
. .
mD~DDmD .

. .

DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard,
Massachusetts 01754, Telephone: (617) 897-5111
SALES AND SERVICE OFFICES
UNITED STATES-ALABAMA, Huntsville. ARIZONA, Phoenix and Tucson.
CALIFORNIA, EI Segundo, Los Angeles, Oakland, Ridgecres~ San Diego, San
Francisco (Mountain View), Santa Ana, Santa Clara, Stanford, Sunnyvale and Woodland
Hills. COLORADO, Englewood. CONNECTICUT, Fairfield and Meriden. DIS­
TRICT OF COLUMBIA, Washington (Lanham, MD) • FLORIDA, FI. Lauderdale and
Orlando. GEORGIA, Atlanta. HAWAII, Honolulu. ILLINOIS, Chicago (Rolling
Meadows) • INDIANA, Indianapolis. IOWA, Bettendorf. KENTUCKY, Louisville.
LOUISIANA, New Orleans (Metairie) • MARYLAND, Odenton. MASSACHUSETTS,
Marlborough, Waltham and Westfield. MICHIGAN, Detroit (Farmington Hills) •
MINNESOTA, Minneapolis. MISSOURI, Kansas City (Independence) and SI. Louis
• NEW HAMPSHIRE, Manchester. NEW JERSEY, Cherry Hill, Fairfield, Metuchen
and Princeton. NEW MEXICO, Albuquerque. NEW YORK, Albany, Buffalo (Cheek­
towaga), Long Island (Huntington Station), Manhattan, Rochester and Syracuse •
NORTH CAROLINA, Durham/Chapel Hill • OHIO, Cleveland (Euclid), Columbus and
Dayton. OKLAHOMA, Tulsa. OREGON, Eugene and Portland. PENNSYLVANIA,
Allentown, Philadelphia (Bluebell) and Pittsburgh. SOUTH CAROLINA, Columbia.
TENNESSEE, Knoxville and Nashville. TEXAS, Austin, Dallas and Houston. UTAH,
Salt Lake City. VIRGINIA, Richmond. WASHINGTON, Bellevue. WISCONSIN,
Milwaukee (Brookfield) •
INTERNATIONAL-ARGENTINA, Buenos Aires. AUSTRALIA, Adelaide, Brisbane,
Canberra, Melbourne, Perth and Sydney. AUSTRIA, Vienna. BELGIUM, Brussels.
BOLIVIA, La Paz. BRAZIL, Rio de Janeiro and Sao Paulo. CANADA, Calgary,
Edmonton, Halifax, London, Montreal, Ottawa, Toronto, Vancouver and Winnipeg •
CHILE, Santiago. DENMARK, Copenhagen. FINLAND, Helsinki. FRANCE,
Grenoble and Paris. GERMAN FEDERAL REPUBLIC, Cologne, Frankfurt, Hamburg,
Hannover, Munich, Stuttgart and West Berlin. HONG KONG. INDIA, Bombay.
INDONESIA, Djakarta. IRELAND, Dublin. ITALY, Milan, Rome and Turin. IRAN,
Tehran. JAPAN, Osaka and Tokyo. MALAYSIA, Kuala Lumpur. MEXICO, Mexico
City. NETHERLANDS, Utrecht. NEW ZEALAND, Auckland and Christchurch.
NORWAY, Oslo. PUERTO RICO, Santurce • SINGAPORE. SWEDEN, Gothenburg
and Stockholm. SWITZERLAND, Geneva and Zurich. UNITED KINGDOM, Bir­
mingham, Bristol, Edinburgh, Leeds, London, Manchester and Reading •
VENEZUELA, Caracas.

04/34/45/55
processor
handbook

. digital equipment corporation

Copyright © 1976, by Digital Equipment Corporation

DEC, PDP, UNIBUS are registered trademarks

of Digital Equipment Corporation

ii

CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PDP-ll FAMILY ~............................ I-I
1.2 SCOPE.. 1-2
1.3 COMPUTERS .. 1-2

1.3.1 PDP-11/04 .. 1-2
1.3.2 PDP-1l/34 .. 1-3
1.3.3 PDP-r1/45 .. 1 .. 4
1.3.4 PDP-1l/55 .. 1-5

1.4 PERIPHERALS/OPTIONS ,........................ 1·6
1.5 SOFTWARE.. 1·6
1.6 NUMBER SYSTEMS .. 1·8

CHAPTER 2 SYSTEM ARCHITECTURE

2.1 UNIBUS :... 2-1
2.1.1 Bidirectional Lines .. 2-1
2.1.2 Master·Slave Relation 2·1
2.1.3 Interlocked Communication 2-2

2.2 'CENTRAL PROCESSOR .. 2-2
2.2.1 General Registers :.......... 2-2
2.2.2 Instruction Set ;............ 2·3
2.2.3 Processor Status Word 2-4
2.2.4 Stacks... 2-5

2.3 MEMORy·..... 2-6
2.4 AUTOMATIC PRIORITY INTERRUPTS 2-7

CHAPTER 3 ADDRESSING MODES

3.1
3.2
3.3

3.4
3.5

3.6
3.7

SINGLE OPERAND ADDRESSING
DOUBLE OPERAND ADDRESSING
DIRECT ADDRESSING

" 3.3.1 Register Mode
3.3.2 Auto-increment Mode
3.3.3 Auto-decrement Mode
3.3.4 Index Mode
DEFERRED (INDIRECT) ADDRESSING
USE OF THE PC AS A GENERAL REGISTER
3.5.1 Immediate Mode
3.5.2 Absolute Addressing
3.5.3 Relative Addressing
3.5;4 Relative Deferred Addressing
USE OF STACK POINTER AS GENERAL REGISTER
SUMMARY OF ADDRESSING MODES
3.7.1 General Register Addressing
3.7.2 Program Counter Addressing

CHAPTER4 INSTRUCTION SET

3·2
3·2
3·4
3-4
3·5
3·7
3·8
3·10
3·12
3·13
3·13
3·14
3·15
3·16
3·16
3·16
3·18

4.1 INTRODUCTION .. 4-1
4.2 INSTRUCTION FORMATS .. 4·2

iii

4.3 LIST OF INSTRUCTIONS ;................. 4-4
4.4 SINGLE OPERAND INSTRUCTIONS 4-6
4.5 DOUBLE OPERAND INSTRUCTIONS .. :....................... 4-24
4.6 PROGRAM CONTROL INSTRUCTIONS 4-34
4.7 MISCELLANEOUS· .. 4-72

CHAPTER 5 PROGRAMMING TECHNIQUES

5.1 THE STACK .. 5-1
5.2 SUBROUTINE LlNKAGE _......................... 5:5

5.2.1 Subroutine Calls .. 5-5
5.2.2 Argument Transmission 5-6
5.2.3 Subroutine Return 5-9
5.2.4 PDP;l1 Subroutine Advantages 5-9

5.3 INTERRUPTS .. 5-9
5.3.1 General Principles 5-9
5.3.2 Nesting .. 5-10

5.4 REENTRANCY.. 5-13
5.5 POSITION INDEPENDENT CODE-PIC 5-15
5.6 CO-ROUTINES :..................... 5-16
5_7 PROCESSOR TRAPS .. 5-17

5.7.1 Power Failure .. 5-17
5.7.2 Odd Addressing Errors 5-17
5.7.3 Time-Out Errors .. 5-17
5.7.4 Reserved Instructions , 5-17
5.7.5 Trap Handling .. 5-17

CHAPTER 6 PDp·1l/04

6.1 DESCRIPTION .. 6-1
6.2 PDP-11/04 OPTIONS .. 6-2
6.3 SPECIFICATIONS.. 6-3
6.4 OPERATOR'S CONSOLE OPERATION 6-4

CHAPTER 7 PDp·1l/34

7.1 DESCRIPTION .. 7-1
7.2 SPECIFICATIONS .. 7-2

7.2.1 Processor Backplane Configuration 7-3
7.2.2 Chassis Configuration 7-5

7.3 MOS & CORE MEMORY .. 7-6
7.4 BATTERY BACKUP .. 7-6
7.5 M9301 MODULE .. 7-6
7.6 M9302 MODULE .. 7-7
7.7 DLll-W (M7S56) .. 7-S
7.S OPERATOR'S CONSOLE .. 7-S
7.9 CONSOLE EMULATION .. 7-10
7.10 EIS ARITHMETIC OPERATION 7-14

CHAPTER 8 PDp·1l/34 MEMORY MANAGEMENT

8.1 GENERAL .. 8-1
S.1.1 Memory Management S-l

iv

8.1.2 Programming .. 8-1
8.1.3 Basic Addressing .. 8-2
8.1.4 Active Page Registers 8-2
8.1.5 Capabilities Provided By Memory

Management 8-3
8.2 RELOCATION .. 8-3

8.2.1 Virtual Addressing .. 8-3
8.2.2 Program Relocation 8-4

8.3 PROTECTION.. 8-6
8.3.1 Inaccessible Memory ,. 8-6
8.3.2 Read-Only Memory 8-6
8.3.3 Multiple Address Space 8-7

8.4 ACTIVE PAGE REGISTERS .. 8-7
8.4.1 Page Address Registers (PAR) 8-8
8.4.2 Page Descriptor Registers (PDR) 8-8

8.5 VIRTUAL. AND PHYSICAL ADDRESSES 8-13
8.5.1 Construction of a Physical Address 8-13
8.5.2 Determining the Program Physical Address .. 8-14

8.6 STATUS REGISTERS .. 8-15
8_6.1 Status Registers 0 (SRO) 8-15
8.6.2 Status Register 2 (SR2) 8-17

8.7 INSTRUCTIONS .. 8-17

CHAPTER 9 . PDP·11/55, 11/45

9.1 DESCRIPTION .. 9-1
9;2 MEMORY... 9-5
9.3 PROCESSOR TRAPS .. 9-7'
9.4 MULTIPROGRAMMING .. 9-9
9.5 SPECIFICATIONS :.......................... 9-10
9.6 CONSOLE OPERATION .. 9-12

9.6.1 Console Elements .. 9-15
9.6.2 System Power Switch 9-15
9.6.3 C,entral Processor State Indicators 9-16
9.6.4 Address Display Register 9-17
9.6.5 Addressing Error Display................................ 9-17
9.6.6 Data Display Register :.......... 9-17
9.6.7 Switch Registers .. :... 9-18
9.6.8 Control Switches ;..... 9-18

CHAPTER 10 PDp·11/55, 11/45 MEMORY MANAGEMENT

10.1
10.2
10.3

10.4
10_5

10.6

PDP-11 FAMILY BASIC ADDRESSING LOGIC :
VIRTUAL ADDRESSING
INTERRUPT CONDITIONS UNDER. MEMORY
MANAGEMENT CONTROL
CONSTRUCTION OF A PHYSICAL ADDRESS
MANAGEMENT REGISTERS
10.5.1 Page Address Registers (PAR)
10.5.2 Page Descriptor Register (PDR)
FAULT RECOVERY REGISTERS
10.6.1 Status Register #0 (SRO)
10.6.2 Status Register # 1 (SRI) '"

v

10-1
10-2

10-3
10-3
10-5
10-6
10-6
10-8
10-8
10-11

10.6.3 Status Register #2 .. 10·11
10.6.4 Status Register #3'............................... 10·11
10.6.5 Instruction Back·Up/Restart Recovery 10·12
10.6.6 Clearing Status Registers Following
, Trapi Abort .. 10·12

10.7 EXAMPLES .. 10·12
10.7.1 Normal Usage .. 10·12
10.7.2 Typical Memory Page 10·13
10.7.3 Non·Consecutive Memory Pages 10·15
10.7.4 Stack Memory Pages 10·15

10.8 TRANSPARENCy.. 10·17
10.9 INSTRUCTIONS ... :............ 10·17
10.10 MEMORY MANAGEMENT UNIT·REGISTER MAP 10·21

CHAPTER 11 FLOATING POINT PROCESSOR

11.1 INTRODUCTION .. :........... 11·1
11.2 OPERATION 11·1
11.3 ARCHITECTURE· .. 11·2
11.4 FLOATING POINT DATA FORMATS 11·3

11.4.1 Non·Vanishing Floating Point Numbers 11,3
11.4.2 Floating ~oint Zero .. 11·3
11.4.3 The Undefined Variable 11·3
11.4.4 Floating Point Data :............... 11·4

11.5 FLOATING POINT UNIT STATUS REGISTER
(FPS REGISTER) .. 11·5

11.6 FLOATING EXCEPTION CODE AND
ADDRESS REGISTERS.. 11·9

11.1 FLOATING POINT PROCESSOR INSTRUCTION
ADDRESSING' .. 11·10

11.8 ACCURACy.. 11·10
11.9 FLOATING POINT INSTRUCTIONS 11·12

APPENDIX A UNIBUS ADDRESSES

A.1 INTERRUPT AND TRAP VECTORS A·1
A.2 FLOATING VECTORS :... A·2
A.3 . FLOATING ADDRESSES :............................... A·3
A.4 DEVICE ADDRESSES A·3

APPENDIX B INSTRUCTION TIMING

B.1 PDp·11/04 CENTRAL PROCESSOR B·1
B.2 ,PDP·11/34 CENTRAL PROCESSOR B·3
B.3 FP11·A FLOATING POINT PROCESSOR B·8
B.4 PDp·H/55, 11/45 CENTRAL PROCESSORS B·12
B.5 FP11·C FLOATING POINT PROCESSOR

INSTRUCTION EXECUTION TIME B·21

APPENDIX C INSTRUCTION INDEX: :.................................... C;1

vi

CHAPTER 1

INTRODUCTION

1.1 PDP·l1 FAMILY
The PDp·ll family includes several central processor units (CPU's), a
large number of peripheral devices and options, and extensive soft·
ware. New equipment will be compatible with existing family members.
The user can choose the system which is most suitable for his appli,
cation, but as needs change, he can easily add or change hardware.

All PDP-ll computers discussed in this Handbook have the following
features:

• 16·bit word (two 8-bit bytes)
direct addressing of 32K 16-bit words or 64K 8-bit bytes (K = 1024)

• Word or byte processing
very efficient handling of 8·bit characters without the need to rotate,
swap, or mask

• Asynchronous operation
system components run at their highest possible speed, replacement
with faster subsystems means faster operation without other hardware
or software changes

• Modular component design
extreme ease and flexibility in configuring systems

• Stack processing
'hardware sequential memory manipulation makes it easy to handle
structured data, subroutines, and interrupts

• Direct Memory Access (DMA)
inherent in the architecture is direct memory access for multiple
devices

• 8 internal general-purpose registers
used interchangeably for accumulators or address generation

• Automatic Priority Interrupt
four-line, multi-level system permits grouping of interrupt lines accord·
ing to response requirements

• Vectored interrupts'
fast interrupt response without device-polling

• Single & double operand instructions
powerful and convenient set of programming instructions

• Power Fail & Automatic Restart
hardware detection and software protection for fluctuations in the AC
power

1-1

1.2 SCOPE
This Handbook describes the following computers designed and man·
ufactured by Digital Equipment Corporation.

PDP·1l/04
PDP-11/34
PDP-1l/45
PDp·1l/55

The intent is to provide extensive information on operation of the com­
puters in general, performance and features of the computers, and
basic programming. This Handbook is not intended to be the sole ref­
erence for the computers. More comprehensive and detailed information
is available in Processor Manuals, Maintenance Manuals, and Program­
ming Manuals.

1.3 COMPUTERS

1.3.1 PDP·lll04
The PDP-11104 computer. uses MOS semiconductor memory,and is
housed in a 5 1h" high assembly. Between 4K and 28K words of memory
can be implemented within the basic assembly unit, which includes ex­
pansion space and DC power for adding options.

The PDP·ll104 is a full-fledged computer that can execute all the basic
PDP-ll instructions. It enjoys the advantage of being able.to use.all the
extensive developed software and peripheral equipment. If there is ever
a need to upgrade to a more powerful central processor, the PDP-ll/04
can simply be replaced by a . different PDP-1l CPU, and software and
peripherals remain the same in the system.

The minimum PDP-1l/04 includes:

• 4K words of MOS memory
Increased processing speed at a lower tost per bit.

• Automatic bootstrap loader·
Automatic starts from avaFiety of peripheral devices.

• Self-test feature .
ROM hardware automatically performs diagnostics on the CPU and
memory; Pinpoints failures to the circuit board level, thereby reducing
maintenance costs.

• Operator's front panel
Allows complete control of the computer via any ASCIt terminal. All
front panel functions .are key entries on the terminal either local or
remote, thereby eliminating the need and costofa programmer's
console. .

The following optional equipment is availablE~:

Battery backup
Programmer's console
Line frequency clock'
Serial .communications line interface

1·2

The PDP-ll/04 is prewired to accept extra memory, communication in­
terfaces, and standard peripheral device controllers_ The included CPU
power supply has sufficient excess capacity to hanEile optional internal
equipment.

1.3.2 PDP-ll/34

The PDP-ll/34 is a systems level computer that includes increased
memory expansion to 124K' words, memory relocation and protection,
faster processing speeds, and hardware multiply and divide instructions~
The computer system is mounted in a 5 1,4" or 10112" chassis that
mounts in a standard 19:' cabinet. The PDP-ll/34 processor is prewired
to accept additional memory (parity core or MOS) and standard periph­
eral device controllers including communications interfaces, mass storage
controllers, etc. Additional mounting space is provided within the 10 V:! "
computer chassis for more complex controllers. The computer
power supply within the chassis is .capable of powering the optional in­
ternal devices.

The PDP-ll/34 computer, as a member of the PDP-ll family, .has the
following features:

• Single & double operand instructions
powerful and convenient set of programming instructions

• Hardware implemented multiply and divide instructions

• 16-bit word (two S-bit bytes)
direct addressing' of 32K ,words or 64K bytes (K = 1024)

• Parity detection on each -S-bit byte

• Hardware address expansion and protection allowing. memory .address­
ing to 124K words.

• Word or byte processing
very efficient handling of S-bit data without the need ,to' rotate, swap,.
or mask

• Asynchronous operation', .
system components. run- at their highest possible .speed,. replacement
with faster subsystems means faster operation without other hardware
or software changes .

• Modular component design . ,
extreme ease and flexibility in contrguring systems

• Stack processi ng
hardware sequential memory manipulation makes it easy to handle
structured data, subroutines, and interrupts .

• Direct Memory Access (DMA)
inherent in the architecture is direct memory aCCeSS for multiple de­
vices

• S internal.general·purpose 'registers
used interchangeably for accumulators or address generation

• Automatic Priority Interrupt-
four-line, multi-level system permits grouping of interrupt lines accord-..
ing to response requirements .

1-3

• Vectored interrupts
fast interrupt response without device polling

• Power Fail & Automatic Restart
Hardware detection and software protection for fluctuations in the AC
power

The minimum PDP-ll/34 includes:

• ·Parity MaS or core memory

• Memory management
Program protection and relocation for memory expansion to 124K 16-
bit words

• Automatic bootstrap loader
Automatic starts from a variety of peripheral devices

• Self-test feature
ROM hardware automatically performs diagnostics on the ,CPU and
mem.ory

• Operator's front panel
Allows complete control of the computer via any ASCII terminal. All
front panel functions are key entries on the terminal, thereby elimi­
nating the need and cost of a programmer'·s lights and switches con­
sole.

The following optio,nal equipment is available:

• Battery backup for MOS memory

• Programmer's console

• Serial communications line interface and line frequency clock

• Large variety of standard PDP-ll peripherals

1.3.3 PDP·11/45
The PDP-1l/45 is a powerful 16-bit computer designed as a powerful
computational tool, for high-speed real-time applications and for large
multi-user, multi-task applications requiring up to 124K wonds of ad­
dressable memory space. It will operate with solid state and core mem­
ories, and includes many features not normally associated with 16-bit
computers. Among its major features are a fast central processor with
choices of 300 or 495 nanosecond memory, an advanced Floating Point
Processor, and a sophisticated memory management scheme.

Included with the basic PDP-Il/45 are:

• 16K words of memory

• Choice of bipolar, and core memory

• Programmer console

• Cabinet
\

• Prewired mounting space to accept Floating Point and Memory Man-
agement hardware

.1-4

The PDP-ll/45 features include:

• Memory expandable to 256K bytes.

• Memory segmentation, protectJon, and relocation.

• Optional FPll-C Floating Point Processor with advanced features and
high-speed operation.

• Reliable core memory.
• Fast secondary bus between processor and solid state memory which

operates in parallel with Unibus.

• Powerful instruction 'set providing.over 400 commands ..

• Powerful I/O structure provides easy interfacing and simplifies the
construction of multiprocessor or shared peripheral configurations.

1.3.4 PDP·ll/55
The PDP-ll/55 is a completely functional computer system especially
designed to accelerate· FORTRAN compiled tasks, whether for critical
process control, simulation lab experiments, engineering and scientific
applications, etc.

PDP-ll/55 features. include:

• 300 nanosecond, dual-ported bipolar memory

• High speed floating point processor with 46 hardwired instructions

• Internat micro-instruction cycle time of 150 nanoseconds

• Instruction , execution time of 30'0 nanoseconds '

• Instruction· pipelining allows the fetch of the next program instruction
to be overlapped·with the instruction currently in execution.

• Floating pOint calculation can be performed independent of· central
processor operations, freeing the CPU to simultaneously perform non-
floating point computations. '

• Dual bus structure allows direct memory access without cycle stealing
on the UNIBUS,

• Up to 256K bytes of·combined bipolar and core memory (up to 64K
bytes bipolar alone).

• Three CPU operating modes (kernel,supervisor, and user) which en-··
hance system operating efficiency and program protection.

• Hardware memory management, with three sets of memory manage­
ment registers--one set per CPU operating mode ..

• Two sets of eight general purpQseregisters which, coupled with three
CPU operating modes, eliminate the need. for saving register contents
in a real-time applications environment.

• Direct memory access.

• Power fail/auto restart.

1-5

1.4 PERIPHERALS/OPTIONS
Digital Equipment Corporation designs and manufactures many of the
peripheral devices offered with PDP-ll's. As a designer and manufac­
turer of peripherals, DIGITAL can offer extremely reliable equipment,
lower prices, more choice and quantity discounts.

I/O Devices
Ail PDP-ll systems can use a Teletype as the basic I/O device. However,
I/O capabilities can be increased with high-speed paper tape reader­
punches, line printers, card readers or alphanumeric display terminals.
The LA36 DECwriter, a totally designed and built teleprinter, can serve
as an alternative to the Teletype. It has several advantages over stan­
dard electromechanical typewriter terminals, including higher speed,
fewer mechanical parts and very quiet operation.

PDP-ll devices include:

Cassette, TAll
Floppy disk, RX01
DECterminal alphanumeric display, VT50
DECwriter teleprinter, LA36
High Speed Line Printers, LSll, LPll, LVll
High Speed Paper Tape Reader and Punch, PCll
Teletypes,L T33
Card Readers, CRll, CDll, CMll
Graphics Terminal, GT40
Synchronous and Asynchronous Communications Interfaces

Storage Devices
Storage devices range from convenient, small-reel magnetic tape (DEC­
tape) units to mass storage magnetic tapes and disk memories. With the
UNIBUS, a large number of storage devices, in any combination, may be
connected to a PDP-ll system. TU56 DECtapes, highly reliable tape
units with small tape reels, designed and built by DEC, are ideal for ap­
plications with modest storage requirements. Each DECtape provides
storage for 144K 16.-bit words. For applications which require handling
of large volumes of data, DEC offers the industry compatible TU16
Magtape.

Disk storage include fixed-head disk units and moving-head removable
cartridge and disk pack units. These devices range from the 256K word
RS03 fixed head disk, to the RP04 Disk Pack which can store up to 44
million words.

1.5 SOFTWARE
The PDP-ll family of central processors and peripherals is supported
by a comprehensive family of licensed software products. This software
family includes support for small stand-alone configurations, disk based
real-time and program development systems, large multi-programming
and time-sharing systems, and many diverse dedicated applications.
Some examples of general purpose operating systems and standard high
level language processors are:

1-6

• PAPER TAPE SYSTEM (PTS-ll)-A core only high-speed paper tape
system with program development in assembly language_ Editor, de­
bugger, and linker are supplied along with a relocating assembler. .

• CASSETTE PROGRAMMING SYSTEM (CAPS-l1)-A small program de­
velopment system with a core based monitor, utilizing dual magnetic
tape cassettes as file structured media. Complete program develop­
ment utilities such as a relocating assembler, linker, editor, debugger,
and file interchange program are included.

• SINGLE USER ON,L1NE PROGRAM DEVELOPMENT SYSTEM (RT-ll)­
A small, powerful, easy-to-use disk (or DECtape) baseq system for
program development or fast on-line (real-time). applications. A Fore­
ground/ Background version can accommodate simultaneous program
development in the background with on-line applications in the fore­
ground_ Ac MACRO assembler, linker, editor, debugger, and file utility
programs are included.

• MULTI-TASKING PROCESS CONTROL SYSTEM (RSX-llM)-An effi­
cient multi-tasking system suitable for controlling many processes
simultaneously, in a protected environment with concurrent develop­
ment of new programs. Utilities include a MACRO assembler, task
builder (linker), editor, debugger, and file utility programs.

• COMPREHENSIVE MULTI-PROGRAMMING SYSTEM (RSX-llD)-The
total job operating system. As a compatible extension of RSX-llM,
the system allows concurrent fully hardware protected execution of
multiple on-line jobs, with BATCH program development. Complete
utilities include a MACRO assembler, task builder (linker), editor, de­
bugger, and file utility programs.

• EXTENDED RESOURCE TIME SHARING SYSTEM (RSTS/E)-A disk­
based time-sharing system implementing BASIC-PLUS, an enriched
version of the popular BASIC language. Up to 32 simultaoeous users
share system resource via interactive terminals. Additional features
such as output spooling, and comprehensive file protection are in­
cluded.

• INTERACTIVE APPLICATION SYSTEM (IAS)-Amultifunction operating
system executing on the larger PDP-ll hardware configurations. It can
handle a mix of time-sharing, batch, and real-time applications .con­
currently. It is also a multi-lingual system, allowing users to choose
the high-level language most appropriate for the particular problem at
hand_

Languages

• BASIC-II-An extended version of Dartmouth Standard BASIC is
available for PTS-l1 , CAPS-ll and RT-l1. Many applications, such as
signal processing and graphics are accessed by the user through ex·
tensions'to this simple, yet powerful, language. A multiuser version is
available under PTS-ll and RT-l1.

• PDP-ll FORTRAN IV-An extended version of ANSI standard FOR­
TRAN is supplied with RSX-llM and RSX-l1D, and available under
RT-l1. As an optimizing compiler, FORTRAN IV is designed for fast
compilation, yet requires very little main memory, and generates
highly efficient code without sacrificing execution speed. Under RT-ll,

1-7

FORTRAN IV features the same signal-processing and graphics ex­
tensions as BASIC-11_

• FORTRAN-IV PLUS-A compatible extension to PDP-ll FORTRAN IV,
this system uses sophisticated optimizations to achieve the fastest
possible execution speed of the generated code. FORTRAN IV-PLUS
requires a PDP-11/55 or 11/45 and Floating Point Processor hardware,
in addition to the RSX-11D operating system .

• PDP-11 COBOL-To supplement the business data processing needs
often associated with large scale PDP-ll system applications, an
ANSI-74 COBOL language is available under RSX-11D. Running as a
BATCH job, COBOL enhances the RSX-11D total job computing sys­
tem, where some business data processing is required.

In addition to the above mentioned general purpose licensed software
products, DIGITAL offers a great" number of .optionaland applications
oriented products. A wide range of educational, consulting, and mainte­
nance services are also offered, to ensure full utility of any PDP-ll
system. For a complete and detailed listing of DIGITAL software prod­
ucts and services, consult the latest CATALOG OF SOFTWARE PRODUCTS
and SERVICES.

1.6 NUMBER SYSTEMS
Throughout this Handbook, 3 number systems will. be used; octal,
binary, and decimal. So as not to clutter all numbers with subscripted
bases, the following general convention will be used:

Octal-for address locations, contents of addresses, and operation
codes for instructions; in most cases there will be words of 6
octal digits

Binary-for describing a single binary element; when referri~g to
a PDP-ll word it will be 16 bits long

Decimal-for all normal referencing to quantities

Octal Representation

r -:--1'5 1'4 13 '21" 10 91 8 7 G 1 5 4 3 1 2 J 0 I PDP-ll word
L_~___ . ! ! . I ! . I I . I ! . It.

'---------'~~'---------'~~ o 0 0 0 0 0 6-digit octal

The 16-bit PDP-ll word can be represented conveniently as a 6-digit
octal word. Bit 15, the Most Significant Bit (MSB), is used directly as
the Most Significant Digit of the octal word. The other 5 octal digits are
formed from the corresponding groups of 3 bits in the binary word_

1-8

When an extended address of 18 bits is used (shown later in the Hand­
book), the Most Significant Digit of the octal word is formed from bits
17, 16, and 15. For unsignec::i numbers, the correspondence between
decimal and octal is:

Decimal Octal

o
(216_1)= 65,535
(218-1)=262,143

2's Complement Numbers

000000
177777
777777

(16·bit limit)
(18-bit limit)

In this system, the first bit (bit 15) is used to indicate the sign;

O=positive
l=negative

For positive numbers, the other 15 bits represent the magnitude directly;
for negative numbers, the magnitude is the 2's complement of the
remaining 15 bits. (The 2's complement is equal to the l's complement
plus one.) The ordering of numbers is shown below:

Decimal

largest positive +32,767
+32,766

+1
o

-1
-2

-32,767
most negative -32,768

] -9

2'sComplement (Octal)

Sign Bit
a
o
a
a
1
1

1
1

Magnitude Bits
77777
77776
00001
00000
77777
77776

00001
00000

1·10

CHAPTER 2

SYSTEM ARCHITECTURE

2.1 UNIBUS
Most computer system components and perip'herals connect to .and com·
mU\licate'lwith each other on a single high·speed bus known as the
UNiBUS-, a key to the PDp·II's many strengths. Addresses, data; and
control ·information are sent along the 56 lines of the bus.

Figure 2·1 PDp·ll System Simplified Block Diagram

The form of communication is the same for every device on the UNIBUS.
The processor uses the same set of signals to communicate with memo
ory as with peripheral devices. Peripheral devices also use this set of
signals when communicating with the processor, memory or other pe·
ripheral devices. Each device, including memory locations, processor
regist~rs, and peripheral device registers, is assigned an address on the
UNIBUS. Thus, peripheral devi<;e registers may be manipulated as flex·
ibly as core memory by the central processor. All the instructions that
can be applied to data in core memory can be applied equally well to
data in peripheral device registers. This is an especially powerful feature,
considering the special capability of PDp·ll instructions to process data
in any memory location as though it were an accumulator.

2.1.1 Bidirectional Lines
With bidirectional and asynchronous communications 0", the UNIBUS,
devices ,can send, receive, ahd exchange data independently without
processor intervention. For example, a cathode ray tube (CRT) display
can refresh itself from a disk file while the central processor unit (CPU)
attends to other tasks. Because it is asynchronous, the UNIBUS is com·
patible with devices operating over a wide range of speeds.

2.1;2 ; Master-Slave Relation
Communication between two devices on the bus is in the form of a
master·slave relationship. At any point in time, there is Qne device that
has control of the .bus: This controllfngdevice is termea the "bus mas·
ter." The master. device controls the bus when communicating with
another device on the bus, termed the "slave." A typical example of
this .relationship is the processor, as master, fetching an instruction from
memory (which is always a slave). Another example is the disk, as

2·1

master, transferring data ·to memory, as slave. Master-slave relation­
ships are dynamic. The processor, for example, may pass bus control
to a disk. The disk, as master, could then communicate with a slave
memory bank.

Since the UNIBUS is used by. the processor and all I/O devices, there is
a priority structure to determine which device ·gets control of the bus.
Every device on the UNIBUS which is capable of becoming bus master
is assigned a priority. When two devices, which are capable of becoming
a bus master, request use of the bus simultaneously, the device with
the higher priority will receive control.

2.1.3 Interlocked Communication
Communication on the UNIBUS is interlocked so that for each control
signal issued by the master device, there must be a response from the
slave in order to complete the transfer. Therefore, communication is
independent of the physical bus length (as far as timing is concerned)
and the timing of each transfer is dependent only upon the response
time of the master and slave devices. The asynchronous operation pre­
cludes the need for synchronizing with, and waiting for, clock impulses.
Thus, each system is allowed to operate at its maximum possible speed.

Input/ output devices transferring directly to or from memory are given
highest priority and may request bus mastership and steal bus and mem­
ory cycles during instruction operations. The processor resumes opera­
tion immediately after the memory transfer. Multiple devices can operate
simultaneously at maximum direct memory access (DMA) rates by
"stealing" bus cycles.

Full 16-bit words or 8-bit bytes of information can be transferred on the
bus between a master and a slave. The information can be instructions,
addresses, or data. This type of operation occurs when the processor, as
master, is fetching instructions, operands, and data from memory, and
storing the results into memory after execution of instructions. Direct
data transfers occur between a peripheral device control and memory.

2.2 CENTRAL PROCESSOR
The central processor, connected to the UNIBUS as a subsystem, con­
trols the time allocation of the UNIBUS for peripherals and performs
arithmetic and logic operations and instruction decoding. It contains
multiple high-speed general-purpose registers which can be used as accu­
mulators, address pointers, index registers, and other specialized func-

. tions. The processor can perform data transfers directly between I/O
devices. and memory without disturbing the processor registers; does
both single- and double-operand addressing and handles both 16-bit
word and 8-bit byte datCi.

2.2.1 General Registers
The central processor contains 8 general registers which can be used
for a variety of purposes.(ThePDP-11/55, 11/45 contains 16 general

2-2

registers.) The registers can be used as accumulators, index registers,
autoincrement registers, autodecrement registers, or as stack pointers
for temporary storage of data. Chapter 3 on Addressing describes these
uses of the general registers in more detail. Arithmetic operations can
be from one general register to another, from one memory or device
register to another, or between memory or a device register and a gen·
eral register. Refer to Figure 2,2.

GENERAL
REGISTERS RO

RI

R2

R3

R4

RS

R6 IISP)
STACK POINTER

R7 IIPC)
PROGRAM COUNTER

Fgure 2·2 The General Registers

R7 is used as the machine's program counter (PC) and contains the
address of the next instruction to be executed. It is a general register
normally used only for addressing purposes and not as an accumulator
for arithmetic operations.

The' R6 register is normally used as the Stack Pointer indicating the last
entry in the appropriate stack (a common temporary storage area with
"Last·in First·Out" characteristics).

2.2.2 Instruction Set
The instruction complement uses the flexibility of the general· purpose
registers to provide over 400 powerful hard·wired instructions-'-the most
comprehensive and powerful instruction repertoire of any computer in
the I6·bit class. Unlike conventional I6·bit computers, which usually
have three classes of instructions (memory reference instructions, oper­
ate or AC control instructions and I/O instructions) all operations in the
PDP-ll are accomplished with one set of instructions. Since peripheral
device registers can be manipulated as flexibly as core memory by the
central processor, instructions that are used to manipulate data in core
memory may be used equally well for data in peripheral device registers.
For example, data in an external device register can be tested or modified
directly by the CPU, without bringing it into memory or disturbing the
general registers. One can add data directly to a peripheral device reg­
ister, or compare logically or arithmetically. Thus all PDP-llinstructions
can be used to create a new dimension in the treatment of computer
I/O and the need for a special class of I/O instructions is eliminated.

The.basic order code of the PDP'1l uses both single and double operand
address instructions for words or bytes. The PDP-ll therefore performs

2-3

very efficiently in one step, such operations as adding or subtracting two
operands, or moving an operand from one location to another.

PDP-ll Approach

ADD A,B ;add contents of location A to loca­
tion B, store results at location B

Conventional Approach'o

LOA A ;Ioad contents of memory location A
into AC

ADD B ;add contents of memory location B to
AC

STA B ;store result at location B

Addressing
Much of the power of the:PDP-ll is derived from its wide"range of ad- .
dressing capabilities. ,PDP-ll addressing, modes include sequential
addressing forwards or backwards"addressing indexing, indirect address­
ing, 16-bit word addressing,8-bit byte addressing, and stack addressing.
Variable length instruction formating allows a minimum number of bits
to be used for each addressing mode. This results in efficient use of
program storage space.

2.2.3 Processor Status Word

15 14 13 12 11 8 5

CURRENT MOD~ ~t
PREVIOUS MO~;.~
PRl0R1TY-------'-----------.J
CONDlTlON CODES

• MODE } USED ONLY ON PDP.11/55, & 11/45 WITH
MEMORY MANAGEMENT '

Figure 2-3 Processor Status Word

o

T
The Processor Status word (PS), at location 777776, contains infor­
mation on the current status of the PDP-l1. This information includes
the current processor priority: current and previous operational modes;
the condition codes describing the results of the last instruction; and
an indicator for detecting the execution of an instruction to be trapped
during program debugging.

Processor Priority
The Central Processor operates at anyone of eight levels of priority, 0-7.
When the CPU is operating at level 7 an external device cannot interrupt
it with a request for service. The Central Processor must be operating
at a lower priority than the external device's request in order for the
interruption to take effect. The current priority is maintained in the

2-4

processor status word (bits 5-7)_ The 8 processor levels provide an
effective interrupt mask_

Condition Codes
The condition codes contain information on the result of the last CPU
operation_

The bits are set as follows:

Trap

Z = 1, if the result was zero
N = 1, if the result was negative
C = 1, if the operation resulted in a carry from the MSB
V = 1, if the operation resulted in.an arithmetic overflow

The trap bit. (T) can be set or cleared under program control. When set,
a processor trap will occur through .Iocation 14 on completion of instruc­
tion execution and a new. Processor Status Word will be loaded. This bit
is especially useful for debugging programs as it provides an efficient
method of installing breakpoints. '

2.2.4 Stacks
In the PDP-ll, a stack is a temporary data storage area which allows a
program to make efficient use of frequently accessed data. A program
can add or delete' words or bytes within the stack_ The stack uses the
'!last-in, first-out" concept; that is, various items may be added to a
stack in sequential order. and retrieved or deleted from the stack in
reverse order_ On the PDP-ll, a stack starts at the highest location re­
served for' it and expands linearly downward to the lowest address as
items are added. The stack is used automatically by program interrupts,
subroutine calls, and trap instructions. When the processor is inter­
rupted, the central processor status word and the program counter are
saved (pushed) onto the stack area, while the processor services the
interrupting device. A new status word is then automatically acquired
from an area in core memory which is reserved for interrupt instruc­
tions (vector area). A return from the interrupt instruction restores the
original processor status and returns to the interrupted program without
software intervention.

2-5

2.3 MEMORY

Memory Organization
A memory can be viewed as a series of locations, with a number (ad·
dress) assigned to each location. Thus an 8,192·word PDP·ll memory
could be shown as in Figure 2;4.

LOCATIONS

000000
~.

000001

000002

000003

000004

• • OCTAL •
ADDRESSES • ---•

• •
037774

037775

037776

037777

Figure 2·4 Memory Addresses

Because PDp·11 memories are designed to accommodate both16-bit.
words and 8-bit bytes, the total nurnber of addresses does not ·.corre­
spondto the 'number of words. An 8K·word memory can contain 16K
bytes and consist of 037777 octal locations. Words always start at even-
numb~red locations. .

A PDP-ll word is divided into a high byte and a ·Iow,-byte as shown in
Figure 2-5.

15 8 7 o

~~ __ ~~_H_I_GLH_8_YT~E __ ~~ __ ~ __ ~-L __ LOLW __ ~~TE __ ~~~~~1 .
Figure 2-5 High & Low Byte

Low bytes are stored at even·numbered memory locations and high
bytes at odd·numbered memory locations. Thus it is convenient to view
the PDP-ll memory as shown in Figure 2-6.

2-6

00000 I

000003

000005

037773

037775

037777 .

16-BIT WORD a-BIT BYTE

BYTE BYTE ~

HIGH

000000
WORO{

lOW

000002 HIGH lOW

HIGH lOW

lOW 000004
WORO{

lOW

HIGH

HIGH

{ lOW

OR

/"

HIGH lOW 037772
{

HIGH

037774 { LOW

037776 HIGH

HIGH lOW

HIGH LOW,

WORD ORGANIZATION SYTE ORGANIZATION

Figure 2-6 Word and Byte Addresses

000000

000001

000002

000003

000004

037775

037776

037777

Certain memory locations have been reserved by the system for inter­
rupt and trap handling, processor stacks, general registers, and periph­
eral device registers. Addresses from a to 370. are always reserved and
those to 777. are reserved on large system configurations for traps and
interrupt handling.

A 16-bit word used for byte addressing can address a maximum of 32K
words. However, the top 4,096 word locations are reserved for peripheral
and register addresses and the user therefore has 2SK of core to pro­
gram. With the PDP-11l"i5 and 11/45, the user can expand above
2SK with the Memory Management. This device' provides an IS-bit
effective memory address which permits addressing up to 124K words
of actual memory.

If the Memory Management option is not used, an octal address be­
tween 160 000 and 177 777 is interpreted as 760 000 to 777 777. That
is, if bit 15, 14 and 13 are 1 's, then bits 17 and 16 (the extended ad­
dress bits) are considered to be l's, which relocates the last 4K words.
(SK bytes) to become the highest 10cCltions accessed by the UN I BUS.

2.4 AUTOMATIC PRIORITY INTERRUPTS
The multi-level automatic priority interrupt system permits the processor
to respond automatically to conditions outside the system. Any number
of separate devices can be attached to eachleve!.

2-7

C1'
PRIOR.ITY

Il€VICf
REQUEST

liNE

~NPR--'---~-"_---~-"'_---I~r------------ -

ESJ ~ ~
"--8R.1---~-"_---~-"'_----------""

~ .. ~
__ 8R6 ---~-.,----~-,..------------

~ ~

---"5-[±J~", . ~[5~, --r-cb-
- ... -[£]~HS' .,---[£]~p --'-[f]~[f]

INCREASING PRIORITY

Figure 2·7 UNIBUS Priority

Each peripheral device in the PDp·ll system has a. pOinter to its own
pair of memory words (one points to .the devices's service routine, and
the other contains the new processor. status information). This unique
identification eliminates the need for polling of devices to identify an
interrupt, sinCe the interrupt service hardware selects and begins ex·
ecuting the appropriate service routine after having automatically saved
the statu~ of the interrupted program segment,

The devices' interrupt priority and service routine priority are indepen·
dent. This allows adjustment of system behavior in response toreal·time
conditions, by dynamically.changing the· priority level of the service
routine. .

I

The interrupt system allows the processor to continually compare its
own programmable priority with the priority of any interrupting· devices
and to acknowledge the device with the highest level above the proces·.
sor's priority level. The servicing of an interrupt for a device can be· in·
terrupted in order to se·rvicean interrupt of a higher priority: Service to
the lower priority device is resumed: automatically upon completion of
the higher level servicing. Such a process, called nested interrupt ser·
vicing, can be carried out tei any level without requiring the software to
save and restore processor status at each level.

When a device (other than the central processor) is capable of. becom­
ing bus master and requests use of the bus, it is generally for one of
two purposes:

1. To make· a noo.·processor transfer of data directly to· or·from
memory.

2·8

2. To interrupt a program execution and force the processor to
go to a specific address where an interrupt service routine
is located.

Direct Memory Access
All PDp·ll's provide for direct access to memory. Any 'number of DMA
devices may be attached to the UNIBUS. Maximum priority is given to
DMA devices, thus allowing memory data ,storage' or retrieval at memory
cycle speeds. Response time is minimized by the, organization arid logic
of the UNIBUS, which samples requests and priorities in parailel with
data transfers.

Direct memory or direct data transfers can be accomplished between
any two peripherals,without processor supervision. These non-processor
request transfers, called NPR level data transfers; are usually made for,
Direct Memory Access (memory to/from mass storage) or clirect device
transfers (disk refreshing a CRT display).

Bus Requests .
Bus requests from external devices can be made:on one of five'request
lines. Highest priority is assigned to non-processor request (NPR). ·These
are direct memory access type transfers, and are honored by the pro·
cessor between bus cycles of an instruction execution.

The processor's priority can be set under program control to one of eight
levels using bits, 7, 6,' and 5 in the processo.r status register. These bits
set a priority level that inhibits gr-anting of bus requests on .lower,levels
or on the same level. When the processor's priority is set to a level, for
example PS6, all bus requests on BR6 and below are ignored.

When more than 'one device is connected to the same bus request (BR)
line, a .device nearer the ce"~ I processor has a, higher priority than a
device farther away. Any numoer of devices can 'be conllectedto a given
BR or NPR line. .

Thus the priority system is two·dimensional and provides each device,
with a unique priority. Each device may be dynamically, selectively
enabled or disabled under program control.

Once a device other than the processor has control of thebus,,'it may
do one of two types of operations: data transfers or interrupt ope'rations.

NPR Data Transfers " .
NPR data transfers can be made between any two peripheral devices
without the supervision of the processor. Normally, NPR transfers are
between amass storage device, such as a. disk, and core memory; The
structure of the' bus also, permits device-to·device, transfers, allowing
customer-designed peripheral controllers to access other devices! such
as disks, directly.

An NPR device has very fast access to the bus and can transfer at high
data rates ~onae it has control. The processor state is not affected by
the transfef;.,therefore the processor cali. relinquish control while an in·
struction is in progress. This can. occur at the end of any bus' cycles.

2-9

except in between a read-modify-write sequence. An NPR device in con­
trol of the bus may transfer 16-bit words from memory at memory speed.

BR Transfers
Devices that gain bus control with one of the Bus Request lines (BR 7-
BR4) can take full advantage of the Central Processor by requesting an
interrupt. In this way, the entire instruction set is available for manipu­
lating data and status registers_

When a service routine is to be run, the current task being performed
by the central processor is interrupted, and the device service routine
is initiated. Once the request has been satisfied, the Processor returns
to its former task.

Interrupt .Procedure
Interrupt handling is automatic in the PDP-ll. No device polling is re­
quired to determine whichser\iice routine to execute. The operations
required to service an interrupt are as follows:

1. Processor relinquishes control of the bus, priorities permitting.

2. When a master gains control, it sends the processor an interrupt
command and an unique memory address which contains the ad­
dress of the device's· service routine,'called the interrupt vector
address. Immediately following this pointer address is a word (lo­
cated at vector address +2) which is to be used as a new Processor
Status Word.

3. The processor stores the current Processor Status (PS) and the cur­
rent Program Counter (PC) into CPU temporary registers.

4. The new PC andPS (interrupt vector) are taken from the specified
address. The old PS and PC are then pushed onto the current stack.
The service routine is then initiated. .

5. The device service routine can cause the processor to resume the
interrupted process by executing the Return from Interruptinstruc­
tion, described in Chapter 4, which· pops the two top words from
the current processor stack and uses them to load the PC and PS
registers.

A device routine can be interrupted by a. higher priority bus request any
time after the new PC and PS. have been loaded. If such an interrupt
occurs, the PC and PS of the service routine are automatically stored
in the temporary registers and then pushed onto the new current stack,
and the new device routine is initiated_

Interrupt Servicing
Every hardware device capable of interrupting the processor has a unique
set of locations (2 words) reserved for its interrupt vector. The first word
contains the location of the device's service routine, and the second, the
Processor Status Word that is to be used by the service routine. Through

·2-10

proper use of the PS, the programmer can switch the operational mode
of the processor, and modify the Processor's Priority level to mask out
lower level interrupts.

Reentrant Code
Both the interrupt handling hardware and the subroutine call hardware
facilitate writing reentrant code for the PDP·11. This type of code allows
a single copy of a given subroutine or program to be shared by more
than one process or task. This reduces the amount of core needed for
multi·task applications such as the concurrent servicing of many periph·
eral devices.

Power Fail and Restart
Whenever AC' power drops below 95 volts for 110v power (190 volts for
220v) or outside a limit of 47 to 63 Hz, as measured by DC power, the
power fail sequence is initiated. The Central Processor automaticaily
traps to location 24 and the power fail program has 2 rilsec. to save all
volatile information (data in registers), and to condition peripherals for
power fail.

When power is restored the processor traps to location 24 and executes
the power up routine to restore. the machine to its state prior to power
failure.

