
Instruction Set

student workbook
introduction to

the pdp11

digital equipment corporation • maynard. massachusetts

1st Printing, March 1974
2nd Printing (Rev), November 1974

3rd Printing (Rev), April 1977

Copyright © 1974, 1977 by Digital Equipment Corporation

The reproduction of this workbook, in part or
whole, is strictly prohibited. For copy information
contact the Educational Services Department,
Digital Equipment Corporation, Maynard,
Massachusetts 01754.

Printed in U.S.A.

~----------course map----------........

SYSTEM

MEMORY

AND

PRIORITY

CONTROL

NOTE

PDP-"

FAMILY

A study unit should not
be started until all of the
units with arrows pointing
into it have been completed.

read on t
'--------------------------------iii ------------------------------~

READ LEARNING
OBJECTIVES

(page 1) you're to use,
ih;5 worKbool(.

NOW RUN FILM
CARTRIDGES

A&B ~--~~~------------~ L.. ________ J---,,/ COMPLETE STUDY

NOW RUN FILM
CARTRIDGES

C&D

EXERCISES: SECTION 1
(pages 54-68)

L..-------J--..,v COMPLETE STUDY
EXERCISES: SECTION 2

NOW RUN FILM
CARTRIDGES

E, F & G

(pages 71-82)

~~l\P-------------~
L--------~-..,V COMPLETE STUDY

EXERCISES: SECTION 3
(pages 85-108)

~------------~~~--------~
NOW RUN FILM
CARTRIDGE H "

~--~l\P-------------~
'--------....J--lIv/ COMPLETE STUDY

EXERCISES: SECTION 4
(pages 111-121)

V
GOOD WORK!

NOW GO ON TO THE
NEXT STUDY UNIT

read on t
'----------------------------w --------------------------~

~-------------------ubjectives------------------~

After completing this study unit you should be able to

* Recognize and use the three main instruction groups in the PDP-II basic instruction set:

• Single-Operand Instructions

• Double-Operand Instructions

• Program Control Instructions

* Use the appropriate addressing mode with any of the single-operand or double-operand
instructions.

* Select the most suitable branch instruction for the program conditions being tested and
calculate the proper offset value for the branch instruction.

* Understand and use basic programming techniques such as "loops" and "tallys."

* Write PDP-II programs'by using the following steps:

• Analyze the problem by constructing a flow chart of the job to be performed.

• Solve the problem by implementing the flow chart with appropriate instructions.

• Refine the resultant program by eliminating and/or combining instructions.

* Describe terms such as "offset," "condition codes," "tally," "loop," "pointer," "counter,"
"branch," and "initialize."

* Write a program or any individual instruction in both the assembler syntax (mnemonic code)
and in machine language (octal code).

* Use the PDP-II instruction card for selecting and coding instructions.

read on t

-----------additional resources--------

• PDP-llj04j05jl0j35j40j45
Processor Handbook

• PDP-llj04j05jl0j35j40j45
Processor Handbook

• PDP-II Paper Tape
Software Handbook

If necessary, read Chapter 1, Paragraph 1.6, for a brief
explanation of octal and binary number systems.

Read or review Chapter 4, Instruction Set. Also read
Chapter 5 to familiarize yourself with various PDP-II
programming techniques.

Read Chapter 2, Writing Assembly Language Programs.

read on t
'-----------------------------------2----------------------------------~

___ ------review: basic information------........

Topic

basic concepts

instruction groups

Key Points

* The PDP-II instruction set is divided into two
parts:

• Basic instructions, which are implemented in
all PDP-II processors.

• Special instructions, which are available only
with larger processors, such as the PDP-II /45
and PDP-II /70.

* Most PDP-II instructions fall into one of three
main categories:

• Single-Operand - one part of the word
specifies the job; the second part provides
information for locating the operand.

• Double-Operand - the first part of the word
specifies the job; the remaining two parts
provide information for locating two
operands.

• Program Control - the first part of the word
specifies some action to be taken; the second
part indicates where the action is to take
plaCe in the program.

SINGLE OPERAND INSTRUCTION

Visual Ref

3,4

5-7

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I : : : : :

DOUBLE OPERAND INSTRUCTION

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

PROGRAM CONTROL INSTRUCTION

15 14 13 1 2 11 10 09 08 07 06 05 04 03 02 01 00

I : : : : : : I : : :
O;fSET : :

MI-0499

read on It
3

~----------------single-operand----------------~

Topic

format

using instructions

program loops

Key Points

* The fonnat of all single-operand instructions is
as follows:

• Bit 15 - indicates word or byte operation.

• Bits 14-6 - indicate the· "op" code which
specifies the job or operation to be
performed.

• Bits 5-0 - consist of a 3-bit addressing mode
field and a 3-bit general register field. These
two fields are referred to as the "destination
field."

• When using a word operation (bit 15 is a 0),
the normal instruction mnemonic is used, .
such as CLR. When using a byte operation
(bit 15 is a I), then B is added to the
mnemonic, such as CLRB.

* Whenever we use a series of instructions
sequentially, it is called "straight line
programming." Note that each instruction is
exec~ted only once.

* A more efficient method of using instructions is
available. This is called a program "loop." Note
that each instruction in the loop is executed
many times.

* When programming, it is often desirable to
repeat a number of instructions. A program
"loop" is an efficient method of handling
repetitive operations.

* Program loops can be formed by using "branch"
instructions.

• A branch instruction tests a condition to see
if it has been met.

(continued on next page)

Visual Ref.

8-16

17, 18

19-20

read on t
'--------------------------------------4---------------------------------------

~----------------~ingle-operanu------------------

Topic

program loops
(Cont.)

using a "tally" .

making a tally

Key Points

• If the condition is met, the program branches
to a new location. This new location can be
one of the starting instructions. Thus, the
program "loops" back and repeats a group of
instructions .

• If the condition is not met, the program
continues with the next instruction.

* Eventually, we must exit the "loop" and
continue with the balance of the program. In
order to know when to exit, we use a "tally."

* A "tally" is used to keep count of how many
times we "loop" in order to tell us when to stop
looping and continue with the program.

* A tally keeps count as follows:

• The number of items or operations to be
counted is preset.

• The count is then decremented (or
incremented) each time the program loop is
executed.

• At the end of each program loop, the count is
checked to determine if the program is to exit
from the loop.

* One way of constructing a tally is as follows:

• A count is loaded into one of the GPRs. This
count specifies the number of times a series of
instructions must be repeated.

• Each time these instructions are executed, the
count is decremented by one.

• A check for "done" is performed by using a
BRANCH IF NOT ZERO instruction.

(continued on next page)

Visual Ref

21-26

read on t ~ _____________________________________ 5 ____________________________________ -'

~----------------single-operand------------------

Topic

making a tally
(Cont.)

using a tally

program analysis

Key Points

• If the GPR is not zero, the program loops
around and executes the same instructions
again.

• Once the number in the GPR reaches zero,
the branch instruction is no longer effective,
and the program executes the next sequential
instruction. In other words, the program exits
from the loop.

* The following short program uses a "tally" to
control a "loop," which clears out a specific
block of memory. Note that the program has
been set up to clear 308 byte locations
beginning at memory address 600.

= 600
30

(RO)
(RI) =

LOOP: CLRB (RO)+
DECRI
BRANCH IF NOT ZERO TO LOOP
HALT

* The following is an analysis of this program:

• The CLRB (RO)+ instruction clears the
contents of the location specified by RO. In
other words, RO contains the address of the
operand.

• Because the auto-increment addressing mode
is used, the pointer (RO) automatically moves
to the next memory location after execution
of the CLRB instruction.

• Register R 1 indicates the number of locations
to be cleared and is, therefore, a counter.
Counting is performed by the DEC R1
instruction. In other words, each time a
location is cleared, it is counted by
decrementing R 1.

(continued on next page)

Visual Ref

27-45

read on t ~ _______________________________________ 6 ______________________________________ -'

~----------------single-operand,----------------~

Topic

program analysis
(Cont.)

modifying the
program

positive and
negative numbers

Key Points

• The BRANCH IF NOT ZERO instruction
checks for done. If the counter is not zero,
the program branches back to start to clear
another location. If the counter is zero,
indicating done, then the program executes
the next instruction, H.AL T.

* The above program can be modified to clear full
words instead of bytes by making only two
modifications.

• Changing the first instruction to the word
instruction, CLR (RO)+.

• Loading a word, rather than a byte, count
into R 1. In other words, loading R I with
octal 14 rather than 30.

* In a PDP-II system negative numbers are
written in 2's complement notation.

• If we are working with signed numbers, bit 15
(the MSB) indicates whether the number is
positive or negative.

• A zero in bit position 15 denotes a positive
number; a one denotes a negative number.

NOTE
A PDP-il word can be treated as an unsigned
number in which all 16 bits represent the number;
or the word can be treated as a signed number, in
which the MSB is read as a sign (0 for positive, I
for negative). The same word can be interpreted as
either a signed or unsigned number.

Visual Ref

46-48

50-52

read on t
~--------------------------------------7--------------------------------------'

~----------------single-operand----------------~

Topic

forming the
negative of a
number

COM & INC
(or NEG)

pro blem-solving

* Forming the
accomplished

Key Points

negative of a number is
by complementing and

incrementing the number.

• When complementing a number, all O's are
changed to l's and alII's to O's. This can be
done by the COMplement instruction.

• Adding one to the number can be done with
the INCrement instruction.

* Changing a positive number to a negative can be
done by either:

• Using a COM and INC instruction.

• Using the NEGate instruction.

* Negative numbers can be converted to positive
numbers in the same manner.

* The single-operand instructions can be combined
with "tally" and/or "loop" techniques to solve a
variety of programming problems.

Visual Ref

53-57

59

read on t
'-___________________________________ 8 __________________________________ --'

~----------------single-operand------------------

Topic

an example

program analysis

Key Points

* Assume that the problem is to clear out all

memory locations by using as few instructions as
possible.

* The following 2-word program does just that. It
is loaded into the last two memory locations.

(Rl) = 0

LOOP: CLR (Rl)+
BRANCH LOOP (- 2)

* Here is how it works:

• Register R 1 is used as a pointer. The CLR
instruction clears out the first location
indicated by the pointer. In this case, location
o.

• The auto-increment addressing mode then
causes the pointer to point to the next word
location.

• The BRANCH LOOP instruction simply
returns the program to the CLR instruction.

• These two instructions cause the program to
keep looping as it moves down through
memory, clearing locations sequentially.

• When the pointer reaches the location of the
CLR instruction, the CLR clears out the
instruction itself.

• The BRANCH LOOP causes a branch back to
the location formerly holding the CLR but
which is now empty. Because all O's is the op
code for a HALT, the program stops.

• The last location, which holds the BRANCH
LOOP, can be cleared manually from the
console.

Visual Ref

60-71

60-71

read on t
'---------------------------------------9--------------------------------------'

~----------------~ingle-operann-----------------~

Topic

multiplication
and division

an example

rotates

Key Points

* Binary multiplication by two is accomplished by
shifting one place to the left.

* Binary division by two is accomplished by
shifting one place to the right.

* A shift left (multiply by two) is performed by
the ASL instruction.

* A shift right (divide by two) is performed by the
ASR instruction.

* A simple program to multiply by a power of two
can be constructed by loading a register with the
number to be multiplied and loading a second
register with the exponent of the power of two.
For example:

(Rl) 16 number to be

multiplied

(R2) = 5 25

START: ASLRI multiply by a

power of 2

DECR2 keep count of

multiplications

BR IF NOT 0 START If not done, go back

and do it again.

HALT Otherwise, stop.

* Rotates differ from shifts in that the bit shifted
out of the word is not lost but is rotated around
to enter the other side of the word. In effect, a
rotate forms a circular buffer.

* During all rotates, the C-bit of the PSW is used
as a link between bit 15 and bit 0 of the data
word. If a byte is rotated, the C-bit forms a
buffer between the MSB and LSB of the selected
byte.

Visual Ref

73-78

79,80

81-86

read on t
'------------------------------------10-----------------------------------'

~----------------single-operand----------------~

ROL
ROR

Topic

swapping bytes
(SWAB)

testing
(TST)

instruction card

Key Points

* There are two rotate instructions: ROL (rotate
left) and ROR (rotate right). As in other
single-operand instructions, they can operate on
bytes. The byte mnemonics are ROLB and
RORB.

* The swap byte or SWAB instruction reverses the
high and low bytes of the selected word.

* The TST (test) instruction tests the operand to
determine if it is either a negative number or a
zero. Depending on the result, the TST
instruction sets the N bit or the Z bit.

* AlI single-operand instructions are listed on the
PDP- 1 1 instruction card.

• A black square on the card indicates that the
associated bit may be a one or a zero,
enabling the programmer to select a word or a
byte operation.

• The next three octal digits indicate the "op"
code for that instruction.

• The two D's indicate the two portions of the
destination field ... addressing mode and
selected register. The DD indicates the
programmer may use any mode and any
register he desires.

• Tne 3-letter mnemonic is used by the
assembler. It is in the fonn: CLR(B) which
means that CLR is the form for a word
instruction and CLRB is the form for a byte
instruction.

r 0 = word operation; 1 = byte operation r- Op Code for clear (CLR)

• 05000

L destination field
(addressing mode & GPR)

Visual Ref

89,90

91

93-97

'-------------------------------------11------------------------------------~

~----------------~ouble-operandl----------------~

Topic

double
operand
instructions

format

Key Points

* The format of a double-operand instruction is
similar to that of a single-operand instruction
except that it has two fields for locating
operands.

• One field is called the "source" field and the
other is called the "destination" field.

• Each field is further divided into "addressing
mode" and "selected register."

