@ DEC-11-LFFSA-A-D

PDP-11
. FORTRAN TV

COMPILER
(VBBLA)

AND

OBJECT TIME SYSTEM
(V@208R)

C FUNCTIONAL SPECIFICATION

Copyright @ 1970, 1971, 1972 by Digital Equipment Corpofation

NOTES

The programs described in this specification
are supported by DEC when used on 12K or
larger systems only. (References to 8K sys-
tems are for information purposes only.)

The material in this specification, includ-
ing but not limited to construction times
and operating speeds, is for information
purposes only. All such material is sub-
ject to change without notice. Consequently,
Digital Equipment Corporation makes no claims
and shall not be liable for its accuracy.

%
kw! The detailed internal information contained

herein is applicable for Version 4A of the
Compiler and Version 20A of the Object Time Cj

System only. PROGRAM
LIBRARY

PART 1

PDP-11

FORTRAN IV COMPILER

VERSION U4A

-1 -

POP=11 FORTRAN, (3¢=320=«001=06 PAGE
Table of Contents

TABELE OF CONTENTS

1.2 OVERALL DESCRIPTION
1.1 Usage

1.2 Merket

1.3 DNesign Philosoohy

1.4 References

2.2 HARDWARE ENVIRONMENT
2.1 Minimum Reauirements
2.2 O0Optijons

2.3 Future Consjiderations

3.0 SOFTWARE ENVIRONMENT
do1 Minmimum Reauirements
J.1e2 Ooject time system
3.2 O0Options

3.2.1 Switch Ontions
Je2.2 Compiler Ontions
3.3 Fyture Consideratiens

4,0 CONVENTIONS AND STANDARDS
4,1 LabeHng

4,1.1 Compiler internal labellinmo
4.1,2 DObject outout lakrellina corventions
4.2 Registers -
4,3 Fortran Intermal Documentation
4,4 Operatima Conventions
4,5 1/0

4.6 Character Set/codes
4,7 Calling Conventijons
4,8 Fortran Polish Calls
4.9 Data Conventions

4,9.1 Inteqer format

4.9.2 Real ftormag

4,9.3 Double precision format

4,9,4 Complex format

4,9.,5 Byte format

4,9.6 Character strings

4,9.7 Loaical values

4.1 File comnventions

4.1 Compiler Listina format with summaries

«2 DATA STRUCTURES

«1 Compiler Data Structures
«2 Main Symbol Table

«3 Common Table

Eéw wg

PDP=11 FORTRAN, 130=309+201=086 PAGE
Table of Contents

5.4 Aprray Descriotor Bloeck

5.5 Equivalence Table

5.6 Implicit Table

5.7 Do Table

5.8 OblJect Time Data Structures
5.9 Stack usage {n expressions
6.8 INPUT/O0UTPUT

6.1 Compiler I/0

6.2 ObJect Time I/0

6.3 Diagnmostic Qutput

LANGUAGE

Source Language

ObJect Lamguage Qutput

0TS Exceptions and Differences Fpom ANSI

i1 Library

2 Fortran overlays

3 Ranmdom access I/0
Code Gemneration Example

N
L]
L]

NNNN-NNNN
® o o » e s o o
D UWULLD>WN=-N

8.0 COMMAND LANGUAGE AND STRUCTURE
9.0 OPERATING PROCEDURES

12,2 PHYSICAL DESCRIPTION AND ORGANIZATION
12,1 Compiler Module Descriptions

11,@ FUNCTIONAL DESCRIPTION AND OPERATION
11,1 Globa) Flow of Contro!
11,2 Individual Statement Flow of Contro!

12,8 PROGRAMMING CONSIDERATIONS
12,1 Coede anmd Data Storaqge
12,2 Adding Statement Classes

13,0 PREPARATION AND/OR SYSTEM BUILD
14,8 TERMINOLOGY

15,2 TIMING ANALYSIS

3

FOR=

POP=11 FORTRAN, 1302=309=001=06 - . PAGE 4
Overall Description

1.0 OVERALL DESCRIPTION

1.1 Usage

FORTRAN IV is a well known algebraic Yamguage (ori= .
ginally designed by BACKUS, et al) im common use on

most currently available computers, It {s cdescribed

fn the American National Standards Institute FORTRAN *
IV Language Specification, '

POP=11 FORTRAN {s a variamt of ANSI Standard FORTRAN
IV as wi)) be described in this amd assaciated decu=
ments,

The FORTRAN Compiler is used im conjunction with the
remainder of the PDOP=11 FORTRAN System umder the
Disk Momitor to allow users to write amd run prow
grams on the PDP={i,

1.2 Market q;}

Potenti{ial users of FORTRAN apre assumed t© kmow FQOR=
TRAN and to be able to use the PDP»11 Nisk Monitor,
FORTRAN allows the user to take advantage of the
Disk Monitor and the associated librarv without re=
quiring krowledae of assembly languaae techmiaues,
PDP=11 FORTRAN s designed to be saleable {mn the
same market as the IBM 1130,

1.3 Design Philosophy

POP=11 FORTRAN pruns under the PDPP=11 Disk Monitor, '

and wil) therefore reauire a System with at least 8K
of core,

PDP=11 FORTRAN 18 ANSI FORTRAN IV campatible with
added features to allow most IBM 1138 FORTRAN pro=
grams to run without chanqge. ‘

The compiler is designed to be as heloful to the
user as possible in terms of diagrostic capabilities
and operating characteristics,

1.4 References : (:}

A. ANSI FORTRAN IV Language Spec,, X3,9, 1966,
Ba FORTRAN Object Time System spec,, 130~311-0082,

PDP=11 FORTRAN, 130=309=801=06

Overal!

Ce
De

Description

PDP=1{1 FORTRAN Programming Manuyal,
Getting omn the Afr with FORTRAN,

PAGE

5

PDP=i{1 FORTRAN, 132=309=021=06 ' PAGE 6
Hardware Environment

2.2 HARDWARE ENVIRONMENT @

2.1 Minimum Reauirements

PDOP=1{ FORTRAN rums under the Disk *onitor, which
requires a mimnimum of 8K of core, RF=11, RC=11i, or

RKmil Disk, High Speed Reader/Pumch or Dectape, and .
an ASR=33 TELETYPE, FORTRAN will rum im only those
confiqurations subported by DO0S,

2.2 0Options

FORTRAN supports all standard product I1ime options
which are supported by the Disk Meomiter(DOS),

2.3 Future Considerations

The system must be hijahly modular to allow exten=
sions in hardware confiaguration to be made with min=
imal effort, g;;

At NO future time will FORTRAN be supported in a pa=
per tape only environment,

ﬂi’ i wj

PDP=11 FORTRAN, 130+309=201=06 PAGE 7
Software Environment

3.0 SOFTWARE ENVIRONMENT

J.l Mimimum Reauirements

FORTRAN will reauire the PDP=1y Disk Momitor, Under
ne circumstances will it run {n the Paper Taoce Sys=
tem,

The compiler will output code suitable for assembly
by the Relocatable Assembler,

3.1.2 OblJect Time System Requirements

3.1.241, Arithmetic Routines

Each of the following is called using the POLISH
call(section 4,8) which assumes that ypon emtry to a
routime, register R4 points to a locatien containming
the address of the next routime to be executed,
Thus, R4 myst be preseprved by the rouytine and the
exit from each routine {s via a "JMP @(R4)+" which
jumps to the mext routirmre as well as advanecing the
R4 poimter, This way, the compiler mneed only gener=
ate a 1ist of addresses for mogt arithmetic expres~
sions which s only slightly (appreximately 2=3%)
slower than {n=line JSR calls, The resultimg code
is ysually pbetween 5 and 15% shorter thamn the equi=
valent in=lime form,

The value of each operamnd will be on the stack upon
entry to a routine., A routine returms with the va=
lue of the result on top of the stack (the orfginal
operands myust be removed from the stack),

The mode of the operands and the mode of the result
will be defined implicitly by entry {nto the rou=
tine,

The compiler will distimguish modes by suffiximg one
character to the subroutime name,

On entpry?

{(SP) LAST (SECOND) OPERAND
(SP+N) FIRST OPERAND

PDP=11 FORTRAN, 130=379=021-06 ‘ PAGE 8
Software Environment

Where N is the Yength {m bytes of each osperand,

Upen retyrn?
(SP) RESULT,

The suffix will have the followingo significance:

SUFFIX OPERANDS RESULT .
B BYTE BYTE
1 INTEGER INTEGER
L LOGICAL LOGICAL .
R REAL REAL
D DOUBLE DoURLE
C COMPLEX CAMPLEX

The Arithmetic Routimes are!

NAME FUNCTION
$AD ADD FIRST OPERAND TO SECOND
OPERAND
$58 SURTRACT THE SECOND OPERAND
FROM THE FIRST OPERAND
$ML MULTIPLY THE FIRST OPERAND
BY THE SECOND OPERAND %;}
3DV DIVIDE THE FIRST OPERAND
BY THE SECOND OPERAND
$PH RAISE THE FIRST OPERAND

TO THE POWER SPECIFIED BY THWE
SECOND OPERAND,

NOTE: $PW has a two charactepr suffix, the first
describes the tvpe of the base, the secord describes

the exponent type, Byte mode exponentiation s
Hlegal.

J.t.2.2, IF Fumctions

Ay Arithmetic IF tests wil)l be performed by a set
of routimes whose entry point names beginr with $TS
with suffixes as described in section 3,1.2,1, The
return will be to one of three locations pointed te
by the locations at (R4), (R4+2), and (R4+4) for ne=
gative, zero, and positive, respectively.

On entry: (SP) econtaims the operamd t0 be tested,
After return: the stack is clear,

Bs Logical IF tests are perfopmed 'bv the routime
$TRTST, Uponm entry, (SP) contaims the sperand to be

@

PDP=11 FORTRAN, 130=309=001=06

Software Environment

tested,
lue on

Upon return the stack {s clear,
top of the stack s Zero (false) control is

PAGE

9

I¢f the va=

transferred to the address speci{fied at (R4); otheps
at the word foellowing

wise contro!

(R4),

Je1s2.3,

The coerand or the stack {s converted to the
mation mode

will econtinue

top of the staclk,

ROUTINE

$81
$BL
g§BR
$8D
$BC
$18
$IL
SIR
$I10
$1C
s$LB
SLI
$LR
iLD
sLC
$RB
$RI
SRL
$RO
$RC
$08
$DI
$OL
$OR
$0C
$C3
$CI
$CL
$CR
$CD

Data Comnversion Routines,

RESULTING MODE

NPERAND

BYTE INTEGER
RYTE LOGICAL
BYTE REAL
BYTE POUBLE
RYTE COMPLEY
INTEGER RYTE
DEFAULT CONVERSIOM
INTEGER REAL
INTEGER DOUBLE
INTEGER COMPLEY
LOGICAL RYTE
DEFAULT CONVERSION
LOGICAL REAL
LOGICAL DOUBLE
LOGICAL COMPLEX
REAL BYTE
REAL INTEGER
REAL LOGICAL
REAL DOUBLE
REAL COMPLEX
DOUBLE RYTE
DOUBLE INTEGER
DOUBLE LOGICAL
DNUBLE REAL
DOUBLE COMPLEYX
COMPLEX BYTE
COMPLEY INTEGER
COMPLEX LOGICAL
COvPLEX REAL
COMPLEX DOUBLE

desti=

and replaces the sourece ooeramd on the

PDOPwil FORTRAN, 132=30P0=371«p6 PAGE 142
Software Environment

30!02.4. I/0 Routimes

Each 1/0 operation involves :an fnitializatiomn cally
thern one or more calls to trapsmit ome or more list
variables per call, themr a call to terminate the 1/0
oceration,

(SP+2) (SP)
Initialize:
$INFI,FORM, READ ADDRESS 0F ADDRESS OF 1iST .
$SOUTFI,FORM, WRITE DEVICE NUMBER CHAR, OF FORM,
SINI,UNFORM, READ ADDRFSS OF
$OUTI,UNFORM, WARITE DEVICF NUMHER
SINRI,DISK READ ADCRESS COF ADDRESS OF LOG,
SOUTRI,DISK WRITE DFVICF NUMBER RECORD NUMBER

The ENCODE amd DECODE imftijalization calls are simiw=
1iar to the above forms except that the mnames called
are $ENCD and $NDECD respectively and there are three
ftems om the stack, The tor (SP) contaims the array

address specified, the second (SP+2) contaimns the "
format address, amd the lagt (SP+4) contaims the g:;
character count, -
Each initialization call has two fn=lime parameters
corresponding to the "EWND=2" and "ERR3" comditions,

It either 0f these parameters are zero, the condi=

tior §s not specified, If monme=zern, they are the

adgress of the statement to be transferred to for

efither end=of=file or error conditions respectively,

This transfer must be a POLISKH mocde tramsfer,

Trarsmit 1ist variables: .
$ICA = TRANSMIT ARRAYS

$I0R = TRANSMIT BYTE LENGTH ITEM .
$I0I = TRANSMIT SINGLF wWORD INTEGER 09 LOGICAL

$I0J = TRANSMIT TWC WORP INTEGER

S$IOR = TRANSMIT REAL

$100 = TRANSMIT DNURLE

$ICC = TRANSMIT COMPLFX

Ome or more parameters may be trarsmitted, (SP) cone
taims the number of parameters, (SP+2) = (SP+N) con=
tain the addresses of each data item, Note that all
comnsecutive 1items of the same tvope will be trans=

ferred together, @:}

i

PDPe11 FORTRAN, 130=3029=271=06¢ PAGE 11
Software Environment

For array 1/0, all consecutive arpays will have
their ADB addresses pushed on the stack followed by
the number of arrays, A call to $I0A will then be
made to cause the array transfer, The 0TS may de=
termine the data tyoe of the array by examimimng the
ADB(see sectiomn 3,1,2.6),

Termimnate!
$I0F, TERMINATE I/0 LIST

(See section 7,4 for a complete FOLISH axample,)

3.1.2.5., Primtima of Formatteg Records,

The CTS will maimtaim a File/Device ¢table (which
should pe modifiable bv the user) which, along with
othep functiors, indifcates for each logical file
whether the first character ir a formatted record
should be trargsmitted literally or shauld be {ntere
preted for orint control purposes,

Wher the table so indicates, the vertical spacing
character should be imnterpreted and therefore cone
verted {nto am output strima as follows:!

Vert, spacing char, meaning substituted
BLANK SPACE ONE LINE <CR,LF>
9 SPACE TAO0 LINES <CR,LF,LF>
1 SPACE YO FIRST <«CR,FF>
LINF NOF NEXT
PAGE
+ NO ADVANCE <CR>
$ ND ADVANCE <CR>

The § carriage control acts like a blank for the bee
ginming of lime control, but it has the additional
characteristic of forcing a <VT> for the end of line
character f{nstead of a <CR>», thus leaving the car=
riage at the end of Yime rathepr than at the left
mapaim, This 1s useful when {t is Aesjred to make
teleprinter responses onr the same line as the query,

The menitor provi-des device indepemndemce as reqgards
the Lirne Printer and the TELETYPE; therefore the
same substituted onutput string apolies ¢to either
device,

POP»11 FORTRAN, 132=329=2231=06 . PAGE 12
Software Enviromment

Je1e2.6. Subscrint Compytationr,

There will be three subscript computationr routines,
one for each of 1, 2, arnd 3 dimensional arrays, The
call to a subscriot routime will have as a sinmqgle
fn=line parameter an Array Degeriptor Slock (genmer=
ated by the compiler, ard for edjustable arrays, fn=
itialized by the obJect code {tself), as well as to
the current {magex values on the stack, The sub=
seript routime will return with the address of the
desired array item in RZ,

The Array Descriptor Block (ADB) format i3 as fol=
lows(see figure 1)

WORD PA: ADDRESS OF THE FIRST ELEMENT NF THE ARRAY,
(ADDR)

WORD 1:¢ BITS 15=14: NUMBER OF DIMENSIONS
BITS 13=11: DATA TYPE
BITS 7«2: DATA ELEMFNT SIZE IN RYTES

WORD 2: NUMBER OF INDFX ITEMS FOR THE FTKST g
DIMENSION(ABAR,:A) ' |

H
oy

WNRN 3¢ NUMBER OF IMDEX ITEMS FOR THE SECOND
DIMENSION
(AEBR,3 B) (PRESEMT FOR 2 AND 3 DIMFNS, ARRAYS)

WORD 4: NUMBER OF IMNDEX ITEMS FOR THE THIRD
DIMENSIOM
(ABBR,$C) (PRESENY FOR 3 DIMENSTIONAL ARRAYS)

The subscript routimes may, with the i{information
supplied, {f desired check for references exceadinmg g
the boundarfes of the array, This is currently efe

fected by specifving the /CK switch at compile time

which forces calls to specijal bourds checkina rou= *
tines to te generated insteag of the standard rou=
times(these routines are prefixed $SRX imstead of

$SBS) .

PDP=11 FORTRAN, 130=309«001=26 PAGE 13
Software Environment

@ ROUTINE NAME $SBS3 $SBS2 $SBS1
$3BX3 $SBX2 $SBX1

(SP) ON ENTRY VAL OF 3RD VAL OF 2ND VAL OF {87
INDEX (K) INDEX(J) INDEX(I)

(SP+2) ON ENTRY VAL OF 2ND VAL OF 18T
INDEX(J) INDEX(I)

(SP+4) QN ENTRY VAL OF 18T
INDEX(I)

RA AFTER RET ADDR+((I=1)¢+ ADDR+((I«1)+ ADDR+(I=1)
CONTAINS THE Ax((J=1)+B% Ax(J=1))xSTZE =SIZE
ADDRESS? (K=1)))=SIZE

J.2 Options
Additional discussiom occurs in sectiomn 8,0,

J.2.1 8Switch Options

@ A. /ON

The compile option to select one or two word in=
tegers {38 /0N, Whern selected om the imput specifi=
cation, ft sets the compile mode te use only
ome=word 1integers {nstead of the normal two, Note
that two word imtegers as described here do0 not {ime=
ply two words of precision,

Be /SU

« There {s also a compile option to sSupnress the se=
auencina gemerated for trace~back, When the switch
/8U is specified on the imput file name, the se=

. ' aquencina s suppressed from the source listimng and
the object code, This causes a saving of two words
per statement, bhHut elimimates the comprehensive
traceback normally available,

C. /CK

The /Ck gswitch may be specified to foree the come=
piler to aqenerate special calls for all subscript
references to force run time array baundary check=
inge This §is especially usefy) whem benchmarks are
te be run or early debuagima {s to be performed,
When the /CK switch is specified, the compiler gen=
erates calls to $SBX subscript routimes {mstead of

POP=11 FORTRAN, 130=300=0301=06 ' PAGE 14
Software Environment ,

the $SBS routines,
De V/ER

The /ER switch is am optional switch, that when
sopeci{fied, flags "S" class errors, "S" errars are
those errors which are not econsidered errors {in nor=
mal usage, but may under certaim comditions be cone
sidered to be errors, For instamrce, {f the first -
statement of a orogram were "XzA", an error would be
issued tellina the user that A has not beem previ=
ously defined,

E. /C0O

The normal PDP=11 FORTRAN conmtimuatiom lime defaylt
is 5, If it is desired to allow other ham 5 contin=
uaticns in a particular comrile, it is mecessary to
sprecify the /COtnn switch where nn is a mnumber of
lines between @ and 99 which is to be allowed. Thus
if one desires to specify 19 contimuyation 1imes, a
/C0:19 shouldad be tyoed, Note that ¢the reason for
specifying onmly a five line default is to conserve
core and that the space reauired in the contimuation
- buffer {8 nn times 72 bytes where mn {8 the number)
of continuations required, Algo note ¢that {f vou {:
run out of space during a comopile, hut do mot need =
any continuyations, that a /CO!2 will reduce the am=
oumt of core used by 3602 bytes,

Fe /GO

If it is desired to immediately execute the results
of a compile, it is only necessary to specifvy the
/G0 switch, When this switch §s specified, the com=
piler when the current compile is dome will automat=

{cally invoke the limker to link the mroaram, which .
will §m turmn cause the program to be automatically
execyted, .