2·11

2·12

CHAPTER 3

ADDRESSING MODES

Data stored in memory must be 'accessed, and manipulated. Data handling is
specified by a PDp·ll instruction (MOV, ADD etc.) which usually indicates:

the function (operation code)

a general purpose register to be used when locating the source operand
and/or a general purpose register to be used when locating the destination
operand.

an addressing mode (to specify how the selected register(s) is/are to be
used)

Since a large portion of the data handled by a computer is usually structured (in
character strings, in arrays, in lists etc.), the PDp· 11 has been designed to handle
structured data efficiently and flexibly. The general registers may be used with an
instruction in any of the following ways:

as accumulators. The data to be manipulated resides within the register.

as pointers. The contents of the register are the address of the operand,
rather than the operand itself.

as pointers which automatically step through core locations. Automatically
stepping forward through consecutive core locations is known as au·
toincrement addressing; automatically stepping backwards is known as
autodecrement addressing. These modes are particularly useful for pro·
cessing tabular data.

as index registers. In this instance the contents of the register, and the
word following the instruction are summed to produce the address of the
operand. This allows easy access to variable entries in a list.

PDp·l1's also have instruction addressing mode combinations which facilitate
temporary data storage structures for convenient handling of data which must be
frequently accessed. This is known as the " stack."

In the PDp·l1 any register can be used as a "stack pointer"under program con·
trol, however, certain instructions associated with subroutine linkage and inter ..
rupt service automatically use Register 6 as a "hardware stack pointer". For this
reason R6 is.frequently referred to as the "5P".

R7 is used by the processor as its program counter (PC). It is recommended that
R7 not be used as a stack pointer.

3-1

An important PDP-ll feature, which must be considered in conjunction
with the addressing modes, is the register arrangement; -

Six general purpose registers, (RO-R5)

A hardware Stack Pointer (SP), register (R6)

A"Program Counter (PC), register (R7)_

Instruction mnemonics and address mode symbols are sufficient for
writing machine language programs_ The programmer need not be con­
cerned about conversion to binary digits; this is accomplished auto­
matically by the PDP-ll MACRO Assembler.

3.1 SINGLE OPERAND ADDRESSING
The i'nstruction format for all single operand instructions (such as clear,
increment, test) is:

MODE Rn

4 3 2 , 15 ~ ____ ---,6 J \.5

OP CODE -----'. -t
DESTINATION ADDRESS ------------'

0,

Bits 15 through 6 specify the operation code that defines the type of in­
struction to be executed.

Bits 5 through 0 form a six-bit field called the destination address field_
This consists of two subfields:

a) Bits 0 through 2 specify which of the eight general purpose registers
is.to be referenced by this instruction word.

b) B.its 3 through 5 specify how the selected register will be used (ad­
dress mode). Bit 3 is set to indicate deferred (indirect) addressing.

3.2 DOUBLE OPERAND ADDRESSING
Operlitions which imply two operands (such as add, subtract, move and
comp!'lre) are handled by instructions that specify two addresses. The
first operand is called the sourCe operand, the second the destination
operand_ Bit assignments in the source and destination address fields
may specify different modes and different registers. The Instruction
format for the double operand instruction is:

3-2

OP COOE MOOE Rn MODE

15 12 \11 10 9 _S'------.CJ6, \5 4

SOURCE ADDRESS-----It f
DESTINATION ADDRESS-------------'-

Rn

0,

The source address field is used to select the source operand, the first
operand_ The destination is used similarly, and locates the second op­
erand and the result_ For example, the instruction ADD A, B adds the
contents (source operand) of location A to the contents (destination
operand) of location B. After execution B will contain the result of the
addition and the contents of A will be unchanged.

Examples in this section and further in this chapter use the following
sample PDP-ll instructions:

Mnemonic Descripti"on Octal Code

CLR clear (zero the specified destination) 0050DD

CLRB clear byte (zero the byte in the specified 1050DD
destination)

INC increment (add 1 to contents of destination) 0052DD

INCB increment byte (add 1 to the ~ntents of 1052DD
destination byte)

COM complement (replace th.e contents of the 0051 DD
destination by their logical complement;
each 0 bit is set and each 1 bit is cleared)

COMB complement byte (replace the contents of the 1051 DD
destination byte by their logical complement;
each 0 bit is set and each 1 bit is cleared).

ADD add (add source operand to destination 0655DD
operand and store the result at destination
address)

DD = destination field (6 bits)

55 = source field (6 bits)

) = contents of

3-3

3.3 DIRECT ADDRESSING
The following table summarizes the four basic modes used with direct addressing.

DIRECT MODES

Mode Name Assembler Function
Syntax

0 Register Rn Register contains operand

2 Autoi ncrement (Rn) + Register is used as a pointer to
sequential data then in·
cremented

4 Autodecrement -(Rn) Register is decremented and
. then used as a pointer.

6 Index X(Rn) Value X is added to (Rn) to pro·
duce address of operand. Nei·
ther X nor (Rn) are modified.

3.3.1 Register Mode
OPR Rn

With register mode any of the general registers may be used as simple accumula·
tors and the operand is contained in the selected register. Since they are hard·
ware registers. within the processor. the general registers lrate at high speeds
and provide speed advantages when used for operating on Irequently·accessed
variables. The PDp·l1 assembler interprets and assembles instructions of the
form OPR Rn as register mode operations. Rn represents a general register name
or number and OPR is used to represent a general instruction mnemonic. As·
sembler syntax requires that a general register be defined as follows:

RO=%O (% sign indicates register definition)

Rl =.%1

R2=%2. etc.

Registers are typically referred to by name as RO. Rl. R2. R3. R4. R5. R6 and R7.
However R6and R7 are also referred to as SP and PC. respectively.

Relister Mode Examples
(all numbers in octal)

Symbolic

1. INCR3

Operation:

Octal Code Instruction Name

005203 Increment

Add one to the contents of general register 3

3·4

~1~O __ O~_O~O~_'~_O~'~_O __ ~~o~I~O~.~O~i~O~·~I~O~~~I~I~~~k
,1..C1.::.5 _____ ~-----6:;..JJI 5 4 3 -=-2 __ ~O,

OP CODE ONC(00521)-.J r
DESTINATION FIELD------------'

2. ADDR2,R4 060204 Add

R0

RI

R2 . R3

R4

R5

R6(SP)

R7IPC)

Operation: Add the- contents of R2 to the contents of R4.

3. COMBR4

Operation:

BEFORE

R21

R41

AFTER

000002 R21 000002

000004 R41 000006

'105104 Complement Byte

One's complement bits 0-7 (byte) in R4.(When
gener I registers are used, byte instructions only
opere >n bits 0-7; i.e. byte 0 of the register)

- BEFORE " r-AF_T;;"ER __ --.

R4 I 022222 t R41 022155

3;3.2 Autoincrement Mode
,OPR (Rn) +

This mode provides for automatic stepping, of a pointer through sequential. ele·
ments of a table of operands. It assumes the contents. of the selected general reg·

, ister to be the address of the operand. Contents of registers are stepped (by one
for bytes, by two for words, always by two for.R6 and R7) to address the next se­
quential location. The autoincrement mode is especially useful tor array process·
ing and stacks. It will access an element of a table and. then step the pointer to
address the next operand in the table. Although most useful for table handling.
this mode is completely general and may be used for a variety, of purposes.

3·5

Autoincrement Mode Examples
Symbolic Octal Code Instruction Name

1. CLR(R5)+

Operation:

BEFORE
ADDRESS SPACE

20000
1

005025 R51

005025 .Clear

Use contents of R5 as the address of the operand.
Clear selected operand and then increment the
contents of R5 by two;

AFTER
REGISTER ADDRESS SPACE REGISTER

030000 120000 005025 R51 030002

~
30000 1 11i" 6
~

1-

2. CLRB (R5) +

Operation:

BEFORE
AOORESS SPACE

30000 000000

105025 Clear Byte

Use contents of R5 as the address of the operand.
Clear selected byte. operand arid· then increment
the contents of R5 by one.

AFTER
REGISTER ADDRESS SPACE REGISTER

20000 105025 R5 1 030000
120000 105025 R5 1-1 __ 03_0_00_'_...J

30000

30002

3.

''''~

AOD (R2) + ,R4 062204

30000 111 000

30002 L....-,..-....!-_--'

Add

Operation: The contents of R2 are used as the address of the
operand which is added to the contents of R4. R2
is then incremented by two.

BEFORE AFTER .
ADDRESS SPACE REGISTERS ADDRESS SPACES REGISTERS

'0000 1 062204 ~0002

~ R41 010000

100002 1 010000 L

10000 1-1 ~c:.:06:.::.22:.:0_4_..1 R2 1-1 _..;.'0_oo_0_4_...J

R4 1-1 _,,-02:.;.0,,-00,-,0_...J

1000021-1_,,-0-,10-,-00;..;0_..1

3-6

. 3.3.3 Autodecrement Mode
OPR-(Rn)

This mode is useful for processing data in a list in reverse. direction. The contents
of the selected general register are decremented (by two for word instructions, by
one for byte instructions) and then used as the address of the operand. The
choice of postincrement, predecrement features for the PDp· I I were not arbitrary
decisions, but were intended to facilitate hardware/software stack operations.

Autodecrement Mode Examples
Symbolic Octal Code Instruction Name

1. I NC-(RO)

. Operation:

BEFORE
ADDRESS SPACE

005240 Increment

The contents of RO are decremented by two and
used as the address of the operand. The operand is
increased by. one.

AFTER
REGISTERS ADDRESS SPACE REGISTER

1000 I 005240 R01 L.. _.,...0_'7_776_--, 1000 I 005240 Rei 017774

17774 I 000000

2. INCB-(RO)

Operation:

BEFORE

ADDRESS SPACE

1000 LI_...::lo:;5::.24.::0_..J

177741 000

17776 L.. __ '--_--'

000

3. ADD~(R3).RO

Operation:

~
17774 I 000001

105240 Increment Byte

The contents of RO are decremented by one then
used as the address of the operand. The operand
byte is increased by one.

REGISTER

R01 017776

064300

AFTER

ADDRESS SPACE

'10001 L. __ '0_5_24_0_-,

17774 ~:..:..:...-+-.:..::...:~
17776

"----'----'

Add

The contents of R3 are decremented by 2 then
used as a pointer to an operand (source) which is
added to the contents of RO (destination operand).

3·7

BEFORE
AOORESS SPACE

~0020 1 064300

77774 ~_..:.000:..:..:.05:.:0_-I
77776 1.... ____I

3.3.4 Index Mode

AFTER
REGISTER ADORESSSPACE REGISTER

R01 000020 10020 1 064300 R01 0000070 .1

R3IL_..:.W..:.7..:.77..:.6_~r ~4

777741. 000050 I
77776 ____

OPR X(Rn)

I

The contents of the selected general register, and ·~In index word-following the in·
struction word, are summed to form the address of the operand. The contents of
the selected register may be 1;/sed- as a base for calculating a series of addresses,
thus allowing random access to elements'of data structures. The selected register
can then be modified by program to access' data in the table. Indexaddressing:m·
structions are of the form OPR X(Rn) where X is the indexed word and'is located
in the memory location following the instruction word and Rn is theselected"gen·
eral register. .

Index Mode Examples
Symbolic

1. CLR 200(R4).

Operation:

BEFORE

AOORESS SPACE

Octal Code Instruction Name

005064
000200

The address of the operand is determined by ad·
ding 200 to the contents of R4. The 'Iocation is
then cleared.

AFTER

REGISTER ADORESS SPACE REGISTER

:~:~ 1-----1
R4 I 001000. ,. 1020 r--::-=:-:---l

1022 r-----;
1024

R41 001000

I------l
1024 1---====---1

2. COMB 200(R1)

Operation:

105161
000200

'------'

1200~

Complement Byte

'The contents of a location which is determined by
adding 200 to the contents of Rl are one's com·
plemented. (i.e. logically complemented)

3·8

BEFORE AFTER

AOORESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 RI 1 017777 1020 RI 017777

1022 1022

(~ __________ 017777
+200

-J20177

201761

20200

0111000

1
20176

1 20200

166
1
000 -,

3. -ADD 3O(R2),20(R5) 066265
000030
000020

Add

Operation: The contents of a location which is determined by
adding 30 to the contents of R2 are added to the
contents of a location which is determined by ad·
ding 20 to.the contents of R5. The result is stored
at the destination address, i.e. 20(R5)

BEFORE AFTER
AOORESS SPACE REGISTER AOORESS SPACE REGISTER

1020 066265 R21 001100 1020 r 066265 ~I 001100

1022 000030
RS(

10221 000030

1024 000020
002000

1024 I -000020 RS(002000

1130 I 000001 1130 I 000001

2020 1
000001 2020 1 000002

1100 2000
+30 +<0
1130 2020

3-9

3.4 DEFERRED (INDIRECT) ADDRESSING
The four basic modes may also be used with deferred addressing. Whereas in the
register mode the operand is the contents of the selected register, in the register
deferred mode the contents of the selected register is the address of the operand.

In the three other deferred modes; the contents of the register selects the address
of the operand rather than the operand itself. These modes are therefore used
when a table consists of addresses rather than operands. Assembler syntax for
indicating deferred addressing is "@"(or "()"when this is not ambiguous). The
following table summarizes the deferred versions of the basic modes:

Mode" Name

1 Register Deferred

Assembler
Syntax

. Function

@Rnor(Rn)
Register contains the address of
the operand

3 Autoincrement Deferred @(Rn)+ Register is first used as a
pointer to a word containing the
address of the operand, then in"
cremented (always by 2; even
for byte instructions). -

5 Autodecrement Deferred @-(Rn) Register is decremented (always
by two; even for byteinstruc'
tions) and then used as a

. pointer to a word containing the
address of the operand

7 Index Deferred @X(Rn) Value X (stored.in a word follow·
ing the instruction) and (Rn) are
added and the sum-is used as a:
pointer to a Word containing the
address of the operand. Neither'
X nor (Rn) are modified.

Since each deferred mode is similar ·to its'-basic_ mode counterpart, separate de·
scriptions of each deferred mode-are-not.necessary. However, the following exam·
pies illustrate the deferred modesr

Register Deferred Mode Example
Symbolic Octal Code Instruction Name

CLR@R5

Operation:

BEFOII£
ADDRESS SPACE

1170067711------1
. 000100

005015 Clear

The. contents of location specified in R5 are
cleared.

AFTER
REGISTER - ADDRESS SPACE REGISTER

RS ... 1 _00_1_700_--, 167711--___ -1
1700 . 000000

RS 1,--_00_17_00_~

3·10

Autoincrement Deferred Mode Example
Symbolic Octal Code Instruction Name

INC@(R2)+

Operation:

BEFORE

10300 1-1_..:.00;;.:1..:.01::.0_-1

005232 Increment

The contents of R2 are used as the address of the
address of the operand.
Operand is increased by one. Contents of R2 is in·
cremented by 2.

REGISTER
AFTER

ADDRESS SPACE

1010.~. 026.
1012~

10;00 1-1_.::00:..;1.:.01:;:0_-1

REGISTER

R21 L _..::.01:.:0.:,:30:.:2_...1

. Autodecrement Deferred Mode. Example

Symbolic

COM@-(RO)

Operation:

BEFORE
AOIlRESS SPACE

Octal Code Complement

005150

The contents of RO are decremented by two. and
then used as the address of· the address of the op­
erand. Operand is one's complemented. (i.e. logi­
cally complemented)

AFTER
REGISTER ADDRESS SPACE REGISTER

10100 I 16!l432 L I. ~774
10102 L __ ---:--

:=F 010100 r·· .'

R0 LI.......;._0_'0_7_76_...1

Index Deferred Mode Example
Symbolic' Octal Code Instruction Name

ADD @ looo(R2).Rl 067201 Add
001000

Operation: 1000 and contents of R2 are summed to produce
the address of the address of .the source operand
the contents of which are added to contents of Rl;
the result is stored in Rl.

3-11

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 R' I 00.234 I 1020 ft. I 00.236

.022
R21 . 000.00 I 1022

ft21 000.00 .
1024 .024

'050 I 000002 I . '°5°1-1_°:.,;:00:.;:0:..:.02:"--1

"~O 00'050 .000

. "00 ~~.
,.00.11-_0:.,;:0.;.:10:.;:50'---1

3.5 USE OF THE PC AS A GENERAL REGISTER'
Although Register 7 is a general purpose register, it doubles in function as the
Program Counter for 'the PDp·ll. Whenever the processor uses the program'
counter to acquire a wOrd from memory, the program counter is automatically in·
cremented by two to contain the address of the next word of the instruction being
executed or the address of the next instruction to be executed. (When the pro·
gram uses the PC to locate byte data, the PC is still incremented ·by two.)

The PC responds to all the standard PDP·ll addressing modes. However, there
are four of these modes with which the PC can provide advantages for handling
position independent code (PIC· seeChapter 5) and unstructured data. When reo
garding the PC these modes are termed immediate, absolute (or immediate de·
ferred), relative and relative deferred, and are summarized below:

Mode Name Assembler Function
Syntax

2 Immediate #n Operand follows instruction

3 Absolute @#A Absolute Address follows in·
struction

6 Relative A Relative Address (index value)
follows the instruction.

7 Relative Deferred @A . Index value (stored- in the
word following the instruction)
is the relative address for the .
address. of the operand.

The reader should remember that the special effect modes are the same as modes
described .in ·3.3 and 3.4, .but the general register selected is R7, the program
counter:

When a standard program is available for .. differentusers, it often is helpful. to be
able to load it into different areas of core and run it there. PDp· I 1 's can accompl·
ish the relocation of a program very efficiently through the use of position inde·

3-12

pendent code (PIC) which is written by using the PC addressing modes. If an in·
struction and its objects are moved in such a way that the relative distance
between them is not altered, the same offset relative to the PC can be used in all
positions in memory. Thus, PIC usually references locations relative to the current
location. PIC is discussed in more detail in Chapter 5.

The PC also greatly facilitates the handling of unstructured data. This is partic·
ularly true of the:immediate and relative modes.

3.5.1 Immediate Mode
OPR #n,DD

Immediate mode is equivalent to using the autoincrement mode with the PC. It
provides time improvements for accessing constant operands by including the
constant in the memory location. immediately following the instruction word.

Immediate Mode Example
Symbolic

ADD #lO,RO

Operation:

BEfORE
ADDRESS SPACE

1020 062700
"R0 1

1022 000010
PC

1024

3.5.2 Absolute Addressing,

Octal Code Instruction Name

062700 Add
000010

The value 10 is located in the second word of the
instruction and is added to the contents of RO.
Just before this instruction is fetched and exe·
cuted, the PC points to the first word of:the in·
struction. The processor fetches the firstword and
increments the PC by two. The source operand
mode is 27 (autoincrement the PC); Thus, the PC
is used as a pointer to. fetch the operand (the sec·
ond word of the instruction) before. being in·
cremented by two to point to the next instruction.

AFTER

REGISTER ADDRESS SPACE REGISTER

000020 1020 002700 I R01 000030

1022 000010 I,./'pc
1024 I

OPR @#A

This mode is the equivalent of immediate deferred .. or autoincrement deferred us·
ing the PC. The contents of the location following the instruction are taken as the­
address of the operand.; Immediate data is . interpreted -as an absolute address
(Le., an address that:remains constant no matter where ·in memory the as·
sembled instruction is executed);

3·13

Absolute Mode Examples
Symbolic

1. CLR@#II00

Operation:

BEFORE
ADDRESS SPACE

20
22 1--:-:--;

1100. ~--:-_17_77_7~7_--l
1102 '--,-----_---.J

Octal Code Instruction Name

005037
001100

Clear

Clear the contents of location 1100.

AFTER

ADDRESS SPACE

20 I---='=~---/
22
241-----;

1.100 ~ __ OO_O_OO_O'----l

1102 L.. -----I

2. ADD @ #2ooo,R3 063703
002000

Operation: Add contents of location 2000 to R3.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE

20 063703 ~I 000500 20 063103 I R31

22 002000 22 002000
:/PC

24 24

2000
1

000300 2000 I 000300

3.5.3 Relative Addressing·
OPR A or OPR X(PC)

REGISTER

OOtOOO

where X is the location of A relative to the instruction ..

This mode is assembled as index mode USing R7. The base of the address calcu­
lation, which is stored in the second or third word of the instruction, is not the ad­
d~ess of the operand, . but the number which,· when added to the (PC), beconies

. the address of the operand. This mode is useful for writing position independent
code (see Chapter 5) since the lQ4:ation referenced is always fixed relative to the
PC. When instructions are. to be relocated, the operand is moved by the same
amount.

3·14

Relative Addressing Example
Symbolic . Octal Code Instruction Name

INCA 005267
000054

Increment

Operation: To increment location A, contents of memory loca·
tion immediately following instruction word are ad·
ded to (PC) to produce address A. Contents of A
are increased by one.

BEFORE AFTER
ADDRESS SPACE ADDRESS SPACE

1020 0005267

1022 000054

1024-pc

1020 f---..::00:,:5::::26:::.7_--1

1022 000054 "-

1024 '\,C

1026
I----~

1026

1100 I 000001

1024

tt~I"~b

3.5.4 Relative Deferred Addressing
OPR@A or

OPR@X(PC), where x is location containing address of A, relative to the in·
struction.

This mode is similar to the relative mode, excepHhat the· second word of the in·
struction, when added to the PC, contains the address of the address of the oper,'.
and; rather than the address of the operand.

Relative· Deferred Mode Example
Symbolic Octal Code Instruction Name

ClR@A

Operation:

BEFORE

ADDRESS SPACE

1020 1----"::=:":----1'
1022 ;"PC

to241-___ ~

10~ }0~6· ~·~1044
10100 I 100001 I .

005077
000020

Clear

Add second word .of instruction to PC to produce
address of address of operand. Clear operand.

AFTER

ADDRESS SPACE

1020 f----"=----1

1022 ./PC

10241-___ --I#"

10441 010100

tOlool. 000000

3·15 •

3.6 USE OF STACK POINTER AS .GENERALREGISTER
The processor stack pointer (SP, Register 6)· isin most cases the general
register used for the stack operations related to· program- nesting. Auto­
decrement with Register 6 "pushes" data on to the stack and cautoincre­
ment with Register 6 "pops" data off the stack. Index mode with SP
permits random access of items on the stack. Since the SP is used by
the processor for interrupt handling, it has a special attribute: autoin­
crements and autodecrements are always done in steps of two. Byte
operations using the SP in this way leave odd addresses unmodified.

3;7 SUMMARY OF ADDRESSING MODES

3.7.l Gen.eral.Register. Addressing

R is a general register, 0 to 7
(R). isthe contents of that register

Mode 0 Register OPR R R contains oper_and

r I INSTRUCTION ~ OPERANq

Mode 1 Register deferred OPR (R) R contains address

R

I INSTRUCTION ~ ADDRESS ~ OPERANO

Mode 2 Auto-increment OPR (R)+

R contains address, then increment (R)

3·16

... 2 FOR WORD,
+1 FOR BYTE

Mode 3 Auto-increment OPR @(R)+
deferred

Mode 4 Auto-decrement

Decrement (R), then R contains address

R contains address of address,
then increment (R) by 2

OPR -(R)

Mode 5 Auto-decrement
deferred

OPR @-(R) Decrement (R) by 2,
then R contains
address of address

Mode 6 Index OPR X(R) (R) + X is address

PC::: INSTR~CTION ~ ADDRESS ~.j""-O-F'E-R-A-ND--'

Mode 7 Index deferred OPR @X(R) (R) + X is address of address

PC

PC+2 L=~=}-------_..J

3-17

3.7.2 Program Counter Addressing

Register = 7

Mode 2 Immediate OPR #n

PC I INSTRUCTION I
pC+21 ... ___ -'

Mode 3 Absolute OPR @#A

PC IINSTRUCr"ION I
PC+2 LI -,-_A_--l~ OPERAND

Mode 6 Relative OPR A

PC I INSTRUCTION I

Mode 7 Relative deferred OPR @A

Operand n follows instruction

Address A follows instruction

PC + 4 + X is address
'-v-'

updated PC

PC + 4 + X is address of address
'-v-'

updated PC

PC I INSTRUCTION I

PC+2: x ~~
. + A ADDRESS H OPERAND

PCj4 I NEXT INSTR I

3·18

CHAPTER 4

INSTRUCTION SET

4.1 INTRODUCTION

The specification for each instruction includes the mnemonic, octal code,
binary code, a diagram showing the format of the instruction, a symbolic
notation describing its execution and the effect on the condition codes,
a description, special comments, and examples.

MNEMONIC: This is indicated at the top corner of each page. When the
word instruction has a byte equivalent, the byte mnemonic is also shown.

INSTRUCTION FORMAT: A diagram accompanying each instruction
shows the octal op code, the binary op code, and bit assignments .. (Note
that in byte instructions the most significant bit (bit 15) is always a 1.)

SYMBOLS:

() = contents of

SS or src = source address

DD or dst = destination address

loc = location

~= becomes

t = "is popped from stack"

J. = "is pushed onto stack"

A = boolean AND

v = boolean OR

..,...= exclusive OR

- = boolean not

Reg or R = register

B = Byte

• = {O for word

1 for byte

4·1

:4~~ INSTRUCTION FORMATS
Tha major instruction formats are:

15

Single Operand Group

OP Code
I

Doubl.eOperandGroup

I
dst

I
6 5 o

,~I __ ~I_o_p~c_oo_e~ __ ~~ __ ~, __ S~i~_'~: __ ~~ __ ~ __ ~_dS~I_'~ __ ~~
15

15

15

12 11

Register-Source or Destination

OPCode
I

'9 8

Branch

,80se :Ode I

8 7

4-2 '

6 5

6 5

Src/dst
I,

offset
I

o

o

o

Byte .. Instructions
The PDP·ll processor includes a full complement of instructions that
manipulate byte operands. Since all PDP-ll addressing is byte-oriented,
byte manipulation addressiflgis straightforward. Byte instructions with
autoincrement or autodecrement direct addressing cause the specified
register to be.' modified by one to point to the next byte of data. Byte
operations in register mode access the low-order byte of the specified
register. These provisions enable the PDP-ll to perform as either a word
or byte processor .. The numbering scheme for word .and . byte addresses
in core memory is:

HIGH BYTE
ADDRESS

002001

002003

BYTE

. BYTE

1

3

BYTE 0

BYTE 2

v,oRD OR BYTE
AODRESS

002000

002002

The most significant bit (Bit 15) of the instruction word is set to indicate
. a byte instruction.'

Example:

Symbolic Octal

:CLR
CLRB

005000
105000

NOTE

Clear Word
Clear ~yte

The term PC (Program Counter) in the Opera·
tion explanation of the instructions refers to the
updated PC. .

4·3

4.3 LIST OF INSTRUCTIONS .
Instructions are shown in the following sequence. Other instructions are
foun~ in Chapters 9, 11, and 12 .

• -The SXT, XOR, MARK, SOB, and RTT instructions are implemented
in the POP·11/34, 11/45 and 11/55.

*-The SPL instruction is implemented only in the POP·11/45 and pop·
11/55. The MFPS and MTPS instructions are implemented only in the
POP·11/34. '

SINGLE OPERAND

Mnemonic

General
CLR(B)
COM(B)
INC(B)
OEC(B)'
NEG(B)
TST(B)

Shift & Rotate

Instruction

clear destination ,
complement dst
increment dst
decrement dst
negate dst
test dst

ASR(B) arithmetic shift right ,
ASL(B) arithmetic shift left
ROR(B) rotate right , ,.
ROL(B) rotate left
SWAB swap bytes :

Multiple Precision .
AOC(B) add carry
SBC(B) subtract carry

A SXT sign extend
MFPS move byte from processor status
MTPS move byte to processor status

'DOUBLE OPERAND

General
MOV(B)
CMP(B)
AOO
SUB

Logical
BIT(8)
BIC(B)
8IS(8)

AXOR

move source to destination :.
compare src to dst
add src to dst
subtract src f.rom dst . : :

bit test
bit clear
bit set

exclusive OR

.4-4

Op Code Page

.05000

.05100

.05200

.05300

.05400

.05700

.06200

.06300

.06000

.06100
000300

.05500

.05600
.006700
.106700
.1064SS

.1SS00

.2SS00
06SS00
16SS00

·.3SS00
.4SS00
.5SS00

4-6
4-7
4-8
4-9
4-10
4-11

4-13
4-14
4-15
4-16
4-17

4-19
4-20
4-21
4-22
4-23

4-25
4-26
4-27
4-28

4-30
4-31
4-32

074ROO 4-33

PROGRAM CONTROL

Mnemonic . Instruction . Op Code
or

Base Code Page

Branch
BR
BNE
BEQ
BPl
BMI
BVC
BVS
BCC
BCS

branch (unconditional)
branch if not equal (to zero)

· branch if equal (to zero)
branch if plus
branch if minus

· branch if overflow is clear
branch if overflow· is set
branch if carry is clear
branch if. carry is set

Signed Conditi.onal Branch
BGE ... branch if greater than or equal

(to zero) .. c ••••••••.••••••••••.••••••••••••••••••.••

BlT branch if less than (zero)
BGTbranch if greater than (zero)
BlE . branch if less than or equal (to zero)

Unsigned Conditional Branch
BH I branch if higher

.BlOS branch if lower or same
BHIS branch if higher or same
BlO branch if. lower

Jump & Subroutine
JMP
JSR
RTS

.MARK
• SOB
. * SPl

jump : : .. .
· jump to subroutine
~eturn from subroutine
l1lark :
subtract one and branch (if;C. 0)
set priority level

Trap & Interrupt

000400
001000
001400
100000
100400
102000
102400
103000
103400

002000
002400
003000
003400

101000
.101400
103000
103400

000100
004ROO
00020R
006400
077ROO
00023N

. EMT emulator trap 104000-104377
TRAP trap 104400-104777
BPT breakpoint trap 000003
lOT input/output trap000004

. RTI return from :interrupt 000002
• RTT return from. interrupt ;....... 000006

MISCELLANEOUS
HALT halt : '000000
WAIT wait for interrupt 000001
RESET reset external bus 000005

Condition Code. Operation
ClC, ClV,. ClZ, ClN, CCC clear 000240
SEC, SEV, SEZ, SEN, SCC . set : 000260

4-5

4-35
4-36
4-37
4-38
4-39
4-40
4-41
4:42
4-43

4-45
4-46
4-47
4-48

4-50
4-51
4-52
4-53

4-54
4-56
4-58

. 4-59
4-61
4-62

4-63
·4-64.

4-65
4-66
4-67
4-68

4-72
4-73
4-74

4-75
4-75

4.4 SINGLE OPERAND INSTRUCTIONS

CLR
CLRB"

clear destination

o o o

15

Operation: (dst~O

Condition Codes: N: cleared
Z: set
V: cleared
C: cleared

o j 0

-05000

d . d d d

6 5 o

Description: Word: Contents of specified destination are replaced with ze­
roes.

Example:

Byte: Same

Before
(Rl) = 177777

NZVC
1 1 1 1

4-~

CLR R1

After
(R1) = 000000

NZVC
0100

complement dst

o 0 o 1 I d

15 6 5

Operation: '(dst).-(dst)

d d d

COM
COMB

d

o

Condition Codes: N: set if most significant bit of result is set; cleared otherwise
Z, set if result .is 0; cleared otherwise
V: cleared
C: set

Description: Replaces the contents of the destination address by their log­
ical complement (each bit equal to 0 is set and each bit equal
to 1 is cleared)
Byte: Same

Before
(RO) =013333

NZVC
0110

4-7

After
(RO) = 164444

NZVC
1001

INC
INCB

increment dst -052DD

o 0 o d d

15 6 5

Operation: (dst).(dst) + 1

Condition Codes: N: set if result is <0; cleared otherwise
Z: set if result is 0; cleared otherwise

d d

V: set if (dst) h.eld 077777 (word) or 177 (byte)
cleared otherwise

C: not affected

Description: Word: Add one to contents of destination
Byte: Same

Example: INC R2

Before
(R2) = 000333

NZVC
0000'

4-8

After
(R2) = 000334

NZVC
0000

o

DEC
DECB

decrement dst -053DD

o o o o : I d d

15 6 5

Operation: (dst).(dst)-l

Condition Codes: N: set if result .is <0; cleared otherwise
Z: set if result is 0; cleared othe.rwise

d d

V: set if (dst) was 100000 (word) or 200 (byte)
cleared otherwise

C: not affected

o

Description: Word: Subtract 1 from the contents of the destination
Byte: Same

Example: DEC R5

Before
(R5) = 000001

NZVC
1000

4-9

After
(R5) = 00000o .

NZVC
0100

NEG
NEGB

negate dst

10/11 ° ,0

15

Operation:

Condition Codes:

DescriPtion:

Example:

-05400

° ° d d d
I

6 5

(dst). -(dst)

N: set ifthe resultis <0; cleared otherwise
Z: set if res.ult is 0; cleared·otherwise

d

°

V: set if the result is 100000 (word) or 200 (byte)
cleared otherwise .'

C: cleared if the result is 0; set otherwise

Word: Replaces the contents of the destination address by its
two's complement. Note that 100000 is replaced by itself -(in
two's complement notation the m.ost negative number has·
no positive counterpart).
Byte: Same

Before
(RO) = 000010

NZVC
0000

4·10

NEG RO'

After
(RO) = 177770

NZVC
1001

TST
TSTB

test dst

101" ° ° ° °
15-

Operation: (dst)..{dst)

d

6 5

d d ,

Condition Codes: N: set if the result is <0; cleared otherwise­
Z: set if result is 0; cleared otherwise
V: cleared
C: cleared

d

°

Description: Word: Sets the condition codes Nand Z according to the con­
tents of the destination address
Byte: Same . .

Example: TST Rl

Before
(Rl) =012340

NZVC
0011

4-11

After
(Rl) =012340

NZVC
0000

Shifts
Scaling data by factors of two is accomplished by the shift instructions:

ASR . Arithmetic shift right

ASl . Arithmetic shift left

The sign bit (bit 15) of the operand is replicated in shifts to the right. The'low
order bit is filled with 0 in shifts to the left. Bits shifted out of the C,bit-, as shown.
in the following examples, are lost.

Rotates
The rotate instructions operate on the destination word and thee bit as though
they formed a 17·bit "circular buffer', These instructions facilitate sequential bit
testing and detailed bit manipulation.

4-12

ASR
ASRB

arithmetic shift right -06200

o 0: 1 d d d d

15 6 5 o

Operation: (dst),.dst) shifted one place to the right

Condition Codes: -N: set if the high,order bit of the result is set (result < 0);
cleared otherwise
Z: set if the result = 0; cleared otherwise
V: loaded from the Exclusive OR of the N-bit and C-bit (as set
by the completion of the shift operation)
C: loaded from-low-order bit:~f the destination

Description: _ Word: Shjfts all bits of the destination right one place. Bit 15
is replicated. The C-bit is loaded from bit 0 of the destination.
ASR performs signed division of the destination by two.
Word:

Byte:

4-13

ASL
ASLB

. arithmetic shift left -06300

10/11 ° 0 ° o 1 I d d d d d d

15

Operation:

Condition Codes:

Description:

6 5 °
(dst)~dst) shifted one place to the left

N: set if high'order bit of the result is set (result < 0); cleared
otherwise
Z: set if the result = 0; cleared otherwise
V: loaded with the-exclusive OR of the N-bit and G-bit (as set
by the completion of the shift operation)
G: loaded with the high-order bit of the destination

Word: ShL~s all bits of the destination left one place. Bit 0 is
loaded with an O. The G-bit of the status word is loaded from
the most significant bit of the destination. ASL performs a
signed multiplication of the destination by 2 with overflow in­
dication.
Word:

Byte:

4-14

ROR
RORB

rotate. right -06000

1011 I O.! 0 I 0 I I ! 0 I 0 : 0 I 0 I d d I d d

o 15 6 5

Condition Codes: N: set if the high-order bit of the result is set (result < 0);
cleared otherwise
Z: set if all bits of result = 0; cleared otherwise
V: loaded with the Exclusive OR of the N-bit and C-bit (as set
by the completion of the rotate operation) .
C: loaded with the low-order bit of the destination

Description: Rotates all bits of the destination right one place_· Bit 0 is
loaded into the C-bit and the prevIous contents of the C-bit
are loaded into bit 15 of·the destination.
Byte: Same

Example:
Word:

0-1~~~~~~~~~~~ tL-· __ ~15 __________________________________ ~~IO

Byte:

4·15

ROL
ROLB

rotate left -061DD

o o o o d, d d

15 6 5 o

Condition Codes: N: set if the high·order" bit of the destination is set
(result < 0): cleared otherwise
Z: set if all bits of the destination = 0; cleared otherwise
V: loaded with the Exclusive OR of the N·bit and C·bit (as set
by the completion of the rotate operation)
C: loaded with the high·order bit -of the destination

Description: Word: Rotate all bits of the destination left one place. Bit 15
is loaded into the C·bit of the status word and the previous
contents of the C.bit are loaded intoBit 0 of the destination.
Byte: Same

Example:
Word:

dst

"~-I
I 15 to

Bytes:

4·16

SWAB

swap bytes 0003DQ

10 I 0 0 .0 0 0 0 I 0 : 1 1 I d

15 6 5 o

Operation: Byte 1 / Byte 0 • Byte 0/ Byte 1

.Condition Codes: N: set if high-order bit of low-order byte (bit 7) of result is set;
cleared otherwise .

Z: set if low-order byte of result = 0; cleared otherwise
V: cleared
C: cleared

Description: Exchanges high-order byte and low-order byte of the destina­
tion word (destination must be a word address).

Example: SWAB Rl

Before
(Rl) =077777

NZVC
1 1 1 1

4·17

After
(Rl)';" 177577

NZVC
0000

Multiple Precision
It is sometimes necessary to do arithmetic on operands. considered as multiple
words or bytes. The PDp· 11 makes special provision for such operations with the
instructionsADC (Add Carry) and sec (Subtract Carry) .and their byte equiva.
lents.

For example two 16·bit words may be combined into a 32·bit double precision
word and added or subtracted. as shown below:

32 BIT WORD

r

OPERAND I AI I I A0

. 31 16 15
t

OPERAND I Bl B0

31 16 15

RESULT

3' '6 .5

. Example:

The addition of .-1 and-l could be performed as follows:

-1 =' 37777777777

,

I
0 ,

I
0

I
0

(Rl) == 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777

ADD Rl,R2
ADC' R3
ADD R4,R3

l.After (Rl) and (R2) are added. 1 is loaded into the C bit

2. ADC instruction adds C bit to (R3); (R3) =0

.3. (R3) and (R4) are added

4. Result is 37777777776 or -2

4·18

add carry

o o o

15 6 5

d

ADC
ADCB

-05500

d

0'

Operation: (dst~(dst) + (C)

Condition Codes: N:set if. result <0; cleared otherwise
Z: set if. result = 0; cleared otherwise
V: set if (dst) was077777 (word) or 200 (byte)

and (C).was 1; cleared otherwise
C: set if. (dst) was 177777 (word) or 377 (byte)

and (C) was 1; cleared otherwise

Description: Adds the contents of the C-bit into the destination. This per­
mits the carry from the addition of the low-order words to be
carried into the high-order result.
Byte: Same

Example: Double precision addition may be done with the following in­
struction sequence:
ADD AO,BO add low-order parts
ADC Bl add carry into high-order
ADD Al,Bl - add high order parts

4-19

ssc
sscs

subtract carry

1011 I ° ° °
15

°

Operation: (dst~(dst)-(e)

dd

6 5

Condition Codes: N: set if result 0; cleared otherwise
Z: set if result 0; cleared otherwise

-056DD

d d d

o

V: set if (dst) was 100000 (word) or 200 (byte)
cleared otherwise

C: set if (dst) was 0 and C was 1; cleared otherwise

Description: Word: Subtracts the contents of the C·bit from the destina·
tion. This permits the carry from the subtraction of two low·
order words to be subtracted from the high order part of the
result.
Byte: Same

Example: Double precision subtraction is done by:

SUB AO,BO
SBe Bl
SUB Al,Bl

4·20

SXT
Used in the POP-11/34, 11/45 and 11/55 -

sign extend

I 0 I 0 o

15

Operation:

Condition Codes:

. Description:

o o • 1 I
1

6. 5

(dst) ~ 0 if N bit is clear
(dst) ~-l N bit is set

N: unaffected
Z: set if N bit clear
V: cleared
C: unaffected .

-006700

d d I d d d

o

If the condition code bit N is set then a -1 is placed in the
destination operand: if N bit is clear, then a 0 is placed in the
destination operand. This instruction is particularly useful in
multiple precision arithmetic because it. permits the sign to
be extended through multiple words.

4·21

Used in the PDp·ll/34 MFPS
move byte from processor status word

11 0 0 0

Opera~ion: (dst) ~ PS <0:7>
dst lower 8 bits

Condition Code
Bits: N = set if PS bit 7 = 1; cleared otherwise

Z = set if PS <0:7> = 0; cleared otherwise
V= cleared
C = not affected

106700·

Description: The 8 bit contents of the PS are moved to the effec·
tive destination. If destillation is mode 0, PS bit 7 is
sign extended through the upper byte of the register.
The destination operand address is treated as a byte
address.

Example: MFPS RO

before

RO [0]
PS [000014]

4·22

after

RO [000014]
PS [000014]

MTPS Used in the PDP-ll/34

move byte to processor status word 1064SS

o I I 0 0

Operation: PS <0:7> ~ (SRC)

Condition Codes: Set according to effective SRC operand bits 0-3.

Description: The 8 bits of the effective operand replaces the cur­
rent contents of the PS <0:7>. The source operand
address is treated as'-a byte address.
Note that the T bit (PS bit 4) cannot be set with this
instruction. The SRC operand remains unchanged.
This instruction can be used to change the priority bits
(PS <5:7» in the PS_

4-23

4.5 DOUBLE OPERAND INSTRUCnONS
Double operand instructions provide an instruction (and time) saving facility
since they eliminate the need for "Ioad"and "save" sequences such as those
used in accumulator·oriented machines. . ,

4·24

MOV
MOVB

move source to destination' -ISSDD

10/11 ° ° d d d
I

d

15 12 11 6 5 °
Operation: (dst)..{src)

Condition Codes: N: set if (src) <0; cleared
Z: set if (src) = 0; cleared
V: cleared
C: not affected

Description: Word: Moves the source operand to the destination location.
The previous contents of the destination are lost. The con·
tents of the source address are not affected.
Byte: Same as MOV. The MOVB to a register (unique among
byte instructions) 'extends the most significant bit of the low
order byte (sign . extension). Otherwise MOVB operates on
bytes exactly as MOV operates on words.

Example: . MOV XXX.Rl ; loads Register 1 with the con·
tents of memory location; XXX represents"a programmer·de·
fined mnemonic used to represent a memory location

MOV # 20.RO ; loads the number 20 into
Register 0; .. # "indicates that the value 20 is the operand

MOV @#20.-(R6) ; pushes the operand con·
tained in location 20 onto the stack

MOV (R6) +.@ # 177566 ; pops the operand off the stack
and moves it into memory location 177566 (terminal print
buffer)

MOV Rl.R3
register transfer

; performs an inter

MOVB @# 177562. @# 177566 ; moves a character
from terminal keyboard buffer to terminal printer buffer·

4·25

CMP
CMPB

compare src to dst

10 / 1 1 0
I

o I s ssdddddd

15 12 11 6 5 o

Operation: (src)-(dst)

Condition Codes: N: set if ~asult <0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if there was arithmetic overflow; that is, operands were
of opposite signs and the sign of the destination was the
same as the sign of the result; cleared otherwise
C: cleared if there was a carry from the most significant bit of
the result; set otherwise

Description: Compares. the source and destination operands and sets the
condition codes, which may then be used for arithmetic and
logical conditional branches. B.oth operands are unaffected.
The only action is to setthe condition 90des. The compare is
customarily followed by a conditional branch instruction.
Note that unlike the subtract instruction the order of oper·
ation is (src)-(dst), not (dst)-(src).

4-26

ADD

add src to dst 06SSDD

s ., d d d
I d d I

15 12 II 6 5 o

Operation: (dst).(src) + (dst)

Condition Codes: N: set if result <0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if there was arithmetic overflow as a result of the oper·
ation; that is both operands were of the same sign and the
result was of the opposite sign; cleared otherwise
C: set if thE1re was a carry from the most significant bit of the
result; cleared otherwise

Description: Adds the source operand to the destination operand. and
stores the result at the destination address. The original con­
tents of the destination are lost. The contents of the source
are. not affect~d_ Two's complement addition is performed.

Examples: Add to register:

Add to memory:

Add register to register:'

Add memory to memory:

ADD 20.RO

ADD Rl.XXX

ADD Rl.R2

ADD@# 17750,XXX

XXX is a programmer-defined mnemonic for a memory loca­
tion. .

4-27

SUB

subtract src fromdst 16SSDD

d d d d d
I

15 12 11 6 5 o

Operation: (dst).~(dst)-(src)

Condition Codes: N: set if result <0: cleared otherwise
Z: set if result = 0: cleared otherwise
V: set if there was arithmetic overflow as a result of the oper·
ation. that is if operands were of opposite signs and the sign
of the source was the same as the sign of the result: cleared
otherwise
C: cleared if there was a carry from the most significant bit of
the result: set otherwise

Descr.iption: Subtracts the source operand from. the destination operand
and leaves the result at the destination address. The orignial
contents of the destination are lost. The contents of the
source are not affected. In double·precision arithmetic the C·
bit. when set. indicates a "borrow".

Example: SUB R1.R2

Before
(R1) =011111
(R2) = 012345

NZVC
1 1 1 1

4·28

After
(R1) = 011111
(R2) =001234

NZVC
0000

Logical·
These instructions have the same format as the double operand arithmetic group.
They permit operations on data at the bit level.

4·29

BIT
BITB

bit test

15 12 . 11

Operation: (src) A (dst)

d d

6 5 o

Condition Codes: N: set if high-order bit of result set; cleared otherwise
Z: set if result = 0: cleared otherwise
V: clear~d
C: not affected

Description: Performs logical "and"comparison of the source and desti­
nation operands and modifies condition codes accordingly.
Neither the source nor destination operands are affected.
The BIT instruction may be used to test whether any of the
corresponding bits that are set in the destination are also set
in the source or whether all corresponding bits set in the des·
tination are clear in the source.

Example: BIT #30.R3 : test bits 3 and 4 of R3 to see

: if both are off

(30)8=0 000 000 000 011 000

4-30

bit clear

1°/1 ,1
15 12 11 6 5

Operation: (dst)~-(src)A(dst)

d d d
I

d

BIC
BICB

°

Condition Codes: N: set if high order bit of result set; cleared otherwise
Z: set if result =0; cleared otherwise
V: cleared
C: not affected

Description: Clears each bit in the destinati6n that corresponds to a set
bit in the source. The original contents of the destination are
lost. The contents of the source are unaffected.

Example: BIC R3,R4

Before
(R3) = 001234

(R4) = 001111

NZVC
1 1 1 1

Before:

After:.

After
(R3) =001234

(R4) = 000 lD 1

NZVC
0001

(R3)=0 000 001' 010 011 100
(R4)=0 000 001 001 001 001

(R4)=0 000 000 001 000 001

4-31

BIS
BISB

bit set

15

o

12 l'

Operation: (dst).(src) v (dst)

d d d d d I
6 5 o

Condition Codes: N: set if high·order bit of result set. cleared otherwise
Z: set if result = 0: cleared otherwise
V: cleared
C: not affected

Description: Performs "Inclusive OR"operation between the source and
destination operands and leaves the result at the destination
address; that is. corresponding bits set in the source are set
in the destination. The contents of the destination are lost.

Example:. BIS RO.R1

Before After
(RO) = 001234 (RO) =001234
(R1) = 001111 (R1) =001335

NZVC NZVC
0000 0000

Before: (RO)=O 000 001 010 all 100
(R1)=0 000 001 001 001 001

After: (R1)=0 000 001 all all 101

4·32

XOR
Used in, the PDP-ll/34, 11/45 and 11/55

exclusive OR 074RDD

d I d

15 9 8 6 5

Operation: (dst).R ... (dst)

Condition Codes: N: set if the result <0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: cleared
C: unaffected

d

o

Description: The exclusive OR of the register and destination operand is
stored in the destination address, Contents of register are
unaffected, Assembler format is: XOR RD

Example: XOR RO,R2

Before
(RO) = 001234
(R2) = 001111

Before:

After:

After
(RO) = 001234
(R2) = 000325

(RO)=O 000 001 010 011 100
(R2)=0 000 001 001 001 001

, (R2)=0 000 000 011 OlD 101

4-33

·4;6 PROGRAM CONTROL INSTRUCTIONS
Branches

The instruction causes a branch to a location defined by the sum of the offset
(multiplied by 2) and thecllrrent contents of the Program Counter if:

a) the branch instruction is unconditional

b) it is conditional and the conditions are met after testing·the condition
codes (status word).

The offsefis the number of words from the current contents of the PC. Note that
the current contents ofthe PCpoint to the word following the branch instruction.

