
DEC-II-EEDA-D

PDP - 1 1

E D I T - lIT EXT E D ITO R

PROGRAMMER'S MANUAL

for the

Disk Operating System

For additional copies, order No. DEC-II-EEDA-D from Digital Equipment

Corporation, Direct Mail, Building 1-1, Maynard, Massachusetts 01754

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

First Printing, May 1971

Your attention is invited to the last two pages of
this document. The "How to Obtain Software Informa
tion" page tells you how to keep up-to-date with
DEC's software. The "Reader's Comments" page, when
filled in and mailed, is beneficial to both you and
DEC; all comments received are acknowledged and are
considered when documenting subsequent documents.

Copyright <£> 1971 by Digi tal Equipment Corporation

This document is for information purposes and is
subject to change without notice.

Associated Documents:

PDP-II Disk Operating System Monitor,
Programmer's Handbook, DEC-ll-MWDA-D

PDP-II PAL-llR Assembler,
Programmer's Manual, DEC-ll-ASDB-D

PDP-II ODT-IlR Debugging Program,
Programmer's Manual, DEC-II-OODA-D

PDP-II Link-II Linker and Libr-ll Librarian,
Programmer's Manual, DEC-Il-ZLDA-D

PDP-II PIP, File Utility Package,
Programmer's Manual, DEC-ll-PIDA-D

PDP-II FORTRAN IV Compiler and Object Time System,
Programmer's Hanual, DEC-ll-KFDA-D

The following are trademarks of Digital Equipment
Corporation:

DEC

FLIP CHIP

DIGITAL (logo)

UNIBUS

ii

PDP

FOCAL

COMPUTER LAB

OMNIBUS

PRE F ACE

This manual describes the features and operation of the

Edit-II Text Editor for the POP-II Disk Operating

System (DOS). The manual assumes familiarity with the

Disk Operating System Monitor (see PDP-II Disk Operating

System Monitor, Programmers Handbook, DEC-II-MWDA-D).

In addition to the Edit-II Text Editor and the Monitor,

the Disk Operating System software includes:

PAL-IIR Assembler

ODT-IIR Debugging Program

PIP, File utility Package

Link-II Linker and Libr-ll Librarian

FORTRAN IV

iii

EDIT-11

TABLE OF CONTENTS

CHAPTER 1 EDIT-11

CHAPTER 2 COMMAND MODE AND TEXT MODE

COMMAND SYNTAX CHAPTER 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

The Character Location Pointer (Dot)

Mark

Character-Oriented Command Properties

Line-Oriented Command Properties

The Page Unit of Input

Arguments

Command Strings

Error Messages

CHAPTER 4

4.1

4.2

INPUT/OUTPUT

Primary Input and Output

Secondary Input and Output

CHAPTER 5 COMMANDS

5.1 Input and Output Commands

5.1.1 Read and Edit Read

5.1.2 List, Write and Edit Write

5.1.3 Next

5.1.4 Form Feed and Trailer

5.2 Editing Commands

5.2.1 Commands to Move Dot and Mark

5.2.1.1 Beginning

5.2.1.2 Jump and Advance

5.2.1.3 Mark

5.2.2 Search Commands

5.2.2.1 Get

5.2.2.2 wHole

5.2.2.3 Edit wHole

5.2~2.4 Position

5.2.2.5 Edit Position

5.2.3 Commands to Modify the Text

5.2.3.1 Insert

5.2.3.2 Delete and Kill

v

Page

1-1

2-1

3-1

3-1

3-1

3-1

3-1

3-2

3-2

3-3

3...;4

4-1

4-1

4-1

5-1

5-1

5-1

5-2

5-2

5-3

5-3

5-3

5-3

5-3

5-4

5-4

5-4

5-4

5-5

5-5

5-6

5-6

5-6

5-7

Page

CHAPTER 5 (Cont'd)

5.2.3.3 Change and eXchange 5- 7

5.2.4 Utility Commands 5-9

5.2.4.1 Save 5-9

5.2.4.2 Unsave 5-9

5.2.4.3 Execute Macro 5-9

5.2.4.4 Edit Open 5-10

5.2.4.5 End File 5-10

5.2.4.6 EXit 5-10

CHAPTER 6 OPERATING INSTRUCTIONS 6-1

6.1 Starting 6-1

6.2 Restarting 6-2

6.3 Finishing an Edit 6-2

6.4 Error Recovery 6-2

6.5 Procedure with Low-Speed Punch 6-3

CHAPTER 7 IMPLEMENTATION NOTES 7-1

7.1 Macro Usage 7-1

7.2 Delimiter Usage 7-2

7.3 Subsidiary I/O 7-2

7.4 Save and Unsave 7-3

7.5 Creating a New File 7-3

7.6 Using EXit 7-3

Appendix A. Error Diagnostics A-I

Appendix B. Commands B-1

vi

CHAPTER 1

EDIT-II

The PDP-II Disk Editor (Edit-II) is a text editing program for use

with the PDP-II Disk Operating System. Operated by user commands from

the keyboard, Edit-II will read ASCII files from any device, make di

rected changes, and write on any device. In addition to basic editing

functions, Edit-II provides for command macros and multiple input and

output files.

After initialization, Edit-II indicates readiness to accept a

command string by printing an asterisk (*). The user, through approp

riate commands typed on the keyboard, causes Edit-II to (1) read a

"pagel! of text from the input file, (2) locate text in the buffer to

be changed, (3) execute and verify changes, (4) output the page on

the output file, and (5) proceed in the same manner to the end of his

input file. After the last page of input is processed, the user closes

his output file and returns to DOS Monitor control. The basic edit

ing process above is quite flexible and made simple by Edit-II's large

set of commands.

Each command to Edit-ll consists of one or two letters. Commands

are typed in a string and sent to Edit-II as a command string with ap

propriate arguments and text objects included. Edit-II executes the

command string, acting on the contents of its internal Page Buffer, in

which the input source is stored.

The basic editing process can be divided into three sequential

steps:

1. Reading of input text into a buffer internal to Edit-II.

2. Changing the text stored in the buffer.

3. Outputting the revised text to a new file.

1-1

CHAPTER 2

COMMAND MODE AND TEXT MODE

Whenever Edit-II prints an * on the teleprinter, it is waiting to re

ceive a command string, and is said to be in command mode. While most

commands operate exclusively in command mode, there are eight commands

that require additional text (the text object) to operate upon. Hence,

although one can delete n characters by simply typing nD, the command

to insert text, I, must be followed by the text to be inserted. the

text object.

