TSR o

cot

04/34/45/55
processor
handbook

-3
E S

-
-
-3

DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard,
Massachusetts 01754, Telephone: (617) 897-5111

SALES AND SERVICE OFFICES

UNITED STATES—ALABAMA, Huntsville ¢ ARIZONA, Phoenix and Tucson e
CALIFORNIA, El Segundo, Los Angeles, Oakland, Ridgecrest, San Diego, San
Francisco (Mountain View), Santa Ana, Santa Clara, Stanford, Sunnyvale and Woodland
Hills ¢« COLORADO, Englewood « CONNECTICUT, Fairfield and Meriden ¢ DIS-
TRICT OF COLUMBIA, Washington (Lanham, MD) ¢ FLORIDA, Ft. Lauderdale and
Orlando ¢ GEORGIA, Atlanta ¢« HAWAII, Honolulu ¢ ILLINOIS, Chicago (Rolling
Meadows) ¢ INDIANA, Indianapolis ® IOWA, Bettendorf ¢ KENTUCKY, Louisville e
LOUISIANA, New Orleans (Metairie) ¢ MARYLAND, Odenton ¢« MASSACHUSETTS,
Marlborough, Waltham and Westfield ¢ MICHIGAN, Detroit (Farmington Hills) e
MINNESOTA, Minneapolis ¢ MISSOURI, Kansas City (Independence) and St. Louis

o NEW HAMPSHIRE, Manchester ¢ NEW JERSEY, Cherry Hill, Fairfield, Metuchen
and Princeton ¢ NEW MEXICO, Albuquerque ¢ NEW YORK, Albany, Buffalo (Cheek-
towaga), Long Island (Huntington Station), Manhattan, Rochester and Syracuse ¢
NORTH CAROLINA, Durham/Chapel Hill ¢ OHIO, Cleveland (Euclid), Columbus and
Dayton ¢ OKLAHOMA, Tulsa ¢« OREGON, Eugene and Portland ¢« PENNSYLVANIA,
Allentown, Philadelphia (Bluebell) and Pittsburgh ¢ SOUTH CAROLINA, Columbia e
TENNESSEE, Knoxville and Nashville e TEXAS, Austin, Dallas and Houston ¢ UTAH,
Salt Lake City » VIRGINIA, Richmond ¢ WASHINGTON, Bellevue ¢ WISCONSIN,
Milwaukee (Brookfield) o

INTERNATIONAL—ARGENTINA, Buenos Aires ¢ AUSTRALIA, Adelaide, Brisbane,
Canberra, Melbourne, Perth and Sydney ¢ AUSTRIA, Vienna ¢ BELGIUM, Brussels ¢
BOLIVIA, La Paz ¢ BRAZIL, Rio de Janeiro and Sao Paulo ¢« CANADA, Calgary,
Edmonton, Halifax, London, Montreal, Ottawa, Toronto, Vancouver and Winnipeg o
CHILE, Santiago « DENMARK, Copenhagen ¢ FINLAND, Helsinki ¢ FRANCE,
Grenoble and Paris ¢« GERMAN FEDERAL REPUBLIC, Cologne, Frankfurt, Hamburg,
Hannover, Munich, Stuttgart and West Berlin ¢« HONG KONG ¢ INDIA, Bombay e
INDONESIA, Djakarta e IRELAND, Dublin e ITALY, Milan, Rome and Turin ¢ IRAN,
Tehran ¢ JAPAN, Osaka and Tokyo ¢ MALAYSIA, Kuala Lumpur ¢ MEXICO, Mexico
City « NETHERLANDS, Utrecht ¢ NEW ZEALAND, Auckland and Christchurch e
NORWAY, Oslo ¢« PUERTO RICO, Santurce » SINGAPORE ¢ SWEDEN, Gothenburg
and Stockholm ¢ SWITZERLAND, Geneva and Zurich ¢ UNITED KINGDOM, Bir-
mingham, Bristol, Edinburgh, Leeds, London, Manchester and Reading ¢
VENEZUELA, Caracas ¢

~ 04/34/45/55
processor
handbook

~digital equipment corporation

Copyright © 1976, by Digital Equipment Corporation
DEC, PDP, UNIBUS are registered.trademarks
of Digital Equipment Corporation

CHAPTER

1.1
1.2
1.3

i
(<N

CHAPTER

2.2

23
2.4

CHAPTER

3.1
3.2
3.3

ww
N O

CHAPTER

4.1
4.2

CONTENTS

1 INTRODUCTION

PDP-11 FAMILY ... evrrereeeririndanninenrees 1-1
SCOPE 1-2
COMPUTERS 1-2
1.3.1 PDP-11/04 1-2
1.3.2 PDP-11/34ccccce..... 1-3
1.3.3 PDP-I1/45cccoeoe.. 1-4
1.3.4 PDP-11/55 1-5
PERIPHERALS/OPTIONS 1-6
SOFTWARE ..., 1-6
NUMBER SYSTEMS ..., e ———— 1-8
2 SYSTEM ARCHITECTURE
UNIBUS e 2-1
2.1.1 Bidirectional Lines 2-1
2.1.2 Master-Slave Relation S 2-1
2.1.3 Interlocked Communication 22
CENTRAL PROCESSORcccoeeeeeii. . 22
2.2.1 -General Registers X 2-2
2.2.2 Instruction Set 2-3
2.2.3 Processor Status Word e 24
2.24 Stacks ..., 2-5
MEMORY ..ot 2-6
AUTOMATIC PRIORITY INTERRUPTS 2-7
3 ADDRESSING MODES
SINGLE OPERAND ADDRESSINGceeee. 3-2
DOUBLE OPERAND ADDRESSING 3-2
DIRECT ADDRESSINGovvvvnns 34
3.3.1 Register Mode 34
3.3.2 Auto-increment Mode 35
3.3.3 Auto-decrement Mode 3-7
3.3.4 Index Modeoiiiiiii 3-8
DEFERRED (INDIRECT) ADDRESSING 3-10
USE OF THE PC AS A GENERAL REGISTER 312
3.5.1 Immediate Modecccoooeeiiill 3-13
3.5.2 Absolute Addressingccooooeviiiiiiiiinninnn. 3-13
3.5.3 Relative Addressingcccceiveeei, 314
3.5:4 Relative Deferred Addressing 3-15

USE OF STACK POINTER AS GENERAL REGISTER 3-16
SUMMARY OF ADDRESSING MODES
3.7.1 = General Register Addressing 3-16

3.7.2 Program. Counter Addressing 3-18
‘4 INSTRUCTION SET

INTRODUCTION ..., 4-1

INSTRUCTION FORMATS ..o, 4-2

4.3
4.4
4.5
4.6
4.7

CHAPTER

5.1
5.2

5.3

5.5
5.6

CHAPTER

6.1
6.2
6.3
6.4

CHAPTER

7.1
7.2

7.3
7.4
75
7.6
7.7
7.8
7.9
7.1

LIST OF INSTRUCTIONS

SINGLE OPERAND INSTRUCTIONS

DOUBLE OPERAND INSTRUCTIONS
PROGRAM CONTROL INSTRUCTIONS
MISCELLANEOUS

5 PROGRAMMING TECHNIQUES

THE STACK
SUBROUTINE LINKAGE
Subroutine Calls
5.2.2 Argument Transmission ..
Subroutine Return
5.2.4 PDP-11 Subroutine Advantages
INTERRUPTS

5.2.1
5.2.3

5.3.1
5.3.2

Reserved Instructions

Trap Handling

6 PDP-11/04

DESCRIPTION
PDP-11/04 OPTIONS .
SPECIFICATIONS

General Principles
Nesting
REENTRANCY
POSITION INDEPENDENT CODE-PIC .
CO-ROUTINES
PROCESSOR TRAPS
Power Failure
Odd Addressing Errors
Time-Out Errors

teteceecsemmetiesetaatsasratternanen

OPERATOR’S CONSOLE OPERATION I

7 PDP-11/34

DESCRIPTION
SPECIFICATIONS

7.2.1
7.2.2

MOS & CORE MEMORY
BATTERY BACKUP

Processor Backplane Conflguratlon

Chassis Configuration

M9301 MODULE

M9302 MODULE
DL11-W (M7856)

OPERATOR’S CONSOLE ..

.9 CONSOLE EMULATION
.10 EIS ARITHMETIC OPERATION

CHAPTER 8 PDP-11/34 MEMORY MANAGEMENT

8.1

GENERAL

8.1.1

Memory Management

iv

RGNS RE RO R NSRS
HOOOVOONGO G-

o

NNNNNNNNN
TR R Y RS AN N

7-8

8.2

83

8.4
85
8.6

8.7

CHAPTER

9.1
9.2
9.3
9.4
9.5
9.6

CHAPTER

10.1
10.2
10.3

10.4
10.5

10.6

- 9.6.2 System Power Switch

2
.3 Basic Addressing
.4 Active Page Registers
5 = Capabilities Provided By Memory
Management e
RELOCATION ...t
8.2.1 Virtual Addressingccoooiiiiiiiiiiiieeiinn,
8.2.2 Program Relocationn,
PROTECTION ...t
8.3.1 Inaccessible Memoryccoooooi,
8.3.2 Read-Only Memorycccooviiieiiiiiiiinn.
8.3.3 Multiple Address Spacecccoeeeiiin.
ACTIVE PAGE REGISTERS ...t
8.4.1 . Page Address Registers (PAR)cc.........
8.4.2 Page Descriptor Registers (PDR)
VIRTUAL AND PHYSICAL ADDRESSEScc............
8.5.1 Construction of a Physical Address
8.5.2 Determining the Program Physical Address ..
STATUS REGISTERS ..., .
8.6.1 Status Registers 0 (SRO)
.8.6.2 Status Register 2 (SR2)

INSTRUCTIONS ..o, SR :

9 PDP-11/55, 11/45

DESCRIPTION
MEMORY

"MULTIPROGRAMMING ...,

SPECIFICATIONS
CONSOLE OPERATION
9.6.1 Console Elements

9.6.3 Central Processor State Indicators
9.6.4 Address Display Register
9.6.5 Addressing Error Display
9.6.6 Data Display Register
9.6.7 Switch Registers

- 9.6.8 Control Switchesi

10 PDP-11/55, 11/45 MEMORY MANAGEMENT

PDP-11 FAMILY BASIC ADDRESSING LOGIC
VIRTUAL ADDRESSINGooooiiiiiiiiiieiiicceeiiies
INTERRUPT CONDITIONS UNDER MEMORY

MANAGEMENT CONTROLocc,
CONSTRUCTION OF A PHYSICAL ADDRESS
MANAGEMENT REGISTERScccooviviiiiiiiiiieeies
10.5.1 Page Address Registers (PAR)
10.5.2 Page Descriptor Register (PDR) ...
FAULT RECOVERY REGISTERSccooiiiiin.
10.6.1 Status Register #0 (SRO) e e
10.6.2 Status Register #1 (SR1)ooooiviininnnnn,

\'

Programming ...

10.6.3 Status Register #2 10-11
10.6.4 Status Register #3 ... 10-11
10.6.5 Instruction Back-Up/Restart Recovery 10-12
10.6.6 Clearing Status Registers Followmg
Trap/Abort ... 10-12
10.7 EXAMPLES ..., 10-12
10.7.1 Normal Usagecccccceeeeeeiiiii, 10-12
10.7.2 Typical Memory Page 10-13
10.7.3 Non-Consecutive Memory Pages 10-15
10.7.4 Stack Memory Pages ... 10-15
10.8 - TRANSPARENCYcc..... ... 10-17
10.9 INSTRUCTIONScooiiiiiiiiiiieiee e e 10-17
10.10 MEMORY MANAGEMENT UNIT-REGISTER MAP 10-21
CHAPTER 11 FLOATING POINT PROCESSOR
11.1 INTRODUCTION . 11-1
11.2 OPERATION 11-1
11.3 ARCHITECTURE ... 11.2
11.4 FLOATING POINT DATA FORMATSceeenne e 113
11.4.1 Non-Vanishing Floating Point Numbers 11-3
11.4.2 Floating Point Zerooeeee ... 11-3
11.4.3 The Undefined Variable ... ; ... 11-3
11.4.4 Floating Point Dataooiee, 11-4
11.5 FLOATING POINT UNIT STATUS REGISTER
(FPS REGISTER) ...oooiiiiiiiiiiiiie e 115
11.6 FLOATING EXCEPTION CODE AND
~ ADDRESS REGISTERScooiiiiiiiiiiiie e 119
11.7 FLOATING POINT PROCESSOR INSTRUCTION -
ADDRESSING

11.8 ACCURACY ...,
11.9 FLOATING POINT INSTRUCTIONS

. APPENDIX A UNIBUS ADDRESSES

A.1 INTERRUPT AND TRAP VECTORS v Al
A.2 FLOATING VECTORScccccoiiiiiiiiiiiene. e A2
A.3 FLOATING ADDRESSES .. A3
A4 DEVICE ADDRESSESccooiiiiiiiniiec e, A-3

APPENDIX B INSTRUCTION TIMING

B.1 PDP-11/04 CENTRAL PROCESSOR ereeviresse i s B
.PDP-11/34 CENTRAL PROCESSOR B
FP11-A FLOATING POINT PROCESSOR v B-
B
B

PDP-11/55, 11/45 CENTRAL PROCESSORS
FP11-C FLOATING POINT PROCESSOR
INSTRUCTION EXECUTION TIME ...

wwwm
abhwN

APPENDIX C INSTRUCTION INDEX ... C-1

vi

CHAPTER 1

INTRODUCTION

1.1 PDP-11 FAMILY

The PDP-11 family includes several central processor units (CPU’s), a
large number of peripheral devices and options, and extensive soft-
ware. New equipment will be compatible with existing family members.
The user can choose the system which is most suitable for his appli-
cation, but as needs change, he can easily add or change hardware.

All ' PDP-11 computers discussed in this Handbook have the following
_ features:

e 16-bit word (two 8-bit bytes)
direct addressing of 32K 16-bit words or 64K 8-bit bytes (K = 1024)

e Word or byte processing
very efficient handling of 8-bit characters without the need to rotate,
swap, or mask

e Asynchronous operation
system components run at their highest possible speed, replacement
with faster subsystems means faster operation without other hardware
or software changes

e Modular component design
extreme ease and flexibility in conflgurmg systems

e Stack processing
‘hardware sequential memory manlpulatlon makes it easy to handle
structured data, subroutines, and interrupts

e Direct Memory Access (DMA)
inherent in the architecture is direct memory access for multiple
devices

e 8 internal general-purpose registers
used interchangeably for accumulators or address generation

Automatic Priority Interrupt
four-line, multi-level system permits grouplng of interrupt lines accord-
ing to response requirements . -

" e Vectored interrupts
fast interrupt response without'device: pollmg

e Single & double operand instructions
powerful and convenient set of programming instructions

e Power Fail & Automatic Restart
hardware detection and software protection for fluctuations in the AC
power

1.2 SCOPE
This Handbook describes the following computers designed and man-
ufactured by Digital Equipment Corporation.

PDP-11/04
PDP-11/34
PDP-11/45
PDP-11/55

The intent is to provide extensive information on operation of the com-
puters in general, performance and features of the computers, and
basic programming. This Handbook is not intended to be the sole ref-
erence for the computers. More comprehensive and detailed information
is available in Processor Manuals, Maintenance Manuals, and Program-
ming Manuals.

1.3 . COMPUTERS .

1.3.1 PDP-11/04

The PDP-11/04 computer uses MOS . semiconductor memory, and. is
housed in a 514" high assembly. Between 4K and 28K words of memory
can be implemented within the basic assembly .unit, which includes ex-
pansion space and DC power for adding optlons

The PDP-11/04 is a full-fledged computer that can execute all the basic
PDP-11 instructions. It enjoys the advantage of being able.to use all the
extensive developed software and peripheral equipment. If there is ever
a need to upgrade .to a more powerful central processor, the PDP-11/04
can simply be replaced by a different PDP-11 CPU, and software and
- peripherals remain the same in the system.

The minimum PDP-11/04 includes:

* 4K words of MOS memory
Increased processing speed at a lower cost per bit.

e Automatic bootstrap loader: =
Automatic starts from a variety of peripheral devices."

e Self-test feature .
ROM hardware automatically performs' diagnostics on the CPU and
memory. Pinpoints failures to the circuit board level, thereby reducing
maintenance costs.

e Operator’s front panel
Allows complete control of the computer via any. ASCIl terminal. All
front panel functions are key entries on the terminal either-local -or
remote, thereby eliminating the need and cost of a programmer’s
console.

The following optional equipment is- available:

Battery backup _

Programmer’s console

Line frequency clock:

Serial communications line interface

1-2 -

The PDP-11/04 is prewired to accept extra memory, communication in-
terfaces, and standard peripheral device controllers. The included CPU
power supply has sufficient excess capacity to handle. optional internal
equipment.

1.3.2 PDP-11/34

The PDP-11/34 is a systems level computer that includes increased
memory expansion to 124K- words, memory relocation and protection,
faster processing speeds, and hardware multiply and divide instructions.
The computer system is mounted in a 514“ or 104" chassis that
mounts in a standard 19/ cabinet. The PDP-11/34 processor is prewired
to accept additional memory (parity core or MOS) and standard periph-
eral device controllers including communications interfaces, mass storage
controllers, etc. Additional mounting space is provided within the 1015 "
computer chassis for more complex controllers. The computer
power supply within the chassis is capable of powering the optional in-
ternal devices.

The PDP-11/34 computer, as a -member of the PDP-11 family, has the
following features:

¢ Single & double operand instructions

powerful and convenient set of programming instructions

Hardware implemented multiply and divide instructions

16-bit word (two 8-bit bytes) .

direct addressing of 32K words or 64K bytes (K = 1024)

e Parity detection on each 8-bit byte

e Hardware address expansion and protection allowing memory address-
ing to 124K words

e Word or byte processing
very efficient handling of 8-bit data without the need to rotate, swap, .
or mask

e Asynchronous operation:-

system components run- at their highest possible speed, replacement

with faster subsystems means faster operation without other hardware

or software changes

* Modular component design
extreme ease and flexibility in configuring systems

e Stack processing)
hardware sequential memory manipulation makes it easy to handle
structured data, subroutines, and interrupts

¢ Direct Memory Access (DMA))
inherent in the architecture is direct memory access for multiple de-
vices . .

¢ 8 internal general-purpose registers
used interchangeably for accumulators or address generation

e Automatic Priority Interrupt
four-line, multi-level system permits grouping of interrupt lines accord-
ing to response requirements

1-3

e Vectored interrupts
fast interrupt response without device pollmg

o Power Fail & Automatic Restart
Hardware detection and software protection for fluctuations in the AC
power

The minimum PDP-11/34 includes:

s Parity MOS or core memory

e Memory management
Program protection and relocation for memory expansuon to 124K 16-
bit words

¢ ‘Automatic bootstrap loader

Automatic starts from a variety of penpheral devuces

Self-test feature

ROM hardware automatically performs diagnostics on the .CPU and

memory

e Operator’s front panel
Allows complete control of the computer via any ASCII terminal. All
front panel functions are key entries on the terminal, thereby elimi-
nating the need and cost of a programmer 's lights and switches con-
sole.

i

The following optiopal equipment is available:

e Battery backup for MOS memory

e Programmer’s console .

e Serial communications line interface and line frequency clock
e Large val:ie,ty of standard PDP-11 peripherals

1.3.3 PDP-11/45

The PDP-11/45 is a powerful 16-bit computer designed as a powerful
computational tool for high-speed real-time applications and for large
multi-user, multi-task applications requiring up to 124K words of ad-
dressable memory space. It will operate with solid state and core mem-
ories, and includes many features not normally associated with 16-bit
computers. Among its major features are a fast central processor with
choices of 300 or 495 nanosecond memory, an advanced Floating Point
Processor, and a sophisticated memory management scheme.

Included with the basic PDP-11/45 are:
¢ 16K words of memory

e Choice of bipolar, and core memory
e Programmer console

e Cabinet

* Prewired mounting-space tc; acceptvFloatihg Point and Memory Man-
agement hardware

14

The PDP-11/45 features include:

(]

Memory éxpandable to 256K bytes.
Memory segmentation, protection, and relocation.

Optional FP11-C Floating Point Processor with advanced features and
high-speed operation.

Reliable core memory.

Fast secondary bus between processor and solid state memory whvch
operates in parallel with Unibus.

Powerful instruction set providing over 400 commands.

Powerful 1/0O structure provides easy interfacing and simplifles the
construction of multiprocessor or shared peripheral configurations.

1.3.4 PDP-11/55

The PDP-11/55 is a completely functional computer system especially
designed to accelerate FORTRAN compiled tasks, whether for critical
process control, simulation lab experiments, engineering and scientific
applications, etc.

PDP-11/55 features. include:

300 nanosecond, dual-ported bipolar memory

High speed floating point processor with 46 hardwired instructions
Internal micro-instruction cycle time of 150 nanoseconds
Instruction. execution time of 300 nanoseconds -

Instruction pipelining allows the fetch of the next programAinstruction
to be overlapped with the instruction currently in execution.

Floating point calculation can be performed independent of central
processor-operations, freeing the CPU to snmultaneously perform non-
floating point computations.

Dual bus structure allows direct memory access without cycle stealing
on the UNIBUS.

Up to 256K bytes of combined bipolar and core memory (up to 64K
bytes bipolar alone).

Three CPU operating modes (kernel, supervisor, and user) which en--
hance system operating efficiency and program protection.

Hardware memory management, with three sets of memory manage-
ment registers—one set per CPU operating mode.

Two sets of eight general purpose registers which, coupled with three
CPU operating modes, eliminate the need. for saving register contents..
in a real-time applications environment.

Direct memory access.
Power fail/auto restart.

1-5

1.4 PERIPHERALS/OPTIONS

Digital Equipment Corporation designs and manufactures many of the
peripheral devices offered with PDP-11's. As a designer and manufac-
“turer of peripherals, DIGITAL can offer extremely reliable equipment,
lower prices, more choice and quantity discounts.

1/0 Devices

Ail PDP-11 systems can use a Teletype as the bas:c 1/O device. However, .
1/O capabilities can be increased with high-speed paper tape reader-
punches, line printers, card readers or alphanumeric display terminals.
The LA36 DECwriter, a .totally designed and built teleprinter, can serve
as an alternative to the Teletype. It has several advantages over stan-
dard electromechanical typewriter terminals, including higher speed,
fewer mechanical parts and very quiet operation.

PDP-11 devices include:

Cassette, TA1l

Floppy disk, RX01

DECterminal alphanumeric display, VT50

DECwriter teleprinter, LA36

High Speed Line Printers, LS11, LP11, LV11

High Speed Paper Tape Reader and Punch, PC11
Teletypes, LT33

Card Readers, CR11, CD11, CM11

Graphics Terminal, GT40

Synchronous and Asynchronous Communications Interfaces

Storage Devices

Storage devices range from convenient, small-reel magnetic tape (DEC-
tape) units to mass storage magnetic tapes and disk memories. With the
UNIBUS, a large number of storage devices, in any combination, may be
connected to a PDP-11 system. TU56 DECtapes, highly reliable tape
units with small tape reels, designed and built by DEC, are ideal for ap-
plications with modest storage requirements. Each DECtape provides
storage for 144K 16-bit words. For applications which require handling
of large volumes of data, DEC offers the industry compatible TU16
Magtape.

Disk storage include fixed-head disk units and moving-head removable
cartridge and disk pack units. These devices range from the 256K word
RSO3 fixed head disk, to the RPO4 Disk Pack which can store up to 44
million words.

1.5 SOFTWARE

The PDP-11 family of central processors and perlpherals is supported
by a comprehensive family of licensed software products. This software
family includes support for small stand-alone configurations, disk based
real-time and program development systems, large multi-programming
and time-sharing systems, and many diverse dedicated applications.
Some examples of general purpose operating systems and standard high
level language processors are:

1-6

e PAPER TAPE SYSTEM (PTS-11)—A core only high-speed paper tape
system with program development in assembly language. Editor, de-
bugger, and linker are supplied along with a relocating assembler. .

e CASSETTE PROGRAMMING SYSTEM (CAPS-11)—A small program de-
velopment system with a core based monitor, utilizing dual magnetic
tape cassettes:as file structured media. Complete program develop-
ment utilities such as a relocating assembler, linker, editor, debugger,
and file interchange program-are included.

e SINGLE USER ON:LINE PROGRAM DEVELOPMENT SYSTEM (RT-11)—
A small, powerful, easy-to-use disk (or DECtape) based system for
program development or fast on-line (real-time). applications. A Fore-
ground/Background version can accommodate simultaneous program
development in the background with on-line -applications in-the fore-
ground.” A. MACRO assembler, linker, editor, debugger, and file utility
programs are included.

e MULTI-TASKING PROCESS CONTROL.SYSTEM (RSX-11M)—An effi-
cient multi-tasking system suitable for controlling many processes
simultaneously, in a protected environment with concurrent develop-
ment of new programs. Utilities include a MACRO assembler, task
builder (linker), editor, debugger, and file utility programs. -

e COMPREHENSIVE MULTI-PROGRAMMING SYSTEM (RSX-11D)—The
total job operating system. As a compatible extension of RSX-11M,
the system allows concurrent fully hardware protected execution of
multiple on-line jobs, with BATCH program development. Complete
utilities include a MACRO assembler, task builder (linker), editor, de-
bugger, and file utility programs.

e EXTENDED RESOURCE TIME SHARING SYSTEM (RSTS/E)—A disk-
based time-sharing system implementing BASIC-PLUS, an enriched
version of the popular BASIC language. Up to 32 simultaneous users
share system resource via interactive terminals. Additional features
such as output spooling, and comprehensive file protection are in-
cluded.

e INTERACTIVE APPLICATION SYSTEM (IAS)—A multifunction operating
system executing on the larger PDP-11 hardware configurations. It can
handle a mix of time-sharing, batch, and real-time applications .con-
currently. It is also a multi-lingual system, allowing users to choose
the high-level language most appropriate for the particular problem at
hand. :

Languages

e BASIC-11—An extended version of Dartmouth Standard BASIC is
available for PTS-11, CAPS-11 and RT-11. Many applications, such as
signal processing and graphics are accessed by the user through ex-
tensions' to this simple, yet powerful, language. A multiuser version is
available under PTS-11 and RT-11.

e PDP-11 FORTRAN IV—An extended version of ANSI standard FOR-
TRAN is supplied with RSX-11M and RSX-11D, and available under
RT-11. As an optimizing compiler, FORTRAN IV is designed for fast
compilation, yet requires very little main memory, and generates
highly efficient code without sacrificing execution speed. Under RT-11,

1-7

FORTRAN IV features the same signal-processing -and graphics ex-
tensions as BASIC-11.

FORTRAN-IV PLUS—A compatlble extension to PDP-11 FORTRAN IV,
this system uses sophisticated optimizations to achieve the fastest
possible execution speed of the generated code. FORTRAN IV-PLUS
requires a PDP-11/550r 11/45 and Floating Point Processor hardware,
in addition to the RSX-11D operating system.

e PDP-11 COBOL—To supplement the business data processing needs
often associated with large scale PDP-11 system applications, an
ANSI-74 COBOL language is available under RSX-11D. Running as a
BATCH job, COBOL enhances the RSX-11D total job computing sys-
tem, where some business data processing is required.

In addition to the above mentioned general purpose licensed software
products, DIGITAL offers a great number of optional and applications
oriented products. A wide range of educational, consulting, and mainte-
nance services are also offered, to ensure full utility of any PDP-11
system. For a complete and detailed listing of DIGITAL software prod-
ucts and services, consult the latest CATALOG OF SOFTWARE PRODUCTS
and SERVICES.

1.6 NUMBER SYSTEMS

Throughout this Handbook, 3 number systems will be used; octal,
binary, and decimal. So as not to clutter all nhumbers with subscripted
bases, the following general convention will be used:

Octal—for address locations, contents of addresses, and operation
codes for instructions; in most cases there will be words of 6
octal digits

‘Binary—for describing a single- binary element; when referrlng to
a PDP-11 word it will be 16 bits long

Decimal—for all normal referencing to quantities

Octal Representation

-

1
]
e

I [15L14 3 |12T ||o‘9]e|7'é—!5|413|z;,110]PDP-11 word
[]] G | W —)

E] O O O O [] 6digit octal

The 16-bit PDP-11 word can be represented conveniently as a 6-digit
octal word. Bit 15, the Most Significant Bit (MSB), is used directly as
- the Most Significant Digit of the octal word. The other 5 octal digits are
formed from the corresponding groups of 3 bits in the binary word.

1-8

When an extended address of 18 bits is used (shown later in the Hand-
book), the Most Significant Digit of the octal word is formed from bits
17, 16, and 15. For unsigned numbers, the correspondence between
decimal and octal is:

Decimal Octal
0 000000
(2%6—1)= 65,535 177777 (16-bit limit)
(28—-1)=262,143 777777 (18-bit limit)

2’'s Complement Numbers
In this system, the first bit (bit 15) is used to indicate the sign;

O=positive
1=negative

For positive numbers, the other 15 bits represent the magnitude directly;
for negative numbers, the magnitude is the 2's complement of the
remaining 15 bits. (The 2's complement is equal to the 1’'s complement
plus one.) The ordering of numbers is shown below:

Decimal 2’s Complement (Octal)
Sign Bit Magnitude Bits

largest positive 432,767 0 77777
432,766 "0 77776
~+1 0 00001
0 0 00000
—1 1 77777
—2 1 77776
‘ —32,767 1 00001
most negative —32,768 1 00000

19

1
§
{

i
i

1-10

CHAPTER 2

SYSTEM ARCHITECTURE

2.1 UNIBUS :

Most computer system components and peripherals connect to and com-
‘municate:with each other on a single high-speed bus known as the
UNIBUS— a key to the PDP-11's many strengths. Addresses, data, and
control information are sent along the 56 lines of the bus.

T T T

CORE
cPy MEMORY 1/0 1/0 1/0 1/0

Figure 2-1 PDP-11 Systeni Simplified Block Diagram

The form of communication is the same for every device on the UNIBUS.
The processor uses the same set of signals to communicate with mem-
‘ory as with peripheral devices. Peripheral devices also use this set of
signals when communicating with the processor, memory or other pe-
ripheral devices. Each device, including memory locations, processor
registars, and peripheral device registers, is assigned an address on the
UNIBUS. Thus, peripheral device registers may be manipulated as flex-
ibly as core memory by the central processor. All the instructions that
can be applied to data in core memory can be applied equally well to
data in peripheral device registers. This is an especially powerful feature,
considering the special capability of PDP-11 instructions to process data
in any memory location as though it were an accumulator.

2.1.1 Bidirectional Lines

With bidirectional and asynchronous communications on the UNIBUS,
devices .can send, receive, ahd exchange data independently without
processor intervention. For example, a cathode ray tube (CRT) display
can refresh itself from a disk file while the central processor unit (CPU)
attends to other tasks. Because it is asynchronous, the UNIBUS is com-
patible with devices operating over a wide range of speeds.

2.1.2 . Master-Slave Relation

Communication between two devices on the. bus is in the form of a
master-slave relationship. At any point in time, there is one device that
has control of the bus. This controlling device is terméd the “bus mas-
ter.”” The master device controls the bus when communicating with
another device on the bus, termed the ‘slave.” A typical -example of
this relationship is the processor, as master, fetching an instruction from
memory (which is always a slave). Another example is the disk, as

2-1

master, transferring data to memory, as slave. Master-slave relation-
ships are dynamic. The processor, for example, may pass bus control
to a disk. The disk, as master, could then communicate with a slave
memory bank.

Since the UNIBUS is used by the processor and all 1/O devices, there is
a priority structure to determine which device -gets control of the bus. .
Every device on the UNIBUS which is capable of becoming bus master
is assigned a priority. When two devices, which are capable of becoming
a bus master, request use of the bus simultaneously, the device with
the higher priority will receive control.

2.1.3 Interlocked Communication)

Communication on the UNIBUS is interlocked so that for each control
signal issued by the master device, there must be a response from the
slave in order to complete the transfer. Therefore, communication is
independent of the physical bus length (as far as timing is concerned)
and the timing of each transfer is dependent only upon the response
time of the master and slave devices. The asynchronous operation pre-
cludes the need for synchronizing with, and waiting for, clock impulses.
Thus, each system is allowed to operate at its maximum possible speed.

Input/output devices transferring directly to or from memory are given
highest priority and may request bus mastership and steal bus and mem-
ory cycles during instruction ,operations. The processor resumes opera-
tion immediately after the memory transfer. Multiple devices can operate
simultaneously at maximum direct memory access (DMA) rates by
“stealing” bus cycles.

Full 16-bit words or 8-bit bytes of information can be transferred on the
bus between a master and a slave. The information can be instructions,
addresses, or data. This type of operation occurs when the processor, as
master, is fetching instructions, operands, and data from memory, and
storing the results into memory after execution of instructions. Direct
data transfers occur between a peripheral device control and memory.

2.2 CENTRAL PROCESSOR

The central processor, connected to the UNIBUS as a subsystem, con-
trols the time allocation of the UNIBUS for peripherals and performs
arithmetic and logic operations -and instruction decoding. It contains
multiple high-speed general-purpose registers which can be used as accu-
mulators, address pointers, index registers, and other specialized fuinc-
_tions. The processor can perform data transfers directly between 1/O
devices and memory without disturbing the processor registers; does
both single- and double-operand addressing and handles both 16-bit
word and 8-bit byte data.

2.2.1 General Registers
The central processor contains 8 general regnsters which can be used
for a variety of purposes.(The.PDP-11/55, 11/45 contains - 16 general

2-2

registers.) The registers can be used as accumulators, index registers,
autoincrement registers, autodecrement registers, or as stack pointers
for temporary storage of data. Chapter 3 on Addressing describes these
uses of the general registers in more detail. Arithmetic operations can
be from one general register to another, from one memory or device
register to another, or between memory or a device register and a gen-
eral register. Refer to Figure 2-2.

GENERAL
REGISTERS RO

T

STACK POINTER

PROGRAM COUNTER
Fgure 2-2 The General Registers

R7 is used as the machine's program counter (PC) and contains the
address of the next instruction to be executed. It is a general register
normally used only for addressing purposes and not as an accumulator
for arithmetic operations.

The R6 register is normally used as the Stack Pointer indicating the last
entry in the appropriate stack (a common temporary storage area with
‘“‘Last-in First-Out’’ characteristics).

2.2.2 Instruction Set

The instruction complement uses the flexibility of the general-purpose
- registers to provide over 400 powerful hard-wired instructions—the most
comprehensive and powerful instruction repertoire of any computer in
the 16-bit class. Unlike conventional 16-bit computers, which usually
have. three classes of instructions (memory reference instructions, oper-
ate or AC control instructions and 1/0 instructions) all operations in the
PDP-11 are accomplished with one set of instructions. Since peripheral
device registers can be manipulated as flexibly as core memory by the
central processor, instructions that are used to manipulate data in core
memory may be used equally well for data in peripheral device registers.
For example, data in an external device register can be tested or modified
directly by the CPU, without bringing it into memory or disturbing the
general registers. One can add data directly to a peripheral device reg-
ister, or compare logically or arithmetically. Thus all PDP-11 ‘instructions
can be used to create a new dimension in the treatment of computer
1/0 and the need for a special class of /O instructions is eliminated.

The.basic order code of the PDP-11 uses both single and double operand
address instructions for words or bytes. The PDP-11 therefore performs

2-3

very efficiently in one step, such operations as adding or subtracting two
operands, or moving an operand from one location to another.

PDP-11 Approach

ADD A,B ;add contents of location A to loca-
tion B, store results at location B

Conventional Approach*

LDA A ;load contents of memory location A
into AC
ADD B ;add contents of memory location B to
AC
STAB. : ;store result at location B
Addressing

Much of the power of the:PDP-11 is derived from its widerange of ad- »
dressing capabilities. ::PDP-11 addressing . modes include sequential .
addressing forwards or backwards,-addressing indexing, indirect address-
ing, 16-bit word addressing, 8-bit byté addressing, and stack addressing.
Variable length instruction formating allows a minimum number of bits

to be used for each addressing mode. This results in efficient use of
program storage space.

2.2.3 Processor Status Word

15 14 13 12 1 8 7 5 4 3 2 1 0
L | Vi) [P]v]z]v]e]
) — .
CURRENT MODE ‘—J
PREVIOUS MODE* -

PRIORITY
CONDITION CODES

+'MODE } USED ONLY ON PDP-11/55, & 11/45 WITH
MEMORY MANAGEMENT

Figure 2-3 Processor Status Word

- The Processor Status word (PS), at location 777776, contains infor-
mation on the current status of the PDP-11. This information includes
the current processor priority: current and previous operational modes;
the condition codes describing the results of the last instruction; and
an indicator for detecting the execution of an instruction to be trapped
during program debugging.

Processor Priority

The Central Processor operates at any one of eight levels of priority, 0-7.
When the CPU is operating at level 7 an external device cannot interrupt
it with a request for service. The Central Processor must be operating
at a lower priority than the external device's request in order for the
interruption to take effect. The current priority is maintained in the

24

processor status word (bits 5-7). The 8 processor levels provide an
effective interrupt mask.

Condition Codes
The condition codes contain information on the result of the last CPU
operation.

The bits are set as follows:

Z = 1, if the result was zero

N = 1, if the result was negative

C =1, if the operation resulted in a carry from the MSB
V = 1, if the operation resulted in.an arithmetic overflow

Trap

The trap bit (T) can be set or cleared under program control. When set,
a processor trap will occur through Jlocation 14 on completion of instruc-
tion execution and a new Processor Status Word will be loaded. This bit
is especially useful for debugging programs as it provides an efficient
method of installing breakpoints.

2.2.4 Stacks

In the PDP-11, a stack is a temporary data storage area which allows a
program to make efficient use of frequently accessed data. A program
can add or delete- words or bytes within the stack. The stack uses the
“last-in, first-out’”” concept; that is, various items may be added to a
stack in sequential order. and retrieved or deleted fiom the stack in
reverse order. On the PDP-11, a stack starts at the highest location re-
served for'it and expands linearly downward to the lowest address as
items are added. The stack is used automatically by program interrupts,
subroutine calls, and trap instructions. When the processor is inter-
rupted, the central processor status word and the program counter are
saved (pushed) onto the stack area, while the processor services the
interrupting device. A new status word is then automatically acquired
from an area in core memory which is reserved for interrupt instruc-
tions (vector area). A return from the interrupt instruction restores the
original processor status and returns to the interrupted program without
software intervention.

2.3 MEMORY

Memory Organization

A memory can be viewed as a series of locations, with a number (ad-
dress) assigned to each location. Thus an 8,192-word PDP-11 memory
could be shown as in Figure 2-4. ‘

LOCATIONS

000000
000001
000002
000003
000004

OCTAL
ADDRESSES

037774
037775

037776

037777

Figure 2-4 Memory Addresses

Because PDP-11 memories are designed to accommodate both .16€-bit .
words and 8-bit bytes, the total number of addresses does not corre-
spond to the number of words. An 8K-word memory can contain 16K
bytes and consist of 037777 octal locations. Words always start at even-

numbered locations.

A PDP-11 word is divided into a high byte and a low-byte as shown in
Figure 2-5.

5 . s 7 0
HIGH BYTE LOW BYTE I :
M . N 1 . |) 1 N N 1 . .

Figure 25 High & Low Byte

Low bytes are stored at even-numbered memory Iocatiohs and high
bytes at odd-numbered memory locations. Thus it is convenient to view
the PDP-11 memory as shown in Figure 2-6.

2-6

16-8IT WORD 8-BIT BYTE

r BYTE BYTE N
HIGH LOW 000000 LowW 000000
000001 G WORD
000003 HIGH Low 000002 HIGH 000001
000005 HIGH Low 000004 Low 000002
WORD
HIGH 000003
{ Low 000004
/w—/_’_\/ or q %
/——~’——/ e
037773 HIGH Low 037772 { HIGH 037775
037775 HIGH Low. 037774 Low 037776
037777 * HIGH Low . 037776 HIGH 037777
WORD ORGANIZATION BYTE ORGANIZATION

Figure 2-6 Word and Byte Addresses

Certain memory locations have been reserved by the system for inter-
rupt and trap handling, processor stacks, general registers, and periph-
eral device registers. Addresses from O to 370, are always reserved and
those to 777, are reserved on large system configurations for traps and
interrupt handling.

A 16-bit word used for byte addressing can address a maximum of 32K
words. However, the top 4,096 word locations are reserved for peripheral
and register addresses and the user therefore has 28K of core to pro-
gram. With the PDP-11/55 and 11/45, the user can expand above
28K with the Memory Management. This device: provides an 18-bit
effective memory address which permits addressing up to 124K words
of actual memory.

If the Memory Management option is not used, an octal address be-
tween 160 000 and 177 777 is interpreted as 760 000 to 777 777. That
is, if bit 15, 14 and 13 are 1’s, then bits 17 and 16 (the extended ad-
dress bits) are .considered to be 1's, which relocates the last 4K words .
(8K bytes) to become the highest locations accessed by the UNIBUS.

2.4 AUTOMATIC PRIORITY- INTERRUPTS

The multi-level automatic priority interrupt system permits the processor
to respond automatically to conditions outside the system. Any number
of separate devices can be attached to each level.

2-7

<3
PRIORITY b

E=
=

Dz -OMA I D3 -OMA |

PRIORIT

~—BRS5

[L

IS
—
i
S—
—
o
S
o
&

~-—BR4

}
E}j

HSR HSP

INCREASING _ PRIORITY

© se 0w

Figure 2-7 UNIBUS Priority

Each peripheral device in the PDP-11 system has a pointer to its own
pair of memory words (one points to the devices’s service routine, and
the other contains the new processor status information). This unique
identification eliminates the need for polling of devices to identify an
interrupt, since the interrupt service hardware selects and begins ex-
ecuting the appropriate service routine after having automatically saved
the status of the interrupted program segment.

The devices’ interrupt priority and service routine priority are indepen-
dent. This allows adjustment of system behavior in response to real-time
conditions, by dynamically changing the priority level of the service
routine. '

. p
The interrupt system allows the processor to continually compare its
own programmable priority with. the priority of any interrupting devices
and to acknowledge the device with the highest level above the proces-.
sor's priority level. The servicing of an interrupt for a device can be in-
terrupted in order to service an interrupt of a higher priority. Service to
the lower priority device is resumed. automatically upon completion of
the higher level servicing. Such a process, called nested interrupt ser-
vicing, can be carried out to any level without requiring the software to
save and restore processor status at each level.

When a device (other than the central processor) is capable of becom-
ing bus master and requests use of the-bus, it is generally for one of
two purposes:

1. To make a non-processor transfer of data directly to or-from
memory.

2-8

»

2. To interrupt a program execution and force the processor to
go to a specific address where an interrupt service routine
is located. :

Direct Memory Access:

All PDP-11's provide for direct access to memory. Any number of DMA
devices may be attached to the UNIBUS. Maximum priority is given to
DMA devices, thus allowing memory data. storage or retrieval at memory
cycle speeds. Response time is minimized -by the organization and logic
of the UNIBUS, which samples requests and priorities in parallel with
data transfers.

Direct memory or direct data transfers can be accomplished between .
any two peripherals-without processor supervision. These non-processor
request transfers, called NPR level data transfers, are usually made for-
Direct Memory Access (memory to/from mass storage) or direct device
transfers (disk refreshing a CRT display).

Bus Requests :

Bus requests from external devices can be made on one of five request
lines. Highest priority is assigned to non-processor request (NPR). These
are direct memory access type transfers, and are honored by the pro-
cessor between bus cycles of an instruction execution.

The processor’s priority can be set under program control to one of eight
levels using bits-7, 6, and 5 in the processor status register. These bits
set a priority level that inhibits granting of bus requests on lower levels
or on the same level. When: the processor’s priority is set to a level, for
example PS6, all bus requests on BR6 and below are ignored.

When more than -one device is connected to the same bus request (BR)
line, a device nearer the cer* | processor has a. higher priority than a
device farther away. Any-numper of devices can be connected to a given
BR or NPR line.

Thus the priérity system is two-dimensional and provides each device.
with a unique priority. Each device may be dynamically, selectively
enabled or disabled under program control.

Once a device other than the processor has control of the bus, it may
do one of two types of operations: data transfers or interrupt operations.

NPR Data Transfers

NPR data transfers can be made between any two peripheral devices
without the supervision of the processor. Normally, NPR transfers are
between a.mass storage device, such as a disk, and core memory. The
structure of the bus also permits device-to-device - transfers, allowing
customer-designed peripheral controllers to access other devices, such
as disks, directly.

An NPR device has very fast access to the bus and can transfer at high
data rates:.once it has control. The processor state .is not affected by
the transfer; therefore the processor can relinquish control while an in-
struction is in progress. This can .occur at the end of any bus-cycles.

29

except in between a read-modify-write sequence. An. NPR device in con-
trol of the bus may transfer 16-bit words from memory at memory speed.

BR Transfers

Devices that gain bus control with one of the Bus Request lines (BR 7-
BR4) can take full advantage of the Central Processor by requesting an
interrupt. In this way, the entire instruction set is available for manipu-
lating data and status registers.

When a service routine is to be run, the curfent task being performed
by the central processor is interrupted, and the device service routine

~is initiated. Once the request has been satisfied, the Processor returns

to its former task.

Interrupt Procedure

Interrupt handling is automatic in the PDP-11. No device polling is re-
quired to determine which service routine to execute. The operations
required to service an interrupt are as follows:

1. Processor relinquishes control of the bus, priorities permitting.

2. When a master gains control, it sends the processor an interrupt
command and an unique memory address which contains the ad-
dress of the device’s service- routine, -called the interrupt vector
address. Immediately following this pointer address is a word (lo-
cated at vector address +2) which is to be used as a new Processor
Status Word.

3. The processor stores the current Processor Status (PS) and the cur-
rent Program Counter (PC) into CPU temporary registers.

4. The new PC and PS (interrupt vector) are taken from the specified
address. The old PS and PC are then pushed onto the current stack.
The service routine is then initiated.

5. The device service routine can cause the processor to resume the

: interrupted process by executing the. Return from Interrupt instruc-
tion, described in Chapter 4, which pops the two top words from
the current processor stack and uses them to load the PC and PS
registers.

A device routine can be interrupted by a higher priority bus request any
time ‘after the new PC and PS have been loaded. If such an interrupt
occurs, the PC and PS of the service routine are automatically stored
in the temporary registers and then pushed onto the new current stack;
and the new device routine is initiated.. .

Interrupt Servicing

. Every hardware device capable of interrupting the processor has a unique

set of locations (2 words) reserved for its interrupt vector. The first word
contains the location of the device’s service routine, and the second, the
Processor Status Word that is to:be used by the service routine. Through

‘210

proper use of the PS, the programmer can switch the operational mode
of the processor, and modify the Processor’s Priority level to mask out
lower level interrupts.

Reentrant Code

Both the interrupt handling hardware and the subroutine call hardware
facilitate writing reentrant code for the PDP-11. This type of code allows
a single copy of a given subroutine or program to be shared by more
than one process or task. This reduces the amount of core needed for
multi-task applications such as the concurrent servicing of many periph-
eral devices.

Power Fail and Restart .

Whenever AC power drops below 95 voits for 110v power (190 volts for.
220v) or outside a limit of 47 to 63 Hz, as measured by DC power, the
power fail sequence is initiated. The Central Processor automaticaily
traps to location 24 and the power fail program has 2 msec. to save all
volatile information (data in registers), and to condition peripherals for
power fail.

When power is restored the processor traps to location 24 and executes
the power up routine to restore the machine to its state prior to power
failure.

2-12

 CHAPTER 3

ADDRESSING MODES

Data stored in memory must be ‘accessed, and manipulated. Data handling is
specified by a PDP-11 instruction (MOV, ADD etc.) which usually indicates:

the function (operation:code) .

a generél purpose register to be used when locating the source operand .
and/or a general purpose register to be used when locati ng the destination
operand.

an addressing mode (to specify how the selected regiéter(s) is/are to be
used)

Since a large portion of the data handled by a computer is usually structured (in
character strings, in arrays, in lists etc.), the PDP-11 has been designed to handle
structured data efficiently and flexibly. The general registers may be used with an
instruction in any of the following ways:

as accumulators. The data to be manipulated resides within the register.

as pointers. The contents of the register are the address of the operand,
rather than the operand itself.

as pointers which automatically step through core locations. Automatically
'stepping forward through consecutive core locations' is known as au-
toincrement addressing; automatically stepping backwards is known as
autodecrement addressing. These modes: are particularly-useful for pro-
cessing tabular data.

as index registers. In this instance the contents of the register, and the
word following the instruction are summed to produce the address of the
operand. This allows easy access to variable entries in a list.

PDP-11's also have instruction addressing mode combinations which facilitate
temporary data storage structures for convenient handling of data which must be
frequently accessed. This is known as the ‘‘ stack.”-

In the PDP-11 any register can be used as a “‘stack pointer'’'under program con-.
trol, however, certain instructions associated with subroutine linkage and inter:
rupt service automatically use Register 6 as a “*hardware stack pointer”. For this
reason R6 is.frequently referred to as the “SP".

R7 is used by the processor as its program counter (PC). It is recommended that
R7 not be used as a stack pointer. .