• Each field is completely independent. The
mode and register used by one field may be
completely different than the mode and
register used by another field.

I: 0 = word operation; 1 = byte operation
! r-- Op Code for move (MOY)

.1SSDD TL destination Held (mode & GPR)
1-. --- source field (mode & GPR)

* The double-operand format is as follows:

• Bit 15 - indicates word or byte operation
except when used with op code 6. Then it
indicates an ADD or SUBtract instruction.

• Bits 14-12 - indicate the "op" code which
specifies the job or operation to be done.

• Bits 11-6 - consist of a 3-bit addressing
mode field and a 3-bit general register field.
These two fields are referred to as the
SOURCE field.

• Bits 5-0 - consist of a 3-bit addressing mode
field and a 3-bit general register field. These
two fields are referred to as the
DESTINATION field.

Visual Ref.

101-106

read on t
~-----------------------------------12-----------------------------------'

~----------------~ouble-operand'----------------~

Topic

byte instructions

MOV
instruction

CMP
instruction

ADD
instruction

SUB
instruction

instruction
execution

Key Points

* Byte instructions are possible by setting bit 15.
Thus, when bit 15 is 0, the move instruction
mnemonic would be MOV; when bit 15 is set,
the mnemonic would be MOVB.

Remember that op code 6 is different. There are
no byte operations for ADD and SUB.

* The MOV (move) instruction moves data from
the location specified by the source field to the
location specified by the destination field.

* The CMP (compare) instruction compares the
two operands (source and destination) and tells
which one is larger or if they are both equal by
setting the appropriate condition code bits in
the processor status word.

* The ADD instruction adds the source operand to
the destination operand. The result is stored in
the destination.

* The SUB (subtract) instruction subtracts the
source from the destination and stores the result
in the destination.

* Except for CMP, the results of all of the above
doubie-operand instructions are always stored in
the destination location. We will discuss other
double-operand instructions later.

* A double-operand instruction can transfer data
between any two Unibus devices .

• For example, data can be MOVed from a GPR
to an I/O device using a MOV RO, (Rl)
instruction.

• Or the contents of one memory location can
be ADDed to the contents of another
memory location using a ADD (RO), (Rl)
instruction.

Visual Ref.

107-109

III

112

113

113

114

117-121

read on t
~------------------------------------13,-----------------------------------'

~---------------double-operand----------------~

Topic

problem-solving

the problem

the program

Key Points

* The double-operand instructions can be used
with the techniques covered so far to solve a
variety of program problems.

* Assume that the problem is to have a portion of
the payroll program printed out for review by
the supervisor. It is known that 76 characters
(bytes) are to be printed and the block starts at
address 600.

* The following program solves the problem:

INIT:

START:

MOV #600, RO
MOV #76, RI
BITB #200, @#CSR
BPL START
MOVB (RO)+, @#777 566
DEC RI
BNE START
HALT

STOP
MI-0502

Visual Ref

122

123,'124

125-144

read on t
~----------------------------------14-----------------------------------'

~---------------uouble-operandl----------------~

Topic

program analysis

Key Points

* Here is how the program functions:

• MOV is the instruction normally used to set
up the initial conditions. Here, the first MOV
places the starting address (600) into RO
which will be used as a pointer. The second
MOV sets up R I as a counter by loading the
desired number of locations (76) to be
printed.

• The BITB instruction tests the ready flag in
the printer status register (CSR). If the ready
flag is set, (i.e., bit position 7=1), the BITB
instruction sets the N Condition code bit.

• The BPL (branch if plus) instruction keeps
the CPU in a wait loop until the ready flag is
set (for additional information, see topic
"testing I/O device for ready").

• The MOVB instruction moves a byte of data
to the printer for printing. The data comes
from the location specified by RO. The
pointer RO is then incremented to point to
the next sequential location. The address of
the printer's buffer register is 777 566.

• The counter (R 1) is then decremented to
indicate one byte has been transferred.

• The program then checks for done with the
BNE instruction. If the counter has not
reached zero, indicating more transfers must
take place, then the BNE causes a branch
back to START and the program continues.

• When the counter (R 1) reaches zero,
indicating all data has been transferred, the
branch does not occur and the program
executes the next instruction, HALT.

Visual Ref.

125-145

read on t
'-----------------------------------15----------------------------------,

~----------------~ouble-operandl----------------~

Topic

testblg I/O
device for
"ready"

Key Points

* I/O devices are not always available to the
program. When a device is available, it sets a
"ready" flag.

Visual Ref

l4lb

* The "ready" flag is bit 7 of the I/O status 141 c
register (CSR). This bit can be tested by the
program.

* One method of testing for ready is to use the
BITB (bit test) instruction.

• The BITB instruction performs a logical AND
between selected bits in a known and
unknown byte.

• For instance, testing bit 3 could be done by
loading a 1 in bit 3 of the known byte. The
BITB instruction would AND the two bits
(bit 3 in both the known and unknown
bytes). If they were both set (1 1\ 1 = 1), the
result would be 1, clearing the Z bit. If the
unknown bit were 0, however, then
1 1\ 0 = 0, and the Z bit would be set.

• In testing the ready flag, the low byte of the
status register is used. Therefore, bit 7 is
interpreted as the sign bit. We set bit 7 in the
known byte (source) and follow it with all
zeros because we don't care about any other
bits.

• The BITB instruction ANDs the known byte
(source) with the unknown byte (destination
or status register). If the ready flag is set (bit
7 set), BITB produces a one which sets the N
condition code because bit 7 denotes a
negative number.

• While waiting for a device to be ready, a loop
must be made. In other words, test for ready
and if the device is not ready, branch back
and test again.

(continued on next page)

14ld-141g

read on t
'-___________________________________ 16 __________________________________ __

~---------------oouble-operand----------------~

Topic

testing I/O
device for
"ready" (Cont.)

moving data
from an I/O
to memory

preventing erasure
of the payroll
program

Key Points

• The ready loop is composed of two
instructions: BITB #200, @#CSR and BPL
START (branch to START if N=O).

NOTE
CSR represents the status register in the
printer. Bit 7 in this status register is the ready
flag.

* Assume now that our problem is to move data
from the I/O device (source) to memory
(destination).

• There is a danger that continual storing of
data into memory .. could cause data to be
moved into an area of memory containing the
payroll program, thereby wiping it out.

* One method of preventing the payroll program
from being destroyed is to set a limit at which
point the data transfer program either stops or
takes appropriate action.

• The limit can be set up by specifying the
address of the last location where data can be
safely stored.

• The destination pointer is continually moving
toward this limit as data is loaded into
memory.

• A CMP (compare) instruction is used to
continually compare the address pointer with
the limit address to determine if the limit is
reached.

(continued on next page)

Visual Ref

l4ld - l41g

155-157

158-166

read on t
'------------------------------------17-----------------------------------'

~----------------nouble-operand----------------~

Topic

preventing erasure
of the payroll
program (Cont.)

relocating
a program

Key Points

• When the CMP instruction indicates that the
limit has been reached, some action must be
taken to prevent destruction of the payroll
program. One method would be to HALT the
program. However, this means that the
balance of the payroll data would not be
loaded into memory.

• A better method would be to relocate our
payroll program to make room for additional
payroll data.

* We want to move the entire payroll program
from its present location to a new area of
memory. We know the starting and final address
of the payroll program (1102 and 1776) and the
starting address (3000) of the new memory area.

* These steps are used to relocate the program:

• We initialize by using two MOV instructions
to set up source and destination pointers. The
source pointer points to the first payroll
program address; the destination pointer
points to the first new memory address.

MOV #1102, R2
MOV #3000, R3

• We then use a MOV (R2)+, (R3)+ instruction
to transfer one word of the program to the
new memory area as specified by the pointers.
Both pointers are autoincremented so they
move to the next locations.

• A loop is constructed so that the pointers
keep moving down through memory as the
payroll program is transferred, instruction by
instruction, to the new area of memory.

(continued on next page)

Visual Ref

167, 168

169-182

read on t
'-----------------------------------18------------------------------------

~---------------double-operand----------------~

Topic

reloca ting a
program (Cont.)

program

instruction
summary

Key Points

• The payroll program pointer (R2) is
constantly compared with a limit, which is
the last address (1776) of the program. If the
pointer is lower or the same as the limit, a
BLOS START instruction causes the CPU to
branch to START and move another word.
The CPU will remain in the program loop
until R2 is autoincremented to 2000 (this will
ensure that the last word is moved out of
location 1776).

NOTE
The program that we moved must be
written in Position Independent Code
(PIC); otherwise, it will not run once it
has been moved to another area of
memory. For a brief description of PIC,
refer to Chapter 5 of your PDP-II
Processor Handbook. Also, refer to the
workbook on "Addressing Modes."

* The following program will transfer the payroll
program from its present location to a new area
of memory:

label instr..:ction comments

INIT: MOV #1102, R2 ; set up
MOV #3000, R3 ; pointers.

START: MOV (R2)+, (R3)+ ; move one word
LIMIT: CMP R2, #1776 ; if not done

BLOS START ; go to start.
HALT ; if done stop

* Double-operand instructions are powerful
because they deal with two operands ... source
and destination.

• The MOV instruction is particularly effective
in the INITIALIZATION portion for setting
up pointers, counters and limit values.

• The CMP instruction is useful in comparing
pointers with limit values to determine when
to exit from a program loop.

Visual Ref.

181

185-189

read on t
'----------------------------------19---------------------------------'

~----------------~ouble-operann------------------

Topic

instruction
summary (Cont.)

the three BIT
instructions

masking

Key Points

• The ADD and SUB instructions have the
power of dealing with two numbers
simultaneously.

• The BIT instruction pennits comparison of a
known bit pattern and an unknown bit
pattern, such as we did when testing for a
ready flag.

* There are three related bit instructions:

• BIT (bit test) - which tests an unknown bit
to determine if the bit is a 0 or a 1. BIT
performs this test by performing a logical
AND function.

• BIS (bit test) - which performs an inclusive
OR function. In other words, for any bit set
in the source operand, the corresponding bit
is set in the destination operand.

• BIC (bit clear) - which clears specific bits in
the destination. \Vhen BIC is used, each bit set
in the source is cleared in the destination.

* The BIC instruction can "mask" portions of a
data word. Only the bits specified in the source
are "masked" out.

For example:

DST = 012345
SRC = 177770

Then the instruction:

BIC SRC, DST

will "mask out" the first five octal digits,
leaving the value 000 005 in the DST.

Doing it digit by digit:

DST = 0 001 010 011 100 101
SRC = 1 III 111 III III 000 .

Mask
RESULT = o 000 000 000 000 101

Visual Ref

190-192

193

~-----------------------------------20-----------------------------------'

~--------condition codes,--------............

Topic

condition codes

Z-bit

Key Points

* There are four condition code bits:

• N - indicating a negative condition

• Z - indicating a zero condition

• V - indicating an overflow condition

• C - indicating a carry condition

* These four bits are part of the processor status
word (PSW).

* The result of any single-operand or double
operand instruction affects one or more of the
four condition code bits.

* A new set of condition codes is created after
execution of each instruction.

* The CPU may be asked to check the condition
codes after execution of an instruction.

* The condition codes are used by the various
branch instructions to detennine whether or not
the program is to branch.

* Whenever the CPU sees that the result of an
instruction is zero, it sets the Z bit. If the result
if not zero, then it clears the Z bit.

* There are a number of ways of obtaining a zero
result. For example:

• Adding two numbers equal in magnitude but
different in sign.

• Comparing two numbers of equal value.

• Using the CLR instruction.

Visual Ref

197-204

205-208

read on t
------------------------------------21----------------------------------~

..------------condition codes,----------

Topic

N-bit

C-bit

V-bit

Key Points

* In this case, the CPU only looks at the most
significant bit (MSB) of the result.

• If the MSB is aI, indicating a negative value,
the CPU sets the N-bit.

• If the MSB is a 0, indicating a positive value,
then the CPU clears the N-bit.

* The CPU sets the C-bit when the result of an
instruction has caused a carry out of the most
significant bit of the result.

* When the instruction results in a carry out of the
most significant bit of the result, the carry itself
is usually moved into the C-bit. Otherwise, the
C-bit is cleared.

* A carry of I sets the C-bit while a carry of 0
clears the C-bit. However, there are exceptions.
For example:

• SUB and CMP set the C-bit when there is no
carry .

• INC and DEC do not affect the C-bit.

* During rotate instructions (ROL and ROR), the
C-bit forms a "buffer" between the most
significan t bit and the least significant bit of the
word.

* The V-bit is set to indicate that an overflow
condition exists. An overflow condition occurs
when an arithmetic operation produces a result
that "spills' over" into the MSB (sign position).
There are two methods the hard ware uses· to
check for an overflow 'condition.

* One way is for the CPU to test for a change of
sign .

• When using single-operand instructions, such
as INC, DEC, or NEG, a change of sign
indicates an overflow condition.

(continued on next page)

Visual Ref.

209-211

212-216

217-233

read on t
-------------------------------------22-----------------------------------'

~--------cond ition codes~---------.....

Topic

V-bit
(Cont.)

multiple codes

instruction card

Key Points

• When using double-operand instructions, such
as ADD, SUB, or CMP, in which both the
source and destination have like signs, a
change of sign in the result indicates an
overflow condition.

* Another method used by the CPU is to test the
N-bit and C-bit when dealing with shift and
ro ta te instructions.

• If the N-bit is set, an overflow exists.

• If the C-bit is set, an overflow exists.

• If both the N and C bits are set, there is no
overflow condition.

* More than one condition code can be set by a
particular instruction. For example, both a carry
and overflow condition may exist after
instruction execution.

* The instruction card indicates which codes are
affected by each specific instruction.

• - Indicates that the corresponding condition
code bit is never affected.

