
~ chitecture Handbook

digital

The J-11 chipset.

The PDP-11/70 system.

The tradition continues with the J-11 , DIGIT Al's newest high-perform­
ance microprocessor. It offers the architecture, power, and functions
of the PDP-11/70 (the PDP-11 family performance leader) in a single 60-
pin package. The J-11 will form the basis of a new line of DIGITAL
products. These powerful systems will carry the PDP-11 architecture
years into the future.

PDP-11
Architecture Handbook

Copyright© 1983 Digital Equipment Corporation.
All Rights Reserved.

Digital Equipment Corporation makes no representation that the in­
terconnection of its products in the manner described herein will
not infringe on existing or future patent rights, nor do the descrip­
tions contained herein imply the granting of license to make, use,
or sell equipment constructed in accordance with this description.

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsi­
bility for any errors that may appear in this manual.

DEC, DECnet, DECsystem-10, DECSYSTEM-20, DECtape
DECUS, DECwriter, DIBOL, Digital logo, IAS, MASSBUS, OMNIBUS

PDP, PDT, RSTS, RSX, SBI, UNIBUS, VAX, VMS, VT
are trademarks of

Digital Equipment Corporation

This handbook was designed, produced, and typeset
by DIGITA~s New Products Marketing Group
using an in-house text-processing system.

ii

TABLE OF CONTENTS

CHAPTER 1 ARCHITECTURE AND THE PDP-11 FAMll'i
INTRODUCTION 1
THEPDP-11 FAMILY CONCEPT. 3
PDP-11 ARCHITECTURE AND SYSTEM PERFORMANCE. . 5
EVOLUTION OF THE PDP-11 . 6
PDP-11 MILESTONES. 8
EVOLUTION OF THE LSl-11. 11
PDP-11 FAMILY ALBUM. 13

CHAPTER 2 KEY ELEMENTS OF PDP·11 ARCHITECTURE
INTRODUCTION 27
DATA REPRESENTATION. . . . 27
ADDRESSING AND REGISTERS. . . . 28
INSTRUCTION SETS 29
TRAPS AND INTERRUPTS 30
MAPPING TO MEMORY AND SUSSES. 30
PDP-11 BUS STRUCTURES 31
OTHER TOPICS (APPENDICES) 31

CHAPTER 3 PDP:11 DATA REPRESENTATION
INTEGER DATA TYPES 35
CHARACTER DATA TYPES 36
DECIMAL STRING DATA TYPES. . . 38
FLOATING-POINT DATA FORMATS. 49

CHAPTER 4 ADDRESSING MODES
REGISTER MODE 56
REGISTER DEFERRED MODE 57
AUTOINCREMENT MODE. 58
AUTOINCREMENT DEFERRED MODE. 59
AUTODECREMENT MODE 59
AUTODECREMENT DEFERRED MODE 60
INDEX MODE 61
INDEX DEFERRED MODE. 61
USE OF THE PC AS A GENERAL REGISTER. 62
PC IMMEDIATE MODE 63
PC ABSOLUTE MODE. 64
PC RELATIVE MODE 64
PC RELATIVE DEFERRED MODE 65
SUMMARY OF ADDRESSING MODES. . . . 66
GRAPHIC SUMMARY OF PDP-11 ADDRESSING MODES . 69

iii

CHAPTER 5 INSTRUCTION SET
SINGLE-OPERAND INSTRUCTIONS. 73
DOUBLE-OPERAND INSTRUCTIONS 74
BRANCH INSTRUCTIONS. 76
JUMP AND SUBROUTINE INSTRUCTIONS. 77
TRAPS AND INTERRUPTS 78
MISCELLANEOUS INSTRUCTIONS 78
CONDITION CODE OPERATION. 79
EXAMPLES 81
INSTRUCTION SET. 83
SPECIAL SYMBOLS. 83
SUMMARY OF PDP-11 INSTRUCTION SET. 85
TABLE OF THE PDP-11 INSTRUCTION SET 87

CHAPTER 6 PDP-11 FLOATING-POINT
INTRODUCTION 125
ARCHITECTURE i25
OPERATION 126
FLOATING-POINT STATUS REGISTER (FPS). . 127
FLOATING EXCEPTION CODE AND ADDRESS REGISTERS . 131
FLOATING-POINT OPTION INSTRUCTION ADDRESSING . 132
ACCURACY. 133
FLOATING-POINT INSTRUCTIONS 134

CHAPTER 7 COMMERCIAL INSTRUCTION SET
CHARACTER STRING INSTRUCTIONS . 164
DECIMAL STRING DESCRIPTORS. 167
DECIMAL STRING INSTRUCTIONS 168
INSTRUCTION SUSPENSION 172
TABLE OF INDIVIDUAL INSTRUCTIONS. . 174

CHAPTER 8 TRAPS AND INTERRUPS.
PROCESSOR TRAPS . . 211
TRAP INSTRUCTIONS. 212
INTERRUPTS. 215

CHAPTER 9 MAPPING TO MEMORY AND BLISSES
INTRODUCTION 222
CONCEPTS. 222
MEMORY MANAGEMENT. 224
ACTIVE PAGE REGISTERS 230
PHYSICAL ADDRESS CONSTRUCTION . . 235
MAPPING 240

iv

1/0 EXTENDED ADDRESSING
FAULT RECOVERY (STATUS) REGISTERS.

CHAPTER 10 PDP· ii BUS STRUCTURES
INITIALIZATION .
ARBITRATION ..
DATA
MISCELLANEOUS
BUS TIMING .
BUS ERRORS ...

. 248

. 258

. 267

. 268

. 268

. 271

. 271

. 272

APPENDIX A ASSIGNMENT OF ADDRESSES AND VECTORS . A-1

APPENDIX B PDP-FAMILY DIFFERENCES. . B-1

APPENDIX C THE !FIS INSTRUCTION SET. . C-1

APPENDIX D UNIBUS TIMING DIAGRAMS. . D-1

APPENDIX E LSl·11 BUS TECHNICAL SPECIFICATIONS. . E-1

APPENDIX F PROGRAMMING TECHNIQUES F-1

GLOSSARY. . GLOSSARY 1

INDEX INDEX 1

.v

vi

PREFACE

DIGITAL's PDP-11 computer family was launched in 1970. Since that
time, they have enjoyed unparalleled success-DIGITAL has sold
more minicomputers and more 16-bit microcomputers than any other
company. DIGITAL's leadership of the 16-bit marketplace is due to a
number of factors:

• product range
• cost effectiveness
e compatibility

DIGITAL otters you a full range of products to meet your needs: from
chipsets to boards to systems. With this broad product range, we can
meet the needs of your application.

As technologies have improved, DIGITAL has ottered more computing
power in smallef and less expensive systems.

The key concept of the PDP-11 family is compatibility. The software,
the operating systems, the 1/0 systems, and the peripherals are all
largely compatible. The broadly-based compatibility of the PDP-11
family is a function of its common architecture.

The purpose of this book it to explain the architecture of DIGIT:AL's
PDP-11 computers. This book is aimed at two distinct groups of read­
ers: first, those who need to know the technical details of PDP-11 ar­
chitecture; second, those who may be new to computers or inexperi­
enced with PDP-11s and need a tutorial introduction to the PDP-11
family and its architecture.

Those readers in the more technical group may want to read about the
evolution of the PDP-11 and LSl-11 computers, and the PDP-11 Mile­
stones section of Chapter 1. Then, they should refer directly to the
chapter(s) where they have specific questions. Those readers who fre­
quently refer to Table 5-1-lnstruction Set- will appreciate its black
page tabs, which make it easy to find.

Readers who require tutorial information should read all of the first
two chapters, using Chapter 2 as a reference guide. From the brief in·
troductions in Chapter 2, the reader should be able to select those
chapters and appendices of particular interest.

vii

CHAPTER 1

ARCHITECTURE AND THE PDP-11 FAMILY

INTRODUCTION

What is computer architecture?
Before we define computer architecture, let us review some basic
computer terms. A program is a series of instructions that tell a com­
puter how to operate on data. Most programmers today work in a high­
level language such as BASIC, COBOL, or FORTRAN. Programs coded
in these languages must be translated into instructions that the com­
puter can understand. One high-level language statement is translat­
ed (or compiled) into many machine instructions. To have more control
over the computer, and to gain a better appreciation of its operation, a
programmer must use a language that is closer to the machine in­
structions used in the computer. Such a language is called an assem­
bly language.

Each assembly language statement corresponds to one machine in­
struction (an elementary computer operation). The entire group of in­
structions that can be used in assembly language statements is
called the instruction set

Programs access individual data items, manipulate them, and move
them into different areas of the computer. To provide fast, temporary
storage and facilitate operations on these data, the assembly lan­
guage programmer can use a number of locations called registers.

To find data or program instructions, the computer must remove infor­
mation from its main storage area, called main memory. Each memory
location has an address-a number used to find that information loca­
tion. The methods used to arrive at this address are called addressing
techniq~es.

A computer can find out about external events by its interrupt struc­
h.me. This mechanism is also used for making an orderly transition be­
tween programs.

Chapter 1-Architecture and the PDP-11 Family

We have now introduced the main elements of computer architecture:
• Instruction sets
e Addressing techniques
® Registers
® Interrupt structures

These are the tools that the assembly language programmer manipu­
lates to write programs. We can define computer architecture as the
behavior of a computer seen by an assembly language program.

The Importance of a Consistent Architecture
Why is computer architecture so important? When we hear about ad­
vances in the computer industry we usually hear about new technolo­
gies for building faster, smaller and less expensive computers. Tech­
nologies seem to overshadow computer architecture. But the most
advanced computer technologies won't help a programmer if the com­
puter's architecture-the programmer's tool kit-is awkward.

Let's make an analogy to music to illustrate the importance of a con­
sistent architecture. There is a standard architecture for the modern
piano. If you know how to play the piano, you can play any piano, be­
cause the architecture-the keyboard-is standard. Middle C is al­
ways in the same position; the number of keys, their placement, and
their pitch are all specified and standard.

There is great latitude in the construction of pianos using this archi­
tecture, however. Different pianos may produce the same pitch when a
key is struck, but the tone is a function of the construction. A spinet
does not produce the same tone quality as a concert grand piano. This
reflects the woods used in constructing the piano, as well as the size
and shape of the sound board, and other factors. Also, the touch and
action of pianos will vary with the quality of materials and construc­
tion.

What if a manufacturer decided to build an inexpensive electronic pi­
ano? To save production costs, he wants to use buttons instead of the
traditional piano keys. Who will buy his new pianos? By changing the
piano's architecture, he risks losing the market for the millions of
people trained to play the piano.

Just as the manufacturers of pianos are committed to their architec­
ture, so too is DIGITAL committed to its PDP-11 computer architec­
ture.

2

Chapter 1 -Architecture and the PDP-11 Family

Thousands of programmers trained on PDP-11s want to see its proven
architecture maintained as computer technologies advance. Their pro­
grams will run, producing the same results on PDP-11 computers of
different generations, whether built with transistors, or very large­
scale integrated circuits, because the architecture has been main­
tained. When an architecture is maintained, existing programs will not
require recoding; they will run on new machines that are smaller, fast­
er, and cheaper. From a corporate viewpoint, this means major sav­
ings-a company can protect its investment in software while taking
advantage of the latest computer technologies.

THE PDP-11 FAMILY CONCEPT
The PDP-11 family of computers shares a common architecture. They
are all based on a 16-bit word length, a common instruction set, and
the same addressing techniques. They also share the same data man­
agement utilities, the same input/output (1/0) systems, and the same
programming languages. If you have learned to program one comput­
er in the PDP-11 family, you can easily program another member of the
PDP-11 family. The software written for one member of the PDP-11
family will run on other family members. The peripherals and 1/0 sys­
tems for the PDP-11 family are also largely compatible. Because the
PDP-11 family has been around since 1970, its hardware and software
are proven, time-tested, and thoroughly debugged.

DIGITAL has shipped over 300,000 PDP-11 computers since 1970. The
success of the PDP-11 family of computers is a function of their com­
mon architecture that provides compatibility across all models: from
small, single-user, chip-based microcomputers to large minicom­
puters that support timesharing services. By providing its customers
with a clear growth-path to expand their computer systems as their
requirements expand, DIGITAL has built more minicomputers and
more 16-bit microcomputers than any other manufacturer. Within the
PDP-11 family of computers, you can upgrade or extend any DIGITAL
system by adding memory, peripherals, or processors without worry­
ing about major incompatibilities in your computing system. And your
personnel who are already familiar with the PDP-11 environment will
lose no time recoding or learning about another architecture.

Compatibility
DIG!TAL's PDP-11 architecture gives you compatibility. It is your as­
surance that no matter what system you choose or how you decide to
mix and match software, peripherals, or CPUs, you will be using prov­
en products that were designed from the beginning to be part of a fam-

3

Chapter 1 -Architecture and the PDP-11 Family

ily. Your application or your business can grow while continuing to
use existing software. You can start with a small system and migrate
upward to more powerful PDP-11s or eventually choose to build a sys­
tem with one of DIGITAL's super-minicomputers in the VAX-11 series.
Your PDP-11s will function superbly as front ends or as distributed
processing nodes in a VAX-11 environment.

Because of this common architecture, you can match a PDP-11 sys­
tem to your job. A solution can be tailored to your needs, today. As
your workload grows, you can expand your computing capability since
nearly all of the peripherals and software will work with any PDP-11
processor.

Peripherals
Your selection of PDP-11 peripherals is impressive. DIGITAL manufac­
tures a full range of peripheral equipment designed to meet specific
needs as well as to maintain PDP-11 family compatibility. 1/0 and stor­
age devices range from low-cost cassette-tape devices through high­
capacity Winchester disks, and from intelligent, rugged DECwriters
for hard copy, to human-engineered video display terminals. You can
also choose from a variety of peripheral products developed and sup­
ported by third parties. Either way, there is a complete spectrum of
peripheral devices available to complement the software, and provide
the complete answer to customer needs in all market areas: business,
education, industry, laboratory, and engineering.

The DIGITAL Peripherals Handbook and the Terminals and Printers
Handbook describe in detail the optional equipment available for use
with the PDP-11 family members.

Networking
DIGITAL's networking capabilities, both hardware and software, are
unsurpassed in the industry. You can have a mix of PDP-11 systems
doing different jobs, communicating among themselves or with other
DIGIT AL systems or with equipment from other manufacturers.

Software and Operating Systems
The large installed base of PDP-11 computers means that software for
your application will be easy to find. You can choose from proven soft·
ware developed and supported by DIGIT AL or you can choose from
software supported by third parties. An important source of software
is DECUS-The Digital Equipment Computer Users Society. DECUS is
one of the largest and most active user groups in the computer indus­
try, with over 60,000 members world-wide. Membership is free to own­
ers of DIGITAL computers. The DECUS program library contains over

4

Chapter 1 -Architecture and the PDP-11 Family

1700 software packages written and submitted by members and
DIGITAL employees, and available for the cost of media and copying
only.

The PDP-11 family of processors supports a complete range of com­
patible operating-systems:

• realtime multitasking
• multiuser, interactive timesharing

• small and midrange commercial
® multiuser data management

• development and runtime tor microcomputers

For more information about PDP-11 software and operating systems,
see the PDP-11 Software Handbook. It includes a general description
of each operating system, the file structures, and data handling facili­
ties, the user interfaces, the system utilities, and the language proces­
sors supported.

Today's PDP-11 s provide a full product range-from chips to systems
to networks. The differences among the various PDP-11 processors
are primarily internal communications (bus) structure, size, and proc­
essing power. PDP-11 processors support multiple operating systems
so that the right hardware, operating system, and application software
can be combined to meet your exact requirements. The same software
that runs on our smaller, low-priced PDP-11 systems will run on our
larger models.

PDP-11 ARCHITECTURE AND SYSTEM PERFORMANCE
Both the technology and the architecture of a computer system are
important to its performance. The architecture, and particularly the In­
struction Set Processor (ISP) of the PDP-11 family of computers have
been designed with performance in mind. The PDP-11 architecture
makes it possible to perform more functions with fewer instructions.
This means that comparing the instruction execution speeds of com­
puters from different vendors may be misleading. Even though a proc­
essor may execute individual instructions more slowly, it may execute
an application more quickly because its instructions are more power­
ful. More powerful instructions give PDP-11 computers a significant
advantage.

Several factors affecting performance were incorporated into the PDP-
11 architecture:
o Bit efficiency

5

Chapter 1 -Architecture and the PDP-11 Family

• Simple, yet powerful instruction set
• Addressing capability

A bit-efficient architecture allows the computer to execute an algo­
rithm with fewer instructions bits. Bit efficiency is a function of the
number of bits in the instruction word and the number of operations
performed for each instruction. A computer with a large instruction
word may be more bit efficient than a computer with a small instruc·
tion word if the computer can do an equal number of operations with
far fewer instructions.

The benefits of bit efficiency are small program size and high execu­
tion speed. Programs can be smaller because fewer bits are needed to
perform a given operation. Compact programs are more likely to fit
into high-speed, on-board memory. Also, fewer memory references are
required to fetch program instructions.

The PDP-11 instruction set is powerful, yet simple to use and learn. It
lets the programmer address different data types the same way. To
save memory space and simplify control and communications, PDP-11
instructions allow byte and word addressing. Another mechanism for
saving memory space and program code is the ability of single in­
structions (with double operands) to perform several operations. A full
set of conditional branch instructions foster structured programming
by helping avoid the use of jump instructions.

The PDP-11 architecture has an elegant addressing capability that is
flexible and simple. It uses the same instruction to address a proces­
sor register, main memory, or an 1/0 device. No distinction is made be·
tween data and address locations, even in the processor registers.
This can be helpful when manipulating arrays, for example. In a sys­
tem with dedicated data and address registers, an array subscript
must often be created in data registers before it can be copied to ad­
dress registers to access the operand. This transfer from data to ad­
dress requires additional program code which can reduce system per­
formance. DIGITAL's PDP-11 addressing modes avoid this problem.

EVOLUTION OF THE PDP-11
For the past 25 years, DIGITAL has refined the PDP-11 computer fami-

. ly. We have reduced the size and cost of new family members that pro·
vide the performance and functions usually found only in much more
expensive computers. The PDP-11 family grew out of experience with
the PDP-8-DIGITAL's first mass-produced minicomputer. The PDP·
8-a 12-bit, single-address computer-was originally designed for
process-control and laboratory applications. It was also used for mes-

6

Chapter 1 - Architecture and the PDP-11 Family

sage switching and other realtime applications. The PDP-8 pioneered
the idea of using a minicomputer for small, general-purpose time­
sharing.

The first PDP-8 system was shipped in April 1965. Within 15 years, over
50,000 PDP-8 family computers were produced, and the design was im­
proved ten times to use the latest technologies.

Out of the PDP-8 experience, DIGITAL engineers planned the next gen­
eration of minicomputers-the PDP-11 family-around these fea­
tures:

• growth path within the family
o ease of programming

• faster interrupt handling

• more registers
• byte and string handling

• more physical memory
• flexible addressing modes
11> support for applications based in read-only memory (ROM)

• better 1/0 processing

Growth Path-The PDP-11 family succeeded in this area beyond the
goals of the original design group. Counting the VAXJVMS with PDP-11
compatibility mode, there are now twenty members of the PDP-11 fam­
ily. The PDP-11 family offers a range of performance and mem­
ory-with compatibility-unprecedented in the industry.

Ease of Programming-The compatibility of PDP-11 family processors
makes it very easy to switch from one processor to another.

Faster intermpt Handlling-This problem was solved by the UNIBUS
interrupt vector design. This fast mechanism requires only four mem­
ory cycles from the time an interrupt request is issued until the first
instruction of the interrupt routine begins execution. This fast context
switching gives 16-bit PDP-11 computers better real time performance
than some 32-bit computers.

Mo~® Register~-Other minicomputers had skimped on registers; the
PDP-11 architecture called for eight 16-bit registers. Later, six 64-bit
registers were added as accumulators for floating-point arithmetic.

Byte sind Stwing Handling-The PDP-11 architecture provided for di­
rect byte addressing from the beginning. In 1977, string handling was
added with the Commercial Instruction Set (CIS).

7

Chapter 1 -Architecture and the PDP-11 Family

More Physical Memory-As the PDP-11 family outgrew the original 16-
bit address space, memory management was added, allowing 22-bit
addressing (up to four Mbytes).

Flexible Addressing Modes-The PDP-11 architecture uses the au­
toincrement/autodecrement addressing mechanism in lieu of a hard­
ware stack. This successful PDP-11 solution has been widely copied
in the industry.

Provision for ROM-PDP-11 s make extensive use of read-only memo­
ries for bootstrap loaders, program debuggers, and simple functions.
Most code written for PDP-11s is reentrant without special effort by
the programmer.

Better 1/0 Processing-The PDP-11 's improved interrupt structure
greatly enhances its 1/0 capabilities. The LSl-11 Bus includes block
mode data transfer to reduce CPU overhead during 1/0. All PDP-11
family computers provide Direct Memory Access (DMA) for high-priori­
ty communications with memory.

The design goals of the PDP-11 engineers were not all realized with
their first production model. The PDP-11 architecture provided a solid
foundation for family growth. As you can see from the list that follows,
the PDP-11 architecture was extended by new instruction sets for
floating point and commercial applications. PDP-11 processors were
reengineered to have better performance, smaller packaging, and
more attractive prices.

PDP-11 MILESTONES

1970
•UNIBUS

Byte (8-bit) or word (16-bit) addressing
- Consistent addressing
- Interrupt capabilities

• Extended Arithmetic Element (EAE)--hardware multiply and divide
e Eight General Purpose Registers (GPRs)

1972
• Floating-point processor

6 registers
- 46 instructions

• Fastbus (PDP-11/45)

8

Chapter 1 - Architecture and the PDP-11 Family

• Memory Management (KT11 C)

• Fully protected multiprogramming with three access modes:
Kernel
Supervisor
User

• Second set of GPRs for a total of 16 (PDP-11/45)

• Programmed interrupt request

1973
• Extended Instruction Set (EIS) for multiply and divide

• Floating Instruction Set (FIS)

1975
• LSl-11 "computer-on-a-board" ·-first 16-bit microcomputer
• 22-bit addressing for processor, peripherals (PDP-11/70)

• 32-bit wide OMA bus (PDP-11/70)

1976
• Fast, all bipolar memory (PDP-11/55)

1977
• LSl-11/2 offers LSl-11 performance in half the space (a double-

height board 5.2 x 8.5 inches or 13 x 22 cm)

• Commercial Instruction Set (CIS):
Character sets and strings
Packed and zoned decimal strings
Variable length strings

• Writable Control Store (WCS) extends function code to invoke user­
written microcode (PDP-11/60)

@Remote diagnosis (PDP-11/70)

1978
e Virtual Address eXtensions (VAX)-a 32-bit super-minicomputer in­

cluding PDP-11 compatibility mode

9

Chapter 1 - Architecture and the PDP-11 Family

1917!~
111 LSl-11/23 offers 2.5 times the operating speed of the LSl-11/2 in the

same board area

1980
® PDP-11/44 offers new levels of performance in its price range:

Winchester disk support
- Up to four Mbytes of main memory

1981
• FALCON SBC-i 1/21--designed tor dedicated, ROM-based, real-time

applications--is the smallest 16-bit single-board microcomputer in
the industry

• LSl-11/23 offers memory management--22-bit addressing of up to
four Mbytes of main memory--and RSX-11 M support tor realtime ap­
plications

• PDP-11/23 PLUS supports up to one Mbyte of parity MOS memory
- Supports RSX-11M-PLUS
- CIS option for COBOL-81

111 PDP-11/24--the newest and smallest UNIBUS processor
Supports up to four Mbytes memory

- Winchester disk support

1982
• Professional 300 series personal computers

Based on PDP-11 architecture
Multitasking operating system
Software development on PDP-11 s or V AXs

• MICRO/T-11--DIGITAL's first 16-bit microprocessor on a single 40-
pin chip

- PDP-11 instruction set

• MICRO/J-11 offers the performance of the 11/70 in a 60-pin pack­
age

On-chip memory management addresses up to 4 Mbytes
46 floating-point instructions standard

iO

Chapter 1 -Architecture and the PDP-11 Family

• MICRO/PDP-11--for customers who need a low-cost, Winchester­
based, PDP-11 system

10 Mbyte Winchester system disk
- All PDP-11 software available

EVOLUTION OF THE LSl·11

introduction
In recent years, minicomputers have been adapted to a wide variety of
applications. They have displaced larger computer systems in many
traditional markets. At the same time, they have opened up many new
markets, primarily because of their low cost, small size, and ease of
use. Still, in spite of this remarkable success, minicomputers are not
without competition.

In cost-sensitive areas, the minicomputer is being eased out of its
dominant position by a new generation of VLSI (Very-Large-Scale Inte­
gration) microcomputers. These new "processors on a chip" have
found a warm reception from designers seeking inexpensive comput­
ing power. That warm reception sometimes cools, however, when the
user finds himself with a collection of components, instead of a com­
plete computing system. The discovery that he is largely on his own
when it comes to software and debugging support has a similarly
chilling effect. The entry into the world of programming PROMs, using
FORTRAN cross-assemblers and simulators, and writing even simple
software routines from scratch can be a traumatic experience indeed.
Still, the advantages of LSI microcomputers are very real, and many
users have found the difficulties worthwhile. However, some users
wonder why they cannot have the best of both worlds: the low cost
and small size of the microcomputer, and the ease of software devel­
opment and performance of the minicomputer systems with which
they are familiar.

Therefore, the appearance of new LSI microcomputer systems that are
fully compatible wi'lh a line of 16-bit minicomputers was a significant
event. The first of these new microcomputers was the DIGITAL LSl-11,
a complete 4K PDP-11 on a 21.6 X 26. 7 cm (8.5 X 10.5 inch) board.
Priced to compete with other LSI microcomputers, it ottered true mini­
computer performance with the highest levels of support. While not
intended to be yet another low-end minicomputer, the LSl-11 brought
many minicomputer strengths to its new microcomputer applications.

To provide minicomputer performance at a microcomputer price, the
lSl-11 was designed to optimize system costs, rather than component
costs. A one-chip central processor, then, was not necessarily superi-

11

Chapter 1 - Architecture and the PDP-11 Family

or to a tour-chip one--the choice was made on the basis of total sys­
tem cost and performance. On this basis, a microprogrammed proces­
sor was selected, permitting the inclusion of features like a "zero
cost" realtime clock and automatic dynamic memory refresh. The
built-in ASCII programmer's console was also made feasible by the
microprogramming feature.

Awareness of system costs and performance were the primary motiva­
tions in designing the LSl-11. System issues included:

• Cost of ownership
• Ease of interconnection
@ Preservation of customer's training and software investment
• Availability of proven peripherals and software

All these issues dictated PDP-11 compatibility. The LSl-11 microcom­
puters use the PDP-11 architecture, including the PDP-11 instruction
set and addressing modes. They use a bus structure based on the
PDP-11 UNIBUS, but smaller and less expensive-the LSl-11 Bus.

DIGITAL's next advance in LSI technology was the LSl-11/2, which of­
fered the performance of the LSl-11 in one half the board size. The LSl-
11/23 maintained the LSl-11/2's board size but more than doubled its
operating speed. Next came the FALCON Single Board Computer
(SBC-11/21), which was the industry's smallest 16-bit computer on a
board.

Recent Trends in PDP-11/LSl-11 Development
The most recent announcements in the LSl-11/PDP· 11 family have
focused in three areas: personal computers, chipsets, and microcom­
puter systems. DIGITAL's range of personal computers extends from
the-powerful, PDP-11 based Professional 300 series to word process­
ing and accounting with the DECmate II and to systems running indus­
try-standard software with the Rainbow 100. (DECmate II and Rainbow
100 are not PDP-11 - based products.)

DIGITAL's 16-bit chipset offerings provide levels of price and perform­
ance to meet any application. From the low-cost MICRO/T-11 micro­
processor in a 40-pin chip, to the ultimate in 16-bit, single-pack­
age microprocessor performance--the MICRO/J-11.

DIGITAL is also presenting a family of systems between the personal
computers and the LSl-11/PDP-11 computers--the MICRO/PDP-11. An
aggressively-priced member of our proven PDP-11 family, the multi-

12

Chapter 1 -Architecture and the PDP-11 Family

user MICRO/PDP-11 features compact microcomputer packaging for
the office environment. The single-user MICRO/PDP-11 is optimized
for the technical environment.

Future Directions
The evolution of PDP-11 systems offers a striking demonstration of
the impact of technology and architecture on a computer family.
While maintaining a consistent architecture, PDP-11 computers have
incorporated increasingly sophisticated technology to provide better
performance at lower cost. DIGITAL is continuing to develop its 16-bit
products. We will continue to lead this market by lowering the cost
and extending the range of PDP-11 computing. Simplicity and reliabili­
ty of design will continue to lower our cost of ownership.

THE PDP-11 FAMILY ALBUM
DIGITAL is the only major vendor to sell products with compatible
hardware and software at the chip, board, box, and system levels. The
latest generation of PDP-11 family members are described in this sec­
tion. Products are divided into these categories:

e Microprocessor chipsets

• Microcomputer boards

• Personal computers
e Microcomputer systems

• Minicomputer (UNIBUS) systems

Chipsets

The MICROIT-11 is DIGITAL's first single-chip microprocessor. This
chip complements DIGITAL's board, box, and system products by of­
fering customers any level of integration. The MICRO/T-11 is a 16-bit
microprocessor in a 40-pin chip. Through the use of a programmable
mode register, MICRO/T-11 can be adapted to a wide variety of appli­
cations. By selecting either static or dynamic memory and either 8-bit
or 16-bit mode, the designer determines the functions of mode-de­
pendent pins. OEMs will find DIGITAL's MICRO/T-11 chip products to
be a solution that meets size requirements while utilizing the PDP-11
base-level instruction set and powerful interrupts. The ability to mi­
grate from PDP-11 products down to the chip level is an advantage for
designers familiar with the PDP-11 instruction set and development
tools. Key features include:
• 16-bit microprocessor in a single 40-pin chip

• Selectable 8-bit or 16-bit data bus

13

Chapter 1 -Architecture and the POP-11 Family

• Dynamic RAM refresh capability

• PDP-11 instruction set and addressing modes

Figure 1-1 The MICRO/T-11 Chip

The MICRO/J-11 offers the performance and architecture of the PDP-
11/70 in a single 60-pin package. Based on CMOS technology, the Ml­
CRO/J-11 has 16-bit 1/0, a 32-bit internal data path, and can address up
to 4 Mbytes of memory with on-chip memory management. The Ml­
CRO/J-11 implements the full PDP-11 instruction set including hard­
ware multiply/divide (EIS), FP11 floating-point (46 instructions), and
MICRO Online Debugging Task (ODT). Key features include:

• 16-bit 1/0
• 32-bit internal data path

•On-chip memory management to address up to 4 Mbytes memory
• Full PDP-11 instruction set

• 46 floating-point instructions standard

• Extended instruction set standard

14

Chapter 1 - Architecture and the PDP-11 Family

Figure 1-2 The MICRO/J-11 Chipset

Boards

The LSl-11/23 offers 2.5 times the operating speed of the LSl-11/2 in
the same board area. The LSl-11/23 approaches the performance of
mid-range minicomputers in a single board. Its 22-bit addressing capa­
bility lets the LSl-11/23 address four Mbytes of main memory. Its com­
prehensive memory management feature provides memory relocation,
segmentation, and protection for this extended address range. Key
features include:

• Extended LSl-11 Bus for 22-bit addressing
• RSX-11 M-PLUS support for real time applications

• Full memory management

The FALCON SBC-11/21--the smallest 16-bit single-board microcom­
puter in the industry--was designed for dedicated, ROM-based, real­
time applications. The FALCON offers more on-board RAM and ROM
memory than any other DIGITAL microcomputer. It features two asyn­
chronous serial 1/0 ports with eight programmable baud rates, 24 par­
allel 1/0 lines, and a crystal-controlled realtime clock. The FALCON
packs all this computing power onto a 44 square inch board. Key fea­
tures are:
• Most on-board RAM and ROM of any DEC microcomputer

• Two asynchronous serial 1/0 ports (selectable baud rates)
• 24 parallel 1/0 lines

• Crystal-controlled realtime clock

15

Chapter 1 -Architecture and the PDP-11 Family

Figure 1-3 The LSl-11/23 Board

Figure 1-4 The FALCON SBC-11/21 Single Board Computer

16

Chapter 1 - Architecture and the POP-11 Family

Personal computers

Recently, DIGITAL introduced a complete range of personal comput­
. ers:

• Professional 300 series with multitasking operating system and
software development on PDP-11 s or V AXs

• DECmate II for word processing and general accounting
• Rainbow 100 for CP/M rM applications

CP/M is a trademark of Digital Research, Inc.

The Professional 300 series are full-fledged members of the PDP-11
family. The microprocessor chip used in the Professional 325 and 350
is the F-11, the same chip used in the LSl-11/23 and the PDP-11/
23 PLUS. This gives the user true minicomputer performance in a
desktop personal computer. As a PDP-11 family member, the Profes­
sional 300 personal computers incorporate the RSX-11M-PLUS opera­
ting system into their operating system. The Professional 300 person­
al computers can transfer files to any DIGITAL computers running
RSX-11M, RSX-11M-PLUS, or VAX/VMS (using optional communica­
tions software). Also, applications for the Professional may be devel­
oped on a PDP-11 or VAX host system for debugging on the Profes­
sional 350. The Professional computers are very easy to use, thanks to
their menus, help service, file and disk services, and editor. The op­
tional Telephone Management System for the Professional 350 allows
automatic personal and computer-to-computer dialing.

Figure 1-5 The Professional 350 Personal Computer

17

Chapter 1 -Architecture and the PDP-11 Family

Micm©@mputer systemli\

The MIC!i0/PDP·11 is a system for technical and commercial custom­
ers who need more performance than a personal computer, but lower
cost than an LSl-11 or PDP-11 system. Unlike typical desktop micro­
computer systems, the MICRO/PDP-11 provides ample performance to
handle small business, departmental, or technical applications. it
shares much of the hardware and software found in DIGITAL's larger
minicomputer systems. A full-fledged PDP-11 processor, the MICRO/
PDP-11 is based on the PDP-11/23 PLUS processor. It includes a 10
MByte, 5% inch (13.1 cm) Winchester disk and 800 Kbyte, dual 5%
inch dual diskette subsystem for backup and media interchange.

Users can choose from a wide range of PDP-11 operating systems to
match their needs-RSTS/E, RSX-11M-PLUS, CTS-300, RT-11, Micro­
Power/Pascal, UNIX'", and DSM-11.
UNIX is a trademark of Bell Laboratories.

The powerful PDP-11/23 PLUS CPU supports full 22-bit, 4 Mbyte ad­
dressing, which means that large applications will run on the MICRO/
PDP-11. For extra computing power in specialized applications, two
optional microcoded chips are available: one for floating-point data,
and one for the Commercial Instruction Set (CIS). For even faster float­
ing-point performance,a separate floating-point processor is avail­
able.

Attractive packaging in three configurations-table top, floor stand,
and rack mount-allow wide flexibility of installation. Its modular con­
struction permits easy assembly and disassembly with simple tools.

Unlike most microcomputer systems in its price range, the MICRO/
PDP-11's communication capabilities are extensive and can easily be
enhanced to match the growth of a business. The MICRO/PDP-11 can
be fully integrated into a distributed processing environment utilizing
DECnet hardware and software.

Key features of the MICRO/PDP-11 include:
© 10 Mbyte Winchester system disk
1.i 800 Kbytes in dual floppy diskettes
ci All PDP-11 software available
• PDP-11/23 PLUS CPU quad module with:

full memory management
line frequency clock
two serial Ii nes
user-friendly boot/diagnostics

® Floating-point and CIS options

18

Chapter 1 - Architecture and the PDP-11 Family

Figure 1-6 The MICRO/PDP-11 System

The PDP·11/23 PLUS gives minicomputer performance at a microcom­
puter price. Its 22-bit addressing supports up to one Mbyte of parity
MOS memory (although it ca:n address four Mbytes). A Commercial In­
struction Set option, designed to work with COBOL 81, is standard on
commercial systems. A microcoded floating-point option increases
computational speed, and if your application demands more, a hard­
ware floating-point option provides even greater performance. The
system distribution panel makes installation or relocation easy. The
PDP-11/23 PLUS is available with a wide assortment of peripherals, in­
terconnect options, video and hardcopy terminals, and a broad choice
of system software to fit your applications.

The compatibility of DIGITAL software from the most powerful PDP-11
system downward to the least expensive means that PDP-11/23 PLUS
users can run the RSX-11 M-PLUS, RSX-11 M, and RSTS/E operating
systems used on the most powerful PDP-11 s, as well as RT-11. And
users can work with the same command language, the same query
and report writer, and the same forms manager used on larger PDP-
11s.

DECnet Phase Ill features-adaptive routings, multidrop terminal sup-

19

Chapter 1 - Architecture and the PDP-11 Family

port, and network command terminals-are available on the PDP-11/
23 PLUS.

These features make the PDP-11/23 PLUS an ideal candidate for dis­
tributed processing applications in which it can serve as a departmen­
tal computer running four to six local terminals. The PDP-11/23 PLUS
can communicate with a corporate, divisional, or plant host system
through DECnet or through DIGITAL's lntemet software that links it
with non-DIGITAL computer systems.

Although DIGITAL will install it for you, you can save money by instal­
ling the PDP-11/23 PLUS yourself.

Key features of the PDP-11/23 PLUS include:

• Extended LSl-11 Bus for 22-bit addressing
• RSX-11 M-PLUS support for real-time applications

• Full memory management

• CIS option for COBOL-81

Figure 1-7 The PDP-11/23 PLUS System

20

Chapter 1 -Architecture and the PDP-11 Family

Minicomputer (UNI BUS) systems
The PDP-11/24--the newest and smallest UNIBUS processor offers mi­
drange capacity at a smal I-system price. The PDP-11/24 uses LSI tech­
nology to provide better performance and memory management capa­
bilities previously available only on larger PDP-11 systems. The 22-bit
addressing allows users to address up to 4 Mbytes of main memory
permitting more resident tasks, more users, and faster response.

Designed for compactness and reliability, the entire CPU fits on a sin­
gle board. And the PDP-11/24 is the smallest system that supports
UDA50/RA80 Winchester disk technology.

With Winchester technology, very reliable, high-density, nonremov­
able RASO disks provide 121-Mbyte storage capacity. The UDA50 UN­
IBUS disk controller optimizes disk requests so that the hardware au­
tomatically schedules requests to multiple RA80s, and handles
complete error recovery and buffering between the device and the sys­
tem.

In addition to its impressive disk throughput performance, the RA80's
average .seek time is exceptional for a product in its price and capacity
range.

A microcoded floating-point option for the PDP-11/24 increases com­
putational speed, and if your application demands more, a hardware
floating-point option provides even greater performance. A Commer­
cial Instruction Set option, designed to speed the compilation and ex­
ecution of COBOL 81, is standard on commercial systems. Key fea­
tures of the PDP-11/24 include:
• Supports up to four Mbytes memory
• Single-board CPU
@ Winchester disk support
@ CIS and floating-point options

The PDP-11/44 offers new levels of performance in its price range. Its
outstanding features include a high-speed CPU that can access up to
four Mbytes of main memory_ A large, eight-Kbyte cache memory with
a 275-nanosecond cycle time accelerates program execution and in­
creases system throughput. In addition, the cache helps isolate main
memory from CPU fetches, making more 110 bandwidth available to
direct memory access (OMA) devices.

The PDP-11/44 meets rigorous reliability and maintainability stand­
ards. Its Error Checking Code (ECC) memory detects and corrects er­
rors. A built-in microprocessor controls the ASCII console, provides
extensive system diagnostics, and can control a dual TU58 cartridge

21

Chapter 1 - Architecture and the PDP-11 Family

Figure 1-8 The PDP-11/24 System

tape subsystem for loading diagnostic programs should the standard
load medium be unavailable, System cabling and mounting are de­
signed for easy access. Remote diagnosis allows problems to be pin­
pointed quickly, and the correct replacement parts to be dispatched.

Because disk performance can play a key role in a computer's overall
performance, particularly in those applications when 1/0 is large in re­
lation to the amount of computation, the PDP-11/44 supports the new
DIGITAL Storage Architecture (DSA). The DSA describes new disks, an
intelligent controller, connections, and software protocols for attach­
ing to DIGITAL systems. The disk subsystems of the DSA feature:

• Low cost of ownership per megabyte

• More data storage per square foot of floor space

• Choice of Winchester or removable disks

• Optimized 1/0 throughput

• Industry's most comprehensive data integrity features

• High availability

22

Chapter 1 - Architecture and the PDP-11 Family

Figure 1-9 The PDP-11/44 System

The high performance of the DSA disk products is due both to the
technology of the disks themselves and to their intelligent controller,
the UDA50. It interfaces DSA disk subsystems to the UNIBUS, and
supports up to four disk drives, connected radially. The UDA50 con­
tains a high-speed, 16-bit processor that can handle data rates up to 3
Mbytes per second. The UDA50 permits high-density recording by pro­
viding powerful error correcting. It unburdens the host system of the
overhead associated with error handling and 1/0 throughput optimiza­
tion. Its seek ordering algorithm minimizes seek distances, reduces
seek latency, and provides substantial throughput improvement over
first-in-first-out (FIFO) servicing. The UDA50 permits overlapped
seeks, initiating simultaneous seek operations to all disks with 1/0 re­
quests to reduce effective seek time in multi-drive subsystems. It al­
lows one disk to transfer data concurrently with ongoing operations
on other disks.

The DSA disk drives that are supported by the UDA50 include:
• RAB0-121 Mbyte fixed media

• RA60-205 Mbyte removable media
• RA81-456 Mbyte fixed media

23

Chapter 1 -Architecture and the PDP-11 Family

The fixed-media of the RASO and RA81 disk drives incorporate Win­
chester technology. The high density surfaces of the Winchester disk
drives are accessed by twin heads which improve access time and
permit the· transfer of more data per seek operation. The sealed head
disk assembly results in a virtually contaminant-free environment with
significantly greater reliability.

The PDP-11/44 systems support the optional Commercial Instruction
Set, and an optional floating-point processor. A 64-Kbyte chip memory
is included on larger configurations, and is optionally available on oth­
ers.

PDP-1i/44 systems are available with a full complement of mass stor­
age and interconnect options, and a wide choice of system software ..

Key features of the PDP-11/44 include:
• Winchester disk support
• Up to four Mbytes of main memory

• Reliability and maintainability features

• Eight-Kbyte cache memory with 275-nanosecond cycle time

24

25

26

CHAPTER 2

KEY ELEMENTS OF PDP-11 ARCHITECTURE

INTRODUCTION
This chapter is a brief introduction to the main elements of PDP-11 ar­
chitecture. As we introduce each topic in this chapter, we will refer
you to a specific chapter for details. Key elements of PDP-11 architec­
ture include:
• Data representation
111 Addressing and registers
•The PDP-11 instruction sets

• Traps and interrupts
• Mapping of memory and busses

• PDP-11 bus structures

DATA REPRESENTATION
The PDP-11 architecture accommodates a variety of data types, which
may be separated into categories according to the groups of instruc­
tions that manipulate them_ They are:

• Integer data
• Floating point data
<"> String data

Integer data types are manipulated by the basic PDP-11 instruction
set. The string data types are manipulated by the Commercial Instruc­
tion Set, which is offered as an option on some PDP-11 processors.
Floating-point data types are manipulated by the Floating-Point In­
struction Set (FP-11) which runs on a Floating-Point Processor (FPP).
An FPP may be either a separate processor or a microcode option.

Data representation is treated in detail in Chapter3_

integer dla~a types include 8-bit bytes and 16-bit words. Integer data
types are stored in memory in binary form, which is represented entire­
ly in ones and zeroes. (Computers use binary representation because
it is simple: a one can be represented by the presence of a charge or a
switch set on, while a zero can be the absence of charge or a switch
set off. Thus, a large number could be represented by a series of
switches set on or off to represent binary digits.) In an integer data
word or byte, the leftmost, or most significant bit (MSB) can be used as
a sign bit. The MSB is always zero for positive values and one for nega­
tive values.

27

Chapter 2- Key Elements of PDP-11 Architecture

F~rolill~ing point data are the computer's way of handling very
large or small numbers. They represent approximations to quantities
using a scientific notation consisting of a sign, the exponent of a pow­
er of two, and a fraction between .5 (inclusive) and 1.0 (exclusive). The
FP11 instruction set provides two types of floating point data, one 32-
bits long and the other 64-bits long. The 32-bit data are called single­
precision floating, or just floating; the 64-bit data are called double­
precision floating or just double.

The instructions that manipulate floating point data are explained in
Chapter6.

String data types may be divided into two categories:

• Character string data

• Decimal string data

Character string data have their own data type in the Commercial In­
struction Set (hereafter called CIS). A character string consists of a
contiguous sequence of bytes in memory specified by beginning ad­
dress and length. This data type is useful when representing names,
data records, or text. The manipulations done on character strings in­
clude copying, searching, concatenating, and translating. A character
string that contains ASCII codes for decimal digits is called a numeric
string.

The CIS is treated in detail in Chapter 7.

Decimal string data have two data types: numeric strings and packed
strings. Both have similar arithmetic and operational properties; they
differ primarily in their representation of signs and the placement of
digits in memory. Decimal strings are used to represent numbers in
decimal form (which may not be used for computation), as opposed to
binary integer form.

ADDRESSING AND REGISTERS
Within the processor there are locations called general purpose regis­
ters (GPRs) that can be used for temporary data storage, addressing,
and as accumulators during computations. Eight 16-bit general pur­
pose registers are available for use with the PDP-11 instruction set,
but some of these registers have special uses. For example, one regis­
ter is designated the Program Counter (PC); another is the Stack
Pointer (SP).

Any operation performed by the computer can be specified by an in­
struction. Each instruction specifies:

• Function to be performed (operation code)
• General purpose register to be used in locating the.data (operand)

28

Chapter 2 - Key Elements of PDP-11 Architecture

• Addressing mode to specify how the registers are used

The datum being manipulated by an instruction is called the instruc­
tion operand. An instruction operand can be located in main memory,
in a general register, or in the instruction itself. The method for speci­
fying an operand's location is called the operand addressing mode.
These addressing modes use the registers in a variety of ways to lo­
cate the operand or its address. Addressing and registers are ex­
plained further in Chapter 4_

INSTRUCTION SETS
There are three instruction sets available on PDP-11 processors:

• PDP-11
a Floating-point

• Commercial

The PDP-11 instruction set is standard on all PDP-11 family proces­
sors; the Commercial Instruction Set and the Floating-Point Instruc­
tion Set are optional on certain processors.

PDP-11 Instruction Set
The PDP-11 instruction set offers a wide selection of operations and
addressing modes. There are seven categories of PDP-11 instructions:

• Single-operand
e Double-operand

•Branch
<11 Jump and Subroutine

•Trap
9 Miscellaneous

• Condition code

To save memory space and simplify control and communications,
PDP-11 instructions allow byte and word addressing in both single-op­
erand and double-operand formats. Double-operand instructions let
you perform several operations with a single instruction. Branch,
jump, and subroutine instructions each provide a means tor diverting
program flow to a specified location. Trap instructions specify anoth­
er form of change in program flow, but to a predetermined location.
Condition code instructions set or clear the condition codes (four bits
in the Processor Status Word [PSW] indicating the results of previous
instructions).

29

Chapter 2 - Key Elements of PDP-11 Architecture

See Chapter 5 for more information on the PDP-11 instruction set.

F~oating"Point lnstrw:::tio11 Sei
Floating point data types are manipulated by the Floating-Point In­
struction Set (FP-11), which runs on an optional floating-point proces­
sor, which may be either a separate processor or microcode. (A micro­
coded floating point processor is standard on the J-11 chipset.)

The Floating-Point Instruction Set is described in Chapter 6.

Commercial Instruction Set
COBOL processing makes extensive use of string data types, which
are manipulated by the Commercial Instruction Set (CIS). The CIS is
offered as an option on some PDP-11 processors.

The CIS is discussed in Chapter 7.

TRAPS AND INTERRUPTS

Processor Traps
PDP-11 processor traps are triggered by power failures and certain
hardware and software errors. Processor traps protect the pro­
grammer and the processor. They save the current PC and Processor
Status Word (PSW) and pass control to a trap-handling routine. This
saves the programmer work. They also protect the processor and the
operating system, if the programmer inadvertantly codes an illegal in­
struction, or an instruction which might violate the integrity of the op­
erating system. A trap causes the processor to execute instructions
pointed to by a certain permanently assigned address. Trap instruc­
tions are used to make an orderly transition to the trap routine and
save the context of the CPU.
lntem..1pts
Interrupts are used by certain system devices to reduce their wait for
CPU service. PDP-11 processors offer the programmer fast interrupt
handling. Only four memory cycles are required from the time an inter­
rupt request is issued until the first instruction of the interrupt routine
begins execution. By using interrupts, the processor is relieved of
doing routine control functions for peripheral devices. Instead, the
processor can ignore the peripheral, which may be reading a tape or
doing some time-consuming operation, until the peripheral is finished
and has data ready for the CPU. Then the device will use an interrupt
to get the CPU's attention before it can execute the next instruction.

Traps and interrupts are examined in Chapter 8.

MAPPING TO MEMORY AND BLISSES
Memory management matches the virtual addresses generated by the

30

Chapter 2 - Key Elements of PDP-11 Architecture

CPU with physical addresses in memory and with physical 1/0 bus ad­
dresses. It also protects operating system software and shared
routines from modification and allocates protected memory space for
each user. The UNIBUS map is a hardware device separate from the
memory management unit. The UNIBUS map converts 18-bit UNIBUS
addresses to 22-bit memory addresses. There is no map on the extend­
ed LSl-11 Bus. Processors and peripherals can generate and present
22-bit addresses directly to the extended LSl-11 Bus.

Memory management and bus mapping are described in Chapter 9.

PDP·11 BUS STRUCTURES
The two PDP-11 physical 1/0 busses-the UNIBUS and the LSl-11
Bus-are both covered in Chapter 10. The brief, tutorial overview of
the UNIBUS and LSl-11 Bus found in that chapter is augmented by ap­
pendices that contain timing diagrams and technical specifications.

UNIBUS
The UNIBUS, DIGIT Al's unique data bus, was the first data bus in the
history of the minicomputer industry to enable devices to send,
receive, or exchange data without processor intervention or intermedi­
ate buffering in memory. The UNIBUS forms the hardware and soft­
ware backbone of the PDP-11/24 and PDP-11/44 processors. Memory
elements on the UNIBUS have ascending addresses starting at zero,
while registers storing 1/0 data or the status of individual peripheral
devices have addresses in the highest 8 Kbytes of addressing space.
Peripheral devices may have one or more addresses.

LS!·11 Bus
The LSl-11 Bus is the low-end member of DIGITAL's bus family. Most
DIGITAL microcomputers use the LSl-11 Bus or the extended LSl-11
Bus. The LSl-11 Bus operates very much like the UNIBUS, but to make
it more cost-effective for microcomputer applications, it has fewer sig­
nal lines. Both the LSl-11 Bus and the UNIBUS are treated in Chapter
10.

OTHER TOPICS (APPENDICES)
Other topics related to PDP-11 architecture are included in appen­
dices. The topic of each appendix is listed and briefly discussed be­
low.
Assignme11~ of Bus Addresses and Vectors
Appendix A covers both the LSl-11 Bus and the UNIBUS. Topics cov­
ered include:

1t 1/0 Page Device Addresses

31

Chapter 2 - Key Elements of PDP-11 Architecture

• Interrupt and Trap Vectors
• Priority Ranking for Floating Vectors

• Floating CSR Address Devices
• Device Addresses

PDP-11 Family Differences
Appendix B contains a family differences table that shows in detail
the issues involved in software migration between PDP-11 family
members. Any program developed using PDP-11 operating systems
with higher level languages will migrate with very little difficulty. Cer­
tain assembly language applications may require slight modifications
for a smooth migration.

The Floating instruction Set
The Floating Instruction Set (FIS) is a software option for the LSl-11/2
processor. The FIS consists of four special floating instructions that
accelerate floating point calculations. The FIS is covered in Appendix
C.

UNIBUS Timing Diagrams
UNIBUS timing diagrams and other technical details are given in Ap­
pendix D.

LSl-11 Bus Technical Specifications
Topics covered in Appendix E include LSl-11 Bus timing diagrams, and
bus pin-out descriptions.

Programming Techniques
PDP-11 processors offer the programmer a combination of flexibility
and power. The instruction set, addressing modes; and programming
techniques play together to help you develop new software or use ex­
isting software. Programming techniques that pertain to architecture
are included in this handbook. These include:
•Stacks

• Subroutine linkage
• Reentrancy

Stacks are a basic element of the PDP-11 architecture. They are areas
of memory set aside by the programmer or the operating system for
temporary storage and linkage. A stack is handled on a last-in/first-out
(LIFO) basis: items are retrieved in the reverse of their storage order. A
PDP-11 stack starts at the highest location reserved for it and expands
downward to lower addresses as items are added.

Often, one of the general purpose registers must be used in a subrou­
tine or interrupt service routine and then returned to its original value.

32

Chapter 2- Key Elements of PDP-11 Architecture

A stack can be used to store the contents of the registers involved. A
stack is also useful to store the linkage information between a subrou­
tine and its calling program. In many cases, operations performed by
the subroutine can be applied directly to data located on or referenced
by the stack without actually moving the data into the subroutine.

Reentrancy is the ability to share a single copy of a program among
different users or different tasks. This makes more efficient use of
memory. Reentrant routines differ from ordinary subroutines in that it
is not necessary for reentrant routines to finish processing a given
task before they can be used by another task.

PDP-11 programming techniques and examples are covered in Appen­
dix F.

Glossary
For definitions of terminology used in this book, refer to the Glossary.
The Glossary is at the end of the book, between Appendix F and the
Index.

33

34

CHAPTER 3

DATA REPRESENTATION

Data representation is an important aspect of computer architecture.
To deal efficiently with different kinds of information, a computer ar­
chitecture must allow for a range of data types. The programmer's
choice of data type should be a function of the application rather than
the computer_ However, some computers must use nonstandard ad­
dressing techniques with certain data types. These computers require
more memory and will execute applications more slowly when using
these "problem" data types_ PDP-11 architecture avoids these com­
promises. You can use the data type that best suits your application
without. worrying about nonstandard addressing techniques.

Another feature of the PDP-11 family's data types is upward compati­
bility. The PDP-11 data types are a subset of the VAX-11 data types.
This can be very convenient if you want to transfer your PDP-11 appli­
cation to an environment with 32-bit addressing.

The PDP-11 data types may be separated into categories according to
the groups of instructions that operate on them. They are:
o Integer data
• Character string data
e Decimal string data

• Floating point data

Integer data types are supported by the basic PDP-11 instruction set.
The string data types are used by the Commercial Instruction Set,
which is offered as an option on some PDP-11 processors. Floating
point data types are manipulated by the Floating-Point Instruction Set
(FP-11) which runs on a Floating-Point Processor (FPP) which may be
either a separate processor or microcode.

The Commercial Instruction Set (CIS-11) is treated in detail in Chapter
Seven. The floating point instructions are described in Chapter 6 (The
Floating Point Processor-FP-11) and in Appendix C (The Floating In­
struction Set-FIS)_

INTEGER DATA TYIPIES
Integer data types include 8-bit bytes, and 16-bit words. Integer data
types are stored in memory in binary form, which is represented entire­
ly in ones and zeroes. As unsigned quantities, integers extend upward
from 0. As signed quantities, the integers are represented in two's
complement form. This means that a negative number is one greater
than the bit-by-bit complement of its positive counterpart. Thus, posi-

35

Chapter 3- POP-11 Data Representation

tive numbers have a 0 most significant bit (MSB). The MSB or sign bit
is always 1 for negative values.

A byte is eight contiguous bits starting on an addressable byte bound­
ary or located in a register, Rn < 7:0 >-The bits are numbered from the
right 0 through 7. The byte is specified by its address A. When inter­
preted as a signed quantity, a byte is a two's complement integer with
bits increasing in significance from O through 6, and with bit 7 desig­
nating the sign. The value of the integer is in the range -128 through
127.

For the purposes of addition, subtraction, and comparison, PDP-11 in­
structions also provide direct support for the interpretation of a byte
as an unsigned integer with a value in the range O through 255.

Word
A word, two contiguous bytes, starts on an arbitrary word boundary or
is located in a register Rn<15:0>.

Words are specified by their address A, the address of the byte con­
taining bit 0. When interpreted as a signed quantity, a word is a two's
complement integer with bits increasing in significance from 0
through 14, and with bit 15 designating the sign. The value of the in­
teger is in the range - 32768 through 32767. For the purposes of addi­
tion, subtraction, and comparison, PDP-11 instructions also provide
direct support for the interpretation of a word as an unsigned integer
with a value in the range 0 through 65535.

CHARACTER DATA TYPES
There are three different character data types. The "character" is a
single byte, and is an abbreviated string of length i. The "character
string" is a contiguous group of bytes in memory. The third is a "char­
acter set."

The character is an 8-bit byte:

0

A char

The character is used as an operand by CIS-11 instructions. When it
appears in a general register, the character is in the low-order halt; the
high-order halt of the register must be zero. When it appears in the in­
struction stream, the character is in the low-order half of a word; the
high-order half of the word must be zero. It the high-order half of a
word which contains a character is nonzero, the effect of the instruc­
tion which uses it will be UNPREDICTABLE.

36

Chapter 3- PDP-11 Data Representation

A character string is a contiguous sequence of bytes in memory that
begins and ends on a byte boundary. It is addressed by its most signif­
icant character (lowest address). The highest address is the least sig­
nificant character. It is specified by a two-word d~scriptor with tl-1e at­
tributes of length and lowest address. The length is an unsigned
binary integer which represents the number of characters in the string
and may range from 0 to 65,535. A character string with zero length is
said to be vacant: its address is ignored. A character string with non­
zero length is said to be occupied.

The character string descriptor is used as an operand by CIS-11 in­
structions. It appears in two consecutive general registers, or in two
consecutive words in memory pointed to by a word in the instruction
stream. The following figure shows the descriptor for a character
string of length "n" starting at address "A" in memory:

15

R r pt r

OR

Rx+ l ptr+2 A

The following figure shows the character string in memory:

0

A I MOST SIG CHAR

A+ 1

A+ 0 -1 '~---l-EA_s_T _s1G_CH_A_R ___ ~

A "character set" is a subset of the 256 possible characters that can
be encoded in a byte. It is specified by a descriptor which consists of
the address of a 256-byte table and an 8-bit mask. The address is of
the zeroth byte in the table. Each byte in the table specifies up to eight
orthogonal character subsets of which the corresponding character is
a member. The mask selects which combinations of these orthogonal
subsets constitute the entire character set. In effect, each bit in the
mask corresponds to one of eight orthogonal subsets that may be en-

37

0

R,

Chapter 3 - PDP-11 Data Representation

coded by the table. The mask specifies the union of the selected sub­
sets into the character set. Typical sets would be: uppercase, lower­
case, nonzero digits, end of line, etc.

Operationally, a character (char) is considered to be in the character
set if the evaluation of (M[table.adr +char] AND mask) is not equal to
zero. The character is not in the character set if the evaluation is zero.
Each byfe in the table indicates which combination of up to eight
orthogonal character subsets (i.e., one for each of the eight bit vectors
000000012 000000102 00000100, 000010002 00010000, 001000002
01000000, and 100000002) the corresponding character is a member.
The mask specifies which union of the eight orthogonal character sub­
sets constitute the total character set. For example, if the eight-bit
vector 000000012 appearing in the table corresponds to the character
subset of all uppercase alphabetic characters, 000000102 appearing in
the table corresponds to the character subset of all lowercase alpha­
betic characters, and 00000100. appearing in the table corresponds to

. the decimal digits, then using the mask 000000112 with this table spec­
ifies the character set of all alphabetic characters, and using the mask
000001112 specifies the character set of all alphanumeric characters.

The character set descriptor is used as an operand by CIS-11 intruc­
tions. It appears in two consecutive general registers, or in two con­
secutive words in memory pointed to by a word in the instruction
stream. If the high-order half of the first descriptor word is nonzero,
the effect of an instruction which uses a character set will be UNPRE­
DICTABLE.

15

mask
OR

Rx+l
... I ,,,., TABLE ADDRESS

DECIMAL STRING DATA TYPES
Two classes of decimal string data types-numeric strings and
packed strings-are defined. Both have similar arithmetic and opera­
tional properties; they primarily differ in the representation of signs
and the placement of digits in memory.

The numeric string data types are signed zoned, unsigned zoned, trail­
ing overpunch, leading overpunched, trailing separate and leading
separate. The packed string data types are signed packed and un­
signed packed. Instructions which operate on numeric strings permit
each numeric string operand to be separately specified; similarly,

38

Chapter 3- PDP-11 Data Representation

packed string instructions permit each packed string operand to be
separately specified. Thus, within each of the two classes of decimal
strings, the operands of an instruction may be of any data type within
the appropriate class.

Decimal strings exist in memory as contiguous bytes which begin and
end on a byte boundary. They represent numbers consisting of Oto 3110
digits, in either sign-magnitude or absolute-value form. Sign-magni­
tude strings (SIGNED) may be positive or negative; absolute-value
strings (UNSIGNED) represent the absolute value of the magnitude.
Decimal numbers are whole integer values with an implied decimal ra­
dix point immediately beyond the least significant digit; they may be
conceptually extended with zero digits beyond the most significant di­
git.

A four-bit binary coded decimal representation is used for most digits
in decimal strings. A four-bit half byte is called a "nibble" and may be
used to contain a binary bit pattern which represents the value of a
decimal digit. The following table shows the binary nibble contents as­
sociated with each decimal digit:

digit nibble digit
0 0000 5
1 0001 6
2 0010 7
3 0011 8
4 0100 9

nibble
0101
0110
0111
1000
1001

Each decimal string data type may have several representations.
These representations permit a certain latitude when accepting
source operands. Decimal string data types have a PREFERRED repre­
sentation, which is a valid source representation and which is used to
construct the destination string. Additional ALTERNATE representa­
tions are provided for some decimal data types when accepting
source operands.

Decimal strings used as source operands will not be checked for valid­
ity. Instructions will produce UNPREDICTABLE results if a decimal
string used as a source operand contains an invalid digit encoding,
invalid sign designator, or, in the case of overpunched numbers, an
invalid sign/digit encoding.

When used as a source, decimal strings with zero magnitude are
unique, regardless of sign. Thus, both positive and negative zero have
identical interpretations.

Conceptually, decimal string instructions first determine the correct
result, and then store the decimal string representation of the correct

39

R,

Chapter 3 - PDP-11 Data Representation

result in the destination string. A result of zero magnitude is consid­
ered to be positively signed. If the destination string can contain more
digits than are significant in the result, the excess most significant
destination string digits have zero digits stored in them. If the destina­
tion string cannot contain all significant digits of the result, the ex­
cess most significant result digits are not stored; the instruction will
indicate decimal overflow. Note that negative zero is stored in the des­
tination string as a side effect of decimal overflow where the sign of
the result is negative and the destination is not large enough to con­
tain any nonzero digits of the result.

If the destination string has zero length, no resulting digits will be
stored. The sign of the result will be stored in separate and packed
strings, but not in zoned and overpunched strings. Decimal overflow
will indicate a nonzero result.

Decimal String Descriptors
Decimal strings are represented by a two-word descriptor. The des­
criptor contains the length, data type, and address of the string. It ap­
pears in two consecutive general registers (register form of instruc­
tions), or in two consecutive words in memory pointed to by a word in
the instruction stream (in-line form of instructions). The unused bits
are reserved by the architecture and must be 0. The effect of an in­
struction using a descriptor will be unpredictable if any nonzero re­
served field in the descriptor contains nonzero values or a reserved
data type encoding is used. The design of the numeric and packed
string descriptors are identical:

First Word

length <4:0>

data type
<14:12>

Second Word

address
<15:0>

Number of digits specified as an unsigned bina­
ry integer

Specifies which decimal data type representa­
tion is used

Specifies the address of the byte which contains
the most significant digit of the decimal string

The following figure shows the descriptor for a decimal string of data
type "T" whose length is "L" digits and whose most significant digit is
at address "A":

15 14 12 11

0 I 0

Rx+ I °' .,,., •" i
A

40

Chapter 3 - PDP-11 Data Representation

The encodings (in binary) for the NUMERIC string data type field are:

000 signed zoned
001 unsigned zoned
010 trailing overpunch
011 leading overpunch
100 trailing separate
101 leading separate
110 -reserved to DIGITAL
111 -reserved to DIGITAL

The encodings (in binary) for the PACKED string data type field are:

000 -reserved to DIGITAL
001 -reserved to DIGITAL
010 -reserved to DIGITAL
011 -reserved to DIGITAL
100 -reserved to DIGITAL
101 -reserved to DIGITAL
110 signed packed
111 unsigned packed

Packed Strings
Packed strings can store two decimal digits in each byte. The least
significant (highest addressed) byte contains the sign of the number
in bits <3:0> and the least significant digit in bits <7:4>.

Signed Packed Strings - The preferred positive sign designator is
110Cb; alternate positive sign designators are 1010,, 11102 and 1111>.
The preferrred negative sign designator is 11012; the alternate nega­
tive sign designator is 101 h Source strings will properly accept both
the preferred and alternate designators; destination strings will be
stored with the preferred designator.

Unsigned Packed Strings - The unsigned sign designator is 111 h

PACKED SIGN NIBBLE (in binary):

sign
nibble

positive
negative
unsigned

preferred
designator

1100
1101
1111

alternate
designators

1010' 1110' 1111
1011

For other than the least significant byte, bytes contain two consecu­
tive digits-the one of lower significance in bits <3:0> and the one of
higher significance in bits <7:4>. For numbers whose length is odd,
the most significant digit is in bits <7:4> of the lowest addressed

41

Chapter 3 - PDP-11 Data Representation

bytes. Numbers with an even length have their most significant digit in
bits < 3:0 > of the lowest addressed byte; bits < 7:4 > of this byte must
be zero for source strings, and are cleared to 0000 for destination
strings. Numbers with a length of one occupy a single byte and con­
tain their digit in bits <7:4>. The number of bytes which represent a
packed string is [length/2] + 1 (integer division where the fractional
portion of the quotient is discarded).

The following is a packed string with an odd number of digits:

0

A msd

A+ I

A+{LENGTH/2) ~I ___ 1,_d--~--'-'"" __ _

The following is a packed string with an even number of digits:

0

A '~-----~--m-'d __ _

A+I

A+{LENGTH/2) sign

A zero-length packed string occupies a single byte of storage; bits
< 7:4 > of this byte must be zero for source strings, and are cleared to
0000 for destination strings. Bits <3:0> must be a valid sign for
source strings, and are used to store the sign of the result for destina­
tion strings. When used as a source, zero-length strings represent op­
erands with zero magnitude. When used as a destination, they can
only reflect a result of zero magnitude without indicating overflow.
The following is a zero-length packed string:

42

Chapter 3- POP-11 Data Representation

A valid packed string is characterized by:
1. A length from 0 to 3h digits.
2. Every digit nibble is in the range 00002 to 1001'.
3. For even length sources, bits <7:4> of the lowest addressed

byte are 00002.

4. Signed packed strings-sign nibble is either 10102, 10112, 11002,
1101., 11102or 11112.

5. Unsigned packed strings-sign nibble is 111 h

Zoned Strings
Zoned strings represent one decimal digit in each byte. Each byte is
divided into two portions-the high-order nibble (bits < 7:4 >)and the
low-order nibble (bits < 3:0 >). The low-order nibble contains the value
of the corresponding decimal digit.

Signed Zoned Strings - When used as a source string, the high-order
nibble of the least significant byte contains the sign of the number;
the high-order nibbles of all other bytes are ignored. Destination
strings are stored with the sign in the high-order nibble of the least
significant byte, and 00112 in the high-order nibble of all other bytes.
00112 in the high-order nibble corresponds to the ASCII encoding for
numeric digits. The positive sign designator is 00112; the negative sign
designator is 01112.

Unsigned Zoned Strings - When used as a source string, the high­
order nibbles of all bytes are ignored. Destination strings are stored
with 00112 in the high-order nibble of all bytes.

The number of bytes needed to contain a zoned string is identical to
the length of the decimal number.

A+I

43

I 'SIGN' IS PRESENT ONLY
SIGNED ZONED STRINGS

Chapter 3 - PDP-11 Data Representation

A zero-length, zoned string does not occupy memory; the address por­
tion of its descriptor is ignored. When used as a source, zero length
strings provide operands with zero magnitude; when used as a desti­
nation, they can only accurately reflect a result of zero magnitude (the
sign of the operation is lost). An attempt to store a nonzero result will
be indicated by setting overflow.

A valid zoned string is characterized by:
1. A length from 0 to 3110 digits.

2. The low-order nibbles of each byte are in the range 00002 to
10012.

3. Signed zoned strings-The high order nibble of the least signifi-
cant byte is either 00112 or 011 h

Overpum::h Strings
Overpunch strings represent one decimal digit in each byte. Trailing
overpunch strings combine the encoding of the sign and the least sig­
nificant digit; leading overpunch strings combine the encoding of the
sign and the most significant digit. Bytes other than the byte in which
the sign is encoded are divided into two portions-the high-order nib­
ble (bits <7:4>) and the low-order nibble (bits <3:0>). The low-order
nibble contains the value of the corresponding decimal digit. When
used as a source string, the high-order nibble of all bytes which do not
contain the sign are ignored. Destination strings are stored with 00112
in the high-order nibble of all bytes which do not contain the sign.
00112 in the high-order nibble corresponds to the ASCII encoding for
numeric digits.

The following table shows the sign of the decimal string and the value
of the digit which is encoded in the sign byte. Source strings will prop­
erly accept both the preferred and alternate designators; destination
strings will store the preferred designator. The preferred designators
correspond to the ASCII graphics "A" to "R," "{,"and"." The alter­
nate designators correspond to the ASCII graphics "O" to "9," "[," "?,"
"],""!"and":".

44

Chapter 3 - PDP-11 Data Representation

OVERPUNCH SIGN/DIGIT BYTE (in binary):

overpunch preferred a Item ate
sign/digit designator designators

+O 01111011 00110000' 01011011'00111111
+1 01000001 00110001
+2 01000010 00110010
+3 01000011 00110011
+4 01000100 00110100
+5 01000101 00110101
+6 01000110 00110110
+7 01000111 00110111
+8 01001000 00111000
+9 01001001 00111001
-0 01111101 01011101'00100001'00111010
-1 01001010
-2 01001011
-3 01001100
-4 01001101
-5 01001110
-6 01001111
-7 01010000
-8 01010001
-9 01010010

The number of bytes needed to contain an overpunch string is identi­
cal to the length of the decimal number.

The following is a trailing overpunch string:

A+n-1 ._I ____ •_ign_a_nd_ls_d ___ ___,

45

Chapter 3 - PDP-11 Data Representation

The following is a leading overpunch string:

A ~I ~~~~-sig_n_on_d_ms_d~~~--'

A+I

A+n -1

A zero-length overpunch string does not occupy memory; the address
portion of its descriptor is ignored. When used as a source, zero­
length strings provide operands with zero magnitude; when used as a
destination, they can only accurately reflect a result of zero magni­
tude (the sign of the operation is lost). An attempt to store a nonzero
result will be indicated by setting overflow.

A valid overpunch string is characterized by:
1. A length from Oto 3110 digits.
2. The low-order nibble of each digit byte is in the range 00002 to

10012.
3. The encoded sign/digit byte contains values from the above ta-

ble of preferred and alternate overpunch sign/digit values.

Separate Strings
Separate strings represent one decimal digit in each byte. Trailing
separate strings encode the sign in a byte immediately beyond the
least significant digit; leading separate strings encode the sign in a
byte immediately beyond the most significant digit. Bytes other than
the byte in which the sign is encoded are divided into two por­
tions-the high-order nibble (bits <7:4>) and the low-order nibble
(bits <3:0>). The low order nibble contains the value of the corre­
sponding decimal digit.

When used as a source string, the high-order nibbles of all digit bytes
are ignored. Destination strings are stored with 00112 in the high-order
nibble of all digit bytes. 00112 in the high-order nibble corresponds to
the ASCII encoding for numeric digits. The preferred positive sign de­
signator is 001010112 and the alternate positive sign designator is
00100000,. The negative sign designator is 001011012. These designa­
tors correspond to the ASCII encoding for"+,'' "space,'' and " - ."

