
PROGRAMMING DEPT. MEMO 1130-003-005-00

INTEROFFICE MEMORANDUM

_S.UBJEC_T: PD P-11 Subprogram Cal I ing Sequence
Standards

TO: PDP-II List 11 C11

LOCATION:

DATE: January '19, 1970

FROM: tf. Shepardson

LOCATION:

The attached paper gives proposed standards for subprogram calling sequences for
PDP-II software along with some iustification for each proposal. Your comments
are invited. feel free to raise questions or points for discussion with me at your
coiwenience.

Attachment: ''PDP-II Subprogram Cal ling
Sequence Standards"

DIGITAL EQUIPMENT CpRPORATION • MAYNARD, MASSAC.HUSETTS

PROGRAMMING DEPT. MEMO #f30-003-005-00

PDP-II SUBPROGRAM CALLING SEQUENCE STANDARDS

The purpose of this paper is to present and diScuss several different types of sub

routine calling sequences. The motivation for such a presentation is the apparent

fruitlessness of several meetings which were held to define standarCI FORTRAN sub

routine calling sequences for the PDP-II. It should be noted that the definition of

FORTRAN calling sequences is critical since all PDP-II software should follow these

conventions as much as possible to facilitate maximum interchangabi lity and to avoid

future embarrassment (such as suddenly finding that system diagnostic dumps are not .

callable from FORTRAN).

The hand I ing of re-entrant and non-reentrant subroutines and calling programs

is the problem which to date has not yielded· to an agreeable solution. However,

it has been agreed that any soluticm should satisfy at least the following criteria:

I. Any subprogram can be called in either a re-entrant or non-reentrant

manner.

2. The calling sequence must be "short" (at least in the non-reentrant

case).

3. Non-reentrant code must not be penalized by the possibility of

re-entrant code.

4. If extra code is necessary, it should be placed in the subroutine

rather than the ca 11 ing program as much as possible.

Several proposed solutions will now be presented and discussed. To facilitate

an accurate evaluation.of the methods presented, coding examples of calling sequences·

and subroutines will be given. Argument passing from level to level will also be shown.

The discussion is summarized in clearer form and a recommendation is made at the end

of the paper.

PROGRAMMING DEPT. MEMO 1130-003-005-00

·It is hoped that by making a critical examination and evaluation of several types

of cal I ing sequences, one type wi 11 appear to be more appealing than the others.

No Re-Entrant Cal ls

Since the JSR instruction as implemented on the PDP-II provid~s very nicely for

the coding of re-entrant subroutines, but does not provide as well for the coding of

re-entrant calling programs, the easiest solution is to restrict re-entrant FORTRAN

programs to one level only, i.e., do not allow subroutine calls from re-entrant

FORTRAN programs. This method apparently allows the shortest possible subroutine

·calling sequences, calls are unaffected by re-entrant considerations, and all extra

coding for re-entrancy is placed in the re-entrant subroutine.

This method has the disadvantage that a considerable restriction is placed on

FORTRAN, and ·even simple library routines such as SQRT or SIN are not available

to re-entrant programs. Also, by· circumventing the real problem, no universal model

for re-entrant calling sequences will be defined. Since such calling sequences will .

surely be required by monitors, etc., individual programmers would each "do it th~ir

own way" and a real communications hodge-podge would result, although overal I

length of code would probably be the shortest possible since each coder would take

advantage of his particular situation.

The calling sequence would appear as follows (for three arguments):

JSR R5, SUBI ; NON-REENTRANT CALL

.WORD A

.WORD B

.WORD C

The called subroutine can handle scalar arguments in two ways; either by (I)

storing them in the subroutine for quick reference (and hence always restoring the

final value back into the calling program) or (2) making all references to the scalar

through the calling sequence. Both are shown below (where A and Bare scalars and

C is an array and .all arguments are passed on to the next level).

-2-

PROGRAMMING DEPT. MEMO 1130-003-005-00

Case (I) SAVE/RESTORE.

SU Bl: MOY @(R5)+ I Tl
MOY @(~5)+ I T2

.
MOY (R5)+, .+12
JSR R5, SUB2
.WORD Tl
.WORD T2
.WORD~

MOY Tl,@-4(R5)
MOY T2,@-2(R5)
RTS R5

; MOVE A AND a:
; INTO SUBPROGRAM

; ARRAY ADDRESS

;A
; B
; c

; RETURN
; ARGUMENTS

Case (2) REFERENCE THROUGH CALL SEQUENCE

SUBI:

.
MOY (R5)+, .+16
MOY (R5)+, .+14
MOY (R5)+ I .+12
JSR R5, SUB2
.WORD~
.WORD~
.WORD~

RTS R5

; MOVE ADDRESSES
; TO CALLING·
; SEQUENCE

;A
; B
i c

Note that SUBI would not be re-entrant but SUB2 could be.

