o

FortranlV

programmer’s manual

DEC-11-KFDA-D

PDP-11
FORTRAN IV

COMPILER and OBJECT TIME SYSTEM

Programmer’s Manual

For additional copies, order No. DEC-11-KFDA-D from Digital Equipment
Corporation, Direct Mail, Bldg. 1-1, Maynard, Massachusetts 01754

First Printing, May 197]

Your attention is invited to the last two pages of this document.
The "How To Obtain Software Information" page tells you how
to keep up-to-date with DEC's software. The "Reader's Com-
ments" page, when filled in and mailed, is beneficial to both
you and DEC; all comments received are considered when docu-
menting subsequent manuals.

Copyright © 1971 by Digital Equipment Corporation

Associated documents:

Disk Operating System Monitor, Programmer's Handbook, DEC-11-MWDA-D
PAL-11R Assembler, Programmer's Manual, DEC~11-ASDB-D
Link=11 Linker and Libr=11 Librarian, Programmer's Manual, DEC-11-ZLDA-D

This document is for information purposes
and is subject to change without notice.

Acknowledgment

This manual was prepared by the Documentation
Department of Cambridge Computer Associates, Inc.
for Digital Equipment Corporation.

The following are trademarks of Digital
Equipment Corporation, Maynard, Mass.

DEC PDP

FLIP CHIP FOCAL
COMPUTER LAB DIGITAL
OMNIBUS UNIBUS

PREFACE

PDP-11 FORTRAN 1V is part of the PDP-11 Disk Operating System.
For the convenience of the FORTRAN programmer and the operator
actually concerned with compiling the FORTRAN program, the

manual is separated into two distinct parts:

Part I - The PDP-11 FORTRAN IV Language
Part I1 - The FORTRAN Operating Environment

The Index is also separated into two parts.

Any configuration that supports the DOS will support FORTRAN. The
reader of this manual is expected to have some familiarity with

FORTRAN programming.

MASTER CONTENTS

Page
PART I THE PDP-11 FORTRAN IV LANGUAGE

CHAPTER T INTRODUCTION
1.1 Language Components : 1-1
1.2 Program Structure 1-2
CHAPTER 2 EXPRESSING DATA VALUES
2.1 Constants 2-1
2.2 Variables 2-4
2.3 Expressions ‘ 2-5
CHAPTER 3 ASSIGNMENT STATEMENTS
3.1 . The Arithmetic Statement 3-1
3.2 The ASSIGN Statement 3-3
CHAPTER 4 CONTROL STATEMENTS
4.1 The GO TO Statement 4-1
4.2 The IF Statement 4-3
4.3 The DO Statement 4-4
4.4 CONTINUE Statement 4-6
4.5 The PAUSE Statement 4-7
4.6 STOP Statement 4-7
CHAPTER 5 DATA TRANSMISSION STATEMENTS
5.1 Data Description Statements 5~1
5.2 Input=Output Statements 5-10
5.3 Device Control Statements 5-13
CHAPTER 6 SPECIFICATION STATEMENTS
6.1 Storage Specification 6-1
6.2 The DATA Statement - ' 6-5
6.3 Type Declaration Statements 6-7

6.4 The IMPLICIT Statement 6-7

MASTER CONTENTS (Cont)

Page
CHAPTER 7 SUBPROGRAM STATEMENTS
7.1 Function Definitions 7-1
7.2 SUBROUTINE Subprograms ‘ 7-3
7.3 The BLOCK DATA Statement , 7-4
7.4 The EXTERNAL Statement 7-5

PART II THE FORTRAN OPERATING ENVIRONMENT
CHAPTER T GENERAL PROCEDURES
1.1 Preparing An Object Module 1-1
1.2 Preparing o Load Module 1-2
1.3 Error Processing 1-3
CHAPTER 2 SUBPROGRAMS
2.1 Standard Subroutine Calls 2-1-
2.2 Threaded Code 2-2
CHAPTER 3 FORTRAN INPUT-OUTPUT
3.1 File Structures 3-1
3.2 Device Assignment 3-2
3.3 Input=-Output Buffers : 3-3
APPENDICES

APPENDIX A STATEMENT SUMMARY A-1
APPENDIX B ASCII CHARACTER SET B-1
APPENDIX C FORTRAN IV LIBRARY SUBPROGRAMS
C.1 Functions C-1
C.2 Subroutines C-4
APPENDIX D FORTRAN WORD FORMATS
D.1 Ihfeger Format D-1
D.2 Real Format D-1
D.3 Double-Precision Format D-1
D.4 Complex Format D-2

D.5 Byte Format D-2

APPENDICES (Cont)

Page
D.6 Hollerith Format D-3
D.7 Logical Format D-3
APPENDIX E - INTERNAL SUBPROGRAMS ’ E-1

APPENDIX F ERROR MESSAGES ' F-1

vii

Part 1
THE PDP-11 FORTRAN IV LANGUAGE

=i

PART I
TABLE OF CONTENTS

Page
CHAPTER T INTRODUCTION
1.1 Language Components 1-1
1.2 Program Structure 1-2
CHAPTER 2 EXPRESSING DATA VALUES
2.1 Constants ’ 2-1
2.1.1 Integer Constants 2-1
2.1.2 Real Constants 2-1
2.1.3 Double=Precision Constants 2-2
2.1.4 Octal Constants 2-2
2.1.5 Complex Constants 2-3
2.1.6 Logical Constants 2-3
2.1.7 Hollerith Constants 2-3
2.2 Variables 2-4
2.3 Expressions 2-5
2.3.1 Arithmetic Expressions 2-5
2.3.2 Logical Expressions 2-7
CHAPTER 3 ASSIGNMENT STATEMENTS
3.1 The Arithmetic Statement 3-1
3.2 The ASSIGN Statement 3-3
CHAPTER 4 CONTROL STATEMENTS
4.1 The GO TO Statement 4-1
4.1.1 Unconditional GO TO Statements 4-1
4.1.2 Computed GO -TO Statements 4-2
4.1.3 Assigned GO TO Statements 4-2
4.2 The IF Statement 4-3
4.2.1 Arithmetic IF Statements 4-3
4.,2,2 Logical IF Statements 4-4
4.3 The DO Statement 4-4

4.4 CONTINUE Statement _ ' 4-6

I-iii

4.5
4.6

CHAPTER 5

5.1
5.1.1
5.1.1.1
5.1.1.2
5.1.1.3
5.1.1.4
5.1.1.5
5.1.2
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.3

CHAPTER 6

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.2
6.3
6.4

CHAPTER 7

7.1
7.1.1
7.1.2

PART I CONTENTS (Cont)

Page
The PAUSE Statement 4-7
STOP Statement 4-7
DATA TRANSMISSION STATEMENTS
Data Description Statements 5-1
The FORMAT Statement 5-1
Numeric Fields 5-3
Logical Fields 5-6
Hollerith Fields 5-6
Carriage Control 5-7
Record Layout Specification ' 5-8
The DEFINE FILE Statement 5-9
Input-Output Statements 5-10
Input=Output Lists 5-10
Input-Output Records 5-11
The WRITE Statement 5-1
The READ Statement 5-12
Device Control Statements 5-13
SPECIFICATION STATEMENTS
Storage Specification 6-1
The DIMENSION Statement 6~1
The COMMON Statement 6-2
The EQUIVALENCE Statement 6-3
EQUIVALENCE and COMMON 6~4
The DATA Statement 6-5
Type Declaration Statements 6-7
The IMPLICIT Statement 6-7
SUBPROGRAM STATEMENTS
Function Definitions 7-1
The Arithmetic Statement Function Definition ‘ 7-1
The FUNCTION Statement 7-2

I-iv

7.2
7.2.1
7.2.2
7.2.3
7.3
7.4

No.

2-1
3-1
5-1
5-2
5-3

PART I CONTENTS (Cont)

SUBROUTINE Subprograms
The SUBROUTINE Statement
The CALL Statement

The RETURN Statement

The BLOCK DATA Statement
The EXTERNAL Statement

ILLUSTRATIONS

Nested DO Loops

TABLES

Title

Types of Resultant Subexpressions
Conversion Rules for Assignment Statements
Numeric Field Codes

Magnitude of Internal Data

Device Control Statements

I=v

Page

7-3
7-3
7-4
7-4
7-4
7-5

4-6

Page

2-8
3-2
5-3
5-4
5-13

CHAPTER 1
INTRODUCTION

The following chapters describe the FORTRAN 1V (FORmula TRANslation) language, a problem-oriented
language designed to permit scientists and engineers fo express a computation in notation with which
they are familiar. A FORTRAN source program is composed of statements in an easy to read form.
Commands are descriptive of the functions they perform, and computational elements are expressed in

a notation similar to that of standard mathematics. The source program is compiled by the FORTRAN 1V
compiler into code which is subsequently assembled by the PAL=11 Assembler Program. The resultant
program runs in conjunction with the FORTRAN Object Time System described in Part 11 of this manual .
Note that there is not a one-to-one correspondence between a FORTRAN statement and a machine-
language instruction. Many statements will result in several machine instructions while others will
yield none. The latter type, non-executable statements, provide information to the compiler on how

to interpret other elements of the source program.

1.1 LANGUAGE COMPONENTS

The basic unit of expression in FORTRAN is the statement. A statement consists of a command portion
which characterizes the statement's function and, as required, arguments upon which the command
operates. A statement may be numbered for reference by other statements. The argument of a command
may be data values upon which the program is to operate. These may be expressed explicitly (constants)
or symbolically (variables). Using these primary units together with FORTRAN operators, the program-

mer may construct expressions to derive new values by combining known values.

The character set from which FORTRAN statements may be constructed is given below.

The letters A-Z * Asterisk
The digits 0~9 / Slash

Blank (Left parenthesis
= Equals) Right parenthesis
+ Plus , Comma
- Minus . Decimal point

$ Currency symbol

1-1

Other characters may appear only within a Hollerith constant (see Section 2.1.7) text string.

FORTRAN statements fall into five categories according to their functions. Arithmetic statements are

used fo assign values to variables. Control statements are used to govern the sequence in which program

statements are executed. Data transmission statements govern the transfer of information between the

computer and peripheral devices. Specification statements provide the compiler with information about

data the compiled program will process. Subprogram statements are used to define subprograms.

1.2 PROGRAM STRUCTURE

A FORTRAN program is a sequence of statements. The end of the program is signified by the characters
END. Control originates at the first executable statement and continues in sequence unless explicitly

transferred by the occurrence of a control statement.

Non-executable statements must appear before the executable portion of the program. The one ex-

ception to this rule is the FORMAT statement (described in Section 5.1.1).

A statement is composed in lines; that is, a series of characters terminated by a line feed. Although
most source programs for the PDP-11 FORTRAN compiler will be prepared using the EDIT-11 program,

a line generally conforms to the format described below for punched card input.

A line is divided into three fields - the statement number field (columns 1-5), the line continuation
field (column 6), and the statement field (columns 7-72). For non-card input, the appropriate number of
spaces may be typed, or the character TAB which will automatically advance to the appropriate field.
Columns 73-80, which are ignored by the FORTRAN compiler, may be used for any purpose, for

example, for sequence or identification numbers.

The statement number is optional. If supplied, it must be a number greater than zero, composed of
1 to 5 digits of any value, placed anywhere within the field. Leading zeros are ignored. Statement
numbers may be assigned in any order since the sequence of operations is dependent on the order of the

statements rather than the value of their numbers. They must, however, be unique.

The line continuation field is used only when a statement requires more than one line. Additional
lines (up to a maximum of five) are indicated by the appearance of any character other than blank or
zero in column 6. If a TAB is used rather than spacing, continuation lines are assumed when a numeric

character follows the TAB. The end of a line is indicated by a line feed.

The statement field contains a FORTRAN statement (or portion thereof). Blanks which appear within
a statement will be ignored with the exception of alphanumeric data appearing in a FORMAT statement,

in a DATA statement, or in a Hollerith constant.

A comment line, denoted by a C in column 1 (first character), may appear anywhere in the source

program. Comment text may then appear anywhere in columns 2-72.

CHAPTER 2
EXPRESSING DATA VALUES

Data values in a FORTRAN program may be represented by the primary units = constants and variables -
or by expressions. Expressions are composed of primary units and operators which indicate operations

to be performed on their values.

2.1 CONSTANTS

A constant is a value used by the object program which does not change from one execution of the
program to another. Six types of constants are permitted in a FORTRAN IV source program: integer
or fixed point, real or single-precision floating point, double=precision floating point, complex,

logical, and Hollerith.

2.1.1 Integer Constants

An integer constant is a string of from one to five decimal digits written without a decimal point. A
negative integer may be indicated by a preceding minus sign. A positive integer may be preceded by

an optional plus sign.

Examples:
3
+10
~528
8085
. cols 15 15
An integer constant must fall within the range =2~ to 2~ -1.

2.1.2 Real Constants

A real constant is a string of decimal digits which includes a decimal point. A real constant may
consist of any number of digits but only the leftmost eight digits not including leading zeros are used

by the compiler.

2-1

A real constant may be followed by a decimal exponent, represented by the letter E followed by a

signed integer constant. The field following the letter E must not be blank, but may be zero.
Examples:

15.

0.0
.579

-10.794
5.0E3 (i.e., 5000.)
5.0E+3 (i.e., 5000.)
5.0E-3 (i.e., 0.005)
5.0E0 (i.e., 5.0)

A real constant has precision to 24 bits or about seven decimal digits. The magnitude must lie approxi=

mately within the range 0.14 x 10738 to 1.7 x 1038. Real constants occupy two words of PDP=11

storage.

2.1.3 Double-Precision Constants

A double-precision constant may consist of any number of decimal digits, but only the leftmost fifteen
digits, not including leading zeros, are used by the compiler. It is specified by a string of decimal
digits, including a decimal point, which is followed by the letter D and a signed integer constant.

The field following the letter D must not be blank, but may be zero.
Examples:

24.,671325982134D0

3.6D2 (i.e., 360.)

3.6D-2 (i.e., .036)
3.0D0

38

The magnitude of a double=precision constant must lie approximately between 0.14 x 10 " and

1.7 x]038. Double-precision constants occupy four words of PDP-11 storage.