46

Chapter 3 - PDP-11 Data Representation

SEPARATE SIGN BYTE:

sign
byte

positive
negative

preferred
designator

001010112
001011012

alternate
designator

001000002

The number of bytes needed to contain a leading or trailing separate
string is identical to (length+ 1).

The following is a trailing separate string:

0

A+I

A• ,,-J lsd

A+n

The following is a leading separate string:

0

A-I

A m•d

A •I

A+n-1 1.d

47

Chapter 3 - PDP-11 Data Representation

A zero-length separate string occupies a single byte of memory which
contains the sign. When used as a source, zero-length strings provide
operands with zero magnitude; when used as a destination, they can
only reflect a result of zero magnitude without indicating overflow; the
sign of the result is stored.

The following is a zero-length trailing separate string:

A

The following is a zero-length leading separate string:

0

A-I sign

A valid separate string is characterized by:

1. A length from 0 to 31rn digits.

2. The low-order nibble of each digit byte is in the range 00002 to
10012-

3. The sign byte is either001000002, 001010112 or 001011012.

long Integer
Long integers are 32-bit binary two's complement numbers organized
as.two words in consecutive registers or in memory-no descriptor is
used. One word contains the high-order 15 bits. The sign is in bit
< 15>; bit < 14> is the most significant. The other word contains the
low-order 16 bits with bit <0> the least significant. The range of num­
bers that can be represented is - 2, 147,483,648 to + 2, 147,483,647.

The register form of decimal convert instructions uses a restricted
form of long integer with the number in the general register pair R2-R3:

0

HIGH

LOW

48

Chapter 3 - PDP-11 Data Representation

The in-line form of decimal convert instructions reference the long in­
teger by a word address pointer which is part of the instruction
stream:

15 14 0

ptr LOW

ptr-+2 '----'-''~---------H-IG_H __________ __,

Note that these two representations of long integers differ. There is no
single representation of long integer among EAE, EIS, FPP and soft·
ware. The "register form" was selected to be compatible with EIS; the
"in-line form" was selected to be compatible with current standard
software usage.

FLOATING POINT DATA FORMATS
Floating point data are used only by processors which include a float­
ing point option (standard on the MICRO/J-11). The floating point in·
struction set {FP11) is covered in Chapter 6 of this book.

Mathematically, a floating point number may be defined as having the
form {2**K)*f, where K is an integer and f is a fraction. For a nonvan­
ishing number, Kand fare uniquely determined by imposing the condi·
tion 1h ~ f < 1. The fractional part, f, of the number is then said to be
normalized. For the number 0, f must be assigned the value 0, and the
value of K is indeterminate.

The FP11 floating point data formats are derived from this mathemati·
cal representation for floating point numbers. The value of a floating
datum is in the approximate range .29*10** -38 through 1.7*10**38.
Two types of floating point data are provided. In single-precision, or
floating mode, the data are 32 bits long. In double-precision, or double
mode, the data are 64 bits long. Sign magnitude notation is used.

Nonvanishing Floating Point Numbers
The fractional part, t, is assumed to be normalized, so that its most
significant bit must be 1. This 1 is the hidden bit; it is not stored explic­
itly in the data word, but the microcode restores it before carrying out
arithmetic operations. The floating and double modes respectively re­
serve 23 and 55 bits tort. These bits, with the hidden bit, imply effec­
tive fractions of 24 bits and 56 bits.

Eight bits are reserved tor storage of the exponent K in excess 128
(200.) notation (i.e., K + 200a), giving a biased exponent. Thus, expo­
nents from -128 to + 127 are represented by 0 to 377a, or 0 to 25510.

49

Chapter 3 - PDP-11 Data Representation

For reasons listed below, a biased exponent of O (true exponent of
-200a), is reserved for floating point 0. Thus, exponents are restricted
to the range -127 to + 127 inclusive (-177a to + 177a) or, in excess
200a notation, 1 to 377a.

The remaining bit of the floating point word is the sign bit. The number
is negative if the sign bit is a 1.

Floating Point Zero
Because of the hidden bit, the fractional part is not available to distin­
guish between 0 and nonvanishing numbers whose fractional part is
exactly%. Therefore, the FP11 reserves a biased exponent of 0 for this
purpose, and any floating point number with a biased exponent of 0
either traps or is treated as if it were an exact 0 in arithmetic opera­
tions. An exact or clean 0 is represented by a word whose bits are all
Os. A dirty 0 is a floating point number with a biased exponent of O and
a nonzero fractional part. An arithmetic operation tor which the result­
ing true exponent exceeds 177a is regarded as producing a floating
overflow; it the true exponent is less than -177a, the operation is re­
garded as producing a floating underflow. A biased exponent of 0 can
thus arise from arithmetic operations as a special case of overflow
(true exponent = - 200a). Only eight bits are reserved tor the biased
exponent. The fractional part of results obtained from such overflow
and underflow is correct.

The Undefined Variable
The undefined variable is defined as any bit pattern with a sign bit of 1
and a biased exponent of 0. The term undefined variable is used, tor
historical reasons, to indicate that these bit patterns are not assigned
a corresponding floating point arithmetic value. Note that the unde­
fined variable is frequently referred to as -0 elsewhere in this specifi­
cation.

A design objective of the FP11 was to assure that the undefined varia­
ble would not be stored as the result of any floating point operation in
a program run with the overflow and underflow interrupts disabled.
This objective is achieved by storing an exact O on overflow and under­
flow, it the corresponding interrupt is disabled. This feature, together
with an ability to detect reference to the undefined variable imple­
mented by the FIUV bit mentioned later, is intended to provide the
user with a debugging aid. It - 0 occurs, it did not result from a previ­
ous floating point arithmetic instruction.

Floating Point Data
Floating point data are stored in words of memory as illustrated:

50

·2

F FORMAT. FLOATING POINT SINGLE PRECISION

15

FRACTION 15 0

15 i4 07 06

00

00

MEMORY ·O ~I _s ~l~~-~-~--'~xP_~ _ _._ _ _.__~ _ _._ _ _.__'_"A~C-T_··_''~·-16_>~ _ _._ _ _.

Figure 3-1 Single-Precision Format

D FORMAT, FLOATl~G POINT DOUBLE PRECISION
15 00

· 5 ~1 _ _._ _ _._ _ __,_ _ _._ _ _,__"--F-R~A-CT-i-ON'-<T_s~,O~/--'----'---'---'---'---L-.......J
I 5

07 06 00

~M_ MORY ""0-~'--s_['---"'----'--..J.--'-'x-P -"--'--'--'----"~-..J.-'_"_._A_cr_· s_..•_•_s·_ .. "--'--'

S SIGN OF FRACTION

EXP EXPONENT J:'\i EXCESS 200 NOTATION, RESTRICTED TO 1TO377 OCTAL
FUR NOf\ VANISHING -'\IUMBERS

FRACTION 23 BITS INF FORMAT, 55 BITS IND FORMAT• ONE HIDDEN
BIT INORMALl7ATION\. THE BINARY RADIX POINT IS TO THE LEFT

Figure 3-2 Double-Precision Format

The FP11 provides for conversion of floating point to integer format
and vice versa. The processor recognizes single-precision integer (I)
and double-precision integer long (L) numbers, which are stored in
standard two's complement form.

51

52

CHAPTER 4

ADDRESSING MODES

In the PDP-11 family, all operand addressing is accomplished through
the general purpose registers. To specify the location of data (operand
address), one of eight registers is selected with an accompanying ad­
dressing mode. Each instruction specifies the:
• Function to be performed (operation code)
• General purpose register to be used when locating the source op­

erand and/or destination operand (where required)

e Addressing mode, which specifies how the selected registers are
to be used

The instruction format and addressing techniques available to the pro­
grammer are of particular importance. This combination of addressing
modes and the instruction set provides the PDP-11 family with a
unique number of capabilities. The PDP-11 is designed to handle
structured data efficiently and with flexibility. The general purpose re­
gisters implement these functions in the following ways, by acting:
0 As accumulators: holding the data to be manipulated

• As pointers: the contents of the register are the address of the op­
erand, rather than the operand itself

0 As index registers: the contents of the register are added to an ad­
ditional word of the instruction to produce the address of the oper­
and; this capability allows easy access to variable entries in a list

Using registers for both data manipulation and address calculation re­
sults in a variable length instruction format. If registers alone are used
to specify the data source and destination, only one memory word is
required to hold the instruction. In certain modes, two or three words
may be utilized to hold the basic instruction components. Special ad­
dressing mode combinations enable temporary data storage for con­
venient dynamic handling of frequently accessed data. This is known
as stack-aioldr®ssing. For a discussion about using the stack, please
refer to Appendix F. Register 6 is always used as the hardware stack
pointer, or SP. Register 7 is used by the processor as its program
counter (PC}. Thus, the register arrangement to be considered in con­
junction with instructions and with addressing modes is: registers 0-5
are general purpose registers, register 6 is the hardware stack pointer,
and register 7 is the program counter. See Chapter 5 for a description
of the full instruction set and its formats.

53

Chapter 4 - Addressing Modes

To illustrate the use of the various addressing modes clearly, the fol­
lowing instructions are used in this chapter:

Mnemonic Description Octal Code

CLR Clear (Zero the specified desti- 0050DD
nation word.)

CLRB Clear Byte (Zero the specified 1050DD
destination byte.)

INC Increment (Add one to contents 0052DD
of destination word.)

INCB Increment Byte (Add one to the 1052DD
contents of the destination
byte.)

COM Complement (Replace the con- 00510D
tents of the destination by its
logical one's complement.
Each 0 bit is set and each 1 bit
is cleared.)

COMB Complement Byte (Replace the 10510D
contents of the destination
byte by its logical one's com-
plement. Each 0 bit is set and
each 1 bit is cleared.)

ADD Add (Add the source operand to 06SSDD
the destination operand and
store the result at the destina-
tion address.)

DD = destination field (6 bits)
SS = source field (6 bits)
() = contents of

54

Chapter4 -Addressing Modes

Single- and double-operand instructions use the following formats:

The instruction format for the first word of all single-operand instruc­
tions (such as clear, increment, test) is:

MODE Rn

15 0

OP CODE---------'
DESTINATION ADDRESS------------------'

' SPECIFIES DIRECT OR INDIRECT ADDRESS
• 0 SPECIFIES HOW REGISTER Wlll SE USED

• • • SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS

Single-Operand Instruction Format

The instruction format for the first word of the double-operand instruc­
tion is:

OP CODE MODE Rn MODE

15 12 11 10

SOURCE ADDRESS----------'
DESTINATION ADDRESS----------------~

' DIRECT DEfERRED BIT FOR SOURCE AND DESTINATION ADDRESS
''SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED

•••SPECIFIES A GENERAL REGISTER

Double-Operand Instruction Format

Rn

Bits 5:3 of the source or destination fields specify the binary coqe of
the addressing mode chosen. Bits 2:0 specify the general register to
be used.

The four basic addressing modes are:

• Register

• Autoincrement
• Autodecrement

• Index

In a register mode, the content of the selected register is taken as the
operand. In autodecrement mode, after the register has been modi­
fied, it contains the address of the operand. In autoincrement mode, at
the start of the instruction execution, the register contains the ad­
dress of the operand, and, after the instruction is executed, the ad-

55

Chapter 4 - Addressing Modes

dress of the next higher word or byte memory location. in index mode,
the register is added to the displacement, X, to produce the address of
the operand.

When bit 3 of the source/destination field is set, indirect addressing is
specified and the four basic modes become deferred modes.

Prefacing the register operand(s) with an"@" sign or placing the reg­
ister in parentheses indicates to the MACR0-11 assembler that
deferred (or indirect) addressing mode is being used.

The indirect addressing modes are:

• Register deferred

• Autoincrement deferred
~ Autodecrement deferred

• Index deferred

Program counter (register 7) addressing modes are:
@Immediate

e Absolute

•Relative

• Relative deferred

The addressing modes are explained and shown in examples in the
following pages. They are summarized, in text and in graphic represen­
tation, at the end of the chapter.

REGISTER MODE MODE Cl Rn
Register mode provides faster instruction execution. There is no need
to reference memory to retrieve an operand. Any of the general regis­
ters can be used as a simple accumulator. The operand is contained in
the selected register (low-order byte for byte operations). Some as­
semblers require that a general register be defined as follows.:

RO= %0
R1 = %1
R2 = %2

% indicates register definition (as originally known to the assembler).

Register Mode Example

Symbolic

INCR3

Instruction
Octal Code

005203

56

Description

Add one to the con­
tents of R3.

Chapter 4 - Addressing Modes

Represented as:

I ~ a a o 1 o 1 a 1 .. o ! o a o I o 1 1 \s~~E_c_r
• ~~·----'--~--'-·· _. I • fREGtSTE >----· -------<
~',~~~~~-~~~~-·-~

OP CODE {INC(0052})_j
DESTINATION FIELD--··

Register Mode Example

Symbolic

ADD R2,R4

Represented as:

Instruction
Octal Code

060204

_J R5

R6 jSP)

R7 {PC)

Description

Add the contents of
R2 to the contents
of R4, replacing the
original contents of
R4 with the sum.

BEFORE AFTER

R2 ~ R2 ~, -0-00_0_02~1

R4~+~

REGISTER DEFERRED MODE MODE 1 @Rn or(Rn)
In register deterred mode, the address of the operand is stored in a
general purpose register. The address contained in the general pur­
pose register directs the CPU to the operand. The operand is located
outside the CPU's general purpose registers, either in memory or in an
1/0 register.

This mode is used for sequential lists, indirect pointers in data struc­
tures, top-of-stack manipulations, and jump tables.

Register Deferred Mode Example

Symbolic

CLR (R5)

lns~ruction

Octal Code

005015

57

Description

The contents of the
location specified
in R5 are cleared.

Chapter 4 - Addressing Modes

Represented as:

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

167:~1 I R R55~~~ 1676~ ~
170~ 1700 ~000

R5 001700

AUTOINCREMENT MODE MODE 2 (Rn)+
In autoincrement mode, the register contains the address of the oper­
and; the address is automatically incremented after the operand is re­
trieved. The address then references the next sequential operand. This
mode allows automatic stepping through a list or series of operands
stored in consecutive locations. When an instruction calls for mode 2,
the address stored in the register is incremented each time the in­
struction is executed. It is incremented by one if you are using byte
instructions, by two if you are using word instructions. However, R6
and R7 are always incremented by two.

To make it easy to remember that the register is incremented after
use, the + sign follows the register name.

Autoincrement Mode Example

Symbolic: Instruction
Octal Code

CLR (R5)+ 005025

Represented as:

BEFORE

ADDRES.S SPACE REGISTERS

300~0000

s

58

Description

Contents of R5 are
used as the address
of the operand.
Clear selected oper­
and and then incre­
ment the contents
of R5 by two.

AFTER

ADDRESS SPACE REGISTERS

R5 030002

Chapter 4 - Addressing Modes

AUTOINCREMENT DEFERRED MODE MODE 3 @(Rn)+
In auto increment deferred mode, the register contains a pointer to the
address of the operand. The + indicates that the pointer in Rn is in­
cremented by two (for both word and byte operations) after the ad­
dress is located. Mode 2, autoincrement, is used only to access oper­
ands that are stored in consecutive locations. Mode 3, autoincrement
deferred, is used to access lists of operands stored anywhere in the
system, i.e., the operands do not have to reside in adjoining locations.
Mode 2 is used to step through a table of operands, and mode 3 is
used to step through a table of addresses that point to data.

Autoincrement Deferred Example

S_ymbolic Instruction
Octal Code

INC @(R2) + 005232

Represented as:

ADDRESS SPACE

1010~
1012~

BEFORE

REGISTER

010300

Description

Contents of R2 are
used as the address
of the address of
the operand. The
operand is in­
creased by one,
contents of R2 are
incremented by
two.

ADDRESS SPACE

1010~
1012~

AFTER

REGISTER

R2 010302

AUTODECREMENT MODE MODE 4 -(Rn)
In autodecrement mode, the register contains an address that is auto­
matically decremented; the decremented address is used to locate an
operand. This mode is similar to autoincrement mode, but allows step­
ping through a list of words or bytes in reverse order. The address is
decremented by one for bytes, by two for words. However, R6 and R7
are always decremented by two.

59

Chapter 4 - Addressing Modes

To remind you that the register is decremented prior to use, the
sign precedes the register name.

Autodecrem11mi Mode Example

Symbolic insi:ruction
Octal Code

INCB -(RO) 105240

Represented as:

BEFORE

ADDRESS SPACE REGISTERS

l7776,,g,~c==0=00=3,=, =~
~

Description

The contents of RO
are decremented by
one, then used as
the address of the
operand. The oper­
and byte is in­
creased by one.

AFTER

ADDRESS SPACE REGISTER

RO 017776

17776 000000

AUTODECREMENT DEFERRED MODE MODE 5 @ -(Rn)
In autodecrement deferred mode, the register contains a pointer to the
address of the operand. The pointer is first decremented by two (for
both word and byte operations), then the new pointer is used to re­
trieve an address stored outside the CPU's general purpose registers.
This mode is similar to autoincrement deferred, but allows stepping
through a table of addresses in reverse order. Each address then
redirects the CPU to an operand. Note that the operands do not have
to reside in consecutive locations.

Autodecrement Deferred Mode Example

Symbolic Instruction
Octal Code

COM@ -(RO) 005150

60

Description

The contents of RO
are decremented by
two and then used
as the address of
the address of the
operand. The oper­
and is one's com­
plemented.

Chapter 4 - Addressing Modes

Represented as:

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

010774 10100[::3
10102

RO ~-01-,-07_76_,JI;~::[16:3
10774 ~-0~10~10_0 ___,
10776.
~--~

10774 010100
f------l\

10776
~-----<

INDEX MODE MODE 6 X(Rn)
In index mode, a base address is added to an index word to produce
the effective address of an operand; the base address specifies the
starting location of table or list. The index word then represents the
address of an entry in the table or list relative to the starting (base)
address. The base address may be stored in a register. In this case,
the index word follows the current instruction. Or the locations of the
base address and index word may be reversed (index word in the regis­
ter, base address following the current instruction).

index Mode Example

Symbolic

CLR 200(R4)

Represented as:

Instruction
Octal Code

005064
000200

BEFORE

ADDRESS SPACE REGISTER

1020 005064 R4 j 001000

1022 000200 I
1024 +

~ 1200§

Description

The address of the
operand is deter­
mined by adding
200 to the contents
of R4. The resulting
location is then
cleared.

AFTER

ADDRESS SPACE REGISTER

1020 005064 R4 I 001000

1022 000200

1024~--~

INDIEX DEFERRED MODE MODE 1 @X(R111)
In index deferred mode, a base address is added to an index word. The
result is a pointer to an address, rather than the actual address. This

61

Chapter 4 -Addressing Modes

mode is similar to mode 6, except that it produces a pointer to an ad­
dress. The content of that address then redirects the CPU to the de­
sired operand. Mode 7 provides for the random access of operands us­
ing a table of operand addresses.

Index Deferred Mode Example

Symbolic

ADD @1000(R2),R1

Represented as:

lnstmction
Oct<'!! Code

067201
001000

BEFORE

ADDRESS SPACE REGISTER

1020 067201 Rl I 001234

1022 001000

1024
f-------j R2~

+ 1050 I 000002 I

·~

1020

1022

Hl24

10501

1100 I

Description

1000 and the con­
tents of R2 are
summed to produce
the address of the
address of the
source operand, the
contents of which
are added to the
contents of R1. The
result is stored in
R1.

AFTER

ADDRESS SPACE REGISTER

067201 Rl I 001236

001000
R2 I 000100

000002

001050

USE OF THE PC AS A GENERAL REGISTER
Register 7 is both a general purpose register and the program counter
on the PDP-11. When the CPU uses the PC to access a word from
memory, the PC is automatically incremented by two to contain the
address of the next word of the instruction to be executed or the ad­
dress of the next instruction to be executed. When the program uses
the PC to access byte data, the PC is still incremented by two.

The PC can be used with all of the PDP-11 addressing modes. There
are four modes in which the PC can provide advantages for handling
position-independent code and for handling unstructured data. These
modes refer to the PC and are termed immediate, absolute (or imme­
diate deferred), relative, and relative deferred.

62

Chapter4 -Addressing Modes

PC IMMEDIATE MODE MODE2 #n

Immediate mode is equivalent to using the autoincrement mode with
the PC. It provides time improvements for accessing constant oper­
ands by including the constant in the memory location immediately
following the instruction word.

PC Immediate Mode Example

Symbolic Instruction

ADD #10,RO

Represented as:

ADDRESS SPACE

1020 062700

1022 000010

Octal Code

8EFORE

062700
000010

REGISTER

RO 000020

R7 001020

ADDRESS SPACE

1020 062700

1022 000010

Description

The value 10 is lo·
cated in the second
word of the instruc­
tion and is added to
the contents of RO.
Just before this in·
struction is fetched
and executed, the
PC points to the
first word of the in­
struction. The pro­
cessor fetches the
first word and i ncre­
ments the PC by
two. The source op­
erand mode is 27
(autoincrement the
PC). Thus, the PC is
used as a pointer to
fetch the operand
(the second word of
the instruction) be­
fore being incre­
mented by two to
point to the next in­
struction.

AFTER
REGISTER

RO 000030

R7 001024

1024 1024 1-----1

63

Chapter 4 -Addressing Modes

PC ABSOLUTE MODE MODE 3 @#A
This mode is the equivalent of immediate deferred or autoincre­
ment deferred mode using the PC. The contents of the location fol­
lowing the instruction are taken as the address of the operand. Im­
mediate data are interpreted as an absolute address (i.e., an
address that remains constant no matter where in memory the as­
sembled instruction is executed).

PC Absoi1,1~e Mode Exampl~

Symbolic

CLR @#1100

Represented as:

Instruction
Octal Code

005037
001100

BEFORE
ADDRESS SPACE REGISTER

R7 I 000020

PC RELATIVE MODE

Description

Clears the contents
of location 1100.

AFTER
ADDRESS SPACE REGISTER

noo[:::J
1102

MODE S X(PC)
or A

This mode is index mode 6 using the PC. The operand's address is
calculated by adding the word that follows the instruction (called
an "offset") to the updated contents of the PC.

PC+ 2 directs the CPU to the offset that follows the instruction.
PC+ 4 is summed with this offset to produce the effective address
of the operand. PC+ 4 also represents the address of the next in­
struction in the program.

With the relative addressing mode, the address of the operand is
always determined with respect to the updated PC. Therefore, if the
entire program is relocated, the operand remains the same relative
distance away and may be accessed with changing the instruction.

The distance between the updated PC and the operand is called an
offset. After a program is assembled, this offset appears in the first
word location that follows the instruction. This mode is useful for
writing position-independent code. It is the default mode generated
by the MACRO assembler.

64

Chapter4 -Addressing Modes

PC Relative Mode Example

Symbolic instruction

INCA

Represented as:

Octal Code

005267
000054

BEFORE
ADDRESS SPACE REGISTER

R7 I 001020

PC RELATIVE DEFERRED MODE

1020

1022

1024

1026

1100 I

Description

To increment A, the
contents of the
memory location in
the second word of
the instruction are
added to the updat­
ed PC to produce
the address of A
(1100). The contents
of A are increased
by one.

AFTER

ADDRESS SPACE REGISTER

0005267 "I 00102•

00005-4

000001

MODE 7 @X(PC)or
@A

This mode is index deferred (mode 7), using the PC. A pointer to an
operand's address is calculated by adding an offset (which follows
the instruction) to the updated PC.

This mode is similar to the relative mode, except that it involves
one additional level of addressing to obtain the operand. The sum
of the offset and updated PC (PC+ 4) serves as a pointer to an ad­
dress. When the address is retrieved, it can be used to locate the
operand.

PC Relative Deferred Mode Example

Symbolic Instruction

CLR@A

Oc~al Code

005077
000020

65

Description

Adds the second
word of the i nstruc-

Chapter 4 - Addressing Modes

Symbolic

Represented as:

ADDRESS SPACE

1020 005077

1022 000020

1024

+ r----+-------<

+

~

~
10100 I 100001 I

BEFORE

Instruction
Octal Code

REGISTER

R7] 001020 1020

1022

1024

10441

10100/

ADDRESS SPACE

005077

000020

010100

000000

SUMMARY OF ADDRESSING MODES

Basic Addressing Modes
Binary Mode Name
Code
000 0 Register

010 2 Autoincrement

100 4 Autodecrement

66

Symbolic

Rn

(Rn)+

-(Rn)

Description

ti on to the updated
PC to produce
A-location
1044-the address
of the address of
the operand. Clears
operand.

AFTER
REGISTER

., 1 00102•1

Function

Register contains
operand.
Register is used as
a pointer to
sequential data,
then incremented.
RO-R5 are incre­
mented by one for
byte and two for
word instruction.
R6-R7 are always
incremented by
two.
Register is decre­
mented and then
used as a pointer
to sequential data.

Chapter4 -Addressing Modes

Basic Addressing Modes
Binary Mode Name
Code

110 6 Index

Indirect Addressing Modes
Binary Mode Name
Code
001 Register

Deferred

011 3 Autoincrement
Deferred

101 5 Autodecrement
Deferred

67

Symbolic

X(Rn)

Symbolic

@Rn or(Rn)

@(Rn)+

@-(Rn)

Function

RO-R5 are decre­
mented by one for
byte and by two for
word instructions.
R6-R7 are always
decremented by
two.
Value Xis added to
Rn to produce ad­

dress of operand.
Neither X nor Rn
is modified. X, the
index value, is al­
ways found in the
next memory loca­
tion and incre­
ments the PC.

Function

Register contains
the address of the
operand.
Register is first
used as a pointer
to a word contain-
ing the
address of the op-
erand, then i ncre-
mented (always by
two, even for byte
instructions).
Register is
decremented (al-
ways by two, even
for byte instruc-
tions) and then
used as a pointer
to a word contain-
ing the address of
the operand.

Chapter 4 - Addressing Modes

Indirect Addressing Modes
Binary Mode Name Symbolic
Cl) de

111 7 Index @X(Rn)
Deferred

Function

Value X (the index
is always found in
the next memory
location and incre­
ments the PC by
two) and Rn are
added and the sum
is used as a
pointer to a word
containing the
address of the op­
erand. Neither X
nor Rn is modi­
fied.

When used with the PC, four of these modes are renamed, as you
can see in the table below.

PC Register Addressing Modes
Binary
Code
010

011

110

111

Mode

2

3

6

7

Name

Immediate

Absolute

Relative

Relative
Deferred

Symbolic

#n

@#A

A

@A

68

Function

Operand is con­
tained in the in­
struction.
Absolute
address is con­
tained in the in­
struction.
Address of A,
relative to the in­
struction, is con­
tained in the in­
struction.
Address of A,
relative to the in­
struction, is con­
tained in the in­
struction. Address
of the operand is
contained in A.

Chapter 4 - Addressing Modes

GRAPHIC SUMMARY OF PDP-11 ADDRESSING MODES

General Register Addressing Modes
R is a general register, Oto 7.
(R) is the contents of that register.

Mode 0 Register OPR R

Mode1

Mode2

INSTRUCTION

j 1NSTRUCTIONf---.j OPERAND

Register
deferred

INSTRUCTION

Autoincre­
ment

ADDRESS

OPR (R)

ADDRESS

OPR (R)+

OPERAND

R contains
operand.

R contains
address.

OPERAND

Contents of R
are used as ad­
dress, then incre­
ment A. Note
that R6 and R7
are always incre­
mented by two.

~--_.,+2 FOR WORD,
1 FOR BYTE

Mode3

INSTRUCT ION

Autoincre·
ment
deferred

ADDRESS

OPR @(A)+

ADDRESS

69

R contains ad­
dress of address,
then increment
R bytwo.

OPERAND

+2

Mode4

Mode5

INSTRUCTION

Modes

Mode7

Chapter 4 - Addressing Modes

Autodecre­
ment

ADDRESS

Autodecre­
ment
deferred

R

OPR -(R)

-2 FOR WOIUl,
-l FOR BYTE

QPR@ -(R)

Decrement R,
then R contains
address. Note
that R6 and R7
are always
decremented by
two.

OPERAND

Decrement R by
two, then R con­
tains address of
address.

ADDRESS -2 ADDRESS OPERAND

Index

PC INSTRUCTION

PC•2

Index
deferred

OPR X(R)

ADDRESS

OPR @X(R)

R +Xis ad-
dress.Xis con-
tained in the
word following
the instruction.

OPERAND

R + X is address
of address.Xis
contained in the
word following
the instruction.

PC INSTRUCTION ADDRESS

ADDRESS OPERAND

PC•2

70

Chapter 4 - Addressing Modes

Program Counter Addressing Modes
Register= 7

Mode2

Mode3

Mode6

Mode7

Immediate OPR#n

PC I INST RUCTION I

PC+2 ~' -----'

Absolute OPR@#A

PC•2 ~' __ A_~~ OPERAND

Relative

PC J 1NSTRUCTION I

PC+ 2
~--~

PC+4 I NEXT INSTR I

Relative
deferred

PC J1NSTRUCTIONI

PC+2

PC+4 !NEXT INSTR I

OPRA

OPERAND

OPR@A

ADDRESS

71

Literal operand n
is contained in
the word follow­
ing the instruc­
tion.

Address A is
contained in the
word following
the instruction.

PC+4 + Xis ad­
dress. PC+ 4 is
updated PC.

PC+ 4 + Xis ad­
dress of address_
PC+ 4 is updat­
~d PC.

OPERAND

72

CHAPTER 5

INSTRUCTION SET

The PDP-11 instruction set offers a wide selection of operations and
addressing modes. To save memory space and to simplify the im­
plementation of control and communications applications, the PDP-11
instructions allow byte and word addressing in both single- and dou­
ble-operand formats. By using the double-operand instructions, you
can perform several operations with a single instruction. For example,
ADD A,B adds the contents of location A to location B, storing the
result in location B. Traditional computers would implement this in­
struction this way:

LDAA
ADDS
STAB

The PDP-11 instruction set also contains a full set of conditional
branches that eliminate excessive use of jump instructions. PDP-11
instructions fall into one of seven categories:

• Single-Operand-the first part of the word, called the "opcode,"
specifies the operation; the second part provides information for
locating the operand.

• Double-Operand-the first part of the word specifies the operation
to be performed; the remaining two parts provide information for
locating two operands.

• Branch - the first part of the word specifies the operation to be
performed; the second part indicates where the action is to take
place in the program.

• Jump and Subroutine - these instructions have an opcode and
address part, and in the case of JSR, a register for linkage.

• Trap - these instructions contain an opcode only. In TRAP and
EMT, the low-order byte may be used for function dispatching.

e Miscellaneous - HALT, WAIT, and Memory Management.

• Condition Code - these instructions set or clear the condition
codes.

SINGLE-OPERAND INSTRUCTIONS
Mnemonic Instruction

Gen~ral

CLR(B)
COM(B)

clear destination
1 's complement dst

73

Chapter 5 - Instruction Set

INC(B)
DEC(B)
NEG(B)
NOP
TST(B)
TS TS ET
WRTLCK

Shift & Rotate
ASR(B)
ASl(B)
ROR(B)
ROL(B)
SWAB

Multiple Precision
ADC(B)
SBC(B)
SXT

Instruction Format

15

increment dst
decrement dst
2's complement negate dst
no operation
test dst
test dst, set low bit (MICRO/J-11 only)
read/lock dst, write/unlock RO into dst
(MICRO/J-11 only)

arithmetic shift right
arithmetic shift left
rotate right
rotate left
swap bytes

add carry
subtract carry
sign extend

MODE Rn

OP CODE------~
DESTINATION FIELD---------------~

•SPECIFIES DIRECT OR INDIRECT ADDRESS
*•SPECIFIES HOW REGISTER Will BE USED

• 0 •SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS

Figure 4-1 Single-Operand Instruction Format

The instruction format for single-operand instructions is:

• Bit 15 indicates word or byte operation.

• Bits 14-6 indicate the operation code, which specifies the operation
to be performed.

• Bits 5-0 indicate the 3-bit addressing mode field and the 3-bit gener­
al register field. These two fields are referred to as the destination
field.

DOUBLE-OPERAND INSTRUCTIONS
Mnemonic Instruction

General
MOV(B)
ADD
SUB

move source to destination
add source to destination
subtract source from destination

74

Logical

CMP(B)
ASH
ASHC
MUL
DIV

BIT(B)
BIC(B)
BIS(B)
XOR

Chapter 5 - Instruction Set

compare source to destination
shift arithmetically
arithmetic shift combined
multiply
divide

bit test
bit clear
bit set
exclusive OR

Instruction Format

15 12 11

OP CODE MODE Rn MODE

SOURCE FIELD---------~
DESTINATION FIELD-----------------~

0 DIRECT/DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS
0 0 SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED

• 0 0 SPECIFIES A GENERAL REGISTER

Figure 4-2 Double-Operand Instruction Format

0

The format of most double-operand instructions, though similar to that
of single-operand instructions, has two fields for locating operands.
One field is called the source field, the other is called the destination
field. Each field is further divided into addressing mode and selected
register. Each field is completely independent. The mode and register
used by one field may be completely different than the mode and
register used by another field.

o Bit 15 indicates word or byte operation except when used with op­
code 6, in which case it indicates an ADD or SUBtract instruction.

• Bits 14-12 indicate the opcode, which specifies the operation to be
done.

(;} Bits 11-6 indicate the 3-bit addressing mode field and the 3-bit
general register field. These two fields are referred to as the 11ource
field.

• Bits 5-0 indicate the 3-bit addressing mode field and the 3-bit gener­
al register field. These two fields are referred to as the destination
field.

75

Chapter 5 - Instruction Set

e Some double-operand instructions (ASH, ASHC, MUL, DIV) must
have the destination operand only in a register. Bits 15-9 specify the
opcode. Bits 8-6 specify the destination register. Bits 5-0 contain the
source field. XOR has a similar format, except that the source is in a
register specified by bits 8-6, and the destination field is specified by
bits 5-0.

Byte lnstrnctlons
Byte instructions are specified by setting bit 15. Thus, in the case of
the MOV instruction, bit 15 is O; when bit 15 is set, the mnemonic is
MOVB. There are no byte operations for ADD and SUB, i.e., no ADDB
or SUBS.

BRANCH INSTRUCTIONS
Mnemonic Instruction

Branch
BR branch (unconditional)
BNE branch if not equal (to zero)
BEQ branch if equal (to zero)
BPL branch if plus
BMI branch if minus
BVC branch if overflow is clear
BVS branch if overflow is set
BCC branch if carry is clear
BCS branch if carry is set

Signed Condltlonal Branch
BGE branch if greater than or

BLT
BGT
BLE

SOB

equal (to zero)
branch if less than (zero)
branch if greater than (zero)
branch if less than or
equal (to zero)
subtract one and branch (if not= 0)

Unsigned Condltlonal Branch
BHI branch if higher
BLOS branch if lower or same
BHIS branch if higher or same
BLO branch if lower

Instruction Format

e The high byte (bits 15-8) of the instruction is an opcode specifying
the conditions to be tested.

• The low byte (bits 7-0) of the instruction is the signed offset value in

76

Chapter 5 - Instruction Set

15 0

____ / \ ____ _
OP CODE------
BYTE OFFSET ------------~

Figure 4-3 Branch Instruction Format

words that determines the new program location if the branch is
taken. Thus, program control can be transferred within a range of
-128 to + 127 words from the updated PC.

JUMP AND SUBROUTINE INSTRUCTIONS
Mnemonic
JMP
JSR
RTS
MARK

Instruction Format

JSR Format

c-.. ·
OP CODE-----~

Instruction
jump
jump to subroutine
return from subroutine
facilitates stack clean-up
procedures

LINKAGE POINTER----------~
DESTINATION FIELD------------------'

Figure 4-4 JSR Instruction Format

• Bits 1 S-9 are always octal 004, the opcode for JSR.

• Bits 8-6 specify the link register. Any general purpose register may
be used in the link, except R6 (SP).

e Bits S-0 designate the destination field that consists of addressing
mode and general register fields. This specifies the starting address
of the subroutine.

@ Register R7 (the Program Counter) is frequently used for both the
link and the destination. For example, you may use JSR R7, SUBR,
which is coded 004767. R7 is the only register that can be used for
both the link and destination, the other GPRs cannot. Thus, if the
link is RS, any register except RS can be used for one destination
field.

77

Chapter 5 - Instruction Set

RTS Format

15

Rn

OP CODE ________ __.

LINKAGE POINTER-------------------'

Figure 4-5 ATS Instruction Format

The RTS (return from subroutine) instruction uses the link to return
control to the main program once the subroutine is finished.

• Bits 15-3 always contain octal 00020, which is the opcode for ATS.

• Bits 2-0 specify any one of the general purpose registers.
• The register specified by bits 2-0 must be the same register used as

the link between the JSR causing the jump and the ATS returning
control.

TRAPS AND INTERRUPTS
Mnemonic
EMT
TRAP
BPT
IOT
CSM
RTI
RTT

Instruction
emulator trap
trap
breakpoint trap
input/output trap
call to supervisor mode
return from interrupt
return from interrupt

The three ways to leave a main program are:

• Software exit- the program specifies a jump to some subroutine

• Trap exit - internal hardware on a special instruction forces a jump
to an error handling routine

• Interrupt exit - external hardware forces a jump to an interrupt
service routine

In each case, a jump to another program occurs. Once the latter pro­
gram has been executed, control is returned to the proper point in the
main program.

MISCELLANEOUS INSTRUCTIONS
Mnemonic
HALT
WAIT
RESET
MTPD

Instruction
halt
wait for interrupt
reset UNIBUS
move to previous data space

78

Chapter 5 - Instruction Set

MTPI move to previous instruction space
MFPD move from previous data space
MFPI move from previous instruction space
MTPS move byte to processor status word
MFPS move byte from processor status word
MFPT move from processor type

Note that on the PDP-11 /70, the four instructions for referencing the
previous address space (MTPD, MTPI, MFPD, MFPI) use the General
Register set indicated by PSW<11 >when they are executed.

CONDITION CODE OPERATION
Mnemonic
CLC,CLV,CLZ,CLN,CCC
SEC,SEV,SEZ,SEN,SCC

The four condition code bits are:

!nstmctlon
clear
set

® N, indicating a negative condition when set to 1
@ Z, indicating a zero condition when set to 1

• V, indicating an overflow condition when set to 1

• C, indicating a carry condition when set to 1

These four bits are part of the processor status word (PS). The result
of any single-operand or double-operand instruction affects one or
more of the four condition code bits. A new set of condition codes is
usually created after execution of each instruction. Some condition
codes are not affected by the execution of certain instructions. The
CPU may be asked to check the condition codes after execution of an
instruction. The condition codes are used by the various instructions
to check software conditions.

Z bit - Whenever the CPU sees that the result of an instruction is zero,
it sets the Z bit. If the result is not zero, it clears the Z bit. There are a
number of ways of obtaining a zero result:

• Adding two numbers equal in magnitude but different in sign

~ Comparing two numbers of equal value
Using the CLR or SIC instruction

N bit - The CPU looks only at the sign bit of the result. If the sign bit is
set, indicating a negative value, the CPU sets the N bit. If the sign bit is
clear, indicating a positive value, then the CPU clears the N bit.

C bit - The CPU sets the C bit automatically whien the resu~t of an
instruction has caused a carry out of the most significant bit of the
result. Otherwise, the C bit is cleared. During rotate instructions (AOL
and ROA), the C bit forms a buffer between the most significant bit and
the least siQnificant bit of the word. A carry of 1 sets the C bit while a

79

Chapter 5 - Instruction Set

carry of O clears the C bit. However, there are exceptions. For
example:

• SUB and CM P set the C bit when there is no carry.

t1 INC and DEC do not affect the C bit.

Ii) COM always sets the C bit, TST always clears the C bit.

V bli - The V bit is set to indicate that an overflow condition exists. An
overflow means that the result of an instruction is too large to be
placed in the destination. The hardware uses one of two methods to
check for an overflow condition.

One way is for the CPU to test for a change of sign.

• When using single-operand instructions, such as INC, DEC, or NEG,
a change of sign indicates an overflow condition.

• When using double-operand instructions, such as ADD, SUB, or
CMP, in which both the source and destination have like signs, a
change of sign in the result indicates an overflow condition.

Another method used by the CPU is to test the N bit and C bit when
dealing with shift and rotate instructions.

• If only the N bit is set, an overflow exists.

• If only the C bit is set, an overflow exists.

• If both the N and C bits are set, there is no overflow condition.

More than one condition code can be set by a particular instruction.
For example, both a carry and an overflow condition may exist after
instruction execution.

CONDITION CODE OPERAT~S

0

Figure 4-6 Condition Code Operators' Format

Instruction Format
The format of the condition code operators is:

• Bits 15-5 - the opcode

• Bit 4 - the "operator" which indicates set or clear with the values 1
and O respectively. If set, any selected bit is set; if clear, any selected
bit is cleared.

• Bits 3-0 - the mask field. Each of these bits corresponds to one of
the four condition code bits. When one of these bits is set, then the

80

Chapter 5 - Instruction Set

corresponding condition code bit is set or cleared depending on the
state of the "operator" (bit 4).

EXAMPLES
The following examples and explanations illustrate the use of the vari­
ous types of instructions in a program.

Single-Operand Instruction Example
This routine uses a tally to control a loop, which clears out a specific
block of memory. The routine has been set up to clear 308 byte loca­
tions beginning at memory address 600.

INIT:

LOOP:

MOV #600,RO
MOV#30,R1

CLRB (RO)+
DEC R1
BNELOOP
HALT

Program Description
• The CLRB (RO)+ instruction clears the content of the location speci­

fied by RO and increments RO.

e RO is the pointer.

• Because the autoincrement addressing mode is used, the pointer
automatically moves to the next memdry location after execution of
the CLRB instruction.

e Register R1 indicates the number of locations to be cleared and is,
therefore, a counter. Counting is performed by the DEC R1 instruc­
tion. Each time a location is cleared, it is counted by decrementing
R1.

0 The Branch if Not Zero, BNE, instruction checks for done. If the
counter is not zero, the program branches back to clear another
location. If the counter is zero, indicating done, then the program
halts.

Double-Op~mmd Instruction Exampi®
This routine moves characters to be printed from location 600 into a
print buffer area in memory.

!NIT:

START:

MOV#600, RO
MOV #prtbuf, R1
MOV #76, R2

MOVB (RO)+, (R1)+

81

;set up source address
;set up destination address
;set up loop count

;move one character
;and increment
;both source and

Chapter 5 - Instruction Set

DEC R2
BNE START
HALT

Program Description

;destination addresses
;decrement count by one
;loop back if
;decremented counter is not
;equal to zero

~ MOV is the instruction normally used to set up the initial conditions.
Here, the first MOV places the starting address (600) into RO, which
will be used as a pointer. The second MOV places the starting
address of the print buffer into R1. The third MOV sets up R2 as a
counter by loading the desired number of locations (76) to be print­
ed.

o The MOVB instruction moves a byte of data to the printer buffer. The
data come from the location specified by RO. The pointers RO and
Ai are then incremented to point to the next sequential location.

• The counter (R2) is then decremented to indicate one byte has been
transferred.

• The program then checks the loops for done with the BNE instruc­
tion. If the counter has not reached zero, indicating more transfers
must take place, then the BNE causes a branch back to START and
the program continues.

• When the counter (R2) reaches zero, indicating all data have been
transferred, the branch does not occur and the program halts.

Branch Instruction Example

NOTE
Branch instruction offsets are limited to the range of
+ i 77 8 to -2008 words.

A payroll program has set up a series of words to identify each em­
ployee by his badge number. The high byte of the word contains the
employee's badge number, the low byte contains an octal number
ranging from 0 to 13 which represents his salary. These numbers
represent steps within three wage classes to identify which employees
are paid weekly, monthly, or quarterly. It is time to make out weekly
paychecks. Unfortunately, employee information has been stored in a
random order. The problem is to extract the names of only those
employees who receive a weekly paycheck. Employee payroll num­
bers are assigned as follows: 0 to 3 - Wage Class I (weekly), 4 to 7 -
Wage Class II (monthly), 10 to i 3 - Wage Class Ill (quarterly).

82

Chapter 5 - Instruction Set

600 is the starting address of memory block containing the employee
payroll information. 1264 is the final address of this data area. The
following program searches through the data area and finds all
numbers representing Wage Class I, and, each time an appropriate
number is found, stores the employee's badge number (just the high
byte) on a Last-in/First-out stack which begins at location 4000.

INIT: MOV #600, RO
MOV #4000, R1

START: CMPB(R0)+,#3

BHI CONT

STACK: MOVB (RO),-(R1)

CONT: INCRO

CMP #1264, RO

BHIS START

Program Description
• RO becomes the address pointer, R1 the stack pointer.

• Compare the contents of the first low byte with the number 3 and go
to the first high byte.

• If the number is more than 3, branch to continue.

e If no branch occurs, it indicates that the number is 3 or less. There­
fore, move the high byte containing the employee's number onto the
stack as indicated by stack pointer R1.

• RO is advanced to the next low byte.

• If the last address has not been examined (1264), this Instruction
produces a result equal to or greater than zero.

" If the result is equal to or greater than zero, examine the next memo­
ry location.

INSTRUCTION SET
The PDP-11 instruction set is presented in the following section. For
ease of reference, the instructions are listed alphabetically.

SW'IECIAL SYMBOLS
You will find that a number of special symbols are used to describe

83

Chapter 5 - Instruction Set

certain features of individual instructions. The commonly used sym­
bols are explained below.

Symbol Meaning

MN Maintenance instruction

so
DO

PC

MS

cc
(x)

src

dst

tmp

(SP)+

-(SP)

A

v

Reg or R

Rv1

R, Rv1

B

M.P.I.

M.N.I.

Single-operand instruction

Double-operand instruction

Program control instruction

Miscellaneous instruction

Condition Code

Contents of memory location whose address is x

Source address

Destination address

Contents of temporary internal register

Becomes, or moves into. For example, (dst) +- (src)
means that the source becomes the destination or
that the source moves into the destination location.

Popped or removed from the hardware stack

Pushed or added to the hardware stack

Logical AND

Logical inclusive OR (either one or both)

Logical exclusive OR (either one, but not both)

Logical NOT

Contents of register

Contents of register R if an odd-numbered register is
specified. Contents of the register following R if R is
an even-numbered register

32-bit quantity obtained by concatenating Rand Rv1

Byte

Most Positive lnteger-077777 (word) or 177 (byte)

Most Negative lnteger-100000 (word) or 200 (byte)

NOTE
Condition code bits are considered to be cleared
unless they are specifically listed as set.

84

Chapter 5 - Instruction Set

SUMMARY OF PDP-11 INSTRUCTION SET

Basic PDP-11 Instruction Set
ADC BIT COM AOL

ADCB BITB COMB ROLB

ADD BLE DEC ROR

ASL BLO DECB RORB

ASLB BLOS EMT RTI

ASR BLT HALT RTS

ASRB BMI INC RTT

BCC BNE INCB SBC

BCS BPL IOT SBCB

BEQ BPT JMP sec, SEN,
SEZ,
SEV,SEC

BGE BR JSR SOB

BGT BVC MARK SUB

BHI BVS MOV SXT

BHIS CLR MOVB SWAB

BIG CLRB NEG TRAP

BICB CCC, CLN, NEGBB TST
CLZ,
CLV,CLC

BIS CMP NOP TSTB

BISB CMPB RESET XOR

WAIT
The basic PDP-11 instructions are standard on:

MICRO/l"-11

• MICRO/J-11

• LSl-11/2
@ FALCON SBC-11/21 (except tor MARK instruction)

MICRO/PDP-11

• PDP-11/23 PLUS

• PDP-11/24

"" PDP-11/44

85

Chapter 5 - Instruction Set

The PDP-11 compatibility mode on VAX-11 implements all basic PDP-
11 instructions except: MARK, RESET, TRAP, WAIT, BPT, EMT, IOT,
and HALT.

CSM
Available on MICRO/J-11 and PDP-11/44 only.

Extended Integer Instructions (EIS)
ASH
ASHC
DIV
MUL

EIS is standard on:

• MICRO/PDP-11

• PDP-11/23 PLUS

• PDP-11/24

• PDP-11/44

• VAX-11 compatibility mode

EIS is also available as an option on the LSl-11/2.

MFPD, MFPI, MTPD, MTPI
Available on the MICRO/J-11, LSl-11/23, MICRO/PDP-11, PDP-11/23-
PLUS, PDP-11/24, PDP-11/44, and VAX-11 compatibility mode.

MFPS, MTPS
Available on the MICRO/T-11, MICRO/J-11, LSl-11/2, FALCON SBC-11/
21, LSl-11/23, MICRO/PDP-11, PDP-11/23-PLUS, and PDP-11/24.

MFPT
Available on the MICRO/T-11, MICRO/J-11, FALCON SBC-11/21, LSl-
11/23, MICRO/PDP-11, PDP-11/23-PLUS, PDP-11/24, and PDP-11/44.

SPL
Available on MICRO/J-11 and PDP-11/44 only.

TSTSET, WRTLCK
Available on MICRO/J-11 only.

86

Table 5-1 PDP-11 Instruction Set

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description

ADC so 0055DD (dst) +- (dst)+C N: set if result < O Adds the contents of the C bit into
ADCB 1055DD Z: set if result = 0 the destination.
Add Carry V: set if (dst) was M.P.I. Q

and C was 1, prior to Q)
1J

instruction execu- <ii
tion. °'

CXl C: set if (dst) was -1 I
--.I ::;-

and C was 1, prior to (I)

instruction execu- ~
(')

tion. a·
::i
(/)

ADD DO 06SSDD (dst) +- (src) + N: set if result < 0 Adds the source operand to the m.
Add (dst) Z: set if result = O destination operand and stores the

V: set if there is result at the destination address.
arithmetic overflow The original contents of the desti-
as a result of the op- nation are lost. The contents of the
eration; that is, both source are not affected. 2's com-
operands were of plement addition is performed.
the same sign and
the result is of the
opposite sign.

Table 4-1 PDP-11 Instruction Set, cont.

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description

C: set if there is a carry
from the mostsig-
nificant bit of the Q
result. {l

Ci)
.....

ASH DO 072RSS R +- R shifted N: set if result < 0 The contents of the register are
C.11

I 00 Arithmetic arithmetically NN Z: set if result = 0 shifted right or left the number of 5" 00

Shift places to right or V: set if sign of register times specified by the shift count (/)
~ left where NN = changed during (i.e., bits <5:0> of the source op- C")

(src) <5:0> shift. Cleared if NN erand). The shift count is taken as g.
::i

= 0. the low order 6 bits of the source (/)

C: loaded from last bit operand. This number ranges from ~

shifted out of regis- -32 to +31. Negative is BJ right shift
ter. Cleared if NN = and positive is a left shift
0.

ASHC DO 073RSS tmp+-R, Rv1 N: set if result < 0 The contents of the specified regis-
Arithmetic tmp - tmp shift- Z: set if result = O ter Rand the register Rv1 are treat-
Shift ed NN bits V: set if sign bit ed as a single 32-bit operand, and
Combined R +-tmp<31: changes during the are shifted by the number of bits

16> shift. specified by the count field (bits
Rv1 -tmp<15: C: loaded with high- <5:0> of the source operand). The
0> order bit when left registers are replaced by the re-
The double word shift; loaded with suit. First, bits <31 :16> of the re-
R,Rv1 is shifted low-order bit when suit are stored in register R. Then,
NN places to tho right shift (loaded bits <15:0> of the result are stored
right or left, with the last bit shift- in register Rv1. The count ranges
where NN = (src) ed out of the 32-bit from -32 to +31. A negative count
<5:0> operand). signifies a right shift. A positive

count signifies a left shift. A zero Q
count implies no shift, but condl-

Ill
"O

tion codes are affected. Condition
(b
"""'

codes are always set on the 32-bit °' I co result. CD :;-
Cl)

Note: 1) The sign bit of the register 2
R is replicated in shifts to the right. 0 g:
The least significant bit is filled with :::.

zero in shifts to the left. The C bit (/)

~
stores the last bit shifted out. 2) In-
teger overflow occurs on a left shift
if any bit shifted into the sign posi-
tion differs from the initial sign of
the register.

ASL so 006300 (dst) +- (dst) N: set if high-order bit Shifts all bits of the destination left
ASLB so 106300 shifted one place of the result Is set one place. The low-order bit Is
Arithmetic to the left (result< 0) loaded with a 0. The C bit of the

Table 5-1 PDP-11 Instruction Set, continued

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description

Shift Left Z: set if the result = 0 status word is loaded frnm the
V: loaded with the ex- high-order bit of the destination.

elusive OR of the N ASL performs a signed multipliclll-
bit and C bit (as set tion of the destination by 2 with

9 by the completion of overflow indication. For example, Ill

the shift operation). -1 shifted left yields -2, +2 shift- 1:1
CD"

C: loaded with the ed left yields +4, and -3 shifted ""' °'
<D high-order bit of the left yields -6. I
0 destination. :;-

(I)

2
ASA so 006200 (dst) +- (dst) N: set if the high-order Shifts all bits of the destination (")

:::t

ASRB so 106200 shifted one place bit of the result is set right one place. The high-order bit
0
:::s

Arithmetic to the right (result< 0) is replicated. The C bit is loaded OJ
m.

Shift Right Z: set if the result = 0 from the low-order bit of tl1e desti-
V: loaded from the ex- nation. ASR performs signed divi-

elusive OR of U1e N sion of the destination by 2, round-
bit and C bit (as set ed to minus infinity. -1 shifted
by the completion of right remains -1, +5 shifted right
the shin operation). yields +2, -5 shifted right yields

C: loaded from low- -3.
order bit of the des-
ti nation

BCC PC 103000 PC-PC+ N: unaffected Tests the state of the C bit and
Branch if PLUS 8- (2 x offset) if Z: unaffected causes a branch if C is clear.
Carry Clear bit offset C=O V: unaffected

C: unaffected

BCS PC 103400 PC-PC+ N: unaffected Tests the state of the C bit and
Branch if PLUS 8- (2 x offset) if Z: unaffected causes a branch if C is set. Used to
Carry Set bit offset c = 1 V: unaffected test for a carry in the result of a

C: unaffected previous operation.
Q

BEQ PC 001400 PC-PC+ N: unaffected Tests the state of the Z bit and ~
Branch if PLUS 8- (2 x offset) if Z: unaffected causes a branch if Z is set. For ex-

iD
"" °' Equal (to bit offset Z=i V: unaffected ample, it is used to test equality fol- I

~ zero) C: unaffected lowing a CMP operation, and to ::;-
test that no bits set in the destina-

en
2

tion were also set in the source fol- 0

lowing a BIT operation, and, gener-
g.
::i

ally, to test that the result of the (/)

previous operation was 0.
m.

BGE PC 002000 PC-PC+ N: unaffected Causes a branch if N and V are ei-
Branch if PLUS 8- (2 x offset) if Z: unaffected ther both clear or both set. BGE is
Greater bit offset N-V-V = 0 V: unaffected the complementary operation to
than C: unaffected BLT. Thus, BGE always causes a
or Equal branch when it follows an opera-

tion that caused addition of two
positive numbers. BGE also
causes a branch in a O result.

Table 5·1 PDP·11 lnstmction Set, continued

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description

BGT PC 003000 PC-PC+ N: unaffected Causes a branch if Z is clear and N
Branch if PLUS 8- (2 x offset) if Z: unaffected equals V. Thus, BGT never branch-
Greater bit offset Zv(N v V) = 0 V: unaffected es following an operation that add- Q
than C: unaffected ed two negative numbers, even if Q)

-0
overflow occurred. In particular, co
BGT never causes a branch if it fol-

....
01

co lows a CMP instruction operating I
I\)

on a negative source and a positive S"
"' destination (even if overflow oc- 2
()

curred). Further, BGT always g.
causes a branch when it follows a ::i

(/)

CMP instruction operating on a m.
positive source and negative desti-
nation. BGT does not cause a
branch if the result of the previous
operation was 0 (without overflow).

BHI PC 101000 PC-PC+ N: unaffected Causes a branch if the previous
Branch if PLUS 8- (2 x offset) if Z: unaffected operation causes neither a carry
Higher bit offset C = O and Z = 0 V: unaffected nor a 0 result. This will happen in

C: unaffected comparision (CMP) operations as

long as the source has a higher un-
signed value than the destination.

BHIS PC 103000 PC+-PC + N: unaffected Tests the state of the C bit and
Branch if PLUS 8- (2 x offset) if Z: unaffected causes a branch if C is cleared.
Higher bit offset C=O V: unaffected
than or C: unaffected
Same

SIC DO 04SSDD (dst) +- ~ (src) A N: set if high-order bit Clears each bit in the destination £!
BICB 14SSDD · (dst) of result set that corresponds to a set bit in the Ill

"O
Bit Clear Z: set if result = 0 source. The original contents of the (ii

V: cleared destination are lost. The contents °'
CD C: unaffected of the source are unaffected. I
w :;-

(I)
BIS DO 05SSDD (dst) +- N: set if high-order bit Performs inclusive OR operation 2

()

BISB 15SSDD (src)v(dst) of result set between the source and destina- g:
Bit Set Z: set if result = 0 tion operands and leaves the result ::i

(/)

V: cleared at the destination address, i.e., ~

C: unaffected corresponding bits set in the
source are set in the destination.
The contents of the destination are
lost.

BIT DO 03SSDD (dst) A (src) N: set if high-order bit Performs logical AND comparison
BITB 13SSDD of result set of the source and.destination oper-
Bit Test Z: set if result = O ands and modifies Condition

V: cleared Codes accordingly. Neither the

(0
-I>-

Mnemonic/
Instruction

BLE
Branch if
Less
than or
Equal to

Type

PC

Table 5-1 PDP-11 Instruction Set, continued

OPCode Operation Condition Codes

C: unaffected

003400 PC-PC+ N: unaffected
PLUS 8- (2 x offset) if Z: unaffected
bit offset Zv(N v V) = 1 V: unaffected

C: unaffected

Description

source nor destination operands
are affected. The BIT instruction
may be used to test whether any of
the corresponding bits that are set Q
in the destination are clear in the ~

source. (ii

Causes a branch if Z is set or if N
does not equal V. Thus, BLE al­
ways branches following an opera­
tion that added two negative num­
bers, even if overflow occurred. In
particular, BLE always causes a
branch if it follows a CMP instruc-
tion operating on a negative source
and a positive destination (even if
overflow occurred). Further, BLE
never causes a branch when it fol­
lows a CMP instruction operating
on a positive source and negative
destination. BLE always causes a

....
°' I
S'
"' 2
(')

g.
;:,
(/)

m.

branch if the result of the previous
operation was 0.

BLO PC 103400 PC+-PC + N: unaffected Tests the state of the C bit and
Branch if PLUS 8- (2 x offset) if Z: unaffected causes a branch if C is set. Used to
Lower bit offset C=1 V: unaffected test for a carry in the result of a

C: unaffected previous operation.

BLOS PC 101400 PC+-PC + N: unaffected Causes a branch if the previous
Branch if PLUS 8- (2 x offset) if Z: unaffected operation caused either a carry or Q
Lower bit offset CvZ = 1 V: unaffected a zero result. BLOS is the com-

Q)
1J

or Same C: unaffected plementary operation to BHI. The (ii
branch occurs in comparison op- °'

(0 erations as long as the source is
I

(]1 :;
equal to or has a lower unsigned Cl)

~ value than the destination. Q.

BLT PC 002400 PC+-PC + N: unaffected Causes a branch if the exclusive
e;·
::i

Branch if PLUS 8- (2 x offset) Z: unaffected OR of the N and V bits is 1. Thus,
(/)

~
Less Than bit offset if N¥V = 1 V: unaffected BLT always branches following an

C: unaffected operation that added two negative
numbers, even if overflow oc-
curred. In particular, BLT always
causes a branch if it follows a CMP
instruction operating on a negative
source and a positive destination
(even if overflow occurred). Fur-

Table 5·1 PDP-11 Instruction Set, continued

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description

ther, BLT never causes a branch
when if follows a CMP instruction
operating on a positive source and
negative destination. BLT does not g
cause a branch if the result of the

Q)

"t:J

previous operation was 0 (without ©

overflow).
01

<D I
O"> BMI PC 100400 PC-PC+ N: unaffected Tests the state of the N bit and 5"

(/)

Branch if PLUS 8- (2 x offset) if Z: unaffected causes a branch if N is set. Used to 2
Minus bit offset N=1 V: unaffected test the sign (most significant bit)

C)

g:
C: unaffected of the result of the previous opera- :J

ti on.
(/)

~

BNE PC 001000 PC-PC+ N: unaffected Tests the state of the Z bit and
Branch if PLUS 8- (2 x offset) if Z: unaffected causes a branch if the Z bit is clear.
Not Equal bit offset Z=O V: unaffected BNE is the complementary opera-

C: unaffected tion to BEO. It is used to test
inequality following a CMP, to test
that some bits set in the destination
were also set in the source, fol!ow-
ing a BIT, and generally, to test that

the result of the previous operation
was not 0.

BPL PC 100000 PC-PC+ N: unaffected Tests the state of the N bit and
Branch if PLUS 8- (2 x offset) if Z: unaffected causes a branch if N is clear. BPL
Plus bit offset N=O V: unaffected is the complementary operation of

C: unaffected BMI.

BPT PC 000003 -(SP)-PS N: loaded from trap Performs a trap sequence with a
Breakpoint -(SP)-PC vector trap vector address of 14. Used to Q
Trap PC-(14) Z: loaded from trap call debugging aids. The user is Ql

~

PS-(16) vector cautioned against employing code Qi"
.....

V: loaded from trap 000003 in programs run under (J1

<D vector these debugging aids. No informa- I
" :;-

C: loaded from trap tion is transmitted in the low byte. (/)

::::-vector <:::
(")

g.
BR PC 000400 PC-PC+ N: unaffected Provides a way of transferring pro- :::.

(/)

Branch PLUS 8- (2 x offset) Z: unaffected gram control within a range of m.
(Uncondi- bit offset V: unaffected -128 to + 127 words with a one-
tional) C: unaffected word instruction. An unconditional

branch.

BVC PC 102000 PC-PC+ N: unaffected Tests the state of the V bit and
Branch if V PLUS 8- (2 x offset) if Z: unaffected causes a branch if the V bit is clear.
bit bit offset V=O V: unaffected SVC is the complementary opera-
Clear C: unaffected tion to BVS.

Tall:ile 5-1 PDP-11 instrucliioIT'l Set, conUrnJed

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description

BVS PC 102400 PC-PC+ N: unaffected Tests the state of V bit and causes
Branch if PLUS 8- (2 x offset) if Z: unaffected a branch if the V bit is set BVS is
V bit Set bit offset V=1 V: unaffected used to detect arithmetic overfllow Q

C: unaffected in the previous operation. ~
Ci)

CLR so 005000 (dst) +- O N: cleared Contents of specified destination °'
<.O CLRB 105000 Z: set are replaced with zeros. I
CXl S"

Clear V: cleared "'
C: cleared 2

0 g.
c cc 000240 Clear condition code bits. Selectable combinations of these bits may be

::i
(/)

Clear PLUS 4- cleared together. Condition code bits corresponding to bits in the condition ~

Selected bit mask code operator (bits 0-3) are modified. Clears the bit specified by the mask; i.e.,
Condition bit 0, 1, 2, or 3. Bit 4 is a 0.
Code Operation:
Bits PSW <3:0> .,,_ PSW <3:0> A[-mask <3:0>)

CCC cc 00257 N,Z, V, c-o
Clear all
Condition

Code
Bits

CLC cc
Clear C

CLN cc
Clear N

CLV cc
Clear V

CLZ cc
<.O Clear Z <.O

CMP DO
CMPB
Compare

000241 c-o

000250 N+-0

000242 v-o

000244 Z+-0

02SSDD (src) - (dst)
12SSDD [in detail

(src) + ~ (dst) +
1]

N: set if result < 0
Z: set if result = 0
V: set if there is

arithmetic overflow;
i.e., operands of op­
posite signs and the
sign of the destina­
tion is the same as
the sign of the re­
sult.

C: set if there is a bor-

Compares the source and destina­
tion operands and sets the condi­
tion codes, which may then be
used for arithmetic and logical
conditional branches. Both oper­
ands are unaffected. The only ac­
tion is to set the condition codes.
The comparison is customarily fol­
lowed by a conditional branch in­
struction. Note that unlike the
subtract instruction, the order of

'fable 5·1 PDP-11 Instruction Set, continued

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description

row into the most operation is (src) -(dst), not (dst)
significant bit, i.e., if - (src).
(src)+-(dst)+1 was
less than 216• g

Q)

"ti
COM so 005100 (dst) .,..__ - (dst) N: set if most signifi- Replaces the contents of the desti- CD"
COMB 105100 cant bit of result = 1 nation address by their logical 01

....
Com pie- Z: set if result = 0 complements (each bit equal to 0 I a s a
ment V: cleared set and each bit equal to 1 "'

C: set cleared). ?:
()

g.
CSM PC 007000 If MMR3<3> = N: unaffected CSM may be executed in User or

:::.
(/)

Call to 1 and current Z: unaffected Supervisor Mode, but is an illegal !P.
Supervisor mode 7" Kernel V: unaffected instruction in Kernel mode. CSM
Mode then: C: unaffected copies the current stack pointer (SP)

begin to the Supervisor Mode switch-
Supervisor SP.,,__ es to Supervisor Mode, stacks
current mode three words on the Supervisor
SP; stack, (the PSW with the Condition
temp <15:4> <>-- Codes cleared, the PC, and the ar-
PSW <15:4>; gument word addressed by the op-

DEC
DECB
Decrement

DIV
Divide

so

DO

005300
105300

temp <3:0> - O;
PSW <13:12>-..
PSW <15:14>;
PSW <15:14> -
01;
PSW<4>-0;
-(SP)-temp;
-(SP)+- PC;
-(SP)-(dst);
PC.,__ (10);
end;
else trap to 1 O in
Kernel mode;

(dst) +-(dst) - 1

071RSS R,Rv1 -
R,Rv1/(src)

N: set if result < 0
Z: set if result = 0
V: set if (dst) was

M.N.I.
C: unaffected

N: set if quotient < 0
(unspecified if V =
1)

Z: set if quotient = 0
(unspecified if V =
1)

erand), and sets the PC to the con­
tents of location 10 (in Supervisor
space). The called program in
Supervisor space may return to the
calling program by popping the ar­
gument word from the stack and
executing RTI. On return, the
Condition Codes are determined
by the PSW word on the stack.
Hence, the called program in Su­
pervisor space may control the
Condition Code values following
return.

Subtracts 1 from the contents of
the destination.

Table 5·1 PDP-11 Instruction Set, cointinued

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description

V: set if (src) = 0 or if
quotient cannot be
represented as a
16-bit 2's com pie- Q
ment number. R, Q)

"t:J
Rv1 are unpredicta- CD"
ble if V is set and C 01

..... is clear . I
0 ::;-
I\) C: set if divide by 0 is (I)

attempted 2
0
:::?".
0
::i

EMT PC 104000 -(SP) +-PS N: loaded from trap All operation codes from 104000 to (/)

Emulator to -(SP) +-PC vector 104377 are EMT instructions and ~

Trap 104377 PC +-(30) Z: loaded from trap may be used to transmit informa-
PS +-(32) vector tion to the emulating routine (e.g.,

V: loaded from trap function to be performed). The trap
vector vector for EMT is at address 30.

C: loaded from trap The new PC is taken from the word
vector at address 30; the new central

processor status word (PS) is tak-
en from the word at address 32.

Caution: EMT is used frequently
by DIGITAL system software and is
therefore not recommended for
general use.

HALT MS 000000 N: unaffected Causes the processor operation to
Z: unaffected cease. The console is given control
V: unaffected of the processor. The console data
C: unaffected lights display the contents of the

PC (which is the address of the
()
:;)-

"' HALT instruction plus 2). Transfers "O
(ii

on the UNIBUS are terminated im-
01

..... mediately. Pressing the continue I
0 key on the console causes proces- ::; c.v

"' sor operation to resume. 2
C)

INC so 005200 (dst) +- (dst) + 1 N: set if result< 0 Adds 1 to the contents of the desti- :::!".
0

INCB 1052DD Z: set if result = 0 nation. ::::.
(/)

Increment V: set if (dst) was M.P.I. ~

C: unaffected

IOT PC 000004 -(SP) +-PS N: loaded from trap Performs a trap sequence with a
110 Trap --(SP) +-PC vector trap vector address of 20. Used to

PC +-(20) Z: loaded from trap call the 1/0 executive routine IOX in
PS"*""" (22) vector the paper tape software system

V: loaded from trap and for error reporting in the disk
vector operating system. No information

Mnemonic/
Instruction

JMP
Jump

Type

PC

Table 5·1 PDP·11 Instruction Set, continued

OPCode Operation

0001 DD PC - dst

Condition Codes

C: loaded from trap
vector

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description

is transmitted in the low byte.

JMP provides more flexible pro- g
gram branching than provided with {l
the branch instruction. It is not !im- ~
ited to + 177 0 and -2006 as ere 01

branch instructions. JMP does 1 ::;-
generate a second word, which en
makes it slower than branch in- ~
structions. Control may be trans­
ferred to any location in memory
(no range limitation) and can be
accomplished with the full flexibili­
ty of the addressing modes with
the exception of register mode 0.
Execution of a jump with mode 0
will cause an illegal instruction
condition and a trap through loca­
tion 4. (Program control cannot be
transferred to a register.) Register

g:
:::.
(/)

~

JSR
Jump to
Subroutine

PC 004RDD (tmp)-(dst)
(tmp is an inter­
nal processor
register)
+(SP)+- reg
(push reg con­
tents onto proc­
essor stack)
reg-PC (PC
holds the loca­
tion following
JSR; this address
now put in reg)
PC-tmp (PC
now points to

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

deferred mode is legal and will
cause program control to be trans­
ferred to the address held in the
specified register. Note that
Instructions are word data and
therefore must be fetched from
an even numbered address. A
boundary error trap condition will
result when the processor
attempts to fetch an Instruction
from an odd address.

In execution of the JSR, the old
contents of the specified register
(the linkage pointer) are automati­
cally pushed onto.the R6 stack and
new linkage information is placed
in the register. Thus, subroutines
nested within subroutines to any
depth may all be called with the
same linkage register. There is no
need either to plan the maximum
depth at which any particular sub­
routine will be called or to include
instructions in each routine to save
and restore the linkage pointer.
Further, since all linkages are

.....
0 en

Mnemonic/
Instruction Type OP Code

Table 5-1 PDIP-11 lnstmction Set, confoiued

Operation

subroutine ad­
dress)

Condition Codes Description

saved in a re-entrant manner on
the R6 stack, execution of a sub­
routine may be interrupted, and
the same subroutine re-entered
and executed by an interrupt ser­
vice routine. Execution of the initial
subroutine can then be resumed
when other requests are satisfied .
This process (called nesting) can
proceed to any level.

JSR PC, dst is a special case of the
PDP-11 subroutine call suitable for
subroutine calls that transmit par-.
ameters through the general pur­
pose registers. JSR, with the PC as
the linkage register, saves the use
of an extra register.

Note: II the register specified in the
first operand register is autoincre­
mented or autodecremented in the
second operand (dst) evaluation,

the modified register contact is
pushed on SP. For example, JSR
R5,@(R5)+ will cause the modified
value of R5 to be pushed to SP.

MARK PC 0064NN SP-PC+ 2 X N: unaffected Used as part of the standard PDP-
NN Z: unaffected 11 subroutine return convention.
PC+-R5 V: unaffected MARK facilitates the stack clean-
R5 +-(SP)+ C: unaffected up procedures involved in subrou-
NN = number of tine exit. Assembler format is: Q
parameters MARKN "' "ti

(ii'
MFPD MS 1065SS tmp +-(src) N: set if the source < O Pushes a word onto the current R6 °'

..... Move From 0065SS -(SP) +-tmp Z: set if the source = O stack from an address in previous I
0 ::;
-..J Previous V: cleared space determined by PS<13:12>. (/)

Data C: unaffected The source address is computed 2
(')

space using the current registers and g.
MFPI memory map. When MFPI is exe-

:::.
(/)

Move From cuted and both previous mode and ~

Previous current mode are User, the instruc-
lnstruc- tion functions as though it were
ti on MFPD.
space

0
Cll

Mnemonic/
Instruction

PDP-
11/03, and
PDP-
11 /04)

MFPS
Move Byte
from PSW

MFPT
Move From
Processor

Type

MS

MS

Table 5-1 PDP-n Instruction Set, continued

OPCode Operation

106700

000007

(dst) +- PS<7:0>
dst lower 8 bits

R0<7:0> +­

processor model
code
R0<15:8> .,_

Condition Codes

N: set if PS bit 7 = 1
Z: set if PS <7:0> = 0
V: cleared
C: not affected

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description

The 8-bit contents of the PS are
moved to the effective destination.
If destination is mode 0, PS bit 7 is
sign extended through the upper
byte of the register. The destina­
tion operand is treated as a byte
address.

