
DEFINS$
DEFINS

~e N

DEFINS PF.RID,177400
OR ZERO IF THE REGION WAS SET UP AT INSTALL
TIME (I.E. NOT DYNAMICALLY MAPPED)

wa Se e N

~

H.TAC, 226 ;

+4001 (2 WORDS)
++001 3RD WORD RESERVED

H.STLN, 234
H.SPCT, 236
H.PADB, 240

FIRST TIME LOAD)

H.CKSM, 242

A TASK OUT OF MEMORY

IT
H.AC ,244
H.PTSM, 246
H.CHK, 250 ;
H.RWAP, 252
H.FXTK, 254

WHICH FIXED A TASK,

H.MEX, 256 ;
H.LUT ,260

FLAG BIT DEFINTIONS:

PF.WIN, 001
PF.WNO, 002
PF.CON, 004
PF.RAC, 010
PF.MAP, 020

GCD NODE ADDRESS)

o
’
;
.
;

; HEADER CHECKSUM,

++001 TASK ACCOUNTING INFO

STL NODE ADDRESS FOR THIS TASK
COUNT OF TASKS SPAWNED BY THIS ONE (BYTE)

ADB ADDRESS

FOR TASK PURE AREA (USED AT

SET BEFORE MOVING

AND CHECKED ON

-
’
I
2
z
.
I

’

~

Ne Ne Se v

ACCOUNTING AREA POINTER
PRIVILEGED TASK SEMAPHORE MASK
HEADER CHECK WORD (=S.DL+2)

APR TO USE
STD ADDRESS

TO LOAD RW RESIDENT REGION

OF TASK WHICH ISSUED THE FIXS$

WHILE IT

++001 MAXIMUM EXTENSION (SET BY TASK BUILDER)

TASK’S LOGICAL UNIT TABLE

PAGE FLAGS REGISTER (H.PFN):

THIS IS FIR
THIS IS FIR

ST APR OF A WINDOW
ST APR OF WINDOW ZERO

THIS IS A CONTINUATION OF PREVIOUS APR
REGION HAS BEEN ACCESSED
APR IS MAPPED ONTO REGION (H.PAN CONTAINS

; HI BYTE CONTAINS REGION ID OF MAPPED REGION,

TASK ATTRIBUTES (H.TAT):

Example C-2 Cont’d on next page

C-7

TASK IMAGE FILE STRUCTURE

Example C-2 (Cont.) Task Header Fixed Part

DEFINS HT.FRQ, 000001 ; TASK REQUIRES RECEIVE QUEUES TO BE FLUSHED
DEFINS HT.NWD, 000002 ; DON’'T WAIT FOR NODES

DEFINS$ HT.PRO, 000004 ;++005 PRIVILEGED TASK DOESN’T MAP TO SCOMM
DEFINS HT.SUP,000010 ;++006 Task has Supervisor mode save area

TASK FLAGS (H.EAF):

Ne Ne N

DEFINS$ HF.RMC,000001 ; MCR TO BE RECALLED ON TASK EXIT
DEFINS$ HF.LPA,000002 ; LUNS PARTIALLY ASSIGNED, MUST BE COMPLETED
DEFINS$ HF.SAV,000004 ;++002 SET IF TASK SAVED IN SYSTEM

DIRECTIVE PRIVILEGE FLAGS (H.PVDI). BITS ARE SET TO DISALLOW
PARTICULAR DIRECTIVES (SEE EM10)

e Ve we N

DEFINS SF.RT ,001 ; TASK CANNOT ISSUE REAL-TIME DIRECTIVES
DEFIN$ SF.PLS,002 ; TASK CANNOT ISSUE REGION-RELATED DIRECTIVES

SYSTEM VERSION NUMBER. USED TO PREVENT PRIVILEGED TASK IMAGES BUILT ON
EARLIER SYSTEMS, FROM BEING INSTALLED.

e %o ve N

DEFINS$ HV.NUM,3 ;++004/003 SYSTEM VERSION NUMBER

AFTER THIS, THERE ARE FOUR AREAS WHOSE SIZE DEPENDS ON THE TASK.
THEY ARE DESCRIBED TOGETHER WITH ANY APPROPRIATE DEFINTIONS.

~e ne we

LOGICAL UNIT TABLE (LUT):

~e e

THIS CONTAINS INFORMATION ABOUT THE TASK’S LOGICAL UNIT
ASSIGNMENTS. THE FIRST WORD IS THE NUMBER OF ENTRIES
IN THE TABLE. THE REST OF THE LUT CONTAINS TWO WORDS PER ENTRY:

e Se N

~

WD.00 PUD ADDRESS OF DEVICE TO WHICH LUN IS ASSIGNED
WD.01l OPEN FILE INFORMATION (USED BY ACP TASK)

~e

ATTACHMENT DESCRIPTOR BLOCKS:

THESE CONTAIN INFORMATION ABOUT REGIONS TO WHICH THE TASK IS
ATTACHED. THERE ARE TWO WORDS FOR EACH POSSIBLE REGION:

WD.00 RDL ADDRESS OF ATTACHED REGION
WD.01 LO BYTE - FLAGS
HI BYTE - RESERVED

THE FLAG BITS ARE:

Ne Ne Ne e Se o Ng Ne e Ne We e e e Na

DEFINS$ RF.RED,001 TASK HAS READ ACCESS

~e

DEFINS RF.WRT,002 ; TASK HAS WRITE ACCESS
DEFINS RF.EXT,004 ; TASK HAS EXTEND ACCESS
DEFINS RF.DEL,010 ; TASK HAS DELETE ACCESS
DEFINS RF.XDT,020 ; TASK NOT ALLOWED TO DETACH

DEFINS RF.ITA,040 ; ATTACH DONE AT INSTALL TIME
ALL OTHER BITS RESERVED

FLOATING POINT SAVE AREA:

“e Ne “e Ne

THIS 25 WORD AREA IS USED TO STORE THE TASK’S FLOATING POINT
CONTEXT, IF IT WAS SPECIFIED AT BUILD TIME THAT THE TASK USES

Example C-2 Cont’d on next page

c-8

TASK IMAGE FILE STRUCTURE

Example C-2 (Cont.) Task Header Fixed Part

THE FP1l FLOATING POINT UNIT. THE FIRST WORD CONTAINS THE
SAVED FP STATUS WORD. THE REMAINING 24 WORDS CONTAINS EACH
OF THE 6 64-BIT FLOATING POINT REGISTERS.

we

~e e

Supervisor mode APR save area:

e W,

Allocated by TKB when the task maps to supervisor mode libraries. The
task’s supervisor mode PAR’s and PDR’s are stored here during a context
switch. This area is 8.*4 words (64. bytes) in length.