There are two ways to provide the required text object for a com

mand. If the text object is small enough, Edit-II can accept text in

command mode if it is separated from the rest of the command string by

delimiters. If the text object is long, or contains carriage return

or line feed characters, then the user must cause Edit-II to enter

text mode.

Edit-II processing begins in command mode. When you type a com

mand string, no action occurs until you complete the string by typing

the RETURN key (symbolized as <CR». What happens next depends on the

last charac·ter in the command string. If the last character in the

string is a command requiring a text object, Edit-II will enter text

mode. If the last character is not a text command, Edit-II expects to

find any necessary test objects embedded in the command string itself,

and will stay in command mode as it executes the command string.

Text can be accepted in command mode if the text contains no car

riage return or line feed characters, and is small enough to fit on a

single typed line with the command string. When Edit-II finds a text

command which is not the last command in the command string, it looks

at the next character in the string as a text delimiter. All charac

ters between this and the next occurrence of the delimiter are con

sidered the text object for the command. Thus, any ASCII character

which does not appear in the text object is a valid delimiter.

The following example inserts OBJECT, then prints
the entire buffer on the teleprinter (B/L). Note the
delimiters (#) of the text object (OBJECT) for the
Insert command (I).

2-1

~I#OBJECT# B/L

If the text object is lengthy or contains carriage return
or line feed characters, it can only be accepted if Edit-
11 is in text mode. To enter text mode, type the text
command of interest as the last character in the command
string. Then type the RETURN key. When Edit-ll executes
this command, it will enter text mode, and accept text in
put. It continues to accept text until the user terminates
text mode and reenters command mode by typing the LINE FEED
key (symbolized as <LF».

Note that typing the RETURN key always causes the physical
return of the printing head to the beginning of the line,
and automatically generates aline feed, thereby advancing
the carriage to a new line. In text mode, the RETURN key
serves these mechanical functions, allowing you to continue
typing at the beginning of a new line, and at the same time
enters a carriage return and line feed character into the
text.

These are both counted as characters even though they do
not print. When you wish to terminate text mode and re
enter command mode, you must type the LINE FEED key. A
typed line feed is not considered to be part of the text
unless it is the first character entered in text mode.

The following example inserts three lines of text into
the buffer by entering text mode. Note that Edit-ll sig
nifies its return to command mode by printing an *

*1 <CR>

BLOOP:

<LF>

*

MOV
BIT
BNE

#17~,0~, (R3)+
(R4)+,MASK

BLOOP

<CR>
<CR>
<CR>

The commands which require text objects are Insert, Get, wHole,

Edit wHole, Position, Edit Position, Change and eXchange. (Capital

ized letters represent the actual commands typed.)

2-2

CHAPTER 3

COMMAND SYNTAX

3.1 THE CHARACTER LOCATION POINTER (DOT)

Almost all Edit-II commands function with respect to a movable refer

ence point, Dot. This character pointer is normally located between

the most recent character operated upon and the next character; and, at

any given time, can be thought of as "where Edit-II is" in your text.

As will be seen shortly, there are commands which move Dot anywhere

in the text, thereby redefining the "current location" and allowing

greater facility in the use of the other commands.

3.2 MARK

In addition to Dot, a secondary character pointer known as Mark also

exists in Edit-II. This less agile pointer is used with great effect

to Mark or "remember" a location by moving to Dot and conditionally

remaining there while Dot moves on to some other place in the text.

Thus it is possible to think of Dot as "here" and Mark as "there".

Positioning of Mark, which is referenced by means of the argument @,

is discussed below in several commands.

3.3 CHARACTER-ORIENTED COMMAND PROPERTIES

Many Edit-II commands are character-oriented; that is, the argument to

the command specifies the number of characters in the Page Buffer the

command is to act on. Hence, the number of characters specified by

the argument n is the same in the forward (n) and backward (-n) direc

tion. Carriage Return and line feed characters embedded between text

lines are counted in character-oriented commands, and are indistinguish

able from other characters.

3.4 LINE-ORIENTED COMMAND PROPERTIES

Edit-II recognizes a line as a unit by detecting a line terminator in

the text. This means that ends of lines (line feed or form feed

characters) are counted in line-oriented commands. This is important

to know, particularly if Dot, which is a character location pointer,

is not pointing at the first character of a line.

In such a case, an argument n will not affect the same number of

lines (forward) as its negative (backward). For example, the argument

3-1

-1 applies to the character string beginning with the first character

following the second previous end-of-line character and ending at Dot.

Argument +1 applies to the character string beginning at Dot and end

ing at the first end-of-line character. If Dot is located, say, in

the center of a line, notice that this would affect 1-1/2 lines back

or 1/2 line forward respectively.

Example of List Commands -IL and +IL:

Text

CMPB ICHAR,#~33
BEQ $ALT
CMPB ~CHAR,#175
BNE./ PLACE

\

\"Dot is here

3.5 THE PAGE UNIT OF INPUT

Command

*-IL

*+lL

Printout

BEQ $ALT
CMPB I
----fl~~ Dot remains

JC,_#_l~.-,~.!lere

Input files to Edit-II are divided into smaller, more manageable seg

ments called IIpages ll
• A page is terminated, and therefore defined, by

a form feed (CTRL/FORM on keyboard) in the source text whenever a page

division is desired. Although the unit of output is the line, the

unit of input to Edit-II is the page, and in order to make an ASCII

file more usable, the user divides it into small segments by inserting

form feeds in desired places before output occurs. Since more than one

page of text can be in the buffer at the same time, it should be noted

that the entire contents of the Page Buffer are available for editing.

3 . 6 ARGUMENTS

Some Edit-II commands require an argument to specify the particular

portion of text to be affected by the command or how many times to per

form the command. In other commands this specification is implicit

and arguments are not allowed.

The Edit-II command arguments are described as follows:

1. n stands for any number from I to 32767 decimal and
may, except where noted, be preceded by a + or -. If
no sign precedes n, it is assumed to be a positive
number.