No source operands are used. The
MFPT instructions returns in the
low byte of RO a processor model
code (i on the PDP-1 i /44, 3 on the

processor sub- PDP-11 /24). The high byte of RO is
code loaded with a processor-specific

subcode, (currently O on the PDP-
11/24and PDP-11/44). Thecondi-
ti on codes are not affected. The
previous contents of RO are lost.
Note: On processors where this in-
struction is not implemented, a re-
served instruction trap through

()
vector 108 is taken. :::i-

"' l:)

MOV DO 01SSDD (dst) +- (src) N: set if (src) < O Moves the source operand to the <ii
MOVB 11SSDD Z: set if (src) = 0 destination location. The previous (.Ji

_..
Move V: cleared contents of the destination are lost. I

0 :;-'° C: unaffected The source operand is not affect- "'
ed. 2

Q.

Byte: Same as MOV. The MOVB to a·
::i

a register (unique among byte in- (/}

structions) extends the most signif- ~

icant bit of the low-order byte (sign
extension) into the high byte of the
selected register. Otherwise,
MOVB operates on bytes exactly
as MOV operates on words.

MTPD MS 1066DD tmp +-SP+ N: set if the source < 0 This instruction pops a word off the
Move To 0066DD (dst) +-tmp Z: set if the source = O current R6 stack determined by PS

.....
0

Mnemonic/
Instruction

Previous
Data space
MTPI
Move To
Previous
Instruction
space

MTPS
Move Byte
ToPSW

Type

MS

Table 5-1 PDP-11 Instruction Set, continued

OPCode Operation

1064SS PS+- (src)

Condition Codes

V: cleared
C: unaffected

N: set according to
effective src oper­
and 0-3

Z: same as above
V: same as above

Description

bits < 15: 14> and stores that word
into an address in previous space
determined by PS bits <13:12>.
The destination address is com­
puted using the current registers
and memory map.

The eight bits of the effective oper­
and replace the current contents of
the PS <7:0>. The source operand
address is treated as a byte ad­
dress. Note that PS bit 4 cannot be

MUL DO 070RSS R,Rv1 +-RX
Multipy (src)

~

NEG so 005400 (dst) +- -(dst)
NEGB 105400
Negate

NOP cc 000240 None
No 000260
Operation

C: same as above

N: set if product< 0
Z: set if product = O
V: cleared
C: set if the result is

less than -2 15 or
greater than or
equal to 215 • Condi-
tion codes set on
32-bit result even if
R is odd.

N: set if result < 0
Z: set if result = 0
V: set if result= M.N.I.
C: cleared if result = O;

set otherwise

N: unaffected
Z: unaffected
V: unaffected

set with this instruction. The src
operand remains unchanged.

The contents of the destination
register and source taken as 2's
complement integers are multi-
plied and stored in the destination
register and the succeeding regis-
ter (if R is even). If R is odd, only
the low-order product is stored.
Assembler syntax is: MUL S,R.
(Note that the actual destination is
R, Rv1, which reduces to just R
when R is odd.)

Replaces the contents of the desti-
nation address by its 2's com pie-
ment. Note that 100000 is replaced
by itself.

No operation is performed.

Q
Ill

1:l
en
CJ1

I
:;-
Cl)

~ c::
(")

g.
:::i
Cl)

~

Mnemonic/
Instruction

RESET

ROL
ROLB
Rotate Left

Type

MS

so

Table 5-1 PDP-11 Instruction Set, continued

OPCode

000005

006100
106100

Operation

(dst) +- (dst)
rotate left one
place

Condition Codes

C: unaffected

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

N: set if the high-order
bit of the result word
is set (result < 0).

Z: set if all bits of the
result= 0

V: loaded with the ex­
clusive OR of the N
bit and C bit (as set
by the completion of
the rotate opera­
tion).

C: set if the high-order
bit of the destination
was set prior to in­
struction execution.

Description

Sends INIT on the UNIBUS for 10
ms. All devices on the unit are rn­
set to their state at power-up.

Rotates all bits of the destination
left one place. The high-order bit is
loaded into the C bit of the status
word and the previous contents of
the C bit are loaded into the low­
order bit of the destination.

ROR so 0060DD (dst) +- (dst) N: set if high-order bit Rotates all bits of the destination
RORB 1060DD rotat€ right one of the result is set right one place. The low-order bit
Rotate place Z: set if all bits of result is loaded into the C bit and the
Right are O previous contents of the C bit are

V: loaded with the ex- loaded into the high-order bit of
elusive OR of the N the destination.
bit and the C bit as
set by ROR.

C: set if the low-order
bit of the destination

~ was set prior to in-w
struction execution.

RTI MS 000002 PC +-(SP)+ N: loaded from current Used to exit from an interrupt or
Return PS +-(SP)+ R6 stack trap service routine. The PC and
from Z: loaded from current PS are restored (popped) from the
Interrupt R6 stack R6 stack. If the RTI sets the T bit in

V: loaded from current the PS, a trace trap will occur prior
R6stack to executing the next instruction.

C: loaded from current When executed in Supervisor
R6 stack Mode, the current and previous

Mnemonic/
Instruction

ATS
·Return
from
Subroutine

Type

PC

Table 5·1 PDP·11 Instruction Set, continued

OPCode Operation

00020R PC +-(reg)
(reg) +-(SP)+

Condition Codes

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description

mode bits in the restored PS can­
not be Kernel. When executed in
User mode, the current and
ous mode bits in the restornd PS
can only be User. RTI cannot clear

PS < 11 > if it was already set. When
executed in user or supervisor mode,
PS <7:5> are unaffected.

Loads contents of register into PC
and pops the top element of the R6
stack into the specified register.

Return from a non-re-entrant sub­
routine is made through the same
register that was used in its call.
Thus, a subroutine called with a
JSR PC,dst exits with an ATS PC,
and a subroutine called with a JSR
R5,dst may pick up parameters
with addressing modes (R5)+,
X(R5), or @X(R5) and finally exit,
with an ATS R5.

.....
(J1

RTT
Return
from
Interrupt

MS 000006 PC+-(SP)+
PS.,_ (SP)+

N: loaded from current
R6 stack

Z: loaded from current
R6 stack

V: loaded from current
R6 stack

C: loaded from current
R6 stack

This is the same as the RTI instruc­
tion (used to exit from an interrupt
or trap service routine), the PC and
PS are restored (popped) from the
processor stack; if the RTI sets the
T bit in the PS, a trace trap will oc­
cur prior to executing the next in­
struction) except that it inhibits a
trace trap, while RTI permits a
trace trap. If a trace trap is pend­
ing, the first instruction after the
RTT will be executed prior to the
next "T" trap. In the case of the RTI
instruction, the "T" trap will occur
immediately after the RTI. When
executed in Supervisor Mode, the
current and previous mode bits in
the restored PS cannot be Kernel.
When executed in User Mode, the
current and previous mode bits in
the restored PS can only be User.

Table 5-1 PDP-11 Instruction Set, continued

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description

RTT cannot clear PS< 11 > ii it was
already set. When executed in user or
supervisor mode, PS <7:5> are un-
affected.

SBC so 005600 (dst) .,,.._ (dst) - C N: set if result< 0 Subtracts the contents of the C bit

.... SBCB 105600 Z: set ii result = 0 from the destination.
Subtract V: set if (dst) =M.N.I. °'
Carry C: set if (dst) was O and

C was 1 prior to in-
struction execution.

s cc 000260 Set condition code bits. Selectable combinations of these bits may be set
Set PLUS 4- together. Condition code bits corresponding to bits in the condition code oper-
Selected bit mask ator (bits 0-3) are modified; sets the bit specified by bit 0, 1, 2, or 3. Bit 4 is a 1.

Condition Operation:
Codes PSW <3:0> +-- PSW <3:0> v mask <3:0>

sec cc 000277 N,z,v,c-1

Set all
Condition
Codes

SEC cc 000261 c-1
SetC

SEN cc 000270 N .,__ 1
Set N

~

SEV ~

-.J
cc 000262 v .,__ 1

SetV

SEZ cc 000264 z-1
Set Z

SOB PC 077ROO R-R-1 N: unaffected The register is decremented. If it is

Table 5-1 PDP-11 Instruction Set, continued

Mnemonic/
Instruction Type OP Code Operation Condition Codes Description

Subtract PLUS if this result~ 0 Z: unaffected not equal to 0, twice the offset is

One and 6-bit then PC-PC - V: unaffected subtracted from the PC (now point-

Branch if offset (2 x offset) C: unaffected ing to the following word). The off-

not set is interpreted as a 6-bit positive
Equal to 0 number. This instruction provides

a fast, efficient method of loop con-
trol. Assembler syntax is:

SOB R,A
~

where A is the address to which <»

transfer is to be made if the decre-
mented R is not equal to 0. Note
that the SOB instruction cannot be
used to transfer control in the for-
ward direction.

SPL PC 00023N PS bits <7:5> ._. N: unaffected The least significant three bits of
Set Priority priority (priority Z: unaffected the instruction are loaded into the
Level = N) V: unaffected program status word (PS), bits 7-5,

C: unaffected thus causing a changed priority.
The old priority is lost.

Assembler syntax is: SPL N

SUB
Subtract

DO 16SSDD (dst) -(dst) -
(src)
(in detail (dst) -
(dst)+ ~ (src)+1

N: set if result < O
Z: set if result = 0
V: set if there is

arithmetic overflow
as a result of the op­
eration, i.e., if the
operands were of
opposite signs and
the sign of the
source is the same
as the sign of the
result.

C: set if there is a bor­
row into the most
significant bit of the
result, i.e., if (dst) +
~ (src)+1 was less
than 216 .

Subtracts the source operand from
the destination operand and leaves
the result at the destination ad­
dress. The original contents of the
destination are lost. The contents
of the source are not affected. In
double precision arithmetic, the C
bit, when set, indicates a borrow.

Table 5-1 PDP-11 Instruction Set, continued

Mnemonic/
Instruction Type OPCode Operation Condition Codes Description

SWAB so 0003DD tmp +- (dst) N: set if high-order bit Exchanges high-order byte and
Swap Bytes <7:0> of low-order byte low-order byte of the destination

(dst) <7:0> +- (bit 7) of result is set word (destination must be a word
9 (dst) <15:8> Z: set if low-order byte address).
~

(dst) <15:8> +- of result= 0 (ii"
01

~ tmp V: cleared I
I\) S" 0 C: cleared "' 2

SXT so 006700 (dst) +- 0 if N bit N: unaffected If the condition code bit N is set,
(")

g.
Sign is clear Z: set if N bit clear then a -1 is placed in the destina- ::::.

Extend (dst) +- -1 if N V: cleared tion operand; if the N bit is clear,
(/)

~
bit is set C: unaffected then a O is placed in the destination

operand. This instruction is partic-
ularly useful in multiple precision
arithmetic because it permits the
sign to be extended through multi-
pie words.

TRAP PC 104400 -(SP)+- PS N: loaded from trap Operation codes from 104400 to
to -(SP) +-PC vector 104777 are TRAP instructions.
104777 PC +-(34) Z: loaded from trap TRAPs and EM Ts are identical in

PS +-(36) vector operation, except that the trap vec- Q
Ill

V: loaded from trap tor for TRAP is at address 34. "l:)

Cii
vector Note: Since DIGITAL software

...,

°' C: loaded from trap makes frequent use of EMT, the I
':::1 vector TRAP instruction is recommended ::;

(/)

for general use. 2
()

TST so 0057DD tmp +-(dst) N: set it result < 0 Sets the condition codes N and Z 5·
:::.

TSTB 1057DD Z: set if result = O according to the contents of the (/,)

Test V: cleared destination address. ~

C: cleared

TSTSET so 0072DD (RO) .. -(dst) N:set it RO < 0 Reads/Locks destination word and
Test Des- Z:set if RO = 0 stores it in RO. Writes/Unlocks
ti nation V:clear (RO)v1 into destination. It mode is
and Set C:gets contents of bit 0, traps to 10.
Low Bit. 0

Mnemonic/
Instruction

WAIT
Wait for
Interrupt

Type

MS

Table 5-1 PDP-11 Instruction Set, continued

OPCode Operation

000001

Condition Codes

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description

Provides a way for the processor to
relinquish use of the bus while it
waits for an external interrupt. Hav­
ing been given a WAIT command,
the processor will not compete for
the bus by fetching instructions or
operands from memory. This per­
mits higher transfer rates between
d.evice and memory, since no
processor-induced latencies will
be encountered by bus requests
from the device. In WAIT, as in all
instructions, the PC points to the
next instruction following the WAIT
operation. Thus, when an interrupt
causes the PC and PS to be
pushed onto the stack, the address
of the next instruction following the
WAIT is saved. The exit from the
interrupt routine (i.e., execution of

an RTI instruction) will cause re-
sumption of the interrupted proc-
ess at the instruction following the
WAIT.

WRTLCK so 007300 (dst) .. -(RO) N:set if RO < 0 Writes contents of RO into desti-
Read/Lock Z:set if RO = 0 nation using bus lock. If mode is Q

"' Destination. V:clear 0, traps to 10. "ti
(ii

Write/Un- C:unchanged
c.n

__.. Lock RO I
I'\)

into des- ::;--w
"' ti nation. ...
~
(")

XOR DO 074RDD (dst) +- R-V (dst) N: set if the result < 0 The exclusive OR of the register a·
:;,

Exclusive Z: set if result = 0 and destination operand is stored Cl)

~
OR V: cleared in the destination address. Con-

C: unaffected tents of register are unaffected.
Assembler format is XOR R,D.

124

CHAPTER 6

FLOATING-POINT INSTRUCTION SET FP-11

INTRODUCTION
The PDP-11 processor family has two sets of floating-point instruc­
tions:
1. The FIS (Floating Instruction Set) option, consisting of four in­

structions (FADD, FSUB, FMUL, FDIV) that operate on single-pre­
cision floating-point formats, is available on the LSl-11/2. Please
refer to Appendix C for a description of FIS.

2. The FP11 instruction set supports both single-precision and dou­
ble-precision floating-point arithmetic. It is available as a micro'
code option, KEF11-AA, for the LSl-11/23, MICRO/PDP-11, PDP-11/
23-PLUS and PDP-11/24. It is also available as a faster, hardware
option on the M ICRO/PDP-11, PDP-11/23-PLUS, PDP-11/24 (FPF-
11), and PDP-11/44 (FP11-F). The microcoded FP11 instruction set
is standard on the J-11 chipset. In this discussion, the term float­
ing-point processor (FPP) will be used to refer to the hardware or
microcode implementation of the FP11 instruction set.

A floating-point processor is much faster and more effective for high­
speed numerical data handling than software floating-point routines.
Users who program in FORTRAN, BASIC and APL find that the FPP
gives them the speed and capability that they require for data and
number manipulation.

FPPs perform al I floating-point arithmetic operations and convert data
between integer and floating-point formats.

Features of the floating-point processors are:
• 17-digit precision in 64-bit mode, 8 in 32-bit mode
111 Overlapped operation with the central processor (FP11-C)

• High-speed operation
• Single-precision and double-precision (32- or 64-bit) floating-point

modes

e Flexible addressing modes
• Six 64-bit floating-point accumulators
• Error recovery aids

ARCHITECTURE
The floating-point processors contain scratch registers, a floating ex­
ception address pointer (FEA), a program counter, a set of status and
error registers, and six general-purpose accumulators, ACO-AC5.
(Please refer to Figure 6-1.)

125

Chapter 6 -- PDP-11 Floating Point

The accumulators are 32 or 64 bits long, depending on the instruction
and FPP status. In a 32-bit instruction, only the leftmost 32 bits are
used.

The six floating-point accumulators are used in numeric calculations
and in interaccumulator data transfers. The first tour accumulators
(ACO-AC3) are also used for all data transfers between the FPP and the
general registers, or memory.

r----~~----------~

ACCUMULATOR
~
32 BIT

ACCUMULATOR
~

AC!J

AC1

AC2

AC3

AC4

AC5

FPP
STATUS

REGISTER

FLOATING POINT
ARITHMETIC

AND
CONVERSION

UNIT

PROGRAM POINTER
TO LAST

INSTRUCTION
CAUSING ERROR

I FLOATING POINT PROCESSOR I L..._ ________________ __.

110 BUS

CPU
CENTRAL PROCESSOR

PROCESSOR STATUS
ARITHMETIC

AND
LOGICAL CPU

UNIT GENERAL
REGISTER

MEMORY

Figure 6-1 Structure of the Floating-Point Processor

OPERATION
A floating-point processor functions as an integral part of the central
processor. It operates using similar address modes and the same
memory management facilities provided by the memory management.·
option. FPP instructions can reference the floating-point accumula­
tors, the central processor's general registers, or any location in mem­
ory.

When an FPP instruction is fetched from memory, the FPP will exe­
cute that instruction in parallel with the CPU as the CPU continues its
instruction sequence. The CPU is delayed a very short period of time
during the FPP instruction fetch operation, and then is free to proceed
independently of the FPP. The interaction between the two processors
is automatic, permitting a program to take full advantage of the paral­
lel operation of the two processors, by the intermixing of FPP and CPU
instructions. This is all accomplished by the hardware of the proces-

126

Chapter 6- PDP-11 Floating Point

sors. When an FPP instruction is encountered in a program, the CPU
first initiates floating-point handshaking and calculates the address
of the operand. It then checks the status of the FPP. It the FPP is busy,
the CPU waits until it receives a DONE signal before continuing execu­
tion of the program. For example:

ADDLP:

LDD(R3) + ,AC3

LDD(R3) + ,ACO

MULD AC3,ACO

ADDO ACO,AC1

SOB R5,ADDLP

STCDI AC1,(R4)

;Pick up constant operand
;and place it in AC3

;Load ACO with next value
;in table

;and multiply by constant
;inAC3

;and add the result into
;AC1

;check to see whether done

;done, convert double
;to integer and store.

In this example, the FPP executes the first three instructions. After the
ADD is fetched into the FPP, the CPU will execute the SOB, calculate
the effective address of the STCDI instruction, and then wait tor the
FPP to be done with the ADDO before continuing past the STCDI in­
struction. Autoincrement and autodecrement addressing automatical­
ly adds or subtracts the correct amount to the contents of the register,
depending on the modes represented by the instruction.

NOTE
For implementation details on the various FP11 op­
tions, see the Microcomputers and Memories Hand­
book or the PDP-11 ~ystems Handbook.

Floating·Point Data Formats
Please refer to Chapter 3-Data Representation-for information on
floating-point data formats.

FLOATING-POINT STATUS REGISTER (FPS)
This register provides mode and interrupt control information tor the
floating-point unit and indicates conditions resulting from the execu­
tion of the previous instruction. It may be loaded via the LPFPS in­
struction; it may be read via the STFPS instruction (both of these in­
structions are included in the Floating-Point Instructions section of
this chapter). The floating-point status register is illustrated in Figure
6-3.

127

Chapter 6 - PDP-11 Floating Point

For the purposes of discussion a set bit = 1 and a clear bit = 0. Four
bits of the· FPS register control the modes of operation:

• Single/Double: floating-point numbers can be either single-preci­
sion or double-precision.

e Short/Long: integer numbers can be 16 bits or 32 bits.

• Chop/Round: the result of a floating-point operation can be either
chopped or rounded. The term "chop" is used instead of "truncate,"
in order to avoid confusion with truncation of series used in approxi­
mations for function subroutines.

• Normal/Maintenance: A special maintenance mode is available on
the FP11-C and FP11-E.

I FORMAT. INTEGER SINGLE PRfCISION

00

NUMBER· 15 0 ·

L FOHMAT, DOUBLE PREC1SION INTEGER 1.0NG

\5 14 00

MEMORY +Q L..l _s_.._-L._L__,__ _ _.J......_L__N.J..UM-B_E_LR _· 3-0 _,15_._L__,__ _ _.J......_L__J_ _ _,___,

15 00

»l'---'------'-----'----'-----'--'-~N.i..uM_s_'R_,_1_5_,o> _ _.__-'---__,,-----'----'-----'--~
WHERES SIGN OF NUMBER

NUMBER"' 15 BITS IN I FORMAT. 31 BITS II\' i. FORMAT

Figure 6-2 Two's Complement Format

1 ~ 1 ~ \ J I") 10 09 08 OG O~ {]) 07 \11 00

FER FID FIUV FicJ FIV FIC FD FL FT F ,"J FZ FV FC

RESEAVtD

Figure 6-3 Floating-Point Status Register

The FPS register contains an error flag and four condition codes: car­
ry, overflow, zero, and negative, which are similar to the CPU condition
codes.

128

Chapter 6- PDP-11 Floating Point

The floating-point processor recognizes seven floating-point excep­
tions:
• Detection of the presence of the undefined variable in memory
c Floating overflow

• Floating underflow
• Failure of floating-to-integer conversion

• Maintenance trap (FP11-C, FP11-E only)
• Attempt to divide by zero

• Illegal floating opcode

For the first five of these exceptions, bits in the FPS register are avail­
able to enable or disable interrupts individually. An interrupt on the
occurrence of either of the last two exceptions can be disabled only by
setting a bit that disables interrupts on all seven of the exceptions as
a group.

Of the 14 bits described above, five-the error flag and condition
codes-are set by the FPP as part of the output of a floating-point in­
struction. Any of the mode and interrupt control bits (except the FP11-
C and FP11-E, FMM bit) can be set by the user; the LDFS instruction is
available for this purpose. These 14 bits are stored in the FPS register
as follows:

FPS Register Bits
Bit: 15 Name: Floating Error (FER)
Function: The FER bit is set by a floating-point instruction if:

• Division by zero occurs

• Illegal opcode occurs
• Any of the remaining occurs and the corresponding interrupt is en-

abled

This action is independent of the FID bit status.

Also note that the FPP never clears the FER bit. Once the FER bit is
set by the FPP, it can be cleared only by an LDFPS instruction (the
RESET instruction does not clear the FER bit). This means that the
FER bit is up-to-date only if the most recent floating-point instruction
produced a floating-point exception.

Bit: 14 Name: Interrupt Disable (FID)
Function: If the FID is set, all floating-point interrupts are disabled.

The FID bit is primarily a maintenance feature. It should normally be
clear. In particular, it must be clear if one wishes to assure that stor­
age of" - O" by the FPP is always accompanied by an interrupt.

129

Chapter6-PDP-11 Floating Point

Throughout the rest of this chapter, it is assumed that the FID bit is
clear in all discussions involving overflow, underflow, occurrence of
'' - 0," and integer conversion errors.

Bit: 13 Name:
Function: Reserved for future DIGIT AL use.

Bit: 12 Name:
Functioru: Reserved for future DIGITAL use.

Bit: 11 Name: Interrupt on Undefined Variable (FIUV) .
Function: An interrupt occurs if FIUV is set and a - 0 is obtained
from memory as an operand of ADD, SUB, MUL, DIV, CMP, MOD, NEG,
ABS, TST, or any LOAD instruction. The interrupt occurs before execu­
tion on the floating-point option, except on NEG, ABS, and TST1, for
which it occurs after execution. When FIUV is clear," - O" can be load­
ed and used in any floating-point option operation. Note that the inter·
rupt is not activated by the presence of" - O" in a floating-point accu­
mulator; in particular, trap on" -0" never occurs in mode 0.

The FPP will not store a result of" - O" without a simultaneous inter­
rupt.

Bit: 10 Name: Interrupt on Underflow (FIU)
Function: When the FIU bit is set, floating underflow will cause an
interrupt. The fractional part of the result of the operation causing the
interrupt will be correct. The biased exponent will be too large by 400a,
except for the special case of zero, which is correct. An exception is
discussed later in the detailed description of the LDEXP instruction.

If the FIU bit is clear and if underflow occurs, no interrupt occurs, and
the result is set to exact 0.

Bit: 9 Name: Interrupt on Overflow (FIV)
Function: When the FIV bit is set, floating overflow will cause an in­
terrupt. The fractional part of the result of the operation causing the
overflow will be correct. The biased exponent will be too small by 400s.

If the FIV is clear and overflow occurs, there is no interrupt. The FPP
returns exact 0.

Special cases of overflow are discussed in the detailed descriptions
of the MOD and LDEXP instructions.

Bit: 8 Name: Interrupt on Integer Conversion Error (FIC)
Function: When the FIC bit is set and conversion to integer instruc­
tion fails, an interrupt will occur. If the interrupt occurs, the destina­
tion is set to 0, and all other registers are left untouched.

130

Chapter6- PDP-11 Floating Point

If the FIG bit is clear, the result of the operation will be the same as
detailed above, but no interrupt will occur.

The conversion instruction fails if it generates an integer with more
bits than can fit in the short or long integer word specified by the FL
bit (bit 6).

Bit: 7 Name: Floating Double-Precision Mode (FD)
Function: The FD bit determines the precision that is used for float­
ing-point calculations. When set, double-precision is used; when
clear, single-precision is used.

Bit: 6 Name: Floating Long Integer Mode (Fl)
Function: The FL bit is used in conversion between integer and
floating-point format. When set, the integer format assumed is double­
precision two's complement (i.e., 32 bits). When clear, the integer for­
mat is assumed to be single-precision two's complement (i.e., 16 bits).

Bit: 5 Name: Floating Chop Mode (FT)
Function: When the FT bit is set, the result of any arithmetic opera­
tion is chopped (or truncated). When clear, the result is rounded.

Bit: 4 Name: Floating Maintenance Mode (FMM)
Function: FP11-C and FP11-E only. When set, the FPP is in mainte­
nance mode. The FMM bit can be set only in Kernel mode.

Bit: 3 Name: Floating Negative (FN)
Function: FN is set if the result of the last floating-point operation
was negative; otherwise it is clear.

Bit: 2 . Name: Floating Zero (FZ)
Function: FZ is set if the result of the last floating-point operation
was zero-including a zero stored as the result of underflow or
overflow-otherwise it is clear.

Bit: 1 Name: Floating Overflow (FV)
Function: FV is set if the last floating-point operation resulted in an
exponent overflow; otherwise it is clear.

Bit: O Name: Floating Carry (FC)
Function: FC is set if the last operation resulted in a carry of the
most significant bit. This can only occur in floating-to-integer or dou­
ble-to-integer conversion.

FLOATING EXCEPTION CODE AND ADDRESS REGISTERS
One interrupt vector is assigned to take care of all floating-point ex­
ceptions {location 244). The six possible errors are coded in the four­
bit floating exception code (FEC) register as follows:

131

Chapter6- PDP-11 Floating Point

2 Floating opcode error
4 Floating divide by zero
6 Floating-to-integer or double-to-integer

conversion error
8 Floating overflow
10 Floating underflow
12 Floating undefined variable
14 Maintenance trap (FP11-C and FP11-E only)

The address of the instruction producing the exception is stored in the
FEA (Floating Exception Address) register.

The FEC and FEA registers are updated when one of the following oc­
curs:

• Divide by zero
9 Illegal opcode

• Any of the other five exceptions with the corresponding interrupt
enabled

If one of the five exceptions occurs with the corresponding interrupt
disabled, the FEC and FEA are not updated. Inhibition of interrupts by
the FID bit does not inhibit updating of the FEC and FEA, if an excep­
tion occurs. The FEC and FEA are not updated if no exception occurs.
This means that the STST (Store Status) instruction will return current
infor111ation only if the most recent floating-point instruction produced
an exception. Unlike the FPS register, the FEC and FEA registers are
read-only; no instructions exist to write into these registers.

FLOATING-POINT OPTION INSTRUCTION ADDRESSING
Floating-point option instructions use the same type of addressing as
the central processor instructions. A source or destination operand is
specified by designating one of eight addressing modes and one of
eight central processor general registers to be used in the specified
mode. The modes of addressing are the same as those of the central
processor except mode 0. In mode 0 the operand is located in the des­
ignated floating-point accumulator, rather than in a central processor
general register. The modes of addressing are as follows:

O = FP11 accumulator
1 = Deferred
2 = Autoincrement
3 = Autoincrement deferred
4 = Autodecrement
5 = Autodecrement deferred
6 =Indexed
7 = Indexed deferred

132

Chapter6 - PDP-11 Floating Point

Autoincrement and autodecrement operate on increments and decre­
ments of four for F format and 1 Os for D format.

In mode O, the user can make use of all six floating-point accumula­
tors (ACO-AC5) as source or destination. Specifying floating-point op­
tion accumulators AC6 or AC? will result in an illegal opcode trap. In
all other modes, which involve transfer of data to or from memory or
the general registers, the user is restricted to the first four floating­
point accumulators (ACO-AC3). When reading or writing a floating­
point number from or to memory, the low memory word contains the
most significant word of the floating-point number and the high mem­
ory word contains the least significant word.

ACCURACY
The descriptions of the individual instructions include the accuracy at
which they operate. An instruction or operation is regarded as "exact"
if the result is identical to an infinite precision calculation involving
the same operands. The a priori accuracy of the operands is thus ig·
nored. All arithmetic instructions treat an operand whose biased expo­
nent is zero as an exact zero (unless FIUV is enabled and the operand
is" -0", in which case an interrupt occurs). For all arithmetic opera·
tions except DIV, a zero operand implies that the instruction is exact.
The same holds for DIV if the zero operand is the dividend. But if the
divisor is zero, division is undefined, and an interrupt occurs.

For nonvanishing floating-point operands, the fractional part is binary
normalized. It contains 24 bits or 56 bits for floating mode or double
mode, respectively. For ADD, SUB, MUL, and DIV, two guard bits are
necessary and sufficient for the general case to guarantee return of a
chopped or rounded result identical to the corresponding infinite-pre­
cision operation chopped or rounded to the specified word length.
With two guard bits, a chopped result has an error bound of one least
significant bit (LSB). A rounded result has an error bound of %-LSB.
Some processors have a slightly larger error bound; see Appendix B
for detai Is.

In this Handbook, an arithmetic result is called exact if no nonvanish­
ing bits would be lost by chopping. The first bit lost in chopping is re·
ferred to as the rounding bit. The value of a rounded result is related to
the chopped result as follows:

• If the rounding bit is 1, the rounded result is the chopped result in­
cremented by one LSB.

® If the rounding bit is 0, the rounded and chopped results are identi­
cal.

133

Chapter 6 - PDP-11 Floating Point

It follows that:
® If the result is exact, the rounded value equals the chopped value

which equals the exact value

• If the result is not exact, its magnitude:
is always decreased by chopping

- is decreased by rounding, it the rounding bit is 0

~ is increased by rounding, it the rounding bit is 1

Occurrence of floating-point overflow and underflow is an error condi­
tion; the result of the calculation cannot be stored correctly because
the exponent is too large to tit into the eight bits reserved tor it. How­
ever, the internal hardware has produced the correct answer. For the
case of underflow, replacement of the correct answer by zero is area­
sonable resolution of the problem for many applications. This is done
by the floating-point option it the underflow interrupt is disabled. The
error incurred by this action is absolute rather than relative; it is
bounded (in absolute value) by r' 28• There is no such simple resolution
tor the case of overflow. The action taken, if the overflow interrupt is
disabled, is described under FIV (bit 9).

The FIV and FIU bits provide you with an opportunity to implement
your own correction of an overflow or underflow condition. It such a
condition occurs and the corresponding interrupt is enabled, the mi­
crocode stores the fractional part and the low eight bits of the biased
exponent. The interrupt will take place, and you can identity the cause
by examination of the FIV (floating overflow) bit or the FEC (floating
exception) register. For the standard arithmetic operations ADD, SUB,
MUL, and DIV, the biased exponent returned by the instruction bears
the following relation to the correct exponent generated by the micro­
code:

• On overflow, it is too smal I by 400a.
• On underflow, it the biased exponent is zero, it is correct. It it is not

zero, it is too large by 400a.

Thus, with the interrupt enabled, enough information is available to
.determine the correct answer. You may, tor example, rescale your vari­
ables (via STEXP and LDEXP) to continue a calculation. The accuracy
of the fractional part is unaffected by the occurrence of underflow or
overflow.

FLOATING-POINT INSTRUCTIONS
Each instruction that manipulates a floating-point number can oper­
ate on either single-precision or double-precision numbers, depending
on the state of FD mode bit. Similarly, there is a mode bit FL that deter-

134

Chapter6- PDP-11 Floating Point

mines whether 32-bit integers or 16-bit integers are used in conversion
between integer and floating-point representation. In our notation,
FSRC and FDST use floating-point addressing modes; SRC and DST
use CPU addressing modes. Figure 6-3 illustrates single-floating-point
and double-floating-point operand addressing.

In the descriptions of the floating-point instructions, all implementa­
tions operate identicallly, except where explicitly stated otherwise.
Table 5-1 describes the floating-point convel']tions used in the PDP-11
instruction set.

DOUBLE OPERA~\JD AODRE'SSING

!:; lL 11

QC FOC

SINGLE OPERAND ADDRESSING

12 11

OC FOC

DC OP.CODE 17
FOC OPCOOl
A(POINT ACC'~'rv1ULATOR :ACO ACJ1
FSRC AND FDST USE FPP 1\DORESSING MODES

SPC A,\JD DST USE CPU ADDRESSING MODES

08 07 Ofi 05 00

AC FSRC. F DST ,SAC.DST

06 05 00

I-SAC. FDST SAC, OST

Figure 6-4 Single-Operand and Double-Operand Addressing

Table 6·1 Floating-Point Conventions

Symbolic Description

OC Opcode = 17

FOC Floating Opcode

AC Contents of accumulator, as specified by
AC field of instruction

fsrc Address of floating-point source operand.

fdst Address of floating-point destination oper­
and

XL

Fraction

Largest fraction that can be represented:
1 -2* *(- 24), FD= 0, single-precision
1 - 2• *(- 56), FD= 1; double-precision

135

Symbolic

XLL

XUL

JL

ABS[(x)]

EXP[(x)]

<

>

* LSB

Chapter 6 - PDP-11 Floating Point

Description

Smallest number that is not identically
zero = 2**(-128)

Largest number that can be represented =
2**(127)*XL

Largest integer that can be represented:
2**(i5)-1 if FL=O, 2**(3i)-1 if FL=i

Absolute value of contents of memory
location X

Biased exponent of contents of memory
location X

Less than

Less than or equal to

Greater than

Greater than or equal to

Not equal to

Least significant bit

Floating-Point Instructions

ABSF
ABSD
Take Absolute Value

Format:

Operation:

12 11 06 oi:i

FDST

ABSF FDST

If (fdst) < 0, (fdst) ..,_ - (fdst).

If EXP[(fdst)] = 0, (fdst) .. - exact 0.

For al I other cases, (fdst) .. _ (fdst).

136

1706 FDST

00

Chapter 6- PDP-11 Floating Point

Condition Codes: FC .. _ O
FV .. -0

Description:

Interrupts:

Accuracy:

Special
Comment:

ADDF
ADDO

FZ .. -1 it (tdst) = o, else Fz .. _ o
FN .. -0

Set the contents 'of tdst to its absolute value.

It FIUV is enabled, trap on " - O" occurs after ex­
ecution.

Overflow and underflow cannot occur.

These instructions are exact.

It a" -0" is present in memory and the FIUV bit
is enabled, then an exact zero is stored in mem­
ory. The condition codes reflect an exact zero
(FZ .. -1).

Add Floating/Double 172(AC)FSRC

15 12 11 08 07 06 05

Format:

Operation:

ADDF FSRC,AC

Let SUM = AC + (tsrc). It underflow occurs and
FIU is not enabled, AC .. - exact 0.

If overflow occurs and FIV is not enabled, AC .. _
exact 0.

For al I other cases, AC .. - SUM.

Condition Codes: FC - 0

Description:

FV .. - 1 if overflow occurs, else FV .. _ 0
FZ .. -1 if AC = 0, else FZ .. - 0
FN .. - 1 if AC < 0, else FN .. _ 0

Add the contents of fsrc to the contents of AC.
The addition is carried out in single-precision or
double-precision and is rounded or chopped ac­
cording to the values of the FD and FT bits in the
FPS register. The result is stored in AC except
for:

137

I interrupts:

Accuracy:

Special
Comment:

Accuracy:

Chapter6- PDP-11 Floating Point

• Overflow with interrupt disabled
• Underflow with interrupt disabled.

For these exceptional cases, an exact zero is
stored in AC.

If FIUV is enabled, trap on" - O" in fsrc occurs
before execution.

If overflow or underflow occurs and if the corre­
sponding interrupt is enabled, the trap occurs
with the faulty result in AC. The fractional parts
are correctly stored. The exponent part is too
small by 400a for overflow. It is too large by 400a
for underflow, except for the special case of 0,
which is correct.

Errors due to overflow and underflow are de­
scribed above. If neither occurs, then for oppo­
sitely signed operands with an exponent differ­
ence of 0 or 1, the answer returned is exact if a
loss of significance of one or more bits can oc­
cur. Note that these are the only cases for which
loss of significance of more than one bit can oc­
cur. For all other cases the result is inexact with
error bounds of:

• One LSB in truncated mode with either single­
precision or double-precision.

• From 112 LSB to 314 LSB in rounding mode, de­
pending on floating-point option. See Appen­
dix B-PDP-11 Family Differences-for de­
tails.

The undefined variable" -0" can occur only in
conjunction with overflow or underflow. It will be
stored in AC, only if the corresporflow, except for
the special case of 0, which is correct.

Errors due to overflow and underflow are de­
scribed above. If neither occurs, then for oppo­
sitely signed operands with an exponent differ­
ence of 0 or 1, the answer returned is exact if a

138

Special
Comment:

CFCC

Chapter6- PDP-11 Floating Point

loss of significance of one or more bits can oc­
cur. Note that these are the only cases for which
loss of significance of more than one bit can oc­
cur. For all other cases the result is inexact with
error bounds of:
• One LSB in truncated mode with either single­
precision or double-precision.
• From 112 LSB to % LSB in rounding mode de­
pending on floating-point option. See Appen­
dix B-PDP· 11 Family Differences-for de·
tails.

The undefined variable" ~O" can occur only in
conjunction with overflow or underflow. It will be
stored in AC, only if the corresponding interrupt
is enabled.

Copy Floating Condition Codes 170000

Format:

Operation:

Description:

Cl RF
Cl RD

12 \1

CFCC

C ... -FC
V ... -FV
z .. -Fz
N .. -FN

Copy the floating-point condition codes into the
CPU's condition codes.

Clear Floating/Double 1704 FDST

12 11 00

FDST

139

Chapter 6 - PDP-11 F Joa ting Point

Format: CLRF FDST

Operation: (fdst) .,_ exact 0

Condition Codes: FC ..,_ 0
FV ... -0
FZ ... -1
FN ... -0

Description: Set (fdst) to 0. Set FZ condition code, clear other
condition code bits.

Interrupts: No interrupts will occur.

Accuracy:

CMPF
CMPD

Overflow and underflow cannot occur.

The instructions are exact.

Compare Floating/Double 173(AC+4)FSRC

15 12 11 08 07 06 05 00

1 I AC FSRC

Format: CMPF FSRC,AC

Operation: (fsrc) - AC

Condition Codes: FC ..,_ 0

Description:

Interrupts:

Accuracy:

Special
Comment:

FV .. -0
FZ ... -1 if (fsrc) = 0, else FZ ... - 0
FN .,,_ 1 if (fsrc) < 0, else FN ..,_ 0

Compare the contents of (fsrc) with the accumu­
lator. Set the appropriate floating-point condition
codes. The accumulator and (fsrc) are left un­
changed
except as noted below.

If FIUV is enabled, trap on" -0" in (fsrc) occurs
before execution.

These instructions are exact.

An operand which has a biased exponent of 0 is
treated as if it were an exact zero. In this case,
where both operands are zero, the FPP will store
an exact zero in AC.

140

DIVF
DIVD

Chapter 6 - PDP-11 Floating Point

Divide Floating/Double 174(AC + 4)FSRC

Format:

Operation:

OB 07 06 05 00

I I AC FSAC

DIVF FSRC,AC

If EXP[(fsrc)] = 0, AC .. - AC and the instruction
is aborted.

If EXP [AC] = 0, AC .. - exact 0.

For all other cases, let QUOT = AC/(fsrc).

If underflow occurs and FIU is not enabled, AC
.. -exact 0.

If overflow occurs and FIV is not enabled, AC .. -
exact 0.

For all other cases, AC .. - QUOT.

Condition Codes: FC .,._ O

Description:

FV .,._ 1 if overflow occurs, else FV .,._ O
FZ .. -1 if AC = 0, else FZ .. - 0
FN .,._ 1 if AC < 0, else FN .,._ 0

If either operand has a biased exponent of zero,
it is treated as an exact zero. For fsrc this would
imply division by zero; in this case the instruc­
tion is aborted, the FEC register is set to four
and an interrupt occurs. Otherwise the quotient
is developed to single or
double precision with two guard bits for correct
rounding. The quotient is rounded and chopped
according to the values of the FD and FT bits in
the FPS register. The result is stored in the AC
except for:

o Overflow with interrupt disabled
E> Underflow with interrupt disabled

For these exceptional cases, an exact zero is
stored in AC.

141

Interrupts:

Accuracy:

Special
Comment:

LDCDF
LDC FD

Chapter6- PDP-11 Floating Point

If FIUV is enabled, trap on" -0" in (fsrc) occurs
before execution.

If (fsrc) = 0, interrupt traps on attempt to divide
byO.

If overflow or underflow occurs and if the corre­
sponding interrupt is enabled, the trap occurs
with the faulty result in AC. The fractional parts
are correctly stored. The exponent part is too
small by 400s for overflow. It is too large by 400s
for underflow, except for the special case of 0,
which is correct.

Errors due to overflow and underflow are de­
scribed above. If none of these occur, the error in
the quotient will be bounded by one LSB in
chopping mode and by 112 LSB in rounding mode.

The undefined variable" - O" can occur only in
conjunction with overflow and underflow. It will
be stored in AC, only if the corresponding inter­
rupt is enabled.

Load and Convert from Double to Floating
and from Floating to Double 177(AC + 4) FSRC

15

Format:

Operation:

12 11 08 01 06 05 00

I I I I AC FSRC

LDCDF FSRC,AC

If EXP[(fsrc)] = 0, AC·- exact 0.

If FD = 1, FT = 0, FIV = 0 and rounding causes
overflow, AC·- exact 0.

In all other cases, AC•- Cxy[(fsrc)], where Cxy
specifies conversion from floating mode x to
floating mode y.

x = D, y = F if FD = 0 (single) LDCDF
x = F, y = D if FD = 1 (double) LDCFD

142

Chapter6- PDP-11 Floating Point

Condition Codes: FC ... _ 0
FV .,_ 1 if conversion produces overflow, else FV
---0
FZ .. -1 if AC = 0, else FZ .. - 0
FN ... - 1 if AC < 0, else FN ... _ 0

Description: If the current mode is floating mode (FD = 0),
the source is assumed to be a double-precision
number and is converted to single precision. If
the floating chop bit (FT) is set, the number is
chopped, otherwise the number is rounded_

If the current mode is double mode (FD = 1), the
source is assumed to be a single-precision num­
ber and is loaded left-justified into AC. The lower
half of AC is cleared.

Interrupts: If FIUV is enabled, the trap on " - O" occurs be­
fore execution. However, the condition codes
will reflect a fetch of" -0" regardless of the
FIUV bit.

Accuracy:

LDCIF LDCLF
LDCID LDCLD

Overflow cannot occur for LDCFD.

A trap occurs if FIV is enabled, and if rounding
with LDCDF causes overflow. AC .. - overflowed
result. This result must be + 0 or" - O."

Underflow cannot occur.

LDCFD is an exact instruction. Except for over­
flow, described above, LDCDF incurs an error
bounded by one LSB in chopping mode and by
LSB in rounding mode. ·

Load and Convert Integer or Long Integer
to Floating or Double-Precision 177(AC)SRC

12 11 08 07 06 O'i 00

SRC

143

Chapter6- PDP-11 Floating Point

Format: LDCIF SAC,AC

Operation: AC --- Cjx[(src)], where Cjx specifies conversion
from integer mode j to floating mode y.

j = I if FL = 0, j = L if FL = 1
x = F if FD = 0, x = D if FD = 1

Condition Codes: FC .,._ 0
FV .. -0
Fz ... _ 1 if AC = 0, else FZ .. - 0
FN<i-1 if AC< 0, else FN ... -0

Description: Conversion is performed on the contents of SAC
from a 2's complement integer with precision j to
a floating-point number of precision x. Note that
j and x are determined by the state of the mode
bits FL and FD.

Interrupts:

Accuracy:

LDEXP
Load Exponent

1 ~) 12

I 1 I I

If a 32-bit integer is specified (L mode) and SAC
has an addressing mode of 0 or immediate ad­
dressing mode is specified, the 16 bits of the
source register are left-justified, and the remain­
ing 16 bits are loaded with Os before conversion.

In the case of LDCLF, the fractional part of the
floating-point representation is chopped or
rounded to 24 bits according to the state of FT (1
= chop, 0 = round).

None; (SAC) is not floating-point, so trap on
" - O" cannot occur.

LDCIF, LDCID, and LDCLD are exact instruc­
tions. The error incurred by LDCLF is bounded
by one LSB in chopping mode and by% LSB in
rounding mode.

176(AC + 4)SRC

11 08 07 06 05 00

I I I AC SAC

144

Format:

Operation:

Chapter6- PDP-11 Floating Point

LDEXP SRC,AR

If -200s < (src) < 200a, EXP[AC] --- SRC + 200a
and the rest of AC is unchanged.

If (src) > 177a and FIV is enabled,
EXP[AC] --- [(src) + 200s] <7:0> on the FP11-A, -
F and KEF11-AA. See Appendix B-PDP-11 Fami­
ly Differences-for the FP11-C.

If (src) > 177a and FIV is disabled, AC ... - exact 0.

If (src) < -177a and FIU is enabled,
EXP[AC] ... -[(src) + 200s] <7:0> on the FP11-A, -
F and KEF11-AA. See Appendix B-PDP-11 Fami­
ly Differences-for the FP11-C.

If (src) < -177a and FIU is disabled,AC ... - exact
0.

Condition Codes: FC --- 0
FV ... -1 if (SRC) > 177a, else FV .. - 0
FZ ... -1 if (AC) = 0, else FZ ... - 0
FN --- 1 if (AC) < 0, else FN .,._ 0

Description: Change AC so that its unbiased exponent equals
(src). That is, convert (src) from 2's complement
to excess 200s notation and insert it in the EXP
field of AC. This is a meaningful operation only if
ABS[(src)] s 177a.

Interrupts:

Accuracy:

If (src) > 177a, the result is treated as overflow. If
(src) < -177s, the result is treated as underflow.
See Appendix B-PDP-11 Family Differenc­
es-for treatment of abnormal conditions by the
FP-11C and FP-11 B.

No trap on" -0" in AC occurs, even if FIUV is
enabled.

If (src) > 177a and FIV is enabled, trap on over­
flow will occur.

If (src) < -177a and FIU is enabled, trap on un­
derflow will occur.

Errors due to overflow and underflow are de­
scribed above. If EXP[AC] = 0 and (src) -:f:.- 200,
AC changes from a floating-point number treat­
ed as zero by all floating arithmetic operations

145

LDF
lDD

Chapter6- PDP-11 Floating Point

to a nonzero number. This is because the inser­
tion of the "hidden" bit in the microcode imple­
mentation of arithmetic instructions is triggered
by a nonvanishing value of EXP.

For all other cases, LDEXP implements exactly
the transformation of a floating-point number
(2**K) • f into (2**(src)) • f where% :::; ABS(f) <
1.

load Floating/Double 172(AC + 4)FSRC

Format: LDF FSRC,AC

Operation: AC ... -(fsrc)

Condition Codes: FC .. - 0
FV .. -0
FZ ... - 1 if AC = 0, else FZ .. - 0
FN ... - 1 if AC < 0, else FN ... - 0

Description: Load single-precision or double-precision num­
ber into AC.

Interrupts: If FIUV is enabled, trap on " - O" occurs before
AC is loaded. However, the condition codes will
reflect a fetch " - O" regardless of the Fl UV bit.

Accuracy:

Special
Comment:

LDFPS

Overflow and underflow cannot occur.

These instructions are exact.

These instructions permit use of" -0" in a sub­
sequent floating-point instruction if FIUV is not
enabled and (fsrc) = - 0.

Load FPP Program Status 1701 SRC

15 12 06 05 00

SRC

146

Format:

Operation:

Description:

Special
Comment:

MODF
MOOD

Chapter 6 - PDP-11 Floating Point

LDFPSSRC

FPS ... -(src)

Load FPP status register from (src).

Bits 13, 12, and 4 should not be used for the
user's own purposes, since these bits are not re­
coverable by the STFPS instruction. Bit 4 may be
set in Kernel mode if the FPP implements main­
tenance mode_

Multiply and Separate Integer
and Fraction Floating/Double 171(AC+4)FSRC

Format:

Description
and
Operation:

12 11 OS 07 06 OS 00

1 I AC FSRC

MODF FSRC,AC

This instruction generates the product of its two
floating point operands, separates the product
into integer and fractional parts, and then stores
one or both parts as floating-point numbers.

Let PROD = AC * (fsrc) so that in
Floating-point: ABS [PROD]= (2**K) * f
where
Va=::; f < 1 and
EXP[PROD] = (200 + K) octal
Fixed point binary: PROD = N + g with
N = INT[PROD] = the integer part of
PROD and
g = PROD - INT[PROD] = the fractional
part of PROD with 0 =::; g < 1

Both N and g have the same sign as PROD. They
are returned as follows:

If AC is an even-numbered accumulator (0
or 2), N is stored in AC+ 1 (1 or 3), and g is
stored in AC.

147

Chapter 6 - PDP-11 Floating Point

It AC is an odd-numbered accumulator, N
is not stored, and g is stored in AC.

The two statements above can be combined as
follows:

N is returned to ACv1 and g is returned to
AC, where v means OR.

Five special cases occur, as indicated in the fol­
lowing formal description with L = 24 for float­
ing mode and L = 56 for double mode.

1. If PROD overflows and FIV is enabled, ACv1
... - N, chopped to L bits, AC ... -exact 0.

Note that EXP[N] is too small by 400a and that
" - O" can get stored in ACv1.

If FIV is not enabled, ACv1 ... - exact 0, AC ... -
exact 0, and " - O" wi II never be stored.

2. If 2**L ~ ABS[PROD]and no overflow, ACv1
... - N, chopped to L bits, AC ... - exact 0.

The sign and EXP of N are correct, but low­
order bit information is lost.
3. If 1 ~ ABS[PROD] < 2**L, ACv1 .,._ N, AC .. -
g

The integer part N is exact. The fractional
part g is normalized, and chopped or round­
ed in accordance with FT. Rounding may
cause a return of ± unity for the fractional
part. For L = 24, the error in g is bounded by
one LSB in chopping mode and by 112 LSB in
rounding mode. For L = 56, the error in g in­
creases from the above limits as ABS[N] in­
creases above 2**L because only 59 bits (64
bits for KEF11-AA) of PROD are generated.

If 2**p ~ ABS[N] < 2**(p**1), with p > 2 (7
for KEF11-AA) the low-order p -2 (p - 7 for
KEF11-AA) bits of g may be in error.

4. If ABS[PROD] < 1 and no underflow, ACv1
... - exact 0 and AC .. - g.

There is no error in the integer part. The er­
ror in the fractional part is bounded by one
LSB in chopping mode and 112 LSB in round-

148

Chapter6 - PDP-11 Floating Point

ing mode. Rounding may cause a return of
± unity for the fractional part.
5. If PROD underflows and FIU is enabled,
ACv1 .. - exact O and AC ... - g.

Errors are as in case 4, except that EXP[AC]
will be too large by 400a (if EXP = 0, it is cor­
rect). Interrupt will occur, and" -0" can be
stored in AC.

If FIU is not enabled, ACv1 ... - exact O and
AC .. - exact 0.

For this case the error in the fractional part
is less than 2* *(-128).

Condition Codes: FC ... - 0
FV .. _ 1 if PROD overflows, else FV ... _ O
FZ ... - If AC = 0, else FZ ... - 0
FN .. -1 if AC< 0, else FN .. -0

Interrupts: If FIUV is enabled, trap on" -0" in FSRC occurs
before execution.

Accuracy:

Applications:

Overflow and underflow are discussed above.

Discussed above.

1. Binary-to-decimal conversion of a proper
fraction. The following algorithm, using
MOD, will generate decimal digits 0(1), 0(2) ...
from left to right.

Initialize:
x .. - number to
be converted;
ABS[X] < 1;
WhileX #J do

1 .. -0;

Begin PROO .. - X * 10;
1.,,-1+1;
D (1) .. - INT(PROD);
X .. - PROD- INT(PROD);
End;

This algorithm is exact. It is case 3 in the de­
scription because the number of nonvanish­
ing bits in the fractional part of PROD never
exceeds L, and hence, neither chopping nor
rounding can introduce error.

149

MULF
MULD

Chapter6- PDP-11 Floating Point

2. To reduce the argument of a trigonometric
function.

ARG * 2/PI = N + g. The low two bits of N
identify the quadrant, and g is the argument
reduced to the first quadrant. The accuracy
of N + g is limited to L bits because of the
factor 2/PI. The accuracy of the reduced ar­
gument thus depends on the size of N.
3. To evaluate the exponential function e**x,
obtain x *(loge base 2) = N + g, then e**x

=
(2**N) * (e**(g*ln 2)).

The reduced argument is g * ln2 < 1 and the
factor 2* *N is an exact power of two, which
may be scaled in at the end via ST EXP, ADD
N to EXP and LDEXP. The accuracy of N +
g is limited to L bits because of the factor
(log e base two). The accuracy of the re­
duced argument thus depends on the size of
N.

Multiply Floating/Double 171(AC)FSRC

Format:

Operation:

08 07 06 05 00

0 I AC FSAC

MULF FSRC,AC

Let PROD = AC * (fsrc).

If underflow occurs and FIU is not enabled, AC
---exact 0.

If overflow occurs and FIV is not enabled, AC...,_
exact 0.

For all other cases, AC ... - PROD.

150

Chapter 6- PDP-11 Floating Point

Condition Codes: FC .,._ 0

Description:

Interrupts:

Accuracy:

Special
Comment:

NEGF
NEGD

FV .,._ 1 if overflow occurs, else FV .,._ 0
FZ .. -1 if AC = 0, else FZ .. - 0
FN .,._ 1 if AC < 0, else FN .,._ 0

If the biased exponent of either operand is zero,
(AC).,._ exact 0. For all other cases, PROD is
generated to 48 (32 for KEF11-AA) bits for float­
ing mode and 59 (64 for KEF11-AA) bits for dou­
ble mode. The product is rounded or chopped ac­
cording to the value of the FT bit, and is stored
in AC except for:

1. Overflow with interrupt disabled
2. Underflow with interrupt disabled

For these exceptional cases, an exact zero is
stored in AC.

If FIUV is enabled, trap on" -0" in (fsrc) occurs
before execution.

If overflow or underflow occurs and if the corre­
sponding interrupt is enabled, the trap occurs
with the faulty result in AC. The fractional parts
are correctly stored. The exponent part is too
small by 400a for overflow. It is too large by 400a
for underflow, except for the special case of
zero, which is correct.

Errors due to overflow and underflow are de­
scribed above. If neither occurs, the error in­
curred is bounded by one LSB in chopping mode
and 1/z LSB in rounding mode.

The undefined variable" -0" can occur only in
conjunction with overflow or underflow. It will be
stored in AC, only if the corresponding interrupt
is enabled.

Negate Floating/Double 1707 FDST

12 11 06 05 DO

FOST

151

Chapter 6 - PDP-11 Floating Point

Format: NEGF -(fdst)

Operation: (fdst) .. - - (fdst) if EXP [(tdst)J if:. 0, else (fdst) .. -
exact 0.

Condition Codes: FC ... - 0
FV .. -0

Description:

Interrupts:

Accuracy:

Special
Comment:

SETF
Set Floating Mode

12

Format:

Operation:

Description:

SETD

FZ .. -1 it (fdst) = 0, else FZ ... - 0
FN --- 1 if (fdst) < 0, else FN .,_ O

Negate single-precision or double-precision
number, store result in same location (fdst).

If FIUV is enabled, trap on - 0 occurs after exe­
cution.

Overflow and underflow cannot occur.

These instructions are exact.

If a -0 is present in memory and the FIUV bit is
enabled, then the floating-point processor stores
an exact zero in memory. If a negative number is
present, then the floating-point processor stores
the actual negative result in memory. The condi­
tion codes reflect an exact zero (FZ .. -1).

SETF

FD ... -0

170001

00

Set the floating-point option in single-precision
mode.

Set Floating Double Mode 170011

15 12 , 1

152

Format:

Operation:

Description:

SETI

Chapter6- PDP-11 Floating Point

SETO

FD .. -1

Set the floating-point option in double-precision
mode.

Set Integer Mode 177002

Format:

Operation:

Description:

SETL

SETI

FL .. -0

0 .

00

Set the floating-point option for short-integer
data.

Set Long-Integer Mode 177012

Format:

Operation:

l2 11

SETL

FL .. -1

00

Description: Set the floating-point option for long-integer
data.

STCFD
STCDF
Store and Convert from Floating to Double
and from Double to Floating

12 11

153

176(AC)FDST

00

FDST

Format:

Operation:

Chapter6- PDP-11 Floating Point

STCFD AC,FDST

If AC = 0, (fdst) ... - exact 0.

If FD = 1, FT = 0, FIV = O and rounding causes
overflow, (fdst) _,,_exact 0.

In al I other cases, (fdst) ..,_ Cxy[AC], where Cxy
specifies conversion from floating mode x to
floating mode y.

x = F, y = D if FD = 0 (single) STCFD
x = D, y = F if FD = 1 (double) STCDF

Condition Codes: FC .. - 0

Description:

Interrupts:

Accuracy:

STF
STD

FV .. _ i if conversion produces overflow,
else FV ... -0
FZ ... -1 if AC = 0, else FZ ... -0
FN .,._ 1 if AC < 0, else FN .. - 0

If the current mode is single-precision, the accu­
mulator is stored left-justified in FDST and the
lower half is cleared.

If the current mode is double-precision, the con­
tents of the accumulator are converted to single­
precision, chopped, or rounded, depending on
the state of FT, and then stored in FDST.

Trap on - 0 will not occur, even if FIUV is en­
abled, because FSRC is an accumulator.

Underflow cannot occur.

Overflow cannot occur for STCFD.

A trap occurs if FIV is enabled, and if rounding
with STCDF causes overflow. (fdst) .,._over­
flowed result. This must be + 0 or - 0.

STCFD is an exact instruction. Except for over­
flow, described above, STCDF incurs an error
bounded by 1 LSB in chopping mode and by 112
LSB in rounding mode.

Store Floating/Double 174(AC)FDST

15 12 11 00

FDST

154

Chapter 6- PDP-11 Floating Point

Format: STF AC,FDST

Operation: (fdst) .,_AC

Condition Codes: FC .. - FC

Description:

Interrupts:

Accuracy:

Special
Comment:

STCFI STCDI
STCFL STCDL

FV ... - FV
FZ ... - FZ
FN .. -FN

Store single-precision or double-precision num­
ber from AC.

These instructions do not interrupt if FIUV is en­
abled, because the - 0, if present, is in AC, not
in memory.

Overflow and underflow cannot occur.

These instructions are exact.

These instructions permit storage of a - 0 in
memory from AC. There are two conditions in
which - 0 can be stored in AC of the floating­
point processor. One occurs when underflow or
overflow is present and the corresponding inter­
rupt is enabled. A second occurs when an LDF,
LDD, LDCDF, or LDCFD instruction is executed
and the FIUV bit is disabled.

Store and Convert from Floating or Double
to Integer or Long Integer 175(AC + 4)DST

IS

Format:

Operation:

08 () 7 06 05 00

OST

STCFI AC, DST

(dst) .. - Cxj[AC] if -JL-1 < Cxj[AC] < JL+ 1,
else (dst) .,_ 0, where Cjx specifies conversion
from floating mode x to integer mode j.

j = I if FL = 0, j = L if FL = 1
x = F if FD = 0, x = D if FD = 1

155

Chapter 6 - PDP-11 Floating Point

JL is the largest integer

215 -1 for FL= 0
232 - 1 for FL = 1

Condition Codes: C, FC<i-Oif -JL-1 < Cxj[AC] < JL+1,
else C, FC .,_ 1
V, FV ... -0
z, FZ ..,_ 1 if (dst) = 0, else Z, FZ <l- 0
N, FN .. _ 1 if (dst) < 0, else N, FN ..,_ 0

Description: Conversion is performed from a floating-point
representation of the data in the accumulator to
an integer representation.

Interrupts:

Special
Comment:

ST EXP
Store Exponent

15

If the conversion is to a 32-bit word (L mode) and
an addressing mode of O or immediate address­
ing mode is specified, only the most significant
16 bits are stored in the destination register.

If the operation is out of the integer range select­
ed by FL, FC is set to 1 and the contents of the
dst a~e set to o.
Numbers to be converted are always chopped
(rather than rounded) before conversion. This is
true even when the chop mode bit FT is cleared
in the FPS register.

These instructions do not interrupt if FIUV is en­
abled, because the -0, if present, is in AC, not
in memory.

If FIC is enabled, trap on conversion failure will
occur.

These instructions store the integer part of the
floating-point operand, which may not be the in­
teger most closely approximating the operand.
They are exact if the integer part is within the
range implied by FL.

175(AC)DST

12 11 08 07 06 05 ()()

DST

156

Chapter6- PDP-11 Floating Point

Format: STEXP AC, DST

Operation: (dst) .. - EXP[AC] -200a

Condition Codes: C, FC .. -0
V, FV .. -0
Z, FZ .. - 1 it (dst) = 0, else Z, FZ .. - 0
N, FN .. _ 1 it (dst) < 0, else N, FN .. - 0

Description: Convert AC's exponent from excess 200a nota­
tion to 2's complement and store the result in
dst.

Interrupts: This instruction wi II not trap on - O.

Overflow and underflow cannot occur.

Accuracy: This instruction is always exact.

ST FPS
Store Floating-point Processor's Program Status 1702 DST

Format:

Operation:

Description:

Special
Comment:

STST

12 11

STFPS DST

(dst) .. - FPS

06 05

DST

Store floating-point status register in dst.

00

Bits 13, 12, and 4 (if maintenance mode is not im­
plemented) are stored as 0. All other bits are the
corresponding bits in the FPS.

Store Floating-point Processor's Status 1703 DST

ll 12 l l 06 DI 00

157

Format:

Operation:

Description:

SUBF
SUBD

Chapter6- PDP-11 Floating Point

STSTDST

(dst) ... - FEC
(dst + 2) ... - FEA

Store the FEC and FEA in dst and dst + 2.

NOTE
1. If the destination mode specifies a general
register or immediate addressing, only the
FEC is saved.

2. The information in these registers is current
only if the most recently executed floating­
point instruction caused a floating-point ex­
ception.

Subtract Floating/Double 173(AC)FSRC

15

Format:

Operation:

12 11 08 07 06 05 00

0 I AC FSAC

SUBF FSRC,AC

Let DI FF = AC - (fsrc).

If underflow occurs and FIU is not enabled, AC
.. -exact 0.

It overflow occurs and FIV is not enabled, AC ... -
exact 0.

For all cases, AC .. - DIFF.

Condition Codes: FC ... _ O

Description:

FV ... _ 1 if overflow occurs, else FV .,._ O
FZ ... -1 if AC = 0, else FZ ... - 0
FN ... -1 it AC< 0, else FN ... -0

Subtract the contents of fsrc from the contents
of AC. The subtraction is carried out in single­
precision or double-precision and is rounded or
chopped according to the values of the FD and
FT bits in the FPS register. The result is stored in
AC except tor:

1. Overflow with interrupt disabled.

2. Underflow with interrupt disabled.

158

Interrupts:

Accuracy:

Special
Comment:

1STF
TSTD

Chapter6- PDP-11 Floating Point

For these exceptional cases, an exact zero is
stored in AC.

if FIUV is enabled, trap on - 0 in fsrc occurs be­
fore execution.

If overflow or underflow occurs and if the corre­
sponding interrupt is enabled, the trap occurs
with the faulty result in AC. The fractional parts
are correctly stored. The exponent part is too
small by 400a for overflow. It is too large by 400s
for underflow, except for the special case of
zero, which is correct.

Errors due to overflow and underflow are de­
scribed above. If neither occurs, then for like­
signed operands with an exponent difference of
zero or one, the answer returned is exact, if a
loss of significance of one or more bits can oc­
cur. Note that these are the only cases for which
loss of significance of more than one bit can oc·
cur. For all other cases, the result is inexact with
error bounds of:

1. 1 LSB in truncated mode with either single­
precision or double-precision

2. From V2 LSB to % LSB in rounding mode
depending on floating-point processor. See
Appendix B-PDP-11 Family Differenc­
es-for details.

The undefined variable - 0 can occur only in
conjunction with overflow or underflow. It will be
stored in AC only it the corresponding interrupt
is enabled.

Test Floating/Double 1705 FDST

12 11 °" 05 00

FDST

159

Chapter 6 - PDP-11 Floating Point

!Formait: TSTF FDST

Operation: (fdst)

Condition Codes: FC .,_ 0
FV ... -0
FZ..,-1 if (fdst) = 0, else FZ .. - 0
FN .. - 1 if (fdst) < 0, else FN .,._ 0

Description: Set the FP11 condition codes according to the
contents of fdst.

Interrupts: If FIUV is set, trap on - 0 occurs after execution.

Overflow and underflow cannot occur.

Accuracy: These instructions are exact.

160

16i

CHAPTER 7

COMMERCIAL INSTRUCTION SET

The PDP-11 Commercial Instruction Set (CIS11) option is supported by
the following processors:

• MICRO/PDP-11

• PDP-11/23 PLUS

• PDP-11/24

• PDP-11/44

The CIS11 consists of the following extended instruction groups:

07602X
07603X
07604X
07605X
07606X
07607X
07613X
07614X
07615X
07617X

Commercial Load 2 Descriptors
Character String Move
Character String Search
Numeric String
Commercial Load 3 Descriptors
Packed String
Character String Move (in-line)
Character String Search (in-line)
Numeric String (in-line)
Packed String (in-line)

These include instructions which operate on character strings and on
decimal numbers. Each generic type of instruction is provided in two
forms. The essential difference between the two forms is the manner
in which operands are delivered to the instruction. The first form is the
"register" form, where operands are implicitly obtained from the gen­
eral registers. The second form is the "in-line" form, where operands
or word address pointers to operands follow the opcode word in the
instruction stream. The mnemonic for the in-line form is the mnemonic
for the register form suffixed with the letter "I." The condition codes
are set identically for both forms. The in-line forms minimize register
modification.

Instructions are also provided which efficiently load operands into the
general registers.

UNPREDICTABLE Conditions
"UNPREDICTABLE" means that the outcome is indeterminate and
nonrepeatable. Either the result of an instruction or the effect of an
instruction can be UNPREDICTABLE. When the results of an instruc-

163

Chapter 7 - Commercial Instruction Set

tion are UNPREDICTABLE, the condition codes and destination oper­
ands (but not their descriptors) will contain UN PREDICT ABLE values;
destinations may not even contain valid results. When the effect of an
instruction is UNPREDICTABLE, the entire user or process state, and
not only the portion typically used by the instruction, will be UNPRED­
ICTABLE. In a machine with multiple modes and address spaces, an
UNPREDICTABLE operation in a less privileged mode will not affect
the state of a more privileged mode, nor will it result in accesses to
memory from user mode which are outside the mapped limits of the
user's program.

Note that architectural constraints exist on UNPREDICTABLE effects.
In particular, an UNPREDICTABLE effect which manifests itself as a
trap must meet all the requirements for the particular trap.

Character Data Types

For a discussion of character data types-characters, character
strings, and character sets-refer to Chapter 3.

Character String Instructions
The character string operations conveniently provide most of the
common, as well as time-consuming, functions that are encountered
in commercial data and text processing applications.

Instructions are provided to move and to search character strings.

Character String Move Instructions

MOVC(I) Move character

MOVRC(I) Move reverse justified character

MOVTC(I) Move translated character

Character String Search Instructions

LOCC(I) Locate character

SKPC(I) Skip character

SCANC(I) Scan character

SPANC(I) Span character

164

Chapter 7 - Commercial Instruction Set

CMPC(I) Compare character

MATC(I) Match character

The character string move instructions use character string descrip­
tors as operands. These descriptors specify a source and a destina­
tion character string. The contents of the source are moved to the
.destination with alignment at either the most.significant character as in
MOVC(I) and MOVTC(I), or the least signficant character as in
MOVRC(I). If the source is longer than the destination, characters are
truncated from the side opposite that of the alignment; if the destina­
tion is longer than the source, the destination is completed with fill
characters on the side opposite that of the alignment. The MOVTC(I)
instructions move a translated source string to a destination string.

The character string search instructions use a character string de­
scriptor as one operand. The other operand is either a character, a
character string descriptor, or a character set descriptor. These in­
structions are used to examine the source string to find the presence
or absence of characters. The source string is processed from most
significant to least significant character.

Conceptually, these instructions may be divided into three classes:

1. Character String Searches - CMPC(I) compares two character
strings. The condition codes are set according to the comparison
of the corresponding most significant unequal characters.
MATC(I) finds an object string within a source string. This is the
"instring" function that languages and text processing systems
provide.

2. Character Searches - LOCC(I) finds the first occurrence of a
given character in a string. SKPC(I) skips to the first nonoccur­
rence of a given character in a string.

3. Character Set Searches - In these instructions, a string is exam­
ined until a member of a character set is either found as a
SCANC(I), or not found as in SPANC(I). This aids the search for
one of several delimiters such as"/'', ",", CR, LF, FF, etc., or the
passing of combinations of characters such as blanks, tabs, etc.
LOCC(I) and SKPC(I) are optimizations of SCANC(I) and
SPANG(I) in which the set consists of a single character.

The setting of condition codes reflects the results of the character
string operations. For character string moves, the condition codes
indicate whether the source and destination strings were of equal
length, the source was shorter than the destination such that fill char­
acters were used, or the source was long.er than the destination such

i65

Chapter 7 - Commercial Instruction Set

that characters were truncated. This is accomplished by setting the
condition codes on the result of arithmetically comparing the initial
source and destination lengths. For CMPC(I), the condition codes are
the result of arithmetically comparing the most significant correspond­
ing pair of unequal characters. For the other search instructions, they
show whetheror not the operand strings were completely examined.

The condition codes for some character string search instructions
may be interpreted according to the notion of success or failure. Suc­
cess is the accomplishment of the instruction's task; failure is the
inability to accomplish the task. Since the condition codes are set
based on the results of the instruction, there is an indirect correspon­
dence between these settings and success or failure. This
correspondence is invariant within an instruction, but it is not the same
for all search instructions. Therefore, different branch instructions
must be used to test the operation of each instruction. They are
summarized in the following table:

Instruction Success
LOCC(I) BNE
SCANC(I) BNE
CMPC(I) BEQ
MATC(I) BNE

Fallure
BEQ
BEQ
BNE
BEQ

The "register form" of character string instructions implicitly finds op­
erands in the general registers. These operands include character,
character string descriptor, character set descriptor, and translation
table address. If an instruction does not use a register, its contents will
be undisturbed. RO-R1 generally contain a source character string
descriptor; R2-R3 generally contain a second source character string
descriptor, or the destination string descriptor. The low-order half of
R4 is used as an explicit character. R4-R5 is used to contain a charac­
ter set descriptor. RS contains the starting address of a 256-byte table
which is used for character translation.

When move instructions terminate, RO contains the number of un­
moved source characters, and R1, R2, and R3 are cleared. For search
instructions, the registers are updated to represent descriptors for the
resulting strings.