TASK ACCOUNTING AREA:

e Ve Na e e e N

(NOT YET DEFINED)

.MACRO HDRSY$ GBL
.ENDM HDRSY$
.ENDM HDRSY$

.MACRO LBLSY$ GBL
.MCALL DEFINS

.IF IDN,<GBL>,<DEF$G>
...GBL=1

.IFF

.. .GBL=0

.ENDC

DEFINS L$BTSK,0 ; TASK NAME (RAD50)

DEFINS L$BPAR,4 ; DEFAULT PARTITION (RADS50)

DEFINS L$BFLG, 10 TASK FLAGS WORD

DEFINS L$BPRI, 12 DEFAULT PRIORITY

DEFINS L$BLDZ,14 LOAD SIZE (32-WD BLOCKS)

DEFINS L$BMXZ, 16 INITIAL SPACE ALLOCATION (32-WD BLOCKS)
DEFINS L$BPOL, 20 NODE POOL LIMIT

DEFINS L$BPIC,22 LIBRARY FLAGS WORD

DEFINS$ L$BDAT, 24 CREATION DATE

DEFINS$ L$BLIB, 32 RESIDENT LIBRARY REQUESTS (56. WORDS)
DEFINS L$BHRB, 212 HEADER BLOCK NUMBER

DEFINS L$BAPR,214 STARTING APR (LIBRARY)

DEFINS$ L$BEXT, 216 DEFAULT TASK EXTENSION

DEFINS$ L$BUIC, 220 DEFAULT UIC

DEFINS$ L$BROZ, 222 READ-ONLY AREA SIZE (BYTES)

DEFINS L$BROO, 224 DISK OFFSET OF RO AREA

DEFIN$ L$BROB, 226 START ADDRESS OF RO AREA

DEFINS L$BPAZ, 230 TOTAL RO REGION SIZE (32-WD BLOCKS)
DEFINS L$BHSZ, 232 HEADER SIZE (32-WD BLOCKS)

DEFINS L$BAPM, 234 APR USAGE BITMAP

DEFINS L$BASG,1000 ; LUN ASSIGMENT INFORMATION

Ne Ne Se Ne N e W

~

Ne e Ve e Se e N Ne N N

Example C-2 Cont’d on next page

C-9

TASK IMAGE FILE STRUCTURE

Example C-2 (Cont.) Task Header Fixed Part

hhkkkhkkhkhkkhkkhdhhhhkhhkhhkhkhk

DEFINS

* Ne Ne

~

L$BXLN, 26

; 8.*<1$BLIB-L$SBPAR> - Length of extra
library descriptors (used only when

linking to a supervisor mode library
Kk gk kok koK ok ok ko okk ok ok k ok kk ok ok okk

; FLAG BITS DEFINITIONS
' DEFIN$ LD$ACC, 100000 ; ACCESS REQUEST (1=RW, O0=RO)
DEFIN$ LD$RSV,040000 ; APR RESERVATION FLAG
7

DEFINS LDSCLS, 020000 Library is part of a cluster
DEFINS$ LD$SCL,000200 ; Saved cluster attribute

DEFINS LD$SUP,000010 ; Supervisor mode library

DEFINS LDSREL,000004 ; PIC INDICATOR (l1=YES)

DEFINS$ LDSTYP,000002 ; BLOCK TYPE (0=COM, 1=LIB)

DEFINS LDS$DEF,000001 ; BLOCK DEFINED (1=YES)

DEFINS LDSAMK, 000060 ; APR mask bits

DEFINS$ LFS$SPIC,000001 ; LIB IS POSITION INDEPENDENT
DEFINS LFS$SNHD, 000002 ; TASK HAS HEADER (1=NO)

DEFINS LFS$SFP ,000004 ; TASK HAS FP SAVE AREA (1=YES)
DEFINS LFS$RO ,000010 ; TASK HAS RESIDENT OVERLAYS (1=YES)
DEFINS$ LF$SUP, 000020 ; Task linked to supervisor library
DEFINS$ LF$SLB, 000040 ; Task is a supervisor mode library

.MACRO LBLSY$ GBL
.ENDM

.ENDM LBLSYS

Low Memory Pointers

Several locations at the beginning of a task’s virtual address space are reserved for system
dependent information. These locations are as follows:

Address
{Virtual) Usage
0 $DSW Directive Status Word. The Executive returns the completion code in this word for
every system directive issued by the task.
2 .FSRPT File Control Services work area and buffer pointer.
4 $OTSV FORTRAN OTS work area pointer (that is, address of $OTSVA).
6 N.OVPT Overlay Run Time system work area pointer.
10 $VEXT Vector extension area pointer.

The last four of these locations contain addresses of work areas. These addresses are needed to
provide re-entrancy capability to the associated system routines when these routines are placed in
Shareable Global Areas.

Note that it is possible for a task to destroy these pointers if a stack overflow occurs.

The vector extension pointer (§VEXT) points to the vector extension area which contains addresses
of impure work areas in the task.

C-10

TASK IMAGE FILE STRUCTURE

Figure C-2 illustrates the format of the vector extension area. Each location within this region
contains the address of an impure storage area that is referred to by subroutines; these subroutines
must be re-entrant. Addresses below $VEXTA, referred to by negative offsets, are reserved for
DIGITAL applications. Addresses above $VEXTA, referred to by positive offsets, are allocated for

user applications.

Figure C-2 Vector Extension Area Format

$VEXT

.PSECT $$VEX0

$ VEXTA .PSECT $$VEX1

Reserved for
Digital use

Reserved for
user applications

The program sections $$VEX0 and $$VEX1 have the attributes D, GBL, RW, REL, and OVR.

The program section attribute OVR facilitates the definition of the offset to the vector and the
initialization of the vector location at link time. For example:

-GLOBL

.PSECT
BEG=.

. BLKW
LABEL: .WORD

OFFSET==LABEL-BEG
.PSECT
IMPURE:

SVEXTA

; MAKE SURE VECTOR AREA IS LINKED

$$VEX1, D, GBL, RO, REL, OVR

N

IMPURE

; POINT TO BASE OF POINTER TABLE

; OFFSET TO CORRECT LOCATION
: IN VECTOR AREA

; SET IMPURE AREA ADDRESS
; DEFINE OFFSET

You should centralize all offset definitions within a single module from which the actual vector

space allocation is made. Also, you should conditionalize the source to create two object modules:
one that reserves the vector storage and, one that defines the global offsets which will be referred
to by your resident library’s subroutines.

c-1

C4

C.5

C.6

C.7

TASK IMAGE FILE STRUCTURE

Note that the sequence of instructions above intentionally redefines the global symbol. The Task
Builder will report an error if this value differs from the centralized definition.

You can locate your vector through a sequence of instructions similar to the following:

MOV Q#VEXT, RO ; GET ADDRESS OF VECTOR EXTENSIONS
MOV OFFSET (RO),RO ; POINT TO IMPURE AREA
.END

Task R/W Root Segment

The low memory pointers, stack space and all R/W p-sections of the task root segment are
concatenated by the Task Builder to form the R/W part of the root segment.

