
DEC-ll-ZLDA-D

PDP - 1 1

LIN K - IlL INK E R

AND

LIB R - IlL I BRA R I A N

Programmer's Manual

for the

Disk Operating System

For additional copies, order No. DEC-ll-ZLDA-D from Digital Equipment

Corporation, Direct Mail, Bldg. 1-1, Maynard, Massachusetts 01754

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

First Printing, May 1971

Your attention is invited to the last two pages
of this document. The "How to Obtain Software
Information" page tells you how to keep up-to-date
with DEC's software. The "Reader's Comments" page,
when filled in and mailed, is beneficial to both
you and DEC; all comments received are acknowledged
and are considered when documenting subsequent manu­
als.

Copyright @ 1971 by Digital Equipment Corporation

This document is for information purposes and
is subject to change without notice.

Associated Documents:

PDP-II Disk Operating System Monitor,
Programmer's Handbook, DEC-ll-MWDA-D

PDP-II FORTRAN IV,
Programmer's Manual, DEC-ll-KFDA-D

PDP-II PAL-llR Assembler,
Programmer's Manual, DEC-ll-ASDB-D

PDP~ll Edit-II Text Editor,
Programmer's Manual, DEC-ll-EEDA-D

PDP-II ODT-llR Debugging Program,
Programmer's Manual, DEC-ll-OODA-D

PDP-II PIP, File utility Package,
Programmer's Manual, DEC-ll-PIDA-D

The following are trademarks of Digital Equipment
Corporation:

DEC

FLIP CHIP

DIGITAL (logo)

OMNIBUS

ii

PDP

FOCAL

COMPUTER LAB

UNIBUS

PREFACE

This manual describes the features and operation of the Link-ll Linker

and the Libr-ll Librarian, both are system programs for the PDP-ll

Disk Operating System (DOS). The reader is expected to be familiar

with the DOS Monitor and the DOS Assembler; as described in their re­

spective documents listed on the preceding page.

The manual has two major parts:

Part I describes the Link-ll Linker

Part II describes the Libr-ll Librarian

A Master Table of Contents follows this page, and each major part

begins with a separate detailed Table of Contents. Chapters are num­

bered sequentially throughout the manual, and for quick reference pur­

poses the manual is concluded with a comprehensive index.

In addition to the Link~ll Linker and the Libr-ll Librarian, the

Disk Operating System software includes:

DOS Monitor

FORTRAN IV

PAL-llR Assembler

Edit-ll Text Editor

ODT-llR Debugging Program

PIP, File Utility Package

The following conventions apply to subsequent examples:

1. System program printout is underlined whereas user
typed input is not.

2. All command strings are terminated by typing the
RETURN key, symbolized as <CR>

3. Elements enclosed in parentheses are optional.

iii

PART I

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

PART II

Chapter 6

Chapter 7

MASTER TABLE OF CONTENTS

LINK-II LINKER

Introduction

Input and Output

Operating Procedures

Error Handling and Messages

Summary of Link-II Switches

LIBR-11 LIBRARIAN

Introduction

Operating Procedures

v

1-1

2-1

3-1

4-1

5-1

6-1

7-1

PART I

LINK-ll LINKER

Introduction Chapter 1.

1.1

1.2

1.3

Absolute and Relocatable Program Sections

Global Symbols

Relinking Link-ll

Chapter 2

2.1

2.2

2.2.1

2.2.2

2.3

Chapter 3

3.1

3.2

3.2.1

3.2.1.1

3.2.1.2

3.2.1.3

3.2.1.4

3.2.1.5

3.2.1.6

3.2.1.7

3.2.1.8

3.2.1.9

3.3

3.3.1

3.3.2

3.4

Chapter 4

4.1

4.2

4.3

4.4

Chapter 5

Input and Output

Inpu t Module

Output Module

Abso1u te Lo ader

DOS Monitor Loader

Load Map

Operating Procedures

Loading

Command String

Switches

Top and Bottom Switches

Undefined Globals Switch

Tapes Swi tch

Concatenate Switch

ODT Switch

Transfer Address Switch

Exit Switch

Library Switch

General Notes on Switches

Library Searches

User Libraries

Monitor Library

An Example Linking Session

Error Handling and Messages

Restarting

Warning Error Messages

Action Request Messages

Fatal Linking Error Messages

Summary of Link-l1 Switches

vii

1-1

1-2

1-3

1-3

2-1

2-1

2-1

2-1

2-2

2-2

3-1

3-1

3-1

3-2

3-2

3-3

3-3

3-4

3-4

3-4

3-5

3-5

3-5

3-6

3-6

3-6

3-7

4-1

4-1

4-1

4-2

4-2

5-1

CHAPTER 1

INTRODUCTION TO LINK-ll LINKER

The PDP-ll Disk Operating System software includes the Link-ll Linker;

a system program for linking and relocating user programs assembled by

the DOS Assembler. Link-ll enables the user to separately assemble

his main program and various subprograms without assigning an absolute

address for each segment at assembly time.

The binary output (object module) of each assembly. can be pro­

cessed by Link-ll to:

• Relocate each object module and assign absolute ad­
dresses.

• Link the modules by correlating global symbols de­
fined in one module and referenced in another module.

• Produce a load map which displays the assigned abso­
lute addresses.

• Create a load module which can subsequently be loaded
(by the Monitor or the Absolute Loader) and executed.

The advantages of using Link-ll include:

• The source program can be divided into segments (usually
subroutines) and assembled separately. If an error is
discovered in one segment, only that segment needs to
be reassembled. Link-ll can then link the newly as­
sembled object module with other object modules.

• Absolute addresses need not be assigned at assembly
time; the Linker automatically assigns absolute ad­
dresses. This keeps programs from overlaying each
other. This also allows subroutines to change size
without influencing the placement of other routines.

• Separate assemblies allow the total number of symbols
to exceed the number allowed in a single assembly.

• Internal symbols (which are not global) need not be
unique among object modules. Thus, naming rules are
required for global symbols only when different pro­
grammers prepare separate subroutines for a single
program.

1-1

• Subroutines may be provided for general use in ob­
ject module form to be linked into the user's pro­
gram.