3-1

Ani_m'portant PDP-11 feature, which must be considered in conjunction
with-the addressing modes, is the register arrangement; -

Six general purpose registers, (RO-R5)
A hardware Stack Pointer (SP), register (R6)

. A'Program Counter (PC), register (R7).

Instruction mnemonics and address mode symbols are sufficient for
writing machine language 'programs. The programmer need not be con-
cerned about conversion to binary digits; this is accomplished auto-
matlcally by the PDP-11 MACRO Assembler.

3.1 SINGLE OPERAND ADDRESSING
The instruction format for all single operand mstructlons (such as clear,
increment, test) is:

| I =1]

NE 6,5 4 3 2
op coof ——————+ j

CESTINATION ADDRESS

Bits 15 through 6 specify the operétion ‘code that defines the type of in-
struction to be executed.

" Bits 5 fhrough 0 form a six-bit field called the destination address field.
This. consists of two subfields:

a) Bits 0 through 2 specify which of the eight general purpose registers
_is to be referenced by this instruction word.

b). ‘Bits 3 through 5 speci'fy- how the selected register will be used (ad-
dress mode). Bit 3 is set to indicate deferred (indirect) addressing.

3.2:DOUBLE OPERAND ADDRESSING)
Operations which imply two operands (such as add, subtract, move and

compare). are handled by instructions that specify two addresses. The

first ‘operand is called the source operand, the second the destination

operand. Bit assignments in the source and destination address fields

may specify different modes and different registers. The Instruction.
format for the double operand instruction is:

3-2

r OP CODE J MODE l Rn J MODE T Rn l

15 2 11 10 9 8 6, 5 4 3 2 0

SOURCE ADDRESS—————’ T
DESTINATION ADDRESS

The source address field is used to select the source operand, the first
operand. The destination is used similarly, and locates the second op-
erand and the result. For example, the instruction ADD A, B adds the
contents (source operand) of location A to the contents (destination
operand) of location B. After execution B will contain the result of the
addition and the contents of A will be unchanged.

Examples in this section and further in this chapter use the following
sample PDP-11 instructions:

Mnemonic Descripti‘on Octal Code
CLR clear (zero the specified destination) 0050DD
CLRB clear byte (zero the byte in the specified 1050DD
: destination)

INC increment (add 1 to contents of destination) 0052DD
INCB » increment byte (add 1 to the contents of 1052DD

destination byte)

COM -complement (replace the contents of the 0051DD
destination by their logical complement;
each O bit is set and each 1 bit is cleared)

COMB complement byte (replace the contents of the 1051DD
destination byte by their logical complement;
each O bit is set and each 1 bit is cleared).

ADD add (add source operand to destination 06SSDD
operand and store the result at destination
address)

DD = destination field (6 bits)

SS = source field (6 bits)

() = contents of

33

3.3 DIRECT ADDRESSING
The following table summarizes the four basic modes used with direct addressing.

DIRECT MODES
Mode Name Assembler Function
Syntax

0 Register : Rn Register contains operand
2 Autoincrement (Rn) + Register is used as a pointer to

- sequential data then in-

cremented

4 Autodecrement ~=(Rn) . Register is decremented and

“then used as a pointer.

6 Index X(Rn) Value X is added to (Rn) to pro-
duce address of operand. Nei-
ther X nor (Rn) are modified.

3.3.1 Register Mode
) OPR Rn -

With register mode any of the general registers may be used as simple accumula-
tors and the operand is contained in the selected register. Since they are hard-
ware registers, within the processor, the general registers >rate at high speeds
and provide speed advantages when used for operating on irequently-accessed
variables. The PDP-11 assembler interprets and assembles instructions of the
form OPR Rn as register mode operations. Rn represents a general register name
or number and OPR is used to represent a general instruction mnemonic. As-
sembler syntax requires that a general register be defined as follows:

RO = %0 (% sign indicates registel_' definition)
R1=9%1 '
R2 = %2, etc.

Registers are typically referred to by name as RO, R1, R2, R3; R4, R5, R6 and R7.
However R6 and R7 are also referred to as SP and PC, respectively.

Register Mode Examples
(all numbers in octal)

Symbolic Octal Code Instruction Name
1. INCR3 005203 Increment
‘Operation:) Add one to the contents of general register 3

34

RO
Rt
R2

Fooot 0o 1 0 1t oio o::oloa l%:_fs%? R3
NG - - 6,5 4 3 2 9 R4
OP CODE (wcwoszn——-T J RS
DESTINATION FIELD R6(SP}
- R7(PC)
2, . ADDR2,R4 060204 Add
Operation: - Add the contents of R2 to the contents of R4.
BEFORE AFTER
Re 000002 | re [000002 |

Rg[000004] Ra[ooocos |

3. COMB R4 105104 ‘Complement Byte

Operation: - One's complement bits 0-7 (byte) in R4. (When
gener ! registers are used, byte instructions only
‘opere n bits 0-7; i.e. byte O of the register)

- BEFORE AFTER

raf ozzzzz;] re [oeeiss |

- 3.3.2 Autoincrement Mode
.OPR (Rn) +

This mode provides for automatic stepping.of a pointer through sequential. ele-
ments of a table of operands. It assumes the contents of the selected general reg-
- ister to be the address of the operand. Contents of registers are stepped (by one
for bytes, by two for words, always by two for R6 and R7) to address the next se-
quential location.. The autoincrement mode is especially useful for array process-
ing and stacks. It will access an element of a table and. then step the pointer to
address the next operand in the table. Although most useful for table handling,
this -mode is completely general and may be used for a variety. of purposes.

3-5

Autoincrement Mode Examples

Symbolic Octal Code Instruction Name
1. CLR (R5) + 005025 Clear
Operation: Use contents of R5 as the address of the operand.
Clear selected operand and then increment the
contents of R5 by two.
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20000 [oosoes | ms| 030000 J20000 [oosoes . | ms| 030002

T~

30000 000000)

105025

2. CLRB (R5) + Clear Byte
Operation: Use contents of R5 as the address of the operand.
Clear selected byte operand and then increment
the contents of R5 by one.
BEFORE AFTER
ADDRESS SPACE REGISTEB ADDRESS SPACE REGISTER
20000 [1tosoz5 | Rs [osooo0 Jeooco [tosoes | Rs[o3000r |
30000 | 111 ! 116 30000 11 000
30002 | . ! 30002 i
3. ADD (R2) +,R4 062204 Add
Operation: The contents of R2 are used as the address of the
operand which is added to the contents of R4. R2
is then incremented by two.
BEFORE AFTER ;
ADDRESS SPACE REGISTERS ADDRESS SPACES REGISTERS
10000 [os2z0a | R 100002 | 10000 [os2204] re [100004]
oofoe [orooeo] o000z [G000]

3-6

.- 3.3.3:Autodecrement Mode
OPR-(RN)

This mode is useful for processing data in a list in reverse direction. The contents
of the selected general register are decremented (by two for word instructions, by
one for byte instructions) and then used as the address of the operand. The
choice of postincrement, predecrement features for the PDP-11 were not arbitrary
- decisions, but were intended to facilitate hardware/software stack operations.

Autodecrement Mode Examples

Symbolic Octal Code Instruction Name
1. INC-(RO) 005240 Increment
* Operation: The contents of RO are decremented by two and

used as the address of the-operand. The operand is
- increased by one.

BEFORE

AFTER
ADDRESS SPACE REGISTERS ADDRESS SPACE REGISTER
1000 oosea0] Re[otrzze | tooo[oosesa0] re[ot]
-
2. INCB-(RO) 105240 Increment Byte
Operation: The contents of RO are decremented by one then

used as the address of the operand. The operand
byte is increased by one.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1000 | 105240 | me[oir77e] 1000 [rosze0] mo| otrrrs]
T
1777 [ooo | ooo 17774 | oot ! ooo
17776 H 17776 [
3. ADD-(R3).RO 064300 Add
Operation: The contents of R3 are decremented by 2 then

used as a pointer to an operand (source) which is
added to the contents of RO (destination operand).

3-7

BEFORE

AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
10020 [osaz00] re [ooooz0] o020 | 064300 | . ro[oooooro |
R3 077776 i R3 077774)
- -
77774 000050 77774 000050

77776

3.3.4 Index Mode

7776

OPR X{Rn)

The contents of the selected general register, and an index word following the in-
struction word, are summed to form the address of the operand. The contents of
the selected register may be used as a base for calculating a series of addresses,
thus allowing random access to elements-of data structures. The selected register
can then bé modified by program to access data in the table. Index-addressing:in-
structions are of the form OPR X(Rn) where X is the indexed word and-is located
in the memory location following the instruction word and Rn is the selected gen-

eral register.
Index Mode Examples

Symbolic Octal Code Instruction Name
1. CLR 200(R4)- 005064 Clear
000200 :

" Operation: The address of the operand is determined by ad-
ding 200 to the contents of R4. The location is
then cleared.

BEFORE . AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 005064 R4 I 001000 J 1020 005064 R4 001000 J
1022 000200 1022 000200
1024 1000 " 1024

— *200

T 1200

1200 177777 1200 000000
1202

2. COMB 200(R1) 105161 Complement Byte
1000200
Operation: The contents of a location which is determined by

adding 200 to the contents of R1 are one's com-
plemented. (i.e. logically complemented)

3-8

1020
1022

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
105161 ri [orrrrz] 1020 105161 ri [orrerr]
000200 1022 000200
o777
_.*200
520177
20176 166{000 -
20200 i

1100 2000
+30 +20
1130 2020

3. ADD 30(R2),20(R5) 066265 Add
: 000030
000020
Operation: The contents of a location which is determined by
. adding 30 to the contents of R2 are added to the
contents of a location which is determined by ad-
ding 20 to the contents of R5. The result is stored
at the destination address, i.e. 20(R5)
BEFORE AFTER .
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 066265 Rz | oott00 | 1020 066265 re [oottoo |
1022 000030 1022 000030 - :
1024 000020 R 1024 000020 RS
2o [oooo0r] o0 [o000]

3.4 DEFERRED (INDIRECT) ADDRESSING

The four basic modes may also be used with deferred addressing. Whereas in the
register mode the operand is the contents of the selected register, in the register
deferred mode the contents of the selected register is the address of the operand.

In the three other deferred modes, the contents of the register selects the address
of the operand rather than the operand itself. These modes are therefore used
when a table consists of addresses rather than operands. Assembler syntax for
indicating deferred addressing is ‘@' (or *‘()""when thisis not ambiguous). The
following table summarizes the deferred versions of the basic modes:

Mode Name

1 Register Deferred .

3 Autoincrement Deferred.

5 Autodecrement Deferred

7 Index Deferred

Assembler - -Function
Syntax

@Rn or (Rn)) .
Register contains the address of
the operand

@(Rn)+ Register is first used as a
pointer to a word containing the
address of the operand, then in-
cremented (always by 2; even
for byte instructions).

@-(Rn) Register-is decremented (always
by two; even for byte instruc-
tions) and then used as a
- pointer to a word containing the
address of the operand

@X(Rn) Value X (stored.in a-word follow-
ing the instruction) and (Rn) are
added and the sum-is used as a.
pointer to a word containing the
address of the operand. Neither :
X nor (Rn) are modified.

Since each deferred mode is similar to its-basic mode counterpart, separate de- -
scriptions of each deferred mode are not.necessary. However, the following exam-

ples illustrate the deferred modes:

Register Deferred Mode Example

Symbolic Octal Code Instruction Name
CLR @R5 005015 Clear
Operation: The . contents of location specified in R5 are
cleared.
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1677 rs [ootzo0] te77 rs [ooriroo |
1700 000100 1700 000000

3-10

Autoincrement Deferred Mode Example

Symbolic Octal Code Instruction Name
INC@(R2) + 005232 Increment
Operation: The contents of R2 are used as the address of the
address of the operand.
Operand is increased by one. Contents of R2 is in-
cremented by 2.
BEFORE AFTER
ADDRESS SPACE REGISTER . ADDRESS SPACE REGISTER
re [010300 rz [otoz02 |
1010 000025 1010 000026
1012 1012
/’/
\03’01 001010 10300 001010

Autodecrement Deferred Mode Example

Symbolic Octal Code Complement
COM @-(RO) 005150
Operation: The contents of RO are decremented by two and .
B then used as the address of the address of the op-
erand. Operand is one’s complemented. (i.e. logi-
cally complemented)
BEFORE AFTER .
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
10100 012345 ro[otor7e | 10100 165432 ro [otor7a]
10102 10102 ///
2 .)
10774 010100 10774 010100
10776 19776

Index Deferred Mode Example

Symbolic-

ADD @ 1000(R2),R1

Operation:

Octal Codé Instruction Name

067201 Add
001000

1000 and contents of R2 are summed to produce
the address of the address of the source operand
the contents of which are added to contents of R1;
the result is stored in R1.

3-11

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 067201 ri [oo1zza] 1020 067201 Rt [oot23e |
1022 001000 2 500100 1022 001000 R2 500100 -
1024 1024
1050 000002 1050 000002
1100 001050 1000 1100 001050
+100
1100

3.5 USE OF THE PC AS A GENERAL REGISTER -

Although Register 7 is a general purpose register, it doubles in function as the
Program Counter for the PDP-11. Whenever the processor uses the program
counter to acquire a word from memory, the program counter is automatically in-
cremented by two to contain the address of the next word of the instruction being
executed or the address of the next instruction to be executed. (When the pro-
gram uses the PC to locate byte data, the PC is still incremented -by two.)

The PC responds to all the standard PDP-11 addressing modes. However, there
are four of these modes with which the PC can provide advantages for handling
position independent code (PIC - seeChapter 5) and unstructured data. When re-
garding the PC these modes are termed immediate, absolute (or immediate de-
ferred), relative and relative deferred, and are summarized below:

Mode Name - PR Assembler Function
» Syntax
2 Immediate #n Operand follows instruction
3 Absolute @#A Absolute Address follows in- -
struction .
6 Relative A Relative Address (index value)

follows the instruction.

7 Relative Deferred @A - Index value (stored- in the
word following the instruction)
is the relative address for the -
address . of the operand.

The reader should remember that the special effect modes are the same as modes
described in 3.3 and 3.4, but the general register selected is R7, the program °
counter.’

When a standard program is available for different users, it often is helpful.to be
able to load it into different areas of core and run it there. PDP-11's can accompl-
ish the relocation of a program very efficiently through the use of position inde-

3-12

pendent code (PIC) which is written by using the PC addressing modes. If an in-
struction and its objects are moved in such a way that the relative distance
between them is not altered, the same offset relative to the PC can be used in all
positions in memory. Thus, PIC usually references locations relative to the current
location. PIC is discussed in more detail in Chapter 5. _

The PC also greatly facilitates the handling of unstructured data. This is partic-
ularly true of theiimmediate and relative modes. -

3.5.1 Immediate Mode -
OPR #n,DD

Immediate mode is equivalent to using the autoincrement mode with the PC. It
provides time improvements for accessing constant operands by including the
constant in the memory location: immediately following the instruction word.

Immediate Mode Example : :
Symbolic Octal Code Instruction Name

ADD #10,RO 062700 Add
000010
Operation: The value 10 is located in the second word of the

instruction and is added to the contents of RO.
Just before this instruction is fetched and exe-
cuted, the PC points to the first word ofthe in-
struction. The processor fetches the first word and
increments the PC by two. The source operand
mode is 27 (autoincrement the PC): Thus, the PC~
is used as a pointer to.fetch the operand (the sec-
ond word of the instruction) before being in-
cremented by two to point to the next instruction.

BEEORE . AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 062700 \Rw | ooo020] 1020 062700 ro | ooo0z0 |
1022 000010 ec 1022 000010 e
1024 1024
3.5.2 Absolute Addressing . '
OPR @ #A

This mode is the equivalent of immediate deferred or autoincrement deferred us-
ing the PC. The contents of the location: following the instruction are taken as the-
address of the operand:: Immediate data is-interpreted -as an absolute address
(i.e., an address that:remains constant no matter where -in memory the as-
sembled instruction is executed).:

3-13

Absolute Mode Examples

Symbolic Octal Code Instruction Name
1. CLR @ #1100 005037 Clear
001100
Operation: Clear the contents of location 1100.)
BEFORE AFTER
ADDRESS SPACE . ADDRESS SPACE
20 005037 20 005037
22 . 001100 " pC 22 001100 /PC
24
1100 77777 . © 1100 000000
1102 B 1102
2. . ADD @#2000,R3 063703 .
002000
Operation: Add contents of location 2000 to R3.
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20 063703 R3[| ooosoo] 20 063703 r3 | oow000 |
22 002000 ‘\PY: 22 002000 PC
24 : 24 e
2000 000300 - 2000 000300

3.5.3 Relative Addressing Lo T
OPR A or OPR X(PC)
where X is the location of A relative to the instruction.

This mode is assembled as index mode using R7. The base of the address calcu-
lation, which is stored in the second or third word of the instruction, is not the ad-
dress of the operand, but the number which, when added to the (PC), becomes
“the address of the operand. This mode is useful for writing. position independent
code (see Chapter 5) since the location refererced is always fixed relative to the
PC. When instructions are.to be relocated, the operand is moved by the same
amount. i

3-14

Relative Addressing Example

Symbolic Octal Code Instruction Name
INCA . 005267 Increment
000054
Operation: To increment location A, contents of memory loca-

tion immediately following instruction word are ad-
ded to (PC) to produce address A. Contents of A
are increased by one.

BEFORE AFTER

ADDRESS SPACE ADDRESS SPACE
1020 005267 1020 0005267
1022 000054 \ 1022 000054 .
1024 PC . 1024 «——PC
1026 : 1026 |-

1024

+54
“Qi/ e " =

3.5.4 Relative Deferred Addressing
OPR@A or
OPR@X(PC), where x is location containing address of A, relatlve to the in-
struction.
This mode is similar to the relative mode, except: that the second word of the in-
struction, when added to the PC, contains the address of the address of the oper-.
and, rather than the address of the operand.

Relative Deferred Mode Example

Symbolic Octal Code - Instruction Name
CLR @A 005077 Clear
000020
Operation: Add second wordof instruction to PC to produce

address of address of operand. Clear operand.

BEFORE AFTER
ADDRESS SPACE ADDRESS SPACE
1020 005077 \ ’ 1020 005077
1022 000020 ~PC - 1022 000020 PC
1024 1024

1044

1044 010100 Jozs 1044 010100
10100 100001 o100[000000

3-15 ' ®

3.6 USE OF STACK POINTER AS GENERAL REGISTER)
The processor stack pointer (SP,: Register 6)-is in most cases the general
register used for the stack operations related to' program-nesting. Auto-
decrement with Register 6 “‘pushes’’ data on to the stack and autoincre-
ment with ‘Register 6 ‘“pops’ data off the stack. Index mode with SP
permits .random access of items on the stack. Since the SP is used by
- the processor for interrupt-handling, it has a special attribute: autoin-
crements and autodecrements are always done in steps of two. Byte
operations using the SP in this way leave odd addresses unmodified.

.

.3.7 SUMMARY OF ADDRESSING MODES
3.7.1 General Register. Addressing

R is a general register, 0 to 7
(R) is the contents of that register

Mode 0 Register OPR R R contains operand

. . R
[mstrRucTiON |———f " oPERAND |

" ‘Model . Register deferred -~ OPR (R) R contains address

. .
INSTRUCTION I-——MDRESS | —) |

Mode 2 .. Auto-increment OPR (R)+
R contains address, then.increment (R)

R

‘ [msTRucTioN }———f ADDRESS

OPERANDj
(2 FOR WORD,
+1FOR BYTE

Mode 3 Auto-increment OPR @(R)4 R contains address of address,

deferred then increment (R) by 2
R
[tNSTRUCTM——_—L ADDRESS | —¢—+f ADDRESS J——{ orerano]
Mode 4 : Auto-decreme_nt OPR —(R)

Decrement (R), then R contains address

R
[nstruction }———f " aporess 2 FOR WORD, OPERAND
L
Mode 5 Auto-decrement OPR @—(R) Decrement (R) by 2,
deferred then R contains

address of address

R
wsTRUCTION |——— " avomess |———~ -2 aooRESs |———f operanp |
t

Mode 6 Index OPR X(R) (R) + X is address

R
pc [iNsTRUCTION |———{ aDDRESS
©
pC+2 | X }

Mode 7 Index deferred OPR @X(R) (R) 4+ X is address of address

R
PC tnsmucnon]—-{ ADDRESS
PC+2 | X |r

ADDRESS H OPERAND]

317

3.7.2 Program Counter Addressing
Register =7

Mode 2 Immediate OPR #n Operand n failows instruction

PC | INSTRUCTION

Mode 3 Absolute OPR @#A Address A follows instruction
&
PC+2 l . A I——-l OPERAND
Mode 6 Relative OPR A PC + 4 4 X is address
\‘\/‘/
, updated PC
e
PC+2

OPERAND

revs

Mode 7 Relative deferred OPR @A
PC 4- 4 4- X is address of address
\-—\,./
updated PC

PC | INSTRUCTION
roez
PC+4 NEXT INSTR

L

° A "avoress |—] oeeranp |

3-18

CHAPTER 4

INSTRUCTION SET

4.1 INTRODUCTION

The specification for each instruction includes the mnemonic, octal code,
binary code, a diagram showing the format of the instruction, a symbolic
notation describing its execution and the effect on the condition codes,
a description, special comments, and examples.

MNEMONIC: This is indicated at the top corner of each page. When the
word instruction has a byte equivalent, the byte mnemonic is also shown.

INSTRUCTION FORMAT: A diagram accompanying each instruction
shows the octal op code, the binary op code, and bit assignments. (Note
that in byte instructions the most significant bit (bit 15) is always a 1.)

SYMBOLS:

() = contents of

SS or src = source address
DD or dst = destination address
loc = location

<« = becomes

1 = “is popped from stack’
{ = “is pushed onto stack"
A = boolean AND

v = boolean OR
+== exclusive OR

~ = boolean not

Reg or R = register h

B = Byte
0 for word
n =
{1 for byte

4-1

~ 4.2 INSTRUCTION FORMATS

The major instruction formats are:

Single Operand Group

OP Code dst
l I 1 l L L l 1 l 1
15
Double Operand Group
OP Code Srg ¥ dst
1 1 1 1 l 1 1 |
15 2 1"
Register-Source or Destination
OP Code reg Src/dst
| 1 | 1 ! 1 |
15 9 -
Branch
Base - Code - offset
j L 1 1 1 I L 1
15 8 7

42

Byte. lnstructmns

TFhe PDP-11 processor includes a full- complement of instructions that
manipulate byte operands. Since all PDP-11 addressing-is byte-oriented,
byte manipulation addressing is straightforward. Byte instructions with
autoincrement or autodecrement direct addressing cause the specified
register to be modified by one to point to the next byte of data. Byte
operations in register mode .access the low-order byte of the specified
register. These provisions enable the PDP-11 to perform as either a word
or byte processor. The numbering scheme for word and byte addresses
in core memory is: '

HIGH BYTE . - WORD OR BYTE
ADDRESS -ADDRESS

- 002001 BYTE 1 - BYTE O 002000
002003 | - BYTE 3 BYTE 2 002002

The most significant bit (Bit 15) of the mstruct(on word is set to |nd|cate
-a byte instruction.-

-Example: .
Symbolic Octal

‘CLR .- 0050DD Clear Word
CLRB 1050DD Clear Byte
‘NOTE

The term PC (Program Counter) in the Opera-
tion explanation. of the instructions refers to the
updated PC.

4.3

4.3 LIST OF INSTRUCTIONS
Instructions are shown in the following sequence. Other |nstruct|ons are
found in Chapters 9, 11, and 12.

A—The SXT, XOR, MARK, SOB, and RTT instructions are |mplemented
in the PDP-11/34, 11/45 and 11/55

*__The SPL instruction is |mplemented only in the PDP-11/45 and PDP-
11/55. The MFPS and MTPS instructions are implemented only in the
PDP-11/34.

SINGLE OPERAND

Mnemonic Instruction » Op Code
General
CLR(B) clear destinationcc..cooce =050DD
COM(B) complement dst m051DD
INC(B) incrementdst........... u052DD
DEC(B) decrement dst =053DD
NEG(B) negate dst ... u054DD
TST(B) test dstccoooooiiiiiiiiie u057DD
Shift & Rotate :
ASR(B) arithmetic shift right ... m062DD
ASL(B) arithmetic shift left m063DD
ROR(B) rotateright =m060DD
ROL(B) rotate left : m061DD
SWAB swap bytes T 0003DD
Multiple Precision i
ADC(B) add carryccccovviiiiieiciiiee e m055DD
SBC(B) subtract carry ...l m056DD
A SXT sign extend0067DD
MFPS move byte from processor status - ml067DD
MTPS move byte to processor status m1064SS
‘DOUBLE OPERAND
General
MOV(B) move source to destination =w1SSDD
CMP(B) compare src to dst u2SSDD
ADD add src to dst 06SSDD
SuB subtract src from dst 16SSDD
Logical .
BIT(B) bittest ... m3SSDD
BIC(B) bit clear ... m4SSDD
BIS(B) bit set m5SSDD
A XOR exclusive OR : . 074RDD

Page

4-13
4-14
4-15
4-16
4-17

4-19
4-20
4-21
4-22
4-23

4-25
4-26
4-27
4-28

4-30
4-31
4-32

4-33

PROGRAM CONTROL

Mnemonic - Instruction) . Op Code
or
Base Code
Branch
: BR - branch (unconditional)cc...... 000400
BNE branch if not equal (to zero) 001000
BEQ " branch if equal (to zero) 001400 .
BPL branch if plusccccoeeeeeel ... 100000
BMI branch if minuscc.iiin 100400
BvC “branch if overflow is clear 102000
BVS branch if overflow is set ... 102400
BCC branch if carry is clear 103000
BCS branch if carry is setcccvvvniinenes 103400
Signed Conditional Branch
BGE “branch if greater than or equal :
(0 ZErO) ..o 002000
BLT branch if less than (zero) 002400
BGT branch if greater than (zero) 003000
BLE branch if less than or equal (to zero) 003400
Unsigned Conditional Branch
~BHI branch-if highercccoeennn. 101000
BLOS branch if lower or same101400
BHIS branch if higher or same ... 103000
BLO branch if lower et 103400
Jump & Subroutine
JMP jump .. eeerieineesenne . 0001DD
JSR jump to subroutine 004RDD
RTS return from subroutine 00020R
A MARK mark ... s 006400
A SOB ‘subtract one and branch (if 0) 077R0O0
<% SPL set priority levelccooii. 00023N
~Trap & Interrupt
"EMT emulator trap 104000—104377
TRAP trap .o, 104400—104777
BPT breakpoint trap 000003
IOT input/output trap 000004
“RTI return from interrupt .. 000002
ARTT return from interrupt 000006
MISCELLANEOUS
HALT halt ... e a e e e aaaaaa e ‘000000
WAIT wait for interrupt 000001
RESET reset external bus 000005
Condition Code Operation
CLC, CLV, CLZ, CLN, CCC clear © 000240
© SEC, SEV, SEZ, SEN, SCC .setccc....... -... 000260

45

Page

4-35
4-36
4-37
4-38
4-39
4-40

441

4-42
4-43

4-45
4-46
447
4.48

4-50
4-51
4-52
4-53

4-54
4-56
4-58

- 459

4-61
4-62

4-63

. 4-64.

4-65
4-66
4-67
4-68

472
473
4-74

‘4-75

4-75

4.4 SINGLE OPERAND INSTRUCTIONS

CLR

clear destination =050DD
|6/|ooo101o'00dddddd]
I L 1 l 1 1 I 1 1 1 1 l 1 1
15 . 6 5 0
Operation: (dst)«0
Condition Codes: N: cleared
Z: set
V: cleared
C: cleared
Description: . Word: Contents of specified destination are replaced with ze-
roes. ‘
Byte: Same
Example: . CLR R1
Before After
(R1)=177777 (R1) =000000
NZVC NZVC
1111 0100
~

4-6

cCOoM
COoMB

- complement dst ’ =051DD
lO/I [o} o} 0 1 (o] 1 o'o 1 .d d d d d d]
L 1 -l l i . 1 I 1 1 i 1 i 1 L
15 . 6 .5 o
- Operation: v »(dst)e~(dst)

Condition Codes: N: set if most significant bit of result is set; cleared otherwise
Z: set if result.is O; cleared otherwise
V: cleared :
C: set

Description: Replaces the contents of the destination address by their log-
- ical complement (each bit equal to O is set and each bit equal
to 1 is cleared)

Byte: Same
‘Example: COM RO
Before After
(RO)=013333 (RO) =164444
NZVC ; NZVC
0110 1001

4.7

INC

increment dst m052DD
[0/1 o o o 1 o 1 oVt o 1 d d d d d d]
| - P R L |
15 6 5 [
Operation: (dst)(dst) + 1

Condition Codes: N: set if result is <O; cleared otherwise
Z: set if result is O; cleared otherwise
V: set if (dst) held 077777 (word) or 177 (byte)
cleared otherwise
C: not affected

Description: Wo;d: Add one to contents of destination
’ Byte: Same
Example: - INC R2
Before After
(R2) = 000333 (R2) =000334
NzvC NZVC
0000’ 0000

4-8

DEC

decrement dst) - w053DD
lon 0o 0 o + O t-0"'"%y t|d d d d d dJ
l 1 1 l 1 1 l 1 1 1 1 J 1 1
15 6 5 [5)
Operation: (dst)e(dst)-1

Condition Codes:

Description: -

Example:

N: set if result is <O; cleared otherwise

Z: set if result is O; cleared otherwise

V: set if (dst) was 100000 (word) or 200 (byte)
cleared otherwise

C: not affected

Word: Subtract 1 from the contents of the destination
Byte: Same .

DEC R5

Before ' After
(R5) = 000001 (R5) = 000000 *

NZVC NZVC

1000 0100

49

NEG
NEGB

negate dst u054DD
0/4 0 0 0 1 0 1 1'0 0]d d d d d d
[| ! .| N 1 | l 1 ! 1 1 L]
15 6 5 _)
Operation: (dst)« —(dst)

Condition Codes: N: set if the result is <O0; cleared otherwise
Z: set if result is O; cleared-otherwise
V: set if the result is 100000 (word) or 200 (byte)
cleared otherwise -
C: cleared if the result is O; set otherwise

Description: Word: Replaces the contents of the destination address by its . -

two's complement. Note that 100000 is replaced by itself -(in
two's complement notation the most negative number has"
no positive counterpart).

Byte: Same
Example: NEG RO -
Before After
(RO) = 000010 (RO)=177770
NZvVC NZVC

0000 1001

4-10

TST
TSTB

test dst) ' =057DD
[0/1 0O 0 0 1t 0 1 171 1 I d d d d d d]
l | i l i L J 1 - i 1 1. l 1 |
15 6 5 o
Operation: (dst)<«(dst)

Condition Codes: N: set if the result is <O; cleared otherwise-
Z: set if result is O; cleared otherwise

V: cleared
C: cleared
Description: Word: Sets the condition codes N and Z according to the con-
tents of the destination address
Byte: Same)
Example: TST R1
Before After
(R1)=012340 . (R1) =012340
NZvVC 7 o NZVC
0011~ 0000

4-11

Shifts -
Scaling data by factors of two is accomplished by the shift instructions:
ASR - Arithmetic shift right

ASL. - Arithmetic shift leﬂ

The sign bit (bit 15) of the operand is rephcated in shifts to the right. The-low.
order bit is filled with O in shifts to the left. ths shifted out of the C bit, as.shown
in the following examples, are lost

Rotates

The rotate instructions operate on the destination word and the C bit as though
they formed a 17-bit “‘circular buffer’. These instructions facilitate sequential bit
testing and detailed bit manipulation.

4-12

ASR
ASRB

arithmetic shift right =062DD

lon 0 0 0 1 1t 0 O'1 O|d d d d d 4 |
1 1 Nt l Il 1 I 1 1 1 L l 1 1
15 6 5 0

Operation: (dst)<€dst) shifted one place to the right

Condition Codes: N: set if the high-order bit of the result is set (result < 0);
cleared otherwise
Z: set if the result =0; cleared otherwise
V: loaded from the Exclusive OR of the N-bit and C-bit (as set
by the completion of the shift operation)
C: loaded from low-order bit-of the destination

Description: =~ Word: Shifts all bits of the destination right one place. Bit 15
is replicated. The C-bit is loaded from bit O of the destination.
ASR performs signed division of the destination by two.

Word:
['L}u.-’.n..n.'.u.,n..ol—’-’
Byte: ’
d}l 1 1 I L n l I él l . l 1 1].
1 ODD ADDRESS 8 EVEN ADDRESS (o]

4-13

ASL
ASLB

- arithmetic shift left : m063DD
[8/1 0 0 0 1 1t 0 o'1 1]d d d d d 4
| 1 1 1 A1 1 l 1 1 1 1 1 4 1
15 6 5 5}
Operation: (dst)(dst) shifted one place to the left

Condition Codes: N: set if high-order bit of the result is set (result < 0); cleared
otherwise '
Z: set if the result =0; cleared otherwise
V: loaded with the-exclusive OR of the N-bit and C-bit (as set
-by the completion of the shift operation)
C: loaded with the high-order bit of the destination

- Description: Word: Shifts all bits of the destination left one place. Bit O is
loaded with an 0. The C-bit of the status word is loaded from
the most significant bit of the destination. ASL performs a
signed multiplication of the destination by 2 with overflow in-
dication.

Word:

L le]“"—Ll 1

L L L
15 0ODD ADORESS 7 EVEN ADDRESS o}

414

rotate. right

ROR
RORB

=060DD
' |
[°7|°.°.°|'|'.°l°.°;° d 4 4 d d d
3 - 6 5 o

Condition Codes:

Description:

N: set if the high-order bit of the result is set (result < 0);
cleared otherwise i

Z: set if all bits of result =0; cleared otherwise

V: loaded with the Exclusive OR of the N-bit and C-bit (as set
by the completion of the rotate operation) -

C: loaded with the low-order bit of the destination

Rotates all bits of the destination right one place. Bit O is
loaded into the C-bit and the previous contents of the C-bit
are loaded into bit 15 of the destination.

Byte: Same

4-15

ROL
ROLB

rotate left) m061DD
ot 0o 0o 0o 1 1 o . 0'o Fs d- d d d d]
§ [i 1 1 l 1 1 l] 1 | 1 l 1 1
15 6 5 0

Condition Codes: - N: set if the high-order bit of the destinationis set
(resuit < 0): cleared otherwise
Z: set if all bits of the destination = 0O; cleared otherwise
" V: loaded with the Exclusive OR of the N-bit and C-bit (as set
by the completion of the rotate operation)
C: loaded with the high-order bit of the destination

Description: Word: Rotate all bits of the destination left one place. Bit 15
is loaded into the C-bit of the status word and the previous
contents of the C-bit are loaded into Bit O of the destination.
Byte: Same

- Example:
Word:

dst
T

*—’ l] ! |"| ALJ;A 1 l 1 1 1 L 1]
L

=3 —§0

Bytes:

—
O
Q
O

P—

ed

1
m|

L <
m|
-4

oL

4-16

SWAB

swap bytes 0003DD
' |
©0y0 0.0,0 0 0p0 1 ¢ 4 dpd d d
15 6 5 0
Operation: Byte 1/Byte O «Byte 0/Byte 1

Condition Codes: N: set if high-order bit of low-order byte (bit 7) of result is set;
: cleared otherwise
Z: set if low-order byte of result =O0; cleared otherwise

V: cleared
C: cleared
Description: Exchanges high-order byte and low-order byte of the destina-
' tion word (destination must be a word address).
Example:) SWAB R1
Before After
(R1)=077777, (R1)=177577
NzZvVC NzvVC

1111 0000

4-17

Multiple Precision '

It is sometimes necessary to do arithmetic on operands. considered -as multiple
words or bytes. The PDP-11 makes special provision for such operations with the
“instructions ’ADC (Add Carry) and SBC (Subtract Carry) and their byte equiva-
lents. i)

For example two 16-bit words may be combined into a 32-bit double precision
word and.added or subtracted as shown below:

32 BIT WORD

o ~
O?ERANDF a1 __l A l
31 ”) % B o

L - >
OPERAND L 81 | L o]
3 % 15 °

RESULT r I l l
T [T)

- Eiample:

The addition of -1 and -1 could be performed as follows:
-1 = 37777777777 -
(R1) = 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777

ADD. RI1,R2
 ADC ~ R3

‘ADD R4,R3

1.‘After (R1) and (R2) are added, 1 is loaded into the C. bit
-2. ADC instruction adds C bit to (R3); (R3) = 0

3. (R3) and (R4) are added

4. Result is 37777777776 or -2

4-18

ADC
ADCB

add carry =u055DD
W1 o o o0 t o 1t 1To 1 1 d d d d d d]
| 1 PR | L R L L 1 1 1 L
15 6 5 0
Operation: (dst)(dst) + (C)

Condition Codes: N: set if result <O; cleared otherwise
Z: set if result =0; cleared otherwise
V: set if (dst) was 077777 (word) or 200 (byte)
~and (C).was 1; cleared otherwise
C: set if (dst) was 177777 (word) or 377 (byte)
and (C) was 1; cleared otherwise

Description: Adds the contents of the C-bit into the destination. This per-
mits the carry from the addition of the low-order words to be
carried into the high-order result.

Byte: Same

Example: Double precision addition may be done with the following in-
structiori sequence:
ADD A0Q,BO + add low-order parts
ADC Bl ;.add carry into high-order
ADD Al1,B1 -~ ;-add high order parts

SBC
SBCB ' v

subtract carry : =056DD

0/10001011'1oad'adde
l 1 11]1!

15 6 5 o]

Operation: (dst)«(dst)-(C)

Condition Codes: N: set if result O; cleared otherwise
Z: set if result O; cleared otherwise
V: set if (dst) was 100000 (word) or 200 (byte)
cleared otherwise
C: set if (dst) was O and C was 1; cleared otherwise

Description: Word: Subtra[:ts the contents of the C-’bit from the destina-
tion. This permits the carry from the subtraction of two low-
order words to be subtracted from the high order part of the

result.
Byte: Same
Example: Double precision subtraction is done by:
SUB A0,B0
SBC Bl
SUB Al1B1

4-20

SXT

Used in the PDP-11/34, 11/45 and 11/55 -

sign extend

-0067DD

Iolo 0 0 t 1 0*17'1 1]d d d d4 d dI
1 1
15

Operation:

Condition Codes:

‘Description:

l i 1 I X 1 1 1 I L

(dst) < O if N bit is clear
(dst) <-1 N bit is set

N: unaffected

Z: set if N bit clea
V: cleared :
C: unaffected

If the condition code bit N is set then a -1 is placed in the
destination operand: if N bit is clear, then a O is placed in the
destination operand. This instruction is particularly useful in
multiple precision arithmetic because it permits the sign to
be extended through multiple words. .

4-21

Used in the PDP-11/34 - MFPS

move byte from processor status word 1067DD -

FIOOOIIOIIldddddd]
1 1 1 I 1 1 1 1 I i I
Operation: (dst) < PS <0:7>.

dst lower 8 bits
Condition Codé
Bits: N = set if PS bit 7 = 1; cleared otherwise

& Z = set if PS <0:7> = 0; cleared otherwise

V = cleared

C = not affected
Description: " The 8 bit contents of the PS are moved to the effec-

tive destination. If destination is mode O, PS bit 7 is
sign extended through the upper byte of the register.
The destination operand address is treated as a byte

address.
Example: MFPS RO
before after
RO [0] RO [000014]
PS [000014] PS [000014]

4-22

MTPS Used in the PDP-11/34

move byte to processor status word ‘ 1064SS
l‘ l 1 0 . 0 1 0 I ' 4 ' L 0 | ' - 0 L 0 1 ’ A : 2 ’ 1) 1) L sJ
Operation: PS <0:7> <« (SRC)

Condition Codes: Set according to effective SRC operand bits 0-3.

Description: The 8 bits of the effective operand replaces the cur-

: rent contents of the PS <0:7>. The source operand
address is treated as™a byte address. .
Note that the T bit (PS bit 4) cannot be set with this
instruction. The SRC operand remains unchanged.
This instruction can be used to change the priority bits
(PS <5:7>) in the PS.

4-23

4.5 DOUBLE OPERAND INSTRUCTIONS

Double operand instructions provide an instruction (and time) saving facility
since they eliminate the need for “‘load’’and *‘save’ sequences such as those
used in accumulator-oriented machines.

4-24

MOV
MOvVB

move source to destination - m1SSDD

04 0 0 4 [|s s s s's s|[d d d d d d I

f | 1] 1 1 " l 1 I | 1 L

15 12 11 6 5 0
Operation: (dst)<(src)

Condition Codes: N: set if (src) <O; cleared
Z: set if (src) =0; cleared
V: cleared
C: not affected

Description: Word: Moves the source operand to the destination location.

The previous contents of the destination are lost.- The con-
tents of the source address are not affected.
Byte: Same as MOV. The MOVB to a register (unique among
byte instructions) extends the most significant bit of the low
order byte (sign .extension). Otherwise MOVB operates on
bytes exactly as MOV operates on words.

Example: MOV XXX,R1 » loads Register 1 with the con-
tents of memory location; XXX represents-a programmer-de-
fined mnemonic used to represent a memory location

MOV #20,RO : loads the number 20 into
Register O; ** # "indicates that the value 20 is the operand

MOV @ # 20,-(R6) ; pushes the operand con-
tained in location 20 onto ther stack

MOV (R6) +.@ # 177566 ; pops the operand off the stack
and moves it into memory location 177566 (terminal print
buffer) .

MOV R1,R3 ; performs an inter
register transfer

MOVB @# 177562, @# 177566 ; moves a character
from terminal keyboard buffer to terminal printer buffer

4-25

CMP
CMPB

compare src to dst

=2SSDD:
[on o1 o0 i s s s s 's s|d & d d d d
| I L ' | 1 1 1 1 | 1 L
15 12 1 6 5)
Operation: (src)-(dst)

Condition Codes:

Description:

N: set if rasult <O; cleared otherwise

Z: set if result =0; cleared otherwise

V: set if there was arithmetic overflow; that is, operands were
of opposite signs and the sign.of the destination was the
same as the sign of the result; cleared otherwise

C: cleared if there was a carry from the most significant bit of
the result; set otherwise

Compares the source and destination operands and sets the
condition codes, which may then be used for arithmetic and
logical conditional branches. Both operands are unaffected.
The only action is to set the condition codes. The compare is
customarily followed by a conditional branch instruction.
Note that unlike the subtract instruction the order of oper-
ation is (src)-(dst), not (dst)-(src).

4-26

ADD

add src to dst o , 06SSDD

Operation:

Condition Codes:

Description:

Examples:

(dst)«(src) + (dst)

N: set if result <O; cleared otherwise

Z: set if result = O; cleared otherwise

V: set if there was arithmetic overflow as a result of the oper-
ation; that is both operands were of the same sign and the
result was of the opposite sign; cleared otherwise

C: set if there was a carry from the most significant bit of the
result; cleared otherwise

Adds the source operand to the destination operand. and
stores the result at the destination address. The original con-
tents of the destination are lost. The contents of the source
are. not affected. Two's complement addition is performed.

Add to register: ADD 20,RO
Add to memory: ADD RL XXX
Add register to register:" ADD R1,R2

Add memory to memory: ADD@: # 17750,XXX

XXX is a programmer-defined mnemonic for a memory loca-
tion. -

4-27

SuB

. subtract src from dst ' 16SSDD’

1 1 1 o]s s s . s's s|d d d . d d d]
I i 1 1 ! I 1 1 1 1 l 1 1
15 12 1N 6 5 o}
Operation: (dst)<(dst)-(src)

Condition Codes: N: set if result <O: cleared otherwise
Z: set if result =0; cleared otherwise

V: set if there was arithmetic overflow as a result of the oper-
ation, that is if operands were of opposite signs and the sign
of the source was the same as the sign of the result; cleared

otherwise

C: cleared if there was a carry from the most significant bit of

the result; set otherwise

Description: Subtracts the source operand from the destination operand
and leaves the result at the destination address. The orignial
contents of the destination are lost. The contents of the
source are not affected. In double-precision arithmetic the C-

bit, when set, indicates a “‘borrow”.

Example: SUB R1,R2

Before After
(R1)=011111 ' (R1)=011111
(R2) =012345 (R2) =001234

NZvC NzZvVC

1111 0000

4-28

Logical
These instructions have the same format as the double operand arithmetic group.
They permit operations on data at the bit level.

4-29

BiT
BIiTB

bit test ®3SSDD
o1 0 1 s s s s s s I d d d d d d
| | L L |- |
15 12 11 6 5 0
Operation: (src) A (dst)

Condition Codes:

Description:

Example:

N: set if high-order bit of result set; cleared otherwise
Z: set if result =0; cleared otherwise '

V: cleared

C: not affected

- Performs logical '‘and’’comparison of the source and desti-

nation operands and modifies condition codes accordingly.
Neither the source nor destination operands are affected.
The BIT instruction may be used to test whether any of the
corresponding bits that are set in the destination are also set
in the source or whether all corresponding bits set in the des-
tination are clear in the source.

BIT #30.R3 ; test bits 3and 4 of R3 to see

- if both are off

(30):=0 000 000 000 011 000

4-30

BIC

BICB
bit clear ‘ m4SSDD
.[0/111‘OJOlslesls:slsTd‘dldeJdld]

15 12 1 6 5 0
Operation: (dst)<€~(src)A(dst)

Condition Codes:

Description:

Example:

N: set if high order
Z: set if result =0;
V: cleared

- C: not affected

bit of result set; cleared otherwise
cleared otherwise

Clears each bit in the destination that corresponds to a set
bit in the source. The original contents of the destination are
lost. The contents of the source are unaffected.

L Before
(R3) =001234

(R4)=001111

NZvC
1111

Before:

After:.

BIC R3,R4
After
(R3)=001234
(R4) =000101
NZVC
0001

(R3)=0 000 001 010 011 100
(R4)=0 000 001 DO1 001 001

(R4)=0 000 000 001 000 001

4-31

bit set m5SSDD
[0/1 1 0 1t [|s s s s Vs s 1 d d d d d d
1 1 1 1 I 1 - 1 1 | 1 L
15 12 1n 6 5 [¢)
Operation: (dst)«(src) v (dst)

Condition Codes:

Description:

Example:

N: set if high-order bit of result set, cleared otherwise
Z: set if result =0: cleared otherwise

V: cleared

C: not affected

Performs *“‘Inclusive OR"operation between the source and
destination operands and leaves the result at the destination

. address; that is, corresponding bits set in the source are set

in the destination. The contents of the destination are lost.
BIS RO,R1
After

(R0) =001234
(R1)=001335

Before
(RO) =001234
(R1)=001111

NzZvVC
0000

NZvVC
0000

Before: (RO)=0 000 001 010 011 100 .
. (R1)=0 000 001 001 001 001
After: (R1)=0 000 001 011 011 101

4-32

XOR

Used in the PDP-11/34, 11/45 and 11/55

exclusive OR 074RDD
T
0
[|111‘|l1|0l0Jr;rlr1deldld‘de]
15 . 9 8 6 5
Operation: (dst)<Rw(dst)

Condition Codes: - N: set if the result <O; cleared otherwise
Z: set if result =0; cleared otherwise
V: cleared
C: unaffected

Description: The exclusive OR of the register and destination operand is
stored in the destination address. Contents of reglster are
unaffected. Assembler format is: XOR R.D

Example: . XOR RO,R2
Before . After
(RO) =001234 © (RO)=001234
(R2)=001111 (R2) =000325
Before: (RO)=0 000 001 010 011 100

(R2)=0 000 001 001 001 001

- After: ,(RZ):O 000 000 011 010 101

4-33

-4.6 PROGRAM CONTROL INSTRUCTIONS
Branches

The instruction causes a branch to a location defined by the sum of the offset
(multiplied by 2) and the current contents of the Program Counter if:

a) the branch instruction is unconditional

b) it is conditional and thé conditions are met after testing the condition
" codes (status word).

The offset’is the number of words from the current contents of the PC. Note that
the current contents of the PC point to the word following the branch instruction.

Although the PC expresses a byte address, the offset is expressed in words. The
offset is automatically multiplied by two to express bytes before it is added to the
PC. Bit 7 is the sign of the offset. If it is set, the offset is negative and the branch
is done in the backward direction. Similarly if it is not set, the offset is posmve
and the branch is done in the forward direction.

The 8-bit offset allows branching in the backward direction by 200. words (400.
bytes) from the current PC, and in the forward direction by 177, words (376.
bytes) from the current PC. -

The PDP-11 assembler handles address arithmetic for the user and computes and
assembles the proper offset field for branch instructions in the form: :

Bxx loc
‘Where “Bxx'" is the branch instruction and *‘loc" is the address to which the
branch is to be made. The assembler gives an error indication in the instruction if

the permissable branch range is exceeded. Branch instructions have no effect on
condition codes.

434

BR

branch (unconditional) 000400 Plus offset

[o 6 00 0 0 0 1]. OFFSET]
1 TR N | L L | L] L L I 1] '
15 8 7 o
Operation: PC « PC + (2 x offset)
Description: Provides a way of transferring program control within a

range of -128 to + 127 words with a one word instruction.