Note that the switches above, once set, stay set for
all successive compiles, To clear ejthar or both of
the switches it is necessarvy to reload or restart
the compiler,

G. /LI

In the 12X compiler, 1listima control {8 achieved
with the /LI switch, This switch may have a value
from @ to 3. /LI:2 scecifies the mimimal Jistimg,
which comsists only of error diagmostics and the
block descriptor (section d4,11), No listing format= (:}
timag is donme, /LI!1 is the default valuye, It spec=

»,

PDPe11 FORTRAN, 130=309=001=06 PAGE 15
Software Environment

{fies normal listing formattinmg, source listing, and
the block descriotor to be ligsted, /L1112 specifies
the above in addition to an assembly V{sting, /LI:3
adds the Aagsembler symbol ¢table 1{stimg to the
above, thus giving al) possible 1isting output, The
/LI option must be specified every time {t {3 meed=
ed, or else the 1isting will revert to the default
value,

He /AS

The 12K compiler has one additional switeh which al=
lows the assembler pass te be bypassed to alliow the
user to get the assembler outpPyt (nstead of the obe
Ject outout, Whem the switeh /AS {s speeified,he
obJect file specification defines the assembler out=
put file and the assembler pass {s avoided, The de=
fault extension for the file is also echanged from
»0BJ to ,PAL . Note that since the 8K compiler does
not have the assembler jnterface, it works as if the
/AS switch is always specified,

An example of an compiler command specification haye
ing all of the above switches gpecified might beg

OUTPUT/AS,LIST/LIz1<INPUT/ON/SU/ER/CK/CO819/G0

One minor point to be stressed is that {f the /AS
switch 1is specified, the /LI switch has mo meaning
for any values Qreater than one,

3.2.2 Compiler Options

The compiler for 12K and larger has several capabil=
ities nmot included in the BK compiler, First, the
12k version will he capable of direct binary genera=
tion without reauiring a separate assembly process,
Second, {t will be capable of compiling muitiole
routines {n a single {mput file, It wil)l also have
meater page and listing conmtro]l,

3.3 Fyture Considerations
The compiler has heen desigred to be easily mod{fi=~

able and/or extensible to allow for future changes
in reauirements,

PDP=11 FORTRAN, 130=320«001=06 . PAGE 16
Conventions and Standaprds

4.2 CONVENTIONS AND STANDARDS

4,1 Labelling

d4.,1.1 Compiler intermal l1abeltlina

Roytimne or module labels may comsist of ome to six
characters and should, {f possible, be self descrip=
tive,

Example: the symbol "LPTINT" could refer to an {n=
terrupt address for a lime printer routine,

4.1.2 ObJect outout labellina conventiens

A statement Jabel generated by the compiler conmsists
“of a "," followed by the source statement label,

Example?! Statement number 237 would generate an
internal label of ,237

A ftormat label is similar but uses a "$" instead of
a """ .

EXAMPLE: 810

Other compiler generated labels will consist of a
"g" followed by & sinagle alphabetic charactepr des=
cribing the label followed by 4 numeric digfts, The
following is a Jist of allowed labels (Annn pefer to
the four numeric digits):

$Innnn Integer or Logica)l econstant
SRnnnn Real constant
$Dnnnnm Double or Complex constant

$SFAnmmn Internal locatiom labels (for example, DO o=
oo termination label)

4.2 Registers

Te avei{d econfusion, the gemeral registers will al=
ways be referred to as follows:

fm%

PDP=11 FORTRAN, (30=3090=001=08 PAGE 17
Qi? Convemntions and Standards

REGISTERS ¢=5 a RO=R5
REGISTER 6 = SP
REGISTER 7 = PC

Certain specjal registers will be referred to acw
cording to the followinatg

8TATUS REGISTER (LOC, 177776) = PSw
. SWITCH REGISTER (LOC, 177570@) = SWR

In & FORTRAN compiled routine, no registers wil)
ever be saved or restored upon calling or being
called by an external routine, It is essumed that
RS §s the subroutine call register, R4 {s the
threaded code pointer, and that R2=R3 may be used
without prejudice,

4,3 The FORTRAN internal documentatien will comsist
of:

(:} A, ANSI FORTRAN IV Specification, X3,9, 1966,
Be This document
Ce Specification for the ObjJect Time System,
132=311~0032,
D Pertimemt and profuse comments or the source
1istimgs,

Other associated documemntation includest PDPeil FOR=

TRAN Programming Manmual, Gettimg or the alir with
FORTRAN,

. 4,4 ONperatimo Comventions

A1) operating conventions and command strings, etc,
must conform to those of the disk moniter,

4.5 1/0

A1) imput and outout for FORTRAN will be dome using
the standard provisioms supplied by the Disk Moni=
tor.

PDPe11l FORTRAN, 130=309=~001w@6 . PAGE 18
Cornventions and Standards

4,6 Character Set/Codes

The character set/codes for FORTRAN wi{ll be com=
pletely compatihle with the ANSI ASCII conventions,

The compi{ler will nmot convert lower case to upper
case, though lowepr case may be used anly in Hollepr=
ith constants and literal strings, I11eqal
non=printimg characters are ppinted as a circumflex
(up arrow) followed by the alphabetic equivalent of
the offendina character (e.q. 201=aAA), The 0TS
will allow all ASCII characters to be {mput or out=
put under "A"™ format, The compiler recoamnizes as
meaningful only the ANSI stapdard compiler {nout
characters,

4,7 Calling Conventions

FORTRAN calleble subroutimes and funmctions will obey
,,the following object code calling convemtions?

All argument addresses wil) be placed in a list fol=
lowing the subprogram call, The standard sequence

will be?
+GLOBL SUBR
JSR R5, SUBR
BR X X
A
8
Z
XX3¢

Note: The evem byte of the bramch instruction fol=~
lowing the JSR containms the nyumber of arauments and
is rointed to by R5 after the JSR is executed,

Subprograms are responrsible for not altering the
contents of register RS since it is the parameter
1ist pointer,

Fumction sybproarams, imn additjomn to the above, will
return the result in reaisteps RE@=R3I(mumber of re=
gisters used is cdependent on tyve, e,a. = integer
uses R@, rea) uses RQ? armd Ri, etc,)

‘mﬁg

PDP=11 FORTRAN,

4,8 Fortran

This call is
ple POLISH
assumes that a
large number
near seaquence.,

. The fmplementation of this
below makes several

1. The first operation dome {n a

130=3029=p01=06
Comventions and Standards

designed to take advantage of the
method
tvypical
of very simple operations done {in a li=

PAGE 19

POLISH Calls (Threaded Cade)

Sime
for evaluating expressions, It
expregsion comsists of a

technique as described

assumptions?

POLISH se=

quence is fmvarifably a "push",

2. It

is not necessary to place
in ODT or DDT)

breakpoints(as
{in the middle of an arithmet=

ic statemant,

3., Speed will

not suffer by assianment of a rew

qister for special purposes,

Description of this mode is begt dome usimg a simple

examples

to POLISH moge),
$PY0Q!

sPuaaz
$ADR

$PQOP3, A

o*2

The statement A3B+C would generate code
the following (sectiomn 4,8,5 describes the entry {n=

similar to

:THE VARIABLE B I8 PUSHED

tON THE STACK

sEACH OPERATION CONSISTS OF THE
t ADDRESS OF THE RAUTINE TO

t+ BE EXECUTED, A PUSH PLACES

t A VALUE ON THE STACK, A PQP

s REMOVES A VALUE

sTHIS LLINE wILL CAUSE POLISH MODE
3170 BE EXITED,

s AND NORMAL EXECUTTION

s RESUMED,

The subroutines called would be as follows?

MOV
RR

MQV
MOV
MOV
JMP
MOV

$PRA2A1:
$PR2Y2:
$FoRat:
$POP3:
MOV

MOV
JMmp

#R+4,R0 sGET THE ADDRESS OF B8
$Fpeal s JUMP T0O COMMQON PUSH
#C+4,R0Q $GET THE ADDRESS OF C

=(R2),=(SP)
=(R?),=(SP)
0(R4)+
(R4)+,R3

s PUSH

;3 TWO WORDS ON STACK
$JUMP TO NEXT ROUTINE
:GET ADDRESS OF
JVARTABLE DESTINATION
(SP)+,(R3)+ 3POP A VALUE
(SPY+,(R3)+ 3 TC THF VARIARLE
¢(R4)+ $G0 TO NEXT ROUTINE

PDP=11 FORTRAN, 130=3090=021=06 ’ PAGE 290
Conventions and Standgrds

(8ADR is an 0TS routime to add two fleating opoint
rnumbers, See sectiom 3.1.2).

Note that the JMP @(R4)+ Jumps to the mext routine
in the 1list as well as incrementimg R4 over that
{tem in the thread,

A1) intermal functions are called in this manmer and
must exit wusing a JMP @(R4)+ and myst clear any
stack space used (except for the return valye which
is left onr the top of the stack).

A1l routines explicitly callable py the user (i,e.
= sybroytines, extermal functions) are called using

the PDP=11 subroutime callinag convention(section
4-7). :

4.8.1 The following basic decisions were madet

1« R4 will be used as the threaded code po=

‘ﬂtﬂf‘.
20 A1l code (including Integer arithmetic) wil) Y
be handled in POLISH mode excemt for actua) €;§

subroutine (amd fumction) limkase which wil)
be executed imeiine,

3« A majority of the service routines detajled
herein can actually be made ,GLOBL to the
compi{lation and hence occur only once i{imn a
core load (rather than included im each com=
piled module),

4, Any routines mot explicitly mantioned as be=
ing locally generated are assumed to be gleo= .
bal to the pregram and available frem ¢the
FORTRAN library (e,a, = SMLF, etc,)

4,8.2 On return from a subroutime or function the
value s in R2, R? and R1, op RZ thpu R3, . Service
routines to move these to stack are!

$PSHR4: MoV R3,=(SP) 3PUSH FOUR WORDS
MOV R2,=(8P)

$§PSHR2: MOV R1,=(SP) $PUSH TWO WORDS

$PSHR1S MOV RA,=(SP) 3PUSH ONE WORD

JMP O(RA)+ , @Z}

PDP=11 FORTRAN, 130=320=2721=06 PAGE 21
Qzﬁ Conventions and Standards

4,8.3 Gettima and puttima to the stack given an ad=

dress which results from subscrint caleulation
proceeds as follows:

3GET4: MNy 6(RA),=(8P) sFOUR WORD CASFE
MOV 4(RP) ,=(SP)
$GET2: MoV 2(RP),=(SP) ¢TWO WORD CASE
$GET1: MOV eRQg,=(SP) tONE WORD CASE
. JMP o(RA)#+
$PUT4y MOV (SP)+, (RB)+
MOV (SP)+» (RB)+
$PUT2:t MOV (SP)+,»(R2)+
$PUT1: MOy (SP)+,(RQ)+
JHP e(R4A)+

4.8.4 Explicit exit from PCLISH mode cam be made
with a word contaiming the address of the folloewing
WOPda EeGo?
ese JIN POLISH MODE
: «NORD .42 JLEAVE POLISH MNDE
(Z; ees PtCONTROL PASSES TO HERE

4,8.5 Entry to POLISH mode is made via a speci{al

routine
§POLSH: TST (sP)+ yDELETE OLD VALUE OF
1R4 PUSHED ON ENTRY
JMP e(R4)+ s AND WE'RE OFF}!

4,8.,6 Finally we come to the handling of formal pare
¢ ameters, The POLISH mode string s essentially the
same, The service sections 1ook 1ike the followingt

74 1S FLOATING
$PNNNNg MOV N(RS),R2 3 GET THE ADDRESS FROM
$CALLING SEQUENCE WHERE "N®
sDEPENDS ON PNSTTION IN
3FORMA| PARAMETER LIST
JMP $GET2 sNOW JUST LIKE REFORE

The one word and four word forms differ only in
which $PUTx {8 invoked,

54,‘ wg

Asgsignment to a formal parameter is:

PDP=11 FORTRAN, 132=309=001=06 - PAGE 22
Conventions and Stanmdards

$POPP2: MOV (R4)+,R0 $GET DISPLACEMENT OF
1 THIS FORMAL IN CALL

ADD R5,RA s ADDRESS OF ADDRESS

MOV ORA,RQ $ADDRESS OF PARAMETER

JMP s$PUT2 $STORE TWO WNRDS FROM
1STACK

Similarly for one and four word data, Asgsignments
to formals are like local agssignments excent that
the digsplacement in the call seauence to the actual
address must be givenm to the service poytirme instead
of the actual base address,

4,9 Data Conventions

4.9.1 Integer format (Fiqure 2)

An Integer number {38 a 16=bit siogmed quantity, When
in two word format, it is asgsigred two words, with
omly the hiagh order word (f,e., the word with the
lower address) befng siamificant,

A

The result of amny operatiomn which would exceed 16
bits will cause a diagnrostic to be issued bv the
oTS.

4,9.2 Real format (Figure 3)

The Real nymber format consists of twa words of data ~
as folleows?

wORD N = RIT 15 = SIGM OF MANTISSA *
RITS 7=14 = BINARY EXCESS 128 EXPONENT
BITS @=6 = HIGH ORDER MANTISSA

WORD N+2 =« BITS 2«15 = LOW ORDER MANTISSA

This is a sign=magnitude format with bhimary normali~
zation,

This format is Yimitecd to mormalized mumbers amd the
high order bhit of the mantissa is always 1, there~
fore this bit is discarded in this format giving an
effective precision of 24 Rits,

(:;

PDP=11 FORTRAN, 132=300=031=«06 PAGE

Conventions and Standards

4,9,3 Double precision format (Figure 3)
WORD N = SAME AS 4,9,2
WORD M+2 = SAME AS 4,9,2
WORD M¢d « |LLOWER ORDER MANTISSA
WNRD N¢6& = LOWEST ORDFR MANTISSA

The effective precision is 56 bits,

4.9.4 Complex format (Fiqure 4)

WORD N AND N+2 = REAL PART (FORMAT AS IN 4,9,2)
WORD N¢d4 AND N6 = IMAG PART (FORMAT &S IN 4,9,2)

4,9,5 Byte format

23

Each data item in this format {3 8 hits lonmg,
Logical, masking, amd arithmetic operations are al=

lowed.

Any arithmetic operatioms done {im byvte mode must
take i{nto account the limited size that anv value
may have, The range of nurbers from +127 ¢to =128
may be represented, Amy arithmetic operations will

be accomplished by takimg both B=bit ooerands,

tendimg the sign to - a full word, doimg the desired
ooeration, amd then trumcating the result to 8 bits,
No difaacnostiec will be issued for overflow errors,
The result of such an operation, thus, is allowed to
be at most 8 bits long, Logical and maskimg overa=

tiors will work with the whole byte at a time,

4,9.6 Chapracter strinrgs

A character string {s defimed to be a strinao of byte

lemgth elements, The Jermgth of this form wil)
limited to 255, 1If the string length 1i{s odd,

be
a

blark will be appended to fi1] out te a word bounda=

PY,

4,9.7 Logical values

A Logica) value as represented by L,TRUE. will

be

equal to the intecer valye =i, A Ingical value as

. POP=11 FORTRAN, 130«309=pA1=06 ' PAGE 24
: Convemntions and Standards

FORTRAN

represented by FALSE. wil) be eaual to the integer
value 0@,

4.12 File conventions

See ObJect Time System specification 139=311=202,

4,11 Compiler listina format with summaries

The following is a short example showinrg the varfous
kinds of {nformation supplied to the user by the
compiler, This example {s complete, 1{including the
heading as well as al) other informatiom supplied in
a normal compile,

Vapda 10:26t¢5 - 16=JUN=72 PAGE

C LISTING SUMMARY EXAMPLE
DIMENSICON X(1@)
COMMON X
COMMON /ABC/Y(4)
X(I)SA(lan.)
CALL B
CALL EXIT
END

ROUTINES CALLED:
A v B y EXIT

SWITCHES = /0ON,/CX,/SU

BLOCK LENGTH

MAIN, 47 (230136)
5588, 22 (2a0450)
ABC 8 (242720)

**COMPILER eemw= CORExXx*
PHASE USED FREE
DECLARATIVES M2366 17853
EXECUTABLES Q@458 17761
ASSEMBLY nvB99 27183

Severa] jtems of interest are described above,

PDP=i1 FORTRAN, 130=3029=071=06 PAGE 28
Conventions and Rtandards

The heading 1ine, which is printed at the top of ey~=

ery page of the listing, shows the page mrumber, the
date and time of the compile and the version number
of the compiler used,

The listing procer follows,

It subroutines or fumetioms are called hy the rou-

. tine, they are summarized immediately after the end
statement §s processed, This {s of {nterest mainmly
im Yapge proorams where thepre may be some comnfusion
as to which routines are reauiped by what,

The switch symmary describes what switches were used
in the compile, Im this particular example, the /ON
(ome=word integers), /CK (array DbDoumds checking),
amd the /SU (suporess traceback) switches were set,
A side note should be noted that the /Sl switch also
causes suppression of the sequence numbers which are
normally printed on the left margin of¢ the listing,

The bloek summary describes in decimal words and oc=
\ tal bytes the lenagth of the compiled orogram and the
(i; lenoth of each COYMON block used {m the program,
The bprogram name entry is flagged with am "#" fol=
lowing the entry, A name of MAIN, describes the
majn program mame, A mame of ,$5%38%, deseribes

blank Common,

The final section of the summary detafls how much
storage was used bv each of the three phases of the
compiler im decimal words,

POP=11 FORTRAN, 130=379«021=06 . PAGE 26
NData Structuyres @:}

5.0 DATA STRUCTURES

The tables usea by the compiler, as described below,
are dyramically allocated at the time the compiler
ifs first started (see figure 8), The orocedure s
as follows: .

1, Fimd out the total amoynt of space used by
the monitor and its buffers, "

2. Allocate the compiler stack area {mmediately
above the monitor area,

3. Allocate a mirimal symbol table area above
the stack,

d, Set uo the statement byuffer just below the
compiler overlay area,

5. Set yp the COMMON/EQUIVALENCE table,

If a table overflow im the COMMON/EQUIVALENCE table :
eccurs it wil) exmand downwards, If an overflow oc= q;}
curs in the symbol tabkle occurs, it expands uowards, ‘
An jrrecoverable error occurs {f these two tables

meet (SYMBQOL TABRLE OVERFLOW),

After the executahle statements hkhave started, the
COMMON/EQUIVALEMNCE table is mo longer meeded and it
{s discarded, giving more room for the symbol table,
5.1 Compiler Data Structures

Each imternal table will initijally bhe assiamed a
bloek of core storace, FEach block 4ill be marmaged
by its own set of special routimes, ONverflow of any
block will result in an aborted run,

5.2 Main Symbol! Table (Figure 5)

The symbo)l table comsists of a lirnked chain of en=
tries in free core,

5.2.1 Entry format

word O

Bits 15=14 entry type?

@2 pData ftems, incluyding all user and compiler de=
fined variables and l1iterals,

1 Statement funmctionrs,

(:2

@,

PDP=11 FORTRAN, 130=309=371=06 PAGE 27
Nata Structyres

12 Extepnal fumctions,)

Bits 13=11 Data type:
290 Loaical=)

U721 Loajcal=2

21¢ Inteqer

411 Real :
19¢ Deuble precision
121 Complex

116 Hollerith

111 Umassignmed

Bit 12 Adjustable array flaa

Bit 9 Set if entry is proaram pame

Bit 8 Constamt bit ‘

Bits 7=2 Length of data item {mn bytes(if Constant
bit=s1)

Papameter list imdex(1{f constant bit=? and
parameter=1),

word 1
Bit 15 Commor imdicater (31 {f item ig {m common)

NOTE: This imdicator amd the parameter {ndicator
will mever both = | simultameouslv,

Bit 14 AdJustable array indicator (31 {if Jtem de=
fimes am adjustable array), .
Bit 13 Equivalence indicator (21 if {tem appeared {n
an EQUIVALENCF statement),

Bit 12 Parameter imdjcator (=1 {if variahle is a par=
ameter t0 be accessed by indexed addressino through
RS).