READ/WRITE Overlays

Each read/write overlay segment (whether resident or not) is aligned on a disk block boundary.

READ-ONLY Region

All read-only code, including the task pure area and any read-only resident overlays, is placed
last in the task image file, starting on a disk block boundary. Each overlay starts on a 32-word
boundary so that it can be mapped by the Memory Management Directives. Read-only resident
overlays are not aligned to start on disk block boundaries, since thay are all loaded at the same
time.

Segment Table

) The Segment Tabie contains a segment descriptor for every segment in the task. The segment
descriptor is formatted as shown in Figure C-3. If the autoload method is used, the segment
descriptor is six words in length. The table occupies a separate p-section called $$SGD1. A task
may obtain the base and end addresses of the table as follows:

SEGTBL: .PSECT $$SGDO,OVR,D
SEGEND: .PSECT $$SGD2,0OVR,D

Thig will define the symhbol 'SEGTRIL! to the hase address of the segment table and 'SEGEND’

to the first address beyond the segment table. If the manual load method is used, the segment
descriptors are expanded to be eight words in length to include the segment names. If any overlays
are resident, the descriptors are expanded to nine words to include the window pointers.

The offset names used below may be defined using the macro SEGDF$, which is defined in the
system macro library. The optional argument 'DEF$G’ may be used to make the definitions
global.

C-12

Figure C-3 Segment Descriptor

TASK IMAGE FILE STRUCTURE

WORD 15 12 1
T$RBLK 0 | STATUS REL. DISK ADDRESS
TSRLDA 1 LOAD ADDRESS
TSRLNG 2 LENGTH IN BYTES
TSRUP 3 LINK UP
TSROWN 4 LINK DOWN
TSRNXT 5 LINK NEXT
TSANME 6 SEGMENT
7 NAME
TSRWDP 8 WINDOW DESCRIPTOR ADDRESS

FIXED
PART

C.7.1 Status

The status bits are used in the autoload method to determine if an overlay is in memory, that is:

Cc-13

TASK IMAGE FILE STRUCTURE

bit 12

0= segment is in memory.

1= segment is not in memory.
bit 13

0= segment is not loaded

1= segment is loaded
bit 14

0= segment has disk allocation

1= segment has no disk allocation (/NODSK)
bit 15

1= (fixed setting)

C.7.2 Relative Disk Address

Each segment begins on a block boundary and occupies a contiguous disk area to allow an overlay
to be loaded by a single device access. The relative disk address is the relative block number of the
overlay segment from the start of the task image. The maximum relative block number can not
exceed 4096 since twelve bits are allocated for the relative disk address.

C.7.3 Load Address

The load address contains the address into which the loading of the overlay segment starts.

C.74 Segment Length

Segment length The segment length contains the length of the overlay segment in bytes and is
used to construct the disk read.

C.7.5 Link-Up

The link-up is a pointer to a segment descriptor away from the root.

C.7.6 Link-Down

The link-down is a pointer to a segment descriptor nearer the root.

C.7.7 Link-Next

The link-next is a pointer to the adjoining segment descriptor. When a segment is loaded, the
loading routine foilows the link-next to determine if a segment in memory is being overlaid and
ghould therefore be marked out-of-memory.

The link-next pointers are linked in a circular fashion:

C-14

C.7.8

C.79

C.8

TASK IMAGE FILE STRUCTURE

Consider the tree:

A21 A22

Al
| I

A0

The segment descriptors are linked in the following way:

«—
AT2_1‘ 222 A|21 A|22 A21 A22
Al A2 Al *AZ*) Al A2

b | | -

5 4 C)

LINK UP
LINK DOWN LINK NEXT

If there is a co-tree, the link-next of the segment descriptor for the root points to the segment
descriptor for the root segment of the co-tree.

Segment Name

This field contains the 2-word radix-50 segment name. It is present only if the global symbol
$LOAD is defined or referenced in the task.

Window Descriptor Address

This field contains the address of the window descriptor for this overlay. It is present only if the
task contains resident overlays.

Autoload Vectors

Autoload vectors appear in every segment that references autoload entry points in segments that
are farther from the root than the referencing segment.

The autoload vector table consists of one entry per autoload entry point in the form shown in
Figure C4.

C-15

C.8.1

TASK IMAGE FILE STRUCTURE

Figure C-4 Autoload Vector Entry

JSR PC
$AUTO
Segment descriptor address

Entry point address

Figure C-5 Window Descriptor

WORD

o

BASE APR WINDOW ID
VIRTUAL BASE ADDRESS
WINDOW SIZE IN 64-BYTE BLOCKS
REGION ID

OFFSET IN PARTITION

LENGTH TO MAP
STATUS WORD

SEND/RECEIVE BUFFER ADDRESS (0)

N o 0 bk W N

FLAGS WORD

©w o

ADDRESS OF REGION DESCRIPTOR

Window Descriptor

Window descriptors are allocated only if a structure containing memory-resident overlays is
defined. Window descriptors are shown in Figure C-5.

Words 0 through 7 constitute a window descriptor in the format required by the mapping
directives. The region ID is set by TKB unless the memory-resident overlay is part of a shared
global area.

Worde 8 and 9 contain additional data that is referenced by the cverlay routines. Rit 15 of the
flag’s word, if set, indicates that the window is currently mapped into the task’s address space.
Word 9 contains the address of the associated region descriptor.

C-16

TASK IMAGE FILE STRUCTURE

If the memory-resident overlay is not part of a shareable global area, this value is zero.

C.8.2 Region Descriptor

The Region Descriptor is allocated only when the memory-resident overlay structure is part of a
shared region. Region descriptors are shown in Figure C-6.

Figure C-6 Region Descriptor

0 REGION ID
SIZE OF REGION

REGION

NAME
REGION
PARTITION
REGION STATUS
PROTECTION CODES (ALWAYS 0)

@ ~ o bk W N

FLAGS

Words 0 through 7 constitute a region descriptor in the format required by the mapping directives.
The flag’s word is referenced by the overlay load routine. Bit 15 of the flag’s word, when set,
indicates that a valid region identification is in word 0. If this bit is clear, the overlay load routine
issues an Attach Region directive (with protection code set to zero) to obtain the identification.

C-17

RESERVED SYMBOLS

Several global symbol and p-section names are reserved for use by the Task Builder. Special
handling occurs when a definition of one of these names is encountered in a task image. This
happens, for example, when a system library module containing the definition is built into a task
for a particular purpose.

The definition of a reserved global symbol in the root segment causes a word in the Task Image
to be modified with a value calculated by the Task Builder. The relocated value of the symbol is
taken as the modification address.

The following global symbols are reserved by the Task Builder:

Table D-1 Reserved Global Symbols

Global

Symbol Modification Value

.MOLUN Error message output device.

.NIOST Two word /O status block containing the results of the load overlay request.

