
~ r

I­
l

disk operating system monitor
programmers handbook

'.a __________________ _

•

•

DEC-ll-MWDC-D

PDP-11
Disk Operating System Monitor

Programmer's Handbook

SOFTWARE SUPPORT CATEGORY

The software described in this document is supported by
DEC under Category I, as defined on page iv of this
document.

For additional copies, order No. DEC-11-MWDC-D from Direct Mail

Bldg. 1-1, Digital Equipment Corporation, Maynard, Mass. . 01754

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

First Printing, May 1971
Revised, August 1971
Revised, February 1972

Your attention is invited to the last two pages of
this document. The "How to Obtain Software
Information" page tells you how to keep up-to-date
with DEC's software. The "Reader's Comments"
page, when fi lied in and mailed, is benefi cia I to
both you and DEC; a II comments received are
acknowledged and are considered when document­
ing subsequent documents.

Copyright © 1971, 1972 by Digital Equipment Corporation

This document is for information purposes and is
subject to change without notice

Associated Documents:

PDP-II FORTRAN IV
Programmer's Manual, D EC-II- KFDA-D

PDP-II PAL-IIR Assembler,
Programmer's Manual, D EC-II-ASDC-D

PDP-II Edit-II Text Editor,
Programmer's Manual, DEC-II-EEDA-D

PDP-II ODT-IIR Debugging Program,
Programmers Manual, DEC-II-OODA-D

PDP-II Link-II Linker and Libr-II Librarian
Programmer's Manual, D EC-II-ZLD B-D

PDP-II PIP, File Utility Package,
Programmer's Manual, D EC-II-PID B-D

The following are trademarks of
Digital Equipment Corporation.

DEC
FLIP CHIP
DIGITAL (logo)
UNIBUS

ii

PDP
FOCAL
COMPUTER LAB
OMNIBUS

•

•

PREFACE

This document contains a comprehensive description of the PDP-11 Disk Operating System Monitor.

The document is written for the PDP-11 programmer -- it assumes fami liarity with the contents of the

PDP-ll Handbook 1971 and the PAL-llR Assembler (see document number DEC-l1-ASDB-D). Previous

experience with monitor or executive systems would be helpful.

The document is separated into three chapters: Chapter 1 is an introduction to the DOS Monitor I and

provides general information about the disk operating system. Chapter 2 describes the programmed

requests that are available to the programmer through the Monitor. This chapter also explains the

concepts and operation of each programmed request. Chapter 3 describes the keyboard commands avail­

able to the system operator through the Monitor; concepts and operation of each command are also

explained. The entire document is summarized in the appendh:es. Appendices D (Monitor Commands)

and E (Monitor PrOgrammed Requests) should prove to be invaluable to the DOS user.

In addition to the DOS Monitor I the PDP-11 Disk Operating System software includes:

FORTRAN IV
PAL-llR Assembler
Edit-11 Text Editor
ODT-11R Debugging Program
PIP I File Utility Package
Link-11 Linker
Libr-11 Librarian

iii

CONTENTS (Cont) •
Page

3.3.4 Commands to Stop a Program 3-8

3.3.4.1 The STop Command 3-8

3.3.4.2 The WAit Command 3-8

3.3.4.3 The KIll Command 3-9

3.3.5 Commands to Exchange Information with the System 3-9

3.3.5.1 The DAte Command 3-9

3.3.5.2 The TIme Command 3-9

3.3.5.3 The LOg i n Command 3-9

3.3.5.4 The MOdify Command 3-10

3.3.5.5 The FInish Command 3-10

3.3.6 Miscellaneous Commands 3-11

3.3.6.1 The ECho Command 3-11

3.3.6.2 The PRint Command 3-11

3.3.6.3 The ENd Command 3-11

3.3.6.4 The ODt Command 3-11

3.4 The Command String Interpreter (CSI) 3-12 •
3.4.1 CSI Command Format 3-12

3.4.2 CSI Command Example 3-15

APPENDICES

APPENDIX A PHYSICAL DEVICE NAMES A-l

APPENDIX B EMT CODES B-1

APPENDIX C SUBSIDIARY ROUTINE ASSIGNMENTS C-l

APPENDIX 0 SUMMARY OF MONITOR COMMANDS 0-1

APPENDIX E SUMMARY OF MONITOR PROGRAMMED REQUESTS E-l

APPENDIX F SUMMARY OF DOS ERROR MESSAGES

F. 1 Action Messages. F-l
F.2 Informational Messages F-2

F.3 Warning Messages F-2

F.4 Fata I Messages F-4 • F.5 System Program Messages F-8

viii

APPENDICES (Cont)

Page

APPENDIX G 1-0 DRIVERS WITHIN THE DISK OPERATING SYSTEM

G .1 Driver Structure G-1

G.2 Iv\onitor Calling G-2

G.3 Driver Routines G-4

G .3.1 Transfer G-4

G.3.2 Interrupt Servicing G-4

G.3.3 OPEN G-5

G.3.4 CLOSE G-6

G.3.5 SPECIAL G-6

G.4 Drivers for Terminals G-6

APPENDIX H USING DEVICE DRIVERS OUTSIDE DOS

H.1 Introduction H-1

H.2 Dri ver Format H-1

H.2.1 Structure H-1

H.2.1.1 Driver Interface Table H-2

H.2.1.2 Setup Routines H-2

H.2.1.3 Interrupt Servicing H-2

H.2.1.4 Error Handling H-2

H.2.2 Interface to the Driver H-3

H.2.2.1 Contro I Interface H-3

H.2.2.2 Interrupt Interface H-3

H.3 Stand-Alone Usage H-3

H.3.1 Driver Assembled with Program H-3

H.3.1.1 Setting Interrupt Vector H-3

H.3.1.2 Parameter Table for Driver Co" H-4

H.3.1.3 Ca" ing the Driver H-5

H.3.1.4 User Registers H-5

H.3.1.5 Returns From Driver H-6

H.3.1.6 Irrecoverable Errors H-7

H.3.1.7 General Comment H-8

H.3.2 Drivers Assembled Separately H-8

H.3.3 Device-Independent Usage H-l0

ix

APPENDICES (Cont)

APPENDIX I GLOSSARY AND ABBREVIA nONS

INDEX

Figure No.

1-1

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-11

2-12

2-13

Table No.

1-1

1-2

2-1

2-2

2-3

2-4

3-1

3-2

ILLUSTRA TIONS

Title

The Iv\onitor Core Map

• READ/ • W RITE Input/Output Transfers

.BLOCK Input/Output Transfers

• TRAN Input/Output Transfers

Core Map of Resident Monitor and Full Iv\onitor

The Link Block

The Filename Block

Fi I e Protection Codes

Line Buffer Header

Status Format

The Iv\ode Byte

The BLOCK Block

The TRAN Block

The Special Functions Block

TABLES

Title

PDP-ll DOS Monitor Features and Benefits

The DOS System Programs

Summary of Monitor Requests

Transfer Levels for Types of Datasets

Art No.

Transfer Requests Which May Follow Open Requests

Filename Block Error Conditions

Special Keyboard Functions

• CSI Command String Syntax Rules

x

Page

1-1

X-1

Page

1-4

2-5

2-7

2-9

2-46

2-61

2-63

2-66

2-66

2-67

2-69

2-71

2-72

2-73

Page

1-2

1-3

2-2

2-8

2-17

2-63

3-2

3-14

"

,.
I J

1 J.\

, .\

1.1 THE DOS MONITOR

CHAPTER 1

INTRODUCTION

The PDP-11 Disk Operating System (DOS) Monitor supports the PDP-11 user throughout the development

. \; : and execution of his program by:

• providing convenient access to system programs and utilities such as the
FORTRAN, the DOS assembler, debugger, editor, file utility package,
etc .;

• performing input/output transfers on three different levels, ranging from
direct access of device drivers to full formatting capabilities;

• handling secondary storage management with two different kinds of file
structure.

;System programs and utilities can be called into core from disk or DECtape with Monitor commands

issued from the keyboard. This feature eliminates the need to manipulate numerous paper tapes, and

,provides the user with an efficient and convenient programming tool.

All input/output (I/O) transfers are handled by the Monitor in any of three user-selected levels called

,~EAD/WRITE, BLOCK, and TRAN. READ/WRITE is a file-structured, formatted level of I/O in which

the' user can specify anyone of nine modes. BLOCK is a file-structured, random access I/O level

with no formatting. TRAN does basic I/O operations at the device driver level. All I/O is concurrent

a'1d interrupt driven.

Thefile system on secondary storage uses two types of file structures: linked and contiguous. Linked

files can grow serially and have no logical limit on their size. Contiguous files must have their length

sp.ecified but can be randomly accessed by BLOCK level I/O requests. Files can be deleted or created

at any time, and are referred to by name. Table 1-1 summarizes the features and benefits of the DOS

, Monitor.

The user communicates with the Monitor in two ways: through programmed instructions called requests,

and through keyboard instructions called commands.

1-1

Programmed requests are macros which are assembled into the user's program and through which the

user specifies the operation to be performed. Some programmed requests are used to access input/output

transfer facilities, and to specify where the data is, where it is going, and what format it is in. In

these cases the Monitor wi II take care of bringing drivers in from disk, performing the data transfer,

and notifying the user of the status of the transfer. Other requests access Monitor facilities to query

system variables such as time of day, date, and system status, and to specify special functions for

devices.

Keyboard commands enable the operator to load and run programs, load or dump data to or from core,

start or restart programs at specific addresses, modify the contents of memory registers, and retrieve

system information such as time of day, date, and system status.

Programs supported by DOS, and hence accessible through the Monitor, are listed in Table 1-2.

Table 1-1
PDP-l1 DOS Monitor Features and Benefits

Feature

Files are catalogued in multilevel
file directories.

Fi les are referred to by name.

Fi les can grow serially.

Fi les can be as large as the storage
devi ce can accept.

File storage is allocated dynamically
from any bulk-storage device.

Monitor subroutines can be swapped
into core when needed. Routines
need not permanently tie up an area
of core.

Monitor subroutines can be made
permanently core resident either
before or during run time.

The Monitor is divided into logical
modules.

1-2

Benefits to User

No file naming confl icts among users.

Files do not have to be remembered
by number.

Fi les can be created even when their
final size is not known.

No logical limit on the size of files.

Fi les can be deleted or created even at
run time for greater storage efficiency.

Much more efficient use of core space
for user programs. Free core expands
and contracts as Monitor subroutines are
used. Space can be reclaimed for user
programs. The user can determine which
Monitor subroutines will be in core, and
when.

The user can tailor the Monitor for his
particular needs.

The user can easily and efficiently use
the logical pieces of the Monitor for his
own needs. He can also easily add his
own specia I ized drivers to the system by
following a simple set of rules, and still
use the rest of the Monitor with these drivers.

•

Table 1-1 (Cont)
PDP-11 DOS Monitor Features and Benefits

Feature

All I/O is interrupt driven.

Device independence

Devices are assigned to one or more
datasets.

Benefits to User

Such specialized equipmentas communi­
cations modems and A/D converters which
must be interrupt driven can be run under
the Monitor. Several I/O calls can be
handled concurrently.

Specific devices can be specified by the
user in his program, and any device can
be substituted by him when his program is
being run.

The user may reassign a device which is
used for one purpose (dataset) without
changing its assignment for all other
purposes (datasets).

Table 1-2
The DO S System Programs

System Program

FORTRAN IV

PAL-l1 R Assembler

Edit-l1 Text Editor

ODT -11R Debugging Program

PIP, Fi Ie Uti I ity Package

Link-ll Linker and
Libr-ll librarian

1.2 MONITOR CORE ORGANIZATION

Core memory is divided into:

Document Number

DEC-ll-KFDA-D

DEC-ll-ASDB-D

DEC-ll-EEDA-D

DEC-ll-OODA-D

DEC-ll-PIDA-D

DEC-l1-ZLDA-D

• a user area where user programs are located;

• the stack where parameters are'stored temporarily during the
transfer of control between routi nes;

• the free core or buffer area which is divided into 16-word
blocks assigned by the Monitor for temporary tables, for
device drivers called in from disk, and for data-buffering
between devices and user programs;

• the resident Monitor itself which includes all permanently
resident routines and tables;

• the interrupt vectors.

1-3

Figure 1-1 is a map of core as organized by the Monitor.

X X 7776

USER AREA

STACK

FREE CORE

{Buffer Area}

RESIDENT
MONITOR

400

INTERRUPT
VECTORS

000000

Figure 1-1 The Monitor Core Map

1.3 HARDWARE CONFIGURATIONS

Two possible minimum configurations required to run the PDP-11 DOS Monitor are:

Configuration A: PDP-11/20 with 8K of core
ASR-33 Teletype terminal
RC 11 disk controller
RS64, 64K fixed head disk drive
TC 11 DECtape controller
TU56 dual DECtape transport
BM792-YB Bootstrap Loader

1-4

•

•

Configuration B: PDP-11/20 with 8K of core
KSR-33 Teletype
RF 11 disk control I er
RS 11, 256K fixed head disk drive
PC 11 high-speed paper tape reader/punch
BM792-YB Bootstrap Loader

(The RF l1/RS 11 Disk in this configuration may be replaced by an RK 11 disk controller with 1 RK02 or

RK03 Disk Cartridge, provided that 12K of core is available.)

1.4 MONITOR MESSAGES

Monitor messages are stored on the disk. When a message-producing situation (such as a system error)

occurs, Monitor calls the correct message into core and prints it on the teleprinter.

There are five types of Monitor messages:

• Informational

• Action required by the operator

• Warning to the operator

• Fatal

• System Program error

The type of message is identified by the letters I, A, Wand F respectively. If the system disk should

fail and the error message cannot be brought into core, the Monitor halts.

Monitor messages are described in detail in Section 2.10.

1.5 STARTING THE MONITOR

The monitor is called into core from disk by performing the following procedure:

1. Set the Switch Register to 173100 (the address of the ROM Bootstrap Loader)

2. Depress LOAD ADDRESS

3. Set the Switch Register to the address of the word count register for the disk on
which the Monitor resides (177462 for RF/RS11, 177450 for RC11/RS64, 177406
for RK11/RK02-03)

4. Depress START.

The monitor will load into core and identify itself by printing:

MONITOR Vxxxx

on the teleprinter, where Vxxxx represents the version number of the Monitor being used. The Monitor

is now ready to accept an operator command (see Chapter 3).

1-5

1.6 A GUIDE TO THIS HANDBOOK

1.6.1 Terminology

The reader should understand the following terms as they apply to the PDP-ll Disk Operating System.

An expanded glossary, with abbreviations, can be found in Appendix I.

A dataset is a logical collection of data which is treated as an entity by a program. For example:

• All or part of a file on a file-structured device.

• A paper tape ina paper tape reader.

• Three physically different files which together constitute the
source input to the assembler.

A device is any PDP-11 peripheral supported by the Monitor.

A device controller may support one or more device units.

A file is a physical collection of data which resides on a directory device (e.g., disk or DECtape)

and is referenced by its name. A file consists of one or more blocks on a directory device.

A block is a group of adjacent words of a specified size on a device; it is the smallest addressable

segment of the device. If the blocks comprising a file are adjacent to each other, the file is said to

be contiguous; if the blocks of the file are not adjacent, the file is said to be linked.

A line is a string of ASCII* characters which is terminated by a LINE FEED I FORM FEED or VERTICAL

TAB.

File structure refers to the manner in which files are organized. Specifically I each of a user's files

is given a unique name by the user. Each user on a file-structured device is assigned a User File

Directory (UFO) in which each of his files is listed by name and location. Each UFO is then listed in

a Master File Directory (MFD) which is unique to a specific device unit.

Bulk storage devices containing directories are called directory devices or file-structured devices.

Devices such as paper tape equipment and the teleprinter, which cannot support a file structure, are

called non-directory devices or non-fi Ie-structured devices.

1.6.2 Standards for Tables

A table is a collection of data stored in sequential memory locations. A typical table as represented

in this manual is shown below. This table is two words long, and is referenced by the symbolic address

TABL:. The first entry is at location TABL and contains ENTRY A, which might be coded as • WORD

*ASCII stands for American Standard Code for Information Interchange.

1-6

•

AYE in the user's program. The second word of the table, at address TABL +2, is divided into two

bytes. The low-order byte (address TABL+2) contains ENTRY B, and the high-order byte (address

TABL+3) contains ENTRY C. They might be written into a program as .BYTE BEE,CEE.

a) Represent~tion in manual:

TABL:
ENTRY A

ENTRY C I .ENTRY B

b) Representation in program listing:

TABL: .WORD AYE ;ENTRY A

• BYTE BEE ,CEE ;ENTRY B,ENTRY C

1.6.3 Standards for Numbers

Unless otherwise stated, all numbers in the text and examples are in octal.

1-7

2.1 INTRODUCTION

CHAPTER 2

PROGRAMMED REQUESTS

The user program calls for the services of the Monitor through programmed requests. These requests

are macro calls which are assembled into the user program and interpreted by the Monitor at execution

time. A programmed request consists of a one-word instruction followed, when appropriate, by one

or more arguments. For example:

• WAIT LNKBLK

is a programmed request called. WAIT followed by an argument LNKBLK. The macro or request is

expanded at assembly time by the DOS Assembler into a sequence of instructions which trap to and

pass the arguments to the appropriate Monitor routine to carry out the specified function. The assembly

language expansion for. WAIT LNKBLK is:

MOV #LNKBLK,-(SP)
EMT 1

The user may code a request in his program as either a macro call or as the equivalent assembly

language program.

The request arguments are parameters or addresses of tables which contain the parameters of the request.

These tables are also part of the user program, and are described in detail in Figures 2-5 to 2-12.

Restrictions on argument names are found in the appropriate DOS Assembler Manual.

Services which the Monitor makes available to the user through programmed requests can be classified

into three groups:

• requests for input/output and related services

• requests for di rectory management servi ces

• requests for miscellaneous services

Table 2-1 summarizes the programmed requests available under the Monitor. They are described in

general in Section 2.2.

2-1

Table 2-1
Summary of Monitor Requests ..

Mnemonic Purpose

Requests for Input/Output and related selVices:

.INIT Associates a dataset with a device driver and sets up the
initial linkage.

.RLSE Removes the linkage between a device driver and a dataset,
and releases the driver.

• OPENx Opens a dataset •

• CLOSE Closes a dataset •

• READ Transfers data from a device to a user's line buffer •

• WRITE Transfers data from a user's line buffer to a device •

• WAIT Waits for completion of any action on a dataset •

.WAITR Checks for completion of any action on a dataset, and provides
a transfer address for a busy return.

•
.BLOCK Transfers one block of a file between a device and a Monitor

buffer.

.TRAN Transfers data by absolute device block address between a device
and a user buffer.

• SPEC Performs special device functions •

• STAT Obtains device characteristics •

Requests for Directory Management selVices:

• ALLOC Allocates a contiguous file •

• DELET Deletes a file •

• RENAM Renames a fi Ie •

• APPND Appends one linked file to another •

.LOOK Searches the directory for a particular file name and returns
information about the fi Ie.

• KEEP Protects a file against automatic deletion on FInish • ...
(Continued on next page)

2-2

Mnemonic

Table 2-1 (Cont)
Summary of Monitor Requests

Purpose

Requests for Miscellaneous services:

• EXIT Returns control to the Monitor •

• TRAP Sets interrupt vector for the TRAP instruction •

• RSTRT Sets the address used by the REstart command •

• CORE Obtains address of highest word in core memory •

• MONR Obtains address of first word above the resident Monitor •

.MONF Obtains address of first word above the Monitor's highest
a IIocated free core buffer.

• DATE Obtains the date •

• TIME Obtains the time of day •

.GTUIC Gets current UIC.

.SYSDV Gets Radix-50 name of System Device

• RADPK Packs three ASCII characters into one Radix-50 word •

• RADUP Unpacks one Radix-50 word into three ASCII characters •

• D2BIN Converts five decimal ASCII characters into one binary word •

• BIN2D Converts one binary word into five decimal ASCII characters •

• 02BIN Converts six octal ASCII characters into one binary word •

• BIN20 Converts one binary word into six octal ASCII characters •

• CSIl Condenses a command string and checks for proper syntax •

.CSI2 Interprets one command string dataset specification.

2.2 TYPES OF PROGRAMMED REQUESTS

2.2. 1 Requests for Input/Output and Related Services

All user I/O is handled by programmed requests, which provide three different levels of transfer:

2-3

• READ/WRITE

• BLOCK

• TRAN

Each level uses a sequence of requests to complete the transfer. Note the distinction between READ/

WRITE, BLOCK, and TRAN as names of transfer levels, and .READ, .WRITE, .BLOCK, and .TRAN

as specific requests within these levels.

Requests for I/O related services perform special device functions (such as rewinding a tape) and

obtain device characteristics from device status words.

2.2. 1. 1 READ/WRITE Level Requests - This is the level at which the Monitor performs most of its

services for the user. This is the most commonly used level of transfer. Among its users are the DOS

Assembler and Edit-ll Text Editor programs, which input one line of ASCII characters at a time.

READ/WRITE I/O under the Monitor consists of transferring the contents of a dataset between a device

and a line buffer. A line buffer is an area set up by the user in his program, into which he (or the

Monitor) places data for output (or input). The line buffer may be preceded by the line buffer header,

in which the user specifies the size and location of the line buffer and the mode (format) of the data.

The READ/WRITE user can specify nine different modes of transfer, in two categories: ASCII and

Binary. Each mode is presented briefly here; more details are in Section 2.6.1 and Figure 2-10.

ASCII Modes:

Binary Modes:

Formatted ASCII Parity - Special

Formatted ASCII Parity - Normal

Formatted ASCII Nonparity - Special

Formatted ASCII Nonparity - Normal

Unformatted ASCII Parity - Normal

Unformatted ASCII Nonparity - Norma I

Formatted Binary - Special

Formatted Bi nary - Norma I

Unformatted Binary - Normal

To implement a READ/WRITE transfer, the programmer follows the sequence of requests shown in

Figure 2-1b. First, the programmer initializes the device to the dataset with the .INIT request. The

argument of this request is the address of a table called the Link Block. Entries in this table specify

the device involved in the approaching transfer so that the Monitor may eventually establish a link

between that device and the dataset. The Link Block is described in detai I in Figure 2-5. The .INIT

calls the appropriate device driver into the free core buffer area, if it is not already there.

2-4

.~.

••

•

No

USER PROGRAM

USERS LINE
BUFFER

.READ .WRITE

.WRITE

MONITOR BUFFERt-. L:: __ '"'-II DEVICE I
.READ

Figure 2-10 The Transfer Path

.INIT LNKBLK

.OPEN! LNKBLK,FILBLK

• READ LNKBLK ,BUFHDR

.WAIT LNKBLK

I
(Process Data)

.CLOSE LNKBLK
• RLSE LNKBLK

iFOR OUTPUT, REPLACE .OPENI
i WITH .OPENO
;FOR OUTPUT, REPLACE .READ
i WITH .WRITE
i COULD BE REPLACED BY • WAITR

LNKBLK: (entrieS)}
(entri es) FILBLK: Tables in User's Program

BUFHDR: (entri es)

Figure 2-1b Sequence of Requests for READ/VVRITE

Figure 2-1 .READ/. WRITE Input/Output Transfers

2-5

Following the .INIT request, the programmer opens a dataset with an .OPENx request. This need be

done only if the device being used has a directory. However, it is advisable to use an .OPENx even

for a nondirectory device to preserve the device independence of the program, i.e., the programmer

may want to assign the transfer to a directory device later. The argument of this request is the symbolic

address of a table called the Fi lename Block (Figure 2-6). Entries in this table specify the dataset

involved in the transfer.

A dataset can be opened for input, for output, for update, or for extension. The last letter of the

.OPENx request specifies which type of open is desired.

A .READ (for input) or a .WRITE (for output) follow the .OPENx. Either request causes a transfer to

take place between the line buffer and the device via a buffer allocated by the Monitor in its free core

area. The arguments of either request are the address of the Link Block for the dataset and the address

of the Line Buffer Header (Figure 2-8). The Line Buffer Header specifies the area in the user's core

area to or from which the dataset is to be transferred •

• READ or . WRITE are followed by • WAIT, which tests for the completion of the last transfer, and

passes control to the next instruction. Typically, what follows a . WAIT on an input is a subroutine to

process the portion of data just input. When the process has been completed, the program checks to

see if it wants another portion of data; if it does, the program transfers control back to the .READ

request and the process is repeated. Ifall data has been transferred, the .CLOSE request follows to

complete any pending action, update any directories affected, and release to free core any buffer

space the Monitor has allocated from free core. Finally, action on the dataset is formally terminated

with the • RLSE request, which disassociates the device from the dataset, and releases the driver. Re­

leasing the driver frees core provided there is no other claim to the driver from another dataset.

2.2.1.2 BLOCK Level Requests - BLOCK requests provide for random access of blocks in files stored

on directory devices such as disk or DECtape. An example of a BLOCK user program is a Payroll Up­

date Program which stores information about all employees on one file, with a set number of blocks

assigned to each employee.

At this level, data is transmitted between a specified block of the file and the Monitor buffer (Figure

2-2a). The user program may directly access the data in the Monitor buffer, or may move it to its

own area for further processing. BLOCK level requests require the use of the .INIT, . RLSE, .OPEN

and .CLOSE requests, as in the READ./'NRITE level requests.

2-6

•

USER PROGRAM

POSSIBLE
USER BUFFER

~

* *

* Transfers between the
Monitor's buffer and the
user's buffer are the user's
respons ib iIi ty •

• • BLOCK OUTPUT

....... -------Il
l

DEVICE I
'------------' .BLOCK INPUT

MONITOR BUFFER

Figure 2-20 The Transfer Path

.INIT LNKBLK

.OPENU LNKBLK,FILBLK

___ - ____ .BLOCK LNKBLK,BLKBLK iINPUT DESIRED BLOCK

Yes

.WAIT LNKBLK

I
(Process Data)

I
.BLOCK LNKBLK ,BLKBLK

.WAIT LNKBLK

.CLOSE LNKBLK

• RLSE LNKBLK

LNKBLK:

iCOULD BE REPLACED BY .WAITR

iUPDATE DATA

iWRITE UPDATED BLOCK

FILBLK:
(entries) }
{entries} Tables in User Program

BLKBLK: {entries}

Figure 2-2b The Sequence of Requests For. BLOCK

Figure 2-2 • BLOCK Input/Output Transfers

2-7

To implement a BLOCK transfer, the programmer follows the sequence of requests shown in Figure 2-2b. ..

Notice that the transfer must be INITed, OPENed, WAITed, CLOSEd, and ReleaSEd following the

same rules as the READ/'NRITE level. The • BLOCK request has the address of the link Block and the

BLOCK block for its arguments. The BLOCK block specifies the block within the file that is to be

transferred.

2.2.1.3 TRAN Level Requests - A TRAN level request is a basic input/output operation at the device

driver level. Bulk storage devices are accessed by absolute block number without regard to file struc­

ture. For this reason, the user should be very careful not to destroy any files on the device on which

he is performing TRAN level requests. He should allocate a contiguous file on the device for his

purposes.

Data is transferred directly between the device and the user's line buffer (Figure 2-30) with no format­

ting performed. TRAN level requests are generally used in two situations:

1. When the file structure does not allow the desired operation (for example, PIP uses
TRAN to read a directory block).

2. When the user cannot afford the overhead of doing transfers by a READ/WRITE process,
and the data is of a fixed format. (For example, a program to process data arriving
at random intervals from an A/D converter might first dump the input data onto the
disk via a • TRAN request as it arrives, and then read it back later for processing
when time permits.)

To implement a TRAN transfer, the programmer follows the sequence of requests shown in Figure 2-3b.

Notice that the transfer must be INITed and .RLSE1d, but is not • OPENed or .CLOSEd. The .TRAN

request has the address of the TRAN Control Block as its argument. This block contains entries which

specify the core starting address of the user's line buffer, the device block address, the number of

words to be transferred, and the function to be performed. TRAN is therefore a device dependent

request. A summary of the transfer levels which can be used on the various types of data sets is shown

in Table 2-2.

Table 2-2
Transfer Levels for Types of Datasets

Type of Dataset

Type of linked Contiguous Nonfi Ie-Structured
Transfer File File Device

READ/WRITE Yes Yes Yes

BLOCK Yes

TRAN * * Yes

Yes indicates that the given transfer level will work on the given type of dataset.

* indicates that TRAN may be used on a file-structured device if the warnings
menti oned are observed.

2-8

Yes

USER PROGRAM

USER BUFFER -
I ,

I MONITOR BUFFER I I DEVICE I
Figure 2-3a The Transfer Path

.INIT LNKBLK
I

I
• TRAN LNKBLK, TRNBLK

I
.WAIT LNKBLK

I
(Process Data)

• RLSE LNKBLK

LNKBLK: (entries)

TRNBLK: (entries)

;COULD BE REPLACED BY • WAITR

}

Tables and parameters
in User Program

Figure 2-3b The Sequence of Requests For • TRAN

Figure 2-3 • TRAN Input/Output Transfers

2.2.2 Requests for Directory Management Services

Directory management requests are used to enter file names into directories, search fer files, update

file names, and protect files against deletion.

2-9

2.2.3 Requests for Miscellaneous Services

Requests for miscellaneous services include:

• Requests to return control to the Monitor from a running program.

• Requests to set Monitor parameters such as the TRAP vector or a program's
restart address.

• Requests to obtain Monitor parameters such as the size of core, the size of the
Monitor I the date I the time, and the current user's UIC.

• Requests to perform conversions between ASCII and Radix-50 packed ASCII,
binary and ASCII decimal, and binary and ASCII octal.

• Requests to access the Command String Interpreter.

2.3 DEVICE INDEPENDENCE

Ordinari Iy, a programmer specifies input/output devices as he writes the program. However, there

are circumstances when he will want to change the device specification when his program is run. For

example:

• A device that the user specified when he wrote his program is not in operation at
run time, but an alternate device is available.

• The programmer does not know the configuration of the system for which he is
writing, or does not wish to specify it (i .e., he is writing a general purpose
package) •

The Monitor allows the programmer to write programs which are device independent in that the pro­

grammer can, but need not always, specify a device in his program. These facilities are:

• The programmer may specify a device for each dataset via a Link Block
when he writes his program.

• A programmer can assign or reassign a device for a dataset through the keyboard
with the ASsign command (Section 3.3.1.1) at run time. This command sets up
a table entry in the Monitor which effectively overrides any entries in the Link
Block.

• A general purpose program can dynamically request the device and filenames for
each run via the keyboard and then obtain decoding and set-up via the Command
String Interpreter.

Note that the substituted devices must be compatible. For example, the user may initially specify a

BLOCK transfer from disk and later change the assignment to input from DECtape instead. But he can­

not later specify paper tape reader as the input device, since BLOCK level requests do not apply to

nonfjle-structured devices.

2-10

•

It is important to note that a device is assigned in a program to a dataset logical name and that re­

assigning a device at run time for one dataset logical name does not reassign that device for all dataset

logical names to which it was originally assigned.

The only transfer request which is not device independent is • TRAN.