• 0 Indicates that the corresponding condition
code bit is always cleared.

• 1 Indicates that the corresponding condition
code bit is always set.

• * Indicates that the corresponding condition
code bit is either set or cleared depending
on the results of the instruction.

Visual Ref

217-233

234

235-237

read on t
~---------------------------------------23--------------------------------------~

~-----~ondition code operators,------........

Topic

changing the
condition codes

instruction
format

15 14 13 12

Key Points Visual Ref.

* There are two ways of changing the condition
code bits in the processor status word (PSW).

• The result of a single-operand or double
operand instruction will automatically change
appropriate condition code bits.

• A separate set of condition code instructions,
or operators, allows the program to control
the states of the condition code bits.

238

* The format of the condition code operators is as
follows:

239-242

11

• Bits 15-5 the "op" code base = 000 240

• Bit 4 the "operator" which indicates
the job to be done. If set, any
selected bit is set; if clear, any
selected bit is cleared.

• Bits 3-0 the "select" field. Each of these
bits corresponds to one of the
four condition code bits. When
one of these bits is set, then the
corresponding condition code bit
is set or cleared depending on the
state of the "operator" (bit 4).

BIT 4 = 0; CLEAR SELECTED CONDITION CODE BITS.
BIT 4 = 1; SET SELECTED CONDITION CODE BITS.

\.

T
10 09 08 07 06 05 04 03 02 01

+COOE:BASE :
\

T

j

00

SELECTS WHICH CONDITION
CODE BITS ARE TO BE SET
OR CLEARED (e.g., 1100
SELECTS NAND Z-BITS).

)

MI-0501

read on t
24

~-----~ondition code operators-------

Topic

instruction
mnemonics

other
combinations

Key Points

* Mnemonics have been assigned for certain state's
of the "operator" and "select field."

• CLN clear N bit

• CLZ clear Z bit

• CLV clear V bit

• CLC clear C bit

• CCC clear all four bits

• SEN set N bit

• SEZ set Z bit

• SEV set V bit

• SEC set C bit

• SCC set all four bits

* In addition to the instructions that have
mnemonics assigned, there are other instructions
available. You must remember two things:

• It is possible to operate on any combination
of bits ... such as two or three bits. For
example, an instruction could set the Z and C
bits.

• When using these combinations, no
mnemonics exist, so it is necessary to use the
octal op code for the instruction.

Visual Ref

243-248

249

read on t ____________________________________ 25 __________________________________ ~

...".-------condition code operators-------

Topic

no operation

summary

Key Points

* If no bit has been selected for use, then it
doesn't matter whether or not the "operator"
specifies a set or clear operation. Nothing will
happen. Therefore:

• 000 240 is a NOP (no operation) instruction .

• 000 260 is a NOP.

* There are four set instructions to set anyone of
the four condition code bits.

* There are four clear instructions to clear anyone
of the four condition code bits.

* There is one instruction to clear all bits.

* There is one instruction to set all bits.

* There are a number of instructions, without
mnemonics, for setting or clearing various
combinations of bits.

* There are two NOP instructions.

Visual Ref.

250

251

read on t
'------------------------------------26-----------------------------------'

~---------------------branch,----------------------~

Topic

branch
instructions

fonnat

typical branch

Key Points

* Any branch instruction orders the CPU to test a
condition and take action based on the results of
the test.

• The conditions tested are the states (set or
cleared) of the four condition code bits in the
PSW N, Z, V, and C.

• There are 16 conditional branch instructions.
They are "conditional" because they branch
only if the specified condition is met.

• There is one unconditional branch (BR). This
instruction does not test a condition. It causes
a branch whenever used.

* The high byte of the instruction is an op code
specifying the condition to be tested.

* The low byte of the instruction is the "offset"
value that specifies where the CPU is to branch
for its next instruction (if the condition is
satisfied).

* A typical branch instruction is BNE Branch
if Not Equal to zero.

• The BNE instruction tests the condition of
the Z bit in the PSW.

• If the Z-bit is clear, indicating "not equal to
zero", then a branch occurs.

• If the Z-bit is set, indicating "equal to zero",
then a branch does not occur. The program
simply executes the next sequential
instruction.

Visual Ref

255-257

258-261

262,263

read on t
~----------------------------------27----------------------------------~

~---------------------branch:----------------------~

Topic

using branch
instructions

analyzing the
problem

implementing
the solution

Key Points

* Assume that it is necessary to find the value "Y"
located somewhere in a large table of values.

* The problem of finding "Y" can be solved by
the following steps:

• Compare an entry from the table with the
known value "Y."

• Test the Z bit. If it is zero, there is no match
so repeat the process.

• If the Z bit is set, it indicates a match so we
know we have found the desired value "Y."

* A program can be implemented as follows:

• Set up a pointer to point to the first address
in the table of values. This is done by MOV
#ADRS, RO.

• Compare the entry with the known value "Y"
and then move the pointer to the next
location. This is done by a CMPB #Y, (RO)+
instruction.

• Test the result of the compare by branching if
there is no match. This is done by BNE
START. Thus, if we haven't found "Y," the
program compares the next entry in the table.

• Once "Y" is found, the comparison results in
setting the Z bit, the branch does not take
place, and the program executes the next
instruction.

INIT:
START:

MOV #ADRS, RO
CMPB #Y, (RO)+
BNE START

Visual Ref

265

266

267-273

read on t
'-----------------------------------28----------------------------------~

~----------------------nranch------------------------

Topic

offset

direction

range

iucatioJi

Key Points

* Offset is another word for displacement. It
represents the distance between the point we
wish to branch to and the current address in the
PC (the offset is always calculated relative to the
updated PC).

* The offset represents the distance in words.

* Tne offset can be used in either direction.

• A positive offset indicates the branch point is
forward from the PC.

• A negative offset indicates the branch point is
backward from the PC.

* The offset range is limited.

• The maximum positive offset is 177 octal
words.

• The maximum negative offset is 200 octal
words.

.. The offset is contained in the low byte of a
branch instruction.

• Bit 7 is the sign of the offset (0 = positive
offset; 1 = negative offset),

• Bits 0-6 indicate the magnitude.

Visual Ref

275-277

278

279

'1Q()
... uv

read on t
'-___________________________________ 29 __________________________________ -'

~--------------------~nranch----------------------~

PC

Topic

using offsets

effective
address

7 6

-200
11 I 0 I •

000 000

•
• NEGATIVE

OFF SETS

• ,L -2

CURRENT INST. -1 I 1 I 1 I 111 111

NEXT INST. 0 I 0 I 0 I 000 000

+1 qs
+2

•

000 001

• POSITIVE
OFF SETS

•
+177 [3J 111 111

Key Points

* When dealing with positive offsets, simply place
a 0 in the sign and the appropriate number of
words in the magnitude.

* When dealing with negative offsets, write the
number of words desired. Then complement the
entire offset, including sign. Finally, increment
this value to obtain the two's complement. This
step is not necessary when using assembler
syntax. For example, just write BNE TAG (TAG
is a label that identifies the location you wish to
branch to).

* Two offsets that may cause problems are:

• -1 - causes a branch back to the instruction
causing the branch. Therefore, a continual
loop is fonned.

• 0 - indicates that there is no branch at all.

* The address of the branch destination is called
the "effective address."

o

200

•
• • • •

377

000.

001,

• • • • •
177

MI-0503

Visual Ref

281-291

292

293

read on t
~----------------------------------30----------------------------------~

~----------------------brancn-----------------------~

Topic

calculating the
effective address

caicuiating the
offset value

some branch
instructions

Key Points

* The assembler takes the offset value, multiplies
it by two, and adds the result to the program
counter.

The effective address can be found by either the
programmer or the assembler by using the
formula:

(offset X 2) + (updated PC) = effective address

* The first step is to cakuiate the ociai difference
between the PC and the effective address.

* The second step is to divide this difference by
two because the PC is always incremented by
two.

* Thus, the formula for finding the offset value is:

effective address - updated program counter
2

* Testing the Z condition code bit:

• BEQ - tests for a zero condition which exists
when the Z-bit is set.

• BNE - tests for a non-zero condition which
exists when the Z-bit is dear.

* Testing the e condition code bit:

• BeS - branch if C-bit is set.

• Bee - branch if e-bit is clear.

* Testing the V condition code bit:

• BVS - branch if V-bit set.
• BVe - branch if V-bit clear.

* Testing the N condition code bit:

• BMI - branch if N-bit set, which indicates a
negative or minus .

• BPL - branch if N-bit clear, which indicates a
positive or plus.

Visual Ref

294-298

299-302

304

305

306

307

read on t
'------------------------------------31-----------------------------------'

~----------------------nranch----------------------~

Topic

summary

using branch
instructions

the problem

placing numbers
in order

BPJlI

N

BPL

Key Points

* There are eight separate branch instructions
dedicated to testing the four condition code bits
of the PSW.

BEQ BVS BCS-- BRANCH IF SET

z v C

BNE BVC BCC •• -- BRANCH IF CLEAR

MI-0504

* Because branch instructions are some of the
most versatile instructions available, we are
going to show their use by constructing a rather
large program.

* A long series of numbers is stored in a random
order in consecutive bytes in memory. To use
these values more efficiently, it is desired to
place all of the numbers in ascending order.

* If, for example, the job was to sort three
numbers into sequential order, the following
steps would be necessary:

• Compare the first and second numbers.

• If the second number is not larger, switch the
two numbers around.

• Compare the number now in the second
position with the third number.

• If the third number is not larger than the
second, switch the two numbers around.

• Compare the first and second numbers again.
This is necessary because the previous step
could have resulted in a new second number.

(continued on next page)

Visual Ref

308

309

310

311-319

read on t
~-----------------------------------32-----------------------------------'

~----------------------nranch'----------------------~

Topic

placing numbers
in order
(Cont.)

comparison
of numbers

Key Points

• Again, if the second number is not larger,
switch them around.

* At this point, the three numbers are now in
proper order. Notice that any subsequent
comparisons do not require any further
switching of numbers.

* When comparing two numbers, we ask, "Is the
second number larger?"

• If the second number is larger, we can
continue with the program.

• If the second number is not larger, we must
swi tch them around.

Visual Ref

311-319

320

* The CMPB (compare byte) instruction will 321
compare the two numbers. The first number is
the SOURCE operand and the second number is
the DESTINATION operand. There are three
possible results:

• Zero - indicating both numbers are equal.

• Positive - indicating the source is larger.

• Negative - indicating that the destination is
larger.

* Because we want to know when the second 322
number (destination) is larger, we are looking
for a minus result so we use the branch
instruction BMI - branch if minus.

NOTE
There are a number of branch
instructions available in the PDP-II
instruction set and there might be a
better choice for this particular job.
However, we are not going to cover these
additional branch instructions until later
in this study unit.

(continued on next page)

read on t
--------------------------------------33------------------------------------'

~-----------------------brancn-------------------------

Topic

comparison
of numbers
(Cont.)

flowchart
analysis:

placing
numbers
in order

is 2nd
number
larger?

check
limit

Key Points

* A flowchart analysis of this problem follows.

NOTE
Refer to the flowchart on the facing
page.

* After the initial conditions are set up, the first
two numbe~ are compared.

* The pointers are then incremented so that they
are pointing to the next two numbers in the list.

* Next, the results of the comparison are tested to
determine if the numbers need to be switched.

• If the second number is larger, no switch is
necessary.

• If the second number is not larger, the two
numbers must be switched aroundo A flag is
then set to indicate there was a switch.

* After two numbers have been compared and
switched (if necessary), the limit is checked to
determine if there are any more numbers in the
list.

• If there are more numbers (Le., if the limit is
not reached), the CPU branches back to
START and compares the next two numbers.
The CPU remains in the loop until all
numbers in the list have been compared.

• When the limit is reached, the CPU exits from
the loop and goes to the next step to
determine if the flag is set.

(continued on page 36)

Visual Ref

325-336

read on t
'------------------------------------34-----------------------------------'

~----------------------nranchi----------------------~

RESET
POINTERS
AND CLEAR
FLAG

FLOWCHART FOR SORTING A LIST OF
NUMBERS INTO THEIR PROPER ORDER

START:

NO

YES

SET UP INITIAL
CONDITIONS

~
~

SWITCH THE

SET FLAG TO
INDICATE

THERE WAS A

SWITCH

WERE
ANY NUMBERS
SWITCHED?

MI-0500

read on t
'-----------------------------------35--------------------------------~

~---------------------branch----------------------~

Topic

is flag
set?

program
divisions

Key Points

* The flag tells us if we are done.

• If the flag is set, it indicates that two numbers
were switched around . .LA~y number switching
could affect the order of other numbers.
Therefore, it is necessary to reset the pointers
to their initial values, clear the flag, and then
repeat the entire process until there are no
further switches.

• If the flag is not set, all of the numbers are
now in their proper sequence. Therefore, we
can stop our program.

* The program to sort a series of numbers is
divided into six major divisions:

• Initialization

• Comparing numbers

• Switchillg numbers, if necessary

• Checking the limit to see if all numbers have
been handled

• Checking for done (is flag = O?) to see if
program has sorted all numbers

• Resetting pointers and recycling through
entire program if not done (flag = I).

Visual Ref

336

read on t ~ __________________________________ 36 __________________________________ ~

~---------------------branch,----------------------

Topic

initialization

comparing
numbers

Key Points

* There are four initial conditions that must be
taken care of. In the first three cases, the
immediate addressing mode is used.

• Set the limit - MOV #604, RO

• Set left pointer - MOV #600, Rl

e Set right pointer - MOV #601, R2

• Reset flag to zero - CLR R4

* When comparing numbers, it is necessary to
compare the numbers, increment both pointers,
and then see if the second number is larger.