NOTE: This imdicator and the CDMMON' indicator will
nevepr both = | simultanmeously, :

Bits 11=3 Serial number of entpy

Word 28
Bits 15=3 adoress of mext symbe) table entry, Equal
to =1 if this is the last enmtry im the table,

wopd 3
Bits 15=4 1st three characters of symhol! mame (RADIX
54)

word 43 .
Bits 15=2 second three characters of symbol nmame,

PDP=11 FORTRAN, 130=309=001=06 - PAGE 28
Data Structures

wopd 5§

Bit 15 Single reference bit
Bit 14 Assign hit (use in ASSIGN gtatement)
Bit 13 Explicit bit (explicit typing)
Bit 12 = Useo in exoressinm bit .
Bit 11 = Gemerate Push flag
Bits 19=9 Dimensions of jtem
Bit 8 = Jnused .
Bits 7=@ = Common tlock sequence (positiom im com=
mon chain)
d 2> mot in COMMQON
1 2> khlamik COMMON

word 6

Bits 15=3 ADR pointer, Points to the assoCiated Ap=
ray Descriptor Block §f this item {s dimemsionmed
(I.E,» if the dimension indicator is mon=zerp), The
ADB occurmies space im the main symho! takble area,
The pointer from the symbo] table entry te the ADB
is relative to the start of the ADB,

~ Additiomal words =« value of enrmtry, %;§

Present only if the comstant imdicator is set, The
value will be representec as the himary eauyivalent
of the original source mumber, or as a strimg of ASe
CIl bvytes terminated bty at leagt one hyte = 0 {f the
item is a Hollerith comstant, The lemrath of this
fiela (not includina radded blanks and terminmating
zeros) in bvtes is comtaimed im the data item Jemath
(sectiomn 5,2.1.2),

5,3 Common Table,

A simgle contiguous area will be used to accomodate
{information collected from both COMMON amd EQUIVA=
LENCE statemenmts, This area 1{s allocated at the
high end of memory, belew the compiler, It qrows
"down" toward the top of the symkol table, After
the last declaration statement is pracessed it will
be possible to rerform storage allacation for all
variables inmvolved 1{n either COMMON or ERUIVALENCE
whereupon the area used can pe recovered for other
use by the compiler,

withim tnis area, COMMON will yse twn data struc=
tyres?

5.3.1 CUMMON block header

A 6 word item:?
word @ = Link to next block header (if any),

PDP=11 FORTRAN, 134=379=331=06 PAGE 29
@Zﬁ Data Structures

wopd = 138t two characters of block mame (ASCIT

1 Yo
wopd 2 = 2md twe characters of block mname (ASCII),
wopd 3 = Last two characters of block mame (ASCII),
Wopd 4 = O terminator for mame,

Word 5 = Limk to COMMCN block list,

5.3.2 COMMON block list
. A vapiable lemgth bloeck contaiminao?

word n+l = Link to mext aroup {im thig block (i{f
amy),

word n = Serjal number of variable/arpay,

.

[]

[

Woprd | = Serial nymber of varifable/arrav,

word O = Zero terminmator,

(Z: 5.4 Array Descriotor Block Table (ADR) (Fioure 1)

This table has an entry for eaeh array definmed {n
the submprogram being compiled, The ANDB s available
to the compiler so that it may compute and fi{x array
entry referernces whem the subscripts are comstants,
arnd so0 that it may reserve the appropriate amount of
memory for each array durimg "END" processing, The
format of the compile time and the oblect time ADB's
are rot the same, See also section 3,1.2,6,

Wwopd 2
Link to mext ADR relative to the hase of the svmbol
takble (=3 if this is the last ADB).

word |

Bits 15=14 Number of dimensions im this array
Bits 13=11 Nata tvpe (see sectijon 5,2,1)

BitS 7= sjze ir bytes of a data element,

wopd 23
Number of ingex items, first dimemsion

word 3:
Number of index items, 2nmnd dimension

woprd 43
Number of incex jtems, 3rd dimenmsion

PDP=11 FORTRAN, 132=309=001=d6 . PAGE 37
Data Structures

5.4,2 Words 4 and 3, or Just word 3, are oresent
for 3 gimensional and for 2 dimemnsional arrays, res=
pectively. If any dimensionr is acdjustable, the cor=
respondina index item word will ceontain a zero,

5.5 Eauivalerce Block

A block is created for each aroup of {tems which are
eauivalenced to each ather, Format is:

word 1,2 = A two word work area for this arouo

Wword 3 = Link to mext aroup (if anmy)

word 3¢N = Serial number of nN=th jtem imn this group
word 4¢N = Total offset (im bvtes) of item im this
aroup from the base of the items as dafinmed,

word M = Zero terminator

5.6 Implicit Table

A 26(16) byte table whiech relates letters Of the al=
phabet to the variable type=modes tm be selected
whenever implicit mode assianment is callea foar,

I1f the first character of a symhol has octal repre=
sentatiom Ny, the enmtpy at relative byte position Ne{
contains the mode to he imnlicitly uysed for that
symbol,

57 Do Table (Fiaure 7)

Created ubon processirg of a DO statement (see sec=
tiom 7.2.21),

5e701 Table format

wopds €,1 = Statement mumber 0f terminal statement
im RADIX 54,

Word 2 = Serial mumber of destimation return labe!l
word 3 = Poimter to control variable symbel table

entry

word 4 =« Poimter to fmitjal papameter symbol table
entry

wopd 5 = Pofmter to termimal parameter symbol tahle
entry

wopd 6 = Poimter to step value symbol table ertry

C

im ""5

PDP=11 FORTRAN, 132=300=A11=0FK PAGE 31
Nata Structures

.8 Object Time Nata Structures

See Object Time System Specification, 130=311=072,

5.9 Stack anc Table structures -in expression evalua=
tion

Thpee stacks exist for evaluatimng arithmetic exores=
sions. R4 s the onerator stack, R5 is the mode
stacks, and SP (RE) is the final code stack,

Items on the R4 stack have the followimna format?

Bits 1b5=& = (Ooerator Valye ID
Rits 7= = Nperator Priority

QOPERATUR VALUE ID PRICRITY

«OF, 1 @é
«AND, 2 1
oNOT, 3 2

LT, 12 3

GT, 13 3

Elie 14 3

oNE, 15 K}

oLE. 16 3

eGE. 17 3

+ 4 4

- 5 4

* 6 5

/ 7 5

* * i 6
UNARY = 11 7

Items on the FS5 stack have the followina format:

Bit 15 = Zero

Bits 14=12 = “ode of SP item

Bits 11=¢ = positionr of item om SP stack rela=
tive to STKCNT,

MODE VALUE
LOGICAL*1
LOGICAL#?
INTEGER
REAL
NOUBLE
COMPLEYX

DB WA .

PDPei1 FORTRAN, 133=3029=0371~-06 . PAGE 32
NData Structuyres

Items omn tne SP stack are of the followina form:?
Variableg =

it 1S5S = Zero
BEits 14=12 = Mode chamae flag .
Bits 11=¢ = Variable serial number

(perators = .

Bit 15 = 0One

Bits 14=12 = Mode change -
Bit 11 =8SVSP Flag

Bit 12 = FUMNC Flao

Bit 9 = ARRY Flag

Bit 8 = FNEMD Flac

Bits 7=% Operator IDN

If SYSP=1, the followimo word containsg the $§F label
required and the ID comtains the type,

If ARRY=1, the ID containms the mumber of sSubscripots
for the array call arnd the next word contains

the ADB serial number. &;}
FUNC=1 defimes the start of a3 functiomn definition ‘
sub=mode, (hits "=7 have the parameter count.

the second worag has the depth, and the third
word Rhas the serial),
FNEND={ turns off fumction sube=mode

Note that normal mode conversions must he checked in
the ADB serial mumber pointer whem ARRY=2},

The fumction parameter lists have the serial numbers
of varijables,

I1f bits 15=12 are all = { the parameter {8 a
substitution label,

If FNEND=1, the ID contaims the numbher of hytes
to porp from the stack,

The exponentiatiom operatnpr has a secanrd word which
contains the tyce of the hase im hits 14=12,

PDP=11 FORTRAN, 130=309=Z41=06 PAGF 33
ITneut/Nutput

6.¢ INPUT/NDUTPUT

6.1 Compiler 1/0

A1) compiler I/N is deme {n formatted ASCII through
the Disk Monitor,

* 6,2 Oblect Time I/0
See 13@=311=172
6.3 Diagrmostic Outout

A FORTRAN source Ajagrostic will consist of the fol=
lowing?

[XXXXXYXXXXX]
ERRORK 222
Messaqge,

Immedgiately followimg the 1ine im error, 5 chap=

@:; acters (XXXXX) on efither sjde 0f the current char=
acter position (Y) will be ppinted (with control
characters inrtermoreted Aalso) 1imside the hrackets,
fnllowed by the error number (272), and the text of
the message (if amy) corresoonrdinag to the error
number as fourd in the disk eprror directory, The
message may be any ASCIT strimg lesg than 64 chap=
acters long anrd termimated by a <CR,LF>,

All error diacnostics will ke printed om the snurce
listing anmd will also be placed as comments im the
. object file,

Each error message will bhe prefixed by a sinagle

. character describina the class of epror, An "fF"
(Fatal) error will Adefimitely cause improper execu=
tior, 8o executiom should mot be attempted, A "wW"
(Warming) error may cause improper execytion, but i§s
gemerally discretionary, An "I" (Imformative) error
should not affect procram execution, The "S" error
(issueg only if the /EF switch was sat) flags items
which might te errors depending om the context of
the item, (For imstance, mixed mode arfthmetic {s
moted usima "S" errors,)

N Each error diagrostic is described im detai)l {m Ap=
‘i} pendix E of the FIRTRAN manual,

PDP=1{1 FORTRAN, 132=30G=d3l=p6 . PAGF 34

Languaace @:}

7.0 LANGUAGE

7.1 Source Lanmayage

Iters implemented for 1137 compatibliity are tagged
"(113e)",

711 Lanmguace exceotions and differences fram ANSI
FORTRAN IV,

The following are keved to the correspomdirmra section
numhers in the AN3] FORTRAM IV specification,

<3,2> LLine formats,
A TAB may be used im liey of myultiple spaces at the

start of a lime, If a mumeric character follows the
TAB,» a comtimuation is assured,

(-

The ogefault mumber of comtinuations is specified to q;
be five, Anvy rumber from ©? to 99 may he ontiomally
be declared zt cowpile time,

<d4,2> Data tyres,

Integers are 16 bDit sigmed mumbers., Thay are nor=
mally storec in a twe word format where the first
word is the value amd the secomd is a filler word,.
Simale word integers may ne selected as described in
section 3,2,

Real mumbers use 3 two word format as Adescribed {n
section 4,9.2,

Doeyble precigior uses a four word format(section
4,9.3).,

Complex uses a four word format(sectior 4,9,4),

Logical*l is a specia! one byte format useable for
alphanumeric and limited arithmeti{c manipulations,

<5,1,1> Constants,

Hex anmd octal conmstants will be alloweo within DATA
statements, The formats Aare!

ZNNNN FAR A HEX CONSTANT(11372)
ONNNN FOR AN NCTAL COMSTANT

X PDP=11 FORTRAN, 1390=3n9=011=06 PAGE 35
@:; Languaqe

where NNNN is the hex or actal value respectively.
Nete that hex values mavy mot exceed FFFF amd octal
values may nmot exceed 177777,

Octa) constants may also be specified anywhere {m a
prooram by scecifving a " (double auote) followed by
from one to six octal digits mot exceedina 177777,

. An alternate form of Follepith comstant §is a string
of characters syrroumded by ginrale quotes, Within

the string, two consecutive sinale auates demote a
sinale auote in the strinma,

<6,1> Arithmetic expressions

Gerepa]l mixeg mode excressions are allowed with no
restrictions,

<7,1,2,1,2> Assighed GOTQ

The label list is optiomral, A comoiler diaanostic
(:; will be supplied if the variable is also used inm an

expression,

€7,1,2.1.3> Computed GOTO

When the value of the expressin falls outside the

ranqge of the surpplied statements, an object time epr=

ror giagnostic will be issued,

<7,1,2,7> STOP N and PAUSE N,

N may be a ome to six digit octel constant (not
lapaer tham 177777).

The value specified will be typed om the teleorinter
when the STOP or PAIISF is execyted,

<7,1,2.8> DO Statement,

Integer variabtles or constarnts mav be used for the
do parameters(1131),

<7,1,3> I/0 Statements,
The following statemerts are aaded to facilitate

rpandom access I/0 to a fixed or moving head
disk(113a),

A) DEFINE FILE a(m,i,lU,v)

PDP=11 FORTRAN, 134=309=011=06 - PA
Lamguadge

36

)
m

Set uo a file as follows!

a = Logical uynit mumber (an integer caonstanmt fpom |
to 32767). This is the descriptor by which the file
i{s recoanized when a FIND, READ or WRITE is execut=
ed,

m = Maximum numher of records im the file,
] = Length of each record in words,

U = The letter "U" which declares the file to be un=
formatted (e,a, = himary), No other desigratiom is
legal,

v = Associated variable name to be used for the re=
cord poinmter,

B) FIND (a'b)

Position the disk head properly for record #b of

- file #a, This is a mo=operatiom command for disks
as currentlv useo under DNS., "a" refers to the sym=
bolic fi{le <desiamator and is described §im section
(A) above. "b" i3 3 simple Inteqepr variable or cone-
stamt mot qreater than 32767,

C) READ (a'b) list
WRITE (a'b) list

Read or write the t=th record of file a, "a" and
"o ape as described above,

Amn I/0 statement mav coriamally specify Endeof=file
and/or error conditioms 33 shown in this examples

READ (1,170,END=S19,ERR=20)LIST
where END=21Q specifies statement 13 for Endwof=file
processina and ERR=224 specifies statement 27 for er=

ror processina,

D) ENCODE (cnt,fmt,array) lisgt
DECODE (cnt,fmt,array) list

Emcode or Decode "cnt" characters from "arrav" usina
the format "$fmt",

END= anmc/or ERR= conditions may be sptinrally speci=
tied byt have mo meanino amd will cause mo actions,

PDP=i{1l FORTRAN, 131=3290=271=@6 PAGE 37
Larguaaqe

<7,2,1> Snecification Statements,

Altermate forms of Type statements may be as fol=
lows(1132):

BYTE = LOGICAL={
INTFGFR = INTEGFR#%2
REAL 3 REAL%*4
VIUBLE = REAL*S

An IMPLICIT type statement i{s also allowen, It
cayses all varjables heairmimag with seame specified
letter to pe consicered as a adiver tvme, unless ex=
plicitly stateg otherwise,

EXAMPLE:

IMPLICIT REAL*4 (M=P,R)
INTFEGER MRFR

Causes variable MRR to bhe an inteacer, while all oth=
er variables hecinnima with M=P ard R are treated as
real,

EeGe = STANDARD FORTRAN wWOULD IMPLY:

IAPLICIT REAL*4 (A=H,0=7)
IAPLICIT INTEGER*2 (I=N)

<7,2,3> FNORMATS,

The "N" (octal) field srmecificatiemr is allowed,

The "T" (TaR) srmecification {s allowed,

An 3ltermate form of the - specification is a strino
of chapracters surrounded by simgle aqueates,

7.1.2 Statement Nrder Fastrictionrs

Statements must occur im the opder Spacified in the
ANST srecification execent that all NATA statements
must occur after all other declaratives except

ASF's,

ASF's must occur after all other Aernlaratives and
hefore any executables,

The IMPLICIT statemenmt, whem useco, must be the first
statement of anmy Proutime, It may be nreceded only
by the SURRCUTINE or FUMCTINN statement,

PDP=11 FORTRAN, 130=379=i731=036 . PAGE 38
Lamguage

7.2 Oblect Larocuage Outout

Any statement gererating executable cncde will also
‘generate a rprreamble consistima of the lime number
(see section 4,1,2) if any followed by

SSEQR,AAAANRA

where nnannm is the numeric seauence nf the state= .
ment {m the DpPogra=, $SER is a3 call to the
trace=~back hanagler Wwhich keeps track nf where execu=

tion s oeccurrimng withimn the yser program, If the

/83U switch (section 3,2.,1) is soecified this preams=

ble is rot gererateq,

72«1 SUBROUTIMNE, FUNCTINN Staterents

The SUBRQUTINF anmd FUNCTIOM statememts cause jntep=
nal flaos ano counters to be set describing:?

A) The mymber of marareters argq their pasition
B) Whether this is a fumction or a subhroutire
C) The routime mame and tvpe

A nomn=fatal ogiagnostie is givem if the statement has
a Yime mymper,

The output qgererated is:

STITLE XXX

«CSECT
«GLOBL XXX
XXX JSR %4,3%POLSH

«GLOBL ¥NAM, $POLSH, $SER
$UAM, B, 0, INNNNN, MMM MMy

where XXX is the mname of the routime, A maim pro=
gram™ is hamdled in the same fashion, axceot that the
routine name is Adefimed to bre "MAIN,", The routine
call §&NAM §s a Trace=Back funecticn havina four par=
ameters, the fimal two (MNNNNN and MMMMMMY) of¢ which
is the routine mame im RANIXS5E, If the /SU switch
is specified, the $SER alobal is deleted.

7.202 EXTER’RAL State”—eﬂt @

A) Routime name canncot have been crevioysly definmed,
B) Deesm't allow a line numbker,

PDP=11 FORTRAN, 134=320=3 =06 PAGE 39
(:} Larguaae

The output aererated cormsists of a ,GLORL for every
rame declareg external which is not a farma)l parame=
ter. A flaa is also set im tme symbo! table marking
the emtry as extermally defined,

7.2.3 CALL
CALL xxxfilpx?r*éo.-.YN) Co‘-"D‘”es as?

42 _
oGLNKL XXX
JSR %S) XXX
BR SFNNNN
X1

X2

e o e

N
il

SFHNNNN S

‘:: J3R %4,%POLSH

where XXX §s the name of the subroutine to be called
and X1, X2, ..s XN are the argquments of the list,

In the case of compourd mnarameters, the valye s
placed on thke stack ard its address ia imserted in
the Jist usima the routine %SVSP, ilpan returm, the
stack is cleared with am ACD,
Examplet

CALL ABC (4,R+C,D)

woulc gemerate the follawing!

ppPé2u2 sPUSH VALUF NF B
$02243 $PUSH VALUF AF C
2ADF s ADD THEM
$£3VSP,$F2701 $SAVF THF ADDRESS
Y
«GLOBL ARC
JSR %9, ABC
B8R 10
A

PFa2@1: O
(]
ADD #4,%6

JSR %4, $POLSH

PDP=11 FORTRAN, 130=329=321=g6f . PAGF 42
Languaqge

7.204 RETURN
GCemnerates:
IRET
In a main prooram, a diagnostic is issued for any
occurrence of RETURM, I~ a fumection subprogram,

coce is also acemerated to olace the fyretiomn resuylt .
in RP=R3 before executirg the SRET,

7.2.6 GOTD XXX
Gemerates:
STR, ,¥XYX

nhere XXX 18 the statement myumper in Aauestion Aand
$TR is a POLISH moce Jumrp,

Example: g?%
_J
GNATN 237
«0ULD GENERATE:
3TR, 237
The corpyted GOTD formr:
GOTC (14,22,3¢1),1
compiles as *
P, I s VALUF CF T TP STACK
$TRX,3 sCOMPUTEDR GNTON RONTINE ot
s AND NUMBER OF LARELS
W1 sFOLLNAFD RY ALL NF
023 s THE LARELS
. 3¢ s IN QUESTINN
The simple assianed GOTO:
GATO J
comeiles as:? g
$P.J sVALUF OF J TO STACK -

$TRA s SERVICE ROUTINE

PDP=11 FORTRAN, 134=320«0¢31=26 PAGE 41
Larguace

Assigned GOTOs with a 1list
60TO J,(10,22,32)

corpi{le as

3P.J JVALUE OF J TO STACK
STRAL 1 ASSIGMNED GNTN
. .19 tLAREL STRING
.20 s TERMINATED
.30 sRY A
Y/ | 3 7ERG

7.2.6 ASSIGN

ASSIGN 15 TO J would cemerate
$AS,,15,1

if I is a local variable or

(:; SASP, 15, N

if 1 is a dummy argument with a paramatepr Offser of
LEVEII

Wwhem thig statement is emcountered, a flaag §s set to
disallow usimng the varfable assicomned as a parameter

in a call statement(or funmction call) and to disale
tow its use in arithmetic calculations.

7.2¢7 CONTINUE

Gemerates no codell

7.2.8 PAUSE XXX
Gemerates!

«GLOBL $PAUSE
PPAUSE, XXX

Wwhere XXX is the octal constant to bhe printed on the
conscle,

PDPwil FORTRAN, 134=309=pdii=dé . PAGF 42
Lamquace @:}

7.29 STOP XXX
Generates:

«GLOBL $STOP

Where XXX §s the octal constant to he printed or the
comsole, v

7.2.10 FORMAT

13 FORMAT (XXXX) would compile as:

o143 STR, $FNNNN

$1412 «ASCII AlxXxxx)A
«EVEN

FFNNNN

O

Where XXXX is the contents of the FNORYAT gtatement,

7.2.11 ENDFILE

would generate:
«GLOBL SENDFL
EPAnnnm

IENDFL

Where nnnn is the desfreq uynit mumber,

7.2412 REWIND

As in 7.2.11 exceot use the routime "SRWIND",

7.2.13 BACKSPACE

As in 7.,2.11 excent use the routine "SHCKSP",

PDP=11 FORTRAN, 13U=3P0={l=nb PAGE 43
Larguage

7.2.14 END

Generates a "RETURN" followed by all comstamts, dae
ta, ano variahles for the routime followed by a END
statement. ‘

Imn a main poroaram, a!

