Qo

disk operating system monitor
programmer’s handbook

DEC-11-MWDC-D

PDP-11
Disk Operating System Monitor

Programmer’s Handbook

SOFTWARE SUPPORT CATEGORY

The software described in this document is supported by
DEC under Category I, as defined on page iv of this
document,

For additional copies, order No. DEC-11-MWDC-D from Direct Mail
Bldg. 1-1, Digital Equipment Corporation, Maynard, Mass. - 01754

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

First Printing, May 1971
Revised, August 1971
Revised, February 1972

Your attention is invited to the last two pages of
this document. The "How to Obtain Software
Information" page tells you how to keep up-to-date
with DEC's software. The "Reader's Comments"
page, when filled in and mailed, is beneficial to
both you and DEC; all comments received are
acknowledged and are considered when document-
ing subsequent documents.

Copyright © 1971, 1972 by Digital Equipment Corporation

This document is for information purposes and is
subject to change without notice

Associated Documents:
PDP-Il FORTRAN IV
Programmer's Manual, DEC-1I-KFDA-D

PDP-1l PAL=IIR Assembler,
Programmer's Manual, DEC-11-ASDC-D

PDP-II Edit-ll Text Editor,
Programmer's Manual, DEC-II-EEDA-D

PDP-11 ODT-IIR Debugging Program,
Programmers Manual, DEC-1I-OODA-D

PDP~Il Link-Il Linker and Libr=ll Librarian
Programmer's Manual, DEC-II-ZLDB-D

PDP-Il PIP, File Utility Package,
Programmer's Manual, DEC-II-PIDB-D

The following are trademarks of
Digital Equipment Corporation.

DEC PDP

FLIP CHIP FOCAL A
DIGITAL (logo) COMPUTER LAB
UNIBU S OMNIBUS

ii

PREFACE

This document contains a comprehensive description of the PDP=-11 Disk Operating System Monitor.
The document is written for the PDP=11 programmer == it assumes familiarity with the contents of the

PDP-11 Handbook 1971 and the PAL-11R Assembler (see document number DEC-11-ASDB-D). Previous

experience with monitor or executive systems would be helpful.

The document is separated into three chapters: Chapter 1 is an introduction to the DOS Monitor, and
provides general information about the disk operating system. Chapter 2 describes the programmed
requests that are available to the programmer through the Monitor. This chapter also explains the
concepts and operation of each programmed request. Chapter 3 describes the keyboard commands avail-
able to the system operator through the Monitor; concepts and operation of each command are also
explained. The entire documént is summarized in the appendites. Appendices D (Monitor Commands)

and E (Monitor Programmed Requests) should prove to be invaluable to the DOS user.

In addition to the DOS Monitor, the PDP=11 Disk Operating System software includes:

FORTRAN 1V

PAL-T1R Assembler

Edit=11 Text Editor
ODT-11R Debugging Program
PIP, File Utility Package
Link=11 Linker

Libr=11 Librarian

aee
i

3.3.4
3.3.4.1
3.3.4.2
3.3.4.3
3.3.5
3.3.5.1
3.3.5.2
3.3.5.3
3.3.5.4
3.3.5.5
3.3.6
3.3.6.1
3.3.6.2
3.3.6.3
3.3.6.4
3.4
3.4.1
3.4.2

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F

F.1
F.2
F.3
F.4
F.5

CONTENTS (Cont)

Commands to Stop a Program

The STop Command

The WAit Command

The KIIl Command

Commands to Exchange Information with the System
The DAte Command

The TIme Command

The LOgin Command

The MOdify Command

The Flnish Command

Miscellaneous Commands

The ECho Command

The PRint Command

The ENd Command

The ODt Command

The Command String Interpreter (CSI)
CSI Command Format

CSI Command Example

APPENDICES

PHYSICAL DEVICE NAMES

EMT CODES

SUBSIDIARY ROUTINE ASSIGNMENTS

SUMMARY OF MONITOR COMMANDS

SUMMARY OF MONITOR PROGRAMMED REQUESTS
SUMMARY OF DOS ERROR MESSAGES

Action Messages .
Informational Messages
Warning Messages
Fatal Messages

System Program Messages

viii

Page

3-8
3-8
3-8
3-9
3-9
3-9
3-9
3-9
3-10
3-10
3-11
3-11
3-11
3-11
3-11
3-12
3-12
3-15

E-1

F-1
F-2
F-2
F-4
F-8

APPENDICES (Cont)

APPENDIX G I-O DRIVERS WITHIN THE DISK OPERATING SYSTEM

G.1 Driver Structure
G.2 Monitor Calling
G.3 Driver Routines
G.3.1 Transfer

G.3.2 Interrupt Servicing
G.3.3 OPEN

G.3.4 CLOSE

G.3.5 SPECIAL

G.4 Drivers for Terminals

APPENDIX H USING DEVICE DRIVERS OUTSIDE DOS

H.1 Introduction

H.2 Driver Format

H.2.1 Structure

H.2.1.1 Driver Interface Table

H.2.1.2 Setup Routines

H.2.1.3 Interrupt Servicing

H.2.1.4 Error Handling

H.2.2 Interface to the Driver
H.2.2.1 Control Interface

H.2.2.2 Interrupt Interface

H.3 Stand-Alone Usage

H.3.1 Driver Assembled with Program
H.3.1.1 Setting Interrupt Vector
H.3.1.2 Parameter Table for Driver Call
H.3.1.3 Calling the Driver

H.3.1.4 User Registers

H.3.1.5 Returns From Driver

H.3.1.6 Irrecoverable Errors

H.3.1.7 General Comment

H.3.2 Drivers Assembled Separately
H.3.3 Device-;lndependenf Usage

Page

G-1

-G-2

G-4
G-4
G-4
G-5
G-6

G-6

H-1
H-1
H-1

H-2
H-2
H-2
H-3
H-3
H-3
H-3
H-3
H-3
H-4
H-5
H-5
H-6
H-7
H-8
H-8
H-10

APPENDICES (Cont)

Page
APPENDIX I GLOSSARY AND ABBREVIATIONS -1
INDEX X-1

ILLUSTRATIONS
Figure No. Title Art No. Page ’
1-1 The Monitor Core Map 1-4 (
i
2-1 .READ/ .WRITE Input/Qutput Transfers 2-5 e
2-2 .BLOCK Input/Output Transfers 2-7
2-3 .TRAN Input/Qutput Transfers 2-9
2-4 Core Map of Resident Monitor and Full Monitor 2-46
2-5 The Link Block 2-61
2-6 The Filename Block 2-63
2-7 File Protection Codes 2-66
2-8 : Line Buffer Header 2-66 B ‘ A
2-9 Status Format 2-67 - |
2-10 The Mode Byte 2-69 b
2-1 The BLOCK Block 2271
2-12 The TRAN Block 2-72 3
2-13 The Special Functions Block 2-73 .
TABLES

Table No. Title Page
1-1 PDP-11 DOS Monitor Features and Benefits 1-2
1-2 The DOS System Programs 1-3
2-1 Summary of Monitor Requests 2-2 .
2-2 Transfer Levels for Types of Datasets 2-8
2-3 Transfer Requests Which May Follow Open Requests 2-17
2-4 Filename Block Error Conditions 2-63
3-1 Special Keyboard Functions 3-2
3-2 . CSI Command String Syntax Rules 3-14

CHAPTER 1
INTRODUCTION

1.1 THE DOS MONITOR

The PDP-11 Disk Operating System (DOS) Monitor supports the PDP=11 user throughout the development

1. and execution of his pfogram by:

] providing convenient access to system programs and utilities such as the
FORTRAN, the DOS assembler, debugger, editor, file utility package,
efc.;

) performing input/output transfers on three different levels, ranging from
direct access of device drivers to full formatting capabilities;

. handling secondary storage management with two different kinds of file
structure.

‘System programs and utilities can be called into core from disk or DECtape with Monitor commands
‘(s issued from the keyboard. This feature eliminates the need to manipulate numerous paper tapes, and

o provides the user with an efficient and convenient programming tool .

- All input/output (1/O) transfers are handled by the Monitor in any of three user-selected levels called
_'»:B’EAD/WRITE, BLOCK, and TRAN. READ/WRITE is a file-structured, formatted level of 1/O in which
the’user can specify any one of nine modes. BLOCK is a file-structured, random access I/O level
Wirh no formatting. TRAN does basic 1/O operations at the device driver level. All 1/O is concurrent

and interrupt driven.

The file system on secondary storage uses two types of file structures: linked and contiguous. Linked

files can grow serially and have no logical limit on their size. Contiguous files must have their length
specified but can be randomly accessed by BLOCK level 1/O requests. Files can be deleted or created
at any time, and are referred to by name. Table 1-1 summarizes the features and benefits of the DOS

. ' Monitor.

The user communicates with the Monitor in two ways: through programmed instructions called requests,

and through keyboard instructions called commands.

Programmed requests are macros which are assembled into the user's program and through which the

user specifies the operation to be performed. Some programmed requests are used to access input/output
transfer facilities, and to specify where the data is, where it is going, and what format it is in, In
these cases the Monitor will take care of bringing drivers in from disk, performing the data transfer,
and notifying the user of the status of the transfer. Other requests access Monitor facilities to query
system variables such as time of day, date, and system status, and to specify special functions for

devices.

Keyboard commands enable the operator to load and run programs, load or dump data to or from core,
start or restart programs at specific addresses, modify the contents of memory registers, and retrieve

system information such as time of day, date, and system status.

Programs supported by DOS, and hence accessible through the Monitor, are listed in Table 1-2.

Table 1-1
PDP=11 DOS Monitor Features and Benefits

Feature Benefits to User
Files are catalogued in multilevel No file naming conflicts among users.
file directories.
Files are referred to by name. Files do not have to be remembered
by number.
Files can grow serially. Files can be created even when their
final size is not known.
Files can be as large as the storage No logical Iimit on the size of files.
device can accept.
File storage is allocated dynamically Files can be deleted or created even at
from any bulk~storage device. run time for greater storage efficiency.
Monitor subroutines can be swapped Much more efficient use of core space
into core when needed. Routines for user programs. Free core expands
need not permanently tie up an area and contracts as Monitor subroutines are
of core. used. Space can be reclaimed for user

programs. The user can determine which
Monitor subroutines will be in core, and

when.
Monitor subroutines can be made The user can tailor the Monitor for his
permanently core resident either particular needs.
before or during run time.
The Monitor is divided into logical The user can easily and efficiently use
modules. the logical pieces of the Monitor for his

own needs. He can also easily add his

own specialized drivers to the system by
following a simple set of rules, and still

use the rest of the Monitor with these drivers.

Table 1-1.(Cont)
PDP-11 DOS Monitor Features and Benefits

Feature

Benefits to User

All 1/O is interrupt driven.

Device independence

Devices are assigned to one or more
datasets.

Such specialized equipment as communi -
cations modems and A/D converters which
must be interrupt driven can be run under
the Monitor. Several 1/O calls can be
handled concurrently.

Specific devices can be specified by the
user in his program, and any device can

be substituted by him when his program is
being run.

The user may reassign a device which is
used for one purpose (dataset) without
changing its assignment for all other
purposes (datasets).

Table 1=2

The DOS System Programs

System Program
FORTRAN 1V

PAL-11R Assembler
Edit-11 Text Editor

ODT-11R Debugging Program
PIP, File Utility Package

Link=11 Linker and
Libr=11 Librarian

1.2 MONITOR CORE ORGANIZATION

Core memory is divided into:

Document Number
DEC-11-KFDA-D
DEC-11-ASDB-D
DEC-11-EEDA-D
DEC-11-OODA-D
DEC-11-PIDA-D

DEC-11-ZLDA-D

. a user area where user programs are located;

) the stack where parameters are stored temporarily during the
transfer of control between routines;

° the free core or buffer area which is divided into 16-word
blocks assigned by the Monitor for temporary tables, for
device drivers called in from disk, and for data=buffering
between devices and user programs;

o the resident Monitor itself which includes all permanently

resident routines and tables;

) the interrupt vectors.

Figure 1-1 is a map of core as organized by the Monitor.

XX7776

USER AREA

FREE CORE
(Buffer Area)

RESIDENT
MONITOR

400

INTERRUPT
VECTORS

000000

Figure 1=-1 The Monitor Core Map

1.3 HARDWARE CONFIGURATIONS

Two possible minimum configurations required to run the PDP-11 DOS Monitor are:

Configuration A:

— el ot ol) — —

PDP-11/20 with 8K of core
ASR-33 Teletype terminal

RC11 disk controller

RS64, 64K fixed head disk drive
TC11 DECtape controller

TU56 dual DECtape transport
BM792-YB Bootstrap Loader

PDP-11/20 with 8K of core

KSR-33 Teletype

RF11 disk controller

RS11, 256K fixed head disk drive

PC11 high=-speed paper tape reader/punch
BM792-YB Bootstrap Loader

Configuration B:

o ol —

(The RF11/RS11 Disk in this configuration may be replaced by an RK11 disk controller with 1 RK02 or
RKO3 Disk Cartridge, provided that 12K of core is available.)

1.4 MONITOR MESSAGES

Monitor messages are stored on the disk. When a message-producing situation (such as a system error)
occurs, Monitor calls the correct message into core and prints it on the teleprinter.
There are five types of Monitor messages:

° Informational

. Action required by the operator

. Warning to the operator .
° Fatal
) System Program error

The type of message is identified by the letters I, A, W and F respectively. If the system disk should

fail and the error message cannot be brought into core, the Monitor halts.

Monitor messages are described in detail in Section 2.10.

1.5 STARTING THE MONITOR

The monitor is called into core from disk by performing the following procedure:

1. Set the Switch Register to 173100 (the address of the ROM Bootstrap Loader)
2. Depress LOAD ADDRESS

3. Set the Switch Register to the address of the word count register for the disk on
which the Monitor resides (177462 for RF/RS11, 177450 for RC11/RS64, 177406
for RK11/RK02-03)

4. Depress START.
The monitor will load into core and identify itself by printing:

MONITOR Vxxxx

on the teleprinter, where Vxxxx represents the version number of the Monitor being used. The Monitor

is now ready to accept an operator command (see Chapter 3).

1-5

1.6 A GUIDE TO THIS HANDBOOK

1.6.1 Terminology

The reader should understand the following terms as they apply to the PDP-11 Disk Operating System.
An expanded glossary,, with abbreviations, can be found in Appendix I.

A dataset is a logical collection of data which is treated as an entity by a program. For example:

. All or part of a file on a file=structured device.
] A paper tape in a paper tape reader.
. Three physically different files which together constitute the

source input to the assembler.

A device is any PDP=11 peripheral supported by the Monitor.

A device controller may support one or more device units.

A file is a physical collection of data which resides on a directory device (e.g., disk or DECtape)

and is referenced by its name. A file consists of one or more blocks on a directory device.

A block is a group of adjacent words of a specified size on a device; it is the smallest addressable
segment of the device. If the blocks comprising a file are adjacent to each other, the file is said to

be contiguous; if the blocks of the file are not adjacent, the file is said to be linked.

A line is a string of ASCII* characters which is terminated by a LINE FEED, FORM FEED or VERTICAL
TAB.

File structure refers to the manner in which files are organized. Specifically, each of a user's files
is given a unique name by the user. Each user on a file=structured device is assigned a User File
Directory (UFD) in which each of his files is listed by name and location. Each UFD is then listed in

a Master File Directory (MFD) which is unique to a specific device unit.

Bulk storage devices containing directories are called directory devices or file=structured devices.

Devices such as paper tape equipment and the teleprinter, which cannot support a file structure, are

called non-directory devices or non=file=structured devices.

1.6.2 Standards for Tables

A table is a collection of data stored in sequential memory locations. A typical table as represented

in this manual is shown below. This table is two words long, and is referenced by the symbolic address
TABL:. The first entry is at location TABL and contains ENTRY A, which might be coded as .WORD

*ASCII stands for American Standard Code for Information Interchange.

1-6

AYE in the user's program. The second word of the table, at address TABL+2, is divided into two
bytes. The low-order byte (address TABL+2) contains ENTRY B, and the high~order byte (address
TABL+3) contains ENTRY C. They might be written into a program as .BYTE BEE,CEE.

a) Representation in manual:

ENTRY A
ENTRY C ENTRY B

TABL:

b) Representation in program listing:

TABL: .WORD AYE ;ENTRY A
.BYTE BEE,CEE ;ENTRY B,ENTRY C

1.6.3 Standards for Numbers

Unless otherwise stated, all numbers in the text and examples are in octal.

CHAPTER 2
PROGRAMMED REQUESTS

2.1 INTRODUCTION

The user program calls for the services of the Monitor through programmed requests. These requests
are macro calls which are assembled into the user program and interpreted by the Monitor at execution
time. A programmed request consists of a one-word instruction followed, when appropriate, by one

or more arguments. For example:
+WAIT LNKBLK

is a programmed request called .WAIT followed by an argument LNKBLK. The macro or request is
expanded af assembly time by the DOS Assembler into a sequence of instructions which trap to and
pass the arguments to the appropriate Monitor routine to carry out the specified function. The assembly
language expansion for .WAIT LNKBLK is:

MOV #LNKBLK, =(SP)

EMT 1
The user may code a request in his program as either a macro call or as the equivalent assembly

language program.