• Comparing numbers and incrementing
pointers is done with the instruction, CMPB
(Rl)+, (R2)+.

• Checking to see if the second number is larger
is done with BMI CHECK. If the second
number is larger, the program branches to the
next functional unit of checking the limit.

• However, if the numbers must be switched,
the branch does not occur, and the program
goes to the next sequential functional block
which is: switching the numbers.

Visual Ref

339,340

341-343

read on t
'-----------------------------------37----------------------------------~

~---------------------branch----------------------~

Topic

switching
numbers

pointers can
cause trouble

Key Points

* In order to switch two numbers, the program
performs the following steps. Notice that the
first number is the source and the second
number is the destination.

• Save the destination by moving it into a GPR
for temporary storage.

• Move the source into the destination location.

• Move the former destination from the GPR
into the source location.

• At this point, the numbers have been
switched around.

* After the first compare of the first and second
numbers, the pointers are pointing to the second
and third numbers. It is necessary to get the
pointers back to the first and second numbers if
a switch is needed.

• Since the left pointer (Rl) is pointing to the
second number at this time, the destination
can be saved by using the instruction: MOVB
(RI), R3.

• Now, by using auto-decrement addressing,
both pointers can be moved back and the
source moved into the destination. We use,
MOVB -(Rl), -(R2) to do this.

• The number held in the GPR is now moved
into the source by the instruction, MOVB R3,
(R 1)+. This instruction restores the left
pointer.

• The right pointer is then restored by an INC
R2 instruction.

• A flag is then set to indicate a switch was
made. Bit 0 in R4 is used as our flag. The
instruction MOV #000 00 I, R4 sets the flag
(bit 0) to a 1.

Visual Ref

344-348

349-359

read on t
'-----------------------------------38----------------------------------~

~---------------------branchl----------------------~

Topic

checking
the limit

checking
for done

Key Points

* The limit is checked to see if all numbers in the
table have been handled by the program.

• Because the right pointer will reach the limit
before the left pointer, it is used to check for
the limit.

• The contents of the right pointer are
compared with the limit by the instruction
CMP RO, R2.

• The compare instruction is followed by a
BNE ST ART instruction.

• If the results of the co~npare are not equal, a
branch is made back to the start of the
program to handle the next set of numbers.

• However, if the compare indicates that the
right pointer and the limit value are equal, we
know that all numbers have been handled, so
we go to the next program block to check for
done.

* wnenever ihe flag is set (bit zero in R4), it
indicates a switch was made and, therefore, the
program is not yet finished.

e The instruction BIT #000 001, R4 is llsed to
test the state of the flag.

• If the flag is clear, indicating no switches were
made, then the CPU fetches the HALT
instruction and stops .

• If the flag is set, indicating a switch was made,
the BNE INIT instruction causes a branch
back to the beginning of the program.

Visual Ref

360-370

read on t
'---------------------------------------39----------------------------------~

~--------------------branch----------------------~

Topic

resetting
pointers
and code

sorting many
numbers

Key Points

* Because we are going through the entire program
again, it is necessary to reset the pointers and
clear the flag (R4) which is actually the same
thing as re-initializing the program.

• We can reset the pointers and flag by simply
branching back to the initialize portion of the
program.

• However, because we know that our limit
value will not change, we branch back to the
second instruction in the initialize portion.

* The program can be modified to. handle any
amount of numbers by making only three
changes in the initialize portion of the program.

• MOV #X, RO - in place of X, use the last
address of your list of numbers.

• MOV #Y, RI - in place ofY, use the starting
address of your list.

• MOV #Y+I, R2 - in place of Y+I, use the
starting address plus one.

Visual Ref

375

385

read on t ~ __________________________________ 40 __________________________________ ~

~------------------------~rancn-----------------------~

Topic

not just numbers

the finished
program

Key Points

* This program can also be used to sort letters of
the alphabet because each letter can be
represented by an 8-bit ASCII numerical
representation.

* The following program will sort a list of
numbers and/or letters of the alphabet into their
proper sequence.

label instruction comments field

MOV#604, RO ; set up limit.
INIT: MOV#600, Rl ; set up both

MOV#601, R2 ; pointers.
CLRR4 ; clear flag.

START: CMPB (R 1)+, (R2)+ ; Compare two
BMICHECK ; numbers.

SWITCH: MOVB (RI), R3 ; Switch numbers
MOVB -(RI), -(R2) ; if second is
MOVB R3, (RI)+ ; not larger and
INC R2 ; restore pointers.
MOV #000 001, R4 ; Set flag.

CHECK: CMP RO, R2 ; If limit not
BNESTART ; reached go back.

RESET: BIT #000 no 1 ; R4 . Tp.~t tho
, - -- ~ ---~O"

BNE INIT ; Repeat if flag is I.
DONE: HALT ; Otherwise stop.

Visual Ref

386

read on t
'-----------------------------------41-----------------------------------'

~---------------------branch----------------------~

Topic

eigh t branch
instructions

other branch
instructions

signed numbers

unsigned numbers

Key Points

* Remember that there are eight branch
instructions for testing the states of each of the
condition code bits (N, Z, V, e) .

• Four instructions test the set state: BMI,
BEQ, BVS, and BeS .

• Four instructions test the clear state: BPL,
BNE, BVe, and Beeo

* There are eight more branch instructions that
test combinations of bits. However, before
describing them, it is necessary to understand
signed and unsigned numbers.

* When dealing with both the sign (+ or -) and
magnitude of a number, the number is called a
"signed" number.

* A number in which the sign bit (most significant
bit) is considered to be part of the magnitude is
known as an "unsigned" numbei.

Visual Ref

388

389,390

390'

390

read on t
'------------------------------------42----------------------------------~

,-------------------------nranc~------------------------~

Topic

using the eMP
instruction

eight more
branch
instructions

Key Points

* When comparing two numbers, the N bit is set if
A is less than B, provided we are dealing with
unsigned numbers.

* When comparing two numbers, the V bit is set if
A is less than B, provided we are dealing with
signed numbers.

* Therefore, when dealing with either signed or
unsigned numbers, either the N bit or the V bit
is set whenever A is less than B.

* The above conditions are handled by a single
branch instruction ... BLT ... branch if less
than.

* There are a total of eight branch instructions
that test combinations of condition code bits.

• BL T - branch if less than

• BLE - branch if less than, or equal

• BGT - branch if greater than

• BGE - branch if greater than, or equal

• BLO - branch if lower

• BLOS - branch if lower, or same

• BHI - branch if higher

• BHIS - branch if higher, or same

* Two of the above instructions are not actually
new instructions but simply new mnemonics for
two previous instructions.

• BLO and BeS have the same op code (103
400).

• BHIS and Bee have the same op code (103
000).

Visual Ref

391-399

400-406

read on t
~---------------------------------------43--------------------------------------~

~-------------------subroutin~--------------------

Topic

su brou tines

two problems with
subroutines

Key Points

* A subroutine is used when one task must· be
performed at different points in the program.
An example of such steps would be a series of
PRINT instructions.

• The program requests or "calls" the
subroutine whenever it needs to use it.

• Once the subroutine is finished, it returns
control to the main program.

• Typical subroutines are: multiply and divide;
calculating trigonometric functions; and
input/output functions such as print.

• Subroutines may use other subroutines. For
instance, a square root subroutine may use a
divide subroutine.

• Subroutines can be shared by different
programs. For example, a print subroutine
might be used by fLT1 I/O service program, the
main program, and an error handling program.

* The computer has two distinct problems when
dealing with subroutines:

• The main program must tell the CPU where
the subroutine is located.

• The subroutine must return control to the
proper point in the main program so that the
program can continue where it had left off.

* These two problems are solved by two PDP-II
instructions:

• JSR - jump to subroutine

• RTS - return from subroutine

Visual Ref

410-414

415

416

read on t
'------------------------------------44-----------------------------------'

~-------------------subroutine-------------------~

Topic

JSR instruction

JSR format

JSR operation

Key Points

* The JSR Uump to subroutine) instruction causes
the program to jump to the subroutine and also
constructs a "linkage pointer" so that the main
program can continue where it left off once the
subroutine has been executed.

* The format of the JSR is as follows:

• Bits 9-15 - these are always octal
indicating the op code for a JSR.

{\{\A
VV"'T

• Bits 6-8 - specify the "link" register. Any
GPR may be used as the link, except R6.

• Bits 0-5 - a "destination" field that consists
of addressing mode and general register fields.
This specifies the starting address of the
subroutine.

Visual Ref

417-419

420,421

* Register R 7 (the PC) is frequently used for both 422
the link and the destination. For example, you
may use JSR R 7, SUBR, which is coded
004 767. R 7 is the only register that can be used
for both the link and destination; the other
GPRs cannot. Thus, if the link is R5, any
register except R5 can be used for the
destination field.

* The JSR instruction is executed in a number of
steps:

• When executing a JSR, the CPU first uses the
destination field to find the subroutine
starting address, which is then held in a
temporary register.

• It next saves the current contents of the
register to be used as the link by pushing the
contents onto the hardware stack.

(continued on next page)

424-434

read on t
'-___________________________________ 45 __________________________________ -'

~-------------------subroutine-------------------~

Topic

JSR operation
(Cont.)

typical JSR

JSR
functions

Key Points

• The CPU then saves the main program PC by
loading it into the link.

• The final step is to load the subroutine
starting address, currently held in the tempo
rary register, into the PC. In effect, it loads a
new PC.

* A typical JSR instruction is:

JSR R5, (R3)

This instruction indicates that register R5 will be
used as the link and that R3 is used with
addressing mode I to serve as the destination
field.

* This JSR instruction functions as follows:

• The CPU looks at the destination field and
seeing mode I, knows that the starting
address of the subroutine is stored in R3.

• The CPU then saves the subroutine starting
address by placing it in a temporary register.

• Because R5 is specified as the link, the CPU
decrements the stack pointer (R6) and then
moves the data currently stored in R5 onto
the hardware stack in order to save it.

• The CPU then stores the current PC in R5
which has been selected as the link register.

• Finally, the CPU moves the subroutine
starting address from the temporary register
and loads it into the PC. At this point, the
computer begins execution of the subroutine.

Vis~al Ref

424-434

read on t
'-----------------------------------46----------------------------------~

~-------------------subroutinB-------------------~

Topic

RTS instruction

RTS format

typical RTS

Key Points

* The RTS (return from subroutine) instruction
uses the link to return control to the main
program once the subroutine is finished.

* The format of the RTS is as follows:

• Bits 3-15 - always contain octal 00020
which is the op code for an RTS.

• Bits 0-2 - specify anyone of the GPRs.

• WARNING - The register specified by bits
0-2 must be the same register used as the link
by the associated JSR. In other words, to
form a link between the JSR causing the jump
and the RTS returning control, the same
register must be used by both instructions.

* A typical RTS instruction is:

RTSR5

The prime function of an RTS is to restore
information. The instruction does the following:

• I t first restores the PC by moving the old PC
from the link (in this case, R5) and loading it
into the program counter (R 7).

• It then restores R5 by "popping" the data
from the top of the stack and moving it into
R5 (the link).

• At this point, everything is just as it was prior
to execution of the JSR instruction.

Visual Ref.

440

441-444

445,446

read on t
'-------------------------------------47------------------------------------~

~-------------------subroutinp----------------------

Topic

summary

Key Points

* A JSR is used at any desired point in a program
to cause a jump to a specific subroutine.

* Every subroutine must end with an RTS in order
to return control to the proper point in the main
program.

Visual Ref

447

read on t ~ __________________________________ 48 ________________________________ ~

~-------interrupts & traps----------.......

Topic

interrupts
& traps

interrupts

Key Points

* There are three methods of leaving a main
program:

• Software exit - the program specifies a jump
to some subroutine.

• Trap exit - internal hardware or a special
instruction forces a jump to an error handling
routine.

• Interrupt exit - external hardware forces a
jump to an interrupt service routine.

* In all of the above cases, there is a jump to
another program. Once that program has been
executed, control is returned to the proper point
in the main program, unless an error condition
forces a HALT.

* An interrupt forms a "link" back to the main
program by taking the current PS word and PC,
and "pushing" them both onto the stack.

* The CPU then retrieves a new PS word and PC
from the inierrupi vector. Tne new PC points to
the start of the interrupt routine.

* An RTI (return from interrupt) instruction is
used to return control to the main program once
the interrupt service routine is finished .

• The RTI format is simple. The entire word is
an op code of 000 002 .

• The RTI restores control to the main program
by "popping" the PS and PC from the stack.

(continued on next page)

Visual Ref

449-452

453

454,455

456-461

read on t
'-___________________________________ 49 __________________________________ -'

------------interrupts & trap~-------.........

Topic

interrupts
(Cont.)

programming
interrupts

traps

types of
traps

hardware traps

Key Points

* An RTf (return from trap) instruction, which
has an op code of 000 006, performs the same
function as an RTI. The only difference is
that an RTI permits use of the T-bit for
debugging programs while the RTf inhibits
the T-bit.

* When dealing with interrupts, a programmer
must perform three duties:

• Write the interrupt service routine.

• End the routine with an RTI or RIT.

• Load the desired PS and PC in the vector.

* The PDP-II uses either internal hardware or
software to find errors. When an error is spotted,
the CPU stops the program and issues a trap,
causing a jump to a handling routine of some
type.

* HARDWARE trap - a trap caused by an error
condition detected by the CPU. It may cause a
jump to an error handling routine. However, it is
usual to set up the vector so that the first word
points to the second word, and the second word
contains a HALT instruction (all D's).

* SOFTWARE trap - a trap caused by a trap
instruction. The instruction causes a jump to a
special handling routine.

* A hardware trap is similar to an interrupt except
it is caused by internal hardware (the CPU)
rather than some external device.