.NLUNS The number of logical units explicitly used by the task, not including the Message Output and
Overlay units.

.NOVLY The overlay logical unit number.

.NSTBL Reserved.

.TRLUN The trace subroutine output logical unit number.

.ODTL1 Logical unit number for the ODT terminal /O device.

.ODTiL2 Logicai unit number for the ODT iisting devics.

$OTSV The address in low memory of the FORTRAN OTS work area ($OTSVA defined by the
FORTRAN OTS).

.PILUN Location containing LUN for communication with the Timesharing Control Primitives.

The definition of one of the following reserved p-sections causes the task builder to extend that
p-section if the appropriate option input is specified (see Chapter 5, Section “EXTSCT”).

Table D-2 Reserved P-sections

Section
Name Extension Length
$$DEVT The extension length (in bytes} is calculated from the formula
EXT = <S.FDB+52>"UNITS
where the definition of S.FDB is obtained from the root segment symbol table and UNITS is the
number of logical units used by the task, excluding the Message Output, Overlay, and ODT units.
$$FSR1 The extension of this section is specified by the ACTFIL option input.
$$10B1 The extension of this section is specified by the MAXBUF option input.

RESERVED SYMBOLS

Table D-2 (Cont.) Reserved P-sections

Section
Name Extension Length
$$OBF1 FORTRAN OTS uses this area to parse array type format specifications. May be extended by

FMTBUF keyword.

The following p-section names and symbols are also reserved:

Table D-3 Reserved P-sections and Symbols

Section Name

or Symbol Contents

$$ALVC P-section containing the auto load vectors. Exists in every segment of an overlaid task.

$$FSR2 Contains the first free location after the file storage region p-section $$FSR1.

$SRESL P-section of the system resident library SYSRES.

$$RESM P-section of the system resident library SYSRES.

$$RGDS Contains region descriptions for overlaid shareable global areas.

$$RTS P-section containing the RETURN instruction used when referencing segments with the GBL
aftribute.

$$SGDO Defines the start of the segment table p-section $$SGD1.

$$SGD1 P-section containing the segment table (see Appendix C, Section C.7.)

$$SGD2 Contains the first free location after $$SGD1.

$SWNDS Contains window descriptions for resident overlays.

$$$0DT P-section containing the system debugging aid.

D-2

INCLUDING A DEBUGGING AID

To include a program which controis the execution of a tagk, you name the appropriate object
module as an input file and apply the /DEBUG PDS qualifier (/DA MCR switch).

When a debugging aid program is input, the Task Builder causes control to be passed to the
program when the task execution is initiated.

Such control programs might trace a task, printing out relevant debugging information, or monitor
the task’s performance for analysis.

The switch has the following effect:
1 The transfer address in the debugging aid overrides the task transfer address.
2 On initial task load, the following registers have the indicated value:

RO - Transfer address of task
R1 - Task name in Radix-50 format (word #1)
R2 - Task name (word #2)

The following points must be taken into consideration when using debugging aids on a task
(particularly ODT):

1 Breakpoints cannot be set in R-O p-sections. If such program sections are to be debugged, the
task should be re-linked with the /READ_WRITE PDS qualifier (RW MCR switch).

Care must be used if setting breakpoints in overlay branches.

Control always passes to ALBP2 immediately before returning to the users program afier an
autoload of an overlay.

Examples:

1. PDS> LINK/DEBUG/READ_“RITE FAULTY
or

MCR> TKB
TKB> FAULTY/DA/RW=FAULTY
TKB>/

ENTER OPTIONS:

TKB> SGA=SYSRES:RO
TKB>//

Use the default debugging and ODT, to debug task, including
its read-only areas.

2. PDS> LINK/DEBUG:[1,1]DDT/SYMBOLS/READ WRITE BADPRG
or

MCR> TKB

TKB> BADPRG/RW, , BADPRG=BADPRG, [1,1]DDT/DA
TKB>/

ENTER OPTIONS:

TKB> SGA=SYSRES:RO

TKB>//

E-1

INCLUDING A DEBUGGING AID

Use the debugging aid [1,1]DDT to debug task, including its
read-only areas, also create a task symbol table to be used
during the debugging dialogue.

E-2

F.1

F.1.1

IMPROVING TASK BUILDER PERFORMANCE

This appendix contains procedures and suggestions o assist in maximizing Task Builder
performance. Procedures are given for:

1 Evaluating and improving Task Builder throughput
2 Modifying command switch defaults to provide a more efficient user interface

The procedures given here may require relinking the Task Builder. Modifications to the Task
Builder build file imply using one or more of the following files located under UFD [11,11}:

TKBBLD .CMD
SLOTKBBLD.CMD

These files are on the object distribution medium, together with the library and ODL files required
for building TKB.

Evaluating and Improving Task Builder Performance

‘Task Builder throughput is determined by two factors:

1 The amount of memory available for table storage
2 The amount of disk latency due to input file processing
The discussion in the following paragraphs outlines methods for improving throughput in these

two cases. The methods approach their goals through judicious use of system resources and Task
Builder features.

Table Storage

The principal factor governing Task Builder performance is the amount of memory available for
table storage. To reduce memory requirements, a work file is used to store symbol definitions
and other tables. As long as the size of these tables is within the limits of available memory, the
contents of this file are kept in core and the disk is not accessed. If the tables exceed this limit,
some information must be displaced and moved to the disk, degrading performance accordingly.

Work file performance can be gauged by consulting the statistics portion of the Task Builder Map.
The following parameters are displayed:

Number of work file references:

Total number of times that work file data was referenced.

Work file reads:

Number of work file references that resulted in disk accesses to read work file data.
Work file writes:

Number of work file references that resulted in disk accesses to write work file data.

Size of core pool:

F-1

IMPROVING TASK BUILDER PERFORMANCE

amount of in-core table storage in words. this value is also expressed in units of 256-word pages
(information is read from and written to disk in blocks of 256 words).

Size of work file:

Amount of work file storage in words. If this value is less than the core pool size, the number of
work file reads and writes is zero. That is, no work file pages are removed to the disk. This value
is also expressed in pages (256-word blocks).

Elapsed time:

Amount of time required to build the task image, and output the map. This value exciudes odl
processing, option processing, and the time required to produce the global cross-reference.

The overhead for accessing the work file can be reduced in one or more of the following ways:
1 By increasing the amount of memory available for table storage

2 By placing the work file on the fastest random access device

3 By decreasing system overhead required to access the file

4 By reducing the number of work file references

The task builder extends itself as necessary (using the EXTK$ directive) up to the limit set by the
MAXEXT option when the task builder is linked or by the SET EXTENDED_TASK_SIZE PDS
command or the SET /MAXEXT MCR command.

As distributed, the maximum extension for the task builder is 2000 (the default value).

The work file resides on the device WKO0. It may be possible to improve performance by redirecting
this device to a faster disk at System Generation or system startup.