Although the PC expresses a byte address. the offset is expressed in words. The
offset is automatically multiplied by two to express bytes before it is added to the
PC. Bit 7 is the sign of the offset. If it is set. the offset is negative and the branch
is done in the backward direction. Similarly if it is ·not set. the offset is positive
and the bral'1ch is done in the forward direction.

The 8·bit offset allows branching in the backward direction by 200, words (400.
bytes) from the current PC. and· in the forward direction by 177. words (376.
bytes) from the current PC.

The PDP·ll assembler handles address arithmetic for the user and computes and
assembles the proper offset field for branch instructions in the form:

Bxx loc

Where "Bxx" is the branch instruction and "Ioc" is the address to which the
branch is to be made. The assembler gives an error indication in the instruction if
the permissable branch range is exceeded. Branch instructions have no effect on
condition codes.

4·34

BR

branch (unconditional) 000400 Plus offset

100000001\ OFFSET

15 8 7 o

Operation: PC • PC + (2 x offset)

Description: Provides a way of transferring program control within a
range of -128 to + 127 words with a one word instruction.

New peaddress = updated PC + (2 X offset)

Updated PC = address of branch instruction + 2

Example: With the Branch instruction at location 500, the following off·
sets apply.

New PC Address
474
476
500
502
504
506

Offset Code
375
376
377
000
001
002

4·35

Offset (decimal)
-3
-2
-1

a
+1
+2

BNE

branch if not equal (to zero)

I 0 I 0

15

Operation:

o 0 0 0
I I I 0

8 7

PC • PC + (2 x offset) if Z

Condition Codes: Unaffected'

001000 Plus offset

OFFSET
, ! I

o

o

Description: Tests the state of the Z-bit and causes a branch if the Z-bit is
clear_ BNE is the complementary operation to BEQ, It is used'
to test inequality following a eMP. to test that some bits set
in the destination were also in the source. following a BIT.
and generally. to test that the result of the previous oper­
ation was not zero.

Example: CMP A.S
BNE C

will branch to C if A t= B

and the sequence

ADD A.B
SNE C

; compare A and B
; branch if they are not equal

; add A to B
; Branch if the result is not

equal to 0

will branch to C if A + B =fo 0

4-36

branch if equal (to zero)

I boO

15

o 0 0
I

B 7

Operation: PC ~ PC + (2 x offs~t) if

Condition Codes: Unaffected

BEQ

001400 Plus offset

OFFSET J
o

Z

Description: Tests the state of the Z·bit and causes a branch if Z is set. As
an example, it is used to test equality following a CMP oper·
ation, to test that no bits set in the destination were also set
in the source following a BIT operation, and generally, to test
that the result of the previous operation was zero.

Example: CMP A,B
BEQ C

will branch to C if A = B
and the sequence

ADD A,B
BEQ C

; compare A and B
; branch if they are equal

(A - B = 0)

; add A to B
; bra nch if the result = 0

will branch to C if A + B = O.

4·37

BPL

branch if plus 100000 Plus offset

LI_l-LI_O~_O~_O~I_O~_O~_°-LI_O~ __ ~-L __ O~F_FS_E~IT __ L--L __ ~-JI -
870 '5

Operation:

Description:

PC • PC + (2 x offset) if N= 0

Tests the state of the N-bit and causes a branch if, N is
clear, (positive result)_

4-38

branch if minus

15

000 0
I

B 7

BMI

100400 Plus offset

OFFSET I
o

. Operation: PC • PC + (2 x offset) if N = 1

Condition Codes: Unaffected

Description: Tests the state of the N-bit' and causes a branch if. N is
set. It is ·used to test the sign (most significant bit) of
the result of the previous operation), branching if neg­
ative ..

4-39

Bve

branch if overflow is clear 102000 PI us off set

I I I 0 o

15

Operation:

Description:

o I 0 o I 0 I OFFSET

8 7 o

PC. PC + (2 x offset) if V=O

Tests the state of the V bit and causes a branch if the V bit is
clear. BVC is complementary operation to BVS.

4-40

BVS

branch if overflow is set 102400 Plus offset

I~_'~_O~_O~~O~I_O~ __ ~O~~'~I __ ~~ ___ O~F_FS_ELT __ ~ __ ~-L~I .
15 B 7 o

Operation:

Description:

PC .. PC + (2 x offset) if V= 1

Tests the state of V bit (overflow) and causes a branch if the
V bit is set. BVS is used to detect arithmetic overflow in the
previous operation.

4-41

Bee

branch if carry is clear 103000 Plus offset

11 I 0 o

15

Operation:

Description:

o 10 OFFSET
I I I

8 7 o

PC • PC + (2 x offset) if C = 0

Tests the state of the C·bit and causes a branch if C is clear.
BCC is the complementary operation to BCS

4-42

BCS

branch if carry is set ·103400·Plus offset

LI_l-LI_°-L_°-L_°-L_°-L __ ~-L~~-L __ ~O_F~F_S~ET~_"~I __ ~~~I.
ffi 870

Operation:

Description:

. PC • PC + (2 x offset) if C = 1

Tests the state of the C·bit and causes a branch if C is set. It
is used to test for a carry in the result of a previous oper.
ation.

4-43

Signed Conditional Branches
Particular combinations of the condition code bits are tested with the signed con·
ditional branches. These instructions are used to test the results of instructions in
which the operands were considered as signed (two's complement) values.

Note that the sense of signed comparisons differs from that of unsigned com·
parisons in that in signed 16·bit, two's complement arithmetic the sequence of
values is as follows:

largest

positive

negative

smallest

077777
077776

000001
000000
177777
177776

100001
100000

whereas in unsigned 16·bit arithmetic the sequence is considered to be

highest

lowest

177777

000002
000001
000000

4-44

BGE
.

branch if greater than or equal
(to zero)

002000 Plus offset

15

Operation:

. Description:

OFFSET

8 7 o

PC .. PC + (2.x offset) if N y. V = 0

Causes a branch if N and V are either both clear or both set .
BGE is the complementary operation to BlT. Thus BGE will
always cause a branch when it follows an operation that
caused addition of two positive numbers. BGE will also cause
a branch on a zero result.

4-45

BlT

branch if less than (zero) 002400 Plus offset

o I 0

15

Operation:

Description:

o 0 0 o OFFSET
I

8 7 o

PC • PC + (2x offset) if N y. V = 1

Causes a branch if the "Exclusive Or"ofthe N and V bits are
1. Thus BLT will always. branch following an operation that
added two negative numbers, even if overflow occurred.
In particular, BLT will. always cause a branch if it follows a
CMP instruction operating on a negative source and a posi.
tive destination (even if overflow occurred). further, BLT will
never cause a-branch when it follows a CMP instruction oper.
ating on a positive source and negative destination. BL Twill
not cause a branch if the result of the previous operation was
zero (without overflow).

4·46

BGT

branch if greater than (zero) 003000 Plus of.fset

I 0 I 0 0 0 I 0 OFFSET

15

Operation:

Description:

8 7 o

PC • PC + (2 x offset) if Z v(N y. V) = 0

Operation of BGT is similar to BGE, except BGT will not cause
a bra nch on a zero result.

4·47

BlE

branch if lessthan or equal (to zero) 003400 Plus offset

I 0 I 0 0 0 0

15

Operation:

Description:

8 7 o

PC ~ PC + (2 x offset) if Z v(Ny. V) = 1

Operation is similar to BL T but in addition will cause a
branch if the result ofthe previous operation was zero.

4·48

Unsigned Conditional Branches
The Unsigned Conditional Branches provide a means for testing the result of
comparison operations in which the operands are considered as unsigned values.

4·49

BHI

branch if higher 101000 Plus offset

15

Operation:

Description:

o I OFFSET
!

B . 7 o

PC~ PC + (2 x offset) if C=O and Z=O

Causes a branch if the previous operation caused neither a
carry nor a zero result. This will happen in comparison (CMP)
operations as long as the source has a higher unsigned value
than the destination.

4-50

BLOS

branch if lower or same 101400 Plus offset

15

Operation:

Description:

I'
I I OFFSET

1

o 0

8 7 o

PC • PC + (2 x offset) ifC v Z = 1

Causes a branch if the ·previous operation caused either a
carry or a zero result BLOS is the complementary operation
to BHI. The branch will occur in comparison operations as
long as the source is equal to, or has a lower unsigned value
than the destination.

4·51

BHIS

branch if higher or same 103000 Plus offset

I I 0 0 0 0 OFFSET

15

Operation:

Description:

8 7 o

PC ~ PC + (2 x offset) if C = 0

BHIS is the same instruction as BCC. This mnemonic is in·
cluded only for convenience.

4-52

BlO

branch if lower 103400 Plus offset

L.I-;;·'~_°......L._°......L._°-J_°--L_-'----'~....LI"=-~-L_°-LF_F_SE..I.T--'-...L--'_..J....--.JI-
15 8 7 o

Operation:

Description:

PC. PC + (2 x offset) if C = 1

BLO is same instruction as BCS. This mnemonic is included
only for convenience.

4-53

JMP

jump 000100

I 0 I 0 o o I 0 o o d d I d d

15 6 5 o

Operation: PC.(dst)

Condition Codes: not affected

Description: JMP provides more flexible program branching than provided
with the branch instructions. Control may be transferred to
any location in memory (no range limitation) and can be ac·
complished with the full flexibility of the addressing modes,
with the exception of register mode·O. Execution of a jump
with mode 0 will cause an "illegal instruction"condition.
(Program control cannot be transferred to a register.) Regis·
ter deferred mode is legal and will cause program control to
be transferred to the address held in the specified register.
Note that instructions are word data and must therefore be
fetched from an even·numbered address. A 'boundary er·
ror"trap condition will result when the processor attempts to
fetch an instruction from an odd address.

Deferred index mode JMP instructions permit transfer of
control to the address contained in a selectable element of a
table of dispatch vectors.

4-54

Subroutine Instructions
The subroutine call in the PDp· 11 provides for automatic nesting of subroutines,
reentrancy, and multiple entry points. Subroutines may call other subroutines (or
indeed themselves) to any level of nesting without making special provision for
storage or return addresses at each level of subroutine call. The subroutine call·
ing mechanism does not modify any fixed location in memory, thus providing for
reentrancy. This allows one copy of a subroutine to be shared among several in·
terrupting processes. For more detailed description of subroutine programming
see Chapter 5.

4·55

JSR

jump to subroutine 004RDD

15

Operation:

Description:

d d I
9 8 6 5 o

t'(SP~reg (push reg contents onto processor stack)

re~PC (PC hclds location following JSR; this address
now put in reg)

PC .(dst) (PC now points to subroutine destination)

In execution of the JSR, the old contents of the specified reg­
ister (the "LINKAGE POINTER") are automatically pushed
onto the processor stack and new linkage information placed
in the register. Thus subroutines nested within subroutines
to any depth may all be called with the same linkage register.
There is no need either to plan the maximum depth at which
any particular subroutine will be called or to include instruc­
tions in each routine to save and restore the linkage pointer.
Further, since all linkages are saved in a reentrant manner
on the processor stack execution of a subroutine may be in­
terrupted, the same subroutine reentered and executed by an
interrupt service routine. Execution of the initial subroutine
can then be resumed when otherrequests are satisfied. This
process (called nesting) can proceed to any level.

A subroutine called with a JSR reg,dst instruction can access
the arguments following the call with either autoincrement
addressing, (reg) + , (if arguments are accessed sequentially)
or by indexed addressing, X(reg), (if accessed in random or­
der). These addressing modes may also be deferred,
@(reg) + and -@X(reg) if the parameters are operand ad­
dresses rather than the operands themselves.

, .

4-56

Example:

Before:

After:

JSR PC, dst is a special case of the PDP·ll subroutine call
suitable for subroutine calls that transmit parameters
through the general registers. The SP and the PC are the only
registers that may be modified by this call.

Another special case of the JSR instruction is JSR pc,
@(SP) + which exchanges the top element of the processor
stack and the contents of the program counter. Use of this
instruction allows two routines to swap program control and
resume operation when recalled where they left off. Such rou·
tines are called "co·routines."

Return from a subroutine is done by the RTS instruction. RTS
reg loads the contents of reg into the PC and pops the top
element of the. processor stack into the specified register. .

JSR R5. SBR

(PC) R7 PC Stack,

(SP) R6 n .. DATA 0

R5 #1

R7 SBR

I~ R6 n-2 DATA 0

#1
.R5 PC+2

4·57

RTS

return from subroutine 00020R

I 0 I 00

15

Operation:

Description:

Example:

Before:

After:

o 10 o

PC.reg
reg. (SP).

o 10 o

3 2 o

Loads contents of reg into PC and pops the top element of
the processor stack into the specified register.
Return from a non·reentrant subroutine is typically made
through the same register that was. used in its call. Thus, a
subroutine called with a JSR PC, dst exits with a RTS PC and.
a . subroutine called with a JSR R5, dst, may pick up para·
meters with addressing modes (R5) +, X(R5), or @X(R5)
and finally exits with an RTS R5

RTS R5

(PC) R7 SBR Stack

I~ (SP) R6 n DATA 0

#1
R5 PC I

R7 PC

RS. DATA 0

R5 #1

4-58

mark

I 0 1 0 o
15

Operation:

MARK

Used in the PDP-11/34, 11/45 and 11/55

o 10 o I 1

SP. PC + 2nn
PC.R5
R5.(SP) •

B 7

00 64 NN

o Inn , , n I n n
6 5 o

n n = number of parameters

Condition Codes: unaffected

Description: Used as part of the standard PDP-ll subroutine return con­
vention. MARK facilitates the stack clean up procedures in­
volved in subroutine exit. Assembler'format is: MARK N

Example: MOV R5.-(SP) ;place old R5 on stack
MOV Pl.-(SP) ;place N parameters
~IOV P2,-(SP) ;on the stack to be

;used there by the
:subroutine

MOV PN.-(SP)
MOV #MARKN.-(SP) ;places the instruction

;MARK N on the stack
MOV SP,R5 ;set up address at Mark N in·

struction
JSR PC.SUB ;jump to subroutine

At this point the stack is as follows:

OLD R5

PI

PN

MARKN

OLD pc

4-59

.And the program is at the address SUB which is the beginning
of the subroutine.
SUB: ;execution of the subroutine it·

self

RTS R5 ;the return begins: this causes

the contents of R5 to be placed in the PC which then results
in the execution of the instruction MARK N. The contents of
old PC are placed in R5

MARK N causes: (1) the stack pointer to be adjusted to point
to the old R5 value; (2) the value now in R5 (the old PC) to be
placed in the PC; and (3) contents of the the old R5 to be
popped into R5 thus completing the return from subroutine.

4-60

SOB
Used in the PDP-11/34, 11/45 and 11/55

subtract one and branch (if ::f- 0) 077ROO Plus offset

I r:
15 9 8 6 5

OFFSET
I

o

Operation: R. R -1 if this result * 0 then PC. PC -(2 x offset)

Condition Codes: unaffected

Description: The register is decremented. If it is not equal to 0, twice the
offset is subtracted from the PC (now pointing to the follow·
ing word). The offset is interpreted as a six bit positive num·
ber. This instruction provides a fast, efficient method of loop
control. Assembler syntax is:

SOB R,A

Where A is the address to which transfer is to be made if the
decremented R is not equal to O. Note that the SOB instruc·
tion can not be used to transfer control in the forward direc·
tion.

4-61

SPL
Used in the PDP-11/45 and 11/55

Set Priority Level 00023N

.I 0 , 0 o
15

Operation:

Condition Codes:

Description

Traps

o I 0 o 0 o o o n

" 2

PS (bits 7-5) Priority (priority = n n n)

not affected

o

The least significant three bits of the instruction
are loaded into the Program Status Word (PS) bits
7-5 thus causing a changed priority. The old priority
is lost.
Assembler syntax is: SPL N

Note: This instruction is a no op in User and
Supervisor modes.

Trap 'instructions provide for calls to emulators, liD monitors, debugging pack·
ages, and user-defined interpreters. A trap is effectively an interrupt generated by
software. When a trap occurs the contents of the current Program Counter (PC)
and Program Status Word (PS) are pushed onto the processor stack and reo
placed by the contents of a two-word trap vector containing a new PC and new
PS. The return sequence from a trap involves executing an RTlor RTT instruc­
tion which restores the old PC and old PS by popping them from the stack. Trap
vectorsare locatedat permanently assigned fixed addresses.

emulator trap

10 0 0
I

15

Operation: 't (SP)4PS
't(SP)4PC

PC.(30)
PS.(32)

8 7

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

EMT

104000-104377

o

Description: All operation codes from 104000 to 104377 are EMT instruc·
tions and maybe used to transmit information to the emulat·
ing routine (e.g., function to be performed). The trap vector
for EMT is at address 30. The new PC is taken from the word
at address 30; the new central processor status (PS) is taken
from the word at address 32.

Before:

After:

Caution: EMT is used frequently by DEC system software and
is therefore not recommended for general use.

PS PS 1 Stack

R7, PC DATA 1

R6, SP

PS (32)

PC I (30) I DATA 1

PS 1

SP I n 4 I • PC 1

4·63

TRAP

trap

1'1 000 1,00 1,1
15

Operation: '(SP)4PS
'(SP)4PC

PC.(34)
PS4(36)

8 7

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

104400-104777

o

Description: Operation codes from 104400 to 104777 are TRAP instruc­
tions. TRAPs and EMTs are identical in operation, except
that the trap vector for TRAP is at address 34.

Note: Since DEC software makes frequent use of EMT, the
TRAP- instruction is recommended for general use_

4-64

BPT

breakpoint trap 000003

1 0 0 ° ° ° ° °1°: 0 ,0 ° ° ° ° 1 I
15 °

Operation: t (SP).PS
t(SP).PC

PC .. (14)
ps .. (16)

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description: Performs a trap sequence with a trap vector address of 14.
Used to call debugging aids. The user is cautioned against
employing code 000003 in programs run under these de­
bugging aids.

'(no information is transmitted in the low byte.)

4·65

lOT

<-
input/output trap 000004

I 0 o 0 o 10 o o 0 o 0 o 0 0 o 0 I
15 0

Operation: f(SP~PS
f(SP~PC
/ PC.(20)

PS.(22)

Condition Codes: N:loaded from trap vector
Z:loaded from trap vector
V:loaded from trap vector
C:loaded from trap vector

Description: Performs a trap sequence with a trap vector address of 20.
Used to call the 110 Executive routine lOX in the paper tape
software system. and for error reporting in the Disk Oper·
ating System.
(no information is transmitted in the low byte)

4-66

RTI

return from interrupt 000002

15

Operation:

Condition Codes:

Description:

o o o

PC.lCSP'.t.
PS.(SP) ...
N: loaded from processor ,stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

o 0 0
I

o

o

Used to exit from an interrupt or TRAP service routine. The
PC and pS ' are restored (popped) from the processor stack.

4-67

RTT
Used in the PDp·11/34, 11/45 and 11/55

return from interrupt 000006

o 00000 o 10 o 000 o o

15 0

Operation: ~(SP) ...
PS.(SP) ...

Condition Codes: N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Description: - This is the same as the RTI instruction except that it inhibits
a trace trap, while RTI permits a trace trap. If a trace trap is
pending, the first instruction after the RTI will be executed
prior to the next "TOOt rap. In the case of the RTI instruction
the "TOO trap will occur immediately after the RTI.

4·68

Reserved Instruction Traps· These are caused by attempts to execute instruction
codes reserved for future processor' expansion' (reserved instructions) or instruc·
tions with illegal addressing modes (illegal instructions). Order codes not corre·
sponding to any of the. instructions described are considered to be reserved in·
structions. JMP and JSR with register mode destinations are illegal instructions.
Reserved and illegal instruction traps occur as described under EMT, but trap
through vectors at addresses 10 and 4 respectively.

Stack Overflow Trap
Bus Error Traps· Bus Error Traps are:

1. Boundary Errors - attempts to reference instructions or word
operands at odd addresses.

2. Time-Out Errors - attempts to reference addresses on the bus
that made no response within a certain length of time. In general,
these are caused by attempts to reference non-existent memory,
and attempts to reference non-existent peripher.al devices.

Bus error traps cause processor traps through the trap vector address 4.

Trace Trap· Trace Trap enables bit 4 of the PS and causes processor traps at
the end of instruction executions. The instruction that is executed after the in·
struction that set the T·bit will proceed to completion and then cause a processor
trap through the trap vector at address 14. Note that the trace trap is a system
debugging aid and is transparent to the general programmer.

The following are special cases and are detailed in subsequent paragraphs.

L The traced instruction cleared the T·Oit.

2. The traced instruction set the T·bit.

3. The traced instruction caused an instruction trap.

4. The traced instruction caused a bus error trap.

5. The traced instruction caused a stack overflow trap.

6. The process was interrupted between the time the T·bit was set and the
fetching of the instruction that was to be traced.

7. The traced instruction WaS a WAIT.

8. The traced instruction was a HALT.

9. The traced instruction was a Return from Trap

Note: The traced instruction is the instruction after the one that sets the T·bit.

An instruction that cleared the T-bit . Upon fetching the traced instruction an in·
ternalflag, the trace flag, was set. The trap will still occur at the end of execution
of this instruction. The stacked status word, however, will have a clear T·bit.

An instruction that set the T-bit . Since ttie T·bit was already set, setting it again
has no effect. The trar Will occur.

4-69

An instruction that caused an Instruction Trap. The instruction trap is
sprung and the entire routine for the service trap is executed. If the
service routine exits with an RTI or in any other way restores the stacked
status word, the T-bit is set again, the instruction following the traced
instruction is executed and, unless it is 'one of the special cases ·noted .
above, a trace trap occurs.'

An instruction that caused a Bus Error Trap. This is treated as an:ln·
struction Trap. The only difference is that the error service· is not as.
likely to exit with an RTI, so that the trace trap may not occur.

An instruction that caused a stack overflow. The instruction completes'
execution as usual:""'-the Stack Overflow does not .cause a trap. The'
Trace Trap Vector is loaded into the PC and PS, and the old PC and .PS
are pushed onto the stack. Stack Overflow occurs again,and· this time
the trap is made. .

An interrupt betwe.en setting of the T-bit and fetch of the traced intruc­
tion.The entire interrupt service routine is executed and then the T-bit
is set again by the exiting RTI. The traced instruction is executed (if
there have been no other interrupts) and, unless it· is a special case
noted above, causes a trace trap.

Note that interrupts may be acknowledged immediately after the loading
of the new PC and PS at the trap vector location. To lock out all inter­
rupts, the PS at the trap vector should raise the processor priority to
level 7.

A WAIT. The trap occurs immediately.

A HALT. The processor halts. When the continue key on the console is
pressed, th'e instruction following the HALT is fetched and executed.
Unless it is one of the exceptions noted above, the trap occurs imme­
diately following execution.

,
A Return from Trap. The return from trap instruction either clears or sets
the T-bit. It inhibits the trace trap. If the T-bit was set and RTT is the
traced instruction the trap is delayed until completion of the next in­
struction.

Power Failure Trap. is a standard PDp·ll feature. Trap occurs whenever
the AC power drops below 95 volts or outside 47 to 63 Hertz. Two milli­
seconds are then allowed for power down processing. Trap vector for
power failure is at locations 24 and 26.

4-70

Trap priorities. In case multiple processor trap conditions occur simul·
taneously the following order of priorities is observed (from high to low):

11/04
1. Odd Address
2. Timeout
3. Trap Instructions
4. Trace Trap
5. Power Failure

11/34
1. Odd Address
2. Memory Management Violation
3. Timeout
4. Parity Error
5. Trap Instruction
6. Trace Trap
7: Stack Overflow
8. Power Fail
9. Interrupt

10. HALT From Console

11/45, 11/55
1. Odd Address
2. Fatal Stack Violation
3. Segment Violation
4. Timeout
5. Parity Error
6. Console Flag

. 7. Segment Management Trap
8. Warning Stack Violation
9. Power Failure

The details on the trace trap process have been described in the trace
trap operational-qescription which includes cases in which an instruc·
tion being traced causes a bus error, instruction trap, or a stack over·
flow trap. .

If a bus error is caused by the trap process handling instruction traps,
trace traps, stack overflow traps, or a previous bus error, the processor
is halted.
If a stack overflow is caused by the trap Process in handling bus errors,
instruction traps, or trace traps, the process is completed and then' the
stack overflow trap is sprung.

4·71

4.7 MISCELLANEOUS

HALT

halt 000000

15 o

Condition Codes: not affected

Description: Causes the processor operation to cease. The console is
given control of the bus. The console data lights display the
contents of RO; the, console addresS lights display the ad·
dress after the halt instruction. Transfers on the UNIBUS are
terminated immediately. The PC points to the next instruc·
tion to be executed. Pressing the continue key on the console
causes processor operation to resume. No INIT signal is
giv~n.

Note: A halt issued in a trap.

4-72

WAIT

wait for interrupt 000001

I 0 I 0 o 0 o o o o o o o o o
. ,

15 o

Condition Codes: not affected

Description: Provides a way for the processor to relinquish use of
the bus while it waits for an external interrupt.
Having been given a WAIT command, the processor
will not compete for bus use by fetching instructions
or operands from memory. This permits liigher trans-.
fer rates between a device and memory, since no
processor-induced latencies will be encountered by
bus requests from the device. In WAIT, as in all in­
structions, the PC points to the next instruction fol­
lowing the WAIT operation. Thus when an interrupt
causes the PC and PS to be pushed onto the pro­
cessor stack, the address of the next instruction
following the WAIT is saved. The exit from the in­
terrupt routine (Le. execution of an RTI instruction)
will cause resumption of the interrupted process at
the instruction following the WAIT.

"

4-73

RESET

reset external bus

I 0 I 0 ,0 0 I 0 I 0 0 0: 0 I 0 I 0 ,0 0

'5

Condition Codes: not affected

000005

o I I
o /'

Description: Sends.INIT on the UNIBUS.AII devices on the UNI·
BUS are reset to their state at power up.

4·74

Condition Code/Operators CLN SEN
CLZ SEZ
CLV SEV
CLC SEC
CCC SCC

condition code operators 0OO2XX

I 0 0 0 0 1 00
~ I , I .

o 10 o I 1 IQ/1INl z lv I c I
15 5 4 3 2 0

Description:
\

Set and clear condition code bits. Selectable combinatiohs of
these bits may be cleared or set together. Condition code bits
corresponding to bits in the condition code operator (Bits O·
3) are modified according to the sense of bit 4, the set/clear'
bit of the operator. i.e. set the bit specified by bit 0, I, 2 or 3,
if bit 4 is a 1. Clear corresponding bits if bit 4 = O.

Mnemonic
Operation

ClC Clear C

ClV Clear V

Cll Clear l

ClN Clear N

SEC SetC '

SEV Set V

SEZ Set l

SEN. Set N

SCC Set all CC's

CCC Clear all CC's

Clear V and C

NOP No Operation

OP Code

000241

000242

000244

000250

000261

000262

000264

000270

000277

000257

000243
000240

Combinations of the above set or clear operations may be ORed together to.form
combined instructions.

4-75

4-76

CHAPTER 5

PROGRAMMING TECHNIQUES

In order to produce programs which fully utilize the power and flexibility of the
PDP-H, the reader should become familiar with the various programming tech­
niques which are part of the basic design philosophy of the PDP-I L Although it is
possible to program the PDP-II along traditional lines such as "accumulator ori­
entation" this approach does not fully exploit the architecture and instruction set
of the PDP-H_

5_1 THE STACK
A "stack", as used on the PDP-H, is an area of memory set aside by the pro­
grammer for temporary storage or subroutine/interrupt service linkage_ The in­
structions which facilitate "stack" handling are useful features not normally
found in low-cost computers_ They allow a program to dynamically establish,
modify, or delete a stack and items on it. The stack uses the "last-in, first-out"
concept, that is, various items may be added to a stack in sequential order and re­
trieved or deleted from the stack in reverse order. On the PDP-H, a stack starts
at the highest location reserved for it and expands linearly downward to the low­
est address as items are added to the stack_

HIGH ADDRESSES ",.,.'777'):o;r-----.:==

LOW AODRESSES

Figure 5-1: Stack Addresses

The programmer does not need to keep track of the actual locations his data is
being stacked into_ This is done automatically through a "stack pointer." To keep
track of the last item added to the stack (or "where we are" in the stack) a Gen­
eral Register always contains the memory address where the last item is stored in
the stack_ In the PDP-ll any register except Register 7 (the Program Counter-PC)
may be used as a "stack pointer" under program control; however, instructions
associated with subroutine linkage and interrupt service automatically use Regis­
ter 6 (R6) as a hardware "Stack Pointer." For this reason R6 is frequently re­
ferred to as the system "SP _"

5-1

Stacks in the PDP-ll may be maintained in either full word or byte units. This is
true for a stack pointed to by any register except R6. which must be organized in
full word units only.

007'00

007076

_ 007074

007072

007070

007066

007064

007100

007077

007076

007075

WORD STACK

ITEM .,

ITEM .2

ITEM .3

ITEM #4

BYTE STACK

ITEM .,
ITEM #2

ITEM #3

ITEM #4

-spl 007072

NOTE: BYTES ARE
ARE ARRANGED IN
WORDS AS FOLLOWING:

4--SPLI ___ 0_0_70_7_5 __ ~I·

Figure 5-2: Word and Byte Stacks

Items are added to a stack using t~e autodecrement addressing mode with the
appropriate pointer register. (See Chapter 3 for description of the autoincre­
ment/decrement modes).

This operation is accomplished as follows;

MOV Source.-(SP) ;MOV Source Word onto the stack

or

MOVB Source.-(SP) ;MOVB Source Byte onto the stack

This is called a "push" because data is "pushed onto the stack."

5·2

To remove an item from stack the autoincrement addressing mode with the ap­
propriate SP is employed. This is accomplished in the following manner:

MOV (SP) + ,Destination ;MOV Destination Word off the stack

or

MOVB (SP) + ,Destination ;MOVB Destination Byte off the stack

Removing an item from a stack is called a "pop" for "popping from the stack."
After an item has been "popped," its stack location is considered free and avai­
lable for other use. The stack pointer points to the last·used location implying
that the next (lower) location is free. Thus a stack may represent a pool of share.
able temporary storage locations.

HIGHMEMOOY~_SP .~.

}
• E0 -SP

STACK
AREA

LOW MEMORY
1. AN EMPTY STACK 2. PUSHING A DATUM

AREA . ONTO THE STACK

~0
EI

~ E2 -SP

4. ANOTHER PUSH

~
E3

E0

E1 -sp

7. pop

rr=3p
~4SP
5. POP

rr=3
.~SP

3. PUSHING ANOTHER
OATUM 0010 THE
STACKS

~0
El

~ E3 _SP

6. PUSH

Figure 5-3: Illustration of Push and Pop Operations

5-3

As an example of stack usage consider this situation: a subroutine (SUBR) wants
to.use registers 1 and 2, but these registers must be returned to the calling pro·
gram with their contents unchanged. The subroutine could be written as follows:

Address Octal Code Assembler Syntax

076322
076324
076326
076330

076410
076412
076414
076416
076420
076422
076424

·Index Constants

010167 SUBR:
000074
010267
000072

016701
000006
016702
000004
000207·
000000
000000

MOV Rl,TEMPI ;save Rl
•
MOV R2,TEMP2 ;save R2
•

MOV TEMPI, Rl ;Restore Rl
•
MOV TEMP2, R2 ;Restore R2
•
RTSPC
TEMPI: 0
TEMP2: 0

Figure 5-4: Register Saving Without the Stack

OR: Using the Stack

Address

010020
010022

010130
010132
010134

. .

Octal Code

010143 SUBR:
010243

012301
012302
000207

Assembler Syntax

MOV Rl, -(R3) ;push Rl
MOV R2,. -(R3) ;pushR2

MOV (R3) +, R2 ;pop R2
MOV (83) + ,Rl ;pop Rl
RTSPC

Note: In this case R3 was used as a Stack Pointer -

Figure 5-5: Register Saving using the Stack

The second routine uses four less words of instruction code and two words of
temporary "stack" storage. Another routine could use t!1e same stack space at
some later point. Th.us, the ability to share temporary storage in the form of a
stack is a very economical way to save on memory usage.

5-4

As a further example of stack usage, consider the task of managing an input buf·
fer from a terminal. As characters come in, the terminal user may wish to delete'
characters from his line; this is accomplished very easily by maintaining a byte
stack containing the input characters. Whenever a backspace is received a char·
acter is "popped" off the stack and ~iminated from consideration. In this ex·
ample, a programmer has the choice of "popping" characters to be eliminated by
using either the MOVB (MOVE BYTE) or INC (INCREMENT) instructions.

001011

001010

001007

001006

001005

00100_

001003

001002

00\001

c c
u - u

S INC R3 S

T T

0 0

M M

E E

R R -'113

Z 001001

Fi/Zure 5·6: Byte Stack used as a Character BuftP.r

001002

NOTE that in this case using the increment instruction (INC) is preferable to
MOVB since it would accomplish the .task of eliminating the unwanted character
from the stack by readjusting the stack pointer without the need for a destination
location. Also, the stack pointer (SP) used in this example cannot be the system
stack pointer (R6) because R6 may only point to word (even) locations.

5.2 SUBROUTINE LINKAGE
5.2.1 Subroutine Calls
Subroutines provide a facility for maintaining a single copy of a given routine
which can be used in a repetitive manner by other programs located i\lnywhere
else in memory. In order to provide this facility, generalized linkage methods
must be established for the purpose of control transfer and information exchange
between subroutines and calling programs. The PDp·ll instruction set contains
several useful instructlons for this purpose.

PDP· 11 subroutines are called by using the JSR instruction which has the follow·
ing format. .

a general register (R) for linkage .---,
JSR R,SUBR

an entry location (SUBR) for the subroutine...J

5·5

When a JSR is executed, the contents of the linkage register are saved on thesys­
tem R6 stack as if a MOV reg,-(SP) had been perfo~med_ Then the same register
is loaded with the memory address following the JSR instruction (the contents of
the current PC) and a jump is made to the entry location specified_

BEFORE

(RS)- 000132
(A6)'001176

(pel-(R7)-001000

002000 1---"'::"'::;" ":;":":':':"'::'"---1

Address Assembler Syntax Octal Code

001000 JSRRS',SUSR 004567
001002 index constant for SUBR 000060

001064 SUSR: MOV A,S Olnnmm

Figure 5-7: JSR using RS

AFTER

(R!5)o001004
(R6)'001174

(PC)-(R7)-001064

002000 nnnnnn

ooms SP "'--00-'-17-6-""11 001176 I--m'::'m"::mm'::'m::":m:""--j

001774 001174 000132 SP 001774

001772 0017721-___ ---1

Figure S-8: JSR

Note that the instruction JSR R6,SUBR is not n9rmally considered to be a mean­
ingful combination,

5.2.2 Argument Transmission
The memory location pointed to by the linkage register of the JSR instruction may
contain arguments or addressses of arguments, These arguments may be ac­
cessed from the subroutine in several ways, Using Register S as the linkage regis­
ter, the first argument could be obtained by using the addressing modes in­
dicated by (RS), (RS) + ,X(RS) for actual data, or @(RS) + , etc, for the address of
data, If the autoincrement mode is used, the linkage 'register is automatically up­
dated to point to the next argument.

Figures S-9 and S-lO illustrate two possible methods of argument transmission,

Address Instructions and Data

010400
010402
010404
010406

020306 SUBR:
020310

JSR RS,SUBR
Index constant for SUBR
arg #'1
arg #2

MOV (RS)+ ,Rl
MOV {RS) + ,R2

SUBROUTINE CALL

ARGUMENTS

;get arg # 1

;get arg # 2 Retrieve Arguments
from SUB

Figure S-9; Argument Transmission -Register Autoincrement Mode

5-6

Address Instructions and Data

010400 JSR R5,SUBR
010402 index constant for SUBR SUBROUTINE CALL
010404 077722 Address of Arg # 1
010406 077724 Address of Arg. # 2
010410 077726 Address of Arg. # 3

077722 Arg # 1
077724 arg #2 arguments
077726 arg #3

020306 SUBR: MOV @(R5) + ,Rl ;getarg # 1
020301 MOV @(R5) + ,R2 ;get' arg #2

Figure 5·10: Argument Transmission·Register Autoincrement Deferred Mode

Another method of transmitting arguments is to transmit only the address of the
first item by placing this address in a general purpose register. It is not necessary
to have the actual argument list in the same general area as the subroutine call.
Thus a subroutine can be called to work on data located anywhere in memory. In
fact, in many cases, the operations performed by the subroutine can be applied
directly to the data located on or pointed to by a stack without the need to ever
actually move this data into the subroutine area.

Calling Program:' MOV
JSR

SUBROUTINE ADD

POINTER, R1
PC,SUBR

(R1)+,(R1) ;Add item #1 to item #2, place
result in item #2, R1 points

etc.
or .

to item # 2 now

ADD (R1),2(R1) ;Same effect as above except that

R1 still points to item # 1
etc.

ITEM * 1 4----Rl I
ITEM # 2 L..-__ ---J

Figure 5-11: Transmitting Stacks as Arguments

5-7

Because the PDP-ll hardware already uses general purpose register R6 to point
to_ a stack for saving and restoring PC and PS (processor status word) informa­
tion, it is quite convenient to use this same stack to save and restore intermediate
results and to transmit arguments to and from subroutines_ Using R6 in this
manner permits extreme flexibility in nesting subroutines and interrupt service
routines_

Since arguments may be obtained from the stack by using some form of register
indexed addressing, it is sometimes useful to save a temporary copy of R6 in
some other register which has already been saved at the beginning of a subrout­
ine_ In the previous example R5 may be used to index the arguments while R6 is
free to be incremented and decremented in the course of being used as a stack
pointer_ If R6 had been used directly as the base for indexing and not "copied", it
might be difficult to keep track of the position in the argument list since the base
of the stack would change with every autoincrementldecrement which occurs_

org .1

org #2

Ofg #" 2 is ot source
-2(SPI

but when another item
TO is pushed 5P--

erg *1.
Qrt;;! '* 2

org *3
TO

org .. 2 Is at source
-4(5PI

Figure 5-f2: Shifting Indexed Base

However, if the contents of R6 (SP) are saved in R5 before any arguments are
pushed onto the stack, the position relative to R5 would remain constant.

org ,. 1 - or9 #2

oro #1 -A5
i-------t

SP org #2

SP- oro #:3

org#2 IS at 2 (RS) or9 '* 2 IS stili at 2{R5)

Figure 5-13: Constant Index Base Using "R6 Copy"

5-8

5.2.3 Subroutine Return
In order to provide for a return from a subroutine to the calling program an RTS
instruction is executed by the subroutine. This instruction should specify the
same register as the JSR used in the subroutine call. When executed. it causes the
register specified to be moved to the PC and the top of the stack to be then placed
in the register specified. Note that if an RTS PC is executed, it has the effect of reo
turning to the address specified on the top of the stack.

Note that the JSR and the JMP Instructions differ in that a linkage register is al·
ways used with a JSR; there is no linkage register with a JMP and no way to reo
turn to the calling program.

When a subroutine finishes, it is necessary to "clean·up" the stack by
eliminating or skipping over the subroutine arguments. One way this can
be done is by insisting that the subroutine keep the number of argu­
ments as its first stack item. Returns from subroutines would then in­
volve calculating the amount by which to reset the stack pointer, reset­
ting the stack pointer, then restoring the original contents of the register
which was used as the copy of the stack pointer. A much faster and
simpler method of performing these tasks utilizes the MARK instruction
which, is stored on a stack in place of "number of argument" information
and may be used to automatically perform these "clean-up" chores.

5.2.4 PDP-ll Subroutine Advantages
There are several advantages to the PDp·l1 subroutine' calling procedure.

a. arguments can be quickly passed between the calling program and the subr·
outinE!:

b. if the user has no arguments or the arguments are in a general register or on
the stack the JSR PC,DST mode can be used so that none of the general pur·
pose registers are taken up for linkage.

C. many JSR's cap be executed without the need to provide any saving procedure
for the linkage information since all linkage information is automatically
pushed onto the stack in sequential order. Returns can simply be made by
automatically popping this information from the stack in the opposite order of
the JSR's. . '

Such linkage address bookkeeping is calkld 'automatic "nesting" of subroutine
calls. This feature enables the programmer to construct fast, efficient linkages in
a simple, flexible manner. It even permits a routine 'to call itself in those cases
where this is meaningful. Other ramifications will appear after we examine the
PDp·l1 interrrupt procedures.

5.3 INTERRUPTS
5.3.1 General Principles
Interrupts are in many respects very similar to subroutine calls. However, they are
forced, rather than controlled, transfers of program execution occurring because
of some external and program-independent event (such as a stroke on the tele·
printer keyboard). Like subroutines, interrupts have linkage information such

5-9

that a return to the interrupted program can be made. More information is ac·
tually necessary for an interrupt transfer than a subroutine transfer because of
the random nature of interrupts. The complete machine state of the program im·
mediately prior to the occurrence of the interrupt must be preserved in order to
return to the program without any noticeable effects. (i.e. was the previous oper·
ation zero or negative, etc.) This information is stored in the Processor Status
Word (PS). Upon interrupt, the contents of the Program Counter (PC) (address of
next instruction) and the PS are automatically pushed onto the R6 system stack.
The effect is the same as if:

MOV PS ,-(SP)
MOV R7,-(SP)

had been executed.

; Push PS
; Push PC

The new contents of the PC and PS are loaded from two preassigned consecutive
memory locations which are called an "interrupt vector". The actual locations are
chosen by the device interface designer and are located in low memory addresses
of Kernel virtual space (see interrupt vector list, Appendix 13). The first word con·
tains the interrupt service routine address (the address of the new program se·
quence) and the second word contains the new PS which will determine the mao
chine status including the operational mode and register set to be used by the
interrupt service routine. The contents of the interrupt service vector are set un·
der program control.

After the interrupt service routine has been completed, an RTI (return from inter·
rupt) is performed. The two top words of the stack are automatically "popped"
and placed in the PC and PS respectively, thus resuming the interrupted pro·
gram.

5.3.2 Nesting
Interrupts can be nested in much the same manner that subroutines are nested.
In fact, it is possible to nest any arbitrary mixture of subroutines and interrupts
without any confusion. By using the RTI and RTS instructions, respectively, the
proper returns are automatic.

1. Process 0 is running;
SP is pointing to loca·
tion PO.

2. Interrupt stops process 0
with PC = PCO, and
status = PS 0 ;starts process 1.

5-10

po§ pso
sp~ pco

3. Process 1 uses stack for
temporary storage (TEO, TEl).

POI-___ -l
PSO

PCO

TEO

SP"- TEt

4. Process 1 interrupted with PC = PCl PO

and status = PSI; process 2 is started

5. Process 2 is running and does a
JSR R7,A to Subroutine A with
PC = PC 2.

6. Subroutine A is running
and uses stack for
temporary storage.

o

PO

o

0

o

PSO

pco

TEt?

TE I

PSI

PC I

PSO

PCO

TEO

TE I

PS I

PCI

pe2

PSO

PCO

TEO

TEl

PSI

PCt

PC2

TAl

TA2

7. Subroutine A releases the temporary

storage holding TAl and TA2.

8. Subroutine A returns control to process
2 with an RTS R7,PC is resllt to PC2.

PO

o

PO

o

PSO

pco
TEO

TEl

PSI

PCI

PC2

. pso

PCO

TEO

TEl

PSI

PCI

9. Process 2 completes with an RTI instruction' PO 1-'-----1
(dismisses interrupt) PC is reset
to PC(l) and status is reset to PSI;
process 1 resumes.

10. Proce!;'s 1 releases the temporary
storage holding TEO and TEl.

11. Process 1 completes its operation with
an RTI,PC is reset to PCO,and status is
reset tci PSO.

PSO

PCO

TEO

SP_I-_.;;TE:.;I_-I

PO~ pso

SP: .. pco _

Figure 5·14: Nested Interrupt Service Routines and Subroutines

Note that the area of interrupt service programming is intimately involved with
the concept of CPU and device priority levels.

5·12

5.4 REENTRANCY
Further advantages of stack organization become apparent in complex situations
which can arise in program systems ttlat are engaged in the concurrent handling
of several tasks. Such multi-task program environments may range from rela­
tively simple single-user 'applications which must manage an intermix ot I/O in­
terrupt service and background computation to large complex multi-programm
ing systems which manage a very intricate mixture of executive and multi-user

-programming situations. In all these applications there is a need for flexibility
and time/memory economy. The use of the stack provides- this economy and
flexibility by providing a method for allowing many tasks to use a single copy of
the same routine and a simple, unambiguous method for keeping track of com­
plex program linkages.

The ability to share a single copy of a given program among users or tasks is
called reentrancy. Reentrant program routines <!iffer fromordinary subroutines in
that it is unnecessary for reentrant routines to finish processing a given task be­
fore they can be U!!ed by another task. Multiple tasks can be in various stages of
completion in the same routine at any time. Thus the following situation may oc­
cur:

MEMORY

PROGRAM'A . PROGRAM 2 SlSROUTlNE A
PROGRAM 3

PDP-ll Approach

Programs 1,2, and 3 can
share Subroutine A.

MEMORY

PROGRAM 2 ~$(J8ROUTINE .~

Conventional Approach

A separate copy of Subroutine A
must be provided for each program.

Figure 5·15: Reentrant Routines

The chief programming distinction between a non-shareable routine and a reen'
trant routine is that the reentrant routine is composed solely of "pure code", i.e.
it contains only instructions and constants. Thus, a section of program code is re­
entrant (shareable) if and only if it is "non self-modifying",that is it contains no
information within it that is subject to modification.

Using reentrant routines, control of a given routine may be shared as illustrated
in Figure 5-16.

5·13

REENTRANT
ROUTINE 1-------"

Q

Figure 5-16: Reentrant Routine Sharing

1. Task A has requested processing by Reentrant Ro'utine Q.

2. Task A temporarily relinquishes control (is interrupted) of Reentrant Routine
Q before it finishes processing.

3. Task B starts processing in the same copy of Reentrant Routine Q.

4. Task B relinquishes control of Reentrant Routine Q at some point in its pro­
cessing.

5. Task A regains control of Reentrant Routine Q and resumes processing from
where it stopped_

The use of reentrant programming allows many tasks to share frequently used
routines such as device interrupt service routines, ASCii-Binary conversion rou­
tines, etc. In fact, in a multi-user system it is possible for instance, to construct a
reentrant FORTRAN compiler which can be used as a single copy by many user
programs.

As an application of reentrant (shareable) code, consider a data processing pro­
gram which is interrupted while executing a ASCII-to-Binary subroutine which has
been written as a reentrant routine. The same conversion 'routine is used by the
device service routine. When the device servicing is finished, a return from inter­
rupt (RTI) is executed and execution for the processing program is then resumed
where it left off inside the same ASCii-to-Binary subroutine.

Shareable routines generally result in great memory saving. It is the hardware im­
plemented stack facility of the PDP-l1 that makes shareable or. reentrant rou-
tines reasonable. '

A subroutine may be reentered by a new task before its completion by the pre­
vious task as long as the new execution does not destroy any linkage information
or' intermediate results which belong to the previous programs. This usually
amounts to saving the contents of any general purpose registers, to be used and
restoring them upon exit. The choice of whether to save and restore this informa­
tion in the calling program or the subroutine is quite arbitrary and depends on the
particular application. For example in controlied transfer situations (Le, JSR's) a
main program which calis a code-conversion utility might save the contents of
registers which it needs and restore them after it has regained control, or the
code conversion routine might save the contents of registers which it uses and re­
store them upon its completion. In the case of interrupt service routines this
save/restore process must be carried out by the service routine itself since the in­
terrupted program has no warning of an impending interrupt. The advantage of

5-14

using the stack to save and restore (Le. "push" and "pop") this information is
that it permits a program to isolate its instructions and data and thus maintain
its reentrancy.

In the case of a reentrant program which is used ina multi·programming envi·
ronment it is usually necessary to maintain a separate R6 stack for each user al·
though each such stack would be shared by all the tasks of a given user; For ex·
ample, if a reentrant FORTRAN compiler is to be shared between many users,
each time the user is changed, R6 would be seUopoint to a new user's stack area
as illustrated in Figure 5·17.

Figure 5·17: .Multiple R6 Stack

5.5 POSITION INDEPENDENT CODE· PIC
Most programs are written with some direct references to specific addresses, if
only as an offset from an absolute address origin. When it is desired to relocate
these programs in memory, it is necessary to change the address references
and/or the origin assignments. Such programs are constrained to a specifiec set
of locations. However, the PDp·ll architecture permits programs to be con·
structed such that they are not constrained to specific locations. These Position
Independent programs do not directly reference any absolute locations in
memory. Instead all references are "PC·relative" i.e. locations are referenced im
terms of offsets from the current location (offsets from the current value of the
Program Counter (PC». When such a program has been translated to machine
code it will form a program module which can be loaded anywhere in memory as
required.