Link-II is designed to run on an 8K PDP-II with a disk and a tele­

printer. DECtape, high-speed paper tape reader and punch and a line

printer may be used if available. The DECtape and the high-speed

reader/punch significantly speed up the linking process. A line

printer provides a fast display device for the load map listing.

The instructions and assembler directives of the PAL-llR Assembler

are used herein to describe the operation of Link-II. However, Link-II

can link and relocate any object modules which conform to its linking

format (consult your nearest DEC representative for the linking format).

1.1 ABSOLUTE AND RELOCATABLE PROGRAM SECTIONS

A program assembled by PAL-llR can consist of an absolute program sec­

tion, declared by the .ASECT assembler directive, and relocatable pro­

gram sections, declared by the .CSECT assembler directive; without

either the assembler assumes a .CSECT directive. The program and data

in a relocatable section are assigned absolute addresses by the Linker

such that the relocatable section is normally at the high end of mem­

ory. The assignment of addresses can be influenced by command string

options (see Section 3.2). The Linker appropriately modifies all in­

structions and/or data as necessary to account for the relocation of

the control section (as declared by .CSECT).

Link~ll handles the absolute section, as well as the named and

unnamed control sections. The unnamed control section is internal to

each object module. That is, every object module can have an unnamed

control section, but the Linker treats them independently. Each is

assigned an absolute address such that they occupy mutually exclusive

areas of memory. Named control sections, on the other hand, are

treated globally. That is, if different object modules each have con­

trol sections with the same name, they are all assigned the same ab­

solute load address and the size of the area reserved for loading of

the section is the size of the largest section. Thus, named control

sections allow the sharing of data and/or programs among object mod­

ules. This is similar to the handling and function of COMMON in

FORTRAN IV. The names assigned to control sections are global and

can be referenced as any other global symbol.

1-2

1.2 GLOBAL SYMBOLS

Global symbols provide the links, or communication, between object mod­

ules. With PAL-I1R, these symbols would be created with the .GLOBL

assembler directive. Symbols which are not global are called internal

symbols. If the global symbol is defined (as a label or by direct as­

signmen t) in an opj ect module ,it is called an entry symbol ,and other

object modules can reference it. If the global symbol i~ not defined

in the object module, it is an external symbol and is assumed to be

defined (as an entry symbol) in some other object module.

As the Linker reads the object modules it keeps track of all glo­

bal symbol definitions and. references. It then modifies the instruc­

tions and/or data which reference the global symbols.

1.3 RELINKING LINK-II

Link-II is provided as a system program with the PDP-II Disk Operating

System.

It is available from DEC in the following formats:

Absolute load module for 8K systems

Object module for relinking

ASCII source tapes

These enable you to relink Link-II using the supplied Link-II load mod­

ule to load into any 8K or larger system. The resulting Linker will

assume a top of memory corresponding to the system configuration;

this can be over-ridden using the T (top) or B (bottom) switches (see

Section 3.2.1.1).

The top address assumed by the Linker is:

nnn460

where nnn is explained below.

nnn

37
57
77

117
137
157

for Memory Size

8K
12K
16K
20K
24K
28K

1-3

CHAPTER 2

INPUT AND OUTPUT

2.1 INPUT MODULE

Link-llis input is the object module. This is the output of the PAL-llR

Assembler or any assembler or compiler that can produce an object mod­

ule. The Linker reads each object module twice, thus, it is a two-pass

processor.

On pass 1, the Linker reads each object module to gather enough

information so that absolute addresses can be assigned to all relocat­

able sections and all globals can be assigned absolute values. This

information appears in the global symbol directory (GSD) of the object

module.

On pass 2, the Linker reads all of each object module and produces

the load module. The data gathered on pass 1 guides the relocation

and linking process on pass 2.

2.2 OUTPUT MODULE

The normal output of the Linker is a load module which can be loaded

and run. A load module consists of formatted binary blocks of absolute

load addresses and object data as specified for the Absolute Loader

and the DOS Monitor Loader. The first few words of data will be the

communications directory (COMO), and will have an absolute load address

equal to the lowest relocated address of the program.

2.2.1 Absolute Loader

The Absolute Loader will load the COMO at the specified address, but

then the program will overlay the COMO. The overlaying of the COMO by

the relocated program allows the Absolute Loader to handle load modules

with a COMO. However, a problem arises if a load module is to be loaded

by the Absolute Loader and either of the fullowing conditions exist:

1. The object modules used to construct the load module
contain no relocatable code, or

7. The total size of the relocatable code is less than
the size of the COMO.

2-1

In either case, there would not be enough relocatable code to overlay

the COMO, which means that the COMO will load into parts of core not

intended to be altered by the user. The Linker will select 'the COMO's

load address such that the COMO will be against the current top (see

T switch in Section 3.2). If the top is very low, the Linker will not

allow the COMO to be loaded below address ~; it will load it at ~.

2.2.2 DOS Monitor Loader

The DOS Monitor Loader will load the COMO where the Monitor wants it.

The end of the load module will be indicated by a TRA (transfer address)

block; that is, a block containing only a load address. The byte count

in the formatted binary block will be 6 on this block; on all other

blocks the byte count will be greater than 6. If the TRA is not speci­

fied by a switch, it is assumed by the Linker to be the first even

transfer address encountered. Thus, if four object modules are linked

together and if theftrst and second have a .END statement without an

address, the third a .END A, and the fourth a .END B, the transfer ad­

dress would be A of module three.

2.3 LOAD MAP

The load map produced by Link-II provides several types of information

concerning the load module's make-up. The map begins with the transfer

address and the low and high limits of the relocatable code. Then

there is a section of the map for each object module included in the

linking process. Each of these sections begins with the module's name

followed by a list of the control sections and the entry points for

each control section. For each control section, the base of the sec­

tion (its low address) and its size (in bytes) is printed to the right

of the section name (enclosed in angle brackets). Following each sec­

tion name is an alphabetically ordered list of entry points and their

addresses. A list of any undefined symbols for each object module con­

cludes the load map.

2-2

Note that modules are loaded such that if modules A, B, and Care

linked together, A is lowest and C is highest in core.