System overhead for work file accesses is incurred in translating a relative block number in the
file to a physical disk address. To minimize this overhead, the Task Builder requests disk space
in contiguous increments. The size of each increment is equal to the value of symbol WSKEXT
defined in the Task Builder build file. A larger positive value causes the file to be extended in
larger contiguous increments and reduces the overhead required to access the file.

The increment should be set to a reasonable value because the Task Builder resorts to
noncontiguous allocation whenever contiguous allocation fails.

The size of the work file can be reduced by:

1 Linking the user’s task to a core-resident library containing commonly used routines (for
example, FORTRAN Object Time System) whenever possible.

[V

Including common medules, such as components of an object time system, in the root segment
of an overlaid task.

3 Reducing to one the number of times the library and symbol definition modules appear in the
task, by moving them nearer the root.

4 Using the /SELECT qualifier on symbol table files that describe absolute symbol definitions.
5 Using an object library or file of concatenated object modules if many modules are to be linked.

In the last two cases, system overhead is also significantly reduced because fewer files must be
opened to process the same number of modules.

F-2

F.1.2

F.2

IMPROVING TASK BUILDER PERFORMANCE

The number of work file references can be reduced by eliminating unnecessary output files and
cross-reference processing, or by obtaining the short map. In addition, selected files such as the
default system object module library, can usually be excluded from the map using the /NOMAP
qualifier. In this case, a full map can be obtained at less frequent intervals and retained.

The following procedures summarize the above suggestions for improving work file performance:

1 Use the MAXEXT opticn so that the task builder can extend automatically to obtain more table
space.
Reduce disk latency by placing the work file on the fastest random access device.

Reduce system overhead by modifying the command file to allocate work file space in larger
contiguous increments.

4 Decrease work file size by using resident libraries, concatenated object files, and object
libraries.

Decrease work file size by moving common modules into the root segment of an overlaid task.

6 Decrease the number of work file references by eliminating the map and global cross-reference,
obtaining the short map, or excluding files from the map.

Input File Processing

The suggestions for minimizing the size of the work file and number of work file accesses also
drastically reduce the amount of input file processing. ‘

A given module can be read up to four times when building the task:

1 To build the symbol table

2 To produce the task image

3 To produce the long map

4 To produce the global cross-reference

Files that are excluded from the long map are read only twice. The third and fourth passes

are completely eliminated for all modules when a short map is requested without a global
cross-reference.

Modifying Command Level Defaults

The task builder contains internal switches which represent the default characteristics which

it applies to a task when qualifiers (PDS) or switches (MCR) are not included in the command.
The defaults in the released version of the Task Builder may not suit the requirements of all
installations. For example, the default /FLOATING_POINT (/FP) (Floating Point Processor) would
be unsatisfactory at an installation that did not have this hardware.

The user can tailor many of the defaults by altering the contents of the words that contain initial
switch states. Modifying the Task Builder in this way is a three-step process as follows:

1 Consult the tables below to determine the switch word and bit to be altered.

2 Edit the appropriate Task Builder command file to include the switch word modification
through a GBLPAT option referencing the global symbol switch word name.

3 Relink the Task Builder using the modified command file.

F-3

IMPROVING TASK BUILDER PERFORMANCE

The command files for system tasks as provided with the released system require the standard set
of Task Builder defaults; therefore, it is necessary to retain and use an unmodified copy of the Task
Builder whenever such tasks are relinked.

The tables given are used to alter the defaults as follows:

1 Identify the qualifier (PDS) or command switch (MCR) and, if using MCR, the file to which it
applies.

2 If using MCR, consult the file entry in each table to locate the applicable switch words.

[#]

Scan the entries until the switch mnemonic is found. Only those switches which may be
changed are included in the tables.

4 OR the desired state of the associated bit with the initial contents to obtain the new set of
defaults.

5 Supply the revised value and switch word name as arguments in a GBLPAT option. The switch
words are in the TASKB segment.

6 Relink the Task Builder to produce a version containing the appropriate defaults.

Example:

To change the Task Builder Floating Point Processor default to INOFLOATING_POINT (/-FP), the
steps described below are performed.

By consulting Table F-1 the user determines that two qualifier words, $DFSWT and
$DFTSK contain task file qualifiers. Of these, $DFTSK contains the default setting for the
/FLOATING_POINT (/FP) switch in bit 14. Setting this bit to 0 changes the initial state to
/NOFLOATING_POINT (/-FP). This new value is combined with the initial contents to yield
the revised setting 4040. The required keyword input is:

OPTIONS? GBLPAT=TASKB:SDFTSK:4040
or

TKB>GBLPAT=TASKB:$DFTSK:4040

Note: The state of bit positions not listed in the table must not be altered.

F-4

Table F—1 Task File Defaults

IMPROVING TASK BUILDER PERFORMANCE

For time-sharing systems only:
File: Task File

Switch Word: $DFSWT
Initial Contents: 10

Bit Settings:

Bit Condition if Set to 1

15 EXIT (XT) Task Builder exits after errors

11 SEQUENTIAL (SQ) Sequential .PSECT allocation

7 NORUN (-OR) No run-time system

4 FULL_SEARCH (FU) Full overtay tree search

3 NORES (-RO) No resident overlays in task

2 REQUEST (SR) All send and request/resume accepted

For time-sharing systems only:
File: Task file

Switch Word: $DFTSK
Initial Contents: 44040

Bit Settings:

Bit Condition if Set to 1

15 NOCHECKPOINT {-CP) Not checkpointable

14 FLOATING (FP) Floating Point Processor
13 NOWAIT (-WN) No waiting for nodes

12 NOHEADER (-HD) No header

1 NOFIXABLE (-FX) Not fixable

10 DEBUG (DA) Debugging Aid

9 POSITION_INDEPENDENT (PI) Position-Independent

8 PRIVILEGED (PR) Privileged

7 TRACE (TR) Trace

6 NOABORTABLE (-AB) Not abortabie

5 FLUSH (FR) Fiush receive queues on exit
4 NORECEV (-SE) Cannot receive sent data
3 MULTIUSER (MU) Multiuser

2 NODISABLABLE (-DS) Cannot be disabled

1 READ_WRITE (RW) Read-only attribute ignored

F-5

IMPROVING TASK BUILDER PERFORMANCE

Table F-2 Map File Defaults

For time-sharing systems only:
File: Map file

Switch Word: $DFLBS
Initial Contents: 120000

Bit Settings:
Bit Condition [f Set to 1
15 NOFULL (-MA) Do not include system library and STB files in map

For time-sharing systems only:
File: Map file

Switch Word: $DFMAP
Initial Contents: 2040

Bit Settings:

Bit Conditlon If Set to 1

10 NOFILES (SH) Short map

6 CROSS_REFERENCE (CR) CREF

5 WIDE (W) Wide format

1 NOUNDEFINED_REFERENCES Do not print undefined references
(-UR)

F-6

IMPROVING TASK BUILDER PERFORMANCE

Table F-3 Symbol Table File Defaults

For time-sharing systems only:
File: Symbol table

Switch Word: $DFSTB
Initial Contents: 0

Bit Settings:

Bit Condition if Set to 1

12 NOHEADER (-HD) Build task without header

9 POSITION_INDEPENDENT (PI) Task is position-independent

0 NOUNDEFINED_SYMBOLS (-UN) Do not reference undefined symbols

Table F-4 Input File Defaults

For time-sharing systems only:
File: Input file

Switch Word: $DFINP

Initiai Contents: 100

Bit Settings:

Bit Condition if Set to 1

15 NOMAP (-MA) Do not include file contents in map

6 CONCATENATED (CC) File may contain two or more concatenated object modules

F.3 The Slow Task Builder

TKB.TSK uses a symbol table structure that can be searched quickly, but which requires more
work file space than previous versions. If the message

NO VIRTUAL MEMORY STORAGE AVAILABLE

F-7

IMPROVING TASK BUILDER PERFORMANCE

is issued, the user should attempt to reduce work file size as described previously. Assuming these
methods fail, another version of the Task Builder can be linked, which requires less storage but
runs considerably slower. The build file is SLOTKBBLD.CMD, which resides on the same device
and UFD as the other Task Builder command files.

F-8

IAS Task Builder Glossary

AUTOLOAD: The method of loading overlay segments, in which the Overlay
Runtime System automatically loads overlay segments when they are needed
and handles any unsuccessful load requests.

CO-TREE: An overlay tree whose segments, including the root segment, are made
resident in memory through calls to the Overlay Runtime System.

EXECUTIVE PRIVILEGED TASK: A task that has privileged memory access rights.
An executive privileged task can access the Executive and the external page in
addition to its own partition and referenced shareable global areas.

GLOBAL SYMBOL: A symbol whose definition is know outside the defining module.

MAIN TREE: An overlay tree whose root segment is loaded by the Executive when
the task is made active.

MANUAL LOAD: The method of loading overlay segments in which the user includes
explicit calls in his routines to load overlays and handles unsuccessful load
requests.

MEMORY ALLOCATION FILE: The output file created by the Task Builder that
describes the allocation of task memory.

OVERLAY DESCRIPTION LANGUAGE: A language that describes the overlay
structure of a task.

OVERLAY RUNTIME SYSTEM: A set of subroutines linked as part of an overlaid
task that are called to load segments into memory.

OVERLAY SEGMENT: A segment that shares storage with other segments an is
loaded when it is needed.

OVERLAY STRUCTURE: A structure containing a main tree and optionally one or
more co-trees.

OVERLAY TREE: A tree structure consisting of a root segment and optionally one or
more overlay segments.

PATH: A route that is traced from one segment in the overlay tree to another
segment in that tree.

PATH-DOWN: A path toward the root of the tree.
PATH-UP: A path away from the root of the tree.
PATH-LOADING: The technique used by the autoload method to load all segments

on the path between a calling segment an a called segment.

Glossary-1

IAS Task Builder Glossary

Glossary-2

P-SECTION: A section of memory that is a unit of the total allocation. A source
program is transiated into object modules that consist of p-sections with
attributes describing access, allocation and relocatability. (See Chapter 6,
Section 6.1.9 for a complete description).

ROOT SEGMENT: The segment of an overlay tree that, once loaded, remains in
memory during the execution of the task.

RUNNABLE TASK: A task that has a header and stack and that can be installed
and executed.

SHAREABLE GLOBAL AREA: A code and/or data area which can be shared by
many tasks. The area is resident only when one or more referencing tasks are
active. An SGA is linked using the Task Builder. SGAs used by a task are linked
to it using the Task Builder. See the IAS Executive Facilities Reference Manual
for a full definition of SGAs.

SEGMENT: A group of modules and/or p-section that occupy memory simultaneously
and that can be loaded by a single disk access.

SYMBOL DEFINITION FILE: The output file created by the Task Builder that
contains the global symbol definitions and values in a format suitable for
reprocessing by the Task Builder. Symbol definition files are used to link tagks
to shareable global areas.

TASK IMAGE FILE: The output file created by the Task Builder that contains the
executable portion of the task. It may contain a task or a shareable global area.

Index

A

ABORT command qualifier « 4-7
ABSPAT
default « 5-35
ABSPAT option « 5-35
syntax « 5-35
ACTFIL option «5-13
default » 5-13
syntax *5-13
Allocation options « 5—1
alloc option * 51
alter option « 5-1
ALVC option +5-6
syntax « 5-6
Argument list « 2—-3
ASG option » 5-32
default » 5-32
syntax « 5-32
ATRG option « 5-14
default « 5-14
syntax «5-14
Autoload indicator » 8-1, 8-2, 8-3
Autoioad method 11

Autoload method for overlays «8-1, 8-5

autoload indicator * 8-1, 8-2, 8-3
autoload vectors * 8-4, 8-5
error handling - 8-8
path-loading « 8-3, 84
Autoload vectors * 8-4, 8-5, C—15

BASE option « 5-15
default 515
syntax «5-15

C

CHECKPOINT command qualifier « 4—8

CMPRT option « 5-5
default - 5-6

CMPRT option (Cont.)
syntax « 5-5

Command qualifier
OVERLAY_DESCRIPTION - 4-28

command qualifiers
OPTIONS « 4-27

Command qualifiers * 4—1
ABORT - 47
CHECKPOINT - 4-8
CONCATENATED - 4-9
CROSS_REFERENCE « 4-10
DEBUG + 4-11
DEFAULT_LIBRARY «4-12
DISABLE - 4-13
EXIT+4-14
FIX +4-15
FLOATING_POINT + 4-16

FLUSH_RECEIVE_QUEUES + 4-17

FULL_SEARCH »4-18
HEADER « 4-19
LARGE_SYMBOL_TABLE « 4-20
LIBRARY »4-21, 4-22

MAP « 4-23, 4-24, 4-25
MULTIUSER - 4-26

POSITION_INDEPENDENT « 4-29

PRIVILEGED + 4-30
READ_WRITE « 4-31
RECEIVE » 4-32

REQUEST » 4-33
RESIDENT_OVERLAY «4-34
RUN_TIME_SYSTEM + 4-35
SELECT +4-36
SEQUENTIAL « 4-37
SYMBOLS - 4-38, 4-39
TASK « 4-40

TRACE + 441
WAIT_FOR_NODES » 442

Command sequence * 3—7
Command sequences
MCR » 3—1
PDS « 2~1
Comment lines * 2-6, 3—6
Completion routine
linking « 10-5
Completion routine option « 5-5
Completion routines
user-written » 10-18