2.4 SWAPPING ROUTINFS INTO CORE

Except for a small, permanently resident kernel, the Monitor routines which process most programmed

requests are potentially swappable. They are normally disk resident and are swapped into core by the

Monitor only when needed. The user may, however, specify that one or more of these potentially

swappable routines be made permanently core resident or core resident just for the durution of his

program's run. Making a potentially swappable routine core resident ties up core space, but speeds up

operation on the associated request. The user may, for example, be collecting data via a .TRAN

request in a real-time environment. In such a case, even the short time needed to swap in the .TRAN

request processor could cause him to lose data.

Potentially swappable routines are made core resident by one of the following.

• Routines may be made permanently core resident in the Monitor by specifying
the apprOfJriate GLOBAL NAME at system generation time.

• Routines may be made resident for the duration of a program's run by declaring
the appropriate GLOBAL NAME (as specified in the definition of each request
in Sections 2.6 through 2.8) in a .TRANprocessor directive in the program.
For example, to make the. TRAN processor resident while program FROP is being
run, the following directive would be included in program FROP:

.GLOBL TRA.

• In the absence of either of the above specifications for a routine, the Monitor
wi II swap in that routine whenever it is requested.

Any routine which services a programmed request (other than RWN) is potentially swappable;
i.e., those given Global Names in this Chapter.

2.5 MONITOR RESTRICTIONS ON THE PROGRAMMER

In return for the servi ces provided by the Monitor, the programmer must honor certain restricti ons:

• The programmer should not use either the EMT or the lOT instructions for
communication within his program.

• It is recommended that the user not raise his interrupt priority level above
3, since it might lock out a device that is currently trying to do input/
output.

2-11

•

•

HALTS are not recommended. If a HALT is executed during an I/O operation,
most devices will stop, and only recovery from the console (pressing the CONTinue
switch on the console) will be effective (recovery from the keyboard will not be
immediately possible, since a HALT inhibits the keyboard interrupt). Some devices,
such as DECtape, will not see the HALT and will continue moving, will lose their
positions over the block under transfer, and may even run tape off the reel.

The RESET instruction should not be used becduse it forces a hardware reset;
clearing all buffers and flags and disabling all interrupts, including the keyboard's.
Since all I/O is interrupt driven, RESET will disable the system.

• The user must be careful to avoid penetrating the Monitor when he is using the
stack. The stack is set by the RUN time loader just below the lowest address of
the program loaded. The Monitor checks to see that the stack is not overflow­
ing each time it honors a request. The user can relocate the stack pointer and
claim more space as follows:

a. He can determine where the pointer is currently and where the current
top of Monitor is located, then move the stack pointer down the correct
amount.

b. He can ask the Monitor for buffer space via the general utilities (see
PDP-11 DOS Monitor, System Programmer's Manual).

• The user should be aware that certain instructions, such as .INIT, may change the
amount of available free core, since they may call in drivers· and establish data
blocks. Such requests effect the results of the MONR or MONF requests.

• Certain requests return data to the user on the stack. The user must clear the
stack himself before the stack is used again. The Monitor clears the stack
after it honors requests that do not return data to the user on the stack.

• The user should not use GLOBAL names that are currently used by the Monitor.
All these names are listed in Appendix E.

2.6 DEFINITION OF REQUESTS FOR INPUT/OUTPUT SERVICES

Each request has one or more arguments which are addresses of tables in the user's program. The

tables specify the variables of the request. Table entries are explained in detail in Figures 2-5 to

2-12 at the end of this section.

2.6.1 READ/WRITE Level Requests

This is the level at which the Monitor performs most of its services for the user. The user can specify

nine different modes of transfer, in two categories; ASCII and Binary. Each mode is discussed here,

and is presented in detail in Figure 2-10.

ASCII Modes: Formatted ASCII Parity - Special

Formatted ASCII Parity - Normal

Formatted ASCII Nonparity - Special

(Continued on next page)

2-12

ASCII Modes (Cont)

Binary Modes:

Formatted ASCII Nonparity - Normal

Unformatted ASCII Parity - Norma I

Unformatted ASCII Nonparity - Normal

Formatted Binary - Specia I

Formatted Binary - Normal

Unformatted Binary - Normal

1. Formatted and Unformatted ASCII Modes:

Data in formatted ASCII modes is assumed by the Monitor to be in strings of 7- or a-bit ASCII char­

acters terminated by LINe FEED, FORM FEED or VERTICAL TAB. PAL-llR Assembler source pro­

grams are in a formatted ASCII mode. In these modes, the Monitor manages all device-dependent

conversions at the driver level. For example, LINE FEED is supplied after RETURN in character

strings from keyboard terminals.

Data in unformatted ASCII modes is also assumed to be in strings of 7- or a-bit ASCII characters.

Checks for terminators and device-dependent conversion are not performed by the Monitor, thus

allowing the user to handle all characters in his own way.

2. ASCII Parity and Nonparity Modes:

In ASCII nonparity modes, 7-bit ASCII characters are transferred.

In formatted ASCII parity modes, ~ven parity is generated in the 8th bit and is checked during the

tra nsfer • In unformatted ASC II pari ty mode, a bits are tra nsf erred, bu t no pa ri ty is generated or

checked.

3. Normal and Special Modes:

Special modes provide additional Monitor facilities over and above normal modes; normal modes

are compatible with the PDP-ll I/O Executive (lOX).

4. Formatted and Unformatted Binary Modes~

Data in formatted binary"modes is transferred in a-bit bytes as read from the device. The Monitor

makes no assumptions about the nature of the data. A checksum is calculated during a WRITE r~­

quest and transmitted with the data, as well as a count of the number of bytes. The checksum is

vsrified during a READ. The binary output of the PAL-l1 R Assembler, for example, is in a for­

matted binary mode.

Unformatted binary mode is the same as formatted binary except that no checksum or count is cal­

cu lated or verified.

NOTE

A dataset can only support transfers in one direction, i. e. ,
READ only or WRITE only. If the same device is to be used
for both operations, separate datasets must be used for each.

2-13

·OPEN

2.6.1.3 .OPEN - Prepare .INITed device for usage and make a named file available if the device

is directory oriented.

Macro Call: .0PENx LNKBLK,FILBLK

where x indicates the type of OPEN:

U for update
o for output
E for extension
I for input
C for create data in contiguous fi Ie
LNKBLK = address of Link Block
FILBLK = address of Filename Block

Assemb I y La nguage

Expansion:

MOVB #CODE,FILBLK-2

MOV #FILBLK,-(SP)
MOV #LNKBLK,-(SP)
EMT 16

;MOVE "HOW OPEN"
;CODE TO FILENAME BLOCK

where CODE indicates the type of OPENx request:

OPENO = 2
OPENI = 4
OPENU = 1
OPENC = 13
OPENE = 3

Global Name: OPN. (See Appendix C for subsidiary routines.)

Description: In general, an .0PENx request causes the Monitor to allocate a data buffer and to make

other necessary preparations for transferring to a dataset to or from a device. More specifically:

.OPENU

• OPENO

• OPENE

.OPENI

.OPENC

opens a previously created contiguous file for input and output by
.BLOCK.

creates a new I inked file and prepares it to receive output •

opens a previously created linked file to make it longer •

opens a previously created linked or contiguous file for input to
the computer. It normally precedes all .READ operations.

opens a previously created contiguous file for output from the
computer.

2-16

•

After the open request has been processed, control is returned to the user at the instruction following

the assembly language expansion; the arguments are removed from the stack. At this time, however,

the device concerned may still be completing operations required by the request. A summary of transfer

requests which may legally follow OPEN requests is illustrated in Table 2-3.

T bl 2 3 a e -
Transfer Requests Which May Follow Open Requests

~
~ 106l

J06l o~
~ o~ ~ ..c;i'6l

IJs"c; 0-"
6l1' ,f. ;r~6lr

~v6l
Linked Fil e Contiguous Fil e

~ Input Output Input Output
File

Type of Already

Open .READ .WRITE • READ .BLOCK .WRITE .BLOCK Exist?

.OPENU YES YES must

.OPENO YES must not

.OPENE YES must

.OPENI YES YES YES must

.OPENC YES must

a. General Rul es for All .0 PENx Requests

The user must set up a Filename Block in his program (Figure 2-6). If the dataset is a
file, the Filename Block must contain a legal file name. A file name consists of up to
six characters (A-Z, $ 0-9); the first character cannot be a digit (0-9), it may be fol­
lowed by an extension of 3 characters. If the dataset is not a file, the Filename Block
need not contain any FILENAME or EXTENSION entries.

All datasets must have been INITed before they are OPENed. Type of OPEN must be
applicable to type of device (e.g., OPENI to line printer is illegal).

For datasets on directory devices, the User Identification Code (UIC) in the Filename
Block (if specified) must be in the directory of the device. If the UIC is not specified,
the user must have logged in with a UIC that appears on the device.

The .0PENx request must not violate the protect code of the file.

If a dataset is opened for any output, it cannot be opened again until it has been
closed.

b. Rules.for .OPENO

The .0 PENO request is appl icabl e only for outputs to nonfile-structured devi ces or
to a linked file on a file-structured device.

2-17

The .OPENO request creates a linked file on a directory device; hence, the file
referenced in the corresponding Filename Block cannot exist prior to' the .OPENO
request.

The .OPENO request will return an error if the directory is full.

c. Rules for .OPENI

.OPENI may be used for inputs from contiguous or linked files, or nondirectory
devices.

The fil e referenced in the corresponding Fil ename Block must exist on the directory.

If a file is open for input (OPENI), it cannot be opened for output, but it can be
opened for extension or update.

At anyone time, a fil e can be opened for input to a maximum of 62
10

or 76
8 datasets.

d. Rules for .OPENU, .OPENE and .OPENC

The fil e must exist and cannot currently be opened for output.

The file cannot currently be opened by .OPENU, .OPENE or .OPENC.

A contiguous fil e cannot be opened for extension.

A linked file cannot be opened with .OPENC, which is applicable only to
contiguous files.

Errors: If any of the preceding rules are violated, the Monitor places an error code in the STATUS

byte of the Filename Block (see Table 2-4) and transfers control to the pointer in the ERROR RETURN ,.

ADDRESS of the Fil ename Block. If this address is 0, a fatal error message is printed on the consol e.

Fatal error messages are I isted in Section 2.10.

Exampl e: (See .CLOSE)

2-18

2.6. 1.4 .CLOSE - Close a dataset.

Macro Call: .CLOSE LNKBLK

where LNKBLK is the address of the Link Block.

Assembly Language

Expansion:

Global Name:

MOV
EMT

#LNKBLK ,-{SP}
17

CLS. {See Appendix C for subsidiary routines.}

.CLOSE

Description: The close request indicates to the Monitor that no more I/O requests will be made on the

dataset. Close compl etes any outstanding processing on the dataset, updates any directori es affected

by the processing, and releases to free core any buffer space established for the processing. For example,

if .CLOSE had been preceded by an .OPENE request to a file, the added portion is linked to the file,

the directory entry for the fi I e is updated to acknowl edge the added portion, and buffers used for data

and Monitor internal file information tables are released to free core. After the close request has been

compl eted, control is returned to the user at the instruction following the assembly language expansion;

the argument is removed from the stack. As wi th OPEN, some appropriate device action may still be

in progress at this point.

Rul es: The dataset to be closed must have previously been opened if it was a fil e on a directory device.

As with .0PENx, a .CLOSE is not required if the dataset is not a fil e, but it is strongly recommended.

Errors: Dataset Not Inited - Fatal Error FOOO; Device Parity Error - Fatal Error F017.

Example: Open for input a dataset named IMP, which is file PROG1.BIN on DECtape unit 3. After

the data transfer is complete, close the file •

• INIT SETl

.OPENI SETl ,FILEl iOPEN SETl FOR INPUT

(Input is performed here)

.CLOSE SETl ;CLOSE SETl

{Continued on next page}

2-19

~

.RLSE SETl

.WORD ERRl
SET1: .WORD 0

.RADSO /IMPI
• BYTE 1,3
.RADSO IDTI

.
• WORD ERFl ;ADDR OF ERROR RTN
.WORD 0 ;MACRO PUTS HOW-OPEN HERE

FILE1: .RADSO /PROI ;FILE NAME
.RADSO IGll
.RADSO IBINI ;EXTENSION
• BYTE PROG,PROJ ;USER ID CODE
• BYTE 177 iPROTECT CODE

..
2-20

.READ

2.6.1.5 .READ - Read from device.

Macro Call: .READ LNKBLK,BUFHDR

where LNKBLK is the address of the Link Block, and BUFHDR is the address of the line buffer header.

Assembly Language

Expansion:

Global Name:

MOV
MOV
EMT

RWN.

#BUFHDR, -(SP)
#LNKBLK,-(SP)
4

Description: The. READ request transfers the data specified in the I ine buffer header from the device

to the user's I ine buffer. The transfer is done via a buffer in the Monitor, into which an entire device

block is read, and from which the desired data is transferred to the user's I ine buffer. (If the data re­

quested traverses a device block boundary, a second device block is read.) After any I/O transfer has

been started, control is returned to the user at the next instruction, with the arguments removed from

the stack.

Rules: If the device is file structured, the • READ request must be preceded by an .OPENI.

The user must provide in his program a I ine buffer and line buffer header (see Figure 2-8).

Further actions on the dataset by the Monitor will be automatically postponed until the .READ process­

ing has completed. The user program should, however, perform a .WAIT or .WAITR to ensure proper

compl etion of transfer before attempting to use the data in the I ine buffer.

Errors: Specification of a transfer mode which is inappropriate for the device assigned to the dataset,

and attempting to .READ from or .WRITE to a file-structured device for which no file has been .0PENed

or the type of .OPEN is incorrect. These will be treated as a fatal error and result in a F010 message.

2-21

• WRITE

2.6.1.6 .WRITE - Write on a device.

Macro Call: • WRITE lNKBlK ,BUFHDR

where lNKBlK is the address of the link Block, and BUFHDR is the address of the line buffer header.

Assembly language

Expansion:

Global Name:

MOV #BUFHDR,-(SP)
MOV #lNKBlK ,-(SP)
EMT 2

RWN.

Description: The .WRITE request initiates the transfer of data from the user's lin~ buffer to the device

assigned. The data is first transferred to a buffer in the Moni tor, where it is accumulated until a

buffer of suitabl e I ength for the device is fill ed. The data in the Monitor buffer is then transferred to

the appropriate device block, and any data remaining in the user's line buffer is moved to the (emptied)

Monitor buffer. After any I/O transfer to the device has been started, control is returned to the user

at the next sequential instruction. The arguments are removed from the stack upon return.

Rules: If the requested device is file structured, the dataset must have been opened by an .OPENO

or .OPENE for a linked file, or .OPENC for a contiguous file.

The user must provide a line buffer and its header in his program (Figure 2-8).

Further actions on the dataset by the Monitor after. WRITE will be automatically postponed until the

• WRITE processing has been compl eted. Before refill ing the I ine buffer, however, the user program

should perform a .WAIT or .WAITR to insure proper completion of the transfer.

Errors: See. READ for errors.

2-22

•

•

2.6.1.7 .WAIT - Wait for completion of process on dataset.

Macro Call: • WAIT LNKBLK

where LNKBLK is the address of the Link Block.

Assembly Language

Expansion: MOV #LNKBLK ,-(SP)
EMT 1

GIQbal Name: (Routine i's permanently core resident.)

• WAIT

Description: .WAIT tests for completion of the last requested action on the dataset represented by the

referenced Link Block. If the action is complete (that is, if the request has completed all its action),

c~ntrol is returned to the user at the next sequential instruction following the assembly language ex­

pansion; otherwise, the Monitor retains control until the action is complete. A .WAIT or .WAITR

should be used to ensure the integri ty of data transferred to or from a I ine buffer. The argument is

removed from the stack.

Rul es: The dataset must be INITed.

Errors: If the dataset is not IN ITed, a fatal error occurs and FOOO is printed to the tel eprinter.

2-23

·WAITR •

2.6.1.8 .WAITR - Wait for completion of processing on dataset, or return.

Macro Call: .WAITR LNKBLK,ADDR

where LNKBLK is the address of the Link Block, and ADDR is the address to which control is transferred

if the processing is not compl ete.

Assembly Language

Expansion:

Global Name:

MOV #ADDR,-(SP)
MOV #LNKBLK,-(SP)
EMT 0

(Permanently Core Resident.)

Description: .WAITR tests for compl etion of the last requested action on the specified dataset. If all

actions are complete, control is transferred back to the user at the next sequential instruction follow­

ing the assembly language expansion. If all actions are not compl ete, control is given to the instruc­

tion at location ADDR. The arguments are removed from the stack. It is the user's responsibil ity to

return to the .WAITR to check again.

Rules: The user should use a .WAIT or a .WAITR request to assure the completion of data transfer to

the user's line buffer before processing the data in the buffer, or moving data into it. The dataset

must be INITed.

Errors: If the dataset is not INITed, a fatal error occurs and FOOO is printed on the tel eprinter.

2.6.2 BLOCK Level Requests

BLOCK requests provide for the random access to the blocks of fil es stored on the disk or DECtape.

In this mode, data is transmitted to or from a specified block in a file with no formatting performed.

Transfers take place between the device block and the Monitor buffer. The user is responsible for

transferring the block to and from his own area. BLOCK level requests require the use of the .INIT,

.RLSE, .OPEN and .CLOSE requests discussed earlier.

2-24

•

.BLOCK

2.6.2.1 .BLOCK - Transfer one physical block of a file.

Macro Call: .BLOCK LNKBLK,BLKBLK

where LNKBLK is the address of the Link Block, and BLKBLK is the address of the BLOCK block (see

Figure 2-11) •

Assembly Language

Expansion: MOV #BLKBLK ,-(SP)
MOV #LNKBLK,-(SP)
EMT 11

Global Name: BLO.

Description: This request allows for random, relative block access to contiguous fil es. The user must

specify one of three functions in the block called: INPUT, GET, or OUTPUT. After the transfer has

started, control is returned to the user at the instruction following the assembly language expansion

with arguments removed from the stack.

INPUT: During an INPUT request, the requested block of the requested file is read
into a Monitor buffer, and the user is given in the BLOCK block (see Figure
2-11) the address of the buffer and the physical I ength of the block transferred.

GET: During a GET request, the Monitor gives the user the address and length of a
buffer within the Monitor that he can fill for subsequent output. The user must
be careful that he does not over-run the buffer. This request is unnecessary if
an INPUT request has occurred.

OUTPUT: During an OUTPUT request, the contents of the buffer assigned is written on
the device in the requested relative position of the requested fil e.

Rules: The associated file must be opened by .OPENI for input or .OPENU for input or output.

Access to linked files or nondirectory devices is illegal.

The user must set up the BLOCK block in his program according to the format of Figure 2-11 •

~ Error processing causes a return to the user as usual, with the type of error indicated in the

FUNCTION/STATUS word of the BLOCK block. The user should perform

TSTB BLKBLK+1
BNE ERROR

after a • WAIT to ensure that his request was error free.

2-25

2.6.3 TRAN Level Requests

TRAN requests provide for direct access to any device. Bulk storage or directory devices are accessed

by absol ute block without regard to the directory structure. For this reason, the user should be very

careful not to destroy the file structure of a directory device to which he is requesting TRAN level

transfers. Data is transferred directly between the device and the user's buffer. No formatting is

performed •

TRAN requests require the use of the .INIT and .RLSE requests, discussed earlier.

2-26

•

2.6.3. 1 • TRAN - Transfer absol ute block.

Macro Call: • TRAN LNKBLK, TRNBLK

where LNKBLK is the address of the Link Block, and TRNBLK is the address of the TRAN block.

Assembly Language

Expansion:

Global Name:

MOV #TRNBLK,-(SP)
MOV #LNKBLK,-(SP)
EMT 10

TRA.

·TRAN

D~scription: " TRAN performs a direct transfer of data, by absol ute block on the device (or next block

on sequential devices), between the device and the user's area in core memory. No Monitor buffering

or formatting occurs. After the transfer has started, control is returned to the user at the instruction

following the assembly language expansion. The arguments are removed from the stack" The user is

warned that. TRAN provides ~ protection for fil es on a directory-oriented device.

Rul es: • TRAN must be preceded by an • IN IT request on the associated dataset.

For each • TRAN request, the user must provide a transfer control block, as shown in Figure 2-12.

Further actions on the dataset by the Monitor will be automatically postponed until the • TRAN process­

ing has been completed. The user program should perform a • WAIT or .WAITR to ensure proper com­

pletion of the transfer before attempting to reference any location in the data buffer.

If file structured data shares the same device as the block(s) referenced by the • TRAN request, it is

recommended that the USer first allocate a contiguous AI e for. TRAN usage.

Errors: An inval id function code in the transfer control block will resul t in an error diagnostic message

on the tel eprinter at run time.

Errors in the transfer will be shown in the FUNCTION/STATUS word of the TRAN block; the last word

of the block will be set to show how many data words have not been transferred.

Exampl e: Transfer 2008 words of ASCII data from DECtape unit 3, starting at block 1008 to core start­

ing at location 400°
8

"

2-27

TAPE 1:

BIN40:

.INIT TAPEl

• TRAN TAPE 1, BIN40

.RLSE TAPE 1

• WORD ERR 1
.WORD 0
.RADSO /TP1/
.BYTE 1,3
.RADSO /DT/

.WORD 100

.WORD 4000

.WORD 200

.WORD 4

.WORD 0

;ST ARTING BLOCK #
;ST ARTING ADDRESS IN CORE

. ;NUMBER OF WORDS
;INPUT IN ASCII
;FOR MONITOR USE

2-28

2.6.4 Requests for Input/Output Related Services

.SPEC

2.6.4. 1 .SPEC - Special functions.

Macro Call: .SPEC LNKBLK,SPCARG

where LNKBLK is the address of the Link Block, and SPCARG may be either a specia I function code or

the address of a special function block containing the code, depending upon the function.

Assembly Language

Expansion: MOV
MOV
EMT

Global Name: SPC.

#SPCARG, -(SP)
#LNKBLK, -(SP)
12

Description: This request is used to specify a special function (action) to a device, such as rewind

magnetic tape. A code identifies the function and must be in the range 0-255
10

• Where the function

requires no supporting data, the code itself is the first parameter to be placed upon the processor stack

in the assembly language call sequence. If, however, either the user must supply additional informa­

tion or the function expects to return data to the user, the code is passed within a Special Function

Block and the address of the block is the call parameter. The format of this block is shown in Figure

2-13.

If a .SPEC request is made to a device which has no special function code, an immediate return is

made showing that the function has been complete. After the request has been started, control is re­

turned to the user at the instruction following the assembly language expansion. The stack is cleared.

Rules: The dataset must be INITed.

Errors: Fatal Error FOOO is returned if the dataset has not been INITed.

2-29

• STAT

2.6.4.2 .STAT - Obtain device status.

Macro Call: .STAT LNKBLK

where LNKBLK is the address of the Link Block.

Assembly Language

Expansion: MOV #LNKBLK,-(SP)
EMT 13

Global Name: STT.

Description: Determine for the user the characteristics of the device specified in the Link Block. After

the request has been completed, control is returned to the user at the instructi on following the assembly

language expansion. This request returns to the user with the following information at the top of the

stack:

SP Driver Facilities Word

SP+2 Devi ce Name

SP+4 Devi ce Standard Buffer Size

where Driver Faci I ities Word has the following format:

1 = device is
directory
structured.

1 = device is DECtape
1 = device is sequential magnetic tape
1 = device has several discrete units under one
controller
1 = device is a terminal _________ ---l

1 = driver has an OPEN entry -----------1
1 = driver has a CLOSE entry
1 = driver has a special function entry--...;.....------'

1 = device will support multi­
dataset activity

1 = device will handle output

1 = device will handle input

1 = device will handle binary data

1 = device will handle ASCII data

Device Name is the Radix-50 packed ASCII standard mnemonic for the device (Appendix A).

2-30

•

Device Standard Buffer Size is the block size on a blocked device or an appropriate grouping size on

a character device.

Rules: The dataset must be INITed. The user must clear the stack upon return.

2-31

·ALLOC

2.7 DEFINITIONS OF REQUESTS OF DIRECTORY MANAGEMENT SERVICES

2.7. 1 .ALLOC

Allocate (create a contiguous fi Ie) •

Macro Call: • ALLOC LNKBLK ,FILBLK, N

where LNKBLK is the address of the Link Block, FILBLK is the address of the Filename Block, and N

is the number of 64-word segments requested.

Assembly Language

Expansion: MOV
MOV
MOV
EMT

#N,-(SP)
#FILBLK ,-(SP)
#LNKBLK, -(SP)
15

Global Name: ALO. (See Appendix C for subsidiary routines.)

Description: Searches the device for a free area equal to N 64-word segments, and creates a contigu­

ous file in the area if it is found, by making an appropriate entry in the User File Directory. (Linked

files are created by an .OPENO request.) Search begins at the high end of the device. The number

of blocks allocated wi II be the minimum number required to satisfy N segments, i.e.,

WI
where B is the number of segments per block. For example, if N = 9 for DECtape, and

B - 256 - 4
- 64 - therefore,

After the request has been completed, control is returned to the user at the instruction following the

assembly language expansion. The arguments are removed from the stack, and the top word of the

stack will be set to -1 to indicate the successful completion of the request, or to the largest number

of segments currently available if this is less than the called request. The value will be meaningless

if the call cannot be met by reason of any other error.

Rules: Must be preceded by an .INIT request on the dataset. A Filename Block must be set up by the

user in his program.

2-32

•

~ Control is returned either to the ERROR RETURN ADDRESS in the Filename Block if it is speci­

fied, or to the console for an error message if it is not. Possible errors resulting from .ALLOC are:

Error Code Returned Error Message
Error Conditi on To Filename Block On Default

Dataset Not INITed None FOOO

Devi ce Not Ready None A002

File Exists 2 F024

Illegal File Name 15 F024

UIC Not In Directory 13 F024

Directory Full 12 F024

If the error address in the Fi lename Block is taken, the top word of the stack is meaningless.

E~a"mp.le: Create a contiguous file of 102410 words on DECtape unit 4. Name the file FREQ .DAT.

.ALLOC
INC
BNE

.WORD
FRQ: .WORD

.RAD50
• BYTE
.RAD50

.WORD

.WORD
FREQUIN: .RAD50

.RAD50

.RAD50

.WORD

ERR1:

ERR2:

FRQ, FREQIN, 20
@SP
NOROOM

ERR1
0
/DTA/
1,4
/DT/

ERR2
0
/FRE/
/Q/
/DAT/
UIC, PROT 1

;TO HERE IF NO BUFFER AVAILABLE
;FOR DRIVER
;TO HERE IF NOT ENOUGH CONTIGUOUS
;BLOCKS ON DEVICE

2-33

.DELET.

2.7.2 .DELET

Delete a file.

Macro Call: .DELET LNKBLK,FILBLK

where LNKBLK is address of Link Block, and FILBLK is address of Filename Block.

Assembly Language

Expansion: MOV #FILBLK,-(SP)
MOV #LNKBLK,-(SP)
EMT 21

Global Name: DEL. (See Appendix C for subsidiary routines.)

Description: Deletes from directory-oriented device the file named in the Filename Block. After the

request has been completed, control is returned to the user at the instruction following the assembly

language expansion. The arguments are removed from the stack.

Rules: .DELET operates on both contiguous and linked files. If the file has been opened, it must

be closed before it is deleted.

Errors: Control is returned either to the ERROR RETURN ADDRESS in the Filename Block if it is speci­

fied, or to the console for an error message if it is not. Possible errors resulting from • DELET are:

Error Code Returned Error Message
Error Condition To Filename Block On Default

Dataset Not INITed None FOOO

Devi ce Not Ready None AOO2

Non-existent File 2 F024

Protect Code Violate 6 F024

File Is Open 14 F024

2-34

·RENAI

2.7.3 .RENAM

Rename a fi Ie.

Macro Call: .RENAM LNKBLK,OLDNAM,NEWNAM

where LNKBLK is the address of the Link Block, OLDNAM is the address of the Filename Block re­

presenting the file, and NEWNAM is the address of the Filename Block containing the new information.

Assembly Language

Expansion:

Global Name:

MOV #NEWNAM,-(SP}
MOV #OLDNAM,-(SP}
MOV #LNKBLK,-(SP}
EMT 20

REN. (See Appendix C for subsidiary routines.)

Description: Allows the user to change the name and protection code of a file. After the request has

been completed, control is returned to the user at the instruction following the assembly language

expansi on. The arguments are removed from the stack.

Rules: Dataset must be INITed, and file must not be opened. The user must specify two Filename

Blocks; one contains the name and protection code of the file as it presently is before the .RENAM

request, and the other contains the name and protection code of the file as it should be after the

• RENAM request. The two file names must be different. To change just the protection for a file,

two .RENAMs must be requested.

Only the owner of a file may rename it. The new file name must not already exist, and the new file

name must be legal.

The old fi Ie must exist.

NOTE

Renaming a file assigned from the keyboard to the dataset
wi II effectively be a NOP.

Errors: Control is returned either to the ERROR RETURN ADDRESS in the offending Filename Block if

it is specified and applicable, or to the Monitor for an error message if it is not. Possible errors

resulting from .RENAM are:

2-35

Error Code Returned Error Message
Error Condition To Filename Block On Default

File Exists (New Name) 2 F024

File Does Not Exist (Old 2 F024
File)

Dataset Not INITed None FOOO

File Is Open 14 F024

Protection Violation 6 F024

Illegal File Name 15 F024

2-36

.APPEND

2.7.4 .APPEND

Append one I inked fi Ie onto another.

Macro Call: .APPEND LNKBLK,FIRST ,SECOND

where LNKBLK is the address of the Link Block, FIRST is the address of the Filename Block for the

first file, and SECOND is the address of the Filename Block for the second file.

Assembly Language

Expansion:

Global Name:

MOV #SECOND ,-(SP)
MOV #FIRST ,-(SP)
MOV #LNKBLK,-(SP)
EMT 2

APP. (See Appendix C for subsidiary routines.)

Description: Makes one linked file out of two by appending the SECOND to the FIRST. The directory

entry of the SECOND file is deleted. When the request is completed, control is returned to the user

at the instruction following the assembly language expansion. The arguments are removed from the

stack. No attempt is made to pack the two fi les together, the physical blocks are merely linked to­

gether.

Errors: Control is returned either to the ERROR RETURN ADDRESS in the offending Filename Block if

it is specified, or to the console for an error message if it is not. Possible errors resulting from

.APPEND are:

Error Condition

Dataset Not INITed

First File Nonexistent

Contiguous Fi Ie

Device Not Ready

Protect Code Violated

File Opened

Error Code Returned
To Filename Block

None

2

5

None

6

14

2-37

Error Message
On Default

FOOO

F024

F024

A002

F024

F024

.KEEP

2.7.6 .KEEP

Protect file from automatic deletion.

Macro Call: • KEEP LNKBLK, FILBLK

where FILBLK is the address of the Fi lename Block of the fi Ie to be protected.