A sample load map is shown below.

LOAD MAP

TRANSFER ADDRESS: ~37434
LOW LIMIT: ~374~6
HIGH LIMIT: ~3746~

MODULE MODI
SECTION ENTRY ADDRESS

• ABS. ~~~~~~
~374~6

X3 ~3743~
X4 ~3744~
X5 ~37452
X7 ~3745~

MODULE MOD2
SECTION ENTRY ADDRESS

~37452
Xl ~37452
X2 ~37452

UNDEFINED REFERENCES
X6

2-3

SIZE
~~~~~~ 
~~~~44 

SIZE
~~~~~6 





CHAPTER 3 

OPERATING PROCEDURES 

3.1 LOADING 

Link-II is loaded into core by typing the following Monitor command . 

. RUN LINKll <CR > 

NOTE 

In the examples, typing the RETURN, LINE FEED, and 
SPACE keys are shown as <CR>, <LF>, and <SPACE>, 
respectively. Also, in the examples, program print­
out is underlined whereas user typed input is not. 

When the Linker is in core and ready to accept the user's command, 

it prints the following three lines: 

LINK-II V~~2A 

PASSI r--
The user can now type a cornmandstring after the # sign. 

3.2 COMMAND STRING 

commands are typed in response to the number sign, #, printed by the 

Linker. The format of the command string adheres to the requirements 

of the DOS Command String Interpreter (CSI), as explained in the Disk 

Operating System Monitor, Programmer's Handbook. 

The Linker's file specifications must appear in the following 

order: 

!load module output, map output < object modules <CR> 

A null specification field signifies that the associated output 

is not desired. A complete specification contains the following in­

formation: 

dev:filnam.ext[uic]/sl:v/s2:v ... /sn:v <CR> 

The default values for each specification are noted below. 

3-1 



Load Module 
Map Output 
Object Module 

dev 

DF,0' 
DF,0'* 
DF,0* 

filnam 

** 
none 
none 

ext 

LDA 
MAP 
OBJ 

*or last device specified on this side of the < 

**the filename from the first input specification 

uic 

This user 
This user 
This user 

If a syntactical error is detected in a command string, the Linker 

will print the command on the teleprinter up to and including the char­

acter in error, followed by a question mark, and then a line beginning 

with the input request character #. The user can then type the command 

correctly. Link-II performs this error reporting function on pass 1 

only. 

3.2.1 Switches 

There are nine switches associated with the Linker: 

IT Top 
IB Bottom 
IU Undefined globals 
laD ODT 
ITA Tapes 
ICC Concatenate 
ITR Transfer address 
IE Exit 
IL Library 

The letter(s} representing each switch is always preceded by the slash 

symbol. Switches are not allowed in the output fields of a command 

string. 

3.2.1.1 Top and Bottom Switches 

The T and B switches are used to control the placement or relocation of 

the object program. When neither switch is specified, Link-II will 

link the object programs to the top of available core, i.e., immediately 

below the Absolute and Boot Loaders. 

The T switch (top) can be specified with any of the input file 

specifications. It must be in the following format: 

IT:n 

where n is an unsigned octal number which defines a new top address. 

If a bottom is specified, the top switch is ignored. 

3-2 



The B switch (bottom) can be specified with any of the input file 

specifications. It must be in the following format: 

/B:n 

where n is an unsigned octal number which defines the bottom address 

of the object program. The B switch causes a top address to be calcu­

lated so that the lowest address in the program will be at location n. 

If a top is specified, the bottom switch is ignored. 

Once a top of core has been calculated with the T or B switch, 

that value is used until it is changed. Only one T or B switch can be 

used during anyone linking process. 

CAUTION 

The top or bottom value must be an unsigned 
even octal number. Link-II detects if the 
value is odd and gives an error message. 

3.2.1.2 Undefined Globals Switch 

The U switch is used to obtain a teleprinter listing of all globals 

still found to be undefined at the time the switch is used. The listed 

globals will apply only to those files specified prior to the U switch 

request, including the specification in which the U itself appears. 

The U switch can be specified with any or all input file specifi­

cations. Its format is: 

/U 

This switch does not require a value. 

3.2.1.3 Tapes Switch 

The TA switch is used to specify the number of tapes to be read in dur­

ing the linking process. Its format is: 

/TA:n 

where n is an unsigned decimal number, the number of the tapes to be 

read. If n is too large, the user must load some dummy modules or put 

a blank tape in the reader for each extra request on both pass 1 and 

pass 2. 

3-3 



In response to this switch, the Linker requests the DOS Monitor 

to read n tapes from the specified input device. The Monitor will 

print: 

A~~2 
$ 

~6332~ 

whenever the device is not ready. The message A002 means that device 

063320 (high-speed paper tape reader, represented in Radix-5~) is not 

ready. 

The user should place the next tape in -the reader and type CO<CR> 

in response to the $ printed by the Monitor to continue the linking 

process. The procedure above is repeated for each tape to be linked. 

After pass 1, the Linker will print PASS 2 and the procedure 

above is repeated, which produces the load module. After completing 

pass 2, control remains in the Linker for more link requests. 

3.2.1.4 Concatenate Switch 

The CC switch is used to indicate that the file was formed (by PIP) 

as a concatenation of several object modules. This switch must be 

placed with an input file specification. Its format is: 

ICC 

This switch does not have a value. 

3.2.1.5 ODT Switch 

The OD switch is used to link ODT with your object modules. It must 

appear with ODT's input file specification, in the following format: 

ODT.OBJ/OD 

which would identify the file as ODT, for transfer address purposes. 

3.2.1.6 Transfer Address Switch 

The TR switch can appear with any input file specification. It can 

be used with no value, or with an octal number or global symbol as its 

value. 

3-4 



When the TR switch has no value, it indicates that the Linker 

should take the transfer address (even or odd) of the first object 

module in the file as the transfer address of the load module. Its 

format is: 

/TR 

When it has an octal number as its value, it indicates that the 

value is the transfer address of the load module. Its format is: 

/TR:n 

When it has a global symbol as its value, it indicates that the 

value of the global symbol is the transfer address of the load module. 

Its format is: 

/TR:xxxxxx 

When the value is a nonexistent symbol, the transfer address is 

set to 1. 

3.2.1.7 Exit Switch 

The E switch should appear with the last input file specification. It 

indicates the end of input. 

3.2.1.8 Library Switch 

The L switch is used to indicate that the file is a library. It must 