The request arguments are parameters or addresses of tables which contain the parameters of the request.
These tables are also part of the user program, and are described in detail in Figures 2=5 to 2-12.

Restrictions on argument names are found in the appropriate DOS Assembler Manual .

Services which the Monitor makes available to the user through programmed requests can be classified

into three groups:

‘ . requests for input/output and related services
° requests for directory management services
. requests for miscellaneous services

Table 2-1 summarizes the programmed requests available under the Monitor. They are described in

general in Section 2.2,

Table 2-1
Summary of Monitor Requests

Mnemonic

Purpose

Requests for Input/Output and related services:

JANIT

.RLSE

.OPENx
.CLOSE
.READ
.WRITE
WAIT

WAITR

.BLOCK

.TRAN

.SPEC

STAT

Requests for Direc

Associates a dataset with a device driver and sets up the
initial linkage.

Removes the linkage between a device driver and a dataset,
and releases the driver.

Opens a dataset.

Closes a dataset.

Transfers data from a device to a user's line buffer.
Transfers data from a user's line buffer to a device.
Waits for completion of any action on a dataset.

Checks for completion of any action on a dataset, and provides
a transfer address for a busy return.

Transfers one block of a file between a device and a Monitor
buffer.

Transfers data by absolute device block address between a device
and a user buffer.

Performs special device functions.

Obtains device characteristics.

tory Management services:

.ALLOC
.DELET

.RENAM
.APPND

.LOOK

.KEEP

Allocates a contiguous file.
Deletes a file.

Renames a file.

Appends one linked file to another.

Searches the directory for a particular file name and retums
information about the file.

Protects a file against automatic deletion on FInish.

(Continued on next page)

Table 2-1 {Cont)
Summary of Monitor Requests

Mnemonic

Purpose

Requests for Miscellaneous services:

LEXIT
.TRAP
.RSTRT
.CORE
.MO NR

.MONF

.DATE
.TIME

.GTUIC
.SYSDV
.RADPK

.RADUP
.D2BIN
.BIN2D
.O2BIN
.BIN20O
.CSI1

.CSI2

Returns control to the Monitor.

Sets interrupt vector for the TRAP instruction.

Sets the address used by the REstart command.

Obtains address of highest word in core memory.
Obtains address of first word above the resident Monitor.

Obtains address of first word above the Monitor's highest
allocated free core buffer.

Obtains the date.
Obtains the time of day.

Gets current UIC.
Gets Radix=50 name of System Device

Packs three ASCII characters into one Radix=50 word .

Unpacks one Radix=50 word into three ASCII characters.,

Converts five decimal ASCII characters into one binary word.

Converts one binary word into five decimal ASCII characters.

Converts six octal ASCI! characters into one binary word.
Converts one binary word into six octal ASCII characters.
Condenses a command string and checks for proper syntax.

Interprets one command string dataset specification.

2.2 TYPES OF PROGRAMMED REQUESTS

2.2.1 Requests for Input/Output and Related Services

All user 1/O is handled by programmed requests, which provide three different levels of transfer:

° READ/WRITE
™ BLOCK

. TRAN

Each level uses a sequence of requests to complete the transfer. Note the distinction between READ/
WRITE, BLOCK, and TRAN as names of transfer levels, and .READ, .WRITE, .BLOCK, and .TRAN

as specific requests within these levels.

Requests for 1/O related services perform special device functions (such as rewinding a tape) and

obtain device characteristics from device status words.

2.2.1.1 READ/WRITE Level Requests - This is the level at which the Monitor performs most of its

services for the user. This is the most commonly used level of transfer. Among its users are the DOS

Assembler and Edit-11 Text Editor programs, which input one line of ASCII characters at a time.

READ/WRITE 1/O under the Monitor consists of transferring the contents of a dataset between a device
and a line buffer. A line buffer is an area set up by the user in his program, into which he (or the

Monitor) places data for output (or input). The line buffer may be preceded by the line buffer header,

in which the user specifies the size and location of the line buffer and the mode (format) of the data.

The READ/WRITE user can specify nine different modes of transfer, in two categories: ASCII and

Binary. Each mode is presented briefly here; more details are in Section 2.6.1 and Figure 2-10.

ASCII Modes: Formatted ASCII Parity - Special
Formatted ASCII Parity = Normal
Formatted ASCII Nonparity - Special
Formatted ASCII Nonparity = Normal
Unformatted ASCII Parity = Normal
Unformatted ASCII Nonparity = Normal

Binary Modes: Formatted Binary = Special
Formatted Binary = Normal

Unformatted Binary - Normal

To implement a READ/WRITE transfer, the programmer follows the sequence of requests shown in
Figure 2=1b. First, the programmer initializes the device to the dataset with the .INIT request. The
argument of this request is the address of a table called the Link Block. Entries in this table specify
the device involved in the approaching transfer so that the Monitor may eventually establish a link
between that device and the dataset. The Link Block is described in detail in Figure 2-5. The .INIT

calls the appropriate device driver into the free core buffer area, if it is not already there.

2-4

USER PROGRAM

USERS LINE
BUFFER
.READ WRITE
WRITE
Y
MONITOR BUFFER |q | DEVICE

.READ

Figure 2~la The Transfer Path

JINIT LNKBLK

.OPENI LNKBLK ,FILBLK ;FOR OUTPUT, REPLACE .OPENI
; WITH .OPENO
— » .READ LNKBLK,BUFHDR ;FOR OUTPUT, REPLACE .READ
; WITH WRITE
WAIT LNKBLK ;COULD BE REPLACED BY .WAITR

|

(Process Data)

No Erd

" Of Data
?

.CLOSE LNKBLK

.RLSE LNKBLK

LNKBLK: (entries)

FILBLK: (entries) Tebles in User's Program
BUFHDR: (entries)

Figure 2-1b Sequence of Requests for READ/WRITE

Figure 2-1 .READ/.WRITE Inpuf/Oufpuf Transfers

Following the .INIT request, the programmer opens a dataset with an .OPENx request. This need be
done only if the device being used has a directory. However, it is advisable to use an .OPENx even
for a nondirectory device to preserve the device independence of the program, i.e., the programmer
may want to assign the transfer to a directory device later. The argument of this request is the symbolic
address of a table called the Filename Block (Figure 2-6). Entries in this table specify the dataset

involved in the transfer.

A dataset can be opened for input, for output, for update, or for extension. The last letter of the

.OPENx request specifies which type of open is desired.

A .READ (for input) or a .WRITE (for output) follow the .OPENx. Either request causes a transfer to
take place between the line buffer and the device via a buffer allocated by the Monitor in its free core
area. The arguments of either request are the address of the Link Block for the dataset and the address
of the Line Buffer Header (Figure 2-8). The Line Buffer Header specifies the area in the user's core

area to or from which the dataset is to be transferred.

.READ or .WRITE are followed by .WAIT, which tests for the completion of the last transfer, and
passes control to the next instruction. Typically, what follows a .WAIT on an input is a subroutine to
process the portion of data just input. When the process has been completed, the program checks to
see if it wants another portion of data; if it does, the program transfers control back to the .READ
request and the process is repeated. If all data has been transferred, the .CLOSE request follows to
complete any pending action, update any directories affected, and release to free core any buffer
space the Monitor has allocated from free core. Finally, action on the dataset is formally terminated
with the .RLSE request, which disassociates the device from the dataset, and releases the driver. Re-

leasing the driver frees core provided there is no other claim to the driver from another dataset.

2.2.1.2 BLOCK Level Requests = BLOCK requests provide for random access of blocks in files stored

on directory devices such as disk or DECtape. An example of a BLOCK user program is a Payroll Up=
date Program which stores information about all employees on one file, with a set number of blocks

assigned to each employee.

At this level, data is transmitted between a specified block of the file and the Monitor buffer (Figure
2-2a). The user program may directly access the data in the Monitor buffer, or may move it to its
own area for further processing. BLOCK level requests require the use of the .INIT, .RLSE, .OPEN
and .CLOSE requests, as in the READ/WRITE level requests.

2-6

USER PROGRAM * Transfers between the
Monitor's buffer and the
user's buffer are the user's
responsibility .

POSSIBLE
USER BUFFER

* *

y BLOCK OUTPUT

MONITOR BUFFER [_| DEvICE
.BLOCK INPUT

Figure 2=2a The Transfer Path
JINIT LNKBLK
.OPENU LNKBLK, FILBLK
———— .BLOCK LNKBLK,BLKBLK ;INPUT DESIRED BLOCK
WAIT LNKBLK ;COULD BE REPLACED BY .WAITR

(Process Data) ;UPDATE DATA

.BLOCK LNKBLK,BLKBLK ;WRITE UPDATED BLOCK
.WAIT LNKBLK

Yes a

No
.CLOSE LNKBLK

.RLSE LNKBLK

LNKBLK: {(entries)
FILBLK: (entries) } Tables in User Program
BLKBLK: (entries)

Figure 2-2b The Sequence of Requests For .BLOCK

Figure 2-2 .BLOCK Input/Qutput Transfers

2-7

To implement a BLOCK transfer, the programmer follows the sequence of requests shown in Figure 2-2b.
Notice that the transfer must be INITed, OPENed, WAITed, CLOSEd, and ReleaSEd following the
same rules as the READ /WRITE level. The .BLOCK request has the address of the Link Block and the
BLOCK block for its arguments. The BLOCK block specifies the block within the file that is to be

transferred.

2.2.1.3 TRAN Level Requests = A TRAN level request is a basic input/output operation at the device

driver level. Bulk storage devices are accessed by absolute block number without regard to file struc=
ture. For this reason, the user should be very careful not to destroy any files on the device on which
he is performing TRAN level requests. He should allocate a contiguous file on the device for his

purposes.

Data is transferred directly between the device and the user's line buffer (Figure 2-3a) with no format-
ting performed. TRAN level requests are generally used in two situations:
1. When the file structure does not allow the desired operation (for example, PIP uses
TRAN to read a directory block).

2. When the user cannot afford the overhead of doing transfers by a READ/WRITE process,
and the data is of a fixed format. (For example, a program to process data arriving
at random intervals from an A/D converter might first dump the input data onto the
disk via a .TRAN request as it arrives, and then read it back later for processing
when time permits.)

To implement a TRAN transfer, the programmer follows the sequence of requests shown in Figure 2-3b.
Notice that the transfer must be INITed and .RLSE'd, but is not . OPENed or .CLOSEd. The .TRAN
request has the address of the TRAN Control Block as its argument. This block contains entries which
specify the core starting address of the user's line buffer, the device block address, the number of
words to be transferred, and the function to be performed. TRAN is therefore a device dependent
request. A summary of the transfer levels which can be used on the various types of datasets is shown
in Table 2-2.

Table 2-2
Transfer Levels for Types of Datasets

Type of Dataset

Type of Linked Contiguous Nonfile-Structured
Transfer File File Device
READ/WRITE Yes Yes Yes
BLOCK Yes
TRAN * * Yes

Yes indicates that the given transfer level will work on the given type of dataset.

* indicates that TRAN may be used on a file-structured device if the warnings

mentioned are observed.

2-8

USER PROGRAM

USER BUFFER

MONITOR BUFFER DEVICE

Figure 2-3a The Transfer Path

<INIT LNKBLK

|
—» .TRAN LNKBLK, TRNBLK
WAIT LNKBLK ;COULD BE REPLACED BY .WAITR

(Process Data)

Yes @

No
.RLSE LNKBLK

KBLK: tri
LNKB (entries) Tables and parameters

TRNBLK: (entries) in User Program

Figure 2-3b The Sequence of Requests For .TRAN

— —— e — e e - G e e ey dem Sn sem e e e e mm tm wm See e S e e e e e mem e S e e

Figure 2-3 .TRAN Input/Output Transfers

2.2.2 Requests for Directory Management Services

Directory management requests are used to enter file names into directories, search for files, update

file names, and protect files against deletion.

2.2.3 Requests for Miscellaneous Services

Requests for miscellaneous services include:

e Requests to return control to the Monitor from a running program.

e Requests to set Monitor parameters such as the TRAP vector or a program's
restart address.

e Requests to obtain Monitor parameters such as the size of core, the size of the
Monitor, the date, the time, and the current user's UIC.

e Requests to perform conversions between ASCII and Radix-50 packed ASCII,
binary and ASCII decimal, and binary and ASCII octal.

e Requests to access the Command String Interpreter.

2.3 DEVICE INDEPENDENCE

Ordinarily, a programmer specifies input/output devices as he writes the program. However, there
are circumstances when he will want to change the device specification when his program is run. For
example:
e A device that the user specified when he wrote his program is not in operation of
run time, but an alternate device is available.

o The programmer does not know the configuration of the system for which he is
writing, or does not wish to specify it (i.e., he is writing a general purpose
package).

The Monitor allows the programmer to write programs which are device independent in that the pro-
grammer can, but need not always, specify a device in his program. These facilities are:
e The programmer may specify a device for each dataset via a Link Block
when he writes his program.

e A programmer can assign or reassign a device for a dafaset through the keyboard
with the ASsign command (Section 3.3.1.1) at run time. This command sets up
a table entry in the Monitor which effectively overrides any entries in the Link
Block.

® A general purpose program can dynamically request the device and filenames for
each run via the keyboard and then obtain decoding and set-up via the Command
String Interpreter.

Note that the substituted devices must be compatible. For example, the user may initially specify a
BLOCK transfer from disk and later change the assignment to input from DECtape instead. But he can-
not later specify paper tape reader as the input device, since BLOCK level requests do not apply to

nonfile-structured devices.

It is important to note that a device is assigned in a program to a dataset logical name and that re-
assigning a device at run time for one dataset logical name does not reassign that device for all dataset

logical names to which it was originally assigned.

The only transfer request which is not device independent is .TRAN.

2.4 SWAPPING ROUTINES INTO CORE

Except for a small, permanently resident kernel, the Monitor routines which process most programmed
requests are potentially swappable. They are normally disk resident and are swapped into core by the
Monitor only when needed. The user may, however, specify that one or more of these potentially
swappable routines be made permanently core resident or core resident iust‘ for the duration of his
program's run. Making a potentially swappable routine core resident ties up core space, but speeds up
operation on the associated request. The user may, for example, be collecting data via a .TRAN
request in a real-time environment. In such a case, even the short time needed to swap in the .TRAN

request processor could cause him to lose data.

Potentially swappable routines are made core resident by one of the following.

) Routines may be made permanently core resident in the Monitor by specifying
the appropriate GLOBAL NAME at system generation time.

° Routines may be made resident for the duration of a program's run by declaring
the appropriate GLOBAL NAME (as specified in the definition of each request
in Sections 2.6 through 2.8) ina .TRAN processor directive in the program.
For example, to make the .TRAN processor resident while program FROP is being
run, the following directive would be included in program FROP:

.GLOBL TRA.

° In the absence of either of the above specifications for a routine, the Monitor
will swap in that routine whenever it is requested.

Any routine which services a programmed request (other than RWN) is potentially swappable;
i.e., those given Global Names in this Chapter.

2,5 MONITOR RESTRICTIONS ON THE PRO GRAMMER

In return for the services provided by the Monitor, the programmer must honor certain restrictions:
) The programmer should not use either the EMT or the IOT instructions for
communication within his program.

) It is recommended that the user not raise his interrupt priority level above
3, since it might lock out a device that is currently trying to do input/
output.

2-11

. HALTS are not recommended. If a HALT is executed during an 1/0O operation,
most devices will stop, and only recovery from the console (pressing the CONTinue
switch on the console) will be effective (recovery from the keyboard will not be
immediately possible, since a HALT inhibits the keyboard interrupt). Some devices,
such as DECtape, will not see the HALT and will continue moving, will lose their
positions over the block under transfer, and may even run tape off the reel.

° The RESET instruction should not be used becduse it forces a hardware reset;
clearing all buffers and flags and disabling all interrupts, including the keyboard's.
Since all 1/O is interrupt driven, RESET will disable the system.

° The user must be careful to avoid penetrating the Monitor when he is using the
stack. The stack is set by the RUN time loader just below the lowest address of
the program loaded. The Monitor checks to see that the stack is not overflow-
ing each time it honors a request. The user can relocate the stack pointer and
claim more space as follows:

a. He can determine where the pointer is currently and where the current
top of Monitor is located, then move the stack pointer down the correct
amount.

b. He can ask the Monitor for buffer space via the general utilities (see
PDP-11 DOS Monitor, System Programmer's Manual).

. The user should be aware that certain instructions, such as . INIT, may change the
amount of available free core, since they may call in drivers and establish data
blocks. Such requests effect the results of the MONR or MONF requests.

° Certain requests return data to the user on the stack. The user must clear the
stack himself before the stack is used again. The Monitor clears the stack
after it honors requests that do not return data to the user on the stack.

° The user should not use GLOBAL names that are currently used by the Monitor.
All these names are listed in Appendix E.

2.6 DEFINITION OF REQUESTS FOR INPUT/OUTPUT SERVICES

Each request has one or more arguments which are addresses of tables in the user's program. The
tables specify the variables of the request. Table entries are explained in detail in Figures 2-5 to

2-12 at the end of this section.