* When a hardware trap occurs, the PS word and
the PC are "pushed" onto the stack.

Visual Ref

456-461

462

463

464

465-469

read on t
~-------------------------------------50-------------------------------------'

~--------interrupts & traps,--------

Topic

hardware traps
(Cont.)

software traps

Key Points

* The trap vector then directs the CPU to an error
handling routine or, as mentioned before, the
first word points to the second word containing
a HALT instruction.

• The only difference between a hardware trap
and an interrupt is that the hardware trap uses
a different vector and is caused by internal
hardware.

• Return to the main program is accomplished
by either an R TI or R IT instruction.

* There are four trap instructions. All trap
instructions function in the same manner, but
each instruction uses its own vector and,
therefore, causes the program to jump to a
different handling routine.

• lOT (op code 000004) - vector 020 - this
trap instruction is used by the I/O executive
routine.

• BPI (op code 000 003) - vector 014 - this
irap insirudion (referred to as "breakpoint
trap") is used by OOT, a debugging aid.

• EMT (any op code between 104000 and
104 377) vector 030 - this trap instruction
(emulator) is used by DEC software.

• TRAP (any op code between 104 400 and
104 777) - vector 034 - this trap instruction
is usually reserved for user programs.

Visual Ref

470-475

read on t
~-------------------------------------51--------------------------------------'

------------m iscellaneou~--------..........

Topic

miscellaneous
instructions

Key Points

* There are five miscellaneous instructions:

• HALT (000000) - used to stop the program.

• NOP (000 240 or 000 260) - no operation.
This instruction might be used, for example,
if an entire program had been coded and then,
for some reason, an instruction was deleted.
Rather than recode the entire program, a NOP
could be used in place of the deleted
instruction.

• RESET (000005) - places an initialize signal
on the Unibus so that every bus device is
initialized to the state it held when power was
first applied to the system. Note that RESET
has no effect on the GPRs.

• WAIT (000001) - forces the CPU to release
the bus and wait for some external device to
assume control of the bus and issue an
interrupt.

• JMP Gump) - causes the program to go to
a new location. Notice that it technically has
the format of a single-operand instruction.
The destination field specifies the location to
jump to. An explanation of the prime
differences among JMP, BR, JSR, etc. is given
in the REFERENCE section of this
workbook.

Visual Ref

477 - 483

read on t
~-----------------------------------52-----------------------------------'

STUDY EXERCISES

read on t '--__________ 53 __________ .."

~----------------study exercises-----------------~

PDP-II INSTRUCTION SET

• INTRODUCTION

The study exercises in this section of your workbook have two purposes:

1. To reinforce your understanding of the PDP-II instruction set.

2. To teach you some additional programming techniques not covered in the
audio/visual portion of this course.

• WHAT YOU NEED

Before you start the study exercises, make sure that you have:

1. A PDP-II instruction card and/or processor handbook.

2. Scratch paper.

• EXERCISES

1. Do all of the numbered exercises in each section of this workbook.

2. At the end of each section is a page of optional MINI-EXERCISES which stress
coding, decoding, and understanding of individual instructions.

read on t
'-----------------------------------54----------------------------------~

~----------------study exercises:------------------
(

THE SECRET OF GOOD PROGRAMMING

The following four basic steps are essential to all programming. You will be successful if you
always perform these steps whenever writing programs. As you go through subsequent exercises,
we will help you learn each one of these steps.

I DEFINE

PROBLEM I

ANALYZE

PROBLEM

,-
CODE THE

SOLUTION

"
REFINE

PROGRAtVt

What needs

to be done?

Make a flowchart

that solves the

problem.

Select appropriate

instructions for the

flowchart.

Eliminate as many

instnlctions as you

possibly can.

'------------------------------------55-------------------

~-------~xercises: section 1-------............

COVERAGE

SINGLE-OPERAND
INSTRUCTIONS

The following exercises will make use of many of the following single-operand instructions:

CLR
COM

A SPECIAL AID

INC
DEC

NEG
TST

ASL
ASR

ROL
ROR

We know that using nothing but single-operand instructions can limit the types of programs you
can write. However, by simply adding a BRANCH instruction, much more flexible programming
is possible. Rather than use some general term, we are going to let you use an actual instruction
which is:

RNF - Rr~n~h if nnf p'(111~1 to 7prn -_.- -------- -- ._-- -,---- -- -_.-

Thus, if the result of the previous instruction is not zero, the BNE causes a branch. If the result is
zero, no branch occurs.

read on t
'------------------------------------57-----------------------------------'

~-------.axercises: section 1--------

EXERCISE
1

Our PROBLEM is to clear out a series of memory locations prior to loading them with new
information.

Because this is the very first exercise in the workbook, we'll give you a little help. On the
following page we've defined the problem, listed the known factors, and included a blank flow
diagram.

YOUR JOB IS TO:

1. Fill in the flow diagram.

2. Implement the flow with appropriate instructions.

3. Refine your program, if possible.

read on t
~----------------------------------58----------------------------------~

".--------oAxercises: section 1--------

Problem

Known
Factors

A Hint

EXERCISE 1

Clear out 12 sequential memory word locations
beginning at address 600, then stop.

600 is the first address of the memory block (assume this
value is already stored in RO).
12 decimal word locations can be represented by octal 14
(This value is stored in R I)

Use a loop and tally. ~
RO ~ Rl

I 600 14

~----------------------------------59----------------------------------~

-----------exercises: section 11-------...........

ANSWER FOR EXERCISE 1

YOUR SOLUTION MAY BE DIFFERENT

This program can be solved in a variety of ways. We are showing you only ONE POSSIBLE

SOLUTION.

If your answer is different, it must contain:

1. A method of referencing sequential addresses (we used RO as a -pointer and
incremented it after each operation).

2. A method of counting the number of locations cleared (we used RI aS,a counter and
decremented it).

3. A method of knowing when to stop (we used a BNE in our loop so we could stop
when the counter reached zero).

NO

CLEAR

A

LOCATION

GO TO

NEXT

LOCATION

KEEP

COUNT

CLEAR: CLR @ RO 1
]--

INCRO

INCRO

DECRI

BNECLEAR

HALT

RO Rl

600 I I 14

CLR (RO)+

\
REFINED

PROGRAM

2 INC INSTRUCTIONS

BECAUSE OF WORD

LOCATIONS

I

read on t
~----------------------------------60----------------------------------'

~--------Axercises: section 1i--------

EXERCISE

Problem

Known
Factors

Your Job

2

I
~

A table of operands is stored in memory and we need to decrement
each operand in the table by one. The table contains 2010 (248)

operands; each occupies one byte location.

The starting address of the table is 1000.

Write a program to solve this problem. Assume a count of 248 is stored
in RO. Use the INDEX moue to address operands stored in the table.

read on t ~ ___________________________________ 61 __________________________________ -'

~-------exercises: section 1-------......... ,

ANSWER FOR EXERCISE 2

We're showing you one possible solution to this problem. Notice how we went about it.

We start by clearing RI. Then we use a decrement byte (DECB) instruction to decrement the first
operand stored in the table. The effective address of this operand is calculated by summing the
contents of RI (zero) with an index word of 1000.

Next, we increment the contents of R 1. This allows us to access the second operand in the table
on the next pass through this program. We also decrement the count stored in RD. Then we check
if the count is zero. If the count is not zero, the branch instruction (BNE) returns us to the
DECB instruction and the loop is repeated.

This process continues until all operands in the table have been decremented. The last decrement
of RO results in zero so that the branch condition is no longer fulfilled and the program goes to
the next instruction, which is HALT.

(RO) = 24

CLRRI

LOOP: DECB 1000 (Rl)

INC RI

DECRO

BNELOOP

HALT

read on t
~----------------------------------62----------------------------------~

,."".--------oAxerc ises: section 1---------...

EXERCISE
3

Examine the following program and then answer the questions listed below.

(RO) = 064 000

ASR RO
ASR RO
ASR RO
ASR RO
HALT

1. What is the purpose of the program?

2. What does RO contain when the program stops?

3. Write a simple program that will multiply the number 123 by 27 . Assume that the initial
conditions are as follows:

(RO) = 123
(RI) = 7

read on t
~--------------------------------~3----------------------------------~

------------exercises: section 1--------

ANSWERS FOR EXERCISE 3

1. What is the purpose of the program?

TO DIVIDE A NUMBER BY 16 (24
)

2. What does RO con tain when the program stops?

RO contains 003 200

3. Write a simple program that will multiply the number 123 by 27 .

RO R1

I 123 I I 7 I
LOC:

C:::::
BNELOC:

HALT

read on t
'-________________________________ 64 ________________________________ -'

-----------exercises: section 1--------

EXERCISE
4

Look at this program, then answer the following questions.

(RO) = 042345
C-Bit = 0

RORRO

SWAB RO

ROLRO

HALT

1. What is the state of the N condition code bit after ROL?

2. What is the state of the Z condition code bit after ROL?

3. When the program stops, what value is in register RO?

read on t ~ _________________________________ 65 ________________________________ ~

.."..--------exercises: section 1i--------

ANSWERS FOR EXERCISE 4

There is only ONE VALID ANSWER for each question. In case your answers are incorrect, we
have shown you what happens step-by-step as the program is executed.

1. The N condition code is set after ROL.
2. The Z condition code is clear after ROL.
3. The value in register RO is: 162 104

REGISTER RO

C-BIT BINARY OCTAL

Initial condition 0 0 100 010 011 100 101 042 345

ROR RO o 010 001 001 110 010 021 162

SWAB RO 0 o 111 001 000 100 010 071 042

ROL RO 0 1 110 010 001 000 100 162 104
(
{Negative number (N = 1)

Non-zero condition (Z=O)

HALT

read on t
'----------------------------------66--------------------------------~

~-------~xercises: section 1-------............

MINI-EXERCISES

These exercises are optional and are provided if you would like practice in coding, decoding, and
understanding single-operand instructions.

1. RO contains the value 177 704. Write the mnemonic for each instruction and indicate the
result.

NOTE a.
b.
c.
d.

005 200
105 200
005 010
000300

This is not a program. Treat each instruction
separately. The same value of 177 704 is in
RO in each case.

2. Each of the following instructions is either illegal or causes a problem. Explain why in
each case.

a. 005 007
b. 100325 (used for a swap byte operation)
c. 106 206

3. Write the following instructions in octal form.

a. COM @(R5)+
b. DECB @4(R3)
c. TST@#177514
d. ASLB -(R4)

4. The following conditions exist. Write the instruction mnemonic.

Address Content

(Rl) = 200 NOTE - These conditibns are the same for

(200) = 214 each of the four cases below. Treat each

(214) = 026 case separately.

a. Increment contents of location 200; increment address 214.
b. Complement the number contained at address 214.
c. Divide the contents of address 200 by 2, using an addressing mode with R 1.
d. Clear the register.

read on t
'-----------------------------------67-----------------------------------

~-------exercises: section 1-------............

1.

2.

3.

4.

a. INC RO (RO)

b. INCB RO (RO)

c. CLR @RO (RO)

(R4)

d. SWAB RO (RO)

=
=
=
=
=

MINI -EXERCISES
(ANSWERS)

177705

177 705

No change

No change

142377

a. CLR R 74--Destroys the PC

b. Cannot use byte operation with a SWAB

c. ASRB R6 Destroys the SP

a. 005135

b. 105373
000004 4-- Index word

c. 005737
177514

d. 106344

a. INC @Rl; INC #2i4

b. COM @(RI)+ or COM

c. ASR @RI

d. CLR RI

14(R 1)

177 704 is address of R4, which

cannot be used by program. This

address is only used by console

switches when manually accessing

R4.

read on t
'-________________________________ 68 ________________________________ -'

RETURN TO A/V

FILM CARTRIDGES C & D

~---------------------69--------------------~

~-------@xercises: section 2--------

COVERAGE

DOUBLE-OPERAND
INSTRUCTIONS

The following exercises will make use of many of the double-operand instructions:

KEY POINTS

MOV
CMP

ADD
SUB

BIT BIC
BIS

Although they have many uses, double-operand instructions are most often used for three prime
functions:

1. Initialization - setting up registers and memory locations for pointers, counters,
etc.

2. Comparison - comparing two values to determine what course of action to take
next.

3. Computation - performing arithmetic operations such as add and subtract.

SPECIAL NOTE

In this section of the workbook, perform exercises 1-4. (Mini-exercises are optional.)

read on t
'-----------------------------------71----------------------------------~

~-------@xercises: section 2.-------...........

HOW TO USE LABELS

Labels and symbols are often used to make our programs more understandable, to define values,
and to provide convenient branching points.

Although labels and symbols are used with the PDP-II assembler, we are going to begin using
them in the remainder of this workbook so you will become familiar with them.

More complete descriptions of label use and restrictions are presented in the PDP-ll Paper Tape
Software Handbook. We want to explain briefly what labels and symbols are.

LABELS

A label is a user-defined symbol which is assigned the value of the current location counter. It is a
symbolic method of referring to a specific location within a program. For example:

200 START: CLR RI

indicates that the value 200 is assigned to the label START. Thereafter, any reference to START
is a reference to location 200. When we say, BRANCH START, we are saying, "branch to
location 200." Other labels may be used to indicate other important program locations such as
INIT: (initialize), MULTPY: (multiply), and CONT: (continue).

When using labels with the assembler, certain conventions must be followed. For example, a label
must be six letters or digits or less; no label can begin with a number; no spaces can occur in a
label; and each label must be terminated by a colon (:).