New PC address = updated PC 4 (2 X offset)
Updated PC = address of branch instruction 4 2

Example: With the Branch instruction at location 500, the following off-

sets apply.
New PC Address Offset Code i Offset (decimal)
474 375 . -3
476 376 2
500 . 377 ’ —1
502 000 0
. 504) oo1 +1
506 . 0c2 : . +2

4-35

BNE

branch if not equal (to zero) 001000 Plus offset
0 0 0 0 0 0 1t o0
L l 1 1 L 1 | 1 | OF.FSET | ! 1 J
15 8 7 0
Operation: PC «PC + (2xoffset)if Z =0
Condition Codes: Unaffected
Description: Tests the state of the Z-bit and causes a branch if the Z-bit is_

clear. BNE is the complementary operation to BEQ. It is used
to test inequality following a CMP, to test that some bits set
in the destination were also in the source, following a BIT,
and generally, to test that the result of the previous oper-
ation was not zero.

Example: CMP AB ,compare Aand B
BNE C ; branch if they are not equal

will branch to Cif A # B

and the sequence

ADD AB ;addAtoB
BNE C ; Branch if the resultis not
- equal to O

will branch to Cif A + B# 0

4-36

BEQ

branch if equal (to zero) s 001400 Plus offset
[o © 0 0 0 0 1 1 OFFSET
| \ ! | i 1 1 ! | 1 1 1 1 1
15 8 7 0
Operation: PC €«PC + (2 x offset) if Z=1

Condition Codes: Unaffected

Description: Tests the state of the Z-bit and causes a branch if Z is set. As
an example, it is used to test equality following a CMP oper-
ation, to test that no bits set in the destination were also set
in the source following a BIT operation, and generally, to test
that the result of the previous operation was zero.

Example: CMP AB ; compare A and B
BEQ C ; branch if they are equal
will branchto CifA = B A-B=0)
and the sequence
ADD AB ;addAtoB
BEQ C ; branch if the result =0

will branchto CifA + B = 0.

4-37

BPL

branch if plus : 100000 Plus offset.
i o 0 0 0 O 0,0 OFFSET B
1 1 1 1 I I | L | L) ! 1
15 8 7 o
Operation: PC « PC + (2 x offset) if N=0
Description: Tests the state of the N-bit and causes a branch if:N is

clear, (positive result).

4-38

BMI
,

branch if minus . 100400 Plus offset
! lo 1010 lo (0 10 | ! ! " 1 OEFSE.T 1 1 1 1
15 8 7 0
. Operation: PC « PC + (2 x offset) if N=1

Condition Codes: ~ Unaffected

Description: Tests the state of the N-bit'and causes a branch if N is
set. It is .used to test the sign (most significant bit) of
the result of the previous operation), branching if neg-
ative. -

4-39

BVC

branch if overflow is clear 102000 Pius offset
1t 0 0 0,0 { 0,0 OFFSET
l 1 1 ‘ 1 1 l 1 l Il L l 1 1
15 8 7 0
Operation: PC «PC + (2 x offset) if V=0
Description: Tests the state of the V bit and causes a branch if the V bit is

clear. BVC is complementary operation to BVS.

4-40

BVS

branch if overflow is set 102400 Plus offset
1t 0 0 o0 0 1
1 1 1 | 1 L °] ! [. l OLFFSEIT l 1 Il
15 - 8 7 0
Operation:’ PC «PC + (2 x offset) if V=1
Description: Tests the state of V bit (overflow) and causes a branch if the

V bit is set. BVS is used to detect arithmetic overflow in the
previous operation. -

441

BCC

branch if carry is clear 103000 Plus offset
FFSET
L'jo 000 v ryof | jooeeser |
15 : 8 7 o
Operation: PC «PC + (2 x offset) if C=0
Description: Tests the state of the C-bit and causes a branch if C is clear.

BCC is the complementary operation to BCS

4-42

BCS

branch if carry is set . 103400 Plus offset
K OFFSET
rLlonololol‘a |] ! | X) -1 1 |j_
15 8 7 . o
’ Operation: PC «PC + (2 x offset) if C= 1
Description: Tests the state of the C-bit and causes a branch if C is set. It

is used to test for a carry in the result of a previous oper-
ation.

4-43

Signed Conditional Branches

Particular combinations of thé condition code bits are tested with the 5|gned con-
ditional branches. These instructions are used to test the results of instructions in
which the operands were considered as signed (two's complement) values.

Note that the sense of signed comparisons differs from that of unsigned com-
~ parisons in that in signed 16-bit, two's complement arithmetic the sequence of
_values is as follows:

largest - 077777
077776
. positive
000001
000000
177777 T
177776
negative
100001
smallest 100000

Whereas in unsigned 16-bit arithmetic the sequence is considered to be

 highest 177777

000002

lowest 000000

4-44

BGE

branch (if greater than or equal _ 002000 Plus offset

(to zero)

0,0 0
[|
15

Operation:

- Description:

) OFFSET 1
°p°0, t oy |, qjoeser |
8 T

(o]

PC«PC + (2xoffset)if NvV =0

Causes a branch if N and V are either both clear or both set.
BGE is the complementary operation to BLT. Thus BGE will
always cause a branch when it follows an operation that
caused addition of two positive numbers. BGE will also cause

_ a branch on a zero result.

4-45

BLT

branch if less than (zero) 002400 Plus offset
0,0 1 0,1 OFFSET
oo 0 00 v oyt A .
15 8 7 o

Operation:

Description:

PC<«PC + (2xoffset)if NvV = 1

Causes a branch if the “Exclusive Or"'of the N and V bits are
1. Thus BLT will always. branch following an operation that

-added two negative numbers, even if overflow occurred.

In particular, BLT will always cause a branch if it follows a
CMP instruction operating on a negative source and a posi-
tive destination (even.if overflow occurred). Further, BLT will
never cause a branch when it follows a CMP instruction oper-
ating on a positive source and negative destination. BLT will
not cause a branch if the result of the previous operation was
zero (without overflow).

4-46

BGT

branch if greater than (zero) 003000 Plus offset-

0,0 O 0,0 t 1

oo, o, 0p0, t ryof goomsery]
15 8 7 o

Operation: PC«PC + (2xoffset)if ZWNwV) =0

Description: Operation of BGT is similar to BGE, except BGT will not cause

a branch on a zero result.

4-47

BLE

branch if less than or equal (to zero) 003400. Plus offset
0,0 O FFSET
F L S ° I ° 1 ! 1 1‘ I ! 1 luoa 1 | L 1 J
15 8 7 o
Operation: PC«PC + (2xoffset)if ZV(N'v V)=1
Description: Operation is similar to BLT but in addition will cause a

branch if the result of the previous operation was zero.

4-48

Unsigned Conditional Branches
The Unsigned Conditional Branches provide a means for testing the result of
comparison operations in which the operands are considered as unsigned values.

4-49

BHI

branch if higher . 101000 Plus offset
| ! | ° 1 ° 1 ° | ° 1 ° 1 ! Lol 1 | OF:FSE:T 1 I 1 l
15 8 "7 o
 Operation: PC<PC + (2 xoffset) if C=0and Z=0
Description: Causes a branch if the previous operation cause& neither a

carry nor a zero result. This will happen in comparison' (CMP)
operations as long as the source has a higher unsigned value
than the destination.

4-50

BLOS

branch if lower or same v 101400 Plus offset
1.0 0 0,0 O 1 61

r. NI IRt T L) OFFSET]
15 8 7 o

Operation:

Description:

PC<«PC + (2xoffset)if CvZ =1

Causes a.branch if the -previous operation caused either a
carry or a zero result. BLOS is the complementary operation
to BHI. The branch will occur in comparison operations as
long as the source is equal to, or has a lower unsigned value
than the destination.

4-51

BHIS

branch if higher or same 103000 Plus offset

1 0 0 0,0 1 1.0 [OFFSET]
r 1 | S | ' \ | l]
15 8 7 (0]

Operation: " PC<«PC + (2xoffset)if C =0

Description: BHIS is the same instruction as BCC. This mnemonic is in-
cluded only for convenience.

4-52

~

BLO

branch if lower 103400 Plus offset
{0 0 O 0o 1 1 OFF
I L 1 [L 1 l 1 l 1 SEIT - I A 1
15 8 7 0
Operation: PC < PC + (2 x offset) if C=1
Description: BLO is same instruction as BCS. This mnemonic is included

only for convenience.

4-53

JMP

jump 0001DD
: 0o 0 0 0 0 0 0.0 0 t)d d d ¢ 4 d“—l

L J I A 1 1 - l A L 1 1 l 1 L

15 6 5 0
Operation: PC«(dst)

Condition Codes:.

Description:

not affected

JMP provides more flexible program branching than provided
with the branch instructions. Control may be transferred to
any location in memory (no range limitation) and can be ac-
complished with the full flexibility of the addressing modes,
with the exception of register mode O. Execution of a jump
with mode O will cause an “illegal instruction’condition.
(Program control cannot be transferred to a register.) Regis-
ter deferred mode is legal and will cause program control to
be transferred to the address held in the specified register.
Note that instructions are word data and must therefore be
fetched from an even-numbered address. A 'boundary er-
ror'trap condition will result when the processor attempts to
fetch an instruction from an odd address.

Deferred index mode JMP instructions permit transfer of

control to the address contained in a selectable element of a
table of dispatch vectors.

4-54

Subroutine Instructions

The subroutine call in the PDP-11 provides for automatic nesting of subroutines,
reentrancy, and multiple entry points. Subroutines may call other subroutines (or
indeed themselves) to any level of nesting without making special provision for
storage or return addresses at each level of subroutine call. The subroutine call-
ing mechanism does not modify any fixed location in memory, thus providing for
reentrancy. This allows one copy of a subroutine to be shared among several in-
terrupting processes. For more detailed description of subroutine programming
see Chapter 5.

4-55

JSR

jump to subroutine 004RDD
0,0 0,1 0 Ofr ' 'r r |d d) d ,d d d
l l 1 1 1 A - L l 1 A]
15 8 6 5 0
Operation: v (SP)<reg (push reg contents onto processor staék)
reg<PC (PC helds location following JSR; this address
now put in reg) -
PC «(dst) (PC now points to subroutine destination)
Description: In execution of the JSR, the old contents of the specified reg-

ister (the “LINKAGE POINTER') are automatically pushed
onto the processor stack and new linkage information placed
in the register. Thus subroutines nested within subroutines
to any depth may all be called with the same linkage register.
There is no need either to plan the maximum depth at which
any particular subroutine will be called or to include instruc-
tions in each routine to save and restore the linkage pointer.
Further, since-all linkages are saved in a reentrant manner
on the processor stack execution of a subroutine may be in-
terrupted, the same subroutine reentered and executed by an’
interrupt service routine. Execution of the initial subroutine
can then be resumed when other requests are satisfied. This
process (called nesting) can proceed to any level.

A subroutine called with a JSR reg,dst instruction can access
the arguments following the call with either autoincrement
addressing, (reg) +, (if arguments are accessed sequentially)
or by indexed addressing, X(reg), (if accessed in random or-
der). These addressing modes may also be deferred,
@(reg) + and-@X(reg) if the parameters are operand ad-
dresses rather than the operands themselves.

4-56

Example:

Before:

After:

JSR PC, dst is a special case of the PDP-11 subroutine cail
suitable for subroutine calls that transmit parameters
through the general registers. The SP and the PC are the only
registers that may be modified by this call.

Another special case of the JSR instruction is JSR PC,
@(SP) + which exchanges the top element of the processor
stack and the contents of the program counter. Use of this
instruction allows two routines to swap program control and
resume operation when recalled where they left off. Such rou-
tines are called “‘co-routines.”

Return from a subroutine is done by the RTS instruction. RTS
reg loads the contents of reg into the PC and pops the top
element of the processor stack into the specified register.

JSR R5, SBR
(PC) R7 Stack.
(SP) R6 E:]——-» DATA 0
v
56 n—? \ DA;:/I\ 0

4-57

RTS

return from subroutine 00020R

15 -

Operation:

Description:

Example:

Before:

After:

PCereg
reg< (SP)A

Loads contents of reg into PC and pops the top element of

the processor stack into the specified register.

Return from a non-reentrant subroutine is typically made
through the same register that was used in its call. Thus, a
subroutine called with a JSR PC, dst exits with a RTS PC and
a subroutine called with a JSR R5, dst, may pick up para-
meters with addressing modes (R5)+, X(R5), or @X(R5)
and finally exits. with an RTS R5

RTS R5

(PC) R7 Stack
(SP) R6 DATA 0
[I~ ™

w R

R6 . n+-2 — DATA O

4-58

‘MARK

Used in the PDP-11/34, 11/45 and 11/55

mark 00 64 NN
‘ T
[010]0‘0'1.1.011 OLOInilnlnln|nln]
15 8 7 6 5 o]
Operation: ‘ SP< PC + 2nn nn = number of parameters
PC<R5 .
R5«(SP) A
Condition Codes: unaffected

Description:

Example:

Used as part of the standard PDP-11 subroutine return con-
vention. MARK facilitates the stack clean up procedures in-
volved in subroutine exit. Assembler-format is: MARK N

MOV R5,-(SP) ;place old R5 on stack

MOV P1,-(SP) ;place N parameters

MOV P2,-(SP) ;on the stack to be

' : ;used there by the
:subroutine

MOV PN,-(SP) .

MOV . #MARKN,-(SP) ;places the instruction
:MARK N on the stack

MOV SP ,R5 ;set up address at Mark N in-
struction ;

JSR PC,SUB ;jump to subroutine

At this poinf the stack is as follows:

OLD RS
P1

PN

MARK N

OLD PC

4-59

JAnd the program is at the address SUB which is the beginning

of the subroutine.
SUB: ;execution of the subroutine it-

self

RTSR5 ;the return begins: this causes

the contents of R5 to be placed in the PC which then results
in the execution of the instruction MARK N. The contents of

old PC are placed in R5

MARK N causes: (1) the stack pointer to be adjusted to point
to the old R5 value; (2) the value now in R5 (the old PC) to be
placed in the PC; and (3) contents of the the old R5 to be
popped into R5 thus completing the return from subroutine.

4-60

SOB

Used in the PDP-11/34, 11/45 and 11/55

subtract one and branch (in #+ 0) 077R00 Plus offset
[[0} 1 1 1 1 1 1 r. ! r r OFFSET J
| 1 ! |) i 1 1 | L L
15 9 8 6 5 0

Operation: ¢
Condition Codes:

Description:

R« R -1 if this result # O then PC < PC -(2 x offset)

unaffected

The register is decremented. If it is not equal to O, twice the
offset is subtracted from the PC (now pointing to the follow-
ing word). The offset is.interpreted as a sixbit positive num-
ber. This instruction provides a fast, efficient method of loop
control. Assembler syntax is:

SOB RA

Where A is the address to which transfer is to be made if the
decremented R is not equal to 0. Note that the SOB instruc-
tion can not be used to transfer control in the forward direc-
tion.

4-61

SPL
Used in the PDP-11/45 and 11/55

Set Priority Level 00023N
A 0 o .
[o I 1 o L l o 1 0 1 o l o ' ' 1 o l o 1 ' L ! l " - nAn—AI
15 3 2 [3)
Operation: PS (bi{s 7-5) «Priority (priority = n n n)

Condition Codes: not affected

Description The least significant three bits of the instruction
are loaded into the Program Status Word (PS) bits
7-5 thus causing a changed priority. The old priority
is lost.
Assembler syntax is: SPL N

Note: This instruction is a no op in User and
Supervisor modes.

Traps

Trap instructions provide for calls to emulators, 1/0 monitors, debugging pack-
ages, and user-defined interpreters. A trap is effectively an interrupt generated by
software. When a trap occurs the contents of the current Program Counter (PC)
and Program Status Word (PS) are pushed onto the processor stack and re-
placed by the contents of a two-word trap vector containing a new PC and new
PS. The return sequence from a trap involves executing an RTl.or RTT instruc-
tion which restores the old PC and old PS by popping them from the stack. Trap
vectors are located at permanently assigned fixed addresses.

4-62

EMT

‘emulator trap , 104000—104377
Lo, 000t 000]
15 8 7 o
" Operation: ¥ (SP)«PS
¥ (SP)«<PC
PC«(30)
PS«(32)
Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector
Description: All operation codes from 104000 to 104377 are EMT instruc-

tions and may be used to transmit information to the emulat-
ing routine (e.g., function to be performed). The trap vector
for EMT is at address 30. The new PC is taken from the word
at address 30; the new central processor status (PS) is taken
from the word at address 32.

Caution: EMT is used frequently by DEC system software and
is therefore not recommended for general use.

Before: PS PS1 : Stack
R7, PC . PC1 ’ DATA 1
R6, SP I n '/ . :
After: PS ' (32) I :
PC (30) - DATA 1
' PS 1
SP n—4 B —— PC 1

4-63

104400—104777

Operation:

Condition Codes:

Description:

¥ (SP)«PS

¥ (SP)«PC
PC«(34)
PS«(36)

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Operation codes from 104400 to 104777 are TRAP instruc-

tions. TRAPs and EMTs are identical in operation, except
that the trap vector for TRAP is at address 34.

Note: Since DEC software makes frequent use of EMT, the
TRAP- instruction is recommended for general use.

4-64

BPT

breakpoint trap .) 000003
o 0 0 0,0 0O 0,0 0 0,0 0 0,0 1 1
Fl NI IR ISR IR B]
i5 0
Operation: v (SP)«PS
v (SP)<«PC
PC «(14)
PS «(16)

Condition Codes: N: loaded from trap vector

Z: loaded from trap vector

V: loaded from trap vector

C: loaded from trap vector

Description: Performs a trap sequence with a trap vector address of 14.

Used to call debugging aids. The user is cautioned against

employing code 000003 in programs run under these de-

bugging aids.

‘(no information is transmitted in the low byte.)

4-65

10T

€
input/output trap : 000004

0.0 0 0 0 0 0 0'0 0,0 0O O 1 O o]
[| IR R i 1 P
15

Operation: v (SP)«PS
v(SP)<PC

+ PC«(20)

PS«(22)

Condition Codes: N:loaded from trap vector
Z:loaded from trap vector
V:loaded from trap vector
C:loaded from trap vector

Description: ~ Performs a trap sequence with a trap vector address of 20.
Used to call the 170 Executive routine 10X in the paper tape
software system, and for error reporting in the Disk Oper-
ating System.

(no information is transmitted in the low byte)

4-66

RTI

return from interrupt _ ' 000002
T
0 0 0 0 0 0 0 0 0 0 0 0 O O t O
l 1 A ‘ L L l . i - L 1 1 I 1 1
15 0
Operation: PC«(SPW 4
PS «(SP)a

Condition Codes: N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack
Description: Used to exit from an interrupt or TRAP service routine. The
PC and PS are restored (popped) from the processor stack.

4-67

RTT

Used in the PDP-11/34, 11/45 and 11/55

return from interrupt » o 000006
L
0O 0 0 0,0 0 0,0 0 0,0 0O O 1 1
[l 1 1 I 1 1 I i’ 1 l L A l 1 n 01
15 0
Operation: PC<«(SPYA
PS«(SP) A

Condition Codes: N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Description: - This is the same as the RTI instruction except that it inhibits
a trace trap, while RTI permits a trace trap. If a trace trap is
pending, the first instruction after the RTT will be executed
prior to the next “T"'trap. In the case of the RTI instruction
the “T'" trap will occur immediately after the RTI.

4-68

Reserved Instruction Traps - These are caused by attempts to execute instruction
codes reserved for future processor expansion (reserved instructions) or instruc-
tions with illegal addressing modes (illegal instructions). Order codes not corre-
sponding to any of the.instructions described are considered to be reserved in-
structions. JMP and JSR with register mode destinations are illegal instructions.
Reserved and illegal instruction traps occur as described under EMT, but trap
through vectors at addresses 10 and 4 respectively.

Stack Overflow Trap
Bus Error Traps - Bus Error Traps are:

1. Boundary Errors - attempts to reference instructions or word
operands at odd addresses.

2. Time-Out Errors - attempts to reference addresses on the bus
that made no response within a certain length of time. In general,
these are caused by attempts to reference non-existent memory,
and attempts to reference non-existent peripheral devices.

Bus error traps cause processor traps through the trap vector address 4.

Trace Trap - Trace Trap enables bit 4 of the PS and causes processor traps at
the end of instruction executions. The instruction that is executed after the in-
struction that set the T-bit will proceed to completion and then cause a processor
trap through the trap vector at address 14. Note that the trace trap is a system
debugging aid and is transparent to the general programmer.

The foliowing are special cases and are detailed in subsequent paragraphs.
1. The traced instruction cleared the T:bit.
2. The traced instruction set the T-bit.
3. The traced instruction caused an instruction trap.
4. The traced instruction caused a bus error trap.
5. The traced instruction caused a stack overflow trap.

6. The process was interrupted between the time the T-bit was set and the
fetching of the instruction that was to be traced.

7. The traced instructi;::n was a WAIT.
8. The traced instruction was a HALT.

9. The traced instruction was a Return from Trap

Note: The traced instruction is the instruction after the one that sets the T-bit.

An instruction that cleared the T-bit - Upon fetching the traced instruction an in-
_ternal flag, the trace flag, was set. The trap will still occur at the end of execution
of this instruction. The stacked status word, however, will have a clear T-bit.

An instruction that set the T-bit - Since the T-bit was already set, setting it again
has no effect. The trap will occur.

4-69

An instruction that caused an Instruction Trap. The instruction trap is
sprung and the entire routine for the service trap is executed. If the
service routine exits with an RTI or in any other way restores the stacked
status word, the T-bit is set again, the instruction following the traced
instruction is executed and, unless it is:one of the special cases-noted -
above, a trace trap occurs.-

An instruction that caused a Bus Error Trap. This is treated as an:in-
struction Trap. The only difference is that the error service-is not as
likely to exit with an RTI, so that the trace trap may not occur.

- An instruction that caused a stack overflow. The instruction completes -
execution as usual—the Stack Overflow does not .cause a trap. The:
Trace Trap Vector is loaded inio the PC and PS, and the old PC and.PS
are pushed onto the stack. Stack Overﬂow occurs again, ‘and. this time
the trap is made.

An interrupt between setting of the T-bit and fetch of the traced intruc-
tion. The entire interrupt service routine is executed and then the T-bit
is set again by the exiting RTIl. The traced instruction is executed (if
there have been no other interrupts) and, unless it is a special case
noted above, causes a trace trap.

Note that interrupts may be acknowledged immediately after the loading
of the new PC and PS at the trap vector location. To lock out all inter-
rupts, the PS at the trap vector should raise the processor priority to
level 7.

A WAIT. The trap occurs immediately.

A HALT. The processor halts. When the continue key on the console is
pressed, the instruction following the HALT is fetched and executed.
Unless it is one of the exceptions noted above, the trap occurs imme-
diately following execution. -

A Return from Trap. The return from trap instruction either clears or sets
the T-bit. It inhibits the trace trap. If the T-bit was set and RTT is the
traced instruction the trap is delayed until completion of the next in-
struction.

Power Failure Trap. is a standard PDP-11 feature. Trap occurs whenever
the AC power drops below 95 volts or outside 47 to 63 Hertz. Two milli-
seconds are then allowed for power down processing. Trap vector for
power failure is at locations 24 and 26.

4-70

Trap priorities. In case multiple processor trap conditions occur simul-
taneously the following order of priorities is observed (from high to low):

11/04
. Odd Address
. Timeout
. Trap Instructions
. Trace Trap
. Power Failure

O WN -

11/34

Odd Address
Memory Management Violation
Timeout

Parity Error

Trap Instruction
Trace Trap

. Stack Overflow

. Power Fail

. Interrupt

HALT From Console

SOENOTRWNE

-

11/45, 11/55
. Odd Address
. Fatal Stack Violation
. Segment Violation
Timeout
. Parity Error
. Console Flag
. Segment Management Trap
. Warning Stack Violation
. Power Failure

CONOGONWN -

The details on the trace trap process have been described in the trace
- trap operational "description which includes cases in which an instruc-
tion being traced causes a bus error, instruction trap, or a stack over-
flow trap.
If a bus error is caused by the trap process handling instruction traps,
trace traps, stack overflow traps, or a previous bus error, the processor
is halted. ’
If a stack overflow is caused by the trap process in handling bus errors,
instruction traps, or trace traps, the process is completed and then the
stack overflow trap is sprung.

4-71

4.7 MISCELLANEOUS

HALT

000000

Condition Codes:

Description:

not affected

Causes the processor operation to cease. The console is
given control of the bus. The console data lights display the
contents of RO; the console address lights display the ad-
dress after the halt instruction. Transfers on the UNIBUS are
terminated immediately. The PC points to-the next instruc-
tion to be executed. Pressing the continue key on the console
causes processor operation to resume. No INIT signal is
given.

Note: A halt issued in : a trap.

- 472

wait for interrupt

WAIT

000001

0|0 o 0 oo o o0 0 0 0 O 1
L L

[0 0 0
l 1 -1
15 ‘

Condition Codes:

Description:

not affected

Provides a way for the processor to relinquish use of
the bus while it waits for an external interrupt.
Having been given a WAIT command, the processor
will not compete for bus use by fetching instructions
or operands from memory. This permits higher trans-
fer rates between a device and memory, since no
processor-induced latencies will be encountered by
bus requests from the device. In WAIT, as in all in-
structions, the PC points to the next instruction fol-
lowing the WAIT operation. Thus when an interrupt
causes the PC and PS to be pushed onto the pro-
cessor stack, the address of the next instruction
following the WAIT is saved. The exit from the in-
terrupt routine (i.e. execution of an RTI instruction)
will cause resumption of the interrupted process at
the instruction following the WAIT.

4-73

RESET :

reset external bus) 000005

T
ooooooooooooo1or]
Il R R B

O/

1 s | 1 L | !

15

Condition Codes: not affected

Description: Sends INIT on the UNIBUS. All devices on the UNI-
BUS are reset to their state at power up.

4-74

Condition Code.Operators

CLN SEN
CLZ SEZ

CLV SEV
CLC SEC
CCC SCC

condition code operators . 0002XX

15

folo °o 0 0 o olo'z OJ'iOﬁLNIZ[VLCJ
— — — =2 3 : T o

Set and clear condition code bits. Selectable combinatiofs of

Description: ’
A these bits may be cleared or set together. Condition code bits
corresponding to bits in the condition code operator (Bits O-
3) are modified according to the sense of bit 4, the set/clear-
bit of the operator. i.e. set the bit specified by bit 0, 1, 2 or 3,
if bit 4 is a 1. Clear corresponding bits if bit 4=0.
Mnemonic
Operation OP Code
CLC ClearC 000241
CLV ClearV 000242
CLzZ Clear Z 000244
CLN ClearN 000250
SEC SetC . 000261
~ SEV Set V 000262
SEZ Set Z 000264
SEN. SetN 000270
SCC SetallCC's 000277
CCC Clearall CC's ’ 000257
ClearVand C . 000243
NOP No Operation 000240

Combinations of the above set or clear operations may be ORed together to form
combined instructions.

4-75

4-76 o

CHAPTER 5

PROGRAMMING TECHNIQUES

In order to produce programs which fully utilize the power and flexibility of the
PDP-11, the reader should become familiar with the various pragramiming tech-
niques which are part of the basic design philosophy of the PDP-11. Although it is

possible to program the PDP-11 along traditional lines such as “accumulator ori-
~ entation this approach does not fully exploit the architecture and instruction set
of the PDP-11.

5.1 THE STACK

A ‘‘stack”, as used on the PDP-11, is an area of memory set aside by the pro-
grammer for temporary storage or subroutine/interrupt service linkage. The in-
structions which facilitate ‘‘stack’” handling are useful features not normally
found in low-cost computers. They allow a program to dynamically establish,
modify, or delete a stack and items on it. The stack uses the “last-in, first-out”
concept, that is, various items may be added to a stack in sequential order and re-
trieved or deleted from the stack in reverse order. On the PDP-11, a stack starts
at the highest location reserved for it and expands linearly downward to the low-
est address as items are added to the stack.

HIGH ADDRESSES

LOW ADDRESSES // //"

Figure 5-1: Stack Addresses

The programmer does not need to keep track of the actual locations his data is
. being stacked into. This is done automatically through a “‘stack pointer.” To keep
track of the last item added to the stack (or ‘‘where we are” in the stack) a Gen-
eral Register always contains the memory address where the last item is stored in
the stack. In the PDP-11 any register except Register 7 (the Program Counter-PC)
may be used as a *'stack pointer’’ under program control; however, instructions
associated with subroutine linkage and interrupt service automatically use Regis-
ter 6 (R6) as a hardware ‘‘Stack Pomter " For this reason R6 is frequently re-
ferred to as the system *‘SP.”

5.1

Stacks in the PDP-11 may be maintained in either full word or byte units. This is
true for a stack pointed to by any register except R6, which must be organized in
full word units only.

WORD STACK
007100 ITEM #1
007076 ITEM #2
. 007074 ITEM #3
ooror2 ITEM #4 ~—sp| oororz |
007070
007066
007064
NOTE:BYTES ARE
BYTE STACK WORDS AS FOLLOWING:
BYTE 3 | BYTE 2
007100 ITEM #1 . BYTE { |BYTE O
007077 ITEM #2
007076 ITEM #3
007075 ITEM #4 «—sp| ootors |

Figure 5-2: Word and Byte Stacks

Items are added to a stack using the autodecfement addressing mode with the

appropriate pointer register. (See Chapter 3 for description of the autoincre-
ment/decrement modes).

This operation is accomplished as follows;

MOV Source,-(SP) ;MOV Source Word onto the stack
V or
MOVB Source,-(SP) - ;MOVB Source Byte onto the stack

This is called a “push” because data is “‘pushed onto the stack.”

5-2

To remove an item from stack the autoincrement addressing mode with the ap-
propriate SP is employed. This is accomplished in the following manner:

MOV (SP) + ,Destination _ ;MOV Destination Word off the stack

or

MOVB (SP) + ,Destination ;MOVB Destination Byte off the stack

Removing an item from a stack is called a “‘pop" for “‘popping from the stack.”
After an item has been “‘popped,” its stack location is considered free and avai-
lable for other use. The stack pointer points to the last-used location implying
that the next (lower) location is free. Thus a stack may represent a pool of share-
able temporary storage locations.

HIGH MEMORY
|- sp
‘ £0 -sp EQ
A 4 E1 le-sP
RY
O R N EMPTY STACK 2.PUSHING A DATUM 3.PUSHING ANOTHER
AREA T'ONTO THE STACK DATUM ONTO THE
STACKS
EQ EQ }2 EQ
€1 E1 -sP E1
€2 <sp J €3 -SP
4. ANOTHER PUSH 5. POP 6. PUSH
E3
€0
E1 -sp
7 POP

Figure 5-3: lllustration of Push and Pop Operations

5-3

As an example of stack usage consider this situation: a subroutine (SUBR) wants
to.use registers 1 and 2, but these registers must be returned to the calling pro-
gram with their contents unchanged. The subroutine could be written as follows:

Address Octal Code Assembler Syntax

076322 010167 SUBR: MOV R1,TEMP1 ;save R1
076324 000074 *

076326 010267 MOV R2,TEMP2 ;save R2
076330 000072 *

076410 016701 MOV TEMP1, R1 ;Restore R1
076412 000006 * :
076414 016702 MOV TEMP2, R2 ;Restore R2
076416 000004 *

076420 000207 - RTSPC

076422 - 000000 TEMP1: 0

076424 000000 . TEMP2: 0

*Index Constants

Figure 5-4: Register Saving Without the Stack

OR: Using the Stack

Address Octal Code * Assembler Syntax
010020 010143 SUBR: MOV RI, ~(R3);push Rl
010022 010243 MOV R2, ~(R3) ;push R2
010130 012301 MOV (R3) +, R2 ;pop R2
010132 012302 . MOV (R3) + R1 -pop R1
010134 000207 RTS PC

Note: In this case R3 was used as a Stack Pointer -

Figure 5-5: Register Saving using the Stack

The second routine uses four less words of instruction code and two words of
temporary ‘“‘stack’ storage. Another routine could use the same stack space at
some later point. Thus, the ability to share temporary storage in the form of a
stack is a very economical way to save on memory usage.

. 5-4

As a further example of stack usage, consider the task of managing an input buf-
fer from a terminal. As characters come in, the terminal user may wish to delete
characters from his line; this is accomplished very easily by maintaining a byte
stack containing the input characters. Whenever a backspace is received a char-
acter is “‘popped’’ off the stack and eliminated from consideration. In this ex-
ample, a programmer has the choice of *‘popping'’ characters to be eliminated by
using either the MOVB (MOVE BYTE) or INC (INCREMENT) instructions.

001011
001010
001007
001006
001005
001004
001003
001002
001001

INC R3

Nla|m|Z|lo|—|wulc|o
DIMIZT|O|A]w|c|O

<®r3 [oowoz]

-r3 | 001001]

Figure 5-6: Byte Stack used as a Character Buffer

NOTE that in this case using the increment instruction (INC) is preferable to
MOVB since it would accomplish the task of eliminating the unwanted character
from the stack by readjusting the stack pointer without the need for a destination
location. Also, the stack pointer (SP) used in this example cannot be the system
stack pointer (R6) because R6 may only point to word (even) locations.

5.2 SUBROUTINE LINKAGE

5.2.1 Subroutine Calls ‘

Subroutines provide a facility for maintaining a single copy of a given routine
which can be used in a repetitive manner by other programs located anywhere
else in memory. In order to provide this facility, generalized linkage methods
must be established for the purpose of control transfer and information exchange
between subroutines and calling programs. The PDP-11 instruction set contains
several useful instructions for this purpose.

PDP-11 subroutines are called by using the JSR instruction which has the follow-
ing format.

- a general register (R) for linkage ————
JSR R,SUBR
an entry location (SUBR) for the subroutine —J

5-5

When a JSR is executed, the contents of the linkage register are saved on the sys-
tem R6 stack as if a MOV reg,~(SP) had been performed. Then the same register
is loaded with the memory address following the JSR instruction (the contents of
the current PC) and a jump is made to the entry location specified.

Address Assembler Syntax Octal Code
001000 JSRRS,SUBR 004567
001002 index constant for SUBR 000060
bo1064 SUBR: MOV AB Olnamm

Figure 5-7: JSR using R5

BEFORE AFTER
(RS)= 000132 (R5)= 001004
(R6)=001776 (R6)=001774
- (PC)(R7)=001000 . (PC)=(R7)=001064
002000 nnnnnn 002000 nannnn
001776 mmmmmm - SP ' 001776 I 001776 mmmmmm
001774 i . 001774 000132 -sp | oorrra |
001772 o017 72

Figure 5-8: JSR

Note that the instruction JSR R6,SUBR is not normally considered to be a mean-.
ingful combination.

5.2.2 Argument Transmission

The memory location pointed to by the linkage register of the JSR instruction may
contain arguments or addressses of arguments. These arguments may be ac-
cessed from the subroutine in several ways. Using Register 5 as the linkage regis-
ter, the first argument could be obtained by using the addressing modes in-
dicated by (R5), (R5) + ,X(R5) for actual data, or @(R5) +, etc. for the address of
data. If the autoincrement mode is used, the hnkage reglster is automatically up-
dated to point to the next argument.

Figures 5-9 and 5-10 illustrate two possible methods of argument transmission.

Address Instructions and Data

010400 JSRR5,SUBR

010402 : Index constant for SUBR SUBROUTINE CALL
010404 arg #1 - ARGUMENTS

010406 arg #2)

020306 SUBR: MOV (RS)+ Rl ‘get arg #1

020310 MOV (R5) +,R2 ;get arg # 2 Retrieve Arguments

from SUB

Figure 5-9; Argument Transmission -Register Autoincrement Mode

5-6

Address Instructions and Data

010400 JSR R5,SUBR
010402 index constant for SUBR SUBROUTINE CALL

010404 077722 Address of Arg #1
010406 077724 Address of Arg. #2

010410 077726 Address of Arg. #3

077722 Arg #1
077724 arg #2 arguments
077726 arg #3 '

020306 SUBR: MOV @(R5)+,R1 :get arg #1
020301 MOV @(R5) + R2 iget arg #2

Figure 5-10: Argument Transmission-Register Autoincrement Deferred Mode

Another method of transmitting arguments is to transmit only the address of the
first item by placing this address in a general purpose register. It is not necessary
to have the actual argument list in the same general area as the subroutine call.
Thus a subroutine can be called to work on data located anywhere in memory. In
fact, in many cases, the operations performed by the subroutine can be applied
directly to the data located on or pointed to by a stack without the need to ever
actually move this data into the subroutine area.

Calling Program: MOV - POINTER, R1
JSR PC,SUBR

SUBROUTINE ADD (R1)+,(R1) ;Add item #1 to item #2, place
result in item #2, R1 points
to item #2 now

etc.
or-
ADD (Rl).2(R1)‘ ;Same effect as above except that

R1 still points to item #1
etc.

TEM #1 Je—nri []
ITEM #2

Figure 5-11: Transmitting Stacks as Arguments

5-7

A

Because the PDP-11 hardware already uses general purpose register R6 to point
to. a stack for saving and restoring PC and PS (processor status word) informa-
tion, it is quite convenient to use this same stack to save and restore intermediate
results and to transmit arguments to and from subroutines. Using R6 in this
manner permits extreme flexibility in nesting subroutines and interrupt service
routines.

Since arguments may be obtained from the stack by using some form of register
indexed addressing, it is sometimes useful to save a temporary copy of R6 in
some other register which has already been saved at the beginning of a subrout-
ine. In the previous example R5 may be used to index the arguments while R6 is
free to be incremented and decremented in the course of being used as a stack
pointer. If R6 had been used directly as the base for indexing and not ‘‘copied”’, it
might be difficult to keep track of the position in the argument list since the base
of the stack would change with every autoincrement/decrement which occurs.

arg #1 ’ arg #1.
arg #2 i arg #2
SP—» org #3 arg #3
but when another item
TO is pushed SP—> To
arg#2 is at source arg#2 is at source
-2(SP) -4(sP)

Figure 5-12: Shifting Indexed Base

However, if the contents of R6 (SP) are saved in R5 before an)} arguments are
pushed onto the stack, the position relative to R5 would remain constant.

arg #1 <+—RS - arg #1 RS
SP——e arg #2 - arg #2
SP—» arg #3
arg#2 is at 2 (R5) arg #2is still ot 2(R5)

Figure 5-13: Constant Index Base Using *'R6 Copy"

5-8

5.2.3 Subroutine Return

In order to provide for a return from a subroutine to the calling program an RTS
" instruction is executed by the subroutine. This instruction should specify the
same register as the JSR used in the subroutine call. When executed, it causes the
register specified to be moved to the PC and the top of the stack to be then placed
in the register specified. Note that if an RTS PC is executed, it has the effect of re-
turning to the address specified on the top of the stack.

Note that the JSR and the JMP Instructions differ in that a linkage register is al-
ways used with a JSR; there is no linkage register with a JMP and no way to re-
turn to the calling program.

When a subroutine finishes, it is necessary to ‘‘clean-up’ the stack by
eliminating or skipping over the subroutine arguments. One way this can
be done is by insisting that the subroutine keep the number of argu-
ments as its first stack item. Returns from subroutines would then in-
volve calculating the amount by which to reset the stack pointer, reset-
ting the stack pointer, then restoring the original contents of the register
which was used as the copy of the stack pointer. A much faster and
simpler method of performing these tasks utilizes the MARK instruction
which-is stored on a stack in place of ““‘number of argument’’ information
and may be used to automatically perform these ‘“‘clean-up’ chores.

5.2.4 PDP-11 Subroutine Advantages)
There are several advantages to the PDP-11 subroutine calling procedure.

a. arguments can be quickly passed between the calling prbgram and the subr-
outine.
b. if the user has no arguments or the arguments are in a general register or on

the stack the JSR PC,DST mode can be used so that none of the general pur-
pose registers are taken up for linkage.

c. many JSR’'s can be executed without the need to provide any saving procedure
for the linkage information since all linkage information is automatically
pushed onto the stack in sequential order. Returns can simply be made by
automatically popping this information from the stack in the opposite order of
the JSR's. o

Such linkage address bookkeeping is called -automatic ‘‘nesting” of subroutine
calls. This feature enables the programmer to construct fast, efficient linkages in
a simple, flexible manner. It even permits a routine to call itself in those cases
where this is meaningful. Other ramifications will appear after we examine the
PDP-11 interrrupt procedures.

5.3 INTERRUPTS

5.3.1 General Principles

Interrupts are in many respects very similar to subroutine calls. However, they are
forced, rather than controlled, transfers of program execution occurring because
of some external and program-independent event (such as a stroke on the tele-
printer keyboard). Like subroutines, interrupts have linkage information such

5-9

that a return to the interrupted program can be made. More information is ac-
tually necessary for an interrupt transfer than a subroutine transfer because of
the random nature of interrupts. The complete machine state of the program im-
mediately prior to the occurrence of the interrupt must be preserved in order to
return to the program without any noticeable effects. (i.e. was the previous oper-
ation zero or negative, etc.) This information is stored in the Processor Status
Word (PS). Upon interrupt, the contents of the Program Counter (PC) (address of
next instruction) and the PS are automatically pushed onto the R6 system stack.

The effect is the same as if:

MOV PS ,-(SP) ; Push PS
MOV R7,~(SP) : Push PC

had been executed.

The new contents of the PC and PS are loaded from two preassigned consecutive
memory locations which are called an “interrupt vector’’. The actual locations are
chosen by the device interface designer and are located in low memory addresses -
of Kernel virtual space (see interrupt vector list, Appendix B). The first word con-
tains the interrupt service routine address (the address of the new program se-
quence) and the second:word contains the new PS which will determine the ma-
chine status including the operational mode and register set to be used by the
interrupt service routine. The contents of the interrupt service vector are set un-
der program control.

After the interrupt service routine has been completed, an RTI (return from inter-
rupt) is performed. The two top words of the stack are automatically ‘“‘popped”
and placed in the PC and PS respectively, thus resuming the interrupted pro-
gram.

5.3.2 Nesting

Interrupts can be nested in much the same manner that subroutines are nested.
In fact, it is possible to nest any arbitrary mixture of subroutines and interrupts
without any confusion. By using the RTI and RTS instructions, respectively, the
proper returns are automatic.

1. Process Ois running; ~ sP—=FO
SP is pointing to loca-
tion PO.

PO

2. Interrupt stops process O Py
with PC =PCO0, and : P—e oo
status = PS O ;starts process 1.

5-10

3. Process 1 uses stack for

temporary storage (TEO, TE1).

4. Process 1 interrupted with PC=PC1
and status =PS1; process 2 is started

5. Process 2 is running and does a

JSR R7,A to Subroutine A with

PC =PC2.

6. Subroutine A is running
and uses stack for
temporary storage.

5-11

PO
PSO
PCO
TEO
SP-—= TES
o
PO
PSO
PC O
TEQ
TE
PS1
sP—s PC1
o
PO
PSO
PCO
TEO
TEY
PS 1
PC1
sp—» 3
0
PO
PSO
PCO
TEO
TE"
PS1
PC1
PC2
TA1
sP—s| TA2

7. Subroutine A releases the temporary

PO
storage holding TA1 and TA2. P50
PCO
TEO
TE1
PS1
PCt
SP—s PCc2
o
PO
8. Subroutine A returns control to process ~rso
2 with an RTS R7,PC is reset to PC2. oo
TEO
TEY
PSt
SP—s PCHt

9. Process 2 completes with an RT! instruction™ ro

(dismisses interrupt) PC is reset . PSO
to PC(1) and statusis reset to PS1; pco
process 1 resumes. ‘ TEO
SP—| TEY

o

10.Process 1 releases the temporary)
storage holding TEO and TE1. Pso
SP—e .PCO

11.Process 1 completes its operation with
an RTI,PC is reset to PCO,and status is
reset to PSO. : :

SP—ePO

o

Figure 5-14: Nested Interrupf Service Routines and Subroutines

Note that the area of interrupt service programming is intimately involved with
the concept of CPU and device priority levels. .

5-12

5.4 REENTRANCY

Further advantages of stack organization become apparent in complex situations
which can arise in program systems that are engaged in the concurrent handling
of several tasks. Such multi-task program environments may range from rela-
tively simple single-user ‘applications which must manage an_intermix of-1/0 in-
terrupt service and background computation to large complex multi-programm
ing systems which manage a very intricate mixture of executive and multi-user
- programming situations. In all these applications there is a need for flexibility
and time/memory economy. The use of the stack provides this economy and
flexibility by providing a method for allowing many tasks to use a single copy of
the same routine and a simple, unambiguous method for keeping track of com-
plex program linkages.

The ability to share a single copy of a given program among users or tasks is
called reentrancy Reentrant program routines differ from ordinary subroutines in
that it is unnecessary for reentrant routines to Tinish processing a glven task be-
fore they can be used by another task. Multiple tasks can be in various stages of
completion in the same routine at any time. Thus the following situation may oc-
cur:

MEMORY
Hee erosnan 1 EERE)
PROGRAM

- PROGRAM 2 | SUBROUTINE A —

 Procaau 3 proRan 2

|

procaan 3

PDP-11 Approach Conventional Approach
Programs 1, 2, and 3 can ’ A separate copy of Subroutine A

share Subroutine A. must be provided for each program.

Figure 5-15: Reentrant Routines

The chief programming distinction between a non-shareable routine and a reen- -
trant routine is that the reentrant routine is composed solely of *“pure code”, i.e.
it contains only instructions and constants. Thus, a section of program code is re-
entrant (shareable) if and only if it is “non self-modifying”, that is it contains no
information within it that is subject to modification.

Usmg reentrant routines, control of a given routine may be shared as illustrated
in Figure 5-16.

ITASKAl ITASKBI

REENTRANT
ROUTINE
Q

Figure 5-16: Reentrant Routine Sharing

1. Task A has requested processing by Reentrant Routine Q.

2. Task A temporarily relinquishes control (is interrupted) of Reentrant Routine
- Q before it finishes processing.

3. Task B starts processing in the same copy of Reentrant Routine Q.

4. Task B relinquishes control of Reentrant Routine Q at some point in its pro-
cessing. .

5. Task A regains control of Reentrant Routine Q and resumes processing from
where it stopped.

The use of reentrant programming allows many tasks to share frequently used
routines such as device interrupt service routines, ASCII-Binary conversion rou-
tines, etc. In fact, in a multi-user system it is possible for instance, to construct a
reentrant FORTRAN compiler which can be used as a single copy by many user

- programs.

As an application of reentrant (shareable) code, consider a data processing pro-
gram which is interrupted while executing a ASCII-to-Binary subroutine which has
been written as a reentrant routine. The same conversion routine is used by the
device service routine. When the device servicing is finished, a return from inter-
rupt (RTI) is executed and execution for the processing program is then resumed
where it left off inside the same ASCII-to-Binary subroutine.

Shareable routines generallyiresult in great memory saving. It is the hardware im-
plemented stack facility of the PDP-11 that makes shareable or reentrant rou-
tines reasonable.

A subroutine may be reentered by a new task before its completion by the pre-
vious task as long as the new execution does not destroy any linkage information
or intermediate results which belong to the previous programs. This usually
amounts to saving the contents of any general purpose registers, to be used and
restoring them upon exit. The choice of whether to save and restore this informa-
tion in the calling program or the subroutine is quite arbitrary and depends on the
particular application. For example in controlled transfer situations (i.e. JSR's) a
main program which calls a code-conversion utility might save the contents of
registers which it needs and restore them after it has regained control, or the
code conversion routine might save the contents of registers which it uses and re-
store them upon its completion. In the case of interrupt service routines this
save/restore process must be carried out by the service routine itself since the in-
terrupted program has no warning of an impending interrupt. The advantage of

5-14

using the stack to save and restore (i.e. “push’ and “‘pop’’) this information is
that it permits a program to isolate its instructions and data and thus maintain
_its reentrancy.

In the case of a reentrant program which is used in a multi-programming envi-
ronment it is usually necessary to maintain a separate R6 stack for each user al-
though each such stack would be shared by all the tasks of a given user. For ex-
ample, if a reentrant FORTRAN compiler is to be shared between many users,
each time the user is changed, R6 would be set-to point to a new user’s stack area
as illustrated in Figure 5-17. :

USER A STACK

USER B STACK

USER C STACK

Figure 5-17: Multiple R6 Stack

5.5 POSITION INDEPENDENT CODE - PIC
Most programs are written with some direct references to specific addresses, if
only as an offset from an absolute address origin. When it is desired to relocate
these programs in memory, it is necessary to change the address references
and/or the origin assignments. Such programs are constrained to a specifiec set
of locations. However, the PDP-11 architecture permits programs to be con-
structed such that they are not constrained to specific locations. These Position
Independent programs do not directly reference -any absolute locations in
memory. Instead all references are ‘‘PC-relative’’ i.e. locations are referenced im
terms of offsets from the current location (offsets from the current value of the
Program Counter (PC)). When such a program has been translated to machine

code it will form a program module which can be loaded anywhere in memory-as
" required.

Position Independent Code is exceedingly valuable for those utility routines
which may be disk-resident and are subject to loading in a dynamically changing
program environment. The supervisory program may load them anywhere it de-
termines without the need for any relocation parameters since all items remain in
the same positions relative to each other (and thus also to the PC).

Linkages to program routines which have been written in position independent
code (PIC) must still be absolute in some manner. Since these routines can be lo-
cated anywhere in memory there must be some fixed or readily locatable linkage
addresses to facilitate access to.these routines. This linkage address may be a
simple pointer located at a fixed address or it may be a complex vector composed
of numerous linkage information items.