Assembly Language

Expansion:

Global Name:

MOV NFILBLK,-(SP)
MOV #LNKBLK,-(SP)
EMT 24

PRO.

Description: Protects the named file from being deleted by the Monitor upon a FInish command (Section

2.3.5.5). It does this by setting bit 7 of the PROTECT byte in the Filename Block.

2-40

•

2.8 DEFINITION OF REQUESTS FOR MISCELLANEOUS SERVICES

2.8.1 Requests to Return Control to the Monitor

2.8.1.1 .EXIT - Exit from program to Monitor.

Macro Call:

Assembly Language

E.><pans i on:

Global Name:

• EXIT

EMT 60

XIT •

.EXIT

Description: This is the last executed statement of a user1s program. It returns control to the Monitor,

insures that all of the program1s data files have been closed and, in general, prepares for the next

keyboard request. After the exit, all Monitor buffer space reserved for the program, such as Device

Assignment Tables (OAT) established after the program was coded, are returned to free core.

2.8.2 Requests to Set Monitor Parameters

In addition to the above programmed requests, the user can provide the Monitor with data to be stored

in Monitor Tables or can request information on the content of those tables via the EMT level 41 in­

struction. The user communicates his request to the Monitor by pushing the necessary parameters and

an identifier code onto the stack. If the code is outside the ranges of those currently established, a

fatal error will result (F002).

2-41

.TRAP •

2.8.2. 1 • TRAP - Set interrupt vector for the trap i nstructi on .

Macro Call: . TRAP STATUS,ADDR

where ADDR is the address for trap, STATUS is the desired status for the trap.

Assembly Language

Expansion:

Mav #ADDR,-(SP)
MaV #STATUS,-(SP)
MaV #l,-(SP)
EMT 41

Global Name: GUT.

Description: Sets the STATUS and ADDR into trap vector 34. After the request is completed, control

is returned to the user at the instruction following the assembly language expansion. The stack is

cleared. The user may then use the trap instruction.

2-42

2.8.2.2 .RSTRT - Sets address used by the REstart command.

Macro Call: .RSTRT ADDR

where ADDR is the restart address.

Assembly Language

Expansion:

Global Name:

MOV #ADDR,-(SP)
MOV #2,-(SP)
EMT 41

GUT.

• RSTRT

Description: Sets the address where the program should restart in response to the keyboard command

REstart. This is the assumed address in the absence of an address in the REstart operator command. It

can be reset as often as requested by the program. After the request is completed, control is returned

to the user at the instruction following the assembly language expansion. The stack is cleared.

2-43

2.S.3 Reguests to Obtain Monitor Parameters

.CORE

2.S.3.1 .CORE - Obtain address of the highest word in core memory.

Macro Call:

Assembly Lang.uage

Expansion:

.CORE

MOV #100,-(SP)
EMT 41

Global Name: GUT.

;CODE

Description: Determines the address of the highest word in core memory (core size minus 2) and returns

it to the top of the stack. For an SK machine, it would return 3m6. The user must clear the stack.

2-44

.MONR

2.8.3.2 .MONR - Obtain the address of the first word above the Monitor.

Macro Call: .MONR

Assembly Language

Expansion: MOV #101,-(SP)
EMT 41

Global Name: GUT.

Description: Deter~ines the first word above the top of the currently resident Monitor (see Figure 2-4)

and returns it to the user at the top of the stack. 'After the request is completed, control is returned

to the user at the instruction following the assembly language expansion. The user must clear the stack.

2-45

.MONF ,..

2.8.3.3 .MONF - Obtain the address of the first word above the Monitor's highest allocated free

core buffer.

Macro Call:

Assembly Language

Expansion:

Global Name:

.MONF

MOV #102,-{SP)
EMT 41

GUT.

Description: The address ci the first word above total Monitor area (in V~~4A, last word of the

present Monitor area) (see Figure 2-4), including the buffer and transient areas current at the time

of the request, is returned to the user at the top of the stack. After the request is completed, control

is returned to the user at the instruction following the assembly language expansion. The user must

clear the stack.

Rules: Since buffers are allocated by the Monitor in its processing of certain requests, .MONF should

be placed in the program at the point where the information is actually required •

Stack

- - - -- - _.- - - - - --

Device Assignment Table
Generated After Load Time

Monitor Buffers
(Data Buffers, Data Control

Blocks, Drivers, etc.)

Device Assignment Table
Generated Before Start of Program

Monitor Routines Resident
For Program Duration

Device Assignment Table
Generated Before Load Ti me

Permanently Resident Monitor

000000
and Vectors

......- Top of Core

4-- Base of User
Programs

......- Top of Full Monitor

Top of Resident Monitor
4--

Figure 2-4 Core Map of Resident Monitor and Full Monitor.

2-46

2.8.3.4 .DATE - Obtain current date •

Macro Call:

Assembly Language

Expansion:

Global Name:

• DATE

MOV #103,-(SP)
EMT 41

GUT.

.DATE

Description: The current date word is returned to the user at the top of the stack. The user must clear

the stack. The date format is Julian-70,00010'

2-47

.TIME •

2.8.3.5 • TIME - Obtain current time of day.

Macro Call: .TIME

Assembly Language

Expansion: MOV #104,-(SP)
EMT 41

Global Name: GUT.

Description: The two current time words are returned to the user at the top of the stack.

LOW-ORDER TIME IN TICS SP

HIGH-QRDER TIME SP+2

where a TIC is 1/60 of a second (1/50 second for 50 cycle lines). The words are 15-bit unsigned

numbers. The user must clear the stack.

2-48

2.8.3.6 • GTUIC - Get current user's UIC.

Macro Call:

Assemb I y La nguage

Expansion:

.GTUIC

MOV #105,-(SP)
EMT 41

Global Name: GUT.

.GTUIC

;CODE

Description: The current user's UIC is returned to the user at the top of the stack. The user must clear

the stack.

2-49

.SYSDV

2.8.3.7 • SYSDV - Get Name of System Device

Macro Call: .SYSDV

Assembly Language

Expansion: MOV #106,-(SP)
EMT 41

Global Name: GUT.

Description: The name of the System Device in Radix-50 notation is returned to the user on top of the

stack.

2.8.4 Requests to Perform Conversions

Using the EMT level 42 instruction the user can request data conversions between binary and some ex­

ternal form, such as decimal ASCII or Radix-50. He communicates his request by pushing the necessary

parameters and an identifier code onto the stack. If a code outside the range of those currently estab­

lished is specified, a fatal error (F034) will result.

A note on Radix-50 packing, follows:

Because the characters allowed within names (e.g., file names or extensions, Assembler symbols, etc.)

are restricted to letters, digits, and one or two specials, it is possible to store 3 characters at a time

within a single word by using the formula:

where C l' C2, and C
3

are the three characters converted from their original ASCII value to the one

shown in the following table:

ASCII RAD-50 Format

Space 40 0

A-Z 101-132 1-32

$ 44 33

56 34

Unused 35

0-9 60-71 36-47

(The maximum value is thus 47 x 50
2

+ 47 x 50 + 47 = 174777)

2-50

•

.RADPK

2.8.4. 1 .RADPK - Pack three ASCII characters into one Radix-50 word.

Macro Call: .RADPK ADDR

where ADDR is the address of the first byte in the 3-byte string of ASCII characters to be converted.

Assembly Language

Expansion: MOV # ADDR,-{SP)
CLR -(SP) ;MOVE CALL CODE ONTO STACK
EMT 42

Global Name: CVT.

Description: The string of 7-or 8-bit ASCII characters in three consecutive bytes starting at ADDR is

converted to Radix-50 packed ASCII using the algorithm in Section 2.8.4. The packed value is re­

turned on the top of the stack, followed by the address of the byte following the last character con­

verted.

Rules: ADDR may be set at any byte address (need not be at word boundary).

The stack must be cleared by the user after the Monitor returns control.

~ The conversion will be stopped if an error condition is encountered, and the user will be

informed of the type of error via the condition codes in the Processor Status register:

C-bit set means that an ASCII byte outside the val id Radix-50 set was
encountered.

The value returned will be left-justified and correct up to the last valid byte, e.g. DT: = DT The

address returned will be that of the first invalid byte.

If no errors were encountered during the conversion, the condition codes will be cleared.

Example: Pack a string of 30
10

ASCII characters, starting at U NPBUF, into a buffer starting at

PAKBUF.

2-51

MOV #pAKBUF ,R3 ;SET UP POINTER TO PACK-BUFFER
MOV "UNPBUF ,-(SP) ; .RADPK UNBUF

NEXT: CLR -(SP)
EMT 42
BCS ERRC ;INVLID ASCII CODE ENCOUNTERED
MOV (SP) +, (R3) + ;MOV PACKED VALUE TO BUFFER
CMP R3, #pAKBUF+ 12 ;END OF STRING?
BNE NEXT ;NO
TST (SP) + ;YES - REMOVE POINTER FROM STACK

Note that this example takes advantage of the fact that the Monitor returns to the stack the address of

the byte which follows the last character converted.

2-52

-

•

2.8.4.2 .RADUP - Unpack one Radix-50 word into three ASCII characters.

Macro Call: • RADUP ADDR, WORD

where ADDR is the pointer to the buffer into which the unpacked bytes are to be placed, and
WORD is the Radix..;5% word to be converted.

Assembly Language

Expansion: MOV WORD,-(SP)
MOV # ADDR,-(SP)
MOV # l,-(SP)
EMT 42

Global Name: CVT.

;MOVE CALL CODE ONTO STACK

·RADUP

Description: WORD is converted into a string of 7-bit ASCII characters which are placed left-justified

with trailing spaces in three consecutive bytes starting at location ADDR. The stack is returned cleared.

Errors: If an error is encountered, the user will be informed via the condition codes in the Processor

Status register:

C-bit set means that (a) a value of WORD was outside the valid Radix-50 set, i.e., 174777, (see

Section 2.8.4); (b) a Radix-50 byte value was found to be 35, which is currently not used.

Nevertheless, three bytes will be returned, with a : as the first of the three for error type (a), and a

/ for any of the three bytes for error type (b).

If the conversion is satisfactory, the condition codes are cleared.

2-53

.D2BIN ..

2.8.4.3 .D2BIN - Convert five decimal ASCII characters into one binary word.

Macro Call: .D2BIN ADDR

where ADDR is the address of the first byte in the 5-byte string of decimal characters to be converted

{can be on byte- or word-boundary}.

Assembly Language

Expansion: MOV # ADDR, -{SP}
MOV #2,-{SP}
EMT 42

Global Name: CVT.

;MOVE CALL CODE ONTO STACK

Description: The 5-byte string of 7- or 8-bit ASCII characters which start at ADDR are converted into

their binary equivalent. The converted value is returned to the top of the stack, right-justified,

followed by the address of the byte which follows the last character converted. The largest decimal

number that can be converted is 65,535 {2
16

-1}. The user must clear the stack.

Errors: The conversion will be stopped if an error condition is encountered. The user will be informed

of the type of error via the condition codes in the Processor Status register:

C-bit set means that a byte was not a digit.
V-bit set means that the decimal number was too large, i.e. greater than 65535.

The value returned will be correct up to the last valid byte. The address returned will be that of the

invalid byte. If the conversion is satisfactory, the condition codes will be cleared.

2-54

2.8.4.4 .BIN2D - Convert one binary word into five decimal ASCII characters .

Macro Call: • BIN2D ADDR,WORD

where WORD is the number to be converted, and ADDR is the address of the first byte of the buffer

where the characters are to be placed.

Assembly Language

Expansion: MOV WORD,-{SP)
MOV # ADDR, ... (SP)
MOV #3,-(SP)
EMT 42

Global Name: CVT.

;MOVE CALL CODE ONTO STACK

.BIN2[

Description: WORD is converted into a string of five decimal 7-bit ASCII characters which are placed

into consecutive bytes starting at location ADDR. They are right-justified with leading zeros. The

stack is cleared.

Errors: No errors are possible.

2-55

.02BIN

2.8.4.5 02BIN - Convert six octal ASCII characters into one binary word .

Macro Call: • 02BIN ADDR

where ADDR is the address of the first byte in the 6-byte string of octal characters to be converted.

Assembly Language

Expansion: MOV # ADDR,-(SP)
MOV #4,-(SP)
EMT 42

;MOVE CALL CODE ONTO STACK

Global Name: CVT •

Description: The 6-byte string of octal 7- or 8-bit ASCII characters which start at ADDR are converted

into the binary number equivalent. The converted value is returned to the top of the stack, right­

justified, followed by the address of the byte which follows the last character converted. The largest

octal number which can be converted is 177777. The stack must be cleared by the user.

Errors: The conversion will be stopped if an error condition is encountered, and the user will be in­

formed of the type of error via the conditi on codes in the Processor Status register:

C-bit set means that a byte was not a digit.

V-bit set means that the octal number was too large, i.e., the first byte
of six was greater than 1.

If the conversion has been satisfactory, the condition codes are cleared. Following C- or V-bit errors

the value returned wi II be correct up to the last valid byte. The address returned wi II be that of the

first inval id byte.

2-56

·BIN20

2.8.4.6 .BIN20 - Convert one binary word into six octal ASCII characters •

Macro Call: . BIN20 ADDR, WORD

where WORD is the binary number to be converted, and ADDR is the address of the buffer into which

the six octal ASCII characters are to be placed.

Assembly Language

Expansion:

Global Name:

MOV WORD ,-(SP)
MOV #ADDR,-(SP)
MOV #5,-(SP)
EMT 42

CVT.

Description: The WORD is converted into a 6-byte string of octal 7-bit ASCII characters, right­

justified with leading zeros, which are placed into the buffer addressed by ADDR. The stack is cleared.

Errors: No errors are possible.

2.8.5 Request~for Interfacing with the Command String Interpreter

A user program may obtain dataset specifications via keyboard input at run time by calling the Command

String Interpreter (CSI) routine. This is the same routine used by many system programs; it accepts key­

board input at program run time in the format presented in Section 3.4. 1 •

The CSI is called in two parts, by two different requests: .CSIl and .CSI2. .CSIl condenses the

command string and checks for syntactical errors. .CSI2 sets the appropriate Link Block and Filename

Block parameters for each dataset specification in the command string. Each command string requires

one .CSIl request for the entire command string, and one .CSI2 request for each dataset specifier in

the command string.

The user must first set up a I ine buffer in his program and read in the command string. Then he does a

.CSI1, which condenses the string by eliminating spaces, horizontal TABs, nulls, and RUBOUTs, sets

pointers in a table to be referenced by .CSI2, and checks the command string for syntactical errors.

If there are no errors, the .CSI2 request may be given once for each dataset specification that the user

expects to find in the command string. .CSI2 sets up the appropriate Link Block and Filename Block

parameter according to the device name, file name, extension, UIC, and switch entries in the command

stri ng.

2-57

.CSIl ,.

2.8.5. 1 .CSIl - Condense command string and check syntax.

Format: .CSIl CMDBUF

where CMDBUF is the address of the command buffer header described under "Rules" below.

Assembly Language

Expansion:

Global Name:

MOV #CMDBUF ,-(SP)
EMT 56

csx.

Description: Condenses the command string by removing spaces, horizontal TABs, nulls, and RUBOUTs,

and checks the entire command string for syntactical errors. Control is returned to the user with a 0

at the top of the stack if the syntax was acceptable, or with the address (in the command string line

buffer) of the data byte at which the scan terminated because the first error was encountered.

Rules: The .CSI2 request must be preceded by a .CSIl request, because .CSI2 assumes it is getting a

syntactically correct command; more than one CSI2 request can follow a single .CSIl request.

The user must set up a line buffer and read in the command string before doing .CSIl.

It is the user's responsibility to print a # on the teleprinter to inform the operator that a CSI format is

expected (Secti on 3. 1) •

The user must set up a seven-word command buffer header in his program immediately preceding the

header of the I ine buffer into which the command is to be read. The user is not required at this time

to set up anything in the command buffer header prior to calling .CSIl; it will be used as a work-and­

communication area by the Monitor routines processing the .CSIl and .CSI2 requests.

The user must clear the stack upon return from the Monitor. If the top of the stack 10 (i .e., if there

was a syntax error), .CSI2 must not be called.

Example: (See .CSI2.)

2-58

..

.CSI2

2.8.5.2 .CSI2 - Interpret one dataset specification of command string.

Format: .CSI2 CSIBLK

Assembly Language

Expansion: MOV #CSIBLK,-(SP)
EMT 57

Global Name: CSM.

Description: Gets the next input or output dataset specification from the command string, and sets the

PHYSICAL DEVICE NAME entry in the link Block, the FILENAME, EXTENSION, and UIC entries in

the Filename Block, and any switch entries in an extension of the link Block.

Rules: Before calling .CSI2, the user must:

• Call CSll to condense the command string and check it for syntax errors.
There must have been no syntax errors.

• Set up a CSI control block as follows:

CSIBLK: POINTER TO CMDBUF

POINTER TO LNKBLK

POINTER TO FILBLK

where POINTER TO CMDBUF is the address of the 7-word work area preceding
the command string line buffer header;

POINTER TO LNKBLK is the address of the link Block of the dataset whose
specification is being requested; and

POINTER TO FILBLK is the address of the Filename Block of the dataset whose
specification is being requested (currently, CSI allows only one file per dataset
specification) •

• Set the first word of CMDBUF to either 0 or 2. 0 means IIget next input dataset
specification ll

, and 2 means IIget the next output dataset specification ll
• CSI2

does not check the va lidity of the code word.

• Initialize the NUMBER OF WORDS TO FOLLOW entry in the link Block to
contain the number of words to follow. This must be at least one, because CSI2
will alter the following word, i.e., the PHYSICAL DEVICE NAME word. CSI2
does not check the validity of this byte.

The user may specify any number from 1 to 255 10 in this location. All words in
excess of 1 are used for switch space (see the interface with respect to switches,
described below).

2-59

Upon return from the .CSI2 request, the Monitor will have provided the following information:

• The top of the stack contains either:

(a) 0, which means the dataset specification requested has been obtained,
and there are still more dataset specifcations of the type requested
(i .e., input or output); or

(b) 1, which means the dataset specification requested has been obtained,
and there are no further dataset specifications of the type requested; or

(c) 2, which means (a), but this particular dataset specification included
more switches than would fit in the space provided; or

(d) 3, which means (b), but this particular dataset specification included
more switches than would fit in the space provided.

• With respect to the Link Block (Figure 2-5):

•

If the P HYSICAL DEVICE NAME word is zero, the user does not wish this
particular output (input) dataset to be generated (read); i.e., this entry was
omitted when the command string was typed in. If not zero, the PHYSICAL
DEVICE NAME and UNIT NUMBER are appropriately set to the device and
unit specified in the command string.

Immediately following the PHYSICAL DEVICE NAME word in the Link Block
are the switches specified in the command stringo The interface for each
switch is shown in the switch block below. These switch blocks are written in
the area provided by the programmer in the Link Block.

NUMBER OF WORDS TO FOLLOW

POINTER TO FIRST CHARACTER OF Vn

POINTER TO FIRST CHARACTER OF Vn-l

POINTER TO FIRST CHARACTER OF V1

W(ASCII) S(ASCII)

If NUMBER OF WORDS TO FOLLOW is zero, there are no more switches. Note
that the pointers are in reverse order. After the value pointers is an ASCII word
which contains the first two characters of the switch. The first character is in the
low byte, and the second is in the high byte. If the name of the switch contains
only one character, the ASCII representation of that character will be in the low
byte, and the high byte will contain a zero. Note that if the number of words
to follow is not zero, it is the number of values +1. For example, if the switch
/SWITCH:$12:AB is stored in memory beginning at location 1000 as:

1000 1001 1002 1003 1004 1005 1006

/ S W T C H

1007 1010 1011 1012 1013 1014 1015

$ 2 A B

2-60

•

•

then the completed interface appears as:

3

1014

1010

127=sI123=W

• With respect to the Fi lename Block (Figure 2-6):

(a) The FILE NAME occupies the two words at FILBLK and FIL.BLK+2. If the
Monitor returns zero at FILBLK, no FILE NAME was specified in the dataset
specification; if it returns 528 at FILBLK, * was specified as the FILE NAME.
Otherwise, the Monitor returns at FILBLK and FILBLK+2 the first six characters
of FILE NAME, in Radix-50 packed ASCII.

(b) The EXTENSION occupies the word at FILBLK+4. If the Monitor returns
zero at FILBLK+4, no EXTENSION was specified; if it returns 528 , * was
specified. Otherwise, the Monitor returns the first three characters of the
extension specified, in Radix-50 packed ASCII.

(c) The USER IDENTIFICATION CODE occupies the word at FILBLK+6. If the
Monitor returns zero at FILBLK+6, no UIC was specified in the dataset speci­
fication (the I/O processors will assume the UIC of this user). If a UIC was
typed in, the Monitor will set this word appropriately. The Monitor returns
3778 in either high- or low-order byte of this word if * was specified.

The user may restart at the beginning of the input dataset or output dataset
side of the command string simply by recalling .CSI1 and issuing a 0 or 2
code, respectively. Note that he may not restart one without restarting the
other.

Remark: There is no error checking with respect to magnitude when the UNIT or UIC values are

converted from octal ASCII to binary.

2.8.6 User Program Tables

2.8.6. 1 The Link Block (used for all input/output an::J directory requests)

ERROR RETURN ADDRESS
LNKBLK: 000000 LINK POINTER (for Monitor use only)

LOGICAL NAME OF DATASET -- Radix-50 Packed ASCII

UNIT NUMBER I NUMBER OF WORDS TO FOLLOW

PHYSICAL DEVICE NAME -- Radix-50 Packed ASCII

Figure 2-5 The Link Block

2-61

Each dataset in a user's program must have a Link Block associated with it. Entries in the Link Block

which must be specified by the user can be written into his program or set by the program itself before

the dataset is INITed. Each entry is explained below.

Address

LNKBLK-2

LNKBLK

LNKBLK+2

LNKBLK+4

LNKBLK+5

LNKBLK+6

Name

ERROR RETURN
ADDRESS

LINK POINTER

LOGICAL NAME
OF DATASET

NUMBER OF
WORDS TO
FOLLOW

UNIT NUMBER

PHYSICAL DEVICE
NAME

Function

This entry must be set by the user to contain the address where
he wants control transferred in the event that any request associ­
ated with this dataset fails to obtain required buffer space from
the Monitor. If no address is specified here, such an error will
be treated as fatal. This address may be changed by the user's
program at any time.

This location must be set to zero by the user and must not be
modified by him. The tv\onitor places a I inking address here
when the dataset is INITed. Before INITing a dataset, the
tv\onitor tests this pointer for zero. If it is not zero, the
Monitor assumes that the dataset was already INITed.

The user can specify a name for the dataset in this entry. This
name, which must be unique, is used to associate the dataset
with a device which is specified by an ASSIGN from the key­
board. The nane is stored in Radix-50 packed ASCII by the
.RAD50 assembler directive. (A specification is required only
when using an ASSIGN.)

This byte contains the count of the number of words to follow
in the Link Block. The user should set it to a 0 if he does not
specify any PHYSICAL DEVICE NAME in the next word, or
to a 1 if he does. Values greater than 1 may be used if the
Command String Interpreter is to be called.

This code specifies the unit number of the device I inked to
the dataset. For example, the TCll Controller (DECtape)
can drive up to eight tape drives (units), numbered 0-7.

If the user specified 1 or greater LNKBLK+4, he must specify
here the standard name (Appendix A) for the device associated
with the dataset. If no name is specified here, the user must
specify LOGICAL NAME OF DATASET and perform an ASsign
command before he runs his program.

2.8.6.2 The Filename Block - Each file associated with a dataset must be described by the user in

a Filename Block. If a dataset is not a file, the Filename Block must still be used, but FILENAME,

EXTENSION, and PROTECT need not be specified. The Fi lename Block is used by OPEN and

all directory management requests.

2-62

FILBLK:

Address

FILBLK-4

Error Code
In Fi le-

name Block

00

01

02

ERRO R RETURN ADDRESS

ERROR CODE I HOW OPEN

FILE NAME

FILE NAME

EXTENSION

USER ID CODE

(spare) [PROTECT CODE

Figure 2-6 The Fi lename Block

Name Function

ERRO R RETURN ADDRESS The user must specify here the address to which he

Faulting
Request

.OPENC
• OPENE
.OPENI
.OPENO
.OPENU

.OPENO

OOPENC}
.OPENE
.OPENI
.OPENU

wants the Monitor to return control if one of the errors
in Table 2-4 occurs during an operation involving the
file. If no address is specified here, any such error will
be treated as a fata I error.

Table 2-4
Filename Block Error Conditions

Cause Remedy

An attempt was made to open a dataset that
was previously opened •

unused

An attempt was made to .OPENO a file Delete the file (with
which already exists. PIP) or change file name.

An attempt was made to open a fi Ie for
input, extension, or update which is
currently opened for output, or which
does not exist.

2-63

Error Code
In File- Faulting

name Block Request

03 .OPENC
.OPENE
• OPENI
.OPENU

04 .OPENC
.OPENE
.OPENU

05 • OPENE

06 .OPENC
• OPENE
.OPENI
.OPENO
.OPENU

07

10 .OPENC

11 • OPENC
.OPENE
.OPENO
.OPENU

12 .ALLOC
.OPENO

13 .ALLOC
• OPENO

14 .APPND
• DELET
• RENAM

15 .ALLOC
• OPENO

Table 2-4 (Cont)
Fil~name Block Error Conditions

Cause

An attempt was made to open a file which
has already been opened the maximum
number of times (76

8
) •

An .OPENC, .OPENE, or .OPENU
attempt was made to open a file which
has already been opened for either
.OPENC, .OPENE, or .OPENU.

Illegal request to a contiguous fi Ie •

An attempt was made to access a file
which the protection code prohibits •

unused

Illegal OPEN request to a contiguous
file.

Fi Ie opened for output or extension is
already on current DECtape unit.

Directory full (DT).

The UIC was not entered into the
device MFD •

An attempt was made to perform an
illegal operation on an opened file •

An attempt was made to create a file
with an illegal file name

2-64

Remedy

Close file.

• CLOSE the previous
open.

•
Close offending file •

Mount another D EC-
tape.

Enter UIC via PIP.

Wait until file is
closed •

Change fi I e name •

Address

FILBLK-2

FILBLK-1

FILBLK+O
FILBLK+2

FILBLK+4

FILBLK+6

FILBLK +10

Name

HOW OPEN

ERROR CODE

FILE NAME

EXTENSION

USER J.D. CODE

PROTECT CODE

Function

This is set when the .OPENx macro's assembly language expan­
sion is executed. It tells the Monitor which kind of open is
being requested: .OPENU = 1, .OPENO = 2, .OPENE = 3,
.OPENI = 4, .OPENC = 13.

This entry should not be set by the user. It will be set by the
Monitor to indicate the type of error (Table 2-4) which occurred.
It will be cleared eX any previous condition at each .OPEN
call.

This two-word entry must be specified by the user if this dataset,
or portion thereof, is a file. It is the name of the file, in
Radix-50 packed ASCII.

This entry must be specified if the file named in the previous
entry has an extension. It is Radix-50 packed ASCII.

The user may enter his USER ID CODE here in octal:

I GROUP NUMBER I USER'S NUMBER I
High-Order Byte Low-Order Byte

If no entry is specified here, the current user's UIC is assumed.

The user may specify here the protection to be given to the file
at its creation or renaming (see following paragraph). If 0, a
default protection 233 will be allotted.

2.8.6.3 The File Protection Codes

2 a

All Others

Owner: Bit 6 = 1 = Owner cannot write on or delete the file.
This is a safeguard to prevent inadvertent
deletion or over-writing.

Bit 7 = 1 = Protect the file from automatic deletion
on FInish.

Figure 2-7 File Protection Codes

(continued on next page)

2-65

User Group and All Others:

Note:

Function

Code Delete Write Read Run

0 yes yes yes yes
1 yes yes yes
2 or 3 yes yes
4 or 5 yes
6 or 7

yes indi cates that the operation is allowed.
For example, if a file belongs to user [23,10],
a protection code of 3 will allow user [12,4]
to read or run but not delete or write on it.

Figure 2-7 File Protection Codes

2.8.6.4 The Line Buffer Header - (used by READ and WRITE requests)

BUFHDR:
MAXIMUM BYTE COUNT

STATUS I MODE

ACTUAL BYTE COU NT

POINTER (Dump Mode only)

Figure 2-8 Line Buffer Header

Each element of the I ine buffer header table is as follows:

Address

BUFHDR

BUFHDR+2

BUFHDR+3

BUFHDR+4

Name

MAXIMUM BYTE
COUNT

MODE

STATUS

ACTUAL BYTE
COUNT

Function

The count shows the size of the buffer, in bytes. It must be
specified here by the user on all INPUT operations.

The user specifies here the mode of the transfer. All modes
are I isted and explained in Figure 2-10.

The Monitor will place in this byte the status of the transfer
when control is returned to the user. Figure 2-9 I ists each
bit and its meaning. Errors encountered executing an I/O
transfer will be flagged in this byte. The user should always
check its content after each transfer completes.

Th is count controls the number of bytes to be transferred on
OUTPUT. It must be initialized by the user before any output
transfer from the line buffer. After any transfer in or out, it
will show how many bytes have been transmitted {or in some
modes, see Section 2.8.6.6, would have been transferred had
some error not been detected}.

2-66

:~

Address

BUFHDR+6 POINTER (dump
mode)

Function

If bit 2 of MOD E is 1, the user specifies here the starting
address of the line buffer. If bit 2 of MODE is 0, the line
buffer header is only three words in length, and must immedi­
ately precede the I ine buffer itself. (Section 2.8.6.6 Note 9.)

Note: The Monitor will return control to the program if a de-
vice transfer is needed to satisfy a READ or WRITE re­
quest. During this time, the header words will be used
to store data relevant to the operation underway. The
user should not, therefore, attempt to change this con­
tent until it is evident that the transfer has been com­
pi etely effected, e. g. , after a • WAIT return.

2.8.6.5 The Status Byte

End of medium
(EOM) or

End of file
(EOF)

Device parity
flag

Spare

-Invalid line error
Checksum error

Character parity error or
illegal binary format

Agure 2-9 Status Format

The function of each status format bit is explained below.

Bit

o
(INVALID

LINE)

Mode

ALL

FORMATTED
ASCII NORMAL
(parity or non­
parity)

FORMATTED
ASCII SPECIAL
(parity or non­
parity)

Request

• READ;VvRITE

.READ

• WRITE

• READ

.WRITE

2-67

Condition

Appropriate BYTE COUNT = 0 at call.

The MAXIMUM BYTE COU NT ran out
before a line terminator was seen. (Last
byte has been overlaid until the termi­
nator has been reached.)

The last byte was not a terminator •

The MAXIMUM BYTE COU NT was
reached before a line terminator was
seen (excess data has not yet been read).

The ACTUAL BYTE COUNT was reached
before any terminator was seen.

Bit

1

Mode

FORMATTED BINARY
NORMAL

FORMATTED BINARY
SPECIAL

FO RMA TTED BI NARY

Request

• READ

• READ

• READ

Condition

The MAXIMUM BYTE ran out before the
count stored with the data. (The last byte
has been overlaid in order to verify the
checksum .)