2.1.4 Octal Constants

An octal constant is a string of from one to six octal digits (only the digits 0~7 may be used) preceded

by the letter O.
Examples:

0120
oo
0177777

An octal constant is valid only in the context of three statements = DATA, PAUSE, and STOP. The

maximum value which may be expressed as an octal constant is 177777.

2.1.5 Complex Constants

FORTRAN 1V permits direct operations on complex numbers. A complex constant is written as an

ordered pair of real constants separated by a comma and enclosed in parentheses.

Examples:

(.70712,-.70712)
(8.763E3,2.297)

The first constant of the pair represents the real part of the complex number, and the second constant
represents the imaginary part; each may be signed. The enclosing parentheses are part of the constant
and always appear, regardless of context. The two parts are each internally represented by one single=~

precision floating point value occupying consecutive locations of PDP-11 storage.

2.1.6 Logical Constanis

The two logical constants, represented in the source language as .TRUE. and .FALSE., have the inter-
nal integer values =1 and 0, * respectively. These values may be entered, via DATA or input statements,

as TRUE and FALSE. Logical quantities may be operated upon both by arithmetic and logical operators.

2.1.7 Hollerith Constants

A Hollerith constant is a string of characters. There are two forms by which a Hollerith constant may

be represented.

Form 1: nH character string
Where: ' n is the number of characters
Examples: 5HWORDS
3H123
Form 2: 'character string'
Examples: 'WORDS'
123!

The single quote character which delimits a Hollerith constant in Form 2 may be included in the

character string if immediately preceded by a single quote character. Thus, 'DON"T' will be stored
as DON'T.

*The value =1 is equivalent to the octal number 177777.

2-3

A Hollerith value may be entered in a DATA statement or input statement as a string of one or two
ASCII characters per integer variable, one to four per real variable, and one to eight per complex or

double=-precision variable.

Hollerith constants are stored in memory as byte strings. The constants will always fill up to word
boundaries. If a Hollerith constant is specified with an odd number of characters, a blank will be ap-

pended to the right-hand end of the constant,

Example: the constant 5HABCDE , stored at location 200008 in memory, would look like this:

20001 20000
B A

20003 20002
D Cc

20005 20004
(blank) E

Hollerith constants are used in different ways depending on context. See Paragraph 2.3.1 and espe-

cially Table 2-1 for detailed information on the effect of Hollerith constants in arithmetic expressions.

2.2 VARIABLES

A variable is a quantity which is represented by a symbolic name. The value of a variable may change
during the execution of a program. A variable name is a string of from one to six characters, the

first of which must be alphabetic. Variable names longer than six characters are rejected by the

compiler.
Examples:
Valid Names Invalid Names
ALPHA 2A
MAX MAXIMUM
A34

A variable has a principal attribute-type. The variable's type indicates the type of value it may be
assigned (integer, real, logical, double-precision, or complex). Type is assigned to a variable via
an explicit type declaration statement (6.3), implicitly via an IMPLICIT statement (6.4), or, if
neither of these methods is used, by virtue of the initial letter of its name. I, J,K, L, M, or N

indicate type integer (fixed point). All other letters indicate type real (floating point).

2-4

The extent of a variable refers to the extent of the values which may be referred to by a single name.

A scalar variable represents a single quantity.

An array variable represents an element of an array, an ordered set of data of one, two, or three
dimensions. An entire array is identified by its name; an element of the array is identified by the sub-

scripted array name.

Up to three levels of subscripting may be given for an array variable.

Examples:
Variable Refers to
ARRAY (1) An element of one-dimensional
array ARRAY .
MAT (1,2,3) An element of the three~dimensional
array MAT.

The subscripts of an array variable may be integer or floating point constants or expressions. Floating

point subscripts will be converted to integers before use.

An array variable's extent is determined by the dimensions it is assigned. This may be done by a
DIMENSION or COMMON statement or. as part of a type-declaration statement. Array dimensioning

is discussed in Chapter 6.

2.3 EXPRESSIONS

An expression is a combination of primary units (constants and variables) with operators which specify
a computation to be performed to obtain a new value. An expression may, itself, function as a primary

unit in another expression if it is enclosed in parentheses.

2.3.1 Arithmetic Expressions

An arithmetic expression is a combination of constants, variables, and expressions separated by the

arithmetic operators given below.

Operator Operation

unary minus
exponentiation

* multiplication
/ division

+ addition

- subtraction

Additional computations (such as sine, cosine, square root) may be specified via a function reference
(see Chapter 7 for a description of function definition). A function reference acts as a basic element
in an expression since all functions return a single value. The reference SQRT(4.) (assuming the
existence of a function named SQRT which returns the square root of its argument) represents the value

2. in an expression,

An arithmetic expression need not have operators at all but may simply be a basic element. Thus,

2.718
Z(N)
MAX

are all legal expressions.

Any numeric expression may be enclosed in parentheses and considered to be a basic element .

(X+Y) /2
(ZETA)
(COS(SIN(PI*M)+X))

Numeric expressions which are preceded by a + or = sign are also numeric expressions:

+X
-(ALPHA*BETA)
~-SQRT(~GAMMA)

If the precedence of numeric operations is not given explicitly by parentheses, it is understood to be

the following (in order of decreasing precedence):

Operator Explanation
*k numeric exponentiation
*and / numeric multiplication and division
+and - numeric addition and subtraction

In the case of operations of equal hierarchy, the calculation is performed from left to right.

No two numeric operators may appear in sequence. For instance:

X*=Y

is improper. Use of parentheses yields the correct form:

X*(=Y)

A typical numeric expression using numeric operators and a function reference, the expression for one

of the roots of the general quadratic equation

b+ ¥ b2 -4ac
2a

would be coded as:

(-B+SQRT (B**2~4 . *A*C))/(2. *A)

Any type of quantity (logical, integer, real, double-precision, complex) may be combined with any
other in an arithmetic expression. The type of resultant expression when any two fypes are combined

may be found in Table 2-1 on the following page.

Logical, octal and Hollerith (literal) constants are treated as integer constants when they are com-
bined with other elements in arithmetic expressions. Data in a Hollerith constant beyond its first 16

bits (2 characters) is ignored.
Example:
I=1
J=I+'ABCD'
K =1*.TRUE.

J will contain the result of adding 1 to the word whose low order byte is a 101(A) and whose high
order byte is a 102(B). The result is an octal 041102 or the ASCII 'BB'. K will contain a =1, since

the value of .TRUE. taken as an integer is 1.

In mixed-mode expressions the logical, octal, or Hollerith entity will be converted as an integer to

the appropriate mode and then combined.

2.3.2 Logical Expressions

A logical expression combines logical constants, logical variables, logical function references, and

arithmetic expressions, using the logical or relational operators given below.

Logical Operator Meaning

NOT. expression Has the value .TRUE. only if expression is
.FALSE., and has the value .FALSE. only if
expression is .TRUE.

(Continued on next page)

Logical Operator

expr1.AND.expr2

expr1.OR.expr2

Relational Operator

Meaning

Has the value .TRUE. only if exprl and expr2
are both .TRUE., and has the value .FALSE.
if either exprl or expr2 is .FALSE.

(Inclusive OR) Has the value .TRUE. if either
exprl or expr2 is .TRUE., and has the value
.FALSE. only if both exprl and expr2 are
.FALSE.

Relation

.GT. greater than
.GE. greater than or equal to
.LT. less than
.LE. less than or equal to
EQ. equal to
.NE. not equal to
Table 2-1
Types of Resultant Subexpressions
Type of Quantity
+,=,%,/ Real Integer Complex Przz;ﬁ:; Logical
Real Real Real Complex Double Real
Precision
Integer Real Integer Complex Double Integer
Precision
Type of Complex Complex | Complex Complex Complex Complex
Quantity Double Double Double Complex Double Double
Precision Precision | Precision Precision Precision
Logical Real Integer Complex Double Logical
Precision

NOTE: the following special rules apply for determining the type
resulting from expressions of the form A**B:

if B is type INTEGER, the expression is of the sume type as A
if A and B are both REAL, the expression is REAL
if AorB, or both A and B, are double-precision, the expression

is double=precision.

These are the only cases allowed.

2-8

Logical operators can combine only basic elements whose type is LOGICAL (see Chapter 6). Relational
operators compare units of type integer, real, or double=precision. Real and double-precision units
may be combined. The value of such an expression will be of type LOGICAL (that is, .TRUE. or
.FALSE.). The relational operators .EQ. and .NE. may also be used with complex expressions.

(Complex quantities are equal if the corresponding parts are equal .)

A logical expression, like an arithmetic expression, may consist of basic elements or a combination of

elements, as in

.TRUE.
X.GE.3.14159

and

TVAL.AND.INDEX
BOOL(M).OR.K.EQ.LIMIT

A logical expression may also be enclosed in parentheses and function as a basic element. Thus, the

expressions
A.AND.(B.OR.C)
and

(A.AND.B).OR.C

are evaluated differently.

No two logical operators may appear in sequence, except in the case where .NOT. appears as the
second of two logical operators. Any logical expression may be preceded by the unary operator .NOT.

as in:

.NOT.T
.NOT.X+7.GT.Y+Z
BOOL(K).AND. .NOT.(TVAL.OR.R)

Logical and relational operations (unless overridden by parentheses) are carried out in the following

order:

.GT.,.GE.,.LT., .LE.,.EQ.,.NE.
.NOT.

.AND.

.OR.

For example, the logical expression

-NOT.ZETA**2+Y *MASS.GT.K=2.OR.PARITY .AND.X.EQ.Y

is interpreted as

(.NOT.(((ZETA**2)+(Y *MASS)). GT. (K=2))) .OR. (PARITY .AND. (X.EQ.Y))

2-10

CHAPTER 3
ASSIGNMENT STATEMENTS

A variable may be assigned a value at any point in the source program. During program execution,
the most recent assignment determines the variable's value in subsequent statements. There are two
statements which may be used to assign a value to a variable - the Arithmetic statement which assigns

a numeric or logical value and the ASSIGN statement which assigns a statement number.

- 3.1 THE ARITHMETIC STATEMENT

Form A=B

Where A is a variable name
B is an expression
= is the replacement operator

Effect The variable named A is assigned the
value of expression B.

The Arithmetic statement associates a variable name with a value. The name may then be used in sub=
sequent expressions to represent this value. Thus, if the Arithmetic statement A = 2 is executed first,

the statement B = A + 1 is equivalent to the statement B = 3.

Since the equal sign in an Arithmetic statement does not indicate equality but, rather, a replacement,

statements of the form
I=1+1

are perfectly legal. The Arithmetic statement is, in fact, the only means in FORTRAN by which the

results of computations represented by expressions may be stored.

In the following examples, the expression to the right of the equal sign is evaluated and converted
when necessary to conform to the type of the variable to the left before assignment. That is, if a real
expression is assigned fo an integer variable, the value of the expression will be converted to an integer

before assignment.

3-1

Examples:

ANS = Y*(X**24Z)

I =1*N
X(J) = A(J)-B(J)
P = .TRUE.

The expression to be assigned must be capable of yielding a value which conforms to the type attribute
of the variable which is being assigned. The compiler will perform conversions in accordance with

Table 3=1 below.

Table 3-1
Conversion Rules for Assignment Statements
Expression Type
Variable Double Logical, or Literal

Type Real Integer | Complex Precision | Octal Constant Constant
Real D C R,D H,D C D,4
Integer C D R,C H,C D D,2
Complex | D,R,I C,R,I D H,D,R,I D,R,I D,8
Double D,H,L C,H,L R,D,H,L D D,H,L D,8
Precision
Logical C Cc R,C H,C D D,2

AN T—mAODT
t

Direct replacement
Conversion between integer and floating point
Real only (imaginary part set to 0)
Set imaginary part to 0

High order portion of expression assigned

Set low order part to 0
Use the first character in the literal and one character following
Use the first character in the literal and three characters following
Use the first character in the literal and seven characters following

3.2 THE ASSIGN STATEMENT

Form ASSIGN QTO var
Where n is a statement number

\E‘ is.a variable of type INTEGER

Effect The variable represents the assigned
statement number and may be used in an
assigned GO TO statement (Chapter 4).

The ASSIGN statement is used in conjunction with an assigned GO TO statement (4.1.3) to permit
symbolic referencing of statements. The statement number assigned must be that of an executable
statement. An integer variable which has obtained its value via an ASSIGN statement must be rede-~
fined via an Arithmetic statement before it can be used in any context other than the GO TO state-

ment. For example, the statement:
ASSIGN 10 TO COUNT

associates the variable name COUNT with statement number 10 and the statement:
COUNT = COUNT+1

is invalid. The statement becomes valid, however, if preceded by the statement:

COUNT =10

which assigns count the integer value of 10.

CHAPTER 4
CONTROL STATEMENTS

Statements are normally executed in the sequence in which they appear in the source program. This
sequence may be altered by the occurrence of any of the FORTRAN control statements described in
this chapter. These are: GO TO, IF, DO, CONTINUE, PAUSE, STOP, CALL and RETURN. The
CALL and RETURN statements, which transfer control to and from subroutines, are described in

Chapter 7.

4.1 THE GO TO STATEMENT

The GO TO statement transfers control directly to a specified statement. There are three forms of the
GO TO statement - unconditional, computed, and assigned. A GO TO statement may appear any=

where in the executable portion of the source program except as the terminal statement in a DO loop

4.3).

4.1.1 Unconditional GO TO Statements

Form GO TO n

Where nis the statement number of an
executable statement

Effect Control is transferred to statement n.

When control is transferred by a statement of the form GO TO n, the usual sequential processing

continues af the statement whose number is n.

4.1.2 Computed GO TO Statements

Form GO TO (n],nz, ceey nk) i

NOTE: An optional comma
may follow the right parenthesis.

Where N1s Ny, «.., Ny are statement numbers
i is an integer variable or constant

Effect Control is transferred to the statement
whose number is ith in the list.

The integer expression in a computed GO TO statement acts as a switch, as in the example given below.

GO TO (20,10,5),K
If K =1, control will be transferred to statement 20; if K = 2, to statement 10; or if K = 3, to state-

ment 5. If K has a value less than 1 or greater than 3 in this example, an error will be reported when

the program is executed.

4.1.3 Assigned GO TO Statements

Form GO TO K
or

GO TO K (ny,ng, +.e, my)

NOTE: An optional comma
may follow K.