2.6.1 READ/WRITE Level Requests

This is the level at which the Monitor performs most of its services for the user. The user can specify
nine different modes of fransfer, in two categories; ASCII and Binary. Each mode is discussed here,

and is presented in detail in Figure 2-10.

ASCII Modes: Formatted ASCII Parity - Special
Formatted ASCII Parity ~ Normal
Formatted ASCII Nonparity = Special

(Continued on next page)

2-12

1.

ASCII Modes (Cont) :
Formatted ASCII Nonparity - Normal

Unformatted ASCII Parity - Normal
Unformatted ASCII Nonparity - Normal

Binary Modes: Formatted Binary - Special
Formatted Binary ~ Normal

Unformatted Binary - Normal

Formatted and Unformatted ASCII Modes:

Data in formatted ASCII modes is assumed by the Monitor to be in strings of 7- or 8-bit ASCII char-
acters terminated by LINE FEED, FORM FEED or VERTICAL TAB., PAL-11R Assembler source pro-
grams are in a formatted ASCII mode. In these modes, the Monitor manages all device-dependent
conversions at the driver level. For example, LINE FEED is supplied after RETURN in character

strings from keyboard terminals.

Data in unformatted ASCII modes is also assumed to be in strings of 7- or 8~bit ASCII characters.
Checks for terminators and device-dependent conversion are not performed by the Monitor, thus

allowing the user to handle all characters in his own way.

ASCII Parity and Nonparity Modes:
In ASCII nonparity modes, 7-bit ASCII characters are transferred.

In formatted ASCII parity modes, even parity is generated in the 8th bit and is checked during the
transfer. In unformatted ASCII parity mode, 8 bits are transferred, but no parity is generated or
checked,

Normal and Special Modes:
Special modes provide additional Monitor facilities over and above normal modes; normal modes
are compatible with the PDP-11 1/O Executive (I0X).

Formatted and Unformatted Binary Modes:

Data in formatted binary-modes is transferred in 8-bit bytes as read from the device. The Monitor
makes no assumptions about the nature of the data, A checksum is calculated during @ WRITE r&-
quest and transmitted with the data, as well as a count of the number of bytes. The checksum is
verified during a READ. The binary output of the PAL-11R Assembler, for example, is in a for-

matted binary mode.

Unformatted binary mode is the same as formatted binary except that no checksum or count is cal-
culated or verified.
NOTE

A dataset can only support transfers in one direction, i.e.,
READ only or WRITE only. If the same device is to be used
for both operations, separate datasets must be used for each.

2-13

.OPEN

2.6.1.3 .OPEN - Prepare .INITed device for usage and make a named file available if the device

is directory oriented.

Macro Call: LOPENx LNKBLK,FILBLK

where x indicates the type of OPEN:

U for update

O for output

E for extension

I for input

C for create data in contiguous file
LNKBLK = address of Link Block
FILBLK = address of Filename Block

Assembly Language

Expansion:

MOVB #CODE ,FILBLK~2 ;MOVE "HOW OPEN"
;CODE TO FILENAME BLOCK

MOV #FILBLK,~(SP)

MOV #LNKBLK,~=(5P)

EMT 16

where CODE indicates the type of OPENx request:

OPENO =2
OPENI =4
OPENU =1
OPENC =13
OPENE =3

Global Name: OPN. (See Appendix C for subsidiary routines.)

Description: In general, an .OPENx request causes the Monitor to allocate a data buffer and to make

other necessary preparations for transferring to a dataset to or from a device., More specifically:

.OPENU opens a previously created contiguous file for input and output by

.BLOCK.
.OPENO creates a new linked file and prepares it to receive output.
.OPENE opens a previously created linked file to make it longer.
.OPENI opens a previously created linked or contiguous file for input to
the computer. It normally precedes all .READ operations.
.OPENC opens a previously created contiguous file for output from the
computer.

After the op

en request has been processed, control is returned to the user at the instruction following

the assembly language expansion; the arguments are removed from the stack. At this time, however,

the device concerned may still be completing operations required by the request. A summary of transfer

requests whi

ch may legally follow OPEN requests is illustrated in Table 2-3.

Table 2-3
Transfer Requests Which May Follow Open Requests
A
NG
> '%eo;’o, >
N
o&/é,. ’OOJ'/’G
£ & Linked File Contiguous File
RO
7 Input | Output Input Output File

Type of e Already

Open .READ | WRITE | .READ |.BLOCK | .WRITE | .BLOCK Exist ?

.OPENU YES YES must

.OPENO YES must not

OPENE YES must

OPENI YES YES YES must

OPENC YES must

Rul es:
a. General Rules for All .OPENx Requests
The user must set up a Filename Block in his program (Figure 2-6). If the dataset is a
file, the Filename Block must contain a legal file name. A file name consists of up to
six characters (A-Z, $ 0-9); the first character cannot be a digit (0-9), it may be fol-
lowed by an extension of 3 characters. If the dataset is not a file, the Filename Block
need not contain any FILENAME or EXTENSION entries.
All datasets must have been INITed before they are OPENed. Type of OPEN must be
applicable to type of device (e.g., OPENI fo line printer is illegal).
For datasets on directory devices, the User Identification Code (UIC) in the Filename
Block (i specified) must be in the directory of the device. If the UIC is not specified,
the user must have logged in with a UIC that appears on the device.
The .OPENX request must not violate the protect code of the file.
If a dataset is opened for any output, it cannot be opened again until it has been
closed.
b. Rules for .OPENO

The .OPENO request is applicable only for outputs to nonfile~structured devices or
to a linked file on a file=structured device.

The .OPENO request creates a linked file on a directory device; hence, the file
referenced in the corresponding Filename Block cannot exist prior to the .OPENO
request.

The .OPENO request will return an error if the directory is full.
c. Rules for .OPENI

.OPENI may be used for inputs from contiguous or linked files, or nondirectory
devices.

The file referenced in the corresponding Filename Block must exist on the directory.

If a file is open for input (OPENI), it cannot be opened for output, but it can be
opened for extension or update.

At any one time, a file can be opened for input to a maximum of 62]0 or 768
datasets.

d. Rules for .OPENU, .OPENE and .OPENC
The file must exist and cannot currently be opened for output.
The file cannot currently be opened by .OPENU, .OPENE or .OPENC.
A cénﬂguous file cannot be opened for extension.

A linked file cannot be opened with .OPENC, which is applicable only to -
contiguous files.

Errors: If any of the preceding rules are violated, the Monitor places an error code in the STATUS
byte of the Filename Block (see Table 2-4) and transfers control to the pointer in the ERROR RETURN
ADDRESS of the Filename Block . If this address is 0, a fatal error message is printed on the console.

Fatal error messages are listed in Section 2.10.

Example: (See .CLOSE)

.CLOSE

2.6.1.4 .CLOSE - Close a dataset.

Macro Call: .CLOSE LNKBLK

where LNKBLK is the address of the Link Block.

Assembly Language

Expansion: MOV #LNKBLK,-(SP)

EMT 17
Global Name: CLS. (See Appendix C for subsidiary routines.)

Description: The close request indicates fo the Monitor that no more I/O requests will be made on the
dataset. Close completfes any outstanding processing on the dataset, updates any directories affected

by the processing, and releases to free core any buffer space established for the processing. For example,
if .CLOSE had been preceded by an .OPENE request to a file, the added portion is linked to the file,
the directory entry for the file is updated to acknowledge the added portion, and buffers used for data
and Monitor intemal file information tables are released to free core. After the close request has been
completed, contral is retumed to the user at the instruction following the assembly language expansion;
the argument is removed from the stack. As with OPEN, some appropriate device action may still be

in progress at this point.

Rules: The dataset to be closed must have previously been opened if it was a file on a directory device.

As with ,OPENx, a .CLOSE is not required if the dataset is not a file, but it is strongly recommended.
Errors: Dataset Not Inited - Fatal Error FQO0; Device Parity Error - Fatal Error FO17,

Example: Open for input a dataset named IMP, which is file PROG1.BIN on DECtape unit 3. After

the data transfer is complete, close the file,

JNIT SETI
.OPiENI SET1,FILE] ;OPEN SET1 FOR INPUT
(Input is performed here)

.CLOSE SET1 ;CLOSE SET1
(Continued on next page)

2-19

.RLSE SET1

.WORD ERRI

SET1: .WORD 0
.RAD50 /IMP/
.BYTE 1,3
.RAD50 /DT/
.WORD ERFI ;ADDR OF ERROR RTN
.WORD 0 ;MACRO PUTS HOW-OPEN HERE
FILE1: .RAD50 /PRO/ ;FILE NAME
.RAD50 /G1/
.RAD50 /BIN/ ;EXTENSION
.BYTE PROG,PROJ ;USER ID CODE
.BYTE 177 _ ;PROTECT CODE

2-20

i N

.READ

2.6.1.5 .READ - Read from device.

Macro Call: .READ LNKBLK,BUFHDR

where LNKBLK is the address of the Link Block, and BUFHDR is the address of the line buffer header.

Assembly Language

Expansion: MOV #BUFHDR, -(SP)
- MOV #LNKBLK, -(SP)
EMT 4

Global Name: RWN.

Description: The .READ request transfers the data specified in the line buffer header from the device
to the user's line buffer. The transfer is done via a buffer in the Monitor, into which an entire device
block is read, and from which the desired data is transferred to the user's line buffer. (If the data re-
quested traverses a device block boundary, a second device block is read.) After any 1/O transfer has
been started, control is returned fo the user at the next instruction , with the arguments removed from

the stack.
Rules: If the device is file structured, the .READ request must be preceded by an .OPENI.

The user must provide in his program a line buffer and line buffer header (see Figure 2-8).

Further actions on the dataset by the Monitor will be automatically postponed until the .READ process-
ing has completed. The user program should, however, perform a .WAIT or .WAITR to ensure proper

completion of transfer before attempting to use the data in the line buffer.

Emrors: Specification of a transfer mode which is inappropriate for the device assigned to the dataset,
and attempting to .READ from or .WRITE to a file-structured device for which no file has been .OPENed

or the type of .OPEN is incorrect. These will be treated as a fatal efror and result in a FO10 message.

2-21

WRITE

2.6.1.6 WRITE - Write on a device.

Macro Call: WRITE LNKBLK ,BUFHDR

where LNKBLK is the address of the Link Block, and BUFHDR is the address of the line buffer header.

Assembly Language

Expansion: MOV #BUFHDR,-(SP)
_— MOV #LNKBLK,=(SP)
EMT 2

Global Name: RWN.

Desclripﬁon: The .WRITE request initiates the transfer of data from the user's line buffer to the device
assigned. The data is first transferred to a buffer in the Monitor, where it is accumulated unfil a

buffer of suitable length for the device is filled. The data in the Monitor buffer is then transferred to
the appropriate device block, and any data remaining in the user's line buffer is moved fo the (emptied)
Monitor buffer. After any 1/O fransfer to the device has been started, control is returned to the user

af the next sequential instruction. The arguments are removed from the stack upon return.

Rules: If the requested device is file structured, the dataset must have been opened by an .OPENO
or .OPENE for a linked file, or .OPENC for a contiguous file.

The user must provide a line buffer and its header in his program (Figure 2-8).

Further actions on the dataset by the Monitor after .WRITE will be automatically postponed until the
.WRITE processing has been completed. Before refilling the line buffer, however, the user program

should perform a .WAIT or .WAITR to insure proper completion of the transfer.

Errors: See .READ for errors.

2-22

WAIT

2.6.1.7 .WAIT - Wait for completion of process on dataset.

Macro Call: WAIT LNKBLK

where LNKBLK is the address of the Link Block.

Assembly Language

Expansion: MOV #LNKBLK ,-(SP)
- EMT 1

Global Name: (Routine is permanently core resident.)

Description: .WAIT tests for ‘complerion of the last requested action on the dataset represented by the
referenced Link Block. If the action is complete (that is, if the request has completed all its action),
cqnfrol is returned to the user at the next sequential instruction following the assembly language ex-
pansion; otherwise, the Monitor retains control until the action is complete. A .WAIT or WAITR
should be used to ensure the integrity of data transferred to or from a line buffer. The argument is

removed from the stack.
Rules: The dataset must be INITed .

Errors: If the dataset is not INITed, a fatal error occurs and FOOOQ is printed to the teleprinter,

2-23

.WAITR

2.6.1.8 WAITR - Wait for completion of processing on dataset, or return.

Macro Call: WAITR LNKBLK ,ADDR

where LNKBLK is the address of the Link Block, and ADDR is the address to which control is transferred

if the processing is not complete.

Assembly Language

Expansion: MOV #ADDR,~-(SP)
- MOV #LNKBLK,-(SP)
EMT 0

Global Name: (Permanently Core Resident.)

Description: WAITR tests for compl etion of the last requested action on the specified dataset. If all
actions are complete, control is transferred back to the user at the next sequential instruction follow-
ing the assembly language expansion. If all actions are not complete, control is given to the instruc-
tion at location ADDR. The arguments are removed from the stack. It is the user's responsibility to

return to the .WAITR to check again.

Rules: The user should use a .WAIT or a .WAITR request to assure the completion of data transfer to
the user's line buffer before processing the data in the buffer, or moving data into it. The dataset
must be INITed.

Errors: If the dataset is not INITed, a fatal error occurs and FOOO is printed on the teleprinter.

2.6.2 BLOCK Level Requests

BLOCK requests provide for the random access to the blocks of files stored on the disk or DECtape.
In this mode, data is transmitted to or from a specified block in a file with no formatting performed.
Transfers take place between the device block and the Monitor buffer. The user is responsible for
transferring the block to and from his own area. BLOCK level requests require the use of the .INIT,
.RLSE, .OPEN and .CLOSE requests discussed earlier.

2-24

.BLOCK

1 2.6.2.1 BLOCK - Transfer one physical block of a file.

Macro Call: .BLOCK LNKBLK,BLKBLK

where LNKBLK is the address of the Link Block, and BLKBLK is the address of the BLOCK block (see
Figure 2-117).

Assembly Language

Expansion: MOV #BLKBLK ,-(SP)
— MOV #LNKBLK,~(SP)
EMT 11

Global Name: BLO.

Description: This request allows for random, relative block access to contiguous files. The user must
specify one of three functions in the block called: INPUT, GET, or OUTPUT. After the transfer has
started,, control is refurned to the user at the instruction following the assembly language expansion

with arguments removed from the stack.

INPUT: During an INPUT request, the requested block of the requested file is read
into a Monitor buffer, and the user is given in the BLOCK block (see Figure
2-11) the address of the buffer and the physical length of the block transferred.

GET: During a GET request, the Monitor gives the user the address and length of a
buffer within the Monitor that he can fill for subsequent output. The user must
be careful that he does not over-run the buffer. This request is unnecessary if
an INPUT request has occurred.

OUTPUT: During an QUTPUT request, the contents of the buffer assigned is written on
the device in the requested relative position of the requested file.

Rules: The associated file must be opened by .OPENI for input or .OPENU for input or output.
Access to linked files or nondirectory devices is illegal.

The user must set up the BLOCK block in his program according to the format of Figure 2-11,
Errors: Error processing causes a refurn to the user as usual, with the type of error indicated in the
FUNCTION/STATUS word of the BLOCK block. The user should perform

TSTB BLKBLK+1
BNE ERROR

after a WAIT to ensure that his request was error free.

2-25

2.6.3 TRAN Level Requests . -;.

TRAN requests provide for direct access to any device. Bulk storage or directory devices are accessed
by absolute block without regard to the directory structure. For this reason, the user should be very
careful not to destroy the file structure of a directory device to which he is requesting TRAN level
transfers. Data is transferred directly between the device and the user's buffer. No formatting is

performed.

TRAN requests require the use of the .INIT and .RLSE requests, discussed earlier,

2-26

. TRAN

2.6.3.1 .TRAN - Transfer absolute block .

Macro Call: - TRAN LNKBLK , TRNBLK

where LNKBLK is the address of the Link Block, and TRNBLK is the address of the TRAN block.

Assembly Language

Expansion: MOV #TRNBLK,~(SP)
I MOV #LNKBLK,~(SP)
EMT 10

Global Name: TRA.

Description: . TRAN performs a direct transfer of data, by absolute block on the device (or next block
on sequential devices), between the device and the user's area in core memory. No Monitor buffering
or formaiting occurs. After the transfer has started, control is returned to the user at the instruction
following the assembly language expansion. The arguments are removed from the stack. The user is

warned that . TRAN provides no protection for files on a directory-oriented device.

Rules: .TRAN must be preceded by an .INIT request on the associated dataset.
For each .TRAN request, the user must provide a transfer control block, as shown in Figure 2~12.
Further actions on the dataset by the Monitor will be automatically postponed until the .TRAN process=

ing has been completed. The user program should perform a .WAIT or .WAITR to ensure proper com-

pletion of the transfer before attempting fo reference any location in the data buffer.

If file structured data shares the same device as the block(s) referenced by the .TRAN request, it is

recommended that the user first allocate a contiguous file for . TRAN usage.

Errors: An invalid function code in the transfer control block will result in an error diagnostic message

on the teleprinter at run time.

Errors in the transfer will be shown in the FUNCTION/STATUS word of the TRAN block; the last word

of the block will be set to show how many data words have not been transferred.