5-15

5.6 CO-ROUTINES ‘
In some situations it happens that two program routines are highly interactive.

Using a special case of the JSR instruction i.e. JSR PC,@(R6) + which exchanges
the top element of the Register 6 processor stack and the contents of the Pro-
gram Counter (PC), two routines may be permitted to swap program control and
resume operation where they stopped, ‘when recalled. Such routines are called
“‘co-routines”. This control swapping is illustrated in Figure 5-18.

Routine #71 is operating, it then executes:
MOV #PC2,-(R6)

JSR PC,@(R6) + . —
with the following results: T
1) PC2 is popped from the stack e l pc2
and the SP autoincremented - . P2
2) SP is autodecremented. and the -
old PC (i.e. PC1) is pushed l
3) control is transferred to the sp—s PC 1 1}
location PC2 (i.e. routine #2)

Routine #2 is operating, it then executes:

. JSR PC ,@(R6) +

with the result the PC2 is exchanged
for PC1 on the stack and control is
transferred back to routine #1.

Figure 5-18 - Co-Routine Interaction

5-16

5.7 PROCESSOR TRAPS

There are a series of errors and programming conditions which will
cause the Central Processor to trap to a set of fixed locations. These
include Power Failure, Odd Addressing Errors, Stack Errors, Timeout
Errors, Memory Parity Errors, Memory Management Violations, Floating
Point Processor Exception Traps, Use of Reserved Instructions, Use of
the T bit in the Processor Status Word, and use of the 10T, EMT, and
TRAP instructions.

5.7.1 Power Failure
Whenever AC power drops below 95 volts for 115v power (190 volts for
230v) or outside a limit of 47 to 63 Hz, as measured by DC power, the
-power fail sequence is initiated. The Central Processor automatically
traps to location 24 and the power fail program has 2 msec. to save
all volatile information (data in registers), and condition peripherals for
power fail.

When power is restored the processor traps to location 24 and executes
the power up routine to restore the machlne to its state pnor to power
fallure

5.7.2 Odd Addressing Errors

This error occurs whenever a program attempts to execute a word instruc-
tion on an odd address (in the middle of a word boundary). The in-
struction is aborted and the CPU traps through location 4.

5.7.3 Time-out Errors

These errors occur when a Master Synchronization pulse is placed on
the UNIBUS and there is no slave pulse within a certain length of time.
This error usually occurs in attempts to address non-existent memory or
peripherals.

The offending instruction is aborted and, the processor traps through
location 4.

5.7.4 Reserved Instructions
There is a set of illegal and reserved instructions which cause the pro-
cessor to trap through location 10.

5.7.5 Trap Handling

Appendix B includes a list of the reserved Trap Vector locations, and
System Error Definitions which cause processor traps. When a trap oc-
curs, the processor saves the PC and PS on the Processor Stack and
begins to execute the trap routine pointed to by the trap vector.

5-17

81-§

CHAPTER 6

PDP-11/04

6.1 DESCRIPTION

CPU

The PDP-11/04 is a full scale PDP-11 computer that uses MOS memory in
4K to 28K word configurations. The central processor fits on a single
hex module, which is program compatible with the PDP-11/05. It also
provides all of the processing capability of the PDP-11/05 at a signif-
icantly higher speed.

Memory

The MOS memory is implemented with industry standard 4K RAMs and
is offered on a single hex module containing 4K to 16K 16-bit words.
The MOS UNIBUS memory is physically interchangeable with hex SPC
circuit boards and can therefore be installed in any location within the
backplane except the CPU slot. The MOS refresh circuits are contained
on the MOS memory module and have been partitioned on separate
buses to allow battery back-up.

ASCII Console

The PDP-11/04 contains a simplified operators console which increases
system reliability by eliminating the binary switches and lights that exist
on previous consoles.

The functions of the console are enhanced when a serial 1/0O Terminal’
with ASCIl keyboard (LA 36, VT50, or Teletype) is added. A ROM con-
sole emulator allows the user to use octal number and terminal com-
mands for LOAD, EXAMINE, and DEPOSIT functions. Bootstrap com-
mands can also be generated from the ASCI| keyboard.

ROM Hardware Diagnostic

Another program in ROM automatically tests certain CPU instructions
to verify if a diagnostic can be loaded or a bootstrap operation per-
formed. It also tests all of memory (up to 28K) just prior to calling a
bootstrap program.

Hardware Bootstraps

Bootstrap programs for all major peripheral devices (paper tape,
magnetic tape, moving head disks, and floppy disks) are implemented
in ROM. The system device can be bootéed by 3 techniques:

1. Automatically on a power up condition.

2. Manually by depressing the “BOOT’’ switch on the operator’s console.

3. Manually by |ssu1ng a bootstrap command from an ASCII terminal
device.

_Packaging
The PDP-11/04 is available in 2 basic configurations, both of which use
51" of front panel height; see Figure 6-1. There is slot independence,

6-1

meaning memory and small peripheral controllers can plug in anywhere
they fit. But the CPU always terminates one end of the UNIBUS and nor-
mally plugs into the top slot.

OPTION DIAGRAM OF INCLUDED EXPANSION

NUMBER CPU_ASSEMBLY EQUIPMENT CAPABILITY
11/04- AA 11/04 CPU 15U
(AB) 4K OR 8K MOS 2 SPC
SPACE FOR 1 SU
11/04- BA
(BB) TERMINATOR 2 sPC
BOOTSTRAP
MEMORY (4K OR 8K)
cPU
TERMINATOR
11/04-AC
(AD) o cry 7 SPC
4 M
SPACE FOR 7 SPC
(OR 2 SPC & 5 HEX)
1/04-8C
(8D) BOOTSTRAP |
MEMORY(4K OR 8K)
cPU

Figure 6-1 PDP-11/04 CPU Diagrams

6.2 PDP-11/04 OPTIONS

Programmer’s Console .

The PDP-11/04 programmer’s console provides all of.the functions pres-
ently offered with the PDP-11/05. The programmer’s console interfaces
to the UNIBUS via a quad SPC module. The programmer’s console con-
tains a seven segment LED display as well as a 19-key pad for generating
the console commands.

Battery Back-Up

The battery back-up option will provide a refresh current to 32K words
of memory for up to 2 hours. The battery backup unit is physically
mounted outside of the processor box to facilitate battery maintenance.

6-2

6.3 SPECIFICATIONS

Components Parts
A basic PDP-11/04 includes:

a) central processor

b) 4K words of MOS memory

c) 514" CPU mounting box with slides

d) power supply

e) hardware bootstrap loader

f) ROM hardware diagnostic

g) operator’s panel

“h) jacks for external battery backup

i) expansion space for additional memory or peripheral controllers
i) ASCII console program

Computer PDP-11/04
Memory)

Min size: 4K words
Max size: 28K

Type: MOS

Access time: : 500 nsec, typ
Cycle time: i 725 nsec, typ

Central Processor

Instructions: ' basic set
Programming modes: 1

No. of general registers: 8

Auto hardware interrupts: yes

Auto software interrupts: no
Power fail/auto restart: yes

-Mechanical & Environmental

Size (HxWxD): 5L," x 19" x 25"
Weight: 45 |bs.
Input power: 115 VAC *=10%,, 47-63 Hz, or
230 VAC *=10%, 47-63 Hz
: 350w
Operating temperature: : 10°C to 50°C .
Relative humidity: 209%, to 959, non-condensing

Optional Equipment
Real-time clock
Programmer’s console
-1/ 0O serial interface
Battery. backup

6-3

6.4 OPERATOR’S CONSOLE OPERATION.)

A minimal function operator's console is offered as the standard front
panel on the PDP-11/04. The following switches -and indicators. are
provided: :

Power control switch .
Bootstrap loader switch
Halt/ continue switch
DC-On indicator

RUN indicator
BATTERY LO indicator

The Continue switch is a new feature on operators’ consoles. It enables

continuation after a programmed or inadvertent halt, without having to
re-boot.

6-4

CHAPTER 7

PDP-11/34

7.1 DESCRIPTION

The PDP-11/34 computer -system can contain up to 124K words of
parity MOS or core memory. The mounting assembly for the central
processor is available in 2 sizes. Chassis heights of 514" or 105",
allow the user to optimize space utilization for the particular application.

The basic PDP-11/34 includes the following capabilities and equipment:

Central processor

Parity memory (MOS or core)

Automatic bootstrap loader program in ROM memory
Operator’s console

Self-test diagnostics

Memory management, relocation and protection
Extended instruction set (EIS)-

Optional equipment includes:

Serial line interface and clock
Console terminal

Programmer’s console

Battery backup unit for MOS memory
Standard PDP-11 peripherals

Extended Instruction Set

The Extended Instruction Set (EIS) provides the capability of performing
hardware fixed point arithmetic and allows direct implementation of
multiply, divide, and muitiple shifting. A double-precision 32-bit word
can be handled. The Extended Instruction Set executes compatibly with
the EIS available on the PDP-11/35 and 11/40. Refer to Section 7.10.

Memory Management .
Memory ‘Management is an advanced memory extension, relocatlon, and
protection feature which will:

Extend memory space from 28K to 124K words

Allow efficient segmentation of core for multi-user environments
Provide effective protectlon of memory segments in-multi-user en-.
vironments

Memory Management in the PDP-11/34 is totally compatible with the -
Memory Management (KT11-D) option on the PDP-11/35 and 11/40.

The machine operates in two modes; Kernel and User. When the ma-
chine is in Kernel mode a program has complete control of the machine;

7-1

when in User mode the processor is inhibited from executing certain.
instructions and can be denied direct access to the peripherals or other
protected memory locations in the system. This hardware feature can be
used to provide complete executive protection in a multi-programming
- environment. A software operating system can insure that no user (who
is operating in User mode) can cause a failure (crash) of the entire
system.

Refer to Chapter 8 for-a detailed description of the Memory Management
unit.

7.2 SPECIFICATIONS

Computer " PDP-11/34

Main Market End User & OEM

Memory

Max size: 124K words

Type: core or MOS

Parity: - standard

Central Processor

Instructions: basic set 4 XOR, SOB, MARK, SXT, RTT, .
MFPS, MTPS

EIS set: (MUL; ASH, DIV, ASHC)
mem mgt set: (MFPI, MTPI, MFPD, MTPD)

Programming modes: user & kernel
No. of general registers: 8

Auto hardware interrupts: -~ yes

Auto software interrupts: no

Power fail/auto restart: yes

Mechanical & Environmental .
Chassis height: 51," 101,"

Weight: 45 |bs 110 Ibs
Input power: ‘ 350w . 700W

115 VAC, nom. (90 to 132v),
230 VAC, nom. (180 to 264v),

Operating temperature: 5°C to 50°C

Relative humidity: 109% to 959%, non-condensing
Equipment

1/0 serial interface: ‘optional *
Line frequency clock: optional

Console terminal: optional

Operators console: standard

Programmer’s console: optional

Hardware bootstrap: standard

Extended arithmetic: standard

Autodiagnostics: standard

7-2

Floating point: FP11-A

Stack limit address: fixed (at 400)
‘Memory management: standard]
Cabinet: optional with 514" and 1014 " units;

7.2.1 Processor Backplane Configuration

CPU

M9301 QUAD SPC
M7850 QUAD SPC

HEX SPC

HEX SPC

HEX SPC
HEX SPC ~

VW ® N o bW N

M9302 QUAD SPC
A B c D E F

Figure 7-1 Processor Backplane

The processor backplane consists of a double system unit (SU) com-
prising 9 Hex slots. All PDP-11/34 systems contain. the CPU, M9301
Bootstrap/Terminator, M7850 parity control, and M9302 (or a UNIBUS
jumper to the next SU) as shown in Figure 7-1. Memory is added as
follows depending on whether the system uses core or MOS.

Core: Core memory is available in two size increments, 8K and 16K
words.

The 8K core, designated MM11-C, consists of a Hex and Quad
module as follows:

L HEX CONTROLLER
- QUAD STACK

The 16K core, designated MM11-D, consists of 2 Hex modules
as follows:

HEX CONTROLLER
HEX- STACK

MOS: MOS memory is available in 8 or 16K increments and all in-
crements consist of a single Hex module.

8 and 16K increments are designated MS11-F, and MS11-J.
7-3

) NOTE
The M7850 parity control may be moved to slot
5 to optimize usage of the MM11-C memory in
slots 4 and 5.

The following backpanel configurations comprise the basic PDP-11/34
computer.

1
cPU
2
3 M9301 QUAD SPC
4 M7850 " QUAD spC
5
MM11-D
6
7 HEX SPC
8 HEX SPC
9 M9302 T QUAD SPC

A B c D E F.

Figure 7-2 16K Core using MM11-D

Additional memory or Quad and Hex SPC options (DL11-W, TAll con-
troller, RX11 controller, etc.) may be added to the processor backplane
as space allows.

7-4

! cPU
2
3 M9301) QUAD SPC
4 M7850 QUAD SPC
5 MS11-F OR J
6 HEX SPC
7 HEX SPC
8 HEX SPC
9 M9302 QUAD SPC
A B c D E F

Figure 7-3 16K MOS using MS11-F or J

7.2.2 Chassis Configuration

5Y4" Chassis—the previously described processor backpanel is 514"
high and fills the 514" chassis. Further expansion must oceur by add-
ing an additional chassis or converting to a 1014 “ chassis.

PROCESSOR BACKPANEL

“w AW N

Figure 7-4 PDP-11/34 back panel in BALL-K (104" chassis)

7-5

7.3 MOS & CORE MEMORY

The PDP-11/34 is available with both MOS and core memory. The two

types of memory may be freely intermixed in the computer system; -
the difference in timing is accommodated by the architecture of the

asynchronous UNIBUS.

Parity

All main memory in a PDP-11/34 system contains parity to enhance
system integrity. Parity is generated and checked on all references be-
tween the CPU and memory, and any parity errors are flagged for
resolution under program control. Odd parity is used, with 1 parity bit per
8-bit byte, for a total of 18 bits per word.)

A double height module, M7850, contains parity control logic. Its contrel ’
& status register (CSR) address is selectable between 772 100 and 772
136.

The CSR captures the high order address bits of a memory location with -
a parity error. A single M7850 provides parity generation and detection
logic for all memory mounted in its back panel.

MOS

The basic unit of MOS memory, MS11-JP, contains 16K words of parity
MOS memory. Each 16K words of MOS requires 1 hex mounting space.

Core

The basic unit of core memory, MM11-DP, contains 16K words of parity
core memory. Each 16K words of core memory requires 2 hex mount-
ing spaces.

7.4 BATTERY BACKUP)

Core memory is non-volatile; the contents are preserved when power is
removed. However, MOS memory is volatile. If power is interrupted, an
auxiliary power supply must be provided if information in the memory
is to be saved. With the 514" and 101," CPU assemblies there is an
optional Battery Backup Unit that can preserve the contents of 32K
words of MOS memory for about 2 hours. This auxiliary power unit is
a battery that is charged up by the main AC power when the computer
system is operating normally. In this normal mode, the battery backup
has no effect on the MOS memory. But if power is interrupted, voltage
sensing circuitry within the backup option will automatically cause the
MOS to be powered from this auxiliary power. The MOS information will
be retained by being refreshed at a low cycle rate, thereby using mini-
mum power.

7.5 M9301 MODULE

The M9301 module, which is included with the PDP-11/34, provndes 4
functions for the computer system

1. It contains a read-only memory (ROM) that holds diagnostic routines
for verifying computer operation.

2. It contains, also in ROM, the several bootstrap Ioader programs for
starting up the system.

3. It contains the Console Emulator Routine in ROM for issuing con-
sole commands from the terminal. :

4. It provides termination resistors for the UNIBUS.

7-6

There are 2 versions of the M9301 module available:
M9301-YA M9301-YB

" Main user OEM End User
.Able to run secondary bootstrap pro- yes* no
gram directly upon power up or reboot -
Automatic entry to Console yes* yes
Emulator Routine
‘Needs an ASCII terminal no yes

* Selection of one of these 2 operations is made by setting of swntches
contained on the module

Diagnostics

Both versions of the M9301 contain dlagnostlcs to check both the pro-
cessor and memory in a Go/No-Go mode. Execution of the diagnostics
occur automatically but may be disabled by switches on the M9301.

Bootstrap Loader

The M9301-YA contains independent bootstrap programs that can boot-
strap programs into memory from a selected peripheral device. Through
front - panel control or following Power Up, the computer can directly
execute a bootstrap, without the operator having to manually key in the
initial program. The bootstrap program for the peripheral device is de-
termined by switches on the M9301. This is useful |n remote applica-
tions where no operator is present

The M9301-YB, after execution of the CPU diagnostics, turns control of
the system to the user at the console terminal. The system prints out
status information and is ready to accept simple user commands for
checking or modifying information within the computer, starting a pro-
gram already in memory, or executing a device bootstrap.

The inclusion of a bootstrap loader in non-destructible read-only memory
is a tremendous convenience in system operation. Bootstrap programs
do not have to be manually loaded into the computer for system initial-
ization.

Console Emulation

The normal console functions traditionally performed through front panel
switches can be obtained by typing simple commands on the console
terminal. LOAD, EXAMINE, DEPOSIT, START, and BOOT functions are
available.

Terminatiori .
The M9301 contains resistars for proper impedance termination at the
beginning of the UNIBUS (transmission line).

7.6 M9302 MODULE

The M9302 provides resistors for proper termination of the UNIBUS. It
also contains logic which detects the assertion of certain UNIBUS sig-
nals and responds to them. Devices which request transfers on the UNI-
BUS receive and stop a serially passed ‘‘request granted” signal from

7-7

the processor. If this signal ever reaches the end of the UNIBUS, no
device along the serial chain stopped it. The M9302 receives all such un-
heeded grants and responds to allow the CPU to proceed.

7.7 DL11-W (M7856)
The DL11-W option provides 2 capabilities:

1. Serial line interface to an ASCII terminal, such as an LA36 DECwriter,
VT50 video terminal, or an LT33 Teletype. .

2. Line time clock.

Serial Communication Line Interface ’

The interface is program compatible with the standard DIGITAL serial
interfaces, DL11-A,-B,-C, and -D. It can handle speeds from 110 to 9600
baud. It provides serial-to-parallel (and vice-versa) data conversion.

Line Clock '

The clock is program compatible with the KW11-L, the standard line
clock option used with other PDP-11 computers. The clock senses the
50 or 60 Hz line frequency for internal timing.

There are switches on the module for selection of parameters such as:

register addresses
baud rate
communications data formats

7.8 OPERATOR’S CONSOLE

The operator’s console is the front panel Imk between the user and the
computer. It contains a minimum number of switches and lights. All
normally used console functions are available through the combination
of the operator's console and an ASCII terminal; e.g. LA36 DECwriter.

)

Console Switches

POWER OFF DC power to the computer is off.)
ON Power is applied to the computer (and the
system).

STNBY Standby; no DC power to the computer, but
DC power is applied to MOS memory (to re-
tain data) and the fans remain on.

CAUTION
AC power is removed only by disconnecting the
line cord.

CONT/HALT CONT The program is allowed to continue.

HALT The program is stopped.

BOOT/INIT INIT The switch is spring returned to the BOOT po-
sition." When the switch is depressed to IN- -
ITialize and then returned to "‘BOOT, the
operation dependas on the setting of the
CONT/HALT switch.

7-8

HALT: The processor-only is initialized and
no “UNIBUS INIT” is generated.
Upon lifting the CONT/HALT switch,
the M9301 routine is executed al-
lowing examination of system pe-
" ripherals without clearing their con-
tents with “UNIBUS INIT”.

CONT: Initialize and then execute the
M9301 program.

When the BOOT switch is released, the following action takes place:

(a) For both M9301-YA and M9301-YB:
(when the switches are set for this operation)

1.
2.

Run basic CPU diagnostics.

Print out (on the console terminal) contents of RO, R4, SP, and
PC at the time of power up, followed by a dollar sign ($) on the
next line,

Enter Console Emulator Routine, awaiting keyboard commands.

. When a device bootstrap command is issued, first run processor

memory diagnostics, then execute secondary bootstrap program
from the designated peripheral device.

(b) For the M9301-YA (OEM) version only:
(when M9301-YA switches are set for this operation)

1.
2.
3.

Run basic CPU diagnostics.
Run memory diagnostics.

Run secondary bootstrap program from the preselected peri-
pheral device.

NOTE .
When utilizing- the stand alone switch setting
described as alternative (b) above, the switches
must be reset to enable execution of the con-
sole emulator routine.

Indicators
BATT off Battery voltage is below minimum level to
maintain MOS contents, or battery is absent.
slow flash Battery is charging, but voltage is above the

DC ON

(1 flash/2 sec) minimum level to maintain MOS contents if
: power is removed.

fast flash Primary power has been lost; battery is dis-

(10 flashes/sec) charging, but MOS memory contents are
being maintained, and voltage is still above
minimum limit.

continuous on Battery is fully charged and present.

on DC power is applied to logic circuitry.

off . DC power is off.

7-9

RUN on A program is running.
off The program is stopped.

7.9 CONSOLE EMULATION

The M9301 module contains a console emulator routine. When this
routine is used in conjunction with the user’s terminal, functions quite
similar to those found on the programmer’s console of traditional PDP-11
family computers are generated.

Summary of the Console Emulator Functions
LOAD — This function loads the address to be manipulated into the
system.

EXAMINE — Allows the operator to examine the contents of the address
that was loaded and/or deposited. '

DEPOSIT — Allows the operator to write into the address that was
) loaded and/or examined.

START — Initializes the system and starts execution of the program
at the address loaded.
BOOT — Allows the booting of a specified device by typing in a

two character code and optional unit number.

Console Emulator Operation

The console emulator allows the ‘user to perform LOAD, EXAMINE,
DEPOSIT, START, and BOOT functlons by typing in the appropriate code
on the keyboard.

Entry Into the Console Emulator
- There are three ways of entering the Console Emulator:

¢ Move the Power Switch to the On position.

e Depress the BOOT Switch.)

e Automatic entry on return from a power failure.

After the Console Emulator Routine has Started and the basic CPU diag-
nostics have all run successfully, a series of nhumbers representing the

contents of RO, R4, SP and PC respectively, will be printed by the ter-
minal. This sequence will be followed by a $ on the next line.

Example—a typical printout on power up:

XXXXXX XXXXXX XXXXXX XXXXXX
s ,
RO : R4 R6 PC
STACK PROGRAM
PROMPT POINTER COUNTER
CHARACTER : (SP)

Notes: X signifies an octal number (0-7).

Whenever there is a power up routine, or the BOOT switch is
released from the INIT position, the PC at this time will be
stored. The stored value is printed out as above (noted as
the PC).

7-10

Using the Console Emulator

After the $—Once the system has been powered up or booted, and RO,
R4, SP, PC and $ have been printed, the Console Emulator routine can
be used.

Keyboard Input Symbols—The discussion of keyboard input format uses
the following symboils:

e Space Bar: (SB)

e Carriage Return Key: (CR)

¢ Any number 0-7 (Octal Number) Key: (X)
Keyboard INPUT Format—Load, examine, deposit, start. All character

keys shown in the following discussion represent themselves with the
exception of those in parentheses.

FUNCTION

Load address L@ESB) X)) X)) X X X)) X (CR)
Examine E (SB)

Deposit D(SB) X) X) X) X)) X (X) (CR)
Start S (CR) g

Order of Significance of Input Keys—The first character that is typed
will be the most significant character. Conversely, the last character that
is typed is the least significant character.

Number of Characters—The console emulator routine can accept up to
six octal numbers in the range of 0-32K. If all six numbers are inputted,
the most significant number should be a one or a zero.

Leading Zeros—When an address or data word contains leading zeros,
- these zeros can be omltted when loading the address or depositing the
data

Example Using the Load, Examine, Depos:t and Start Function—Assume
that a user wishes to:

1. Turn on power

2. Load address 700
3. Examine location 700
4. Deposit 777 into location 700
5. Examine location 700
6. Start at location 700

‘ USER TERMINAL DISPLAY
1. turns on power XXXXXX XXXXXX XXXXXX XXXXXX
2. L (SB) 700 (CR) $ L 700
3. E (SB) $ E 000700 XXXXXX
4. D (SB) 777 (CR) $ D777
5. E (SB) $ E 000700 000777
6.

. S (CR) ~$s
- 7-11

Even Addresses Only—The console emulator routine will not work with
odd addresses. Even numbered addresses must always be used.

Successive Operations

Examine—Successive examine operations are permitted. The address is
loaded for the first examine only. Successive examines cause the address
to increment by two and will display consecutlve addresses along with
their contents.

Example of Successive Examine Operations—Examine Addresses 500-
506 .

Operator Input Terminal Display

L (SB) 500 (CR) - $L 500

E (SB) -~ ’ $E 000500 XXXXXX
E (SB) $E 000502 XXXXXX
E (SB) $E 000504 XXXXXX
E (SB) $E 000506 XXXXXX

Deposit—Successive deposit operations are permitted. The procedure is
identical to that used with examine.

Example of Successive Deposit Operations

Deposit: 60 into Location 500
2 into Location 502
4 into Location 504

Operation Input

L (SB) 500 (CR)
D (SB) 60 (CR)
D (SB) 2 (CR)
D (SB) 4 (CR)

Terminal Display

$L 500
$D 60
$D 2
$D 4

~ Alternate Deposit-Examine Operations—This mode of operation will not
increment the address. The address will contain the last data which was
deposited.

Example of Alternate Deposit-Examine Operations—Load addréss 500,
deposit the following numbers with examines after every deposit: 1000,

2000, 5420.

Operation Input

Terminal Display .

L (SB) 500 (CR) $L 500

D (SB) 1000 (CR) $D 1000

E (SB) $E 000500 001000

D (SB) 2000 (CR) $D 2000

E (SB) $E 000500 002000

D (SB) 5420 (CR) $D 5420 o

E (SB) $E 000500 005420 -

Limits of Operation—The M9301 console emulator routine can directly
manipulate the lower 28K of memory and the 4K 1/0 page. Refer to the
PDP-11/34 User's Guide for a procedure to utilize the Memory Manage-
ment unit to examine or deposit in expanded memory.

7-12

Booting from the Keyboard

Once the $ symbol has been displayed in response to system power
coming up, or the boot switch being depressed, the system is ready to
load a bootstrap from the device which the operator selects.

Console Emulator Boot Procedure

1.

2.

6.

Find the two character boot code on Table 6-1 tHat corresponds to
the peripheral to be booted.

Load medium, papertape, magtape, disc, etc., into the peripheral if
required.

. Verify that the peripheral indicators signify that the penpheral is

ready (if applicable).

. Type the two character code obtained from the table.
. If there is more than one unit of a given peripheral, type the unit

number to be booted (0-7). If no number is typed the default number
will be 0.

Type (CR), this initiates the boot.

Table of Bootstrap Routine Codes—Supported by both YA and YB ver-
sions of the M9301.

Table 7-1 Bootstrép Codes

" Boot
Device Description Command
RK11 Disk cartridge DK
RP11 RP02/03 disk pack DP
TC11 DECTAPE DT
TM11 800 BPI Magtape MT
TAll Magnetic cassette CT
RX11 Diskette DX
DL11 ASR-33 teletype o TIT
PC11 Papertape : PR

Supported by the YB version only (in addition to all the above).

RJS03/04 Fixed Head disk DS
RJPO4 Disk pack) DB
TJU1l6 Magnetic tape MM
Before Booting . . .—Always remember: .
1. The medium (papertape, disc, magtape, cassette, etc.) must be
placed in the peripheral to be booted prior to booting.
2. The machine will not be under the control of the console emulator
routine after booting.
3. The program which is booted in must:

1) be self starting
2) allow the user to begin execution by using the CONT functlon or
3) be restartable after the console emulator is recalled.

7-13

4. Actuating the boot switch will always abort the program being run.
The contents of the general registers (RO-R7) will be destroyed. There
is no way to continue with the program which was aborted. Some pro-
grams are designed to be restartable.

7.10 EIS ARITHMETIC OPERATION
The extended Instruction Set adds the following instruction capability:

Mnemonic Instruction Op Code
MUL - multiply 070RSS
DIV divide 071RSS
ASH shift arithmetically 072RSS
ASHC arithmetic shift combined - 073RSS

The EIS instructions are directly compatible wnth the larger 11 com-
puters.

The number formats are:

514 o
16-bit single word: l s I . |NUMB|ER . .]
| s l . HIGH NUMBER PaRT . . J

32-bit double word:

[' , \ Llowmimasn PaRT |]
S is the sign bit. S =0 for positive quantities
S =1 for negative quantities; number is in 2's

complement notation

Interrupts are serviced at the end of an EIS instruction.

7-14

MUL

multiply 070RSS

lo 1 1 1 o] O‘O[r v r s s s s s s]
l | I— ‘ 1 1 L 1 1 1 ' 1 1
15

Operation: R, Rvl<R x(src)

Condition Codes: N: set if product is <O; cleared otherwise
Z: set if product is O; cleared otherwise
V: cleared
C: set if the result is less than-2"" or greater than or equal to
2v-1:

Description: The contents of the destination register and source taken as
N two’'s complement integers are multiplied and stored in the
destination register and the succeeding register (if R is even).
If Ris odd only the low order product is stored. Assembler
syntax is : MUL S,R. ~
(Note that the actual destination is R, Rvl which reduces to
just R when R is odd.)

. Example: 16-bit product (R is odd)

CLC ;Clear carry condition code
MOV #400,R1

MUL #10,R1

BCS ERROR ;Carry will be set if

;product is less than
;=2 or greater than or equal to 2*
;no significance lost

Before After

(R1)=000400 (R1) = 004000

Assembler format for all EIS instructions is:
OPR src, R) :

7-15

DIV

divide 071RSS

T
LOLILiL1L040 1 rlriristlslslsls
15 9 8 6 5 (o]

Operation: R, Rvl < R Rv1 /(src)

Condition Codes: N: set if quotient <O; cleared otherwise
Z: set if quotient =0; cleared otherwise
V: set if source =0 or if the absolute value of the register is
larger than the absolute value of the source. (In this case the
instruction is aborted because the quotient would exceed 15
bits.)
C: set if divide O attempted; cleared otherwise

Description: The 32-bit two's complement integer in R and Rvl is divided
by the source operand. The quotient is left in R: the remain-
der in Rvl. Division will be performed so that the remainder
is of the same sign as the dividend. R must be even.

Example: CLR RO
- MOV #20001,R1
DIV#2,R0

Before After
(RO)=000000 (RO)=010000 Quotient
(R1)=020001 (R1)=000001 Remainder

ASH

shift arithmetically 072RSS
T
o, 1 1 1,0 o}
I I 1 1 I 1 ! A d] i 1 ! ° 1 s L ¢ l ° 1 ° ITI
15 9 8 6 5 0
Operation: R« R Shifted arithmetically NN places to right or left

Where NN = low order 6 bits of source
Condition Codes: N: set if result <O; cleared otherwise
Z: set if result =0; cleared otherwise
V: set if sign of register changed during shift; cleared other-
wise
C: loaded from last bit shifted out of register -

Description: The contents of the register are shifted right or left the num-
ber of times specified by the shift count. The shift count is
taken as the low order 6 bits of the source operand. This
number ranges from -32 to + 31. Negative is a a right shift

" and positive is a left shift.

6 LSB of source Action in general register
011111 Shift left 31 places
000001 shift left 1 place
111111 shift right 1 place
100000 shift right 32 places
Example: ,, ASH RO, R3
Before After
(R3)=001234 (R3)=012340

(RO)=000003 (RO)=000003

7-17

ASHC

arithmetic shift combined) 073RSS
T

|0'1|Il1lolil|Trlrlr slslslsls sl

15 9 8 6 5 [9)

Operation:

Condition Codes:

Description:

R, Rvl<«R, Rvl The double word is shifted NN places to the
right or left, where NN =low order six bits of source

'N: set if result <O; cleared otherwise

Z: set if result =0; cleared otherwise

V: set if sign bit changes during the shift; cleared otherwise
C: loaded with high order bit when left Shift ; loaded with low
order bit when right shift (loaded with the last bit shifted out
of the 32-bit operand)

The contents of the register and the register ORed with one
are treated as one 32 bit word, R + 1 (bits 0-15) and R (bits
16-31) are shifted right or left the number of times specified
by the shift count. The shift count is taken as the low order 6
bits of the source operand. This number ranges from -32 to
+ 31. Negative is a right shift and positive is a left shift.
When the register chosen is an odd number the register
and the register OR’ed with one are the same. In this case the
right shift becomes a rotate (for up to a shift of16). The 16
bit word is rotated right the number of bits specified by the
shift count. '

—_— -
i A I 1 =L I 1 1 l . L l 1 1 I
]|6
T
[T | 1 T ! L | g a4y J_.
oR 0
—
1 1 ,' 1 1 l 1 1 l 1 1 I 1 Il]

7-18

CHAPTER 8

PDP-11/34 MEMORY MANAGEMENT

8.1 GENERAL

8.1.1 Memory Management

This chapter describes the Memory Management unit of the 11/34
Central Processor. The PDP-11/34 provides the hardware facilities neces-
sary for complete memory management and protection. It is designed to
be a memory management facility for systems where the memory size is
greater than 28K words and for multi-user, multi-programming systems
where protection and relocation facilities are necessary.

'8.1.2 Programming

The Memory Management hardware has been optimized towards a multi-
programming environment and the processor can operate in two modes,
Kernel and User. When in Kernel mode, the program has complete
control and can execute all instructions. Monitors and supervisory pro-
grams would be executed in this mode.

When in User Mode, the program is prevented from executing certam
instructions that could:

a) cause the modification of the Kernel program.
b) halt the computer.

c) use memory space assigned to the Kernel or other users.

“In a multi-programming environment several user programs would be
resident in memory at any given time. The task of the supervisory pro-
gram would be: control the execution of the various user programs,’
manage the allocation of memory and peripheral device resources, and
safeguard the integrity of the system as a whole by careful control of
each user program.

8-1

In a multi-programming system, the Management Unit provides the
means for assigning pages (relocatable memory segments) to a user
program and preventing that user from making any unauthorized access
to those pages outside his assigned area. Thus, a user can effectively
be prevented from accidental or willful destruction of any other user
program or the system executive program.

- Hardware implemented features enable the operating system to dy-
namically allocate memory upon demand while a program is being run. .
These features are particularly useful when running higher-level language
programs, where, for example, arrays are constructed at execution time.
No fixed space is reserved for them by the compiler. Lacking dynamic
memory allocation capability, the program would have to calculate and
allow sufficient memory space to-accommodate the worst case. Memory
Management eliminates this time-consuming and wasteful procedure.

8.1.3 Basic Addressing |

The addresses generated by all PDP-11 Family Central Processor Units
(CPUs) are 18-bit direct byte addresses. Although the PDP-11 Family word
length is 16 bits, the UNIBUS and CPU addressing logic actually is 18
bits. Thus, while the PDP-11 word can only contain address references
up to 32K words (64K bytes) the CPU and UNIBUS can reference ad-
dresses up to 128K words (256K bytes). These extra two bits of address-
ing logic provide the basic framework for expanding memory references.

In addition to the word length constraint on basic memory addressing
space, the uppermost 4K words of address space is always reserved for
UNIBUS 1/0 device registers. In a basic PDP-11 memory configuration
(without Management) all address references to the uppermost 4K words
of 16-bit address space. (160000-177777) are converted to full 18-bit
references with bits 17 and 16 always set to 1. Thus, a 16-bit reference
to the 1/O device register at address 173224 is automatically internally
converted to a full 18-bit reference to the register at address 773224.
Accordingly, the basic PDP-11 configuration can directly address up to
28K words of true memory, and 4K words of UNIBUS 1/0 device registers.

8.1.4 Active Page Registers

The Memory Management Unit uses two sets of eight 32-bit Active Page
Registers. An APR is actually a pair of 16-bit registers: a Page Address
Register (PAR) and a Page Descriptor Register (PDR). These registers
are always used as a pair and contain all the information needed to
describe and relocate the currently active memory pages.

One set of APR’s is used in Kernel mode, and the other in User mode.
The choice of which set to be used is determined by the current CPU
mode contained in the Processor Status word. .

8-2

15 14 13 12

l i PROCESSOR STATUS WORD
1 4 1 1 1

| '

_‘o

KERNEL (00) USER (11)
APR 0 APR O
APR 1 APR 1
APR 2 APR 2 ACTIVE
PAGE
APR 3 APR3 | REGISTERS
APR 4 APR 4
APR 5 . APR 5
APR 6 APR 6
APR7) APR 7
15 ' 0 15 o
L PAR A |————[PDR

PAGE ADDRESS REGISTER PAGE DESCRIPTION REGISTER

Figure 8-1 Active Page Registers

8.1.5 Capabilities Provided by Memory Management

Memory Size (words): 124K, max (plus 4K for 1/O & registers)
Address Space: Virtual (16 bits) .
Physical (18 bits)
Modes of Operation: Kernel & User
Stack Pointers: 2 (one for each mode)
Memory Relocation: .
Number of Pages: 16 (8 for each mode)
Page Length: 32 to 4,096 words
Memory Protection: no access
read only
read/write

8.2 RELOCATION

8.2.1 Virtual Addressing

When the Memory Management Unit is operating, the normal 16-bit
direct byte address is no longer interpreted as a direct Physical Address
(PA) but as a Virtual Address (VA) containing information to be used in
constructing a new 18-bit physical address. The information contained
in the Virtual Address (VA) is combined with relocation and description
information contained in the Active Page Register (APR) to yield an
18-bit Physical Address (PA).

Because addresses are automatically relocated, the computer may be
considered to be operating in virtual address space. This means that no
matter where a program is loaded into physical memory, it will not have

8-3

to be “re-linked”’; it always appears to be at the same virtual location in
memory.

The virtual address space is divided into eight 4K-word pages. Each page
is relocated separately. This is a useful feature in multi-programmed
timesharing systems. It permits a new large program to be loaded into
discontinuous blocks of physical memory.

A page may be as small as 32 words, so that short procedures or data
areas need occupy only as much memory as required. This is a useful
feature in real-time control systems that contain many separate small
tasks. It is also a useful feature for stack and buffer control.

A basic function is to perform memory relocation and provide extended
memory addressing capability for systems with more than 28K of phys-
ical memory. Two sets of page address registers are used to relocate
virtual addresses to physical addresses in memory. These sets are used
as hardware relocation registers that permit several user's programs,
each starting at virtual address 0, to reside simultaneously in physical
memory.)

8.2.2 Program Relocation

The page address registers are used to determine the starting address
of each relocated program in physical memory. Figure 8-2 shows a sim-
plified example of the relocation concept.

Program A starting address O is relocated by a constant to provide
physical address 6400,.

RELOCATION
VIRTUAL CONSTANT
ADDRESS A= 6400
(va) =0 8= 100000 |
PHYSICAL MEMORY |
PROGRAM B
100000
PHYSICAL ADDRESS PROGRAM A
006400
000000

Figure 8-2 Simplified Memory Relocation Concept
8-4

If the next processor virtual address is 2, the relocation constant will then
cause physical address 6402, which is the second item of Program A, to
be accessed. When Program B is running, the relocation constant is
changed to 100000,. Then, Program B virtual addresses starting at 0, are
relocated to access physical addresses starting at 100000,. Using the ac-
tive page address registers to provide relocation eliminates the need to “re-
link’’ a program each time it is loaded into a different physical memory
location. The program always appears to start at the same address.

A program is relocated in pages consisting of from 1 to 128 blocks.
Each block is 32 words in length. Thus, the maximum length of a page
is 4096 (128 x 32) words. Using all of the eight available active page
registers in a set, a maximum program length of 32,768 words can: be
~accommodated. Each of the eight pages can be relocated anywhere in
the physical memory, as long as each relocated page begins on a
boundary that is a multiple of 32 words. However, for pages that are
smaller-then 4K words, only the memory actually allocated to the page
may be accessed.

The relocation example shown in Figure 8-3 illustrates several points
about memory relocation.

a) Although the program appears to be in contiguous address space to
the processor, the 32K-word physical address space is actually scat-
tered through several separate areas of physical memory. As long
as the total available physical memory space is adequate, a program
can be loaded. The physical memory space need not be contiguous.

b) Pages may be relocated to higher or lower physical addresses; with
respect to their virtual address ranges. In the example Figure 8-3,
page.l is relocated to a higher range of physical addresses, page 4
is relocated to a lower range, and page 3 is not relocated at all
(even though its relocation constant is non-zero).

c) All of the pages shown .in the example start on 32-word boundaries.

d) Each page is relocated independently. There is no reason why two or
more pages could not be relocated to the same physical memory
space. Using more than one page. address register in the set to
access the same space would be one way of providing different
memory access rights to the same data, depending upon which part
of a program was referencing that data.

Memory Units

Block: 32 words

Page: 1 to 128 blocks (32 to 4,096 words)
No. of pages: 8 per mode

Size of relocatable 27,768 words, max (8 x 4,096)
memory:

85

VIRTUAL ADDRESS PAGE RELOCATION PHYSICAL MEMORY
RANGES NO.| CONSTANT SPACE

160000~ 177776 7 150000 340000- 357776
140000~ 157776 6 000000 330000- 347776
120000- 137776 5 100000 310000- 327776
100000- 117776 4 020000 220000- 237776
060000- 077776 3 060000 140000 - 157776

040000-057776 2 250000 7 \ 120000- 137776

020000-037776 1 320000 040000- 057776

000000-017776 0 400000 /

Figure 8-3 Relocation of a 32K Word Program into
124K Word Physical Memory

8.3 PROTECTION

A timesharing system performs multiprogramming; it allows several
programs to reside in memory simultaneously, and to operate sequen-
tially. Access to these programs, and the memory space they occupy,
must be strictly defined and controlled.. Several types of memory pro-
tection must be afforded a timesharing system. For example:

a) User programs must not be allowed to expand beyond allocated
space, unless authorized by the system.

b) Users must be prevented from modifying common subroutines and
algorithms that are resident for all users.

c) Users must be prevented from gaining control of or modifying the
operating system software.

The Memory Management option provides the hardware facilities to im-
plement all of the above types of memory protection.

8.3.1 Inaccessible Memory

Each page has a 2-bit access control key associated with it. The key is
assigned under program control. When the key is set to 0, the page is
defined as non-resident. Any attempt by a user program to access a
non-resident page is prevented by an immediate abort. Using this fea-
ture to provide memory protection, only those pages asociated with the
current program are set to legal access keys. The access control keys
of all other program pages are set to O, which prevents illegal memory
references.

8.3.2 Read-Only Memory

The access control key for a page can be set to 2, which allows read
(fetch) memory references to the page, but immediately aborts any at-
tempt to write into that page. This read-only type of memory protection

8-6

can be afforded to pages that contain common data, subroutines, or
shared “algorithms. This type of memory protection allows the access
rights to a given information module to be user-dependent. That is, the
access right to a given information module may be varied for different
users by altering the access control key.

A page address register in each of the sets (Kernel and User modes)
may be set up to reference the same physical page in memory and
each may be keyed for different access rights. For example, the User
access control key might be 2 (read-only access), and the Kernel access
control key might be 6 (allowing complete read/write access).

8.3.3 Multiple Address Space

There are two complete separate PAR/PDR sets provided: one set for
Kernel mode and one set for User mode. This affords the timesharing
system with another type of memory protection capability. The mode of
operation is specified by the Processor Status Word current mode field,
or previous mode field, as determined by the current instruction.

Assuming the current mode PS bits are valid, the active page register
sets are enabled as follows:

"PS(bits15, 14) PAR/PDR Set Enabled

00 Kernel mode
(l)é) } Illegal (all references aborted on access)
11 User mode

Thus, a User mode program is relocated by its own PAR/PDR set, as are
Kernel programs. This makes it impossible for a program running in
one mode to accidentally reference space allocated to another mode
when the active page registers are set correctly. For example, a user can-
not transfer to Kernel space. The Kernel mode address space may be re-
served for resident system monitor functions, such' as the basic Input/
Output Control routines, memory management trap handlers, and time-
sharing scheduling modules. By dividing the types of timesharing system
programs functionally between the Kernel and” User modes, a minimum
amount of space control housekeeping is required as the timeshared
operating system sequences from one user program to the next. For
example, only the User PAR/PDR set needs to be updated as each new
user program is serviced. The two PAR/PDR sets implemented in the
Memory Management Unit are shown in Figure 8-1.

8.4 ACTIVE PAGE REGISTERS

The Memory Management Unit provides two sets of eight Active Page
Registers (APR). Each APR consists of a Page Address Register (PAR)
and a Page Descriptor Register (PDR). These registers are always used
as a pair and contain all the information required to locate and describe
the current active pages for each mode of operation. One PAR/PDR set
is used in Kernel mode and the other is used in User mode:. The cur-
rent mode bits (or in some cases, the previous mode bits) of the Proces-
sor Status Word determine which set will be referenced for each
memory access. A program operating in one mode cannot use the PAR/
PDR sets of the other mode to access memory. Thus, the two sets are

8-7

a key feature in providing a fully protected environment for a time-
shared multi-programming system.

A specific processor |/O address is assigned to each PAR and PDR of
each set. Table 7-1 is a complete list of address assignment.

NOTE
UNIBUS devices cannot access PARs or PDRs

In a fully-protected multi-programming environment, the implication is
that only a program operating in the Kernel mode would be allowed to
write into the PAR and PDR locations for the purpose of mapping user’s
.programs. ‘However, there are no restraints imposed by the logic that
will prevent User mode programs from writing into these registers. The
option of implementing such a feature in the operating system, and thus
explicitly protecting these locations from user's programs, is available
to the system software designer.

Table 8-1 PAR/PDR Address Assignments

Kernel Active Page Registers User Active Page Registers
No. PAR PDR No. PAR PDR
0 772340 772300 0 777640 777600
1 772342 772302 1 777642 777602
2 . 772344 772304 2 777644 777604
3 772346 772306 3 777646 777606
4 772350 772310 4 777650 777610
5 772352 772312 5 777652 777612
6 772354 772314 -6 777654 777614
7 772356 772316 7 777656 777616
8.4.1 Page Address Registers (PAR) o

The Page Address Register (PAR), shown in Figure 8-4, contains the
12-bit Page Address Field (PAF) that specifies the base address of the
page.

15 12 11 . . 0
v A i
A I 1 1

Figure 8-4 Page Address Register

Bits 15-12 are unused and reserved for possible future use.

The Page Address Register may be alternatively thought of as a relo-
cation -constant, or as a base register containing a base address. Either
interpretation indicates the basic function of the Page Address Register
(PAR) in the relocation scheme.

8.4.2 Page Descnptor Registers (PDR)
" The Page Descriptor Register (PDR), shown in Figure 8-5, contams in-
formation relative to page expansion, page length, and access controi.

88

15 14 8 7) 5 4 3 2 1 0
7

r VvV ﬁ EDL ace E//j
” " L 1 1 1 L L

Figure 8-5 Page Descriptor Register

Access Control Field (ACF)

This 2-bit field, bits 2 and 1, of the PDR describes the access rights to
this particular page. The access codes or ‘‘keys’’ specify the manner
in which a page may be accessed and whether or not a given access
should result in an abort of the current operation. A memory reference
that causes an abort is not completed and is terminated immediately.

Aborts are caused by attempts to access non-resident pages, page
length errors, or access violations, such as attempting to write into a
read-only page. Traps are used as an aid in gathering memory manage

- ment information.

In the context of access control, the term “‘write” is used to indicate
the action of any instruction which modifies the contents of any ad-
dressable word. A “write” is synonymous with what is usuallv called a
“store’” or “‘modify’”’ in many computer systems. Table 8-2 lists the ACF
keys and their functlons The ACF is written into the PDR under program
control.

\

Table 8-2 Access Control Field Keys

AFC Key Description Function ,
00 0 “Non-resident Abort any attempt to access this
’ non-resident page
01 2 Resident read-only Abort any attempt to write into
this page. -
10 4 (unused) Abort all Accesses.
11 6 Resident read/ write Read or Write allowed. No trap

or abort occurs.

Expansion Direction (ED)
The ED bit located in PDR bit position 3 indicates the authorized direc-
tion in which the page can expand. A logic O in this bit (ED = 0) indi-
cates the page can expand upward from relative zero. A logic 1 in this
bit (ED = 1) indicates the page can expand downward toward relative
zero. The ED bit is written into the PDR under program control. When
the expansion:direction is upward (ED = 0), the page length is increased
by adding blocks with higher relative addresses. Upward expansion is
usually specified for program or data pages to add more program or
table space. An example of page expansion upward is shown in Figure 8-6.

When the expansion direction is downward (ED = 1), the page length is
increased by adding blocks with lower relative addresses. Downward
expansion is specified for stack pages so that more stack space can be
added. An example of page expansion downward is shown in Figure 8-7.

89

PAR PDR

000 001 111 OOOJ LO 0101001 0000 O 110
I S “T el
PAF =0170

PLF =518 =41 = NUMBER OF BLOCKS
ED =0 =UPWARD EXPANSION)
ACF = 6 = READ / WRITE *

NOTE:

To specify a block length of 42 for an upward expandable page, write
highest authorized block no. directly into high byte of PDR. Bit 15 is
not used because the highest allowable block number is 177,.