Where K is an integer variable
n1,n2, «+., n are statement numbers

Effect Control is transferred to the state~
ment whose number is currently
associated with the variable K via
an ASSIGN statement.

An ASSIGN statement, as discussed in Chapter 3, defines an integer variable as a statement number.

Thus, when the statement

ASSIGN 10 TO LOOP

has been executed, the programmer may subsequently transfer control to statement 10 by saying:

GO TO LOOFP

-He may also say:

GO TO LOOP, (10, 20, 100)

which will transfer control to whichever statement number is currently associated with LOOP. If the
name LOOP is not defined as one of the listed statement numbers, the GO TO statement will not be

executed and an error message will be printed.

4.2 THE IF STATEMENT

An IF statement causes control to be transferred on the basis of the values of specified expressions.

There are two forms of the IF statement - arithmetic and logical.

4.2.1 Arithmetic IF Statements

Form IF (arithmetic expression) ny, np, n3
Where Nqr Ny, ng are statement numbers
Effect Control is transferred to:

ny if expression <0
ny if expression = 0
ng if expression >0

An IF statement transfers control to one of three statements, as shown in the model, according to the

value of the expression given. For example, the statements:

ALPHA =3

IF (ALPHA) 10, 20, 30

will transfer control to statement number 30. Complex expressions may not be used in an IF statement.

4.2.2 Logical IF Statements

Form IF (logical expression) statement

Where statement may be any executable state=~
ment except a logical IF or a DO

Effect The statement given is executed if the
expression has the value .TRUE.; other-
wise, the next statement in sequence is
executed.

Examples:
IF(T.OR.S) X =Y +1

IF (Z.GT.X(K)) CALL SWITCH (S,Y)
IF (K.EQ.INDEX) GO TO 15

4.3 THE DO STATEMENT

Form DO ni=my, m,, Mg

Where n is a statement number

i is an integer variable

mj, m2, m, are positive integer
variables or constants

Effect Statements following the DO up to
and including statement n are exe-
cuted repeatedly for values of i
starting with mq, and incremented
by m3 until i is greater than or equal
tom2.

The statements which are executed as a result of a DO statement are called the range. The variable i

is called the index. The values My, My, and m are, respectively, the initial, limit, and increment
values of the index. When the DO statement occurs, its range is first executed for | = m, . Subsequent
iterations are for i =1 + ma. If ma is not supplied by the programmer, an increment of 1 is assumed.
The final iteration is for i > m,. A zero or negative my value is not permitted. The range of a DO is
always executed at least once, regardless of the values of the limit and increment. After each execu-
tion of the range, the increment value is added to the value of the index and the result is compared
with the limit value. If the value of the index is not greater than the limit value, the range is exe-

cuted again using the new value of the index.

Examples:
DO 201 =5, 100, 2
(final iteration for I = 99)

DO 1001 =0, 100, 2
(final iteration for I = 100)

After the last execution of the range, control passes to the statement immediately following it. This
exit from the range is called the normal exit. Exit may also be accomplished by the execution of a

control statement within the range.

The values of the limit and increment variables and the index of the DO loop may not be altered with=
in the range of the DO statement. When a statement transfers control outside the range of a DO loop,
e.g., by a GO TO or IF, the index retains its current value and is available for use as a variable.
The value of the index variable becomes undefined when the DO loop it controls is exited normally.

A transfer from outside the range into a DO loop is not legal.

The terminal statement of a DO range may not be a GO TO, DO, RETURN, STOP, PAUSE, or an
arithmetic IF statement. A logical IF statement is allowed as the last statement of the range, provided

that it does not contain any of the statements mentioned above.

As an example, consider the sequence:

DO5K=1, 4
51F (X (K) .GT. Y (L)) Y (K) =X (K)

¢ oo

In this case, the range is considered ended when, and if, control would normally pass to the statement
following the entire logical IF statement. Statement 5 is executed four times whether the statement
Y(K) = X(K) is executed or not. Statement 6 is not executed until statement 5 has been executed four

times. Note that if statement 5 were:
5IF (X (K) .GT.Y (L)) GO TO 10
it would be an error.

The range of a DO statement may also include other DO statements. This is referred to as nesting.
The range of each nested DO statement must fall entirely within the range of the outer DO statement;
that is, the ranges of two DO statements must intersect completely or not at all. Figure 4-1 illustrates

the order in which nested DOs are executed.

4-5

CHAPTER 5
DATA TRANSMISSION STATEMENTS

Data transmission statements govern the transfer of data between internal storage and peripheral devices.
These include three distinct types of statement - data description statements (FORMAT and DEFINE
FILE); input-output statements (READ and WRITE); and device control statements (FIND, BACKSPACE,
REWIND, and END FILE).

5.1 DATA DESCRIPTION STATEMENTS
The data description statements = FORMAT and DEFINE FILE - describe the form and arrangement of

data on the selected peripheral device; FORMAT describes a record, DEFINE FILE a disk file.

5.1.1 The FORMAT Statement

Form n FORMAT (field descriptiony .. S
Where n is a statement number
Effect Specified either type of conversion to be

performed between the internal and ex-
ternal representation of data or format
of fixed data.

A FORMAT statement may describe one or more records. The character / (slash) indicates that a new

record is being described. For example, the statement:

FORMAT (308/15,2F8.4)

is equivalent to:

FORMAT (308)

for the first record and:

FORMAT (15,2F8.4)

5-1

for the second record. Each record description may consist of one or more field specifications, a

field being a consecutive series of characters within the record. Field specifications are separated by
commas as shown above. The separating comma may be omitted when a slash is used. When n slashes
appear at the end or beginning of a format, n blank records may be written on output or records skipped
on input. When n slashes appear in the middle of a format, n=1 blank records are written or n-1 records

skipped.

Both the slash and the closing parenthesis at the end of the format indicate the termination of a record.
If the list of an input/output statement dictates that transmission of data is to continue after the closing
parenthesis of the format is reached, the format is repeated starting with that group repeat specification

terminated by the last right parenthesis of level one (or level zero if no level one group exists).

Thus, the statement

. FORMAT (F7 2,(2(E15.5,E15. 4) 17))

level O J t|evel 2 | LIevel 0
level 1 level 1

F7.2,2(E15.5,E15.4),17

causes the format

to be used on the first record, and the format

2(E15.5,E15.4),17
to be used on succeeding records.

As a further example, consider the statement:

FORMAT (F7.2/(2(E15.5,E15.4),17))

The first record has the format

F7.2

and successive records have the format

2(E15.5,E15.4),17

The ASCII character string comprising a format specification may be stored as an array. Input/output
statements may then refer to the format by giving the array name, rather than the statement number of
a FORMAT statement. The stored format has the same form as a FORMAT statement excluding the word
"FORMAT." The enclosing parentheses are required.

5-2

Repetition of a field specification may be indicated by preceding a field descriptor by an unsigned

integer giving the number of repetitions desired.

A group of field specifications may be repeated by enclosing the group in parentheses and preceding

the whole with the repetition number.

FORMAT statements may be placed anywhere within the executable portion of the source program.
Unless the FORMAT statement contains only alphanumeric data for direct input/output transmission, it

will be used in conjunction with the list of a data transmission statement.

The form of a field specification depends on the type of field being described. There are three basic
types - numeric, logical, and Hollerith. In addition, a blank field description may be given to skip

portions of an input record or to imbed blanks within an output record.

5.1.1.1 Numeric Fields = Numeric fields are specified by one-letter codes which designate the type

of conversion to be performed. Two parameters may appear in a numeric field description, depending

on the field type. These are: an integer (w) specifying the field width (which may be greater than

required to provide for blank columns between numbers) and an integer (d) specifying the number of

decimal places to the right of the decimal point or, for G conversion, the number of significant digits.

(For D, E, F, and G input, the position of the decimal point if present in the external field, takes

precedence over the value of d in the format.) Conversion codes and the corresponding internal and

external forms of the numbers are listed in Table 5-1 below.

Table 5-1
Numeric Field Codes
Conversion Internal External External
Code Form Input Form Output Form
D Double precision Decimal number with or Decimal number with a D
without @ . or exponent exponent field and a decimal
field point
E Real Decimal number with or Decimal number with a decimal
without a . or exponent | point and an E exponent field
field
F Real Decimal number with or Decimal number with a decimal
without a . or exponent | point
field
€] Real Decimal number with or Decimal number with a decimal
without a . or exponent | point and with or without an E
field exponent field (see Table 5-2)
1 Integer Decimal number without | Decimal number without a
a . or exponent decimal point or exponent
O Integer Octal number Octal number

5-3

The allowable numeric field description forms are:

(1) Dw.d
(2) Ew.d
(3) Fw.d
(4) 1w
(5) Ow
(6) Gw.d

For example,

FORMAT (15,F10.2,D18.10)

could be used to output the line

bbb32bbbb-17.60bbb .5962547681D+03

on the output listing. (The letter b represents a blank or a space.)

The G format is the general format code that is used to transmit data. The rules for input are the same
as E format. The form of the output conversion is a function of the magnitude of the data being con-

verted. Table 5-2 shows the magnitude of the external data, M, and the resulting method of conversion.

Table 5-2 »
Magnitude of Internal Data

Magnitude of Data

Resulting Conversion

0.1< M<1
1<M<10

10d-2 <m <109
10d-1 <m<10d
All others

F(w-4).d, 4x
F(w=d).({d-1), 4x

F(w-4).1, 4x
F(w-4).0, 4x
Ew.d

The field width (w) should always be large enough to include spaces for the decimal point, sign, and
exponent. In all numeric field conversions, if w is not large enough to accommodate the converted

number, asterisks will be printed for the field. If the number is less than w spaces in length, the

number is right-adjusted in the field.

Scale factors may be specified for D, E, F, and G conversions. A scale factor is written:
nP

where P is the identifying character and n is a signed or unsigned integer that specifies the scale factor.

For F type conversions, the scale factor specifies a power of ten so that
external number = (internal number)* 10 (scale factor)

For D and E conversions, the scale factor multiplies the fraction by a power of ten, but the exponent

is changed accordingly leaving the number unchanged except in form. For example, if the statement:
FORMAT (F8.3,E16.5)

corresponds fo the line
bb26.451bbbb-0.41321E-~01

then the statement
'FORMAT (-1PF8.3,2PE16.5)

would correspond to the line

bbb2.645bbb-41.3215E-03

For G type output conversion, the scale factor is not used unless the magnitude of the number is such

that E format is used.
In input operations, the scale factor is not used if there is an exponent in the external field.

When no scale factor is specified, a scale factor of zero is assumed. Once a scale factor has been
specified, however, it holds for all subsequent D, E, F, and G type conversions within the same
format unless another scale factor is encountered. A zero scale factor may be resumed via an explicit

specification. Scale factors have no effect on I and O type conversions.

Complex quantities are transmitted as two independent real quantities. The format specification con=
sists of two successive real specifications or one repeated real specification. For instance, the

statement
FORMAT (2E15.4,2(F8.3,F8.5))

could be used in the fransmission of three complex quantities.

5.1.1.2 logical Fields - Logical data can be described in a manner similar to numeric data. A

logical field description has the form:
Lw

where L is the conversion code character and w is an integer specifying the field width. The data is
transmitted as the value of a logical variable in the input/output list. On input, the first nonblank
character in the data field must be T or F; the value of the logical variable will be stored as true or
false, respecfively. If the data field is blank or empty, a value of false will be stored. On output,
w minus 1 blanks followed by the letter T or F, according to the variable's value, will be transmitted.

For example, if the specification were L10, the output for the value .TRUE. would be:

bbbbbbbbbT

5.1.1.3 Hollerith Fields = Hollerith data can be described in a manner similar to numeric data, as
in:

Aw
where A is the conversion code character and w, the number of characters in the field. The alpha-

numeric characters are transmitted as the value of a variable in an input/output list. The variable

may be of any type. The sequence:

READ(2,5)V
5 FORMAT (A4)

causes four characters to be read and placed in memory as the value of the variable V.

The value of w is limited fo the maximum number of characters which can be stored in the space

allotted for a single variable.

If w exceeds this amount, the leftmost characters are lost on input, and on output the w characters

will appear right-justified in the external output field, with blanks filled in on the left.

If w is less than the number of characters which can be stored in the space allotted to the variable,
on input the characters are left-justified and blank=filled on the right of each list item. On output

the leftmost w characters in the variable are transmitted to the output field.

Hollerith data may also be transmitted directly into or from the FORMAT statement. The Hollerith

string may be specified in two forms. One, called H-conversion, is:

nH

where H is the control character and n is the number of characters in the string (including blanks). For
example, the format in the statement below can be used to print PROGRAM COMPLETE on the output
listing .

FORMAT (17H PROGRAM COMPLETE)

Referring to this format in a READ statement would cause the 17 characters to be replaced with a new

string of characters from the input file.

In the second form, the Hollerith data is simply enclosed in single quotes. The result is the same as
in H=conversion; on input, the characters between the quotes are replaced by input characters, and,
on output, the characters between the quotes (including blanks) are written as part of the output data.
A quote character within the data is represented by two successive single quotes as with Hollerith

constants.

A Hollerith format field may be placed among other fields of the format. For example, the statement:
FORMAT (15,7H FORCE=F10.5)
can be used to output the line:

bbb22bFORCE=bb17.68%01

Note that the separating comma may be omitted after a Hollerith format field.

5.1.1.4 Carriage Control = The first character of each ASCII record controls the spacing of the line
printer or teleprinter. This character may be established by beginning a FORMAT statement for an
ASCII record with 1Ha, where a is the desired control character. The line spacing actions, listed

below, occur before printing.

Character Effect
blank advance carriage to next line
0 zero skip a line (double space)
1 one form feed - go to top of next page
+ plus suppress skipping = will overprint
line

If any other character appears first, it will be treated as a blank.