Example: Transfer 2008 words of ASCII data from DECtape unit 3, starting at block 1008 to core start-

ing af location 40008.

2-27

TAPE 1:

BIN40:

JINIT TAPEI
.TRAN TAPE 1,BIN40

.RLSE TAPE 1

.WORD ERR 1

.WORD 0

.RAD50 /TP1/

.BYTE 1,3

.RAD50 /DT/

.WORD 100 ;STARTING BLOCK #

.WORD 4000 ;STARTING ADDRESS IN CORE
.WORD 200 . ;NUMBER OF WORDS

.WORD 4 ;INPUT IN ASCII

.WORD 0 ;FOR MONITOR USE

2-28

2.6.4 Requests for Input/Output Related Services

.SPEC

2.6.,4.1 _SPEC - Special functions.

Macro Call: .SPEC LNKBLK,SPCARG

where LNKBLK is the address of the Link Block, and SPCARG may be either a special function code or

the address of a special function block containing the code, depending upon the function.

Assembly Language

Expansion: MOV #SPCARG, -(SP)
MOV #LNKBLK,-(SP)
EMT 12

Global Name: SPC.

Description: This request is used to specify a special function (action) to a device, such as rewind
magnetic tape. A code identifies the function and must be in the range 0-25510. Where the function
requires no supporting data, the code itself is the first parameter to be placed upon the processor stack
in the assembly language call sequence. If, however, either the user must supply additional informa-
tion or the function expects to return data to the user, the code is passed within a Special Function
Block and the address of the block is the call parameter. The format of this block is shown in Figure
2-13.

If a .SPEC request is made to a device which has no special function code, an immediate return is
made showing that the function has been complete. After the request has been started, control is re-

turned to the user at the instruction following the assembly language expansion. The stack is cleared.
Rules: The dataset must be INITed,

Errors: Fatal Error FOOO is returned if the dataset has not been INITed.

2-29

.STAT

2.6.4.2 .STAT - Obtain device status.

Macro Call: STAT LNKBLK

where LNKBLK is the address of the Link Block.

Assembly Language

MOV #LNKBLK,~(SP)

Expansion:
EMT 13

Global Name: STT.

Description: Determine for the user the characteristics of the device specified in the Link Block. After

the request has been completed, control is returned to the user at the instruction following the assembly

language expansion. This request returns to the user with the following information at the top of the

stack:

SP Driver Facilities Word

SP+2 | Device Name

SP+4 | Device Standard Buffer Size

where Driver Facilities Word has the following format:

1511401312111)10 9 |87 |6

1 =device is
directory
structured.

1 = device is DECtape
1 = device is sequential magnetic tape

1 = device has several discrete units under one
controller

1 = device is a terminal
1 = driver has an OPEN entry

1 = driver has a CLOSE entry

1 = driver has o special function entry

1=device will support multi-
dataset activity

1 =device will handle output

1 =device will handle input

—1 = device will handle binary data
1 =device will handle ASCII data

Device Name is the Radix-50 packed ASCII standard mnemonic for the device (Appendix A).

2-30

Device Standard Buffer Size is the block size on a blocked device or an appropriate grouping size on
a character device.

Rules: The dataset must be INITed. The user must clear the stack upon return.

2-31

.ALLOC

2.7 DEFINITIONS OF REQUESTS OF DIRECTORY MANAGEMENT SERVICES

2.7.1 .ALLOC
Allocate (create a contiguous file).

Macro Call: +ALLOC LNKBLK,FILBLK ,N

where LNKBLK is the address of the Link Block, FILBLK is the address of the Filename Block, and N

is the number of 64-word segments requested.

Assembly Language

Expansion: MOV #N,-(sP)

- MOV #FILBLK,=(SP)
MOV #LNKBLK,-(SP)
EMT 15

Global Name: ALO. (See Appendix C for subsidiary routines.)

Description: Searches the device for a free area equal to N 64-word segments, and creates a contigu-
ous file in the area if it is found, by making an appropriate entry in the User File Directory. (Linked
files are created by an .OPENO request.) Search begins at the high end of the device. The number

of blocks allocated will be the minimum number required to satisfy N segments, i.e.,

N
B |

where B is the number of segments per block. For example, if N=9 for DECtape, and
256 LI
5|4l

=T 4 therefore,
After the request has been completed, control is returned to the user at the instruction following the

assembly language expansion. The arguments are removed from the stack, and the top word of the
stack will be set to =1 to indicate the successful completion of the request, or to the largest number
of segments currently available if this is less than the called request. The value will be meaningless

if the call cannot be met by reason of any other error.

Rules: Must be preceded by an .INIT request on the dataset. A Filename Block must be set up by the

user in his program.

2-32

Errors: Control is returned either o the ERROR RETURN ADDRESS in the Filename Block if it is speci~

fied, or to the console for an error message if it is not. Possible errors resulting from .ALLOC are:

Error Code Returned Error Message

Error Condition To Filename Block On Default
Dataset Not INITed None FO00
Device Not Ready None A002
File Exists 2 F024
Illegal File Name 15 F024
UIC Not In Directory 13 F024
Directory Full 12 F024

If the error address in the Filename Block is taken, the top word of the stack is meaningless.

Example: Create a contiguous file of 1024]0 words on DECtape unit 4. Name the file FREQ.DAT.

»

ALLOC

FRQ, FREQIN, 20
INC @SP
BNE NOROOM
.WORD ERRI
FRQ: .WORD 0
.RAD50 /DTA/
.BYTE 1,4
.RAD50 DT/
.WORD ERR2
.WORD 0
FREQUIN: .RAD50 /FRE/
.RAD50 /Q/
.RAD50 /DAT/
.WORD UIC,PROT1
ERR1: ;TO HERE IF NO BUFFER AVAILABLE
;FOR DRIVER
ERR2: ;TO HERE IF NOT ENOUGH CONTIGUOUS

;BLOCKS ON DEVICE

2-33

.DELET

2.7.2 .DELET

Delete a file.

Macro Call: .DELET LNKBLK,FILBLK

where LNKBLK is address of Link Block, and FILBLK is address of Filename Block.

Assembly Language

Expansion: MOV #FILBLK,=(SP)
- MOV #LNKBLK,-(SP)
EMT 21
Global Name: DEL. (See Appendix C for subsidiary routines.)

Description: Deletes from directory-oriented device the file named in the Filename Block. After the
request has been completed, control is returned to the user at the instruction following the assembly

language expansion. The arguments are removed from the stack.

Rules: .DELET operates on both contiguous and linked files. If the file has been opened, it must

be closed before it is deleted.

Errors: Control is returned either to the ERROR RETURN ADDRESS in the Filename Block if it is speci~

fied, or to the console for an error message if it is not. Possible errors resulting from .DELET are:

Error Code Returned Error Message
Error Condition To Filename Block On Default
Dataset Not INITed None FO00
Device Not Ready None A002
Non-existent File 2 F024
Protect Code Violate 6 F024
File Is Open 14 F024

2-34

RENA}

2.7.3 .RENAM

Rename a file.

Macro Call: -RENAM LNKBLK,OLDNAM,NEWNAM

where LNKBLK is the address of the Link Block, OLDNAM is the address of the Filename Block re-

presenting the file, and NEWNAM is the address of the Filename Block containing the new information.

Assembly Language

Expansion: MOV #NEWNAM, -(SP)

- MOV #OLDNAM,=(SP)
MOV #LNKBLK, ~(SP)
EMT 20

Global Name: REN. (See Appendix C for subsidiary routines.)

Description: Allows the user to change the name and protection code of a file. After the request has
been completed, control is returned to the user at the instruction following the assembly language

expansion. The arguments are removed from the stack.

Rules: Dataset must be INITed, and file must not be opened. The user must specify two Filename
Blocks; one contains the name and protection code of the file as it presently is before the .RENAM
request, and the other contains the name and protection code of the file as it should be after the
RENAM request. The two file names must be different. To change just the protection for a file,
two .RENAMs must be requested.

Only the owner of a file may rename it. The new file name must not already exist, and the new file

name must be legal .
The old file must exist.

NOTE

Renaming a file assigned from the keyboard to the dataset
will effectively be a NOP.

Errors: Control is returned either to the ERROR RETURN ADDRESS in the offending Filename Block if
it is specified and applicable, or to the Monitor for an error message if it is not. Possible errors

resulting from .RENAM are:

2-35

Error Code Returned

Error Condition To Filename Block
File Exists (New Name) 2
File Does Not Exist (Old 2

File)
Dataset Not INITed None
File Is Open 14
Protection Violation 6
Illegal File Name 15

2-36

Error Message
On Default

F024
F024

FO00
F024
F024
F024

.APPEND

2.7.4 _.APPEND

Append one linked file onto another.

Macro Call: +APPEND LNKBLK,FIRST,SECOND

where LNKBLK is the address of the Link Block, FIRST is the address of the Filename Block for the
first file, and SECOND is the address of the Filename Block for the second file.

Assembly Language

Expansion: MOV #SECOND,-(SP)
- MOV #FIRST,~(SP)
MOV #LNKBLK,-(SP)
EMT 2
Global Name: APP. (See Appendix C for subsidiary routines.)

Description: Makes one linked file out of two by appending the SECOND to the FIRST. The directory
entry of the SECOND file is deleted. When the request is completed, control is returned to the user
at the instruction following the assembly language expansion. The arguments are removed from the
stack. No attempt is made to pack the two files together, the physical blocks are merely linked to-
gether.

Errors: Control is returned either to the ERROR RETURN ADDRESS in the offending Filename Block if
it is specified, or to the console for an error message if it is not. Possible errors resulting from

.APPEND are:

Error Code Returned Error Message
Error Condition To Filename Block On Default
Dataset Not INITed None F000
First File Nonexistent 2 F024
Contiguous File 5 F024
Device Not Ready None A002
Protect Code Violated 6 F024
File Opened 14 F024

2-37

.KEEP

2,7.6 .KEEP

Protect file from automatic deletion.

Macro Call: .KEEP LNKBLK,FILBLK

where FILBLK is the address of the Filename Block of the file to be protected.

Assembly Language

Expansion: MOV #FILBLK,~(SP)

- MOV #LNKBLK,=(SP)
EMT 24

Global Name: PRO.

Description: Protects the named file from being deleted by the Monitor upon a Flnish command (Section

2.3.5.5). It does this by setting bit 7 of the PROTECT byte in the Filename Block.

2-40

2.8 DEFINITION OF REQUESTS FOR MISCELLANEOQUS SERVICES

2.8.1 Requests to Return Conirol to the Monitor

EXIT

2.8.1.1 LEXIT = Exit from program to Monitor.
Macro Call: EXIT

Assembly Language

Expansion: EMT 60
Global Name: XIT.

Description: This is the last executed statement of a user's program. It returns control to the Monitor,
insures that all of the program's data files have been closed and, in general, prepares for the next
keyboard request. After the exit, all Monitor buffer space reserved for the program, such as Device

Assignment Tables (DAT) established after the program was coded, are returned to free core.

2.8.2 Requests to Set Monitor Parameters

In addition to the above programmed requests, the user can provide the Monitor with data to be stored
in Monitor Tables or can request information on the content of those tables via the EMT level 41 in-
struction. The user communicates his request to the Monitor by pushing the necessary parameters and
an identifier code onto the stack. If the code is outside the ranges of those currently established, a

fatal error will result (F002).

2-41

.TRAP

2.8.2,1 ,TRAP = Set interrupt vector for the trap instruction.

Macro Call: .TRAP STATUS,ADDR

where ADDR is the address for trap, STATUS is the desired status for the trap.

Assembly Language

Expansion:
MOV #ADDR,~(SP)
MOV #STATUS, -(SP)
MoV #1,-(5P)
EMT 41

Global Name: GUT.

Description: Sets the STATUS and ADDR into trap vector 34. After the request is completed, control
is returned to the user ot the instruction following the assembly language expansion. The stack is

cleared. The user may then use the trap instruction.

2-42

.RSTRT

2.8.2,2 ,RSTRT - Sets address used by the REstart command.

Macro Call: .RSTRT ADDR

where ADDR is the restart address.

Assembly Language

Expansion: MOV #ADDR,~(SP)

- MOV #2,-(SP)
EMT 41

Global Name: GUT.

Description: Sets the address where the program should restart in response to the keyboard command
REstart. This is the assumed address in the absence of an address in the REstart operator command. It
can be reset as often as requested by the program. After the request is completed, control is returned

to the user at the instruction following the assembly language expansion. The stack is cleared.

2-43

2.8.3 Requests to Obtain Monitor Parameters

.CORE

2.8.3.1 .CORE = Obtain address of the highest word in core memory.

Macro Call: .CORE

Assembly Language

Expansion: MoV #100,-(sP) ;CODE
- EMT 41
Global Name: GUT.

Description: Determines the address of the highest word in core memory (core size minus 2) and returns

it to the top of the stack. For an 8K machine, it would return 37776. The user must clear the stack.

.MONR

2.8.3.2 .MONR - Obtain the address of the first word above the Monitor.
Macro Call: .MONR

Assembly Language

Expansion: MOV #101,=(5P)
- EMT 41
Global Name: GUT.

Description: Determines the first word above the top of the currently resident Monitor (see Figure 2-4)
and returns it to the user at the top of the stack. After the request is completed, control is returned

to the user at the instruction following the assembly language expansion. The user must clear the stack .

2-45

.MONF -

2.8.3.3 .MONF - Obtain the address of the first word above the Monitor's highest allocated free

core buffer. .

Macro Call: .MONF ‘ .

Assembly Language

Expansion: mov #102,-(SP)
EMT 41
Global Name: GUT.

Description: The address of the first word above total Monitor area (in VAP4A, last word of the
present Monitor areq) (see Figure 2-4), including the buffer and fransient areas current af the time

of the request, is retumed to the user at the top of the stack. After the request is completed, control
is returned to the user at the instruction following the assembly language expansion. The user must

clear the stack.

Rules: Since buffers are allocated by the Monitor in its processing of certain requests, .MONF should

be placed in the program at the point where the information is actually required.

xx77768 “+—Top of Core -
<« Base of User
Stack Programs
_______ o ____
«— Top of Full Monitor
Device Assignment Table
Generated After Load Time
Monitor Buffers
(Data Buffers, Data Control
Blocks, Drivers, etc.) Top of Resident Monitor
P —
Device Assignment Table
Generated Before Start of Program
Monitor Routines Resident
For Program Duration
Device Assignment Table
Generated Before Load Time -
Permanently Resident Monitor -
000000 and Vectors

Figure 2-4 Core Map of Resident Monitor and Full Monitor.
2-46

.DATE

2.8.3.4 .DATE - Obtain current date.
Macro Call: .DATE

Assembly Language

Expansion: MoV #103,~(5P)
- EMT 41
Global Name: GUT.

Description: The current date word is returned to the user at the top of the stack. The user must clear

the stack. The date format is Julian-70,00010.

2-47

.TIME

2.8.3.5 .TIME - Obtain current time of day.

Macro Call: .TIME

Assembly Language

Expansion: MOV #104,-(SP)
- EMT 41
Global Name: GUT.

Description: The two current time words are returned to the user at the top of the stack.

LOW-ORDER TIME IN TICS sp
HIGH-ORDER TIME SP+2

where a TIC is 1/60 of a second (1/50 second for 50 cycle lines). The words are 15-bit unsigned

numbers. The user must clear the stack.

2-48

2.8.3.6 .GTUIC - Get current user's UIC.

Macro Call:

Assembly Language

Expansion:

Global Name:

.GTUIC

MoV #105,-(SP)
EMT 41

GUT.

;CODE

.GTUIC

Description: The current user's UIC is returned to the user at the top of the stack. The user must clear

the stack.,

2-49

.SYSDV

2.8.3.7 .SYSDV - Get Name of System Device
Macro Call: .SYSDV

Assembly Language

Expansion: mov #106,-(SP)
EMT 41
Global Name: GUT.

Description: The name of the System Device in Radix-50 notation is returned to the user on top of the

stack.

2.8.4 Requests to Perform Conversions

Using the EMT level 42 instruction the user can request data conversions between binary and some ex-
ternal form, such as decimal ASCII or Radix-50. He communicates his request by pushing the necessary
parameters and an identifier code onto the stack. If a code outside the range of those currently estab-

lished is specified, a fatal error (FO34) will result.
A note on Radix-50 packing, follows:

Because the characters allowed within names (e.g., file names or extensions, Assembler symbols, etc.)
are restricted to letters, digits, and one or two specials, it is poséible to store 3 characters at a time

within a single word by using the formula:

((Cl x508) + C2)x 508 + C3

where C] , C2, and C3 are the three characters converted from their original ASCII value to the one

shown in the following table:

ASCII RAD=50 Format
Space 40 0
A-Z 101-132 1-32
$ 44 33
56 34
Unused 35
0-9 60-71 36-47

(The maximum value is thus 47 x 502 + 47 x 50 + 47 = 174777)

2-50

.RADPK

2.8.4.1 .RADPK - Pack three ASCII characters into one Radix=50 word.

Macro Call: .RADPK ADDR

where ADDR is the address of the first byte in the 3-byte string of ASCII characters to be converted.