Position Independent Code is exceedingly valuable for those utility routines
which may be disk· resident and are subject to loading in a dynamically changing
program environment. The supervisory program may load them anywhere it de­
termines without the need for any relocation parameters since all items remain in
the same positions relative to each other (and thus also to the PC).

Linkages to program routines which have been written inpositio(l independent
code (PIC) must still be absolute in some manner. Since these routines can be lo­
cated anywhere in memory there must be some fixed or readily lo~atable linkage
addresses to facilitate access to. these ro.utines. This linkage address may be a
simple pointer located at a fixed address or it may be a complex vector composed
of numerous linkage information items.

5·15

5.6 CO-ROUTINES
In some situations it happens that two program routines are highly interactive.
Using a special case of the JSR instruction i.e. JSR PC,@(R6) + which exchanges
the top element of the Register 6 processor stack and the contents of the Pro·
gram Counter (PC), two routines may be permitted to swap program control and
resume operation where they stopped, when recalled, Such routines are called
"co·routines", This control swapping is illustrated in Figure 5·18,

Routine #'1 is operating, it then executes:

MOV #PC2,-(R6)

JSR PC,@(R6) +

with the following results:

1) PC2 is popped from the stack

and the SP autoincremented

2) SP is autodecremented and the
old PC (i.e, PC1) is pushed

3) control is transferred to the
location PC2 (i.e, routine # 2)

Routine # 2 is operating, it then executes:

" JSR PC ,@(R6)+

with the result the PC2 is exchanged
for PC1 on the stack and control is
transferred back to routine # 1.

...-_.L..--,--, pe2
5P-I-___ -I

Figure 5-18 . Co· Routine Interaction

5·16

5.7 PROCESSOR TRAPS
There are a series of errors and programming conditions which will
cause the Central Processor to trap to a set of fixed locations. These
include Power Failure, Odd Addressing Errors, Stack Errors, Timeout
Errors, Memory Parity Errors, Memory Management Violations, Floating
Point Processor Exception Traps, Use of Reserved Instructions, Use of
the T bit in the Processor Status Word, and use of the lOT, EMT, and
TRAP instructions.

5.7.1 Power Failure
Whenever AC power drops below 95 volts for 115v power (190 volts for
230v) or outside a limit of 47 to 63 Hz, as measured by DC power, the

"power fail sequence is initiated. The Central Processor automatically
traps to location 24 and the power fail program has 2 msec. to save
all volatile information (data in registers), and condition peripherals for
power fail.

When power is restored the processor traps to location 24 and ,executes
the power up routine to restore the machine to its state prior to power
failure. "

5.7.2 Odd Addressing Errors
This error occurs whenever a program attempts to execute a word instruc·
tion on an odd address (in the middle of a word boundary). The in·
struction is aborted and the"CPU traps through location 4.

5.7.3 Time-out Errors
These errors occur when a Master Synchronization pulse is placed on
the UNIBUS and there is no slave pulse within a certain length of time.
This error usually occurs in attempts to address non·existentmemory or
peripherals.

The offending instruction is aborted and the processor traps through
location 4.

5.7.4 Reserved Instructions
There is a set of illegal and reserved instructions which cause the pro­
cessor to trap through location 10.

5.7.5 Trap Handling
Appendix B includes a list of the reserved Trap Vector locations, and
S¥stem Error Definitions which cause processor traps. When a trap oc·
curs, the processor saves the PC and PS on the Processor Stack and
begins to execute the trap routine pointed to by the trap vector.

5·17

C{I
00

6.1 DESCRIPTION

CPU

CHAPTER 6

PDp·ll/04

The PDp·ll/04 is a full scale PDP-ll computer that uses MOS memory in
4K to 28K word configurations. The central processor fits on a single
hex module, which is program compatible with the PDP-ll/05. It also
provides all of the processing capability of the PDP-ll/05 at a signif­
icantly higher speed.

Memory
The MOS memory is implemented with industry standard 4K RAMs and
is offered on a single hex module containing 4K to 16K 16-bit words.
The MOS UNIBUS memory is physically interchangeable with hex SPC
circuit boards and can therefore be installed in any location within the
backplane except the CPU slot. The MOS refresh circuits are contained
on the MOS memory module and have bee.n partitioned on separate
buses to allow battery back-up.

ASCII Console
The PDP-ll/04 contains a simplified operators console which increases
system reliability by eliminating the binary switches and lights that exist
on previous consoles.

The functions of the console are enhanced when a serial I/O Terminal"
with ASCII keyboard (LA 36, VT50, or Teletype) is added. A ROM con­
sole emulator allows the user to use octal number and terminal com­
mands for LOAD, EXAMINE, and DEPOSIT functions. Bootstrap com­
mands can also be generated from the ASCII keyboard.

ROM Hardware Diagnostic
Another program in ROM automatically tests certain CPU instructions
to verify if a diagnostic can be loaded or a bootstrap operation per­
formed. It also tests all of memory (up to 28K) just prior to calling a
bootstrap program.

Hardware 'Bootstraps
Bootstrap programs for all major peripheral devices (paper tape,
magnetic tape, moving head disks, and floppy disks) are implemented
in ROM. The system device can be booted by 3 techniques:

1. Automatically on a power up condition.

2. Manually by depressing the "BOOT" switch on the operator's console.

3. Manually by issuing a bootstrap command from an ASCII terminal
device .

. Packaging
The PDP-ll/04 is available in 2 basic configurations, both of which use
5 1,4" of front panel height; see Figure 6-L There is slot independence,

6·1

meaning memory and small peripheral controllers can plug in anywhere
they fit. But the CPU always terminates one end of the UNIBUS and nor·
mally plugs into the top slot.

OPTION
NUMBER

11/04-AA
(AB)

11/04- BA
(BB)

11/04-AC
(AD)

11/04- BC
(BD)

DIAGRAM OF
CPU ASSEMBLY

SPACE FOR I SU

TERMINATOR I
2 SPC

BOOTSTRAP I
MEMORY(4K OR 8K)

CPU

TERMINATOR I

SPACE FOR 7 SPC
(OR 2 SPC &5 HEX)

BOOTSTRAP I
MEMORY(4KOR 8K)

cpu

INCLUDED
EQUIPMENT

11104 CPU
4KOR 8KMOS

11/04 CPU
4KOR 8K MOS

Figure 6·1 PDP·ll/04 CPU Diag~ams

6.2 PDP-ll/04 OPTIONS

Programmer's Console .

EXPANSION
CAPABILITY

I SU
2 SPC

7SPC

The PDp·ll/04 programmer's console provides all oHhe functions pres­
ently offered with the PDp·ll/05. The programmer's console interfaces
to the UNIBUS via a quad SPC module. The programmer's console con·
tairis a selien segment LED display as well as a 19·key pad for generating
the console commands.

Battery Back-Up
The battery back-up option will provide a refresh current to 32K words
of memory for up to 2 hours. The battery backup unit is physically
mounted outside of the processor box to fC!cilitate battery maintenance.

6·2

6.3 SPECIFICATIONS

Components Parts
A basic PDP-ll/04 includes:

a) central processor
b) 4K words of MOS memory
c) 5 1,4" CPU mounting box with slides
d) power supply
e) hardware bootstrap loader
f) ROM hardware diagnostic
g) operator's panel
h) jacks for external battery backup
i) expansion space for additional memory or peripheral controllers
j) ASCII console program

Computer

Memory
Min size:
Max size:
Type:
Access time:
Cycle time:

Central Processor
Instructions:
Programming' modes:
No. of general registers:
Auto hardware interrupts:
Auto software interrupts:
Power faill auto restart:

Mechanical & Environmental
Size (HxWxD):
Weight:
Input power:

Operating temperature:
Relative humidity:

Optional Equipment
Real-time clock
Programmer's console
1/0 serial interface
Battery backup

PDP-ll/04

4K words
28K
MOS
500 nsec, typ
725 nsec, typ

basic set
1
8
yes
no
yes

5 1,4" x 19" x 25"
451bs.
115 VAC ± 10%, 47-63 Hz, or
230 VAC ± 10%, 47-63 Hz
350W
10°C to 50°C ,
20% to 95%, non-condensing

6·3

6.4 OPERATOR'S CONSOLE OPERATION
A minimal function operator's console is offered as the standard front
panel on the PDP-ll/04. The following .switchesand indicators are
provided:

Power control switch
Bootstrap loader switch
Haiti continue switch
DC-On indicator
RUN indicator
BATTERY La indicator

The Continue switch is anew feature on .operators' consoles, It enables
continuation after a programmed or inadvertent halt, without having to
re-boot.

6-4

CHAPTER 7

PDP-ll/34

7.1 DESCRIPTION
The PDp·11/34 computer system can contain up to 124K words of
parity MaS or core memory. The mounting assembly for the central
processor is available in 2 sizes. Chassis heights of 5 14" or 10 112",
allow the user to optimize space utilization for the particular application.

The basic PDp:11/34 includes the following capabilities and equipment:

Central processor
Parity memory (MOS or core)
Automatic bootstrap loader program in ROM memory
Operator's console
Self-test diagnostics
Memory management, relocation and protection
Extended instruction set (EIS)

Optional equipment includes:

Serial line interface and clock
Console terminal
Programmer's console
Battery backup unit for MaS memory
Standard PDP-11 peripherals

Extended Instruction Set
The Extended Instruction Set ('EIS) provides the capability of performing
hardware fixed point arithmetic and allows direct implementation of
multiply, divide, and multiple shifting. A double-precision 32-bit word
can be handled. The Extended Instruction Set executes compatibly with
the EIS available on the PDP-11/35 and 11/40. Refer to Section 7.10.

Memory Management
Memory Management is an advanced memory extension, relocation, and
protection feature which will:

Extend memory space from 28K to 124K words
Allow efficient segmentation of core for multi-user environments
Provide effective protection of memory segments in multi-user en­
vironments

Memory Management in the PDP-11/34 is totally compatible with the
Memory Management (KT11-D) option on the PDP-ll/35 and 11/40_

The machine operates in two modes; Kernel and User_ When the ma­
chine is in Kernel "11ode a program has complete control of the machine;

7-1

when in User mode the processor is inhibited from executing certain
instructions and can be denied direct access to the peripherals or other
protected memory locations in the system. This hardware feature can be
used to provide complete executive protection in a multi·programming
environment. A software operating system can insure that no user (who
is operating in User mode) can cause a failure (crash) of the entire
system.

Refer to Chapter 8 fora detailed description of the Memory Management
unit.

7.2 SPECIF1CATIONS

Computer

Main Market

Memory

Max size:
Type:
Parity: -

Central Processor

PDP-11/34

'End User & OEM

124K words
core or MOS
standard

Instructions: basic set + XOR, SOB, MARK, SXT, RTT, .
MFPS, MTPS

EIS set: (MUL; ASH, DIV, ASH C)
mem mgt set: (MFPI, MTPI, MFPD, MTPD)

Programming modes: user & kernel
No.' of general registers: 8
Auto hardware interrupts: ' yes
Auto software interrupts: no
Power fail/auto restart: yes

Mechanical & Environmental

Chassis height:
Weight:
Input power:

Operating temperature:
Relative humidity:

Equipment

I/O serial interface:
Line frequency clock:
Console terminal:

Operators console:
Programmer's console:

Hardware bootstrap:
Extended arithmetic:
Autodiagnostics:

5 1.4" 10lh"
451bs 110lbs
350W 700W
115 VAC, nom. (90 to 132v),
230 VAC, nom. (180 to 264v),
5°C to 50°C -
10% to 95%, non·condensing

optional
optional
optional

standard
optional

standard
. standard
standard

7·2

Flqating point: FP ll-A
Stack limit address:
,Memory management:

fixed (at 400)
standard

Cabinet: optional with 51,4" and 10%" units;

7.2.1 Processor Backplane Configuration

2

3

4

5

6

7

8

9

A

CPU

M9301 I QUAD SPC

M7850 I QUAD SPC
I
I HEX SPC
I
I HEX SPC
I
I HEX SPC
I

HEX SPC -I

M9302 I QUAD .SPC

B C D E F

Figure 7-1 Processor Backplane

The processor backplane consists of a double system unit (SU) com­
prising 9 Hex slots. All PDP·ll/34 systems contain the CPU, M9301
Bootstrap/Terminator, M7850 parity control, and M9302 (or a UNIBUS
jumper to the next SU) as shown in Figure 7·1; Memory is added as
follows depending on whether the system uses core or MOS.

Core: Core memory is available in two size increments, 8K and 16K
words.

The 8K core, designated MMll-C, consists of a Hex and Quad
module as follows:

9UAD STACK I
HEX CONTROLLER

The 16K core, designated MMll·D, consists of 2 Hex modules
as follows:

HEX CONTROLLER

HEX STACK

MaS; MaS memory is available in 8 or 16K increments and all in­
crements consist of a single Hex module.

8 and 16K increments are designated MSll·F, and· MSll-J. _

7-3

NOTE
The M7850 parity control may be moved to slot
5 to optimize usage of the MMll-C memory in
slots 4 and 5_

The following backpanel configurations comprise the basic PDP-ll/34
computer_

2

3

4

5

6

7

8

9

A

CPU

M9301 I QUAD SPC

M78S0 I QUAD SPC

MMll-D

HEX SPC

HEX SPC

M9302 I QUAD SPC

B C D F.

Figure 7-2 16K Core using MMll-D

Additional memory or Quad and Hex SPC options (DLll-W, TAll con­
troller, RXll controller, etc.} may be added to the processor backplane
as space allows.

7-4

2

3

4

5

6

7

9

A

CPU

M9301 I QUAD SPC

M78S0 I QUAD SPC

MSll-F OR J

HEX SPC

HEX SPC

HEX SPC

M9302 I QUAD SPC

B C D

Figure 7-3 16K MOS using MSll-F or J

7.2.2 Chassis Confi~uration
5%" Chassis-the previously described processor backpanel is 5 1,4"
high and fills the 5 1,4" chassis_ Further expansion must occur by add­
ing an additional chassis or converting to a lOy:!" chassis.

2

3
I-

4
l­

S

PROCESSOR BACKPANEL

Figure 7-4 PDP-ll/34 back panel in BALL-K (10 lh" chassis)

7-5

7.3 MaS & CORE MEMORY
The PDP-ll/34 is available with both MOS and core memory_ The tlJ'lO
types of memory may be freely intermixed in the computer system;
the difference in timing is accommodated by the architecture of the
asynchronous UNIBUS_

Parity
All main memory in a PDP-ll/34 system contains parity to enhance
system integrity_ Parity is generated and checked on all references be­
tween the CPU and memory, and any parity errors are flagged for
resolution under program controL Odd parity is used, with 1 parity bit per
8-bit byte, for a total of 18 bits per word_

A double height module, M7850, contains parity control logic_ Its control
& status register (CSR) address is selectable between 772 100 and 772
136_

The CSR captures the high order address bits of a memory location with
a parity error_ A single M7850 provides parity generation and detection
logic for all memory mounted in its back paneL
MaS
The basic unit of MOS memory, MSll-JP, contains 16K words of parity
MOS memory_ Each 16K words of MOS requires 1 hex mounting space.

Core
The basic unit of core memory, MMll-DP, contains 16K words of parity
core memory. Each 16K words of core memory requires 2 hex mount­
ing spaces.
7.4 BATTERY BACKUP
Core memory is non-volatile; the contents are preserved when power is
removed. However, MOS memory is volatile. If power is interrupted, an
auxiliary power supply must be provided if information in the memory
is to be saved. With the 5 112" and 10%" CPU assemblies there is an
optional Battery Backup Unit that can preserve the contents of 32K
words of MOS memory for about 2 hours. This auxiliary power unit is
a battery that is charged up by the main AC power when the computer
system is operating normally. In this normal mode, the battery backup
has no effect on the MOS memory. But if power is interrupted, voltage
senSing circuitry within the backup option will automatically cause the
MOS to be powered from this auxiliary power. The MOS information will
be retained by being refreshed at a low cycle rate, thereby using mini­
mum power.
7.5 M9301 MODULE
The M9301 module, which is included with the PDP-ll/34, provides 4
functions for the computer system.

1. It contains a read-only memory (ROM) that holds diagnostic routines
for verifying computer operation.

2. It contains, also in ROM, the several bootstrap loader programs for
starting up the system.

3. It contains the Console Emulator Routine in ROM for issuing con­
sole commands from the terminal.

4. It provides termination resistors for the UNIBUS.

7·6

There are 2 versions of the M9301 module available:

M9301·YA M9301·YB

Main user OEM

,Able to run secondary bootstrap pro- yes*
gram directly upon power up or reboot

Automatic entry to Console yes*
Emulator Routine

Needs an ASCII terminal no

Ene! User

no

yes

yes

* Selection of one of these 2 operations is made by setting of switches
contained on the module_ -

Diagnostics
Both versions of the M9301 contain diagnostics to check both the pro­
cessor and memory in a Go/No-Go mode_ 'Execution of the diagnostics
occur automatically but may be disabled by switches on the M9301.

Bootstrap Loader
The M9301-YA contains independent bootstrap programs that can boot­
strap programs into memory from a selected peripheral device_ Through
front -panel control or following Power Up, the computer can directly
execute a bootstrap, without the operator having to. manually key in the
initial program_ The bootstrap program for the peripheral device is de­
termined by switches on the M9301. This is useful in remote applica­
tions where no operator is presen~_

The Mg301-YB, after execution of the CPU diagnostics, turns control of
tile system to the user at the console terminal. The system prints out
status information and is ready to accept simple user commands for
checking or modifying information within the computer, starting a pro­
gram already in memory, or executing a device bootstrap:

The inclusion of a bootstrap loader in non-destructible read-only memory
is a tremendous convenience in system operation_ Bootstrap programs
do not have to be manually loaded into the computer for system initial­
ization_

Console Emulation
The normal console functions traditionally performed through front panel
switches can- be obtained by typing simple commands on the console
terminal. LOAD, EXAMINE, DEPOSIT, START, and BOOT functions are
available.

Termination
The M9301 contains resistors for proper impedance termination at the
beginning of the UNIBUS (transmission line),

7_6 M9302 MODULE
The M9302 provides resistors for proper termination of the UNIBUS. It
also contains logic which detects the assertion of certain UNIBUS Sig­
nals and responds to them_ Devices which request transfers on the UNI­
BUS receive and stop a serially passed "request granted" signal from

the processor. If this signal ever reaches the end of the UNIBUS, no
device along the serial chain stopped it. The M9302 receives all such un­
heeded grants and responds to allow the CPU to proceed.

7.7 DLll-W (M7856)
The DL11-W option provides 2 capabilities:

1. Serial line interface to an ASCII terminal, such as an LA36 DECwriter,
VT50 video terminal, or an L 133 Teletype.

2. Line time clock.

Serial Communication Line Interface
The interface is program compatible with the standard DIGITAL serial
interfaces, DL11-A,-B,-C, and -D. It can handle speeds from 110 to 9600
baud. It provides serial-to-parallel (and vice·versa) data conversion.

Line Clock
The clock is program compatible with the KW11·L, the standard line
clock option used with other PDP-ll computers. The clock senses the
50 or 60 Hz line frequency for internal timing.

There are switches on the module for selection of parameters such as:

register addresses
baud rate
communications data formats

7.8 OPERATOR'S CONSOLE
The operator's console is the front panel link between the user and the
computer. It contains a minimum number of switches and lights. All
normally used console functions are available through the combination
of the operator's console and an ASCII terminal; e.g. LA36 DECwriter.

Console Switches

POWER OFF

ON

STNBY

DC power to the computer is off.

Power is applied to the computer (and the
system).

Standby; no DC power to the computer, but
DC power is applied to MaS memory (to re­
tain data) and the fans remain on.

CAUTION
AC power is removed only by disconnecting the

line cord.

CaNT/HALT

BOOT/INIT

CaNT

HALT

INIT

The program is allowed to continue.

The program is stopped.

The switch is spring returned to the BOOT po­
sition. When the switch is depressed to IN­
ITialize and then returned to . BOOT, the
operation depends on the setting of the
CaNT/HALT switch.

7-8

HALT: The processor only is initialized and
no "UNIBUS INIT" is generated.
Upon lifting the CONT /HALT switch,
the M9301 routine is executed al·
lowing examination of system pe·

. ripherals without clearing their con·
tents with "UNIBUS INIT".

CONT: Initialize and then execute the
M9301 program.

When the BOOT switch is released, the following action takes place:

(a) For both M9301·YA and M9301·YB:
(when the switches are set for this operation)

1. Run basic CPU diagnostics.

2. Print out (on the console terminal) contents of RO, R4, SP, and
PC at the time of power up, followed by a dollar sign ($) on the
next line.

3. Enter Console, Emulator Routine, awaiting keyboard commands.

4. When a device bootstrap command is issued, first run processor
memory diagnostics, then execute secondary bootstrap program
from the designated peripheral device.

(b) For the M9301·YA (OEM) version only:
(when M9301-YA switches are set for this operation)

1. Run basic CPU diagnostics.

2. Run memory diagnostics.

3. Run secondary bootstrap program from the preselected peri·
pheral device.

NOTE.
When utilizing the stand alone switch setting
described as alternative (b) above, the switches
must be reset to enable execution of the con·
sole emulator routine.

Indicators

BATT off

slow flash
(1 flash/2 sec)

fast flash
(10 flashes/sec)

continuous on

DC ON on

off

Battery voltage is below minimum leveL to
maintain MOS contents, or battery is absent.

Battery is charging, but voltage is above the
minimum level to maintain MOS contents if
power is removed.

Primary power has been lost; battery is dis­
charging, but MOS memory contents are
being mainta'ined, and voltage is still above
minimum limit.

Battery is fully charged and present.

DC power is applied to logic circuitry.

DC power is off.

7-9

RUN on A program is running.

off The program is stopped.

1.9 CONSOLE EMULATION
The M9301 module contains a console emulator routine. When this
routine is· used in conjunction with the user's terminal, functions quite
similar to those found on the programmer's console of traditional PDp·ll
family computers are generated.

Summary of the Console Emulator Functions
LOAD - This function loads the address to be manipulated into the

system.

EXAMINE - Allows the operator to examine the contents of the address
that was loaded and/or deposited.

DEPOSIT - Allows the operator to write into the address that was
loaded and/or examined.

START - Initializes the system and starts execution of the program
at the address loaded.

BOOT - Allows the booting of a specified device by typing in a
two character code and optional unit number.

Console Emulator Operation
The console emulator allows the' user to perform LOAD, EXAMINE,
DEPOSIT, START, and BOOT functions by typing in the appropriate code
on the keyboard.

Entry Into the Console Emulator
There are three ways of entering the Console Emulator:

e. Move the Power Switch to the On position.

e Depress the BOOT Switch.

e Automatic entry on return from· a power failure.

After the Console 'Emulator Routine has started and the basic CPU diag­
nostics have all run successfully, ~ series of numbers representing the
contents of RO, R4; SP and PC respectively, will be printed by the ter-
minal. This sequence will be followed by a $ on the next line. .

Example--a .typical printout on power up:

XXXXXX XXXXXX XXXXXX
$

RO

PROMPT
CHARACTER

R4 R6
STACK
POINTER

(SP)

Notes: ~ signifies an octal number: (0·7).

XXXXXX

PC
PROGRAM
COUNTER

Whenever there is a power up routine, or the BOOT switch is
released from the INIT position, the PC at this time will be
stored. The stored value is printed out as above (noted as
the PC).

7-10

Using the Console Emulator,
After the $-Once the system has been powered up or booted, and RO,
R4, SP, PC and $ have been printed, the Console Emulator routine can
be used.

Keyboard Input Symbols-The discussion of keyboard input format uses
the following symbols:

• Space Bar: (SB)

• Carriage Return Key: (CR)

• Any number 0·7 (Octal Number) Key: (X)

Keyboard INPUT Format-Load, examine, deposit, start. All character
keys snown in the following discussion represent themselves, with the
exception of those in parentheses.

FUNCTION

Load address
Exar,nine
Deposit

L (SB) (X) (X) (X) (X) (X) (X) (CR)
E(SB)

Start
D (SB) (X) (X) (X) (X) (X) (X) (CR)
S (CR)

Order of Significance of Input Keys-The first character that is typed
will be the most significant character. Conversely, the last character that
is typed is the least significant character.

Number of Characters-The console emulator routine can accept up to
six octal numbers in the range of 0-32K. If all six numbers are inputted,
the most significant number should be a one or, a zero.

Leading Zeros-:-When an address or data word contains leading zeros,
. these zeros can be omitted when loading the address or depositing the

data. •

Example Using the Load, Examine, Deposit, and Start Function-Assume
that a user wishes to:

1. Turn on power

2. Load address 700

3. Examine location 700

4. Deposit 777 into location 700

,5. Examine location 700

6. Start at location 700

USER

1. turns on power

2. L (SB) 700 (CR)

3. E (SB)

4. D (SB) 777 (CR)

5.E (SB)

6. S (CR)

TERM'INAL DISPLAY

XXXXXX XXXXXX

$ L 700
$ E 000700 XXXXXX

$D777

$ 'E 000700 000777

$S

7-11

XXXXXX XXXXXX

Even Addresses Only-The console emulator routine will not work with
odd addresses. Even numbered addresses must always be used.

liuccessive Operations
Examine-Successive examine operations are permitted. The address is
loaded for the first examine only. Successive examines cause the address
to increment by two and will display consecutive addresses along with
their contents.

Example of Successive Examine Operations-Examine Addresses 500·
506

Operator Input

L (S8) 500 (CR)
E (S8)
E (S8)
E (S8)
E (S8)

Terminal Display

$L 500
$E 000500 XXX XXX
$E 000502 XXX XXX
$E 000504 XXX XXX
$E 000506 XXX XXX

Deposit-Successive deposit operations are permitted. The procedure is
identical to that used with examine.

Example of Successive Deposit Operations

Deposit: 60 into Location 500
2 into Location 502
4 into Location 504

Operation Input

L (S8) 500 (CR)
D (S8) 60 (CR)
D (S8) 2 (CR)
D (S8) 4 (CR)

Terminal Display

$L 500
$D 60
$D 2
$D 4

Alternate Deposit·Examine Operations-This mode of operation will not
increment the address. The address will contain the last data which was
deposited.

Example of Alternate Deposit·Examine Operations-Load address 500,
deposit the following numbers with examines after every deposit: 1000,
2000,5420.

Operation Input

L (S8) 500 (CR)
D (S8) 1000 (CR)
E (S8)
D (S8) 2000 (CR)
E (S8)
D (S8) 5420 (CR)
E (S8)

Terminal Display

$L 500
$D 1000
$E 000500 001000
$D 2000
$E 000500 002000
$D 5420
$E 000500 005420

Limits of Operation-The M9301 console emulator routine can directly
manipulate the lower 28K of memory and the 4K I/O page. Refer to the
PDP·ll/34 User's Guide for a procedure to utilize the Memory Manage·
ment unit to examine or deposit in expanded memory.

7·12

Booting from the Keyboard
Once the $ symbol has been displayed in response to system power
coming up, or the boot switch being depressed, the system is ready to
load a bootstrap from the device which the operator selects.

Console Emulator Boot Procedure

1. Find the two character boot code on Table 6-1 that corresponds to
the peripheral to be booted.

2. Load medium, papertape, magtape, disc, etc;, into the peripheral if
required.

3. Verify that the peripheral indicators signify that the peripheral is
ready (if applicable) ..

4. Type the two character code obtained from the table.

5. If there is more than one unit of a given peripheral, type the unit
number to be booted (0-7). If no number is typed the default number
will be O.

6. Type (CR), this initiates the boot.

Table of Bootstrap Routine Codes-Supported by both VA and VB ver­
sions of the M9301.

Table 7·1 Bootstrap Codes

Device

RKll
RPll
TCll
TMll
TAll
RXll
DL11
PC11

Description .

Disk cartridge
RP02/03 disk pack
DECTAPE
800 BPI Magtape
Magnetic cassette
Diskette
ASR;33 teletype
Papertape

Boot
Command

DK
DP
DT
MT
CT
DX

~ IT
PR

Supported by the VB version only (in addition to all the above).

RJS03/04
RJP04
TJU16

Fixed Head disk
Disk pack
Magnetic tape

Before Booting ... --:Always remember:

DS
DB
MM

1. The medium (papertape, disc, magtape, cassette, etc.) must be
placed in the peripheral to be booted prior to booting.

2. The machine will not be under the control.of the console emulator
routine after booting.

3. The program which is booted in must:
1) be self starting
2) allow the user to begin execution by using the CONT function, or
3) be restartable after the console emulator is recalled.

7-13

4. Actl,lating the· boot switch will always abort the program being run.
The contents of the general registers (RO·R7) will be destroyed. There
is no way to continue with the program which was aborted. Some pro­
grams are designed to be restartable.

7.10 EIS ARITHMETIC OPERATION
The extended Instruction Set adds the following instruction capability:

Mnemonic

MUL
DIV
ASH
ASHe

Instruction

multiply
divide
shift arithmetically
arithmetic shift combined

OpCode
070RSS
071RSS
072RSS
073RSS

The EIS instructions are directly compatible with the larger 11 com­
puters.

The number formats are:

15 I' e
16-bit single word: I 5 I 1 --1-=:J NUMBER

1

15 14 e

I 5 I 1

. HlyH NUMBER PA~T

32-bit double word:
15 e

I I Lpw NUMBER PA1T

S is the sign bit. S = 0 for positive quantities
S = 1 for negative quantities; number is in 2's

complement notation

Interrupts are serviced at the end of an EIS instruction.

7-14

MUL
multiply 070RSS

I 0 I 1 1 I 0 0 o I r : r r I s sIs s I
15 9 8 6 5 0

Operation: R, Rv1. R x(src)

Condition Codes: N: set if product is <0; cleared otherwise
Z: set if product is 0; cleared .otherwise
V: cleared
C: set if the result is less than-2\:' or greater than or equal to
2"'-1.-

Description: The contents of the destination register and source taken as
two's complement integers are multiplied and stored in the
destination register and the succeeding register (if R is even).
If R .is odd only the low order product is stored. Assembler
syntax is : MUL S,R.

. (Note that the actual destination is R, Rv1 which reduces to
just R when R is odd.)

. Example: 16·bit product (R is odd)

CLC
MOV #400,R1
MUL #10,R1
BCS ERROR

Before

(R1) =000400

;Clear carry condition· code

;Carry will be set if
;product is less than
;-2" or greater than OT equal to 2'·'
;no significance lost

After

(R1) =004000

Assembler format for all EIS instructions is:
OPR src, R

7-15

DIV

divide 071RSS

[0 I 1 1 10 o s I S

15 9 8 6 5

Operation: R, Rv1. R, Rv1 /(src)

Condition Codes: N: set if quotient <0; cleared otherwise
Z: set if quotient = 0; cleared otherwise

o

V: set if source = 0 or if the absolute value of the register is
larger than the absolute value of the source. (In this case the
instruction is aborted because the quotient would exceed 15
bits.)
C: set if divide 0 attempted; cleared otherwise

Description: The 32·bit two's complement integer in R andRvl is divided
by the source operand. The quotient is left in R; the remain­
der in Rvl. Division will be performed so that the remainder
is of the same sign as the dividend. R must be even.

Example: CLR RO
MOV#2oo01,R1
DIV#2.RO

Before
(RO) = 000000
(R1) =020001

After
(RO) = 010000
(R1) = 000901

7-16

Quotient
Remainder

ASH

shift arithmetically 072RSS

I 0 , I I 10
15 9 8 6 5 o

Operation: R. R Shifted· arithmetically NN places to right or left
Where NN = low order 6 bits of SOl!rce.

Condition Codes: N: set if result <0; cleared otherwise
Z: set if result = 0; cleared otherwise

Description:

[I I
J15

6 LSB of source
011111
000001
111111
100000

Example:

V: set if sign of register changed during shift; cleared other·
wise
C: loaded from last bit shifted out of register .

The contents of the register are shifted right or left the num·
ber of times specified by the shift count. The shift count is
taken as the low order 6 bits of the source operand. This
number ranges from -32 to + 31. Negative is a a right shift
and positive is a left shift.

--I
OR

Action in general register
Shift left 31 places
shift left 1 place
shift right -1 place
shift right 32 places

Before
(R3)=001234
(RO) =000003

7·17

ASH RO, R3

1-0
0

1- 0

0

After
(R3)=012340
(RO) =000003

ASHe
arithmetic shift combined 073RSS

10 I I I I 0 ,I , I I r : r s s I
I ! •

15 9 B 6 5 o

Operation: R. Rvl-iER. Rvl The double word is shifted NNplaces to the
right or left. where NN = low order six bits of source

Condition Codes: N: set if result <0; cleared otherwise
Z: set if result == 0; cleared otherwise
V: set if sign bit changes during the shift; cleared otherwise
C: loaded with high order.bit when left Shift; loaded with low
order bit when right shift (loaded with the last bit shifted out
of the 32·bit operandj

Description: The contents of the register and the register ORed with one
are treated as one 32 bit word. R + 1 (bits 0·15) and R (bits
16·31) are shifted right or·left the number of times specified
by the shift count. The shift count is taken as the low order 6
bits of the source operand. This number ranges from -32 to
+ 31. Negative is a right shift and positive is a ,left shift.
When the register chosen is an odd number the register
and the register OR'ed with one are the same. In this case the
right shift becomes a rotate (for upto a shift ofl6). The 16
bit word is rotated right the number of bits speCified by the
shift count. .

t r:I
R+I I I ~ 1-t..:.J

15 OR
o

'EJ-: ':' .~ . .,1: : : : : : ~-;~ : : :: : : 0

7·18

CHAPTER 8

PDP·l1/34 MEMORY MANAGEMENT

8.1 GENERAL

8.1.1 Memory Management

This chapter describes the Memory Management unit of the 11/34
Central Processor. The PDp·11/34 provides the hardware facilities neces·
sary for complete memory management .and protection. It is designed to
be a memory management facility for systems where the memory size is
greater than 28K words and for multi-user, multi-programming systems
where protection and relocati.on facilities are necessary.

8.1.2 Programming
The Memory Management hardware has been optimized towards a multi­
programming environment and the processor can operate in two modes,
Kernel and User. When in Kernel mode, the program has complete
control and can execute all instructions. Monitors and supervisory pro­
grams would be executed in this mode.

When in User Mode, the program is prevented from executing certain
instructions that could:

a) cause the modification of the Kernel program.
b) halt the computer. -
c) use memory space assigned to the Kernel or other users.

In a multi-programming environment several user programs would be
resident in memory at any given time. The task of the supervisory pro­
gram would be: control the execution of the various user programs,'
manage the allocation of memory and peripheral device resources, and
safeguard the integrity of the system as a whole by careful control of
each user program.

8-1

In a multi-programming system, the Management Unit provides the
means for assigning pages (relocatable memory segments) to a user
program and preventing that user from making any unauthorized access
to those pages outside his assigned area_ Thus, a user can effectively
be prevented from accidental or willful destruction of any other user
program or the system executive program_

Hardware implemented features enable the operating system to dy­
namically allocate memory upon demand while a program is being run_
These features are particularly useful when running higher-level language
programs, where, for example, arrays are constructed at execution time_
No fixed space is reserved for them by the compiler. Lacking dynamic
memory allocation capability, the program would have to calculate and
anow sufficient memory space to accommodate the worst case. Memory
Management eliminates this time-consuming and wasteful procedure.

8.1.3 Basic Addressing
The addresses generated by all PDP-ll Family Central Processor Units
(CPUs) are 18-bit direct byte addresses. Although the PDP-ll Family word
length is 16 bits, the UNIBUS and CPU addressing logic actually is 18
bits. Thus, while the PDP-ll word can only contain address references
up to 32K words (64K bytes) the CPU and UNIBUS can reference ad­
dresses up to 128K words (256K bytes). These extra two bits cifaddress­
ing logic provide the basic framework for expanding memory references_

In addition to the word IEmgth constraint on basic memory addressing
space, the uppermost 4K words of address space is always reserved .for
UNIBUS I/O device registers. In a basic PDP-ll memory configuration
(without Management) all address references to the uppermost 4K words
of 16-bit address space. (160000-177777) are converted to full 18-bit
references with bits 17 and 16 always set to 1. Thus, a 16-bit reference
to the I/O device register at address 173224 is automatically internally
converted to a full 18-bit reference to the register at address 773224.
Accordingly, the basic PDP-ll configuration can directly address up to
28K words of true memory, and 4K words of UNIBUS I/O device registers_

8.1.4 Active Page Registers
The Memory Management Unit uses two sets of eight 32-bit Active Page
Registers. An APR is actually a pair of 16,bit registers: a Page Address
Regist~r (PAR) and a Page Descriptor Register (PDR). These registers
are always used as a pair and contain all the information needed to
describe and reloc.ate the currently active memory pages.

One set of APR's is used in Kernel mode, and the other in User mode.
The choice of which set to be used is determined by the current CPU
mode contained in the Processor Status word_

\

8-2

15 14 13 12

1 ,PROCESSOR STATUS WORD
1 ,

KERNEL (00) USER (11)

APR 0 APR 0

APR 1 APR 1

APR 2 AP,R 2 ACTIVE
PAGE

APR 3 APR 3 REGlSfERS

APR 4 APR 4

APR 5 APR 5

APR 6 APR 6

APR 7 APR 7

15 0 IS 0

PAR 1----1 PDR 1
PAGE ADDRESS REGISTER PAGE DESCRIPTION REGISTER

Figure 8-1 Active Page Registers

8_1_5 Capabilities Provided by Memory Management
Memory Size (words): 124K, max (plus 4K for I/O & registers)

Address Space:

Modes of Operation:

Stack Pointers:

Memory Relocation:
Number of Pages:
Page Length: '

Memory Protection:

8.2 RELOCATION

8.2.1 Virtual Addressing

Virtual (16 bits)
Physical (18 bits)

Kernel & User

2 (one for each mode)

16 (8 for each mode)
32 to 4,096 words

no access
read only
read/write

When the Memory Management Unit is operating, the normal 16-bit
direct byte address is no longer interpreted as a direct Physical Address
(PA) but as a Virtual Address (VA) containing information to be used in '
constructing a new 18-bit physical address_ The information contained
in the Virtual ,Address (VA) is combined with relocation and description
information contained in the Active. Page Register (APR) to yield an
18-bit Physical Address (PA).

Because addresses are automatically relocated, the computer may be
considered to be operating in virtual address space. This means that no
matter where a program is lo'aded into physical memory, it will not have

8-3

to be "re-linked"; it always appears to be at the same virtual location in
memory.

The virtual address space is divided into eight 4K-word pages. Each page
is relocated separately. This is a useful feature in multi-programmed
timesharing systems. It permits a new large program to be loaded into
discontinuous blocks of physical memory.

A page may be as small as 32 words, so that short procedures or data
areas need occupy only as much memory as required. This is a useful
feature in real-time control systems that contain many separate small
tasks. It is also a useful feature for stack and buffer control.

A basic function is to perform memory relocation and provide extended
memory addressing capability for systems with more than 28K of phys­
ical memory. Two sets of page address registers are used to relocate
virtual addresses to physical addresses in memory. These sets are used
as hardware relocation registers that permit several user's programs,
each starting at virtual address 0, to reside simultaneously in physical
memory.

8.2.2 Program Relocation

The page address registers are used to determine the starting address
of each relocated program in physical memory. Figure 8·2 shows a sim'
plified example of the relocation concept.

Program A starting address 0 is relocated by a constant to provide
physical address 6400 8 ,

VIRTUAL
ADDRESS
(VA)' 0

PHYSICAL ADDRESS PROGRAM A

006400

Figure 8·2 Simplified Memory Relocation Concept

8·4

If the next processor virtual address is 2, the relocation constant will then
cause physical address 6402 8 , which is the second item of Program A, to
be accessed. When Program B is running, the relocation constant is
changed to 1000008 , Then, Program B virtual addresses starting at 0, are
relocated to access physical addresses starting at 1000008 , Using the ac­
tive page address registers to provide relocation eliminates the need to "re­
link" a program each time it is loaded into a different physical memory
location. The program always appears to start at the same address.

A program is relocated in pages consisting of from 1 to 128 blocks.
Each block is 32 words in length. Thus, the maximum length of a page
is 4096 (128 x 32) words. Using all of the eight available active page
registers in a set, a maximum program length of 32,768 words can be
accommodated. Each of the eight pages can be relocated anywhere in
the physical memory, as long as each relocated page begins on a
boundary that is a multiple of 32 words. However, for pages that are
smaller' then 4K words, only the memory actually allocated to the page
may be accessed.

The relocation example shown in Figure 8-3 illustrates several points
about memory relocation.

a) Although the program appears to be in contiguous address space to
the processor, the 32K-word physical address space is actually scat­
tered through several separate areas of physical memory. As long
as the total available physical.memory space is adequate, a program
can be loaded. The physical memory space need not be contiguous.

b) Pages may be relocated to higher or lower physical addresses, with
respect to their virtual address ranges. In the example Figure 8-3,
page.! is relocated to a higher range of physical addresses, page 4
is relocate~ to a lower range, and page 3 is not relocated at all

" (even though its relocation constant is non-zero).

c) All of the pages shown .in the example start on 32·word boundaries.

d) Each page is relocated independently. There is no reason why two or
more pages could not be relocated to the same physical memory
space. Using more than one page address register in the set to
access the same space would be one way of providing different
memory access rights to the same data, depending upon which part
of a program was referencing that data.

Memory Units

Block:
Page:
No. of pages:
Size of relocatable
memory:

32 words
lto 128 blocks (32 to 4,096 words)
8 per mode
27,768 words, max (8 x 4,096)

8·5

VIRTUAL ADDRESS PAGE RELOCATION PHYSICAL MEMORY
RANGES NO. CONSTANT SPACE

160000-177776 150000 340000- 357776

140000-157176 6 000000 330000- 347776

120000 - 137776 100000 310000- 327776

100000- 117776 020000 220000 - 237776

060000- 077776 3 060000 140000 - 157]76

040000- 057776 250000 120000 - 137776

020000-037776 320000 040000- 057776

000000-017776 0 400000

Figure 8-3 Relocation of a 32K Word Program into
124K Word Physical Memory

8.3 PROTECTION
A timesharing system performs multiprogramming; it allows several
programs to reside in memory simultaneously, and to operate sequen­
tially. Access to these programs, and the memory space they occupy,
must be strictly defined and controlled. Several types of memory pro­
tection must be afforded a timesharing system. For example:

a) User programs must not be allowed to expand beyond allocated'
space, unless authorized by the system.

b) Users must be prevented from modifying common subroutines and
algorithms that are resident for an users.

c) Users must be prevented from gaining control of or modifying the
operating system software.

The Memory Management option provides the hardware facilities to im­
plement all of the above types of memory protection.

8.3.1 Inaccessible Memory
Each page has a 2-bit access control key as.sociated with it. The key is
assigned under program control. When the key is set to 0, the page is
defined as non·resident. Any attempt by a user program to access a
non-resident page is prevented by an immediate abort. Using this fea­
ture to provide memory protection, only those pages asociated with the
current program are set to legal access keys. The access control keys
of all other program pages are set to 0, which prevents illegal memory
references.

8.3.2 Read·Only Memory
The access control key for a page can be set to 2, which allows read
(fetch) memory references to the page, but immediately aborts any at­
tempt to write into that page. This read-only type of memory protection

8-6

can be afforded to pages that contain common data, subroutines, or
shared 'algorithms. This type of memory protection allows the access
rights to a given information module to be user·dependent. That is, the
access right to a .given information module may be varied for different
users by altering the access control key.

A page address register in each of the sets (Kernel and User modes)
may be set up to reference the same physical page in memory and
each may be keyed for different access rights. For example, the User
access control key might be 2 (read·only access), and the Kernel access
control key might be 6 (allowing complete read/write access).

8.3.3 Multiple Address Space
There are two complete separate PAR/ PDR sets provided: one set for
Kernel mode and one set for User mode. This affords the timesharing
system with another type of memory protection capability. The mode of.
operation is specified by the Processor Status Word current mode field,
or previous mode field, as determined by the current instruction.

Assuming the current mode PS bits are valid, the active page register
sets are enabled as follows:

'PS(bitsI5, 14)
00
01 -
10
11

}

PAR/ PDR Set Enabled
Kernel mode

Illegal (all references aborted on access)

User mode

Thus, a User mode program is relocated by its own PAR/PDR set, as are
Kernel programs. This makes it impossible for a program running in
one mode to accidentally reference space allocated to another mode
when the active page registers are set correctly. For example, a user can·
not transfer to Kernel space. The' Kernel mqde address space may be re­
served for resident system monitor functions, such' as the basic. Input/
Output Control routines, memory management trap handlers, and time·
sharing scheduUng modules. By dividing the types of timesharing system
programs functionally between the Kernel and- User modes, a minimum
amount of space control housekeeping is required as the timeshared
operating system sequences from one user program to the next. For
example, only the User PAR/PDR set needs to be updated as each new
user program is serviced. The two PAR/PDR sets implemented in the
Memory Management Unit are shown in Figure 8-1.

8.4 ACTIVE PAGE REGISTERS
The Memory Management Unit provides two sets of eight Active Page
Registers (APR). Each APR consists of a Page Address Register (PAR)
and a Page Descriptor Register (PDR). These registers are always used
as a pair and contain all the information required to locate and describe
the current active pages for each mode of operation. One PAR/ PDR set
is used in Kernel mode and the other is used in User mode. The cur·
rent mode bits (or in some cases, the previous mode bits) of the Proces·
sor Status Word determine which set will be referenced for each
memory access. A program operating in one mode cannot use the PAR/
PDR sets of the other mode to access memory. Thus, the two sets are

8·7

a key feature in providing a fully protected environment for a time­
shared multi-programming system.

A specific processor I/O address is assigned to each PAR and PDR of
each set. Table 7-1 is a 'complete list of address assignment.

NOTE
UNIBUS devices cannot access PARs or PDRs

In a fully-protected multi-programming environment, the implication is
. that only a program operating in the Kernel mode would be allowed to
write into the PAR and PDR locations for the purpose of mapping user's

,programs. 'However, there are no restraints imposed by the logic that
will prevent User mode programs from writing into these registers_ The
option of implementing such a feature in the operating system, and thus
explicitly protecting these locations from user's programs, is available
to the system software designer.

Table 8-1 PAR/PDR Address Assignments

Kernel Active Page Registers User Active Page Registers

No. PAR PDR No. PAR PDR

0 772340 772300 0 777640 777600
1 772342 772302 1 777642 777602
2 772344 772304 2 777644 777604
3 772346 772306 3 777646 777606
4 7723~0 7723~0 4 777650 777610
5 772352 772312 5 777652 777612
6 772354 772314 ·6 777654 777614
7 772356 772316 7 777656 777616

8.4.1 Page Address Registers (PAR) c.'

The Page Address Register (PAR), shown in Figure 8-4, contains the
12-bit Page Address Field (PAF) that specifies the' base address of the
page.

15 12 II o
, PAF

Figure' 8-4 Page Address Register

Bits 15-12 are unused andreserved for possible future use.

The Page Address Register may be alternatively thought of as a relo­
cation 'constant, or as a base register containing a base address. Either
interpretation indicates the basic function of the Page Address Register
.(PAR) in the relocation scheme_

8.4.2 Page Descriptor .Registers (PDR)
The Page Descriptor Register (PDR), shown in 'Figure 8-5, contains in­
formation relative to page expansion, page . length, and access control.

8-8

7 5 4 3 o
PLF ACF ~

Figure 8·5 Page Descriptor Register

Access Control Field (ACF)
This 2·bit field, bits 2 and 1, of the PDR describes the access rights to
this particular page. The access codes or "keys" specify the mariner
in which a page may be accessed and whether or not a given access
should result in an abort of the current operation. A memory reference
that ~auses an abort is not completed and is terminated immediately.

Aborts are caused by attempts to access non·resident pages, page
length errors, or access violations, such as attempting to write into a
read·only page. Traps are used as an aid in gathering memory manage·
ment information.

In the context of access control, the term "write" is used to indicate
the action of any instruction which modifies the contents of any ad·
dressable word. A "write" is synonymous with what is usualiv C":FlIIp.ri FI
"store" or "modify" in many computer systems. Table 8·2 lists the ACF
keys and their functions. The ACF is written into the PDR under program
control.