5.1.1.5 Record Layout Specification = Input and output can be made to begin at any position within
a FORTRAN record by use of a field description of the form:

Tw
where T is the spacing control character and w is an unsigned integer constant specifying the character
position in a FORTRAN record where the transfer of data is to begin. For printed output, w corresponds
to the (w=1)th print position, since the first character of the output buffer is a carriage control charac~
ter and is not printed. (A blank carriage control indicator is assumed.)
For example,

2 FORMAT (T50, 'BLACK'T30, 'WHITE')
would cause the following line to be printed:

Print Position 29 Print Position 49

WHITE BLACK

For input, the statement

1 FORMAT (T35, '"MONTH")
READ (3,1)

causes the first 34 characters of the input data to be skipped, and the next five characters would re~

place the characters M, O, N, T, and H in storage. If an input record containing
ABCbbbXYZ
is read with the format specification
10 FORMAT (T7,A3,T1,A3)
then the characters XYZ and ABC are read, in that order.
Blanks may be introduced into an output record or characters skipped on an input record by use of the
specification:
nX

where the spacing control character is X and n is the number of blanks or characters skipped and must

be greater than zero. For example, the statement
FORMAT (5H STEPI5, 10X2HY=F7.3)
may be used to output the line

bSTEPbbb28bbbbbbbbbbY =b-3.872

The preceding blank would not be printed on teleprinter or line printer.

5-8

5.1.2 The DEFINE FILE Statement

Form DEFINE FILE ay (m], 1], U, v]),
a, (m2, 12, U, v2),

Where a is an integer constant or variable name that is the
symbolic designation for this file (see WRITE state-
ment, Section 5.2.3, for more information on this
field). mis an integer constant or variable name
that defines the number of records in the file.

1 is an integer constant or variable name that de-
fines the length (in words) of each file record.

U is a fixed argument designating that the file is
unformatted.

v is an integer variable name, called the associated
variable, which is set at the conclusion of an input-
output operation on the file fo point to the next rec-
ord.

Effect Describes a disk file for use with input-output
statements.

The DEFINE FILE statement is applicable to disk files only, and is required so that they may be

referenced as direct access files by input-output statements.

The associated variable (v) in a DEFINE FILE statement is used to maintain an index of records pro-

cessed. It is set automatically after an input-output statement is executed.

The statement:

DEFINE FILE 1(1000,100,U, V1)

specifies a 1000-record file, each record of which is 100 words long. The variable V1 will maintain

an index of records processed, providing a pointer to the next record to be processed.

5-9

5.2 INPUT-OUTPUT STATEMENTS

The input-output statements, READ and WRITE, govern transfer of data records between internal storage
and peripheral devices. Each statement may contain an input-output list naming the variables and

array elements to be given values on input or whose values are to be transmitted on output.

Both formatted and unformatted records may be transmitted. A formatted record, a string of characters,

requires the use of a format specification.

5.2.1 Input=Output Lists

An input-output list contains variable names and array elements whose values will be assigned on input
or written on output. During input, the new values of listed variables may be used in subscript or

control expressions for variables appearing later in the list. For example:
READ(13)L,A (L),B(L+1)
reads a new value for L and uses this value in the subscripts of A and B.
The transmission of array variables may be controlled by indexing similar to that used in the DO state-

ment by including as a list element a parenthesized list of control variables followed by the index

control . For example,
is equivalent to:

READ(7)X(1),X(2),X(3),X(4),A

The indexing may be compounded by nesting as in the following:
READ(11) ((MASS(K,L),K=1,4),L=1,5)
The above statement reads in the elements of array MASS in the following order:
MASS(1,1), MASS(2,1),...,MASS(4,1),MASS(1,2),...,MAS5(4,5)
If an entire array is to be transmitted, the indexing may be omitted and only the array name written.

The array is transmitted in order of increasing subscripts with the first subscript varying most rapidly .

Thus, the example above could have been written:
READ(11)MASS

assuming that the array MASS is dimensioned MASS(4,5).

5-10

5.2.2 Input-Output Records

All data is transmitted by an input=output statement in terms of records. The maximum amount of infor-
mation in one record and the manner of separation between records depends upon the medium. For
punched cards, each card constitutes one record; on a teletypewriter, a record is one line; for ASCII
records, the amount of information s specified by the FORMAT reference and the 1/O list; for magnetic
tape binary records, the amount of information is specified by the 1/O list; for disk records, DEFINE
FILE is used.

Each execution of an input or output statement initiates the transmission of a new data record. If an
input-output statement requests less than a full record of information, the unrequested part of the record
is lost and cannot be recovered by another input-output statement without repositioning the record.
Repositioning is not, however, possible on all devices (see Section 5.3). If an input-output list re~

quires more than one ASCII record of information, successive records are read.

5.2.3 The WRITE Statement

Form WRITE (u,f) list | ===== formatted WRITE
WRITE (u,f) ‘
WRITE (u) list ======== unformatted WRITE
WRITE (a'r) list ==——-=- direct access disk WRITE

WRITE (u,f,END=n) list

WRITE (u,f, ERR=n) list - :’ffgfifz‘:nml
WRITE (u,f,END=n,ERR=n) list .
if errors

Where u is a unit designation

f is a format reference

list is an 1/O list

a is a symbolic disk file number

r is an associated variable (record pointer)

Effect Output is performed as specified by the
arguments of the WRITE statement.

A formatted WRITE statement may appear with or without an 1/O list. If a list is provided, the values
of the variables in the list are read from memory and written on the unit designated in ASCII form.
The data is converted to external form as specified by the designated FORMAT statement. If no list

is supplied, information is read directly from the specified format and written on the unit designated in
ASCII form.

An unformatted WRITE statement must have an 1/O list. The values of the variables in the list are read

from memory and written on the unit designated in binary form.

A direct access WRITE statement outputs a fixed=length record directly into a disk file. The file must
be defined previously via the execution of an appropriate DEFINE FILE statement.

Notes On Unit Designation (u) And Symbolic Disk File Number (a)

The unit designation (u) and symbolic disk file number (a) referred to in READ (see next section),
WRITE, and DEFINE FILE statements may be integers in the range 1 to 8. Of the eight numbers, 6 is
the keyboard, 5 is the line printer and 4 is the high-speed paper-tape reader. The remaining numbers

are assumed to refer to files on a disk,

Thus, READ (4,10) refers to input from the high-speed paper-tape reader, WRITE (5,1) refers to output
on the line printer, and READ (7,11) refers to input from the disk. Note that u and a are both drawn

from the same set of numbers, and they cannot conflict.

The user may override these device number assumptions by two methods. He may either use the SETFIL
subroutines to override the unit number assumptions, or he may employ the ASSIGN command of the
DOS Monitor. The ASSIGN command (see Disk Operating System Monitor Manual) allows the over-
ride to occur at run-time, just before the program is executed. The SETFIL subroutine allows the over-

ride to be specified in the program, thereby requiring no intervention at run-time.

5.2.4 The READ Statement

Form READ (u,f) list j===—mmmmmmmmam formatted READ
READ (u,f)
READ (u) list |======c==—a——— unformatted READ
READ (u)
READ (a'r) list ==m==—cmemaa—— direct access disk READ

READ (u,f,END=n) list
READ (u,f,ERR=n) list
READ (u,f,END=n,ERR=n) list

Where f is o format reference
u is a unit designation
r is an associated variable record pointer
a is a symbolic disk file number
n is a statement number

_ READ and
transfer control

Effect Input is performed according to the arguments
of the READ statement

A formatted READ statement causes information to be read from the specified unit and put in memory .
The data are converted from external to internal form as specified by the referenced FORMAT state-
ment. If an I/O list is provided, the data are stored as the values of listed variables. The second

form of the READ statement is used if the data are transmitted directly into the specified format.

5-12

An unformatted READ statement causes binary information to be read from the unit designated and

stored in memory as values of the variables in the 1/O list, if any.

A direct access READ statement provides random access to fixed-length records in a disk file. The file

whose records are to be read must be defined by the DEFINE FILE statement.

READ and transfer control statements cause control to be fransferred to the statement specified if an
end-of-file or error condition is encountered during input. The arguments END=n and ERR=n may
appear separately or together. If an end-of-file is encountered during a READ, control transfers to

the statement specified by END=n. If an END parameter is not specified, 1/O on that device termi-
nates and the program halts with an error message. If an error on input is encountered, control transfers
to the statement specified by ERR=n. If an ERR=n parameter is not specified, the program halts with

an error message .

Example:

READ (7,7,END=888,ERR=999)A

888 (control transfers here if an end-of-file is encountered)

999 (control transfers here if an error on input is encountered)

5.3 DEVICE CONTROL STATEMENTS

There are four device control statements = FIND (which applies to a moving head disk only) and BACK -
SPACE, END FILE, and REWIND which apply to any device which may be automatically repositioned
(magnetic tape, DECtape, and disk). Their forms and effects are listed below in Table 5-3.

Table 5-3
Device Control Statements
Statement Effect
FIND (a'b) The disk read/write mechanism is positioned

to record b of file a. (a is assigned via a
DEFINE FILE statement. The record number
b is an integer constant or variable.)

BACKSPACE u Repositions the designated unit to the begin-
ning of the file and spaces forward to n=2
records (n is the number of the record pro=
cessed before the BACKSPACE).

(Continued on next page)

5-13

Table 5-3 (Cont)
Device Control Statements

Statement Effect -

END FILE u Activates the Monitor's CLOSE facility for
the designated unit, thereby writing an
END-OF-FILE.

REWIND u Repositions the designated unit to the
beginning of the file.

5-14

CHAPTER 6
SPECIFICATION STATEMENTS

Specification statements may be divided into three categories. First, there are storage specification
statements = DIMENSION, COMMON, and EQUIVALENCE - which give the compiler storage allo=
cation instructions. Second, there are data specification statements = DATA and BLOCK DATA - which
are used to enter values. Third, there are type declaration statements = INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, LOGICAL, BYTE, and IMPLICIT =~ which specify the type attribute of a
variable. These are all nonexecutable statements which must precede the executable portion of the

program. DATA statements must follow all other specification statements.

6.1 STORAGE SPECIFICATION

6.1.1 The DIMENSION Statement

Form DIMENSION array name (V], V2, V3). ..

Where V1, V2, and V,, are the maximum value the
subscript they répresent may assume

Effect The array name is assigned the type array.
Storage is allocated according to the
dimensions given.

Each array specification gives the array name and the maximum values which each of its subscripts may
assume. Each value must be an unsigned positive integer constant or variable. Arrays may also be

declared in the COMMON or TYPE declaration statements in the same way:

COMMON X(10,4),Y,Z
INTEGER A(7,32),B

No array for which dimension information is not supplied may be referenced as an array variable.

A subprogram may establish adjustable arrays via reference to an array which has been allocated storage
by the calling program. In this case, both the array name and the subscript values are expressed as

dummy arguments in the subroutine, as in:
DIMENSION A(X,Y,Z)

In order to do this, the programmer must establish A, X, Y, and Z as required arguments. The dummy
array must not exceed the dimensions of the main-program array but may be smaller if the call provides
lower subscript values than those of the main program dimensioning or if the initial array element

referenced is not the beginning of the main=program array .

6.1.2 The COMMON Statement

Form COMMON/BLOCK1/A,B,C/BLOCK2/D,E,F/...
Where BLOCK1,BLOCK2, .. .are the block names
A,B,C...are the variables to be assigned to
each block
Effect Specified variables or arrays are stored in an
area available to other programs.

By means of COMMON statements, the data of a main program and/or the data of its subprograms may
share a common storage area. The common area may be divided into separate blocks which are identi-

fied by block names. A block is specified as follows:
/block name/varl, var2, ...

The variables which follow the block name indicate scalar or array variables assigned to the block.
They are placed in the block in the order in which they appear in the block specification. For

example, the statement
COMMONAR/X,Y,T/C/U,V,W,Z
indicates that the elements X, Y, and T are to be placed in block R in that order, and that U, V, W,

and Z are to be placed in block C. A common block may have the same name as a variable in the

same program.

Block entries are linked sequentially throughout the program, beginning with the first COMMON

statement. For example, the statements

COMMON/D/ALPHA/R/A,B/C/S
COMMON/C/X,Y/R/U,V,W

6~2

have the same effect as the statement
COMMON/D/ALPHA/R/A,B, U,V ,W/C/S,X,Y

One block of common storage, referred to as blank common, may be left unlabeled. Blank common is

indicated by fwo consecutive slashes. For example,
COMMONAR/X,Y//B,C,D

indicates that B, C, and D are placed in blank common. The slashes may be omitted when blank

common is the first block of the statement, as in:

COMMON B,C,D

Storage allocation for blocks of the same name begins at the same location for all programs executed

together. For example, if a program contains
COMMON A,BR/X,Y,Z

as its first COMMON statement, and a subprogram has
COMMONAR/,V,W//D,E,F

as its first COMMON statement, the quantities represented by X and U are stored in the same location.

A similar correspondence holds for A and D in blank common.

Common blocks may be of any length. No program must, however, attempt to enlarge a common block
declared by a previously linked* program. Array names appearing in COMMON statements may have
dimension information appended if the arrays have not been declared via a DIMENSION statement or

a type declaration. For example,
COMMON ALPHA,T(15,10,5), GAMMA

specifies the dimensions of the array T while entering T in blank common. Each array name appearing
in a COMMON statement must be dimensioned somewhere in the program containing the COMMON

statement .

6.1.3 The EQUIVALENCE Statement

Form EQUIVALENCE (V, Vor-- ')'(vk’ka R
Where V's are variable names
Effect The set of parenthesized variables

identify the same storage location.

*Programs are linked via the LINK=11 program as described in the LINK-11 manual.

6-3

For example,
EQUIVALENCE(RED, BLUE)

specifies that the values of the variables RED and BLUE are stored in the same location.

The relation of equivalence is transitive; thus, the fwo statements

EQUIVALENCE(A,B), (8,C)
EQUIVALENCE(A,B,C)

have the same effect.

The subscripts of array variables in an EQUIVALENCE statement must be integer constants.
Example:

EQUIVALENCE(X,A(3),Y(2,1,4)), (BETA(2,2),ALPHA)

6.1.4 EQUIVALENCE AND COMMON

Variables may appear in both COMMON and EQUIVALENCE statements, but no two quantities in
COMMON may be set equivalent to one another.

Quantities placed in a common block by means of EQUIVALENCE statements may cause the end of the

common block to be extended. For example, the statements

COMMON/R/X,Y,Z
DIMENSION A(4)
EQUIVALENCE(A,Y)

causes the common block R to extend from X to A(4), arranged as follows:

X

Y A1)

Z A(2)
A(3)
A(4)

EQUIVALENCE statements which would require extension of the start of a common block are not

allowed. For example, the sequence

COMMON/R/X,Y,Z
DIMENSION A(4)
EQUIVALENCE (X, A(3))

is not permitted, since it would require A(1) and A(2) to extend the starting location of block R.