Where an argument is acceptable, its absence implies
an argument of 1 (or -1 if a - is present). The role
of n varies according to the command it is associated
with.

3-2

2. ~ refers to the beginning of the current line.

3. @ refers to a Marked (designated) character loca
tion (see Section 3.2) .

4. I refers to the end of text in the Page Buffer.

The roles of all arguments will be explained further with the corre

sponding commands which qualify them.

3.7 COMMAND STRINGS

A command string to Edit-II consists of one or more\ commands typed on

the same line. Spaces are not allowed between a command and its as

sociated argument, although spaces may be inserted between commands

themselves in the command string. The command string, including em

bedded text objects, must be less than 72 characters and is terminated

by typing ,the RETURN key.

NOTE

Caution must be exercised when using spaces in text
commands. If a space separates a text command from
its object, the space is considered the delimiter.
Hence:

1. I OBJECT B IL is legal.

2. I #OBJECT#B IL will use #OBJECT#B as the text
object.

3. I !OBJECT!B/L is illegal because there is no
second delimiter.

The following are all legal command strings:

*B IL B G#OBJECT# <CR>

~B/L BG#OBJECT#I#TEXT# B/L <CR>

*BSKB 3L <CR>

*- 3J -4C#TEXT# f)A L <CR>

When ,the user types a command string to Edi t-ll, nothing happens

until he types the RETURN key. Upon receipt of the return character,

Edit-II starts at the beginning of the command string and processes the

commands one at a time. Should an error be encountered in the middle

of the string, those commands before the error would be successfully

completed, and those following the command in error would not be exe

cuted.

3-3

3.8 ERROR MESSAGES

Whenever Edit-II receives a syntactically incorrect command, or cannot

execute a command properly, it returns an error message of the form:

Xnnn where X is either an S (System error)
or W (Warning) and nnn is a numerical
error code. (See Appendix A.)

If the error occurs after the first command in a command string,

Edit-II will follow the error code with a second line. The second

line will be a copy of the command string being executed, with a

? following the character where Edit-II found the error. The commands

printed completely were executed and the commands not printed were

not executed. Edit-II then prints an * and awaits another command

string.

Example:

*B /L G#TEXT# 6EF I#MORE#
W314 ~~~~~~
B /L G#TEXT# 6EF?
*

<CR>

In most cases, Edit-II performs no further action on receipt of

an illegal command. In effect, the command string is truncated at

the error point.

3-4

CHAPTER 4

INPUT/OUTPUT

When Edit-ll is inLtialized, it asks for a command string for the Com

mand String Interpreter which serves to specify the input and output

devices and files it will use. In this command string, the user must

specify a primary output file, and may specify a primary input file

and secondary input and output files if desired. (See section 6.1.)

4.1 PRIMARY INPUT AND OUTPUT

If two input files are specified, the first one specified is the pri

mary input file. This file is the ASCII file you want to edit, and can

only be read. The first output file specified'is the primary output

file and it is into this file that corrected text will be written.

Essentially, Edit~ll will transform the primary input file into the

primary output file under user direction. If the primary input and

output files have the same name and are on the same device, Edit-ll

creates the file EDITOR.TMP for output. When this file is closed (by

the EX or EF command), the input file is renamed with .BAK as its ex

tension. The output file, EDITOR.TMP is then renamed to the desired

name. This backup facility is automatic, but it can be suppressed with

the /B switch. (See Section 6.1.)

NOTE

Do not create a file of your own with the name
EDITOR.TMP. It will be deleted the next time
Edit-ll needs the name.

4.2 SECONDARY INPUT AND OUTPUT

If a second input or output file (or both) is specified, Edit-ll will

allow text to be read or written from these files also. These files

are utility files, designed to ease the process of editing. They are

controlled by commands distinct from primary input and output commands.

All secondary input/output commands begin with the letter E (ER, EW,

EH, EP), while all primary input/output commands are one-letter com

mands.

4-1

CHAPTER 5

COMMANDS

5.1 INPUT AND OUTPUT COMMANDS

Five commands are available for reading in a page of text: The Read

and Edit Read commands (section 5.1.1) are specialized input commands;

the Next command (section 5.1.3) reads in a page after writing out

the previous page; and the wHole and Edit wHole commands (sections

5.2.2.2 and 5.2.2.3) read in and write out text as part of a search

for a specified character string.

OutpU"t commands either list text on the teleprinter or write text

into an output file. The List command causes specified lines of text

to be output to the teleprinter so that they may be examined. Write

commands (Next, wHole, and Edit wHole also perform input), provide for

the output of specified pages, lines, form feeds (for changing the

amount of data that constitutes a given page), and leader/trailer for

paper tape~ Note that the process of outputting text does not cause Dot

to move.

5.1.1 Read and Edit Read

Two ways of getting text into storage so that it can be edited are by

means of the Read (R) and Edit Read (ER) commands. The command R causes

a page of text to be read from the primary input file, while the com

mand ER reads a page from the secondary input file. The read text is

appended to the contents (if any) of the Page Buffer.

Text will be read in until either:

1. A form feed character is encountered;

2. The Page Buffer is 128 characters from being filled,
or a line feed is encountered after the buffer has be
come 5~~ characters from being full;

3. An end of data is detected on the input device.

Following executing of an R command, Dot and Mark will be located at

the beginning of the Page Buffer.

An 8K system can accommodate about 4~~~ characters of text. All

5-1

additional core memory is available for text storage, i.e., about 8~~~

characters of text for each additional core memory bank.

NOTE

An attempt to overflow the storage area will cause
the command (in this case, R) to stop executing. A
W3~3 error message will be printed. No data will be
lost.

5.1.2 List, Write and Edit Write

Output commands List, Write, and Edit Write can be described together,

as they differ only in the device and file addressed. List (L) outputs

to the teleprinter, Write (W) outputs to the primary output file, and

Edit write (EW) outputs to the secondary output file.

nL Lists
nW Writes on
nEW Writes on

-nL Lists
-nW Writes on
-nEW Writes on

~L Lists
~W Writes on
~EW Writes on

@L Lists
@W Writes on
@EW Writes on

IL Lists
Iw Writes on
lEW Writes on

primary ou tpu t
secondary output

primary output
secondary output

primary outpu t
secondary output

primary output
secondary output

primary output
secondary ou tpu t

the character string
beginning at Dot and
ending with the nth
end of line.

the character string be
ginning with the first
character following the
(n+l)th previous end of
line and terminating at
Dot.

the character string be
ginning with the first
character of the current
line and ending at Dot.

the character string
between Dot and the
Marked location.

the character string be
ginning at Dot and end
ing with the last charac
ter in the Page Buffer.