«GLOBL SBEXTTY
SEXIT

Is generated instead of a "RETURN",

7.2.15 TYPF statements
This routine {3 entered with the type im RU,

The TYPE orocessor wil]l make symbol table entries
for each variable not already im the symbol table,
and will set fields R imdicators as fallows!

CATA TYPE

DIMENSINN (IF SPECIFIED BY PARENTHESES)

LENGTH OF ITE“

ADJUSTAALF ARRAY (IF & VARTABLE APPEARS RETWEEN
PAREWTHESES)

SYMBOL

7.2.16 DIMENSION statements

This processor makes symbo] table entries for each
variable not already im the gymhol table, and sets
syrbo! table fields as follows:

DATA TYPE (IMPLICIT DEF IF NQT ALREADY NEFINED)
DIMENSION

LENGTH OF DATA TTEM (TMPLICIT IF NOT ALREADY NEFINED)
ADJUSTABLE ARRAY

SYMBGL

The "END" processor will outout to the assempbler all
the ADB's in objecte=time format (see section
3c1.2.6) and will reserve srace for all arrays,

PDP=11 FORTRAN, 133=3PQe«2A1{=p6 - PAGF 44
Larguace

7.2.17 COMMQN

Each list item is clacec im the main symbol table
(if {1t §is mrot already there) and, {f gimensions are
soecified, apcrooriate ADR jtems are produced (see
section 7.2-16)0

The definitioms will be made via the "=" operator in
PAL=11R and wil)l be relative to the hase o0f the ap=
prooriately mamed CSECT,

7.2.18 EQUIVALENCE

7.2.18,1 The general form of the ENUTVALENCE state=
ment {s:

EQUIVALENCE (A1(I1),A2(12) e o8NCIN)»(RICI1) v enedrene

where the "A" terms are enuyivalenced to each other,
the "B" terms are eauivalemced to each other, etc,

The "A" tepms are array jdentifiers or simngle vaprie
ables, For array identifiers the "I" terms are con=
stant subscrirts, The compiler reauires the byte
positiorn of each item §in the eauivalemce Vist, and
will therefore reolace the "I" term by the equiva=
lemt "{ndex value" of the jtem, The imndex value is
the adaress of the item relative to the start of the
array s ccmputed just as at object time (see sec=
tiorn 3,1.2,6),

If a term i8 & simole variable, the I term will nmot
appear imn the scuyrce, anmnd the compilar will take it
to be ¥,
In what fo)lows the svmhols I, I1, L,e0 IM, etc,»
{mogicate "imdex values", we them daefime the "off=
set" of AK;

OFFSET AK = MAX(IM) = Ix

nhere I1, I2, eeer IM now denmote the index values of
the items, we can therm say that!

AK(1) IS EGQUIVALENT TO AL (OFFSFT(AK))

Where the subscrint I Pras heem chosem such that
ITaMAX(IM), This orovides an equivdlermce between

el

PDP=11 FORTRAN, 139=37G=211=gF PAGE 45
Languace

the start of each array ana some relarive byte posi=
tion within cre of the arrays, namely the arrpay AJ,

The actual ecuivalencinn would take iato account the
size of am entry in A,

7.2.18,2 4her tne compiler emcounters anm EQRiJIVA=
LENCE statement the following actioms will re takem?

A symho! tahle entry will be located ar comstructed
for each item in the strimg, amnd the Fauivalence bijt
wil) be set (secticn 5,2.,1.,1).

An "tayivalence block" for each set of eaufvalenced
items will ke established, The format 0f the aquis
valence nlock is defimed in sectior 5,5,

7.2.18,3 Aftepr the Yast cdeclarative statement g
encounrtered, code will he ceneratec tn reserve space
for all enuivalenced variables, A1l equivalenmce
chaims will be resolved by means of the equivalance
blocks, usimng am alqgorithm similar to that described
in Apdenrn, Galler and Granam, "AN ALGORITHM FOR EQUI=
VALENCE OECLARATIONS", ACM COMM,, VAL 4, NO, 7,

7.2.19 DNata statamenmts DATA KY/D1/,K2/ND2/ 140

Processing of this statement assumes that nro cone
tradictory tvypina of the variables imn the statement
will occur afterwar3ds,

As withr the DIMENSION amd COMMON processors, the
varfables in each list K apre entered into symbo)
table if they are mot already there (referemces to
arpay elememts with fixed subscripts will cause ar=
rays to pe defired with all gimension sizesze1), In
adoition, a temporary list will be coanstructed cone=
sistimg of nointers jmtec the symbol table, one for
each list item,

The constant data followinmng the slash will thenm be
matcreg to the Jlist items amd aricine0 aocrooriate=
v

PDP=11 FORTRAN, 134=379=yleg6 - FAGE 46
Lamguace

7.2.26 Do 1U I=JOKDL

Compiles as follows?

$P.J HESURT N |
$POP2,1 :PCP TO I
L

A "DQ TARBLE" entrv is constructed uoom encoumntering

the DO statement (see sectjorn £,7), The "paturnm

Jump" gestimation is the lahel! aqemneratea followinag N
the MO0V above., If there are amvy entries active (see

section 5.7.,1) in the DC tabtle, it is searched after

the code for each labelled statement {8 cemerated,

Wwher a match hetween statement label amd tepminal
statemen~t label occurs, two possibilities exist:?

1« The correspondira DN tahle entrv is mot the
1agt active enmtry im the tatle = §im thig case
the D0's are mot preperly mested,

2. The corresponrdirg CN takle entry is the last
active enmtry in the table = im this case the
following code is generated:?

SENDON,L,T1,Kx, 3L for normal DO loops glg
ap
$ENDOP, L, T,¥, 3L fer N0 loops con=
taining formal par-
ameters

7.2.21 IF

7.2.21.1 LOQ‘C?] IF

The logical expressior withim the Ooutar oarentheses
is evaluateg and the result is cassed to the OTS
"loaical IF" routine, Jf the expressicmn s "true"
the conditioma) tranch or statement is executed. If
"false" the next FCRTFAM statement is executeAd,

7.2.21.2 Arithmetic IF

The expressiom within the cuter parentheses §is eva-=)
luated and the result {s passed to tha 0TS "arith= (i}
metic IF" routine, It returns indirectly to ome of
the three locations followina the callimra seauence.

{::

POP=11 FORTRAN, 13¢=3729=p21=2F PAGE 47
Lamguaqe

See section 3.,1.,2.2.

7.2.22 READ, wRITE

Cbject code for RFEADs ama wWFITES (s handlea im a un=
iform manmer, ana s based omn the _yse of an "inj=
tialize" call, severa)l reads Op writes to transmit
list iJtems ¢to ¢the TS routimes, an4 amn "Emd" cal)
wher the list is derleteqd (see sectiom 3.1.2.,4).

The method for cemeratinmg code for 3 tynical formate
tec read s given as an exampole!

READ (M, 18M)4,R, (X(1),I=J,K,L)

A, Ubom enmcountering the first right Darenthesis,
the compiler cermerates the inftrializatinm call:

3PSH, v
}PSH, %102
PINFINZ,2

Bse If tme =mext item in the statement is not a left
parenthesis, the coTpiler ©Outs a nofinter to each
1ist item inte the read calling seauence, until a
left parent~esis or ernd of statement s found?

$PSH, A
$PSH, R
§PSH,?2
$I0R

Ce when a left varenthesis iS encounrered the come=
piler looxs aheaa for the implied DN carameters,
germerates a lavcel for the DO returm jump destination
(3FPET2 im this exarple) amd makes an entry §im the
DN tamhle for am impljed agn=loopn,

The O procesaor is used to generate the loop inj=
tialization?

3P, J
$PCPL,1

De 1he list items are them passed to the RFAD roy=
time as i~ part R (except that a s bscrirted item
mrow appears im the list)

PDP=11 FORTRAN, 13J=3P9=:221=06 PAGF 48
Lamguaae

§FU202: <CALL TN SUFSCRIPT ROIJTINF FOR X(I)>
$PSwkl 3PUSH REGTSTER "N STACK
3P,1
310FR

Ee whem the CU coantrel variables are emcourtered in
the list they are scanred cver until a riaht oarens=
thesis is feuyra. Thre right papremthesis triagsers a
call! to the NC precessor to qermerate loopino in=
structions from j~formatiom on too of the RO tahle
stack!?

SENDDC,L,I,¥,3F2un2

Fe The 20 loop fimally falls throunh for tramsmisg=
sien of the next list itemy in this case there are
no more items sc the compiler generatas code to tep=
mimate the operatior:

$I10F

7.2.23 CEFINF FILE a(m.1:u,v)
See section 7,1.3, The germerated code {is?
SOEFILs,asmsl,v

where a, ™, 1, ar4 v are the andresses nf the oroner
parameters,

7.2.24 FIalD (u'D)
See section 7,1.3., The aemerated code is!

FPSk, U
$PSH,
iFINDJﬂ!E

7.2.25 IMPLICIT

The comeyler will majmtajn a table fro= which al)
Implicit definitions of variables are macde (see sec=
t’c” 506)0

This Poutime will adjust emtries ir hath the §=mplij=
cit tatle amd the symtol table accor+dimng to the ine
tent O0f the iTplicit statemrment,

PDP=11 FQORTRAM, 130=310=«311=26 PAGE 49
Larguace

7.2.26 3L0CK DATA

when this staterment is encountered the coTpiler sets
the block Data switch, to he tested whemever an axe=
cutatle is emccunterec in the source orograr (am ep=
ror),

7.2.27 Adjustahkle Aprrays

whem agjustatle arrays are encountered in TYPE, Nl=
MENSION or COUMNN statements, the compiler will gens=
erate code to imritialize the array by mavima values
of the Aaoorepriate rarameters inrto the object time
ADE, Tre ¢311 is of the form:?

$ACJ,<ADR ANDF,>,<PAR, INDEX>,<1ST NI">,<2ND
PIM>,<3RD NIY>

7.2.28 Arithmetic State~ent Fumctions

Arithmetic Statemant Fumctions (ASF's) are compiled
as stamjard fumctions exceot that the emtry mname s
"more GLORL."

The entry mname has entry tyre 1.

Roytime argument(s) mnave emtry tyre @7 amd are de=
sigrated oaraTeters as {n subroutimres or fumctions,

Deletion of arguments consists of zeraimg the mame
part of the symbol tahle entry, The soace s not
reclaimed mor the emtry ymlinked = Wyt mo search
will match the zero rame,

A varfable lemgth tac'e o~ the stack maimtajns a
table of rointers to the symbol! takhle entries for
the parameters, At the end of the ASF compilation
this allows qgoinmng back and deletima argument mames
from the sympol tatle, The top 0f ¢the stack cone=
tairs the numrer of arguments, The naxt N woPrds are
the arcuments (LIFO),

Thre strycture of ¢the comciled fumction s as
follows:?
FTR,$FARAR $BRANCH ARQOUND THE
ROUTINE

NAME 3 J3R %4, 3PNLSH $ROUTINE TO ENTFR POLISH

PDP=11 FORTRAN, 132=300=p1=06
Lanquace

(code for excression])
$POPK~™
REGISTERS
o*2
RTS %5

LI

7.2.29 ENCODE, DECODFE

PAGE 57

st LFAVFS vaALE ON STACK
tMOVE VAL'IE INTO

tEXYIT PALTSH
sEXIT FUNCTION
¢+ TARGFT FAR BRANCH

Object code for ENCUDE amd DECONDE is hamoled identie-

cally to REAL amd wWRITE,

excent that three Darame=

teps are nysnea and the routires called are SENCD

amo $DECD resrectivelv,

(See gectinn 3,1.2.4,)

PDP=11 FORTRAN, 13U=370=C1=06 PAGE 51
@ - Larquaae

7.3 0Object Time System Exceptions and Differenmces
From ANSI FORTRAMN,

. ' 7.3.1 Librapy

The tollowing FORTRAN library routines have beem ad=
v ded to the ANS] list (see the user's mamual for more
detajled informatjon)!

1. DATE « returns the current date,

2e TIHE = returns the current time of day,

3. SSWTCH = preturns the contents of the gswitch
register,

4, RAN = random numbepr gemerator function,

b5, RANDU = ranmndom mumber generator subroutine,

6., SETFIL = modify default device tabhle en=
tries, ,

7. PDUMP = cdumn core between soecified 1imits,

&, EXIT = termimate nrogram,

9, SETERP = modify default error handlina,

‘E; 16 TSTEFR = test if am error has ocecurred,
11. LINK, RFTURN = ayeplay hanmdlimg,
12. RUN = load and execute amother nrogram,

7.3.2 FORTRAM overlays

As described in the 0TS sgrecification, 130=311-1082,

* 7.3.3 Random access 1/0

As described in the Ohject Time Svstem specifica=
* tiom, 132=311=002,

;0” w;

PDOP=11 FORTRAN, 134=309=221=26 : PAGE 52

Code Gereration Fxamole

7.4 Code Germeratiom Examnle

The following §s an example o©f a FARTHKAN oprogram
listing whickh inciudes the assembly listimg, This
1isting is not exactly like a mormal orogram listina
because the nrormal raae headimngs have beer rampoved
to reduce confusion, amd becayse descriptive com=
ments have hreem Aadded to the assembly listimg to
describe wmnat s 10imc on.and why,

C ASSEM3LY CODE EXAMPLE

P00 QIMENSION X(C12), Y1)
0Ra2 CA4H4gy X
po03 EJJIVLELENCE (X,Y)
0224 DATA A/1,4/,1,071,2/
gavs ASF(G)=Net,
powve6 D=1,
goez 32D+ =A
P28 C=ASF(B)
gae9 12 X1=SIN(C)
gaie X22 (A= (Pxx2ed xAxC))/(2,%A)
P21 NRITE (1,123)4,R,(X(1),123,8)
pa12 10¢ FORMATY (8F11,3)
@013 IF (A,EQR.1,.,)G0 TI (¢
0014 STOP 123
pa1s END
ROUTINES CALLED:
SIN
SWITCHES = /L1
BLOCK LENGTH
MAIN, 2325 (433632) %
38%8, 27 (22225¢)
:C ASSEMRLY CONE EXAMPLE
: DIMENSION Xx(1d),Y(1)
+TITLE MAIN,
: FORTRAN V@PdA,25
Agde2e!? «CSECTY
«GLOBL MAIN,
2227390 Qgd4467 “AI*i,*r JSR %4,5POLSH sENTER POLISH MODE
s 5LOBL 3PCLSH, SNAM £
2002204 2¢reg2e6 PNAM,0N, 2, 250581 ,255742 $SET UP TRACERACK LINKAGE

«GLCBL $3ER
H COoMHON X
H ENUIVALENCE (X,Y)

m

= PDP=11 FORTRAN,

130=309=¢11=06

Code Gemeratiom Fxamole

!
Agpag!

AROPR0 ' X=, +500E

DATA A/1,3/,10371,2/

A0S y =, +u 052

agegte!
de0pse’
Apagag'y
AaeSe!',
Ngdvte!

QBARL6 PRRDZ2YG
ALLOCATION
Agne22' 4
Agg22',
142222
A¢Aule!
Agop26!
ApRe26!
Aoy 2l
ApRere
ApRe 32!,
Aphgl3etd
Aphalz’r,
Q00232220002 L w40RD
A0R34 2Aple2Q

ApPn3e6',

20@222

- "~ e

ppanze
gran3n

Beep36!
270736

-~
n
G
-
158
—
i

peLYn36
Qavna2
P20746
panaase

10e2a6
Apd467 ASF:
220454
neras!
Wodns52 7ePe226
202754
weanse
aed262
@P0262

2002226
Agee6p!
ApR228

3FaP22:

202262 A000¢G

APAARE APP462!

220206
;

Aene206

npnaza4!

aep2Az7e

Boum74
208197

oCSECT ,S8°%S,
o

«EVEN

«CSECT

o CSECT L2588,
=X+22227 9
X005
«CSECT

«5L0BL 3TR

FTR,SFUOQ21

sS4

e 1ORD cip202,7072090
SA+ A4

z1

« WURD A:4g091l

2

=ST+227004

s.1

232d@2

7
=J+A97074
«EVEN
«CSECT

ASF(R)=z"+1,
$TR,$FQQ2

JSk %4, SPNLSH
gpANL2
FPIN11
« GLORL
3ACR
«GLOBL
}POPRI
o +2
RTS %5

$ADR

3POPR3

D=1,
PSER,?QR216

pPAALY
«GLOBL
$P0OP3,D
BsD+1=A
ISER,AUr27
sPpaAL2

3POPS

PAGE

SALLOCATE BLANK COMMON

$SET UP EQUIVALENCES

s JUMP ARQUND DATA

A HAS A VALUE OF 1,0

sl HAS A VALUE OF 1

3J HAS A VALUE OF 2

$END OF DATA AREA

s JUMP ARQOIJND THE ASF
s ENTER POLISH MODE

s PUSKH Q

$PUSH 1

$ADD 1 TO @

sPOP THE RESULT

sEXIT POLISH MODE
$RETURN TN CALLER

s TRACEBACK SERUENCE 6

;GET
$STARE IT IN D

s TRACEBACK SEQUENCE 7
sGET D

53

PDP=11 FORTRAN,

veotle2

2p0104
200106
geatia

dvd112
070114

Jep12a
gno124
o126
200132
200134
222136

one142
200144

200157

Q00154
o156
200162
229164
d00166
vae172
gnp174

2ev2na
o204
vea2ae6
anp210

200212
200214
20u216

gap220
pReR222
00g224
pop226
200237
peR232
w234
2R@236

000240
200242

20224¢

ope2s2

npasee!

2e0@RQG6
ApAuaec
ngeq44p’

Ap2pRAG
2200086
H
NArRAVG
ApRi126!
204567
nped4ny
A¢A524!
ned4467

2072006
A¢r706

112
nplenaG,19:

Apr156!
Ap4s567

ApA401

AEN536!
2p4467

ApapRec
Ageedud

1]

ApARAYG
A¢0440"
2ee516!
AQpR546"

26260206
Ae02s556!
AeR44¢!

ArRpoure
@530
apee2@Q6
ARVE2L6
ApRg2e6
2QRs570"
Apnadp!
apra2e6

2020026
pAg2eG

' 7
2000006

2p00206

13¢=309=201=26 : PAGE 54
Code Gemeratiom Example

s

$PQ213 $GET INTEGER 1

«GLOBL 3TR

IR $CONVERT TO REAL

$ADR 3ADD 1 TO D

$Pa2p3 - 3GET A

«GLOBL $3BR .
$3BR $SURTRACT IT

$POPI, B $STNRE RESULT IN B

C=ARF(H) .
ASEQ, 32012 $TRACERACK SEQUENCE R

ot2 PEXIT POLISH MQODE

J3R %5, ASF :CALL ASF

BR 224 $WITH THE PARAMETER

+3 s R

JSR %4, SPOLSH $PE=ENTER POLISH MODF

«GLOBL 3PSHR3I

$PSHR3 sPUT RESULT ON STACK

£POP3, C JRESULT GOES TO C

X1=S5IN(C)

$SEQ,P0¢1
«GLOBL SIN

tTRACERACK SEQUFENCE 9

o #2 sEXTT PALISH

JSR %*5,81IN sCALL SIN

HR «+27202p4

+C

JSH . %4,%P0OLSH JRE=FENTER POLISH
$PSHR3 sPUT THE RESULT
20P3, X1 s IN X1

X2 (A=(Rax*2=d ,xAX(C))/(2,%A)
$SEQ, 7?2212 s TRACERACK SEQUENCE (@

$epne3 tPUSH A

$PaANt4 JPUSH B

P22 1PUSH 2

«GLOBL $PWR]

$PAR] ;SGUARE B ¢
Pem21 sPUSH 4

3PARA3 sPUSH A

«GLOBL §MLP ¢
3MLR sMULTIPLY 4,%4

$PUALS sPUSH C

SMLR sMULTIPLY IT

$3EBR tSURTRACT B##*2

$S8R s SUBTRACT FROM A

$PAA22 sPUSH 2

§P2203 $PUSH A

FHLR sMULTIPLY 2,%A

«GLOBL 3DVR

INVe :DIVIDE THE TWN EXPRESSIONS
§$POP3, X2 $PUT THE RESULT IN X2 ‘Z}

WRITE (1,102)A4,R, (X(IY,7=23,8)
$SEQ, 2607213 sTRACEBACK SEQUFNCE 11
«GLOBL $PSH

PPSH,§12272 $ADDRESS OF UNIT NUMBER

000256

peB262
geez270
eeB274
2pe3on

200304
2P0306

000319
ono314
00V314

200316
200322
202324
200330
8A2332
00R344
200346
202352
200356
200366
200366
200372
200374
200376
200400
200402
200424
200426
200417
200412
000412
070416

. 0eQa4zn
dega23

O

.