The MAXIMUM BYTE COUNT was reached
before the count stored with the data. (The
excess data still remains to be read and
checksum has not been verified.)

(CHECKSUM
There was a discrepancy between the check­
sum accumulated during the. READ, and
that stored with the incoming data. ERROR)

2
(PARITY
FORMAT)

2
(ILLEGAL
BINARY
FORMAT)

6
(EOM,lEOF)

5
(DEVICE
PARITY)

FORMA TTED ASCII
PARITY NORMAL
OR SPECIAL

FORMATTED BINARY

ALL MODES

ALL MODES

• READ

• READ

• READ or
.WRITE

.READ or

.WRITE

A character was read which had odd parity •
The eighth bit of the illegal character
delivered is set to a 1.

This bit is set if a line processed in a binary
mode does not have a 001 in the first word.

An input device cannot supply any more
data or an output device cannot accommo­
date more, i.e., the disk has no more stor­
age space, or the paper tape reader has run
out of paper tape.

A hardware error has been detected on a
bulk storage device. This could be either
a parity error or a timing error. The driver
will already have tried to READ or WRITE
8 or 9 times before setting this bit. (This
flag is a warning that the data in this line
or some subsequent line sti II using data
from the same device block may be invalid.
It will be returned for each transfer call
using the same block.)

2.8.6.6 The Transfer Modes

1. Formatted ASCII Normal - Data in this mode is assumed by the f\.Aonitor to be in strings
of 7-bit ASCII characters terminated by LINE FEED, FORM FEED, or VERTICAL TAB.

READ: The line buffer is filled until either a terminator is seen or the number of bytes
transferred becomes equal to the MAXIMUM BYTE COU NT. If the MAXIMUM BYTE
COUNT is reached before the terminator is seen, the invalid line error bit in the Status
Register of the buffer header is set, and each remaining character through to the terminator
is read into the last byte of the I ine buffer, i.e., the surplus bytes are overlayed. After

2-68

READ (Cont)

the transfer, the actual byte count equals the number of bytes read (including the
excess). RUBOUTs and NULLs are discarded. The terminator is transferred.

Spare

Set to 1 to suppress
automatic echo on
a terminal (keyboard)
device.

Reserved
for
RSX

0= ASCII
1 = Binary

o = Formatted
1 = Unformatted

o = Data follows Header
1 = Dump

o = No Parity
1 = Parity

0= Normal
1 = Special

Figure 2-10 The Mode Byte

WRITE: The line buffer is output until the number of bytes transferred equals the
ACTUAL BYTE COUNT. If the last character is not a terminator, an inval id line
error bit is set in the STATUS BYTE of the buffer header. Previous terminators are
output as normal characters.

TABs are followed by RUBOUTsi FORM FEEDs are followed by NULLs.

The READ/WRITE processor passes data to the device driver specified, and each _
driver wi II convert the information to meet its specifi c needs. Appendix G summarizes
the characteristics of the device drivers.

2. Formatted ASCII Special -

READ: The same as formatted ASCII normal with this exception: if the MAXIMUM
BYTE COUNT is reached before the terminator, the transfer is stopped. The remain­
ing characters are not overlaid, but are retained for transfer at the next • READ. An
invalid line error will be returned in the STATUS BYTE, and ACTUAL BYTE COUNT
will equal MAXIMUM.

WRITE: The same as formatted ASCII normal with this exception: the I ine buffer is
output until the first terminator; the ACTUAL BYTE COUNT will stop the transfer
if it is reached before the terminator is seen. In this case, the invalid line error
bit is set into the STATUS BYTE. Note that in this mode only one line of data can
be output at once, but its byte count need not be exact, provided this is greater
than the actual.

3. Formatted Binary Normal -

READ: This is an a-bit transfer. Words 2 and 4, STATUS, MODE, and ACTUAL
BYTE CO UNT always accompany the data during formatted binary transfers. The
counts are adjusted by the Iv\onitor to include the extra words. On input, the line
buffer is filled unti I the number of characters transferred equals the ACTUAL BYTE

2-69

READ (Cont)

COUNT read, or th.e MAXIMUM BYTE COUNT. If the MAXIMUM is reached before
the ACTUAL, an invalid line error occurs and the remaining bytes are overlaid into
the last byte unti I the checksum is verified. After the transfer, the ACTUAL BYTE
COUNT contains the actual number of bytes read (including the excess).

WRITE: This is an 8-bit transfer. Words 2 and 4 of the line buffer are output until
the number of characters transferred equal the ACTUAL BYTE COUNT and a checksum
is calculated. The checksum is output at the end.

4. Formatted Bi nary Spec i al -

READ: The line buffer is filled until the number of characters transferred equals the
ACTUAL BYTE COUNT read. If the MAXIMUM COUNT is reached before the
ACTUAL, the remainder of the I ine is retained by the Monitor. The MAXIMUM
number is transferred to the I ine buffer and the ACTUAL BYTE CO UNT is set to
the full input count, rather than to the number of bytes actually transferred. The
invalid line error will be set in the STATUS BYTE. The user can compare the
MAXIMAL COUNT with the ACTUAL, determine how much data remains, and
recover it by an unformatted binary read (allowing 1 extra byte for the checksum).

WRITE: Identical to formatted binary normal.

5. Unformatted ASCII Normal or Special - This mode is avai lable to the user who wants to
do his own formatting. Seven bits are transferred; the eighth is always set to zero.
NULLs are discarded.

READ: Transfer stops when the number of bytes transferred reaches the MAXIMUM
BYTE COUNT. Nulls are discarded but all other characters are treated as val id.

WRITE: All characters are transferred. The transfer stops when the ACTUAL BYTE
COUNT is reached.

6. Unformatted Binary Normal or Special - This mode is identical to unformatted ASCII
except that eight bits are transferred on both input and output. No checksum is
calculated.

7. Formatted ASCII Parity - Identical to formatted ASCII (Special or Normal) except
that even parity is generated in the eighth bit on OUTPUT; during INPUT it will
be checked. Valid characters will be passed to the user as 7 bits; invalid
characters wi II be marked by bit 8 = 1 , and wi II cause the setting of the parity
error bit in the STATUS BYTE (11).

8. Unformatted ASCII Parity - Identical to unformatted ASCII (Special or Normal)
except that eight bits are transferred instead of seven. No parity generating or
checking is performed.

9. Dump Iv\odes - All modes can be specified as DUMP, which means that the word
after the ACTUAL BYTE COUNT is considered to be a pointer to the beginning of
the data rather than the beginning of the data proper. {Section 2.8.6.4.)

2-70

•

2.8.6.7 The BLQCK Block - (used by BLOCK request only)

BLKBLK: ~_F_U_N_C_TI_O_N_/_ST_A_T_U_S ----I
BLOCK NUMBER

MEMORY BUFFER ADDRESS

LENGTH

Figure 2-11 The BLO CK Block

Address Name Function

BLKBLK FUNCTIO N/STATUS User specifies here the function to be performed,
and the Monitor returns to the user with the
appropriate status bits set.

Bit ,.. Bit = 1 megns:

f 0 function is GET
u
n 1 function is OUTPUT
c
t
i 2 function is INPUT
0

n
(3-8) spares (ignored by Monitor)

e ,. 9 illegal function
r 10 fi Ie is linked, or device is not
r fi I e structured
0

r 11 block number does not exist in
file, i.e., it is greater than the

s file length.
t
a
t 12 fi I e not open
u
s 13 protect code violation

14 end of data error

,...1 5 device parity error

BLKBLK+2 BLOCK NUMBER Requested block number to be transferred
relative to the beginning of the file.

First block of file is O.

BLKBLK+4 Memory Buffer The address and length of the Monitor buffer given
Address by the Monitor on an INPUT or GET function.

BLKBLK+6 Length

2 .. 71

2.8.6.8 The TRAN Block (used by TRAN request only)

TRNBLK: DEVICE BLOCK NUMBER

MEMORY START ADDRESS

WORD COUNT

FUNCTION/STATUS

NUMBER OF WORDS NOT TRANSFERRED

Figure 2-12 The TRAN Block

The user must set up a TRAN block for each • TRAN in his program.

Address

TRNBLK

TRNBLK+2

TRNBLK+4

TRNBLK+6

TRNBLK+10

Name

DEVICE BLOCK
NUMBER

MEMORY START
ADDRESS

WORD COUNT

FUNCTION/STATUS

NUMBER OF
WORDS NOT
TRANSFERRED

* Must be speci fi ed by user.

Function

User specifies here the absolute block number of the
device, at which the transfer is to begin. If it is not
a bulk storage device, specify block O.

User specifies here the core memory address at which the
dataset transfer is to begin.

User specifies here the total number of 16-bit words to
be transferred. Word count need not be block size.

Bit:

0

1
2

...
3
4
5
6
7
8
9

10 ...
11

12
13

14
15

)

Bit = 1 means:

Binary, rather than ASCII*

Write = 1*
Read = 1 *

Reserved for Monitor's use

DECtape direction*
o = forward
1 = reverse

spare
invalid call (improper function/no word

count)
end of medium **
recoverable device **
error such as parity or timing.

User leaves this entry blank. If an EOM occurs during
the transfer, the N'onitor will place in this entry the
number of words not transferred.

**These bits are cleared before TRAN is carried out.
2-72

•

2.8.6.9 The Special Functions Block (used by SPEC request only)
i

SPCBLK: WORDS TO FOLLOW CODE

ADDITIONAL DATA

WORDS AS NEEDED BY

FUNCTION SPECIFIED

Figure 2-13

Where a special function requires supporting data the user must set up a Special Functions Block in his

program.

Address

SPCBLK

SPCBLK+1

SPCBLK+2

Name

CODE

WORDS TO
FOLLOW

2.9 PROGRAMMING TIPS

Function

The user identifies the function here by inserting the appropriate
code in the range 0-255

10
•

The $ize of each Special Functions Block is dependent upon the
Function. The user shows here how many more words belong to
the particular block.

The user places in these words data to be passed to the function
processor or the function processor will return here such items
as status information etc. The format in each case is determined
by the function.

Swapping time can be kept to a minimum by placing like requests together in the coding. For example,

method 1, below, will require the. INJT and the. OPEN processors to be swapped in only once each.

However, method 2 requires that each be swapped in three times. The exception of course occurs if

either are made core resident.

Method 1

.INn A

.INn B
• INn c

.OPENI A

.OPENO B

.OPENO C

Method 2

.INn A

.OPEN A

.INn B

.OPENO B

.INn C

.OPENO C

Core can be used more efficiently if datasets which are to be used the longest (i.e., • RLSEd last) are

• INned first. Such action is efficient because free core is al located from the bottom, and if the more

2-73

permanent routines are allocated first (i.e., at the bottom), larger areas of free core will become avail­

able as less permanent routines are released from the top. Thus, method 1 below is potentially more

efficient than method 2.

Method 1

.INIT C

• INIT B

.INIT A

• RLSE A
• RLSE B

• RLSE C

Method 2

.INIT A

.INIT B

.INIT C

• RLSE A
• RLSE B

• RLSE C

• READ and .WRITE were designed to be used for sequential access to a linked file, but are legal for

both linked and contiguous files.

Since. EXIT will cause the user1s program to be effectively wiped out, if the programmer wishes his

program to remain in core after it has finished (e.g., for debugging or for immediate reuse), he might,

instead of .EXIT, use something like:

BR • or LOC: BR LOC

The operator can then specify the next action by recall ing the Monitor via a command at the keyboard

(see Section 3.2).

In some cases the WAIT or WAITR instructions are not needed. This situation is called an implied

WAIT, and occurs because the Monitor will only process one action on a dataset at a time. For example,

if a program is written:

.READ LNK1,BUFl

• READ LNK 1 ,BUF2

the second READ becomes an implied WAIT for the first, since the Monitor will not start the second

until the first is finished with the dataset. This implies that when control returns to the user after the

second READ, he may safely assume the data transferred by the first can now be processed. Similarly,

if two different datasets reference one device in common, action on the second dataset will not proceed

unti I action on the first is complete.

2-74

."

•

•

2.10 MONITOR MESSAGES

Monitor messages are typed on the teleprinter in the fol lowing format:

CNNN XXXXXX

where C is one of five letters identifying the type of message:

I Informational
A Action required by the operator
W Warning to the operator
F Fata I error
S System program error

where NNNN is the message number, and XXXXXX gives appropriate additional information. Infor­

mational, Warning, and System program messages are printed and the program continues.

Action messages are printed and the program is suspended. The Monitor expects the operator to take

some action such as II continue the program II (type COntinue), or "ki II the program II (type KILL).

Fatal error messages are printed if possible, and the program is suspended. The Monitor will not allow

the operator to continue the program, but expects to see either a BEgin, REstart or KILL command. If

a fatal error is a system disk failure and the error message cannot be printed, the central processor

halts. This is the only time that a halt occurs in the Monitor.

If the error has been caused by a stack overflow, the stack pointer is reset before the message is printed.

All Monitor and system program error messages (:Ire summarized in Appendix F.

2.11 EXAMPLE PROGRAMS

The following are assembled I istings of two simple programs written in and assembled using PAL-ll R.

The programs contain many of the Monitor's programmed requests.

2-75

Example Program #1
'PROGRAM wHIC~ TVP!S A MESSAGE ON T~E T!LETPt WHILf
'ACC!PTING • MESSAGE FROM TH(KEYeOARD. PROGRAM REPEATS

00Q11!021
000001
000002
000003
000004
00000~
00000e
0010007
00021 US
00P.l012
21210011
00Q!1~"

JUJ-.0
fitl-Xl
R2·X2
R:!-X:5
R'-X~
R5-.~
sp-xe pc-.,
C~-l~
~"'·12
HT-11
EROR-10'

210210210 0121A6'B~GtN' MOV .~NK1,-(8p) IINIT ~NKI
2100312

000~04 121.QJ0e EMT e
02100~e ra12,.e' MOV ~LNK2,-(5~' 'tNt~ LNK2

021032'
000012 1040~e EMT e
000211. 012,.8' MOV -FIL1,-eSp) lOP!N FOR OUTPUT

0003401
0002120 012,.8' MOV -LNKl,.CSP)

000312
0~002A 10'01~ EMT Ie
00~02e 012'Ae' MOV .~IL2,.(SP) 'OPEN FOR INPuT

0003ee
"0002132 2112146' MOV ~LNK2,-(SP)

000324
000038 10401e EMT 18
0000421 0121.5' MOV .MSG1,-CSP) 'WRITE TH~ MESSAGE

Cil00310
00004. 0127.e' MOV _LNK1,-CSP)

0~G'l312
0000b0 10400a EMT 2
0000~2 012'00' MOV .Lle1.e,R~ 'SET TME BUFFER POINTER

00",170
0000ee ~0e020 LOOP11 C~R (R0). 'CLEAR THE ADORESS AND INCREMENT
0000e0 020027' CMP R0,-LI81.A0. ,fNO OF6uFFER1

00~JQl2
0002154 103774 8~O LOO~l 'NO, GO BACK & CONTINUE CLEARING
000A6S 012746' MOV NLNK1,-CSP) IVE5,CONTfNUE

00~31a
000072 1040~1 EMT 1
00007. ~121A5' MOV -LIB1,-CSP) rNo,READ ~NK2,LIB\

0001f§2
000100 0121AS' MOV _~NK2,.rSP)

001;l132'
0~010. 104004 EMT 4
00010e 0121.e' MOV ~LNK2,-(SP) 'WAtT

00~324

2-76

000112
00011.

000122
00012.

000130
0001~2

01210136
000140

012101·4
0QJ0148

tlH~01 ~2
0001154

0~\tHe2
000164
000165
00015e

000310
000312
000314
013031$
001'£'311
000320

12100322
000324
000326
01.30330
0003Jl
000332

000~3.
0003~e
000:537
0003.0
0003·2
00034'

10.001
1327e7
0001217
0000.3
001016
01;7.tP
000312
104 0 17
012146'
00121324
104017
01;748'
00121312
104007
12112'415'
00~324
104°07
00~le7
171820

00(J112Q.1
O",0
000

0O",O00
000~10

CJJ001e0'
000)12100
01e027

001
000

0424214

0001e0'
00r1.H~00
01e030

001
000

e4?420

000000
002
000

000000
000000
0000Q\0

!RRll
ERR21
!RR31

L!Btl

I..NKll

I..NI(21

FII.!I

EMT 1
BITe .ERO~,~I81+3 'ANV ~RRORS"

eN! ERR3
MOV itI.NI<1, .. (8P)

EMT 17
MOV .f.,NI(2,·rSP)

!MT 17
MO\l 'H.NK 1,. (Sp)

EMT 7
MOV .I.NI<2,·CSP'

EMT 7
JMP BEGIN

!MT 50

.IIIOQD 80.

.BYTE 0,0

'YES,GO TO ,.~e: ERROR·3
'NO. .CLosE LNl<l

'.CLOSE L,Nj(2

, .1f1.SE l,.Nt<l

I.RLSe: L,N1<2

, €xIT ON ANY !~RO~

'MAX EHTE COUNT
'FORMATTED ASCII

,wORD 0 'ACTUA~ eyrE COUNT
,-.+80. ,RESERVE TM! aU'FER SPACE

.wOQO ERR1 '!R~OR ~ETURN AOOR!S!
,w0F10 0 ,POINTE~

.~A050 IDS11 '~OGICA~ NAME

.8YTE 1,0 'UNIT ~

.~ORO ERR2

.wORO (/)
,RAoe0 IOS21
,eVTE 1,0

.RA050 IKBI

'KEVBOARD

,WORD 0 ,GO To FATAL ~R~aR MESSAGE
.8YTE 2,O JOPfN FOR OUTPUT

2-77

ADORES!='

AI.

000.!4e 00"'~0I"
~0!~J!)0 00GHHh~

01l9~352 000000 ,~ORO " ,GO TO ~ATAL ERROR
00~3e. 004 .f!VTE 4,0 'OFtEN FeR INPUT
1lI003e~ Q\QlP)
!lJ00;SSe 000~e~ 'tL.:21 .wORO 0,0I,0,0,QI 'NO NAME. EXT, uIC, O~ p~OTEC;T

00"'360. 00~~00
O""O362 ~~H"0",0
00036. ~0~0C'1~

000388 00~000

0~0370 Q.'0021 VI ~SGll ,It/ORO 21~ ,MAY BVlE COUNT5
00wt372 000 .BVTE O,0 '''I')RMATTEO ASCtI
000373 0e0
1210037. C'l002r!5 .I/IIO~D MSGEN().MSG1.~ 'ACTUAL. ~VTE CO;JN T
000316 01~ .BYT! CR,L.F,IoIT
00":s71 ~12
00",.00 011
000.01 040 ,ASCII I SPEAI< POLlGIoILV TO YOLl~ L.ITTLE HnY /
000402 123
000.03 120
000.0. lQ.1e
000.Ii15 1V'1
0010.0e 113
01304"7 041~
000.'0 1~2 • 000411 117
000.12 125
000.13 1~'
000.1. ltra
000.1!! Ii'
Q)00'1~ l~t
000411 ~'0
000.20 12·
001,1.21 1t1
0004422 ~.a0

000.23 1~1
000.2. 11 7
000.25 1'~
00~.2e 1,2
00)0.27 ~410

0~0.30 1,4
000'~1 111
00 0 ,32 124
00",.3;3 124
000.34 1t'
0~0.;"5 1~~
000 .. 3e 04~

'HH"'~1 102
001".'" 1t7
00~.·1 131
000.42 040
000.·3 ~\~ .F.)YTE CR,LF,i04T,
000 4 ~12

•
2-78

000445
0~0'''e
0~04~7
000.50
0004~1
0004!5a
'HH~453
00045.
0004e5
000.ee
01a0.57
000.80
000.01
000462
000483
0~0.6.
000.65
000.l!e
000.157
000.7Pl
000471
000472
000.73
00Ql414
000,'e
00047e
000.77
0001500
0005211
000502
01301503
00050.
000S~5
000S0e
0~~e~7
0~0e10
0ra0!511
000512
00~!13
000el.
00~!51~
00kH51e

- 000517
000520
000521
000e22
000e23
00052.
000525
00052~
000527
000!5J0
0~~~31
0~0~:3a
000!53J
0id083'.

011
000
040
101
1 US
104
r640
102
1~5
101
124
0.21
110
111
11!5
040
127
110
lp.!~

lt~
040
110
10!5
0.~
1~~
lle
105
105
1~2
105
123
0'0
0U5
012
011
040
110
105
0'0
117
lie
11'
131
040
1~'
1t7
lee
1,,3
040
111
124
04~

124
1\7
040
1~1

.ASCII I AND BEAT HIM WHEN ~! SNEEZES I

•• SCIt I HE ON~Y DOES IT TO ANNOY I

2-79

0105~S
01053e
e005~7
1100S"0
000541
1001542
011543
000544
00UIS."
\lUJIS ••
QUH1U'.7
000S~0
01305 51
QJr.u.lD5a
000503
00055.
010555
000558
000551
000580
000581
000552
00015153
000554
00ruus5
00015158
0005e7
000570
000571
01210512
100513
11057.
00057'
IUJ0578
000577
000f50(1)
000S01
000602

BEGIN
ERRI
FIL.l
l..'
l..NI<2
MSG1
Rl
R04

118
118
117
131
0.0
0115
lila
011
0.0
102
105
10~
101
125
123
105
0.0
110
105
0.0
113
118
117
127
123
040
111
124
0.0
124
10~
1(1.11
123
1~5
123
0.121
015
012

000e03
000804

000001

0l'J000~R
0001BIt'IR
0~034Q1R

• 000012
000324R
000370R

IX000~01
IX00000.
• 010e0."

.BVTE CR,L.F

.INO

CR 1 000215 EROR 1 et~0U"
ERR2 000180R ERRJ 0",016QJR
fJIL.2 00035f5R ~T • 0"'0011
L.ISl 0(l]01e~R l,.N1(1 000!12R
LOOP1 00005eR MSGENO 1 0Q10e03R
PC IX000007 R0 IX0~Q!C'l0~

R2 'X0~0002 ~3 IX0Cl10003
R5 IX0000liH5 sP '''~~~CJl0B

•

2-80

Example Program #2

00210021

000004
0002105

000012
02121014

0QJ0020
000022

IlHUUI28
13211030

IUHtl034

000042

0000415

02100e2

000055

o,"8052
ra00e154

02102170
0002112

00001e

000102
0001~4

00~110
1800112

00Q1000
000005
000007
0000U5
000012
21210011
000004
00"002
000107
040000
21021107

, PROGRAM TO OUPLICAT! A PAPER TAPE
, U~ING TRAN-LEVEL REQUESTS ,

Ri1Ji'X0"
SPIX8
PC--X7
CRI15
LFI12
I"IT111

. ·ROI·0-.· -_ _-_. - ." ' -iT-R-A~j'!L.-O-CI< "'iiNeT'tON cOrjE 'CI~ .REAI)
wRI02 ,TR'NB~Oc~ FUNCTION COOE FOR .wRITE
GI101 ,ASCtl G
£00140000 ,TRANBLOCK FUNCTION/STATuS,EOD
ERORI107

o 1 2.7 4 S , B! GIN I MOV .LN~_~,.(SP) 'IIIINIT LNl(l
21021'18
10.005
012745'
0004:S0
104005
012748'
0003415
12140015
01?748 1

000372
1042108
rlI0~"1!51 STA~TI
000210
0127e7 MOV
21001.4
000~'4
00e0e7
0210318
00~0e7
01U!314
01274tP
000245
0127.6'
0003'5
10.002
012748'
00Qt34e
104001
012 7.8'
0003e5
012,.5 1

0210372
104004
01a7.fJ'
12100;)72
104001
1321157
02101217
000241

EMT t5
MOV NLNI<2,"CSP)

!MT 6
MOV "LNI(3,-CSP)

EMT e
MOV NI,.Ni(4, .. CSP)

[MT e
CLR FLAGl

''100. ,eL.I< 1 +4

'ZERO Et-.lP FL.AG

'INITIALIZE BUFFER SIZE

CLR BUF1+f5

CI"R 8uFl+10

'INITIALIZE INPUT eU~F!~

,IN%TIAL.IZE IN~ut eUF'!R

MOV "MSG1,-C$P) ,.~RITE LNI<~,MSG1

MOV _I,.NI<3, .. CSP)

EMT 2
MOV "L,NK3,"CSP)

EMT 1
~ov _eU'l,"CSP)

MOV _LNI<4,w(SP)

EMT 4
MOV "L.NI(4,·CSP)

EMT 1
8IT~ .EROR,RU'1~3

2-81

"
0~0120 00t0!50 BN! ERRe
00~122 1227~1 CMPa .G,BU'l+'; 'G?

tH'I~1L"7

00~2!'
0001J0 00tJ~1 BNt:: STA~T 'NO
0~01Ja 1127(11,7 LnOp~1 Move .RO,BI..t<l.e ,vEs,sET ur:- REAr')

000\1)0'
~002!50

0"'~14~ 012 7.e l MOV -'SL..1<1,-C5P' ,.n~AN L,Nl<l,SLt<l
00~4(212

00014. 01274!' MOV _I.. NI<1,-CSP,
1i10Q1'1ei

0001'0 10.01-' EMT 121
0001~a 012,.e l MOV "I..Nl(l,-CSP' I.\fjAIT I..Nl(l

000'18
00!.it'S 1121.lh11 Efo1T 1
0rl101150 03~7e7 BIT "!OO,~LI(1 ... 6 ,TEST FLINCTION FOR EOO

0.0~PI"
000222

0~01ee 001406 BEQ LOOPw
000170 16~1l51 !NOMI SUB BI..1<1+1(1),BLI(1+4 ,fotES!T WQROCOIJNT TO FI~UL

00~21e
000210

I FHJFFE~' S SIZE
IIIGHll17e 01'-787 MOV "l,FI..AGl 'SET EOO-FL.AG

000001
011)Qli640

000204 lt27f1J1 LOOP"" Move IIt\JIIR,AI..1(1+f5 ,SET Lip w~tTE

Ql00002 IA
20017e

000212 0121.15 1 MOV .eL..t<l,-CSP) '.T~'N I,.NI(2,BL,t<1
00Q11.~2

00021e 01274!' MOV ·LNI<2.·(S~)
00m4~0

1.1100222 104010 t:MT 10
00022, 0127.~' MOV .I.NI(2,"(SP) ,.wAIT L.N1<2

000·3~
000230 104001 EMT 1
000232 00e7e7 TST !'LiCi1 'ENO Of" DATA?

011!QI 0"" 6
0002-5e 001274 BNE STA~T ,VES,START ovER
000240 000734 6R 1..00P~ ,NO. Ci!T MORE

ERR11
!~R21
e:R~JI
ER~"I
!RR~I
EI(R61
!~R71

000242 104k!1'5~ EMT 50 'E"~TT ON ANY ERROR
0~024. 00Q!~00 FLAG11 .WORO 0 rl •• EOO ~ECEIVEO 0'1,/ ~EAD

0002'6 000'067 MSG11 • !IIIO~f) 5~.
000a~0 "011) .BVTE 0,~

0002~t 0~0

0002~2 000067 • wORD 55 •
00025. 015 .BYTE CR,I.. F ,1-4T

~

2-82

00025e
01210115e
~00251
012102521
0210261
000262
000263
000254
00026e
02121288
00025,
0121021121
000271
000212
000213
0002'4
000a1e
0e021e
000211
0003\10
000~01
000302
0210303
1210030.
00030~
0121030&
000301
000310
000:511
000312
000313
1210121314
0003U5
0016315
000317
000320
000321
000322
000323
12100324
00032~
000;526
000321
000;5J0
000331
000332
000333
00121334
~0033~
0ra"3~6
121,,0331
000340
000341
0003~2

012
011
114
117
1"1
104
04~
124
101
120
10~
040
111
l1e
124
117
0 .. III
122
10e
101
1~4
1"'~
122
~t5
012
011
120
1215
123
110
040
"40
0"~
0.~
101
0!54
040
103
122
"40
04~
~ .. 0
121
110
10~
116
040
122
105
101
letA
131
015
012

01210344
000242'

.ASCII I~O.O TAPE INTO REAOERI

.ASCIt IPUSH WHEN REAOYI

.EVEN
.!I40~O ERR3

2-83

.AI

Ifll~'e 0021001 I..NK31 .wORD I
001350 etelti' .IIAoel IDSll
1110311 001 .BVTE 1,0

, .. -•.. -.~, ... - .. _- ._- .. ---~ ~~ - , ... ' ...• - .. _- .
01210353 000
001~5. "'1t420 .RAOS0 11<81
110358 00000. SUl'll • \II o lit 0 • 0QJ0J50 IQlJ0 .BYTE 1,0
QJQJ0J51 000
000382 10000t4 .wORD ..

00~3'0 I-I.'
000~'0 .!VEN

000310 0"",2.2' .1Il0RD ERA.
0003i'2 0100",O l.NK.1 ,WORD 0
00137. 018027 .~Aoe0 10Sl1
era0~1e 0211 .BVTe: 1,0
01113"_ 100
000.00 0'2'20 .RADel IKBI
1110.02 0021012113 elK!1 ,WORD 0
000.1a. 000 •• 0' .\IIORO SUFI
0011.08 0IUJ1,' ,wORD 1018.
111.10 0001!l10 ,WORD 0
110.12 000100 ~~ORD0
011.1. 00~2'2' .1Il0RD ERR~
lel.,s 01210000 L,NKll .\IIOAD "
101.2~ 018031 .RAoel 10131
1110.22 001 .BvrE 1,0
12101.23 100
IUII.2. 0e3~20 .RAoe0 I~RI • 101.25 0002.2' .WORD ERA2
000'~1 e001~0 LNK21 .\IIORD ,I
100.32 fl18032 .RAO~0 IOS41
'II'~' 001 .8VTE 1,0
II0.il5 000
e00"~5 08320121 .RAOea ·/fJ~1 - ~.- - ,-

000e~ .. euF21 .-,+110 •
0'A0OJ1 • IND

BIGIN 000000R 1151..1(1 000'02~ SUFl G!l00:!S6~
Bu,a 000440~ CR - 000Ale !NtH4 0Q\017Ci"R
100 • O,0000 !ROR • 00~107 ERRl 0"'0242R
!RR2 1002-42R eRR3 . Qf0'0a-421r----- --- , !"R"if".r - 0~-0242~
ERRS 0002'2R EfHU5 0002'2R ER~7 1?100242R
FLAGl 0002 •• R G - 000101 I"IT • 0i110011
l.' - 000012 L.Nl(l 00A.1f1'R l.NI(~ 0~043~R
I.,NtC~ IU.l1ilJ3,eR L.NI(' 0~0372R L.OOPR ~00132R

1.00'''' 00020.R MSGl 000'-4~R PC - " (H"~ '" VI , RO • 0001?l04 Fl0 - .~000C.fI~ -- '-- sP .X0iJ100~6
START 00"030R iNR • 0('1001212 • 000e~4R

2-84

CHAPTER 3

OPERATOR COMMANDS

3.1 THE OPERATOR KEYBOARD INTERFACE

Through the operator keyboard, the user can communi cate with

• the Monitor

• a program the user wrote to run under the Monitor

• a DOS system program (Assembler, PIP, Editor, etc.)