appear in an input file specification, if the specification contains a 

user library. The L switch has no value. Its format is: 

/L 

3.2.1.9 General Notes on Switches 

If a switch appears by itself as a specification (e.g., , ,/CC), it 

takes the default device and a file ~ file name. Thus, the linking 

process will be aborted if the default device requires a file. 

There are thirty words allowed for switches per input specifica­

tion. If more are requested, it will result in a 8203 error message. 

The following conditions also result in a 8203 error message: 

3-5 



a. If a switch requires a value and if none appears 
or more than one appear. 

b. If a switch does not require a value and some 
value is given. 

Leader and trailer are punched on the load module when the output 

is to paper tape. The low-speed reader (LSR) and low-speed punch (LSP) , 

although able to be used by the Linker, are not serviced by the DOS 

for binary tapes. Therefore, they are considered illegal devices. 

A comprehensive summary of all switches appears in Chapter 5. 

3.3 LIBRARY SEARCHES 

3.3.1 User Libraries 

Object modules from the named user libraries built by the Libr-ll 

Librarian will be relocated and linked by the Linker. The object 

modules in the libraries have to be ordered; only forward references 

are allowed. 

The libraries are input to the Linker as any other input file. 

The L switch in the input file specification indicates that this par­

ticular file is a library. It has the following format: 

dev:libnam.ext/L 

For example, the user could type the following command string to 

the Linker: 

!TASK~l.LDA,LP:<MAIN,MEASUR.LIB/L/E 

Program MAIN.OBJ would be read in from the disk as the first input 

file. Any undefined symbols generated by program MAIN.OBJ can be 

satisfied by the library MEASUR.LIB specified in the second input file. 

The load module, TASK~l.LDA would be put on the disk, and a load map 

would go to the line printer. 

3.3.2 Monitor Library 

At the end of pass 1, the Monitor library is searched for Monitor 

routines which were declared as globals in the user program. Satis-

fying these globals means that the ~inker passes the EMT trap numbers 

of the found routines (in the COMD) to the Monitor so that at load time 

the Monitor brings the requested routines into core with the user program. 



The user libraries are searched first and the Monitor library is 

searched last. 

3.4 AN EXAMPLE LINKING SESSION 

The Linker is called into core, identifies itself and prints # as 

explained in Section 3.1. The user could then type the first command 

string. For example: 

iPP: , KB: <PR: <CR> 

which means that he wants the load module to be punched on the high­

speed paper tape punch, the load map to be printed on the teleprinter, 

and his first object module to be read in from the high-speed paper 

tape reader. 

When the first tape is read in and no more file specifications 

follow, and when no E (Exit) switch has been seen by the Linker, the 

Linker asks for the next command string by printing another #. The 

user could now type: 

!PR:/E<CR> 

The Linker would then read in the second input tape, encounter the Exit 

switch, and exit pass 1. The load map would then be printed on the 

teleprinter. 

When the Linker finishes printing the load map, it enters the 

second pass automatically to read in again the first tape from the 

paper tape reader. Before putting in the first tape again, wait until 

the Monitor prints: 

.06332.0 

where A,0,02 means device ,06332~ (high-speed paper tape reader represen­

ted in Radix-5~) is not ready. The user then places the first tape in 

the reader, and in response to the $ printed by the Monitor he types: 

CO <CR> 

and the Linker starts processing the first tape. It then starts punch­

ing out the load module. When finished reading the first tape, the 

Monitor prints: 

3-7 



f16332f1 
$ 

which again means that the paper tape reader is not ready. 

The user then places the second tape in the reader, and in response 

to the $ printed by the Monitor, he types: 

CO <CR> 

and the Linker starts processing the second tape. 

When the Linker finishes linking the two input tapes into one 

load module, it restarts itself and prints on the teleprinter: 

LINK-II Vf1f12A 

PASS I 
# 

and waits for another command string. 

3-8 



CHAPTER 4 

ERROR HANDLING AND MESSAGES 

4.1 RESTARTING 

The user can restart Link-II at any time by typing 

CTRL/C RESTART or CTRL/C BEGIN 

which causes Link-II to re-identify itself and print #. 

If the above sequence of keys (CTRL/C, RE(START) command, RETURN 

key} is typed while a load map is being printed, the load map will be 

aborted and the Linker will continue. 

4.2 WARNING ERROR MESSAGES 

The following three types of warnings are printed by Link-II. 

a. Non~unique object module name. This error is detected during 

pass 1 and results in the message: 

xxxxxx 

where XXXXXX is the non-unique object module name. The module is re­

jected. The Linker will then continue processing the remaining unser­

viced file specifications. 

b. A byte relocation error. The Linker will try to relocate 

and link byte quantities. Failure is defined as the high byte of the 

relocated value (or the linked value) not being all zero. In such a 

case, the value is truncated to 8 bits and the following message is 

printed: 

W3,0l XXX XXX 

where XXXXXX is the absolute address where the byte relocation error 

occurred. The Linker automatically continues. 

c. Multiple-defined globals. 

causing the error message: 

4-1 

This results during pass 1, 



XXXXXX,yyyyyy 

W3.02 

where YYYYYY is the symbol which is multiple defined by object module 

XXXXXX. The second definition is ignored a~d the Linker continues. 

d. Undefined globals in the load module. This results at the 

end of pass 1, causing the error message: 

W322 

meaning that there were some global symbols left undefined at the end 

of pass 1. The Linker then continues. 

4.3 ACTION REQUEST MESSAGES 

If the object modules are not read in from paper tape in the same order 

on pass 2 as on pass 1, the Linker will indicate which module should 

be loaded next by printing: 

XXXXXX 

meaning, load object module XXXXXX next. 

When the message appears on the teleprinter, the Linker halts 

the creation of the load module temporarily. The tape which is in the 

paper tape reader is ignored. The Linker waits for the user to remove 

the incorrect tape and place the correct tape under the reader. 

When the user is done he types CO<CR> and the Linker reads in the 

tape and resumes the creation of the load module. 

If input comes from a file-structured device, this action request 

does not apply. 

4.4 FATAL LINKING ERROR MESSAGES 

When Link-II detects a fatal error condition during the linking pro­