DP=11 FORTRAN,

220206

202D2066
2022206
10003066
200002@6

2270206
200606

"R20326
$SFU203:
ApRa4de!

2AQ72¢G

ApAp3EG6
1220206
Q00006

1e202a6

ageegec
142
PpAB2ARG, 122

AQAR GG
252 3lud:

$F22p4;

H
2QQ¢206
"pr44p!
A00462!

20002266
2000R06

20020306
2pr412!
20000206
2pR152"'
§FR2e5:

H
AgALALCG
A ddddde

61
eee

130=309=331=06
Code Gemeration Examole

$PSH,5102

PAGE

JADNRESS 1AF FNRMAT

55

«GLOBL $OUTFI

S0UTFI sINITTALIZE FORMATTED OQUTPUT,2,9
3PSH, A JGET ADDRESS NF A

$PSH,R sGET ADDRESS 0OF B

$PSH, PR 722 32 PARS, TO BE NUTPUT
»6LO0BL $IOR

$IOR $OUTPUT THE REAL PARAMETERS
$pPiAR24 tPUSKH 3

«GLABL $POP2

3P0P2,1 ;STORE IT IN I

$PUAR4 sPUSH I

«GLOBL $38BS1

33BS1,349791 s COMPUTE SURSCRIPT ADDRESS
«GLOBL $PSHRI

3PSHR1 JPUT T'TH ITEM ON STACK
}PSH,CC201 s ONE PARAMETER

3I0R 3D0 REAL OUTPUT

« GLOBL SENDDO

SENDDO'$IH992'I'$I@3e4"F3593 :TEQM. LooP

«GLOBL SIOF

$T0F $1/0 TERMINATION

FARMAT (8F17,3)

$3ER,7%002214 t TRACERACK SEAUENCE 12
TTR,3FO2Q4 $SKIP AROIND FORMAT
«ASCIT (AF102.3) $ASCIT FORMAT STRING
+EVEN

IF (A,ER,1,7)G0 TO 10
$SER,*0FQ15

$P27Q3
5PEA11
«GLOBL
$CMR
«GLOBL
SEQ
«GLOBL
STRTST
fFenes
§TR
.10

$CMR
$FQ

$TRTST

STOP 123
$SEQ,?00216
«GLOBL 3S8TCP
$STOP
«ASCII
«AYTE @
«EVEN
END

123

s TRACERACK SEAQUFNCE 13
tPUSH A

§PUSH 1,0

: COMPARFE THE TWn

3N0 ENUALITY CHECK

s SKIP

:IF FALSE
GO TO STATEMENT 1@

s TRACERACK SERUENCE 14

sTERMINATE PROGRAM

PDPwi1 FORTRAN, 13¢0=370=0"1=06 PAGE 56 .
Code Germeration Example (i)
200424 2qP@AQ'$ANFRL:s +X $ADR FOR ARRAY X
PRY426 754074 254704
200430 2puple 2Agn12
200432 7202202 "'3AUP02: +Y $ADR FOR ARRAY Y
dP0434 P54p04 254004
PP0436 NpPE12 200112 .
200447 112723 $PYURAE3s MOV Asd, %p $PUSH RNUTINE FNR A
20444 2@0467 HR $FRON6
Q20446 A16746 3PANC4; Mny I,=(%6) $PUSH ROUTINE FOR 1 ;
200452 Apn13a JHP e(%d)+
PPRA454 216502 $PLA1A: MOV 230702 (%5),%0 1PUSH ASF PARAMETER
ReR460 200457 BR $FPNR6=4
w0462 112702 $Pu211: MOV SROAAL+4,%2 3PUSH ROUTINE FOR 1,0
QRB466 APBASE BR $FPAQ6
200477 247200 $RAT21: 24p240
200472 Agnpaag 620400
200474 212700 $P2212: MOV Ded, %0 $}PUSH RNUTINE FOR D
VP850 AgrasSi BR SFPCQ@6
200502 200400 D¢ a,e
200506 112746 3PAMA13: MmNV AQABNY,=C(%5) JPUSH ROUTINE FOR 1
100512 20134 JHP e(%4)+
vR0514 20001 $T1422: 228401
200516 212700 $PJA714: MOV Red, %p 3PUSH ROUTINE FOR B q:}
2008522 7A¢c4dp BR $SFONA6
202524 dplp0e B 2,@
200530 212700 3PAA15: MOV C+d, % $PUSH RNUTINE FOR C
200534 7pP433 BR $F2PQR6
20U536 ApepAp C: 2,0
200542 70Pe2w X1 e
000546 112746 $PAM20Ms MNy AQPQB2,=(%6) $PUSH ROUTINE FNR 2
Q0e552 2p7134 JMP e(%4)+
d00554 200pM2 $140R3: ¢Aen@?
000556 212728 $Pya21: MOV SRAVA3I+4,%2 tPUSH ROUTINE FOR 4
ANP562 Ay0a2a BR $FRPQ6
QCR564 240622 BRUAB3: V40607 .
dPE566 20000AY 424287
dRA570 712720 $PIM22: MNYy SRANAS+4, X 3JPUSH ROUTINE FOR 2
200574 200413 8R SFEAN6 ’
dBwd76 240473 SRIAARS: V42420
ANp6R? Mprgae 24200
200622 VLRpRe X2 2,0
WRO6AF N12746 3$PRQ24: NNy 190223 ,=(%6) $JPUSH ROUTINE FOR 3
202612 ”p0134 JHP p(%4)+

200614 223 3IAM8S: ©vI2103
202616 200010 $1a2R6: LAQALD

200620 262770 ADD 4,%0 }PUSH SERVICE ROUTINE
BPD624 714g46 FFA2R63 MOV -(%?))= (%6)
200626 ™1446 MOV e(%0) = (%E)
YeN63n ApP134 JMP e(%4)+
oGLOBL SWRTTE 11/0
.GLOBL §0CO s LINKAGE
«GLOBL $0TSV $GLOBALS

Apde2e! «END MAIN,

POPe11 FORTRAN, 130=309=001=06

C

Code Gemeration Example

PAGE &7

A s 22p@22R ASF 020042R B 098524R
c 0PR536R D 220502R I a 020R26R
J » 2@P032R MAIN, @200B0RG SIN = 200022 G
X = DOPEQBR 202 X1{ 0%@542R X2 020602R
Y = 20DPROR 0B2 SADR = 300000 G $A0001 002424R
$A2002 @@0432R $SCMR = 029707 6 $DCO = 020220 G
SDVR = 200000 G SENDDOs p000@@ G SEQ = 020020 G
$FO021 @AgO36R $FE0D2 PP0N62R $FR2P3 §AR314R
8F0004 PER366R SFOA25 0Ap412R $FRPR6 2A0624R
$IOF = 209200 G SIOR = 270222 6 $IR = 220029 G
$10002 @02514R $10023 0MP554R $12085 020614R
$10006 002616R SMLR = 200n@ G SNAM = 070000 G
SOTSV = 2000R@ 6 SOUTFIs 020A2? G $POLSHs 200020 6
SPOPR3= 202200 G SPOP2 = 2@pRQA G $POP3 = 070002 G
SPSH a 20p222 G $PSHR1s 200002 G $PSHR3x 220000 G
SPWRI = 200022 G $PE223 WAR44R $PAP04 370446R
$P2A10 Q00454R $POA11 @AR462R $PR@12 370474R
SP2213 @0P5Q6R $PPA14 N0516R $P2A15 220537R
$P2020 @08546R $PEA21 @AP556R $PO022 Q0P572R
$P2@24 Q006Q6R $R2281 0A@479R $ROEA3 @20564R
SREEES @AP576R $SBR = 000907 G $SBSY = 020700 G
$SEQ = 2200RC G $STOP = 270000 6 $TR = 070022 G
STRTSTs 090080 6 SWRITE= 0A@722 G $100 20@356R

@1 029150R 108 @7p346R

#*COMPILER ===w= CORE*w
PHASE USED FREE
DECLARATIVES 22366 17853
EXECUTABLES 00628 17599
ASSEMBLY 01114 19968

PDP=11 FORTRAN, {30=309=001«06 PAGE 58
Commarmd Lamguage and Stpucture

8.0 COMMAND LANGUAGE AND STRUCTURE

The command imput to the comeiler happens as
follows?

Upon typing the command RU FORTRN, the compiler s
loaded and the compiler will type its mame followed
by two spaces followed by the compiler version
number, On the next limpe a # {s typed to signmify
that FORTRAN {s ready to accept command i{inmput,

The command imput typed must be of the formi
OBJECT=FILE,LIST=FILE<INPUT=FILE

The object file is the maim compiler output file,
The format of the file may be of one of two differw
ent types., If the /AS switch {s specifi{ed as part
of the file specification, the output will be am AS=
CII f{le suitatle for assembly by the assembler, 1If
the switch is mot specified, the cutout will be ob=
Ject output suftable for linkina, The default exe
temsion {s ,0BJ, unless the /AS switch {s speci{fied
whiech has a ,PAL default extemsion, If more than
one FORTRAN routine was {n the imnput file, the ob=
Jeet file wil) comtain an equivalent number of obe
Jeet routines and must be linked usimg the linker's
/CC switeh, Note that {f /AS {s speci{ified, only the
first FORTRAN source routine f(n the file will be
compi{led, amy addi{tiomal routines will be {gmored,
This s dome because the agssembler will mnot take
concatenated sources as {mput,

The 1ist file is used for the source 1isting, object
listing, symbol table listimg, and erpror diagmostics
it any, The listing content may be made as compre=
hensive as desired by use of the /LI switeh (12K
compiler only), The switeh should be sSmecified with
8 value from @ to 3, Specifying /L1372 will give the
minimal 1isting which consists only of any error di=
agnostics whiech occur ang the block deseriptor (secw
tion 4,11) which describes the proqgram and commoen
block sizes, The /LI3!l switch is the default op~
tion, This supplies a source 1isting with error die=
aanostics amd the block deseriptor, The /L1132
switeh is ysed {f the assembly listing is desired in
addition, Specifying /L1:3 gives a listing contain=~
ing everythina above plus the completa assembly sym=
bo] table listinmg.

The {nput file may contain one or more FORTRAN pro=
grams which are to be compiled, Note that {f the
/AS gwitch is set on the oblJect file (or if the com=

-

PDP=11 FORTRAN, 130=3020=~001=06 ' PAGE 59
Command Language and Sgructure

piler §is the BK versi{ion) that all proarams after the
tirst will be {omored, Under normal circumstances,
however, all routines in the file will be compiled.
See section 3.2.1 for a more complete description of
switch handling,

Upon the completion of compiling a file, FORTRAN
will, if there are any errors, type the error count,
and themn return to the command hkandler amnd again
tvype the # sign to sian{fy that it {s ready to start
amother compile,

whem usimg the /AS and /L1 switches, it is mecessary
to speecify the switch each time the yser types in a
command, ©e warned though, that all {nout switches,
once set, stay set unti) the compiler {s either REg~
tapted or reloaded, This occurs in this fagshion be=
cause it {s assumed that the user will orobabhly com=
pile all programs {n a aiven run with the same code
gemeration features selected,

PDP=11 FORTRAN, 130=309«071=06 PAGE 69
Operating Procedures
9.2 OPERATING PROCEDURES \

This is described in detail {n the "Getting on the
Afp with FORTRAN" document,

&

PDP=11 FORTRAN, 130=309=001=06 PAGE 61
Phvsiecal Description and Organization

19,0 PHYSICAL DESCRIPTION AND ORGANIZATION
18,1 Compiler module descriptions

ASC1 = This routine is the econtro) roytine for CALL

statements and arithmetic assignment statements,

If it is a CALL statement, entry (s made at o=

cation CALL, The first thina dome {s to genmer=

ate the label, if amy is meeded, Then the roy=

tine name 1{s obtained via a call te GET, Once

the routine name is obtained and echecked for lee

. gality, a call is made to FUMBAR (im EVALU) and

the remajnder of the statement s evaluated as

if it were a fumction call (which it i{s, sort

cf), Uponm return from this evalyation, EXPGEN

(also in FEVALU) is called to gemerate the actua)

coce from the Polish strimg which FUINAGR2 placed

on the stack, Whem EXPGEN {g finfshed, the

stack is eleared, end of lime terminatiom s

checked, and a returm {8 made to the calling
routine.

On the other hand, if an entry is made to ASGN,
it is assumeda that am assignment gtatememt {s {n
: the offina, This routine first checks for the
&i} existence of a left part terminated by a "sz"
4 sign, If this wexists SUBEXP (im EVALU) s
called to convert the right part of the expres=
sion to Polish, Note that {f jt is ever desired
to allow multiple assianments, the code for the
preliminary part should be ®©laced {mmediately
preceding this call, Upon return frem this rou=
tine, EXPGEN {s called to aqemerate the actual
Polish ccde itself and them the stack is cleared
as usual, If at this point, the Jime terminmator
is zero, the processor resets the lime pointer
to the start and proceeds to cemerate the necese
sary code for the left part of the expression,
making special exceptiorns of coyrse for subw
scripted references, After the left part is
complete, a normal exit is takem., Note that the
assignment processor never takes the mnomrecogni-
tiom exit that the other ppocessors are allowed
to use since if it isn't am assigmment, it can't
be anythirg else|

ASC2 = This routine is used by ASC1 amd DO, It s
used only to generate the common POP code whigh
is required in the simple ecase assignmenmt and
the DO setup, This routine does all mecessary
checking for parameter forms imn sybroutines,

PDP=ii FORTRAN, 1302=309«031=p6 PAGE 62
Physical Description and Orgamizationr

ASF = This routine handlies all Apithmetic Statement
Fumctions, Upon completfon of other declaraw
tives, this routime wil) be called amd will rew
tain contrel unt{) all ASF's have been proe
cessed, When ASF {s entered, the first function
it performs is to determime the validity of the
1ine as an ASF, in other words, does the entity
on the left side of the s gion consist of & pre=
viously undeclared name with one or mere parame=
ters, If this criterion is met, the ASF pro=
cessing is invoked, The Proutine fipst gets up
dummy parameters for the use of the function
which will not conflict with Yater usages im the
compi{ler, Once all arguments have been co)llect=
ed, the expressiorn is compjled {n the same form
as a FORTRAN compiled fumctiom, except that when
it is referenced in the program, mo ,GLOBL wil)
be generated, thus making it a strictly local
funection, The morma)l expression hamdlimg rou=
tines SUBEXP and EXPGEN are used as part of this
procedure, When the fumction is complete, the
temporary entries {n the symbol table are delete
ed to remove any possibility of later conflicts,

COMMON = Handles the declaratives COMMON and EQUIVAe
LENCE, It also contains the subreutime ALOCAT
which is called after the last deelarative teo
allocate any declared variables, ete, Whem COM=
MON is entered, the first action which occurs is
to see if the data allocatfons have already oce
curred, If so, the statement hags beem placed
incorectly and the process s {mmediately termi=
rated with a diagnostic, Otherwise, the oroces=
sor Doproceeds to cheek for am (optiomal) bleck
name followed by one or more variable or array
mnames, Note that l{ttle confljct cheeking {s
done here and won't happen until the allocation
itself (s attempted, For each emtity foumd, an
entry (s made im the COMMON/EQUIVALENCE table

(see section 5), After each "," termimator a
check is made for a mew block mame, and {¢ found
this whole proceduyre is started over,

Termimation occurs when the end of Y1ine terming=
tor - is encountered,

Another routine im this module is ALOCOM which
is called by ALOCAT to do the actyal code genere
ation associated with the commom declarations,
Most conmflict situatioms will be caught here
whieh coula not be caught by the COMMON oroeces=
soer jtseif,

<x §)
-
V/

-
o

-
~ PDP=i1 FORTRAN, 1302=309-001=06 PAGE 63
Physicel Descriptioen and Orgarmizatiorm

The EQUIVALENCE processor, whemn entered, tries
to colleet as rmrany discrete grouns of Equiva=
lences as opossible and nlaces them {mn the
COMMON/EGUIVALENCE table, The ALOCAT routine
can be considered to be part of this orocess and
{s called after the last nor=execyutable state=
ment has beem encountered, It flags amy EQJIVA=
LENCE 1imeconsistercies, Qererates the mecessary
equates, and calls ALNCOM,

CORET = The CONTINUE and RETURN statements are proe
cessed here, Simee CONTINUE is a nu)) opera=-
tion, al) it 4does is check for a Yime terminator
and {mmeagiately exit! The RETURN processor
checks to see whether the statement was {ssyed
from a main program, sucorogram, or fumction,
If a maimn program, a diagnrostic s issued, If a
subroutine, a $RET {s cgemepated, If a fumction,
the necessary pop code is gemerated followed by
the 3RET,

DATA = This routine processes NATA gtatements and
generates the requijred code, Whemn DATA {s en=
tered, 8 call te ALOCAT is immediately made be=
cause no data allocatioms cam ocecur unmtil all
other dJeclared allocations have beemn made, Then
the data rmame list is scanned until a "/" {s en=
countered, This ajves the compifler two strima
pointers to work with, ome tec point to the varie
able names and the other to point to the valuye
1ist which should match the names {m characw
teristics, As each varfable is encountered, the
corresponding data value s asgianeo to it in
the objJect code, There are several cases whieh
are checked while the al)ocation s oceurring,
These are BLOCK DATA, previously allocated
ron=COMMQM, vet ¢to be allecatad nrom=COMMON,
Note that in BLOCK DATA that only Named Common
can be inftialized amnd that its allocation has
already occurred in ALOCOM, The ©processing of
the statement contimues as long as there is at
least a comma after the last encountered varie-
able, a comma after the last encourtered con=
stant, a non=zero repeat counrt for & variable
(array)s, or a none=zero reneat counmt for a conw
stant. Al] stamdard forms are allowed as data
values, includina those bpreceded by a umarv
minus,

DECLAR = This is the symtax recogrizer for declara=-
tive statements, Upor fimdimg a form it canmnot
recognize, it calls ASF and thkem Jumps to EXEe
cuT, This routine is part of the mainmn contro)

PDP=11 FORTRAN, 130=329«031=§6 PAGE 64
Physical Descriotion and Organization

looe of the compiler, It calls the I/0 routines
to get a line and them digpatches to the prooer
statement handler vie a JSR PC,xxx, Each
handler when entered, can assume that Ri {s poe
inting to the correct position to begin {ts re=
cognition scan (for most gstatements this {s {me
mecdiately followinrg the verb), Fach processor
is) in oaemeral, respconsible for the comolete
processima of the imput lime, Returm from the
Pandler is as follows: A mormal return wil] come
tack with am RTS PC with the Vebit of the status
word clear, A return with the Vehit set may on=
ly occur if the 1ime in auestion could mot be of
the assumedg tvoe,

DEFINE = DEFINE FILE statements are processed here,
The form DEFINE FILF A(M,L,U,V) is dfrectly cone
verted to a cal) to the 0TS routime SDEFIL with
the equivalent parareters,

DO = This routine goes the N0 statement precessinmg
and olaces the reauired entries {n the DO table,
Al] parameters are checked for havimg the proper
characteristics of simple fnteger variables or
constants as required, Then ASC2 is called to
produce the necessary initjalization code to set g;}
up the loop.