Index-1

Index

Complex relocation » B-19, B-20
Components of a file specification « 3—11
CONCATENATED command qualifier « 4—9
Content altering options * 5—1
Control section « B-4
Co-trees » 7-8, 7-14, 7-15, 7-17, C-15
CROSS_REFERENCE command qualifier - 4-10
CSM libraries
completion routines for « 104
context-switching vectors for « 10-4

D

DEBUG command qualifier « 4-11
Debugging aid programs
including « E-1, E-2
Default file types «2-2
DEFAULT_LIBRARY command qualifier » 4—12
device option * 51
Device specifying options « 5—1
Directive Status Word « 6-2
DISABLE command qualifier 413
Disk-resident overlay structure » 71, 7-2, 7-3
Double-slash
encountered by Task Builder 3-5
DsSw
See Directive Status Word

E

End of global symbol directory « B-9
End of module « B-21
Entering source

MeR-21
Entering the LINK command + 2—4
Example task «2-7
Exclamation point operator « 7—11
Executable task image * 1-1, 2-2
Executive privileged task « 6-8
EXIT command qualifier - 414
EXTSCT option » 5-18

default « 5-16

syntax + 5-16
EXTTSK option*5-17

default « 5-17

syntax « 5-17

Index-2

F

File qualifiers * 4—1
File references
nesting levels for - 2—4
Files
annotation of « 36
File spscification
IAS conventions « 2—11
File specification components
optional * 3—12
FIX command qualifier « 4-15
FLOATING_POINT command qualifier - 4-16
FLUSH_RECEIVE_QUEUES command qualifier ¢
417
FMTBUF option « 5—18
defauit « 5-18
syntax » 5-18
FULL_SEARCH command qualifier + 4-18

G

GBLDEF
syntax » 5-36
GBLDEF option - 5-36
default » 5-36
GBLINC option « 5-37
default « 5-37
syntax » 5-37
GBLPAT option » 5-38
default - 5-38
syntax » 5-38
GBLREF option * 5-39
default - 5-39
syntax 5-39
GBLXCL option « 540, 10-5
default - 540
syntax « 540
Global additive displaced relocation « B-14
Global additive relocation + B-14
Global displaced relocation « B—13
Global relocation « B—12
Global symbol directory » B—1, B-2
Global symbol name * B-5, B-6
Gilobal symbols « 67
GSsD
See global symbol directory

See Global symbol directory

H

Header » C-5
HEADER command qualifier » 4-19

I1AS conventions
file specifications « 26
Identification options * 51
interest « 54
purpose * 5-4
use of «5-4
ident option « 5—1
IDENT option « 57
default « 5-7
syntax « 57
Impure area pointers « 6—2
Indirect command file facility
using * 3—4
internal displaced relocation « B—13
Internal relocation « B—12
Internal symbol directory « B-21
Internal symbol name « B—4
Introduction to TKB + 1-1

L

Label block details « C-3, C—4
Label block group « C-2, C-3
LARGE_SYMBOL_TABLE command qualifier - 4-20
LIBRARY command qualifier » 4-21, 4-22
LINK command
command qualifiers to « 2—3
/OPTIONS qualifier « 2—3
parameters « 2—-2
qualifiers « 41
LINK command sequence
example of « 10-6
Link-down « C-14
Linking libraries « 10-17
Link-next » C-14, C-15
Link-up - C—14
Load address - C-14
Loading disk-resident overlays * 8—1

Index

Loading from the task image file using the QIO
directive « 817

Loading memory-resident overlayd « 81
Loading methods for overlays ¢ 8-1
Location counter definition » B—15
Location counter modification « B~15
Low memory pointers « C-10, C-11

Manual load method » 1-2
Manual load method for overlays « 8-1, 86
calling sequence * 86
error handling - 8-8
using in a FORTRAN program - 8-7, 8-8
MAP command qualifier « 423, 4-24, 4-25
Mapped array declaration - B-8
MAXBUF option «5-19
default - 5-19
syntax « 5-19
MAXEXT option * 5-20
default» 5-20
format « 5-20
MCR switches + 4-2
Memory allocation file « 1-1, 6-9, 6~13, 6-15, 6-16
Memory-resident overlays
with Shared Global Areas + 918, 9-19, 9-20
Memory-resident overlay structure « 7-3, 74
Mode-switching * 10—4
Mode-switching vectors
user-written » 10—18
Modification description
specifications * 51
Module name « B-3
Multiline format » 32
Multiple tree structures « 7-8, 7-14, 7-15
MULTIUSER command qualifier - 4-26

0

Object modules « B—~1
complex relocation « B-19, B-20
control section - B4
end of global symbol directory « B-9
end of module * B-21
global additive displaced relocation + B—14
global additive relocation « B—14
global displaced relocation « B—13

Index-3

Index

Object modules (Cont.)

global relocation « B-12
global symbol directory » B—1, B-2
global symbol name « B-5, B—6
internal displaced relocation « B—13
internal relocation « B-12
internal symbol directory « B-21
internal symbol name « B—4
location counter definition « B-15
location counter modification « B-15
mapped array declaration - B-8
module name * B-3
program limits « B-16
program version identification « B—8
progrm limits « B—-16
P-section « B-6, B-7
P-section additive displaced relocation - B—18,
B-19
P-section additive relocation «B-17, B-18
P-section displaced relocation « B-17
P-section relocation + B-16
relocation directory « B-9, B-10, B-11
shareable global area additive relocation « B—20
text information « B-9
transfer address + B-5
oDL
See Overlay Description Language
ODTV option * 543
default - 543
syntax » 543
Option
format of - 2-3
Optionai entry » 2-9
Option arguments » 104
Options * 3-2, 104
argument lists for » 3-3
interest range for « 5—1
overriding * 53
task builder « 51
OPTIONS command qualiifier » 4—27
Output files
restrictions » 3-2
Overlay core image * 7-16, 7-17
Overlay Description Language « 7-1, 7-9, 7-10,
7-11, 7-13, 7-35, 7-37
creating files « 7-18
Overlay directives
.END « 7-9, 7-10
.FCTR+7-10, 7-11
.NAME - 7-11, 7-13
.PSECT+7-13, 8-5
.ROOT - 7-9, 7-10, 7-13

Index-4

Overlays
memory resident « 6-3
Overlay structures
description of « 7—1
disk resident « 7-1, 7-2, 7-3, 74
memory resident » 7-3
multiple tree structures » 7-13, 7-15
overlay core images « 7-16, 7-17
Overlay Description Language * 7-9, 7-10, 7-11,
7-13
overlaying high-level-language programs « 7-17,
7-18
overlay tree « 74, 7-6, 7-7, 7-8, 7-9
Overlay tree « 74, 7-6, 7-7, 7-8, 7-9
OVERLAY_DESCRIPTION command qualifier - 428