cess, it prints an appropriate error message and then restarts itself. 

Fatal error messages and their meanings are listed below. 

4-2 



Error Message 
and Format 

82~2 xxxxxx 
dev:file.ext 

S2~4 fJfJ~fJ~fJ 

82~6 fJfJfJfJfJ~ 

S2fJ7 xxxxxx 

S2lfJ fJfJfJfJfJfJ 
dev:file.ext 

8211 fJfJfJfJfJfJ 
dev:file.ext 

8212 fJfJfJfJfJfJ 
dev:file.ext 

8213 fJfJfJfJfJfJ 
dev:file.ext 

8214 fJfJfJfJ~fJ 
dev:file.ext 

8215 fJfJfJ~fJfJ 
dev:file.ext 

module,symbol 
8223 fJfJfJfJfJfJ 

Meaning 

EOD or device error on .WRITE or .READ request. 
xxxxxx = error status byte. 

Illegal switch, or too many switches, or ille­
gal switch value, or switch value not given, or 
switch in an output field. 

Too many output files. 

Input file not-specified in C8I line. 

EOD or device error on .TRAN request. xxxxxx 
= error status byte. 

Unrecognized symbol table entry in indicated 
file. 

In indicated file, a RLD references a global 
name which cannot be found in the symbol table. 

In indicated file, a RLD contains a location 
counter modification command which is not last. 

In indicated file, an object module does not 
start with aG8D. 

In indicated file, the first entry in a G8D is 
not the module name. 

In indicated file, a RLD references a section 
name that cannot be found. 

The TRA specification references a nonexistent 
module name. 

The TRA specification references a nonexistent 
section name. 

An internal jump table index is out of range. 

8ymbol table overflow. Insufficient space in 
symbol table for indicated symbol of indicated 
object module. 

No more space for C8I input buffer, or Monitor's 
file manager routine, or for Monitor's library 
search buffer. 

An angle bracket «) in C8I line, which is not 
the first. 

Angle bracket «) is missing from the first C8I 
line. 

4 .... 3 





CHAPTER 5 

SUMMARY OF LINK-ll SWITCHES 

Name Symbol Value Format Function 

Top T n (octal /T:n n becomes top of 
number) core 

Bottom B n (octal /B:n n becomes bottom 
number) of core 

Undefined U none /U List undefined 
Globals globals on tele-

printer 

ODT 00 none /00 This file is ODT 

Tapes TA n (decimal /TA:n There are n tapes 
number) to be read 

Concatenate CC none ICC This file contains 
concatenated ob-
ject modules 

Transfer TR none /TR Take the transfer 
Address address of the 

first object mod-
ule of this file 
as the transfer 
address 

TR n (octal /TR:n Take the octal 
number) number as the 

transfer address 

TR global /TR:xxxxxx Take the value of 
symbol the global symbol 

as the transfer 
address 

Library L none /L This file is a 
library 

Exit E none /E Exit from current 
pass; end of link-
ing 

5-1 





PART II 

LIBR-ll LIBRARIAN 

Chapter 6. Introduction 6-1 

Chapter 7 Operating Procedures 7-1 

7.1 Calling Libr-ll 7-1 

7.2 Command Strings 7-1 

7.2.1 Creating a Library 7-1 

7.2.2 Updating a Library 7-2 

7.2.2.1 To Delete One or More Object Modules 7-2 

7.2.2.2 To Insert One or More Object Modules 7-2 

7.2.2.3 To Replace One or More Object Modules 7-3 

7.2.3 Listing a Library 7-3 

7.2 .. 4 Legal File Specification Combinations 7-4 

7 .. 2.5 Duplicate Library Names 7-5 

7.3 Examples 7-5 

7.4 Error Messages 7-8 

II-i 





CHAPTER 6 

INTRODUCTION TO LIBR-ll LIBRARIAN 

The PDP-II Librarian (Libr-ll) is a system program for the Disk Operat­

ing System. Libr-ll provides facilities for creating, modifying, de­

leting, and listing the contents of libraries. A library is a file 

which consists of one or mere obj ect modules. (An object module is the 

binary output of the PAL-IIR Assembler.) 

Libr-ll is a valuable program for the DOS user because: 

• It eliminates having separate directory 
entries in a User File Directory (UFD) 
for each object module. 

• It expedites the linking process in con­
junction with the Linker's library search 
capabilities. 

• It allows for standardization and controlled 
updating of frequently used routines, e.g., 
FORTRAN cosine routine. 

The user controls the operation of Libr-ll through command strings 

typed on the keyboard. Specified in the command strings are such 

things as devices, library and object module names, and switches which 

indicate the Libr-ll operation desired. The user can direct Libr-ll 

to: 

• Create a library 

• Update a library 

• Insert one or more object modules in a library 

• Replace one or more object modules in a library 

• Li,st the contents of a library 

• Delete one or more object modules from a library 

• Delete an entire library 

A directory listing of the object modules of a library can be ob­

tained merely by specifying the device on which the directory is to ap­

pear and the name of the library. 

The flexibility of Libr-ll enables the user to specify certain 

combinations of operations in a single command string. For example, 



a library can be modified, renamed, and listed in one command string. 

The switch options which direct Libr-Il1s operations are: 

Switch 

ID 

IDL 

II 
ILO 

IR 

Operation 

Delete object module 

Delete input library 

Insert object module 

List object modules 

Replace object module 

If you type an illegal command string, e.g., illegal format, ex­

cessive switches, nonexistent file or object module, etc., Libr-ll will 

print an appropriate error message on the teleprinter. 

The following discussion assumes that the reader is familiar with 

the DOS Monitor, Edit-II Text Editor, PAL-IIR Assembler, ODT-IIR 

Debugging Program, and Link-II Linker. 

6-2 



CHAPTER 7 

OPERATING PROCEDURES, LIBR-ll 

7.1 CALLING LIBR-ll 

The Librarian is called into core by typing the RUN command in response 

to the DOS Monitor's dot or dollar sign. (The Librarian's call name 

can be determined by listing the system directory using PIP.) The Li­

brarian is often stored as LIBR, and when called it prints its name, 

version number, and a # sign, and then waits for the user to issue a 

command string. For example: 

.RUN LIBR <CR> 

7.2 COMMAND STRINGS 

When the Librarian is in core and has printed the # sign, it is ready 

to accept a user command string. The format is: 

output library, listing file < input library, input file(s) 

Libr-ll performs two passes over all input files. For nonfile­

structured devices (e.g., paper tape reader), the system will inform 

the user to reload the device for the second pass. For file-structured 

devices, both passes are performed automatically without requiring any 

user intervention. 

7.2.1 Creating a Library 

output library (,listing file) < ,input file(s) 

A library is created on the device specified in the output library 

specification and named as specified. The listing file specification 

is optional and, if present, the contents of the output library will be 

listed. The format of the listing will be fully discussed later. 

An input library need not appear, but the comma and one or more 