In addition to the above commands, there is a special list com

mand that accepts no arguments.

v (Verify) lists the entire line containing Dot.

5.1.3 Next

Typing nN writes, onto the primary output file, the entire contents

5-2

of the Page Buffer (followed by trailer if paper tape is the output

medium and a form feed is the last character in the buffer), deletes

the contents of the buffer, and reads the Next page from the primary

input file into the buffer. It performs this sequence n times. If

there are fewer than then pages specified, the command will be exe

cuted for the number of pages actually available, and error code W3ll

~ill be printed out. Following execution, Dot and Mark will be loca

ted at the beginning of the Page Buffer.

5.1.4 Form Feed and Trailer

F Writes a Form feed character and four inches of
null characters into the primary output file if
the primary output is paper tape.

nT Writes four inches of Trailer (null characters)
n times on the primary output device if the pri
mary output is paper tape.

5.2 EDITING COMMANDS

5.2.1 Commands to Move Dot and Mark

5.2.1.1 Beginning

B moves Dot to the beginning of the Page Buffer

5.2.1.2 Jump and Advance

nJ

nA

-nJ

-nA

~J or ~A

@J or @A

/J or /A

moves Dot forward past n characters.

moves Dot forward past n ends-of-lines to
the beginning of the succeeding line.

moves Dot backward past n characters.

moves Dot backward to the first character
following the (n+l)th previous end-of-line.

moves Dot to the beginning of the current
line

moves Dot to the Marked location.

moves Dot to the end of the Page Buffer

Notice that while n moves Dot n characters in the Jump command,

its role becomes that of a line counter in the Advance command, How

ever, because ~, @, and / are absolute, their use with these commands

overrides line/character distinctions. That is, Jump and Advance per

form identical functions if both have either ~, @ or / for an argument.

5-3

5.2.1.3 Mark

The M command Marks ("remembers") the current position of Dot for later

reference in a Corrunand using the argument @. Note that only one posi

tion at a time can be in a marked state. Mark is also affected by the

execution of the following commands:

C D H I K N R x EH ER

5.2.2 Search Commands

5.2.2.1 Get

The basic search command nG starts at Dot and Gets the nth occurrence

of the specified text object in the Page Buffer. If no argument is

present, it is assumed to be 1. If the object is to follow the G com

mand in the command string, it must be properly set off by delimiters.

If G is the last character typed in the command string, Edit-II will

enter text mode and accept a search object of up to 72 characters.

This command sets Dot to the position immediately following the

found character string.

If the search is unsuccessful, Dot will be at the end of the Page

Buffer and W3~7 will be printed on the teleprinter before Edit-II

prints an *

Examples:

1. Text

t1\MOV @RMAX, @R5
i ADD # 6, (R5) +

CLR $CK3
/ TST R2

l BEQ CKCR

Dot was here

2. CMPB ICHAR, # RUBOUT
SITE ?a~Q

(D:t

PUT

5.2.2.2 wHole

Command

2G <CR>
CK <LF>

G<CR>
TE <CR>
BR<LF>

Dot

Effect

BEQ CK\
~

\
is now here\

BR\
\

Dot l

A second search command, nH, starts at Dot and looks through the WHole

text file for the nth occurrence of the character string you have speci

fied as text object. It combines a Get and a Next such that if the

search is not successful in the Page Buffer, the contents of the buffer

5-4

are written in the primary output file, the buffer contents are deleted,

and a new page is read in from the primary input, where the search is

continued. This will proceed until the search object is found or un

til the complete source text has been searched. In either case, Mark

will be at the beginning of the Page Buffer.

If the search object is found, Dot will be located immediately

following it. As in the Get co~and, if the search is not successful,

Dot will be at the end of the buffer and a W3~7 will appear on the

teleprinter. Upon completion of the command, Edit-II will be in com

mand mode. Note that an H command specifying a nonexistent search

object can be used to close out an edit, i.e., copy all remaining text

from the primary input file to the primary output file.

5.2.2.3 Edit wHole

A wHole search can be performed through the secondary input file with

the EH command. The EH search is identical to the wHole command, ex

cept that the file searched is the secondary input, while the file

written into is the primary output. Note that an EH search for a non

existent object is a method for reading the entire secondary input file

into the center or onto the end of the primary output file.

5.2.2.4 position

A fourth search command, nP, is used to position Edit-II in the primary

input file so that a Read command can read the desired page. position

combines the Get, Delete and Read commands so that if the search ob

ject is not found the Page Buffer is cleared and a new page is read

from the primary input and searched. This process continues until the

search object is found or the end of the file is reached. The position

search is a wHole search in which there is destruction of unsuccess

fully searched pages.

The position command works as follows:

1. The current buffer contents, if any, are output to
the primary output device and the buffer is cleared.

2. A page is read into the buffer and searched.

3. If the search is unsuccessful, the Page Buffer is
cleared and step 2 is repeated.

4. If the nth occurrence is found, Edit-II returns with
the page in which the nth occurrence resides in the
buffer, with Dot following the search object and Mark
at the beginning.

5-5

Note that before the search begins, the current Page Buffer is

saved by Edit-II automatically in the primary output file. If this

buffer is not desired, it must be deleted by the user prior to search

ing.

Note also that the position command is most useful as a means of

placing Edit-II in the input file. If the editing session wishes to

create a new file out of the second half of the input file, a position

search will save time.

5.2.2.5 Edit Position

The nEP command is identical to the position command, except that the

input file read from and searched is the secondary input file. Note

that any text in the buffer is output to the primary output file be

fore the search begins.

5.2.3 Commands to Modify the Text

5.2.3.1 Insert

The Insert command (I) allows text to be inserted at Dot. After I is

typed, Edit-ll needs the text object to be inserted. If text mode is

used, up to 80 characters per line are acceptable, and execution of the

command occurs when the LINE FEED key (which does not insert a line

feed character unless it is the first character typed in text mode) is

typed terminating text mode. At this point, Dot is located in the posi

tion immediately following the last inserted text character. If the

Marked location was anywhere after the text to be inserted, Dot becomes

the new Marked location.