Table 8·2 Access Control Field Keys

AFC

00

01

10
11

Key Description

o . Non·resident

2 Resident read·only

4 (unused)
6 Resident read/ write

Expansion Direction (ED)

Function

Abort any attempt to access this
non·resident page
Abort any attempt to write into
this page.
Abort all Accesses.
Read or Write allowed. No trap
or abort occurs.

The ED bit located in PDR bit position 3 indicates the authorized direc·
tion in which the page can expand. A logic 0 in this bit (ED = 0) indio
cates the page can expand upward from relative zero. A logic 1 in this
bit (ED = 1) indicates the page can expand downward toward relative
zero. The ED bit is written into the PDR under program control. When
the expansion- direction is upward (ED = 0), the page length is increased
by adding blocks with higher relative addresses. Upward expansion is
usually specified for program or data pages to add more program or
table space. An example of page expansion upward is shown in Figure 8·6.

When the expansion direction is downward (ED = 1), the page length is
increased by adding blocks with lower relative addresses. Downward
expansion is specified for stack pages so that more stack space can be
added. An example of page expansion downward is shown in Figure 8·7.

8·9

PAR PDR

1000001 1110001100101001000001101

-----~~ ~~\--~--~/----~r~~~
PAF '0170 - t r
PLF '518 '4110 'NUMBER OF BLOCKS----------'
ED '0 'UPWARD EXPANSION ------------------'
ACF '6' READ/WRITE'

NOTE:
To specify a block length of 42 for an upward expandable page, write
highest authorized block no. directly into high byte of PDR. Bit 15 is
not used because the highest allowable block number is 177,.

1
ADDRESS RANGE
OF POTENTIAL PAGE
EXPANSION BY
CHANGING THE PLF

AUTHORIZE PAGE
LENGTH, 4210 BLOCKS
OR 0 THRU 518'
528 BLOCKS

j
Figure 8-6

BLOCK 518

BLOCK 2

BLOCK 1

BLOCK 0

024176

024100

017276

017200

017176

017100

017076

017000

ANY BLOCK NUMBER
GREATER THAN 411O(518)
(VA<12:06> 518)
WILL CAUSE A PAGE
LENGTH ABORT.

_BASE ADDRESS OF PAGE

Example of an Upward Expandable Page

8-10

Written. Into (W)
The W bit located in PDR bit position 6 indicates whether the page has
been written into since it was loaded into memory. W = 1 is affirma­
tive. The W bit is automatically cleared when the PAR or PDR of that
page is written into. It can only be set by the control logic_

In disk swapping and memory overlay applications, the W bit (bit 6) can
be used to determine which pages in memory have been modified by a
user_ Those that have been written into must be saved in their current
form. Those that have not been written into (W = 0), need not be saved
and can be overlayed with new pages, if necessary,.

Page Length Field (PLF)
The 7-bit PLF located in PDR (bits 14-8) specifies the authorized length
of the page, in 32-word blocks. The PLF holds block numbers from 0 to
177 ,; thus allowing any page length from 1 to 128, 0 blocks. The PLF
is written in the PDR under program control.

PLF for an Upward Expandable Page
When the page expands upward, the PLF must be set to one less than
the intended number of blocks authorized for that page. For example,
if 52, (42'0) blocks are authorized, the PLF is set to 51, (41'0) (Figure
8-6)_ The hardware compares the virtual address, block number, VA (bits
12-6) with the PLF to determine if the virtual address is within the au­
thorized page length.

When the virtual address block number is less than or equal to the PLF,
the virt'Jal address is within the authorized page length. If the virtual ad­
dress is greater than the PLF, a page length fault (address too high)
is detected by the hardware and an abort occurs. In this case, the vir­
tual address space legal to the program is non-contiguous because the
three most significant bits of the virtual address are used to select the
PARI PDR set.

PLF for a Downward Expandable Page
The capability of providing downward expansion for a page is intended
specifically for those pages that are to be used as stacks. In the PDP-ll,
a stack starts at the highest location reserved for it and expands down­
ward toward the lowest address as items are added to the stack.

When the page is to be downward expandable, the PLF must be set to
authorize a page length, in blocks, that starts at the highest address of
the page. That is always Block 177,. Refer to Figure 8-7, which shows
an example of a downward expandable page. A page length of 42, 0
blocks is arbitrarily chosen so that the example can be compared with
the upward expandable example shown in Figure 8-6.

NOTE
The same PAF is used in both examples_ This is
done to emphasize that the PAF, as the base
address, always determines the lowest address
of the page, whether it is upward or downward
expandable.

8-11

r .. t-------ACTIVE PAGE REGISTER CONTENTS----~-_.~I
PAR· PDR

1000 001 1 1 1 () 0 01 1010101100000 101

~ r PAF' 0170 _____ ...-J'
~,~~,~

ED'I' DOWNWARD EXPANSION ----:--------------'-

To specify page length for a downward expandable page, write comple·
ment of blocks required into high byte of PDR.

In this example, a 42-block page is required.
PLF is derived as follows:

42'0 = 52 8 ; two's complement = 1268 •

AUTHORIZED PAGE \
LENGTH' 42,0 BLOCKS

BLOCK 1778

BLOCK 1768

BLOCK 1758

036776

036700

036676

036600

036576

. 036500

1 A BLOCK NUMBER

ADDRESS RANGE ~,.,..,.~"",.,..,."""'~ ~~l~E,~~: LESS

OF POTENTIAL PAGE ~~~~~~~ j (VA < 12:06> LESS THAN 126&)
t~~NJII~~!JE PLF WILL CAUSE A PAGE

LENGTH ABORT.

---...;!<-------- "'.<..<..."-''-''-''"''-''-''-''-'''''"'--'-' _BASE ADDRESS OF PAGE

Figure 8-7 Example of a Downward Expandable Page

8-12

The calculations for complementing the number of blocks required to
obtain the PLF is as follows: '

MAXIMUM BLOCK NO.
1778

MINUS REQUIRED LENGTH EQUALS
52 8

127 10 42 10

8.5 VIRTUAL & PHYSICAL ADDRESSES
The Memory Management Unit is located between the Central Processor
Unit and the UNIBUS address lines. When Memory Management is
enabled, the Processor ceases to supply address information to the Uni­
bus. Instead, addresses are sent to the Memory Management Unit where
they are relocated by various constants computed within the Memory
Management Unit.

8.5.1 Construction of a Physical Address
The basic information needed for the construction of a Physical Address
(PA) comes from the Virtual Address (VA), which is illustrated in Figure
8-8, and the appropriC!te APR set.

15 13 12 o
APf DF

, ,

PeTM PAGE FIELD DISPlACEMENT fiELD

Figure 8·8 Interpretation of a Virtual Address

The Virtual Address (VA) consists of:

1. The Active Page Field (APF). This 3·bit field determines which of
eight Active Page Registers (APRO·APR7) will be used to form the
Physical Address (PA).

2. The Displacement Field (OF). This 13-bit field contains a'n address
relative to the beginning of a page. This permits page lengths up to
4K words (2 13 = 8K bytes)_ The DF is further subdivided into two
fields as shown in Figure 8-9. '

12 o

BN DIB

BLQO(rw.I8ER 0I5PI KEMENT IN BLOCKS

Figure 8-9 Displacement Field of Virtual Address

The Displacement Field (OF) consists of:

1. The Block Number (BN). This 7-bit field is interpreted as the block
number within the current page.

2. The Displacement in Block (DIB). This 6-bit field contains the dis·
placement within the block referred to by the Block Number .

. 8-13

The remainder of the information needed to construct the Physical Ad­
dress comes from the 12-bit Page Address Field (PAF) (part of the Active
Page Register) and specifies the starting address of the memory which
that APR describes. The PAF is actually a block number in the physical
memory, e.g. PAF = 3 indicates a starting address of 96, (3 X 32 = 96)
words in physical memory.

The formation of the Physical Address is illustrated in Figure 8-10.

" 13 12 , 5

BLOCK NO DIS I VIRTUAL
ADO~ESS

L-~ __ ~ ______ ~ ______ ~ ____ ~ ____ ~

.1211 3 PAGE ADDRESS fiElD I
L-~I~ ____ L-____ ~ ____ ~ ______ ~' __

~-'8

"

I

ACTIVE PAGE
REGISTER

L-____ ..L-__ PH_"_'cA_L~BlO_C_K _NO __ ~ ____ ----1~~'-- -- -iL __ ".....,~D:,..S -,--,..,.-c--ll ~~~~?t~
(DISPLACEMENT IN Bl.OCKS)

Figure 8-10 Construction of a Physical Address

The logical sequence involved in constructing a Physical Address is as
follows:

1. Select a set of Active Page Registers depending on current mode.

2. The Active Page Field of the Virtual Address is used to select an
Active Page Register (APRO-APR7).

3. The Page Address Field of the selected Active Page Register con­
tains the starting address of the currently active page as a block
number in physical memory.

4. The Block Number from the Virtual Address is added to the block
number from the Page Address. Field to yield the number of the
block in physical memory which will contain the Physical Address
being constructed.

5. The Displacement in Block from the Displacement Field of the Virtual
Address is joined to the Physical Block Number to yield a true IS-bit
Physical Address.

8_5.2 Determining the Program Physical Address

A 16-bit virtual address can specify up to 32K words, in the range from
o to 177776, (word boundaries are even octal numbers). The three
most significant virtual address bits designate the PARI PDR set to be
referenced during page address relocation. Table S-3 lists the virtual
address ranges that specify each of the PAR/PDR sets.

8-14

· Table S·3 Relating Virtual Address to PAR/PDR Set

Virtual Addre,ss Range PARI PDR Set

000000-17776 0
020000-37776 1
040000-57776 2
060000-77776 3
100000-117776 • 4
120000-137776 5
140000-157776 6
160000-177776 7

NOTE
,Any use of page lengths less than 4K words
causes holes to be left in the virtual address
space.

S.6 STATUS REGISTERS
Aborts generated by the protection hardwar.e are, vectored, through ,Kernel
virtual location 250. Status Registers #0 and #2 are used to determine'
why the abort occurred. Note that an abort, to a location which is itself
an invalid address will cause another abort. Thus the Kernel' program
must insure that Kernel Virtual Address 250 is mapped into a valid ad­
dress, otherwise a loop will occur which will require console intervention.

S.6.l Status Register 0 (SRO)

SRO contains abort error flags, memory management enable, plus other
essential information required by an. operating system to recover from
an abort or service a'memory management trap. The SRO format is
shown in Figure 8-11. Its address is 777 572.'

15 14 13 .12 9 7 4 o

ABORT-NON'RESIDENT ~ • t f '-----..---I '-----...-----'(1 ABORT-PAGE LENGTH ERROR:......J

~~:~SR~~gL~~gN-----' •

MA1NTfNA~NC~E#eMO~0E~~~~~~~~~~~~-===~====L---:-J MOOE
PAGE NUMBER
ENABLE MANAGEMENT

Figure 8-11 Format of Status Register #0 (SRO)

Bits 15-13 are the- abort flags. They may be considered to be in a
"priority queue" in that "flags to the right" are less significant and
shoulc,l be ignored. For example .. a "non-resident" abort service routine
Would ignore page length and access control flags. A "page length"
abort service routine would ignore an access control fault.

NOTE
Bit 15, 14, or 13, when set (abort conditions)
cause the logic to freeze the contents of SRO
bits 1 to 6 and status register SR2. This is done
to facilitate recovery from the abort.

8-15

Protection is enabled when an address is being relocated. This implies
that either SRO, bit 0 is equal to 1 (Memory Management enabled) or
that SRO, bit 8, is equal to 1 and the memory reference is the final one
of a destination calculation (maintenance/destination mode).

Note that SRO bits 0 and 8 can be set under program control to pro·
vide meaningful memory management control information. However,
information written into all other bits is not meaningful. Only that in·
formation which is automatically written into these remaining bits as a
result of hardware actions is useful as a monitor of the status of the
memory management unit. Setting bits 15·13 under program control
will not cause traps to occur. These bits, however, must be reset to 0
after an abort or trap has occurred in order to resume monitoring
memory management.

Abort-Nonresident
Bit 15 is the "Abort-Nonresident" bit. It is set by attempting to access
a page with an access control field (ACF) key equal to 0 or 4 or by en­
abling relocation with an illegal mode in the PS{

i I

Abort-Page Length
Bit 14 is the "Abort-Page Length" bit. It is set by attempting to access
a location in a page with a block number (virtual address bits 12-6) that
is outside the area authorized by the Page Length Field (PFL) of the
PDR for that page.

Abort-Read Only
Bit 13 is the "Abort· Read Only" bit. It is set by attempting to write in a
"Read·Only" page having an access key of 2.

NOTE
There are no restrictions that any abort bits
could not be set simultaneously by the same
access attempt.

Maintenance/ Destination Mode
Bit 8 specifies maintenance use of the Memory Management Unit. It is
used for diagnostic purposes. For the instructions used in the initial
diagnostic program, bit 8 is set so that only the final destination refer·
ence is relocated. It is useful to prove the capability of relocating
addresses.

Mode of Operation
Bits 5 and 6 indicate the CPU mode (User or Kernel) associated with
the page causing the abort. (Kernel = 00, User = 11).

Page Number
Bits 3·1 contain the page nuniber of reference. Pages, like blocks, are
numbered from 0 upwards. The page number bit is used by the error
recovery routine to identify the page being accessed if an abort occurs.

Enable Relocation and Protection·
Bit 0 is the "Enable" bit. When it is set to I, all addresses are relocated

8·16

and protected by the memory management unit. When bit 0 is set to 0,
the memory management unit is disabled and addresses are neither re­
located nor protected_

8.6.2 Status Register 2 (SR2)
SR2 is loaded with the 16-bit V,rtual Address (VA) at the beginning of
each instruction fetch but is not updated if the instruction fetch fails.
SR2 is read only; a write attempt will not modify its contents. SR2 is
the Virtual Address Program Counter. Upon an abort, .the result of SRO
bits 15, 14, or 13 being set, will freeze SR2 until the SRO abort flags are
cleared. The address of SR2 is 777 576.

15

16-BIT VIRTUAL ADDRESS - I ADDRESS
777576 L-__ ~

Figure 8-12 Format of Status Register 2 (SR2»

8.7 INSTRUCTIONS
Memory Management provides the ability to communicate between two
spaces, as determined by the current and previous modes of the Pro­
cessor Status word (PS).

Mnemonic
MFPI
MTPI
MFPO
MTPO

Instruction
move from previous instruction space
move to previous instruction space
move from previous data space
move to previous data space

Op Code
0065SS
006600
1065SS
106600

These instructions are directly compatible with the larger 11 computers.

The POP·11/45 Memory Management unit, the KT11-C, implements a
separate instruction and data address space. In the POP-ll/34, there
is no differentiation between instruction or data space. The 2 instructions
MFPO and MTPO (Move to and from previous data space) execute iden­
tically to MFPI and MTPI.

8-17

MFPD
MFPI

move from previous' data space 1065SS

0065SS move from previous instructio!l space

Operation:

Condition Codes:

Example:

o

(temp) -E-(src)
J, (SP) -E-(temp)

N: set if the source <0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared
c: unaffected

This instruction pushes a word onto the current stack
from an address in previous space, Processor Status
(bits 13, 12). The source address is computed using
the current registers and memory map.

MFPI @ (R2) R2 = 1000
1000 = 37526

The execution of this instruction causes the contents of (relative)
37526. of the previous address space to be pushed onto the current
stack as determined by the PS (bits 15, 14).

8·18

MTPD
MTPI

move to previous data space

move to previous instruction space

15

I 0 1 0 o 1 1 • 1 • 0; 1

Operation: (temp)~(SP>"t
(dst) ~(temp)

o I d

106600

006600

Condition Codes: N: set if the sourse <0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared
C: unaffected

Description: This instruction pops a word off the current stack
determined by PS (bits 15, 14) and stores that word
into ari address in previous space PS (bits 13, 12).
The destination address is computed using the cur­
rent registers and memory map_ An example is as

Example:

follows: .

MTPI @ (R2) R2 = 1000
1000 = 37526

The execution of this instruction causes the. top word of the current
stack to get stored into the (relative) 37526 of -the previous address
space_

.8-19·

MTPI AND MFPI, MODE 0, REGISTER 6 ARE UNIQUE IN THAT THESE
INSTRUCTIONS ENABLE COMMUNICATIONS TO AND FROM THE PRE­
VIOUS USER STACK_

; MFPI, MODE 0, NOT REGISTER 6

MOV
MOV
CLR
INC
MFPI

#KM+PUM, PSW
#-1, -2(6)
%0
@#SRO
%0

; KMODE, PREV USER
; MOVE -Ion kernel stack -2

; ENABLE MEM MGT
; -(KSP) ~RO CONTENTS

The -1 in the. kernel stack is now replaced by the contents of RO which
is O.

; MFPI, MODE 0, REGISTER 6

MOV #UM+PUM, PSW
CLR %6 ; SET R16=0
MOV # KM+PUM, PSW
MDV #-1, -2 (6)
INC @#SRO .

; K MODE, PREV USER

; ENABI£ MEM MGT
MFPI %6 ; -(KSP) ~R16 CONTENTS

The -1 in the kernel 'stack is now replaced by the contents of RI6
(user stack painter which is 0)_

To obtain info from the user stack if the status is set to kernel mode,
prev user, two steps are needed.

MFPI %6
MFPI @(6)+

; get contents of Rl6=user pointer
; get user pointer from kernel stack
; use address obtained to get data
; from user mode using the prev
; mode

The desired data from the user stack is now in the kernel stack and has
replaced· the user stack address.

, 8-20

; MTPI, MODE 0 , NOT REGISTER 6

MOV
MOV
INC
MTPI
HLT

TA6X:CLR

KM+PUM, PSW
#TAGX, (6)
@#SRO
%7

@#SRO

; KERNEL MODE, PREV USES
; PUT NEW PC ON STACK
; ENABLE KT
;%7~ (6)+
; ERROR
; DISABLE MEM MGT

The new PC is popped off the current stack and since this is mode 0 and
not register 6 the destination is register 7.

; MTPI, MODE 0, REGISTER 6

MOV #UM+PUM, PSW
CLR %6
MOV #KM+PUM, PSW
MOV #-1, -(6)
INC @#SRO
MTPI %6

; user mode, Prev User
; set user SP=O (RI6)
; Kernel mode, prev user
; MOVE -1 into K stack (R6)
; Enable MEM MGT
; %16 ~(6)+

The 0 in R16 is now replaced with -1 from the contents of the kernel
stack.

To place info on the user stack if the status is set to .kernel mode, prev
user mode, 3 separate steps are needed.

MFPI
MOV
MTPI

%6
DATA, -(6)
@(6)+

; Get content of Rl6=user pointer
; put data on current stack
; @(6)+ [final address relocated] ~
(R6)+

The data desired is obtained from the kernel stack then the destinat:on
address is obtained from the kernel stack and relocated through the pre­
vious mode.

8-21

Mode Description
In Kernel mode the operating program has unrestricted use of the
machine. The program can map users' programs anywhere in core and
thus explicitly protect key areas (including the device registers and the
Processor Status word) from the User operating environment.

In User mode a program is inhibited from executing a HALT instruction
and the processor will trap through location 10 if an attempt is made
to execute this instruction. A RESET instruction results in execution of
a NOP (no·operation) instruction.

There are two stacks called the Kernel Stack and the User Stack, used
by the central proc~ssor when operating in either the Kernel or User
mode, respectively.

Stack Limit violations are disabled in User mode. Stack protection is
provided by memory protect features.

Interrupt Conditions
The Memory Management Unit relocates all addresses. Thus, when Man­
agement is enabled, all trap, abort, and interrupt vectors are considered
to be in Kernel mode Virtual Address Space. When a vectored transfer
occurs, control is transferred according to a new Program Counter (PC)
and. Processor Status Word (PS) contained in a two·word vector relocated
through the Kernel Active Page Register Set.

When a trap, abort, or interrupt occurs the "push" of the old PC, old PS
is to the User/ Kernel R6 stack specified by CPU mode bits 15, 14 of the
new PS in the vector (00 = Kernel, 11 = User). The CPU mode bits
also determine the· new APR set. In this manner it is possible for a
Kernel mode program to have complete control over service assignments
for all interrupt conditions, since the interrupt vector is located in Kernel
space. The Kernel program may assign the service of some of these con­
ditions to a· User mode program by simply setting the CPU n10de bits
of the new PS in the vector to return control to the appropriate mode.

User Processor Status (PS) operates as follows:

User Traps, Explicit
PS Bits User RTI, RTT Interrupts PS Access

Condo Codes (3-0) loaded from loaded from *
stack vector

Trap (4) loaded from loaded from cannot be
stack vector changed

Priority (7-5) cannot be loaded from ,~

.• changed vector
Previous (13-12) cannot be copied from ;;.~

changed PS (15, 14)
Current (15-14) cannot be loaded from *

changed vector

f, Explicit operations-~can be made if the Processor Status is mapped in
User space.

CHAPTER 9

PDP-II/55, 11/45

9.1. DESCRIPTION
The PDp·11/55 and PDp·11/45 Central Processors' are medium scale
general purpose computers designed around the basic architecture of
all PDp·ll family machines.

The PDp·11/55 is a bipolar memory based computer designed for greater
processor and system performance through the use of a dedicated in­
ternal semiconductor memory bus. This high speed' bus allows the
PDP-11/55 to fetch and execute instructions at 300 nanoseconds. Two
separate semiconductor controllers allow simultaneous data .transfers
for increased system throughput (i.e., the CPU transfers to one con­
troller while DMA gevices transfer to the other.) The PDP-11/55 can be
expanded up to 248K bytes with the aid of memory management which
is an integral part of the central processor. The fast floating point pro­
cessor operates as an integral part of the central processor yet only

. interacts wfth the CPU when data must be transferred to or from mem­
ory.

PDP-1l/55 features include:

• A,central processor unit with 64K bytes of 300. nsec bipolar memory,
or 32K bytes of 980 nsec core memory combined with 32K bytes of
300 nsec bipolar memory.

• An optional floating point processor (FPll-C) which provides very
fast arithmetic processing capabilities. It lets you perform a single­
precision (32 bit) Add in 1.65 microseconds, and a double· precision
(64 bit) Multiply in only. 5.43 microseconds.

• A dual·bus structure that allows you to intermix core and bipolar mem­
ory to optimize system performance.

• Integral Memory Management Hardware which provides 18-bit address­
ing capability (up to 248K bytes) as well as memory protection.

• An Automatic Bootstrap Loader which· initiates system startup at the
flick of a single switch.

• A Real-time Clock
.A 30 CPS LA36 DECwriter II that provides console terminal an-d printer

capabilities.
. .
'-The PDP-11/45 has a cycle time 0(300 nsec and performs all arithmetic
. and logical operations required in the system. A Floating P.oint Processor

mounts integrally into the Central ,Processor as does a Memory Man­
agement Unit which provides a full memory management facility through
.relocation and protection. See Figure 9·1 .

.The P-DP-11 155, 11/45 hardware has been. optimized towards a' multi­
programming environment and the processor therefore operates in three

9'1

modes (Kernel, Supervisor, and User) and has two sets of General
Registers.

r----:-------------------------l
UNIBUS A

Fig·ure 9-i PDP-11/55, PDP-11/45 System Biock Diagram

The· PDP-11/55, 11/45 Central Processors perform a" arithmetic and
logical operations required in the system. It also acts as the arbitration
unit for UNIBUS control by regulating bus requests and transferring
control. of the bus to the requesting device with the highest priority.

The Central Processor contains arithmetic and control logic for a wide
range of operations. These include high-speed fixed point arithmetic with
hardware multiply and divide, extensive test and branch operations, and
other control operations. It also provides room for the addition of the
high-speed Floating Point Processor; and Memory Management Unit.

The machine operates in three modes: Kernel, Supervisor; and User.
When the machine is in Kernel mode a program has complete control of
the machine; when the. machine is in any other mode the processor is
inhibited from executing certain instructions and can be denied direct
access to the peripherals- on the system. This hardware feature can be
used to provide complete executive protection in a multi-programming
environment.

The Central Processor contains 16 general registers which can be used
as accumulators, index registers, or as stack pointers. Stacks are ex­
tremely useful for nesting programs, creating re-entrant coding, and as
temporary storage. where a Last-In First-Out structure is desirable. A spe­
cial instruction "MARK" is provided to further facilitate re·entrant pro­
gramming. One of the general registers is used as the prpgram counter.
Three others are used as Processor Stack Pointers, one for each oper­
ational mode.

9-2

The CPU is directly connected to the high-speed memories as well as to
the general purpose registers and the UNIBUS and UNIBUS Priority Ar­
bitration Unit_

Figure 9-2 illustrates the data paths in the CPU_

CENTRAL PROCESSOR ORGANIZATION

UNIBUS A

ARITHMETIC
AND

LOGICAL
PROCESSOR

,.
GEfooERAl

REGISTERS

Figure 9-2' Central Processor Data Paths

The 11/55 and 11/45 CPU's performs all of the computer's computa­
tion and logic operations in a parallel binary mode through step by steR
execution of individual instructions_ The instructions' are stored in either
core or solid state memory.

General Registers
The general registers (see Figure 9-3) can be used for a variety of pur­
poses; the uses varying with requirements.

GENERAL
REGISTER
SET 1

R0

Rl

R2

R3

R4

R5

SUPERVISOR
STACK POINTER

RS

PROGRAM
COUNTER

Figure 9-3

KERNEL
STACK POINTER

RS/

R7

R0

RI

R2

R3

R4

R5

USER
STACK POINTER

RS

The G,eneral Registers

GENERAL
REGISTER
SET 0

R7 is used as the machine's prQgram counter (PC) and contains the ad·
dress of the next instruction to be executed. It is a general register

9·3

normally used only for addressing purposes and not as an accumulator
for arithmetic operations.

The R6 register is normally used as the Processor Stack Pointer indicat·
ing the last entry in the appropriate stack (a common temporary. storage
area with "Last·ln First·Out" characteristics). (For information on the
programming uses of stacks,' please refer to Chapter 5;) The three stacks
are caJled the Kernel Sti:lck, the Supervisor Stack, and the User Stack.
When the Central Processor is operating in Kernel mode it uses the
Kernel Stack, in Supervisor mode, the Supervisor Stack, and in User
mode, the User Stack. When an interrupt or trap occurs, the Central Pro·
cessor automatically saves its current status on the Processor Stack
selected by the service routine. This stack· based architecture facilitates
re·entrant programming.

The remaining 12 registers are divided into two sets of unrestricted regis'
ters, RO·R5. The current register set in operation is determined by the
Processor Status Word.

The two sets of registers can be used to increase the speed of real·time
data handling or facilitate multi·programming. The six registers in Gen·
eral Register Set 0 could each be used as an accumulator and/or index
register for a real·time.task or device, or as general registers for a Kernel
or Supervisor mode program. General Register Set 1 could be used -by
the remaining programs or User mode programs. The Supervisor can
therefore protect its general registers and stack from User programs, or
other parts of the Supervisor.

Processor Status Word
The Processor Status Word, located at location 777776, contains infor­
mation on the current status of the PDP-11/55, 11/45. See Figure 9-4.
This information includes the register set currently in use; current pro­
cessor priority; current and previous operational modes; the condition
codes describing the results of the last instruction; and an indicator for
detecting the execution of an instruction to be trapped during program
debugging. -

15 14 ·13 12 11 10

~~

. CURRENT MODE'--' i
PREVIOUS MODE'
GENERAL REGISTER
SET (0.1)1----------'

NOT USED

'MODE: OO-KERNEL(USED ONLY WITH MEMORY MANAGEMENT)
o I-SUPERVISOR
II-USER

PRIORITY

Figure 9-4 Processor Status Word

Modes

o

T I N I z I v C

Mode information includes the present mode, either User, Supervisor, or
Kernel (bits 15, 14); the mode the machine was in prior to the last in­
terrupt or trap (bits -13, 12); and which register set (General Register Set
o or 1) is currently being used (bit 11).

9-4

The three modes permit a fully protected environment for a multi·pro·
gramming system by providing the user with three distinct sets of Pro·
cessor Stacks and Memory Management Registers for memory mapping.
In all modes except Kernel a program is inhibited from executing a
"HALT" instruction and the processor will trap through location 4 if an
attempt is made to execute this instruction. Furthermore, the processor
will ignore the "RESET" and "SPL" instructions. In Kernel mode, the
processor will execute all instructions. .

A program operating in Kernel mode can map users' programs anywhere
in core and thus explicitly protect key areas (including the devices regis·
ters and the Processor Status Word) from the User operating environ·
ment.

Processor Priority
The Central Processor operates at any of eight levels of priority, 0·7.
When the CPU is operating at level 7 an external device cannot interrupt
it with a request for service. The Central Processor might be operating at
a lower priority than the priority of the external device's request in order
for the interruption to take effect. The current priority is maintained in
the Processor Status word (bits 5·7). The 8 processor levels provide an
effective interrupt mask, which can be dynamically altered through use
of the Set Priority Level (SPL) instruction which is described in Chapter
4 and which can only be used by the Kernel. This instruction allows a
Kernel mode program to alter the Central Processor's priority without
affecting the rest of the Processor Status Word.

Stack Limit Register
All PDP·ll'shave a Stack Overflow Boundary at location 400. The Kernel
Stack Boundary, in the PDP·1l/55, 11/45 is a variable boundary set
through the Stack Limit Register found in location 77'7775.

Once the Kernel stack exceeds its boundary, the Processor will complete
the current instruction and then trap to location 4 (Yellow or Warning
Stack Violation). If, for some reason, the program perSists beyond the
16·word limit, the processor will abort the offending instruction, set the
stack pOinter (R6) to 4 and trap to location 4 (Red or Fatal Stack Viola·
tion). A description of these traps is contained in Appendix A.

Floating Point Processor
The PDP·11/55, 11/45 Floating Point Processor (FPC11·C) fits integrally
into the Central Processor. It provides a supplemental instruction set for
performing single and double precision floating. point arithmetic opera·
tions and floating integer conversions in parallel with the CPU. It is
described in Chapter 11.

9.2 MEMORY
Memory is the primary storage medium for instructions and data. Two
types are available:

SOLID STATE:

Bipolar Memory with a cycle time of 300 nsec.

CORE:

9·5

Magnetic Core Memory with a cycle time of 980 nsec, access at 360
nsec (450 nsec at the UNIBUS).

The PDP-11/45 is a core based machine and the PDP·11/55 is a bipolar
memory·based machine containing 32K or 64K bytes (maximum) of
bipolar memory. Any system can be expanded to 248K bytes in in­
crements of 32K bytes. The system can be configured with various mix­
tures of core and bipolar memory up to a maximum limit of 64K. bytes
of bipolar memory. .

Solid State Memory
]he Central Processor communicates directly with bipolar memory
through a very high speed data path which is internal to the PDP-11/55,
11/45 processor system. The CPU can control up to two independent
solid state memory controllers. Each controller can have from one
to four2K byte increments (8K maximum) or from one to four 8K
byte increments (32K maximum). 2K and 8K byte increments cannot
be mixed in the same bipolar memory controller.

Each controller has dual ports and provides one interface to the CPU
and another to a second UNIBUS. See Figure 9-5.

SSM' SOLID STATE MEMORY MATRtX 12K OR 8K BYTE BIPOLAR)

Figure 9-5 Memory Configuration

There are two UNIBUSes on the PDP-11/55, 11/45 but in a single pro­
cessor environment the second UNIBUS is generally. connected into the
first and becomes part of it. If the two UNIBUSes are connected together,
DMA devices on both UNIBUSes can access bipolar memory. If the two
UNIBUSes are not connected together, only DMA devices on UNIBUS B
can access bipolar memory, and must include-UNIBUS arbitration logic
which lends itself to multiprocessor environments (Figure 9·6).

The UNIBUS and data path to the Solid State Memory are independent.
While the Central Processor is operating on data in one Solid State Mem­
orycontroller through the direct data path, anY'devicecouldbe using the
UNIBUS· to transfer information- to core, to another device, or to the

9-6

"The M9200 when installed,
connects Unibus A to Uni·
bus B. If two CPU's are util·
ized, the M9200 must be
removed.

UNIBUS A

UNIBUS B

Figure 9-6 Multiprocessor Use of the Second UN IBUS

other Solid State Memory Controller; This autonomy significantly in­
creases the throughput of the system.

Core Memory
The Central Processor communicates with core memory through the
UNIBUS.

Each memory bank operates independently from other banks through its
own controller which interfaces directly to the UNIBUS. Core memory
can be continuously attached to the UNIBUS until the system contains
a total of 248K (253,952) bytes of memory.

An external device may use the UNIBUS to read or write core memory
completely independent of and simultaneously with the Central Pro­
cessor's access of solid state memory. Furthermore, core memory and
solid state memory may be used by the processor interchangeably.

9.3 PROCESSOR TRAPS
There are a series of errors and programming conditions which will cause
the Central Processor to trap to a set of fixed locations. These include
Power Failure, Odd Addressing Errors, Stack Errors, Time-out Errors,
Memory Parity Errors, Memory Management Violations, Floating Point
Processor Exception Traps, Use of Reserved Instructions, Use of the T
bit in the Processor Status Word, and use of the lOT, EMT, and TRAP
instructions.

Stack Errors, Memory Parity Errors, and the T bit Trap have already
been discussed in this chapter. Memory Management Violations are
described in Chapter 10 and Floating Point Exception Traps are de­
scribed in Chapter 11. The lOT, EMT, and TRAP instructions are
described in Chapter 4.
Power Failure
Whenever AC power drops below 95 volts for 1l0v power (190 volts for
220v) or outside a limit of 47 to 63 Hz, as measured by DC power, the
power fail sequence is initiated. The Central Processor automatically
traps to location 24 and the power fail program has 2 msec to save all
volatile information (data in registers), and to condition peripherals for
power fail.

9-7

When power is restored the processor traps to location 24 and executes
the power-up routine to restore the machine to its state prior to power
failure.

Odd Addressing Errors
This error occurs whenever a program attempts to execute a word in­
struction on an odd address (in the middle of a word boundary). The
instruction is aborted and the CPU traps through locati,on 4.

Time-out Errors'
These errors occur when a Master Syrichronization pulse is placed on the
UNIBUS and there is no slave pulse within 5 to 10 /Lsec. This error usu­
ally occurs in attempts to address non-existent memory or peripherals.

The offending instruction is aborted and the processor traps through
location 4.

Reserved Instructions
There is a set of illegal 'and' reserved instructions which cause the pro­
cessor to trap through location 10.

Trap Handling
Appendix A includes a list, of the reserved Trap Vector locations, and
System Error Definitions which cause processor traps. When a trap oc­
curs, the processor follows the same procedure for traps as it does for
interrupts (saving the PC and PSon the new Processor Stack etc).

In cases where traps and. interrupts occur concurrently, the processor
will service the conditions according to the priority sequence shown in
Table 9-1. ' .

Table 9-1 Processor Service Hierarchy

Console Flag

Odd Addressing Error

Fatal Stack Violations (Red)

Memory Management Violations,

Time-out Errors

Parity Errors

Floating Point Processor Transfer Request

Memory Management Traps

Warning Sta<:k Violation (Yellow)

Power Failure

Processor Priority level 7

Floating Point Exception Trap

PIR 7
BR 7

9-8

Table 9-1 Processor Service Hierarchy (Cont_> -

PIR 2

PIR 1

Processor 0

9.4 MULTIPROGRAMMING
The PDP·11/55, 11/45 architecture- with its three -modes of operation,
its two sets of general registers, its Memory Management capability and
its Program Interrupt Request facility provides an ideal environment for
multi-programming systems.

In any multi-programming system there must be some method of trans'
ferring. information and control between programs operating in the same
or different modes. The PDP-11/55, 11/45 provides the user with these
communication paths.

Control Information
Controi is passed inwards (User, Supervisor, Kernel) by all traps and in­
terrupts. All trap and interrupt vectors are located in Kernel virtual space.
Thus all traps and interrupts -pass through Kernel space to pick up their
new PC and PS and determine the new mode of processing.

Control is passed outwards (Kernel, Supervisor, -User) by the RTI and-
RTT instructions (described in Chapter 4). -

Data
Data is transferred between modes by four instructions: Move from Pre­
vious Instruction space (MFPI), Move From Previous Data space (MFPD),
Move To Previous Instruction space (MTPI) and Move To Previous Data
space (MTPD). -There are four instructions rathertban two as Memory
Management distinguishes between instructions and data:. The instruc­
tions are fully described in Chapter 4. However, it should be noted that
these instructions have been designed to allow -data transfers to be
under the control of the innermost mode (Kernel, Supervisor, User)
and not the outermost, thus providing protection of an inner program
from an outer.

Processor Status Word
The PDP 11/55, 11/45 protects the PSfrom implicit references by Su­
pervisor and User programs which could result- in damage -to -an inner
level program. .

A program operating in Kernel mode can perform any manipulation of
the PS~ Programs operating at outer levels (Supervisor and User) are
inhibited __ from changing bits 5-7 (the Processor's Priority). They are
also restricted in their treatment of bits 15, 14 (Current Mode), bits 13,
12 (Previous Mode), and bit 11 (Register Set); these pits may beset
in User or Supervisor mode. However, in order to clear these bits, a
trap or interrupt must be _ issued which returns the program to Kernel
mode.

9-9

Thus, a programmer can pass control outwards through the RTI and
RTT instructions to set bits in the mode fields of his PS. To move in·
wards, however, bits mu.st be cleared and he must, therefore, issue a
trap or interrupt. '

The Kernel can further protect the PS from explicit references (Move
data to location 777776-the PS) through Memory Management.

9.5 SPECIFICATIONS

Computer

Main Market

Memory
Min size:
Max size:
Type: .
Parity:

Central Processor
Instructions:

Programming modes:
No. of general registers:
Auto hardware interrupts:
Auto· software interrupts:
Power fail/auto restart:

Mechanical & Environmental
Front panel height:
Input power:

Operating temperature:
Relative humidity:

Equipment
I/O serial interface:
Console terminal:
Line frequency clock:

Hardware bootstrap:
Programmer's console:
Extended arithmetic:

Floating point:
Stack limit address:
Memory management:

Cabinet:

Additional Instructions

PDP-11/55, 11/45

OEM & End User

64K bytes
248K bytes
bipolar, core
optional

basic set + XOR, SOB, MARK, SXT,
RH, MUL, DIV, ASH, ASHC, SPL

3
16
yes
yes
yes

31"
230 VAC ±10%, 47 to 63 Hz

lOoC to 50°C
20% to 95%, non-condensing

standard
standard
standard

standard
standard
standard

optional
standard
standard

standard

The PDP-H/55, 11/45 implements the following EIS (extended instruc­
tion set) instructions:

MUL multiply
DIV divide

9-10

ASH
ASHC

shift arithmetically
arithmetic shift combined

These instructions are standard with the PDP-1l/34, 11/55, 11/45 and
are described in Chapter 6.

Notes
1. CPU Fastbus activity does not degrade data transfer speed of either

bus, except when both Buses are simultaneously accessing the same
MS11 control board.

2. If there are two MS11 controls in a CPU, transfers on one bus to one
control do not interact with transfers on the other bus to the other
control.

3. Data transfer rates for the PDP-11/55, 11/45:

Configuration # 1
The maximum system data .transfer rate with UNIBUS controllers
transferring to interleaved MM11-UP core memory over the UNIBUS
while the CPU transfers to bipol~r memory over the Fastbus is 9.0
megabytes per second.

Configuration #2 .
The maximum system data transfer rate with a UNIBUS controller
tra!1sferring to bipolar memory while the CPU transfers to the same
bipolar memory (same -bipolar memory controller) is 7.14 mega-

- bytes per second.

UNIBUS B

9-11

Configuration #3
The maximum system data transfer rate with a UNIBUS controller
transferring toone bipolar controller while the CPU transfers to the
other bipolar controller is 10.78 megabytes per second.

4. The two MS11 solid state m,emory controls are connected to a single
UNIBUS (UNIBUS-B) that can be easily separated from the 11/45
CPU UNIBUS (UNIBUS-A) by removing a simple jumper module
(M9200), thus facilitating dual UNIBUS systems. UNIBUS B does not
have its own Unibus arbitration control logic; thus, a second PDP-11
CPU is required for other than NPR transfers from a single device_

9.6 CONSOLE OPERATION
The PDP-11/55, 11/45 System Operator's Console is designed for con­
venient system control. A complete set of function switches and display
indicators provide comprehensive status monitoring and control facilities.

The System Operator's Console for the PDP-ll/55 is illustrated in Figure
9-5. - '

The System Operator's Console for the PDP-ll/45 is illustrated in Figure
9-6_

9.6.4 Address Display Register

mode. If a 0, the last memory refer­
ence was to I address space in the cur­
rent CPU mode.

The Address Display Register is primarily a software development and
maintenance aid. The contents of this 18·bit indicator are controlled by
the Address Select knob as follows:

VIRTUAL

PROGRAM PHYSICAL

CONSOLE PHYSICAL

9.6.5 Addressing Error Display

The Address Display Register indicates
the current address reference as a 16-
bit Virtual Address when the Memory
Management Unit is enabled; otherwise,
it indicates the true 16-bit Physical Ad­
dress. Bits 17 and 16 will be off unless
the Memory Management Unit is dis­
abled AND the current address refer­
ences some UNIBUS device register in
the uppermost 8K bytes of basic ad­
dress space (i.e., 248K·256K).

The ·Address Display Register indicates
the current address reference as a true
18-bit Physical Address.

The Address Display Register indicates
the current address reference as a 16-
bit Virtual Address when the Memory
Management Unit is enabled; otherwise,
it indicates the true 16-bit Physical
Address.

Bits 17 and 16 indicate the contents of
corresponding bits of the Switch Reg­
ister as of the last LOAD ADRS console
operation.

This I-bit display indicates the occurrence of any addressing errors. The
followi ng address references are invalid:

1: Non-existent memory

2. Access Control violations

3. Unassigned memory pages

(See chapter 10: 11/55, 11/45 Memory Management)

9.6.6 Data Display Register
The Data Display Register is primarily a hardware maintenance facility.
The contents of this 16-bit indicator are controlled by the Data Display
Select knob as follows:

DATA PATHS The Data Display Register indicates
the current. output of the PDP-11/55,
11/45 Arithmetic/Logical Unitsubsys­
tem (SHFR).

9-17

BUS REGISTER The Data Display Register indicates
the current output of the PDP-11/55,
11/45 CPU (UNIBUS, Semiconductor
Memory, or the internal BUS.)

FPP ILADRS_CPU ILADRS. The Data Display Register indicates the
current ROM . address, FPP control
micro-program (bits 15-8), and the
CPU control micro-program (bits 7-0).

DISPLAY The Data Display Register indicates the
current contents of. the 16-bit write­
only "Switch Register" located at Phys­
ical Address 777570. This register is
generally used to display diagnostic in­
formation, although it can be used for
any meaningful purpose_

9.6.7 Switch Registers
The functions of this 18-bit bank of switches are determined by:

1) Control Switches

2) Address Display Select knob

These functions will be described in the next section along with the
appropriate control switch.

Note that the current setting of the Switch Register may be read. under
program control from a read-only register at Physical Address 777570.

9.6.8 Control Switches

LOAD ADRS (Load Address)
When the LOAD ADRS .switch is depressed the contents of the Switch
Register are loaded into the CPU. Bus Address Register and displayed in
the Address Display Register lights. If the Memory Management Unit is
disabled the address displayed is the true Physical Address .

. If the Memory Management Unit is enabled the interpretation of the ad­
dress indicated by the Switch Register is determined by the Address
Display Select knob.

Note that the LOAD ADRS function does not distinguish between PRO-
GRAM PHYSICAL and CONSOLE PHYSICAL .

EXAM (Examine)
Depressing the EXAM switch causes the contents of the current location
specified in the CPU Bus Address Register to be displayed in the DATA
Display Register.

Depressing the EXAM switch again causes a EXAM-STEP operation to
occur. The result is the same as the EXAM except that the contents of
the CPU Bus Address Register are incremented by two before the current
location has been selected for display_ An EXAM-STEP will not cross a
64K byte memory block boundary.

9-18

An EXAM operation which causes an ADRS ERR (Addressing Error) must
be corrected by performing a new LOAD ADRS operation with a valid
address.

REG EXAM (Register Examine)
Depressing the REG EXAM switch causes the contents of the General
Purpose Register specified by the low order five bits of the Bus Address
Register to be displayed in the Data Display Register. In the PDP·1l/55,
consecutive register examines will automatically increment to the next
general purpose register.

The Switch Register is interpreted as follows:

CONTENTS

0-5

6

7

1°8-15 8

168

17 8

CONT (Continue)

REGISTER DISPLAYED

General Registers 0·5 (set 0)

Kernel Mode Register 6

Program Counter (PC)

General Register 0·5 (set 1)

Supervisor Mode Register 6

User Mode Register R6

Depressing the CONT switch causes the CPU to resume executing in­
structions or bus cycles at the address specified in the Program Counter
(Register). The CONT switch has no effect when the CPU is in RUN

. state.

The function of the CONT switch, is modified by the setting of the
ENABLE/HALT and S/INST·S/BUS cycles switches as follows:

ENABLE (up)

Hi\L T (down)

ENABLE/HALT

CPU resumes normal operation under
program control.

S/INST (up)-CPU executes next in­
struction then stops.

S/BUS cycle (down)-CPU executes
next address reference, then stops (i.e.,
one UNIBUS cycle).

The ENABLE/HALT switch is a two·position switch with the following
functions:

ENABLE (up)

HALT (down)

The CPU is able to perform normal
operations under program control.

The CPU is stopped and is only oper­
able by the console switches.

The setting of the ENABLE/HALT switch modifies the function of the
CONTINUE and START switches.

S/INST-S/BUS CYCLE (Single Instruction/Single Bus Cycle)
The S/INST-S/BUS CYCLE switch effects only the operation of the CON-

9-19

TIN UE switch. This switch has no effect on any switches when the
ENABLE/HALT switch is set to ENABLE.

START
The functions of the START switch depend upon the setting of the
ENABLE/HALT switch as follows:

ENABLE

HALT

DEP (Deposit)

Depressing the START switch causes
the CPU to .start executing program in­
structions at the address specified by
the current contents of the CPU Bus
Address Register. The START switch
has no effect when the CPU is in RUN
state.

Depressing the START switch causes a
console reset to occur.

Raising the DEP switch causes the current contents of the Switch Reg­
ister to be deposited into the address specified by the current contents
of the CPU Bus Address Register.

Raising the DEP switch again causes a DEP-STEP operation to occur.
The result is the same as the DEP except that the contents of the CPU
Bus Address Register are incremented by two before the current lociltion
has been selecte.d for the deposit operation. A DEP-STEP will not cross
a 32~ memory block boundary. '

A DEP operation which causes an ADRS ERR (Addressing- Error) is
aborted and must be corrected by performing a new LOAD ADRS opera­
tion with a valid address.

REG DEP (Register Deposit)
Raising the REG DEP causes the contents of the Switch Register to be
deposited into the General Purpose Register specified by the current
contents of the CPU Bus Address Register. In the PDP-11/55, consecu­
tive Register Deposits will automatically increment to the next general
purpose register (GPR).

The CPU Bus Address Register should have been previously loaded by
a LOAD ADRS operation according to the Switch Register settings de­
scribed in REG EXAM (9.6.8).

NOTE: The EXAM and DEP switches are coupled to enable an EXAM­
DEP-EXAM sequence to be carried out on a location, without having to
do a LOAD ADRS. The following sequence is possible:

EXAM

DEP ADDRESS A

EXAM

STEP EXAM

DEP ADDRESS A + 1

EXAM

9-20

ADDRESS SELECT
The ADDRESS SELECT knob is used for two functions. It provides an
interpretation for the Address Display Register as explained in section
9.6.4. It also determines for EXAM, STEP-EXAM, DEP and STEP­
DEP, what set of Page Address Registers, if any, will be used to relocate
the address loaded by the LO ADRS function.

KERNEL I, KERNEL 0, SUPER I, SUPER 0, USER I and USER 0 posi­
tions cause the address loaded into the switch register to be relocated
if the Memory [\I1anagement Option is installed and operating. Which
set of the 6 sets of Page Address Registers (PARs) is used is determined
by the ADDRESS SELECT switch. EXAMs, STEP-EXAMs, DEPs and STEP­
OEPs, under these conditions, are relocated to the physical addreSS
specified by the appropriate PAR. If the action attempted from the con­
sole is not allowed (for example-attempting to DEP into a READ ONLY
page) the ADRS ERROR indicator will come on. A new LD ADRS must
be done to clear this condition. Note that, in the general case, the phys­
ical location accessed is different from the virtual address loaded into
the switch register. The Address Display Register will always, in these
6 positions, show' exactly what was loaded from the switch register.
These pOSitions make it convenient to examine and change programs
which are subject to relocation, without requiring any knowledge of

. where they have actually been relocated in physical memory.