The "in-line form" of character string instructions finds operands, or
pointers to operands, in the instruction stream immediately following
the opcode word. Operands which appear directly in the instruction
stream include characters and translation table addresses. Descrip­
tors are represented in the instruction stream by a sing le word whose
contents are interpreted as a word address pointer to the two-word

166

R,

Chapter 7 - Commercial Instruction Set

descriptor. These descriptors specify character strings and character
sets. Some instructions return a character string descriptor in RO-R1.

In general, all character string instructions are unaffected by the
overlapping of source or destination strings. The result of the move
instructions is equivalent to having read the entire source string before
storing characters in the destination. If the destination string of the
MOVTC(I) instructions overlaps the translation table, the characters
stored in the destination string will be UNPREDICTABLE.

Decimal String Data Types

For a discussion of decimal string data types-numeric strings and
packed strings-refer to Chapter 3.

Decimal String Descriptors
Decimal strings are represented by a two-word descriptor. The de­
scriptor contains the length, data type, and address of the string. It
appears in two consecutive general registers (register form of instruc­
tions), or in two consecutive words in memory pointed to by a word in
the instruction stream (in-line form of instructions). The unused bits
are reserved by the architecture and must be 0. The effect of an in­
struction using a descriptor will be unpredictable if any nonzero re­
served field in the descriptor contains nonzero values or a reserved
data type encoding is used. The design of the numeric and packed
string descriptors are identical:

First Word

length <4:0>

data type
<14:12>

Second Word

address
<15:0>

Number of digits specified as an unsigned binary
inte~er

Specifies which decimal data type representation is
used

Specifies the address of the byte which contains the
most significant digit of the decimal string

The following figure shows the descriptor for a decimal string of data
type ''T'' whose length is "L" digits and whose most significant digit is
at address "A":

15 14 12 II

0
I OR

R)l+ 1
,.. I
""' A

-~i-~
167

Chapter 7 - Commercial Instruction Set

The encodings (in binary) for the NUMERIC string data type field are:

000 signed zoned
001 unsigned zoned
010 trailing overpunch
011 leading overpunch
100 trailing separate
101 leading separate
110 -reserved to DIGITAL
111 -reserved to DIGIT AL

The encodings (in binary) for the PACKED string data type field are:

000 -reserved to DIGITAL
001 -reserved t9 DIGITAL
010 -reserved to DIGITAL
011 -reserved to DIGITAL
100 -reserved to DIGITAL
101 -reserved to DIGITAL
110 signed packed
111 unsigned packed

Decimal String instructions
The decimal string instruction groups aid manipulation of decimal
data. Several numeric (byte) and packed decimal data types are sup­
ported. Instructions are provided for basic arithmetic operations, as
well as for compare, shift, and convert functions.

Instructions
Each arithmetic, shift and compare instruction operates on a single
class of data type. Both numeric and packed string instructions are
provided for most operations. Convert instructions have a source op­
erand of one data type and a destination operand of another data type.
Decimal string instructions specify to which class each of their decimal
string operands belong. The data type supplied as part of each oper­
and's descriptor may be any valid data type of the class. This permits a
general mixing of data types within numeric and packed classes.

The data types on which an instruction operates are designated by the
last letter(s) of the opcode mnemonic. "N" denotes numeric strings,
"P" denotes packed strings, and "L" denotes long binary integers.

The arithmetic instructions are ADDN(I), ADDP(I), SUBN(I), SUBP(I),
MULP(I) and DIVP(I). ASHN(I) and ASHP(I) shift a decimal string by a
specified number of digit positions (either direction) with optional
rounding, and store the result in the destination string. Thus, they

168

Chapter 7 - Commercial Instruction Set

effectively multiply or divide by a power of ten. If the shift count is zero,
these shift instructions can be used simply to move decimal strings
(destinations are stored with preferred representation). Move negated
may be accomplished by using SUBN(I) or SUBP(I). Arithmetic com­
parison instructions, CMPN(I) and CMPP(I), are provided to examine
the relative difference between two decimal strings.

CVTNL(I) and CVTPL(I) convert a decimal string to a long (32-bit) 2's
complement integer. CVTLN(I) and CVTLP(I) convert a long integer to
a decimal string. CVTNP(I) and CVTPN(I) convert between numeric
and packed decimal strings.

The instructions are:

Numeric String Instructions

ADDN(I) Add numeric
SUBN(I) Subtract numeric
ASHN(I) Arithmetic shift numeric
CMPN(I) Compare numeric

Packed String lnstmctions

ADDP(I) Add packed
SUBP(I) Subtract packed
MULP(I) Multiply packed
DIVP(I) Divide packed
ASHP(I) Arithmetic shift packed
CMPP(I) Compare packed

Convert Instructions

CVTNL
CVTLN
CVTPL
CVTLP
CVTNP
CVTPN

C©Jndrnion Cool®s

Convert numeric to long
Convert long to numeric
Convert packed to long
Convert long to packed
Convert numeric to packed
Convert packed to numeric

For instructions which store a value in a destination string, the N and Z
bits reflect the value stored. The N bit indicates a negative destination;
the Z bit indicates a destination having zero magnitude. A destination
string with zero magnitude is considered to be positive (even if a
negative zero was stored as a consequence of decimal overflow).
Thus, the setting of N and Z are mutually exclusive.

169

Chapter 7 - Commercial Instruction Set

The V bit will indicate whether the destination string accurately repre­
sents the result of the instruction. It is also set if division by zero was
attempted. If the V bit is set, the destination string will represent the
least significant portion of the result (truncated). If the V bit is cleared,
the destination represents the true result.

For DIVP(I), C indicates division by zero. Otherwise, C is always
cleared.

For comparisions using the CMPN(I) and CMPP(I) instructions, the N
and Z bits reflect the signed relationship between the source strings.
The signed branch instructions can test the result. V and C are
cleared.

For instructions which return a long integer value, N reflects the sign of
the 2's complement integer, and Z indicates whether it was zero. V
indicates whether the long integer could not contain all significant
digits and sign of the result. CVTNL(I) and CVTPL(I) also use C to
represent a borrow from a more significant portion of the long binary
result. Otherwise, C is cleared.

Operand Delivery
The "register form" of decimal string instructions implicitly finds the
operands in the general registers. These operands include decimal
string descriptors, long binary integers, and shift descriptor words. If
an instruction does not use a register, its contents will be undisturbed.
RO-R1 generally contain the first source descriptor, R2-R3 generally
contain the second source descriptor, and R4-R5 generally contain
the destination descriptor. ASHN and ASHP use R4 to contain a shift
descriptor word. CVTLN, CVTLP, CVTNL and CVTPL use RO-R1 to
contain a decimal string descriptor, and R2-R3 for the long integer.
When an instruction is completed, the source descriptor registers are
cleared.

The "in-line form" of decimal string instructions finds the operands, or
pointers to descriptors, in the instruction stream immediately following
the opcode word. Operands which appear directly in the instruction
stream are shift descriptor words. Operands which are represented in
the instruction stream by a pointer cpntaining the word address of the
descriptor are decimal string descriptors and long binary integers. No
in-line form of decimal string instructions modify RO-R6.

Data Overlap
The operation of decimal string instructions is unaffected by any over­
lap of the source operands provided that each source operand is a
valid representation of the specified data type.

170

Chapter 7 - Commercial Instruction Set

The overlap of the destination string and any of the source strings will,
in general, produce UN PREDICT ABLE results. However, ADDN(I),
ADDP(I), SUBN(I) and SUBP(I) will permit the destination string to
overlap either or both source strings only if all corresponding digits of
the strings are in coincident bytes in memory. This facilitates two­
address arithmetic.

Commercial Load Descriptor Instructions
The commercial load descriptor instructions augment the character
and decimal string instructions by efficiently loading the general regis­
ters with string descriptors. Two forms of instructions are provided.
The L2Dr instructions load two string descriptors into the general
registers. The first descriptor is loaded into RO-R1 and the second
descriptor is loaded into R2-R3. This instruction supports equal length
character string move, equal length character string compare, charac­
ter string matching, and decimal string compare.

The second form, the L3Dr instructions, take three descriptors. The
first is loaded into RO-R 1, the second into R2-R3, and the third into R4-
R5. The instruction supports three-address arithmetic.

The condition codes are not affected.

Words containing the addresses of the descriptors (two for L2Dr and
three for L3Dr) are in consecutive locations in memory. The descriptor
addresses are found by applying the addressing mode @(Rr)+ once
for each descriptor. The value of r is encoded as the low order three
bits of the instruction's opcode. If 0 ::5 r ::5 5, then r can be thought of as
the base address of a small table in memory, where each entry in the
table contains the address of a descriptor. If r = 6, then the instruc­
tions effectively pop the addresses of descriptors off of the stack. If r =
7, then the descriptor addresses are contiguous with the instr.uction's
opcode word.

The string descriptors are two words long. The address of the descrip­
tor is that of the low-order word. It is loaded into the corresponding
even register. The high-order word of the descriptor is loaaed into the
corresponding odd register. Note that although these instructions are
describe_d in terms of string descriptors, they are applicable for other
instances where two consecutive words in memory referenced by a
pointer are to be copied into even-odd general register pairs.

The instructions are:

L2DO Load 2 descriptors using @(RO)+
L2D1 Load 2 descriptors using @(R1)+
L2D2 Load 2 descriptors using @(R2)+

171

L2D3
· L2D4

L2D5
L2D6
L2D7

L3DO
L3D1
L3D2
L3D3
L3D4
L3D5
L3D6
L3D7

Chapter 7 - Commercial Instruction Set

Load 2 descriptors using @(R3)+
Load 2 descriptors using @(R4)+
Load 2 descriptors using @(R5)+
Load 2 descriptors using @(R6)+
Load 2 descriptors using @(R7)+

Load 3 descriptors using @(RO)+
Load 3 descriptors using @(R1)+
Load 3 descriptors using @(R2)+
Load 3 descriptors using @(R3)+
Load 3 descriptors using @(R4)+
Load 3 descriptors using @(RS)+
Load 3 descriptors using @(R6)+
Load 3 descriptors using @(R7)+

INSTRUCTION SUSPENSION
The intent of defining instruction suspendability is to establish a
means for providing reasonable interrupt latency and does not pre­
sume to endow CIS 11 instructions with an ability to recover from trap
conditions from which sequences of basic instructions cannot recover.

Suspension-events refer primarily to events which occur asynchro­
nously to the instruction's execution; these are specifically the inter­
rupts generated by 1/0 peripheral devices, power-fail traps, and float­
ing point processor exceptions. Secondarily, suspension-events can
refer also to those synchronous trap events which occur only for
information notification purposes and do not imply that the integrity of
the instruction's execution Is in jeopardy. Such suspension events
include "yellow zone" traps.

Potentially suspendable instructions have a defined architectural me­
chanism, (PS<8> as described below), by which they can be sus­
pended in mid-execution to allow the processor to service suspen­
sion-events and then subsequently to be resumed from the point
where they had been suspended.

The presence of suspension-events may cause certain CIS 1 i instruc­
tions to be suspended on some processors. If the instruction is sus­
pended, PS<S> will be set, R7 will be backed up to address the
opcode word, and the suspension-event will be serviced. When the
instruction is resumed, PS<8> indicates that execution of the instruc­
tion has previously begun.

In order to make these instructions suspendable on all processors, the
instruction state is part of the user state which is saved by interrupt

172

Chapter 7 - Commercial Instruction Set

handling routines. This includes the general registers, condition codes
and memory. This state is processor dependent when suspended.
Software should not attempt to interpret or modify this state; it must
only.be saved and restored. Up to 6410 words of internal instruction
state may also have been pushed onto the stack. This state must not
be modified by software. The instruction will remove this state from the
stack when it is resumed.

If PS<8> is set prior to executing a potentially suspendable instruc­
tion, the effect of the instruction is UNPREDICTABLE.

At the normal completion of an potentially suspendable instruction,
PS<8> will be cleared.

The name of the bit PS<8> will be "Instruction Suspension" with the
corresponding mnemonic "IS."

All suspendable instructions use PS<8> to indicate instruction
suspension. If, when a potentially suspendable instruction is executed,
PS<S> is clear, it means that the instruction is being commenced; if it
is set, it means that the instruction is being resumed. PS<8> is
cleared when:

1. A suspended instruction successfully completes.

2. The processor powers up.

3. A new PS is fetched from vector location with PS<S> clear.

4. RTI or RTT is executed with new PS<S> clear.

5. It is explicitly cleared by an instruction.

PS<S> issetwhen:
1. A potentially suspendable instruction is interrupted and wishes to

be suspended.

2. A new PS is fetched from vector location with PS<S> set.

3. RTI or RTT is executed with PS<8> set.

4. It is explicitly set by an instruction.

The setting of this bit will have no effect on instructions which are not
potentially suspendable; such instructions will not implicitly modify
this bit.

When an instruction is suspended, the following state may contain
information vital to the resumption of the instruction. The information
must be preserved and restored prior to restarting the suspended
instruction. This information may vary from one execution of the in­
struction to another.

1. General registers RO through R5.

2. Condition code bits (PS <3:0>).

173

Chapter 7 - Commercial Instruction Set

3. Up to 6410 words on the stack of the context in which the sus­
pended instruction was executing.

4. Any destinations used by the instruction.

Stack lltillzath:m
CIS 11 instructions may use the R6 stack for temporary "scratch" state
storage.

The maximum number of additional words which an extended instruc­
tion may claim on the R6 stack is 6410- The reason for imposing a limit
is to ensure that system software can adequately provide for worst­
case stack allocation requirements. In addition to the above restric­
tion, the normal PDP-11 stack-limit mechanism remains in effect for
extended instructions just as it does for any other instruction.

If insufficient stack space exists, the instruction will terminate by a
memory management abort in such a way that if additional stack
space is allocated, the instruction will successfully restart.

NOTATION

dst
src1
src2
dscr

Purpose:

Operation:

Condition
Codes:

Opcodes:

destination string
source string 1
source string 2
descriptor

ADDN/ADDP/ADDNl/ADDPI

Add Decimal

dst - src2 + src1

N: set if dst < O; cleared otherwise

Z: set if dst = O; cleared otherwise
V: set if dst cannot contain all significant digits of the

result; cleared otherwise

C: cleared

ADON
ADDP
ADDNI
ADDPI

174

076050
076070
076150
076170

Chapter 7 - Commercial Instruction Set

Description: Src1 is added to src2, and the result is stored in the
destination string. The condition codes reflect the value stored in the
destination string, and whether all significant digits were stored.

Register Form-ADON and ADDP
When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in RO-R1,
the second source descriptor is placed in R2-R3, and the destination
descriptor is placed in R4-R5.

15 0

RO
I- srcl. dscr --1

RI

R 2
I- src2. dscr -

RJ

R4

f- dst. dscr -
R5

When the instruction is completed, the source descriptor registers are
cleared.

15 0

RO 0

RI 0

R2 0

RJ 0

R4
f- dst .dscr -1

R5

In-line Form-ADON/ and ADDPI
Each word address pointer which follows the opcode word in the in­
struction stream refers to a two-word decimal string descriptor. RO-R6
are unchanged when the instruction is completed.

Notes:

i. The operation of these instructions is unaffected by any overlap of
the source strings provided that each source string is a valid re­
presentation of the specified data type.

2. Source strings may overlap the destination string only if all cor­
responding digits of the strings are in coincident bytes in memory.

175

Purpose:

Operation:

Condition
Codes:

Opcodes:

Chapter 7 - Commercial Instruction Set

ASHN/ASHP/ASHNl/ASHPI

Arithmetic Shift Decimal

dst 4-Src • (10 ••shift count)

N: set if dst < O; cleared otherwise

Z: set if dst = O; cleared otherwise

V: set if dst cannot contain all significant digits of the
result; cleared otherwise

C: cleared

ASHN
ASHP
ASHNI
ASHPI

076056
076076
076156
076176

Description: The decimal number specified by the source descriptor
is arithmetically shifted and stored in the area specified by the destina­
tion descriptor. The shifted result is aligned with the least significant
digit position in the destination string. The shift count is a 2's
complement byte whose value ranges from -12810 to +12710. If the
shift count is positive, a shift in the direction of least-to-most significant
digits is performed. A negative shift count performs a shift from most­
to-least significant digit. Thus, the shift count is the power of ten by
which the source is multiplied; negative powers of ten effectively di­
vide. Zero digits are supplied for vacated digit positions. A zero shift
count will move the source to the destination. The condition codes
reflect the value stored in the destination string, and whether all signif­
icant digits were stored.

A negative shift count invokes a rounding operation. The result is
constructed by shifting the source the specified number of digit posi­
tions. The rounding digit is then added to the most significant digit
which was shifted 01,.1t. If this sum is less than 1010 the shifted result is
stored in the destination string. If the sum is 1010 or greater, the magni­
tude of the shifted result is increased by 1 and then stored in the
destination string. If no rounding is desired, the rounding digit should
be zero.

The shift count and rounding digit are represented in a single word
referred to as the shift descriptor. Bits <15:12> of this word must be
zero.

176

Chapter 7 - Commercial Instruction Set

15 12 11

0 r nd. dgt

Register Form-ASHN and ASHP
When the instruction starts, the operands must have been placed in
the general registers. The source descriptor is placed in RO-R1, the
destination descriptor is placed in R2-R3, and the shift descriptor is
placed in R4.

15 0

RO

r- src. dscr -
RI

R2

r- dst. dscr --,
R3

R4 shift. dscr

When the instruction is completed, the source descriptor registers and
shift descriptor register are cleared.

15 0
,-

RO 0

RI 0

R2

r- dst. dscr ~

R3

R4 0

In-line Form-ASHNI and ASHPI
The words which follow the opcode word in the instruction stream are
a word address pointer to a two-word decimal string source
descriptor, a word address pointer to a two-word decimal string desti­
nation descriptor, and a shift descriptor word. RO-R6 are unchanged
when the instruction is completed.

177

Chapter 7 - Commercial Instruction Set

Notes:

1. if bits < 15:12> of the shift descriptor word are not zero, the effect
of the instruction is unpredictable.

2. If bits < 11 :B> of the shift descriptor are not a valid decimal digit,
the results of the instruction are unpredictable.

3. Any overlap of the source and destination strings will produce
unpredictable results.

Purpose:

Operation:

Condition
Codes:

Opcodes:

CMPC/CMPCI

Compare Character

Src1 is compared with src2 (src1-src2)

The condition codes are based on the arithmetic com­
parison of the most significant pair of unequal src1 and
src2 characters (src1 .byte-src2.byte)
N: set if result< O; cleared otherwise

Z: set if result= 0: cleared otherwise

V: set if there was arithmetic overflow, that is,
src1 .byte<7> and src2.byte<7> were different,
and src2.byte<7> was the same as bit <7> of
(src1. byte-src2. byte); cleared otherwise

C: cleared if there was a carry from the most signifi­
cant bit of the resu It; set otherwise

CMPC
CMPCI

076044
076144

Description: Each character of src1 is compared with the corres­
ponding character of src2 by examining the character strings from
most significant to least significant characters. If the character strings
are of unequal length, the shorter character string is conceptually
extended to the length of the longer character string with fill charac­
ters beyond its least significant character. The instruction terminates
when the first corresponding unequal characters are found or when
both character strings are exhausted. The condition codes reflect the
last comparison, permitting the unsigned branch instructions to test
the result.

178

Chapter 7 - Commercial Instruction Set

Register Form-CMPC
When the instruction starts, the operands must have been placed in
the general registers. The first source character string descriptor is
placed in RO-R1, the second source character string descriptor is
placed in R2-R3, the fill character is placed in R4<7:0>, and R4<15:
8> must be zero.

15

RO

f- srcl.dscr -1
RI

R2

r-- src2 dscr --1
R3

R4 0 l foll

The instruction terminates with substring descriptors in RO-R1 and R2-
R3 which represent the portion of each source character string begin­
ning with the most significant corresponding unequal characters. RO­
R1 contain a descriptor for the unequal portion of the original src1
string; R2-R3 contain a descriptor for the unequal portion of the
original src2 string. A vacant character string descriptor indicates that
the entire source character string was equal to the corresponding
portion of the other source character string, including extension by the
fill character; its address is one greater than that of the least significant
character of the character string.

15

RO

f- sub, src 1. dscr -I
RI

R2

f- sub src2 dscr -
R3

R4 0 l f,ll

--

In-line Form-CMPC/
The words which follow the opcode word in the instruction stream are
a word address pointer to a two-word character string src1 descriptor,

179

Chapter 7 - Commercial Instruction Set

a word address pointer to a two-word character string src2 descriptor,
and a word whose low-order half contains the fill character and whose
high-order half must be zero. RO-R6 are unchanged when the instruc­
tion is completed.

Notes:

1. The operation of this instruction is unaffected by any overlap of
the source character strings.

2. If the src1 character string is vacant, the fill character will be
compared with src2. If the src2 character string is vacant, the fill
character will be compared with src1. If both character strings are
vacant, the condition codes will indicate equality.

3. CMPC-If an initial source character string descriptor is vacant,
the resulting substring descriptor is the same as the original char­
acter string descriptor.

4. A test for success is SEQ; a test for failure is BNE.

5. When the instruction terminates, the condition codes will be set as
if a CMPB instruction operated on the most significant unequal
characters. If both strings are initially vacant or are identical, the
condition codes will be set as if the last characters to be com­
pared were identical. This results in equality with N cleared, Z set,
V cleared, and C cleared.

6. Both CMPC and CMPCI update the condition codes. CMPC re­
turns substring descriptors.

Purpose:

Operation:

Condition
Codes:

Opcodes:

CMPN/CMPP/CMPNl/CMPPI

Compare Decimal

Src1 is compared with src2 (src1-src2)

N: set if src1 < src2; cleared otherwise

Z: set if src1 = src2; cleared otherwise

V: cleared

C: cleared

CMPN
CMPP
CMPNI
CMPPI

180

076052
076072
076152
076172

Chapter 7 - Commercial Instruction Set

Description: Src1 is arithmetically compared with src2. The
condition codes reflect the comparison. The signed branch instruction
can be used to test the result.

Register Form-CMPN and CMPP
When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in RO-R1,
and the seco,.,d source descriptor is placed in R2-R3.

15 0

RO

r- scr l . dscr -
l<I

R2

r- src2. dstt -
R3

When the instruction is completed, the source descriptor registers are
cleared.

15 0

RO

RI 0

R2 0

R3

In-line Form-CMPNI and CMPPI
Each word address pointer which follows the opcode word in the in­
struction stream refers to a two-word decimal string descriptor. RO-R6
are unchanged when the instruction is completed.

Note:
1. The operation of these instructions is unaffected by any overlap of

the source strings provided that each source string is a valid re­
presentation of the specified data type.

181

Purpose:

Operation:

Condition
Codes:

Opcodes:

Chapter 7 - Commercial Instruction Set

CVTlN/CVTlP /CVTLN l/CVTLPI

Convert Long to Decimal

decimal string<- long integer

N: set if dst < O; cleared otherwise

Z: set if dst = O; cleared otherwise

V: set if dst cannot contain all significant digits of the
result; cleared otherwise

C: cleared

CVTLN
CVTLP
CVTLNI
CVTLPI

076057
076077
076157
076177

Description: The source long integer is converted to a decimal
string. The condition codes reflect the result stored in the destination
decimal string, and whether all significant digits were stored.

Register Form-CVTLN and CVTLP
When the instruction starts, the operands must have been placed in
the general registers. The destination descriptor is placed in RO-R1,
and the source long integer is placed in R2-R3.

15 0

RO

I- dst. dscr ~

Rl

R2

I- src. long

R3

When the instruction is completed, the source long integer registers
are cleared.

182

Chapter 7 - Commercial Instruction Set

15

RO

f-- dst. chcr -

RI

R2 0

R3 0

In-line Form-CVTLNI and CVTLPI
The words which follow the opcode word in the instruction stream are
a word address pointer to a two-word decimal string descriptor, and a
word address pointer to a two-word long integer source. RO-R6 are
unchanged when the instruction is completed.

Notes:
1. Register forms use a long integer oriented with the sign and high­

order portion in R2, and the low-order portion in R3.

2. In-line forms use a long integer·oriented with the low-order por­
tion in src.long, and the sign and high-order portion in src.long +
2.

Purpose:

Operation:

Condition
Codell:

Opcodes:

CVTN L/CVTPL/CVTNU/CVTPLI

Convert Decimal to Long

long integer - decimal string

The condition codes are based on the long integer des­
tination and on the sign of the source decimal string.

N: set if long.integer< O; cleared otherwise
Z: set if long.integer = O; cleared otherwise
V: set if long.integer dst cannot correctly represent

the 2's complement form of the result; cleared oth­
erwise

C: set if src < O and long.integer ;i O; cleared other­
wise

CVTNL
CVTPL
CVTNLI
CVTPLI

183

076053
076073
076153
076173

Chapter 7 - Commercial Instruction Set

IDJ\Eil>Cflptlon: The source decimal string is converted to a long
integer. The condition codes reflect the resuli of the operaiion, and
whether significant digiis were not converted.

Register Form-CVTNL and CVTPL
When the instruction starts, the operands must have been placed In
the general registers. The source decimal string descriptor is placed in
RO-R1.

15 0

RO

I- scr. d s er

RI

When the instruction is completed, the source decimal string descrip­
tors are cleared, and the destination long integer is returned in R2-R3.

15 0

RO 0

RI 0

R2

I- dst. long -
R3

Jn-line Form-CVTNLI and CVTPLI
The words which follow the opcode word in the instruction stream are
a word address pointer to a two-word decimal string source descrip­
tor, and a word address pointer to a two-word long integer destination.
RO-R6 are unchanged when the instruction is completed.

Notes:

1. Register forms use a long integer oriented with the sign and high­
order portion in R2, and the low-order portion in R3.

2. In-line forms use a long integer oriented with the low-order por­
tion in dst.long, and the sign and high-order portion in dst.long +
2.

3. If the V bit is set, the contents of the long integer destination are
the least significant 32 bits of the result.

4. A source whose value is +231 can be represented as a 32-bit
binary integer. However, since the destination is~ 2's complement

184

Chapter 7 - Commercial Instruction Set

long integer, the resulting condition codes will be: N set, Z
cleared, V set, and C cleared.

CVTN P/CVTPN/CVTNPl/CVTPN I

Purpose: Convert Decimal

Operation: CVTNP/CVTNPI packed string+- numeric
string

Condition
Codes:

Opcodes:

CVTPN/CVTPNI numeric string+- packed
string

N: set if dst < O; cleared otherwise

Z: set if dst = O; cleared otherwise

V: set if dst cannot contain all significant digits of the
result; cleared otherwise

C: cleared

CVTNP
CVTPN
CVTNPI
CVTPNI

076055
076054
076155
076154

Description: These instructions convert between numeric and
packed decimal strings. The source decimal string is converted and
moved to the destination string. The condition codes reflect the result
of the operation, and whether all significant digits were stored.

Register Form-CVTNP and CVTPN
When the instruction starts, the operands must have been placed in
the general registers. The source descriptor is placed in RO-R1 and
the destination descriptor is placed in R2-R3.

15 0 ,----"----------------------~

RO
src . dscr

RI

R2

r- dst. dscr -
R3

185

Chapter 7 - Commercial Instruction Set

When the instruction is completed, the source descriptor registers are
cleared.

15 0

RO 0

RI 0

R2

f- dst. dscr ~

RJ

In-line Form-CVTNPI and CVTPNI
Each word address pointer which follows the opcode word in the in­
struction stream refers to a two-word decimal string descriptor. RO-R6
are unchanged when the instruction is completed.

Notes:
1. The results of the instruction are unpredictable if the source and

destination strings overlap.

2. These instructions use both a numeric and a packed decimal
string des~riptor.

Purpose:

Operation:

Condition
Codes:

Opcodes:

Divide Decimal

dst +- src2/src1

N: set if dst < O; cleared otherwise

Z: set if dst = O; cleared otherwise

DIVP/DIVPI

V: set if dst cannot contain all significant digits of the
result or if src1 = O; cleared otherwise

C: set if src1 = O; cleared otl1erwise

DIVP
DIVPI

076075
076175

Description: Src2 is divided by src1, and the quotient (fraction trun­
cated) is stored in the destination string. The condition codes reflect
the value stored in the destination string, and whether all significant
digits were stored.

186

Chapter 7 - Commercial Instruction Set

Register Form-DIVP
When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in RO-R1,
the second source descriptor is placed In R2-R3, and the destination
descriptor is placed In R4-R5.

15 0

RO

t- srcl. dscr -
RI

R2

I- src2. dscr -
R3

R4

I- dst. dscr -
R5

When the instruction is completed, the source descriptor registers are
cleared.

15 0

RO 0

RI 0

R2 0

RJ 0

R4

I- dst. dscr -
R5

In-line Form_;...D/VPI
Each word address pointer which follows the opcode word in the in­
struction stream refers to a two-word decimal string descriptor. RO-R6
are unchanged when the instruction is completed.

Notes:
1. The operation of these instructions is unaffected by any overlap of

the source strings provided that each source string is a valid re­
presentation of the specified data type.

187

Chapter 7 - Commercial Instruction Set

2. The results of the instruction are UNPREDICTABLE if the source
and destination strings overlap.

3. Division by zero will set the V and C bits. The destination string,
and the N and Z condition code bits will be UNPREDICTABLE.

4. No numeric string divide Instruction is provided.

Purpose:

Operation:

Condition
Codes:

Opcodes:

LOCC/LOCCI

locate Character

Search source character string for a character

The condition codes are based on the final contents of
RO.

N: set if R0<15> set; cleared otherwise
Z: set if RO = O; cleared otherwise
V: cleared

C: cleared

LOCC
LOCCI

076040
076140

Description: The source character string is searched from most sig­
nificant to least significant character until the first occurrence of the
search character. A character string descriptor is returned In RO-R1
which represents the portion of the source character string beginning
with the located character. If the source character string contains only
characters not equal to the search character, the Instructions return a
vacant character string descriptor with an address one greater than
that of the least significant character of the source character string.
The condition codes reflect the resulting value in RO.

Register Form-LOCC
When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is placed
in RO-R1, the search character is placed in R4<7:0>, and R4<15:8>
must be zero.

188

Chapter 7 - Commercial Instruction Set

15 0

RO

f- s re. d s er -
RI

R4 char

When the instruction is completed, RO-R1 contain a character set
descriptor which represents the substring of the source character
string beginning with the located character.

15

RO

r- sub. HC .dscr

RI

R4 char

In-line Form-LOCCI
The words which follow the opcode word in the instruction stream are
a word address pointer to a two-word character string source descrip­
tor, and a word whose low-order half contains the search character
and whose high-order half must be zero. When the instruction is com­
pleted, RO-R1 contain a character string descriptor which represents
the substring of the source character string beginning with the located
character. R2-R6 are unchanged.

RROIL15 ·----'-sub. '" . dsor J

Notes:

1. If the initial source character string descriptor is vacant, the in­
struction terminates with the condition codes indicating no match

189

Chapter 7 - Commercial Instruction Set

was found. The original source character string descriptor is re­
turned in RO-R1.

2. A test for success is BNE; a test for failure is BEQ.

3. The condition codes will be set as if this instruction were followed
byTST RO.

Purpose: Load Two Descriptors

Operation: Load word pairs into RO-R1 and R2-R3

Condition
Codes:

Opcodes:

N: not alfected

Z: not affected

V: not affected

C: not affected

L2DR 07602r

l2DR

Description: This instruction augments the character and decimal
strjng instructions by efficiently loading string descriptors into the
general registers.

A descriptor "alpha" is loaded into RO-R1; a second descriptor "beta"
is loaded. into R2-R3. The address of the descriptors is determined by
the addressing mode @(Rr)+ where r is the low-order three bits of the
opcode word. The address of the descriptor "alpha" is derived by
applying this addressing mode once; the address of the descriptor
"beta" is derived by applying this addressing mode a second time. The
addressing mode autoincrements the indicated register by two. The
addressing mode computation is not affected by the descriptors which
are loaded into the general registers. The words which contain the
addresses of the descriptors are in consecutive words in memory; the
descriptions themselves may be anywhere in memory. The condition
codes are not affected.

When the instruction is completed, the "alpha" descriptor is in RO-Ri
and .the "beta" descriptor Is in R2-R3.

190

Chapter 7 - Commercial Instruction Set

15

RO

alpha. dscr

RI

R2

r- beta. dscr
R3

Purpose: load Three Descriptors

Operation: Load word pairs into RO-R1, R2-R3, and R4-R5

Condition N: not affected
Codes: Z: not affected

V: not affected

C: not affected

Opcode!§: l3DR 07606r

0

-

-

L3DR

Description: This instruction augments the character and decimal
string instructions by efficiently loading string descriptors into the gen­
eral registers.

A descriptor "alpha" is loaded into RO-R1; a second descriptor "beta"
is loaded into R2~R3; a third descriptor "gamma" is loaded into R4-R5.
The address of the descriptors is determined by the addressing mode
@(Rr)+ where r is the low-order three bits of the opcode word. The
address of the descriptor "alpha" is derived by applying this address­
ing mode once. The address of the descriptor "beta" is derived by
applying this addressing mode a second time. The address of the
descriptor "gamma" is derived by applying this addressing mode a

. third time. The addressing mode autoincrements the indicated regis­
ter by two. The addressing mode computation is not affected by the
descriptors which are loaded into the general registers. The words
which contain the addresses of the descriptors are in consecutive
words in memory; the descriptors themselves may be anywhere in
memory. The condition codes are not affected.

When the instruction is completed, the "alpha" descriptor is in RO-Ri,
the "beta" descriptor is in R2-R3 and the "gamma" descriptor is in R4-
R5.

191

Chapter 7 - Commercial Instruction Set

15

RO

I- olp~a. dscr --j

RI

R2

I- beta. dscr -
RJ

I- gamma. cbcr

RS

MATC/M.ATCI

Purpose: Match Character

Operation: Search source character string for object character
string

Corru:lmon
Codes:

The condition codes are based on the final contents of
RO.
N: set if R0<15> set; cleared otherwise

Z: set if RO = O; cleared otherwise

V: cleared

C: cleared

MATC
MATCI

076045
076145

Description: The source character string is searched from most sig­
nificant to least significant character for the first occurrence of the
entire object character string. A character string descriptor is returned
in RO-Ri which represents the portion of the original source character
string from the most significant character which completely matches
the object character string to the end of the source character string. If
the object character string did not completely match any portion of the
source character string, the character descriptor returned in RO-R1 is
vacant with an address one greater than the least significant character
in the source string. The condition codes reflect the resulting value in
RO. If the Z bit is cleared, the entire object was successfully matched
with the source character string; if the Z bit is set, the match failed.

192

Chapter 7 - Commercial Instruction Set

Register Form-MA TC
When the instruction starts, the operands must have been placed In
the general registers. The source character string descriptor Is placed
in RO-R1, and the object character string descriptor Is placed In R2-
R3.

15 0

RO

\-- HC. dscr -
RI

R2
\-- obi . dscr

R3

The instruction terminates with a character substring descriptor re­
turned in RO-A1 which represents the portion of the original source
character string beginning with the most significant character to com­
petely match the object character string.

15 0

RO
\-- ~lUb, src, d!cr -

RI

R2

\-- obj . dscr -
R3

In-line Form-MA TCI
The words which follow the opcode word in the instruction stream are
a word address pointer to a two-word character string source descrip­
tor, and a word address pointer to a two-word character string object
descriptor. The instruction terminates with a character substring
descriptor returned in RO-R1 which represents the portion of the origi­
nal source character string beginning with the most significant charac­
ter to completely match the object character string. A2-R6 ere un­
changed when the instruction is completed.

sub. src . dscr

193

Chapter 7 - Commercial Instruction Set

Notes:
1. The operation of this Instruction is unaffected by lllny overlap of

the source and object character strings.

2. A vacant object character string matches any nonvacant source
character string. A vacant sourc<S character string w!ll not matcih
any object character string. If the initial source character string
descriptor is vacant, the instruction terminates with the condition
codes indicating no match was found. The original ~ource chernc·
ter string descriptor is returned in AO·R1.

3. If the length of the object character string Is greater than that of
the source character string, no match is found; AQ..R1 and the
condition codes will be updated.

4. A test for success is BNE; a test for failure Is BEQ.

5. The condition codes will be set as if this instruction were followed
byTST RO.

Purpose:

Operation:

Condition
Codes:

Opcodes:

Move Character

dst-src

MOVC/MOVCI

The condition codes are based on the arithmetic
comparison of the initial character string lengths (result
= src.len-dst.len).

N: set if result< O; cleared otherwise

Z: set if result = O; cleared otherwise

V: set if there was arithmetic overflow, that Is,
src.len<15> and dst.len<15> were different, and
dst.len<15> was the same as bit <15> of
(src.len..:dst.len); cleared otherwise

C: cleared if there was a carry from the most signifi­
cant bit of the result; set otherwise

MOVC
MOVCI

076030
076130

Description: The character string specified by the source descriptor
is moved into the area specified by the destination descriptor. It is
aligned by the most significant character. The condition codes reflect

194

Chapter 7 - Commercial Instruction Set

an arithmetic comparison of the original source and destination
lengths. If the source string is shorter than the destination string, the
fill character is used to complete the least significant part of the desti­
nation string. This is indicated by the C bit set. If the source string is
longer than the destination string, the least significant characters of
the source string are not moved. This is indicated by the Z and C bits
cleared. If the source and destination strings are of equal length, all
characters are moved with neither truncation nor filling. This is indicat­
ed by the Z bit set. The unsigned branch instructions may test the
result of the instruction.

Register Form-MO VG
When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is placed
in RO-R1, the destination character string descriptor is placed in R2-
R3, the fill character is placed in R4<7:0>, and R4<15:8> must be
zero.

15 0

RO

r- src dscr

RI

R2

I- d s I d SC r -

R3

R4 0 l fill

When the instruction is completed, RO contains the number of un­
moved source string characters, and R1 through R3 are cleared.

15

RO max(O, src len -dst len)

r-·
RI 0

R2 0

R3 0

R4 0 l fill

In-line Form-MOVCI
The words which follow the opcode word in the instruction stream are

195

Chapter 7 - Commercial Instruction Set

a word address pointer to a two-word character str,ing source descrip­
tor, a word address pointer to a two-word character string destination
descriptor, and a word whose low-order half contains the fill character
and whose high-order half must be zero. RO-R6 are unchanged when
the instruction is completed.

Notes:

1. The operation of this instruction is unaffected by any overlap of
the source and destination strings. The result is equivalent to
having read the entire source string before storing characters in
the destination.

2. If the source string is vacant, the fill character will be propagated
through the destination string. If the destination string is vacant,
no characters will be moved. The condition codes will be updated.
MOVC will update the general registers.

3. MOVC - When the instruction terminates, RO is zero only if Z or C
is set.

4. The condition codes will be set as if this instruction were preceded
by CMP src.len, dst.len.

Purpose:

Operation:

Condition
Codes:

Opcodes:

MOVRC/MOVRCI

Move Reverse-Justified Character

dst .,_reverse-justified src

The condition codes are based on the arithmetic com­
parison of the initial character string lengths (result =
src.len-dst.len).

N: set if result< O; cleared otherwise

Z: set if result = O; cleared otherwise
V: set if there was arithmetic overflow, that is,

src.len<15> and dst.len<15> were different, and
dst.len<15> was the same as bit <15> of
(src.len-dst.len); cleared otherwise

C: cleared if there was a carry from the most signifi­
cant bit of the result; set otherwise

MOVRC
MOVRCI

196

076031
076131

Chapter 7 - Commercial Instruction Set

Description: The character string specified by the source descriptor
is moved into the area specified by the destination descriptor. It is
aligned by the least significant character. The condition codes reflect
an arithmetic comparison of the original source and destination
lengths. If the source string is shorter than the destination string, the
fill character is used to complete the most significant part of the desti­
nation string. This is indicated by the C bit set. If the source string is
longer than the destination string, the most significant characters of
the source string are not moved. This is indicated by the Zand C bits
cleared. If the source and destination strings are of equal length, all
characters are moved with neither truncation nor filling. This is indicat­
ed by the Z bit set. The unsigned branch instructions may test the
result of the instruction.

Register Form-MOVRC
When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is placed
in RO-R1, the destination character string descriptor is placed in R2-
R3, the fill character is placed in R4<7:0>, and R4<15:8> must be
zero.

15

RO

I- '" dscr -1
RI

R2

t- d ,, d SC (-1
R3

R4 0 l fill

When the instruction is completed, RO contains the number of un­
moved source string characters, and R 1 through R3 are cleared.

15 0

RO mQ)l(O, src len-dst len)

RI 0

R2 0

R3 0

R4 0 I fill

197

Chapter 7 - Commercial Instruction Set

In-Jina Form-MO VRCI
The words which follow the opcode word in the instruction stream are
a word address pointer to a two-word character string source descrip­
tor, a word address pointer to a two-word character string destination
descriptor, and a word whose low-order half contains the fill character
and whose high-order half must be zero. RO-RS are unchanged when
the instruction is completed.

Notes:

1. The operation of this instruction is unaffected by any overlap of
the source and destination strings. The result is equivalent to
having read the entire source string before storing characters in
the destination.

2. If the source string is vacant, the fill character will be propagated
through the destination string. If the destination string is vacant,
no characters will be moved. Condition codes will be updated.
MOVRC will update the general registers.

3. MOVRC-When the Instruction terminates, RO Is zero only if Z or
Care set.

4. The condition codes will be set as if this instruction were preceded
by CMP src.len, dst.len.

Purpose: •

Operation:

Condition
Codes:

Opcodes:

Move Translated Character

dst - translated src

MOVTC/MOVTCI

The condition codes are based on the arithmetic
comparison of the initial character string lengths (result
= src.len-dst.len).
N: set if result < O; cleared otherwise
Z: set if result = O; cleared otherwise
V: set if there was arithmetic overflow, thElt is,

src.len<15> and dst.len<15> were different, and
dst.len<15> was the same as bit <15> of
(src.len-dst.len); cleared otherwise

C: cleared if there was a carry from the most signifi­
cant bit of the result; set otherwise

MOVTC
MOVTCI

i98

076032
076132

Chapter 7 - Commercial Instruction Set

Description: The character string specified by the source descriptor
is translated and moved into the area specified by the destination
descriptor. It is aligned by the most significant character. Translation
is accomplished by using each source character as an 8-bit positive
integer index into a 256-byte table, the address of which is an operand
of the instruction. The byte at the indexed location in the table is stored
in the destination string. The condition codes reflect an arithmetic
comparison of the original source and destination lengths.

If the source string is shorter than the destination string, the untrans­
lated fill character is used to complete the least significant part of the
destination string. This is indicated by the C bit set. If the source string
is longer than the destination string, the least significant characters of
the source string are not moved. This is indicated by the Zand C bits
cleared. If the source and destination strings are of equal length, all
characters are translated and moved with neither truncation nor filling.
This is indicated by the Z bit set. The unsigned branch instructions
may test the result of the instruction.

Register Form-MOVTC
When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is placed
in RO-R1, the destination character string descriptor is placed in R2-
R3, the fill character is placed in R4<7:0>, R4<15:8> must be zero,
and the translation table address is placed in R5.

15

RO

r- src . dscr -1
RI

R2

f-- ds t. dscr -1

R3

R4 0 T f;JJ

RS tabla. odr

When the instruction is completed, RO contains the number of un­
moved source string characters, and R 1 through R3 are cleared.

ln:line Form-MOVTCI
The words which follow the opcode word in the instruction stream are
a word address pointer to a two-word character string source descrip­
tor, a word address pointer to a two-word character string destination

199

Chapter 7 - Commercial Instruction Set

15 0

RO mal{ 0, src. Ian - dst. Ian)

RI 0 I

R2 0

R3 0

R4 0 1 f,11

R5 table. odr

descriptor, a word whose low-order half contains the fill character and
whose high-order half must be zero, and a word containing the
address of the translation table. RO-R6 are unchanged when the in­
struction is completed.

Notes:

1. The operation of this instruction is unaffected by any overlap of
the source and destination strings. The result is equivalent to
having read the entire source string before storing characters in
the destination.

2. If the destination string overlaps the translation table in any way,
the results of the instruction will be UNPREDICTABLE.

3. If the source string is vacant, the untranslated fill character will be
propagated through the destination string. If the destination string
is vacant, no characters will be moved. Condition codes will be
updated. MOVTC will update the general registers.

4. MOVTC-When the instruction terminates, RO is zero only if Z or
Care set.

5. The condition codes will be set as if this instruction were preceded
by CMP src.len, dst.len.

6. The effect of the instruction is UNPREDICTABLE if the entire 256-
byte translation table is not in readable memory.

MULP/MULPI

Purpose: Multiply Decimal

Operation: dst - src2 * src1

Com:lition N: set if dst < O; cleared otherwise

200

Codes:

Opcodes:

Chapter 7 - Commercial Instruction Set

Z: set if dst = O; cleared otherwise

V: set if dst cannot contain all significant digits of the
result; cleared otherwise

C: cleared

MULP
MULPI

076074
076174

Description: Src1 and src2 are multiplied, and the result is stored in
the destination string. The condition codes reflect the value stored in
the destination string, and whether all significant digits were stored.

Register Form-MULP
When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in RO-R1,
the second source descriptor is placed in R2-R3, and the destination
descriptor is placed in R4-R5.

15 0

RO

I- srcl, dscr

RI

R2

I- srcl. dscr -
RJ

R4

I- dst, dscr -
RS

--

When the instruction is completed, the source descriptor registers are
cleared.

lS 0

RO 0

Rl 0

R2 0

R3 0

R4

I- ds t. dscr -'
RS

201

Chapter 7 - Commercial Instruction Set

In-line Form-MULPI
Each word address pointer which follows the opcode word in the in­
struction stream refers to a two-word decimal string descriptor. RO-R6
are unchanged when the instruction is completed.

Notes:

1. The operation of these instructions is unaffected by any overlap of
the source strings provided that each source string is a valid re­
presentation of the specified data type.

2. The results of the instruction are UNPREDICTABLE if the source
and destination strings overlap.

3. No numeric string multiply instruction is provided.

Purpose:

Operation:

Condition
Codes:

SCANC/SCANCI

Scan Character

Search source character string for a member of the
character set

The condition codes are based on the final contents of
RO.

N: set if R0<15> set; cleared otherwise

Z: set if RO = O; cleared otherwise

V: cleared

C: cleared

Opcodes: SCANC 076042
076142 ·SCANCI

Description: The source character string is searched from most sig­
nificant to least significant character until the first occurrence of a
character which is a member of the character set. A character string
descriptor is returned in RO-R1 which represents the portion of the
source character stri.ng beginning with the located member of the
character set. If the source character string contains only characters
which are not in the character set, the instructions return a vacant
character string descriptor with an address one greater than that of
the least significant character of the source character string. The
condition codes reflect the resulting value in RO.

202

Chapter 7 - Commercial Instruction Set

Register Form-SCA NC
When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is placed
in RO-R1, and the character set descriptor is placed in R4-R5.

15 0

RO

RI I- src dscr

R4

1-- set dscr

R5

When the instruction is completed, RO-R1 contain a character string
descriptor which represents the substring of the source character
string beginning with the most significant character which is a member
of the character set.

15

RO

1-- sub src dscr -I
RI

R4

I- set. d s er

R5

In-line Form-SCANCI
The words which follow the opcode word in the instruction stream are
a word address pointer to a two-word character string source descrip­
tor, and a word address pointer to a two-word character set descrip­
tor. When the instruction is completed, RO-R1 contain a character
string descriptor which represents the substring of the source charac­
ter string beginning with the most significant character which is a
member of the character set. R2-R6 are unchanged.

203

Chapter 7 - Commercial Instruction Set

:f sub. src , dscr

Notes:

1. If the initial source character string descriptor is vacant, the in­
struction terminates with the condition codes indicating that no
characters in the set were found. The original source character
string descriptor is returned in RO-R1.

2. The source character string and character set table may overlap
in anyway.

3. A test for success is BNE; a test for failure is SEQ.

4. The condition codes will be set as if this instruction were followed
byTST RO.

5. The effect of the instruction is UNPREDICTABLE if the entire 256-
byte character set table is not in readable memory.

Purpose:

Operation:

Condition
Codes:

Opcodes:

SKPC/SKPCI

Skip Character

Search source character string until a character other
than the search character is found

The condition codes are based on the final contents of
RO.

N: set if R0<15> set; cleared otherwise
Z: set if RO = O; cleared otherwise

V: cleared

C: cleared

SKPC
SKPCI

076041
076141

Description: The source characer string is searched from most
significant to least significant character until the first occurrence of a
character which is not the search character. A character string de­
scriptor is returned in RO-R1 which represents the portion of the
source character string beginning which the most significant character

204

Chapter 7 - Commercial Instruction Set

which was not equal to the search character. If the source character
string contains only characters equal to the search character, the in­
struction returns a vacant character string descriptor with an address
one greater than that of the least significant character of the source
character string. The condition codes reflect the resulting value in RO.

Register Form-SK PC
When the instruction starts, the operands must have been placed in
the general registers. The source character string decriptor is placed
in RO-R1, the search character is placed in R4<7:0>, and R4<15:8>
must be zero.

LIS __ _

RO

RI

s re, d s c r

----------~ 0

_]
R4 L ___ . __ o _____ · _T~-·~~~~---c-ha_'-----~

When the instruction is completed, RO-R1 contain a character strin,.g
descriptor which represents the substring of the source character
string beginning with the most significant character which was not
equal to the search character.

sub. src . dscr

R4 char

In-line Form-SK PC/
The words which follow the opcode word in the instruction stream are
a word address pointer to a two-word character string source descrip­
tor, and a word whose low-order half contains the search character
and whose high-order half must be zero. When the instruction is com­
pleted, RO-R1 contain a character string descriptor which represents
the substring of the source character string beginning with the most
significant character which was not equal to the search character. R2-
R6 are unchanged.

205

Chapter 7- Commercial Instruction Set

Notes:

1. If the initial source character string descriptor is vacant, the in­
struction terminates with the condition codes indicating the char­
acter string only contained search characters. The original source
character string descriptor is returned in RO-R1.

2. The condition codes will be set as if this instruction were followed
by TST RO.

:f

Purpose:

Operation:

Condition
Codes:

Opcodes:

sub. src . dscr

SP.ANC/SP.ANCI

Span Character

Search source character string for a character which is
not a member of the character set.

The condition codes are based on the final contents o•
RO.

N: set if R0<15> set; cleared otherwise
Z: set if RO = O; cleared otherwise

V: cleared

C: cleared

SPANG
SPANCI

076043
076143

Description: The source character string is searched from most
significant to least significant character until the first occurrence of
character which is not a member of the character set. A character
string descriptor is returned in RO-R1 which represents the portion of
the source character string beginning with the character which is not a
member of the character set. If the source character string contains
only characters which are in the character set, the instruction returns a
vacant character string descriptor with an address one greater than
that of the least significant character of the source character string.
The condition codes reflect the resulting value in AO.

206

Chapter 7 - Commercial Instruction Set

Register Form-SPANG
When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is placed
in RO-R1, and the character set descriptor is placed in R4-R5.

15 0 RO
RI f- src dscr -

R4

r-- set_ dscr

R5

When the instruction is completed, RO-R1 contain a character string
descriptor which represents the substring of the source character
string beginning with the most significant character which is not a
member of the character set.

15 0

RROll~---1 [. ·--·- sub. src. dscr J

R4

r-- set. dscr

RS

In-line Form-SPA NCI
The words which follow the opcode word in the instruction stream are
a word address pointer to a two-word character string source descrip­
tor, and a word address pointer to a two-word character set descrip­
tor. When the instruction is completed, RO-R1 contain a character
string descriptor which represents the substring of the source charac­
ter string beginning with the most significant character which is not a
member of the character set. R2-R6 are unchanged.

sub . src . dscr

207

Chapter 7 - Commercial Instruction Set

Notes:

1. If the initial source character string descriptor is vacant, the in­
struction terminates with the condition codes indicating that only
characters in the .set were found. The original source character
string descriptor is returned in RO-R1.

2. The source character string and character set table may overlap
in anyway.

3. The condition codes will be set as if this instruction were followed
byTST RO.

4. The effect of the instruction is UNPREDICTABLE if the entire 256-
byte character set table is not in readable memory.

Purpose:

Operation:

Condition
Codes:

Opcodes:

Subtract Decimal

dst +-src2-src1

SUBN/SUBP/SUBNl/SUBPI

N: set if dst < O; cleared otherwise

Z: set if dst = O; cleared otherwise

V: set if dst cannot contain all significant digits of the
result; cleared otherwise

C: cleared

SUBN
SUBP
SUBNI
SUBPI

076051
076071
076151
076171

Description: Src1 is subtracted from src2, and the result is stored in
the destination string. The condition codes reflect the value stored in
the destination string, and whether all significant digits were stored.

Register Form-SUBN and SUBP
When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in RO-R1,
the second source descriptor is placed in R2-R3, and the destination
descriptor is placed in R4-R5.

208

Chapter 7 - Commercial Instruction Set

15 0

RO

I- srcl. dscr -
RI

R2

I- src2. dscr -
R3

R4

I- dst. dscr -
R5

When the instruction is completed, the source descriptor registers are
cleared.

15

RO 0

RI 0

R2 0

RJ 0

R4

r- dst. dscr -1
R5

In-line Form-SUBNI and SUBPI
Each word address pointer which follows the opcode word in the
instruction stream refers to a two-word decimal string descriptor. RO­
R6 are unchanged when the instruction is completed.

Notes:

1. The operation of these instructions is unaffected by any overlap of
the source strings provided that each source string is a valid re­
presentation of the specified data type.

2. Source strings may overlap the destination string only if all cor~
responding digits of the strings are in coincident bytes in memory.

209

210

CHAPTER 8

TRAPS AND INTERRUPTS

An interrupt is a signal that breaks the normal flow of control of the
routine being executed, transfering control to a specific location in
memory. An interrupt is normally caused by an external event such as
a done condition in a peripheral. The fast interrupt handling of PDP-11
processors reduces the time that system devices must wait for CPU
service. Interrupts also relieve the processor from doing routine con­
trol functions tor the peripherals. An interrupt is distinguished from a
trap, which is caused by the execution of a processor instruction.

PDP-11 processor traps are triggered by power failures and certain
hardware and software errors. A trap causes the processor to execute
instructions pointed to by a certain permanently assigned address.
Traps protect both the programmer and the processor. If a power fail­
ure occurs during program execution, the processor traps to the pow­
er-fail program, which saves the contents of registers. Traps also
abort illegal instructions, such as attempts to address non-existent
memory.

PROCESSOR TRAPS
There are a series of errors and programming conditions which will
cause the central processor to trap to a set of fixed locations. These
include: power failure, odd addressing errors, stack errors, time-out er­
rors, memory parity errors, memory management violations, floating
point processor exception traps, use of reserved instructions, use of
the T bit in the processor status word, and use of the IOT, EMT, BPT,
and TRAP instructions.

Power Failure
Whenever AC power drops below 95 volts tor 115V power (190 volts for
230V) or outside a limit of 47 to 63 Hz, as measured by DC voltage, the
power-fail sequence is initiated. The central processor automatically
traps through location 24 and the power-fail program has 2 msec to
save all volatile information (data in registers), and to condition pe­
ripherals for power-fail.

When power is restored, the processor can be strapped to trap
through location 24 and execute the power-up routine, which restores
the machine to its state prior to power failure. (This feature is used
only in systems with PROM or RAM with battery-backup. All other pro­
cessors would power up the hardware bootstrap.)

211

Chapter 8 - Traps and Interrupts

Odd Addressing Errors
This error occurs whenever a program attempts to execute a word in­
struction on an odd address (in the middle of a word boundary). The
instruction is aborted and the CPU traps through location 4. This error
is not detected in the MICRO!T-11, SBC-11121, LSl-1112, LSl-11123, Pro­
fessional 300 series, MICRO/PDP-11, PDP-11123 PLUS, or PDP-11124.

Time-out Errors
These errors occur when the processor attempts to access memory, or
a device on the system bus, and there is no reply from the memory or
device. This error usually occurs in attempts to address nonexisteo_t
memory or peripherals.

The offending instruction is aborted and the processor traps through
location 4.

Reserved Instructions
There is a set of illegal and reserved instructions which cause the
processor to trap through location 10. This may indicate that the de­
sired instruction set (e.g. FPP or CIS) has not been installed in this par­
ticular processor. It may then be useful to emulate the instruction in
software.

Vector Address and Trap Errors

000 (reserved)
004 CPU errors, stack overflow
010 Illegal and reserved instructions
014 BPT, breakpoint trap
020 IOT, input/output trap
024 Power-fail
030 EMT, emulator trap
034 TRAP instruction
114 Memory system errors
240 PIRO, program interrupt request
244 Floating-point error
250 Memory management

TRAP INSTRUCTIONS
Trap instructions provide for calls to emulators, 1/0 monitors, debug­
ging packages, and user-defined interpreters. A trap is effectively an
interrupt generated by software. When a trap occurs, the contents of
the current program counter (PC) and program status word (PS) are
pushed onto the processor stack and replaced by the contents of a 2-
word trap vector containing a new PC and new PS. The return

212

ChapterB- Traps and Interrupts

sequence from a trap involves executing an RTI or RTI instruction,
which restores the old PC and old PS by popping them from the stack.
Trap vectors are located at permanently assigned (fixed) addresses.

The EMT (emulator trap) and TRAP instructions do not use the low-or­
der byte of the word in their machine language representation. This
allows user information to be transferred in the low-order byte. The
new value of the PC loaded from the vector address of the TRAP or
EMT instructions is typically the starting address of a routine to ac­
cess and interpret this information. Such a routine is called a trap han­
dler.

The trap handler must accomplish several tasks. It must save and re­
store all necessary registers, interpret the low byte of the trap instruc­
tion and call the indicated routine, serve as an interface between the
calling program and this routine by handling any data that needs to be
passed between them, and, finally, cause a return to the main routine.

Uses of Trap Handlers
The trap handler can be useful as a patching technique. Jumping out
to a patch area is often difficult because a 2-word jump must be per­
formed. However, the 1-word TRAP instruction may be used to
dispatch to patch areas. A sufficient number of slots for patching
should first be reserved in the dispatch table of the trap handler. The
jump can then be accomplished by placing the address of the patch
area into the table and inserting the proper TRAP instruction where
the patch is to be made.

The trap handler can be used in a program to dispatch execution to
any one of several routines. Macros may be defined to cause the prop­
er expansion of a call to one of these routines. For example,

.MACRO SUB2 ARG
MOVARG, RO
TRAP+ 1
.ENDM

When expanded, this macro sets up the one argument required by the­
routine in RO and then causes the trap instruction with the number 1 in
the lower byte. The trap handler should be written so that it recognizes
a 1 as a call to SUB2. Notice that ARG here is being transmitted to
SUB2 from the calling program. It may be data required by the routine
or it may be a pointer to a longer I ist of arguments.

In an operating system environment like RT-11, the EMT instruction is
used to call system or monitor routines from a user program. The mon­
itor of an operating system necessarily contains coding for many

213

Chapter 8-:-- Traps and Interrupts

functions, including 110, and file manipulation. This coding is made
accessible to the program through a series of macro calls, which ex­
pand into EMT instructions with low bytes indicating the desired rou­
tine, or group of routines to which the desired routine belongs. Often a
GPR is designated to be used to pass an identification code to further
indicate to the trap handler which routine is desired. For example, the
macro expansion for a resume execution command in RT-11 is as fol­
lows:

. MACRO . RSUM
CM3,2 .
. ENDM

and CM3 is defined as

.llF NB

.MACRO CM3 CHAN, CODE
MOV #CODE *400,RO
CHAN,BISB CHAN,RO
EMT 374
.ENDM

This finally expands to

MOV #2.*400, RO
BISS CHAN, RO
EMT 374

Notice the EMT low byte is 374. This is interpreted by the EMT handler
to indicate a group of routines. Then the contents of the high byte of
RO are tested by the handler to identify exactly which routine within
the group is being requested, in this case routine number 2. The low
byte of RO contains the optional channel number.

Summary of PDP-11 Processor Trap Vectors:

VECTOR
ADDRESS

4

FUNCTION SERVED

Illegal instructions (JSR, JMP for mode 0)
Bus errors (odd address error, time-out)
Stack limit (Red or Yellow Zones)
Illegal internal address
Microbreak

214

10

14

20

24

30

34

114

240

244

250

INTERRUPTS

Chapter 8 - Traps and Interrupts

Reserved instruction
XFC with UCS disabled
SPL, MTPS, MFPS, FADD, FSUB, FMUL, FDIV if
no FIS.
HALT in user mode (jumper option)

Trace (T bit)

IOT instruction

Power-fail

EMT instruction

TRAP instruction

Cache parity error
Bus memory parity error
User Control Store parity error

Pl RQ (program interrupt request)

Floating point exception

Memory management abort

Interrupt-driven techniques are used to reduce CPU and peripheral
waiting time. In direct program data transfer, the CPU loops to check

215

Chapter 8 - Traps and Interrupts

the state of the Done/Ready flag (bit 7) in the peripheral interface. Us­
ing interrupts, the system actually ignores the peripheral, running
other low-priority programs until the peripheral initiates service by set­
ting the Done bit. The Interrupt Enable bit in the control status register
must have been set at some prior time. The CPU completes the in­
struction being executed and then is interrupted and vectors to an in­
terrupt service routine. (For instructions such as those of the Commer­
cial Instruction Set (CIS), which are potentially very long, the
instruction is stopped in the middle and will be resumed when the in­
terrupt is dismissed. This saves a long delay or latency waiting for the
instruction to complete.) The service routine will transfer the data and
may perform calculations with it. After the interrupt service routine
has been completed, the computer resumes the program that was in,
terrupted by the peripheral's high-priority request.

With interrupt service routines, linkage information is passed so that a
return to the main program can be made. More information is neces­
sary for an interrupt sequence than for a subroutine call because of
the random nature of interrupts. The complete machine state of the
program immediately prior to the occurrence of the interrupt must be
preserved in order to return to the program without any noticeable ef­
fects. Some of this information is stored in the processor status word
(PS). Upon interrupt, the contents of the program counter(PC) (address
of next instruction) and the PS are automatically pushed onto the R6
system stack. The effect would be the same if:

MOV PS, - (SP) ;Push PS

MOV PC, - (SP) ;Push PC

had been executed .

. The new contents of the PC and PS are loaded from two preassigned
consecutive memory locations which are called "vector addresses."
The first word contains the interrupt service routine entry address (the·
new PC), and the second word contains the new PS, which will deter­
mine the machine status, including the operational mode and register
set to be used by the interrupt service routine. The contents of the vec­
tor are set under program control.

After the interrupt service routine has been completed, an RTI (Return
From Interrupt) is performed. The top two words of the stack are auto­
matically popped and placed in the PC and PS respectively, thus re­
suming the interrupted program.

216

ChapterB- Traps and Interrupts

Note that the interrupt service routine must explicitly save the con­
tents of any general registers that it requires before overwriting them.
For example:

MOV R5, - (SP) ;Save R5

MOV R4, - (SP) ;and R4

Now, the service routine may freely use R4 and R5. At the end of the
interrupt, the service routine must restore the original contents of any
"borrowed" registers, noting the reversed order! It may then execute
an RTI (Return from Interrupt) instruction to restore the original PC
and PS. For example:

MOV (SP) + , R4

MOV (SP) + , R5

RTI

;Restore R4

;and R5

;Now back to the
;interrupted program

Caution When Clearing Device lntemupt Enable Bits
Clearing device Interrupt Enable bits while the device is still active
can lead to a bus time-out error when the processor attempts to
receive the interrupt vector from that device. This can cause degrada­
tion of the computer system's throughput. Consider the example:

PSW = 0
CLR @ #177564

As a result, the DLV-11 Serial Line Unit Interrupt Enable bit is being
cleared. Now, assume that the transmitter is still active and sending
characters, and further assume that the Done bit in the status register
becomes set shortly after the CLR instruction is fetched, but before
the Interrupt Enable bit can be cleared. The device will now post an
interrupt request because the Done bit has been set and the Interrupt
Enable bit is still set. The CLR instruction will complete execution and
the processor will recognize the interrupt request since there was not
enough time for the device to disable the interrupt request. The proc­
essor will then attempt to obtain a vector from the interrupting device.
However, a bus time-out error will occur because the device now has

217

Chapter 8 - Traps and Interrupts

had enough time to remove the interrupt request and wlll not respond.
The LSl-.11/2 processor treats this time-out as a fatal condition and
halts; other processors time out and them resume execution. if multi­
ple interrupt requests were pending at this time, a time-out would not
occur since the next device needing service would respond with its in­
terrupt vector.

One method of avoiding this problem is to disable interrupts immedi­
ately before the Interrupt Enable bit is cleared. For example:

MTPS#200
CLR @#177564
MTPS#O

In this situation, enough time has been allowed for the interrupt re­
quest to b.e removed bv the device.

Nesting
Interrupts can be nested in much the same manner that subroutines
are nested. In fact, it is possible to nest any arbitrary mixture of sub­
routines and interrupts without any confusion. By using the RTI and
RTS instructions, respectively, the proper returns are automatic. Nest­
ed interrupt service routines and subroutines are illustrated in Figure
8-5.

Nesting
Interrupts can be nested in much the same manner that subroutines
are nested. In fact, it is possible to nest any arbitrary mixture of
subroutines and interrupts without any confusion. By using the RTI
and RTS instructions, respectively, the proper returns are automatic.

1. Process 0 is running; SP is
pointing to location PO.

2. Interrupt stops process 0
with PC = PCO, and status =
PSO; starts process 1.

3. Process 1 uses stack for
temporary storage (TEO,
TE1).

218

~§ PSO

SP~ PCO

PC

PSO

PCO

TEO

SP- TEI

Chapter 8 - Traps and Interrupts

4. Process 1 interrupted with
PC= PC1 and status= PS1;
process 2 is started.

5. Process 2 is running and
does a JSR R7,A to subrou­
tine A with PC = PC2.

6. Subroutine A is running and
uses stack for temporary
storage.

7. Subroutine A releases the
temporary storage holding
TA1 and TA2.

219

PO

SP~

PO

SP~

0

PO

SP-

0

PO

SP~

PSO

PC 0

TEO

TE I

PS I

PC I

PSO

PCO

TE 0

TE I

PS I

PC I

PC2

PSO

PCO

TEO

TE I

PSI

PCI

PC2

TAI

TA2

PSO

PCO

TEO

TEI

PSI

PCI

PC2

Chapter 8 - Traps and Interrupts

8. Subroutine A returns control
to process 2 with an RTS R7;
PC is reset to PC2.

9. Process 2 completes with an
RTI instructions (dismisses
interrupt) PC is reset to PC1
and status is reset to PS 1;
process 1 resumes.

10. Process 1 releases the tem­
porary storage holding TEO
and TE1.

11. Process 1 completes its op­
eration with an RTI, PC is re­
set to PCO, and status is re­
set to PSO.

PO

PSO

PCO

TEO

TE1

PSI

SP- PC!

PO

PSO

PCO

TEO

SP- TE1

POE±lli]
PSO

SP~ PCO

Figure 8-1 Nested Interrupt Service Routines and Subroutines

Note that the area of interrupt service programming is intimately in­
volved with the concept of CPU and device priority levels.

220

221

INTRODUCTION

CHAPTER 9

MAPPING TO MEMORY AND BUSSES

During the execution of user programs, various system resources are
required at different times. There is only one CPU, and only one pro­
gram can fetch and execute instructions at one time; however, other
operations such as 1/0 may occur simultaneously. Frequently, a pro­
gram may use the CPU for only a short amount of processing time and
then wait for system resources to become available (e.g., memory, or
peripherals) or for feedback from concurrently active programs. Dur­
ing this processor idle time, another program could make use of the
CPU. This concept is known as multiprogramming. Therefore, to most
efficiently utilize the speed and power of the PDP-11 system, it is often
essential that several programs reside in main memory simultaneous­
ly.

The task of the executive (monitor or supervisory program) is to con­
trol the execution of the various user programs, manage the allocation
of memory and peripheral device resources, and safeguard the integri­
ty of the system by careful control of each user program.

To aid the executive in this task, the CPU contains various hardware
features which make it easy to multiprogram and ensure that each
program is protected from corruption by other programs. The Memory
Management Unit (MMU) provides two of these features: relocation
and protection.

CONCEPTS
Before describing the memory and bus-mapping schemes incorporat­
ed by the family of PDP-11 processors, it is important to review several
related concepts.

Virtual Address Space
Virtual address space is that set of addresses seen by the user's pro­
gram. For instance, a program written for a PDP-11 processor sees a
16-bit address space. The PC (Program Counter) is a 16-bit register.
Therefore, each user program can reference only the range of address­
es between 0 and 177777 octal. This range of 32K Words or 64 Kbytes
(200000 octal bytes) is know as the program's virtual address space.
Each program's virtual address space begins with address 0 and can
extend upward to a maximum of 64 Kbytes. Figure 9-1 illustrates sev­
eral user programs and their associated virtual address space.

222

Chapter 9 - Mapping to Memory and Busses

VIRTUAL 64 Kbytea B -PC= 177776

1

_VIRTUAL 0
PC:OOOOOO

Figure 9-1

Physical Address Space

VIRTUAL 64 KbytH VlRTUAL 64 k.byt~u EJ-PC• 177776 EJ-PC• 177776

---- - TASK N

_ VIRTUAL 0 _ VIRTUAL 0
PC=OOOOOO PC=OOOOOO

Program Virtual Address Space

Physical address space is a contiguous series of word-addressable
hardware locations used to define main memory and peripheral device
registers. Three magnitudes of physical address space are utilized by
the pop:11 family of processors; 16-bit, 18-bit, and 22-bit. The 16-bit
space yields a total of 64 Kbytes and the 18-bit space yields a total of
256 Kbytes. Since devices on the UNIBUS are addressable via an 18-bit
address, it is clear that in both of the above cases (16-bit and 18-bit
physical address space), main memory may be physically attached td
the UNIBUS. The 22-bit space yields a total of 4096 Kbytes. In this
case, however, the physical address range (22 bits) exceeds that of the
UNIBUS (18 bits) and main memory must be located on a separate
memoryibus.

Peripheral Device Register Addressing
Up to this point, virtual and physical address space have been viewed
as the series of locations available to the programmer as program
space. However, some provisions must be made to address peripheral
device registers, a function necessary in performing 1/0 operations.
The peripheral devices have been assigned addresses in the top 8
Kbytes of physical address space. The diagram in Figure 9-2 illus­
trates a typical physical address space including main memory and
UNIBUS peripheral device register (1/0 page) space.

The diagram in Figure 9-2 will be explained more fully during the dis­
cussion of 16-, 18-, and 22-bit mapping of processor addresses.

Addres~ !Relocation
Often a program is loaded into main memory at a starting address
other than zero. This situation occurs when more than one program is
loaded into main memory. When any one program is executing, it is
accessed by the processor as if it were located in the set of main
memory addresses beginning at zero (that is, its virtual address space
ranges from 000000 upwards). When the processsor accesses pro­
gram location 0 (PC 0), a constant called the base address is added to
the virtual address in the PC by the memory management hardware.
Thus, the relocated or actual memory address of program location 0 is

223

Chapter 9 - Mapping to Memory and Busses

accessed. This process is known as address relocation or address
. translation. This same base address is added to all references while
the same program is executing. A different base address is used for
each program in main memory. (The previous two statements assume
that the executing program resides in a contiguous area of main mem­
ory. later in this chapter we will see that a program can alsb be loaded
into main memory in noncontiguous segments known as pages. When
this situation occurs, each individual page is assigned a different relo­
cation constant.)

To illustrate this point, let's look at a simplified memory relocation ex­
ample. In Figure 9-3, Program A's starting address 0 is relocated by a
constant to provide physical address 6400.. If the next processor virtu­
al address is 2, the relocation constant will then cause physical ad-

. dress 6400s, which is the second item of Program A, to be accessed.
When Program B is executing, the relocation constant is changed to
100000a. Then Program B's virtual addresses are relocated by the relo­
cation constant 100000a.