B(OCK 177, /// 7
%aloc»cv' 7 ANY BLOCK NUMBER
ADDRESS RANGE 8 / GREATER THAN 4 hig(515)
OF POTENTIAL PAGE (VA<12:06> 51g)
EXPANSION BY 2 [WILL CAUSE A PAGE
CHANGING THE PLF 7“9 | LENGTH ABORT.
21
(s
BLOCK 524
7 J
024176
BLOCK 51g
024100
AUTHORIZE PAGE 017276
LENGTH =420 BLOCKS BLOCK 2
OR O THRU 51g= 017200
525 BLOCKS
017176
* BLOCK 1
017100
017076
BLOCK 0
017000 .
~«——BASE ADDRESS OF PAGE

Figure 8-6 ‘ Example of an Upward Expandable Page

8-10

Written . Into (W)

The W bit located in PDR bit position 6 indicates whether the page has
been written into since ‘it was loaded into memory. W =1 is affirma-
tive. The W bit is automatically cleared when the PAR or PDR of that
page is written into. It can only be set by the control logic.

In disk swapping and memory overlay applications, the W bit (bit 6) can
be used to determine which pages in memory have been modified by a
user. Those that have been written into must be saved in their current
form. Those that have not been written into (W = 0), need not be saved
and can be overlayed with new pages, if necessary.

Page Length Field (PLF)

The 7-bit PLF located in PDR (bits 14-8) specifies the authorized length
of the page, in 32-word blocks. The PLF holds block numbers from 0 to
177,; thus allowing any page length from 1 to 128, blocks. The PLF
is written in the PDR under program control.

PLF for an Upward Expandable Page)

When the page expands upward, the PLF must be set to one less than
the intended number of blocks authorized for that page. For example,
if 52, (42,,) blocks are authorized, the PLF is set to 51, (41,,) (Figure
8-6). The hardware compares the virtual address block number, VA (bits
12-6) with the PLF to determine if the virtual address is within the au-
thorized page length.

When the virtual address block number is less than or equal to the PLF,
the virtual address is within the authorized page length. If the virtual ad-
dress is greater than the PLF, a page length fault (address too high)
is detected by the hardware and an abort occurs. In this case, the vir-
tual address space legal to the program is non-contiguous because the
three most significant bits of the virtual address are used to select the
PAR/PDR set.

PLF for a Downward Expandable Page

The capability of providing downward expansion for a page is intended
specifically for those pages that are to be used as stacks. In the PDP-11,
a stack starts at the highest location reserved for it and expands down-
ward toward the lowest address as items are added to the stack.

When the page is to be downward expandable, the PLF must be set to
authorize a page length, in blocks, that starts at the highest address of
the page. That is always Block 177,. Refer to Figure 8-7, which shows
an example of a downward expandable page. A page length of 42,/
blocks is arbitrarily chosen so that the example can be compared with
the upward expandable example shown in Figure 8-6.

NOTE
The same PAF is used in both examples. This is
done to emphasize that the PAF, as the base
address, always determines the lowest address
of the page, whether it is upward or downward
expandable.

811

‘Q——vACTIVE PAGE REGISTER comeurs—-l
PAR ° PDR

’000 001 11 000] li)lo‘OlIO 0000 110]
[[—
PAF:OVO————————‘ 1
PLF =126g =8610

ED=1: DOWNWARD EXPANSION

To specify page length for a downward expandable page, write comple-
ment of blocks required into high byte of PDR.

In this example, a 42-block page is required.
PLF is derived as follows:

42,, = 52,; two’s complement = 126,.

036776
BLOCK 177y
036700

036676
BLOCK 1765

036600

AUTHORIZED PAGE 036576
LENGTH =429 BLOCKS BLOCK175g
- 036500

\/-—__/_/;,——:/

0311676

BLOCK 1264
0311600

BLOCK 1254

JBLOCK 124 7

A BLOCK NUMBER
REFERENCE LESS
ADDRESS RANGE T THAN 1265

OF POTENTIAL PAGE (VA<12:06> LESS THAN 1263
EXPANSION

CHANGING THE PLF WILL CAUSE A PAGE

017176 LENGTH ABORT.

BLO xl/////

017100

o
<

7 70617076
BLOCK 0/ /%
700170007)

BASE ADDRESS OF PAGE

Figure 8-7 Example of a Downward Expandable Page

8-12

The calculations for complementing the number of blocks required to
obtain the PLF is as follows: .

MAXIMUM BLOCK NO. MINUS REQUIRED LENGTH EQUALS PLF
177, _ 52, = 125,
127, - 42;, = 85,0

8.5 VIRTUAL & PHYSICAL ADDRESSES

The Memory Management Unit is located between the Central Processor
Unit and the UNIBUS address lines. When Memory ‘Management is
enabled, the Processor ceases to supply address information to the Uni-
bus. Instead, addresses are sent to the Memory Management Unit where
they are relocated by various constants computed within the Memory
Management- Unit.

8.5.1 Construction of a Physical Address

The basic information needed for the construction of a Physical Address
(PA) comes from the Virtual Address (VA), which is illustrated in Figure
8-8, and the appropriate APR set.

[APF L OF
1 4 " N 1

ACTIVE PAGE FIELD DISPLACEMENT FIELD

Figure 8-8 Interpretation of a Virtual Address

The Virtual Address (VA) consists of:

1. The Active Page Field (APF). This 3-bit field determines which of
eight Active Page Registers (APRO-APR7) will be used to form the
Physical Address (PA).

2. The Displacement Field (DF). This 13-bit field contains an address
relative to the beginning of a page. This permits page lengths up to
4K words (2'® = 8K bytes). The DF is further subdivided into two
fields as shown in Figure 8-9,

12] 5 0

" I

BLOCK NUMBER DISPt ACEMENT IN BLOCKS

Figure 8-9 Displacement Field of Virtual Address

The Displacement Field (DF) consists of:

1. The Block Number (BN). This 7-bit field is interpreted as the block
number within the current page.

2. The Displacement in Block (DIB). This 6-bit field contains the dis-
placement within the block referred to by the Block Number.

. 8-13

The remainder of the information needed to construct the Physical Ad-
dress comes from the 12-bit Page Address Field (PAF) (part of the Active
Page Register) and specifies the starting address of the memory which
that APR describes. The PAF is actually a block- number in the physical
memory, e.g. PAF = 3 indicates a starting address of 96, (3 X 32 = 96)
words in physical memory.

The formation of the Physical Address is illustrated in Figure 8-10.

15 13 12] 5 Q

[APF I BLOCK NO. | 18 J YRt
.)

[i PAGE ADDRESS FIELD I ACTIVE PAGE
1 L "

REGISTER

|14 6 H 0

______ PHYSICAL
‘ | PHYSICALBLOCK NO.) . |- *{ ore ADDRESS

(DISPLACEMENT IN BLOCKS)

Figure 8-10 Construction of a Physical Address

The logical sequence involved in constructmg a Physncal Address is as
follows:

1. Select a set of Active Page Registers depending on current mode.

2. The Active Page Field of the Virtual Address is used to select an
Active Page Register (APRO-APR7).

3. The Page Address Field of the selected Active Page Register con-
tains the starting address of the currently active page as a block
number in physical memory.

4. The Block Number from the Virtual Address is added to the block
number from the Page Address Field to yield the number of the
block in physical memory which will contaln the Physical Address
being constructed.

5. The Displacement in Block from the Displacement Field of the Virtual
Address is joined to the Physical Block Number to yield a true 18 bit
Physical Address.

8.5.2 Determining the Program Physical Address

A 16-bit virtual address can specify up to 32K words, in the range from
0 to 177776, (word boundaries are even octal numbers). The three
most significant virtual address bits designate the PAR/PDR set to be
referenced during page address relocation. Table 8-3 lists the virtual
address ranges that specify each of the PAR/PDR sets.

8-14

. Table 8-3 Relating Virtual Address tc PAR/PDR Set

Virtual Address Range PAR/PDR Set

000000-17776
020000-37776
040000-57776
060000-77776
100000-117776
120000-137776
140000-157776
160000-177776

NOORWNRO

NOTE

_Any use of page lengths less than 4K words

causes holes to be left in the virtual address

space.
8 6 STATUS REGISTERS
Aborts generated by the protection hardware are vectored through Kernel
virtual location 250. Status Registers #0.and #2 are used to determine -
why the abort occurred. Note that an abort.to a location which is itself
an invalid address will cause another abort. Thus the Kernel program
must insure that Kernel Virtual Address 250 is mapped into a.valid ad-
dress, otherwise a loop will occur which will require console intervention.

8.6.1 Status Register 0 (SRQ)

SRO contains abort error flags, memory management enable, pius other
essential information required by an operating system to recover from
an abort or service a- memory management trap. The SRO format is
shown in Figure 8-11. its address is 777 572. :

15 14 13 12
l || b VA T
ABORT- NON-RESI| DENT
ABORT-PAGE LENGTH ERROR
ABORT-READ ONLY

ACCESS VIOLATION .
mSINTENANCE MODE

PAGE NUMBER
ENABLE MANAGEMENT

Figure 8-11 Format of Status ‘Register #0 (SRO)

Bits 15-13 are the abort flags. They may be considered to be in a
“priority queue’’ in that ‘‘flags to the right’’ are less significant and
should be ignored. For example, a ‘‘non-resident’” abort service routine
would ignore page length and access control flags. A ‘‘page -length”
abort service routine would ignore an access control fault.
NOTE

Bit 15, 14 or 13, when set (abort conditions)

cause the logic to freeze the contents of SRO

bits 1 to 6 and status register SR2. This is done

~ to facilitate recovery from the abort.

8-15

Protection is enabled when an address is being relocated. This implies
that either SRO, bit O is equal to 1 (Memory Management enabled) or
that SRO, bit 8, is equal to 1 and the memory reference is the final one
of a destination calculation (maintenance/destination mode).

Note that SRO bits O and 8 can be set under. program control to pro-
vide meaningful memory management control information. However,
information written into all other bits is not meaningful. Only that in-
formation which is automatically written into these remaining bits as a
result of hardware actions is useful as a monitor of the status of the
memory management unit. Setting bits 15-13 under program control
will not cause traps to occur. These bits, however, must be reset to O
after an abort or trap has occurred in order to resume monitoring:
memory management.

Abort-Nonresident

Bit 15 is the “‘Abort-Nonresident” bit. It is set by attempting to access
a page with an access control field (ACF) key equal to O or 4 or by en-
abling relocation with an illegal moide in the PS(

Abort—Page Length

Bit 14 is the ‘‘Abort-Page Length” bit. It .is set by attempting to access
a location in a page with a block number (virtual address bits 12-6) that
is outside the area authorized by the Page Length Field (PFL) of the
PDR for that page.

Abort-Read Only
Bit 13 is the ‘“Abort-Read Only”’ bit. It is set by attempting to write in a
““Read-Only"" page having an access key of 2.

NOTE
There are no restrictions that any abort bits
could not be set snmultaneously by the same
access attempt.

Maintenance/Destination Mode

Bit 8 specifies maintenance use of the Memory Management Unit. It is
used for diagnostic purposes. For the instructions. used in the initial
diagnostic program, bit 8 is set so that only the final destination refer-
ence is relocated. It is useful to prove the capability of relocating
addresses.

Mode of Operation
Bits 5 and 6 indicate the CPU mode (User or Kernel) associated with.
the page causing the abort. (Kernel = 00, User = 11).

Page Number

Bits 3-1 contain the page number of reference. Pages, like blocks, are
numbered from O upwards. The page number bit is used by the error
recovery routine to identify the page being accessed if an abort occurs.

Enable Relocation and Protection’
Bit O is the “Enable’” bit. When it is set to 1, all addresses are relocated

8-16

and protected by the memory management unit. When bit O is set to O, .
the memory management unit is disabled and addresses are neither re-
located nor protected.

8.6.2 Status Register 2 (SR2)

SR2 is loaded with the 16-bit Virtual Address (VA) at the beginning of
each instruction fetch but is not updated if the instruction fetch fails.
SR2 is read only; a write attempt will not modify its contents. SR2 is
the Virtual Address Program Counter. Upon an abort, the result of SRO
bits 15, 14, or 13 being set, will freeze SR2 until the SRO abort flags are
cleared. The address of SR2 is 777 576.

15 N [
16-BIT VIRTUAL ADDRESS - J

ADDRESS
777576

' Figure 8-12 Format of Status Register 2 (SR2))

8.7 INSTRUCTIONS

Memory Management provides the ability to commumcate between two
spaces, as determined by the current and previous modes of the Pro-
cessor Status word (PS).

Mnemonic Instruction Op Code
MFPI move from previous instruction space 0065SS
MTPI move to previous instruction space 0066DD
MFPD move from previous data space 1065SS
MTPD move to previous data space 1066DD

These instructions are directly compatible with the larger 11 computers.

The PDP-11/45 Memory Management unit, the KT11-C, implements a
separate instruction and data address space. In the PDP-11/34, there
is no differentiation between instruction or data space. The 2 instructions
MFPD and MTPD (Move to and from previous data space) execute iden-
tically to MFPI and MTPL. .

8-17 '

MFPD

MFPI
move from previous data space 1065SS
move from previous instruction space - 0065SS

15 [‘5 0
|7010‘0.0l|‘ll'0l\‘Ollrs‘slslsls.s

Operation: (temp) <(src)

: V (SP) «(temp)

Condition Codes: N: set if the source <0; otherwise cleared
: Z: set if the source =0; otherwise cleared
V: cleared
C: unaffected

Description: This instruction pushes a word onto the current stack
) from an address in previcus space, Processor Status
(bits 13, 12). The source address is computed using

the current registers and memory map.

Example: MFPl @ (R2) Toco ioggszs ,

The execution of this instruction causes the contents of (relative)
37526. of the previous address space to be pushed onto the current
stack as determined by the PS (bits 15, 14).

8-18

MTPD

MTPI
move to previous data space . : 1066DD
move to previous instruction space 0066DD
15 6 5 0
0 0 0 0 1 1 0 1 1 0 d d d d d d
1 1 1 L " Il 1
Operation: (temp) «(SP) t
(dst) < (temp)

Condition Codes: = N: set if the sourse <0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared
C: unaffected

Description: This instruction pops a word off the current stack
determined by PS (bits 15, 14) and stores that word
into an address in previous space PS (bits 13, 12).
The destination address is computed using the cur-
rent registers and memory map. An example is as

follows:

R2 = 1000

Example: , MTPI @ (R2) 1500 — 37526

The execution of this instruction causes the top word of the current
stack to get stored into the (relative) 37526 of the previous address

space.

. 819

MTPI AND MFPI, MODE O, REGISTER 6 ARE UNIQUE IN THAT THESE
INSTRUCTIONS ENABLE COMMUNICATIONS - TO AND FROM THE PRE-
VIOUS USER STACK.

; MFPI, MODE 0, NOT REGISTER 6
MOV #KM+PUM, PSW ; KMODE, PREV USER

MOV #-—-1, —2(6) ; MOVE —1 on kernel stack —2
CLR %0

INC @ #SRO ; ENABLE MEM MGT

MFPlI %0 - . ; —(KSP) «<RO CONTENTS

The —1 in the kernel stack is now replaced by the contents of RO which
is 0.

: MFPI, MODE 0, REGISTER 6
MOV #UM4PUM, PSW

CLR %6 : SET R16=0 ,
MOV #KM-4-PUM, PSW : K MODE, PREV USER
MOV #_1, —2 (6) : .

INC @#SRO ; ENABLE MEM MGT

MFPI %6 , : —(KSP)<R16 CONTENTS

The —1 in the kernel stack is now replaced by the contents of R16
(user stack pointer which is 0).

To obtain info from the user stack if the status is set to kernel mode,
prev user, two steps are needed. ’

MFPI 94,6 ; get contents of R16=user pointer
MFPl @(6)+ ; get user pointer from kernel stack
. ; use address obtained to get data
; from user mode using the prev
; mode

The desired data from the user stack is now in the kernel stack and has
replaced the user stack address.

- 8-20

; MTPI, MODE 0O , NOT REGISTER 6

MOV #KM4-PUM, PSW ; KERNEL MODE, PREV- USES
MOV #TAGX, (6) : PUT NEW PC ON STACK
INC @#SRO : ENABLE KT
MTPI 947 P %7 < (6)+
HLT : ERROR

TA6X:CLR @ #SRO : DISABLE MEM MGT

The new PC is popped off the current stack and since this is mode O and
not register 6 the destination is register 7.

; MTPI, MODE O, REGISTER 6

MOV #UM4-PUM, PSW ; user mode, Prev User

CLR %6 ; set user SP=0 (R16)

MOV #KM4-PUM, PSW ; Kernel mode, prev user
MOV #—1, —(6) ; MOVE —1 into K stack (R6)
INC @ #SRO . ; Enable MEM MGT

MTPI 9,6 7 %16 «(6)4

The 0 in R16 is now replaced with —1 from the contents of the kernel
stack.

To plaée' info on the user stack if the status is set to kernel mode, prev
user mode, 3 separate steps are needed.

MFPI %6 ; Get content of R16=user pointer

MOV #DATA, —(6) ; put data on current stack

MTPI @(6)+ :) ; @(6)4- [final address relocated] <
(R6)+

The data desired is obtained from the kernel stack then the destination
address is obtained from the kernel stack and relocated through the pre-
vious mode.

8-21

Mode Description

In Kernel mode the operating program has unrestricted use of the
machine. The program can map users’ programs anywhere in core and
thus .explicitly protect key areas (including the device registers and the
Processor Status word) from the User operating environment.

In User mode a program is inhibited from executing a HALT instruction
and the processor will trap through location 10 if an attempt is made
to execute this instruction. A RESET instruction results in execution of
a NOP (no-operation) instruction.

There are two stacks called the Kernel Stack and the User Stack, used
by the central processor when operating in either the Kernel or User
mode, respectively.

Stack Limit violations are disabled in User mode. Stack protection is
provided by memory protect features. ’

Interrupt Conditions

The Memory Management Unit relocates all addresses. Thus, when Man-
agement is enabled, all trap, abort, and interrupt vectors are considered
to be in Kernel mode Virtual Address Space. When a vectored transfer
occurs, control is transferred according to a new Program Counter (PC) .
and Processor Status Word (PS) contained in a two-word vector relocated
through the Kernel Active Page Register Set.

When a trap, abort, or interrupt occurs the ‘“push’ of the old PC, old PS
is to the User/Kernel R6 stack specified by CPU mode bits 15, 14 of the
new PS in the vector (00 = Kernel, 11 = User). The CPU mode bits
also determine the new APR set. In this manner it is possible for a
Kernel mode program to have complete control over service assignments
for all interrupt conditions, since the interrupt vector is located in Kernel
space. The Kernel program may assign the service of some of these con-
ditions to a User mode program by simply setting the CPU ntode bits
of the new PS in the vector to return control to the appropriate mode.

User Processor Status (PS) operates as follows:

User Traps, Explicit
PS Bits User RTI, RTT Interrupts PS Access
Cond. Codes (3-0) . loaded from loaded from *
stack vector
Trap (4) loaded from loaded from cannot be
stack vector changed
Priority (7-5) cannot be loaded from *
: .Cchanged vector
Previous (13-12) cannot be copied from ®
. changed PS (15, 14)
Current (15-14) cannot be loaded from *
changed ‘vector

* Explicit operations:can be made if the Processor Status is mapped in
User space.

8-22

CHAPTER 9
PDP-11/55, 11/45

9.1. DESCRIPTION

The PDP-11/55 and PDP-11/45 Central Processors are medium scale
general purpose computers designed -around the basic architecture of
all PDP-11 family machines.

The PDP-11/55 is a bipolar memory based computer designed for greater
processor and system performance through the use of a dedicated in-
ternal semiconductor memory bus. This high speed bus allows the
PDP-11/55 to fetch and execute instructions at 300 nanoseconds. Two
separate semiconductor controllers allow simultaneous data transfers
for increased system throughput (i.e., the CPU transfers to one con-
troller while DMA devices transfer to the other.) The PDP-11/55 can be
expanded up to 248K bytes with the aid of memory management which
is an integral part of the central processor. The fast floating point pro-
cessor operates as an integral part of the central processor yet only
_interacts with the CPU when data must be transferred to or from mem-
ory.

PDP-11/55 features include:

. * A:central processor unit with 64K bytes of 300.nsec bipolar memory,
or 32K bytes of 980 nsec core memory combmed with 32K bytes of
300 nsec bipolar memory.

An optional floating point processor (FP11-C) which provides very

fast arithmetic processing capabilities. It lets you perform a single-

precision (32 bit) Add in 1.65 microseconds, and a double-precision

(64 bit) Multiply in only 5.43 microseconds.

e A dual-bus structure that allows you to intermix core and bipolar mem-
ory to optimize system performance.

o Integral Memory Management Hardware which provides 18-bit address- -
ing capability (up to 248K bytes) as well as memory protection.

e An Automatic Bootstrap Loader which-initiates system startup at the
flick of a single-switch.

¢ A Real-time Clock

e A 30 CPS LA36 DECwriter Il that provides console terminal and printer
capabilities.

[]

“The PDP-11/45 has a cycle time of 300 nsec and performs all arithmetic
and logical operations required in the system. A Floating Point Processor
mounts integrally into the Central Processor as does a Memory Man-
agement Unit which provides a full memory management facility through

- .relocation and protection. See Figure 9-1.

The PDP-11/55, 11/45 hardware has been optimized towards a multi-
programming environment and the processor therefore operates in three

91

modes (Kernel, Supervisor, and User) and has two sets' of General
Registers.

UNIBUS A >
CORE
MEMORY

il

UNIBUS
PRIORITY
ARBITRATION
UNIT

-

! FLOAHNG ._ ARIY::EDTIC ;M o
IPROCESSOR [LOGICAL f———+MANAGEMENT
e UNIT <

1

|

1 SOLID S0LID
I STATE STATE
I

|

!

MEMORY MEMORY

L. CENTRAL PROCESSOR - _I

Figure 9-1 PDP-11/55, PDP-11/45 System Block Diagram

The PDP-11/55, 11/45 Central Processors perform all arithmetic and
logical operations required in the system. It also acts as the arbitration
unit for UNIBUS control by regulating bus requests and transferring
control of the bus to the requesting device with the highest priority.

The Central Processor contains arithmetic and control logic for a wide
range of operations. These include high-speed fixed point arithmetic with
hardware multiply and divide, extensive test and branch operations, and
other control operations. It also provides room for the addition of the
high-speed Floating Point Processor, and Memory Management Unit.

The machine operates in three modes: Kernel, Supervisor, and User.
When the machine is in Kernel mode a program has complete control of
the machine; when the machine is in any other mode the processor is
inhibited from executing certain instructions and can be denied direct
access to the peripherals- on the system. This hardware feature can be
used to provide complete executive protection in a multi-programming
environment.

The Central Processor contains 16 general registers which can be used
as accumulators, index registers, or as stack pointers. Stacks. are ex-
tremely useful for nesting programs, creating re-entrant coding, and as
temporary storage where a Last-In First-Out structure is desirable. A spe-
cial instruction “MARK” is provided to further facilitate re-entrant pro-
gramming. One of the general registers is used as the program counter.
Three others are used as Processor Stack Pointers, one for each oper-
ational mode.

9-2

The CPU is directly connected to the high-speed memories as well as to
the general purpose registers and the UNIBUS and UNIBUS Priority Ar-
bitration Unit.

Figure 9-2 illustrates the data paths in the CPU.

& CENTRAL PROCESSOR ORGANIZATION

< UNIBUS A >
UNIBUS
PRIORITY PROCESSOR STATUS WORD CORE | oo
ARBITRATION
UNIT

]___._
MEMORY ARITHMETIC "
AND
MANAGEMENT ceneraL
UNIT PROCEAGR REGISTERS
T
< I UNIBUS [B >)
4 ¥
soLio SOLID FLOATING
STATE STATE INT
MEMORY MEMORY PROCESSOR

Figure 9-2 - Central Processor Data Paths

The 11/55 and 11/45 CPU’s performs all of the computer’'s computa-
tion and logic operations in a parallel binary mode through step by step
execution of individual instructions. The instructions’are stored in either
core or solid state memory.

General Registers
The general registers (see Figure 9-3) can be used for a variety of pur-
poses; the uses varying with requirements.

GENERAL RO ro GENERAL
REGISTER REGISTER
SET{ Rl R1 SET @

R2 R2

R3 T R3

R4 R4

R5 RS

SUPERVISOR KERNEL USER
STACK POINTER STACK POINTER STACK POINTER

Cr 1C = 10C =
oo a7]

Figure 9-3 The ngéral Registers

R7 is used as the machine’s program counter (PC) and contains the ad-
dress of the next instruction to be executed. It is a general register

9-3

normally used only for addressing purposes and not as an accumulator
for arithmetic operations.

The R6 register is normally used as the Processor Stack Pointer indicat-
ing the last entry in the appropriate stack (a common temporary. storage
area with ‘‘Last-In First-Out”’ characteristics). (For information on the
programming uses of stacks, please refer to Chapter 5.) The three stacks
are called the Kernel Stack, the Supervisor Stack, and the User Stack.
When the Central Processor is operating in Kernel mode it uses the
Kernel Stack, in Supervisor mode, the Supervisor Stack, and in User
mode, the User Stack. When an interrupt or trap occurs, the Central Pro-
cessor automatically: saves its current status on the Processor Stack
selected by the service routine. This stack-based architecture facilitates
re-entrant programming.

The rémaining 12 registers are divided into two sets of unrestricted regis-
ters, RO-R5. The ‘current register set in operatlon is determined by the
Processor Status Word. .

The two sets of registers can be used to increase the speed of real-time
data handling or facilitate muiti-programming. The six registers in Gen-
eral Register Set O could each be used as an accumulator and/or index
register for a real-time task or device, or as general registers for a Kernel
or Supervisor mode program. General Register Set 1 could be used -by
the remaining programs or User mode programs. The Supervisor can
therefore protect its general registers and stack from User programs, or
other parts of the Supervisor.

Processor Status Word

The Processor Status Word, located at location 777776, contains infor-
mation on the current status of the PDP-11/55, 11/45. See Figure 9-4.
This information includes the register set currently in use; current pro-
cessor priority; current and previous operational modes; the condition
codes describing the results of the last instruction; and an indicator for
detecting the execution of an instruction to be trapped dunng program
debugging.

S < N I L I 8 7 5 4 3 -2 1 0
] ' | NOT USED PRIORITY l T N] z l v] cJ
'CURRENTMODE’
PREVIOUS MODE*
GENERAL REGISTER
SET(0,1)

*MODE: 00=KERNEL(USED ONLY WITH MEMORY MANAGEMENT)
01=SUPERVISOR
11=USER

Figure 9-4 Processor Status Word

Modes

Mode information includes the present mode, either User, Supervisor, or
Kernel (bits 15, 14); the mode the machine was in prior to the last in-
terrupt or trap (bits 13, 12); and which register set (General Register Set
0 or 1) is currently being used (bit 11).

9-4

The three modes permit a fully protected environment for a multi-pro-
gramming system by providing the user with three distinct sets of Pro-
cessor Stacks and Memory Management Registers for memory mapping.
In all modes except Kernel a program is inhibited from executing a
““HALT"" instruction and the processor will trap through location 4 if an
attempt is made to execute this instruction. Furthermore, the processor
will ignore the “RESET” and “‘SPL" instructions. In Kernel mode, the
processor will execute all instructions. ’

A program operating in Kernel mode can mép users’ programs anywhere
in core and thus explicitly protect key areas (including the devices regis-
ters and the Processor Status Word) from the User operating environ-
ment.

:Processor Priority.

The Central Processor operates at any of eight levels of priority, 0-7.
When the CPU is operating at level 7 an external device cannot interrupt
it with a request for service. The Central Processor might be operating at
a lower priority than the priority of the external device’s request in order
for the interruption to take effect. The current priority is maintained in
the Processor Status word (bits 5-7). The 8 processor levels provide an
effective interrupt mask, which can be dynamically altered through use
of the Set Priority Level (SPL) instruction which is described in Chapter
4 and which can only be used by the Kernel. This instruction allows a
Kernel mode program to alter the Central Processor’s priority without
affecting the rest of the Processor Status Word.

Stack Limit Register

All PDP-11's -have a Stack Overflow Boundary at location 400. The Kernel
Stack Boundary, in the PDP-11/55, 11/45 is a variable boundary set
through the Stack Limit Register found in location 777775.

Once the Kernel stack exceeds its boundary, the Processor will complete
the current instruction and then trap to location 4 (Yellow or Warning
Stack Violation). If, for some reason, the program persists beyond the
16-word limit, the processor will abort the offending instruction, set the
stack pointer (R6) to 4 and trap to location 4 (Red or Fatal Stack Viola-
tion). A description of these traps is contained in Appendix A.

Floating Point Processor
The PDP-11/55, 11/45 Floating Point Processor (FPC11-C) fits integrally
into the Central Processor. It provides a supplemental instruction set for
performing single and double precision floating point arithmetic opera-
tions and floating integer conversions in parallel with the CPU. It is
described in Chapter 11.

9.2 MEMORY
Memory is the primary storage medium for instructions and data. Two
types are available:

SOLID STATE:
Bipolar Memory with a cycle time of 300 nsec. -
CORE:

9-5

Magnetic Core Memory with a cycle time of 980 nsec, access at 360
nsec (450 nsec at the UNIBUS).

The PDP-11/45 is a core based machine and the PDP-11/55 is a bipolar
memory-based machine containing 32K or 64K bytes (maximum) of
bipolar memory. Any system can be expanded to 248K bytes in in-
crements of 32K bytes. The system can be configured with various mix-
tures of core and bipolar memory up to a maximum limit of 64K bytes
of bipolar memory.

Solid State Memory

‘The Central Processor communicates directly with bipolar memory
through a very high speed data path which is internal to the PDP-11/55,
11/45 processor system. The CPU can control up to two independent
solid state memory controllers. Each controller can have from one
to four 2K byte increments (8K maximum) or from one to four 8K
byte increments (32K maximum). 2K and 8K byte increments cannot
be mixed in the same bipolar memory controller.

Each controller has dual ports and provides one interface to the CPU
and another to a second UNIBUS. See Figure 9-5.

< UNIBUS 1
cPy 8K cons 8k_CORE | [8k core
MEMORY | | MEMORY | | MEMORY

UNIBUS 2
l
SOLID OLID
STATE STATE
CONTROL CONTROL

)] HT][] rjj] |sw|

SSM=SOLID STATE MEMORY MATRIX(?K OR 8K BYTE BIPOLAR)

Figure 9-5 Memory Configuration

There are two UNIBUSes on the PDP-11/55, 11/45 but in a single pro-
cessor environment the second UNIBUS is generally.connected into the
first and becomes part of it. If the two UNIBUSes are connected together,
DMA devices on both UNIBUSes can access bipolar memory. If the two
UNIBUSes are not connected together, only DMA devices on UNIBUS B
can access bipolar memory. and must include-UNIBUS arbitration logic
which lends itself to multiprocessor environments (Figure 9-6).

The UNIBUS and data path to the Solid State Memory are independent.
While the Central Processor is operating on data in one Solid State Mem-
ory controller through the direct data path, any device could be using the
UNIBUS to transfer information to core, to another device, or to the

9-6

< . UNIBUS A . J>
[M9200 T [ppp.qy/ss
! JUMPER i CORE CORE
| fODULE* | |POP-11A5
Lo |
< UNIBUS B - >
SOLID | |
STATE R
R Por-11
*The M9200 when installed,

connects Unibus A to Uni-
bus B. If two CPU’s are util-
ized, the M9200 must be
removed.

Figure 9-6 Multiprocessor Use of the Second UNIBUS

other Solid State Memory Controller. This autonomy sngmflcantly in-
creases the throughput of the system.

Core Memory
The Central Processor communicates with core memory through the
UNIBUS.

Each memory bank operates independently from other banks through its
own controller which interfaces directly to the UNIBUS. Core memory
can be continuously attached to the UNIBUS until the system contains
a total of 248K (253,952) bytes of memory.

An external device may use the UNIBUS to read or write core memory
completely independent of and simultaneously with the Central Pro-
- cessor's access of solid state memory. Furthermore, core memory and
solid state memory may be used by the processor interchangeably.

9.3 PROCESSOR TRAPS

There are a series of errors and programming conditions which will cause
the Central Processor to trap to a set of fixed locations. These include
Power Failure, Odd Addressing Errors, Stack Errors, Time-out Errors,.
Memory Parity Errors, Memory Management Violations, Floating Point
Processor Exception Traps, Use of Reserved Instructions, Use of the T
bit in the Processor Status Word, and use of the 10T, EMT, and TRAP
instructions.

Stack Errors, Memory Parity Errors, and the T bit Trap have already
been discussed in this chapter. Memory Management Violations are
described in Chapter 10 and Floating Point Exception Traps are de-
scribed in Chapter 11. The 10T, EMT, and TRAP instructions are
described in Chapter 4. .
Power Failure
Whenever AC power drops below 95 volts for 110v power (190 volts for
220v) or outside a limit of 47 to 63 Hz, as measured by DC power, the
. power fail sequence is initiated. The Central Processor automatically
traps to location 24 and the power fail program has 2 msec to save all
volatile information (data in registers), and to condition peripherals for
power fail.

9-7

When power is restored the processor traps to location 24 and executes
the power-up routine to restore the machine to its state prior to power
failure.

0dd Addressing Errors

This error occurs whenever a program attempts to execute a word in-
struction on an odd address (in the middle of a word boundary). The
instruction is aborted and the CPU traps through location 4.

Time-out Errors-

These errors occur when a Master Synchronization pulse is placed on the
UNIBUS and there is no slave pulse within 5 to 10 usec. This error usu-
ally occurs in attempts to address non-existent memory or peripherals.

The offending instruction is aborted and the processor traps through
location 4.

Reserved Instructions
There is a set of illegal and reserved mstructlons which cause the pro~
cessor to trap through location 10.

Trap Handling)

Appendix A includes a list- of the reserved Trap Vector locations, and
System Error Definitions which cause processor traps. When a trap oc-
curs, the processor follows the same procedure for traps as it does for
interrupts (saving the PC and PS on the new Processor Stack etc. .. .).

In cases where traps and interrupts occur concurrently, the processor
will service the conditions according to the priority sequence shown in
Table 9-1.

Table 9-1 Processor Service Hierarchy

Console Flag

Odd Addressing Error

Fatal Stack Violations (Red)
Memory Management Violations-
Time-out Errors \
Parity Errors

Floating Point Processor Transfer Request
Memory Management Traps
Warning Stack Violation (Yellow)
Power Failure

Processor Priority level 7
Floating Point Exception Trap
PIR 7

BR7

9-8

Table 9-1 Processor Service Hierarchy (Cont.) -

PIR 2
PIR1
Processor 0

9.4 MULTIPROGRAMMING

The PDP-11/55, 11/45 architecture with its three modes of operatlon
its two sets of general registers, its Memory Management capability and
its Program Interrupt Request facility provides an ideal environment for
multi-programming systems.

In.any multi-programming system there must be some method of trans-
ferring information and control between programs operating in the same
or different modes. The PDP-11/55, 11/45 provides the user with these
communication paths.

Control Information -

Control is passed inwards (User Supervisor, Kernel) by all traps and in-
terrupts. All trap and interrupt vectors are located in Kernel virtual space.
Thus all traps and interrupts pass through Kernel space to pick up their
new PC and PS and determine the new mode of processing.

Control is passed outwards (Kernel, Supervisor,.User) by the RTI' and
RTT instructions (described in Chapter 4).

Data

Data is transferred between modes by four instructions: Move From Pre-
vious Instruction space (MFPI), Move From Previous Data space (MFPD),
Move To Previous Instruction space (MTPI) and Move To Previous Data
.space (MTPD).-There are four instructions rather than two as Memory
Management distinguishes between instructions and data. The instruc-
tions are fully described in Chapter 4. However, it should be noted that
these instructions have been designed to allow data transfers to be
under the control of the innermost mode (Kernel, Supervisor, User)
and not the outermost, thus providing protection of an inner program
from an outer.

Processor Status Word

The PDP 11/55, 11/45 protects the PS from implicit references by Su-
pervisor and User programs which could result-in damage to ‘an inner
level program.

A program operating in Kernel mode can perform any manipulation of
the PS. Programs operating at outer levels (Supervisor and User) are
inhibited . from changing bits 5-7 (the Processor’s Priority). They are
also restricted in their treatment of bits 15, 14 (Current Mode), bits 13,
12 (Previous Mode), and bit 11 (Register Set); these bits may be set
in User or Supervisor mode. However, in order to clear these bits, a
trap or interrupt must be issued which returns the program to Kernel

- mode.

99

Thus, a programmer can pass control outwards through the RTI and
RTT instructions to set bits in the mode fields of his PS. To move in-
wards, however, bits must be cleared and he must, therefore, issue a
trap or interrupt. :

The Kernel can further protect the PS from explicit references (Move
data to location 777776—the PS) through Memory Management.

9.5 SPECIFICATIONS

Computer ' PDP-11/55, 11/45

Main Market ’ OEM & End User

Memory

Min size: - 64K bytes

Max size:) 248K bytes

Type: bipolar, core

Parity: _ optional

Central Processor :

Instructions: : B basic set 4+ XOR, SOB, MARK, SXT,
: : RTT, MUL, DIV, ASH, ASHC, SPL

Programming modes: 3 ‘

No. of general registers: 16

Auto hardware interrupts: yes

Auto’ software interrupts: yes

Power fail/auto restart: yes

Mechanical & Environmental

Front panel height: 31"

Input power: - 230 VAC +£109%, 47 to 63 Hz

Operating temperature: 10°C to 50°C

Relative humidity: 209%, to 95%, non-condensing

Equipment . '

1/0 serial interface: standard

Console terminal: standard

Line frequency clock: standard

Hardware bootstrap: standard

Programmer's console: standard

Extended arithmetic: - standard

Floating point: : optional

Stack limit address: standard

Memory management: standard

Cabinet: standard

Additional Instructions
The PDP-11/55, 11/45 implements the following EIS (extended instruc-
tion set) instructions:

MUL multiply
DIV divide

9-10

ASH shift arithmetically
ASHC arithmetic shift combined

These instructions are standard with the PDP-11/34, 11/55, 11/45 and
are described in Chapter 6.

Notes

1. CPU Fastbus activity does not degrade data transfer speed of either
bus, except when both Buses are simultaneously accessing the same
MS11 control board.

2. If there are two MS11 controls in a CPU, transfers on one bus to one
control do not interact with transfers on the other bus to the other
control. -

3. Data transfer rates for the PDP-11/55, 11/45:

Configuration #1

The maximum system data transfer rate with UNIBUS controllers
transferring to interleaved MM11-UP core memory over the UNIBUS
while the CPU transfers to bipolar memory over the Fastbus is 9.0
megabytes per second.

UNIBUS A
CPU l T J
MM11-UP " UNIBUS UNIBUS
CORE CONTROLLER CONTROLLER
BIPOLAR
CONTROLLER
BIPOLAR
MEMORY

Configuration #2 ‘

The maximum system data transfer rate with a UNIBUS controller

transferring to bipolar memory while the CPU transfers to the same

bipolar memory (same bipolar memory controller) is 7.14 mega-
- bytes per second.

UNIBUS A , '
cPU I ; T 1
UNIBUS B o290 UNIBUS UNIBUS
MODULE CONTROLLER CONTROLLER
BIPOLAR
MEMORY
CONTROLLER
BIPOLAR
MEMORY

9-11

Configuration #3

The maximum system data transfer rate with a UNIBUS controller
transferring to one bipolar controller while the CPU transfers to the
other bipolar controller is 10.78 megabytes per second.

UNIBUS A

4. The two MS11 solid state memory controls are connected to a single
UNIBUS (UNIBUS-B) that can be easily separated from the 11/45
CPU UNIBUS (UNIBUS-A) by removing a simple jumper module
(M9200), thus facilitating dual UNIBUS systems. UNIBUS B does not
have its own Unibus arbitration control logic; thus, a second PDP-11

cpu I T T
1 m,&%‘éﬁ UNIBUS UNIBUS
. I ! I MODULE CONTROLLER CONTROLLER
BIPOLAR BIPOLAR
CONTROLLER CONTROLLER
BIPOLAR BIPOLAR
MEMORY MEMORY

CPU is required for other than NPR transfers from a single device.

9.6 CONSOLE OPERATICN

The PDP-11/55, 11/45 System Operator’s Console is designed for con-
venient system control. A complete set of function switches and display
indicators provide comprehensive status monitoring and control facilities

The System Operator’s Console for the PDP-11/55 is 1IIustrated in Flgure‘

9-5.

9-6.

9-12

The System Operator’s Console for the PDP-11/45 is illustrated in Flgure

mode. If a 0, the last memory refer-
.ence was to | address space in the cur-
rent CPU mode.

9.6.4 Address Display Register
The Address Display Register is primarily a software development and

maintenance aid. The contents of this 18-bit indicator are controlled by
the Address Select knob as follows:

VIRTUAL The Address Display Register indicates
the current address reference as a 16-
bit Virtual Address when the Memory
Management Unit is enabled; otherwise,
it indicates the true 16-bit Physical Ad-
dress. Bits 17 and 16 will be off unless
the Memory Management Unit is dis-
abled AND the current address refer-
ences some UNIBUS device register in
the .uppermost 8K bytes of basic ad-
dress space (i.e., 248K-256K).

PROGRAM PHYSICAL The -Address Display Register indicates
- the current address reference as a true
18-bit Physical Address.

CONSOLE PHYSICAL The Address Display Register indicates
the current address reference as a 16-
bit Virtual Address when the Memory
Management Unit is enabled; otherwise,
it indicates the true 16-bit Physical
Address.

Bits 17 and 16 indicate the contents of
corresponding bits of the Switch Reg-
ister as of the last. LOAD ADRS console
operation.
9.6.5 Addressing Error Display
This 1-bit display indicates the occurrence of any addressing errors. The
following address references are invalid: .
1. Non-existent memory
2. Access Control violations
3. Unassigned memory pages

(See chapter.10: 11/55, 11/45 Memory Management)

9.6.6 Data Display Register

The Data Display Register is pnmarlly a hardware maintenance facility.
The contents of this 16-bit indicator are controlled by the Data Display
Select knob as follows:

DATA PATHS) The Data Display Register indicates
the current. output of the PDP-11/55,
11/45 Arithmetic/Logical ‘Unit subsys-
tem (SHFR).

9-17

BUS REGISTER The Data Display Register indicates
< i the current output of the PDP-11/55,
©11/45 CPU (UNIBUS, Semiconductor

Memory, or the internal BUS.)

FPP «ADRS.CPU nADRS. The Data Display Register indicates the
current ROM - address, FPP control
micro-program (bits 15-8), and the
CPU control micro-program (bits 7-0).

DISPLAY The Data Display Register indicates the
. current contents of the 16-bit write-
only ‘‘Switch Register’’ located at Phys-
ical Address 777570. This register is
generally used to display diagnostic in-
formation, although it can be used for
any meaningful purpose.

9.6.7 Switch Registers
The functions of this 18-bit bank of switches are determined by:

1) Control Switches
2) Address Display Select knob

These functions will be described in the next section along with the
appropriate control switch.

Note that the current setting of the Switch Register may be read under
program control from a read-only register at Physical Address 777570.

9.6.8 Control Switches

LOAD ADRS (Load Address)

When the LOAD ADRS switch is depressed the contents of the Switch
Register are loaded into the CPU Bus Address Register and displayed in
the Address Display Register lights. If the Memory Management Unit is
disabled the address displayed is the true Physical Address.

"If the Memory Management Unit is enabled the interpretation of the ad-
dress indicated by the Switch Register is determined by the Address
Display Select knob.

Note that the LOAD ADRS function does not distinguish between PRO-
GRAM PHYSICAL and CONSOLE PHYSICAL. ’

EXAM (Examine)
Depressing the EXAM switch causes the contents of the current location
specified in the CPU Bus Address Register to be displayed in the DATA
Display Register.

Depressing the EXAM switch again causes a EXAM-STEP operation to
occur. The result is the same as the EXAM except that the contents of
the CPU Bus Address Register are incremented by two before the current
location has been selected for display. An EXAM-STEP will not cross a
64K byte memory block boundary. :

9-18

An EXAM operation which causes an ADRS ERR (Addressing Error) must
be corrected by performing a new LOAD ADRS operation with a valid
address. . _

REG EXAM (Register Examine)

Depressing the REG EXAM switch causes the contents of the General
Purpose Register specified by the low order five bits of the Bus Address
Register to be displayed in the Data Display Register. In the PDP-11/55,
consecutive register examines will automatically increment to the next
general purpose register. ’

The Switch Register is interpreted as follows:

CONTENTS REGISTER DISPLAYED

0-5 . General Registers 0-5 (set 0)
6 : Kernel Mode Register 6

7 Program Counter (PC)
10,—15, General Register 0-5 (set 1)
16, Supervisor Mode Register 6
17, User Mode Register R6

CONT (Contmue)

Depressing the CONT switch causes the CPU to resume executmg in-
structions or bus cycles at the address specified in the Program Counter
(Register). The CONT switch has no effect when the CPU is in RUN
-state.

The function of the CONT switch, is modified by the setting of the
ENABLE/HALT and S/INST-S/BUS cycles switches as follows:

ENABLE (up) CPU resumes normal operation under
,) program control.
HALT (down) S/INST (up)—CPU executes next in-

struction then stops.

S/BUS cycle (down)—CPU executes
next address reference, then stops (i.e.,
one UNIBUS cycie).

ENABLE/HALT)
The ENABLE/HALT switch is a two-position switch with the following
functions:

ENABLE (up) The CPU. is able to perform normal

operations under program control.
HALT (down) The CPU is stopped and is only oper-

able by the console switches.

The setting of the ENABLE/HALT switch modifies the function of the
CONTINUE and START switches.

S/INST—S/BUS CYCLE (Single instruction/Single Bus Cycle)
The S/INST-S/BUS CYCLE switch effects only the operation of the CON-

9-19

TINUE switch. This switch has no effect on any switches when the
ENABLE/HALT switch is set to ENABLE.

START
The functions of the START switch depend upon the setting of the
ENABLE/HALT switch as follows:

ENABLE - Depressing the START switch causes
the CPU to start executing program in-
structions at the address specified by
the current contents of the CPU Bus
Address Register. The START switch
has no effect when the CPU is in RUN
state.

HALT ' Depressing the START switch causes a
console reset to occur.

DEP (Deposit)

Raising the DEP switch causes the current contents of the Switch Reg-
ister to be deposited into the address specified by the current contents
of the CPU Bus Address Register.

Raising the DEP switch again causes a DEP-STEP operation to occur.
The result is the same as the DEP except that the contents of the CPU
Bus Address Register are incremented by two before the current location
has been selected for the deposit operation. A DEP-STEP will not cross
~ a 32K memory block boundary.

A DEP operation which causes an ADRS ERR (Addressing- Error) is
aborted and must be corrected by performing a new LOAD ADRS opera-
tion with a valid address.

REG DEP (Register Deposit)

Raising the REG DEP causes the contents of the Swntch Register to be
deposited into the General Purpose Register specified by the current
contents of the CPU Bus Address Register. In the PDP-11/55, consecu-
tive Register Deposits will automatically mcrement to the next general
purpose register (GPR).

The CPU Bus Address Register should have been previously loaded by
a LOAD ADRS operation according to the Switch Register settings de-
scribed in REG EXAM (9.6.8).

NOTE: The EXAM and DEP switches are coupled to enable an EXAM-
DEP-EXAM sequence to be carried out on a location, without having to
do a LOAD ADRS. The following sequence is possible:

EXAM ‘

DEP ADDRESS A

EXAM

STEP EXAM

DEP ADDRESS A + 1

EXAM

- 9-20

-ADDRESS SELECT

The ADDRESS SELECT knob is used for two functions. It provides an
interpretation for the Address Display Register as explained in section
9.6.4. It also determines for EXAM, STEP-EXAM, DEP and STEP-
DEP, what set of Page Address Registers, if any, will be used to relocate
the address loaded by the LD ADRS function.

KERNEL |, KERNEL D, SUPER |, SUPER D, USER | and USER D posi-
tions cause the address loaded into the switch register to be relocated
if the Memory Management Option is installed and operating. Which
set of the 6 sets of Page Address Registers (PARs) is used is determined
by the ADDRESS SELECT switch. EXAMs, STEP-EXAMs, DEPs and STEP-
DEPs, under these conditions, are relocated to the physical address
specified by the appropriate PAR. If the action attempted from the con-
sole is not allowed (for example—attempting to DEP into a READ ONLY
page) the ADRS ERROR indicator will come on. A new LD ADRS must
be done to clear this condition. Note that, in the general case, the phys-
ical location accessed is different from the virtual address loaded into
the switch register. The Address Display Register will always, in these
6 positions, show ‘exactly what was loaded from the switch register.
These positions make it convenient to examine and change programs
which are subject to relocation, without requiring any knowledge of
. where they have actually been relocated in physical memory.

PROGRAM PHYSICAL—This position is provided to allow the user, when
‘“single cycling’’ through a program, to monitor the physical addresses
being accessed by the program. It is most useful when the accesses are
being relocated by the Memory Management Option. In this case the
Address shown in the Address Display Register is different than that .
shown in the other positions. This position should not be used to per-
form EXAM, STEP-EXAM, DEP or STEP-DEP functions.

CONSOLE PHYSICAL—This position is provided to allow EXAM, STEP
EXAM, DEP and STEP-DEP functions to physical memory locations whe-
ther or not the Memory Management option is installed or operating. In
this position the Address Display Register indicates the physical address
loaded from the Switch Register.