DOFIN = This routine is called whenever a labe))ed
statement 1is completed to scan for possible DO
terminations, It is also used by INSTMT for im=
plied DO hamdling imn I/0 statements, When
called it searches the N0 table feor statement
matches which may be ejther normal statement
mumbers as in the case of 3 DO termination or
"special" form labels which are used as dummy
labels in implied DC situatioms, Im efther case ,
whemn a match is encoumtereg, an SENDDO or SENDDP
is gemerated depemndimg om whether parameters are
being used in the DO 100p, the more efficient .
form beinao that which does mot use ovarameters,

After jemerating the reauired code, the DO entry
which was comopleted is removed from the table,

ELOC = This is a dummy routine which is used to mark
the end of an overlay in the camoiler, It {n
combimation with one of the header hlocks estabe
lishes the range of the particylar overlay {n
auestion,

ENDPRO = This routime handles all of the processinmg b
required upon corpletion of a compile, It gen= :
erates the various arravs, variables, etc. used

C

-,

1 FORTRAN, 130=3729=0A1=06 PAGE 65
Phvsicel Description and Organization

by the orogram which had Mot been previously set

up by DATA, CNMMQON, oaop EQUIVALENCEF, It also
gernerates the L,GLOBL references which are re=

aujred by the 0TS for prooer I/7 tlimkages,

ENDSTM « This is the END amd ENDFILE gtatememt rPeco=

aimizer, I an ENDFILE {g foumd, routime ™MSSIO
is callea, 1If an EAD is founrd, ENDPRN {g called
and the overlay stack is restored,

ERRLOC = Logs the errcrs occurrine dyrimo a states

ment, Up to 1@ errors will be starad im the ep=
ror table for processima at the comoletion of
the statement, Note that a soecial case check
is done for error 43 which is the error asgssoci=
ated with COMMOM/EGUIVALENCE table overflow, If
this error should be Yoaged, & flag (s set to
inribit anmny attempt at aenmerating the table
structures using ALNCAT anmd/or ALNCOM simce ca=
tastrophic errors could occur with the tables
incomplete as they will pe imn such case,

ERRPRT = This routine is calleg at the completion of

any statement having errors, It primts the Aj=
agnostic numbers anrd diaqnostic text omn the
source and object Adevices as speecifieg in the
table created by FRRLNC, It ebtains the Aiage=
rostic text from the file FORCOM,NGN, The Ajage
nostic mrumber defimes a character pasition With=
in the file where tre proper text may he found,
ano the prorer 64 characters worth of i(mformae
tiom are extracted ¢therefrom, Nnote that this
routime assumes that at least 256 words of stack
are available for temporary buffer usage while
it s printing the diaagnostic in aquestion, Once
all diagnrostics imn the 1ist have meen pcrimted,
the stack is cleared amd the compilatiom is per=
mitted to resume,

EVALU = Contains two routirese. The first SUREXP,

takes am ASCII exppessiom and canverts it into
am imtermal POLIS™ strimg., This PNALISH strimg
{8 stored om the statk and s moAified as re=
cuired as the expressior im questicn is evaluat=
ed (the structure of individual {temg imn tnis
stack is descriheda in sectjorn 5,9), Upon com=
pletion of the parse, SUREXP retuyrms with the
complete expression form conmrverted teo POLISH
mocge and stored on the stack with a zero termi=
rator, A1l operatioms hRave beenmn Hefimed to cor=
respond to accepted FORTRAM ysage, Note that
this is the routime where the mixed mode conver=
sfons are defined and imserted into the string

PDP=1{1 FORTRAN, 130=329=«2R1=06 PAGE 66
Physical Description amnd Organmization @i}

of operations, The second roytine, EXPGEN,
takes the intermal PN ISH string and uses it to
generate code, A1)l actua! assembler labels and
special flags are assiameg during this phase of
evaluation, Mimimal epror cheekimg {s done
simce the hulk of the error handling is dome by
SUBEXP, WwWhen EXPGEN {s finished, a return s
mage to the callimg routine, Re amply warmed
that the callina routire is held totally respone-
sible for cleanina up the stack after EXPGEN and
SUBEXP have messed {t up,

EXECUT = This is the executable statement syntax ree
cognizer, The job of this routime §is to recoge
nize and dispatech to all forms of executable
statements (FORMATS i{melyded), Note that when
this routine is first entered, care rust be take
en to mnot irrevocably divorce the processor from
the non=executables simce one of the reasons for
entry may be only a badly typed mon=executable
statement, Thus, if a statement is foumd wante
ing at this level and the EXEC flaa has mot vet
been set, it is necessary to 1issye the norma) g:;
giaanostic and them return to the non=executable Y
processor, If EXEC is set, though, the statee
ment {8 discarded upon non=recoanition amd the
rext statement read and processed,

EXTERN = EXTERNAL statement processor, This oroces=
sor takes the 1ist of mames supplied after the
EXTERNAL declaratior amd sets them as exteprnmally
defined in the symbol table, If the symbol is
rnot a formal parameter, the mame 8 alsoe speci=
fied imn a LGLOBL {m the assemhler output,
Errors are given for mames which camnmnot be used ’
as extermal, like 1local variables, function
mames which have already been declared, etc,

FORMAT = This routine generateg the ASCII strings
for FORMAT statements, This processor makes no
attemot to do syntax checking of the majority of
the FQORMAT, It §s only capable of checking
nesting correctness and Hollerith eounts, The
orly function of mcte that is out of the ordinae=
ry is that flags are set for each conversion
type whijech is used im the FORMAT, This {s done
s0O the routine ENDPRO may aemerate ¢the oproper
globals for lcadina the desired portions of the
0TS 1/0 processors,

FUNNAM = This routime, when called by SUBEXP, cheeks
for scecial type reauirements for function
calls., For example, when called with the name

PDP=11 FORTRAN, 130«309=001=06 ‘ PAGE 67
Physical Description gnd Organization

DABS, it will flaag the mame as double precision,

GENOVL = This routine is used to outpuyt a compiler
overlay to the disk overlay fi{le 'mn image form,
Wwhemn this routine {s used im the averlay 3 by=
{1der, it also gemnerategs the correct lenath
overlay file, This routine {8 used only for
overlay buildimg, not for the mormal comoiler
operation, It, as wel)l as STRTUP cam be consi=
dered to be only temporary routimes which are
used to get the show on the air,

GOTO = Al forms of GNTO statements, as well as
STOP, PAUSE, and ASSIGN, are handled here, The
GOTO processor does all necessary syntax check=
ing and then generates the necessary POLISH ops
to handle Unconditiomal GQpTO's, Computed, and
Assigrned GOTO's as well, Note that wher a vari=
able is used in amn assjaned form, {t must have
been previously used in am ASSIGN statemenrmt,

The ASSIGN processor checkg the statement syntax
and then flaas the variable specified as havinmg
been blessed by am ASSIGN thus making the Ag=
sigmned GOTO an eligible receiver for the partic=
ular varjable,

The STOP and PAUSE statements are rprocessed
identically and expect only a Hex or Octal con=
stamt as a parameter,

HDRBY = 8K overlay ¥ header bleck, The discussion
here also applies without chamge to the routimes
HDR@! = HDRA4 ag memtioned below, The oyrpose
of these headers is to oreserve sufficient in=
formation to allow the overlay hanmdler to load
and execute a npropepr routine {im an overlay,
Information is also present which ies used only
at the overlay build time, The various {tems {n
the headers consist of a descriotor list which
has the addresses of all of the entry points in
the overlay and a byte ¢table describing the
overlay number, entry location amd retupm char=
acteristics of the entry it describes, The re=
turn characteristic, in short, speci{ifies whether
the routine described may pbe called with a JSR,
If a JSR call is allowed, the suhroutime called
MUST return normally with an RTS otherwise the
overlay handler's {mtepmal table will get fouled
ue, The last part of the routine consists of a
series of dummy emtries which corresoomnd to the
byte table and create the proper limkages for
the callina routine, Note especially that the

PDP=11 FORTRAN, 130=370=0021=06 PAGE 68
Phvsical Deseription and Organization

order of the dummy entries (s exacCtly the rew
verse of the ohysica) ordep of the bhyte table,

HDRA1 = 8K overlavy 1| header bleck,
HDR@Z = 8K overlay 2 header block,
HDR#3 = 8K overlay 3 header block,
HDR24 = 8K overlay 4 header block,

HDRGEN = This routine generates the start up header
information in the assembler output file,

HEADEA = 12K overlay @ headepr block, The imforma=
tion {in this and the three following hlocks {s
organized similarly to that described by HDRO®
exceot that the exact number and kimnd of entries
are set un for the 12K structures, A1l of the
above description is accurate in this case,

HEADRL = 12K overlay | header block,
HEADEZ2 = 12K overlay 2 header hlock,
HEADE3 = 12K overlay 3 header block,

IF = A1) forms of IF statements are processed here,
whem IF gains control, {t acts egssentially as a
sub=orocessor withim the compiler, This §is done
because 1in the case of Logical IF forms, other
statements mav be used as part of the IF statee
ment jtself, HBecause of this, the processor is
allowed to call most other statement processors
as i{f 1§t was the normal syntax scanrner {tself,
This specialized comtrol mede is only {mvoked {n
the case of Loafcal forms, Normal arithmetiec
forms expect the standard 1ist of statememt Ja=
bels following the ")" §n the statement, IF re=
auires both S!IBEXP amd EXPGEN whieh it yses ¢to
evalyate the expression, Arithmetic forms will
call the excressiom handler only nnce while loge=
fcal forms reauire it twice,

IMPLIC = The IMPLICIT statement processor, This
processor resets the type definmnition table to
reflect the arguments specified t0 the statew
ment, It is also reauiped to scan the symbo)
table which already exisSts, and re=type any
items {im it, Since the IMPLICIT statement must
precede all statements exCeot FUNCTION op SU=
BROUTINE statememts, the only retyp{ng mecessary
will be done on formal parameters which have

PDP=11 FORTRAN, 132=309-231-26 - PAGE 69
(i} Phvsical Description and Organization

been defined {§m the FUNCTION opr SUBROUTINE
statements themselves,

INIT = This routine is used to initialize a compile,

It orints the heading, accepts the command ine

. : put, presets the data area initializes the dey=

{fces ano then Jumps to DECLAR, After the END

statement {s nrocessed, {t outputs the core sum=

R mary and switch summary amd then re={nitializes
the comeiler,

IOPACK = Handles the compiler 1/0 interface to the
monitor, This does all the dog work fnvolved in
continuation 1imes, imput bufferimng while cheecke=
ing contimuations, comment cards are hypassed,
and the other tasks associated with imput, For
output {t {s used to produce the source anmd obe=
Ject 1istinaos as wel)l as oytout the object file
it any, The 12K versionm also has a routine
which counts lines to place famcy headings on
every page of listed oytput, The strings of
characters fed to the routine for assembler {(n=

‘Z}) put are blocked and output when a buffer load of
4 them is obtaimed, Im othep words, this routine
does al]l the good thimgs that am 1/0 processor

would be exrected to handle,

IOSTMT = This routine processes all T1/0 statements
except FQORMAT, STOP, amd PAUSE, This routime is
broken down into three parts, that which
processes the parenthesized part of the state=
ment (as well as the special cases for READ and
PRINT), thet which processes simple I/0 lists,
and that which processes DO implied lists, The
DO list processor {s called from the simple 1ist
processor whenever a left parenthesis {s emncoun=
tered in the list, The DO list processor then
checks to see if the section of the statement
under scan can nossibly be an implied DO, If it
cannot, then a return §is made to the simple 1ist
processor defining the paremthesis as a simple
delimiting parenthesis, If it is am implied DO
then the whole section {s processed at this oow
{nt, Note that the {mpljed DO processer calls
the simple 1list processor if mnecessary to pro=
cess embedded simple lists imside anm implied DO,

MACFTN = restricted version of the MACRO assembler
whiech {8 used to assemble the compiler eutput {n
the 12K compiler, TIf it is desired to change
the class of output that the compiler gemerates,

“ft will be necessary to ubpdate the assembler and

{fts symbol table (PST) to match any mew {tems

PDP=11 FORTRAN, 13U=309«Q001«@6 PAGE 72 =
Prnysical Description and Organization @;}

which are required,

MSSIQ = The REWIND, BACKSPACE, amrd ENDFILE stetew
ments are processed here, The processing for
all three is {dentical except as detailed {n

- sections 7,2,11, 7,2,12, amnd 7,2,13, :

QUTSL = This outouts a statement labhe) to the assem=
bler output file, .

OVLAY = This routime is the overlay controller for
the compiler, It uses the various header bloeks
for overlay tranmsfer addregses, etc, The econ=
troller uses the various entries imn the headers
te determine the overlay to be called, the loca=
tiomn inm the overlay to be entered, and whether
the call is a JMP form which {8 none=returning,
or a JSR form which will returm to the calling
overlay, If a returnimno call {s ysed, the re=
turn MUST be taken or else a compiler failure
will eventually occur, This will ocecur because
the controller saves {nfopmation omn an intermal
1ist to determine where the return must be made, %:}
If the return is mot made, the table will evenw
tually fill, A side note concerns the placement
of temporary variables, No temporaries should
be placed in an overlay which may call usimg the
returning call, 1f a temoorary should violate
this rule, it is quaranteed nmot to have the same
information after the call that it had before,
since the comniler makes No attempt to save the
old core image, It instead brings in am entire=
Iy new cory from the overlay file, and Justly
assumes that the new copy is {fdentical to the
one previously destroved,

PATCH = this routine consists only of 100 deecimal
. bvytes of space which may be used for a patching
area,

PST « symbol table used by MACFTIN, As described
uncder MACFTN, this routine sheuld be changed on=
ly if changes are made to the compiler output
which reauires op=codes on orerations not cupr=
rently reauired by the compiler,

RDOCI = This is a conversjon routime for conmverting
ASCII te real or double precision, It {s used
only by SYMTAB, This routime 18 i{dentical to
the OTS routine of the same funetion, This is
dome to assure compatibility in the way nmumbers
are converted at compile and pun time,

PDP=11 FORTRAN, 132=309=001=06 . PAGE 71
(:} Phvsica) Description amd Organizationr

SPCLST « This routine has the DIMENSION and TYPE
processors, It also contaims various suybrou=
tines uysed by the other declaratives,

STRTUP = This is the temporary part of the compiler
start up code, It inftializea the overlay
handler and them Jjumps to INIT,

SUBFUN = Tnhnis {s the processor for SURROUTINE and
‘ FUNCTION statemerts, This routime has the main
function of getting the routire name and qener=
ating object code to specify this name, It also
places im the symbol table any formal parameters
whieh are declared in the statement, The FUNC=
TION orocessor also has a special submode used
for typina the fyumnctiom mame itself,

SYMBOL = This is a dummv routime, used omly §m the
8K compjler which has 3l]l the hit assignments
described at the beajmnning of SYMTAR, This al=
1ows SYMTAB to be imn only ore overlay, WARNING
= any changes made in the assignments im SYMTAB

: must be reflected jidentically im this routine,
‘Z; since its only ourpose is to substitute for SYM=
TAB in the various overlavs not conmtainina the

symbol takhle handler,

SYMTAB = Is the overall symbol takle handler for the
compiler, In the 12K compiler it is permanently
resident, imn the 8K compiler it {8 a separate
overlay, It consists of several sections, The
first allows one to look up a8 symbol according
to its name (ASCII strimqg), This tvpe of lookup
{s generally dome omly on the first occcurence of

. the particuler varinple or comstant omn the line,
wherm this lookup is made, the attrimutes of the
variable are returmed to the caller, These are

N the tvype, class (constant, variable, array, or
function), anmd serial mumber, The serial number
is a 12 bit value which allows the secondary
part of the sympbo)l table handler to access an
entry without a complicated search, The majori=
ty of references within the comniler after the
first are donre usinag the serial numher of an ene
try rather tham the name, Thisg {s expecially
evident in the expression analvzer, which may
need to scan a strimg several times, The other
sections involve subsidiary routimes used by the
two mainm lookup routimes to perfaorm routime ma=
intenance duties,

TABLES = This contains all of the immure area for
the compiler, A1) chamaeable tables should be

PDP={1 FORTRAN, {34=3029=001=06 PAGE 72
Physical Deseriptien and Organization

placed here, No ecode should be placed here,

UTILTY = This is a package of miscellaneous utfility
routines uysed by the compiler,

Qi?

PDP=11 FORTRAN, 130=309=0i11=26 - PAGE 73
Functiomnal Descriptiom and Operation

11,8 FUNCTIONAL NDESCRIPTION AND OPERATION

11.1 Glebal Flow of Contro)

The overall oreration of the compiler cam be desg=
eribed as follows:

After having built the compiler amd its overlays
(see section 13,0) the system consists of the files
FORTRN, FORTRN,OVR, amd FORCOM,DGN, The first is
the compiler oroper, the second is the overlay file,
and the last is the diaaonmostic text file,

Whem a Ry FORTRN command is givem, tha compiler main
proaram s loaded and execution starts at the entry
point of routime STRTUP, This routine determi{mes
the machine size, determimes {f the diaanostic file
is present, and then finmds the absolute disk address
of each overlay imn the overlay file, Upom comple=
tiom a Jump to location START i{im roytine INIT s
takenm, Note that STRTIIP is a onmce only routime and
{s overlayed by the compiler symbol table,

Upor entering routine IMNIT, the keyhoard 1is INITed
and the oprogram name is tyoced followed by a # sign,
The user then types a command strima having the forw
mat as required by the standards for commamd jrbput,
When the command nas heem typed, each file as soeci=
fied is OPENed and made ready for use, If either of
the two outnout files already exists, a DELFTE fol=
lowed by a reopen is done,

At this poinmt, {f the assemhly output has not been
recguested with the /AS switch, the file FORTRN,TMP
is opemned for outout, This file is used to retain
the compiler output for the automatic assembly oass,
In the 8K compiler, it is mot possible to aqet this
interface, and 1t onerates as if the /AS switech is
always specified,

After completior of these tasks the Tmplicit table
{s set up to the default valuyes, settima letters I=N
to integer and the rest of the alohabet to real,
The expendable entries in TARLFS are cleared, At
this point, the compiler is now cemoletely jmitjal=
ized amd ready to compile a proaram,

The routime DECLAR is mow entered through location
SCANNR, DFECLAR {3 wused to recognmize the verbs of
al) declaratjve staterents, As each declarative s
recognized, a jump is made te the correspondina
handler, If the respective handler cannot handle
the 1impyt text as required (e,g., = COMMON=1) it

PDOP=11 FORTRAN, 130=3029=071=036 PAGE 74
Fumctional Description amnd Operation

will return to the recognizer with the V (overfiow)
bit set, A return to the recognizer with the V bit
set will only be made {f the statement might be al=
lowed as another tyce of statement, It would be fue=
tile to return in this manner from the equivalence
oprocessor because the word EQUIVALENCE has a)ready
been found and there is no other form whieh could
start with that immense nmame,

A return to the recognizer without the V bit set {mw

plies that the statement was processed, So the rew
cognizer will read another input lime anmd transfer s
as reauired,

Wher the V bit return fs ultimately takem (as {t
well must) the recogmizer then calls the ASF ppoces=
soer. If the input lime was a legitimate ASF, a nor=
mal retyrn occurs and the recognizer reads another
limre and calls ASF agasim, If the return from ASF
has the V bit set, {t was not recognized and the
routine EXECUT is called,

EXECUT {s the executable statement recognizer, At
the time it 18 called it hag been determinmed that
there are probahly no more declaratives to be pro=

cessed, | &ZE

EXECUT works similarly to DECLAR exceot that there
still s a possibility that the init{al limes found
are not executahble and that a peturmn may have to be
made to DECLAR, At the point where the first exew
cutable statement {s definjtely found, the EXEC flag
fs set to one and return to non=execytables becomes
{mpossible,

EXECUT proceeds along, aetting each Jimne and dise=
patching to the various routimes meeded to crocess
the statements, If a line cannot be recognized, or
if the statement processor called returns with a V
bit flag, then it is possibly an essignment state=
ment, The assianment statement processor (residing,
in part, in ASC1) is the last pesort for redeeming
grace, If after beinc relected everywhere else, a
statement cannot be parsed by the assigmnment proces=
sors anm error diaanostic is given to the effect that
the statement in Qquestiom s undefimed, unrecoge
nized, or otherwise undecipherable,

One side note, at the time of the 1issuance of any
diaanosti{c messaqe by a compiler routime, the error
message word, and the text pointer are saved {n a
1ist of diagnostic statements, At the ecomclusion of (:}
each statemenmt, {(f this 1ist is momenyll, the error

O

PDP=11 FORTRAN, 133=3P0=dAl=d6 . PAGE 75
Fumctional Description and Operatjon

print routime (ERRPRT) s called, This routine
prints a cortiom of the {mput text for receognition,
the error number, and if the diagmostic file (s pre=
sent {t also prints the text of the error message
which matches the error numbter,

Upom encountering an END statemant or an
end=of=file, which forces an impliedA END, the rou=
tine ENDPRO is entered., This routine aqoes through
the symbol table and creates the various data ftems,
push routines, and array entries as required, After
this {8 completed, the FORMAT flags are checked anmd
«GLOBLS are issued for each I/0 tvoe and format type
emncountered during the compile,