PROGRAM PHYSICAL-T,his pOSition is provided to allow the user, when
"single cycling" through a program, to monitor the physical addresses
being accessed by the program. It is most useful when the accesses are
being relocated by the Memory Management Option. In this case the
Address shown in the Address Display Register is different than that
shown in the other positions. This position should not be used to per­
form EXAM, STEP-EXAM, DEP or STEP-DEP functions.

CONSOLE PHYSICAL-This position is provided to allow EXAM, STEP
EXAM, DEP and STEP-DEP functions to physical memory locations whe­
ther or not the Memory Management option is installed or operating. In
this position the Address Display Register indicates the physical address
loaded from the Switch Register.

9-21

9-22

CHAPTER 10

PDP-l1/55, 11/45 MEMORY MANAGEMENT

The PDP-11/55, 11/45 Memory Management Unit provides the hardware
facilities necessary for complete memory management and protection_
It is designed to be a memory management facility for systems where
the system memory size is greater than 28K words and for multi-user,
multi~programming systems where memory protection and relocation
facilities are necessary_ .

In order to most effectively utilize the power and efficiency of the PDP-
11/55, 11/45 in medium and large scale systems it is necessary to run
several programs simultaneously. In such multi-programming environ­
ments several user programs would be resident in memory at any given
time. The task of the supervisory program would be: control the execu·
tion of the various user programs, manage the allocation of memory
and peripheral device resources, and safeguard the integrity of the sys-
tem as a whole by careful control of each user program. -

In a multi-programming system, the Memory Management Unit provides.
the means for assigning memory pages to a user program and prevent­
ing that user from making any unauthorized access to these pages out~
side his assigned area. Thus, a user can effectively be prevented from
accidental or willful destruction of any other user program or the system
executive program.

The basic characteristics of the PDP-11/55, 11/45 Memory Management
Unit are:

• 16 User mode memory pages
• 16 Supervisor mode memory pages
• 16 Kernel mode memory pages
• 8 pages in each mode for instructions
• 8 pages in each mode for data
• page lengths from 32 to 4096 words
• each page provided with full protection and relocation
• transparent operation
• 6 modes of memory access control
• memory extension to 124K words (248K bytes)

10.1 PDP-11 FAMILY BASLC ADDRESSING LOGIC
The addresses generated by all PDP-ll Family Central Processor Units
(CPUs) are 18-bit direct byte addresses. Although the PDP-ll Family
word length and operational logic is all 16·bit length, the UNIBUS and
CPU addressing logic actually is 18-bit length. Thus, while the PDP-ll
word can only contain address references up to 32K words (64K bytes)

10-1

the CPU and UNIBUS can reference addresses up to 128K words (256K
bytes). These extra two bits of addressing logic provide the basic
framework for expanded memory operation.

In addition to the word length constraint on basic memory addressing .
space, the uppermost 4K words of address space is always reserved for
UNIBUS I/O device registers. In a basic PDP·11/55, 11/45 memory con·
figuration (without the Memory Management Option) all address refer·
ences to the uppermost 4K words of 16 bit address space (170000·
177777) are converted to full 18·bit references with bits 17 and 16
always set to 1. Thus, a 16 bit reference to the I/O device register at
address 173224 is automatically internally converted to a full 18·bit ref·
erence to the register at address 773224. Accordingly, the basic PDp·
11/55, 11/45 configuration can directly address up to 28K words of true
memory, and 4K words of UNIBUS I/O device registers. Memory con·
figurations beyond this require the PDP·11/55, 11/45 Memory Manage·
ment Unit.

10.2 VIRTUAL ADDRESSING

When the PDP-ll/45 Memory Management Unit is operating, the normal
16 bit direct byte address is no longer interpreted as a direct Physical
Address (PA) but as a Virtual Address-(VA) containing information to be
used in constructing a new 18-bit physical address. The information
contained in the Virtual .Address (VA) is combined with relocation infor·
mation contained .in the Page Address Register (PAR) to yield an 18·bit
Physical Address (PA). Using the Memory Management Unit, memory
can be dynamically allocated in pages each composed of from 1 to 128
integral blocks of 32 words.

32K

o

VIRTUAL INSTRUCTION/DATA
ADDRESS SPACE

VIRTUAL ADDRESS
(16 BITS)

r---
r---
r---.
r---

PAR 7

PAR 6

PAR 5

PAR 4

~ PAR 3

PAR 2

PAR 1

PAR 0

PAGE
ADDRESS
REGISTERS

128K

~
l~

0

PAR = Page Address Register

PHYSICAL
ADDRESS SPACE

PAGE 5

PAGE 6

PAGE 7

PAGE 4

PHYSICAL ADDRESS
(18 BITS)

Figure 10·1 Virtual Address Mapping into Physical Address

The starting physical address for .each page is an integral multiple of 32
words, and each page has a maximum size of 4096 words. Pages may be
located' anywhere within the 128K Physical Address space. The deter­
mination of which set of 16 page registers is used to form a Physical

10-2

Address is made·by the current mode of operation of the CPU, i.e., Ker·
nel, Supervisor or User mode.

10.3 INTERRUPT CONDITIONS UNDER MEMORY MANAGEMENT
CONTROL
The Memory Management Unit relocates all addresses. Thus, when it is
enabled, all trap, abort, and interrupt vectors are considered to be in
Kernel mode Virtual Address Space. When a vectored transfer occurs,
control is transferred according to a new Program Counter (PC) and
Processor Status Word (PS) contained in a two-word vector relocated
through the Kernel Page Address Register Set. Relocation of trap ad­
dresses means that the hardware is capable of recovering from a
failure in the first physical bank of memory.

When a trap, abort, or interrupt occurs the "push" of the old RC, old
PS is to the User/Supervisor/Kernel R6' stack specified by CPU' mode
bits 15,14 of the new PS in the vector (bits 15,14: 00 = Kernel, 01=
Supervisor, 11 = User). The CPU mode bits also determine the new PAR
set. In this manner it is possible for a Kernel mode program to have
complete control over service assignments for all interrupt conditions,
since the interrupt vector is located in Kernel space. The Kernel program
may assign the service of some of these conditions to a Supervisor or
User mode program by simply setting the CPU mode bits of the new
PS in the. vector to return control to the appropriate mode.

10.4 CONSTRUCTION OF A PHYSICAL ADDRESS
All addresses with memory relocation enabled either reference informa­
tion in instruction (I) Space or Data (D) Space. I Space is used for all
instruction fetches, index words, absolute addresses and immediate
operands,. D Space is used for all other references. I Space and D Space
each have 8 PAR's in each mode of CPU operation, Kernel, Supervisor,
and User. Using Status Register #3, the operating system may select
to disable D space and map all references (Instructions and Data)
through I space, or to use both I and D space.

The basic information needed for the construction of a Physical Address
(PA) comes from the Virtual Address (VA), which is illustrated in Figure
10-2, and the appropriate PAR set.

15 13 12 o
I APf I Of

ACTIVE PAGE DISPLACEMENT fiELD
fiELD

Figure 10-2 Interpretation of a Virtual Address

The Virtual Address (VA) consists of:

1. The Active Page Field (APF). This 3-bit field determines which of
eight Page Address Registers (PARO-PAR7) will be used to form the
Physical Address (PA).

2. The Displacement Field (OF). This 13-bit field contains an address
relative to the beginning ofa page. This permits page lengths up to

10-3

4K words (2" = SK bytes). The OF is further subdivided into two
fields as shown in Figure 10-3).

12 6 5 o
BN DIB

BLOCK NUMBER DISPLACEMENT IN BLOCK

Figure 10-3 Displacement Field of Virtual Address

The Displacement Field (OF) consists of:

1. The Block Number (BN). This 7-bit field is interpreted as the block
number within the current page.

2_ The Displacement in Block (DIB)_ This 6-bit field contains the dis­
placement within the block referred to by the Block Nu)nber (BN).

The remainder of the information needed to construct the Physical Ad­
dress comes from the 12-bit Page Address Field (PAF) (part of the
Page Address Register (PAR» and specifies the starting address of the
memory page which that PAR describes. The PAF is actually a block
number in the physical memory, e.g. PAF = 3 indicates a starting ad­
dress of 96 (3 x 32) words in physical memory.

The formation ofa physical address (PA) takes 90 ns. Thus in situations
which do not require the facilities of the Memory Management Unit, it
should be disabled to permit time sllvings_

The formation of the Physical Address (PA) is illustrated in Figure 10-4.

The logical sequence involved in constructing a Physical Address (PA)
is as follows: .

1. Select a set of Page Address Registers depending on the space
being referenced.

2. The Active Page Field (APF) of the Virtual Address is used to select
a Page Address Register (PARO-PAR7).

3. The Page' Address Field (PAF) of the selected Page Address Register
(PAR) contains the starting address of the currently active page as a
block number in physical memory.

4. The Block Number (BN). from the Virtual Address (VA) is added
to the block number from the Page Address Field (PAF) to yield the
number of the block in physical memory (PBN-Physical Block Num­
ber) which will contain the Physical Address (PA) being constructed.

5. The Displacement in Block (DIB) from the Displacement Field (OF)
of the Virtual Address (VA) is joined to the Physical Block Number
(PBN) to yield a true IS-bit PDP·11/55, 11/45 Physical Address (PA).

10-4

17

17

I PHYSICAL ADDRESS

Figure 10·4 Construction of a Physical Address

10.5 MANAGEMENT REGISTERS
The PDP·ll/55,-1l/45 Memory Management Unit implements three sets
of 32 sixteen bit registers. One .set of registers is used in Kernel mode,
another in Supervisor, and the other in User mode. The choice of which
set is to be used is determined by the current CPU mode contained in the
Processor Status word. Each set is subdivided into two groups of 16 reg·
isters. One group is used for references to Instruction (I) Space, and one
to Data (D) Space. The I Space group is used for all instruction fetches,
index words, absolute addresses and immediate operands. The D Space
group is used for all other references, providing it has not been disabled
by Status Register #3. Each group is further subdivided into two parts
of 8 registers. Orie part is the Page Address Register (PAR) whose func·
tion has been described in previous paragraphs. The other part is the
Page Descriptor Register (PDR). PARs and PDRs are always selected in
pairs by the top three bits of the virtual address. A PAR/PDR pair con·
tain all the information needed to describe and locate a currently active
memory page.

The various Memory Management Registers are located in the upper·
, most4K' of' PDp· 11· physical address space along with the UNIBUS I/O
device registers. ,For the. actual addresses of these. registers refer to
Memory ·Management Unit-Register Map, at the end of the chapter.

10·5 .

I I PROCESSOR STATUSWORD

15 I 14 ,
KERNEL(OO) • SUPERVISOR (011

1
USER(1n

PAR PDR PAR POR PAR PDR •

1--+--+-+--1 I SPACE

PAR POR PAR PDR PAR PDR

f-t-+-+-lo SPACE

Figure 10-5 Active Page Registers

10_5_1 Page Addrer:;s Registers (PAR)
The Page Address Register (PAR) contains the Page Address Field (PAF),
a 12-bit field, which specifies the starting address of the page as a
block number in physical memory_

15 12 11 o
PAF

Figure 10-6 Page Address Register

Bits 15-.12 of the PAR are unused and reserved for possible future use.

The Page Address Register (PAR)'which contains the Page Address
Field (PAF) may be alternatively thought of as a relocation register con­
taining a relocation constant, or as a base register containing a base
address. Either interpretation indicates the basic importance of the Page
Address Register (PAR) as a relocation tool.

10_5.2 Page Descriptor Register
The Page Descriptor Register (PDR) contains information relative to
page expansion, page length, and access control.

10-6

87654320

PLf

Figure 10-7 Page Descriptor Register

Access Control Field (ACF)
This three-bit field, occupying bits 2-0 of the Page Descriptor Register
(PDR) contains the access rights to this particular page. The access
codes or "keys" specify the manner in which a page may be accessed
and whether or not a given access should result in a trap or an abort
of the current operation. A memory reference which cause~ an abort is
not completed while a reference causing a trap is completed. In fact,
when a memory reference causes a trap to occur, the trap does not
occur until the entire instructron has been completed. Aborts are used
to catch "missing page faults," prevent illegal access, etc.; traps are
used as an aid in gathering memory management information. -

In the context of access· control the term "write" is used to indicate
the action of any instruction which modifies the contents of any ad­
dressable word. "Write" is synonymous with what is usually called a
"store" or 'modify" in many computer systems.

The modes of access control are as follows:

000 non-resident abort all accesses

001 read-only abort on write attempt memory man-
agement trap on read

010 read-only abort on write attempt

011 unused abort all accesses-reserved for future
use

100 read/write memory management trap upon com-
pletion of a read or write

101 read/write memory management trap upon com-
pletion of a write

110 read/write no system trap/abort action

111 unused abort all accesses-reserved for future
use

It should be noted that the use of I Space provides the user with a
further form of protection, execute only.

Access information Bits
A Bit (bit 7)-This bit is used by software to determine whether or not
anyacccesses to this page met the trap condition specified by the
Access Control Field (ACF). (A = 1 is Affirmative) The A Bit is used in
the process of gathering memory management statistics.

10-7

W Bit (bit 6)-This bit indicates whether or not this page has been
modified (i.e. written into) since either the PAR or PDR was loaded.
(W = 1 is Affirmative) The W Bit is useful in applications which involve
disk swapping and memory overlays. It is used to determine which pages
have been modified and hence must be saved in their new form and
which pages have not been modified and can be simply overlaid.

Note that A and W bits are "reset" to "a" whenever either PAR or PDR
is modified (written into).

Expansion Direction (ED)
This one·bit field, located at bit 3 of the Page Descriptor Register (PDR),
specifies whether the page expands upward from relative zero (ED = 0)
or downwards toward relative zero (ED = 1). Relative zero, in this case,
is the PAF (Page Address Field). Expansion is done by changing the Page
Length Field. In expanding upwards, blocks with higher relative ad­
dresses are added; in expanding downwards, blocks with lower relative
addresses are added to the page. Upward expansion is usually used to
add more program space, while downward expansion is used to add
more stack space.

Page Length Field (PLF)
The seven-bit field, occupying bits 14-8 of the Page Descriptor Register
(PDR), specifies the number of blocks in the page. A page consists of at
I.east one and at most 128 blocks, and occupies contiguous core loca­
tions. If the page expands upwards, this field contains the length of the
page minus one (in blocks). If the page expands downwards, this field
contains 128 minus the length of the page (in blocks). -

A Length Error occurs when the Block Number (BN) of the virtual ad­
dress (VA) is greater than the Page Length Field (PLF), if the page ex­
pands upwards, or if the page expands downwards, when the BN is less
than the PLF.

Reserved Bits
Bits 15, 4 and 5 are reserved for future use, and are always 0_

10.6 FAULT RECOVERY REGISTERS
Aborts and traps generated by the Memory Management hardware are
vectored through Kernel virtual location 250, Status Registers #0, # I,
. # 2 and # 3 are used in order to differentiate an abort from a trap, deter­
mine why the abort or trap occurred, and allow for e:3sy program restart­
ing. Note that an abort or trap to a location which is itself an invalid
address will cause another abort or trao. Thus the Kernel program must
insure that Kernel Virtual Address 250' is mapped into a valid address,
otherwise a loop will occur which will require console intervention.

10.6.1 Status Register #0 (SRO) (status and error indicators)
SRO contains error flags, the page number whose reference caused the
abort, and various other status flags. The register is organized as shown
in Figure 10-8.

10-8

15 14 13 lZ 1 I 10 9

ABORT-NON
ABORT-PA
LENGTH ER ROR)

ABORT-RE
ACCESSVIO
TRAP-MEMOR
NOT USED
NOT USED
ENABlE M
MAINTENA
INSTRUCTI
PAGE MOD
PAGE ADDR
PAGE NUM
ENABLE RE

~~J AD ONLY)
LATION

Y MANAGEMENT

EMORY MANAGEMENT TRAP
NCE MODE
ON COMPLETED
E
E55 SPACE 110
BER
LOCATION

876543Z

'-------" '---....-----'

Figure 10-8 Format of. Status Register #0 (SRO)

o

Bits 15-12 are the error .flags. They may be considered to be in a
"priority queue" in that "flags to the right" are less significant and
should be ignored. That is, a "non·resident'·' fault service routine would
ignore length, access control, and memory management Hags. A "page
length" service routine would ignore access control and memory man­
agement faults, etc.·

Bits 15-13 when set (error conditions) cause Memory Management to
freeze the contents of bits 1-7 and Status Registers # 1 and #2. This
has been done to facilitate error recovery.

Bits 15-12 are enabled by a signal called "R.ELOC." "RELOC" is true
when an address is being relocated by the Memory Management unit.
Thi~ implies that either SRO, bit 0 is equal to 1 (relocation opefating) or
that SRO, bit 8 (MAINTENANCE) is equal to 1 and the memory refer·
ence is the final one of a destination calculation (maintenance! destina·
tion mode):

Note that Status Register #0 (SRO) bits 0, 8, and 9 can be set under
program control to provide meaningful control information. However,
information written into all other bits is not meaningful. Only that infor­
mation which is automatically written into these remaining bits as a
result of hardware actions is useful as a monitor of the status of the
Memory Management Unit. Setting bits 15-12 under program control will
not cause traps to occur; these bits howel:ler must be reset to 0 after an
abort or trap. has occurred in order to resume status monitoring.

Abort-Non-Resident
Bit 15 is the "Abort-Non· Resident" bit. It is set by attempting to
access a page with an Acc~ss Control Field (ACF) key equal to 0, 3, or 7.
It is·also set by attempting to use Memory" Relocation with a processor
mode of 2.

10-9

Abort-Page Length
Bit 14 is the "Abort Page Length" bit. It is set by attempting to access.
a location in a page with a block number (Virtual Address bits, 12-6)
that is outside the area authorized by the Page Length Field (PLF) of the
Page Oescriptor Register (POR) for that page. Bits 14 and 15 may be
set simultaneously by the same access attempt.

Abort-Read Only
Bit 13 is the "Abort-Read Only" bit. It is set by attempting to write
in a "Read-Only" page. "Read-Only" pages have access keys of 1 or 2.

Trap-Memory Management
Bit 12 is the 'Trap-Memory Management" bit_ It is set by a read opera­
tion which references a page with an Access Control Field (ACF) of 1 or
4, or by a .write operation to a page with an ACF key of 4 or 5.

Bits 11,10
Bits 11 and 10 are spare locations and are always equal to O. They are
unused and reserved for possible future expansion.

Enable Memory Management Traps
Bit 9 is the "Enable Memory Management Traps"bit. It can be set or
cleared by doing a direct write into SRO_ If bit 9 is 0, no Memory Man­
agement traps will occur. The A and W bits will, however, continue to
log potential Memory Management Traps. When bit 9 is set to I, the
next "potential" Memory Management trap will cause a trap, vectored
through Kernel Virtual Address 250.

Note that if an instruction which sets bit 9 to 0 (disable Memory Man·
agement Trap) causes a potential Memory Management trap in the
course of any of its memory references prior to the one actually chang­
ing SRO, then the trap will occur at the end of.theinstruction anyway.

Maintenance! Destination Mode
Bit 8 specifies Maintenance use of the Memory Management Unit. It is
provided for diagnostic purposes only and must not be used for other
purposes.

Instruction Completed
Bit 7 indicates that the current instruction has been completed. It will
be set to 0 during T bit, Parity, Odd Address, and Time Out traps and

. interrupts. This provides error handling routines with a way of determin·
ing whether the last instruction will have to be repeated in the course of
an error recovery attempt. Bit 7 is Read-Only (it cannot be written). It is
initialized to a 1. Note that EMT, TRAP, BPT; .and lOT do not set bit 7.

ProCessor Mode
Bits 5, 6 indicate the CPU mode (User! Supervisor! Kernel) associated
with the page causing the abort. (Kernel = 00, Supervisor = 01, User
= 11). If an illegal mode (10) is specified, bit 15 will .be set and an
abort will occur.

Page Address Space
Bit 4 indicates the type of address space (lor D) the Unit was in when
a fault occurred (0 = I Space, 1= o 'Space). It is used in conjunction
with bits 3-1, Page Number.

10·10

Page Number
Bits 3·1 contain the page number of a reference causing a Memory
Management fault. Note that pages, like blocks, are numbered from
o upwards.

Enable Relocation
Bit 0 is the "Enable Relocation" bit. When it is set to I, all addresses
are relocated by the unit. When bit 0 is set to 0 the Memory Management
Unit is inoperative and addresses are not relocated or protected.

10.6.2 Status Register #1 (SRI)
SRI records any autoincrement/ decrement of the general purpose reg·
isters, including explicit references through the PC: SRI is cleared at
the beginning of each instruction fetch. Whenever a general purpose
register is either autoincremented or autodecremented the register num·
J>er and the amount (in 2s complement notation) by which the register
was modified, is written into SRl.

The information contained in SRI is necessary to accomplish an effective
recovery from an error resulting in an abort. The low order byte is writ·
ten first and it ·is not possible for a POp·ll instruction to autoincrement/
decrement more than two general purpose registers per instruction be·
fore an "abort·causing" reference. Register· numbers are recorded
"MOD 8"; thus it is up to the software to determine which set of reg·
isters (User/Supervisor/ Kernel-General Set O/General Set 1) was modi·
fied, by determining the CPU and Register modes as contained in the
PS at the time of the abort. The6·bit displacement on R6(SP) that can
be caused by the MARK instruction cannot occur if the instruction
is aborted.

15 11 10 e 7 3 2 0

I I
AMOUNT CHANGED REGISTER AMOUNT CHANGED REGISTER
(2'S COMPLEMENT) NUMBER (2'S COMPLEMENT) NUMBER

Figure 10·9 Format of Status Register # 1 (SRI)

10;6.3 Status Register #2
. SR2 is loaded with'the 16·bit Virtual Address (VA) at the beginning of
each instruction fetch, or with the address Trap Vector at the beginning
of an interrupt, "T" Bit trap, Parity, Odd Address, and Timeout traps.
Note that SR2 does not get the Trap Vector on EMT, TRAP, BPT and lOT
instructions. SR2 is Read·Only; it can not be written. SR2 is the Virtual
Address Program. Counter.

10.6.4 Status Register #3
The Status Register #3 (SR3) enables or disables the use of the 0
space PAR's and POR's. When 0 space is disabled, all references use
the I space registers; when 0 space is enabled, both the I space and 0
space registers .are used. Bit 0 refers to the User's Registers, Bit Ito
the Supervisor's, and Bit.2 td the Kernel's. When the appropriate bits
are set 0 space is enabled; when clear, it is disabled. Bits 3·15 are
unused. On initialization this register is set to 0 and only I space is
in use.

10·11

15 3 2 - o

KERNEL ______ ---'1 1
SUPERVISOR -
USER~.--~------~

Figure 10-10 Format of Status Register #3 (SR3)

10.6.5 Instruction Back·~p/Restart Recovery
The process of "backing-up" and restarting a partially completed in­
struction involves:

1. Performing the appropriate memory management tasks to alleviate
the cause of the abort (e.g. loading a missing page,etc.)

2. Restoring the general purpose registers indicated in SRI to their
original contents at the start of the instruction by subtracting- the
"modify value" specified in SRI.

3. Restoring the PC to the "abort-time" PC by loading R7 with the con­
tents of SR2, which contains the value of the Virtual PC at the time
the "abort-generating" instruction was fetched.

Note that this back·upl restart procedure assumes that the general pur­
pose register used in the program segment will not be used by the
abort recovery routine. Tilis is automatically the case if the recovery
program uses a different general register set.

10.6.6 Clearing Status Registers Following Trapl Abort
At the end of a fault service routine bits 15-12 of. SRO must be cleared
(set to 0) to resume error checking. On the next memory reference fol­
lowing the clearing of these bits, the various Status Registers will re­
sume monitoring the status. of the addressing operations (SR2), will
be loa.ded with the next instruction address, SSRI will store register
change information and SRO will log Memory Management Status
information.

10.7 EXAMPLES
10.7.1 Normal Usage
The Memory Management Unit provides a very general purpose memory
rnanagement tool. It can be used in a manner as.simple or complete as
desired. It can be anything from a simple memorY expansion· deviCe to
a very complete memory management facility.

The variety of possible and meaningful ways to -utilize the facilities of­
fered by the Memory Management Unit means that both single-user and
multi-programming syste~s have complete freedom to make whatever
memory management decisions best suit their individual needs. Although
a knowledge of what most types of computer systems seek to achieve
may indicate that certain methods of utilizing the Memory -Management
Unit will be more common than others, there is no limit to the ways to­
use these facilities.

10·12

In most normal applications, it is assumed that the control over the
actual memory page assignments an~ their protection resides in a super­
visory type program which would operate at the nucleus of a CPU's
executive (Kernel mode)_ It is further assumed that this Kernel mode
program would set access keys in such a way as to protect itself from
willful or accidental destruction by other Supervisor mode or User mode
programs_ The facilities are also· provided s'uch that the nucleus can
dynamically assign memory pages of varying sizes in response to sys­
tem needs_
10.7.2 Typical Memory Page
When the Memory Management Unit is enabled, the Kernel mode pro­
gram, a Supervisor mode program and a User mode program each hav§:!
eight active pages described by the appropriate Page Address Registers
and Page Descriptor Registers for data, and eight, for instructions. Each
segment is made up of from 1 to 128 blocks and is pointed to by the
Page Address Field (PAF) of the corresponding Page Address Register
(PAR) is illustrated in Figure 10-11_

VA 157777. 331777

VA 144777 316777

L-------------'~>A 312000

Figure 10-11 Typical Memory Page

The memory segment illustrated in Figure 10-11 has the following attri­
butes:

1. Page Length: 40 blocks.

2. Virtual Address Range: 140000-144777.

3_ Physical Address Range: 312(,)00-316777_

10-13

4. No trapped access has been made to this page.

5. Nothing has been modified (Le. written) in this page.

6. Read-Only PrQtection.

7. Upward Expansion.

These attributes were determined according to the following scheme:

1. Page Address Register (PARS) and Page Descriptor Register (PDR6)
were selected by the Active Page Field (APF) of the Virtual Address
(VA). (Bits 15-13 of the VA = 6 a.)

2. The initial address of the page was determined from the Page Ad­
dress Field (PAF) of APR6 (312000 = 3120, blocks x 40, (32'0)
words per block x 2 bytes per word).

Note that the PAR which contains the PAF constitutes what is often
referred to as a base register containing a base address or a reloca­
tion register containing relocation constant.

3. The page length (478 + 1 = 40'0 blocks) was determined from the
Page Length Field (PlF) contained in Page Descriptor Register PDR6.
Any attempts to reference beyond these 40, 0 blocks in this page
will cause a "Page length Error," which will result in an abort, vec­
tored through Kernel Virtual Address 250.

4. The Physical Addresses were constructed according to the scheme
illustrated in Figure 10-4.

5. The Access bit (A-bit) of PDR6 indicates that no trapped access has
been made to this page (A bit = 0). When an illegal or trapped refer·
ence, (i.e. a violation of the Protection Mode specified by the Access
Control Field (ACF) for this page), or a trapped reference (i.e. Read
in this case), occurs, the A-bit will be set to a 1.

6. The Written bit (W-bit) indicates that no locations in this page have
been modified (i.e. written). If an attempt is made to modify any
location in this particular page, an Access Control Violation Abort
will occur. If this page were involved in a disk swapping or memory
overlay scheme, the W-bit would be used to determine whether
it had been modified and thus required saving before overlay.

7 This page is Read-Only protected; i.e. no locations in this page may
be modified. In addition, a memory management trap will occur upon
completion of a read access: The mode of protection was specified
by the Access Control Field (ACF) of PDR6. .

8. The direction of expansion is upward (ED = 0). If more blocks are
required. in this segment, they will be added by assigning blocks
with higher relative addresses.

Note that the various attributes which describe this page can all be
determined under software control. The parameters describing the pagE.
are all loaded into the appropriate Page Address Register (PAR) and Page
Descriptor Register (PDR) under program control. In a normal applica-

10-14

tion it is assumed that the particular page which itself contains these
registers would· be assignee to the control of a supervisory type program
operating in Kernel mode.

10.7.3 Non·Consecutive Memory Pages
it should be noted at this point that although th'e correspondence be·
tween Virtual Addresses (VA) and PAR/PDR pairs is such that higher
VAs have higher PAR/PDR's, this does not mean that higher Virtual
Addresses (VA) necessarily correspond to higher Physical Addresses

. {PA). It is quite simple to set up the Page Address Fields (PAF) of the
PAR's in such a way that higher Virtual Address blocks may be located
in lower Physical Address blocks as illustrated in. Figure 10·12 .

PAR7

PARI

PAR0

VA 037777 ...-------.IPA 407777

OZCIOO'g"L-----.... PA 450000

r-------.IPA 560777

oooooc~-----.JPA 541000

Figure 10·12 Non·Consecutive Memory Pages

Note that although a single memory page must consist of a block
of contiguous locations, memory pages as macro units do not have to
be located in consecutive Physical Address (PA) locations. It also should
be realized that the assignment of memory pages is not limited to con·
secutive non·overlapping Physical Address (PA) locations.

10.7.4 Stack Memory Pages
When constructing PDP·ll/55, 11/45 programs it is often desirable to
isolate all program variables from "pure code" (Le. program instructions)
by placing them on a register indexed stack. These variables.can then be
"pushed" or "popped" from the stack area as needed (see Chapter 3,
Addressing Mode!!). Since all PDP-11 Family stacks expand by adding

10-15

locations with lower addresses, when.a memory page which contains
"stacked" variables needs more room it must "expand down," i.e.
add blocks with lower relative addresses to the current page. This mode
of expansion is specified by setting the Expansion Direction (ED) bit
of the appropriate Page Descriptor Register (PDR) to a 1. Figure '10·13.
illustrates atypical "stack" memory page. This page will have the fol·
lowing parameters:

PAR6: PAF = 3120

PDR6: PLF = 175 8 or 125'0 (128'0.3)

I ED = 1

A = 0 or 1

W = 0 or 1

ACF = nnn (to be determined by programmer as the need dictates).

note: the A, W bits' will normally be set by hardware.

-VA 157777 r--------..,F'A331777

VA 157500 331500

VA 140000 312000

PAR6
~""""'=-'T"'T-'

PORS

Figure 10·13 Typical Stack Memory Page

In this case the stack begins 128 blocks above the relative ongln of
this memory page and extends downward for a length of three blocks.
A "PAGE LENGTH ERROR" abort vectored through Kernel Virtual Ad·
dress (VA) 250 will be generated by the hardware' when an atte'mpt is
made' to reference any location ·,below the assigned area, i.e. when" the
Block Number"(BN) from the Virtual Address (VA) is less than the Page _
Length Field (PLF) ofthe appropriate Page Descriptor Register (f'DR).

10·16

10.8 TRANSPARENCY
It should be clear at this p'oint that in a multiprogramming application
it is possible for memory pages to be allocated in such a way that a
particular program seems to have a complete 32K basic PDp·11/55,
11/45. memory configuration. Using Relocation,a Kernel Mode super­
visory-type program can easily perform all memory management tasks
in a manner entirely transparent to a' Supervisor or User mode program.
In effect, a PDP-11/55, 11/45 System can utilize its resources to provide
maximum throughput and response to a variety of users each of which
seems to have a powerful system "all to himself."

10.9 INSTRUCTIONS
Four additional instructions are used with the PDP-11/55, 11/45 Memory
Management unit.

MTPI
MTPD
MFPI
MFPD

move to previous instruction space
move to previous data space
move from previous instruction space
move from previous data space

MFPI

Move from Previous Instruction Space 0065SS

15

Operation:.

Condition Codes:

Descripti~n: .

(temp) +- (src)
i(SP) +-(temp)

6 5

s I S

o

N: set if the source <0; otherwise cleared
Z: set if the source '=0; otherwise cleared
V: cleared
C: unaffected

This instruction is provided in order to allow inter­
address space communication when thePDPll/.45
is using the Memory Management unit. The address
of the source operand is determined in the current
address space. That is, the address is determiried
using the SP and memory pages determined by
PS<15:14>_ ThE; addresl? itself is then. used in the
previous I space (as determined by PS<13:12>
to get the source operand. This operand is then
pushed onto the current R6 stack.

10-18

MFPD

Move from Previous Data Space 1065SS

15

Operation:

Condition Codes:

Description:

(temp) (-(src)
HSP) (-(temp)

6 5

N: set if the source <0; otherwise cleared
Z: set if the 'source =0; otherwise cleared
V: cleared
C: unaffected

o

This instruction is provided. in order to allow inter·
address space communication when the PDP·11/45·
is using the Memory Management unit. The address
of the source operand is determined in the current
address space. That is, the address is determined
using the SP and memory pages determined by
PS<15:14>- The address itself is then used in the
previous 0 space (as determined by PS<13:12>
to get the source operand. This operand is then
pushed on to the current R6 stack.

10-19

MTPI

Move to Previous Instruction Space 006600

15

Operation:

Condition Codes:

Description:

MTPD

(temp) +-(SPH
(dst) +-(temp)

6 5

N: set if the source <0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared'
C: unaffected

o

The address of the destination operand is deter­
mined in the current address space. MTPI then
pops a word off the current stack and stores that
word in the destination address in the previous
mode's I space (bits 13, 12 of PS).

Move to Previous Data Space 106600

15

Operation:

Condition Codes:

Description:

(temp) +-(SPH
(dst) +-(temp)

6 5 o

N: set if the source <0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared
C: unaffected

The address of the destination operand is deter­
mined in the current address space as in MTPI.
MTPO then pops a word off the current stack and
stores that word in the destination address in the
previous mode's 0 space.

10-20

· 10.10 MEMORY MANAGEMENT UNIT-REGISTER MAP

REGISTER

Status Register #O(SRO)
Status Register # 1(SR1)
Status Register # 2(SR2)
Status Register # 3(SR3)

User I Space Descriptor Register (UISDRO)

User I Space Descriptor Register (UISDR7)

User D Space Descriptor Register (UDSDRO)

User D Space Descriptor Register (UDSDR7)

User I Space Address Register "(UISARO)

User I Space Address Register (UISAR7)

User 0 Space Address Register (UDSARO)

User D Space Addre:s Register (UDSAR7)

Supervisor I Space Descriptor Register (SISDRO)

Supervisor I Space Descriptor Register (SISDR7)

Supervisor D Space Descriptor Register (SDSDRO)

Supervisor D Space Descriptor Register (SDSDR7)

Supervisor I Space Address Register (SISARO)

Supervisor I Space Address Register (SISAR7)

10-21

ADDRESS

777572
777574
777576
772516

777600

777616

777620

777636

777640

777656

777660

777676

772200

772216

,'72226

772236

772240

772256

REGISTER

Supervisor D Space Address Register (SDSARO)

Supervisor e Space Address Register (SeSDR7)

\<ernel I Space Descriptor Register (KISDRO)

Kernel I Space Descriptor Register (KIDSR7)

Kernel D Space Descriptor Register (KDSDRO)

Kerner 0 Space Descriptor Register (KDSDR7)

Kernel I Space Address Register (KISARO)

Kernel I Space Address Register (KISAR7)

Kernel D. Space Address Register (KDSARO)

Kernel 0 Space Address Register (KDSAR7)

10-22

ADDRESS

772260

772276

772300

772316

772320

772336

772340

772356

772360

772376

CHAPTER 11

FLOATING PROCESSOR

11.1 INTRODUCTION
The PDP-ll Famiiy has two floating point processors available-The
FPll-A and the FPll-C. The FPll-A Floatinq Point Processor (FPP) is
used with the PDP-ll/34 Computer and the ~FPil-C :-ioating P~int Pro­
cessor is used with the PDP-11/45 and PDP·11/55 Computers.

Both floating point processors perform a!I floating point arithmetic:
operations and convert data between integer and floating point formats.

The floating point hardware provides a time and money-saving alter­
native to the use of software floating point. routines. its use can result
in many orders of magnitude improvement in the execution of arith­
metic operations.

The features of the unit are:

.. Overlapped operation with central processor (FPll-C onlJr)

• High speed-FPll-C; medium speed--FPll-A

• Single and double precision (32 or 64 bit) floating point modes

• Flexible addressing modes

• Six 64-bit floating point accumulators

• Error recovery aids

11_2 OPERATION
The Floating Point Processors are an integral part of the Central Proces­
sor. It operates using similar address moces, and the same memory
management facilities provided by the Memory Management Option, as
the Central Processor. Floating Point Processor instructions can refer­
ence the floating point accumulators, the Central Processor's general
registers, or any location in memory.

The FPll-C overlapped operation with the Centra! Processor is imple­
mented as follows. When an FPll-C floating point instruction is fetched
from memory, the FPll-C will execute that instruction in parallel with the
CPU continuing with its instruction sequence. The CPU is delayed a very
short period of time during the FPll-C instruction Fetch operation, and
then is free to proceed independently of the FpH-c. The interaction be­
tween the two processors is automatic, and a program can take full ad­
vantage of the parallel operation of the two processors by intermixing
Floating Point Processor and Central Processor instructions.

Interaction' between Floating Point Processor and Centra! Processo~ in­
structions is automatically taken care of by the hardware. When al1
FPll-C Instruction is encountered in a program, the machine first ini­
tiates Floating Point. handshaking and calculates the address of the
operand. It then checks the status of the Floating Point Processor. If the
FPP is "busy", the CPU will wait until it is "done" before continuing

11-1

execution of the program. As an example, consider the following se­
quence of instructions:

LDD(R3)+,AC3

ADDLP: LDD(R3)+,ACO

MUL AC3,ACO

ADDD ACO,ACI

SOB R5,ADDLP

STCDI ACI @R4

;Pick up constant operand and place it
in AC3

;Load ACO with next value in table

;and multiply by constant in AC3

;and add the result into ACI

;check to see whether done

;done, convert double to integer and
store

In the above example, the FPI1-C Floating Point Processor will execute
the first three instructions. After the "ADDD" is fetched into the FPll-C,
the CPU will execute the "SOB", calculate the effective address of the
STCDI instruction, and then wait for the FPll-C to be "done" with the
"ADDD" before continuing past the STcbl instruction.

As can be seen from this example, autoincrement and autodecrement
addressing automatically adds or subtracts the correct amount to the
contents of the register, depending on the modes represented by the
instruction.

11.3 ARCHITECTURE
The Floating Point Processor contains scratch registers, a Floating Ex­
ception Address pOinter (FEA), a Program Counter, a set of Status and
Error Registers, and six general purpose accumulators (ACO-AC5).

Each accumulator is interpreted to be 32 or 64 bits long depending on
the instruction and the status of the Floating Point Processor. For 32-bit
instruction only the left-most 32 bits are used, while the remaining 32
bits remain unaffected.

r----~~----------I
ACCUMULATOR
~

32 BIT
ACCUMULATOR
~

ACQI
f---f------J

ACl
f---f------J

AC2
f---f------J FLOATING POINT

AC3 I ---l---r--~ ARITHMETIC I- AND
AC4 CONVERSION

AC5
1---+---1

SCRATCH

UNIT

UNIBUS

MEMORY

Figure 11.1 Floating Point Processor

11-2

The six Floating Point Accumulators are used in numeric calculations
and interaccumulator data transfers; the first four (ACO-AC3) are also
used for all data transfers between the FPP and the General Registers or
Memory_

11.4 FLOATING POINT DATA FORMATS
Mathematically, a floating point number may be defined as having the
form (2*':'K),'f, where K is an integer and f is a fraction. For a non­
vanishing number, K and f are uniquely determined by imposing the
condition Ih:S; f < 1. The fractional part, f, of the number is then
said to be norma·lized. For the number zero, f must be assigned the
value 0, and the value of K is indeterminate.

The FPP floating point data formats are derived from this mathematical
representation for floating point numbers. Two types of floating pOint
data are provided. In single precision, or Floating Mode, the word is '32
bits long. In double precision, or Double Mode, the word is 64 bits long.
Sign magnitude notation is used.

11.4.1 Non-vanishing Floating Point Numbers
The fractional part f is assumed normalized, so that its most significant
bit must be 1. This 1 is the "hidden" bit: it is not stored in the data
word, but of course the hardware restores it before carrying out arith­
metic operations. The Floating and Double modes reserve 23 and 55
bits, respectively, for f, which with the hidden bit, imply effective word
lengths of 24 bits and 56 bits for arithmetic operations.

Eight bits are reserved for the storage of the exponent K in excess 128
(200 octal) notation (Le. as K + 200 octal). Thus exponents from-128
to +127 could be represented bv 0 to 377 (octal), or 0 to 255 (deci­
mal). For reasons given below, .. biased EXP of 0 (true exponent of
-200 octal), is reserved for floating point zero. Thus exponents are
restricted to the range -127 to +127 inclusive (-177 to 177 octal) or,
in excess 200 (octal) notation, 1 to 377 (octal)_ -

The remaining bit of the floating point word is the sign bit.

11.4.2 Floating Point Zero
Because of the hidden bit," the fractional part is not available to dis­
tinguish between zero and non-vanishing numbers whose fractional part
is exactly 1/2. Therefore the FP11 reserves a biased exponent of 0 for
this purpose. And any floating point number with biased exponent of 0
either traps or is treated as if it were an exact 0 in arithmetic operations.
An exact zero is "represented by a word, whose bits are all O's.An arith­
metic operation for which the resulting true exponent exceeds 177
(octal) is regarded as producing a floating overflow; if the true expo­
nent is less than -177 (octalythe operation is regarded as producing a
floating underflow. A biased exponent of 0 can thus arise from arith­
metic operations as a special case of overflow (true exponent = 400
octal), or as a special case of underflow (true exponent = O). (Recall
that only eight bits are reserved for the biased exponent.) The fractional
part of results obtained from such overflows and underflows is correct.

11.4.3 The Undefined Variable
The undefined variable is defined to be any bit pattern with a sign bit of

11-3

one and a biased exponent of zero. The term "undefined variable" is
used, for historical reasons, to indicate that these bit patterns are not
assigned a corresponding floating point arithmetic value. Note that the
undefined variable is frequently referred to as "-0" elsewhere in this
chapter.

A design objective of the FPll·A and FPll·C· was to assure that the un·
defined variable would not be stored as the result of any floating point
operation in a program run with the overflow and underflow interrupts
disabled. This is achieved by storing an exact zero on overflow or under·
flow, if the corresponding interrupt is disabled. This feature together with
an ability to detect a reference to the undefined variable (implemented
by the FIUV bit discussed in the next section) is intended to provide the
user with a debugging aid: if the presence of -0 occurs, it did not result
from a previous floating point arithmetic instruction.

11.4.4 Floating Point Data

Floating point data is stored in words of memqry as illustrated below.

F Format, single precision

151 EXP I FRA 1--1 , , , , CTION
! , , ,

1514 7 6 0 15 o

D Format, double precision

1,:1"
EXP I FR I-I, I I

7 6 0 15

LI TI I-I , ,

AC "il ! , !

ON , I , , ,
15 0 15 0

S = .Sign of Fraction

EXP = Exponent in excess 200 notation, restricted to 1 to 377 octal for
non·vanishing numbers.

FRACTION = 23 bits in FFormat, 55 bits in D Format, + one hidden bit
(normalization). The binary radix point is to the left.

The FPP provides for conversion of Floating Point to Integer Format and
vice·versa. The processor recognizes single precision integer (I) and
double precision integer long (L) numbers, which are stored in stan·
dard two's complement form:

Format:

[51, , NUMBER
, ! ! , !

:514 o

11·4

L Format:

lsi NUM I I BER
I I I I 1 I I I

1514 0 15

where

S = Sign of Number

NUMBER = 15 bits in I Format, 31 bits in, L Format.

11.5 FLOATING POINT UNIT STATUS REGISTER (FPS register)
This register provides (1) mode and interrupt control for the floating
point unit, and '(2) conditions resulting from the execution of the pre­
vious instruction_

Four bits of the FPS register control the modes of operation:

Single/Double: Floating pOint numbers can be either single or
double precision.

,Long/Short: Integer numbers can be 16 bits or 32 bits.

Chop/Round: The result of a floating point operation can be either
chopped or rounded. The term "chop" is used instead of "trun­
cate" in order to ai/oid confusion with truncation of series used

. in approximations for function subroutines.

Normal/Maintenance: a special maintenance mode is available in
,the FP11..c only.

The FPS register contains an error flag and four condition codes (5 bits):

Carry, overflow, zero, and negative, which are equivalent to the CPU
condition codes.

The floating point processor (FPP) recognizes seven "floating point
exceptions":

detection of the presence of the undefined variable in memory
floating overflow
floating' underflow
failure of floating to integer conversion
maintenance trap (FPll-C only)
attempt to divide byzero
illegal floating OP code

For the first five of these exceptions, bits in the FPS register are
available to individually enable or disable interrupts. An interrupt
on the occurrence of either of the last two exceptions can be dis­
abled only by setting a bit which disables interrupts on all seven of
the exceptions, as a group. '

Ofthe fourteen bits described above, five are set by the FPP as part
of the output of a floating point instruction: the error flag and condi­
tion codes. Any of the mode and interrupt control bits (except the
FP11-C, FMM bit) may b'e set by the user; the LDFS instruction is
available for this purpose. These fourteen bits are stored, in the FPS
register as follows:

11-5

BIT

15

14

15 13

NAME

Floating Error (FER)

Interrupt Disable (FID)

98765 432 o

DESCRIPTION

The FER bit is set by the FPP if

1. division by zero occurs
2. illegal OP code occurs
3. anyone of the remaining

occurs and the correspond·
ing interrupt is enabled.

Note that the above action is in·
dependent of whether the FID
bit (next item) is set or clear.

Note also that the FPP never reo
sets the FER bit. Once the FER
bit is set by the FPP, it can be
cleared only by an LDFPS in·
struction (or by the RESET in·
struction described in Section
4.7). This means that the FER
bit is up to date only if the most
recent floating point instruction
produced a floating point .excep·
ception.

If the FID bit is set, all floating
point interrupts are disabled.
Note that if an individual inter·
rupt is simultaneously enabled,
only the interrupt is inhibited; all
other actions associated with the
individual interrupt enabled take
place.

NOTES
1. The FID bit is primarily a maintenance fea·

ture. It should normally be clear. In particu­
lar, it must be clear if one wishes to assure
that storage of -0 by the FPP is always
accompanied by an interrupt.

2. Through the res·t of this chapter, it is as­
sumed that the FlO bit is clear in all discus·
sions involving overflow, underflow, occur­
rence of -0, and integer conversion errors.

13 Not Used

12 Not used

11-6

BIT NAME

11 Interrupt on Undefined
Variable (FIUV)

DESCRIPTION

An interrupt occurs if FIUV is
set and a -0 is obtained from
memory as an operand of ADD,
SUB, MUL, DIV, CMP, MOD,
NEG, ABS, TST or any LOAD in­
struction_ The interrupt occurs
before execution except on NEG
and ABS instructions_ For these
instructions the interrupt occurs
after execution. When FIUV is re­
set, -0 can be loaded and used
in any FPP operation. Note that
the interrupt is not activated by
the presence of -0 in an AC
operand of an arithmetic instruc­
tion: in particular, trap on -0
never occurs in Mode O.

The FPP will not store a result
of -0 without the simultaneous
occurrence of an interrupt (See
Section 11.4).

10 Interrupt on Underflow (FlU) When the FlU bit is set, Floating
Underflow will cause an interrupt.
The fractional part of the result
of the operation causing the in­
terrupt will be correct. The biased
exponent will be too large by 400
(octal), except for the speCial
case of 0, which is correct. An
exception is discussed in the de­
tailed description of the LDEXP
instruction.
If the FlU bit is reset and if un­
derflow occurs, no interrupt oc­
curs and the result is set to
exact O.

9 Interrupt on Overflow (FIV) When the FIV bit is set, Floating
Overflow will cause an interrupt.
The fractional part of the result
of the operation causing the
overflow will be correct. The bi­
ased -exponent will be too small
by 400 (octal).

11-7

If the FIV bit is reset, and over­
flow occurs, there is no inter­
rupt. The FPP returns exact O.

BIT NAME

8 Interrupt on Integer
Conversion Error (FIC)

7

6

5

Floating Double Precision
Mode (FD)

Floating Long Integer
Mode (FL)

Floating Chop Mode (FT)

4 Floating Maintenance Mode
(FMM) (FPll-C only)

11-8

DESCRIPTION

Special cases of overflow are
discussed in the detailed des­
criptions of the MOD and LDEXP
instructions.