PHYSICAL
MEMORY

PHYSICAL SPACE

!/O PAGE 8Kbr••

EXECUTIVE

~--~ VIRTUAL 641<byte

PC=l77 777
VIRTUAL S6Kbyte
PC= 157 777

~~~~ VIRTUAL 0 

PC= 000 000 

...---..., VIRTUAL 64 Kbyts 
PC=l77 777 

VIRTUAL 561<byto 

PC= 157 777 

VIRTUAL 0 
PC= 000 000 

Figure 9-2 Physical Address Space 

MEMORY MANAGEMENT 
Memory management is the hardware that translates (relocates) the 
program's 16-bit virtual address into either an 18-bit or a 22-bit physi-

. cal address, depending on the processor. The hardware consists of an 
adder, which is a number of registers that perform the actual address 
translation, and an internal system-protection scheme. 

224 



Chapter 9 - Mapping ·to Memory and Busses 

POP-11 
PROCESSOR 

PC•V.A.• (0) 

MEMORY 
MANAGEMENT 
UNIT 
PROVIDES RELOC­
ATION CONSTANT 
A•0064 
B• l 00 0 

PROGRAM 8 

PROGRAM A 

000000 

Figure 9-3 Simplified Memory Relocation Example 

The basic function of memory management is to perform memory relo­
cation and provide extended memory addressing capability for sys­
tems with greater than 56 Kbytes of physical memory. in order to per­
form this basic function, the memory management system utilizes a 
·series of Active Page Registers (APRs). The APRs are actually a set of 
hardware relocation registers that permit several users' programs, 
each starting at virtual address 0, to simultaneously reside in physical 
memory. 

In the PDP-11 system, a program is mapped (relocated) in pages. A 
page can consist oftrom 1 to 128 blocks. Each block is 64 bytes in 
length. Thus the maximum length of a page is 8192 (128 x 64) bytes, 
and the maximum number of pages in the program is eight (8192 bytes 
x 8 = 64 Kbytes). Memory management contains 8 APRs for mapping 
virtual pages into physical memory. Using all of the eight available ac­
tive page registers in a set, a maximum program length of 65,536 bytes 
can be accommodated. Each of the eight pages can be relocated any­
where in physical memory, as long as each relocated page begins on a 
boundary that is a multiple of 64 bytes. However, for pages that are 
smaller than 8 Kbytes, only the memory actually allocated to the page 
may be accessed. 

The relocation example shown in Figure 9-4 illustrates several points 
about memory relocation. These points are: 

225 



Chapter 9 - Mapping to Memory and Busses 

1. Although the program appears to be in contiguous address 
space to the processor, the 64 Kbyte virtual address space is ac­
tually scattered through several separate areas of physical mem­
ory. As long as the total physical memory space is adequate, a 
program can be loaded. The physical memory space need not be 
contiguous. 

2. Pages may be relocated to higher or lower physical addresses 
with respect to their virtual address ranges. In the example of Fig­
ure 9-4, page 1 is relocated to a higher range of physical address· 
es, page 4 is relocated to a lower range, and page 3 is not relocat· 
ed at all (even though its relocation constant is nonzero). 

3. All of the pages shown in the example start on 64-byte bounda· 
ries. 

4. Each page is relocated independently. There is no reason why 
two or more pages could not be relocated to the same physical 
memory space. Using more than one page address register in the 
set to access the same space would be one way of providing dif­
ferent memory access rights to the same data, depending upon 
which part of a program was referencing that data. In the example 
shown in Figure 9-4, note the relocation constant assigned to pag­
es 4 and 6. As a result, virtual addresses within both address rang· 
es access the same physical addresses in memory, using sepa­
rate page address registers. 

MEMORY 
PROCESSOR MANAGEMENT PHYSICAL MEMORY 

VIRTUAL ADDRESS 
RANGES AP Rs RELOCATION PHYSICAL MEMOAV 

CONSTANT RANGES 

PCi(\60000-177776) 1500 400000 - 417776 

PG(\40000·157776) 6 0200 320000 - 33 7776 

PC(120000-137776) 1000 250000 - 267776 

PCi(l00000-117 776) 0200 150000-167776 

PC:{060000-077776) 0600 1 00000 - 117776 

PC.{040000-057776) 2500 060000 - 077776 

PG(020000-037776) 3200 020000- 037776 

PC(000000-0177 76) 4000 

Figure 9-4 Relocation of a 64-Kbyte Program into 248 Kbytes of 
Physical Memory 

An important function of memory management is to keep track of and 
to control memory allocation as well as monitor memory access viola-

226 



Chapter 9 - Mapping to Memory and Busses 

tion attempts. The reason for this statistical and control hardware is 
to pass system parameters to an intelligent software program to ef­
fectively manage physical memory resources. This intelligent soft­
ware is known as the .kernel, monitor, executive, or operating system. 

A key goal of the memory management scheme is to protect the opera­
ting system software from the user community as well as to protect 
individual programs from one another. PDP-11 memory management 
provides the hardware facilities to implement all of the following types 
of memory protection: 

• User programs are not allowed to expand beyond allocated space, 
unless authorized by the system. 

• Users are prevented from modifying common subroutines and al­
gorithms that are resident for all users. 

• Users are prevented from gaining control of or modifying the oper­
ating system software. 

® Users are prevented from accessing or modifying memory occu-
pied by other users. 

As mentioned above, memory management divides memory into indi­
vidual sections called pages. Each page has a protection or access 
key associated with it that defines the type of access allowed on that 
particular page. For example, a page can be labeled memory-residen\ 
read/write, memory resident read-only, or nonresident. To more fully 
understand these access control types, let's look at the memory re­
quirements of a typical application program. If the application pro­
gram can be contained within three pages of virtual space (24 Kbytes), 
then only three pages of main memory need be allocated by memory 
management as resident for that program. All other pages are as­
signed nonresident status. Therefore, the nonresident access key can 
be used to allocate physical memory efficiently. If the kernel contains 
an area that could be used but must be nonmodifiable, then that area 
is designated as read-only. It is also wise to mark any pure program 
code as read-only. However, if there is a database or a common data 
area in the users' space that must be updated constantly, e.g., a data­
base of digital data or AID conversion data, the database or common 
data area must be designated as read-write. 

Kernel, Supervisor, and User Mooe 
The PDP-11 processor family offers either two or three (dependent 
upon processor model) modes of execution, kernel, supervisor, and 
user. They enhance the memory protection scheme and increase 
the flexibility and power of timesharing and multiprogramming envi-

227 



Chapter 9 - Mapping to Memory and Busses 

ronments. These differe111: execution modes are sometimes available 
independently of the rest of memory management. 

Kernel mode is the most privileged of the three modes and allows exe­
cution of any instruction. in an operating system featuring multipro­
gramming, the ultimate control of the system is implemented in code 
that executes in kernel mode. Typically, this includes control of physi­
cal 1/0 operations, job scheduling, and resource management. Mem­
ory management mapping and protection allows these executive ele­
ments to be protected from inadvertent or malicious tampering by 
programs executing in the less privileged processor modes. If the 1/0 
page is only mapped in kernel mode, then only the kernel has access 
to the memory management registers to re-map or modify the protec­
tion. This is because the memory management registers themselves 
exist in the 1/0 page. 

In order tor a user program to have sensitive functions performed in its 
behalf, a request must be made of the executive program, typically in 
the form of a software trap that vectors the processor into kernel 
mode. Thus the executive code remains in control and can verify that 
the function requested is consistent with the operation of the system 
asa whole. 

The supervisor mode has the same privileges as the user mode, but 
uses different mapping. Supervisor mode may be used to provide tor 
the mapping and execution of programs shareable by users but still 
r~quiring protection from them. This might include command inter­
preters, logical 1/0 processors, or runtime systems. 

User mode-prohibits the execution of instructions such as HALT and 
RESET as does supervisor mode. A multiprogramming operating sys­
tem will typically restrict execution of user programs to user mode to 
prevent a single user from harming the system as a whole. The user's 
virtual address space permits writing only into one's own area of mem­
ory. Areas shared. among users are protected as read-only, execute­
only, or for both read and execute access. 

Interrupt Conditions Under Memory Management Control 
The memory management unit relocates all addresses. Thus, when it 
is enabled, al I trap, abort, and interrupt vectors are considered to be in 
kernel, data-mode, virtual address space. When a vectored transfer oc­
curs, control is transferred according to a new Program Counter (PC) 
and Processor Status Word (PSW) contained in a two-word vector relo­
cated through the kernel's page address register set. Relocation of 
trap addresses means that the hardware is capable of recovering from 
a failure in the first physical bank of memory. 

228 



Chapter 9 - Mapping to Memory and Busses 

When a trap, abort, or interrupt occurs, the "push" of the old PC and 
old PSW is to the user/supervisor/kernel R6 stack specified by CPU 
mode bits 15, 14 of the new PS in the vector. (00 = kernel, 01 = super­
visor, 11 = user.) The CPU mode bits also determine the new page ad­
dress register set. Thus, it is possible tor a kernel mode program to 
have complete control over service assignments tor all interrupt condi­
tions, since the interrupt vector is located in kernel space. The kernel 
program may assign the service of some of these conditions directly 
to a supervisor or user mode program by setting the CPU mode bits of 
the new PSW in the vector to return control to the appropriate mode. 
(Caution: This does not apply to some older PDP-11 processors. See 
Appendix B tor details.) 

Instruction and Data Space 
The manipulation of Instruction and Data space (I and D space) is an 
advanced programming technique that effectively doubles the user's 
virtual address range from 64to128 Kbytes. The memory management 
unit in some processor models can relocate data and instruction refer­
ences with separate 15ase address values. Thus, it is possible to have a 
user program of 128 Kbytes consisting of 64 Kbytes of pure instruc­
tions or procedure code and 64 Kbytes of data, all within a program's 
virtual address range. 

The user can enable the I and D space mode of operation (under pro­
gram control) by setting the appropriate bit in memory management 
register 3. (Memory management registers wil I be explained at the end 
of this chapter.) 

Eight I space APRs accommodate up to 64 Kbytes of instructions and 
eight D space APRs accommodate up to 64 Kbytes of data. By using 
the separate I and D space APRs, a maximum 128 Kbyte program ca­
pacity is possible. The following rules apply to any separate I and D 
space programs: 

1. I space can contain only instructions, immediate operands 
(Mode 2, Register 7), absolute addresses (Mode 3, Register 7), and 
index words (Modes 6 and 7). This restriction is reflected in Table 
9-1. 

2. The stack page must be mapped into both I and D space if the 
Mark instruction is used (standard PDP-11 subroutine calling 
sequence), because it is executed off the stack. 

3. I space-only pages cannot contain subroutine parameters, which 
are data. Therefore, any page that contains standard PDP-11 call­
ing sequences, tor example, cannot be mapped entirely into an I 
space page. 

229 



Chapter 9 - Mapping to Memory and Busses 

4. The trap catcher technique of putting . + 2 in the Trap Vector (TV) 
followed by a HALT must be mapped into both I and D space. 

Table 9-1 illustrates the separation of I and D references for all ad­
dress modes and all registers. Note that the registers (RO-R7) are in 
both spaces. 

ACTIVE PAGE REGISTERS (APRS) 
The memory management unit uses two or more sets of eight 32-bit 
Active Page Registers (APRs). An APR is actually a pair of 16-bit regis­
ters: a Page Address Register (PAR) and a Page Descriptor Register 
(PDR). These registers are always used as a pair and contain all the 
information needed to describe and locate the currently active mem­
ory pages. 

One set of APRs is dedicated for I space, and one for D space for each 
supported mode of operation. Figure 9-5 illustrates the selection of an 
APR (PAR/PDR) register set. The current mode bits, <15:14>, of the 
PSW select the mode of execution. (Once again, some members of the 
PDP-11 family do not utilize supervisor mode or D space.) When the 
memory management unit is turned on, the upper three bits, < 15:13>, 
of the virtual address generated by the processor are used to select 
one of the 8 PAR/PDR relocation register sets. And finally, bits <2:0> 
of Memory Management Status Register 3 are used to select I space 
only, or the combined use of I and D space for each memory manage­
ment mode independently. (If I space alone is selected, then both in­
structions and data reside in I space.) 

Page Address Register (PAR) 
The PAR, illustrated in Figure 9-6, contains the Page Address Field 
(PAF) specifying the starting (base) address of the page as a block 
number in physical memory. The following processors have a 16-bit 
PAF: 

• MICRO/PDP-11 

• PDP-11/23 PLUS 

• PDP-11/24 

• PDP-11/44 

• PDP-11/70 

The PAR may be thought of as a relocation register containing a relo­
cation constant; or as a base register containing a base address. Ei­
ther way, the PAR is an important relocation tool. 

230 



Chapter 9 - Mapping to Memory and Busses 

Page Descriptor Register (PDR) 
The PDR, illustrated in Figure 9-7, contains information relative to 
page expansion, page length, and access control. 

Table9·1 Addressing Mode I and D References 

Mode Register Name 
000 x Register INSTRUCTION I space 
001 x Register Deferred INSTRUCTION I space 

DATA Dspace 
010 0-6 Autoi ncrement INSTRUCTION I space 

DATA Dspace 
7 Immediate INSTRUCTION I space 

IMMEDIATE DATA I space 
011 0-6 Autoincrement 

Deferred INSTRUCTION I space 
INDIRECT D space 
DATA Dspace 

7 Absolute INSTRUCTION I space 
ABSOLUTE 
ADDRESS I space 
DATA D space 

100 0-6 Autodecrement INSTRUCTION I space 
DATA D space 

7 DO NOT USE THIS CONSTRUCTION 
101 0-6 Autodecrement 

Deferred INSTRUCTION I space 
INDIRECT Dspace 
DATA D space 

7 DO NOT USE THIS CONSTRUCTION 
110 x Index INSTRUCTION I space 

INDEX I space 
DATA D space 

111 x Index Deferred INSTRUCTION I space 
INDEX I space 
INDIRECT D space 
DATA Dspace 

Note that when D space is not present in the CPU or not enabled for a 
mode by setting the proper bit in SR3, all memory references are relo­
cated and protected by the I space set of PAR/PDR registers. 

231 



Chapter 9 - Mapping to Memory and Busses 

15 14 

PSW 15.14 

00 ~ERNH 

0 l SUPERVISOR 

l 0 ILLEGAL 
l l USER 

KERNEL SUPERVISOR USER 

000 PAR PDR PAR PDR PAR PDR 

001 

010 

011 

100 
I SPACE 

101 

110 

111 2 1 0 

000 PAR PDR PAR PDR PAR PDR \I I I I 
001 

MMRJ 2:0 

010 

011 D SPACE 
100 

101 

\10 

ll l 

LSELECTED BY V.A 15: 13 

Figure 9-5 (PAR/PDR) Register Set 

15 12 11 0 

PAGE ADDRESS FIELD (PAF) 

PAR 18-BIT RELOCATION FORMAT 

0 

PAGE ADDRESS FIELD I PAF) 

PAR 22-BIT RELOCATION FORMAT 

Figure 9-6 The Page Address Register 

232 



Chapter 9 - Mapping to Memory and Susses 

PAGE DESCRIPTOR REGISTER {PDR) FORMAT 

15 14 s 4 3 0 

I 'PAGE' LENGTH Fl~LD {PLF) 

LCACHE BYPASS ON PAGE REFERENCE TRAP AFTER REFERENCE __J 

Figure 9-7 The Page Descriptor Register 

Access Control Field (ACF) - Bits <2:0> of the PDR contain the ac­
cess rights to this particular page. The access codes (keys) specify 
the manner in which a page may be accessed and whether or not a 
given access should result in a trap or an abort of the current opera­
tion. A memory reference which causes an abort is not completed, 
whereas a reference causing a trap is completed. When a memory ref­
erence causes a trap to occur, the trap does not occur until the entire 
instruction has been completed. Aborts are used to catch missing­
filage faults and prevent illegal access. 

In the context of access control, the term write is used to indicate the 
action of any instruction which modifies the contents of any address­
able word. Write is synonymous with what is usually called a store or 
modify in many computer systems. 

The modes of access control are as follows: 

000 nonresident 

001 read-only 

010 read-only 

011 unused 

100 read/write 

101 read/write 

111 unused 

abort all accesses 

abort on write attempt, memory 
management trap on read 

abort on write attempt 

abort all accesses-reserved 
for future use 

memory management trap 
upon completion of a read or 
write 

no system trap/abort action 

abort all accesses-reserved 
for future use 

233 



Chapter 9 - Mapping to Memory and Busses 

It should be noted that the use of I space provides a further form of 
protection-execute only. 

Expansion Direction (ED) - During the execution of a program, addi· 
tional memory space is frequently required by a page. Bit <3> of the 
PDR indicates in which direction the page expands. A logic zero in this 
bit (ED = 0) indicates that the page expands upward from relative zero 
(page base address). A logic 1 in this bit (ED = 1) indicates that the 
page expands downward toward relative zero (page base address). 
When expansion is upward, the page length is increased by adding 
blocks with higher relative addresses. Upward expansion is usually 
specified for program or data pages so that more program or table 
space can be made available. Figure 9-8 illustrates an example of up­
ward page expansion. 

When expansion is downward, the page length is increased by adding 
blocks with lower relative addresses. Downward expansion is speci· 
fied for stack pages so that more stack space can be added. Figure 9-9 
illustrates an example of downward page expansion. 

Access information Bits - Bit <6> of the PDR, the Written Into (W) 
bit, indicates whether the page has been written into since it was load· 
ed in memory. A logical 1 in bit <6> indicates a modified page. The W 
bit is automatically cleared when the PAR or PDR of that page is writ· 
ten into. 

In disk swapping and memory overlay applications, the W bit can be 
used to determine which pages in memory have been modified by a 
user. Those that have been written into must be saved in their current 
form. Those that have not been modified (logical 0 in bit <6>) need 
not be saved; the disk copy is valid. 

Bit < 7> of the PDR, the Attention (A) bit, indicates whether any mem· 
ory page accesses caused memory management trap conditions to be 
true. A logical 1 in bit <7> indicates a memory management trap con­
dition. Trap conditions are specificed by the ACF bits of the PDR. The 
following conditions will set the A bit: 

1. ACF = 001 and read reference 

2. ACF = 100 and read or write reference 
3. ACF = 101 and write reference 

The A bit (PDP-11/70) is used in the process of gathering memory man­
agement statistics for the purpose of optimizing memory use. The A 
bit is automatically cleared when the PAR or PDR of the page is writ­
ten into. 

234 



Chapter 9 - Mapping to Memory and Busses 

PAR PDR 

I 000 001 111 000 I Io 0101001 0000 o 110 I 

PAF • 0170_j ~ ~ ]'----' 
PLF•51 8 '41 10 •NO.OF BLOCKS------~ 

ED• 0 • UPWARD EXPANSION 

ACF:6•READ/WRITE -------------~ 

NOTEo 
TO SPECIFY A BLOCK LENGTH OF 42 FOR AN UPWARD EXPANDABLE 
PAGE WRITE HIGHEST AUTHORIZED BLOCK NO. DIRECTLY INTO HIGH 
BYTE OF PDR. BIT 15 IS NOT USED FOR THE BLOCK-Sile BECAUSE THE 
HIGHEST ALLOWABLE BLOCK NUMBER IS 177 8 

ADDRESS RANGE 
OF POTENTIAL PAGE 
EXPANSION BY 
CHANGING THE PLF 

AUTHORIZED PAGE 
LENGTH• 4210 BLOCKS 

OR 0 THRU 513•529 

• ~·~ 
~ 0 
.. ""· 

~Ql>.Jl~ 

02 4176 
BLOCK 515 

02 4100 

017276 
BLOCK 2 

017200 

017176 
BLOCK I 

017100 

017076 

,I 

ANY BLOCK NUMBER 
GREATER THAN 41 10 l51B) 

(VA< 12,06 ;i:> Sia) 

Will CAUSE A PAGE 
ENGTH ABORT L 

l BLOCK 0 
017000 ~ 

ASE ADDRESS 
OF PAGE 

Figure 9-8 Upward Page Expansion 

PHYSICAL ADDRESS CONSTRUCTION 
When the memory management unit is turned off, the 16-bit virtual ad­
dress generated by the processor is interpreted as a direct Physical 
Address (PA). Therefore, the total physical address space accessible 
to a system without memory management is 56 Kbytes of main mem­
ory and 8 Kbytes of 1/0. However, when the memory management unit 
is enabled, the normal 16-bit virtual address generated by the proces­
sor is no longer interpreted as a direct physical address, but as a virtu­
al address containing information to be used in constructing a new 

235 



Chapter 9 - Mapping to Memory and Busses 

r-•CTIVE P•GE REGISTER CONTENTS---! 

P•R POR 

1ooo001111 ooo I I 0101011 o 0000 1 110 I 
PAF•0170~ D 
PLF • 1269 ~ 6610----

E 0 • 1 • DONNWAAO EXP•NSION 

TO SPECIFY P•GE LENGTH FOR"' OOWNWMO EXP~DA!ll.E PAGE 
WlllTE COMPLEMENT OF BLOCKS REQUIRED INTO HIGH BYTE OF POR. 

IN THIS EXl>.MPLE,"' 42-111.0CX P•GE IS REQUIRED. 
PLF IS DERIVED AS FOLLOWS' 
4210, 52g' TWO'S COMPLEMENT•126g 

T 036716 ) FIRST BLOCX OF 
BLOCK 177g DOWNW•RD 

036700 EXP~DA8LE P•GE ,__ __ 03_6_6_76 .... 

BLOCK 1769 
036600 

•UTHORIZED 036576 
P•GE LENGTH• BLOCK 1759 
421011!.0CKS 036500 

ADDl!ESS R•NGE 
OF POTENTl•L P•GE ...._......_....._......._-'.::' 

EXP•NSION BY • CHANGING THE PLF 

~ 

"' BLOCX NUMBER 
RE FERENCE LESS 
TH"'N 1269 
(\/"' < 12'06 > LESS Hi•N 126e l 
Will C•USE "'·PAGE 
LENGTH ABORT. 

BA.SE "'°DRESS 
-OF PAGE 

Figure 9-9 Downward Page Expansion 

physical address. The information contained in the virtual address is 
combined with relocation information contained in the PAR to yield a 
physical address. Via the MMU, memory is dynamically allocated in 
pages. The starting physical address for each page is an integral mul­
tiple of 64 bytes, each page contains a maximum of 8192 · bytes. 

Virtual Bus Address (VBA) and AP Rs 
As stated in the last paragraph, the basic information needed to con-

236 



Chapter 9 - Mapping to Memory and Busses 

struct a physical address is derived from the virtual address and the 
appropriate PAR. The VA is illustrated in Figure 9-10. 

15 13 12 0 

APF DF 

t~CT_1v_E_~_G_E_F1_EL_D~~~~~~~-~D_1s_P_LA_c_EM_EN_T_F_1E_LD~~~~~~~) 

INTERPRETATION OF VBA 

Figure 9-10 Interpretation of a Virtual Address with Memory 
Management Enabled 

The 16-bit virtual address is interpreted as having the following two 
fields: 

•The Active Page Field (APF)-a 3-bit field, <15:13>, used to deter­
mine which of 8 active page registers (PARO-PAR?) will be used to 
form the physical address. 

•The Displacement Field (DF)-a 13-bit field, <12:0>, containing an 
address relative to the beginning of a page. This permits page 
lengths up to 8 Kbytes. The displacement field is further subdivided 
into two fields as illustrated in Figure 9-11. 

0 

BN DIB 

BLOCK NUMBER DISPLACEMENT IN BLOCK 

DISPLACEMENT FIELD 

Figure 9·11 Interpretation of Displacement Field 

The displacement field (DF) consists of: 

<i The physical memory Block Number (BN)-a 7-bit field, < 12:06>, 
which is interpreted as the block number (0-127) within the current 
page. 

•The Displacement in the Block (DIB)-a 6-bit field, <5:07>, which 
contains the displacement within the block (0-63 bytes) refered to by 
the block number (BN). 

The remaining information needed to construct the physical address, 
i.e., the relocation constant (base address), comes from the PAR. As 
illustrated in Figure 9-6, the PAR contains a field known as the page 

237 



Chapter 9 - Mapping to Memory and Susses 

address field (PAF). It is this field that specifies the starting address or 
relocation constant of the currently active memory page. 

Before illustrating specific 18- and 22-bit relocation examples, let's 
summarize the procedure for constructing any physical address. The 
logical sequence involved is as follows: 

1. Select a set of APRs, depending on the space being referenced (I 
or D). (Refer to Figure 9-5.) 

2. The APF of the Virtual Bus Address (VBA) is used to select a 
PAR (PARO-PAR?). (Refer to Figure 9-10). 

3. The PAF of the selected PAR contains the starting address of 
the currently active page as a block number in physical memory. 
(Refer to Figure 9-6.) 

4. The Block Number (BN) from the VBA is added to the PAF to 
yield the number of the physical block in memory which will con­
tain the PA being constructed. 

5. The Displacement in Block (DIB) from the Displacement Field 
(DF) of the VBA is joined to the physical block number to yield the 
physical address. 

This sequence is illustrated in Figure 9-12. 

15 13 12 06 05 00 
VIRTUAi. 
AOORESS I A p FI I I 

'---..,,-) '-----....-----'---._,_.I 

~----~CPI.us _J 
SEliCTS {1-18 BIT RELOCATION 

~ 15·22 llT RELOCATION 

PAR 

PHYSICAL 
ADDRESS 

17·18 llT PA 
21 -22 BIT PA 

PAF 

EQUALS 

00 

Figure 9-12 Virtual to Physical Address Translation 

At this point, let's look at several virtual-to-physical address transla­
tions. In the first example, a 16-bit virtual address will be translated 

238 



Chapter 9 - Mapping to Memory and Susses 

into an 18-bit physical address. The address to be relocated is 157746. 
virtual. In order to perform this example, we must make one assump­
tion-that the PAF of the PAR already contains a main memory reloca­
tion constant. In this example, the relocation constant is 5460s. The 
actual flow of translation is illustrated in Figure 9-13. 

In the next example, a 16-bit virtual address will be translated into a 
22-bit physical address. In this case, the address to be relocated is 
157746.. Once again, to perform the translation, we will assume that 
the PAF of the PAR already contains a main memory relocation con­
stant. In this example, the value in the PAF is 135460a. (Please note 
that the only difference between the 18- and 22-bit examples is the 
length of the PAF. Refer to Figure 9-6.) The actual flow of translation is 
illustrated in Figure 9-14. 

16-BIT VIRTUAL ADDRESS 
FROM: PROCESSOR 

15 13 12 

APF 1 

6 s 0 
BLOCK I WORD 

EXAMPLE: 1577469 ____ _ NUMBER (SN) 1 NUMBER(WN) 
'-------'--------'-----~ 

APF SELECTS PAGE ADDRESS '--..._,,---) ~ '-----..---J 
,_ ___ R_EG_l_ST_E~R~(PA_R~) __ ~I 

EXAMPLE: 
APF•llO 
SELECTS 
PAR 6 PAGE ADDRESS FIELD 

EXAMPLE: 54609 

'---...,,-----/ 
PAF <17 :06> 0 

BASE ADDRESS OF PAGE 

VA<l2:06> 
EXAMPLE: 17 79 

! 

L_,1 0 l l 0 0 l 

I 
I 

l o o o o 1 

VA <06:00> 
IS NOT 

CHANGED 

18 - BIT 
PHYSICAL ADDRESS 
EXAMPLE:565746a 

I FULL ADDER I 

11 -----,...6,~ 

11 0 l l l 0 l 0 1 I 1 l i 1 0 0 l 1 oi 

I PA< 17:06> I VA <06:00> I 
TO UNIBUS A ADDRESS DRIVERS 

Figure 9-13 16-Bit Virtual to 18-Bit Physical Address Translation 

239 



Chapter 9 - Mapping to Memory and Busses 

VlllTUAI. BUS ADDRESS • l S 7 746 

ACTIVE 
PAGE FIELD 

15 13 12 6 s 0 

I 1 I 0 I 1 I I I I I l , , 0 0 l I 0 I 
~~ 

APF : lllOCK NUMBER DISPLACEMENT 
IN 1!1.DCK 

__ ---1SELECTS 
PAF• PAGE 
BASE 

_J: 
ADDllESS 

PAR b • 13 54 6 0 

15 0 

'----'""I 011 IOI 100 110 000 

22-BIT 
RELOCATED 
ADDRESS' 
13 565 746 

21 0 

II.Oii IOI 110 IOI Ill 100 1101 

'------~-------'~ 
BASE ADDRESS OF BLOCK DISPLACEMENT 

IN BLOCK(DIB) 

Figure 9-14 16-Bit Virtual to 22-Bit Physical Address Translation 

MAPPING 
Mapping is the process of converting the virtual address generated by 
the program to a physical memory address, or to a UNIBUS address, or 
the process of converting a UNIBUS address to a physical memory ad­
dress. The virtual address is mapped by the memory management 
hardware and the UNIBUS address is mapped by the UNIBUS map 
hardware. Memory management and the UNIBUS map are separate 
pieces of hardware; one may be enabled independently of the other. 
(Note that only processors supporting a 22-bit physical address space 
use the UNIBUS map.) Before introducing specific mapping diagrams, 
let's look at functional block diagrams of several PDP-11 processors 
and the physical address space supported by each. 

Figure 9-15 illustrates the LSl-11/2 processor. This processor contains 
neither a memory management unit nor a UNIBUS map. It can access 
a maximum of 56 Kbytes of main memory and the 8-Kbyte 1/0 page. 

The physical address space supported by the LSl-11/2 is illustrated in 
Figure 9-16. Main memory is physically attached to the LSl-11 Bus. 

Figure 9-17 illustrates the PDP-11/34A processor. This processor con­
tains a memory management unit that, when enabled, translates the 

240 



Chapter 9 - Mapping to Memory and Busses 

user's 16-bit virtual addresses into 18-bit UNIBUS (physical) address­
es. With memory management enabled, the PDP-11/34A has the ability 
to access a maximum of 248 Kbytes of main memory in addition to the 
8 Kbyte 1/0 page. 

ri- ---,---------; 
I I 

I CPU 18-BIT LSI-BUS 
1 

I 
I 
I 
I 
I MAIN 
I MEMORY 

I 56K""" MAX I 
L ______________ I 

OVERALL BLOCK DIAGRAM OF LSC-11/2 

Figure 9-15 Block Diagram of the LSl-11/2 

MAXIMUM 
S6 Kbvt• 
MAIN 

MEMORY 

OK '--------~ 

Figure 9-16 LSI· 11/2 Physical Address Space 

r-- ----------, 
I I 
I ~~g 18-BIT UNIBUS I 

MEMORY I MANAGEMENT 

I 
I 
I 
I 
I 
I MAIN 
I MEMORY 

I 2~8 Kb MAX I 
L _________ _J 

Figure 9-17 Block Diagram of the PDP-i 1/34A 

241 



Chapter 9 - Mapping to Memory and Busses 

MAXIMUM 
248 KbytG 

MAIN 
MEMORY 

OK~-----~ 

Figure 9-18 PDP-11/34A Physical Address Space 

r-- -------------1 
I I 
I ~~UD 
I MA~~~~~YENT 
I 
I 
I 
I 
I 
I 
I 
I 

22-BIT MAIN 
MEMORY BUS 

UNIBUS 
MAP 

HIGH SPEED 
IIO CONTROL 

(PDP-11170 ONLY) 
110 BUS 

Figure 9-19 BlockDiagramofthePDP-11/70 

The physical address space supported by the PDP-11/34A is illustrat­
ed in Figure 9-18. Main memory is physically attached to the UNIBUS. 

This next section describes memory management for the PDP-11/24, 
PDP-11/44, and PDP-11/70 processors. These processors contain both 
memory management hardware and a UNIBUS map (PDP-11/24 op­
tion). Although processor architecture is slightly different for each 
CPU, memory management has the same functions. Figure 9-19 illus­
trates a simplified block diagram of a typical PDP-11/70 processor. 
The memory management hardware translates the user's 16-bit virtual 
addresses into 22-bit physical addresses. The UNIBUS map performs 

242 



Chapter 9 - Mapping to Memory and Busses 

the address conversion that allows devices on the UNIBUS to commu­
nicate with physical memory by means of Non-Processor Requests 
(NPRs), i.e., Direct Memory Access (DMA) transfers. 18-bit UNIBUS ad­
dresses are converted to 22-bit physical addresses via the UNIBUS 
map hardware. 

The physical address space supported by the PDP-11/24, PDP-11/44, 
and PDP-11/70 CPUs is illustrated in Figure 9-20. 

Referring to Figure 9-20, observe the following points: 

(17) 777 777 

(17) 760 000 
(17) 75 7 7 77 

_i17_L 000 000 

16 777 777 

SYSTEM SIZE 
BOUNDARY 

00 000 000 

} BK I/0 PAGE 

) 
248 Kb, to UNIBUS 
SPACE 

} 
NON·EXISTANT 
MEMORY (NXM) 

} 
MEMORY 
SPACE 

Figure 9-20 PDP-11/24 and 11/44 Physical Address Space 

777 777- 760 000 ~PERIPHERAL PAGE 

UN I BUS 

757 7 7 7 -000 000 7 7 7 7 7 7 - 00 0 0 0 0 

18- BIT 
UNIBUS 
ADDRESS 

16 777 777 

UNIBUS MAP 

00 000 000 122-BIT 
MEMORY 

ADDRESS 

16 7 7 7 7 7 7 
00 000 000 

CACHE MEMORY 
ANO 

MAIN MEMORY 

18-BIT UNIBUS 
ADO RESS 

(17)777 777 
17 000 000 
16777 777 

22-BIT MEMORY 
ADDRESS 

177 777 ! PROCESSOR 

000 000 

16-BIT 
V!RTUAL 
ADDRESS 

Figure 9-21 22-bit Address Space Bus Configuration 

243 



Chapter 9 - Mapping to Memory and Busses 

1. UNIBUS references include 256K physical addresses, 17 000 000 
-17 777 777, which correspond to UNIBUS addresses 000 000- 777 
777. The UNIBUS reference in turn includes the following: 

a. The peripheral page, reserved for UNIBUS device registers, 
consists of 8 K physical byte addresses, 17 760 000 - 17 777 
777 (UNI BUS addresses760 000 - 777 777). 

b. The remaining 248K physical addresses, 17 000 000 - 17 757 
777 (UNIBUS addresses 000 000- 757 777) may be used by UN­
I BUS devices to access memory. 

2. Memory reference includes physical addresses from 00 000 000 
through the system size boundary, which is the highest address 
available in the system's main memory. There may be no discon­
tinuity in main memory. Available memory locations must be 
numbered sequentially from 00 000 000 through the system size 
boundary. The highest possible address.is 16 777 777. Maximum 
possible memory is 3840 Kbytes (2'" - 211 = 3,832,160 or 4096 
Kbytes - 256K = 3840K). 

3. NoneXistent Memory (NXM) includes the Physical addresses 
from the system size boundary plus 1 - 16 777 777. 

Another approach to understanding the 22-bit relocation scheme is to 
look at the address space bus configuration illustrated in Figure 9-21. 

All PDP-11s generate virtual addresses in the range of 000 000 - 177 
777. However, in order to access the UNIBUS, which requires an 18-bit 
address or main memory requiring a 22-bit address, the virtual address 
must be relocated. In the same manner, UNIBUS devices generate an 
18-bit address, which must be expanded to 22-bits in order to access 
main memory. By observing Figure 9-21, it is seen that the memory 
management unit translates a 16-bit virtual address into a 22-bit physi­
cal address. It was also seen from Figure 9-20, that addresses be­
tween the range of 00 000 000 through 16 777 777 referenced main 
memory and addresses between the range of 17 000 000 through 17 
777 777 referenced UNIBUS space (this does not apply to certain Ml­
CRO/J-11 processors). Therefore all addresses within the range of 00 
000 000 and 16 777 777 are directed to cache (if present) and main 
memory. All other addresses (those between 17 000 000 and 17 777 
777) are directed to the UNIBUS. UNIBUS addresses are those 22-bit 
addresses whose most significant four bits are all set to 1. Therefore, 
after the hardware strips off the most significant four bits (17s), we are 
left with the familiar 18-bit ( 256 KbYte) UNIBUS space (000 000 - 777 
777). 

244 



Chapter 9 - Mapping to Memory and Busses 

The UNIBUS map performs a function very similar to that of the mem­
ory management hardware, it expands presently existing UNIBUS ad­
dresses to 22-bit physical addresses. This function is also known as 
mapping. The UNIBUS map accepts UNIBUS addresses in the range of 
000 000 - 757 777 and relocates them within the physical address 
space of 00 000 000 - 16 777 777. (Note in this case that only the UN­
IBUS addresses are relocated and that the upper 8 Kbytes of the 1/0 
page are not touched.) The UNIBUS map is described later in this 
chapter. 

At this point, let's look at several specific memory management mapp­
ing structures regarding 16-bit, 18-bit and 22-bit physical address 
spaces. 

16-Bit Physical Address Space 
Figure 9-22 illustrates the 16-bit mapping scheme for processors such 
as the LSl-11/2 and PDP-11/34A. This illustration shows fixed reloca­
tion mapping from virtual to physical addresses. The lowest 56K of vir­
tual addresses are treated as corresponding to the same lower 56K of 
physical addresses. With the PDP-11/24, PDP-11/44, and PDP-11/70 in 
16-bit mode, the lower 56K of virtual addresses address main memory 
(not attached to the UNIBUS). However, the top 8K virtual addresses 
always cause UNIBUS cycles to address the top 8K physical address­
es no matter what size the physical address space might be. In this 
example, the top 8K virtual addresses reference physical addresses 
248K-256K. 

17 7 77 7 

176000 

0 0 0 DO 0 

777777 
>--l_IO_PA_G_E ~l8_Kb~) __, ?70000 

8 l<byte 

56 K:byt• 
VIRTUAL SPACE 

56 KbyttJ 
MAXIMUM 
AVAILABLE 
MAIN MEMORY 

; 1;~,-;;~~,;;;;1 r- - -----1 

I VIRTUAL ADDRESS ~I --------: ~8~1~~S ADDRESS : 
L ______ _J L ______ _J 

175777 

DO OD DO 

Figure 9-22 16-Bit Mapping within 18-Bit Physical Address Space 

245 



Chapter 9 - Mapping to Memory and Busses 

18-Bit Physical Address Space 
Figure 9-23 illustrates the 18-bit mapping scheme for processors with 
memory constraints of 248 Kbytes. Figure 9-23 depicts the fact that 
with memory management enabled, the user's virtual address space 
of 56 Kbytes can be relocated anywhere in available main memory (in 
.BK word pages-if necessary, refer back to Figure 9-4 and the discus­
sion entitled MEMORY MANAGEMENn. However, if memory manage­
ment hardware is not enabled, (under program control), the resulting 
mapping structure is identical to Figure 9-22. With the PDP-11/24 and 
PDP-11/4418-bit memory management mode, the lower 56K of virtual 
addresses address main memory (not attached to the UNIBUS) using 
relocation. 

177777 

176000 

0 0 0000 

777777 
..1---I_IO_PA_GE_(~BK_b~)--< 776000 

8 Kbyte 

56 Kbyto 
VIRTUAL SPACE 

56 Kbyte 
PHYSICAL 
PROGRAM 
SPACE 

~------, r------, 
I 16· BIT PROGRAM I MEMORY I 18· BIT I 
I VIRTUAL ADDRESS r--MANAGEMENT---:! UNIBUS ADDRESS I L ______ _J L _____ _J 

248 Kbyte 
MAXIMUM 
AVAILABLE 
MAIN MEMORY 

000000 

Figure 9-23 18-Bit Mapping within 18-Bit Physical Address Space 

22-Bit Physical Address Space 
The next series of figures illustrates 16-bit, 18-bit, and 22-bit mapping 
structures within a 22-bit physical address space. It the PDP-11/24, 
PDP-11/44, or PDP-11/70 system is running in 16-bit mapping mode, 
·then the 16-bit mapping scheme (memory management dis­
abled) is illustrated in Figure 9-24. If 18-bit memory management is en­
abled, the mapping scheme is illustrated in Figure 9-25. The 22-bit 
mapping structure is illustrated in Figure 9-26. The solid arrow lines in 
Figure 9-26 represent a one-to-one correspondence between physical 
address and physical location. 

246 



56 l<byt• 
VIRTUAL 
SPACE 

177 777 

160 000 

1S7 777 

000 000 

VIRTUAL 
ADDRESS 

Chapter 9 - Mapping to Memory and Busses 

00 000 000 

PHYSICAL 
ADDRESS 
(22) 

56 Kbyte 
PHYSICAL 
SPACE 

00 000 000 

MEMORY 
SPACE 
(22) 

UNIBUS 

Figure 9-24 16-Bit Mapping Structure for 22-Bit Physical Address 
Space 

lSl-H Bus Physical Addressing 
The LSl-11 Bus allows the direct use of the 22-bit physical address cre­
ated by the memory management unit. Unlike the UNIBUS, no distinc­
tion need be made between references intended for memory (via the 
memory bus) and references intended for 110 devices (via the UNIBUS). 
No UNIBUS exists, therefore no address space need be reserved for it. 
Up to 4088 Kbytes of physical memory may exist; above that is the 
standard 8 Kbyte 1/0 page. 

247 



Chapter 9 - Mapping to Memory and Busses 

177 777 

248 Kbytg 

MEM MGT 
248 Kbyto PHYSICAL 

56 Kbyte I SPACE 

I 

I 
I 
I 

000 000 I 00 000 000 00 000 000 ..________, 
VIRTUAL PHYSICAL MEMORY 
ADDRESS ..<'DO~-£$$ SPACE 

Figure 9-25 18-Bit Mapping Structure for 22-Bit Physical Address 
Space 

1/0 EXTENDED ADDRESSING 

History 
When the PDP-11 was first developed, the virtual and physical address 
space accessible by the processor was 64 Kbytes. This limit was im­
posed by the 16-bit word length. However, it was envisioned that the 
PDP-11 might grow into a family of both larger and smaller machines. 
In order to accommodate this, the physical 1/0 bus-the UN­
IBUS-was designed to accommodate 18-bit addressing, allowing a 
maximum of 248 Kbytes of memory and an 8 Kbyte 1/0 region. Thus, 
any 1/0 device doing Direct Memory Access (DMA) could address the 
entire 256 Kbyte UNIBUS space. At the time, this was thought to be 
more than adequate. 

However, history has shown that any computer concept grows to fill 
and then surpass its original intent. As users' needs grew, the PDP-11 
family was expanded; the PDP-11/40 added the necessary hardware to 

248 



Chapter 9 - Mapping to Memory and Busses 

17777777 17777777 777 777 
8Kbrto 8"Kbrto 

IIO PAGE 
17760000 17 760 000 760 000 
17 757 777 17 757 777 75 7 777 

-~~RER-E~~~NOD~~CE 
248 Kbyto 

17 000 000 17 000 000 - 000 000 
16 777 777 16 777 777 UNIBUS 

I 
I 
I 
I 3840 Kbrt• 

I 
I 
I 
I 

MEM.I MGT. 

I 
177777 

I 
56 Kbrt• 
VIRTUAL I 
ADDRESS I 

000000 I 00 000 000 I -k-

VIRTUAL ---'----~ PHYSICAL----- MEMORY 
ADDRESS ADDRESS SPACE 

(22- BITS) 

Figure 9-26 22-Bit Mapping Structure for 22-Bit Physical Address 
Space 

allow the user to access the full 248 Kbyte physical memory space. 
The PDP-11/45 allowed the user to expand the virtual address space. 
With the appearance of the 11/70, the physical memory space was ex­
panded to 3840 Kbytes (representing 22 address bits). The original 18-
bit 1/0 bus had been outgrown. 

Two solutions were developed. 

22·Bit 1/0 Controllers 
The 11/70 contains a 22-bit path for physical addresses. This path is 
known variously as the memory bus or the cache bus. The 11/70 also 
contains embedded, high-speed, general purpose 1/0 controllers 
called RH70's. These interface to the memory bus and create a bus 
known as the MASSBUS, to which disks, tapes, and other mass-stor­
age devices may be attached. Since the RH70 Massbus controllers 

249 



Chapter 9 - Mapping to Memory and Busses 

have a direct path to memory and are capable of directly generating a 
22-bit address, they allow OMA to occur anywhere in the physical ad­
dress space. This is illustrated in Figure 9-27. Note that the 22-bit bus 
within the 11/70 is bounded (cannot interface to certain devices, unlike 
the UNIBUS). 

MASS BUS 
#I 

MASS BUS 
#2 

MASS BUS 
#3 

MASSBUS 
#4 

Figure 9-27 RH70 22-bit 1/0 Controllers 

The UNIBUS Map 
The presence of RH70s in the 11/70 should not imply that Digital aban­
doned the UNIBUS. It was necessary to support all the devices which 
pre-dated the arrival of the 11/70; in addition, the UNIBUS is much eas­
ier and less expensive to interface to than the Massbus. This meant 
that new 1/0 devices would continue to be developed to use the UN­
IBUS. Also, the 11/70 was limited to a maximum of 4 RH70 22-bit con­
trollers; the UNIBUS, on the other hand, allows all the traditional ex­
pansion capacity. In order to accommodate those devices which 
connect to the 18-bit UNIBUS, the PDP-11/70 contains a scheme 
whereby the 18-bit UNIBUS address can be mapped to the 22-bit mem­
ory address. This action is performed by the UNIBUS Map. The UN­
IBUS Map is illustrated in Figure 9-28. 

CPU MAIN 
MEMORY 

22-BIT MAIN MEMORY BUS 

UNIBUS 
MAP 

Figure 9-28 UNIBUS Map 

250 

IB-BIT UNIBUS 



Chapter 9 - Mapping to Memory and Busses 

Subsequently, the POP-11/24 and POP-11/44 were introduced. These 
processors contain no integral Massbus adapter but do provide a UN­
IBUS Map. 

LSl-11 Bus 
As the LSl-11 bus developed, it grew just as the UNIBUS has grown. 
Initially a 16-bit bus with reserved capacity to take it to 18-bits, the bus 
was subsequently expanded to 22-bits. No LSl-11 Bus map was creat­
ed; rather, all LSl-11 Bus OMA controllers behave like the RH70 in that 
they directly issue 22-bit addresses. Figure 9-29 illustrates the similar­
ity between the POP-11/70/RH70 scheme and the LSl-11 Bus scheme. 
Note that, unlike the POP-11/70, the LSl-11 Bus does not impose a limit 
on the number of 22-bit controllers which may be installed. 

CPU 

RL02's 

MEMORY 
MODULE 

MEMORY 
MODULE 

Figure 9-29 LSl-11 Bus 22-Bit 110 Controllers 

Operation of the RH70 and LSl-11 Bus Controllers 
DMA operation of either an RH70 or a LSl-11 Bus controller is straight­
forward. The controller arbitrates for use of the bus; when it wins use 
of the bus, it asserts a 22-bit address directly from its bus address reg­
.ister to the bus. This 22-bit address controls which physical memory 
location is accessed by the OMA. 

Operation of the UNIBUS Map 
The UNIBUS Map operates in a manner very similar to the CPU's mem­
ory management unit. The 256 Kbyte UNIBUS space is divided into 32 
pages of 8 Kbytes each. Each of these pages maps via a 22-bit reloca­
tion (base) register. This is very similar to the way the CPU maps its 64 
!<byte address space via 8 pages, also of 8 Kbytes each. 

The mapping operation is illustrated in more detail in Figure 9-30. An 
·18-bit address on the UNIBUS is broken into two fields. The upper 5 
bits select one of the 32 pages, this in turn sel.ects a mapping register. 

251 



Chapter 9 - Mapping to Memory and Busses 

The 22-bit contents of the mapping register is then added to the re­
maining 13-bits of the UNIBUS address to derive a 22-bit main-memory 
address. The actual DMA then takes place at that address. 

22 - 8 IT 
MAIN MEMORY 
ADDRESS 

17 13 12 0 

I I I I 

Figure 9-30 Construction of a Physical Address via the UNIBUS 
Map 

Figures 9-31 and 9-32 offer a practical example. Assume that the UN­
IBUS Map has been enabled, and that the first mapping- register pair 
contains the value 01 760 000. If a UNIBUS device attempts to access 
UNIBUS location 001002, that address will be picked up by the map. 
The high 5 bits are examined; in this case they are 00000 ... This indi­
cates that the UNIBUS address is in the first 8 Kbyte page and will be 
mapped via the first UNIBUS mapping register pair. Now the content 
of the mapping register is fetched. That content is added to the low 13 
bits of the UNIBUS address. The result of the addition is 01 761 002. 
That is the address used in accessing main memory. Figure 9-31 
shows this graphically; figure 9-32 shows the actual addition. 

Although the map may contain 32 sets of relocation registers, only 31 
are actually used. The 32nd represents the topmost 8 Kbytes of the 
UNIBUS, known as the 1/0 page. The UNIBUS Map always relocates 
references in that area to the topmost 8 Kbytes of the memory bus. 
You can think of the 32nd register as having a fixed value. 

Since the mapping registers must contain a 22-bit value, they are actu­
ally implemented as pairs of 16-bit registers. The registers are pic­
tured in Figure 9-33; their addresses may be found in Table 9-2. Note 
that the bit <00> of the relocation constant cannot be set. This 
means that all word-aligned transfers on the UNIBUS remain word­
aligned on the memory bus. 

252 



Chapter 9 - Mapping to Memory and Susses 

77 7777 

760000 

02 0000 
OMA- 001002 

UNIBUS 

I/0 PAGE 

MAIN-MEMORY 
BUS 

110 PAGE 
17 777 777 

17 760 000 

01 000 000 
01 761 002+--0MA 
01 760 000 

000000 ~--~ 00 000 000 

Figure 9-31 Example of Address Mapping with UNIBUS Map ON 

17 13 12 0 

~:~~~T~:)ODRESS I 0 ' 0 ' 0 •• 0' 0 I 0 : 0' 0 ' 1 : 0' 0 I 0 •• 0 ' 0 I 0 : 0 1 ' 0 I 

HIGH FIVE BITS I /! ! 
INDICATE UNIBUS : I 

PAGE 00 !AND PAIR , + : 
00 OF RELOCATION I 1 

REGISTERS) : 

/ 21 1615 I 0: 

~f ~!~1~s00~ o: o, o, 1 : 1 , 1 J 1 ,' 1 , 1 , o: o, o, o: o, o, o: o, o , o: o, o Jo! 
I I 
I I 
J I 

tt~~E~E MORY I 0 •• 0 I 0 I 1 •• 1 I 1 1 1 I 0 : 0 ' 0 I 1 : 0 '0 I 0 : 0 I 0 I 0 : 0 I 1 ' 0 I 
101 761 002) - - - - - - -

Figure 9-32 Mathematics of Address Mapping with UNIBUS Map 
ON 

253 



Chapter 9 - Mapping to Memory and Busses 

LOW MAP REGISTER (EVEN WORD) 

15 l 0 

I ~o".' 1s.-s1;s ~F ~EL~C~Tl~N, C01Ns;A~T , lol 
HIGH MAP REGISTER (ODD WORD) 

15 6 5 0 

• ~1G~ ~-s11TS 1 J 

Figure 9-33 UNIBUS Mapping Register Pair 

Table9·2 Addresses of UNIBUS Map Registers 

UNIBUS Low Word High Word 
Page Address Address 

0 17770 200 17770202 

1 17 770 204 17 770206 

2 17 770 210 17 770 212 

3 17 770214 17 770 216 

4 17 770220 17 770222 

5 17 770 224 17 770 226 

6 17 770 230 17 770 232 

7 17 770 234 17 770236 

10 17 770240 17 770 242 

11 17 770 244 17770246 

12 17 770 250 17 770252 

13 17 770 254 17 770 256 

14 17 770 260 17770 262 

15 17 770 264 17 770 266 

16 17 770 270 17 770 272 

17 17 770 274 17 770 276 

20 17 770300 17 770 302 

21 17 770304 17 770 306 

22 17 770 310 17 770312 

23 17 770 314 17770 316 

254 



Chapter 9 - Mapping to Memory and Busses 

UNIBUS Low Word High Word 
Page Address Address 

24 17770320 17 770 322 

25 17 770324 17 770 326 

26 17 770 330 17 770332 

27 17 770334 17 770336 

30 17 770 340 17 770 342 

31 17 770 344 17 770 346 

32 17770 350 17770 352 

33 17 770 354 17770 356 

34 17 770 360 17770 362 

35 17770 364 17 770 366 

36 17770 370 17770 372 

37* 17 770 374 17 770 376 

• This register pair is read/write but is not used for UNIBUS mapping. 

When the processor is first started, the map is disabled. In this mode it 
relocates the low 248 Kbytes of the UNIBUS to the low 248 Kbytes of 
main memory. In addition, the top 8 Kbytes of the UNIBUS are relocat­
ed to the top 8 Kbytes of the memory bus. This is shown graphically in 
Figure 9-34. in this mode, our OMA occurring at UNIBUS address 
001002 is passed directly to main memory address 00 001 002. 

This mode of operation allows programs written prior to UNIBUS­
mapping to continue to operate correctly. However, DMA cannot ac­
cess any main memory address above 00 760 000. A program desiring 
to use the full expansion and relocation capabilities of the map can 
enable the map, operating henceforth with all the new capabilities. 

The entire mapping operation is controlled by a single bit in memory 
management CSR3. The bit is zeroed after the processor starts and 
must be set to 1 by the program. The register also contains other bits; 
one enables the CPU to use 22-bit mapping. It is convenient to set all 
these bits in one reference. MMU CSR~ is illustrated in Figure 9-35; 
note that the implemented bits vary between different CPUs. 

255 



Chapter 9 - Mapping to Memory and Busses 

777777 

760000 

UNIBUS 

IIO PAGE 

MAIN-MEMORY 
BUS 

17 777 777 

17 760 000 

00 760 000 

020000 l-----j------<>f-----4 00 020 000 
DMA----<>001002 -------- 00 001 002 

. 000000 00 000 000 

Figure 9-34 Address Mapping with UNIBUS Map OFF 

543210 

11/24 

11/44+ Jll 

11170 

ENABLE UNlBUS MAP ~I 
ENABLE 22-BIT MMU OPERATION 
ENABLE CALL-SUPERVISOR INSTRUCTION 
ENABLE KERNEL-DATA SPACE 
ENABLE SUPERVISOR-DATA SPACE 
ENABLE USER-DATA SPACE--------~ 

Figure 9-35 MMU CSR3 (17 772 516) 

Mapping and DIGITAL Operating Systems 
When using standard DIGITAL system software, all the processor-spe­
cific details of the 1/0 system are concealed from the user. The opera­
ting system's device drivers are responsible for handling the mapping 
scheme. 

Within the operating system, UNIBUS mapping register pairs are typi­
cally allocated like any other system resource (via static assignment 
and queues). If you choose to write your own device driver, routines 
within the executive of each operating system can help you allocate 
and deallocate UNIBUS mapping registers. 

256 



Chapter 9 - Mapping to Memory and Busses 

Use of UNIBUS Memory or Memory look-Alikes 
Any address presented on the UNIBUS is ordinarily picked up by the 
map and translated to a main memory address. This is illustrated in 
Figure 9-36. If the translated address represents an existing location 
in main memory, that location will respond; no UNIBUS addresses are 
blocked by a 'fence'. Generally, in a correctly running system, any UN­
IBUS page in use i~ mapped to an existing main memory page. 

UNIBUS 
777777 ~-~ 

I/O PAGE 
760000 t----

000000 '----

111 

TO MAIN MEMORY 
VIA 

THE UN I BUS MAP 

Figure 9-36 Normal UNIBUS Mapping 

However, certain applications place memory, or devices that act like 
memory, on the UNIBUS. Examples of such applications include: 

@l Shared (multi-ported) UNIBUS memory 

• Certain graphics devices (bit-mapped graphics, or devices which 
fetch instructions from PDP-11 memory) 

• Bus windows (DA11-F) 

In these cases, an address presented on the UNIBUS may actually be 
intended for the memory on the UNIBUS. It would be undesirable for 
the UNIBUS Map to pick up such an address and translate it to a main 
memory address. Therefore, some 'fence' must exist to block the UN­
IBUS Map from picking up and translating those addresses represent· 
ed by your UNIBUS memory or memory look-alike. Figure 9-37 illus­
trates the UNIBUS address-space in this situation. 

257 



Chapter 9 - Mapping to Memory and Susses 

777777 
UNIBUS 

110 PAGE 
760000 r----

YOUR 
MEMORY 
OR I/0 

000000 .____ _ _, 

FENCE 

111 

111 

TO MAIN MEMORY 
VIA 

THE UNIBUS MAP 

Figure 9-37 Disallowing Mapping of Part of the UNIBUS Address 
Space 

Two methods exist to provide the 'fence' and prevent the address con­
flict described above: 
i. If you have less than 3084 Kbytes of main memory, you can en­

sure that you set up the UNIBUS Map such that the area of the 
UNIBUS address-space occupied by UNIBUS Memory is mapped 
to nonexistent main memory. This ensures t.hat main memory 
won't respond. However, if you add more memory to your system, 
that area of main memory may actually exist, and your system 
may fail. 

2. Jumpers on the UNIBUS Map disallow its mapping operation on 
a page-by-page basis. The method varies from CPU to CPU, but in 
all cases, a contiguous group of pages can be reserved for the UN­

. I BUS memory. Generally, these pages should be immediately be-
low the 1/0 page (as shown in the previous figure). 

Further Information 
A detailed discussion of UNIBUS Mapping as implemented in the PDP-
11/70 may be found in the KB11-C Maintenance Manual (EK-KB11C­
TM-001). 

Each processor's specific user's manual and technical manual can 
provide details on the setup and operation of that processor's UNIBUS 
Map. 

FAULT RECOVERY (STATUS) REGISTERS 
Aborts and traps generated by the memory management hardware are 
vectored through the kernel's virtual location 250. Memory Manage­
ment registers 0, 1, and 3, are used to differentiate an abort from a 

258 



Chapter 9 - Mapping to Memory and Busses 

trap, determine why the abort or trap occured and allow for easy pro­
gram restarting. Note that an abort or trap to a location which is itself 
an invalid address will cause another abort or trap. Thus the kernel 
program must insure that kernel virtual address 250 is mapped into a 
valid address, otherwise a loop will occur which will require console 
intervention. 

Memory Management Register 0 (MMRO) 
MMRO contains error flags, the page number whose reference caused 
the abort, and various other status flags. This register is illustrated in 
Figure 6-29. 

Setting bit <0> of this register enables address relocation and error 
detection. This means that the bits in MMRO become meaningful. 

Bits <15:12> are the error flags. They may be considered to be in a 
priority queue because flags to the right are less significant and 
should be ignored. That is, a service routine for "Fault: nonresident" 
would ignore the length and memory management access control 
flags. A page length service routine would also ignore memory man­
agement access control faults. 

Bits < 15:13>, when set (by error conditions), cause memory manage­
ment to freeze the contents of bits <7:1 > and memory management 
registers 1, and 2. This has been done to facilitate error recovery. 

These bits may also be set under program control. No abort will occur, 
but the contents of the memory management registers will be locked 
up as in an abort. Once the fault has been handled, the program 
should clear the offending bit(s). 

Abort-Nonresident Bit 15 - - Bit < 15 > is the abort nonresident 
bit. It is set by attempting to acess a page with an Access Control 

. Field (ACF) key equal to 0, 3, or 7. It is also set by attempting to use 
memory relocation with a processor mode of 2 (undefined/invalid 
mode: neither kernel, supervisor, nor user). 

Abort-Page length Bit 14 - - Bit <14> is the abort page length 
bit. !t is set by attempting to access a location in a page with a block 
number (virtual address bits < 12:6>) that is outside the area author­
ized by the page length field of the page descriptor register for that 
page. Bits < 15:14> may be set simultaneously by the same access 
attempt. Bit < 14> is also set by attempting to use memory relocation 
with a processor mode of 2. 

259 



Chapter 9 - Mapping to Memory and Busses 

15 14 13 12 11 10 9 

I -
ABORT-NON RESIDENT~_J 'Jj 
ABORT-PAGE }~ 
LENGTH ERROR 

ABORT- READ ONLY} 
ACCESS VIOLATION 
TRAP-MEMOf!Y MANAGEMENT 

NOT USED 
NOT USED-----------' 

B 7 6 5 

ENABLE MEMORY MANAGEMENT TRAP ------' 
MAINTENANCE MODE---------__, 
INSTRUCT/ON COMPLETED----------' 
PAGE MODE 

4 3 2 

PAGE ADDREsS SPACE IID----------------l 
PAGE NUMBER---------------------' 

0 

ENABLE RELOCATION'----------------------' 

Figure 9-38 Memory Management Register O (MMRO) 

Abort/Read-Only Bit 13 - - Bit < 13> is the abort/read-only bit. It is 
set by attempting to write in a read-only page. Read-only pages have 
access keys of 1 or 2. 

Bits 11, 10 - - Bits <11:10> are spare bits that are always read as 
0. They are are reserved for future use and should never be written. 

Maintenance/Destination Mode Bit 8 (not used by PDP-11/24) 
Bit <8> specifies that only destination mode references will be relo­
cated using memory management. This mode is used only for mainte· 
nance purposes. 

Processor Mode Bits 6·5 
Bits <6:5> indicate the CPU mode associated with the page causing 
the abort (kernel = 00, supervisor = 01, user = 11, i I legal mode = 10). 
If an illegal mode is specified, bits <5:14> will be set. 

Page Address Space Bit 4 (PDP-11144) 
Bit <4> indicates the type of address space (I or D) the unit was in 
when a fault occured (0 = I Space, 1 = D Space). It is used in conjunc· 
tion with bits < 3:1 >, Page Number. 

Enable Relocation Bit O 
Bit <O>is the enable relocation bit. When it is set to 1, all addresses 
are relocated by the unit. When bit <0> is set to 0, the memory man-

260 



Chapter 9 - Mapping to Memory and Busses 

c;igement unit is inoperative and addresses are neither relocated nor 
protected. 

Memory Management Register 1 (MMR1) {PDP-11/44, J-11) 
MMR1 records any autoincrement or autodecrement of the general 
purpose registers, including explicit references through the PC. MMR1 
is cleared at the beginning of each instruction fetch. Whenever a gen­
eral purpose register is either autoincremented or autodecremented, 
the register number and the amount by which the register was modi­
fied (in two's complement notation) is written into MMR1. 

The information contained in MMR1 is necessary to accomplish an ef­
fective recovery from an error resulting in an abort. The low-order byte 
is written first and it is not possible for a PDP-11 instruction to autoin­
crement or autodecrement more than two general purpose registers 
per instruction before an abort-causing reference. Register numbers 
are recorded MOD 8; thus it is up to the software to determine which 
set of registers (user/supervisor/kernel-general set O/general set 1) 
was modified, by determining the CPU and register modes as con­
tained in the PS at the time of the abort. The 6-bit displacement of R6 
(SP) that can be caused by the MARK instruction cannot occur if the 
instruction is aborted. MMR1 is illustrated in Figure 9-39. 

15 

AMOUNT CHANGED 
(2'5 COMPLEMENT) 

11 10 8 7 

REGISTER AMOUNT CHANGED 
NUMBER (2'5 COMPLEMENT) 

REGISTER 
NUMBER 

0 

Figure 9-39 Memory Management Register 1 (MMR1) 

NOTE 
For the MICRO/PDP-11, LSl-11/23, PDP-11/23 PLUS, 
and PDP-11/24, this register is not mechanized. 
When explicitly addressed, it reads out as a word 
containing all zeros, but cannot be written into. This 
register is included for compatibility with PDP-11 
software. 

Memory M~lfllagemefi~ Register 2.(MMR2) 
MMR2 is loaded with the 16-bit Virtual Address (VA) at the beginning 
of each instruction fetch, or with the address Trap Vector at the begin­
ning of an interrupt, T bit trap, parity, odd address, and timeout aborts 
and parity traps. Note that MMR2 does not get the trap vector on EMT, 

261 



Chapter 9 - Mapping to Memory and Busses 

TRAP, BPT, and IOT instructions. MMR2 is read-only; it cannot be writ­
ten. MMR2 is the virtual address program counter. 

Memory Mainag€llment Register 3 (MMR3) (J·11, MICRO/PDP-11, 
LSl-11/23, PDP-11/23 PLUS, PDP-11124, and PDP-111170) 
Memory Management Register · 3 (MMR3) enables or disables the use 
of the D space PARs and PDRs, 22-bit mapping and UNIBUS mapping. 
When D space is disabled, all references use the I space registers; 
when D space is enabled, both the I space and D space registers are 
used. Bit <0> refers to the user's registers, bit <1 >to the supervi­
sor's, and bit < 2> to the kernel's. When the appropriate bits are set, D 
space is enabled; when clear, it is disabled. Bit <3> is used to enable 
the Change to Supervisor Mode (CSM) instruction in the J-11 and PDP-
11/44. It is reserved for future use. Bit <4> enables 22-bit mapping. If 
memory management is not enabled, bit <4> is ignored and 16-bit 
mapping is used. 

If bit <4> is clear and memory management is enabled (bit <0> of 
MMRO is set), the computer uses 18-bit mapping. If bit< 4> is set and 
memory management is enabled, the computer uses 22-bit mapping. 
Bit <5> is set to enable relocation in the UNIBUS map; the bit is 
cleared to disable relocation. Bits < 15:6> are unused. On initializa­
tion, this register is set to O and only I space is in use. MMR3 is illus­
trated in Figure 9-40. 

Bit 

5 

5 

4 

ENABLE UNIBUS MAP--------_J 
ENABLE 22-BIT MAPPING---------
KEfii:NEL 
SUPERVISOR---------------­
USER 

Figure 9-40 Memory Management Register #3 (MMR3) 

State 

0 

1 

0 

Operation 

UNIBUS Map relocation disabled 

UNIBUS Map relocation enabled 
if bit <0> of MMRO is set 

Enable 18-bit mapping 

Enable 22-bit mapping 

262 



Bit 

3 

2 

1 

0 

Chapter 9 - Mapping to Memory and Busses 

State Operation 

Enable the Call Supervisor instruction 

Enable kernel D space 

Enable supervisor D space 

Enable user D space 

NOTE 
The PDP-11/24 utilizes only bits <4:5>. 

Instruction Back-Up/Restart Recovery 
The process of backing-up and restarting a partially completed in­
struction involves: 

1. Performing the appropriate memory management tasks to allevi­
ate the cause of the abort (e.g., loading a missing page). 

2. Restoring the general purpose registers indicated in MMR1 to 
their original contents at the start of the instruction by subtract­
ing the modify value specified in MMR1. 

3. Restoring the PC to the abort time PC by loading R7 with the 
content of MMR2, which contains the value of the Virtual PC at 
the time the abort-generating instruction was fetched. 

Note that this back-up/restart procedure assumes that the general 
purpose register used in the program segment will not be used by the 
abort recovery routine. 

Clearing Status Registers Following TraplAbort 
At the end of a fault service routine, bits <15:12> of MMRO must be 
cleared (set to 0) to resume error checking. On the next memory refer­
ence following the clearing of these bits, the various registers will re-­
sume monitoring the status of the adressing operations. MMR2will be 
loaded with the next instruction address, MMR1 ,will store register 
change information and MMRO will log memory management status 
information. 

Multipl® !Faults 
Once an abort has occured, any subsequent errors that occur will not 
affect the state of the machine. The information saved in MMRO 
through MMR2 will always refer to the first abort detected. However, 
when multiple traps occur, the information saved will refer to the most 
recent trap. 

263 



Chapter 9 - Mapping to Memory and Busses 

If an abort occurs after a trap, but in the same instruction, only one 
stack operation wil I occur. The PC and PS at the time of the abort wi! I 
be saved. 

264 



265 



CHAPTER 10 

PDP-11 BUS STRUCTURES 

PDP-11s and LSl-11s both use an asynchronous bus for 1/0. lmplernen­
tation details differ between the LSl-11 Bus and the UNIBUS, but the 
architecture underlying the two busses is the same: 

• Each bus operates with a strict master/slave relationship. When a 
device needs to use the bus, it arbitrates with the other contenders. 
When a device is the highest priority request, it wins control of the 
bus. It becomes the bus master and controls all data transfers, until 
it releases the bus. In performing transfers, it addresses another de­
vice, which is designated the slave during that bus-cycle. 

• Each bus operates asynchronously: each transfer executes as 
quickly as the master and slave are able. Conversely, a slow slave 
can take as long as is required, only slowing down those bus cycles 
in which it is directly involved. 

• E:ach bus overlaps the current data cycle with the arbitration for 
the next cycle. This enhances system performance. 

• Each bus reserves the top 8 Kbytes of its address space for 1/0 and 
peripheral devices. DIGITAL implements some controllers at fixed 
addresses within this space; other controllers' addresses "float" 
based on a particular system's configuration. 

Memory may or may not exist on the same bus; however, if imple­
mented on the same bus, its access protocol is the same as for 1/0. 
Memory may be located on a private bus to provide faster data ac­
cess, and/or more address space. 

The UNIBUS and the LSl-11 Bus can each be divided into four sec­
tions: 

• Initialization 
• Arbitration 
• Data transmission 
• Miscellaneous 

The initialization lines of the bus provide the information required to 
start the processor after powerup, and cause an orderly shutdown of 
the processor during power failures. In addition, they allow the proces­
sor to reset the 1/0 subsystem. 

266 



Chapter 10- PDP-11 Bus Structures 

The arbitration lines control access to the data transmission portion 
of the bus. 

The data transmission lines allow words or bytes to be moved about 
on the bus. Transmission of data is always done with one device act­
ing as m9.ster and the other acting as slave. The master co.ntrols the 
direction and length of transmission. 

The miscellaneous lines provide other functions not described above. 
These functions include: processor control, memory refresh, and time­
keeping. 

Most of the signal lines are implemented as open-collector, wire­
OR'ed signals and are asserted by being pulled "low" (hence the "L" 
which follows the signal name). The arbitration grant lines are not 
wired-OR; rather, they are passed from one 1/0 module to the next in 
daisy-chained fashion. Each 1/0 module either passes or receives/re­
transmits these grant signals. On the UNIBUS, these grant signals are 
active while "high." 

Each of the fast signals on the bus is carried on a 1200 circuit. 

INITIALIZATION 
The three lines of the initialization section are listed below. The UN­
IBUS lines are named first, and the LSl-11 Bus lines are in 
parentheses. 
• BUS DCLO L (BDCOK H) 
• BUS ACLO L (BPOK H) 
s BUS !NIT L (BINIT L) 

The BUS DCLO l line indicates whether or not there is sufficient DC 
power for the computer to operate correctly. While low, there is insuffi­
cient power to operate and vice versa. 

The BUS ACLO l line indicates whether or not line power is available. 
When the line makes the transition from high to low, it indicates to the 
CPU that it must begin its powerfail sequence, since AC power has 
just failed. The CPU will have at least 2 mS to perform necessary ac­
tions. 

The BUS INIT IL signal is used to initialize all bus devices. It is automat­
ically driven at powerup, when the CPU is manually started, or when 
the RESET instruction is executed. 

Figure 10-1 shows the approximate, relative timing among these three 
signals. The actual DC power is shown for reference. 

267 



Chapter 1 O - PDP-11 Bus Structures 

ARBITRATION 

There are eleven arbitration lines on the UNIBUS; by distributing the 
arbitration logic onto the various 1/0 modules, the LSl-11 Bus per­
forms the same functions using only eight lines. The four interrupt re­
quest lines are represented collectively as: BUS BRx L (or BIRQx Lon 
the LSl-11 Bus), where x is a number from 4 through 7. The four UN­
IBUS interrupt grant lines are similarly shown as: BUS BGx H (again,.x 
is a number from 4 through 7). The LSl-11 Bus contains only one inter­
rupt grant line: BIAKI L. Here are the arbitration lines: 

• BUS NPR L (BDMR L) 
o BUS NPG H (BDMGI L) 

• BUS BRx L (BIRQx L) 
e BUS BGx H (BIAKI L) 
11 BUS SACK L (BSACK L) 

The BUS NPR L line is used by a peripheral to request the data section 
of the bus for a Direct Memory Access (DMA) transfer. (The acronym 
NPR stands for Non Processor Request.) 

The BUS NPG H line indicates to the peripheral that it may use the 
data section of the bus for a DMA transfer as soon as the current user 
is finished. 

The BUS BRx L lines tell the processor that a peripheral would like to 
interrupt at level x. On the UNIBUS, the BUS BGx H lines indicate to 
the peripheral that it may interrupt the processor at level x, as soon as 
the data section becomes available. On the LSl-11 Bus, the BIAKI L 
line indicates that the processor acknowledges an interrupt from one 
of the four levels. Each device must examine the levels above it to en­
sure they are idle, before it can know that itpwns' the grant. The proc­
essor interrupt follows immediately. 

On the UNIBUS, the BUS SACK L line lets a device claim the bus after 
winning arbitration. The bus will not be given to any other device while 
BUS SACK Lis asserted. On the LSl-11 Bus, BSACK Lis used only for 
DMA transfers (not for interrupts). 

DATA 
It is in the data section where the two busses differ most. The UNIBUS 
provides a unique line for each signal; the LSl-11 BUS multiplexes ad­
dresses and data on the same lines. The UNIBUS uses voltage levels 
for its control signals; the LSl-11 Bus uses voltage transitions. For 
these (and other) reasons, we will discuss the UNIBUS and LSl-11 Bus 
separately. 

268 



Chapter 10 - POP-11 Bus Structures 

UNIBUS 
The UNIBUS data section consists of address and control lines, data 
lines, and synchronization lines. The address and control I ines control 
the address at which a transfer occurs, and the type of transfer. The 
address lines are named BUS AOO L through BUS A17 L. The control 
lines include: BUS COL and BUS C1 L. Transfer types include: 

e DATl-word read 

<11 DATIP-word read with no restore 

• DATO-word write 

• DATOB-byte write 

• (no name)-vector passing 

The UNIBUS data lines carry 16 bits of data and two bits of parity 
error information. The UNIBUS data lines are named: BUS 000 L 
through BUS 015 L. The parity error information lines are named 
BUS PA Land BUS PB L. 

The UNIBUS synchronization lines include: 

•BUS MSYNC L 

• BUSSSYN L 
11> BUS INTR L 

@BUS BBSY L 

The BUS MSYNC l line is asserted by the master to indicate that it has 
placed an address on the bus and has waited long enough to insure its 
validity. If the operation is a write, data is also placed on the bus. 

The BUS SSYN L line is asserted by the slave to indicate that it recog­
nizes an address as its own. If the operation is a read, the slave is now 
presenting valid data; if the operation is a write, the slave has stored 
the master's data. 

The BUS INJ'R l line is asserted by the master to indicate that it has 
placed the address of an interrupt vector on the bus. The processor 
will respond with SSYN and will interrupt through that vector. 

The BUS 18ll8lSY l line is asserted by the master to indicate that a mas­
ter owns the data section of the UNIBUS. No other device should use 
the data section while BUS BBSY Lis asserted. 

lSl-11 81,11::; 
The LSl-11 Bus data section consists of address/data lines, synchron­
ization lines, and control lines. The address/data lines first pass an ad­
dress, then pass one or more data words with associated parity error 
information. The address/data lines are named: BDAL21 L through 

269 



Chapter 10 - PDP-11 Bus Structures 

BDALOO L. The transfer types are controlled by the synchronization 
and control lines, and include: 

• DATl-word read 

•DATO-word write 

• DATOB-byte write 

@ DATIO-word read/write 

® DATIOB-byte read/write 

o DATBl-block read 

• DATBO-block write 

The LSl-11 Bus synchronization and control lines are: 

• BSYNC L 
111 BOIN L 

• BDOUT L 

• BWTBT L 

•BBS? L 

• BREF L 
111 BRPLY L 

The BSYNC L line is asserted by the master when it has placed an ad­
dress on the bus and has waited long enough to insure its validity. 

The BOIN L line is asserted by the master during a DATI, DATIO(B), or 
DATBI cycle when it is ready to receive data from the slave on the 
BOAL lines (a read operation). 

The BDOUT L line is asserted by the master during a DATO(B), DA­
TIO(B), or DATBO cycle when it has placed data on the BOAL lines (a 
write operation) and has waited long enough to insure its validity. 

The BWTBT L line serves two purposes. During the address cycle, it 
indicates that the data cycles will be writes to the slave (DATO, DA­
TOB, DATBO). During the data cycle, it indicates that the write opera­
tion will be to a byte, rather than a word (DATOB). 

The BBS7 L line serves two purposes. When the master gates an ad­
dress onto the BOAL lines, it asserts BBS? if the address of the slave 
is contained in the 1/0 page. When BBS? is asserted, the slave de­
codes address lines 12 through 0 only. During DATBI cycles, the mas­
ter asserts BBS? L to indicate that it is a block mode master and that it 
has at least one more read cycle to perform. The bus master will reas­
sert BOIN only if it has asserted BBS? and if the slave has asserted 
BREF. 

270 



Chapter 10- PDP-11 Bus Structures 

The use of the BREF l line depends on the memory refresh capability 
of a system. In systems with memories that do not perform their own 
refresh, the master asserts BREF when the current cycle is for mem­
ory refresh. In systems which support block mode, BREF is asserted 
by the slave to indicate that it can accept an additional BOIN or 
BOOUT signal. 

The BRPl Y L line is asserted by the slave that recognizes an address 
as its own. When responding to BOIN, the slave indicates that it will 
transmit data within an appropriate time. When responding to BOOUT, 
the slave indicates that it has received the incoming data. 

MISCELLANEOUS 
The miscellaneous lines perform a number of functions, including 
processor control, memory refresh, and timekeeping. The miscella­
neous lines are listed below, with the lines for UNIBUS systems first, 
and the equivalent LSl-11 Bus lines following in parentheses. Note 
that the UNIBUS does not include these lines, they are connected sep­
arately to each backplane. 
e HALT L (BHALT L) 
e Not applicable (BREF L) 

• L TC (BEVNT) 
• BOOT ENB L (Not applicable) 

The HALT L line causes the processor to halt at the completion of the 
current instruction. This line may be driven by the front panel, or the 
console terminal interface. 

The LTC line provides a realtime clock input for the system. It pulses 
with each cycle of the line current. 

The BOOT.ENB l line controls the processor action when power is re­
stored following a power failure. It unasserted, the battery backup unit 
has maintained the contents of memory, and the processor restarts 
through the vector at 24. If asserted, memory contents have been lost, 
and the processor reboots. 

BUS TIMING 
For timing diagrams of UNI BUS and LSl-11 Bus cycles, refer to Appen­
dices D and E respectively. Further details of the bus timing cycles 
may be found in the technical documentation for the various 
processors. 

271 



Chapter 10 - PDP-11 Bus Structures 

BUS ERRORS 

On any given bus cycle either of two error conditions may result. It is 
the current master's responsibility to handle these errors. 

Timeout Errors 
The bus architecture is asynchronous; a cycle terminates when the 
slave responds with SSYN. If the master places an address on the bus 
which does not correspond to any slave, no SSYN will ever result. It is 
the master's responsibility to note that no slave has responded, and to 
terminate the failed transfer. Normally, a master will wait 7-25 µs for 
a slave's response. How the master handles bus timeout is up to the 
master. Processors initiate a trap through the vector at 4; most 1/0 de­
vices set a bit called NXM (non-existant memory) and then stop. 

Parity Errors 
If the slave (usually memory) detects an internal parity error upon a 
read operation, it will use the parity-error information lines to pass this 
information back to the current master. Again, action is the master's 
responsibility; processors trap through the vector at 114. 

B!NIT L 

BPOK H 

BOCOK H 

DC POWER 

NOTE 
011ct o powtr down sequence 1s started, 
11 mus! becompltlec! before o power-up 
$tQuence 'sstor!ed 

POWER UP 
-~--SEQUENCE 

Figure 10-1 Power-Up/Power-Down Timing 

272 

NORMAL 
POWER 



APPENDIX A 

ASSIGNMENT OF BUS ADDRESSES AND VECTORS 
Throughout this appendix, both LSl-11 Bus and UNIBUS devices are 
listed. LSl-11 Bus devices may be distinguished by a three-letter prefix 
ending in the letter "V" (e.g. DLV11). 

1/0 PAGE DEVICE ADDRESS 
Fixed CSR Address Assignments 
Device Address Size Number 
AA11 776750 8 1 (first unit) 
AA11 776400 8 4 (extra units) 
AAV11 770440 4 1 
AD01 776770 4 1 
ADF11 770460 8 1 
ADV11-A 770400 2 1 
AFC11 772570 4 1 
AR11 770400 8 1 
BDV11-CSR 777520 3 1 
BDV11-LTC 777546 1 1 
BDV11-ROM 773000 256 1 
BM792-YA 773000 32 1 
BM792-YB 773100 32 1 
BM792-YC 773200 32 1 
BM792-YH 773300 32 1 
BM873-YA 773000 128 1 
BM873-YB/YC 773000 256 1 
CD11 777160 4 1 
CM11 777160 4 1 
CMR11 764070 4 1 (CSS device) 
CR11 777160 4 1 
CSR11 764000 4 1 (CSS device) 
CSS/User 764000 1024 1 
DC11 774000 4 32 
DC14-D 777360 8 1 
Diagnostics 760000 4 1 
DL/DLV11-A/B 777560 4 1 (console) 
DL/DlV11-A/B 776500 4 16 
DL11-C/D/E 775610 4 31 
DLV11-E 775610 4 31 
DLV11-F 776500 4 16 
DLV11-J 776500 16 4 
DL11-W(LTC) 777546 1 1 (line clock, first unit 

only) 
DL11-W 777560 4 (console) 

A-1 



Appendix A - Assignment of Addresses and Vectors 

Fixed CSR Address Assignments (Cont.) 
Device Address Size Number 
DL11-W 776500 4 16 
DM11 775000 4 16 
DM11-BB/BA 770500 4 16 (modem control for 

DM11) 
DN11-AA 775200 4 16 
DN11-DA 775200 1 64 
DP11 774400 4 -32 (assigned back-

wards) 
DR11-A/C 767600 4 -16 (assigned back-

wards) 
DR11-B(1) 772410 4 1 
DR11-B(2) 772430 4 1 
DRV11 767750 4 -3 (assigned back-

wards) 
DRV11-B 772410 4 3 
DRV11-J 764120 8 -3 (assigned back-

wards) 
0811 775400 67 1 
DT07 777420 1 8 
DV11 775000 16 4 
DX11 776200 16 2 
Floating CSRs 760010 1020 1 
FP11 772160 8 1 
GT40 772000 4 4 
IBV11 760150 2 1 
ICR/ICS11 771000 256 1 
IEX 764130 8 1 (CSS device) 
IP11/IP300 771000 128 2 
KE11 777300 8 2 
KG11 770700 4 8 
KL11 776500 4 16 
KL11 777560 4 1 (console) 
KPV11(LTC) 777546 1 1 
KT11 772200 64 1 
KT11-SR3 772516 1 1 
KU116-AA 777540 3 1 
KW11-L 777546 1 1 
KW11-P 772540 4 1 
KW11-W 772400 4 1 
KWV11-A 770420 2 1 
LAV/LPV11 777514 2 1 
LP/LS/LV11 777514 2 1 (LPO) 

A-2 



Appendix A - Assignment of Addresses and Vectors 

Fixed CSR Address Assignments (Cont.) 
Device Address Size Number 
LP/LS/LV11 764004 2 1 (LP1) 
LP/LS/LV11 764014 2 1 (LP2) 
LP/LS/LV11 764024 2 1 (LP3) 
LP/LS/LV11 764034 2 1 (LP4) 
LP/LS/LV11 764044 2 1 (LP5) 
LP/LS/LV11 764054 2 1 (LP6) 
LP/LS/LV11 764064 2 1 (LP?) 
LP20 775400 32 2 
LPA11-K 770460 8 1 
LPS11 770400 16 1 
M792 773000 32 8 
M7930 777510 4 1 
M9301-XX 765000 256 1 
M9301-XX 773000 256 1 
ML11 776400 22 1 (RH70/RH11) 
MM11 772100 1 16 
MR11-DB 773100 64 1 
MRV11-11 77300 256 1 
MS11/MSV11 772100 1 16 
NCV11 772760 8 1 
RB730 775606 1 1 
RDRX 774340 8 2 
OST 772500 6 1 
PA611_readers 772600 4 8 (2 per PA611) 
PA611_punches 772700 4 8 (2 per PA611) 
PC11/PCV11 777550 4 1 
PCL11 764200 16 4 (CSS Device) 
PDP11 777570 68 1 
PR11 777550 4 1 
QNA 774440 8 2 
RC11 777440 8 1 
Reserved 770100 32 1 
Reserved 770440 8 1 
Reserved 772154 2 1 
Reserved 772514 1 1 
Reserved 772550 8 1 
Reserved 775606 1 1 
Reserved 777000 56 1 
Reserved 777200 32 1 
Reserved 777526 1 1 
REV11 773000 256 1 
REV11 765000 256 1 

A-3 



Appendix A - Assignment of Addresses and Vectors 

fixed CSR Address Assigll'lments (Cont.) 
Device Address Size Number 
RF11 777460 8 1 
RH70/11_alt 776300 32 1 (Alternate 

RS/RP/RM/T J) 
RK611/RK711 777440 16 1 
RK11/RKV11 777400 8 1 
RL11/RLV11 774400 4 1 
RLV12 774400 8 1 
RM03/04/05 776700 22 1 (RH70/RH11) 
RP04/05/06 776700 22 1 (RH70/RH11) 
RP11 776700 16 1 
RS04 772040 16 1 (RH70/RH11) 
RX11/211 777170 4 1 
RXV11/21 777170 4 1 
TA11/DIP11-A 777500 4 1 
TC11 777340 8 1 
Testers 770000 32 1 
TM11/TMB11 772520 8 1 
TR79 764000 4 1 
TS11 772520 2 4 
TU16/45/77 772440 16 1 (RH70/RH11) 
TU58 776500 4 4 
TU78 775400 32 1 (RH70/RH11) 
TU81 774500 2 1 
UDA 772150 2 1 (All UDA class 

disks) 
UDC-Units 771000 1 256 
UDC11 771774 2 1 
UET 772140 4 1 
Unibus-Map 770200 64 1 
VSV11 772000 4 4 
VT48 772000 16 1 
VTV01 772600 112 2 
XY11 777530 4 1 

A-4 



Appendix A - Assignment of Addresses and Vectors 

INTERRUPT AND TRAP VECTORS 

Fixed Vector Address Assignments 
Device Address Size 
AA11 140 4 
AD01 130 2 
ADV11 400 4 
AFC11 134 2 
CD11 230 2 
CM11 230 2 
CMR11 170 2 (CSS device) 
Console 060 4 
CR11 230 2 
CSR11 270 2 (CSS device) 
DIP11 260 2 
DL11(1) 060 4 
DR11-B, DRV11-B 124 2 
Floating Vectors 300 
FPP/FIS exception 244 2 
IBV11 420 4 
ICS/ICR11, IP11 /IP300 234 2 
KT11 Error 250 2 
KW11-A 440 4 
KW11-L 100 2 
KW11-P 104 2 
KWV11 440 4 
LAV11/LPV11 200 2 
LP/LS/LV11 (#0) 200 2 
LP/LS/LV11 (#1) 170 2 
LP/LS/LV11 (#2) 174 2 
LP/LS/LV11 (#3) 270 2 
LP/LS/LV11 (#4) 274 2 
LP20(1) 200 2 
LP20(2) 210 2 
Memory System errors 114 2 
PC11 070 4 
PDP11-Reserved 000 2 
PDP11-CPU Errors 004 2 
PDP11-Reserved Instructions 010 2 
PDP11-Breakpoint/Trace traps 014 2 
PDP11-IOT Trap 020 2 
PDP11-Power Fail 024 2 
PDP11-EMT Trap 030 2 
PDP11-TRAP Trap 034 2 
PDP11-PIRQ 240 2 
RB730 250 2 

A-5 



Appendix A -Assignment of Addresses and Vectors 

Fixed Vti!!dor Address .Assigrtments 
Device 
RDRX#O 
RDRX#1 
RC11 
RF11 
RK611/RK711 
RK11/RKV11 
RL 11/RLV11 
RLV12 
Alternate RS/RP/RM/T J 
RS03/04 (RH11/RH70) 
RM02/03/05 (RH11/RH70) 
RP04/5/6 (RH11/RH70) 
RP11 
Reserved for System Software 
Reserved for System Software 
RSTS/E (crash-dump) 
RSTS/E (statistics ptr) 
RX11/211, RXV11/21 
TA11 
TC11 
TM11 
TS11 
TU16/45, TE16, TU77 (RH11/RH70) 
TU78 (RH11/RH70) 
TU81 
UDA 
UDC11 
UNUSED-Reserved for Digital 
USER/CSS RESERVED 
USER/CSS RESERVED 
XY11 

NOTES: 

Address 
130 
134 
210 
204 
210 
220 
160 
160 
150 
204 
254 
254 
254 
110 
040 
144 
234 
264 
260 
214 
224 
224 
224 
260 
260 
154 
234 
164 
170 
270 
120 

Size 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
1 
8 
2 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
4 
4 
2 

(RH70/RH11) 

1. ADV11, KWV11, and IBV11 use non-standard vectors in floating vector space. These 
devices may not be autocontigured in standard systems. 

2. RSTS does not support the AA 11, UDC11, and ICS/ICR11 which require vectors by 
RSTS for other purposes. 

3. User/CSS Reserved vectors are also used tor additional line printers. 

A-6 



Appendix A - Assignment of Addresses and Vectors 

FLOATING VECTORS 
There is a floating vector convention used for communications and 
other devices that interface with the PDP-11. These vector addresses 
are assigned in order starting at 300 and proceeding upwards to 777. 
The following Table shows the assigned sequence. It can be seen that 
the first vector address, 300, is assigned to the first DC11 in the sys­
tem. If another DC11 is used, it would then be assigned vector address 
310, etc. When the vector addresses have been assigned for all the 
DC11s (up to a maximum of 32), addresses are then assigned consec­
utively to each unit of the next highest-ranked device (KL 11 or DP11 
or DM11, etc.), then to the other devices in accordance with the priority 
ranking. 

Priority Ranking for Floating Vectors 

(starting at 300 and proceeding upwards) 

Rank Device Size Octal Modulus 
1 DC11 4 10 
1 TU58 4 10 (See Note) 
2 KL11 4 10 
2 DL11-A 4 10 
2 DL11-B 4 10 
2 DLV11-J 16 10 
2 DLV11, DLV11-F 4 10 
3 DP11 4 10 
4 DM11-A 4 10 
5 DN11 2 4 
6 DM11-BB/BA 2 4 
7 DH11 modem control 2 4 
8 DR11-A, DRV11-B 4 10 
9 DR11-C, DRV11 4 10 
10 PA611 (reader+ punch) 8 10 
11 LPD11 4 10 
12 DT07 4 10 
13 DX11 4 10 
14 DL 11-C 4 10 
14 DL11-D 4 10 
14 DL11-E/DLV11-E 4 10 
15 DJ11 4 10 
16 DH11 4 10 
17 GT40 8 10 
17 VSV11 8 10 
18 LPS11 12 10 

A-7 



Appendix A - Assignment of Addresses and Vectors 

Rank Device Size Octal Modulus 
19 DQ11 4 10 
20 KW11-W, KWV11 4 10 
21 DU11, DUV11 4 10 
22 DUP11 4 10 
23 DV11 + modem control 6 10 
24 LK11-A 4 10 
25 DWUN 4 10 
26 DMC11 4 10 
26 DMR11 4 10 (DMC before DMR) 
27 DZ11 /DZS11 /DZV11, 

DZ32 4 10 (DZ11 before DZ32) 
28 KMC11 4 10 
29 LPP11 4 10 
30 VMV21 4 10 
31 VMV31 4 10 
32 VTV01 4 10 
33 DWR70 4 10 
34 RL11/RLV11 2 4 (after the first) 
35 TS11 2 4 (after the first) 
36 LPA11-K 4 10 
37 IP11/IP300 2 4 (after the first) 
38 KW11-C 4 10 
39 RX11/RX211 2 4 (after the first) 

RXV11/RXV21 (RX11 before RX211) 
40 DR11-W 2 4 
41 DR11-B 2 4 (after the first) 
42 DMP11 4 10 
43 DPV11 4 10 
44 ML11 2 4 (MASSBUS device) 
45 18811 4 10 
46 DMV11 4 10 
47 DEUNA 2 4 
48 UDA50 2 4 (after the first) 
49 DMF32 16 4 
50 KMS11 6 10 
51 PCL 11-B 4 10 
52 VS100 2 4 
53 TU81 2 4 (after the first) 

NOTES: 
1. There is no standard configuration for systems wiih both DC11 and TU58. 
2. A KL 11 or DL 11 used as the console uses a fixed vector. 

A-8 



FLOATING CSR ADDRESS DEVICES 
There is a floating address convention used for communications and 
other devices interfacing with the PDP-11. These addresses are as-
signed in order starting at 760 010 and proceeding upwards to 763 
776. Floating addresses are assigned in the following sequence: 

Floating CSR Address Assignments 
Rank Device Size Octal Modulus 

1 DJ11 4 10 
2 DH11 8 20 
3 DQ11 4 10 
4 DU11, DUV11 4 10 
5 DUP11 4 10 
6 LK11A 4 10 
7 DMC11/DMR11 4 10 (DMC before DMR) 
8 DZ11/DZV11, DZS11, 

DZ32 4 10 (DZ11 before DZ32) 
9 KMC11 4 10 
10 LPP11 4 10 
11 VMV21 4 10 
12 VMV31 8 20 
13 DWR70 4 10 
14 RL11, RLV11 4 10 (after first) 
15 LPA11-K 8 20 (after first) 
16 KW11-C 4 10 
17 Reserved 4 10 
18 RX11/RX211 4 10 (after first) 

RXV11 /RXV21 (RX11 before RX211) 
19 DR11-W 4 10 
20 DR11-B 4 10 (after second) 
21 DMP11 4 10 
22 DPV11 4 10 
23 ISB11 4 10 
24 DMV11 8 20 
25 DE UNA 4 10 
26 UDA50 2 4 (after first) 
27 DMF32 16 40 
28 KMS11 6 20 
29 VS100 8 20 
30 TU81 2 4 (after first) 

NOTES: 
1. DZ11-E and DZ11-F are treated as two DZ11 s. 

A-9 



Appendix A - Assignment of Addresses and Vectors 

DEVICE ADDRESSES 

776000} 
Diagnostics 

760 006 

760 010 (Start of floating addresses) 

760150} 
IBV11 

760 152 

763 776 (Top of floating addresses) 

764 000 TR79 

764004} LP/LS/LV11 

764 066 (Units 1-7) 

764070} 
CMR11 

764 076 

764120} 
DRV11-J 

764 176 
Customer 

764200} 
PCL11 

764 376 

765000} 
M9301 

765 776 

767 600} 
DR11-A/C 

767 776 

770000} 
Testers 

770 076 

770 100} 
Reserved 

770 176 

A-10 



Appendix A - Assignment of Addresses and Vectors 

770700} #1 
KG11 

770 776 #8 

771 000} ICR/ICS11 
UDC Functional 1/0 Units 

771 776 IP11/IP300 

771 774} 
ICR/ICS11 

UDC11 
771 776 IP11/IP300 

772 000} GT40 (#1-#4) 
VSV11 (#1-#4) 

772 736 VT48 

772 040} 
RS04 

772 076 

772100} MM11-LP #1 
UNIBUS Memory Parity 

772 136 MS11-LP #16 

772140} 
UNIBUS Tester 

772 146 

772150} 
Reserved 

772 156 

772 160} 
FP11 Registers 

772176 

772 200} 
Supervisor Instruction Descriptor PDR, reg 0-7 

772 216 

772 220} 
Supervisor Data Descriptor PDR, reg 0-7 

772 236 

A-11 



Appendix A - Assignment of Addresses and Vectors 

770 200} 
UNIBUS Map 

770 376 

AR11 770400} 

770416 ADV11-A 

770 420} 

770 422 

770 436 

770 440} 

770 446 

770 456 

770 460} 

770 476 

770 500} 

770 676 

77.0 700} 

770 776 

LPS1i 

KWV11-A 

AAV111 Reserved 

ADF11/LPA11-K 

#1 
DM11-BB/BA 

#16 

#1 
KG11 

#8 

771 000} 
UDC Functional 1/0 Units 

771 776 

771 7.74} 
UDC11 

771 776 

772 000} GT 40 ( #1-#4) 
VSV11 (#1-#4) 

772 036 VT48 

ICR/ICS11 

IP11/IP300 

A-12 

ICR/ICS11 

IP11/IP300 



Appendix A - Assignment of Addresses and Vectors 

7,72 040} 
RS04 

772 076 

772100} Memory Parity 

772 136 Registers 

772140} 
UNIBUS Tester 

772 146 

772 150} 
UDA 

772152 

772154} 
Reserved 

772156 

772 160} 
FP11 Registers 

772176 

772 200} 
Supervisor Instruction Descriptor PDR, reg 0-7 

772 216 

772 220} 
Supervisor Data Descriptor PDR, reg 0-7 

772 236 

772 240} 
Supervisor Instruction PAR, reg 0-7 

772 256 

772 260} 
Supervisor Data PAR, reg 0-7 

772 276 

772 300} 
Kernel Instruction PDR, reg 0-7 

772 316 

A-13 



Appendix A - Assignment of Addresses and Vectors 

772 320} 
Kernel Data PDR, reg 0-7 

772 336 

772 340} 
Kernel Instruction PAR, reg 0-7 

772 356 

772 360} 
Kernel Data PAR, reg 0-7 

772 376 

772 400} 
KW11-W 

772 406 

772 410} 
DR11-B/W(#1) 

772 416 

772 420} 
Reserved DRV11-B 

772 426 

772 430} 
DR11-B/W(#2) 

772 436 

772 440} 
TU16/45/77 

772 476 

772 500} 
OST 

772 512 

772 514 Reserved 

772 516 Memory Mgt. reg (MMR3) 

772 520} 
TM11/TMB11/TS11 

772 536 

A-14 



Appendix A - Assignment of Addresses and Vectors 

772 540} 

772 546 

772, 550} 

772 566 

772 570} 

772 576 

772. 600} 

772 676 

772 700 

772 760} 

772 776 

773000} 
773 076 

773100} 
773 276 

773 376 

773 476 

773 776 

774 000} 
774 376 

774 400} 
774 406 

774 416 

774 776 

KW11-P 

Reserved 

AFC11 

PA611 Typeset Readers 

l PA611 Typeset Punches 
NCV11 

BM792-YA l 
BM873-YA 

MR11-DB 

#1 
DC11, 

#32 

RL11/} 
RLV11 RLV12 

DP11 

A-15 

BDV11 ROM 
BM873-YB 
BM873-YC 
M792 
M9301/9312-XX 
MRV11-11 
REV11 

#1 

#32 

VTV01 



Appendix A - Assignment of Addresses and Vectors 

775000} #1 
DM11, DV11, #1-#4 

775176 #16 

775 200} #1 
DN 11 -AA/DN11-DA 

775 376 #16 

775400} W78} 775 476 LP20 
DS11 

775 576 

775 604 

775 606 Reserved 

775 610} #1 
DL11-C, -D, -E 

776176 DLV11-E #31 

776200} 
DX11 

776 276 

776300} 
alternate RH70/RH11 

776 376 

776400} #2 

ML11 l 776 452 AA11, 

776 476 #5 

776 500} KL11, #1 
TU58 DL11-A, -B, -W #16 

776 676 DLV11-A, -8, -F, -J 

A-16 



Appendix A - Assignment of Addresses and Vectors 

776700} R~1 I 776 736 RM03/04/05, 
. RP04/05/06/07 

776 750} 
776 752 AA11, #1 
776 766 

776770} 
AD01 

776 776 

777 000} 
Reserved 

777 156 

777 160} CD11, CM11 

777 166 CR11 

777170} RX11/RX211 

777 176 RXV11/RXV21 

777200} 
Reserved 

777 276 

777 300} 
KE11, #2 

777 336 

777 340} 
TC11 

777 356 

777 360} 
DC14-D 

777 376 

777 400} 
RK11/RKV11 

777 416 

A-17 



Appendix A - Assignment of Addresses and Vectors 

777 420} 
OTO? 

777 436 

777 440} 
RC11 

777 456 
RK611/RK711 

777 460} 
RF11 

777 476 

777500} 
TA 11 /DIP11-A 

777 506 

777510} 
Reserved 

777 512 

777 514} LP/LS/LV11 
M7930 

777 516 LAV/LPV11 

777 520} 
BOV11-CSR} 

777 524 Reserved 

777 526 

777 530} 
XY11 

777 536 

770540} 
KU116-AA 

777 544 

777 546 BDV11/DL11-W/KPV11/KW11-L, line clock 

777 550} 
PC11/PCV11/PR11 

777 556 

A-18 



Appendix A - Assignment of Addresses and Vectors 

777 560 } KL11 
DL11-A/B/W 

777 566 DLV11-A/B/J 
} 

Console Terminal 
Interfaces 

777 570 Console Switch & Display Register 

777 572} (MMRO) 
777 574 Memory Mgt. reg (MMR1) 
777 576 (MMR2) 

777 600} 
User Instruction PDR, reg 0-7 

777 616 

777 620} 
User Data PDR, reg 0-7 

777 636 

777 640} 
User Instruction PAR, reg 0-7 

777 656 

777 660} 
User Data PAR, reg 0-7 

777 676 

777 700! 
RO 

777 701 R1 
777 702 General registers, R2 
777 703 Seto R3 
777 704 R4 
777 705 R5 
777 706 Kernel R6(SP) 
777 707 R7(PC) 

777710! RO 
777 711 R1 
777 712 General registers R2 
777 713 Set 1 R3 
777 714 R4 
777 715 R5 
777 716 Supervisor R6(SP) 
777 717 User R6(SP) 

A-19 



Appendix A - Assignment of Addresses and Vectors 

777 720} 

777 726 

777 730} 

777 756 

777 760 

777 762 
777 764 
777 766 

777 770 
777 772 
777 774 
777 776 

NOTE 

Reserved 

Memory and Cache Control 

Lower Size} 
System Size 

Upper Size 
System l/D 
CPU Error 

(PDP-11/70) 

(PDP-11 /70) 
(PDP-11 /70) 

Microprogram Break (PDP-11170) 
Program Interrupt Request (PIR) 
Stack Limit (SL) (PDP-11 /70) 
Processor Status Word (PS) 

All presently unused UNIBUS and LSl-11 Bus addresses are reserved 
by Digital. 

A-20 



APPENDIX B 

PDP-11 FAMILY DIFFERENCES TABLE 

The table that follows illustrates the issues involved in software mi­
gration between different members of the PDP-11 family. Each mem­
ber of the family has some slight differences in the way instructions 
are executed. Any program developed using PDP-11 operating sys­
tems with higher level languages will migrate with very little difficulty. 
However, some applications written in assembly language may have 
to be modified slightly. 

Since the instruction set for all F-11 based processors is identical, the 
23/24 column refers to the PDP-11/23 PLUS, the PDP-11/24, the LSl-11/ 
23, the MICRO/PDP-11, and the F-11 chip itself. 

The LSl-11 column includes the LSl-11/2. 

The T-11 column also refers to the FALCON SBC-11/21. 

The VAX column refers to the PDP-11 Compatibility Mode available on 
V AX-11 processors. 

B-1 



PROCESSORS 

ITEM 23124 44 04 34 LSl11 05/10 15/20 35/40 45 70 60 J-11 T-11 VAX 

1. QPR %R, (R) +; QPR %R, - (R) using x x x x x x 
the same register as both source and 
destination: contents of R are incre-
mented (decremented) by 2 before being 
used as the source operand. 
QPR %R, (R) +; QPR %R, - (R) using the x x x x x x x x 
same register as both register and des-
tination: initial contents of R are used as 
the source operand. 

2. QPR %R,@ (R) +;QPR %R, @- (R) x x x x x x 
using the same register as both source 
and destination: contents of R are incre-
mented (decremented) by 2 before being 
used as the source operand. 
QPR %R,@ (R) +; QPR %R,@ - (R) x x x x x x x x 
using the same register as both source 
and destination: initial contents of R are 
used as the source operand. 

3. QPR PC, X (R); QPR PC,@ X (R); QPR x x x x x x 
PC,@ A; QPR PC, A: location A will con-
tain the PC of QPR + 4. 
QPR PC, X (R); QPR PC,@ X (R), QPR x x x x x x x x 
PC, A; OPR PC, @ A: location A will con-
tain the PC of QPR + 2. 

4. JMP (R) + or JSR reg, (R) +: contents x x 
of R are incremented by 2, then used as 
the new PC address. 
JMP (R) + or JSR reg, (R) +: initial con- x x x x x x x x x x x x 
tents of R are used as the new PC. 



ITEM 23/24 44 04 34 LSl11 05/10 

5. JMP %R or JSR reg, %R traps to 10 x x x x x 
(illegal instruction). 
JMP %R or JSR reg, %R traps to 4 (illegal x 
instruction). 

6. SWAB does not change V. 
SWAB clears V. x x x x x x 
7. Register addresses (177700-177717) x 
are valid program addresses when used 
by CPU. 
Register addresses (177700-177717) x x x 
time out when used as a program 
address by the CPU. Can be addressed 
under console operation. 
Register addresses (177700-177717) x x 
time out when used as an address by 
CPU or console. 

8. Basic instructions noted in PDP-11 x x x x x x 
processor handbook. 
SOB, MARK, RTT, SXT instructions* x x x x 
ASH, ASHC, DIV, MUL, XOR x x x x 
Floating Point instructions in base 
machine. 
MFPT Instruction. x x 
The external option KE11-A provides x 
MUL, DIV, SHIFT operation in the same 
data format. 

• RTT instruction is available in 11/04 but is different than other implementations. 

1 Register addresses (177700-177717) are handled as regular memory addresses in the 1/0 page. 
2All but MARK. 

15/20 35/40 45 70 60 J-11 T-11 VAX 

x x x x NA 

x x x NA 

x 
x x x x x x x 

_, _, 

x x x x x NA 

x 

x x x x x x x x 

x x x x x x _2 

x x x x x x 
x x 

x 
x 



ITEM 23/24 44 04 34 LSl11 05/10 15/20 35/40 45 70 60 J-11 T-11 VAX 

The KE11-E (Expansion Instruction Set) x 
provides the instructions MUL, DIV, ASH, 
and ASHC. These new instructions are 
11/45 compatible. 
The KE11-F (Floating Instruction Set) x 
adds unique stack ordered oriented point 
instructions: FADD, FSUB, FMUL, FDIV. 
The KEV-11 adds EIS/FIS instructions x 
MFP, MTP instructions x x x x x x x 
SPL Instruction x x x x 
CSM Instruction x x 
9. Power fail during RESET instruction is x x x 
not recognized until after the instruction 
is finished (70 milliseconds). RESET 
instruction consists of 70 millisecond 
pause with INIT occurring during first 
20 milliseconds. 
Power fail immediately ends the RESET x x x x x 
instruction and traps if an INIT is in 
progress. A minimum INIT of 1 micro-
second occurs if instruction aborted. 
PDP11-04/34/44 are similar with no 
minimum INIT time. 
Power fail acts the same as 11/45 x 
(22 milliseconds with about 300 nano-
seconds minimum). Power fail during 
RESET fetch is fatal with no power 
down sequence. 



OJ 
cJ, 

ITEM 

RESET instruction consists of 10 micro-
seconds of INIT followed by a 90 micro-
second pause. Reset instruction con-
sists of a minimum 8.4 microseconds 
followed by a minimum 100 nanosecond 
pause. Power fail not recognized until 
the instruction completes. 

10. No RTT instruction 
If RTT sets the "T" bit, the "T" bit trap 
occurs after the instruction following RTT. 

11. If RTI sets "T" bit, "T" bit trap is 
acknowledged after instruction following 
RTI. 
If RTI sets "T" bit, "T" bit trap is 
acknowledged immediately following RTI. 

12. If an interrupt occurs during an 
instruction that has the "T" bit set, the 
"T" bit trap is acknowledged before the 
interrupt. 
II an interrupt occurs during an instruc-
!ion and the "T" bit is set, the interrupt is 
acknowledged before "T" bit trap. 

13. "T" bit trap will sequence out of WAIT 
instruction. 
"T" bit trap will not sequence out of WAIT 
instruction. Waits until an interrupt. 

1 Interrupts not visible to VAX compatibility mode. 

23/24 44 04 34 LSl11 

x x 

x x x x x 

x x x x x 

x x x x x 

x x x x 

x 

05/10 15/20 35/40 45 70 60 J-11 T-11 VAX 

x 

x x 
x x x x x x x 

x x x 

x x x x x x 

x x x x x x NA1 

x x NA 

x x x x x x NA 

x x 



CIJ 
Cn 

ITEM 23/24 

14. Explicit reference (direct access) to 
PS can load "T" bit. Console can also 
load ''T" bit. 

Only implicit references (RTI, RTT, traps x 
and interrupts) can load "T" bit. Console 
cannot load "T" bit. 

15. Odd address/non-existent references 
using the SP cause a HALT. This is a 
case of double bus error with the second 
error occurring in the trap servicing the 
first error. Odd address trap not imple-
mented in LSl-11, 11/23or11/24. 
Odd address/non-existent references x 
using the stack pointer cause a fatal trap. 
On bus error in trap service, new stack 
created at 012. 

16. The first instruction in an interrupt x 
routine will not be executed if another 
interrupt occurs at a higher priority level 
than assumed by the first interrupt. 
The first interrupt in an interrupt service 
is guaranteed to be executed. 

17. Single general purpose register set x 
implemented. 
Dual general purpose register set 
implemented. 

1 Odd address/non-existent references using SP do not trap. 
2 Odd address aborts to native mode. 

44 04 34 

x 

x x 

x x x 

x x x 

x x x 

LSl11 05/10 15/20 35/40 45 70 60 J-11 T-11 VAX 

x x 

x x x x x x x x 

x x x 

x x x x x _1 _2 

x x x x x x x x x 

x 

x x x x x x x 

x x x 



ITEM 23/24 44 04 34 LSl11 05/10 15/20 35/40 45 70 60 J-11 T-11 VAX 

18. PSW address, 177776, not imple- x x _3 

mented; must use instructions MTPS 
(move to PS) and MFPS (move from PS). 
PSW address implemented, MTPS and x x x x x x x x 
MFPS not implemented. 
PSW address and MTPS and MFPS x x x 
implemented. 

19. Only one interrupt level (BR4) exists. x 
Four interrupt levels exist. x x x x x x x x x x x x NA 

20. Stack overflow not implemented. x x x 
Some sort of stack overflow implemented. x x x x x x x x x x x 
21. Odd address trap not implemented. x x x 
Odd address trap implemented. x x x x x x x x x x x 
22. FMUL and FDIV instructions implicity x 
use R6 (one push and pop); hence R6 
must be set up correctly. 
FMUL and FDIV instructions do not x NA 
implicitly use R6. 

23. Due to their execution lime, EIS x x 
instructions can abort because of a 
device interrupt. 
EIS instructions do not abort because of x x x x x x x x NA 
a device interrupt. 

24. Due to their execution time, FIS x x NA 
instructions can abort because of a 
device interrupt. 

3 Can reference PSW only from native mode. 



OJ 
cXi 

ITEM 23/24 44 04 34 

25. Due to their execution time, FP11 x 
instructions can abort because of a 
device interrupe 
FP11 instructions do not abort because x 
of a device interrupt. 

26. EIS instructions do a DATIP and 
DATO bus sequence when fetching 
source operand. 
EIS instructions do a DATI bus sequence x x 
when fetching source operand. 

27. MOV instruction does just a DATO x x 
bus sequence for the last memory cycle. 
MOV instruction does a DATIP and DATO x 
bus sequence for the last memory cycle. 

28. If PC contains non-existent memory x x x 
and a bus error occurs, PC will have 
been incremented. 
If PC contains non-existent memory 
address and a bus error occurs, PC will 
be unchanged. 

29. If register contains non-existent x 
memory address in mode 2 and a bus 
error occurs, register will be incremented. 
Same as above but register is unchanged. x x 

*Integral floating point assumed on 11/23and11/24; FP11E assumed for 11/60. 
1 Implementation dependent. 

x 

x 

x 

x 

x 

2 MOV instruction does a DATI and a DATO bus sequence for last memory cycle. 
3 Does not support bus errors. 

LSl11 05/10 15/20 35/40 45 70 60 J-11 T-11 VAX 

x x x x NA 

x 

x x x x x NA 

x x x x x x -1 

x x _2 

x x x x x x 

x _3 x 

x x x x x x x _3 



ITEM 

30. If register contains an odd value in 
mode 2 and a bus error occurs, register 
will be incremented. 
If register contains an odd value in mode 
2 and a bus error occurs, register will be 
unchanged. 

31. Condition codes restored to original 
values after FIS interrupt abort (EIS 
doesn't abort on 35/40). 
Condition codes that are restored after 
EIS/FIS interrupt abort are indeterminate. 

32. Opcodes 075040 through 075377 
unconditionally trap to 1 O as reserved 
opcodes. 
If KEV-11 option is present, opcodes 
75040 through 07533 perform a memory 
read using the register specified by the 
low order 3 bits as a pointer. If the 
register contents are a non-existent 
address, a trap to 4 occurs. If the 
register contents are an existent address, 
a trap to 1 O occurs. 

33. Opcodes 210 thru 217 trap to 10 as 
reserved instructions. 
Opcodes 210 thru 217 are used as a 
maintenance instruction. 

3 Does not support bus errors. 
4 Unpredictable. 
1 Traps to native mode. 

23/24 44 04 34 LSl11 

x x 

x x x 

x 

x x x x 

x 

x x x x 

x 

05/10 15/20 35/40 45 70 60 J-11 T-11 VAX 

x x x x _3 _4 

x x 

x 

NA 

x x x x x x x x _1 

x x x x x x x x _1 



ITEM 23/24 44 04 34 LSl11 05/10 15/20 35/40 45 70 60 J-11 T-11 VAX 

34. Opcodes 75040 thru 75777 trap to x x x x x x x x x x x x -1 

10 as reserved instructions. 
If KEV-11 options is present, opcodes x 
75040 thru 75577 can be used as 
escapes to user microcode. If no user 
microcode exists, a trap to 10 occurs. 

35. Opcodes 170000 thru 177777 trap to x x x x x _1 

1 O as reserved instructions. 
Opcodes 170000thru177777 are x x x x x x x 
implemented as floating point instructions. 
Opcodes 170000 thru 177777 can be x 
used as escapes to user microcode. If 
no user microcode exists, a trap to 10 
occurs. 

Opcode 076600 used for maintenance. x 
36. CLR and SXT do just a DATO x x _1 

sequence for the last bus cycle. 
CLR and SXT do DATIP-DATO sequence x x x x x x x x x x _2 

for the last bus cycle. 

37. MEM MGT maintenance mode MMRO x x x x x x 
bit 8 is implemented. 
MEM MGT maintenance mode MMRO bit x x NA 
8 is not implemented. 

38. PS<15:12>, non-kernel mode, non- x x x x x x 
kernel stack pointer and MTPx and 
MFPx instructions exist even when MEM 
MGT is not configured. 

1 Traps to native mode. 

1 Unpredictable. 
2 CLR and SXT do DATl-DATO. 



ITEM 23/24 44 04 34 LS111 05/10 15/20 35/40 45 70 60 J-11 T-11 VAX 
PS<15:12>, non-kernel mode, non- x NA 
kernel stack pointer, and MTPx and 
MFPx instructions exist only when MEM 
MGT is configured. 

39. Current mode PS bits <15:14> set x 
to 01 or 10 will cause a MEM MGT trap 

x x x 
upon any memory reference. 
Current mode PS bits <15:14> set to 10 x NA 
will be treated as kernel mode (00) and 
not cause a MEM MGT trap. 
Current inode PS bits <15:14> set to 10 x x x 
will cause a MEM MGT trap upon any 
memory reference. 

40. MTPS in user mode will cause MEM x 
MGT trap if PS address 177776 not 
mapped. If mapped, PS <7:5> and 
<3:0> affected. 
MTPS in non-user mode will not cause x x NA 
MEM MGT trap and will only affect 
PS <3:0> regardless of whether PS 
address 177776 is mapped. 

41. MFPS in user mode will cause MEM x 
MGT if PS address 177776 not mapped. 
If mapped, PS<7:0> are accessed. 
MTPS in user mode will not trap regard- x x NA 
less of whether PS address 177776 is 
mapped. 

1 Unpredictable. 
2 CLR and SXT do. DATl-DATO. 



ITEM 23/24 44 04 34 LSl11 05/10 

42. Programs cannot execute out of 
internal processor registers. 
Programs can execute out of internal x x x 
processor registers. 

43. A HALT instruction in user or super- x 
visor mode will trap thru location 4. 
A HALT instruction in user or supervisor x x 
mode will trap thru location 10. 

44. PDR bit <O> implemented. 
PDR bit <O> not implemented. x x x 
45. PDR bit <7> (any access) 
implemented. 
PDR bit <7> (any access) not x x x 
implemented. 

46. Full PAR <15:0> implemented. x x 
Only PAR <11 :O> implemented. x 
47. MMR0<12>-trap-memory 
management-implemented. 
MMR0<12> not implemented. x x x 
48. MMR3<2:0>-D space enable- x 
implemented. 
MMR3<2:0> not implemented. x x 
49.·MMR3<5:4>-IOMAP, 22-bit x x 
mapping enabled-implemented. 
MMR3<5:4> not implemented. x 

1 HALT pushes PC & PSW to stack, loads PS w~h 340 and PC with < powerup address> + 40. 
2 Traps to native mode. 

15/20 35/40 45 70 60 J-11 T-11 VAX 

x 

x x x x 

x x x 

x x _, _2 

x x 
x x x x x 

x x 

x x x x x 

x x 
x x x x x 

x x 

x x x x x 
x x x 

x x x x 
x x 

x x x x x 



ITEM 23/24 44 04 34 LSl11 05/10 

50. MMR3<3>-CSM enable- x 
implemented. 
MMR3<3> not implemented. x x 
51. MMR2 tracks instruction fetches and 
interrupt vectors. 
MMR2 tracks only instruction fetches. x x x 
52. MFPx %6, MTPx when PS<13:12>= x x x 
10 gives unpredictable results. 
MTPx %6, MTPx %6 when PS<13:12> = 
10 uses user stack pointer. 

1 HALT pushes PC & PSW to stack, loads PS with 340 and PC with <powerup address>+ 40. 
2 Traps to native mode. 

15/20 35/40 45 70 60 J-11 T-11 VAX 

x 

x x x x x x 
x x 

x x x NA NA 

x x x x 

x NA NA 





APPENDIX C 

FLOATING POINT INSTRUCTION SET FIS (LSl-11, 
LSl-11/2, AND PDP-11/03) 

INTRODUCTION 
The Floating Point Instruction Set (FIS) option consists of four instruc­
tions: Floating Add (FADD), Floating Subtract (FSUB), Floating Multi­
ply (FMUL), and Floating Divide (FDIV). These instructions operate on 
single-precision floating formats, and are available on the LSl-11, LSl-
11/2, and PDP-11/03 only. The KEV11 is the EIS/FIS option for the LSl-
11, LSl-11/2, and PDP-11/03. 

KEV11 OPTION 

FIS Instruction Set 
The following floating point instruction opcodes do not conflict with 
any other instructions and are not compatible with the FP-11 Instruc­
tion Set. 

Mnemonic 
FADD 
FSUB 
FMUL 
FDIV 

Instruction 
Floating Add 
Floating Subtract 
Floating Multiply 
Floating Divide 

Opcode 
07500R 
07501R 
07502R 
07503R 

The operand format for the FIS is identical to that tor FP11 single-pre­
cision numbers. This format is explained in Chapter 3, in the FLOAT­
ING-POINT DATA FORMAT section. 

Registers 
There are no preassigned registers for the floating point option. A gen­
eral-purpose register is used as a pointer to specify a stack address. 
The contents of the register are used to locate the operands and an­
swer for the floating point operations as follows: 

R = high B argument address 
R + 2 = low B argument address 
R+4 = high A argument address 
R + 6 = low A argument address 

After the floating point operation, the answer is stored on the stack as 
follows: 

R + 4 = address tor high part of answer 
R + 6 = address for low part of answer 

where R is the original contents of the general register used. 

C-1 



Appendix C- FIS Instruction Set 

After execution of the instruction, the general registers point to the 
high answer, i.e., R is incremented by 4. 

Condition Codes 
Condition codes are set or cleared as shown in the instruction de· 
scriptions, in the next part of this section. If a trap occurs as a func­
tion of a floating point instruction, the condition codes are reinterpret­
ed as follows: 

V = 1, if an error occurs 
N = 1, if underflow or divide by zero 
C = 1, if divide by zero 
Z=O 

Overflow 
Underflow 
Divide byO 

Traps 

v 
1 
1 
1 

N 

0 
1 
1 

c 
0 
0 
1 

z 
0 
0 
0 

Traps occur through vector address 244. Traps occur because of over­
flow, underflow, or divide by zero conditions. 

Following a trap, the general register is unaltered, as are (R), (R + 2), 
(R + 4tand(R + 6~ 
The condition codes in the PS that caused a trap to 244 are set in the 
PS that was used while the FIS instruction was being executed. Fol­
lowing the trap, this PS is pushed onto the stack. The stack must be 
examined following a trap to retrieve the PS and determine the reason 
for the trap. 

Interrupts 
A floating point instruction is aborted if an interrupt request is issued 
before the instruction is near completion. The program counter points 
to the aborted floating point instruction so that the interrupt looks 
transparent. 

FIS Instructions 
Assembler format is: OPR R 

(R) denotes contents of memory location whose address is in R. 

C-2 



Appendix C - FIS Instruction Set 

FADD 
Floating Add 

I 0 I 1 ' 

Operation: 

Condition Codes: 

Description: 

FDIV 
Floating Divide 

I 0 I 1 

15 

Operation: 

Condition Codes: 

Description: 

Note: 

I t 
I 0 '0 

07500R 

0 I 0 I· , , ' 
s 2 0 

[(R + 4), (R + 6)] .. - [(R + 4), (R + 6)] + [(R), (R + 2)] 

N: set if result < O; cleared otherwise 
Z: set if result = O; cleared otherwise 
V: cleared 
C: cleared 

Adds the A argument to the B argument and 
stores the result in the A argument position on 
the stack. General register R is used as the stack 
pointer for the operation. 

A .. -A + B 

I 1 a a 1 
I 

07503R 

3 2 

[(R + 4), (R + 6)] .. - [(R + 4), (R + 6)] / [(R), (R + 2)] 

N: set if result < O; cleared otherwise 
Z: set if result = O; cleared otherwise 
V: cleared 
C: cleared 

Divides the A argument by the B argument and 
stores the result in the A argument position on 
the stack. If the divisor (B argument) is equal to 
zero, the stack is left untouched. 

A .. -A/B 

Tha lSl-11 processors push one word onto the 
stack during execution of the FMUL and FDIV in­
structions and pop the word from the stack 
when completed. Thus, the SP (R6) must point to 

C-3 



FMUL 
Floating Multiply 

I 0 I 1 

15 

Appendix C - FIS Instruction Set 

a read/write memory location; otherwise, a bus 
error (time-out) occurs. 

I I 0 0 ' I 

07502R 

3 2 

Operation: [(R + 4), (R + 6)] .. - [(R + 4), (R + 6)] x [(R), (R + 2)] 

Condition Codes: N: set if result < O; cleared otherwise 
Z: set if result = O; cleared otherwise 
V: cleared 
C: cleared 

Description: Multiplies the A argument by the B argument 
and stores the result in the A argument position 
on the stack. 

FSUB 
Floating Subtract 

I 0 I , 

15 

A .. -A x B 

(refer to note in FDIV) 

1 I 0 0 0 
I 

07501R 

3 2 0 

Operation: [(R + 4), (R + 6)] .. - [(R + 4), (R + 6)] - [(R), (R + 2)] 

Condition Codes: N: set if result < O; cleared otherwise 
Z: set if result = O; cleared otherwise 
V: cleared 
C: cleared 

Description: Subtracts the B argument from the A argument 
and stores the result in the A argument position 
on the stack. 

A ... -A - B 

C-4 



APPENDIX D 

UNIBUS TIMING DIAGRAMS 

In the timing diagrams of this book, signals are drawn as: up while as­
serted, down while de-asserted. The actual voltages on the bus are 
usually the complement. 

POWER UP/DOWN 
The power up, power down timing sequence is shown in the diagram 
below. This diagram is labeled for the LSl-11 Bus; for the UNIBUS, 
BDCOK H becomes BUS DCLO L, BPOK H becomes BUS ACLO L, and 
BINIT L becomes BUS INIT L. 

BINIT L 

BPOI< H 

70ms MIN 

8DCOK H 

DC POWER I 

POWER UP i NORMAL_l____POWER bOWN_~ __ POWER UP 
SEQUENCE----+ POWER -1- SEQUENCE SEQUENCE 

NOTE 
Once a powet down sequence •S slotted, 
11 must be comple1ed before a power-up 
sequence1sstor!ed 

Figure D- i Power Up/Power Down Timing 

ARBITRATION 

B!h OR NPR -------~ 

------Ii ~ss0~~j~~ 

BG, O' NPG i ~ ~mN~~o!,Y VIA 

NORMAL 
POWER 

-----+---ir--li >o[ ~HIGHER PRIORITY 

---- __ _j_ ____ o--..._\ I }! ! : ~;~~~~~D BY DEVICE 

------'l--ff--'-+~11 I : 
SACK 

I i / : l l :;~~RT [ I 
ASSERT RECEl~E CL~ iolrA 
REQUEST GRANT GRA~~ CYCLE) 

Figure D-2 UNIBUS Arbitration Sequence 

D-1 



Appendix D - UNIBUS Timing Diagrams 

Assert Reiquest 
The device wishing to become the bus master asserts a request line. 
This request may be ORed with other requests already present on the 
BRx/NPR line. 

Receive Grant 
Sometime later, the bus arbitrator will issue a grant If no higher priori­
ty device at level BRx or NPR wants the grant, it will be passed to our 
example device. 

Assert SACK 
As soon as our device sees the grant, it asserts SACK to indicate it 
acknowledges its selection as the next bus master. It also removes its 
request 

Clear Grant 
The device's assertion of SACK will cause the arbitrator to remove the 
grant No further grants will be issued until the device removes SACK. 

Data Cycle 
One or more data cycles now follow. 

DATA CYCLES 

DATl/DATIP 
DA Tl/DA TIP need differ only by whether or not CO is asserted. Howev­
er, if a DATIP cycle is being performed, and the bus master will imme­
diately be ready to perform the subsequent DATO, the master may 
choose to hold BBSY & SACK asserted. This will save it the trouble 
(and time) of re-arbitrating tor the bus. This may improve overall sys­
tem performance, as well as that of the device. 

The example below is for a single transfer. 

Negation of Previous BBSY 
During its arbitration for the bus, the device asserted SACK. It now no­
tices that BBSY is de-asserted. 

Assert BBSY 
Since the data section of bus is now available, the device asserts its 
mastership by asserting BBSY. It can now allow arbitration to resume 
by de-asserting SACK. 

Assert A and C 
When a previous SSYN de-asserts, and the new master has asserted 
BBSY, it can now assert Address and Control information. It must wait 
75 ns for the address and control to deskew on the bus, and an addi-

D-2 



SACK 

BBSY 

A+(+ L 

MSYN 

D+ PAR 

SSYN 

DATA 
STROBE 

Appendix D - UNIBUS Timing Diagrams 

"0 

: ! 
I I 

I I 
I ,:,~---

,_ -- -- -~\ r-------; 
,__ ---- -ic---Ji 
1-----~,l I J 

\ I 

r-------fL- I [" 

PREVIOUSLY ASSERTED 
BY DEVICE 

RECEIVED ANO ASSERTED 
BY DEVICE 

ASSERTED BY DEVICE 

: J ! r-_,j 1\, 
>--- --:----r--r-----'1 I 1 ~--__.;r- ASSERTED BY DEVICE 

~----_-_-_-_\!: _ _J_i_i: __ _l: __ __,~lilllllL-_J_ 
, ~ ASSERTED BY SLAVE 

r-------J I ~ : 

r-------->'--1 -~- ---+---F ! ~ASSERTED BY SLAVE 

I I I I : : CONCEPTUAL SIGNAL 

1 1 i----+-I --~,-~: 1 I WITHIN THE MASTER 

NEGATION OF I ASSERT ASSERT RECEIVE STROBE CLEAR CLEAR 
PREVIOUS BBSY I A AND C MSYN SSYN DATA, SSYN A AND C 

ASSERT I I CLEAR I I 

BBSY i 1 MSr i 

Figure D-3 UNIBUS Single Transfer DATl/DATIP Cycle 

tional 75 ns for the slaves to make an address-decoder decision. This 
period is called "front-end deskew". 

Assert MSYN 
The master now asserts MSYN, indicating that an address is on the 
bus and enough time has elapsed for that address to be valid every­
where. If the address successfully selected a slave, the slave begins a 
read operation. This read operation may take an arbitrary amount of 
time up to the bus timeout value. 

Receive SSYN 
When the slave has data, it places that data (and the parity-error infor­
mation) on the bus and asserts SSYN. 

Strobe Data, Negate MSYN 
The reception of SSYN at the master signals that a slave has been ad­
dressed and data is on the bus. The master must wait a minimum of 
75nS, and may then sample the data. This decay is known as "data 
deskew". Once the master strobes in the data, it removes MSYN. 

ClearSSYN 
When the slave receives the negation of MSYN, it wi 11 remove data and 
SSYN from the bus. 

Ciear A and C 
The master must hold the address and control asserted for a minimum 
of 75 ns after the master negates MSYN. This ensures that the "ad-

D-3 



Appendix D - UNIBUS Timing Diagrams 

dress invalid" signal will be seen at all devices prior to the address 
actually becoming invalid. This prevents false selection of devices as 
the address delays. This delay is called "tail-end deskew". 

DATOIDATOB 
These two cycles differ only in the de-assertion/assertion of CO. 

SACK 

BBSY 

A+C + 
DATA 

MSYN 

SS'l'N 

DATA 
STROBE 

~-----

\ 
~------

PREVIOUSLY ASSERTED 
BY DEVICE 

RECEIVED AND ASSERTED 
BY DEVICE 

\ _ _. ...... B\\_ 
\______ ASSERTED BY DEVICE 

r---.\ 
\ 

[--~----+---- ~----ASSERTED BY DEVICE 
~01 . 

I------,\ !~ 

\...------- ~--~--~---;~ \_________ASSERTED BY SLAVE 

CONCEPTUAL SIGNAL 
r--------+----;---~ -------- WITHIN THE SLAVE 

ASSERT 
A,C. 
AND DATA 

I 
I 
I 

ASSERT 
MSYN 

STROBE 
DATA 

Figure D-4 UNIBUS Single Transfer DATO/DATOB Cycles 

Only the differences between DA Tl/DA TIP & DA TO/DA TOB will be de­
scribed. 

Assert A, C, and Data 
The master asserts Address, Control and Data after its assertion of 
BBSY and the de-assertion of any previous SSYN. 

Assert MSYN 
Front-end deskew remains at 150 ns total. Note that it now "contains" 
the 75 ns required by the data to deskew. 

Strobe Data 
After decoding its address and MSYN, the slave strobes in the data. It 
then asserts SSYN. The master may now remove the data but must 
obey the tail-end deskew rules for address and control. 

D-4 



Appendix D - UNIBUS Timing Diagrams 

VECTOR-PASSING 

SACK 

BBSY 

DATA 

INTR 

SSYN 

VECTOR 
STROBE 

1- - - - - ~ ,----------' 

r-----~~ 
I 

PREVIOUSLY ASSERTED 
BY DEVICE 

f--- ---..\ 

!------'---------' 

F-----." r· 
~--- I ;::a ASSERTED BY DEVICE 

r-----\ I l ~ ASSERTED ev SLAVE 

f------'---+--1r---+-': \.....____!PROCESSOR) 

I 
I 
I 

ASSERT 
DATA, 
INTR 

:--------- ~~~~l~TS~~~:IGNAL 
I (PROCESSOR) 

I 
I 

STROBE 
VECTOR 

Figure D·5 UNIBUS Vector-Passing Cycle 

Only the differences between vector-passing and DA Tl/DA TIP will be 
described. 

Assert Data, I NTR 
The master asserts Data and lntr after its assertion of BBSY and the 
de-assertion of any previous SSYN. 

Strobe Vector 
The slave (processor) must deskew the vector. After a 75 ns delay from 
its reception of I NTR, the processor strobes in the vector and asserts 
SSYN. 

Note that no address was passed so no front-end/tail-end deskews ex­
ist. Note also that this is the one case where a slave must perform the 
deskewing operation. 

Notes 

1. /~prospective master may assert BBSY as soon as the previous 
master releases it. However, the new master must not assert any 
other lines until the previous slave releases SSYN. Because of 
this, many masters do not assert BBSY until both BBSY and SSYN 
are unasserted. They then simultaneously assert BBSY, Address, 
and Control (and Data, if DATO/DATOB). 

2. A master may operate as slowly as its design requires, however, 
you'll pay the penalty in system performance. Optimize the design 
of masters. 

D·5 



Appendix D - UNIBUS Timing Diagrams 

3. A slave may operate as slowly on reads as the master will permit 
(via the value of its time-out delay). The slave takes this time by 
delaying the assertion of SSYN. 

4. A slave may operate as slowly on writes as necessary. It must 
strobe in the data, and return SSYN within the time-out window, 
but it can then delay all other bus operations by holding SSYN as­
serted. No new master will use the data section of the bus while 
SSYN is asserted. However, you will pay the penalty in system 
performance for this technique; optimize the design of slaves. 

MUL Tl CYCLE TRANSFERS 
Once a device becomes master it is sole controller of the UNIBUS until 
it chooses to release it. This implies both power and responsibility. 

Power 
A very fast master can significantly improve its performance (and pos­
sibly system performance) by performing multiple data cycles per arbi­
tration of the bus. These multiple cycles may be: 
5. A DATO/DATOB following a DATIP. 

6. A block of DATl/DATIPs, DATO/DATOBs, or DATIP/DATO/DATOB 
pairs. 

Responsibility 
The designer of the master must be sensitive to that device's impact 
on the system as a whole. The master must not hold the bus so long 
that other devices cannot get the bus as they need it (for OMA or for 
passing interrupt vectors). Directly monitoring the bus-request lines is 
a useful dynamic technique. Alternatively, the designer should choose 
to only do a small number (1-4) of data cycles per bus arbitration. 

Implementation 
Ordinarily (for single data cycle bus cycles), the master asserts BBSY 
and releases SACK at the beginning of the data cycle. The bus is re­
arbitrated, a new propective master chosen. At the completion of the 
data cycle, the master releases BBSY and the bus is passed to the 
new master. 

A multicycle master, on the other hand, holds SACK asserted until the 
beginning of its last data cycle. This assures that the prospective mas­
ter is chosen based on the most recent arbitration data (rather than 
the data from n cycles ago). 

In addition, after asserting BBSY, the multicycle master never re­
leases it until the completion of the last data cycle. This ensures that 
the master remains in possession of the bus throughout the data 
cyles. 

D-6 



SACIC 

BBSY 

MSYN 

Appendix D - UNIBUS Timing Diagrams 