SYMBOLS

Symbols may be equated with a value. An equal sign must separate the symbol from the
expression defining the symbol. For example:

A=l

indicates that the symbol A represents the value 1 whenever that symbol appears in the program.

read on t
'------------------------------------72-----------------------------------'

---------~xercises: section 2---------

EXERCISE

1

Problem

Restrictions

Your job

Write a program that multiplies N times 3.

1. Do not use a branch (write a straight line program).

2. Use GPR's RO and R I only. If possible, use only RO.

3. Use only labels and symbols in your program.

1. Write the program, observing the above restrictions.

2. When completed, assign memory addresses to each instruction and
convert symbols to real values. (This step is handled automatically
by the PDP-II assembler.)

3. Use a starting address of 600 and assume N = 7.

read on t
~-----------------------------------73-----------------------------------'

~-------~xercises: section 2--------

STEP 1

USING TWO REGISTERS

INIT:

START:

STEP 2

CLRRI
MOV #N, RO

ADD RO, Rl
ADD RO, Rl
ADD RO, Rl
HALT

USING TWO REGISTERS

600 INIT: CLRRI
602 MOV#7, RO
604 000007
606 START: ADD RO, Rl
610 ADD RO, Rl
612 ADD RO, Rl
614 HALT

ANSWER FOR EXERCISE 1

USING ONE REGISTER

INIT:

START:

CLRRO

ADD#N,RO
ADD#N, RO
ADD#N, RO
HALT

USING ONE REGISTER

600 INIT: CLRRO
602 START: ADD #7, RO
604 000007
606 ADD #7, RO
610 000007
612 ADD #7, RO
614 000007
616 HALT

read on t '-_____________________________ 74 ____________________________ -'

~-------exercises: section 2--------

EXERCISE

2

Problem Multiply A by B using repetitive additions and a program loop.

Your job 1. Make a flow diagram.

2. Implement the flow diagram using PDP-II instructions.

read on t ~ _________________________________ 75 ________________________________ ~

~-------p-xercises: section 2-------............

CLEAR
REGISTER

SETUP
TALLY
FORB

ADD A
TO ITSELF

ADJUST
TALLY

STOP

ANSWER FOR EXERCISE 2

INIT: CLR RO

MOV B, Rl

START: ADD A, RO

DEC Rl

BNE START

• HALT

read on t
76 ----------------------------~

---------~xercises: section 2,--------

Problem

Your job

Program

EXERCISE 3

We want to add all the values in a series of memory locations from
location 4000 through location 4076. We want the total result in
r:egister RO and we want to make sure the program stops after it has
~d(Ied the last value.

The program below will do just what we want. However, two
ins true tions are missing. Add the correct instructions to the program.

BEGIN = 4000

END = 4076

INIT: CLR RO

START:

MOV #BEGIN, RI

~fOV #END, R2

missing instruction # I

missing instruction #2

BLOS START (branch if lower or same)

HALT

77

read on t

(~--------exercises: section 2

ANSWER TO EXERCISE 3

PROGRAM

INIT: CLR RO

START:

EXPLANATION

MOV #BEGIN, Rl

MOV#END,R2

,-----,
I ADD (Rl)+, RO •
I I
L~:.!:!:'" ...J

BLOSSTART

HALT

Each time the ADD instruction is executed, the CPU retrieves a value from memory (using the
address stored in Rl), adds the value to the accumulated sum in RO, and then autoincrements Rl
so that it points to the next value.

The CMP instruction is used to determine if:

(1) BEGIN < END
BEGIN =

(3) BEGIN > END.

If BEGIN < END, the BLOS instruction causes a branch back to START and another addition is
performed.

If BEGIN = END, the BLOS instruction still causes a branch back to START (Le., since Rl is
autoincremented after the addition, we have not yet added the last value).

If BEGIN> END (i.e., when Rl is autoincremented to 4100), the branch condition is no longer
satisfied and, consequently, the program will HALT.

read on t
78

~-------exercises: section 2--------

EXERCISE 4

This exercise consists of four separate parts: A, B, C, and D.

A. Bit 7 of the I/O control and status register (CSR) is the READY flag. The following
program waits for ready by continually looping until the flag is set, at which time the
program continues.

Your job is to replace the single-operand TSTB instruction with a double-operand
instruction that does the same job.

LOOP: TSTB @#CSR
BPLLOOP

; test CSR for ready condition
; branch if plus

B. Study the conditions and program given below. Then explain what job the program is
doing. DBR signifies a data buffer for an I/O device, such as a printer.

(RO) = 100
(Rl) = 600
(R2) = 32

START:
LOOP:

ADD RO, (Rl)
BITB #200, @#CSR
BPL LOOP
MOV (Rl), @#DBR
INC Rl
DECR2
BNESTART
HALT

addresses 600 through 632 contain the
numbers 0 through 328 , in random order

C. Refine the above program by eliminating one instruction.

D. The following program multiplies 16 by 3. Although the program works, it migh t produce
an erroneous result because we left out one instruction. What is that instruction?

MOV#16, RO
ADD RO, Rl
ADD RO, Rl
ADD RO, Rl
HALT

read on t
'-___________________________________ 79 -----------------------------------'

~-------~xercises: section 2--------~

ANSWERS FOR EXERCISE 4

A. BITB #200, @#CSR

B. This answer is co"ect: The program adds the value 100 to a memory location, then
moves the resultant value to an I/O device, and proceeds to the next location, stopping
after 32 octal locations have been dealt with.

C.

This answer is even more correct: the program converts the contents of each memory
location to an alphabetical equivalent (by adding 100 to obtain the ASCII code) and then
sends the data to an I/O device for printing the appropriate character.

ADD RO, (Rl)

'-:-:'1 MOVB (Rl)7@#DBR-}
INC Rl &.:;.------
DEC R2

BNE

HALT

MOVB(Rl)+,@#DBR

D. The first instruction in the program should be: CLR R 1. If we don't do this, there may
be a value in R 1 that can give us an erroneous resu1t. The program will provide the correct
answer only if the contents of R 1 is zero initially.

read on t
80--------------------------------~

..",..--------exercises: section 2--------

MINI-EXERCISES

These exercises are optional and are provided if you would like more practice in coding,
decoding, and understanding double-operand instructions.

1. Write the mnemonic for each of the fonowing instructions and i.l1dicate the result of the
instruction. Note the conditions given. Assume these same conditions exist for each
instruction.

(Rl) = 005 (006) = 004
(R2) = 004 (005) = 003
(R3) = 006 (004) = 002

a. 110 102
b. 020213
c. 061 202
d. 030213

2. What is wrong with the following instructions?

a. ADDB RI, R2
b. BIS RO, R7

\Vrite the following instructions in octal form.

a. eMP @(R3)+, @-(R2)
b. BICB RI, (R2)+
c. SUB - (RI), @6(R4)
d. BIT #30, (R3)

4. Use only one double-operand instruction to do each of the jobs listed below. Note the
conditions given.

(Rl) = 2, (002) = 006, (026) = 005.

a. Subtract 005 from 006.
b. Set up locations 2 and 26 so they both contain 006.

read on t
81

.,.--------exercises: section 2.-------............

1.

2.

3.

4.

a.
b.
c.
d.

a.
h.

a.
b.
c.

d.

a.

b.

MINI -EXERCISES
(ANSWERS)

MOVB R1, R2
CMP R2, (R3)
ADD (R2), R2
BIT R2, (R3)

Both R 1 and R2 now contain 005
No change in R2 or R3. Z-bit is set.
R2 contains 006
No change in R2 or R3. Z-bit is cleared.

No byte operation is available with the ADD or SUB instructions.
Destroys the program counter (PC).

023352
140122
164174
000006 4-- index word

032713)
000030 immediate addressing mode

SUB @#26, @#2

OCTAL

i 163737
000026
000002

MOV @#2, @#26 -{013737
000002

l000026

NOTE: Absolute mode for
both src and dst

NOTE: Absolute mode for both
src and dst. In a MOV
instruction, src does not
change but dst does change.
Therefore, both locations
now contain 006.

read on t
'-_________________________________ 82

RETURN TO A/V

FILM CARTRIDGES E, F, & G

~---------------------83--------------------~

"".,---------P-xerc ises: section 31--------

COVERAGE

BRANCH
INSTRUCTIONS

Thp fn11nuring pXPTCl·~PS \'111.11 m!:lkp use nf thp Slngla lln.rvv"d
'
t'o""o:.} BD '''''S+ruct''''''' on;! o ~, ,...~ + ~

.&..&.&."" ... "'&'-'.y.&.1. VL "",.a iJV TL..I..1. ""'.I. V '-'..I. "~"'''''~..l '"' U..l.l.vV..ll .1..1. ..l.lU .1.'- J.~J."'~ .1V~l al U 11laJIY Vi LIlt;

sixteen conditional branch instructions.

KEY POINTS

Branch instructions add extreme versatility to programming. Because we do not want to write
lengthy and unwieldy programs, we often have "decision blocks" to tell us which of two paths to
take. Branch instructions implement these decision blocks.

read on t
85

..".--------exerc ises: section 3,--------

EXERCISE 1

The following program negates all numbers in a block of memory. In other words, it makes all
positive numbers negative and all negative numbers positive. Examine the program, then answer
the questions.

Conditions:

Program:

BEGIN

LIMIT

INIT:

START:

=
=

Starting address of memory block.

Final address of memory block.

NOTE
The number sign before
BEGIN means we are
using the defined number
which is the starting address.

MOV #BEGIN, RO

MOV #LIMIT+2, RI

NEG (RO)+

CMP RO, RI

BNE START

HALT

1. Why did we load #LIMIT+2 rather than just #LIMIT into RI?

2. Suppose we did load #LIMIT into Rl. What branch instruction could we use in place of
BNE?

3. Suppose we load #LIMIT into RI and then change the compare instruction to CMP RI,
RO. What branch instruction could we use in place of BNE?

read on t
87--------------------------------,

.----------exercises: section 3-------............

ANSWERS FOR EXERCISE 1

I. Why did we load #LIMIT+2 rather than just #LIMIT into RI?

Loading #LIMIT causes the CMP to stop the program
when the pointer reaches the last location. In order to
NEG the last location, we must load #LIMIT+2.

2. Suppose we did load #LIMIT into RI. What branch instruction could we use in place of

BNE?

BLOS (branch if lower or same)

3. Suppose we load #LIMIT into RI and then change the compare instruction to eMP RI,
RO. What branch instruction could we use in place of BNE?

BHIS (branch if higher or same)

read on'
88

------------exercises: section 3-------........

EXERCISE

2

Remember the following program from step 2 of the previous exercise?

Problem

Your job

INIT: MOV #BEGIN, RO
MOV #LIMIT, Rl
START:
NEG (RO)+
CMP RO, Rl
BLOSSTART
HALT

The program, as written, will negate all numbers in a given memory block.
However, suppose some of the numbers are already negative.

Modify the above program so that it will only NEGATE positive numbers
and will ignore negative numbers.

read on t
89

~-------exercises: section 3-------..........

ANSWER FOR EXERCISE 2

YOUR ANSWER MA Y BE DIFFERENT - There are many methods of solving this particular
problem. We have indicated two methods below.

Our preference is method # I because of two reasons:

1. It has one less instruction.

2. It uses the single-operand TST rather than the double-operand BITB instruction,
thereby making it slightly faster.

Notice the COMMENTS we have added to the first example. This is often done in programming
to make the program easier to understand by the user. Notice that each COMMENTS line begins
with a semicolon.

METHOD #1

INIT:

START:

CONT:

METHOD #2

INIT:

START:

CONT:

MOV #BEGIN, RO
MOV #LIMIT, R 1

TST (RO)
BMICONT
NEG (RO)

ADD #2, RO
CMPRO,Rl
BLOSSTART

HALT

MOV #BEGIN, RO
MOV #LIMIT, Rl

BIT #100000, (RO)

BMICONT
NEG (RO)

INCRO
INC RO
CMP RO, Rl
BLOSSTART
HALT

'-________________________________ 90

; Set up starting address
; and limit.

; Is number negative?
; If so, skip next step.
; If not, make it negative.

; Increment pointer by 2.
; Compare pointer with limit.
; If pointer is lower or same as
; limit, go back.
; Otherwise stop.

read on t

~-------exercises: section 3--------

EXERCISE 3

Here is the updated program from the previous exercise. Now it will negate only positive numbers
and ignore negative numbers.

INIT: MOV #BEGIN, RO
MOV #LIMIT, Rl

START: TST (RO)

BMICONT

NEG (RO)

CONT:

ANOTHER MODIFICATION

Your Job

ADD #2, RO
CMP RO, Rl
BLOSSTART
HALT

The whole purpose of our program so far is to make sure we
have nothing but negative numbers. What about zero? If a
location contains zero, negating it leaves it at zero.

Assume that we have a program called PRINT which will
print out the address of the current memory location.

Modify the above program so that it will branch to PRINT
whenever it finds a location with zero.

Add "comments" to any new instructions you add to the
program.

read on t
'---------------------------------- 91 ---------------------------------'

...---------exercises: section 3----------....

INIT:

START:

CONT:

ANSWER TO EXERCISE 3

MOV #BEGIN, RO
MOV #LIMIT, Rl

TST (RO)

BMICONT

NEG (RO)

.----,
I BEQ PRINT

I (or BCC PRINT)

--------..
; If result is zero, I

; branch to PRINT program; I
I ; otherwise, keep going. L- __________ ..J

ADD #2, RO
CMP RO, Rl
BLOSSTART
HALT

read on t
'-____________________________ 92 -------------------------------

."...--------exercises: section 3-------.......

EXERCISE 4

Here is the complete program from the previous exercise. Notice that we are showing the ftrst

and last instruction of the PRINT program. Notice also, that we have assigned specific memory
locations to each instruction.