9-21

9-22

CHAPTER 10

PDP-11/55, 11/45 MEMORY MANAGEMENT

The PDP-11/55, 11/45 Memory Management Unit provides the hardware
facilities necessary for complete memory management and protection.
It is designed to be a memory management facility for systems where
the system memory size is greater than 28K words and for muiti-user,
multi-programming systems where memory protection and relocation
facilities are necessary.

In order to most effectively utilize the power and efficiency of the PDP-
11/55, 11/45 in medium and large scale systems it is necessary to run
several programs simultaneously. In such multi-programming environ-
ments several user programs would be resident in memory at any given
time. The task of the supervisory program would be: control the execu-
tion of the various user programs, manage the allocation of memory
and peripheral device resources, and safeguard the integrity of the sys-
tem as a whole by careful control of each user program.

In a multi-programming system, the Memory Management Unit provides,
the means for assigning memory pages to a user program and prevent-
ing that user from making any unauthorized access to these pages out-
side his assigned area. Thus, a user can effectively be prevented from
accidental or willful destruction of any other user program or the system
executive program.

The basic characteristics of the PDP- 11/55 11/45 Memory Management
Unit are:

16 User mode memory pages

16 Supervisor mode memory pages

16 Kernel mode memory pages

8 pages in each mode for instructions

8 pages in each mode for data

page lengths from 32 to 4096 words

each page provided with full protection and relocation
transparent operation

6 modes of memory access control

memory extension to 124K words (248K bytes)

10.1 PDP-11 FAMILY BASIC ADDRESSING LOGIC

The addresses generated by all PDP-11 Family Central Processor Units
(CPUs) are 18-bit direct byte addresses. Although the PDP-11 Family
word length and operational logic is all 16-bit length, the UNIBUS and
CPU addressing logic actually is 18-bit length. Thus, while the PDP-11
word can only contain address references up to 32K words (64K bytes)

10-1

the CPU and UNIBUS can reference addresses up to 128K words (256K
bytes). These extra two bits of addressing logic provide the basic
framework for expanded memory operation.

In addition to the word length constraint on basic memory -addressing-
space, the uppermost 4K words of address space is always reserved for
UNIBUS 1/0 device registers. In a basic PDP-11/55, 11/45 memory con-
figuration (without the Memory Management Option) all address refer-
ences to the uppermost 4K words of 16 bit address space (170000-
177777) are converted to full 18-bit references with bits 17 and 16
always set to 1. Thus, a 16 bit reference to the 1/0 device register at
address 173224 is automatically internally converted to a full 18-bit ref-
erence to the register at address 773224. Accordingly, the basic PDP-
11/55, 11/45 configuration can directly address up to 28K words of true
memory, and 4K words of UNIBUS 1/0 device registers. Memory con-

figurations beyond thls require the PDP-11/55, 11/45 Memory Manage-

ment Unit.

10.2 VIRTUAL ADDRESSING

When the PDP-11/45 Memory Management Unit is operating, the normal
16 bit direct byte address is no longer interpreted as a direct Physical
Address (PA) but as a Virtual Address (VA) containing information to be
used in constructing a new 18-bit physical address. The information
contained in the Virtual Address (VA) is combined with relocation infor-
mation contained .in the Page Address Register (PAR) to yield an 18-bit
Physical Address (PA). Using the Memory Management Unit, memory
can be dynamically allocated in pages each composed of from 1 to 128
integral blocks of 32 words.

PHYSICAL
" ADDRESS SPACE
PAGE 5
VIRTUAL INSTRUCTION/DATA
- ADDRESS SPACE
y PAR 7 PAGE 6
o PAR 6
— PAR 5
PAR 4 PAGE 7
. PAR 3 \
PAR 2 PAGE 4
PAR 1
o PAR O o
VIRTUAL ADDRESS ‘PAGE PHYSICAL ADDRESS
(16 BITS) ADDRESS - (18 BITS)
REGISTERS

) ~N
PAR = Page Address Register

Figure 10-1 Virtual Address Mapping into Physical Address

The starting: physical address for each page is an integral multiple of 32
words, and each page has a maximum size of 4096 words. Pages may be
located anywhere within the 128K Physical Address space. The deter-
mination of which set of 16 page registers is used to form a Physical

10-2

Address is made-by the current mode of operation of the CPU, i.e., Ker-
nel, Supervisor or User mode.

10.3 INTERRUPT CONDITIONS UNDER MEMORY MANAGEMENT
CONTROL

The Memory Management Unit relocates all addresses. Thus, when it is
enabled, all trap, abort, and interrupt vectors are considered to be in
Kernel mode Virtual Address Space. When a vectored transfer occurs,
control is transferred according to a new. Program Counter (PC) and
Processor Status Word (PS) contained in a two-word vector relocated
through the Kernel Page Address Register Set. Relocation of trap ad-
dresses means that the hardware is capable of recovering from a
failure in the first physical bank of memory.

When a trap, abort, or interrupt occurs the “push’ of the old PC old-
PS is to the User/Supervisor/Kernel R6 stack specified by CPU mode
bits 15,14 of the new PS in the vector (bits 15,14: 00 = Kernel, 01 =
Supervisor, 11 = User). The CPU mode bits also determine the new PAR
set. In this manner it is possible for a Kernel mode program to have
complete control over service ‘assignments for all interrupt conditions,
since the interrupt vector is located in Kernel space. The Kernel program
may assign the service of some of these conditions to a Supervisor or
User mode program by simply setting the CPU mode bits of the new
PS in-the vector to return control ‘to the appropriate mode.

10.4 CONSTRUCTION OF A PHYSICAL ADDRESS

All addresses with memory relocation enabled either reference informa-
tion in instruction (1) Space or Data (D) Space. | Space is used for all
instruction fetches, index words, absolute addresses and immediate
operands, D Space is used for all other references. | Space and D Space
each have 8 PAR's in each mode of CPU operation, Kernel, Supervisor,
and User. Using Status Register #3, the operating system may select
to disable D space and map all references (Instructions and Data)
through | space, or to use both | and D space.

The basic information needed for the construction of a Physical Address
(PA) comes from the Virtual Address (VA), which is illustrated in Figure
10-2, and the appropriate PAR set.

15 1312 o
[APF OF l
ACTIVE PAGE DISPLACEMENT FIELD

FIELD

Figure 10-2 Interpretation of a Virtual Address

The Virtual Address (VA) consists of:"

1. The Active Page Field (APF). This 3-bit field determines which of
eight Page Address Registers (PARO-PAR7) will be used to form the
Physical Address (PA).

2. The Displacement Field (DF). This 13-bit field contains an address
relative to the beginning of a page. This permits page lengths up to

10-3

4K words (2,, = 8K bytes). The DF is further subdivided into two
fields as shown in Figure 10-3).

12 6 5 [*]

[[%]

BLOCK NUMBER DISPLACEMENT IN BLOCK

Figure 10-3 Displacement Field of Virtual Address

The Displacement Field (DF) consists of:

1. The Block Number (BN). This 7-bit field is interpreted as the block
number within the current page.

2. The Displécement in Block (DIB). This 6-bit field contains the dis-
~ placement within the block referred to by the Block Number (BN).

The remainder of the information needed to construct the Physical Ad-
dress comes from the 12-bit Page Address Field (PAF) (part of the
Page Address Register (PAR)) and specifies the starting address of the
memory page which that PAR describes. The PAF is actually a block
number in the physical memory, e.g. PAF = 3 indicates a starting ad-
dress of 96 (3 x 32) words in physical memory.

The formation of a physical address (PA) takes 90 ns. Thus in situations
which do not require the facilities of the Memory Management Unit, it
should be disabled to permit time savings.

The formation of the Physical Address (PA) is illustrated in Figure 10-4.

The logical sequence involved in constructing a Physical Address (PA)
is as follows: .

1. Select a set of Page Address Regusters depending on the space
being referenced.

2. The Active Page Fieid (APF) of the.Virtual Address is used to select
a Page Address Register (PARO-PAR7).

3. The Page Address Field (PAF) of the selected Page Address Register
(PAR) contains the starting address of the currently active page as a
block number in physical memory.

4. The Block Number (BN).from the Virtual Address (VA) is added
to the block number from the Page Address Field (PAF) to yield the
number of the block in physical memory (PBN-Physical Block Num-
ber) which will contain the Physical Address (PA) being constructed.

5. The Displacement in Block (DIB) from the Displacement Field (DF)
- of the Virtual Address (VA) is joined to the Physical Block Number
(PBN) to yield a true 18-bit PDP-11/55, 11/45 Physical Address (PA).

10-4

15 1312] 0

VA APF] DF]
15 i3 12 l 6 5 [*]
VA l APF I BN l D18 1
S l
15 ! " 0

PARO PAF

PARY W////////%

7
7

PAF

PARG PAF

PART PAF

» l PBN . ']‘1\’[0B .]

[. PHYSICAL ADDRESS l

Figure 10-4 Conétruction of a Physical Address

10.5 MANAGEMENT REGISTERS

The PDP-11/55,-11/45 Memory Management Unit implements three sets
of 32 sixteen bit registers. One set of registers is used in Kernel mode,
another in Supervisor, and the other in User mode. The choice of which
set is to be used is determined by the current CPU mode contained in the
Processor Status word. Each set is subdivided into two groups of 16 reg-
isters. One group is used for references to Instruction (I) Space, and one
to Data (D) Space. The | Space group is used for all instruction fetches,
index words, absolute addresses and immediate operands. The D Space
group is used for all other references, providing it has not been disabled
by Status Register #3, Each group is further subdivided into two parts
of 8 registers. One part is the Page Address Register (PAR) whose func-
tion has been described in previous paragraphs. The other part is the
Page Descriptor Register (PDR). PARs and PDRs are always selected in
pairs by the top three bits of the virtual address. A PAR/PDR pair con-
tain all the information needed to describe and locate a currently active
memory page.

The various Memory Management Registers are located in the upper-
“most 4K-of PDP-11- physical address space aiong with the UNIBUS {/0
device registers. -For the actual addresses of these.registers refer to
Memory Management Unit—Register Map, at the end of the chapter.

10-5 -

[\ l PROCESSOR STATUS WORD j

%19
|
KERNEL (00) SUPERVISCR {01) ’ USER(11)
PAR POR PAR POR PAR PDR ’
I SPACE
PAR PDR PAR POR PAR PDR
D SPACE

Figure 10-5 Active Page Registers

10.5.1 Page Address Registers (PAR)

The Page Address Register (PAR) contains the Page Address Field (PAF),
a 12-bit field, which specifies the starting address of the page as a
block number in physical memory. .

15 121

Figure 10-6 . Page Address Register

Bits 15-12 of the PAR are unused and reserved for possible future use.

The Page Address Register (PAR) which contains the Page Address
Field (PAF) may be alternatively thought of as a relocation register con-
taining a relocation constant, or as a base register containing a base
address. Either interpretation indicates the basic importance of the Page
Address Register (PAR) as a relocation tool. .

10.5.2 Page Descriptor Register
The Page Descriptor Register (PDR) contains information relative to
page expansion, page length, and access control.

10-6

15 14 8 7 6 .5 4 3 2 !
% PLF —iA1W V//j ACF

Figure 10-7 Page Descriptor Register

Access Contro! Field (ACF}

This three-bit field, occupying bits 2-0 of the Page Descriptor Register
(PDR) contains the access rights to this particuiar page. The access
codes or ‘‘keys’’ specify the manner in which a page may be accessed
and whether or not a given access shouid result in a trap or an abort
of the current operation. A memory reference which causes an abort is
not completed while a reference causing a trap is completed. in fact,
when a memory reference causes a trap to occur, the trap does not
occur until the entire instruction has been completed. Aborts are used
to catch “missing page faults,”” prevent illegal access, etc.; traps are
used as an aid in gathering memory management information.

In the context of access:control the term ‘“‘write’” is used to indicate
the action of any instruction which modifies the contents of any ad-
dressabie word. “Write'" is synonymous with what is usually cailed a
“store’’ or ‘modify’’ in many computer systems. .

The modes of access control are as follows:

000 non-resident abort all accesses
001 read-only abort on write attempt memory man-
) agement trap on read
010 read-only abort on write attempt
011 unused : abort all accesses—reserved for future
use
_100 read/write memory management trap upon com-
: pletion of a read or write
101 read/write memory management trap upon com-
pletion of a write
110 read/write no system trap/abort action
111 unused abort all accesses—reserved for future
use

It should be noted that the use of | Space provides the user with a
further form of protection, execute only.

Access information Bits

A Bit (bit 7)—This bit is used by software to determine whether or not
any -acccesses to this page met the trap condition specified by the
Access Control Field (ACF). (A = 1 is Affirmative) The A Bit is used in
the process of gathering memory management statistics.

10-7

W Bit (bit 6)—This bit indicates whether or not this page has been
modified (i.e. written into) since either the PAR or PDR was loaded.
(W = 1 is Affirmative) The W Bit is useful in applications which involve
disk swapping and memory overlays. It is used to determine which pages
have been modified and hence must be saved in their new form and
which pages have not been modified and can be simply overlaid.

Note thaf A and W bits are ‘‘reset”” to ‘0" whenever either PAR or PDR
is modified (written into).

_Expansion Direction (ED)

This one-bit field, located at bit 3 of the Page Descriptor Register (PDR),
specifies whether the page expands upward from relative zero (ED = 0)
or downwards toward relative zero (ED = 1). Relative zero, in this case,
is the PAF (Page Address Field). Expansion is done by changing the Page
Length Field. In expanding upwards, blocks with higher relative ad-
_dresses are added; in expanding downwards, blocks with lower relative
addresses are added to the page. Upward expansion is usually used to
add more program space, while downward expansnon is used to add
more stack space.

Page Length Field (PLF)

The seven-bit field, occupying bits 14-8 of the Page Descriptor Register
(PDR), specifies the number of blocks in the page. A page consists of at
least one and at most 128 blocks, and occupies contiguous core loca-
tions. if the page expands upwards, this field contains the length of the
page minus one (in blocks). If the page expands downwards, this field
contains 128 minus the length of the page (in blocks).

A Length Error occurs when the Block Number (BN) of the virtual ad-
dress (VA) is greater than the Page Length Field (PLF), if the page ex-
pands upwards, or if the page expands downwards, when the BN is less
than the PLF.

Reserved Bits
Bits 15, 4 and 5 are reserved for future use, and are always 0.

10.6 FAULT RECOVERY REGISTERS

Aborts and traps generated by the Memory Management hardware are
vectored through Kernel virtual location 250, Status Registers #0, #1,
"#2 and #3 are used in order to differentiate an abort from a trap, deter-
mine why the abort or trap occurred, and allow for easy program restart-
ing. Note that an abort or trap to a location which is itself an invalid
address will cause another abort or trap. Thus the Kernel program must
insure that Kernel Virtual Address 250 is mapped into a valid address,
otherwise a loop will occur which will require conscle intervention.

10.6.1 Status Register #0 (SRO) (status and error indicators)

SRO contains error flags, the page number whose reference caused the
abort, and various other status flags. The register is organized as shown
in Figure 10-8.

10-8

15 14 13 12 6 S5 4 3 2 1 2]

[T VAL T[T T1]]

ABORT-NON RESIDENTJ
ABORT— PAGE
LENGTH ERROR
ABORT- READ ONLY
ACCESS VIOLATION
TRAP-MEMORY MANAGEMENT
NOT USED
NOT USED
ENABLE MEMORY MANAGEMENT TRAF
MAINTENANCE MODE
INSTRUCTION COMPLETED
PAGE MODE
PAGE ADDRESS SPACE 1/D
PAGE NUMBER
ENABLE RELOCATION

Figure 10-8 Format of Status Register #0 (SRO)

Bits 15-12 are the error flags. They may be considered to be.in a
‘“‘priority queue’ in that ‘“‘flags to the right” are less significant and
should be ignored. That is, a “‘non-resident” fault service routine would
ignore length, access control, and memory management flags. A ‘‘page
length"" service routine would ignore access control and memory man-
agement faults, etc. o

Bits 15-13 when set (error conditions) cause Memory Management to
freeze the contents of bits 1-7 and Status Registers #1 and #2. This
has been done to facilitate error recovery.

Bits 15-12 are enabled by a signal called “RELOC.” “RELOC" is true
when an address is being relocated by the Memory Management unit.
This implies that either SRO, bit O is equal to 1 (relocation operating) or
that SRO, bit 8 (MAINTENANCE) is equal to 1 and the memory refer-
ence is the final one of a destination calculation (maintenance/destina-
tion mode).

Note that Status Register #0. (SR0O) bits 0, 8, and 9 can be set under
program control to provide meaningful control information. However,
information ‘written into all other bits is not meaningful. Only that infor-
mation which is automatically written into these remaining bits as a
result of hardware actions is useful as a monitor of the status of the
Memory Management Unit. Setting bits 15-12 under program control will
not cause traps to occur; these bits however must be reset to O after an
abort or trap has occurred in order to resume status monitoring.

Abort—Non-Resident ’ .

Bit 15 is the ‘'‘Abort—Non-Resident” bit. It is set by attempting to
access a page with an Access Control Field (ACF) key equal to 0, 3, or 7.
It is-also set by attemptmg to use Memory Relocation with a processor
mode of 2.

10-9

Abort—Page Length

Bit 14 is the ‘‘Abort Page Length’’ bit. It is set by attempting to access.
a location in a page with a block number (Virtual Address bits, 12-6)
that is outside the area authorized by the Page Length Field (PLF) of the
Page Descriptor Register (PDR) for that page. Bits 14 and 15 may be
set simultaneously by the same access attempt.

Abort—Read Only
Bit 13 is the ‘‘Abort—Read Only’’ bit. It is set by attempting to write
in a '"Read-Only’’ page. ‘“Read-Only" pages have access keys of 1 or 2.

Trap—Memory Management

Bit 12 is the ‘Trap—Memory Management’’ bit. It is set by a read opera
-tion which references a page with an Access Control Field (ACF) of 1 or
4, or by a.write operation.to. a page with an ACF key of 4 or 5.

Bits 11, 10
Bits 11 and ‘10 are spare locations and are always equal to 0. They are
unused and reserved for possible future expansion.

Enable Memory Management Traps)

Bit 9 is the ‘‘Enable Memory Management Traps’ bit. It can be set or
cleared by doing a direct write into SRO. If bit 9 is 0, no Memory Man-
agement traps will occur. The A and W bits will, however, continue to
log potential Memory Management Traps. When bit 9 is set to 1, the
next ‘‘potential’’ Memory Management trap will cause a trap, vectored
through Kernel Virtual Address 250. ’

Note that if an instruction which sets bit 9 to 0 (disable Memory Man-
agement Trap) causes a potential Memory Management trap in the
course of any of its memory references prior to the one actually chang-
ing SRO, then the trap will occur at the end of-the instruction anyway.

Maintenance/Destination Mode

Bit 8 specifies Maintenance use of the Memory Management Unit. It is
provided .for diagnostic purposes only and must not be used for other
purposes.

Instruction Completed

Bit 7 indicates that the current instruction has been completed. It will
be set to O during T bit, Parity, Odd Address, and Time Out traps and
.interrupts. This provides error handling routines with a way of determin-
ing whether the last instruction will have to be repeated in the course of
an error recovery attempt. Bit 7 is Read-Only (it cannot be written). It is
initialized to a 1. Note that EMT, TRAP, BPT; and 10T do not set bit 7.

Processor Mode
Bits 5, 6 indicate the CPU mode (User/Supervisor/Kernel) associated
with the page causing the abort. (Kernel = 00, Supervisor = 01, User
= 11). If an illegal mode (10) is specified, bit 15 will be set and an
abort will occur.

Page Address Space :

Bit -4 indicates the type of address space (I or D) the Unit was in when
a fault occurred (0 = | Space, 1 = D Space). It is used in conjunction
with bits 3-1, Page Number.

10-10

Page Number))
Bits 3-1 contain the page number of a reference causing a Memory
Management fault. Note that pages, like blocks, are numbered from -
0 upwards.

Enable Relocation

Bit O is the ‘“Enable Relocation’ bit. When it is set to 1, all addresses
are relocated by the unit. When bit O is set to O the Memory Management
Unit is inoperative and addresses are not relocated or protected.

10.6.2 Status Register #1 (SR1)

SR1 records any autoincrement/decrement. of the general purpose reg-
isters, including explicit references through the PC. SR1 is cleared at
the beginning of each instruction fetch. Whenever a general purpose
register is either autoincremented or autodecremented the register num-
ber and the amount (in 2s complement notation) by which the register
was modified, is written into SR1.

The information contained in SR1 is necessary to accomplish an effective
recovery from an error resulting in an abort. The low order byte is writ-
ten first and it is not possible for a PDP-11 instruction to autoincrement/
decrement more than two general purpose registers per instruction be-
fore an ‘‘abort-causing’” reference. Register ‘numbers are recorded
**“MOD 8'"; thus it is up to the software to determine which set of reg-
isters (User/Supervisor/ Kernel—General Set 0/ General Set 1) was-modi-
fied, by determining the CPU and Register modes-as contained in the
PS at the time of the abort. The 6-bit displacement on R6(SP) that can
be caused by the MARK instruction cannot occur if the instruction
is aborted.

15 10 8 7 3 2 (9]
© AMOUNT CHANGED REGISTER ~ AMOUNT: CHANGED REGISTER
(2's COMPLEMENT) NUMBER (2's COMPLEMENT) - NUMBER

Figure 10-9 Format of Status Register #1 (SRl)

10.6.3 Status Register #2
~SR2 is loaded with ‘the 16-bit Virtual Address (VA) ‘at the begmmng of
each instruction fetch, or with the address Trap Vector at the beginning
of an interrupt, “T"" Bit trap, Parity, Odd Address, and Timeout traps.
Note that SR2 does not get the Trap Vector on EMT, TRAP, BPT and IOT
instructions. SR2 is Read-Only; it can not be written. SR2 is the Virtual
- Address Program.Counter.

10.6.4 Status Register #3

The .Status Register #3 (SR3) enables or disables the use of the D
space PAR's and PDR’s. When D space is disabled, all references use
the | space registers; when D space is enabled, both the | space and D
space registers are used. Bit O refers to the User's Registers, Bit 1 to
the Supervisor's, and Bit .2 to the Kernel's. When the appropriate bits
are set D space is enabled; when clear, it is disabled. Bits 3-15 are
unused. On initialization this register is set to 0 and only | space is
in use.

10-11

KERNEL
SUPERVISOR
USER-

(L | T

Figure 10-10 Format of Status Register #3 (SR3)

10.6.5. Instruction Back-Up/Restart Recovery

The process of “backir{g-up” and restarting .a partially completed in-
struction involves:

1. Performing the appropriate memory management tasks to alleviate
the cause of the abort (e.g. loading a missing page, etc.)

2. Restoring the general purpose registers indicated in SR1 to their
original contents at the start of the instruction by subtracting- the
‘‘modify value' specified in SR1.

" 3. Restoring the PC to the ‘““abort-time’ PC by loading R7 with the con-
tents of SR2, which contains the value of the Virtual PC at the time
the “‘abort-generating’’ instruction was fetched.

Note that this back-up/restart procedure assumes that the general pur-
pose register used in the program segment will not be used by the
abort recovery routine. This is automatically the case if the recovery
program uses a different general register set.

10.6.6 Clearing Status Registers Following Trap/Abort

At the end of a fault service routine bits 15-12 of SRO must be cleared
(set to 0) to resume error checking. On the next memory reference fol-
lowing the clearing of these bits, the various Status Registers will re-
sume monitoring the status. of the addressing operations (SR2), will
be loaded with the next instruction address, SSR1 will store register
change information and SRO will log Memory Management. Status
information.

10.7 EXAMPLES

10.7.1 Normal Usage

The Memory Management Unit provides a very general purpose memory
management tool. It can be used in a manner as simple or complete as
desired. It can be anything from a simple memory expansion device to
a very complete memory management facility.

The variety of possible and meaningful ways to utilize the facilities of-
fered by the Memory Management Unit means that both single-user and
multi-programming systems have complete freedom to make whatever
memory management decisions best suit their individual needs. Although
a knowledge of what most types of computer systems seek to achieve
may indicate that certain methods of utilizing the Memory -Management
Unit will be more common than others, there is no limit to the ways to
use these facilities.

10-12

In most normal applications, it is assumed that the control over the
actual memory page assignments and their protection resides in a super-
visory type program which would operate at the nucleus of a CPU’s
executive (Kernel mode). It is further assumed that this Kernel mode
program would set access keys in such a way as to protect itself from
willful or accidental destruction by other Supervisor mode or User mode
programs. The facilities are also provided such that the nucleus can
dynamically assign memory pages of varying sizes in response to sys-
tem needs. .

10.7.2 Typical Memory Page

When the Memory Management Unit is enabled the Kernel mode pro-
gram, a Supervisor mode program and a User mode program each have
eight active pages described by the appropriate Page Address Registers
and Page Descriptor Registers for data, and eight, for instructions. Each
segment is made up of from 1 to 128 blocks and is pointed to by the
Page Address Field (PAF) of the corresponding Page Address Register
(PAR) is illustrated in Figure 10- 11

VA 157777 7 PA 3ATTT

/V

57

S8 req Gze0) /77
10
/7773
I
Vi
M
/7777
/7
D77
%%

BLOCK 475 (39,0)

§
\\\

1AM

VA 144777 PA 316777

BLOCK 1
BLOCK @

ears 24 3120 |
VA 140000{ 390 Pag
rore P72 97 [0[0 0| + |

PLF A W ED ACF

A 312000

Figure 10-11 Typical Memory Page

The memory segment illustrated in Figure 10-11 has the following attri-
butes:

1. Page Length: 40 blocks.

2. Virtual Address Range: 140000—144777.

3. Physical Address Range: 312000—316777.
10-13

N ok

No trapped access has been made to this page.
Nothing has been modified (i.e. written) in this page.
Read-Only Protection.

Upward Expansion.

These attributes were determined according te the following scheme:

1.

Page Address Register (PARS) and Page Descriptor Register (PDRE)
were seiected by the Active Page Field (APF) of the Virtual Address
(VA). (Bits 15-13 of the VA = 6,.}

The initial address of the page was determined from the Page Ad-
dress Field (PAF) of APR6 (312000 = 3120, blocks x 40, (32,,)
words per block x 2 bytes per word).

Note that the PAR which contains the PAF constitutes what is often
referred to as a base register containing a base address or a reloca-
tion register containing relocation constant.

The page length (47, + 1 = 40, blocks) was determined from the
Page Length Field (PLF) contained in Page Descriptor Register PDR6.
Any attempts to reference beyond these 40, , blocks in this page
will cause a “‘Page Length Error,” which will result in an abort, vec-
tored through Kernei Virtual Address 250.

The Physical Addresses were constructed according to the scheme
iliustrated in Figure 10-4.

The Access bit (A-bit) of PDR6 indicates that no trapped access has
been made to this page (A bit = Q). When an illegal or trapped refer-
ence, (i.e. a violation of the Protection Mode specified by the Access
Control Field (ACF) for this page), or a trapped reference (i.e. Read
in this case), occurs, the A-bit will be set to a 1.

The Written bit (W-bit) indicates that no locations in this page have
been modified (i.e. written). If an attempt is made to modify any
location in this particular page, an Access Control Violation Abort
will occur. If this page were involved in a disk swapping or memory
overlay scheme, the W-bit would be used to determine whether
it had been modified and thus required saving before overlay.

This page is Read-Only protected; i.e. no locations in this page may
be modified. in addition, a me€mory management trap will occur upon
completion of a read access. The mode of protection was specified
by the Access Control Field (ACF) of PDR6.

The direction of expansion is upward (ED = 0). If more blocks are
required . in this segment, they will be added by assigning blocks
with hlgher relative addresses.

Note that the various attributes which describe this page can all be
determined under software control. The parameters describing the page.
- are all loaded into the appropriate Page Address Register (PAR) and Page
Descriptor Register (PDR) under program control. In a normal applica-

10-14

tion it is assumed that the particular page which itself contains these
registers would be assigned to the control of a supervisory type program
operating in Kernel mode.

10.7.2 Non-Consecutive Memory Pages

it shouid be noted at this point that aithough the correspcndence be-
tween Virtual Addresses (VA) and PAR/PDR pairs is such that higher
YAs have higher PAR/PDR’s, this does not mean that higher Virtual
Addresses (YA) necessarily correspond to higher Physical Addresses
{PA). It is quite simple to set up the Page Address Fields (PAF) of the
PAR’'s in such a way that higher Virtual Address biocks may be iocated
in lower Physical Address blocks as illustrated in Figure 10-12.

VAO37777 PA 467777
VA 020000, PA 450000
VAOI?7777 PA 560777
PART p /
7
/
VA 00C00Q » PA 541000
PAR1
PARQ

Figure 10-12 Non-Consecutive Memory Pages

Note that although a single memory page must ccnsist of a block
of contiguous locations, memory pages as macro units do not have to
be located in consecutive Physical Address (PA) locations. It also should
be realized that the assignment of memory pages is not limited to con-
secutive non-overlapping Physical Address (PA) locations.

10.7.4 Stack Memory Pages)

When constructing PDP-11/55, 11/45 programs it is often desirable to
isolate all program variables from *‘pure code’ (i.e. program instructions)
by placing them on a register indexed stack. These variables can then be
“pushed’” or ‘“‘popped’” from the stack area as needed (see Chapter 3,
Addressing Modes). Since all PDP-11 Family stacks expand by adding

10-15

locations with- lower addresses, when a memory page which contains
‘‘stacked’” variables needs more room it must ‘“expand down,” i.e.
add blocks with lower relative addresses to the current page. This mode
of expansion is specified by setting the Expansion Direction (ED) bit
of the appropriate Page Descriptor Register (PDR) to a 1. Figure 10-13.
illustrates a typical ‘‘stack’”” memory page. This page will have the fol-
lowing parameters:

PAR6: PAF = 3120
PDR6: PLF = 175, or 125, , (128, ,-3)

ED =1
A=0o0r1l
W=0orl

ACF = nnn (to be determined by programmer as the need dictates).

note: the A, W bits will normally be set by hardware.

7
F

-VA 157777 PA 331777
| BLOCK 1775 (127)5)

BLOCK 176g (12640)
VA 157500 BLOCK 175g (12540) PA 331500

_
VA 140000 22555777 e 512000

PARG \\\‘ PAF
pore RN nm ACF

Figure 10-13 Typical Stack Memory Page

In this case the stack begins 128 blocks above the relative origin of
this memory page and extends downward for a length of three blocks.
A “PAGE LENGTH ERROR’ abort vectored through Kernel Virtual Ad-
dress (VA) 250 will be generated by the hardware when an attempt is
‘made to reference any location below the assigned area, i.e. when the
Block Number-(BN) from the Virtual Address (VA) is less than the Page .
Length Field (PLF) of the appropriate Page Descriptor Register (PDR).

10-16

10.8 TRANSPARENCY

It should be clear at this point that in a multiprogramming application
it is possible for memory pages to be allocated in such a way that a
particular program seems to have a complete 32K basic PDP-11/55,
11/45 memory configuration. Using Relocation, a Kernel Mode super-
visory-type program can easily perform all memory management tasks
in a manner entirely transparent to a Supervisor or User mode program.
In effect, a PDP-11/55, 11/45 System can utilize its resources to provide
maximum throughput and response to a variety of users each of which
seems to have a powerful system ‘“‘all to himself.”

10.9 INSTRUCTIONS

Four additional instructions are used with the PDP-11/55, 11/45 Memory
Management unit.

MTPI move to previous instruction space'
MTPD move to previous data space
MFPI move from previous instruction space

MFPD move from previous data space

10-17

MFPI

Move from Previous Instruction Space 0065SS

looooa 101 Olls s s ss;[
J 1 1 l 1 1 l 1 1 1 1 I | I
0

Operation:. (temp) < (src)
L(SP) «(temp)

Condition Codes: N: set if the source <0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared
C: unaffected

Description:- This instruction is provided in order to allow inter-
address space communication when the PDP11/45
is using the Memory Management unit. The address
of the source operand is determined in the current
address space. That is, the address is determined
using the SP and memory pages determined by
PS<15:14>. The address itself is then used in the
previous | space (as determined by PS<13:12>
to get the source operand. This operand is then

pushed onto the current R6 stack.

10-18

MFPD

Move from Previous Data Space 1065SS
: T
(1[0L0L0L1|1'0|1|0|1 SJSIS’ISLS1S]
15 6 5 [
Operation: (temp) é(src)
L(SP) «(temp)

Condition Codes:

Description:

N: set if the source <0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared

C: unaffected

This instruction is provided. in order to allow inter-
address space communication when the PDP-11/45.
is using the Memory Management unit. The address
of the source operand is determined in the current
address space. That is, the address is determined
using the SP and memory pages determined by
PS<15:14>. The address itself is then used in the
previous D space (as determined by PS<13:12>
to get the source operand. This operand is then
pushed on to the current R6 stack.

10-19

MTPI

Move to Previous Instruction Space 0066DD
L
loloLolo|1|1lo|1l1lo dldldldldlq
15] 6 5 0
Operation: (temp) <(SP)?
(dst) «(temp)

Condition Codes:

N: set if the source <O; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared- .

C: unaffected

Description: The address of the destination operand is deter-
mined in the current address space. MTPI then
pops a word off the current stack and stores that
word in the destination address in the previous
mode’s | space (bits 13, 12 of PS).

MTPD

Move to Previous Data Sbace : 1066DD
[1lolo’olil1lo|1 10 dld d|d|d‘
15 6 5 0

Operation: (temp) <(SP)t

(dst) «(temp)

Condition Codes:

Description:

N: set if the source <0; otherwise cleared
Z: set if the source =O0; otherwise cleared
V: cleared

C: unaffected

The address of the destination operand is deter-
mined in the current address space as in MTPI.
MTPD then pops a word off the current stack and
stores that word in the destination address in the
previous mode’s D space.

10-20

10.10 MEMORY MANAGEMENT UNIT—REGISTER MAP

REGISTER ADDRESS

Status Register # 0(SRO) 777572
Status Register #1(SR1) 777574
Status Register #2(SR2) 777576
Status Register #3(SR3) 772516
User | Spacé- Descriptor Register (UISDRO) 777600
User | Space Descriptor Register (UISDR7) '777616
User D Space Descriptor Register (UDSDRO) 777620
User D Space Descriptor Register (UDSDR?7) 777636
User | Space Address Register (UISARO) . 777640
User I Space Address Register (UISAR7) 777656
User D Space Address Register (UDSARO) 777660
User D Space Address Register (UDSAR7) 777676
Supervisor | Space Descriptor Register (SISDRO) 772200
.Supervisor | Space Descriptor Register (SISDR7) 772216
Supervisor D Space Descriptor Register (SDSDRO) 772226
.Supervisor D Space Descriptor Register (SDSDR7) 772236
Supervisor | Space Address Register (SISARQ) 772240
.Supervisor | Space Address Register (SISAR7) - 772256

10-21

REGISTER ADDRESS

Supervisor D Space Address Register (SDSAROQ) ‘ 772260
éupewisor D Space Address Register {SDSDR7) %72276
Kerne! | Space Descripter Register (KISDRO) 772300
Kernel | Space Descrintor Register (KIDSR7) 772316
Kernel D Space Descriptor Register (KDSDRO) 772320
%(ernel'D Space Descriptor Register (KDSDR7)) ‘772336
Kernel | Space Address Register (KISARO)) 772340
E(ernel | Space Address Register (KISAR7) 5772356
Kernel D Space Address Register (KDSARO)) 772360
Kernel D Space Address Register (KDSAR7) 772376

10-22

CHAPTER 1I

11.1 INTRODUCTION

The PDP-11 Family has twe ﬂoating point processors available—The
FP11-A and the FP11-C. The FP11l-A Floating Point Processor (FPP) is
used with the PDP-11/34 Computer and the FP11-C Fioating Point Pro-
cessor is used with the PDP-11/45 and PDP-11/55 Computers.

Both floating point processors perform ali floating point arithmetic
operations and convert data between integer and floating point formats.

The floating point hardware provides a time and money-saving altei-
native to the use of software fioating point routines. its use can result
in many orders of magnitude improvement in the execution of arith-
metic operations.

The features of the umt are:

e Qverlapped operation with central processor (FP11-C only)

o High speed—FP11-C; medium speed—FP11-A

¢ Single and double precision {32 or 64 bit) floating point modes

» Flexible addressing modes

Six 64-bit floating point accumulators

e Error recovery aids

11.2 OPERATION

The Floating Point Processors are an integral part of the Central Proces-
sor. It operates using similar address modes, and the same memory
management facilities provided by the Memory Management Option, as
the Central Processor. Floating Point Processor instructions can refer-

ence the floating point accumulators, the Central Processor’'s general
registers, or any iocation in memory.

The FP11-C overlapped operation with the Central Processor is impie-
mented as follows. When an FP11-C floating point instruction is fetched
from memory, the FP11-C wiil execute that instruction in parallel with the
CPU continuing with its instruction sequence. The CPU is delayed a very
short period of time during the FP11-C instruction Fetch operation, and
then is free to proceed independently of the FP11-C. The interaction be-
tween the two processors is automatic, and a program can take full ad-
vantage of the parallel operation of the two processors by intermixing
Floating Point Processor and Central Processer instructions.

Interaction between Floating Point Processor and Central Processor in-
structions is automatically taken care of hy the hardware. When an
FP11-C Instruction is encountered in a program, the machine first ini-
tiates Floating Point handshaking and calculates the address of the
operand. It then checks the status of the Floating Point Processor. If the
FPP is “busy”, the CPU will wait until it is ‘‘done” before continuing

11-1

execution of the program. As an example, consider the following se-
quence of instructions:

LDD(R3)+,AC3 ;Pick up constant operand and place it
) in AC3
ADDLP: LDD(R3)+-,ACO ;Load ACO with next value in table

MUL AC3,ACO ;and multiply by constant in AC3
ADDD ACO,AC1 ;and add the result into AC1

SOB R5,ADDLP ;check to see whether done

STCDI AC1@R4 ;done, convert double to integer and

store

In the above example, the FP11-C Floating Point Processor will execute
the first three instructions. After the ‘“ADDD" is fetched into the FP11-C,
the CPU will execute the ‘“SOB"”, calculate the effective address of the
STCDI instruction, and then wait for the FP11-C to be ‘‘done’’ with the
“ADDD" before continuing past the STCDI instruction.

As can be seen from this example, autoincrement and autodecrement
addressing automatically adds or subtracts the correct amount to the
contents of the register, depending on the modes represented by the
instruction.

11.3 ARCHITECTURE

The Floating Point Processor contains scratch registers, a Floating Ex-
ceptionlAddress pointer (FEA), a Program Counter, a set of Status and
Error Registers, and six general purpose accumulators (ACO-ACS5).

Each accumulator is interpreted to be 32 or 64 bits long depending on
the instruction and the status. of the Floating Point Processor. For 32-bit
instruction only the left-most 32 bits are used, while the remaining 32
bits remain unaffected.

r 64 BIT 1
| ACCUMULATOR [
| 32 BIT rPE |
| ACCUMULATOR EXCEPTION L (FPR |

‘) recooGr | | REGISTER UNIBUS
| aco |
| act l
| ace FLOATING POINT | [centrac PROCESSOR
| e R | Lol s
\ AND
I ace CONVERSION L1 Losiear [cru
| acs | UNIT GENERAL

REGISTER
I SCRATCH |
PROGRAM POINTER

I TO LAST | memory
| INSTRUCTION I
| . CAUSING ERROR
L FLoaTc powT pRocessor |

Figure 11.1 Floating Point Processor

11-2

The six Floating Point Accumulators are used in numeric calculations
and interaccumulator data transfers; the first four (ACO-AC3) are also
used for all data transfers between the FPP and the General Registers or
Memory. . .

11.4 FLOATING POINT DATA FORMATS

Mathematically, a floating point number ‘may be defined as having the
form (2**K)*f, where K is an integer and f is a fraction. For a non-
vanishing number, K and f are uniquely determined by imposing the
condition 1, < f < 1. The fractional part, f, of the number is then
said to be normalized. For the number zero, f must be assigned the
value 0, and the value of K is indeterminate.

The FPP floating point data formats are derived from this mathematical
representation for floating point numbers. Two types of floating point
data are provided. In single precision, or Floating Mode, the word is 32
bits long. In double precision, or Double Mode, the word is 64 bits long.
Sign magnitude notation is used.

11.4.1 Non-vanishing Floating Point Numbers

The fractional part f is assumed normalized, so that its most significant
bit must be 1. This 1 is the ““hidden” bit: it is not stored in the data
word, but of course the hardware restores it before carrying out arith-
metic operations. The Floating and Double modes reserve 23 and 55
bits, respectively, for f, which with the hidden bit, imply effective word
lengths of 24 bits and 56 bits for arithmetic operations.

Eight bits are reserved for the storage of the exponent K in excess 128
(200 octal) notation (i.e. as K + 200 octal). Thus exponents from —128
to +127 could be represented bv O to 377 (octal), or O to 255 (deci-
mal). For reasons given below,. . biased EXP of O (true exponent of
—200 octal), is reserved for floating point zero. Thus exponents are
restricted to the range —127 to 4127 inclusive (=177 to 177 octal) or,
in excess 200 (octal) notation, 1 to 377.(octal).

The remaining bit of the floating point word is the sign bit.

11.4.2 Floating Point Zero

Because of the hidden bit,- the fractional part is not available to dis-
tinguish between zero and non-vanishing numbers whose fractional part
is exactly 1/2. Therefore the FP11 reserves a biased exponent of O for
this purpose. And any floating point number with biased exponent of O
either traps or is treated as if it were an exact O in arithmetic operations.
An exact zero is represented by a word, whose bits are all 0's. An arith-
metic operation for which the resulting true exponent exceeds 177
(octal) is regarded as producing a floating overflow; if the true expo-
nent is less than —177 (octal) the operation is regarded as producing a
floating underflow. A biased exponent of O can thus arise from arith-
metic operations as a special case of overflow (true exponent = 400
octal), or as a special case of underflow (true exponent = 0). (Recall
that only eight bits are reserved for the biased exponent.) The fractional
part of results obtained from such overflows and underflows is correct.

11.4.3 The Undefined Variable
The undefined variable is defined to be any bit pattern with a sign bit of

11-3

one and a biased exponent of zero. The term ‘‘undefined variable” is
used, for historical reasons, to indicate that these bit patterns are not
assigned a corresponding floating point arithmetic value. Note that the
undefined variable is frequently referred to as ‘“—0’ elsewhere in this
chapter.

A-design objective of the FP11-A and FP11-C was to assure that the un-
defined variable would not be stored as the result of any floating point
~ operation in a program run with the overflow and underflow interrupts
disabled. This is achieved by storing an exact zero on overflow or under-
flow, if the corresponding interrupt is disabled. This feature together with
an ability to detect a reference to the undefined variable (implemented
by the FIUV bit discussed in the next section) is intended to provide the
user with a debugging aid: if the presence of —0 occurs, it did not result
from a previous floating point arithmetic instruction. .

11.4.4 Floating Point Data
Floating point data is stored in words of memory as illustrated below.

F Format, single precision

[SJ EXP l FRA] —>[CTION
M " " PP o YU SO ST UE WA S S SO ST W G
1514 - 76 o} 15 o

D Format, double precision

S EXP l FR 4|——>[AC I
FR S} A L - . 1 L A S T | L 1 1
1514 78 0 15 [¢] q
o T el o]
NI Y TV W SRS S W 1 i dd. L dd s k) P | T S T |
15 . ' (o] 15 0

S = Sign of Fraction

EXP = Exponent in excess 200 notation, restricted to 1 to 377 octal for
non-vanishing numbers.

FRACTION = 23 bits in F-Format, 55 bits in D Format, 4 one hidden bit
(normalization). The binary radix point is to the left.

The FPP provides for conversion of Floating Point to Integer Format and
vice-versa. The processor recognizes single -precision integer (I) and
double precision ‘integer long (L) numbers, which are stored in stan-
dard two’s complement form:

| Format:

l_sl' ' NUMBER 1
0

514

L Format:

H NUM I[. BER
. N N
54) 15 G)

where
S = Sign.of Number
NUMBER = 15 bits in | Format, 31 bits in L Format.

11.5 FLOATING POINT UNIT STATUS REGISTER (FPS register)

This register provides (1) mode and interrupt control for the floating
point unit, and (2) conditions resulting from the execution of the pre-
vious instruction.

Four bits of the FPS register control the modes of operation:

~ Single/Double: Floating point numbers can be either single or
double precision.

Long/Short: Integer numbers can be 16 bits or 32 bits.

Chop/Round: The result of a floating point operation can be either
chopped or rounded. The term ‘‘chop’ is used instead of ‘‘trun-
cate’” in order to avoid confusion with truncation of series used
. in ‘approximations for function subroutines.

Normal/Maintenance: a special maintenance mode is available in
the FP11-C only.

The FPS register contains an error flag and four condition codes (5 bits):

Carry, overflow, zero, and negative, which are equivalent to the CPU
condition codes.

The floating point processor (FPP) recognizes seven ‘‘floating point
exceptions’’:

detection of the presence of the undefined variable in memory
floating overflow
floating -underfiow
failure of floating to integer conversion
maintenance trap (FP11-C only)
- attempt to divide by zero
illegal floating OP code

For the first five of these exceptions, bits in the FPS register are
available to individually enable or disable interrupts. An interrupt
on the occurrence of either of the last two exceptions can be dis-
abled only by setting a bit which disables interrupts on all seven of
the exceptions, as a group.

Of the fourteen bits described above, five are set by the FPP as part
of the output of a floating point instruction: the error flag and condi-
tion codes. Any of the mode and interrupt control bits (except the
FP11-C, FMM bit) may be set by the user; the LDFS instruction is
available for this purpose. These fourteen bits are stored. in the FPS
register as follows:

115

BIT
15

14

13
12

FER

FID

UNUSED
1

F]UV! FIU IFIV IFIC

FD I FL I FT,FMMI FN‘ FZ Fvl FC

15

14

13 12

NAME

11 10 9 8

i—'loating Error (FER)

Interrupt Disable' (FID)

lar, it must be clear if one wishes to- assure

v 6 5 4 3 2 1 0.

DESCRIPTION

The FER bit is set by the FPP if

1. division by zero occurs

2. illegal OP code occurs

3. any one of the remaining
occurs and the correspond-
ing interrupt is enabled.

Note that the above action is in-
dependent of whether the FID
bit (next item) is set or clear.

Note also that the FPP never re-
sets the FER bit. Once the FER
bit is set by the FPP, it can be
cleared only by an LDFPS in-
struction (or by the RESET in-
struction described in Section
4.7). This means that the FER
bit is up to date onlyif the most
recent ‘floating point instruction
produced a floating point excep-
ception.

If the FID bit is set, all floating
point interrupts are disabled.
Note that if an individual inter-
rupt is simultaneously enabled,
only the interrupt is inhibited; all
other actions associated with the
individual interrupt enabled take
place.

. NOTES
1. The FID bit is primarily a maintenance fea-
ture. It should normally be clear. In particu-

-

that storage of —0 by the FPP is always
accompanied by an interrupt.

2. Through the rest of this chapter, it is as-
sumed that the FID bit is clear in all discus-
sions involving overflow, underflow, occur-
rence of —0, and integer conversion errors.

Not Used
Not used

BIT
11

10

9

NAME

Interrupt on Undefined
Variable (FIUV)

Interrupt on Underflow (FIU)

Interrupt on Overflow (FIV)

11-7

DESCRIPTION

An interrupt occurs if FIUV is
set and a —O is obtained from
memory as an operand of ADD,
SUB, MUL, Div, CMP, MOD,
NEG, ABS, TST or any LOAD in-
struction. The interrupt occurs
before execution except on NEG
and ABS instructions. For these
instructions the interrupt occurs
after execution. When FIUV is re-
set, —0 can be loaded and used
in any FPP operation. Note that
the interrupt is not activated by
the presence of —0 in an AC
‘operand of an arithmetic instruc- -
tion: in particuiar, trap on —0
never occurs in Mode 0.

The FPP will not store a result
of —0 without the simultaneous
occurrence of an interrupt (See
Section 11.4).

When the FIU bit is set, Floating
Underflow will cause an interrupt.
The fractional part of the result
of the operation causing the in-
terrupt will be correct. The biased
exponent will be too large by 400
(octal), except for the special
case of 0, which is correct. An
exception is discussed in the de-
tailed description of the LDEXP
instruction.

If the FIU bit is reset and if un-
derflow occurs, no interrupt oc- .
curs and the result is set to
exact 0.

When the FIV bit is set, Floating
Overflow will cause an interrupt.
The fractional part of the result
of the operation causing the
overflow will be correct. The bi-
ased -exponent will be too small
by 400 (octal).

If the FIV bit is reset, and over-
flow occurs, there is no inter-
rupt. The FPP returns exact O.

. BIT NAME

8 Interrupt on Integer
Conversicn Error {FIC)

7 Fioating Double Precision
Mode (FD)

6 Floating Long Integer
Mode (FL

5 Floating Chop Mode (FT)

4 Filoating Maintenance Mode

(FMM) (FP11-C only)

11-8

DESCRIPTION

Speciai cases of overflow are
discussed in the detailed des-
criptions of the MOD and LDEXP
instructions.