Assembly Language

Expansion: MOV # ADDR,-(SP)

- CLR -(SP) ;MOVE CALL CODE ONTO STACK
EMT 42

Global Name: CVT.

Description: The string of 7~ or 8=bit ASCII characters in three consecutive bytes starting at ADDR is
converted to Radix=50 packed ASCII using the algorithm in Section 2.8.4. The packed value is re=
turned on the top of the stack, followed by the address of the byte following the last character con-

verted.

Rules: ADDR may be set af any byte address (need not be at word boundary).

The stack must be cleared by the user after the Monitor returns control .

Errors: The conversion will be stopped if an error condition is encountered, and the user will be

informed of the type of error via the condition codes in the Processor Status register:

C-bit set means that an ASCII byte outside the valid Radix-50 set was
encountered, :

The value returned will be left-justified and correct up to the last valid byte, e.g. DT: = DT : The
address returned will be that of the first invalid byte,

If no errors were encountered during the conversion, the condition codes will be cleared.

Example: Pack a string of 30]0 ASCII characters, starting at UNPBUF, into a buffer starting at
PAKBUF.

2-51

MOV
MOV
NEXT: CLR
EMT
BCS
MOV
CMP
BNE
TST

#PAKBUF,R3 ;SET UP POINTER TO PACK-BUFFER

#UNPBUF, -(SP) ; .RADPK UNBUF

-(SP)

42

ERRC ;INVLID ASCII CODE ENCOUNTERED
(SP) +, (R3) + :MOV PACKED VALUE TO BUFFER

R3, #PAKBUF+12 ;END OF STRING ?

NEXT ;NO

(SP) + ;YES - REMOVE POINTER FROM STACK

Note that this example takes advantage of the fact that the Monitor returns to the stack the address of

the byte which follows the last character converted.

2-52

.RADUP

2.8.4.2 .RADUP - Unpack one Radix~50 word into three ASCII characters.

Macro Call: .RADUP ADDR,WORD

where ADDR is the pointer to the buffer into which the unpacked bytes are to be placed, and
WORD is the Radix=5@ word to be converted.

Assembly Language

Expansion: MOV WORD,~(SP)

. MOV #ADDR, ~(SP)
MOV #1,-(5P) ;MOVE CALL CODE ONTO STACK
EMT 42

Global Name: CVT.

Description: WORD is converted into a string of 7-bit ASCII characters which are placed left-justified

with trailing spaces in three consecutive bytes starting af location ADDR. The stack is returned cleared.

Errors: If an error is encountered, the user will be informed via the condition codes in the Processor

Status register:

C-bit set means that (a) a value of WORD was outside the valid Radix-50 set, i.e., 174777, (see
Section 2.8.4); (b) a Radix-50 byte value was found to be 35, which is currently not used.

Nevertheless, three bytes will be returned, with a : as the first of the three for error type (a), and a

/ for any of the three bytes for error type (b).

If the conversion is satisfactory, the condition codes are cleared,

2-53

.D2BIN

2.8.4.3 .D2BIN =~ Convert five decimal ASCII characters into one binary word.

Macro Call: .D2BIN ADDR

where ADDR is the address of the first byte in the 5-byte string of decimal characters to be converted

(can be on byte- or word-boundary).

Assembly Language

Expansion: MOV #ADDR, -(SP)

- MOV #2,-(sP) ;MOVE CALL CODE ONTO STACK
EMT 42

Global Name: CVT.

Description: The 5-byte string of 7= or 8-bit ASCII characters which start at ADDR are converted into
their binary equivalent. The converted value is returned to the top of the stack, right-justified,
followed by the address of the byte which follows the last character converted. The largest decimal

number that can be converted is 65,535 (2]6-1). The user must clear the stack.

Errors: The conversion will be stopped if an error condition is encountered. The user will be informed

of the type of error via the condition codes in the Processor Status register:

C-bit set means that a byte was not a digit.
V-bit set means that the decimal number was too large, i.e. greater than 65535,

The value returned will be correct up to the last valid byte. The address returned will be that of the

invalid byte. If the conversion is satisfactory, the condition codes will be cleared.

2-54

.BIN2L

2.8.4.4 .BIN2D - Convert one binary word into five decimal ASCII characters.

Macro Call: .BIN2D ADDR,WORD

where WORD is the number to be converted, and ADDR is the address of the first byte of the buffer

where the characters are to be placed.

Assembly Language

Expansion: MOV WORD,~(SP)

I MOV #ADDR, -(SP)
MOV #3,~(SP) ;MOVE CALL CODE ONTO STACK
EMT 42

Global Name: CVT,

Description: WORD is converted into a string of five decimal 7=bit ASCII characters which are placed
into consecutive bytes starting at location ADDR, They are right-justified with leading zeros. The

stack is cleared.

Errors: No errors are possible.

2-55

.O2BIN

2.8.4.5 O2BIN - Convert six octal ASCII characters into one binary word.

Macro Call: .O2BIN ADDR

where ADDR is the address of the first byte in the 6-byte string of octal characters to be converted.

Assembly Language

Expansion: MOV #ADDR,-(SP)

- MOV #4,-(sP) ;MOVE CALL CODE ONTO STACK
EMT 42

Global Name: CVT.

Description: The 6-byte string of octal 7~ or 8-bit ASCII characters which start at ADDR are converted
into the binary number equivalent. The converted value is returned to the top of the stack, right=~
justified, followed by the address of the byte which follows the last character converted. The largest

octal number which can be converted is 177777. The stack must be cleared by the user.

Errors: The conversion will be stopped if an error condition is encountered, and the user will be in-

formed of the type of error via the condition codes in the Processor Status register:

C-bit set means that a byte was not a digit.

V-bit set means that the octal number was too large, i.e., the first byte
of six was greater than 1.

If the conversion has been satisfactory, the condition codes are cleared. Following C- or V-bit errors
the value returned will be correct up to the last valid byte. The address returned will be that of the

first invalid byte.

2-56

.BIN2O

2.8.4.6 .BIN2O - Convert one binary word into six octal ASCII characters.

Macro Call: .BIN2O ADDR,WORD

where WORD is the binary number to be converted, and ADDR is the address of the buffer into which

the six octal ASCII characters are to be placed.

Assembly Language

Expansion: MOV WORD ,-(SP)

- MOV #ADDR, -(SP)
MOV #5,-(5P)
EMT 42

Global Name: CVT.

Description: The WORD is converted into a é=byte string of octal 7-bit ASCII characters, right-
justified with leading zeros, which are placed into the buffer addressed by ADDR. The stack is cleared.

Errors: No errors are possible,

2.8.5 Requests for Interfacing with the Command String Interpreter

A user program may obtain dataset specifications via keyboard input at run time by calling the Command
String Interpreter (CSI) routine. This is the same routine used by many system programs; it accepts key~

board input at program run time in the format presented in Section 3.4.1.

The CSI is called in two parts, by two different requests: .CSI1 and .CSI2. .CSIT condenses the
command string and checks for syntactical errors. .CSI2 sets the appropriate Link Block and Filename
Block parameters for each dataset specification in the command string. Each command string requires
one .CSI1 request for the entire command string, and one .CSI2 request for each dataset specifier in

the command sfrihg .

The user must first set up o line buffer in his program and read in the command string. Then he does a
.CSI1, which condenses the string by eliminating spaces, horizontal TABs, nulls, and RUBOUTs, sets
pointers in a table to be referenced by .CSI2, and checks the command string for syntactical errors.

If there are no errors, the .CSI2 request may be given once for each dataset specification that the user
expects to find in the command string. .CSI2 sets up the appropriate Link Block and Filename Block
parameter according to the device name, file name, extension, UIC, and switch entries in the command

string.

2-57

.CSI1

2.8.5.1 .CSI1 - Condense command string and check syntax.

Format: .CSI1T CMDBUF

where CMDBUF is the address of the command buffer header described under "Rules" below.

Assembly Language

Expansion: MOV #CMDBUF, -(SP)
— EMT 56
Global Name: CSX.

Description: Condenses the command string by removing spaces, horizontal TABs, nulls, and RUBOUTSs,
and checks the entire command string for syntactical errors. Control is returned to the user with a 0
at the top of the stack if the syntax was acceptable, or with the address (in the command string line

buffer) of the data byte at which the scan terminated because the first error was encountered.

Rules: The .CSI2 request must be preceded by a .CSI1 request, because .CSI2 assumes it is getting a

syntactically correct command; more than one CSI2 request can follow a single .CSI1 request.
The user must set up a line buffer and read in the command string before doing .CSIT.

It is the user's responsibility to print a # on the teleprinter to inform the operator that a CSI format is

expected (Section 3.1).

The user must set up a seven-word command buffer header in his program immediately preceding the
header of the line buffer into which the command is to be read. The user is not required at this time
to set up anything in the command buffer header prior to calling .CSI1; it will be used as a work-and-

communication area by the Monitor routines processing the .CSIT and .CSI2 requests.

The user must clear the stack upon return from the Monitor. If the top of the stack #0 (i.e., if there

was a syntax error), .CSI2 must not be called.

Example: (See .CSI2.)

2-58

LCSI2

2.8.5.2 .CSI2 - Interpret one dataset specification of command string.

Format: .CSI2 CSIBLK

Assembly Language

Expansion: MOV #CSIBLK,~(SP)
- EMT 57

Global Name: CSM.

Description: Gets the next input or output dataset specification from the command string, and sets the
PHYSICAL DEVICE NAME entry in the Link Block, the FILENAME, EXTENSION, and UIC entries in

the Filename Block, and any switch entries in an extension of the Link Block.

Rules: Before calling .CSI2, the user must:

° Call CSI1 to condense the command string and check it for syntax errors.
There must have been no syntax errors.

. Set up a CSI control block as follows:
CSIBLK: POINTER TO CMDBUF

POINTER TO LNKBLK
POINTER TO FILBLK

where POINTER TO CMDBUF is the address of the 7-word work area preceding
the command string line buffer header;

POINTER TO LNKBLK is the address of the Link Block of the dataset whose
specification is being requested; and

POINTER TO FILBLK is the address of the Filename Block of the dataset whose
specification is being requested (currently, CSI allows only one file per dataset
specification).

. Set the first word of CMDBUF to either 0 or 2. 0 means "get next input dataset
specification", and 2 means "get the next output dataset specification". CSI2
does not check the validity of the code word.

° Initialize the NUMBER OF WORDS TO FOLLOW entry in the Link Block to
contain the number of words to follow. This must be at least one, because CSI2
will alter the following word, i.e., the PHYSICAL DEVICE NAME word. CSI2
does not check the validity of this byte.

The user may specify any number from 1 to 2557 in this location. All words in
excess of 1 are used for switch space (see the interface with respect to switches,
described below).

2-59

Upon return from the .CSI2 request, the Monitor will have provided the following information:

The top of the stack contains either:

(a) 0, which means the dataset specification requested has been obtained,
and there are still more dataset specifcations of the type requested
(i.e., input or output); or

(b) 1, which means the dataset specification requested has been obtained,
and there are no further dotaset specifications of the type requested; or

(c) 2, which means (a), but this particular dataset specification included
more switches than would fit in the space provided; or

(d) 3, which means (b), but this particular dataset specification included
more switches than would fit in the space provided.

. With respect to the Link Block (Figure 2-5):

If the PHYSICAL DEVICE NAME word is zero, the user does not wish this
particular output (input) dataset to be generated (read); i.e., this entry was
omitted when the command string was typed in. If not zero, the PHYSICAL
DEVICE NAME and UNIT NUMBER are appropriately set to the device and
unit specified in the command string.

Immediately following the PHYSICAL DEVICE NAME word in the Link Block
are the switches specified in the command string. The interface for each
switch is shown in the switch block below. These switch blocks are written in
the area provided by the programmer in the Link Block.

NUMBER OF WORDS TO FOLLOW
POINTER TO FIRST CHARACTER OF Vn
POINTER TO FIRST CHARACTER OF Vn-1

POINTER TO FIRST éHARACTER OF V1
W(ASCII) S(ASCII)

If NUMBER OF WORDS TO FOLLOW is zero, there are no more switches. Note
that the pointers are in reverse order. After the value pointers is an ASCII word
which contains the first two characters of the switch. The first character is in the
low byte, and the second is in the high byte. If the name of the switch contains
only one character, the ASCII representation of that character will be in the low
byte, and the high byte will contain a zero. Note that if the number of words

to follow is not zero, it is the number of values +1. For example, if the switch
/SWITCH:$12: AB is stored in memory beginning at location 1000 as:

1000 1001 1002 1003 1004 1005 1006

/ S w I T C H
1007 1010 1011 1012 1013 1014 1015
$ 1 2 : A B

2-60

then the completed interface appears as:

3

1014

1010
127=5]123=W

° With respect to the Filename Block (Figure 2-6):

{(a) The FILE NAME occupies the two words at FILBLK and FILBLK+2. If the
Monitor returns zero at FILBLK, no FILE NAME was specified in the dataset
specification; if it returns 52g at FILBLK, * was specified as the FILE NAME.
Otherwise, the Monitor returns at FILBLK and FILBLK+2 the first six characters
of FILE NAME, in Radix-50 packed ASCII.

(b) The EXTENSION occupies the word at FILBLK+4. If the Monitor returns
zero at FILBLK+4, no EXTENSION was specified; if it returns 528, * was
specified. Otherwise, the Monitor returns the first three characters of the
extension specified, in Radix=50 packed ASCII.

(c) The USER IDENTIFICATION CODE occupies the word at FILBLK+6. If the
Monitor returns zero at FILBLK+6, no UIC was specified in the dataset speci-
fication (the 1/O processors will assume the UIC of this user). If a UIC was
typed in, the Monitor will set this word appropriately. The Monitor returns
377g in either high- or low-order byte of this word if * was specified.

The user may restart at the beginning of the input dataset or output dataset
side of the command string simply by recalling .CSI1 and issuing a 0 or 2
code, respectively. Note that he may not restart one without restarting the
other.

Remark: There is no error checking with respect to magnitude when the UNIT or UIC values are

converted from octal ASCII to binary .

2.8.6 User Program Tables

2.8.6.1 The Link Block (used for all input/output and directory requests)

ERROR RETURN ADDRESS
000000 LINK POINTER (for Monitor use only)
LOGICAL NAME OF DATASET =~ Radix=50 Packed ASCII
UNIT NUMBER NUMBER OF WORDS TO FOLLOW
PHYSICAL DEVICE NAME == Radix=50 Packed ASCII

LNKBLK :

Figure 2=5 The Link Block

2-61

Each dataset in a user's progrom must have a Link Block associated with it. Entries in the Link Block -
which must be specified by the user can be written into his program or set by the program itself before
the dataset is INITed. Each entry is explained below.
Address Name Function
LNKBLK=2 ERROR RETURN This entry must be set by the user to contain the address where
ADDRESS he wants control transferred in the event that any request associ=
ated with this dataset fails to obtain required buffer space from
the Monitor. If no address is specified here, such an error will
be treated as fatal. This address may be changed by the user's
program at any time,
LNKBLK LINK POINTER This location must be set to zero by the user and must not be
modified by him. The Monitor places a linking address here
when the dataset is INITed. Before INITing a dataset, the
Monitor tests this pointer for zero. If it is not zero, the
Monitor assumes that the dataset was already INITed.
LNKBLK+2 LOGICAL NAME The user con specify a name for the dataset in this entry. This
OF DATASET name, which must be unique, is used to associate the dataset
with a device which is specified by an ASSIGN from the key-
board. The name is stored in Radix=50 packed ASCII by the -
«RADS50 assembler directive. (A specification is required only
when using an ASSIGN,) -
LNKBLK+4 NUMBER OF This byte contains the count of the number of words to follow
WORDS TO in the Link Block. The user should set it to a O if he does not
FOLLOW specify any PHYSICAL DEVICE NAME in the next word, or
to a 1 if he does. Values greater than 1 may be used if the
Command String Interpreter is to be called.
LNKBLK+5 UNIT NUMBER This code specifies the unit number of the device linked to
the dataset. For example, the TC11 Controller (DECtape)
can drive up to eight tape drives (units), numbered 0-7.
LNKBLK+6 PHYSICAL DEVICE If the user specified 1 or greater LNKBLK+4, he must specify
NAME here the standard name (Appendix A) for the device associated
with the dataset. If no name is specified here, the user must
specify LOGICAL NAME OF DATASET and perform an ASsign
command before he runs his program.
2.8.6.2 The Filename Block - Each file associated with a dataset must be described by the user in
a Filename Block. If a dataset is not a file, the Filename Block must still be used, but FILENAME, i
EXTENSION, and PROTECT need not be specified. The Filename Block is used by OPEN and
all directory management requests.
-~

2-62

ERROR RETURN ADDRESS

ERROR CODE HOW OPEN
FILBLK: FILE NAME
FILE NAME
EXTENSION
USER ID CODE
(spare) PROTECT CODE
Figure 2=6 The Filename Block
Address Name Function
FILBLK-4 ERROR RETURN ADDRESS The user must specify here the address to which he
wants the Monitor to return control if one of the errors
in Table 2-4 occurs during an operation involving the
file. If no address is specified here, any such error will
be treated as a fatal error.
Table 2-4
Filename Block Error Conditions
Error Code
In File~ Faulting
name Block Request Cause Remedy
00 .OPENC An attempt was made to open a dataset that
.OPENE was previously opened.
.OPENI
.OPENO
.OPENU
01 unused
02 .OPENO An attempt was made to .OPENO a file Delete the file (with
which already exists. PIP) or change file name.
.OPENC An attempt was made to open a file for
.OPENE input, extension, or update which is
.OPENI currently opened for output, or which
.OPENU does not exist.