input files must appear (each of which contains one or more object mod­

ules*). For example: 

!DT1:FIL.LIB<,FIL.l,FIL.2 ~CR> 

*Note that an input file of concatenated object modules differs from a 
library in that it does not have a directory of the object modules that 
it contains. 

7-1 



would create a library named FIL.LIB on DECtape 1. The library would 

consist of all object modules in FIL.l and FIL.2 in that order, and 

in the order in which the object modules appear in their respective in­

put files. 

7.2.2 Updating a Library 

Libraries can be updated in one of three ways: 

7.2.2.1 To Delete One or More Object Modules 

output library (,listing file) < input library/D:vl: ... vn 

The output library will be created as a result of deleting the object 

modules named vI •.. ,v
n 

from the input library. The listing file is 

optional. 

The name associated with an object module is the symbol assigned 

to the module by PAL-IIR's .TITLE assembler directive. 

The object modules to be deleted must appear in the same order 

as they appear in the library; their order can be determined from the 

listing. 

Insert and/or Replace operations cannot accompany a Delete request. 

For example: 

!DTl:LIBR.l < DT2:LIBR~/D:Ml:M2 <CR> 

would create a library named LIBR.l on DECtape 1 as a result of delet­

ing the object modules Ml and M2 from LIBR.~ on DECtape 2. 

7.2.2.2 To Insert One or More Object Modules 

output library (,listing file) <input library,input file(s)/I(:v) 

The output library will be created as a result of inserting the object 

modules of the input file into the input library. If v is specified, 

the objec~ module(s) in the input file are inserted starting at posi­

tion v, otherwise, they are inserted at the end. v is treated as a 

decimal integer. 

If more than one input file is specified for insertion, the posi­

tions at which they are to be inserted must appear in non-descending 

7-2 



order. For example: 

!DT1:LIBR.l<DT2:LIBR.~,FIL.1/I:2,FIL.2/1 < CR> 

would create an output library on DECtape 1 as a result of inserting 

the object modules of FIL.l into LIBR.~, beginning at position 2, and 

then inserting the object modules of FIL.2 into LIBR.~ at the end. 

Insert and Replace operations can appear in the same command so 

long as the order restriction is observed. 

7.2.2.3 To Replace One or More Object Modules 

output library (,listing file)<input 1ibrary,input fi1e(s)/R 

The output library will be created as a result of replacing the object 

module(s) in the input library by those in the input fi1e(s). 

The object modules to be replaced must have the same name as those 

which replace them, and they must correspond orderwise. For example: 

!DT1:LIBR.1<DT2:LIBR.~,FIL.1/R,FIL.2/R <CR> 

would create the output library LIBR.1 on DECtape 1 as a result of re­

placing the object modules in the input library LIBR.~ with those in 

FIL.1 and FIL.2. 

7.2.3 Listing a Library 

,listing fi1e(/LO}<input library 

The directory of the input library will be listed. Optionally, the 

presence of the /LO switch directs the Librarian to produce an object 

module listing. This is intended as a means to double-check the accur­

acy of the library; the directory listing must correspond exactly 

to the object module listing. 

The output library will be listed when one was created; otherwise, 

the input library will be listed. The format of the listing is: 

Library Name & Extension 

Decimal Order Number Object Module Name (1st Module) 

Decimal Order Number Object Module Name (last module) 

7-3 



For example, if LIB.I contains object modules MI, M2, and M3 

in that order, the command: 

!,LP:FIL.LST<DTI:LIB.l <CR> 

will produce on the line printer: 

FIL .LST 

X'X'X',01 MI 
f1J1!Jj!J2 M2 
!JX'!J/!J3 M3 

If the /LO switch appears, for example: 

!,LP:FIL.LST/LO<DTI:LIB.I <CR> 

the listing above would be followed by a form feed and a similar table, 

except that the name of the second table is always OBJMOD.LST. 

The library name that is printed at the head of the listing is the 

name specified in the listing file specification. For example: 

!LIB.ABC,LP:NAME<,FIL.I,FIL.2 <CR> 

The listing would be titled NAME, not the new created library LIB.ABC. 

ylhen the listing file name is not specified, then the listing would be 

titled with the name of the newly created file. 

7.2.4 Namin£L Li~rarie~ 

The output library can have the same name as the input library. In 

this case, however, the input library has an implied /DL; that is, the 

input library is deleted. For example: 

!LIB.I<LIB.I/D:OMI <CR> 

i.s the same as: 

!LIB.TMP<LIB.I/D:OMI/DL <CR> 

and then rename LIB.TMP to LIB.I. 



CAUTION 

The user should never name a Library 
LIBR.TMP. This name is reserved for 
use by the Librarian. 

7.2.5 Legal File Specification Combinations 

In a command string, various combinations of file specifications are 

possible; legal combinations and their operation are shown below. 

Output Input Input 
Librar:l Listin2 Librarx File(s) 0}2eration Note 

(1) P P P P Insert or Replace SE if ID 
Object Modules; input 
List Output Lib- library 
rary 

(2} P P P NP Delete Object SE if ID 

on 

Modules; List not on in-

(3) P 

(4) NP 

(5) P 

(6} P 

(7} P 

Legend: 

7 . .3 EXAMPLES 

P 

P 

NP 

NP 

NP 

P 
NP 
SE 

NP 

P 

P 

P 

NP 

present 
not present 
syntax error 

P 

NP 

P 

NP 

P 

Output Library put library 

Create Library; SE if switch 
List Output on input 
Library file 

List Input SE if ID 
Library on input 

library 

Same as (1) ex- Same as 
cept no listing (1) 

Same as (2) ex- Same as 
cept no listing (2 ) 

Same as ( 3) ex- Same as 
cept no listing ( 3) 

Assume FIL.l contains objeyt modules OM1, OM2, and OM3 in that order, 

FIL.2 contains OM4 and OMS in that order, FIL.3 contains OMS and OM3 

in that order, and FIL.4 contains OM6. Then: 

!LIB.l,LP:LIB.1<,FIL.1,FIL.2 

will create a library named LIB.l containing object modules OM1, OM2, 

OM3, OM4, and OM5 in that order. The listing will appear on the line 

printer as: 

7-5 



LIB . I 

OMI 
OM2 
OM3 
OM4 
OMS 

Files FIL.I and FIL.2 remain unaltered. The listing is produced after 

all other actions have been performed. Consequently, 

!LIB.l,LIB.1 <,FIL.I,FIL.2 <CR> 

would produce an error message (file already exists) when an attempt 

is made to write the listing to the disk. 

Using the assumption above: 

!LIB.2<LIB.I/D:OMI:OM4 <CR> 

will create a library named LIB.2 containing object modules OM2, OM3, 

and OMS in that order. No listing is produced and LIB.I is not de­

leted. 

!LIB.3<LIB.2/D:OM3:0M2 <CR> 

will produce an error message because the modules to be deleted are 

not in the order in which they appear in the library. 

The command string: 

!,LP:LIB2.LS/LO<LIB.2 <CR> 

will produce a listing on the line printer which appears as: 

LIB2 .LS 