When the Fie bit is set, and a
conversion to integer instruction
fails, an interrupt -will occur. If

the interrupt occurs, the destina­
tionis set to 0, and all other
registers are left untouched.

If the FIC bit is reset, the result
of the operation will be the same
as detailed above, but no inter­
rupt will occurr.

The conversion -instruction fails
if it generates an integer with
more bits than can fit in the
short or long integer-word speci·
fied by tile FL bit (see "6 below).

Determines the precision that _ is
used for floating 'point calcula­
tions. When set, double precision
is assumed; when reset, single
precision is used.

Active in conversion between in­
teger and floating pOint format.
When set, the integer format as­
sumed is double precision two's
complement (i.e. 32 bits). When
reset, the integer format is as­
sumed to be single precision
two's complement (i.e. 16 bits).

When bit FT is set, - the result
of any arithmetic operation .is
chopped (or truncated)_

When reset, the result is rounde~1.

See Section 11.8 for a discussion
of -the chopping and rounding
()perations.

This code is a maintenance fea­
ture. Refer to the Maintenance
Manual for the details of its oper­
ation. The FMM bit can be set
only in Kernel Mode.

BIT NAME

3 Floating Negative (FN)

2 Floating Zero (FZ)

1 Floating Overflow (FV)

0 Floating Carry (FC)

DESCRIPTION

FN is set if the result of the last
operation was negative, othervv'ise
it is reset.

FZ is set if the result of the last
operation was zero: otilerwise it
is reset.

FV is set if the last operation re­
sulted in an exponent overflow;
otherwise it is reset.

FC is set if the last operation
resulted in a carry of the most
significant bit. This can only oc­
cur in floating or double to inte­
ger conversions.

11.6 FLOATING EXCEPTION CODE AND ADDRESS REGISTERS
One interrupt vector is assigned to take care of all floating point excep­
tions (location 244). The seven possible errors are coded in'the four bit
FEC (F-:loating Exception Code) register as follows:

2 Floating OP code error
4 Floating divide by zero
6 Floating (or double) to integer conversion error
8 Floating 'overflow

10 Floating underflow
12 Floating undefined variable
14 Maintenance trap

The address of the instruction producing the exception is stored in the
FEA (Floating Exception Address) register.

The FEC and PEA registers are updated only when one of the following
occurs:

1. divide by zero
2. illegal OP code
3. any of the other five exceptions with the corresponding interrupt

is enabled.

NOTE
1. If one of the last five exceptions occurs with

the corresponding interrupt disabled, the PEC
and PEA are not updated.

2. Inhibition of interrupts by the FlO bit does not
inhibit updating of the FEC and FEA, if an
exception occurs.

3. The FEC and FEA do not get updated if no
exception occurs. Thls means that the STST
(store status) instruction will return current
information only if the most recent floating
point iristruction produced an exception.

4. Unlike the FPS register, no instructions are
provided for storage into the FEC and FEA
registers.

11-9

11.7 FLOATING POINT PROCESSOR INSTRUCTION ADDRESSING
Floating Point Processor instructions use the same type of addressing as
the Central Processor instructions. A source or destination operand is
specified by designating one of eight addressing modes and one of
eight central processor general registers to be used in the specified
mode. The modes of addressing are the same as those of the central
processor except for mode O. In mode 0 the operand is located in the
designated Floating Point Processor Accumulator, rather than in a Cen·
tral processor general register. The modes of addressing:

0= Direct Accumulator

1 ::.:::: Deferred

2 = Auto·increment

3 = Auto·increment deferred

4 = Auto-decrement

5 = Auto-decrement deferred

5 = Indexed

7 = Indexed deferred

Autoincrement and autodecrement operate on increments and decre­
ments of 4 for F Format and 10, for D Format.

In mode 0, the user can make use of all six FPP accumulators (ACO­
AC5) as his source or destination. In all other modes, which involve
transfer of data from memory or the general register, the user is re­
stricted to the first four FPP accumulators (ACO-AC3).

In immediate addressing (Mode 2, R7) only 15 bits are loaded or stored.

11.8 ACCURACY
General comments on the accuracy of the FPP are presented here. The
descriptions of the individual instructions include the accuracy at whi'ch
they operate. An instruction or operation is regarded as "exact" if the
result is identical to an infinite precision calculation involving the same
operands. The a priori accuracy of the operands is thus ignored. All
arithmetic instructions treat an operand whose biased exponent is·O as
an exact 0 (unless FIUV is enabled and the operand is-O, in which case.
an interrupt occurs)_ For all arithmetic operations, except DIV, a zero
operand implies that th~ instruction is exact. The same statement holds
for DIV if the zero operand is the dividend. But if it is the divisor, division
is undefined and an interrupt occurs. .

For non-vanishing floating point operands, the fractional part is binary
norl1,1alized. It contains 24 bits or 55 bits for Floating Mode and Double
Mode, respectively. The internal hardware registers contain 50 bits for
processing the fractional parts of the operands, of which the high order
bit is reserved for arithmetic overflow. Therefore there are, internally, 35
guard bits for Floating Mode and 3 guard bits for Double Mode arithmetic
operations. For ADD, SUB, MUL, and DIV, two guard bits are necessary
and. sufficient: to guarantee return. of: a.-chopped or. rounded result iden­
tical-tothecorresponding infinite,precision .operation chopped or rounded
to the specified word length. Thus,' with two guard bits,a chopped result

11-10

has an error bound of one least significant bit (LSB); a rounded result
has an error bound of 1/2 LSB. (For a radix otlTer than 2, replace "bit"
with "digit" in the two preceding sentences to get the corresponding
statements on accuracy.) These error bounds are realized for most in­
structions. For the addition of operands of opposite sign or for the sub­
traction of operands of the same sign in rounded double precision, the
error bound is 3/4 LSB (FPll-C) or 33/64 (FPlI-A), which is slightly
larger than the 1/2 LSB error bound for all other rounded operations.

The error bound for the FPll-C differs from the FPll-A since the FPlI-C
carries three guard bits while the FPlI-A carries seven guard bits.

In the rest of this chapter an arithmetic result is called exact if no non­
vanishing bits would be lost by chopping. The first bit !ost in chopping
is referred to as the "rounding"bit. The value of a rounded result is
related to the chopped result as ,follows:

1. if the rounding bit is one, the rounded result is the chopped result
incremented by an LSB (least significant bit).

2. if the rounding bit is zero, the rounded and chopped results are
identical.

It follows that
1. If the result is exact

rounded value = chopped value = exact value
2. If the result is not exact, its magnitude

(a) is always decreased by chopping
(b) is decreased by rounding if the rounding bit is zero
(c) is increased by rounding if the rounding bit is one.

Occurrence of .floating point overflow and underflow is an error condition:
the result of the calculation cannot be correctly stored because the expo­
nent is too big to fit into the 8 bits reserved for it. However, the internal
hardware has produced the correct answer. For the case of underflow
replacement of the correct answer by zero is a reasonable resolution of
the problem for many applications. This is done on both the FPlI-A and
FPlI-C if the underflow interrupt is disabled. The error iricurred by this
action is an absolute rather than a relative error; it is bounded (in abso­
lute value) by 2** (-128). There is no such simple· resolution for the
case of overflow. The action taken, if the overflow interrupt is disabled,
is described under FIV (bit 9) of Section 1.1.5.
The FIV and FlU bits (of the floating point status word) provide the user
with an opportunity to implement his own fix up of an overflow or
underflow condition. If such a condition occurs and the corresponding
interrupt is enabled, the hardware stores the fractiorial part and the low
eight bits of the biased exponent. The interrupt will take place and the
user can identify the cause by examination of the FV (floating overflow)
bit or the FEC (floating exception) register. The reader can readily verify
that (for the standard arithmetic operations ADD, SUB, MUL, and DlV)
the biased exponent returned by the hardware bec.rs the following
relation to the correct exponent generated by the hardware:
1. on overflow: it is too small by 400 octal
2. on underflow: if the biased exponent is 0 it is correct. If it is ·not 0,

it is .too large by 400. octal.' .
Thus, with the interrupt enabled, enough information is available to
determine the' correct answer. The user may, for example, rescale .his

lI-ll

variables (via STEXP and LDEXP) to continue his calculation. Note that
the accuracy of the fra~tional part is unaffected by the occurrence of
underflow or overflow.

11.9 FLOATING POINT INSTRUCTIONS
Each instruction that references a floating point number can operate on
either floating ,or double precision numbers depending on the state of
the FD mode bit. Similarly, there is a mode bit FL that determines

. whether a 32·bit integer (FL = I) or a I6·bit integer (FL = O}is used iri'
conversion between integer and floating point representation. FSRC and
FDST use floating pOint addressing modes; SRC and DST use CPU
addressing Modes.

In the detailed descriptions of the floating point instructions; the oper·
ations of the FPll-A and FPll-C are identical, except where explicitly
stated to the contrary.

Floating Point Instruction Format
Double Operand Adressing

oc FOC

15 12 11

Single Operand Addressing

OC

.'

FOC
I

AC IFSRC,FDST,SRC,DST
. ' , I I

8 7 6 5 o

FSRC, FDST, SRC, DST
! I I ,

15 12 1 I 6 5 0

OC = Op Code,= 17
FOC = Floating Op Code
AC = Accumulator
FSRC, FDST use FPP Address Modes
SRC, DST use CPU Address Modes

General Definitions:
XL = largest fraction that can be represented:

1-2**(-24), FD = 0; single precision
1-2**(-56}, FD = I}; double precision.

XLL = smallest number that is not identically zero = 2**(-I28}·-2**
- (-I27}}*(I/2)

XUL = largest number that can be represented = 2**(I27}*XL
JL = largest integer that can be represented:

2**(I5}-I if FL = 0 2**(3I}-1 if FL = 1
ABS (address) = absolute value of (addresS) .
EXP (address) = biased exponent of (address)
.LT. = "less than"
.LE. = "less than or equal"
.GT. = "greater than"
.GE. = "greater than or equal" .
LSB = least significant bit

11-12

ABSF
ABSD

Make Absolute Floating/Double 1706FDST

15 la II

Operation·:·

Condition Codes:

Description:
Interrupts:

Accuracy:

a I
6 5.

FDST
I

If (FDST) '< 0, FDST ~- (FDST).

If EXP(FDST) = O! FDST ~ exact O.
For all other cases, FDST +- (FDST).

FC +-0.
FV +- O.
FZ +- 1 if EXP(fDST) = 0, else FZ+- O.
FN +-0 .

I.
a

Set the contents of FDST to its absolute value.

If. FIUV is set; trap on -0 occurs after·execution.

Overflow and 'underflow cannot occur.

These instructions are exact.·

ADDF
ADDD

Add Floating/Double 172ACFSRC

l' I 1
15

Operation; .

Condition Codes:

Description:

1 I a I I ,'0 I a I AC

la II 8 7 6 5 a

Let SUM = (AC) + (FSRC):
If underflow occurs and FlU is not enabled,
AC +- exact '0.

If overflow occurs and FIV is not enabled,
AC +- exact O.
For 'all other cases, AC.+- SUM.

FC +- O.
FV +- 1 If overflow occurs,else FV +- O.
FZ +- 1 If (AC) = 0, else FZ+- O.
FN +- 1 If (AC) <0, else FN +- O.

Add the contents ·ot FSRC"to the .contents of AC.
The addition is carried out in single or double
precision and is rounded. or chopped in accor·
dance with the values of the FD and FT bits in
the FPS register. The result is stored in AC
except for:

11·13

Interrupts:

Accuracy:

Special Comment:

eFee

Overflow with interrupt disabled.
Underflow with interrupt disabled.'

For these exceptional cases, an exact 0 is
stored in AC.

If FIUV is enabled, trap on ~O in FSRC occurs
before 'execution.

If overflow or underflow occurs and if the cor·
responding interrupt is enabled, the trap occurs
with the faulty result in AC. The fractional parts
are' correctly stored. The exponent part is too
large by 400 octal for underflow, except for the
special case of 0, which is correct.

Errors due to overflow and underflow are de·
scribed above. If neither occurs, then: For
oppositely signed operands with exponent dif·
.ferences of 0 or I, the answer returned is exact
if a loss of significance of one or more bits
occurs. Note that these are the only cases for
which loss of significance of more tWan one bit
can occ\lf. For' all other cases the result is
inexact with error bounds of

1 LSB in chopping mode with either single or
double precision.

3/4 LSB (FP11·C) or 33/64 LSB (FP11·A) in
rounding mode with double precision.

The undefined variable -0 can occur only in con·
junction with overflow or underflow. It will be
stored in AC only if the corresponding inter·
rupt is enabled.

Copy Floating Condition Codes 170000

I" ' I 0 I 0 0 I 0 0 0 0 0 0 0 0 0 I
15 12 11 6 5 O.

Operation:

D,escription:

C ~FC
V ~FV
Z ~FZ
N ~FN

Copy FPP Condition Codes into the CPU's Con·
dition Codes.

11·14

CLRF
CLRD

Clear Floating/Double .. 1704FDST . .
11 I 1

'5 '2 "

Operation:
Condition Codes:

Description: .

Interrupts:

Accuracy:

o 01

FDST ~ exact O.
FC ~O.
FV ~O.·
FZ ~ 1
FN ~O.

6 II

FDST
I

o

Set FDST to O. Set FZ condition code and clear
other condition code bits •.

No interrupts will occur. Neither overflow nor
underflow can occur.

These instructions are exact.

CMPF
CMPD

Compare Floating/Double 173 (AC + 4) FSRC

L.,I ,..,.'...JIL...--I---...I....,.".' ..JI'-,°--...ll_' ..J1_1 ..J1_1 ..J.... ... ~ ~_..JI_·-L_....LI'-,. _Fs..1r_c--L_..l-...JL~
15 12 11 8 . 7 6 5 0

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy: •

Special Comment:

(FSRC) .~ (AC)

FC ~ O.
FV ~O.
FZ ~ 1 If (FSRC) - (AC) = 0, else FZ ~ 0,
FN ~ 1 If (FSRC)- (AC) < 0, else FN ~ O.

Compare the contents of FSRC' with the accu-.
mulator. Set the appropriate floating point ·con­
dition codes. FSRC and the accumulator are left
unchanged (see special comment below).

If FIUV is enabled, trap on -0 occurs before
execution.

These instructions are exact.

An operand which has a biased exponent of zero
. ·;jstreated asiL itc.were irue zero. If . Doth oper­

ands ': have. biased '·exponentsof'zero,· :the::ac­
cumulator.gets.a tnie.:zero.and, hence, maybe
modified.

11-15

DIVF
DIVD

Divide Floating/Double 174(AC + 4)FSRC

15

Operation:

Condition Codes:

Description:

Interrupts:

1 11 0 01 I AC FSRC
I

12 11 876 5 o

If EXP(FSRC) = 0, AC ~ (AC): instruction is
aborted.

If EXP(AC) = 0, AC ~ exact 0.

For all other cases, let QUaT = (AC)/(FSRC):

If underflow occurs and FlU is not enabled
AC ~ exact 0.

If overflow occurs and FIV is not enabled, AC ~
exact 0.

For all remaining cases AC ~ QUaT.

FC ~o.
FV ~ 1 if overflow occurs, else FV ~ 0.
FZ ~ 1 if EXP(AC) = 0, else FZ ~ 0.
FN ~ 1 if (AC) < 0, else FN ~ 0.

If either operand has a biased exponent of. 0, it
is treated as an exact 0. For FSRC this would
imply division by zero; in this case the instruc·
tion is aborted, the FEC register is set to 4 and
an interrupt occurs. Otherwise the quotient is
developed to single or double precision with
enough guard bits for correct rounding. The
quotient is rounded or chopped in accordance
with the values of the FD and FT bits in the FPS
register. The result is stored in AC except for:

Overflow with interrupt disabled.

Underflow with interrupt disabled.

For these exceptional cases an exact ° is stored
in accumulator.

If FIUV is enabled, trap on -0 in FSRC occurs
before execution.

If EXP(FSRC) = ° interrupt traps on attempt to
divide by 0.

If overflow or underflow occurs and if the cor·
responding interrupt is enabled, the trap occurs
withthe fau"lty results in AC. The fractional parts
are correctly stored. The exponent part is too
small by 400 octal for overflow. It is too large by
400 octal for underflow, except for the special
case of 0, which is correct.

11-16

Accuracy:

Special Comment:

Errors due to overflow, underflow and division
by 0 are described above. If none of these
occurs, the error in the quotient will be bounded
by 1 LSB in chopping mode and by 1/2 LSB in
rounding motle.

The undefined variable -0 can occur only in con·
junction with overflow or underflow. It will be
stored in AC only if the corresponding interrupt is
enabled.

LDCDF
LDCFD

Load and convert from Double to Float·
ing or from Floating to Double

177(AC + 4)FSRC

11 I 1
15 12 11

Operation:

Condition Codes:

Description:

Interrupts:

8 7 6 5 o

If EXP(FSRC) = 0, AC ~ exact O.

If FD =1, FT = 0, FIV = 0 and rounding
causes overflow, AC ~ exact O.

In all other cases AC ~ C" (FSRC), where C,y
specifies conversion from floating mode x to
floating mode y.
x = 0, y = F if FD = 0 (single)
x = F, Y = 0 if FD = 1 (double).

FC ~O.
FV ~ 1 if conversion produces overflow, else
FV ~O.
FZ ~ 1 if (AC) = 0, else FZ ~ O.
FN ~ 1 if (AC) < 0, else FN ~ o.
If the current mode is Floating Mode (FD = 0)
the source is assumed to be a double·precision
number and is converted to single precision. If
the Floating Chop bit (FT) is set, the number
is chopped, otherwise the number is rounded.

If the current mode is Double Mode (FD = I),
the source is· assumed to be a single·precision

. number, and is loaded left justified in the AC.
The lower half of the AC is cleared.

If FIUV is enabled, trap on -0 occurs before
execution.

Overflow cannot occur for LDCFD.

A trap occurs if FIV is enabled, and if rounding
with LDCDF causes ovei'flow; AC ~ overflowed
result of conversion. This result must be +0 or
-0.

Underflo'll{ cannot occur.

11-17

Accuracy:

Special Comment:

LDCIF
LDCIO
LDCLF
LDCLD'

LDCFD is an exact -instruction. Except for over·
flow, _ described above, _ LDCDF incurs an error
bounded by one LSB in chopping.mode, and by
1/2 LSB in rounding mode.

If (FSRC) = -0, the FZ and FN bits are both set
regardless of the condition of FIUV.

Load and Convert Integer or Long Integer to
Floating or Double Precision

177ACSRC

11 I 1

15 12 11

. Operation:

Condition Codes:

Description:

Interrupts:

o I AC

8 7 6 5

AC ~C;, (SRC), where

SRC
I

o

C;, specifies conversion from integer mode
j to floating mode x;

j = I if FL = 0, j = L if FL = I,
x =F if FD = 0, x = D if FD = 1.

FC ~O.
FV ~O.
FZ ~ 1 If (AC) =0, else FZ ~ O.
FN ~ 11f (AC) < 0, else FN ~O.

Conversion is performed 'on the contents of SRC
from a 2's complement integer with precision i
to a floating point number of precision x. Note
that j and x are determined by the state of the
mode bits FL andFD: J =.1 or L, and X = F or D.

If a- 32·bit' Integer is specified (L mode) and
(SRC) has an addressing mode of 0,- or immedi·
ate addressing mode is specified, the 16 bits of
the source register are left justified and the
remaining 16 bits loaded . with zeroes before
conversion.

In the case of LDCLF the fractional part of the
floating pOint representation is chopped or
rounded to 24 bits for FT = 1· and 0 respec·
tively.

None; SRC is not floating point, so tr,ap on -0
cannot occur. .

Overflow and underflow cannot occur.

11·18

Accuracy:

Load Exponent

15 12 11

Operation:

Condition Codes:

Description:

LDCIF, LDCID, LDCLD are exact instructions.
The error incurred by LDCLF is bounded by one
LSB in chopping mode, and by }j2 LSB in
rounding mode.

lDEXP

176(AC + 4)SRC

o 1 I AC

8 7 6 5

SRC
I

o

NOTE: 177 and 200, appearing below, are octal
numbers.

If -200 < SRC < 200, EXP(AC) ~(SRC) + 200
and the rest of AC is unchanged.

If SRC > 177 and FIV is enabled,
EXP(AC)~(SRC) <6:0> on FPllC,
EXP(AC) '~«SRC) + 200) <7:0> on
FPll-A.

If SRC > 177 and FIV is disabled
AC ~ exact O.

If SRC < -177 and FlU is disabled,
AC ~exact 0_

If SRC < -177 and FlU is enabled,

FC ~O.

EXP(AC) ~(SRC) <6:0> on FPll-C,
EXP(AC) ~«SRC) + 200) <7:0> on
FPll-A.

FV ~ 1 if (SRC) > 177, else FV ~ O.
FZ ~ 1 if EXP(AC) = 0, else FZ ~ o.
FN ~ 1 if (AC) < 0, else FN ~ O.

Change AC so that its unbiased exponent_
(SRC). That is, convert (SRC) from 2's comple­
ment to excess 200 notation, and insert in the
EXP field of AC. This is a meaningful operation
only if ABS(SRC).LE.l77.

If SRC > 177, result is treated as overflow. If
SRC < -177, result is treated as underflow.
Note that the FPll·Cand FP11-A: do not treat
these abnormal conditions in exactly the same
way.

11-19

Interrupts:

Accuracy:

LDF
LDD'

No trap on -,-0 inAC occurs, even if FIUV en­
abled.

If SRC > 177 and FIV enabled, trap on overflow
will occur.

If SRC < ,-177 and FiUenabled, trap on under­
flow will occur.

The answers returned by the FPll-C and FPll-A
differ for overflow and underflow conditions.

Errors due to :overflow .and underflow are de­
scribed above. IfEXP(AC) = 0 and SRC =/= -:-200,

'(AC) changes from a floating pOint number
treated as 0 by all floating arithmetic operations
to a non-zero number. This is because the inser­
tion of the "hidden" bit in the hardware imple­
mentation of arithmetic instructions is triggered
by anon-val1ishing value of EXP.

For all other cases, LDEXP implements exactly
the transformati,on of a floating point number
(2*oK)Of into (2**(SRC»*f where 1/2 ~LE.ABS
(f).LT.l.

Load Floating/Double 172(AC +4)FSRC

11 I I I, I I 0 ,1 0 I t I . AC

15 12 11 8 7 6 5 o

Operation:
Condition Codes:

Description:

-Interrupts:

Accuracy:

Special Comment:

AC ~ (FSRC)

FC ~o
FV ~o
FZ ~ 1 if (AC) == 0, else FZ ~ o.
FN ~ 1 if (AC) < 0, else FN +- O.
'Load Single or Double Precision Number into
-Accumulator.

-I.f 'FIUV is enabled, trap on -'0 occurs before AC
is loaded. Neither, overflow, nor underflow can
occur.
These instructions permit use of -0 in a subse­
quent floating pOintinstruction'if FIUV is not
enabled and (FSRC) = -0. If (FSRC) = -0 the
FZand FN bits are both set regardless of the
condition of FJUV.

LDFPS

Load FPPs Program Status 1701SRC

11 I 1
15 12 11

Operation:

Description:

00 0 , , I

FPS ~(SRC)

o

6 5

Load FPP's Status from SRC.

SRC
I

o

Special Comment: On the FPll-C, bits 13 and 12 are ignored. Bit
4 can be set if the CPU is in kernel mode.

On the FPll·A, the·- FPS is loaded with the
source. The user is cautioned not to use bits 12
and 13 (in both FPll-e and FPll-A) or bit 4
(in the FPll-A) for a special purpose since these
bits· are not recoverable by the STFPS instruc­
tion.

..MODF
MODO

Multiply and Integerize Floating/Double 171(AC+ 4}FSRC

1 I 0 _ 01 I 1 ,- AC -\
I'! _ I , _ _,! _

FSRC
I

15

Description
and Operation

1211 8765 o

This instruction ~generates the product of its
two floating point operands, separates the prod­
uct into integer and fractional parts and then

- stores one or both parts as· floating point num­
bers.

Let PROD::::: (AC}*(FSRC) so that in:

F.loating pOint: ABS(PROD} = (2**K) "'f

where :1/2.LE.f;LT.1 'and
EXP(PROD} = (200 +. K) octal

.. Fixed Point binary:' PROD = N + .g, with

N =.INT(PROD) = the integer
part of PROD

and

g == PROD - INT(PROD) == the: fractional
. part of PROD with O.LE.g.LT.1

Both Nand g. have the same sign as PROD:
They are: returned. as follows:

11·21

If AC is an even-numbered accumulator (0 or
2), N is stored in AC + 1 (lor 3), and g is
stored in AC.

IfAC is an odd-numbered accumulator, N is
not stored, and g is stored in AC.

The two statements above can be combined as
follows: N is returned to ACv1 and g is returned
to AC, where v means .OR.

Five speCial cases occur, as indicated in the
foll()wing 'formal description with L = 24 for
Floating Mode and L = 56 for Double Mode:

1. If PROD overflows and FIV enabled:

ACv1 +- N, chopped to L bits, AC +- exact 0

Note that EXP(N) is too small by 400 (octal),
and that +-0 can get stored in ACvl.

If FIV is not enabled: ACv1 +- exact 0, AC +­
, exact 0, and ,-,-0 will never be stored.

2. If 2**L.LE.ABS(PROD) and' no overflow

ACv1 +- N, chopped to L bits, AC +- exact 0

The sign and EXP of N are' correct, but low
order bit information, such as parity, is lost.

3. If l.LE.ABS(PROD).L T.2*<'L

ACv1 +- N, AC +- g

The integer part N' is exact. The fractional part
g is n.ormalized, and chopped or rounded in
accordance with FT. Rounding may cause a re­
turn of ±unity for the fractional part. For L
= 24, the error in g is bounded by 1 LSB in
chopping mode and by 1/2 LSB in rounding
mode. For L = 56, the error in g increases from
the above 'limits as ABS(N) increases above 3
because only 59 bits of PROD are generated:

if2**p.LE.ABS(N).LT.2**(p + I), withp > 2,
the low order p - 2 bits, of g may be in error.

4. If ABS (PROD). L T.l and no underflow:

ACv1 +- exact 0 AC +- g

There is no error in the integer part. The error in
the fractional part is bounded by 1 LSB in chop­
ping mode and 1/2 LSB in rounding mode.
Rounding may cause'a return of ±unity for the
fractional part.

5. If PROD underflows and FlU enabled:

ACv1 +- exact 0 AC +- g

11-22

Condition Codes:

"Interrupts:

Accuracy: "

" Applications:

Errors are as in case 4,except that EXP(AC) will"
be too large by 400 octal (except if EXP = 0, it
is correct). Interrupt will occur and -0 can be
stored in AC.

IF FlU is not enabled, ACv1 ~ exact 0 and AC
~exact O. For this case the error in the frac·
tional part is less than 2**(-128).
FC ~O.
FV"~ lit. PROD overflows, else FV ~ O.

F'Z ~ 1 if (AC) = 0, else FZ ~o.
FN ~ if (AC) < 0, elseFN ~ O.

If FIUV is enabled, trap on "'-0 in FSRC will' oc-
o cur before execution.

Overflow and ",Underflow are' discussed above.

Discussed above.

1. 'Binary to decimal conversion of a proper
" fraction: the following algorithm, using MOD, will

generate decimal digits 0(1), 0(2) ... from left
to right:

Initialize: I ~ 0
X ~ number to be converted;
ABS(X) < 1

While X#O do
Begin PROD ~ X*10;

I ~ I + 1;
0(1) ~ INT(PROD);
X ~ PROD - INT(PROD);
END;

This algorithm is exact; it is case 3 in the de­
scription: the number of non-vanishing bits in
the fractional part of PROD never exceeds L,
and hence neither chopping nor rounding can
introduce error.

2. To reduce the argument of a" trigonometric
function.

ARG*2/PI = N + g. The low two bits of N
identify the quadrant, and g is the argument
reduced to the first quadrant. The accuracy of
N +g is limited to L bits because of the factor
2/PI. The accuracy of the reduced argument
thus depends on the size of N.

3. To "evaluate the exponential function e**x,
obtain

x*(log e base 2) = N + g.
Then e**x = (2**N)"(e**(g*ln 2»

The reduced argument is g*ln2 < 1 and the
factor 2**N is an exact power of 2, which may
be scaled in at the end via STEXP, ADD N to

11-23

MULF
MULD

EXP and LDEXP, The accuracy of N + g is lim­
ited to L bits because of the factor (log e base
2)_ The accuracy of the reduced argument thus
depends on the size of N_

Multiply Floating/Double 171ACFSRC

15

Operation:

Condition Codes:

Description:

Interrupts:

1 I 0 0 o I AC

12 11 B 7 6 5 o

Let PROD = (AC),"(FSRC)

If underflow occurs and FlU is not enabled,
AC <--- exact O.

If overflow occurs and FIV is not enabled,
AC <--- exact 0_

For all other cases AC <---PROD

FC <---0.
FV <--- 1 if overflow occurs, else FV <--- O.
FZ <--- 1 if (AC) = 0, else FZ <--- O.
FN <--- 1 if (AC) < 0, else FN <--- O.

If the biased exponent of either operand is zero,
(AC) <--- exact O. For all other cases PROD is
generated to 48 bits for Floating Mode and 59
bits for Double Mode. The product is rounded or
chopped for FT = 0 and 1, respectively, and is
stored in AC except for

Overflow with interrupt disabled.

Underflow with interrupt disabled.

For these exceptional cases, an exact 0 is stored
in accumulator.

If FIUV is enabled, trap on -0 occurs before
execution. .

If overflow or underflow occurs and if the cor­
responding interrupt is enabled, the trap occurs
with the faulty results in AC. The fractional parts
are correctly stored; The exponent part is too
small by 400 octal for overflow. It is too large by
400 otcal for underflow, except for' the special
case of 0, which is correct.

11-24

Accuracy:

Special Comment:

Errors due to overflow and underflow are de·
scribed above. If neither occurs, the error
incurred is bounded by 1 LSB in chopping mode
and 1/2 LSB in rounding mode.

The undefined variable -0 can occur only in
conjunction with overflow or underflow. It will be
stored in AC only if corresponding interrupt is
enabled.

NEGF
NEGD

Negate Floating/ Double 1707FDST

15 12 11

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Set Floating Mode

1.1 1 I 0

15

Operation:

Description:

FDST
I

6 5 o

FDST <--- - (FDST) if EXP(FDST) =I- 0, else FDST (­
exact O.

FC <---0.
FV O.
FZ <--- 1 If EXP(FDST) = 0, else FZ <--- O.
FN <--- 1 If (FDST) < 0, else FN <--- O.

Negate single or double Precision number, store
result in same location. (FDST)

If FIUV is enabled, trap on -0 occurs after
execution.

Neither overflow nor underflow can occur.

These instructions are exact.

SETF

170001

o o o o o o o o 10 o
o

FD <---0

Set the FPP in Si ngle Precision Mode.

11·25

SETD

Set Floating Double Mode 170011

11 I 1100000000 o 0 1 I
15 o

Operation: FD ~ 1

Descri ption: Set the FPP in Double Precision Mode.

SETI

Set Integer Mode 170002

11000000 o 0 o I 0

15 o

Operation: FL ~O

Description: Set the FPP for Integer Data.

SETL

Set Long Integer Mode 170012

11 I 1 1100000000 o
, ~3

01

15 12 11 o

Operatio'n: FL ~1

Description: Set.the FPP for Long Integer Data.

11·26

STCFD
STCDF

Store and convert from Floating to
Double or from Double to Floating

176ACFDST

15 12 11

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

o I 0 AC

876 5 o

If EXP(AC) = 0, FDST ~ exact 0

If FD = 1" FT = 0, FIV = 0 and rounding causes
overflow, FDST ~ exact o.
In all other cases, FDST ~ C,,(AC), where

C" specifies conversion from floating mode x
to floating mode y;

x = F and y = D if FD = 0,
x = D and y = F if FD = l.

FC .~O.
FV ~ 1 If conversion produces overflow else
FV ~.
FZ ~ 1 If (AC) = 0, else FZ ~ O.
FN ~ 1 If (AC) < 0, else FN ~ O.

If the current mode is single precision, the Ac­
cumulator is stored left justified in FDST and
the lower half is cleared. If the current mode
is double precision,· the contents of the accumu­
lator are. converted to single precision, chopped
or rounded depending on the state of FT, and
stored in FDST.

Trap on..:.O will not occur even if FIUV is en·
abled because FSRC is an accumulator.

Underflow cannot occur.

Overflow cannot occur for STCFD.

A trap occurs .if FIV is enabled, and if rounding
with STCDF causes overflow; FDST ~ overflowed
result of conversion. This result must be +0
or -0.

STCFD is an exact instruction. Except for over­
flow, described above, STCDF incurs an error
bounded by 1 LSB in chopping mode and 1/2
LSB in rounding mode.

1127

STCFI
STCFL
STCDI
STCDL

Store and Convert from Floating or
Double to Integer or Long Integer

175(AC + 4)DST

LI_l-LI_I-L __ L-l-LI_I~!_0-L!_l_IL-'-LI __ A~C __ L-~ __ L-D~l~T~ __ ~~1
15 12 If 8 7 6 5 o

Operation:

Condition Codes:

Descriptiom

Interrupts:

Accuracy:

DST ~ C,; (AC) if - JL - 1 < C,; (AC) < JL+ I,
else DST ~ 0.. where C,;. specifies con­
version from floating mode x to . integer
mode~j;

j = I ifFL= 0, j = L if FL = 1,
x = F if FD = 0, x= 0 if FD = 1.

JLis the largest integer:

2'~*15 - 1 for FL= °
2'~*31 - 1 for FL = 1

C ~ FC ~ ° if -JL- 1 < C,; (AC) < JL + 1, .
else FC ~ 1.
V ~FV ~o.
Z ~ FZ ':"1 if (DST) = 0, else FZ ~o;
N ~ FN .~ 1 if (DST) < 0, else FN ~ 0.
Conversion is performed from a floating point
representation of the data in the accumulator to
an integer representation.
If the conversion is toa 32-bit word(L mode) .
and an address mode of 0, or immediate adress­
ing mode, is specified, only the most significant
16 bits are stored in the destination register.
If the operation is out of the integer range se·
lected by FL, FC is set to 1 and the contents
of the DST are set to 0.
Numbers to be converted are always chopped
(rather than rounded) before conversion. This
is true even when the Chop Mode bit, FT is .
cleared in the Floating Point Status Register.
These instructions do not· interrupt if FIUV· is
enabled, because the -0, if, present, is in AC,
not in memory.
If FICenabled; trap on conversion failure will
occur.
These instructions store the integer part of the
floating· point operand, which may not be the
integer most closely approximating the operand;
They are exact if the integer part is within the
range implied by FL.

1128

STEXP
Stor.e Exponent

II I I AC ,

175ACDST

DST
I

15 12 II 8 7 6 5 o

Operation: .

Condition Codes:'

Description:

Interrupts: .

Accuracy:

STF
STD

DST'~ EXP(AC)~200 octal

C ~ FC.~O:
V ~FV ~O.
Z ~ FZ ~ 1 if (DST) =.0, else FZ.+-O.
N ~ FN ~ 1 if (DST) < 0, else'FN ~O ..

Convert accumulator's exponent from excess
200 octal notation. to 2's complement;:and 'store
result in DST.· .

This instruction will not trap on·-O.

Overflow and ·underflow cannot occur.'
This instruction is always exact.

Store Floating/Double 174ACFDST·

~1_1~1_1~~_I~I_I~,_O~,_O~I~o~r_A~C_'~~~_F~?_T~. __ ~I
15 12 '11 8 7 6 5 0

Operation:' .

Condition Codes: .

Description: .

InterrL.'pts:

. Accuracy:

SpecialCornment:

FDST ~ (AC)

FC ~FC
FV ~FV
FZ ~FZ
FN ~FN

Store Single or Double Precision Number from
Accumulator.

These instructions do not interrupt if FIUV en·
abled, because. the -O,if present, is in AC, .not
in memory. Neith.er overflow nor underflow can.
occur.

These'instructions are exact .

These instructions permit storage of'a -0 in
memory from AC. Note,. however, that theFPP
can store a:.0 in an AC only if it occurs in
conjunction with overflow or underflow; and ·if
the corresponding interrupt is enabled. Thus, the
user has an opportunity to clear the ·-0, ifhe'
wishes;

11·29

STFPS
Store FPPs Program Status 17020ST

11 1 1 1 , 1 10 , 0 , 0 I 0' o I OST
I I

15 12 11

Operation:

Description:

Speciai Comment:

Store FPPs Status

11 I 1
15 12 11

Operation:

Description:

6 5 o

OST ~ (FPS)

Store FPP's Status in OST.

On the FP11-C and FPll-A. bits 13 and 12 are
loaded with zeroes. AI! other bits (with the ex­
ception of bit 4 in the FP11-A) represents the
corresponding bits in the FPS. The FPll-A has
no maintenance mode so bit 4 is loaded with
zero.

OST ~ (FEC)
OST + 2 ~(FEA)

6 5

'OST
I

STST

17030S'I"

o

Store the FEC .and then, the FPP's Exception
Address Pointer in OST and OST + 2.

NOTES:- 1. If destination mode specifies a
general register or immediate ad­
dressing. only the FEC is saved.

2. The' information in these registers
is current only if the most recently
executed floating point instruction
(refer to Section 11.6) caused a
floating point exception.'

11·30

SUBF
SUBD

Subtract Floating/Double 173ACFSRC

l' I 1
AC FSRC

I
15 12 11 8 7 6 5 o

Operation:

Condition, Codes: .

Description:

Interrupts:

Accuracy:

Let DIFF =(AC)- (FSRC):

If underflow occurs and FIU·.is not enabled."
AC 0(- exact O.

If overflow occurs and FIV is not enabled.
AC 0(- exact O •.

For all other cases, AC 0(- DIFF.

FC 0(- O.
FV 0(- 1 If overflow occurs, else FV 0(- O.
FZ 0(- 1 If (AC) = O. else FZ 0(- O.
FN 0(- 11f (AC) < 0, else FN 0(- O.

Subtract the contents of FSRC from the contents
of AC. The subtraction. is carriedoutJn single or
double precision and ,is rOl:lnded;.or:chopped in
accordance with the values of the FD and FT
bits in the FPS register. The result is stored in .
AC except for:

OverflOW with' interrupt disabled.

Underflow with interrupt disabled.

For these exceptional cases, an, exact 0 ·is stored
in AC. .

If FIUV is. enabled. trap.on -'-C in FSRC occurs
before executioFi.

If overflow or· underflow occurs and if theo.cor·
responding interrupt is enabl.ed, the trap occurs·
with the faulty results.in AC. The fractional parts
are correctly stored. The exponent part is. too' "
small by 400 octal for overflow. It is too large,
by 400 octal for underflow, except for- the special
case of 0, which is correct ..

Errors due to overflow and underflow are de·
scribed above; If neither occurs, then: For .like·
signed operands with exponent difference~ of ,0

. or 1, the answer returned is exact if 'i. loss of
significance of more than one'bit can occur.Note .

. that these are the .. only .casesfor ·whichloss of
,sigriificallce,.of :mor"E! than one,bitcan occur. for

. all ':other'Cases' the 'result' is . inexact· with ·error
bounds of

11,31

Special Comment:

T5TF
T5TO

1 LSB in chopping mode with either single or
double precision.

1/2 LSB in rounding mode with single precision.

3/4 LSB (FP11·C) or 33/64 LSB (FP11·A) in
rounding mode with double precision.

The undefined variable ,-0, can occur only in
conjunction with overflow or underflow. It will
be stored in the AC only if the corresponding
interrupt is enabled.

Test Floating/Double 1705FDST

15

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

1 1'0 , 0 ! 0 I 1 0 1 I
12 11 6 5

FDST ~ (FDST)

FC ~O.
FV ~O.

FDST
I

FZ ~ 1 if 'EXP(FDSn = 0, else FZ ~ O.
FN ~ 1 if (FDST) < 0, else FN ~ O.

o

Set the Floating Point Processor's Condition
, Codes according to the contents of FDST.

If FIUV is set, trap.on-O occurs after execution

Overflow and underflow,cannot occur.

These instructions are exact.

1132

APPENDIX A

UNIBUS ADDRESSES

A.1 INTERRUPT & TRAP VECTORS
000 (reserved)
004 CPU errors
010 Illegal & reserved instructions
014 BPT, breakpoint trap .
020 lOT, input/output trap
024 Power Fail
030 EMT, emulator trap
034 TRAP instruction

040 System software
044 System software
050 System software
054 System software

060 Console Terminal,keyboard/reader
064 Console Terminal, printer/punch
070 PC11, paper tape reader
074 PC11, paper tape punch
100 KW11·L, line clock
104 KW11·P, programmable clock
110
114 Memory system errors
120 XV Plotter
124 DRP-B DMA interface; (DA11-B)
130 ADo!, A/D subsystem
134 AFC11, analog subsystem
140 AA11, display
144 AAll, light pen
150
154
160
164

170 User reserved
174 User reserved

200 LPll/LS11, line printer
204 RS04/RFll, fixed head disk
210 RCll, disk
214 TCll, DECtape
220 RKll, disk
224 TU16/TMll, magnetic tape
230 CDll/CMll/CRll, card reader
234 UDC11, digital control subsystem; ICS/ICR11
240 PIRQ, Program Interrupt Request (11/55,11/45)

A-I.

244 Floating Point Error
250 Memory Management
254 RP04/RPll disk pack
260 TAll, cassette
264 RXll,floppy disk

270 User reserved
274 User reserved

300 (start 'of floating vectors)

A.2 FLOATING VECTORS
There is a floating vector convention used for communications (and
other) devices that interface with the PDP-ll_ These vector addresses
are assigned in order starting at 300 and proceeding upwards to 777.
The following Table shows the assigned sequence. It can be seen that
the first vector address, 300, is assigned to the first DCll in the system.
If another DCll is used, it would then be assigned vector address 310,
etc. When the vector addresses have been assigned for all the DCll's
(up to a maximum of 32), addresses are then assigned consecutively
to each unit of the next highest-ranked device (KLlI or DPll or DMll,
etc.), then to the other devices in accordance with the priority ranking.

Priority Ranking for Floating Vectors

(starting at 300 and proceeding upwards)

Rank, Device Vector Size Max No.
(in octal)

1 DCll (10). 32
2 KLll, DLll-A, DLlI-B 10 16
3 DPll 10 32
4 DMll-A 10 16
5 ONll 4 16
6 DMll-BB (DHll-AD or DVll) 4 16
7 DRll-A 10'~ 32
8 DRll-C 10* 32
9 PA611 Reader 4'~ 16

10 PA611 Punch 4* 16
11 Onl 10'~ 8
12 DXll 10* 4
13 DLll·C, DLll·D, DLll·E 10 31
14 DJll 10 16
15 DHll 10 16
16 GT40 10 1
17 LPSll 30" 1
18 DQll 10 16
19 KWll·W 10 1
20 DUll 10 16
21 DUpil 10
22 DVll 10

'-The first vector for the first device of this type must always be on a (10),
boundary.

A·2

A.a FLOATING ADDRESSES
There is a floating address convention used for communications (and
other) devices interfacing with the PDp·ll. These addresses are as·
signed in order starting at 760 010 and proceeding upwards to 763 776.

Floating addresses are assigned in the following sequence:

Rank Device

1 OJ 11
2 DHll
3 DQll
4 DUll

A.4 DEVICE ADDRESSES

777 776 Processor Status word (PS)
777 774 Stack Limit (SL)

·777772 Program Interrupt Request (PIR)
777770 Microprogram Break

777766 CPU Error
777 764 System I/O
777762 Upper SiZe} .
777760 Lower Size . System Size

777 756
777754
777 752 Hit/Miss
777750 Maintenance

777746 Control
777 744 Memory System Error
777 742 High Error Address
777 740 Low Error Address

777717 User R6 (SP)
777716 Supervisor R6 (SP)
777715 R5
777714 R4
777 713 } G,n,,,, , ""''''''. R3
777712 Set 1 R2
777711 R1
777 710 RO

777707 R7 (PC)
717706 Kernel R6 (SP)
777 705

}
R5

777 704 R4
777703 General registers, R3
777702 Set 0 R2
777701 R1
777700 RO

A·3

777676 }
User Data PAR, reg 0-7

777660
777656

777640
777636

777620
.777616

777 600
777 576
777574
777572

777570

777 566
777 564.
777 562
777560

777556
777554
77T552
777550

777·546
. 777516
:777514
.777 512
777510

777506
777504
777502
"177 500

;777476
-777474

777472
777470
777466
777464

·777462
777460

777456
777454
·777452
777450
777446
777444

·777442
777440

} User Instruction PAR, reg 0-7

} User Data PDR, reg 9-7

} User Instruction PDR, reg 0-7

(MMR2)
Memory Mgt regs, (MMRl)

(MMRO)

Console Switch &. Display· Register

printer/punch data
. Console Terminal, printer/punch status

· keyboard/reader data
· :keyboard/reader :status

· punch data (PPB)
PCll/PRll, : -punch status (PPS)

reader· data (PRB)
reader status (PRS)

KWll-·L, clock.status(LKS)

· printer data
LPll/LS11/LVll,printer status

TAll,' cassette data (TADB)
cassette status (TACS)

look ahead· (ADS)
. maintenance (MA)

disk data (DBR)
RFll, .. adrsext error (DAE)

disk address (DAR)
current mem adrs (CMA)

. word count (WC)
. disk status (DCS)

. disk data (RCDS)
maintenance (RCMN)
current address (RCCA)

RC11,· word count (RCWC)
disk status (RCCS)
error status (RCER)
disk address (RCDA)
look ahead (RCLA)

A-4

'777436
777434
777432
777.430
777426
777424
777422
777420

777 416
777414
777 412
777 410
777406
777404

.777402
777400

DTll,. bus switch

#8
#7
#6
#5
#4
#3
#2
#1

disk data (RKDB)
maintenance
disk address (RKDA)

RKll, . bus address (RKSA)
word count (RKWC)
disk status (RKCS)
errorr (RKER)
drive status (RKDS)

777376 "}
DC .. 14"0

777 360

777356
777 354
777352
777350
777346
777344
777342
777 340

777336 }

777 320

777 316
777314

. 777312
777 310
.777306
777304
777,302

·777 300

777166
777164
777162
777160

776776
776774
776772
776770

776766
776764
776762
776760
'776756
776754

-DECtape oata (TCDD
TCll,.·bus address (TCSA)

word count (TCWC)
command (TCCM)
DECtape status' (TCST)

KEll-A, EAE #2

arithmetic shift
logical.shift
normalize

KEll-A, EAE.' #1, steIJ count/status register
multiply
multiplier quotient
accumulator
divide

I
CRll/ data (CRS2) comp I
CMIl, data (CRSl)· I CDll,

status (CRS) I

ADOl •. A/D data (ADOS)
A/r> status (ADCS)

register 4 (DAC4)
register 3 (DAC3)
register 2 (DAC2)

AAll # I, register 1 (DAC1)
D/A status (CSR)

, ,A-5

data (CDDS)
cur adrs (CDSA)
col count (CDCC)
status .(CDSn

776752 cont & status # 3
(RPCS3)

776750 bus adrs ext (RPBAE) I
776746 ECC pattern (RPEC2)
776744 . ECC position (RPECl) I
776742 error # 3 (RPER3)
776740 error # 2 (RPER2) I
776736 cur cylinder (RPCC) I silo memory (SILO)
776734 desired cyl (RPDC) cyl adrs (SUCA)
776732 offset (RPOF) I maint 3 (RPM3)
776730 serial number (RPSN) maint 2 (RPM2)
776726 drive type (RPDT) . I maint 1 (RPM 1)
776724 maintenance (RPMR) disk adrs (RPDA)
776722 data buffer (RPDB) I . cyl adrs (RPCA)
776720 RP04, look ahead (RPLA) RPll, bus adrs (RPBA)
776716 attn summary (RPAS) I word count (RPWC)
776714 error # 1 (RPERl) disk status (RPCS)
776712 drive status (RPDS) error (RPER)
776710 cont & status # 2 disk status (RPDS)

(RPCS2)
776706 sector/track adrs

(RPDA)
776704 UNIBUS address

(RPBA)
776702 word count (RPWC)
776700 cant & status # 1

(RPCSl)

776676 } KL11, #16
DL11-A, -B,

776500 #1

776476 } #5
AAll,

776400 #2

776276 } DXll
776200

776176. } #31
DL11-C, -0, -E,

775610 #1

775576 } #4
DS11,

775400 #1

775376 } #16
DNll,

775200 #1

775176 } #16
DMll, DVll, #1-4

775 000 #1

A-6

774776 }

774400

774376

774000

773766

773000

772776

772700

}
}
}

772·676 .}

772600

DPll,

DCll,

#1

#32

#32

#1

BM792, BM873 ROM
PDP·ll diagnostic bootstrap (half of it)

PA611 typeset punch

PA611 typeset reader

772 576 maintenance (AFMR)
772574 AFCll, MX channel/gain (AFCG)
772 572 flying cap data (AFBR)
772570 flying cap status (AFCS)

772556 }

772550

772546

XYll plotter

772 544 counter
772542 KWll·P,count set
772 540 clock status

772536
772534
772532
772530
772526
772524
772522
772500

772516

772476
772474
772472
772470
772466
772464
772462
772460
772456
772454
772452
772450

read lines (MTRD)
tape data (MTD)

TMll, memory address (MTCMA)
byte record counter (MTBRC)
command (MTC)
'tape status (MTS)

Memory Mgt reg (MMR3)

cont & status # 3 (MTCS3)
busadrs ext (MTBAE)
tape control (MTTC)
serial number (MTSN)
drive type (MTDT)
maintenance (MTMR)
data buffer (MTDB)
check character (MTCK)

TU16, attention summary (MTAS)
error (MTER)
drive status (MTDS)
cont & status #2 (MTCS2)

A·7

772446 frame count (MTFC)
772444 UNIBUS address (MTBA)
772442 word count (MTWC)
772440 cont & status # 1 (MTCSl)

772436 } DRll-B #2
772430

772416 data (DRDB)
772414 DRll-B #1, status (DRST)
772412 bus address (DRBA)
772410 word count (DRWC)

772376 } Kernel Data PAR, reg 0-7
772360

772356 } Kernel Instruction PAR, reg 0-7
772340

772336 } Kernel Data PDR, reg 0-7
772320

772316 } Kernel Instruction ·PDR, reg 0-7
772300

Z72276 } Supervisor Data PAR, reg 0-7
772260

772256

} Supervisor Instruction PAR, reg 0-7
772240

772236 } Supervisor Data Descriptor PDR, reg 0-7
772220

772216 } Supervisor Instruction Descriptor PDR, reg 0-7
772200

772136 } UNIBUS Memory Parity
772110

772072 cont & status #3 (RSCS3)
772070 bus adrs ext (RSBAE)
772066 drive type (RSDT)
772064 maintenance (RSMR)
772062 data buffer (RSDB)
772060 look ahead (RSLA)
772056 attention summary (RSAS)
772054 RS04, error (RSER)

A-8

772052 drive status (RSDS)
772050 control & status # 2 (RSCS2)
772046 RS04, desired disk adrs (RSDA)
772044 UNIBUS address (RSBA)
772042 word count (RSWC)
772040 control & status # 1 (RSCS1)

772 016 } GT40 #2
772010

772006 Yaxis
772004 X axis
772002 GT40 #1 status
772000 program counter

771776 status (UDCS) I
771774 UDCll, scan (UDSR) I ICS/ICRll
771772
771770

I

771776 } UDC functional I/O modules
771000

770776 } #8
KGll,

770700 #1

770676 } #16
DMll·BB,

770500 #1

770436 DMA
770434
770432
770430
770426
770424
770422 ext DAC
770420 D/A YR
770416 D/A XR
770414 D/A SR
770412 LPSll, D I/O output
770410 D I/O input
770406 CKBR
770404 CKSR
770402 ADBR
770400 ADSR

770366 } UNIBUS Map
770200

A·9

767776

766000

765776

765000

763776

760010

} GT40 bootstrap . I
I
I User &

} I PDP·l1 diagnostic bootstrap Special (half of it) I Systems

(top of floating addresses)
I
I

(start of floating addresses) I

NOTE
All presently unused UNIBUS addresses are· re,
served by Digital.