Rules which are common to all users of the operator keyboard under DOS are described in Section 3.2.

In communicating with the Monitor, the keyboard is used as a control device to allocate system re­

sources, move programs into core, start and stop programs, and exchange information with the system.

Commands which the user can type are described in detail in Section 3.3 and summarized in Ap­

pendix D.

For use in communicating with a system program or a user's program, the operator keyboard functions

as a normal input device; the data from the keyboard may be transferred to a buffer in the program, or

it may be preprocessed by a special routine called the Command String Interpreter (CSI), described in

Section 3.4.

When the system requests input from the keyboard, a single character is printed on the teleprinter:

Character

$

*

Meaning

The system is idle and will remain idle awaiting an operator
command 0 A command can be entered.

The Monitor has acknowledged a CTRL/C typed by the oper­
ator and is in listening mode, ready to accept a command
from the operator.

A system program or user's program requests an operator reply
through the CSI.

A system program requests an input message directly (i.e.,
not through CSI).

3-1

3.2 COMMUNICATING THROUGH THE KEYBOARD

Since the Monitor and any program operating under it must share the keyboard, the user must specify

whether a given keyboard input is intended for the Monitor or for the operating program:

• All characters following a CTRL/C (typed by holding down the CTRL key whi Ie
typing the C key) or following a $ output by the Monitor through the next
RETURN are interpreted as Monitor commands and are passed to the Monitor for
execution.

• All other characters are assumed to be for the operating program, provided one
is currently in core and the keyboard device has been associated with one of
its datasets. In this case, the characters will be buffered until required by the
program. The characters will be ignored if no program has been loaded or if it
is not using the keyboard as one of its data media.

Certain keys on the keyboard have special functions. These are listed in Table 3-1.

Keyboard
Key

RETURN

RUBOUT

CTRL/C

Table 3-1
Special Keyboard Functions

Function

Pressing RETURN terminates an operator command to the Mon­
itor or a line of input to a system or user program. The
RETURN key produces a carriage return and LINE FEED on the
teleprinter.

This key permits the correction of typing errors. Pressing
RUBOUT once causes the last character typed to be deleted.
RUBOUT does not delete characters past the previous line
terminator. 1 If the last remaining character has already been
deleted, a RUBOUT will be ignored.

The Monitor prints the deleted characters delimited by back­
slashes. For example, if you were typing .APPEND and
typed. APPAM instead, the error could be corrected by typ­
ing two RUBOUTS and then the correct letters. The typeout
would be:

APPAM\MA\END

Notice that the deleted characters are shown in reverse or­
der, i.e., in the order in which they are deleted.

When the CTRL and C keys are pressed, the Monitor is alerted
to accept a command from the keyboard. CTRL/C is echoed
as t C RETURN LINE FEED period.

1 1ine terminator is a LINE FEED, FORM FEED, or VERTICAL TAB

(continued on next page)

3-2

Keyboard
Key

CTRL/C
(Cont)

CTRL;'lJ

303 MONITOR COMMANDS

Table 3-1 (Cont)
Special Keyboard Functions

Function

The operator can then type in a command to the Monitor;
while the command is being typed, the interrupted program
continues running normally except that any output to the
teleprinter is interrupted until the command is terminated by
the RETURN key.

CTRL/C will interrupt teleprinter output or keyboard input in
a user program. However, Monitor action on a CTRL/C is not
taken until any current Monitor command is completed be-
cause the keyboard interrupt is turned II off II • Except for
DUmp and MOdify, however, it appears to the user that ac­
tion on a CTRL/C is immediate.

CTRL/C puts the Monitor in listening mode only. If it is de ...
sired to stop the function of the operating program, the STop
command (Section 3.3.4. 1) should be used.

If a second CTRL/C is typed before the RETURN terminating
a command, the input so far will be erased, a fresh t C
RETURN LINE-FEED period will be printed and the Monitor
will await a new command.

CTRL;'lJ is used if the user has completely mistyped the cur­
rent line and wishes to start it over (CTRL,/U deletes the en-
tire line back to the last line terminator). When given in a
command, it will act as a second CTRL/C and echo as tu
RETURN LINE FEED period. CTRL/U given within a line of
program input will echo as tu RETURN LINE FEED. CTRL/U
may also be used to stop the printing of the current line of
program output provided that no other input characters are
still awaiting processing by the program. In this usage, it
wi II not be echoed.

; caUses all characters up to the line terminator within a
command string to be treated as commentse It effectively puts
the keyboard off-Iine--all characters following are echoed,
but no Monitor action is taken 0 If a ; appears on a line and
no t C has been issued, it is passed to the user program's buf­
fer I ike any other character.

A command to the Monitor consists of two parts: a command name and possibly one or more command

arguments e A command name is a string of two or more characters; all characters after the first two

and up to a del imiter are ignored. The command formats are given in this section. The following con­

ventions apply to examples in this chaptero

3-3

• Brackets [] are used to enclose elements of the command which are optional,
i.e., they may or may not appear depending on the desired Monitor reaction.

• Braces { } are used to indicate that a choice must be made from the enclosed
i nformati on.

• A comma , indicates that either one comma and/or one space must appear in
that position.

• device name refers to a physical device name, as listed in Appendix A.

• dataset specifier may be represented by any portion of the expression:

dev:fi lenam. ext ,[uic]

where

dev: is a physical device name (as listed in Ap­
pendix A) and is followed by a colon.

filenam is a file name ci up to 6 characters (as de­
scri bed on Page 2- 17) •

. ext is a period followed by a filename exten­
sion of up to 3 characters.

uic is the user's identification code in the form:

[Group No., User No.]
(the uic must be typed within brackets)

• logical name is the name given to the dataset by the user in link block word
LNKBLK + 2.

NOTE

To distinguish in the examples between the echo
from an operator command on the teleprinter and
the Monitor's solicited response, the Monitor's
response wi II be underl i ned.

RETURN is represented by <CR> and is echoed
by the Monitor as RETURN and LINE FEED.

If a command cannot be executed satisfactorily, an appropriate message will be printed at the tele­

printer and the command will be ignored. The message will be one of the following.

Message

ILL CMDI

INV CMDI

SYN ERRI

ILL DEV!

NO FILEI

ILL ADRI

NO COREl

Meaning

Command requested does not exist

Command cannot be accepted at this time (e.g.,
KILL with no program to kill)

Syntax of command is faulty

The device specified is illegal

File specified does not exist

Address is illegal (not on word-bound or in core)

Insufficient core capacity to execute command
(SAVE)

3-4

3.3.1 Commands to Allocate System Resources

3.3.1. 1 The ASsign Command

AS [SIGN] [,dataset specifier, logical name]

The ASsign command assigns a physical device (and, when the device is file structured, a fi Ie name) to

the dataset specified by "logical name". The ASsign command overrides any assignment made in the

dataset's Link Block. If no fi Ie name is specified in the "data$et specifier", the fi Ie name in the

associated Filename Block is used. If no device name is specified, the device given in the Link

Block stands (no default is assumed). Any file name specified for a nonfile- structured device is

ignored.

Note that a "device is assigned to a dataset, and that reassigning it for one dataset does not reassign it

for all datasets.

he ASsign command can be given at any time the Monitor is in core:

• If ASsign is given before a program is loaded, the device assignment will remain
in effect until another ASsign is given with no arguments, or until the Monitor
itself is reloaded. ASsign given at this time enables the user to specify ,he same
assignment for a set of programs to be run.

• If ASsign is given after a program is loaded, (i.e., after a GEt command), the
assignment will remain in effect as long as the program is in core, or until the
user performs a reassignment. As soon as the program disappears (by an
• EXIT request or a KIll command), the assignment is released.

• ASsign may also be given after a program is running. For example, as recovery
from a

A003 message (Device not available)

the user would do an ASsign followed by COntinue. The assignment will remain
in effect as long as the program is in core, until the programmer reassigns, or re­
starts the program with a BEgin command.

Doing an ASsign at this time is provided for such emergency situations, but is
not recommended as standard practice because it causes an extra buffer to be al­
located from free core and it will only be effective if the program has not al­
ready I NIT ed the dataset to some other devi ce •

For example, to assign DECtape file FREQ. BIN to dataset FRQ:

~
,.:.AS,DT:FREQ.BIN,FRQ< CR>

3-5

3.3.2 Commands to Manipulate Core Images

3.3.2. 1 The RUn Command

RU [N] , dataset specifier

The RUn command loads into core the specified program from the specified device and starts its execu­

tion at the normal start address. The RUn command is equivalent to a GEt command followed by a

BEgin command. RUn is valid only when there is no program already loaded.

• If a READ error occurs during the loading of the program, a fatal error message
F021 xxxxxx is pri nted •

• If RUn calls a program which is not in the proper form (i .e., is not in formatted
binary or does not have a start address), it produces a fatal error and the follow­
i ng message is printed:

F022 xxxxxx

• If the program to be loaded is too large for available core, the fatal error mes­
sage F023 (program size) is printed. Recovery from all these errors will be by
way of a KI II command.

The user need not be currently logged in to use programs stored in the system area (UIC 1, 1)--the RUN

command processor will automatically search this area if the requested program does not appear in the

user's own fi Ie area. If, however, the UIC is expl icitly stated in the command string, only the rele­

vant fi Ie area wi" be searched. The search order is: 1) user's area for file name as given; 2) UIC

[1,1] for fi Ie as gi ven; 3) user's area for file with extension LDA if no extension is given; and 4) UIC

[1, 1] for file. LDA. (Exact specification will, of course, reduce execution time particularly for de­

vices such as DECtape for which search time can be lengthy.)

3.3.2.2 The GEt Command

GE [T] ,dataset specifier

The GEt command loads the specified dataset from the specified device. GEt is valid only when there

is no dataset already loaded. Error reporting will be the same as for RUn. The user should use a BEgin

or ODt command to commence execution.

3.3.2.3 The DUmp Command
~~;

DU[MP] , LP:

This command prints on the line Printer an absolute copy of the contents of the specified core area.

The core image is not altered. 0 specifies a dump from core. An 0 is.assumed on default, but

the commas are required. 0 is assumed if no START ADDRESS is specified, and the highest word

in memory is assumed if no END ADDRESS is specified. DUmp is valid at any time; if given

whi Ie a program is running, it wi" merely suspend operations for the time required to effect

the dump.

3-6

3.3.2.4 The SAve Command

SA[VE] [, dataset specifier]

SAve writes the program in core onto the device in loader format. The core image is not alt~red. SAve

is valid only when a program is in core but not running, i.e., immediately after loading with a GET

command or after being halted either by a STOP command or fatal error.

If no dataset specifier is given, the SAVE processor wi" automatically set up a file called SAVE. LDA

on the system disk after it has deleted any current fj Ie of the same name. If the user wishes to retain

the current fi Ie, he must first rename it using PIP. If the dataset specifier is given, the file named

must not already exist or the command will be rejected. System disk is assumed by default if the data­

set specifier contains only a filename.

Normally, it is expected that the user wi" only wish to save his program area. If this is the case, the

range need not be given and the new file will begin from the program's low limit and extend to the top

of core. If any other area is to be saved, the user should include the following at the end of the com­

mand:
/RA:low:high

IRA is the range switch, and low and high define the limits required (each being valid octal

word-bound addresses) The saved image wi II be preceded by the same communication informa­

tion as that for the original program loaded.

The SAVE processor wi II endeavor to get an extra 256-word buffer in order to satisfy the command. If

this request cannot be granted because of insufficient free core, the command wi II be rejected. The

user is therefore advised to use this facility only after he has released any datasets currently established.

Once the SAVE command has been syntactically verified, any errors will be handled by the SAVE proc­

essor, which will print a relevant message and recall Monitor listening mode:

DEVICE FULL
FILE ERROR XXX

3.3.3 Commands to Start a Program

3.3.3. 1 The BEgin Command

BE[GIN] [,address]

End of output medium reached
File structures error as indicated by XXX = File Status
Byte (see Section 2.8.6.2)

The BEgin command starts the execution of a program at the stated address. If no address is specified,

the normal start address will be used. This command is val id only if a program is already in core.

BEgin is used after a GEt, a STop, or following a fatal error condition. The GEt command followed by

a BEgin command is equivalent to a RUn command. If given after a program has been started, a BEgin

will clear all core allocations to buffers, device drivers, and assignments made dynamically, and the

3-7

stack will be cleared before control is passed back to the program. If any files are under creation at

this time, they will be deleted.

To start a program at its normal start address, type:

BE <CR>

To start a program at absolute location 3446, type:

BE,3446 <CR>

3.3.3.2 The COntinue Command

CO[NTINUE]

This command is used after a WAit or a recoverable error condition (operator action message) to resume

program operation at the point where it was interrupted. It is valid only if a program is already in

core.

3.3.3.3 The REstart Command

RE[START] [,address]

This command restarts the program at the given address. If ADDRESS is not specified, the address set

by the .RESTART programmed request (Section 2.8.2.2) is assumed. If neither address is specified,

the command is rejected.

REstart is valid only if a program is already in core. Before the resumption of operations, the stack will

be cleared, any current I/O wi II be stopped, and all internal busy states will be removed. However,

buffers and device drivers set up for I/O operations will remain linked to the program for further use.

3.3.4 Commands to Stop a Program

3.3.4.1 The STop Command

ST[OP]

This is an emergency command to stop the program and kill any I/O in progress (by doing a hardware

reset). The program may be resumed with either BEgin or REstart. STop is valid only if a program is in

core.

3.3.4.2 The WAit Command

WA[IT]

This command suspends the current program and finishes any I/O in progress. Program can be resumed

with either COntinue or REstart. WAit is valid only if a program is in core.

3-8

•

3.3.4.3 The KIll Command

KI[LLl

This command stops the execution of the current program after closing all open files and completing

any outstanding I/O, and removes the program from core by returning control to the Monitor. It is

valid only when a program is in core. To resume operations, the user must reload the program or load

another by RUn or GEt.

3.3.5 Commands to Exchange Information with the System

3.3.5. 1 The DAte Command

DA [T E] [,date]

This command sets the Monitor's date-word to the date specified in date, or if ~ is not specified, it

prints the date previously entered. DAte is valid any time. (It should be noted that the date-word
"

wi II not be updated internally; the operator must reset it daily if such information is needed.) Day is

specified and output in the following format:

dd-mmm-yy

where dd = day, mmm = month, and yy = year. If the user input is an invalid date, e.g. , 37-MAR-K4,

OO-XXX-yy wi II be printed.

3.3.5.2 The TIme Command

T1[ME] [, time]

Sets the time-of-day entry in the Monitor to the time if time is specified; otherwise it prints the pre­

sent content of the time-of-day. The format of time is:

hh:mm:ss

where hh == hours
mm = minutes
ss = seconds

The TIme command is val id at any time.

NOTE

The clock service routine does not automatically zero
time at midnight; as with DATE, this must be set daily.

3.3.5.3 The LOgin Command

LO[GIN] , uic

This command allows the user to give his user identification code to the Monitor. It is a valid com­

mand only when there is no program loaded in core and provided no other user has logged in and not

FInished.

3-9

3.3.5.4 The MOdify Command

MO [DIFY] , octal address

octal address/contents: [new contents]

T hi s command a Ilows the user to make changes in the contents of the absol ute memory location speci­

fied by octal address. After the RETURN is typed at the end of the first line, the system responds by

printing the contents of that address. At this point, the user can type one of the following « CR >

denotes the RETURN key; <LF> the LINEFEED key).

<CR> will leave the contents unmodified

new contents <CR> will change contents to new contents

Replacing <CR> by <LF> will take similar action and then automatically print
the contents of the next location.

This command is val id at any time. To change the contents of location 40000:

fC
• MO,40000 <CR >
40000/164060: 104060 <CR>

Then to examine the contents of 40000:

tc
-:Mo ,40000 < CR >
40000/104060: <CR>

To examine the contents of locations 40000 and 40002, the sequence would be:

.!£
• MO ,40000 <CR>

40000/104060 <LF>
40002/000003 <C R>

NOTE

Entry of an address outside the available core memory as
part of the original MOdify command will cause an error,
and the command wi II be rejected. However, no check
is made during line-feed sequence: if the user 'steps'
outside memory, an illegal address trap will be taken.

3.3~5.5 The FInish Command

FI [NISH]

This command informs the Monitor that the current user is leaving the system. This command is valid

only when no user program is in core. The Monitor deletes all files which do not have bit 7 on the

protect byte set (Figure 2-11}0 This byte can be set at the file's creation, or by the .KEEP programmed

request (Section 207.6). On completion, a completely new copy of the resident Monitor will be

"booted II from the disk.

3-10

3.3.6 Miscellaneous Commands

3.3.6. 1 The ECho Command

EC[HO]

This command suppresses teleprinter echo from the keyboard input to a user program. A subsequent

ECho command turns the echo on again. The'teleprinter as an output device for the program or the

Monitor is not affected.

This command is valid only when a program is running in core and using the keyboard as a device.

3.3.6.2 The PRint Command

PR[INT]

This command suppresses teleprinter printing when the teleprinter is used as an output device to a user

program. A subsequent PRint command tums the printing on again. PRint is valid only when a pro­

gram is running in core and is using the teleprinter as a device.

3.3.6.3 The ENd Command

EN[D] [,(~}

This command tells the Monitor "there is no more input from device KB {or PT)". It effectively gener­

ates an End-of-File from the keyboard (KB) or paper tape reader (PT). If no argument is specified, KB

is assumed. If the program is expecting input at this time, it may be necessary to enter a second <CR>

to ensure that the command is recognized.

ENd is valid only when a program is running in core.

3.3.6.4 The ODt Command

This command starts the execution of the ODT -llR Debugger Program. The argument specifies which

ODT start-address is used:

(No argument) starts at START +0

3-11

(clear ODT breakpoint table
without resetting breakpoints)

(continued on next page)

R

K

starts at START +2

starts at START +4

(clears ODT breakpoint table
after replacing old instruc­
tions at breakpoints)

(leaves breakpoints exactly
as they are)

For example, to reset all breakpoint locations to their former instructions and restart ODT:

tc
.:.OD,R

ODT is valid only when ODT is linked to a program and both are in core.

3.4 THE C~MMAND STRING INTERPRETER (CSI)

The one common format for input and output dataset specifications to a system program is provided

through a single Monitor routine, the Command String Interpreter (CSI). This routine preprocesses the

specification for whatever system program it was called by.

The CSI may also be called by a user's program. The user's software interface with CSI is described in

Section 2.8.5.

3.4. 1 CSI Command Format

Whenever a system program requests input through the CSI, a # will be printed on the teleprinter and

the program will wait for the operator's reply. Generally, a CSI command con~ists of one or more out­

put dataset specifications, followed by <, followed by one or more input dataset specifications.

Spaces, horizontal TABs, and nulls may appear anywhere in the string and are ignored. A command is

terminated by a FORM FEED, LINE FEED, or VERTICAL TAB. If RETURN appears within a command,

the character which immediately follows must be a space, horizontal TAB, null, RUBOUT, or one of

the command terminators; otherwise, an error will res,ult. It should also be. noted that typing the

RETURN key causes RETURN and LINE FEED to be passed to the program, ,hence terminating the input.

< need not occur. If it does, at least one input file specification must appear. Only one ,< per com­

mand is allowed. Commands can not be continued from line to li~e.

A dataset specification must be del imited by a comma. If no items appear before the comma, it is in­

terpreted as "this particular positional field will not be used ". For example, 'suppose a program re­

quires three (output) data specifications. Then the syntax:

Dataset Specifi cation, ,Dataset Specification

indicates that the second (output) dataset specified will not be generated.

3-12

•

Each dataset specification is a field which describes a dataset. It generally contains information as to

where to find the dataset, the file name and extension if the dataset is a file, the user identification

code associated with the file, and one or more switches which request various actions to be performed.

A dataset specification containing all of the above elements would appear as:

where dev

filnam

= The device specification consisting of two or three letters (and often an octal
digit) followed by a colon. The letters identify the device and the digit
identifies the unit. Units must be given in octal. The colon delimits this
field. Only physical names as listed in Appendix A may be specified. For
example, OTA 1: is the correct specification for OECtape, controller A,
unit 1.

If no digit appears, unit 0 is assumed. If the device specification itself does
not appear, the current devi ce is assumed to be the device last specified,
if there is one; otherwise, the system disk unit 0 is assumed.

Assumptions (defaults) do not carry across the <, i.e., from output to input.

= The file name specification consists of one or more letters or digits, or ex­
actlyone asterisk. The first six letters or digits specify the name. The first
character must be a letter. All letters and digits in excess of six are ignored.

The file name need not appear. No system-wide default file name is as­
sumed •

• ext = The extension specification consists of a period, followed by one or more let-
ters or digits, or followed by exactly one asterisk. The first three letters or
digits specify the extension. All letters or digits in excess of three are ig­
nored.

The extension need not appear.

The asterisk is used to specify "all". For example:

*. EXT specifies all fi les with extension • EXT,
FIL. * specifies all files with name FIL, and
* . * spec ifi es a II fil es and a II extens ions.

[uic j = The User Identifi cation Code (UIC) specification consists of a left square
bracket, followed by one or more octal digits or exactly one asterisk, fol­
lowed by a comma, followed by one or more octal digits or exactly one as­
terisk, followed by a right square bracket. The field to the left of the comma
specifies the user"'s group and the field to the right of the comma specifies the
user within the gr<?up. Both fields must be given in octal, and the largest
valid octal number is 376 in both cases (0 is invalid). For example,
[12,136] is the correct specification for user number 136 of user group 12.

NOTE

The left and right square brackets are not visible
on some keyboard keys; however, they are typed
using SHIFT;1< and SHIFT/M, respectively.

3-13

/sw:v
1

: ••• :v m

As in filnam and .ext, the asterisk specifies "all". For example:

[*, 136]

[12,*]

[*, *]

specifies all users whose number is 136

specifies a" members of user group 12, and

specifies a" users.

The user identification code need not appear, in which case the default is
the identification entered by the user currently entering the command.

= A switch specification consists of a slash (/), followed by one or more letters
or digits, and optionally followed by one or more value specifi cations. A
value specification is initially delimited by a colon. The value itself can be
null, or consist of one or more letters, digits, periods, or dollar signs. Other
characters are illegal. The digits 8 and 9 are legal.

For examples: /DATE:12:20:69 might be a switch to enter December 20, 1969
in a date field.

/DATE:12::69 might enter December, 1969 in a date field.

Switches need not appear. If a switch does appear, it need not contain more
than one letter or digit after the slash. For example:

IS and /SWITCH2 are both legal.

The first two characters after the slash uniquely identify the switch. For ex­
ample:

/S is treated as if it were /S null.
/SWITCH 1 and /SWITCH2 are both treated as /SW.

Table 3-2 summarizes the legal command syntax.

Table 3-2
• CSI Command String Syntax Rules

Item Which Item Immediately Following

Last Appeared
DEV: FILNAM .EXT UIC /SWITCH < Terminator ,

blank
1

* * * E * * * *
* * * E * * * * ,

DEV: * E * E * * * *
FILNAM * E E * * * * *
.EXT * E E E * * * *
Ule * E E E E * * *
/SWITCH * E E E E * * *
< * * * E * * E E

Legend: E indicates error. * indicates legal.

Note: 1 The next item encountered is the first item in the command string.

3-14

For example, a device specification immediately followed by an extension specification is an error,

whereas a fi Ie name specification immediately followed by a comma is legal.

3.4.2 C51 Command Example

An example of a complete command is:

Fl.E1"DTA1 :F2.E2/5:1<F3.E3[1l, 123] ,DTB:F4.E4/ABC,F5.E5

which is interpreted as explained below.

a. The first positional output dataset is to be a file named F1 and will have extension
E1. It is to be put on disk unit 0, and catalogued under the ID of the user who en­
tered the command. No switches are associated with this dataset.

b. The second positional output dataset will not be generated.

c. The third positional output dataset is to be in a file named F2 and wi II have exten­
sion E2. It is to be put on the DECtape whi ch is mounted on unit 1 of controller A.
This file is to be catalogued under the ID of the user who entered the command.
The action indicated by switch 5 with value 1 is to be performed on this dataset.

d. The fourth and subsequent positional output dataset will not be generated.

e. The first positional input dataset is a file named F3, and its extension is E3. It can
be found on disk unit 0, catalogued under the user number 123 of user group 11.
No switches are associated with this dataset.

f. The second positional input dataset is a file named F4 and its extension is E4. It
can be found on the DECtape currently mounted on controller B, unit 0. Associate
the ID of the user who entered the command with this dataset. Perform the action
indicated by switch AB (~ABC) on this dataset. No values are associated with
the switch.

g. The third positional input dataset is a file named F5 and its extension is E5. It can
be found on the DECtape currently mounted on controller B, unit 0. Associate the
ID of the user who entered the command with this dataset. No switches are associ­
ated with this dataset.

h. The fourth and subsequent input datasets are not required.

3-15

APPE·NDIX A

PHYSICAL DEVICE NAMES

Mnemonic

DC
OF
OK
DT
KB
lP
MT
PP
PR
PT
CR

Device

RCll Disk
RFll Disk
RKll Disk
DECtape (TC 11)
ASR-33 Keyboard/reletype
line Printer (lPll)
Magtape (TM11)
High-Speed Paper Tape Punch
High-Speed Paper Tape Reader
ASR-33 Paper Tape Device
Card Reader (CR 11)

NOTE

a. Device mnemonics may be three letters on a particu­
lar system. The third letter is assigned if there is
more than one control I er, e. g. :

DT A for DECtape controller "A II
DTB for DECtape controller "B"

b. The device name may be followed by an octal num­
ber to identify a particular unit when the controller
has several device units associated with it, e.g.:

DTl indicates unit 1 under a single DECtape
control.

DT Ali ndi cates un it 1 under control I er A ina
multi control situation.

A-l

Radix-50
Equivalence

014570
014760
015270
016040
042420
046600
052140
063200
063320
063440
012620

•

APPENDIX C

SUBSIDIARY ROUTINE ASSIGNMENTS

The routines associated with the GLOBAL NAMES specified below are called by the REQUEST proces­

sor as indicated:

(blank) = subsidiary routine is never called

X = subsidiary routine is called only when a fi Ie structured device is
referenced

L = subsidiary routine is called only when a linked file is referenced

C = subsidiary routine is called only when a contiguous fi Ie is refer-
enced -

D = subsidiary routine is called only when DECtape is referenced

M = subsidary routine is called only if Magtape is referenced

For example, if a user wants all .OPENI processing routines core resident,' he would put the following

assembler directive in his program:

.GLOBL OPN.,FOP.,LUK.,CKX.

Global Name

. ~ .
o! . . . « .

X Z Z . 0 Request Q.. -I ~ « ~ « N Z 0 U u ::> m m ~ -I U Q.. l-

Ll- Ll- Ll- -I -I C> U U 0 0 <:(C> ~

• READ ;WRIT E X

.OPENU X X X M

.OPENO X X X X X M

.OPENE X X X X X M

.OPENI X X X M

.OPENC X X X

.CLOSE X

.ALLOC X X X

• DELET X X L C

.RENAM X X

.APPND X X D

.LOOK X X

• KEEP X X

C-l

•

Command

APPENDIX D

SUMMARY OF MONITOR COMMANDS

Usage

Commands to Allocate. System Resources

ASsign Assign a physical device to a logical device name

Commands to Manipulate Core Images

RUn

GEt

DUmp

SAve

Commands to Start a Program

BEgin

COntinue

REstart

Commands to Stop a Program

STop

WAit

KIll

Load and begin a program

Load a program

Write a specified core area onto a device as a core
image

Write a program onto a devi ce in loader format

Start execution of a program

Resume execution of a halted program

Restart execution of a previously operating program

Halt the current program, including any I/O in pro­
gress

Halt current program after finishing any I/O in progress

Halt the current program, finish any I/O in progress,
close all open fi les, and pass control back to the Mon­
itor

Commands to Excnange Information with the System

DAte

TIme

Fetch/Speci fy date

Fetch/Specify time

D-1

(continued on next page)

Command

Commands to Exchange Information with the System (Cont)

LOgin

MOdify

FInish

Miscellaneous Commands

ECho

PRint

ENd

ODt

Enter User Identification Code

Mod i fy contents of memory I ocati on

Log off system

Disable/enable keyboard echo to user program

Disable/enable teleprinter output from user program

End input from a devi ce

Begin operation of Octal Debugger (ODT)

0-2

..

..

m
I -

Mnemonic

.ALLOC

.APPND

• BIN2D

· BIN20

• BLOCK

.CLOSE

.CORE

• CSl1

Function

Allocate a Contiguous File

Append to a Li nked Fi Ie

Convert Binary to Decimal ASCII

Convert Binary to Octat ASCII

Transfer a Block

Close a Dataset

Obtain Core Size

CSI Interface - part 1

Macro Call Assembly Language
Refer to Page (see notes) Expansi on (see notes)

.ALLOC LNKBLK,FILBLK,N MOV #N ,-(SP) 2-32
MOV #FILBLK,-(SP)
MOV #LNKBLK,-(SP)
EMT 15

. APPND LNKBLK, FIRST, SECOND MOV #SECOND, -(SP) 2-37
MO V #FIRST , -(SP)
MOV #LNKBLK,-(SP)
EMT 22

• BIN2D ADDR, WORD MOV#WORD,-(SP)
MOV #ADDR,-(SP)

2-55

MOV #3, -(SP)
EMT42

.BIN20 ADDR, WORD MOV #WORD,-(SP) 2-57
MOV # ADDR, -(SP)
MOV #5,-(SP)
EMT42

.BLOCK LNKBLK,BLKBLK MOV #BLKBLK, -(SP) 2-25
MOV #LNKBLK,-(SP)
EMT 11

.CLOSE LNKBLK MOV #LNKBLK1-(SP) 2-19
EMT 17

.CORE MOV #100, -(SP) 2-44
EMT 41

.CSIl CMDBUF MOV #CMDBUF ,-(SP) 2-58

EMT 56

(continued on next page)

APPENDIX E

SUMMARY OF MONITOR PROGRAMMED REQUESTS

m
I

'"

Mnemonic

.CSI2

. DATE

• DELET

.D2BIN

. EXIT

.GTUIC

.INIT

.KEEP

.LOOK

.MONF

,

Function

CSI Interface - part 2

Obtain Date

Delete a File

Convert Decimal ASCII to Binary

Exit to Monitor

Get Current UI C

Initialize a Dataset

Protect a File

Directory Search

Obtain Full Monitor Size

Macro Call
(see notes)

.CSI2 CSIBLK

. DATE

• DELET LNKBLK, FILBLK

.D2BIN ADDR

• EXIT

.GTUIC

.INIT LNKBLK

• KEEP LNKBLK, FILBLK

.LOOK LNKBLK,FILBLK (,)

(,) = optional argument

.MONF

,.