6~4

6.2 THE DATA STATEMENT

Form DATA (var Iisr])/values lisf]/(var |isf2)/va|ues Iisr2/, cen

Where (var list) contains a string of variables separated by
commas
/values list/ contains a string of data items separated by
commas

Effect A value from values list is assigned to the corresponding
variable in var list.

The DATA statement is used to supply initial or constant values for variables. The specified values
are compiled into the object program, a.nd become the values assumed by the variables when program
execution begins. Such values may also be provided via a BLOCK DATA subprogram (see Chapter 7).
Variables in a labeled common block can only be specified in a BLOCK DATA subprogram. Variables

in blank common may not be initialized.

Variables in the variable list may be either single subscripted or unsubscripted arrays, or the name of

an entire array .

When an entire array is given, data values must be specified for each and every element of the array.
Data elements are stored in the array in the same order used for the data transmission and storage

arrays, i.e., in order of increasing subscripts with the first subscript varying most rapidly.

Allocation to memory locations in the array stops when:

a. the data item list is exhausted; or

b. data items have been allocated to the entire array. If so,
additional data items will be allocated to additional items
in the varaible list.

When Hollerith or literal constants are encountered in the values list, they are assigned to the assoc-
iated variables in the same manner that such constants are handled in assignment statements. Specifi-

cally, let the site of the variable in bytes be v, and the size of the literal by l.

a. ifv<l, the first (lefimost) v digits of the literal will be stored in the
variable; the remaining digits will be ignored.

b. if I<v, the Hollerith literal will occupy the | low order bytes of the
variable. The remaining bytes will be undefined. Note, however,
that since Hollerith literals are always blank-filled to word boundaries,
the first byte following any Hollerith constant with an odd number of
bytes will be a blank.

Example:

DATA X,Y,Z/'A','BCDE', 'FGHIJKL'/

6-5

produces in memory:

The data items following each list of variables must have a one=to-one correspondence with the variables

of the list, and must agree in type, since each item of the data specifies the value given to its corres=

sponding variable.

Data items assigned may be numeric, Hollerith, octal, hexadecimal, or logical constants. For example,

X+1 X
Blank A
X+3 X+2
undefined undefined
Y+1 Y
C B
Y+3 Y+2
E D
Z+1 Z
G F
Z+3 Z+2
I H

DATA ALPHA, BETA/5,16.E-2/

specifies the value 5 for ALPHA and the value .16 for BETA. Any item of data may be preceded by an

integer constant followed by an asterisk. This notation indicates that the item is to be repeated. For

example,

DATA(A(1),A(2),A(3))/3*0./

specifies the value zero for array elements A(1) = A(3).

As another example:

DIMENSION A(2,2),B(3)

DATA A,B/2*%1.0,3*2.0,3.0,4./

will initialize

A(1,1), and A2, 1o 1
A(1,2),A(2,2) and B(1) to 2
B(2) to 3, and B(3) to 4.

6-6

6.3 TYPE DECLARATION STATEMENTS

Form type V] ,V2,V3, cen

Where * type may be: INTEGER (INTEGER*2),
REAL (REAL*4), DOUBLE PRECISION
(REAL*8), COMPLEX, LOGICAL, BYTE
(LOGICAL*1)

V], V2,V3 are variables

Effect All variables in the list are assigned
the given type.

A variable may appear in only one type statement. Type statements may be used to give dimension

specifications for arrays. Adjustable arrays in subprograms may also be defined via type statements.

6.4 THE IMPLICIT STATEMENT

Form IMPLICIT type (a],az, ees)

Where type is INTEGER, REAL, LOGICAL, COMPLEX
or DOUBLE PRECISION

aq,4,,...represent single alphabetic characters,
each‘separated by commas, or a range of charac-
ters (in alphabetic sequence) denoted by the first
and last characters of the range separated by a
minus sign (e.g., (A-D))

Effect Any program variable which is not mentioned in

a type statement, and whose first character is one
of those listed in the IMPLICIT statement, is classi=
fied according to the type appearing before the

list in which the character appears.

As an example, the statement
IMPLICIT REAL(A-D,L,N-P)

causes all variables starting with the letters A through D, L, and N through P to be typed as real,

unless they are explicitly declared otherwise.

*Parenthesized items are synonyms.

The initial state of the compiler is set as if the statements

IMPLICIT REAL(A-H,O-2)
IMPLICIT INTEGER(I-N)
were at the beginning of the program. This state is in effect unless an IMPLICIT statement changes

the above interpretation, i.e., identifiers, whose types are not explicitly declared, are typed as

follows.

" Identifiers beginning with I, J, K, L, M, or N are assigned integer type.

" Identifiers not assigned integer type are assigned real type.

| CHAPTER 7
SUBPROGRAM STATEMENTS

There are two categories of subprograms in FORTRAN = functions and subroutines. Both consist of one
or more FORTRAN statements which may be invoked by name and, as appropriate, with values upon
which they are to operate. A function differs from a subroutine in that it always returns a single
numeric value; by convention, the function reference represents this value in an expression. A sub-

routine, on the other hand, may return several or no values.

The transmission of arguments between a subprogram reference and the subprogram itself is accomplished
by the use of dummy variables within the subprogram definition. Those variables in the subprogram
which are dummy variables are listed in the subprogram definition statement. References to the sub-
program may then supply values for these arguments in the same order and be substituted for them when=

ever they appear in the subprogram.

7.1 FUNCTION DEFINITIONS

Functions may be internal or external. An internal function is defined via a form of the Arithmetic
statement and may be referenced only by the program in which it is defined. An external function,
which may be referenced by other programs, is defined via the FUNCTION statement. All functions

must have at least one argument.

A function name must be a legal symbol. A function reference may only appear within an expression
and must, like other elements of expressions, have a specified type. Type may be specified in the

definition itself or via any other FORTRAN type-specification facility.

7.1.1 The Arithmetic Statement Function Definition

Form t name (argl, ...) = expression

Where t is an optional type specification
name is the function name

argl, ... are dummy variables
expression is the function definition

Effect Defines an internal function.

7-1

An Arithmetic statement function definition is a single statement. The expression which defines the
function may include dummy arguments, ordinary variables, external functions and previously defined

internal functions.

In the following definition:

ACOSH(X) = (EXP(X/A) + EXP(-X/A))/2.
X is a dummy argument and A an ordinary variable. When the function is referenced, the current value
of A and the supplied value of X will be used to evaluate it. All function definitions of this type must

precede the first executable statement of the program in which they appear, and follow the last speci-

fication statement appearing in the program.

7.1.2 The FUNCTION Statement

Form t FUNCTION name (argl, ...)

Where t is an optional type specification
name is the function name
argl, ... are dummy arguments

Effect Defines an external function.

The function name must be a legal symbol and must be assigned a value within the definition. This
value is the function's value. Arguments must agree in number, order, and type with actual arguments

given by the calling program.

Dummy arguments may represent the following elements in the function definition: expressions, alpha-
numeric strings, array names or elements and subprogram names. Dummy arguments which represent
array names must appear within the subprogram either in a DIMENSION statement, or in one of the
type statements that provide dimension information. Dimensions given as constants must not exceed

the dimensions of the corresponding arrays in the calling program. Dimensions given as dummy variables
may be used to specify adjustable dimensions for array name arguments. For example, in the statement

sequence:

FUNCTION TABLE (A,M,N,B,X,Y)

.
.

DIMENSION A(M,N), B(10), C(50)

the dimensions of array A are specified by the dummy arguments M and N, while the dimension of array

B is given as a constant. The various values given for M and N by the calling program must be within

the limits of the actual arrays which the dummy array A represents. Various arrays may be substituted
for A. These arrays may each be of different size. Dummy dimensions may only be given for dummy
arrays. Note in the example above that the array C, which is not a dummy argument, must be given
absolute dimensions. A dummy argument may not appear in an EQUIVALENCE statement in the
FUNCTION subprogram.

A function must not modify any arguments which appear in the FORTRAN arithmetic expression calling
the function. The only FORTRAN statements not allowed in a FUNCTION subprogram are SUBROUTINE,
BLOCK DATA, and another FUNCTION statement.

7.2 SUBROUTINE SUBPROGRAMS

A SUBROUTINE subprogram is defined external to the program which references it. Subroutine de-
finition is initiated by a SUBROUTINE statement. A subroutine is referenced by a CALL statement

and returns control to the calling program by means of one or more RETURN statements.

7.2.1 The SUBROUTINE Statement

Form SUBROUTINE name
SUBROUTINE name (argl, ...)
Where name and arg are as for functions
Effect The program which follows is declared
a SUBROUTINE subprogram.

The arguments in the parenthesized list are dummy arguments representing the arguments of the sub-
program. The dummy arguments must agree in number, order, and type with the actual arguments
used by the calling program. A SUBROUTINE subprogram need not have any arguments at all. When
supplied, they may be expressions, alphanumeric strings, array names, array elements, scalar vari-

ables, and subpragram names.

Dummy variables which represent array names must be dimensioned within the subprogram by a
DIMENSION or type declaration statement. As in the case of a FUNCTION subprogram, either con-
stants or dummy identifiers may be used to specify dimensions in a DIMENSION statement. The dummy
arguments must appear in an EQUIVALENCE or COMMON statement in the SUBROUTINE program.

A SUBROUTINE subprogram may use one or more of its dummy arguments to represent results. For

example,

SUBROUTINE COMPUTE (A,B,ANS)

7-3

requires the user to supply numeric values for A and B to be computed, and a variable for ANS in
which to store the results. The only FORTRAN statements not allowed in a SUBROUTINE subprogram
are FUNCTION, BLOCK DATA, and another SUBROUTINE statement .

7.2.2 The CALL Statement

Form CALL name
CALL name (argl, ...)

Where name identifies a subprogram
argl, ... are actual arguments

Effect Control is transferred to the SUBROUTINE
subprogram.

The arguments of a CALL statement may be expressions, array names, array elements, scalar variables,
alphanumeric strings or subprogram names; arguments may be of any type, but must agree in number,
order, type, and array size (except for adjustable arrays, as discussed under the DIMENSION statement)
with the corresponding arguments in the SUBROUTINE statement of the called subroutine. Unlike a
function, a subroutine may produce more than one value and cannot be referred to as a basic element

in an expression.

7.2.3 The RETURN Statement
The RETURN statement consists of the text:
RETURN

This statement returns control from a subprogram to the calling program. Normally, the last statement
executed in a subprogram is a RETURN statement. Any number of RETURN statements may appear in a
subprogram,

7.3 THE BLOCK DATA STATEMENT

The BLOCK DATA statement is used to establish a BLOCK DATA subprogram, a data specification sub=
program which is used to enter initial values for variables in labeled common blocks. No executable
statements may appear in a BLOCK DATA subprogram. A BLOCK DATA subprogram is established by

a BLOCK DATA statement consisting of the text:

BLOCK DATA

This statement declares the program which follows to be a data specification subprogram and it must be

the first statement of the subprogram.

The subprogram contains only type-statements, EQUIVALENCE, DATA, DIMENSION, and COMMON
statements. A complete set of specifications must be given for an entire COMMON block. A single
BLOCK DATA subprogram may initialize any number of named COMMON blocks.

7.4 THE EXTERNAL STATEMENT

Form EXTERNAL identifier, identifier, ... identifier

Where identifier is the name of a subprogram

Effect The identifier is declared a subprogram name
and may be used as the argument of other sub-
programs

FUNCTION and SUBROUTINE subprogram names may be used as the actual arguments of subprograms.
When they are, their names must be distinguished from ordinary variables by their appearance in an

EXTERNAL statement.

Any subprogram name given as an argument to another subprogram must have previously appeared in

an external declaration in the calling program (i.e., as an identifier in an EXTERNAL).

Example:

EXTERNAL SIN, COS
CALL TRIGF(SIN, 1.5, ANSWER)
CALL TRIGF(COS, 187, ANSWER)

END
SUBROUTINE TRIGF(FUNC, ARG, ANSWER)

ANSWER = FUNC(ARG)

RETURN
END

7-5

Part II
THE FORTRAN OPERATING ENVIRONMENT

I1-i

CHAPTER 1

1.1
1.2
1.3

CHAPTER 2

2.1
2.2

CHAPTER 3

3.1
3.2
3.3

3-1
3-2

PART II
TABLE OF CONTENTS

GENERAL PROCEDURES

Preparing an Object Module
Preparing a Load Module

Error Processing

SUBPROGRAMS

Standard Subroutine Calls
Threaded Code

FORTRAN INPUT-OUTPUT

File Structures
Device Assignment

Input=Output Buffers

TABLES

Title

PDP-11 FORTRAN 1V Standard Peripheral Devices
Device Table Entry

II=iii

Page

1-1
1-2

2-1
2-2

3-1
3-2
3-3

Page

3-2
3-2

CHAPTER 1
GENERAL PROCEDURES

There are two steps involved in obtaining an executable computer program from a FORTRAN source
program. The first step, preparing an object module, requires use of the FORTRAN compiler and PAL
assembler to obtain both compilation and assembly . The second step, preparing a load module, re-
quires the use of the LINK~11 program to obtain those portions of the FORTRAN Object Time System

required to run the user program.

1.1 PREPARING AN OBJECT MODULE

The FORTRAN compiler produces code which must be assembled by the PAL assembler,

To request compilation, the user first types:
.RUN FORTRN

When the compiler is ready to accept input, the character # is printed. On the same line, the user

issues a command string® of the form:

device: obj-file, device: list file <device: source file
where device specifies the location of the file using one of the mnemonics given in Table 3-1 of
Chapter 3.
Either or both output file specifications may be omitted. However, if an output file is specified with-
out an extension, the compiler creates one as follows:

Object file - PAL
Source list file = LST

If no extension is specified for the input file name, the compiler looks for, and expects the extension

FTN.

*The command string adheres to the requirements of the Disk Operating System (DOS) Command String
Interpreter (CSI).

1-1

As an example, the command string:
BESSEL, OUTPUT <BESSEL

will cause the compiler to compile the program BESSEL.FTN. The source program listing will be
written on a file called OUTPUT.LST, and the compiler will create an object file called BESSEL.PAL.