Now the file FORTRN,TMP is closed, reopened for {n=
put, and the assembler pass is called, The assem=
bler is a highly modified versjon of the MACRO=11
assembler with all features which are mot meeded by
FORTRAN stripred from it, At the end 0t the first
phase of the assembly rass, the data block descrip=
tor summary as described in section 4,11 is gemerat=
ed, During the second phase, the bimary {8 generat=
ed as well as any listings desirec, |lJpon completion
the bimary file qemerated §s MOT elosed, but the
file FORTRN,TMP is closed and deleted since it is no
longer needed, The assembler returmns to INIT which
checks to see if any more {mput is to bhe oprocessed
from the inmnput file, If so, the compiler |{s
re={initialized and the mext routime {3 processed,
Whern an encd=of=file has occured on the input file,
the bimary and list files are closed ama released,
the keyboard 1s INITed, the errer count is prinmted
on the kevyboard (mo error count {s printed §{f mo er=
rors occurred, obviously), and the compiler is res=
tarted, At this noint it types a # s{gn and the
whole show is ready teo start over again,

11,2 Individyal Statement Flow of Conmtral

See section 12 and the source 1istings for detajled
statement flow,

PDP=11 FORTRAN, 1303=309=071=026 PAGE 76
Programminag Comsiderations @:}

12,2 PROGRAMMING CONSIDERATIONS
12,1 Code and Data storage

Because of the possibility of organizing the overlae
ys in such a way as allowing a routime to call a sy=
broutine in a different overlay, all data (impure)
storage should be separated fprom all code, This s
currently accomplished by placing the {mpure areas
in the routine TABLES which must always be part of
the resident root, Note that this also impljes that
se)femodifyino code should be avoided {f possible to
avoid placing unnecessary restpictions om which comw
pilep roytines mav or may mot be overlaid,

12,2 Adding Statement Classes

Though adding statement classesgs i{s comparitively ea=
sy, several potential oroblems exist., In the rou=
tines DECLAR and EXECUT there exists a prototype
list which describes the ASCII reoresentation of
each of the statement verbs, This 1{st i{s a two
part list, the first part of which consists of a
string of pointers, the second of whieh consists of
a string of ASCII orototypes, When an {msertion s
desired in the prototype 1i{st, a rew pointer myst be
placed in the first part, and an ASCII protoetype
must be placed in the corresponding positiomn in the
second part, If confusion results, consult the
listing as am example,

..ﬂg%
Nonare”

A. In the routines DECLAR anmd EXECUT are placed the

ASCI] prototvype names for recognizimg declapative

and executable statements respectively, It 4§t s
desirea to add a new name to the 1{st, {t must be .
realized that order is somewhat important, for i{n=

starnce the name INTEGER*4 must occur bhefore the mame
INTEGER, This {s reauired because the scanner N
searches for the first occurrence of a completely
matching prototype to the strima being scammed, thus

if the largest occurrences do not come first {n the

list, success may be imcorrectly reported On a sub=

set of the fyul]l name desired,

Bse Inm DECLAR, the pointer 1ist NEXTBL is logically

broken up into several sections, From NEXTRL to the

end of the 1ist {s scanrmred for the first statement

of a routime, From HDRN to the end of the 1iat is

scanned for al]l other statements {n the declaras= (:}
tives, except when a BLOCKDATA has beem found, in

whiech case the scan starts at BNDATA, This makes ¢t

easy to make statements like EXTERNAL and DEFINEFILE

illegal in BLOCKDATA subroutines,

PDP=11 FORTRAN, 13u=309=001=06 - PAGE 77
Programming Comsicderations

The entrjes from NXTBL1 to the end of the 1list are
data type entries like INTEGEK, REAL%x2, etc, The
erger of these entries matches the order of the byte
table MODE which {s used to assign a mumerical valye
(the data tvype) to the entry, The tabhle MODE must
haye exactly the gsame number 0¢ entries as theprs are
prototyce entries to recoanize,

Co. The entries im the two prototvype tahles match in
orger entries in the various overlay headers, allow=
ing a quick tramnsfer to the prorer routine for han=
dling ¢the particular name, The only exception oc=
curs in the data tyoce emtries as described ahove,
which all transfer to either the TMPLICIT or the
TYPE hamdler with the proner data type as retrieved
from the MODE table, The IMPLJCIT amd4 TYPE hand]img
is done specially to minimize the effart reauired by
the imndividual processors.

De Im EXECUT the poimter 1ist EXTBL s loagically

troken down into two parts, For normal statement
handlinra, the whole l1ist is scanmed, For logical IF
processing, the scan is started at TFTAB to elimi=
rate fl11eaal combinatioms of statement types within
the statement by default, This structure is handled
in a similar manner to that in section R above,

PDP=1i1 FORTRAN, 130=3029=001=06 PAGE 78
Preparation and/or Svstem Buyild

13,2 PREPARATION AND/OR SYSTEM BUILD
13,1 Buildina the Compiler

Building a compiler from scratch requires assembling
the 48 separate modules and linkimg them as des=
cribed in the following steprs, Note that wWwhen a
f{le name {s mentioned helow, the extensions are not
mentiomeds, Source files all have the L(MAC exten=
sion, oblect files are ,0RJ) and load modules have
the .LDA extension,

Asgemb]ing must be dome usimg MACRO (make sure that
the system macro file SYSMAC.SML s nresemt while
assembling). Linking §is dome wusimg LINK=1{ (note
that a compiler cannot be 1inked on a machime small=
er thanm 12K),

A. Assemble the following modules,

ASC1
ASC2
ASF
COMMON
CORET
DATA
DECLAR
DEFINE
]
DOFIN
ELNC
ENDSTM
ERRLOC
EVALU
EXECUT
EXTERN
FORMAT
FUNNAM
GCMPLX
GOTO
HDORGEN
IF
I4PLIC
INSTMT
MSSIO
oauTSsL
ovLAY
PATCH
P3T
RDC1I
RUNLNK
SPCLST
SUBFUN

O

PDPw11 FORTRAN, 130=309=0321~06 ‘ PAGE 79
Preparation and/er Systerm Ruyild

SYMTAB
UTILTY

Assemble the roytime MACFTN using ¢the /NILSCND
switch,

1t building en BK compiler ao to step R, otherwise
Qo to ster C,

Bs. Assemble the follewina routines with the file
8K,MAC as their heoaders,

ENDPRO
ERRPRT
GENGVL
INIT

I0PACK
STRTUP
SYMBOL
TABLES

An example of a MACRO command string used here miqght
(:: be:s

Now assemble the followina routines without the file
8K, ,MAC,

B#INIT,LP3<8K,INIT

HDRg?
HDR21
HDR@2
HDRE3
HDR@4

Now go to step D,
. C. Assemble the following modyles:

ENDPRO
ERRPRT
GENQVL
INIT

I0PACK
STRTUP
TABLES
HEADAW
HEAD?1
HEADP2
HEADA3
HEADP4

PDP=i1 FORTRAN, 133=300=001«06 PAGE 89
Preparatiomn and/or System Build

De At this point all of the assembl{es are come
plete, The rext phase consists of 1inking the com=
piler main program amnd each of the overlay buiflders,
If building an 8K compiler Qo to step E, otherwise
use step F,

E. Do the following links, This will cause the
overlay builders (0OVB=0V4) ¢to ke byilt as well as
the compiler main proaram, v

$RUN LINK

BOVQ,LPs<GENQVL,STRTUP,FLNC,SYMROL,SURFIJN,DATA
BGCMPLX,QUTSL,HPDRGEN,MSSIN,FUNNAM,ERRPRT, INIT
#HDRQ2,0VLAY,UTILTY,ERRLOC, TABLES, IOPACK
#PATCH/T337462/E

#0V1,LP:<GENOVL,STRTUP,ELOC, ENDPRO,ENNSTM,RDCI
#SYMTAB,HDR21,0VLAY,UTILTY,ERRLOC, TABLES, IOPACK
#PATCH/T337460/E

#OV2,LP2<GENGVL,STRTUP,ELNC,SYMBOL,COMMAON, EXTERN ,
#DEFINE, IMPLIC,SPCLST,ASF,GCMPLX,DECLAR, HDRE2 q:ﬁ
#OVLAY,UTILTY,ERRLOC, TARLES, IO0PACK,PATCH/T23746A/E

#OV3,LP:<GENOVL,STRTUP,ELOC,SYMBOL,CORET,DOFIN,DO
#ASC2,ASC1,EVALU,GCMPLX, IF,EXECUT,HORA3,0VLAY
BUTILTY,ERRLOC, TABLES, IOPACK,PATCH/T$374602/F

#OV4, Ps<GENQOVL,STRTUP,ELNC,SYMBOL,FORMAT,DEFINE
#I0STMT,GCTO,NDOFIN,ASC2,IF,FXECUT,HDRA4,0VLAY
#UTILTY,ERRLOC, TABLES, ICPACK,PATCH/T$37460/E

#FORTRN,P3<8TRTUP,GENOVL,ELOC,SYMBOL,SUBFUN,DATA
#GCMPLX,0UTSL,HDPRGEN,MSSI0,FUNNAM,ERRPRT, INIT
#HDRQA,0VLAY,UTILTY,ERRLOC,TABLES, IOPACK
#PATCH/T137467/E

This completes all of the 1inking for the B8K come=
piler, Now rum the tiles OV@ through 0OV4 inclusive
as follows:

$RUN OV
$RUN OVI
$RUN OV2
$RUN 0OV3
ERUN OV4

The files OV@ throuah OV4 may mow be discarded, The (:}
file FORTRMN,QVR which was Just created by rumning

these routines s the master overlay file, The file
FORTRN,LDA 1inked previously i{s the compiler main
proaram,

: PDP=11 FORTRAN, 130=3R0=yn1=06 - PAGE 81
<Z§ Preparation and/or Svystem Byild

To build the diagrostic file 9o to seetiom 13,2,

Fo Do the following limks, This Wwill cause the
overlay buflders (0VU=0V4) to be byilt as well as
the compiler main proaram, NOte that the /T switch
specified below should have the top address speci=
tfied here for the varrious machime comfigurations,

. /T valye machine gize
57460 12K
77460 16K
117460 20K
137462 24K
157460 2RK

The particular examole shownr helow is a 16K 1ink,
$RUN LINK

#0OVO, LPS<GENOVL,STRTUP,ELNC,MSSTIO, FUNNAM, ERRPRT
RENDPRO,ENDSTM, INTT,RUNLNK,QUTSL,HDRGEN
#UTILTY,ERRLOC,RDCI,SYMTAR,HEADAG, OVLAY

(:“ HTABLES, IOPACK,PATCH/T:77469/E

#OV1,LPI<GENGVL,STRTUP,ELNC, COMMON,EXTERN, SUBFUN
#DEFINE, IMPLIC,GCMPLX,DATA,SPCLST,ASF,DECLAR
#0UTSL,HDRGEN,UTILTY,ERRLNC,ROCIT
#SYMTAB,HEADQ1,NVILAY, TARLES, IOPACK,PATCH/T277467/E

#OV2,LPs<GEMOVL,STRTUP,ELNC,CORET, INSTMT,NOFIN,DD
#ASC2,ASC1,IF,GCMPLX,EVALY,FXFCUT,0UTSL, HDRGEN
BUTILTY,ERRLOC,RNDCI,SYMTAR,HEADP2,0VLAY, TABLES, IOPACK
#PATCH/T:77460/F

. #0V3,LPt<GENOVL,STRTUP,ELOC,GOTO,DEFINE,FORMAT,NOFIN
#IF»GCMPLX,EVALY, EXECUT,OUTSL,HPRGEN,UTTILTY,ERRLOC
#RDCI,SYMTAB,HEADAS, OVLAY, TABLES, TOPACK

* #PATCH/T377460/E

80V4,LP:<GENQVL,STRTUP,ELNC,PST,MACFTN,~HEADA4,QVLAY
#TARLES, IOPACK,PATCH/T:77460/E

#FORTRNI[1,1)<STRTUP,GENCVL ,ELOC,MSSTIO,FIINNAM
#ERRPRT,)ENDPRN,ENDSTM, INIT, RUNLNK,QUTSL, HORGEN
#UTILTY,ERRLOC,RDCI,SYMTAR,HEAD?A,0OVL.AY, TABLES
#I0PACK,PATCH/T:77463/E

. This comoletes the 1irkint of the compiler., MNow ryn
(:; the files QVa throuah 0V4 jnclusive as follows:
$RU OvVp
$RU 0vi

$RU Ny2

PDP=11 FORTRAN, 132=30P0=p)1=26 PAGE 82
Preparation and/er System Ryild

$RU NV3
$RU 0vd4

The files OVV through 0OV4 may mow be discarded, The

file FORTRN,OVR whijch was Just created by runming

these routines is the master overlay file, The file ,
FORTRN,LDA 1inked .previously 18 the compiler main
program,

To build the diagnostic file o to seectiom 13,2,

13,3 Buildimg the Diacnostic file

See chapter 4 of the "Getting on the air with FOR=
TRAN" document,

{ \
w0

PDP=11 FORTRAN, 134=37G=@A1=06 . PAGE 83
Termimoloagy

14,2 TERMINOLOGY

Genepa) register = one of the efight fast oprocessor
registers U=7 on the PDP=11{,

ANSI = American Natiomal Standards Institute

ASCI] = American Stamdard Code for Imformatiom Ine
terchange.

CREF = Cross REFerence (listing),

0TS = "Nplect Time System”", that portiom of the FOR=
TRAN which interfaces ¢the compiled proaram to the
worla,

POP=11 FORTRAN, 132=3P9=221=026 PAGE 84
Timing Analysis :

15,2 Timing Amnalysis

The following document is mot directly related ¢to
the operation of the compiler, But, due to the fact
that it may be useful to anyone desirimra to {mprove
the compjler efficiency, it is included in the spec=
ification as an aopenmdix, The analvsis was dome in
Septemper 1971, usimg V@218 of the compiler and
VAg5,2 of the DOS monitor,

Though this timing amnalysis was done with an early
version of the compiler, the basic conclusions can
still be considered to he correct, ever though the
exact times may have changed,

Ny 587>

PDP=11 FORTRAN, 130=329=u71=p6 - PAGE 85

&i} Timimg Amalysis

A FJIRTRAM CO4PILER TIMING ANALYSTS

Ne KPianmt

PDP=11 FORTRAN, 130=309=071=~06 PAGE 86
Timimg Amalysis

O

INTRODUCTION

The following information is the result of several runms of
the PDP=11 FORTRAN compiler running umder the supervision of

a statistical samplina package as implemented uynder PDP=1i
DOS Versicern 5,1, This rackage is desigmed to allow a user
proaram to be rum under the momitor while collecting data
about the freauency of execution of all or part of the user
proaram andg/or the momitor, The result of a rum consists of

a file of information containira a 1arge mnumber of addresses
amnd pointers pertaining to the flow 0of execution as sampled
statistically at apcroximately 1A millisecomnd intervals, @:}
For more informatjon about the program {n question see Ap=

pendix I,

PROGRAM CONFIGURATINN

The compiler versior in auestior has 4 overlavs, 3 of which
are used to convert FORTRAN TV saurce code into assembler
acceptable imput, the fourth overlav heima used to assemble
that inmpout and create an oblect file suitable for linking by
the relocatable linker, The fourth overlay js a highly mod=
ified versiomn of PAL=1{1R which has heen restructured to re=

meve all assembly featyres not meeded by the FORTRAN system @

as well as to improve speed where possible, Previous to

PDP=11 FORTRAN, 139=309=uA1=06 : PAGE 87

Timimg Amalysis

this test, the assembler phage was ruUn stamdealone with the
samplina packaje to effect these {morovements, Currently,
the assembler phase runs aporoximately 3 t{mes faster than
the standard assembler for idemtical imput and outnut re=
auirements, The remainder 0f the compiler is as described

im the compiler specification 137=375=201,

TIMING RESULTS

Pue to the varinus compiler runs baing made on different
files of varyina lenaths, all of the data aiven here hmhave
been consolidated, Thke timima fiaures qiven here are all in
terms of a "percent 6+ total" rather than an absolute number
of seconds or minutes, These fiaures are based on a total
compile time of aprroximately 4 minutes, Approximately 69
different routimes of varying lenath and requirements were
cempijled, some very short ama seme very lonmna, About half of
the routines compiled came fpom the Fortram Scient{fic Su=
proutimes Package (SSP), The avarace real compile speeds
tended from 52 to 170 statements oer minute on both RF=1]|

amd RK=11 pased systems,

PDP=11 FORTRAN, 132=3729«431=ib PAGE 88 ¢
Timimg Amalysis

TOTAL TIMES

Comsidering the tota) time used, the percemtage actually

spent in the compiler amounted to 3A.2%X while the time spent

im the monitor was £63,8%, bd

COMPILER BREAKDOWNM

In this and followirg sections, times in parentheses refer
to the percentace of the TOTAL clock time,

YR

U
The compiler will pe referred to as two separate sections,
the compile phase which gemepates assembly code, amd the as=
sembly phase which converts the asgsembly code to binary,
The <compile phase accounts for 22 (7,3) percent of the time
while the assembler accounts for 82 (28,9) percent, Within
the compile phase there are three areas which account for 92
(5.2) percent of the compile ohase timima, The symbol table
hamdling, beina the major part of this time takes 41 (2,9)
percent of the compile time phase, The 1I/0 and character
manipulation routines (especially the gemeral string search
routire) account for the remainder with the I/0 handler tak=
img 32,2 (1.8) nercent of this phase,

C

The assembler phase is dominateo by 5 routines which take up

POP=11 FORTRAN, 130=379=021=26

‘ : Timimg Amalysis

43,8 (15,8) percent of the total compiler time,

These routines are:

BLKBIF =whijch is ysed to blank a 1listinmg

. auires 7.8 (2,8) percent,

PAGE 89

byffer ree

ITEM = which 18 used for part of the syntax scar re=

ayires 12,4 (4,49) percent,

SERCHB = which is used to seareh the symhol table uses

6.8 (2,46) percent,

The routines to save anhd restore Pregisters account for

‘[: 9.7 (3.26) percent,

A routinme to search for a line terminator

aquires 7,8 (2,8) percent,

Appendix Il contains the detajiled takle from

timinas were abstracted,

CONCLUSIONS

(TERMIN) re=

which these

If it is Adesired to imcrease the speed of the compiler as it

now exists, several options are available, First, the tech=

123 nfaque likely to show the most immediate gainm in soceed would

be to try to reduce the percentage nof time spemt in the mone

itor proper, The time (63,8%) spent im the momitor current=

PDP=11 FORTRAN, 130=309=071=06 PAGE 90
Timing Analysis

ly dominates the entire compiler so that chamges to the come
piler system are hjchly Jikely to be masked by the monitor
overhead,] beljeve, but have hean umable to substantfate
yet, that am appreciable portiom of the momitor overhead s
beimg spent deletimg the temporary file required by the come
piler, I have no concrete figures on this vet, but the var=
jous attempts at estimating and/or measuring this time tend
to account for hetweenm 15 to 3@_perceat of the total time
used by the compiler, If this is true, this {s am obvious

place to start to improve compiler speed,

After the monitor is improved, or it {t §s determined that
the monitor cannot be improved (l) the next optiom would be
to modify the assembly nhase in the routines which are cuyre
rently taking the most time. fne obvious candidate is to
try to find a way around the current mneed to blamk the 1iste
ing byffer before blaciﬁg anything im it, Even so, this or
any other individual change, if dome without <changing the
monitor overhead will show no mcre than a 3 to 8 percent im=

provement in the total throughput,

The least fruitful ecptiom is to make improvements {m the

compiler (excent with respect to overlay handlimg), Any
change here would likely account for only a small inmcrease
im total speed, 1If core reayirements are such that the comm
piler could be made into fewer overlavs or in the unlikely

possibility of heino able to make it entirely core resjdent,

S

PDP=11 FORTRAN, 130=329=271=36 PAGE 91
&:} Timima Analysis

a total improvement of 5 = 15 percent is likely,

POP=11 FORTRAN, 13)=3PG%=071=96 PAGE 92
APPENDIX I

The statistical samplinn mackage as used here consist of
three routines, The ¢irst, SAMPLE, {8 linked with a user
progran when it is desirea to obtaim timing {nformation
about that program or the system it runs with, This program
gains control of the Kw=11 lijme cloek and uses the clock {nm= A
terrupts to find out where the execution is taking place at
the time of a clock imrteprurt, Thus) if the orogram is ruyn
long enrough to get a few thousamd samples, a statistical
picture may be built showina thke relative pnercentaces of