Note also that if there were a sufficient number of arguments the total
code cou Id be lessened if the argument fetching were done in a sub
routine.

-3-

;

I '

: !
; !

; I

! •

j •

PROGRAMMING DEPT. MEMO lt30-003-005-00

All Ca Its Re-Entrant

The direct opposite of the previous rre thod would be to make al I subroutine calls

re-entrant so that a II subroutines wou Id be potentially re-entrant. Probably the best

method of accomplishing this is to move all argument addresses to the stack immediately

prior to the JSR. This method prov ides uni form subroutine calls at ,b cost of two words

(the MOV) per argument. The burden on the subroutine would be lessened since argu

ment addresses are already on the stack.

Th is method has the distinct disadvantages of requiring severa I locations of core

storage for each call, and the extra locations are required for each call in the calling

program.

The calling program would be coded as fOllows (for the same call as discussed

earlier):

MOV lc,-(SP)
. MOV le,-(SP)
MOV *A,-(SP)
JSR RS, SUBI

The cal led routine would be

SUBI:

MOV n(SP),-(SP)
MOV m(SP),-(SP)
MOV k(SP) ,-(SP)
JSR R5, SU82

MOV (SP),6(SP)
ADD 16,(SP)
RTS R5

; PUSH ALL
; ARGUMENT
; ADDRESSES

; PUSH CALLING
; ARGUMENTS ON
; STACK FOR NEXT CALL

; REMOVE CALL.
; ARGUMENTS FROM STACK

-4-

PROGRAMMING DEPT. MEMO #f30-003•005--00

Where n, m, and k depend on how the subroutine has altered the stack at the

point of the instruction. For ease of reference the user cou Id set R5 to point to

the argument list on the stack upon entry to a subprogram. Note that SUBI as well

as (potentially) SU 82 are re-entrant.

Compromise (The Bell-Delagi Method)

In order to satisfy criterion 3 (non-reentrant - no pena.lty), it was proposed

that seJXJrate calling sequences be used, one for re-entrant and one for the non

reentrant case. As proposed, the method of entry would be invisible to the sub

routine. This proposal is as fol lows (assuming the call discussed above):

Non-reentrant

Re-entrant

JSR R5,SUBI
.WORD Return Point
.WORD A,B,C

MOV lie, -(SP)
MOY #e,-(SP)
MOV IA,-(SP)
MOV SP,R4
MOV RS,-(SP)
MOV R4,R5
JSR PC,SUBl+2

; PUSH ARGUMENTS

; ARGUMENT POINTER

The subroutine would have the following code to provide the invisibility:

SUBI: MOV (RS)+,-(SP)

MOV (SP)+ I R5
RTS R5

; NORMAL ENTRY
; RE-ENTRANT ENTRY

several versions and refinements of this method have been discussed but all appear

to have the same basic problems: (I) Minimum of three word subroutine call, (2)

Link loader must be capable of resolving SUB+2, (3) Maintain_ing re-entrancy through

cascading calls appears messy, and (4) This method appears to be hard to document

and understand •

-5-

PROGRAMMING DEPT. MEMO #130-003-005-00

This proposal has several advantages. It allows any routine to call any other

routine, most of the non-productive code appears on I y in the re-entrant ca~ (plus

a small overhead in the called program), compatibility adds only one word (above

the normal JSR) to each non-reentrant calling sequence, and the method of calling . ;

is invisible to the cal led routine.

The passing of arguments from level to level of calls in the non-reentrant: case

is similar to the non-reentrant method discussed earlier. This case of argument

passing in the subroutine is as shown:

SUBI: MOV (RS)+,-(SP}

MOY (R5)+ I .+20
MOY (RS}+, .+16
MOY (RS)+, .+14
JSR R5,SU82+2
.WORD RTN
.WORD ¢,¢,{t1
RTN:

MOY (SP)+ I RS
RTS R5

; MOVE
; IN
; ARGUMENTS

For the re-entrant case the subprogram and argument passing would be:

SUBI: MOV (RS)+,-(SP}

MOY 4(RS),-(SP)
MOY 2(RS),-(SP)
MOY (RS) ,-(SP)
MOY SP,R4
MOV RS,-(SP)
MOV R4,RS
JSR PC,SU82+2

MOY (SP)+ I RS
RTS RS

; MOVE ARGUMENTS
; TO STACK AND ,
; MAINTAIN ORDER

; ARGUMENT POINTER

PROGRAMMING DEPT. MEMO 1130-003-005-00

TRAP

Another subroutine cal ling scheme (with many variations) is to discard th~ JSR

instruction and make use of the TRAP instruction. The TRAP instruction can be

used in coniunction with a Trap Vector generated by the Linkloader. This Trap

Vector contains the addresses of the entry points of s®routines currently in

core. The Link loader also constructs an offset in the low order byte of the TRAP

instruction. Hence a

TRAP n

would be an effective

JMP @Trap Vector + 2n

However, a monitor trap handling routine would be entered. This routine would

amount to several instructions, but they would appear only once, and they could

be executed with interrupts inhibited if necessary. This method allows a minimum

~word calling sequence, and also, since the monitor is entered on each call,

eventual implementation of features like scatter-loading would be facilitated.,

However, at least a minimal monitor would be required for al I cal Is, and all calls

would execute rather slowly because of the monitor intervention. Also, the JSR

would be scrapped, thus disallowing its esthetic appeaJ as well as eliminating its

addressing flexibility.

The TRAP instruction could be substituted for the JSR instruction in any of

the above calling methods with the result that calling sequence lengths would be

reduced by one word.

The following TRAP hondler is presented to provide a good model for users

who wish to implement a TRAP method for their own code.

TRAP34:

; SUBROUTINE JUMP TRAP HANDLER
; THE ADDRESS OF TRAP34 MUST BE IN LOC 34
;

MOV
SUB
MOV
ASL
ADD
MOV

@R6,2(R6)
112,@R6
@(R6)+ ,-(R6)
R6
II JT ABLE-TRAP ,@R6
@(R6)+,R7

- 7-

; THE CALLED ADDRESS
; IS COMPUTED THRU
; THE JUMP TABLE
; AND THE TRAP ARGUMENT
; THE STACK WILL
; APPEAR ASIF
; JSR R7,SUB
; WERE EXECUTED.

·.~

Serial Reusab ii ity

PROGRAMMING DEPT. MEMO #130-003-005-00

; THEN TRANSFER IS
; MADE TO THE
; SUBROUTINE
; RETURN IS BY
; RTS R7.

One alternative to re-entrancy will be briefly presented. This alternative is to

allow any subroutine to run to logical conclusion before entering it again (Serially

Reusable Routines). The monitor would maintain a priority queue of requests to use

any serially reusable routine and whenever a routine becomes ova i I able the highest

.priority request would be allowed entry. All interrupts would be immediately ser

viced (if higher priority than the routine running) and if a routine which was "busy"

was encountered a request wou Id be queued and control returned to the inte~rupted

routine.

This method would work best where different levels of interrupt required gen

erally different routines to complete. Th is cou Id be used in conjunction with

11 lowest level" re-entrant routines (i.e. SQRT) to speed servicing of high priority

interrupts.

This scheme would be at its worst when several levels of priority had a large

number of common subroutines and some interrupt servicing was highly time dependent.

Comparisons

After having discussed several types of calling sequences, we are now in a

position to make comparisons among them. The following chart shows the calling

sequence length (in words) for the various types of cal I sequences. The chart is

divided into two major sections, one for "first level" calls (i ;e. calls with no

arguments passed from a prior call) and one for nth level calls (i.e. calls with some

arguments passed from the next higher subprogram cal I). Each section is further

subdivided to show the length of code required per argument, per subroutine call,

etc.

-8-

PROGRAMMING DEPT. MEMO #130-003-005-00

To get any real, meaningful information from the data presented, one must decide

the importance of arguments relative to cal Is, of passed arguments relative to argu

ments originating in the subroutine, etc. The alert reader will have already noticed

that there are figures on the chart. related to "weights". These weights are a measure

of the relative importance of the column they are associated with ond they are based

on the following assumptions:

(I) There is an average of four subroutine cal Is per "program",

where a program may be a main program or a subprogram.

(2) There is an average of two arguments per subroutine cal I:

one a sea lar and one an array.

(3) The relative importance of passed arguments and arguments

originating at the level of the call was a matter of great

debate which was finally resolved by actually counting

subprogram calls in a large number of FORTRAN programs.

The result of this count showed that for programs not making

rruch use of COMMON, approximately 7()0,k, of al I arguments

in calls from the nth to then+ 1st level originated in the n -

1st level or before. The overal I average including al I types

of programs showed that about 45% of arguments were "passed"

arguments. It was decided that due to the large difference,

both situations shou Id be shown, and thus we have the two

sets of "weights" on the chart.