2-63

Table 2-4 (Cont)

Filename Block Error Conditions

Error Code
In File~ Faulting
name Block Request Cause Remedy

03 .OPENC An attempt was made to open a file which Close file.
.OPENE has already been opened the maximum
.OPENI number of times (768) .
.OPENU

04 .OPENC An .OPENC, .OPENE, or .OPENU .CLOSE the previous
.OPENE attempt was made to open a file which open.
.OPENU has already been opened for either

.OPENC, .OPENE, or .OPENU.
05 .OPENE Illegal request to a contiguous file.
06 .OPENC An attempt was made to access o file
: .OPENE which the protection code prohibits.

.OPENI
.OPENO
.OPENU

07 unused

10 .OPENC Illegal OPEN request to a contiguous

file.

11 .OPENC File opened for output or extension is Close offending file.
.OPENE already on current DECtape unit.
.OPENO
.OPENU

12 JALLOC Directory full (DT). Mount another DEC-
.OPENO tape.

13 .ALLOC The UIC was not entered into the Enter UIC via PIP.
.OPENO device MFD.

14 .APPND An ottempt was made to perform an Wait until file is
.DELET illegal operation on an opened file. closed.
.RENAM

15 .ALLOC An attempt was made to create a file Change file name.
.OPENO with an illegal file name

2-64

Address Nome Function

FILBLK-2 HOW OPEN This is set when the .OPENx macro's assembly language expan-
sion is executed. It tells the Monitor which kind of open is
being requested: .OPENU =1, .OPENO =2, .OPENE =3,
.OPENI =4, ,OPENC = 13.

FILBLK=-1 ERROR CODE This entry should not be set by the user. It will be set by the
Monitor to indicate the type of error (Table 2-4) which occurred.
It will be cleared of any previous condition at each .OPEN
call.

FILBLK+0 FILE NAME This two=word entry must be specified by the user if this dataset,
FILBLK+2 or portion thereof, is a file. It is the name of the file, in

Radix=50 packed ASCII.

FILBLK+4 = EXTENSION This entry must be specified if the file named in the previous
entry has an extension. It is Radix~50 packed ASCII.

FILBLK+6 USERI.D. CODE The user may enter his USER ID CODE here in octal:

GROUP NUMBER | USER'S NUMBER
High=Order Byte Low=-Order Byte

If no entry is specified here, the current user's UIC is assumed.
FILBLK+10 PROTECT CODE The user may specify here the protection to be given to the file

at its creation or renaming (see following paragraph). If 0, a
default protection 233 will be allotted.

2.8.6.3 The File Protection Codes

716 |5 (413121160

AL -

. A y -
Owner Userﬁoup All Others

Owner: Bit 6 =1 = Owner cannot write on or delete the file.
This is a safeguard to prevent inadvertent
deletion or over-writing.

Bit 7 = 1 = Protect the file from automatic deletion
on Flnish.

Figure 2-7 File Protection Codes

(continued on next puge)

2-65

User Group and All Others:

Note:

Function
Code Delete Write Read Run
0 yes yes yes yes
1 yes yes yes
20r3 yes yes
4or5 yes
bor7

yes indicates that the operation is allowed.

For example, if a file belongs to user [23,10],
a protection code of 3 will allow user [12,4]
to read or run but not delete or write on it.

Figure 2-7 File Protection Codes

2.8.6.4 The Line Buffer Header

BUFHDR:

- (used by READ and WRITE requests)

MAXIMUM BYTE COUNT

STATUS MODE

ACTUAL BYTE COUNT

POINTER (Dump Mode only)

Figure 2-8 Line Buffer Header

Each element of the line buffer header table is as follows:

Address

BUFHDR

BUFHDR+2

BUFHDR+3

BUFHDR+4

Name

MAXIMUM BYTE

COUNT

MODE

STATUS

ACTUAL BYTE

COUNT

Function

The count shows the size of the buffer, in bytes. It must be
specified here by the user on all INPUT operations.

The user specifies here the mode of the transfer. All modes
are listed and explained in Figure 2-10.

The Monitor will place in this byte the status of the transfer
when control is returned to the user. Figure 2-9 lists each
bit and its meaning. Errors encountered executing an 1/O
transfer will be flagged in this byte. The user should always
check its content after each transfer completes.

This count controls the number of bytes to be transferred on
OUTPUT. It must be initialized by the user before any output
transfer from the line buffer. After any transfer in or out, it
will show how many bytes have been transmitted (or in some
modes, see Section 2.8.6.6, would have been transferred had
some error not been detected).

2-66

Address Name Function

BUFHDR+6 POINTER (dump If bit 2 of MODE is 1, the user specifies here the starting
mode) address of the line buffer. If bit 2 of MODE is 0, the line
buffer header is only three words in length, and must immedi-
ately precede the line buffer itself. (Section 2.8.6.6 Note 9.)

Note: The Monitor will return control to the program if o de-
vice transfer is needed to sotisfy a READ or WRITE re~
quest. During this time, the header words will be used
to store data relevant to the operation underway. The
user should not, therefore, attempt to change this con-
tent until it is evident that the transfer has been com-
pletely effected, e.g., after a .WAIT return.

2.8.6.5 The Status Byte

End of medium —Invalid line error

(EOM) or L—Checksum error
End of file —— Character parity error or
(EOP) illegal binary format
Device parity — Spare
flag

Figure 2-9 Status Format

The function of each status format bit is explained below.

Bit Mode Request Condition
ALL .READ/WRITE Appropriate BYTE COUNT =0 at call.
0 FORMATTED .READ The MAXIMUM BYTE COUNT ran out
(INVALID ASCII NORMAL before a line terminator was seen. (Last
LINE) (pority or non= byte has been overlaid until the termi-
parity) nator has been reached.)
WRITE The last byte was not a terminator.
FORMATTED .READ The MAXIMUM BYTE COUNT was
ASCII SPECIAL reached before a line terminator was
(parity or non= seen (excess data has not yet been read).
parity)
WRITE The ACTUAL BYTE COUNT was reached

before any terminator was seen.

2-67

Bit

1

Mode

FORMATTED BINARY
NORMAL

FORMATTED BINARY
SPECIAL

FORMATTED BINARY

(CHECKSUM
ERROR)

2 FORMATTED ASCII
(PARITY PARITY NORMAL
FORMAT) OR SPECIAL

2 FORMATTED BINARY
(ILLEGAL
BINARY
FORMAT)

6 ALL MODES
(EOM/EOF)

5 ALL MODES
(DEVICE
PARITY)

2.8.6.6 The Transfer Modes

1.

Request

.READ

.READ

.READ

.READ

.READ

.READ or
WRITE

.READ or
WRITE

Condition

The MAXIMUM BYTE ran out before the
count stored with the data. (The last byte
has been overlaid in order to verify the
checksum.)

The MAXIMUM BYTE COUNT was reached
before the count stored with the data. (The
excess data still remains to be read and
checksum has not been verified.)

There was a discrepancy between the check-
sum accumulated during the .READ, and
that stored with the incoming data.

A character was read which had odd parity .
The eighth bit of the illegal character
delivered is set to a 1.

This bit is set if a line processed in a binary
mode does not have a 001 in the first word.

An input device cannot supply any more
data or an output device cannot accommo-
date more, i.e., the disk has no more stor~
age space, or the paper tape reader has run
out of paper tape.

A hardware error has been detected on a
bulk storage device. This could be either
a parity error or a timing error. The driver
will already have tried to READ or WRITE

8 or 9 times before setting this bit. (This
flag is a warning that the data in this line
or some subsequent line still using data
from the same device block may be invalid.
It will be returned for each transfer call
using the same block.)

Formatted ASCII Normal ~ Data in this mode is assumed by the Monitor to be in strings
of 7=bit ASCII characters terminated by LINE FEED, FORM FEED, or VERTICAL TAB.

READ: The line buffer is filled until either a terminator is seen or the number of bytes
transferred becomes equal to the MAXIMUM BYTE COUNT. If the MAXIMUM BYTE
COUNT is reached before the terminator is seen, the invalid line error bit in the Status
Register of the buffer header is set, and each remaining character through to the terminator
is read into the last byte of the line buffer, i.e., the surplus bytes are overlayed. After

2-68

READ (Cont)

the transfer, the actual byte count equals the number of bytes read (including the
excess). RUBOUTs and NULLs are discarded. The terminator is transferred.

7 6 5 4 3 2 1 0

\) f [. 4
Spare L 0 = ASCII
1 = Binary
| 0 = Formatted
Reserved 1 = Unformatted
Set to 1 fo suppress for 0 = Data follows Header
automatic echo on RSX 1 = Dump
a terminal (keyboard) 0 = No Parity
device. 1 = Parity
: : 0 = Normal
1 = Special

Figure 2-10 The Mode Byte

WRITE: The line buffer is output until the number of bytes transferred equals the
ACTUAL BYTE COUNT. If the last character is not a terminator, an invalid line
error bit is set in the STATUS BYTE of the buffer header. Previous terminators are
output as normal characters.

TABs are followed by RUBOUTs; FORM FEEDs are followed by NULLs.
The READ/WRITE processor passes data to the device driver specified, and each _
driver will convert the information to meet its specific needs. Appendix G summarizes

the characteristics of the device drivers.

Formatted ASCII Special ~

READ: The same as formatted ASCII normal with this exception: if the MAXIMUM
BYTE COUNT is reached before the terminator, the transfer is stopped. The remain-
ing characters are not overlaid, but are retained for transfer at the next .READ. An
invalid line error will be returned in the STATUS BYTE, and ACTUAL BYTE COUNT
will equal MAXIMUM.,

WRITE: The same as formatted ASCII normal with this exception: the line buffer is
output until the first terminator; the ACTUAL BYTE COUNT will stop the transfer
if it is reached before the terminator is seen. In this case, the invalid line error
bit is set into the STATUS BYTE. Note that in this mode only one line of data can
be output af once, but its byte count need not be exact, provided this is greater
than the actual.

Formatted Binary Normal -

READ: This is an 8=bit transfer. Words 2 and 4, STATUS, MODE, and ACTUAL
BYTE COUNT always accompany the data during formatted binary transfers. The
counts are adjusted by the Monitor to include the extra words. On input, the line
buffer is filled until the number of characters transferred equals the ACTUAL BYTE

2-69

READ (Cont)

COUNT read, or the MAXIMUM BYTE COUNT. If the MAXIMUM is reached before
the ACTUAL, an invalid line error occurs and the remaining bytes are overlaid into
the last byte until the checksum is verified. After the transfer, the ACTUAL BYTE
COUNT contains the actual number of bytes read (including the excess).

WRITE: This is an 8=bit transfer. Words 2 and 4 of the line buffer are output until

the number of characters transferred equal the ACTUAL BYTE COUNT and a checksum
is calculated. The checksum is output at the end.

Formatted Binary Special -

READ: The line buffer is filled until the number of characters transferred equals the
ACTUAL BYTE COUNT read. If the MAXIMUM COUNT is reached before the
ACTUAL, the remainder of the line is retained by the Monitor. The MAXIMUM
number is transferred fo the line buffer and the ACTUAL BYTE COUNT is set to

the full input count, rather than to the number of bytes actually transferred. The
invalid line error will be set in the STATUS BYTE. The user can compare the
MAXIMAL COUNT with the ACTUAL, determine how much data remains, and
recover it by an unformatted binary read (allowing 1 extra byte for the checksum).

WRITE: Identical to formatted binary normal.

Unformatted ASCII Normal or Special = This mode is available to the user who wants fo
do his own formatting. Seven bits are transferred; the eighth is always set to zero.
NULLs are discarded.

READ: Transfer stops when the number of bytes transferred reaches the MAXIMUM
BYTE COUNT. Nulls are discarded but all other characters are treated as valid.

WRITE: All characters are transferred. The transfer stops when the ACTUAL BYTE
COUNT is reached.

Unformatted Binary Normal or Special = This mode is identical to unformatted ASCII
except that eight bits are transferred on both input and output. No checksum is
calculated.

Formatted ASCII Parity = Identical to formatted ASCII (Special or Normal) except
that even parity is generated in the eighth bit on OUTPUT; during INPUT it will
be checked. Valid characters will be passed to the user as 7 bits; invalid

characters will be marked by bit 8 = 1, and will cause the setting of the parity
error bit in the STATUS BYTE (11).

Unformatted ASCII Parity = Identical to unformatted ASCII (Special or Normal)
except that eight bits are transferred instead of seven. No parity generating or
checking is performed.

Dump Modes - All modes can be specified as DUMP, which means that the word
after the ACTUAL BYTE COUNT is considered to be a pointer to the beginning of
the data rather than the beginning of the data proper. {Section 2.8.6.4.)

2-70

2.8.6.7 The BLOCK Block - (used by BLOCK request only)

BLKBLK : FUNCTION/STATUS
BLOCK NUMBER
MEMORY BUFFER ADDRESS
" LENGTH
Figure 2~11 The BLOCK Block
Address Name Function
BLKBLK FUNCTION/STATUS User specifies here the function to be performed,
and the Monitor returns to the user with the
appropriate status bits set .,
Bit - Bit = 1 means:
f 0 function is GET
v
n 1 function is OUTPUT
X
t
i 2 function is INPUT
)
no\
(3-8) spares (ignored by Monitor)
e (9 illegal function
r 10 file is linked, or device is not
r file structured
)
r 1 block number does not exist in
file, i.e., it is greater than the
3 file length.
t
a
t 12 file not open
u
s 13 protect code violation
14 end of data error
5 device parity error
BLKBLK+2 BLOCK NUMBER Requested block number to be transferred
relative to the beginning of the file.
First block of file is 0.
BLKBLK +4 Memory Buffer The address and length of the Monitor buffer given
Address by the Monitor on an INPUT or GET function.
BLKBLK+6 Length

2-71

2.8.6.8 The TRAN Block (used by TRAN request only)

TRNBLK: DEVICE BLOCK NUMBER
MEMORY START ADDRESS
WORD COUNT
FUNCTION/STATUS
NUMBER OF WORDS NOT TRANSFERRED

Figure 2=12 The TRAN Block

The user must set up a TRAN block for each .TRAN in his program.

Address Name Function
TRNBLK DEVICE BLOCK User specifies here the absolute block number of the
NUMBER device, at which the transfer is to begin. If it is not
a bulk storage device, specify block 0.
TRNBLK+2 MEMORY START User specifies here the core memory address at which the
ADDRESS dataset transfer is to begin.
TRNBLK +4 WORD COUNT User specifies here the total number of 16-bit words to
be transferred. Word count need not be block size.
TRNBLK +6 FUNCTION/STATUS | Bit: Bit = 1 means:
0 Binary, rather than ASCIT*
Write = 1*
Read = 1%

Reserved for Monitor's use

OVONOTUL AW N—
~

R —
pa—

DECtape direction*

0 = forward
1 =reverse
12 spare
13 invalid call (improper function/no word
count)
14 end of medium **
15 recoverable device**
error such as parity or timing.
TRNBLK+10 NUMBER OF User leaves this entry blank. If an EOM occurs during
WORDS NOT the transfer, the Monitor will place in this entry the
TRANSFERRED number of words not transferred.

*Must be specified by user.
**These bits are cleared before TRAN is carried out.
2-72

2.8.6.9 The Special Functions Block ~(used by SPEC request only)

SPCBLK:| WORDS TO FOLLOW CODE

%\/

ADDITIONAL DATA
WORDS AS NEEDED BY
FUNCTION SPECIFIED

Figure 2-13

Where a special function requires supporting data the user must set up a Special Functions Block in his

program.

Address Name
SPCBLK CODE
SPCBLK+1 WORDS TO

FOLLOW
SPCBLK+2 -

2.9 PROGRAMMING TIPS

Function

The user identifies the function here by inserting the appropriate
code in the range 0—255]0.

The size of each Special Functions Block is dependent upon the

_ Function. The user shows here how many more words belong to

the particular block.

The user places in these words data to be passed to the function
processor or the function processor will return here such items

as status information etc. The format in each case is determined
by the function.

Swapping time can be kept to a minimum by placing like requests together in the coding. For example,

method 1, below, will require the .INIT and the .OPEN processors to be swapped in only once each.

However, method 2 requires that each be swapped in three times. The exception of course occurs if

either are made core resident.
Method 1

JINIT A
INIT B
JINIT C

.OPENI' A .

.OPENO B
.OPENO C

Method 2

JANIT A
.OPEN A
LINIT B
.OPENO B

.

JUNIT C

.

.OPENO C

Core can be used more efficiently if datasets which are to be used the longest (i.e., .RLSEd last) are

.INITed first. Such action is efficient because free core is allocated from the bottom, and if the more

2-73

permanent routines are allocated first (i.e., at the bottom), larger areas of free core will become avail-
able as less permanent routines are released from the top. Thus, method 1 below is potentially more

efficient than method 2.