600

602

604

606

610

612

614

616

620
622
624
626
630
632
634

636

640

642

Your job

INIT:

START:

CONT:

PRINT:

MOV #BEGIN, RO

xxx xxx
MOV #LIMIT, Rl

xxx xxx

TST (RO)

BMICONT

NEG (RO)

BEQPRINT

ADD #2, RO
000002
CMP RO, Rl
BLOSSTART
HALT
CLRR2

BRCONT

Calculate the proper offset value for each of the four branch instructions.

BMI CONT has an offset of
BEQ PRINT has an offset of
BLOS START has an offset of ___ _
BR CONT has an offset of

read on t
'----------------- 93 -------------------

..",.--------exercises: section 3-------..........

ANSWER FOR EXERCISE 4

REMEMBER

The offset is always calculated from the updated Program Counter which is one word location
beyond the branch instruction you are dealing with.

The answers are:

BEQ offset is plus 5

BLOS offset is minus lOs (or 370)

BR offset is minus 12s (or 366)

By the way, notice that for the BR offset, we had to count back from location 644 (not shown).
Because we went back ten decimal word locations, the negative offset is octal twelve.

read on t
94

~-------exercises: section 3---------......

Comment

Problem

Conditions

Your Job

EXERCISE 5

Examining unknown data against a known value is done with a CMP
instruction.

Our problem is to examine the contents of a specific memory location and
make some judgment about the data. Each case listed below will look for a
different condition.

The following conditions exist for each of the cases listed below:

RO contains the address of a memory location.
RI contains an unsigned value of 000 005.

Below are four different instructions. In each case, write the particular
branch instruction that will satisfy the specified condition. Assume that we
are working with unsigned values.

I. Branch if memory location contains 000 005 or more.

CMP (RO), RI
______ (fill in appropriate branch)

2. Branch if location contains more than 000 005.

CMP (RO), RI
______ (fill in appropriate branch)

3. Branch if location contains less than 000 005.

CMP (RO), RI
______ (fill in appropriate branch)

4. Branch if location contains 000 005.

CMP (RO), RI
______ (fill in appropriate branch)

read on t
95--------------------------------,

~-------exercises: section 3--------

1. BHIS
or

Bee

2. BHI

3. BLO

4.

or
BCS

BEQ

ANSWERS FOR EXEROSE 5

NOTES

By reversing the compare (CMP RI, @RO) we could have used a BLOS rather
than a BHIS.

Here we are only interested in equivalency.

read on t
'-------------------------------- 96--------------------------------~

------------exercises: section 3-------...........

SOMEIDNTS

By now, you are beginning to realize how versatile the branch instructions are. You might
probably be wondering how to know when to use specific branches because many seem to do the
same or similar jobs. Well, here's a few tips you might like to use.

Testing for Errors

The C, v, and N bits are most often used to check for error conditions. If that's what you want
to do, then use one of these branches:

Comparisons

BCC
BCS

BVC
BVS

BMI
BPL

When we are comparing two numbers only to find out if they match (if they are equal or not),
then we normally use the instructions BEQ or BNE. If we want to branch if the two numbers are
equal, we use BEQ (branch on zero or match). If we want to branch if they are not equal, we use
BNE (branch on no zero or no match).

Greater or Less (Signed Conditional Branches)

Here are a few tips that will help you select the proper branch when trying to find out if the
result is greater or less. Remember two points:

1. These branches are normally used after a CMP instruction and greater or less refers to the
SOURCE. In other words, branch if the SOURCE is greater, for example.

2. These branches are used when we are concerned with the sign of the word and are,
therefore, referred to as signed conditional branches.

BGT

BGE

BLT

BLE

Branch if greater than

Branch if greater than or equal

Branch if less than

Branch if less than or equal

SRC>DST

SRC~DST

SRC<DST

SRC~DST

(continued on next page)

read on t
97--------------------------------~

..."...--------exercises: section

SOME ruNTS (Continued)

Higher or Lower (Unsigned Conditional Branches)

The following four branch instructions are also normally used after a CMP instruction but,
because they are used with words which we do not read as plus or minus numbers, they are
referred to as unsigned conditional branches.

BHI Branch if higher SRC>DST

BHIS Branch if higher or same SRC~DST

BLO Branch if lower SRC <DST

BLOS Branch if lower or same SRC ~DST

Whenever we are comparing addresses, the unsigned conditional branch instructions should be
used. For example, BLOS should be used rather than BLE because BLE will interpret an address
of 100 000 or greater as a negative number.

read on t
'--------------------------------- 98 --------------------------------~

~-------exercises: section 3-------...........

Problem

Conditions

Your job

Restrictions

EXERCISE 6

We are dealing with payroll data that consists of a series of 16-bit words. The
high byte of each word contains the employee's badge number, the low byte
contains an octal number ranging from 0 to 13. These numbers represent
salary levels within three wage classes to identify which employees get paid
weekly, bi-monthly, or monthly.

It is now time to make out weekly paychecks. Unfortunately, employee
information has been stored in a random order. The problem is to extract
the badge numbers of those employees that are to receive a wee kly
paycheck.

Employee payroll numbers are assigned as follows:

o to 3
4 to 7

10 to 13

Wage class I (weekly)
Wage class II (bi-monthly)
Wage class III (monthly)

600 is the starting address of memory block containing the employee
payroll information

1264 is the final address of this memory block.

Write a program that will:

1. Search through the memory block and find all employee payroll
numbers representing wage class I.

2. . Each time an appropriate number is found, store the employee's
badge number Gust the high byte) on a "last in, first out" stack
which begins at location 4000.

Do not use the hardware stack.

read on t
'------------------------------------ 99 ----------------------------------~

.....--------exercises: section 3---------....

ANSWER FOR EXERCISE 6

Of course there are a variety of ways to solve this problem so we are just showing you one
method.

INIT:

START:

STACK:

. CONT:

MOV #600, RO
MOV #4001, Rl

CMPB (RO)+, #3

BHICONT

MOVB (RO), -(Rl)

INCRO

CMP #1264, RO

BHIS START

HALT

; Set up an address pointer
; Set up a stack pointer

; Compare the contents of the first low
; byte with the number 3 and increment

; If the number is more than 3, branch
; to continue.

; Otherwise, decrement the stack
; pointer and move the high byte
; containing the badge number
; onto the stack.

; Advance RO to examine next low byte .

; Compare the limit with the
; updated pointer.

; If the limit is higher or the same
; as the pointer, go back and examine
; the next low byte.

; Otherwise, stop.

read on t
'----------------------------------100--------------------------------,

~-------exercises: section 3-------......

EXERCISE

7

We have assigned memory locations to the program that you wrote in the previous example.

Your job Calculate the offset for all branch instructions

200 INIT: MOV #600, RO

202 000600

204 MOV #4001, Rl

206 004 001

210 START: CMPB (RO)+, #3

212 000003

214 BHICONT BHI ?

216 STACK: MOVB (RO), -(Rl)

220 CONT: INC RO

222 CMP #1264, RO

224 001 264

226 BHIS START BHIS ?

230 HALT

read on t
'-_______________________________ 101 --------------------------------'

~--------exercises: section 3-------............

ANSWER FOR EXERCISE 7

The correct offset values are:

BHI (offset is plus 1)
BHIS (offset is minus lOs or 370)

A comment regarding the BHI instruction

The BHI instruction has an offset of 1 (not 2). Remember, the offset is always given in words.

Some notes on BHIS (offset minus 10)

1. Did you remember that you had to count back from location 230 because that is where
the PC is located?

2. You probably counted back 8 words but remember that the offset is expressed in octal,
and is therefore minus ten.

3. If you didn't count the words, did you use the formula?

ff t
effective address minus PC

o se =
2

which would be:

1""\ 1 n· '""""'/""\
L. 1 U mmus L.')U

2

"\,.,.
-L.U

= -2-= -10 offset =

An important note

Although the previous example appears to be decimal division, it is octal. Here is an example that
more clearly shows the effect of octal division. Assume that the PC is at location 212 and the
effective address is 222.

offset =
effective adrs. -PC

2 =
222 - 212

2

In this case the offset is 4 words forward, not five. Remember that we are dealing with OCTAL
numbers.

read on t
'-_______________________________ 102 -------------------------------'

~-------exercises: section 3--------

A WORD ABOUT BRANCH SYNTAX

Up to now, we have been talking about branching - for example, back - 3 or forward +5 words.
When writing a program in octal code, this means that we not only must count the number of
words to the branch location, but we must also convert negative offsets into their two's
complement form.

Fortunately, most programs are written using symbolic names and labels which are then
translated into machine language by an assembler. When using the assembler, the programmer
simply writes the branch mnemonic (such as BNE) and follows it with the label of the branch
location.

For example, if it is desired to branch to location 210, which is assigned the label START, the
programmer writes: BNE START

If the desired branch location exceeds the offset limit, the assembler will print out an error
message for the programmer.

In the remainder of this workbook, assembler syntax will be used for branches unless otherwise
specified.

An Example

210
212
214
216
220

START: ADD
SUB
DEC
BNE START ~ __ Causes a branch back of
HALT -4 words to location 210

read on t
103 ----------------".",

~-------iexercises: section 3-------..........

EXERCISE

8

We goofed! After spending over a week writing an extensive program, our boss informed us that
we had made a number of errors. He was kind enough to point out the errors, but didn't explain
them to us.

Please tell us what is wrong in each of the following cases.

1. We wanted to branch forward 310 locations. The boss said our offset was wrong. Why?

2. At one point in our program, we had constructed a loop which contained an increment
instruction. We decided to get out of the loop once the carry bit was set indicating we
had incremented once too often. We did it this way but were told it was wrong. Why?

INCRO
BCSLOC

(exercise continued on page 105)

read on t
104 ---------------"

----------exercises: section 3-------~

EXERCISE 8 (CONTINUED)

3. We wanted to compare two values, and then check each one of the condition code bits
separately, branching to appropriate points based on the results. We did it this way:

CMPX,Y
BCS LOCI
CMPX,Y
BVS LOC2
CMPX,Y
BEQLOC3
CMPX,Y
BMILOC4

Our boss said there was an easier way. What is it?

4. When we added two numbers, it was important to know if either the carry bit was set or
if the result was zero. We did it this way but out boss asked us to shorten it. How can we
do it?

ADDX,Y
BCS LOC
BEQLOC

read on t
'-------------------------------- 105 --------------------------------~

~--------exercises: section 31-------...........

ANSWERS FOR EXERCISE 8

I. We can only branch forward a maximum of 177 octal locations. A positive 310 is an
invalid offset.

2. If we would have looked at our instruction card, we would have seen that the INC
instruction does not affect the state of the C bit.

3. Why use all those CMP instructions? A branch tests condition codes but never changes
them. It is much simpler to write:

CMPX,Y
BCS LOCI
BVSLOC2
BEQ LOC3
BMI LOC4

4. Notice that there are two branch instructions that branch back to the same point in the
program. There is one instruction that tests both the conditions we are interested in.
Therefore, we could have shortened the program by writing:

ADD X,Y
BLOS LOC

read on t
106------------------------------,

~-------exercises: section 3-------..........

MINI-EXERCISES

These exercises are optional and are provided if you would like more practice in coding,
decoding, and understanding branch instructions.

1. \Vrite the mnemonic for each of the following instructions and indicate the offset value.

a. 002403
b. 100776
c. 101 214
d. 001 736

2. What is wrong with the following instructions?

a. BR Loe (offset of +200)
b. BNE R2
c. BR Loe (offset of - 1)

3. Write the following instructions in octal form.

a. BHIS Loe I (offset of +73)
b. BCC LOC2 (offset of +73)
c. BR Loe3 (offset of -22)
d. BVS LOC4 (offset of - i 27)

4. Select the appropriate branch instruction for the following conditions (use the
mnemonic).

a. Branch if higher or same.
b. Branch if either C or Z bit is zero.
c. Branch if either C or Z bit is one.
d. Branch if plus.

read on t '-_________________________________ 107 ________________________________ ~

~------- exercises: section 3-------...........

1.

2.

3.

4:

a.
b.
c.
d.

a.
b.

BLT (offset +3)
BMI (offset -2)
BHI (offset -164)
BEQ (offset -42)

MINI-EXERCISES
(ANSWERS)

A positive offset can never exceed a maximum of 177.
Branch instructions do not deal with registers. The only item that can follow a
branch mnemonic is an offset.

c. Causes a branch back to the branch instruction. Thus, we are locked into a
perpetual loop.

a. 103073) Remember? BHIS and BCC are the same.
b. 103073 4

c. 000756
d. 102651

a. BHIS or BCC
b. BHI
c. BLOS
d. BPL

read on t
'---------------------------------108------------------------------~

RETURN TO A/V

FILM CARTRIDGE H

~ ______________________ 109 ______________________ ~

~-------~xercises: section

COVERAGE

OTHER
PROGRAM CONTROL

INSTRUCTIONS

The following exercises cover three groups of program control instructions:

a. Subroutine - JSR and RTS
b. Intr. & Trap - RTI, lOT, EMT, TRAP, etc.
c. Miscellaneous - HALT , WAIT, RESET, Nap, JMP

KEY POINTS

The three groups of instructions are used primarily as follows:

a. Subroutine - JSR causes the program to jump to a subroutine and then RTS
returns the program back to the proper point when the
subroutine has been executed.

b. Intr. & Trap - the RTI permits return from an interrupt or trap by "popping"
the old PC and PS off the stack. The various "trap" instructions
permit a trap to be initiated by the program rather than by
hardware.

c. Miscellaneous - provide the normal program command functions of stopping,
waiting, resetting, and jumping.

read on t
111

~-------~xercises: section 4-------...........

WHY USE SUBROUTINES?

A FEW WORDS
ABOUT

SUBROUTINES

There are three good reasons for using subroutines whenever possible:

1
1.