Assembly Language Re fer to Page
Expansion (see notes)

MOV #CSIBLK,-(SP) 2-59
EMT 57

MOV #103,-(SP) 2-47
EMT 41

MOV #FILBLK,-(SP) 2-34
MOV #LNKBLK,-(SP)
EMT 21

MOV'ADDR,-(SP) 2-53
MO V #2, -(SP)
EMT 42

EMT 60 2-41

MOV #105,-(SP) 2-49
EMT 41

MOV 'LNKBLK, -(SP) 2-14
EMT 6

MOV 'FILBLK, -(SP)
MO V 'LNK BLK , -(SP)

2-40

EMT 24

MOV 'FILBLK, -(SP) 2-38
MOV #LNKBLK,-(SP)
EMT 14

or

MOV #FILBLK,-(SP)
CLR -(SP)
MOV #LNKBLK,-{SP)
EMT 14

MOV #102,-(SP) 2-46
EMT 41

(continued on next page)

~

m
I

W

Mnemonic

.MONR

.OPENx

.02BIN

.RADPK

.RADUP

.READ

.RENAM

Function

Obtain size of resident Monitor

Open a Dataset

Convert Octal ASCII to Binary

Rad ix -50 ASCII Pack

Radix-50 ASCII Unpack

Read from Devi ce

Rename a file

Macro Call
(see notes)

.MONR

.OPENx LNKBLK,FILBLK

.02BIN ADDR

.RADPK ADDR

.RADUP ADDR,WORD

. READ LNKBLK, BUFHDR

.RENAM LNKBLK,OLDNAM,
NEWNAM

Assembly Language Refer to Page
Expansion (see notes)

MOY #101,-(SP) 2-45
EMT 41

MOY HCODE, FILBLK-2 2-16
MOY #FILBLK, -(SP)
MOY #LNKBLK,-(SP)
EMT 16

CODE= 1 for .OPENU
2 for .OPENO
3 for .OPENE
4 for .OPENI

13 for .OPENC

MOY #ADDR,-(SP} 2-56
MOY #4, -(SP)
EMT 42

MOY # ADDR, -(SP) 2-51
CLR -(SP)
EMT 42

MOY #WORD, -(SP) 2-53
MOY #ADDR,-(SP)
MOY #1, -(SP)
EMT 42

MOV #BUFHDR,-(SP)
MOV #LNKBLK,-(SP)

2-21

EMT 4

MOY #NEWNAM,-(SP) 2-35
MOV #OLDNAM, -(SP)
MOV #LNKBLK,-(SP)
EMT 20

(continued on next page)

Mnemonic Function Macro Call Assembly Language
Refer to Page (see notes) Expansion (see notes)

.RLSE Release a Dataset .RLSE LNKBlK MOV #lNKBLK,-(SP) 2-15
EMT 7

• RSTRT Set REstart address .RSTRT ADDR MOV'ADDR,-(SP)
MOV '2, -(SP)

2-43

EMT 41

. SPEC Special Function .SPEC LNKBLK,SPCARG MOV 'SPCARG ,-(SP)
MOV #LNKBLK,-(SP)

2-29

EMT 12

. STAT Obtain Device Status . STAT LNKBLK MOV'LNKBLK,-(SP) 2-30
EMT 13

.SYSDV Obtain System Device Name .SYSDV MOV , 106, -(SP) 2-50
EMT 41

m

.b.. .TIME Obtain Time of Day • TIME MOV '104, -(SP) 2-48
EMT 41

.TRAN Transfer absolute block • TRAN LNKBLK, TRNBLK MOV'TRNBLK,-(SP) 2-27
MOV #LNKBLK,-(SP)
EMT 10

.TRAP Set TRAP vector • TRAP STATUS,ADDR MOV'ADDR,-(SP)
MOV'STATUS,-(SP)

2-42

MOV '1, -(SP)
EMT 41

. WAIT Wait for Completion • WAIT LNKBLK MOV'LNKBLK,-(SP) 2-23
EMT 1

.WAITR Wait for Completion; Return to • WAfTR LNKBLK,ADDR MOV'ADDR,-{SP) 2-24
ADDR MOV #LNKBLK,-{SP)

EMT 0

• WRITE Write on a Device · WRITE LNKBLK,BUFHDR MOV #BUFHDR,-{SP) 2-22
MOV #LNKBLK ,-(SP)
EMT 2

~--- --- ------ - .--.--~--- ----- -------

(continued on next page)

• • '1 •

m
I

<.J1

NOTES: ADDR
BLKBLK
BUFHDR
CMDBUF
CSIBLK
FILBLK
FIRST
LNKBLK
N
NEWNAM
OLDNAM
SECOND
SP
SPCARG
TRNBLK

a memory address
address of BLOCK B~ock
address of Line Buffer Header
address of Command String Buffer
address of Command String Interpreter Control Block
address of Filename Block
address of Filename Block of file which is to be appended to
address of Link Block
number of 64-word segments requested
address of Filename Block containing the file's new name
address of Filename Block containing the file's old name
address of Filename Block of file which is appended
Stack Pointer (register R6)
code for Special Function or Address of Special Function Block as determined by Function called.
address of TRAN Block

•

APPENDIX F

SUMMARY OF DOS ERROR MESSAGES

Following is a complete summary of all error messages which can appear when using the DOS Monitor

and system programs.

F. 1 ACTION MESSAGES

Action messages are printed and the program is suspended. The Monitor expects the operator to

take some action such as "continue the program" (type COntinue), or "ki" the program"
(type KILL).

Error Additional
Code Information

AOOl User Call
Address

AOO2 Devi ce (RAD50)

AOO3 Link Block
Address

AOO4 User Call
Address

AOO5 Pause Number

AOO6 Correct Module
Name

AOO7 Call Address

A010 0

Meaning

Disk address error.

Devi ce not ready (Appendi x A). Make devi ce ready and type CO.

The Link Block contains either an illegal device code or no
device code at all. Use the MODIFY command to dispray
the contents of link Block +2, which is the device name
(RAD50), and then use the ASSIG N command to assign a
device and/or fi Ie (Appendix A); then type CO.

DECtape error. Try adjusting the tape; type CO to
continue.

A PAUSE was encountered in a FORTRAN program. Type
CO to continue.

Loading paper tape out of order on Pass 2 of Linker. load
correct module and type CO to continue.

Magtdpe. The name of the output fi Ie being created is the
same as that of an existing fi Ie. Type CO to write over the
old file.
Magtape 0 A parity error occurred when trying to open a fi Ie 0

Type CO to continue searching. If the file being sought has
a parity error, it cannot be found.

F-l

Error
Code

A043

Additional
Information

Disk Pack
Block Number

F .2 INFORMATION MESSAGES

Meaning

This is the block that is bad; issued by the RK 11 pack
initializer to provide a list d bad blocks and to permit job
termination if too many are bad. Type CO if number d bad
blocks thus far is tolerable.

Informational and Warning messages are printed and the program generally continues.

1350

1351

1352

1353

1354

STOP Number

o

Address c:J
~E VT~. entry

Error Class
Number

o

F.3 WARNING MESSAGES

W002

W043

W10l

WI02

W103

W104

W105

Device Narre
(RAD50)

Block Number

No. d Task
Called

Addr. in Call
Sequence

Addr. in Call
Sequence

Addr. in Call
Sequence

Current
Run-Time

A STOP statement was executed in a FORTRAN program.

More errors c:J a specified type occurred than were allowed.
The program is terminated.

The logical device specified is not available. (See FORTRAN
devi.ce table, DEVTB, for a layout.)

No logging device. The command input device was in use
when a run-time diagnostic message was to be issued. Be­
cause of a devi ce conf Ii ct the norma I message cou Id not be
issued.

Illegal response to CONFIRM: when attempting to zero an
RK 11 disk cartridge. The disk was not zeroed.

Device time out (Appendix A)

Transfer error whi Ie using ITRAN to zero the disk.

Task called by number not present or call number illegal.
Request ignored. (RSX) -

Delay units not correct in call start. Request ignored. (RSX)

Delay time too large in call start. Request ignored. (RSX)

No time slot avai lable. Request ignored. (RSX)

A level 1 task has exceeded its maximum run time. Task
continues. (RSX)

F-2

•

Error
Code

WI06

WI07

Wll0

Wlll

W112

W1l3

W114

W300

W30I

W302

W303

W304

W305

W306

W307

W310

W311

Additional
Information

Report N um ber

Addr. in Call
Sequence

Addr. in Ca II
Sequence

Addr. in Call
Sequence

Module Name

Addr. of Byte
Error

Symbol and
Module Names

Meaning

Illegal or unrecognized console command. Command ignored.
(RSX) -

Illegal system report number in system command. Command
ignored.

Attempted to start a background task whi Ie the background is
busy. Req uest ignored.

Attempted to clock a background task. Request ignored.

Symbolic task name not found. Request ignored.

Command syntax error. Command ignored.

Illegal clock (call TRNON) time. Request ignored.

Non-unique object module name.

Byte relocation error; Linker automatically continues.

Multiple definitions d global symbol. Second definition is
ignored and I inking continues.

Buffer overflow. Overflow of one of the following Editor
buffers:

Command Input Buffer
Save Buffer
Page Buffer

Macro overf low. The command string as stored in the Save
Buffer was too long to execute I when requested to do so by
an EM (Execute Macro) command.

Recursive macro. The command string as stored in the Save
Buffer contains an EM command.

Empty Save Buffer. An EM or U (Unsave) command was
issued with nothing in the Save Buffer.

Search fai lure. The nth occurrence of the search object was
not found in the available text.

Unsave failure. Insufficient room to copy the contents d
the Save Buffer into the Page Buffer at dot.

End-of-data detected. The end of the input file or the end
of the input medium was reached during the last Read of text
into the Page Buffer. Last page read was last in the fi Ie.

F-3

Error
Code

W312

W313

W314

W315

W316

W317

W320

W321

W322

W323

W324

W325

W350

Additional
Information

Number of
Fai lures

F.4 FATAL MESSAGES

Meaning

Illegal line feed. A line feed character was encountered in
the command string.

Illegal negative argument. A negative argument was used
with a command that does not accept them. Negative
arguments are not permitted by the specified command.

Arguments not permitted. The command specified does not
permit any argument with it.

Illegal argument. The given argument was not acceptable to
the spec if i ed command.

Illegal text string. Usually caused by the lack d a second
delimiter.

Illegal command. The Editor was unable to execute the
specified command. The command may be an illegal
character, one that is not an EDIT-l1 command character.

Page buffer almost full. The Page Buffer was within 128
characters d being full.

File closed. An attempt to Read from or Write to a primary
file after an EF (End-of-File) command was issued.

Undefined global symbols in load module. Linking continues.

Illegal size d named .CSECT. or illegal entry in named
.CSECT ~ task's named .CSECT size too large (RSX).

Too many entries in task's named .CSECT (RSX).

Illegal priority specifica tion in real-time header (RSX).

Power fail (RSX).

Fatal error messages are printed, if possible, and ~he program is suspended. The Monitor will not
allow the operator to continue the program, but expects to see either a BEgin, REstart or KILL
command. If a fatal error is a system disk fai lure and the error message cannot be printed, the
central processor halts. This is the only time that a halt occurs in the Monitor.

F-4

•

•

Error
Code

FOOO

FOOl

F002

F003

FOOS

F006

F007

F010

FOll

F012

F014*

F01S

F016

F017*

F020

F021*

F022

F023

Additional
Information

Req uest Address

Request Address

Req uest Address

Request Address

Req uest Address

Req uest Address

Request Address

Req uest Address

Request Address

Request Address

Request Address

Request Address

Block NtJmber

Devi ce (RADSO)

Irrelevant

Irrelevant

Irrelevant

Program Size

Meaning

Datqset not INITed. Program must issue. INIT before any
other requests to a dataset. page 2-19, -23)

Stack overflow. Once loaded, a program requires additional
space for its stack, buffers, and control blocks. These are
allocated as they are needed. Reduce the size cl the program.

Invalid EMT call (Appendix B). The EMT code issued by the
program has not been assigned

Invalid. TRAN function (page 2-27 and 2-72).

. RLSE error. If a fi Ie has been OPENed, it must be CLOSEd
bef ore a . R LS E can be issued. (page 2- lS)

Device full. No more space exists on the device being
referenced by the request. For a fi Ie-structured device, use
PIP to look at the number cl free blocks and delete any
fi les which are not needed.

No buffer space (see FOO 1) •

Illegal .READ/.WRITE. Incorrect mode for device or file not
opened correctly.

Illegal OPEN. Unused code or type unsuitable for device.

(See table below.)

Device error on trying to read bit map.

DECtape error. Nonexistent memory addressed or end-zone
reached duri ng transf er. -

DECtape search failure. Block requested cannot be found.

Parity error on file-structured device. (Page 2-19 and App. A)

Too many datasets using low-speed paper tape 0 A maximum of
one for each direction is allowed. Restart your job and use
the ASSIGN command to reassign the excess datasets.

Program loader read failure ..

Program loader format error. File being loaded is not a
load module.

Program too large for core available.

F-S

Error
Code

F024

F025

F026*

F027*

F030·

F03l

F032*

F033

F034

F035

F036

F037

F040

F04l

F042*

F043*

F050

F051

Additional
Infonnation

Request Address

Device (RAD50)

Disk Control
Status Register

Error Register

Err Class,
Number

Addr. d Log
Device

Status Register

Special Function
Block Address

Ca II Address

Block Number

Lowest Slot
Used by Tasks

Lowest Slot
Used by Tasks

Low Address
d Task Code

Load Address
d Binary Block

Error Register

Block Number

Req uest Address

Req uest Address

Meaning

(See table below.)

Master directory full when attempting to add UIC. No more
Ule's can be addedo (Appendix A.)

Disk (RF11 or RC11) transfer failure. Hardware error or
persistent parity failure. (See Peripherals & Interl'ace
Handbook, page 67.)

Disk (RK 11) transfer failure. (See Peripherals & Interface
Handbook, page 84.)

FORTRAN system error.

No more room on FORTRAN logging device, or illegal end-of
fi Ie was encountered while a FORTRAN READ Was in progress.

Magtape hardware error. (See Peri phera Is & Interl' ace
Handbook, page 44.)

Invalid special function block. (page 2-73)

The call code passed to a conversion request was invalid (e.g.,
'5 means binary-to-octal, but 6 is not defined).

Illegal block number (RK 11)

No slot avai lable (RSX loader) •

Illegal slot specified (RSX loader).

Attempted to overlay the executive or another task
(RSX loader).

Attempted to load outside limits defined in the command
(RSX loader).

Disk (RPll) transfer fai lure (reserved).

Illegal block number (RPll) (reserved).

Illegal I/O to batch stream.

Too many successive batch stream read errors.

F-6

•

*

Error Additional
Code Inf ormati on

F100 Address in
Call Sequence

F240 Irrelevant

F275 0

F276 0

F277 Contents d PC

F300 0

F342** Contents of PC

F344** Contents ci PC

F346** Contents d PC

F350** Contents d PC

F352** Contents cJ PC

F356*** Contents d PC

Meaning

Insufficient arguments in call sequence or in console command
(RSX) •

An attempt was made to allocate a contiguous fi Ie, but not
enough contiguous blocks are free.

Incorrect argument to link subrouti ne •

Transfer address of overlay not specifiedo

Overlay could not be brought into core.

FORTRAN overlays cannot be executed -- FORTRN .OVR may
be nonexistent or improperly constructed.

Error trap. Probably caused by a ref erence to a byte
boundary or to nonexistent memory or to 'a nonexistent
device. Could also be caused by mOVement ci the stack
pointer below 400 or by executing JMP or JSR with '
register mode destination.

Reserved instruction trap. The instruction just executed is
not a valid PDP-ll instruction. Perhaps you jumped to a
point outside your program or perhaps you have stored
information over an instruction.

Trace trap. Bit 4 d the Processor Status Register is on.
Look for traps in the PDP-ll Processor Handbook.

Power f ai I trap.

Trap instruction trap. A trap instruction was issued by your
program and you did not previously specify a trap address
with the. TRAP request.

Unexpected device interrupto Either a new device has been
added to your system without initializing the interrupt
vector or a hardware f ai I ure has occurred.

This is most likely a hardware error. If it persists" call a service engineer.

** The PC is pointing at the instruction following the erroneous instruction; subtract 2, 4, or 6
to get the address of the incorrect instruction. Consult TRAPS in the PDP-ll Processor
Handbook for further information 0

*** Both * and ** notes above.

F-7

How to Recover from FO 12 or F024

Are you logged in? LOgin

Is your UIe entered? Enter it

Are you attempti ng to create a Run PIP and DELETE
file which already exists ?

Does the input fi Ie you are ?
accessing exist?

Are you attempting to delete ?
a nonexistent file?

Are you attempting to delete a locked Run PIP and UN lock
file? (The command to delete is
correct, and the file exists.)

Are you attempting to access ?
another user'sfi Ie illegally?
(Ask PIP for his DIrectory
to find out.)

F.5 SYSTEM PROGRAM MESSAGES

System program messages are printed and the program generally continues.

Error Additional
Code Information Meaning

5200 0 Too many • CSECT directives

5201 0 Conditionals nested too deeply

5202 Error Status Byte EOD or device error on .WRITE or .READ. The disk
may have filled up.

5203 0 Illegal switch, or too many switches, or illegal
switch value, or switch value not given

5204 0 Too many or too few output files

5205 0 Too many or too few input files

5206 0 Input file not specified in command string

5207 Error Status Byte EOD or device error on • TRAN

5210 0 Unrecognized symbol table entry

5211 0 An RLD references a global name which cannot
be found in the symbol table

5212 0 An RLD contains a location counter modification
command which is not last

5213 0 Object module does not start with a GSD
.!!II

5214 0 The first entry in the module is not the module
name

F-8

Error Additional
Code Information Meaning

5215 0 An RLO references a section name which cannot
be found

5216 0 The TRA specification references a nonexistent
module name

5217 0 The TRA specification references a nonexistent
section name

5220 0 An internal jump table index is out of range

5221 Unassigned

5222 Unassigned

5223 0 No more room for C5I input buffer or Monitor's
file manager routine, or Monitor's library search
buffer

5224 Unassigned

5225 0 Program too large or top too low (program has been
I inked below zero in memory)

5226 0 An open angle bracket, <, is present in a line other
than the fi rst •

5227 1: No Primary Output Illegal file combination; arguments 2-6 for Editor-
2:5ec In = 5ec Out type commands.
3:5ec In = Pri Out
4:Pri In = 5ec Out
5:Pri In = 5ec In Pri = Primary Fi Ie
6: Pri Out= 5ec Out 5ec = 5econdary Fil e

5230 Error 5tatus Byte Error on • BLOCK I/O

5231 Illegal command, file-structured device required

5232 No more than one action switch permitted

5233 5pecified UIC not found in MFO

5234 Null file name given where file name required

5235 No files found in UFO

5236 Operation applicable to o ECtape only

5237 File not found during file recovery operation

5240 No space for file allocate

5241 MFO is full

5242 Meaningless command; no action taken

5243 0 No < in first I ine of command

5244 0 Already past requested position

5245 0 Object module not found, could be out of order

5246 0 Illegal library format

F-9

Error Additional
Code Information Meaning

5247 0 Listing requested, but unable to read output
I ibrary from specified output device

5250 0 Core library symbol table not specified first
or consecutivel y

5251 0 No files found for * request

5252 0 File name given when none allowed

5253 0 Lin ker error

5254 0 It is illegal to ZEro the system resident disk

..
F-10

APPENDIX G

1-0 DRIVERS WITHIN THE DISK OPERATING SYSTEM

The principal function of an I/O driver is to satisfy the requirement of a Monitor processing routine for

the transfer of a block of data in a standard format to or from the device it represents. This will in­

volve both setting up the device hardware registers to cause the transfer and its control under the in­

terrupt scheme of PDP-ll, making due allowance for peculiar device characteristics (e.g., conversion

to or from ASCII if some special code is used).

It may also include routines for handling device start-up or shut-down such as punching leader or

trailer, and for making available to the user certain special features of the device, such as rewinding

magtapeo

G. 1 Dri ver Structure

In order to provide a common interface to the Monitor, all drivers must begin with a table of identify­

ing information as follows:

DVR: BUSY FLAG (initially 0)

FACILITY INDICATOR (expanded below)

Offset to Standard Buffer Size
Interrupt Routine* in 16-word Units.

Offset to Priority for
OPEN Routine * Interrupt Service

Offset to Offset to
CLOSE Routine * Transfer Routine *

Space Offset to
Special Functions*

DEV NAME (Packed Radix-50)

Offsets marked * will enable call ing routine to
indicate routine required. They will be consid­
ered as an unsigned value to be added to the
start address of the driver. This may mean that
with a 256 maximum, the instruction referenced
by the offset will be JMP or BR (routine) 0

G-l

Bits in the Facility Indicator Word define the device for Monitor reference:

SPECIAL STRUCTURES GENERAL STRUCTURE

File­
Structured

Device DEC­
tape (or
simi larl),
reversibleJ

Device is
Sequential
Magnetic Tape

User

Output
Device

Contains OPEN

Contains CLOSE

Contains SPECIAL

Input Devi ce

Binary Device

AS CII De vi ce

'---- Devi ce has severa I separate
units under 1 controller, and
therefore requires 1 bit map
pointer for each separate unit (see below).

The table should be extended as follows if the device is file-structured:

BLOCK USED AS MASTER FILE DIRECTORY

POINTER TO BIT -MAP IN MEMORY Unit 0

- }
Similar Bit-Map Pointers for

____________ ----... Multi-unit Devices as indicated
'- by Bit 10 of Facilities Word

The driver routines to set up the transfer and control it under interrupt, and possibly for OPEN, CLOSE,

and SPECIAL, follow the table. Their detailed operation will be described later.

G.2 Monitor Calling

When a Monitor I/O processing routine needs to call the driver, it first sets up the parameters for the

driver operation in relevant words of the appropriate DDB
1
, as follows:

~ -
XYZ: -

SPECIAL FUNCTION POINTER

DEVICE BLOCK NUMBER

MEMORY START ADDRESS

WORD COUNT (2 1s Complement)

TRANSFER FUNCTIONS (expanded below)

COMPLETION RETURN ADDRESS

(DRIVER WORD-COUNT RETURN) Set to 0

~-
-~

(User Call Address)

(User Line Address)

lDataset Data Block - in full, a 16-word table which provides the main source of communication be­
tween the Monitor drivers and a particular set of data being processed on behalf of a user program.

G-2

A

•

The relevant content of the Transfer Function word is as follows:

Used by Driver to
indicate Hardware
Parity Fail

DECtape
reverse i

DEVICE
UNIT

TT Echo Control

+

Transfer OUT

Transfer IN

Provided that the Facility Indicator in the Driver Table described above shows that the driver is capable

of satisfying the request, both from the point of view of direction and mode and of the service required,

the Monitor routine places in Register 0 the relati ve byte address of the entry in the Driver Table con­

taining the offset to the routine to be used (e. g., for the Transfer routine, this would be 10). It then

calls the Driver Queue Manager, using JSR PC,S.CDB.

The Driver Queue Manager ensures that the driver is free to accept the request, by reference to the

Busy Flag 0Nord 0 of the driver table}. If this contains 0, the Queue Manager inserts the address of

the DDB from Register 0 and jumps to the start of the routine in the driver using Register 1 content to

evaluate the address required. If the driver is already occupied, the new request is placed in a queue

linking the appropriate DDB's for datasets waiting for the driver's services. It is taken from the queue

when the driver completes its current task. (fhis is done by a recall to the Queue Manager from the

routine just serviced, using JSR PC,S.CDQ.)

On entry to the Driver Routine, therefore, the address following the Monitor routine call remains as

the "top" element of the processor stack. It can be used by the driver to make an immediate return to

the Monitor (having the function requested), using RTS PC. It should also be noted that the Monitor

routine wi" have saved register contents if it needs them after the devi ce action. The driver may thus

freely use the registers for its own operations.

When the driver has completely satisfied the Monitor request, it should return control to the Monitor

using the address set into the DDB. On such return, Register 0 must be set to contain the address of

the DDB just serviced and, since the return wi" normally follow hardware interrupt, Registers 0-5 at

the interrupt must be stored on top of the stack.

G-3

G • 3 Dri ver Routi nes

G.3.1 TRANSFER

The sole purpose of the TRANSFER routine is to set the device in motion. As indicated above, the in­

formation needed to load the hardware registers is available in the DDB, whose address is contained in

the first word of the driver. Conversion of the stored values is, of course, the function of the routine.

It must also enable the interrupt; however, it need not take any action to set the interrupt vectors as

these will have been preset by the Monitor when the driver is brought into core. Having then given

the device GO, an immediate return to the calling processor should be made by RTS PC.

G.3.2 Interrupt Servi cing

The form of this routine depends upon the nature of the device. In most drivers it will fall into two

parts, one for handl ing the termination of a normal transfer and the other to deal with reported error

conditions.

For word- or byte-oriented devices, the routine must provide for individual word or byte transfers,

with appropriate treatment of certain characters (e.g., TAB or Null) and for their conversion between

ASCII or binary and any special device coding scheme until either the word count in the DDB is satis­

fied or an error prevents this. On these devices, the most likely cause for such error is the detection

of the end of the physi cal medium; its treatment wi II vary according to whether the de vi ce is providing

input or accepting output. The calling program wi II usually need to take action in the former case and

the driver should merely indicate the error by returning the unexpired portion of the word count in DDB

Word 7 on exit to the Monitor. Output End-of-Data, however, will, in general, require operator ac­

tion. To obtain this, the driver should call the Error Diagnostic Print routine within the Monitor by:

MOV
MOV
lOT

DEVNAM, -(SP)
#402,O{SP)

jSHOW DEVICE NAME
;SHOW DEVICE NOT READY
jCALL E.D. P.

On the assumption that the operator will reset the device for further output and request continuation,

the driver must follow the above sequence with a Branch or Jump to produce the desired resumption of

the transfer.

Normal transfer handling on blocked devices (or those like RFll Disk which are treated as such) is

probably simpler since the hardware takes care of individual words or bytes and the interrupt only oc­

curs on completion. Errors may arise from many more causes, and their handling is, as a result, much

more complex and device dependent. In general, those which indicate definite hardware malfunctions

must lead to the situation in which the operator must be informed by a diagnostic message and the only

recourse after recti ficati on will be to start the program over.

G-4

..

At the other end of the scale there are errors which the driver itself can attempt to overcome by re­

starting the transfer--device parity fai lure on input is a common example. If a retrial, or several,

still does not enable a satisfactory conclusion, the driver should normally allow programmed recovery

and merely indi cate th~, error by Bit 17 of DDB Word 5. Nevertheless, because the program may wish

to process the data despite the error, the driver should attempt to transfer the whole block requested if

this has not already been effected. Between these two extremes, the remaining forms of error must be

processed according to the type of recovery deemed desirable.

Whether the routine uses processor registers for its operation or not wi II naturally depend on consider­

ations of the core space saved against the time taken to save the user's content. However, on comple­

tion (or error return) to the Monitor, as indicated in an earlier paragraph, the calling routine expects

the top of the stack to contain the contents of all Registers 0-5 and Register 0 to be set to the address

of the DDB just serviced. The drive must, therefore, provide for this.

G.3.3 OPEN

This routine need be provided only for those devices for which some hardware initialization is required

by the user. It should not normally appear in drivers for devices used in a file-oriented manner. Its

presence must be indi cated by the appropriate bit (Bit 7) in the driver table Faci I ity Indicator.

The routine itself may vary according to the transfer direction of the device. For output devices, the

probable action required is the transmission of appropriate data (e.g., CR/lF at a keyboard terminal,

form feed at a printer, or null characters as punched leader code), and for this a return interrupt is ex­

pected. The OPEN routine should then be somewhat similar to that for TRANSFER in that it merely

starts the device and makes an interim return via RTS PC, waiting until completion of the whole trans­

mission before taking the final return address in the DDB. ,

On the other hand, an input OPEN will likely consist of just a check on the readiness of the device to

provide data when requested. In this case, the desired function can be effected without any interrupt

wait. The routine should, therefore, take the completion return immediately. Nevertheless, it must

ensure that the saved PC value on top of the stack from the call to S. COB is appropriately removed be­

fore exit. In the case of drivers which can only service one dataset at a time (i.e., Bit 0 of their Fa­

cility Pattern word is set to 0) and can never, therefore, be queued, it will be sufficient merely to use

TST (SP) + to effect this. A multi-user driver, however, must allow for the possibility that it may be

recalled to perform some new task already waiting in a queue. This is shown by the byte at DDB-3 be­

ing nonzero. In this case, the intermediate return to the routine originally requesting the new task has

already been made directly by S.CDB. The address now on top of the stack is the return to the routine,

whose task the driver has just completed and which has called S.CDQ to dequeue the driver.

G-5

This return must be taken when the first routine has performed its Completion Return processing. Move­

over, this first routine expects to exit as from an interrupt. When a driver is recalled from a queue, it

must simulate this interrupt. A possible sequence might be:

EXIT:

G.3.4 CLOSE

MOV
MOV
TSTB
BEQ
MOV
MOV
SUB
JMP

DRIVER, RO
(SP)+, R5
-3 (RO)
EXIT
@#177176,-(SP)
R5,-(SP)
#14,SP
@14(RO)

iPICK UP DDB ADDRESS
;SAVE INTERIM RETURN
;COME FROM QUEUE?

;IF SO, STORE STATUS
; ••• & RETURN
iDUMMY SAVE REGS

As with OPEN, this routine should provide for the possibility of some form of hardware shut down such

as the punching of trailer code and is not necessary for file-structured devices. Moreover, it is likely

to be a requirement for output devices only. If it is provided, Driver Table Facility Indicator (Bit 6)

must be set.

Again, the probable form is initialization of the hardware action required, with immediate return via

RTS PC and eventual completion return via the DDB-stored address.

G.3.5 SPECIAL

This routine may be included if either the device itself contains the hardware to perform some special

function or there is a need for software simulation of such hardware on other devices, e.g., tape re­

wind. It should not be provided otherwise. Its presence must be indicated by Bit 5 of the Facility In­

dicator.

The function itself is stored as a code, in the range 0-255
10

, in the first word of a table with a pointer

being set by the Monitor in DDB+2. The upper byte of the same word gives the length of the following

table. Depending upon the function, the remainder of the table may contain supporting information

from the user program or will be used to return data to the program. When called, the driver routine

must determine whether the function is appropriate in its case. If not, the completion return should be

taken immediately with prior stack clearance as discussed under OPEN. For a recognized function,

the necessary routine must be provided and this must decode the information table as required. Again,

its exit method will depend upon the necessity for an interrupt wait or otherwise.

G.4 Drivers for Terminals

The rate of input from terminal devices is normally dictated externally by the operator, rather than be­

ing program-driven; moreover, for both input and output, the amount of data to be transferred on each

occasion may be a varying value, i.e., a line rather than a block of standard size. Furthermore, there

G-6

may be problems with the confl i ct between echo of input during output. As a result, drivers for such

devices will demand special treatment.