Method 1 Method 2

LINIT C INIT A

. .INIT B

: JINIT C
.INIT B

: .RLSE A
LINIT A .RLSE B
.RLSE A .RLSE C
.RLSE B
.RLSE C

.READ and .WRITE were designed to be used for sequential access to a linked file, but are legal for

both linked and contiguous files.

Since .EXIT will cause the user's program to be effectively wiped out, if the programmer wishes his
program to remain in core after it has finished (e.g., for debugging or for immediate reuse), he might,

instead of .EXIT, use something like:
BR . or LOC: BR LOC

The operator can then specify the next action by recalling the Monitor via a command at the keyboard

(see Section 3.2).

In some cases the WAIT or WAITR instructions are not needed. This situation is called an implied
WAIT, and occurs because the Monitor will only process one action on a dataset af a time. For example,

if a program is written:

.READ LNK1,BUF1

.READ LNK1,BUF2

the second READ becomes an implied WAIT for the first, since the Monitor will not start the second
until the first is finished with the dataset. This implies that when control returns to the user after the
second READ, he may sofely assume the data transferred by the first can now be processed. Similarly,
if two different datasets reference one device in common, action on the second dataset will not proceed

until action on the first is complete.

2-74

2,10 MONITOR MESSAGES

Monitor messages are typed on the teleprinter in the following format:

CNNN XXXXXX

where C is one of five letters identifying the type of message:

1 Informational
A Action required by the operator
W Warning to the operator
F Fatal error
S System program error
where NNNN is the message number, and XXXXXX gives appropriate additional information. Infor-

mational, Warning, and System program messages are printed and the program continues.

Action messages are printed and the program is suspended. The Monitor expects the operator to take

some action such as "continue the program" (type COntinue), or "kill the program" (type KILL).

Fatal error messages are printed if possible, and the progrom is suspended. The Monitor will not allow
the operator to continue the program, but expects to see either a BEgin, REstart or KILL command., If
a fatal error is a system disk failure and the error message cannot be printed, the central processor

halts. This is the only time that a halt occurs in the Monitor.

If the error has been caused by a stack overflow, the stack pointer is reset before the message is printed.

All Monitor and system program error messages are summarized in Appendix F.

2.11 EXAMPLE PROGRAMS

The following are assembled listings of two simple programs written in and assembled using PAL-T1R.

The programs contain many of the Monitor's programmed requests.

2-75

Example Program #1
: JPROGRAM WHICH TYPES A MESSAGE ON THE TELETPE WHILE
JACCEPTING A MESSAGE PROM THE KEYROARD. PROGRAM REPEATS

anpdnQa R2=%0Q
Qradal Ris%1
200002 Rgwx2
e00end R3=YY
edndnd Rawx4
pe00ps RS=Y5S
gopond Spuxs
an00a7 FCax?
700015 CrRulS
2000812 LFey2
PO HTm1f
aeniny ERORs1Q?

ARBARBY Pl2746'BEGING MOV #_NK1,=(8P) JINIT LNKIi

PR32
Q0004 104008 EMT 8§
Aadpus a12746! MOV #LNK2,=(SP) JINIT LNK2
200324
AAvQAlR 1024026 EMT § :
anvela a127460 MOV #FILy,=(8P) JDPEN FOR OQUTRUT
P0Rr340
aa0p2p @12746! MOV #_NK1,=(SP)
220312
BAUP24 10480158 EMT {8 .
2aVRRS A12748! MOV #FIL2,=(SP) JOPEN FOR INPUT
Pep3ss
‘2adpdp 21746 MOV # NK2,=(SP)
gopdza
200038 104016 EMT 18 .
230049 012746 MOV ®MBG1,=(S5P) ITWRITE THE MESSAGE
noe370
20%p44 Q12746 MOV #NK1,=(8P)
ANndy12
Aaeaby tvaevp? EMT 2
200@%2 ai2700! MOV WL IBie6,RA JSET THE BUFFER POINTER
neaize
Ba0eY%6 neB222 LNOPLt CLR (R@)+ JCLEAR THE ADDRESS AND INCREMENT
2p0p6p Q20271 CMP RO,#wL]IB1+RD, $END OF BUFFER?T
20A3n2
Agdp6a 103774 BLO LOOPY - ING, 60 BACK &8 CONTINUE CLEARING
200a66 912746 MOV MLNKL,=(SP) JYES,CONTINUE
20n312
229n72 10400} EMT 1§
3474 212746 MOV #_IBy,=(SP) IND,READ LNK2,L.1B1%
2201e2
200100 212746 MOV ®|_ NK2,=»(5P)
aeny24
290104 104024 EMT 4
QRO108 012746 MOV ®_NKZ2,=(SP) TWATT
200324

2-76

feR1i2 104001 EMT

Q02114 132767 BITR #EROR,LIAL+I FANY ERRORS?
odela?
Pop0ald
200122 201046 BNE ERRY IYES,60 TO THE ERROR®Y ADDRESS
AnA124 012746} MOV ¥ NKL1,=(SP) IND, oCLOSE LNK{Q
200312
922130 104047 EMT 17
2A0L32 21274861 MOV MLNK2,=(SP) 1,CLOSE LNK2
200324
PRO136 104097 EMT 7
202147 Q19748 MOV MLNKL1,®(8P) J.RLSE LNK!
avedi2
V144 1040n7 EMT 7
Pa0L148 D12748) MOV % NK2,=(SP) I RLSE LNKR2
PAn324
An0152 104807 EMT 7
222154 20ule&? JMP BEGIN
177624
FRR11
ERR21
ERR3Y
220160 104062 EMT 6@ I EXIT ON ANY ERROR
QUV162 wrAnlod | 1B «WORD 87, PMAX BYTE COUNT
RAR164 éna «BYTE 2,2 IFORMATTED ASCIT
PR0165% a9
Ppv168 PAORARA +WORD @ 1ACTUAL RYTE COUNT
napdLa +R.4%80, JRESERVE THE BUFFER SPACE
2248310 22aisd) +WORD ERRY IERROR RETURN ADDRESS
AeR312 A0p2pQ LNKL? +WORD @ JPOINTER
PAB314s ni18Q2? «RADSQ /DSY/ JLOGICAL NAME
IR RY] "1} «BYTE 1,0 JUNIY B
A08347 200
200322 042420 2RADBD /XB/ JIKEYBOARD
200322 2paisa +40RD ERR2 JERROR RETLURN ADDRESS
Po0324 220%PQ LNK21L «WORD @)
290326 B1sA30 2RADSA /DS2/
220337 201 +BYTE 1,2
202334 2na
2a0332 242429 sRADSQ /KB/ IKEYBOARD
BaB3d4 00pdpQ «WORD B 360 Tn FATAL ERROR MESSAGE
ANB3I3E 202 «BYTE 2,0 IOPEN FOR GUTPRUT

2003387 dea
RPU340 22000 FTLi «WORD ©,2,2,9,2 INO NAMF, EXT, Irn, DR PROTECT
P20A342 P0nAQRQ
200344 200009

2-77

Ana346
anu3dn

duaasg
devads
AaR38S
220358

200367

Pn0e362
ALY
2ge368

20037
226372
Q20373
2@0374
200378
[T YA4
230409
Ppvany
Qa4d2
200483
200404
agdads
AN2aRs
020407
2004l
pov4l
a0@412
Andaly
2n04ia
fp2415%
AER41s
aneal?
eaea2a
Apiady
Pn0A22
AN0423
PaRa2a
PpaRs
AQL42S8
Ana427
padadp
PA0AadY
PRlad2
2aLad}
da0ada
PrRads
PRV 4ads
PA04d7
pavadan
aavady
2AN4d2
Pr0a84)3
2AN 444

2adn2A
aeaaaa

200000
¥pd
aen

eQaven

Rapdea

22edp@

Pepdny

2endna

PAp212
2082
opa

papees
215
vi2
211
240
123
12a
125
101
113
240
122
117
125
ie7
110
114
131

‘naa
124
117
hwaa
1314
117
12%
122
naa
114
111
124
124
114
ipd
Q42
122
1.7
131
Qan
CRE
w12

Filas

M§GY3

«WORD
«oBYTE

«WORD

«WORD
+BYTE

s WORD
+BYTE

2 360 To FATAL ERROR
FOPEN FOR INPUT

4,0

¢,%,2,0,8 INO NaME, EXT, ult, 0’ PROTECT

21
2,2

MSGEND=MSGlah

CR,yLF,HT

FMAY AYTE COUNTS
IFNRMATTED ASCII

PACTUAL BYTE COUNT

«A8SCII 7 SPEAK ROUGHLY T YOUR LITTLE Bay /

«B3YTE CR,LF,HT,

2-78

PR A4S
GNdads
aavaay
2ad4a5n
@avas)
Pada%?
Badady
20454
200455
Ppealds
Pavaly
2a0a6p
230246}
PR0asd?
000463
PA2464
YPpo4ss
AR0468
A0 46y
200470
20047y
LLIYYE
2av473
020474
aav4rs
290478
@a0azy
220522
PRA8aY
2208502
@20%023
PA08A4
AN0548%
2AL838
a2us84y
PAo51p
220511
a09512
200513
Apd81a
UL LR -]
Q00546
.11} %/
apas2e
Anus2y
200822
a208523
200524
Q00528
pnesas
ppas2y
220532
2208314
nANS3I2
Anasda
dyesda

241
LT
%40
10t
116
1n4d
aan
iu2
105
ial
124
nen
1102
i1t
119
249
127
119
ins
116
ka0
119
123
B4
123
118
ias
128
132
108
123
Qe
245
012
"1
Qa0
110
128
wan
117
116
114
131
042
ind
117
108
123
nan
111
124
a4n
124
117
waon
1o

+ASCII / AND BEAT HIM WHEN HE SNEEZES /

«BYTE CRyLF,MT

+ASCIT / HE ONLY DOES IT TO ANNOY /

2-79

200538
2008538
Quesd7
gans4p
poos4ay
oo0%42
220543
200844
00545
Ap0548
o547
LT
200594
200552
200883
poosla
oQusss
I LEL]
QaussSy
ga0ssy
I LR
230862
2p0es63
LY
200565
200568
P@05867
220870
2005871
200872
2nes7y
2008574
2an575
ages576
111144
pposanp
oa0sdy
Rp0602

BEGIN
ERRI
FILL
L.F
LNKE
M8G1
RY

R4

116
116
147
131
P40
018
212
211
GaQd
io2
a5
103
101
125
123
{08
840
110
105
R40
113
118
117
ie7
123
g40
111
124
Y]
124
109
fo}
123
in%
123
P40
218
e12
Pee6a3 MSGENDs,
ponbéed

2000014

an0paaR CR
2001680R ERRZ

2e0340R F

* Gpdol2 L
2p@324R LOOPY
Pp0370R PC
1X0000a1
®X200004
" PpPER4R

«BYTE CR,LF,HT

ASCIT / BECAUSE HE KNOWS IT TEASES /

«BYTE CR,LF

«EVEN
+END

» 2000218
00@160R
ILe 200356R
184 9ne162R
aneassR
*%000007

R2 »%ANEA02
RS sXpapaes

2-80

EROR
ERRY
HT
LNKY
MSGEND
R2

R3

(14

s pauL@y
228160R
= DBely
2A0312R
s 2008Q3IR
"YXANANA0
s%A0023
RYXAAANAS

n

Example Program #2

RP0@pdn

0200204
gaopds

0a¢ol?
'T113Y)

anda0
prda22

Apda2s
dadede

aodnd4

anaadé
andpds
Ba0ed2
aadeds

202062
ELLL Y

200p70
Qre@72

00076

2ng122
200194

2nvyle
pnR112

peadea
20208
CLELLY
200045
p0p012
oendyl
peEvdnd
2000p2
peainy
340009
peela7
712746
Pop4LS
104008
2127461
p0R430
104006

0127461

200346
1040068
p19746)
Rap372
1040086
peses?
pend1a
v12767
Penla4
I ERYY]
posae?
2en3Ls
pancsy
PR3 4
2127481
pop24s
212746
220348
104002
212746
A0n3a8
1040014
p12746
pandss
2127461
aendr2
{04004
n1azas
aead72
12490}
1327687
gaeio?
pee24t

t PROGRAM TD DUPLICATE A PAPER TAPE
1 USING TRANLEVEL REQUESTS

!

Row%0
SPnx6
PEexY
CRwiS
LFu1g
HT®ly

“Rowad T

WRmQ2
Gmia?
EoDwmaQQR0Q
ERORw10?

BEGINI

EMT
Moy

EMT
MoV

EMT
MoV

EMT

STARTE CLR

MOV

#LNKL = (SP)

6
HLNK2,=(5P)

6

#LNK3, = (SP)

6

6
FLAGY

MOV #10Q2.,BLK1+4 '

C) TRANBLOCK FUNCTION CONE FOR ,READ

pTRANBLOCK FUNCTION CODE FOR ,WRITE
yASCII G

JTRANBLOCK FUNCTION/STATUSSEND
PoINIT LNk}

PJINIT LNK2

PINIT LNKD

FJINIT LNK4

~1ZERO END FLAG
INITIALIZE BUFFER SIZE

CLR BUF1+86 JINITIALTIZE INPUT BUFFER
CLR BUF1+tQ CJINITIALIZE INPUT BUFFER
MOV #M8GL,w(SP) | ,WRITE LNK3,M8G1

MOV MLNK3, =(8P) !

EMT 2

MOV #LNK3,=(SP) JLWATT LNK3

EMT ‘

MOV MBUF1,=(8P)) READ |LNK4,BUF)

MOV # NK4,=(5P)

EMT 4

MOV #LNK4,=(SP) 1 WaIT LNK4

EMT 1

BITR HEROR,RUF1+3

2-81

Pa0120 201059 BNE ERRS

208122 122767 CMPR #G,BUF1+*8 167
naaip?
eep234
en@idp 2a1337 BNE START IND
208132 112767 LnOPREI MQVB #RD,BLK1+6E JYES,SET UP READ
genadp4s
2002582
Aana14a a12746! MOV #BLK1,=(SP) T TRAN [NK1,BLKY
VLT Y
Aa0y144 212746 MOV #|NK1,=(5P)
ABA4LS
200139 104010 EMT 12
200152 2127 46! MOV RNKY,=(SP) 1,WATT LNK)Y
RN]
BR41596 {0avad EMT 1
A0R163 232787 BIT #EQD,BLK1+6 JTEST FUNCTION FOR EDD
p40Un0
20222
Pnd168 p21406 BEQ LOOPwW
Pad17a 1687687 ENOMI SUB BLK1+12,BLK1*4 JRESET WORDCOUNT To FINAL
prn218
ann219d
! BUFFER'S SIZE
Pa0178 212787 MOV #{,FLAG! 1SET EQDwFLAG
pendal
200040
220244 112767 L0OPW) MOVB #wR,BLK1+8 15€ET UP WRITE
P02¢n2
200176
20212 2127461 MOV MBLKY,=(SP) 1. TRAN |LNK2,BL K1
p2pdn2
330218 212748 MOV MLNK2,=(3P)
20M432
Bn0222 104210 EMT 12
0002248 212746 MOV M| _NK2,=(SP) PoWAIT LNK2
22p432
000232 1@40p1 EMT 1
Q02232 2087687 TST FLAG) JEND OF DATA?
POaBnS
200236 201274 BNE START JYES,START QOVER
Qev240 A2n734 BR LOOPR INO,» GET MORE
ERRY1
ERR2
ERR3L
ERNA4N
ERRS51
ERRAE
ErRR71
200242 10406802 EMT &0 JEXIT ON ANY ERROR
PeR244 203022 FLAGLL JWORD 2 t11is»EQN RECEIVED QN READ
200248 PPVB&7 M8GY1 wWOROD 55,
pav2de dad «BYTE 2,0
200251 202 .
2002%2 e0@d67 «WORD 55,
200254 218 eBYTE CR,LF,HT

2-82

Pra258
Rp0R%s
200257
Ra026p
200261
200262
200263
202684
200268
ap0268
aeez67
gee27a
1A
200272
200273
Pu0274
2oR275%
220276
one277
209322
Ap03dy
00322
pan3u3
00304
Y hY 1]
d00306
LAY}
gavlle
AeR34t
vpedi2
2ne3ts
pav3la
oR@31S
YRR]
2p83Ly
0320
Panday
p26322
IR R
Apd32a
T T MY $]
o00e326
Q00327
200339
2003314
Pana3d2
2pa333
enR3d4
yae3ds
YT RERY
@20337
2n@342
da034y
PeR342

000344 pRAN24RQ!

a12
a1
114
117
it
104
YY)
124
191
122
108
040
111
116
124
117
Py
122
108
101
104
in8
122
w18
012
011
122
12§
123
110
240
240
249
YY)
17
084
van
103
122
040
049
240
127
119
123
118
04y
122
108
101
104
131
@215
a2
PAn3ad

oASCII /LOAD TAPE INTO READER/

+BYTE CR,LF,HT

+ASCII /PUSH

+BYTE CR,LF

«EVEN
«WORD ERRJ

2-83

G, CR

WHEN READY/

Bn034s
on03sa
Pe0@352
2p2383
2aR354
02358
220360
200361
000362

LLIEY S
2e0372
200374
2eRy’s

2oe377.