As with the Read command, an attempt to overflow the Page Buffer

will cause a W3~3 to be printed out followed by an * on the next line

indicating that a command may be typed. Allor part of the last typed

line may be lost. All previously typed lines will be inserted.

Examples:

Text Command

1. MOV #8. ,E,T I <CR>

Dot CN<LF>

2. Inserting a carriage return (and

CLR R~LR R2 I <CR>
, \ <CR>

Dot) <LF>

3. Inserting a single line feed:

LOOK WHA~ HAPPENS HERE I<CR>
'T <LF>

I
Dotl

<LF>

5-6

Effect

MOV # 8. ,EKOC,T

Dot

automatic line feed) :

CLR RI
fLR R2

'Dot

LOOK WHAT
~APPENS HERE

D~'P

5.2.3.2 Delete and Kill

The commands in this category are closely related to each otheri they

both erase specified text from the Page Buffer. The Delete command

differs from the Kill command only in that the former accepts an argu

ment, n, that counts characters to be removed, while the latter accepts

an argum~nt., n, that counts lines to be removed. ~,@ and / are also

allowed as arguments (see Section 3.6). After execution of either of

these commands, Dot becomes the Marked location.

nD

-nD

Deletes the following
n characters

Deletes the previous
n characters

nK

-nK

Kills the character
string beginning at Dot
and ending at the nth
end-of-line

Kills the character string
beginning with the first
character following the
(n+l)th previous end-of
line and ending at Dot.

flD or ~K Removes the current line up to Dot

@D or @K Removes the character string bounded by Dot and
Mark

/D or /K Removes the character string beginning at Dot and
ending with the last character in the Page Buffer.

Examples:

1.

2.

Text

iCHECK THE MOZ~E

D00
; IS IT A TAB,\, OR
iIS IT A CR \

Dot

5.2.3.3 Change and eXchange

Command

-2D

2K

Effect

iCHECK THE M~E

Dot

iIS IT A TA,

DoJ

The Change (C) andeXcmnge (X) commands can be thought of as two-phase

commands combining, respectively, an Insert followed by a Delete, and

an Insert followed by a Kill. After the Change or eXchange command is

typed, a text object is required to be inserted. If ±n is used as the

argument, it is then interpreted as in the Delete (character-oriented)

or Kill (line-oriented) commands, and accordingly removes the indicated

text. f1, @, and / are also allowed in arguments.

5-7

commands combining, respectively, an Insert followed by a Delete, and

an Insert followed by a Kill. After the Change or eXchange command is

typed, a text object is required to be inserted. If ±n is used as the

argument, it is then interpreted as in the Delete (character-oriented)

or Kill (line-oriented) commands, and accordingly removes the indicated

text. ~/ @, and / are also allowed as arguments.

nC
xxxx
xxxx

Changes the following
n characters

nX
xxxx
xxxx

eXchanges the character
string beginning at Dot
and ending at the nth
end-of-line

-nC
xxx

Changes the previous
n characters

-nX
xxx

eXchanges the character
string beginning with
the first character fol
lowing the (n+l)th
previous end-of-line

~C
xxxx
xxxx

@C
xxx
xxx

/C
xxx

or

or

or

~X
xxxx
xxxx

@X
xxx
xxx

/X
xxx

and ending at Dot

Replaces the current line up to Dot

Replaces the character string bounded
by Dot and the Marked location

Replaces the character string begin
ning at Dot and ending with the last
character in the Page Buffer.

Again, the use of absolute arguments ~, @, and / overrides the

line/character distinctions that nand -n produce in these commands.

If the Insert portion of these commands is terminated because of

attempting to overflow the Page Buffer, data from the latest line may

have been lost, and text removal will not occur. Such buffer overflow

might be avoided by separately executing a Delete or Kill followed by

an Insert, rather than a Change or eXchange, which does an Insert fol

lowed by a Delete or Kill.

Examples:

Text

;A LINE FEED~IS HERE
\

;THIS
; IS ON Dot

j)!'0UR
i ; LINES

Dot

Command

-9C<CR>
TAB<LF>
2X<CR>
PAPER<LF>

5-8

Effect

;A TAB~IS HERE
\

;THIS \
; IS ON "
;PAPER~ \

,.Dot

5.2.4 Utility Commands

The following commands provide easier paths for more general editing

functions.

5.2.4.1 Save

The nS command copies the n lines beginning at Dot into an external

buffer called the Save Buffer. Dot does not change, nor is the saved

text deleted. Any previous contents of the Save Buffer are destroyed.

If there is not enough room in storage to copy the text specified, a

W303 error message will be printed and none of the text will be saved.

Note that Save is a line-oriented command, and operates only in the

forward direction; that is, negative arguments are not allowed.

5.2.4.2 Unsave

The U command inserts the entire contents of the Save Buffer at Dot,

and Dot moves to follow the last character Unsaved. The Save Buffer

itse~f is retained, and the same Save Buffer can be Unsaved as often

as desired. If the action of unsaving would result in overflow of the

Page Buffer, a W3l~ error message is printed and the Unsave does not

occur.

Note that Save and Unsave provide convenient tools for moving

blocks of text or inserting the same block of text in several places.

5.2.4.3 Execute Macro

The nEM command is a means of performing the same Edit-II command string

n times. When the EM command is received, the contents of the Save

Buffer up to the first <CR> character are interpreted as a command string

and executed n times. The macro is subject to the same rules as any

typed command string, and in addition, a macro string may not contain

another macro call.

Thus, to execute a macro, it is required to insert the macro in

the Page Buffer, save it, then execute.

Example:

The following sequence of commands will change the first
15 occurrences of .CSECT in the butfer to .ASECT.

* BI
B G#.CSECT# -4J -C#A#<CR>
<LF>

* BSK15EM

5-9

5.2.4.4 Edit Open

The EO command will close the secondary input file and re-open it at

the beginning. Therefore, although Edit-II is a one-pass editor,

that is, capable of making only one trip through the primary input file

per job, it is possible to make many passes through the subsidiary input

file with the EO command. EO has no effect on the text.