P

PAR option « 5-8

default » 5-8

syntax - 5-8
Path-loading - 8-3, 84
POOL option « 5-21

default « 5-21

syntax « 5-21
POSITION_INDEPENDENT command qualifier ¢

4-29

PRI option » 5-9

default« 5-9

syntax « 5-9
PRIVILEGED command quaiifier » 430
Program limits « B—16
Program section

See P-section
Program version identification B-8
P-section * 6-3, 6—4, 6-5, 6-6, B-5, B-6, B~7
P-section additive displaced relocation « B-18, B-19
P-section additive reiocation » B~i7, B~i8
P-section displaced relocation « B-17
P-section relocation * B-16

R

READ/WRITE overlays « C—-12
READ/WRITE task code (and data) * 6-2
READ-ONLY region » C—12

READ-ONLY task code (and data) * 6-3
READ-WRITE task code {and data) « 8-3

READ_WRITE command qualifiers * 4-31
RECEIVE command qualifier « 4-32
Referencing task

building « 104
Region descriptor » C—17
Relative disk address « C-14
Relocation dirsctory < 3-8, B-18, B5-11
REQUEST command qualifier « 433
RESAPR option « 522

default » 5-22

syntax « 5-22
Reserved symbols « D-1, D2
Resident library « 101
RESIDENT_OVERLAY command qualifier » 4-34
RESSGA option « 5-27

default « 527

syntax « 527
RESSUP option « 5-28, 10-6

default » 5-28

syntax « 5-28
RETURN statement « 101
RUN_TIME_SYSTEM command qualifier « 4-35

S

Segment name * C-15
Segment Table « C—12
SELECT command qualifier « 4-36
Sequence of commands

entering » 34
SEQUENTIAL command qualifier « 4-37
SGA option « 529

default « 5-29

syntax » 5-29
SGAs

See Shareable Global Areas
Shareable global area additive relocation « B-20
Shareable Global Areas

absolute + 9-5, 9-6

and memory allocatin files » 918

and memory allocation files - 9-8, 918

and symbol definition files » 9-3

and task image files « 9-3

building « 9-6, 9-7

compared to library files « 94

creating * 9-5

linking a task to » 9-3

location of on disk - 94

modifying a task to use an SGA +9-7, 9-8

Index

Shareable Global Areas (Cont.)
position independent < 8-5, 86
sharing memory *9-1, 92, 9-3
summary of information about « 9—1
swapping * 92
using an existing one * 94
with memory-resident overlays « 9-18, 919, 9-20

share option « 51

Sharing options * 5-1

Slash {/) +2—4

Source
entering and filing » 3-8

Source language
entering and saving of « 2-7

Stack - 6-2

STACK option » 523
default - 5-23
syntax * 523

Standard debugging aid
ODT+«2-7

Status « C-13, C-14

Supervisor D-space APRs ¢ 10-2

Supervisor |-space APRs ¢ 10-2

Supervisor-mode libraries
as conventional resident libraries « 1017
building » 10-2
referencing » 10-2
restrictions » 10—1

Supervisor-mode library « 101
restrictions on ¢ 102

SUPLIB option * 5-30
default - 5-30
syntax » 5-30

Switches
MCR+4-2
Task Builder « 4-3

Switching from user to supervisor mode « 101

Symbo! @ 34

Symbol definition « 5-36

Symbol definition files
with Shareable Global Areas * 9-3

SYMBOLS command qualifier « 4-38, 4-39

/SYMBOLS qualifier
specification of » 2-2

SYMPAT option « 5-41
syntax « 541

synch option « 5—1

Synchronous trap options * 5-1

Syntactic rules ¢ 2—1

SYSLIB completion routines * 10—-1

System memory

Index-5

Index

System memory (Cont.) Task image file structure (Cont.)
allocating * 6-1, 67, 6-8, 6-9, 6-13, 6-15, 6-16 segment name * C—15
Segment Table « C—12
status « C-13, C-14
T task R/W root segment » C-12
window descriptor « C-16
window descriptor address « C-15
Taks image file + 6-9 Task memory
Task 11 allocating « 6-1, 6-2, 6-3, 64, 6-5, 66, 6-7
errors from executing « 1—1 TASK option » 5-10
errors from translating « 1—1 default * 5—10
Task builder syntax * 5-10
improving performance » F-1, F-2, F-3, F4, F-5, Task options » 2-3
F-8, -7, F-8 Task overlaying « 1-1
Task Builder Task R/W root segment « C—12
file specification requirements « 3-6 Tasks

nesting levels for file references » 3-6 mapping into memory « 1—1

simplest use of « 31 more than one to be built - 3—4
Task Builder assumptions « 1-1 Text information * B—9

Task builder options TKB command line
categories of « 5—1 format » 3-2
Task Builder options

TKB command sequence
interpretation and syntax « 2-3

example of » 10-6
syntax and interpretation of « 3-3 TOP option « 5-24
Task Builder switches « 4-3 default « 5-24
Task building command syntax * 524
components of +2-9 TRACE command qualifier « 441
task image file name specification « 3—9 Transfer address * B-5
Task command line TSKV option * 544
format of « 3—1 default » 544
requirements for « 3—1 syntax + 5-44
TASK command qualifier « 440 TSUP+«10-14
Task header - 6-2 Typical applications
Task image file

running « 1-1
default type for - 3—7

Task image files

with Shareable Global Areas - 9-3 U
Task image file structure » C—1
autoload vectors « C—15

header « C-5 UIC option « 511
label block details - C-3, C—4 default « 511
label block group + C-2, C-3 syntax ¢ 511
link-down « C—-14 UNITS option « 5-33
link-next+ C—14, C-15 default « 5-33
link-up « C-14 syntax « 533

load address « C—14

low memory pointers » C—10, C—11
READ/WRITE overlays + C—12 V
READ-ONLY region - C—12

region descriptor C—-17

relative disk address + C—-14 Vectors
segment length « C-14 mode_switching » 10-1

Index-6

VSECT option « 5-25
default « 5-25
syntax » 5-25

W

WAIT_FOR_NODES command qualifier « 4—42
Window descriptor « C—16
Window descriptor address + C—-15

Index

index-7

Do Not Tear - Fold Here and Tape - —

dlilaliltiall

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 33 MAYNARD MASS

POSTAGE WILL BE PAID BY ADDRESSEE

IAS Engineering/Documentation
Digital Equipment Corporation
5 Wentworth Drive GSF/L20
Hudson, NH 03051-4929

No Postage
Necessary
if Mailed in the
United States

Do Not Tear - Fold Here

IAS
Task Builder Reference Manual
AA-2533E-TC

Reader’s This form is for document comments only. Digita! will use comments submitted on
this form at the company’s discretion. If you require a written reply and are eligible
Comments to receive one under Software Performance Report (SPR) service, submit your

comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

O Assembly language programmer
O Higher-level language programmer
O Occasional programmer (experienced)
O User with little programming experience
O Student programmer
O Other (please specify)
Name Date,
Organization,
Street.
City State Zip Code

or Country