When the FIC bit is set, and =
conversion to integer instruction
fails, an interrupt will occur. If

the interrupt occurs, the destina-
tion is set to O, and all other
registers are left untouched.

If the FIC bit is reset, the resuit
of the operation will be the same
as detailed above, but no inter-
rupt will occuir.

The conversion “instruction fails
if it generates an integer with
more bits than can fit in the
short or long integer-word speci-
fied by the FL bit (see 6 below).

Determines the precision that.is
used for fioating ‘point calculza-
tions. When set, double precision
is assumed; when reset, single
precision is used.

Active in conversion between in-
teger and floating point format.
When set, the integer format as-
sumed is double precision two’'s
complement (i.e. 32 bits). When
reset, the integer format is as-
sumed to be singie precision
two’s complemeént (i.e. 16 bits).

When bit FT is set,” the result
of any arithmetic operation is
chopped (or truncated).

When reset, the result is rounded.

See Section 11.8 for a discussion
of ‘the chopping and rounding
operations.

This code is a maintenance fea-
ture. Refer to the Maintenance
Manual for the detaiis of its oper-
ation. The FMM bit can be set
only in Kernel Mode.

BIT

[&3)

}%]

ey

NAME
Floating Negative (FN)

Floating Zero (FZ)

Floating Overfiow (FV) .

Floating Carry (FC)

DESCRIPTION

FN is set if the result of the last
operation was negative, otherwise
it is reset.

FZ is set if the resuit of the last
operation was zero; otherwise it
is reset.

FV is set if the last operation re-
sulted in an exponent overflow;
otherwise it is reset.

FC is set if the last operation
resulted in a carry of the most
significant bit. This can only oc-
cur in floating or double to inte-
ger conversions.

. 11.6 FLOATING EXCEPTION CODE AND ADDRESS REGISTERS
One interrupt vector is assigned to take care of all floating point excep-
tions (location 244). The seven possible errors are coded in'the four bit
FEC (Floating Exception Code) register as follows:

Floating OP code error

Floating divide by zero

Floating (or double) to integer conversion error
Floating bverflow

Floating underflow

Fioating undefined variable

Maintenance trap

2
4
6
8
10
12
14

The address of the instruction producing the exception is stored in the

FEA (Floating Exception Address) register.

The FEC and FEA registers are updated only when one of the following

occurs:

1. divide by zero

. illegal OP code

3. any of the other five exceptions with the corresponding interrupt

is enabled.

S

NOTE

. If one of the last five exceptions occurs with

the corresponding interrupt disabled, the FEC
and FEA are not updated.

Inhibition of interrupts by the FID bit does not
inhibit updating of the FEC and FEA, if an
exception occurs.

. The FEC and FEA do not get updated if no

exception occurs. This means that the STST
(store status) instruction will return current
information only if the most recent floating
point instruction produced an exception.

. Unlike the FPS register, no instructions are

provided for storage into the FEC and FEA
registers.

11-9

11.7 FLOATING POINT PROCESSOR INSTRUCTION ADDRESSING
Floating Point Processor instructions use the same type of addressing as
the Central Processor instructions. A source or destination operand is
specified by designating one of eight addressing modes and one of
eight central processor general registers to be used in the specified
mode. The modes of addressing are the same as those of the central
processor except for mode 0. In mode O the operand is located in the
designated Floating Point Processor Accumulator, rather than in a Cen-
tral processor general register. The modes of addressing:

0 = Direct Accumulator
1 = Deferred
= Auto-increment
3 = Auto-increment deferred
4 = Auto-decrement
5 = Auto-decrement deferred
6 = Indexed
7 = Indexed deferred

Autoincrement and autodecrement operate on increments and decre-
ments of 4 for F Format and 10, for D Format.

In mode O, the user can make use of all six FPP accumulators (ACO—
AC5) as his source or destination. In all other modes, which involve
transfer of data from memory or the general register, the user is re-
stricted to the first four FPP accumulators (ACO—AC3).

In immediate addressing (Mode 2, R7) only 16 bits are loaded or stored.

11.8 ACCURACY

General comments on the accuracy of the FPP are presented here. The
descriptions of the individual instructions include the accuracy at which
they operate. An instruction or operation is regarded as ‘‘exact” if the
result is identical to an infinite precision calculation involving the same
operands. The a priori accuracy of the operands is thus ignored. All
arithmetic instructions treat an operand whose biased exponent is-0 as
an exact O (unless FIUV is enabled and the operand is —O, in which case
an interrupt occurs). For all arithmetic operations, except DIV, a zero
operand implies that the instruction is exact. The same statement holds
for DIV if the zero operand is the dividend. But if it is the divisor, division
is undefined and an interrupt occurs. '

For non-vanishing floating point operands, the fractional part is binary
normalized. It contains 24 bits or 56 bits for Floating Mode and Double
Mode, respectively. The internal hardware registers contain 60 bits for
processing the fractional parts of the operands, of which the high order
bit is reserved for arithmetic overflow. Therefore there are, internally, 35
guard bits for Floating Mode and 3 guard bits for Double Mode arithmetic
operations. For ADD, SUB, MUL, and DIV, two guard bits are necessary
and sufficient.to guarantee return of: a-chopped or.rounded result iden-
tical to the corresponding infinite precision operation chopped or rounded
to the specified word length. Thus, with two guard bits, a chopped result

" 11-10

has an error bound of one least significant bit (LSB); a rounded resuit
has an error bound of 1/2 LSB. (For a radix otlter than 2, replace “bit"
with “‘digit” in the two preceding sentences to get the corresponding
statements on accuracy.) These error bounds are realized for most in-
structions. For the addition of operands of opposite sign or for the sub-
traction of operands of the same sign in rounded double precision, the
error bound is 3/4 LSB (FP11-C) or 33/64 (FP11-A), which is slightly
larger than the 1/2 LSB error bound for all other rounded operations.

The error bound for the FP11-C differs from the FP11-A since the FP11-C
carries three guard bits while the FP11-A carries seven guard bits.

In the rest of this chapter an arithmetic result is called exact if no non-
vanishing bits would be lost by chopping. The first bit lost in chopping
is referred to as the ‘“‘rounding’’bit. The value of a rounded result is
related to the chopped result as follows: '

1. if the rounding bit is one, the rounded result is the chopped result
incremented by an LSB (least significant bit).
2. if the rounding bit is zero, the rounded and chopped results are
identical.
It follows that
1. If the result is exact
rounded value = chopped value = exact value
2. If the result is not exact, its magnitude
(a) is always decreased by chopping
(b) is decreased by rounding if the rounding bit is zero
~ (c) is increased by rounding if the rounding bit is one.
Occurrence of floating point overflow and underflow is an error condition:
the result of the calculation cannot be correctly stored because the expo-
nent is too big to fit into the 8 bits reserved for it. However, the internal
hardware has produced the correct answer. For the case of underflow
replacement of the correct answer by zero is a reasonable resolution of
the problem for many applications. This is done on both the FP11-A and
FP11-C if the underflow interrupt is disabled. The error incurred by this
action is an absolute rather than a relative error; it is bounded (in abso-
lute value) by 2*%* (—128). There is no such simpleresolution for the
case of overflow. The action taken, if the overflow interrupt is disabled,
is described under FIV (bit 9) of Section 11.5.
The FIV and FIU bits (of the floating point status word) provide the user
with an opportunity to implement his own fix up of an overflow or
underflow condition. If such a condition occurs and the corresponding
interrupt is enabled, the hardware stores the fractional part and the low
eight bits of the biased exponent. The interrupt will take place and the
user can identify the cause by examination of the FV (floating overflow)
bit or the FEC (floating exception) register. The reader can readily verify
that (for the standard arithmetic operations ADD, SUB, MUL, and DIV)
the biased exponent returned by the hardware bears the following
relation to the correct exponent generated by the hardware:
1. on overflow: it is too small by 400 octal
2. on underflow: if the biased exponent is O it is correct. If it is not O,
it is too large by 400 octal. i
Thus, with the interrupt enabled, enough information is available to
determine the correct answer. The user may, for example, rescale pis

11-11

variables (via STEXP and LDEXP) to continue his calculation. Note that
the accuracy of the fractional part is unaffected by the occurrence of
underflow or overflow. .

11.9 FLOATING POINT INSTRUCTIONS

Each instruction that references a floating point number can operate on
either floating or double precision numbers depending on-the state of
the FD mode bit. Similarly, there is a mode bit FL that determines °
whether a 32-bit integer (FL = 1) or a 16-bit integer (FL = O)is used in
conversion between integer and floating point representation. FSRC and
FDST use floating point addressing modes; SRC and DST use CPU
addressing Modes.

In the detailed descriptions of the floating point instructions, the oper-
ations of the FP11-A and FP11-C are identical, except where explicitly -
stated to the contrary.

Floating Point Instruction Format
Double Operand Adressing

l . oc] FOC [AC]FSRC,FDST,SRC.DST' J
1 1 1 1 ' 1 'I L 1 L

1% 12 11) 8 7 6 5 (o]

Single Operand Addressing

l oc l FOC FSRC, FDST, SRC, DST I
l 1 i 1 A L 1 1 1 1 l 1 1
15 2 11 i 6 5) 0

OC = Op Code.= 17

FOC = Floating Op Code

AC = Accumulator

FSRC, FDST use FPP Address Modes
SRC, DST use CPU Address Modes

General Definitions:
XL = largest fraction that can be represented:
1—-2%*(—24), FD = 0; single precision
1—-2#%%*(—56), FD = 1); double precision :
XLL = smallest number that is not identically zero = 2%%(—128) —2%*
(—=127))*(1/2)
XUL = largest number that can be represented = 2%*(127)*XL .
JL = largest integer that can be represented:
2%%(15)—1 if FL=0 2%%(31)—1 if FL=1
ABS (address) — absolute value of (address)
EXP (address) — biased exponent of (address)

.LT. = “less than”

.LE. = “Iess than or equal”
.GT. = ‘“‘greater than”

.GE. = “‘greater than or equal”

LSB = least significant bit

11-12

ABSF

ABSD
Make Absolute Floating/Double 1706FDST
I1|1lil1 0]0'0|1I1l0] " |FDlST| 11,
15 2 i 6 5 0

Operation:-

Condition Codes:

If (FDST) < 0, FDST «— (FDST).
If EXP(FDST) = 0, FDST <« exact 0.
For all other cases, FDST « (FDST).

FC « 0.
FV « 0.
FZ < 1 if EXP(FDST) = O, else FZ « 0.
FN <0

Set the contents of FDST to its absolute value.

Condition Codes:

Description:

Description:
Interrupts: - If. FIUV is set; trap on —0 occurs after-execution.
; Overflow and underflow cannot occur.
Accuracy: These instructions are exact..
ADDF
ADDD -
Add Floating/Double 172ACFSRC
. - FSRC
l ' l 1 L 1 1 ' Ol 1 1 ol o [Aic] L 1 ? A 1]
15 2 11, 8 7 6 5 0
Operation; . Let SUM = (AC) -+ (FSRC):

If underflow occurs and FIU is not enabled,
AC <« exact-0.

If overflow occurs and FIV is not enabled,
AC <« exact 0. : :

For -all other cases, AC <« SUM.

FC <« 0.

FV « 1 If overflow occurs, else FV « 0.

FZ <1 If (AC) =0, else FZ « 0.

FN <1 If (AC) < 0, else FN « 0.

Add the contents -of FSRC to the contents of AC.
The addition is carried out in single or double:
precision and is rounded. or chopped in accor-
dance with the values of the FD and FT bits in
the FPS register. The result is stored in AC
except for:

11-13

Interrupts:

Accuracy:

Special Comment:

Overflow with interrupt disabled.
Underflow with interrupt disabled.’

For these exceptional cases, an exact O is
stored in AC.

If FIUV is enabled, trap on —0 in FSRC occurs
before ‘execution.

If overflow or underflow occurs and if the cor-
responding interrupt is enabled, the trap occurs
with the faulty result in AC. The fractional parts
are correctly stored. The exponent part is too
large by 400 octal for underflow, except for the
special case of 0, which is correct.

Errors due to overflow and underflow are de-
scribed above. If neither occurs, then: For
oppositely signed operands with exponent dif-
ferences of O or 1, the answer returned is exact
if a loss of significance of one or more bits
occurs. Note that these are the only cases for
which loss of significance of more than one bit
can occur. For all other cases the result is
inexact with error bounds of

1 LSB in chopping mode with either single or
double precision.

3/4 LSB (FP11-C) or 33/64 LSB (FP11-A) in
rounding mode with double precision.

The undefined variable —0 can occur only in con-
junction with overflow or underflow. It will be
stored in AC only if the corresponding inter-
rupt is enabled.

CFCC
Copy Floating Condition Codes 170000
I1111Loooooooooooo
| 1 L 1 ! 1 R SR S ! | 1 1
15 12 6 5
Operation: C «FC
V «<FV
Z «<FZ
N < FN

Description:

Copy FPP Condition Codes into the CPU’s Con-
dition Codes.

11-14

CLRF

CLRD
Clear Floating/Double 1704FDST
FDST
[1I1|11'IO|OIOI1.010T1) i) 11
15 12 1 6 5 3}
Operation: FDST <« exact O.
Condition Codes: FC « 0.
FV «< 0.
FZ «1
FN <« 0.
Description: . Set FDST to 0. Set FZ condition code and clear
other condition code bits.
Interrupts: No interrupts will occur. Neither overflow nor
: underflow can occur.
Accuracy: These instructions are exact.
CMPF
CMPD
Compare Floating/Double 173 (AC + 4) FSRC
S B R N ¢ DR I I | AC FSRC l
[l 1 1 L 1 4[l . [i i l |
15 12 11 8 7 6 5 0
Operation: (FSRC) « (AC)
Condition Codes: . FC « O.
FV «< 0.

FZ « 1 If (FSRC) — (AC) = O, else FZ < 0.
FN « 1 If (FSRC) — (AC) < O, else FN « 0.

Description: - Compare the contents of FSRC with the accu-
mulator. Set the appropriate floating point con-
dition codes. FSRC and the accumulator are left
unchanged (see special comment below).

Interrupts: If FIUV is enabled, trap on —0 occurs before
execution.

Accuracy: These instruqtions are exact.

Special Comment: An operand which has a biased exponent of zero

is treated as if .it-were true zero. If both oper-
ands have biased -exponents of ‘zero, ‘the ac-
cumulator. gets a true zero and, hence, may be
modified. :

11-15

DIVF
DIVD

Divide Floating/Double ' 174(AC + 4)FSRC

[1-I1.1.J

15

Operation:

Condition Codes:

Descri ptionﬁ

Interrupts:

111 0o 0,1 J AC J . FSRC j
—— L I . —k 1 l L 1
T 8 7 6 5

o]

If EXP(FSRC) = 0, AC <« (AC): instruction is
aborted. .

If EXP(AC) = 0, AC « exact O.
For all other cases, let QUOT = (AC)/(FSRC):

If underflow occurs and FIU is not enabled
AC <« exact O.

If overflow occurs and FIV is not enabled, AC <«
exact O.

For all remaining cases AC < QUOT.

FC <« 0. :

FV <« 1 if overflow occurs, else FV < 0.
FZ < 1 if EXP(AC) = 0, else FZ « 0.
FN < 1 if (AC) < 0, else FN « 0.

If either operand has a biased exponent of, O, it
is treated as an exact 0. For FSRC this would
imply division by zero; in this case the instruc-
tion is aborted, the FEC register is set to 4-and
an interrupt occurs. Otherwise the quotient is
developed to single or double precision with
enough guard bits for correct rounding. The
quotient is rounded or chopped in accordance
with the values of the FD and FT bits in the FPS
register. The result is stored in AC except for:

Overflow with interrupt disabled.
Underflow with interrupt disabled.

For these exceptional cases an exact O is stored
in accumulator.

If FIUV is enabled, trap on —0 in FSRC occurs
before execution.

If EXP(FSRC) = O interrupt traps on attempt.to
divide by 0.

If overflow or underflow occurs and if the cor-
responding interrupt is enabled, the trap occurs
with the faulty results in AC. The fractional parts
are correctly stored. The exponent part is too
small by 400 octal for overflow. It is too large by
400 octal for underflow, except for the special
case of O, which is correct.

11-16

Accuracy:

Special Comment:

Errors due to overflow, underflow and division
by O are described above. If none of these
occurs, the error in the quotient will be bounded
by 1 LSB in chopping mode and by 1/2 LSB in
rounding motie.

The undefined variable —0 can occur only in con-
junction with overflow or underflow. It will be
stored in AC only if the corresponding interrupt is
enabled.

LDCDF
LDCFD

Load and convert from Double to Float- 177(AC 4+ 4)FSRC
ing or from Floating to Double

1111‘1111[/.\01 FSRC J
'Il IJI 'S lJIJI

15 12

Operation:

Condition Codes:

Description:

Interrupts:

8 7 6 5 o

If EXP(FSRC) = 0, AC « exact 0.

If FD =1, FT = O, FIV. = 0 and rounding
causes overflow, AC <« exact O.

In all other cases AC <« C,, (FSRC), where C,,
specifies conversion from floating mode x to
floating mode y.

x =D, y=F if FD = 0O (single)
x=F,y=Dif FD = 1 (double).

FC < 0.

FV « 1 if conversion produces overflow, else
FV < 0.

FZ <1 if (AC) =0, else FZ < 0.

FN « 1 if (AC) < 0, else FN « 0.

If the current mode is Floating Mode (FD = 0)
the source is assumed to be a double-precision
number and is converted to single precision. If
the Floating Chop bit (FT) is set, the number
is chopped, otherwise the number is rounded.

If the current mode is Double Mode (FD = 1),
the source is assumed to be a single-precision
number, and is loaded left justified in the AC.
The lower half of the AC is cleared.

If FIUV is enabled, trap on —0 occurs before
execution. '

Overflow cannot occur for LDCFD.

A trap occurs if FIV is enabled, and if rounding
with LDCDF causes overflow; AC < overflowed
result of conversion. This result must be 40 or
—0.

Underflow cannot occur.

11-17

Accuracy: LDCFD is an exact ‘instruction. Except for over-
flow, . described above,. LDCDF incurs an error
bounded by one LSB in chopping mode, and by
1/2 LSB in rounding mode.

Special Comment: If (FSRC) = —O0, the FZ and FN bits-are both set
regardless of the condition of FIUV.

LDCIF
LDCID
LDCLF
LDCLD

Load and Convert Integer or Long Integer to 177ACSRC
Floating or Double Precision

1
15 12 1" . 8 7 6 5 0

Operation: AC «-Ci; (SRC), where
C.x specifies conversion from |nteger mode
j to floating mode x;

j=1ifFL=0,j=LifFL=1,
x=FifFD=0,x=Dif FD=1.

Condition Codes: FC « 0.

. . FV < 0.
FZ « 1 If (AC) =0, else FZ « 0.
FN « 1 If (AC) < 0, else FN <« 0.

Description: Conversion is performed -on the contents of SRC
from a 2’s complement .integer with precision j
to a floating point number of precision x. Note
that j and x are determined by the state of the
mode bits FLand FD: J = lorL, and X=F or D.
If a 32-bit' Integer is specified (L mode) and
(SRC) has an addressing mode of 0, or immedi-
ate addressing mode is specified, the 16 bits of
the source register are left justified and the
remaining 16 bits loaded with zeroes before
conversion.

In the case of LDCLF the fractional part of the
floating point representation is chopped or
rounded to 24 bits for FT=1 and 0O respec
tively.

Interrupts: None; SRC is not floating point, so trap on —0
cannot occur,

Overflow and underflow cannot occur.

11-18

Accuracy:

. LDCIF, LDCID, LDCLD are exact instructions.

The error incurred by LDCLF is bounded by one
LSB in chopping mode, and by 1/2 LSB in

rounding mode.

LDEXP
Load Exponent 176(AC + 4)SRC
RN N N
15. 12 11 -8 7 6 5 B [0}

Operation:

Condition Codes:

7 Description:

NOTE: 177 and 200, appearmg below, are octal
numbers.

If —200 < SRC < 200, EXP(AC) «(SRC) + 200
and the rest of AC is unchanged

If SRC> 177 and FIV is enabled
! EXP(AC) <«(SRC) <6:0> on FPIIC
EXP(AC) <—((SRC) 4+ 200) <7:0> on
FP11-A.

If SRC > 177 and FIV is disabled
AC <« exact 0.

If SRC << —177 and FIU is disabled,
AC < exact 0.

If SRC < —177 and FIU is enabled,
EXP(AC) «(SRC) <6:0> on FP11-C,
EXP(AC) <«((SRC) + 200) <7:0> on
FP11-A.

FC « 0.

"FV « 1 if (SRC) > 177, else FV « 0.
FZ « 1 if EXP(AC) = 0, else FZ « 0.
FN « 1 if (AC) < 0, else FN « 0.

- Change AC so that its unbiased exponent = -

(SRC). That is, convert (SRC) from 2's comple-
ment to excess 200 notation, and insert in the
EXP field of AC. This is a meaningful operation
only if ABS(SRC).LE.177.

If SRC > 177, result is treated as overflow. If
SRC < —177, result is treated as underflow.
Note that the FP11-C and FP11-A do not treat
these abnormal conditions in exactly the same
way.

11-19

Interrupts:

Accuracy:

No trap on —O0.in AC occurs, even if FIUV en-
abled.

If SRC > 177 and FIV enabled trap on overflow
will occur.

If SRC < —177 and FiU enabled, trap on under-
flow will occur.

The answers returned by the FP11-C and FP11-A
differ for overflow and underflow conditions.

Errors due to ‘overflow and underflow -are de-
scribed above. If EXP(AC) = 0 and SRC £ —200,

"(AC) changes from a floating point number

LDF
LDD

treated as O by all floating arithmetic operations
to a non-zero number. This is because the inser-
tion of the ‘““hidden” bit in the hardware imple-
mentation of arithmetic instructions is triggered
by a non-vanishing value of EXP.

For all other cases, LDEXP implements exactly
the transformation of a floating point number
(2**K)*f into (2**(SRC))*f where 1/2 .LE.ABS
(f).LT.1.

Load Floating/Double .172(AC 4+ 4)FSRC

f1

1 [I FSRC l
1 l 1 1

12 11

Operation:
Condition Codes:

Description:
‘lntendpts:

Accuracy:
Special Comment

5 (o}

AC <« (FSRC)
FC «0

FV «0

FZ <1 if (AC) =0, else FZ « Q.
FN « 1 if (AC) < 0, else FN « 0.

. Load Single or Double Precision Number into

‘Accumulator.

~1f FIUV is enabled, trap on —0 occurs before AC

is loaded. Neither:overflow. nor underflow can
occur.

These instructions permit use of —0 in a subse-
quent floating point instruction if FIUV is not
enabled and (FSRC) = —O0. If (FSRC) = —O0 the
FZ and FN bits are both set regardless of the
condition of FIUV.

$11-20

LDFPS

Load FPPs Program Status . 1701SRC
- SRC
[1 l ! i ! 1 ! 0 L 0 1 0 l 0 1 0 1 11 1 1 | 1 1 l
15 12 1 6 5 0
Operation: . FPS « (SRC)
Description: ' Load FPP’s Status from SRC.
Special Comment: On the FP11-C, bits 13 and 12 are ignored. Bit

4 can be set if the CPU is in kernel mode.

- On the FP11-A, the FPS is loaded with the

source. The user is cautioned not to use bits 12
-and 13 {(in ‘both FP11-C and FP11-A) or bit 4
(in the FP11-A) for a special purpose since these
bits- are not recoverable by the STFPS instruc-
tion.

. MODF
- MODD
Multiply and Integerize Floating/Double = 171(AC + 4)FSRC
) FSRC
EFEREEE DRI N
15 12 N 8 7 6 -5 . o
Description - This instruction _generates the product of its

- and Operation two floating point operands, separates the prod-

. uct into integer and fractional parts and then

- stores one or both parts as- floating point num-
bers.

Let PROD = (AC)*(FSRC) so that in:
Floating point: ABS(PROD) = (2% *K) *f

© 'where :1/2.LE.f.LT.1 and
- EXP(PROD) = (200 4 K) octal

- Fixed Point-binary:" PROD = N + g, with

N = INT(PROD) = the integer
: part of PROD

and

g = PROD — INT(PROD) = the fractional
- part of PROD with O.LE.g.LT.1

Both N and g have the same sign as PROD.
They are returned. as follows: '

11-21

If AC is an even-numbered accumulator (O or
2), N is stored in AC+4 1 (1 or 3), and g is
stored in AC.

If 'AC is an odd-numbered accumulator, N is
not stored, and g is stored in AC.

The two statements above can be combined as
follows: N is returned to ACvl and g is returned
to AC, where v means .OR.
‘Five special cases occur, as indicated in the
following ~ formal description with L =24" for
Floating Mode and L = 56 for Double Mode:
1. If PROD overflows and FIV enabled:

ACv1l .« N, chopped to L bits, AC « exact O

Note that EXP(N) is too small by 400 (octal),
and that <0 can get stored in ACvl.

If FIV is not enabled: ACvl <« exact 0, AC «
.exact 0, and —O will never be stored.

2. If 2#*L.LE.ABS(PROD) and no overflow
ACvl <« N, chopped to L bits, AC <« exact O

The sign. and EXP of N are correct, but low
order bit information, such as parity, is lost.

3. If 1.LE.ABS(PROD).LT.2%**L
" ACvl «N, AC «g

The integer part N-is exact. The fractional part
g is normalized, and_ chopped or rounded in
accordance -with FT. Rounding may cause a re-
turn of —unity for- the fractional part. For L
= 24, the error in g is bounded by 1 LSB in
chopping mode and by 1/2 LSB in rounding
mode. For L = 56, the error in g increases from
the above ‘limits as ABS(N) increases above 3
because only 59 bits of PROD are generated:

if 2%*p LE.ABS(N).LT.2%**(p 4 1), with p > 2,

the low order p — 2 bits of g may be in error.
4. if ABS (PROD). LT.1 and no underﬂow

ACvl «exact 0 AC «g

There is no error.in the integer part. The error in

.~ the fractional part is bounded by 1 LSB in chop-
- ping mode and 1/2 LSB in rounding mode.

‘Rounding may cause-a return of =unity for the
fractional part. .

5. -if PROD underflows and FIU enabled:

ACvl «exact 0 AC «g

11-22

- Condition Codes:

‘Interrupts:

Accuracy: -
- Applications:

Errors are as in case 4, except that EXP(AC) will’

-be too large by 400 octal (except if EXP =0, it

is correct). Interrupt will occur and —0 can be
stored in AC.

IF FIU is not enabled, ACvl <« exact O and AC
<exact 0. For this case the error in the frac-
tional part is less than 2%%(—128).

FC « 0.
FV <« 1 if PROD overflows, else FV « 0.

FZ «1if (AC) =0, else FZ « 0.
FN <« if (AC) < O, else FN « 0.

If FIUV is enabled, trap on —0 in FSRC will oc-

-.cur before execution.

Overflow and Underflow are: discussed above.
Discussed above.
‘1. ‘Binary to decimal conversion of a proper

~fraction: the following algorithm, using MOD, will

generate decimal digits D(1), D(2) ... from ‘left
to right:
Initialize: | <0
' X <« number to be converted;
ABS(X) < 1

While X s« 0 do
Begin. PROD <« X*10;

l <14+ 1;

D(I) « INT(PROD);

X < PROD — INT(PROD);

END;

This algorithm is exact; it is case 3 in the de-
scription: the number of non-vanishing bits in
the fractional part of PROD never exceeds L,
and hence neither chopping nor rounding can
introduce error.

2. To reduce the argument of a' trigonometric
function.

ARG*2/PI = N 4 g. The low two bits of N
identify the quadrant, and g is the argument
reduced to the first quadrant. The accuracy of
N 4-g is limited to L bits because of the factor
2/Pl. The accuracy of the reduced argument
thus depends on the size of N.

3. To:evaluate the exponential function e**x,
obtain .
x*(log e base 2) =N 4 g.

Then e**x = (2**N)*(e**(g*1ln 2))

The reduced argument is g*1n2 <1 and the

factor 2**N is an exact power of 2, which may

be scaled in at the end via STEXP, ADD N to

11-23

EXP and LDEXP. The accuracy of N +'g is lim-
ited to L bits because of the factor (log e base
2). The accuracy of the reduced argument thus
depends on the size of N.

MULF
MULD
Multiply Floating/Double 171ACFSRC
1 1t 1 1]0 o0 1. 0 AC FSRC
I I L L 1 I l r | T 1 | r 1 L]
15 2 N 8 7 6 5 0
Operation: Let PROD = (AC)*(FSRC)
If underflow occurs and FIU is not enabled,
AC <« exact O.)
If overflow occurs and FIV is not enabled,
AC <« exact O.
For all other cases AC «<PROD
Condition Codes: FC «< 0.

FV « 1 if overflow occurs, else FV < 0.
FZ « 1 if (AC) =0, else FZ « 0.
FN < 1 if (AC) < O, else FN < 0.

Description: If the biased exponent of either operand is zero,
. (AC) < exact 0. For all other cases PROD is
generated to 48 bits for Floating Mode and 59
bits for Double Mode. The product is rounded or
chopped for FT = 0 and 1, respectively, and is

stored in AC except for

Overflow with interrupt disabled.
Underflow with interrupt disabled.

For these exceptional cases, an exact O is stored
in accumulator.

Interrupts: If FIUV is enabled, trap on —0 occurs before
execution. :

If overflow or underflow occurs and if the cor-
responding interrupt is enabled, the trap occurs
-with the faulty results in AC. The fractional parts
are correctly stored: The exponent part is too
small by 400 octal for overflow. It is too large by
400 otcal for underflow, except for the special
case of 0, which is correct.

11-24

Accuracy:

Special Comment:

Errors due to overflow and underflow are de-
scribed above. If neither occurs, the error
incurred is bounded by 1 LSB in chopping mode
and 1/2 LSB in rounding mode.

The undefined variable —0 can occur only in
conjunction with overflow or underflow. It will be
stored in AC only if corresponding interrupt is
enabled.

NEGF
NEGD
Negate Floating/Double 1707FDST
o 1t t (/o o o t 1 1 FDST
I 1 1 l 1 1 1 1 l 1 1
15 12 1 6 5)
Operation: FDST « —(FDST) if EXP(FDST) # 0,else FDST «

COhdition Codes:

Description:

Interrupts:

Accuracy:

Set Floating Mode

exact O.

FC <« O.

FV < 0.

FZ « 1 If EXP(FDST) = O, else FZ «< 0.
FN < 1 If (FDST) < O, else FN « 0.

Negate single or double Precision number, store
result in same location. (FDST)

If FIUV is enabled, trap on —O0 occurs after
execution.
Neither overflow nor underflow can occur.

These instructions are exact.

SETF

170001

Operation:
Description:

FD <0 .
Set the FPP in Single Precision Mode.

11-25

SETD

Set Floating Double Mode 170011
rtllllli ©c 0 0,00 0,0 0 1,0 O
15] 0
Operation: - FD «1 » .
Description: Set the FPP in Double Precision Mode.
SETI
Set Integer Mode 170002
L‘|1.111 °.°.°1°¢°4°4°L°,°1°.'.°|
15 0
Operation: FL <0
Description: Set the FPP for Integer Data.
SETL
Set Long Integer Mode 170012
0.0 O t 0 1t O
ITI ! . ! ! ! ° L L ° 1 ° L ° ! 1 N 1] Loa }]
15 [P] 0
: Oberatio'n: FL <1
Description: Set the FPP for Long Integer Data.

11-26

STCFD

STCDF
Store and convert from Floating to 176ACFDST
Double or from Double to Floating
1 101 1 1 1 0,0 AC FDST
KRR R N
15 2 n 8 7 6 5 . 0
Operation: If FEXP(AC) = 0, FDST «<exact O

ifFD =1, FT = O, FIV = 0 and rounding causes

. overflow, FDST <« exact 0.

Condition Codes:

Description:

Interrupts:

Accuracy:

In all other cases, FDST « C,,(AC), where
C., specifies conversion from floating mode x
to floating mode y;
x=Fandy=Dif FD=0,
x=Dandy=Fif FD=1.

FC <« 0.

FV <1 If conversion produces overflow else

FV <«O0. ‘

FZ <1 If (AC) =0, else FZ < 0.

FN <1 If (AC) < 0, else FN <« 0.

If the current mode is single precision, the Ac-
cumulator is stored left justified in FDST and
the lower half is cleared. If the current mode
is double precision,- the contents of the accumu-
lator are-converted to single precision, chopped
or rounded depending on the state of FT, and
stored in FDST.

Trap on —O0 will not occur even if FIUV is en-
abled because FSRC is an accumulator.

Underflow cannot occur.

Overflow cannot occur for STCFD. -

A trap occurs if FIV is enabled, and if rounding
with STCDF causes overflow; FDST <« overflowed

result of conversion. This result must be 40
or —0.

STCFD is an exact instruction. Except for over-
flow, described above, STCDF incurs an error
bounded by 1 LSB in chopping mode and 1/2
LSB in rounding mode.

11.27

STCFI .

STCFL.:
STCDI -
STCDL

Store and Convert from ‘Floating or - 175(AC 4 4)DST

Double to Integer or Long Integer

RN KR N |
15 12 1 8 7 6 5. 0
Operation: . DST «<C,; (AC) if —JL — 1 < C,:(AC) < JL 41,

Condition Codes:

Description:

Interrupts:

Accuracy:

else DST <« 0, where C,;. specifies con-
version from-floating mode' x to 'integer
mode:j;
- j=l1ifFL=0,j=Lif FL=1,
X=FifFD=0,x=DiffFD=1.
JL is the largest integer:
2**]15 — 1 for FL=0
2%%3] — 1-for FL=1

" C«FC«0if —JL—1<C, (AC) <JL+1,"

else FC « 1.

V «FV «0. i

Z «FZ < 1'if (DST) =0, else FZ <—0

N < FN « 1 if (DST) < 0, else FN < 0.
Conversion is performed from a floating point-
representation of the data in the accumulator to
an integer representation.

If the. conversion is to:a 32-bit word .(L - mode) :
and an address mode of O, or immediate adress-
ing mode, is specified, only the most significant
16 bits are stored in the destination register.

If the operation is out of the integer range se-
lected by FL, FC is set to 1 and the contents
of the DST are set to 0.

Numbers to be converted are always chopped
(rather than rounded) before conversion. This
is true even when the Chop Mode bit, FT is-

cleared in the Floating Point Status Register.
These instructions do not:interrupt if FIUV 'is
enabled, because the —O, if present, is .in AC,
not in memory.

If FIC enabled, trap -on conversion failure will

occeur. -

These instructions store the integer part of the

_ floating- point operand, which may: not be the

integer most closely approximating the operand-:
They are exact if the integer part:is within the
range implied by FL.

11-28

STEXP

Store Exponent 175ACDST
Loyrgrotfriovyolae | ogr |
15 211 8 7 6 5 0
" Operation: DST « EXP(AC)—200 octal
Condition Codes: C «FC. «0.
V «FV «0.

Z < FZ «1 if (DST) =0, else FZ « 0.
N < FN « 1.if (DST) <0, else’FN « 0.

Description: Convert . accumulator’s exponent from excess
200 octal notation to 2's complement, and store
. resultin DST.
Interrupts: - This instruction will not trap on.—0.
Overflow and -underflow cannot occur. -
Accuracy: This instruction is always exact.
STF ‘
STD
Store Floating/Double 174ACFEDST-
t .t 1 1}t o o o AC . FDST.
l 1 - . T i L ,l] 1 l 1 1 I 1 1
15 12 1 8 7 6 5 0
Operation: FDST « (AC)
Condition Codes: " FC «<FC
FV « FV
FZ «FZ
FN «FN
Description: Store Single or Double Precision Number from
’ Accumulator. i
Interrupts: These instructions ‘do not interrupt if FIUV en-
- abled, because the —O0, if present, is in AC, .not
in memory. Neither overflow nor underflow can
occur.
‘Accuracy: These instructions are exact.

Special Comment: -

These “instructions permit storage of 'a —0 in

memory from AC. Note, however, that the FPP

can store a —0 in an AC only if it occurs in

conjunction with overflow or underflow, and if

the corresponding interrupt is enabled. Thus, the

user has an- opportunity to clear the —O0, if he "
wishes. .)

11-29

STFPS

Store FPPs Program Status 1702DST
DST - :
F 1 ! 1 ! 1 ! ° 1 ° ! ° 1 ° 1 ! 1 ° l 1 | 1 L—I
15 12 1 6 5)
Operation: DST <« (FPS)
Description: Store FPP’s Status in DST.

Special Comment: On the FP11-C and FP11-A, bits 13 and 12 are
. loaded with zeroes. All other bits (with the ex-

ception: of bit 4 in the FP11-A) represents the

corresponding bits in the FPS. The FP11-A has

no maintenance mode so bit 4 is loaded. with

zero.
STST
Store FPPs Status 1703DST
1 DST
r‘ 1 1 ! 1 ! © 1 ° 1 0 l ° 1 ! 1 ! 1 1 I 1 1 —I
15 12 1] 6 5 0
Operation: DST <« (FEC)
DST + 2 «(FEA)
Description: Store the FEC .and then the FPP’s Exception

Address Pointer in DST and DST + 2.

NOTES: 1. If destination mode specifies a
general register or immediate ad-
dressing, only the FEC is saved.

2. The information in these registers
is current only if the most recently
executed floating point instruction
(refer to Section 11.6) caused a
floating point exception.'

11-30

SUBF
SuBD

Subtract Floating/Double 173ACFSRC

l1111011olAc[FSRC j
|1| 11" L T ST

Operation:

Condition: Codes:

Description:

Interrupts:

Accuracy:

8 7 6 5 (o]

Let DIFF = (AC) — (FSRC):

If underflow occurs and FIU-is not enabled,-
AC < exact 0.

If overflow occurs and FIV is not enabled,
AC <« exact O.

For all other cases, AC « DIFF.

FC « 0.

FV « 1 If overflow occurs, eise FV « 0.
FZ <1 If (AC) =0, else FZ « 0.

FN «< 1 If (AC) < 0, else FN « 0.

Subtract the contents of FSRC from the contents
of AC. The subtraction is carried out:n single or
double precision and :is rounded-or-chopped in:
accordance with the values of the FD and FT
bits in the FPS register. The result is stored in.
AC except for:

Overflow with interrupt disabled.
Underflow with interrupt disabled.

For these exceptional cases, an-exact 0-is stored
in AC.

If FIUV is enabled, trap.on —G in FSRC occurs
before execution.

If overflow or underflow occurs and if the>cor-
responding interrupt is enabled, the trap occurs .
with the faulty results in AC. The fractional parts
are correctly stored. The exponent part is.too- .
small by 400 octal for overflow. It is too large -
by 400 octal for underflow, except for the special
case of 0, which is correct.

Errors due to overflow and underflow are de-
scribed above. If neither occurs, then: For like-
signed operands with exponent difference:of O .
or 1, the answer returned is exact if 3 loss of
significance of more thanone-bit can occur.Note
that these are the only cases for which loss of

significance. of more than one bit can occur. For

~all -other cases the result ‘is inexact with -error

bounds of

11-31

1 LSB in chopping mode with either single or
double precision.
1/2 LSB in rounding mode with single precision.

3/4 LSB (FP11-C) or 33/64 LSB (FP11-A) in
rounding mode with double precision.

Special Comment: The undefined variable —O0 .can occur only in
conjunction with overflow or underflow. It will
be stored in the AC only if the corresponding
interrupt is enabled.

TSTF

TSTD
Te;t Floating/Double 1705FDST
|711’111;1|O|0I0|1|0|1 1 |FD|ST| |j
15 12 1] 6 5 [3)
Operation: FDST « (FDST)
Condition Codes: FC «O.
FV < 0. : .
FZ <1 if EXP(FDST) = 0, else FZ < 0.
FN « 1 if (FDST) <0, else FN « 0.
Description: Set the Floating Point Processor's Condition
_ . Codes according to the contents of FDST.
Interrupts: If FIUV is set, trap on —0 occurs after execution
Overflow and underflow.cannot occur.
Accuracy: These instructions are exact.

11 32

APPENDIX A

UNIBUS ADDRESSES

A.1 INTERRUPT & TRAP VECTORS

000
004
010
014
020
024
030
034

040
044
050
054

060
064
070
074
100
104
110
114
120
124
130
134
140
144
150
154
160
164

170
174

200
204
210
214
220
224
230
234
240

(reserved)

CPU errors

lllegal & reserved .instructions
BPT, breakpoint trap -

10T, input/output trap

Power Fail

EMT, emulator trap

TRAP instruction

System software
System software
System software
System software

Console Terminal, keyboard/reader
Console Terminal, printer/punch
PC11, paper tape reader

PC11, paper tape punch

"KW11-L, line clock

KW11-P, programmable clock

Memory system errors

XY Plotter

DR11-B DMA interface; (DA11-B)

ADO1, A/D subsystem -
AFC11, analog subsystem

AAll, display

AAll, light pen

User reserved
User reserved

LP11/LS11, line printer

RS04/RF11, fixed head disk

RC11, disk

TC11, DECtape

RK11, disk

TU16/TM11, magnetic tape

CD11/CM11/CR11, card reader

UDC11, digital control subsystem; ICS/ICR11
PIRQ, Program Interrupt Request (11/55,11/45)

A-1

244 Floating Point Error
250 Memory Management
254 RP04/RP11 disk pack
260 TA11, cassette

264 RX11, floppy disk

270 User reserved
274 User reserved

300 - (start ‘of floating vectors)

-A.2 FLOATING. VECTORS

There is a floating vector convention .used for communications (and
other) devices that interface with the PDP-11. These vector addresses
. are assigned in order starting at 300 and proceeding upwards to 777.
The following Table shows the assigned sequence. It-can be seen that
the first vector address, 300, is assigned to the first DC11 in the system.
If another DC11 is used, it would then be assigned vector address 310,
etc. When the vector addresses have been assigned for all the DC1l's.
(up to a maximum of 32), addresses are then assigned consecutively
to each unit of the next highest-ranked device (KL11 or DP11 or DM11,
etc.), then to the. other devices in accordance with the priority ranking.

Priority Ranking for Floating Vectors
(starting at 300 and proceeding upwards)

. Rank Device Vector Size Max No.
‘ (in octal)
1 DC11 (10)s 32
2 KL11, DL11-A, DL11-B 10 16
3 DP11 10 32
4 DM11-A 10 ’ 16
5 DN11 4 16
6 - DM11-BB (DH11-AD or DV11) 4 16
7 DR11-A 10* 32
8 DR11-C 10* 32
9 PA611 Reader . 4% 16
10 PA611 Punch 4% 16
11 DT11 10%* 8
12 DX11 : 10%. 4
13 DL11-C, DL11-D, DL11-E 10 31
14 DJ11 : 10 16
15 DH11 g 10 . 16
16 GT40 : 10 1
17 LPS11 30* 1
18 DQ11 10 16
19 KW11-w 10 1
20 DU11 . 10 16
21 DUPi1) 10
22 Dv11 10

"*_The first vector for the first device of this type must always be on a (10),
boundary. ’

A-2

A.3 FLOATING ADDRESSES

There is a floating address convention used for communications (and
other) devices interfacing with the PDP-11. These addresses are as-
signed in order starting at 760 010 and proceeding upwards to 763 776.

- Floating addresses are assigned in the following sequence:

Rank Device

DJ11
DH11
DQ11.
DU11

PDWN

A.4 DEVICE ADDRESSES

777 776 Processor Status word (PS)

777 774 Stack Limit (SL)

777 772 Program Interrupt Request (PIR)
777770 Microprogram Break

777 766 CPU Error

777 764 System 1/D

777 762 . Upper Size .
777760 Lower Size }Syﬁe"‘ Size

777 756

777 754 .

777 752 Hit/Miss
777 750 . Maintenance

777 746 Control

777 744 Memory System Error
777 742 High Error Address
777 740 Low Error Address

777 717 User R6 (SP)
777 716 Supervisor R6 (SP)
777 715) R5
777 714 R4
777 713 | General registers, R3
777712 (Set1l : R2
777 711 R1
777 710 RO
777 707 R7 (PC)
777 706 Kernel R6 (SP)
777 705)) R5
777 704 : R4

- 777 703 General registers, R3
777702 [Set0 R2
777701 R1
777 700 - | RO

A-3

777 676

777 660
777 656

777 640
777 636

777 620
777 616

777 600

777 576
777 574
777 572

. 777570
777 566

777 564.

777 562
777 560

777 556
777 554
777 552
777 550

777 546

777 516
777 514
.777 512

777 510

777 506
777 504
777 502
777 500

777 476
- 777 474
777 472
777 470
777 466
777 464

777 462

777 460

777 456
777 454
777 452
777 450
777 446
777 444
777 442
777 440

——? e e

User Data PAR ,reg 0-7

User Instruction PAR, reg 0-7

User Data PDR, reg 0-7

User InstructionPDR, reg 0-7

(MMR2)

Memory Mgt regs, (MMR1)

(MMRO)

Console Switch & Display- Register

Console Terminal,

PC11/PR11,

printer/punch data
printer/punch status

. keyboard/reader data
“keyboard/reader :status

punch data (PPB)

- punch status (PPS)

reader- data (PRB)
reader status (PRS)

- KW11-L, clock. status (LKS)

LP11/LS11/LV11,

printer data
printer status

TA1ll, - cassette data (TADB)
cassette status (TACS)

look ahead (ADS)
. maintenance (MA)
. disk data (DBR)
. RF11, - adrs ext error (DAE)
disk .address (DAR)
current mem adrs (CMA)

-word count. (WC)

. disk status (DCS)

.disk data (RCDB)

maintenance (RCMN)

current address (RCCA)
"RC11,. word count (RCWC)

- disk status (RCCS)
error status (RCER)
disk address (RCDA)
look ahead (RCLA)

A4

777 436
777 434
777 432
777 430
777 426
777 424
777 422
777 420

777 416
777 414
777 412
777 410
777 406
777 404
777 402
777 400

777 376

777 360

777 356
777 354
777 352
777 350
777 346
777 344
777 342
777 340

‘777 336

777 320

777 316
777 314
- 777 312
‘777 310
777 306
777 304
777 302
-777 300

777 166
777 164
777 162
777 160

776 776
776774
776 772
776 770

776 766
776 764
776 762
776 760
‘776 756
776 754

DT11, bus switch = #5

disk data (RKDB)

maintenance

disk address (RKDA)
RK11, . bus address (RKBA)

word count (RKWC)

disk status (RKCS)

errorr (RKER)

drive status (RKDS)

} DC14-D

‘DECtape data (TCDT)
TC11, . bus address (TCBA)
word count (TCWC)
command (TCCM)
DECtape status (TCST)

} KE11-A, EAE #2

- 'KE11-A, EAE #1,

arithmetic. shift
logical -shift
normalize

multiply
multiplier quotient
accumulator
divide

|

CR11/ data (CRB2) comp |
CM11, data (CRB1) | cp11,
status (CRS) |

ADO1;. A/D data (ADDB)
A/D status (ADCS)

AA1l #1,

register 4 (DAC4)
register 3 (DAC3)
register 2 (DAC2)
register 1 (DAC1)
D/A status (CSR)

A-5

step count/status register

‘data (CDDB)

cur adrs (CDBA)
col count (CDCC)
status (CDST)

776 752

776 750
776 746
776 744
776 742
776 740

776 736 -

776 734
776 732
776 730
776 726
776724
776 722
776 720
776 716
776 714
776712
776 710

776706
776 704

776 702
776 700

776676
776 500
776 476
776 400
776 276
776 200

776 176.