~~~---t-~~~~~~~~~~~~~---1~ 
I I

TAKE BUS

'" WORD

I
I
I
I

2od
WORD ''" WORD

~
: r-f\ i

r-+--1 : Y--
1 I I
I 4th I
I WORD 1

RELEASE RELEASE
SACIC BUS

Figure D-6 Simplified Multicycle Timing Diagram

Take the bus, but don't allow re-arbitration yet.

Release SACK, allowing arbitration of the bus based on current re­
quests.

Release BBSY, allowing the next master to take the data section of
the bus.

D-7

APPENDIX E

LSl·11 BUS TECHNICAL SPECIFICATIONS

The LSl-11 Bus is the low-end member of DIGITAL's bus family. All
DIGITAL microcomputers use the LSl-11 Bus. However, in order to use
the 22-bit addressing capabilities of the LSl-11/23, the MICRO/PDP-11,
and the PDP-11/23-PLUS, the extended LSl-11 Bus is required.

The LSl-11 Bus consists of 42 bidirectional and 2 unidirectional signal
lines. These form the lines along which the processor, memory, and If
0 devices communicate with each other.

Addresses, data, and control information are sent along these signal
lines, some of which contain time-multiplexed information. The lines
are divided as follows:
19 Sixteen multiplexed data/address lines - BDAL<15:00>

•Two multiplexed address/parity lines - BDAL<17:16>

• Four extended address lines - BDAL<21:18>
e Six data transfer control lines - BBS?, BOIN, BDOUT, BRPLY,

BSYNC, BWTBT

@ Six system control lines - BHAL T, BREF, BEVNT, BINIT, BDCOK,
BPOK

., Ten interrupt control and direct memory access control lines -
BIAKO, BIAKI, BIRQ4, BIRQ5, BIRQ6, BIRQ7, BDMGO, BDMR,
BSACK, BDMGI

In addition, a number of power, ground, and spare lines have been de­
fined for the bus. For a detailed description of these lines, please refer
to Table E-1.

The discussion in this chapter applies to the general 22-bit physical
address capability. In cases where modules utilize 16- or 18-bit physi­
cal address space, this discussion applies to the I ines that are utilized
by those modules.

Most LSl-11 Bus signals are bidirectional and use terminations for a
negated (high) signal level. Devices connect to these lines via high-im-

E-i

Appendix E - LS/-11 Bus Technical Specifications

pedance bus receivers and open collector drivers. The asserted state
is produced when a bus driver asserts the line low. Although bidirec­
tional lines are electrically bidirectional (any point along the line can
be driven or received), certain lines are functionally unidirectional.
These lines communicate to or from a bus master (or signal source),
but not both. Interrupt acknowledge (BIAK) and direct memory access
grant (BDMG) signals are physically unidirectional in a daisy-chain
fashion. These signals originate at the processor output signal pins.
Each is received on device input pins (BIAKI or BDMGI) and condition­
ally retransmitted via device output pins (BIAKO or BDMGO). These
signals are received from higher-priority devices and are retransmitted
to lower-priority devices along the bus, establishing the position-de­
pendent priority scheme.

Master/Slave Relationship
Communication between devices on the bus is asynchronous. A mas­
ter/slave relationship exists throughout each bus transaction. At any
time, there is one device that has control of the bus. This controlling
device is termed the bus master. The master device controls the bus
when communicating with another device on the bus, termed the
slave. The bus master (typically the processor or a DMA device) initi­
ates a bus transaction. The slave device responds by acknowledging
the transaction in progress and by receiving data from, or transmitting
data to, the bus master. LSl-11 Bus control signals transmitted or
received by the bus master or bus slave device must complete the
sequence according to bus protocol.

The processor controls bus arbitration, i.e., which device becomes bus
master at any given time. A typical example of this relationship is the
processor, as master, fetching an instruction from memory, which is
always a slave. Another example is a disk, as master, transferring data
to memory as slave. Communication on the LSI- i 1 Bus is interlocked
so that for certain control signals issued by the master device, there
must be a response from the slave in order to complete the transfer. It
is the master/slave signal protocol that makes the LSl-11 Bus asyn­
chronous. The asynchronous operation precludes the need for syn­
chronizing with, and waiting for, clock pulses.

Since bus cycle completion by the bus master requires response from
the slave device, each bus master must include a time-out error circuit
that will abort the bus cycle if the slave device does not respond to the
bus transaction within iO microseconds. The actual time before a
time-out error occurs must be longer than the reply time of the slowest
peripheral or memory device on the bus.

See Table E-1 for more detail on signal functions.

E-2

Appendix E - LSl-11 Bus Technical Specifications

Table E·1 Signal Assignments

DATA AND ADDRESS

Nomenclature
BOA LO
BOAL1
BOAL2
BOAL3
BOAL4
BOALS
BOAL6
BDAL7
BDAL8
BOAL9
BOAUO
BOAL 11
BOAL 12
BOAL13
BOAL 14
BOAL 15
BOAL 16
BOAL 17
BOAL18
BOAL 19
BOAL20
BOAL21

CONTROL

Nomenclature

BDOUT
BRPLY
BOIN
BSYNC
BWTBT
BBS7

81RQ7
BIRQ6
BIRQ5

E-3

Pin Assignment
AU2
AV2
BE2
BF2
BH2
BJ2
BK2
BL2
BM2
BN2
BP2
BR2
BS2
BT2
BU2
BV2
AC1
AD1
BC1
801
BE1
BF1

Plrr1 Assignment
Data Control
AE2
AF2
AH2
AJ2
AK2
AP2
lntem.1pt Control
BP1
AB1
AAi

Appendix E - LSl-11 Bus Technical Specifications

BIRQ4 AL2
BIAKO AN2
BIAKI AM2

OMA C@ntrol
8DMR ANi
8SACK BN1
IBDMGO AS2
BMDGI AR2

System Control
SHALT AP1
8REF AR1
BEV NT 8R1
81NIT AT2
8DCOK 8A1
BPOK 881

POWER AND GROUND

Nomenclature
+58 (battery) or
+ 128(battery)
+128
+58
+5
+5
+5
+12
+12
-12
-12
GND
GND
GND
GND
GND
GND
GND
GND

E-4

Pin Assignment
AS1

BS1
AV1
AA2
8A2
BV1
AD2
802
AB2
882
AC2
AJ1
AM1
AT1
BC2
8J1
BM1
BT1

Appendix E - LS/-11 Bus Technical Specifications

SPARES

Nomenclature
SSpare1
SSpare3
SSpare8
SSpare2
MSpareA
MSpareB
MSpareB
MSpareB
PSpare1
ASpare2

Pin Assignment
AE1
AH1
BH1
AF1
AK1
AL1
BK1
BL 1
AU1
BU1

DATA TRANSFER BUS CYCLES
Data transfer bus cycles are listed and defined in Table E-2.

Table E-2 Data Transfer Operations

Function (with
Bus Cycle Respect to the
Mnemonic Description Bus Master)

DATI Data word input Read

DATO Data word output Write

DATOB Data byte output Write byte

DATIO Data word Read .. modify-write
input/output

DATIOB Data word input/ Read-modify-write
byte output byte

DATBI Data block input Read block

DATBO Data block output Write block

These bus cycles, executed by bus master devices, transfer 16-bit
words or 8-bit bytes to or from slave devices. In block mode, multiple
words may be transferred to sequential word addresses, starting from
a single bus address. The bus signals listed in Table E-3 are used in
the data transfer operations described in Table E-2.

E-5

Appendix E - LSl-11 Bus Technical Specifications

Table E-3 Bus Signals For Data Transfers

Mnemonic

BDAL<21:00> L

BSYNC L

BOIN L

BDOUT L

BRPLY L

BWTBTL

BBS?

Description

22 Data/address
lines

Bus Cycle Control

Data input indicator

Data output indi-
cat or

Slave's acknowl-
edge of bus cycle

Write/byte control

1/0 device select

Fi.mction

BDAL<15:00> L
are used for word
and byte transfers.
BDAL<17:16> L
are used for extend­
ed addressing,
memory parity error
(16), and memory
parity error enable
(17) functions.
BDAL<21:18> L
are used for extend­
ed addressing be­
yond 256 KB.

Indicates bus trans­
action in progress.

Strobe signals.

Strobe signals.

Strobe signals.

Control signals.

Indicates address is
in the 1/0 page.

Data transfer bus cycles can be reduced to five basic types: DATI,
DATO(B), DATIO(B), DATBI, and DATBO. These transactions occur be­
tween the bus master and one slave device selected during the ad­
dressing portion of the bus cycle.

Bus Cycle Protocol
Before initiating a bus cycle, the previous bus transaction must have
been completed (BSYNC L negated) and the device must become bus
master. The bus cycle can be divided into two parts, an addressing
portion, and a data transfer portion. During the addressing portion, the
bus master outputs the address for the desired slave device, memory
location or device register. The selected slave device responds by
latching the address bits and holding this condition for the duration of

E-6

Appendix E - LS/-11 Bus Technical Specifications

the bus cycle until BSYNC L becomes negated. During the data trans­
fer portion, the actual data transfer occurs.

Device Addressing - The device addressing portion of a data transfer
bus cycle comprises an address setup and deskew time and an ad­
dress hold and deskew time. During the address setup and deskew
time, the bus master does the following:
• Asserts BDAL<21 :00> L with the desired slave device address

bits
• Asserts BBS? L if a device in the 1/0 page is being addressed
•Asserts B\/\/TBT L if the cycle is a DATO(B) or DATBO bus cycle

During this time the address, BBS? L, and BWfBT L signals are assert­
ed at the slave bus receiver for at least 75 ns before BSYNC goes ac­
tive. Devices in the 1/0 page ignore the nine high-order address bits
BDAL<21:13> and instead decode BBS? L along with the thirteen
low-order address bits. An active BWTBT L signal during address
setup time indicates that a DATO(B) or DATBO operation follows,
while an inactive BWTBT L indicates a DATI, DATBi or DATIO(B)opera­
tion.