5.2.4.5 End File

The EF command closes the primary output file to any further output,

and renames it if a backup file is to be created. It also closes the

primary input file to any further read operatiqns. The secondary

output and secondary input files remain open for further editing. Note

that this command is useful to create a truncated output file from a

large input file.

5.2.4.6 EXit

The EX command is the most common way to terminate an editing session.

Exit copies the remainder of the primary input file into the primary

output file, closes all files, and begins another edit.

If, however, an EF command was executed during the editing

session, EX will not perform any input/output operations - it merely

closes files. The last command of every editing session should be the

EX command. Whether it involves-any I/O or not depends on whether the

primary I/O files are open or closed.

5-10

CHAPTER 6

OPERATING INSTRUCTIONS

6.1 STARTING

To start Edit-II, load the PDP-II Disk Operating System (if it is not

running already) and log in. Then type:

$RU(N) EDITll

Upon receipt of this command, the DOS will load Edit-II and begin its

execution. The first thing Edit-II needs is input/output specifications

for the editing session. After being loaded and started, Edit-II re

sponds with #, indicating a request for a command string. The user

responds with a command string of the form:

#dev:filel.ext[uic],dev:file2.ext[uic]<dev:file3.ext[uic]/B,dev:file4.ext[uic]

In the above specification, FILEI is the primary output and FILE3

~s the primary input, while FILE2 and FILE4 are the secondary output and

input respectively. Note the following:

1. A minimum ot one output must be specified, and a
maximum of 2 input and 2 output may be specified.
Hence, file2, file3, and file4 above are optional.

2. dev: is the device name and is optional; disk is
assumed if none is specified. The assumed device
changes, however, as soon as a new device is typed.
See Disk Operating System Monitor Programmer's Hand
book.

3. Filen.ext is the file name of the appropriate input
or output file.

4. [uic] is the user code for the owner of the file, and
need not be specified if the file in question is your
file. Note that [(SHIFT/K) and] (SHIFT/M) are part of
the uic specification and must be typed if a uic is
specified.

5. /B is the backup switch. If /B is specified, no back
up file will be created. Otherwise, the backup faci
lity will be used (see section 4.1). Note that if
the /B switch is used, it must follow the primary
input file specification.

6. If filel and file3 are the same file on one device,
file3 will be renamed file3.BAK unless the /B switch
is used. file~ and file4 cannot be the same file.

When Edit-II receives a syntactically correct specification, it per

forms internal initialization, then types an *, indicating its readi

ness t:o receive the first command.

6-1

6.2 RESTARTING

To restart Edit-II, use the Monitor REstart command after issuing a

CTRL/C.

*CTRL/C
:-RE
*

Note that the above method of restarting enables you to stop a

command execution if desired.

6.3 FINISHING AN EDIT

To finish an editing session, use the EX command. This will restart

Edit-II for the next job unless the keyboard (KB:) has been

specified as a primary input device. In such a case, the EX must

be followed by typing CTRL/C, EN, the RETURN key, and the LINE FEED

key.
NOTE

Any other way of leaving an editing session will result
in the input and output files not being properly closed.
A file not properly closed cannot be used by any sys-
tem program until correctly closed by the (Unlock) option
in PIP. Therefore, if an edit is terminated without an
EF or EX command (the plug for the computer was pulled
out, the Monitor crashed, or you executed another Monitor
command after a CTRL/C), the input and output files must
be restored by PIP before attempting to edit again.

6.4 ERROR RECOVERY

In the course of editing a page of the program, it may become neces

sary to correct mistakes in the commands themselves. There are two

special commands which do this:

1. Typing the RUBOUT key removes the preceding typed
character, if it is on the current line.

2. The CTRL/U combination (holding down the CTRL key
and typing U) removes all the characters in the
current line.

If, in the course of a command string execution, a serious error

is discovered, the restart capability can be used to terminate the

command. (See section 6.2.)

6-2

6.5 PROCEDURE WITH LOW-SPEED PUNCH

If the low'-speed punch is one of the output devices, Edit-II pauses

before executing any command to write on the punch. The punch must be

turned on at this time, after which typing the LINE FEED key on the

keyboard initiates the output (the key typed does not echo on the tape).

Following completion of the operation, Edit-II pauses again to allow

you to turn the punch off. When the punch has been turned off, type

the LINE FEED key and Edit-II will return to command mode.

6-3

CHAPTER 7

IMPLEMENTATION NOTES

7.1 MACRO USAGE

Use of the EM macro is most efficient if the text involved is small

enough to fit within the macro itself. Large amounts of text can be

inserted by a macro~ however, if use is made of the fact that the macro

itself is only the first line of the Save Buffer.

For example, suppose it is desirable to insert

JSR R5,RSAVE
JSR R5,RELOAD

after every occurrence of EMT 4~ in your program. The text to be in

serted is too long to enter in your command mode, and there is no way

to enter text mode from a macro. Use can be made, however, of the

Unsave command.

To accomplish the above, the commands would look like:

*BI
G;EMT 4~; A U -3A K

JSR R5,RSAVE
JSR R5,RELOAD

<LF>
*B3S3K 5,0,0,0EM

The first command inserts the 3 lines we need to save into the

Page Buffer. Note that the first of the 3 lines is the macro, while

the last two are the common code. The macro itself contains the Get

command to look for the EMT 4,0, followed by an Advance command to ad

vance Dot to the next line. The next command is the Unsave command,

which will Unsave the three lines in the Save Buffer. Since the macro

is by definition the first line of the Save Buffer, it is Unsaved along

with the other two and has to be deleted. The -3A and Kill commands ac

complish this. The second command string saves the macro and common

text, deletes them from the Page Buffer, and executes the macro 5~,0,0

times. Five thousand is an arbitrarily large number which assures that

we get all the occurrences of EMT 4~ in the buffer. When the search

fails, the macro will be halted and an error returned as Edit-11 pre

pares to accept another user command string.

7-1

7.2 DELIMITER USAGE

When entering text in command mode, any ASCII character is acceptable

as a delimiter. Some, however, are better than others, and here are

some suggestions when using delimiters.

1. Use the same delimiter all the time (except when
not possible because it appears in the text itself).
If you pick an uncommonly used character that is
easy to type j' such as Q or ;, typing the delimi ter
will become second nature.