Normal output operation, i.e., • WRITE by the program, is handled by the Monitor Processor. On

recognizing that the devi ce being used is a terminal, as shown by Bit 8 of the Facility Indi cator, this

routine always causes a driver transfer at the end of the user line, even though the internal buffer has

not been filled. The driver, however, is given the whole of a standard buffer, padded as necessary

with nulls. Provided the driver can ignore these, the effect is that of just a line of output.

Input control on the other hand, must remain driver responsibility. Overcoming the rate problem will,

in most cases, require circular buffering within the driver until demanded by the Monitor. At this

point, transfer of data already in should occur. If this is sufficient to fill the Monitor buffer, the

driver can await the next request before further transfer onward. If insufficient, it should operate as

any other device and use subsequent interrupts to continue to satisfy the Monitor request. It must,

nevertheless, stop any transfer at the end of a line in normal operation. In order to allow the Monitor

to continue, the driver must simulate the filling of the buffer by null padding (of no consequence,

since terminals are by nature character-based). (Normal operation, of course, means response to user

.READ's and is indicated by the size of the buffer to be filled, namely the driver standard. Should the

user be requesting. TRANs, the buffer size will vary from the standard in all likelihood and the driver

may then assume he requires operation as a normal devi ce--complete buffer fi II-up before return.)

Where input echo is a further complexity, there will doubtless be other requirements. If the echo is

made immediately after the input, it may be desirable to have a second buffer to cater for the likely

situation that the echo will not exactly match its origin. On the other hand, if the echo is held for

any length of time, perhaps to provide correct relations between program-driven output and the echo,

the second buffer could be too expensive. A larger input buffer and routines to allow for several out­

puts to one input character while sitting on that character might be more convenient. The conflict be­

tween such echo and program-driven output will require controlled switching within the driver input

and output hand I ers.

G-7

•

H.l INTRODUCTION

APPENDIX H
USING DEVICE DRIVERS OUTSIDE DOS

Subroutines to handle I/O transfers between a PDP-ll and each of its peripheral devices are developed

as required for use within the Disk Operating System (DOS). These subroutines are made available

within an I/O Utilities Package for the benefit of PDP-l1 users who have configurations unable to

support DOS or who wish to run programs outside DOS control.

All the subroutines associated with one peripheral device together form an entity which is known as a

Driver. The Device Driver Package (DEC-ll-NIZA-D) provides a general description of a driver and

shows how it may be used in a stand-alone environment. The unique properties of each driver are dis­

cussed in separate documents issued as supplements to the Device Driver Package. The I/O Utilities

Package for any system is determined by the peripherals of that system. Thus the full documentation

for a particular package consists of the Device Driver Package and applicable supplements.

Within this appendix, Section H.2 consists of an outline of the established driver structure and its

interface to the program using it. Section H.3 then illustrates how a stand-alone program can match

this interface in order to make immediate use of each driver as supplied within the package.

H.2 DRIVER FORMAT

H.2.1 Structure

The basic principle of all drivers under the DOS fvionitor is that they must present a common interface

to the routines using them in order to provide for device-independent operation. The subroutines are

structured to meet this end. Moreover, the driver may be loaded anywhere in memory under fvionitor

control. Its code must always, therefore, be position-independent.

The detailed description of a driver is found in Appendix G. This section is concerned with driver

interfaces.

H-l

H.2.1.1 Driver Interface Table - The first section of each driver consists of a table which contains,

in a standard format, information on the nature and capabilities of the device it represents and entry

pointers to each of its subroutines. The call ing program may then use this tabl e as required, regardless

of the device being called.

H.2.1.2 Setup Routines - Each driver is expected to handle its device under the PDP-ll interrupt

system. When called by a program, therefore, a driver subroutine merely initiates the action required

by setting the device hardware registers appropriately. It then returns to the call ing program by a

standard subroutine exit.

The main setup routine prepares for a data transfer to or from the device, using parameters suppl ied by

the calling program. Normally, blocks of data will be moved at each transfer. The driver will only

return control to the program when the whole block has been actioned or when it is unable to continue

because there is no more data available.

The driver may also contain subroutines by which the calling program may request start-up or shut-down

action, such as leader or trailer code at a paper tape punch, or some special function provided by the

device hardware (or a software simulation of that for some similar device), e.g., rewind of a magnetic

tape (or DECtape).

H.2.1.3 Interrupt Servicing - The nature of the driver routine to servi ce device interrupts is particular­

ly dependent upon the extent of the hardware provisions of the device for contro II ing transfers. In

general, the driver determines the cause of the interrupt and checks whether the last action was per­

formed correctly or was prevented by some error condition. If more device action is needed to satisfy

the program, the driver again initiates that action and takes a normal interrupt exit. If the program

request has been fully met, control is returned to the program at an address suppl ied at the time of the

call.

H.2.1.4 Error Handling - Device errors may be handled in two ways. There are some errors for which

recovery can be programmed; the driver will, if appropriate, attempt this itself (as in the case of parity

or timing failure on a bulk-storage device) or will recall the program with the error condition flagged

(as at the end of a physical paper tape). Other errors will normally require action externally, perhaps

by an operator. For the latter, the driver calls a common error handler based on location 34 (lOT

call) with supporting information on the processor stack.

H-2

H. 2.2 Interface to the Driver

H.2.2.1 Control Interface - The principal I ink between a call ing program and any driver subroutine

is the first word of the driver table. In order to provide the control parameters for a device operation,

the calling program prepares a list in a standardized form and places a pointer to the list in the driver

I ink. The call ed driver then uses the po inter to access the parameters. If the driver need then return

status information, it may again place this in the list area via the link-word.

The first word of the driver may also act as an indicator in that while it remains 0 the driver is not al­

ready busy upon some task, whereas when the word contains a list-pointer the driver is assumed to be

busy. Since most drivers can support only one job at a time, the link-word state can be significant.

H.2.2.2 Interrupt Interface - Although the driver will always expect to use the interrupt system, it

does not itself ensure that its interrupt vector in the memory area below 400 has been set up correctly;

the Monitor under DOS takes care of this. However, the Driver Table contains the necessary infor­

mation to allow the vector to be set correctly.

H.3 STAND-ALONE USAGE

Because each driver is designed for operation within the device-independent framework of DOS

Monitor, it may be simi larly used in other appl ications. Possible methods wi II be discussed later.

However, since the easiest way to use the driver is to assembly it with the program requiring it, this

wi" be described first.

H.3.1 Driver Assembled with Program

H.3.1.1 Setting Interrupt Vector - As noted in Section H.2.2.2, the calling program must first

correctly set the device transfer vector within memory locations 0-377. The address of the driver's

interrupt entry point can be identified on the source listing by the symbolic name which appears as the

content of the Driver Table Byte, DRIVER+5. The priority level at which the driver expects to process

the interrupt is at byte DRIVER+6. For a program which can use position-dependent code, the setup

sequence may be:

MOV
MOVB
CLRB

#DVRINT, VECTOR ;SET INT. ADDRESS
DRIVER+6, VECTOR+2 ;S ET PRIO RITY
VECTOR +3 ;CLEAR UPPER STATUS BYTE

(where the Driver Table shows at DRIVER +5: .BYTE DVRINT-DRIVER).

H-3

If the program must be position-independent, it may take advantage of the fact that the Interrupt Entry

address is actually stored as an offset from the start of the driver, as illustrated above. In this case,

a sample sequence might be:

MOV
ADD
MOV
CLR
MOVB
ADD
CLR
MOVB

PC,R1
#DRIVER-., R1
#VECTOR,R2
@R2
5(Rl) ,@R2
R1, (R2)+
@R2
6 (Rl) ,@R2

;G ET DRIVER START

i ... & VECTOR ADDRESSED
;SET INT. ADDRESS
; ••• AS START ADDRESS+OFFSET

;SET PRIORITY

H.3.1.2 Parameter Table for Driver Call - For any call to the driver, the program must provide the

list of control arguments mentioned in Section H.2.2.1. This list must adhere in general to the follow­

i ng format: 1

[SPECIAL FUNCTION POINTERJ
2

[BLOCK NO.]3
STARTING MEMORY ADDRESS FOR TRANSFER
NO. OF WORDS to be transferred (2 1s complement)
STATUS CONTROL showing in Bits:

0-2: Function (octally 2 =WRITE, 4 = READ)4
8-10: Unit (if Device can consist of several, e.g., DECtape)
11: Direction for DECtape travel (0= Forward)

ADDRESS for RETURN ON COMPLETION
[RESERVED FOR DRIVER USE]5

The list itself may be assembled into the required format if its content will not vary. The driver may

return information in the area as described in a later paragraph; however, this wi II not corrupt the

program data and it is removed by the driver before it begins its next operation.

On the other hand, most programs wi II probably wi sh to use the same area for the I ists for several tasks

or even between different drivers. In this case, the program must contain the necessary routine to set

1 In some cases, it may be further extended as discussed in later paragraphs.

2Required only if Driver is being called for Special Function; addresses a Special Function Block as
described in Section 2.6.4. 1.

3Required only if the Device is bulk storage (e.g., Disk or o ECtape) •

4 N1ost devices transfer words regardless of their content, i.e., ASCII or Binary. Some devices, e.g.,
Card Reader, may be handled differently for the two modes; for these, Bit 0 must also be set to
indicate ASCII=O, Binary=l. (In these cases, the driver always produces or accepts ASCII even
though the device itself uses some other code.)

5 This word may be omitted if the device is bulk storage (see below).-

H-4

up the list for each task before making the driver call, perhaps as illustrated in the next paragraph.

It must be noted, however, that the driver may wish to refer to the list again when it is recalled by an

interrupt or to return information to the call ing program. Therefore, the I ist must not be changed until

any driver has completed a function requested; for concurrent operations, different I ist areas must be

provided.

H.3.1.3 Calling the Driver - To enable the driver to access the parameter list, the program must set

the first word of the driver to an address six bytes less than that of the word containing MEMORY

START ADDRESS. It may then call the driver subroutine required directly by a normal JSR PC,xxxx

call •

As an exampJe, the following position-independent code might appear in a program which wishes to

read Blocks #100-103 backward from DECtape unit 3 into a buffer starting at address BUFFER:

WAIT:
RETURN:

TABLE:

MOV
ADD
MOV
ADD
MOV
MOV
MOV
ADD
MOV
CMP
MOV
JSR

.WORD 0

.WORD 0

.WORD 0

.WORD 0

.WORD 0

PC,RO
#TABLE+12-./ RO
PC,@RO
#RETURN-. ,@RO
#5404,-{RO)
#-1024. ,-(RO)
PC,-{RO)
#BUFFER-. ,@RO
#103,-RO)
- (RO),- (RO)
RO,DT
PC,DT. TFR

;GET TABLE ADDRESS

;GET & STORE •••
; ••• RETURN ADDRESS
;SET READ REV. UNIT 3
;4 BLOCKS REQUIRED
;GET & STORE
; ••• BUFFER ADDRESS·
;START BLOCK
;SUBTRACT 4 FROM POINTER
;SET DRIVER LINK
;GOTO TRANSFER ROUTINE
;RETURNS HERE WHEN
; ••• TRANSFER UNDERWAY
; RETURNS HERE WH EN
; ••• TRANSFER COMPLETE
;LIST AREA SET
; ••• BY ABOVE SEQUENCE

H.3.1.4 User Registers - During its setup operations for the function requested, the driver assumes

that Processor Registers 0-5 are freely available for its purpose. If their contents are of value, the

program must save them before the driver is called.

While servicing intermediate interrupts, the driver may need to save or restore these registers. It

expects to have available two subroutines for the purpose (provided by the Monitor under DOS). It

accesses them via addresses in memory locations 44 (SAVE) and 46 (RESTORE) using the sequence:

H-5

MOV
JSR

@# 44,-(SP)
R5,@(SP)+

iOR'MOV @# 46,-(SP)

The program must, therefore, contain these subroutines. They might, for exampl e, be as follows:

SAVE: MOV
MOV
MOV
MOV
MOV
MOV

RESTOR: INC
MOV
MOV
MOV
MOV
MOV
RTS

R4,-(SP)
R3,-(SP)
R2 ,-(SP)
Rl,-(SP)
RO ,-(SP)
R5,PC

(SP)+
(SP)+, RO
(SP)+, Rl
(SP)+,R2
(SP)+, R3
(SP)+, R4
R5

iSAVE RQ-4
i • •• R5 SAVED BY CALL

i EXIT TO CALLER

i FORGET CALL R5
iRESTORE RQ-4

iR5 RESET ON EXIT

It must also ensure that their start addresses are set into the correct locations.

At its final interrupt, the driver always saves the contents of Registers 0-5 before returning control to

the calling program completion return.

H.3.1.5 Returns From Driver - As shown in the example in Section H.3. 1 .3, the driver returns control

to the cal I ing program immediately after the JSR as soon as it has set the device in motion. The program

may then wait or carry out some alternative operations until the driver signals completion by returning

at the address suppl ied, i.e., RETURN above. Prior to this, the program should not attempt to access

the data being read in, or to refil I a buffer being written out.

The program routine beginning at address RETURN wil I vary according to the device in use. In general,

the driver has given control to the routine for one of two reasons, namely, the function has been satis­

factorily performed, or it cannot be carried out due to some hardware failure with which the driver is

unable to cope, though the program may. If the latter, the driver uses the STATUS word in the pro­

gram I ist to show the cause:

Bit 15 = 1

Bit 14 = 1

indicates that a device parity or timing failure has occurred
and the driver has not been able to overcome this, perhaps
after several attempts.

shows that the end of the data available has been reached.

The driver places in RO the content of its first word as a pointer to the list concerned.

H-6

•

In addition, the driver may have transferred only some of the data required. In this case, it will show,

in the RESERVED word of the program list, a negative count of the words not transferred in addition

to setting Bit 14 of the STATUS. As mentioned in the note in Section H.3. 1 .2, this appl ies only to

non-bulk storage devices. The drivers for DECtape or Disks 1 always endeavor to complete the full

transfer, even beyond a parity failure, or they take more drastic action (see Section H.3. 1 .6).

It is thus the responsibility of the program RETURN routine to check the information supplied by the

driver in order to verify that the transfer was satisfactory and to handle the error situations accordingly.

In addition, the routine must contain a sequence to take care of the Processor Stack, Registers, etc.

As noted earl ier, the driver takes the completion return address after an interrupt and has saved

Registers 0-5 on the stack above the Interrupt Return Address and Status. The program routine should,

therefore, contain some sequence to restore the processor to its state prior to such interrupt, e.g.,

using the same Restore subroutine illustrated earlier:

MOV
JSR

RTI

@#46,-(SP)
R5,@(SP)+

iCALL REGISTER RESTORE

iRETURN TO INTERRUPTED PROG.

H.3.1.6 Irrecoverable Errors - All hardware errors other than those noted in the previous paragraph

are more serious in that they cannot normally be overcome by the program or the driver on its behalf.

Some of these could be due to an operator fault, such as an omission to turn a paper tape reader on

or to set the correct unit number on a DECtape transport. Once the operator has rectifi ed the problem,

the program could continue. Other errors, however, will require hardware repair or even software

repair, e.g., if the program asks for Block 2000 on a device having a maximum of 1000. In general,

all these errors will result in the driver placing identifying information on the processor stack and

calling lOT to produce a trap through location 34.

Under DOS, the Monitor provides a routine which prints a teleprinter message when this occurs. In a

stand-alone environment, the program using the driver must itself contain the routine to handle the

trap (unless the user wishes to modify the driver error exits before assembly). The handler format will

depend upon the program. Should it wish to take advantage of the information supplied by the driver,

the format is as follows:

1 This includes RFll Disk; although this is basically word-oriented, it is assumed to be subdivided into
64-word blocks.

H-7

(SP):
2 (SP):
4 (SP):
5 (SP):

6 (SP):

Return ~ddress}
Return Status
Error No. Code
Error Type Code:

~dditional Informa­
tion

Stored by lOT Call

generally unique to driver
1 = Recoverable after Operator ~ction
3 = No recovery
such as content of Driver, Control Register,
Driver Identity I etc.

~ a rule, the driver will expect a return following the lOT call in the case of errors in Type 1 but

will contain no provision following a return from Type 3.

H.3.1.7 General Comment - The source language of each driver has been written for use with the

DOS version of the ~ssembler which requires certain statements which will not be accepted by the

Paper Tape Software P~L-ll~, in particular: • TITLE & .GLOBL. These should be edited out before

the source is.used. Similarly, an entry in the driver table gives the device name as .~D50 lOTI to

obtain a specially packed format used internally by DOS. If the user wishes to keep the name, for

instance for identification purposes as discussed in Section H.3.3, • ~D50 might easily be changed to

.ASCII without detrimental effect, or it can be replaced with .WORD O.

H.3.2 Drivers ~ssembled Separately

Rather than assemble the driver with every program requiring its availability, the user may wish to hold

it in binary form and attach it to the program only when loaded. This is readily possible; the only re­

quirement is that the start address of the driver should be known or can be determined by the program.

The example in Section H.3. 1.2 showed that the Interrupt Servicing routine can be accessed through

an offset stored in the Driver Table. The same technique can be used to call the setup subroutines,

as these also have corresponding offsets in the Table, as follows:

DRIVER+7
+10
+11
+12

1
Open
Transfer
Close 1
Special Functions 1

The problem, of course, is the start address. There is always the obvious solution, that of assembling

the driver at a fixed location so that each program using it can immediately reference the location

chosen. This, however, ceases to be convenient when the program itself has to avoid the area given

to the driver. A more general method is to relocate the driver as dictated by the program using it,

thus taking advantage of the position-independent nature of the driver. The ~bsolute Loader,

llf the routine is not provided, these are O.

H-8

•

described in the Paper Tape Software Handbook (DEC-ll-GGPB-D), Chapter 6, provides the capability

of continuing a load from the point at which it ended. Using this facility to enter the driver immedi­

ately after the program, the program itself might contain the following code to call the subroutine to

perform the transfer illustrated in Section H.3. 1 .3:

MOV PC,Rl iGET DRIVER START ADDRESS
ADD #PRGEND-.,Rl
MOV PC,RO iGET TABLE ADDRESS
ADD #TABLE+12-., RO i& SET UP AS SHOWN

i ••• IN SECTION H.3.1.3

CMP - (RO) , - (RO) i FINAL POINTER ADJUSTMENT
MOV RO,@Rl iSTORE IN DRIVER LINK
CLR -(SP) iGET BYTE SHOWING •••
MOVB lO(Rl) ,@SP i ••• TRANSFER OFFSET
ADD (SP)+,Rl i COMPUTE ADDRESS
JSR PC,@Rl iGO TO DRIVER

PRGEND:
.END

This technique may be extended to cover situations in which several drivers are used by the same

program, provided that it takes account of the size of each driver (this being already known because

of prior assembly) and that the drivers themselves are always loaded in the same order.

For example, to access the second driver, the above sequence would be modified to:

DVR1SZ=
PRGEND:

MOV
ADD
ADD

.END

PC,Rl
#pRGEND-. ,Rl
#DVR1SZ,Rl

iGET DRIVER 1 ADDRESS

iSTEP TO DRIVER 2

An alternative method may be to use the Relocatable Assembler PAL-ll S in association with the Linker

program LINK-llS, both of which are available through the DECUS Library. The start address of each

driver is identified as a global. Any call ing program need, therefore, merely include a corresponding

.GLOBL statement, e.g., .GLOBL DT.

H-9

H.3.3 Device-Independent Usage

As mentioned earl ier, the drivers are designed for use in a device-independent environment, i.e., one

in which a calling program need not know in advance which driver has been associated with a table for

a particular execution run. One application of this type might be to allow line printer output to be

diverted to some other output medium because the line printer itself is not currently available.

Another might be to provide a general program to analyze data samples although these on one occasion

might come directly from an Analog-to-Digital converter and on another be stored on a DECtape, be­

cause the sampling rate was too high to allow immediate evaluation.

As a rule, programs of this type should be written to cater for all the facilities that anyone device

might offer, but not necessarily all of them. For instance, the program should ask for start-up procedures

because it may sometime use a paper tape punch whi ch provides them, even though it may normally use

DECtape which does not. As noted in Section H.2. 1 .1, the driver table contains an indi cation of its

capabilities to cater for this situation. The program can thus examine the appropriate item before call­

ing the driver to perform some action. As an example, the code to request start-up procedures might

be (assuming RO already set to List Address):

NOOPEN:

MOV
TSTB
BPL
MOV
CLRB
MOVB
ADD
JSR

#DVRADD,Rl
2 (Rl)
NOOPEN
RO ,@Rl
-(SP)
7(Rl) ,@SP
(SP)+, Rl
PC,CRl

iGET DRIVER ADDRESS
iBIT 7 SHOWS •••
i •• • OPEN ROUTINE PRESENT
iSTORE TABLE ADDRESS
iBUILD ADDRESS
i • •• OF THIS ROUTINE

i ••• & GO TO IT
i FOLLOWED POSSIBLY BY
iWAIT AND COMPLETION
iPROCESSING
iRETURN TO COMMON OPERATION

Similarly, the indicators show whether the device is capable of performing input or output or both,

whether it can handle ASCII data or binary data, whether it is a bulk storage device capable of support­

ing a directory structure or is a terminal-type device requiring special treatment and so on. Other table

entries show the device name as identification and how many words it might normally expect to transfer

at a time (in 16-word units). All of the information may readily be examined by the call ing program,

thus enabl ing the use perhaps of a common call sequence for any I/O operation, as for example:

H-10

•

•

WAIT:

IOSUB:

MOV #DVRADR, R5
JSR R5, IOSUB
BR WAIT
.WORD 10
.WORD 103
• WORD BUFFER
.WORD -256.
.WORD 404
• WORD RETURN
.WORD 0

MOV
MOV
TST

MOV
ADD
CLR
MOVB
ADD
JSR
RTS

@SP,RO
R5,R1
(Rl)+

@R1 ,R1
RO,R1
-(SP)
@R1 ,@SP
RO,@SP
PC,@(SP)+
R5

iSET DRIVER START
iCALL SET UP SUB
iSKIP TABLE FOLLOWING ON RETURN
iTRANSFER REQUIRED
iBLOCK NO •
iBUFFER ADDRESS
iWORD COUNT
i READ FROM UNIT 1
i EXIT ON COMPLETION
iRESERVED
iCONTINUE HERE •••
iWHILE TRANSFER IN PROGRESS

iPICK UP DRIVER ADDR
iSET POINTER TO LIST
iBUMP TO COLLECT CONTENT
iROUTINE CHECKS ON DEVICE ••
; •• CAPABILITY USING R1
; •• TO ACCESS LIST &
; •• RO THE DRIVER TABLE
;IFO.K •••
iGET ROUTINE OFFSET

iUSE IT TO BUILD
i • •• ENTRY POINT

iCALL DRIVER
i EXIT TO CALLER

The calling program, or a subroutine of the type just illustrated, may also wish to take advantage of

a further feature mentioned earlier: the fact that when a driver is already occupied its first word must

be nonzero. The driver itself does not clear this word except in special cases shown in the description

for the driver concerned. If the program itself always ensures that it is set to zero between driver tasks,

this word forms a suitable driver-busy flag. UndE~r DOS, in fact, the program parameter list is ex­

tended to allow additional words to provide linkage between lists as a queue of which the list indicated

in the driver first word is the first I ink.

The preceding paragraphs are intended merely to indicate possible ways of incorporating the drivers

available into the type of environment for which they were designed. The user will probably find others.

I-bwever, he should read carefully the more detailed description of the driver structure in Appendix G

and the individual driver specifications before determining the final form of his program.

In particular, one general word of warning is appropriate here. Although most drivers normally set

up an operation and then wait for an interrupt to produce a completion state, there are some cases in

which the driver can finish its required task without an interrupt, e.g., "opening" a paper tape

reader involves only a check on its status. Moreover, where II Special Functions" are concerned, the

HI-11

driver routine may determine from the code indicated that the function is not applicable in its case

and will, therefore, have nothing to do. In those cases, the driver clears the intermediate return

address from the processor stack and takes the completion return immediately. Special problems may

arise, however, if the driver concerned may be covering several tasks, any of which may cause a

queue for the driver's services under DOS. To overcome these problems, the driver expects to be able

to refer to flags outside the scope of the I ist described so for. This may mean that a program using

such a driver may also need to extend the list range to cover this possibility. Extreme care will then

be needed.

H-12

•

,.

Bit Map

Buffer

Buffer Use Tab I e

Contiguous Fit e

Core Bit Map

Core Image

CSI

DAT

Dataset

DDB

Default Device

Device Driver

Fatal &ror

File

FBM

FIB

APPENDIX I

GLOSSARY AND ABBREVIATIONS

A table describing the availability of space. Each
bit in the table indicates the state (occupied or free)
or one segment of storage, for example a block on a
bulk storage device.

A storage area

A bit map in the permanently resident monitor, which
describes the availability of buffers in the free core
area.

A file consisting of physically contiguous blocks on a
bulk storage device.

That portion of a Permanent Bit Map which happens to
be in core. Not to be confused with the Buffer Use
Table.

A copy of what a program or other data would look I ike
if it were in core.

Command Stri ng Interpreter.

Device Assignment Table.

A logical collection of data which is treated as an
entity by a program.

Dataset Data Block.

The device specifi ed in the Link Block of a dataset, and
which is used for I/O operations on that dataset if there
is no other device assigned in a DAT entry for the dataset.

The minimal routine which controls physical hardware
activities on a peripheral device. The device driver is
the interface between a device and the common, device­
independent I/O code in the monitor.

An error from wh i ch a user's program canno t recover.

A physical collection of data which resides on a directory­
structured device and is referenced through its name.

File Bit Map - A device-resident bit map with bits flagged
for the blocks used for a single file. Used on DECtape to
aid in the deletion process.

Fi Ie Information Block

1-1

Fi I e Structure

Interleave Factor

julian Date

KSB

Linked Ale

Linker

Load Module

MFD

MRT

MSB

Object Module

Operator

Parity Bit

PBM

Radix-50 packed ASCII

SAM

SAL

The manner in which files are organized on a bulk storage
device. Each of the files of a user is referenced through
an entry in that user's User Ale Directory. Each User
File Directory on the device is, in turn, referenced
through an entry in the Master Fi Ie Directory.

The optimal minimum distance, measured in number of
physical device blocks, between logically adjacent
blocks of a linked file. Presently it is four on all
PDP-11 bulk storage devices. For example, if
physical block N is assigned to block 1 of a linked
file, then physical block N+4 would be the closest
device block that could be assigned to block 2 of that
file.

A 5-digit (decimal) numerical representation of the
date, in which the two high-order digits give the
year (1900=00, 1999=99) and the three low-order
digits give the day within the year (january 1 = 001 ,
December 31 = 365 (366 for leap year)}. For example,
january 28, 1971 is represented as 71028.

Keyboard Swap Buffer

A file consisting of a set of blocks within which an
ordering is specified through the use of a link word
imbedded within each block.

A systems program which creates a load module to be
loaded into core memory. The I inker relocates and
links internal and external symbols to provide communi­
cation between independently assembled programs.

The output of the linker. A program in absolute binary
form ready for loading and executing on a PDP-11 •

Master File Directory

Monitor Residency Table

Monitor Swap Buffer

The relocatable binary output of an assembler or
compiler.

A user communicating directly with the Monitor
through the keyboard.

A binary digit appended to an array of bits to make the
sum of all the bit values always odd or always even.

Permanent Bit Map - A bit map which describes the avail­
abi lity of space on a DECtape or disk. It resides on the
device it describes, and can be read into core in segments,
called Core Bit Maps, for reference or updating.

A format in which 3 ASCII characters (from a subset of all
ASCII characters) are packed into a single 16-bit word.

Swap Area Manager

A fri end of SAM.

1-2

Swapping

Table

UFO

UIC

User

User Program

The movement of programs or program sections from
secondary storage to core.

A collection of data in a form suitable for ready
reference.

User File Directory.

User Identification Code

The person who is using the Iv'Dnitor. He may use the
Monitor as an operator, or via a program.

Any program written by a user to run under the Monitor.