The address hold and deskew time begins after BSYNC Lis asserted.

The slave device uses the active BSYNC L bus receiver output to clock
BOAL address bits, BBS? L, and BWTBT L into its internal logic.
BDAL<21:00> L, BBS? L, and BWTBT L will remain active for 25 ns
(minimum) after BSYNC L bus receiver goes active. BSYNC L remains
active for the duration of the bus cycle.

Memory and peripheral devices are addressed similarly except for the
way the slave device responds to BBS? L Addressed peripheral devic­
es must not decode address bits on BDAL<21:13> L. Addressed pe­
ripheral devices may respond to a bus cycle when BBS? Lis asserted
(low) during the addressing portion of the cycle. When asserted, BBS?
L indicates that the device address resides in the 1/0 page (the upper
4K address space)_ Memory devices generally do not respond to ad­
dresses in the 1/0 page; however, some system applications may per­
mit memory to reside in the 1/0 page for use as OMA buffers, read-only
memory bootstraps or diagnostics, etc.

DAT! - The DATI bus cycle, illustrated in Figure E-1, is a read opera­
tion. During DATI, data are input to the bus master_ Data consist of 16-
bit word transfers over the bus. During the data transfer portion of the
DATI bus cycle, the bus master asserts BOIN L 100 ns minimum after
BSYNC Lis asserted. The slave device responds to BOIN L active as
follows:

E-7

Appendix E - LS/-11 Bus Technical Specifications

• Asserts BRPLY L 0 ns minimum (8 µ,s maximum to avoid bus
timeout) after receiving BOIN Land 125 ns (maximum) before BOAL
bus driver data bits are valid.
Asserts BOAL<21:00> L with the addressed data and error infor­
mation 0 ns minimum after receiving BOIN and 125 ns maximum af­
ter assertion of BRPL Y.

When the bus master receives BRPLY L, it does the following:
e Waits at least 200 ns deskew time and then accepts input data at

BOAL<17:00> L bus receivers. BOAL<17:16> L are used for
transmitting parity errors to the master.

oi Negates BOIN L 200 ns (minimum) to 2 microseconds (maximum)
after BRPL Y L goes active.

The slave device responds to BOIN L negation by negating BRPLY L
and removing read data from BOAL bus drivers. BRPL Y L must be
negated 100 ns (maximum) prior to removal of read data. The bus mas­
ter responds to the negated BRPL Y L by negating BSYNC L.

Conditions for the next BSYNC L assertion are as follows:
• BSYNC L must remain negated for 200 ns (minimum)

oi BSYNC L must not become asserted within 300 ns of previous
BRPL Y L negation

Figure E-2 illustrates OATI bus cycle timing.

NOTE
Continuous assertion of BSYNC L retains control of
the bus by the bus master, and the previously ad­
dressed slave device remains selected. This is done
for DATIO(B) bus cycles where DATO or DATOB fol­
lows a DATI without BSYNC L negation and a sec­
ond device addressing operation. Also, a slow slave
device can hold off data transfers to itself by keep­
ing BRPLY L asserted, which will cause the master
to keep BSYNC L asserted.

DATO(B) - DATO(B), illustrated in Figure E-3, is a write operation.
Data are transferred in 16-bit words (DATO) or 8-bit bytes (OATOB)
from the bus master to the slave device. The data transfer output can
occur after the addressing portion of a bus cycle when BWTBT L has
been asserted by the bus master, or immediately following an input
transfer part of a DATIO(B) bus cycle.

E-8

Appendix E - LSl-11 Bus Technical Specifications

BUS MASTER
(PROCESSOR OR OE'JICE)

ADDRESS DEVICE MEMORY
•ASSERT BOAL <21:00> L WITH

ADDRESS AND
•ASSERT BBS7 IFTHEADDRESS

IS IN THE 1/0 PAGE -

SLAVE
(MEMORY OR DEVICE)

•ASSERT BSYNC L --- ----- ----...

REQUEST OATA ,..--
• REMOVE THE ADDRESS FROM

BOAL <21:00> LAND NEGATE BBS7
L

• ASSERT BOIN L ---

DECODE ADDRESS

• STORE"DEVICE SELECTED"
OPERATION

INPUT DATA

• PLACE DATA ON BOAL< 15:00> L

----· ASSERT BRPLY L

~-------
TERMINATE INPUT TRANSFER
• ACCEPT DATA AND RESPOND

BY NEGATING BOIN L

TERMINATE BUS CYCLE
• NEGATE BSYNC L

OP~RATiON COMPLETED

- -- ------ 11 NEGATE BRPLY L

Figure E-1 DATI Bus Cycle

The data transfer portion of a DATO(B) bus cycle comprises a data
setup and deskew time and a data hold and deskew time.

During the data setup and deskew time, the bus master outputs the
data on BDAL<15:00> Lat least 100 ns after BSYNC Lis asserted if
the transfer is a word transfer. If it is a word transfer, the bus master
negates BWTBT L at least 100 ns after BSYNC L assertion. BWTBT L
remains negated for the length of the bus cycle. If the transfer is a
byte transfer, BWTBT L remains asserted. If it is the output of a DA­
TIOB, BTWBT L becomes asserted and lasts the duration of the bus
cycle.

E-9

T/R DAL

T SYNC

DIN

R RPLY

8$7

T WTBT

RIT DAL

R SYNC

Of N

T RPLY

R BS 7

R WTBT

Appendix E - LSl-11 Bus Technical Specifications

(4) (4) R DATA

200 nsMAX~

100ns M!N i;:
8µ.1 MAX

=:1150 ns MIN t;:: !OOns MJN

~ x (4)

(4) (4)

TIMING AT MASTER DEVICE

(4)

75ns
MIN

(4)

25ns MIN

~ (4)

TIMING AT SLAVE DEVICE

NOTES:

I. Timino 1hown ol Moator ond SlovG Device
Bua Driver inpul1 and Bull Ree1iver Output;.

2. Si111nol nom11 profhtt11 ar1 cblinod below:

T • Bu11 Drlnr Input
R " Bu; Receiver Output

3. Bus Oriur Output and Bus Receiver Input

signo I names include o "B" pref il

4. Don't core condition.

Figure E-2 DATI Bus Cycle Timing

E-10

(4)

Appendix E - LS/-11 Bus Technical Specifications

BUS MASTER
!PROCESSOR OR DEVICE)

ADDRESS DEVIC~ MEMORY
•ASSERT BOAL <21:00> L WITH

ADDRESS AND

o ASSERT BBS? IF THE ADDRESS
IS IN THE 1/0 PAGE

• ASSERT BWTBT L !WRITE

CYCLE I
• ASSERT BSYNC L ---

OUTPUT DATA
e REMOVE THE ADDRESS FROM

BOAL <21:00> LAND NEGATE BBS?
LANDBWTBTL

e PLACE DATA ON BDAL < 15:00> L

• ASSERT BDOUT L

TERMINATE OUTPUT TRANSFER -

• NEGATE BDOUT L IAND BWTBT L
IF A DATOB BUS CYCLE)

--- ----- ---

---- ---------

• REMOVE DATA FROM BOAL <15:00> L--

----- -----

-----

----

SLAVE
!MEMORY OR DEVICE!

DECODE ADDRESS

TAKE DATA
o RECEIVE DATA FROM BOAL

LINES

- • ASSERT BRPLY L --
----- ---OPERATION COMPLETED

NEGATE BRPLY L

TERMINATE BUS CYCLE
NEGATE BSYNC L

Figure E-3 DATO or DATOB Bus Cycle

During a byte transfer, BOAL <00> l selects the high or low byte.
This occurs while in the addressing portion of the cycle. !f asserted,
the high byte (BDAL<15:08> l) is selected; otherwise, the low byte
(BDAL<07:00> l) is selected. An asserted BOAL 16 Lat this time will
force a parity error to be written into memory if the memory is a parity­
type memory. BOAL 17 Lis not used for write operations. The bus mas­
ter asserts BDOUT lat least 100 ns after BOAL and BwrBT L bus driv­
ers are stable. The slave device responds by asserting BRPLY l within
10 microseconds to avoid bus time-out. This completes the data setup
and deskew time.

E-11

T DAL

T SYNC

T OOUT

R RPL Y

T BS 7

T WTBT

R DAL

R SYNC

R DOUT

T RPL'I'

R BS 7

R WTBT

Appendix E - LSl-11 Bus Technical Specifications

----- ----------=:1 Ons MIN I
~ TADOR ¥ T DATA l

1-,,0,.11000. I'-- IOOo. ~
~MIN MIN r-- MIN

(4)

8µ.s ~
MAX I~-----~

141

ASSERTION ~ BYTE (4)

100ns t
MIN

------1 \OOns MIN i.:----------

NOTES

75ris
MIN

25ns
MIN

TIMING AT MASTER DEVICE

R DATA

25ns MIN

25ns
MIN

TIMING AT SLAVE DEVICE

I T1m1n11 shown a! Master ond Slav!! Device
Bus Driver lnpu15 and Bus Receiver Outputs

2 S11~nol name prtl1Kts are dalined belol!I

T : Bus Driver Input
R o Bus Receiver Output

3 Bus 011ver Output and Bus Receiver Input

s•11nol names rnclude a "s" pref1K

4 Don't core con'3111on

(4)

~25nsMIN

(4)

Figure E-4 DATO or DATOB Bus Cycle Timing

During the data hold and deskew time the bus master receives BRPL Y
Land negates BDOUT L. BDOUT L must remain asserted for at least
150 ns from the receipt of BRPLY L before being negated by the bus
master. BDAL<17:00> L bus drivers remain asserted for at least 100
ns after BDOUT L negation. The bus master then negates BDAL in­
puts.

E-12

Appendix E - LSl-11 Bus Technical Specifications

During this time, the slave device senses BDOUT L negation. The data
are accepted and the slave device negates BRPL Y L. The bus master
responds by negating BSYNC L. However, the processor will not
negate BSYNC L for at least 175 ns after negating BDOUT L. This com­
pletes the DATO(B) bus cycle. Before the next cycle BSYNC L must
remain unasserted for at least 200 ns. Figure E-4 illustrates DATO(B)
bus cycle timing.

DATIO(B) - The protocol for a DATIO(B) bus cycle is identical to the
addressing and data transfer portions of the DATI and DATO(B) bus
cycles, and is illustrated in Figure E-5. After addressing the device, a
DATI cycle is performed as explained earlier; however, BSYNC Lis not
negated. BSYNC L remains active for an output word or byte transfer
[DATO(B)). The bus master maintains at least 200 ns between BRPLY L
negation during the DATI cycle and BDOUT L assertion. The cycle is
terminated when the bus master negates BSYNC L, as described for
DATO(B). Figure E-6 illustrates DATIO(B) bus cycle timing.

DIRECT MEMORY ACCESS
The direct memory access (DMA) capability allows direct data transfer
between 1/0 devices and memory. This is useful when using mass stor­
age devices (e.g., disks) that move large blocks of data to and from
memory. A DMA device needs to know only the starting address in
memory, the starting address in mass storage, the length of the trans­
fer, and whether the operation is read or write. When this information
is available, the DMA device can transfer data directly to or from mem­
ory. Since most OMA devices must perform data transfers in rapid
succession or lose data, DMA devices are provided the highest priori­
ty.

DMA is accomplished after the processor (normally bus master) has
passed bus mastership to the highest-priority DMA device that is re­
questing the bus. The processor arbitrates all requests and grants the
bus to the DMA device located electrically closest to it. A DMA device
remains bus master indefinitely until it relinquishes its mastership.
The following control signals are used during bus arbitration.

BOMGI L OMA Grant Input
BOMGO L OMA Grant Output
BOMR L DMA Request Line
BSACK L Bus Grant Acknowledge

OMA Protocol
A OMA transaction can be divided into three phases:

0 Bus mastership acquisition phase

E-13

Appendix E - LSl-11 Bus Technical Specifications

BUS MASTER
!PROCESSOR OR DEVICE)

ADDRESS DEVICE MEMORY
•ASSERT BOAL <21:00> L WITH

ADDRESS

• ASSERT BBS7 IF THE ADDRESS
IS IN THE 1/0 PAGE

SLAVE
(MEMORY OR DEVICE)

• ASSERT BSYNC L
--- DECODE ADDRESS

REQUEST DATA
• REMOVE THE ADDRESS FROM

BOAL <21:00> L

• STORE "DEVICE SELECTED"

OPERATI01\J

• ASSERT BOIN L
---- - --- INPUT DATA

TERMINATE INPUT TRANSFER
• ACCEPT DATA AND RESPOND BY

TERMINATING BOIN l

OUTPUT DATA

----...

e PLACE OUTPUT DATA ON BOAL< 15~00 ::-- L
• IASSE RT BWTBT L IF AN OUTPUT

BYTE TRANSFER)

• ASSERT BDOUT L

•
TF.AMINATE OUTPUT TRANSFER

• flEMOVE DATA FROM BOAL LINES
• NEGATE BDOUT L

TERMINATE BUS CYCLE
• NEGATE BSYNC l

!AND BWTBT L IF IN
A DATIOB BUS CYCLEl

.... -

----...

• PLACE DATA ON BOAL..::: 15:00 L

• ASSERTHRPLYL

COMPLETE INPUT TRANSFER
• REMOVE DATr\
• NEGATE BRPL Y l

TAKE DATA
• RECEIVE DATA FROM BOAL LINES
o ASSERT BRPLY L

OPERATION COMPLETED

• NEGATE BRPLY L

Figure E-5 DATIO or DATIOB Bus Cycle

o Data transfer phase

• Bus mastership relinquish phase

During the bus mastership acquisition phase, a OMA device requests
the bus by asserting BDMR L. The processor arbitrates the request
and initiates the transfer of bus mastership by asserting BDMGO L.

E-14

RIT DAL.

T SYNC

T DOUT

R RPLY

R/T DAL

R SYNC

R OOUT

R DIN

T RPL Y

R 657

Appendix E - LSl-11 Bus Technical Specifications

(4) ASSERTION - (4)

TIMING AT MASTER DEV!CE.

T DATA (4) R DATA (4)

~25ns MIN

100ns MAX

25ns MIN

I ~------------~~--'-'"-'-"-'"-----~C:25iu MIN
(4)

Z5ns MIN

TIMING AT SLAVE DEVICE

NOTES

I T1m1n11 sho"m at Requu11ng Device

Bui Driver Inputs ono Bus Aecetver Oulpuh

2 S19nol name profiaes are defined below

T • 8111 Driver lnpul
R = Bus Receiver Output

3. Bus Oriv<iir Oulpul and Bu5 R::ice1ver Input

si11nol namon 1nclud1 a ~B • prnli~

4 Don'I core corid1!1on

ASSERT ION = BYTE

Figure E-6 DATIO or DATIOB Bus Cycle Timing

14)

The maximum time between BDMR L assertion and BDMGO L asser·
tio11 is OMA latency. This time is processor-dependent. BDMGO U
BDMGI l is one signal that is daisy-chained through each module in
the backplane. It is driven out of the processor on the BDMGO l pin,

E-15

Appendix E - LS/-11 Bus Technical Specifications

enters each module on the BDMGI L pin and exits on the BDMGO L
pin. This signal passes through the modules in descending order of
priority until it is stopped by the requesting device. The requesting de­
vice blocks the output of BMDGO Land asserts BSACK L. If BDMR L
is continuously asserted, the bus will be hung.

During the data transfer phase, the OMA device continues asserting
BSACK L. The actual data transfer is performed as described earlier.

The OMA device can assert BSYNC L for a data transfer 250 ns (mini­
mum) after it receives BDMGI Land its BSYNC L bus receiver becomes
negated.

PROCESSOR
(MEMORY IS SLAVE)

GRANT BUS CONTROL
• NEAR THE END OF THE

CURRENT BUS CYCLE
(BRPLY LIS NEGATED)
ASSERT BDMGO LAND
INHIBIT NEW PROCESSOR
GENERATED BYSNC L FOR
THE DURATION OF THE
DMA OPERATION.

TERMINATE GRANT
SEQUENCE
• NEGATE BDMGO LAND

-
-

--
WAIT FOR OMA OPERATION -.._
TO BE COMPLETED

RESUME PROCESSOR
OPERATION
• ENABLE PROCESSOR­

GENERATED BSYNC L
/PROCESSOR IS BUS
MASTER) OR ISSUE
ANOTHER GRANT IF BDMR
L IS ASSERTED.

- ----

-

BUS MASTER
(CONTROLLER)

REQUEST BUS

---- - • ASSERT B DMR L

---....

ACKNOWLEDGE BUS
MASTERSHIP
• RECEIVE BDMG
• WAIT FOR NEGATION OF

BSYNC LAND BRPLY L
• ASSERT B SACK L
• NEGATE B DMR L

EXECUTE A OMA DATA
TRANSFER
•ADDRESS MEMORY AND

TRANSFER UP TO 4 WORDS
OF DATA AS DESCRIBED
FOR DAT/. OR DATO BUS
CYCLES

• RELEASE THE BUS BY
TERMINATING BSACK L
(NO SOON ER THAN
NEGATION OF LAST BRPLY
L) AND BSYNC L.

WAIT 4 µs OR UNTIL
ANOTHER FIFO TRANSFER
IS PENDING BEFORE
REQUESTING BUS AGAIN.

Figure E-7 OMA Protocol

E-16

Appendix E - LSl-11 Bus Technical Specifications

During the bus mastership relinquish phase, the OMA device relinqu­
ishes the bus by negating BSACK L. This occurs after completing (or
aborting) the last data transfer cycle (BRPL Y L negated). BSACK L
may be negated up to a maximum of 300 ns before negating BSYNC L.
Figure E-7 illustrates the OMA protocol and Figure E-8 illustrates OMA
request/grant timing.

T DMR

R DMG

T SACK

R/T SYNC

R/T RPLY

T DAL

NOTE
If multiple data transfers are performed during this
phase, consideration must be given to the use of the
bus for other system functions, such as memory re­
fresh (if required).

~ DMA LATENCY

r---+1--~ ;-r-r-/ITTT/1171
I I I I I I I I I I I

tons MIN.

SECOND
REQUEST

r- r- 300 ns MAX

}-------+---:.

t- 0 ns MIN r- ans MIN

AODR

r- \OOns MAX

,---------;.
DATA

(ALSO BS7, -------~~--~ ~------~---­
WTBT I REF) NOTES:

1. Timing shown al requesting device bu:i. drivar inputs and bu1 receiver outputs.

2. Signal name prefius are defined below:
T =Bus Driver Input
R: Bus Receiver Output

3. Bus Driver Output and Bus Receiver Input signal names include o "B" prefix

Figure E-8 OMA Request/Grant Timing

BLOCK MO[iJIE DMA
for increased throughput, block mode OMA may be implemented on a
device for use with memories that support this type of transfer. In a
block mode transaction, the starting memory address is asserted, fol­
lowed by data for that address, and data for consecutive addresses.

E-17

Appendix E - LS/-11 Bus Technical Specifications

By eliminating the assertion of the address tor each data word, the
transfer rate is almost doubled. The OATBI and DATBO bus cycles are
described below.

DATBI
The device addressing portion of the cycle is the same as described
earlier for other bus cycles. The bus master gates BOAL < 21 :00 >,
BBS?, and the negation of BWTBT onto the bus.

The master asserts the first BOIN 100 ns after BSYNC, and asserts
BBS? a maximum of 50 ns after asserting BOIN for the first time. BBS?
is a request to the slave for a block mode transfer. BBS? remains as­
serted until a maximum of 50 ns after the assertion of BOIN fort he last
time. BBS? may be gated as soon as the conditions for asserting BOIN
are met.

The slave ass~rts BRPLY a minimum of 0 ns (8 µ,s maximum to avoid
bus timeout) after receiving BOIN. It asserts BREF concurrently with
BRPLY if it is a block mode device capable of supporting another
BOIN after the current one. The slave gates BOAL< 15:00> onto the
bus a minimum of O ns after the assertion of BOIN and 125 ns maxi­
mum after the assertion of BRPL Y.

The master receives the stable data from 200 ns maximum after the
assertion of BRPL Y until 20 ns minimum after the negation of BOIN. It
negates BOIN a minimum of 200 ns after the assertion of BRPLY.

The slave negates BRPLY a minimum of 0 ns after the negation of
BOIN. If BBS? and BREF are both asserted when BRPLY is negated,
the slave prepares tor another BOIN cycle. BBS? is stable from i 25 ns
after BOIN is asserted until 150 ns after BRPLY is negated. The master
asserts BOIN a minimum of 150 ns after BRPLY is negated and the
cycle is continued as before. (BBS? remains asserted and the slave
responds to BOIN with BRPLY and BREF.) BREF is stable from 75 ns
after BRPLY is asserted until a minimum of 20 ns after BOIN is negat­
ed.

If BBS? and BREF are not both asserted when BRPL Y is negated, the
slave removes the data from the bus a minimum of 0 ns and 100 ns
maximum after negating BRPLY. The master negates BSYNC a mini­
mum of 250 ns after the assertion of the last BRPLY and a minimum of
0 ns after the negation of that BRPL Y.

DATBO
The device addressing portion of the cycle is the same as described
earlier. The bus master gates BOAL <21:00>, BBS?, and the assertion
of BWTBT onto the bus.

E-i8

Appendix E - LSl-11 Bus Technical Specifications

SIGNALS AT BUS MASTER Times are min. except where ,,.,, denotes max,

TBS7

TSYNC

T DIN

R RPLY
R REF

I t1

t1

t2

t3

t4

t5

t6

t7

t8

t9

T cell

100

t2 1 ,~ I ,5 I ;7 ;9 "41 t5 I I i i t3 I I t6 t8 I
I I I

address to T SYNC 150ns MIN.

address hold 100ns min

T SYNC to T DIN 100ns min

T DIN to R RPLY

T (drive)+ T (prop) + T {re:ceive) + T (delay)

+ T (drive) + T (prop)+ T (receive)

R RPL Y to data 200ns max

R APL Y to T DIN 200ns min

T DIN to R APL Y
T (drive)+ (prop)+ T (receive) + T (delay)

+ T (drive+ T (prop) + T (receive)

R RPLYtodata

R RPLY toT DIN

t4 + t6 + t7 + t9

Ons min

150ns min

-since t6 must be> t5 for master
to have valid data · and t9 >tB

Figure E-9 DATBI Bus Cycle Timing

A minimum of 100 ns after BSYNC is asserted, data on BOAL< 15:00>
and the negated BWTBT are put onto the bus. The master then asserts
BDOUT a minimum of 100 ns after gating the data.

The slave receives stable data and BWTBT from a minimum of 25 ns
before the assertion of BDOUT to a minimum of 25 ns after the nega­
tion of BDOUT. The slave asserts BRPLY a minimum of 0 ns after re­
ceiving BDOUT. It also asserts BREF concurrently with BRPLY if it is a
block mode device capable of supporting another BDOUT after the
current one.

E-19

Appendix E - LSl-11 Bus Technical Specifications

The master negates BDOUT 150 ns minimum after the assertion of
BRPLY. If BREF was asserted when BDOUT was negated and the mas­
ter wants to transmit more data in this block mode cycle, then the new
data is gated onto the bus 100 ns minimum after BDOUT is negated.
BREF is stable from 75 ns maximum after BRPLY is asserted until 20
ns minimum after BDOUT is negated. The master asserts BDOUT 100
ns minimum after gating new data onto the bus and 150 ns minimum
after BRPL Y negates. The cycle continues as before.

If BREF was not asserted when BDOUT was negated or if the bus mas­
ter does not want to transmit more data in this cycle, then the master
removes data from the bus a minimum of 100 ns after negating
BDOUT. The slave negates BRPLY a minimum of 0 ns after negating
BDOUT. The bus master negates BSYNC a minimum of 175 ns after
negating BDOUT, and a minimum of O ns after the negation of BRPLY.

SIGNAL AT BUS MASTER Times are min. except where,,.,, denotes max.

TBS7 ~'-----
T DAL

T SYNC

T DOUT

R RPLY
R REF

address DATA DATA

175-+--200

------~ I ,, 12[13[14[1s[16 13[14\
~---;I-- t7 --I

~300

t1 address to T SYNC 150ns min

t2 address hold 100ns min

t3 data to T DOUT 100ns min

t4 T DOUTto R RPLY

t5

T (drive)+ T (prop)+ T (receive)+ T (delay)

+ T (drive) + T (prop) + T (receive)

R RPLYto T DOUT 150ns min

t6 T DOUTto R RPLY

t7

T cell

T (drive) + T (prop) + T (receive) + T (delay)

+ T (drive) + T (prop) + T (receive)

R RPLY to T DOUT 150ns min

t3 + t4 + t5 + t6 + t7 -since t3 < t7

Figure E-10 DATBO Bus Cycle Timing

E-20

Appendix E - LS/-11 Bus Technical Specifications

DMA Guidelines
• Systems with memory refresh over the bus must not include devic-

es that perform more than one transfer per acquisition.

• Bus masters that do not use block mode are limited to four DATI,
four DATO, or two DATIO transfers per acquisition.

• Block mode bus masters that do not monitor BDMR are limited to
eight transfers per acquisition_

• If BDMR is not asserted after the seventh transfer, block mode bus
masters that do monitor BDMR may continue making transfers until
the bus slave fails to assert BREF or until they reach the total maxi­
mum of 16 transfers. Otherwise, they stop after eight transfers.

INTERRUPTS
The interrupt capability of the LSl-11 Bus al lows any 1/0 device totem­
porarily suspend (interrupt) current program execution and divert proc­
essor operation to service the requesting device. The processor inputs
a vector from the device to start the service routine (handler). Like the
device register address, hardware fixes the device vector at locations
within a designated range below location 001000. The vector indicates
the first of a pair of addresses. The content of the first address is read
by the processor and is the starting address of the interrupt handler.
The content of the second address is a new processor status word
(PS). The new PS can raise the interrupt priority level, thereby prevent­
ing lower- level interrupts from breaking into the current interrupt ser­
vice routine. Control is returned to the interrupted program when the
interrupt handler is ended. The original interrupted program's address
(PC) and its associated PS are stored on a stack. The original PC and
PS are restored by a return from interrupt (RTI or RTT) instruction at
the end of the handler. The use of the stack and the LSl-11 Bus inter­
rupt scheme can allow interrupts to occur within interrupts (nested in­
terrupts), depending on the PS.

Interrupts can be caused by LSl-11 Bus options or the CPU. Those in­
terrupts that originate from within the processor are called traps.
Traps are caused by programming errors, hardware errors, special in­
structions, and maintenance features.

The LSl-11 Bus signals used in interrupt transactions are:

BIRQ4 L Interrupt request priority level 4
BIRQ5 l Interrupt request priority level 5
BIRQ6 L Interrupt request priority level 6
BIRQ7 L Interrupt request priority level 7

E-21

Appendix E - LS/-11 Bus Technical Specifications

BIAKI L
BiAKO L

BDAL<21:00> L

BOIN L
BRPLY L

Device Priority

Interrupt acknowledge input
Interrupt acknowledge output

Data/address lines

Data input strobe
Reply

The LSl-11 Bus supports the following two methods of device priority:

• Distributed Arbitration-priority levels are implemented on the
hardware. When devices of equal priority level request an interrupt,
priority is given to the device electrically closest to the processor.

• Position-Defined Arbitration-priority is determined solely by elec­
trical position on the bus. The closer a device is to the processor,
the higher its priority is.

Interrupt Protocol
Interrupt protocol on the LSl-11/23 has three phases: interrupt request
phase, interrupt acknowledge, and priority arbitration phase, and in­
terrupt vector transfer phase. Figure E-11 illustrates the interrupt re­
quest/acknowledge sequence.

The interrupt request phase begins when a device meets its specific
conditions for interrupt requests. For example, the device is ready,
done, or an error has occurred. The interrupt enable bit in a device sta·
tus register must be set. The device then initiates the interrupt by as­
serting the interrupt request line(s). BIRQ4 L is the lowest hardware
priority level and is asserted for all interrupt requests for compatibility
with previous LSl-11 processors. The level a device is configured at
must also be asserted. A special case exists for level 7 devices which
must also assert level 6. See the arbitration discussion below involv­
ing the 4-level scheme for an explanation.

!ntermpt level

4
5
6
7

Lines Asserted by Device

BIRQ4 L
BIRQ4 L, BIRQ5 L
BIRQ4 L, BIRQ6 L
BIRQ4 L, BIRQ6 L, BIRO? L

E-22

Appendix E - LSl-11 Bus Technical Specifications

PROCESSOR

STROBE INTERRUPTS
• ASSERT BOIN L

I
I

• GRANT REQUEST

• PAUSE AND ASSERT BIAKO L

RECEIVE VECTOR & TERMINATE

REQUEST
• INPUT VECTOR ADDRESS

• NEGATE BDIN LAND BIAKD L

PROCESS THE INTERRUPT

• SAVE INTERRUPTED PROGRAM

PC AND PS ON STACK
• LOAD NEW PC AND PS FROM

VECTOR ADDRESSED LOCATION
• EXECUTE INTERRUPT SERVICE

ROUTINE FOR THE DEVICE

DEVICE

INITIATE REQUEST

--- -- • ASSERT BIRO L --------------

RECEIVE BOIN L

• STORE "INTERRUPT SENDING
IN DEVICE

--

-

--

RECEIVE BIAKI L

• RECEIVE BIAK I LAND INHIBIT
BIAKO L

• PLACE VECTOR ON BOAL 0-15 L ·
• ASSERT BR PLY L

-• NEGATE BIRQ L

--

--
-

COMPLETE VECTOR TRANSFER

• REMOVE VECTOR FROM BOAL BUS

- - • NEGATE BRPLY L

Figure E-11 Interrupt Request/Acknowledge Sequence

The interrupt request line remains asserted until the request is ac­
knowledged.

Duri11g the interrupt acknowledge and priority arbitration phase the
LSl-11/23 processor will acknowledge interrupts under the following
conditions:
1. The device !nterrupt priority is higher than the current PS<7:5>.
2. The processor has completed instruction execution and no addi­

tional bus cycles are pending.

E-23

Appendix E - LSl-11 Bus Technical Specifications

T IRO

R DIN

R IAKI

T RPLY j~
125 ns MAX i-1""---'-----ir-1oons MAX

T DAL --------(4)------~x VECTOR ~

R SYNC ----~(~UN~AS~SE~RT~E~D> ______________ _

R 657 ----~(~UN~AS~SE~RT~ED~)---------------

NOTES
I T1mmg shown al Requesting Device Bus Dr•ver Inputs and Bus Receiver Outputs

2 Srgnol Name P1ef11es ore defined below

T ~ Bus
R ~ Bus

3 Bus Orrver Output and Bus Receiver Input signal names include o "8" pref•~

4. Don't care cond1twn

Figure E-12 Interrupt Protocol Timing

The processor acknowledges the interrupt request by asserting BDIN
L, and 150 ns (minimum) later asserting BIAKO L. The device electri­
cally closest to the processor receives the acknowledge on its BIAKI L
bus receiver.

At this point the two types of arbitration must be discussed separate­
ly. If the device that receives the acknowledge uses the 4-level inter­
rupt scheme, it reacts as described below:

1. If not requesting an interrupt, the device asserts BIAKO L and
the acknowledge propagates to the next device on the bus.

2. If the device is requesting an interrupt, it must check to see that
no higher-level device is currently requesting an interrupt. This is
done by monitoring higher-level request lines. The table below
lists the lines that need to be monitored by devices at each priori­
ty level.

In addition to asserting levels 7 and 4, level 7 devices must drive
level 6. This is done to simplify the monitoring and arbitration by
level 4 and 5 devices. In this protocol, level 4 and 5 devices need
not monitor level 7 since level 7 devices assert level 6. Level 4 and
5 devices will become aware of a level 7 request since they moni-

E-24

Appendix E - LS/-11 Bus Technical Specifications

tor the level 6 request. This protocol has been optimized for level
4, 5, and 6 devices, since level 7 devices very seldom are neces­
sary.

Device Priority level
4

Line(s) Monitored
BIROS, BIRQ6
BIRQ6 5

6 BIRQ7
7

3. If no higher-level device is requesting an interrupt, the acknowl­
edge is blocked by the device. (BIAKO L is not asserted.) Arbitra­
tion logic within the device uses the leading edge of BOIN L to
clock a flip-flop that blocks BIAKO L. Arbitration is won, and the
interrupt vector transfer phase begins.

4. If a higher-level request line is active, the device disqualifies it­
self and asserts BIAKO L to propagate the acknowledge to the
next device along the bus.

Signal timing must be carefully considered when implementing 4-level
interrupts. Note Figure E-12.

If a single-level interrupt device receives the acknowledge, it reacts as
follows:

• If not requesting an interrupt, the device asserts BIAKO Land the
acknowledge propagates to the next device on the bus.

• If the device was requesting an interrupt, the acknowledge is
blocked using the leading edge of BOIN Land arbitration is won.
The interrupt vector transfer phase begins.

The interrupt vector transfer phase is enabled by BDI N L and BIAKI L.
The device responds by asserting BRPLY Land its BOAL<15:00> L
bus driver inputs with the vector address bits. The BOAL bus driver in­
puts must be stable within 125 ns (maximum) after BRPLY Lis assert­
ed. The processor then inputs the vector address and negates BOIN L
and BIAKO L. The device then negates BRPL Y land 100 ns (maximum)
later removes the vector address bits. The processor then enters the
device's service routine.

NOTE
Propagation delay from BIAKI L to BIAKO L must not
be greater than 500 ns per LSl-11 Bus slot.

The device must assert BRPL Y L within 10 micro­
seconds (maximum) after the processor asserts
BIAKI L.

E-25

Appendix E - LSl-11 Bus Technical Specifications

LSl-11123 Four-Level Interrupt Configurations
If you have high-speed peripherals and desire better software perform­
ance, you can use the 4-level interrupt scheme. Both position-inde­
pendent and position-dependent configurations can be used with the
4-level interrupt scheme.

The position-independent configuration is illustrated in Figure E-13.
This allows peripheral devices that use the 4-level interrupt scheme to
be placed in the backplane in any order. These devices must send out
interrupt requests and monitor higher-level request lines as described.
The level 4 request is always asserted by a requesting device regard­
less of priority, to allow compatibility if an LSl-11 or LSl-11/2 processor
is in the same system. If two or more devices of equally high priority
request an interrupt, the device physically closest to the processor
will win arbitration. Devices that use the single-level interrupt scheme
must be modified or placed at the end of the bus tor arbitration to
function properly.

KDFl 1
BIAK 11~ TERRUPT ACKNO\VLEDGEI

BIRO 4 ILEVEL 4 INTERRUPT REOUESTI

BtHO 5 'LEVEL 5 INTERRUPT REOUESTI

BIR061LEVEL61NTERRUPT REOU[STJ
~-- --~- --~---+----~--~

BIRO 7 rLE:\/f::L 7 INTERRUPT REOUESfl
~----

Figure E-13 Position-Independent Configuration

The position-dependent configuration is illustrated in Figure E-14.
This configuration is simpler to implement. A constraint is that periph­
eral devices must be inserted with the highest-priority device located
closest to the processor and the remaining devices placed in the back­
plane in decreasing order of priority, with the lowest-priority devices
farthest from the processor. With this configuration each device has
to assert only its own level and level 4 (for compatibility with an LSl-11
or LSl-11/2). Monitoring higher level request lines is unnecessary. Arbi­
tration is achieved through the physical positioning of each device on
the bus. Single-level interrupt devices on level 4 should be positioned
last on the bus.

E-26

Appendix E - LSJ-11 Bus Technical Specifications

KDF11
BIAK !INTERHUPT ACKNOWLEDGE!

81:'1.0 4 (LEVEL 4 INTERRUPT RFOUESTI

Bl HO b (LE VF l 5 INTERRUPT R EOUESTl

BlR06 {LEV~L 61.\JTERRUPT REOUESTJ

BIRO 7 (LEVEL 7 INTERRUPT REQUEST)

Figure E-14 Position-Dependent Configuration

CONTROL FUNCTIONS
The following LSI-11 Bus signals provide control functions.

BREF L Memory refresh (also block mode DMA)
BHAL T L Processor halt
BINIT L Initialize
BPOK H Power OK
BDCOK H DC power OK

Memory Refresh
If BREF is asserted during the address portion of a bus data transfer
cycle, it causes all dynamic MOS memories to be addressed simulta­
neously. The sequence of addresses required for refreshing the memo­
ries is determined by the specific requirements for each memory. The
complete memory refresh cycle consists of a series of refresh bus
transactions. A new address is used for each transaction. A complete
memory refresh cycle must be completed within 1 or 2 ms. Multiple
data transfers by OMA devices must be avoided since they could delay
memory refresh cycles. This type of refresh is done only for memories
which do not perform on-board refresh.

Halt
Assertion of SHALT L for at least 25 µs interrupts the processor, which
stops program execution and forces the processor unconditionally
into console ODT mode.

Initialization
Devices along the bus are initialized when Bl NIT L is asserted. The
processor can assert BINIT Las a result of executing a RESET instruc­
tion as part of a power-up or power-down sequence, or after detection
of a G character in ODT. BINIT Lis asserted for approximately 10 mi­
croseconds when RESET is executed.

E-27

Appendix E - LS/-11 Bus Technical Specifications

Power St©J~us
Power status protocol is controlled by two signals, BPOK H and
BDCOK H. These signals are driven by some external device (usually
the power supply).

BDCOK H - When asserted, this indicates that de power has been
stable for at least 3 ms. Once asserted, this line remains asserted until
the power fails. It indicates that only 5 microseconds of de power re­
serve remains.

BPOK H - When asserted, this indicates that there is at least an 8 ms
reserve of de power and that BDCOK H has been asserted for at least
70 ms. Once BPOK H has been asserted, it must remain asserted for at
least 3 ms. The negation of this line, the first event in the power-fail
sequence, indicates that power is failing and that only 4 ms of de pow­
er reserve remains.

Power·Up/Down Protocol
Power-up protocol begins when the power supply applies power with
BDCOK H negated. This forces the processor to assert BINIT L. When
the de voltages are stable, the power supply or other external device
asserts BDCOK H. The processor responds by clearing the PS, float­
ing point status register (FPS), and floating point exception register
(FEC). BINIT Lis asserted for 12.6 microseconds and then negated for
110 microseconds. The processor continues to test for BPOK H until it
is asserted. The power supply asserts BPOK H 70 ms (minimum) after
BDCOK H is asserted. The processor then performs its power-up
sequence. Normal power must be maintained at least 3.0 ms before a
power-down sequence can begin.

A power-down sequence begins when the power supply negates
BPOK H. When the current instruction is completed, the processor
traps to a power-down routine at location 24.i. The end of the routine is
terminated with a HALT instruction to avoid any possible memory cor­
ruption as the de voltages decay.

When the processor executes the HALT instruction, it tests the BPOK
H signal. If BPOK H is negated, the processor enters the power-up
sequence. It clears internal registers, generates BINIT L, and contin­
ues to check for the assertion of BPOK H. If it is asserted and de vol­
tages are still stable, the processor will perform the rest of the power­
up sequence. Figure E-15 illustrates power-up/Power-down timing.

E-28

Appendix E - LS/-11 Bus Technical Specifications

BINIT L -{'---__,/,--+---+--I . lFl -+--I ___,;r--+---I
Ir+---.... , ~;: ~ ~ .. ~ ~ I

B POI< H

BOCOK H

DC POWER

NOTE
Once a power dawn sequence 1s storied,
11 musl be rnmplet!'d before o power- LJD
sequence LS started

I 70msMIN

5"11MlN ~ ~---~----<

Figure E-15 Power-Up/Power-Down Timing

LSl-11 BUS ELECTRICAL CHARACTERISTICS

Signal level Specification
input Logic Levels

TTL Logical Low:
TTL Logical High:

Output Logic Levels
TTL Logical low:
TTL Logical High:

load Definition

0.8 Vdc maximum
2.0 Vdc minimum

0.4 Vdc maximum
2.4 Vdc minimum

AC loads comprise the maximum capacitance allowed per signal line
to ground. A unit load is defined as 9.35 pF of capacitance. DC loads
are defined as maximum current allowed with a signal line driver as­
serted or unasserted. A unit load is defined as 210 µ.A in the unassert­
ed state.

120 Ohm lSi-11 Bus
The electrical conductors interconnecting the bus device slots are
treated as transmission lines. A uniform transmission line, terminated
in its characteristic impedance, will propagate an electrical signal
without reflections. Since bus drivers, receivers, and wiring connected
to the bus have finite resistance and nonzero reactance, the transmis­
sion line impedance is not uniform, and introduces distortions into
pulses propagated along it. Passive components of the LSI-ii Bus

E-29

Appendix E - LSl-11 Bus Technical Specifications

(such as wiring, cabling, and etched signal conductors) are designed
to have a nominal characteristic impedance of 120 ohms.

The maximum length of interconnecting cable excluding wiring within
the backplane is limited to 4.88 m (16 ft.).

Bus Drivers
Devices driving the 120 ohm LSl-11 Bus must have open collector out­
puts and meet the following specifications.

DC Specifications

AC Specifications

Bus Receivers

Output low voltage when sinking 70 mA of
current: 0.7V maximum.

Output high leakage current when connect­
ed to 3.8 Vdc: 25 µA (even if no power is ap­
plied, except for BDCOK Hand BPOK H).

These conditions must be met at worst­
case supply voltage, temperature, and in­
put signal levels.

Bus driver output pin capacitive load: Not
to exceed 10 pF.

Propagation delay: Not to exceed 35 ns.

Skew (difference in propagation time be­
tween slowest and fastest gate): Not to ex­
ceed 25 ns.

Rise/Fall Times: Transition time (from 10%
to 90% for positive transition, and from
90% to 10% for negative transition) must
be no faster than 10 ns.

Devices that receive signals from the 120 ohm LSl-11 Bus must meet
the following requirements.
DC Specifications Input low voltage (maximum): 1.3V.

AC Specifications

input high voltage (minimum): 1.7V.

Maximum input current when connected to
3.8 Vdc: 80 µA even if no power is applied.

These specifications must be met at worst­
case supply voltage, temperature, and out­
put signal conditions

Bus receiver input pin capacitance load:
Not to exceed 10 pF.

E-30

Appendix E - LS/-11 Bus Technical Specifications

Bus Termination

Propagation delay: Not to exceed 35 ns.

Skew (difference in propagation time be­
tween slowest and fastest gate): Not to ex­
ceed 25 ns.

The 120 ohm LSl-11 Bus must be terminated at each end by an appro­
priate terminator, as illustrated in Figure E-16. This is to be done as a
voltage divider with its Thevenin equivalent equal to 120 ohms and
3.4V nominal. This type of termination is provided by an REV11-A re­
fresh/boot/terminator, BDV11-AA, KPV11-B, TEV11, or by certain back­
planes and expansion cards.

+5V

330.n

+5V

11an
1 °/o

220 n 12on

Gaon

BUS LINE
TERMINATION

383il
1%

BUS LI NE
TERMINATION

Figure E-16 Bus Line Terminations

Each of the several LSl-11 Bus I in es (all signals whose mnemonics
start with the letter B) must see an equivalent network with the follow­
ing characteristics at each end of the bus:

Input impedance (with respect to 120 ohm + 5%, -15%
ground)

Open circuit voltage

Capacitance Load

3.4 Vdc +5%

Not to exceed 30 pF

NOTE
The resistive termination may be provided by the
combination of two modules (i.e., the processor
module supplies 220 ohms to ground. This, in paral­
lel with another 220 ohm card provides 120 ohms.)
Both of these terminators must be physically resi­
dent within the same backplane.

E-31

Appendix E - LSJ-11 Bus Technical Specifications

Bus lntem::onnecting Wiring
Backplane Wiring - The wiring that connects all device interface
slots on the LSl-11 must meet the following specifications:

1. The conductors must be arranged such that each line exhibits a
characteristic impedance of 120 ohms (measured with respect to
the bus common return).

2. Crosstalk between any two lines must be no greater than 5%.
Note that worst-case crosstalk is manifested by simultaneously
driving all but one signal line and measuring the effect on the un­
driven line.

3. DC resistance of the signal path, as measured between the near­
end terminator and the far-end terminator module (including-all in­
tervening connectors, cables, backplane wiring, connector-mod­
ule etch, etc.) must not exceed 2 ohms.

4. DC resistance of common return path, as measured between the
near-end terminator and the far-end terminator module (including
all intervening connectors, cables, backplane wiring, connector­
module etch, etc.) must not exceed an equivalent of 2 ohms per
signal path. Thus, the composite signal return path de resistance
must not exceed 2 ohms divided by 40 bus lines, or 50 milliohms.
Note that although this common return path is nominally at
ground potential, the conductance must be part of the bus wiring.
The specified low impedance return path must be provided by the
bus wiring as distinguished from the common system or power
ground path.

Intra-Backplane Bus Wiring - The wiring that connects the bus con­
nector slots within one contiguous backplane is part of the overall bus
transmission line. Owing to implementation constraints, the nominal
characteristic impedance of 120 ohms may not be achievable. Distrib­
uted wiring capacitance in excess of the amount required to achieve
the nominal 120 ohm impedance may not exceed 60 pF per signal line
per backplane.

Power and Ground - Each bus interface slot has connector pins as­
signed for the following de voltages. The maximum allowable current
per pin is 1.5 A. + 5 Vdc must be regulated to ± 5% with a maximum
ripple of 100 mV pp. + 12 Vdc must be regulated to ± 3% with a maxi­
mum ripple of 200 mV pp.

• + 5Vdc-Three pins (4.5 A maximum per bus device slot)

• + 12 Vdc-Two pins (3.0 A maximum per bus device slot)

• Ground-Eight pins (shared by power return and signal return)

E-32

Appendix E - LS/-11 Bus Technical Specifications

NOTE
Power is not bused between backplanes on any in­
terconnecting bus cables.

SYSTEM CONFIGURATIONS
LSl-11 Bus systems can be divided into two types:
1. Systems containing one backplane
2. Systems containing multiple backplanes

Before configuring any system, three characteristics for each module
in the system must be known. These characteristics are:
• Power consumption-+ 5 Vdc and + 12 Vdc current requirements.
©>AC bus loading-the amount of capacitance a module presents to

a bus signal line. AC loading is expressed in terms of ac loads
where one ac load equals 9.35 pF of capacitance.

t1 DC bus loading-the amount of de leakage current a module pre­
sents to a bus signal when the line is high (undriven). DC loading is
expressed in terms of de loads where one de load equals 210 mi­
croamperes (nominal).

Power consumption, ac loading, and de loading specifications for
each module are included in the Microcomputer Interface Handbook.

NOTE
The ac and de loads and the power consumption of
the processor module, terminator module, and back­
plane must be included in determining the total load­
; ng of a backplane.

Rules for Co1rlfigurilr!g Single Backplane Systems
• When using a processor with 220 ohm termination, the bus can ac­

comodate modules that have up to 20 ac loads (total) before addi­
tional termination is required. If more than 20 ac loads are included,
the other end of the bus must be terminated with 120 ohms, and
then up to 35 ac loads may be present.

Qi With 120 ohm processor termination, up to 35 ac loads can be
used without additional termination. If 120 ohm bus termination is
added, up to 45 ac loads can be configured in the backplane.

• The bus can accommodate modules up to 20 de loads (total).
The bus signal lines on the backplane can be up to 35.6 cm (14 in.)
long.

E-33

Appendix E - LS/-11 Bus Technical Specifications

~~ ____ BACKPLANE WIRE ____,,
4 35.6 cm (14 in) MAX ill>

120!20R

PROCESSOR

ONE
UNIT
LOAD

l
I l

ONE
UNIT
LOAD

20 DC LOADS

l
ONE

UN IT
LOAD

Figure E-17 Single Backplane Configuration

Rules for Configuring Multiple Backplane Systems
e As illustrated in Figure E-18, up to three backplanes may make up

the system.

• The signal lines on each backplane can be up to 25.4 cm (10 in.)
long.

• Each backplane can accommodate modules that have up to 22 ac
loads (total). Unused ac loads from one backplane may not be add­
ed to another backplane if the second backplane loading will ex­
ceed 22 ac loads. It is dasirable to load backplanes equally, or with
the highest ac loads in the first and second backplanes.

@ DC loading of ail modules in all backplanes cannot exceed 20
loads (total).

• Both ends of the bus must be terminated with 120 ohms. This
means that the first and last backplane must have an impedance of
120 ohms. To achieve this, each backplane may be lumped together
as a single point. The resistive termination may be provided by a
combination of two modules in the backplane-the processor pro­
viding 220 ohms to ground in parallel with an expansion paddle card
providing 250 ohms to give the needed 120 ohm termination. Alter­
nately, a processor with 120 ohm termination would need no addi­
tional termination on the paddle card to attain 120 ohms in the first
box. The 120 ohm termination in the last box can be provided in two
ways. The termination resistors may reside either on the expansion
paddle card or on a bus termination card such as the BDV11.

E-34

Appendix E - LSl-11 Bus Technical Specifications

• The cable(s) connecting the first two backplanes are 61 cm (2 ft.) or
greater in length.

• The cable(s) connecting the second backplane to the third back­
plane are 122 cm (4 ft.) longer or shorter than the cable(s) connect­
ing the first and second backplanes.

I BACKPLANE WIRE
""4>------- 25.4cm(10in) MAX ____ ...,

ONE
UNIT
LOAD

~ l
ONE
UNIT
LOAD

22AC LOA OS MAX

PROCESSOR

ADDITIONAL
CABLES

NE WIRE I BACKPLA
""•>-----25.4cm(1 Qin) MAX

CABLE

ONE
UNIT
LOAD

l
J l

ONE
UNIT
LOAD

22 AC LOADS MAX

~2500

+
3.4 v
-

-=

CABLE/TERM

·I
l
l

CABLE

6 BACKPLANE I• BACKPLANE WIRE ~1
----- 10 in) MAX----25.4 cm (

l l
J ONE

UNIT
LOAD

CABLE

1
I

ONE
UN IT
LOAD

22 AC LOADS MAX
NOTES:

1. TWO CABLES (MAX) 4.88m (1611) (MAX.)
TOTAL LENGTH.

2. 20 DC LOADS TOTAL (MAX)
TERM

Figure E-18 Multiple Backplane Configuration

E-35

Appendix E - LSl-11 Bus Technical Specifications

• The combined length of both cables cannot exceed 4.88 m (16 ft.).
~ The cables used must have a characteristic impedance of 120

ohms.

Pow~r Supply loading
Total power requirements for each backplane can be determined by
obtaining the total power requirements for each module in the back­
plane. Obtain separate totals for + 5V and + 12V power. Power re­
quirements for each module are specified in the Microcomputer Inter­
faces Handbook.

When distributing power in multiple backplane systems, do not at­
tempt to distribute power via the lSl-11 Bus cables. Provide separate,
appropriate power wiring from each power supply to each backplane.
Each power supply should be capable of asserting BPOK H and
BDCOK H signals according to bus protocol; this is required if auto­
matic power-fail/restart programs are implemented, or if specific pe­
ripherals require an orderly power-down halt sequence. The proper use
of BPOK H and BDCOK H signals is strongly recommended.

MODULE CONTACT FINGER IDENTIFICATION
DIGITAL plug-in modules all use the same contact finger (pin) identifi­
cation system. The lSl-11 Bus is based on the use of double-height
modules that plug into a 2-slot bus connector. Each slot contains 36
lines (18 each on component and solder sides of circuit board).

Slots, shown as row A and row B in Figure E-19, include a numeric
identifier for the side of the module. The component side is designat­
ed side 1 and the solder side is designated side 2. Letters ranging from
A through V (excluding G, I, 0, and Q) identify a particular pin on a side
of a slot. Table E-4 lists and identifies the bus pins of the double­
height module. The bus pin identifier ending with a 1 is found on the
component side of the board, while a bus pin identifier ending with a 2
is found on the solder side of the board. A typical pin is designated as
follows.

~BE2~
Slot (Row) Identifier Module Side
"Slot B" Identifier

Pin Identifier
"Pin E"

E-36

"Side 2" (solder
side)