2. Avoid delimiters that are valid arguments or com
mands. Use of /, @ and valid commands as delimiters
is an error-prone practice. Avoid spaces most of
all, as forgetting that there is a space in the text
string will result in the execution of undesired com
mands, and this is a common error.

Example:

*G SAVE /DUMMY/ I$TEXT$

Although the user wanted to get "SAVE /DUMMY/", he
will actually Get "SAVEll, Delete to the end of the
buffer, Unsave, Mark, Mark again, then receive an
error message tor the illegal Y command.

7.3 SUBSIDIARY I/O

Subsidiary I/O can serve several purp~ses. Here are some suggestions

on how it might be used.

1. If your secondary output file is a line printer or
scope, you can look at the entire Paae Buffer very
quickly. After typing in a long Insert, look at it
via the B/EW command and check for mistakes.

2. Use of two output files is ideal for dividing a
single input file into two smaller files.

3. If you want to move a very long section of text,
or you want to save text for insertion later but
also want the Save Buffer free, use the HSR and HSP
as your subsidiary I/O. Punch the desired text,
then read it in wherever desired.

4. Two input files are ideal for concatenation also;
waole search for a nonexistent object through the
primary input, then do the same through secondary
input.

Remember that to close subsidiary files, the EX command must be

used.

7-2

7.4 SAVE AND UNSAVE

Edit-II saves text during the Save command by setting aside a buffer

large enough to accommodate the saved text. This decreases the total

core available to the Page Buffer, resulting in the possibility that

there might not be enough free core left to Unsave the text. Edit-II

guards against this situation by allowing you to save only text that is

short enough to guarantee at least enough room to insert it again. That

is, you are guaranteed there will be enough room to Unsave at least once

following every Save command that completes successfully. Of course,

if you read or Insert a large amount of text between Save and Unsave,

you might decrease the space available too much and not be able to Un

save. In this case, part of the buffer will have to be written into

the output file to make room. You will be safe if you do all your Un

saves immediately following the corresponding Save commands.

7.5 CREATING A NEW FILE

If the purpose of an editing session is to create a file for which

there is no input file, a primary input device need not be specified.

Inserts are used to create the file and EX to close it. However, if

the keyboard is specified as a primary input device, the file should be

closed by the following sequence:

1. Write the file
2. Issue the EF command
3. If the editing session is to be terminated, type

the EX command

If you should accidentally issue a read command such as R, N, EX, you

can terminate the read with a form feed character. If you type EX

without a previous EF and the keyboard is your input device, you must

type CTRL/C, wait for a . to be printed out, and then type EN, the

RETURN key, and the LINE FEED key in order to proceed successfully.

7.6 . USING EXIT

Always end the editing session with the EX command~ EX will guarantee

that all files are closed correctly. Recall that if you do not want

EX to perform any input file copying or buffer writing, precede it with

the EF command.

7-3

Error Code Meaning

S202 Device Full

S203 Switch Error

S204 Too Many
Output Files

S205 Too Many
Input Files

S227 Illegal File
Specification

APPENDIX A

ERROR DIAGNOSTICS

Cause

Output device does not have sufficient
room to continue.

Too many switches or illegal switch.
A switch appeared which was not equal
to /B or which followed a file other
than primary input; or more than one
switch appeared.

More than two output files were speci
fied or a switch appeared after second
ary output.

More than two input files were speci
fied or a switch followed the second
ary input.

Argument indicates specific violation.

I - No primary output specified
2- Secondary input equals secondary

output
3 - Secondary input equals primary

output
4 - Primary input equals secondary

output
5 - Primary input equals secondary

input
6 - Primary output equals secondary

output

Command Syntax Errors - Command syntax errors are reported by printing
the command up to and including the character
at which the scan terminated, followed by a
question mark and vertical tab. This does not
mean the last character typed is the cause of
the syntax error.

W303

W304

W305

W306

W307

Buffer
Over£low

Macro
Overflow

Recursive
Macro

Empty Save
Buffer

Search Failure

Command Input Buffer, Text Input Buffer,
Save Buffer or Page Buffer overflow.

Macro as stored in Save Buffer is too
long to execute.

Macro contains an EM command.

An EM or U command was issued with
nothing in the Save Buffer.

th n occurrence of search object was
not found in available text.

A-I

Error Code Meaning

W3l0 No Room to
Unsave

W3ll End of Data

W3l2

W3l3

W3l4

W3l5

W3l6

W3l7

W320

W32l

Illegal Line
Feed

Illegal Nega-
tive Argument

No Arguments
Allowed

Illegal
Argument

Illegal Text
String

Illegal Command

Page Buffer
Almost Full

File Closed

Cause

Not enough available room to unsave
required text.

End of input medium or end of input
file reached during read. Last page
read was last in file.

A line feed character was encountered
in command string.

The command specified does not accept
negative arguments.

The command specified does not recog
nize any arguments.

Command does not accept given argument.

Usually caused by missing second de
limiter.

Edit-II cannot execute command as
requested. Usually caused by second
ary I/O commands when no secondary
I/O was specified at initialization
time.

Page Buffer within 128 characters of
being full.

Attempt to Read or Write primary files
after EF.

A-2

APPENDIX B

COMMANDS

In the following table, # represents any legal text delimiter. <CR>

represents a return character, and <LF> represents a line feed

character.

Command Format

Read R

Edit Read ER

Write nW

Edit Write nEW

Form feed F

Trailer nT

Next nN

Beginning B

Advance nA

Jump nJ

Delete nD

Kill nK

Result

Read from primary input file
until form feed encountered.

Read from secondary input file
until form feed encountered.

Write n lines into primary output
file.

Write n lines into secondary
output file.

Write form feed into primary
output file.

Write 4~ null characters as
trailer on the primary output
device if device is paper tape.

Write the contents of the Page
Buffer onto the primary output
file, kill the buffer, and read
a page of text from the primary
input file. Repeat n times. Equi-'
valent to B/W /D R.

Move Dot to the beginning of the
Page Buffer.

Advance Dot n lines. Leaves
Dot at beginning of line.

Move Dot over n characters.

Delete n characters from text.

Kill n lines of text.