1-3

INDEX

Abbreviations, summary of, Appendix I
Accessing interrupt servic ing driver routine, H-8
Access, random, 2-24
Address of

core memory, 2-44
first word above Monitor, 2-45
first word above Monitor's highest

allocated free core buffer, 2-46
REstart command, 2-43

Allocate
free area, 2-32
system resources, 3-5

Append linked file, 2-37
ASCII

definition, 1-6
to binary conversion, 2-53, 2-56

ASCII modes, 2-4, 2-12
formatted norma I , 2-68
formatted specia I, 2-69
normal or special unformatted, 2-70
nonparity, 2-13
parity, 2-13, 2-70

Assign physical device, 3-5
Assignments, subsidiary routine, C-I
Asteri sk (*)

as file name specifier, 3-13
as UIC specifier, 3-14

BEGIN command, 3-7
Binary modes, 2-4, 2-13

to ASCII conversion, 2-55, 2-56
norma I I formatted, 2-69
norma I or specia I, un formatted, 2-70
special formatted, 2-70

BLOCK level requests, 2-5, 2-24
Blocks

BLOCK, 2-71
TRAN, 2-71

Braces ({ }), as writing convention, 3-4
Brackets, ([]), as writing convention, 3-4
Bulk storage devices, 2-7

Calling driver, G-2, H-4
Capabi lities of driver, H-IO
Characters, Monitor response, 3-1
Check syntax, 2-58
Close dataset, 2-19
Close routine , driver, G-6
Colon (:) as value specification delimiter, 3-14
Comma (,)

as del imiter, 3-12
as writing convention, 3-4

X-I

Command String Interpreter (CSI), 2-57, 3-12
Commands

definition of, 1-2
Monitor, 3-3 through 3-12
summary, D-I

Commands to
allocate system resources, 3-5
exchange information with system, 3-9
man ipulate core images, 3-4, 3-6, 3-7
start program, 3-7, 3-R

stop a program, 3-8, 3-9
Condense command string, 2-. .c;8
Configurations, hardware, 1-4
Contiguous fi Ie, creating, 2-32
Control interface, driver, H-3
Control, return to Monitor request, 2-41
Conversion

ASCII to binary, 2-53, 2-55
ASCII to RAD-50 format, 2-50
binary to ASCII, 2-55, 2-57

Copy core area, 3-6
Core image manipulation, 3-5, through 3-7
Core memory

address, 2-44
organization, 1-3

Core resident routines, 2-11
CSI (Command String Interpreter), 3-12

requests, 2-57
syntax ru les, 3-14

example, 3-1 ~
CTRVC, 3-2, 3-3
CTRL/U, 3-3

Data modes, 2-4, 2-12
Dataset Data Block (DDB), G-2
Dataset specification format, 3-12,3-13
Dataset specified as writing convention, 3-4
Date,

obtain current, 2-47
specification, 3-9

DD B (Dataset Data Block), G-2
Debugging, 3-1/
Decimal character conversion, 2-54
Definition of requests for input/output

services, 2-12
Delete a file, 2-34
Device driver

control interface, H-3
definition, H-I
error handling, H-2
format, H-I

Device driver (cont.)
interface table, H-2
interru pt i nterfa ce, H-3
interrupt servic ing, H-2
setup routines, H-2
structure, H-I
writing, H-I

Device
enabling by driver, G-4
independence, 2-10
independent usage, driver, H-IO
name, writing convention, 3-4
names, A-I
parity failure, G-5

Directory management services requests, 2-10,
2-32

Driver
assembled with program, H-3
call parameter table, H-4
capabilities, H-IO
device independent usage, H-IO
queue manager, G-3
returns, H-6
routines, G-4
stand-alone usage, H-3
structure, G-I

Drivers assembled separately, H-8
Drivers for terminals, G-6
Dump modes, 2-70

Echo conflict, G-7
Echo suppression, teleprinter, 3-11
EMT codes, B-1
End-of-fi Ie, 3-11
Error hand ling, driver, H-2
Error messages, summary of DOS, F-I
Errors, driver irrecoverable, H-7
Example programs, 2-77
Exit from program, 2-41
Extension specification, 3-13

File
appending, 2-37
creation, 2-32
de letion, 2-34
protecting from automati c de letion, 2-40
protection codes, 2-65, 2-66
renaming, 2-35
search ing for, 2-38

File name description, 2-17
Fi lename block, 2-62, 2-63

error conditions, 2-63, 2-64
Filename speci fi cation, 3-13

X-2

First word above Monitor address, 2-45
First word above Monitor's highest

allocated free core bu Her, address of, 2-46
Format, d ri ver, H-I
Formatted modes, 2 ... 13

ASCII normal, 2-68
ASCII parity, 2-70
ASCII special, 2-69
binary normal, 2 ... 13, 2-69
binary specia I, 2-70

Glossary, Appendix I

Hardware configurations 1-4

Initialize dataset, 2-14
I/O drivers within DOS, G-I
Input control, G-6, G-7
Input/output level

related servi ces requests, 2-29
requests, 2-3
service reque sts, 2-12

Interface table , driver, H-2
Interpret dataset specification, 2-f\9
Interrupt interface, driver, H-3
Interrupt servicing, driver, G-4, H-2

Keyboard
functions, 3-2
use, 3-1

leaving system, 3-10
left angle bracket (<) as delimiter, 3-12
line buffer, 2-4

heade r , 2-4, 2-5, 2-66, 2-67
link block, 2-5, 2-60, 2-61
linked fi les, 2-37
load

program, 3-6
speci fied dataset, 3-6

logica I name as writing convention, 3-4

Messages, Monitor, 1-5, 2-74
Miscellaneous services requests, 2-10, 2-41
Modes, data, 2-4

special f~rmatted binary, 2-70
Modification of contents in absolute

memory, 3-10

•

Monitor
calling driver, G-2
commands, 3-3 through 3-12
command summary, D-I
description of DOS Monitor, I-I
messages, I-S, 2-74
parameters, requests to obtain, 2-44
requests, summary, See Appendix E for

complete listing and individual page.
references.

response characters, 3-1
restrictions, 2-11
serv ices, 2-1
starting, I-S

Nonparity modes, ASCII, 2-13
Normal and special modes, 2-13
Numbers, standards for, 1-7
Number symbol (#) teleprinter usage, 3-12

Obtain device status, 2-30
Octal ,chara.cter conversion, 2-54
Open named file, 2-16
Open routine, driver, G-S
Operator keyboard interface, 3-1
Organization, core memory, 1-3
Output control, G-7
Overflow, stack, 2-7S

Packing characters, 2-S0
Parame·ters, requests to

obtain Monitor, 2-44
set Monitor, 2-41

Parameter table for driver call, H-4
Parity failure, device, G-S
Parity and nonparity modes, ASCII, 2-13, 2-70
Printing suppression , teleprinter, 3-11
Program

restart, 3-8
start, 3-7, 3-8
stop, 3-8, 3-9
suspension, 3-9

Programming tips, 2-73
Programs supported by DOS, 1-3
Protect fi Ie from automati c deletion, 2-40

RAD-SO
format, 2-50
packing, 2-50

Random access, 2-24, 2-25
Read from device, 2-21
Read/write leve I 'requests, 2-4, 2-12

X-3

Relative block access, 2-25
Release driver, 2-15
Rename a file, 2-35
Request arguments, 2-1
Requests

BLOCK level, 2-S, 2-24
definition of, 1-2
programmed, 2-1
read/write level, 2-12
summary of Mon itor programmed, E-I
TRAN level, 2-7, 2-26

Req uests for
Directory Management servi ces, 2-10
input/output and re lated servi ces, 2-3, 2-29
interfacing with command string

interpreter, 2-!\6
miscellaneous services, 2-10, 2-41

Requests to
obtain Monitor parameters, 2-44
perform conversions, 2-49
set Mon itor parameters, 2-41

Response characters, Monitor, 3-1
Restart program, 3-P
Restri ctions on programmer, 2-11
Resume program operation, 3-a
Return control to Monitor, 2-41
Returns from driver, H-6
Routine assignments, subsidiary, C-I
Routines, core resident, 2-11
RUBOUT, 3-2

Search directory for fi lename, 2-38
Semicolon (;) as comments indicator, 3-3
Services, Monitor, 2-1
Set interrupt vector for trap instruction, 2-42
Set REstart command address, 2-43
Set driver's interrupt vector, H-3
Setup routine, driver H-2
Slash (/) as switch specification, 3-1, 3-·14
Source language , driver, H-8

editing for PAL-IIA, H-8
Special and normal modes, 2-13
Specia I formatted binary mode, 2-70
Special function, G-6

block, 2-73
codes, 2-29

Square brackets ([]), 3-13
Stack overflow, 2-75
Standards

for numbers, 1-7
for tables, 1-6

Stand-alone usage, H-3
Start program, 3-7
Starting Mon itor, I-S
Status byte, 2-67, 2-68

Status, obtain device, 2-30
Stop program, 3-8, 3-9
Structure , driver, H-I
Summary of

DOS error messages, F-I
Monitor commands, D-I
Monitor programmed requests, E-I

Suppress teleprinter echo or printing, 3-11
Suspend program, 3-9
Swapping routines into core, 2-11
Switch

interface, 2-60
specification, 3-14

Syntax check, 2-58

Tables, standards for, 1-6
Teleprinter echo or printing suppression, 3-11
Terminology, 1-6
TIC, definition, 2-48
Time, obtain current time of day, 2-48
Time of day entry, 3-9
TRAN block, 2-71
TRAN level requests, 2-26
Transfer

absolute block, 2-27
driver routine, G-4
levels for types of datasets (table), 2-7
modes, 2-68, 2-69, 2-70
physical block of file, 2-25
requests, summary, 2-17

Trap instruction, set interrupt vector for, 2-42

X-4

UIC (User Identi fi cation Code), 2-17, 2-50
3-10

specification, 3-13
Underl in ing, as writing convention, 3-4
Unformatted modes, 2-13

ASCII normal or special 2-70
ASCII parity, 2-70
Binary normal or special, 2-70

Unpacking characters 2-53
User program tables, 2-61 through 2-72
User registers, driver, H-5

Value specification, 3-14

Wait for completion of process, 2-23, 2-24
WAIT, implied, 2-74
Write on device, 2-22
Write program onto disk, 3-7
Writing conventions, 3-4
Writing devi ce driver, H-I

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as we II as programm ing notes,
software problems, and documentation corrections are published by Software
Information Service in the following newsletters.

Digital Software News for the PDP-8 & PDP-12
Digital Software News for the PDP-II
Digital Software News for the PDP-9/15 Family

These newsletters contain information appl icable to software avai lable from
Digital's Program Library, Articles in Digital Software News update the
cumu~ative Software Performance Summary which is contained in each basic
kit of system software for new computers. To assure that the monthly Digital
Software News is sent to the appropriate software contact at your insta lIation,
please check with the Software Specialist or Sales Engineer at your nearest
Dig i ta I off ice.

Questions or problems concern ing D igita I's Software shou Id be reported to
the Software Specialist. In cases where no Software Specialist is available,
please send a Software Performance Report form with details of the problem to:

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

These forms which are provided in the software kit should be fully filled out
and accompanied by teletype output as well as listings or tapes of the user
program to faci I itate a complete investigation. An answer will be sent to the
individual and appropriate topics of general interest will be printed in the
newsletter.

Orders for new and revised software and manuals, additional Software Per­
formance Report forms, and software price lists should be directed to the
nearest Digital Field office or representative. U. S. A. customers may order
directly from the Prc~rnm Library in Maynard. When ordering, include the
code number and a brief description of the software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library
and publishes a catalog of programs as well as the DECUSCOPE magazine
for its members and non-members who request it. For further information
please write to:

DECUS
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

READER'S

PDP-I! Disk Operating System Monitor
Programmer'. Handbook

DEC-!l-MWDC-D
February 1972

COMMENTS

Digita I Equipment Corporation maintains a continuous effort to improve the qua I ity and usefu Iness
of its publications. To do this effectively we need user feedback -- your critical evaluation of
th is manua I .

Please comment on this manual's completeness, accuracy. organization, usability and read­
ability.

Did you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Please state your position. Date:
--- -------------------

Name: Organization:
--- -------------------------------------

Street: Department:
--- -------------------------------------

City: State: Zip or Country
-------------------------------- ----------------------------- ----------------

- - - - - - - - - - - - - - - - Fold Here -

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - -

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATI-S

Postage will be paid by:

mamaoma
Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard. Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

digital equipment corporation

PREFACE

This document contains a comprehensive description of the PDP-11 Disk Operating System Monitor.

The document is written for the PDP-11 programmer -- it assumes familiarity with the contents of the

PDp ... ll Handbook 1971 and the PAL-llR Assembler (see document number DEC-ll-ASDB-D). Previous

experience with monitor or executive systems would be helpful.

The document is separated into three chapters: Chapter 1 is an introduction to the DOS Monitor I and

provides general information about the disk operating system. Chapter 2 describes the programmed

requests that are available to the programmer through the Monitor. This chapter also explains the

concepts and operation of each programmed request. Chapter 3 describes the keyboard commands avail­

able to the system operator through the Monitor; concepts and operation of each command are also

explained. The entire docum(mt is summarized in the appendi,t:es. Appendices D (Monitor Commands)

and E (Monitor PrOgrammed Requests) should prove to be invaluable to the DOS user.

In addition to the DOS Monitor I the PDP-11 Disk Operating System software includes:

FORTRAN IV
PAL-llR Assembler
Edit-l1 Text Editor
ODT-11R Debugging Program
PIP I Fi Ie Uti lity Package
Link-11 Linker
Libr-l1 Librarian

iii

SOFTWARE SUPPORT CATEGORIES

Digital Equipment Corporation (DEC) makes available four categories of software. These
categories reflect the types of support a customer may expect from DEC for a specified software
product. DEC reserves the right to change the category of a software product at any time.
The four categories are as follows:

CATEGORY
Software Products Supported at no Charge

This classification includes current versions of monitors, programming languages, and
support programs provided by DEC. DEC wi II provide installation {when appl icable}, advisory,
and remedial support at no charge. These services are limited to original purchasers of DEC
computer systems who have the requisite DEC equipment and software products.

At the option of DEC, a software product may be recategorized from Category I to
Category II for a particular customer if the software product has been modified by the customer
or a third party.

CATEGORY II
Software Products that Receive Support for a Fee

This category includes prior versions of Category I programs and all other programs avail­
able from DEC for which support is given. Programming assistance {additional support}, as
available, will be provided on these DEC programs and non-DEC programs when used in con­
junction with these DEC programs and equipment suppl ied by DEC.

CATEGORY III
Pre-Re I ease Software

DEC may elect to release certain software products to customers in order to facil itate
final testing and/or customer familiarization. In this event, DEC will limit the use of such
pre-release software to internal, non-competitive applications. Category III software is only
supported by DEC where this support is consistent with evaluation of the software product.
While DEC will be grateful for the reporting of any criticism and suggestions pertaining to a
pre-release, there exists no commitment to respond to these reports.

CATEGORY IV
Non-Supported Software

This category includes all programs for which no support is given.

iv

..

CONTENTS

Page

CHAPTER 1 INTRODUCTION

1.1 The DOS W\onitor 1-1

1.2 Monitor Core Organization 1-3

1.3 Hardware Configurations 1-4

1.4 Monitor Messages 1-5

1.5 Starting The W\onitor 1-5

1.6 A Guide To This Handbook 1-6

1.6.1 Terminology 1-6

1.6.2 Standards for Tables 1-6

1.6.3 Standards for Numbers 1-7

CHAPTER 2 PROGRAMMED REQUESTS

2. 1 Introduction 2-1

2.2 Types of Programmed Requests 2-3

2.2. 1 Requests for Input/Output and Related Services 2-3

2.2.1.1 READ/WRITE Level Requests 2-4

2.2.1.2 BLOCK Level Requests 2-6

2.2.1.3 TRAN Level Requests 2-8

2.2.2 Requests for Directory Management Services 2-9

2.2.3 Requests for Miscellaneous Services 2-10

2.3 Device Independence 2-10

2.4 Swapping Routines Into Core 2-11

2.5 W\onitor Restrictions On The Programmer 2-11

2.6 Definition of Requests For Input/Output Services 2-12

2.6. 1 READ/WRITE Level Requests 2-12

2.6.1.1 .INIT 2-14

2.6.1.2 .RLSE 2-15

2.6.1.3 .OPEN 2-16

2.6.1.4 .CLOSE 2-19

2.6.1.5 • READ 2-21

2.6.1.6 .WRITE 2-22

2.6.1.7 .WAIT 2-23

2.6.1.8 .WAITR 2-24

v

CONTENTS (Cont) •
Page

2.6.2 BLOCK Level Requests 2-24

2.6.2.1 .BLOCK 2-25

2.6.3 TRAN Level Requests 2-26

2.6.3.1 .TRAN 2-27

2.6.4 Requests for Input/Output Related Services 2-29

2.6.4.1 .SPEC 2-29

2.6.4.2 .STAT 2-30

2.7 Definitions of Requests of Directory Management
Services 2-32

2.7.1 .ALLOC 2-32

2.7.2 • DELET 2-34

2.7.3 .RENAM 2-35

2.7.4 .APPEND 2-37

2.7.5 .LOOK 2-38

2.7.6 .KEEP 2-40

2.8 Definition of Requests for Miscellaneous Services 2-41 •
2.8.1 Requests to Return Control to the Monitor 2-41

2.8.1.1 • EXIT 2-41

2.8.2 Requests to Set Monitor Parameters 2-41

2.8.2.1 • TRAP 2-42

2.8.2.2 • RSTRT 2-43

2.8.3 Requests to Obtain Monitor Parameters 2-44

2.8.3.1 .CORE 2-44

2.8.3.2 .MONR 2-45

2.8.3.3 .MONF 2-46

2.8.3.4 • DATE 2-47

2.8.3.5 • TIME 2-48

2.8.3.6 .GTUIC 2-49

2.8.3.7 .SYSDV 2-50

2.8.4 Requests to Perform Conversions 2-50

2.8.4.1 .RADPK 2-51

2.8.4.2 .RADUP 2-53

2.8.4.3 .D2BIN 2-54

2.8.4.4 .BIN2D 2-55 •
2.8.4.5 02BIN 2-56

vi

CONTENTS (Cont)

Page

2.8.4.6 .BIN20 2-57

2.8.5 Requests for Interfacing with the Command String
Interpreter 2-57

2.8.5.1 .CSIl 2-58

2.8.5.2 .CSI2 2-59

2.8.6 User Program Tables 2-61

2.8.6.1 The Link Block 2-61

2.8.6.2 The Alename Block 2-62

2.8.6.3 The Ale Protection Codes 2-65

2.8.6.4 The Line Buffer Header 2-66

2.8.6.5 The Status Byte 2-67

2.8.6.6 The Transfer Modes 2-68

2.8.6.7 The BLOCK Block 2-71

2.8.6.8 The TRAN Block 2-72

, 2.8.6.9 The SPECIAL FU NCTION Block 2-73

2.9 Programm i ng Ti ps 2-73

2.10 Monitor Messages 2-75

2.11 Example Programs 2-78

CHAPTER 3 OPERA TOR COMMANDS

3. 1 The Operator Keyboard Interface 3-1

3.2 Communicating Through the Keyboard 3-2

3.3 Monitor Commands 3-3

3.3. 1 Commands to Allocate System Resources 3-5

3.3.1.1 The ASsign Command 3-5

3.3.2 Commands to Manipulate Core Images 3-6

3.3.2.1 The RUn Command 3-6

3.3.2.2 The GEt Command 3-6

3.3.2.3 The DUmp Command 3-6

3.3.2.4 The SAve Command 3-7

3.3.3 Commands to Start a Program 3-7

3.3.3.1 The BEgin Command 3-7

3.3.3.2 The COntinue Command 3-8

3.3.3.3 The REstart Command 3-8

vii

CONTENTS (Cont) •
Page

3.3.4 Commands to Stop a Program 3-8

3.3.4.1 The STop Command 3-8

3.3.4.2 The WAit Command 3-8

3.3.4.3 The Kill Command 3-9

3.3.5 Commands to Exchange Information with the System 3-9

3.3.5.1 The DAte Command 3-9

3.3.5.2 The TIme Command 3-9

3.3.5.3 The LOg in Command 3-9

3.3.5.4 The MOdify Command 3-10

3.3.5.5 The FInish Command 3-10

3.3.6 Miscellaneous Commands 3-11

3.3.6.1 The ECho Command 3-11

3.3.6.2 The PRint Command 3-11

3.3.6.3 The ENd Command 3-11

3.3.6.4 The ODt Command 3-11

3.4 The Command String Interpreter (CSI) 3-12 •
3.4.1 CSI Command Format 3-12

3.4.2 CSI Command Example 3-15

APPENDICES

APPENDIX A PHYSICAL DEVICE NAMES A-1

APPENDIX B EMT CODES B-1

APPENDIX C SUBSIDIARY ROUTINE ASSIGNMENTS C-1

APPENDIX 0 SUMMARY OF MONITOR COMMANDS 0-1

APPENDIX E SUMMARY OF MONITOR PROGRAMMED REQUESTS E-1

APPENDIX F SUMMARY OF DOS ERROR MESSAGES

F. 1 Action Messages. F.-l

F.2 Informational Messages F-2

F.3 Warning Messages F-2

F.4 Fata I Messages F-4

F.5 System Program Messages F-8 •
viii

ASCII Modes (Cont)

Binary Modes:

Formatted ASCII Nonparity - Normal

Unformatted ASCII Parity - Norma I

Unformatted ASCII Nonparity - Normal

Formatted Binary - Specia I

Formatted Binary - Normal

Unformatted Binary - Normal

1. Formatted and Unformatted ASCII Modes:

Data in formatted ASCII modes is assumed by the Monitor to be in strings of 7- or 8-bit ASCII char­

acters terminated by LINe FEED, FORM FEED or VERTICAL TAB. PAL-llR Assembler source pro­

grams are in a formatted ASCII mode. In these modes, the Monitor manages all device-dependent

conversions at the driver level. For example, LINE FEED is supplied after RETURN in character

strings from keyboard terminals.

Data in unformatted ASCII modes is also assumed to be in strings of 7- or 8-bit ASCII characters.

Checks for terminators and device-dependent conversion are not performed by the Monitor, thus

allowing the user to handle all characters in his own way.

2. ASCII Parity and Nonparity Modes:

In ASCII nonparity modes, 7-bit ASCII characters are transferred.

In formatted ASCII parity modes, ~ven parity is generated in the 8th bit and is checked during the

transfer. In unformatted ASCII parity mode, 8 bits are transferred, but no parity is generated or

checked.

3. Normal and Special Modes:

Special modes provide additional Monitor facilities over and above normal modes; normal modes

are compatible with the PDP-l1 I/O Executive (lOX).

4. Formatted and Unformatted Binary Modes~

Data in formatted binary'modes is transferred in 8-bit bytes as read from the device. The Monitor

makes no assumptions about the nature of the data. A checksum is calculated during a WRITE r~­

quest and transmitted with the data, as well as a count of the number of bytes. The checksum is

vsrified during a READ. The binary output of the PAL-llR Assembler, for example, is in a for­

matted binary mode.

Unformatted binary mode is the same as formatted binary except that no checksum or count is cal­

cu lated or verified.

NOTE

A dataset can only support transfers in one direction, i. e. ,
READ only or WRITE only. If the same device is to be used
for both operations, separate datasets must be used for each.

2-13

.INIT

2.6. 1 • 1 .INIT - Associate or initialize a dataset with a device driver and set up the initial linkage

between them.

Macrc;".(;sdl: • INIT LN KBLK

where LNKBLK is the address of the Link Block.·

Assem~Jy _ Language

Expansion:

Global Name:

MOV #LNKBLK,-(SP)
EMT 6

INR.

Description: Assigns a device to a dataset and makes sure that the appropriate driver exists and is in

core. If the driver is not in core, it is swapped in. The device assigned is that specified in the asso­

ciated Link Block, unless assignment has been made to the logical name specified in the Link Block

with the ASsign command. After the INIT has been completed, control is returned to the user at the

instruction following the assembly language expansion. The argument is removed from the stack.

R~.les: The user must set up a Link Block of the format shown in Figure 2-5 in his program for each

dataset to be INITed. Another .INIT on a dataset for which no .RLSE has been given will effectively

be a .RLSE followed by an .INIT except that no form of close will be performed.

Errors: A non-fatal error message, AOO3, is printed on the teleprinter if no assignment has been made

through the ASsign command, and the DEFAULT DEVICE is either not specified in the Link Block or

has been specified illegally (i .e., no such device on the system). The user may type in an assignment

(ASsign) and give the command CO (continue) to resume operation.

Control is transferred to the address specified by the Link Block if at any time during an operation

there is not enough space in free core for the necessary drivers, buffers, or tables. If no address (i .e.,

a zero) is specified in the Link Block's ERROR RETURN ADDRESS, a fatal error (F007) is printed and

the program stops.

Example: (see .RLSE).

2-14

•

...

.RLSE

2.6.1 .2 .RLSE - Remove the linkage between a device driver and a dataset, and release the driver.

Macro Call: .RLSE LNKBLK

where LNKBLK is the address of the Link Block previously INITed.

Assembly Language

Expansion:

Global Name:

MOY #LNKBLK,-(SP)
EMT 7

RLS.

Description: Dissociates the device from the dataset and releases the dataset's claim to the driver.

Releasing the driver frees core provided no other dataset has claimed the driver.

Rules: The device to be released must have been previously INITed to the dataset.

If the dataset has been opened on a directory device, it must be closed before the device is released.

On a nondirectory device, RLS wi II ensure that any data remaining in the Monitor buffer for output

is dispatched to the device and will return any buffer sti II associated with the dataset to free core.

After the release has been completed, control is returned to the user at the instruction following the

assembly language expansion; the argument is removed from the stack.

Errors: If the dataset has been .0PENed to a file-structured device, a .RLSE not preceded by a .CLOSE

will be treated as a fatal error, FOOS. A .RLSE error (FOOS) may also occur if dataset link is invalid

(DDB or driver not correct).

Example:

LNK1:

.INIT LNKl

.RLSE LNKl

· WORD ERRl
.WORD 0
· RADSO /DSI/
• BYTE 1, 0
.RADSO /KB/

ERR1: ERROR
PROCESSING

;ASSOCIATE A DATASET WITH A DEVICE

;ERROR RETURN ADDRESS
iPOINTER FOR MONITOR
;LOGICAL NAME OF DATASET
;DEVICE SPECIFIED, UNIT
;SPECIFY KEYBOARD

2-1S

·OPEN

2.6. 1.3 • OPEN - Prepare .INITed device for usage and make a named file available if the device

is directory oriented.

Macro Call: .OPENx LNKBLK, FILBLK

where x indicates the type of OPEN:

U for update
o for output
E for extension
I for input
C for create data in contiguous file
LNKBLK = address of Link Block
FILBLK = address of Filename Block

Assembly Language

Expansion:

MOVB #CODE,FILBLK-2

MOV #FILBLK,-(SP)
MOV #LNKBLK,-(SP)
EMT 16

;MOVE "HOW OPEN"
;CODE TO FILIENAME BLOCK

where CODE indicates the type of OPENx request:

OPENO = 2
OPENI = 4
OPENU = 1
OPENC = 13
OPENE = 3

Global Name: OPN. (See Appendix C for subsidiary routines,,)

Description: In general, an .OPENx request causes the Monitor to allocate a data buffer and to make

other necessary preparations for transferring to a dataset to or from a device. More specifically:

.OPENU

• OPENO

• OPENE

.OPENI

.OPENC

opens a previously created contiguous file fClr input and output by
.BLOCK.

creates a new linked file and prepares it to receive output •

opens a previously created linked file to make it longer •

opens a previously created linked or contiguous file for input to
the computer. It normally precedes all .READ operations.

opens a previously created contiguous file for output from the
computer.

2-16

•

.APPEND

2.7.4 .APPEND

Append one I inked fi Ie onto another.

Macl'o Ca II: .APPEND LNKBLK,FIRST ,SECOND

where LNKBLK is the address of the Link Block, FIRST is the address of the Filename Block for the

first file, and SECOND is the address of the Filename Block for the second file.

Assembly Language

Global Name:

MOV #SECOND ,-(SP)
MOV #FIRST ,-(SP)
MOV #LNKBLK,-(SP)
EMT 2

APP. (See Appendix C for subsidiary routines.)

Description: Makes one linked file out of two by appending the SECOND to the FIRST. The directory

entry of the SECO ND fi Ie is deleted. When the request is completed, control is returned to the user

at the instruction following the assembly language expansion. The arguments are removed from the

stack. No attempt is made to pack the two files together, the physical blocks are merely linked to­

gether.

Errors: Control is returned either to the ERROR RETURN ADDRESS in the offending Filename Block if

it is specified, or to the console for an error message if it is not. Possible errors resulting from

.APPIEND are:

Error Condition

Dataset Not INITed

First Fi Ie Nonexistent

Contiguous Fi Ie

Device Not Ready

Protect Code Violated

File Opened

Error Code Returned
To Filename Block

None

2

5

None

6

14

2-37

Error Message
On Default

FOOO

F024

F024

A002

F024

F024

·LOOK -.

2.7.5 .LOOK

Search the directory for a particular file name •

Macro Call: • LOOK LNKBLK,FILBLK (,1)

where LNKBLK is the address of the Link Block, and FILBLK is the address of the Filename Block.

Assembly Language

Expansion:

a. If the optional argument is not specified:

MOV #FILBLK,-(SP)
MOV #LNKBLK,-(SP)
EMT 14

b. If the optional argument is specified:

Global Name:

MOV #FILBLK,-(SP)
CLR -(SP)
MOV #LNKBLK,-(SP)
EMT 14

DIR. (See Appendix C for subsidiary routines.)

Description: The primary purpose of this routine is to search through a specified directory for a speci­

fied file and return with the current parameters of the file. However, this routine can also be used

to return the characteristics of a non-directory device. By specifying the optional argument, the user

can indicate whether he requires two or three parameters returned.

The device searched is specified through the Link Block, and the file through the Filename Block. The

request returns to the user with the top elements of the stack as follows.

2 Arg. Call
~----------------~

START BLOCK

OF BLOCKS SP

INDICATOR WORD SP+2

3 Arg. Call

SP

SP+2

SP+4

where # OF BLOCKS is the number a binary blocks in the file, and the INDICATOR WORD is
coded as foil ows:

2-38

•

INDICATOR

bit 0 = 1
bit 1 = 1
bit 2 = 1
bit 3 = 1
bit 4 = 0

WORD

= 1
bit 5 is 1

bit 6 = 0
= 1

bit 7 = 0
= 1

bits 15-8

OPENC allowed
OPENI allowed
OPENE allowed
OPENU allowed
file is not in use
file is being used by another dataset
dataset already has a file open (no search
has been performed)
fj Ie is I inked
file is contiguous
fi Ie does not exist (OPENO allowed)
file exists
protecti on code

After the request has been completed, control is returned to the user at the instruction following the

assembly language expansion. The stack must be cleared by the user. If a file is protected against

READ access, it will be signaled as nonexistent to a caller other than the owner.

Rules: The dataset must be INITed.

Errors: Control is returned either to the ERROR RETURN ADDRESS in the Filename Block if it is speci­

fied, or the console for an error message if it is not. Possible errors resulting from .LOOK are:

Error Code Returned
Error Condition To Filename Block Error Messaae

Device Not Ready None AOO2

A Fi I e Is Open on Request-
ing Dataset 14 F024

Illegal File Name 15 F024

2-39

·KEEP

2.7.6 .KEEP

Protect file from automatic deletion.

Macro Call: .KEEP LNKBLK,FILBLK

where FILBLK is the address of the Filename Block of the file to be protected.

Assembly Language

Expansion:

Global Name:

MOV #FILBLK,-(SP)
MOV #LNKBLK,-(SP)
EMT 24

PRO.

Description: Protects the named file from being deleted by the Monitor upon a FInish command (Section

2.3.5.5). It does this by setting bit 7 of the PROTECT byte in the Filename Block.

2-40

•

APPE·NDIX A

PHYSICAL DEVICE NAMES

Mnemonic

DC
DF
DK
DT
KB
LP
MT
PP
PR
PT
CR

Device

RCll Disk
RFll Disk
RK 11 Disk
DECtape (TC 11)
ASR-33 Keyboard/reletype
Line Printer (LPll)
Magtape (T M 11)
High-Speed Paper Tape Punch
High-Speed Paper Tape Reader
ASR-33 Paper Tape Device
Card Reader (CR 11)

NOTE

a. Device mnemonics may be three letters on a particu­
lar system. The third letter is assigned if there is
more than one controller, e. g. :

DTA for DECtape controller "A"
DTB for DECtape controller "B"

b. The device name may be followed by an octal num­
ber to identify a particular unit when the controller
has several device units associated with it, e.g.:

DT 1 indi cates unit 1 under a single DECtape
control.

DTAl indicates unit 1 under controller A in a
multi control situation.

A-l

Radix-50
Equivalence

014570
014760
015270
016040
042420
046600
052140
063200
063320
063440
012620

Code Usage

0 .WAITR
1 • WAIT
2 . WRITE
3 **
4 .READ
5 **
6 .INIT
7 .RLSE

10 .TRAN
11 . BLOCK
12 .SPEC
13 • STAT
14 . LOOK
15 .ALLoe
16 .OPENx
17 .CLOSE
20 .RENAM
21 . DELET
22 .APPND
24 .KEEP
25-27 **
30-31 *
32 Diagnostic Print
33,34 *
35-37 **
40 *
41 General Utilities
42 General Conversions
43-55 *
56,57 Command String Interpreter
60 . EXIT
61-63 *
64-77 **

APPENDIX B

EMT CODES

Described
on Page

2-24
2-23
2-22

2-21

2-14
2-15
2-27
2-25
2-29
2-30
2-38
2-32
2-16
2-19
2-35
2-34
2-37
2-40

2-75, -78

2-42, -50
2-51, -57

2-58, -61
2-41

100-117 (reserved for Communications Executive, COMTEX -11)
120-137 (reserved for Real Time Monitor, RSX -11)
140-167 {reserved for user-implemented routines}

* Reserved for Monitor internal communication
** Reserved for future Monitor expansion

B-1