2.

3.

/v[emory savings

Time savings -

Flexibility -

WHAT ONE LOOKS LIKE

it is only necessary to store one copy of the routine in memory.

you, as a programmer, need to code the routine only once.

the routine can be used by the main pr9gram or by other
routines.

The subroutine itself looks just like any other portion of the program except for the first and last
lines.

1. The first instruction of the subroutine is prefaced by a functional label to identify it. For
example, the label might say "MULT" (multiply). We could then enter this subroutine by
using the instructiori JSR Rn, MULT. Notice that Rn indicates the link register.

2. The last instruction of a subroutine is usually an RTS instruction. In this case, RTS Rn
would return us to the main program at the instruction that immediately follows JSR Rn,
MULT.

HOW TO A VOID TROUBLE

Remember the importance of the link register? It is used to keep track of the proper point in the
main program that we wish to return to.

The link register specified in the RTS instruction must be the same register that was used in the
corresponding JSR instruction. For example, if the MULTIPLY subroutine ended with RTS R3,
then "call" it with the instruction, JSR R3, MULT.

read on t
~---------------------------------- 112 ----------------------------------~

~-------~xercises: section 4--------

EXERCISE 1

We have written a subroutine that prints out characters of data on a line printer. We call this
subroutine "PRINT."

Below, you see a portion of a main prograrI1 which is followed by the PRINT subroutine;

Your job

Program

PRINT:

1. Notice that the instruction following the MOV is missing. Write the
instruction that will cause the main program to jump to the PRINT
subroutine.

2. After the subroutine has been executed, control is returned to the
program. Which instruction is executed after the RTS R4
instruction?

MOV (R3)+, Rl

________ (missing instruction)

INCR2

CMP R2, R3

BEQLOC

TSTB@#CSR

RTS R4

read on t
113 -------------------------------'

..."....-------exercises: section 4,-------............

1. JSR R4, PRINT

2. INC R2

ANSWER FOR EXERCISE 1

If you used any register other than R4, it is wrong
because the JSR instruction must use the same
register for a "link" as the RTS instruction that
ends the routine.

While executing the JSR instruction, the PC was
pointing to INC R2 (the next instruction).

This PC was loaded into the link (R4) by the JSR.
When the PRINT subroutine executed the RTS R4
instruction, the old PC was taken from the link and
became the current PC which points to INC R2.

read on t
114 -----------------'

----------~xercises: section 4-------..........

EXERCISE 2

We want to ask you a few questions about the following program.

Conditions RO contains the address of memory location 600.
Rl contains a count of 200 bytes.
R2 contains an unknown value.
LPB signifies a data buffer for a printer.
LPS signifies a control and status register for the same printer.

Program
START: JSR R2, LOOP

MOVB (RO), @#LPB }
INC RO or MOVB (RO)+, @#LPB

LOOP:

DEC RI

BNE START

HALT

BITB #200, @#LPS

BPLLOOP

RTSR2

I. What is the purpose of this program?

2. What is the purpose of the LOOP subroutine?

3. After RTS R2 is executed, what does the PC point to?

4. Later, we want to use the data originally stored in R2. Is this possible?

5. Instead of R2, could we use RI for the JSR and RTS instructions?

read on t
~---------------------------------115---------------------------------'

~-------exercises: section 4---------.....

ANSWERS FOR EXERCISE 2

1. The program basically moves the contents of a memory location to a line printer for
printing. It automatically steps through memory locations and stops once it has printed
200 bytes of data.

2. The LOOP subroutine tests the ready flag in the printer's control and status register (LPS)
and returns control to the main program once the printer is ready to receive data.

3. After execution of RTS R2, the PC points to MOVB (RO)+, @#LPB which was the next
instruction to be executed after the JSR.

4. Of course. Whatever had been stored in R2 was saved because the JSR pushed the data on
the stack before it used R2 as a link. Once the RTS has been executed, the data is popped
off the stack to restore R2 to its original condition.

5. Yes. RO is an address pointer and RI is a counter. However, if we used JSR RI, LOOP,
the count in R 1 would be saved on the stack and then restored by the RTS R 1
instruction. The main program would not even realize that R I had been used as a link.

read on t
'---------------------------------116-------------------------------'

~-------~xercises: section 4,-------............

EXERCISE 3

1. We spent two weeks writing a program containing 500 separate instructions. We made one
modification as shown.

400
402
404

Questions:

original

MOVB (RO), RI
INCRO
NEGR3

400
402
404

modification

MOVB (RO)+, (Rl)

NEGR3

a. What happens if we leave it this way?

b. What instruction can we put in location 402 that will make the
program keep running but have no other effect?

2. We are writing a program and have found that we are at a point where we cannot proceed
any further until an I/O device services our data. What should we do?

3. In our program, we need to branch unconditionally from location 1000 to location 4700.
What instruction can we use?

4. In studying a trap error handling routine, we noticed that the routine ended with a return
from interrupt (RTI) instruction. Using an RTI with a trap routine seemed odd. Is it?

5. Prior to starting a program, we wanted to make certain that all GPRs were cleared. In
order to save time, we used the RESET instruction. Did this one instruction clear all the
registers including the SP and PC?

read on It
117

...,..--------exercises: section 4--------

1. a.

ANSWERS FOR EXERCISE 3

If we leave it this way the program stops when it reaches location 402 because all
O's is the op code for a HALT.

b. NOP. Note that a NOP instruction has many useful functions in spite of its name.
By using a NOP here, we eliminate the need for assigning new locations to our 500
instruction program.

2. Use a WAIT instruction.

3. Use a JMP instruction. A JMP is the same as an unconditional branch with one important
exception. JMP is not limited to the number of locations forward or backward it can
jump to. Remember that the JMP is a single-operand instruction and the destination part
of the instruction can be used with any addressing mode.

4. No. The RTI and RTT instructions are both used to exit from interrupt and trap handling
routines. The RTI permits use of the T-bit while RTT inhibits the T-bit until completion
of the instruction following the RTT.

5. No. Although RESET initializes all devices on the Unibus, it has no effect on the GPRs.

read on t
118

_ l

-----------exercises: section

MINI-EXERCISES

These exercises are optional and are provided if you would like more practice in coding,
decoding, and understanding program control instructions.

1. Write the mnemnoic for each of the following instructions.

a. 000 135
b. 004512
c. 000001
d. 000002

2. What is wrong with the following instructions?

a. RTS (R4)+
b. RESET R7
c. JSR @R5, (R4)+
d. JMP+277

3. Write the following instructions in octal form.

a. TRAP
b. JSR R5, (R2)+
c. JMP (R4)
d. HALT

4. Write the octal code for two different NOP instructions.

5. Write the octal code for two different instructions used for exiting trap service routines.

6. The following conditions exist:

(RO) = 2
(Rl) = 6

(005) = 400
(006) = 600

Write an instruction mnemonic that causes a jump to a subroutine that starts at memory
address 400.

read on t
119 -----------------'

~-------exercises: section 4--------

1.

2.

3.

a.
b.
c.

JMP@(R5)+
JSR R5, (R2)
WAIT

MINI-EXERCISES
(ANSWERS)

d. RTI

a. Addressing modes cannot be used with an RTS instruction.
b. RESET is not a single-operand instruction, therefore, no register or operand can

be used with it.
c. Addressing modes cannot be used with the link register.
d. A JMP does not use an offset. To specify the jump point, the standard destination

field is used. Thus, if we wanted to jump to location 277, we might use JMP (RO)
where RO contained the number 277. NOTE: Mode 0 cannot be used with a JMP
because it is impossible to transfer program control to a register.

a.
b.

Any octal value between 104 400 and 104 777 is correct.
004522

c. 000 114
d. 000000

4. 000 240 and 000 260

5. 000002 (RTI) and 000 006 (RTT)

6. JSR R4, 3(RO) NOTE: I. Any GPR can be used in place of R4.

2. The index mode adds the value 3 to the
contents of RO to obtain 5. The value 5
is then used as the effective address of
the operand (400).

read on t
120 -----------------"

...,----------exercises: section 4--------

This is the END of the workbook exercises but only the BEGINNING of PDP-II programming.

In the next study unit we will delve even deeper into typical PDP-II programs and software.

Your programming PROFICIENCY depends on PRACTICE.

We have tried to help by giving you some sample exercises. However, we urge you to continue
practicing on your own. Write your own programs. Code them in both octal and mnemonic forin.
If any part of this workbook presented particular difficulty, review it and practice more
programming related to that area.

NOTE
Demonstration programs and additional
programming exercises are contained in the
document entitled Supplementary Programming
and Console Exercises.

121

read on t

REFERENCE
MATERIAL

read on t
"------------123------------"

~--------reference material----------.....

PROGRAMMING TECHNIQUES

COUNTING

There are two basic methods of keeping a tally by using anyone of the general-purpose registers:

1. Load a positive number, decrement for each count, and branch on a zero condition
(BEQ).

2. Load a negative number, increment for each count~ and branch on a zero condition
(BEQ).

If possible, avoid using the stack pointer (R6) or the program counter (R 7) for counters unless
you realize the effect this will have on the hardware stack and the program sequence.

It is possible to use a memory location as a counter but this is highly inefficient because it
requires use of bus cycles that are not needed if GPRs are used.

read on t
124--------------------------------,

..,----------reference material-------............

JUMPING
AROUND

PROGRAMMING TECHNIQUES

You already know a number of
instructions that permit jumping to
various points in a program. We're going
to simply highlight the basic differences
so you will know which one to use,
depending on the job you want to do.

BR

OTHER
BRANCHES

JMP

JSR

TRAP

Although an unconditional branch seems to be the same as a JMP (but with a
limited range), it actually can be used to advantage. Whenever you need to jump
less than 200 locations, use the BR because it does not tie up any GPRs or require
any bus cycles.

The 16 conditional branches have one advantage over all other types of jump
instructions. They cause a branch (or jump) only when some specific ·condition
exists.

The JMP instruction is more versatile than BR because it is not limited by range
and can be used with all the registers and addressing modes except mode O.

The actual jump initiated by a JSR is the same as that caused by a JMP. However,
the JSR makes a link so the program can return to the point where it left off. A
JMP moves us someplace else but does not allow us to return. The JSR saves the
contents of a GPR and then uses that GPR to save the PC so we can return to the
next instruction in the main program.

Any TRAP instruction effectively causes a jump. However, it again provides a
means of returning to the main program because it stores the PC and PS on the
stack. The RTI or RTT instruction at the end of the trap routine can "pop" the
PC and PS, thereby returning control to the main program.

read on t
125

~--------reference material----------.....

USING
POINTERS

PROGRAMMING TECHNIQUES

Pointers are useful tools for stepping through a series of consecutive operands. A pointer moves
either forward, when it is incremented, or backward, when ii is decremented. A pointer can be
used to access either words or bytes data.

When dealing with pointers, it is more efficient to use the autoincrement and autodecrement
modes than to use the INC and DEC instructions. However, there are some pitfalls that must be
avoided. There is also a problem when the pointer reaches its limit.

AUTO-INCREMENT

This is perhaps used more often for pointers than any other mode. CLR (RO)+ is an example. We
first do what the instruction says (such as CLR), and then automatically move the pointer to the
next sequential location.

LIMITS

When dealing with pointers, we often compare the pointer with a limit to know when to stop.
Since auto-increment moves the pointer after instruction execution, the condition POINTER =
LIMIT means we have not done the required job on the last entry. To ensure the last entry is
handled, we could use a BLOS (branch if lower or same) instruction in place of a BLO (branch if
lower) instruction.

As we said above, comparing a pointer with a limit often results in failing to perform the required
job for the last data entry if we are not careful. We can solve this problem in one of three ways:

a. Use the auto-decrement mode instead of auto-increment.

b. Use the auto-increment mode but set the limit value one word (or byte) past our
desired limit.

c. Choose the appropriate branch instruction. For example, a BLOS instruction
rather than a BLO.

read on t
126

~--------reference material-------...........

UNDERSTANDING
SYMBOLS

PROGRAMMING TECHNIQUES

When referring to available PDP-II literature, you may find that a number of special symbols are
used to describe certain features of individual instructions. The more commonly used symbols are
explained below.

() = Indicates "the contents of". For example, (RS) means
"the contents of RS".

SS or SRC = source field

DD or DST = Destination field

+- = "becomes", or "moves into". For example, (dst)+-(src)
means that the source becomes the destination or that
the source moves into the destination location.

t (SP) = "popped" or removed from the hardware stack

-l- (SP) = "pushed" or added to the hardware stack

1\ = logical AND

V = logical inclusive OR (either one or both)

V- = logical exclusive OR (either one but not both)

= logical NOT

read on t
127 -----------------'

~--------reference material----------.....

BRANCH
CONDITIONS

PROGRAMMING TECHNIQUES

Because branch instructions are used so often,
it is quite helpful to know exactly which
condition codes are being tested by a specific
instruction. All 16 conditional branches are
listed below along with the condition code or
codes tested by the instruction.

BNE
BEQ

BPL
BMI

Bee
BeS

BVe
BVS

BGT

BGE

BLT

BLE

BHI

BHIS

BLO

BLOS

Branches if Z bit is clear
Branches if Z bit is set

Branches if N bit is clear
Branches if N bit is set

Branches if e bit is clear
Branches if e bit is set

Branches if V bit is clear
Branches if V bit is set

Branches if N and V are both clear
Branches if N and V are both set

Same as BGT but also branches if Z bit set

Branches if N or V but not both are set

Same as BL T but also branches if Z bit set

Branches if both e and Z bits are clear

Branches if e bit is clear (same as Bee)

Branches if e bit is set (same as BeS)

Branches if e or Z or both are set

128 ---------------...",

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