The rightmost two columns on th_e chart show the weighted lengths of subroutine

calls for each calling method. The weighted leo_9th for each row is computed by

taking the sum of the products of the length as given in each column of the row

being computed and the weight for its column. A column is computed for each of

the weightings discussed above. The method which yields the shortest weighted

length should then give the overal I shortest length of cal ling sequence (Comparisons

should be restricted to columns, i.e. no intercolumn comparisons are meaningful.).

-9-

PROGRAMMING DEPT. MEMO 1130-003-005-00

It should be noted also that due to the addressing modes of the PDP-II and the amount

of time required to execute each, the relative overall execution time for the call

methods involved should be roughly proportional to the relative weighted lengths.

The· reader can easily see for h imse If the effect of iuggl ing the various weig~ts.
I

- 10 -

.. ..

Non-Reentrant
reference thru
ca 11 sequence

Non-Reentrant
save/restore

(.fl All Calls
0 Reentrant
0 (MOVE Method) ::c
I-
w
~ Bel 1-Delagi

non-reentrant

Bell-Delagi
re-entrant

A--70%
"passing" of

(.fl variables
I-
::c
C> "-'4S% w "passing" of ~

variables

PROGRAMMING DEPT. MEMO 1130-003~S-00

CALLING SEQUENCE LENGTH COMPARISON CHART

First Leve Ca II h Lengt eve -n eve a th L I C II WEIGHTED
Length .for "Passed" Arguments LENGTHS

II Words·· Additional #words Additional
Overhead/ Overhead/ Register Overhead/ Overhead/ Overhead/ Register 70% 4S%

Call Argument u~ge Subroutine Call. Argument Usage passing passing
- . ··-·· _

any
2 I register 0 2 3 any 36 40

2 I 6/ 2 Scalar I 34 38 any
Scalar

any
Array ~

argument

.
2 2 any 4 2 2 any 34 491

3 I any 2 3 3 any 43 48

5 2 any 2 5 2 any
47 S6

register register - .
And RS And RS - -

-'-

2 4 8

2 4 4 8

- II -

PROGRAMMING DEPT. MEMO #130;...003-005-00

Recommendation

The preceding analysis yields the somewhat surprising result that making all

calls re-entrant (potentially) by placing argument addresses on the stack gives

only a ~ - 5% overal I increase in cal ling sequence length over the best non

reentrant method. The reader should now consider the necessity for re-entrant

calling sequences. The writer believes that they are necessary because

(I} Our competitors have widely adv·ertised that they

supply re-entrant software, and

(2) DEC has widely advertised that writing re-entrant software

for the PDP-I I is 11easy11
•

(3) The interrupt structure of the PDP-II makes re-entrant coding

useful.

(4) Many proiected applications for the PDP-II will benefit from

re-entrant code.

Since system programs such as the Disk Monitor will make extensive use of

re-entrant calls, a call method which gives little penalty for re-entrant calls is re

quired for their use. Thus it appears that the All Calls Re-entrant Method is the

best calling method available, and therefore it is proposed that this method be the

standard to be used by FORTRAN (and others) for all call sequences.

Conventions for Calling Sequences

Now that the standard method for cal I ing sequences has been determined,

the following set of conventions can also be proposed as standards.

Register U~ge ·

General register 5 (R5) will be the standard "calling

register" • That is, the JSR statement will take the form

JSR R5, Subroutine Name

This provides automatic saving of R5.

- 12-

PROGRAMMING DEPT. MEMO 1130-003-005-00

Argument Order

The arguments for a subroutine will be placed on the stack

in reverse order to their appearance in a CALL so that the

"first" argument will be on "top" of the stack (see detailed

code in the earlier discussion of the adopted method for i::m

·example).

FORTRAN Functions

A FORTRAN function will return its single result on the top

of the stack. This faci I itates coding for such statements as

A = SQRT (COS (ABS (B)))

Also, since floating point numbers ~equire multi-word represen

tations, returning the resu It on the top of the stack requires less

register manipulation than returning the resu It in general reg- .

isters. It shou Id be pointed out, however, that this ex> nvention

precludes coding routines which can be used as both SUBROUTINES

and FUNCTIONS.

Register Saving/Restoring

Since the PDP-II addressing schemes will usually require that

any program use a II genera I registers, it w i II be more efficient

if each subroutine save and restore any general register which

it uses.

- 13 -