B-1

Command

Mark

Save

Unsave

List

Verify

Get

wHole

Edit wHole

Position

Edit Position

Insert

Change

eXchange

Format

M

nS

U

nL

V

nG#XXXXX#
or

nG<CR>
XXXX<CR>
<LF>

nH#XXXXX#
or

nH<CR>
XXXXX<CR>
<LF>

nEH#XXXXX#
or

nEH<CR>
XXXX
<LF>

nP#XXXXX#
or

nP<CR>
XXXX
<LF>

nEP#XXXXX#
or

nEP<CR>
XXXX
<LF>

I#XXXXX#
or

I<CR>
XXXXX<CR>
<LF>

nC#XXXXX#
<LF>

or
nC<CR>
XXXXX<CR>
<LF>

nX#XXXXX#
or

nX<CR>
XXXXX<CR>
<LF>

Result

Mark the current location of Dot.

Save the next n lines in the Save
Buffer.

Copy the contents of the Save
Buffer into Page Buffer at Dot.

List n lines on teleprinter

Verify the present line vi~ teleprinter.

Search for the nth occurrence of
Return with Dot following XXXXX.

Search for the nth occurrence of
XXXXX. If found, return with Dot
following XXXXX. If not found,
execute an N command and
continue search.

Perform a wHole search for the
nth occurrence of XXXXX, using
the secondary input and primary
output files.

Perform a Next command, then
search for the nth occurrence
of XXXXX. If found, return with
Dot following XXXX. If not
found, clear the buffer, read
another page, and continue search.

Perform a Position search
using secondary input rather
than primary input file.

Insert the text XXXXX at Dot.
Move Dot to follow XXXXX.

Change n characters to XXXXX.

Equivalent to Insert followed by
n Delete

eXchange n lines for XXXXX.
Equivalent to Insert followed
by n Kill.

B-2

Corrunand Format

Execute- Macro nEM

Exit EX

Edit Open EO

End File EF

Result

Execute the first line of the
Save Buffer as a corrunand string
n times.

Perform consecutive Next com
mands until EOM or EOF reached.
Close all files, and return to
Monitor.

Move to tbe beginning of the
secondary input file. Must
follow a W311 error message
before an ER can be executed.

Close the primary output file
to-any further output and close
the primary input file.

B-3

INDEX

Arguments, 1-1, 3-1, 3-2, 5-3,
5-7, 5-8

Backup facility, 4-1
Buffer capacity, 5-2, 5-6, 5-8,

5-9

Closing files, 6-2
Command mode, 2-1, 2-2, 6-3
Command string, 1-1, 2-1, 3-3,

3-4, 4-1, 5-9, 6-1, 7-1

Delimiter, text, 2-1, 3-3, 5-4,
7-2

Dot, 3-1, 5-1, 5-3 through 5-7,
5-9

Errors, 3-3, 3-4, 5-2 through
5-6, 6-2, 7-1, 7-2, A-I

Files,
closing, 6-2
primary input, 4-1, 5-1, 5-5,

5-9, 5-10w 6-1, 6-2, 7-2, 7-3
primary output, 4-1, 5-2, 5-5,

5-6, 5-10, 6-1
secondary input, 4-1, 5-1, 5-5

5-6, 5-9, 5-10, 6-1, 7-2
secondary output, 4-1, 5-2,

5-10, 6·-1, 7-2

High-speed reader, 7-2

Input/Output commands, 5-1

Keyboard, 7-3

Line capacity for insert, 5-6
Line terminators, 3-1
Low-speed punch, 6-3

Macro,
Mark,
Modes

5-9 v 7-1
3-1, 5-1, 5-3 through 5-7

command, 2-1, 2-2, 6-3
text, 2-1, 5-4, 5-6

Operating procedures, 6-1
Overflow, 5-2, 5-6, 5-8, 5-9

Page buffer, 1-1, 3-1, 3-2, 3-3,
5-1, 5-3 through 5-9, 7-1,
7-2, 7-3

Pages, 3-2, 5-1, 5-3
Primary input file, see Files
primary output file, see Files

Save buffer, 5-9, 7-1, 7-2
Searches, 5-4, 5-5, 7-1
Secondary input file, see Files
Secondary output file, see Files

Terminators, line, 3-1
Text delimiter, 2-1, 3-3, 5-4, 7-2
Text mode, 2-1, 5-4, 5-6
Text object, 1-1, 2-1, 2-2, 3-3

5-4, 5-6, 5-7, 5-8

X-I

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes,
software problems, and documentation corrections are published by Software
Information Service in the following newsletters.

Digital Software News for the PDP-8 & PDP-12
Digital Software News for the PDP-II
Digital Software News for the PDP-9/15 Family

These newsletters contain information appl icable to software avai lable from
Digital's Program Library, Articles in Digital Software News update the
cumulative Software Performance Summary which is contained in each basic
kit of system software for new computers. To assure that the monthly Digital
Software News is sent to the appropriate software contact at your insta lIation,
please check with the Software Specialist or Sales Engineer at your nearest
D igita I office.

Questions or problems concerning Digital's Software should be reported to
the Software Specialist. In cases where no Software Specialist is available,
please send a Software Performance Report form with details of the problem to:

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

These forms which are provided in the software kit should be fully filled out
and accompanied by teletype output as well as listings or tapes of the user
program to faci litate a complete investigation. An answer wi II be sent to the
individual and appropriate topics of general interest will be printed in the
newsletter.

Orders for new and revised software and manuals, additional Software Per-
. formance Report forms, and software price lists should be directed to the

nearest Digital Field office or representative. U.S.A. customers may order
directly from the Procrom Library in Maynard. When ordering, include the
code number and a brief description of the software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library
and publishes a catalog of programs as well as the DECUSCOPE magazine
for its members and non-members who request it. For further information
please write to:

DECUS
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

READER'S

PDP-11 Edit-1I Text Editor
Programmer's Manual

DEC-11-EEDA-D
May 1971

COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback -- your critical evaluation of
th is manua I .

Please comment on this manual's completeness, accuracy. organization, usability and read
ability.

Did you find errors in this manual? If so, specify by page.

How can th is manua I be improved?

Other comments?

Please state your position. Date:
-------------------------------~-------------------- ------------------

Name: Organization:
--- ---------------------------

Street: Department: ------------------------------------ ------------------------------
City: State: Zip or Country -------------------------- ------------------------- ------------

- - - - - - - - - - - - - - - - Fold Here -

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - -

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATfS

Postage will be paid by:

mamaoma
Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