If a syntactical error is detected in the command string, the compiler will output the command up to
and including the error, advance the carriage and print the character #. The user must retype the
entire string. Compilation may be aborted and the compiler restarted by typing CTRL/C] and the

Monitor command REstart.

1.2 PREPARING A LOAD MODULE

A user program produced by the FORTRAN compiler is executed in conjunction with the FORTRAN
Object Time System (OTS), a library of programs which support a variety of source-language facili-
ties. The OTS is divided into four parts = input-output processing routines, mathematical subroutines
and function generators, miscellaneous service routines, and input-output device tables and buffers

and run switches.

The input-output portion of the OTS includes routines to build input and output records and to manipu=
late files via the system monitor. This section also includes a format processor, which associates items
in a FORTRAN FORMAT statement with items in an I/O list and 1/O record and performs required

conversions, and a set of monitor interface routines which act as device drivers.

The mathematical subroutines perform arithmetic operations not supported by the PDP-11 hardware,
such as floating point and double-precision arithmetic. The function generator routines include the
standard mathematical functions supported by FORTRAN such as SIN and ATAN. (See Appendix C for

a list of standard functions.)

Miscellaneous service routines perform a variety of functions such as array=index arithmetic and error

processing .

The final portion of OTS maintains information required for input-output operations (link blocks, file
blocks, device status switches and buffers). It also contains any global values or switches required

for program execution.

]Holding down the CTRL key and typing C.

A load module consists of the user's object module and those programs in OTS required for its execution.
A load module is prepared using the LINK=11 program. Information on linking object modules and

performing library searches may be obtained in the LINK=11 manual .

1.3 ERROR PROCESSING

The Object Time System detects run-time errors and prints error messages on the assigned message
logging device. Errors are divided into classes on the basis of functional similarity such as FUNCTION
errors, recoverable 1/O errors, and so on. Each class of error will have a maximum allowed occurrence
level before which it will not terminate execution. This number may be reset by the user via the sub-

routine SETERR (Appendix C). Error messages are given in Appendix F.

CHAPTER 2
SUBPROGRAMS

All subprograms which are explicitly invoked by the user (as described in Part I, Chapter 7) are called
via the convention described in Section 2.1 below. Those Object Time System Subprograms which are
automatically invoked by FORTRAN statements to perform operations not supported by the PDP-11

hardware are called using the convention described in Section 2.2,

2.1 STANDARD SUBROUTINE CALLS

All user—defined or system subprograms which are invoked by a call or a function reference in the

source program obey the calling conventions described below.

Argument addresses are placed in a list following the subprogram call. The standard sequence will be:

.GLOBL SUBR

JSR R5,SUBR
BR XX
Argl
Arg2
ARGn
XX:

Note that the even byte of the branch instruction following the JSR contains the number of arguments™

and is pointed to by R5 when SUBR is entered.

Functions store the result in registers RO-R3 depending on the function type and return control via RTS

R5. Thus, an integer function result is returned in RO and a real function result in RO and R1; double-

precision and complex in RO, R1, R2 and R3.

*See PAL-11R Assembler Manual (especially Section 7.12) for more information on the machine
format of the Branch instruction.

2-1

2.2 THREADED CODE

Most FORTRAN statements generate calls to internal subprograms. These calls are based on the simple
Polish method for evaluating expressions. This method assumes that a typical expression consists of a

large number of very simple operations done in a linear sequence. These operations use the stack for

evaluating all expressions.

For example, the FORTRAN program

A=1,
B=1.

would generate the following code for each expression:
A=1.
$P0001

.GLOBL $POP3
$POP3, A

;B=1.

$P0001
$POP3,B

Most routines referred to by the calls generated above are found at the end of the assembly listing.

Other routines are linked in from the FORTRAN library.

The routine $P0001 would be

$P000T: MOV #$R0000-+4 ,RO ;GET VALUE

BR $F0001

$R0000: 040200 ;FLOATING POINT CONSTANT 1
000000

$F0001: MOV - (RO),-(SP) ;PUSH 2 WORD VALUE ONTO
MOV - (RO),~(SP) ;STACK
JMP @ (R4)+ ;GO TO NEXT ROUTINE

The routine $POP3 is in the library. $POP3 pops a value off the stack into the memory location
whose address follows the call to $POP3 in the threaded code. $POP3, A pops the value on top of

the stack into 2 memory words reserved for A. Similarly, $POP3, B saves the two word value found

on top of the stack, in B.

The expression C =A+B would result in

$P0002

$P0O003
.GLOBL $ADR
$ADR

$POP3,C

where $P0002 and $P0003 would push the values of A and B onto the stack, $ADR would add the two

real values on top of the stack, and $POP3 would save the result as variable C.

In order to call one of these internal subprograms from an assembly language program, an entry to this

Polish mode of execution must be made via JSR R4, $POLSH, which invokes the routine:

$POLSH: TST (SP) + ;DELETE USELESS OLD
;VALUE OF R4
JMP @ (R4)+ ;PUSHED ON ENTRY
;BY JSR

The next word following the call to $POLSH will be the first word of Polish code to be executed.
Internal subprograms are listed in Appendix E.

To exit from Polish mode, simply direct the last Polish routine entered to jump to the next location
in sequence. This is accomplished by placing the address of that word following the last Polish call.

Example:
$POP3,A ;POP3 WILL JUMP TO @ (R4),
2 ;WHICH IS NEXT.

NEXT:

Note that this mode of execution is exited for execution of subroutine and function calls via the

standard PDP=11 calling convention.

In the last example above, if C = A+B were followed by a CALL SUB (ARG), then the code following
$P0003, C would be

A2

JSR R5,SUB
BR .+6
ARG

etc.

CHAPTER 3
FORTRAN INPUT-OUTPUT

Input=output functions of a FORTRAN=~compiled user program are performed by the Object Time System.
All input-output is accomplished through the Monitor and is device-independent. The user may, there-
fore, do logical assignments at run-time using Monitor ASSIGN commands or by calling the SETFIL sub-

routine (Appendix C).

3.1 FILE STRUCTURES

OTS input-output facilities are provided by one of three packages of OTS routines = formatted, un-
formatted, and random access. The formatted input-output routines will read or write formatted ASCII
records whose maximum length is 133 characters. On input, longer records will simply be truncated.
For shorter records, the last character (line feed, form feed, or vertical tab) will be deleted and the
record will be padded with blanks. The next-to-last character is also deleted if it is a carriage return.
For output, if the device is a line printer or teleprinter, a carriage return and vertical tab are appended
to the end of each record. The first character of each record is interpreted as a line spacing command.

If the device is not a printer, a carriage return and line feed are appended.

Unformatted input=output routines read or write formatted binary records of any size with parity check-
ing. Records will be transmitted in segments up to 63 words long. The first word of each segment is

a control word with one of the following meanings.

Value Meaning
0 Not first or last segment
1 First segment
2 Last segment
3 First and last segment

The random access routines read or write binary records. The maximum allowable record length is
32767 bytes. These routines determine the block number and the displacement to the proper record

from the user program's DEFINE FILE statement and the record number given in the input-output request.

3-1

3.2 DEVICE ASSIGNMENT

If the user does not supply run-time assignment information, FORTRAN logical device number 6 is
assigned to the teleprinter and all others are assigned to disk and given the name FOROnn.DAT
(where nn is the device number). Device number 6 is also assumed to be the message logging device

and must be available for formatted ASCII output when required. Table 3-1 gives the available devices.

Table 3~1
PDP-11 FORTRAN 1V Standard Peripheral Devices
Input/Output

Name Mnemonic Formatted Unformatted Operq‘Hon
Disk DC
(includes disk packs and drums) gi Yes Yes READ/WRITE
DECtapes DT Yes Yes READ/WRITE
Line Printer LP Yes : No WRITE
Magtape ' MT Yes Yes READ/WRITE
Paper Tape Punch (High-speed) PP Yes Yes WRITE
Paper Tape Reader (High=speed) PR Yes Yes READ
Low=Speed Punch and Reader PT Yes Yes READ/WRITE
Teletype ~ User KB Yes No READ/WRITE

Logical device assignment is governed by the Device Table which contains entries for eight devices
but may be expanded to handle more. Each entry, as shown in Table 3-2 below, is 16 words long and

preceded by an 11-word header.

Table 3-2
Device Table Entry

Word 1 Address of entry for error routine message file

Word 2 Number of entries in device vector table
HEADER Word 3 Device number of message logging file

Words 4-11 Addresses of device table entries for each of the

devices one through eight

Word 1 Link Pointer (from Link Block, after INIT)

Word 2 Physical Device Name (RAD50 /XXX/; XXX = DF
(is KB for Log Dev)
Word 3 Unit Num (Default 0) /How Open (File Block = 2)

3-2

Table 3-2 (Cont)
Device Table Entry

ENTRY Words 4 & 5 File Name (RAD50 /FOR/, /NNN/; NNN = Entry Num)
Word 6 File Extension (RAD50 /DAT/)
Word 7 Switches* and Protect Code (Default = 233)
Word 8 Status/Mode (from Line Buff Header)
Word 9 Count of 1/O Operations for this Device
Words 10-14 Unused for formatted and unformatted 1/0O
Word 15 "User ID code (UIC) - default =0
Word 16 Addr of Error Value VAR (from CALL SETFIL)

For Random 1/O Words 8=14 are:

Word 8 ‘ Function Word

Word 9 Block Number

Word 10 ~ Buffer Addr

Word 11 Buffer Length

Word 12 Associated VAR addr (from DEFINE FILE)
Word 13 . Max Num of Records (from DEFINE FILE)
Word 14 " Record Length (from DEFINE FILE)

*Switches are as follows:

Bit Setting Meaning

0-1 0 Closed
1 Open formatted
2 Open unformatted
3 Open random

By changing the number in word 2, the user may modify the number of entries to be considered. If
fewer are desired, he may change one of the eight device words to zero. If more are desired, he may

expand this 8-word sequence.

3.3 INPUT-OUTPUT BUFFERS

Both input and output use a single buffer. A wait will be issued after each READ or WRITE request;
that is, 1/0O will be synchronous. The buffer is preceded by a link block, file block, and buffer

header.

APPENDIX A
STATEMENT SUMMARY

See
Statement Form Effect Section
Arithmetic a=b the value of expression b is 3.2
assigned to the variable a
Arithmetic flag...) =x the value of expression x is 7.1
function assigned to f(ay...) after
definition parameter substitution
ASSIGN ASSIGN n TO v statement number n is assigned 3.2
as the value of integer variable
v for use in an assigned GO TO
statement
BACKSPACE BACKSPACE v peripheral device u is back= 5.3
: ' spaced one record
BLOCK DATA BLOCK DATA identifies a block data sub=~ 7.3
program
CALL CALL prog invokes subroutine named prog, 7.2.2
CALL prog (u] ce) supplying arguments when re-
quired
COMMON COMMON/block1/a,b,c,/. .. variables (A,B,C) are assigned 6.1.2
to a common block and
6.1.4
CONTINUE CONTINUE no processing, target for transfers | 4.4
DATA DATA var lis’r1/va| Iist]/. . assigns initial or constant values 6.2
to variables
DEFINE FILE DEFINE FILE a](m],11,U,v]). . describes a disk file for sequential | 5.1.2
| 1/O
DIMENSION DIMENSION array (v] ,v2,v3) cee storage allocated according to 6.1.1
, dimensions specified for the array
DO DOni=m sMa,m statements following the DO up 4.3
1772773 .
to statement n are iterated for
values of integer variable i,
starting at i = m1, incrementing
by mg, terminating when i >my

See

Statement Form Effect Section

END FILE END FILE u invokes the monitor CLOSE 5.3
facility for device u

EXTERNAL EXTERNAL subprog, ... declares a subprogram for use by 7.4
other subprograms

FIND FIND(a'b) disk read/write mechanism po- 5.3
sitioned to record b of file a

FORMAT n FORMAT (field descripﬁon] ..o/ ..)| specifies conversions between 5.1.1
internal and external representation
of data :

FUNCTION t FUNCTION f(q] eed) indicates an external function 7.1.2
definition (t is an optional type
specification)

GO TO transfers control to:

() GO TOn (1) statement n 4,1.1
(2) GO TO(n],...nk),i (2) to statement ny 4.1.2
. ifi=1,
GOTO (n] rees 'nk)' to statement n
ifi=k
(3) GO TO var (3) transfers control to statement |4.1.3
number assigned to var option=-
GO TO var(n] res ’nk) ally checking that var is
GO TO var,(n] sooenk) assigned one of the labels
Ny...n
1 k

IMPLICIT IMPLICIT fype.l(a] A P the given type is assigned fo any | 6.4
variable (not mentioned in an
explicit type specification) which
begins with one of the letters
given as an argument

PAUSE PAUSE program execution interrupted and | 6.5

PAUSE number number printed, if given
READ READ(u,f) list reads a record from a peripheral 5.2.4
READ(u,f) device according to specifications
READ(u) list given in the arguments of the
READ(a'r) list statement
READ(u,f,END=n) list
READ(u,f,ERR=n) list
READ(u,f,END=n ,ERR=n) list

RETURN RETURN returns control from a subprogram 7.2.3
to the calling program

REWIND REWIND u repositions designated unit to 5.3
the beginning of the file

STOP STOP terminates program execution 4.6

STOP number

and prints number specified

See

Statement Form Effect Section
SUBROUTINE SUBROUTINE prog(c:I pees) declares prog to be a subroutine 7.2.1
subprogram and aj..., if supplied,
as dummy arguments
WRITE WRITE(u,f) writes a record fo a peripheral 5.2.3

WRITE(u,f) list

WRITE (u) list

WRITE(a'r) list
WRITE(u,f,END=n) list
WRITE(u,f,ERR=n) list
WRITE(u, f,END=n,ERR=n) list

device according to specifi-
cations given in the arguments
of the statement

EVEN
PARITY
BIT

—

——o0o0o

o o

7-BIT
OCTAL
CODE CHARACTER

000
001

002
003

004

005
006
007
010

011
012

013
014
015

016
017

020
021

022
023
024

025

NUL
SOH

STX
ETX

EOT
ENQ
ACK
BEL
BS

HT
LF

VT
FF
CR

SO
SI

DLE
DCI1

DC2
DC3
DC4

NAK

APPENDIX B
ASCIl CHARACTER SET

REMARKS

NULL, TAPE FEED, CONTROL SHIFT P.