775 610
775 576
775 400

775376

775 200
775 176
775 000

cont & status #3
(RPCS3)

bus adrs ext (RPBAE)

ECC pattern (RPEC2)

l
|

. ECC position (RPEC1) l

RPO4,

KL11,

error #3 (RPER3)
error #2 (RPER2)
cur cylinder (RPCC)
desired cyl (RPDC)
offset (RPOF)
serial number (RPSN)
drive type (RPDT) -
maintenance (RPMR)
data buffer (RPDB)
look ahead (RPLA)
attn summary (RPAS)
error #1 (RPER1)
drive status (RPDS)
cont & status #2
(RPCS2)
- sector/track adrs
(RPDA)
UNIBUS address
(RPBA) .
word count (RPWC)
cont & status #1
(RPCS1)

#16

DL11-A, -B,

AAll,

DX11

DL11-C, -D, -E,

Ds11,
DN11,

DM11,

#5

#

#4
#1

2

#16

#1

#16

#1

#1

I
| DV11, #14

A-6

l.
I
|

silo memory (SILO)
cyl adrs (SUCA)

~ 7 maint 3 (RPM3)

RP11,

maint 2 (RPM2)
maint 1 (RPM1)
disk adrs (RPDA)
cyl adrs (RPCA)
bus adrs (RPBA)
word count (RPWC)
disk status (RPCS)
error (RPER)

disk status (RPDS)

774776

774 400
774 376

774 000
773766

773 000
772776

772700
772-676

772 600

772576
772574
772572
772570

772 556

772 550

772 546
772544
772542
© 772540

772536
772 534
772532
772530
772 526
772524
772522
772 500

772516

772476
772 474
772 472
772 470
772 466
772 464
772 462
772 460
772 456
772 454
772 452
772 450

DP11,

DC11,

#1

#32
#32

#1

1 diagnostic bootstrap (half of it)

PAG11 typeset punch

PA611 typeset reader

AFC11,

-}XYH

KW11-P,

™11,

Y BM792, BM873 ROM
} PDP-1

maintenance (AFMR)
MX channel/gain (AFCG)
flying cap-data (AFBR)
flying cap status (AFCS)

plotter

counter
‘count set

- clock status

read lines (MTRD)

tape data (MTD)

memory. address (MTCMA)
byte record counter (MTBRC)
command (MTC)

tape status (MTS) -

Memory Mgt reg (MMR3)

TUle,

cont & status #3 (MTCS3)"
bus -adrs ext (MTBAE)
tape control (MTTC)

serial number (MTSN)
drive type (MTDT)
maintenance (MTMR)

data buffer (MTDB)

check character (MTCK)
attention summary (MTAS)
error (MTER)

drive status (MTDS)

cont & status #2 (MTCS2)

A7

772 446
772444
772442
772 440

772436

772 430

772 416
772414
772412
772 410

772376

772 360
772 356

772 340
772 336

772 320
772 316

772 300
. 772 276

- 772260
772 256

772 240
772 236

772 220
772 216

772 200
772 136

772110

772072
772070
772 066
772064
772 062
772 060
772 056
772 054

}

— = Y Y e Y Y Y

frame count (MTFC)
UNIBUS address (MTBA)
word count (MTWC)

cont & status #1 (MTCS1)

DR11-B #2

data (DRDB)
DR11-B #1, status (DRST)

bus address (DRBA)

word count (DRWC)

Kernel Data PAR, reg 0-7

Kernel Instruction PAR, reg 0-7

Kernel Data PDR, reg 0-7

Kernel Instruction PDR, reg 0-7

Supervisor Data PAR, reg 0-7

Supervisor Instruction PAR, reg 0-7,
Supervisor Data Descriptor PDR, reg 0-7
Supervisor Instruction Descriptor PDR, reg 0-7

UNIBUS Memory Parity

cont & status #3 (RSCS3)
bus adrs ext (RSBAE)
drive type (RSDT)
maintenance (RSMR)

data buffer (RSDB)

look ahead (RSLA)
attention summary (RSAS)

RS04, error (RSER)

A-8

772052
772 050
772 046
772 044
772042
772 040

772016

772010

772 006
772 004
772002
772000

771776
771774
771772
771770

771776

771 000
770776

770 700
770 676

770 500

770 436
. 770434
770432
770 430
770 426
770 424
770 422
770 420
770 416
770414
770412
770410
770.406
770 404
770 402
770 400

770 366

770 200

drive status (RSDS)

control & status #2 (RSCS2)
RS04, desired disk adrs (RSDA)

UNIBUS address (RSBA)

word count (RSWC)

control & status #1 (RSCS1)

} GT40 #2

Y axis
X axis
GT40 #1 status
program counter

status (UDCS) | :
UDC11, scan (UDSR) | ICS/ICR11

} UDC functional 1/0 modules

#8
} KG11,
#1

#16
} DM11-BB,

DMA

ext DAC

D/A YR

D/A XR
D/A SR

LPS11, D 1/0 output

D 1/0 input
CKBR

CKSR

ADBR

ADSR

} UNIBUS Map

767 776

766 000
765 776

765 000
763776

760010

} GT40 bootstrap

PDP-11 diagnostic bootstrap
(half of it)
(top of floating addresses)

(start of floating addresses)

NOTE

User &
Special
Systems

All presently unused UNIBUS addresses -are re-

served by Digital.

A-10

APPENDIX B
INSTRUCTION TIMING

B.1 PDP-11/04 CENTRAL PROCESSOR

INSTRUCTION EXECUTION TIME

The execution time for an instruction depends on the instruction itself
and the modes of addressing used. In the most general case, the In-
struction Execution Time is the sum of a Basic Time, a Source Address
Time, and a Destination Address Time.

Instr Time = Basic Time 4 SRC Time 4 DST Time

Double Operand instructions require all 3 of these Times. Single Oper-
and instructions require a Basic Time and a DST Time, and with all
other instructions the Basic Time is the Instr Time.

All Timing information is in microseconds, unless otherwise noted. Times
are typical; processor timing can vary +=10%,.

BASIC TIMES
Double Operand) Basic Time (» sec)
Instruction : MOS Parity MOS
ADD, SUB, BIC, BIS 3.17 3.33
CMP, BIT 2.91 3.07
MoV 291 - 3.07
Single Operand .
CLR, COM, INC, DEC, NEG, ADC, SBS 2.65 281
ROR, ROL, ASR, ASL 2.91 3.07
TST 2.39 2.55
SWAB 2.91 3.07
All Branches (branch true) . 2.65 2.81
All Branches: (branch false) : 1.87 2.03
Jump Instructions
JMP)) 0.91 0.88
JSR 3.27 3.27
Control, Trap, and Miscellaneous Instructions
RTS 4.11 4.43
RTI, RTT . 5.31 5.79
Set N,Z,v,C 2.39 2.55
Clear N,Z,v,C 2.39 2.55 .
HALT : 1.46 1.62 .
WAIT 2.13 2.29
RESET 100 ms 100 ms
10T, EMT, TRAP, BPT 7.95 8.49

B-1

ADDRESSING TIMES

ADDRESSING FORMAT: ' Time (usec)
SRC Time* DST.Time**
Parity Parity

Mode | Description - Symbolic MOS | MOS | MOS | MOS

0 REGISTER " R 0 0 0 0

1 REGISTER @Ror(R) | 0.94° 1.10 | 148 1.67
DEFERRED :

2 AUTO-INCREMENT™ . (R)+ 120 136|176 1.95

3 AUTO-INCREMENT @(R)+ 266 298 | 3.20 3.55
DEFERRED '

4 AUTO- —(R) '1.20 1.36 |1.76 . 1.95

' DECREMENT .

5 AUTO- @—(R) 2.66- 298 ‘| 3.20. 3.55-
DECREMENT .
DEFERRED

6 INDEX X(R) 292 3.24 | 346 3381

7 INDEX @X(R) 438 4.86 | 492 543 .
DEFERRED

* For Source time, add.the following for odd byte addressing: 0.52
(usec) '
** For Destination time, modify as follows:
a) Add for odd- byte addressing with a non-modifying instruction: :
0.52 (usec) -)
b) Add for odd byte addressing with a modifying instruction modes
1-7: 1.04 (usec))
c) Subtract for all non-modifying instructions except Mode O:
MOS: 0.54 Parity MOS: 0.57 (usec)
_d) Add for MOVE instructions Mode 1-7: 0.26 (usec)
e) Subtract for JMP and JSR instructions, modes ‘3, 5, 6, 7: 0.52
(usec)

B.2 PDP-11/34 CENTRAL PROCESSOR

INSTRUCTION. EXECUTION' TIME-

The execution time for an instruction depends on the instruction itself,
the modes of addressing used, and the type of memory being referenced.
In the most general case, the Instruction Execution Time is the sum of
a Source. Address' Time; a-Destination Address Time, and an Execute,
Fetch Time. .

Instr Time = SRC Time 4 DST Time + EF Time

Some of the instructions require only some -of these times, and are so
noted. All Timing information is in microseconds, unless otherwise noted.
_Times are typical; processor timing can vary. = 10%.

BASIC INSTRUCTION SET TIMING
Double Operand -

Instr Time = SRC Time + DST Time -+ EF Time
Single Operand)
Instr Time = DST Time 4 EF-Time
Branch, Jump, Control;, Trap, & Misc:
Instr Time = EF Time .

NOTES

1) The times specified apply to both word and
byte instructions whether odd or even byte.

2). Timing is given without regard for NPR or
BR servicing: i

3) If the memory management is enabled exe- .
cution times increase by 0.12 usec for each
memory cycle used.

4) All timing is based on memory with the fol-
lowing performance characteristics:

Memory - Max Access’ Max Cycle -
Time Time
Core (MM11-DP) .575 usec 1.0 usec
MOS (MS11-JP) .700 .700

B-3

l. SOURCE ADDRESS TIME

Source Memory Core MOS
Instruction Mode Cycles (MM11-DP) (MS11-JP)
0 0 0.00 usec .0.00 usec
1 1 1.13 1.26
2 1 1.33 1.46
Double Operand 3 2 2.37 2.62
. ’ 4 1 1.28 141
5 2 2.57 2.82
6 2 2.57 2.82
7 3 3.80 4.18
Il. DESTINATION TIME
Destination Memory
Instruction - Mode Cycles Core MOS
0 0 0.00 0.00
Modifying Single 1 2 1.62 1.74
Operand 2 ‘2 1.77 1.89
and 3 3 2.90 3.15
Modifying Double 4 2 1.77 1.89
Operand 5 3 3.00 3.25
(Except MOV, SWAB, 6 3 - 3.10 3.35
ROR, ROL ASR ASL) | 7 4 4.29 4.66
(0] 0 0.00 0.00
1 1 0.93 0.93
2 1 0.93 0.93
MOV 3 2 2.17 2.29
4 1 1.13 1.13
5 2 2.22 2.34
6 2 2.37 2.49
7 3 3.50 3.75
] 0 0.00 0.00
1 1 0.95 0.95
2 1 1.13 1.26
MTPS. 3 2 2.26 2.51
4 1 1.13 1.26
5 2 2.26 2.51
6 2 2.44 2.69
7 3 3.57 4.20

B-4

Destination Memory

Mode Cycles Core MOS
0] 0 0.00 0.00
1 1 0.64 0.64
2 1 0.64 0.64
.MFPS 3 2 1.95 2.08
4 1 0.82 0.82
5 2 1.95 2.08
6 2 2.13 2.26
7 3 3.26 3.51
Ill. EXECUTE, FETCH TIME
DOUBLE OPERAND.
Memory
Instruction Cycles Core MOS
ADD, SUB, CMP, BIT, 1 2.03 2.16
BIC, BIS, XOR)
MOV 1 1.83 1.96
SINGLE OPERAND
CLR, COM, INC, DEC, 1 - 1.83 1.96
ADC, SBC, TST .
SWAB, NEG 1 2.03 2.16
ROR, ROL, ASR, ASL 1 2.18 2.31
MTPS 2 2.99 3.12
MFPS 2 1.99 2.12
EIS INSTRUCTIONS (use with DST times) .
MUL 1 - *8.82. #*8.95
. DIV (overflow) 1 2.78 291
12.48 12.61
ASH- 1 *%4.18 *%4.31
ASHC 1 *%4,18 *%4.31
MEMORY MANAGEMENT INSTRUCTIONS -
MFPI (D) 2 3.07 3.14
MTPI (D) 2 3.37 3.34

* Add 200ns for each bit transition in serial data from LSB to MSB

% Add 200ns per shift

B-5

Destination - Memory
Instruction Mode Cycles Core MOS
0 0 0.00 0.00
_ 1 2 1.42 1.54
SWAB, ROR, ROL, 2 2 1.57 1.69
ASR, ASL 3 3 2.70 2.95
4 2 1.62 1.74
5 3 2.80 3.05
6 3 2.90 3.15
7 4 4.09 4.46
0 0 0.00 0.00
1 1 1.13 1.26
Non-Modifying 2 1 1.28 141
Single Operand and 3 2 242 2.67
Double Operand 4 1 1.33 1.46
5 2 2.52 2.77
6 2 2.62 2.87
7 3 3.80 4.18
0 0 0.00 0.00
1 1 0.98 1.24
2 1 1.32 1.44
MFPI (D) 3 2 2.20 2.45
MTPI (D) 4 1 1.18 1.44
5 2 2.20 2.45
6 2 2.40 2.65
7 3 3.59 3.96
BRANCH INSTRUCTIONS
. ' Memory
Instruction Cycles Core MOS
BR, BNE, BEQ, (Branch) 1 2.18 2.31
BPL, BMI, BVC, BVS, BCC,
BCS, BGE, BLT, BGT,
BLE, BHI, BLOS,
. BHIS, BLO))
(No Branch) 1 1.63 1.76
SOB (Branch) 1 2.38 2.51
(No Branch) 1 1.98 2.11

B-6

JUMP INSTRUCTIONS
Destination Memory

Mode Cycles Core MOS

1 1 1.83 1.96

2 1 2.18 2.31

JMP 3 2 3.12 3.37

4 1 2.03 2.16

5 2 3.07 3.32

6 2 3.07 3.32

7 3 4.25 4.78

1 2 3.32 3.44

2 2 347 3.59

JSR 3 3 4.40 4.65

. 4 2 3.32 3.44

5 3 4.40 4.65

6 3 4.60 4.85

7 4 5.69 6.06

Memory-

Instruction Cycles Core MOS

RTS 2 3.32 3.57

MARK 2 4.27 4.52

RTI, RTT 3 4.60 4.98

Set or Clear C,V,N,Z 1 2.03 2.16

HALT 1 1.68 1.81

WAIT 1 1.68 1.81
RESET 1 100 msec 100 msec

I0T, EMT, TRAP, BPT 5 7.32 7.7

LATENCY

Interrupts (BR requests) are acknowledged at the end of the current in-
struction. For a typical instruction, with an instruction execution time of
4 usec, the average time to request acknowledgement would be 2 usec.

Interrupt service time, which is the time from BR acknowledgement to
the first subroutine instruction, is 7.32 usec, max. for core, and 7.7 usec
for MOS.

NPR (DMA) latency, which is the time from request to bus mastership
for the first NPR device, is 2.5 usec, max.

B-7

B.3 FP11-A FLOATING POINT PROCESSOR

INSTRUCTION EXECUTION TIME

The execution time of an FP11-A floating point instruction is dependent
on the following:

1. Type of instruction

2. Type of addressing mode specified

3. Type of memory ‘

4. Memory management facility enabled or disabled

In: addition to the above the execution time of certain iVnstructions,such
as Add, are dependent on the data.(refer to notes 1 through 5 pageB-12).

Table B-1 provides the basic instruction times for mode 0. Tables B-2
through B-6 show the additional time required for instructions other
than mode 0. For example, to calculate the execution time of a MULF
(single-precision multiply) for mode 3 (autoincrement deferred) with the
result to be rounded, proceed as follows:

1. Refer to Table B-1 which gives MULF, Mode O execution time of 13.4
useconds. :

2. Refer to note 1 as specified in the notes column of Table B-1. Note 1
specifies an additional 0.84 useconds is to be added if rounding mode
is specified. This yields 14.24, useconds.

3. The modes 1-7 column of Table B-1 refer to Table B-2 to determine
the additional time required for mode 1 through 7 instructions. In
xthis example, :-mode .3 specifies an additional 3 useconds for single-
precision yielding 17.24 useconds.

All timing information is in microseconds unless otherwise noted. Times
are typical; processor timing can vary + 10%,.

NOTE
~Add .13 useconds for each memory cycle if
MS11-JP MOS memory is utilized.
Add .12 useconds for each DATI memory cycle
~ if*'memory ‘management is enabled.

TABLE B-1 FP11-A INSTRUCTION EXECUTION TIMES

Instruction

Mode O

(Reg. to Reg.) Notes

Modes 1 thru 7

LDF
LDD
LDCFD
LDCDF
CMPF
CMPD
DIVF
DIVD
ADDF
ADDD
SUBF
SUBD
MULF
MULD
MODF
MODD

4.0
4.0

o
00

N =
NNNNOwoaw;
O W TTUTOY W O1O 00

=N
NOow
NP

24.7

[y

P b bt b e b e e

NMNON N

ww

-

Use Table B-2 to determine
memory-to-register times for
these instructions

STF.
STD
STCDF

STCFD

CLRF
CLRD

NN
[N

Use Table B-3 to determine
memory-to-register times for
these instructions

ABSF
ABSD
NEGF
NEGD
TSTF
 TSTD

Use Table B-4 to determine

-memory-to-memory times for

these instructions

LDFPS
‘LDEXP
LDCIF
LDCID
LDCLF
LDCLD

mooubdu|loocoovuo|oon

ot bt et et

-

IS

Use TableB-5 to determine
memory-to-register times for -
these instructions

STFPS
STST

STEXP
STCFI

STCDI
STCFL
STCDL

PEBRONN|NNNNAN[WO vy

auuuro®

ooy

Use Table B-6 to determine
register-to-memory times for
these instructions

B-9

TABLE B-1 (Cont.)

: ‘Mode 0 :
Instruction (Reg. to Reg.) - Notes Modes 1 thru 7

The following instructions do
‘not reference memory

CFCC .2.0

SETF 2.2 . .
SETD 22 Execution times
SETI 2.2 are as shown.
SETL 2.2

TABLE B-2 FLOATING' SOURCE FETCH TIME

Memory Cycles Time (us)

Addressing Single Double Single Double
. Mode Precision Precision Precision Precision
1 2 4 2.00 4.20
2 2 4 220 - 4.40
2 Immediate 1 1 1.00 1.00
3 3 5 3.00 5.20
4 o2 4 2.20 4.40
5 3 5 3.00 5.20
6 3 5 3.20 540
7 4 6 4.20 6.40

TABLE B-3 FLOATING DESTINATION STORE TIME

.- *Memory Cycles Time (xs)

Addressing Single - Double -Single . Double
- Mode Precision . "Precision Precision Precision
1 .2 4 . 1.38 L1294
2 .2 4 -1.56 3.12
2 Immediate 1 1 0.60 -0.60
3 3 5 2.38 3.94
4 -2 4 1.56 3.12
5 3 5 238 3.94
6 3 5 .2.56 412
7 4 6 3.56 5.12

B-10

" TABLE B-4 “FLOATING DESTINATION FETCH-AND STORE TIME

. Memory Cycles Time (us)
Addressing Single - Double Single Double
‘Mode Precision Precision |- Precision Precision
1 2 2 1.42 1.42
2 2 2 1.60 1.60
2 Immediate 2 2 1.60 1.60
3 3 3 242 242
4 2 2 1.60 1.60
5 3 . 3 2.60 2.60
6 3 3 260 2.60
7 4 4 3.60 3.60

TABLE B-5 SOURCE -‘FETCH TIME

' Memory Cycles - Time (us)
Addressing Short Long Short Long
Mode Integer Integer Integer " Integer
1 1 2 1.00 : 1.18
2 1 2 1.18 1.36
2 Immediate 1 1 1.18 1.18
3 2 ‘3 2.00 2.18
4 1 2 1.18 1.36
5 2 3 2.00 -2.18
6 2 3 .2.18 . 2.36
7 3 4 3.18 3.36

T

TABLE B-6 ~DESTINATION STORE TIME

Memory Cycles ~ Time (us)
Addressing Short Long Short " Long
Mode Integer Integer Integer Integer
1 1 2 0.60- 1.38
2 1 2 0.96 1.68
2 Immediate 1 1 096" 0.96
3 B 2 3 1.60 2.38
4 1 2 0.96 1.68
'5 2 3 1.60 2.38
6 2 3 1.78 2.56
7 3 4 2.78 3.56

B-11

NOTES
1. Add 0.84 yseconds when in rounding mode (FT = 0).

2. Add 0.24 useconds per shift to align binary points and 0.24 yseconds
per shift for normalization. The number of alignment shifts is equal
to the exponent d:fference for exponent differences bounded as fol-
lows:

1 <|EXP (AC)—EXP (FSRC)]S 24 single precision
1 <IEXP (AC)—EXP (FSRC)| < 56 double precision

‘The number of shifts required for normalization is equivalent to the
number of leading zeroes of the result.

3. Add .24 useconds times the exponent of the product if the exponent
of the product is:)

1 < EXP (PRODUCT) < 24 . single-precision
1 < EXP (PRODUCT) < 56 double-precision

Add 0.24 aseconds per shift for normalization of the fractional result.
The number of shifts required for normalization is equnvalent to the
number of leading zeroes in the fractional resuit.

4. Add 0.24 useconds per shift for normalization of the integer being
converted to a floating point number. For positive integers, the num-
ber of shifts required to normalize is equivalent to the number of
-leading zeroes; for negative integers, the number of shifts required
for normalization is equivalent to the number of leading ones.

5. Add 0.24 useconds per shift to convert the fraction and exponent to
integer form, where the number of. shifts is equivalent to 16 minus
the exponent when converting to short integer or 32 minus the ex-
ponent when converting to long integer for exponents bounded as
follows:)

1 < EXP (AC) < 15 short integer
1 < EXP (AC) £ 31 long integer

-B-4 PDP-11/55, 11/45 CENTRAL PROCESSORS
INSTRUCTION EXECUTION TIME

The execution time for ‘an instruction depends on the instruction itself,
the modes of addressing used, and the type of memory being referenced.
In the most general case, the Instruction Execution Time is the sum of a
Source Address Time, a Destination Address Time, and an Execute,
Fetch Time.

Instr Time = SRC Time -4 DST Time + EF Time

Some of the instructioris require only some of these times, and are so
noted. Times are typical; processor timing, with core memory, may vary
+159%, to —10%.

B-12

BASIC INSTRUCTION SET TIMING

Double Operand

all instructions,

except MOV: Instr Time = SRC Tme -+ DST Time

MOV Instruction: Instr Time = SRC Time + EF Time -

Single Operand

+ EF Time

all instructions: Instr Time = DST Time 4 EF Time or

Branch, Jump, Control, Trap & Misc

all instructions: Instr Time = EF Time
USING THE CHART TIMES

Instr Time = SRC Time - EF Time

To compute a particular instruction time, first find the instruction “EF"
Time: Select the proper EF Time for the SRC and DST modes. Observe
all “NOTES" to the EF Time by adding the correct amount to basic EF

number.

Next, note whether the particular instruction requires the inclusion of
SRC and DST Times, if so, add the approprlate amounts to correct EF

number.

NOTES

1. The times:specified generally apply to Word instructions.

In most

cases .Even Byte instructions have the same times, with some Odd

Byte instructions taking longer. ‘All-exceptions are npted.

2. Timing is given without regard for NPR or BR servicing. Core mem-
. ory is assumed to be located within the CPU mounting assembly.

3. If the Memory Management option is installed and operating, instruc-
tion execution times increase by .09 usec for each memory cycle

used.

4. All times are in microseconds.

SOURCE ADDRESS TIME

SRC Time
Source 8K 16K Memory

Instruction Mode Bipolar Core Core Cycles
0 .00 .00 .00 0
1 .30 .83 .89 1
2 .30 .83 .89 1
Double 3 .75 181 1.92 2
Operand 4 .45 .98 1.04 1
5 .90 1.96 2.07 2
6 .60 1.73 1.86 2
7 1.05 271 2.89 3

B-13

DESTINATION ADDRESS TIME

DST Time (A) -

DST 8K 16K Memory

Instruction Mode | Bipolar Core Core Cycles
0 .00 .00 .00 -0
1 .30 .83(B) .86(B) 1
Single Operand 2 .30 .83(B) .86(B) 1
and Double Oper- 3 .75 1.81(B) 1.92(B) 2
and (except MOV, 4 45 .98 1.04 1
MTP, JMP, JSR) 5 .90 1.96 2.07 2
: 6 .60 1.73(B) 1.86(B) 2
7 1.05 2.71(B) 2.89(B) 3

NOTE (A): Add .15 usec for odd byte instructions, except DST Mode O.
NOTE (B): For 8K core, add .07 usec if SRC Mode = 1-7; for 16K core,
add .085 usec if SRC Mode = 1-7.

B-14

s1-9

EXECUTE, FETCH TIME
Double Operand

Instruction
SRC Mode O SRC Mode 1-7 SRC Mode 0 to 7
DST Mode O DST Mode O DST Mode 1 to 7
(Use with EF Time ET Time EF Time
SRC Time I 8K 16Kl Mem | 8K 16K| Mem I 8K 16K| Mem
and DST Time) | Bipolar Core Core | Cyc | Bipolar Core Core | Cyc | Bipolar Core Core | Cyc
ADD, SUB, .30 .90 .97 1 .45 1.05 1.12| 2 .75 1.82 181 2
BIC, BIS (D) © © ® (E) (E)
CMP, BIT .30 .90 .97 1 .45 1.05 1.12| 1 45 1.13 1.19] 1
(D) © ©) (D) (E) (E)
XOR .30 .90 .97 1 —_ —_ —_ .75 1.82 181 | 2
(D) © ©) ' ’

NOTE (C): For 8K, add .23 usec if DST is R7; for 16 K, add .22 psec if DST is R7.

NOTE (D): Add .3 usec if DST is R7.
NOTE (E): For 8K, add .23 usec if DST is R7, add .08 usec if DST is odd byte and not R7; for

DST is odd byte not R7.

16K, add .65 psec if

91 49

Doui)le Operand (Cont.)

. - EF Time EF Time — -
Instruction ! (SRC MODE = 0) I | (SRC MODE = 1-7) I
(Use with DST DST 8K 16K 8K 16K Memory
SRC Time) | Mode Register | Bipolar Core Core | Bipolar Core Core Cycles
0 0-6 .30 9 .97 45 1.05 1.12 1
0 7 .60 1.13 1.19 | .75 1.28 1.34 1
1 0-7 .75 2.00 2.13 .75 1.95 2.09 2
. 2 0-7 75 2.00 2.13 .75 1.95 2.09 2
MOV 3 0-7 1.20 2.98 3.16 1.20 3.05 3.25 3
4 0-7 .90 2.15 2.28 .90 2.03 2.16 2
5 0-7 1.35 3.13 3.31 1.35 3.13 3.31 3
" 6 0-7 1.05 2.90 3.09 1.20 3.05 3.25 3
7 0-7 1.50 3.88 4.13 1.65 4.03 4.28 4

L1-9

Single Operand

DST MODE = 0 DST MODE 1 to 7
EF Time EF Time .
Instruction I 8K 16K] Memory l 8K 16K| Memory
. (Use with DST Time) Bipolar Core Core | Cycles Bipolar Core Core | Cycles
CLR COM, INC, DEC, ADC,
SBC, ROL, ASL, SWAB,
SXT .30 .90 .97 1 .75 1.82 1.81 2
6)) @) (&)
NEG .75 1.28 1.34 1 1.05 2.10 1.99 2
: (F R
TST .30 .90 .97 1 45 1.13 1.19 1
) (G) (G) .
ROR, ASR .30 .90 .97 1 .75 1.82 1.81 2
) @ @) (H) (H)
ASH, ASHC .75 1.28 1.34 1 .90 1.43 1.49 1
O] O] M m m m
NOTE (F): Add .12 psec if odd byte.
NOTE (G): For 8K, add .23 usec if DST is R7; for 16K, add .22 usec if DST is R7.
NOTE (H): Add .15 psec if odd byte.
NOTE (I): Add .15 psec per shift.

NOTE (J):

Add .30 psec if DST is R7.

Single Operand. (Cont.)

Instruction 8K 16K Memory
(Use with SRC Times) Bipolar Core Core- | Cycles
MUL 3.30 3.83 3.89 1
DIV
by zero .90 143 . 1.49 1
shortest 7.05 7.58 7.64 1 -
longest 855 9.08 9.14 1
- 8K 16K Memory
Instruction Bipolar Core Core- | - Cycles
MFPI 1.05 2.18 231 2 use
. » with:
MFPD 1.05 2.18 231 2 SRC
| times
Instruction Time
DST 8K 16K l Memory .
Instruction | Mode Bipolar Core Core | Cycles
MTPI (o] .90 . 203 2.16 2
MTPD 1 1.20 293 3.13 3
2 1.20 2.93 3.13 3
3 1.65 4.03 4.28 4
4 1.35 3.01 3.19 3
5 1.80 4.11 4.35 4
9 1.65 4.03 a2e A
7 2.10 5.01 5.32 5
Branch Instructions
Instr Time Instr Time
(Branch) (No Branch) .
8K 16K 8K 16K | Memory
Instruction Bipolar Core Core | Bipolar. Core Core| Cycles
BR, BNE, BEQ, .60 1.13 1.18 | .30 .90 .98

BPL, BMI, BVC,
BVS, BCC, BCS,
BGE, BLT, BGT,
BLE, BHI, BLOS,
BHIS, BLO

SOB .60

113 1184 .75 1.28 1.32 1

B-18

Jump Instructions

Instr Time
DST l] 8K 16K| Memory
Instruction Mode | Bipolar . Core Core Cycles -
1 .90 1.43 149 | 1
2 .90 1.43 1.49 1
3 1.20 2.26 2.37 2
JMP 4 .90 1.43 1.49 1
5 1.35 2.41 2.52 2
6 1.05 2.18 231 2
7 1.50 3.16 3.34 3
1 1.50 2.63 2.76 2
2- 1.50 2.63 2.76 2
3 1.80 346 3.64 3
JSR 4 1.50 2.63 . 2.76 2
5. 1.95 3.61 3.79 3
6 1.65 3.38 3.58 3
7 2.10 4.36 4.61 4
Control, Trap & Miscellaneous Instructions
Instr Time-
8K 16K Memory-
Instruction Bipolar Core Core Cycles
RTS 1.05 2.11 2.22 2
'MARK 2.03 2.16 2
RTI, RTT 1.50 3.16 3.34. 3
SETN,Z V,C
CLR, N, Z, V, C 1.13 1.28
HALT 1.05 1.58 1.64 0
WAIT~ .45 A5 0
WAIT Loop o
for a BR.is
.3 usec.
‘RESET 10ms . 10ms 10ms
10T, EMT, 2.40 5.08 - 5.27 '5
TRAP, BRT
SPL 1.13 1.19 . 1
INTERRUPT 2,25 4.95 . 5.07 4
First Device -

B-19

LATENCY

Interrupts (BR requests) are acknowledged at the end of the current
instruction. For a typical instruction execution time of 3 usec, the aver-
age time to request acknowledgement would be one-half this or 1.5 usec.
The worst case (longest) instruction time (Negative Divide with SRC
Mode 7) and hence, the longest request acknowledgement would be
12.62 usec max with 16K core (11.79 psec with 8K core and 9.00 usec
with Bipolar).

The Interrupt service time, which is the time from BR request acknowl-
“edgement to the fetch of the first subroutine instruction, is 5.44 usec
max with 16K core, 4.95 usec with 8K core, and 2.25 usec with Bipolar.

Hence, the total worst case time from BR request to begin the fetch of
the first service routine instruction is:

) Bipolar 8K Core 16K Core
Normal : 11.25 - 16.74 18.41
Memory Management
Operating 11.70 . 17.19 18.96

The total average time for BR request to begin the fetch of the first ser-
vice routine instruction is:

Bipolar 8K Core 16K Core

Normal 3.95 8.45 : 9.30
Memory Management
Operating 4.40 8.90 9.75

NPR Latency is 3.5 usec worst case.

B-20

B-5 FP11-C FLOATING POINT PROCESSOR
INSTRUCTION EXECUTION TIME-

Floating Point instruction times are.calculated in a manner similar to the
calculation of CPU instruction timing. Due to the fact that the FP11-C is
a separate processor operating in parallel with the main processor
however, the calculation of Floating Point ‘instruction times must take
this parallel processing or overlap into account. The following is a
description of the method used to calculate the effective Floating Point
instruction execution times.

DEFINITIONS

Preinteraction CPU time required to decode a Floating Point
instruction OP Code and to store the general
register referred to in the Floating Point in-
struction in a temporary Floating Point regis-
ter (FPR). This time is fixed at 450 ns.

Address Calculation CPU time required to calculate the address
of the operand. This time is dependent on the
addressing mode specified. Refer to Table
B-7.

Wait Time CPU time spent waiting for completion by the
Floating Point Processor of a previous Float-
ing Point instruction in the case of Load Class
instructions.- For Store Class instructions, the
Wait Time is the summation of time during
which the Floating Point completes a previous
Floating Point instruction and Floating Point
execution time for the store class instruction. -
Wait Time is calculated as.follows:-

Load Class Instructions:

Wait Time = [Floating Point execution time
(previous FP instruction)] — [Disengage and
Fetch Time (previous FP instruction)] — [CPU
execution time for interposing nonfloating
point instruction] — [Preinteraction time] —
[Address Calculation Time]. If the result is
<0 the Wait Time is 0.

Store Class Instructions:

Wait Time = {[Floating Point execution time
(previous Floating Point instruction)] — [CPU
execution time for interposing nonFP instruc-
tion] — Disengage and Fetch time (previous.
FP instruction)] — [Preinteraction]}* 4 Float-
ing Point execution time] — [Address Calcula-
tion time]. If Wait Time calculation result is
<0 the Wait Time is 0.

* If result of calculation in {) is. <0 then
it becomes 0.

B-21

Resync Time

Interaction Time

Argument Transfer Tirme

Disengage and Fetch Time

Floating Point
Execution Time

Effective’ Execution Time

Table B-8

If the CPU must wait for the Floating Point
Processor (i.e., Wait Time = 0), an additional
450 ns must be added to the Effective Exe-
cution time of the instruction. If Wait Time =
0 then Resync Time = 0.

CPU time required to actually initiate Floating
Point Processor operation.

CPU time required to fetch and transfer to
the Floating Point Processor the required
operand. This time is 300 ns X the number
of 16-bit words read from Memory (Load
Class Floating Point Instructions), or 1200 ns
X the number of 16-bit words written to
Memory (Store Class Instructions).

CPU time required to fetch the next instruc-
tion from Memory. This time is 300 ns.

Time required by the Floating Point Processor
to complete a Floating Point instruction once
it has received all arguments (Load Class
lnstructaons) Execution times are contained
in Table B-8. /

Total CPU time required to execute a Floatingv
Point instruction. :

Effective Execution Time — Preinteraction +
Address Calculation + Wait Time 4 Resync
Time 4 Interaction Time 4 Argument Trans-
fer + Disengage and Fetch.

Table B-7 Address Calculation Times

AAdAdvace

AT COS

Mode * Calculation Time

NOUAWN=O

0 nsec
300
300
600
300
750
600
1050

FP11-C Execution Times

LDF
LDD

ADDF
ADDD

MIN MAX TYP

360 nsec 360 nsec
360 360 . ;
900 2520 950

900 4140 980

o

B-22

Table B-8 FP11-C Exequtioﬁ Times (Cont.)

MIN MAX TYP
SUBF 900 1980 1130
SUBD . 900 4140 1160
MULF 1800 3440 2520
MULD 3060 6220 4680
DIVF . 1920 6720 3540
DIVD 3120 14400 6000
MODF 2880 5990
MODD - 3780 9770
LDCFD 420 420
LDCDF 540 540
STF* 0
STD* 0
CMPF . 540 1080
CMPD 540 1080
STCFD* 720 720 720
STCDF* 540 ' 720 540
LDCIF 1260 1440 1440
LDCID 1260 1440 1440
LDCLF 1260 1980
LDCLD 1260 1980
LDEXP 540 900
STCHI* 1200 1620
STCFL* 1260 2160
STCDI* 1260 1620
STCDL* 1260 2160
STEXP* . 360 360

MO Not MO

CLRF 180 2150
CLRD 180 4350
NEGF 360 2400
NEGD 360 : 2400
ABSF 360 2400
ABSD 360 . 2400
TSTF 180 , 180
TSTD 180 180
LDFPS 180 0
STFPS* 0
STST* 0
CFCC 0
SETF 180
SETD : 180
SETI 180
SETL 180

* Store Class Instructions

B-23

Load Class Instructions are those which do not deposit results in a
memory location.

Execution of a Load Class Floating- Point instruction by the Floating
Point occurs in parallel with CPU operation and hence can be overlapped.
Figure B-1 gives a simplified picture of how a Load Class Floating Point
instruction is executed. ;

Store Class Instructions are those which store a result from the Floating
Point into a memory location. Execution of a Store Class Instruction
by the Floating Point Processor must occur before the result can be
stored, hence parallel processing cannot occur for Store Class Floating
Point Instructions.

CPU

. T Load Class Instruction
| is fetched. This occurs
| during previous
| instruction execution.

FPP
T

I

I

I

I

|

Effective
Execution Time
starts here

T Instruction is decoded.

Contents of CPU General
Register are transferred
to temporary FPP Reg-
ister.

I FPP is idle.
No Floating Point
intervention yet

Address of operand
is calculated.
Floating Point
must respond
(i.e., it must be
finished with
nrior instruction
by here

or CPU will wait

‘CPU starts FPP execut-
-ing this instruction (i.e.,
interacts with FPP),

FPP interacts with CPU.

CPU is finished

CPU passes arguments

_FPP accepts arguments

with FPP; FPP to FPP from CPU.
will now execute | A
instructions
on its own/ Fetch next instruction. FPP

4 A
Effective executes
Execution Time) : .
ends here instruction.

—L<—Floating Point is fin-
ished and ready to
accept next instruc-
tion.

Figure B-1 Load Class Floating Point Instruction.

B-24

CPU
-

-
v
-

Store Class Instruction
is fetched. This occurs
during previous instruc-
Effective tion execution.
Execution Time _| -
starts here—"_ | Instruction is decoded. | FPP is idle.
Contents of CPU
General Register are
stored in Temporary
‘FPP Register.

|m = = = =]

Address at which result || FPP begins execution-—
to be stored is ca|cu does not respond until
lated execution is complete.
FPP must - .
respond or
CPU will watt/| CPU waits for FPP to
| complete execution.
4
| Since CPU entered Wait
. | State, an additional 450
| ns Resync overhead is

L<FPP responds.

| encountered. | 7
T CPU interacts with r-;PP. FPP fnteracts with CPU.
T CPU stores ' -hFPP basses

result . ' result to
in Memory. : CPU to
store in -
Memory.
T cpu tetches T

Effective next instruction. {FPP is idle.
Execution Time | 1
ends here —

Figure B-2 Store Class Floating Point Instruction.

Figures B-1 and B-2 show, respectively, how timing associated with a
typical Load Class and Store Class instruction is derived.

Figures B-3 and B-4 show, pictorially, how Effective Execution Times for
actual Floating Point instructions in a program are calculated. Note that
Effective Execution Times are dependent on previous Floating Point
instruction.

B-25

Referencing Figure B-3, a sample‘calculation of Effective time would be:
for MULF (RO), AC1

Effective Execution Time is the summation of the following:

Preinteraction Time) 450 ns
Address Calculation Time (Mode 1 from Table B-7) 300 ns
-Wait Time (Since FPP is idle, Wait = 0) 0 ns
Resync Time (Since Wait = 0, Resync = 0) 0 ns
Interaction Time 300 ns
Argument Transfer Time (Transfer 2 words @ 300 ns/word) 600 ns
Disengage and Fetch Time 300 ns

Effective Execution Time : 1950 ns

for LDF X(R3),ACO (Ref. Figure B-3)
First we calculate Wait Time: - ,
-Wait Time = [Floating Point Execution (previous

FP instruction) (MULF)] - 1800 ns
— [Disengage and Fetch Time (previous

FPT instruction)] -~ 300 ns
— [Execution Time of interposing

nonFPT instruction. (SOB)] ~ 750 ns
— [Preinteraction Time] - 450 ns
— [Address Calculation (Mode 6 from

Table B-7)] . — 600 ns

— 300 ns

Since calculation resulted in a negative
number, Wait:Time = 0,

... so Effective Execution Time is the summation of the following:

Preinteraction Time 450 ns
Address Calculation Time (Mode 6 from Table B-7) 600 ns
Wait Time (From above calculation) 0 ns
Rasyne Time (Since Wait Time — 0, Recync — 0) 0 ne

". Interaction Time 300 ns
- Argument Transfer Time (2 words @ 300 ns/word) 600 ns
Disengage and Fetch Time ' 300 ns
Effective Execution Time 2250 ns

B-26

CPU TIME , FPP TIME

-

MULF(RO), ACI - IR DECODE
1
SETUP
PRE INTERACTION RS
FPT REG ;
ADDRESS !
ADDRESS CALCULATION CALC !
{MODE 1))
INTERACTION INTERACTION
. EFFECTIVE EXECUTION= 1950 nsec
ARGUMENT
ARGUMENT TRANSFER TRANSFER
DISENGAGE & FETCH | R st
508 RI]
i EXECUTIVE
[NON FLOATING POINT INSTRUCTION) & FETCH
* NEXT INST. FLOATING
ESECUTION
4 {MULF)
* {OF x{R3),ACO 1 1 oecope
SET UP
PRE INTERACTION TEMP
FPT REG.
ADDRESS
ADDRESS CALCULATION +
(MODE 6}
EFFECTIVE EXECUTION=2250 nsec 1 i
INTERACTION INTERACTION
1 1
ARGUMENT TRANSFER { ?QEHQ“FE,'{"
: T DISENGAGE ;ubo'ﬁrmc
& FETCH
DISENGAGE & FETCH & FETCH BT N
1 | (LoF)
ADDF AC2, AC! IR DECODE T
+ i
SET UP |
PREINTERACTION e !
| FPTREG 1
- EFFECTIVE EXECUTION=1050nsec
INTERACTION INTERACTION
T oisencace
DISENGAGE & FETCH & FETCH
NEXT INST.
T FLOATING
POINT
EXECUTION
{ADDF)
J-—_l_

Figure B-3 Calculation . of Effective Execution Times for
Load Class Instructions

B-27

SICFI ACO, X{R2) | IR DECODE
~ PREINTERACTION SETSP
: FPT REG i
ADDRESS .
ADDRESS catc FLOnTING
CALCULATION - | (MODE 6) EXECUTION
[STCFI)
WAIT
T . 1
EFFECTIVE EXECUTION=3900 n sec RESYNC '
1
1 S
T
INTERACTION {
STORE
ARGUMENT Resuurs
TRANSFER. MEMORY
DISENGAGE \
DISENGAGE
& FETCH
& FETCH - | NEXT.INST !
DIVF ACI, ACO T moeoore '
PRE INTERACTION STuP !
| #PTREG i
EFFECTIVE EXECUTION= 1050 nsec INTERACTION INTERACTION
1 ' 4
DISENGAGE DISENGAGE
& FETCH & FETCH
FLOATING
POINT
EXECUTION
[DNF)

Figure B-4 Calculation of Effective Execution Time for
Store Class Instructions

B-28

ADC(B) ..evviiieniiienn 4-19
ADD ... i 4-27
ASL(B) .o 4-16
ASH ..o 7-17
ASHC....oviiieii s 7-18
ASR(B). -t v ivreeiei e 4-13
BCCcooviiii 4-40
BCS ... 4-43
BEQ .. i 4-37
BGE ... 4-45
BGT ... 4-47
BHI ... 4-50
BHIS........ ool 4-52
BICB) «.covvvvii e 4-31
BISB) ..o 4-32
BIT(B) .ovvvviiieniie 4-30
BLT ..o 4-46
BLE ... 4-48
BLO ... 4-53
BLOSl 4-51
BMI .. 4-39
BNE 4-36
BPL .o 4-38
BPT o 4-65
BR....ooi 4-35
BVCo 4-40
BVS .. 4-41
CLR(B) ..o, 4-6
CMP(B)cvvveviiinnnn. 4-26
"COM(B) oo 4-7
.COND.CODES 4-75
Y
DECB) ..ccvvviviiininnnn. 4-9
DIV 7-16
EMT ... 4-63
HALT ... 4-72

C-1

‘APPENDIXC

INSTRUCTION INDEX.
INC(B) oo, 4-8
o} BT 4-66
IMP o 4-54
ISR oo 4-56
MARK oot 4-59
MFPD o', 8-18,10-19
MFPS(11/34) 4-22
MEPL. ..o 8-18,10-18
MOV(B) +'vveeeeannnnn.. 4-25
MTPD oneicnnin, 8-19,10-20
MTPL. oo 8-19,10-20
MTPS(11/34) ... 4-22
MUL .« 7-15
NEG(B) +.'vevveeannnnn.. 4-10
NOP ... oo 4-75
RESET ..., 4-74
ROL(B). .« e, 4-16
ROR(B) «'uveeeeennnnnnnnn. 4-15
BTl o 4-67
RTS oot 4-58
RTT oot 4-68
SBC(B). e 4-22
SOB ..ot 4-61
SPL(11/45,55)ov..... 4-62
SUB .ot 4-28
SWAB ..o 4-17
SXT e 4-21
TRAP oo, 4-64
TSTB) v 4-11
WAIT oo 4-73
XOR v 4-33

FPP INSTRUCTIONS

ABSD ..., 11-13
ABSF ool 11-13
ADDD cviveiiaian, 11-13
ADDF ... 11-13
CFCC .., 11-14
CLRD ..., 11-15
CLRF .o, 11-15
CMPD..... it 11-15
CMPF .ot 11-15
DIVD oo i 11-16
DIVF oo 11-16
LDCDF ..o, 11-17
LDCFD ..o, 11-17
LDCID ©.ovvvieinennnn. 11-18
LDCIF. ..ot 11-18
LDCLD ©.viioneann. 11-18
LDCLF .. .iviieannn.. 11-18
LDD e 11-20
LDEXP ©ouveeeaann. .. 11-19
LDF ..o 11-20
LDFPSccviiieiniann... 11-21
MODD ..., 11-21
MODF ... e, 11-21

c-2

MULD ... 11-24
MULF............ .l 11-24
NEGD ...oiivri i 11-25
NEGF ..ot 11-25
SETD ..., 11-26
SETF ... 11-25
SETI ... 11-26
SETL .. 11-26
STCDF 11-27
STCDI i 11-28
STCDLccoovvin... 11-28
STCFD + v eveeeiiiananns 11-27
STCFl «ovveriainannns 11-28
STCFL ... 11-28
STD .o 11-29
STEXP. ... 11-29
STF . 11-29
STFPS ... it 11-30
STST .. 11-30
SUBD.............oiint 11-31
SUBF..............., 11-31
TSTD oo 11-32
TSTF o 11-32

DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard,
Massachusetts 01754, Telephone: (617) 897-5111

SALES AND SERVICE OFFICES

UNITED STATES—ALABAMA, Huntsville ¢ ARIZONA, Phoenix and Tucson e
CALIFORNIA, E!l Segundo, Los Angeles, Oakland, Ridgecrest, San Diego, San
Francisco (Mountain View), Santa Ana, Santa Clara, Stanford, Sunnyvale and Woodland
Hills « COLORADO, Englewood ¢ CONNECTICUT, Fairfield and Meriden o DIS-
TRICT OF COLUMBIA, Washington (Lanham, MD) ¢ FLORIDA, Ft. Lauderdale and
Orlando ¢ GEORGIA, Atlanta ¢ HAWAII, Honolulu o ILLINOIS, Chicago (Rolling
Moadows) ¢ INDIANA, Indianapolis ¢ IOWA, Bettendorf ¢ KENTUCKY, Louisville e
LOUISIANA, New Orleans (Metairie) ¢ MARYLAND, Odenton ¢ MASSACHUSETTS,
Marlborough, Waltham and Westfield ¢ MICHIGAN, Detroit (Farmington Hills) e
MINNESOTA, Minneapolis ¢ MISSOURI, Kansas City (Independence) and St. Louis

o NEW HAMPSHIRE, Manchester « NEW JERSEY, Cherry Hill, Fairfield, Metuchen
and Princeton ¢ NEW MEXICO, Albuquerque ¢ NEW YORK, Albany, Buffalo (Cheek-
towaga), Long Island (Huntington Station), Manhattan, Rochester and Syracuse o
NORTH CAROLINA, Durham/Chapel Hill ¢ OHIO, Cleveland (Euclid), Columbus and
Dayton ¢ OKLAHOMA, Tulsa ¢ OREGON, Eugene and Portland ¢« PENNSYLVANIA,
Allentown, Philadelphia (Bluebell) and Pittsburgh ¢ SOUTH CAROLINA, Columbia e
TENNESSEE, Knoxville and Nashville ¢ TEXAS, Austin, Dallas and Houston ¢ UTAH,
Salt Lake City o VIRGINIA, Richmond ¢ WASHINGTON, Bellevue ¢ WISCONSIN,
Milwaukee (Brookfield) o

INTERNATIONAL—ARGENTINA, Buenos Aires ¢ AUSTRALIA, Adelaide, Brisbane,
Canberra, Melbourne, Perth and Sydney ¢ AUSTRIA, Vienna ¢ BELGIUM, Brussels o
BOLIVIA,La Paz ¢ BRAZIL, Rio de Janeiro and Sao Paulo ¢ CANADA, Calgary,
Edmonton, Halifax, London, Montreal, Ottawa, Toronto, Vancouver and Winnipeg o
CHILE, Santiago » DENMARK, Copenhagen ¢ FINLAND, Helsinki « FRANCE,
Grenoble and Paris ¢ GERMAN FEDERAL REPUBLIC, Cologne, Frankfurt, Hamburg,
Hannover, Munich, Stuttgart and West Berlin ¢ HONG KONG ¢ INDIA, Bombay e
INDONESIA, Djakarta « IRELAND, Dublin e ITALY, Milan, Rome and Turin IRAN,
Tehran e JAPAN, Osaka and Tokyo ¢ MALAYSIA, Kuala Lumpur « MEXICO, Mexico
City ¢« NETHERLANDS, Utrecht ¢ NEW ZEALAND, Auckland and Christchurch e
NORWAY, Oslo ¢ PUERTORICO, Santurce e SINGAPORE ¢ SWEDEN, Gothenburg
and Stockholm ¢ SWITZERLAND, Geneva and Zurich ¢ UNITED KINGDOM, Bir-
mingham, Bristol, Edinburgh, Leeds, London, Manchester and Reading o
VENEZUELA, Caracas

< T .4 "
#OT/YST oL BEISO A4

oo

[tjall]

(B

*V'ST0 NI QAINTHd

	0001
	0002
	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	04-74
	04-75
	04-76
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	C-01
	C-02
	xBack1
	xBack2