A·lO

APPENDIX B

INSTRUCTION TIMING

B.1 PDp·ll/04 CENTRAL PROCESSOR

INSTRUCTION EXECUTION TIME
The execution time for an instruction depends on the instruction itself
and the modes of addressing used. In the most general case, the In·
struction Execution Time is the sum of a Basic Time, a Source Address
Time, and a Destination Address Time.

Instr Time = Basic Time + SRC Time + DST Time

Double Operand instructions require all 3 of these Times, Single Oper·
and instructions require a Basic TIme and a DST Time, and with all
other instructions the Basic Time is the Instr Time.

All Timing information is in microseconds, unless otherwise noted. Times
are typical; processor timing can vary ± 10%.

Double Operand

Instruction

ADD, SUB, BIC, BIS
CMP, BIT
MOV

Single Operand

BASIC TIMES

CLR, COM, INC, DEC, NEG, ADC, SBS
ROR, ROL, ASR, ASL
TST
SWAB
All Branches (branch true)
All Branches (branch false)

Jump Instructions
JMP
JSR

Control, Trap, and Miscellaneous Instructions
RTS
RTI, RTT
Set N,Z,V,C
Clear N,Z,V,C
HALT
WAIT
RESET

lOT, EMT, TRAP, BPT

B·1

Basic Time (I-' sec)

MOS Parity MOS

3.17 3.33
2.91 3.07
2.91 3.07

2.65 2.81
2.91 3.07
2.39 2.55
2.91 3.07
2.65 2.81
1.87 2.03

0.91 0.88
3.27 3.27

4.11 4.43
5.31 5.79
2.39 2.55
2.39 2.55
1.46 1.62
2.13 2.29
lOOms 100 ms

7.95 8.49

ADDRESSING TIMES

ADDRESSING FORMAT

SRCTime*

Time (lLsec)

DSTTime**

Mode Description Symbolic
I Parity

MOS MOS
I Parity

MOS MOS

0 REGISTER R 0 0 0 0
1 REGISTER @R or (R)' 0.94' 1.10 1.48 1.67

DEFERRED'

2 AUTO·INCREMENT . (RH 1.20 1.36" 1.76 1.95
3 AUTO-INCREMENT @(R)+ 2.66 2.98 3.20 3.55 .

DEFERRED
4 AUTO- -(R) 1.20 1.36 1.76 1.95

DECREMENT
5 AUTO- @-(R) 2:66- 2.98 3.20. 3.55

DECREMENT
DEFERRED

6 INDEX X(R) 2.92 3.24 3.46 3.81
7 INDEX @X(R) 4.38 4.86 4.92 5.43

DEFERRED

* For Source time, add the following for odd byte .addressing: 0.52
(lLsec) .

** For [)estination time, modify as follows:
a) Add for odd' byte addressing With a non-modifying instruct!9n:.

0.52 (lLsec) .
b) Add for odd byte addressing with a modifYing instruction modes'

1-7: 1.04 (lLsec) .
c) Su~tract for all non-modifYing .instructions except Mode 0:

MOS: 0.54 Parity MOS: 0.57 (lLsec)
. d) Add for MOVE instructions Mode 1-7: 0.26 (lLsec)

e) Subtract for J MP and. JSR' instructions,. modes' 3, 5,.6, 7: 0.52
(/Lsec)

8-2

B.2 PDP·il/34·CENTRAL PROCESSOR

INSTRUCTION. EXECUTION' TIME·
The execution time for an instruction depends on the instruction itself,
the modes of addressing used,' and. the type of memory.beingreferenced.
In the most general case, the Instruction Execution Time is the sum .of
a Source' Address Tihle; a· Destination Address Time, and an Execute,
Fetch Time •.

Instr 'Time = SRC Time + DST Time + EF Time

Some of the instructions require only some -of. these times, and are so
noted; All Timing information is in microseconds, unless otherwise noted.
Times are typical; processor timing can vary. ± 10%.

BASIC INSTRUCTION SET TIMING

Double Operand

Instr Time = SRC !inie + DST Time + EFTime

Single Operand

Instr Time == DST Time + EFTime

Branch, Jump, Control; Trap, & Misc·

Instr Time = EF Time

NOTES
1) The times specified apply to both word and

byte instructions whether odd or even byte.
2) Timing is given without regard for NPR or

BR servicingt.
3) If the memory management is enabled exe·

cution times increase by -0.12 !-'sec· for each
memory cycle used.

4) All timing is based on memory· with the fol·
lowing performance characteristics:

Memory Max Access
Time

Core (MMll·DP) .575 J.l.sec
MOS (MSll·JP) .700

B-3

Max Cycle.
Time

1.0 J.l.sec·
.700

I: SOURCE ADDRESS TIME

Source Memory Core MOS
Instruction Mode Cycles (MMll·DP) (MSll·JP)

0 0 0.00 p,sec ·O.OO/Lsec
1 1 1.13 l.26
2 1 l.33 1.46

Double Operand 3 2 2.37 2.62
4 1 1.28 1.41
5 2 2.57 2.82
6 2 2.57 2.82
7 3 3.80 4.18

II. DESTINATION TIME

Destination Memory
Instruction' Mode Cycles Core MOS

0 0 0.00 0.00
Modifying Single 1 2 1.62 1.74

Operand 2 2 1.77 1.89
and 3· 3 2.90 3.15

Modifying Double 4 2 1.77 1.89
Operand 5 3 3.00 3.25

(Except MOV, SWAB, 6 3 3.10 3.35
ROR, ROL ASR ASL) 7 4 4.29 4.66

0 0 0.00 0.00
1 1 0.93 0.93
2 1 0.93 0.93

MOV 3 2 2.17 2.29
4 1 1.13 1.13
5 2 2.22 2.34
6 2 2.37 2.49
7 3 3.50 3.75

0 0 0.00 0.00
1 1 0.95 0.95
2 1 1.13 l.26

MTPS 3 2 2.26 2.51
4 1 1.13 1.26
5 2 2.26 2.51
6 2 2.44 2.69
7 3 3.57 4.20

8·4

Destination Memory
Mode Cycles Core MOS

0 0 0.00 0.00
1 1 0.64 0.64
2 1 0.64 0.64

.MFPS 3 2 1.95 2.08
4 1 0.82 0.82
5 2 1.95 2.08
6 2 2.13 2.26
7 3 3.26 3.51

III. EXECUTE, FETCH ~TIME

DOUBLE OPERAND·

Memory
Instruction Cycles Core MOS

ADD, SUB, CMP, BIT, 1 2.03 2.16
BIC, BIS, XOR

MOV 1 1.83 1.96

SINGLE .OPERAND

CLR, COM, INC, DEC; 1 1.83 1.96
ADC,SBC,TST

SWAB, NEG 1 2.03 2.16
ROR, ROL, ASR, ASL 1 2.18 2.31
MTPS 2 2.99 3.12.
MFPS 2 1.99 2.12

EIS INSTRUCTIONS (use with DST times) .

MUL 1 *8.82 *8.95
. DIV (overflow) 1 2.78 2.91

12.48 12.61
ASH 1 **4.18 **4.31
ASHC 1 **4.18 **4.31

MEMORY MANAGEMENT INSTRUCTIONS'

MFPI (D)

·1
2 3.07 3.14

MTPI (D) 2 3.37 3.34 .

* Add 200ns for each bit transition in serial data from LSB to MSB
** Add 200ns per shift

B·5

Destination Memory
Instruction Mode Cycles Core MOS

0 0 0.00 0.00
1 2 1.42 1.54

SWAB, ROR, ROL, 2 2 1.57 1.69
ASR,ASL 3 3 2.70 2.95

4 2 1.62 1.74
5 3 2.80 3.05
6 3 2.90 3.15
7 4 4.09 4.46

0 0 0.00 0.00
1 1 1.13 1.26

Non·Modifying 2 1 1.28 1.41
Single Operand and 3 2 2.42 2.67
Double Operand 4 1 1.33 1.46

5 2 2.52 2.77
6 2 2.62 2.87
7 3 3.80 4.18

0 0 0.00 0.00
1 1 0.98 1.24
2 1 1.32 1.44

MFPI (D) 3 2 2.20 2.45
MTPI (D) .4 1 1.18 1.44

5 2 2.20 2.45
6 2 2.40 2.65
7 3 3.59 3.96

BRANCH INSTRUCTIONS

Memory
Instruction Cycles Core MOS

BR, BNE, BEQ, (Branch) 1 2.18 2.31
BPL, BMI, BVC, BVS, BCC,
BCS, BGE, BL T, BGT,
BLE, BHI, BLOS,
BHIS, BLO

(No Branch) 1 1.63 1.76

SOB (Branch) 1 2.38 2.51
(No Branch) 1 1.98 2.11

B·6

JUMP INSTRUCTIONS

Destination Memory
Mode Cycles Core MOS

1 1 1.83 1.96
2 1 2.18 2.31

JMP 3 2 3.12 3.37
4 1 2.03 2.16
5 2 3.07 3.32
6 2 3.07 3.32
7 3 4.25 4.78

1 2 3.32 3.44
2 2 3.47 3.59

JSR 3 3 4.40 4.65
4 2 3.32 3.44
5 3 4.40 4.65
6 3 4.60 4.85
7 4 5.69 6.06

Memory·
Instruction Cycles Core MOS

RTS 2 3.32 3.57
MARK 2 4.27 4.52
RTI, RTT 3 4.60 4.98
Set or Clear C,V,N,Z 1 2.03 2.16
HALT 1 1.68 1.81
WAIT 1 1.68 1.81
RESET 1 100 msec 100 msec
lOT, EMT, TRAP, BPT 5 7.32 7.7

LATENCY

Interrupts (BR requests) are acknowledged at the end of the current in·
struction. For a typical instruction, with an instruction execution time of
4 "sec, the average time to request acknowledgement would be 2 "sec.

Interrupt service time, which is the time from BR acknowledgement to
the first subroutine instruction, is 7.32 "sec, max. for core, and 7.7 "sec
for MOS.

NPR (DMA) latency, which is the time from request to bus mastership
for the first NPR device, is 2.5 "sec, max.

B·7

B.3 FPll·A FLOATING POINT PROCESSOR

INSTRUCTION EXECUTION TIME
The execution time of an FPll-A floating point instruction is dependent
on the following:
1. . Type of instruction

2. Type of addressing mode specified

3. Type of memory
4. Memory management facility enabled or disabled

In: addition to the above the execution time of certain instructions, such
as Add, are dependent on the data .(refer to notes 1 through 5pageB-12).

Table B-1 provides the basic instruction times for mode O. Tables B-2
through B·6 show the additional time required for instructions other
than mode O. For example, to calculate the execution time of a MULF
(single-precision multiply) for mode 3 (autoincrement deferred) with the
result to be rounded,' proceed as follows:

1. Refer to Table B-1 which gives MULF, Mode 0 execution time of 13.4
,..seconds.

2. Refer to note 1 as specified in the notes column of Table B-1. Note 1
specifies an additional 0.84 ,..seconds is to be added if rounding mode
is specified. This yields 14.24, ,..seconds.

3. The modes 1-7 column of Table B-1 refer to Table B-2 to determine
the additional time· required for mode 1 through 7 instructions. In

:cthis example, :mode.3 specifies an additional 3 ,..seconds for single­
precision yielding 17.24,..seconds.

All timing information is in microseconds unless otherwise noted. Times
are typical; processor timing can vary ± 10%.

NOTE
.Add .13 ,..seconds for each memory cycle if
MSll-JP MOS memory is utilized.
Add .12 ,..seconds for each DATI memory cycle

.. if'memory management is enabled.

8-8

TABLE B-1 FPll-A INSTRUCTION EXECUTION TIMES

Mode 0
Instruction (Reg. to Reg.) Notes Modes 1 thru 7

LDF 4.0
LDD 4.0
LDCFD 5.8 1
LDCDF 5.8 1
CMPF 5.5
CMPD 5.5
DIVF 13.3 1
DIVD 20.6 1 Use Table.B-2 to determine

ADDF 7.5 1,2 memory·to-register times for

ADDD 7.5 ·1,2 these instructions

SUBF 7.9 1,2
SUBD 7.9 1,2
MULF 13.4

..
1

MULD 20.7 1
MODF 17.4 1,3
MODO 24.7 1,3

STF 2.4
STD 2.4
STCDF 5.2 Use Table B·3 to determine

STCFD 5.2 memory·to·register times for

CLRF 2.6 these instructions

CLRD 2.6

ABSF 3~5
ABSD 3.5
NEGF 3.6 Use TableB.4to determine

NEGD 3.6 memory.to.memory times for

TSTF 3.6 these instructions

I TSTD 3.6

LDFPS 2.5
LDEXP 4.4

Use TableB·5 to determine LDCIF 7.5 1,4
LDCID 7.5 1,4

memory-to·register times for·

LDCLF 7.5 1,4 these instructions

LDCLD 7.5 1,4

STFPS 2.8
STST 2.6
STEXP 3.4 Use Table B·6 to determine
STCFI 4.5 5 register-to·memory times for'
STCDI 4.5 5 these instructions
STCFL 4.5 5
STCDL 4.5 5

B·9

TABLEB·l (Cont.)

Mode 0
Instruction (Reg. to Reg.) Notes

The following instructions do
not reference memory
CFCC 2.0
SETF 2.2
SETD 2.2
SETI 2.2
SETL 2.2

Modes 1 thru 7

Execution times
are as s.hown.

TABLE B~2 FLOATING'SOURCE FETCH TIME

Memory Cycles Time ("s)

Addressing Single Double Single Double
Mode Precision Precision Precision Precision

1 2 4 2.00 4.20
2 2 4 2.20 4.40
2 Immediate 1 1 1.00 l.00
3 3 5 3.00 5.20
4 2 4 2.20 4.40
5 3 5 3.00 5.20
6 3 5 3.20 5.40
7 4 6 4.20 6.40

TABLE B"3 FLOATING DESTINATION STORE TIME

Memory Cycles Time ("s)

Addressing Single Double Single Double
Mode Precision . 'Precision Precision Precision

1 2 4 1.38 ·2.94
2 2 4 1.56 3.12
2 Immediate 1 1 0.60 0.60
3 3 5 2.38 3.94
4 2 4 1.56 3.12
5 3 5 2.38 3.94
6 3 5 2;56 4.12
7 4 6 3.56 5.12

B·lO

. TABLE B-4' '-FLOATING DESTINATION. FETCH·AND STORE TIME

Memory Cycles Time (I<s)

Addressing Single . Double Single Double
. Mode Precision Precision Precision Precision

1 2 2 1.42 1.42
2 2 2 1.60 1.60
2 Immediate 2 2 1.60 1.60
3 3 3 2.42 ·2.42
4 2 2 1.60 1.60
5 3 3 2.60 2.60
6 3 3 2.60 2.60
7 4 4 3.60 3.60

.'

TABLE ~·5 SOURCE -FETCH TIME

, Memory Cycles Time (f.'S)

Addressing Short Long Short Long
Mode Integer Integer Integer Integer

1 1 2 1.00 1.18
2 1 2 1.18 1.36

.' 2· Immediate 1 1 1.18 1.18
3 2 3 2:00 2.18
4 1 2 1.18 1.36
5 2 3 2.00 . 2.18
6 2 3 .2,18 2.36
7 3 4 3.18 .3.36

TABLE. B·6 DESTINATION .STORE TIME

, Memory Cycles Time (f.'S)

Addressing Short Long Short Long
Mode Integer Integer Integer Integer

1 1 2 0.60- 1.38
2 • 1 2 O.~Q 1.68
2 Immediate 1 1 .0:9'6- 0.96
3 2 3 1,60 2.38
4 1 2 0.96 .1.68
5 2 3 1.60 2.38
.6 2 3 1.78 2.56
7 '3 4 2.78 3.56

B·11

NOTES

1. Add 0.84 "seconds when in rounding mode (FT = 0).

2. Add 0.24 "seconds per shift to align binary points and 0.24 "seconds
per shift for normalization. The number of alignment shifts is equal
to the exponent difference for exponent differences bounded as fol­
lows:

1 ::O;IEXP (AC)-EXP (FSRC)i::O; 24 single precision
1 ::0; I EXP (AC)-EXP (FSRC)I ::0; 56 double precision

The number of shifts required for normalization is equivalent to the
number of leading zeroes of the result.

3_ Add .24 "seconds times the exponent of the product if the exponent
of the product is:

1 ::0; EXP (PRODUCT) ::0; 24 single-precision
1 ::0; EXP (PRODUCT) ::0; 56 double-precision

Add 0.24 "seconds per shift for normalization of the fractional result.
The number of shifts required for normalization is equivalent to the
number of leading zeroes in the fractional result.

4_ Add 0.24 "seconds per shift for normalization of the integer being
converted to a floating point number. For positive integers, the num­
ber of. shifts required to normalize is equivalent to the number of

. leading zeroes; for negative integers, the number of shifts required
for normalization is equivalent to the number of leading ones.

5_ Add 0.24 "seconds per shift to convert the fraction and exponent to
integer form, where the number of. shifts is equivalent to 16 minus
the exponent when converting to short integer or 32 minus the ex­
ponent when converting to long i.nteger for exponents bounded as
follows:

1 ::0; EXP (AC) ::0; 15
1 ::0; EXP (A C) ::0; 31

short integer
long integer

·8-4 PDp·11 155; 11145 CENTRAL PROCESSORS

INSTRUCTION EXEC.UTlON TIME
,_:_5-~

The execution time for an instruction depends on the instruction itself,
the modes of addressing used, and the type of memory being referenced.
In the most general case, the -Instruction Execution Time is the sum of a
Source Address Time, a Destination Address Time, and an Execute,
Fetch Time.

Instr Time = SRC Time + DST Time + EF Time

Some of the instructions require only some of these times, and are so
noted. Times are typical; processor timing; with core memory, may vary
+15% to -10%.

8-12

BASIC INSTRUCTION SET TIMING
Double. Operand

all. instructions,
except MOV: Instr Time = SRC Time+ DST Time

+ EFTime
MOV Instruction: Instr Time = SRC Time + EF Time

Single Operand
all instructions: Instr Time = DST Time + EF Time or

Instr Time = SRC Time + EF Time

Branch, Jump, Control, Trap & Misc
all instructions: Instr Time = EF Time

USING THE CHART TIMES
To compute a particular instruction time, first find the instruction "EF"
Time. Select the proper EF Time for the SRC and DST modes. Observe
all "NOTES" to the EF Time by adding the correct amount to basic EF
number.
Next, note whether the particular instruction requires the inclusion of
SRC and DST Times, if so, add the appropriate amounts to correct EF
number. .

NOTES
1. The times: specified generally apply to Word instructions. In most

cases. Even Byte instructions have the same times, with some Odd
Byte instructions taking longer. All 'exceptions are noted.

2. Timing is given without regard for NPR or BR servicing. Core memo
ory is assumed to be located within the CPU mounting assembly.

3. If the Memory Management option is installed and operating, instruc­
tion execution times increase by .09 ILsec for each memory cycle
used.

4. All times are in microseconds.

SOURCE ADDRESS TIME

SRCTime

Source 8K 16K Memory
Instruction Mode Bipolar Core Core Cycles

0 .00 .00 .00 0
1 .30 .83 .89 1
2 .30 .83 .89 1

Double 3 .75 1.81 1.92 2
Operand 4 .45 .98 1.04 1

5 .90 1.96 2.07 2
6 .60 1.73 1.86 2
7 1.05 2.71 2.89 3

B-13

DESTINATION ADDRESS TIME

DST Time (A) .
DST 8K 16K Memory

Instruction Mode 8ipolar Core Core Cycles

0 .00 .00 .00 0
1 .30 .83(8) .86(8) 1

Single Operand 2 .30 .83(8) .86(8) 1
and Double Oper· 3 .75 1.81(8) 1.92(8) 2
and (except MOV, 4 .45 .98 1.04 1
MTP, JMP, JSR) 5 .90 1.96 2.07 2

6 .60 1.73(8) 1.86(8) 2
7 1.05 2.71(8) 2.89(8) 3

NOTE (A): Add .15 Itsec for odd byte instructions, except DST Mode o.
NOTE (8): For 8K core, add .07 Itsec ifSRC Mode = 1·7; for 16K core,
add .085 Itsec if SRC Mode = 1·7.

8·14

r:p
(J1

EXECUTE, FETCH TIME
. Double Operand

Instruction

SRC Mode 0 SRC Mode 1·7
DST Mode 0 CST Mode 0

(Use with
I

EF Time
16KI

~ETTime
16KI SRC Time 8K Mem 8K Mem

and DST Time) Bipolar Core Core Cye Bipolar Core Core Cye

ADD, SUB, .30 .90 .97 1 .45 1.05 1.12 2
BIC, BIS (D) (C) (C) (D)

I
(E) (E)

CMP, BIT .30 .90 .97 1 .45 1.05 1.12 1
(D) (C) (C) (D) (E) (E)

XOR .30 .90 .97 1 - - -
(D) (C) (C)

NOTE (C): For 8K, add .23 Itsee if OST is R7; for 16 K, add .22 Itsee if OST is R7.
NOTE (D): Add .3 Itsee if DST is R7.

SRC Mode 0 to 7
DST Mode 1 to 7
~EFTime

16KI 8K Mem
Bipolar Core J Core Cye

.75 1.82 1.81 2

.45 1.13 1.19 1

.75 1.82 1.81 2

NOTE (E): For 8K, add.23 Itsee if OST is R7, add .08 Itsee if OST is odd byte and not R7; for 16K, add .65 Itsee if
DST is odd byte not R7.

DOuble Operand (Cont.)

. EFTime~

I
EF Time

16KI
instruction I (SRC MODE =·0) (SRC MODE = i-7)
(Use with DST DST 8K 16K 8K Memory

SRC Time) Mode Register Bipolar Core Core Bipolar Core Core Cycles

0 0-6 .30 .9 .97 .45 ~.05 1.12 1
m
0'1

0 7 .60 1.13 1.19 .75 1.28 1.34 1
1 0·7 .75 2.00. 2.13 .75 .1.95 2.09 2
2 0-7 .75 2.00 2.13 .75 1.95 2.09 2

MOV 3 0-7 1.20 2.98 3.16 1.20 3.05 3.25 3
4 0-7 .90 2.15 2.28 .90 2.03 2.16 2
5 0-7 1.35 3.13 3.31 1.35 3.13 3.31 3
6 0-7 1.05 2.90 3.09 1.20 3.05 3.25 3

~

7 0-7 1.50 3.88 4.13 1.65 4.03 4.28 4

Single Operand

DST MODE = 0 DST MODE 1 to 7

I
EF Time

16KI I Instruction 8K Memory
. (Use with DST Time) Bipolar Core Core Cycles Bipolar

CLR COM, INC, DEC, ADC,
SBC, ROL, ASL, SWAB,
SXT .30 .90 .97 1 .75

(J) (G) (G)

NEG .75 1.28 1.34 1 1.05

TST .30 .90 .97 1 .45
\ (J) (G) (G)

ROR, ASR .30 .90 .97 1 .75
(J) (G) (G)

ASH, ASHC .75 1.28 1.34 1 .90
(I) (I) (I) (I)

NOTE (F): Add .12 Jlsec if odd byte.
NOTE (G): For 8K, add .23 Jlsec if DST is R7; for 16K, add .22 Jlsec if DST is R7.
NOTE (H): Add .15 Jlsec if odd byte.
NOTE (I): Add .15 Jlsec per shift.
NOTE (J): Add .30 Jlsec if DST is R7.

EF Time
8K

Core

1.82

2.10
(F)

1.13

1.82
(H)

1.43
(I)

16K I Memory
Core Cycles

1.81 2

1.99 2
(F)

1.19 1

1.81 2
(H)

1.49 1
(I)

Single Operand· (Cont.)

Instruction SK 16K Memory
(Use with SRC Times) Bipolar Core Core· Cycles

MUl 3.30 3.S3 3.S9 1

DIV

by zero .90 1.43 1.49 1

shortest 7.05 7.5S 7.64 1

longest S.55 9.0S 9.14 1

SK 16K Memory
Instruction Bipolar Core Core' . Cycles

MFPI 1.05 2.1S 2.3i 2 use
> with·

rVtFPD 1.05 2.1S 2.31 2 SRC - times

Instruction Time
16KI DST I . SK Memory.

Instruction Mode Bipolar Core Core Cycles

MTPI. 0 .90 2.03 2.16 2
MTPD 1 1.20 2.93 3.13 3

2 1.20 2.93 3.13 3
3 1.65 4.03 4.2S 4
4 1.35 3.01 3.19 3
5 1.S0 4.11 4.35 4
r . "..,

" IV' A '>0 A

I 7 2.10 5.01 5.32 5

Branch Instructions

Instr Time lilstr.Time
(Branch) (No Branch)

SK 16K SK 16K Memory
Instruction Bipolar Core Core Bipolar. Core Core Cycles

BR. BNE._BEQ. .60 1.13 1.18 .30 .90 .98
BPt. BMI. BVC.
BVS. BCC. BCS.
BGE. BlT. BGT.
BlE. BHI. BlOS.
BHIS •. 8LO

SOB .60 1:13 1.18 .75 1.28 1.32 1

B-18

l_

Jump Instructions

I Instr Time
16KI DST 8K Memory

Instruction Mode Bipolar Core Core Cycles·

1 .90 1.43 1.49 1
2 .90 1.43 1.49 1
3 1.20 2.26 2.37 2

JMP 4 .90 1.43 1.49 1
5 1.35 2.41 2.52 2
6 1.05 2.18 2.31. 2
7 1.50 3,16 3.34 3

1 1.50 2.63 2.76 2
2 1.50 2.63 2.76 2
3 1.80 3.<1-6 3.64 3

JSR 4 1.50 2.63 ·2.76 2
5· 1.95 3.61 3.79 3
6 1.65 3.38 3.58 3
7 2.10 4.36 4.61 4

Control, Trap & Miscellaneous Instructions

Instr Time
I 8K 16KI Memory

Instruction Bipolar Core Core Cycles.

RTS 1.05 2.11 2.22· 2

MARK .90 2.03 2.16 2

RTI, RTT 1.50 3.16 3.34 3

SETN, Z, V, C

CLR, N,Z, V, C .60 1.13 1.28 1

HALT 1.05 1.58 1.64 0

WAIT' .45 .45 .45 0
WAIT Loop
for a BRis
.3I1sec.

RESET 10ms 10ms lOms 1

lOT, EMT, 2.40 5.08 5.27 5
TRAP, BRT

SPL .60 1.13 1.19 1

INTERRUPT 2.25 4.95. 5.07 4
First Device'

B·19

LATENCY
Interrupts (BR requests) are acknowledged at the end of the current
instruction. For a typical instruction execution time of 3 ~sec, the aver­
age time to request acknowledgement would be one-half this or 1.5 ~sec.
The worst case (longest) instruction time (Negative Divide with SRC
Mode 7) and hence, the longest request acknowledgement would be
12.62 ",sec max with 16K core (11.79 ",sec with 8K core, and 9.00 ",sec
with Bipolar).

The Interrupt service time, which is the time from BR request acknowl­
. edgement to the fetch of the first subroutine instruction, is 5.44 ~sec
max with 16K core, 4.95 ",sec .with 8K core, and 2.25 ",sec with Bipolar.

Hence, the total worst case time from BR request to begin the fetch of
the first service routine instruction is:

Normal

Memory Management
Operating

Bipolar
11.25

11.70

8K Core
16.74

17.19

16K Core
18.41

18.96

The total average time for BR request to begin the fetch of the first ser­
vice routine instruction is:

Normal

Memory Management
Operating

Bipolar
3.95

4.40

NPR Latency is 3.5 ~sec worst case.

B·20

8K Core
8.45.

8.90

16K Core
9.30

9.75

8·5 FPll·C FLOATING POINT PROCESSOR
INSTRUCTION EXECUTION· TIME·

Floating Point instruction times are calculated in a manner similar to the
calculation of CPU instruction timing. Due to the fact that the FPll·C is
a separate processor operating in parallel with the main processor
however, the calculation of Floating Point instruction times must take
this parallel processing or overlap into account. The following is a
description of the method used to calculate the effective Floating Point
instruction execution times.

DEFINITIONS
Preinteraction

Address Calculation

Wait Time

CPU time required to decode a Floating Point
instruction OP Code and to store the general
register referred to in. the Floating Point in·
struction in a temporary Floating Point regis·
ter (FPR). This time is fixed at 450 ns.

CPU time required to calculate theaddr~ss
of the operand. This time is dependent on the
addressing mode .specified. Refer to Table
8·7. .

CPU time spent waiting for completion by the
Floating Point Processor of a previous Float­
ing Point instruction in the case of Load Class
instructions. For Store Class instructions, the
Wait Time is the summation of time during
which the Floating Point completes a.previous
Floating Point instruction and Floating Point
execution time for the store class instruction.
Wait Time is calculated as follows>

Load Class Instructions:

Wait Time = [Floating Point execution time
(previous FP instruction)] - [Disengage and
Fetch Time (previous FP instruction)] - [CPU
execution time for interposing nonfloatjng
point instruction] - [Preinteraction time]­
[Address Calculation Time]. If the result is
::;0 the Wait Time is O.

Store Class Instructions:

Wait Time = f [Floating Point execution time
(previous Floating Point instruction)] - [CPU
execution time for interposing nonFP instruc·
tion] - Disengage and Fetch time (previous.
FP instruction)] - [Preinteraction]} * + Float­
ing Point execution time] - [Address Calcula·
tion time]. If Wait Time calculation result is
::;0 the Wait Time is O.

~, If result of calculation in
it becomes O.

8-21

1 is::; o then

Resync Time If the CPU must wait for the Floating Point
Processor (i.e., Wait Tirne = 0), an additional
450 ns must be added to the Effective Exe·
cution time of the instruction. If Wait Time =
o then Resync Time = O.

Interaction Time CPU time required to actually initiate Floating
Point Processor operation.

Argument Transfer Time CPU time required to fetch and transfer to
the Floating Point Processor the required
operand. This time is 300 ns X the number
of 16·bit words read from Memory (Load
Class Floating Point Instructions), or 1200 ns .
X the number of 16·bit words written to
Memory (Store Class Instructions).

Disengage and Fetch Time CPU time required to fetch the next instruc·
tion from Memory. This time is 300 ns.

Floating Point
Execution Time

Effective· Execution Time

Table B·7

Time required by the Floating Point Processor
to complete a Floating Point instruction once
it has received all arguments (Load Class
Instructions). Execution times are contained
in Table B·8. I

Total CPU time required to execute a Floating
Point instruction.

Effective Execution Time = Preinteraction +
Address Calculation + Wait Time + Resync
Time + Interaction Time + Argument Trans·
fer + Disengage and Fetch.

Address Calculation Times

Mode
/\ddrc:::;z

Calculation Time

o
I
2
3
4
5
6
'7

Table B·8 FPll·C Execution Times

MIN

LDF 360 nsec
LDD 360
ADDF 900
ADDD 900

B·22

-1:;.

o nsec
300
300
600
300
750
600

1050

MAX

360 nsec
360

2520
4140

TYP

950
980

Table 8-8 FPll-C Execution Times (Cont.)

MIN MAX TYP

SUBF 900 1980 1130
SUBD 900 4140 1160
MULF 1800 3440 2520
MULD 3060 6220 4680
DIVF 1920 6720 3540
DIVD 3120 14400 6000
MODF 2880 5990
MODD 3780 9770
LDCFD 420 420
LDCDF 540 540
STF* 0
STD* 0

CMPF, 540 1080
CMPD 540 1080
STCFD* 720 720 720
STCDF* 540 720 540

LDCIF 1260 1440 1440
LDCID 1260 1440 1440
LDCLF 1260 1980
LDCLD 1260 1980
LDEXP 540 900

STCFl* 1200 1620
STCFL* 1260 2160
STCDI* 1260 1620
STCDL" 1260 2160
STEXP" 360 360

MO Not MO
CLRF 180 2150
CLRD 180 4350
NEGF 360 2400
NEGD 360 2400
ABSF 360 2400
ABSD 360 2400
TSTF 180 180
TSTD 180 180
LDFPS 180 0
STFPS" 0
STST'" 0
CFCC 0
SETF 180
SETD 180
SETI 180
SETL 180

" Store Class Instructions

8·23

Load Class Instructions are those which do not deposit results in a
memory location.

Execution of a Load Class Floating Point instruction by the Floating
Point occurs in parallel with CPU operation and hence can be overlapped.
Figure 8-1 gives a simplified picture of how a Load Class F:loating Point
instruction is executed.
Store Class Instructions are those which store a result from the Floating
Point into a memory location. Execution of a Store Class Instruction
by the Floating Point Processor must occur before the result can be
stored, hence parallel processing cannot occur for Store Class Floating
Point Instructions.

CPU

TI Load Class Instruction
is fetched. This occurs

I during previous
Effective
Execution Time
starts here-----r

I instruction execution.

Instruction is decoded.

Contents of CPU General

FPP
T

Register are transferred FPP is idle.
No Floating Point
intervention ye\

Floating Point
must respond
(i.e., it must be
finished with
nrinr inctrllrtinn

to temporary FPP Reg·
ister.

Address of operand
is calculated.

by'he~~~CPU starts FPP execut·
or CPU will wait ing this instruction (i.e., FPP interacts with CPU.

interacts with FPP).

CPU is finished
with FPP; FPP

·will now execute
instructions ~
on its own~

Effective ~
Execution Time
ends here

CPU passes arguments
to FPP

. Fetch next instruction.

FPP :accepts arguments
from CPU.

FPP

executes

instruction.

~Floating Point is fin­
ished and ready to
accept next instruc­
tion.

Figure 8-1 Load Class Floating Point Instruction.

8-24

CPU

Store Class Instruction
is fetched. This occurs
during previous instruc-

Effective tion execution.
Execution Time
starts here-- Instruction is decoded.

FPP must
respond or

Contents of CPU
General Register are
stored in Temporary
FPP Register.

Address at which result
to be stored is calcu­
lated.

CPU will wait--I CPU waits for FPP to
I complete execution .

..L
I Since CPU entered Wait
I State, an additional 450
I ns Resync overhead is
I encountered.

CPU interacts with FPP.

CPU stores

result

in Memory.

CPU fetches
Effective next instruction.
Execution Time
ends here-

FPP
T
I
I
I
I
I FPP is idle.

I
I
I
I

FPP beginsexecution-'­
does not respond until
execution is complete.

I ~FPP responds.

I
I

FPP interacts with CPU.

FPP passes

result to

CPU to

store in .

Memory.

I
I FPP is idle.
J.

Figure B-2 Store Class Floating Point Instruction.

Figures B-1 and B-2 show, respectively, how timing associated with a
typical Load Class and Store Class instruction is derived.

Figures 8-3 and B-4 show, pictorially, how Effective Execution Times for
actual Floating Point instructions in a program are calculated. Note that
Effective Execution Times are dependent on previous Floating Point
instruction.

8-25

Referencing Figure B-3, a sample calculation of Effective time would be:
for MUlF (RO), ACI

Effective.Execution Time is the summation of the following:

Preinteraction Time 450 ns
Address Calculation Time (Mode 1 from Table B-7) 300 ns

. Wait Time (Since FPP is idle, Wait = 0) 0 ns
Resync Time (Since Wait = O,Resync = 0) 0 ns
Interaction Time 300 ns
Argument Transfer Time (Transfer 2 words @ 300 ns/word) 600 ns
Disengage and Fetch T~me 300 ns

Effective Execution Time
for lDF X(R3),ACO (Ref; Figure B-3)

First we calculate Wait Time:

. Wait Time = {Floating Point Execution (previous
FP instruction) (MUlF)]

- [Disengage and Fetch Time (previous
FPT instruction») .

- [Execution Time of interposing
nonFPT instruction.(SOB)]

- [Preinteraction Time]
~ [Address Calculation (Mode 6 from

Table B-7)]

Since calculation resulted in a negative
number, Wait. Time = O .

1950 ns

1800 ns

- 300 ns

- 750 ns
- 450 ns

- 600 ns

- 300 ns

. . . so Effective Execution Time is the summation of the following:

Preinteraction Time 450 ns
Address Calculation Time (Mode 6 from TableB-7) 600 ns
Wait Time (From above calculation) 0 ns
~t:'~yrrt: Ti~~ (S~n,=~ Wa!t T!me :::: 0, ResY!1c = 0) 0 ns
Interaction Time 300 ns

'. Argument Transfer- Time (2 words @ 300 ns/word) 600 ns
Disengage- and Fetch Time 300 ns

.Effective Execution Time 2250 ns

B·26

CPU TIME FPP TIME

MULFIROL ACI IR DECODE

PRE INTERACTION SET UP
TEMP

)-
FPT REG

ADDRESS
ADDRESS CALCULATION CALC

)-
IMODE I)

INTERACTION INTERACTION
EF~ECTIVE EXECUTlON'19S0nsec

ARGUMENT
ARGUMENT TRANSFER TRANSFER

DISENGAGE

T
DISENGAGE & FETCH < & FETCH

NEXT INST.

SOB RI

EXECUTIVE
INON FLOATING POINT INSTRUCTION) & FETCI:I

NEXT INST. FLOATING
POINT
EXECUTION
IMULF)

LOF XIR3).ACO JR DECODE

1 PRE INTERACTION SET UP
TEMP
FPT REG

ADDRESS

,"""m ==,,~ f CALC
IMODE 6)

EFFECTIVE EXECUTION::2250 nsec

INTERACTION INTERACTION

MO""'.' _,., { ARGUMENT
TRANSFER

l
DISENGAGE & fETCH {

DISENGAGE fLOATING
& FETCH POINT
NEXT INST. EXECUTION

ILOF)
ADDF AC2. AC J IR DECODE iT PRE INTERACTION SET UP

TEMP
FPT REG I

. EFFECTIVE EXECUTIONolOSOmec)-

INTERACTION < INTERACTION

)-
DISENGAGE T DISENGAGE & FETCH < & FETCH
NEXT INSf.

FLOATING
POINT
EXECUTION
IADDF)

~
Figure 8'3 Calculation of Effective Execution Times for

load Class Instructions

8-27

DISENGAGE DISENGAGE
& FETCH & FETCH NEXT.INS!

DIVF ACI. ACO (IR DE<DDE

.PRE INTERACTiON SET UP
TEMP
FPT REG

EFFECTIVE EXEClHION' 10SO nsec INTERACTION INTERACTION

DISENGAGE DISENGAGE
& FETCH & FETCH

Figure 8-4 Calculation of Effective Execution Time for
Store Class Instructions

8-28

flDATING
POINT
EXECUTION
(DNF)

ADC(B)4-19
ADD4-27
ASl(B) 4-16
ASH 7-17
ASHC ···7-18
ASR(B) · ... 4-13

BCC4-40
BCS4-43
BEQ4-37
BGE 4-45
BGT4-47
BHI4-50
BHIS4-52
BIC(B) , 4-31
BIS(B) 4-32
BIT(B) " .4-30
BlT4-46
BlE 4-48
BlO4-53
BlOS4-51
BMI4-39
BNE 4-36
BPl 4-38
BPT4-65
SR4-35
BVC : 4-40
BVS 4-41

elR(B)4-6
CMP(B)•......... .4-26

. COM(B) " . '" .. 4-7
. eOND.CODES4-75

DEC(B)4-9
DIV 7-16

EMT4-63

HALT ' 4-72

e·l

APPENDIX C

INSTRUCTION INDEX

INC(B)4-8
lOT , 4-66'

JMP4-54
JSR4-56

MARK4-59
MFPD 8-18,10-19
MFPS(11/34) 4-22
MFPI ... , 8-18,10-18
MOV(B)4-25
MTPD ,., ... 8-19,10-20
MTPI , .. 8-19,10-20
MTPS(11/34) , 4-22
MUl 7-15

NEG(B) ,4-10
NOP , . " 4-75

. RESET , 4-74
ROl(B) 4-16
ROR(B)4-15
RT! 4-67
RTS 4-58
RTT4-68

SBC(B) , 4-22
'30B ,4-61
SPl(11/45,55)4-62
SUB 4-28
SWAB 4-17
SXT 4-21

TRAP 4-64
TST(B) , 4-11

WAIT4-73

XOR 4-33

FPP INSTRUCTIONS

ABSD 11-13 MULD 11-24
ABSF ···········.·.····· .. 11-13 MULF 11-24

. ADDD , 11-13
ADDF 11-13 NEGD•............. 11-25

NEGF .: 11-25
CFCC , 11-14
CLRD 11-15 SETD .•.................... 11-26
CLRF 11-15 SETF 11-25
CMPD. , 11-15 SETI 11-26
CMPF 11-15 SETL : 11-26

STCDF ~11-27
DIVD .•.................... 11-16 STCDI 11-28
DIVF 11-16 STCDL 11-28

STCFD 11-27
LDCDF 11-17 STCFI ····· .• ·.·.· 11-28
LDCFD 11-17 STCFL 11-28
LDCID 11-18 STD 11-29
LDCIF 11-18 STEXP 11-29
LDCLD · 11-18 . STF 11-29
LDCLF 11-18 STFPS ...•................ 11-30
LDD , 11-20 STST 11-30
LDEXP 11-19 SUBD 11-31
LDF 11-io SUBF 11-31
LDFPS 11-21

TSTD 11-32
MODD 1.1-21 TSTF 11-32
MODF 11-21

C-2

DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard,
Massachusetts 01754, Telephone: (617) 897-5111
SALES AND SERVICE OFFICES
UNITED STATES-ALABAMA, Huntsville. ARIZONA, Phoenix and Tucson.
CALIFORNIA, EI Segundo, Los Angeles, Oakland, Ridgecres~ San Diego, San
Francisco (Mountain View), Santa Ana, Santa Clara, Stanford, Sunnyvale and Woodland
Hills. COLORADO, Englewood. CONNECTICUT, Fairfield and Meriden. DIS­
TRICT OF COLUMBIA, Washington (Lanham, MD) • FLORIDA, Flo Lauderdale and
Orlando. GEORGIA, Atlanta. HAWAII, Honolulu 0 ILLINDIS, Chicago (Rolling
Moadows) • INDIANA, Indianapolis. IOWA, Bettendorf. KENTUCKY, Louisville.
LOUISIANA, New Orleans (Metairie) • MARYLAND, Odenton. MASSACHUSETIS,
Marlborough, Waltham and Westfield • MICHIGAN, Detroit (Farmington Hills) •
MINNESOTA, Minneapolis. MISSOURI, Kansas City (Independence) and 51. Louis
• NEW HAMPSHIRE, Manchester. NEW JERSEY, Cherry Hill, Fairfield, Metuchen
and Princeton. NEW MEXICO, Albuquerque. NEW YORK, Albany, Buffalo (Cheek­
towaga), Long Island (Huntington Station), Manhattan, Rochester and Syracuse •
NORTH CAROLINA, Durham/Chapel Hill • OHIO, Cleveland (Euclid), Columbus and
Dayton. OKLAHOMA, Tulsa. OREGON, Eugene and Portland. PENNSYLVANIA,
Allontown, Philadelphia (Bluebell) and Pittsburgh • SOUTH CAROLINA, Columbia •
TE N N ESSEE, Knoxville and Nashville • TEXAS, Austin, Dallas and Houston • UTAH,
Salt Lake City. VIRGINIA, Richmond. WASHINGTON, Bellevue. WISCONSIN,
Milwaukee (Brookfield) •
INTERNATIONAL-ARGENTINA, Buenos Aires. AUSTRALIA, Adelaide, Brisbane,
Canberra, Melbourne, Perth and Sydney' AUSTRIA, Vienna. BELGIUM, Brussels.
BOLIVIA, La Paz. BRAZIL, Rio de Janeiro and Sao Paulo. CANADA, Calgary,
Edmonton, Halifax, London, Montreal, Ottawa, Toronto, Vancouver and Winnipeg •
CHILE, Santiago. DENMARK, Copenhagen. FINLAND, Helsinki. FRANCE,
Grenoble and Paris. GERMAN FEDERAL REPUBLIC, Cologne, Frankfurt, Hamburg,
Hannover, Munich, Stuttgart and West Berlin. HONG KONG • INDIA, Bombay.
INDONESIA, Djakarta. IRELAND, Dublin. ITALY, Milan, Rome and Turin. IRAN,
Tohran • JAPAN, Osaka and Tokyo. MALAYSIA, Kuala Lumpur. MEXICO, Mexico
City. NETHERLANDS, Utrecht. NEW ZEALAND, Auckland and Christchurch.
NORWAY, Oslo. PUERTO RICO, Santurce • SINGAPORE. SWEDEN, Gothenburg
and Stockholm. SWITZERLAND, Geneva and Zurich. UNITED KINGDOM, Bir­
mingham, Bristol, Edinburgh, Leeds, London, Manchester and Reading •
VENEZUELA, Caracas.

.'

	0001
	0002
	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	04-74
	04-75
	04-76
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	C-01
	C-02
	xBack1
	xBack2