START OF HEADING; ALSO SOM, START OF MESSAGE,
CONTROL A.

START OF TEXT; ALSO EOA, END OF ADDRESS, CONTROL B.

END OF TEXT; ALSO EOM, END OF MESSAGE, CONTROL C.

END OF TRANSMISSION (END); SHUTS OFF TWX MACHINES,
CONTROL D.

ENQUIRY (ENQRY); ALSO WRU, CONTROL E.
ACKNOWLEDGE; ALSO RU, CONTROL F.

RINGS THE BELL. CONTROL G.

BACKSPACE; ALSO FEO, FORMAT EFFECTOR. BACK-
SPACES SOME MACHINES, CONTROL H.

HORIZONTAL TAB. CONTROL I.

LINE FEED OR LINE SPACE (NEW LINE); ADVANCES PAPER
TO NEXT LINE, DUPLICATED BY CONTROL J.

VERTICAL TAB (VTAB). CONTROL K.

FORM FEED TO TOP OF NEXT PAGE (PAGE). CONTROL L.
CARRIAGE RETURN TO BEGINNING OF LINE. DUPLICATED
BY CONTROL M.

SHIFT OUT; CHANGES RIBBON COLOR TO RED. CONTROL N,

SHIFT IN; CHANGES RIBBON COLOR TO BLACK. CON-
TROL O.

DATA LINK ESCAPE. CONTROL P (DCO).

DEVICE CONTROL 1, TURNS TRANSMITTER (READER) ON,
CONTROL Q (X ON).

DEVICE CONTROL 2, TURNS PUNCH OR AUXILIARY ON.
CONTROL R (TAPE, AUX ON).

DEVICE CONTROL 3, TURNS TRANSMITTER (READER) OFF,
CONTROL S (X OFF). :

DEVICE CONTROL 4, TURNS PUNCH OR AUXILIARY OFF.
CONTROL T (FAPE; AUX OFF).

NEGATIVE ACKNOWLEDGE; ALSO ERR, ERROR. CONTROL U.

B-1

EVEN 7-BIT
PARITY OCTAL

BIT CODE CHARACTER ' REMARKS

026 SYN SYNCHRONOUS IDLE (SYNC). CONTROL V.
027 ETB END OF TRANSMISSION BLOCK; ALSO LEM, LOGICAL
END OF MEDIUM. CONTROL W.

030 CAN CANCEL (CANCL). CONTROL X.

031 EM END OF MEDIUM. CONTROLY.

032 SUB SUBSTITUTE. CONTROL Z.

033 ESC ESCAPE. PREFIX. CONTROL SHIFT K.

034 FS FILE SEPARATOR. CONTROL SHIFT L.

035 GS GROUP SEPARATOR. CONTROL SHIFT M.

036 RS RECORD SEPARATOR. CONTROL SHIFT N.

037 us UNIT SEPARATOR. CONTROL SHIFT O.

040 Sp SPACE.

041 !

042 "

043 #

044 $

045 %

046 &
(
)
*
+

O =

047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106

ACCENT ACUTE OR APOSTROPHE.

—— 0 —-00 -0 =0 —-00—-—00 -0 =m0 —-=00—0——00 —=—20 =00 ~—a OO =4O — —=O
TN OONOU A WN —=ON

MMOO®>@-wV I A~

EVEN 7-BIT
PARITY OCTAL
BIT CODE CHARACTER REMARKS

107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140

SHIFT K.
SHIFT L.
SHIFT M.

ACCENT GRAVE,

175 THIS CODE GENERATED BY ALT MODE.

176 THIS CODE GENERATED BY ESC KEY (IF PRESENT).
177 DEL DELETE, RUB OUT.

| - 7t o= " NKXEL<CHOWIOOUOZICA-"ITQ -

_ O 000 = — 00— 00 —~—00 -0 —=— 00— 00 ~0O0—==-0O0

LOWER CASE ALPHABET FOLLOWS (TELETYPE MODEL 37
ONLY).

141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160

_, O m m O OO ekt OO O
T 0353 3 —A—=Q "m0 QOO0 T Q

EVEN 7-BIT
PARITY OCTAL
BIT CODE CHARACTER REMARKS

161
162
163
164
165
166
167
170
171
172
173
174

— ~NX X g£<cCc o=

C.1 FUNCTIONS

-2

Functi Function Definition Number of Type °i
ton Name Arguments Argument Function
Absolute value:
Real ABS largl 1 Real - Real
Integer 1ABS |arg| 1 Integer Integer
Double-precision DABS |arg| 1 Double Double
Complex to real CABS c=(x2+y2)]/ 2 1 Complex Real
Conversion:

Integer to real FLOAT 1 Integer Real
Real to infeger IFIX Result is largest integer <a 1 Real Integer
Double to real SNGL 1 Double Real
Real to double DBLE 1 Real Double
Complex to real REAL 1 Complex Real
(obtain real part)
Complex to real AIMAG 1 Complex Real
(obtain imaginary part) :
Real to complex CMPLX c=Arg]+i *Ar92 2 Real Complex

- Truncation: '
Real to real AINT Sign of arg * 1 Real Real
Real to infteger INT largest integer 1 Real Integer
Double to integer IDINT <|arg| 1 Double Integer

APPENDIX C
FORTRAN-IV LIBRARY SUBPROGRAMS

Function Number of Type of
Function Name Definition Arguments Argument | Function
Remaindering:
Real AMOD The remainder 2 Real Real
Integer MOD when Arg 1is 2 Integer Integer
Double-precision DMOD divided by Arg 2 2 Double Double
Maximum value:
AMAXO0 Integer Real
AMAX]1 Real Real
MAXO0 Max(Arg] ,Argz, eed) >2 Integer Integer
MAX1 Real Integer
DMAXI1 Double Double
Minimum value:
AMINO Integer Real
AMINT1 Real Real
MINO Min(Arg] ,Argz, eed) >2 Integer Integer
MIN1 Real Integer
DMINI Double Double
Transfer of sign:
Real SIGN 2 Real Real
Integer ISIGN Sgn (Argz) *l Arg I| 2 Integer Integer
Doubl e-precision DSIGN 2 Double Double
Positive difference:
Real DIM . 2 Real Real
Integer IDIM { Arg] Mm(Arg] ,Argz)} 2 Integer Integer
Exponential:
Real EXP A 1 Real Real
Double DEXP e 1 Double Double
Complex CEXP 1 Complex Complex

Complex

Function Number of Type of
Function Name Definition Arguments Argument Function
Logarithm: ‘
Real ALOG loge (Arg) 1 Real Real
ALOGI10 logig (Arg) 1 Real Real
Double DLOG log, (Arg) 1 Double Double
DLOGI10 logqq (Arg) 1 Double Double
Complex CLOG log, (Arg) 1 Complex Complex
Square root: : 1/2
Real SQRT (Arg) 1/2 1 Real Real
Double DSQRT (Arg) 1/2 1 Double Double
Complex CSQRT c=(x+i y) 1 Complex Complex
Sine:
Real (radians) SIN 1 Real Real .
Double (radians) DSIN sin (Arg) 1 Double Double
Complex CSIN 1 Complex Complex
Cosine:
Real (radians) COsS 1 Real Real
Double (radians) DCOS cos (Arg) 1 Double Double
Complex CCOs 1 Complex Complex
Hyperbolic:
Tangent TANH tanh (Arg) 1 Real Real
_Arc - sine ASIN asin (Arg) 1 Real Real
Arc tangent ' 1 Real Real
Real ATAN atan (Arg) 1 Real Real
Double DATAN atan (Arg) 1 Double Double
quotient of ATAN2 atan (Argl/Argz) 2 Real Real
two arguments DATAN2 atan (Arg]/Argz) 2 Double Double
Complex conjugate CONJG Arg=X+i*Y, C=X~=i*Y 1 Complex Complex
Random number RAN * result is a random number between zero 1 Integer, Real
and one (uniform distribution) Real,
Double, or

C.2 SUBROUTINES

Subroutine Name

Call Format (Optional Arguments are underlined)

Effect

DATE

PDUMP

SETERR

CALL DATE (array)

CALL PDUMP (LI,U],F], . ..,Ln,Un,Fn)

CALL SETERR (CLASS, MAX)

Places today's date into the three=word array specified in the
call. The date consists of left=justified ASCII characters in
the form:

mmddyy

where mm is a 2-digit month, dd a 2-digit day, and yy is a
2-digit year.

Causes specified portions of core to be dumped.

L1 and U] are variables giving the limits of the dump (either
may be upper or lower limits).

Fy is an integer indicating the format in which the dump is to
be performed:

0 = octal, 1 =real, 2 = integer, and 3 = ASCII.

If no limits are given, the entire job area is dumped. If one
limit is given, core is dumped from that point to the end of
the job area. If F is not given, octal is assumed.

Control is returned to the calling program when the dump is
completed.

Resets maximum occurrence count for specified class of errors.
The argument CLASS is an integer indicating the error class
affected. MAX is an integer with the following meanings:

>0 = log until MAX

0 = log and ignore
-1 =no log and ignore
=2 =no log and exit
-3 = immediate abort

-2

Subroutine Name

Call Format (Optional Arguments are underlined)

Effect

SETFIL

CALL SETFIL (n, FILE, ERR, DEV, Un,
ID, PC, CS, RECL, NREC)

NOTE: Optional arguments can only be
provided in sequence as above; that is,
any trailing set may be omitted. n and
FILE are always required.

Overrides default values for a FORTRAN device assignment.
Arguments are as follows:

n = logical device number
FILE = file name and extension
ERR = a variable into which both error returns
from this routine and from 1/O with the ERR
option will be placed
DEV = a device mnemonic (e.g., DT or LP)
Un = unit number (e.g., 1 if device DT1)
ID = user ID code -
PC = protect code
CS =1 for non-random or

2 for random
RECL = record length for CS=1
NREC = number of records for CS=1

APPENDIX D

FORTRAN WORD FORMATS

D.1 INTEGER FORMAT

Sign
0+
1 -

Binary number

15

14

In two=word format, an integer is assigned two words. Only the high-order word is significant.

D.2 REAL FORMAT

word

word
n+2

Sign .

0+ Binary excess 128 exponent hr;%llﬁclrsier

1 -

15 14 76 0
Low order-mantissa

15 0

This format is limited to normalized numbers. Since the high-order bit of the mantissa is always 1, it

is discarded, giving an effective precision of 24 bits.

D.3 DOUBLE-PRECISION FORMAT

word

Sign high-order
0+ Binary excess 128 exponent mantissa
1-

15 14

76 0

word .
Low order mantissa

n+2
15

word Lower orde t

4 wer order mantissa
15

word

n+6 Lowest order mantissa
15

The effective precision is 56 bits.

D.4

D.5

COMPLEX FORMAT

Sign high-order
word 0+ Binary excess 128 exponent mantissa
n 1=
15 14 76
word Low order mantissa
n+2
15
word Sign high-order
") 0+ Binary excess 128 exponent mantissa
1 =
15 14 76
word Low order mantissa
6 order iss
15
BYTE FORMAT
unspecified data item,

15 87

D-2

Real
Part

Imaginary
Part

D.6 HOLLERITH FORMAT

word

: charl char2

15 ‘ 87

wgrd char n (n5255) 0

15 87

D.7 LOGICAL FORMAT

True 1 7 7 7 7

15

False 0 0 0 0 0

15

D-3

Subprogram Name

$IR
$ID

$DR

$RD

$RI

$D1

$ADR

$SBR

$ADD

$SBD

$CMR

$CMD

APPENDIX E
INTERNAL SUBPROGRAMS

Function

FLOAT THE INTEGER ON THE TOP OF THE STACK. (65 words)

ENTRY INTO $IR WHICH FIRST MOVES THE ARGUMENT DOWN
TWO WORDS (FILLING IN WITH ZEROS) BEFORE EXECUTING
THE $IR CODE.

PUT THE HIGH ORDER WORDS OF THE DOUBLE PRECISION
QUANTITY ON THE TOP OF THE STACK TRUNCATING TO REAL
FORMAT. (5 words) .

APPEND A DOUBLE WORD OF ZEROS TO THE REAL QUANTITY
ON THE TOP OF THE STACK. (10 words)

TRUNCATE AND FIX THE REAL NUMBER OF THE TOP OF THE
STACK. (40 words) '

ENTRY INTO $RI WHICH MOVES THE ARGUMENT UP THE STACK
TWO WORDS (DISCARDING THE LOW ORDER PART) BEFORE

- EXECUTING THE $RI CODE,

REPLACE THE TWO REAL NUMBERS ON THE TOP OF THE STACK
WITH THEIR SUM. NO CODES WILL BE SET. (135 words)

ENTRY IN $ADR WHICH NEGATES THE NUMBER ON TOP OF THE
STACK BEFORE DOING THE ADD.

REPLACE THE TWO DOUBLE PRECISION NUMBERS ON THE TOP
OF THE STACK WITH THEIR SUM. NO CODES WILL BE SET.
(210 words)

ENTRY IN $ADD WHICH NEGATES THE NUMBER ON THE TOP OF
THE STACK BEFORE DOING THE ADD.

COMPARE CORRESPONDING WORDS OF THE TWO ITEMS ON THE
STACK UNTIL A MISMATCH 1S FOUND (IF ONE EXISTS). CLEAR
THE STACK AND RETURN THE Z AND N CODES DEFINED IN
130-309-001 SECTION 3.1.2.2. (25 words)

THIS IS THE SAME AS $CMR EXCEPT THAT THE ITEMS ARE DOUBLE

PRECISION. (30 words)

(Continued on next page)

E-1

Subprogram Name

$ISR

$ISD
$MLI

$MLR
$MLD

$DVI

$DVD

$EXP

Function

TEST AND FLUSH THE REAL NUMBER ON TOP OF THE STACK AND
RETURN TO @(R4) IF IT IS NEGATIVE, @(R4+2) IF ZERO, AND
@(R4+4) IF POSITIVE. (20 words)

ENTRY IN $ISR FOR DOUBLE PRECISION.