Appendix E - LS/·11 Bus Technical Specifications

PIN AA2

" c v
t;~

li~ ROWA

~~~l ~"' 
PIN AV2 ~ ~ c~''~ PIN AVl 

~ ((Q;~ ' l ,1~ 
~~0 
'.); ~ "') s ;) PIN BA1 PIN BA2 

:] j SIDE 2 

SIDE 1 
ROW B SOLDER SIDE 

COMPONENT SIDE 

PIN BV1 
( 

PIN BV2 

Figure E-19 Double-Height Module Contact Finger Identification 

The positioning notch between the two rows of pins mates with a pro­
trusion on the connector block for correct module positioning. 

Table E·4 Bus Pin Identifiers 

BUS MNEMONICS DESCRIPTION 
PIN 

AA1 BIRQ5L Interrupt Request Priority Level 
5 

AB1 BIRQ6L Interrupt Request Priority Level 
6 

AC1 BDAL16 l Extended address bit during 
addressing protocol; memory 
error data line during data 
transfer protocol. 

AD1 BDAL17 L Extended address bit during 
addressing protocol; memory 
error logic enable during data 
transfer protocol. 

E-37 



Appendix E - LSl-11 Bus Technical Specifications 

BUS MNEMONICS DESCRIPTION 
PIN 

AE1 SSPARE1 Special Spare-not assigned or 
(Alternate + 58) bused in DIGITAL cable or 

backplane assemblies; avail-
able for user connection. Op-
tionally, this pin may be used 
for + 5V battery ( + 58) backup 
power to keep critical circuits 
alive during power failures. A 
jumper is required on LSl-11 
Bus options to open (discon-
nect) the + 58 circuit in sys-
terns that use this line as 
SSPARE1. 

AF1 SSPARE2 Special Spare-not assigned or 
bused in DIGITAL cable or 
backplane assemblies; avail· 
able for user interconnection. 
In the highest-priority device 
slot, the processor may. use 
this pin for a signal to indicate 
its RUN state. 

AH1 SSPARE3 Special Spare-not assigned or 
SRUN bused in DIGITAL cable or 
simultaneously backplane assemblies; avail-

able for user interconnection. 
An alternate SRUN signal may 
be connected in the highest-pri-
ority set. 

AJ1 GND Ground-System signal ground 
and de return. 

AK1 MSPAREA Maintenance Spare-Normally 
connected together on the 
backplane at each option loca-
tion (not bused connection). 

AL1 MSPAREB Maintenance Spare-Normally 
connected together on the 
backplane at each option loca-
tion (not bused connection). 

E-38 



Appendix E - LSl-11 Bus Technical Specifications 

BUS MNEMONICS DESCRIPTION 
PIN 

AM1 GND Ground-System signal ground 
and de return. 

AN1 BDMRL Direct Memory Access (OMA) 
Request-A device asserts this 
signal to request bus master-
ship. The processor arbitrates 
bus mastership between itself 
and all OMA devices on the 
bus. If the processor is not bus 
master (it has completed a bus 
cycle and BSYNC L is not 
being asserted by the.proces-
sor), it grants bus mastership 
to the requesting device by as-
serting BDMGO L. The device 
responds by negating BDMR L 
and asserting BSACK L. 

AP1 SHALT L Processor Hal t--'-When BHAL T 
Lis asserted for at least 25 µ,s, 
the processor services the halt 
interrupt and responds by halt-
ing normal program execution. 
External interrupts are ignored 
but memory refresh interrupts 
in LSl-11 are enabled if W4 on 
M7264 and M7264-YA proces-
sor modules is removed and 
OMA request/grant sequences 
are enabled. The processor exe-
cutes the ODT microcode and 
the console device operation is 
invoked. 

AR1 BREF L Memory Refresh-Asserted by 
a OMA device. This signal 
forces all dynamic MOS mem-
ory units requiring bus refresh 
signals to be activated for each 
BSYNC UBDIN L bus transac-
tion. it is also used as a control 
signal for block mode OMA. 

E-39 



Appendix E - LSl-11 Bus Technical Specifications 

BUS MNEMONICS DESCRIPTION 
PIN 

CAUTION 
The user must avoid multiple 
OMA data transfers (burst or 
"hog" mode) that could delay 
refresh operation if using OMA 
refresh. Complete refresh 
cycles must occur once every 
1.6 msec if required. 

AS1 +128 + 12 Vdc or + 5V battery 
or backup power to keep critical 
+ 5B circuits alive during power fail-

ures. This signal is not bused 
to BS1 in all DIGITAL back-
planes. A jumper is required on 
all LSl-11 Bus options to open 
(disconnect) the backup circuit 
from the bus in systems that 
use this line at the alternate 
voltage. 

AT1 GNO Ground-System signal ground 
and de return. 

AU1 PSPARE 1 Spare (Not assigned. Customer 
usage not recommended.) Pre-
vents damage when modules 
are inserted upside down. 

AV1 +58 + 5V Battery Power-
Secondary + 5V power con nee-
tion. Battery power can be used 
with certain devices. 

BA1 BDCOKH DC Power OK-Power supply-
generated signal that is assert-
ed when there is sufficient de 
voltage available to sustain re-
liable system operation. 

BB1 BPOKH Power OK-Asserted by the 
power supply 70 ms after 
BDCOK negated when ac pow-

E-40 



Appendix E - LSl-11 Bus Technical Specifications 

BUS MNEMONICS DESCRIPTION 
PIN 

er drop below the value re-
quired to sustain power (ap-
proximately 75% of nominal). 
When negated during proces-
sor operation, a power fail trap 
sequence is initiated. 

BC1 SSPARE4 Special Spare in the LSl-11 
BDAL18L Bus-Not assigned. Bussed in 
(22-bit 22·bit cable and backplane as-
only) semblies; available for use in-

terconnection. 

BD1 SSPARE5 Caution. These pins may be 
BDAL19L used as test points by DIGITAL 
(22-bit in some options. 
only) 

BE1 SSPARE6 In the 22-bit LSl-11 Bus, these 
BOAL 20L bussed address lines are Ad-

dress Lines <21:18> currently 
not used during data time. 

BF1 SS PARE? In the 22-bit LSl-11 Bus these 
BOAL 21L bussed address lines are Ad-

dress Lines <21:18> currently 
not used during data time. 

BH1 SSPAREB Special Spare-Not assigned 
or bused in DIGITAL cable and 
backplane assemblies; avail-
able for user interconnection. 

BJ1 GND Ground-System signal ground 
and de return. 

BK1 MSPAREB Maintenance Spare-Normally 
BL1 MSPAREB connected together on the 

backplane at each option loca-
tion (not a bused connection). 

BM1 GND Ground-System signal ground 
and de return. 

E-41 



Appendix E - LSl-11 Bus Technical Specifications 

BUS MNEMONICS DESCRIPTION 
PIN 

BN1 BSACK L This signal is asserted by a 
OMA device in response to the 
processor's BDMGO L signal, 
indicating that the DMA device 
is bus master. 

BP1 BIRQ7 L Interrupt request priority level 7 

BR1 BEVNT L External Event Interrupt Re-
quest-When asserted, the 
processor responds by entering 
a service routine via vector ad-
dress 100a. A typical use of this 
signal is a line time clock inter-
rupt. 

BS1 +128 + 12 Vdc battery backup power 
(not bused to AS1 in all 
DIGITAL backplanes). 

BT1 GND Ground-System signal ground 
and de return. 

BU1 PSPARE2 Power Spare 2 (not assigned a 
function, not recommended for 
use). It a module is using -12V 
(on pin AB2) and if the module 
is accidentally inserted upside 
down in the backplane, -12 
Vdc appears on pin BU1. 

BV1 +5 +5V Power-Normal +5 Vdc 
system power. 

AA2 +5 + 5V Power-Normal + 5 Vdc 
system power. 

AB2 -12 -12V Power- -12 Vdc (op-
tional) power for devices requir-
ing this voltage. 

NOTE 
LSl-11 modules which require 
negative voltages contain an 
inverter circuit (on each mod-
ule) which generates the re-

E-42 



Appendix E - LSl-11 Bus Technical Specifications 

BUS MNEMONICS DESCRIPTION 
PIN 

quired voltage(s). Hence, -12V 
power is not required with 
DIGITAL-supplied options. 

AC2 GND Ground-System signal ground 
and de return. 

AD2 +12 + 12V Power-12 Vdc system 
power. 

AE2 BDOUT L Data Output-BDOUT, when 
asserted, implies that valid 
data is available on BOAL 
<0:15> Land that an output 
transfer, with respect to the 
bus master device, is taking 
place. BDOUT L is deskewed 
with respect to data on the bus. 
The slave device responding to 
the BDOUT L signal must as-
sert BRPL Y L to complete the 
transfer. 

AF2 BRPLY L Reply-BRPLY Lis asserted in 
response to BOIN Lor BDOUT 
Land during IAK transactions. 
It is generated by a slave de-
vice to indicate that it has 
placed its data on the BOAL 
bus or that it has accepted out-
put data from the bus. 

AH2 BOIN L Data Input-BOIN L is used for 
two types of bus operation: 

When asserted during BSYNC 
L time, BOIN L implies an input 
transfer with respect to the cur-
rent bus master, and requires a 
response (BRPLY L). BOIN Lis 
asserted when the master de-
vice is ready to accept data 
from a slave device. 

When asserted without BSYNC 

E-43 



Appendix E - LS/-11 Bus Technical Specifications 

BUS MNEMONICS DESC~IPTION 

PIN 

L, it indicates that an interrrupt 
operation is occurring. 

The master device must 
deskew input data from BRPLY 
L. 

AJ2 BSYNC L Synchronize-BSYNC Lis as-
serted by the bus master de-
vice to indicate that it has 
placed an address on 
BDAL<0:17> L. The transfer is 
in process until BSYNC Lis 
negated. 

AK2 BWTBTL Write/Byte-BWTBT Lis used 
in two ways to control a bus 
cycle: 

It is asserted at the leading 
edge of BSYNC L to indicate 
that an output sequence is to 
follow (DATO or DATOB), rather 
than an input sequence. 

It is asserted during BDOUT L, 
in a DATOB bus cycle, for byte 
addressing. 

AL2 BIRQ4 L Interrupt Request Priority Level 
4- A level 4 device asserts 
this signal when its interrupt 
enable and interrupt request 
flips-flops are set. If the PS 
word bit 7 is 0, the processor 
responds by acknowledging the 
request by asserting BOIN L 
and BIAKO L. 

AM2 BIAKI L Interrupt Acknowledge-In ac-
AN2 BIAKO L cordance with interrupt proto-

col, the processor asserts 
BIAKO L to acknowledge re-
ceipt of an interrupt. The bus 
transmits this to BIAKI L of the 

E-44 



Appendix E - LS/-11 Bus Technical Specifications 

BUS MNEMONICS DESCRIPTION 
PIN 

device electrically closest to 
the processor. This device ac-
cepts the interrupt acknowl-
edge under two conditions: 

1) The device requested the bus 
by asserting BIRQXL, and 2) the 
device has the highest-priority 
interrupt request on the bus at 
that time. 

If these conditions are not met, 
the device asserts BIAKO L to 
the next device on the bus. This 
process continues in a daisy-
chain fashion until the device 
with the highest-interrupt priori-
ty receives the interrupt ac-
knowledge signal. 

AP2 BBS7 L Bank 7 Select-The bus master 
asserts this signal to reference 
the 1/0 page (including that por-
tion of the 1/0 page reserved for 
nonexistent memory). The ad-
dress in BDAL<0:12> L when 
BBS? Lis asserted is the ad-
dress within the 1/0 page. 

AA2 BDMGI L Direct Memory Access 
AS2 BDMGO L Grant-The bus arbitrator as-

serts this signal to grant bus 
mastership to a requesting de-
vice, acccrding to bus master-
ship protocol. The signal is 
passed in a daisy-chain from 
the arbitrator (as BDMGO L) 
through the bus to BDMGI L of 
the next priority device (electri-
cally closest device on the 
bus). This device accepts the 
grant only if it requested to be 
bus master (by a BDMR l). If 

E-45 



Appendix E - LSl-11 Bus Technical Specifications 

BUS MNEMONICS DESCRIPTION 
PIN 

not, the device passes the 
grant (asserts BDMGO L) to the 
next device on the bus. This 
process continues until the re-
questing device acknowledges 
the grant. 

CAUTION 
OMA device transfers must not 
interfere with the memory re-
fresh cycle. 

AT2 81NITL Initialize-This signal is used 
for system reset All devices on 
the bus are to return to a 
known, initial state; i.e., regis-
ters are reset to zero, and logic 
is reset to state 0. Exceptions 
should be completely docu-
mented in programing and en-
gineering specifications for the 
device. 

AU2 BDALO L Data/Address lines-These two 
AV2 BDAL1 L lines are part of the 16-line 

data/address bus over which 
address and data information 
are communicated_ Address in-
formation is first placed on the 
bus by the bus master device. 
The same device then either re-
ceives input data from, or out-
puts data to the addressed 
slave device or memory over 
the same bus lines_ 

BA2 +5 + 5V Power-Normal + 5 Vdc 
system power. 

882 -12 ·-12v Power- -12 Vdc (op-
tional) power for devices requir-
ing this voltage. 

• Voltages normally not supplied by DIGITAL. 

E-46 



Appendix E - LS/-11 Bus Technical Specifications 

BUS MNEMONICS DESCRIPTION 
PIN 

BC2 GND Ground-System signal ground 
and de return. 

802 +12 + 12V Power-+ 12V system 
power. 

BE2 BDAL2 L Data/Address Lines-These 14 
BF2 BDAL3 L lines are part of the 16-line 
BH2 BDAL4 L data/address bus previously de-
BJ2 BDAL5 L scribed. 
BK2 BDAL6 L 
BL2 BDAL7 L 
BM2 BDAL8 L 
BN2 BDAL9 L 
BP2 BDAL10 L 
BR2 BDAL11 L 
BS2 BDAL12 L 
BT2 BDAL13 L 
BU2 BDAL14 L 
BV2 BDAL15 L 

E-47 





APPENDIX F 

PROGRAMMING TECHNIQUES 

The LSl-11 and PDP-11 microcomputers offer you a great deal of pro­
gramming flexibility and power. With the combination of the instruc­
tion set, addressing modes, and programming techniques, new soft­
ware can be developed and old programs utilized effectively. This 
chapter provides programming techniques examples which illustrate 
the unique capabilities of PDP-11 processors. The techniques specifi­
cally discussed are: stacks, subroutine linkage, and reentrancy. 

STACKS 
The stack is part of the basic design architecture of the LSl-11 and 
PDP-11 processors. It is an area of memory set aside by the pro­
grammer or by the operating system for temporary storage and link­
age. It is handled on a LIFO (last-in/first-out) basis, where items are 
retrieved in the reverse of the order in which they were stored. On a 
PDP-11 processor, a stack starts at the highest location reserved for it 
and expands linearly downward to a lower address as items are added 
to the stack. 

You do not need to keep track of the actual locations into which data 
is being stacked. This is done automatically through a stack pointer. 
To keep track of the last item added to the stack, a general register 
always contains the memory address when the last item is stored in 
the stack. Any register except register 7 (the PC) may be used as a 
stack pointer under program control; however, instructions associat­
ed with subroutine linkage and interrupt service automatically use 
register 6 as a hardware stack pointer. For this reason, R6 is frequently 
referred to as the system SP. Stacks may be maintained in either full 
word or byte units. This is true for a stack pointed to by any register 
except R6, which must be organized in full word units only. Byte 
stacks require only instructions capable of operating on bytes rather 
than full words. Figure F-1 illustrates both word and byte stacks. 

!terns are added to a stack using the autodecrement addressing 
mode. Adding items to the stack is called pushing, and is accom­
plished by the following instructions: 

MOV Source, -(SP) ;MOV Contents of Source Word 
;onto the stack 

MOVB Source, - (SP) 
or 
;MOVB Source Byte onto 
;the stack 

F-1 



007100 

007076 

007074 

007072 

007070 

007066 

007064 

007100 

007077 

007076 

007075 

Appendix F - Programming Examples 

WORD STACK 

ITEM •1 

ITEM Ii< 2 

ITEM 11<3 

i---'T_EM_._4_-1 - SP ... I __ 00_10_12 _ __, 

BYTE STACK 

ITEM #1 

ITEM #2 

ITEM #3 

ITEM #4 

NOTE: BYTES ARE 
ARE ARRANGED IN 
WORDS AS FOLLOWING: 

BYTE 3 BYTE 2 

BYTE 1 BYTE 0 

- SP ._I __ 00_1_0_1s _ __. 

Figure F-1 Word and Byte Stacks 

Data are thus pushed onto the stack. 

Removing data from the stack is called a pop (popping from the stack). 
This operation is accomplished using the autoincrement mode: 

MOV (SP)+, Destination ;MOV Destination Word 
;off the stack 

MOVB 
or 

(SP)+, Destination ;MOVB Destination Byte 
;off the stack 

After an item has been popped, its stack location is considered free 
and available for other use. The stack pointer points to the last used 
location, implying that the next lower location is free. Thus, a stack 
may represent a pool of temporary storage locations. figure F-2 illus­
trates the push and pop operations. 

Uses for the Stack 
e Often one of the general-purpose registers must be used in a sub­

routine or interrupt service routine and then returned to its original 
value. The stack can be used to store the contents of the registers 
involved. 

F-2 



Appendix F - Programming Examples 

HIGHMEMOAY§SP ~ 
} 

t E0 -sP 
STACK 
AREA 

LOW MEMORY 
t AN EMPTY STACK 2.PUSHINGA DATUM 

AREA ONTO THE ST"ACK 

-

I -s• 
"1. ANOTHER r:'USH 

7. POP 

~p 
~~· 
5. POP 

~ 
j~SP 

3.PUSHING ANOTHER 
DATUM ONTIJ THE 
STACKS 

Figure F-2 Push and Pop Operations 

• the stack is used in storing linkage information between a subrou­
tine and its calling program. The JSR instruction, used in calling a 
subroutine, requires the specification of a linkage register along 
with the entry address of the subroutine. The content of this linkage 
register is stored on the stack, so as not to be lost, and the return 
address is moved from the PC to the linkage register. This provides 
a pointer back to the calling program so that successive arguments 
may be transmitted easily to the subroutine. 

@ If no arguments need be passed by stacking them after the JSR in· 
struction, the PC may be used as the linkage register. In this case, 
the result of the JSR is to move the return address in the calling pro· 
gram from the PC onto the stack and replace it with the entry ad· 
dress of the called subroutine. 

• In many cases, the operations performed by the subroutine can be 
applied directly to the data located on or pointed to by a stack with· 
out the need ever actually to move the data into the subroutine area. 

;CALLING PROGRAM 
MOV SP,R1 
JSR PC, SU BR 

F-3 

;R1 IS USED AS THE STACK 
;POINTER HERE 



Appendix F - Programming Examples 

;SUBROUTINE 
ADD (R1) + ,(R1) ;ADD ITEM #1 to #2,PLACE 

;RESULT iN ITEM #2, 
; R1 POINTS TO 
;ITEM#2NOW 

Because the hardware already uses general-purpose register R6 to 
point to a stack for saving and restoring PC and processor status word 
(PSW) information, it is convenient to use this same stack to save and 
restore immediate results and to transmit arguments to and from sub­
routines. Using R6 in this manner permits extreme flexibility in nesting 
subroutines and interrupt service routines. 

Since arguments may be obtained from the stack by using some form 
of register indexed addressing, it is sometimes useful to save a tempo­
rary copy of R6 in some other register which has been saved at the 
beginning of a subroutine. If R6 is saved in R5 at the beginning of the 
subroutine, R5 may be used to index the arguments while R6 is free to 
be incremented and decremented in the course of being used as a 
stack pointer. If R6 had been used directly as the base for indexing 
and not "copied," it might be difficult to keep track of the position in 
the argument list, since the base of the stack would change with every 
autoincrement/decrement which occurs. 

However, if the contents of R6 (SP) are saved in R5 before any argu­
ments are pushed onto the stack, the position relative to R5 would re­
main constant. 

Return from a subroutine also involves the stack, as the return instruc­
tion, RTS, must retrieve information stored there by the JSR. 

When a subroutine returns, it is necessary to "clean up" the stack by 
eliminating or skipping over the subroutine arguments. One way this 
can be done is by insisting that the subroutine keep the number of ar­
guments as its first stack item. Returns from subroutines then involve 
calculating the amount by which to reset the stack pointer, resetting 
the stack pointer, then storing the original contents of the register 
used as the copy of the stack pointer. 

• Stack storage is used in trap anq interrupt linkage. The program 
counter and the processor status word of the executing program are 
pushed on the stack. 

• When using the system stack, nesting of subroutines, interrupts, 
and traps to any level can occur until the stack overflows its legal 
limits. 

F-4 



Appendix F - Programming Examples 

• The stack method is also available tor temporary storage of any 
kind of data. It may be used as a LIFO list for storing inputs, interme­
diate results, etc. 

As an example of stack use, consider this situation: a subroutine 
(SUBR) wants to use registers 1 and 2, but these registers must be re­
turned to the calling program with their contents unchanged. The sub­
routine could be written as follows: 

Assembler 
Address Octal Code Syntax Comments 

076322 
076324 
076326 
076330 

076410 
076412 
076414 
076416 
076420 
076422 
076424 

• Index Constants 

010167 SUBR: 
000074 
010267 
000072 

016701 
000006 
016702 
000004 
000207 
000000 
000000 

OR: Using the Stack 

MOV R1,TEMP1 ;save R1 
* 
MOV R2,TEMP2 ;save R2 
* 

MOV TEMP1,R1 ;restore R1 
* 
MOV TEM P2, R2 ;restore R2 
* 
ATS PC 
TEMP1: 0 
TEMP2: 0 

R3 has been previously set to point to the end of an unused block of 
memory. 

Address 

010020 
010022 

010130 
010132 
010134 

Octal Code 

010143 SUBR: 
010243 

012302 
012301 
000207 

F-5 

Assembler 
Syntax Comments 

MOV R1, -(R3) ;push R1 
MOV R2, -(R3) ;push R2 

MOV (R3) + ,R2 ;pop R2 
MOV (R3) + ,R1 ;pop R1 
RTSPC 



Appendix F - Programming Examples 

Note: In this case R3 was used as a stack pointer. 

The second routine uses four fewer words of instruction code and two 
words of temporary stack storage. Another routine could use the same 
stack space at some later point. Thus, the ability to share temporary 
storage in the form of a stack is a way to save on memory use. 

As another example of stack use, consider the task of managing an 
input buffer from a terminal. As characters come in, you may wish to 
delete characters from the line; this is accomplished very easily by 
maintaining a byte stack containing the input characters. Whenever a 
backspace is received, a character is popped off the stack and elimi­
nated from consideration. In this example, you have the choice of pop­
ping characters to be eliminated by using either the MOVB (MOVE 
BYTE) or INC (INCREMENT) instruction. This example is illustrated in 
Figure F-3. 

001011 

001010 

001007 

00!006 

001005 

001004 

001003 

001002 

001001 

c c 
u u 

s INC R3 s 
T T 

0 0 

M M 

E E 

R R 

z 001001 . 

Figure F-3 Byte Stack Used as a Character Buffer 

001002 

Note that in this case the increment instruction (INC) is preferable to 
MOVB, since it accomplishes the task of eliminating the unwanted 
character from the stack by readjusting the stack pointer without the 
need for a destination location. Also, the stack pointer (SP) used in 
this example cannot be the system stack pointer (R6) because R6 may 
point only to word (even) locations. 

DELETING ITEMS FROM A STACK 
To delete one item: 

I NC SP or TSTB(SP) + for a byte stack 

F-6 



Appendix F - Programming Examples 

To delete two items: 

ADD#2,SP or TST(SP) + for a word stack 

To delete fifty items from a word stack: 

ADD #100.,SP 

SUBROUTINE LINKAGE 
The contents of the linkage register are saved on the system stack 
when a JSR is executed. The effect is the same as if a MOV reg, -(R6) 
had been performed. Following the JSR instruction, the same register 
is loaded with the memory address (the contents of the current PC), 
and a jump is made to the entry location specified. 

Figure F-4 illustrates the before and after conditions when executing 
the subroutine instructions JSR R5, 1064. 

BEFOAE 

(R5)• 000132 
(A6)=001776 

(PC)=(R7) =001000 

002000 
1-------t 

001776 

001774 

001772 

AFTER 

(R!S)ooOOI004 
(R6)~ 0017 74 

(PC).::(R7)~001064 

002000 nnnnnn 

,---0-0l-776---.100l776 m"""mmm 

001774 000132 .._SP 

001772 
1----~ 

Figure F-4 JSR Instruction 

001774 

Because the PDP-11 hardware already uses general purpose register 
R6 to point to a stack for saving and restoring PC and PSW (processor 
status word) information, it is convenient to use this same stack to 
save and restore intermediate results and to transmit arguments to 
and from subroutines. Using R6 this way permits nesting subroutines 
and interrupt service routines. 

Ri<l~um from a Subroutine 
An ATS instruction provides for a return from the subroutine to the 
calling program. The ATS instruction must specify the same register 
as the one the JSR instruction used in the subroutine call. When the 
RTS is executed, the register specified is moved to the PC, and the top 
of the stack to be placed in the register specified. Thus, an ATS PC 
has the effect of returning to the address specified on the top of the 
stack. 

F-7 



Appendix F - Programming Examples 

Subroutine Advantages 
There are several advantages to the PDP-1i subroutine calling proce­
dure, effected by the JSR instruction. 
@ Arguments can be passed quickly between the calling program 

and the subroutine. 

• If there are no arguments, or the arguments are in a general regis­
ter or on the stack, the JSR PC, DST niode can be used so that none 
of the general purpose registers are used for linkage. 

• Many JSRs can be executed without the need to provide any sav­
ing procedure for the linkage information, since all linkage informa­
tion is automatically pushed onto the stack in sequential order. Re­
turns can be made by automatically popping this information from 
the stack in the order opposite to the JSRs. 

Such linkage address bookkeeping is called automatic "nesting" of 
subroutine calls. This feature enables you to construct fast, efficient 
linkages in a simple, flexible manner. It also permits a routine to call 
itself in those cases where this is meaningful. 

REIENTRANCY 
Other advantages of the PDP-11 stack organization are obvious in pro­
gramming systems that are engaged in concurrent handling of several 
tasks. Multi-task program environments range from simple single-user 
applications which manage a mixture of 1/0 interrupt service and 
background data processing, as in RT-ii, to large complex multi-pro­
gramming systems that manage an intricate mixture of executive and 
multi-user programming situations, as in RSX-11. In all these situa­
tions, using the stack as a programming technique provides flexibility 
and time/memory economy by allowing many tasks to use a single 
copy of the same routine with a simple straightforward way of keeping 
track of complex program linkages. 

The ability to share a single copy of a program among users or among 
tasks is called reentrancy. Reentrant program routines differ from or­
dinary subroutines in that it is not necessary for reentrant routines to 
finish processing a given task before they can be used by another 
task. Multiple tasks can exist at any time in varying stages of comple­
tion in the same routine. Thus the following situation may occur. 

F-8 



Appendix F - Programming Examples 

MEMORY 

PROGRAM1A PROGRAM Z SUBROJTINE A 
PAOGAAM 3 

Figure F-5 

PDP-11 Approach 

Programs 1, 2, and 3 can share 
Subroutine A. 

Reentrant Code 

MEMORY 

Reentrant Routines 

Conventional Approach 

A separate copy of Subroutine A 
must be provided for each pro­
gram. 

Reentrant routines must be written in pure code, code that is not self­
modifying and consists entirely of instructions and constants. 

Pure code (any code that consists exclusively of instructions and con­
stants) may be used when writing any routine, even if the completed. 
routine is not to be reenterable. The value of using pure code whenev­
er possible is that the resulting code: 
• is generally considered easier to debug 
• can be kept in read-only memory (is read-only protected) 

Using reentrant code, control of a routine can be shared as follows: 

TASK A 

~-------- REENTRANT 
~------- ROUTINE Q 

TASK B 

Figure F-6 Sharing Control of a Routine 

• Task A requests processing by Reentrant Routine Q. 

"' Task A temporarily relinquishes control of Reentrant Routine Q be­
fore it completes processing. 

o Task B starts processing the same copy of Reentrant Routine 0. 

F-9 



Appendix F - Programming Examples 

~ Task B completes processing by Reentrant Routine Q. 

ill Task A regains use of Reentrant Routine Q and resumes where it 
stopped. 

Writing Reentrant Code 
In an operating system environment, when one task is executing and 
is interrupted to allow another task to run, a context switch occurs 
which causes the processor status word and current contents of the 
general purpose registers (GPRs) to be saved and replaced by the ap­
propriate values for the task being entered. Therefore, reentrant code 
should use the GPRs and the stack for any counters, pointers, or data 
that must be modified or manipulated in the routine. 

The context switch occurs whenever a new task is al lowed to execute. 
It causes all of the GPRs, the PSW, and often other task-related infor­
mation to be saved in an impure area, then reloads these registers and 
locations with the appropriate data for the task being entered. Notice 
that one consequence of this is that a new stack pointer value is load­
ed into R6, therefore causing a new area to be used as the stack when 
the second task is entered. 

The following should be observed when writing reentrant code: 
@ All data should be in or pointed to by one of the general purpose 

registers. 
• A stack can be used for temporary storage of data or pointers to 

impure areas within the task space. The pointer to such a stack 
would be stored in a GPA. 

@ Parameter addresses should be used by indexing and indirect ref­
erence rather than by putting them into instructions within the code. 

e When temporary storage is accessed within the progam, it should 
be by indexed addresses, which can be set by the calling task in or­
der to handle any possible recursion. 

Use of Reentrant Code 
Reentrant code is used whenever more than one task may reference 
the same code without requiring that each task complete processing 
with the code before the next may use it. 

F-10 



GLOSSARY 

abort An exception that occurs in the middle of an instruction and 
potentially leaves the registers and memory in an indeterminate state 
such that the instruction cannot necessarily be restarted. 

absolute address A binary number that is permanently assigned as 
the address of a storage location. 

absolute mode Autoincrement deferred mode in which the PC is 
used as the register. The PC contains the address of the location con­
taining the actual operand. 

access mode 1. Any of the three processor access modes in which 
software executes. Processor access modes are, in order from most to 
least privileged and protected: kernel, supervisor, and user. When the 
processor is in kernel mode, the executing software has complete 
control of, and responsibility for, the system. In any other mode, the 
processor is inhibited from execu'ting privileged instructions. The 
Processor Status Word contains the current access mode field. The 
operating system uses access modes to define protection levels for 
software executing in the context of a process. For example, the exec­
utive runs in kernel mode and is most protected. The debugger runs in 
user mode and is not more protected than normal users programs. 

access time The time interval between the instant at which data is 
called for (or requested to be stored) from a storage device and the 
instant delivery (or storage) is started. 

access type 1. The way in which the processor accesses instruction 
operands. Access types are: read and write. 2. The way in which a pro­
cedure accesses its arguments. 

access violation An attempt to reference an address that is not 
mapped into virtual memory or an attempt to reference an address 
that is not accessible by the current access mode. 

accumulator A 16-bit register or memory location in which the result 
of an operation is formed. 

active release Pertains to the bus. Indicates that the bus control is 
passed from the bus master to the processor by means of an interrupt 
operation. See "passive release". 

address A number used by the operating system and user software 
to identify a storage location. See also virtual address and physical 
address. 

GLOSSARY 1 



Glossary 

address field That portion of a computer word either containing the 
address of the operand or containing the information necessary for 
calculation of the address. 

address map A table, chart or drawing showing the absolute ad­
dresses of all locations in the core memory. 

addressing mode The way in which an operand is specified; for ex­
ample, the way in which the effective address of an instruction oper­
and is calculated using the general registers. The basic general regis­
ter addressing modes are called register, register deferred, 
autoincrement, autoincrement deferred, autodecrement, autodecre­
ment deferred, index, and index deferred. The Program Counter (PC) 
addressing modes are called immediate (for register deferred mode 
using the PC), absolute (for autoincrement deferred mode using the 
PC), relative, and relative deferred. 

address space The set of all possible addresses available to a proc­
ess. Virtual address space refers to the set of all possible virtual ad­
dresses. Physical address space refers to the set of all possible physi­
cal addresses. 

algorithm A prescribed set of well-defined rules or processes for the 
solution of a problem in a definite sequence. 

alphanumeric character An upper or lower case letter (A to Z, a to z), 
a dollar sign($), an underscore(_), or a decimal digit (0 to 9). 

American Standard Code for Information Interchange (ASCII) A set 
of 8-bit binary numbers representing the alphabet, punctuation, num­
erals, control, and other special symbols used in text representation 
and communications protocol. 

ASCII See American Standard Code for Information Interchange. 

assemble To translate from a symbolic program to a binary program 
by substituting binary operation codes for symbolic operation codes 
and absolute or relocatable addresses for symbolic addresses. 

assembler A program that performs the translation from symbolic 
program to binary program. 

autodecrement mode In autodecrement mode addressing, the con­
tents of the selected register are decremented, and the result is used 
as the address of the actual operand of the instruction. The contents 
of the register are decremented according to the data type context of 
the register: 1 for byte, 2 for word, 4 for single-precision floating, and 8 
for double-precision floating. 

autoincrement deferred mode In autoincrement deferred mode ad­
dressing, the specified register contains the address of a word which 

GLOSSARY 2 



Glossary 

contains the address of the actual operand. The contents of the regis­
ter are incremented by one, two, four, or eight, depending on the data 
type. If the PC is used as the register, this mode is called absolute 
mode. 

autoincrement mode In autoincrement mode addressing, the con­
tents of the specified register are used as the address of the operand; 
then the contents of the register are incremented by the size of the 
operand (unless the PC is used, in which case it is always incremented 
by 2). If the PC is used, this is called immediate mode. 

base operand address The address of the base of a table or array 
referenced by index mode addressing. 

base register A general register used to contain the address of the 
first entry in a list, table, array, or other data structure. 

bidirectional Capable of traveling in either direction. Refers to UN­
IBUS or LSl-11 Bus lines on which signals can be transmitted or 
received. 

binary Pertaining to a number system with a radix of 2. 

binary digit One of two states (0 or 1) of the binary number system. 
Usually referred to as a bit. 

bit A shortened form of binary digit; the smallest unit of information. 

bit complement (also called one's complement) The result of ex­
changing Os and 1 sin the binary representation of a number. Thus, the 
bit complement of the binary number 11011001 (21710) is 00100110. Bit 
complements are used in place of their corresponding binary numbers 
in some arithmetic computations in computers. 

block 1. The smallest addressable unit of data that the specified de' 
vice can transfer in an 1/0 operation (512 contiguous bytes for most 
disk devices) 2. An arbitrary number of contiguous bytes used to store 
logically related status, control, or other processing information. 

block transfer Moving a large amount of data in one operation. For 
example: data from a disk into memory or vice versa. 

bootstrap To start the computer and bring it to the desired state by 
means of its own action. For example, a routine whose first few in­
structions are sufficent to bring the rest of itself into the computer 
from an input device. 

bootstrap loader A program that is toggled into the computer to al­
low a small set of programs in a special tape format to be loaded into 
the PDP-11. 

boundary See "word boundaries." 

GLOSSARY 3 



Glossary 

branch A point in a routine where one of two or more choices is 
made under control of the routine. The PDP-11 has many branch in­
structions and one unconditional branch instruction. 

buffer A storage device used to compensate for a difference in rate 
of data flow or time of event occurrence when transmitting data from 
one device to another. 

buffer register see buffer. 

bus See LSl-11 Bus and UNIBUS. 

bus address The current address on the bus; may be the address of a 
device, the processor, or a memory location_ 

bus address register A processor register that holds the address 
from the process for display and then loads it onto the bus at the re­
quired time. 

bus device Any external device, including core memory, that is con­
nected to the bus and has an assigned device address and/or priority 
level. 

bus driver A circuit or module used to pass signals to the bus in ac­
cordance with the transmission line characteristics of the bus. 

bus master The bus device that has control of the bus. 

bus receiver A circuit or module used to receive signals from the 
bus. These circuits use gates with high input impedance and proper 
logic thresholds to ensure that the received signal is compatible with 
the rest of the system. 

bus request A request from a peripheral for control of the bus in or­
der to become bus master and initiate an interrupt or perform a data 
transfer. 

bus slave The peripheral that is communicating with the bus master. 

bus transceiver A module containing both bus driver and receiver cir­
cuits. 

byte A byte is eight contiguous bits starting on an addressable byte 
boundary. Bits are numbered from the right, 0 through 7, with bit 0 the 
low-order bit. When interpreted arithmetically, a byte is a two's com­
plement integer with significance increasing from bits O through 6. Bit 
7 is the sign bit. The value of the signed integer is in the range-128to 
127 decimal. When interpreted as an unsigned integer, significance in­
creases from bits O through 7 and the value of the unsigned integer is 
in the range 0 to 255 decimal. A byte can be used to store one ASCII 
character. 

GLOSSARY 4 



Glossary 

cache memory A small, high-speed memory placed between slower 
main memory and the processor. A cache increases effective memory 
transfer rates and processor speed. It contains copies of data recently 
used by the processor and may fetch several bytes of data from mem­
ory in anticipation that the processor will access the next sequential 
series of bytes. 

call To transfer control to a specified routine. 

calling sequence A specified set of instructions and necessary data 
requried to call a given routine. 

character A symbol represented by an ASCII code. See also alphanu­
meric character. 

character string A contiguous set of bytes. A character string is 
identified by two attributes: an address and a length. Its address is the 
address of the byte containing the first character of the string. Subse­
quent characters are stored in bytes of increasing addresses. The 
length is the number of characters in the string. 

character string descriptor A data structure used for passing char­
acter data (strings). The first word contains the length of the character 
string. The second word contains the address of the string. 

carry In performing binary addition, one bit of information often has 
to be carried from one digit of the addition to the next most significant 
digit. This operation is referred to as a "carry". 

carry bit Indicates that an operation resulted in a carry from the 
most significant bit. During subtraction, indicates a borrow from bit 
16. 

central processor See "processor". 

clear To erase the contents of a storage location by replacing the 
contents with zeros; to set register and/or flip-flops in a device to the 
required initial states. 

clock A device tlrat generates regular, periodic signals for synchron­
ization. 

codling To write instructions for a computer using symbols meaning­
ful to the computer or to an assembler, compiler, etc. 

command An instruction, generally an English word, typed by the 
user at a terminal or included in a command file, which requests the 
software monitoring a terminal or reading a command file to perform 
some well-defined activity. For example, typing the COPY command 
requests the system to copy the contents of one file into another file. 

GLOSSARY 5 



Glossary 

command procedure A tile containing commands and data that the 
command interpreter can accept in lieu of the user's typing the com­
mands individually on a terminal. 

compiler A program that produces a binary-coded program from a 
source (symbolic) program. 

complement The binary opposite of a number, variable, or function. 
See "one's complement" and "two's complement". 

condition An exception condition detected and declared by soft­
ware. 

condition codes Four bits in the Processor Status Word (PSW) that 
indicate the results ot previously executed instructions. 

condition handler A procedure that a process wants the system to 
execute when an exception condition occurs. The operating system 
searches tor a condition handler and, it it is found, initiates the han­
dler immediately. The condition handler may perform some act to 
change the situation that caused the exception condition and contin­
ue execution tor the process that incurred the exception condition. 
Condition handlers execute in the context ot the process at the ac­
cess mode ot the code that incurred the exception condition. 

conditional jump A jump that occurs only it specified criteria have 
been met. 

console The manual control unit integrated into the central proces­
sor. The console may include a microprocessor and a serial line inter­
face connected to a terminal. It enables the operator to start and stop 
the system, monitor system operation, and run diagnostics. 

console terminal The terminal connected to the central processor 
console or the first serial-line unit. 

context switching Interrupting the activity in progress and switching 
to another activity. Context switching occurs as one process after an­
other is scheduled tor execution. The operating system saves the in­
terrupted process's hardware context, then loads another process's 
hardware context scheduling that process tor execution. 

control and status register A register, used with a peripheral, that 
contains information needed to communicate with the peripheral. 

current access mode The processor access mode ot the currently 
executing software. The Current Mode field of the Processor Status 
Word (PSW) indicates the access mode of the currently executing soft­
ware. 

GLOSSARY6 



Glossary 

data A general term used to denote any or all facts, numbers, letters, 
and symbols. It connotes basic elements of information which can be 
processed or produced by a computer. 

data buffer register A register used with a peripheral to temporarily 
store data that is to be transferred into or out of the processor or other 
device. 

data paths That portion of the processor where normal processing 
and computation accurs. All modifications and routing of data within 
the processor are performed by the data paths which consist primarily 
of the input gating and latches, adder, and output gating circuits. 

data structure Any table, list, array, queue, or tree whose format and 
access conventions are well-defined for reference by one or more im­
ages. 

data type In general, the way in which bits are grouped and interpret­
ed. In reference to the processor instructions, the data type of an oper­
and identifies the size of the operand and the significance of the bits 
in the operand. Operand data types include: byte, word, and longword 
integer; single-precision floating, and double-precision floating; char­
acter string; and packed decimal string. 

debug To detect, locate, and remove mistakes from a program 

dedicated controller A processor or computer system, usually with a 
read-only memory, that is designed and/or used to control only one 
specific process. For example, a computer designed to continually 
monitor, evaluate, and change a chemical process. 

dedicated line A signal path used for only one purpose. 

deferred address Indirectly addressed. The contents of the location 
is the address of the operand rather than the operand itself. 

descriptor A data structure used in calling sequences for passing ar­
gument types, addresses and other optional information. See charac­
ter string descriptor. 

device Usually refers to an external device which is synonymous 
with the term "peripheral". 

device flag A bit in either the interface logic or the device itself that 
is set to indicate a specific condition such as ready or busy. 

device interrupt An interrupt received on interrupt priority levels 4 
through 7. Device interrupts can be requested only by devices, con­
trollers, and memories. 

device name The field in a file specification that identifies the de­
vice unit on which a file is stored. Device names also include the 

GLOSSARY 7 



Glossary 

mnemonics that identify an 1/0 peripheral device in a data transfer re­
quest. A device name consists of a mnemonic followed by a controller 
identification letter (if applicable), followed by a unit number (if appli­
cable). A colon(:) separates it from following fields. 

device register A location in device controller logic used to request 
device functions (such as 1/0 transfers) and/or to report status. 

device selec~ion code Part of an address that is used to specify that 
a particular device has been selected for use. 

device unit One drive, and its controlling logic, of a mass storage de­
vice system. A mass storage system can have several drives connect­
ed to it. 

diagnostic A program that tests logic and reports any faults it de­
tects. 

digit A character used to represent once of the non-negative in­
tegers smaller than the radix. For example, in binary notation (radix 2), 
a digit is either 1 or 0. 

direct address An address that specifies the location of an instruc­
tion operand. 

direct address mode Any PDP-11 address mode that is not deferred. 

direct mapping cache A cache organization in which only one ad­
dress comparison is needed to locate any data in the cache because 
any block of main memory data can be placed in only one possible 
position in the cache. Contrast with fully associative cache. 

direct memory access Transfer of data into memory without supervi­
sion of the processor. Data is passed directly between the memory 
and another device through the bus. Transfers are usually accom­
plished with a nonprocessor request. 

disk A mass-storage device. Its basic unit is a record-like platter on 
which data is magnetically recorded. Types of disks include rigid, flex­
ible (floppy), Winchester, and cartridge. 

displacement deferred indexed mode An indexed addressing mode 
in which the base operand specifier uses displacement deferred mode 
addressing. 

double-precision floating datum Eight contiguous bytes starting on 
an addressable word boundary, which are interpreted as containing a 
floating point number. The bits are labeled from right to left, 0 to 63. A 
four-word floating point number is identified by the address of the 
byte contain bit 0. Bit 15 contains the sign of the number. Bits 14 
through 7 contain the excess -128 binary exponent. Bits 63 through 

GLOSSARY 8 



Glossary 

16 and 6 through O contain a normalized 56-bit fraction with the redun­
dant, most significant fraction bit not represented. Within the fraction, 
bits of decreasing significance go from 6 through 0, 31through16, 47 
through 32, then 63 through 48. Exponent values of 1 through 255 in 
the 8-bit exponent field represent true binary exponents of -128 to 
127. An exponent value of 0 together with a sign bit of 0 represents a 
floating value of 0. An exponent value of 0 with a sign bit of 1 is a re­
served representation; floating point instructions processing this val­
ue return an undefined operand fault. The value of a double-precision 
floating datum is in the approximate range ( + or - ) 0.29 x 10-'8 to 1.7 
x 1038 • The precision is approximately one part in 255 , or sixteen deci­
mal digits. 

drive The electromechanical unit of a mass storage device system 
on which a recording medium (disk cartridge, disk pack, or magnetic 
tape reel) is mounted. 

effective address The address obtained after indirect or indexing 
modifications are calculated. 

entry point A location that can be specified as the object of a call. 

escape sequence An escape is a transition from the normal mode of 
operation to a mode outside the normal mode. The escape character 
is the code that indicates the transition from normal to escape mode. 
An escape sequence refers to the set of character combinations start­
ing with an escape character that the terminal transmits without inter­
pretation to the software set up to handle sequences. 

event A change in process status or an indication of the occurrence 
of some activity that concerns an individual process or cooperating 
processes. An incident reported to the scheduler that affects a proc­
ess's ability to execute. Events can be synchronous with the process's 
execution (e.g., a wait request), or they can be asynchronous (e.g., 1/0 
completion). Some other events include: swapping, and wake request. 

event ~lag A bit in an event flag cluster that can be set or cleared to 
indicate the occurrence of the event associated with that flag. Event 
flags are used to synchronize activities in a process or among many 
processes. 

exception An event detected by the hardware (other than an inter­
rupt, or Jump or Branch instruction) that changes the normal flow of 
instruction or set of instrucl:ions (whereas an interrupt is caused by an 
activity in the system independent of the current instruction). There 
are three types of hardware exceptions; traps, faults, and aborts. Ex­
amples are: attempts to execute a privileged or reserved instruction, 

GLOSSARY 9 



Glossary 

trace traps, breakpoint instruction execution, and arithmetic traps 
such as overflow, underflow, and divide by zero. 

@lxception e:ondi~ion A hardware- or software-detected event other 
than an interrupt or Jump or Branch instruction that changes the nor­
mal flow of instruction execution. 

m~ld A set of contiguous bytes in a logical record. 

fioai:ing (point) datum See single-precision floating datum. 

fully associative cache A cache organization in which any block of 
data from main memory can be placed anywhere in the cache. Ad­
dress comparision must take place against each block in the cache to 
find any particular block. Constrast with direct mapping cache. 

general register Any of the eight 16-bit registers used as the primary 
operands of the instructions. The general registers include 6 general 
purpose registers which can be used as accumulators, as counters, 
and as pointers to locations in main memory, and the Stack Pointer 
(SP), and Program Counter (PC) registers. 

giga Metric term used to represent the number 1 followed by nine Os 
(109

, though in the computer industry it is often used to mean 230, which 
is about 7.4% larger.) 

hardware context The values contained in the following registers 
while a process is executing: the Program Counter (PC); the Processor 
Status Word (PSW); the 6 general registers (RO through R5); the Stack 
Pointer(SP) for the current access mode in which the processor is exe­
cuting; plus the contents to be loaded in the stack pointer for every 
access mode other than the current access mode. While a process is 
executing, its hardware context is continually being updated by the 
processor. While a process is not executing its hardware context must 
be stored in memory. 

image An image consists of procedures and data that have been 
bound together by the linker. There are three types of images: execut­
able, shareable, and system. 

immediate mode Autoincrement mode addressing in which the PC is 
used as the register. 

index register A register used to contain an address offset. 

input stream The source of commands and data. One of either the 
user's terminal, the batch stream, or an indirect command file. 

GLOSSARY 10 



Glossary 

instruction buffer A buffer in the processor used to contain bytes of 
the instruction currently being decoded and to prefetch instructions in 
the instruction stream. The control logic continously fetches data 
from memory to keep the buffer full. 

interleaving Assigning consecutive physical memory addresses al­
ternately between two memory controllers. 

interrecord gap A blank space deliberately placed between data 
records on the recording surface of a magnetic tape. 

interrupt An event other than a powerfail or abort that changes the 
normal flow of instruction execution. Interrupts are generally external 
to the process executing when the interrupt occurs. See also device 
interrupt, software interrupt, and urgent interrupt. 

interrupt priority level (IPL) The interrupt level at which the processor 
executes when an interrupt is generated. There are 8 possible inter­
rupt priority levels (IPL). IPL 0 is lowest, 7 highest. The levels arbitrate 
contention for processor service. For example, a device cannot inter­
rupt the processor if the process is currently executing at an IPL great­
er than or equal to the one of the device's interrupt service routine. 

interrupt service routine The routine executed when a device inter­
rupt occurs. 

interrupt vector See vector. 

kernel mode The most privileged processor access mode (mode 0). 
The operating system's most privileged services, such as 110 drivers 
run in kernel mode. 

main memory See physical memory. 

mass storage device A device capable of reading and writing data 
on mass storage media such as a diskpack or a magnetic tape reel. 

memory management The system functions that include the hard­
ware's page mapping and protection. 

nibble Half a byte-the low-order or high-order four bits of an 8-bit 
byte. 

normalized fraction A numeric representation patterned on scientif­
ic notation, but in which the fraction part of the representation is 
greater than or equal to 0.5 and less than 1. As a binary form, such a 
fraction will always begin with a 1 in the leftmost (most significant) 
bit, unless the number is zero. Because of this, the lead i is not stored, 
and a bit-per-number saving is effected in storage. 

numeric string A contiguous sequence of bytes representing up to 
31 decimal digits (one per byte) and possily a sign. The numeric string 

GLOSSARY 11 



Glossary 

is specified by its lowest addressed location, its length, and its sign 
representation. 

offset A fixed displacement from the beginning of a data structure. 
System offsets for items within a data structure normally have an as­
sociated symbolic name used instead of the numeric displacement. 
Where symbols are defined, programmers always reference the sym­
bolic names for items in a data structure instead of using the numeric 
displacement 

one's complement See bit complement. 

opcode The pattern of bits within an instruction that specifies the 
operation to be performed. 

packed decnma! A method of representing a decimal number by stor­
ing a pair of decimal digits in one byte, taking advantage of the tact 
that only four bits are required to represent the numbers 0 through 9. 

packed decimal string A contiguous sequence of up to 16 bytes in­
terpreted as a string of nibbles. Each nibble represents a digit, except 
the low-order nibble of the highest addressed byte, which represents 
the sign. The packed decimal string is specified by its lowest ad­
dressed location and the number of digits. 

page i. A set of 8192 contiguous byte locations used as the unit of 
memory mapping and protection. 2. The data between the beginning 
of file and a page marker, between two markers, or between a marker 
and the end of a file. 

physical address The address used by hardware to identify a loca­
tion in physical memory or on directly-addressable secondary storage 
devices such as a disk. A physical memory address consists of a page 
frame number and the number of a byte within the page. A physical 
disk block address consists of a cylinder or track and sector number. 

physical addrnss space The set of all possible 22-bit physical ad­
dresses that can be used to refer to locations in memory (memory 
space) or device registers (1/0 space). 

physical memouy The memory modules connected to the processor 
that are used to store: 1) instructions that the processor can directly 
fetch and execute, and 2) any other data that a processor is instructed 
to manipulate. Also called main memory. 

position dependent code Code that can execute properlyonly in the 
locations in virtual address space that were originally assigned to it by 
the linker or taskbuilder. 

position independent code Code that can execute properly without 
modification wherever it is located in virtual address space, even if its 

GLOSSARY12 



Glossary 

location is changed after it has been linked. Generally, this code uses 
addressing modes that form an effective address relative to the PC. 

privileged instructions In general, any instruction intended for use 
by the operating system or privileged system programs. In particular, 
instructions that the processor will not execute unless the current ac­
cess mode is kernel mode (e.g., HALT and RESET). 

procedure See command procedure. 

process The basic entity scheduled by the system software, that 
provides the context in which an image executes. A process consists 
of an address space and both hardware and software contexts. It is 
loosely analogous to a job or task. 

process address space See process space. 

process context The hardware and software contexts of a process. 

Processor Status Word (PSW) Processor status information in­
cludes: the condition codes (carry, overflow, zero, negative), the 
arithmetic trap enable bits (integer overflow, decimal overflow, float­
ing underflow), and the trace enable bit. 

Program Counter (PC) General register 7(R7). At the beginning of an 
instruction's execution, the PC normally contains the address of a lo­
cation in memory from which the processor will fetch the next instruc­
tion it will execute. 

program locality A characteristic of a program that indicates how 
close or far apart the references to locations in virtual memory are 
over time. A program with a high degree of locality does not refer to 
many widely scattered virtual addresses in a short period of time. A 
cache memory is more effective if a program has locality. 

queue 1. A linked list. 2. To make an entry in a list or table. 

read aiccess type An instruction or procedure operand attribute indi­
cating that the specified operand is only read during instruction or 
procedure execution. 

register A storage location in hardware logic other than main mem­
ory. See also general register, processor register, and device register. 

register dle~erred mode In register deferred mode addressing, the 
contents of the specified register are used as the address of the actu­
al instruction operand. 

register mode In register mode addressing, the contents of the spec­
ified register are used as the actual instruction operand. 

GLOSSARY13 



Glossary 

scatter/gather The ability to transfer in one 1/0 operation data from 
discontiguous pages in memory to contiguous blocks on disk, or data 
from contiguous blocks on disk to discontiguous pages in memory. 

secondary stornige Random access mass storage. 

signal 1. An electrical impulse conveying information. 2. The soft­
ware mechanism used to indicate that an exception condition was de­
tected. 

single-precision floating datum Four contiguous bytes starting on 
an addressable byte boundary. The bits are labeled from right to left 0 
to 31. A two-word floating point number is identified by the address of 
the byte containing bit 0. Bit 15 contains the sign of the number. Bits 
14 through 7 contain the excess-128 binary exponent. Bits 31 through 
16 and 6 through 0 contain a normalized 24-bit fraction with the redun­
dant, most significant fraction bit not represented. Within the fraction, 
bits of decreasing significance go from bit 6 through 0, then 31 
through 16. Exponent values of 1 through 255 in the 8-bit exponent 
field represent true binary exponents of -128to127. An exponent val­
ue of 0 together with a sign bit of 0 represents a floating value of 0. An 
exponent value of 0 with a sign bit of 1 is a reserved representation; 
floating point instructions processing this value return a reserved op­
erand fault. The value of a floating datum is in the approximate range 
(+or -)0.29 x 10-38 to 1.7 x 1038• The precision is approximately one 
part in 223, or seven decimal digits. 

software intermpt An interrupt generated on interrupt priority levels 
through 7, which can be requested only by software. 

stack An area of memory set aside for temporary storage, or for pro­
cedure and interrupt service linkages. A stack uses the last-in, first­
out concept. As items are added to ("pushed on") the stack, the stack 
pointer decrements. As items are retrieved from ("popped off") the 
stack, the stack pointer increments. 

Stack Pointer General register 6(R6). SP contains the address of the 
top (lowest address) of the processor-defined stack. Reference to SP 
will access one of the three possible stack pointers, kernel, supervi­
sor, or user, depending on the value in the current mode and interrupt 
stack bits in the Processor Status Word (PSW). 

status code A value that indicates the success or failure of a specif­
ic function. For example, system services often return a status code in 
the PSW's C-bit upon completion. 

store through See write through. 

GLOSSARY 14 



Glossary 

string A connected sequence of entities such as characters in a 
command string. 

subroutine A small routine, usually performing only one task, that is 
called frequently from various points of the main routine. 

subroutine, closed A subroutine not stored in the main part of a pro­
gram. Such a subroutine is entered by a jump or branch operation, and 
provision is made at the end of the subroutine to return control to the 
calling program. 

subroutine, open A subroutine that must be inserted into a program 
at each place it is to be used. 

supervisor mode The second most privileged processor access 
mode (mode 2). 

symbolic address A set of characters used to specify a memory lo­
cation within a program. 

symbolic coding Writing instructions using mnemonic notation in­
stead of actual machine language (binary) notation. 

symbolic program A service program that translates symbolic pro­
grams into binary-coded programs. The programmer writes the sym­
bolic program using symbols which are meaningful to him and the 
symbolic program translates the symbols into binary code which is 
meaningful to the computer. 

synchronize To ensure that a level or pulse is presented to a system 
or component at the correct time. 

synchronous All changes occurring simultaneously or in a definite, 
timed sequence. 

system In the context "system, owner, group, world," system refers 
to the group numbers that are used by operating system and its con­
trolling users, the system operators and system manager. 

T bit A bit in the processor status word used in program debugging. 
This bit can be set or cleared under program control. If set, a proces­
sor trap occurs upon completion of the instruction. 

table A collection of data in which each item is uniquely identified 
by its position relative to the other items, or by some other means. 

termi111ai A device in a system through which data can either enter or 
leave. 

Ume-out A specified amount of time (10 microseconds) that the sys­
tem waits for a response from a referenced address. If there is no re­
sponse within the specified time, an error occurs. Time-out errors are 

GLOSSARY15 



Glossary 

caused, in general, by attempts to reference nonexistent memory or 
nonexistent peripherals or words at odd addresses. 

~ime sharing A method of allocating pmcessor time and other com­
puter services among multiple users so that the computer, in appear­
ance, processes a number of programs simultaneously. 

translate To convert from one language to another. 

trap An unprogrammed jump to a known location, automatically ac­
tivated by the hardware if certain predetermined conditions occur, 
such as illegal instructions, errors, etc. 

two's complement A binary representation for integers in which a 
negative number is one greater than the bit complement of the posi­
tive number. 

two-way associative cache A cache organization which has two 
groups of directly mapped blocks. Each group contains several blocks 
for each index position in the cache. A block of data from main mem­
ory can go into either group at its proper index position. A two-way 
associative cache is a compromise between the extremes of fully as­
sociative and direct mapping cache organizations, and it takes advan­
tage of the features of both. 

U1r1ibus The single, high-speed bus structure shared by the proces­
sor, core memory, and all peripherals. It formed the basis for the 
smaller LSl-11 Bus. 

unidirectional Capable of traveling in only one direction. Refers to 
the Unibus control transfer lines that carry signals to select the next 
bus master_ 

unit record device A device such as a card reader or lineprinter. 

user mode The least privileged processor access mode. User pro­
cesses and the Run Time Library procedures run in user mode. 

user privileges The privileges granted a user by the system manager. 

vector Two words, containing the value of the program counter and 
processor status word, respectively, that direct the processor to a new 
routine. 

vector address The address of the location containing the vector 
words. 

11irtual address A 16-bit integer identifying a byte "location" in virtu­
al address space. The memory management hardware translates a vir­
tual address to a physical address. The term virtual address may also 
refer to the address used to identify a virtual block on a mass storage 
device. 

GLOSSARY16 



Glossary 

virtual address space The set of all possible virtual addresses that 
an image executing in the context of a process can use to identify the 
location of an instruction of data. The virtual address space seen by 
the programmer is a linear array of 65,536(21) byte addresses. 

wait loop A condition caused by the program WAIT instruction to al­
low the processor to wait for an interrupt. When the processor is in a 
wait loop, it does not compete for bus control by fetching instructions 
or operands from memory. 

word 16-bits of data in the PDP-11 that is stored in two successive 
locations. The word address is always an even address. 

word boundary The division between even numbered addresses. 
Since each word occupies two storage locations, words can be ad­
dressed only on even boundaries; bytes can be addressed on either 
even or odd boundaries. 

write To transfer information from internal storage to an output de­
vice or external storage. 

write access type The specified operand of an instruction or proce­
dure written during that instruction's execution. 

write allocate A cache management technique in which cache is al­
located on a write miss as well as on the usual read miss. 

write back A cache management techinque in which data from a 
write operation to cache is copied into main memory only when the 
data in cache must be overwritten. This results in temporary inconsis­
tencies between cache and main memory. Contrast with write 
through. 

write through A cache management technique in which data from a 
write operation is copied in both cache and main memory. Cache and 
main memory data are always consistent. Contrast with write back. 

GLOSSARY17 





INDEX 

aborts 
clearing status registers after 
Fault Recovery Registers and 
258-261 

ADDPI commercial instruction 
263 174-175 

171, 

ABSD floating-point 
instruction 136-137 

ABSF floating-point 
instruction 136-137 

absolute addressing mode 56, 64, 
68, 71 

absolute-value string data 39 

access 
codes(keys)for 233 
memory management and 
229 

227, 

access control field (ACF) 233-234 

access information bits 234 

accumulators 53 
in floating-point processor 125, · 
126, 132-133 

accuracy, of floating-point 133-134 

ACF (access control field) 233-234 

Active Page Field (APF) 230, 237 

Active Page Registers (APRs) 225, 
229-234 

virtual bus address and 237-239 

ADCB instruction 87 

ADC instruction 87 

ADD instruction 54, 87-88 

ADDO floating-point 
instruction 137-138 

ADDF floating-point 
instruction 137-139 

ADON commercial instruction 171, 
174-175 

ADDNI commercial instruction 171, 
174-175 

ADDP commercial instruction 171, 
174-175 

addresses 
assignment of 31-32 
mapping of 240-247 
odd addressing errors in 212 
physical address construction 
and 235-239 
relocation of 223-226, 228 
virtual address space and 222 
see also vector addresses 

addressing 28-29 
by floating-point instruction 132-
133 
1/0 extended 248-250 
by LSl-11 Bus 247 
performance and 6 
techniques for 1 

addressing modes 8, 53-71 
for floating-point 132-133 

address space, see physical address 
space; virtual address space 

APF (Active Page Field) 230, 237 

APRs, see Active Page Registers 

arbitration lines 267, 268 

architecture 1-3 
addressing and registers in 28-29, 
53-71 
busses in 31, 266-272 
data representation in 27-28 
instruction sets in 29-30, 73-123, 
125-160, 163-209 
mapping to memory and busses 
in 30-31, 222-264 
system performance and 5-6 
traps and interrupts in 30, 211-220 

ASHC instruction 88-89 

ASH instruction 88 

ASHN commerical instruction 168-
169, 176-178 

ASHNI commercial instruction 
set 168-169, 176-178 

INDEX 1 



Index 

ASHP commercial instruction 168-
169, 176-178 

ASHPI commercial instruction 168-
169, 176-178 

ASLB instruction 89-90 

ASLinstruction 89-90 

ASRB instruction 90 

ASA instruction 90 

assembly language (MACR0-11) 1, 
2,56 

autodecrement addressing 
mode 55, 59-60, 66-67, 70 

autodecrement deferred addressing 
mode 56,59,67, 70 

autoincrement addressing 
ITIOde 55,58,66,69 

autoincrement deferred addressing 
mode 56, 60-61, 67, 69 

backing up an instruction 263 

base addresses 223-224 

BBS? L line 270 

BCC instruction 91 

BCS instruction 91 BOIN L line 

270 

BDOUT L line 270 

BEQ instruction 91 

BGE instruction 91 

BGT instruction 92 

BHI instruction 92-93 

BHIS instruction 93 

BICB instruction 93 

BIC instruction 93 

binary code 27 

BISB instruction 93 

BIS instruction 93 

BIT instruction 93-94 

BITB instruction 93-94 

BLE instruction 94-95 

Block Number (BN) 237 

BLO instruction 95 

BLOS instruction 95 

BLT instruction 95-96 

BMI instruction 96 

BN (Block Number) 237 

BNE instruction 96-97 

boards 15 

BOOT ENB L line 271 

BPL instruction 97 

BPT instruction 97 

branch instructions 73, 76-77, 82-83, 
166 

BREF L line 71 

BR instruction 97 

BRPLY L line 271 

BSYNC L line 270 

BUS ACLO L line 267 

bus addresses 31-32 

BUS BBSY L line 269 

BUS BGx H Ii nes 268 

BUS BRx L lines 268 

BUS DCLO L line 267 

BUS INIT L signal 267 

BUS INTR L line 269 

BUS MSYNC L line 269 

BUS NPG H line 268 

BUS NPR L line 268 

BUS SACK L line 268 

busses 31,266-272 
mapping to 30-31, 240-248 
see also LSl-11 Bus; UNIBUS 

BUS SSYN L line 269-272 

BVC instruction 97 

BVS instruction 98 

BWTBT L line 270 

bytes 36 

INDEX 2 



Index 

cache (memory) bus 249-255 

c bit 79-80, 170 

CCC instruction 98-99 

central processing units, see CPUs 

CFCC floating-point instruction 139 

character data types 36-38 

character searches 165 

character sets 36-38 

character set searches 165 

character string data 28, 36-38 
instruction used with 164-167 

character string searches 165-166 

chipsets 12-14 

chopping, in floating-point 133 

chop/round floating-point 
modes 128 

C instruction 98 

CIS11 see Commercial Instruction 
Set 

CLC instruction 99 

clearing 
of device Interrupt Enable 
bits 217-218 
of status registers 263 

CLN instruction 99 

CLR instruction 54, 98, 217 

CLRB instruction 54, 98 

CLAD floating-point 
instruction 139-140 

. CLRF floating-point 
instruction 139-140 

CLV instruction 99 

CLZ instruction 99 

CMP instruction 99-100 

CMPB instruction 99-100 

CMPC commercial instruction 165, 
166, 178-180 

CMPC! commercial instruction 165, 
166, 178-180 

CMPD floating-point 
instruction 140 

CMPF floating-point 
instruction 140 

CMPN commercial instruction 169, 
170, 180-181 

CMPNI commercial instruction 169, 
170, 180-181 

CMPP commercial instruction 169-
170, 180-181 

CMPPI commercial instruction 169-
170, 180-181 

COM instruction 54, 100 

COMB instruction 54, 100 

Commercial Instruction Set 
(CIS11) 7, 27, 30, 35-38, 163-209 

character string data handled 
by 27 
on PDP-11/23 PLUS 19 
onPDP-11/24 19 
on PDP-11/44 24 

commercial load descriptor 
instructions 171-172 

communications, on MICRO/PDP-
11 18 

compatibility 
of data types 35 
between LSl-11 and PDP-11 
systems 12 
across PDP-11 family 3-4 

condition codes 
character string operations and 
165-166 
decimal string instructions and 
169-170 
instructions used with 73, 79-80 

configurations, for MICRO/PDP-
11 18 

convert instruction 169 

CPUs (central processing units) 
floating-point processors in 126-
127 
interrupts on 30, 215-217 

INDEX 3 



Index 

multiprogramming on 222 
on PDP-11/24 21 
processor traps and 211-212 
see also processors 

CSM isntruction 100-101, 262 

CVTLN commercial instruction 182-
183 

CVTLNI commercial 
instruction 182-183 

CVTLP commercial instruction 182-
183 

CVTLPI commercial 
instruction 182-183 

CVTNL commercial instruction 169 
1~18~1~ ' 

CVTNLI commercial 
instruction 169, 170, 183-185 

CVTNP commercial instruction 1~-

186 

CVTNPI commercial 
instruction 1~-186 

CVTPL commercial instruction 169, 
170, 18~1~ 

CVTPLI commercial 
instruction 169, 170, 183-185 

CVTPN commercial instruction 185-
186 

data 
memory management and 229-
230 
representation of 27-28, 35-51 

data overlap 170-171 

data transmission lines 167-168 

DECB instruction 101 

decimal string data 28, 38-49 167-
168 ' 

instruction for 168-171 

decimal string descriptors 40-41, 
167-168 

DEC instruction 101 

DECmate II 12 

DECnet Phase 111 19-20 

DECUS (Digital Equipment Computer 
Users Society) 4-5 

deferred addressing modes 56,67-
68 

device drivers 256 

device Interrupt Enable bits 217-218 

DF (Displacement Field) 237 

DIB (Displacement in the 
Block) 237 

Digital Equipment Computer Users 
Society (DECUS) 4-5 

DIGITAL Storage Architecture 
(DSA) 222-23 

Direct Memory Access (OMS) 8 
UNIBUS and 243-248 
UNIBUS Map and 252, 255 

disks 
DIGITAL Storage Architecture 
for 22-23 
Winchester 18, 21, 24 

Displacement Field (DF) 237 

Displacement in the Block 
(DIB) 237 

DIV instruction 101-102 

DIVD floating-point instruction 141-
142 

DIVF floating-point instruction 141-
142 

DIVP commercial instruction 170, 
186-188 

DIVPI commercial instruction 170, 
186-188 

OMA see Direct Memory Access 

double-operand instructions 55 73-
76, 81-82 ' 

double-precision floating data 28, 
51 

DSA (DIGITAL Storage 
Architecture) 22-23 

INDEX 4 



Index 

ECG (Error Checking Code) 21 

ED (expansion direction) 234 

18-bit physical address space 246, 
248 

EIS (Extended Integer 
instructions) 86 

EMT instruction 102-103, 213 

Error Checking Code (ECG) 21 

error flags 259 

errors 
bus 272 
in floating-point processors 131-
132, 134 
processor traps and 211-212 

exceptions 129 

executive (Monitor) 222, 224, 227, 
228 

exits, from main programs 78 

expansion direction (ED) 234 

Extended Integer instructions 
(EIS) 86 

F-11 microprocessor chip 17 

FALCON Single Board Computer 
(SBC-11/21) 12,15 

Fault Recovery (Status) 
registers 258-264 

faults, multiple 263-264 

FEA (floating exception address 
register) 125, 132 

FEC (floating exception code 
register) 131-132 

FIS (Floating Instruction Set) 32, 
125 

flags 259 

floating exception address (FEA) 
register 125, 132 

floating exception code 131-132 

floating exception code register 
(FEC) 131-132 

Floating Instruction Set (FIS) 32, 
125 

Floating-Point Data Types 28, 35, 
49-51 

Floating-Point Instruction Set (FP-
11) 27,28,30,35,50, 125-160 

Floating-Point Processor (FPP) 35, 
125-127 

Floating-Point Status 
Register(FPS) 127-131 

Floating-Point Zero 50, 133 

formats 
for addressing mode 
instructions 55 
for branch instructions 76-77 
for condition code operators 80-
81 
for double-operand 
instructions 75 
for floating-point instructions 135 
tor jump and subroutine 
instructions 77-78 
for single-operand instructions 74 

FP-11, see Floating-Point Instruction 
Set 

FPP (floating-point processor) 35, 
125-127 

FPS (floating-point status 
register) 127-131 

general purpose 1/0 controllers 
(RH70's) 249-251 

general purpose registers 
(GPRs) 28, 53 

commercial instructions 
and 166,167, 171-172 
Memory Management Register 1 
and 261 
Program Counter as 62 
stacks used with 32-33 
used by floating-point 
processor 132-133 
see a/so registers 

INDEX.5 



HALT instruction 103 

HALT L line 271 

hardware 
floating-point processor as 35, 
125 

Index 

for memory management 222, 224 

hidden bit 49, 50 

high-level languages 1 

I and D (instruction and data) 
space 229 

immediate addressing mode 56, 63, 
68, 71 

INCB instruction 54, 103 

INC instruction 54, 103 

index addressing modes 55, 60, 67, 
70 

index deferred addressing mode 56, 
61-62, 68, 70 

index registers 53 

indirect addressing modes 56, 67-
68 

initialization lines 266, 267 

"in-line" form (Commercial 
Instruction set) 163, 166-167, 170 

instruction and data (I and D) 
space 229 

instruction operands 29 

Instruction Set Processor (ISP) 5 

instructions and instruction sets 1, 
28-30, 73-123 

for addressing modes 53-55 
back-up/restart recovery for 263 
Commercial Instruction Set 7, 
163-209 
Floating-Point Instruction 
Set 125-160 
memory management and 229-
230 
performance of 5, 6 
trap 212-215 

instruction suspension 172-174 

integer data types 27, 35-36 

Interrupt Enable bits 217-218 

interrupt exits 78 

interrupts 1,30, 211, 215-220 
instructions for 78 
memory management and 228-
229 
UNIBUSfor 7 

interrupt service routines 216-217 

1/0 controllers 249-250 

1/0 extended addressing 248-250 

1/0 page 252 

1/0 processing 8 

IOT instruction 103-104 

ISP (Instruction Set Processor) 5 

JMP instruction 104-105 

JSR instruction 105-107 
format for 77 

jump and subroutine 
instructions 73, 77-78 

KEF11-AA (FP11 instruction 
set) 125 

Kernel mode 227-228 

kernel program 227 

keys (access codes) 233 

L2Dr commercial load descriptor 
instructions 171-172, 190-191 

L3Dr commercial load descriptor 
instructions 171, 172, 191-192 

languages 1 

LDCDF floating-point 
instruction 142-143 

LDCFD floating-point 
instruction 142-143 

INDEX .6 



Index 

LDCID floating-point 
instruction 143-144 

LDCIF floating-point 
instruction 143-144 

LDCLD floating-point 
instruction 143-144 

LDCLF floating-point 
instruction 143-144 

LDD floating-point instruction 146 

LDEXP floating-point 
instruction 144-146 

LDF floating-point instruction 146 

LDFPS floating-point 
instruction 127, 146-147 

leading overpunch numeric string 
uata 38 

leading separate numeric string 
data 38 

linkage 33 
interrupts and 216 

LOCC commercial instruction 164, 
166, 188-190 

LOCCI commercial instruction 164, 
166, 188-190 

long integer data 48-49 

LSl-11 Bus 8, 12, 31, 251, 266-272 
addressing by 247 

LSl-11 Bus controllers 251 

LSl-11 family 11-13 

LSl-11/2 systems 12 
Floating Instruction Set on 32 
mapping on 240, 245 

LSl-11/23 systems 12, 15 

LTC line 271 

MACR0-11 (assembly language). 56 

main memory 1 

mapping 30-31, 240-248 
operating systems and 256 
UNIBUS Map for 250-255 

MARK instruction 107, 261 

masks 37-38 

MASSBUS 249-250 

master/slave relationships 266 

MATC commercial instruction 165, 
166, 192-194 

MATCI commercial instruction 165, 
166, 192-194 

memory 
addressing of 1 
mapping to 30-31, 222-264 

memory (cache) bus 249, 255 

memory management 30-31, 222-
264 

Memory Management Register 0 
(MMRO) 259-261, 263 

Memory Management Register 1 
(MMR1) 261, 263 

Memory Management Register 2 
(MMR2) 261-263 

Memory Management Register 3 
(MMR3) 262-263 

Memory Management Unit 
(MMU) 222, 235-236, 240-242 

LSl-11 Bus and 247 

MFPD instruction 107-108 

MFPS instruction 108 

MFPT instruction 108-109 

microcomputer systems 3, 18-20 
FALCON SBC-11/21 15 
LSl-11 11-13 

MICRO/J-11 14 

MICRO/PDP-11 12-13, 18 

microprocessors 13-14 
in Professional 300 series 17 

MICRO/T-11 13-14 

minicomputer systems 3, 21-24 
see also PDP-11 family 

MMRO (Memory Management 
Register 0) 259-261, 263 

MMR1 (Memory Management 

INDEX 7 



Register 1) 261, 263 

MMR2 (Memory Management 
Register 2) 261-263 

MMR3 (Memory Management 
Register 3) 262-263 

MMU, see Memory Management 
Unit 

MODD floating-point 
instruction 147-150 

modes 
of access 233 
addressing 8, 53-71 
for addressing, in tloating­
point 132-133 
of execution 227-228 
of operation for floating-point 
processor 128 

MODF floating-point 
instruction 147-140 

monitor (executive) 222, 224, 227, 
228 

MOVB instruction 109 

MOVC commercial 
instructionm 165, 194-196 

MOVCI commercial instruction 165, 
194-196 

MOV instruction 109 

MOVRC commercial 
instruction 165, 196-198 

MOVRCI commer-cial 
instruction 165, 196-198 

MOVTC commercial 
instruction 165, 167, 198-200 

MOVTCI commercial 
instruciton 165, 167, 198-200 

MTPD instruction 109-110 

MTPS instruction 110-111 

MULD floating-point 
instruction 150-151 

MULF floating-point 
instruction 150-151 

MUL instruction 111 

Index 

MULP commercial instruction 200-
202 

MULPI commercial instruction 200-
202 

multiple tau Its 263-264 

multiprogramming 22, 227-228 

N bit 79, 169, 170 

NEGB instruciton 111 

NEGD floating-point 
instruction 151-152 

NEGF floating-point 
instruction 151-152 

NEG instruction 111 

nesting, of interrupts 218-219 

networks 4 

nibbles 39 

nonprocessor requests (NPRs) 243 

nonvanishing floating-point 
numbers 49-50 

NOP instruction 111-112 

normal/maintenance floating-point 
modes 128 

NPRs (nonprocessor requests) 243 

numbers 
in decimal strings 38-49 
in floating-point 49-51 
integer 27, 35-36 

numeric string data 28, 38-39, 168 
instructions tor 169 

odd addressing errors 212 

operand addressing modes 29 

operand delivery 170 

operating systems 5 
mapping and 256 
memory management by 227 
on MICRO/PDP-11 18 
on PDP-11/23 PLUS 19 
on Professional 300 series 17 

overflows, in floating-point 134 

overpunch string data 44-46 

INDEX 8 



Index 

packed string data 28, 38, 39, 41-43, 
168 

instructions for 169 

Page Address Field (PAF) 237-239 

Page Address Register (PAR) 230, 
236-239 

Page Descriptor Register 
(PDR) 230-234 

pages 225-227 

PAR (Page Address Register) 230, 
236-239 

parity errors 272 

PAs (Physical Addresses) 235-236 

patching, trap handlers for 213 

PC, see Program Counter 

PC absolute mode 56, 64, 68 

PC immediate mode 56, 63, 68 

PC relative deferred mode 56, 65-
66, 68 

PC relative mode 56, 64-65, 68 

PDP-8 systems 6-7 

PDP-11 family 3-5, 13-24, 32 
architecture of 27-33 
history of 6-11 
110 extended address on 248-250 
LSl-11 compatibility with 12 
system performance of 5-6 

PDP-11 instruction set 27, 29-30, 35 

PDP-11123 PLUS systems 18-20 

PDP-11124 systems 21 
mapping on 242-246 
UNIBUS Map on 251 

PDP-11134A systems 
mapping on 245 
memory management unit 
on 240-242 

PDP-11140 systems 248-249 

PDP-11144 systems 21-24 
mapping on 242-246 
Memory Management Register 1 
on 261 

Memory Management Register 3 
on 262-263 
UNIBUS Map on 251 

PDP-11145 systems 249 

PDP-11170 systems 
mapping on 242-246 
Memory Management Register 3 
on 262-263 
RH70's on 249-251 

PDR (Page Descriptor 
Register) 230-234 

performance 5-6 

peripherals 4 
addressing of device registers 
on 223 
interrupts and 215-216 

personal computers 12, 17 

Physical Addresses (PAs) 235-236 

physical address space 223, 226, 
248-249 

16-bit, mapping in 245 
18-bit, mapping in 246 
22-bit, mapping in 246 
construction of 235-239 
LSl-11 Bus mapping of 247 

physical memory Block Number 
(BN) 237 

pointers 53 

power failures 211 

processors 
Commercial Instruction Set 

supported on 163 
operating systems for 5 
registers in 28 
traps and interrupts on 30, 211-
220 
see also CPUs 

Processor Status Word (PSW) 
condition code bits on 79-81 
interrupts and 216 
memory management and 228· 
229 
during multiple faults 264 
saved in processor traps 30 

INDEX 9 



Index 

trap instructions and 212-213 

processor traps 30, 211-212 

Professional 300 series 17 

Program Counter (PC) 28, 53, 62 
interrupts and 216 
memory management and 228-
229 
during multiple faults 264 
saved in processor traps 30 
trap instructions and 212-213 

program counter addressing 
modes 56, 62-66, 68 

programming 32-33 

programs 1 
address relocation of 223-226 
architecture and 2-3 
exits from 78 ,, 
multiprogramming and 222 
reentrancy for 33 

protection, of memory, memory 
management for 227 

PS, see Processor Status Word 

PSW, see Processor Status Word 

RASO (Winchester) disks 21, 24 

RA81 (Winchester) disks 24 

Rainbow 100 12 

read-only memories (ROM) 8 

reentrancy 33 

register addressing mode 55-57, 66, 
69 

register deferred addressing 
mode 56,57,67,69 

"register" form (Commercial 
Instruction set) 163, 166, 170 

registers 1, 7, 28-29 
Active Page Registers 225, 229-
234, 237-239 
data lost in, during power 
failures 211 
device, on peripherals, addressing 
of 223 
Fault Recovery 258-264 

in floating-point processors 125, 
127-133 
general purpose 53 
stacks used with 32-33 
on UNIBUS Map 251-252, 255 
see also general purpose 
registers 

relative addressing modes 56, 64· 
65,68, 71 

relative deferred addressing 
mode 56, 65-66, 68, 71 

relocation, address 223-226, 228 

in UNIBUS Map 251-255 

reserved instructions 212 

RESET instruction 112 

restart recovery 263 

Return From Interrupt (RTI) 
instruction 113-114, 216-218 

RH70s (general purpose 1/0 
controllers) 249-251 

ROLB instruction 112 

AOL instruction 112 

ROM (read-only memory) 8 

RORB instruction 113 

ROA instruction 113 

rounding bit 133 

RSX-11 M-PLUS operating 
system 17 

RTI instruction 113-114, 216-218 

ATS instruction 115 
format for 78 

RTT instruction 115-116 

SBC11/21 (FALCON Single Board 
Computer) 12, 15 

SBCB instruction 116 

SBC instruction 116 

SCANC commercial 
instruction 165, 166, 202-204 

SCANCI commercial 
instruction 165, 166, 202-204 

sec instruction 116-117 

INDEX 10 



Index 

searches, commercial instructions 
for 165-166 

SEC instruction 117 

SEN instruction 117 

separate string data 46-48 

instruction 165, 206-208 

SPANCI commercial 
instruction 165, 206-208 

special symbols 83-84 

SPL instruction 118 

SETO floating-point instruction 152- stack addressing 53 

153 Stack Pointer (SP) 28, 53 
SETF floating-point instruction 152 

SETI floating-point instruction 153 

SETL floating-point instruction 153 

SEV instruction 117 

SEZ instruction 117 

short/long floating-point modes 128 

signal lines 266-271 

signed packed string data 41 

signed zoned numeric string 
data 38, 43 

sign-magnitude string data 39 

Single Board Computer (FALCON-11/ 
21) 12, 15 

single/double floating-point 
modes 128 

single-operand instructions 55, 73-
74, 81 

single-precision floating data 28, 51 

S instruction 116 

16-bit physical address space 245 

SKPC commercial instruction 165, 
204-206 

.SKPCI commercial instruction 165, 
204-206 

SOB instruction 117-118 

software 4-5 
for floating-point 125 
for memory management 224 
see also operating systems 

software exits 78 

software traps 228 

SP (Stack Pointer) 28, 53 

SPANG commercial 

stacks 32-33 
used by Commercial Instruction 
Set 174 

Status (Fault Recovery) 
registers 258-264 

STCDF floating-point 
instruction 153-154 

STCDI floating-point 
instruction 155-156 

STCDL floating-point 
instruction 155-156 

STCFD floating-point 
instruction 153-154 

STCFI floating-point 
instruction 155-156 

STCFL floating-point 
instruction 155-156 

STD floating-point instruction 154-
155 

STEXP floating-point 
instruction 156-157 

STF floating-point instruction 154-
155 

STFPS floating-point 
instruction 127-157 

string data types 28, 35 

STST floating-point instruction 132, 
157-158 

SUBD floating-point 
instruction 158-159 

SUBF floating-point 
instruction 158-159 

SUB instruction 119 

SUBN commercial instruction 169, 
171 , 208-209 

INDEX 11 



Index 

SUBNI commercial instruction 169, 
171, 208-209 

SUBP commercial instruction 169, 
171, 208-209 

SUBPI commercial instruction 169, 
171, 208-209 

subroutines 
instructions for 73, 77-78 
linkage for 33 

Supervisor mode 227-228 

suspension of instructions 172-174 

SWAB instruction 120 

SXT instruction 120 

symbols 83-84 

Telephone Management System 17 

time-out errors 212, 272 

timing, bus 271 

trailing overpunch numeric string 
data 38 

trailing separate numeric string 
data 38 

. trap errors 212 

trap exits 78 

trap handlers 213-214 

TRAP instruction 121, 213 

trap instructions 30, 73, 78, 212-215 

traps 30, 211-215 
clearing status registers after 263 
Fault Recovery Registers 
and 258-259 
memory management and 229 
Page Descriptor Register and 223 
software 228 

TSTB instruction 121 

TSTD floating-point instruction 159-
160 

TSTF floating-point instruction 159-
160 

TST instruction 121 

TSTSET instruction 121 

TU58 cartridge tape systems 21-22 

22-bit 110 controllers 249-250 

22-bit physical address space 246, 
249 

UDA50 UNIBUS disk controller 21, 
23 

undefined variable 50 

underflows, in floating-point 134 

UNIBUS 7, 31, 266-272 
18-bit physical addressing by 248 
mapping of addresses for 240, 
242-245 
minicomputer systems based 
on 21-24 
physical address space and 223 
time-out errors in 212 

UNIBUS Map 31, 240, 242-243, 245, 
250-258 

UNIBUS memory 257-258 

UNPREDICTABLE conditions 163-
164 

unsigned packed string data 41-43 

unsigned zoned numeric string 
data 38, 43-44 

User mode 227-228 

VAs (Virtual Addresses) 261 

VAX-11 family 4 
data representation on 35 

VBA (virtual bus address) 236-238 

v bit 80, 170 

vector addresses 
interrupts and 216 
trap errors and 212, 214-215 

vectors 31-32 
memory management control 
of 228 

Virtual Addresses (VAs) 261 

virtual address space 222, 226 
physical address construction 
and 235-236 

virtual bus address (VBA) 236-238 

VLSI (Very-Large-Scale Integration) 
microcomputers 11 

INDEX 12 



volatile information 211 

WAIT instruction 122-123 

Winchester disks 18, 21, 24 

words 36 

write access mode 233 

Index 

WRTLCK instruction 123 

XOR instruction 123 

z bit 79, 169, 170 

zero, in floating-point 50, 133 

zoned string data 43-44 

INDEX 13 



NOTES 



PDP-11 ARCHITECTURE HANDBOOK 1983-84 

READER'S COMMENTS 

Your comments and suggestions will help us in our continuous effort 
to improve the quality and usefulness of our handbooks. 

What is your general reaction to this handbook? (format, accuracy, 

completeness, organization, etc.) ____________ _ 

What features are most useful?--------------

Does the publication satisfy your needs? _________ _ 

What errors have you found?---------------

Additional comments-----------------

Name 

Title 

Company Dept. 

Address 

City State Zip 

(staple here) 



(staple here) 

- - - - - - - - - - - - - (please fold here) - - - - - - - - - - - - -

BUSINESS REPLY CARD 
FIRST CLASS PERMIT NO. 33 MAYNARD, MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
NEW PRODUCTS MARKETING 
PK3-1!M92 
MAYNARD, MASS. 01754 

No Postage 

Necessary 

if Mailed in the 

United States 

WY' 411 



HANDBOOK SERIES 

Microcomputers and Memories 
Microcomputer Interfaces 
PDP-11 Processor 
PDP-11 Architecture 
PDP-11 Software 
Peripherals 
Terminals and Communications 
VAX Architecture 
VAX Software 
VAX Hardware 



DIGITAL EQUIPMENT CORPORATION, Corporate Headquartera: Maynard, MA 
01754, Tel. (617) 897-5111 - SALES AND SERVICE OFFICES; UNITED STATES -
ALABAMA, Birmingham, Huntsville ARIZONA, Phoenix, Tucaon ARKANSAS, Llttle 
Rock CALIFORNIA, Costa Mesa, El Segundo, Loa Angeles, Modesto, Monrovia, 
Oakland, Pasadena, Sacramento, San Diego, San Francisco, Santa Barbara, Santa 
Clara , Santa Monica, Sherman Oaks , Sunnyvale, Torrance COLORADO, Colorado 
Springs, Denver CONNECTICUT, Falrlleld, Meriden DELAWARE, Newark, Wllmlng­
ton FLORIDA, Jacksonville, Melbourne, Miami, Orlando, Penaacola, Tampa GEOR­
GIA, Atlanta HAWAII, Honolulu IDAHO, Boise ILLINOIS, Chicago, Peoria INDIANA, 
lndlanapoll1 IOWA, Bettendorl KENTUCKY, Louisville LOUISIANA, Baton Rouge, 
New Orleans MAINE, Portland MARYLAND, Baltimore, Odenton MASSACHU­
SETTS, Boston, Burllngton, Springfield, Waltham MICHIGAN, Detroit, Kalamazoo 
MINNESOTA, Mlnneapolls MISSOURI, Kansas City, St. Louis NEBRASKA, Omaha 
NEVADA, Laa Vegas, Reno NEW HAMPSHIRE, Manchester NEW JERSEY, Cherry 
ttill, Paralppany, Princeton, Sometaet NEW MEXICO, Albuquerque, Loa Alamos 
NEW YORK, Albany, Buffalo, Long Island, New York City, Rochester, Syracuse, 
Westchester NORTH CAROLINA, Chapel Hill, Charlotte OHIO, Cincinnati, Cleve­
land, Columbus , Dayton OKLAHOMA , Tulsa OREGON, Eugene, Portland 
PENNSYLVANIA, Allentown, Harrisburg, Phlladelphla , Pittsburgh RHODE ISLAND, 
Providence SOUTH CAROLINA, Columbia,_ Greenville TENNESSEE, Knoxville, 
Memphis , Nashville TEXAS, Austin, Dallas, El Paso, Houston, San Antonio UTAH, 
Salt Lake City VERMONT, Burllngton VIRGINIA, Arllngton, Lynchburg, Norlolk, 
Richmond WASHINGTON, Seattle, Spokane WASHINGTON D.C. WEST VIRGINIA, 
Charleston WISCONSIN, Madison, Miiwaukee INTERNATIONAL - EUROPEAN 
AREA HEADQUARTERS: Geneva, Tel: (41) (22)-93-33-11 INTERNATIONAL AREA 
HEADQUARTERS: Acton, MA 01754, U.S.A., Tel : (617) 263-6000 ARGENTINA, Bue­
nos Aires AUSTRALIA, Adelalde,~ Brlsbane , Canberra, Darwin, Hobart, Melbourne, 
Newcastle, Perth, Sydney , Townaville , Victoria AUSTRIA, Vienna BELGIUM, Brus­
sels BRAZIL, Rio de Janeiro, Sao Paulo CANADA, Calgary , Edmonton, Hamllton, 
Halifax, Kingston, London, Montreal, Ottawa , Quebec City,. Regina, Toronto, Van­
couver, Victoria, Winnipeg CHILE, Santiago COLOMBIA, Bogota DENMARK, Co­
penhagen EGYPT, Cairo ENGLAND, Basingstoke, Birmingham, Brlltol , Eallng, 
Epsom, Leeds, Leicester, London, Mancheater, Newmarket, Reading, Welwyn FIN­
LAND, Helalnkl FRANCE, Bordeaux, Lille, Lyon , Marseille, Nantes, Paris, Puteaux, 
Strasbourg HONG KONG INDIA, Bangalore, Bombay, Calcutta, Hyderabad, New 
Delhi IRELAND, Dublln ISRAEL, Tel Aviv ITALY, Miian, Padova, Rome, Turin JA­
PAN, Fukuoka, Nagoya, Osaka, Tokyo, Yokohama KOREA, Seoul KUWAIT, Salat 
MEXICO, Mexico City , Monterrey NETHERLANDS, Amsterdam, The Hague, Utrecht 
NEW ZEALAND, Auckland, Christchurch, Weillngton NIGERIA, Lagos NORTHERN 
IRELAND, Ballast NORWAY, Oslo, PERU, Lima PUERTO RICO, San Juan SAUDI 
ARABIA, Jeddah SCOTLAND, Edinburgh REPUBLIC OF SINGAPORE, SPAIN, Bar­
celona , Madrid SWEDEN, Gothenburg, Malmoe, Stockholm SWITZERLAND, Gene­
va , Zurich TAIWAN, Taipei TRINIDAD, Port ol Spain VENEZUELA, Caracas WEST 
GERMANY, Berlln , Cologne, Frankfurt, Hamburg, Hannover, Munich , Nuremberg, 
Stuttgart YUGOSLAVIA, Belgrade, L]ubl]ana, Zagreb 

ORDER CODE: EB-23657-18 


	00001
	0001
	001
	00002
	0002
	002
	0003
	003
	004
	0004
	0005
	005
	0006
	006
	0007
	007
	0008
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	E-25
	E-26
	E-27
	E-28
	E-29
	E-30
	E-31
	E-32
	E-33
	E-34
	E-35
	E-36
	E-37
	E-38
	E-39
	E-40
	E-41
	E-42
	E-43
	E-44
	E-45
	E-46
	E-47
	E-48
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	replyA
	replyB
	xBacka
	xBackb