time spent in various portions of a program,

This techniaue is verv useful, but not without orob!ems. \
Any code which is dependent on the clock, such as interrupt ﬂ;ﬁ
hamndlers which aet service once for every clock iJnterrupot
are not likely to show uo in the “data, Also if a program {s
timing deperdent, the additiomal overkead inmserted {mn the
clock interrunt looo may be sufficient to distort the infor=
mation, Another oroblem occurs because the samoling routine
needs the momitor itself to output the dgata collected, The
rormal user proqram qeneral1y‘wi11 mot be affected by these
croblems, thouah it must be recoamizZed that there i3 a reae
sonable level of uncertajnty which makes it necessary to ex=

amine each usage of the techniaue carefully,

In the DUS implementation hepre, the samples collected are
stored in a tuffer unmtil 173 have been colleected, At this (:}

point the user program is susoemrded for a short time wWhile

POP=11 FORTRAN, 130=329=071-06 | PAGE 93
@ APPENDIX 1

the data s outnut to a file which is reseprved for accumu=~
latima the data. Urom the completian of the ryn, this file
is used as data for a program which cererates histograms of

core utilizatiom with respect to time,

The proaram to evaluate the data comsists of twe parts, The
first, writtemn im assembly code is used omly to read the
tfile and pass the irformatiom alona ta a callima oprecaram,
The secong, writter in FORTRAN evaluates the raw data ootaw
ined from the first amd cenepates the histograms on the line
printer. The reason for this routine beina writtem im FOR=
TRAN is that denendima om the proaram beina timed ama the
(:: cgata collectea, it may be desirable to modify the report
gemerator in various nlaces to "tailer" it to the task,
Thus information which (s deemed pertimemt by the user of
the system mavy he collected that was not recoanized as heing

important by earlier users,

This system wil)l be described in more cetail shortiy when a

complete document §s fimnished describima it amnd its parts,

PDP=11 FORTRAN, 130=309=221=026

APPENDIX II

ITeM %
COMPILE
PHASE
COMPILE
ASSEMBLE
MONTTOR

CNMPILE BREAKDOAWN

I0PACK 32,

SYMTAB 15.1
RDCI 16,7
UTILTY 28,3

IOFACK RREAKDOWN
CHECK INPUT

LINE 12,9
EUILD INTERMAL
LINE 4,3

OUTLN,QUTLNMY 12,8

SYMTAB BREAKDOW
GETSYM
SERATR

O b 2Z

KDCI BREAKCGWN
LIVIDE
MULS4

N O

UTILTY BREAKDOwN

PACK 3.3
NXTCH, CNXC 4,6
SCAN2A 9,4
UNPACK 5.9

"
4HOLE

CAMPILE

20,
e,

5.2
2.2
2,9
4,7

-
e N

—
e o
- Ny

s —— ®
e s OO

1.8
.72

1.24
1.702

«87

29
65

25
«35

61
39

.22
029
«58
.36

| —g

PRDR=11 FORTRAN, 130=30"9=ydl=06 - PAGE 95
- APPENDIX II

ASSEMBLE RREAKDOWN

BLKRUF 9,4 7.8 2,8
ITEM 14,9 12,4 4,5
SERCHB R,3 6,8 2.46
REGISTER SaAVE

‘ AND RESTORE 19.9 0,7 3,26
ENTER3 .8 4 25 3 WORD LOOP
BINSRCH 5,0 4,1 1,5

’ TERMIN 9,6 7.8 2,8
NUMBER 3.5 3,1 1.1
NCHAR 4,5 3.7 t,3
SETUPY 5,1 4,2 1,5
BINASC 4,8 4,7 1.4
ENDLINE
ERROR LOOP 3.5 3.2 1.2

MONITOR BREAKDOQUWN

0f the time srent imn the monjtor (63,R%), aoproximately 60Y%
(40%) of the time is spent im the 1/0 wait loop of which

‘i: about half of the wait time cam be attributed to the f{ile
delete whijch occurs amd ¢the other half occurs durimng the
compiler I/0, The remainder of the manitor time, 33% (24%)
is taken up by the read/write processar,

POP=11 FORTRAN, 13U=309«p71=06
Ingex

$0nnnn labels
$Innnn labels ., . .
$Rannm labels , . .

/AS
/CK
/C0
/ER
/G0
/L1
/ON
/8U

BK Assembly * s o o

16
16
16

15
12, 13
14
14, 33
14
14
13
13, 38

79

Addimg Statement Classes 76

Adjustable Arravs |,
Afithmeﬂtic IF " e @

49
46

Arithmetic exmrressions 35

Arithmetic Statement Functions 49,

Array Descriptor Rlock 12,

Assembly phase , ., ,

69

Assembly symbol table 72

ASSIGN o o o o o o &
AsSiQHEd GOT(« e o

Assignment and CALL statements Al

BACKSPACE o+ o o o o
BLOCK DATA s ° o a2 @

41
35, 40

42, 79
49

Bujlding the Compiler 78

BYTE o ¢ o o ¢ o o o
Bvte format e o o o

CALL L[] L] o [] [L] [] L]
Calling Conventijons
Carriane Comtrols .
Character Set/Codes
Character strinas .,

37
23, 34

39
.« 18
11
» 18
23

Code and Data storace 7A
Code genmeratiom example 52

COMMAND LANGUAGE .
Command strings ,
Commamd Strinas
COMMAND STRUCTURE
COMMON & o 4 o o &
COMMON Block header
COMMON Block lTist
Common Table , . . &

58

58

15

58

a4, 62
. 28
29

28

Compijler Data Structures 26

CONQ“Q’ I/0 e o & @

33, 69

Compiler initialization 69

Compiler intermal labelling 16

PAGE 96 @

=
a

POP=11 FORTRAN, 132=370=071=06
Index

Compiler Options ., , 15
Compiler overlay handler

Compiler patch area , 70
Compiler start up code 71
Compiler symbel table processor 71

Compiler tables ., , 71
Compijler Utilities , 72
Complex format , , ., 23, 34
Computed GOTO ., . . 35, 4u
Constants e o s o o 34
CONTINUE [[}] e . [} 41! 63
CONVENTIQMNS AND STANDARNS 16
CATA & o o « o o o« o« 45, 63
Data Conventions , , 22
Data Comversion Routimes 9
Cata Structures , , 26

Data Types , » . « . 34

DATE L] L] [] [L]] [} L] 51
Declaratives ., . . o €3
DECODE [] . ® L] [] L] [] 35' 5@
DEFINE FILE + . « « 35, 48,
Desian Philosophy , 4
Diaamostijc Output , 33
DIMENSION [] - L] [] L] 4"’

DIMENSION processor. . 71

DO * & @ @ 3 = e e 46'
DO Statements , ., ., 35
DO Tab]e L] e L] L] L] L] 38
DO terminmation , . . 64
DOUBLE L] L] L] L] [} L] L] 37

Couble conversinn , 74

70

64

Doyble Precision format 23,

ENCODE & o o ¢ o« o« o 36,
ENCODE/DECOD e o o 14
END L] L] L] L] [] L] * L] 43
Emra processina . . . F4
ENDZ 4 o o o o « o o 12
ENDFILE s o & 2 e 0 42!
EQUIVALENCE . o « « 44
Eauivalence block ., 3@
ERR' [] [] . [] [] a [] L] 1(0
Error processinn , , RS
Examples ¢« ¢« o o o« o 19,
Executables . , . ., B58

EXIT L L] L L] L] L] [] L] 51
Expression evalyatien 65

50

79

24,

64

34

52

Expression Stack structures 31
Expression Table structures 31

EXTERNAL ® 8 e e o o 38'

File conventions , , 24

66

PAGE 97

PDP=11 FORTRAN, 132«370=dlapb PAGE 98
Index

FIND * o o o s o o o 36, 48
FORMAY e e o o o o 37' 42' A6
Formatted I/O e o o 10
Formatted Records , 11
FUNCTION e 0 []] . [] 380 71

Fumection tyocimg 66
FUNCTIOQNAL DtSCRIPTION 73
Future Consideratiors 6, 15

GLOBAL FLOwW OF CONTROL 73
GOTO [] L] ° L] (] ° L] * Adl 67

HARDWARE ENVIRONMENT 6
Hardware fOptions , ., &
HEX constants , ., . 34
Hollerith constants , 35

1/0C Conventiors , o 17
I/0 LIST TERMINATION 11
1/0 Lists e o o o o 10
I/0 Roytines o+ « o« o« 12
I/C statement processing A9

I1/C Statements , , . 35

IF [] [] [] [] [] [) L] [] [} d6l 68
IF Furctions , , o, . 8
IMPLICIT ® e @ a e o 379 48’ 68
Implicit table , , , 3@
Irpure area , . . . 71
INPUT/QUTPUT & » & o+ 33
INTEGER L] L] [] L] L] [] 37
Integer format , ., , 22, 34
INTEGER*2 . o & & o 37
Intermal Documentatior 17

Latelling Conventionms {5

LANGUAGE CHARACTERKISTICS 34
Langquage Differences fram ANST 34
Likrary roytimres , , 51

Liﬁe Formats e o o« o 34
LINK [] [) * [] [] [] 51
Linkimng the Cnmni) r RQ
Logical IF , 46
Loaical values , , , 23
LOGICAL*L ., & & o o 37

Maim Symbol Table , 26
Minimum MHardware Reauirementg 6
Moce precedemce ., , 31

C FORMAT o 4 o o o o« 37

Object Languace Quteout 38

Object Output Labellimg Comventions 15K
Cbject Time Data Structures 31

PDP=11 FORTRAN, 130=379=yA1=06 : PAGE
Ingex

Ocbject Time /0 , , 33
0cta) comstamts , , 34
Operating Convenmtiors {7
OPERATING PPDCENURES F¢
Cperator Precedemce , 31
Obtioﬂs e o o o 8 o 13
0TS differences from ANSI 51
0TS Requirements , , 7
OVERALL DESCRIPTION , 4
Overlay imjtialization A7
Overlays ., , . . « » 51

PAUSE [] [] [] [] o [] [] 35' 41’ 67
PDUMP [} ° L] . e [] [] 51
PHYSICAL DESCRIPTIOH AND NRGANIZATINN 61

Polish Agsyumptinms , 29
Pelish assuymptions , 19
PO]‘SH Ca‘)s * s o @ 19
Polish enterv , , ., ., 21

PO“Sh ex‘t e o o » 21

Polish formal parameters 21

Polish fumction returm 2¢

Polish Routimes , , 7

Polish Subscript Hardling 21
PREPARATION AMD/OR SYSTEM BIILD 78
PROGRAMMING CONSIDERATINNS 76

RAN [] L] L L 4 L] L] L] L4 “-‘1
Ramdom Access I/0 , 12, 5!
RANDU L] L] L] L] [] L] L] 51
READ & o o« o o o o o 36, 47
REAL o [] [] ° L[] L] [] L] 37
Real comversjonmn , , 72
Real! format , . . . 22, 34
REAL.*4 [] [] [[] L] [] L] 37
REAL*S) [} [[} [} ° [} 37
References ., o, . o o 4
Register Conventions 16
RETURN . [] [} [° [} [} AZ, 43' 510 63
REWING o o o o o o o 42, 76
pUN [L] e [] [] [] [] [] 51

SFTERR e L] L] L] [] L] L 1
SETFIL ¢ o o o o« o« o« 51
SOFTWARE ENVIRONMENT
Seyrce File Assembly 78

Source Languace , ., 34
Specification Statements 37
SSWTCH o o & o o « o 51
Statement flow of centrol 75
Statement Order Restrictions 37
Statement sequencimao 38

STOP [N } e o [] o e [35! 42! 67

r

N ¢

99

PDP=11 FQORTRAMN, 134=37Q0=0l=06 PAGE 199
Index

Storaace allocation , 26

SURBRQUTINE , , o o o 38, 71
Sutroutine Callimag Comrventions 18
Subscrict Comrutationm 12

Surscript Routimes , 13

SWITCHES & o o « o o 73

SWitChes [] [. . ° . 12’ 13' 33' 58

T FORMAT ® e o o o o 37

Tatle of Comtents , 2

TAMN e o o s o o o o 91 v
TEFMINOLOGY o o« o » 83

Threaded Code , . + 19

TIME [] L] [] L L] L] [] [] 51

Timina Analysis , , R4

TSTERP L] L] L] L] [] L] L] 51

TYPE processor . « » 71

TYPE statements , ., 43

Umformatteg I1/70 , , 12

ved e e o o 9 e o o RI 9' 13' 23! ?40 33' 35! 380 48! 49! 58' 6!' 7;'
VEBS 4« s ¢ ¢ ¢ o o o 4, 6, 14, 17, 24, 31, 37, 58, 62, 63, 64, 65, B84
ng [} . [} [} L] . [] 140 2@' 6@, 59' 7@' 71

WRITE L] L[] [® [[35! 47 Q;E

Page 101

Figure 1 - Array Descriptor Block

Address
(ZZ N Address of first data element
Data Data element
n+ 2 Dims| Type| size in bytes
max. dimension - first subscript
n + 4
n+ 6 max. dimension - second subscript
n + 1g max., dimension - third subscript

Words 3 and/or 4 appear only for two and three dimensional arrays
respectively. The ADB as stored in the complier is similar except
that the first word is used to point to the next ADB entry.

Address
n

n + 2

The filler is used only as a placeholder.
the removal of this filler word at compile time.

Figure 2 - Integer Format

value

filler

Page 102

The /ON causes

Page 103

Figure 3 - Real and Double Precision Format

Address 15 14 7 6 J')
n 3 |sINARY ExCESS 128
g EXPONENT HIGH ORDER MANTISSA
“ 15 ']
n o+ 2 LOW ORDER MANTISSA
15 g
n+ 4 DOUBLE PRECISION
n+ 6 MANTISSA EXTENSION

e

Figure 4 - Complex Format

7%
Address & 7

N Real Part (format same as in figure 3)

N + 4 Imaginary Part (format same as in figure 3)

Figure 5 - Main Symbol Table Format

\ddress 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ')
{ Entry ADJ Prog | Constant | Length of data item (if constant = 1)

Type Data Type Array | Name or parameter list index (if constant = g

and parameter = 1)
I + 2 JCommon | ADJ Equi- Para-
Array | valence| meter Entry Serial Number

I+ 4 Address of next entry in table (-1 if last entry)
I+ 6 Symbol Name in RADIX 5@ (two words)

Single| Assign Explicity Used Gener. | # of Unused Common Block Sequence
I + 12| Ref. Type in PUSH Dimensions (= not in common,

Expr. 1 = blank common)
v + 14 ~ ADB pointer for subscripted items
I + 16 Any additional words will contain the entry value if
the CONSTANT bit is set. '

S0T e3sd

2

N

19

Figure 6 - Common Block Header

Link to next block header

First characters of block name
(ASCII)

Second 2 characters of block name
(ASCII)

Last 2 characters of block name
(ASCITI)

2

Link variables in this block

Page 106

+

1¢

12

14

Page 107

Figure 7 - DO Table

Statement number of terminal statement in

RADIX 5§

Serial number of destination return label

Pointer to

control variable symbol table entry

Pointer to initial parameter symbol table entry
Pointer to terminal parameter symbol table entry
Pointer to step value symbol table entry

Page 108

Figure 8 - Compiler Memory Layout - Declarative Phase

HIGHEST ADDRESS LOADERS

COMPILER MAIN

COMPILER OVERLAY AREA

STATEMENT BUFFER

COMMON/EQUIVALENCE TABLE

HIGH LIMIT OF —
FREE CORE l

FREE CORE

I

SYMBOL TABLE

LOW LIMIT OF
FREE CORE

COMPILER STACK AREA]

MONITOR BUFFER AREA

MONITOR

g ' ' (i}

The symbol table is allowed to expand upwards. The COMMON/Equivalence
table is allowed to expand downwards.

@:E Page 109

Figure 9 - Compiler Memory Layout - Fxecutable Phase

-

HIGHEST ADDRESS LOADERS

COMPILER MAIN

COMPILER OVERLAY AREA

STATEMENT BUFFER
HIGH LIMIT OF

(:3 FREE CORE

FREE CORE

T

SYMBOL TABLE

N LOW LIMIT OF >
FREE CORE

COMPILER STACK AREA

MONITOR BUFFER AREA

MONITOR

FORTRAN Compiler Overall Flow

BEGIN

Get machine
size and
overlay
file 1loc.

——

<&

Page 110

Get
a
Statement

Y

Com%gﬁd Input

v

Open all
needed files

Set_Up
Tables

Process

statement

declarativg

v

Get a

Statement

Get a
statement

Generate
the ASF

code

——

Put out
declarative
data areas

L

No

IIEND n ?

Process

ment s
ment

Yes

Put out
terminal

code for
program

Type out
error
count

exit to
linker

fatal

errors?

N

PART 11

PDP-11

FORTRAN IV OBJECT TIME SYSTEM

VErRsION Z20A

PDP=11 Fortram ObJect Time System, 130=311=002=39 PAGE
Teble of Contents

Table of Contents

OVERALL DESCRIPTION)
Usage
1 1/0 Processing Routines
2 Mathematica! Subroutines amd Functions
3 Miscellanceous Service Routines
4 I/0 Device Tables and Buffers
Design Philosephy
References

HARDWARE ENVIRONMENT

Minimum Requirements

Options

Future Considerations

NN
e s o
N -

SOFTWARE ENVIRONMENT
Minimum Requirments
Options

Future Considerations

[NV RERY
» o @ ®
(78 VR

4,0 CONVENTIONS AND STANDARDS

4,1 Registers

4,2 Callimg Conventijons

4,2.1 Stendard Calling Conventions
4,2,2 Internal Calling Concentions
4,3 Documentation

4,4 Data Formats

4,4,1 1Integer Format

4,4,2 Real Format

4,4,3 Double Ppecision Format

4,5 Rementrancy

4,6 LABELING CONVENTIONS

5,8 DATA STRUCTURES

5,1 1/0 Device Table

5,1,1 Device Table Header

5.1.2 Device Table Entries

5,1,3 Device Entry for Error Mesgage File
HS.144 Device Table Defaults

5,2 1/0 Buffer

5,3 1I/0 Processing Stack Usage

5.3.1 Gepera)l I/0 Informatiorn Stack

POPw11 Fortram ObJect Time System, 130e311=302=29

Table of Contents

J.2 Formatted I/0 Stack
3,3 Unmformatted I/0 Stack
3,4 Random 1/0 Stack

4 Error Processing Tables

4,1 Error Class Table

4,2 Error Transfer Address

5 Monmitor Switches and Valyes
6 Feortran Listing Device Table

AN ARADN

INPUT/QUTPUT

1/0 Packages
Formatted 1/0
Unformatted I/0
Ramdom I/0

I1/0 Handlers

Nendata Operations

Device Dependence

File Stryctures
Formatted Input
Formatted Qutout
Unformatted Inmput
Unformatted Qutput
Random Imput/Output

- & o
LN -

e ® # ®» ® ®» ®» ®» 8 ®» ® ® o @
DAARAARND UGN -

GOOO&OOG0.0GGQOO

a ® ®» & o
N D WA -

LANGUAGE
COMMAND LANGUAGE

W N
|

OPERATING PROCENURES

0 O O
e o o
N

Linkimg Considerations

10.0 PHYSICAL DESCRIPTION AND ORGANIZATION
{0.1 Apithmetic Package

1.2 Fortranmn Fumctions

12.2.1 Absolute Valye

1@.2.2 S‘Ign

10,2,3 Type Conversion

1.2.4 MOdU‘O

10.2.5 Positive Difference

10,2,6 Minimum/Maxi{mum

12.2.7 Random Numbers

12.3 Mathematical Function Package
12.3.1 Sine/Cosine

10.3.2 Arctangent

10.3,3 8Square Roots

PAGE

Putting the Object Time Library om a System

3

Table of

e e
[é_J¥ N

Inm

ol
2
o3

P Gl ol P Pl ot P o Pl Pl Pl P it B
S aes .
2 ®» ®» 9 s ® 8 ® ® 8 ® 8 2

DAEDDHLDAEADLDADDDEDADULWL

- -
|] N
E]
E -
2 @ @ 2 ® ® ®» & ®» o & & » ® ® ® » 2 ® @ & ® @
OGO ROE GWULWUWNDA VDN === e

N
[VR S
a2 o
B N

10.4

OONOOOD RN >

10,4
12.4.6,.1
10.4.6.2
12.4,6.3
10,5 My
10.5.1
10.5.2
12.5,3
12.5.3.1
10.,5,3.2
1”.5'3.3
10.5.3.4
10.5.4
10.5.,5
10.5.6
10.5.,7
10.,5.8
10.5.9
10.5.1ﬂ
12.5.11
10.5.12
1@.5.13
12.5.,14
12,5.15
10.,5,16
10.5.17

PDP=11 Fortren ObJect Time System, 130w311=0302=29 PAGE

Contents

Powers
L<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>