20402
200402
B2044
0428
Pad4lo
oo04l2
230414
2aRals
202420
200422
Pp0423
200424
Qo425
200432
200432
222434
200435
220436

BEGIN
BUre
EOD
ERR2
ERRS
FLAGY

LNK3
LOOPW
RD
START

P00003 LNK3I
p168027

2ol

ope
042420
poponde BUFyl

2a0

eoQ
pdndnd
gendya
2003790
peaga?
PApdma NK4&L
pL18R27

2p1

2na
P42420
Pen022 BLKIY
Q20440
200144
peadee
aveQ0d
gon242!
P02 LNKi
016031

"1 }}

200
263320
oRQR42!
P20000 LNK21
r1s232

Bet

20
063200
pop6od BUF21
neadnl

Pp0n@er
Pol440R
240000

0pl242R
2p0242R
200244R

' @odet2

PPDI46R
PP2204R
epvadd

2p@pl3oR

«WORD

«RADS2 /DSY/

BYTE

1,0

«RADSE /KB/

+ WORD
«BYTE

+ WORD
eB,yd
+EVEN
« WORD

4
e,o

4 - R -

ERR4
2

«+RADBO /DS1/

«BYTE

1.9

+RADSO /KB/

+WORD
o WORD
«WORD
+WORD
+WORD
+ WORD
«+WORD
+RADS
«BYTE

0

BUF2
100,

2

&
ERRY

e
@ /D8Y/
1,0

+RADSO /PR/

o« WORD
+WORD

ERR2
2

+RAD3Q /DS4/

+BYTE

«RADSQ /PR/

1,0

.'."103.

+END

BLx1
CR
EROR

ERRY

ERRS
G
LNK}
LNK&
M8G1
R2
wR

P2R4B2R

s poaals

s 204107

Qea24d2R

A0R242R

s 200107
P2A416R
ana37 2R
POAR4ER

“aXodande

s BAQnd2

2-84

BUF1 ARRAISER
ENDM Pr@17aR
ERRY PNR242R
ERR4 ~ PAB2deR
ERR7 PAA242R
T = QavALy
LNK2 PAG4INR
LOOPR 2AR132R
PC R{PABAAY
SP ' sy@n2pos
' " PAREAAR

CHAPTER 3
OPERATOR COMMANDS

3.1 THE OPERATOR KEYBOARD INTERFACE

Through the operator keyboard, the user can communicate with

e the Monitor
) a program the user wrote to run under the Monitor
° a DOS system program (Assembler, PIP, Editor, etc.)

Rules which are common to all users of the operator keyboard under DOS are described in Section 3.2,

In communicating with the Monitor, the keyboard is used as a control device to allocate system re-
sources, move programs info core, start and stop programs, and exchange information with the system.
Commands which the user can type are described in detail in Section 3.3 and summarized in Ap-

pendix D.

For use in communicating with a system program or a user's program, the operator keyboard functions
as a normal input device; the data from the keyboard may be transferred to a buffer in the program, or
it may be preprocessed by a special routine called the Command String Interpreter (CSI), described in
Section 3.4,

When the system requests input from the keyboard, a single character is printed on the teleprinter:

Character Meaning

$ The system is idle and will remain idle awaiting an operator
command. A command can be entered.

The Monitor has acknowledged a CTRL/C typed by the oper-
ator and is in listening mode, ready to accept a command
from the operator.

A system program or user's program requests an operator reply
through the CSI.

A system program requests an input message directly (i.e.,
not through CSI).

3-1

3.2 COMMUNICATING THROUGH THE KEYBOARD

Since the Monitor and any program operating under it must share the keyboard, the user must specify

whether a given keyboard input is intended for the Monitor or for the operating program:

° All characters following a CTRL/C (typed by holding down the CTRL key while
typing the C key) or following a § output by the Monitor through the next
RETURN are interpreted as Monitor commands and are passed to the Monitor for

execution.

° All other characters are assumed to be for the operating program, provided one
is currently in core and the keyboard device has been associated with one of
its datasets. In this case, the characters will be buffered until required by the
program. The characters will be ignored if no program has been loaded or if it
is not using the keyboard as one of its data media.

Certain keys on the keyboard have special functions. These are listed in Table 3-1.

Table 3-1
Special Keyboard Functions

Keyboard
Key

Function

RETURN

RUBOUT

CTRL/C

Pressing RETURN terminates an operator command to the Mon-
itor or a line of input to a system or user program. The
RETURN key produces a carriage return and LINE FEED on the

teleprinter.

This key permits the correction of typing errors. Pressing
RUBOUT once causes the last character typed to be deleted.
RUBOUT does not delete characters past the previous line
terminator. | If the last remaining character has already been
deleted, a RUBOUT will be ignored.

The Monitor prints the deleted characters delimited by back-
slashes, For example, if you were typing .APPEND and
typed .APPAM instead, the error could be corrected by typ-
ing two RUBOUTS and then the correct letters. The typeout
would be:

APPAM\MA\END

Notice that the deleted characters are shown in reverse or-
der, i.e., in the order in which they are deleted.

When the CTRL and C keys are pressed, the Monitor is alerted
to accept a command from the keyboard. CTRL/C is echoed
as t C RETURN LINE FEED period.

! line terminator is a LINE FEED, FORM FEED, or VERTICAL TAB

(continued on next page)

Table 3-1 (Cont)
Special Keyboard Functions

Keﬁboard - Function

ey

CTRL/C The operator can then type in a command to the Monitor;
(Cont) while the command is being typed, the interrupted program

continues running normally except that any output to the
teleprinter is interrupted until the command is terminated by

the RETURN key.

CTRL/C will interrupt teleprinter output or keyboard input in
a user program. However, Monitor action on a CTRL/C is not
taken until any current Monitor command is completed be-
cause the keyboard interrupt is tured "off". Except for
DUmp and MOdify, however, it appears to the user that ac-
tion on a CTRL/C is immediate,

CTRL/C puts the Monitor in listening mode only. If it is de-
sired to stop the function of the operating program, the STop
command (Section 3.3.4.1) should be used.

If a second CTRL/C is typed before the RETURN terminating
a command, the input so far will be erased, a fresh 1 C
RETURN LINE-FEED period will be printed and the Monitor
will await a new command.

CTRLU CTRLAU is used if the user has completely mistyped the cur-
rent line and wishes to start it over (CTRL/U deletes the en-

tire line back to the last line terminator). When given in a
command, it will act as a second CTRL/C and echo as tU
RETURN LINE FEED period. CTRL/U given within a line of
program input will echo as tU RETURN LINE FEED, CTRL/U
may also be used to stop the printing of the current line of
program output provided that no other input characters are
still awaiting processing by the program. In this usage, it
will not be echoed.

; ; causes all characters up to the line terminator within a
command string to be treated as comments. It effectively puts
the keyboard off-line--all characters following are echoed,
but no Monitor action is taken. If a ; appears on a line and
no t C has been issued, if is passed to the user program's buf-
fer like any other character.

3.3 MONITOR COMMANDS

A command to the Monitor consists of two parts: a command name and possibly one or more command
arguments. A command name is a string of two or more characters; all characters after the first two
and up fo a delimiter are ignored. The command formats are given in this section. The following con-

ventions apply to examples in this chapter.

° Brackets [] are used to enclose elements of the command which are optional,
i.e., they may or may not appear depending on the desired Monitor reaction.

™ Braces { } are used to indicate that a choice must be made from the enclosed
information.

. A comma , indicates that either one comma and/or one space must appear in
that position.

. device name refers to a physical device name, as listed in Appendix A.

° dataset specifier may be represented by any portion of the expression:

where

. logical name

[NKBLK + 2.

dev:filenam.ext,[uic]

dev: is a physical device name (as listed in Ap-
pendix A) and is followed by a colon.

filenam is afile name of up to 6 characters (as de-
scribed on Page 2-17).

.ext is a period followed by a filename exten-
sion of up to 3 characters.

vic is the user's identification code in the form:

[Group No., User No.]
(the uic must be typed within brackets)

is the name given to the dataset by the user in link block word

NOTE

To distinguish in the examples between the echo
from an operator command on the teleprinter and
the Monitor's solicited response, the Monitor's
response will be underlined.

RETURN is represented by <CR> and is echoed
by the Monitor as RETURN and LINE FEED.

If a command cannot be executed satisfactorily, an appropriate message will be printed at the tele-

printer and the command will
Message

ILL CMD!
INV CMD!

SYN ERR!
ILL DEVI
NO FILE!
ILL ADRI
NO CORE!

be ignored. The message will be one of the following.
Meaning

Command requested does not exist

Command cannot be accepted at this time (e.g.,
KILL with no program to kill)

Syntax of command is faulty

The device specified is illegal

File specified does not exist

Address is illegal (not on word-bound or in core)

Insufficient core capacity to execute command

(SAVE)

3-4

3.3.1 Commands to Allocate System Resources

3.3.1.1 The ASsign Command

AS [SIGN] [,dataset specifier, logical name]

The ASsign command assigns a physical device (and, when the device is file structured, afile name) to
the dataset specified by "logical name". The ASsign command overrides any assignment made in the
dataset's Link Block. If no file name is specified in the "dataset specifier”, the file name in the
associated Filename Block is used. If no device name is specified, the device given in the Link

Block stands (no default is assumed). Any file name specified for a nonfile- structured device is

ignored.

Note that a device is assigned to a dataset, and that reassigning it for one dataset does not reassign it

for all datasets.

he ASsign command can be given at any time the Monitor is in core:

. If ASsign is given before a program is loaded, the device assignment will remain
in effect until another ASsign is given with no arguments, or until the Monitor
itself is reloaded. ASsign given at this time enables the user to specify ‘the same
assignment for a set of programs to be run,

. If ASsign is given after a program is loaded, (i.e., after a GEt command), the
assignment will remain in effect as long as the program is in core, or until the
user performs a reassignment. As soon as the program disappears (by an
.EXIT request or a KIll command), the assignment is released.

° ASsign may also be given after a program is running. For example, as recovery
from a

A003 message (Device not available)
the user would do an ASsign followed by COnfinue. The assignment will remain

in effect as long as the program is in core, until the programmer reassigns, or re-
starts the program with a BEgin command.

Doing an ASsign at this time is provided for such emergency situations, but is
not recommended as standard practice because it causes an extra buffer to be al-
located from free core and it will only be effective if the program has not al-
ready INITed the dataset to some other device.

For example, to assign DECtape file FREQ.BIN to dataset FRQ:

1c
. AS,DT:FREQ.BIN,FRQ< CR>

3-5

3.3.2 Commands to Manipulate Core Images

3.3.2.1 The RUn Command

RUINI, dataset specifier

The RUn command loads into core the specified program from the specified device and starts its execu-
tion at the normal start address. The RUn command is equivalent to a GEt command followed by a
BEgin command. RUn is valid only when there is no program already loaded.
° If a READ error occurs during the loading of the program, a fatal error message
F021 xxxxxx is printed.

° If RUn calls a program which is not in the proper form (i.e., is not in formatted
binary or does not have a start address), it produces a fatal error and the follow-
ing message is printed: :

FO22 xxxxxx
° 1f the program to be loaded is too large for available core, the fatal error mes-

sage FO23 (program size) is printed. Recovery from all these errors will be by

way of a KIIl command.
The user need not be currently logged in to use programs stored in the system area (UIC 1,1)--the RUN
command processor will automatically search this area if the requested program does not appear in the
user's own file afea. If, however, the UIC is explicitly stated in the command string, only the rele-
vant file area will be searched. The search order is: 1) user's area for file name as given; 2) UIC
[1,11] for file as given; 3) user's area for file with extension LDA if no extension is given; and 4) UIC
[1,1] for file .LDA. (Exact specification will, of course, reduce execution time particularly for de-

vices such as DECtape for which search time can be lengthy.)

3.3.2.2 The GEt Command

GE[T] , dataset specifier

The GEt command loads the specified dataset from the specified device. GEt is valid only when there
is no dataset already loaded. Emor reporting will be the same as for RUn. The user should use a BEgin

or ODt command to commence execution.

3.3.2.3 The DUmp Command

‘l \“
DU[MP], LP: [o :][,{5’°'*0°dd'}[,end addr]:l

This command prints on the Line Printer an absolute copy of the contents of the specified core area.

The core image is not altered. O specifies a dump from core. An O is.assumed on default, but
the commas are required. O is assumed if no START ADDRESS is specified, and the highest word
in memory is assumed if no END ADDRESS is specified. DUmp is valid at any time; if given
while a program is running, it will merely suspend operations for the time required to effect

the dump.

a

3.3.2.4 The SAve Command

SALVE] [, dataset specifier]

SAve writes the program in core onto the device in loader format. The core image is not altered. SAve
is valid only when a program is in core but not running, i.e., immediately after loading with a GET

command or after being halted either by a STOP command or fatal error.

If no dataset specifier is given, the SAVE processor will automatically set up a file called SAVE.LDA
on the system disk after it has deleted any current file of the same name. If the user wishes to retain
the current file, he must first rename it using PIP. If the datoset specifier is given, the file named
must not already exist or the command will be rejected. System disk is assumed by default if the data-

set specifier contains only a filename.

Normally, it is expected that the user will only wish to save his program area. If this is the case, the
range need not be given and the new file will begin from the program's low limit and extend to the top
of core. If any other area is to be saved, the user should include the following at the end of the com~

mand:

/RA:low:high
/RA is the range switch, and low and high define the limits required (each being valid octal
word-bound addresses) Thé saved image will be preceded by the same communication informa-
tion as that for the original program loaded.
The SAVE processor will endeavor to get an extra 256-word buffer in order to satisfy the command. If
this request cannot be granted because of insufficient free core, the command will be rejected. The

user is therefore advised to use this facility only after he has released any datasets currently established .

Once the SAVE command has been syntactically verified, any errors will be handled by the SAVE proc~-
essor, which will print a relevant message and recall Monitor listening mode:
DEVICE FULL End of output medium reached

FILE ERROR XXX File structures error as indicated by XXX = File Status
Byte (see Section 2.8.6.2)

3.3.3 Commands to Start a Program

3.3.3.1 The BEgin Command

BE[GIN] [,address]

The BEgin command starts the execution of a program at the stated address. 1f no address is specified,
the normal start address will be used. This command is valid only if a program is already in core.
BEgin is used after a GEt, a STop, or following a fatal error condition. The GEt command followed by
a BEgin command is equivalent to a RUn command. If given after a program has been started, a BEgin

will clear all core allocations to buffers, device drivers, and assignments made dynamically, and the

3-7

stack will be cleared before control is passed back to the program. If any files are under creation at

this time, they will be deleted.

To start a program at its normal start address, type:
BE <CR>
To start a program at absolute location 3446, type:

BE,3446 <CR>

3.3.3.2 The COntinue Command

COINTINUE]

This command is used after a WAt or a recoverable error condition (operator action message) to resume
program operation af the point where if was interrupted. It is valid only if a program is already in

core.

3.3.3.3 The REstart Command

RELSTART] [, address]

This command restarts the program ot the given address. If ADDRESS is not specified, the address set
by the .RESTART programmed request (Section 2.8.2.2) is assumed. If neither address is specified,

the command is rejected.

REstart is valid only if a program is already in core. Before the resumption of operations, the stack will
be cleared, any current I/O will be stopped, and all internal busy states will be removed. However,

buffers and device drivers set up for I/O operations will remain linked to the program for further use.

3.3.4 Commands to Stop a Program

3.3.4.1 The STop Command

STLOP]

This is an emergency command to stop the program and kill any I/O in progress (by doing a hardware
reset). The program may be resumed with either BEgin or REstart. STop is valid only if a program is in

core.

3.3.4.2 The WAit Command

WAILIT]

This command suspends the current program and finishes any 1/O in progress. Program can be resumed

with either COntinue or REstart. WAt is valid only if a program is in core,

3-8

il

3.3.4.3 The K1l Command

KI[LL]

This command stops the execution of the current program after closing all open files and completing
any outstanding 1/0, and removes the program from core by returning control to the Monitor. It is
valid only when a program is in core. To resume operations, the user must reload the program or load

another by RUn or GEt.

3.3.5 Commands to Exchange Information with the System

3.3.5.1 The DAte Command

DALTE] [,datel

This command sets the Monitor's date-word to the date specified in date, or if date is not specified, it
prints the date previously entered, DAte is valid any time, (It should be noted that the date-word
will not be updated internally; the operator must reset it daily if such information is needed.) Day is
specified and output in the following format: o

dd-mmm-yy

where dd = day, mmm = month, and yy = year. If the user input is an invalid date, e.g., 37-MAR-K4,
00-XXX=yy will be printed.

3.3.5.2 The Tlme Command

TIL ME] [, timel

Sets the time-of-day entry in the Monitor to the time if time is specified; otherwise it prints the pre-
sent content of the time-of-day. The format of time is:
hh:mm:ss
where hh = hours
mm = minutes
ss = seconds
The TIme command is valid at any time.
NOTE

The clock service routine does not automatically ze