REPLACE THE TWO INTEGERS ON THE TOP OF THE STACK WITH
THEIR PRODUCT. (50 words)

REPLACE THE TWO REAL NUMBERS ON THE TOP OF THE STACK
WITH THEIR PRODUCT. (100 words)

REPLACE THE TWO DOUBLE PRECISION NUMBERS ON THE TOP OF
THE STACK WITH THEIR PRODUCT. (170 words)

REPLACE THE TWO INTEGERS ON THE TOP OF THE STACK WITH
THE INTEGER PART OF THE QUOTIENT OF THE TOP STACK ITEM
DIVIDED INTO THE SECOND ITEM. A ZERO DIVISOR RESULTS
IN A CALL TO ERROR. (125 words)

REPLACE THE TWO DOUBLE PRECISION NUMBERS ON THE TOP
OF THE STACK WITH THEIR QUOTIENT. A ZERO DIVISOR CALLS
ERROR. (210 words)

EXPAND EXP (X) IN A TAYLOR SERIES AND RETURN REAL RESULT
IN RO, RI1.

E-2

APPENDIX F
ERROR MESSAGES

Format of the message is:

FORTccennn - message text
where ccc is the class number in octal ASCII and nnn is the message number in octal ASCII.

If no message file exists, the format reduces to FORTccennn. A subroutine trace back will follow each

message .
Class 0

0 INVALID ERROR CALL

1 NO SPACE TO DO 1/O

2 SUBROUTINE DIRECTLY OR INDIRECTLY REFERENCES ITSELF
Class 1

0 VALUE OUT OF BOUNDS (COMPUTED OR ASSIGNED GO TO)

1 DEVICE PARITY

2 CHECKSUM/PARITY ERR OR END OF DATA ERROR (RANDOM)

3 1/0 ERROR

4 EOF/EOM

5 UNABLE TO ALLOCATE CONTIGUOQOUS FILE

6 DEFINE FILE NOT DONE (RANDOM)

7 DEFINE FILE DONE (NOT RANDOM)

10 INVALID PROTECT CODE

11 FILE DOES NOT EXIST/OR ALREADY OPEN

12 UNABLE TO OPEN

13 COMPATIBILITY ERROR

14 INVALID DEVICE NUMBER

15 INVALID RECORD NUMBER (RANDOM)

F-1

Class 2

FORMAT HAS ITEMS AND NO CONVERSION SPECS
PARENTHESES NESTING TOO DEEP IN FORMAT
CONVERSION ERROR

FORMAT SYNTAX ERROR

REFERENCE OUTSIDE OF RECORD BOUNDARIES

PWN—=O

PART 1

A

Argument definition, 1-1
Arithmetic expression precedence, 2-6
parenthesis usage, 2-6, 2-7
Arithmetfic expressions
combination of elements, 2-5
logical, 2-7
Arithmetic
assignment statements, 3-1
operators, 2=5
statements, 1-2, 7-1
Arrays, 6-1
dimensions, 7-2, 7-3
dummy, 6-2
FORMAT statement, 5-2
subscripted variables, 2-5
variables, 2-5, 5-10, 6-2
ASCII character string
FORMAT statement, 5-2
ASSIGN statement, 3-3
Assignment statements, 3~1
Arithmetic, 3-1
ASSIGN, 3-3
conversion rules, 3-2
Asterisk (*) usage in DATA statements, 6-6

B

BACKSPACE statement, 5-13
Blank common, 6-3
variables, 6-5
Blanks
in output record, 5-8
statements, 1-3
BLOCK DATA
statement, 7-3, 7-4
subprogram, 7-4
Block names, 6-2, 6-4
BYTE or LOGICAL*1 type statement, 6-7

C

CALL statement, 7-4

Carriage control in FORMAT statement, 5-7
Character set, 1-1

Character skipping on input record, 5-8
Comment line, 1-3

INDEX

FORTRAN 1V COMPILER

COMMON blocks, 7-5
Common block extension, 6-4
Common blocks, 6-2

extension, 6-4

length, 6-3
COMMON statement, 6-2, 7-3
Complex expressions in IF statement, 4-3
Complex quantities, numeric fields, 5-5
COMPLEX type statement, 6-7
Constants, logical, 2-7
Continuation lines, 1-2
CONTINUE statement, 4-6
Control statements, 1-2, 4-1

CONTINUE, 4-6

DO, 4-4

GO TO (assigned) 4-2

GO TO (computed), 4-2

GO TO (unconditional), 4-1

IF (arithmetic), 4-3

IF (logical), 4-4

PAUSE, 4-7

STOP, 4-7
Constants, 2-1

Double-precision, 2-2

Fixed point, 2-1

Hollerith, 2-4, 2-7

Integer, 2-1, 2-7

Logical, 2-7

Octal, 2-2, 2-7

Real, 2-1

Single precision Floating Point, 2-1
Conversion code, numeric field, 5-3

Conversion rules for assignment statements, 3-2

D

DATA statement, 6-5

Data description statements, 5-1
DEFINE FILE, 5-9
FORMAT, 5-1

Data transmission statements, 1-2, 5-1
Description, 5-1
Device control, 5-12
Input/output, 5-9

Data valuves, 2-1

DEFINE FILE statement, 5-9, 5-12, 5-13

Device control statements, 5-13

DIMENSION statement, 6-1, 7-3

INDEX (Cont)
PART I FORTRAN IV COMPILER

DO statement, 4-4 FUNCTION statement, 7-2, 7-3, 7-4
extended range, 4-6 Function
nested, 4-5 arithmetic, 2-6
normal exit, 4-5 definitions, 7-1
range, 4-4 references, logical, 2-7

terminal statements, 4-5
Double precision constants, 2-2

DOUBLE PRECISION or REAL*8 type state- G
ment, 6-7

Dummy arguments in GO TO statement, 4-1
arithmetic statement functions, 7-2, 7-3 assigned, 4-2
SUBROUTINE statements, 7-3 computed, 4-2

Dummy arrays, 6-2 unconditional, 4-1

E H

End of file condition during input, 5-13 H conversion, 5-6, 5-7

END FILE statement, 5-14 Hollerith

END statement, 1-2 fields, 5-6

Equal symbol (=) usage, 3-1 value, 2-4, 2-7

EQUIVALENCE statement, 6-3, 6-4, 7-3 value in DATA statement, 6-5

Error during input, 5-13
Expressions, 2-5

arithmetic, 2-5 1

logical, 2-7

mixed mode, 2-7 IF statement, 4-3

numeric, 2-6 arithmetic, 4-3
External functions, 7-1 logical, 4-3
EXTERNAL statement, 7-5 Implicit statements, 6-7

Indexed variables, 5-10
Input/Output statements, 5-10

F lists, 5-10
READ statement, 5-12
Fields, 1-2 Records, 5-11
Field specifications, FORMAT statement, 5-2 WRITE statement, 5-11
blank, 5-3, 5-7 INTEGER or INTEGER*2 type statement,
Hollerith, 5-6 6-7, 6-8
logical, 5-6 Integer
numeric, 5-3 constants, 2-1
repetition, 5-3 variables, 2-4
Field width, numeric, 5-4 Internal
FIND statement, 5-13 functions, 7-1
Fixed point constants, 2-1 subprograms summary, 7-1

Format, punched card line, 1-2
FORMAT statement, 1-2, 5-1
carriage control, 5-7
Hollerith fields, 5-6
logical fields, 5-6
numeric fields, 5-3
record layout specification, 5-8

INDEX (Cont)
PART I FORTRAN IV COMPILER

L R
Language components, 1-1 Range of DO statement, 4-4
Line, Extended range, 4-6
continuation field, 1-2 READ statement, 5-12
feed, 1-2 direct access, 5-13
format, punched card, 1-2 formatted, 5-12
Lists, input/output, 5-10 unformatted, 5-13
Literal constants in DATA statement, 6-5 REAL or REAL*4 type statement, 6-7, 6-8
Logical REAL*8 type statement, 6~7
arithmetic expressions, 2-7 Real
constants, 2-7 constants, 2-1
expressions, 2-7 variables, 2-4
fields, 5-6 Record description, 5-1, 5-2
function reference, 2-7 Records, input/output, 5-11
operations precedence, 2-9 repositioning, 5-11
. operators, 2-7 Repetition of items in DATA statements, 6-6
variables, 2-7 Repositioning input/output records, 5-11
LOGICAL type statement, 6-7 RETURN statement, 7-4
REWIND statement, 5-14
N
S
Nested DO loops, 4-5, 4-6
Normal exit, DO loop, 4-5 Scalar variable, 2-5, 6-2
Numeric fields, 5-3 Scale factor, numeric fields, 5-5
complex quantities, 5-5 Single precision floating point constants, 2-1
conversion code, 5-3 Slash (/) usage, 5-1
scale factor, 5-5 Source program, definition and description, 1-1
width, 5-4 Spacing control character, 5-8
Numeric operations precedence, 2-6 Specification statements, 1-2, 6~1
COMMON, 6-2
: DATA, 6-5
o DIMENSION, 6-1
EQUIVALENCE, 6-3
Octal constants, 2-2, 2-7 EQUIVALENCE and COMMON, 6-4
Operators implicit, 6-7
arithmetic, 2-5 type declaration, 6-7
logical, 2-7 Statements,
' ASSIGN, 3-3
assignment, 3-1
P BLOCK DATA, 7-4
CALL, 7-4
Parentheses usage, DEFINE FILE, 5-9, 5-12
arithmetic expressions, 2-6, 2-7 definition, 1-1
FORMAT statement, 5-2 device control, 5-13
PAUSE statement, 4-6 : END, 1-2
Program structure, 1-2 EXTERNAL, 7-5
Punched card line format, 1-2 field, 1-2

PART I

Statements (cont)
FORMAT, 1-2
FUNCTION, 7-2
Input/output, 5-10
number field, 1-2
READ, 5-12
RETURN, 7-4
STOP, 4-7
SUBROUTINE, 7-3
types, 1-2
WRITE, 5-11
STOP statement, 4-7
Storage specification, 6-1
Structure of program, 1-2
Subexpression types, 2-8
Subprogram statements, 1-2, 7-1
Functions, 7-1
subroutines, 7-3
SUBROUTINE statement, 7-3, 7-4
Subroutine subprograms, 7-3
Subseripted arrays, 2-5
Symbolic name, 2-4

INDEX (Cont)
FORTRAN IV COMPILER

TAB, 1-2
Terminal statements, DO loop, 4-5
Type declaration statements, 6-7

Y
Variables, 2-4
array, 2-5
blank common, 6-5
logical, 2-7
scalar, 2-5
w

WRITE statement, 5-11

INDEX

PART Il FORTRAN Operating Environment

A

ASCII character set, B-1

B

Buffers, input/output, 3-3

C

Character set, ASCII, B-1

Character, first of record, 3-1
Command string syntactical error, 1-2
Compilation, 1-1

Control words, 3-1

D

Device assignments, 3-2
Device Table entry, 3-2, 3-3

Error

in command siring, 1-2

messages, F-1

processing, Object Time System, 1-3
Exit from subroutine and function calls, 2-3

File structures, 3-1

Formats, summary of word, D=1
Formatted file structures, 3-1
Functions, summary, C~1

I

Input/output Object Time System, 3-1
buffers, 3-3
device assignment, 3-2
file structures, 3-1
routines, 1-2

X-5

L

Library subprograms summary, C-1
Load module preparation, 1-2
Logical device assignment, 3-2

M

Mathematical subroutines Object Time Sys-~
tem, 1-2 _

Monitor interface routines, Object Time Sys-
tem, 1-2

N

Number or pound symbol (*) usage, 1-1
0]

Object Time System (OTS), 1-2

Ovutput file specifications, 1-1
extension, 1-1

P

Peripheral devices, 3-2

Polish mode of execution, 2-3

Pound or number symbol (*) usage, 1-1
Preparing an object module, 1-1

R

Random access routines, 3-1

READ statement, 3-3

Record
control words, 3-1
layout specification, 5-8
length, 3-1

Register storage, 2-1

Restart of compilation, 1-2

INDEX (Cont)
PART II FORTRAN Operating Environment

S U

Service routines, Object Time System, 1-2 Unformatted file structures, 3-1
Standard peripheral devices, 3-2
Start of compilation, 1-1
restart, 1-2 w
Statement summary, A-1 '
Subprograms, Object Time System, 2-1 Word formats summary, D-1
summary, C-1 WRITE statement, 3-3
summary of internal, E-1
Subroutine
calls, 2-1
summary , C-4
Summary of
functions, C-1
internal subprograms, E-1
statements, A-1
subprograms, C-~1
subroutines, C-4
word formats, D=1
Syntactical error in command string, 1-2

X-6

PDP-11 FORTRAN IV Compiler and
Object Time System
Programmer's Manual
DEC-11~KFDA-D

May 1971

READER'S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback -~ your critical evaluation of
this manual.

Please comment on this manual's completeness, accuracy, organization, usability and read-
ability.

Did you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Please state your position. Date:
Name: Organization:
Street: Department:

City: State: Zip or Country

——————————————— — FoldHere - - - — - - — = = — — — — — — — —— _

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

dlilgliltlall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

Postage will be paid by:

digital equipment corporation

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1_001
	1_002
	1_003
	1_004
	1_005
	1_006
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_2-01
	1_2-02
	1_2-03
	1_2-04
	1_2-05
	1_2-06
	1_2-07
	1_2-08
	1_2-09
	1_2-10
	1_3-01
	1_3-02
	1_3-03
	1_3-04
	1_4-01
	1_4-02
	1_4-03
	1_4-04
	1_4-05
	1_4-06
	1_5-01
	1_5-02
	1_5-03
	1_5-04
	1_5-05
	1_5-06
	1_5-07
	1_5-08
	1_5-09
	1_5-10
	1_5-11
	1_5-12
	1_5-13
	1_5-14
	1_6-01
	1_6-02
	1_6-03
	1_6-04
	1_6-05
	1_6-06
	1_6-07
	1_6-08
	1_7-01
	1_7-02
	1_7-03
	1_7-04
	1_7-05
	1_7-06
	2_001
	2_002
	2_003
	2_004
	2_1-01
	2_1-02
	2_1-03
	2_1-04
	2_2-01
	2_2-02
	2_2-03
	2_2-04
	2_3-01
	2_3-02
	2_3-03
	2_3-04
	A-1
	A-2
	A-3
	A-4
	B-1
	B-2
	B-3
	B-4
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	D-1
	D-2
	D-3
	D-4
	E-1
	E-2
	F-1
	F-2
	index-1
	index-2
	index-3
	index-4
	index-5
	index-6
	replyA
	replyB
	xBack