~~~~l OM2 
~~~~2 OM3 
~~~~3 OMS 
<form feed>
OBJMOD.LST

~~~~l OM2 
~~~~2 OM3 
~~~~3 OMS 

7-6 



The command string: 

!LIB.3<LIB.2/DL,FIL.4/I:2 <CR> 

will create a library named LIB.3 containing OM2, OM6, OM3 and OMS in 

that order. No listing is produced and LIB.2 is deleted. 

The command string: 

!LIB.4<LIB.3,FIL.4/R ·<CR> 

will create a library named LIB.4, which is really LIB.3 with OM6 re­

placed (i.e., removed from LIB.3 before creating LIB.4). 

!LIB.5< LIB. 4, FIL. 3/R <CR> 

will produce an error message because the object modules in FIL.3 are 

not in the same order as in LIB.4. 

The command string: 

!LIB.5<LIB.3/DL,FIL.4/I <CR> 

will create a library named LIB.5 containing OM2, OM6, OM3, OMS and 

OM6 in that order. No listing is produced and LIB.3 is deleted. Note 

that a library can contain multiple copies of the same object module, 

e.g., two OM6 modules, above. 

The command string: 

!LIB_6<LIB.5/D:OM6 -<CR> 

will create a library named LIB.6 containing OM2, OM3, OMS and OM6 in 

that order. No listing is produced and LIB.5 is not deleted. When a 

library contains mUltiple copies of the same object module, they are 

deleted one at a time in their order of occurrence. 

If the purpose of the previous example were to delete all occur­

rences of OM6, the command string would have been either: 

!LIB. 6 <LIB. 5/D:OM6 :OM6 ·<CR> 

7-7 



or 

!LIB. 6·< LIB . 5/D:OM6/D:OM6 

7.4 ERROR MESSAGES 

Error messages issued by the Librarian are listed below. (See the DOS 

Monitor document for a listing of all DOS error messages.) 

Error 
Code 

S2~2 

S2~3 

S2~4 

S2l3 

S244 

S245 

S246 

S247 

Additional 
Information 

File Name and Error 
Status Byte 

File Name 

File Name 

File Name 

File Name 

Meaning 

Fatal I/O error; due to truncated 
line, checksum, character parity, 
or device parity error. 

Switch error or semantic error; 
due to illegal switch, too many 
switches on a file, or illegal 
combination of file specifications. 

Illegal file specification format; 
more than two output files speci­
fied. 

Error on input file; illegal ob­
ject module format; first line not 
a GSD, or EOF prior to reading end 
module line. 

Out of order; already past requested 
position for Insert. 

Object module error; object module 
not found, or /R or /D out of order. 

Error on input library; illegal lib­
rary format, first two lines incor­
rect. 

Listing error; output library cannot 
be read from output library device, 
i . e., PP:. 

7-8 



INDEX 

Absolute program sections, 1-2 
Absolute loader, 2-1 
Action request messages, Linker,4-2 
Address assignment, 1-2 
Advantages, Link-II, 1-1 
Angle brackets ( <> ), writing 

convention, 3-1 
Assembler directive 

.ASECT, 1-2 

. CSECT, 1-2 

.TITLE, 7-2 

Bottom (B) switches, 1-3, 3-2 

Calling Libr-ll, 7-1 
Command string 

Libr-ll, 7-1 
Linker, 3-1 

Communications directory (COMD) ,2-1 
Concatenate (CC) switch, 3-4 
Control section, named or 

unnamed, 1-2 
<CR> symbol, writing convention,6-2 
Creating a library, 7-1, 7-5 
.CSECT assembler directive, 1-2 
CTRL/C BEGIN, 4-1 
CTRL/C RESTART, 4-1 

Deleting object modules, 7-2 
Deletion error, 7-6 
DOS assembler, 1-1 
DOS Monitor loader, 2-2 

.END statement, 2-2 
Entry symbols, 1-3 
Error handling, Link-II, 4-1 

messages, 4-1, 4-2, 4-3 
syntactical errors, 3-2 

Error messages, Libr-ll, 6-2, 7-6, 
7-8 

Examples of file specification 
combinations, 7-5 

Example linking session, 3-7 
Exit (E) switch, 3-5 
External symbols, 1-3 

Fatal linking error messages, 4-2, 
4-3 

File specification combinations, 
Libr-ll, 7-5 

Examples, 7-5 
File specifications, Link-II, 3-1 
Format, Libr-ll command string, 7-1 

Global symbol directory (GSD) , 2-1 
Global symbols, 1-3 

Input library, 7-3 
Input module, 2-1 
Inserting object modules, 7-2 
Internal symbols, 1-3 
Introduction to Libr-ll 

Librarian, 6-1 

Legal file specification combina-
tions, Libr~ll, 7-5 

Libr-ll Librarian introduction, 6-1 
Library (L) switch, 3-5, 3-6 
Library 

creation, 7-1 
file specifications, 7-5 
listing, 7-3 
Monitor, 3-6, 3-7 
naming, 7-4 
searches 3-6 
update, 7-2 

LIBR.TMP, 7-5 
Link-II advantages, 1-1 
Linking session example, 3-7 
Listing, 7-6 
Loader 

absolute, 2-1 
DOS Monitor, 2-2 

Loading, Link-II, 3-1 
Load map, Link-II, 2-2 
Load module, 2-1 

Modules 
input, 2-1 
load, 2-1 
object, 2-1 
output, 2-1 

Monitor library, 3-6 

Named control section, 1-2 
Naming libraries, 7-4 
Number sign (#), usage by 

Link-II, 3-1 

Object module, 2-1, 6-1 
deleting, 7-2 
inserting, 7-2 
replacing, 7-3 

OBJMOD.LST, 7-4 
ODT switch, 3-4 
Operating procedures 

Libr-ll, 7-1 
Linker, 3-1 

X-I 



Output library, 
Output module, 

7-3 
2-1 

Parentheses as writing conven-
tion, 6-2 

Pass 1, 3-4 
Pass 2, 2-1, 3-4 
PIP, 7-1 
Program sections, absolute and 

relocatable, 1-2 

Relinking Link-II, 1-3 
Relocatable program sections, 
Replacing object modules, 7-3 
Restarting Link-II, 4-1 
RETURN key «CR», 6-2 
RUN command, 7-1 

Sharing data and/or programs 
among object modules, 1-2 

Switches, 1-3, 3-2 
Bottom (B), 1-3, 3-2 
concatenate (CC), 3-4 
E xi t (E), 3 - 5 
general notes, 3-5 
Library (L), 3-5, 3-6 
ODT, 3-4 
options, Libr-ll, 6-2 
summary, Link-II, 5-1 
Tape (TA) , 3-3 
Top (T), 1-3, 3-2 
TRansfer address (TR) , 3-4 
Undefined globals (U), 3-3 

Symbols 
entry, 1-3 
external, 1-3 
global, 1-3 
internal, 1-3 

Syntactical error, 3-2 

1-2 

X-2 

Tape (TA) switch, 3-3 
.TITLE assembler directive, 7-2 
Top address, Link-II, 1-3 
Top of memory, 1-3 
Top (T) switch, 1-3, 3-2 
Transfer address (TR) switch, 3-4 

Undefined globals (U) switch, 3-3 
Underlining, writing conven-

tion, 3-1, 6-2 
Unnamed control section, 1-2 
Updating a library, 7-2 
User libraries, 3-6, 3-7 

Warning error messages, Link-II, 4-1 
Writing conventions, 6-2 



HOW TO OBTAIN SOFTWARE INFORMATION 

Announclements for new and revised software, as well as programming notes, 
software problems, and documentation corrections are published by Software 
Information Service in the following newsletters. 

Digital Software News for the PDP-8 & PDP-12 
Digital Software News for the PDP-II 
Digita I Software News for the PDP-9/15 Fam ily 

These newsletters contain information applicable to software available from 
Digital's Program Library, Articles in Digital Software News update the 
cumulative Software Performance Summary which is contained in each basic 
kit of system software for new computers. To assure that the monthly Digital 
Software News is sent to the appropriate software contact at your insta Ilation, 
please check with the Software Specialist or Sales Engineer at your nearest 
Dig ita I off ice. 

Questions or problems concerning Digital's Software should be reported to 
the Software Special ist. In cases where no Software Special ist is available, 
please send a Software Performance Report form with details of the problem to: 

Software Information Service 
Digital Equipment Corporation 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 

These forms which are provided in the software kit should be fully filled out 
and accompanied by teletype output as well as listings or tapes of the user 
program to facil itate a complete investigation. An answer will be sent to the 
i nd ividlJa I and appropriate topics of genera I interest wi II be printed in the 
newsletter. 

Orders for new and revised software and manuals, additional Software Per­
formance Report forms, and software price lists should be directed to the 
nearest Digital Field office or representative. U. S.A. customers may order 
directly from the Pro~rnm Library in Maynard. When ordering, include the 
code number and a brief description of the software requested. 

Digital Equipment Computer Users Society (DECUS) maintains a user library 
and publishes a catalog of programs as well as the DECUSCOPE magazine 
for its members and non-members who request it. For further information 
please write to: 

DECUS 
Digital Equipment Corporation 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 



\ 



READER'S COMMENTS 

PDP-I! Link-!! Linker 
and 

Libr-11 Librarian 
DEC-!!-ZLDA-D 

May 1971 

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness 
of its publications. To do this effectively we need user feedback -- your critica I eva luation of 
th is manua I . 

Please comment on this manual's completeness, accuracy, organization, usability and read­
abi \ity. 

Did you find errors in this manual? If so, specify by page. 

How can th is manua I be improved? 

Other comments? 

Please state your position. Date: 
----------------------------------------------------- ---------------

Name: Organization: 
------------------------------------- ------------------------------

Street: Department: ---------------------------------- ---------------------------------
. City: State: Zip or Country ------------------- --------------------- ------------



- - - - - - - - - - - - - - - - Fold Here - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - -

BUSINESS REPLY MAIL 

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATf-S 

Poslage will be paid by: 

mamaama 
Digital Equipment Corporation 
Software Information Services 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD, MASS. 


